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Abstract

X-rays are a valuable diagnostic tool for the study of high energy accelerated electrons.

Bremsstrahlung X-rays produced by, and directly related to, high energy electrons

accelerated during a flare, provide a powerful diagnostic tool for determining both

the properties of the accelerated electron distribution, and of the flaring coronal and

chromospheric plasmas. This thesis is specifically concerned with the study of spa-

tial, spectral and polarization properties of solar flare X-ray sources via both modelling

and X-ray observations using the Ramaty High Energy Solar Spectroscopic Imager

(RHESSI). Firstly, a new model is presented, accounting for finite temperature, pitch

angle scattering and initial pitch angle injection. This is developed to accurately infer

the properties of the acceleration region from the observations of dense coronal X-ray

sources. Moreover, examining how the spatial properties of dense coronal X-ray sources

change in time, interesting trends in length, width, position, number density and ther-

mal pressure are found and the possible causes for such changes are discussed. Further

analysis of data in combination with the modelling of X-ray transport in the photo-

sphere, allows changes in X-ray source positions and sizes due to the X-ray albedo

effect to be deduced. Finally, it is shown, for the first time, how the presence of a

photospheric X-ray albedo component produces a spatially resolvable polarization pat-

tern across a hard X-ray (HXR) source. It is demonstrated how changes in the degree

and direction of polarization across a single HXR source can be used to determine the

anisotropy of the radiating electron distribution.
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3.8 SOHO EIT 195Å images for Flare 1 at the times of 14:21:12 and 14:34:51,

corresponding to the times of rise and peak in X-ray emission. . . . . . 103

3.9 Plots of logNT against log 1/A for Flares 1, 2 and 3. . . . . . . . . . . 106

3.10 Observations of plasma temperature, X-ray emission, loop width and

thermal pressure are replotted together for Flares 1, 2 and 3 at one

energy band of 10-20 keV (14-25 keV for Flare 3). . . . . . . . . . . . 107

3.11 Simple cartoon showing the suggested coronal loop evolution with time. 108

4.1 A flow chart showing the main steps involved in the Monte Carlo photon

transport simulations in the photosphere. . . . . . . . . . . . . . . . . . 115

4.2 Cartoon showing how X-rays emitted in the chromosphere via the Coulomb

interaction can travel to the photosphere, Compton scatter, head out

into interplanetary space and then be detected alongside X-rays directly

emitted from the chromosphere. . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Absorption σa and Compton σc cross sections plotted at low energies

below 10 keV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 The X-ray scatter distributions of the primary photons and the Compton

back-scattered photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Diagram showing a HXR primary source at three different heliocentric

angles θ above the solar disk and the corresponding albedo patch at a

shifted location of h sin θ. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 Plots of the source position shift in the radial direction and source size

FWHM in the perpendicular to radial direction due to albedo, against

X-ray energy and heliocentric angle. . . . . . . . . . . . . . . . . . . . . 126



LIST OF FIGURES x

5.1 Diagram showing the preferred direction of the electric field for a photon

travelling out of the page, for each of the possible values of the linear

Stokes parameters Q and U . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 A cartoon of a typical solar flare scenario where an electron in the chro-

mosphere, transported along the guiding field from the corona interacts

by Coulomb collisions producing a HXR photon. . . . . . . . . . . . . 135

5.3 An updated version of the steps in the MC simulations including po-

larization and the creation of a HXR distribution via a chosen electron

distribution in the chromosphere. . . . . . . . . . . . . . . . . . . . . . 137

5.4 The position of the photon before scattering and after scattering and

the angle Ξ that determines the final rotation of the Stokes parameters

back into the frame of the source from the scattering frame. . . . . . . 140

5.5 Plots of the photon flux and spatially integrated DOP against helio-

centric angle for the upward primary, albedo and total components, for

each MC simulation input. . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Plots of photon flux and spatially integrated DOP for the upward pri-

mary, albedo and total components against X-ray energy. . . . . . . . . 145

5.7 Diagram of a single Compton scattering in the photosphere for three

heliocentric angles of 0◦, 45◦ and 90◦. . . . . . . . . . . . . . . . . . . . 146

5.8 Albedo polarization maps for an isotropic, unpolarised point source sit-

ting above the photosphere at four different locations after a single

Compton scatter in the photosphere. . . . . . . . . . . . . . . . . . . . 149

5.9 Albedo polarization maps as in Figure 5.8, but for the case of multiple

Compton scatterings in the photosphere. . . . . . . . . . . . . . . . . . 149

5.10 Total X-ray brightness and polarization maps for ∆ν = 4.0 electron

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.11 I, DOP and Ψ radial slices along X at Y = 0�� for the sources in Figure

5.10 for the ∆ν = 4.0 electron distribution. . . . . . . . . . . . . . . . . 151

5.12 Perpendicular to radial slices through each of the sources shown in Figure

5.10 for the ∆ν = 4.0 electron distribution. . . . . . . . . . . . . . . . . 152



LIST OF FIGURES xi

5.13 Total X-ray brightness and polarization maps for the photon distribution

created by the ∆ν = 0.5 electron distribution. . . . . . . . . . . . . . . 154

5.14 Radial slices (along X) through Y = 0�� for the intensity, I, the DOP

and Ψ for each of the sources in Figure 5.13 for the ∆ν = 0.5 electron

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.15 Perpendicular to radial slices through each of the sources shown in Figure

5.13 for the ∆ν = 0.5 electron distribution. . . . . . . . . . . . . . . . . 155

5.16 Total X-ray brightness and polarization maps for the photon distribution

created by the ∆ν = 0.1 electron distribution. . . . . . . . . . . . . . . 156

5.17 Radial slices (along X) through Y = 0�� for the intensity, I, the DOP

and Ψ for each of the sources in Figure 5.16 for the ∆ν = 0.1 electron

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.18 Perpendicular to radial slices through each of the sources shown in Figure

5.16 for the ∆ν = 0.1 electron distribution. . . . . . . . . . . . . . . . . 157



Preface

Chapter 1 provides a brief introduction to the topics and theory required for the fol-

lowing chapters: the interactions of electrons and ions in a plasma, the emission mech-

anisms required to create solar flare X-rays, the interactions of solar flare X-rays in the

photosphere (the albedo effect) and our current understanding of solar flare X-ray ob-

servations, using instruments such as Ramaty High Energy Solar Spectroscopic Imager

(RHESSI ).

Chapters 2 and 3 examine an interesting flare type with strong coronal X-ray emission

from a dense loop, with little or no emission from the chromosphere. Observations

of these events with instruments such as RHESSI have enabled the detailed study of

their structure, revealing that amongst other interesting trends, the spatial parame-

ter parallel to the guiding field increases with X-ray energy. This variation has been

discussed in the context of a beam of non-thermal electrons in a one-dimensional cold

target model, and the results used to constrain both the physical extent of, and den-

sity within, an electron acceleration region believed to be situated within the coronal

loop itself. In Chapter 2, the investigation is extended to a physically realistic model

of electron transport that takes into account the finite temperature of the ambient

plasma, the initial pitch angle distribution of the accelerated electrons, and the effects

of collisional pitch angle scattering. The implications of the results when determining

parameters such as number density and acceleration region length from observation

are discussed. In Chapter 3, the observational analysis of such flare types is further

advanced, and the spatial and spectral properties of three dense coronal X-ray loops

are studied temporally before, during, and after the peak X-ray emission. Using obser-



vations from RHESSI , the temporal changes in emitting X-ray length, width, volume,

position, number density and thermal pressure are deduced. Collectively, the observa-

tions also show for the first time three temporal phases given by peaks in temperature,

X-ray emission, and thermal pressure, with the minimum volume coinciding with the

X-ray peak. The possible explanations for the observed trends are discussed.

Chapters 4 and 5 examine solar flare X-ray albedo, an effect produced by the Compton

backscattering of solar flare produced X-rays in the photosphere. This is studied via

Monte Carlo simulations of X-rays in the photosphere. Chapter 4 investigates quan-

titatively for the first time the resulting positions and sizes of solar flare hard X-ray

chromospheric sources due to the presence of an albedo component, for various chro-

mospheric X-ray source sizes, spectral indices and directivities. It is shown how the

albedo effect can alter the true source positions and substantially increase the mea-

sured source sizes; this is greater for flatter primary X-ray spectra, stronger downward

anisotropy, and for sources closer to the solar disk centre, between the peak albedo

energies of 20 and 50 keV. Chapter 4 demonstrates how the albedo component should

be taken into account when X-ray footpoint positions, footpoint motions and source

sizes are observed and analysed by instruments such as RHESSI . In Chapter 5, this

study is extended to investigate the polarization of solar flare chromospheric X-ray

sources, by investigating how the presence of an X-ray albedo component produces a

variation in the spatial distribution of polarization across a single X-ray source. From

this, polarization maps for each of the modelled electron distributions are calculated

at various heliocentric angles from the solar centre to the solar limb. The investigation

shows how Compton scattering produces a distinct polarization variation across the

albedo patch at peak albedo energies of 20-50 keV. It discusses how spatially resolved

hard X-ray polarization measurements from future X-ray polarimeters could provide

important information about the directivity and energetics of the radiating electron

distribution, using both the degree and direction of polarization.

Chapter 6 provides conclusions, discussion and some final remarks regarding the thesis

as a whole, in the context of current solar flare understanding and possible future

missions. Unless indicated, CGS units are used throughout the thesis.
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Chapter 1

Introduction

1.1 The Sun, its atmosphere and solar flares

Our star, the Sun is a G2 main sequence star. It has a mass, radius, luminosity

and effective surface temperature of M� = 1.99 × 1033 g, R� = 6.96 × 1010 cm,

L� = 3.84× 1033 erg s−1 and T� = 5778 K respectively (e.g., Stix 2004), with an es-

timated age of 4.6 Gyr (Houdek & Gough 2011). The solar atmosphere, which extends

into the solar wind, is the largest continuous structure in the solar system, permeat-

ing the entire heliosphere. The solar magnetic field governs the evolution of the solar

corona and hence it is widely believed to be responsible for transient phenomenon such

as solar flares. Solar flares are uninterestingly defined as a “rapid, sudden brightening

in the solar atmosphere”, yet they are responsible for the largest release of energy in our

solar system, which can be greater than 1032 erg. Most solar flares occur within active

regions on the Sun; regions where the solar magnetic field is particularly strong. The

physics associated with the production of, and processes throughout, a solar flare is

immense; in order to fully understand the entire flare mechanism, large scale processes

describing the evolution of the magnetic field within an entire active region must be

coupled with the small scale processes describing the interactions of high energy par-

ticles accelerated during the flare. This thesis is concerned with the latter.
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The solar atmosphere is a continuous structure with many layers of varying tempera-

ture and number density. A semi-empirical model of the solar atmosphere is shown in

Figure 1.1. It is usual to split the solar atmosphere into three layers defined as the:

photosphere, chromosphere, and the corona, which eventually extends into, and is re-

named, the solar wind at roughly 3R�, filling the entire heliosphere. The photosphere

is the optical ‘surface’ of the Sun; the point at which the solar atmosphere becomes

opaque to optical wavelengths. The temperature T and number density n of the pho-

tosphere fall with increasing height, with T falling from ∼ 6000 K to ∼ 4000 K at the

highest point of the photosphere, known as the temperature minimum region. Hydrogen

number densities within the photosphere are of the order 1017 cm−3, falling to around

1015 cm−3 at the temperature minimum region (Avrett & Loeser 2008; Vernazza et al.

1981). Within hydrogen number densities of the order 1017 cm−3, high energy X-rays

can interact with free or bound electrons, and a significant proportion of this thesis is

dedicated to studying these interactions (Chapters 4 and 5). After the temperature

minimum region, there is a ∼ 2000 km layer known as the chromosphere, where the

temperature of the solar atmosphere begins to rise, reaching ∼ 2×104 K at the top. At

the top of chromosphere, hydrogen number densities have fallen to around 1011 cm−3

(Figure 1.1). The higher hydrogen number densities deeper within the chromosphere

collisionally stop high energy electrons transported to the chromosphere during a solar

flare, producing bremsstrahlung X-rays. At the top of the chromosphere lies the transi-

tion region. Here, there is sudden two magnitude increase in temperature and decrease

in number density over a very small height of around 100 km. After the transition

region, there is the final and largest layer of the solar atmosphere; the corona. The

lower corona is a low β plasma where the thermal pressure is much less than that the

magnetic pressure, of the order ∼ 10−2. However β can vary dramatically with coronal

height and solar activity (e.g., models by Gary 2001). However, in general the corona

is magnetically dominated and highly conductive. At quiet Sun times, the corona has

a high temperature of ∼ 1− 2 MK and hence can be observed at X-ray energies. The

high temperature of the corona is indicated by the presence of lines from highly ionised

elements such as iron (Fe) and calcium (Ca) in the coronal emission spectrum. The
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method of heating the corona to such high temperatures is still not properly understood

and is an outstanding problem in astrophysics (e.g. Parnell & De Moortel 2012). The

energy release process that causes the onset of a solar flare is believed to occur within

the corona, where the temperature of the plasma in the vicinity of the region of energy

release can be tens of mega Kelvin. The number density of the quiet corona is low;

∼ 108−109 cm−3 or less. During a solar flare, regions of the corona can have a number

density as high as 1011 cm−3, possibly from heated material moving into the corona

from the denser chromosphere below; this is known as chromospheric evaporation (cf.,

Doschek et al. 1980; Antonucci & Dennis 1983). As in the chromosphere, high coronal

densities are important for the interaction of particles, mainly electrons, via Coulomb

collisions with the background plasma, and the emission of X-rays. This is particularly

important in Chapters 2 and 3 of this thesis.

It is widely believed that the onset of a solar flare is caused by the release of stored mag-

netic energy in the corona, due to reconnecting magnetic fields (cf., Priest & Forbes

2000). During a flare, coronal plasma in the vicinity of the energy release region is

heated to temperatures greater than 10 MK. Particles, primarily electrons, but also

protons and heavier ions, are accelerated to high energies greater than ∼ 20 keV and

often up to MeV and even GeV energies, out of the background thermal plasma. The

acceleration of a large number of particles during a solar flare requires an efficient

acceleration mechanism. This is a topic of ongoing debate within the solar physics

community. Popular candidates are: DC electric field acceleration, stochastic accel-

eration (second order Fermi acceleration) and shock acceleration (first order Fermi

acceleration) (see Holman et al. 2011, as a recent review of such mechanisms). The

energy released during a solar flare propagates into the lower layers of the corona,

transition region and chromosphere, either in the form of precipitating high energy

electrons, protons and heavier ions, or by thermal conduction, due to the even steeper

temperature gradient created between the corona and chromosphere during a flare. The

chromosphere and transition region react to this heating; dense, heated chromospheric

material bound by the magnetic field has to expand up into the corona, causing the
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Figure 1.1: Original figure taken from Aschwanden (2004) and then adapted. The

figure shows how electron number density ne, hydrogen number density nH0 and elec-

tron temperature Te change with height above the solar photosphere. The photosphere,

chromosphere, corona, temperature minimum region and transition region are noted

on the figure.

chromospheric evaporation mentioned in the previous paragraph.

During a solar flare, radiation is emitted across the entire electromagnetic spectrum

from radio to X-rays and even gamma rays for the largest flares; from the corona to the

photosphere. Hard X-rays (HXRs) with energies greater than ∼ 10 keV are produced

collisionally by the electrostatic interactions of electrons with background particles in

both the corona and chromosphere, mainly as free-free bremsstrahlung emission. Soft

X-rays (SXRs) in the range of ∼ 0.1 − 10 keV are also produced as bremsstrahlung

but mainly from particles interacting within a high temperature plasma. Gamma-rays,

if present, above around 300 keV can also be produced by the interaction of protons,
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Figure 1.2: X-ray image of a

flare (13th January 1992) using

Soft and Hard X-ray Telescopes

(SXR and HXR) on-board Yohkoh.

HXR contours are overlaid onto

the SXR loop. The positions

of X-ray sources are discussed

in Section 1.5.3. This image is

taken and adapted from http:

//hesperia.gsfc.nasa.gov/

hessi/images/fd-close.gif.

heavier ions and flare produced neutrons. For example gamma-rays can be emitted

from the photosphere by the interactions of neutrons combining with neutral hydrogen

to form deuterium (e.g., Chupp & Ryan 2009).

Solar flare sizes are classified by their soft X-ray flux; specifically by the 1-8 Å flux

measured by the Geostationary Orbiting Environmental Satellites (GOES ) at 1 AU.

The flare classifications are A, B, C, M and X with an X-class flare being the largest.

The flux of each class increases by an order of magnitude. The flux of an X-class flare

is equal to or greater than 10−4 W m−2, while the flux of a smaller M-class flare is

of the order 10−5 W m−2. For classes A to M, the numbers 1 to 10 also denote the

strength of the flare, that is, a M10 flare has a higher flux than a M5 flare. There is

no limit on the numbers for an X-class flare (e.g., Fletcher et al. 2011).

X-rays, and even more so, gamma-rays if present, only represent a small proportion

of the total flare radiative output (Woods et al. 2004, 2006; Kretzschmar 2011), with

the majority of the emission actually coming from larger wavelength emissions of ex-

treme ultraviolet, ultraviolet and visible light. However, the chromosphere and corona

http://hesperia.gsfc.nasa.gov/hessi/images/fd-close.gif
http://hesperia.gsfc.nasa.gov/hessi/images/fd-close.gif
http://hesperia.gsfc.nasa.gov/hessi/images/fd-close.gif
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are optically thin at high X-ray and gamma-ray energies, and studying their tempo-

ral, energetic, spatial and polarization properties can provide a direct link not only to

the accelerated electrons, protons and ions responsible for their production, but also

the conditions in the corona or chromosphere during a flare; the main topics of study

within this thesis. Therefore, the rest of this chapter will discuss the observation and

analysis of solar flare X-rays, starting with a brief review of the particle interactions

and emission mechanisms required for the production of solar flare X-rays in the solar

atmosphere.

1.2 Electron and ion interactions the solar atmo-

sphere

1.2.1 Coulomb collisions

In a fully or partially ionised plasma such as the solar corona or chromosphere, electrons

and ions will interact by the Coulomb electrostatic force, via ‘Coulomb collisions’.

When an electron passes close to an ion or another electron, it is deflected by some

angle θD due to the Coulomb electric field of the ion. This is shown in Figure 1.3. In the

simplest model describing Coulomb collisions, an electron moves through a background

plasma of heavy, stationary ions. This is known as a Lorentz model. The background

electrons required for neutrality in the plasma are neglected, since the Lorentz model

assumes that the ion atomic number Z is large, meaning that the electron-ion collisions

(e-i) have a dominant effect over the electron-electron (e-e) collisions. The cross section

σR for the small angle scatter of a moving electron due to the Coulomb field of a heavy,

stationary ion can be given by the Rutherford formula (cf., Lifshitz & Pitaevskii 1981):

σR =
4πZe2

m2
ev

4
e

� bmax

bmin

db

b
(1.1)

where e [esu] is the charge of an electron, me [g] is the mass of the electron and ve [cm

s−1] is the total electron speed. The encounter is characterised by b [cm], the impact

parameter; the expected closest distance of approach between the electron and ion, had



1.2: Electron and ion interactions the solar atmosphere 7

Figure 1.3: Left: Electron deflected by a heavy ion in a Lorentz collisional model.

Right: In general, both particles are deflected during a Coulomb collision, and momen-

tum and energy are transferred.

the electron not been deflected during their encounter (as shown in Figure 1.3). The

integral � bmax

bmin

db

b
= ln

λD

bmin
= lnΛ (1.2)

is defined as the Coulomb logarithm lnΛ. The role of the Coulomb logarithm is to take

into account the total effect of all deflections with different impact parameters b ranging

from a minimum bmin to bmax = λD, where λD is the Debye length. Within a flaring

solar corona, where the plasma is fully ionised, values of ln Λ ∼ 20 are often used. An

electron undergoing many deflections within a field of ions will experience a collisional

drag force, causing an electron to lose momentum in its direction of travel, and this is

transferred to the components of momentum perpendicular to the direction of travel.

The time τ0 (or equivalently the frequency ν0) it takes for all particle momentum to

be lost in the direction of travel, is given by,

τ−1
0 = ν0 = niveσ =

4πneZe4 ln Λ

m2
ev

3
e

=
Γ

v3
, where Γ =

4πneZe4 ln Λ

m2
e

(1.3)

and ne, ni are the electron and ion number densities [cm−3]. This is known as the

Lorentz collisional time or frequency. In a Lorentz model, where the background par-

ticles are stationary, there is no exchange of energy between the electrons and the ions.

In solar flare conditions, collisions are not fully described by the Lorentz model, where

there will be e-i, e-e and i-i collisions. Electrons and ions will be in motion and exchange
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energy during an interaction. In this case, there are two main timescales to consider:

1. the momentum loss time τ p, and

2. the energy exchange time τE.

Assuming, during a solar flare, the background distribution of particles are Maxwellian

in form, and in thermal equilibrium, then 1. describes the time it takes for a particle

distribution to isotropize in angle with the thermal background, and 2. describes

the time required for a particle distribution to form an energy equilibrium with the

thermal background. Each timescale is slightly different depending on the particle

species involved in the collision. The timescales for energy exchange can be related by,

τEee : τ
E
ii : τEei ∼ 1 :

�
mi

me

�1/2

:

�
mi

me

�
(1.4)

showing that the quickest equilibrium time for, and hence the largest change in energy

occurs during, an e − e interaction (Lifshitz & Pitaevskii 1981) . For e − e collisions,

the energy loss is given by,

dE

dt
= − E

τEee
= −2E

τ0
= −2EΓ

v3e
= −Kne

E
ve (1.5)

where K = Γm2
e/2ne. Equation 1.5 is often used to describe collisions in solar flare

physics vis a collisional thick target model (e.g., Brown 1971; Syrovatskii & Shmeleva

1972). The loss in electron energy over a distance along z from an initial energy E0 is

then found to be,

E2 = E2
0 − 2K

� z

0

n(z
�
)dz

�
where the column density N(z) =

� z

0

n(z
�
)dz

�
(1.6)

Assuming the density of the target is constant such that N(z) = n0z, then a typical

chromospheric density of n0 = 1013 cm−3 would collisionally stop a 30 keV electron over

a distance ∆z ∼ 0.5��. Within a target density of n0 = 1011 cm−3, which is the number

density of a dense corona (Chapters 2 and 3), then a 30 keV electron would lose all

energy over a distance ∆z ∼ 47��. If the target is not fully ionised (e.g., Emslie 1978)

then the value of the Coulomb logarithm is decreased. Often values of ln Λ ∼ 7 are
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used in the chromosphere to account for the presence of atoms in cooler chromospheric

regions. Equations 1.5 and 1.6 only describe the energy loss of an electron in the high

energy limit, that is when E >> Eth, where Eth is the average thermal energy of the

background plasma. The energy variation of electrons close to the average thermal

energy of a background plasma is discussed in Chapter 2.

1.3 Solar flare X-rays: bremsstrahlung

During a Coulomb collision, on average only a very small fraction of the energy lost by

an accelerated electron is radiated as a photon. The radiation that is emitted is termed

bremsstrahlung and means “braking radiation”. Although other emission mechanisms

may contribute in the corona, such as free-bound emission (e.g., Culhane & Acton

1970; Brown et al. 2010) from the recombination of an ion and electron for example,

overall bremsstrahlung is the most important emission mechanism for the production

of X-rays during a solar flare (Korchak 1967) and is produced by both electron-ion

and electron-electron Coulomb collisions (Haug 1975; Kontar et al. 2007), in the solar

corona and chromosphere. Below ∼ 300 keV, the bulk of solar flare bremsstrahlung

emission comes from electron-ion interactions.

1.3.1 Bremsstrahlung produced by a single accelerated elec-

tron

In the simplest situation, where a single electron is moving at a non-relativistic velocity,

the total power Prad [erg s−1] radiated by the accelerated electron is given by Larmor’s

formula

Prad =

�
dE

dt

�

rad

=
2e2|v̇|2
3c3

(1.7)

where e [esu] is the electron charge, v̇ is the electron acceleration [cm s−2] and c [cm

s−1] is the speed of light. Larmor’s formula gives the radiation loss rate in the frame of

the electron. The total energy per unit frequency dE
dω emitted the entire time a single
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charge is accelerated can be found via Parseval’s theorem (cf., Longair 1981),

� ∞

−∞

dE

dt
dt =

� ∞

−∞

2e2

3c3
|v̇(ω)|2dω = 2

� ∞

0

2e2

3c3
|v̇(ω)|2dω (1.8)

giving,

I(ω) =
4e2

3c3
|v̇(ω)|2, (1.9)

the frequency spectrum of a single accelerated charge.

1.3.2 Bremsstrahlung X-rays from a solar flare

In solar flare physics, the general form of the total angle-averaged X-ray distribution

I [photons cm−2 s−1 keV−1] produced by an electron flux density [electrons cm−2 s−1

keV−1] undergoing Coulomb collisions in the corona or chromosphere is given by,

I(�) =
1

4πR2

� ∞

�

�

V

n(r)F (E, r)σ(�, E)dEd3r, (1.10)

where R = 1 AU is the Sun-Earth distance, � [keV] is the photon energy, V [cm3] is the

emitting volume, n [cm−3] is the number density of the emitting region, r is the position

on the Sun and σ [cm2] is the angle-averaged bremsstrahlung cross section. Often for

clarity or simplicity the electron-ion (e-i) bremsstrahlung cross section is approximated

by the Kramers formula σ = QK or can be better estimated by the non relativistic

Bethe-Heitler cross section σ = QBH . Both are given by

QK(�, E) =
Z28α

mec2r20�E
, QBH(�, E) = QK ln

�
1 +

�
1− �/E

1−
�

1− �/E

�
, (1.11)

where α ∼ 1/137 is the fine structure constant and r0 = 2.82×10−13 cm is the classical

electron radius (cf. Kontar et al. 2011a). Equation 1.10 is an inverse problem; from

observation the ultimate goal is to deduce the electron flux distribution F from a mea-

sured photon flux I. The form of the inferred electron distribution is dependent upon

the form of the bremsstrahlung cross section. Both the Kramers and non-relativistic

Bethe-Heitler forms are often used as they allow the analytical deduction of F (E, r)

(e.g., Brown 1971; Raymond & Smith 1977; Brown et al. 2002). However, Haug (1997)

noted that relativistic changes to the e-i bremsstrahlung cross section should be taken
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Figure 1.4: Left: Figure taken from Massone et al. (2004). Angle dependent e-i

bremsstrahlung cross section for a 100 keV electron and the emission of a 30 keV

(solid), 50 keV (dotted) and 80 keV (dashed) photon. The radial distance gives the

size of the cross section while the angle from the x-axis is the angle between the photon

emission and the incoming electron. Right: Diagram showing the X-ray emission angle

θ, the electron angle to the guiding field β, the electron azimuthal angle φ and the

angle between θ and β, Θ.

into account above even ∼ 30 keV, and found an analytical form up to semi-relativistic

energies. The full form of the angle-averaged e-i bremsstrahlung cross section is shown

in Koch & Motz (1959), formula 3BN, with a more useable form for numerical simula-

tion given by Haug (1997). Measuring the X-ray photon spectrum alone without any

spatial information, implies that Equation 1.10 can be spatially integrated to give,

I(�) =
1

4πR2

� ∞

�

�
n̄V ¯F (E)

�
σ(�, E)dE (1.12)

where
�
n̄V ¯F (E)

�
is known as the mean electron flux spectrum (Brown et al. 2003).

As well as being dependent upon the X-ray energy �, initial electron energy E and

the atomic number of the target Z, the bremsstrahlung cross section σ is also angular

and polarization dependent. The angular dependent e-i cross section summed over all

polarization states is given by Gluckstern & Hull (1953). A polar diagram showing the

form of the polarization integrated angular dependent e-i bremsstrahlung cross section



1.3: Solar flare X-rays: bremsstrahlung 12

is shown in Figure 1.4 (left) and is taken from Massone et al. (2004). It is plotted for a

100 keV electron emitting either a 30, 50 or 80 keV photon. This figure shows the e-i

cross section is larger for lower energy photons. It is more likely a low energy photon

will be emitted during an interaction and the direction of emission is more likely to

peak away from the direction of the incoming electron as the emitted photon energy

increases. Using an angle dependent e-i bremsstrahlung cross section σ, the angular

and energy dependent photon flux distribution I(�, θ) can be given by,

I(�, θ) ∝
� ∞

E=�

� 2π

φ=0

� π

β=0

F (E, β)σ(E, �, β, θ, φ) sin βdβdφdE, (1.13)

where θ is the photon emission angle, β is the electron angle to the guiding field and

φ is the electron azimuthal angle in the plane perpendicular to the guiding field. Each

angle is related by,

cosΘ = cos θ cos β + sin θ sin β cosΦ. (1.14)

This is further described in Chapter 5, and each angle can be seen pictorially in Figure

1.4 (right). Depending upon the disk location (viewing angle) of the X-ray source and

the electron anisotropy, Massone et al. (2004) found that using the angle-averaged,

instead of the angle-dependent e-i bremsstrahlung cross section can cause significant

changes to the inferred electron flux distribution, particularly above 50 keV, leading to

suspect inferred mean electron spectra and total injected energies. Gluckstern & Hull

(1953) gives the polarization dependent parallel and perpendicular components of the

angular dependent e-i bremsstrahlung cross section. These are used in Chapter 5 of

this thesis and hence are further discussed there. The total polarization and angular

dependent e-i bremsstrahlung cross section σ is then the sum of the components of the

cross section parallel σ|| and perpendicular σ⊥ to the plane of X-ray emission

σ = σ|| + σ⊥. (1.15)

Importantly, the angular distribution of the X-ray and hence electron distribution is

positively correlated with the X-ray polarization. This will be discussed further in

Section 1.5.4 and Chapter 5.
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1.3.3 Electron-ion versus electron-electron bremsstrahlung

As mentioned, bremsstrahlung X-rays can be produced by both electron-ion and electron-

electron Coulomb collisions. In the previous section, only e-i bremsstrahlung was con-

sidered, as most solar flare problems only need to account for the electron-ion collisions.

Below ∼ 300 keV the e-e bremsstrahlung cross section decreases rapidly and the emis-

sion is negligible compared to that of e-i bremsstrahlung (Haug 1975; Kontar et al.

2007). However, Kontar et al. (2007) found that the presence of e-e bremsstrahlung

should not be ignored above ∼ 300 keV. For a given X-ray distribution, the presence

of an e-e bremsstrahlung component requires a steeper electron spectrum at higher

energies. Unlike e-i bremsstrahlung, e-e bremsstrahlung cannot produce X-rays of all

energies up to the energy of the emitting electron. The maximum e-e bremsstrahlung

energy is bounded by the angle between the direction of the incoming electron and the

emitted X-ray. In general the bremsstrahlung cross section should be a combination of

both e-i and e-e interactions (Haug 1975, 1998; Kontar et al. 2007), given by

σ(�, E) = Z2σei(�, E) + Zσee(�, E), (1.16)

where Z is the effective atomic number of a plasma or quasi-neutral target. In Chapter

5, only the angular and polarization dependent e-i bremsstrahlung cross section is used,

since the majority of the work in Chapter 5 studies X-rays in the range of 20-50 keV,

where the emission due to e-e interactions is negligible.

1.3.4 Thermal bremsstrahlung

Thermal bremsstrahlung is the term given to the production of bremsstrahlung X-rays

by a distribution of electrons in thermal equilibrium. Often the spectrum of lower

energy X-rays (below ∼ 30 keV) during a solar flare has an exponential form, represen-

tative of the emission from a thermal distribution of particles, (e.g., first suggested via

observation by Chubb et al. 1966). Although realistically, the flaring region will have a

temperature distribution, it is often useful to fit this part of the X-ray spectrum with a

single isothermal function (see Figure 1.8), in order to obtain an average temperature
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T [K] and emission measure EM = n2V [cm−3], where V (r) [cm3] is the volume of the

emitting flare region. The electron flux density F (E, r) of such a distribution and the

resulting photon flux distribution I(�, r) can be given by,

F (E, r) =
23/2

(πm1/2
e )

n(r)E

(kBT 3/2(r))
exp

�
−E

kBT (r)

�
→ I(�, r) ∝ n2(r)V (r)

�T 1/2(r)
exp

�
−�

kBT (r)

�

(1.17)

where r is the position on the Sun.

1.3.5 Non-thermal bremsstrahlung

Often in X-ray solar flare physics, the higher energies of the X-ray distribution have

a form that can be approximated by either a single or double power law (see Figure

1.8) (e.g., Cline et al. 1968; Lin et al. 1981; Dennis 1985). Hence, this means that the

parent electron energy distribution can also be approximated by a power law,

F (E) ∝ E−δ → I(E) ∝ �−γ. (1.18)

In a collisional thick target model, the electrons lose all of their kinetic energy in the

target region. In general, the spectral index of the target electron spectrum differs from

the injected electron spectral index by δT ∼ δ−2 and the spectral index of the resulting

X-ray distribution is given by, γthick = δ+1 (e.g., Brown 1971). The chromosphere and

also the corona, depending on its density, can act as a thick target during a solar flare.

In a thin target model, electrons do not lose all of their energy as they move through a

thin target region and the resulting spectral index of the photon distribution is given by

γthin = δ−1. A low density corona may act as a thin target. The above approximations

are for non-relativistic e-i interactions. The relationship between the spectral index of

the electron distribution δ and the spectral index of the X-ray distribution γ flattens if

the X-ray emission is due to relativistic e-i interactions or e-e collisions. For example,

e-e interactions in a thick target model produce an X-ray spectrum of the form δ ∼ γ

(Haug 1989; Kontar et al. 2007).
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1.4 Solar flare X-rays: photon interaction processes

In a dense plasma or neutral atmosphere X-ray photons can interact with free or bound

electrons by Compton scattering. The corona and chromosphere are mainly optically

thin to X-ray and gamma-ray energies. However, this is not true in the high densities

of the photosphere (∼ 1017 cm−3), as noted in Section 1.1. Compton scattering in the

photosphere is the cause of photospheric albedo which is discussed in Section 1.15 of

this chapter and in Chapters 4 and 5 of this thesis. In the absence of energy exchange

in the low energy limit below ∼ 1 keV, Compton scattering can be described by, and

is equivalent to Thomson scattering.

1.4.1 Thomson scattering

Thomson scattering describes the interaction of an incident plane wave with an electron,

and is a purely classical process (cf., Jackson 1962; Longair 1981). The radiation field

of the incident wave causes the electron to oscillate, with the direction of oscillation

dependent upon the polarization of the incident wave. The oscillating electron is an

accelerated charge and subsequently radiates its own radiation in a different direction;

the scattered wave. For low energy interactions described by Thomson scattering, the

wavelength of the incident wave is equal to wavelength of the scattered wave. The

energy per unit time, dP scattered into a solid angle dΩ or equivalently radiated by

the electron is given by Equation 1.19 (left) and the time-averaged energy flux of the

incident electromagnetic wave (time-averaged Poynting flux) �U�, [erg s−1 cm−2], is

given by Equation 1.19 (right),

dP

dΩ
=

e4E2

8πm2
ec

3
sin2 Θ, �U� = c

8π
E2 (1.19)

where E is the oscillating electric field of the scattered electromagnetic wave and Θ is

the angle between the direction of electron acceleration and the propagation direction of

the outgoing radiation, not the scattering angle. The differential Thomson scattering

cross section is the ratio of these two quantities, giving,

dσthom

dΩ
=

�
e2

mec2

�2

sin2 Θ. (1.20)
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Equation 1.20 describes completely polarized radiation. The angle Θ is related to the

polar scattering angle θ and the direction of the incoming polarization Ψ by cosΘ =

sin θ cosΨ. Each of these angles is shown in Figure 1.5 (left). Rearranging gives

sin2 Θ = 1− sin2 θ cos2 Ψ. For unpolarized radiation, the average polarization angle is

required and hence this gives sin2 Θ = 1− sin2 θ�cos2 Ψ� = 1− sin2 θ/2 = (1 + cos θ) /2.

The Thomson scattering differential cross section for unpolarized incident radiation is

then given by,
dσthom

dΩ
=

�
e2

mec2

�2 1

2

�
1 + cos2 θ

�
(1.21)

where θ is the scattering angle. Integrating either Equation 1.20 or 1.21 over solid

angle dΩ = 2π sin θdθ gives,

σthom =

�
e2

mec2

�2 2π

2

� π

0

�
1 + cos2 θ

�
sin θdθ =

8π

3

�
e2

mec2

�2

, (1.22)

which is the total Thomson scattering cross section σthom. There is no energy exchange

during a Thomson scattering since the electron does not recoil. Figure 1.5 (left) depicts

the Thomson scattering of completely polarized radiation. Figure 1.6 plots the total

Thomson cross section against energy and the unpolarized differential Thomson cross

section against scattering angle (Equation 1.21).

1.4.2 Compton scattering

In general, when a photon scatters from an electron, there is energy exchange and

the energy of the outgoing photon is decreased. Arthur Compton’s original result

(Compton 1923) was derived from experiment and the formula was given in terms of a

shift in photon wavelength, ∆λ. This can be found easily by studying the kinematics of

the collision, assuming that the incident radiation acts as a particle, that is a photon.

The resulting wavelength λ or energy � of the outgoing photon can be found from,

∆λ = λ− λ0 =
h

mec
(1− cos θ) ,

�

�0
=

1

1 + �
mec2

(1− cos θ)
. (1.23)

λ0 and �0 are the incoming photon wavelength and energy respectively, h is the Planck

constant and θ is the scattering angle of the outgoing photon relative to the direc-

tion of incoming photon. Equation 1.23 (left hand side) is easily converted to photon
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Figure 1.5: Left: Cartoon showing a polarized incident plane wave interacting with an

electron, causing it to oscillate and re-radiate. The original figure was taken from http:

//www.exul.ru/education/1/Note3b.pdf and then adapted for this thesis. Each of

the angles θ (angle between the incident and scattered radiation), Θ (angle between

the direction of electron acceleration and the propagation direction of the outgoing

radiation) and Ψ (the direction of the incoming polarization measured from the x-

axis) are shown. Right: diagram of the Compton interaction between a photon and an

electron.

energy (right hand side) by � = hc
λ . The original formulation of Thomson scattering

only described light as a plane wave, it did not take into account its quantum particle

properties as a photon, and hence it can not account for the energy exchange between

the incoming photon and the electron, which recoils during the interaction, gaining

energy at the loss of the photon. A simple diagram of the Compton interaction is

shown in Figure 1.5 (right). In order to find the Compton scattering cross section

σc, modifications have to be made to the Thomson scattering cross section σthom in

order to account for the change in energy. From an approximate quantum mechanical

derivation, the Compton scattering differential cross section is found to be,

dσc

dΩ
=

dσthom

dΩ

�
�

�0

�2

. (1.24)

http://www.exul.ru/education/1/Note3b.pdf
http://www.exul.ru/education/1/Note3b.pdf
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Figure 1.6: Top: A compar-

ison of the KN σc (red solid)

and Thomson σthom (grey

dashed) scattering cross sec-

tions in units of σthom. Both

cross sections only match at

low energies less than ∼ 1 keV

and hence the KN scattering

cross section should be used to

describe the Compton interac-

tion in X-ray solar flare stud-

ies. Middle: The differential

KN Compton scattering cross

section dσc/dΩ versus scatter-

ing angle θS. Bottom the az-

imuthal angle-averaged differ-

ential KN scattering cross sec-

tion dσc/dθS versus scattering

angle θS. The case for Thom-

son scattering is shown by a

grey dashed line in each case.

A proper derivation of the differential Compton scattering cross section, fully taking

into account both quantum and relativistic effects is performed in quantum electro-

dynamics. This gives the Klein-Nishina (KN) Compton differential scattering cross

section (Klein & Nishina 1929),

dσc

dΩ
=

1

2
r20

�
�

�0

�2 
�

�0
+

�0
�
− sin2 θS


1−Q cos 2φS − U sin 2φS




, (1.25)
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where φS is the azimuthal scattering angle and Q and U are linear Stokes parameters

used to describe linear polarization. This is discussed in detail in Chapter 5. The

total KN cross section against energy and the differential KN cross section against

scattering angle for the completely unpolarized case (that is setting Q and U to zero

in Equation 1.25) are plotted in Figures 1.6. From Figure 1.6, it can be seen that

Compton cross section deviates greatly from the constant Thomson cross section at

high energies, decreasing due to the fact that a high energy photon is less influenced

by an electron. In Figure 1.6, both dσc/dΩ and dσc/dθS = (dσc/dΩ)2π sin θS are

plotted. At low energies, the unpolarized dσc/dΩ matches that of the Thomson case

and is symmetrical, with the smallest value occurring at a scattering angle of 90◦,

where the scattering angle is measured from the direction of the incident photon. As

the incident photon energy increases, the scattered radiation becomes more and more

forward beamed, it is scattered at a smaller angle and there is a smaller change in

photon energy. Removing the azimuthal dependency and plotting dσc/dθS shows that

the photons are more likely to be scattered between 50◦ and 130◦ at low energies, and

the importance of this is discussed in Chapter 4. At higher energies, the maximum

scattering angle falls to a lower θS due to the forward beaming.

1.5 Solar flare X-rays: observations

In this section, the main X-ray observables during a solar flare: the X-ray temporal

evolution, the X-ray spectrum, the X-ray source location and spatial properties, and

finally the X-ray polarization will be discussed. The space-borne satellite, The Ramaty

High Energy Solar Spectroscopic Imager (RHESSI ) (Lin et al. 2002) is currently used

for high resolution imaging spectroscopy of solar flare X-rays from 3 keV. RHESSI is

discussed in Section 1.6.



1.5: Solar flare X-rays: observations 20

1.5.1 X-ray temporal evolution of a solar flare

The duration of a solar flare can usually be separated into three stages: the rise or

precursor stage (stage 1), the impulsive stage (stage 2) and lastly, the decay stage

(stage 3). RHESSI and Geostationary Operational Earth Satellites (GOES) light curves

showing the typical temporal evolution of soft X-rays (SXRs) ≤ 10 keV and hard X-

rays (HXRs) ≥ 10 keV are shown in Figure 1.7. Each stage is labelled on the figure.

During stage 1, there is usually a slow, gradual increase in SXRs and lower energy

HXRs (∼ 1 − 20 keV for the flare shown in Figure 1.7), where the coronal plasma

is being heated to tens of mega-Kelvin. During stage 2, there is usually a sudden,

fast increase in HXRs above 20 keV, lasting for only ∼ 1 or 2 minutes, where a large

number of electrons are accelerated to high non-thermal energies. The SXR and lower

energy HXR emission usually peaks after the impulsive HXR emission, and then starts

to gradually decrease. This denotes stage 3. The overall time and the length of each

stage is individual for each flare; for example, the SXR emission may take hours to

decrease during stage 3, while for other flares it decays over a much quicker period.

1.5.2 The X-ray and gamma-ray solar flare energy spectrum

A general example of an expected solar flare X-ray and gamma-ray spectrum is shown in

Figure 1.8. The continuum emission in the spectrum from 1 keV onwards to 100 MeV,

is predominantly bremsstrahlung emission produced by mostly e-i Coulomb collisions

below ∼ 400 keV (see Section 1.3.3) and both e-i and e-e Coulomb collisions at higher

energies. The spectrum is usually exponential in form at lower energies below∼ 30 keV,

suggesting the emission comes from collisions within a hot, thermal plasma. Spectral

fits often suggest temperatures of 18 − 30 MK and the use of imaging spectroscopy

with instruments such as RHESSI shows that the majority of the thermal emission

originates from the corona, possibly close to point of energy release during the flare.

In this range, instruments like RHESSI can often see two line emissions: one at 6.7

keV due to highly ionised iron (Fe) and one at 8.1 keV due to highly ionised Fe and

nickel (Ni) in the solar corona. Both the peaks and widths of these lines are highly
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Figure 1.7: Figure taken from Falewicz et al. (2011) showing both GOES and RHESSI

lightcurves during a solar flare occurring on the 20th September 2002. Stages 1, 2 and

3 are labelled on the figure and described in 1.5.1.

dependent on the temperature and iron abundance of the corona and act as a useful

diagnostic tool (Phillips et al. 2006; Phillips & Dennis 2012). At higher energies ≥
25 keV, a non-thermal bremsstrahlung spectrum can be fitted by either one or two

power laws, suggesting the emission comes from high energy particles accelerated out

of the background thermal distribution. In general, but not always (see the following

sections), the bulk of the HXR emission comes from the chromosphere. Line emissions

in the gamma-ray range above ∼ 500 keV are mostly produced by nuclear interactions

of accelerated protons and heavier ions. At 511 keV and 2.223 MeV, two clear emission

lines can be seen; 511 keV is the electron-positron annihilation line and 2.223 MeV is the

neutron capture line. This is the capture of neutrons by hydrogen in the photosphere.

In an extremely rare case, if the spectrum can be seen up to 100 MeV, gamma-ray

emission may be produced from pion decay (e.g., Ramaty et al. 1979; Chupp & Ryan
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Figure 1.8: This figure was taken and then adapted from Lin et al. (2002). A typical

composite X-ray and gamma-ray spectrum from a solar flare. The X-ray spectrum

is dominated by both thermal (1a. red) and non-thermal (1b. blue) bremsstrahlung

emission. Prominent line emissions at 6.7 keV and 8.1 keV can often be observed

(2. purple) due to highly ionised Fe and Ni in the corona. Above ∼ 500 keV, the

gamma-ray spectrum is more complex, with continuum emission from bremsstrahlung,

line emissions from nuclear interactions (3. green) and emission from pion decay (4.

violet). Each process in described in 1.5.2.

2009; Vilmer et al. 2011).
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1.5.3 X-ray imaging of a solar flare

The locations of X-ray sources

Typically, there are X-ray sources located in both the chromosphere and corona during

a solar flare. In a standard flare model, it is expected that the bulk of the HXR emis-

sion will be produced in the chromosphere, which is dense enough to stop high energy

electrons accelerated in the corona. For the majority of flares, chromospheric HXR

sources or HXR footpoints, as they are known, are observed, usually at X-ray energies

greater than ∼ 25 keV. HXR footpoints generally sit at the bottom of the legs of a

loop, formed by the reconnecting magnetic field (see Figure 1.2), and hence for many

flares they come in pairs at a given time and energy; one footpoint at the end of each

loop leg. In the context of other observations, the HXR footpoints usually straddle the

‘magnetic inversion line’, an imaginary line in the photosphere that separates regions

of opposite vertical magnetic polarity in active regions. The majority of flare X-ray

source morphologies are footpoint dominated (e.g., Hoyng et al. 1981; Antonucci et al.

1982; Duijveman et al. 1982; Sakao 1994; Sakao et al. 1996). Most footpoint dominated

flares also produce coronal SXR and HXR emission which can be a mixture of thermal,

thin target and thick target emissions depending on the properties of the corona. Usu-

ally this emission is observed up until ∼ 30 keV, with the majority emanating from the

loop-top region (again see Figure 1.2), possibly close to the energy release site. Many

flares of this type were observed with instruments such as Yohkoh and now routinely

with RHESSI. An excellent example of such a flare morphology is shown in Figure 1.9

(top left).

For some flares, a HXR source above the lower energy X-ray loop-top can also be

observed (e.g., Masuda et al. 1994). Although it is speculated that this HXR emission

comes from the site of energy release itself, and may offer evidence for the formation of

a current sheet in the corona during magnetic reconnection, it is only observed on rare

occasions. One interesting case in particular, investigated by Sui & Holman (2003)

with follow-on studies by Sui et al. (2004); Liu et al. (2008) is shown in Figure 1.9
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Figure 1.9: Four different flare X-ray source morphologies. Top left: ‘standard’ flare

with strong HXR footpoint emission and lower energy coronal emission. Top right: as

top left with the observation of an additional above the loop-top X-ray source (figure

taken from Sui & Holman (2003)). Bottom left: a coronal thick target source with very

little HXR footpoint emission. Bottom right: a rare event with only the observation of

HXR footpoints (figure taken from Fleishman et al. (2011)). The energy bands of each

X-ray source are displayed on the figure. Legends have been added to the top right

and bottom right figures.

(top right). For this event both a loop top and an above the loop top source can be

observed. While the height of the loop top source at a given energy decreased before

the peak in X-ray emission, the above the loop-top source showed the opposite trend
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and moved away from the Sun at a high inferred velocity of ∼ 300 km s−1. Sometimes,

the above the loop-top source can be observed at very high energies, greater than that

of the X-ray source within the loop (e.g., Masuda et al. 1994; Ishikawa et al. 2011;

Krucker & Battaglia 2014). However, the observation of an above the loop-top source

is rare; this may be due to the fact they do not exist for every flare morphology or

simply because instruments such as RHESSI have a limited dynamic range (∼ 10 : 1)

and are not sensitive to the low intensity emission from a low density corona.

Another type of flare morphology that is particularly important for this thesis, are

flares where the majority of the X-ray emission comes from not the chromosphere, but

the corona. Often this type of coronal X-ray source is interpreted as a thick target

coronal source (e.g., Wheatland & Melrose 1995; Veronig & Brown 2004), where a high

coronal density of the order 1 × 1011 [cm−3] allows the corona to stop electrons up to

30 keV or so. Chapters 2 and 3 are dedicated to studying this type of event, and their

properties will be further explained in these chapters, and in the following section. An

example of this type of flare morphology is shown in Figure 1.9 (bottom left).

In a very rare case Fleishman et al. (2011) observed and analysed an interesting event

with only non-thermal HXR footpoint emission. It was found that electrons were ac-

celerated up to 100 keV or so, but the measured temperature during the flare did not

exceed 6.1 MK. An example of this event is shown in Figure 1.9 (bottom right).

Observations of X-ray source spatial properties

Often HXR footpoints in the chromosphere exhibit a circular or elliptical shape. Kon-

tar, Hannah, Jeffrey, & Battaglia (2010), performed a study examining the changing

spatial properties of HXR sources with X-ray energy. This study used a forward fitting

method known as Visibility Forward Fitting (Vis FwdFit) that ‘fits’ simple shapes to

the X-ray visibilities (RHESSI is a non-direct imager and creates an image from Fourier

components in uv space; this is discussed further, along with the imaging algorithm
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of Vis FwdFit in Section 1.6.2), allowing the source spatial properties to be stud-

ied. This study built upon previous spatial studies with RHESSI, specifically Kontar

et al. (2008b) where the Vis FwdFit method was employed and simple circular Gaus-

sians were fitted to the HXR footpoint sources visibilities. Kontar, Hannah, Jeffrey,

& Battaglia (2010) advanced the study by using an elliptical source that allowed the

radial height and the shape of the HXR footpoint to be analysed; giving both the semi-

major and semi-minor axes of the ellipse and hence the HXR footpoint. For this study,

a flare located at the solar limb was chosen, where the changes in radial distance could

be interpreted as height changes and the semi-major and semi-minor axes give the hor-

izontal and vertical extents of the HXR source respectively. It was found that all three

measured spatial properties decreased with increasing X-ray energy, and properties of

the chromosphere could be deduced from the RHESSI observations. An image of the

HXR footpoints for this event and a Vis FwdFit ellipse fitted to the bright southern

footpoint is shown in Figure 1.10. The graphs for radial height, horizontal size and

vertical size are also shown in Figure 1.10. By analysing the changes in both radial

height and vertical extent of the HXR source together, it was found that the number

density structure of the target chromosphere could not be explained by a simple uni-

form density structure but was much better fitted by a multi-threaded number density

structure (see Kontar, Hannah, Jeffrey, & Battaglia (2010) for details); this would not

have been deduced from the radial height measurements alone. The observation of a

decreasing HXR source horizontal size with X-ray energy, and therefore with height in

the chromosphere, suggests that the magnetic field guiding the electrons through the

chromosphere is converging. From the conservation of magnetic flux B1A1 = B2A2

where B and A are the magnetic field strength and area perpendicular to the field

respectively, the magnetic field strength B must increase as the cross sectional area A

decreases at lower heights in the chromosphere as described by Kontar et al. (2008b).

The observation, simulation and analysis of thick target coronal X-ray source spatial

properties, of the type shown in Figure 1.9 (bottom left), are discussed and then fur-

ther examined in Chapters 2 and 3. As is discussed in Chapter 3, the changing lengths

and widths of these loops with energy have also been previously analysed with the Vis
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Figure 1.10: Changes in X-ray spatial parameters with energy. Top: Changes in

radial height and semi-major and semi-minor axes for a chromospheric HXR footpoint.

Bottom: Changes in loop length and loop width for a coronal X-ray source. The bottom

figure is taken from Kontar et al. (2011b). See Section 1.5.3 for details.
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FwdFit imaging algorithm. Many studies have found (Xu et al. 2008; Kontar et al.

2011b; Guo et al. 2012b, 2013) that the source length parallel to the guiding field grows

with energy, indicative of a collisional thick target model in a high density corona of

the order 1011 cm−3. The width changes of these loops perpendicular to the guiding

field are particularly interesting. Kontar et al. (2011b) performed a detailed study of

one flare examining how the loop width increased proportionally with X-ray energy.

However, unlike increases in coronal loop length, changes in width are more difficult

to explain since the electrons are bound to the guiding field and classical cross field

transport should be negligible. Kontar et al. (2011b) and Bian et al. (2011) inferred

that the width increase could be due to the presence of magnetic turbulence within the

loop. An example of one such coronal X-ray source displaying these trends in length

and width, found from the Vis FwdFit algorithm, is shown in Figure 1.10. Again,

these types of study indicate the usefulness of observing changes in the spatial prop-

erties of X-ray sources, particularly in determining the properties of the chromosphere

and corona during a flare.

1.5.4 Solar flare X-ray and gamma ray polarization

The pitch angle distribution of solar flare electrons in both the corona and chromo-

sphere should be determinable through X-ray and gamma ray linear polarization mea-

surements. The bremsstrahlung X-rays emitted from a highly beamed distribution of

electrons for instance, should be highly polarized. In general the level of polarization

detected is dependent on the photon energy, the level of beaming, the location of the

X-ray source on the solar disk and whether Coulomb collisions have isotropised the

electrons as they are transported along the guiding field. This has been extensively

modelled (e.g. Elwert & Haug 1970; Brown 1972; Haug 1972; Bai & Ramaty 1978;

Leach & Petrosian 1983) for both thin and thick target scenarios. Emslie & Brown

(1980) demonstrated that the emission from a purely thermal source should have some

level of polarization. In a simple model, the degree of polarization should increase

with viewing angle. This means, that for the same distribution of electrons producing
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Figure 1.11: Figure taken from Bai & Ramaty (1978) showing the degree of polar-

ization against X-ray emission angle for different energies. The sign determines the

polarization angle, see Section 1.5.4.

X-rays during a flare, the degree of polarization will be highest for sources viewed at

the solar limb, at angles perpendicular to the guiding field. Figure 1.11 taken from Bai

& Ramaty (1978) plots, for a given simulation model using an electron distribution

with pitch angles uniformly distributed in a cone with a half opening angle of 30◦,

the resulting degree of polarization versus solar heliocentric angle. For this model, the

highest degree of polarization for low energies (10-20 keV) is at a viewing angle of 90◦,

equivalent to viewing the flare at the solar limb. The plot also shows how the sign of

the degree of polarization changes from negative to positive at high energies of ∼ 300

keV. This indicates that the preferred direction of polarization, the polarization angle,

changes from being aligned to the local radial direction (the direction along the line

connecting the centre of the X-ray source with the solar centre) to the perpendicular

to radial direction. This is discussed further in Chapter 5. Measuring the spatially

integrated polarization angle provides information about the overall geometry of the
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flaring loop and hence the orientation of the magnetic field (Emslie et al. 2008a). If

the magnetic field of the loop is tilted away form the local solar vertical direction,

then the polarization angle will not lie along the radial direction. The work of Emslie

et al. (2008a) grew from the non-radial polarization angle observations from McConnell

et al. (2003) and the suggestions of Smith et al. (2003). Figure 1.12 taken from Emslie

et al. (2008a) plots the azimuthal X-ray emission angle on the solar disk Φ against

viewing angle i for two different loop tilts τ = 0◦, 30◦ for an X-ray energy of � = 40

keV. The direction of each arrow gives the angle of polarization. For a loop tilt of

0◦, the polarization angle is always equal to 0◦ and the arrows lie along the horizontal

radial direction. However for the case of a loop tilt of 30◦, the polarization angle can

have values of Ψ �= 0◦ depending on the X-ray source position on the solar disk. It

will also be shown in Chapter 5 that the direction of the polarization angle parallel

or perpendicular to the radial direction is dependent upon the highest energies in the

electron distribution and the degree of beaming. The RHESSI satellite, which is dis-

cussed in detail in Section 1.6 has limited polarization capabilities. Rare measurements

for seven flares (Suarez-Garcia et al. 2006) showed a range of polarization degrees from

0−60% using an X-ray energy range of 100−350 keV. Boggs et al. (2006) used RHESSI

gamma-ray observations to measure the polarization of two flares. They found that

the degree of polarization at these higher energies was consistent with a beamed dis-

tribution of electrons. However, a number of other observations with RHESSI over

the last decade suggest that the emitted X-ray distribution, and hence the radiating

electron distribution, is close to being isotropic, which should produce a very low level

of polarization. One such method that has been used to determine this isotropy is that

of X-ray albedo (e.g., Kontar & Brown 2006; Kašparová et al. 2007; Dickson & Kontar

2013).

1.5.5 X-rays from the photosphere and albedo emission

The corona and chromosphere are optically thin at X-ray and gamma-ray energies.

Therefore X-rays emitted at these wavelengths from chromosphere and corona can
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Figure 1.12: Figure taken from Emslie et al. (2008a). The azimuthal X-ray emission

angle Φ against polar X-ray emission angle (heliocentric angle) i for an X-ray energy

of 40 keV, for two different loop tilt angles τ of 0◦ and 30◦. The arrow direction from

the horizontal line gives the polarization angle Ψ.

Figure 1.13: Figure taken from Suarez-Garcia et al. (2006). Left: Solar flare po-

larization measurements from RHESSI for one event. Right: the measured degree of

polarization for all seven events.
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travel down into the denser layers of the solar atmosphere until they reach the much

higher densities of the photosphere. For X-ray photons, the photosphere acts as either

an absorber or ‘mirror’, scattering a proportion of the X-rays back into the chromo-

sphere and hence out into interplanetary space. The scattered X-ray flux depends on

many factors: the energy of the X-rays, the heliocentric angle of the X-ray emitter

in the chromosphere, the height of the X-ray emitter above the photosphere and the

proportion of the X-rays emitted towards the photosphere. X-rays scattered from the

photosphere are known as the albedo X-rays and the scattering mechanism is Compton

scattering. The study of albedo is a major part of this thesis. The first studies of the

X-ray photospheric albedo component were examined analytically by Tomblin (1972)

and through simulation by Santangelo et al. (1973). A more comprehensive study was

provided by Bai & Ramaty (1978). The peak of the X-ray albedo flux appears at

around 20-50 keV due to: (1) lower energy X-rays below 10 keV are more likely to

be photoelectrically absorbed than scattered and (2) higher energy electrons, partic-

ularly above 100 keV, are lost within the depths of the photosphere. This produces

the well-known albedo reflectivity curve, the ratio of reflected flux to directly emitted

primary flux which is shown in the bottom plot of Figure 1.15. The scattered albedo

flux also varies with X-ray emission angle or equivalently heliocentric angle on the solar

disk; X-ray sources at the solar centre have the greatest proportion of albedo photons,

while X-ray sources located at the solar limb have the smallest proportion, since the

fraction of reflected photons seen by an observer is smaller at the solar limb (90◦) than

at the solar centre (0◦). The properties inferred from an observed X-ray source will be

tainted if it is assumed that the X-ray source consists of only directly emitted X-rays

from the chromosphere. The albedo component will change the spectral, spatial and

polarization properties of the observed X-ray emission. Some of the spatial and polar-

ization changes are analysed for the first time in Chapters 4 and 5 of this thesis and

are published in Kontar & Jeffrey (2010) and Jeffrey & Kontar (2013). The known

spectral and polarization changes due to photospheric albedo are now briefly reviewed.
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Figure 1.14: Cartoon showing the X-rays emitted directly from electrons stopped

collisionally in the dense chromospheric thick target. Many of the X-rays are directly

emitted away from the solar surface. These are known as the primary X-rays, while

some travel down into the photosphere. Here they interact by photoelectric absorption

or Compton scattering. Those X-rays Compton backscattered out of the photosphere

are known as albedo X-rays from the albedo patch in the photosphere.

Spectral changes and the determination of the electron distribution

An albedo component produces a ‘bump’ in the photon spectrum which peaks at around

30-50 keV, due to the peak albedo flux at these energies. Although the presence of an

albedo component from an X-ray spectrum should always be accounted for, it should be

noted that other effects can produce similar flattening at lower energies in the spectrum

(10-50 keV) such as return current, count pile-up in the RHESSI detectors (cf. Holman

et al. 2011) and even wave-particle interactions Kontar et al. (2012). The size of the

‘bump’ is dependent on the factors mentioned in the previous section and changes

in the photon spectrum have been extensively studied through the use of simulations
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with a known primary X-ray spectrum (e.g., Bai & Ramaty 1978). However, this

approach is not so useful for actual observations with instruments such as RHESSI,

where the properties of the initial primary X-ray distribution are unknown and have to

be disentangled from the albedo spectrum. In Kontar et al. (2006), a Green’s function

approach was used to try and remove the albedo component from the unknown primary

X-ray spectrum by adapting Magdziarz & Zdziarski (1995). The primary distribution

IP can be found using,

I(�) = IP (�) + IS(�) = IP (�) +

� �max

�

IPG(µ, �, �0)d�0 (1.26)

where I is the total distribution and IS is the scattered albedo distribution, which is the

integral over energy of the primary distribution IP and a Green’s function G(µ, �, �0),

where µ, � and �0 are the cosine of heliocentric angle, scattered X-ray energy and

incoming X-ray energy respectively. Writing the problem discretely, gives,

I(�i) = (1ij + αGij) IP (�j). (1.27)

where Gij is the Green’s matrix, 1ij is a diagonal matrix with values of 1 and α is the

anisotropy of the X-ray distribution (Kontar et al. 2006). The best solution of IP can

be found numerically and is incorporated into the RHESSI OSPEX software via the

detector response matrix (as discussed in Section 1.6). Figure 1.15 shows a RHESSI

photon spectrum before and after the correction. The presence of an albedo component

should produce the ‘bump’ discussed above in the observed spectrum between ∼ 10−
100 keV, which can be seen in the black solid line in Figure 1.15. The albedo corrected

spectrum is shown by the black dashed line. Determining the mean electron spectrum

from the observed X-ray distribution often produces a strange minimum at ∼ 40 keV.

However, properly accounting for an X-ray albedo component can remove this strange

feature (Kontar et al. 2006) and clearly indicates the importance of accounting for the

albedo component when interpreting information from an observed X-ray spectrum.

Changes in total polarization

The albedo component will change the measured polarization of an X-ray source. For

the case of a completely isotropic non-thermal X-ray distribution, the total degree of



1.5: Solar flare X-rays: observations 35

Figure 1.15: Figures taken from Kontar et al. (2006). Left: a photon spectrum

calculated from Green’s functions and an initial primary photon distribution of IP (�) ∼
�−3, where the black solid line represents the primary spectrum, the black dotted line

the albedo spectrum and the black dashed line the total spectrum. The bottom figure

plots the reflectivity (flux down/flux up). The black diamonds plot the reflectivity

from Bai & Ramaty (1978). Right: The spectrum of a flare that occurred on the 17th

September 2002. The observed spectrum is corrected by accounting for the Compton

scattered albedo component with the solid and dashed lines showing the spectrum

before and after the correction respectively.

polarization will be zero for an X-ray source viewed at all solar heliocentric angles.

However the degree of polarization for the scattered albedo component will increase

with emission angle, as the observer views more and more X-rays scattered at angles

closer to 90◦. The polarization of the scattered contribution is hence 0% for an X-ray

source at the solar centre and becomes ∼ 20% for an isotropic distribution at the solar

limb. This is shown in Figure 1.16 taken from Bai & Ramaty (1978). However, this

will only produce a degree of polarization of ∼ 4% at the solar limb due to the much

higher flux of the primary X-ray component at large heliocentric angles. Larger changes

in polarization are possible for more anisotropic X-ray distributions. In contrast, the

backscattered albedo X-rays generally act to reduce the polarization of an anisotropic
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Figure 1.16: Figure taken from

Bai & Ramaty (1978) showing how

the degree of polarization changes

for a completely isotropic source

viewed at different locations on the

solar disk due to the presence of a

photospheric backscattered albedo

component.

source (Henoux 1975; Langer & Petrosian 1977; Bai & Ramaty 1978). This is discussed

in greater detail in Chapter 5, where the changes in spatially resolvable polarization

due to albedo are discussed for the first time in solar physics.

Determining the electron anisotropy using albedo

Kontar & Brown (2006) used a technique to effectively separate the ‘upward’ and

‘downward albedo’ components of X-ray flux that contribute to the measured X-ray

spectrum and hence electron spectrum. Determining the X-ray albedo flux allows

the anisotropy of a single flare to be measured, using a single instrument such as

RHESSI. The results of this study determined that both flares observed had extremely

isotropic distributions, a result that is not expected if the distribution of electrons is

beamed; an assumption often made in a standard flare collisional thick target model.

Follow on studies by Dickson & Kontar (2013) performed a larger examination of

eight events and again found a lack of anisotropy for each event below ∼ 150 keV.

An example of one of the flares examined in Dickson & Kontar (2013) is shown in

Figure 1.17. A centre-to-limb statistical survey of 398 flare spectral indices in three

different energy bands was performed by Kašparová et al. (2007). They found that
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Figure 1.17: Left: Figure taken from Dickson & Kontar (2013) showing the anisotropy

of the electron spectrum (Flux down /Flux up) for one flare where dark grey represents

a 1-sigma and light grey a 3-sigma, confidence interval. Right: Figure taken from

Kašparová et al. (2007) showing determined directivity α =Flux down/Flux up for

different heliocentric angles µ for an energy range of 15− 20 keV.

there was a clear change in spectral index in the low energy 15−20 keV band, with the

spectral index increasing towards the limb. This is consistent with the presence of an

albedo component flattening the X-ray spectrum at low energies. Further, Kašparová

et al. (2007) determined the directivity of the X-ray emission for a number of their

flares, using the albedo Green’s function method of Kontar et al. (2006). From this the

ratio of downward to upward flux was found to lie anywhere between 0.2 and 5 in the

15− 20 keV band (see Figure 1.17 (right)). Hence this study gave no clear conclusion

regarding the X-ray anisotropy, that is, the results are consistent with the predictions

of a beamed downward distribution of electrons and with an isotropic distribution.

1.6 Current X-ray telescopes and X-ray imaging

methods

The X-ray observations shown in Chapter 3 of this thesis and some of the simulation

work shown in Chapters 2 and 4 are concerned with the current solar X-ray and gamma
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Figure 1.18: Diagram of RHESSI grids and detectors. This image was taken from

Hurford et al. (2002).

ray imaging spectroscopy performed by the Ramaty High Energy Solar Spectroscopic

Imager, RHESSI (Lin et al. 2002) . Hence, here in Chapter 1, a brief review of the

instrument is given.

1.6.1 RHESSI: instrument overview

RHESSI is a NASA-led mission, launched in February 2002. For more than a decade,

it has provided unparalleled hard X-ray observations of the Sun and solar flares in

particular. RHESSI observes the full disk of the Sun from a low Earth orbit over

the energies of 3 keV to 17 MeV. RHESSI performs imaging spectroscopy of X-rays

and gamma-rays and it was designed specifically to study particle acceleration and

energy release in solar flares. The RHESSI instrument consists of a spectrometer;

nine cooled Germanium detectors placed at the rear of the spacecraft, with additional

imaging apparatus consisting of nine pairs of widely spaced grids at a distance of 1.5 m

called rotating modulation collimators (RMCs) placed in front of each detector. The

instrument setup is shown in Figure 1.18.
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1.6.2 RHESSI imaging

Due to their high energies, X-rays above 1 keV are difficult to image directly, although

astrophysical missions such as The Nuclear Spectroscopic Telescope Array NuSTAR

(Harrison et al. 2013) and recent balloons missions: The Focusing Optics X-ray Solar

Imager FOXSI (e.g. Krucker et al. 2011a) and The High Energy Replicated Optics

to Explore the Sun HEROES (e.g. Christe et al. 2013) are pioneering the technology

and techniques required for future direct X-ray imaging in solar physics. RHESSI

on the other hand, creates X-ray images via a non-direct Fourier technique using its

RMCs. RHESSI rotates continuously around its axis pointing towards the Sun. As

the spacecraft rotates, the incoming X-ray signal passes through the slits and slats of

its nine RMCs, with the slits and slats either impeding or allowing the X-rays path

to the detectors. This produces a time modulated signal, that is dependent upon the

position and size of the X-ray source (cf., Hurford et al. 2002). Figure 1.19 (left)

shows a diagram of the X-rays passing through the front and rear grids of one RMC

and onto a detector while Figure 1.19 (right) shows examples of different modulation

patterns, and how the pattern varies with X-ray source position and size. The time

modulated signal can be stacked per roll bin (fraction of a spacecraft rotation) over so

many spacecraft rotations, creating X-ray visibilities. The X-ray visibilities V are the

two-dimensional Fourier components of the X-ray source in uv space, given by,

V (u, v; �) =

�

x

�

y

I(x, y; �)e2πi(xu+yv)dxdy. (1.28)

The inverse Fourier transform of Equation 1.28 gives the X-ray image I at a given

energy � in the real xy plane. The X-ray visibilities are represented in uv space by circles

of constant radius, with each circle representing the angular resolution of RMC 1-9.

This is shown for RMCs 3-9 in Figure 1.20. The grids of RMC 1 have the finest spatial

resolution of 2.26 arc second and the grids of RMC 9 have the coarsest spatial resolution

of 183.2 arc second, where the spatial resolution of each RMC increases by factor
√
3,

with increasing number from 1 to 9. The creation of an image from Equation 1.28 or

directly from the time modulated signal is an inverse problem and performing a two-

dimensional Fourier transform produces a Back projection image Mertz et al. (1986).
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Figure 1.19: Left: Diagram showing how photons entering a RHESSI RMC at a

given time, during a spacecraft rotation, are either blocked by the slats of a grid or

travel towards the detector, depending on their incident position. Right: An example

of RHESSI time modulation curves for different simulated sources sitting on the solar

disk. Both figures were taken from Hurford et al. (2002).

However this method produces a poor image quality with side lobes and hence a number

of different imaging algorithms have been created, or adapted from radio astronomy

in order to solve the problem and improve the image, such as CLEAN (Högbom 1974;

Hurford et al. 2002), Pixon (Pina & Puetter 1993; Metcalf et al. 1996) and forward

fitting algorithms such as Visibility Forward Fitting (Vis FwdFit) (Hurford et al. 2002;

Schmahl et al. 2007). The CLEAN, Pixon and Vis FwdFit imaging algorithms are

used in this thesis and hence are briefly discussed:

1. CLEAN - this algorithm assumes that the X-ray image consists of a superposition

of many X-ray point sources. The process of CLEAN-ing is an iterative process

that continuously searches for the highest intensity pixel in the image. At each

iteration, once the highest pixel is found, a chosen proportion of the highest
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intensity, convolved with the Point Spread Function (PSF) of the instrument, is

centred at the highest pixel and subtracted from the image. This process usually

repeats for a chosen number of iterations or until the peak flux in the image is

negative. The resulting final image is a CLEANed map consisting of the positions

and amplitudes of each chosen pixel at each iteration, convolved with the PSF.

2. Pixon - this algorithm wants to construct the simplest model for the image that is

consistent with the data (Hurford et al. 2002). Pixon uses different size pixels or

‘pixons’ together to try and reproduce the X-ray modulation patterns and aims

to use the least number of pixons to achieve this and reconstruct the image.

3. Vis FwdFit - imaging methods such as CLEAN or Pixon try to find a solution to

Equation 1.28 and often errors in the reconstructed images occur due to problems

such as finite coverage in Fourier space. This can make estimating X-ray source

spatial parameters difficult using CLEAN and Pixon (Kontar, Hannah, Jeffrey,

& Battaglia 2010). Therefore, in certain situations, such as estimating X-ray

source spatial parameters, it may be more helpful to use forward fitting methods.

One such method is Vis FwdFit. This algorithm works by taking one of three

simple shapes: a circular Gaussian, an elliptical Gaussian or a curved elliptical

Gaussian, and matches the chosen shape with the X-ray visibilities given by

Equation 1.28. Unlike other imaging algorithms, if a good comparison between

the chosen model and the actual X-ray visibilities is achieved then the spatial

properties of the X-ray source can be determined through the moments of the

chosen Gaussian model: the position from the first moment and the spatial extent

from the second moment. Another major advantage of this type of algorithm is

the estimation of errors for each X-ray source spatial parameter, which can be

found by propagating the error associated with the difference between the model

and actual X-ray visibilities. The major drawback of this type of forward fitting

method is the lack of source shapes, and hence only a limited number of X-ray

sources that match well with one of the three simple Gaussian shapes, should

ever by analysed using this method. However, the use of Vis FwdFit has, in the



1.6: Current X-ray telescopes and X-ray imaging methods 42

Figure 1.20: Diagram

of the RHESSI uv plane.

Detector 9 with the

largest angular resolution

produces the smallest

circle. Only detectors

3-9 are shown in this di-

agram. Image taken and

adapted from Massone

et al. (2009).

last couple of years, allowed the spatial properties of both chromospheric and

coronal sources to be estimated, which is much harder with algorithms such as

CLEAN and Pixon.

Vis FwdFit is discussed further in Chapters 2, 3 and 4 of this thesis. An example of

two CLEANed images is shown in Figure 1.10: one for HXR chromospheric footpoints

at the limb and another of an X-ray coronal source, also at the limb. Over-plotted

are Vis FwdFIt contours; an elliptical Gaussian was fitted to a HXR footpoint and a

curved elliptical Gaussian was fitted to the coronal source. The parameters found from

each fit are also plotted in the figure.

1.6.3 RHESSI spectroscopy and polarimetry

The nine cooled (< 75 K) Germanium detectors make up the RHESSI spectrometer.

The spectrometer has an energy resolution of ≤ 1 keV at 3 keV and this increases to

∼ 5 keV at 5 MeV (Lin et al. 2002). Each Ge detector consists of two segments: front

and rear. The front segments can absorb photons up to around ∼ 250 keV and the rear

segments up to ∼ 17 MeV. The photons that reach the detectors and cause a small

current are registered as counts. Therefore, RHESSI produces a count rate spectrum
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and this is related to the X-ray photon spectrum via,

C=B+SRM I (1.29)

where C is the count rate spectrum, B is the background, SRM is called the spec-

trometer or detector response matrix and I is the photon rate spectrum. RHESSI is

an unshielded spacecraft and hence any background counts due to high energy cosmic

rays and trapped high energy electrons and protons in the Earth’s Van Allen belt, for

example must be removed before a detailed spectroscopy of a flare is performed. The

detector response matrix SRM accounts for the many effects that could modify the

input count spectrum such as photons being Compton scattered in multiple detectors

or detector radiation damage. If an effect only changes the efficiency of the instrument

to detect a photon at its proper energy, then it contributes to the diagonal elements of

the detector response matrix. If an effect changes the value of photon energy from its

true value, then the effect contributes to the off-diagonal elements of the matrix (cf.

Smith et al. 2002). Each detector has two shutters or ‘attenuators’. The job of the

attenuators is to stop the detectors saturating at high X-ray count rates, say, during a

large solar flare. There are two different shutters: a thin and a thick shutter, and there

are three attenuation states or combinations: A0 - no shutters, A1- thin shutter only

and A3 - thin and thick shutter. The spectral analysis of a solar flare is performed in

software called OSPEX (Schwartz et al. 2002), where different functions can be fitted

to the data. RHESSI spectroscopy is performed in Chapter 3 and the functions fitted

to the data are discussed there, for the flares analysed.

RHESSI is also capable of measuring the linear polarization of solar flare HXRs (Mc-

Connell et al. 2002). For this purpose from 20 − 100 keV, RHESSI has a beryllium

(Be) scatterer. RHESSI polarimetry is achievable since, as described above, the Ge

detectors consist of two parts: a front and a rear segment. Photons in the range of

20− 100 keV should not be able to reach the rear segments and hence any detection of

these low energy photons in the Ge rear segments must be due to firstly Compton scat-

tering in the Be scatterer. The magnitude and direction of polarization is then found

by measuring the scattered photon count rates in each rear segment of the detector.
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As mentioned in Section 1.5.4, RHESSI is also capable of measuring the polarization of

higher energies above 100 keV. For this, the same method is used, as described, except

that the possible scattering between different Ge detectors is utilised at higher energies,

instead of scattering from the Be scatterer. The simulated polarization measurements

described in Chapter 5 are not currently possible with RHESSI or other dedicated as-

trophysical polarimeters, and hence Chapter 5 looks towards future instruments with

imaging polarimetry capabilities.



Chapter 2

The variation of solar flare coronal

X-ray source sizes with energy

This work can be found in the publication Jeffrey et al. (2014)

2.1 Introduction to the chapter

Chapter 1 discussed how, during a solar flare, the surrounding plasma is heated to

tens of mega-Kelvin and electrons are accelerated to deka-keV energies and beyond.

In a simple model, electrons travel through a tenuous corona and deposit energy into

a dense chromospheric ‘thick target’ via Coulomb collisions, with only a small frac-

tion (∼ 10−5) of the energy emitted as bremsstrahlung hard X-rays, mostly at the

dense chromospheric footpoints. Hard X-rays emitted from the corona are usually in-

terpreted as predominantly thermal bremsstrahlung from a hot coronal plasma or as a

combination of thermal and thin-target emissions.

Over the last decade, the Ramaty High Energy Solar Spectroscopic Imager (RHESSI;

Lin et al. 2002) has provided unprecedented imaging spectroscopy observations of both

chromospheric and coronal X-ray sources (for recent reviews of this topic see Holman

et al. 2011; Kontar et al. 2011a). Chapter 1 discussed how the design of the RHESSI in-

strument is such that spatial information is fundamentally encoded as two-dimensional
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Fourier transforms, or visibilities. The subsequent development of sophisticated and

reliable visibility-based image reconstruction algorithms, such as visibility forward fit-

ting (Hurford et al. 2002; Schmahl et al. 2007) and uv smooth (Massone et al. 2009),

coupled with the use of electron visibilities, which are spectral inversions of the count

visibility data provided by RHESSI (Piana et al. 2007), have allowed the quantitative

analysis of solar hard X-ray sources in both photon and electron space.

RHESSI observations have revealed the morphology details of flares with high plasma

density (e.g., McKenzie et al. 1980; Cheng et al. 1981; Feldman et al. 1994), in which

the bulk of the hard X-rays come from the corona, with only very weak or no footpoint

emission from the chromosphere (e.g., Veronig & Brown 2004; Sui et al. 2004; Bastian

et al. 2007; Xu et al. 2008; Lee et al. 2013). The behaviour of the source extent

with energy is not consistent with a thermal source characterised by a temperature

distribution with a peak at the loop-apex, since for such a source the source size should

decrease with energy. Rather, the X-ray source extent grows with energy (Xu et al.

2008), indicative of a non-thermal model in which the propagation distance increases

with energy. Apparently, the density within the coronal region in such sources is high

enough to stop electrons prior to reaching the chromosphere; the source is a coronal

“thick target”.

Studying these events is particularly valuable since: (1) the coronal X-ray component

and hence acceleration region can be studied without contamination from an intense

chromospheric source; and (2) such sources exhibit trends in source extent with energy

(Xu et al. 2008; Kontar et al. 2011b; Guo et al. 2012b, 2013) and time (Jeffrey & Kontar

2013, and Chapter 3), which can be used to study particle acceleration and transport

processes (e.g., Gordovskyy & Browning 2012; Gordovskyy et al. 2013). Further, unlike

footpoint-dominated solar flares (e.g., Antonucci et al. 1982; Duijveman et al. 1982;

Takakura et al. 1995; Sakao et al. 1996; Petrosian & Donaghy 1999; Emslie et al.

2003; Mrozek & Tomczak 2004; Tomczak & Ciborski 2007; Battaglia & Kontar 2011b;

Fleishman et al. 2011; Chen & Petrosian 2013), the HXR spectra of such “coronal thick

target sources” tends to be softer than, and the sources higher than, chromospheric

sources, which generally reduces the albedo contribution to X-ray images (Kontar &
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Jeffrey 2010, and see Chapter 4), making the interpretation of the spectro-spatial

structure of such sources more straightforward.

Observations of compact coronal non-thermal hard X-ray sources typically show that

the extent of the source parallel to the guiding magnetic field increases approximately

quadratically with photon energy. Since the collisional stopping distance of an electron

in a plasma also increases quadratically with particle energy, Xu et al. (2008) explained

this behaviour in terms of an extended acceleration region, from which accelerated elec-

trons emerge and subsequently undergo collisional transport in a background medium

of uniform density. As shown by Emslie et al. (2008b), application of such a model

allows parameters such as the number density n of the region and the specific electron

acceleration rate η (electrons s−1 per ambient electron) to be estimated.

However, the simple one-dimensional cold target approximation used by these authors

is not completely realistic, for two main reasons. Firstly, it assumes that the injected

electron trajectories are completely aligned with the guiding magnetic field, and it does

not take into account pitch angle scattering (collisional or otherwise) of the accelerated

electrons in the target. Secondly, it neglects effects associated with the finite tempera-

ture of the ambient medium; electrons with energies comparable to the thermal energy

of the plasma ∼ kBT , where kB is the Boltzmann constant and T is the temperature,

are just as likely to gain as lose energy during a collision, unlike the monotonic energy

loss experienced by suprathermal electrons interacting with a cold plasma (e.g., Emslie

1978). Even for electrons that do lose energy, they do so at a rate that is not the same

as in a cold target, so that a quadratic behaviour of source extent with energy is not

necessarily expected.

Emslie (2003) and Galloway et al. (2005) investigated analytically the effects of a finite

target temperature, and both found that the associated velocity diffusion cannot be

neglected when interpreting the results of flare hard X-ray spectra. Emslie (2003) found

that, because of the reduced energy losses suffered by accelerated electrons in warm

target, the inferred energy content of the injected electron distribution was significantly

reduced. Indeed, he showed that allowance for this effect obviated the need to introduce

a low-energy cutoff in the electron distribution. Galloway et al. (2005) found that



2.2: Electron collisional transport in a cold plasma 48

changes occurring close to the thermal energy of the plasma meant that many flare

X-ray spectra may not be well fitted by a simple isothermal-plus-power-law model as

discussed in Chapter 1.

The motivation of Chapter 2 is to incorporate the effects of pitch angle scattering and

finite target temperature in models of the variation of X-ray source size with electron

energy. How the inclusion of each of these processes changes the behaviour of the

variation of source extent with electron energy and the estimation of parameters such

as number density n and acceleration region length L0, is investigated. The conclusion

(Section 2.5) also briefly discusses how inferred parameters such as the filling factor f

and specific electron acceleration rate η will change.

2.2 Electron collisional transport in a cold plasma

Firstly electron transport within a uniform cold target is briefly reviewed. Here the

electron energy E >> kBT where kB is Boltzmann’s constant and T is the target

temperature. The variation of energy E [erg] with position z [cm] in such a model is

given by (cf. Brown 1972; Emslie 1978)

E(E0, z) =
�

E2
0 − 2KN(z) =

�
E2

0 − 2Kn |z − z0| , (2.1)

where z0 is the (single) point of injection, K = 2πe4 ln Λ (where e [esu] is the electron

charge and lnΛ the Coulomb logarithm), and N and n are the column density [cm−2]

along the trajectory and ambient number density [cm−3], respectively.

This expression allows the stopping position LS of an electron of initial energy E0

within a plasma of density n to be found (cf. Brown et al. 2002), viz.

LS = z0 +
E2

0

2Kn
. (2.2)

Using Equation (2.1) and the one-dimensional continuity equation, the form of the

electron spectrum F (E, z) [electrons s−1 cm−2 erg−1] as a function of position z in the

target can also be obtained:
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F (E, z) = F0(E0)
dE0

dE
= F0(E0)

E

E0
= F0(E0[E, z])E(E2 + 2Kn|z − z0|)−

1
2 . (2.3)

Setting z0 = 0 for simplicity and assuming a power-law injection spectrum F0(E0) ∝
E−δ

0 gives,

F (E, z) = E(E2 + 2Kn|z|)−
(δ+1)

2 , (2.4)

and an expression for the source extent as the square root of the variance var(E) can

be derived

var(E) =

�∞
0 z2 F (E, z) dz�∞
0 F (E, z) dz

=

�∞
0 z2 (E2 + 2Kn|z|)−(δ+1)/2 dz�∞
0 (E2 + 2Kn|z|)−(δ+1)/2 dz

, (2.5)

where the symmetry about z = 0 has been used. Evaluating the integrals gives

std(E) =
�

var(E) =
1

2Kn

�
8

(δ − 3)(δ − 5)
E2 (2.6)

where std(E) is the standard deviation. The spatial extent at a given energy E depends

on the spectral index δ; for δ = 7 the form of the stopping distance is obtained,

std(E) = Ls given by Equation (2.2). It should be noted that Equation (2.5), and

hence the spatial extent defined by Equation (2.6), is applicable only for δ > 5; for

δ ≤ 5, the integral on the numerator diverges at the upper limit. This is related to

the fact that the collisional stopping length is an increasing function of energy ∝ E2,

so that large energies give the largest contribution to the integral for δ ≤ 5. This issue

can be formally avoided by imposing an upper energy cut-off Emax to F0(E0), so that

the upper limit in the integral (2.5) is finite, given by E2
max/2Kn.

Equations 2.5 and 2.6 assumed the initial electron distribution was injected as a point

source at z = z0 = 0. However, if the initial electron distribution is injected over a finite

region, with the injected flux profile having the form of (say) a Gaussian distribution

with standard deviation d, then the equation for F (E, z) becomes (see, e.g., Kontar

et al. 2014)

F (E, z) ∼ 1

d
√
2π

� ∞

−∞
E

�
E2 + 2Kn |z − z

� |
�−(δ+1)/2

exp

�
− z

�2

2d2

�
dz

�
. (2.7)
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Figure 2.1: Top panels: the standard deviation σ calculated for a point source (left)

and a source of Gaussian standard deviation d = 10�� (right), using the moment-based

Equation (2.5) and the distribution of electron flux with energy and position given

by Equation (2.7), for a target density n = 1 × 1011 cm−3. For the point source, the

curves calculated using Equation (2.6) for δ = 6−9 and a maximum injected energy of

30 keV are over-plotted as dashed lines of the same colour. Bottom panels: Gaussian

FWHM calculated by fitting Gaussian curves to F (E, z) for a point source (left) and a

10�� source (right). Equation (2.8) is fitted to each curve: the corresponding values of

L0 and α are shown on each panel. The curve FWHM = 2
√
2 ln 2 d+ E2/2Kn (black

dashed curve; used by previous authors - e.g., Kontar et al. 2011b) is overplotted.
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For this case, the evaluation of F (E, z) and the corresponding standard deviation

std(E) cannot be evaluated analytically, and hence is calculated numerically. Figure 2.1

(top) shows the numerical results for std(E) for δ = 4, 5, 6, 7, 8 and 9 using the initial

source sizes of d = 0�� and 10�� and a number density n = 1×1011 cm−3. For the d = 0��

case, and for cases with δ > 5 (cf. Equation (2.6)), the std(E) results calculated from

the point-injection case (Equation (2.6)) are over-plotted for comparison and match

well with the numerically calculated curves as expected.

The form of the spatially resolved spectrum F (z) at a given energy E at distances

further away from the peak, where F (E, z) ∼ 0.15max(F (E)) (cf. Equation (2.7)) is

not well determined by the RHESSI observations. Since RHESSI data is created as two-

dimensional spatial Fourier transforms or X-ray visibilities (Chapter 1, Section 1.6), the

source sizes in practice are determined by fitting a Gaussian-like shape to the observed

visibilities. Due to this indirect imaging approach and the finite dynamic range of

the instrument, the brightest part of the image is the most reliable. Thus, std(E) is

calculated not through a moment-based approach, but rather through a shape-based

analysis that focuses on the high-intensity “core” of the spatial distribution of flux at

a given electron energy E.

Therefore, Gaussian curves are fitted to F (E, z) in order to determine the Gaussian

standard deviation stdG(E) at each energy. This allows the calculation of the Gaussian

Full Width at Half Maximum FWHM= 2
�
2 ln 2 varG(E). The curves for δ =4, 7,

and 9 are plotted in the bottom panels of Figure 2.1. In general, and as expected, the

stdG(E) values deduced from the shape of the core of the F (E, z) profile are smaller

than the stdG(E) values deduced from the moment-based analysis.

Each curve in Figure 2.1 (bottom) was then fitted with an equation of the form

FWHM(E) = L0 + αE2 (2.8)

and the values of L0 and α are shown on each plot. In the bottom panels of Figure 2.1,

FWHM= 2
√
2 ln 2 d + E2/2Kn is also over-plotted for comparison, since this simple
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approximation (basically the stopping distance approximation) has been used (e.g.,

Kontar et al. 2011b; Guo et al. 2012a) to infer information from observations; it is

given by the black dashed curve.

From Figure 2.1, two main points are noted:

1. For a given energy E, std(E) decreases with increasing spectral index δ. This is

because as δ increases there are a lower proportion of higher energy electrons in

the overall electron distribution. The lower energy electrons that are representa-

tive of steeper spectra travel a smaller distance through the plasma.

2. For a given spectral index δ, the value of the quadratic coefficient α decreases

somewhat with source size d. This is because of the increased contribution of the

acceleration region to the overall source extent; the “propagation” region is to a

large extent contained within the acceleration region itself.

Observationally, L0 has been used to infer the size of the acceleration region, while

α ∝ 1/n has allowed the number density of the propagation region to be inferred. This

is assumed to be the same as the density of the acceleration region. Using the simplest

one-dimensional cold plasma approximation (α = 1/2Kn), n can be inferred easily.

However, from Figure 2.1, it can be seen that, in general α = B/2Kn, where the value

of the dimensionless number B and hence the number density n, depends upon the

properties of both the acceleration region and the electron distribution.

Further, Equations (2.6) and (2.7) do not account for three important processes ex-

pected to occur within a real flaring coronal plasma:

1. a finite range of pitch angles in the injected pitch angle distribution,

2. any form of pitch angle scattering (collisional or non-collisional) within the target,

and

3. the finite temperature of the plasma through which the electrons travel.

All of these physically important effects impact the form of E(E0, z), the variation of

electron energy with position in the source, and incorporating them will thus change the
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resulting forms of std(E) and FWHM(E), in a manner which will now be investigated

in the following sections of this chapter.

2.3 Electron transport in a hot plasma with colli-

sional pitch angle scattering

2.3.1 The Fokker-Planck Equation and coefficients

In order to describe the transport of electrons through a coronal plasma of finite tem-

perature T , accounting for collisional pitch angle scattering, a Fokker-Planck type

equation can be used, as was briefly mentioned in Chapter 1. For the purposes re-

quired in this investigation, a three-dimensional form from e.g., Lifshitz & Pitaevskii

(1981); Karney (1986) in spherical coordinates is used. Assuming azimuthal symmetry

and adding a source term for electrons S, this is given by

df(v, z, β, t)

dt
=

∂f

∂t
+ v cos β

∂f

∂z
= − 1

v2
∂

∂v

�
v2 Jv

�
− 1

v sin β

∂

∂β
(sin β Jβ) + S(v, z, β, t),

(2.9)

where f(v, z, β, t) is the phase-space distribution function [electrons cm−3 [cm s−1]−3],

v [cm s−1] is the total particle speed, β is the particle pitch angle to the guiding

magnetic-field (along the direction z [cm]), t is time [s] and Jv and Jβ are given by

Jv = −Dvv
∂f

∂v
+ Fv f , Jβ = −Dββ

1

v

∂f

∂β
. (2.10)

Here Dvv and Dββ are the velocity and pitch angle diffusion terms while Fv is the

velocity collisional friction term. These three terms are respectively given by

Dvv =
Γ

2v

�
erf(u)

u2
− erf

�
(u)

u

�
≡ Γ

v
G(u)

Dββ =
Γ

4v

��
2− 1

u2

�
erf(u) +

erf
�
(u)

u

�
≡ Γ

2v

�
erf(u)−G(u)

�
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Fv = − Γ

v2

�
erf(u)− u erf

�
(u)

�
≡ −2 Γ

v2
u2 G(u) , (2.11)

where the dimensionless velocity u = v/(
√
2 vth), vth =

�
kBT/me where kB is the

Boltzmann constant [erg K−1], T is the temperature of the background plasma [K] and

me is the electron rest mass [g], Γ = 4πe4 ln Λn/m2
e where e [esu] is the electron charge,

n is the number density [cm−3] and lnΛ is the Coulomb logarithm. erf(u) is the error

function and G(u) is the Chandrasekhar function,

erf(u) ≡ (2/
√
π)

u�

0

exp(−t2) dt and G(u) =
erf(u)− u erf

�
(u)

2u2
. (2.12)

Substituting into the Fokker-Planck equation (2.9) gives

df(v, z, β, t)

dt
=

Γ

2v2

�
∂

∂v

�
2 v G(u)

∂f(v, z, β, t)

∂v
+ 4G(u) u2 f(v, z, β, t)

�
+

+
1

v sin β

∂

∂β

�
sin β

�
erf(u)−G(u)

�
∂f(v, z, β, t)

∂β

��
+ S(v, z, β, t). (2.13)

Current imaging spectroscopy X-ray observations with instruments such as RHESSI

have a time resolution the order of several seconds; it takes a full spacecraft rotation

period ∼4 s to yield a reliable image, which is much longer than the timescale for

transport of deka-keV electrons (v ∼ 1010 cm s−1) along the typical length of a coronal

loop (∼ 109 cm). Therefore, it is appropriate to consider the time-independent case.

It is also convenient to convert from the variable β to the variable µ = cos β, giving

µ v
∂f(v, z, µ)

∂z
=

Γ

2v2

�
∂

∂v

�
2 v G(u)

∂f(v, z, µ)

∂v
+ 4 u2 G(u) f(v, z, µ)

�
+

+
1

v

∂

∂µ

�
(1− µ2)

�
erf(u)−G(u)

�
∂f(v, z, µ)

∂µ

��
+ S(v, z, µ). (2.14)

It is assumed that the source term S(v, z, µ) is separable in v, µ and z, with the spatial

variation assumed to have a Gaussian form:
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S(v, z, µ) = f0(v)
1√
2πd2

exp

�
− z2

2d2

�
H(µ) , (2.15)

where f0(v) and H(µ) are the initial velocity and pitch angle distribution functions.

Equation (2.14) describes the evolution of an injected electron distribution through a

non-evolving finite temperature background Maxwellian distribution.

2.3.2 Steady-state solution

For a background plasma with a finite temperature T , the input velocity distribution

will evolve to a thermal distribution of the form

f(v) ∼ exp

�
−mev2

2kBT

�
, (2.16)

leading to an average kinetic energy of

�
mev2

2

�
=

�∞
0

mev2

2 f(v)d3v�∞
0 f(v)d3v

=
3

2
kBT . (2.17)

2.3.3 High velocity limit

In the high electron velocity limit u � 1, one finds erf(u) → 1 and G(u) → 1/2u2 =

(vth/v)2. In this limit Equation (2.14) becomes

µ v
∂f(v, z, µ)

∂z
=

Γ

v2

�
∂

∂v

�
v2th
v

∂f(v, z, µ)

∂v
+ f(v, µ, z)

�
+

+
1

2v

∂

∂µ

�
(1− µ2)

∂f(v, z, µ)

∂µ

��
+ S(v, z, µ) . (2.18)

2.3.4 Cold plasma limit

If the temperature of the plasma is also small compared to the typical particle energies,

then it can be formally taken that T = 0 (that is, vth = 0). Equation (2.18) then

becomes
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µ
∂f(v, z, µ)

∂z
=

Γ

v3

�
∂f(v, z, µ)

∂v
+

1

2v

∂

∂µ

�
(1− µ2)

∂f(v, z, µ)

∂µ

��
+ S(v, z, µ) ,

(2.19)

which is the transport equation for a cold plasma with azimuthal symmetry, a more

familiar form often used in solar physics (e.g., Kovalev & Korolev 1981).

2.3.5 Conversion to the electron flux distribution

The electron flux spectrum F (E, z, µ) [electrons cm−2 s−1 keV−1] as a function of field-

aligned coordinate z [cm], energy E [keV] and pitch angle cosine µ is related to the

three-dimensional phase-space distribution function f(v, z, µ) by

v f(v, z, µ) d3v = v f(v, z, µ) v2 dv = F (E, z, µ) dE , (2.20)

so that

f(v, z, µ) =
dE

dv

1

v3
F (E, z, µ) =

me

v2
F (E, z, µ) =

m2
e

2E
F (E, z, µ) . (2.21)

Using this relation, the Fokker-Planck equation (2.14) can be re-written in terms of

electron energy E and the electron flux distribution F (E, z, µ), which is a more useful

form for comparison with observations. The result is

µ
∂F

∂z
= Γm2

e

�
∂

∂E

�
G(u[E])

∂F

∂E
+

G(u[E])

E

�
E

kBT
− 1

�
F

�
+

+
1

8E2

∂

∂µ

�
(1− µ2)

�
erf(u[E])−G(u[E])

�
∂F

∂µ

��
+ SF (E, z, µ), (2.22)

where u(E) =
�

E/kBT is used. The solar corona also contains elements other than

hydrogen, and for an element with atomic number Z, the Coulomb energy loss scales

as Z2 (e.g., Emslie 1978), and these additional elements are accounted for by adopting

an effective atomic number Zeff =
�

i niZ2
i /

�
i ni. Defining Γeff = ΓZeffm2

e and

G(u) = G
��

E
kBT

�
, Equation 2.22 becomes
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µ
∂F

∂z
= Γeff

�
∂

∂E

�
G

��
E

kBT

�
∂F

∂E
+

1

E

�
E

kBT
− 1

�
G

��
E

kBT

�
F

�
+

+
1

8E2

∂

∂µ

�
(1− µ2)

�
erf

��
E

kBT

�
−G

��
E

kBT

��
∂F

∂µ

��
+ SF (E, z, µ)),

. (2.23)

The source term again consists of three separable functions for E, µ and z:

SF (E, z, µ)) = F0(E)
1√
2πd2

exp

�
− z2

2d2

�
H(µ) , (2.24)

where F0(E) ∝ E−δ
0 and H(µ) describe the forms of the initial energy spectrum and

pitch angle distribution, respectively.

2.3.6 Derivation of the stochastic differential equations

For use in the simulations, Equation 2.23 must be converted to a set of stochastic

differential equations (SDE) for the field-aligned coordinate z [cm], energy E [keV]

and pitch angle cosine µ. If the source term is ignored, focusing on electron transport,

Equation (2.23) can be rewritten in the form

µ
∂F

∂z
=

∂

∂E

�
AE(E)F

�
+

∂2

∂E2

�
DEE(E)F

�
+

∂

∂µ

�
Aµ(E, µ)F

�
+

∂2

∂µ2

�
Dµµ(E, µ)F

�
,

(2.25)

where the coefficients are given by

AE(E) =
Γeff

2E

�
erf

��
E

kBT

�
− 2

�
E

kBT
erf

�

��
E

kBT

��

≡ Γeff

2E
gth

��
E

kBT

�
;

DEE(E) ≡ 1

2
B2

E(E) = Γeff G

��
E

kBT

�
;

Aµ(E, µ) =
µΓeff

4E2

�
erf

��
E

kBT

�
−G

��
E

kBT

��
;
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Dµµ(E, µ) ≡ 1

2
B2

µ(E, µ) =
(1− µ2) Γeff

8E2

�
erf

��
E

kBT

�
−G

��
E

kBT

��
.

(2.26)

This general form of the Fokker-Planck equation is equivalent to the following stochastic

differential equations (SDE) for E and µ in the Itô form (cf. MacKinnon & Craig 1991;

Gardiner 1994)

dE = −AE ds+BE dWE ; dµ = −Aµ ds+Bµ dWµ , (2.27)

where the independent Wiener processes Wµ and WE are stochastic processes with

independent increments. These two equations suggest the numerical stepping algorithm

zj+1 = zj + µj ∆s ; (2.28)

Ej+1 = Ej −
Γeff

2Ej
gth(uj)∆s+

�
2 Γeff G(uj)∆s WE ; (2.29)

µj+1 = µj−
Γeff

�
erf(uj)−G(uj)

�

4E2
j

µj ∆s+

�����
(1− µ2

j) Γeff

�
erf(uj)−G(uj)

�

4E2
j

∆s Wµ ,

(2.30)

where uj =
�

Ej/kBT and WE and Wµ are drawn at random from the Gaussian

distribution N(0, 1) such that �Wµ� = �WE� = 0, �W 2
µ� = �W 2

E� = 1. Equations (2.28)

through (2.30) are the form of the SDEs used in the numerical simulations, which must

be amended for low energies. This will be discussed in Section 2.3.7.

It should be noted that a root mean square (rms) atomic number of Zeff = 1 is taken

for simplicity (that is, a pure hydrogen target), but the equation for a general Zeff is

provided as it may prove useful in other studies.

The coefficients AE, Aµ, BE(=
√
2DEE) and Bµ(=

�
2Dµµ) are plotted against energy

E in Figure 2.2, for a number of different plasma temperatures T ranging from T = 0

(cold plasma) to T = 100 MK. For ease of presentation, the Aµ and Bµ terms are

shown as a function of E for a fixed value of µ (µ = 1 for Aµ and µ = 0 for Bµ). Below

an energy Ec � kBT the coefficient AE becomes negative; that is, electrons on average

gain energy; the value of Ec for which AE = 0 increases linearly with the ambient
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temperature. In order that these features can be seen clearly, the coefficient AE is

plotted (top row of Figure 2.2) over three different energy ranges: two (below 1 keV,

and below 30 keV) plotted on linear y-axes and 1-50 keV plotted on a logarithmic y-

axis. Further, the stochastic term BE peaks at � kBT . Therefore, in a warm plasma,

electrons with E ∼ kBT are more likely to gain energy, both secularly and through

diffusion, rather than to lose it.

To get reliable results from the simulations, an appropriate value of the length step

∆s (Equations (2.28) through (2.30)) must be chosen. This was chosen by calculating

the thermal collision length (mean free path) λc(E) and ensuring that ∆s was much

smaller than λc for all E of interest. The thermal collisional length is given by λc = vτc,

where τc is the thermal collisional time as discussed in Chapter 1. The mean-free path

λc for a 1 keV electron in a cold target of density n = 1× 1011 cm−3 is approximately

106 cm; the mean-free paths in warm targets are even greater. For all simulations, a

length step ∆s = 1×105 cm is used, much smaller than the mean free path in all cases

and this is shown in Figure 2.3.

2.3.7 The low-energy limit

As the plots in Figure 2.2 show, AE, Aµ and Bµ diverge as E → 0. Therefore, following

Lemons et al. (2009) and Cohen et al. (2010), for low energies E the finite difference

Equation (2.29) is replaced with an analytic expression for the energy evolution. To

obtain this expression, the functions erf(u) and erf �(u) for small u are expanded in a

MacLaurin series, so that the coefficients AE and BE become

AE =
Γeff

2E

�
erf(u)− 2u erf

�
(u)

�
� − Γeff√

πE
u , (2.31)

BE =
�
2 Γeff G(u) �

�
4 Γeff

3
√
π

u , (2.32)

and in the low-energy limit, E → 0, the energy equation becomes
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Figure 2.3: Electron collisional length versus electron energy in a cold plasma (black)

with the thermal collisional lengths over-plotted for T = 1, 10, 20, 30 and 100 MK.

In the simulations, sensible flaring plasma temperatures of T = 10, 20 and 30 MK are

used and hence a stochastic distance step is chosen to be ∆s = 1 × 105 cm, which is

at least one order of magnitude smaller than the thermal collisional length for T = 10

MK.

dE

ds
� Γeff

E

�
E

πkBT
+

�
4 Γeff

3

�
E

πkBT

�1/2

WE . (2.33)

For low values of E, the second (stochastic) term can be neglected in comparison with

the first (secular) term to give

dE

ds
� Γeff√

πkBT

1√
E

, (2.34)

which can be integrated analytically, giving

E =

�
E3/2

0 +
3Γeff

2
√
πkBT

(s− s0)

�2/3
. (2.35)
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Equation (2.35) was used for energies below

Elow =

�
3Γeff

2
√
πkBT

∆s

�2/3
, (2.36)

thus guaranteeing that E ≥ 0 everywhere. To avoid divergence, the pitch angle cosine

µ for energies E ≤ Elow was sampled from a uniform distribution between −1 and 1.

Since electrons with Elow << Ē, where Ē is the average thermal energy of the plasma,

are likely to be part of the background thermal distribution, then it is sensible to draw

their pitch angle from an isotropic distribution.

In the cold plasma limit T → 0, the stochastic equation for E becomes

Ej+1 = Ej −
Γeff

2Ej
∆s , (2.37)

which can be solved to give the usual cold target result

Ej+1 =
�
E2

j − 2Kn∆s , (2.38)

where K = 2Γeff/n. In this limit, the pitch angle behaviour is given by

µj+1 = µj −
Γeff

4E2
j

µj ∆s+

�
Γeff

4E2
j

(1− µ2)∆s Wµ . (2.39)

2.4 Simulations

The aim of the simulations is to determine how collisional pitch angle scattering and

the finite temperature of the target plasma affect the transport of electrons through

the plasma compared to the one-dimensional cold target result, and hence to determine

how the observed length of a hard X-ray source varies with electron energy in a more

realistic physical scenario. The simulations use the stochastic equations for z, E, and

µ given by Equations (2.28) through (2.30) with initial conditions for each injected

electron provided by sampling the source term S(E, z, µ) – see Equation (2.24). The

simulations model the evolution of an injected distribution of electrons, moving either
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within a cold plasma or a plasma of finite temperature, they do not account for the

evolution of the background plasma; the properties of the background plasma remain

constant throughout a simulation.

2.4.1 Simulation input, boundary and end conditions

All simulations use a common set of certain input parameters. The electron number

density is set to n = 1 × 1011 cm−3, a relatively high value for the coronal density,

but one which is necessarily high in order for the deka-keV electrons to be stopped

in the corona and which is chosen to correspond to recent analyses of thick target

coronal sources (e.g., Xu et al. 2008; Kontar et al. 2011b; Jeffrey & Kontar 2013).

For the Coulomb logarithm a typical coronal value of ln Λ = 20 is used. The plasma

temperature is assumed uniform along the z direction, at a value of either 0 MK, 10 MK,

20 MK or 30 MK. The initial spatial distribution of injected flux (“acceleration region

size”) is assumed to be a Gaussian centred at z = 0 (which is the position of the

coronal loop apex) with an input standard deviation of d = 10��, corresponding to a

FWHM= 2
√
2 ln 2 d = 23��.5. The initial pitch angle distribution is taken to be either

completely beamed (that is, half the distribution has µ = 1 and the other half µ = −1)

or isotropic. The injected electron energy flux distribution F0(E) has the form of a

power law with spectral index δ = 4 or δ = 7, up to a maximum energy of 50 keV,

above which the energy-integrated electron flux is negligibly small.

The upper boundary of the z domain is set at a value sufficiently large that no electrons

ever spatially leave the region of computation. For the runs that use the cold target

energy loss formula, electrons lose energy monotonically. Hence an electron is removed

from the simulation once its energy is below 1 keV. However, for the warm target sim-

ulations, electrons of very low energy can still gain energy through Coulomb collisions

with more energetic neighbours, as the ensemble evolves to a thermal (Maxwellian)

distribution. Thus electrons in the warm target runs are never removed; for such

runs the particle number is conserved and the electron distribution asymptotically ap-

proaches the Maxwellian distribution F (E) ∼ E exp(−E/kBT ). For this distribution,
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the flux-averaged energy is

E =

�∞
0 E F (E) dE�∞
0 F (E) dE

= 2 kBT . (2.40)

Therefore a simulation is terminated when the average energy of the distribution is

2kBT and the pitch angle distribution becomes approximately isotropic, conditions that

approximate the essential features of a Maxwellian. Note that E is not the average

kinetic energy of the three-dimensional phase space distribution f(v, µ, z) (which is

�mv2/2� = 3
2kBT ). After each distance step ∆s, the values of the electron distribution

function F (E, µ, z) are saved into an array. These arrays represent the distribution

functions resulting from the continuous injection of electrons with the source function

given by Equation (2.24).

2.4.2 Gaussian fitting and the determination of the source

length FWHM

The arrays generated by each simulation are energy-binned to give F (z, µ) in increas-

ing energy bins from 1 keV to 30 keV. The longitudinal extent of the source could

be identified as the standard deviation std(E) =
�
var(E) of the F (z, µ) spatial dis-

tribution in each energy bin, calculated from the second spatial moment of F (z, µ).

However, in part because the injected flux distribution is assumed to be Gaussian, the

forms of F (z, µ) generally also closely resemble Gaussian forms, excluding relatively

low-intensity components at high |z|. Therefore, just as in Section 2.2, a Gaussian dis-

tribution is instead fitted to each F (z, µ) distribution and thus used to determine the

associated standard deviations stdG(E) and corresponding FWHM= 2
√
2 ln 2 stdG(E)

in each energy bin. In this way, the extent of the source is characterised through the

shape of its core spatial form, rather than through a moment of the entire distribution.

Again, as in Section 2.2, FWHM(E) = L0 + αE2 (Equation (2.8)) was fitted to the

FWHM versus electron energy results, and values of α and L0 found.

For a cold plasma with an initially beamed pitch angle distribution and no collisional

pitch angle scattering, it is expected that L0 = Linit = 2
√
2 ln 2 d, the Gaussian FWHM
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of the input distribution, has a value of α equal to that found numerically from the

fits to δ = 4 and δ = 7 curves in Figure 2.1. However, the presence of a finite plasma

temperature T , an initially broad pitch angle distribution, and/or collisional pitch angle

scattering will all change the values of L0 and α obtained. The inferred values of the

acceleration region density n depend on the value of α (α ∝ 1/n). The values of other

parameters inferred from n and the acceleration region length L0 – see Section 2.5 – are

thus dependent upon both the assumed electron distribution and the properties of the

target plasma. The results will be used to find, for instance, if the inappropriate use

of a one-dimensional cold target assumption changes the inferred number density by

a factor larger than the observational uncertainty, and thus determine if a correction

should be applied to the results.

Simulation accuracy and limiting cases

In general, consideration of the errors associated with stochastic simulations are a

complex problem and beyond the scope of this thesis. However, convergence of the

simulation results against limiting analytical solutions can be checked. In the various

plots shown in Figure 2.4 the energy of a single electron versus the overall step distance

travelled (top) and the average energy of the entire distribution against the distance

travelled (bottom) are plotted. This was done for δ = 7, and for T=0, 10 MK, 20 MK

and 30MK. For the cold (T = 0) case, the error in the energy of a single electron

is very small; the stochastic terms in the difference equations (2.28) through (2.30)

are negligible and individual electron energies (and hence the average energy of the

entire distribution) follow the analytical results very well. However, for a finite tem-

perature target, the stochastic part of the difference equations plays a significant role,

the dominance of which increases with T . Hence the energy of a single electron fluc-

tuates significantly, especially at low energies. However, due to ensemble averaging,

even for finite target temperatures the average energy of the distribution exhibits a

relatively smooth transition from the starting average energy of the distribution to the

final average value of the distribution F (E).



2.4: Simulations 66

Figure 2.4: Top panels: E of a single electron for T = 0, 10, 20, 30 MK simulations as

a function of the overall distance
�

∆s travelled. For the chosen ∆s = 105 cm � 10−3

arc seconds, the change in energy over a single step is small. The randomness in the

T=10, 20 and 30 MK cases is due to thermal fluctuations that increase with T ; the

error associated is difficult to estimate for a single particle. Bottom panels: �E� of the
entire distribution versus

�
∆s travelled, for the parameters given in Section 2.4.1.

In contrast to the results for a single particle, these show smooth curves, with only

small fluctuations for the T=10, 20 and 30 MK cases. Black dashed dot curve (0 MK):

analytical cold target solution and orange dashed dot curves (10, 20 and 30 MK): final

average energy of the F (E) distribution.
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2.4.3 Numerical results

Cold plasma with collisional pitch angle scattering

Firstly, the case of a cold target is considered, with different pitch angle injection and

scattering scenarios. Eight simulations were performed, corresponding to two spectral

indices (δ = 4 and δ = 7) and:

• (A) an injected bi-directional beamed distribution of electrons (µ = −1, 1) with-

out collisional pitch angle scattering,

• (B) an injected bi-directional beamed distribution of electrons (µ = −1, 1) un-

dergoing collisional pitch angle scattering,

• (C) an initially isotropic pitch angle distribution of electrons without collisional

pitch angle scattering, and

• (D) an initially isotropic pitch angle distribution of electrons undergoing colli-

sional pitch angle scattering.

Figure 2.5 shows the Gaussian spatial FWHM plotted against electron energy E for

cases (A), (B), (C) and (D), together with fits using Equation (2.8) between ∼ 8− 25

keV. This energy range is chosen to match with the energy ranges often used for such

observations by RHESSI. The corresponding values of α and L0 for each scenario are

shown on Figure 2.5, and there are two general statements that can be made regarding

the results. Firstly, the broader the initial pitch angle distribution, the smaller the

source length at a given energy and secondly, the presence of collisional pitch angle

scattering acts to slightly decrease the source length at a given electron energy. Both

effects occur because electrons with |µ| < 1 move a correspondingly smaller distance

along the magnetic field. The latter effect is greater at higher electron energies but

overall the change is rather small (Figure 2.5).

The case of an initially isotropic distribution, with or without pitch angle scattering,

produces the flattest (lowest value of α) results for each δ. For example, compared
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Figure 2.6: For each cold target simulation scenario – (A), (B), (C) and (D) – the

value of the coefficient α calculated by fitting each curve in Figure 2.5 is used to infer

a number density n using two different one-dimensional cold target approaches: (1)

point injection α = 1/2Kn (red) and (2) an extended Gaussian input that is initially

beamed with no pitch angle scattering (blue). The actual number density of 1× 1011

cm−3 is given by the grey dashed line and the inferred value of n is ∼ equal or greater

than the actual value.

with the initially beamed, scatter-free cases for δ = 4, 7, the isotropic, scatter-free α’s

are lower by factors of ∼ 2.6 and ∼ 3.5, respectively.

Since the coefficient α (Equation (2.2)) in a one-dimensional cold target formulation

is inversely proportional to the ambient density n, the reduced penetration distance

associated with the presence of an initially broad pitch angle distribution and/or col-

lisional scattering will lead to an overestimate of n if the results are interpreted using

the one-dimensional cold target result, with the exact reduction factor dependent upon

the properties of the initial electron distribution and background plasma.
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Values of n were inferred for each of the cases (A), (B), (C) and (D), using two different

interpretive approaches:

1. α1 = 1/2Kn, i.e., simple one-dimensional propagation within a cold target, giving

α1 = 0.026 arcsecond keV−2 for n = 1× 1011 cm−3

2. α2, found using an extended Gaussian input for an initially beamed distribution

with no pitch angle scattering, i.e., Equation (2.7) and scenario (A). From the

lower right panel of Figure 2.1, for n = 1×1011 cm−3, α2 = 0.026 arcsecond keV−2

for δ = 4 and α2 = 0.012 arcsecond keV−2 for δ = 7.

In Figure 2.6, the actual number density of the region n = 1 × 1011 cm−3 is shown

by the dashed grey line and the values of n inferred from approaches (1) and (2) are

shown by the red and blue points, respectively. The inferred number density can be up

to six times too large, with the largest effect being for steep spectra (the δ = 7 case)

and isotropic injection (cases (C) and (D)).

Hot plasma and collisional pitch angle scattering

In this section it is studied how the effect of a finite-temperature target (in the pres-

ence of collisional pitch angle scattering) changes the electron transport through the

plasma and hence the extent of the source with energy. Six further simulations were

considered corresponding to three target temperatures (10 MK, 20 MK and 30 MK),

and pitch angle scenario (B), an injected beamed electron distribution including pitch

angle scattering, for both δ = 4 and δ = 7.

Figure 2.7 shows both the spatially-integrated spectra and the spectrally-integrated

spatial distributions for five different simulations: one-dimensional (beamed) cold tar-

get (black), cold target with isotropic injection (grey), and beamed injection in three

warm target cases: T=10 MK (orange), 20 MK (green) and 30 MK (blue). Figure 2.7

shows only the spatially and spectrally integrated evolutions of the injected electron

distribution and does not include the background cold or Maxwellian distribution. The

total spatially-integrated spectra are plotted in the top row of panels, for δ = 4 (left)
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Figure 2.7: Top panels: spatially-integrated spectra; bottom panels: energy-integrated

spatial distributions for the following scenarios: (1) cold plasma, initially beamed dis-

tribution with pitch angle scattering (black); (2) cold plasma, initially isotropic distri-

bution with pitch angle scattering (grey); and warm target cases with (3) T=10 MK

(orange), (4) T=20 MK (green) and (5) T=30 MK (blue), with pitch angle scattering.

Results are shown for both δ = 4 (left) and δ = 7 (right). The red dashed lines in the

bottom panels indicate the the source function S(E, µ = 1, z).

and δ = 7 (right); the spatial distribution of the spectrally-integrated flux is plotted in

the bottom row of panels, again for δ = 4 (left) and δ = 7 (right).

Not surprisingly, higher temperature targets tend to make the overall electron spectrum

more thermal in form. The lower the temperature of the background Maxwellian

plasma, the greater the distinction between the thermal part of the distribution at



2.4: Simulations 72

lower energies and the nonthermal power-law component at higher energies. Also,

the inclusion of thermal effects tends to broaden the spatial distribution of the electron

distribution, with the effect being more pronounced at higher temperatures. The spatial

spread for a given input distribution is larger for a smaller spectral index because of the

larger fraction of higher energy electrons in such flat distributions. It was also found

(not shown) that, not surprisingly, the initially beamed distribution (case (B)) shows

greater spreads in z than for the same six runs performed for the isotropic injection

case (case (D)), see Figure 2.7.

Figure 2.8 shows the results of the Gaussian fits to the computed spatial distributions

for all six warm target scenarios, together with the corresponding results for the cold

target case. Compared to the cold target case, the addition of thermal effects results

in changes that affect the inferred values of both n ∝ 1/α and L0. Firstly, it is

obvious from all panels in Figure 2.8 that the value of the y-axis intercept L0 (the

inferred acceleration region length) increases with temperature; it was found that the

magnitude of this increase depends somewhat on the number density n and is relatively

independent of the power-law index δ. This effect is purely due to the thermal diffusive

nature of the electron transport, both energetically and spatially, at low energies. This

result suggests that the temperature of the background plasma must be accounted

for, when estimating L0 from such observations. The determination of the actual

acceleration region length from the inferred length is discussed further in Section 2.4.3.

Just as before, curves of the form of Equation (2.8) are fitted between∼ 8−25 keV, for a

better comparison with observations when using imaging algorithms such as VisFwdFit

and uv smooth. These are shown by the purple dashed lines and the values of L0 and

α from the purple fits are shown on each panel of Figure 2.8. However, the presence

of a finite background temperature causes the lower energies of the distribution, in

particular, to be dominated by thermal diffusion and hence analysis of the curves in

Figure 2.8 shows that overall, the FWHM over the entire plotted energy range is not

so well-fitted by a single curve of the form FWHM(E) = L0 + αE2. This can be

clearly seen for the 20 MK, δ = 4 curve. Therefore, two other FWHM(E) = L0 + αE2

curves are fitted to the results; one component representing the lower energy values
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that are controlled mainly by thermal diffusion (grey curve) and another component

representing higher energies mainly controlled by collisional friction, since the FWHM

values should return to match those of a cold target case when E >> kBT . The L0

and α values found from the grey and black curves are also shown on each panel of

Figure 2.8.

To illustrate, for the T=10 MK case, the FWHM values match those of the cold case

(red or green dashed line) after ∼ 10 keV, for both the δ = 4 and δ = 7 cases. This is

because the temperature diffusion is limited to energies below ∼ 8 keV (grey curve);

Figure 2.8 clearly shows this transition. Therefore for the 10 MK case, the 8− 25 keV

fits (purple) match that of the higher energy black fits and cold cases reasonably well

for both δ = 4 and δ = 7. By T=20 MK, the energy range between 8− 25 keV is not

so well fitted by a curve of the form of Equation (2.8) and occurs because the trend of

the FWHM moves from being dominated by the effects of thermal diffusion to being

dominated by the effects of collisional friction at approximately 15 keV, right in the

middle of the range used for the fit. This is clear for the δ = 4 case but harder to see

for δ = 7 case due to the smaller values of α. The α values of the friction-dominated

fits (black curves) are only approximately the same as for the cold plasma case after

∼ 17 keV. Also the diffusion at 20 MK noticeably influences the length values at all

energies plotted, with the FWHM values above ∼17 keV lying above those for the

cold case. By T=30 MK, the entire plotted energy range and the fitted energy range

between 8−25 keV is mainly controlled by thermal diffusion and the α values for both

the δ = 4 and δ = 7 cases are similar. All plotted FWHM values are much larger than

that of equivalent cold cases, over 10�� at 1 keV. For the 8−25 keV fits, the δ = 4 value

is smaller than that of the equivalent cold case, and the δ = 7 value is slightly larger.
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Inferring the acceleration region length L0 and density n

The thermal diffusion-component (grey dashed) curves in Figure 2.8 use Equation (2.8)

to fit the FWHM values at lower energies, and hence give L0, the inferred length of

the acceleration region. For a given temperature, the values of L0 found for both δ = 4

and δ = 7 are approximately the same, with an average value of 25�� for T=10 MK,

29�� for T=20 MK and 34�� for T=30 MK.

For the reasons discussed above, it is more likely that the L0 values obtained from the

∼ 8− 25 keV fits will be most reliable from observation. Averaged over the two values

of δ, these give values of 24�� for T=10 MK, 28�� for T=20 MK, and 33�� for T=30 MK.

These values are only slightly smaller than the values found from the grey dashed fits

at lower energies. However, if viable, as low an energy as possible should be used to

find the inferred value of L0. Figure 2.9 (left) plots the values of L0 found for the

thermal diffusion-dominated (grey curve) and 8− 25 keV fits against T . Each is fitted

with a curve of the form,

L0(T, n) = L0(T = 0) + ξ(n)T 2 = 23��.5 + ξ(n)T 2 . (2.41)

By fitting Equation (2.41) to each, ξ is found for both “global” and thermal diffusion-

dominated fits, and an average value of �ξ(n = 1 × 1011)� = 0.011 arcsecond MK−2

is calculated empirically from the four fits. To summarize, if the size L0(T = 0) and

number density n of the region have been inferred from a cold target analysis, and n

is close to n = 1× 1011 cm−3 (as it must be for a viable thick target coronal source to

appear), then the actual extent of the acceleration region is less than would be inferred

using a cold target formula. Quantitatively, the actual size of the acceleration region

L0 can be approximated by the expression

L0 = L0(T = 0)− 0.011T 2 , (2.42)

where L0(T = 0) is the value deduced from a fit using the cold target formula to an

observation.

The right panels in Figure 2.9 also show how α from the 8− 25 keV fits changes with

T for both δ = 4 and δ = 7. For δ = 4, α decreases between T=10 MK and T=30 MK.
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Figure 2.9: Left panel: L0 versus T . The blue band represents the area containing

the L0 values for both the δ = 4 and δ = 7 low-energy and 8-25 keV fits from Figure

2.8 (grey and purple respectively), plotted against temperature T . For each of these

curves, a function of the form L0 = L0(T = 0) + ξT 2 is fitted, and average values of

�L0(T = 0)� = 23��.5 and �ξ(n = 1 × 1011 cm−3)� = 0.011 [arcsec MK−2] are found,

with L0 = �L0(T = 0)�+ �ξ�T 2 represented by the orange dashed line. Right panel: α

from the 8-25 keV fits (Figure 2.8) versus T , for δ = 4 (red) and δ = 7 (green).

This is expected, since for higher temperatures, particle diffusion is controlling the

shape of the curve and the δ = 4 cold target case has a relatively high α value. How-

ever this is not the case for δ = 7, where between 10-30 MK α increases with T .

From the plots in Figure 2.9, the values of α for the fits between 8-25 keV can be used

to infer a number density from observations. Two cold target approaches are used: (1)

α = 1/2Kn, and (2) an extended source Gaussian input as found from Equation (2.7).

Also, using the results from the cold-plasma cases (2) can be expanded to account for

the initial beaming of the distribution so that a range of n can be found. Finally, (3)

can be used, which is the same as (2) but accounts for pitch angle scattering.

The inferred values of n for T = 10, 20, 30 MK and for δ = 4, 7 are shown in Figure 2.10.

For δ = 4 the largest inferred value is ∼ 1.7 times larger than the actual density and the
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Figure 2.10: Cold plasma fits are applied to the different hot plasma simulation

curves to determine an inferred density that can be compared with the actual density

of the region: (1) (red lines): α1 = 1/2Kn. (2) (blue hashed areas): an extended

Gaussian injection model with no pitch angle scattering that is initially either beamed

(Equation (2.7)) or isotropic (found from the cold plasma simulation – see Figure 2.5).

(3) (orange regions): as for (2), but with collisional pitch angle scattering included.

For both (2) and (3), the spread in n occurs due to different electron pitch angle

distributions from completely beamed to isotropic. The highest inferred values for n

are for a completely beamed distribution.

smallest is around three times smaller; for δ = 7, the largest value is ∼ 3.3 times larger

and the smallest value is again about 3 times smaller. In general, (1) (cold target, point

injection, red lines) produces the largest differences, which is not surprising since the

input was an extended Gaussian, rather than point-injection, source. However, even

this simple analytical case, that accounts very poorly for the true physical properties of

the electron distribution, only increases the number density by a factor of about 3 (for
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a beamed finite temperature case). (2) and (3) (extended injection models, without

and with collisional scattering in the target, respectively) that do not account for the

finite temperature of the plasma provide an inferred value for n that is quite close to

the true value of n, with the biggest uncertainty due to the unknown degree of beaming

of the injected distribution.

2.5 Discussion and conclusions

The aim of Chapter 2 was to understand how the presence of different injected pitch

angle distributions, plus the effects of collisional pitch angle scattering and of a finite

target temperature change electron transport through a plasma and hence the spatial

properties of compact hard X-ray sources in solar flares.

The simulations show three main results:

1. Collisional pitch angle scattering alone does not dramatically change the be-

haviour of source length with electron energy.

2. Beaming of the initial electron pitch angle distribution does produce a significant

change in the variation of the length of the X-ray source with energy; distributions

that are initially beamed produce a larger variation of length with energy, a

consequence of the fact that the collisional stopping distance is now projected

onto the direction defined by the guiding magnetic field. The difference in the

coefficient α can be up to a factor of 6 if a beamed approximation is used for a

distribution that is in fact completely isotropic. The uncertainty in the initial

angular distribution of the injected electrons produces the largest uncertainty in

the inferred number density n.

3. The finite temperature of the target atmosphere leads to thermal diffusion, both

in energy and space, and an increase of the inferred acceleration region length.

The FWHM versus energy consists of two competing components, one due to

thermal diffusion that is dominant at lower energies, and another due to advection
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that is dominant at higher energies. Which component predominates depends on

a complicated way on the temperature of the region, on the density n, and even

on the spectral index δ. Therefore the use of a cold target approximation with

a single fitted curve to infer properties of the acceleration region should always

be used with caution. The results show that applying a cold model to a warm

plasma changes the inferred acceleration length L0 by several arc seconds (see

Equation (2.42)) and the inferred number density by up to a factor of 3 (in either

direction), depending mainly on the initial beaming of the electron distribution

(see Figure 2.10).

The influence of the effects studied in this chapter also influence the determination

of other quantities, such as the acceleration region filling factor f (the fraction of the

apparent source volume in which acceleration occurs) and the specific acceleration rate

(the fraction of the ambient electron population that is accelerated per unit time). The

filling factor f is defined by

f =
EM

n2V
, (2.43)

where V = (πW 2/4)L0 is the volume of the acceleration region, determined from the

inferred value of L0 and the observed lateral extent W of the (cylindrical) accelera-

tion volume, and the emission measure EM is determined from, for example, fits to

the spatially-integrated soft X-ray spectrum of the flare. The effects studied in this

chapter show that in general, application of a one-dimensional cold target formula

leads to erroneously high inferred values for both the acceleration region length L0 (see

Figure 2.8) and density n (see Figure 2.10). Use of such erroneously high values of

L0 and n leads to an overestimate of the denominator in Equation (2.43) and so an

underestimate of the filling factor f .

In a study of 24 coronal thick target events, using the one-dimensional cold target

result (2.2) to estimate L0 and n, Guo et al. (2013) found filling factors f that were

generally somewhat less than unity. The results of this chapter therefore lend support

to a value of f being even closer to unity than previously thought. Indeed, given
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that f cannot exceed unity, this may place constraints on the allowable values of n

and L0. And, since the inferred values of n depend significantly on the pitch angle

distribution of the injected electrons, this could conceivably be used to constrain the

form of the injected pitch angle distribution. In particular, broad injected distributions

lead to relatively small values of the coefficient α (see Figure 2.5) and hence to inferred

densities that are higher than the actual target density (Figure 2.10). Correcting for

such an effect in the interpretation of a particular event could imply an actual target

density that was too small to be compatible with the observationally-inferred emission

measure, thus ruling out the hypothesis of a broad injected distribution of accelerated

electrons. The inference of the acceleration region length L0, lateral extent W , and

density n also gives the number of electrons available for acceleration:

N = nV = n

�
πW 2

4

�
L0 . (2.44)

This, combined with the inference of dN (E0)/dt, the rate of electron acceleration

beyond energy E0 (obtained rather straightforwardly from spatially-integrated hard X-

ray data) provides the value of the specific acceleration rate (electrons s−1 per ambient

electron)

η(E0) =
1

N
dN (E0)

dt
. (2.45)

Overestimating the value of the acceleration region volume and density through the

use of an over-simplistic one-dimensional cold target model thus causes an overestimate

of N and, since dN (E0)/dt is fixed, this causes an underestimate of η(E0). In their

multi-event study, Guo et al. (2013) found typical values for η(E0 = 20 keV) were of the

order 10−2 s−1 and they compared these values with those predicted from different ac-

celeration models: large scale electric field acceleration (super-Dreicer) (e.g. Litvinenko

& Somov 1993; Emslie et al. 2008b) and stochastic acceleration (e.g. Miller et al. 1996;

Bian et al. 2012), both of which could be made to account for such values. The appli-

cation of the physically realistic source models considered herein will increase η even

further, and place more profound constraints on the electron acceleration mechanism.



Chapter 3

The temporal and spatial evolution

of solar flare coronal X-ray sources

This is work can be found in the publication Jeffrey & Kontar (2013)

3.1 Introduction to the chapter

Using simulations, Chapter 2 studied the variation of coronal X-ray source lengths with

electron energy. This study was motivated by recent RHESSI observations of dense

coronal X-ray sources and the information that could be inferred from the length

increases with X-ray energy. In their study Xu et al. (2008) found that the coronal

X-ray loop width, the direction perpendicular to the guiding field, of each event also

increased with X-ray energy. Kontar et al. (2011b) examined the width changes of

one coronal X-ray source and found that the loop width increased proportionally with

X-ray energy. However, unlike increases in coronal loop length, changes in width are

more difficult to explain since the electrons are bound to the guiding field and collisional

cross field transport should be negligible. Kontar et al. (2011b) and Bian et al. (2011)

inferred that the width increase could be due to the magnetic diffusion of field lines

perpendicular to the direction of the field, which is caused by the presence of magnetic

turbulence within the loop. The interesting spatial trends shown by these observations
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and the information inferred indicate the usefulness of observing coronal X-ray loop

spatial properties. Chapter 3 now goes on to further explore this, by examining how

the spatial properties: length, width and position of such coronal X-ray sources change

in time before, during and after the impulsive phase of the flare.

3.1.1 Past studies of coronal loop spatial properties

Past observations concentrated on studying changes in coronal loop positions, due to

the difficultly in trying to quantitatively infer source size changes with RHESSI and

other instruments, as was discussed in Chapter 1. Forbes & Acton (1996) used the Soft

X-ray Telescope (SXT) on-board Yohkoh to observe the changing locations of post flare

loops, which was interpreted as the decrease in height that open field lines undergo af-

ter they have reconnected to form closed loops. This study looked at two long duration

events near the solar limb and found the presence of loop shrinkage that matched the

shrinkage predicted by a simple model of the reconnecting field, but overall the entire

flare loop system grew with time. Sui & Holman (2003), Sui et al. (2004), Veronig et al.

(2006) and Joshi et al. (2009) all noted a decrease in the altitude of coronal loop top

sources during the impulsive phase of the flare, until the peak X-ray emission and an

increase in altitude after the impulsive phase. Sui & Holman (2003) also found evidence

for an above the loop top source and interpreted the situation as the formation of a

reconnection current sheet between the loop top source and the higher coronal source.

Veronig et al. (2006) interpreted the decrease as a collapsing magnetic trap (Somov

& Kosugi 1997; Karlický & Kosugi 2004). The contraction and expansion of the loop

source has also been observed in other wavelengths of EUV (Liu et al. 2009; Joshi et al.

2009) and radio (Li & Gan 2005; Reznikova et al. 2010). Reznikova et al. (2010) found

both changes in the radio loop span and height with time. More recently, Gosain (2012)

looked for evidence of collapsing fields using Solar Dynamics Observatory (SDO/AIA

and HMI) observations. The loops rose slowly and then moved into a collapse phase

during the impulsive phase of the flare, where the loop tops contracted. Lower loops

contracted earlier than higher loops and the loop contraction was interpreted as a re-
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Table 3.1: Table showing the main parameters of Flares 1, 2 and 3.

GOES Class Date Obs. time Peak time (10 keV) Footpoints (30-40 keV)

Flare 1 M3.0 23-August-2005 14:22:00-14:40:00 14:30:00 14:36:00 onwards

Flare 2 M4.1 14/15-April-2002 23:58:00-00:20:00 00:12:00 00:05:00 onwards

Flare 3 M2.6 21-May-2004 23:42:00-23:58:00 23:50:00 23:42:00 onwards

duction of magnetic energy as the system relaxed to a state of lower energy, that is,

relaxation theory (Taylor 1974).

In this chapter, three flares with dense coronal X-ray loops are studied, in order to

find how the emission lengths, widths and positions change with time at three energy

ranges between 10-25 keV. Using spectroscopy, it is also found how plasma parameters

such as emission measure and plasma temperature vary with time, for each flare. Using

a combination of imaging and spectroscopy parameters, the X-ray loop corpulence, vol-

ume, plasma number density, thermal pressure and thermal energy density are inferred

during the time evolution of the flare. This chapter will also propose some explanations

describing the trends and the processes occurring within the coronal loops.

3.2 Chosen events with coronal X-ray emission

The three events studied are: 23rd August 2005 from 14:22:00 (Flare 1), 14th/15th

April 2002 from 23:58:00 (Flare 2) and 21st May 2004 from 23:40:00 (Flare 3). All three

flares share similar characteristics: GOES M-class flares with similar lightcurves, strong

coronal X-ray loop top emission and only relatively weak footpoint emission. Since the

aim of the study is to examine how the properties of coronal X-ray sources vary with

time, these events were chosen as they show a clear coronal X-ray source throughout

the rise, peak and decay stages of X-ray emission and their spatial properties have

been previously studied in energy by Xu et al. (2008) and Kontar et al. (2011b). The

coronal X-ray emission during each flare appears clearly, for study, up to ∼ 30 keV
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and appears as a simple loop-like shape connecting weak 30-40 keV HXR footpoints,

during certain time intervals. The main parameters of each flare: GOES class, date,

observation time, peak time at 10 keV and the time of footpoint appearance are given

in Table 3.1. As discussed in Chapter 2, length variations of each of these coronal

loops with X-ray energy were studied by Xu et al. (2008). Length and width changes

with X-ray energy for Flare 2 were also studied by Kontar et al. (2011b). It should be

noted that Flare 1 and Flare 3 show similar results as Flare 2 in Kontar et al. (2011b),

where both the length and width increase with energy as ∼ �2 and ∼ � respectively

but this chapter will concentrate on the size, position and spectral parameter changes

with time.

3.2.1 Lightcurves for each event

The lightcurves for each event are shown in Figure 3.5 (top row). Flares 1 and 3 have

similar lightcurves; a simple shape with one peak. The lightcurves of four energy bands

between 10-40 keV for Flare 1 are shown in Figure 3.5 (top row, left plot). The study of

this event begins at 14:22:00. At this time, X-ray emission from the 10-20 keV energy

bands are slowly rising and reach a peak at ∼14:30:00. After this point, there is a

gradual decrease in X-ray emission until ∼ 14:40:00, and continues to decrease until

14:50:00, where RHESSI enters into a night phase and can no longer view the flare.

In the 20-40 keV band there are a series of peaks between the observation range of

14:22:00 and 14:40:00. The lightcurve for Flare 3 is shown in Figure 3.5 (top, right

plot). From the start of the study at 23:40:00, the X-ray emission from four energy

bands between 14-40 keV rises and peaks around 23:50:00. After this peak, the X-

ray emission from each energy band decreases. The lightcurves for Flare 2 are more

complex and are shown in Figure 3.5 (top row, middle plot) for four energy bands from

10-40 keV. During the observational time there are two main peaks in X-ray emission

at ∼00:03:00 and ∼00:12:00, possibly more peaks, which are most prominent in the

20-40 keV energy range.
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Flare 1

Flare 2

Flare 3

Figure 3.1: CLEAN background image (green) at one time and over-plotted Vis

FwdFit contours (50% maximum intensity) at four times and energies of 10-12 keV

(left), 12-15 keV (middle) and 15-20 keV (right) for Flare 1 (top) and Flare 2 (middle)

and 14-16 keV (left), 16-20 keV (middle) and 20-25 keV (right) for Flare 3 (bottom).

The asterisks denote the loop position for each time. The cyan Vis FwdFit contour

matches the time of the CLEAN image.
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3.2.2 Imaging of each event

Each event was studied in X-rays with RHESSI using the imaging algorithms of CLEAN

(Högbom 1974; Hurford et al. 2002), Pixon (Pina & Puetter 1993; Metcalf et al. 1996)

and Vis FwdFit (Hurford et al. 2002; Schmahl et al. 2007) (see Chapter 1, Section

1.6). Firstly, each event was studied using only CLEAN and Pixon. These imaging

algorithms were used to confirm the loop shape of each coronal source and find the

energy ranges over which an X-ray coronal source was present in each flare. Confident

that the chosen events only had a simple and similar loop shape given by CLEAN

and Pixon, each event was then studied using Vis FwdFit by fitting a curved elliptical

Gaussian to each loop. It is important that the coronal source has a simple, singular

loop-like shape so that Vis FwdFit can effectively fit a curved elliptical Gaussian to

the X-ray visibilities and give reliable and realistic estimates with errors for the source

parameters. Amongst other parameters, Vis FwdFit provides the following spatial pa-

rameters: loop length FWHM (full width half maximum), loop width FWHM and the

(x, y) centroid position of the loop, which are the mean coordinates of the loop shape.

For this study of radial position, the (x, y) position of the loop top is required, not

the mean position of the loop shape itself. However, Vis FwdFit creates the elliptical

Gaussian shape by placing a set of circular Gaussian sources along the length of the

loop. Therefore, the coordinates for the coronal loop top position were simply obtained

by extracting the coordinates of the central circular Gaussian. This is important as

a loop that is very curved and approaching the shape of a ring will pull the shape

centroid towards the ends of the loop; this could mask small changes in loop position

with time and/or energy. This was especially significant for the large looped shape of

the 23rd August 2005 event (Flare 1). In order to study changes in time at a specific

energy range, the coronal sources of Flares 1, 2 and 3 were imaged over two minute

intervals where possible and four minute intervals where the count rates were lower,

during the rise and decay phases of the X-ray emission. The exact time bins used for

each flare are shown in Figures 3.5 and 3.6. The energy ranges of 10-12 keV, 12-15

keV and 15-20 keV were chosen for Flare 1 and Flare 2 and the energy ranges of 14-16
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Figure 3.2: The observed RHESSI visibility amplitudes (black stars) versus RMC

(the minor x-axis gives the position angle of the RMC/180◦) plus error bars (blue) at

one chosen time bin for Flare 1 (top), Flare 2 (bottom left) and Flare 3 (bottom right).

The fitted elliptical Gaussian model is shown by the red line. The difference between

the observed and fitted amplitudes is shown in the bottom plots by the green triangles.
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keV, 16-20 keV and 20-25 keV were chosen for Flare 3, allowing the spatial parameters

of the loops to be studied in both energy and time. The energy ranges from 10-20

keV or 14-25 keV were chosen since the X-ray loop appears clearly over these energy

ranges allowing Vis FwdFit to be used reliably. An example of how well the loop model

fits the observed RHESSI visibility amplitudes of each rotating modulation collimator

(RMC) is shown in Figure 3.2. Images for Flares 1, 2 and 3 are shown in Figure 3.1

respectively. Figure 3.1 shows that Flare 1 is a limb event while both Flares 2 and 3

are disk events. The main parameters of each flare are given in Table 3.1. Figure 3.1

plots background CLEAN images of the coronal source for each flare at one chosen time

interval and over-plots Vis FwdFit contours for selected time intervals, one correspond-

ing to the same time interval as the CLEAN image. Comparing the shape and size of

the Vis FwdFit contour with the CLEAN background image at the selected time inter-

val for each flare shows good agreement between both algorithms. Qualitatively, Vis

FwdFit also agrees well with the CLEAN and Pixon images at other times not shown

in Figure 3.1. For each algorithm, Flare 1 used detectors 3 to 8 due to its relative

large size while Flares 2 and 3 used detectors 3 to 7. It should be noted that sources

sizes observed with the CLEAN algorithm can be manually changed using a parameter

known as the clean beam width factor parameter. This parameter can be thought of

as representing the instrument point spread function (PSF) which is convolved with

the image reconstruction from CLEAN (see Chapter 1, Section 1.6.2 and Dennis &

Pernak (2009)). However since CLEAN and Pixon were only used to confirm the qual-

itative shape of the looped sources, the fact that the source sizes observed with CLEAN

can be manually changed was of no initial concern and a clean beam width factor=1.8

was chosen for each flare, since this was suggested by the observations of recent HXR

chromospheric sources (Kontar, Hannah, Jeffrey, & Battaglia 2010). However, an ad-

ditional study of source width was performed by plotting the intensity profiles of the

CLEAN, Pixon and Vis FwdFit images, along a line through the centre of the loop

top, midway and perpendicular to the line connecting the weak footpoints. This is

shown in Figure 3.3 (top left). A measure of loop width was then found by: (1) the

standard deviation (std) of the profile distribution and (2) the std of a Gaussian fit to
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the profile distribution, providing the loop width FWHM via FWHM= 2
√
2 ln 2 std.

Figure 3.3 shows good agreement between the widths at each time and those found

from Vis FwdFit. The standard deviation of the profile in particular shows for Flare

1, a clean beam width factor∼3.0 matches better with the results of Vis FwdFit than a

clean beam width factor∼1.8. From Figure 3.1, it should be noted that the results for

Flare 3 are probably less reliable than those of Flare 1 and Flare 2. From the position

of the footpoints in the CLEAN image, it appears as through the southern ‘loop leg’

is tucked underneath the observer’s line of sight. This means that it is harder for Vis

FwdFit with a loop to fit it with a correctly shaped loop and usually fits it with a

loop that is slightly too large or departs from a loop-shape. Hence, events analysed

for study with Vis FwdFit must be chosen with caution. As was discussed in Chapter

2, flares of this type only show relatively weak HXR emission from the chromosphere.

It was found that Flare 1 has one weak but clear southern footpoint in the 30-40 keV

range. This appears at ∼14:36:00, after the peak emission time from 10-20 keV and

14 minutes after the start of the observation start time, corresponding to a bump in

the 20-40 keV band shown in the lightcurve for this event. Flare 3 has two very weak

HXR footpoints in the 30-40 keV band during the entire observational period. The

lightcurve for this event shows that the 25-40 keV band follows the trend of the lower

energy bands, all roughly peaking at 23:50:00. Flare 2 is more complex than Flares 1

and 3 due to its multiple lightcurve peaks but it also has two weak footpoints in the

30-40 keV energy range. These appear at ∼00:05:00. Figure 3.5 shows the imaging

parameters for Flare 1 (column 1), 2 (column 2) and 3 (column 3): loop width FWHM

(row 2), loop length FWHM (row 3) and loop-top radial position (row 4) for each imag-

ing energy band. Above these plots, the lightcurve is plotted for each of the imaging

energy bands to allow comparison with changes in the spatial parameters. The dashed

lines drawn in each plot represent the time interval over which the peak X-ray emission

occurs for the three energy bands. For each flare, in general, peaks in the lightcurve

represent changes of width, length and source position parameters with time and this

will be discussed in Section 3.3
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Figure 3.3: Top left: Flare 1 CLEAN image at one time and energy range of 10-

20 keV. The positions of 30-40 keV footpoints are shown by green dots. Loop top

intensity profiles are found along the grey band, perpendicular to line midpoint joining

the footpoints. Top right: total intensity profile (grey) and a Gaussian fit to the profile

(light blue). Bottom left: comparison of the standard deviation of the intensity profile,

found from the second moment of the distribution, for CLEAN intensity profiles, with

either a clean sigma beam width= 1.8 (dark blue) or 3.0 (light blue) and the Vis FwdFit

intensity profile (green). The values given by the Vis FwdFit algorithm are also plotted

(pink). Bottom right: as bottom left, but for the Gaussian FWHM, as found from the

fits to the image profiles or from the Vis Fwd Fit algorithm.
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3.2.3 Spectroscopy of each event

For each of the imaging time intervals for Flares 1, 2 and 3, energy spectra were

created. The spectra of each flare at each time interval were fitted with a thermal

component (continuum only), a non-thermal component corresponding to thick target

bremsstrahlung and two Gaussian line functions for the Fe and Ni lines at 6.7 keV and

8.1 keV. The total fit function used is v th(continuum)+thick2+line+line. The thermal

fits provide information about coronal loop plasma: the emission measure, EM , and

the plasma temperature, T , that can be used with the imaging parameters to infer the

thermal plasma number density, pressure and energy density. Spectra for Flares 1, 2

and 3 are shown in Figure 3.4 at three selected time bins corresponding to a rise, peak

and decay stage of X-ray emission for each flare. The last two rows of Figure 3.5 plot

how the thermal fit parameters EM and T vary with time for each flare.

3.3 Spatial and spectral changes with time

3.3.1 Emission measure and plasma temperature

For all three events, the emission measure EM rises throughout the observation times,

either slowing or decreasing slightly during the last few minutes for each event. For

each event, the plasma temperature T peaks before the peak in X-ray emission and then

slowly decreases after this point, as noted by Antiochos & Sturrock (1978). The plasma

temperature decreases much slower than if it were decreasing by thermal conduction

only, suggesting prolonged energy release at the later decay stages of the flare.

3.3.2 Loop width

For all three flares, there is a general pattern for emitting loop width W changes with

time. Before a peak in X-ray emission, the source width W for each flare tends to de-

crease and after a peak in X-ray emission, W for each flare increases. It is also notable,

that the rates of both width expansion and contraction (width change in time dW/dt)
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Figure 3.4: Spectra for Flares 1 (top), 2 (middle) and 3 (bottom), at three chosen

imaging time bins (during the X-ray rise, peak and decay stages). Black = data - back-

ground, Olive = background, red = thermal fit, green = thick target bremsstrahlung

fit. The residuals are plotted below each plot.

are approximately the same, as can be seen in Figure 3.7.
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Flare 1- For all energies plotted,W decreases until the peak X-ray emission at∼14:30:00-

14:32:00 UT and then increases after this point. The largest change occurs for the

highest energy of 15-20 keV. This falls from 14.5�� to 11.5�� at 14:28:00-14:30:00 and

then increases until 14:40:00 where the width peaks at ∼ 20��, producing a final larger

loop width than seen at the beginning of the observational time.

Flare 2- For the energies of 10-12 keV and 12-15 keV, W decreases before the first

peak in X-ray emission at ∼00:03:00. After this point W increases before dropping at

00:12:00-00:13:00 where there is another X-ray peak in the lightcurve. After this peak,

W continues to grow again. Before 00:03:00, the width of the 10-12 keV source falls

from around ∼10�� to ∼ 5�� and after 00:13:00 rises from ∼6�� to ∼13��. The 15-20 keV

source also shows this pattern except there is a larger peak at 00:05:00 and then a more

pronounced decrease in W until 00:12:00-00:13:00 UT.

Flare 3- Again, the change in loop width W with time follows a similar pattern as

Flares 1 and 2. For all three energies ranges considered, W decreases from 23:42:00 to

the peak in X-ray emission at 23:50:00. W then increases after this time. The 14-16

keV and 16-20 keV sources ∼ fall from 7-8�� at 23:42:00 to ∼5�� at 23:50:00 and then

increase up to 8-9�� at 23:58:00. The 20-25 keV source falls from 11�� to 5��. Note the

missing data at the fourth and sixth time bins for the 20-25 keV energy range, as Vis

FwdFit was unable to fit successfully at these times, for this energy range.

3.3.3 Loop length

As with loop width, each flare shows general pattern for emitting loop length L changes

with time. Before a peak in X-ray emission, the source length for each flare tends to

decrease and after a peak in X-ray emission, the source length either increases slightly

or remains approximately constant within the errors.

Flare 1 - For all energies plotted, there is a rapid decrease in L until the peak X-
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ray emission at ∼14:30:00-14:32:00. After the peak, L remains approximately constant

(within the error). The smallest decrease in loop length before the X-ray peak emission

occurs for the 10-12 keV source which falls from 54�� to 38��. The decrease in L grows

with energy and the highest drop in L occurs for the highest energies plotted at 15-20

keV, which fall from 74�� to 38�� before the peak in X-ray emission.

Flare 2 - The pattern for length changes with time are similar to that of the width

changes. For the 10-12 keV source, L before the 00:03:00 peak in the lightcurve, falls

from ∼26�� to ∼20��, rises to ∼24�� at 00:11:00, falls to ∼20�� at 00:15:00 and then in-

creases to 21�� at 00:17:00. Due to the multiple peaks, L tends to increase after a peak

in the lightcurve.

Flare 3 - For all energies, L drops rapidly between 23:42:00 and 23:50:00 from the

range of 25�� to 30�� to ∼10�� for all energies plotted. Again as with Flare 1, after the

X-ray peak the length of the loop remains approximately steady until the final plotted

time of 23:58:00 for all energies.

3.3.4 Loop radial position

For all three flares, peaks in each X-ray lightcurve tend to denote times where the

trends in loop radial position R change.

Flare 1- Since this is a limb event, the radial position R can show whether the source is

moving away or towards the limb. Before the X-ray emission peak at 14:30:00-14:32:00,

the source moves towards the limb, falling a distance of ∼ 2�� at 10-12 keV, 12-15 keV

and 15-20 keV. Then after the peak, the source moves away from the limb. Plotting

the actual source positions, shows that the entire loop structure moves in a U-shape

during the time interval of 14:22:00-14:40:00. This was also seen for a number of flares

in Shen et al. (2008). From the results of Flare 1, the changes in R with time are

comparable to the width changes and smaller than the length changes. The largest
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change in position is only 2− 3�� while the width decreases by 3�� and increases by 6��.

The length shows the largest change with a decrease of ∼ 17�� or more before the peak

in X-ray emission.

Flare 2 - Overall, the radial positions R of the 10-12 keV, 12-15 keV and 15-20 keV

sources increase with time. At points of peak X-ray emission, that is, at ∼00:03:00 and

∼00:12:00, there are changes in the gradient. The slope steepens between ∼00:03:00

and 00:12:00. Since this is a disk event, it is difficult to say whether there is a change

in source altitude at these peaks (as for Flare 1). At 10-12 keV, between 23:58:00 and

00:20:00 the source radial direction changes by 9.5��. Therefore the overall change in

position is larger than the individual changes in loop width and loop length for Flare 2.

Flare 3 - For all energies, the radial distance R falls with increasing time. There

does not seem to be any significant difference in the radial distance trend after the

X-ray emission peak at 23:50:00, apart from the steadier decrease in radial distance

after this time. As with Flare 2, Flare 3 is a disk source and hence it is difficult to

determine if there is any altitude change. For all three energies, the radial distance

decreases by ∼8�� between 23:40:00 and 23:58:00.

3.4 Corpulence, volume and other inferred param-

eters

3.4.1 Loop corpulence

In the following sections of this chapter, the word ‘corpulence’ will be used to define

the shape of a loop. Here corpulence C will be defined as the ratio of the loop width

W to loop length L

C =
W

L
. (3.1)
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Figure 3.5: Left: 23-Aug-2005, middle: 14-Apr-2002 and right: 21-May-2004. row

1: lightcurves, row 2: width, row 3: length, row 4: radial position, row 5: emission

measure and row 6: plasma temperature, vs. time. Dashed lines: peak X-ray emission.
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This means that for a given loop length FWHM L, the loop corpulence C will increase

with increasing loop width FWHM W . Therefore a loop has a very high corpulence if

C > 1 and a low corpulence if C << 1. For a corpulence of 1, the length and width of

the loop are equal. Loop corpulence for each event is plotted in the second row of Figure

3.6 for Flares 1, 2 and 3. In general, the loop corpulence increases with time. This is

particularly noticeable for Flare 1, where the loop corpulence increase throughout the

observation time for each of the three energy bands. For example, in the 12-15 keV

band C increases from ∼ 0.2 to ∼ 0.45. For Flare 2, the changing corpulence with time

is more complex, as expected, and it follows the same trend of both the length and

width parameters that are very similar for Flare 2. However, overall C is larger at the

final observational time than at the start time. The corpulence for Flare 3 is similar to

that of Flare 1. Overall, it increases throughout the observational time and is larger

at the end time than at the start time, with only a small dip at the time of peak X-ray

emission. For the 12-15 keV band, C increases from ∼ 0.3 to ∼ 0.8.

3.4.2 Volume, number density, thermal pressure and energy

density

From the loop width FWHM W and loop length FWHM L, the general changes in

the emitting loop volume, V , can be inferred for each flare over time, at each energy

band. It is assumed the volume of the loop is given by V = πW 2L/4 that is, assum-

ing a cylindrical loop. The changes in emitting loop volume with time for Flares 1,

2 and 3 are plotted in Figure 3.6 (second row). In general, for all three events, the

source volume decreases before a peak in X-ray emission and increases after a peak in

X-ray emission. The changes in plasma number density, thermal pressure and ther-

mal energy density can all be calculated using combinations of loop volume, emission

measure and plasma temperature. The plasma number density, n, can be obtained via

n =
�

EM/V , the pressure, P , from P = nkBT , where kB is the Boltzmann constant

and finally the energy density, U = 3nkBT . The variation of these quantities with time

for Flares 1, 2 and 3 are shown in Figure 3.6 (third, fourth and fifth rows respectively).
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It should be noted that it is assumed that the entire loop volume is emitting, that is

the filling factor f = 1. This means that the calculated values for number density,

thermal pressure and energy density are a lower limit, and will increase if f ≤ 1.

Flare 1 - As expected from the width and length results, the loop volume falls be-

tween 14:22:00 and the peak in the X-ray lightcurve at ∼14:30:00 and then rises after

this time for all three energies. For all three energy bands, the decrease and increase

in loop volume occurs at roughly the same rate. The largest decrease is for the highest

15-20 keV band, falling from ∼ 4.7×1027 cm3 to ∼ 1.4×1027 cm3 at 14:29:00 and then

rising after this time to ∼ 4.7×1027 cm3 at the last observational time. The 10-12 keV

band falls from ∼ 2.4×1027 cm3 to ∼ 1.3×1027 cm3 at 14:31:00 and then rises back to

∼ 2.5×1027 cm3 at the final observational time. The number density, thermal pressure

and energy density for all three energy bands tend to follow the same pattern, rising to

a peak at some time after the peak X-ray emission and then slowly decreasing. For the

10-12 keV band, the number density rises from 1.5×1010 cm−3 at 14:22:00 to 6.5×1010

cm−3 at 14:35:00. It then falls to ∼ 5.6 × 1010 cm−3 at 14:38:00. The 12-15 keV and

15-20 keV bands follow similar patterns, peaking at ∼14:33:00. The pressure rises from

∼ 40 g/[cm s2] at 14:22:00 and reaches 170 g/[cm s2] at 14:31:00, the time where the

X-ray emission peaks. After this time the pressure remains approximately constant at

∼ 160− 170 g/[cm s2] until the last observation time where it falls to ∼ 140 g/[cm s2].

The 12-15 keV and 15-20 keV energy bands peak at ∼14:33:00. The thermal energy

density of the plasma is just the thermal plasma pressure multiplied by 3 and hence it

follows the same pattern as plasma pressure throughout the observed duration of the

flare. The energy density peaks at 500 ergs cm−3 in the 12-15 keV band at ∼14:33:00,

after the peak X-ray emission.

Flare 2 - For the 10-12 keV and 12-15 keV sources, the loop volume falls until the

first peak at 00:03:00 and then increases until it reaches 00:12:00, drops at 00:13:00

and then increases again after this time. As for Flare 1, the number density, thermal

pressure and energy density all follow the same pattern for each energy band, rising to
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a time at or just after the peak in X-ray emission and then decreasing after this point.

The highest number density, thermal pressure and energy density for each energy band

occurs at 00:12:00 to 00:14:00, just after the peak in X-rays at 00:11:00-00:13:00. The

number density peaks at around 18 × 1010 cm−3 in the 12-15 keV band, while the

thermal pressure and energy density peak at ∼ 500 g/[cm s2] and 1500 ergs cm−3 re-

spectively at this time and energy.

Flare 3 - The loop volume again falls before the peak in X-ray emission at 23:50:00

and then rises again after this time, for all three energies. For this flare again, the

number density, thermal pressure and energy density all peak just after the peak in

X-ray emission. At 23:50:00-23:52:00 the number density peaks at 23× 1010 cm−3, the

thermal pressure peaks at 750 g/[cm s2] and the energy density at ∼ 2300 ergs cm−3,

in the 16-20 keV band.

3.5 Summary and discussion

Using visibility forward fitting, a dedicated study was performed for the first time of

changing spatial and spectral properties of three coronal X-ray loops with time during

the flare. All X-ray loops exhibited similar changes in both their spatial and spectral

properties and hence the results indicate that a common process is occurring for all

three events; the emitting flaring loop volume is decreasing before the peak in X-rays

and increases after the peak in X-rays is reached. Before the peak X-ray emission, the

emitting lengths and widths of each coronal loop decreased with time, indicating that

the X-ray emitting region of the loop volume was contracting; there was a reduction

in loop width and length, as the X-ray emission from the region grew. After the X-ray

peak, the loop width increased at approximately the same rate as during the contraction

stage. For Flares 1 and 3, with one peak in their lightcurves, once the minimum X-ray

loop length was reached during the X-ray peak it remained approximately constant, at

least within the errors of the results. It was found that a property defined as the loop

corpulence (equal to the loop width divided by loop length), in general, increases with
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Figure 3.6: Left: 23-Aug-2005, middle: 14-Apr-2002 and right: 21-May-2004. row 1:

lightcurves, row 2: corpulence, row 3: volume, row 4: number density, row 5: thermal

pressure and row 6: thermal energy density, versus time.
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time during the observation time.

Similar to previous studies (Antiochos & Sturrock 1978; Siding & Spicer 1980; Gunkler

et al. 1984; McTiernan et al. 1999), spectroscopy for each event showed that the plasma

temperature initially grew but began to decrease before the peaks in X-ray emission

and emission measure. The emission measure for each flare generally grew with dips

observed during the final observational times of Flares 2 and 3. At the same time,

the number density, thermal pressure and energy density of the plasma also increased

as the X-ray emission grew. The plasma temperature decreased much slower than

by thermal conduction only, even during the X-ray decay phase, suggesting at later

stages additional energy release is required (e.g. Ko�lomański et al. 2011) to explain the

longer lasting X-ray loop emission. For the limb event (Flare 1), there is a decrease

in loop altitude before the peak in X-ray emission of roughly 2�� � 1.4 Mm, which is

comparable in magnitude to the decrease in loop width but overall, the largest changes

occurred for the X-ray loop volume, not the X-ray loop position. Decreases in loop

altitude before the peak in X-ray emission have been well noted before and are often

referred to as coronal implosion or loop contraction. Some of these observations were

briefly discussed in the introduction of this chapter (Section 3.1).

Sui et al. (2004) also studied the loop position changes of Flare 2. From their observa-

tions, they did conclude that the loop was indeed decreasing in altitude before the first

peak in the lightcurve at 00:04:00. They concluded that the loop decreased by ∼ 2��

over a 4 minute period, which is consistent with the radial distance results for Flare

2. However, no altitude decrease before the larger peak in X-ray emission at 00:12:00

was noted, where again there is a decrease in loop length and loop width.

It has been suggested that a decrease in loop altitude may be an indication of collaps-

ing magnetic trap acceleration/heating (Takakara & Kai 1966; Somov & Kosugi 1997;

Priest & Forbes 2002; Karlický & Kosugi 2004; Veronig et al. 2006; Grady et al. 2012).

Although this may be the case for other events, it is not believed that the collapsing

magnetic trap is the prime solution to these observations, firstly due to overall larger

loop volume changes over relatively small position changes. Veronig et al. (2006) ob-

served the coronal loop of a GOES X-class flare and found downward velocities as large
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Figure 3.7: For Flare 1 (23-Aug-2005), lightcurve (row 1), dW/dt (row 2), dL/dt

(row 3) and dR/dt = v (row 4). Both dW/dt and v can be fitted using a straight line

indicating constant accelerations aW and av and hence constant forces.
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Figure 3.8: SOHO EIT 195Å images for Flare 1 at the times of 14:21:12 and 14:34:51,

corresponding to the times of rise and peak in X-ray emission. RHESSI 10-12 keV X-

ray contours are over plotted in pink. Note the lack of bright EUV emission at the rise

stage of this flare.

as ∼ 14 km/s in 10-15 keV band and ∼ 29 km/s in the 15-20 keV band prior to the

peak in X-ray emission. This is not what is observed for these events. For Flare 1, there

is an average downward velocity in the 10-20 keV band of ∼ 4 km/s, which is generally

comparable to the decrease in loop width during this period. Average changes in loop

radial position for Flares 2 and 3 are also ∼ 4 km/s. More convincingly, in a collapsing

magnetic trap model, simple compressive heating during the contraction stage would

imply that NT ∝ 1/A (Maetzler et al. 1978; Emslie 1981), where N is the number of

particles in the region, T is the plasma temperature and A is the cross-sectional area of

the region, given by πW 2, where W is the loop width. Figure 3.9 plots logNT against

logA for each flare and shows this not to be the case. Straight lines fits to both the

contraction and expansion phases show that the gradients are either greater or less

than −1.

Observations by Kontar et al. (2011b) showed how the loop width of the 14/15th April
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2002 event (Flare 2) increased with energy during two times corresponding to the

first rise and first decay stages of the observations and suggested that the presence of

magnetic turbulence (the diffusion of field lines) was the cause of the energetic width

increases. Hence, the suggestion that magnetic turbulence in the region can account

for the energetic changes in loop width, may also be able to account for the extra

energy in the loop, since both Kontar et al. (2011b) and Bian et al. (2011) found the

energy density of magnetic fluctuations to be significant and could be comparable to

that of the flaring plasma and higher than the energy density of non-thermal particles.

Flares 1 and 3 also show similar length and width increases with energy at a single

time range, also suggesting the presence of magnetic turbulence.

Many observations (Li & Gan 2005; Liu et al. 2009; Joshi et al. 2009; Reznikova et al.

2010; Gosain 2012) of loop height and length changes have been explained in terms of a

reduction in magnetic pressure. Usually the reduction in magnetic pressure is referred

to as Taylor relaxation but this only refers to a special case where the resulting field is

linear force free (Taylor 1974). The reduction in magnetic pressure could also account

for the reduction of loop width or cross-sectional area, as shown in simulations by Janse

& Low (2007), and hence the observed trends of number density and pressure. Liu et al.

(2009) studied coronal implosion of one coronal source. They explained the reduction

in height of a coronal source before the peak in X-ray emission in terms of Taylor

relaxation. They also suggested that this type of event can only occur if the coronal

loop is already filled with hot, dense plasma before the onset of a new event, that is

from a previous event in that region. The fact there is no EUV emission during the rise

phase of Flare 1 seems to correlate with the observations and suggestions of Liu et al.

(2009). Figure 3.8 shows SOHO (Solar and Heliospheric Observatory) EIT (Extreme

Ultraviolet Imaging Telescope) 195Å images at the times of 14:21:12 and 14:34:51 for

Flare 1. X-ray emission contours at 10-12 keV for 14:22:00-14:26:00 and 14:34:00-

14:36:00 are also over plotted. From Figure 3.8, during the rise phase there is no bright

195Å EUV emission emanating from the loop, only 10-20 keV X-ray emission. After

the peak in X-ray emission, EUV emission can be observed from the loop. There is an

overall increase in the number of particles, N , within the loop region throughout the
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duration of all three events. Due to low coronal densities, chromospheric evaporation

probably accounts for this increasing N , initially driven by thermal conduction and

possibly at later times by electrons reaching the chromosphere, where there is weak

footpoint emission and EUV emission from the loop.

It should be noted that a study of the 23rd July 2002 flare by Caspi & Lin (2010)

calculated temporal volume changes using the CLEAN algorithm and assuming an

elliptical geometry. Overall this flare shows a general trend consistent with the results;

an overall decrease in volume before the peak in X-ray emission and an overall increase

in volume after the peak in X-ray emission. This flare also shows a peak in plasma

temperature before the peak in X-ray emission and a high number density (and hence

thermal pressure) after the X-ray emission first peaks.

3.5.1 Three temporal phases and suggested explanations for

the observations

For each flare, Figure 3.10 replots the plasma temperatures, X-ray emissions, emitting

loop widths and thermal pressures, but now at a single energy band of 10-20 keV (14-25

keV for Flare 3). From Figures 3.5 and 3.6 and now more clearly in Figure 3.10, it

can be observed collectively, that the observations of each flare display three distinct

phases and each of these phases will form the basis of the suggested explanation. Each

phase is represented by a shaded orange bar. During Phase 1, there is a peak in plasma

temperature and during Phase 2, a peak in X-ray emission. At Phase 2 the smallest

emitting loop width, length and hence volume occurs. Finally, during Phase 3, the

thermal pressure of the region peaks. For Flare 1 (left column), each phase is well

separated and can be clearly seen. The pattern can also be seen for Flares 2 (middle

column) and 3 (right column) but each phase is not as clearly defined as for Flare 1.

During Flare 3, each phase occurs over much shorter time intervals and therefore each

of the phases overlap slightly. During Flare 2, there are multiple peaks, which along

with the shorter timescales for each process, makes each individual phase harder to see.

However, the overall pattern is observed for all three flares. Figure 3.10 shows that
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Figure 3.9: Plots of logNT against log 1/A for Flares 1 (top), 2 (bottom left) and

3 (bottom right). The star represents the start time of each event while the triangle

represents the peaks in X-ray emission for each event. The red and blue dashed lines

represent straight line fits during the compressive (red) and expansive (blue) phases.

For Flare 2, only the first compressive and final expansion phase have been fitted. For

simple compressive heating, it is expected the gradient of each line would be γ = −1.

each phase can only be easily seen for slower events. The quicker the event, the harder

it is to distinguish between each of the three phases as each phase overlaps in time.

Many flares may exhibit a similar pattern but each phase may occur at timescales too

fast to be currently observed.

In order to understand the observations, it is crucial to understand the decreasing

X-ray widths before the X-ray peak. Length variations along the field can always be
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Figure 3.10: Observations of plasma temperature, X-ray emission, loop width and

thermal pressure are replotted together for Flares 1 (left), 2 (middle) and 3 (right)

at one energy band of 10-20 keV (14-25 keV for Flare 3). The orange bars represent

three phases: 1. a peak in plasma temperature, 2. a peak in X-ray emission, generally

coinciding with the smallest loop width and 3. a peak in thermal pressure.

explained in terms of changing number density, but in order to explain the width vari-

ations, where electrons are tied to the magnetic field, the most plausible explanation

is the movement or the diffusion of magnetic field lines. The energetic loop width

increases at a given time for each flare has already been noted, suggesting the pres-

ence of turbulence in the region, but overall in time the width at a given energy band

shrinks until the X-ray peak is reached, implying the presence of both turbulence and
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Figure 3.11: Simple cartoon showing the suggested coronal loop evolution with time.

At time 1, the coronal region (pink) has a number density n (red dots) and a tempera-

ture T . At time 2, number density of the region increases due to the cross-sectional area

of the loop decreasing and the expansion of material from lower atmospheric layers.

At time 3, the loop expands from thermal pressure due to chromospheric evaporation.

the shrinking of the cross-sectional area of the field at this stage of the flare. Therefore,

it is suggested the plasma within the emitting X-ray loop region is tied to the magnetic

field lines and hence the contraction of the emitting loop cross-section or width during

the rise phase is ultimately due to the contraction of the cross-sectional area of field

lines that thread the region or possibly the expansion of field lines above the region. It

is also sensible to assume that the loop region in X-rays actually consists of multiple

coronal loops that cannot be resolved in X-rays using RHESSI. Although the region of

the loop emitting X-rays can only be observed, it is assumed the entire loop region is

contracting since the plasma is tied to the field lines. Hence from these observations,

the reason for this cross-sectional width shrinking is unknown, but it can be speculated

for further study that it may be due to a reduction in magnetic pressure within the

X-ray loop region, as often suggested to describe height decreases (coronal implosion

or loop contraction) discussed earlier (Li & Gan 2005; Liu et al. 2009; Joshi et al. 2009;

Reznikova et al. 2010; Gosain 2012). The magnetic pressure decreases as the magnetic

field relaxes from a non-potential state. Although it is reasonable to assume that dur-

ing a solar eruptive event such as a flare, the field will reside in a non-potential state,

X-ray observations of these events possibly provide evidence for non-potentiality, again
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through the inference of magnetic turbulence and hence a non-parallel field component

within the loop region. The non-potential state and decreasing magnetic pressure could

be due to reconnection above the region or maybe even along the loop itself (Vlahos

et al. 2004; Gordovskyy & Browning 2011, 2012; Gordovskyy et al. 2013). One such

model is caused by a kink instability as shown in recent simulations by Gordovskyy &

Browning (2011, 2012); Gordovskyy et al. (2013). In this model, the energy of twisted

loops is released by reconnection inside the loop and transferred to plasma heating and

particle accelerations.

Phase 1: During phase 1, the process causing the contraction of loop width/cross-

section is also probably responsible for the comparable decrease in loop altitude for

Flare 1, and at least the change in loop position observed for Flares 2 and 3 sitting on

the solar disk. Plots of dW/dt (width contraction/expansion) and dR/dt = v (centroid

velocity) for Flare 1 plotted in Figure 3.7 show that each parameter can be fitted us-

ing a straight line during both the contraction and expansion phases. dL/dt (length

contraction/expansion) is also plotted in Figure 3.7 but its trend cannot be described

by a straight line fit, unlike dW/dt and dR/dt. The increasing temperature of the

region means that energy will be thermally conducted towards the lower levels of the

solar atmosphere causing gentle chromospheric evaporation of the denser coronal and

chromospheric layers below. The observations show the plasma temperature peaking

relatively early before the peak in X-ray emission and then slowly decreasing; slower

than by thermal conduction, implying that energy is still being supplied to the loop

plasma. This is most likely via the conversion of magnetic energy. Chromospheric

evaporation drives plasma into the region producing the increasing number density

and hence thermal pressure, along with the shrinking width at this phase. The in-

creasing number density is responsible for the rapid non-linear decreasing X-ray loop

length, since electrons accelerated within the region will travel shorter distances before

interacting.

Phase 2: During Phase 2, after the peak in plasma temperature, the loop width stops
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shrinking. The number density and thermal pressure within the loop are still increasing

due to chromospheric evaporation and the length of the emitting region also reaches

its lowest point. The loop width may stop shrinking because the process causing the

shrinking ceases or it may be due to the balancing of forces within the region. For

example, if the reduction of loop width is due to the reduction of magnetic pressure in

the loop then at this phase, the growing thermal pressure may finally be high enough

to balance the reduction in B pressure.

Phase 3: During the final phase, the thermal pressure continues to rise within the

loop due to the increasing number density from chromospheric evaporation. It is be-

lieved the growing thermal pressure in the region is now responsible for the expanding

loop width. This expansion, in turn, eventually halts the increasing number density

and thermal pressure at a time after the peak in X-ray emission. After Phase 3, the

loop width continues to increase and slow decreases in both number density and ther-

mal pressure are observed. The X-ray emission continues to decrease during and after

Phase 3 and the emitting loop length during this period remains approximately con-

stant, equal to the minimum loop length in Phase 2, even with a decreasing number

density. It is sensible to assume that the acceleration mechanism in the loop is slow-

ing during this time. However, Flare 2 is an exception to this trend with multiple

events/X-ray peaks in the lightcurve.

This observational study shows the usefulness of measuring changes in the spatial

properties of coronal X-ray sources and combining such observations with the parame-

ters deduced from spectral analysis, in order to deduce how the properties of the flaring

corona change during the flare. It is hoped that future observations of such flares will

have complementary EUV data from other solar missions such as SDO/AIA.



Chapter 4

Solar flare X-ray albedo and the

positions and sizes of hard X-ray

(HXR) footpoints

This work can be found in the publication Kontar & Jeffrey (2010) and also Jeffrey &

Kontar (2011).

4.1 Introduction

Chapters 4 and 5 examine solar flare X-ray albedo; an effect that can change the

observed properties of HXR sources and hence the interpretation of the observations

from instruments such as RHESSI. A brief discussion of this was given in Chapter

1, Section 1.5.5. Here in Chapter 4, it is discussed quantitatively for the first time

how an albedo component will change the positions and sizes of observed HXR sources

and hence the interpretation of the results. The solar atmosphere above HXR sources

is optically thin and the X-rays emitted as bremsstrahlung, for example, are directly

related to the emitting target electrons. However, depending on the anisotropy of
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the HXR source and hence the anisotropy of the target electron distribution in the

chromosphere, a certain proportion of the X-rays are emitted downwards, towards

the denser layers of the solar atmosphere, namely the photosphere. Here they can

interact with free or bound electrons and can be back-scattered towards the observer.

This phenomenon was first discussed by Tomblin (1972) and Santangelo et al. (1973)

and the X-rays back-scattered and emerging from the dense photosphere, “the albedo

patch”, are known as the albedo X-rays. The albedo X-rays are viewed alongside those

X-rays directly emitted from the HXR source, which are often called the primary X-

rays; together as a single observed HXR footpoint. An isotropic HXR source produces

the minimum albedo and even its flux can account for up to 40% of the detected

flux in the peak albedo energy range between 20 and 50 keV (Bai & Ramaty 1978;

Zhang & Huang 2004; Kontar et al. 2006; Kašparová et al. 2007). Therefore, all X-ray

sources at the solar disk should be viewed as a combination of both the primary and

backscattered albedo fluxes. As discussed in Chapter 1, Section 1.5.5, accounting for

the albedo effect is important for all X-ray solar observations, which can only view disk

sources as a combination of the direct X-ray flux and the backscattered X-ray flux. The

backscattered component often taints the primary HXR source properties, changing the

observed angular, energy, spatial and polarization distributions. At the same time, the

usefulness of albedo as diagnostic of electron directivity will be discussed in Chapter 5.

Past studies concentrated on the observations of the era; looking at changes in X-ray

spectra or the total integrated polarization of the HXR source. Albedo changes the

shape of the spatially integrated X-ray spectrum, which is flattened at lower energies

up to around 20-30 keV and at higher energies above around 70 keV, the spectrum is

steeper than expected from a primary X-ray spectrum alone. Albedo can even produce

artificial spectral features in observed spectra (Kontar et al. 2008a). Kontar et al.

(2006) developed and implemented an albedo correction for spectral X-ray RHESSI

analysis using a Green’s function approximation by Magdziarz & Zdziarski (1995).

This was discussed in Chapter 1. For a more in-depth introduction on the topic of X-

ray albedo, an excellent review can be found in Kontar et al. (2011a). Due to the height

of a HXR source in the chromosphere (∼ 2��), the reflected albedo X-rays come from a
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rather large area in the photosphere, the albedo patch. The surface brightness of the

albedo patch at the solar surface is therefore rather low (Bai & Ramaty 1978) since the

flux is spread over this large area. This fact explains the difficulty in imaging the albedo

patch (Schmahl & Hurford 2002). However, imaging algorithms such as VisFwdFit,

discussed in Chapter 1, have allowed the positions and sizes of HXR footpoints to be

found (Kontar et al. (2008b), Kontar, Hannah, Jeffrey, & Battaglia (2010)), using the

spatially integrated moments of the X-ray distribution. In Kontar, Hannah, Jeffrey, &

Battaglia (2010), changes in radial height and vertical and horizontal spatial extents

with energy, of a HXR footpoint situated at the solar limb, were found. This work is

discussed in Chapter 1, Section 1.5.3, demonstrating how the careful use of forward

fitting algorithms and the spatially integrated moments of the X-ray distribution can be

used to infer the positions, sizes and even shapes of HXR footpoints. It must be ensured

that the albedo component, which should be present as part of every HXR footpoint

source, is properly accounted for, before the conditions within the chromosphere or

the properties of the radiating electron distribution are deduced from these spatial

changes. Even though the albedo patch is difficult to image directly, the use of imaging

algorithms such as Vis FwdFit may actually help to ‘see’ the presence of an albedo

component. Since the moments of the distribution are integrated over the full area of

the source, algorithms such as Vis FwdFit can better account for the low intensity and

diffusiveness of the albedo component, than other imaging methods currently available.

4.2 The modelling of X-ray transport in the pho-

tosphere

In order to study the backscattered X-ray flux and albedo effect, Monte Carlo (MC)

simulations are used to model photon transport in the photosphere, starting with a

hundred million photons per run from a chosen HXR source created in the chromo-

sphere. Each of the main steps involved in the MC photon transport code are described

in the following sections and can be seen graphically as a flow chart in Figure 4.1.
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4.2.1 The modelling of a hard X-ray footpoint source

An unpolarized HXR source is modelled in space as a two-dimensional circular Gaussian

distribution in the plane parallel to the solar surface

I(x, y) ∝ exp

�
− x2

2varx
− y2

2vary

�
, (4.1)

with width (standard deviation) =
√
varx =

√
vary, at a chosen height h = 1 Mm (∼

1��.4) in the chromosphere, above a layer defined as the photosphere (see Section 4.2.2).

It is assumed that the HXR source has zero extent in z, the direction perpendicular to

the solar surface. Although, the results of Kontar, Hannah, Jeffrey, & Battaglia (2010)

showed that HXR sources at lower energies sit at a higher point in the chromosphere

and have a greater extent in z, modelling z with a finite extent would unnecessarily

complicate the initial results and hence is neglected for clarity. For the HXR energy

range, a source at 1 Mm above the photosphere is chosen to match with recent X-ray

observations (Aschwanden et al. 2002; Kontar et al. 2008b; Prato et al. 2009; Saint-

Hilaire et al. 2010; Mrozek & Kowalczuk 2010; Kontar et al. 2010; Battaglia & Kontar

2011a). The X-ray energy spectrum in the chromosphere is simply input as a power

law,

I(�) ∼ �−γ (4.2)

with a spectral index of γ, for X-ray energies � between 3 keV and 300 keV, an energy

range typical of HXR footpoints observed by RHESSI. Typical HXR footpoint spectral

index values are also used: γ = 2, 3, 4 (e.g., McTiernan & Petrosian 1991; Kašparová

et al. 2007)

4.2.2 X-ray transport and interaction in the photosphere

In this model, it is assumed that X-rays move freely without interaction until they

reach the photosphere and hence their positions on the solar surface are simply calcu-

lated from their initial (x, y) positions and emission angles (θ, φ). The photosphere is

defined as a layer with a hydrogen number density of 1.16× 1017 cm−3 (Vernazza et al.

1981). An X-ray interaction with the photospheric medium can either be by Compton
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Figure 4.1: A flow chart showing the main steps involved in the Monte Carlo photon

transport simulations in the photosphere and the creation of the HXR distribution in

the chromosphere.

scattering or by photoelectric absorption. For X-rays with energies less than ∼ 10 keV,

photoelectric absorption is the more probable process while Compton scattering dom-

inates above ∼ 10 keV. This can be seen in Figure 4.3. Within the photosphere, each

X-ray photon moves a step-size ss before an interaction and this is calculated using

ss = −l ln ζstep (see Appendix A for more information), where l is the photon mean

free path and ζstep ∈ [0, 1] is drawn from a uniform random distribution. The photon

mean free path is calculated by l = 1/nHσtotal, where σtotal = σc + σa, the addition

of the Compton scattering cross section σc and photoelectric absorption cross section

σa. For a number density of 1.16× 1017 cm−3, the photon mean free path, l, is of the

order 100 km. Hence, the earlier assumption that photons travel freely until they reach

the photosphere is valid since even a high chromospheric density of ∼ 1 × 1015 cm−3

would give a mean free path l ∼ 1000 km = 1 Mm, the same size as the chosen source

height. When a photon is absorbed, it is simply removed from the simulations. For

each photon, one of the two processes is chosen by calculating the ratio of σc/σtotal.
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Another random number ζpick is then sampled from a uniform distribution between 0

and 1. If the ratio is greater than ζpick then the photon is Compton scattered and if

the ratio is less than ζpick, then the photon is absorbed. These simulations also differ

from previous work as the curvature of the Sun is included and a photon exits the pho-

tosphere when it satisfies the condition z > z� =
�
R2� − x2 − y2 − R�, where R�

is the radius of the Sun which is taken to be 6.96× 1010 cm ∼ 960��. The extent of the

albedo patch is limited by properly modelling the curvature of the Sun. The photons

are allowed to scatter multiple times until they exit the photosphere or are removed by

absorption. Photons are also removed when their energy falls below 3 keV since X-rays

below this energy cannot be observed by RHESSI and a photon cannot gain energy

from an interaction with an electron in photospheric conditions. Most photons will

leave the photosphere during their first scatter, with subsequent scatterings producing

less and less photons. This is shown in terms of Green’s functions in Kontar et al.

(2006). Photons that exit the photosphere with cos θ > 0 are collected into selected

angular or energy bins corresponding to HXR sources sitting at any chosen heliocentric

angle on/above the solar disk.

4.2.3 Photoelectric absorption

For photons with energies below∼10 keV, photoelectric absorption is the most probable

photon interaction in the photosphere. The process of absorption is heavily dependent

upon the abundance of chemical elements within the photosphere. Absorption was

therefore modelled using the latest known solar photospheric abundances taken from

Asplund et al. (2009). Absorption cross section codes for the most important elements

of H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Cl, Ar, Ca, Cr, Fe and Ni were adapted

from Balucinska-Church & McCammon (1992). For energies higher than 10 keV, the

absorption cross section was approximated by σa(�0) ∝ �−3
0 . A comparison of the

Compton scattering and absorption cross sections is shown in Figure 4.3 (with σa and

σc multiplied by 1024�3 (� in keV) for comparison with Morrison & McCammon (1983)).

Any differences between Figure 4.3 and Morrison & McCammon (1983) are due to the
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Arrays yθ0 and y� were created by numerically integrating I(�, θ0) from 0 ≤ θ0 ≤ π (equation 7) and
integrating I(�, θ0) from 3 ≤ � ≤ 300 (equation 8) respectively. Since every value of yθ0 from 0 to 1
corresponds to θ0 from 0 to π for every value of � and also every value of y� corresponds to � from
3 keV to 300 keV for each value of θ0, this meant that the method of interpolation could be used to
produce an array of � values and an array of θ0 values ready for input into the Monte Carlo simulation.
Interpolation is a method of accurately estimating values from other already known tabulated values,
in this situation the estimation of � and θ0 values from the known tabulated relationship between yθ0
and θ0 and y� and � from the input of y values between 0 and 1. The � array was input directly into the
simulation as the photon energy. The polar angle input array was simply calculated from θ� = π− θ0.

4.2 Initial input conditions

Figure 7: The angular dependence of F (E, µ) for
varying∆µ, plotted against β for a 30 keV electron.

The initial input primary source was located at a
height h above the solar photosphere. This height
was taken to be 1000 km which is the typical
height of a hard X-ray source in the solar chro-
mosphere. The spatial extent of the source was
modelled as a two dimensional Gaussian source
of standard deviation d. Presently 100 million
photons are input into the code in one run. All
the input parameters such as height h, spatial
extent d and the number of input photons can
all be varied. The spherical nature of the prob-
lem is easily described using spherical polar co-
ordinates. The input θ� distribution is the po-
lar angle of each photon from the z-axis, which
is the direction radial to the solar surface. Any photons with 0 ≤ θ� < π/2 were emitted up-
wards into interstellar space without any interaction with the atmospheric plasma, while photons
with π/2 ≤ θ� ≤ π were emitted downwards into the deeper layers of the solar chromosphere to-
wards the photosphere. Initial modelling just produced a set of θ� values between 0 and π from an
isotropic distribution while later modelling used θ� values created directly from the electron distri-
bution (see section 4.1.3). Each photon also requires a azimuthal φ� angle. The φ� value for each
photon was drawn from a uniform random distribution between 0 and 2π. From θ� and φ�, the
directional cosines u,v and w were calculated from u = sin θ� cosφ�, v = sin θ� sinφ� and w = cos θ�.

4.3 Photon movement in the photosphere

Figure 8: Primary and albedo emission from a hard
X-ray source at a height h above the photosphere.

Once the photon distribution had been input
into the program, the photons travelled freely
until they reached the solar surface (photo-
sphere) which was defined by the curve z⊙ =�

R2
⊙ − x2 − y2−R⊙, where R⊙ = 6.96×1010 cm

is the solar radius. A certain fraction of these
photons with θ� near θ� → 90◦ will never touch
this curve and hence were removed from the pro-
gram. The photons that reached z⊙ were input
into a continuous WHILE loop. The program
then executed until all photons were accounted
for, either by removal through photo-electric ab-

12

Figure 4.2: Cartoon showing how X-rays emitted in the chromosphere via the

Coulomb interaction can travel to the photosphere, Compton scatter, head out into

interplanetary space and then be detected alongside X-rays directly emitted from the

chromosphere. The polar coordinates of the emitted X-rays θ� and φ� are also shown.

newer element abundances (Asplund et al. 2009) and updated absorption cross section

codes (in particular Helium) being used in these simulations.

4.2.4 Compton scattering

Similar to previous MC simulations (Bai & Ramaty 1978; Magdziarz & Zdziarski 1995),

Compton scattering is modelled using the Klein-Nishina (Klein & Nishina 1929) dif-

ferential scattering cross section for unpolarized X-ray radiation. This is valid at all
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Figure 4.3: Absorption σa (black solid) and Compton σc (red dashed) cross sections

plotted at low energies below 10 keV and multiplied by 1024�3 (� in keV) for clarity.

The absorption cross section is calculated using photospheric element abundances by

Asplund et al. (2009).

energies of interest and is given by,

dσc(θS, �)

dΩ
=

1

2
r20

��
�

�0

�3

+
�0
�
−

�
�

�0

�2

sin2 θS

�
. (4.3)

where �0 is the initial photon energy, � is the new photon energy, θS is the angle

between the initial and after scattering photon directions and r0 = 2.82× 10−13 cm is

the classical electron radius. In MC simulations, when a Compton scattering occurs,

the properties of the outgoing photon: energy � and polar scattering angle θS, need

to be updated. Since MC simulations operate by drawing numbers randomly from a

given distribution, this means that θS can be easily found by matching each value of

θS ∈ [0◦, 180◦] with a random number ζθ ∈ [0, 1] drawn from a uniform distribution,

for every value of � using,

ζθ =
2π

σc

� θS=π

0

dσc(θS, �)

dΩ
sin θS dθS. (4.4)
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New values of θS are simply drawn at each scattering using the photon energy before a

scattering and a random, uniform number ζθ between 0 and 1. Once the new scattering

angles θS are obtained then the new photon energy � can be easily found using,

� =
�0

1 + �0
mc2 (1− cos θS)

. (4.5)

In the simulations, the Klein-Nishina cross section is multiplied by Zphoto = 1.18 to

take account of elements higher than hydrogen that are present within the photosphere.

Zphoto indicates the average atomic number and the number of electrons per hydrogen

atom in the photosphere, and is given by

Zphoto =

�
Z
Z10AZ

10AH

(4.6)

where AZ is the log10 abundance of an element with atomic number Z relative to

hydrogen while AH = 12 is the log10 abundance of hydrogen (Asplund et al. 2009).

In this case, where the X-ray distribution is completely isotropic and unpolarized, the

azimuthal scattering angle in the plane perpendicular to the incoming direction of the

photon during a scattering φS can just be drawn randomly from a uniform distribution

between 0 and 2π. This is not the case for a polarized X-ray distribution, which will

be described in Chapter 5. In the photosphere, it is very unlikely that the opposite

case where the photon gains energy during an interaction with an electron, named

inverse Compton scattering, will occur. For this to occur, a photon must interact with

an electron with a kinetic energy larger than that of the photon energy, and this is

unlikely in photospheric conditions.

4.3 The position and sizes of backscattered and ob-

served hard X-ray sources

The escaping photons are accumulated to create the brightness distribution I(x, y)

over a given energy and solid angle. The total primary or reflected flux is then just

an integral over the corresponding area
�
I(x, y)dxdy which is the zeroth moment of
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the brightness distribution. In these simulations, the source positions and sizes of each

component (primary and albedo) and the total source (primary plus albedo) can be

found using the first and second moments of the distribution; the first and second

normalised moments which are the mean and variance of the distribution respectively.

4.3.1 The moments of the hard X-ray distribution

Using solar disk centred coordinates, the centroid position (x̄, ȳ) of both the albedo

source alone and total observed source can be found by the mean,

x̄ =

�∞
0 xI(x, y)dxdy�∞
0 I(x, y)dxdy

, ȳ =

�∞
0 yI(x, y)dxdy�∞
0 I(x, y)dxdy

, (4.7)

and the spatial extent in each direction (x, y) by the variance (varx, vary)

varx =

�∞
0 (x− x̄)2I(x, y)dxdy�∞

0 I(x, y)dxdy
, vary =

�∞
0 (y − ȳ)2I(x, y)dxdy�∞

0 I(x, y)dxdy
. (4.8)

Although the primary distribution is initially Gaussian, the albedo (and hence to-

tal observed) distribution will have a complex shape that is no longer Gaussian. To

quantify the sizes we use ‘Gaussian’ Full Width Half Maximum (FWHM) defined as

FWHMx,y = 2
�
2 ln 2varx,y, using the square of the variance and not the actual FWHM

of the complex distribution. This allows a simple comparison with RHESSI measure-

ments (Kontar et al. 2008b; Dennis & Pernak 2009; Prato et al. 2009). All FWHM

values in this chapter and also Chapter 5 are measured in this way.

4.3.2 Resulting brightness distributions

Figure 4.4 shows the primary and escaping photon brightness distributions for a com-

pletely isotropic HXR footpoint located at the disk centre. Similar to previous re-

sults (Bai & Ramaty 1978), for a chosen compact primary source of size d = 1.5h

(FWHMx,y ∼ 4��.9), the back-scattered albedo photons are reflected from an area much

larger than the primary source. The reflected photons change the spatial distribution

of the observed photons and produce a halo around the primary source.
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The scattered X-ray flux depends on the cosine of the heliocentric angle of the source

(µ = cos(θ)) or equivalently on the position of the source at the solar disk, µ =
�

1− (x2 + y2)/R2�. A circular X-ray source located above the centre of the disk will

produce a circular albedo patch, as can be seen in the first plot of Figure 4.4. Naturally,

the location of the HXR source and albedo patch will coincide at the disk centre, so

albedo will not change the source position. However, the albedo will make the source

larger than the input primary size. The albedo contribution becomes asymmetric if

the source is located away from the disk centre at a given heliocentric angle θ (Figure

4.4 b-d). A diagram depicting this scenario for different locations on the solar disk is

shown in Figure 4.5.

Due to the spherical symmetry of the Sun, there are two distinct directions: radial

along the line connecting the centre of the Sun and the X-ray source r, and perpen-

dicular to the radial r⊥. This is shown in Figure 4.5. There is no change in centroid

position in the r⊥ direction for a spherically symmetric primary source. Qualitatively,

in the r direction, the albedo component causes a centroid shift towards the disk centre

that rises from 0 at µ = 1 (solar centre), peaks at a position less than µ = 1 (this will

be discussed further in the following sections) and reduces to 0 at µ = 0 (solar limb).

This pattern emerges since the centroid position of the albedo component is located at

a position h sin θ disk-ward of the primary centroid position, where θ is the heliocentric

angle of the source (see Figure 4.5). However, the intensity of the albedo component

falls as we move closer to the limb and hence the position of the total source peaks at

a heliocentric angle where the combined contribution of h sin θ and the albedo inten-

sity is greatest. Figure 4.4 also shows how the source size varies in the r⊥ direction,

with the FWHM of the total source generally decreasing at lower µ, since the albedo

intensity falls as µ → 0. In the radial direction, the FWHM of the total and primary

sources decrease close to linear due to a simple projection effect. To study the albedo

component only, source sizes are only examined in the r⊥ direction and the source

positions are examined in the radial direction r. Similar to the spatially integrated

albedo (Kontar et al. 2006), the shift in centroid position and the growth of the source

size are also energy and µ dependent. In the following section, the position and source
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Figure 4.5: Diagram showing a HXR primary source (orange) at three different

heliocentric angles θ above the solar disk and the corresponding albedo patch (blue)

at a shifted location of h sin θ, where θ = 0◦ (µ = 1) is located at the solar centre and

θ = 90◦ (µ = 0) is located at the edge of the Sun, the solar limb. The radial r and

perpendicular to radial r⊥ directions are also shown.

size changes are studied for various: (a) spectral index of the HXR primary source, (b)

HXR primary source size, and (c) X-ray directivity (the ratio of downward to upward

emitted photons), separately. All the results are shown in Figure 4.6.
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4.3.3 Changes due to hard X-ray spectral index

In order to study changes due to spectral index only, a completely isotropic HXR

primary source is input into the simulation. An isotropic source should produce the

minimum albedo contribution and hence the smallest changes in source size and posi-

tion. Using an isotropic HXR primary source with a FWHM∼ 4��.9 and three spectral

indices of γ = 2, 3, 4, Figure 4.6 a-d shows that the albedo contribution from a smaller

spectral index γ produces the largest shift in position and a larger total source size.

The lowest modelled spectral index of γ = 2 produces the greatest shift of 0��.5 at

µ = 0.5− 0.6 and ∼ 30 keV. This spectral index also produces the largest source size,

compared with the other spectral indices of γ = 3, 4 modelled, and has a resulting

FWHM∼ 9��.5 at µ = 1.

4.3.4 Changes due to hard X-ray primary source size

For the same reasons in the previous section, an isotropic source is input into the

simulations to study changes due to an input primary HXR source size. For an isotropic

HXR primary source with fixed spectral index of γ = 3, three primary source sizes are

tested: FWHM∼ 0�� (point), FWHM∼ 4��.9 and FWHM∼ 14��.6. As expected, it

is found all primary source sizes produce the same shift in centroid position. The

maximum shift in position occurs at µ = 0.5 − 0.6 and ∼ 30 keV for all sources

modelled. These results can be seen in Figure 4.6 e-h. Although the FWHM of the

total source grows with increasing primary size, it is observed that the relative size of

the total to the primary source is smaller for a larger primary source. This indicates

that a larger primary source should have a smaller relative size increase due to albedo

since the brightness distribution of a large primary source is less influenced by the

reflected photons but nevertheless the source will look larger than the true primary

size of a source between 10 − 100 keV at all heliocentric angles. More importantly,

even a primary point source will be seen as a source of finite size and an initial point

source produces a total source with a FWHM peaking around 7�� (Figure 4.6 f, h).

There is even an increase of ∼ 5�� at the solar limb between 20 − 50 keV where the



4.3: The position and sizes of backscattered and observed hard X-ray sources 125

albedo contribution is smallest.

4.3.5 Changes due to hard X-ray anisotropy

Using a HXR primary source with a FWHM∼ 4��.9 and γ = 3, three photon anisotropies

are modelled using the ratio of downward to upward flux of: (1) Idown/Iup = 1

(isotropic), (2) Idown/Iup = 2 and (3) Idown/Iup = 5. The shift in centroid position

is larger for a higher initial downward anisotropy for all µ and energies, shown in Fig-

ure 4.6 i, k. All shifts follow the general trend and tend towards zero at the centre

(µ = 1) and the limb (µ = 0). A directivity of 5 produces a peak difference of 0��.9 and

even an isotropic source produces a peak difference of 0��.4. The shift in source position

peaks near µ = 0.4−0.6 and ∼30 keV for a downward anisotropy of 2 and an isotropic

source, but the shift peaks at a lower µ = 0.4 − 0.5 for a downward directivity of 5.

The stronger downward beaming of the primary source also leads to larger apparent

source sizes for all µ and energies (Figure 4.6 j, l). It should be observed that the

total FWHM produced for a directivity of 5 peaks at µ = 0.15 (Figure 4.6 2p) giving

an apparent FWHM∼ 13��. Since the fraction of reflected photons reduces with µ the

FWHM in perpendicular direction can be expected to slowly decrease from disk centre

to limb, but the FWHM actually increases, peaks at µ ∼ 0.15 and only then starts to

decrease. This effect is due to the angular dependence of the Compton cross section.

This is because the azimuthal-independent (that is, assuming that the scattering is

isotropic in azimuthal angle) Compton cross section is anisotropic and peaks at angles

less than 90◦ (see Figure 1.6 in Chapter 1), which allows a larger number of photons

to scatter into an observer direction for flares close to the limb. It is this anisotropy

in the scattering of the photons that causes the FWHM to peak at an angle smaller

than µ = 1.0. The observation of this effect is particularly clear in the case of high

downward directivity (Figure 4.6 l). It should be noted that if the anisotropy of the

photon distribution is created from a given radiating electron distribution, then as the

directivity of the electron distribution increases,
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a higher proportion of the X-ray distribution will be concentrated over a narrower solid

angle of emission, instead of a higher proportion of X-rays emitted downward at all

angles, as was assumed in this simple simulation. The photon directivity is properly

modelled from a chosen electron distribution in Chapter 5.

4.4 Discussion and conclusions

The results of the simulations show that albedo can substantially affect the precise

position and source size measurements of X-ray sources. Therefore, the effect of albedo

should always be considered when the sizes or positions of X-ray sources are analysed.

The only exception is occulted flares or possibly limb flares. However, this assumption

should be used with caution particularly if the anisotropy of the source is high. The

albedo displacement of source position is radially directed towards the disk centre and

depends on the anisotropy of X-ray radiation, the X-ray source size and the spectral

index of the primary source. Similar to total reflected flux, the displacement of HXR

source position is energy dependent. The largest displacement can be observed in the

range between 30− 50 keV at µ ∼ 0.5 (heliocentric angle ∼ 60◦). The shift in centroid

position in this energy range is 0��.1 − 0��.5 for an isotropic (minimum albedo) source

1��.4 above the photosphere and this can be up to ∼ 0��.9 for a downward beaming with

factor of 5. Because of the albedo, X-ray source sizes will be energy dependent, larger

in the perpendicular to radial direction, and elliptical even for a spherically symmetric

primary source. In the perpendicular to radial direction, the largest growth in source

size occurs for sources close to the solar disk centre, in the energy range between

30 − 50 keV, where albedo is the strongest. Thus, an isotropic primary source with

FWHM∼ 4��.9 at 1��.4 above the photosphere will have an apparent FWHM size of ∼ 9��

in the energy range 20− 50 keV for sources in a wide range of heliocentric angles from

0◦ to 80◦. The simulations demonstrate that X-ray sources will have a minimum size.

An isotropic point source at 1 Mm above the photosphere will be measured by RHESSI

as a source with a FWHM size of ∼ 7�� across. This result can explain larger X-ray

footpoint sizes than EUV or optical ones e.g. Kašparová et al. (2005). Dennis & Pernak
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(2009) reported that the average semi-minor axis of 18 double source flares is about

4��, while a few of the X-ray source sizes were found to be consistent with line sources

along the flare ribbons. The energy dependent character of albedo predicts that the

source size as measured by RHESSI should grow with energy from 10 keV up to ∼ 30

keV. Considering a large primary source of 14��.6 across, for example a flaring loop, it is

found that the source will grow up to ∼ 18�� at ∼ 30 keV. The X-ray anisotropy results

show that spatial changes due to albedo have a great diagnostic potential for finding

the anisotropy of the radiating electron distribution in the chromosphere. The source

size changes due to albedo were not applied to the coronal X-ray sources studied in

Chapters 2 and 3 because coronal X-ray sources sit at much greater heights (∼≥ 15��)

than the chromospheric X-ray sources studied here (1 Mm) and hence, changes in X-

ray source size and position will be smaller at coronal heights due to albedo. However,

future work will fully investigate the albedo contribution when studying coronal X-ray

source sizes and positions.



Chapter 5

Solar flare X-ray albedo and

spatially resolved polarization of

hard X-ray (HXR) footpoints

This work can be found in the publications Jeffrey & Kontar (2011) and Kontar &

Jeffrey (2010).

5.1 Introduction

As discussed in Chapter 1, a major insight regarding the angular properties of HXR

footpoints comes directly from the X-ray polarization. The anisotropy and polarization

of an X-ray distribution produced by bremsstrahlung will increase with the anisotropy

of the electron distribution (e.g. Koch & Motz 1959; Gluckstern & Hull 1953; Elwert

& Haug 1970; Brown 1972; Haug 1972; Leach & Petrosian 1983), and hence in theory

HXR polarization allows the anisotropy of the emitting electron distribution in the

chromosphere to be inferred. However, compared with the other HXR observables:

energy, spatial location, source size and time of arrival for example, polarization mea-
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surements through the years (see Kontar et al. 2011a, as a review) have been fraught

with difficulties and the measurements often met with skepticism. Nonetheless many

missions have reported measurements of HXR polarization from solar flares (Tindo

et al. 1970, 1972; Nakada et al. 1974; Tindo et al. 1976; Lemen et al. 1982; McConnell

et al. 2004; Boggs et al. 2006; Suarez-Garcia et al. 2006; McConnell et al. 2007).

Compton scattering is polarization dependent; the total integrated polarization of an

HXR source will be altered by its albedo component. However, the albedo component

will not only change the total polarization of the observed HXR footpoint; there will

be spatial variations in polarization across the extent of the albedo source and hence

the observed HXR footpoint. Chapter 4 discussed the importance of compensating

for the Compton backscattered albedo component when interpreting the positions and

sizes of HXR sources. In Chapter 5, the usefulness of albedo polarization as a valu-

able diagnostic tool will be discussed. Spatially resolved polarization measurements

across a HXR source caused by albedo, have the advantage over spatially integrated

measurements since both the magnitude and the direction of polarization will change

with X-ray directivity; allowing maps of the albedo and primary components to be

created. Understanding how these two parameters change with the photon anisotropy

is essential and provides a new method of investigating the entire photon anisotropy

from a single HXR source. However, although there are a number of simulations for

the spatially integrated polarization signal in flares (Elwert & Haug 1970; Haug 1972;

Zharkova et al. 1995; Emslie et al. 2008a; Zharkova et al. 2010) and how an albedo

component changes the spatially integrated polarization (e.g. Henoux 1975; Langer &

Petrosian 1977; Bai & Ramaty 1978), until now spatially resolved polarization had not

been investigated. The work shown in this chapter and published in Jeffrey & Kontar

(2011) is the only known prediction of the spatially resolved hard X-ray polarization

due to albedo.

For the first time in solar physics, spatially resolved polarization across HXR sources

at various locations on the solar disk, taking into account the influence of albedo, is

computed, for various emitting electron populations. The simulations (Jeffrey & Kon-

tar 2011) will also predict the angular resolution and preferred energy range required
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for such future polarization observations. Finally, the usefulness of future observa-

tions such as these will be discussed. Chapter 5 will also briefly examine how chang-

ing the maximum electron energy available during bremsstrahlung can alter spatially

integrated polarization measurements with photon energy, possibly providing a new

method for finding the maximum electron cutoff energy.

5.2 Defining the polarization of an X-ray distribu-

tion

The polarization state of incoherent radiation can be completely described using four

Stokes parameters (Stokes 1852; Chandrasekhar 1960). The Stokes pseudovector con-

sists of these four parameters and takes the form of

S =





I

Q

U

V




= [I Q U V ]T . (5.1)

A pseudovector is a vector-like object that is invariant under an inversion of its co-

ordinate axes and is often called an axial vector. The first Stokes parameter I is the

normalised total intensity of the photon beam and hence always equal to 1, while Q/I,

U/I and V/I will have values between −1 and 1. The second and third normalised

Stokes parameters are used to define linear polarization with 1 or −1 indicating that

the beam or photon packet is completely polarized with the sign providing the direc-

tion of polarization. The fourth parameter is used to describe circular polarization.

However, bremsstrahlung emission in the solar corona or chromosphere only produces

radiation that is linearly polarized. In order to produce circularly polarised radiation

via bremsstrahlung, the spins of the radiating electrons need to be aligned and the

magnetic field in the corona or chromosphere is not strong enough for this alignment.

Also, Compton scattering cannot produce circularly polarized emission, that is linear

photons can not become circularly polarized during a Compton scattering. This means
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Figure 5.1: Diagram showing the preferred direction of the electric field for a photon

travelling out of the page, for each of the possible values of the linear Stokes parameters

Q and U . A completely unpolarised source has Q = 0 and U = 0 and no preferred

direction of the electric field.

that only the first three Stokes parameters are required and the fourth can be set to

zero throughout the simulations. Generally in X-ray and gamma ray astronomy the

polarization of radiation is measured using the degree of polarization (DOP ) and the

polarization angle Ψ, which is the preferred direction of the electric field. These are

defined using the Stokes parameters as,

DOP =

�
Q2 + U2

I
, (5.2)

and

Ψ =
1

2
arctan

�
−U

−Q

�
, (5.3)

where the angle Ψ is chosen to lie within the quadrant between [−180◦, 180◦], so that

arctan
�
+0
+0

�
= +0◦, arctan

�
+0
−0

�
= +180◦, arctan

�−0
+0

�
= −0◦ and arctan

�−0
−0

�
=

−180◦. The negatives introduced into Equation (5.3) ensure that a negative Q gives

0 and a positive Q gives 90◦. Hence with this definition, when Ψ = 0◦, the observed

radiation is polarized parallel to the radial direction at the solar disk and when Ψ = 90◦,

the radiation is polarized perpendicular to the radial direction. The opposite definition

of radiation polarized parallel to the radial direction having Ψ = 90◦ is equally valid as

long as the definition is consistent. The Stokes parameters are also frame dependent

and hence have to be updated by the use of rotation matrices (e.g., Hovenier & van der
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Mee 1983) when moving between different coordinate frames. In the simulations, the

Stokes pseudovector will be initially defined in the source frame and must be rotated

to the scattering frame during each Compton scattering. The pseudovector must then

be rotated back to the source frame before the results are examined. These rotations

will be properly described in Section 5.4.3. The DOP remains unchanged by a rotation

but the polarization angle Ψ is measured with respect to the new frame.

For simplicity, it is assumed that the flare loop and the dominant direction of the

electrons lie parallel with the local solar vertical. This means that both the spatially

integrated and spatially resolved bremsstrahlung polarization direction Ψ only ever

equal 0◦ or 90◦, since U is always close to zero (Bai & Ramaty 1978) (see Equation 5.3).

Here, it should be noted that the HXR source is always assumed to be much smaller

than the solar disk. However, Compton scattering in the photosphere can produce

non-zero values of U . This means that the spatially resolved Compton scattered Ψ

can have values other than 0◦ or 90◦ in the solar disk frame, which is the frame of

the HXR source and can therefore provide us with additional information regarding

the anisotropy of the electron distribution. The spatially integrated albedo Stokes

parameters again sum to produce Ψ values of either 0◦ or 90◦. Therefore this means

the spatially integrated polarization angle Ψ never provides us with any information

regarding the anisotropy of the electron distribution. However, Emslie et al. (2008a)

found that the spatially integrated direction of the polarization angle is related to the

dominant direction of electrons or equivalently, the tilt of the guiding field or loop with

respect to the local solar vertical; with values of spatially integrated Ψ other than 0◦

or 90◦ revealing that the loop does not lie parallel to the local solar vertical.

5.3 HXR footpoint bremsstrahlung polarization

5.3.1 The radiating electron distribution

In order to create X-ray distributions in the chromosphere with varying anisotropy and

polarization, for input into the simulations, an X-ray emitting electron distribution in
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the chromosphere is chosen to have the following form,

F (E, β) ∝ E−δT exp

�
−(1 + cos β)2

∆ν2

�
. (5.4)

F (E, β) is the electron flux distribution [electrons cm−2 s−1 keV−1] in the chromo-

sphere, E is the electron energy and β ∈ [0◦, 180◦] is the pitch-angle of the emitting

electrons velocity to the local magnetic field with β = 0◦ directed away from the Sun

along the local solar vertical. The energy dependence follows a power law as shown by

observations and is produced by an injected electron distribution of δ = δT + 2 (see

Holman et al. 2011; Kontar et al. 2011a, as recent reviews and Chapter 1). The elec-

tron angular distribution is modelled as a Gaussian distribution; allowing the angular

anisotropy of the electron distribution to be easily controlled by a single parameter

∆ν. The smaller the value of ∆ν, the greater the proportion of the electron distri-

bution, and hence the resulting bremsstrahlung X-ray emission directed towards the

photosphere.

5.3.2 The emitted primary X-ray photon distribution

The intensity of an X-ray photon distribution I(�, θ) [photons s−1 cm−2 keV−1] pro-

duced by bremsstrahlung for a chosen electron distribution F (E, β) is given by

I(�, θ) ∝
� ∞

E=�

� 2π

Φ=0

� π

β=0

F (E, β)σ(E, �,Θ) sin βdβdΦdE (5.5)

where � is the X-ray energy and σ(E, �,Θ) is the total (averaged over all polarization

states) angle-dependent bremsstrahlung cross-section (Elwert & Haug 1970; Bai &

Ramaty 1978; Massone et al. 2004). θ ∈ [0◦, 180◦] is the photon polar emission angle

measured from the local solar vertical with θ = 0◦ directed away from the Sun, as for

β. Φ ∈ [0◦, 360◦] is the corresponding electron azimuthal angle measured in the plane

perpendicular to the local solar vertical and Θ(β,Φ, θ) is the angle between the plane

of emission (at angle β) and the plane of observation (at angle θ). Figure 5.2 depicts

this scenario pictorially showing the angles β, Φ, θ and Θ. The X-ray emission angle

is described by µ = cos θ, where µ from 0 to 1 corresponds to emission away from the
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Figure 5.2: Left: A cartoon of a typical solar flare scenario where an electron in

the chromosphere, transported along the guiding field from the corona interacts by

Coulomb collisions producing an HXR photon. Right: Diagram indicating all the

angles defined in Equation 5.6.

Sun, and µ from −1 to 0 corresponds to emission towards the solar surface. The X-ray

emission angle µ = cos θ is related to the electron pitch-angle β by:

cosΘ = cos θ cos β + sin θ sin β cosΦ. (5.6)

Viewing the outward emission from µ = 0 to µ = 1 corresponds to observing the HXR

source at a selected heliocentric angle on the solar disk, that is µ = 0 corresponds to

90◦ and is equivalent to viewing a HXR footpoint source sitting at the solar limb.

Just as with the X-ray intensity, I, the linear Stokes parameters Q and U can be

calculated in a similar manner:

Q(�, θ) ∝
� ∞

E=�

� 2π

Φ=0

� π

β=0

F (E, β)σQ(E, �,Θ) sin βdβdΦdE, (5.7)

U(�, θ) ∝
� ∞

E=�

� 2π

Φ=0

� π

β=0

F (E, β)σU(E, �,Θ) sin βdβdΦdE, (5.8)

with the only difference being the use of either σ(E, �,Θ), σQ(E, �,Θ) or σU(E, �,Θ).
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σ(E, �,Θ), σQ(E, �,Θ) and σU(E, �,Θ) are the polarization dependent cross-sections

for bremsstrahlung taken from Gluckstern & Hull (1953) and also following the form

used in Haug (1972) and Emslie et al. (2008a). They are given by

σ(E, �,Θ) = σ⊥(E, �,Θ) + σ�(E, �,Θ), (5.9)

σQ(E, �,Θ) = (σ⊥(E, �,Θ)− σ�(E, �,Θ)) cos 2Θ, (5.10)

and

σU(E, �,Θ) = (σ⊥(E, �,Θ)− σ�(E, �,Θ)) sin 2Θ, (5.11)

where σ⊥(E, �,Θ) and σ�(E, �,Θ) are the perpendicular and parallel components of the

bremsstrahlung cross-section respectively. Q(�, θ) and U(�, θ) are normalised between

[-1,1] by dividing through by I(�, θ).

5.4 Photon transport in the photosphere and changes

in hard X-ray polarization

5.4.1 Monte Carlo simulation inputs

In order to study changes in HXR polarization due to a given target-averaged elec-

tron angular distribution, the energy, angular and polarization properties of the input

photon distributions for the MC code are determined via the chosen input electron

distributions given by Equation 5.4. In all simulation runs, a mean electron spectrum

of spectral index δT = 2 is used. This means that the injected electron distribution

has a typical solar flare value of δ = 4. In order to test how both the total integrated

and spatially resolved HXR polarization change with electron directivity, three values

of ∆ν are used to describe various pitch-angle distributions of electrons in the chromo-

sphere: ∆ν = 4.0 , ∆ν = 0.5 or ∆ν = 0.1. A ∆ν = 4.0 electron distribution produces

an approximately isotropic, unpolarised photon distribution, while the ∆ν = 0.5 and

∆ν = 0.1 electron distributions produce photon distributions with progressively greater

beaming towards the photosphere. In the MC simulations, distributions of energy �,
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Figure 5.3: An updated version of the steps in the MC simulations including polar-

ization and the creation of a HXR distribution via a chosen electron distribution in the

chromosphere.

angle θ and polarization Q and U are numerically created from I(�, θ), Q(�, θ) and

U(�, θ) (Equations 5.5, 5.7 and 5.8). Each photon input azimuthal angle φ is simply

drawn from a uniform, random distribution between 0 and 2π. The spatial properties

are determined via Equation 4.1, as described in Chapter 4, again at a height h = 1

Mm. To achieve the best statistics feasible, 108 photons are used in every MC code

run. Once the HXR source is created from a given target electron distribution, the MC

code runs as described in Chapter 4 with the only differences due to the inclusion of

polarization, which will be described in the following sections. An updated flow chart

showing the main steps of the MC photon transport code, including polarization, is

shown in Figure 5.3.
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5.4.2 Photoelectric absorption and hard X-ray polarization

Chapter 4 describes how photoelectric absorption is the dominant interaction process in

the photosphere below ∼10 keV. The probability of photoelectric absorption is assumed

to be independent of polarization (Poutanen et al. 1996). Only the angular distribution

of the ejected electron is dependent upon the photon polarization, which is not modelled

in these simulations.

5.4.3 Compton scattering and hard X-ray polarization

As described in Chapter 4, above ∼10 keV, Compton scattering is the dominant inter-

action process in the photosphere. The polarization dependent differential Compton

scattering cross-section is given by Klein & Nishina (1929), but the form used in these

simulations is from McMaster (1961) and Bai & Ramaty (1978)

dσc

dΩ
=

1

2
r20

�
�

�0

�2 
�

�0
+

�0
�
− sin2 θS


1−Q cos 2φS − U sin 2φS




, (5.12)

where r0 = 2.82 × 10−13cm is the classical electron radius, �0 is the energy of the

incoming photon, � is the energy of the outgoing photon, θS is the polar scattering angle,

φS is the azimuthal scattering angle and Q and U are the linear Stokes parameters

respectively (McMaster 1961; Bai & Ramaty 1978). The maximum change in DOP

occurs when θS = 90◦ and no change in DOP occurs for a backscattering at 180◦.

The azimuthal scattering angle φS also has a non uniform dependency on the incoming

polarization state. If the HXR photon distribution is completely isotropic and hence

unpolarized, then the Klein-Nishina cross section returns to the unpolarized form used

in Chapter 4 Equation 4.3, since the linear Stokes parameters Q and U are zero.

In the MC simulations, when a Compton scattering occurs, the properties of the out-

going photon: energy �, polar scattering angle θS, azimuthal angle φS and Stokes

parameters Q and U , need to be updated. New polar scattering angles θS for each

photon can be found by integrating the polarization dependent Klein-Nishina differen-

tial cross section over φS to produce a differential cross-section that is only dependent

on � and θS, that is the unpolarized form given by Equation 4.3. The new energy
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� and scattering angle θS can then be found by the same method shown in Chapter

4 Section 4.2.4 while the new φS and Stokes parameters Q and U are found by the

method described below.

5.4.4 Updating photon polarization states

If the photon distribution is completely isotropic and unpolarised then the azimuthal

scattering angle φS can just be sampled from a uniform distribution between 0 and 2π,

but this is not true for the more general polarization dependent case. The probability

density function of obtaining a value of φS between φS and φS + dφS can be described

by:

P (φS) =
1

2π

dσc(�, θS, φS)/dΩ

dσc(�, θS)/dΩ
=

=
1

2π

�0
� + �

�0
− sin2 θS(1−Q cos 2φS − U sin 2φS)

�0
� + �

�0
− sin2 θS

(5.13)

with the maximum value of this function given by:

Pmax(φS) =
1

2π

�0
� + �

�0
− sin2 θS

�
1−

�
Q2 + U2

�

( �0� + �
�0
− sin2 θS)

. (5.14)

Firstly, a value of φS is sampled between 0 and 2π. The condition that P (φS) <

Pmax(φS) is then used to accept a value of φS and provides a method for sampling

values of φS for each photon, using the new values θS and � already calculated for each

photon. This method is repeated until the condition is satisfied for each photon and

each photon is provided with an azimuthal scattering angle (Salvat et al. 2008).

Due to Compton scattering, the Stokes parameters have to be updated using the scat-

tering matrix T (McMaster 1961; Bai & Ramaty 1978)

T (�, θS) =





�
�0
+ �0

� + sin2 θs sin2 θs 0

sin2 θs cos2 θs + 1 0

0 0 2 cos θs




. (5.15)

Before a scattering, the Stokes parameters have to be rotated by φS so that they are

defined relative to the plane of scattering, using the rotation matrix M(φS) given by:
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Figure 5.4: The position of the photon before scattering (blue) and after scattering

(green) and the angle Ξ that determines the final rotation of the Stokes parameters

back into the frame of the source from the scattering frame.

M(φS) =





1 0 0

0 cos 2φS sin 2φS

0 − sin 2φS cos 2φS




. (5.16)

After a scattering, the Stokes parameters have to be rotated again so that they are

defined relative to the starting position of the source, and are rotated by the rotation

matrix M(−Ξ).

M(−Ξ) =





1 0 0

0 cos−2Ξ sin−2Ξ

0 − sin−2Ξ cos−2Ξ




, (5.17)

where

cos Ξ = ± w� − cos θsw√
1− cos2 θs

√
1− w2

. (5.18)
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w and w� are the current and previous z direction cosines respectively (Hovenier & van

der Mee 1983). The ± in equation (5.18) is present due to the negative sign being used

when π ≤ φs ≤ 2π and the positive sign for 0 ≤ φS < π. The angle Ξ is shown in

Figure 5.4. Ξ is the angle between the scattering plane and the normal plane in the

frame of the source. Therefore during a Compton scattering the order of the rotations

on the Stokes pseudovector [IQU ]T is M(φS)T (�, θS)M(−Ξ).

5.5 Integrated distribution of hard X-ray polariza-

tion

5.5.1 Hard X-ray polarization and electron directivity

Figure 5.5 shows the resulting total integrated flux and degree of polarization for each

simulation run using the ∆ν = 4.0, ∆ν = 0.5 and ∆ν = 0.1 electron pitch-angle

distributions. Each HXR component: primary towards the observer only (orange),

backscattered albedo (blue) and also the total observed HXR emission (green) are

plotted against emission angle or equivalently heliocentric angle µ = cos θ. Each are

shown between 20-50 keV, where the HXR albedo emission peaks. As expected, even

though the ∆ν = 0.1 distribution has a greater downward beaming and hence a smaller

proportion of its emission is directed towards the observer than the ∆ν = 0.5 distribu-

tion, within the 20-50 keV range the difference in anisotropy between the two primary

distributions cannot be clearly seen. However, there is a clear difference in the DOP

of both distributions with disk location over 20-50 keV (second row Figure 5.5). The

total integrated polarization angle Ψ is not shown due to the fact that it remains con-

stant with emission angle between the energy range of 20-50 keV at Ψ = 0◦ and hence

provides no information concerning the directivity of the electron distribution in the

chromosphere. In Figure 5.5 Ψ = 0◦ is indicated by the negative value of spatially

integrated DOP .
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Figure 5.5: Photon flux (top row) and spatially integrated DOP (bottom row) for

the upward primary (orange), albedo (blue) and total (green) components for both the

∆ν = 4.0 (1st column), the ∆ν = 0.5 (2nd column) and the ∆ν = 0.1 (last column)

created photon distributions respectively, at the peak albedo energies of 20-50 keV, for

different locations on the solar disk from the centre (µ = 1.0) to the limb (µ = 0.0).

Note here that a negative DOP denotes that the direction of polarization Ψ across the

source is parallel to the radial direction. The DOP for ∆ν = 4.0 photon distribution

(near isotropic distribution) shows nearly the same result as Bai & Ramaty (1978), as

expected.

5.5.2 Hard X-ray polarization and the high energy cutoff in

the electron distribution

Spatially integrated polarization is dependent on the highest energy in the electron

distribution, called the high cutoff energy (Heristchi 1987). When calculating spatially
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integrated polarization, equation (5.2) reduces toDOP = Q and Equation (5.3) reduces

to Ψ = 1
2 arctan

�
−0
−Q

�
as U sums to zero for a single measurement across the entire

source. A negative DOP indicates that the polarization angle is parallel to the radial

direction (Ψ = 0◦), while a positive DOP indicates that the polarization angle is

perpendicular to the radial direction (Ψ = 90◦).

For the three electron distributions of ∆ν = 4.0, ∆ν = 0.5 and ∆ν = 0.1, simulations

were run with two high cutoff electron energies of Ecutoff = 500 keV and Ecutoff = 2

MeV. Figure 5.6 plots the flux and spatially integrated polarization across the total

source (green) and the primary source only (orange) against photon energy � at four

disk locations µ ∈ [0.20 − 0.25], [0.60 − 0.65], [0.80 − 0.85], [0.95 − 1.00] for ∆ν = 4.0,

∆ν = 0.5 and ∆ν = 0.1 (top to bottom) respectively. The important property to

observe here is not the magnitude but the sign of the DOP or whether Ψ = 0◦ or

Ψ = 90◦.

Using an electron distribution with ∆ν = 4.0 (Figure 5.6 rows 1 and 2) and a cutoff

energy of Ecutoff = 500 keV produces a photon distribution with a negative DOP at

all photon energies and disk locations, while using the same distribution with a cutoff

energy of Ecutoff = 2 MeV creates a photon distribution where the DOP changes from

negative to positive at ∼ 100 − 200 keV at all disk locations. During bremsstahlung,

in order to conserve energy, electrons with higher energies will scatter through larger

angles. When a photon is scattered through a large angle, its polarization is more likely

to be directed perpendicular to the plane of emission (Ψ = 90◦) rather than parallel

to the plane of emission (Ψ = 0◦). Therefore, a change in the direction of polarization

(from Ψ = 0◦ to Ψ = 90◦) indicates the presence of higher energies in the electron

distribution, greater than ∼ 1 MeV.

As the beaming of the electron distribution increases (∆ν = 0.5 and ∆ν = 0.1 distribu-

tions), the above statement does not hold and it becomes more likely that both electron

distributions with cutoff energies of either Ecutoff = 500 keV and Ecutoff = 2 MeV will

produce photons with Ψ = 90◦. For the ∆ν = 0.5 distribution (Figure 5.6 rows 3 and

4), as the source moves towards the solar centre, the photon distribution created by

the Ecutoff = 500 keV also produces photons at higher energies (again ∼ 100 − 200
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keV) with Ψ = 90◦. For the very beamed ∆ν = 0.1 distribution (Figure 5.6 rows 5

and 6), both the Ecutoff = 500 keV and Ecutoff = 2 MeV distributions produce high

(∼ 100− 200 keV) energy photons with Ψ = 90◦ at all disk locations. Therefore using

the direction of the spatially integrated polarization angle Ψ as an indicator for high

energies in the electron distribution becomes less and less useful as the beaming of the

photon/electron distribution increases. The increased beaming causes lower and lower

energy photons to scatter at larger angles, especially at locations closer to the solar

centre, hence producing photons with Ψ = 90◦ in the Ecutoff = 500 keV distributions.

However this method may be useful when the anisotropy of the HXR distribution in

the chromosphere is close to isotropic as has been suggested by recent observations

(Kontar & Brown 2006; Dickson & Kontar 2013).

5.6 Spatial distribution of hard X-ray polarization

5.6.1 Single Compton scatter for an isotropic unpolarised source

In order to demonstrate the spatial variation in polarization due to Compton scattering,

the easiest example to consider is the albedo patch created by an initially isotropic,

unpolarised point source at a height h above the photosphere (see Chapter 4 and Kontar

& Jeffrey (2010)). For this example, the variation in polarization across the source can

be described analytically by (McMaster 1961) if no energy losses are assumed,

DOP =
1− cos2 θS
1 + cos2 θS

, (5.19)

where

cos θS = cos θ cos(π − θi) + sin θ sin(π − θi) cosφ. (5.20)

θS is the scattering angle, θi is the emission angle measured from the local solar vertical,

θ is the heliocentric angle on the solar disk and φ is the azimuthal angle measured in

the solar disk plane. In Equation (5.19), the scattering angle θS determines the DOP .

θS is related to distance r from the centre of the albedo patch by Equation (5.20)

though r = h tan(π − θi), and hence the DOP at any point across the albedo patch
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Figure 5.6: Flux and spatially integrated DOP for total source (green), primary

(orange) and albedo (blue) vs. energy � using Ecutoff = 500 keV (solid) and Ecutoff = 2

MeV (dashed) for ∆ν = 4 (top), ∆ν = 0.5 (middle) and ∆ν = 0.1 (bottom).
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Figure 5.7: Diagram of a single Compton scattering in the photosphere for three

heliocentric angles of 0◦, 45◦ and 90◦. For a single scatter, the DOP tends to 100% as

the scattering angle approaches 90◦, producing a variation in polarization across the

extent of the source.

located at any heliocentric angle on the solar disk can be easily calculated. Note that

for this simple example, Equation (5.19) assumes that the energy difference between

the incoming and scattered photon is negligible, though this is only the case for low

HXR energies of ∼ 10 keV. The DOP for higher energies must be calculated using the

T scattering matrix, which is used in the simulations (Equation (5.15) and discussed

in Section 5.4.4) (McMaster 1961) .

Figure 5.7 shows a cartoon of this single scattering from an isotropic point source for

three different heliocentric angles of 0◦, 45◦ and 90◦. For a source located exactly above

the solar centre (0◦) at a height h, the resulting variation across the photospheric albedo

patch is radially symmetric. As the radial distance r from the source centre increases,
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the scattering angle θS of any observed radiation will decrease from 180◦ towards 90◦,

causing the DOP to grow from 0% to ∼ 100%. Radiation scattered in the photosphere

at a location directly below the HXR source, which is a 180◦ backscatter, and emitted

towards the observer will experience no change in its DOP . This statement is true for

HXR sources at any heliocentric angle θi but the projection effects at angles θi > 0◦ will

create an asymmetry in the polarization pattern along the radial direction, whereas the

polarization pattern in the perpendicular to radial direction always remains symmetri-

cal. The described pattern can be seen in Figure 5.8 which shows the polarization maps

for a single Compton scattering at four disk locations ranging from the solar centre to

the limb, along Y = 0�� at X = 214��, 543��, 750��, 936��. These locations are equivalent to

µ = 0.97, 0.82, 0.62, 0.22 (θi = 14◦, 35◦, 52◦, 77◦) and denote the approximate positions

of the total observed HXR source, which are shifted from the primary HXR position

due to the albedo component (Kontar & Jeffrey 2010), which was discussed in Chapter

4. The polarization across the HXR source at any location on the solar disk can always

be measured with respect to the radial line connecting the solar disk centre and the

centre of the source. Therefore due to the symmetry of the problem, source locations

at Y = 0�� considered in this thesis can straightforwardly be applied to any solar disk

location. In Figure 5.8, the dotted blue ellipse denotes the FWHM of the diffuse albedo

component, the solid green ellipse denotes the FWHM of the total observed source and

the orange, blue and green asterisks indicate the centroid positions of primary, albedo

and total observed sources respectively. The polarization angle Ψ follows a steady pat-

tern across all sources. Ψ is always at an angle tangential to the line connecting the

desired position and the location of the source centroid position. Hence at disk centre

locations the Ψ pattern is also symmetrical across the source.

Figure 5.9 shows the same albedo polarization maps as in Figure 5.8 but for multiple

Compton scatterings. The overall pattern for the DOP and Ψ are preserved but due

to multiple scatterings the overall DOP across all locations over the albedo patch has

decreased. A single scattering DOP of ∼ 100% near the edge of the source has been

reduced to ∼ 50% by multiple scatterings. All other simulations shown below use

multiple Compton scattering in the photosphere.
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The albedo pattern from a primary source at a greater height than 1 Mm (say from a

coronal source) should produce the same albedo polarization pattern but over a much

greater area in the photosphere. The albedo patch for such a source should therefore

be very large with a very low intensity and hence should not alter the properties of

coronal sources to the same extent as chromospheric sources. The polarization pattern

is always plotted at the peak albedo energies 20-50 keV since this is where the greatest

change in source polarization should occur.

5.6.2 Anisotropic source at a height of h = 1 Mm (1��.4) and

size of 5��

For a chosen chromospheric HXR source height of h = 1 Mm (1��.4) and a primary

source size of FWHM∼ 5��, simulations were performed for all three photon distribu-

tions created by the ∆ν = 4.0, ∆ν = 0.5 and ∆ν = 0.1 electron distributions. This

is the same height that was used in Chapter 4 and again was chosen to match chro-

mospheric HXR source height measurements (Kontar et al. 2008b; Prato et al. 2009;

Saint-Hilaire et al. 2010; Mrozek & Kowalczuk 2010; Kontar et al. 2010; Battaglia &

Kontar 2011a). Again, all the results shown here are for the energy range of 20-50

keV, where albedo emission peaks, producing the largest distortion to the primary

component but the best opportunity for the detection of the albedo component.

Figures 5.10, 5.13 and 5.16 each plot the resulting polarisation maps for four HXR

sources (resulting from the primary and albedo components) created by the ∆ν = 4.0,

∆ν = 0.5 and ∆ν = 0.1 electron distributions respectively. As with Figures 5.8 and 5.9,

each figure plots four HXR sources positioned at µ ∼ 0.97, 0.82, 0.62, 0.22. In Figures

5.10, 5.13 and 5.16, the dotted ellipses denote the FWHM of the total source (green),

the primary source (orange) and the albedo source (blue) and the correspondingly

coloured asterisks denote the (x, y) centroid position of the total source and the primary

and albedo components respectively. Figures 5.11, 5.14 and 5.17 plot intensity, I (top

row), DOP (middle row) and Ψ (bottom row) along the radial direction X centred at

Y = 0�� (across a of bin width= 2��) for each of the maps in Figures 5.10, 5.13 and 5.16.
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Figure 5.8: Albedo polarization maps for an isotropic, unpolarised point source sitting

above the photosphere at four different radial locations of X = 214��, 543��, 750��, 936��

(left to right) at Y = 0�� (corresponding µ = 0.97, 0.82, 0.62, 0.22) after a single Comp-

ton scatter in the photosphere. All results are shown at the peak albedo energies of

20-50 keV. The length of each red arrow indicates the DOP and the direction of each

arrow depicts the polarization angle Ψ within the chosen plotting bin. The solar radial

direction (or X axis for this case) is defined as the Ψ = 0◦ position. An arrow length

of 2�� corresponds to a maximum DOP of 100%. The green and blue ellipses give the

FWHM of the total and albedo sources respectively, while the green, blue and orange

asterisks give the centroid position of the total, albedo and primary sources.

Figure 5.9: Albedo polarization maps as in Figure 5.8, but for the case of multiple

Compton scatterings in the photosphere. Multiple scatterings have acted to decrease

the DOP at all points across each source but the polarization angle at each point on

the map remains the same.
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Figures 5.12, 5.15 and 5.18 plot the DOP (top row) and Ψ (bottom row) along the

perpendicular to radial direction Y centred at X= 213.6��, 543.9��, 750.1��, 936.6�� (again

across a bin width= 2�� ) for each of the maps in Figures 5.10, 5.13 and 5.16.

Quasi-isotropic distribution of electrons with ∆ν = 4.0

The HXR photon distribution produced by the ∆ν = 4.0 electron distribution is ap-

proximately unpolarised and isotropic. Therefore, both the spatially integrated and

spatially resolved polarization measurements across the primary source at all locations

on the solar disk produce DOP ∼ 0% and Ψ = 0◦ (radial) at 20 − 50 keV. The

albedo component produces asymmetrical DOP and Ψ variations along the source ra-

dial direction (Figure 5.11) while along the source perpendicular to radial direction

(Figure 5.12), variations in albedo DOP and Ψ are approximately symmetrical, since

the centroid positions of the primary and albedo components always coincide in the

perpendicular to radial direction (see Chapter 4). The simulated HXR sources plotted

in Figure 5.10 have a finite source size of ∼ 5��. Compared with a point source (Figure

5.9), this produces two main differences: i) photons leave the source from different

positions above the photosphere and ii) for certain distributions and disk locations,

the primary polarization will dominate over the extent of the primary source. The first

property reduces the DOP at all points across the source, compared with the albedo

patch created by a point source. Due to the second property, the polarization varia-

tion caused by albedo may be slightly masked by the primary component within the

source FWHM, especially for cases where the primary component is dominant, that is,

isotropic or near isotropic distributions.

For the quasi-isotropic ∆ν = 4.0 distribution, the primary component is the dominant

component at all four disk locations, with the albedo contribution falling as the source

location moves towards the limb (Figure 5.11- first row). Hence, the primary compo-

nent dominates within the FWHM of the total source, while the albedo component

dominates after this boundary. The second and third rows of Figure 5.11 demonstrate

common radial trends in DOP and Ψ, not only across the extent of each individual
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Figure 5.10: Total X-ray brightness and polarization maps for ∆ν = 4.0. The

total sources sit at 4 disk locations of X = 213.6��, 542.9��, 750.1��, 936.6�� at Y =

0��(corresponding to µ ∼ 0.97, 0.82, 0.62, 0.22). Green, blue and orange ellipses/dots

give the FWHM and centroid positions of the total, albedo and primary sources.

Figure 5.11: I and DOP radial slices along X at Y = 0�� for the sources in Figure

5.10 (∆ν = 4.0). Colours as in Figure 5.10 and dash-dot lines denote the centroid

positions and the FWHMs of the total observed source, primary and albedo sources.
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Figure 5.12: Perpendicular to radial slices through each of the sources shown in Figure

5.10 for the ∆ν = 4.0 distribution. Each of the perpendicular to radial slices are taken

along Y at X = 213.6��, 542.9��, 750.1��, 936.6�� for the DOP and polarization angle Ψ.

The lines and colours are as in Figures 5.10, 5.11. The DOP and the magnitude of

the polarization angle Ψ remain symmetrical along the source perpendicular to radial

direction.

source but also between sources at different disk locations. For a quasi-isotropic dis-

tribution, at a particular disk location (other than the disk centre), the highest DOP

along the radial direction is observed at the disk-centre-side of the source (where the

albedo dominates). This falls to approximately zero within the FWHM of the total

source (where the primary dominates) and then increases again towards the limb-side

of the source (where the albedo again dominates), but always remains lower than the

DOP at the disk-centre-side. Comparing the four disk locations, the DOP at all points

along the radial direction of a single source decreases as the source location nears the

limb. In the radial direction, spatially resolved DOP can achieve values as high as

∼ 30% at disk centre locations. The albedo component produces the distinctive Ψ

variation shown in Figure 5.10. Along the radial direction, Ψ = 90◦ at the disk-centre-

side of the source, falls to zero within the FWHM extent and then rises again at the
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limb-side of the source. Along the perpendicular to radial direction of a single source

(Figure 5.12), DOP (first row) and the magnitude of Ψ (second row) are symmetrical

due to no projection effects and the centres of the primary and albedo components al-

ways coinciding. As with the radial direction, in the perpendicular to radial direction,

spatially resolved DOP can achieve values as high as ∼ 30%. While the magnitude

of Ψ across the source is symmetrical at each disk location in the perpendicular to

radial direction, Ψ itself behaves as an odd function along Y, with a 180◦ rotational

symmetry about the source centre, increasing from the radial at the upper source edge

to |Ψ > 0◦| and then back to the radial direction at the lower source edge.

Beamed electron distributions ∆ν = 0.5 and ∆ν = 0.1

All plots for the photon distribution created by the ∆ν = 0.5 electron distribution are

shown in Figures (5.13-5.15), while Figures (5.16-5.18) show all plots for the photon

distribution created by the ∆ν = 0.1 electron distribution. Comparison of Figures 5.10,

5.13 and 5.16 demonstrate that increased beaming towards the photosphere produces

smaller, more concentrated and intense albedo patches.

For the ∆ν = 0.5 distribution, Figure 5.14 plots the radial intensity, I (top) (along X

at Y = 0��). The first two disk locations are albedo dominated, the third disk location

has approximately equal contributions from the primary and albedo components and

only the disk location closest to the limb is primary dominated. The primary DOP

can rise as high as ∼ 20% at the limb and the primary Ψ is radial at all locations.

Figure 5.17 (top) plots radial intensity slices (along X at Y = 0��) for the ∆ν = 0.1

distribution. As expected, the first three disk locations are albedo dominated and the

primary DOP can reach ∼ 40% at the limb. Again, the primary Ψ is radial at all disk

locations.

As with the quasi-isotropic ∆ν = 4.0 distribution, common trends can be observed

across individual sources at particular disk locations and between disk locations for

both the ∆ν = 0.5 and ∆ν = 0.1 distributions. More importantly for observations

and anisotropy deduction purposes, trends between each of the three simulated dis-
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Figure 5.13: Total X-ray brightness and polarization maps for the photon distribution

created by the ∆ν = 0.5 electron distribution for a 5�� primary source. Colours and

symbols as in Figure 5.10.

Figure 5.14: Radial slices (along X) through Y = 0�� for the intensity, I, the DOP

and Ψ for each of the sources in Figure 5.13 for the ∆ν = 0.5 distribution. Again,

the source locations, colours and symbols are the same as in Figures 5.10 and 5.11 for

∆ν = 4.0.
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Figure 5.15: Perpendicular to radial slices through each of the sources shown in

Figure 5.13 for the ∆ν = 0.5 distribution. Each of the perpendicular to radial slices

are taken along Y at X = 213.1��, 542.6��, 750.0��, 936.5�� for the DOP and polarization

angle Ψ. The lines and colours are as in Figures 5.13, 5.14.

tributions (∆ν = 4.0, ∆ν = 0.5 and ∆ν = 0.1) can be observed, along the radial

and perpendicular to radial directions, at any chosen disk location. The most notable

trends are observed in the radial (X) direction, and it is these trends that may help to

deduce the anisotropy of the photon distribution for a HXR source sitting at a given

disk location. Trends can be observed at all disk locations, but in this example the

patterns are most noticeable in the second and third disk locations plotted. In both

of these locations, the disk-centre-side DOP falls with increased beaming while the

limb-side DOP rises with increased beaming.

Comparing the third disk location (for example) in Figures 5.11, 5.14 and 5.17 shows

how the radial DOP at the limb-side of the source rises with increased beaming from

∼ 2% for the ∆ν = 4.0 distribution to ∼ 18% for the ∆ν = 0.5 distribution to ∼ 30%

for the ∆ν = 0.1 distribution. The radial DOP at the disk-centre-side of the source

falls with increased beaming from ∼ 18% (∆ν = 4.0) to ∼ 14% (∆ν = 0.5) to ∼ 4%

(∆ν = 0.1). The polarization angle Ψ also produces similar patterns with changing
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Figure 5.16: Total X-ray brightness and polarization maps for the photon distribution

created by the ∆ν = 0.1 electron distribution for a 5�� primary source. The source

locations, colours and symbols as in Figure 5.10.

Figure 5.17: Radial slices (along X) through Y = 0�� for the intensity, I, the DOP

and Ψ for each of the sources in Figure 5.16 for the ∆ν = 0.1 distribution. Again, the

locations, colours and symbols are the same as in Figures 5.10 and 5.11 for ∆ν = 4.0.

anisotropy. A clear example of this can be observed by comparing the second disk

location plotted in Figures 5.11, 5.14 and 5.17. Along the radial direction, disk-centre-
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Figure 5.18: Perpendicular to radial slices through each of the sources shown in

Figure 5.16 for the ∆ν = 0.1 distribution. Each of the perpendicular to radial slices

are taken along Y at X = 213.0��, 542.5��, 749.9��, 936.4�� for the DOP and polarization

angle Ψ. The lines and colours are as in Figures 5.16, 5.17.

side Ψ generally stays at Ψ = 90◦ for all photon anisotropies, while the outer limb-side

Ψ falls significantly with increased beaming, from Ψ = 60◦ (∆ν = 4.0) to Ψ = 20◦

(∆ν = 0.5) to Ψ = 0◦ (∆ν = 0.1).

Therefore, the DOP and Ψ patterns prescribe how spatially resolved polarization mea-

surements could be used to determine the beaming of the photon distribution. It should

be noted that a (near) disk-centre source produces a slightly different trend in radial

DOP with increasing photon anisotropy. The DOP at the disk-centre-side remains

approximately the same for all photon anisotropies while the DOP at the limb-side

falls with increased beaming (this is the opposite trend to other disk locations).

Comparing each disk location along the perpendicular to radial direction (Y) in Figures

5.12, 5.15 and 5.18 shows that greater beaming increases the DOP over the whole

extent of the source at any given location (except at the disk centre where the spatially

resolved polarization along Y is approximately the same for all three distributions).

This spatial increase is most noticeable at limb locations where from the source centre
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to the source edge, DOP increases from ∼ 0% to ∼ 20% (∆ν = 4.0), from ∼ 20% to

∼ 40% (∆ν = 0.5) and from ∼ 40% to ∼ 55% (∆ν = 0.1).

5.7 Discussion and conclusions

The simulation results show that Compton backscattering produces a clear and dis-

tinct albedo polarization pattern across a HXR source at the peak albedo energies

of 20-50 keV. Trends can be observed for both of the measured polarization parame-

ters, DOP and Ψ, and are clear indications of the existence of an albedo component

in comparison with the constant, radial polarization of the primary emission. This

means that spatially resolved polarization can be used to probe structure within HXR

footpoint sources, helping to distinguish between the bremsstrahlung source and the

albedo source. More importantly, at a single disk location, spatially resolved DOP

and Ψ exhibit clear variations with changing photon directivity, along both the radial

and perpendicular to radial directions and can be used to determine the anisotropy

of the electron distribution. Therefore, to take advantage of these properties requires

reliable polarization measurements with an angular resolution of ∼ 5�� − 10�� over the

peak albedo energies of ∼ 20− 50 keV.

The simulations also suggest that for approximately isotropic HXR sources, spatially

integrated polarization angle measurements, Ψ, from low to high energies, with consid-

eration of the changes due to albedo, could help indirectly infer the highest energy in

the electron distribution. For near isotropic sources implied by RHESSI X-ray obser-

vations (Kašparová et al. 2007; Kontar & Brown 2006), changes in Ψ from the radial

(Ψ = 0◦) to the perpendicular to radial direction (Ψ = 90◦) may help indicate the pres-

ence of high energy electrons (≥ 1 MeV) present in the electron distribution. Changes

in spatially integrated DOP measurements, from low to high energies, will also help

determine the anisotropy of the photon distribution.

Currently, when observing solar flares, the instrumentation required to produce spa-

tially resolved polarization measurements is not available. It is doubtful whether pro-

posed near future missions such as the Gamma-Ray Imager/Polarimeter for Solar Flares
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(GRIPS) (Shih et al. 2009) may have the capability to measure polarization over albedo

energies, even though it should be able to measure polarization across 12��.5. The best

polarization measurements are likely to be over the range of 150-650 keV with a ∼4%

minimum detectable polarization (Shih et al. 2009). At energies greater than ∼100

keV, the albedo flux drops off steeply, thus it is unlikely that any albedo component

could be detected at these energies and the polarization across the observed HXR

source would only be from the bremsstrahlung emission. Therefore, good polarization

measurements at 150-650 keV from flares with high fluxes will give a direct measure-

ment of the primary component and DOP/Ψ measurements at these energies may be

used to infer the high energy cutoff in the electron distribution, for relatively isotropic

distributions. However, it should be noted that most flares have a relatively low flux

after ∼ 100 keV since the X-ray flux generally decreases as a power law. Therefore,

only the highest X-class flares will probably give enough counts for a reliable polar-

ization measurement. Hence, the importance of understanding the albedo component

and how it can be used as a beneficial diagnostic tool is stressed since the most reliable

future polarization measurements from flares will probably be over an energy range of

10-50 keV, where the photon flux is high.



Chapter 6

Conclusions and final remarks

The aim of this thesis was to study changes in the spatial, spectral and polarization

properties of solar flare X-ray sources, in order to determine how these properties are

related to the energetic and angular properties of an emitting electron distribution, the

properties of a flaring coronal or chromospheric plasma, and X-ray interactions in the

photosphere such as Compton scattering. The work in this thesis was performed by

modelling and using observations with RHESSI.

In Chapter 2, stochastic simulations were used to model electron transport in a dense

corona. Different injected electron pitch angle distributions, undergoing collisional

pitch angle scattering within a finite temperature plasma were simulated, and this

work can also be found in Jeffrey et al. (2014). This study was partly in response to

recent RHESSI observations of coronal thick target X-ray sources. The thick target

model is applicable to the corona for these events because of their high number densi-

ties of the order 1011 cm−3. The lengths of such X-ray sources increase quadratically

with energy and often a simple one-dimensional cold target collisional transport model

is used to estimate the number density and the length of an acceleration region, us-

ing a quadratic fit function of the form FWHM = L0 + α E2 where α ∝ 1/n. The

simulations showed how the presence of collisional pitch angle scattering alone does

not dramatically change the behaviour of source length with electron energy. However,
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it was shown that the beaming of the injected electron pitch angle distribution did

produce a significant change in the variation of X-ray source length with energy. It

was found that injecting a beamed electron distribution produced a larger variation

of length with energy, since electrons with velocity completely aligned to the guiding

magnetic field, move the greatest distance through a plasma. The uncertainty in the

initial angular distribution of the injected electrons produces the largest uncertainty in

the inferred number density n, which can be up to a factor of ∼ 6 larger. The finite

temperature of the target atmosphere leads to thermal diffusion, both in energy and

space, and causes an increase of the inferred acceleration region length L0. The results

show that the application of a one-dimensional cold target approach to a warm target

changes the inferred acceleration length L0 by up to ∼ 10�� for a 30 MK plasma, and

the equation L0 = L0(T = 0) − 0.011T 2 was found empirically in order to estimate

the true length of the acceleration region from observation, for number density values

close to n ∼ 1 × 1011 [cm−3]. It was also found that the FWHM versus energy curve

consisted of two competing components, one due to thermal diffusion that is dominant

at lower energies, and another due to collisional friction that is dominant at higher en-

ergies where E >> kBT . The dominant component depends on the temperature of the

region, on the density, and the spectral index of the electron distribution, and it was

shown that the application of a one-dimensional cold target approach to a warm target

produced an inferred number density different by a factor of ∼ 3 (in either direction),

again, depending mainly on the initial beaming of the electron distribution.

It is often assumed that the initial accelerated electron distribution and even the target

electron distribution in the corona or chromosphere is completely beamed. However,

many recent RHESSI observations are consistent with a lack of anisotropy, including

Kontar & Brown (2006), Kašparová et al. (2007) and Dickson & Kontar (2013); with

all studies using the presence of a photospheric albedo component to determine the

electron distribution isotropy via a single spacecraft stereoscopic method or a centre-

to-limb statistical method. Hence simulating possibly more realistic isotropic electron

distributions, in general produces a more gradual variation of source length with en-
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ergy, that is, smaller values of the quadratic fit coefficient α. Therefore, depending on

the electron distribution spectral index, observed steep behaviours (high values of α)

may be indicative of other processes at work within the coronal region. For instance,

throughout the simulations it was assumed that the length of the acceleration region

length L0 was independent of electron energy E. However, depending on the accelera-

tion process, this may not be the case. For example, if L0 grows with energy, this may

produce a larger value of α than expected and hence the analysis of this effect may

indicate the properties of the acceleration mechanism itself. As was discussed in Chap-

ter 2, the stochastic simulations are not self-consistent, that is, they do not account

for changes in the properties of the background plasma, specifically the temperature

increase of the background plasma due to the energy loss of the injected electron dis-

tribution. Further improvements could also be made to include spatial variations in

temperature and/or density along the loop, as would be expected in a real flaring re-

gion. Also, it should be noted that a recent study by Kontar et al. (2014) shows how

the presence of non-collisional pitch angle scattering (for example, involving magnetic

field inhomogeneities) results in a different non-quadratic predicted behaviour for the

variation of source length with energy. Moreover, the code developed for this work

could be rather straightforwardly extended to the study of magnetic diffusion of par-

ticles across the guiding field in a warm target (e.g., Bian et al. 2011) and hence to

study the variation of source length with energy in this alternative scenario.

In Chapter 3, temporal changes of the spatial properties of dense coronal X-ray sources

were analysed for the first time, using observations from RHESSI. The work can also be

found in Jeffrey & Kontar (2013). Similar to the studies of both coronal and chromo-

spheric X-ray source spatial parameters with energy, this study was made possible by

the use of the forward-fitting imaging algorithm Visibility Forward Fitting. This algo-

rithm can only be used for specific X-ray source shapes where one or two X-ray sources

have a simple form that can be well-fitted by either a circular, elliptical or curved

elliptical Gaussian shape. Since many X-ray sources have a more complex shape, only

three dense coronal X-ray flares were analysed reliably using this method. However,
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the study found that all three X-ray loops exhibited similar and interesting temporal

trends in both their observed spatial properties and inferred physical properties such as

temperature, number density and thermal pressure, estimated from a combined spec-

tral and spatial analysis of each X-ray source. Peaks in X-ray emission denoted periods

where there were changes in the loop spatial dynamics and most interestingly of all,

a study of temperature, volume, number density and thermal pressure showed how

the X-ray loops went through three phases denoted by three clear peaks: the first in

temperature, the second in X-ray emission and the third in thermal pressure. Before

the peak in X-ray emission, the loop length, loop width and radial position decreased.

After the X-ray peak the loop width and radial position rose again while the loop

length seemed to remain approximately constant - at least for the two flares that only

have one clear X-ray peak in their lightcurve. It was found that at the start of the

observation time, the X-ray loops are relatively long and thin and then they become

smaller, before growing in width at the later decay stages of X-ray emission. Hence in

order to describe this changing morphology, a new parameter named corpulence, C was

defined; the ratio of loop width W to loop length L, and it was found, in general, that

corpulence increased with time. Overall, the volume of the loop decreased before the

peak in X-ray emission, but the relationship between temperature and volume did not

support simple compressive heating, as in a collapsing magnetic trap model. The most

difficult observation to explain is that of the decreasing loop widths before the peak

in X-ray emission, since electrons should be unable to move across the guiding field

lines threading the corona. This leads to the suggestion that the field lines themselves

are being squeezed together during this time. In the discussion of Chapter 3, it was

tentatively suggested that this could be due to Taylor relaxation, where the release of

magnetic energy during a flare may cause the surrounding field lines to shrink or con-

tract in some manner. However it should be stressed that the cause is unknown, and

further future investigation of similar coronal X-ray loops is required to help explain

this observation. Another possible cause of this contraction may be the sausage-pinch

effect, whereby the emitting plasma is pushed together by a generated Lorentz force

due to the current flowing in the parallel direction producing an azimuthal magnetic
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field that compresses the plasma. However, we would expect the parallel field along

which electrons are flowing to cancel any sausage-pinch effects. However, the lack of

flares with this type of X-ray source morphology, and especially those with RHESSI

observations that can be analysed with algorithms such as Vis FwdFit, since the launch

of SDO/AIA has proved rather frustrating. The observation of the spatial and tem-

poral properties of separate loops within the ‘blob’ region viewed in X-rays may help

to better understand the trends in loop width and position. Further, it was suggested

that thermal conduction causes chromospheric evaporation, leading to the increasing

number density and thermal pressure in the loop. This could cause the loop lengths

to decrease, as electrons interact at shorter and shorter distances. Eventually, the in-

creasing thermal pressure in the region could balance the process causing the loop to

shrink, and cause the increase in loop width after the peak X-ray emission.

In Chapter 4, Compton scattering and photoelectric absorption of X-rays in the pho-

tosphere were studied via a Monte Carlo simulation of photon transport, in order to

study how X-ray albedo photons, backscattered from the photosphere, can alter the

spatial properties of a HXR source (the primary source), namely its size and posi-

tion. The results of simulations can also be found in the publication Kontar & Jeffrey

(2010). These changes were inspected by simulating HXR chromospheric footpoint

sources at different heliocentric angles above the solar disk, at a typical chromospheric

footpoint height of 1��.4 and using X-ray energies between 3 and 300 keV, matching

recent RHESSI observations, as discussed in Chapter 4. The results from all the simu-

lations showed a general trend for both the measured source sizes and the shifts from

the true primary source position. The greatest alteration in source size and position

occurred between the energies of 20-50 keV, the energy range over which the albedo

emission peaks. Generally the largest source increases due to albedo are observed

nearer the solar centre since the greatest fraction of albedo X-rays are emitted towards

an observer at this heliocentric angle, hence with the smallest source size increases

occurring at solar limb. The largest shifts in source position occur at mid-heliocentric

angles with the measured position nearing its true primary position both at the solar
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centre, where the positions of both the primary and albedo sources coincide, and near

the solar limb, where the albedo flux is minimal. The resulting albedo component,

and hence total observed source from primary HXR sources, with different spectral

indices, source sizes and anisotropy were simulated. It was found that the lower the

spectral index of the photon distribution, that is, the harder the spectrum, the greater

the source size increase and position shift over all disk positions and photon energies,

compared with similar HXR sources with larger spectral indices. It is observed that the

smaller the true HXR source size, the greater the relative increase due to the albedo

X-rays. Therefore, the results show that interestingly even a HXR point source that is

isotropic, and hence has the minimum backscattered albedo flux, may be observed as

a HXR source as large as 7�� across, when located near the solar centre and viewed at a

peak albedo energy range of 20-50 keV. The larger the initial HXR source, the smaller

the relative increase due to the albedo X-rays, over all energies and heliocentric an-

gles. It was found that the position shifts seem to be generally independent of primary

HXR source size if all other factors such as spectral index and beaming remain the

same. The contribution from an albedo component depends greatly on the anisotropy

of the HXR source. If the HXR source initially throws a greater proportion of photons

into the photosphere than towards e.g.,RHESSI, then the albedo component can be

very large compared to the true direct component. Large downward directivities from

anisotropic sources can produce shifts as large as 0��.8.

The results of Chapter 4 and Kontar & Jeffrey (2010), and as discussed in the conclu-

sion of Chapter 4, suggest inevitably that all HXR sources in the chromosphere, and

even those with an isotropic pitch angle distribution, should have an albedo component

capable of altering their spatial properties, and hence the information deduced from

such observations. Hence, the results were also suggestive of the initial HXR emission

coming from a volume in the chromosphere smaller than suggested by RHESSI obser-

vations. For example, Krucker, Hudson, Jeffrey, Battaglia, Kontar, Benz, Csillaghy,

& Lin (2011b) examined both high resolution optical and hard X-ray observations of

a flare that occurred on the 6th December 2006. The G-band observations resolved
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the width of the flare ribbon to be somewhere between 0��.5 and 1��.8. However, the

RHESSI hard X-ray observations were unresolved and suggested that the HXR source

width was even smaller than that of the G-band observations. Even though this flare is

located close to the solar limb, the results shown here suggest that its spatial properties

should be tainted by an albedo component that would increase the size of the observed

HXR source. The simulations shown in Chapter 4 and Kontar & Jeffrey (2010), were

used to estimate the size of the primary HXR source which should be smaller than that

found from observations. However, the size of the primary HXR source could not be

easily estimated since the HXR source was unresolved and hence the observed HXR

source width of ∼ 1��.1 with the presence of an albedo component was an upper limit,

and suggestive that the HXR sources were extremely point-like in this flare.

In Chapter 5, a new study of solar flare X-ray polarization due to the presence of

a photospheric albedo component was presented. For the first time in solar physics,

this chapter simulated how an albedo component can produce spatial changes in po-

larization across a single HXR source. The results of Chapter 5 are also published

in Jeffrey & Kontar (2011). The Monte Carlo simulations used in Chapter 4 were

adapted to study spatially resolved polarization due to albedo. In order to achieve

this, HXR sources created from three different electron directivities were input into

the simulations; from the near isotropic to a highly beamed distribution. The first pur-

pose of the study was to examine how the degree and direction of polarization change

in space, across a single observed HXR footpoint, due to the inevitable presence of a

Compton scattered albedo component. The polarization changes in space across an

X-ray source were presented as polarization maps and cuts were taken along the radial

(line connecting the Sun centre and the centre of the HXR source) and perpendicular

to radial lines. Clear spatial changes in both the degree and direction of polarization

were found for each case, which importantly are dependent on the beaming of the

electron distribution. In general, for most HXR source locations, not located close to

the disk centre, it was found for a given heliocentric angle, that the radial DOP at

the limb-side of the HXR source rises with increased beaming, while the DOP at the
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disk-centre-side of the HXR source decreases with increased beaming. Similarly, for

a radial measurement of Ψ, the angle of polarization along the source, the limb-side

Ψ decreases with increased beaming while the disk-side Ψ generally stays at 90◦. For

example, for the HXR source simulated at a disk location of µ ∼ 0.60, the radial DOP

at the limb-side of the source rises with increased beaming from ∼ 2% for the isotropic

∆ν = 4.0 distribution to ∼ 18% for the (mildly anisotopic) ∆ν = 0.5 distribution

to ∼ 30% for the (very anisotropic) ∆ν = 0.1 distribution. The radial DOP at the

disk-centre-side of the source falls with increased beaming from ∼ 18% (∆ν = 4.0)

to ∼ 14% (∆ν = 0.5) to ∼ 4% (∆ν = 0.1). The polarization angle Ψ for a HXR

source at a disk location of µ ∼ 0.8 shows a similar pattern. Along the radial direction,

disk-centre-side Ψ generally stays at Ψ = 90◦ for all photon anisotropies, while the

outer limb-side Ψ falls significantly with increased beaming, from Ψ = 60◦ (∆ν = 4.0)

to Ψ = 20◦ (∆ν = 0.5) to Ψ = 0◦ (∆ν = 0.1).

The second purpose of the simulations was to assess the usefulness of measuring spa-

tially resolvable polarization, across a single HXR source, as a possible future diagnostic

tool. The simulations found that not only are these results useful, they also require no

manipulation, that is, there is no need to separate the primary and albedo components

as in Chapter 4; these are now used together as one single measurement to determine

the photon, and hence electron anisotropy in the chromosphere. As well as other meth-

ods involving the use of albedo, X-ray polarization and specifically as suggested here,

spatially resolvable albedo polarization measurements could provide another method of

reliably determining the anisotropy of the electron distribution from an individual flare.

Spatially resolvable polarization measurements are not only useful for finding changes

across a single HXR source but, more realistically near-future polarization missions

might be able to determine the total source polarization of each HXR footpoint in the

chromosphere and that of an X-ray coronal source individually. This could provide

a method of mapping the electron pitch angle distribution during the flare from the

corona to the chromosphere, with the contribution of photospheric albedo providing

additional information about individual changes across a single HXR source. Even a
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polarization mission with a lower angular resolution than that required to see changes

across individual HXR sources from 10 − 100 keV as discussed in Chapter 5 could

provide essential electron pitch angle information from the corona and chromosphere

separately.

Much of the work within this thesis was based on the excellent imaging spectroscopy

methods currently available with RHESSI. The work in this thesis also looks towards

future X-ray missions; instruments with higher angular resolution, possibly with direct

X-ray imaging capabilities that can more reliably examine the changing sub-arc second

lengths, widths and positions of X-ray sources. It is hoped that the work in this thesis

can also encourage the development of future X-ray polarisation instruments that can

eventually measure spatially resolvable polarization across a single HXR source.



Bibliography

Antiochos, S. K. & Sturrock, P. A. 1978, Astrophysical Journal, 220, 1137

Antonucci, E. & Dennis, B. R. 1983, Solar Physics, 86, 67

Antonucci, E., Gabriel, A. H., Acton, L. W., et al. 1982, Solar Physics, 78, 107

Aschwanden, M. J. 2004, Physics of the Solar Corona. An Introduction (Praxis Pub-

lishing Ltd), p. 24

Aschwanden, M. J., Brown, J. C., & Kontar, E. P. 2002, Solar Physics, 210, 383

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Annual Review of Astron-

omy and Astrophysics, 47, 481

Avrett, E. H. & Loeser, R. 2008, Astrophysical Journal, Supplement, 175, 229

Bai, T. & Ramaty, R. 1978, Astrophysical Journal, 219, 705

Balucinska-Church, M. & McCammon, D. 1992, Astrophysical Journal, 400, 699

Bastian, T. S., Fleishman, G. D., & Gary, D. E. 2007, Astrophysical Journal, 666, 1256

Battaglia, M. & Kontar, E. P. 2011a, Astrophysical Journal, 735, 42

Battaglia, M. & Kontar, E. P. 2011b, Astronomy and Astrophysics, 533, L2

Bian, N., Emslie, A. G., & Kontar, E. P. 2012, Astrophysical Journal, 754, 103

Bian, N. H., Kontar, E. P., & MacKinnon, A. L. 2011, Astronomy and Astrophysics,

535, A18



BIBLIOGRAPHY 170

Boggs, S. E., Coburn, W., & Kalemci, E. 2006, Astrophysical Journal, 638, 1129

Brown, J. C. 1971, Solar Physics, 18, 489

Brown, J. C. 1972, Solar Physics, 26, 441

Brown, J. C., Aschwanden, M. J., & Kontar, E. P. 2002, Solar Physics, 210, 373

Brown, J. C., Emslie, A. G., & Kontar, E. P. 2003, Astrophysical Journal, Letters, 595,

L115

Brown, J. C., Mallik, P. C. V., & Badnell, N. R. 2010, Astronomy and Astrophysics,

515, C1+

Caspi, A. & Lin, R. P. 2010, Astrophysical Journal, Letters, 725, L161

Chandrasekhar, S. 1960, Radiative transfer (Dover, New York)

Chen, Q. & Petrosian, V. 2013, Astrophysical Journal, 777, 33

Cheng, C.-C., Feldman, U., & Doschek, G. A. 1981, Astronomy and Astrophysics, 97,

210

Christe, S., Shih, A. Y., Rodriguez, M., et al. 2013, in AAS/Solar Physics Division

Meeting, Vol. 44, AAS/Solar Physics Division Meeting, ...76

Chubb, T. A., Kreplin, R. W., & Friedman, H. 1966, Journal of Geophysics Research,

71, 3611

Chupp, E. L. & Ryan, J. M. 2009, Research in Astronomy and Astrophysics, 9, 11

Cline, T. L., Holt, S. S., & Hones, Jr., E. W. 1968, Journal of Geophysics Research,

73, 434

Cohen, B. I., Dimits, A. M., Friedman, A., & Caflisch, R. E. 2010, IEEE Transactions

on Plasma Science, 38, 2394

Compton, A. H. 1923, Physical Review, 21, 483



BIBLIOGRAPHY 171

Culhane, J. L. & Acton, L. W. 1970, Monthly Notices of the Royal Astronomical

Society, 151, 141

Dennis, B. R. 1985, Solar Physics, 100, 465

Dennis, B. R. & Pernak, R. L. 2009, Astrophysical Journal, 698, 2131

Dickson, E. C. M. & Kontar, E. P. 2013, Solar Physics, 284, 405

Doschek, G. A., Feldman, U., Kreplin, R. W., & Cohen, L. 1980, Astrophysical Journal,

239, 725

Duijveman, A., Hoyng, P., & Machado, M. E. 1982, Solar Physics, 81, 137

Elwert, G. & Haug, E. 1970, Solar Physics, 15, 234

Emslie, A. G. 1978, Astrophysical Journal, 224, 241

Emslie, A. G. 1981, Astrophysical Journal, 244, 653

Emslie, A. G. 2003, Astrophysical Journal, Letters, 595, L119

Emslie, A. G., Bradsher, H. L., & McConnell, M. L. 2008a, Astrophysical Journal, 674,

570

Emslie, A. G. & Brown, J. C. 1980, Astrophysical Journal, 237, 1015

Emslie, A. G., Hurford, G. J., Kontar, E. P., et al. 2008b, in American Institute

of Physics Conference Series, Vol. 1039, American Institute of Physics Conference

Series, ed. G. Li, Q. Hu, O. Verkhoglyadova, G. P. Zank, R. P. Lin, & J. Luhmann,

3–10

Emslie, A. G., Kontar, E. P., Krucker, S., & Lin, R. P. 2003, Astrophysical Journal,

Letters, 595, L107

Falewicz, R., Siarkowski, M., & Rudawy, P. 2011, Astrophysical Journal, 733, 37

Feldman, U., Seely, J. F., Doschek, G. A., et al. 1994, Astrophysical Journal, 424, 444



BIBLIOGRAPHY 172

Fleishman, G. D., Kontar, E. P., Nita, G. M., & Gary, D. E. 2011, Astrophysical

Journal, Letters, 731, L19

Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, Space Science Reviews, 159, 19

Forbes, T. G. & Acton, L. W. 1996, Astrophysical Journal, 459, 330

Galloway, R. K., MacKinnon, A. L., Kontar, E. P., & Helander, P. 2005, Astronomy

and Astrophysics, 438, 1107

Gardiner, C. W. 1994, Handbook of stochastic methods for physics, chemistry and

the natural sciences (Springer Series in Synergetics, Berlin: Springer, —c1994, 2nd

ed. 1985. Corr. 3rd printing 1994)

Gary, G. A. 2001, Solar Physics, 203, 71

Gluckstern, R. L. & Hull, M. H. 1953, Physical Review, 90, 1030

Gordovskyy, M. & Browning, P. K. 2011, Astrophysical Journal, 729, 101

Gordovskyy, M. & Browning, P. K. 2012, Solar Physics, 277, 299

Gordovskyy, M., Browning, P. K., Kontar, E. P., & Bian, N. H. 2013, Solar Physics,

284, 489

Gosain, S. 2012, Astrophysical Journal, 749, 85

Grady, K. J., Neukirch, T., & Giuliani, P. 2012, Astronomy and Astrophysics, 546,

A85

Gunkler, T. A., Canfield, R. C., Acton, L. W., & Kiplinger, A. L. 1984, Astrophysical

Journal, 285, 835

Guo, J., Emslie, A. G., Kontar, E. P., et al. 2012a, Astronomy and Astrophysics, 543,

A53

Guo, J., Emslie, A. G., Massone, A. M., & Piana, M. 2012b, Astrophysical Journal,

755, 32



BIBLIOGRAPHY 173

Guo, J., Emslie, A. G., & Piana, M. 2013, Astrophysical Journal, 766, 28

Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, Astrophysical Journal,

770, 103

Haug, E. 1972, Solar Physics, 25, 425

Haug, E. 1975, Solar Physics, 45, 453

Haug, E. 1989, Astronomy and Astrophysics, 218, 330

Haug, E. 1997, Astronomy and Astrophysics, 326, 417

Haug, E. 1998, Solar Physics, 178, 341

Henoux, J. C. 1975, Solar Physics, 42, 219

Heristchi, D. 1987, Astrophysical Journal, 323, 391
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Janse, Å. M. & Low, B. C. 2007, Astronomy and Astrophysics, 472, 957

Jeffrey, N. L. S. & Kontar, E. P. 2011, Astronomy and Astrophysics, 536, A93

Jeffrey, N. L. S. & Kontar, E. P. 2013, Astrophysical Journal, 766, 75

Jeffrey, N. L. S., Kontar, E. P., Bian, N. H., & Emslie, A. G. 2014, Astrophysical

Journal, 787, 86

Joshi, B., Veronig, A., Cho, K.-S., et al. 2009, Astrophysical Journal, 706, 1438
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Kašparová, J., Karlický, M., Kontar, E. P., Schwartz, R. A., & Dennis, B. R. 2005,

Solar Physics, 232, 63
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Appendix A

Calculating the photon stepsize

In Chapters 4 and 5, a Monte Carlo simulation is used to model the movement and

interaction of photons through the solar photosphere. Before an interaction, each

photon must move a certain distance called the step size ss, which is a certain fraction

of its mean free path l. The mean free path of a photon is given by,

l =
1

nσT
=

1

nH (σa + σc)
(A.1)

where n is the number density of the photosphere and σT is the total cross section, that

is, the sum of all attenuation processes, which for this case is the sum of the Compton

scattering σc and absorption σa cross sections, as discussed in Chapters 4 and 5.

To calculate the photon step size through the solar photosphere, accounting for the

processes of absorption and scattering, the Beer-Lambert law (cf. Houghton 2002) is

used. This is given by

I(z) = I0(z) exp(−z/l) = I0(z) exp(−nH(σc + σa)z) (A.2)

where I is the intensity of light after travelling a distance z through a material (in this

case) that absorbs and scatters a proportion of the light, and I0 is the starting intensity.

The probability density function (PDF) used to describe this can then be given by,

p(ss) =
1

l
exp(−ss/l) (A.3)
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where z has been replaced by the step size ss. The Inverse transform Method is then

employed; this maps each value of the PDF to a randomly generated number ζstep

between 0 and 1 using the cumulative distribution of the PDF (e.g., Salvat et al.

2008), given by,

ζstep =

� ss

0

p(ss
�
)dss

�
=

� ss

0

1

l
exp(−ss

�
/l)dss

�
= 1− exp(−ss/l) (A.4)

Re-arranging Equation (A.4) then gives,

ss = −l ln(1− ζstep) ≡ −l ln(ζstep), (A.5)

which is the step size ss used in the Monte Carlo simulation in Chapters 4 and 5.
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