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Abstract

This investigation is concerned with the large-strain characterisation of Magneto-Rheological

Elastomers (MREs), with the main focus on experimental characterisation. Quasi-static uni-

axial compression, uniaxial tension, pure shear and equi-biaxial tension experiments have

been performed both in the absence and in the presence of magnetic fields. The experimental

data generated during this investigation constitutes an extensive data set characterising MREs

under various deformation modes. This is the first time that such a consistent data set has

been produced, and such data are essential to develop accurate constitutive models charac-

terising MREs under general deformations.

Isotropic and anisotropic MREs composed of silicone rubber and up to 40 vol% carbonyl iron

powder were manufactured using a reliable and repeatable process. Specimens of different

shapes were made in specially designed moulds and anisotropic samples were produced by

placing the moulds inside a strong magnetic field during the curing process. Understanding

the magnetic permeability of MREs is a prerequisite for both the development of constitutive

models and for quantifying the magnetic flux applied to specimens during testing. Accord-

ingly, the magnetic permeability of MREs has been characterised using a novel, simple and

low-cost method. Large-strain experiments were conducted using test rigs specially designed

for use in universal test machines, while incorporating permanent magnets. The magnetic

flux was applied in the loading direction and samples were aligned with their direction of

particle alignment both parallel and perpendicular to the loading direction. Where possible,

strains were measured using a digital image correlation system. MREs were found to be

very sensitive to the stress-softening Mullins effect as such a novel testing strategy was used:

MRE samples were repeatedly used in several cyclic tests in a test series and tests conducted

in the absence of magnetic fields were repeated twice in the test series in order to verify the

stress-strain results and importantly, to eliminate the influence of the Mullins effect when

interpreting the final stress-strain results. Cyclic fatigue tensile tests were conducted to de-

termine stability strain limits of MREs, and specimens were not tested beyond these limits

in the experiments.

The mechanical response of MREs was found to be strongly nonlinear when tested up to

large strains. Anisotropic MREs with particle alignment in the loading direction are the

stiffest specimens, followed by anisotropic MREs with their particle alignment perpendicular

to the loading direction, while isotropic MREs are the softest type of MRE. Moduli were

found to increase with increasing iron content and MREs preconditioned to larger levels of

strain were measured to be softer than the same type of MRE tested to lower strain levels. The

largest MR effects were found in the small-strain region for all MREs. Anisotropic MREs

containing 30% volume iron fraction with particle chains aligned parallel to both the loading

direction, and the direction of the magnetic field, were found to exhibit the greatest MR effect
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of all specimens tested. MR effects generally decrease rapidly in the mid-strain region, but

increase again at larger strain (> 15%). MR effects can be enhanced by preconditioning the

specimens to larger levels of strain. The largest relative MR effects were found in uniaxial

and equi-biaxial tension tests.

Data fitting to pre-established hyperelastic constitutive models were conducted to evaluate

their ability to characterise MREs. The parameters of the Ogden model describing isotropic

MREs under general deformations in the absence of a magnetic field were successfully de-

termined when experimental data obtained from tests up to the same strain level were com-

bined in multi-deformation mode data fitting. The Ogden-Roxburgh model was found to

describe the stress-softening well. Data fitting of several transversely isotropic constitutive

models to experimental data of anisotropic MREs was not successful and none of the models

employed in this investigation could accurately represent the data.
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1 Introduction

Magneto-Rheological Elastomers (MREs) are composite materials made of an elastomer as

the matrix and usually iron particles as the magnetic component. The magnetic particles are

dispersed in the matrix material, and are locked in position after the elastomeric material is

cured. Both isotropic and anisotropic materials can be prepared. The latter can be manu-

factured by exposing the uncured composite mixture to a magnetic field during the curing

process. This aligns the particles into chains, resulting in both mechanical and magnetic

anisotropy. MREs belong to a class of smart materials that can change their properties re-

versibly and almost instantaneously by the application of an external magnetic field. Not

only mechanical properties such as stiffness, natural frequency and damping coefficient can

be altered, but also the shape and electrical properties of MREs can change. This behaviour

is caused by the magnetic interaction of the particles within the matrix material. MREs can

potentially be used as vibration absorbers, adaptive stiffness devices, actuators to control the

flow of a fluid or a gas, or sensors measuring changes in electrical resistance or recognising

the change in dimensions. Thus, MREs are promising materials that can potentially be used

for a wide range of applications. Research on MREs is still relatively immature even though

several research groups have been working on them since 1983. Experimental analysis and

constitutive models are required to describe the material behaviour and to advance the devel-

opment of applications using MREs.

Since the behaviour of MREs is very complex, experimental data characterising MREs un-

der various deformation modes, both without and with the application of external magnetic

fields, are essential to develop accurate constitutive models. Understanding the magnetic

properties of MREs is required in order to predict the material behaviour under magnetic

fields. So far, no consistent experimental data set is available, and no accurate constitutive

model describing the behaviour of MRE materials has yet been formulated and verified.

The work presented in this thesis is concerned with the large-strain properties of MREs, with

the main focus on experimental characterisation. Isotropic and anisotropic MREs with vari-

ous amounts of iron particles are manufactured and used for characterisation under uniaxial

tension, uniaxial compression, pure shear, and equi-biaxial tension deformation both in the

absence and in the presence of magnetic fields. The aim is to generate an extensive exper-

imental data set for evaluation and development of constitutive models able to describe the

behaviour of MREs under general deformations and arbitrary magnetic fields. The ultimate

goal is to facilitate the design of large-strain applications employing MREs.



1 Introduction 2

1.1 Objectives

The main objectives to be achieved in this work are to:

• Manufacture MREs using a reliable and repeatable process.

• Determine the magnetic permeability of both isotropic and anisotropic MREs.

• Characterise the mechanical response of both isotropic and anisotropic MREs in the

absence of a magnetic field and study their non-linear large-strain behaviour under

various deformation modes.

• Study the influence of the Mullins effect on the stress-strain behaviour of MREs. The

experimental procedure and method of data analysis has to account for this stress-

softening effect to ensure that reliable and comparable data are used for the MRE

characterisation.

• Characterise the mechanical response of isotropic and anisotropic MREs in the pres-

ence of magnetic fields. The MR effect is determined as the increase in tangent moduli

using experimental data from tests without and with the application of external mag-

netic fields.

• Generate an extensive experimental data set from tests conducted using various de-

formation modes, on the same type of MRE material, and using samples precondi-

tioned to the same strain level. Such consistent data are required to develop constitutive

equations describing the behaviour of MRE materials.

• Conduct data fitting to pre-established hyperelastic constitutive models. Combined

experimental data sets, obtained under different deformations, are to be used to char-

acterise the MREs under more general deformations.

1.2 Structure of the Thesis

The thesis is structured in seven chapters. The main content and motivation of each chapter

is given below:

Chapter 2 is a literature review on experimental investigations conducted on MREs. The

classification of MREs as a smart material emphasises the diversity of MREs. Further,

the review provides a historical overview of research carried out so far and discusses the

common choices of material components used to manufacture MREs. Several potential

applications proposed for MREs are discussed. Large-strain experiments conducted on

MREs are an important focus of the review, the latter exposes a lack of comparable ex-

perimental data necessary for the development of accurate constitutive models.



1.2 Structure of the Thesis 3

Chapter 3 describes the material components and manufacturing process used to produce

isotropic and anisotropic MREs. In this investigation MREs composed of silicone rubber

and up to 40 vol% Carbonyl Iron Powder (CIP) are manufactured. Specimens of different

shapes are manufactured in specially designed moulds and anisotropic samples were pro-

duced by placing the moulds inside a strong magnetic field during the curing process. The

microscopic structure of isotropic and anisotropic MREs is briefly studied using optical

and confocal microscopy.

Chapter 4 discusses the magnetic properties of CIP and composite materials, and exam-

ines the magnetic permeabilities of the produced MREs. The magnetic permeabilities of

MREs are identified using a novel, simple and low-cost method. Magnetic flux and at-

tractive force measurements are conducted and the permeabilities are identified using an

inverse approach involving finite element calculations performed using the multi-physics

software Comsol. Understanding magnetic permeability of MREs is a necessary require-

ment for the future development of constitutive models for MREs subject to magnetic

fields.

Chapter 5 contains experimental results from large-strain uniaxial compression, uniaxial

tension, pure shear, and equi-biaxial tension experiments up to various levels of strain.

Tests are performed both without and with the application of an external magnetic field.

The importance of the Mullins effect and the level of preconditioning strain are examined.

A novel testing strategy is developed and used throughout this investigation. The approach

is designed to eliminate the influence of the stress-softening Mullins effect from the final

stress-strain results in order to isolate and characterise the MR response of the material.

The non-linear large-strain behaviour of MREs is characterised at first in the absence of

a magnetic field. MR effects are then studied and quantified by measuring the increase

in tangent moduli when samples are subjected to a magnetic field. In this chapter an

extensive experimental data set is generated that can be used to evaluate and develop

constitutive models for MREs.

Chapter 6 presents various constitutive models designed to describe the non-linear beha-

viour of materials under large strain. A short introduction to continuum mechanics and

and constitutive equations relevant to this investigation are presented. Model parameters

of the Ogden model, suitable for describing isotropic MREs under general deformations

in the absence of a magnetic field, are successfully fitted to the experimental data. The

performance of several transversely isotropic constitutive models (available in the liter-

ature) in describing the response of anisotropic MREs under general deformations in the

absence of a magnetic field is then assessed. The theoretical framework used to model

magneto-elastic materials is presented.

Chapter 7 summarises the main results and conclusions of this thesis and gives suggestions

for future work.
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2 Literature Review - Experimental Work

Magneto-Rheological Elastomers (MREs) belong to the class of smart materials with mani-

fold characteristics. MREs are known to change their mechanical properties such as stiffness

and natural frequency, but also their shape and electrical properties by the application of an

external magnetic field. Research on MREs has been conducted since 1983 but is still at an

early stage. Thus far, the properties of MREs in the small-strain region and their perform-

ance as vibration absorbers is studied extensively. Some prototypes of applications were

developed but MREs are not yet used in industrial applications. Experimental data char-

acterising the behaviour of MREs under large-strain are relatively few, and the multi-axial

behaviour of MREs was never studied. Only recently the magnetostriction and electrical

properties were discovered. This chapter provides a literature review concentrating on the

experimental investigations previously performed by other researchers. MREs are classified

into the group of smart materials in Section 2.1. A historical overview is provided in Section

2.2 covering experimental investigations. The common choices of materials to manufacture

MREs, and the microstructure are discussed in Section 2.3. Potential applications and proto-

types are presented in Section 2.4. Finally, the large-strain experiments conducted on MREs

are discussed in detail in Section 2.5. The classification of MREs into smart materials is

important to understand the great capability of MREs, and their potential use in a wide range

of applications. The study of investigations performed previously on MREs is important to

focus future research. The large-strain experiments are discussed in detail to emphasise the

difficulties in comparing them, and to clarify that there is still a lack of experimental data

that can be used to develop constitutive models in future.

2.1 Classification of Smart Materials

‘Smart’ or ‘intelligent’ materials are those that can alter their properties under the influ-

ence of external stimuli. The range of smart materials is very large and can be broadly

distinguished between property-changing, energy-exchanging, and matter-exchanging smart

materials (Ritter, 2007). Piezoelectrics, shape memory alloys, electro-active, and magneto-

active materials are all examples of property-changing smart materials. Electrical proper-

ties such as resistance or capacitance, magnetic properties such as permeability, mechan-

ical properties such as stiffness or viscosity, and material shape can all be altered when the

property-changing materials are exposed to external stimuli. Examples of external stim-

uli include mechanical pressure, temperature, electrical current, or magnetic flux. Various

property-changing materials are classified in Figure 2.1.

Some materials work in two directions, for example piezoelectric devices generate an elec-
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Response 
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Electrical
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(i.e. 
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Electrical
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Magnetic
Fields

TemperatureMechanical
Loading

Shape Memory 
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Shape Memory 
Polymers (SMP)

Magneto-Rhelogical  
Fluid (MRF), 
Magneto-Rheological 
Elastomer (MRE)
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Ferrogel, MRE
Magnetic Shape Mem-
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Piezo-electric, Piezo-
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Thermoelectric 
and 
Electrocaloric 
Materials

Magnetic Materials, 
Paramagnetic, 
Diamagnetic
Electro-Rheological 
Fluids (ERF)

Magnetoresistor, 
Capacitors, (i.e. MRE)

MRE

Auxetics, 
Thixotropics

Ferroelectrics

Figure 2.1: Classification of property-changing smart materials (Choi, 2009).

tric field when subject to a mechanical strain, and change their shape when exposed to an

electric field. Likewise, ERFs, MRFs, and MREs not only change their shape when ex-

posed to an electrical or magnetic field (electro- and magnetostrictive materials), but also

change their resistance when a mechanical strain is applied (Bica, 2012; Wang and Gord-

aninejad, 2009). Additionally, MREs also alter their resistance or capacitance when exposed

to a magnetic field (Li et al., 2009). Electro- and magneto-active materials are very similar

and only differ in the way they are activated. They both consist of an insulating or non-

magnetic matrix material (either a fluid, a foam, or an elastomer), into which polarisable

but non-conductive particles or magnetic particles are mixed. The size of these particles can

range from nanometers to several micrometers. Electro-active materials require quite high

voltages for activation (Choi, 2009). Magneto-active materials have clear advantages com-

pared to the electro-active materials, since, for example, they can be activated by permanent

magnets, implying that they can be used in the absence of external power sources (Carlson

and Jolly, 2000). Depending on the type of matrix material, MRFs, ferro-fluids, MR foams,

MREs, and ferro-gels can all be distinguished. MRFs and ferro-fluids are composed of a

fluid matrix, which is usually a low-viscosity silicone fluid or oil. MRFs change their vis-

cosity, yield stress, and natural frequency when exposed to a magnetic field. They work in

the post-yield regime (Carlson and Jolly, 2000), and find use in vibration control devices

(Jolly et al., 1999; Klingenberg, 2001). MRFs are the best known magnetoactive materials,

finding widespread applications (Klingenberg, 2001). MREs and ferro-gels are comprised

of elastomeric matrix material in which magnetic particles are dispersed. It is often said that
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MREs are the solid analogue of MRFs (Carlson and Jolly, 2000), although there are distinct-

ive differences. In MREs, particles are locked in position, and further, anisotropic MREs

can be prepared by exposing the fluid mixture to a magnetic field during the curing process.

This forces the magnetic particles to align in chains, resulting in both strong mechanical and

magnetic anisotropy. MREs change their stiffness and natural frequency when subjected to

magnetic fields, and are employed in the pre-yield regime (Jolly et al., 1996a). The size of

magnetic particles distinguishes MRFs from ferro-fluids, and MREs from ferro-gels. Ferro-

fluids and ferro-gels tend to consist of nano-sized particles which are effectively magnetic

mono-domains, whereas MREs and MRFs consist of micron-sized magnetic particles which

“support hundreds of magnetic domains” (Carlson and Jolly, 2000). Ferro-gels and ferro-

fluids are strongly magnetostrictive materials that dramatically alter their shape in response

to a magnetic flux. MREs and MRFs are also magnetostrictive, although the magnitude of

shape change is much smaller; nevertheless, they exhibit a range of magnetostriction similar

to that of the giant magnetostricitve material, Terfenol-D (Aga and Faidley, 2008). Aside

from these general definitions, instances in the literature describing nano-sized particles em-

bedded in an elastomeric matrix referred to by the authors as MREs have been published,

potentially causing some confusion in the accepted terminology (Bica, 2012; Filipcsei et al.,

2007; Stepanov et al., 2013a). Further, ferro-gels were originally manufactured using nano-

sized particles embedded in matrix materials much softer than those used to manufacture

MREs. However, more recently, micron-sized particles have also been mixed into silicone

gels (Varga et al., 2006), effectively blurring the distinction between the accepted termino-

logy for ferro-gels and MREs.

This study is concerned with the properties of Magneto-Rheological Elastomers (MREs).

Their classification into smart materials has shown that MREs are able to change several

properties, making them suitable for a wide range of possible applications. Magnetic fields,

mechanical properties, and the material shape can be external stimuli for MREs, but can

also be internal responses. MREs can be used as vibration control elements, as adaptive

stiffness devices, as actuators due to their ability to change their shape, and also as resistors

that alter their resistance due to an applied magnetic flux or due to an applied mechanical

strain. They can also potentially be used as electric or force sensors. The research which was

conducted on MREs over the past few years is detailed in the following sections, including

potential and prototyped applications of MREs. The main focus in this study are the changes

of mechanical stiffness under the influence of a magnetic flux when large strains are applied

to the material.
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2.2 Historical Overview

To provide an historical overview, past experimental investigations on MREs are presented

in a time-line in Figure 2.2. Researchers are sorted into research groups according to their

locations and research partners. Descriptions of the working area of each specific research

group, the material used, the main results, and the applications developed are described in

this graphical overview. Colours are used to identify the working area of the groups indicat-

ing the following categories: static large-strain experiments (red), dynamic tests under small

strain (yellow), magnetostriction of MREs (blue), microstructure studies (orange), magnetic

and electrical properties of MREs (purple), and proposed applications (green). References

are given within Figure 2.2.

The MR effect was first explored by Rabinow (1948) while working on MRFs, but it was

not until 1983 that Rigbi and Jilken (1983) conducted preliminary tests on MREs. Initial

investigations on MREs were concerned with the dynamic small strain properties; the change

of storage modulus and the shift of natural frequency were investigated by Jolly et al. (1996b)

and Ginder et al. (1999). Interest in MREs increased significantly from 2002, with the main

focus remaining on dynamic small strain shear properties (see Figure 2.2).

Magnetostrictive behaviour was also of interest in the early years (Ginder et al., 2002; Zhou

and Jiang, 2003), but the results were rather contradictory (see Figure 2.2 and Gong et al.

(2012)). Diguet et al. (2010) reported the maximum magnetostrictive stretch in MREs of

about 10%. The effect was further investigated by Gong et al. (2012), who measured the

full-field deformation of an MRE sample. Larger reported deformations (Stepanov et al.

(2013a) reported 250% elongation) can be attributed to the material which are ferro-gels

rather than MREs, and to the non-uniformity of the applied magnetic inductions.

From 2009 interest in the magnetic and electrical properties of MREs increased as the po-

tential of MREs as sensing materials was recognised (Li et al., 2009). Their resistance was

found to increase with increasing magnetic field and increasing compressive force (Bica,

2009a; Wang et al., 2009). Magnetisation curves of MREs were studied by Boczkowska and

Awietjan (2012), who observed strong anisotropy in the magnetic properties in anisotropic

MREs . The magnetic permeability of isotropic and anisotropic MREs was also investigated

by both Kallio (2005) and Zeng et al. (2013). Fatigue behaviour of MREs was studied by

Krolewicz et al. (2013) using simple shear tests (up to 12.5% strain), and also by Zhou et al.

(2013a) using the bubble inflation method to induce equi-biaxial tension. More details are

presented in Figure 2.2.



G.Stepanov, S.Abramchuk - Moscow, Russia   Silicone rubber / vinyl-containing rubber with CIP / Magnetite (Fe3O4), hard magnetic filler (Fe-Nd-B); Tension, shear (Stepanov, 2007) and compression (Abramchuk, 2006) up to 30-40% strain, MR effect in compression about 220% with a field of 230mT, 1000% increase in tensile modulus reported; Loading / unloading 
behaviour studied: pseudo-plasticity effect due to magnetic field, deformed shape until magnetic field was removed, 'shape memory effect' (Abramchuk, 2006 and 2007); MREs with hard magnetic filler as Fe-Nd-B behave like soft magnetic filled MREs but remain in the magnetised state after removing the magnetic field due to residual magnetisation(Stepanov,2012) 
Dynamic tests with small deformation (Stepanov,2007); Magnetostriction measurements in uniform (Abramchuk, 2007) and non-uniform (Stepanov, 2013) magnetic fields, up to 250% elongation (Stepanov, 2013); Magnetisation curves of MREs (Stepanov,2008), resistance change of 95% due to 240mT; Application: Magnetic field controlled valve (Stepanov,2013)

M.Kallio & J.Keinanen - Finland   Natural and silicone rubber, thermoplastics, with spherical CIP (4µm) and irregular iron particles (up to 
200µm) ==> Silicone rubber + CIP is the best choice (Kallio, 2003), anisotropic MRE prepared with magnetic induction up to 1T; Dynamic 
and static compression tests up to 10% strain, magnetic induction up to 1T, 100% increase in static modulus, 60% in dynamic stiffness 
(Kallio, 2005 and 2007); Permeability measurements, 22% higher permeability for aligned MREs compared to isotropic MREs (Kallio, 2003 
and 2005); Application: Adaptive tuned mass damper (ATMD) (Keinanen, 2008) 

X.L.Gong, Y.Hu, Y.Wang, X.H.Deng, L.Chen, T.L.Sun, X.Zhang, J.F. Li, Z.C.Ni, J.Wu and Z.Xu, W.Zhang, G.Liao - University of Science and Technology, Hefei, China   PU / silicone rubber blend (Hu, 2005), silicone rubber / oil blend (Gong, 2005 and 2007, Liao, 2012a), isobutylene-isopropene rubber (Wang, 2006), BR (Sun, 2008), silicone rubber (Li, 2008; Liao, 2012 and 2012a; 
Gong, 2012), NR (Chen, 2007 and 2007a and 2008; Gong, 2007),PU (Wu, 2009 and 2010; Wei, 2010), blend of BR and NR (Zhang, 2010 and 2011), NR + rosin glycerine ester (Ge, 2013), BR + PCL as a temperature-controllable element (Gong, 2012), Particles: different types of CIP, 20-70w%; Shear properties are studied with a DMA, magnetic fields up to 1T, influence of prep-
aration factors (magnetic field during curing (Chen, 2007; Li, 2008a), curing temperature (Chen, 2007a; Li, 2008a), curing time (Li, 2008), different mixtures of matrix material (Hu, 2005; Gong, 2005; Chen, 2007), content of carbon black fillers (Wang, 2006; Chen, 2008), dispersion of iron particles and interaction of matrix material and particles (Wang, 2006; Wu, 2009; Ge, 
2013), temperature dependence (Zhang, 2011), highest MR effect for silicone rubber MRE cured under a  field of 1T was 878% (Gong, 2008); Dynamic shear tests up to 50% strain (Zhang, 2010), durability and ageing studied with cyclic shear tests (140,000 cycles) (Zhang, 2010); Tensile tests up to 100% strain (Sun, 2008; Wu, 2010) and compression tests up to 25% strain, 
both without magnetic field (Wu, 2010): loading/unloading behaviour & Mullins effect studied; Full-field deformation measurements using a digital holographic interferometer, both stretch and contraction happens in one MRE sample (Gong, 2012); Temperature-dependant MREs with PCL (Gong, 2012); Application: Adaptive tuned vibration absorber (ATVA) using anisotrop-
ic silicone rubber MRE prepared with 1T that works in shear mode, 47% frequency shift (Deng, 2006); Dynamic stiffness-tuning dynamic vibration absorber (DSTDVA), piezoelectric actuator is used to vary squeeze strain of the MRE dynamically (Ni, 2009); Active-damping-compensated ATVA, active reduction of the damping ratio, 55% frequency shift (Xu, 2010; Liao, 2011 and 2012a)

M.Farshad - Switzerland   Silicone rubber and silicone gel + CIP, 
anisotropic MREs with 180 mT, particle content 27Vol%; 
Compression and tensile tests up to 30% strain (Farshad, 2004), with 
magnetic field strength of 390mT, 140% increase in compression 

modulus for 
isotropic MREs 
(Farshad, 2005)

M. Zrinyi, Z.Varga, G.Filipcsei – Budapest, Hungary   Ferrogels with PVA hydrogels and mono-domain, magnetite particles Fe3O4 (Zrinyi, 1996, 1997 and 
1998), silicone rubber and gels mixed with CIP or magnetite, particle content 10 to 30w%, anisotropic MRE with 400mT (Varga, 2005, and 2006; Filipcsei, 
2007); Deformation of ferrogels studied under the influence of a non-uniform magnetic field, elongation up to 10% measured optically (Zrinyi, 1996, 1997 
and 1998; Varga, 2005); Deformation of silicone rubber MREs (Varga, 2005a); Behaviour of anisotropic MREs are studied in detail (Varga, 2005 and 2005a); 
Static compression tests up to 10% of strain with up to 400 mT, magnetic field were applied in all possible directions, highest effect when magnetic field is 
parallel to particle alignment, 75% MR effect caused by a low magnetic field of 100mT with only 20w% particle content (Varga, 2006; Filipcsei, 2007)

X.Lu, X.Qiao - Shanghai, China   Thermoplastic MREs with SEBS matrix (Lu, 2012), with SEEPS 
matrix (Qiao, 2012), CIP and CIP with titanated coupling agent to improve the dispersion, and to 
soften the final MRE (Qiao, 2012); DMA with 1.4 T, SEEPS matrix enhances MR effect to 380%, MRE 

with modified CIP achieve up to 700% (Qiao, 2012)

Y.Shen – Canada   PU and NR, particle content up to 25 Vol%, 
aligned particles with 700mT; Shear tests up to 80% strain, 64% 
MR effect achieved with 395 mT for PU MREs (Shen, 2004)

M.R. Jolly, J.D. Carlson - Lord Corporation, USA

Silicone rubber / oil blend + CIP (3-4µm), par-
ticle content 10, 20 and 30Vol%, anisotropic 
MRE with magnetic field of 800kA/m; Dynam-
ic shear experiments, 30-40% increase in stor-
age modulus due to magnetic field of 800 mT 
with permanent magnets, independent of  
particle content, 18% frequency shift (Jolly, 
1996a); Review on MR materials (Carlson, 2000)

Z.Rigbi
Prelimi-
nary exper-
iments on 
MREs 
(Rigbi,1983)

J.Rabinow
MR Effect 
first ex-
plored on 
MRFs 
(Rabinow, 
1948)

M.Lokander, Stockholm   
Natural, nitrile and silicone 
rubbers, spherical CIP (4 
µm), irregular (up to 200 
µm) and needle shaped 
iron particles, isotropic 
MREs (Lokander, 2002 and 
2004); Dynamic shear un-

der small deformation, magnetic induction up to 0.8T, 60 % MR effect for silicone rubber + 
irregular shaped particles up to 60 µm (Lokander, 2002), Natural rubber not suitable due 
to oxidation (Lokander,2004a), Critical Particle Volume Concentration (CPVC) (Lokander, 
2003), MR effects decrease at higher strain levels (Lokander, 2003), absolute MR effect is 
independent of matrx material (Lokander,2003)

C.Bellan, G.Bossis, N. Kchit – France   Silicone rubber / oil blend + CIP (2µm) or nickel particles, particle content from 5-25 Vol%, anisotropic MRE with 200 kA/m; Static tensile tests with up to 10% of strain, magnetic field 123kA/m, highest MR effect occurred at 5% strain, no MR effect in isotropic MREs (Bellan, 2002); Piezo-resistivity on MREs with 
nickel and silver coated nickel particles is studied (Kchit, 2010), temperature-resistivity and magneto-resistivity studied in MREs with nickel particles, resistance was reduced by four orders of magnitude with an applied field of 200kA/m (Kchit, 2009; Bossis, 2012)

T.Shiga - Toyota Japan   
Silicone Gel + Iron (100µm), 
Particle content up to 28Vol%, 
anisotropic MRE with  27kA/m; 
Dynamic shear under small 
deformations, 100% increase in 
storage and change in loss 
moduli with magnetic field of 
59 kA/m  (Shiga,1995)

P.Lockette, J.Jung, J.Koo, Y.K. Kim, R.Sinko - Korea / Oxford, Ohio   Silicone rubber + iron particles (10µm + 40µm, spherical), particle content (Lockette, 2006 and 2008; Jung, 2009), anisotropic MREs with hard magnetic fillers (Lockette, 2011; Koo, 2012); Dynamic shear (Lockette, 2008; Jung, 2009) & com-
pression (Koo, 2010), magnetic fields up to 600mT; Influence of bigger particle size (40µm): no distinct differences to 10µm MREs (Lockette, 2008), Increase in shear stress due to pre-compression, 50% MR effect (Lockette, 2006; Jung, 2009); Actuation properties with soft and hard magnetic fillers studied, hard 
magnetic fillers act as permanent magnets, aligned neodymium particles perform best (Lockette, 2011; Koo, 2012); Application: Isolators for miniature cryogenic coolers (space applications) (Kim, 2010); Adaptive-tuned vibration absorber where both permanent and electromagnets are used (Sinko, 2012)

30 Vol% 

A.Boczkowska – Warsaw, Poland   PU & EPU, 3 different iron particles: CIP (6-9µm), CIP (1.4µm) & irregular shaped iron particles (70µm), particle content from 1.5 up to 33Vol%, anisotropic MREs with 100 and 300 mT, different orientation of the particle chains (30, 45, 60 and 90°); Compression tests 
with strains up to 30%, magnetic inductions of 300mT, MR effect of 100% for the 11.5% MREs (Boczkowska, 2007 and 2012a); Anisotropy studies: magnetic field measurements with a VSM, highest anisotropy for 11.5% MREs, anisotropy coefficients drops down to 1 for the 30% MREs, also confirmed by 
microscopic pictures (Boczkowska, 2009, 2009a and 2012a); Rheometer measurements, Increase in storage modulus of 275% for MREs with particle alignment 30 degree to applied field of 200mT (Boczkowska,2012)

W. Li, X. Zhang, H. Du, G. Hu, K. Popp - Wollongong, Australia   Silicone rubber / oil blend + CIP, mixture of 5µm and 50µm or 100µm particles (Li, 2010; Popp, 2008 and 2010) + graphite (Li, 2009; Tian, 2011 and 2011a; Li, 2012a), anisotropic MREs with 1T; Dynamic small strain shear experiments (Li, 2010 
and 2012; Popp, 2008 and 2010), dynamic and large-strain shear experiments up to 100% strain (Hu, 2011; Tian, 2011; Li, 2012a and 2013), graphite decreases the relative MR effect due to an increased zero-field modulus (Tian, 2011; Li, 2012a), MRE sandwich beam tested as cantilever beam with non-
homogenous magnetic field (Hu, 2011), MREs tested dynamically in the compression mode (Popp, 2010); Special structured MRE's (lattice and body centered cubic MRE's) are manufactured (Zhang, 2008); Sensing behaviour of MREs with graphite, the resistance changes about 60% with magnetic induc-
tions of 600mT (5N preload) (Li, 2009; Tian, 2011a; Li, 2012a); Application: Adaptive tuned vibration absorber (ATVA), Silicone rubber MRE with 30 Vol% CIP, shear mode, frequency shift from 75 to 150 Hz with induction of 220 mT is applied; Prototype of a force sensor developed, MRE with 55w% CIP and 
25w% graphite had best sensing capabilities, 85% resistance change when normal force increased from 5N to 15N (Li, 2009); Prototype of an isolator for seat vibration control developed, MRE works in a compression-shear mode as considerable loads have to be carried (Du, 2011 and Li, 2012)

X.M. Dong, B.X. Ju, J. Zhu, J. Fu, M. Yu – Chongqing, China   Silicone rubber / oil blend (Dong, 2009), polyurethane (Ju, 2013) + CIP;  New porous matrix material: Silicone rubber + ammonium bicarbonate (NH4HCO3) which decompose to NH3, CO2, and 
H2O and leave pores in the material, MR effect is enhanced to 180% when tested under dynamic shear (Dong, 2009; Ju, 2013); Composite MRE with a copper coil inside the MRE, large strain shear experiments up to 120% strain revealed 77% MR effect, 
and 15% in large strain (Yu, 2010); Application: Adaptive variable stiffness absorber (Dong, 2009), MRE buffer (Fu, 2013)

P.R.Marur   Patent: Vehicle suspension with MRE 
in the compression mode, ring shaped 
electromagnet around the MRE (Marur,2013)

B.K. Woods, H.Song, O. Padalka – Maryland, USA   Silicone rubber + Fe, Co and Ni nanowires (Padalka, 2010), spherical particles (Song, 2009); Manufacturing process with the VARTM (Vacuum Assisted 
Resin Transfer Molding) method for mass production developed (Woods, 2007); Dynamic small strain compression tests, dynamic moduli highest for Ni-MREs but highest MR effect achieved with Fe-
MREs, 200mT induction applied (Padalka, 2010), nanowire based MREs generate higher MR effects than the MREs with spherical particles (Song, 2009)

G.Y. Zhou - 
Singapore / Florida

Silicone rubber + CIP (3µm), anisotropic 
MRE; Damped free vibration test with small 
deformations, 25% shift of natural frequen-
cy with 1T magnetic field, damping ratio is 
independent of magnetic field (Zhou, 2003a); 
Magnetostriction: DIC to analyse deforma-
tion, but only small spots of the sample are 
observed with a microscope, 0.15% 
extension of isotropic MRE with 500mT 
magnetic field (Zhou, 2003b and 2004a)

J.M.Ginder, J.R.Watson, W.M.Steward - Ford Motor 
Company   Natural rubber + CIP (0.5 - 5µm), 
anisotropic MRE with magnetic induction of 800mT; 
Dynamic shear under small deformations, magnetic 
inductions up to 1.2 T with electromagnet (Ginder, 
1999); Magnetostriction: MRE extends 0.3% with 800mT 
applied field (Ginder, 2002); Application: Design of a 
tuned vibration absorber (TVA) is developed, 22% 
natural frequency shift & 40% shear modulus increase 
with 560mT (Ginder, 2001, 2002); Patent: Variable 
Stiffness Bushing, 25% increase of stiffness & 40% 
change of damping rate by 5A applied current (Watson, 
1997; Elie, 1997; Stewart, 1998; Ginder, 2000)

27Vol% 

F. Gordaninejad, A. Fuchs, G.Hitchcock, Q. Zhang, X. Wang – University of Nevada, USA   Silicone rubber with CIP (2-8 µm), anisotropic MREs with 1T, material composition is studied (Zhang, 2005) and patented (Fuchs, 2007); Compression tests up to 20% and simple shear tests up to 15% strain, thickness of MRE samples has no influence on the MR effect (Gordaninejad, 
2012), 100% increase of the compressive modulus and 68% increase of the shear modulus with 1T applied induction (Gordaninejad, 2012), surface treatment of particles is investigated (Fuchs, 2010); Electrical properties (impedance and resistance) under various magnetic fields and compressive strains are studied (Wang, 2009), total strain resulting from magnetic field and 
compressive force is measured to interpret the change in resistance (Ghafoorianfar, 2013); Patent: Vibration isolator using an MRE, sandwich device consisting of an MRE layer sandwiched between two magnetic activation layers, either curved or as flat beam or plate (Hitchcock,2006)

1983... 1995

Quasi-Static Tests under Large Deformations

Dynamic Tests under Small Deformations

Magnetostriction Measurements

Microstructure Studies

Magnetic and Electric Properties

Applications

Legend

A.M. Albanese Lerner – Georgia, USA   Silicone rubber + CIP (6-9µm), aligned particles; Dynamic compression and tensile tests, excited 
with white noise signal, low pass filtered to 1000Hz, magnetic field produced with 6A, Particle content of 35Vol% leads to largest natural 
frequency shift (AlbaneseLerner, 2005); Application: SSA (state-switched absorber) in shear, squeeze or tension mode, frequency shift 
about 510% in squeeze mode, and 183% in shear mode (Albanese, 2003; AlbaneseLerner, 2005 and 2008; Patent: AlbaneseLerner, 2006)

1948...

L.Faidley, G.Park, Z.Aga - Iowa State University, USA   Ferrogel consisting of PVA and Fe2O3 magnetic particles (Faidley, 2008; Park, 2008), silicone rubber with high and low stiffness + CIP (9 µm), particle 
content up to 27Vol%, induction 360mT (Aga, 2007 and 2008); Swept-sine vibration testing, magnetic fields up to 40kA/m, 38% MR effect & 18% frequency shift (Aga, 2007); Magnetostriction on a 
ferrogel, 3.5% elongation with 200mT (Faidley, 2008 and 2010; Park, 2008), 0.27% extension of a soft silicone rubber MRE measured with 100kA/m with capacitance displacement sensor  (Aga, 2008)

S.Opie, W.Yim – Nevada, USA   Silicone rubber / 
oil blend + CIP; Dynamic shear properties with up 
to 20% of strain, MR effects up to 400% with 
600mT; Application: Tunable vibration isolator, 
MRE is working with small strain only (Opie,2007) 

X. Guan, X.F. Dong – Dalian, China   Silicone rubber + 10 to 27Vol% CIP, anisotropic MRE prepared with 40kA/m (Guan, 2008); Magnetostriction is studied with magnetic fields up to 400 mT, largest extension of 0.02% when particles are perpendicularly 
aligned (Guan, 2008); Dynamic shear properties, dependency on an applied compressive stress studied (Dong, 2012)

N.Zhang, N.Hoang – Sydney, Australia   Silicone rubber + 27.6Vol% ferrous powder, 2-3 µm (Hoang, 2009), nano-sized particles (Zhang, 2008), CIP of 3-5 µm and 40-50 µm (Hoang, 2011); Dynamic small 
shear strain experiments, nano-sized particles enhance MR effect (Zhang, 2008); Application: Torsional ATVA as MDOF system (Hoang, 2009 and 2011)

W. Choi – Southampton   Silicone rubber + CIP, anisotropic MRE with 300mT; Dynamic shear 
behaviour of sandwich structures, magnetic induction up to 500mT, 55% MR effect (Choi, 2008 and 
2009); Forced vibration test rig tested with different boundary conditions, localised magnetic fields 
studied (Choi, 2009); Application: Propeller shaft vibration absorber, MRE in rotational mode (Choi,2009)

30Vol% 

R.Crist   Patent: Active vibrational damper, MRE in shear mode up to 20% strain, MR effect 7.4% at 
20% strain with 200mT induction (Crist,2009) T.Heier    Actuator using magnetostriction effect, 

change of fluid flow (Heier, 2010)

2007

J.Zeng - Shenyang, China   Silicone rubber / oil 
blend with 70w% CIP; Two-dimensional magnetic 
properties are measured with single sheet tester 
(SST), permeability of 6.68 found (Zeng, 2013)S.V. Kankanala, N. Triantafyllidis, K. Danas – Michigan, USA and France   NR with spherical CIP (0.5 µm to 5µm); Magnetostriction: 0.48% elongation in MREs with particle alignment in magnetic field direction, 1.2% with particle alignment perpendicular to the field, elongation in case of a compressive 

pre-stress, contraction in the case of a tensile pre-stress (Kankanala, 2007; Danas, 2012); Simple shear tests up to 15% strain, in contrast he found an “insensitivity of the initial shear modulus to a magnetic field” (Kankanala, 2007; Danas, 2012)

J. Kaleta, P. Zajac, M. Krolewicz, M. Bocian, D. Lewandowski - Poland   Thermoplastic elastomer with 60µm sized, irregular shaped iron particles; Simple shear tests up to 12.5% strain, cycle tests with 1 
to 8Hz, MR effect is expressed as change in area of the stress-strain hysteresis, and as change in stress amplitude, 70% increase in isotropic MREs (Zajac, 2010), anisotropic MRE better than isotropic MRE 
(Kaleta, 2011), softer matrix material reveals higher MR effects (Krolewicz, 2012); Fatigue behaviour (Krolewicz, 2013): MREs are stabilising after appr. 500,000 cycles, final MR effect of 44% achieved 

H.F. Össur, I. Gudmundsson – Reykjavik, Iceland   Silicone rubber and PU matrix materials, CIP of two different sizes, 7-9.5 µm 
and 4-5 µm; Quasi-static compression tests up to 15% strain, electromagnet is a ring around the experimental setup creating 700mT in loading 
direction, the MR effects are studied versus the strain, 120% increase in stiffness (Gudmundsson, 2011); Application: MRE-spring in a prosthetic foot, 
prototype developed (Gudmundsson, 2011), MRE is working in the compression mode, Patent (Össur, 2013)

Y. Zhou, S. Jerrams – Dublin   Silicone rubber + 
CIP; Equi-biaxial testing with the bubble inflation 
method, no magnetic fields are applied, fatigue 
behaviour is studied (Zhou, 2013 and 2013a)

G. Diguet – Grenoble, France   Silicone rubber with  spherical iron particles of 5 µm; 
Magnetostriction measurements on isotropic MREs with applied magnetic induction of 1.2 T, elon-
gations are measured optically (Diguet, 2009), magnetostriction is sample shape dependant, 9.3% 
stretch were found with a flat cylindrical sample, 27Vol% iron content performed best (Diguet, 2010)

5 - 30 Vol%

H. Böse, R. Röder, E. Forster, M. Mayer - Würzburg, Germany   Silicone rubber with CIP (5 µm) (Böse, 2011, Forster, 2012), Manufacturing and Material advice (Böse, 2009b); Magnetostriction: 10% deformation possible with soft matrix (Böse,2007), “magnetically driven shape memory effect” (Böse,2011); Special wax-moulding technique to 
manu-facture patterned MRE surfaces (Forster, 2012); Application: Actuators for valves to control the air or fluid flow, ring shaped MREs expand radially due to an applied magnetic field (Böse, 2011); Ultra-soft silicone rubber based MREs developed to be used in cell-substrata with changeable shear moduli up to three orders with 700mT (Mayer, 2013)

30Vol% 

I. Bica –Timisoara, Romania   Silicone rubber / oil blend mixed with CIP (5 µm) (Bica, 2009), graphite particles (30-45 µm) (Bica, 2009a), iron nano-particles (Bica, 2012); Capacitance measurements: the 
capacitance increases with increasing applied magnetic field, but also with increasing compressive loading (Bica, 2009 and 2012); Magnetoresistor manufactured, the resistance decreases with increasing 
magnetic field up to 100kA/m (Bica, 2009a and 2009b), decreases with increasing compressive force (Bica, 2009b), magnetoresistor tested with higher magnetic fields of 900kA/m (Bica, 2010 and 2011)

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2008 2009 2010 2011 2012 2013

C.Hintze, D.Günther, D.Borin - Dresden, Germany   Silicone Rubber with irregular shaped iron parti-
cles (35µm)(Borin, 2012) and CIP (6µm) with SiO2 coating (Hintze, 2011; Borin, 2012); Curing studies:
CIP particles with SiO2 coating show very good curing behaviour (Hintze, 2011), irregular, bigger par-

ticles act “as a preventer of curing” (Günther, 2012); XMicroCT: large influence of gravity, higher 
mag- 

netic fields decrease influence of gravity and lead to thicker columns, 200mT are sufficient, >23w% 

G.T Du – Chengdu, China   Epoxy resin with 55w% carbonyl nickel particles of size 2.73 
µm (Du,2012) Application: MEMS magnetometer, magnetostriction of the MRE activates 
the piezoresistive pressure sensor (Du, 2012)

Figure 2.2: Experimental investigations on MREs up to 2013. The references are given in the figure.
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2.3 Manufacture and Microstructure of MREs

Most researchers manufacture MREs using silicone rubber with a low zero-field stiffness as

the matrix component. The silicone rubber is often blended with silicone oil to decrease the

rubber’s final moduli. Various other matrix materials have also been used, such as natural

rubber, thermoplastic elastomers, and polyurethane (see Figure 2.2). Carbonyl Iron Powder

(CIP) is the most commonly used magnetic particle component. CIP are spherical particles

with an average size of about 5 µm. Nano-sized particles such as magnetite, and irregularly

shaped particles of about 200 µm diameter have also been used. Iron is said to be the best

choice due to the high magnetic permeability, high saturation magnetisation, and a very

low remnant magnetisation (Zhang, 2005). Recently, tests on MREs with nickel or cobalt

particles have been performed, though iron-based MREs were found to generate the highest

MR effect (Padalka et al., 2010; Song et al., 2009). Nevertheless, nickel particles seem

to result in better sensing capabilities compared to iron-based MREs (Bossis et al., 2012).

Graphite particles were also added to enhance the sensing properties of MREs (Bica, 2012;

Li et al., 2009).

The microstructure of MREs has been observed by optical microscopy (Farshad and Benine,

2004), scanning electron microscopy (SEM) (Chen et al., 2007b), and also with x-ray micro-

computed tomography (XµCT) (Borbath et al., 2012; Günther et al., 2012). Many research-

ers have recorded images that demonstrate both the random distribution of the particles in

isotropic MREs, and the particle alignment in anisotropic MREs (Farshad and Benine, 2004).

Various investigations aim to understand the relationship between magnetic flux intensity

during the curing process and final microstructure (e.g. Chen et al., 2007b). The chains of

the aligned particles were found to be thicker and more widely separated when higher mag-

netic flux densities were applied during the curing process (Chen et al., 2007b). Günther

et al. (2012) and Borbath et al. (2012) performed very interesting studies using µCT. They

found that gravity has a large influence on the microstructure, and that magnetic inductions

larger than 200mT are required to stop the particles from settling during the curing process.

2.4 Applications

MRE research is still at an early stage and the material is not yet actively used in industrial

applications. However, quite a few applications have been designed and prototyped. This

section provides an overview of the applications employing MREs.

Most of the developed and patented applications are adaptively tuned vibration absorbers and

variable stiffness devices. MREs are usually used in a shear mode under small deformations,

although applications using the MRE in a compression mode or compression-shear mode

were proposed. The first known application of MREs is a suspension bushing developed
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by Watson (1997) and Ginder (2004) and illustrated in Figure 2.3. The MRE between the

shaft and the outer cylinder works in a shear mode. The properties of the prototype bushing

MRE

Wire Coil

Steel

MRE

Coil
Annular Recess

Outer Cylinder
Inner Cylinder

Shaft or Rod

Figure 2.3: Automotive suspension bushing developed by the Ford Motor Company

left) Photograph of the bushing, flux path is shown in red (Ginder, 2004), right) Scheme
of the bushing (Elie et al., 1997)

were examined by Ginder et al. (2000) and the spring rate magnitude and the damping rate

can be increased in axial direction about 25% and 40%, respectively, by applying a current

of 5 A. Further, the response time of the bushing is less than 10 ms. Ginder et al. (2001)

also constructed a Tuned Vibration Absorber (TVA). The TVA is a one degree-of-freedom

(DOF) system where the reaction mass is dynamically excited and the MRE is sheared. The

TVA is able to shift its natural frequency from 500 to 610 Hz by the application of 560 mT

magnetic flux. An Adaptive Tunable Vibration Absorber (ATVA) was later developed by

Deng et al. (2006). The storage modulus of the ATVA could be increased by 130% and the

frequency could be shifted by about 45% when a 900 mT flux was applied. Hitchcock et al.

(2006) patented a tunable isolation device, composed of an MRE sandwich structure with

two magnetic activation layers. The device was designed as either a curved or flat beam or in

form of a plate. The magnetic activation layer could hold either electromagnets or permanent

magnets. In the curved beam configuration the MRE works in a compression-shear mode,

shown in Figure 2.4. The device is supposed to work in the small-strain regime, but the

(a) MRE sandwich structure (b) Detail of the device (c) Configuration in use

Figure 2.4: Tunable vibration isolation device developed by Hitchcock et al. (2006).

performance of the device was not investigated (Hitchcock et al., 2006). Albanese Lerner
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(2005) invented an adaptive vibration absorber (AVA) with the MRE working in the com-

pression mode (Albanese and Cunefare, 2003; Albanese Lerner and Cunefare, 2006, 2008);

see Figure 2.5a. The natural frequency of this device could be shifted from 57 to 347 Hz, a

relative increase of 510% (Albanese Lerner, 2005). Opie developed a tunable vibration isol-

ator using permanent magnets (Opie and Yim, 2007). An ATVA working in a torsional mode

was developed by Zhang et al. (2008a). This ATVA was designed for powertrain vibration

reduction. The multi-degree-of-freedom (MDOF) system represented a novel development

for vibration absorbers. A schematic of the ATVA is shown in Figure 2.5b. The application

was reported to work well for a wide frequency range and could handle multi-harmonic ex-

citations (Zhang et al., 2008a). In 2008 Keinanen et al. developed a prototype of an adaptive

(a) AVA invented by Albanese
Lerner

External field
(coil)

Outer ring

MRE in a shear-
squeeze mode

Lug

Shaft

Inner Ring

(b) ATVA developed by Zhang

Figure 2.5: (a) Scheme of the adaptive vibration absorbers (AVA) invented by Albanese Lerner
and Cunefare (2006). (b) Scheme of the adaptive tuned vibration absorber (ATVA)
developed by Zhang et al. (2008a).

tuned mass damper (ATMD). The functionality of MREs and temperature-sensitive elastic

epoxy was combined to achieve operations across a wider frequency range. An alternative

ATVA was designed by Ni et al. (2009) to work in combination with a piezoelectric device.

This device used the MRE in a shear mode but the piezoelectric component could change

the compression strain of the MRE in the direction of the particle alignment to enhance the

MR effect. Choi (2009) worked on large-scale structures such as ships, and developed a

vibration absorber to act on a propeller shaft. The MRE worked in a rotational mode similar

to the ATVA developed by Zhang et al. (2008a). In the first eigenstate of the propeller shaft

the natural frequency could be changed from 426 to 491 Hz by applying 500 mT magnetic

flux. Xu et al. (2010) found that due to the high damping ratio of MREs the performance

of ATVAs could be unsatisfactory and developed an active-damping-compensated ATVA to

overcome this problem. The damping of this ATVA could be actively reduced with a voice

coil motor. This ATVA was able to shift its natural frequency from 29 to 45 Hz, which is a

relative change of 55%. Sinko et al. (2012) designed an ATVA employing a special hybrid

electromagnetic design, here both permanent and electromagnets are used to decrease the re-

quired current input. A vehicle suspension with the MRE working in the compression mode
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was developed by Marur (2013).

Thus far, MRE applications have been designed for use under large strain in only three

applications: Crist (2009) patented an active vibration damper, with the MRE working up to

20% strain. A schematic of the device is shown in Figure 2.6. An increase in shear modulus

(a) Isometric view of the damper (b) Detail of the damper

Figure 2.6: Scheme of the active vibrational damper invented by Crist (2009)

of 7.4% at 20% strain with 200 mT were achieved (Crist, 2009). A prototype of an isolator

for seat vibration control with considerable loads were developed by Du et al. (2011) and Li

et al. (2012b). Here the MRE works in a combined compression-shear mode. Gudmundsson

(2011) and Össur et al. (2013) developed a prototype of an MRE spring for a prosthetic foot

shown in Figure 2.7. The MRE in this application were used in large compressive strains.

Figure 2.7: Design of the prosthetic foot having an MRE element on the vertical axis (Gud-
mundsson, 2011; Össur et al., 2013).

More recently the magnetostriction effect of MREs was used in various applications. For

example, MREs have been used to change the flow of a fluid or a gas (Böse et al., 2011;

Heier and Schubert, 2010) and to activate piezo-electric devices (Du and Chen, 2012). Heier

and Schubert (2010) invented an actuator, in which the MRE changed its shape by applica-

tion of a magnetic field. In the active state the MRE squeezed a tube which increased fluid

flow. The inactive and active state of the actuator are illustrated in Figure 2.8. The pat-

ent (Heier and Schubert, 2010) gives neither magnitudes of the magnetostriction effect nor
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Electromagnet
Supporting
element

Deformable
tubular element

MRE

(a) Inactive State (b) Active State, MRE is deformed due to a mag-
netic induction

Figure 2.8: Scheme of the actuator which employs the magnetostriction property of MREs inven-
ted by Heier and Schubert (2010)

details concerning the material used for the MRE. Böse et al. (2011) developed a valve to

control the air or fluid flow, in which a ring-shaped MRE expands radially due to an applied

magnetic field. Another valve to control flow was also designed by Stepanov et al. (2013a).

A micro-electro-mechanical magnetometer was developed by Du and Chen (2012); here the

magnetostriction effect of an MRE activated a piezoresistive pressure sensor. An epoxy resin

mixed with 55w% carbonyl nickel particles with a size of 2.73 µm was used for the MRE.

Du and Chen (2012) planned to improve the performance of the magnetometer using a better

material.

Li et al. (2009) used the sensing properties of MREs to develop the first force sensor employ-

ing MREs and found that an MRE with 55w% CIP and 25w% graphite particles provided

the best sensing properties: the resistance changed by about 85% when the normal force is

increased from 5 N to 15 N .

Most of the published and patented applications concerning MREs are relevant to the small

strain region. MREs are used to reduce vibrations by shifting the natural frequency, and

are used to change the elastic stiffness. Consequently, the small-strain behaviour of MREs

is the best explored of their properties. Only three applications have been proposed with

MREs working up to large strains, all of which were developed after 2009. It is likely that

MREs can be effectively used under large strain, though because the large-strain behaviour

of MREs has not been well explored so far, only a very few applications have been proposed

that exploit the use of MREs under such conditions. To advance the development of large-

strain applications, both experimental data and accurate constitutive models to describe the

MREs under finite strains are required. This will permit design and manufacture of novel

devices using the advantages offered by the latest computational engineering tools.



2 Literature Review - Experimental Work 14

2.5 Large-Strain Experiments on MREs

The historical overview in Section 2.2 and especially Figure 2.2 show that experiments to

study the large-strain properties of MREs are relatively few. In this section previous invest-

igations involving large strain experiments with the application of magnetic flux densities are

described and compared. The reviewed experiments will be sorted by deformation modes:

uniaxial tension, uniaxial compression, and simple shear. The used materials, the maximum

strain level, the applied magnetic field strength, and the resulting MR effects are presen-

ted in Tables 2.1 to 2.5 to allow comparison with the results of large-strain experiments

presented in this study. The text highlights important achievements, draws out trends, and

compares the results achieved. The absolute MR effect EM − E0 is the difference between

the no-field modulus E0 and the modulus EM achieved with the application of a magnetic

induction during the test. The relative MR effect is defined as the increase in moduli with

(EM/E0 − 1) × 100. Some researchers worked with a change in stress or with a change

in hysteresis of the stress-strain curves rather than with the tangent moduli to obtain MR

effects.

Uniaxial Tension Tests The first large strain tensile tests were performed by Bellan and

Bossis (2002). The stress difference was considered rather than the differences in moduli to

characterise the behaviour with and without applied magnetic flux, but no MR effect could be

ascertained form the stress-strain data provided. The increase in stress due to the applied field

could only be observed in the small-strain region up to 5%. Stepanov et al. (2007) conducted

tensile tests on MREs with iron particles of two different sizes, and achieved higher MR

effects with particles having a broad size distribution from 2 to 70 µm. The stress-strain

curves and the tangent modulus versus strain are shown in Figure 2.9. Stepanov et al. (2007)

(a) Stress-strain curves (b) Tangent modulus versus strain

Figure 2.9: Results of the uniaxial tension tests performed by Stepanov et al. (2007).

reported an absolute MR effect of about 1000 kPa in the small-strain region. However, in

the author’s point of view the moduli and MR effects calculated at very small strain may not
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be reliable, as experimental errors can easily occur, i.e. the tension sample might be slightly

stretched or bulged as result of clamping them into the setup. The data are also sensitive

to the method of analysis, since the raw data of the test machine have to be cut and shifted

in a certain way, which may also induce errors. For a deeper discussion on the method of

analysis see Section 5.1.2. Much more reliable data for the MR effect are obtained from 2%

strain. The data in this range still suggest a very large MR effect of 400 kPa absolute, and

3000% relative increase as seen in Figure 2.9. The high MR effect is due to the low no-field

modulus of the MRE material. The MRE materials used and the magnetic inductions applied

in the described uniaxial tension tests are summarised in Table 2.1.

Bellan2002 Stepanov2007

M
R

E
M

at
er

ia
l Matrix Silicone Rubber Vinyl Rubber

and Oil
Particles CIP, 2 µm Iron, 2 to 70 µm
VPC 15% 37%
Magnetic Flux 250 mT Isotropic
Modulus E0 530 kPa 13 kPa

T
es

t

Strain Level 10% 60%
Magnetic Flux 155 mT 335 mT
Direction ‖ loading ⊥ loading

‖ alignment

M
R absolute not provided 400 kPa

relative not provided 3000%

Table 2.1: Uniaxial tension tests performed by Bellan and Bossis (2002) and Stepanov et al. (2007)
are summarised. The MRE material (matrix, particles, VPC, magnetic flux during cur-
ing, and no-field moduli E0), the strain level and applied flux during the experiment,
and the resulting MR effects are listed.

Uniaxial Compression Tests Farshad and Le Roux (2005) performed compression

tests in which permanent magnets were attached to one side of the test setup. However,

placing magnets on just one side of the setup most likely led to a non-uniform magnetic

field. The stress-strain results of Farshad’s experiments are illustrated in Figure 2.10. The

stress-strain curves up to 5% strain are identical regardless of the applied magnetic induc-

tion. Once again, this indicates that the data in the small-strain region are not reliable due

to experimental error and the method of analysis as discussed above. The moduli show an

increase above 5% strain, and the results are listed in Table 2.2. Compression tests per-

formed earlier by Farshad and Benine (2004) used permanent magnets attached to both sides

of the test setup, which moved towards each other while the test proceeded. This was not

a suitable test setup as the magnetic attraction force between the magnets increased as the

distance between them became smaller, which clearly influenced the results. Compression

tests with up to 1 T magnetic induction created with a ring-shaped solenoid around the tested

specimen were performed by Kallio (2005). The solenoid ensured a uniform magnetic flux
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Figure 2.10: Results of the uniaxial compression tests performed by Farshad and Le Roux (2005).

distribution, but it blocked visual access to the experiment. The resulting stress-strain curves

and the linear moduli calculated from stress-strain data up to 2% strain are illustrated in

Figure 2.11. Saturation occurs in the MRE material above 700 mT applied induction, so

(a) Stress-strain curves (b) Linear Moduli

Figure 2.11: Results of the uniaxial compression tests performed by Kallio (2005).

that effectively the highest relative effect of 100% was achieved when 700 mT flux was

applied. Varga et al. (2005a, 2006) conducted compression tests with magnetic inductions

in all possible directions. Experimental data were fitted using the Neo-Hookean Model to

obtain the moduli illustrated in Figure 2.12. The direction of the applied magnetic flux is

indicated in the figure. The highest MR effect (58% increase in G) was found for the aniso-

tropic MRE with particle alignment parallel to the applied magnetic flux and parallel to the

loading direction. Note that the iron content was only 30wt% (5.45 vol%) and the magnetic

induction was low at only 100 mT . Note also that in the case of anisotropic MREs, and

even when magnetic fields are applied to isotropic MREs, calculation of the shear modulus

G using the Neo-Hookean Model is questionable, since the model is formulated to describe

the behaviour of isotropic rubber-like materials, not anisotropic materials. Abramchuk et al.

(2006) performed compression tests to study the loading-unloading behaviour of MREs. A

remnant deformation was observed which “stayed unchanged as long as the magnetic field



2.5 Large-Strain Experiments on MREs 17

Figure 2.12: Results of the uniaxial compression tests performed by Varga et al. (2006). The Neo-

Hookean Model is used to calculate the modulus G.

was switched on” (Abramchuk et al., 2006), which is a similar behaviour as seen in Shape

Memory Polymers but with a different external stimuli. Boczkowska et al. (2007) performed

compression tests, but the achieved MR effects are very low compared to other experiments

performed. The reason for this is not known. Uniaxial compression tests were performed

by Gudmundsson (2011) on anisotropic silicone-based and PU-based MREs. The highest

MR effects were achieved with the silicone rubber matrix material. Gudmundsson’s results

of the moduli and the MR effects versus the engineering strain are shown in Figure 2.13.

Gordaninejad et al. (2012) studied MREs not only under compression up to 20% strain, but

(a) Compression modulus versus strain (b) Relative MR effect versus strain

Figure 2.13: Results of the uniaxial compression tests performed by Gudmundsson (2011).

also under simple shear up to 15% strain. The moduli versus the compressive and shear

strains are shown in Figure 2.14. In both tests the moduli decreased at larger strain values.

Also indicated by the plots is that magnetic saturation of the MRE material occurred above

a magnetic induction of 700 mT , as earlier reported by Kallio (2005). Gordaninejad et al.

(2012) found additionally that the thickness of MRE samples had no influence on the MR

effect. The material used, the magnetic flux, and the resulting MR effects of the discussed

compression experiments are compared in Tables 2.2 and 2.3.
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(a) Compression modulus versus strain (b) Shear modulus versus strain

Figure 2.14: Results of the uniaxial compression and simple shear tests performed by Gordanine-
jad et al. (2012).

Farshad2005 Kallio2005 Varga2006 Abramchuk2006

M
R

E
M

at
er

ia
l

Matrix Silicone Gel Silicone Rubber Silicone Rubber Silicone Rubber
Particles CIP, 3.8 µm CIP, 5 µm CIP, 2.5 µm Iron, 2 to 3 µm
VPC 35% 30% 5.45% 9.2%
Magnetic Flux Isotropic 1 T 400mT Isotropic
Modulus E0 200 kPa 1.75MPa 55 kPa 17.4 kPa

T
es

t

Strain Level 30% 6.5% 40% 30%
Magnetic Flux 440mT 700 mT 100mT 230mT
Direction ‖ loading ‖ loading ‖ loading ⊥ loading

‖ alignment ‖ alignment

M
R absolute 280 kPA 1.75MPa 32 kPa 38.9 kPa

relative 140% 100% 58% 223%

Table 2.2: Uniaxial compression tests performed by Farshad and Le Roux (2005), Kallio (2005),
Varga et al. (2006), and Abramchuk et al. (2006) are summarised. The MRE material
(matrix, particles, VPC, magnetic flux during curing, and no-field moduli E0), the strain
level and applied flux during the experiment, and the resulting MR effects are listed.

Boczkowska Gudmundsson Gordaninejad

M
R

E
M

at
er

ia
l

Matrix Polyurethane Gel Silicone Rubber Silicone Rubber
Particles CIP, 6 to 9 µm CIP, 7 to 9.5 µm CIP , 2 to 8 µm
VPC 33% 27% 23.9%
Magnetic Flux 100mT not provided 1 T
Modulus E0 1.79 MPa 4.5 MPa 750 kPa

T
es

t

Strain Level 30% 15% 20%
Magnetic Flux 300mT 700 mT 700mT
Direction not provided ‖ loading ‖ loading

‖ alignment ‖ alignment

M
R absolute 80 kPa 5.5 MPa 550 kPa

relative 4.5% 120% 73%

Table 2.3: Uniaxial compression tests performed by Boczkowska et al. (2007), Gudmundsson
(2011), and Gordaninejad et al. (2012) are summarised. The MRE material (matrix,
particles, VPC, magnetic flux during curing, and no-field moduli E0), the strain level
and applied flux during the experiment, and the resulting MR effects are listed.
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Simple Shear Tests Shen et al. (2004) performed quasi-static simple shear tests on a

Natural Rubber (NR) based MRE with 20.1 vol% CIP up to 80% shear strain, and on a

Poly-Urethane (PU) based MRE with 25 vol% CIP up to 12% strain. Larger MR effects

were found for the PU-based MREs as listed in Table 2.4. The stress-strain results achieved

by Shen et al. (2004) are shown in Figure 2.15. Stepanov et al. (2007) performed simple

(a) PU based MREs with 25 Vol% CIP (b) NR based MREs with 20.1 Vol%
CIP

Figure 2.15: Results of the simple shear tests performed by Shen et al. (2004). Stress-strain curves
achieved with 0 mT (◦), 300 mT (⋆) and 395 mT (�) applied magnetic induction.
Solid and dashed lines are results of a data fitting to a modified Ogden Model.

shear tests on the same MRE material used for the compression tests presented earlier. The

stress-strain results and the tangent modulus versus the strain are illustrated in Figure 2.16.

A relative MR effect of about 750% at small strains, and still a 160% increase at 10% strain

(a) Stress-Strain curves (b) Tangent Modulus versus strain

Figure 2.16: Results of the simple shear tests performed by Stepanov et al. (2007).

were achieved. Stepanov et al. (2007) also studied the loading-unloading behaviour under

different levels of magnetic induction. The “stress-strain curves showed a very pronounced

hysteresis behaviour” (Stepanov et al., 2007). As was previously observed by Abramchuk

et al. (2006) for an MRE under compression, a distinct remnant deformation was observed

as long as the magnetic field remained switched on. Stepanov et al. (2007) called this phe-

nomenon “pseudo-plasticity induced by a magnetic field”. Choi (2009) and Opie and Yim
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(2007) performed dynamic shear tests up to 10% and 20% strain, respectively. Both found

that the MR effects decreased at larger strains. However, Opie and Yim (2007) stated that

“the change in storage modulus is still reasonably high for the 20% strain amplitude”. These

tests are not further detailed here. Yu and Wang (2010) designed a sample in which the cop-

per coil that produced the magnetic field was inside the MRE itself. The stress-strain results

and the shear modulus are illustrated in Figure 2.17a. A 77% MR increase in the small strain

region was reported, but only 25% increase is observable from the plot provided. However,

the MR effect is still reasonably high with 15% in the large strain region. The copper coil in-

side the MRE sample stiffens the specimen leading to a no-field modulus of 7MPa. Lower

relative MR effects are usually achieved when the no-field moduli are large. Zajac et al.

47.9 mT
24.0 mT
0.0 mT
without coil

(a) Shear tests performed by Yu and Wang (2010) (b) Shear tests performed by Zajac
et al. (2010)

Figure 2.17: Results of the shear tests performed by (a) Yu and Wang (2010) and (b) Zajac et al.

(2010). Yu and Wang designed a new MRE setup with the copper coil inside the MRE
sample itself: the legend in the Figure referring to ‘without coil’ means a simple MRE
sample.

(2010) characterised the MR effect as a change of the area enclosing the stress-strain hyster-

esis curve, and as a change of stress amplitude (Kaleta et al., 2011; Krolewicz et al., 2012;

Zajac et al., 2010). The relative change of hysteresis area versus the strain amplitude for

various frequencies is illustrated in Figure 2.17b. Hu et al. (2011) performed dynamic shear

experiments, and the storage and loss moduli are shown in Figure 2.18. Details of the MRE

materials used, the magnetic inductions applied and the resulting MR effect of the discussed

simple shear experiments are summarised in Tables 2.4 and 2.5.

Equi-Biaxial Tests Thus far, no biaxial tests with an applied magnetic field have been

performed on MREs. Recently, Zhou et al. (2013b) performed the first equi-biaxial tests on

MREs made of silicone rubber and 20 vol% CIP using the bubble inflation method, in the

absence of a magnetic field. Zhou et al. (2013a) studied the fatigue behaviour of isotropic

and anisotropic MREs with 1000 cycles up to 200% strain.
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(a) Storage Modulus (b) Loss Modulus

Figure 2.18: Results of the dynamic shear tests performed by Hu et al. (2011).

Gordaninejad Shen Stepanov

M
R

E
M

at
er

ia
l

Matrix Silicone Rubber Poly-Urethane Vinyl Rubber
Particles CIP, 2 to 8 µm CIP Iron, 2 to 70 µm
VPC 23.9% 25% 23.9%
Magnetic Flux 1 T 400mT 400 mT
Modulus E0 350 kPa 513 kPa 20 kPa

T
es

t

Strain Level 15% 12% 20%
Magnetic Flux 700mT 395mT 80mT
Direction ⊥ loading ⊥ loading ⊥ loading

‖ alignment ‖ alignment

M
R absolute 130 kPA 327 kPa 150 kPa

relative 37% 64% 750%

Table 2.4: Simple shear tests performed by Gordaninejad et al. (2012), Shen et al. (2004), and
Stepanov et al. (2007) are summarised. The MRE material (matrix, particles, VPC,
magnetic flux during curing, and no-field moduli E0), the strain level and applied flux
during the experiment, and the resulting MR effects are listed.

Yu Zajac Hu

M
R

E
M

at
er

ia
l Matrix Silicone Rubber Thermoplastic Silicone Rubber

and Oil
Particles CIP , 2 to 5 µm Iron, 60 µm CIP, 4.5 to 5.2 µm
VPC 33% 35% 23.9%
Magnetic Flux not provided Isotropic Isotropic
Modulus E0 7 MPa not provided 30 kPa

T
es

t

Strain Level 120% 12.5% 100%
Magnetic Flux 47.9 mT 163mT 400mT
Direction not provided ⊥ loading not provided

‖ alignment

M
R absolute 1.75 MPa not provided 125 kPa

relative 25% 70% 500%

Table 2.5: Simple shear tests performed by Yu and Wang (2010), Zajac et al. (2010), and Hu
et al. (2011) are summarised. The MRE material (matrix, particles, VPC, magnetic
flux during curing, and no-field moduli E0), the strain level and applied flux during the
experiment, and the resulting MR effects are listed.
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Summary To summarise in the literature, MREs have been tested under uniaxial com-

pression with a maximum strain level of 40% (Varga et al., 2006). The MRE materials

differed in each investigation, with the no-field moduli of the MREs ranging from as low as

17.4 kPa up to 4.5 MPa, and the volume particle concentrations from 5.5% to 35%. The

applied magnetic inductions ranged from only 100 mT up to 1 T . Relative MR effects from

as low as 4.5% up to 223% were reported. Given the large differences in the compression

tests, direct comparison is difficult. MREs have also been characterised using simple shear

tests. The maximum strain was as large as 120%, the smallest strain level only 12.5%. The

no-field moduli of the tested MREs ranged from 20 kPa up to 7.2 MPa, and the applied

inductions from 80 mT up to 1 T . The achieved relative MR effects varied from 64% up

to 750%. Once again, a direct comparison of the results is difficult, though certain trends

emerge. Only the uniaxial tension tests performed by Stepanov et al. (2007) achieved an

MR effect. MREs have yet to be studied under pure shear deformation and under multi-axial

deformations.

It is not only that the chosen MRE materials differ in each investigation that makes compar-

ison difficult: The investigators often failed to provide information about the preconditioning

of the samples, it is not stated whether the MR effects were obtained from the first loading

cycle, or whether the material experienced several loading-unloading cycles prior to the re-

cording of data. As MREs are highly sensitive to the stress-softening known as the Mullins

Effect (Mullins, 1969) this would be very important to know. The different maximum strain

levels in each investigation is another fact that cannot be ignored as MREs are softer when

stretched up to a higher level (Mullins Effect). Also, the volume iron concentration and the

structure of the MREs (isotropic or anisotropic) must be known as they play an important

role in the achieved MR effects. All these considerations are important for meaningful com-

parison of the results of such investigations.

To compare all large-strain experiments found in the literature the absolute and relative MR

effects related to 100mT applied induction are illustrated in Figures 2.19 and 2.20. The no-

field moduli, the iron content, the structure of the MREs, and the level of strain applied during

the experiment influence the resulting MR effects as discussed above. This information is

provided in the figures, and is also listed in Tables 2.1 to 2.5.

Stepanov et al. (2007) achieved the highest relative MR effects of about 3000% in tension

with 335 mT induction, and of about 750% in simple shear with only 80 mT . These results

are remarkably high, but when compared to the absolute MR effect they are well within the

range of other reported results. The large relative MR effects are due to the very low no-

field moduli of 13 kPa and 20 kPa in tension and shear, respectively. On the other hand,

Gudmundsson (2011) achieved a very large absolute MR effect of 5.5MPa with an applied

flux of 700mT . Despite this, the relative effects are well within the range of others findings.

This is due to the very high no-field modulus of about 4.5 MPa. Thus, both the absolute
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Figure 2.19: The absolute MR effects related to 100mT applied magnetic induction are compared
for each of the performed large-strain experiments published in the literature. The no-
field modulus E0, the VPC, and the structure of the MRE used, and the level of strain
are provided. The MR effects achieved in this study are also included.
























 
 
  
  
 

 
























 



























 

























 



























 



























 
























 
























 



























 

























 


































 

























 



























 



























 



























 


























 


























 






































 




































 






  












 




























Figure 2.20: The relative MR effects related to 100mT applied magnetic induction are compared
for each of the performed large-strain experiments published in the literature. The
no-field modulus E0, the VPC, and the structure of the MRE used, and the level of
strain are provided. The MR effects achieved in this study are also included.
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and relative MR effects should be considered when interpreting the results.

The following trends were observed in the reported large strain experiments:

• Low no-field moduli of the MRE material lead to higher relative MR effects, but not

inevitably to large absolute MR effects.

• The MR effect increases with increasing iron content.

• Anisotropic MREs perform better than isotropic MREs. The highest effect were achieved

when the magnetic flux density was applied in the loading direction and parallel to the

particle alignment (Varga et al., 2006).

• The MRE material saturates above 700 mT magnetic induction and the MR effects

do not increase further when higher levels of magnetic flux are applied (Gordaninejad

et al., 2012; Kallio, 2005).

• Uniaxial compression tests revealed lower MR effects than other deformation modes.

• No conclusions can be drawn regarding the applied strain level.

To develop constitutive models, combinations of several deformation modes performed on

the same type of material, and ideally up to the same extent of strain, are essential (Miller,

1999). The large differences in materials and strain amplitudes applied in the research pub-

lished thus far, make it impossible to use such data to develop accurate constitutive models.

In the present study, the MRE behaviour is examined in uniaxial compression and tension,

in pure shear, and in equi-biaxial tension deformation modes. The same type of material was

used in all the experiments. This study presents a consistent set of experimental data obtained

from different deformation modes. The experimental data are suitable for the development

of constitutive models using the phenomenological approach. The maximum absolute and

relative MR effects achieved in this investigation are included in the comparison shown in

Figures 2.19 and 2.20. Despite the fact that the no-field moduli of the MREs used in this

study are relatively large compared to many previous studies, the relative MR effects are

within the range published in the literature. Very high absolute MR effects were measured

during the large strain experiments performed in this investigation.
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3 Manufacture of MREs

MREs consist of a non-magnetic elastomeric matrix material in which magnetic particles

are dispersed. The magnetic particles are locked into position after the elastomeric material

has been cured, as such anisotropic materials can be produced by placing the MRE mixture

in a magnetic field during the curing process. This forces the magnetic particles to align

in chains. A silicone rubber mixed with silicone fluid, resulting in a matrix material with

low viscosity and small zero-field modulus, was used as the matrix material. Carbonyl Iron

Powder (CIP), with an average particle size of approximately 4 µm, was employed as the

magnetic particles. Details and properties of the chosen materials are discussed in Sections

3.1 and 3.2. Isotropic and anisotropic MREs with up to 40 vol% iron particle content were

produced with a reliable and repeatable manufacturing process as described in Section 3.3.

Details about the designed moulds, and the use of the electromagnet are provided. The

microstructure of the MREs is presented in Section 3.4.

3.1 Elastomeric Matrix

The matrix material is an Room Temperature Vulcanising (RTV) two-component silicone

elastomer. Silicone rubber exhibits excellent high and low temperature performance, it can

handle temperatures ranging from −40°C to 200°C. It shows excellent ozone and chemical

resistance and very good UV resistance, it is also very easy to use. Silicone rubber seems

to be the best choice of matrix material for MRE materials due to the good properties. It

has been used previously by many researchers to test the performance of MREs (see Section

2.3). In this investigation, silicone rubber from the company ACC Silicones has been used

(product code: MM 240 TV). The system consists of the rubber component (A) and the

hardener component (B): these both are mixed together with the ratio A : B = 10 : 1. The

system can be cured at ambient temperatures within 24 hours, but the rate of cure can be

accelerated by heating. Flexible heaters (Watlow Silicone Rubber Heaters, see Appendix

A.5) were used in this investigation to cure the material at 100 ◦C, this reduced the curing

time to 1.5 hours. Mechanical properties of the neat silicone rubber are listed in Table 3.1 (the

data sheet can be found in Appendix A.1). The viscosity of the silicone rubber is relatively

high, making it difficult to mix in significant quantities of CI particles. The high viscosity

also creates difficulties in aligning the particles using a magnetic field. Finally, the Young’s

modulus (see Table 3.1) is quite high for use in an MRE, and a high no-field modulus leads

to lower relative MR effects (see Section 2.5). To reduce the viscosity of the uncured product

and also to reduce the modulus of the final cured elastomer, silicone fluid was added to the

silicone rubber. In this investigation, silicone oil from the company ACC Silicones was used
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Property MM 240 TV

Viscosity 96000 mPa · s
Tensile Strength 5.4 MPa
Elongation at break 330 %
Young’s Modulus 1.88 MPa
Hardness 40 ◦ShoreA

Table 3.1: Properties of silicone rubber MM 240 TV (provided by ACC Silicones)

(product code ACC 34). The latter is a low-viscosity silicone diluent that can be employed

as a viscosity modifier. It is a clear, colourless liquid with a viscosity of 5 mPa · s (see data

sheet in Appendix A.2). ACC Silicones recommends adding of 30% by weight to silicone

rubber MM 240 TV.

3.2 Magnetic Particles

Carbonyl Iron Powder (CIP) was chosen as the magnetic particles (Type SQ) purchased from

the company BASF, see Appendix A.4). This mechanically soft powder has a diameter of

d50 = 3.7−4.7 µm, meaning that 50% of the particle volume has a diameter lower than that.

This powder is a grey, fine powder comprised of spherical particles. CIP is characterised by

its high purity, it contains 99.5% iron (see Table 3.2). CI powder is obtained from a thermal

decomposition of iron pentacarbonyl; the name CIP results from the manufacture process.

Iron particles are often considered to be the best choice for manufacturing MREs because

of their “high permeability, low remnant magnetisation and high saturation magnetisation”

(Lokander, 2002). These properties lead to a good inter-particle attraction, and consequently

to high MR effects (Carlson and Jolly, 2000). Many researchers have used CIP as magnetic

particles (see Section 2.3). The properties of CIP-SQ are listed in Table 3.2. In order to

Property CIP-SQ

Particle Size d50 3.7− 4.7 µm
Iron content > 99.5 %
Carbon content < 0.05 %
Nitrogen content < 0.01 %
Oxygen content < 0.3 %
SiO2 content < 0.1 %

Table 3.2: Properties and composition of the carbonyl iron powder CIP - SQ provided by BASF

characterise the particle size distribution a Coulter Laser Machine LS230 was employed. To

this end, a few grams of the iron powder were mixed with 25ml water and 10ml of Calgon

(Sodiumhexametaphosphate SHMP) to prevent agglomeration. The mixture was put into the

laser machine and the laser diffraction was measured to infer particle size distribution. The
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cumulative distribution curves are shown in Figure 3.1, and the d50 can be read with 4 µm:

this is in agreement with the values provided by the company (see Table 3.2). A Scanning

       








    












 
 
 


(a) Particle size distribution

       












    















 
 
 


(b) Cumulative particle size distribution

Figure 3.1: Laser diffraction analysis of carbonyl iron powder (CIP) of type SQ from the company
BASF done with a Coulter Laser Machine LS230, d50 = 4 µm is marked.

Electron Microscope (SEM) image of CIP is shown in Figure 3.2.

Figure 3.2: SEM image of carbonyl iron powder (CIP) (courtesy of BASF)

3.3 Manufacture Process

A manufacture process was developed to prepare the MRE test samples. This involved mix-

ing the two components of the silicone rubber (MM 240 TV), at a ratio of 10:1, 30 w% of the

thinner (ACC 34) and the desired amount of magnetic particles (CIP-SQ), for 3 min using a

standard kitchen hand mixer. The hardener (component B of the silicone rubber) was added

as the last component; the pot life of the silicone rubber (MM 240 TV) is one hour (see Ap-

pendix A.1). The pot life starts as soon as the hardener is added to the rubber component,

and is the time until the curing process starts. Volume particle concentrations from 0 to 30%

were added to produce MREs: these volume concentrations are related to the final volume of

the MRE product. The mixture was prepared in disposable buckets of one litre volume, and

disposable pipettes were used to accurately measure the correct amount of each component.

The components and consumables are shown in Figure 3.3.

After mixing, the bucket was placed into a vacuum apparatus for 10min to degas the uncured

fluid mixture. All parts of the moulds were sprayed with a silicone release agent to ensure
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(a) MM 240 TV and ACC 34 (b) CIP-SQ, silicone release agent, hand mixer,
consumables, compression moulds

Figure 3.3: Silicone rubber components of MM 240 TV, the silicone fluid ACC 34, the carbonyl
iron powder CIP-SQ and the used consumables to manufacture MRE material

release of the cured product from the mould after curing. The MRE mixture was poured into

the moulds immediately after the degassing process. The moulds were made of aluminium,

a non-magnetic material. The moulds were properly closed using brass screws, and were

placed between flexible heaters (silicone rubber heaters provided by Watlow, see Appendix

A.5). After 1.5 hours curing time at 100 ◦C the final product was demoulded.

Different moulds were used according to the desired specimen shape. Samples for compres-

sion tests were cylindrical with a diameter of 29 mm and a height of 13 mm. The sample

dimensions are in accordance with the British Standard (BS ISO 7743, 2008). Two samples

were prepared in each mould. An image of the compression moulds is shown in Figure 3.4,

technical drawings can be found in Appendix B.1.

(a) MRE mixtures is poured into
compression moulds

(b) Moulds between flexible
heater plates

(c) Demoulded MRE samples and
moulds after usage

Figure 3.4: Aluminium moulds for preparing compression samples.

The tension samples were dog-bone shaped with a narrow part of 16 x 4mm and a thickness

of 2mm, the overall length was 50 mm. The sample dimensions are in accordance with

British Standard (BS ISO 37, 2005). The moulds were built with a reservoir at the top

through which the mixture was poured; this is because the mixture needed time to flow into

the mould. The moulds can be opened completely for demoulding. Pictures of the tension
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moulds are shown in Figure 3.5, technical drawings can be found in the Appendices B.2 and

B.3. The tension moulds were put in the vacuum apparatus for another 10 min after the

(a) Mould with mixture (b) Curing (c) MRE samples ready for demoulding (d) MRE samples

Figure 3.5: Aluminium moulds for preparing tension samples. Please note that one of the MRE
samples shows an imperfection and can not be used.

mixture was poured in, to reduce imperfections as seen in Figure 3.5.

Samples for equi-biaxial tension tests and pure shear tests were thin sheets of MRE material.

The moulds to prepare these samples were identical except for the sample dimensions. The

samples for equi-biaxial tests were square sheets with a side length of 50mm and a thickness

of 2 mm. Samples for pure shear tests were 1 mm thick and rectangular with a length of

50mm and a height of 30mm. Similar to the tension moulds, there was a reservoir at the top

through which the MRE mixture was poured. Again, moulds could be opened completely for

demoulding. Four samples were prepared in each mould, as shown in Figure 3.6. Technical

drawings of the moulds used for the pure shear and the biaxial samples can be found in

Appendices B.4 and B.5. After the mixture was poured into the moulds they were placed

(a) Parts of the biaxial mould (b) Top view (c) MRE mixture (d) Pure shear mould

Figure 3.6: Aluminium moulds for preparing pure shear and biaxial tension samples.

in a vacuum apparatus for another 10 min to eliminate air bubbles. To fast-cure the MRE

samples these moulds were also placed between heater plates. The amounts of silicone

rubber, silicone fluid and CIP used for each of the sample types are provided in Appendix C.

To prepare anisotropic MREs, the moulds were placed between the magnetic poles of an

electromagnet during the curing process. The electromagnet was driven by a DC power sup-
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ply and a DC amplifier (AE Techron LVC 623, see Appendix A.7). High magnetic inductions

of up to 2 T could be produced, depending on the distance between the poles and the current

input. To achieve the same magnetic field strength for all moulds in all directions a magnetic

field strength of 400mT was chosen to align the particles. The magnetic field was measured

with a Gaussmeter (FW Bell 5180, see Appendix A.9). The electromagnet shown with the

biaxial mould positioned between the magnetic poles, together with the DC supply and amp-

lifier are shown in Figure 3.7a. A close-up of the mould and heater plates (the latter driven

by a temperature controller) are shown in Figure 3.7b.

(a) Electromagnet with DC supply and amplifier,
heater plates with temperature controller

(b) Biaxial mould is in
between magnetic poles

Figure 3.7: Manufacturing of anisotropic MRE samples with an electromagnet; a magnetic induc-
tion of 400mT is used to align the particles

The longest sample dimension was restricted to 5 cm, partly due to maximum pole-to-pole

distance of the electromagnet, due to the length of the flexible heaters (5.1 cm wide and

12.7 cm long), and also due to the distance between the permanent magnets that were used

during the mechanical characterisation experiments (see Chapter 5). The latter distance has

to be short enough to produce magnetic fields of a certain required strength. The larger the

distance between the magnets the less magnetic field strength is produced.

3.4 Microscopic Analysis of MREs

Both isotropic and anisotropic MREs were analysed under an optical microscope using Nor-

marsky optics to check whether: (i) the distribution of the particles in MRE samples cured

in the absence of a magnetic field (isotropic MRE) were random and uniform, and (ii) the

particles in MRE samples cured under a magnetic field (anisotropic MREs) were aligned

into oriented parallel chains. Isotropic MREs were also observed with confocal microscopy

using a Zeiss LSM 510 META. The microstructure of an isotropic sample containing 10 vol%

iron particles, observed using the optical microscope is shown in Figure 3.8a. The confocal

microscope can focus on a very narrow depth of field, effectively imaging one very thin slice



3.4 Microscopic Analysis of MREs 31

(a) Optical Microscope (b) Confocal Microscope

Figure 3.8: Microscopic images of isotropic MREs containing 10 Vol% CIP. An optical and a
confocal microscope were used. The magnification scale is shown on the images.

of the MRE sample as shown in Figure 3.8b. In contrast, images from the optical microscope

show a large depth of field, consequently the image shows many more particles. The distri-

bution of the particles within the observed sample show no obvious directionality (see Figure

3.8). Particles within anisotropic MREs, prepared using 400 mT magnetic induction, show

strongly aligned chains of particles. A sample containing 10 vol% iron particles is illustrated

under different magnifications in Figure 3.9. Thus it was concluded that a 400mT magnetic

(a) Magnification of 20× (b) Magnification of 50× (c) Magnification of 100×

Figure 3.9: Microscopic images of anisotropic MREs containing 10 Vol% CIP. An optical micro-
scope were used, and the MRE is shown in different magnifications.

induction applied during the curing process is enough to align the particles strongly within

the elastomeric matrix material.
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4 Magnetic Permeability of MREs

The magnetic flux density, B, has been measured in close proximity to the MRE speci-

mens in order to identify the relative permeability, µr, of both the isotropic and anisotropic

MREs. The magnetic permeability of MRE materials must be clarified in order to simulate

the strength and distribution of the magnetic flux density within experimental setups used to

characterise the MRE behaviour (see Chapter 5). To understand and interpret MR effects,

and to develop constitutive models that correctly characterise the MRE behaviour under the

influence of a magnetic field, the magnetic properties of MREs must be known. A short

theoretical overview on the electromagnetic theory is provided in Section 4.1. The mag-

netic permeability of CIP, and measurements and calculations of the effective permeability

of composite structures found in the literature are presented in Section 4.2. The performed

experimental measurements of both the magnetic induction and magnetic attractive force are

reported in Section 4.3. Simulations using the commercial multi-physics finite element soft-

ware Comsol were performed in order to identify the magnetic permeability of MRE samples

using an inverse modelling approach; this is detailed in Section 4.4.

4.1 Theoretical Overview

The relation between the magnetic induction, B, and the magnetic field, H in vacuum, in air,

or any other non-magnetic environment is constant and defined as

B = µ0 ·H (4.1)

where µ0 is the constant of permeability and has a value of 4π · 10−7 V s/Am or 1.256 ·
10−6 V s/Am. The units of H are ampere per meter, and those of the magnetic induction,

B are Teslas (SI system of units). In magnetic environments B is no longer constant, and is

defined with

B = µ0µrH (4.2)

with the relative permeability µr = µ/µ0. The value of µr is 1 for vacuum but can reach

values above 1000 for soft magnetic materials such as iron. The magnetic susceptibility, χ,

is closely related to the relative permeability and is defined as

µr = 1 + χ. (4.3)

Using the susceptibility, the magnetic induction, B, can also be defined as

B = µ0(1 + χ)H = µ0(H + χH) = µ0(H +M) (4.4)
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where the magnetisation, M , contributes to the magnetic material.

For ferromagnetic materials, which are non-linear, the specific permeability of the material,

µ, is a function of H , and the magnetisation curve, B(H), is characterised by the initial

permeability, µin, and by the saturation magnetisation, BS . The initial permeability, µin, is

defined as

µin =

(

dB

dH

)

B=0,H=0

=

(

B

H

)

B→0,H→0

. (4.5)

Every magnetic material saturates at a certain level of magnetic induction defined as BS , at

which point the slope of the magnetisation curve, B(H), is then the relative permeability of

a vacuum. The permeability of composites such as MREs is best described by an effective

permeability, µe, because composites are a mixture of magnetic and non-magnetic materials.

For a more detailed description of electromagnetic theory, see Jiles (1998).

4.2 Magnetic Permeability of CIP and MREs

To enable the comparison with the identified permeabilities in this investigation, the liter-

ature was reviewed for models and experimental investigations determining the magnetic

properties of composites. In this section, the non-linear magnetic properties of CIP as a fer-

romagnetic material are discussed with the main goal to clarify whether or not the magnetic

non-linearity of the CIP material have to be acknowledged in order to calculate the effective

permeability of composites. The models and experiments giving the magnetic permeability

of composites such as MREs are also reviewed in this section.

4.2.1 Magnetic Permeability of Carbonyl Iron Powder (CIP)

CI powder is the most common type of magnetic particles used in MREs. CIP is a soft

ferromagnetic material with a non-linear magnetisation curve. For more information about

the classification of magnetic materials see Sibley (1996). The magnetic permeability is

dependant on the strength of the magnetic field H . The initial permeability is provided in

technical data sheets of CIP manufactured by BASF, i.e. the type CIP-SQ has an initial

permeability of µin = 37 − 38. Williams (2006) stated the initial permeability of CIP as

µin = 35 of a similar type of CIP. Jiles (1998) provides a value for the saturation flux density

of BS = 2.15 T (the same as iron).

There are several options to estimate the magnetisation curve B(H) using the parameters

µin and BS . A bilinear approach can be used with the initial permeability, µin, taken to

be the initial slope and the permeability of vacuum µr = 1 to be the final slope of B(H).

The intersection point between the two linear functions is the saturation induction, BS . The

magnetisation curve, B(H), and the permeability, µr, calculated with the bilinear approach

are illustrated in Figure 4.1.
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Integrated Engineering Software (2013) provides a tool to estimate the relationship between

the magnetic induction, B, and the magnetic field, H , more exactly. “Reasonable transition

data” are provided between the initial linear part of the B(H) curve, where B = µinµ0H and

the final linear function, where B = BS + µ0H (Integrated Engineering Software, 2013).

The result of this approach is plotted in Figure 4.1.

Since the analytical function used by Integrated Engineering Software (2013) is not provided,

a function describing the transition curves between the two linear functions, similar to the

one provided by Integrated Engineering Software (2013), can be derived. The initial and the

saturated regime can be well described using linear functions defined as:

Blin1(H) =µinµ0H (4.6)

Blin2(H) =µ0 ·H +BS (1− 1/µin) (4.7)

Judging from the curve shape, a root function is suitable for the transition. In order to

determine the exact form and parameters of the function, the starting point of the transition

curve was set to B1 = 0.9 T with a slope of B′(H) = µinµ0 to match the initial linear

function. The end point of the transition curve was defined with B2 = 2.35 T with a slope

at this point of B′(H) = µ0. The positions of start and end points together with the slopes at

these points lead to four constraints. A root function with a linear part having four unknown

parameters is suggested:

Btrans(H) = p1 ·Hp2 + p3 ·H + p4 (4.8)

The system of non-linear equations is then solved using the Matlab function fsolve (Matlab,

2013). The resulting matrix of parameters, p for the initial permeability µin = 37, and the

saturation induction BS = 2.15 T , are:

p =























−3.5417 · 101
−2.1147·10−1

−1.4875·10−6

5.3208 · 100























(4.9)

The resulting magnetisation curve B(H) and also its first derivative B′(H) = µ(H) are il-

lustrated in Figure 4.1. The magnetisation curve is similar to the one provided by Integrated

Engineering Software (2013) but with a clearly defined analytical function. Using this func-

tion, the parameter µin can be changed as required. The analytical function is summarised
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with the following equation:

B(H) =



























µ0µinH : 0 < H <
B1

µinµ0

p1 ·Hp2 + p3 ·H + p4 :
B1

µinµ0

< H <
1

µ0

[B2 − BS (1− 1/µin)]

µ0 ·H +BS (1− 1/µin) : H >
1

µ0

[B2 − BS (1− 1/µin)]



























(4.10)

for which the parameters p1 to p4 have to be determined for each special case of µin and BS .

An empirical relationship between the magnetisation M , and the magnetic field H , is the

Fröhlich and Kennelly Model given in Zhang et al. (2007) as

µ(H) =
H · (µin − 1) + µinMS

H · (µin − 1) +MS

(4.11)

where MS is the saturation magnetisation given by BS/µ0 = 1.71e6 A/m. The magnetisa-

tion curves, B(H), and the relative permeability, µr, versus the magnetic field H produced

using each of these approaches are compared in Figure 4.1.
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Figure 4.1: Estimation of the magnetisation curve B(H) (black lines) and the related relative per-
meability µr (red lines) of carbonyl iron powder (CIP). The bilinear approach, the es-
timation of Integrated Engineering, the Fröhlich-Kennelly relation, and the root func-
tion (Equation 4.10) are compared. Parameters are µin = 37 and BS = 2.15 T .

Now considering the permeability of composites such as MREs, Martin et al. (2006) stated

that “the susceptibility of a single particle is much more a function of shape and orientation

of the particle than the material of which it is composed”. The susceptibility, χ, of a spherical
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particle is defined as

χp = 3(µp − 1)/(µp + 2) (4.12)

where µp is the relative permeability of the material of which the particle is composed. This

equation predicts that the susceptibility and thus the relative permeability of the particle is

very small compared to the permeability of the material itself. For materials such as iron

with a high permeability of µp = 1000, Equation 4.12 predicts the susceptibility χp ≃ 3.

When taking the initial permeability of CIP µp = 37 the susceptibility is χp = 2.77. It can

therefore be concluded that the permeability of MREs is much smaller than that of iron due

to the particulate nature of the iron within the composite.

Returning to Equation 4.10 and changing the initial permeability µin in a range from 1 to 37,

Figure 4.2 shows that up to a high magnetic field of H = 5·105 A/m the magnetisation curve,

B(H) can be considered to be linear for initial permeabilities of µin ≤ 5. The maximum
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Figure 4.2: Estimation of the magnetisation curve B(H) using the analytical root function (Equa-
tion 4.10). The initial permeability µin ranges from 1 to 37, while the saturation flux
density is kept constant with BS = 2.15 T .

permeability of MREs reported in the literature is µe = 6.68 (Zeng et al., 2013). Therefore

it is sufficient to assume the CIP material to be magnetically linear with a constant relative

permeability, µr, rather than being dependant on the magnetic field, H . This simplifies all

further considerations about the magnetic permeability of composites.

4.2.2 Permeability of Composite Structures

To calculate the effective permeability µe of composites it is sufficient to work with a constant

relative permeability of the particles µp as discussed in the previous section. The initial

permeability of CIP is used as the permeability of the magnetic particles µp = 37, although
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other researchers use µp = 1000 (Chen et al., 2007b; Martin et al., 2006). The matrix

material is non-magnetic with a permeability of µm = 1. Different theoretical approaches

and experimental investigations to find the permeability of composites are reviewed and

compared in this section, although most are not specific to MREs.

The Maxwell-Garnett mixing rule is the best known for predicting the permittivity ǫ of iso-

tropic structures. Since the permittivity and the permeability are both material properties for

electrical and magnetic behaviour, respectively, and both are connected through the speed of

light c only, the Maxwell-Garnett mixing rule can equally be used for calculating magnetic

permeability. The Maxwell-Garnett mixing rule as a three-dimensional mixing model for

spherical inclusions is given by Sihvola and Lindell (1997) as

µiso = µm +
3Φµm(µp − µm)

µp + 2µm − Φ(µp − µm)
(4.13)

where Φ is the volume particle concentration. The permeabilities of isotropic MREs are

calculated with the Maxwell-Garnett mixing rule, the results of which are shown in Figure

4.4. Karkkainen et al. (2000) provided a two-dimensional version of this mixing rule, but

this is not discussed here as it underestimates the effective permeability of three-dimensional

microstructures. Bruggeman (1935) suggested a model to estimate the effective permeab-

ility for unstructured composites. This model belongs to the effective medium theory and

considers the particles to be embedded in the effective medium, rather than in the matrix ma-

terial itself (as assumed for the Maxwell-Garnett mixing rule). A full discussion of effective

medium theory is beyond the scope of this work and can be studied elsewhere (Giordano,

2003, and references therein). The Bruggeman model given by Ramprasad et al. (2004) is

written as:

Φm
µm − µiso

µm + 2µiso

+ Φp
µp − µiso

µp + 2µiso

= 0 (4.14)

where the volume concentration of the matrix material Φm = 1 − Φp. The results for µiso

using the Bruggeman model are illustrated in Figure 4.4. Vicente et al. (2002) conducted

measurements on CIP in silicone oil-elastomer suspensions on both unstructured and struc-

tured composites. The structured composite was cured under a magnetic field of 63 kA/m.

The sample was suspended at the end of a long non-magnetic rod. A magnetic field was

applied and the force on the sample was measured using a magneto-optic device. The per-

meability was proportional to the measured force. The results of Vicente’s measurements are

illustrated in Figure 4.3, and maximal values are shown in Figure 4.4. Chen et al. (2007b)

worked on MREs made of natural rubber with 11 vol% CIPs. The effective permeability of

isotropic and anisotropic samples was calculated. Chen used the two-dimensional version

of the Maxwell Garnett mixing rule to calculate the permeability of an isotropic structure

(ignoring the three-dimensional nature of the actual samples). Wiener bounds were used to

predict the effective permeability of anisotropic composites. Chen divided the MREs into
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(a) Unstructured Solids (b) Structured Solids

Figure 4.3: Permeability measurements on CIP in silicone oil-elastomer suspensions performed by
Vicente et al. (2002). The differential relative permeability µr,dif versus the applied
magnetic field H of (a) unstructured and (b) structured solids cured under 63 kA/m
for different particle volume fractions

several parts connected either in series or parallel (see Chen et al., 2007b, Fig.5). The per-

meability reached a maximum when the parts of the composite were placed in parallel and

reached a minimum when placed in series. The minimum and maximum permeability are

gives as:

µmax = Φµα + (1− Φ)µβ

µmin =
µαµβ

Φµβ + (1− Φ)µα

(4.15)

Chen et al. subsequently calculated the permeability both parallel µ‖ and perpendicular µ⊥

to the direction of particle alignment (see Chen et al., 2007b, Eq.8-12). Different magnetic

field strengths were applied during the curing process of anisotropic MREs. It was found

that particle lines become stronger and thicker with higher applied fields, resulting in larger

permeability along the alignment direction. Using Chen’s formulas the permeability can be

calculated when a magnetic induction of 400 mT is applied during the curing process. The

permeability parallel to the particle alignment is shown in Figure 4.4. Predictions by Chen

et al. underestimate the permeabilities when comparing the results against other models and

experimental investigations. Martin et al. (2006) performed measurements of magnetostric-

tion on an MRE made of silicone rubber and CIPs. The magnetostriction effect was found

to be strongly related to the permeability of the composite. Martin et al. (2006) produced a

formula for the effective permeability as part of the self-consistent point-dipole theory

µe =
1 + 2β(Φ + Ψ2)

1− β(Φ− 2Ψ2)
(4.16)
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where β = (µp − 1)/(µp + 2) is the so-called ‘contrast factor’, Ψ2 is a structural para-

meter, and Φ is the volume particle concentration. An equation for the structural parameter,

Ψ2 was provided by Martin et al. (2006), who performed finite element simulations with

10,000 particles to determine values for Ψ2 for anisotropic structures: a list of these values

is provided in Martin and Anderson (1999). With these values the effective permeability for

anisotropic composites can be calculated and is shown in Figure 4.4. For isotropic structures

the structural parameter Ψ2 = 0, and Martin’s formula is identical to the Maxwell-Garnett

mixing rule (Equation 4.13). Göktürk et al. (1993) conducted permeability measurements on

isotropic MREs composed of thermoplastic polymer and iron particles. The inductance and

resistance of the samples were measured to identify the magnetic permeability and magnetic

loss factor. The relevant results are illustrated in Figure 4.4. Göktürk et al. provided a theor-

etical approach for calculating the permeability of composites with a particle volume fraction

Φ < 0.2. Below this particle content the “particles act like isolated particles” (Göktürk et al.,

1993), which means that each particle experiences only the external field B0 without being

influenced by neighbouring particles. The effective permeability for composites with small

particle contents is given as:

µe = µ0(1 + 3Φ) (4.17)

Results calculated with the Göktürk theory are shown in Figure 4.4. Recently, Zeng et al.

(2013) measured the permeability of MREs prepared from silicone rubber and oil with

70 wt% (24 vol%) CIP. The relative permeability of this MRE material was determined

with µe = 6.68.

4.2.3 Comparison and Summary

Comparison of these prior theoretical and experimental investigations is presented in Figure

4.4. Permeabilities determined from the present work are also illustrated. The measurements

performed by Vicente et al. (2002) are quite close to the Maxwell Garnett Mixing Rule.

However, as stated by Zeng et al. (2013), the Maxwell Garnett Mixing Rule does not take

the “interaction between the particles into account”, which means that permeabilities may

well be underestimated. Chen et al. (2007b) employed the two-dimensional Maxell Garnett

mixing rule, and their results are clearly below the results of other experiments and theor-

ies. The theoretical approach of Bruggeman (1935) considers the interaction of the particles,

showing higher permeabilities especially for larger volume particle concentrations. Meas-

urements on isotropic structures performed by Göktürk et al. (1993) show the same tendency

as the Bruggeman model, although larger permeabilities were measured in the case of low

particle concentrations and smaller permeabilities were measured for high particle concen-

trations. Permeabilities determined from the present work are also illustrated in Figure 4.4

and agree very well with the Bruggeman model. The identification of the permeabilities for
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Bruggeman, 1935 − Effective Medium Theory for unstructured composites

Vicente et al., 2002 − Measurements on unstructured solids

Vicente et al., 2002 − Measurements on structured solids

Chen et al., 2007 − Anisotropic MREs (parallel to particle alignment)

Martin et al., 2006 − Uniaxial aligned structures

Göktürk et al., 1993 − Measurements on isotropic MREs
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This Study − Anisotropic MREs (perpendicular to particle alignment)

Figure 4.4: Effective permeability µe versus the volume particle concentration. Theoretical and
experimental investigations to determine the permeability of isotropic and anisotropic
composites are compared. The identified permeabilities of this study are illustrated as
well.

the several types of MREs is described in Sections 4.3 and 4.4.

4.3 Measurement of Magnetic Flux Density and

Attractive Force

In order to identify the permeability of MRE samples the magnetic flux density at various

positions around the specimen, and the magnetic attractive force existent between the per-

manent magnets, was measured. The test setup was attached to the uniaxial test machine

Zwick Z250, and strong permanent magnets (Neodymium N52, see Appendix A.12) were

fixed to the setup, positioned on either side of the MRE sample with an inter-magnet dis-

tance of 33 mm. As the setup was designed to perform large strain uniaxial compression

tests, further details about the setup are given in Section 5.2.2. Here, the test machine and

the setup did not actually move to perform an experiments, rather they were used as a fixture

to obtain reliable results of the magnetic flux density measurements. The load-cell of the

test machine was used to measure the attractive force, created by the two permanent magnets

facing each other. Cylindrical shaped compression samples, both isotropic and anisotropic

with differing amounts of iron particles were sequentially placed on the cradle positioned

between the magnets, and the magnetic flux was measured using a Gaussmeter (Bell Type

5180, see Appendices A.9 to A.11) at various positions around the specimen defined in Fig-

ure 4.6 and Table 4.1. The test setup together with the Gaussmeter is shown in Figure 4.5a.

To ensure a consistent Gaussmeter probe positioning, the latter was held by a clamp and the

tip of the probe was taped onto the plates of the setup. For the Top and Bottom positions the
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probe was taped on the top and bottom plate of the setup, respectively. To hold the probe

in the Mid-Height positions a small aluminium spacer of 6.2 mm height was fixed on the

bottom plate and the probe was taped onto this. The probe in the Top01 position is illustrated

in Figure 4.5b. The positions of the Gaussmeter probe were measured using a ruler and using

(a) Test setup for magnetic flux measurements (b) Gaussmeter probe taped on the
Top01 position

Figure 4.5: Setup for the magnetic flux density measurements to identify the permeability of iso-
tropic and anisotropic MRE samples.

photographs. The positions above and at the side of the specimen, where the magnetic flux

density was measured, are illustrated in the scheme in Figure 4.6, and the coordinates of the

points are listed in Table 4.1. To ensure same positioning of the different MRE samples,

Bottom02
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Top02
Top01

MRE

Bottom Magnet

Bottom01

x

y
Top01 Top02

01 02/04 03

Top View

Bottom Plate (Borders not illustrated)
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Bottomy

z

Bottom Plate
Bottom Magnet

Top Plate

Top Magnet

MRE

Side View

Figure 4.6: Scheme showing the positions where the magnetic flux density was measured experi-
mentally using a Gaussmeter.

the position was marked on the bottom plate of the setup. The measurements were repeated

on three samples of each MRE type: isotropic and anisotropic MRE with 10, 20, 30, and

40% volume iron concentration. For the anisotropic samples, measurements were taken with

particle alignment in vertical and the two horizontal directions (samples were rotated). The

direction of the particle alignment was marked while manufacturing the samples, in accord-

ance to the direction of magnetic flux density applied during the curing process. Mean values
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x [mm] y [mm] z [mm]

Top01 0.5 2.7 17.6
Top02 4.0 4.0 17.6

Botton01 1.2 19.4 0.6
Bottom02 2.4 21.7 0.6
Bottom03 1.1 26.0 0.6
Bottom04 12.6 22.5 0.6

Mid-Height01 0.4 19.0 6.8
Mid-Height02 1.1 21.0 6.8
Mid-Height03 0.8 28.0 6.8
Mid-Height04 9.1 21.0 6.8

Table 4.1: Coordinates of the positions where the magnetic flux density was measured experiment-
ally using a Gaussmeter. The coordinate system is defined in Figure 4.6.

and standard deviations are presented in the Figures 4.7 and 4.8; the measured magnetic flux

density is plotted versus the iron content of MRE samples. The magnetic flux measured
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(a) Isotropic MRE samples
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(b) Anisotropic MRE samples with vertical
particle alignment (z-direction)

Figure 4.7: Results of the magnetic flux measurements with a Gaussmeter at various positions
(defined in Figure 4.6 and Table 4.1). Mean values and standard deviations for iso-
tropic and anisotropic MREs with particle alignment in the vertical direction are illus-
trated versus the volume particle concentration.

above the MRE samples (Top positions) increases with increasing iron content and decreases

at the side of the samples (Bottom and Mid-Height positions). Higher iron contents within the

MRE samples are observed to result in higher effective permeability (see Figure 4.4). This

higher magnetic permeability concentrates the magnetic flux lines within the MRE samples,

effectively reducing the flux density at the side of the sample. As observed from the experi-

mental results shown in Figures 4.7b and 4.8, the particle alignment direction of anisotropic

MREs plays an important role. The increase in magnetic flux density measured above, and

the decrease in magnetic flux measured at the side of anisotropic MREs with vertical particle

alignment are larger, compared to equivalent measurements on anisotropic MREs with ho-
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(a) Anisotropic MRE samples with horizontal
particle alignment (x-direction)
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(b) Anisotropic MRE samples with horizontal
particle alignment (y-direction)

Figure 4.8: Results of the magnetic flux measurements with a Gaussmeter at various positions
(defined in Figure 4.6 and Table 4.1). Mean values and standard deviations for an-
isotropic MREs with particle alignment in the two horizontal directions are illustrated
versus the volume particle concentration.

rizontal particle alignment. From this it can be concluded that the magnetic permeability

behaves anisotropically in the anisotropic MREs with the highest value in the particle align-

ment direction. The attractive force between the permanent magnets, both with and without

the specimens placed between the magnets, was measured using the 1 kN load-cell of the

uniaxial test machine. The measured forces are shown in Figure 4.9. The top magnet was
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Figure 4.9: Results of the attractive force measurements. Mean values and standard deviations
for isotropic and anisotropic MREs with particle alignment in vertical and horizontal
directions are illustrated versus the volume particle concentration.

held by the upper rig structure of the setup attached to the test machine and load-cell. To

zero the force, the machine cross-head was raised as far as possible to maximise the distance

between the permanent magnets and minimise any influence of the magnetic field (measured

flux was 0 mT ). Once the force was zeroed, the cross-head was moved back to the original

position with the permanent magnets positioned 33 mm apart. The attractive force is higher
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for higher iron contents within the MRE sample. Anisotropic samples with vertical particle

alignment show the steepest increase. The mean values of the magnetic flux density and the

attractive force measurements are summarised in Tables 4.2 and 4.3.

MRE Sample Iron
[%]

Magnetic Field Strength B[mT ]
Top 01 Top 02 Bottom01 Bottom02 Bottom03 Bottom04

Pure Rubber 0 468.00 464.00 482.50 427.00 182.00 390.50

Isotropic MREs

10 509.63 505.00 468.25 419.00 175.50 384.13
20 542.50 538.00 459.33 410.33 168.67 377.50
30 572.38 567.88 447.00 397.75 162.00 369.60
40 590.25 583.00 433.50 386.75 156.75 362.00

Anisotropic MREs -
vertical alignment

10 522.88 518.63 467.50 416.25 174.00 381.75
20 560.63 557.13 455.00 405.50 167.50 373.38
30 590.50 594.25 442.50 394.25 160.25 366.75
40 604.63 601.63 431.50 384.20 154.25 359.40

Anisotropic MREs -
horizontal alignment
in x-dir.

10 502.00 497.50 471.50 416.75 176.25 384.80
20 530.63 527.25 459.13 407.75 170.00 378.00
30 555.25 552.13 446.00 398.75 161.25 370.43

Anisotropic MREs -
horizontal alignment
in y-dir.

10 502.63 498.25 466.50 412.25 174.00 382.60
20 532.50 527.50 452.00 401.50 166.75 377.20
30 556.13 550.75 435.25 388.00 160.25 368.14

Table 4.2: Average results of the magnetic flux density measurements at the Top and Bottom pos-
itions (Figure 4.6 and Table 4.1). These results were plotted versus the volume particle
concentration in Figures 4.7 and 4.8.

MRE Sample Iron
[%]

Magnetic Field Strength B[mT ] Force
Mid-Height01 Mid-Height02 Mid-Height03 Mid-Height04 [N ]

Pure Rubber 0 372.50 314.00 166.50 306.50 139.00

Isotropic MREs

10 351.00 299.50 159.75 295.75 148.75
20 327.67 283.67 152.67 282.67 156.00
30 298.50 266.13 147.00 273.25 164.00
40 267.25 249.00 139.50 261.38 170.75

Anisotropic MREs -
vertical alignment

10 342.25 294.50 157.75 292.75 150.75
20 312.11 276.75 150.00 279.63 160.50
30 281.38 257.13 142.25 265.25 169.25
40 264.89 247.00 137.00 255.88 176.50

Anisotropic MREs -
horizontal alignment
in x-dir.

10 351.25 299.25 159.75 295.25 148.00
20 332.38 287.13 155.00 287.25 154.00
30 305.25 269.63 148.80 276.63 160.75

Anisotropic MREs -
horizontal alignment
in y-dir.

10 345.00 296.75 158.75 293.50 148.00
20 317.50 274.75 152.25 282.50 154.00
30 279.50 259.63 144.80 269.00 160.75

Table 4.3: Average results of the magnetic flux density measurements at the Mid-Height positions
(Figure 4.5 and Table 4.1), and of the attractive force measurements. These results were
plotted versus the volume particle concentration in Figures 4.7, 4.8, and 4.9.
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4.4 Simulation of the Magnetic Flux Density using

Comsol

The aim of the work presented in this section is to determine the magnetic permeability

of the various MRE specimens through an inverse analysis. To do this, the experimental

measurements presented in the previous section are compared with results of a magnetic

field simulation performed in the multi-physics software Comsol (Comsol, 2011). Comsol

is a finite element code, and the AC/DC package is designed to simulate magnetic field

distributions. The experimental setup was described in Section 4.3, but only the permanent

magnets and the MRE sample were implemented into Comsol to simplify the model. The

setup itself was built of non-magnetic aluminium and brass materials, so these parts had no

influence on the magnetic flux simulation. The model geometry defined in Comsol is shown

in Figure 4.10. A model of one quarter of the experimental setup was created using two









Figure 4.10: Geometry defined in Comsol. Only the permanent magnets and the MRE sample
were implemented. Symmetry conditions were applied, and so only one quarter of
the setup was modelled.

planes of symmetry. The two magnets were modelled as cubes with rounded corners using

a fillet radius of 2 mm. To achieve that the magnets create a flux density of 550 mT at

their surface (see data sheet in Appendix A.12) the relation between the magnetic induction,

B, and the magnetic field, H , was set as defined in Equation 4.4 with a magnetisation M

of 1155 kA/m. The dimensions of the MRE samples were measured and average values

for both isotropic and anisotropic samples were used in the Comsol model, and are listed in

Table 4.4. In the case of anisotropic samples with horizontal particle alignment, the shape is

slightly ellipsoid with a larger diameter measured along the direction of particle alignment.

The B(H) relation is defined via the relative permeability (Equation 4.2), and µr of the

MRE sample is defined as a parameter in Comsol which can be varied using parametric
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Diameter ∅ [mm] Height [mm]

Isotropic MREs 28.57 13.35
Anisotropic MREs - vertical alignment 28.62 13.76
Anisotropic MREs - horizontal alignment 30.04 / 27.86 12.98

Table 4.4: Averaged dimensions of MRE samples used for the Comsol model. Isotropic and aniso-
tropic samples with vertical particle alignment have circular cross sections, anisotropic
MREs with horizontal alignment have elliptical cross sections with a larger diameter in
the direction of particle alignment.

sweeps. The permeability of a material can be either defined as isotropic, with the same

value in all directions, or as anisotropic with different values in the three directions. The

positions where the magnetic flux density was measured experimentally (defined in Figure

4.6 and Table 4.1) are defined as points in Comsol using the same coordinates. A large box

of air around the magnets and the MRE sample is required in the Comsol model to simulate

the reality as exactly as possible. If no medium would have been defined in between and

around the magnets, magnetic flux lines would not exist. The permeability of the air is

set to µr = 1. The air box must be large enough to ensure that the boundary conditions

are defined correctly. A parametric study was performed changing the size of the air box

until convergence of the magnetic flux results was achieved. The size of the air box was

determined with 300 × 600 mm. The size of the created finite element mesh was 3 mm

in the magnets and the samples, and was as big as 60 mm at the borders of the large air

box, with constantly increasing element sizes in between. The mesh size was defined as a

parameter in Comsol and a parametric study was performed with smaller and larger finite

elements. The results of the 3 mm mesh size achieved convergence.

To study the magnetic field distribution within the setup, and to enable comparison to the

experimental magnetic flux measurements, the magnetic permeability of the materials within

the model was adjusted using parametric sweeps. In this way, the magnetic flux density at the

same positions at those used to monitor the flux density in the experiments could be changed,

until a good agreement with the experimental data is obtained. This is done separately for

isotropic and anisotropic MREs.

4.4.1 Permeability of Isotropic MREs

In the Comsol model the magnetic permeability of the MRE sample was defined as isotropic,

implying that the MRE sample has the same permeability in all directions. A parametric

sweep was used to alter the relative permeability, µr from 1 to 10 in increments of 0.1. The

magnetic flux density at the various positions (Figure 4.6 and Table 4.1) and the attractive

force generated at the top magnet were then calculated. Results for flux and force are plotted

versus the relative permeability in Figures 4.11 and 4.12, respectively. Symmetry conditions
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were applied in the model; as such the predicted force had to be multiplied by four to provide

the actual total force generated between the two magnets. In order to identify the magnetic

                




















     











 








































Figure 4.11: The magnetic flux density BZ at various positions (Figure 4.6 and Table 4.1) calcu-
lated with Comsol is illustrated versus the permeability of isotropic MRE samples.
Average experimentally measured values (Tables 4.2 and 4.3) are plotted using the
identified permeabilities (Table 4.6). For the case of isotropic MREs with 40 vol%
iron content a range of magnetic permeabilities was identified: two markers have
been used to indicate the lower and upper limit of this range. The text inside the
figure lists the results for each isotropic MRE sample.

permeability of each isotropic MRE (with 10, 20, 30, and 40% volume iron concentration),

the simulation results were compared with the experimental measurements.

The identification process was performed as follows: For each position and for the attractive

force a range of possible permeabilities was identified by comparing the average experi-

mental values together with their standard deviations with the simulation results. Then an

intersection between those permeability ranges was calculated. The identified permeability

range at the Top01 position was used to start with the intersection process, and the other

position and attractive force permeability ranges were used to narrow the range down to a

final possible permeability. This was done in the order Top02, Bottom01 to Bottom04, and

Mid-Height01 to Mid-Height04 positions, and finally the permeability range found from the

attractive force measurements were compared with the already narrowed permeability range,

and either a single value of permeability or still a permeability range was identified for each

type of MRE. Note that in some cases, certain experimental data had to be ignored in the
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Figure 4.12: The attractive force between the permanent magnets calculated with Comsol is illus-
trated versus the permeability of isotropic MRE samples. Average experimentally
measured values (Table 4.3) are plotted using the identified permeabilities (Table
4.6). For the case of isotropic MREs with 40 vol% iron content a range of magnetic
permeabilities was identified: two markers have been used to indicate the lower and
upper limit of this range. The text inside the Figure lists the results for each isotropic
MRE sample.

intersection process as the permeability range found from the single positions or from the at-

tractive force measurements did not match with the narrowed permeability range determined

so far. An example to clarify the identification process is given in Table 4.5, the identified

permeability range for each position, and the ranges narrowed with the intersection process

are listed for the isotropic 30% MREs. The Top01 position was chosen as a starting point

for the intersection process as the measurements (Figure 4.7) and also the simulation res-

ults (Figure 4.11) showed that the magnetic flux at the Top01 and Top02 positions are close

together. The magnetic flux density is uniformly distributed in the centre of the permanent

magnets (where the Top positions are), whereas the distribution is less uniform closer to the

borders of the magnets (where the Mid-Height and Bottom positions are). The experimental

measurements of the Top01 and Top02 positions are judged to be the most reliable ones.

The values of magnetic flux density beside the sample (Bottom and Mid-Height positions)

are very sensitive to the position where they are measured or simulated, and due to this the

Mid-Height positions were judged as secondary results that are better at the end of the in-

tersection list. The attractive force between the two permanent magnets is a global value,

independent of any measurement position, so only one value was determined for each tested

MRE in contrast to the magnetic flux that was measured at 10 different positions. It has been
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Position / Force Range of permeability Intersection Process
Min [−] Max [−] Min [−] Max [−]

Top01 3.4 4.3 3.4 4.3
Top02 3.4 4.6 3.4 4.3
Bottom01 2.8 3.7 3.4 3.7
Bottom02 3.2 4.2 3.4 3.7
Bottom03 3.1 3.9 3.4 3.7
Bottom03 3.1 4.2 3.4 3.7
Mid-Height01 2.7 3.2 discard
Mid-Height02 3.7 4.7 3.7 3.7
Mid-Height03 2.7 3.1 discard
Mid-Height04 3.2 3.7 3.7 3.7
Attractive Force 3.2 3.3 discard

Table 4.5: Permeability range identified for each single measurement position and for the attractive
force results of an isotropic 30% MRE. An intersection process is performed to narrow
the range of permeabilities and to identify the final permeability of µiso = 3.7 for the
isotropic 30% MREs. The identification process is done analogously for the other types
of MREs, and the identified permeabilities are listed in Table 4.6.

decided that in the intersection process the attractive force results are the last ones in the

order. Having the order in the intersection process as described above led to the best possible

solution, whereas for all other orders more positions had to be discarded.

The permeabilities finally determined for isotropic MREs are listed in Table 4.6. In the case

of isotropic MREs with 40% iron content a range of permeabilities were identified rather

than a unique value. Experimental data measured from isotropic samples with different iron

Permeability µe [-]

Isotropic 10% MREs 1.6
Isotropic 20% MREs 2.2
Isotropic 30% MREs 3.7
Isotropic 40% MREs 5.9 . . . 6.2

Table 4.6: Identified permeability, µiso, of isotropic MRE samples. The permeabilities were iden-
tified with experimental magnetic flux and attractive force measurements in combina-
tion with the Comsol simulation.

contents are plotted in Figures 4.11 and 4.12 using the identified magnetic permeabilities

listed in Table 4.6. The measurements of magnetic flux density are in very good agreement

with the Comsol simulation results. Only the measurements at the Mid-Height01 and Mid-

Height02 positions disagree slightly with the Comsol results, but this is acceptable as the

magnetic flux density in the region beside the MRE specimen is sensitive to the position

where it is measured or simulated, as discussed above. The attractive force measurements

agree well with the simulation results for isotropic MREs with 10 and 20% iron content but

the experimental values are lower than the force calculated by Comsol in the case of higher

particle contents.
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4.4.2 Permeability of Anisotropic MREs

Anisotropic MREs with vertical particle alignment. In order to simulate samples

with vertical particle alignment, the magnetic permeability in the Comsol model was defined

as anisotropic, using values of µZ in the vertical direction and µX in the two horizontal

directions. An inner and outer parametric sweep was performed in Comsol to calculate the

magnetic flux density and the attractive force for all possible combinations of µZ and µX .

The sweep was performed using µ = 1 to 15 in increments of 0.1 for both µZ and µX . In

Figure 4.13 the magnetic flux density BZ (calculated at the positions defined in Figure 4.6

and Table 4.1), and in Figure 4.14 the attractive force results are plotted versus the relative

permeability, µZ . Solid lines represent the isotropic case where µZ = µX . The dotted lines

represent the anisotropic case with µZ > µX , with µZ as the largest permeability in the

direction of particle alignment (µZ < µX would rotate the particle alignment direction); the

dotted lines for different µX are plotted in steps of 1. Note that the change in µX does not

significantly change the magnetic flux density BZ calculated at the side of the specimen (the

                   





















          











 













































Figure 4.13: The magnetic flux density BZ at various positions (Figure 4.6 and Table 4.1) cal-
culated with Comsol is illustrated versus the permeability µZ of anisotropic MRE
samples with particle alignment in z-direction: solid lines represent the isotropic case
with µZ = µX and dotted lines the anisotropic case with µZ > µX . Average ex-
perimentally measured values (Tables 4.2 and 4.3) are plotted using the identified
permeabilities (Table 4.7). For the cases where a range of permeabilities was identi-
fied, two markers have been used to indicate the lower and upper limit of this range.
The text inside the figure lists the results for each anisotropic MRE sample.



4.4 Simulation of the Magnetic Flux Density using Comsol 51

dotted lines for Bottom and Mid-Height positions are close to the isotropic case). A larger

change in BZ for different values of µX is noticed only for the positions Top01 and Top02.

Note also, that the change in µX does not change the attractive force results much, so the

                  





















          










 
 





















Figure 4.14: The attractive force between the permanent magnets calculated with Comsol is illus-
trated versus the permeability µZ of anisotropic MRE samples with particle align-
ment in z-direction: the solid line represents the isotropic case with µZ = µX and
dotted lines the anisotropic case with µZ > µX . Average experimentally measured
values (Table 4.3) are plotted using the identified permeabilities (Table 4.7). For the
cases where a range of permeabilities was identified, two markers have been used to
indicate the lower and upper limit of this range. The text inside the Figure lists the
results for each anisotropic MRE sample.

dotted lines in Figure 4.14 are hardly seen as the results are close to the isotropic case.

The permeabilities of anisotropic MREs with vertical particle alignment were identified ana-

logously to the identification process described above. But in contrast to the isotropic MREs,

both the permeability in the vertical direction, µZ , and in the two horizontal directions, µX ,

have to be identified. For each position and for the attractive force a range of possible µZ and

µX was identified by comparing the average experimental values together with their standard

deviations with the simulation results. Then an intersection between the permeability ranges

was built in the same way as it was done for the isotropic MREs, to narrow the range of

permeabilities. Unlike the isotropic MRE samples, it was not possible to determine one spe-

cific permeability as a result, rather a range of possible permeabilities was found. The results

are summarised in Table 4.7. The ratio µZ/µX is provided to demonstrate the strength of the

particle alignment and the resulting magnetic anisotropy. The range of permeabilities µX is

very large as the change in µX does not significantly change the magnetic flux BZ especially

at the Mid-Height and Bottom positions, and does not change the attractive force much. The

average experimental values (listed in Tables 4.2 and 4.3) are plotted in the Figures 4.13 and
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Permeability µZ Permeability µX Ratio µZ/µX

Anisotropic 10% MREs 1.6 1.0 . . . 1.5 1.07 . . . 1.6
Anisotropic 20% MREs 2.7 1.0 . . . 2.4 1.13 . . . 2.7
Anisotropic 30% MREs 4.3 . . . 4.6 1.0 . . . 3.9 1.10 . . . 4.6
Anisotropic 40% MREs 6.0 . . . 6.9 1.0 . . . 5.3 1.13 . . . 6.9

Table 4.7: Identified permeabilities in vertical direction, µZ , and in the two horizontal directions,
µX , of anisotropic MRE samples with particle alignment in z-direction. The permeabil-
ities were identified with experimental magnetic flux and attractive force measurements
in combination with the Comsol simulation. The ratio µZ/µX is provided to show the
strength of particle alignment and the resulting magnetic anisotropy.

4.14 using the identified permeabilities µZ (Table 4.7) to compare with the Comsol simula-

tion results. In the case of a determined range of permeabilities (MREs with 30 and 40%

iron content) two markers were used to indicate the lower and upper limit of this range. The

experimental measurements agree very well with the Comsol simulation results. Measured

values and numerical predictions do not match exactly at Mid-Height01 and Mid-Height02

positions (Figure 4.13) for the same reason as discussed for isotropic MREs. However, the

results at the other positions are excellent. The attractive force simulation results are in

acceptable agreement with the experimental force measurements.

The anisotropic MREs with horizontal particle alignment are analysed in the next paragraph

to narrow the identified range of permeabilities (Table 4.7) further. The final permeabilities

of anisotropic MRE parallel (µ‖) and perpendicular (µ⊥) to the particle alignment direction

are listed in Table 4.10.

Anisotropic MREs with horizontal particle alignment. In order to calculate the

magnetic flux and attractive force when MREs with horizontal particle alignment are placed

in between the magnets, two cases are considered: MREs with particle alignment in x-

and y-direction. In Comsol, the permeability was defined as anisotropic, with µX as the

largest permeability when particle chains were aligned in the x-direction, likewise with µY

as the largest permeability when particle chains were aligned in the y-direction. The two

other directions were assigned equal permeabilities, both defined with µZ . The shape of

the MRE samples was slightly ellipsoid: the dimensions used for the Comsol model are

listed in Table 4.4. The magnetic flux density, BZ calculated in Comsol can be plotted

either versus the permeability in the particle alignment direction (µX or µY ), or versus the

permeability perpendicular to the alignment direction µZ . Both are plotted in Figure 4.15 for

the anisotropic samples with particle alignment in x-direction. The same can be done with

the attractive force as illustrated in Figure 4.16. The magnetic flux density and the attractive

force for MRE samples with particle alignment in the y-direction are not illustrated as the

figures would be almost identical to Figure 4.15 and 4.16, respectively. The magnetic flux

density BZ does not change significantly with increasing permeability µX ; this results in
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(a) Magnetic flux BZ versus µX
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(b) Magnetic flux BZ versus µZ

Figure 4.15: The magnetic flux density BZ at various positions (Figure 4.6 and Table 4.1) calcu-
lated in Comsol is illustrated versus the permeability (a) in particle alignment direc-
tion µX and (b) perpendicular to the alignment direction µZ . Solid lines represent the
isotropic case with µX = µZ and dotted lines the anisotropic case with µX > µZ .
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(a) Attractive force versus µX (inner solution)
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(b) Attractive force versus µZ (outer solution)

Figure 4.16: The attractive force between the permanent magnets calculated with Comsol is illus-
trated versus the permeability (a) in particle alignment direction µX and (b) perpen-
dicular to the alignment direction µZ . Solid lines represent the isotropic case with
µX = µZ and dotted lines the anisotropic case with µX > µZ .

virtually horizontal lines when plotting the results versus µX (see Figure 4.15a) and produces

nearly no variation of the dotted lines when plotting the results versus µZ (see Figure 4.15b).

The same behaviour is observed for the attractive force as seen in Figure 4.16.

To identify the permeabilities the same procedure as that used for isotropic MREs and an-

isotropic MREs with vertical particle alignment was used. The identified permeabilities of

MREs with particle alignment in x- and y-directions are listed in Tables 4.8 and 4.9, respect-

ively. Note the large range of possible permeabilities in the particle alignment direction (µX

or µY ); this is due to the small variation in BZ when increasing this permeability. The upper
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Permeability µX Permeability µZ

Anisotropic 10% MREs 2.0 . . . 10.0 1.6
Anisotropic 20% MREs 2.6 . . . 10.0 2.3
Anisotropic 30% MREs 3.7 . . . 10.0 3.2 . . . 3.5

Table 4.8: Identified permeabilities, in the direction of particle alignment, µX , and in the other ho-
rizontal and vertical direction, µZ , of the anisotropic MRE samples with particle align-
ment in x-direction. The permeabilities were identified with experimental magnetic flux
and attractive force measurements in combination with the Comsol simulation.

Permeability µY Permeability µZ

Anisotropic 10% MREs 2.0 . . . 10.0 1.7
Anisotropic 20% MREs 2.8 . . . 10.0 2.2
Anisotropic 30% MREs 4.3 . . . 10.0 3.8

Table 4.9: Identified permeabilities, in the direction of particle alignment, µY , and in the other ho-
rizontal and vertical direction, µZ , of the anisotropic MRE samples with particle align-
ment in y-direction. The permeabilities were identified with experimental magnetic flux
and attractive force measurements in combination with the Comsol simulation.

limit 10 listed in Tables 4.8 and 4.9 is the maximum permeability used in the parametric

sweep in Comsol. Unique values were only identified for permeabilities perpendicular to the

alignment direction, µZ .

Summary - Permeability of Anisotropic MREs The lack of sensitivity of magnetic

flux and force measurements to sample permeability in the horizontal directions means that

experiments with particle alignment in both the vertical and horizontal directions have to be

conducted in order to identify the permabilities in both directions. The results of all experi-

ments on anisotropic samples, involving both vertical and horizontal particle alignment, are

therefore required in order to narrow the final range of possible permeabilities for anisotropic

samples. Permeabilities parallel to the particle alignment are best determined with vertically

aligned MRE samples: the results of µZ are listed in Table 4.7. The lower limits of µX (Table

4.8) and µY (Table 4.9) do agree with the identified µZ of vertical aligned samples (Table

4.7). Only the results of anisotropic samples with 10% iron content are too high. Permeab-

ilities perpendicular to the particle alignment are best determined with horizontally aligned

MRE samples: the results are listed in Table 4.8 and 4.9. The upper limits of µX (Table

4.7) do agree with the identified µZ of horizontally aligned MREs (Tables 4.8 and 4.9).

Only the samples with 10% iron are overestimated in the case of horizontally aligned MRE

samples, and as µ⊥ must be smaller than µ‖ the upper limit of µX from vertically aligned

samples (Table 4.7) have been chosen. The final permeabilities parallel and perpendicular

to the particle alignment are summarised in Table 4.10. The ratio µ‖/µ⊥ is provided to show

the strength of the particle alignment and the resulting magnetic anisotropy. Unfortunately,
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Permeability µ‖ Permeability µ⊥ Ratio µ‖/µ⊥

Anisotropic 10% MREs 1.6 1.5 1.07
Anisotropic 20% MREs 2.7 2.2 . . . 2.4 1.13 . . . 1.23
Anisotropic 30% MREs 4.3 . . . 4.6 3.2 . . . 3.9 1.10 . . . 1.44
Anisotropic 40% MREs 6.0 . . . 6.9 1.0 . . . 5.3 1.13 . . . 6.90

Table 4.10: Identified relative permeabilities in particle alignment direction, µ‖, and perpendicular
to the alignment direction, µ⊥ of anisotropic MRE samples. The minimum and max-
imum ratio µ‖/µ⊥ is provided to show the strength of particle alignment and resulting
anisotropy.

horizontally aligned MRE samples with 40% iron content were not manufactured and there-

fore the range of permeabilities for such MREs cannot be narrowed. However, as seen from

MREs with 10% to 30% the permeability perpendicular to the alignment direction µ⊥ is

expected to be near the upper limit of µX provided in Table 4.10.

4.5 Conclusions of Chapter 4

The permeabilities of isotropic and anisotropic MREs were successfully identified by com-

paring experimental magnetic flux measurements at various positions around the MRE spe-

cimen, with calculations of the magnetic flux densities at the same positions simulated with

the finite element software Comsol. The magnetic flux was calculated for various permeab-

ilities of the isotropic and anisotropic MRE samples, and ranges of possible permeabilities

were determined for each isotropic and anisotropic MRE with 10% to 40% iron content.

Unique permeabilities were only determined for MREs with low iron contents. The attract-

ive force between the magnets was also experimentally measured and simulated in Comsol to

aid with the determination of the permeabilities of MREs. In this study the permeabilities of

MREs are required to simulate the distribution of the magnetic flux density within the exper-

imental setups used to characterise the MRE behaviour without and with applied magnetic

inductions, the results of which are presented in Chapter 5. The level of magnetic induction,

the uniformity of the magnetic flux distribution and direction of flux lines are studied. The

level of magnetic induction is especially important in the case of equi-biaxial tension experi-

ments as this is used for a required assumption in order to calculate stresses in the stretching

directions, as detailed in Section 5.5.

In future, the knowledge about the permeability can help to characterise the MR effect more

specifically (i.e. normalised to the magnetic flux distribution), and is also needed to develop

constitutive material equations that describe the MRE behaviour under the influence of a

magnetic flux. For all further considerations using the permeabilities of MREs identified

here, mean values of the determined ranges (Tables 4.6 and 4.10) are used. The final results

for all types of MREs are summarised in Table 4.11.
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µiso / µ‖ µ⊥

Isotropic 10% MREs 1.60
Isotropic 20% MREs 2.20
Isotropic 30% MREs 3.70
Isotropic 40% MREs 6.05

Anisotropic 10% MREs 1.60 1.50
Anisotropic 20% MREs 2.70 2.30
Anisotropic 30% MREs 4.45 3.55
Anisotropic 40% MREs 6.45 -

Table 4.11: Relative permeabilities for isotropic MREs, and for anisotropic MREs in particle align-
ment direction, µ‖, and perpendicular to the alignment direction, µ⊥. In the case where
a range of permeabilities was identified rather than a unique permeability, the average
values are listed.

A comparison of the results determined here with other results from both theoretical and

experimental investigations found in the literature, was conducted previously in Section 4.2,

and illustrated in Figure 4.4. The identified isotropic permeabilities agree very well with the

Bruggeman model, and also with measurements performed by Göktürk et al. (1993). The

permeabilities of anisotropic MREs with up to 20% iron content are within ranges of those

calculated by both Martin et al. (2006) and Chen et al. (2007b), and are also in agreement

with measurements performed by Vicente et al. (2002). Permeabilities of MREs with higher

iron contents are greater than those found in almost all previous investigations. Only Zeng

et al. (2013) measured higher permeabilities for anisotropic MREs, in that case with 24%

volume iron content. The permeability of anisotropic MREs perpendicular to the particle

alignment are below those in the alignment direction, and are very close to the permeabilities

of isotropic MREs. This is a reasonable result.

The novel method used for the identification of magnetic permeabilities in this investigation

did not require highly sophisticated equipment. A simple test setup involving two perman-

ent magnets, a Gaussmeter, and a Zwick Z250 test machine were all that was required. A

multi-physics software (Comsol) was then used to analyse the measured data and to identify

the permeabilities. This experiment therefore provides a simple and low-cost method of

determining the permeabilities of MREs.
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5 Large-Strain Experiments on MREs

Large-strain mechanical tests have been conducted to characterise the mechanical response

of isotropic and anisotropic MRE samples under various deformation modes. The MRE be-

haviour has been characterised without and with the application of magnetic fields to study

the increase in stiffness defined as the Magneto-Rheological (MR) effect. MREs show a

complex mechanical behaviour: They are sensitive to stress softening known as the Mullins

effect (Mullins and Tobin, 1965), isotropic and anisotropic MREs show considerably dif-

ferent stress-strain behaviours, and the application of external magnetic fields changes their

mechanical properties significantly. Studies on the MRE behaviour under large-strain are

relatively rare, and no consistent experimental data sets exist that characterise the same type

of MRE material under different deformation modes (discussed in Section 2.5). Extensive

experimental data derived from uniaxial and multiaxial experiments are required to develop

accurate constitutive models (BS 903-5, 2004; Miller, 1999; Ogden, 2004) and are required

to achieve the ultimate goal of virtual design with MREs in large-strain applications. The

complexity of the mechanical behaviour of MREs means that a wide range of tests are re-

quired to fully characterise their response. This complexity is reflected in the large number

of parameters required in constitutive models (see Chapter 6). To this end, uniaxial compres-

sion, uniaxial tension, pure shear, and equi-biaxial tension tests have been conducted.

This chapter is structured as follows: in Section 5.1 the general test method is described

and the method of analysing the experimental data is clarified. Uniaxial compression tests

are detailed in Section 5.2, uniaxial tension tests in Section 5.3, pure shear experiments in

Section 5.4, and equi-biaxial tension tests in Section 5.5. Conclusions are given in Section

5.6, where the results of large-strain experiments are compared. In Sections 5.2 to 5.5,

specific descriptions of the test procedure, the test setup, and the results of each type of

experiment are provided.

5.1 Test and Analysis Method

5.1.1 General Test Method

Tests on both isotropic and anisotropic MREs with 0, 10, 20, and 30 vol% iron content have

been conducted. For anisotropic MREs, these tests were carried out with particle align-

ment both parallel and perpendicular to the loading direction. All tests were performed both

with and without the application of an external magnetic field in the loading direction. The

experiments were carried out using a Zwick Z250 uniaxial test machine equipped with a

250 kN load-cell in the case of compression tests, whereas a 1 kN load-cell was used for

all other tests. Bespoke test rigs were designed for each of the experiments, enabling the
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use of strong permanent magnets (Neodymium N52, see Appendix A.12), which were used

to induce magnetic fields during the tests. The dimensions of the permanent magnets were

50 × 50 × 25 mm. Test setups were designed so that the top magnet remained stationary,

while the crosshead of the test machine was moving; consequently the distance between

the two magnets remained fixed throughout the test. By maintaining position, the magnetic

flux density remained relatively constant throughout the mechanical tests (small changes are

inevitable due to the changing shape of the test specimens), reducing the influence of a chan-

ging magnetic attractive force during the tests. All test rigs were built using non-magnetic

materials including aluminium, brass, and PTFE (Teflon). To ensure a fixed minimum dis-

tance from the magnets used in the test rig to the steel components and the load-cell of the

test machine, relatively long aluminium rods (200 mm) were attached to the test rigs. All

tests were displacement controlled. Where possible, strains were measured optically using

a Digital Image Correlation (DIC) system and also verified using manual image analysis.

The Limess DIC system was loaned from the Engineering and Physical Sciences Research

Council (EPSRC). This system consists of two high-resolution cameras (4M pixels, which

can record up to 15 frames per second), two lights and the software VIC-3D. The sample

shapes and dimensions used for each test have been described in Section 3.3 and are also

given in the technical drawings in Appendix B. Sample dimensions were measured three

times before each test.

5.1.1.1 Influence of the Mullins Effect

The MRE materials are sensitive to stress softening, a well-known effect in rubber-like ma-

terials known as the Mullins effect. This effect was first discovered by Mullins and Tobin

(1965), and a comprehensive review of this phenomenon is provided by Diani et al. (2009).

As the stress softening effect has an influence on all the large-strain experiments discussed

in this chapter, a few findings are discussed here in advance to make it easier for the reader

to understand the slightly evolving test procedures used to characterise the MRE behaviour

under different deformation modes.

The influence of the Mullins effect on stress-strain results are demonstrated in Figure 5.1.

The first loading cycle shows the highest stresses and is very different compared to the second

loading cycle, where the stresses are much lower. After the first cycle, the sample experi-

ences a remnant deformation, which can be either permanent or temporary or a combination

of both. Note that the strain level that the sample experiences in the first loading cycle is

called the ‘preconditioning strain’ or ‘strain level’ throughout this investigation. The uni-

axial tension and compression specimens experienced permanent deformations in each of

the cycle tests performed, i.e. the permanent deformation increased with increasing number

of tests. However, pure shear and equi-biaxial tension specimens experienced no permanent

deformations, and the remnant deformation present after the first cycle was only tempor-
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Figure 5.1: Stress-strain results of a four-cycle compression tests up to 6.25 mm equivalent to
50% strain of an isotropic MRE with 30% CIP. The number of loading cycles, and the
remnant deformation is indicated.

ary. Note also that the Mullins effect is time-dependant, so when repeatedly testing the same

MRE specimen after reasonable intervals of time (e.g. a few hours) the stress-softening effect

again becomes apparent, although not usually as significant as in the first test sequence.

It should be noted that the preconditioning strain (the set strain of the first cycle) has been

found to be of great importance in influencing the material’s subsequent mechanical re-

sponse. Preconditioning a sample up to a larger strain results in a softer material, and as

soon as the material is tested up to a new larger level of strain its properties significantly

change once again (Miller, 1999).

In order to mitigate the influence of the Mullins effect a four-cycle test procedure was per-

formed. The third loading cycle was consistently used to characterise the material while the

fourth cycle was performed merely to check that no further significant changes occurred after

the third cycle (see Figure 5.1).

5.1.1.2 Test Procedure

The general test procedure evolved slightly throughout this investigation, as the importance

of the Mullins effect was gradually better understood. To characterise the MRE material both

in the absence and in the presence of magnetic fields, a minimum of three distinct test steps

were conducted, each involving four loading cycles and re-use of the MRE samples in each

subsequent step in the test series. Re-use of samples was the norm for most experiments with

the exception of equi-biaxial tension tests. In general, the basic test series consisted of three

test steps:

(i) Initial tests in the absence of a magnetic field (NoField01)
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(ii) Tests with different levels of magnetic field strength

(iii) Repetition of the no-field tests (NoField02)

However, in some experiments, additional test steps were introduced to examine issues such

as stress-softening and damage. Measurements of sample dimensions were repeated before

each testing step to detect any permanent deformation that may have occurred during the

previous test. The no-field tests were repeated at the end of the three-step test series to

identify any divergence between results of the NoField01 and NoField02 tests. Two reasons

could potentially cause differences in these results: (i) The Mullins effect; this effect causes

material properties to change significantly when the material experiences new larger strain

levels. (ii) The magnetic field applied to the MREs between the no-field tests; this could

have a permanent influence on the MREs when they were tested up to large strains, i.e. due

to micro-structural changes. Although MREs are meant to change their properties reversibly

and almost instantaneously under the influence of a magnetic field, this idea has only been

tested under small-strain conditions (see literature review in Section 2).

In the uniaxial compression tests (Section 5.2), stress-strain curves resulting from the two

no-field tests were found to diverge from a certain level of strain (see Section 5.2.3). At this

early stage of the experimental investigation, the reason for the divergence was not clear. To

investigate the reason for the divergence, additional test steps were introduced in the tension

test investigation (Section 5.3). This involved:

(i) Fatigue tests to investigate whether stress-softening depends on the strain level, i.e. to

determine if a sample reaches a ‘stable’ state when testing above a certain strain level

(see Section 5.3.3). During these fatigue tests a ‘stability strain limit’ was determined

for each type of MRE. Samples that were stretched beyond this strain limit continued to

experience a stress-softening even after 100 cycles. Samples subsequently examined in

the main tension test series (and all other large strain experiments) were only stretched

up to or below this stability strain limit.

(ii) Samples were preconditioned in the main tension test series with an additional 50

cycles prior to the first no-field test to examine whether or not this improves the sta-

bility of the results, i.e. whether divergence between NoField01 and NoField02 stress-

strain results still occurs.

(iii) Each type of MRE was tested up to two different preconditioning levels to observe the

differences in stress-softening.

At this stage of the project, the stress-softening was found to have a large influence, as MRE

samples stretched up to larger strain levels were found to be softer than those preconditioned

to lower levels (see Section 5.3.5). Despite the additional preconditioning step and despite
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stretching the samples to less than the ‘stability strain limit’, the no-field tension tests were

still found to diverge from a certain level of strain (see Section 5.3.5). At this stage of the test

program, the reason was still not completely clear, but the Mullins effect did seem to be the

most likely reason. In pure shear tests (Section 5.4), the test procedure was further enhanced

by recording DIC images during the 50 preconditioning cycles, enabling detailed compar-

ison between the strains and stresses of three sets of no-field tests: the preconditioning and

NoField01 tests conducted before any magnetic field was applied, and the NoField02 tests

conducted after the MRE specimens had experienced a magnetic field. This was done to

exclude the magnetic field as a possible reason for the divergence. The stress-strain curves

resulting from the three pure shear no-field tests did not diverge (see Section 5.4.4). The

reason for the divergence present in compression and tension was therefore clarified and

identified as being the permanent deformations present in uniaxial compression and tension

samples, but not in the pure shear specimens. The permanent deformations in the samples

effectively imposed new larger strain levels in each of the subsequent four-cycle tests in the

test series, and due to the Mullins effect this changed the material properties significantly.

Further details are given in the Sections 5.2, 5.3, and 5.4 describing each large-strain ex-

periment performed during this investigation. In the equi-biaxial tension tests (Section 5.5)

re-use of the MRE specimens was not possible due to the test setup (described in Section

5.5.2). Permanent deformations were not observed in equi-biaxial tension specimens, and

therefore divergences between several stress-strain curves are not expected.

To eliminate the influence of the stress softening Mullins effect only stress-strain results

measured over a strain range in which the no-field tests are in agreement (up to the points

of divergence, as discussed in Sections 5.2.3 and 5.3.5), are used to characterise the MRE

material behaviour in the absence and the presence of a magnetic field.

5.1.2 Analysis Method

The method of analysing the load-displacement test data, provided from the uniaxial test

machine, is detailed in this section. Several methods of determining the moduli and the MR

effects from the stress-strain data are defined. The latter is used to assess the performance

of MREs under the influence of a magnetic field. MREs are very sensitive to the Mullins

effect as discussed in the previous section, and it is therewith important to keep the method

of analysis constant throughout all large-strain experiments performed in this investigation.

As mentioned in Section 5.1.1, four-cycle tests were carried out and the third loading cycle

was used for interpretation and comparison of the test results. To aid with the analysis of the

experimental data, several Matlab functions were written, each one designed for a specific

experiment. All of the Matlab functions are listed in Appendix D together with a brief

description and saved on a DVD attached to this document.
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The method of analysis involves first separating the four load-displacement cycles into four

loading and unloading parts. In order to cut and shift the last three cycles horizontally to

zero displacement, a shifting value (or cutting point) has to be chosen. This is the most diffi-

cult part of the analysis, and involves some degree of manual assessment, either by choosing

the point where a distinctive change of slope occurs, or by specifying a displacement range;

the method of determining the cutting point is discussed further in the next section. Using

the cutting point, the load-displacement data were shifted to zero displacement. Stresses

were calculated with the reference area (original dimensions), determined using three meas-

urements taken on each sample. In the case of compression samples, strain values were

calculated using the original height of the samples. In the case of tension, pure shear, and

equi-biaxial tension experiments an optical strain measurement device (DIC system) was

used and engineering strains were calculated. Strain analysis is discussed in Sections 5.3.4,

5.4.3, and 5.5.3 separately for each large-strain experiment. Once both stress and strain

data were calculated, they were cut and shifted to the same extent as the load-displacement

data. Mean values and standard deviations of three repeated tests were calculated, and are

illustrated in all subsequent figures in this chapter.

5.1.2.1 Determination of the Cutting Point for Data Shifting

In order to explain the choice of cutting point, actual test data are used. The magnification

of stress-strain data up to 10% strain of an isotropic MRE with 30% iron content tested

under uniaxial compression (NoField01) is shown in Figure 5.2. The complete data were

shown in Figure 5.1. The stress softening behaviour can be clearly seen; the loading cycles

are numbered in the figure. In the case of compression test data, the cutting point is very

obvious and easy to define. The red arrow in Figure 5.2 indicates the choice of the cutting

     















  





 






Figure 5.2: Magnification up to 10% strain of the of a four-cycle compression test (NoField01) of
an isotropic MRE with 30% CIP, the complete four-cycle tests is shown in Figure 5.1.
The red arrow indicates the choice of cutting point in this case.
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point. The slope changes noticeably as soon as the sample loses contact with the test rig.

The choice of the cutting point is less obvious in the case of uniaxial tension, pure shear, and

equi-biaxial tension tests. The tension samples were clamped into the test setup (described

later in Section 5.3.2) with the aim of starting the test with a straight sample. When clamping

the tension samples, slight buckling was induced when tightening the clamps. Thus, in order

to start the test with a straight sample, the top clamp was first moved down beyond the saved

start position, the clamps were tightened, and the top clamp was moved back up to the saved

start position. The amount of movement was dependent on the type of MRE sample; pure

rubber samples buckled far more than anisotropic samples, especially those with high iron

content. The movement was chosen so that a zero (or a small positive tensile) force was

achieved at the end of the adjustment. The method of clamping the samples is important

when deciding on the best cutting point. In contrast to the compression data (Figure 5.2),

the four-cycle uniaxial tension test data show negative forces at the start of the second, third,

and fourth cycle. The first attempt is to eliminate all these negative forces, but these negative

forces are not necessarily compressive forces. As the samples were straightened prior to

testing, a small positive (tensile) load was induced; this load was automatically set to zero

by the test machine at the start of the test. This potentially means that the measured force

could apparently become negative at the end of the first unloading cycle despite the fact that

the sample was still under tension.

To investigate this potential source of error, a few preliminary tests were performed in which

the tension samples were cycled up to +15mm (stretching) and then down to −5mm (com-

pression) in relation to the zero position. Both straight samples (clamped using the method

described above) and slightly buckled samples (clamped without subsequent adjustment of

displacement) were tested. The results of this test, using isotropic MREs with 30 vol%

iron content, are shown in Figure 5.3; the magnification of the load-displacement curve

up to only 2.5 mm is illustrated in this figure. Negative forces occur when the samples

were straightened (Figure 5.3a) and the forces remain positive when this ‘straightening-

adjustment’ was not performed (Figure 5.3b). However, considering the start of the 2nd to

4th loading parts in Figure 5.3b, the slope is too small to represent stretching of the sample

when the curves cross the y-axis, which indicates that the sample is still not straight at this

point. On the other hand, the slope at the start of the 2nd to 4th loading part is much steeper

at the zero displacement for the straightened samples of Figure 5.3a, this indicates a straight,

non-buckled sample. A perfect starting point would be somewhere in between these two

extremes, but experimentally this is not achievable. The change in slope at the beginning

of each loading cycle is more important in deciding the choice of cutting point than the oc-

currence of negative or positive forces at zero displacement. Thus, the true start of the test

is identified as being close to the point at which a distinct change in the slope of the data

occurs. However, because the tension samples can support a slight amount of compressive



5 Large-Strain Experiments on MREs 64

       














 












(a) Straightened sample

       














 












(b) Un-straightened sample

Figure 5.3: Detail of the load-displacement curve of a 4-cycle test up to 15 mm and down to
−5 mm of an isotropic tension sample with 30% iron content. (Left) The sample
were straightened before the 1st cycle and (right) the sample was not straightened, the
screws were tightened in the saved start position and the test started with a slightly
buckled sample.

stress, the change in slope is not abrupt (see Figure 5.3) and therefore defining the start point

inevitably involves some degree of error.

In this investigation, the cutting point is determined either using a single distinct value for

the displacement (used when the change in slope is obvious, as with the compression tests),

or a range of displacement values is first provided and then the cutting point is determined

as the point at which the slope is 20% less than the average slope in the specified range (used

when the change in slope is not abrupt, as in the tension, pure shear, and equi-biaxial tests).

5.1.2.2 Definitions of Moduli and Magneto-Rheological Effect

To interpret the stress-strain results both secant and tangent moduli are used. The initial

secant modulus E0−5, is used as a first attempt to interpret and compare the data. The E0−5

is measured only in the small-strain region, and is calculated as the linear slope of stress-

strain data from 0% to 5% strain, neglecting non-linearities in the stress-strain data. The

tangent modulus, ET , is used to interpret the non-linear behaviour, and is calculated as the

linear slope of 1% strain increments. Use of this small increment makes this a reasonable

approximation of the first derivative of the stress-strain curves. The tangent moduli are plot-

ted versus engineering strain in the figures (smoothed using the moving average method

involving a span of 10), and the value between 1% and 2% strain is provided in the tables in

each section (this is where largest relative MR effects usually occur). The tangent moduli in

the figures are illustrated from 1% strain, as experimental results at lower strains are not reli-

able due to experimental issues and the method of analysis (as discussed in Section 5.1.2.1).

To aid with the calculation of different moduli from the stress-strain data, a Matlab code
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modulus_linearfit.m was written (see Appendix D). MR effects are characterised by compar-

ing the stress-strain curves resulting from tests conducted, both with and without magnetic

fields. The absolute MR effect is defined as the difference between the moduli resulting from

both tests

MRabs = EM − E0 (5.1)

where EM and E0 are the moduli resulting from tests with and without magnetic field, re-

spectively. The relative MR effect is defined as the relative factor between the moduli:

MRrel = EM/E0 (5.2)

This can also be expressed as the increase in moduli (EM/E0 − 1) × 100 defined here as a

percentage value. The moduli used to calculate the MR effect can be either E0−5 (for small

strains), or ET (non-linear behaviour up to large strains). MR effects, calculated using ET ,

are plotted versus large engineering strain in the figures (smoothed using the moving average

method involving a span of 10), and the maximum MR effect is provided in the tables in each

section. To aid with the calculation of the MR effect the Matlab code MReffect.m was written

(see Appendix D).

5.2 Uniaxial Compression Tests

Uniaxial compression tests were conducted in the absence and in the presence of magnetic

fields, in order to characterise the MRE behaviour; the results are presented in this section.

The general test method, and the method of analysis was described in Section 5.1, and the

specific procedure of the uniaxial compression tests is given in Section 5.2.1. The test setup

together with calculations of the compliance of the test rig, and the magnetic flux distri-

bution, are described in Section 5.2.2. The mechanical behaviour of MREs in the absence

of a magnetic flux is detailed in Section 5.2.3. Finally, the tests with an applied magnetic

induction and the resulting MR effects are presented in Section 5.2.4. The results of the

compression tests are summarised in Section 5.2.5.

To aid with the analysis of the compression tests, the Matlab function compression.m was

written, which includes the cut-and-shift process described previously in Section 5.1.2. For

further details on the Matlab procedure and the employed sub-functions, the reader is re-

ferred to Appendix D. The Matlab codes are saved on a DVD attached to this document and

can be consulted for more detailed information.
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5.2.1 Procedure of the Compression Tests

Uniaxial compression tests were performed in accordance with the British Standard (BS

ISO 7743, 2008). Tests were carried out using a test speed of 10mm/min on circular MRE

samples with up to 40% volume iron content. Samples were compressed up to 6.5 mm;

equivalent to 50% engineering strain. The polished aluminium plates of the setup were

lubricated as described in Method A in the British Standard. Four repeat tests on each type

of MRE (isotropic and anisotropic with different amounts of iron particles) were conducted

re-using the samples, including tests: (i) without a magnetic flux (NoField01), (ii) with a

magnetic flux of 450 mT created with an inter-magnet distance of 35 mm (Magnet35),

(iii) with a magnetic flux of 210 mT created with 62 mm distance between the magnets

(Magnet62), and (iv) without magnetic flux (NoField02); this last test was a repeat of (i) and

conducted in order to verify the results (as discussed already in Section 5.1.1 and explained

in more detail in Section 5.2.3).

5.2.2 Compression Test Setup

Within this section the test rig used to carry out the uniaxial compression tests is described.

The compliance of the test rig is studied, and the distribution of the magnetic flux density is

simulated, both using finite element calculations.

The test rig was specifically designed with the goal to employ permanent magnets, holding

their positions fixed while running the test. An open setup had to be designed, with enough

space for the permanent magnets. Movement of the machine crosshead during the test had to

be permitted. It was necessary to remove the magnets easily in order to perform experiments

both with and without a magnetic flux. It was also desirable to create high magnetic flux

densities, which meant the distance between the magnets had to be as small as possible.

Therefore plates within the setup were chosen to be relatively thin. The material used to

manufacture the rig had to be non-magnetic: thus aluminium and brass were used. The

designed test setup with and without the use of permanent magnets is shown in Figures 5.4

and 5.5. When using the setup without permanent magnets an aluminium spacer, of the

same size as the permanent magnets, was placed into the bottom half of the rig structure

(Figure 5.4b). This mitigated deformation of the bottom plate during the tests. Two different

magnetic field strengths were possible using this setup. A magnetic induction of 450 mT

was created using a distance of 35 mm (Figure 5.5a) between the magnets. Also, a lower

magnetic induction of 210mT was created using a distance of 62mm (Figure 5.5b) between

the magnets. In this case, the aluminium spacer was used to increase the distance between

the magnets. The magnetic flux density was measured in the centre of the volume usually

occupied by the MRE sample but measured in the absence of a sample (µr = 1). Dimensions

of the test rig are given in the technical drawings in the Appendices B.7 to B.9.
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(a) Universal test machine (Zwick Z250) (b) Setup with pure rubber sample

Figure 5.4: Test setup for compression tests designed so that permanent magnets can remain in a
fixed position during tests. The rig material is non-magnetic. An aluminium spacer
under the bottom plate was used to avoid deformation of the setup.

(a) Setup with 450mT induction (b) Setup with 210mT induction

Figure 5.5: Test setup for compression tests with permanent magnets. 35mm and 62mm distance
between the magnets led to 450mT and 210mT magnetic field strength, respectively.
The magnets remained in a fixed position during the tests.

5.2.2.1 Compliance of the Test Rig

The compliance of the test rig is studied using finite-element simulations in Abaqus (Abaqus,

2010). In the case of compression tests, the use of a strain gauge or the DIC system to

determine exact engineering strain values was not possible. Since a deformable test rig

could introduce significant errors into the strain values, at least the deformation of the test

rig should be simulated. Due to the design requirements as discussed above, thin plates and
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relatively soft materials had to be used for the rig, so it is even more important to verify the

compliance of the test rig. To evaluate the numerical simulations, experiments on a rigid test

setup with the same type of MREs were carried out, and stress-strain results are compared

with results achieved using the test rig from this investigation.

The top and bottom of the rig structure were considered separately. In both cases the geo-

metry was kept as simple as possible; the geometries used in Abaqus are illustrated in Figure

5.6. The aluminium rod was clamped into the test machine. The boundary conditions pre-

Aluminium Rod

Region of BC:
U = 0, R = 0

Aluminium Plates

Brass Screws

Position of MRE Sample
Defined Area of Surface Traction

(a) Top half of the rig structure

Aluminium Rod

Region of BC:
U = 0, R = 0

Aluminium Plates
Brass ScrewsAluminium Spacer

Position of MRE Sample
Defined Area of Surface Traction

(b) Bottom half of the rig structure

Figure 5.6: Geometry of top and bottom rig structure modelled using Abaqus (Abaqus, 2010).

vented any deformation or rotation of the aluminium rod over a length of 5 cm in keeping

with the experimental setup. A pressure was applied to the surface over the region where

the MRE sample was positioned during the experiments. Anisotropic MRE samples with

40% CIP volume fraction were exposed to 6 MPa during compression tests, these were the

stiffest samples tested throughout this investigation. This pressure was used in the Abaqus

model to examine the maximum compliance of the test rig. The mesh was created automatic-

ally by Abaqus using ‘swept mesh’ algorithm. An approximate element length of 5mm was

used to generate the mesh. For more information on meshing techniques see Abaqus (2010).

A mesh sensitivity study was performed by comparing results of finer and coarser meshes;

the results achieved with the 5mm mesh size were found to provide good convergence. The

material properties used for aluminium and brass are listed in Table 5.1 (from (MatWeb,

2013a) and (MatWeb, 2013b)). The main result of interest is the vertical displacement in the

centre of the plates. The deformed geometries of the top and bottom halves of the test rig

together with the values of the vertical displacement are illustrated in Figure 5.7. The plate

in the bottom half of the rig structure can be considered as almost rigid due to the aluminium

spacer used between the plates; here the maximum vertical displacement is just 0.02 mm.

More critical is the compliance of the plate in the top half of the rig, which was found to bend
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Property Unit Aluminium Brass

Elastic Modulus GPA 68.9 97
Poisson’s Ratio − 0.33 0.31
Tensile Strength, ultimate MPa 310 403
Tensile Strength, yield MPa 276 217

Table 5.1: Material properties of aluminium (MatWeb, 2013a) and brass (MatWeb, 2013b) used
for the Abaqus model. In the case of brass mean values are listed.

(a) Deformation of the top half of
the rig structure

(b) Deformation of the bottom half of
the rig structure

Figure 5.7: Deformed geometry of the top and bottom halves of the test rig with values of dis-
placement in vertical direction, U3, given in mm. The maximum deformation of the
top and bottom clamp are 0.376 mm and 0.02 mm respectively when 6 MPa pres-
sure are applied to the surface. Scale factors of (a) 2.5 and (b) 30 are used for the
illustrations.

upwards by about 0.376mm in the vertical direction when the 6MPa pressure was applied.

The MRE samples were displaced by 6.5 mm to achieve 50% strain, producing an overall

deformation of the test rig of about 0.4mm; this reduces to 46.9% strain, an error in strain of

about 3.1%, i.e. thus, if the displacement of the test machine crosshead is used to calculate

the compressive strain (rather than using a strain gauge) then in the worst case, the compli-

ance of the test rig might be expected to lead to an underestimate of the sample stiffness of

about 3%. Note that this error is at a maximum for the case of anisotropic MREs with high

iron contents of 40% CIP at maximum compression strain; given that the deformation of the

rig is small and the material behaviour of the rig linear, the error might reasonably expected

to decrease linearly with the stress applied to the sample. All other MRE samples experience

considerably lower stresses: an anisotropic MRE with 30% vertically aligned particles ex-

hibits 2.5 MPa, and a pure rubber sample only 0.74 MPa at 45% strain (see Figure 5.12).

This would lead to 0.17 mm and 0.05 mm deformation of the test rig assuming linearity as
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discussed above, and results in a strain error of about 1.3% and 0.38% for anisotropic 30%

MREs and pure rubber, respectively.

The maximum stresses are not an issue as they are well below the tensile strengths and

also reasonably below the yield strengths given in Table 5.1. The brass screws used in the

top clamp experience the highest stress of 155.7 MPa (von Mises criteria) when applying

6 MPa pressure. The deformation of the entire setup is in the elastic regime which means

that there will not be any permanent deformation in the test rig.

In addition to finite element simulations, the compliance of the test setup was checked by

comparing the stress-strain results of specimens measured using the setup described above

with that measured using a very rigid steel setup; this is illustrated in Figure 5.8. Both pure

rubber and isotropic and anisotropic MREs containing 30% volume particle concentration

were used for the comparison. The tests with the rigid setup were carried out using the 1 kN

load-cell in the test machine, rather than the 250 kN load-cell used for the compression

test series. Very little difference between the stress-strain curves of either the pure rubber

(a) Rigid test setup
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Anisotropic 30% MREs − Rigid Setup

Anisotropic 30% MREs − Magnetic Setup

(b) Stress-Strain Curves

Figure 5.8: Comparison of stress-strain results achieved with the setup specifically designed for
the use of permanent magnets and a very rigid setup. Stress-strain data of the third
loading cycles are compared to check compliance of test setup. The rigid setup is
shown with a photograph (a).

specimen or the isotropic 30% MREs is discernible. The stress-strain curves of anisotropic

30% MREs do separate from approximately 30% strain. However, given that the variation

of the results indicated by the standard deviation is of a similar order as this underestimate,

the reason for the underestimate cannot be reliably attributed to the lower compliance of

the magnetic test rig. A Matlab code divergence.m (see Appendix D) was written to check

whether curves diverge and determines from which strain point the divergence of the two

curves starts. Here, a significant divergence occurs when the absolute difference between
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two curves is larger than the sum of the associated standard deviations of both curves. Using

this criterion, the stress-strain curves of the anisotropic 30% MREs from both tests do not

diverge. The error in strain is about 1.36% (see Figure 5.8b), as 2.5 MPa stress is achieved

at 43.6% strain with the rigid setup, and at 45% strain with the magnetic setup. As the strains

were calculated from the crosshead displacement, the strains of samples in the magnetic

setup are overestimated. The error in strain seen here is in agreement with the calculations

performed in Abaqus (1.3% error in strain was estimated for an anisotropic 30% MRE).

The 1 kN load-cell was used in the tests with the rigid setup, and as the error in strain

of experiment and simulation are in agreement, the influence of the 250 kN load-cell is

considered to be negligible. The compliance of the test machine parts is not verified with the

finite element calculation, nor with the experiment performed, but the influence is considered

to be small compared to the compliance of the test rig.

5.2.2.2 Distribution of the Magnetic Flux Density

Simulations using the finite element software Comsol were performed to calculate the dis-

tribution of the magnetic flux density within the test rig used in the compression setup. The

finite element model used for the calculation is illustrated in Figure 4.10; the model was

used earlier to identify the permeabilities of MREs. The geometry, the material and physical

settings, and the finite element mesh size of the Comsol model were described earlier in Sec-

tion 4.4. Ideally, the magnetic flux density would be uniformly distributed within the region

occupied by the MRE sample. To investigate this, both setups with distances between the

permanent magnets of 35 mm and 62 mm were studied in the absence of an MRE sample

(µr = 1). Slice plots of the magnetic flux distribution within the MRE sample and line plots

representing the vertical distribution are illustrated in Figure 5.9 and 5.10. The position of

the MRE sample, the lower magnet, and the upper magnet are all indicated in Figures 5.9b

and 5.10b. In both setups there is a variation in the magnetic flux density throughout the

volume occupied by the MRE sample. The minimum and maximum magnetic flux densities

within, and the average value taken over the volume occupied by the MRE sample calculated

by Comsol, together with the percentage variation are listed in Table 5.2. The Comsol sim-

Experimental Comsol Simulations

B [mT ] Bmin [mT ] Bmax [mT ] Bmean [mT ] Bmax−Bmin

Bmean

[%]

Magnet35 450 374.9 544.7 460.8 36.85
Magnet62 210 187.2 249.1 209.9 29.49

Table 5.2: Magnetic flux densities measured with a Gaussmeter in the centre of the volume usu-
ally occupied by the MRE samples, and determined with a finite element simulation in
Comsol. Minimum, maximum, average, and variation of the magnetic flux distribution
BZ within the volume occupied by the sample (µr = 1).
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(a) Horizontal slices through sample (µr = 1)




















































(b) Vertical distribution between magnets (µr = 1)

Figure 5.9: Distribution of the magnetic flux density BZ in the setup using an inter-magnet dis-
tance of 35 mm. The slice plots in (a) illustrate the distribution of BZ field across
selcted horizontal planes within the volume occupied by the MRE sample. The line
plots in (b) show BZ versus the vertical distance between the two magnets at three
selected positions in the x-y plane (see legend). The relative permeability of the MRE
sample is set to µr = 1.






















(a) Horizontal slices through sample (µr = 1)



































(b) Vertical distribution between magnets (µr = 1)

Figure 5.10: Distribution of the magnetic flux density BZ in the setup using an inter-magnet dis-
tance of 62 mm. The slice plots in (a) illustrate the distribution of BZ field across
selcted horizontal planes within the volume occupied by the MRE sample. The line
plots in (b) show BZ versus the vertical distance between the two magnets at three
selected positions in the x-y plane (see legend). The relative permeability of the MRE
sample is set to µr = 1.

ulation results are in very good agreement with the magnetic flux measured in the centre of

the volume usually occupied by the MRE sample (see Table 5.2).

To study the influence of the MRE samples on the magnetic flux distribution, the magnetic

induction was calculated for permeabilities with µr > 1. The relative permeabilities identi-

fied in Chapter 4, and summarised in Table 4.11 for isotropic and anisotropic MRE samples,
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are used in the Comsol model. The average values of the magnetic induction, BZ , together

with the percentage variation of the latter are summarised in Table 5.3 for both setups. As

MRE Sample
Iron
[%]

Magnet35 Magnet62

Bmean
Bmax−Bmin

Bmean

Bmean
Bmax−Bmin

Bmean

Pure Rubber 0 460.8 36.9 209.9 29.5

Isotropic MREs

10 572.5 44.4 260.3 22.0
20 648.9 57.3 294.8 34.0
30 768.4 83.4 348.5 62.0
40 867.7 109.7 393.1 90.4

Anisotropic MREs -
vertical alignment

10 572.5 44.5 260.4 21.9
20 697.9 67.6 316.9 44.1
30 810.5 94.9 367.4 72.5
40 906.0 115.9 410.1 93.6

Anisotropic MREs -
horizontal alignment

10 556.9 42.0 253.3 22.5
20 659.0 58.5 299.4 36.3
30 757.2 79.9 343.5 59.7

Table 5.3: Differences in the magnetic flux distribution of BZ within the volume occupied by
isotropic and anisotropic MRE sample (µr > 1). The permeability of isotropic MREs
and anisotropic MREs (Table 4.11) were used to calculate BZ . Bmean is given in mT
and the variation in %.

expected the strength of the magnetic field increases with increasing iron content in the MRE

samples. Anisotropic MREs produce the highest magnetic flux densities. Perhaps surpris-

ingly, the distribution of the flux is less uniform for samples with higher permeabilities; as

the strength of the magnetic field increases, the difference between minimum and maximum

values also increases as does the relative variation in flux density across the sample volume.

5.2.3 Tests in the Absence of a Magnetic Field

Compression tests conducted in the absence of a magnetic field were performed using the

setup shown in Figure 5.4. The general test method was explained in detail in Section 5.1.1,

and the specific test procedure of the uniaxial compression tests was given in Section 5.2.1.

In this section, the stress-strain results of the two no-field tests are compared to verify the res-

ults. The behaviour of isotropic and anisotropic MREs is characterised using the NoField02

results. The stress-strain data and moduli are analysed as described in Section 5.1.2.

5.2.3.1 Comparison of NoField01 and NoField02 Tests

Stress-strain results from the third loading cycle of the first and second sets of tests conducted

in the absence of an applied magnetic field (NoField01 and NoField02) are compared in Fig-

ure 5.11. The stress-strain curves diverge after a certain level of strain. The NoField02 tests
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(a) Pure Rubber and Isotropic MREs

        










  






    
    
    
    
    
    
    
    

(b) Anisotropic MREs with vertical particle align-
ment

Figure 5.11: Stress-strain curves from NoField01 and NoField02 compression tests. Isotropic and
anisotropic MREs with 10% to 40% CIP content are compared. The arrows indicate
the divergence point.

resulted in lower stresses in most of the cases, indicating increased stress-softening com-

pared to the NoField01 tests. The divergence of the curves was studied with the Matlab code

divergence.m (see Appendix D). Divergence points, defined as the strain values where the

absolute difference between the two mean curves become larger than the associated standard

deviations, are indicated with arrows in Figure 5.11. These points are listed in Table 5.4,

together with the relative differences in stress observed between the two sets of curves at

40% strain. Divergence is seen to start earlier for MREs with higher iron content. The rel-

ative differences in stress are large with up to 37%. At this early stage of the investigation,

it is difficult to explain the discrepancies between NoField01 and NoField02 results, but two

possible reasons were discussed in Section 5.1.1: (i) Compression specimens experienced

permanent deformations after each cyclic test in the test series (the samples height decreased

and area increased). Given that the cross-head displacement during all compression tests

was constant at 6.5mm, the reduced height of the samples imposed a new higher maximum

strain level in each subsequent test. In combination with the Mullins effect this could cause

the divergences observed. (ii) The magnetic field, which was applied to the MREs between

the NoField01 and the NoField02 tests could have a permanent influence on the microstruc-

ture of MREs when testing them up to large strain. The phenomenon of divergence of the

stress-strain curves requires further study if reliable conclusions are to be drawn, this is done

in Sections 5.3.5 and 5.4.4, respectively.

For the 40% MREs, the divergence between NoField01 and NoField02 stress-strain curves

begins immediately at 0% strain and surprisingly, the samples are stiffer in the NoField02

tests. This might be explained by a densification of the material due to the high iron con-

tent. When considering a cube full of mono-disperse spherical particles of 4 µm diameter, a



5.2 Uniaxial Compression Tests 75

MRE Sample Iron [%] Divergence Point [−] Relative Difference at 40% strain [%]

Pure Rubber 0 no separation 2.02

Isotropic MREs

10 0.36 6.05
20 0.34 12.36
30 0.25 20.73
40 0.00 23.78

Anisotropic MREs -
vertical alignment

10 0.28 9.41
20 0.26 19.96
30 0.16 34.94
40 0.00 37.61

Anisotropic MREs -
horizontal alignment

10 no separation 2.72
20 0.35 7.30
30 0.27 13.83

Table 5.4: Comparison between NoField01 and NoField02 compression tests. The divergence
point is defined as the strain value where the absolute difference between the two stress-
strain curves is larger than the associated standard deviations. The relative differences
in stress at 40% strain are related to the NoField01 data and are decreases in the case of
samples with 10% to 30% iron content, but are increases in the case of 40% MREs.

theoretical maximum particle volume concentration of 52.2% (calculated with 10× 10× 10

touching particles in a cube with a side length of 0.04 mm) is possible. Theoretically, 40%

iron volume fraction allows a very thin film of elastomer around the particles of just 0.19 µm

thickness. It is possible that such a high iron particle content could lead to problems during

mixing MRE samples, i.e. there may be agglomerations of particles containing no elast-

omer. This would provide a plausible densification mechanism for the 40% MREs when

exposed to compressive load and may be a reason for the higher stresses in the NoField02

tests. Unfortunately, the microscopic structure of an 40% MRE before and after testing was

not investigated. Due to the large divergence present in the 40% MRE data, these samples

cannot be further analysed.

In all further studies, the results of the NoField02 tests will be used. When calculating the

MR effect in Section 5.2.4, the stress-strain results are interpreted just up to the point where

NoField01 and NoField02 curves start to diverge: the divergence points are listed in Table

5.4. In this way, the influence of stress-softening is eliminated when determining the MR

effect. The use of MRE samples up to strains above the divergence points is questionable.

5.2.3.2 Comparison of MRE Samples

The NoField02 tests are considered to compare the different types of MRE samples. Both

the increase in stiffness and stress due to higher particle concentration in the elastomer and

due to particle alignment are studied. The stress-strain curves of all the MREs tested under

compression in the absence of a magnetic flux are illustrated up to 45% compressive strain

in Figure 5.12. Clearly, the anisotropic samples with vertical particle alignment exhibit the
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Figure 5.12: Stress-strain results of NoField02 tests of pure rubber, isotropic, and anisotropic
MREs with 10% to 30% iron content.

highest stresses. Results start with a steep slope that flattens from approximately 10% strain

and increases again above 30% strain; this trend is independent of particle content. Isotropic

and anisotropic MREs with horizontal particle alignment show a very similar stress-strain

curve shape with constantly increasing slope, although the isotropic MREs exhibit slightly

lower stresses. Higher volume particle concentrations lead to higher stresses; which is valid

for all types of MRE samples. To study the slope in the region from 0% to 10% strain a

magnification of the stress-strain curves is illustrated separately in Figure 5.13 for isotropic

and anisotropic MREs. Even in the small strain regime non-linear behaviour can be observed,

and is more evident in case of anisotropic MREs but is also present in the isotropic MREs

with larger iron content. To characterise the behaviour in the small strain regime the initial

secant moduli, E0−5, are listed in Table 5.5. To study the non-linear behaviour the tangent

moduli, ET , are illustrated in Figure 5.14. As previously observed in the stress-strain curves

shown in Figure 5.12, the anisotropic MREs with vertical particle alignment have a large

tangent modulus in the small-strain regime, which decreases in the mid-strain regime, then

rapidly increases once again in the large-strain regime. Isotropic and anisotropic MREs with

horizontal particle alignment show a very similar curve shapes with constantly increasing

tangent moduli. The tangent moduli in the region from 1% to 2% strain are listed in Table

5.5. The relative increases of isotropic MREs compared to the pure rubber samples, and the

increases of anisotropic samples compared to isotropic MREs with the same amount of iron

particles are listed in the same table. The moduli, E0−5 and ET (Table 5.5), are plotted versus

the iron volume fraction in Figure 5.15. The moduli increase with increasing iron content.
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(a) Pure Rubber and Isotropic MREs

     

















  







    
    
    
    
    
    

(b) Anisotropic MREs

Figure 5.13: Stress-strain results of NoField02 tests of pure rubber, isotropic, and anisotropic
MREs with 10% to 30% iron content. Magnification of stress-strain data up to 10%
strain (complete data shown in Figure 5.12).
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Figure 5.14: Tangent Moduli ET versus strain of pure rubber, isotropic, and anisotropic MREs
with 10% to 30% CIP content. The tangent moduli are the linear slopes taken over
1% strain increments.
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MRE Sample Iron [%] E0−5 [MPa] ET [MPa] Increase compared

Pure Rubber 0 0.69 0.62 to ... [%]

Isotropic MREs
10 0.78 0.68

P
ur

e 13.0
20 0.96 0.79 39.1
30 1.54 1.35 123.2

Anisotropic MREs -
vertical alignment

10 1.97 1.67

Is
ot

ro
pi

c 152.6
20 2.72 2.40 183.3
30 3.28 2.68 113.0

Anisotropic MREs -
horizontal alignment

10 1.17 1.21

Is
ot

ro
pi

c 50.0
20 1.60 1.65 66.7
30 1.64 1.55 6.5

Table 5.5: Initial secant moduli, E0−5, and tangent moduli, ET , obtained from stress-strain
curves of pure rubber, isotropic, and anisotropic MREs with 10% to 30% CIP con-
tent (NoField02) are listed. The relative increase of isotropic MREs compared to pure
rubber and the relative increase of anisotropic MREs compared to isotropic MREs with
the same CIP content, calculated with E0−5, are provided.

0 10 20 30
0.5

1

1.5

2

2.5

3

3.5

Volume Particle Concentration [%]

M
o
d
u
lu

s
 [
M

P
a
]

 

 

Pure Rubber + Isotropic MREs − Linear Moduli

Pure Rubber + Isotropic MREs − Tangent Moduli

Anisotropic MREs (vertical) − Linear Moduli

Anisotropic MREs (vertical) − Tangent Moduli

Anisotropic MREs (horizontal) − Linear Moduli

Anisotropic MREs (horizontal) − Tangent Moduli

Figure 5.15: Moduli E0−5 and ET as listed in Table 5.5 versus volume particle concentration of
pure rubber, isotropic, and anisotropic MREs with 10% to 30% CIP content.

5.2.4 Characterisation of the Magneto-Rheological Effect

Compression tests with two different magnetic field strengths, 450 mT and 210 mT , were

performed to determine the increase in stiffness due to exposure to a magnetic flux. The

setups illustrated in Figure 5.5 were used to carry out these tests. In most samples an increase

in stress is observed due to an applied magnetic flux. To study the influence of the magnetic

field both the absolute and relative MR effects (Equations 5.1 and 5.2) are plotted versus

engineering strain in Figure 5.16 for the Magnet35 tests, and in Figure 5.17 for the Magnet62

tests. The bold lines used in Figures 5.16 and 5.17 represent the MR effects up to the
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(a) Absolute MR Effect
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(b) Relative MR Effect

Figure 5.16: Absolute and relative MR effects, calculated with ET , of all types of MREs achieved
in the Magnet35 tests are illustrated versus compressive strain. Bold lines are used
up to the divergence points (see Table 5.4).
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(b) Relative MR Effect

Figure 5.17: Absolute and relative MR effects, calculated with ET , of all types of MREs achieved
in the Magnet62 tests are illustrated versus compressive strain. Bold lines are used
up to the divergence points (see Table 5.4).

divergence points discussed in Section 5.2.3. The full set of results including stresses, tangent

moduli, and relative MR effects for all types of MRE samples, and for both magnetic setups,

are presented in Appendix E.1. The MR effects increase with increasing iron content, with

the vertically aligned anisotropic samples achieving the highest relative MR effects. Most

of the MR effect curves in Figures 5.16 and 5.17 start with high effects in the small-strain

region that decrease to nearly zero effect in the mid-strain region, but in the case of the

Magnet35 tests the effect increases again at larger strains. The maximal values of the MR

effect calculated using ET are determined for the region from 1% to 15% strain (ET,1−15),

and are determined in the large strain region above 15% strain (ET,>15). These values are
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summarised for all types of MREs in Table 5.6. The MR effects calculated with the initial

secant moduli E0−5 are listed in the same table. Note that ET,1−15 and E0−5 represent the

moduli in the small strain region, where the differences are due to the non-linear stress-strain

behaviour, already present at small strain levels. The maximum values of relative MR effects

MRE Sample Iron Magnet Absolute MR Effect Relative MR Effect
[%] Test E0−5 ET,1−15 E0−5 ET,1−15 ET,>15

Pure Rubber 0 35 0.0272 0.0337 1.0396 1.0660 1.0260

Isotropic
MREs

10
35 0.1873 0.1292 1.2396 1.1376 1.1402
62 0.1288 0.1328 1.1648 1.1917 1.0565

20
35 0.5705 0.4803 1.5967 1.5977 1.2897
62 0.2551 0.2522 1.2668 1.3241 1.0349

30
35 1.4110 1.3419 1.9172 2.0914 1.3913
62 0.6788 0.7934 1.4413 1.6530 1.0339

Anisotropic
MREs -
vertical
alignment

10
35 1.2853 1.1344 1.6530 1.6735 1.1824
62 0.5784 0.4896 1.2938 1.2902 0.9967

20
35 2.1992 1.8543 1.8084 1.7957 1.2438
62 0.8636 0.8879 1.3175 1.4002 1.0161

30
35 3.6529 2.5969 2.1137 1.9490 1.1563
62 1.3323 1.3346 1.4062 1.5441 1.0223

Anisotropic
MREs -
horizontal
alignment

10
35 0.0116 0.0848 1.0099 1.0650 1.1465
62 −0.1187 0.0078 0.8983 1.0062 1.0002

20
35 0.8648 0.9754 1.5406 1.5905 1.6233
62 −0.1099 0.0163 0.9313 1.0095 0.9986

30
35 0.0308 0.0375 1.0187 1.0248 0.8462
62 −0.0308 0.1328 0.9813 1.0610 1.0416

Table 5.6: Absolute and relative MR effects achieved with 450mT and 210mT applied magnetic
flux, and calculated with E0−5 and with ET (Figures 5.16 and 5.17) are listed. Max-
imum values of the relative MR effects calculated using ET,1−15 (small strain), and
ET,>15 (large strain) are presented. The maximum relative MR effects in the small-
strain region (E0−5 or ET,1−15) are shaded grey. The MR effects in the large-strain
region are coloured in blue when they exceed the MR effect in the small-strain region.

calculated with either E0−5 or with ET,1−15 are shaded in grey in Table 5.6.

As expected, pure rubber samples exhibit no MR effect, and effectively serve to verify that

the experimental setup is reliable. The relative MR effect of 1.066 at 2% strain, measured

for the pure rubber indicates that an experimental error of about 6.6% is present in the res-

ults. The anisotropic MREs with 30% vertically aligned particles exhibit the highest MR

effects, with an absolute increase in modulus of 3.65 MPa, which is over twice as stiff in

the presence of a magnetic field as without. Interestingly, the anisotropic MREs with hori-

zontal particle alignment exhibit nearly no MR effect and start with a decreased stiffness in

the small-strain region. Only the anisotropic MREs with horizontal particle alignment con-

taining 20% CIP exhibit a considerably large relative MR effect of 59%, but the curve shape

of the MR effect versus strain is different compared to other curves, and this effect occurs
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at 7% strain. The different behaviours of anisotropic MREs with horizontal particle align-

ment cannot be explained at this point, but the same samples will be studied under uniaxial

tension, pure shear, and equi-biaxial tension in order to verify this unexpected response.

Examining the influence of the strength of the applied magnetic field, the MR effects are ap-

proximately half when applying 210 mT magnetic flux in comparison to 450 mT flux. This

may indicate an approximately linear increase of the MR effect with increasing magnetic

field strength, although application of only two different field strengths in this investigation

means that definitive assertions in this regard are not possible. The relative MR effects are

studied versus the magnetic induction, and also versus the volume particle concentration in

Figure 5.18. To summarise, the MR effect increases with increasing volume particle concen-
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Figure 5.18: MR effects of pure rubber, isotropic, and anisotropic MREs with vertical particle
alignment are illustrated (a) versus the volume particle concentration and (b) versus
the applied magnetic field strength. Maximum MR effects as indicated in Table 5.6
are used.

tration, the MR effect of anisotropic MREs is higher than that of isotropic MREs, and the

MR effect increases approximately linearly with increasing applied magnetic field strength.

5.2.5 Summary of Compression Tests

Comparison between NoField01 and NoField02 tests revealed large discrepancies. The

reason for this might be the Mullins Effect, but this was not completely clarified and will

be studied in greater detail for the tension and pure shear experiments in Sections 5.3 and

5.4. The different types of MREs were compared. Anisotropic MREs with particle alignment

in the loading direction revealed the highest stresses and moduli. Isotropic and anisotropic

MREs with horizontal particle alignment showed similar stress-strain curves and moduli,

where the stresses of isotropic MREs were lower than those of anisotropic MREs. The mod-

uli increase with increasing iron content. A possible densification of the MREs containing
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40% CIP was postulated, as these samples were found to be much stiffer in the NoField02

tests than they were in the NoField01 tests. The magnetic field distribution was studied using

finite element simulations conducted with Comsol. The latter showed that the magnetic flux

density was not completely uniform, but a variation of 37% in the volume occupied by the

samples is reasonable. The stresses, the tangent moduli, and the absolute and relative MR

effects were studied versus engineering strain by comparing tests both without and with mag-

netic fields. MR effects were highest in the small strain region, decreased rapidly to nearly

no effect in the mid-strain region, but in the case of 450mT applied induction, the MR effect

increased again for strains larger than 15%. The effects in the large-strain region did not ex-

ceed the effects in the small-strain region. MR effects of anisotropic MREs with horizontal

particle alignment were negligible: this unexpected result will be further studied in the other

large strain experiments. The MR effect increases with increasing particle volume fraction,

and appears to increase approximately linearly with increasing magnetic field strength.

5.3 Uniaxial Tension Tests

Uniaxial tension tests were performed in order to characterise the MRE behaviour in the

absence and in the presence of a magnetic field. The general test method and the method of

analysis was described in Section 5.1, and Section 5.3.1 gives the specific procedure of the

uniaxial tension experiments. Description of the test setup and calculations of the magnetic

field distribution within the test rig are provided in Section 5.3.2. As mentioned earlier

in Section 5.1.1, fatigue tests were conducted in advance of the main tension test series

to determine a stability strain limit as detailed in Section 5.3.3. The DIC strain analysis is

described in Section 5.3.4. The stress-strain behaviour of MREs in the absence of a magnetic

field, and the MR effects in the presence of a magnetic field, are discussed in Section 5.3.5

and 5.3.6, respectively. The tension tests are summarised in Section 5.3.7.

To aid with the analysis of the uniaxial tension tests, the Matlab functions tension_DIC.m

and tension_pixel.m were written, which includes the cut-and-shift process described previ-

ously in Section 5.1.2 and the analysis of the optically measured strains (see Section 5.3.4).

For further details on the Matlab procedure and the employed sub-functions, the reader is

referred to Appendix D. The Matlab codes are saved on a DVD attached to this document

and can be consulted for even more in-depth information.

5.3.1 Procedure of the Tension Tests

Tests were performed on MREs with up to 30% iron volume fraction at a speed of 50mm/min,

and up to a maximum of 100% engineering strain. The dog-bone shaped samples are in

accordance to the British Standard (BS ISO 37, 2005). The stresses were calculated us-
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ing the reference area of the gauge section of the samples. A Digital Image Correlation

(DIC) system was used to measure strains. Overall, a series of six different tests were per-

formed, including: (i) the preconditioning of the samples, (ii) tests without a magnetic field

(NoField01), (iii) tests with an average applied magnetic induction of 220.6 mT using an

inter-magnet distance of 89 mm (Magnet89) were conducted up to a maximum of 100%

strain, (iv) tests with an average magnetic induction of 251.2 mT with an inter-magnet dis-

tance of 73 mm (Magnet73); in this test the displacement was restricted to 15 mm, equival-

ent to 50% strain, (v) tests with an average applied magnetic induction of 289.2 mT with an

inter-magnet distance of 63mm (Magnet63); here the displacement was restricted to 5mm,

equivalent to 15% strain, and (vi) tests without magnetic field were repeated (NoField02).

The given average magnetic inductions taken over the volume occupied by the MRE samples

were calculated in the absence of an MRE sample (µr = 1) using finite element simulations

(see Section 5.3.5). The maximum strain was restricted as higher magnetic inductions re-

quired lower distances between the permanent magnets and consequently, due to the nature

of the test setup, lower tensile strains were possible. To investigate further the Mullins effect

present in MRE samples, and to find reasons for the divergence observed between NoField01

and NoField02 compression tests (discussed in Section 5.2.3) three additional procedures

were introduced to the test method: (i) Fatigue tests were used to determine how far the

different types of MRE samples could be stretched before damage occurred, these tests were

carried out prior to the main tension test series described above. (ii) A preconditioning step

was introduced into the main testing procedure to condition the MRE samples. Fifty loading

and unloading cycles with a test speed of 50 mm/min were employed to precondition the

samples. (iii) Each type of MRE was tested up to two different strain levels to observe the

differences in stress softening. A list of the displacement levels to which the different types

of MREs were stretched is given in Table 5.7. The set strain levels are below the stability

MRE Sample Iron [%] Displacement [mm] (Strain [%])

Pure Rubber 0 15.0 (50) 30.0 (100)

Isotropic MREs
10 15.0 (50) 30.0 (100)
20 15.0 (50) 22.5 (75)
30 5.0 (15) 15.0 (50)

Anisotropic MREs -
vertical alignment

10 15.0 (50) 22.5 (75)
20 5.0 (15) 15.0 (50)
30 5.0 (15) 15.0 (50)

Anisotropic MREs -
horizontal alignment

10 15.0 (50) 22.5 (75)
20 5.0 (15) 15.0 (50)
30 5.0 (15) 15.0 (50)

Table 5.7: Types of MRE samples tested under uniaxial tension. The samples were stretched up to
the given displacements, where 5 mm, 15 mm, 22.5 mm, and 30 mm are equivalent
to 15%, 50%, 75%, and 100% strain, respectively. All samples are tested up to 15 mm
to enable comparison between the different types of MREs.
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strain limit determined with fatigue tests (see Section 5.3.3). All MREs are tested up to

15 mm to enable comparison between the different types.

5.3.2 Tension Test Setup

The tensile test setup (Figures 5.19 and 5.20) was specifically designed for the use of per-

manent magnets. An ‘open’ setup was manufactured to enable movement of the top part

of the test rig, while the position of the magnets remained fixed during the tests. The di-

mensions of the setup were determined largely by the dimensions of the permanent magnets;

samples were positioned directly below the centre of these magnets. The cameras and lights

of the Digital Image Correlation (DIC) system are shown in Figure 5.19a. Dimensions of

(a) Uniaxial test machine Zwick

Z250 with tension test rig, DIC
cameras and lights

(b) Clamps to hold tensile
sample, designed for the use
of magnets

Figure 5.19: Test Setup for uniaxial tension tests with the DIC system are shown. Parts of the
setup are covered in black tape to avoid reflection.

the top and bottom parts of the test rig structure, and the final mounted setup, including the

distances between the permanent magnets, are given in the technical drawings in Appendices

B.10 to B.13. A photograph of the setup with permanent magnets in place is shown in Figure

5.20. A wooden structure was used to hold the top magnet. Both the magnets and parts of

the rig structure were covered in black tape to avoid reflections, which could cause problems

when using the DIC system. The relative position of the top magnet was changed in order to

alter the strength of the magnetic field. The position of the bottom magnet remained fixed.

To maximise the magnetic field strength, the bottom magnet was positioned as close to the

MRE samples as possible, although this meant that the samples were not centred vertically

in between the magnets.
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(a) Tension setup with magnets, DIC
cameras and lights

(b) Tension test rig in detail with
magnets

Figure 5.20: Test Setup (Magnet73) for uniaxial tension tests with the permanent magnets are
shown. A wooden construction is used to hold the top magnet and to enable the view
of the MRE sample for recording DIC data. Parts of the setup are covered in black
tape to avoid reflection.

The compliance of the tension test rig is not studied (as done with the compression test rig,

see Section 5.2.2), as issues related to compliance can be overcome by the optical strain

measurement performed (see Section 5.3.4).

5.3.2.1 Distribution of the Magnetic Flux Density

The multi-physics finite element software Comsol was used to simulate the magnetic flux

distribution within the tension test setup. Symmetry conditions were applied and only one

quarter of the setup is modelled. The model geometry with the permanent magnets posi-

tioned 63mm apart is shown in Figure 5.21a. Further details on the Comsol model are given

in Section 4.4: the settings used here are the same as those used to identify the magnetic

permeabilities of MRE samples (Chapter 4). First, all three magnetic setups were studied in

the absence of an MRE sample, so the relative permeability of the sample is set to µr = 1.

The vertical distribution of the magnetic flux density, BZ , between the magnets is shown

with line plots of all three setups in Figure 5.21b. The position of the MRE sample is marked

in the plot. The top and bottom end of the free length of the MRE samples are the positions

where the magnetic flux was measured experimentally with a Gaussmeter. The minimum,

maximum, and average magnetic flux densities, BZ , together with the percentage variation

within the MRE sample calculated by Comsol are listed in Table 5.8 for each magnetic setup.

The values at the bottom and top end of the free length of the MRE sample are compared
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(a) Geometry implemented in Com-

sol

        















 











 




 
 
 







































(b) Distribution of the magnetic flux density BZ

Figure 5.21: Geometry implemented in Comsol (Magnet63 setup) and resulting vertical distribu-
tion of the magnetic flux density BZ between the permanent magnets (for all setups).
The position of the MRE sample (free length) is marked in the line plots.

Bbottom Btop Bmax Bmin Bmean
Bmax−Bmin

Bmean

Magnet63
Comsol 360.0 228.7 475.3 196.3 289.2 96.5

Experimental 360 215

Magnet73
Comsol 349.6 160.9 467.9 153.7 251.2 125.1

Experimental 345 190

Magnet89
Comsol 339.8 108.3 460.8 106.3 220.6 160.7

Experimental 335 115

Table 5.8: Magnetic flux densities at the bottom (Bbottom) and top (Btop) end of the free length
of the MRE sample, measured with a Gaussmeter and determined with Comsol, are
listed. Minimum, maximum, average, and variation of the magnetic flux distribution,
BZ , within the volume occupied by the sample (µr = 1) are given. The magnetic
inductions, B, are given in mT and the variation in percent.

with the experimentally measured values in the same table, and are in good agreement. The

distances between the magnets are large, and consequently the differences within the volume

occupied by the MRE samples are very large, ranging from 96.5% up to 160.7%. To illustrate

the distributions of magnetic flux density, volume plots are shown in Figure 5.22.

Now, the distribution of the magnetic induction with the MRE samples in place (µr > 1) is

discussed. The magnetic permeabilities identified in Section 4.4 were used in the Comsol

simulations. These are either isotropic or anisotropic depending on the MRE sample in

question (Table 4.11). The mean values of the magnetic flux density, BZ , together with the

variation of the magnetic flux density within the volume occupied by the MRE samples are

listed in the Tables 5.9 for all three test setups. As expected, the strength of the magnetic

field increases with increasing iron content. It is interesting to note that the differences in the
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Bz(max) = 475.3 mT

Bz(min) = 196.3 mT

(a) Magnet63

Bz(min)=153.7 mT

Bz(max)=467.9 mT
(b) Magnet73

Bz(min) =106.3 mT

Bz(max) =460.8 mT

(c) Magnet89

Figure 5.22: Distribution of the magnetic flux density BZ within the MRE sample (µr = 1).
Simulation results of Magnet63, Magnet73, and Magnet89 setups are illustrated as
volume plots.

MRE Sample
Iron
[%]

Magnet63 Magnet73 Magnet89

Bmean
Bmax−Bmin

Bmean

Bmean
Bmax−Bmin

Bmean

Bmean
Bmax−Bmin

Bmean

Pure Rubber 0 289.2 96.5 251.2 125.1 220.6 160.7

Isotropic
MREs

10 443.7 86.8 385.6 116.6 338.7 159.7
20 590.1 84.1 513.0 121.4 450.7 161.2
30 931.0 94.9 809.6 126.7 711.7 161.2

Vertical
Anisotropic
MREs

10 443.7 86.9 385.5 116.8 338.7 159.8
20 707.1 89.5 614.7 124.6 540.3 162.3
30 1090.1 98.9 948.0 129.2 833.5 162.0

Horizontal
Anisotropic
MREs

10 418.6 87.8 363.7 117.2 319.5 159.1
20 613.9 85.1 533.6 121.6 468.9 161.0
30 897.8 93.8 780.7 125.7 686.2 160.6

Table 5.9: Differences in the magnetic flux distribution of BZ within the volume occupied by
isotropic and anisotropic MREs (µr > 1) in all three magnetic setups. The permeability
of isotropic and anisotropic MREs (Table 4.11) were used to calculate BZ . The mean
magnetic flux, Bmean, is given in mT and the variation in percent.

magnetic flux density remain quite constant irrespective of MRE sample type.

5.3.3 Fatigue Tests

Prior to the main tension test series, fatigue tests were performed to determine whether or

not testing to a pre-set level of tensile strain resulted in a ‘stable’ MRE sample. These stand-

alone tests were carried out in advance using dog-bone shaped MRE samples other than those

used in the main tension test series. The samples were stretched up to a set displacement at
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50mm/min for up to 100 cycles. The load in each cycle at the maximum displacement was

related to the load in the first cycle, and the stress softening is plotted as the relative load

ratio versus the number of cycles in Figure 5.23. In this investigation, a sample is considered
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(b) Anisotropic MREs with vertical particle alignment

Figure 5.23: Maximum load versus the number of cycles, of pure rubber, isotropic and anisotropic
MREs with 10% and 30% iron content. The maximum load is a relative value refer-
ring to the load of the first cycle.

as stable when the relative tensile load no longer decreases during continued loading cycles.

Over certain strain levels, it was noted that some MRE samples failed to reach a stable state

within 80 cycles, this so-called ‘stability strain limit’ was found to depend on the type of

MRE. A relative load change of less than 0.1% between consecutive cycles was used as a

stability criterion. The results, whether or not the samples become stable, and if so, at which

cycle number stability occurs, are given in Table 5.10. Only the pure rubber samples and

isotropic MREs with 10% iron content could be stretched by up to 30 mm (or 100% strain)

and still reach a stable state within the 100 loading cycles. Anisotropic MREs with 10%

iron only reached a stable state when stretched by less than 22.5 mm (or 75% strain). MRE

samples with 30% iron volume fraction only reached a stable state when stretched by less

than 15 mm (or 50% strain). Care was taken not to test MREs over these predetermined

stability strain limits during the main tensile test series, and in all subsequent large-strain

experiments.

5.3.4 Strain Measurement - Digital Image Correlation

A Digital image correlation (DIC) system was used to measure strains, the use of which is

described in the manual (VIC-3D Testing Guide, 2010). Test samples were sprayed with a

white random speckle pattern. A series of images was recorded during the cyclic test. The

DIC software VIC-3D performs the correlation analysis by comparing the defined Area of

Interest (AoI) in each image. The software divides the pattern into smaller areas and follows
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MRE Sample tested up to . . . Cycle Number
[mm] [%]

Pure Rubber 30.0 100.0 11

Isotropic 10% MREs
30.0 100.0 60
22.5 75.0 65
15.0 50.0 15

Isotropic 30% MREs
30.0 100.0 not stable
22.5 75.0 not stable
15.0 50.0 52

Anisotropic 10% MREs

30.0 100.0 not stable
22.5 75.0 64
15.0 50.0 42
10.0 33.3 33
5.0 16.7 39
3.0 10.0 44

Anisotropic 30% MREs

15.0 50.0 45
10.0 33.3 65
5.0 16.7 67
3.0 10.0 63

Table 5.10: Results of the fatigue tests: cycle number from which the specific type of MRE sample
can be considered as ‘stable’ when stretched up to the given displacement (or equival-
ent strain). In this investigation, if the relative load continues to decrease after the 80th

cycle, the MRE sample is not considered to be stable.

the same areas of the pattern in each image. During the test, the patterns in each subsequent

image are stretched and displaced. Using this information, the software calculates the dis-

placements and the resulting strains of the tested sample. The output of the DIC software

VIC-3D are matrices containing values of displacements and strains in the vertical and ho-

rizontal directions of each point in the AoI, which in this case is the gauge section of the

dog-bone test specimens. As an example, the calculated displacement across an isotropic

MRE with 30% iron volume fraction, tested up to 15 mm, is shown in Figure 5.24. Also

observable in the figure are the two lines drawn onto the sample to enable a manual verifica-

tion of the strain values using ImageJ (a freely available image processing software (ImageJ,

2014)). The maximum displacement calculated by the DIC software is 13.5 mm, which

is a reasonable result as this value was not determined at the very top of the sample. The

calculated strain within the narrow part of the sample is uniformly distributed.

The DIC data has been post-processed using the function strainDICLimess_tension.m (writ-

ten in Matlab, see Appendix D). This code loads several Matlab files (provided by the DIC

software) from the file containing the data of the reference image data to the file contain-

ing the information of the last deformed image. The Matlab files contain the matrices for

horizontal and vertical displacements and the engineering strain values, they also contain a

matrix with confidence values (sigma). The confidence interval describes the matching at

any given point (measured in pixels): if the value is −1 the point in the DIC field cannot
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(a) Tension specimen with white
random speckle pattern

(b) Vertical displacement field
calculated by DIC software

Figure 5.24: Digital Image Correlation (DIC) system (Limess) used for the tension tests: pattern
sprayed on sample used to calculate the vertical displacement and strain field with
the software VIC-3D 2010. The two lines seen on the sample are used for manual
verification of the DIC results.

be used at all. The provided strain values ǫxx and ǫyy are engineering strains. After loading

the files, the confidence interval is used to reduce the size of the AoI, such that any point

with sigma = −1 is eliminated. Mean values and standard deviations of the strain values

are calculated from the remaining AoI. The code also loads the time when each image was

recorded from a csv-file, provided by the DIC system. The mean strain values together with

their standard deviations are plotted versus time in Figure 5.25. The strain results determined

by the DIC system are reasonable: the isotropic 30% MRE was tested up to 15 mm, equi-

valent to approximately 50% strain, as confirmed by the DIC system. The maximum strain

in the horizontal direction was 15%. The standard deviation increased in each subsequent

cycle and was largest in the fourth cycle. This is understandable as the the error in the image

analysis is cumulative in time. Despite this, the mean values of all four cycles are in very

good agreement. The strain-time data are then split into the loading and unloading parts and

handed over to the main tension analysis function tension_DIC.m (see Appendix D). Here,

the load versus displacement data recorded by test machine is connected to the strain-time

data of the DIC analysis via the time recorded by the test machine. By matching the time

of the DIC system with the time of the test machine (using linear interpolation between the

several indices), a relation between displacement and strain is found. For details of the exact

analysis the reader is referred to the Matlab algorithms listed in Appendix D and saved on a

DVD attached to this document.
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Figure 5.25: Mean and standard deviation of the strain in the vertical and horizontal directions
calculated by the DIC software VIC-3D and post-processed by the Matlab function
strainDICLimess_tension.m. The strain is plotted versus the time when images were
taken, provided by the DIC software. Results of an isotropic MRE with 30% iron
content tested up to 15 mm which is equivalent to 50% strain are shown.

To enable the manual calculation of the strain values, two lines were drawn onto the samples.

ImageJ was used to measure pixels at various positions. The vertical positions of both the

bottom and top tension clamps, and the bottom and top end of the two lines were measured

in each image. A Matlab code strainpixel_tension.m was written to aid with the analysis

(see Appendix D). The initial distance between the clamps in the reference state was 32mm

allowing a conversion from pixel to mm in the image. Figure 5.26 shows the reference image

and the image of the stretched state of a sample. Measured positions and calculated distances

are illustrated. To calculate the strain, the mean value of the inner and outer distance between

the two lines is taken. The engineering strain is calculated as:

εy =
l1 − l0
l0

(5.3)

where εy is the vertical strain and l0 and l1 are the distances between the lines in the reference

and stretched states, respectively. The distance between the clamps measured in each image

is used to connect to the crosshead displacement of the test machine. The pixel measurement

process is very time-consuming, so to reduce the time of analysis, usually only the reference

image and images of the third loading cycle were analysed. As the relation between strain

and displacement is almost linear, it was sufficient to analyse only six images of the loading

cycle. A linear fit of the strain-displacement relation is performed and the coefficients of the

linear function are handed over to the main tension analysis function tension_pixel.m, and

used to connect the displacement provided by the test machine to the strain calculated from
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Figure 5.26: Reference image and image of the stretched state of a MRE sample. Distances
between the clamps and inner and outer distance between the lines are marked.

measured pixels.

The DIC analysis and the pixel measurement method are compared in Figure 5.27; the strain

versus time, and the resulting stress-strain curves of the third loading cycle are illustrated

for both. An isotropic MRE with 30% iron content is chosen as a representative example.

There are discrepancies in the strain results especially at the end of the loading part when the
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(b) Stress-Strain Data of the 3rd loading part

Figure 5.27: Comparison of strains obtained from the DIC analysis and from the pixel measure-
ment method. Strain-time and stress-strain data of the third loading part of an iso-
tropic MRE with 30% iron content are shown as a representative example.

strains are large. In both methods errors are possible. As seen in Figure 5.25 the standard

deviation of the strain obtained from the DIC system increased in each subsequent cycle due

to lost pieces of patterns. The larger the tested strains and the larger the number of the cycles,
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the more difficulties the DIC system has to calculate the strains. In the pixel measurement

method, systematic errors are likely due to the changing perspective in the images when

strains are increasing, since the top clamp together with the sample changes its position in

each image.

An error analysis was performed to gain knowledge about the possible differences in strain

comparing the DIC analysis with the pixel measurement method. All samples tested in the

NoField02 tests (those stretched up to 15 mm) were analysed using both methods. Mean

stress-strain data obtained either with the DIC analysis or with the pixel measurement method

were calculated. The absolute differences in strain comparing average stress-strain data are

determined, and the maximum differences are listed in Table 5.11. The anisotropic 30%

MRE Sample Iron [%] Stress Level [MPa] Difference in strain [%]

Pure Rubber 0 0.30 2.76

Isotropic MREs
10 0.40 1.14
20 0.53 0.97
30 0.63 1.64

Anisotropic MREs -
vertical alignment

10 0.48 0.98
20 0.97 0.96
30 0.73 3.83

Anisotropic MREs -
horizontal alignment

10 0.47 2.24
20 0.54 2.73
30 0.58 0.84

Table 5.11: Maximum absolute difference in strain between average stress-strain curves obtained
with the DIC analysis and the pixel measurement method. The stress level where this
maximum difference in strain occurred is provided.

MREs exhibit the largest error: about 3.83% at a stress level of 0.73 MPa. The strain value

resulting from the pixel measurement at this point is 45.9% while that from the DIC analysis

is 49.7%. There are some significant errors in strain but these occur only in the large strain

regime. It is not possible to state which method is more accurate, since there are clearly

errors involved in both methods. The pixel measurement method is very time consuming

and can only be performed easily in simple tests like the uniaxial tension tests.

5.3.5 Tests in the Absence of a Magnetic Field

Uniaxial tension tests conducted in the absence of an applied magnetic field were performed

using the setup illustrated in Figure 5.19. The general test method was clarified in Section

5.1.1, and the specific test procedure of the uniaxial tension tests was given in Section 5.3.1.

In this section, the stress-strain results of the two no-field tests are compared, in order to

identify any discrepancies between them. Further, the behaviour of isotropic and anisotropic

MREs is characterised using the NoField02 stress-strain results. Each type of MRE sample



5 Large-Strain Experiments on MREs 94

was stretched up to two different strain levels (Table 5.7) and the stress-strain behaviour

dependant on the strain level is examined. The stress-strain data and moduli are analysed as

described in Section 5.1.2.

5.3.5.1 Comparison of NoField01 and NoField02 Tests

Prior to the NoField01 tests all samples were preconditioned using 50 cycles up to the dis-

placements listed in Table 5.7. DIC images were not recorded during the preconditioning

cycles. In uniaxial compression tests, discrepancies between the NoField01 and NoField02

tests were observed (Section 5.2.3). This, together with the results of tension fatigue tests

(Section 5.3.3) provided the motivation to precondition the MRE samples prior to conduct-

ing the main tension test series. Comparisons of the stress-strain results of NoField01 and

NoField02 tension tests of samples stretched up to 15 mm (50% strain) are illustrated in

Figure 5.28, and the comparison of all MREs is given in Appendix E.2. In the figures, ar-

rows indicate the point of divergence. The latter is determined when the standard deviations

     















  







 
 
  
  
  
  
  
  

(a) Pure Rubber and Isotropic MREs

     











  







     
     
     
     
     
     

(b) Anisotropic MREs with vertical particle align-
ment

Figure 5.28: Stress-strain curves from NoField01 and NoField02 tension tests. Isotropic and an-
isotropic MREs with 10% to 30% CIP content that were stretched up to 15 mm
(50%strain) are compared. The arrows indicate the divergence points.

of both curves are less than the absolute errors between the mean stress-strain curves. The

Matlab function divergence.m aids with the calculation of this point; results are listed in

Table 5.12 for all MREs tested. Discrepancies between the two tests are evident despite pre-

conditioning of the samples. Divergence between the two tests is particularly strong for the

MRE samples with higher iron contents. Samples were tested up to two different levels of

strain; usually the stress-strain curves of samples tested to smaller maximum strain diverged

earlier than those tested to higher maximum strains. Staying within the maximum strain lim-

its (determined with the fatigue tests presented in Section 5.3.3) did not improve the stability

between the no-field stress-strain results.
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MRE Sample Iron [%] up to ... [mm] Divergence Point [−]

Pure Rubber 0
15.0 no separation
30.0 no separation

Isotropic MREs

10
15.0 0.42
30.0 no separation

20
15.0 0.19
22.5 0.55

30
5.0 0.13
15.0 0.19

Anisotropic MREs -
vertical alignment

10
15.0 0.26
22.5 0.60

20
5.0 0.09
15.0 no separation

30
5.0 0.13
15.0 0.31

Anisotropic MREs -
horizontal alignment

10
15.0 0.35
22.5 no separation

20
5.0 0.05
15.0 0.29

30
5.0 0.11
15.0 0.06

Table 5.12: Comparison between NoField01 and NoField02 tension tests. The divergence point is
defined as the strain value where the absolute difference between the two mean stress-
strain curves is larger than the associated standard deviations.

To study this phenomenon further, the gauge section of the test samples was studied. Meas-

urements of the dimensions were repeated before each test. Mean values for each type of

MRE were determined; results are plotted versus the specific tests in Figure 5.29. A clear

tendency towards a reduction of area is observed as the test series proceeds. If incompress-

ible behaviour is assumed, a decreasing area implies that the remaining permanent stretch of

the samples increases after each step of test series. Note that in the test procedure the initial

distance between the clamps holding the MRE samples and the final displacement during the

tests were kept constant (see Table 5.7). Keeping the same free length of the ‘pre-extended’

samples and testing them to the same displacement, effectively imposed a higher maximum

strain in each successive testing step.

Potentially, the magnetic induction tests performed between the no-field tests could also

have contributed to changes in the stress-strain results, i.e. due to permanent changes in the

microstructure. Though, the presence of the Mullins effect seems to be the more likely reason

for the divergences found. This phenomenon is studied further in the subsequent pure shear

tests before drawing firm conclusions. For now, as with the compression tests (see Section

5.2.3) the MR effects measured in Section 5.3.6 can only be calculated in the regions where

NoField01 and NoField02 tests are in agreement. MR effects are calculated by comparing the

magnetic field tests with the NoField02 tests. Bold lines are used in the figures to represent
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Figure 5.29: Mean values of the sample areas for each type of MRE versus the performed tests
Preconditioning, NoField01, Magnet89, Magnet73, Magnet63, and NoField02. The
cross-sectional areas of the gauge section were measured prior to each test.

the sections of the curves that are measured prior to the divergence points (see Table 5.12).

5.3.5.2 Comparison of MRE Samples

The third cycle of the NoField02 tests is used to investigate the differences in stress-strain

curves measured using the same type of MRE tested up to two different strain levels (see

Table 5.7). The results are shown in Figure 5.30. MRE samples preconditioned and tested

up to higher strains are apparently softer than the same type of MRE tested to lower strain

levels. This is attributed to the Mullins Effect (Mullins and Tobin, 1965) and the effect is

more significant in anisotropic MRE samples. The differences in anisotropic samples with

20% and 30% iron content tested up to 5 mm and 15 mm are large; not even the moduli

in the small strain regime are the same. The effect is less obvious but can be seen at larger

strains in both the pure rubber and isotropic MREs. To compare the different types of MRE

samples, a separate plot of the samples tested up to 15 mm is provided in Figure 5.31. All

types of MREs exhibit a non-linear stress-strain behaviour that is apparent even in the small

strain region (up to 10% strain). The non-linear behaviour is most evident in the anisotropic

samples with vertical particle alignment and increases with higher iron content. The isotropic

and anisotropic samples with horizontal particle alignment have similar curve shapes and

stress levels. An exception are the MREs with 30% iron content, here the isotropic samples

clearly exhibit larger stresses in the large-strain region than either of the anisotropic MREs,

the latter show similar curve shapes and stress levels. As with the compression tests (see

Section 5.2.3), the anisotropic MREs with vertically aligned particles are stiffest with the

steepest slope in the small-strain regime and, in the case of 10% and 20% MREs, with the

highest stresses in the large strain regime. The slope and stresses increase with increasing



5.3 Uniaxial Tension Tests 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Strain ε [−]

S
tr

e
s
s
 [

M
P

a
]

 

 
Pure Rubber − up to 15mm

Pure Rubber − up to 30mm

Isotropic 10% MREs − up to 15mm

Isotropic 10% MREs − up to 30mm

Isotropic 20% MREs − up to 15mm

Isotropic 20% MREs − up to 22.5mm

Isotropic 30% MREs − up to 5mm

Isotropic 30% MREs − up to 15mm

(a) Pure rubber and isotropic MREs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Strain ε [−]

S
tr

e
s
s
 [
M

P
a
]

 

 
Anisotropic 10% MREs (vertical alignment) − up to 15mm

Anisotropic 10% MREs (vertical alignment) − up to 22.5mm

Anisotropic 20% MREs (vertical alignment) − up to 5mm

Anisotropic 20% MREs (vertical alignment) − up to 15mm

Anisotropic 30% MREs (vertical alignment) − up to 5mm

Anisotropic 30% MREs (vertical alignment) − up to 15mm

(b) Anisotropic MREs with vertical particle alignment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Strain ε [−]

S
tr

e
s
s
 [

M
P

a
]
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(c) Anisotropic MREs with horizontal particle alignment

Figure 5.30: Stress-strain curves of the NoField02 tests comparing different types of MRE
samples: (a) pure rubber and isotropic MREs, (b) anisotropic MREs with vertical
particle alignment, and (c) anisotropic MREs with horizontal particle alignment.
Samples were tested to two different maximum strains, as listed in Table 5.7. Bold
lines represent the parts of the stress-strain data where NoField01 and NoField02 test
results are in good agreement.
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(a) Stress-strain curves up to 50% strain
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(b) Stress-strain curves up to 10% strain

Figure 5.31: Stress-Strain results of the NoField02 tests of pure rubber, isotropic and anisotropic
MREs with 10% to 30% iron content tested up to 15mm. Figure (b) shows a magni-
fication of the stress-strain results up to 10% strain.

iron content for all types of MREs. To interpret the non-linear stress-strain curves the tangent

moduli, ET , are plotted versus engineering strain in Figure 5.32 for all samples tested up to

15mm (the full set of results is presented in Appendix E.2). As expected, the tangent moduli
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Figure 5.32: Tangent Moduli ET versus strain of pure rubber, isotropic, and anisotropic MREs
with vertical and horizontal particle alignment with 10% to 30% CIP content. Only
samples tested up to 15mm are presented as the others are not comparable due to the
stress softening phenomenon. The tangent moduli of all tested MREs are presented
in the Appendix E.2.

are largest for the anisotropic samples with vertical particle alignment. Note however that for

all samples the stiffness decreases in the mid-strain regime and eventually increases again

at strains greater than 30%. The tangent moduli ET between 1% and 2% strain, and the
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linear moduli E0−5 are listed in Table 5.13 and plotted in Figure 5.33. A comparison of

the moduli of isotropic MREs and the pure rubber samples, and of isotropic and anisotropic

MREs with the same iron content, is also provided in the Table 5.13. The increase of the

MRE Sample Iron [%] up to ... [mm] E0−5 [MPa] ET [MPa] Increase compared

Pure Rubber 0
15.0 1.00 1.03 to ... [%]
30.0 0.97 0.98

Isotropic MREs

10
15.0 1.56 1.66

P
ur

e

56.0
30.0 1.50 1.68 50.0

20
15.0 2.25 2.35 125.0
22.5 2.27 2.30 -

30
5.0 3.67 3.95 -
15.0 3.33 3.51 233.0

Anisotropic MREs -
vertical alignment

10
15.0 3.10 3.75

Is
ot

ro
pi

c

98.7
22.5 2.89 3.46 -

20
5.0 6.30 8.19 -
15.0 3.62 4.30 60.9

30
5.0 8.87 10.78 141.7
15.0 3.96 4.56 18.9

Anisotropic MREs -
horizontal alignment

10
15.0 1.59 1.58

Is
ot

ro
pi

c

1.9
22.5 1.39 1.23 -

20
5.0 2.97 3.04 -
15.0 2.48 2.63 10.2

30
5.0 6.12 6.89 66.8
15.0 3.48 3.78 4.5

Table 5.13: Initial secant moduli, E0−5, and tangent moduli, ET (between 1% and 2% strain), ob-
tained from stress-strain curves of pure rubber, isotropic, and anisotropic MREs with
10% to 30% CIP content (NoField02) are listed. The relative increase of isotropic
MREs compared to pure rubber and the relative increase of anisotropic MREs com-
pared to isotropic MREs with same CIP content, calculated with E0−5, are provided.
This is only done for samples tested up to the same displacement.

moduli of anisotropic samples compared to the isotropic MREs decreases with increasing

iron content, indicating that the anisotropy effect diminishes when more iron particles are

present. Interestingly, the moduli of samples with horizontal alignment are nearly identical

to those of isotropic MREs. This comparison can only be provided for samples that were

stretched to the same extent, and are calculated using E0−5. The moduli (Table 5.13) of

MREs tested up to 15mm are also plotted versus the volume particle concentration in Figure

5.33. The moduli increase almost linearly with increasing iron content, although the moduli

increase more slowly in the case of anisotropic MREs with vertical particle alignment than

in the two other cases (Figure 5.33).
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Figure 5.33: Moduli E0−5 and ET as listed in Table 5.13 versus the volume particle concentration
of pure rubber, isotropic, and anisotropic MREs with 10% to 30% CIP content. Only
samples tested up to 15mm are presented as the others are not comparable due to the
stress softening phenomenon.

5.3.6 Characterisation of the Magneto-Rheological Effect

Three different magnetic field strengths, on average 289.2 mT , 251.2 mT , and 220.6 mT

(in the absence of the test specimen), were applied to determine the response of the MRE

materials. The specific test procedure of uniaxial tension tests was described in Section 5.3.1.

The maximum strain level in the magnetic tests was restricted due to the fixed inter-magnet

distance. The setup illustrated in Figure 5.20 was used to carry out these tests. Absolute and

relative MR effects (Equations 5.1 and 5.2) are used to characterise the MRE behaviour in

the presence of a magnetic field. A full comparison of stress-strain data, the resulting tangent

moduli, and the relative MR effects calculated using ET , are provided in Appendix E.2.

5.3.6.1 Magnet63 Tests

First, the MR effect resulting from the Magnet63 tests are studied in detail. In Figure 5.34

the absolute and relative MR effects of MREs, previously preconditioned up to 15 mm, are

compared. Bold lines in Figure 5.34 represent the results where NoField01 and NoField02

results are in agreement. The divergence points have been investigated in Section 5.3.5 and

are listed in Table 5.12. The anisotropic samples with vertical particle alignment exhibit the

highest MR effects, followed by the anisotropic MREs with horizontal particle alignment;

whereas isotropic MREs show the lowest MR effects. The results achieved with the pure rub-

ber samples indicate an experimental error of about 7.6%. All MR effects are largest in the

small strain regime and decrease rapidly to nearly 1 in the mid-strain regime, but the relative
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(b) Relative MR Effect

Figure 5.34: Absolute and relative MR effects, calculated with ET , of all types of MREs pre-
conditioned to 15 mm, achieved with an average magnetic induction of 289.2 mT
(Magnet63) are illustrated versus tensile strain. Bold lines are used up to the diver-
gence point (see Table 5.12).

effects tend to increase again for strains above 10%. As the samples are only stretched up to

15% strain in the Magnet63 tests, the large-strain behaviour cannot be studied here, and will

be discussed when presenting the results of the Magnet73 and Magnet89 tests. The modulus

of an anisotropic MRE with 30% vertical aligned particles increases about 12.17MPa in ab-

solute terms, equivalent to a relative increase of about 284% (almost three times stiffer) in the

small strain regime. Table 5.14 lists the MR effects calculated with E0−5 and the maximum

MR effects calculated with ET for all MREs tested in this investigation. The maximum MR

effect resulting either from E0−5 or ET are grey-shaded in the table. In the case of the Mag-

net63 tests, the highest MR effects always result from the tangent modulus calculation, and

are observed in the very small-strain region. The values in Table 5.14 clearly show a higher

MR effect when the samples were preconditioned to a larger strain level. The maximum

relative MR effects (as indicated in Table 5.14) versus the volume particle concentration and

also versus the different preconditioning levels are plotted in Figure 5.35. The increase of the

MR effect with increasing iron content is most evident in the case of the anisotropic samples.

When studying the MR effect versus the preconditioning level (Figure 5.35b) higher MR ef-

fects are achieved with samples preconditioned up to larger strain levels. This effect is more

pronounced in the case of anisotropic MREs with vertical particle alignment. This observa-

tion leads to the conclusion that preconditioning samples to the highest possible strain level

enhances MR effects. However, there are restrictions on the preconditioning level associated

with stress softening effects and stability of the MREs, as discussed in Section 5.3.3.
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MRE Sample Iron up to . . . Absolute MR Effect Relative MR Effect
[%] [mm] E0−5 ET E0−5 ET

Pure Rubber 0 15.0 0.0076 0.0513 1.0076 1.0756

Isotropic
MREs

10
15.0 0.0580 0.2046 1.0373 1.1208
30.0 0.0306 0.2920 1.0204 1.2080

20
15.0 0.1422 0.4845 1.0632 1.2145
22.5 0.1174 0.5987 1.0516 1.3073

30
5.0 0.0177 0.3446 1.0048 1.1393
15.0 0.2246 0.9480 1.0674 1.2891

Anisotropic
MREs -
vertical
alignment

10
15.0 1.9987 4.8782 1.6441 2.2293
22.5 2.1069 4.6481 1.7286 2.2800

20
5.0 2.4525 5.0352 1.3896 1.5430
15.0 4.4690 8.6320 2.2341 3.0754

30
5.0 4.0505 6.8014 1.4566 1.6053
15.0 7.8057 12.1761 2.9689 3.8373

Anisotropic
MREs -
horizontal
alignment

10
15.0 0.0249 0.3413 1.0157 1.2665
22.5 0.1726 0.6671 1.1239 1.7973

20
5.0 0.0734 0.8835 1.0247 1.3367
15.0 0.5717 1.3059 1.2301 1.5208

30
5.0 1.1592 2.8500 1.1893 1.4112
15.0 2.2754 4.2915 1.6535 2.2103

Table 5.14: Absolute and relative MR effects achieved in the Magnet63 setup (289.2 mT average
magnetic induction), and calculated with E0−5 and with ET (Figure 5.34) are listed.
Maximum values of the relative MR effects calculated with ET are presented. The
maximum relative MR effects (E0−5 or ET ) are shaded in grey.
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Figure 5.35: Relative MR effect of pure rubber, isotropic, and anisotropic MREs achieved with
an average magnetic induction of 289.2mT (Magnet63) are illustrated (a) versus the
volume particle concentration (MREs preconditioned up to 15 mm) and (b) versus
the displacement level to which the samples were preconditioned. Maximum MR
effects as indicated in Table 5.14 are used.
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5.3.6.2 Magnet73 and Magnet89 Tests

This section reports the results of tests conducted with lower magnetic field strengths but

with samples tested to higher strain levels. The absolute and relative MR effects obtained

calculated using ET and plotted versus engineering strain are shown in Figures 5.36 and

5.37. Only samples preconditioned to 15 mm are presented as they allow direct comparison

between the different types of MREs. As expected, the MR effects in these tests are lower
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Figure 5.36: Absolute and relative MR effects, calculated with ET , of all types of MREs pre-
conditioned to 15 mm, achieved with an average magnetic induction of 251.2 mT
(Magnet73) are illustrated versus strain. Bold lines are used up to the divergence
points (see Table 5.12).
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Figure 5.37: Absolute and relative MR effects, calculated with ET , of all types of MREs pre-
conditioned to 15 mm, achieved with an average magnetic induction of 220.6 mT
(Magnet89) are illustrated versus strain. Bold lines are used up to the divergence
points (see Table 5.12).

than those obtained in the Magnet63 tests due to the lower magnetic field strength. The
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MR effect of pure rubber indicates an experimental error of 10%. In the main, the shape of

the MR effect versus strain curves looks similar to those measured in the Magnet63 tests,

with higher MR effects in the small strain region, rapidly decreasing to 1 or less in the

mid-strain region but increasing again above 15% strain. Curiously, the anisotropic MREs

with 30% vertically aligned particles are an exception; here the MR effect appears to have

a maximum at approximately 5% strain, which is lower than that achieved with a vertically

aligned anisotropic MRE with 20% iron content. Isotropic MREs with 10% iron volume

fraction do not show an MR effect in the small strain region. Not all samples were analysed

at strains larger than 15% due to the discrepancies found between NoField01 and NoField02

tests for certain types of MRE (see Section 5.3.5). Nevertheless, the MR effect was once

again observed to increase in the large-strain region, and some of the observed effects at

large strain are even higher than the effects seen in the small strain region. Tables 5.15

and 5.16 list the absolute and relative MR effects calculated with E0−5, the maximum MR

effects obtained using ET in the region from 1% to 15% strain (ET,1−15), and in the large-

strain region (> 15% strain) up to the point of divergence (ET,>15). The MR effects obtained

MRE Sample Iron up to . . . Absolute MR Effect Relative MR Effect
[%] [mm] E0−5 ET,1−15 E0−5 ET,1−15 ET,>15

Pure Rubber 0 15.0 0.0362 0.0694 1.0363 1.0677 1.0977

Isotropic
MREs

10
15.0 −0.1425 −0.1074 0.9085 0.9338 1.3523
30.0 −0.1009 0.0474 0.9327 1.0369 0.9996

20
15.0 −0.0178 0.2508 0.9921 1.1116 0.9355
22.5 −0.0408 0.4063 0.9821 1.2151 1.1191

30
5.0 −0.1325 0.5596 0.9639 1.2266 -

15.0 0.3026 0.9382 1.0908 1.2853 0.8897

Anisotropic
MREs -
vertical
alignment

10
15.0 1.8914 3.3528 1.6095 1.8686 0.8452
22.5 1.7002 3.2258 1.5879 1.8999 1.0582

20
5.0 2.3329 2.0143 1.3706 1.3028 -

15.0 3.6603 5.4300 2.0108 2.3177 1.1173

30
5.0 4.3990 5.7747 1.4958 1.5305 -

15.0 2.0812 2.1739 1.5249 1.9121 0.8321

Anisotropic
MREs -
horizontal
alignment

10
15.0 −0.0887 0.1955 0.9441 1.1632 1.1874
22.5 0.2097 0.7586 1.1505 1.9100 1.1548

20
5.0 −0.1279 0.3845 0.9570 1.1497 -

15.0 0.5745 1.1700 1.2312 1.4660 1.2103

30
5.0 1.0945 1.6628 1.1787 1.2441 -

15.0 0.7924 0.9560 1.2276 1.2678 -

Table 5.15: Absolute and relative MR effects achieved in the Magnet73 setup (251.2 mT average
magnetic induction), and calculated using E0−5 and ET (Figure 5.36) are listed. Max-
imum values of the relative MR effects calculated using ET,1−15 (small-strain) and
ET,>15 (large-strain) are presented. The maximum relative MR effects in the small-
strain region (E0−5 or ET,1−15) are shaded in grey. The MR effects in the large-strain
region are coloured in blue when they exceed the MR effects in the small-strain region.
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MRE Sample Iron up to . . . Absolute MR Effect Relative MR Effect
[%] [mm] E0−5 ET,1−15 E0−5 ET,1−15 ET,>15

Pure Rubber 0 15.0 0.0554 0.1233 1.0555 1.1203 1.0839

Isotropic
MREs

10
15.0 −0.0875 −0.0221 0.9438 0.9849 1.4092
30.0 0.0700 0.1657 1.0467 1.1154 1.8526

20
15.0 0.1186 0.1594 1.0527 1.0697 0.9884
22.5 0.4520 0.6918 1.1988 1.3342 1.3200

30
5.0 0.2783 0.8474 1.0758 1.3468 -

15.0 0.5571 0.8103 1.1672 1.2431 0.9728

Anisotropic
MREs -
vertical
alignment

10
15.0 0.4147 1.5983 1.1336 1.3927 1.1266
22.5 0.9997 1.8765 1.3457 1.5218 1.8682

20
5.0 −0.3124 1.1137 0.9504 1.4361 -

15.0 1.9448 3.2101 1.5371 1.7758 1.4939

30
5.0 0.8183 1.8326 1.0922 1.3564 -

15.0 1.1925 0.7886 1.3008 1.2806 0.7659

Anisotropic
MREs -
horizontal
alignment

10
15.0 −0.1043 0.0053 0.9342 1.0121 1.2326
22.5 0.2116 0.6699 1.1519 1.7913 2.1076

20
5.0 −0.1612 0.2516 0.9458 1.0989 -

15.0 0.3319 0.9066 1.1336 1.3620 1.2805

30
5.0 0.2817 0.5594 1.0460 1.0814 -

15.0 1.2361 1.9372 1.3550 1.5451 -

Table 5.16: Absolute and relative MR effects achieved in the Magnet89 setup (220.6 mT average
magnetic induction), and calculated using E0−5 and ET (Figure 5.37 are listed. Max-
imum values of the relative MR effects calculated using ET,1−15 (small-strain) and
ET,>15 (large-strain) are presented. The maximum relative MR effects in the small-
strain region (E0−5 or ET,1−15) are shaded in grey. The MR effects in the large-strain
region are coloured in blue when they exceed the MR effects in the small-strain region.

using ET,1−15 are comparable to the Magnet63 results. To allow a fair comparison between

the different types of MRE samples, it is also important to distinguish MR effects occurring

in the smaller strain region and MR effects in the large-strain region (above 15% strain). The

maximum MR effects resulting from either E0−5 or ET,1−15 are shaded in grey in Tables

5.15 and 5.16. For those cases where MR effects measured using ET,>15 are larger than

those measured using ET,1−15, the values are coloured in blue. Preconditioning levels play

an important role: as in the Magnet63 tests, samples preconditioned to higher levels exhibit

higher MR effects; while this is true for all types of MRE samples, it is more apparent for

anisotropic MREs. Also, aside from vertically-aligned anisotropic MREs with 30% iron

volume fraction, MR effects are found to increase with increasing iron content (see Figures

5.36 and 5.37).

5.3.6.3 MR Effect versus Magnetic Field Strength

In this section, MR effects resulting from different applied magnetic field strengths are com-

pared; the results of samples (preconditioned up to 15 mm) are plotted versus the average
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magnetic flux density in Figure 5.38. Maximum values of the relative MR effects, occurring

in the small-strain region (see Tables 5.14, 5.15, and 5.16) are used for the plot. The mag-

netic flux densities were calculated with Comsol in the absence of an MRE samples, and the

average is taken over the volume of the samples (see Section 5.3.2). The relative MR effect
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Figure 5.38: Relative MR effect of pure rubber, isotropic, and anisotropic MREs (preconditioned
to 15 mm) are plotted versus the average magnetic flux density (calculated in the
absence of an MRE sample, see Section 5.3.2). The maximum relative MR effects
listed in Tables 5.14, 5.15, and 5.16 are used.

is linear when plotted versus the applied magnetic induction for most of the MRE samples.

Anisotropic MREs with 30% iron content are an exception: in this case the MR effects are

not as high as expected when subjected to lower magnetic flux densities. Also, isotropic

MREs with 10% particles do not behave as expected, again especially when subjected to

lower magnetic field strengths; here MR effects are negligible. These findings are all subject

to about 10% error, as determined from experiments on pure rubber samples.

5.3.7 Summary of Tension Tests

Fatigue tests revealed a ‘maximum stability limit’ that differed according to the type of

elastomeric material under consideration (see Section 5.3.3). MRE samples used in the

main tension test series were just stretched up to strain levels below the maximum stabil-

ity limit. Comparisons between NoField01 and NoField02 tests revealed large discrepancies

most likely due to: (i) permanent deformation of the samples and (ii) the Mullins effect (see

Section 5.3.5). In order to eliminate the influence of these factors and to isolate the MR ef-

fect, only those test results obtained up to a divergence point (Table 5.12) were used. MREs

were tested up to two maximum strain levels; these tests showed that larger strains resulted

in a softer stress-strain behaviour. A direct comparison of different types of MREs were only
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possible for samples preconditioned and tested up to 15mm (50% strain). Anisotropic MREs

with particle alignment in the loading direction were the stiffest samples reaching the highest

stresses. Isotropic and anisotropic MREs with horizontal particle alignment showed similar

stress-strain curves and moduli. The magnetic field distribution within the testing space was

studied using finite element simulations (Comsol). Due to the large distances between the

magnets (63 to 89 mm), large variations in magnetic flux density across the volume of the

MRE test specimens were found. The stresses, tangent moduli, and absolute and relative

MR effects were studied versus engineering strain by comparing tests both without and with

magnetic fields. The MR effects were found to be large in the small strain region (< 10%

strain), almost negligible in the mid-strain region (10 to 15% strain), but become significant

again for strains larger than 15%. MREs with 10% CIP exhibit larger MR effects in the

large-strain region than in the small-strain region. This is an interesting result in so far as

MREs were previously reported to perform best in the small-strain region (see Chapter 2).

MR effects in the strain region below 15% generally increase approximately linearly with in-

creasing iron volume fraction and magnetic field strength. Larger preconditioning levels led

to larger MR effects, presumably due to softening effects (a softer matrix tends to produce a

greater MR effect, see Section 2.5).

5.4 Pure Shear Tests

Pure shear experiments were never before conducted on MREs up to large strain levels (see

literature review in Section 2.5), but are essential as they provide different deformation kin-

ematics with which to evaluate constitutive material models (as discussed in Chapter 6).

MREs are characterised under pure shear deformation in the absence and the presence of

a magnetic field. The pure shear experiment is basically a “very wide tensile test” (Miller,

1999), but due to the incompressibility of the MRE material “a state of pure shear exists at a

45 degree angle to the stretching direction” (Miller, 1999).

The general test method and the method of analysis were described in Section 5.1. The

structure of this section is as follows: Section 5.4.1 gives the specific procedure of the pure

shear tests. In Section 5.4.2 the test setup used for the pure shear tests is described, including

the magnetic flux distribution within the volume occupied by the sample. The analysis of

the DIC strain data is presented in Section 5.4.3. The MRE behaviour in the absence of a

magnetic field, and the MR effect resulting from tests with an applied magnetic field are de-

tailed in Sections 5.4.4 and 5.4.5, respectively. The pure shear experiments are summarised

in Section 5.4.6. To aid with the analysis of the pure shear tests, the Matlab functions pures-

hear_DIC.m and pureshear_pixel.m were written, which include the cut-and-shift process

described previously in Section 5.1.2, and the analysis of the optically measured strains (see

Section 5.4.3). For further details on the Matlab procedure and the employed sub-functions,
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the reader is referred to Appendix D. The Matlab codes are saved on a DVD attached to this

document and can be consulted for even more in-depth information.

5.4.1 Procedure of the Pure Shear Tests

Pure shear, also called planar shear experiments, were performed on MREs with up to 30%

iron content. The tests were performed in accordance with the British Standard (BS 903-5,

2004). To achieve the state of pure shear, a thin strip of rubber is required; “the height of

the strip in the straining direction should be no more than one-fifth of its longest dimension”

(BS 903-5, 2004). The sample width was restricted to 50mm due to both the manufacturing

process (see Chapter 3) and the size of the permanent magnets (see Section 5.1.1). The

thickness of the sample was set at 1mm; since thinner samples were difficult to manufacture.

The height was set at 30 mm, leading to a free height between the testing clamps of about

12 mm. The final ratio between height and width of the sample was 1/4, slightly less than

the recommended ratio in the British Standard, but still acceptable as experimental strains

measured in the horizontal direction were small (ideally these should be zero).

Cyclic tests up to a maximum of 70% strain were performed using a test speed of 50mm/min.

The strains were measured optically with the DIC system, and a grid of lines was drawn onto

the samples to enable manual verification of the strain values. Overall four repeat tests on

each type of MRE were conducted re-using the samples, including tests: (i) to precondi-

tion the samples over 50 cycles at a test speed of 200 mm/min, (ii) without a magnetic

flux (NoField01), (iii) with an magnetic flux density of 290mT using a distance between the

magnets of 53mm (Magnet53), and (iv) without a magnetic flux (NoField02). To investigate

further the Mullins effect present in the MRE samples; (i) the samples were preconditioned

and in contrast to the tension tests, DIC images were recorded to determine the strain values.

This meant that a direct comparison between the Preconditioning, NoField01, and NoField02

stress-strain results became possible, and (ii) as with the tension tests, each type of MRE was

tested up to two different displacement levels to observe the differences in stress softening.

A list of the displacement (or equivalent strain) levels to which the different types of MREs

were stretched, is given in Table 5.17. All MRE samples are tested up to 6 mm to enable

comparison between the different types of MRE samples. In the case of pure shear tests

identical displacement levels failed to produce identical levels of strains (Table 5.17), be-

cause the dimensions of the initial MRE samples differed slightly, in that they were longer

in the direction of particle alignment. Average dimensions for each type of MRE are listed

in Table 5.18. Due to the slightly different dimensions, it was necessary to adjust the initial

distance between clamps for each type of MRE sample to ensure proper clamping. The set

displacement levels were not adjusted to compensate for the different initial lengths of the

specimen leading to slightly different strains.
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MRE Sample Iron [%] Displacement [mm] (Strain [%])

Pure Rubber 0 6.0 (47) 9.0 (70)

Isotropic MREs
10 6.0 (45) 9.0 (67)
20 3.0 (23) 6.0 (45)
30 3.0 (23) 6.0 (45)

Anisotropic MREs -
vertical alignment

10 3.0 (22) 6.0 (43)
20 3.0 (22) 6.0 (43)
30 3.0 (22) 6.0 (43)

Anisotropic MREs -
horizontal alignment

10 3.0 (25) 6.0 (49)
20 3.0 (25) 6.0 (49)
30 3.0 (25) 6.0 (49)

Table 5.17: Types of MRE samples tested under pure shear. The samples were stretched to the
given displacements. All samples were tested up to 6mm to allow comparison.

w[mm] h[mm] t[mm]

Pure Rubber 45.4 27.4 0.93
Isotropic MREs 45.7 28.3 0.95
Anisotropic MREs - vertical alignment 45.2 29.6 0.94
Anisotropic MREs - horizontal alignment 49.4 27.5 0.93

Table 5.18: Averaged dimensions of pure shear samples.

Note that a separation distance between the magnets of 53 mm allowed displacements up

to 6 mm (equivalent to approximately 45% strain). The samples were only tested with this

single magnetic field strength; decreasing the distance between the magnets was not possible

as space was required to clamp the samples into the setup. Tests using smaller magnetic

fields would have been possible but were not conducted due to time constraints. Given

that uniaxial compression and tension tests had already confirmed an approximately linear

relationship between the MR effect and applied magnetic field strength (see Section 5.2.4

and 5.3.6), the importance of these tests was deemed less crucial at this stage.

Note that pure shear MRE samples experience large remnant deformations during each cycle

test, so the stress-strain data of the third loading cycle used for the characterisation of the

MRE behaviour (analysed as described in Section 5.1.2) show large variations in maximum

strain. The remnant deformation was dependant on the type of MRE; this issue will be

discussed further in Section 5.4.4 when characterising the MRE behaviour in the absence

of a magnetic field. However, for these pure shear experiments this remnant deformation

was found to be temporary: samples recovered completely to their original dimensions

between the four testing steps of the main test series (unlike the compression and tension

test samples).
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5.4.2 Pure Shear Test Setup

The same test rig as that used for uniaxial tension tests was used for the pure shear ex-

periments. The test setup for the uniaxial tension tests was described in Section 5.3.2; the

dimensions of the test rig are provided in Appendices B.10 and B.11, and a technical drawing

of the pure shear setup involving permanent magnets is provided in Appendix B.14. Figure

5.39 shows a pure shear sample clamped into the test rig. The sample is sprayed with white

paint to create a random speckle pattern for DIC analysis. Grid lines on the sample are vis-

ible, enabling the manual calculation of strain to verify the DIC measurements. The DIC

Figure 5.39: Pure shear sample clamped in the tension test rig. Parts of the setup are covered in
black tape to eliminate reflections in the DIC images. The sample is sprayed with a
white paint to enable DIC calculation, and the grid of lines is drawn on the sample to
enable manual verification of strains.

system comprised of cameras and lights is shown in Figure 5.40a. Figure 5.40b shows the

test setup with the two permanent magnets in place. The top magnet was held by a wooden

structure.

(a) DIC cameras and light (b) Permanent magnets in place

Figure 5.40: Test Setup for pure shear tests without and with magnets in place. The cameras and
bulb lights of the DIC system are shown. Permanent magnets are held by a wooden
structure, and the distance between them is 53mm.
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5.4.2.1 Distribution of the Magnetic Flux Density

As previously seen in the uniaxial tension tests (Section 5.3.2) the magnetic field distribution

is not expected to be uniform as the distance of 53mm between the permanent magnets is re-

latively large. The flux density was calculated using the finite element simulations (Comsol),

the model geometry of which is shown in Figure 5.41. Application of symmetry conditions

meant that only one quarter of the setup had to be modelled. Note that only the permanent

magnets and the MRE sample is modelled; the test setup is built of non-magnetic mater-

ial and has no influence on the magnetic flux simulation. Further details about the Comsol

Figure 5.41: Model geometry used to calculate the magnetic flux distribution within the pure shear
test setup. The distance between the magnets is 53 mm. Symmetry conditions are
applied, so only one quarter of the setup is modelled.

model are given in Section 4.4; the settings used here are the same as those used to identify

permeabilities (Chapter 4). Contrary to the uniaxial tension tests, the magnetic flux density

in the vertical and horizontal directions must be considered as the pure shear samples are

much wider. In the area occupied by the narrow uniaxial tension test samples, the direction

of the magnetic flux was practically uniform, directed in vertical direction only (see Section

5.3.2). Nearer to the borders of the permanent magnets, the magnetic flux is also directed ho-

rizontally and therefore, in the case of pure shear samples, the direction of the magnetic flux

cannot be considered to be uniform. The importance of a uniform level and direction of the

magnetic flux was emphasised by Gorman et al. (2012). The use of permanent magnets with

such a large distance between them is not perfect, but note that it is very difficult to achieve

uniform magnetic levels in large strain experiments and some compromise is required. An

open view to the experiments is required to enable the DIC measurements and also access to

the setup is essential for changing samples. Thus even when using an electromagnetic setup

where the magnetic field can simply be switched on and off (the main advantage of using

electromagnets compared to using permanent magnets), it is still very difficult to achieve
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uniformity of the magnetic field. By simulating the distribution of the magnetic flux the

degree of non-uniformity can be understood, and this knowledge can potentially be used in

modelling the material behaviour at some later stage (i.e. during evaluation of constitutive

models). The distributions of the vertical and horizontal flux in the area occupied by the

MRE samples (calculated in the absence of a sample with µr = 1) are illustrated in Figure

5.42. The bottom end of the MRE sample touches the bottom magnet, resulting in the largest





(a) BZ with an average of
290.64mT





(b) BX with an average of 59.49mT

Figure 5.42: Distribution of the magnetic flux density BZ and BX within the region occupied by
the MRE sample but calculated in the absence of a sample (µr = 1). Symmetry
conditions are applied at the y-z and the x-z plane, so only one fourth of the sample
is modelled.

magnetic flux density at the bottom end of the sample. A minimum and maximum flux of

BZ = 152.86 mT and 560.25 mT was calculated, and the vertical flux differs within the

volume usually occupied by the MRE sample up to 140%. The local horizontal magnetic

flux in the corner of the sample is very large with BX = 448.7 mT , but is nearly zero in the

remaining volume of the MRE sample, resulting in a 743.9% relative variation of BX across

the volume of the sample.

The magnetic field distribution is also studied when MRE samples are present (µr > 1). The

identified permeabilities in Chapter 4, listed in Table 4.11, are used to calculate the magnetic

flux densities within the pure shear setup for the different types of MREs. Parametric sweeps

are used in Comsol to calculate the flux for the different permeabilities. Average dimensions

of the pure shear samples, which are slightly different depending on the type of MRE (see

Table 5.18), are used in Comsol to perform the simulations. The mean values of BZ and BX

together with the variation within the area occupied by the MRE sample for each type of

MRE are listed in Table 5.19. The level of magnetic induction increases with increasing iron

content, and in most cases the differences within the volume occupied by the MRE sample
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MRE Sample
Iron Flux in Z-direction Flux in X-direction
[%] Bmean [mT ] Bmax−Bmin

Bmean

[%] Bmean [mT ] Bmax−Bmin

Bmean

[%]

Pure Rubber 0 290.64 140.2 59.49 743.9

Isotropic MREs
10 447.06 123.0 92.85 643.1
20 596.52 112.3 122.46 580.9
30 941.34 108.0 189.29 505.5

Anisotropic MREs -
vertical alignment

10 442.40 120.2 80.74 635.8
20 710.48 110.9 117.11 555.8
30 1096.72 110.3 168.35 502.2

Anisotropic MREs -
horizontal alignment

10 411.53 176.6 112.56 1050.1
20 605.48 180.1 178.0 973.5
30 884.09 180.4 269.98 880.3

Table 5.19: Mean values and differences of the magnetic flux density, BZ and BX , in the Mag-

net53 setup within the volume occupied by isotropic and anisotropic MRE samples
(µr > 1). The permeability of isotropic and anisotropic MREs (Table 4.11) were used
to calculate BZ and BX . Values for BX are calculated with absolute values.

decreases with higher iron content. In general, the mean vertical flux is much higher than the

horizontal flux, although the latter is nevertheless significant.

5.4.3 Strain Measurement - Digital Image Correlation

The strain values were measured optically, as previously described for the uniaxial tension

tests (Section 5.3.4). The DIC system was described in Section 5.1.1, and its use is described

in the manual (VIC-3D Testing Guide, 2010). To facilitate the DIC analysis samples were

sprayed with a white random speckle pattern (see Figure 5.43a). Grid lines were drawn

onto the sample to enable manual calculation of the strains using ImageJ (2014)). Figure

5.43b shows the vertical displacement field across the AoI (calculated by the DIC software)

of an isotropic MRE with 20% iron content, tested here up to 6 mm displacement. The

displacements within the AoI range from 1.32 mm to 4.02 mm, which is reasonable since

the AoI is not defined from the bottom to the top clamp to exclude boundary effects. The DIC

software also calculates engineering strain values εyy and εxx. These strains, at maximum

displacement, are illustrated in Figure 5.44. These original results from the DIC software are

presented without any post-processing. The strains in the vertical direction range from 0.23

to 0.34. The localised strains in the horizontal direction are relatively large at the vertical

edges of the samples (−0.121) but are much smaller in the centre of the specimen, away

from the edges (−0.009). A Matlab code strainDICLimess_pure.m was written by the author

to post-process the data provided by the DIC software. The code loads all Matlab files

that contain matrices of engineering strains and confidence values. A confidence check is

performed using the sigma values (which describe the match at a given point, see Section

5.3.4). The small horizontal strains (occurring in the centre of the sample) remain after the

confidence check, but most of the values near the edges of the sample are eliminated due
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(a) Sample preparation

V [mm]
4.02
3.85
3.68
3.51
3.35
3.18
3.01
2.84
2.67
2.50
2.33
2.16
2.00
1.83
1.66
1.49
1.32

(b) Vertical displacement - DIC Analysis

Figure 5.43: (a) Pure shear sample prepared for optical strain measurement. A white random
speckle pattern and grid lines are both visible. (b) Displacement field, calculated
by the DIC system at maximum vertical displacement (6 mm) of an isotropic 20%
MRE, is shown. The vertical displacement ranges from 1.32mm to 4.02mm.

eyy [-]0.3430
0.3358
0.3287
0.3215
0.3144
0.3072
0.3001
0.2929
0.2858
0.2786
0.2714
0.2643
0.2571
0.2500
0.2428
0.2357
0.2285

(a) Strain in vertical direction

exx [-]
-0.009
-0.016
-0.023
-0.030
-0.037
-0.044
-0.051
-0.058
-0.065
-0.072
-0.079
-0.086
-0.093
-0.100
-0.107
-0.114
-0.121

(b) Strain in horizontal direction

Figure 5.44: Vertical and horizontal strains calculated by the DIC system. An isotropic 20% MRE
is shown at a displacement of 6mm. The vertical strain ranges from 0.23 to 0.34 and
the horizontal strain ranges from −0.009 to −0.121; smaller horizontal strains occur
in the centre of the MRE sample, away from the edges of the sample.

to sigma = −1. Larger values of strain remain just in a 5% region from the left and right

edges of the sample, which are likely to be caused by boundary effects. The horizontal strain

field after the confidence check is shown in Figure 5.45. The size of the AoI is reduced by

cutting off this 5% from the left and the right ends. The mean values and standard deviations

of both strains are calculated from the remaining AoI, and are plotted versus test time in

Figure 5.46. The DIC results are good, as all subsequent cycles are similar and standard

deviations are small. After the samples were stretched, a permanent deformation occurred,

leading to buckling of the sample when the test machine crosshead moved back to the initial

zero-displacement position. Pure shear samples buckled out of plane to a greater extent than

uniaxial tension test samples (see Sections 5.1.2 and 5.3.4). The DIC software was unable

to determine the strains near zero-displacement correctly, leading to oscillations in the strain

versus time data near zero strain (see Figure 5.46). As the strain-time relationship is generally

linear (except for the problems at the end of each unloading part), linear functions were fitted

to each section of the loading and unloading cycles, and were used to relate the DIC data to
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Figure 5.45: Horizontal strains calculated by the DIC system after unreliable values with sigma =
−1 were eliminated. The original horizontal strain field is shown in Figure 5.44b.

      















  






   
   

 

Figure 5.46: Mean and standard deviation of the strain in vertical and horizontal directions cal-
culated by the DIC software and post-processed by the Matlab function strainDIC-

Limess_pure.m. Both strains are plotted versus time. The regions where the DIC
software is unable to determine the strains correctly are indicated. In this example,
results were obtained from an anisotropic MRE with 20% horizontally aligned iron
particles tested up to 6 mm.

the load-displacement data provided by the test machine. The coefficients were passed to a

Matlab function pureshear_DIC.m to perform the rest of the analysis, i.e. the extraction of

the third loading part and cutting and shifting (see Section 5.1.2).

DIC strains were verified using the gridlines and manual image analysis. A Matlab code

strainpixel_pure.m was written to aid with the analysis of the measured pixel-positions. The

distance between clamps in the reference state was used to convert from pixel to mm. The

calculated distances in the reference image and in an image of a stretched state are marked

in Figure 5.47. The vertical strain is determined using

εy =
lv,1 − lv,0

lv,0
(5.4)
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Figure 5.47: Reference image and image of the stretched state of an MRE sample. Distances
between the clamps and vertical distances lv and horizontal distances lh between the
lines in the reference image (lv,0 and lh,0) and in all subsequent images (lv,1 and lh,1)
are defined.

where lv,0 and lv,1 are the mean values of the vertical distances between horizontal lines

measured at all crossing points. The distances between the two inner vertical lines were

taken to calculate the strains in the horizontal direction (to eliminate boundary effects as

seen in the DIC analysis). Mean values from all crossing points are taken to calculate lh,0

and lh,1, respectively. The horizontal strain is calculated with:

εx =
lh,1 − lh,0

lh,0
(5.5)

To link the results of the manual image analysis method to the load-displacement data of

the test machine, the displacement of the top clamp was measured and a linear fit of the

strain versus displacement data was performed. The coefficients of this linear functions

were passed to a Matlab function pureshear_pixel.m to perform the rest of the data analysis.

The manual image analysis method is time consuming and so only the pixel positions of

the reference image and of six images of the third loading part were measured, which is

sufficient to determine the linear relation between strain values and the displacement of the

clamps.

To compare the DIC analysis with the manual image analysis method, the strain-time data

and the stress-strain data of the third loading cycle are both shown in Figure 5.48. An aniso-

tropic MRE with 20% horizontally aligned particles was used in this example. The manual

method is found to capture the negative vertical strains which occur at the end of each unload-

ing phase due to remnant deformation in the sample. The strains in the horizontal direction

calculated with the manual image analysis method result in a zigzagging curve. The hori-

zontal displacements are small; thus, considering the size of the measured crossing points,

the manual method is probably not accurate enough to capture such small changes. Since in

both methods data fitting to a linear function was used to relate force and strain, these prob-

lems are considered to be of minor importance. Figure 5.48b shows almost perfect agreement

when plotting the final stress versus strain results produced by both methods.
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(b) Stress-Strain Data of the 3rd loading part

Figure 5.48: Comparison of strains obtained from the DIC analysis and from the pixel measure-
ment method. Strain-time and stress-strain data of the third loading part of an aniso-
tropic MRE with 20% horizontal aligned iron particles are shown as an example.

5.4.4 Tests in the Absence of a Magnetic Field

Pure shear tests conducted in the absence of a magnetic field were performed using the setup

illustrated in Figure 5.40b. The general test method was explained in Section 5.1.1, and the

specific procedure of the pure shear tests was given in Section 5.4.1. In this section, the

stress-strain results of the preconditioning tests and the two no-field tests are compared. The

behaviour of isotropic and anisotropic MREs is characterised using the NoField02 stress-

strain results, analysed as described in Section 5.1.2.

5.4.4.1 Comparison of Preconditioning, NoField01, and NoField02 Tests

In both the uniaxial compression (Section 5.2.3) and tension tests (Section 5.3.5), stress-

strain results obtained from NoField01 and NoField02 test were found to diverge from a

certain level of strain (see Tables 5.4 and 5.12). To study this issue further, here, the stress-

strain data of the Preconditioning, the NoField01, and the NoField02 tests are compared.

The results of isotropic and anisotropic MREs that were tested up to 6 mm are illustrated

in Figure 5.49. The full set of data for all types of MREs is provided in Appendix E.3.

Surprisingly, in the case of pure shear experiments, the stress-strain results do not diverge.

This is perhaps because the pure shear samples were found to recover to their original di-

mensions between each cycle test performed in the test series. The fact that no divergence

between the NoField01 and NoField02 pure shear tests occurred leads to the conclusion that

the magnetic field applied before the NoField02 tests is not the reason for the divergence

seen in uniaxial tension and compression tests (see Sections 5.2.3 and 5.3.5), and therefore

points to the Mullins effect as a more likely cause of the divergence. It can be concluded that

the strategy (used in both tension and compression tests) of directly comparing only the data
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(b) Anisotropic MREs with vertical particle align-
ment

Figure 5.49: Stress-strain curves from NoField01 and NoField02 pure shear tests. Isotropic and
anisotropic MREs with 10% to 30% CIP content, that were stretched up to 6 mm
(≈ 45% strain), are compared.

that remain in agreement up to the point where the NoField01 and NoField02 tests diverge,

is the best way to eliminate the influence of the Mullins effect when investigating the MR

effect in MREs.

5.4.4.2 Comparison of MRE Samples

The stress-strain curves of the different types of MREs are compared in Figure 5.50 when

tested up to two different strain levels (see Table 5.17). Note that large temporary remnant

deformations within NoField02 cycle tests were present in pure shear tests (this was the same
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(b) Anisotropic MREs

Figure 5.50: Stress-strain curves comparing different types of MRE samples: (a) pure rubber and
isotropic MREs and (b) anisotropic MREs with vertical and horizontal particle align-
ment. Samples were tested up to different strain levels as listed in Table 5.17.
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in each of the four tests performed in the test series, as the pure shear samples recovered to

the original state between each test). This temporary remnant deformation was far larger

for anisotropic MREs with high iron content compared to isotropic MREs with low iron

content, resulting in the different strain levels observed in Figure 5.50 and all subsequent

figures. Nevertheless, the samples were preconditioned to the strain levels listed in Table

5.17; this was the strain in the first cycle.

As expected, higher iron contents lead to higher stresses. Anisotropic MREs with vertical

particle alignment exhibit higher stresses than the isotropic MREs with the same amount of

iron, while the anisotropic MREs with horizontal particle alignment are quite similar to the

isotropic MREs. Samples that were tested to larger strain levels result in softer stress-strain

curves. Comparison of results from samples tested up to the same displacement is shown

in Figure 5.51. To interpret the non-linear stress-strain behaviour, the tangent moduli, ET ,
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Figure 5.51: Stress-strain results comparing different types of MRE samples (a) tested up to 6mm
and (b) tested up to 3 mm.

are plotted versus the engineering strain in Figure 5.52 for MRE samples tested up to 6 mm

and 3 mm. The MREs exhibit large moduli in the small-strain regime which decrease to a

minimum at approximately 10% strain, but increase again at higher strains. An exception

are the isotropic MREs with 20% iron volume fraction; here the curve shape is different.

Anisotropic samples exhibit larger tangent moduli than isotropic MREs. Usually, the MRE

samples tested up to 3 mm exhibit larger moduli compared to the same type of MRE tested

up to 6 mm. This is explained by the stress-softening Mullins effect. The tangent moduli,

ET , between 1% and 2% strain and the initial secant moduli, E0−5, are listed in Table 5.20.

The stiffness increase of the isotropic MREs compared to the pure rubber samples and the

stiffness increase of the anisotropic MREs compared to isotropic MREs (with the same iron

content) calculated with E0−5 are provided in the same table for those samples tested up

to the same displacement. The moduli and also the increases in moduli (listed in Table
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Figure 5.52: Tangent moduli versus strain comparing different types of MRE samples (a) tested up
to 6mm and (b) tested up to 3mm. The tangent moduli are calculated with linear fits
of 1% strain increments of the stress-strain data, and are illustrated from 1% strain.

MRE Sample Iron [%] up to ... [mm] E0−5 MPa ET MPa Increase compared

Pure Rubber 0
6.0 1.00 1.00 to ... [%]
9.0 0.94 0.94

Isotropic MREs

10
6.0 1.43 1.46

P
ur

e

43.0
9.0 1.25 1.26 33.0

20
3.0 2.19 2.24 -
6.0 1.50 1.37 50.0

30
3.0 3.32 3.46 -
6.0 3.17 3.30 217.0

Anisotropic MREs -
vertical alignment

10
3.0 2.72 3.05

Is
ot

ro
pi

c

-
6.0 2.09 2.29 46.2

20
3.0 4.16 4.91 90.0
6.0 3.27 3.70 118.0

30
3.0 6.19 7.13 86.4
6.0 6.78 7.77 113.9

Anisotropic MREs -
horizontal alignment

10 6.0 1.52 1.54

Is
ot

ro
pi

c 6.3
20 6.0 2.33 2.39 55.3
30 3.0 5.37 5.91 61.7

Table 5.20: Initial secant moduli, E0−5, and tangent moduli, ET , obtained from stress-strain
curves of pure rubber, isotropic, and anisotropic MREs with 10% to 30% CIP con-
tent (NoField02) are listed. The relative increase of isotropic MREs compared to pure
rubber and the relative increases of anisotropic MREs compared to isotropic MREs
with same iron content, calculated with E0−5, are provided (only for samples tested
up to the same displacement).
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5.20) are similar to the results of uniaxial tension tests (compare to Table 5.13). The initial

secant and tangent moduli (Table 5.20) are plotted versus the iron volume fraction (samples

preconditioned to 6 mm) in Figure 5.53a and versus the preconditioning level in Figure

5.53b. The moduli increase with increasing iron content in the MREs. However, in contrast
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Figure 5.53: Moduli E0−5 and ET as listed in Table 5.20 versus (a) the volume particle concen-
tration (MREs preconditioned up to 6 mm) and (b) the preconditioning level.

to the results found in tension tests (see Figure 5.33) the relationship between the moduli

and the iron content is not linear. In agreement with the tension tests, the moduli are smaller

when the samples are stretched to a higher strain level. An exception are the anisotropic

MREs with 30% iron content, where the samples are stiffer when tested up to 6 mm.

5.4.4.3 Strain in the Horizontal Direction

For the case of pure shear, ideally the strain in the horizontal direction should be zero, since

the theory of pure shear assumes only through-thickness contraction of the sample. Exper-

imentally this was not perfectly achieved as discussed in Section 5.4.3. The strains in the

horizontal versus vertical directions for all types of MRE samples tested up to 6 mm are

shown in Figure 5.54. The maximum observed horizontal strain observed in the AoI is 3%,

and occurs in isotropic MREs with 30% iron content stretched to 24% vertical strain (in the

third loading cycle). Usually, the vertically-aligned anisotropic MREs exhibit larger hori-

zontal strains than isotropic MREs with the same iron content, while horizontally-aligned

anisotropic MREs tend to exhibit lower horizontal strains compared to equivalent isotropic

samples.
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Figure 5.54: Strain in the horizontal versus vertical direction of all MRE samples tested up to
6 mm. Mean values and standard deviations of the third loading cycle are shown.

5.4.5 Characterisation of the Magneto-Rheological Effect

In the pure shear test series, only one magnetic field strength was applied to study the MR

effect. The average applied magnetic flux was 290.6 mT in the vertical direction within

the volume occupied by the MRE sample (µr = 1). Due to the large width of the pure

shear specimens, a magnetic field strength in the horizontal direction was present, with an

average strength of 59.5 mT . The magnetic field was non-uniform in terms of both strength

and direction of the flux lines (see Section 5.4.4). This adds to the complexity of the test

environment in the pure shear test setup. Nevertheless, MR effects were found. The absolute

and relative MR effects (Equations 5.1 and 5.2) are compared in Figure 5.55 and 5.56 for

samples tested up to 6 mm and 3 mm, respectively. The full set of test results for stress,

tangent moduli, and relative MR effect versus engineering strain, for both the NoField02 and

the Magnet53 tests are given in Appendix E.3. In contrast to the results of uniaxial tension

tests (Section 5.3.6), the MR effects are usually larger in MRE samples preconditioned to

a lower displacement level. The largest relative increases in stiffness of about 75% were

achieved with anisotropic vertically-aligned MREs with 10% and 20% iron volume fraction

tested up to 3 mm (approximately 23% strain). MREs with 30% iron content do not show

high MR effects at all and also the anisotropic MREs with horizontal particle alignment

do not perform well (seen earlier in compression, Section 5.2.4). The MR effect of pure

rubber in the small strain regime indicates an experimental error of about 20%, which is

large compared to the errors found in compression and tension tests. The relatively small

MR effects and the large experimental error might be due to non-uniformity of the magnetic

flux density in pure shear experiments. MR effects calculated using E0−5 and the maximum

MR effects calculated using ET are listed in Table 5.21 for all types of MREs. The maximum
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Figure 5.55: Absolute and relative MR effects, calculated with ET , of MRE samples tested up to
6 mm achieved with a magnetic induction of 290mT are illustrated versus strain.
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Figure 5.56: Absolute and relative MR effects, calculated with ET of MRE samples tested up to
3 mm achieved with a magnetic induction of 290mT are illustrated versus strain.

of the two values is shaded in grey in the table and used to study the relationship between the

MR effect and the volume particle concentration in Figure 5.57a and also between the MR

effect and the preconditioning level in Figure 5.57b.

In contrast to the compression and tension tests, where the relative MR effect increased lin-

early with increasing iron content, the MREs with 20% iron content show relatively high

MR effects while MREs with 30% iron volume fraction exhibit very low increases in stiff-

ness. The no-field moduli found for MREs with 30% iron volume fraction were found to be

very high (see Figure 5.53) compared to MREs with lower iron content. A very large no-

field modulus results in a lower relative MR effect. Consequently, a probable reason for the

low MR effects in the 30% MREs might lie in the material’s micro-structure; the pure shear

samples are just 1 mm thick and the particles may have struggled to distribute uniformly
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MRE Sample Iron up to . . . Absolute MR Effect Relative MR Effect
[%] [mm] E0−5 ET E0−5 ET

Pure Rubber 0
6.0 −0.0974 −0.0037 0.9021 0.9933
9.0 −0.0782 0.0122 0.9170 1.0157

Isotropic
MREs

10
6.0 0.0763 0.1418 1.0534 1.1012
9.0 0.0589 0.1140 1.0473 1.0942

20
3.0 0.2189 0.5635 1.1001 1.2721
6.0 0.5859 0.6460 1.3914 1.4937

30
3.0 0.7470 1.3567 1.2251 1.4050
6.0 0.4709 0.4896 1.1486 1.1532

Anisotropic
MREs -
vertical
alignment

10
3.0 1.0408 2.2728 1.3826 1.7655
6.0 0.7398 0.9798 1.3542 1.4389

20
3.0 3.1894 3.6096 1.7659 1.7547
6.0 1.4276 2.0481 1.4359 1.5701

30
3.0 2.8807 4.7781 1.4657 1.6722
6.0 1.3208 1.0382 1.1948 1.1411

Anisotropic
MREs -
horizontal

10 6.0 −0.0100 0.0783 0.9934 1.0884
20 6.0 0.1200 0.1552 1.0516 1.1222
30 3.0 1.4374 1.0747 1.2677 1.2038

Table 5.21: Absolute and relative MR effects achieved with 290 mT average magnetic induction,
and calculated using E0−5 and ET (maximum values), see Figures 5.55 and 5.56).
The maximum relative MR effects (E0−5 or ET ) are shaded grey.
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Figure 5.57: Relative MR effect of MRE samples achieved with a magnetic induction of 290 mT
are illustrated versus (a) the volume particle concentration (MREs preconditioned up
to 6 mm) and (b) the preconditioning level. Maximum MR effects as indicated in
Table 5.21 are used.

in isotropic and to align properly in anisotropic MREs. Problems with the manufacture of

MREs containing 30% iron volume fraction have been reported previously in the literature.

Boczkowska et al. (2012) observed reduced micro-structural alignment of the particles in

MREs containing 30% iron content, and also measured a drop in the magnetic anisotropy

coefficient by performing magnetic field measurements (Boczkowska et al., 2007).
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5.4.6 Summary of Pure Shear Tests

Comparison between the no-magnetic field tests revealed no divergence between the results,

in contrast to the compression and tension tests where stress-strain curves of NoField01 and

NoField02 test diverged from a certain level of strain. Pure shear samples recovered quickly

to their original dimensions between each of the tests performed in the test series due to

their lower thickness. Both compression and tension samples experienced permanent de-

formations that led to a higher strain level in the subsequent test, and consequently due to

the Mullins effect, to differences in the stress-strain results. Different types of MREs, tested

up to both 6 mm and 3 mm displacement in pure shear tests, were compared. In agreement

with the compression and tension test results, anisotropic MREs with particle alignment in

the loading direction revealed the highest stresses and moduli, and isotropic and anisotropic

MREs with horizontal particle alignment showed similar stress-strain curves and moduli.

The moduli increased with increasing iron content. In the case of pure shear experiments,

the magnetic flux density was non-uniform in terms of both the strength of the field and the

direction of the flux lines. In the case of isotropic 20% MREs and vertically-aligned aniso-

tropic MREs with 10% and 20% iron volume fraction, the MR effects were large in the small

strain region, decreasing down to 1 or even lower in the mid-strain region, but increasing

again for strains larger than 15%. The MR effects increased with increasing iron volume

fraction. In contrast to the results achieved in uniaxial tension, a lower preconditioning level

led to larger MR effects. In general, the MR effects achieved in the pure shear setup are

lower than those achieved in uniaxial compression and tension.

The ideal state of pure shear, where the horizontal strains are zero, was experimentally not

achieved, small strains up to 3% were measured. This, and the non-uniformity of the mag-

netic flux distribution must be taken into account when using these experimental data to

develop constitutive models in future.

5.5 Equi-Biaxial Tension Tests

Experimental data from a multi-axial deformation mode are important to determine unique

model parameters of constitutive material equations. To this end, equi-biaxial tension tests

were performed to characterise the MRE behaviour in the absence and in the presence of a

magnetic field. A bespoke test rig was designed to facilitate testing of MREs under equi-

biaxial deformations using a standard uniaxial test machine.

The general test method and the method of analysis was described in Section 5.1. The

structure of Section 5.5 is as follows: Section 5.5.1 gives the specific procedure of the equi-

biaxial tension tests. A detailed description of the test rig is given in Section 5.5.2. The

compliance of the setup and the magnetic field distribution within the volume occupied by
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the MRE sample are also examined in this section. Strain measurement is discussed in

Section 5.5.3. Equations for the stress calculations are given in Section 5.5.4. Results of the

NoField tests are presented in Section 5.5.5 for both isotropic and anisotropic MREs, and the

MR effects resulting from the applied magnetic flux density are discussed in Section 5.5.6.

Suggestions for improvements of the test setup and procedure are given in Section 5.5.7. The

investigations are summarised in Section 5.5.8.

To aid with the analysis of the equi-biaxial tension tests, the Matlab function biaxial.m was

written, which includes the cut-and-shift process described previously in Section 5.1.2, the

stress calculations specific to each type of MRE (detailed in Section 5.5.4), and the analysis

of the optically measured strains (see Section 5.5.3). For further details on the Matlab pro-

cedure and the employed sub-functions, the reader is referred to Appendix D. The Matlab

codes are saved on a DVD and can be consulted for even more in-depth information.

5.5.1 Procedure of the Equi-Biaxial Tests

Tests were performed on isotropic and anisotropic MREs with up to 30% iron content, con-

ducted at a test speed of 10 mm/min with up to 10 mm vertical displacements, resulting

in approximately 10% strain in the stretching directions. An exception are the anisotropic

MREs with 30% iron particles (the strongest MREs tested), which were only stretched up

to 7% strain. Due to the clamping system (described in Section 5.5.2) it was not possible to

stretch these sample to a larger strain level. Also due to damage to the specimens following

clamping, it was not possible to re-use the MRE samples in subsequent tests in a test series.

This is a notable change in procedure compared to the previous tests discussed in Sections

5.2 to 5.4. Consequently, only two different testing steps were carried out: tests without an

applied magnetic field (NoField), followed by tests with an average magnetic flux of 67.5mT

(Magnet). Note that both the NoField and the Magnet tests were 4-cycle tests and the third

loading cycle was used for the analysis (see Section 5.1.2), as with the previous large-strain

experiments. It is expected in the case of equi-biaxial tests that divergence between several

test results would not occur, and that it is therefore acceptable to use the samples only once.

The reasons for this are as follows: Stress-strain curves from repeated tests in the absence of

a magnetic field were found to be in agreement in the case of pure shear tests. The divergence

between no-field tests observed in compression and tension tests were found to be due to the

Mullins effect (as permanent deformations led to higher strain levels in subsequent tests).

Pure shear samples were found to recover to their original dimensions after each step in the

test series; i.e. permanent deformations did not occur in pure shear samples and consequently

no divergence between test results occurred (see Sections 5.2.3, 5.3.5 and 5.3.5). Both the

pure shear and equi-biaxial tension specimens are thin sheets of material and measurements

of the biaxial sample dimensions after testing confirmed that permanent deformations were
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not present. A DIC system was used to measure engineering strains, and grid lines were

drawn on the samples to enable a manual verification of the DIC strain. The equi-biaxial

tension tests were conducted with the uniaxial Zwick Z250 test machine, measuring the ver-

tical force and displacement. A special test rig was designed to enable equi-biaxial testing

on this uniaxial test machine (described in Section 5.5.2). However, in order to calculate the

stresses in the two principal stretching directions, assumptions were required in the case of

both anisotropic MREs and during the application of magnetic fields (see Section 5.5.4).

5.5.2 Equi-Biaxial Test Setup

A special test rig, designed in accordance with the British Standard (BS 903-5, 2004), was

manufactured to perform equi-biaxial tension tests using a universal test machine (Zwick

Z250), see Figure 5.58. The rig consists of upper and lower frames, both manufactured

from PTFE (Teflon). The two frames do not contact each other, and are attached to the test

machine. Test specimens are held in the rig using three sliding clamps on each side of the

specimen; the clamps were free to move along the frame side length as the test proceeded,

ensuring an almost uniform biaxial stretch of the MRE samples. To reduce friction and to

avoid interactions between the test rig and the magnetic field, the rig and the sliding clamps

were made of Teflon. The clamps for holding the rubber were made of aluminium and brass

screws. The dimensions of the parts of the test rig and the assembled setup are given in the

technical drawings in Appendices B.15 to B.18. A naming convention is used in this section

when describing the different types of experiment (see Section 5.5.4). CASE 1: An isotropic

MRE tested without permanent magnets is shown in Figure 5.58. The vertical load, PV ,

Figure 5.58: Biaxial test rig attached to the uniaxial Zwick Z250 test machine . The rig consists of
upper and lower frames that do not touch. The MRE sample is held by three sliding
clamps on each side. The rig is made of Teflon and aluminium to reduce friction and
to avoid magnetisation of the rig. An isotropic MRE is clamped into the rig (CASE1),
and the vertical recorded load, PV , and displacement, d, and the coordinate system
are indicated.
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and displacement, d, recorded by the test machine are indicated in the figure. The magnetic

field was created using four permanent magnets, two placed on either side of the test rig

with a separation distance of 140 mm. Permanent magnets and the direction of the particle

alignment in anisotropic MREs are shown in Figure 5.59 (CASE2 to CASE5).

(a) Isotropic MREs with applied mag-
netic field in x-direction - CASE 2

(b) Anisotropic MREs without magnetic
field - CASE 3

(c) Anisotropic MREs with magnetic
field parallel to the alignment -
CASE 4

(d) Anisotropic MREs with magnetic
field perpendicular to the alignment
- CASE 5

Figure 5.59: Biaxial test setup with (a) an isotropic MRE with applied magnetic induction in x-
direction, (b) an anisotropic MREs with particle alignment in y-direction, without
magnetic field, and with magnetic field (c) in y-direction parallel to the particle align-
ment, and (d) in x-direction perpendicular to the particle alignment. The definitions
of CASE 2 to CASE 5 are used to derive the equations for the stress calculation in
Section 5.5.4.

5.5.2.1 Compliance of the Test Rig

Manufacturing the test rig using Teflon created concerns regarding the stiffness of the test

rig, so finite element simulations (using Abaqus, see Figure 5.60) were performed to invest-

igate this issue, i.e the ability of the test rig to induce equi-biaxial deformation kinematics.

To simplify the finite element model, only the stretched state of the test rig (to 10 mm in

vertical direction in accordance to the experiment) was implemented, ignoring the motion of

the sliding clamps. The forces generated by the stretched samples were used as boundary

conditions in the simulation. Model dimensions are provided in Appendix B.18. Boundary
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conditions defined in the model prevent deformation or rotation of the frame at the point of

attachment with the aluminium rods, which are not modelled in the simulation. Loading is

implemented as a surface traction over the 10 × 8 mm area of each clamp attached to the

upper and lower frames of the test rig. The applied stress is estimated using the maximum

vertical force of 80 N (recorded during experiments). The material properties used in the

simulations are taken from (MatWeb, 2013c); a Teflon modulus of 0.496GPa and Poisson’s

ratio of 0.46 are used. The properties of aluminium were given in Table 5.1, i.e. an elastic

modulus of 68.9 GPa and a Poisson’s ratio of 0.33. The model of the biaxial test rig, to-

gether with the defined boundary conditions and surface tractions are illustrated in Figure

5.60a. The deformed geometry is shown with a scale factor of 15 in Figure 5.60b. The

Z

Y X

(a) Geometry with applied load and boundary con-
ditions

(b) Deformed geometry in the 10% strain state

Figure 5.60: Geometry implemented into Abaqus. (a) Isometric view of the geometry together
with the defined load and boundary conditions, and (b) the deformed geometry in the
x−y view in the 10% strain state, which is when the top frame is displaced by 10mm
in the vertical direction. The maximum deformation is 0.292 mm (magnitude value
of U ). The scale factor of 15 is used to illustrate the deformations.

magnitude of the deformation, U , is illustrated in the contour plot in Figure 5.61a, and also

plotted versus the length along the inner sides of the frames in Figure 5.61b. The position

of the MRE test specimen is indicated in the figure. The deformation of the frame results in

a maximum displacement across the upper frame in the region of the MRE sample of about

0.125 mm. The equivalent displacement across the lower frame in the region of the MRE

sample is about 0.06 mm. To examine the additional deformation of the clamps, distinct

models of the clamps (not merged to the upper and lower frame structures of the test rig)

were created in Abaqus. The undeformed and deformed geometry of the clamps, together

with the values of vertical deformation U2 are illustrated in Figure 5.62. The clamps are

pin-joined to the biaxial frames. The boundary conditions are applied at the areas of size

6 × 10 mm that hang in the biaxial frames. The applied surface traction is consistent with

that applied in the model of the complete biaxial rig. The deformation of the clamps must be
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(b) Deformation in vertical U1 and horizontal
U2 direction along defined paths

Figure 5.61: The deformation of the biaxial test rig. (a) Contour plot of the deformation U (mag-
nitude): the maximum deformation is 0.292 mm. The defined paths Left Upper

Frame, Right Upper Frame, Left Lower Frame, and Right Lower Frame are illus-
trated. (b) Line plots of vertical and horizontal deformation U1 and U2, respectively,
along the defined paths. The position of the MRE sample in the 10% strain state is
indicated.

added to the deformation of the frames in order to determine the total rig deformation at the

borders of the MRE sample. The maximum overall deformation of the upper frame structure

is 0.125 + 0.057 = 0.18 mm at one end of the sample, and 0.08 mm at the other end. The

maximum overall deformation of the lower frame structure is 0.06 + 0.402 = 0.46 mm at

one end of the sample, and 0.41mm at the other. The deformation of the lower frame struc-

ture results mainly from the deformation of the clamps. The deformation of the biaxial rig

leads to a reduction in strain compared to a perfectly rigid rig of 0.76%. As the differences

in strain are less than 1%, this is an acceptable deformation validating the test rig as a rig that

can stretch the MRE samples equally in both directions. Note, however, that the deformation

of the test rig becomes larger when stretching the MRE samples beyond 10% strain, poten-

(a) Vertical deformation of the clamps at-
tached to the upper frame structure

(b) Vertical deformation of the clamps attached to the lower
frame structure

Figure 5.62: Contour plot of the vertical deformation of the clamps attached to the (a) upper frame
structure and (b) lower frame structure of the test rig, is shown on the deformed
geometry (scale factor 10).
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tially inducing kinematics significantly different to the equi-biaxial kinematics aimed for in

these tests.

The strains are measured optically rather than calculated from the cross-head displacement

in order to eliminate errors due to the compliance of the test machine and test rig. The

stresses are well below the ultimate tensile strength of 34.5 MPa (MatWeb, 2013c) with

9.93 MPa occurring in the clamp attached to the lower frame structure in the region where

the aluminium clamps are connected to the Teflon sliding clamps.

5.5.2.2 Distribution of the Magnetic Flux Density

The magnetic field distributions within the volume of space occupied by the MRE sample is

investigated; to this end a finite element model of the biaxial setup is created using Comsol.

The settings in Comsol are the same as for the model described in Section 4.4 to identify

the permeabilities of MRE samples. The geometry for the biaxial setup is shown in Figure

5.63. Symmetry conditions meant that only one quarter of the setup was modelled. The

test rig itself is made of non-magnetic material, and has no influence on the magnetic flux

calculations. As with the pure shear tests (Section 5.4.2) the magnetic flux density in x- and










 

Figure 5.63: Geometry implemented in Comsol to calculate the magnetic flux distribution within
the biaxial test setup. Two magnets are placed on either side of the test rig with an
inter-magnet distance of 140 mm. Symmetry conditions are applied, so only one
quarter of the setup is modelled.

y-directions have to be considered. Since the biaxial test samples are square, a significant

component of the magnetic flux exists perpendicular to the main magnetic flux direction.

Knowledge of BY and BX is even more important in the case of the biaxial tests as deform-

ation is induced in both these directions. The distribution of the magnetic flux density, BY

and BX , within the volume usually occupied by an MRE sample (but calculated in the ab-

sence of a sample with µr = 1) is shown as a contour plot in Figure 5.64. The average value
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Figure 5.64: Magnetic flux density BY in the vertical direction (main magnetic flux direction) and
BX in the horizontal direction within the area of the MRE sample in [mT ] (calculated
in the absence of a sample with µr = 1) with BY,mean = 67.5 mT and BX,mean =
7.1 mT .

of BY taken over the volume of the MRE sample is 67.5 mT , and the flux density differs

across this volume by about 90.4%. In contrast, the average value of BX is only 7.1mT , but

with great variation in the field strength of around 357.2%. The differences in the horizontal

flux density are far larger than that of the vertical flux density, as the samples are wide and

the magnetic flux in the horizontal direction occurs mainly at the borders of the MREs; the

horizontal field strength in the middle of the samples is nearly 0 mT .

The magnetic field strength in the experimental setup was measured with a Gaussmeter at

various positions. The vertical and horizontal distribution of BY are shown in Figure 5.65

and are compared with the experimental results. The Comsol predictions match very well






















(a) Vertical distribution of BY between the magnets
at x = 0


























(b) Horizontal distribution of BY within the region
of the MRE sample

Figure 5.65: Magnetic induction BY calculated by Comsol are compared with the experimental
measurements (red crosses). (a) The vertical distribution between the permanent
magnets and (b) the horizontal distribution in the region of the MRE sample are
shown. Both the calculation and experimental measurements were performed in the
absence of an MRE sample, and are in good agreement.
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with the experimental measurements. The vertical distribution of the magnetic flux density

in Figure 5.65a confirms that the MRE samples are placed almost at the centre between the

permanent magnets, and while this results in low magnetic field strength it also produces

quite low variation in the magnetic flux density within the sample volume compared to that

experienced in the pure shear setup (Section 5.4.2).

The magnetic induction within the volume occupied by the MRE sample was also calculated

in the presence of the samples (µr > 1). Averaged dimensions of all MRE test specimens

were used in the finite element model. The permeabilities identified in Chapter 4 (see Table

4.11) are used to calculate the magnetic field strengths for each type of MRE. The levels of

magnetic flux density in both directions are needed to calculate the stresses in the directions

of principal stretch induced by the biaxial rig. The ratio of BY,mean to BX,mean is used to ac-

count for the MR effect in the two different stretching directions (explained in Section 5.5.4).

The results of the finite element calculations for each type of MRE sample are summarised in

Table 5.22. The level of magnetic flux in the y-direction is largest and the flux in x-direction

MRE Sample
Iron Flux in Y -direction Flux in X-direction Ratio
[%] Bmean

Bmax−Bmin

Bmean

Bmean
Bmax−Bmin

Bmean

B||/B⊥

Pure Rubber 0 67.53 90.4 7.09 357.2 9.52

Isotropic MREs
10 103.95 80.3 10.47 328.4 9.93
20 138.45 82.1 13.27 324.8 10.43
30 217.74 85.3 18.61 352.1 11.69

Anisotropic MREs -
vertical alignment

10 104.53 77.2 9.9 289.3 10.58
20 167.20 80.6 13.35 296.6 12.52
30 257.03 83.6 17.16 306.1 14.98

Anisotropic MREs -
horizontal alignment

10 97.62 83.0 11.16 329.0 8.75
20 143.10 85.7 16.66 338.6 8.59
30 208.12 87.9 23.20 358.7 8.97

Table 5.22: Mean values, Bmean in mT , and differences Bmax−Bmin/Bmean in percent, of the
magnetic flux distribution, BY and BX , within the volume occupied by isotropic and
anisotropic MRE samples (µr > 1). The ratio BY /BX = B||/B⊥ is calculated with
the average values of the magnetic flux. Values for BX are calculated with absolute
values. The permeability of isotropic MREs and anisotropic MREs (Table 4.11) were
used to calculate BY and BX .

is lowest in the case of anisotropic samples with particle alignment in the y-direction (main

magnetic flux direction), whereas the opposite was observed in the case of anisotropic MREs

with particle alignment in the x-direction (perpendicular to the main magnetic flux direction).

The factor BY /BX = B||/B⊥ is largest at 14.98 for y-aligned anisotropic MREs with 30%

iron content, and smallest at 8.59 for x-aligned anisotropic MREs with 20% iron content.
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5.5.3 Strain Measurement - Digital Image Correlation

The strains were measured optically as previously decribed in the case of uniaxial tension

(Section 5.3.4) and pure shear tests (Section 5.4.3). Sample preparation and the use of the

DIC system was described in detail in those sections. An image of a sample sprayed with

a white random speckle pattern, and also the grid lines drawn onto the sample, is shown in

Figure 5.58. The Area of Interest (AoI) was defined on the MRE sample as a square area

inside the boundaries of the free length of the sample. The resulting engineering strains in

the x-direction of a pure rubber sample are shown in Figure 5.66a. To avoid the influence

of the boundary area, the AoI is cropped, and also rotated for better handling in the Matlab

code strainDICLimess_biaxial.m (see Appendix D). In the second processing step, unreliable

values are eliminated using the confidence interval, sigma. The post-processed strain field

is also shown in Figure 5.66b. The strains in the x-direction in the post-processed AoI are
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Figure 5.66: Maximum strain in the x-direction in the third loading part of a pure rubber sample
calculated by the DIC software. (a) The original strain field as calculated by the
DIC software and (b) the strain matrix was rotated, unreliable values eliminated, and
borders cut.

relatively uniform, differing from 8.6% to 10.2%. Mean values of the post-processed strain

field are calculated and plotted versus time in Figure 5.67, where the strain in both the local

x- and y-directions are shown to be in excellent agreement. Mean values of the original AoI

and of the cropped strain field were compared and do agree; however the standard deviations

in strains resulting from the original AoI (see Figure 5.66a) are larger than those shown in the

cropped and processed AoI (see Figure 5.66b). As the strain in the local x- and y-directions

are nearly identical these results confirm the conclusion from the finite element analysis on

the frame compliance (see Section 5.5.2), i.e. the frame structure is rigid enough to impose

equi-biaxial deformation kinematics. This was also found to be the case for MREs with

higher iron contents. This assumption is required to determine the stress values, using the

analysis presented in Section 5.5.4. A linear fit to the strain-time relation (shown in Figure
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Figure 5.67: Engineering strain of a pure rubber sample in both stretching directions versus time
is shown. Mean values and standard deviation of the cropped DIC field from the
complete four-cycle test are illustrated.

5.67) is performed separately for each loading and unloading cycle. The coefficients of these

linear functions are passed to the main Matlab analysis function biaxial.m (see Appendix D)

in order to relate test machine data with DIC data.

To verify the DIC strain values, strains can also be determined manually by measuring the

positions of the clamps and of the crossing points between the lines drawn onto the samples in

the image processing software, ImageJ (2014). A Matlab function strainpixel_biaxial.m was

written to post-process the measured positions, and to find the strains across the sample. The

conversion from pixels to mm is made using a calibration distance (the distance between

the clamps), and the connection to the load-displacement data measured by the test machine

is done via time. Results of the pixel measurement method and results of the DIC system are

in good agreement, which was shown earlier in case of uniaxial tension and pure shear tests;

the comparison is not repeated here.

5.5.4 Stress Calculation and Assumptions

Only the vertical force, PV , was recorded by the uniaxial test machine. To calculate stresses

in the two stretching directions, the structural system of the biaxial test rig has to be analysed,

and for the case of anisotropic MREs and when magnetic fields are applied, several assump-

tions have to be made to interpret the results. The biaxial rig is assumed to be a rigid body

moving 10 mm in the vertical direction. This movement of the rig causes stresses within

the MRE specimens. To simplify the structural system the stresses were assumed to be uni-

formly distributed over the length where the MRE specimens were clamped. The structural

system is illustrated in Figure 5.68. The rigid body assumption of the biaxial frame is sup-
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ported by the compliance studies of the test rig discussed in Section 5.5.2, and by the optical

strain measurements that confirm equal strains in both stretching directions, as detailed in

Section 5.5.3. The biaxial frame was held by the test machine allowing neither movement

Figure 5.68: Structural system of the biaxial test setup used to calculate stresses within the MRE
sample. The vertical force PV was recorded by the test machine, where w is the
length over the three clamps holding the samples, and σx and σy are the stresses
occurring in the MRE sample.

nor rotation of the rig. The forces, PV and PH , and the moment, M , all act at the fixed

support but only the vertical force, PV , can be recorded by the load-cell of the test machine.

The distance, a, is measured along the frame structure, between the fixed support and the

sliding clamps. The stresses are calculated in the reference system, with original dimensions

of the MRE specimens, and with the sliding clamps in their original positions.

Five cases are distinguished, as illustrated in Figures 5.58 and 5.59. CASE 1 (isotropic MREs

without magnetic field) is the simplest to analyse and no assumptions are required to interpret

the results. In CASE 2 isotropic MREs tested with magnetic field applied in the x-direction

are analysed. Results of CASE 1, together with the factor B||/B⊥ (listed in Table 5.22)

are used to address the increase in the force (due to the magnetic field) to each stretching

direction. In CASE 3 anisotropic MREs tested in the absence of a magnetic field are con-

sidered. Anisotropic MREs are stronger in the direction of particle alignment and therefore

the stresses in this direction are expected to be higher. Results of the anisotropic MREs with

particle alignment in loading direction and perpendicular to it, tested under uniaxial tension

(Section 5.3), are used to calculate stresses acting in the two stretching directions. In CASE 4

and CASE 5 anisotropic MREs with the magnetic field applied both parallel and perpendic-

ular to the direction of particle alignment, are analysed. Here, assumptions regarding both

the mechanical anisotropy due to particle alignment, and the change in stiffness due to mag-

netic field, are required to interpret results. The formulas for all five cases are derived in the
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following sections, and the assumptions are explained in detail.

Note that the assumptions used here are improved compared to the earlier conference paper

based on this work (Schubert et al., 2013).

5.5.4.1 CASE 1 - Isotropic MREs in the Absence of a Magnetic Field

Isotropic MREs are supposed to have equal properties in all directions, which implies that

under equi-biaxial strains the in-plane stresses, σx and σy, are identical. Figure 5.58 shows

the setup of CASE 1. From the equilibrium of stresses in the local x- and y-directions the

stresses can be related to the force measured by the test machine as:

σx = σy =
PV√
2 · t · w

(5.6)

If the force, PV , is provided in Newtons and the thickness of the sample, t, and the width of

the clamps, w, are provided in mm, the resulting stresses, σx and σy, are provided in MPa.

In this case, the horizontal force, PH , and the moment, M , at the fixed support are zero.

5.5.4.2 CASE 2 - Isotropic MREs with Magnetic Flux in the x-direction

The horizontal force, PH , and the moment, M , in this case (or any of the subsequent cases)

are not zero. These quantities would provide further information to evaluate the material

response, although the current test-setup is unable to measure them. For this reason vari-

ous assumptions are required to interpret the test results. The magnetic field is assumed to

change the properties in the local x- and y-directions by the same factor as the ratio between

the components of the magnetic flux density in these directions B||/B⊥ (acting within the

volume occupied by the biaxial MRE sample). When a magnetic field is applied to the

isotropic MRE specimens, the force measured, PV , increases compared to the no-field case,

PV,CASE1. The increase, Pincrease = PV −PV,CASE1 can be attributed to the increased stresses

acting in the two principle stretching directions. The relation between the increased stresses,

σx,increase and σy,increase, is determined using the factor B||/B⊥ (listed in Table 5.22). As the

main magnetic flux direction is oriented in the x-direction, the stresses in this direction are

expected to be larger, i.e. σx > σy.

B||
B⊥

=
σx,increase

σy,increase

(5.7)

The setup of CASE 2 is shown in Figure 5.59a. Using Equation 5.7 and the vertical equilib-

rium of forces, the stress definitions can be derived as follows:

σx = σx,CASE1 + σx,increase =
PV,CASE1√
2 · t · w

+

√
2 (PV − PV,CASE1)
(

B⊥

B||
+ 1

)

· t · w
(5.8)
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σy = σy,CASE1 + σy,increase =
PV,CASE1√
2 · t · w

+

√
2 (PV − PV,CASE1)
(

B||

B⊥
+ 1

)

· t · w
(5.9)

The value PV,CASE1 is the mean value of forces measured on isotropic MREs (with the same

iron volume fraction), tested without an applied magnetic field.

5.5.4.3 CASE 3 - Anisotropic MREs in the Absence of a Magnetic Field

The direction of particle alignment in anisotropic MREs is oriented in the local y-direction

for all biaxial tests conducted in this investigation. The setup of CASE 3 is illustrated in

Figure 5.59b. Anisotropic MREs are much stiffer in the direction of particle alignment,

σy > σx. As only the vertical forces, PV , were measured by the test machine, an assumption

is required to attribute the fraction of this force to the stresses acting in the two principle

stretching directions. The ratio of these stresses, or relative stress factor, can be determined

from the results of the uniaxial tension tests (Section 5.3.5); thus the ratio of the stresses

produced when anisotropic samples were tested with their direction of particle alignment

oriented in the loading direction, σA, to that produced when their direction of alignment was

oriented perpendicular to the loading direction, σAW , can be used to evaluate the relationship

between σx and σy in the biaxial tension tests. The relative stress factor can be defined as:

f(ε) =
σA(ε)

σAW (ε)
=

σy

σx

(5.10)

Mean results from at least three repeated uniaxial tension tests are taken to calculate the

relative stress factors, plotted versus uniaxial strain in Figure 5.69. Using the stress factor
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Figure 5.69: Relative stress factor f(ε) between anisotropic MREs with alignment parallel (A)
and perpendicular (AW ) to the loading direction (tested under uniaxial tension) are
shown. The stress factor is plotted versus the engineering strain in the uniaxial
stretching direction. Note that the stress factor tends to infinity for small strains,
so values below 2% strain are unreliable.
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defined in Equation 5.10, and assuming equilibrium conditions, the stresses in both stretching

directions can be calculated as:

σx =

√
2 · PV

(f(ε) + 1) · t · w (5.11)

σy =

√
2 · PV · f(ε)

(f(ε) + 1) · t · w (5.12)

This method of using the relative stress factor obtained from uniaxial tension tests provides

a means to perform first approximate analysis of the biaxial test data. It might be possible in

the future to improve the analysis method by using constitutive models (Chapter 6).

5.5.4.4 CASE 4 - Anisotropic MREs with Magnetic Flux in the y-direction

Anisotropic MREs were tested with the main strength of the magnetic field in the y-direction

(thus the direction of the particle alignment was parallel to the direction of the magnetic

field). The setup is shown in Figure 5.59c. Two assumptions have to be made in CASE

4 to account for both the inherent mechanical anisotropy of the samples in the absence of a

magnetic field and the change in stiffness of the sample due to the magnetic field applied. The

force measured at the test machine where no magnetic field was applied is that measured in

CASE 3, i.e. PV,CASE3, although with the application of a magnetic field the measured force

will change to PV = PV,CASE3+PV,increase. The stresses resulting from PV,CASE3 are known

and were defined in Equations 5.11 and 5.12, so the PV in these equations must be replaced

by PV,CASE3 which is the mean value of forces measured in the no-magnetic field case. The

increase in force PV,increase due to the MR effect, attributed to the stresses acting in the two

principle stretching directions, is defined CASE 2 (see Equations 5.8 and 5.9). The only

difference here is that the magnetic field is now applied in the local y-direction rather than in

the local x-direction. The relation between the magnetic factor, B||/B⊥, and the stresses, σx

and σy, of the biaxial tests can thus defined as:

B||
B⊥

=
σy,increase

σx,increase

(5.13)

The final stresses, σx and σy, can be defined using Equation 5.13. As both the particle

alignment and the applied magnetic field are in the local y-direction, the stresses in this

direction are expected to be much higher than the stresses in the x-direction, i.e. σy >> σx.

σx = σx,CASE3 + σx,increase =

√
2 · PV,CASE3

(f(ε) + 1) · t · w +

√
2 (PV − PV,CASE3)
(

B||

B⊥
+ 1

)

· t · w
(5.14)

σy = σy,CASE3 + σy,increase =

√
2 · PV,CASE3 · f(ε)
(f(ε) + 1) · t · w +

√
2 (PV − PV,CASE3)
(

B⊥

B||
+ 1

)

· t · w
(5.15)
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Two assumptions had to be used to calculate the stresses in the two principal stretching dir-

ections. Given that these assumptions use experimental data measured from uniaxial tensile

tests, any errors in these prior results are added to those errors inherent in the current biaxial

test method. Consequently, the error accumulates in proportion to the number of assump-

tions used to analyse the data. Due to the increasing reliance of assumptions in analysing

this case, care has to be taken when interpreting the test results in Section 5.5.6.

5.5.4.5 CASE 5 - Anisotropic MREs with Magnetic Flux in the x-direction

CASE 5 is very similar to CASE 4, the only difference being that the main strength of the

magnetic field is applied in the local x-direction rather than in the local y-direction. The

assumptions and the derived equation are analogous to those explained in CASE 4. The

equations for the final stresses, σx and σy, are derived as:

σx = σx,CASE3 + σx,increase =

√
2 · PV,CASE3

(f(ε) + 1) · t · w +

√
2 (PV − PV,CASE3)
(

B⊥

B||
+ 1

)

· t · w
(5.16)

σy = σy,CASE3 + σy,increase =

√
2 · PV,CASE3 · f(ε)
(f(ε) + 1) · t · w +

√
2 (PV − PV,CASE3)
(

B||

B⊥
+ 1

)

· t · w
(5.17)

The experimental results of isotropic and anisotropic MREs of tests performed without mag-

netic field (CASE 1 and CASE 3) are presented in Section 5.5.5, and those of tests with an

applied magnetic induction (CASE 2, CASE 4 and CASE 5) in Section 5.5.6.

5.5.5 Tests in the Absence of Magnetic Field (CASE1 and

CASE3)

Equi-biaxial tension tests in the absence of a magnetic field were performed using the setup

illustrated in Figures 5.58 and 5.59b. The general test method was clarified in Section 5.1.1,

and the specific test procedure of the equi-biaxial tension tests was described in Section 5.5.1.

In this section the behaviour of isotropic and anisotropic MREs under equi-biaxial tension

in the absence of a magnetic field is examined. As with the other large-strain experiments

the third loading cycle of the 4-cycle tests was extracted (see Section 5.1.2) and used to

characterise the MRE behaviour. The stresses are calculated as discussed in Section 5.5.4,

with Equation 5.6 for isotropic MREs, and Equations 5.11 and 5.12 for anisotropic MREs.

The vertical load versus displacement data for all types of MREs tested in the absence of

a magnetic field are shown in Figure 5.70a. The load-displacement data are directly recor-

ded by the test machine and thus do not involve any assumptions. The stress-strain curves

are shown in Figure 5.70b, and involve an assumption in the case of anisotropic MREs (see

Section 5.5.4). The measured force increases with increasing iron content. Also, forces are
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Figure 5.70: NoField test results: Vertical load-displacement curve and the stress-strain curves
comparing all different types of MRE samples. Stresses of the isotropic MREs are
compared with the stresses parallel (y-direction) and perpendicular (x-direction) to
the particle alignment of anisotropic MREs.

larger in anisotropic MREs compared to the equivalent isotropic MREs. The difference in

force between isotropic and anisotropic MREs increases with increasing iron particle con-

centration. Note that the anisotropic MREs with 30% particles are tested up to only 7% strain,

which does not allow comparison to the other MREs tested up to 10% strain. Samples tested

to larger strain levels are known to result in softer material properties due to the Mullins

Effect (Mullins, 1969). The stresses of anisotropic MREs mirror the behaviour of the MREs

tested under uniaxial tension as the relative stress factor (Equation 5.10) obtained from the

tensile tests was used to determine the stresses in the two principal stretching directions of

the biaxial tests. To interpret the non-linear behaviour the tangent moduli, ET , are plotted

versus engineering strain in Figure 5.71. All MREs exhibit larger moduli in the small-strain

region, which tend to decrease continuously with increasing strain. Biaxial samples were

stretched up to only 10% strain, thus, the increase in moduli at larger strains found in pre-

vious tests cannot be observed here. Anisotropic MREs exhibit the highest moduli in the

direction of the particle alignment. The tangent moduli, ET (between 1% and 2% strain),

and the low secant moduli, E0−5, are listed in Table 5.23. The relative increase in moduli

of the isotropic MREs compared to the pure rubber samples, and of the anisotropic MREs

compared to the isotropic MREs with the same iron content (calculated with E0−5), are also

provided in Table 5.23. The moduli are approximately 1.5 times higher compared to those

resulting from compression, tension, and pure shear experiments (compare Tables 5.5, 5.13,

and 5.20). Several reasons are conceivable to explain this increase: (i) equi-biaxial spe-

cimens were only stretched up to 10% while in the other experiments larger strain levels

were applied (stress softening Mullins effect), (ii) the two-dimensional shape of the biaxial
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Figure 5.71: The tangent moduli versus engineering strain of isotropic MREs and anisotropic
MREs in the particle alignment direction (y-direction) and perpendicular to it (x-
direction) are shown.

samples adds some strengthening, and (iii) the contribution of friction between the sliding

clamps and the frames of the biaxial rig. The moduli, E0−5 and ET , as listed in Table 5.23

are plotted versus the iron volume fraction in Figure 5.72. The moduli increase linearly
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Figure 5.72: Moduli E0−5 and ET (see Table 5.23) versus the iron volume fraction of isotropic
MREs and anisotropic MREs parallel (y-direction) and perpendicular (x-direction) to
the particle alignment direction.

with increasing iron content in the case of pure rubber and isotropic MREs. The anisotropic

MREs with 30% iron particles exhibit higher moduli due to the smaller strain level applied;

these samples were only stretched up to 7% instead of 10% strain.
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MRE Sample Iron [%] E0−5 [MPa] ET [MPa] Increase compared

Pure Rubber 0 2.47 2.87 to ... [%]

Isotropic MREs
10 3.12 3.61

P
ur

e 26.3
20 3.71 4.16 50.0
30 5.80 6.49 134.8

Anisotropic MREs -
in particle alignment
direction

10 4.67 5.83

Is
ot

ro
pi

c 49.7
20 6.16 7.56 66.0
30 9.58 11.60 65.2

Anisotropic MREs -
perpendicular to the
alignment direction

10 2.41 2.47

Is
ot

ro
pi

c −22.8
20 3.94 4.29 6.2
30 8.28 9.84 42.8

Table 5.23: Initial secant moduli, E0−5, and tangent moduli, ET , obtained from stress-strain
curves of pure rubber, isotropic, and anisotropic MREs with 10% to 30% CIP con-
tent are listed. Anisotropic MREs have their particle alignment in the y-direction. The
relative increase of isotropic MREs compared to pure rubber and the relative increases
of anisotropic MREs compared to isotropic MREs with same CIP content, calculated
with E0−5, are provided.

5.5.6 Characterisation of the Magneto-Rheological Effect

Only one magnetic field strength was applied to study the increase in stiffness of the MRE

material in the equi-biaxial tension test series. The average magnetic flux density within the

region occupied by the MRE sample (calculated in the absence of a sample) was 67.5 mT

in the main magnetic field direction and 7.1 mT in the perpendicular direction (see Section

5.5.2). The magnetic flux lines were not unidirectional; when interpreting experimental data,

this issue is taken into account using the analysis method described in Section 5.5.4.

5.5.6.1 Pure Rubber and Isotropic MREs (CASE2)

The vertical force and displacement data of isotropic MREs both with and without applied

magnetic flux are shown in Figure 5.73. The load-displacement data were recorded directly

by the test machine, and do not involve any assumptions. An increase in force is apparent

when samples are subjected to a magnetic flux density, but only the isotropic MREs with

20% iron content show a significant increase in force. The stresses in both directions are

calculated using Equation 5.6 (when no magnetic induction was applied) and using Equations

5.8 and 5.9 (when subjected to a magnetic flux). The full set of results for stresses, the tangent

moduli, and relative MR effects are plotted versus engineering strain in Appendix E.27.

There is nearly no increase in stresses acting in the y-direction (perpendicular to the magnetic

field). Stresses acting in the local x-direction (main magnetic field direction) increase in the

same manner as the load-displacement curves (Figure 5.73).

The absolute and relative MR effects (Equations 5.1 and 5.2) of pure rubber and isotropic

MREs calculated using ET are plotted versus engineering strain in Figure 5.74. The highest

relative MR effect is 25% (1.09 MPa absolute), achieved with an isotropic 20% MRE. The
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Figure 5.74: Absolute and relative MR effects, calculated with ET , of pure rubber and isotropic
MREs with 10%, 20%, and 30% iron content measured with an average magnetic
induction of 67.5 mT applied in the x-direction, are plotted versus strain.

isotropic 30% MREs exhibit lower relative increases of about 21%. As expected the MR

effects in the direction perpendicular to the applied induction are all close to 1. Results from

pure rubber samples indicate an experimental and analytical error of about 3%. The MR

effects obtained using both E0−5 and ET are listed in Table 5.24.
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5.5.6.2 Anisotropic MREs (CASE4 and CASE5)

The load-displacement curves of anisotropic MREs with magnetic field applied parallel to

the direction of particle alignment are compared with those of the NoField tests in Figure

5.75. All of the samples show an increase in force, which is again largest for the MREs with
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Figure 5.75: Vertical load-displacement curve of anisotropic MRE samples with 10% to 30% iron
content comparing the NoField with the Magnet tests are illustrated. Both the particle
alignment and the applied magnetic induction were in the y-direction.

20% iron volume fraction. Stresses are calculated using Equations 5.14 and 5.15. The full set

of results for stresses, tangent moduli, and relative MR effects are plotted versus engineering

strain in Appendix E.28. The magnetic field was applied in the local y-direction and the

stresses in this direction clearly increase, whereas those in the x-direction show very little

increase. This is expected based on the assumptions. The absolute and relative MR effects,

calculated using ET , are plotted versus strain values in Figure 5.76. In contrast to previously

achieved MR effects in compression, tension, and pure shear tests, the MR effects are not

significantly larger in the small-strain region and tend to increase with increasing strain. The

highest MR effect of about 74% was measured for the anisotropic MREs with 30% iron

content, but in the small-strain region the relative effect was just 27.9%. Again, the relative

MR effects in the direction perpendicular to the magnetic field are close to 1.

The anisotropic MREs were also tested with a magnetic field applied perpendicular to the

direction of particle alignment. The vertical load-displacement data are shown in Figure

5.77. Increase in the forces are small for MREs with 10% and 30% iron content and are

relatively large in case of the anisotropic 20% MREs. The stresses in the two principal

stretching directions are found using Equations 5.16 and 5.17. The full set of results for

stresses, tangent moduli, and relative MR effects are plotted versus the engineering strain in
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Figure 5.76: Absolute and relative MR effects, calculated using ET , for anisotropic MREs with
10%, 20%, and 30% iron content measured with an average magnetic induction of
67.5 mT applied in the y-direction (parallel to the direction of particle alignment),
are plotted versus strain.
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Figure 5.77: Vertical load-displacement curve of anisotropic MRE samples with 10% to 30% iron
content comparing the NoField with the Magnet tests are illustrated. The particles in
the MREs were aligned in the y-direction while the magnetic induction was applied
in the x-direction.

Appendix E.29. MREs with 10% and 20% iron content show large MR effects in the local x-

direction where the magnetic field was applied, and show nearly no effect in the y-direction

perpendicular to the direction of applied induction. The absolute and relative MR effects

are plotted versus strain in Figure 5.78. The highest relative MR effect of 46% (2.24 MPa

absolute) was achieved with the anisotropic MREs with 20% iron content. The MR effects

of anisotropic MREs with 10% and 20% iron content exceed the MR effects found when the

magnetic flux was applied parallel to the direction of particle alignment. This contrasts with
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Figure 5.78: Absolute and relative MR effects, calculated with ET , of anisotropic MREs with
10%, 20%, and 30% iron content, measured with an average magnetic induction of
67.5 mT applied in the x-direction (perpendicular to the direction of the particle
alignment), are plotted versus strain.

the results found in uniaxial tension tests (compare Figure 5.34). The results achieved in

equi-biaxial tension are influenced by the assumptions which were required to analyse the

data, and could be improved with the use of constitutive modelling in future investigations.

To compare all the anisotropic MREs with the magnetic flux density applied both parallel

and perpendicular to the direction of particle alignment, the MR effects calculated with the

low strain secant moduli, E0−5, and the maximum MR effect calculated with the tangent

moduli, ET , are listed in Table 5.24. Maximum values of the MR effects (obtained from

either E0−5 or ET,max) are shaded in grey. The highest increase in modulus of 4.89 MPa

absolute, equivalent to a 74% relative MR effect was achieved with an anisotropic MRE with

30% iron volume fraction with magnetic field applied parallel to the direction of particle

alignment. To study the influence of the iron content, the maximum MR effects (see Table

5.24) are plotted versus volume particle concentration in Figure 5.79. Only the MR effects

in the main magnetic field direction are presented. MR effects increase with increasing iron

content.

5.5.7 Future Improvements of the Setup and Test Procedure

The test setup for the equi-biaxial tension tests clearly had disadvantages. It was only pos-

sible to stretch the samples up to 10% strain (7% in the case of anisotropic 30% MREs). The

clamps required the use of brass screws, which was not ideal as they damaged the samples

slightly, resulting in slight tearing after testing to 10% strain, meaning that the samples could

only be used once. The clamping system of the test rig could be improved for future work.

The compliance calculation described in Section 5.5.2 showed that the frame itself was quite
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MRE Sample Direction || or ⊥ Iron Absolute MR Effects Relative MR Effects
to magnetic field [%] E0−5 ET E0−5 ET

Pure Rubber
|| 0 −0.0310 0.0362 0.9875 1.0235
⊥ 0 0.0024 0.0469 1.0010 1.0311

Isotropic MREs
Magnetic Induction
in the x-direction

||
10 0.2598 0.6147 1.0858 1.1614
20 0.7526 1.0866 1.2057 1.2511
30 0.4125 1.1815 1.0709 1.2133

⊥
10 −0.0291 −0.0556 0.9910 0.9845
20 0.0943 0.1025 1.0250 1.0235
30 −0.1607 0.0124 0.9722 1.0023

Anisotropic MREs -
Magnetic induction
and particle
alignment in the
y-direction

||
10 0.5304 0.7776 1.1136 1.3037
20 1.6609 1.6892 1.2697 1.4035
30 3.4892 4.8911 1.3643 1.7386

⊥
10 0.0075 0.1312 1.0031 1.0580
20 0.0303 0.2797 1.0077 1.0786
30 0.4358 2.1748 1.0527 1.3577

Anisotropic MREs -
Magnetic induction
in x- and particle
alignment in
y-direction

||
10 0.4703 0.8592 1.1953 1.3526
20 1.1813 2.2390 1.3000 1.4620
30 1.1156 1.6349 1.1348 1.2689

⊥
10 −0.0801 0.0841 0.9828 1.0328
20 0.0623 0.2702 1.0101 1.0576
30 0.7041 1.6657 1.0735 1.2462

Table 5.24: Absolute and relative MR effects measured with 67.5 mT average magnetic induc-
tion, and calculated using E0−5 and ET (maximum values) are listed. The maximum
relative MR effects (E0−5 or ET ) are shaded in grey.
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Figure 5.79: Relative MR effects in the direction of the applied magnetic induction of all types of
MREs versus the volume particle concentration are illustrated. The maximum MR
effects as indicated in Table 5.24 are used.
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rigid, whereas the sliding clamps deformed considerably. The design of the Teflon clamps

could be improved to eliminate this problem. The total rig deformation was acceptable when

the samples were stretched up to 10% but application of larger strains would probably cause

significant errors in terms of the kinematics applied to the samples.

Perhaps the most important point to improve is in measuring either the horizontal force or the

moment at the test machine (in addition to the measured vertical force). This would make all

the assumptions described in Section 5.5.4 redundant, and any errors associated with these

assumptions would then be eliminated. Redesigning the rig to include biaxial or torque load-

cells would significantly improve the quality of the results obtained from the equi-biaxial

tension tests.

5.5.8 Summary of the Equi-Biaxial Tension Tests

Once again, the moduli of the MREs were found to increase with increasing iron content and

anisotropic MREs loaded in the direction of particle alignment were stiffest. Due to the use

of the assumptions discussed in Section 5.5.4, the stresses of the anisotropic MREs mirrored

the material behaviour found in the uniaxial tension tests. The tangent moduli were largest

in the small-strain region, and constantly decreased with increasing strain. Due to both the

large distances between the magnets in the biaxial setup and the width of the biaxial samples,

the direction of the magnetic flux lines was not uniform. In contrast to previous large-strain

compression, tension and pure shear experiments, the MR effects were not always largest in

the small-strain region in biaxial tests, and tended to increase with increasing level of strain.

The MR effects increase with increasing iron contents. Considering the low magnetic fields

applied during the biaxial tests, the MR effects measured during the tests are large.

5.6 Conclusions of Chapter 5

This experimental investigation was designed to characterise the mechanical behaviour of

MREs both in the absence and in the presence of magnetic fields, under various deformation

modes. The large-strain behaviour of MREs was investigated under uniaxial compression up

to 50% strain, under uniaxial tension up to a maximum of 100% strain, under pure shear up

to a maximum of 70% strain, and under equi-biaxial tension up to 10% strain.

Experimental data presented in this chapter can be used to develop constitutive models de-

scribing the behaviour of MREs without and with the application of external magnetic fields.

Several deformation modes and multi-axial deformations are required to describe complex

materials such as MREs sufficiently, to achieve the goal of determining unique model para-

meters of constitutive material models. The experimental data are saved on a DVD attached

to this document and can be used for further investigations.
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5.6.1 Stress-Softening Behaviour

During the course of this investigation, it became apparent that the behaviour of MREs was

more complicated than initially anticipated. In particular, significant stress-softening be-

haviour was observed, which influenced the results in the absence and in the presence of

magnetic fields. A distinctive test procedure and method of analysing the data were used

(see Section 5.1) to account for the Mullins effect.

• Four-cycle tests were performed, and the third loading cycle (conditioned cycle) was

used to characterise the MRE material. The method of analysing the experimental data

was kept constant throughout this investigation (Section 5.1.2).

• In compression, tension, and pure shear tests, samples were re-used in a test series

comprised of several tests in the absence and in the presence of magnetic fields (see

Section 5.1.1). The results of two no-field tests were compared, and in case of com-

pression and tension divergences between the NoField01 and NoField02 tests were

observed. This was presented to be caused by permanent deformations present in

compression and tension specimens after their first use, which induced new larger

strain levels in subsequent tests. Due to the Mullins effect this significantly changed

the properties of the MREs (see Sections 5.2.3 and 5.3.5). To eliminate this effect

and to analyse reliable experimental data, the MREs were characterised using stress-

strain data only up to the point of divergence. This was not an issue in pure shear

and equi-biaxial tension tests, as no permanent deformation occurred in the specimens

(see Section 5.4.4 and 5.5.5). Note that in future applications, MREs will also be

‘re-used’ and permanent deformations can occur. It is therefore recommended that

MRE samples are preconditioned up to strain levels higher than those planned during

working operation of the MRE application.

• Tensile fatigue tests were performed to determine a ‘stability strain limit’ for each type

of MRE. It was found that when stretching samples beyond this strain limit, stress-

softening was still present after 100 loading and unloading cycles; i.e. the samples did

not reach a ‘stable’ state (see Section 5.3.3). Note that MRE samples cannot be used

beyond these ‘stability strain limits’ in future applications.

Preconditioning and testing the MRE sample up to larger strain levels resulted in a softer

material, with significantly lower stress-strain curves compared to MRE samples that were

preconditioned to lower strain levels. In tension, larger preconditioning levels enhanced

the MR effects achieved. The stress-softening is pronounced in anisotropic MREs and in

MREs with high iron contents. Good practice in future might be to precondition the MRE

samples as far as possible (obeying the maximum strain limit) to soften the material, and

consequently to enhance the MR effects. Larger relative MR effects were reported to occur
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when using softer matrix material (see literature review in Section 2); here it is shown that

preconditioning the samples up to larger strain levels has the same effect.

5.6.2 Mechanical Response in the Absence of a Magnetic Field

Anisotropic MREs exhibited the highest stresses and moduli in the direction of the particle

alignment in most of the tests performed, followed by the direction perpendicular to the

alignment, and the isotropic MREs exhibited the lowest moduli. As the MRE material be-

haviour is strongly nonlinear, stresses and tangent moduli were studied versus engineering

strain. Anisotropic MREs with vertical particle alignment exhibited very large moduli in

the small strain region that decreased rapidly in the mid-strain region, but tended to increase

again at larger strain, while both the isotropic and anisotropic MREs with horizontal particle

alignment generally showed a similar curve shape with steadily increasing tangent moduli.

The moduli were found to increase with increasing iron particle concentration, which was

almost linear in the case of uniaxial tension tests, while in the other large-strain experiments

the MREs containing 30% iron particles exhibited larger moduli exceeding the linear trend.

In tension and pure shear tests, MREs were tested up to different strain levels, and the moduli

were observed to be smaller when the samples were stretched up to higher levels of strain

presumably due to the stress-softening behaviour.

The moduli present in the small strain region, are compared for all deformation modes and

all types of MREs in Figure 5.80. The moduli represent results from 50% compressive

strain, 50% tensile strain, 45% strain in pure shear, and 10% biaxial strain. Note that the

MREs tested in compression, tension and pure shear are tested up to the same strain level. In

equi-biaxial tests, higher strain levels were experimentally not achievable.

10
20

30
10

20
30

10
20

30

Compression

Tension

Pure Shear

Equi−biaxial

0

2

4

6

8

10

12

N
o

−
F

ie
ld

 M
o

d
u

lu
s
 [

M
P

a
]

Isotropic MREs

Anisotropic MREs (parallel)

Anisotropic MREs (perp)

Figure 5.80: Comparison of the mechanical response for all deformation modes, and all types of
MREs with particle concentrations from 10% to 30%. The no-field moduli as listed
in Tables 5.5, 5.13, 5.20, and 5.23 are illustrated.
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5.6.3 Mechanical Response when subject to a Magnetic Field

The MR effects, which are defined as the increase in moduli when MREs are subject to a

magnetic field, were studied versus engineering strain to observe the non-linear behaviour.

MR effects were usually largest in the small-strain region, which decreased rapidly to nearly

no effect in the mid-strain region, but increased again at larger strains (larger than 15%), al-

though exceptions to this trend were noted. Anisotropic MREs with their particle alignment

direction oriented in the same direction as the magnetic field usually exhibited the largest

MR effects, while isotropic MREs exhibited the lowest effects. The anisotropic MREs with

their particle alignment perpendicular to the loading direction behaved somewhat unexpec-

tedly, exhibiting almost no MR effect in both compression and pure shear experiments. MR

effects were generally found to increase with increasing iron content, except during pure

shear tests, where MREs with 20% iron content showed the highest MR effects, rather than

the MREs with 30% iron content. A linear increase of MR effects with increasing magnetic

field was found. The MR effects present in the small-strain region of all large-strain exper-

iments, and in all types of MREs, are compared in Figure 5.81 and 5.82. Only the results

obtained with the largest magnetic fields are summarised in the figure. The highest absolute
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Figure 5.81: Comparison of the absolute Magneto-Rheological (MR) response for all deformation
modes, and all types of MREs with particle concentrations from 10% to 30%. The
absolute MR effects as listed in Tables 5.6, 5.14,5.21, and 5.24 are related to 100mT
applied magnetic flux density.

and relative MR effects (per 100 mT applied flux) were achieved in the equi-biaxial tension

tests, followed by the results of uniaxial tension tests. MR effects achieved with both the

compression and the pure shear tests were comparatively low. Results of large-strain experi-

ments published in the literature confirm both the large MR effects achieved in tension, and

comparatively low effects observed in compression (see Figure 2.3). The low MR effects

seen in the pure shear experiments might be due to the non-uniformity of both the strength
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Figure 5.82: Comparison of relative Magneto-Rheological (MR) response for all deformation
modes, and all types of MREs with particle concentrations from 10% to 30%. The
relative MR effects as listed in Tables 5.6, 5.14, Table 5.21, and 5.24 are related to
100 mT applied magnetic flux density.

of the magnetic field and the direction of the flux lines. The performance of pure shear speci-

mens with 30% iron content was considerably lower, which might be due to micro-structural

characteristics in such samples. Note that pure shear samples were the thinnest (1mm thick-

ness) compared to the other specimens manufactured for this investigation. Results from the

pure shear tests can not be compared to other experiments in the literature, as no other pure

shear investigations on MREs have yet been published. Likewise, equi-biaxial tension tests

on MREs have not been reported previously (see Section 2.5).
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6 Constitutive Modelling of MREs

The purpose of this chapter is to test whether or not available constitutive models can accur-

ately model the behaviour of MRE materials. The experimental data presented in Chapter

5 are used for a data fitting exercise, and the results are presented in this chapter. A lim-

ited choice of constitutive models describing isotropic and transversely isotropic materials,

developed mainly by the group around Ogden (Dorfmann and Ogden, 2004a; Holzapfel,

2000; Ogden, 2004, etc.), have been considered. The list of models used here is certainly

not exhaustive. More constitutive equations are available to model isotropic and anisotropic

materials (for example Bergstroem and Boyce, 2000; Qi and Boyce, 2004; Varga, 1966),

and also materials influenced by magnetic fields (Bustamante, 2010; Dorfmann and Ogden,

2005; Kankanala, 2007). The choice of models used in this investigation is motivated by the

popularity of the Ogden model (Ogden, 1978) and its widespread use in commercial finite

element software. Experimental data are saved on a DVD attached to this document and will

be made openly available to facilitate study of other constitutive models not considered in

this investigation.

This chapter is structured as follows: a brief introduction to the theory of continuum mech-

anics is given in Section 6.1. The optimisation method used to determine constitutive model

parameters is described in Section 6.2. Section 6.3 is concerned with the modelling of

isotropic MREs. The Ogden model for isotropic incompressible and rubber-like materials

(Ogden, 1978) is presented and model parameters are determined by fitting to experimental

data from isotropic MREs characterised in this investigation. The Ogden-Roxburgh model

(Ogden and Roxburgh, 1999) is also presented to account for the stress-softening Mullins

effect (Mullins, 1969). The importance of the availability of experimental data obtained

from MREs tested up to the same strain level is emphasised. Finally, model parameters of

the Ogden model are successfully determined when using experimental data obtained from

different deformation modes up to the same strain level. Transversely isotropic constitutive

models characterising material with one preferred direction are presented in Section 6.4.

Model parameters are determined by fitting to experimental data from anisotropic MREs.

Finally, in Section 6.5 a theoretical framework for constitutive modelling of magneto-elastic

deformations is presented. Since this involves up to ten parameters and is in general very

complicated, model parameters of such a constitutive model (Bustamante, 2010) are not de-

termined here.
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6.1 Introduction to Continuum Theory

A short overview of the theory of continuum mechanics is provided in this section; for further

details, see, for example Holzapfel (2000). Mathematical notations used in this chapter are

adopted from the latter. The basic definitions in continuum mechanics are given in Section

6.1.1 and the constitutive laws and their derivatives are presented in Section 6.1.2. The spe-

cific constitutive models, i.e. strain energy functions and derivation of the resulting stresses

under the specific deformation kinematics imposed by each experiment are outlined in Sec-

tion 6.3 for isotropic MREs and in Section 6.4 for anisotropic MREs.

The matrix material of MREs is usually a rubber-like material. Most polymeric elastomers

are usually considered to be isotropic, incompressible, and hyperelastic (Holzapfel, 2000,

Chapter 6). Therefore, theory presented in this section will focus on incompressible hy-

perelastic materials. For these materials the existence of a Helmholtz free-energy function

Ψ, also called a ‘strain energy function’, is postulated (Holzapfel, 2000, page 206). The

stress response of a hyperelastic material can be derived from a given strain energy function.

Materials are incompressible when they maintain a constant volume during deformations

(Holzapfel, 2000, page 222). The Poisson’s ratio of such materials is ν = 0.5.

6.1.1 Basic Definitions in Continuum Mechanics

A fundamental definition in continuum mechanics is the deformation gradient F, which

provides the connection between reference and current configurations. It describes the de-

formation of a continuum body, and is defined as

F(X, t) =
∂x

∂X
=

∂χ(X, t)

∂X
(6.1)

or in matrix form

F =







∂x1

X1

∂x1

X2

∂x1

X3

∂x2

X1

∂x2

X2

∂x2

X3

∂x3

X1

∂x3

X2

∂x3

X3






(6.2)

where x and X are the material positions in the current and the reference configurations and

1, 2, and 3 represent the principal directions. A deformation is called homogeneous when F

is independent of X. In large-strain theory the stretches, λ, are more commonly used than

the strain values ε. Stretches are defined as follows:

λ = ε+ 1 (6.3)

In continuum mechanics several strain tensors can be defined. Material strain tensors ex-

pressed in the reference configuration include for example, the right Cauchy-Green tensor
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C, and spatial strain tensors in the current configuration include for example, the left Cauchy-

Green tensor b. Invariants of C and b are so-called strain invariants. In the case of isotropic

materials, these strain invariants, Ia (with a = 1, 2, 3) are all independent and defined as:

I1 = λ2
1 + λ2

2 + λ2
3 (6.4)

I2 = λ2
1 · λ2

2 + λ2
1 · λ2

3 + λ2
2 · λ2

3 (6.5)

I3 = λ2
1 · λ2

2 · λ2
3 (6.6)

The third strain invariant I3 = 1 for incompressible materials.

The Jacobian determinant, J , is the change in volume moving from the reference to the

current configurations,

J(X, t) =
dv

dV
= detF(X, t) (6.7)

where dv and dV are infinitesimal volume elements in the current and reference configura-

tion, respectively. The Jacobian determinant is always positive, and for an incompressible

material J = 1.

To map from a surface element in the reference configuration, dS, to the corresponding

element in the current configuration, ds, Nanson’s formula is required,

ds = JF−TdS (6.8)

nds = JF−TNdS (6.9)

where n and N are the unit vectors normal to the surface elements ds and dS, respectively.

The main stress definitions in continuum mechanics are the Cauchy (or True) stress tensor,

σ, and the first Piola-Kirchhoff stress tensor, P, defined in the current and reference config-

urations, respectively. They are related as

df = σ(x, t) · nds = P(X, t) ·NdS (6.10)

where df is the infinitesimal force acting on the surface element. Mapping from P to σ can

be performed using Equation 6.8.

P = JσF−T (6.11)

σ = J−1PFT = σT (6.12)

Note that other stress definitions are available that refer to intermediate configurations. For

example the Kirchhoff stress tensor, τ = Jσ and the second Piola-Kirchhoff stress tensor,

S = F−1P, but as they are not actively used here no further discussion is devoted to these

stresses.
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6.1.2 Constitutive equations

A constitutive law approximates the observed physical behaviour of a real material. It “de-

termines the state of stress at any point, x, of the continuum body at time t” (Holzapfel, 2000,

page 205), and relates the stress to state variables such as strain, temperature, and magnetic

flux density. Data fitting performed in Sections 6.3 and 6.4 uses a phenomenological ap-

proach, i.e. model parameters are determined from experimental observations. Constitutive

equations can be purely mathematically or can be based on empirical evidence. The general

constitutive equation for a hyperelastic material is defined with:

σ(x, t) = g(F(X, t),X) (6.13)

If the deformation is homogeneous the constitutive equation is independent of the material

point X, and so Equation 6.13 simplifies to:

σ(x, t) = g(F(X, t)) (6.14)

Using Equation 6.11, the first Piola-Kirchhoff stress can be defined as:

P(x, t) = JσF−T = G(F) (6.15)

The stress state of a hyperelastic material can be calculated from a strain-energy function Ψ.

For isotropic and homogeneous materials the strain-energy function, Ψ, depends only on F.

The first Piola-Kirchhoff stress and the Cauchy stress can be derived from Ψ using:

P =
∂Ψ(F)

∂F
(6.16)

σ = J−1∂Ψ(F)

∂F
FT = J−1F

(

∂Ψ(F)

∂F

)T

(6.17)

For isotropic materials Ψ can be expressed as a function of the three independent strain

invariants, Ia (Equation 6.4, 6.5, 6.6), or as a function of the three principal stretches, λa.

Ψ = Ψ(I1, I2, I3) = Ψ(λ1, λ2, λ3) (6.18)

The principal Piola-Kirchhoff stresses, Pa, and the principal Cauchy stress, σa, can then be

derived from Ψ as

Pa =
∂Ψ

∂λa

(6.19)

σa = J−1λa
∂Ψ

∂λa

(6.20)
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where a = 1, 2, 3 correspond to the three principal directions. Isotropic MREs are discussed

in more detail in Section 6.3. The definitions for P and σ in Equations 6.16 and 6.17 are

still valid for more complex materials such as transversely isotropic materials, but the strain

energy function Ψ(F, a) is no longer solely dependent on F, rather it is also a function of

the preferred direction, a. Transversely isotropic materials are discussed in Section 6.4.

Even more dependent variables have to be considered in formulating Ψ for more complex

materials, e.g. for magneto-sensitive materials as discussed in Section 6.5. In Sections 6.4

and 6.5 pseudo-invariants are introduced, so Ψ can still be expressed as a function of the

strain invariants or the principal stretches, and the derivations defined in Equations 6.19 and

6.20 are still valid.

For incompressible materials the following simplification can be applied,

J = λ1λ2λ3 = 1 (6.21)

and the strain energy function, Ψ, can be modified to the form

Ψ = Ψ(F)− p(J − 1) (6.22)

where the scalar, p, is a Lagrange multiplier which can be interpreted as an hydrostatic

pressure. The value for p can be determined from equilibrium equations and boundary con-

ditions, depending on the deformation state. The stress definitions change accordingly, thus

P = −pF−T +
∂Ψ(F)

∂F
(6.23)

σ = −pI+
∂Ψ(F)

∂F
FT = −pI+ F

(

∂Ψ(F)

∂F

)T

(6.24)

For isotropic and incompressible materials Ψ can be defined in terms of Ia or λa with:

Ψ = Ψ(I1, I2)−
1

2
p(I3 − 1) = Ψ(λ1, λ2, λ3)− p(J − 1) (6.25)

The stresses can be expressed in terms of the principal stretches, λa, as:

Pa = − 1

λa

p+
∂Ψ

∂λa

(6.26)

σa = −p+ λa
∂Ψ

∂λa

(6.27)
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6.2 Optimisation Methods

The goal of this study is to test whether or not constitutive equations published in the literat-

ure can accurately model the behaviour of MREs. To determine constitutive model paramet-

ers, mp, with the phenomenological approach, data fitting to experimental data is performed,

the results of which are described in Sections 6.3 and 6.4. A least-square optimisation al-

gorithm is used to determine the optimal parameters. The objective functions to be minim-

ised when fitting to experimental data of single deformation, and of a combination of several

deformation modes, are given. The implementation of this optimisation problem into Matlab

is described.

Derivations of the specific strain energy functions are provided to enable direct comparison

of the Piola stresses, P, with experimentally measured stresses, both defined in the reference

configuration. Recalling the definition in Equation 6.15, the constitutive law is also depend-

ant on the model parameters mp. In the case of isotropic materials the constitutive equation

can be expressed in terms of λ rather than F:

P = G(λ,mp) (6.28)

Following Ogden et al. (2004), this form for the constitutive model will be used through-

out this section. To determine mp, a minimisation problem needs to be solved using non-

linear least-square techniques. The objective function to be minimised is the squared 2-

Norm of the residuals between predictions of the constitutive equation and the experimental

data for each deformation mode. If λi = [λ1, λ2, . . . , λm]
T is the vector of stretches, and

τi = [τ1, τ2, . . . , τm]
T the corresponding experimental stresses, the equivalent stress pre-

dicted by the constitutive equation is G(λ,mp). The objective function to be minimised can

be defined as:

SG(mp) := ‖G(λ,mp)− τ‖22 =
m
∑

i=1

[G(λi,mp)− τi]
2 (6.29)

Thus the minimisation problem can be written as:

min
p

SG(mp) (6.30)

Solutions for this minimisation problem are not unique, and several sets of optimal model

parameters can be identified depending on the chosen start parameters or the chosen numer-

ical accuracy (Ogden et al., 2004). To achieve unique solutions, additional experimental data

sets measured under different deformation modes are required. The objective function to be

minimised is then the sum of the squared 2-Norms from each experimental data set (Ogden

et al., 2004). In this study experimental data from uniaxial compression, tension, pure shear,
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and equi-biaxial tension are reported and are finally combined to obtain a unique set of model

parameters. The objective function is thus defined as,

SG(mp) := ‖Gc(λc,mp)− τ c‖22 + ‖Gt(λt,mp)− τ t‖22 +

‖Gps(λps,mp)− τ ps‖22 + ‖Geb(λeb,mp)− τ eb‖22 (6.31)

where the subscript, c, defines the compression deformation mode, t, the uniaxial tension

deformation mode, and ps and eb the pure shear and equi-biaxial tension deformation modes,

respectively. Combination of the different deformation modes provides unique solutions for

the model parameters at the expense of a reduction in the quality of the fit. To achieve unique

solutions for the model parameters and still obtain a reasonably good fit when combining all

of the deformation modes, weight factors can be introduced:

SG(mp) := ‖wc ·Gc(λc,mp)− τ c‖22 + ‖Gt(λt,mp)− τ t‖22 +

‖wps ·Gps(λps,mp)− τ ps‖22 + ‖web ·Geb(λeb,mp)− τ eb‖22 (6.32)

The weight factors wc, wps, and web scale the constitutive equation separately for compres-

sion, pure shear, and equi-biaxial deformation modes. Basically this means that different

model parameters are determined for each deformation mode, but also that they are all con-

nected by a simple factor. The weight factors account for experimental issues that are present

and of which the author is aware. The experimental setup and the test procedure of the uni-

axial tension experiments were considered to be the most reliable. In the case of compression

and equi-biaxial tension tests, friction might influence the experimental results (Sections 5.2

and 5.5). In pure shear tests the occurrence of small strains in the horizontal direction might

cause the experimental data to differ from theoretical values (Section 5.4). The tension mode

was chosen to have a constant weight scale of 1, as using a weight factor for all of the deform-

ation modes leads to non-unique solutions of the model parameters. When using the weight

factors, w, three additional model parameters are introduced in the minimisation problem

when combining all four deformation modes.

A Matlab code was written to solve this minimisation problem, incorporating the available

Matlab functions, lsqcurvefit.m (suitable when only one set of experimental data is provided)

and fmincon.m (suitable when a combination of deformation modes is employed), Matlab

(see 2013). The function lsqcurvefit.m solves non-linear curve-fitting problems in the least-

squares sense. The constitutive equation (defined as a function handle in Matlab), the starting

guess for the model parameters, mp, lower and upper bounds for the parameters (taking

care to meet any constraints), and the experimental data, are required inputs. lsqcurvefit.m

automatically uses the squared 2-Norm as the objective function. When running this code,

the default Trust-Region Reflective Algorithm, a large-scale optimisation method, was used.
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The function fminon.m is a more general optimisation function which finds the minimum of a

constrained nonlinear multivariable function. Here, the objective function is a required input

and has to be defined by the user, so the squared 2-Norm must be calculated beforehand, and

can easily be modified to perform the data fitting using a combination of deformation modes.

Start parameters, lower and upper bounds, and the experimental data are also required inputs.

The Interior-Point Algorithm (which will become the default in future releases of Matlab)

was used. For both functions, the tolerance value of the function was set to TolFun =

1e − 15, the maximum number of function evaluations allowed was increased to 18000,

and the maximum number of iterations was set to 3000, to ensure that a solution could be

obtained.

To aid with the optimisation process, bespoke Matlab functions designed for each con-

stitutive equations used in this investigation were written. The names of these functions

and the algorithms used within the functions are detailed in Sections 6.3.2 and 6.4.3. These

Matlab functions enable the input of either just one set of experimental data, or a combina-

tion of several sets of data, each measured under distinct deformation modes. Many sets of

possible start parameters can be provided, and the Matlab functions perform the data fitting

for each of these start parameter sets. The fitting algorithm run at least twice for each set

of start parameters; newly determined model parameters are used as the new start values in

the subsequent run. The fitting process is repeated as long as the 2-Norm decreases. The set

of parameters with the smallest 2-Norm is used as the final solution for mp. Suitable start

parameters were taken from the literature (Holzapfel, 2000), and from model parameters

determined during this study. Several combinations of start values within a specified range

were also used to ensure a wide range of initial start values.

Several error definitions are used to help interpret the results. The 2-Norm is defined as:

‖G(λ,mp)− τ‖2 =

√

√

√

√

m
∑

i=1

[G(λi,mp)− τi]2 (6.33)

The 2-Norm can be used to decide whether or not further fitting is required or to compare

results obtained using different sets of start parameters. However, the 2-Norm is an absolute

value and is therefore unsuitable for comparison of either (i) fitting results from different

types of MREs, or (ii) fitting results obtained when using data sets employing different num-

bers of data points (a larger number of experimental data points automatically leads to a

larger 2-Norm value as the latter is computed as a sum of residuals over all data points).

The 2-Norm is a non-adjusted value that can only be used internally to control the perform-

ance of the fitting algorithm. In contrast, the coefficient of determination, R2, is suitable to

compare different data sets, as this is a relative value. A value of R2 of 1 indicates a per-

fect fit, whereas 0 indicates no correlation. R2 is defined as the ratio between the squared
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2-Norm of the residuals, and the total sum of squares using the average value of the stresses,

τ = 1
m

m
∑

i=1

τi:

R2 = 1−

m
∑

i=1

[G(λi,mp)− τi]
2

m
∑

i=1

[τi − τ ]2
(6.34)

The coefficient of determination is preferred when comparing the data fitting results of dif-

ferent types of MREs, or results up to different strain levels as the use of the average stress τ

makes them comparable.

6.3 Modelling of Isotropic MREs

The Ogden model for isotropic incompressible rubber-like materials (Ogden, 1978) is de-

scribed in this section, and model parameters are determined by fitting the model to ex-

perimental data of isotropic MREs presented in Chapter 5. The strain energy function of

the Ogden model, and the derivations of stress functions for each deformation mode are

presented in Section 6.3.1. The fitting procedure is described in Section 6.3.2. The para-

meters of the Ogden model are determined by data fitting to each deformation mode in turn,

and then to a combination of several modes, the results of which are presented in Section

6.3.3. As emphasised in Chapter 5, MREs are very sensitive to the stress-softening Mullins

effect, thus the preconditioning strain level is very important. The data fitting to a combina-

tion of deformation modes can only be successful when the data are obtained from tests up

to the same strain level. The compression, tension, and pure shear experiments were per-

formed up to approximately 50% strain, but in the equi-biaxial tension tests samples were

only stretched up to 10% strain. The Ogden-Roxburgh model is employed to account for the

stress-softening effect, and to adjust experimental data (using the determined model paramet-

ers of the Ogden-Roxburgh model) so that they represent data obtained from a lower strain

level. This is a novel strategy used in this investigation as detailed in Section 6.3.4. The

adjusted experimental data are then used to determine final parameters of the Ogden model

using multiple data sets all obtained from tests up to the same strain level. The results of

the Ogden model charactering MREs under general deformation when tested up to 50% and

10% strain are presented in Section 6.3.5.
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6.3.1 Ogden Model, Tests Kinematics and Stress Definitions

The strain energy function of the Ogden model for incompressible isotropic elastomeric

materials can be defined as a function of the principal stretches (Ogden, 1978) using,

Ψ = Ψ(λ1, λ2, λ3) =
N
∑

p=1

µp

αp

(

λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(6.35)

where λa are the principal stretches, µp and αp are the model parameters determined by fitting

the Ogden model to experimental data, and N is an integer that determines the order of the

Ogden model. The model parameters must fulfil a constraint when fitted to experimental

data:

µpαp > 0 (6.36)

The modulus, µ, used in the well-known Neo-Hookean model can be calculated as follows:

µ =
1

2

N
∑

p=1

µpαp (6.37)

Relating this to infinitesimal strain theory, the modulus, µ, is the shear modulus, G, in the

case of uniaxial deformation. The relation between the shear modulus, G, and the Young’s

modulus, E, in linear theory is defined as

E = 2G(1 + ν) (6.38)

where ν is the Poisson’s ratio (0.5 for incompressible materials). In general E can be cal-

culated as the first derivative of the Cauchy stress function with respect to λ, and as the

Young’s modulus is defined in the small strain region the limit of this derivative with λ → 1

is calculated as:

E =
∂σ

∂λ

∣

∣

∣

∣

λ=1

(6.39)

Only the Young’s modulus, E, can be compared with the moduli presented in Chapter 5 of

this study. The stresses σ and P are derived using Equations 6.26, 6.27, and 6.35 as follows,

σa = −p+
N
∑

p=1

µp · λαp

a (6.40)

Pa =
1

λa

[

−p+
N
∑

p=1

µp · λαp

a

]

(6.41)

where the Lagrange multiplier, p, still needs to be determined using the equilibrium equa-

tions and boundary conditions, which depend on the deformation mode.
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Uniaxial deformation. The uniaxial deformation is a pure stretch deformation with the

main stretch in the 1 direction; λ1 > 1 in tension and λ1 < 1 in compression. The stretches

in the two other directions are equal and defined using the incompressibility constraint.

λ1 = λ (6.42)

λ2 = λ3 =
1√
λ

(6.43)

The deformation gradient, F, is therefore defined as:

F =







λ 0 0

0 1√
λ

0

0 0 1√
λ






(6.44)

The strain energy function of the Ogden model (Equation 6.35) simplifies to:

Ψ(λ) =
N
∑

p=1

µp

αp

(

λαp + 2λ−αp/2 − 3
)

(6.45)

To determine the Lagrange multiplier, p, in Equation 6.40, the boundary conditions and

equilibrium equations are considered. Here the body is not constrained in the second and

third direction which means the principal stresses in those directions are zero.

σ1 6= 0 (6.46)

σ2 = σ3 = 0 (6.47)

With this, the unknown scalar p can be calculated, and σ and P are completely determined

as

σ1 =
N
∑

p=1

µp

(

λαp − λ−αp/2
)

(6.48)

P1 =
1

λ

N
∑

p=1

µp

(

λαp − λ−αp/2
)

(6.49)

To connect to the linear theory the Young’s modulus E1 is defined as:

E1 =
∂σ1

∂λ

∣

∣

∣

∣

λ=1

= 3 · 1
2

N
∑

p=1

αpµp = 3 · µ (6.50)

Pure Shear Deformation. When a very wide sheet of material is stretched a state of

pure shear is achieved. According to BS 903-5 (2004), the width of the sample has to be
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five times its height. This ensures that the contraction occurs predominantly in the through

thickness direction. Ideally there is negligible stretch along the width of the samples. Due

to the incompressibility of the material, a state of pure shear exists at an angle 45 degrees

to the main stretching direction. Pure shear deformation is a pure stretch, thus no rotation is

involved. The principal stretches are defined as follows:

λ1 = λ (6.51)

λ2 = 1 (6.52)

λ3 = 1/λ (6.53)

and the deformation gradient F is given as:

F =







λ 0 0

0 1 0

0 0 1
λ






(6.54)

Contrary to pure shear, simple shear involves rotation and for simple shear F is defined as,

F =







1 γ 0

0 1 0

0 0 1






(6.55)

where γ is the shear strain.

In the case of a pure shear deformation, the strain energy function, Ψ, of the Ogden model is

defined as:

Ψ =
N
∑

p=1

µp

αp

(

λαp + λ−αp − 2
)

(6.56)

The thin sheet of material leads to a plane stress condition with zero stress in the through

thickness direction. The boundary conditions are defined as:

σ1 6= 0 (6.57)

σ2 6= 0 (6.58)

σ3 = 0 (6.59)

The stresses in the reference and the current configuration are thus defined as:

σ1 =
N
∑

p=1

µp

[

λαp − λ−αp
]

(6.60)
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σ2 =
N
∑

p=1

−µpλ
−αp (6.61)

P1 =
1

λ

N
∑

p=1

µp

[

λαp − λ−αp
]

(6.62)

P2 =
1

λ

N
∑

p=1

−µpλ
−αp (6.63)

The Young’s modulus of the linear theory at small strains is defined as:

E1 =
∂σ1

∂λ1

∣

∣

∣

∣

λ=1

= 4 · 1
2

N
∑

p=1

αpµp = 4 · µ (6.64)

Biaxial Deformation. In the case of a biaxial deformation, the stretches, λ1 and λ2, are

the main stretches, and the stretch in the third direction is determined from the incompress-

ibility constraint with:

λ3 =
1

λ1λ2

(6.65)

In the case of equi-biaxial deformation the stretches in the two loading directions are equal

and the kinematics are given as:

λ1 = λ2 = λ (6.66)

λ3 =
1

λ2
(6.67)

In this case the deformation gradient F is determined as:

F =







λ 0 0

0 λ 0

0 0 1
λ2






(6.68)

In the case of equi-biaxial deformation, the strain energy function of the Ogden model (Equa-

tion 6.35), simplifies to:

Ψ(λ) =
N
∑

p=1

µp

αp

(

2λαp + λ−2αp − 3
)

(6.69)

To determine the Lagrange multiplier, p, the boundary conditions and equilibrium equations

are considered. The equi-biaxial MRE samples are very thin sheets of material, which im-

plies a plane stress condition with zero stress in the out of plane direction:

σ1 = σ2 6= 0 (6.70)
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σ3 = 0 (6.71)

The stresses σ and P are completely defined with the determined scalar p as:

σ1 = σ2 =
N
∑

p=1

µp

[

λαp − λ−2αp
]

(6.72)

P1 = P2 =
1

λ

N
∑

p=1

µp

[

λαp − λ−2αp
]

(6.73)

The Young’s modulus of the linear theory at small strains is defined as

E1 = E2 =
∂σ1

∂λ

∣

∣

∣

∣

λ=1

= 6 · 1
2

N
∑

p=1

αpµp = 6 · µ (6.74)

6.3.2 Fitting Procedure

The general optimisation algorithm was described in Section 6.2, and here the specific op-

timisation procedure and the Matlab functions used for the experimental data fitting of the

Ogden model are described. To aid with the determination of the Ogden model paramet-

ers, the Matlab function constmodel_piola_incompiso.m was written (see Appendix D). The

Ogden model up to the model order N = 5 was implemented supporting the uniaxial, pure

shear, and equi-biaxial deformation kinematics. Functions to calculate P (Equations 6.49,

6.62, and 6.73) are saved as ‘function handles’ in the function ogden_modelfun_piola.m (see

Appendix D). Data fitting can be performed using data sets from each individual test con-

dition, or using a combination of data sets measured under the different test kinematics.

Optionally, each Piola stress function can be multiplied with a weight factor as discussed

in Section 6.2 (see Equation 6.32). This introduces a maximum of three additional fitting

parameters to be determined. Initial weighting factors are all set to w = 1 for the first fitting

procedure. Start parameters for αp and µp are required, and several sets of initial values can

be used. The function ogden_startparameters.m stores previously determined model para-

meters from this study, and typical values found in Holzapfel (2000, page 236). It can also

determine all possible combinations from a parameter range provided by the user. To fulfil

the constraint of Equation 6.36, lower and upper bounds are defined with 0 and ± inf, re-

spectively, and sign combinations of the initial parameters are defined. For example, in the

case of a third order Ogden model, three start parameters for αp and three for µp are required,

and eight different combinations of ± signs are possible. The fitting process runs separately

for each of these sign combinations, and the combination that results in model parameters

with the smallest 2-Norm are chosen either as a new set of initial values for a further run of

the fitting process or as final solution for this set of start parameters. The fitting algorithm
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runs at least twice and is repeated as long as the 2-Norm decreases. This procedure is per-

formed separately for each set of start parameters, and the set resulting in model parameters,

mp, with the smallest 2-Norm is the final solution. The fitting procedure is time-consuming:

in the case of N = 3 and 10 sets of start parameters, the function lsqcurvefit.m or fmincon.m

is called at least 2 × 8 × 10 = 160 times, and six model parameters have to be determined

on each call. When using weight factors (Equation 6.32) a maximum of nine parameters

must be determined. The Matlab functions written for the data fitting process are listed in

Appendix D and are saved on a DVD available with this thesis.

6.3.3 Experimental Data Fitting for the Ogden Model

In this section the results of the data fitting process to data obtained from both single deform-

ation modes, and from a combination of compression, tension, pure shear, and equi-biaxial

modes, without and with the use of weight factors, are presented. Figures comparing the

experimental data with the Piola stress predictions of the fitted Ogden model of order N = 3

are provided. The modulus (Equation 6.37), the 2-Norm (Equation 6.33), and the coeffi-

cient of determination, R2 (Equation 6.34) are also presented. The full sets of fitted model

parameters can be found in Appendix F.1.

6.3.3.1 Fitting to Single Deformation Modes

When the model parameters are determined by a data fitting to experimental data of just one

single deformation mode, the quality of the fits is very good with R2 values of close to 1.

However, the resulting model parameters, mp, are not valid under general deformations. For

example, mp of the uniaxial compression mode cannot be used to interpret the behaviour

of MREs under tension, pure shear, or equi-biaxial tension. In Figure 6.1, the predicted and

experimental values for P are plotted versus the stretch for each deformation mode. Data fit-

ting was performed using experimental data up to the maximum stretch imposed during the

experiment, or up to the point of divergence between NoField01 and NoField02 compression

and tension tests (see Sections 5.3.5 and 5.2.3). Tension samples (preconditioned to 15mm,

equivalent to 50% srain), and pure shear samples (preconditioned to 6 mm, equivalent to

approximately 45% strain) are presented. The data fitting results for the uniaxial compres-

sion and tension tests are of very high quality. In the case of pure shear and equi-biaxial

tension tests differences between the experimental data and the predicted Piola stress can be

observed in the small-strain region (see Figure 6.1 c and d).

Different sets of model parameters are determined for each type of MRE and for each de-

formation mode. In Table 6.1, the results of the data fitting to stress-stretch data are summar-

ised. The resulting moduli, µ, the Young’s moduli, E, and the coefficients of determination,

R2, are all provided. R2 values confirm that the results of the compression and tension de-
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(a) Uniaxial Compression
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(b) Uniaxial Tension, preconditioned to 15mm
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(c) Pure Shear, preconditioned to 6 mm
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(d) Equi-Biaxial Tension

Figure 6.1: Predictions of the Ogden model fitted to single deformation modes are compared to
the experimental data. Data of pure rubber and isotropic MREs, tested under uniaxial
compression, uniaxial tension, pure shear, and equi-biaxial tension, are used for the
data fitting.

formation modes are excellent, and that the fits to pure shear and equi-biaxial data are also

very good. The fits are usually better in the case of pure rubber, whereas the quality decreases

with increasing iron content.

Although the results of the fitting are very good, the problem is that the set of model para-

meters obtained during the fitting is not unique. Different sets of parameters can be identified

for both different sets of initial values and set accuracy in the fitting algorithm, although the

resulting moduli, µ, might be almost identical. In Appendix F.2 the different sets of start

parameters and the resulting sets of model parameters are listed for pure rubber tested under

uniaxial compression. Fitting to a combination of different deformation modes is required to

achieve a unique solution. However, as shown in the next paragraph, the fit quality tends to

decrease when using multiple deformation modes.
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MRE Type µ[MPa] E[MPa] R2

Uniaxial
Compression

Pure Rubber 0.2359 0.7078 1.0000
Isotropic 10% MREs 0.2817 0.8452 0.9999
Isotropic 20% MREs 0.3566 1.0699 0.9996
Isotropic 30% MREs 0.5189 1.5568 0.9994

Uniaxial
Tension

Pure Rubber 0.3601 1.0803 1.0000
Isotropic 10% MREs 0.5980 1.7941 1.0000
Isotropic 20% MREs 0.8479 2.5438 0.9997
Isotropic 30% MREs 1.2295 3.6885 0.9991

Pure Shear

Pure Rubber 0.2657 1.0629 0.9999
Isotropic 10% MREs 0.3595 1.4378 0.9986
Isotropic 20% MREs 0.4539 1.8157 0.9961
Isotropic 30% MREs 0.8092 3.2367 0.9993

Equi-Biaxial
Tension

Pure Rubber 0.4750 2.8498 0.9772
Isotropic 10% MREs 0.6159 3.6952 0.9910
Isotropic 20% MREs 0.7464 4.4784 0.9976
Isotropic 30% MREs 1.2482 7.4891 0.9982

Table 6.1: The modulus, µ, the Young’s modulus, E, and the coefficient of determination, R2, of
the Ogden model fitted to the single deformation modes are listed. Data of pure rubber
and isotropic MREs, tested under uniaxial compression, uniaxial tension, pure shear,
and equi-biaxial tension, are used for the data fitting. The moduli, E, can be compared
with the experimentally determined moduli (see Tables 5.5, 5.13, 5.20, and 5.23).

6.3.3.2 Fitting to a Combination of Deformation Modes

The importance of the preconditioning strain level was discussed in Chapter 5. As the MRE

material is very sensitive to the Mullins effect, a different stress-strain behaviour is obtained

when the same type of MRE specimen is tested up to a different strain level (see Section

5.1.1). When fitting the Ogden model to a combination of deformation modes, experimental

data obtained from samples preconditioned to the same strain level are preferred. All avail-

able experimental data sets are also combined, but basically only to show that the results

are not useful, and to emphasise the importance of using the same strain levels. Only with

the use of weight factors (Equation 6.32) can good results be achieved when combining

all deformation modes. Those weight factors account for the different strain levels that are

present in the experimental data (equi-biaxial tests were only performed up to 10% strain),

and also account for experimental issues like friction that might be present in compression

tests (between test rig plate and sample) and equi-biaxial tension tests (sliding clamps), and

the non-zero horizontal strains present in pure shear experiments. These experimental issues

were discussed in Chapter 5, and the weight factors were introduced in Section 6.2.

Pure rubber and isotropic MRE specimens were tested under compression up to 50% strain,

under tension up to 100%, 75%, 50%, or 15% strain (30, 22.5, 15, or 5 mm, see Table

5.7), under pure shear up to 67%, 45%, or 23% strain (9, 6, or 3 mm, see Table 5.17),

and under equi-biaxial tension up to 10% strain (larger strains could not be achieved with

the test apparatus used, see Section 5.5). Note that due to the analysis of experimental
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data (Section 5.1.2), and due to divergences between NoField01 and NoField02 compression

and tension test data (see Sections 5.2.3 and 5.3.5) the strains in the third loading cycle,

which is used for the data fitting, might be less than the strains in the first cycle (as seen

in the subsequent figures in this section). All MRE samples were tested to a similar strain

level of 50% (± 5%) strain under compression, tension (15 mm), and pure shear (6 mm).

These three deformation modes (C-T15-PS6) are combined to achieve results that describe

the behaviour of pure rubber and isotropic MREs tested to approximately 50% strain under

general deformation. For the isotropic MREs containing 30% volume iron fraction tests were

performed up to 10% strain (± 5%) in tension (5 mm) and equi-biaxial tension. These two

deformation modes (T5-EB) are combined to characterise MREs with 30% iron that were

tested up to 10% strain. All deformation modes are combined (C-T15-PS6-EB) first without

and then with the use of weighting factors.

Predictions of the Ogden model are compared alongside the actual experimental data in Fig-

ures 6.2 and 6.3 for all isotropic MREs. In Table 6.2 the modulus, µ, calculated with the

fitted model parameters of the Ogden model, and their corresponding R2 values are sum-

marised for all types of MREs. When weight factors are used, the resulting µ represent the

tension mode, and the moduli for the other deformation modes are calculated with the weight

factors, also provided in the table. R2 values can be calculated for each deformation mode;

listed in the table is the minimum value obtained. The full sets of model parameters for the

several combinations are listed in Appendix F.3. Very good results are achieved with the

Combinations Pure Rubber Isotropic 10% MREs Isotropic 20% MREs Isotropic 30% MREs
µ R2 µ R2 µ R2 µ R2

C-T15-PS6 0.2529 0.9728 0.3197 0.9118 0.4163 0.5489 0.6299 0.7983
T5-EB 1.1491 0.9867
C-T15-PS6-EB 0.2539 0.1559 0.3225 0.1540 0.4282 0.1352 0.7676 0.3510

C-T15-PS6-EB 0.3368 0.9618 0.5096 0.9784 0.7357 0.9904 1.0499 0.9888

µ w µ w µ w µ w

Compression 0.2295 0.6814 0.2776 0.5448 0.3582 0.4868 0.5057 0.4817
Pure Shear 0.2641 0.7842 0.3590 0.7045 0.4798 0.6522 0.8142 0.7755
Equi-Biaxial 0.4241 1.2592 0.5401 1.0599 0.6486 0.8816 1.0904 1.0386

Table 6.2: The modulus, µ (provided in MPa), and the coefficient of determination, R2, of the
Ogden model fitted to combined deformation modes of pure rubber and isotropic MREs
with 10%, 20%, and 30% volume iron fraction are listed. C-T15-PS6 combines exper-
imental data obtained from tests up to approximately 50% strain, and T5-EB combines
data from tests up to approximately 10% strain. C-T15-PS6-EB combines all deform-
ation modes without and with the use of weight factors. When weight factors are used
the resulting µ represent the tension mode, and the resulting moduli for the other de-
formation modes are calculated.

combination C-T15-PS6, which represents data to 50% strain, for pure rubber and isotropic

MRE with 10% iron content. Only the experimental tension data are underestimated result-

ing in a value of R2 = 0.97 for pure rubber and R2 = 0.91 for isotropic 10% MREs. The



6 Constitutive Modelling of MREs 172

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Stretch λ [−]

P
io

la
 S

tr
e

s
s
 P

 [
M

P
a

]

 

 
Compression − Experimental Data

Compression − Ogden C−T15−PS6 without weight factors

Compression − Ogden C−T15−PS6−EB without weight factors

Compression − Ogden C−T15−PS6−EB with weight factors

Tension (50%) − Experimental Data

Tension (50%) − Ogden C−T15−PS6 without weight factors

Tension (50%) − Ogden C−T15−PS6−EB without weight factors

Tension (50%) − Ogden C−T15−PS6−EB with weight factors

Pure Shear (47%) − Experimental Data

Pure Shear (47%) − Ogden C−T15−PS6 without weight factors

Pure Shear (47%) − Ogden C−T15−PS6−EB without weight factors

Pure Shear (47%) − Ogden C−T15−PS6−EB with weight factors

Equi−Biaxial Tension − Experimental Data

Equi−Biaxial Tension − Ogden C−T15−PS6−EB without weight factors

Equi−Biaxial Tension − Ogden C−T15−PS6−EB with weight factors

(a) Pure Rubber

0.7 0.8 0.9 1 1.1 1.2 1.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Stretch λ [−]

P
io

la
 S

tr
e

s
s
 P

 [
M

P
a

]

 

 
Compression − Experimental Data
Compression − Ogden C−T15−PS6 without weight factors

Compression − Ogden C−T15−PS6−EB without weight factors
Compression − Ogden C−T15−PS6−EB with weight factors

Tension (50%) − Experimental Data
Tension (50%) − Ogden C−T15−PS6 without weight factors

Tension (50%) − Ogden C−T15−PS6−EB without weight factors
Tension (50%) − Ogden C−T15−PS6−EB with weight factors
Pure Shear (45%) − Experimental Data

Pure Shear (45%) − Ogden C−T15−PS6 without weight factors
Pure Shear (45%) − Ogden C−T15−PS6−EB without weight factors

Pure Shear (45%) − Ogden C−T15−PS6−EB with weight factors
Equi−Biaxial Tension − Experimental Data

Equi−Biaxial Tension − Ogden C−T15−PS6−EB without weight factors
Equi−Biaxial Tension − Ogden C−T15−PS6−EB with weight factors

(b) Isotropic 10% MREs
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(c) Isotropic 20% MREs

Figure 6.2: Predictions of the Ogden model fitted to combined deformation modes for pure rubber
and isotropic MREs with 10% and 20% volume iron fraction, are compared with the
experimental data. C-T15-PS6 (without weight factors) combines experimental data
obtained from tests up to approximately 50% strain). C-T15-PS6-EB combines all
deformation modes without and with the use of weight factors.
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Figure 6.3: Predictions of the Ogden model fitted to combined deformation modes for isotropic
30% MREs are compared with the experimental data. C-T15-PS6 (without weight
factors) combines experimental data obtained from tests up to approximately 50%
strain, and T5-EB (without weight factors) combines data from tests up to approxim-
ately 10% strain. C-T15-PS6-EB combines all deformation modes without and with
the use of weight factors.

results for isotropic MREs containing 20% and 30% iron particles are not of good quality,

with a significant underestimation of the tension data. This might be due to other experi-

mental issues as discussed above. The combination T5-EB, representing experimental data

obtained from tests up to approximately 10% strain, leads to excellent Ogden stress pre-

dictions (isotropic 30% MREs). The predictions are of poor quality when combining all

experimental data (C-T15-PS6-EB); the low values of R2 listed in Table 6.2 result from the

significant underestimation of the equi-biaxial tension data. Excellent results can only be

obtained when weight factors are used. Now obviously the model parameters are different

again for each deformation mode, but in contrast to data fitting of single deformation modes,

the model parameters are related by a simple factor. The interpretation of the weight factors

is difficult since there are many factors that influence them, as discussed in Section 6.2.

As confirmed by the data fitting results, it is very important to combine experimental data

obtained from MRE specimens that were preconditioned and tested up to the same strain

level. The experimental data presented in this study (Chapter 5) could not all be combined,

as the equi-biaxial tension tests were only performed up to a 10% stretch. To overcome this

problem a novel strategy is presented employing the Ogden-Roxburgh model.

6.3.4 Ogden-Roxburgh Model for the Mullins Effect

To study further the stress-softening behaviour of MREs the Ogden-Roxburgh model (Ogden

and Roxburgh, 1999) is considered. The model parameters for compression and pure shear

are determined, describing the ‘damage’ that occurs between the first loading cycle and a



6 Constitutive Modelling of MREs 174

conditioned loading cycle. The determined model parameters are then used for an adjustment

of the experimental compression and pure shear data so that they represent a 10% strain level,

to enable the comparison with the equi-biaxial tension test data. This is a novel approach

that tries to enable the combination of experimental data that were not originally obtained

from samples tested up to the same preconditioning level.

The Ogden-Roxburgh model is a pseudo-elastic model developed by Ogden and Roxburgh

(1999). This model uses a dissipation or damage parameter to account for stress soften-

ing, which is dependant on the primary loading path and the maximum strain level that the

sample experienced. Note that the remnant deformation observed in the experimental data

(see Chapter 5) is not represented by the Ogden-Roxburgh model, rather the model extension

developed by Dorfmann and Ogden (2004c) should be used. However, in this investigation,

only the stress softening is modelled as this seems to be sufficiently accurate for the purposes

of this fitting exercise. The Ogden-Roxburgh model can be understood as an extension to the

Ogden model. The strain-energy function can be defined in terms of the principal stretches

λa, but now a damage parameter η is introduced.

Ψ = Ψ(λ1, λ2, λ3, η) (6.75)

Using the incompressibility constraint, i.e. λ1λ2λ3 = 1, λ3 can be expressed by the stretches

in the two other directions. The definitions for the stresses σ and P in terms of the principal

stretches are still valid (see Equations 6.26 and 6.27).

The constitutive law proposed by Ogden and Roxburgh (1999) can be written as:

Ψ(λ1, λ2, η) = η · Ψ̃(λ1, λ2) + Φ(η) (6.76)

The damage function Φ(η) is dependant on the damage parameter η, and the strain-energy

function of the primary loading path (first loading cycle), Ψ̃, is best described using the

strain-energy function of the Ogden model. Using this constitutive equation σ can be derived

in the usual way. After elimination of the Lagrange multiplier, p, and for deformation modes

with σ3 = 0 the Cauchy stress is defined as

σa = η · λa ·
∂Ψ̃

∂λa

= η · σ̃a (6.77)

where a = 1, 2. Equivalently, this is defined for the Piola stress with Pa = η·P̃a. The damage

parameter, η, in the original form proposed by Ogden and Roxburgh (1999) is defined as,

η = 1− 1

r
· erf

[

1

m
· (Ψ̃m − Ψ̃(λ1, λ2))

]

(6.78)

where r and m are positive material parameters, Ψ̃(λ1, λ2) is the determined strain-energy
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function describing the primary loading path, and Ψ̃m = Ψ̃(λ1m, λ2m) is the value of the

strain energy function at the maximum strain level of the primary loading path, just before

the unloading cycle starts. The damage parameter η lies in between 0 and 1 with η = 1

indicating no damage so the Ogden-Roxburgh model is identical to the Ogden model. The

function erf is the error function of the Gaussian distribution and is defined as:

erf(x) =
2√
π

∫ x

0

e−w2

dw (6.79)

In this investigation, the definition of the damage parameter η (Equation 6.78) has been modi-

fied slightly in accordance with Dorfmann and Ogden (2004c) so that the material parameter

m is a dimensionless constant. The modulus, µprim, determined using the Ogden model,

fitted to the path of the first loading cycle, is introduced into the definition

η = 1− 1

r
· erf

[

1

µprim ·m · (Ψ̃m − Ψ̃(λ1, λ2))

]

(6.80)

Once the Ogden model parameters of the primary loading path, mp, are determined, Ψ̃

and Ψ̃m are known and the material parameters, r and m, can be determined by a data

fitting to one of the conditioned loading cycles. Here, the parameters are fitted using the

third loading cycle from the NoField02 tests (used throughout this investigation to present

results). Data fitting of the Ogden model to the primary loading path is performed with

the function constmodel_piola_incompiso.m as described in Section 6.3.2. To determine the

parameters, r and m, the function η · P̃a is fitted to the experimental Piola stress data, Pa

of the conditioned loading cycle, using a least-square optimisation method (see Section 6.2).

To aid with the analysis the function constmodel_piola_incompiso_mullins.m (see Appendix

D) was written, which defines the start parameters as r = 10 and m = 0.1, the lower

bounds of the parameters with lb = [1, 0.01], and the upper bounds with ub = [∞, 1].

The parameters are initially only constrained to only positive values (Ogden and Roxburgh,

1999), but as noted earlier for the Ogden model fitted to single deformation modes, the

parameters are not unique and several sets of optimal parameters can be determined (see

Section 6.3.3, so here the parameters were restricted to obtain parameters in a similar range

for each type of MRE. The parameter m > 0.01 is defined to avoid discontinuities in the

function shape of the damage parameter (see Ogden and Roxburgh, 1999). The function

constmodel_piola_incompiso_mullins.m repeats the optimisation procedure as long as the

2-Norm decreases, as described in Section 6.2.

6.3.4.1 Experimental Data Fitting

The Ogden-Roxburgh model was fitted to experimental data from compression and pure

shear tests to evaluate the performance of this constitutive model. Stress-strain data of the
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primary loading path are required to use the model. Such data are not available in the case

of uniaxial tension tests as no DIC images were recorded during the preconditioning cycles,

so strain values could not be calculated (see Chapter 5.3).

The experimental data measured during the first loading cycle (NoField01 compression tests

and Preconditioning pure shear tests, see Sections 5.2.1 and 5.4.1) and the third loading

cycle of the NoField02 tests are compared against the Piola stress predicted by both the

Ogden model and the Ogden-Roxburgh model for compression tests in Figure 6.4a and for

the pure shear tests in Figure 6.4b. The behaviour of pure rubber was not influenced by the

Mullins effect, so nearly no stress softening occurred. The Ogden-Roxburgh model was fitted

only to isotropic MREs with 10%, 20%, and 30% iron content. The moduli of the primary
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(a) Compression Deformation Mode
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Isotropic 10% MREs − NoField02 Up3 − Experimental Data

Isotropic 10% MREs − NoField02 Up3 − Ogden−Roxburgh Model
Isotropic 20% MREs − Primary Loading Path − Experimental Data

Isotropic 20% MREs − Primary Loading Path − Ogden Model N=3
Isotropic 20% MREs − NoField02 Up3 − Experimental Data
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Isotropic 30% MREs − Primary Loading Path − Ogden Model N=3

Isotropic 30% MREs − NoField02 Up3 − Experimental Data
Isotropic 30% MREs − NoField02 Up3 − Ogden−Roxburgh Model

(b) Pure Shear Deformation Mode

Figure 6.4: Predictions of the Ogden and the Ogden-Roxburgh model fitted to the compression and
pure shear deformation mode are compared to the experimental primary loading (first
loading cycle) and conditioned loading data (third loading cycle of NoField02 tests).
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loading path, µ and E, and the damage parameter, η, are listed in Table 6.3. The experimental

Primary Loading Path Conditioned Loading Path

MRE Type µ[MPa] E[MPa] R2 r m ηmin R2

Uniaxial
Compression

Isotropic 10% 0.293 0.880 1.000 7.037 0.016 0.858 0.999
Isotropic 20% 0.444 1.331 1.000 3.152 0.040 0.683 0.976
Isotropic 30% 0.730 2.190 1.000 2.103 0.095 0.524 0.994

Pure Shear

Iso 10% - 6 mm 0.411 1.644 0.991 7.9591 0.025 0.874 0.999
Iso 10% - 9 mm 0.367 1.468 0.953 7.4909 0.139 0.867 0.999
Iso 20% - 3 mm 0.646 2.583 0.998 7.3206 0.010 0.863 0.962
Iso 20% - 6 mm 0.657 2.628 0.985 3.5729 0.010 0.720 0.963
Iso 30% - 6 mm 0.924 3.695 0.968 1.3249 1.000 0.865 0.995

Table 6.3: The moduli, µ and E, and the coefficient of determination, R2, of the Ogden model
fitted to the primary loading path, and material parameters, r and m, the minimum
value of the damage parameter, η, and R2 of the Ogden-Roxburgh model fitted to the
third loading part of the NoField02 compression and pure shear tests are listed.

compression test data are very well described by the model, since the R2 values are all greater

than 0.976. The damage parameter, ηmin, decreases with increasing iron content, meaning

that the stress softening behaviour is more pronounced for MREs with higher iron content.

For the pure shear mode, the fits of the Ogden model to the primary loading paths are not as

good, but in contrast, the fits to the conditioned loading data are reasonably good (R2 values

are larger than those of the primary path fits), meaning that the damage parameters η are

slightly underestimated. Using the Ogden model with the order N = 4 and N = 5 did not

improve the primary loading fits.

The Ogden-Roxburgh model is useful for modelling the stress-softening behaviour of MREs.

In the next section, a novel approach using the results of this model to estimate the response

of MREs with arbitrary levels of preconditioning is presented.

6.3.4.2 Adjustment of Experimental Data to a Lower Strain Level

The determined damage parameter, η, of the Ogden-Roxburgh model is dependant on the

model parameters, r and m, and on the maximum strain level of the primary loading path,

i.e. the preconditioning level. When the model parameters r and m are assumed to be

related only to the material behaviour (and not to the strain level), the damage parameter η

(Equation 6.80), can be estimated for other preconditioning levels using the r and m values

listed in Table 6.3. The strain energy function at the point of maximum stretch, Ψ̃m, is

recalculated and the energy function, Ψ̃(λ1, λ2), is restricted to the new stretch level. This

newly determined damage parameter is multiplied with the experimental data of the primary

loading path to evaluate data of conditioned loading cycles up to different preconditioning

levels. Note that the method of keeping r and m constant is based on an assumption (only

dependant on the material behaviour), and should be further investigated in the future.
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The erf(x) function defined in Equation 6.79 tends to 1 for x ≫ 1. This restricts the depend-

ant variable x to values equal to or less than 1; otherwise the damage parameter cannot be

determined correctly. Due to this purely mathematical issue, an extrapolation of the experi-

mental data to larger preconditioning levels is not possible; thus experimental data can only

be estimated for preconditioning levels smaller than those actually tested. The experimental

data of compression and pure shear experiments are adjusted to a 10% preconditioning level

using the method described above. By doing this, the adjusted data can be compared with the

data of the equi-biaxial tension experiments which were restricted to 10% strain in the exper-

iment. Unfortunately, primary loading paths of the uniaxial tension tests are not available,

thus the tension data can not be scaled down to a 10% strain level. The primary loading paths

(first loading cycle) and the estimated stress-stretch data (adjusted to 10% strain) of both the

compression and pure shear tests are shown in Figure 6.5. From the theory of the Mullins
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Compression − Isotropic 10% MREs − Estimated Data to 10% strain level

Compression − Isotropic 20% MREs − Primary Experimental Data

Compression − Isotropic 20% MREs − Estimated Data to 10% strain level

Compression − Isotropic 30% MREs − Primary Experimental Data

Compression − Isotropic 30% MREs − Estimated Data to 10% strain level

Pure Shear − Isotropic 10% MREs (6mm) − Primary Experimental Data

Pure Shear − Isotropic 10% MREs (6mm) − Estimated Data to 10% strain level

Pure Shear − Isotropic 10% MREs (9mm) − Primary Experimental Data

Pure Shear − Isotropic 10% MREs (9mm) − Estimated Data to 10% strain level

Pure Shear − Isotropic 20% MREs (3mm) − Primary Experimental Data

Pure Shear − Isotropic 20% MREs (3mm) − Estimated Data to 10% strain level

Pure Shear − Isotropic 20% MREs (6mm) − Primary Experimental Data

Pure Shear − Isotropic 20% MREs (6mm) − Estimated Data to 10% strain level

Pure Shear − Isotropic 30% MREs (6mm) − Primary Experimental Data

Pure Shear − Isotropic 30% MREs (6mm) − Estimated Data to 10% strain level

Figure 6.5: The experimental data of pure shear and compression tests are estimated for a 10%
strain level. The primary loading paths and the estimated conditioned loading paths
(conditioned to 10% strain) are compared for isotropic MREs with 10% to 30% volume
iron content.

effect (Diani et al., 2009) and from the experimental data analysis in Chapter 5 it is known

that a larger stress-softening occurs when test specimens are tested up to larger strain levels.

Since the compression and pure shear data were scaled to only 10% strain (not a very large

strain), the estimated stress-softening is small, and consequently the modelled data of the

conditioned loading parts are close to the primary loading paths (see Figure 6.5). The first

loading cycles of isotropic 10% MREs tested to 6 and 9 mm, and of isotropic 20% MREs

tested to 3 and 6 mm (pure shear) are identical (see Figure 6.5). This is expected since the

first loading cycle is independent of the strain level, and the stress-softening occurs after the

first loading cycle (see Diani et al., 2009). The conditioned loading path (estimated data to

10% strain) of isotropic 20% MREs tested to 6 mm are underestimated, as they should be

identical to the estimated path using the 3 mm pure shear data of the isotropic 20% MREs

(dashed blue and cyan line in Figure 6.5).
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The estimated experimental data of compression and pure shear are used in the next section

to repeat the data fitting of the Ogden model to combined deformation modes, but now with

experimental data representing samples tested up to the same preconditioning level.

6.3.5 Fitting of the Ogden Model to Data of Same Strain Level

As shown in Section 6.3.3.2 the results of the Ogden model fitted to combined deformation

modes are not satisfactory when different strain levels were applied in each of the deforma-

tion modes. In contrast, good fitting results were achieved with the C-T15-PS6 combination

(in case of pure rubber and isotropic 10% MREs) of experimental data obtained from tests

up to approximately 50% strain. In this section the Ogden model is fitted to experimental

data obtained from tests under different deformation modes up to the same strain level. Final

results of the Ogden model characterising MREs that are preconditioned to 10% and 50%

strain under various deformation modes are presented. During this investigation it was found

that with the use of a weight factor for the compression mode (wc), reasonable good predic-

tions of the Ogden model can be determined for all types of MREs under each deformation

mode. It is noted in Miller (1999) that “pure states of strain are desired and this is especially

difficult to achieve experimentally in compression” (Miller, 1999). Thus, it is reasonable to

use a weight factor for compression.

To obtain the model parameters for MREs preconditioned to 50% and 10% strain, the data

fitting is performed to the combinations C-T15-PS6 (as presented in Section 6.3.3.2, but now

with a weight factor for compression) and the combination of C-PS-EB (C-T5-PS-EB in case

of the isotropic 30% MREs), respectively. For the 10% combination, estimated experimental

compression and pure shear data (see Section 6.3.4) are used, and for isotropic 30% MREs

tension data obtained from tests up to 15% are available and are used for the data fitting.

The experimental data are compared with the Ogden model predictions in Figures 6.6 and

6.7. The deformation modes that were not used in the combinations to determine the Og-

den model parameters are nevertheless illustrated in the figures, and the Ogden predictions

are calculated with the determined model parameters. The moduli and the coefficients of

determination R2 are summarised in Table 6.4, and the full sets of parameters are listed in

Appendix F.4. Considering the combinations representing a 50% strain level, the results are

excellent in the case of pure rubber and isotropic 10% MREs as already shown in Section

6.3.3.2, but the quality of the fits is improved by using a weight factor for the compression

mode. The quality of the predictions for the isotropic MREs containing 20% and 30% iron

content is not as good (compared to pure rubber and isotropic 10% MREs), with an under-

estimation of the uniaxial tension data. Still, reasonable good predictions characterising the

MRE under general deformation are achieved. The predicted Piola stress of the equi-biaxial

tension mode (see Figures 6.6a and c, and 6.7a and c) suggests data that would have been
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(a) Pure Rubber - 50% strain level
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(b) Pure Rubber - 10% strain level
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Compression − Experimental Data, adjusted to 10% strain level

Compression − Ogden C−PS−EB with wc = 0.5179

Tension (50%) − Experimental Data

Tension (50%) − Calculated with Ogden C−PS−EB

Pure Shear − Experimental Data, adjusted to 10% strain level

Pure Shear − Ogden C−PS−EB

Equi−Biaxial Tension − Experimental Data

Equi−Biaxial Tension − Ogden C−PS−EB

(d) Isotropic 10% MREs - 10% strain level

Figure 6.6: Predictions of the Ogden model fitted to combined experimental data for (a and b) pure
rubber and (c and d) isotropic 10% MREs, representing a 50% and a 10% strain level
(the experimental data were adjusted to this level using the Ogden-Roxburgh model).

50% Strain Level 10% Strain Level

µ[MPa] R2 µ[MPa] R2

Pure Rubber 0.2529 0.9728 0.3575 0.5255
wc = − /0.5825 0.2083

Isotropic 10% MREs 0.3597 0.9413 0.5564 0.7172
wc = 0.8753/0.5179 0.3148 0.2882

Isotropic 20% MREs 0.4562 0.6540 0.6712 0.9630
wc = 0.9094/0.6394 0.4149 0.4292

Isotropic 30% MREs 0.7901 0.8719 1.1639 0.9736
wc = 0.7215/0.6672 0.5701 0.7765

Table 6.4: The modulus, µ, and the coefficient of determination, R2, of the Ogden model fitted to
combined deformation modes, representing a 50% and a 10% preconditioning level, are
listed. The results that characterise well the behaviour of MREs under general deform-
ation are shaded in grey.
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Compression − Experimental Data, adjusted to 10% strain level
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(d) Isotropic 30% MREs - 10% strain level

Figure 6.7: Predictions of the Ogden model fitted to combined experimental data for (a and b)
isotropic 10% MREs and (c and d) isotropic 30% MREs, representing a 50% and a
10% strain level (the experimental data were adjusted to this level using the Ogden-

Roxburgh model).

achieved when stretching the samples to 50% strain instead of the 10% strain actually used

in the real experiments. Considering now the combinations representing a 10% strain level,

excellent results are achieved for the isotropic MREs containing 20% and 30% iron content,

which is especially evident for the isotropic 30% MREs where all four deformation modes

were combined to perform the data fitting. The quality of the predictions for the pure rubber

and isotropic 10% MREs is lower, with an overestimation of the experimental pure shear

data. The prediction of the tension data (calculated with the determined model parameters)

are too low as the shown experimental tension data are obtained from tests up to 50% strain

(see Figure 6.6b and d).
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6.3.6 Summary of the Modelling of Isotropic MREs

The Ogden model is able to represent the experimental data of single deformation modes

very well. However, not only do the different types of MRE samples lead to different results

of Ogden model parameters, but also the preconditioning levels up to which the samples

were tested play an important role. Different sets of parameters are determined for each

deformation mode, thus the identified model parameters are not valid under general deform-

ations. Also, non-unique solutions are determined, meaning that more than one set of model

parameters can be calculated resulting in the same quality of predicted Ogden stresses.

To obtain unique sets of identified model parameters, and also to characterise MREs under

general deformations, experimental data obtained from different deformation modes have to

be combined for the data fitting. The predictions of the Ogden model were of reasonable

good quality when experimental data obtained from tests up to the same strain level were

used for the combination. The fit quality was poor when data obtained from tests up to dif-

ferent strain levels were used. The importance of the preconditioning level was once again

obvious. In this investigation, compression, tension, and pure shear experiments were per-

formed up to 50% strain, while the equi-biaxial tension tests were only performed up to 10%

strain. To enable the comparison of all four deformation modes, the Ogden-Roxburgh model

was employed to estimate experimental data representing a 10% strain level; this scaling was

performed with the compression and pure shear data. The estimated data were combined

with the equi-biaxial data to determine Ogden model parameters representing MREs precon-

ditioned to 10% strain. Weight factors were introduced into the objective function (Equation

6.32) to account for experimental issues (i.e. friction in compression tests). When combining

experimental data representing different strain levels, the interpretation of the weight factors

is difficult, as besides the experimental issues also the different strain levels contribute to

them. When combining experimental data obtained from tests up to the same strain level, it

was sufficient to use a weight factor for the compression mode only to achieve reasonable

good results of the Ogden predictions.

Final Ogden model parameters were successfully determined describing MREs under gen-

eral deformations. MREs that were preconditioned to 50% and 10% strain can be modelled

under uniaxial compression and tension, pure shear, and equi-biaxial deformation modes.

6.4 Modelling of Anisotropic MREs

Transversely isotropic materials are a special class of anisotropic materials which are rein-

forced by only one family of fibres or aligned particles. Such materials have one preferred

direction which is usually stiffer than in other directions. The material response in the dir-

ections perpendicular to the preferred direction is isotropic. Due to the particle alignment of
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the iron particles within the MRE material achieved by applying a magnetic field during the

curing process, the anisotropic MREs fall into the class of transversely isotropic materials.

As an extension of Section 6.1, the theory, and some specific forms of strain energy functions

are presented in Section 6.4.1. The Qui-Pence (Qiu and Pence, 1997), the Merodio-Ogden

(Merodio and Ogden, 2005), the Holzapfel-Gasser (Holzapfel et al., 2000), and the Guo

(Guo et al., 2007) models are discussed. The test kinematics and the derivations of the stress

functions for each of the transversely isotropic models are provided in Section 6.4.2. The

fitting procedure is described in Section 6.4.3. Finally, model parameters are determined by

a data fitting to experimental data of anisotropic MREs. Results are compared and discussed

in Section 6.4.4.

6.4.1 Theory and Forms of Strain Energy Functions

The stretch of the fibre, or in the case considered here the stretch of the aligned particle

chains along their original orientation can be characterised as

λF · a(x, t) = F(X, t) · a0(X) (6.81)

λ2
F = a0 · FTFa0 = a0Ca0 (6.82)

where a0(X) and a(x, t) are unit vectors describing the direction of the aligned particle

chains in the reference and current configuration, respectively. The strain energy function,

Ψ, is not solely dependant on the deformation gradient, F, but also on the direction of the

aligned particles, a0, and is defined as:

Ψ = Ψ(F, a0)

To present Ψ in terms of strain invariants (analogous to isotropic materials), two pseudo-

invariants, I4 and I5, have to be introduced (Holzapfel, 2000; Spencer, 1984)):

Ψ = Ψ(I1, I2, I3, I4, I5) (6.83)

The invariants I1, I2, and I3 were defined earlier in Equations 6.4, 6.5, and 6.6 for isotropic

materials. I4 and I5 are required to describe the anisotropic material behaviour and are

defined as,

I4(C, a0) = a0Ca0 = λ2
F (6.84)

I5(C, a0) = a0C
2a0 (6.85)

where C is the right Cauchy-Green tensor. The two pseudo-invariants “describe the prop-

erties of the fibre family and its interaction with the other material constituents” (Holzapfel,
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2000, page 268).

Two forms of incompressible transversely isotropic materials can be distinguished. When

the fibres are extensible the invariant I3 = 1 as with isotropic materials; Ψ is then a function

of four invariants:

Ψ = Ψ(I1, I2, I4, I5)−
1

2
p(I3 − 1) (6.86)

When the fibres are inextensible then I4 = 1 as well, which means that the stretch of the

fibres λF = 1 and an additional Lagrange multiplier, q, has to be introduced, and Ψ is

defined as follows:

Ψ = Ψ(I1, I2, I5)−
1

2
p(I3 − 1)− 1

2
q(I4 − 1) (6.87)

All of the transversely isotropic constitutive models mentioned above consist of an isotropic

part and an anisotropic or reinforcing part; the strain energy functions can be separated:

Ψ(I1, I2, I4, I5) = Ψiso(I1, I2) + Ψaniso(I4, I5) (6.88)

The original proposed models use the well-known Neo-Hookean model (Holzapfel, 2000;

Ogden, 1978) to describe the isotropic part of the strain energy function. The models could

be extended with the Ogden model to describe the isotropic part, but it was found by further

studies of the author that the quality of the experimental data fits did not improve. In the

case of isotropic MREs (see Section 6.3) the Ogden model delivered much better fits to the

experimental data than the Neo-Hookean model, as the latter has only one fitting parameter

and is therefore less flexible. However, for the anisotropic MREs it was found that the use of

the Ogden model did not improve the quality, rather it complicated the equations enormously

and often the model parameters of Ψaniso resulted in zero values as the Ogden model alone

was able to represent the experimental data. In terms of characterising transversely isotropic

material, the results were not useful as the directions parallel and perpendicular to the particle

alignment direction cannot be distinguished. Here, only the original models involving the

Neo-Hookean model are presented, although the equations can be extended to use the Ogden

model and Matlab functions (written by the author to perform the data fitting) support the

Ogden-based transversely isotropic models (see Appendix D).

The definitions of the Piola and Cauchy stresses were given in Equations 6.26 and 6.27;

since the strain energy functions, Ψ, can be expressed in terms of the principal stretches

these definitions are still valid. The particle alignment direction is assumed to be in the

1-direction for the derivation of the stress functions, i.e. λF = λ1.

Standard Reinforcing Model The Standard Reinforcing model was developed by Qiu

and Pence (1997); this is a reinforced Neo-Hookean material model. The strain-energy func-
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tion for transversely isotropic materials is defined as

Ψ =
1

2
µ
[

(λ2
1 + λ2

2 + λ2
3 − 3) + γ(λ2

F − 1)2
]

(6.89)

where the first part of the equation is the Neo-Hookean model with the modulus, µ, and the

quadratic term (λ2
F − 1)2/2 is called the standard reinforcing term. The parameter γ (> 0) is

a dimensionless material parameter characterising the properties of the reinforcement. The

Cauchy stresses are then:

σ1 = µ ·
(

λ2
1 + 2γλ2

1(λ
2
1 − 1)

)

− p (6.90)

σ2 = µλ2
2 − p (6.91)

σ3 = µλ2
3 − p (6.92)

Merodio-Ogden Model Merodio and Ogden (2005) developed a constitutive model with

the reinforcing part dependant on the invariant I5 rather than I4. I5 is not solely dependant

on the fibre stretch, λF , rather I5 also registers an interaction between the fibre or aligned

particles and the matrix material (Merodio and Ogden, 2005). The invariant is defined with

I5 = λ4
F in Merodio and Ogden (2005). The strain-energy function, Ψ, and the derived

Cauchy stress in particle alignment direction, σ1, are then defined as,

Ψ =
1

2
µ
[

(λ2
1 + λ2

2 + λ2
3 − 3) + γ(λ4

F − 1)2
]

(6.93)

σ1 = µ · λ2
1 + 4µγλ4

1(λ
4
1 − 1)− p (6.94)

where µ is the modulus of the Neo-Hookean model, and γ (> 0) is a dimensionless material

parameter. The stresses in the two other directions are only dependant on the isotropic Neo-

Hookean part and are identical for all models (see Equations 6.91 and 6.92). As stated by

Merodio and Ogden (2005) “there are no qualitative differences in the behaviour of the I4

and I5 model, although the results for shear deformation are different at some points”.

Holzapfel-Gasser Model The Holzapfel-Gasser model (Holzapfel et al., 2000) was ori-

ginally developed to model the different layers of an arterial wall. An arterial wall is treated

as an anisotropic material with two families of fibres. Similar to the models proposed by

Qiu and Pence (1997) and Merodio and Ogden (2005) this approach is a sum of the iso-

tropic matrix material, treated as a Neo-Hookean material, and a function which describes

the anisotropic behaviour. The fibre of an arterial wall is the collagen and due to its “strong

stiffening effect” (Holzapfel et al., 2000) an exponential function is used to describe the an-

isotropy. The original form of the strain-energy function, as given in Holzapfel et al. (2000)
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is stated as:

Ψ(C, a1, a2) = Ψiso(I1) +Ψaniso(I4, I6) =
1

2
µ(I1 − 3)+

k1
2k2

∑

i=4,6

(

ek2(Ii−1)2 − 1
)

(6.95)

As this work focusses on transversely isotropic materials (one family of fibres) the function

simplifies to the following

Ψ(I1, I4) =
1

2
µ(I1 − 3) +

k1
2k2

(

ek2(I4−1)2 − 1
)

(6.96)

and can also be expressed in terms of the principal stretches

Ψ =
1

2
µ(λ2

1 + λ2
2 + λ2

3 − 3) +
k1
2k2

(

ek2(λ
2

F
−1)2 − 1

)

(6.97)

with µ the modulus of the Neo-Hookean model, k1 (> 0) a stress-like parameter, and k2

(> 0) a dimensionless material parameter. The Cauchy stress in the direction of particle

alignment is defined as:

σ1 = µ · λ2
1 + 2k1λ

2
1(λ

2
1 − 1)ek2(λ

2

1
−1)2 − p (6.98)

The stresses in the two other directions behave isotropically and are defined in Equations

6.91 and 6.92.

Guo Model Contrary to the models presented earlier, the model by Guo et al. (2007) con-

siders both the matrix material and the particles as Neo-Hookean materials. The interaction

between matrix and fibres is taken into account by using a multiplicative decomposition of

the deformation gradient, F. The final strain-energy function Ψ can be separated into an

isotropic and an anisotropic part, and is again defined in terms of the principal stretches as,

Ψ =
1

2
α
[

(λ2
1 + λ2

2 + λ2
3 − 3) + β

(

λ2
F + 2λ−1

F − 3
)]

(6.99)

where α and β are material parameters and have a clear physical interpretation, given as,

α = µc =
(1 + Φp)χ+ (1− Φp)

(1− Φp)χ+ (1 + Φp)
µm (6.100)

β =
(χ− 1)2ΦpΦm

(1 + Φp)χ+ (1− Φp)
(6.101)

where Φm and Φf are the volume ratios of matrix and particles, and χ = µp/µm is the stiff-

ness ratio between matrix and particles, calculated with the shear moduli µm and µp. The

parameter α can be interpreted as the effective shear modulus of the composite, µc. The
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parameter β is not only “the relative stiffness of the fibre to the matrix, the composite ef-

fect is included” (Guo et al., 2007). So, the Guo model is not only a model to describe the

large-strain behaviour of transversely isotropic materials, it also considers filler reinforce-

ment effects. Here, α = µc and β are model parameters to be determined during fitting

to experimental data, and µc is the modulus of the Neo-Hookean model. The filler rein-

forcement interpretation of these parameters is ignored, as the performance of the model in

describing experimental data of MREs is the main interest of this investigation. The stress in

the fibre direction is derived as:

σ1 = µc · λ2
1 + µcβ(λ

2
1 − λ−1

1 )− p (6.102)

The stresses in the two other directions are only dependant on the isotropic Neo-Hookean

and are identical for all models (see Equation 6.91 and 6.92).

Connection to the linear theory. To connect to the linear theory and therewith calcu-

late the Young’s moduli valid for small strains, the following equations are still valid:

E1 =
∂σ1

∂λ1

∣

∣

∣

∣

λ1=1

(6.103)

E2 =
∂σ2

∂λ2

∣

∣

∣

∣

λ2=1

(6.104)

The stress, P , and the Young’s moduli, E, will be derived for each of the deformation modes

in the next section.

6.4.2 Kinematics and Stress Definitions

As transversely isotropic materials are reinforced in one direction the stretch definitions

are somewhat different compared to isotropic materials. The incompressibility constraint

λ1λ2λ3 = 1 is still valid.

Uniaxial deformation in the fibre direction. When the load is applied in the fibre

direction the derivations are quite straight forward and the stretch definitions are the same as

those defined for isotropic materials,

λ1 = λF (6.105)

λ2 = λ3 =
1√
λ1

(6.106)



6 Constitutive Modelling of MREs 188

With the boundary conditions σ2 = σ3 = 0, the Lagrange multiplier, p, can be determined

as p = µ · λ−1
1 . The isotropic part of the Cauchy stress equations is then determined as,

σ1,iso = µ · (λ2
1 − λ−1

1 ) (6.107)

and the anisotropic part remains as defined in Equations 6.90 for the Qui-Pence model, Equa-

tion 6.94 for the Merodio-Ogden model, Equation 6.98 for the Holzapfel-Gasser model, and

Equation 6.102 for the Guo model. The Piola stress is the stress definition used to per-

form the data fitting to experimental stress-strain values as both are defined in the reference

configuration. The Piola stress equations for all models are summarised as follows:

P1 = µ · (λ1 − λ−2
1 ) + ...

Qui-Pence + 2µγλ1(λ
2
1 − 1)

Merodio-Ogden + 4µγλ3
1(λ

4
1 − 1)

Holzapfel-Gasser + 2k1λ1(λ
2
1 − 1)ek2(λ

2

1
−1)2

Guo + µβ(λ1 − λ−2
1 )

(6.108)

The Young’s moduli, E1, are calculated with Equation 6.103 and are given as:

E1 =

Qui-Pence µ (3 + 4γ)

Merodio-Ogden µ (3 + 16γ)

Holzapfel-Gasser 3µ+ 4k1

Guo 3µ (1 + β)

(6.109)

Uniaxial deformation perpendicular to the fibre direction When the loading dir-

ection is perpendicular to the fibre direction, the derivations are more complicated. The

particle alignment direction is still in the 1-direction, so that the equations defined in Section

6.4.1 are still valid. The loading direction is assumed to be in the 2-direction. The stretch

λ1 = λF is in the fibre direction, the stretch λ2 is in loading direction, and the third stretch is

defined with the incompressibility constraint λ3 = 1/(λ1λ2). The stresses perpendicular to

the loading direction σ1 = σ3 = 0 define the boundary conditions. The Lagrange multiplier,

p, cannot be determined explicitly from the boundary conditions, rather a function for λ2 in

terms of λ1 is derived for each of the models discussed. With this, functions for the stresses

σ2 and P2 in the loading direction are derived in terms of the stretch in the fibre direction

λ1. The model parameters of the transversely isotropic models are determined by fitting both

λ2(λ1) and P2(λ1) simultaneously to experimental data. The functions λ2(λ1), σ2(λ1), and
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P2(λ1) are defined separately for each model. The following equations are derived for the

Qui-Pence model:

p = µ
[

λ2
1

(

1 + 2γ(λ2
1 − 1)

)]

from σ1 = 0

p = µ/
(

λ2
1λ

2
2

)

from σ3 = 0 (6.110)

λ2 =
[

λ4
1

(

1 + 2γ(λ2
1 − 1)

)]−1/2
(6.111)

σ2 = µ
[

λ2
2 − λ2

1

(

1 + 2γ(λ2
1 − 1)

)]

σ2 = µ
[

(

λ4
1

(

1 + 2γ(λ2
1 − 1)

))−1 − λ2
1

(

1 + 2γ(λ2
1 − 1)

)

]

(6.112)

P2 = µ
[

(

λ4
1

(

1 + 2γ(λ2
1 − 1)

))−1/2 −
(

λ4
1

(

1 + 2γ(λ2
1 − 1)

))1/2 · λ2
1

(

1 + 2γ(λ2
1 − 1)

)

]

P2 = µ
[

λ−2
1

(

1 + 2γ(λ2
1 − 1)

)−1/2 − λ4
1

(

1 + 2γ(λ2
1 − 1)

)3/2
]

(6.113)

Similarly, the corresponding equations for the Merodio-Ogden, the Holzapfel-Gasser, and

the Guo models are:

λ2 =
[

λ4
1

(

1 + 4γλ2
1(λ

4
1 − 1)

)]−1/2

σ2 = µ
[

(

λ4
1

(

1 + 4γλ2
1(λ

4
1 − 1)

))−1 − λ2
1

(

1 + 4γλ2
1(λ

4
1 − 1)

)

]

P2 = µ
[

λ−2
1

(

1 + 4γλ2
1(λ

4
1 − 1)

)−1/2 − λ4
1

(

1 + 4γλ2
1(λ

4
1 − 1)

)3/2
]

(6.114)

λ2 =
[

λ4
1

(

1 + 2k1/µ(λ
2
1 − 1)ek2(λ

2

1
−1)

2
)]−1/2

σ2 = µ

[

(

λ4
1

(

1 + 2k1/µ(λ
2
1 − 1)ek2(λ

2

1
−1)

2
))−1

− λ2
1

(

1 + 2k1/µ(λ
2
1 − 1)ek2(λ

2

1
−1)

2
)

]

P2 = µ

[

λ−2
1

(

1 + 2k1/µ(λ
2
1 − 1)ek2(λ

2

1
−1)

2
)−1/2

− λ4
1

(

1 + 2k1/µ(λ
2
1 − 1)ek2(λ

2

1
−1)

2
)3/2

]

(6.115)

λ2 =
[

(β + 1)λ4
1 − βλ1

]−1/2
=

[

λ2
1

(

(β + 1)λ2
1 − βλ−1

1

)]−1/2

σ2 = µc

[

(

λ2
1

(

(β + 1)λ2
1 − βλ−1

1

))−1 −
(

(β + 1)λ2
1 − βλ−1

1

)

]

P2 = µc

[

(

λ2
1

(

(β + 1)λ2
1 − βλ

−1/2
1

))−1

− λ1

(

(β + 1)λ2
1 − βλ−1

1

)3/2
]

(6.116)

The strains in the particle alignment direction are required, but in the case of uniaxial com-
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pression tests these strains were not measured experimentally, and in the case of uniaxial

tension they were not very reliable. The DIC system was used to measure strains during

the tension experiments, but as the narrow part of the tension samples was only 4 mm wide

not many DIC points were available to analyse the strains. The importance of the horizontal

strain measurement was realised too late, after performing the experiments. Here, the stretch

in the fibre direction λ1 is estimated using the function λ2(λ1) (solved with the Matlab func-

tion fsolve.m (Matlab, 2013)). The initial values for λ1 are calculated for the isotropic case

1/
√
λ2. An iterative process is performed involving two steps: (i) the stretch λ1 is estimated,

and (ii) the model parameters mp are calculated with an optimisation to both λ2(λ1) and

P2(λ1) simultaneously (minimising the sum of the squared 2-Norms) using the Matlab func-

tion fmincon.m. This iterative process was repeated until the 2-Norm no longer decreased.

For the calculation of the Young’s modulus, E2, the Equation 6.104 is valid, but σ2 is not

defined in terms of λ2, but is rather a function of the stretch λ1 in the fibre direction. Thus, a

direct derivative cannot be calculated, instead the total derivative is calculated using:

∂σ2

∂λ2

=
∂σ2

∂λ1

· ∂λ1

∂λ2

(6.117)

As only the function, λ2(λ1) is available and a solution for λ1 cannot be found analytically,

the derivative must be solved using the implicit function F (λ2, λ1) = 0. The derivative can

be solved as follows:
∂λ1

∂λ2

= − ∂F

∂λ2

/

∂F

∂λ1

(6.118)

The Young’s moduli, E2, in loading direction are derived for all models using:

E2 =

Qui-Pence µ
3 + 4γ

1 + γ

Merodio-Ogden µ
3 + 16γ

1 + 4γ

Holzapfel-Gasser µ
3µ+ 4k1
µ+ k1

Guo
12µ(1 + β)

3β + 4

(6.119)

Pure shear with fibre direction in the loading direction. The kinematics for a pure

shear deformation with loading direction in the particle alignment direction are identical to

the isotropic case. The stretch λ1 = λF is in fibre direction, the stretch λ2 = 1 as defined for

the ideal case of pure shear, and the third direction is derived from the incompressibility con-

straint with λ3 = 1/λ1. With the boundary condition, σ3 = 0, the Lagrange multiplier can
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be determined as p = µλ−2
1 . The derivations of the Piola stress functions can be summarised

as:
P1 = µ ·

(

λ1 − λ−3
1

)

+ ...

Qui-Pence + 2µγλ1(λ
2
1 − 1)

Merodio-Ogden + 4µγλ3
1(λ

4
1 − 1)

Holzapfel-Gasser + 2k1λ1(λ
2
1 − 1)ek2(λ

2

1
−1)2

Guo + µβ(λ1 − λ−2
1 )

(6.120)

The Young’s moduli, E1, are calculated using Equation 6.103 and are given as:

E1 =

Qui-Pence 4µ (1 + γ)

Merodio-Ogden 4µ (1 + 4γ)

Holzapfel-Gasser 4 (µ+ k1)

Guo µ (4 + 3β)

(6.121)

Pure shear with fibre direction perpendicular to the loading direction. When

the loading direction is perpendicular to the particle alignment direction in pure shear de-

formation the stretch λ1 = λF = 1 due to the large width of the samples in this direction.

The stretch λ2 is in loading direction. The third direction is deforming with λ3 = 1/λ2 and

the stress in this direction is σ3 = 0. The Lagrange multiplier is determined as p = µλ−2
2 .

The reinforcing part of the constitutive models neither contributes to the definition of σ2 nor

to the definition of p, so the stress in the loading direction is identical to the isotropic case

and is independent of any transversely isotropic model. The Piola stresses are defined as:

P2 = µ
(

λ2 − λ−3
2

)

(6.122)

The Young’s modulus, E2, in the loading direction is calculated using Equation 6.104 and is

identical to the isotropic case with

E2 = 4µ (6.123)

The experimental data of pure shear with the particle alignment in the horizontal direction

can thus not be used to determine the model parameters of transversely isotropic models, and

only the parameter, µ, of the Neo-Hookean model can be determined.

Equi-biaxial deformation with in-plane fibre direction. In the case of equi-biaxial

deformation, both the 1- and the 2-directions are loading directions, and the stretches are

equal, i.e. λ1 = λ2 = λ. The fibre direction is still the 1-direction and the equations
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in Section 6.4.1 are still valid. The stretch in the third direction is determined using the

incompressibility constraint leading to λ3 = 1/λ2. The Lagrange multiplier p is determined

with the boundary condition, σ3 = 0, as p = µλ−4. The derivations of the Piola stress

functions are straight-forward and are given as follows (note that the stress P2 is identical to

the isotropic case):

P1 = µ ·
(

λ− λ−5
)

+ ...

Qui-Pence + 2µγλ(λ2 − 1)

Merodio-Ogden + 4µγλ3(λ4 − 1)

Holzapfel-Gasser + 2k1λ(λ
2 − 1)ek2(λ

2−1)2

Guo + µβ(λ− λ−2)

P2 = µ ·
(

λ− λ−5
)

(6.124)

The Young’s moduli, E1, in the fibre direction and, E2 in the other loading direction are

calculated using Equations 6.103 amd 6.104 and are given as:

E1 =

Qui-Pence 2µ (3 + 2γ)

Merodio-Ogden 2µ (3 + 8γ)

Holzapfel-Gasser 2 (3µ+ 2k1)

Guo 3µ (2 + β)

E2 = 6µ

(6.125)

6.4.3 Fitting Procedure

The general optimisation algorithm was described in Section 6.2, and here the specific op-

timisation procedure and the Matlab functions used for the experimental data fitting of trans-

versely isotropic models are described. To aid with the determination of the model para-

meters for the transversely isotropic models presented in Sections 6.4.1 and 6.4.2, a Matlab

function constmodel_piola_incompaniso.m (see Appendix D) was written. The Qui-Pence,

the Merodio-Ogden, Holzapfel-Gasser, and the Guo models with either a Neo-Hookean-

based isotropic part or an Ogden-based isotropic part (up to the order N = 3) are supported

in the code. All the deformation modes discussed in Section 6.4.2 are supported. Experi-

mental data from either single-mode or multi-mode deformations can be used to determine

the model parameters. Further, the model parameters can be determined by two different

methods: (i) by constraining the model parameters such that the parameters in the isotropic

part of the model (mpiso) are equal to those determined for corresponding isotropic MREs
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in Section 6.3.3 and only the parameters in the reinforcing part (mpaniso) are determined

by an experimental data fitting, and (ii) by fitting all parameters of the transversely isotropic

models (mpiso and mpaniso) without constraint. When considering multi-mode deforma-

tions for the data fitting, weight factors (Equation 6.32) can be used as discussed in Section

6.2. Once again, the minimisation problems defined in Equations 6.29 and 6.31 are solved

with the Matlab functions lsqcurvefit.m or fmincon.m.

Start parameters for the fitting parameters of the strain energy function are provided, and

several sets of parameters are used to cover a broad range of possible solutions (Matlab

function aniso_startparameters.m, see Appendix D). The parameter, µ, of the Neo-Hookean

model and the parameters, γ, β, or k1 and k2 of the reinforcing parts of the models must be

greater than 0, which is fulfilled by setting a lower bound in lsqcurvefit.m or fmincon.m. The

fitting procedure is repeated as long as the 2-Norm decreases and is performed separately

for each set of start parameters (described in Section 6.2). The Matlab functions written for

the data fitting process are listed in Appendix D and are saved on a DVD available with this

thesis. Not all the features implemented in the code are actually used here, as only a small

choice of data fitting results is presented in the next section.

6.4.4 Experimental Data Fitting for Transversely Isotropic

Models

In this investigation, only the data fitting results to single deformations are presented. As

such, the model parameters are determined by a data fitting to experimental data of com-

pression, tension, pure shear, and equi-biaxial tension test, and for all these deformations

both data are used simultaneously, with the loading parallel and perpendicular to the particle

alignment direction. Further studies by the author showed that experimental data fitting to a

combination of different deformation modes resulted in poor predictions. The transversely

isotropic models usually consist of an isotropic and a reinforcing part (Equation 6.88). The

use of mpiso, determined from a data fitting to isotropic MREs (Section 6.3.3), was invest-

igated to determine whether or not the transversely isotropic models can be understood as

an extension to the isotropic models. This would connect the isotropic and anisotropic MRE

behaviour, and thus would really model the anisotropy effect (which could then be studied

in dependence of the applied magnetic field during the curing process, for example). Unfor-

tunately, this is not possible with the transversely isotropic models used in this investigation,

and the results were rather confusing. As even the predictions obtained from one specific

deformation are not satisfying in most cases, only the results of the Qui-Pence model are

presented and discussed in the main text. The results of the Merodio-Ogden, Holzapfel-

Gasser, and Guo models are provided in Appendix F.2.

The predictions of the Qui-Pence model fitted to experimental data obtained from compres-
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sion, tension, pure shear, and equi-biaxial tension tests are illustrated in Figures 6.8 to 6.11.

Experimental data are compared with the predictions of the Qui-Pence model in both the dir-

ections with loading parallel and perpendicular to the direction of particle chains. The Qui-
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Figure 6.8: Predictions of the Qui-Pence model fitted to uniaxial compression data with both load-
ing parallel and perpendicular to the direction of particle alignment are compared to
experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.

Pence model is not able to capture the non-linear stress-strain behaviour of MRE materials.

Only the compression data of anisotropic MREs with 10% iron content are fitted with an ac-

ceptable quality, but the large stiffness of anisotropic MREs with 20% and 30% when loaded

in the direction of particle alignment are not well predicted (see Figure 6.8). The same is true
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Figure 6.9: Predictions of the Qui-Pence model fitted to uniaxial tension data with both loading
parallel and perpendicular to the direction of particle alignment are compared to ex-
perimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.

for the tension deformation mode, where the quality of the results is very poor for all MREs
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(see Figure 6.9). The fitting results for the pure shear deformation are surprisingly good,
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Figure 6.10: Predictions of the Qui-Pence model fitted to pure shear data with both loading parallel
and perpendicular to the direction of particle alignment are compared to experimental
data from anisotropic MREs with 10%, 20%, and 30% CIP content.

but still the non-linear behaviour of the stress-strain curves is not interpreted well, rather the

predicted stresses behave linearly (see Figure 6.10). Fitting to the equi-biaxial tension mode
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Figure 6.11: Predictions of the Qui-Pence model fitted to equi-biaxial tension data are compared
to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
Predictions and experimental data are illustrated for both directions, parallel and per-
pendicular to the direction of particle alignment.

provides reasonable good predictions perpendicular to the particle alignment, but once again

the steep slope in the small-strain region, and the non-linear stress-strain behaviour is not

well predicted in the direction of particle alignment (see Figure 6.11).

The parameters, µ and γ, of the Qui-Pence model, the Young’s moduli, E1 in the particle

alignment direction, and E2 perpendicular to the alignment direction, and the coefficient of
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determination, R2, are summarised in Table 6.5 for all deformation modes. In the table,

MRE µ[MPa] γ [−] E1[MPa] E2[MPa] R2

Compresion
Anisotropic 10% MREs 0.7444 2.7051e−16 2.2331 2.2331 0.7868
Anisotropic 20% MREs 0.7316 1.1846e−16 2.1949 2.1949 0.2707
Anisotropic 30% MREs 0.8272 4.9866e−16 2.4817 2.4817 0.8814

Tension
Anisotropic 10% MREs 0.0062 1.0119e+2 2.5321 0.0248 0.9718
Anisotropic 20% MREs 0.5488 4.7074e−17 1.6463 1.6463 0.7933
Anisotropic 30% MREs 0.5633 7.8495e−17 1.6900 1.6900 0.1773

Pure Shear
Anisotropic 10% MREs 0.3695 1.5164e−1 1.7023 1.4782 0.9840
Anisotropic 20% MREs 0.5447 2.3816e−1 2.6977 2.1788 0.9817
Anisotropic 30% MREs 1.3704 1.2577e−1 6.1712 5.4818 0.9877

Equi-Biaxial
Tension

Anisotropic 10% MREs 0.4658 8.2898e−1 4.3391 2.7947 0.8583
Anisotropic 20% MREs 0.7473 5.5943e−1 6.1562 4.4839 0.9192
Anisotropic 30% MREs 1.6028 1.9303e−1 10.8542 9.6166 0.9185

Table 6.5: The parameters, µ and γ, of the Qui-Pence model fitted to data of each deformation
mode (fit to tests with both the loading parallel and perpendicular to the particle align-
ment direction), are listed. The Young’s moduli, E1 parallel and E2 perpendicular to
the direction of particle direction can be compared with the experimentally determined
moduli (Tables 5.5, 5.13, 5.20, and 5.23).

it is obvious that for the compression mode the reinforcing part of the Qui-Pence model

is determined with 0, thus only the Neo-Hookean model is used to predict the stresses. The

same is true for anisotropic MREs with 20% and 30% iron content when tested under tension.

The reasonably good results of the pure shear and equi-biaxial tension modes is indicated by

theR2 values listed in Table 6.5. In both cases the reinforcing part exists, and the stresses in

both directions can be distinguished (see Figures 6.10 and 6.11).

The problem of all transversely isotropic models considered in this investigation is that the

reinforcing components of the models predict a small reinforcing stiffness in the small-strain

region, and much higher stiffness at larger strains; indeed they follow the shape of an ex-

ponential function. A root function would produce a more suitable fit to characterise the

anisotropic MREs, producing a relatively large reinforcing stiffness in the small strain re-

gion. However, no such model was found in the literature. The quality of the data fits in

general is much lower than that achieved with a data fitting to isotropic MREs using the

Ogden model. None of the transversely isotropic models is able to model the steep slopes

present in the small-strain regions in the experimental data of anisotropic MREs and the

moduli determined experimentally were usually underestimated.

6.5 Models to describe the MR effect

Data fitting of constitutive equations to describe MRE behaviour under the influence of a

magnetic field is not performed in this study. The previous section showed that several trans-

versely isotropic models failed to represent the experimental data of anisotropic MREs well,
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so it would not be meaningful to perform data fitting to experimental results of tests with

an applied magnetic field. A constitutive model that describes the behaviour of magneto-

elastic materials is proposed by Bustamante (2010), it is very complicated and involves ten

invariants to be determined by a data fitting.

The theoretical framework of magneto-elastic constitutive modelling is presented briefly in

this section. Once again, the theory concentrates on the equations developed by Ogden; for

further details on magneto-elastic theory the author refers to Dorfmann and Ogden (2003,

2004a,b, 2005), Bustamante et al. (2006, 2008), and Bustamante (2010). A brief theoretical

overview of the electromagnetic theory was provided in Section 4.1, a deeper discussion can

be found in the listed references.

From the theoretically point of view, isotropic magneto-elastic materials under the influence

of a magnetic field can be modelled in a similar way to mechanically transversely isotropic

materials, though here the fibre direction, a0, is replaced by the magnetic induction vector

B0. The pseudo-invariants, I4, I5, and I6 can be defined analogously to Equations 6.84 and

6.85, i.e.

I4 = |B0|2 (6.126)

I5 = B0CB0 (6.127)

I6 = B0C
2B0 (6.128)

The invariant, I4, is not required in modelling transversely isotropic materials (Equations

6.84 and 6.85) as there the vector, a0, was simply a unit vector and thus I4 was omitted.

The strain energy function for isotropic materials that are under the influence of a magnetic

induction, B0, is a function of the six invariants (the invariants I1, I2, and I3 were defined in

Equations 6.4, 6.5, and 6.6)

Ψ = Ψ(I1, I2, I3, I4, I5, I6) (6.129)

For incompressible materials the invariant I3 = 1 and so the strain energy function becomes

a function of just five invariants (a Lagrange multiplier is needed).

The situation is more complex for transversely isotropic magneto-elastic materials subject to

a magnetic field; in this case both the fibre direction, a0, and the magnetic induction vector,

B0, must be considered. Bustamante (2010) states that seven additional invariants (beside

the three already defined for isotropic materials) are required. The pseudo-invariants I4, I5,

and I6 are the same as in the isotropic case with an applied magnetic field (Equations 6.126,

6.127, and 6.128), the other invariants are defined as follows:

I7 = a0Ca0 (6.130)
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I8 = a0C
2a0 (6.131)

I9 = a0B0

I10 = a0CB0 (6.132)

with I7 and I8 characterising the fibre direction of the transversely isotropic material, and

I9 and I10 coupling both the fibre direction and the magnetic induction vector. The strain

energy function is now a function of 10 invariants:

Ψ = Ψ(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10) (6.133)

As noted earlier, specific strain energy functions are not presented, and a data fitting is not

performed in this study. The experimental data presented in Chapter 5 are saved on a DVD

available with this thesis, and can be used to develop constitutive equations that describe

MREs under the influence of a magnetic field in future.

6.6 Conclusions of Chapter 6

Several strain energy functions have been discussed and experimental data presented in

Chapter 5 were used to determine the constitutive model parameters using the phenomen-

ological approach. The Ogden model was found to be suitable to model isotropic MREs.

Experimental data measured under different deformation modes were combined to determ-

ine unique solutions, and to obtain model parameters that describe the MREs under general

deformation. However, the importance of correct preconditioning of experimental data to ac-

count for the stress-softening Mullins effect was emphasised. The Ogden-Roxburgh model

was employed to account for the latter and experimental data were adjusted to effectively

represent the likely form of data following the same preconditioning level. Weight factors

were introduced into the fitting procedure when combining different deformation modes to

account for experimental issues as for example the friction between compression specimen

and test rig plate. It is emphasised by Miller (1999) that pure states of strain are desired for

the determination of correct constitutive model parameters. As this is not always achievable

in experiments weight factors can be used to scale the experimental data by a simple factor. It

was found that only one weight factor for the compression data was needed to achieve good

results when combining experimental data presenting the same preconditioning strain level.

Final fitted parameters of the Ogden model were found accurately to describe the MRE be-

haviour under different deformation modes up to both 10% and 50% preconditioning strain

(a weight factor for compression was used).

Various transversely isotropic models were fitted to experimental data of anisotropic MREs,

but none of the constitutive models represented the material behaviour of anisotropic MREs
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well. It is suggested that an alternative formulation for the reinforcing part of the transversely

isotropic models would be useful in capturing the characteristic shape of test data from aniso-

tropic MREs. Furthermore, it would be nice to understand the transversely isotropic models

as an extension to the constitutive models for isotropic materials, so that the model para-

meters determined earlier for isotropic MREs could be used and only the anisotropy effect

would be needed to be added to the result.

The constitutive modelling performed in this study presents only a small choice of avail-

able constitutive equations and data fitting options. The unsuccessful fitting of anisotropic

MREs showed that MREs are very complex materials even in the absence of magnetic fields.

Constitutive models that describe anisotropic MREs, and MREs under the influence of a

magnetic field must be developed to enable the virtual design of large-strain applications

employing MREs. Thus far this has not been achieved, and large-strain applications using

MREs are very rare and are still in the prototype stage. The mean values of all experi-

mental data together with the Matlab functions used to perform the data fitting are saved on

a DVD available with this thesis. The author hopes that this advances the development of

constitutive models for MREs.
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7 Conclusions and Future Work

This chapter summarises the work presented in this thesis, draws conclusions and gives re-

commendations for future work.

The literature review revealed that MREs are promising materials with a wide range of pos-

sible applications. This investigation concentrated on the large-strain mechanical behaviour

of MREs and on the increase in stiffness when magnetic fields were applied. Reviewing the

literature in this area showed that there is a lack of experimental data using the same mater-

ial tested under different deformation modes. Experimental data published in the literature

thus far are insufficient for accurate development of constitutive models. This investiga-

tion aims to address this lack of a comprehensive data set measured using the same type of

MRE material. To this end, silicone rubber based isotropic and anisotropic MREs with up

to 40% carbonyl iron particles were manufactured using a reliable and repeatable manufac-

turing process. Different shapes of MRE specimens were moulded according to the needs of

each large-strain experiment. Isotropic and anisotropic MREs were tested under compres-

sion, tension, pure shear and equi-biaxial tension up to a maximum of 100% strain. Tests in

the absence and in the presence of magnetic fields were conducted. The Mullins effect has

been found to be of great importance. MREs are very sensitive to this stress-softening effect.

To account for the Mullins effect a novel test procedure was developed. MRE test samples

were repeatedly used in a test series comprised of four-cycle test steps, conducted both in

the absence and in the presence of magnetic fields. The third loading cycle of each test step

was used to characterise the MRE behaviour and the method of analysis was the same for all

experimental data. Tests in the absence of magnetic fields were repeated as part of the test

series to verify the stress-strain results. Divergences between the repeated ‘no-field’ tests

were attributed to the Mullins effect. To eliminate the influence of the Mullins effect when

interpreting results, stress-strain data measured only up to the ‘divergence strain’ were used

for the characterisation of MREs and to calculate Magneto-Rheological effects. To create

experimental data useful for the evaluation of constitutive models, tests up to 50% strain

were conducted under compression, tension, and pure shear. In the equi-biaxial tension tests

strains were limited to just 10% due to practical considerations. The following conclusions

can be drawn from the experimental investigation:

• MREs show a strong non-linear stress-strain behaviour under large-strain.

• Anisotropic MREs with their particle alignment in the loading direction are stiffest,

with large moduli in the small-strain region that rapidly decrease at larger strains. Iso-

tropic and anisotropic MREs with their particle alignment perpendicular to the loading

direction exhibit steadily increasing tangent moduli, where the isotropic MREs are

slightly softer.



201

• The moduli usually increase with increasing iron content.

• The highest MR effects are achieved with anisotropic MRE containing 30% iron volume

fraction, and with particle chains aligned in the direction of both the magnetic field and

loading. The highest relative effect of 109.5% was achieved in the equi-biaxial tension

tests, followed by 98.1% relative increase in tension tests, both related to 100 mT

applied magnetic flux.

• MR effects are largest in the small-strain region, decrease rapidly to nearly no effect

in the mid-strain region, but increase again at larger strain (> 15%).

• MR effects increase with increasing iron content and increase linearly with increasing

magnetic field.

• MREs are very sensitive to the Mullins effect: The moduli in the absence of a magnetic

field are smaller and the MR effects can be enhanced when MREs are tested to a larger

level of strains.

• MREs with high iron contents can only be used up to a maximum level of 50% strain.

Fatigue tests revealed that when stretching MREs beyond this stability strain limit, the

stress-softening is still apparent even after 100 loading and unloading cycles.

When characterising MREs experimentally, and when designing application employing MREs

in future, several recommendations can be given:

• In applications, MRE specimens should be preconditioned to a higher level of strain

than planned for the working operation of MREs. As the Mullins effect is time-

dependant, a ‘warming-up’ phase should be performed prior to each use of the ap-

plication. Consider, preconditioning of MREs up to quite large strains to enhance the

MR effects.

• In experiments, it might be useful to precondition the MRE specimens up to a larger

level of strain than used in the cyclic tests to characterise the material.

• The permanent deformation that can occur in MRE specimens have to be carefully

examined and the test machine settings should be adjusted in each subsequent test

carried out on the same sample to ensure that the same strain is applied to the sample

in subsequent tests.

• Consider cutting the MRE specimens to the same size prior testing.

• Experiments up to more different strain levels should be conducted, as this has been

found to be of great importance for the final stress-strain properties.
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• The novel test procedure used in this investigation can be recommended for the ex-

perimental characterisation of MREs. Cyclic testing must be performed in order to

characterise the MREs under correct conditions. The repetition of tests in the absence

of magnetic field is highly recommended to ensure that the stress-softening Mullins

effect is eliminated when interpreting the final results.

Data fitting to pre-established hyperelastic constitutive models were conducted to evaluate

constitutive models in their ability to characterise MRE materials and to demonstrate the

utility of the experimental data set generated in this investigation for the development of such

models. The Ogden model has been shown to accurately describe the response of isotropic

MREs in the absence of a magnetic field under general deformations. The main findings are

listed:

• Ogden model parameters can only be successfully determined when combining exper-

imental data obtained from tests up to the same strain level. Once again the precondi-

tioning level and therefore the Mullins effect is of high importance.

• The Ogden-Roxburgh model was used to successfully interpolate experimental data to

lower strain levels, than the strain originally applied in the experiment. This is useful

when combining experimental data from different tests not originally conducted up to

the same strain level.

• Weight factors were introduced as a method to account for experimental issues (i.e.

friction and non-ideal deformation kinematics). To obtain good results using the Og-

den model in describing the behaviour of isotropic MREs, only a weight factor for

compression test results was needed. As noted by Miller (1999), it is especially diffi-

cult to achieve pure states of strain in compression experiments.

• Data fitting to several transversely isotropic models was not successful. The models

failed to predict the non-linear stress-strain behaviour of transversely isotropic MREs.

In particular, the steep slope present in the small-strain region was not correctly repres-

ented. A root function incorporated in the reinforcing component of the models would

perhaps provide a better representation.

To summarise, this work presents a thorough characterisation of MREs under large strain.

The experimental data, together with the Matlab codes developed during this investigation

are saved on a DVD attached to this document. The author hopes that this will help to

advance the development of constitutive models designed to represent MREs both in the

absence and in the presence of magnetic fields.
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Appendix A

Technical Data Sheets

The materials used to manufacture MRE materials, and the company that provided them are

listed in Table A.1. The manufacturing process of MREs was described in Chapter 3.

Material Type Company

Silicone Rubber MM 240 TV ACC Silicones

Silicone Fluid ACC 34 ACC Silicones

Carbonyl Iron Powder CIP-SQ BASF

Table A.1: List of materials used to manufacture MRE materials

The required equipment used to manufacture isotropic and anisotropic MREs (Chapter 3),

together with the company that provided them are listed in Table A.2. Equipment needed

for the magnetic field measurements (Chapter 4), and for the experimental characterisation

of MREs (Chapter 5) are also listed. The technical data sheets of all materials and the

Equipment Type Company

Flexible Heaters Silicone Rubber Heaters Watlow

Linear Amplifier LVC 623 AE Techron

Gaussmeter Model 5180 F.W. Bell

Transverse Probe STD18 0404 F.W. Bell

Permanent Magnets F4335-N52 Neodymium First4Magnets

Table A.2: List of equipment used to manufacture MRE materials, to measure magnetic flux dens-
ities, and to perform experiments with magnetic fields.

equipment are provided in this Appendix.
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 The information and recommendations in this publication are to the best of our knowledge reliable.  However nothing herein is to be construed as a 
warranty or representation.  Users should make their own tests to determine the applicability of such information or the suitability of any products for their 
own particular purposes.  Statements concerning the use of the products described herein are not to be construed as recommending the infringement of 
any patent and no liability for infringement arising out of any such use is to be assumed. 
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MM240TV () 

2 part addition cure moulding rubber 
 

Introduction 
MM240TV is a pourable 2-part addition cure silicone elastomer 
system. After mixing parts ‘A’ and ‘B’ in the correct proportions, the 
system will cure at ambient temperatures within 24 hours, but the 
rate of cure can be accelerated by heat. The cured rubber exhibits 
excellent physical and electrical properties. 
 

Key Features 
 High dimensional stability 
 Curing accelerated by heat 
 High chemical resistance (PU) 
 Very low shrinkage 

 

Food Approvals  
MM240TV  No 
 

Use and Cure Information 
How to Use 
 
IMPORTANT: MM240TV contains the platinum catalyst, great care 
should be taken when using automatic dispensing equipment. 
Please ensure that it is not contaminated by residual hydride 
containing rubber in the dispensing equipment, as curing will result. 
If in doubt, it’s advised to thoroughly purge the equipment with a 
suitable hydrocarbon solvent or silicone fluid. 
 
Mix both the A and B parts gently to ensure homogeneity. Place the 
required amount of A and B parts by weight at the ration of 10 to 1 
(A to B) in a clean plastic or metal container of approximately 3 
times their volume, and mix until the colour of the mixture is uniform. 
Degas by intermittent evacuation, the larger volume of the mixing 
vessel helps prevent overflow during this operation. In case of 
automatic dispensing with static mixing head, the two components 
should be degassed before processing. Recommended vacuum 
conditions are 30-50 mbar intermittently over 5-10 minutes. 
Cast the mixture either by gravity or pressure injection. 
 
Curing Conditions 
The following table offers a guide to the rate of cure of MM240TV at 
various temperatures, mixing of the components between 15 and 
25°C is recommended to ensure adequate pot life for degassing and 
handling. The pot life can be extended to several hours by chilling 
the components. 
Temperature, °C Max Cure Time  De-mould Time 
25  24 hrs  12  
100  1 hrs   
150   
Inhibition of Cure 
Great care must be taken when handling and mixing all addition 
cured silicone elastomer systems, that all the mixing tools (vessels 
and spatulas) are clean and constructed in materials which do not 
interfere with the curing mechanism. The cure of the rubber can be 
inhibited by the presence of compounds of nitrogen, sulphur, 
phosphorus and arsenic; organotin catalysts and PVC stabilizers; 
epoxy resin catalysts and even contact with materials containing 
certain of these substances e.g. moulding clays, sulphur vulcanised 
rubbers, condensation cure silicone rubbers, onion and garlic. 

 

Property Test Method Value  
 
Uncured Product 
Colour A Part:            Translucent 
Colour B Part    Translucent 
Colour Mixed    Translucent 
Appearance:    Translucent 
liquid 
Viscosity:   Brookfield 96000 mPa.s 
Catalysed viscosity  Brookfield 45000mPa.s 
Pot Life:     60 minutes * 
De-mould time    12 hours *  
* measured at 23+/-2°C and 65% relative humidity using standard 
catalyst. 
Approved for use with food   No 
Cured Elastomer 
(after 7 days cure at 23+/-2°C and 65% relative humidity) 
Tensile Strength:  BS903 Part A2 5.4 MPa  
Elongation at Break : BS903 Part A2 330 % 
Youngs Modulus:    1.88MPa  
Modulus at 100% Strain: BS903 Part A2 1.07MPa 
Tear Strength:  BS903 Part A3 22 kN/m 
Hardness:  ASTM D 2240-95 40° Shore A 
Specific Gravity:  BS 903 Part A1 1.08 
Linear Shrinkage:    0.08 %  
Coefficient of Thermal    
Expansion: 
Volumetric    837 ppm / °C 
Linear     279 ppm / °C 
Min. Service Temperature:   -50°C  
Max. Service Temperature: AFS 1540B 200 °C 
     
All values are typical and should not be accepted as a specification. 
 
FDA compliance 
If approved for food use all components present in the fully cured 
product are listed in CFR 21, 175.300,”Resinous and polymeric 
coatings” and CFR 21, 177.2600,”Rubber articles intended for 
repeated use”. The fully cured rubber satisfies the requirements of 
CFR21, 175.300 and 177.2600, sub paragraphs (e) and (f) for 
applications involving both aqueous and fatty foods 
 
 

Health and Safety - Material Safety Data Sheets available on 
request. 
 

Packages – MM240TV is supplied in 1.1kg,  5.5 kg and 20 kg bulk 

containers.  
 
 

Storage and Shelf Life – Expected to be 12 months in original, 
unopened containers below 30°C. 

 
Revision Date: 02/05/2007 
 

 

Technical Data Sheet 

Figure A.1: Technical information of the silicone rubber MM 240 TV provided by the company
ACC Silicones.



Appendix A Technical Data Sheets 222
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ACC34 Thinner 
 

 

 

Introduction 

 

ACC34 Thinner is a low viscosity silicone diluent that 

can be employed as viscosity modifier for many 1-Part 

RTV sealants, and conformal coatings. It is specially 

recommended for use with ACC14UV conformal coating 

(please see separate Technical Data Sheet for ACC14UV). 

ACC34 Thinner is volatile.  It will be lost slowly at room 

temperature from a thin section of cured silicone rubber or 

coating, but is readily removed at temperatures from 80°C 

to 150°C.  In the case of 1-Part RTV's or conformal 

coatings this heating cycle is best carried out after about 

24 hours cure. 

ACC34 Thinner has not been classified as a Volatile 

Organic Compound (VOC) and no legislation to this 

effect is expected.  It is a cosmetically approved 

ingredient and is a much safer choice than conventional 

organic solvents for many reasons, a few of which are:- 

 

 wide liquid temperature range 

 odourless 

 not regarded as an environmental hazard 

 extremely low toxicity (Oral LD
50

 = 35,000 mg/kg) 

 compatible with virtually all silicones 

 very low surface tension (<18 N/m) which enhances 

spreading of films. 

 good rate of evaporation considering its high boiling 

point (205°C), due to unusually low heat of 

vaporisation. 

 high Flash Point (not classified as Flammable) 

 

General Characteristics 

 

Appearance                   :        Clear, colourless liquid 

Odour                    :        Virtually odourless 

Boiling Point                   :        205°C 

Melting Point                   :        < - 50°C 

Latent Heat of Vaporisation  :        113 KJ/kg 

Surface Tension      :        18 N/m (dynes/cm) 

Viscosity at 25°C      :        5 mm  s
-1

 (centistokes) 

Autoignition  Temperature     :        > 400°C 

Flash Point      :        77°C 

Evaporation Rate at 22°C     :        12  (Butyl Acetate = 

100) 

(White spirit has an evaporation rate of 14 on same scale) 

 

 

 

 

 

 

How to Use ACC34 Thinner 
1. For 1-Part RTV Sealant Adhesives 

 

There are applications, particularly in the art world of 

special effects, where a paint-able or spray-able form of 

the 1-Part  Silicone RTV Sealant/Adhesive is required.  

Most 1-Part Silicone RTV’s  can be dispersed readily in 

ACC34 Thinner for immediate use as paint-able or spray-

able dispersions. 

Formulations depend on the nature of the RTV employed 

i.e. flow-able or non-slump.  A Typical formulation for a 

 spray-able, translucent silicone sealant is:- 

 

 ACC Silicone Sealant*  30 to 50 parts 

 ACC34 Thinner  70 to 50 parts 

 

* ACC AS1521, AS1602 or ACC Silcoset 153 

Unless special anhydrous mixing facilities and special 

packaging are available, customers are advised to make up 

small quantities as required. 

After painting or spraying the substrate with the diluted 

RTV, the product should be allowed to cure at ambient 

temperature.  With thin coatings, ACC34 Thinner will 

evaporate from the surface in approximately 24 hours, and 

will be down to less than 10% in this time at 20 to 25°C. 

If further removal is necessary, this can be achieved by 

heating the fully cured coated article to 50°C for about 2-3 

hours to 120°C for 5 to 10 minutes.  The exact times and 

temperatures will depend on the substrate and coating 

thickness. 
 

2. Use with ACC14UV Conformal Coating 

 

SPRAYING 

ACC14 UV  needs to be thinned with thinners before 

spraying. For manual air guns (e.g. Devilbliss etc) use 

ACC34 Thinner   - typically 1 part coating to 1 part 

ACC34 thinner for a 100 mPa.s viscosity. The nozzle of 

the spray gun needs to be selected to give an even spray to 

suit the selected viscosity of the coating material. The 

normal spray gun pressure required is 27.6 – 34.5 x 10 

exp 6-kN/m exp2 (40-50 psi). 

For airless spraying equipment (Nordson, PVA, DIMA, 

Speedline etc) a viscosity of 50-100 mPa.s is preferred. 

This may be achieved with the ACC34 Thinner at 1 part 

ACC14UV coating to 1 - 1.5 parts ACC34 Thinner. 

The board should be left to cure at 16 to 45°C with a 

relative humidity of >40%. 

 

IMPORTANT: Allow 48 hours at 16 to 45°C for 

evaporation of the ACC34 Thinner in coatings between 

100 to 1000 microns thickness. 

Technical Data Sheet 

Figure A.2: Technical information of the silicone fluid ACC 34 provided by the company ACC

Silicones (Page 1).
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BRUSHING 

Ensure the coating has been shaken or mixed thoroughly 

(refit the cap after mixing) and stood for 2 hours to allow 

bubbles to separate. The coating should be used at room 

temperature (above 16C) using a good quality brush apply 

the product gently such as to achieve a good coating and 

not to disturb wiring. The board should be left to cure at 

16 to 45°C with a relative humidity of >40%. 

                             

CURING TIMES /  CONDITIONS 

For brushing and manual spraying the film will be touch 

dry after 40 minutes at 23°C / 60% humidity). Using the 

ACC34 Thinner, this may be 5-10 minutes – depending 

on conditions. 

The full properties of the coating will be obtained after 24 

hours at room temperature (48 hours if using ACC34 

Thinner) –curing can be accelerated by using a humidity 

oven at 45°C and 100% humidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage 

 

ACC34 Thinner should be stored in closed containers to 

prevent contamination.  In its original closed containers 

the shelf life is expected to be >5 years. 

 

 1 kg  ;  5 kg  ;  25kg  and  200 kg   

 

Health and Safety 
Detailed information in CHIP format is given in the 

individual product Material Safety Data Sheet. 

 

 

 

 

 

 

Revision date 01-2008 

Figure A.3: Technical information of the silicone fluid ACC 34 provided by the company ACC

Silicones (Page 2).
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Figure A.4: Technical information of the carbonyl iron powder CIP-SQ provided by the company
BASF.
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The silicone rubber heaters are manufactured by the company Watlow. The ordered heaters

have the product code F020050C8-Y001B, which gives a 51×127mm silicone rubber heater

with Pressure Sensitive Adhesive Surface (PSAS) on the one side and 1/8” insulating sponge

on the other side. It comes with a standard 12” Teflon lead and operates with 240 V olt and

100 Watt.

Rugged,Thin,

Lightweight and

Flexible...Limited Only

By Your Imagination

Rugged, yet thin, lightweight, and flexible ... the use of Watlow
silicone rubber heaters is limited only by your imagination. With
these heaters, you can put the heat where it's needed and, in
the process, improve heat transfer, speed warm-ups and
decrease wattage requirements.

Fiberglass-reinforced silicone rubber gives your heater 
dimensional stability without sacrificing flexibility. Because very
little material separates the element from the part, heat transfer
is rapid and efficient.

Performance Capabilities
• Operating temperatures to 500˚F (260˚C)
• Watt densities to 80 W/in2 (12.5 W/cm2) dependent 

upon application
• 0.055 inch (1.4 mm) thick with a wire-wound element;

only 0.018 inch (0.5 mm) with an etched foil element

Applications
• Freeze protection and condensation prevention for 

many types of instrumentation and equipment
• Medical equipment such as blood analyzers, test 

tube heaters, etc.
• Computer peripherals such as laser printers
• Curing of plastic laminates
• Photo processing equipment

2101 Pennsylvania Dr.

Columbia, Missouri 65202  USA

Phone:  573-474-9402

Fax:  573-474-5859

Internet:  www.watlow.com

e-mail: www.watlow.com

S I L I C O N E  R U B B E R  H E A T E R S

Features and Benefits
Designed in the exact shape and size you need

• Conforms to your equipment

More than 80 designs available immediately from stock

• Reduces down time 

UR®, cUR®, and VDE recognitions

• Available on many designs

Moisture and chemical-resistant silicone rubber material

• Provides longer heater life

Vulcanizing adhesives or fasteners available

• Heaters bond easily to your part

UR® and cUR® are registered trademarks of Underwriter’s Laboratories, Inc.

Teflon® is a registered trademark of E.I. duPont de Nemours & Company.

Teflon®, Silicone,
or Neoprene Leads
Available

0.018" (0.5 mm) Thick Heater
with Etched Foil Element 

0.055" (1.4 mm) 
Thick Heater with 
Wire-Wound Element 

Element Vulcanized
Between Two Layers of
Silicone Rubber/Fiberglass

© 2001 Watlow Electric Manufacturing Company FAX-1701-1100

Figure A.5: Technical information of the silicone rubber heaters manufactured by the company
Watlow (Page 1).
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Standard Silicone Rubber
Specifications
Maximum width x maximum length:

• Wire-wound: 36 x 120 inches (915 mm x 3050 mm)
• Etched foil: 20 x 30 inches (510 mm x 760 mm)

Thickness (standard):

• Wire-wound: 0.055 inch (1.4 mm)
• Etched foil: 0.018 inch (0.5 mm)

Weight (standard):

• Wire-wound: 8 oz./ft2 (0.24 g/cm2)
• Etched foil: 3 oz./ft2 (0.09 g/cm2)

Maximum operating temperature:

• 500˚F (260˚C)

Maximum temperature for UL® Recognition:

• 428˚F (220˚C)

Minimum ambient temperature:

• -80˚F (-62˚C)

Maximum voltage:

• 600VÅ(ac)

Maximum wattage:

• Consult watt density graph on page 170 of the Watlow 
Heater's catalog.

Lead size:

• Sized to load

Lead length:

• 12 + 11⁄2 - 1⁄2 inches (305 mm + 40 mm - 15 mm)

Wattage tolerance:

• Wire: ± 5 percent
• Foil: + 5 percent -10 percent

Dimensional tolerances:

• 0 to 6 inches (0 to 150 mm): ±1⁄16 inch (1.6 mm)
• 6 to 18 inches (150 to 455 mm): ±1⁄8 inch (3.2 mm)
• 18 to 36 inches (455 mm to 915 mm): ± 3⁄16 (4.8 mm)
• Over 36 inches (915 mm): ± 1 percent

S I L I C O N E  R U B B E R  H E A T E R S

How to Order
To order stock silicone rubber heaters, specify the Watlow code
number (from the Watlow Heater's catalog) and the 
quantity. To order a heater with options, specify the code num-
ber, quantity and options desired (see page 165 in the Watlow
Heater's catalog). Consult Watlow before combining options.

Made-to-Order: Consult factory
For made-to-order units, Watlow will need the following 
application information from you:

• Size (dimensions)

• Voltage

• Wattage/watt density

• Operating temperature

• Options (leads, thermostats, attachment techniques, etc.)

• Will heater be subject to flexing?

• Element type, if you have a preference

• Agency approvals

• Quantity

Availability
• Stock: Same day shipment of orders received by 

11:00 a.m. CST.
• Stock with Options: Shipment in five working days or less.

Not all options are available with stock heaters.

Figure A.6: Technical information of the silicone rubber heaters manufactured by the company
Watlow (Page 2).
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APPLICATION

The LVC 623 is a general purpose, medium voltage, high continuous current, linear power amplifier. It works best when

driving loads of 1 - 4ohms. The LVC 623 works well with continuous test signals. The LVC 623 has two (2) separate channels

that can be operated independently or combined for greater maximum voltage or current. In bridge-mono mode the available

output voltage doubles. In parallel-mono mode the amplifier operates with double the output current.

FEATURES

> Output of 8.0 amperes rms, or 16 volts rms, per channel into a 2 ohm load.

> Frequency bandwidth of DC to 20 kHz at full power, DC to 100kHz at reduced power.

> Controlled Voltage or Controlled Current operation

> User-adjustable voltage or current limiting.

> Remote force to standby mode by contact closure.

> External buffered monitoring of voltage and current output.

> Protection provided against, input overloads, improper output connection (including shorts and improper loads), excessive

temperature, voltage or current, and under voltage conditions.

> Shipped ready to operate using single-phase, 120-volt, 20Amp or 230V, 10Amp AC mains.

> Installs easily into a standard 19 inch rack, or stands alone for bench top operations.

OPTIONS - User Configurable

> Variable voltage and current limiting

> DC Coupled (DC Enabled) or AC Coupled (DC Blocked)

>Controlled Voltage or Controlled Current Operation

> In Voltage mode - Fixed gain (20, 44.5, 79.5) or Variable (0 - 20, 0 - 44.5, 0 - 79.5)

> In Current mode - Fixed Trans-conductance (20) or Variable (0 - 20)

> Channel configuration - two independent channels, two channels paralleled to Mono, two channels bridged to Mono

INDICATORS AND CONTROLS

> Front panel LEDs indicate signal presence and output overload.

> A pushbutton power “On/Off” located on the front panel.

> Two gain controls on the front panel for controlled voltage applications.

> Two circuit breaker resets on the back panel.

> A back panel slide switch to choose between 2 channel, bridge mono and parallel mono operation.

OUTPUT POWER

Measurements taken at 1 kHz at .05% THD with

amplifiers operating in controlled voltage mode.

PERFORMANCE (One hour continuous ratings)

Frequency Response

. +/- 0.1 dB from DC to 20 kHz at 1 watt.

Phase Response One Channel Driven

The Model LVC623 Amplifier from AE Techron, Inc. http://aetechron.com/LVC623.htm

1 of 2 06/01/2010 09:47

Figure A.7: Technical information of the DC amplifier AE Techron LVC 623 (Page 1).
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. +/- 10 Degrees (10 Hz to 20 kHz at 1 watt.

Signal-to-Noise Ratio

. At Voltage gain of 20, better than 105 dB (A-weighted) below full

output.

THD

. Less than 0.05% from 20 Hz to 1 kHz increasing

. linearly to 0.1% at 20 kHz at full output.

I.M. Distortion

. <0.05% from 410 milliwatts to full output with a voltage gain of

20dB into an 8 ohm load.

Slew Rate

. >13V per microsecond.

Load Impedance

. Rated for 16, 8, 4, 2 and 1 ohm use. Safe with all load types,

including

. reactive loads.

Input Impedance

. Greater than 10K ohms, balanced, and 5K ohms unbalanced.

Output Impedance

. Less than 10 milliohms in series with less than 2 microhenries.

40mSec Burst 1 Hour Continuous

Ohms Watts Volts Amps Watts Volts Amps

2 364 27 13 144 17 8

4 240 31 8 240 31 8

8 148 34 4 145 34 4

16 89 38 2 89 37.78 2

Two Channel Bridged to Mono

40mSec Burst 1 Hour Continuous

Ohms Watts Volts Amps Watts Volts Amps

4 538 46.4 12 256 32 8

8 431 58.7 7 431 58.7 7

16 290 68 4 290 68 4

Two Channel Paralleled to Mono

40mSec Burst 1 Hour Continuous

Ohms Watts Volts Amps Watts Volts Amps

1 520 22.8 23 256 16 16

2 430 29 14 418 28.9 14

4 289 34 9 289 34 9

8 166 36 5 165 36 5

PHYSICAL CHARACTERISTICS

Chassis: The amplifier is designed for stand alone, or rack mounted, operation. The Chassis is black steel with a silver

finished aluminum front panel. The unit occupies two EIA 19-inch-wide units.

Weight: 52 lbs. (23.5 kg), Shipping 66 lbs. (30 kg)

AC Power: Single phase, 120 volts, 60 Hz, 20 amperes AC service.

Cooling: Forced air cooling from the front, through removable filters, to side panels.

Dimensions: 19 in. x 16 in. x 3.5 in (48.3 cm x 40.3.0 cm x 8.9 cm)

SUPPORT

When you purchase an AE Techron amplifier, a full complement of technical and factory support personnel join your

team. AE Techron provides:

> Applications engineering for your technical questions and customizedproduct needs.

> A one year limited warranty to protect your equipment investment.

> A fully equipped service center to keep your amplifier operating at original performance requirements.

Copyright AE Techron, Inc. 2007 Report site problems to the webmaster.

The Model LVC623 Amplifier from AE Techron, Inc. http://aetechron.com/LVC623.htm

2 of 2 06/01/2010 09:47

Figure A.8: Technical information of the DC amplifier AE Techron LVC 623 (Page 2).
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5100 Series Hall Effect Gauss / Tesla Meters

Rev. date 07/2008
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Description

The 5100 Series Hall effect portable gaussmeters represent the most recent design from the world leader in
magnetic measuring equipment. This new design incorporates the use of digital signal processing technology
making it the world’s first hand-held gaussmeter to have a digital signal processor (DSP) on board. F.W. Bell’s
exclusive Dynamic Probe Correction allows measurements from 0 to 30 kG with a basic accuracy of 1%.

Key features include Auto Zero, Min./Max./Peak Hold, Auto Range and Relative Mode. Both models allow the user
to select Gauss, Tesla or Ampere/Meter readings. The 5180 features a corrected analog output ( 3V FS) and a
USB communication port.

The 5100 Series Hand-Held Gaussmeter’s built-in software eliminates the need for complex calibration procedures.
User prompts on the custom formatted LCD allow fast, simple push button operation. All models come equipped
with a detachable transverse probe, zero gauss chamber, instruction manual, hard carrying case, and four AA
batteries.  Axial, ultra thin transverse and low-field probes are available as options.

Applications for the 5100 Series range from the most sensitive laboratory environment to the most rugged
industrial setting. All instruments are CE compliant.

Probe Included

Auto Zero

Min/Max Hold

True RMS

Auto Range

True Peak Hold

Relative Mode

Outputs (analog)

USB Communication Port

Model 5170 Model 5180

Features

X

X

X

X

X

X

X

X

X

X

X

X

X

X

6120 Hanging Moss Road • Orlando, Florida 32807 • www.fwbell.com

Phone (407) 678-6900 • Fax (407) 677-5765 • Toll Free (800) 778-6117 

Figure A.9: Technical information of the Gaussmeter FW Bell 5180 (Page 1).
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5100 Series Specifications

Rev. date 07/2008
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 2% 1.1%

DC-20 kHz DC-25 kHz

4 readings/sec 4 readings/sec

None 100K samples/sec

200 G
1 G 1 G

300 G

2 kG 3 kG
20 kG 30 kG

0.1 G

1.0 G
10 G

0.1 G
1 mG 1 mG

1.0 G
10 G

LCD LCD

3 1/2 3 2/3

Gauss, Tesla, Amps/Meter Gauss, Tesla, Amps/Meter

None

None

3V FS

USB (1 samples/sec)

0ºC to 50ºC
-25ºC to 70ºC

4 AA batteries

6.9 in x 3.9 in x 1.44 in.

Probes and Accessories 

General Information

Basic DC Accuracy

Frequency Bandwidth

Update Rates

Display

Digits

Readings

Analog Output

Communication Port

Ranges

Ultra Low Range (low-field probe only)
Low Range
Mid Range
High Range

Resolution

Ultra Low Range (low-field probe only)
Low Range
Mid Range
High Range

Note:

Model Number Description

Domestic 3.5 lbs 1.59 kgs

International 4 lbs 1.82 kgs

Shipping Weight

Due to continuous process improvement, specifications are subject to change without notice.

Model 5170 5180

Models 5170/5180 Gaussmeter Probes

Model 5180 Probes

Model 5170 Probes

Temperature
Operating
Storage

Size

Power

All Models

HTH17-0604 4" Transverse Probe
STH17-0404 4" Transverse Probe (incl. w/5170)
STH17-0402 2" Transverse Probe
SAH17-1904 4" Axial Probe
SAH17-1902 2" Axial Probe

HTD18-0604 4" Transverse Probe
STD18-0404 4" Transverse Probe (incl. w/5180)
STD18-0402 2" Transverse Probe
SAD18-1904 4" Axial Probe
SAD18-1902 2" Axial Probe

STB1X-0201 Ultra Thin Transverse Probe (0.020" thick)
MOS51-3204 Low Field Probe

Models 5170/5180 Gaussmeter Accessories

YA-111 Zero Gauss Chamber (for axial, transverse and low-field probes)
PSRD-5 AC Adapter, +5VDC Regulated Output, 110VAC Input, Domestic
PSRI-5 AC Adapter, +5VDC Regulated Output, 220VAC Input, Switching, International

Display
Analog Output

6120 Hanging Moss Road • Orlando, Florida 32807 • www.fwbell.com

Phone (407) 678-6900 • Fax (407) 677-5765 • Toll Free (800) 778-6117 

Figure A.10: Technical information of the Gaussmeter FW Bell 5180 (Page 2).
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Polypro-
pylene

**see note

** Prior to late 2006 Transverse Probe Stems were rigid glass epoxy, .150 x .040”. 

Figure A.11: Technical information of the transverse probe STD18-0404 used with the Gaussmeter
FW Bell 5180.
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F4335-N52 Ultra High Peformance -

50mm x 50mm x 25mm thick N52

Neodymium Magnet (Pack 1)

This magnet is very effective at wiping Hard Drive Data.

Pack size

A pack of 1 magnet

Geometry

50mm x 50mm x 25mm thick neodymium magnet.

The NORTH pole is on one square face and the SOUTH is

on the opposite face.

The NORTH and SOUTH poles are 25mm apart.

Plating

These magnets are plated with 3 layers of protective

coatings - Nickel + Copper + Nickel (Ni-Cu-Ni)

Performance

These magnets will have approximately 5,500Gauss on

each face.

Each magnet can support a steel weight of up to 118 kgs

Extreme Power Warning!!

These magnets are dangerous! If your fingers are

trapped between two of these magnets, they will be

crushed!

These magnets should only be handled and used after

a thorough risk assessment has been undertaken.

Maximum Operating temperature

90 degrees C

Fixing

They can be bonded using 2 part adhesives such as

'Araldite'

Bulk Pricing

We

yo

an

If

reg

te

wo

ad

an

ple

on

or

ve

Pl

sal

Figure A.12: Technical information of the permanent magnets Neodymium N52.
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Appendix B

Technical Drawings

The technical drawings of the moulds used to manufacture MRE materials (Chapter 3) and

the drawings of the setups used for uniaxial compression (Section 5.2.2), uniaxial tension

(Section 5.3.2), pure shear (Section 5.4.2), and equi-biaxial tension (Section 5.5.2) tests are

presented in this Appendix. All setups are presented without and with the use of permanent

magnets to clarify the position of the magnets.
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Figure B.1: Technical drawing of the moulds used for preparing two cylindrical compression
samples (∅ = 29mm, h = 13mm).
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure B.2: Technical drawing of the moulds used for preparing five dog-bone shaped tension
samples (narrow part 16 × 4 mm) (Page 01).
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Figure B.3: Technical drawing of the moulds used for preparing five dog-bone shaped tension
samples (narrow part 16 × 4 mm) (Page 02).
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure B.4: Technical drawing of the moulds used for preparing four pure shear samples
(b = 50mm, w = 30mm, and t = 1mm).
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Figure B.5: Technical drawing of the moulds used for preparing four biaxial samples
(b = 50mm, w = 50mm, and t = 2mm).
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Figure B.6: Technical drawing of the top part of the test rig structure used for compression tests.
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Figure B.7: Technical drawing of the compression setup without magnetic induction.
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Figure B.8: Technical drawing of the compression test setup with permanent magnets 35mm apart
creating 450mT magnetic induction.

[
Technical drawing of the compression Magnet62 test

setup]
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Figure B.9: Technical drawing of the compression test setup with permanent magnets 62mm apart
creating 210mT magnetic induction.
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Figure B.10: Technical drawing of the top part of the test rig structure used for tension and pure
shear tests.
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Figure B.11: Technical drawing of the bottom part of the rig structure used for tension and pure
shear tests.
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Figure B.12: Technical drawing of the tension test setup without magnetic induction.
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Figure B.13: Technical drawing of the tension test setup with permanent magnets in place. To
decrease the magnetic induction the top magnet was moved upwards. The distance
between the magnets was 63 mm in the Magnet63 tests with 289.2 mT magnetic
induction, 73mm in the Magnet73 tests with 251.2mT , and 89mm in the Magnet89

tests with 220.6 mT .
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Figure B.14: Technical drawing of the pure shear test setup with permanent magnets 53mm apart
creating 290 mT magnetic induction.
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Figure B.15: Technical drawing of the biaxial test rig. Top and bottom part of the test rig structure
are made of Teflon.
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Figure B.16: Technical drawing of the biaxial test rig. Connectors to aluminium rods (already
used for the other experimental setups) and sliding clamps are both made of Teflon.
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Figure B.17: Technical drawing of the equi-biaxial test setup in the reference configuration. Two
permanent magnets on either side of the test rig with a distance of 140 mm between
them are directed in x-direction.
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure B.18: Technical drawing of the equi-biaxial test setup in the deformed configuration. The
top part of the rig structure is displaced by 10 mm upwards in vertical direction;
the MRE sample is stretched and the sliding clamps are moved accordingly. Two
permanent magnets on either side of the test rig with a distance of 140 mm between
them are directed in x-direction.
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Appendix C

Amounts of components used to

manufacture MREs

To manufacture MRE samples, moulds were designed specific for each sample shape ac-

cording to the needs of each large-strain experiment. Two moulds of each type were built

in order to produce one set of isotropic and one set of anisotropic MREs from one batch of

mixture. With the compression mould two samples, with the tension mould five samples,

and with the pure shear and equi-biaxial mould 4 samples could be prepared. The amount of

rubber mixture was roughly calculated with the dimensions of the moulds given in the tech-

nical drawings in Appendix B. The density of the silicone rubber is given with 1.08 g/cm3.

The chosen amounts of the rubber component A are listed in Table C.1. Components A and

B of the silicone rubber have to be in the ratio 10 : 1, and 30w % of the silicone fluid are

added to the whole amount of silicone rubber. The iron content is given as volume percent-

ages related to the final volume of the MRE mixture; in this study 10% to 30%, and in case

of the compression samples up to 40% CIP were added. The density of the silicone fluid is

not provided by the company, and is assumed to be 1.0 g/cm3. The density of the silicone

rubber-oil blend can be calculated as 1.08 × 0.7 + 1.0 × 0.3 = 1.06 g/cm3. The density

of CIP is the one of iron given with 7.874 g/cm3. The amounts of CIP are calculated for a

compression sample with 10 vol% CIP with the following equation:

10 vol% :
x

7.874

/(

71.5

1.06
+

x

7.874

)

= 0.1 x = 59.0137 g

Other CIP amounts, and amounts for the other sample shapes are calculated analogous. The

amounts used to manufacture compression, tension, pure shear, and equi-biaxial tension

specimens in this study are summarised in Table C.1.

Component Amount [g]
Compression Tension Pure Shear Equi-Biaxial

MM 240 TV Component A 50.00 30.00 40.00 80.00
MM 240 TV Component B 5.00 3.00 4.00 8.00
ACC 34 16.50 9.90 13.20 26.40
10V ol% CIP 59.01 35.41 47.21 94.42
20V ol% CIP 132.78 79.67 106.22 212.44
30V ol% CIP 227.62 136.57 182.10 364.20
40V ol% CIP 354.08

Table C.1: Amounts of the components used to manufacture compression, tension, pure shear, and
equi-biaxial tension specimens.
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Appendix D

Matlab Codes

The software package Matlab was used to analyse experimental data, to plot figures, and

also to perform data fitting to constitutive equations. To this end, several algorithms were

written, so a short description of them is given in the following list. All Matlab codes, with

a detailed description on how to use them, are saved on a DVD available with this thesis.

aniso_modelfun_piola.m This function defines the Piola-Kirchhoff stress functions of the

Qui-Pence, the Merodio-Ogden, the Holzapfel-Gasser, and the Guo models as function

handles for model orders up to N = 3 for each deformation mode, with and without the

use of weight factors. The function handles are needed for the optimisation process in

constmodel_piola_incompaniso.m.

aniso_startparameters.m Initial values for the model parameters are required in const-

model_piola_incompaniso.m. This function combines parameters required for the iso-

tropic and anisotropic part of the constitutive equations, and a range for the parameters

can be provided which is combined to several sets of start parameters.

biaxial.m This function analyses the data of cyclic equi-biaxial tension tests where the DIC

system or the pixel measurement method is used to evaluate strain values. The functions

strainDICLimess_biaxial.m or strainpixel_biaxial.m must run prior to this function. The

original P-d data are split into several loading and unloading parts (divide_cycles.m). Each

part is cut (cut_parts.m) and then shifted to the origin (shift_cycles.m). The stresses are

calculated differently for the five cases: isotropic MREs without and with magnetic field,

and anisotropic MREs without and with field parallel and perpendicular to the particle

alignment. In Section 5.5.4 detailed information and equations are provided. The stresses

are calculated with the original width and thickness of the samples.

compression.m This function analyses the data of cyclic compression tests. The original

P-d data are split into several loading and unloading parts (divide_cycles.m). Each part is

cut (cut_parts.m) and then shifted to the origin (shift_cycles.m). The stress-strain data of

each loading and unloading part are calculated using the original height and area of the

samples.

constmodel_aniso_lineartheory.m Subfunction of constmodel_piola_incompaniso.m to

connect the model parameters to the linear theory in small strains. The Young’s mod-

uli are calculated depending on the constitutive model and deformation mode.

constmodel_piola_incompaniso.m Determination of transversely isotropic model para-

meters with a data fitting to experimental stretch-stress data. The Qui-Pence, the Merodio-
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Ogden, the Holzapfel-Gasser, and the Guo models with a Neo-Hookean or Ogden based

isotropic part are supported. Uniaxial, pure shear, and equi-biaxial deformation modes are

supported and can be combined to determine unique solutions of model parameters. Sev-

eral sets of start parameters can be provided, and the one resulting in the smallest 2-Norm

is the final solution. The optimisation problem is solved with the Matlab functions lsq-

curvefit.m or fmincon.m. Subfunctions of this function are aniso_modelfun_piola.m, an-

iso_startparameters.m, ogden_sp_combinations.m, and constmodel_aniso_lineartheory.m.

constmodel_piola_incompiso.m Determination of the Neo-Hookean and the Ogden model

parameters with a data fitting to experimental stretch-stress data. The Ogden model up to

a order of N = 5 is supported. Uniaxial, pure shear, and equi-biaxial deformation modes

are supported and can be combined to determine unique solutions of model parameters.

Several sets of start parameters can be provided, and the one resulting in the smallest 2-

Norm is the final solution. The optimisation problem is solved with the Matlab functions

lsqcurvefit.m or fmincon.m. Subfunctions of this function are ogden_modelfun_piola.m,

ogden_startparameters.m, and ogden_sp_combinations.m.

constmodel_piola_incompiso_mullins.m Determination of the Ogden-Roxburgh model

parameters to interpret the stress softening behaviour known as the Mullins Effect. The

function constmodel_piola_incompiso.m is used to determine the parameters of the primary

loading path.

cut_parts.m This function cuts loading and unloading cycles. A cut is required when the

slope of the experimental data is zero at the start. The method of analysis was explained

in Section 5.1.2.

datafit_lsqnonneg.m This function performs a data fitting to x-y-data with the Matlab

function lsqnonneg.m to a polynomial function of any order.

DICLimess_load.m This function loads the mat-files provided by the DIC system and saves

them in 3D-matrices. A confidence check of the loaded matrices can be performed.

DICLimess_load_biaxial.m This function loads the mat-files provided by the DIC system

with DICLimess_load.m. The matrices are rotated for better handling, and a confidence

check is performed. The DIC data are saved in 3D-matrices. When not provided by the

DIC system directly, the data can be converted from the horizontal-vertical coordinate

system to the 45° rotated coordinate system.

differences.m This function calculates absolute and relative differences between curves at

various positions. The user decides whether the differences are related to one of the curves

or to the mean value of the provided data.

divergence.m This function is a specialised function of differences.m. Two average curves

and associated standard deviations are compared. The divergence points (x-data) are cal-
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culated, determined when the absolute difference between the average curves becomes

larger than the associated standard deviations.

divide_cycles.m This function divides the data of cyclic tests into loading and unloading

parts.

load_imagetime.m This function loads the time when the DIC images were taken. This is

provided by the DIC system in a csv-file.

loaddata.m This function provides a wide range of loading possibilities and is a subfunction

in many other Matlab functions, i.e. the code differences.m, mean_std.m, and plotxy.m.

Variables from several mat-files can be loaded.

mean_std.m Mean values and standard deviations from several loaded experimental data

sets are calculated.

modulus_linearfit.m This function calculates the moduli of stress-strain increments with a

data fit to a linear function. The slopes of these linear functions are the moduli. The user

chooses the size of the increment. The modulus-strain curve can be smoothed with the

moving average method.

MReffect.m This function calculates absolute and relative MR effects from provided stress-

strain data. The moduli are calculated with the code modulus_linearfit.m and MR effects

are calculated with these moduli. Two sets of data must be loaded, first the data of tests

without magnetic field, and second the data of tests with magnetic field. The resulting

MR effect versus strain curves can be smoothed with the moving average method.

mullins_adjustment.m This function adjusts the preconditioning (strain) level of experi-

mental data using the damage parameter determined with the Ogden-Roxburgh model.

The function constmodel_piola_incompiso_mullins.m must run prior to this function.

ogden_modelfun_energy.m This function defines the strain energy functions of the Ogden

model as function handles up to the model order N = 5 and for each deformation mode.

This is a subfunction in constmodel_piola_incompiso_mullins.m.

ogden_modelfun_piola.m This function defines the Piola-Kirchhoff stress functions of the

Neo-Hookean and Ogden model as function handles for all model orders and for each

deformation mode, and without and with the use of weight factors. The function handles

are needed for the optimisation process in constmodel_piola_incompiso.m.

ogden_sp_combinations.m subfunction of constmodel_piola_incompiso.m to define the

required sign combination of the start parameters, and lower and upper bounds required

for the fitting process to fulfil the constraint of the Ogden model.

ogden_startparameters.m Initial values for the model parameters are required in const-

model_piola_incompiso.m. This function stores results previously determined, gives typ-
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ical values (Holzapfel2000), and a range for the parameters can be provided which is

combined to several sets of start parameters.

plotxy.m This is a quite generous function to plot x-y data. The user can choose colour and

line styles, labels, title, and legend entries. The resulting figures are of the same size. A

wide range of loading possibilities is provided with the function loaddata.m.

plotxy_meanstd.m This function is a specialised function of plotxy.m, so that average

curves and associated standard deviations can be plotted. Increments of the standard

deviation limits are plotted (user choice).

pureshear_DIC.m This function analyses the data of cyclic pure shear tests where the strain

values are obtained from the DIC system. The original P-d data are split into several

loading and unloading parts (divide_cycles.m). Each part is cut (cut_parts.m) and then

shifted to the origin (shift_cycles.m). The stresses are calculated with the original width

and thickness of the samples. Strains are obtained from the DIC system and analysed in

the subfunction strainDICLimess_pure.m.

pureshear_pixel.m This function works the same way as pureshear_DIC.m but the strains

are obtained from a pixel measurement method where the crossing points of grid lines,

drawn on the samples, were measured manually with ImageJ. The subfunction strain-

pixel_pure.m is used to analyse the measured pixels.

rsq.m This function calculates the coefficient of determination R2. This value is between 0

and 1 depending on the quality of the fit; 1 would mean the fit is exact.

shift_completecycletest.m This function cuts and shifts the first loading part of a cycle

test to zero, and all of the subsequent loading and unloading parts will be shifted to the

same extent, with all parts still connected.

shift_cycles.m This function shifts the separated loading and unloading parts that were cut

with cut_parts.m to zero stress-strain.

strainDICLimess_biaxial.m This function must be used prior to the function biaxial.m

when strain values are obtained with the DIC system. The function loads the mat-files

with DICLimess_load_biaxial.m, calculates mean values and standard deviations of the

DIC strain field, and splits the strain-time data into loading and unloading parts. Lin-

ear functions of the strain-time relations are determined, and the coefficients are input

variables of the function biaxial.m.

strainDICLimess_pure.m This is a subfunction of pureshear_DIC.m. It loads the mat-files

with DICLimess_load.m, performs a confidence check of the provided values, calculates

mean values and standard deviations of the DIC strain field, and splits the strain-time

data into loading and unloading parts. A linear function of the strain-time relation is

determined, and the coefficients are passed to the main function.
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strainDICLimess_tension.m This is a subfunction of tension_DIC.m. It loads the mat-files

with DICLimess_load.m, calculates mean values and standard deviations of the DIC strain

field, and splits the strain-time data into loading and unloading parts. A linear function of

the strain-time relation is determined, and the coefficients are passed to the main function.

strainpixel_biaxial.m This function must be used prior to the function biaxial.m when

strain values are obtained with the pixel measurement method. It calculates the strains

in the two stretching directions from crossing points of grid lines drawn on the samples

from manually measured pixels. The time when the images where taken is loaded with

load_imagetime.m. A linear fit to the strain-time relation is performed and the coefficients

are passed to the main function.

strainpixel_pure.m This is a subfunction of pureshear_pixel.m. It calculates the strains in

vertical and horizontal directions from crossing points of grid lines drawn on the samples,

and the displacement of the top part of the test rig from manually measured pixels. A

linear fit to the strain-displacement data is performed and the coefficients are passed to

the main function.

strainpixel_tension.m This is a subfunction of tension_pixel.m. It calculates the strains

between two lines drawn on the samples, and the displacement of the top part of the

test rig from manually measured pixels. A linear fit to the strain-displacement data is

performed and the coefficients are passed to the main function.

tension_DIC.m This function analysis the data of cyclic tension tests where the strain values

are obtained from the DIC system. The original P-d data are split into several loading and

unloading parts (divide_cycles.m). Each part is cut (cut_parts.m) and then shifted to the

origin (shift_cycles.m). The stresses are calculated with the original area of the narrow

part of the dog bone-shaped samples. Strains are obtained from the DIC system and

analysed in the subfunction strainDICLimess_tension.m.

tension_pixel.m This function works the same way as tension_DIC.m but the strains are

obtained from a pixel measurement method where the pixels of two lines drawn on the

samples were measured manually with ImageJ. The subfunction strainpixel_tension.m is

used to analyse the measured pixels.
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Appendix E

Experimental Results

E.1 Uniaxial compression tests

The uniaxial compression tests were presented in Section 5.2. Pure rubber, isotropic, and

anisotropic MREs with vertical and horizontal particle alignment containing 10% to 40%

volume particle concentration were compressed with up to 50% strain. Three samples of

each type were tested, and mean values and standard deviations of the third loading cycle are

shown.The tests without an applied magnetic induction were discussed in Section 5.2.3. The

tangent moduli, ET , were used to describe the non-linear behaviour and the different types

of MREs were compared.

The MR effects were analysed in Section 5.2.4. Two magnetic tests were performed with

450 mT and 210 mT applied magnetic induction. The stress-strain curves and the tangent

moduli comparing the NoField02 with the magnetic tests of all types of MREs are illustrated

in this Appendix. The relative MR effects, calculated with the tangent moduli, ET , of 1%

stress-strain increments, are presented for each types of MRE.
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Figure E.1: Experimental results of (left) pure rubber, and (right) isotropic 10% MREs tested in
uniaxial compression. Stress-strain curves, the tangent moduli, and the relative MR
effects are presented.
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Figure E.2: Experimental results of (left) isotropic 20% MREs, and (right) isotropic 30% MREs
tested in uniaxial compression. Stress-strain curves, the tangent moduli, and the rela-
tive MR effects are presented.
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Figure E.3: Experimental results of (left) anisotropic 10% MREs, and (right) anisotropic 20%
MREs, both with vertical particle alignment tested in uniaxial compression. Stress-
strain curves, the tangent moduli, and the relative MR effects are presented.
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Figure E.4: Experimental results of (left) anisotropic 30% MREs with vertical particle alignment,
and (right) anisotropic 10% MREs with horizontal particle alignment tested in uniaxial
compression. Stress-strain curves, the tangent moduli, and the relative MR effects are
presented.
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Figure E.5: Experimental results of (left) anisotropic 20% MREs, and (right) anisotropic 30%
MREs, both with horizontal particle alignment tested in uniaxial compression. Stress-
strain curves, the tangent moduli, and the relative MR effects are presented.
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E.2 Uniaxial tension tests

The uniaxial tension tests were described in Section 5.3. Tests without and with applied

magnetic inductions of 289.2mT (Magnet63), 251.2mT (Magnet73), and 220.6mT (Mag-

net89) were performed. Pure rubber, isotropic, and anisotropic MREs with vertically and

horizontally aligned particles, containing 10% to 30% volume particle concentration, were

stretched up to two different displacements (Table 5.7). Three samples of each type, and

up to each preconditioning level were tested. Mean values and standard deviations of the

third loading cycle are shown. Tests without an applied magnetic induction were discussed

in Section 5.3.5. The comparison between NoField01 and NoField02 stress-strain curves is

illustrated in this Appendix. The tangent moduli were used to describe the non-linear be-

haviour and the different types of MREs were compared. The MR effects were discussed

in Section 5.3.6. The stress-strain curves and the tangent moduli comparing the NoField02

with the magnetic tests of all types of MREs tested up to two different displacement are il-

lustrated in this Appendix. The relative MR effects, calculated with the tangent moduli of

1% stress-strain increments, are presented for each types of MRE.

Comparison of NoField01 and NoField02
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Figure E.6: Comparison between NoField01 and NoField02 tension tests. The third loading part
of pure rubber and isotropic MREs with 10% to 30% iron content is shown. Each type
of MRE is stretched to two different displacements (Table 5.7). The arrows indicate
the points of divergence (Table 5.12).
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Figure E.7: Comparison between NoField01 and NoField02 tension tests. The third loading part
of anisotropic MREs with 10% to 30% iron content with vertical particle alignment is
shown. Each type of MRE is stretched to two different displacements (Table 5.7). The
arrows indicate the points of divergence (Table 5.12).
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Figure E.8: Comparison between NoField01 and NoField02 tension tests. The third loading part
of anisotropic MREs with 10% to 30% iron content with horizontal particle alignment
is shown. Each type of MRE is stretched to two different displacements (Table 5.7).
The arrows indicate the points of divergence (Table 5.12).
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Figure E.9: Pure Rubber, preconditioned up to 15 mm (50% strain) in uniaxial tension. Stress-
strain curves, the tangent moduli, and the relative MR effects are presented.



Appendix E Experimental Results 266

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Strain ε [−]

S
tr

e
s
s
 [

M
P

a
]

 

 
Isotropic 10% MREs, preconditioned up to 15mm − NoField02

Isotropic 10% MREs, preconditioned up to 15mm − Magnet89

Isotropic 10% MREs, preconditioned up to 15mm − Magnet73

Isotropic 10% MREs, preconditioned up to 15mm − Magnet63

(a) Stress-Strain curves up to 50% strain

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Strain ε [−]

S
tr

e
s
s
 [

M
P

a
]

 

 

Isotropic 10% MREs, preconditioned up to 30mm − NoField02

Isotropic 10% MREs, preconditioned up to 30mm − Magnet89

Isotropic 10% MREs, preconditioned up to 30mm − Magnet73

Isotropic 10% MREs, preconditioned up to 30mm − Magnet63

(b) Stress-Strain curves up to 100% strain

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Strain ε [−]

T
a
n
g
e
n
t 
M

o
d
u
lu

s
 E

T
 [
M

P
a
]

 

 

Isotropic 10% MREs, preconditioned up to 15mm − NoField02

Isotropic 10% MREs, preconditioned up to 15mm − Magnet89

Isotropic 10% MREs, preconditioned up to 15mm − Magnet73

Isotropic 10% MREs, preconditioned up to 15mm − Magnet63

(c) Tangent Modulus ET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

3

Strain ε [−]

T
a
n
g
e
n
t 
M

o
d
u
lu

s
 E

T
 [
M

P
a
]

 

 

Isotropic 10% MREs, preconditioned up to 30mm − NoField02

Isotropic 10% MREs, preconditioned up to 30mm − Magnet89

Isotropic 10% MREs, preconditioned up to 30mm − Magnet73

Isotropic 10% MREs, preconditioned up to 30mm − Magnet63

(d) Tangent Modulus ET

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Strain ε [−]

R
e

la
ti
v
e

 M
R

 E
ff

e
c
t 

E
M

/E
0
 [

−
]

 

 

Isotropic 10% MREs, preconditioned up to 15mm − Magnet89

Isotropic 10% MREs, preconditioned up to 15mm − Magnet73

Isotropic 10% MREs, preconditioned up to 15mm − Magnet63

(e) Relative MR Effect EM /E0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Strain ε [−]

R
e

la
ti
v
e

 M
R

 E
ff

e
c
t 

E
M

/E
0
 [

−
]

 

 

Isotropic 10% MREs, preconditioned up to 30mm − Magnet89

Isotropic 10% MREs, preconditioned up to 30mm − Magnet73

Isotropic 10% MREs, preconditioned up to 30mm − Magnet63
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Figure E.10: Isotropic MREs with 10% CIP content tested in uniaxial tension: (left) precondi-
tioned up to 15 mm (50% strain), (right) up to 30 mm (100% strain). Stress-strain
curves, the tangent moduli, and the relative MR effects are presented.
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Figure E.11: Isotropic MREs with 20% CIP content tested in uniaxial tension: (left) precondi-
tioned up to 15 mm (50% strain), (right) up to 22.5 mm (75% strain). Stress-strain
curves, the tangent moduli, and the relative MR effects are presented.
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Figure E.12: Isotropic MREs with 30% CIP content tested in uniaxial tension: (left) precondi-
tioned up to 5 mm (15% strain), (right) up to 15 mm (50% strain). Stress-strain
curves, the tangent moduli, and the relative MR effects are presented.
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Figure E.13: Anisotropic MREs with vertical particle alignment with 10% CIP content tested
in uniaxial tension: (left) preconditioned up to 15 mm (50% strain), (right) up to
22.5mm (75% strain). Stress-strain curves, the tangent moduli, and the relative MR
effects are presented.
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Figure E.14: Anisotropic MREs with vertical particle alignment with 20% CIP content tested in
uniaxial tension: (left) preconditioned up to 5mm (15% strain), (right) up to 15mm
(50% strain). Stress-strain curves, the tangent moduli, and the relative MR effects
are presented.
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(b) Stress-Strain curves up to 50% strain
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Figure E.15: Anisotropic MREs with vertical particle alignment with 30% CIP content tested in
uniaxial tension: (left) preconditioned up to 5mm (15% strain), (right) up to 15mm
(50% strain). Stress-strain curves, the tangent moduli, and the relative MR effects
are presented.
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(b) Stress-Strain curves up to 75% strain
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Figure E.16: Anisotropic MREs with horizontal particle alignment with 10% CIP content tested
in uniaxial tension: (left) preconditioned up to 15 mm (50% strain), (right) up to
22.5mm (75% strain). Stress-strain curves, the tangent moduli, and the relative MR
effects are presented.



E.2 Uniaxial tension tests 273

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.05

0.1

0.15

0.2

0.25

0.3

Strain ε [−]

S
tr

e
s
s
 [
M

P
a
]

 

 
Anisotropic 20% MREs (horizontal), precond. to 5mm − NoField02

Anisotropic 20% MREs (horizontal), precond. to 5mm − Magnet89

Anisotropic 20% MREs (horizontal), precond. to 5mm − Magnet73

Anisotropic 20% MREs (horizontal), precond. to 5mm − Magnet63
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Figure E.17: Anisotropic MREs with horizontal particle alignment with 20% CIP content tested in
uniaxial tension: (left) preconditioned up to 5mm (15% strain), (right) up to 15mm
(50% strain). Stress-strain curves, the tangent moduli, and the relative MR effects
are presented.
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(b) Stress-Strain curves up to 50% strain
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Figure E.18: Anisotropic MREs with horizontal particle alignment with 30% CIP content tested in
uniaxial tension: (left) preconditioned up to 5mm (15% strain), (right) up to 15mm
(50% strain). Stress-strain curves, the tangent moduli, and the relative MR effects
are presented.
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E.3 Pure shear tests

Pure shear tests were described in Section 5.4. Tests without and with an applied magnetic

induction of 290 mT (Magnet53) were performed. Pure rubber, isotropic, and anisotropic

MREs with vertically and horizontally aligned particles, containing 10% to 30% volume

particle concentration, were stretched up to two different displacements (5.17). Three samples

of each type, and up to each preconditioning level were tested, and mean values and standard

deviations of the third loading cycle are shown. The tests without an applied magnetic in-

duction were discussed in Section 5.4.4. The comparison between NoField01 and NoField02

stress-strain curves is illustrated in this Appendix. The tangent moduli, ET , were used to de-

scribe the non-linear behaviour of different types of MREs. The MR effects were discussed

in Section 5.4.5. The stress-strain curves and the tangent moduli comparing the NoField02

with the magnetic tests of all types of MREs tested up to two different displacement are il-

lustrated in this Appendix. The relative MR effects, calculated with the tangent moduli of

1% stress-strain increments, are presented for each types of MRE.
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Figure E.19: Comparison between Preconditioning, NoField01 and NoField02 pure shear tests.
The third loading part of pure rubber and isotropic MREs with 10% to 30% iron
content is shown. Each type of MRE is stretched to two different displacements as
listed in Table 5.17.
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Figure E.20: Comparison between Preconditioning, NoField01 and NoField02 pure shear tests.
The third loading part of anisotropic MREs with 10% to 30% vertical aligned iron
particles is shown. Each type of MRE is stretched to two different displacements as
listed in Table 5.17.
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Figure E.21: Comparison between Preconditioning, NoField01, and NoField02 pure shear tests.
The third loading part of anisotropic MREs with 10% to 30% horizontal aligned iron
particles is shown. Each type of MRE is stretched to two different displacements as
listed in Table 5.17.
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Comparison of different magnetic field strengths
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Figure E.22: Pure rubber and isotropic MREs with 10% CIP content tested in pure shear: (left)
Pure rubber preconditioned up to 6 mm and 9 mm, (right) isotropic 10% MREs
preconditioned up to 6mm and 9mm. Stress-strain curves, the tangent moduli, and
the relative MR effects are presented.
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Figure E.23: Isotropic MREs with 20% and 30% CIP content tested in pure shear: (left) Isotropic
20% MREs preconditioned up to 3 mm and 6 mm, (right) isotropic 30% MREs
preconditioned up to 3mm and 6mm. Stress-strain curves, the tangent moduli, and
the relative MR effects are presented.
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Figure E.24: Anisotropic MREs with 10% and 20% vertically aligned particles tested in pure
shear: (left) Anisotropic 10% MREs (vertical) preconditioned up to 3 mm and
6 mm, (right) anisotropic 20% MREs (vertical) preconditioned up to 3 mm and
6 mm. Stress-strain curves, the tangent moduli, and the relative MR effects are
presented.
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Figure E.25: Anisotropic MREs with 30% vertically and 10% horizontally aligned particles tested
in pure shear: (left) Anisotropic 30% MREs (vertical) preconditioned up to 3 mm
and 6 mm, (right) anisotropic 10% MREs (horizontal) preconditioned up to 6 mm.
Stress-strain curves, the tangent moduli, and the relative MR effects are presented.
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Figure E.26: Anisotropic MREs with 20% and 30% horizontally aligned particles tested in pure
shear: (left) Anisotropic 20% MREs (horizontal) preconditioned up to 6mm, (right)
anisotropic 30% MREs (horizontal) preconditioned up to 3mm. Stress-strain curves,
the tangent moduli, and the relative MR effects are presented.
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E.4 Equi-biaxial tension tests

Equi-biaxial tension tests were described in Section 5.5. Tests without and with an applied

magnetic induction of 67.5 mT were performed. Pure rubber, isotropic, and anisotropic

MREs with their particle alignment both parallel and perpendicular to the applied magnetic

induction, containing 10% to 30% volume particle concentration, were stretched up to 10%

strain. Three samples of each type were tested, and mean values and standard deviations

of the third loading cycle are shown. The tests without an applied magnetic induction were

discussed in Section 5.5.5. The tangent moduli, ET , were used to describe the non-linear

behaviour of the different types of MREs. The MR effects were discussed in Section 5.5.6.

The stress-strain curves and the tangent moduli comparing the no-magnetic tests with the

magnetic tests of all types of MREs tested are illustrated in this Appendix. The relative MR

effects, calculated with the tangent moduli of 1% stress-strain increments are presented.
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Figure E.27: Pure rubber and isotropic MREs tested in equi-biaxial tension: (left) in the direction
of the applied magnetic induction (x-direction), and (right) perpendicular to the ap-
plied magnetic induction (y-direction). Stress-strain curves, the tangent moduli, and
the relative MR effects are presented.
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Figure E.28: Anisotropic MREs with the applied magnetic induction parallel to the particle align-
ment direction tested in equi-biaxial tension: (left) perpendicular to the applied mag-
netic induction (x-direction), and (right) in the direction the applied magnetic in-
duction (y-direction). Stress-strain curves, the tangent moduli, and the relative MR
effects are presented.
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Figure E.29: Anisotropic MREs with the applied magnetic induction perpendicular to the particle
alignment direction tested in equi-biaxial tension: (left) in the direction of the applied
magnetic induction (x-direction), and (right) perpendicular to the applied magnetic
induction (y-direction). Stress-strain curves, the tangent moduli, and the relative MR
effects are presented.
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Appendix F

Results of Constitutive Modelling

F.1 Isotropic MREs

Isotropic MREs were modelled with the Ogden Model for incompressible isotropic rubber-

like materials, the theory of which was presented in Sections 6.1 and 6.3.1. The data fitting

procedure was described in Section 6.3.2. The results of isotropic MREs, for all deformation

modes, and combinations thereof, is described in Sections 6.3.3 and 6.3.5. In this Appendix

the determined model parameters, αp and µp, are summarised. The strain energy function of

the Ogden Model is defined as a function of the principal stretches

Ψ = Ψ(λ1, λ2, λ3) =
N
∑

p=1

µp

αp

(

λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

where λa are the principal stretches, µp and αp are the model parameters, and N = 1, 2, 3 is

the order of the Ogden Model. The modulus, µ, of the Neo-Hookean model can be calculated

with

µ =
1

2

N
∑

p=1

µpαp.

The given 2-Norm and the coefficient of determination R2 are defined as follows, both inter-

pret the quality of the fit.

‖·‖2 = ‖G(λ,mp)− τ‖2 =

√

√

√

√

m
∑

i=1

[G(λi,mp)− τi]2

R2 = 1−

m
∑

i=1

[G(λi,mp)− τi]
2

m
∑

i=1

[τi − τ ]2
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F.2 Anisotropic MREs

Anisotropic MREs were modelled with the Qui-Pence, the Merodio-Ogden, the Holzapfel-

Gasser, and the Guo models, all models that characterise transversely isotropic materials.

The theory was presented in Sections 6.4.1 and 6.4.2. The fitting procedure was described

in Section 6.4.3. Results of data fitting to each deformation (fitted to both data sets ob-

tained with the loading parallel and perpendicular to the direction of particle alignment)

were presented in Section 6.4.4, but only the results of the Qui-Pence model were discussed

in the main text. In this appendix, the results of the Merodio-Ogden, Holzapfel-Gasser, and

Guo models are presented. The predictions of the models are compared with the experi-

mental data of anisotropic MREs with 10%, 20% and 30% MREs. The model parameters,

Young’s moduli, E1 and E2, and coefficients of determination, R2, are listed in the tables.

Merodio-Ogden model
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10% MREs − Experimental Data (loading || particle alignment)

10% MREs − Merodio−Ogden Predition (loading || particle alignment)

10% MREs − Experimental Data (loading ⊥ particle alignment)

10% MREs − Merodio−Ogden Predition (loading ⊥ particle alignment)

20% MREs − Experimental Data (loading || particle alignment)

20% MREs − Merodio−Ogden Predition (loading || particle alignment)

20% MREs − Experimental Data (loading ⊥ particle alignment)

20% MREs − Merodio−Ogden Predition (loading ⊥ particle alignment)

30% MREs − Experimental Data (loading || particle alignment)

30% MREs − Merodio−Ogden Predition (loading || particle alignment)

30% MREs − Experimental Data (loading ⊥ particle alignment)

30% MREs − Merodio−Ogden Predition (loading ⊥ particle alignment)

Figure F.1: Predictions of the Merodio-Ogden model fitted to uniaxial compression data with both
loading parallel and perpendicular to the direction of particle alignment are compared
to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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30% MREs − Merodio−Ogden Predition (loading ⊥ particle alignment)

Figure F.2: Predictions of the Merodio-Ogden model fitted to uniaxial tension data with both load-
ing parallel and perpendicular to the direction of particle alignment are compared to
experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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30% MREs − Merodio−Ogden Predition (loading ⊥ particle alignment)

Figure F.3: Predictions of the Merodio-Ogden model fitted to pure shear data with both loading
parallel and perpendicular to the direction of particle alignment are compared to ex-
perimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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20% MREs − Experimental Data perp. to particle alignment direction

20% MREs − Merodio−Ogden Predition perp. to particle alignment direction
30% MREs − Experimental Data in particle alignment direction

30% MREs − Merodio−Ogden Predition in particle alignment direction

30% MREs − Experimental Data perp. to particle alignment direction
30% MREs − Merodio−Ogden Predition perp. to particle alignment direction

Figure F.4: Predictions of the Merodio-Ogden model fitted to equi-biaxial tension data are com-
pared to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP
content. Predictions and experimental data are illustrated for both directions, parallel
and perpendicular to the direction of particle alignment.

MRE µ[MPa] γ [−] E1[MPa] E2[MPa] R2

Compresion
Anisotropic 10% MREs 0.7523 4.0817e−18 2.2568 2.2568 0.5496
Anisotropic 20% MREs 0.7266 8.7986e−18 2.1799 2.1799 0.7161
Anisotropic 30% MREs 0.8263 6.5707e−18 2.4789 2.4789 0.8814

Tension
Anisotropic 10% MREs 0.2109 7.7597e−1 3.2509 0.7922 0.9560
Anisotropic 20% MREs 0.6398 2.9783e−3 1.9500 1.9271 0.9256
Anisotropic 30% MREs 0.6895 1.7466e−16 2.0684 2.0684 0.5253

Pure Shear
Anisotropic 10% MREs 0.3707 1.8959e−2 1.5953 1.4829 0.9724
Anisotropic 20% MREs 0.5474 3.2605e−2 2.4754 2.1898 0.9769
Anisotropic 30% MREs 1.3733 2.3171e−2 6.0021 5.4930 0.9862

Equi-Biaxial
Tension

Anisotropic 10% MREs 0.4660 1.6250e−1 4.0080 2.7963 0.8169
Anisotropic 20% MREs 0.7482 1.1154e−1 5.8244 4.4891 0.8982
Anisotropic 30% MREs 1.6110 3.8882e−2 10.6680 9.6658 0.9127

Table F.5: The parameters µ and γ of the Merodio-Ogden model fitted to data of each deforma-
tion mode (fitted to tests with both the loading parallel and perpendicular to the particle
alignment direction), are listed. The Young’s moduli, E1 parallel, and E2 perpendicular
to the direction of particle direction can be compared with the experimentally determ-
ined moduli (Tables 5.5, 5.13, 5.20, and 5.23).
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Figure F.5: Predictions of the Holzapfel-Gasser model fitted to uniaxial compression data with
both loading parallel and perpendicular to the direction of particle alignment are com-
pared to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP
content.
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30% MREs − Holzapfel Predition (loading ⊥ particle alignment)

Figure F.6: Predictions of the Holzapfel-Gasser model fitted to uniaxial tension data with both
loading parallel and perpendicular to the direction of particle alignment are compared
to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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30% MREs − Holzapfel Predition (loading ⊥ particle alignment)

Figure F.7: Predictions of the Holzapfel-Gasser model fitted to pure shear data with both load-
ing parallel and perpendicular to the direction of particle alignment are compared to
experimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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10% MREs − Experimental Data perp. to particle alignment direction
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Figure F.8: Predictions of the Holzapfel-Gasser model fitted to equi-biaxial tension data are com-
pared to experimental data from anisotropic MREs with 10%, 20%, and 30% CIP
content. Predictions and experimental data are illustrated for both directions, parallel
and perpendicular to the direction of particle alignment.
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MRE µ[MPa] k1 [MPa] k2 [−] E1[MPa] E2[MPa] R2

Compresion
10% MREs 0.7444 7.8149e−13 6.0377e0 2.2331 2.2331 0.7868
20% MREs 0.6872 2.6286e+1 4.3127e0 2.0617 2.0617 0.9468
30% MREs 0.8342 1.7571e−10 3.0352e0 2.5025 2.5025 0.5616

Tension
10% MREs 0.3645 5.4251e−1 5.2828e+1 1.0934 1.0934 0.7759
20% MREs 0.4663 1.9090e−2 8.1232e+1 1.3990 1.3990 0.5686
30% MREs 0.5723 1.6298e−1 1.4112e+2 1.7170 1.7170 0.2159

Pure Shear
10% MREs 0.3695 5.6036e+4 1.8150e−16 1.7023 1.4782 0.9840
20% MREs 0.5452 1.1794e+5 4.3931e−1 2.6527 2.1810 0.9821
30% MREs 1.3704 1.7236e+5 4.6976e−13 6.1712 5.4818 0.9877

Equi-Biaxial
Tension

10% MREs 0.4658 3.8612e+5 1.8468e−12 4.3391 2.7947 0.8583
20% MREs 0.7473 4.1807e+5 2.0423e−13 6.1562 4.4839 0.9192
30% MREs 1.6028 3.0939e+5 4.4131e−13 10.8542 9.6166 0.9185

Table F.6: The parameters µ, k1, and k2 of the Holzapfel-Gasser model fitted to data of each de-
formation mode (fitted to tests with both the loading parallel and perpendicular to the
particle alignment direction), are listed. The Young’s moduli, E1 parallel, and E2 per-
pendicular to the direction of particle direction can be compared with the experimentally
determined moduli (Tables 5.5, 5.13, 5.20, and 5.23).
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Figure F.9: Predictions of the Guo model fitted to uniaxial compression data with both loading
parallel and perpendicular to the direction of particle alignment are compared to ex-
perimental data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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Figure F.10: Predictions of the Guo model fitted to uniaxial tension data with both loading parallel
and perpendicular to the direction of particle alignment are compared to experimental
data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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Figure F.11: Predictions of the Guo model fitted to pure shear data with both loading parallel and
perpendicular to the direction of particle alignment are compared to experimental
data from anisotropic MREs with 10%, 20%, and 30% CIP content.
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10% MREs − Experimental Data perp. to particle alignment direction
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Figure F.12: Predictions of the Guo model fitted to equi-biaxial tension data are compared to ex-
perimental data from anisotropic MREs with 10%, 20%, and 30% CIP content. Pre-
dictions and experimental data are illustrated for both directions, parallel and perpen-
dicular to the direction of particle alignment.

MRE µ[MPa] β [−] E1[MPa] E2[MPa] R2

Compresion
Anisotropic 10% MREs 0.4809 5.3286e−13 1.4428 1.4428 0.2250
Anisotropic 20% MREs 0.6961 7.0042e−13 2.0884 2.0884 0.9377
Anisotropic 30% MREs 0.0775 9.7281e0 2.4948 0.3007 0.7966

Tension
Anisotropic 10% MREs 0.0000 1.3568e+4 1.3761 0.0001 0.9430
Anisotropic 20% MREs 0.4626 4.8684e−13 1.3878 1.3878 0.5209
Anisotropic 30% MREs 0.5633 9.9733e−13 1.6900 1.6900 0.1773

Pure Shear
Anisotropic 10% MREs 0.3688 3.3700e−1 1.8480 1.4751 0.9901
Anisotropic 20% MREs 0.5441 4.9252e−1 2.9806 2.1766 0.9799
Anisotropic 30% MREs 1.3689 2.1241e−1 6.3479 5.4756 0.9887

Equi-Biaxial
Tension

Anisotropic 10% MREs 0.4656 1.3407e0 4.6658 2.7933 0.8896
Anisotropic 20% MREs 0.7466 8.9321e−1 6.4803 4.4797 0.9353
Anisotropic 30% MREs 1.5959 3.0616e−1 11.0414 9.5756 0.9237

Table F.7: The parameters µ and β of the Guo model fitted to data of each deformation mode (fit-
ted to tests with both the loading parallel and perpendicular to the particle alignment
direction), are listed. The Young’s moduli, E1 parallel, and E2 perpendicular to the dir-
ection of particle direction can be compared with the experimentally determined moduli
(Tables 5.5, 5.13, 5.20, and 5.23).
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