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Summary

This thesis is devoted to the description of the graph of links of some

skew-polynomial rings and skew-Laurent rings; and the characterization of some

crossed products which are Azumaya. The characterization of the Azumaya locus

and relation with the singular locus is also studied for some crossed products.

In chapter 2 we describe the links between prime ideals in skew-Laurent rings

of the form S = R[Ol, 011, ... , On, 0;;1; a1, ... ,an] and in skew-polynomial rings

of the form T = R[Ol,'" ,On; al,'" ,an] with basis ring R, commutative and

Noetherian, where 0::1, ••• , an are pairwise commuting automorphisms of R. In

order to do so, we start by studying the strong second layer condition.

Theorem The ring S is Ali-separated.

Corollary The ring S satisfies the sironq second layer condition.

Corollary The ring T satisfies the strong second layer condition.

We show that, in determining the clique of a prime of S or T, there is no loss

of generality in assuming that R is semilocal and that the primes contract in the

basis ring R to an ideal of the form N = nMg where M is a maximal ideal of R

and the indicated intersection is finite. We can then describe the links in Sand

T.

Proposition Let P and Q be prime ideals of S, with P n R = N. Suppose that

P ~ Q. Then Q n R = N and one of the following holds:

1.0=!=NS=P=Q;

2. NS ~ P = Q;
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8. 0 :/= N S ~ P :/= Q and there exist a przme ideal P~ o] S~ lying over

P21MS2 and i E {I, ... ,u} such that (/i(P~) lies over Q2/MS2 where l\"ti

is the algebraic closure oj I\ = RI M, S2 is a skeui-Laureni ring, S2 ~ S,

S~ = J(~ @K S2, P2 and Q2 are minimal primes over P n S2 and Q n S2,
- -respectively, such that P2 nR = M = Q2 nR, and a, are the auiomorphisms

determined by the action oj S~ in /{ti @K M IM'2 .

Conversely, iJ one oj case 1,2 or 3 holds, then P ~ Q. 0

The description of cliques in T will, in some cases, depend on the description

of cliques in S given before.

Theorem Let P, Q E Spec(T) such that OJ+l, ... , On E P and Ol, ... , OJ ~ P.

Then P ~ Q iJ and only iJ OJ+l, ... ,On E Q and either (a) P / (OJ+l T + ... +
OnT) ~ QI(()j+IT + ... + OnT) in R[Ol,'" ,OJ;al, ... ,ail or (b) there is j E

{i + 1, ... , n} such that P = aj(Q).

Corollary Let P, Q E Spec(T) such that Oi+l, ... , On E
/I Ll d PLY _ {Llj(l) Llj(i). '(1) .(.) ~T}Ul, ••• , Ui v:. • et - VI ••• vi . J , ... ,J Z E 1'1 ,

T, P = PI (()i+l T + ... + OnT) and Q = Q/(Oi+1T + ... + OnT).

P n Q and

an Ore set in

Then P Q iJ and only iJ Py-I Qy-l

In chapter 3 we study crossed products which are Azumaya and describe them

in terms of H-separability conditions.

Proposition Let R be any ring, J any group and R * J any crossed product.

Then the Jollowing are equivalent:

i) R * J is an Azumaya algebra and Z(R * J) ~ R;
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ii) R * J is an H-separable extension of Rand R is a separable extension of

Z(RV·

Then we restrict our attention to crossed products R * G where G is a finite

group of automorphisms and the action of the crossed product is the one given

by G.

Proposition Let R be any ring and G a finite co-outer group of automorphisms

of R. Let R *G be any crossed product constructed with the given action of G on

R. If R * G is Azumaya then Z(R) is a G-Galois extension of Z(R)G.

Theorem Let R be any commutative rmg, G a finite subgroup of Aut( R) and

R*G any crossed product ofG over R constructed with the given action ofG on R.

If R is a G-Galois extension of RG, then R * G is Azumaya and Z( R * G) = RG.

Proposition Let R be any ring, G a finite group of automorphisms of Rand

R * G any crossed product constructed with the given action of G on R. Consider

the following statements:

i) R * G is Azumaya and Z(R * G) ~ R;

ii) a) R * G is an H-separable extension of R;

b) R is a separable extension of Z(R)G;

iii) R is Azumaya and Z(R) is a G-Galois extension of Z(R)G.

Then i) is equivalent to ii). If R is commutative iii) implies i) and ii).

If G is co-outer on R, i) and ii) imply iii).

If R is commutative and G is co-outer on R, i), ii) and iii) are equivalent.
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Given a prime Noetherian nng R module-finite over its centre Z( R), the

Azumaya locus of R is the set

AR = {M E Max(Z(R)) : RM is Azumaya}

and the singular locus of Z (R) is the set

SR = {M E Max(Z(R)) : Z(R)M is not regular}.

The rest of chapter 3 is dedicated to the study of the Azumaya locus and the

singular locus of some crossed products over some Noetherian domains.

Proposition Let G be a finite group of automorphisms of a commutative Noethe-

rian domain D and assume that D is finitely generated over DO. Let D * G be

any crossed product constructed with the given action of G on R. Then

Where ID(G) = ngEO\{lo} ID(g) and ID(g) is the ideal of D generated by {g(d)-

d: d ED}.

The next three results show that the Azumaya locus of some crossed products

IS, under some conditions, the complement of its singular locus in the set of

maximal ideals of its centre.

Proposition Let G be a finite group of automorphisms of a commutative Noethe-

rian domain D with D a finitely generated DO -module. Form D * G any crossed

product constructed with the given action of G on R. If

i) gl.dim( D * G) is finite,

and

ii) for all P E Spec(D) of height 1, ID(G) i P,
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Corollary Let G be a finite group of automorphisms of a commutative Noethe-

rian domain D. Form D * G any crossed product and assume that D is finitely

generated over DG. If

i) gl.dim(D) is finite,

ii) for every maximal ideal M of D with char( D / M) = p > 0, GD (M)

{g E G : d9 - d E M; for all dE D} contains no element of order p,

iii) for every prime ideal P of D of height one, ID(G) et P,

then AD*G = Max(DG)\SD*G.

Proposition Let D be a commutative domain and an affine algebra over an

algebraically closed field I< of characteristic zero and G a finite group of I<-

automorphisms of D. Form the crossed product D * G constructed with the given

action ofG on D. Assume also thatgl.dim(D) is finite. We have that ID(G) ~ P

for all P E Spec(D) of height 1 if and only if AD*G = Max(DG)\SD*G.

In chapter 4 we study the skew-polynomial and skew-Laurent rings which are

fully-bounded Noetherian and the ones which satisfy a polynomial identity. Then,

using the results of the previous chapter, chapter 3, we describe the Azumaya

locus and singular locus of some skew-Laurent ring S over a ring R. Let G be

the group of automorphisms of R such that S = RI<e * G. In particular we prove

the following result.

Proposition Suppose R is a commutative Noetherian domain of finite global

dimension and G is finite. Assume also that R is finitely generated as a module

over RG and that IR( G) is not contained in any prime ideal of R of height 1.

Then the following sets of maximal ideals of S are equal
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i) {M E Max(S) : SMnZ(S) is Azumaya}.

ii) {M E I\llax(S) : Z(S) is regular at M n Z(S)}.

The above sets are contained in

{M E Max(S) : IR(G) et M n R}

and they all coincide when R is a Hilbert ring.
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Introduction

It may be said that the theory of Noetherian rings began with Goldie's paper

in 1958. Goldie's theorem provides the analogue in the noncommutative case for

the usual field of fractions of a domain in the commutative case. Goldie proved

that given a prime Noetherian ring and C = CR(O), the set of regular elements of

R, the set of elements of the form ac-1 for a E Rand c E C is a ring, the ring of

fractions of R, isomorphic to a matrix ring over a division ring. The existence of

such a ring of fractions is equivalent to the set C being both right and left Ore

(C is right Ore if for all a E Rand c E C, there are elements a' E R and c' E C

with ac' = a'c. The definion of left Ore is symmetric).

In the commutative case, given a prime ideal P of R we can form the

ring of fractions of the form rc-1 for r E Rand c E R\P or equivalently,

c E CR(P) = {r ER: r + P E CR/P(O)}, and in this case we say that we

localize R at a prime ideal P. A natural step after Goldie's theorem and fol-

lowing the case of commutative rings, would be to extend the ideas of localizing

at a prime to noncommutative rings; we say that a prime ideal P of a Noethe-

rian ring is localizable if CR( P) is a right and left Ore set. If P is localizable

we denote the corresponding fraction ring by R», Prime ideals usually are not

localizable; .Iategaonkar pointed out that if P and Q are distinct maximal ideals

of a Noetherian ring R such that RI P and RIQ are artinian and if Q n P =1= PQ,

then Q cannot be localizable. So prime ideals should be related in some way

depending on the existence of some factors of the bimodule P nQI PQ. We say

that given two prime ideals P and Q, P is linked to Q, P .........Q, if there exists

an ideal A of R such that PQ ~ A ~ P n Q and (P n Q) IA is torsionfree as

a left RIP-module and as a right RIQ-module. The graph of links of R is the

directed graph whose vertices are the elements of Spec(R) with an arrow from

P to Q whenever P .........Q. The connected components of this graph are called
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cliques and if P E Spec( R), the unique clique containing P is denoted by C£( P).

In 1982, Jategaonkar introduced a new condition on a Noetherian ring, the

second layer condition. This condition is satisfied by several classes of rings,

for instance enveloping algebras of finite dimensional solvable Lie algebras [.57,

Theorem A.3.9J; group rings of polycyclic by finite groups [18, Proposition 2.2J

and [55, Theorem 4.5J. This condition is related with the way one can build some

series for a module over a Noetherian ring.

After briefly recalling some definitions and properties of skew-polynomial,

skew-Laurent rings and crossed products in chapter 1, we start our research with

chapter 2. Chapter 2 is devoted to the description of the graph of links of some

skew-polynomial ring, 'T and some skew-Laurent ring, S. The work of Chapter 2

is designed to provide analogues for rings such as Sand 'T of results obtained by

K. R. Goodearl [43J for rings constructed in a similar fashion using derivations

rather than automorphisms. As a first step to study the prime links in Sand 'T,

we remark that it is known that S satisfies the second layer condition. In §2.2 we

prove that S is AR-separated, hence satisfies the strong second layer condition

and so does 'T.
In §2.3 and §2.4 we describe the prime links in S. We will show that the

prime links in S can be reduced to the study of prime links between prime ideals

that contract to a maximal ideal in R, the coefficient ring of S. In §2.3 we start

by describing the links between prime ideals contracting to maximal ideals in

the coefficiant ring of S. In §2.4 we show how to reduce the general problem to

the one in §2.3 and obtain the description. With the results obtained in §2.4,

we can easily describe the prime links in 'T. Some examples are given in §2.6.

These examples are used not only to illustrate the description obtained but also

to explain the reason for some conjectures to fail.

So far we have been interested in the way the prime spectrum of skew- Laurent

and skew-polynomial rings can be divided into sets of primes, the cliques. The

most trivial case happens when there are just trivial links; not only a prime is
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linked to itself but whenever for some prime Q, P 'V'-t Q or Q 'V'-t P, then P = Q.

In this case the cliques will just be singletons. This situation occurs for instance

when the rings are Noetherian and Azumaya. If a ring is Azumaya, it is finitely

generated over its centre and its prime spectrum is determined by the prime

spectrum of its centre. By Miiller's Theorem [44, Theorem l1.20J, we have that

the cliques of a Noetherian Azumaya ring are singletons. Thus it is natural to

try to understand those classes of algebras Sand T for which the graph of links

is particularly simple by first identifying those algebras which are Azumaya, and

(more generally) to descri be the Azumaya locus of algebras of the type considered

in this thesis. This is the main objective in Chapter 3 and 4.

Azumaya rings are separable algebras over their centres, or central separable

algebras. The study of these algebras led to new notions of separability such as

separable extension of ring [49J and H-separability [50J.

The main problem is now to describe when are the skew-Laurent rings Azu-

maya. Similar problem had been studied for skew-group rings of finite groups by

Ikehata in [52J and by R. Afaro and G. Szeto in [3J. While studying skew-Laurent

rings it became clear that some results obtained to deal with our algebras would

apply also to some crossed products of finite groups, and so generalise results in

[52J and [3J.

In chapter 3, we study separabiliy and H-separability in some crossed prod-

ucts. We start by introducing the definitions and well known results in §3.1. In

§3.2 we obtain necessary conditions for a crossed product to be Azumaya. Given

a crossed product of the form R * J, the condition of R * J being Azumaya is

related with an H-separability condition: R * J is an H-separable extension of

R. In order to be able to describe when R * J is an H-separable extension of

R, we impose extra conditions on J and on R * J; thus we assume J is a finite

group of automorphisms of R, w-outer and R * J is defined with the given ac-

tion of J on R. This section is divided into two parts; in the first we study the

general crossed product R * J and in the second §3.2.1, we study what happens
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if R * J is H-separable, assuming the extra conditions on R and on J. In §3.3

we get a sufficient condition for a crossed product R * C to be Azumaya, where

R is a commutative ring, C is a finite group of automorphisms of Rand R * C
is any crossed product built with the given action. In §3.4 we study how far

some prime Noetherian crossed prod ucts are from being Azumaya; we descri be

their Azumaya locus. Imposing some homological conditions on the commuta-

tive Noetherian domain R and some conditions on the group C, we will be able

to describe the Azumaya locus of R * C in terms of its nonsingular locus, the

complement in Max(Z(R * C)) of the singular locus.

In chapter 4 we apply the results of chapter 3 to skew- Laurent rings. In a

similar way to the work of Damiano and Shapiro in [32], we obtain necessary

conditions for the skew-Laurent and skew-polynomial ring with a Noetherian

coefficient ring to be fully bounded Noetherian and describe the ones which satisfy

a polynomial identity, the PI rings. This study will be done in §4.1 and in §4.2.

Section §4.3 is totally dedicated to the study of the Azumaya locus of some

skew- Laurent rings.

Throughout this thesis we have tried to quote our references from the original

authors. However, sometimes for simplicity we refer to the books [44], [76], [86],

[45] and [38] for some well known results.

A short section named Additional remarks, is placed at the end of each chapter

to indicate whether a result appearing in the chapter is a well-known or a new

one. Most of chapter 2 appeared in [27].
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Notation
N

No

Z

Q
IR

CC

R

Z(R)
U(R)

Aut(R)

Inn(R)

Cl.K.dim( R)

Spec(R)

Max(R)

CR(O)

CR(P)

.J(R)

RX-1

Q(R)
Rp

R*G

R#G
RtG

SpecG(R)

The set of natural numbers.

The set of natural numbers and zero.

The set integers.

The field of rational numbers.

The field of real numbers.

The field of complex numbers.

Associative ring with unit.

The centre of the ring R.

The group of units of R.

The set of all automorphisms of R.

The set of inner automorphisms of R.

The classical Krull dimension of R.

The prime spectrum of R.

The set of maximal ideals of R.

The set of regular elements of R.

The set of regular elements of R modulo P .

The Jacobson radical of R.

The right ring of fractions of R with respect to X.

The quotient ring of R.

The ring of fractions of R with respect to CR( P).

The crossed product of Gover R.

The skew-group ring of Gover R.

The twisted group ring of Gover R.

The set of G-prime ideals of R.
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P-v-+Q

tx(M)

Ass(M)

RR(I)

Mn(/{)

RG

1>9
trG

AR
SR

GR(M)

IR(g)

IR(G)

Prime link from P to Q.

The X-torsion submodule of M.

The set of all associated primes of M.

The Rees ring of the ideal I of R.

The ring of square matrices over K,

The fixed ring of G on R.

The set {r ER: rs" = sr, Vs ER}.

The trace map.

The Azumaya locus of R.

The singular locus of R.

The inertia group of M in R.

The two-sided ideal of R generated by {r9 - r : r E R}.

The ideal n9EG\{lG} IR(g).
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Chapter 1

Preliminaries

In this preliminary chapter we will fix some notation and state a few well-known

results which will be needed in the following chapters. Other terminology and

notation will be introduced either when they appear for the first time in the text

or at the beginning of the chapters where they will be used. For more details

about this section one can see for instance [44], [76], [85] and [86].

1.1 Notation

All our rings are supposed to be associative with identity element. The identity

of a ring R will be denoted by lR or just by 1 if the ring is well understood. A

subring of a ring R will always contain the identity of R and ring homomorphisms

are supposed to preserve the identity. The centre of R is denoted by Z(R). The

group of units of R is denoted by U(R) and the set of all automorphisms of R is

denoted by Aut(R). For a E Aut(R) the image of r E R by a will be denoted

either by a( r) or by r", An automorphism a of R is said to be inner if there

exists a unit u E U(R) such that rQ = u-1ru, for all r E R; otherwise, a is said

to be outer (see [80]). The set of all inner automorphisms of R is denoted by

Inn(R) and is an invariant subgroup of Aut(R). A Noetherian (resp. Artinian)
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ring will always mean a right and left Noetherian (resp. Artinian) ring and an

ideal a right and left ideal. The classical Krull dimension of a ring R will be

denoted by Cl.K.dim(R); for its definition and properties see [44].

The set of prime ideals of a ring R is denoted, as usual, by 5pee( R) and the

set of all maximal ideals of R by Max(R).

Given a ring Rand r E R, we say that r is right (resp. left) regular if whenever

r s = 0 (resp. sr = 0) for some s E R, s = o. An element of a ring is regular if it

is right and left regular. The set of regular elements of R is denoted by CR(O). If

P is any ideal of R, CR(P) denotes the set of regular elements of R modulo P.

The intersection of all maximal right ideals (or equivalently, the intersection

of all maximal left ideals) of a ring R is denoted by .J (R), the Jacobson radical

of R. If R is a ring such that RI.J (R) is semisimple Artinian, R is said to be

semiloeal, if RI.J(R) is simple Artinian, R is said to be local.

For a ring R and a multiplicatively closed subset X of R, we shall denote by

RX-l the right ring of fractions of R with respect to X whenever it exists (see

[44]). As in [44], we shall abuse notation and write the elements of RX-l in the

form rx-1, for r E R and x E X. If I is an ideal of R, we denote by IX-I the

set {ix-I: i E I, x E X}, the extension of I (see [44]). In the case of X = CR(O)

instead of RX-I we will write Q(R), the right quotient ring of R. In the case

X = CR(P) and RX-l exists, we denote this ring by R»,

In this thesis all modules will be unitary modules. Given rings Rand 5, we

write MR, sM, SMR to denote that M is a right R-module, M is a left 5-module

or that M is an (5, R)-bimodule, respectively. In the case nothing is said, one

should assume that the structure of the module to be considered is the right hand

one. If M is a right R-module, the ring of R-endomorphisms of M will be denoted

by End(MR); similarly, if M is a left R-module, the ring of R-endomorphisms of

the left R-module M will be denoted by End(RM). If the structure of the module

M is well understood, we will just write End(M). For an (5, R)-bimodule M,

l.ann e]M) and r.ann e]M) are, respectively, the left annihilator of M in 5 and
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the right annihilator of M in R. If N is a submodule of M, we write N ::; M. If

N::; M and for any non-zero m E M, there is r E R such that mr E N\{O}, we

say that N is an essential submodule of M or that M is an essential extension of

N and write N <. M.

1.2 Crossed products and skew-polynomial
.rmgs

In this section we introduce the definitions of some noncommutative rings which

we will be studying throughout this thesis; the skew-Laurent and skew-polynomial

rings.

Definition 1.2.1 Let R be a ring and a an endomorphism of R. A left a-

derivation of R is an additive map ~: R -+ R such that ~(rs) = a(r)~(s)+~(r)s,

for all r, s E R.

Proposition 1.2.2 Let R be a rtnq, let a be an endomorphism of R and let

o be a left a-derivation of R. Then there exists a ring T, containing R as a

subring, such that T is a free left R-module with a basis of the form 1, (), ()2, ...

and ()r = a(r)() + o(r) for all r E R.

Proof. [44, Proposition 1.10]0

Definition 1.2.3 The ring T determined in Proposition 1.2.2 above is denoted

by R[();a, 0] and called a skew-polynomial ring or an Ore extension of R.

When a is the identity map on R, we abbreviate R[(); a, 0] to R[(); 0] and call

this ring a differential operator ring. In the case 0 = 0, we abbreviate R[O; a, 0]

to R[O; a].
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Remark 1.2.4 We can also define a right a-derivation, which is an additive map

15of R satisfying the rule t5(rs) = t5(r)a(s) + rt5(s), for all r,s E R. Similarly to

what was done before, one can construct an Ore extension, which is a free right

R-module.

If a is an automorphism of Rand 15an additive map of R, 15 is a left 0-

derivation of R if and only if -t5a-1 is a right a-I-derivation. In this case the

rings R[O; a, 15]and R[O; a-I, -t5a-I] coincide.

An obvious example of skew-polynomial ring is the polynomial ring in one

indeterminate. For the case of skew-polynomial rings, we also have a version of

Hilbert's Basis Theorem.

Theorem 1.2.5 Let R be a rmg, let a be an automorphism of Rand 15 a a-

derivation of R. If R is right (resp. left) Noetherian, then the skew-polynomial

ring T = R[O; a, 15]is also right (resp. left) Noetherian.

Proof. [44, Theorem 1.12] 0

Remark 1.2.6 1) The condition of a to be an automorphism in the Theorem

1.2.5 above, is needed as the example below shows.

2) The above theorem is true for other classes of rings as we will see.

Example 1.2.7 [76, Example 1.2.11] Let K be a field, R = K[y], a the endo-

morphism of R defined by a(f(y)) = f(y2) and T = R[O; a]. One can see that

ETOyOi is a direct sum. If for any n E N, we set In = Ei=o OiyT, we get a strictly

increasing chain of right ideals. Hence T is neither left nor right Noetherian.

If al is an automorphism of Rand 151is an aI-derivation of R, using Theorem

1.2.2, we can form the ring R[Ol; Oh 15]. Also by Theorem 1.2.2, given a2 an

automorphism of R[Ol; aI, 151]and 152an a2-derivation of R[OI; 01, t5d, we can form
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the ring R[Ol; aI, 5tl[02; a2, 52]' Hence applying n times Proposition 1.2.2 and the

ideas above, we would get a ring of the form

Definition 1.2.8 The ring T = R[Ot; at, od [02; a2, 02l ... [On;an, Onl (assuming

the notation above) is called an iterated skew-polynomial ring, for short we will

just call such a ring T a skew-polynomial ring.

There are two cases of iterated skew-polynomial rings of particular interest to

us. First, consider the iterated skew-polynomial ring built from a ring R and a

finite list 01, ... , On of pairwise commuting derivations of R

which we will denote by R[Ol,'" , On;51,'" , 1n]. In this case we should note

that all the automorphisms in the definition of iterated skew-polynomal ring are

assumed to be the identity and that each derivation Oi can be extended to a deriva-

tion of R[Ol,'" ,Oi-t;5t, ... ,5i-tl by setting c5i(Oj) = 0 for any i E {I, ... ,n}
and j E {I, ... ,i-I}. This is possible because the derivations commute with

each other.

Another noteworthy class of iterated skew-polynomial rings can be obtained

if we take a family a1, ... , an of pairwise commuting automorphisms of R. For

at we can form R[Ot; ad (assume derivation 61 = 0) and extend a2 to an auto-
m m

morphism of R[Ot; all. (We make a2(L riO;) = L a2(ri)O; and then use the fact
i=O i=O

that a1a2 = a2a1 to prove that a2 is an automorphism of R[Ot; ad). Iterating

the above procedure we obtain the ring

that we shall denote by
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If one thinks of the polynomial ring R[x], it is well known that we can form

a new ring where the indeterminate becomes a unit, the Laurent ring R[x, X-I].

For some skew-polynomial rings the same happens.

Proposition 1.2.9 Let R be a ring and a an automorphism of R. Then there

exists a ring S, containing R as a subring, with a unit 0 E S such that S is a

free left R-module with a basis of the form 1,0,0-1,02,0-2,... and Or = a( r)O,

for all r E R.

Proof. [44, Proposition 1.16]. 0

Definition 1.2.10 Let R be a ring and a an automorphism of R. The ring S

constructed in Proposition 1.2.9 is denoted R[O, 0-1; al and called a skein-Laurent

extension of R.

Remark 1.2.11 1) Given a ring R, if a = idR, then R[O,O-I;al isjust R[O,O-I],

the ordinary Laurent polynomial ring.

2) As was done for skew-polynomial rings, given aI, ... ,an pairwise commut-

ing automorphisms of R, one can apply Proposition 1.2.9 to form

which we will denote

Although Definition 1.2.13 below is just a restatement of the definitions given

before, we decided to include it as it refers to the rings which we will be studying

throughout this thesis, in this way we will also fix some notation.

Notation 1.2.12 If R is any ring, al, ... ,an E Aut( R) commuting pairwise and

I = (ill' .. ,in) E zn, we will denote by o! the automorphism ail ... a~n of R. If

01, ••. ,On are commuting indeterminates, 01 denotes the element O~l ... O~n.
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Definition 1.2.13 Let R be a ring and 01, ... ,an commuting autornorphisms

of R. We define the skew-polynomial ring 7 = R[Ol,'" ,On; al, ... , an] and the

skew-Laurent ring S = R[Ol,fJlI, ,0n,O;;,I;al,'" ,an], whose additive group

coincides with the one of R[fJj, ,On] and R[Ol, 011, ... ,On, O~l], respectively,

and multiplication is defined by the associative laws and by the rules

for all i,j E {I, ... ,n} and rE R.

Remark 1.2.14 If we form 7 and S as in Definition 1.2.13, the elements of 7

and S are uniquely written in the form L r101 and L r101, respectively, where
lEN;; IEZn

rt E Rand rt = 0 for all but finitely many I E zn.

The skew-Laurent rings defined above in Definition 1.2.13, can be seen as an

example of crossed products.

Definition 1.2.15 Let R be any ring and G any multiplicative group. A crossed

product of Gover R, denoted by R * G, is an associative ring containing for each

9 EGan element 9 E R * G. The set G = {g : 9 E G}, a copy of G, is a left

R-basis for R * G so that every element is uniquely written as a finite sum

with "s E R. The addition in R * G is the obvious one and the multiplication is

defined by the associative laws and by the rules

gh = E:R,G(g, h)gh, for all g, h E G

where E:R,G : G x G --7 U(R) is a map from G x G to the group of units of R,

U(R), and

gr = (7R,o(g)(r)g, for all rE R,g E G

7



where O-R,G : G -+ Aut( R).

We say that O-R,G is the action of G in Rand [R,G is the twisting.

Whenever Rand G are well understood, instead of O-R,G and [R,G we will write

C7and E, respectively.

Remark 1.2.16 1) The ring R * G has an identity element, 1 = [E(l,l)t'I,

hence without loss of generality we will assume that I = l. Moreover each ?J is

invertible, for each 9 E G.

2) One should note that for each ring R and each group G, there may be more

than one structure of crossed product, depending on the maps, C7and E defined.

Given a crossed product R * G, in general the map C7R,G is not a group homo-

morphism as is shown in the next lemma. The next lemma is well-known but we

were unable to find a reference.

Lemma 1.2.17 Let R be any ring, G any group and R * G any crossed product.

The action ofG in R, C7, is a group homomorphism if and only if[(g,h) E Z(R)

for all g,h E G.

Proof. Let g, h E G and r E R. Now

ghr ?JC7(h)(r)h

C7(g)(o-(h)(r))E(g, h)gh

and

ghr = [(g,h)ghr = E(g,h)C7(gh)(r)gh.

If E(g, h) E Z(R), for all g, s e G, then since E(g, h) and gh are units we have

that

C7(g)o-( h) = o-(gh)

for all g, h in G. Hence 0- is a group homomorphism.
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Conversely, if we assume that a is a group homomorphism, we have, for any

r E R that

a(g)a(h)(r)[(g,h) = [(g,h)a(g)a(h)(r)

and the result follows. 0

Definition 1.2.18 In the definition of crossed products, Definition 1.2.15, if e

is trivial, that is [(g, h) = 1, for all g, h E G, the crossed product is called a

skew-group rinq (or trivial crossed product); in this case we write R#G. If rr(g)

is the identity map in R for all 9 E C, then R * G is called a twisted group ring

and instead of R * G we write RtG.

Notation 1.2.19 Given any crossed product R*G, in order to simplify notation

we will write, for any r E R, rg instead of rl1(g) = a(g)(r).

Remark 1.2.20 1) Given a crossed product, if both aR,G and [R,G are trivial,

the crossed product is just the ordinary group ring.

2) Let R#G be a skew-group ring. If G is finitely generated, abelian

and torsion free, then R#G is a skew-Laurent ring. Conversely, if R IS

any ring, 01, .•. , On are pairwise commuting automorphisms of Rand S

R[Ol,Oll, ... ,On,O;;l;Ol,'" ,on] the skew-Laurent ring, we can think of S as

a crossed product (actually as a skew-group ring) of the form R * H where H

is the multiplicative torsionfree group generated by 01, ••• , On, a is the group

homomorphism defined by a( Od = 0i and [ is trivial.

Lemma 1.2.21 Let R be a ring and G a group. Let R * G denote a crossed

product. If Cl is a normal subgroup of G, then

where the latter is some crossed product of the group GIG1 over the ring R* GI.
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Proof. [86, Lemma 1.3] 0

The following example not only shows how to apply the lemma but also gives

a skew-Laurent ring S = R#G and Gl a normal subgroup of C such that S is

not a skew-group ring over R#Gl.

Example 1.2.22 Let S = q(}, (}-l; 0] where 0 is complex conjugation. Hence

S = C# < ()». Take G, =< (}2 ». So < ()> /Gl ~ C2 = {I, x} and S =

(C#Gt) * C2 where (}2 = xx = CC#G1,c2{X,X)X2 = cC#GI,c2{X,X). Also, any other

choice of representative x for x leads to a non-trivial twisting c.

Lemma 1.2.23 Let R be any ring, C any group and Cl a normal subgroup of

G. Let R * G be any crossed product. Then any transversal set to Cl in G is a

free basis of R * C as a left (or right) R * Gl-module.

Proof. [86, §1.1J 0

For some groups C, there is a version of the Hilbert's Basis Theorem for a

crossed product of G over a right Noetherian ring R. Before stating this version

we need the following definition.

Definition 1.2.24 A group G is called polycyclic-by-finite if G has a finite sub-

normal series

1= Co <l Cl <l ••• <l Cn = C

with each quotient Gi+dGi either infinite cyclic or finite for 0 :::;i < n.

Proposition 1.2.25 If R is a right (resp. left) Noetherian ring and G is a

polycyclic-by-finite group, then the crossed product R * G is also right (resp.

left) Noetherian.

Proof. [86, Proposition 1.6J 0

In [31J E.C. Dade introduced a more general class of ring extensions containing

the class of crossed products.

10



Definition 1.2.26 Let R be a subring of a ring 5 and G a group, if there are

additive subgroups 5(g) of 5, 9 E G, such that 5(g)5(h) s: 5(gh), for any

g, h E G and R = 5(1), we say that 5 = ogEG5(g) is a G-graded 7'ing over R.

If S(g)S(h) = S(gh) for all g,h E C, we say that tBgEG5(g) is a strongly

G-graded ring over R.

1.3 Ideals and fraction rings of crossed products

In this section we will be concerned with the ideals of crossed products. A more

precise description of the prime ideals will be obtained in the next section for

some skew-Laurent rings. We start by describing some relations between ideals

of the crossed product and ideals of its basis ring. Also, we will describe the

fraction rings of crossed products with respect to some subsets of the basis ring.

Definition 1.3.1 Let G be a group and X a set. We say that C acts on X if

there is a group homomorphism o : C -+ Sym(X), from C to the symmetric

group on X.

For any g E G, the action of g on X will be denoted by x M xg, for any

x EX.

Remark 1.3.2 Let R be a ring and G a group. We say that C acts on R if there

exists a group homomorphism a : G -+ Aut(R).

If R is a ring and G a group, when in Definition 1.2.15 we defined the crossed

product R * C, we called UR,G the action. One should note that, as we saw in

Lemma 1.2.17, in general G doesn't act on R in the sense of Definition 1.3.1.

Definition 1.3.3 Let R be a ring, C a group acting on the set of ideals of R, I

an ideal of Rand J an ideal of R.
We say that J is G-stable (or G-invariant) if Jg = J, for all 9 E G.

11



If I is a proper G-stable ideal of R and for all G-stable ideals of R, K and .J,

whenever f{ J ~ I, either f{ ~ I or J ~ I, we say that I is a G-primc ideal of R.

In particular, we say that R is a G-prime ring if and only if 0 is a G-prime ideal.

The set of all G-prime ideals will be denoted by Specc (R).

Remark 1.3.4 In the proof of Lemma l.2.17, we have seen that given any ring

R, any group G and any crossed product R * G

UR,C(g )UR,C( h)( r )cR,C(g, h) = cR,C(g, h )uR,c(gh)( r)

for any g, h E G and r E R. It is then easy to see that, although UR,C may not

be a group homomorphism, it induces one U* : G ~ Aut(R)/Inn(R), from G to

Aut(R)/Inn(R). Since Inn(R) fixes all ideals of R, U* gives G an action on the

set of ideals of R.

For some groups G and some rmgs R, one can get a good description of

S pecc (R). The following lemma is stated here in a more general set ting than we

will need as its proof in [86] depends only on the conditions stated below.

Lemma 1.3.5 Suppose that R is a right Noetherian ring and G is a group acting

on the set of ideals of R with an action that preserves inclusion. Then Q is a

G-prime ideal of R if and only if Q = n9EcQ9 = Q91 n ... n Q9m for any Q
minimal prime of Rover Q and some gl, ... ,gm E G such that {Q91, ... ,Q9m}

forms a single G-orbit of Q. Thus, every G-prime ideal of R is semiprime.

Proof. [86, Lemma 14.2] 0

Proposition 1.3.6 Let R be any ring and G any group. Form any crossed prod-

uct R * G. We have:

i) If I is a G-stable ideal of R, then I(R * G) is an ideal of R * G with

I(R*G)nR = I. Moreover (R*G)/I(R*G) ~ (RII)*G, where the latter

is a suitable crossed product of G over RI I.
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ii) If J is an ideal of R * G, then J n R 1S a G-stable ideal of Rand

(JnR)(R*G) ~ J.

iii) If P is a prime ideal of R * G, then P n R is a G-prime ideal of R.

Proof. i) and ii) follow from [86, Lemma 1.4J and iii) follows from [86, Lemma

l4.lJ 0

It may happen that equality won't hold in ii) of Proposition 1.3.6, as we will

see in the next example.

Example 1.3.7 Take S to be the skew-Laurent ring IR[x][O, 0-1; aJ where a is

the IR-algebra homomorphism defined by a(x) = 2x. Take P = xS + (0 - 1)S.

As SIP ~ IR[O,O-IJ/(O - l)IR[O,O-IJ ~ IR, P is a prime ideal of S such that

P n IR[x] = xIR[xJ. Hence (P n IR[x])S = xS ~ P.

Let R be a ring and X a nonempty multiplicative subset of R. We say that X

is a right denominator set if X is right reversible (i.e. for any r E R and x E X

such that xr = 0, there exists y E X such that ry = 0) and a right Ore set (i.e.

for any r E R and x EX, rX n x R is nonempty). Similarly we can define left

reversible, left Ore and left denominator. A nonempty subset X of R is said to

be a denominator, reversible or an Ore set if it is a right and left denominator,

right and left reversible or right and left Ore set, respectively. If X is a right

denominator set we can form RX-1, the fraction ring of R with respect to X [44,

Theorem 9.7].

The quotient rings of group rings have been studied by P.F. Smith in [101].

Part i) of the following lemma is a generalization of [101, Lemma 2.6].

Lemma 1.3.8 Let R be a ring, G a group and R * G a crossed product.

i) If C is a right denominator set of R and is G-invariant, then C is a right

denominator set of R * G, the action and twisting can be extended from R

to RC-I, and

(R * G)C-1 ~ RC-I * G.
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ii) If R is a semiprime right Goldie ring and G is finite, then R * G is a right

order in an Artinian ring and Q(R * G) = Q(R) * G.

Proof. Part i) follows from [108, Lemma 4.2] and part ii) from [71, Lemma 1.5].

o

1.4 The Passman correspondence for skew-

Laurent rings

In [85] D. S. Passman described the prime ideals in crossed products of polycyclic-

by-finite groups over a right Noetherian ring. For the case of skew-Laurent rings of

the form R[Ol, 011, ... ,On, O;;lj 01,'" ,anl when R is a commutative Noetherian

ring and 01, ... ,an are automorphisms of R commuting pairwise, his description

becomes easier. We shall show how to get it using some of this author's results

in [86].

Through this section we will assume the following hypothesis.

Hypothesis 1.4.1 Let R be a commutative Noetherian ring, let 01, ... ,an be

automorphisms of R commuting pairwise, H the multiplicative abelian torsionfree

group freely generated by 01, ... ,On and G the multiplicative abelian subgroup of

Aut(R) generated by 01, ... ,an' Let W : H ~ G be the group epimorphism

defined by w( Od = OJ. Let S = R[OI, 011, ... ,On, 0;;1 j 01, •.. ,an] = R#H.

Remark 1.4.2 As H acts on R via the group epimorphism W: H ~ G, we will

talk about G-prime ideals of R instead of H -prime ideals.

Remark 1.4.3 Given an automorphism a of R that commutes with 01, ... ,an,

we can define an automorphism a' of S given by a' CL,J rJOJ) = EJ a( rJ )OJ.

Instead of a' we will write a. Hence we can think of G acting on S.
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Proposition 1.4.4 Assume Hypothesis 1.4-1. Let H be a subgroup of H. Then

ii) If I is a G-stable ideal of R*H, then IS is an ideal ofS with ISn(R#ll) =

I and Sj IS ~ (R#H)j 1* Hj H.

iii) If J is an ideal of S, then J n (R#H) is a G-stable ideal of R#H and

[J n (R#H)JS ~ J.

iv) If P is a prime ideal of S, then P n (R#H) is a G-prime ideal of R#H.

Proof. i) follows from Lemma 1.2.21. By Remark 1.4.3, it is easy to see that G

acts on R#H. The proofs of ii), iii) and iv) are similar to the ones of Proposition

1.3.6. 0

Hypothesis 1.4.5 Let N be a G-prime ideal of R.

Since N is a G-prime ideal of R, by Lemma 1.3.5, we can write N

nO/EaMOt = M n MX2 n ... n MXt for some M, minimal prime of Rover N

and X2, .•. ,Xt E G such that {M, MX2, ..• ,MX'} forms a single G-orbit of M

and M i- MXj i- MX] for all i,j E {2, ... ,t} such that i i- j and Xi, Xj i- la.

Assume Xl = la. So M = MXI.

Let G1,M be the subgroup of G defined by

GI,M = {O' E G : MOt = M}

and HI,M = W-1(GI,M). Thus HjHI,M ~ GjGI,M and this group is finite,

being isomorphic to a subgroup of the symmetric group on t symbols. Take

SI,M = R#HI,M, the skew-group ring of HI,M over R, so SI,M is a subring of S.

Proposition 1.4.6 Let PI be a G-prime ideal of SI,M such that PI n R = N.

There exists PI, a minimal prime ofSI,M over PI and/3I,'" ,/3s E G, such that

PI = nOtEaPIOt= pfl n ... n pf', PI n R = M and {pfl, ... ,pf'} forms a single

G-orbit of Pl.
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Proof. Let PI be a G-prime ideal of SI,M such that PI n R = N. Therefore

PI = naEGPf = pfl n ... n pfs, for some f3i E G and some PI, minimal prime of

SI,M over Pl.

Since N is a G-stable ideal of R, NS1,M is an ideal of SI,M. As M is G1,M-

stable, M Sl,M is an ideal of SI,M' As G is abelian we have also that for any

i E {2, , t}, MXi is Gl,M-stable, hence MX'Sl,M are ideals of Sl,M, for each

i E {2, ,t}. Now N Sl,M = M Sl,M n MX2S1,M n ... n MX'SI,M ~ PI. So

there is Xi such that MXiSl,M ~ r.. Without loss of generality, we can assume

M ~ PI n R. Since Dj=l(pf' n R) ~ PI n R = N ~ M, there is j E {I, ... ,t}

such that MfJ, ~ pf] n R ~ M ~ PI n R. As M{3] and M are minimal over the

G-stable ideal N, M{3, = pf' n R = M, hence M = PI n R and the result follows.

o

Proposition 1.4.7 Let P E Spec(S) such that P n R = N. Then

P = (P n SI,M)S,

Proof. Let P be a prime ideal of S such that P n R = N and 'A be a minimal

prime of SI,M over P n SI,M as in Proposition 1.4.6. Since the stabilizer of PI in

HI HI,M is {Hl,M} it follows from [86, Corollary 14.8] that (P nSI,M)S is prime.

It's obvious that (P n Sl,M)S ~ P. Since HI Hl,M is finite, by [86, Theorem

16.2], P is a minimal prime over the ideal (pnSl,M)S, Then P = (pnSl,M)S,

o

For every, E GI,M, we can think of 1, the automorphism of RI M induced by

"such that ;Y(r+M) = ,(r)+M, and defineSl,M = Sl,MIMSI,M = RIM#Hl,M

a skew-group ring over the ring RIM.

Take G2,M = {, E Gl,M :;Y = id} and H2,M = W-l(G2,M) ~ HI. Note that

G2,M = {, E G : ,(r) - rEM, for all r ER}. Form S2,M = R#H2,M ~ SI,M ~

S. So S2,M = S2,MIMS2,M ~ (RIM)H2,M' the group ring of H2,M over RIM.
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Let K be the fraction field of the commutative domain RIM. For each

"I E Gl,M, we can extend '1 to an automorphism "I" of J( in the obvious way. We

will abuse notation and write just "I instead or:'yor "I". Let S~,M = (I{#lIl,M).

Lemma 1.4.8 Let S~.M' I< and H2,M be as above. Then CS;.M(I<) = !\'H2,M

which is a commutative domain.

Proof. Let x = L kh,hl E Cs' (I<). Then, for all k E I<, xk = kx. ThatI,M
hlEHI,M

IS, L kh, lJI(hl)(k)hl = L kkh, hI. So kh, \fI(hd(k) = kkhll for each hI E
hlEHI,M hlEHI,M

Hl,M. Since K is a field, \fI(hd(k) = k, for all k E K, whenever kh, is nonzero.

Therefore each h., with a nonzero coefficient is in H2,M and then x E K H2,M. It's

obvious that K H2 M C Cs' (K). Consequently, Cs' (K) = I< H2 M. 0
, - I,M I,M'

Take <!S' a transversal set to H2,M in Hl,M. Then by Lemma 1.2.23, this set

is a basis of Sl,M, Sl,M or S~,M over S2,M, S2,M or K H2,M, respectively.

Proposition 1.4.9 Let p~ be a Gl,M-stable ideal of K H2,M. Then

Proof. If p~ is a Gl,M-stable ideal of Cs; M(K) = J<H2,M, P~S~,M is an ideal of

S~ M' It's obvious that {S2 + P~S~ M : S2 E I<H2,M} ~ Cs' Ins: ({k + P~S~ M :
, , I,M 2 I,M '

k E J<}).

We can think of K H2,M as being a Ksvecxo: space and of p~as a K-subspace

of K H2,M. Let Q~ be a complement of p~ in tcH2,M. Let S2 + P~S~,M E

CSI l t» ({k + P~S~ M : k E K}) and S2 = L sh2h2, for some Sh2 E K H2,M.
I,M P2S1 M ', ~E~

Since K H2,M = P~ EDQ~, without loss of generality, we can suppose that

82 = L qh2h2, for some qh2 E Q;. For all k E K, we have
h2E~'

k82 - S2k = L (kqh2 - Qh21J1(h2)(k))h2'
h2E~'

17



Since qh2 E Q; ~ K H2,M, kS2 - S2k = L (k - W(h2)(k))qh2h2'
h2EIl'>'

By hypothesis, kS2 - S2k E P~Sf.M' So, for each h2 E (B',

So, kS2 - szk = O. Therefore S2 E K H2,M and the result follows. 0

Proposition 1.4.10 Let P{ be an ideal of SLM' Then (P{ n K H2,M )SLM = P{.

Proof. It's obvious that P~ = P{ n K H2,M is a GI,M-stable ideal of K H2,M. We

have that P~S~,M ~ p:. Suppose that P~SLM £ P{ and take PI E P{\P~S{,M' So

PI = L khlhI' for some kh! E K. We can take PI with a minimal number of
h!EH!,M

nonzero kh!. Multiplying PI by an element of HI,M, if necessary, we may assume

kIH =j; 0, where IH is the identity of H.

Let k E K. Then kPI - Plk E P{, but

kPI - Pik =

L (kkh! - w(ht)(k)kh! )hI
h!EH!,M

has coefficient in IH equal to O. So, by the choice of PI, we have

Since k was arbitrary in K, PI +P~S~ M E CS' M/P.'S' ({k+P~S~ M: k E K}).
, I, 2 1,M I

By Proposition 1.4.9, there is p~ E I< H2,M such that PI + P~SLM = p~+ P~S~,M'

Then p~ E P~, so PI E P~S~,M' what contradicts the choice of Pl. Therefore

(P{ n KHz,M)S~,M = Pt. 0

Let EB~=1K be the direct sum of t copies of I<. Given any , E GI,M, then

, fixes M and all its G-conjugates, so , induces an automorphism of EBl=1 K

such that ,(kI"" ,kd = h(kd, ... ,,(kt)), for any kI, ... ,kt E K. Once again

we will abuse notation and write just, for these automorphisms. Let S~',M =

(IJJl=I/{)#HI,M and S~,M = (EB;=II<)Hz,M.
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Corollary 1.4.11 Let I be any ideal of S~/,M' Then I = (I n S;,M)S~/,M'

Proof. Let el, ... ,et be the primitive central idempotents of ml=IK. Also, by

definition of Ht,M, we have that the same elements are primitive central elements

of S~/,Mand that for all i E {I, ... , t}, S~/,Mei= eiS~/,M ~ K #Ht,M and S;,MCi =

eiS~,M ~ K H2,M. Then, for all i E {I, ... , t}, lei is an ideal of eiS;/,M ~ K#HI,M

and by Proposition 1.4.10, lei = (I n S~:MedS~/,Mei'

So, we have

I EEJ~=IIei

EB!=t (In S~Mei)S~:Mei

[EB~=l(In S~:Mei)][EB~=l(I n S~/,Mei)J

(I n S" )S"2,M I,M

and the result follows. D

Proposition 1.4.12 Let P be a prime ideal of S such that P n R = N. Then

-{3 -(3
Proof. By Proposition 1.4.6, P n SI,M = naEGPt = PI 1 n ... n Pt " for some

/31, ... ,/3s E G and PI a minimal prime of SI,M over P n Sl,M such that PI n R =

M.

Let PI = PtlMSI,M, a prime ideal of SI,M and C = CR/M(O). Since R/M is

a commutative ring, C is an Ore set in RIM. As M is Gl,M- and G2,M-invariant,

by Lemma 1.3.8, C is an Ore set in Sl,M and in 52,M, Sl,MC-l ~ SLM and

S2C-l ~ [{ H2,M. By [44, Theorem 9.22J, PlC-t is a prime ideal of S~,M' By

Proposition 1.4.10,

Since PI n C 0, SI,M/Pl is C-torsionfree [44, Lemma 9.21J. Hence

52,M/(Pl n52,M) is C-torsionfree and furthermore

is C-torsionfree. (1)
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Now we have

(PlC-I n I< H2)S~,M n SI,M by Proposition 1.4.10

(PI n S2,M )SLM n Sl,M

(PI n S2,M)SI,M by (1) and [44, Theorem 9.17].

So

and

P n SI,M ns p-(3)
j=l 1 by Proposition 1.4.6

nj=d(J\ n S2,M)SI,M]{3) by (2)

[(nj=l (1\ n S2,M )(3) )SI,M] since SI,M is free over S2,M

[(nj=l 'Pf)) n S2,M]SI,M

[P n SI,M n S2,M]Sl,M by Proposition 1.4.6

(P n S2,M)SI,M.

Now by Proposition 1.4.7, P = (pnSl,M)S = (pnS2,M)SI,MS = (pnS2,M)S.

o

Theorem 1.4.13 (Passman) There is an one to one correspondence, P, from

the set {P E Spec(S) : pnR = N} onto the set {P2 E SpecG(S2,M) : P2nR = N}

such that P(P) = P n S2,M and P = (P n S2,M)S.

Proof. If P E Spec(S) such that P n R = N, then P n S2,M is obviously a

G-stable ideal of S2,M. Moreover P nS2,M is G-prime by Proposition 1.4.4.

If P2 is a G-prime ideal of S2,M such that P2nR = N, P2S = SP2 is an ideal of

S and by Proposition 1.4.4, P2SnS2,M = P2. Also, we have that P2Sl,M = Sl,M P2

is an ideal of Sl,M. We claim that it is a G-prime ideal of SI,M. Let AI, BI be

G-stable ideals of SI,M such that AIBI ~ P2S1,M, where we may assume without

loss of generality that N ~ (AI n R) n(BI nR). Then (AI nS2,M)(Bl nS2,M) ~ P2
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and Al n S2,M, B, n S2,M are G-stable ideals of S2,M. Therefore Al n S2,M ~ P2

or e, n S2,M ~ P2. If Al n S2,M ~ P2, then by Corollary 1.4.11, we deduce that

Al = (AI n S2,M)Sl,M, so that Al ~ P2SI,M. Hence, P2SI,M is a G-prime ideal

of Sl,M. Then, by Proposition 1.4.6, P2SI,M = naECPIa, for some minimal prime

PI of SI,M over P2SI,M such that PI n R = M. Now, as HI HI,M is finite and

the stabilizer of Pr! P2S1,M is {HI,M}, it follows, by [86, Corollary 14.8], that

SIP2S ~ (Sl,MIP2S1,M) * HIH1,M is prime. So gs is a prime ideal of S.

By Proposition 1.4.12, we get the desired result. 0

1.5 Additional remarks

1. All definitions and results of this chapter are well known.

2. The main references for §2 and §3 are [44], [76] and [86].

3. The main references for §4 are [86J and [85J.
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Chapter 2

Prime Links in Skew-Laurent and

Skew-Polynomial Rings

Given a commutative domain R and a prime ideal P, we can form a ring, con-

taining the first, where the elements of R\P become units - that is, we localize

Rat P. One could try to extend this process to noncommutative rings but, even

in Noetherian rings, we have some obstructions to localization. Some of these

obstructions are caused by the existence of some relations between prime ideals;

given two primes "related" in this way, it is impossible to localize at one without

localizing at the other as well. These relations are called links, or prime links.

In a Noetherian ring R, there is a link from P to Q, for P,Q prime ideals of

R, if there is an ideal A of R such that PQ ~ A ~ P n Q and (P n Q)IA is

torsionfree as a left RI P-module and as a right RIQ-module. In such a case we

will write P "-""+ Q.

The graph of links of R is the directed graph whose vertices are the elements

of Spec(R) with an arrow from P to Q whenever P "-""+ Q. The connected com-

ponents of this graph are called cliques, and if P E Spec(R) the unique clique

containing P will be denoted by C£(P).

Links between prime ideals play also an important role in the representation
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theory of Noetherian rings, see for instance [26J. For some classes of noncom-

mutative Noetherian rings, it was possible to describe the links between prime

ideals, for instance, for group rings ( K.A. Brown in [19], [20J ); universal envelop-

ing algebras ( K.A. Brown and F. Du Cloux in [22], [21] ) and certain differential

operator rings ( G. Sigurdson in [98J and K.R. Goodearl in [43] ).

In [56], Jategaonkar introduced a condition (*) for Noetherian rings which

enables us to localize the ring with respect to the intersection of primes in a

finite clique, [44, Theorem 12.21J. This condition became known as the second

layer condition. A similar condition was introduced by K.A. Brown in [18J. In

[55J, Jategaonkar introduced another condition (:), later called the strong second

layer condition by the same author in [57].

In this chapter we describe the prime links in T = R[Ol,' .. ,On; al,.' . ,onJ
and S = R[Ot, Oil, ... ,On, 0;;1; al,'" ,an], the skew-polynomial ring and the

skew-Laurent ring, respectively, when R is a commutative Noetherian ring and

aI, ... ,an are pairwise commuting automorphisms of R. Let G be the group

generated by aI, ... ,an, H the group generated by 01, ••• ,On and \{1 the group

epimorphism from H onto G such that \(1(Oi) = aj, for every i E {I, ... ,n}.

It is known that S satisfies the second layer condition, [13, Corollary 7.4].

In §2 we shall show that S is AR-separated, Theorem 2.2.11, so it satisfies the

strong second layer condition. Using this fact, it is then possible to prove that T

satisfies the strong second layer condition, Corollary 2.2.14.

The study of links between prime ideals in skew-polynomial rings for just one

automorphism was carried out by Poole [88J. This chapter extends his results in

a similar spirit to the work of Goodearl [43J, who described the graph of links of

certain differential operator rings over a commutative Noetherian Q-algebra.

Let N be a G-prime ideal of R, so N = naEGMC> for a minimal prime M

over N in R, Lemma 1.3.5. By a result of Passman, Theorem 1.4.13, there is

a one to one correspondence between prime ideals of S contracting to Nand

some semiprime (actually G-prime) ideals of a new skew-Laurent ring S2, such
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that Sz/MS2 ~ (RIM)['l"ll, ... "v,,;lJ. Let S2 = S2IMS2. By a suitable

localization we will be able to assume that M is a maximal ideal of R and that

R is a semi local ring with Jacobson radical N. Write K = RIM, a field.

We start by describing the links between prime ideals contracting in R to

M in the special skew-Laurent ring S2. The links between prime ideals of S2

contracting to M will be described in §3 with f{tt-automorphisms, 0'1, ... ,O"u,

of [{tt @ S2 = S~, where f{tt is the algebraic closure of K = RIM. For each

i E {I, ... ,u} and j E {I, ... ,v}, let O'i(fj) = Cinj for some Cij E f{tt\{O},

determined by the action of the subgroup of G generated by \lIbd, ... , \lIbv) on

f{tt0 lW IM2. We will show in Theorem 2.3.9 that if /52 and Q2 are distinct prime

ideals of S2 contracting to M, then /52 'V't Q2 if and only if there is i E {I, ... , u}

and t», Qtt are prime ideals of S~ lying over Pz/ M S2 and Q21M S2, respectively,

such that O"i(ptt) = Qtt.

In §4, we prove that the links between distinct prime ideals P and Q of S

both distinct from NS and contracting to N, arise from links between minimal

primes of S2 over P n S2 and Q n S2 both contracting to the maximal ideal M,

Theorem 2.4.14.

Ignoring here for the moment technical complications caused by passage to

algebraic closures, we can sum up the above results as: the clique Cf( P) of a

prime ideal P of S consists of the set of images of P under the action of a

finitely generated abelian group of R-automorphisms of S. These automorphisms

are determined by the action of S2 in M 1M2.

In §5, to describe the prime links in 'T we reduce this problem to the same one

in S, Corollary 2.5.2. In the final section, §6, we give some examples to illustrate

the computation of cliques in some skew-Laurent rings and in skew-polynomial

rmgs.
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2.1 Definitions and background

In this section we introduce the notation, definitions and properties we will need

for the rest of this chapter.

Let R be a ring. Given a right R-module M and X a right Ore set, we denote

by tx(M) = {m EM: mx = 0 for some x E X}, the X-torsion submodule of

M. The module M is said to be X -torsion if tx(M) = M and X -torsionfree if

tx (M) = o. In the case M = R, tx (R) is an ideal of R. If R is a semiprime

Goldie ring (in particular if it is a semiprime Noetherian ring), the set of regular

elements is an Ore set, by Goldie's Theorem [44, Theorem 5.10]. In this case

instead of talking about a CR{O)-torsion or a CR{O)-torsionfree module, we will

only say R-torsion (or torsion as an R-module) or R-torsionfree (or torsionfree

as an R-module).

Definition 2.1.1 Let P and Q be prime ideals in a Noetherian ring R. We say

that P is linked to Q and write P ""+ Q, if there is an ideal A of R such that

PQ ~ A ~ P n Q and (P n Q)IA is torsion free as a left RIP-module and as a

right RIQ-module.

There are other definitions of links, the ones just defined are usually called

second layer links, although in this thesis we will just call them links. This defi-

nition was first introduced by Miiller in [83] for some special type of Noetherian

rings, the fully bounded Noetherian ones. Another type of link is defined below.

Definition 2.1.2 Let P and Q be prime ideals in a Noetherian ring. We say

that there is an ideal Link or internal bond from P to Q, if there are ideals of R,

J ~ I such that P I ~ J, IQ ~ J and I I J is a torsionfree right RIQ-module and

a torsionfree left RI P-module.

There is a bimodule Link or bond from P to Q, if there exists a nonzero

(RI P, RIQ)-bimodule which is finitely generated and torsionfree on each side.
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Definition 2.1.3 Let R be a Noetherian ring. The graph of links of R is the

directed graph whose vertices are the elements of Spec( R) with an arrow from

P to Q whenever P ~ Q. The connected components of this graph are called

cliques, and if P E Spec(R) the unique clique containing P will be denoted by

Cf(P).

We say that P E Spec( R) has only a trivial link if whenever P ~ Q or

Q ~ P, we have P = Q.

Remark 2.1.4 1) In a commutative Noetherian ring the only possible links are

the trivial ones. Thus in a commutative Noetherian domain, for every prime P,

Cl(P) = {Pl.

2) If P and Q are prime ideals in a Noetherian ring and P ~ Q, it may happen

that 0 is not linked to P. For instance take R = [~ ~ l' P = [: ~ land

o = [~ ~lAs OP = 0n P, 0 is not linked to P. To prove that P is linked

to Q, as P and Q are maximal ideals of R, it is enough to notice that (pnQ)/ PQ

IS nonzero.

Given a Noetherian ring R, there is a relation between prime links and some

series for some R-modules. This relation is given by Jategaonkar's Main Lemma,

Theorem 2.1.12. Before stating this theorem we need some more notation.

Definition 2.1.5 Let R be a ring and M a right R-module. A prime ideal P of

R is an associated prime of M if there exists a submodule 0 =I- N ~ M such that

P = r.annR(N'), for all 0 =I- N' :S N. The set of all associated primes of M is

denoted by Ass(M).

Lemma 2.1.6 If U is a uniform right module over a right Noetherian ring R,

then there exists a unique associated prime of U.
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Proof. [44, Lemma 4.22J D

Definition 2.1.7 If U is a uniform right module over a right Noetherian ring,

the unique associated prime of U is called the assassinator of U.

It is easy to see that if M is a right module over a right Noetherian ring that

Ass(M) equals the set of assassinators of uniform submodules of M. The next

proposition follows easily from the definitions given before.

Proposition 2.1.8 Let M be a right module over a Noetherian ring. For any

submodule N oj M, Ass(N) ~ Ass(M). Moreover, iJ N is an essential submodule

oj M, then Ass(N) = Ass(M).

Proof. [57, Proposition 4.2.1J D

Definition 2.1.9 Given a prime ideal P of a ring R, a right R-module M is

called P-primary if Ass(M) = {P}.

Definition 2.1.10 An affiliated series of a right R-module M is a sequence of

submodules of M

o = Mo ~ Ml ~ ... ~ Mn-1 ~ Mn = M

together with a set of prime ideals of R, {PI,'" ,Pn} called affiliated primes

such that each Pi is maximal among the annihilators of nonzero submodules of

MjMi-1 and Mi/Mi-1 = l.annM/Mi_l(Pi), In particular each Pi is maximal in

Ass(MjMi_1).

Proposition 2.1.11 Every nonzero finitely generated right module over a right

Noetherian ring R has an affiliated series.

Proof. [44, Proposition 2.13] 0

27



Theorem 2.1.12 (Jategaonkar [56, Lemma 2.2]) Let R be a Noetherian

ring, and let M be a right R-module with an affiliated series 0 ~ U ~ M and

corresponding affiliated prime ideals Q and P, such that U ::;e M. Let M' be a

submodule of M, properly containing U, such that the ideal A = r.annR(M') is

maximal among annihilators of submodules of M properly containing U. Then

exactly one of the following two alternatives occurs:

i) P ~ Q and M' P = O. In this case, M' and M'I U are faithful torsion

RI P-modules.

ii) P -v-+ Q and (P n Q) IA is a linking bimodule between P and Q. In this

case, if U is torsionfree as a right RIQ-module then M'IU is iorsionfree as

a right RI P -module.

Definition 2.1.13 Let R be a Noetherian ring and Q any prime ideal of R. We

say that Q satisfies the right strong second layer condition if given the hypothesis

of Theorem 2.1.12, i) never occurs.

The ideal Q is said to satisfy the right second layer condition if given the

hypothesis of Theorem 2.1.12 and the additional hypothesis that U is torsionfree

as an RIQ-module, i) never occurs.

A ring is said to satisfy the right strong second layer condition and right second

layer condition if the corresponding condition holds for every prime Q of R.

The left strong second layer condition and the left second layer condition are

defined similarly.

A ring is said to satisfy the strong second layer condition or the second layer

condition if it satisfies these conditions on both the left and the right.

Theorem 2.1.12 shows that links between prime ideals may arise from affiliated

series of a module. The next theorem shows that all links between prime ideals

arise from affiliated series of some modules.
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Theorem 2.1.14 (Jategaonkar, Brown) Let R be a Noetherian ring and P

and Q prime ideals of R. Then P ~ Q if and only if there exists a jiniieb]

generated uniform right R-module M with an affiliated series 0 ~ U ~ M such

that U is isomorphic to a (uniform) right ideal of RIQ and M IUis isomorphic

to a uniform right ideal of RIP.

Proof. [44, Theorem 11.2J 0

Proposition 2.1.15 Let Q be a prime ideal in a Noetherian ring R. The prime

ideal Q satisfies the right strong second layer condition if and only if there does

not exist a finitely generated uniform right R-module M with an affiliated series

o ~ U ~ M and corresponding affiliated prime ideals Q and P such that M I U is

uniform, P ~ Q and MP = O.

Proof. [44, Proposition 11.3J 0

Definition 2.1.16 Let R be a Noetherian ring and P,Q prime ideals of R. We

say that the pair (P, Q) is strongly undesirable if P ~ Q and there is a finitely

generated uniform R-module M containing a nonzero submodule U whose unique

assassinator prime is Q and such that U = l.annM(Q), r.annR(M) = P and MIU

has unique associated prime P.

The following proposition gives us a useful criterion to check if cl, ring satisfies

the right (or left) strong second layer condition.

Proposition 2.1.17 A Noetherian ring R satisfies the right strong second layer

condition if and only if there are no pairs of strongly undesirable prime ideals.

Proof. Let R be a Noetherian ring. Suppose that R satisfies the right strong

second layer condition and (P, Q) is a pair of strongly undesirable prime ideals of

R. So P ~ Q and there is a finitely generated uniform R-module M containing
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a nonzero submodule V whose unique associated prime is Q and such that U =

l.annM(Q), r.annR(M) = P and M/U has unique associated prime P.

As M/V has a uniform submodule, say M'/V, the module M' will satisfy

all the properties of M above. Hence, we may assume that M = M'. As U

and MIV are uniform R-modules with assassinator Q and P, respectively, the

series 0 ~ U ~ M is an affiliated series with affiliated primes Q and P such

that P ~ Q and MP = O. So, by Proposition 2.1.15, Q does not satisfy the

right strong second layer condition, a contradiction. Hence there are no pairs of

strongly undesirable primes.

Conversely assume that there are no pairs of strongly undesirable primes of

R and that there is Q and a finitely generated uniform right R-module M with

an affiliated series 0 ~ V ~ M and corresponding affiliated prime ideals Q and

P such that Mft! is uniform, P ~ Q and MP = O. As affiliated primes are

in particular associated primes of the corresponding factors, and M and M / U

are uniform, the associated primes of each of these modules is unique, hence

the assassinator of M is Q and the one of M/U is P. Since M is uniform,

the assassinator of M and of U is the same. Obviously P ~ r.annR(M). If

1= r.annR(M), then I ~ r.annR(MIU) ~ P. Hence r.annR(M) = P. So (P, Q)

is a pair of strongly undesirable primes of R, a contradiction. So for each Q there

does not exist such a module. The result follows now by Proposition 2.1.15. D

Many classes of rings satisfy the second layer condition. For example, this is

the case for enveloping algebras of any solvable Lie algebra (A.V. Jategaonkar [57,

Theorem A.3.9]), polycyclic-by-finite group rings over a commutative Noetherian

ring (K.A. Brown [18, Proposition 2.2] and A.V. Jategaonkar [55, Theorem 4.5])

strongly graded rings of polycyclic-by-finite groups over commutative Noetherian

coefficient rings (A.D. Bell [13, Corollary 7.4]), as well as Noetherian PI-rings or

more generally FBN rings. On the other hand, many Noetherian rings do not

satisfy the second layer condition, for instance enveloping algebras of semisimple

30



Lie Algebras (K.A. Brown [18, Theorem 4.4.3]) but no example is known of a ring

satisfying the second layer condition and not satisfying the strong second layer

condition. The next theorem and lemma describe some properties of bimodulcs

over rings satisfying the second layer condition.

Theorem 2.1.18 (Jategaonkar [57, 8.2.8]) Let Rand S be Noetherian rings

satisfying the second layer condition, and suppose there exists a bimodule REs

which is finitely generated and faithful on both sides. Then Cl.Kidimf R) =

el.K.dim(S).

The following lemma is an easy generalization of a similar result for faithful,

finitely generated bimodules over Noetherian prime rings satisfying the second

layer condition, [42, Lemma 1.3].

Lemma 2.1.19 Let Rand S be semiprime Noetherian rings satisfying the sec-

ond layer condition, and let REs be a bimodule which is finitely generated and

faithful on each side. Suppose also that Cl.Kcdim] R) = Cl.Kidimf RI P) and

el.K.dim(S) = el.K.dim(SIQ), for all P and Q, minimal primes of Rand S,

respectively. Then the torsion submodules of B as a left R-module and right S-

module, are the same and different from B. Therefore, there exists a sub-bimodule

B' ~ B such that B I B' is torsionfree on each side.

Proof. Suppose B as above. By Theorem 2.1.18, el.K.dim(R) = el.K.dim(S).

Let C = CR(O) and V = Cs(O), Ore sets in Rand S, respectively. Let

T = te(B), the C-torsion submodule of E. In fact, T is an (R, S)-bimodule.

We claim that T ~ tv(B).

As T is an S-submodule of a finitely generated module over the Noetherian

ring S, T is finitely generated as a right S-module. Therefore, exists e E C such

that eT = O. If T = E, c E l.annR(B) = 0, a contradiction. Let I = l.annR(T).

Since « c L, I is not contained in any minimal prime of R, by [44, Proposition
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6.3]. Thus setting J = r.anns(T),

Cl.K.dim(SIJ) = Cl.K.dim(RII) < Cl.K.dim(R) = Cl.K.dim(S)

by two applications of Theorem 2.1.18. Thus J n 'D -=f 0, proving the claim.

Similarly, t1)(B) ~ T. Take B' = tv(B). 0

Corollary 2.1.20 Let R be a Noetherian ring satisfying the second layer con-

dition, and let P and Q be prime ideals of R. Then P -v-+ Q if and only if

(P n Q)I PQ is faithful as a left RI P-module and as a right RIQ-module.

Remark 2.1.21 Lemma 2.1.19 remains true without the assumption that Rand

S are semi prime: it is enough to assume that Rand S have classical quotient

rings. The proof is essentially the same, since any minimal prime ideal in a

Noetherian ring consists of zero divisors.

2.2 The strong second layer condition

In this section we will show that some skew-polynomial rings and skew-Laurent

rings over a commutative Noetherian ring satisfy the strong second layer con-

dition. To prove this we show that these rings belong to a larger class, the

AR-separated rings, which satisfy the strong second layer condition. "Ve start

by describing the AR-property and by fixing some notation that we will keep

throughout the section.

Definition 2.2.1 An ideal I in a ring R has the right AR-property if for every

right ideal K of R, there is a positive integer n such that K n In ~ K I. The left

AR-property is defined similarly, and I has the AR-property if it has both the

right and the left AR-properties.
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Definition 2.2.2 If R is a ring and I an ideal of R, then the Rees ring of I is

the subring RR(I) of the polynomial ring R[x] defined by

2 2 i iRR(I) = R + I x + I x + ... + I x + ...

Lemma 2.2.3 If I is an ideal in a ring R, and the Hees ring RR( I) is right

Noetherian, then I has the right A R-property.

Proof. [44, Lemma 11.12] 0

Theorem 2.2.4 (Artin, Rees) If R is a Noetherian ring and I is an ideal of

R generated by central elements, then RR( I) is Noetherian and hence I has the

AR-property.

Proof. [44, Theorem 11.13] 0

Definition 2.2.5 A ring R is right AR-separated if for every pair of prime ideals

P and Q in R such that P ~ Q, there is an ideal I such that P ~ I ~ Q and I I P

has the right AR-property in RIP. Left AR-separated is defined symmetrically.

The ring R is said to be AR-separated if is both left and right AR-separated.

Proposition 2.2.6 If R is a Noetherian ring which is right AR-separated, then

R satisfies the right strong second layer condition.

Proof. [44, Lemma 11.14] 0

Proposition 2.2.7 Let I be an ideal in a Noetherian ring R, and let P and Q

be prime ideals of R with P 'V'-t Q. If I ~ Q and I has the right AR-property,

then I ~ P. Similarly, if I ~ P and I has the left AR-property, then I ~ Q.

Proof. [44, Proposition 11.16] 0
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Notation 2.2.8 If R is any rmg, al, ... , an E Aut(R), commuting pair-

wise and I = (il"'" in) E zn, we will denote by af the automorphism

a~l ... a~n of R and by ()f the element ()~l ... ()~n of the skew-Laurent ring

R[()I,Oll, ... ,()n,();;l;al,'" ,an],

For the rest of the chapter R will always be a commutative

Noetherian rmg, al, ... , an pairwise commuting automorphisms of R,

T R[OI, ... , ()n; al, , an] the skew-polynomial rmg and

S = R[Ol, OIl, ... ,On,();;l; al, , an] the corresponding skew-Laurent ring.

We let H be the multiplicative abelian subgroup of the group of units of S gen-

erated by 01, •.. , ()n, G the multiplicative abelian subgroup of Aut(R) generated

by at, ... , an and \II : H ---t G the group homomorphism such that \II(Od = ai.

Write S = R * H.

The following lemma shows that, when calculating the cliques of S, one can

fix an ideal of R as prime ideals of S in the same clique will contract to the same

ideal of R.

Proposition 2.2.9 If P and Q are prime ideals of S such that P ~ Q, then

PnR= QnR.

Proof. As R is a commutative Noetherian ring, RR(P n R) is Noetherian and

P n R has the AR-property, Theorem 2.2.4.

Since Rs((P n R)S) S + t(P n R)S + t2(P n R)2S + ...
RR(P n R)[OI, e;', ... ,On,e;', al,'" , an], Rs((P n R)S) is Noetherian by [44,

Theorem 1.17] and so (P n R)S has the AR-property.

By the two parts of Proposition 2.2.7, P n R = Q n R. 0

Notation 2.2.10 Let N be a G-prime ideal of R and let M be a prime ideal of R

minimal over N. Then by Lemma 1.3.5, N = naEGMC> = MXl n MX
2 n ... n MXt,

where Xl, X2,' •• , x, is a complete set of coset representatives of the stabilizer
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Gl,M = {a E G : MD = M} in G. \Ve will write M, = MX'. For convenience we

take Xl = Ie, whence Ml = M. Note that M, # Mj for all i # j, i,j = 1, ... ,t
and that {Ml' M2, ... ,Md is the G-orbit of M in Spec(R).

We set Hl,M = W-l(Gl,M) and SI,M = R* Hl,M, the skew group ring of Hl,M

over R.

For every a E Gl,M, we will write a for the automorphism of R = RI M

induced by a and denote by Gl,M, the group of these induced automorphisms of

R. Let SI,M = SI,M/MSl,M ~ (RIM) * HI,M, a skew group ring over the ring

RIM.

Take G2,M = {a E Gl,M : a = idIR/M} and H2,M = W-l(G2,M) ~ Hl,M. Note

that G2,M = {a E G : a(r) - rEM, for all r ER}. Form S2,M = R * H2,M ~

Sl,M ~ S. So S2,MIMS2,M ~ (RIM) * H2,M and write S2,M = S2,MIMS2,M.

Let H2,M be freely generated by ,I,M, "v,M. As G2,M acts trivially on RIM,

we have that S2,M = (RIM)bl,M,,~ir, "v,M,,;;:ir], a commutative Laurent

polynomial ring.

As N is a G-stable ideal of R, N Sand N S2,M are ideals of Sand S2,M,

respectively. We let S = SINS and S2,M = S2,MINS2,M ~ RIN * H2,M. Since

G is an abelian group and because of the way we defined G2,M, it is easy to see

that this group acts trivially on RI N. Hence S2,M ~ (RI N)H2,M, a commutative

Laurent polynomial ring.

Whenever M is well understood, we will just write SI, S2, SI, S2, S2, HI, Gl,

H2, G2, ,1, "V instead of Sl,M, S2,M, Sl,M, S2,M, S2,M, Hl,M, Gl,M, H2,M,

G2,M, ,I,M, "v,M'

Theorem 2.2.11 The ring S is AR-separated.

Proof. Let P and Q be prime ideals of S such that P ~ Q.
Suppose first that P n R ~ Q n R. As R is commutative, RR( Q n R), the

Rees ring of Q n Rover R, is Noetherian, Theorem 2.2.4.
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Since Rs((Q n R)S) = S + t(Q n R)S + [2(Q n R)2S + ...
RR( Q n R)[OI, 011, ... ,On, 0;;1; aI, ... ,anJ, Rs(( Q n R)S) is Noetherian by [44,

Theorem 1.17J and so (P + (Q n R)S) / P has the AR-property in S / P.

Suppose now that Q n R = P n R = N. Let H2 =< 11, ... .v«> be H2,M

as before. If P n S2 = Q n S2, then Q = P by Theorem 1.4.13, a contradiction.

Hence P ~ P + (Q nS2)s. As S2 = S2/ NS2 is commutative, Rs
2

(( Q nS2)/ NS2)

is Noetherian by Theorem 2.2.4. Since

Rs((Q n S2)S/NS) = S + ((Q n S2)/NS2)St + ...
<Rs

2
((QnS2)/NS2),01,011,,,. ,On,O;;1 >,

and for each i E {I, ... ,n}, OiRs
2
((Q n S2)/NS2) = Rs

2
((Q n S2)/NS2)Oi,

'R=s((Q n S2)S/NS) is Noetherian, [75, Theorem 9J. Hence (P + (Q n S2)S)/ P

has the AR-property. Thus in all cases we have found a nonzero ideal of S/ P

contained in Q/ P, with the AR-property in S/ P, and so S is AR-separatcd. 0

Corollary 2.2.12 The ring S satisfies the strong second layer condition.

Proof. Theorem 2.2.11 and Proposition 2.2.6. D

The following proposition and Corollary 2.2.12 will allow us to prove that the

ring T satisfies the strong second layer condition.

Proposition 2.2.13 Let W be a Noetherian ring, let Y be a set of normal ele-

ments in Wand let X be the multiplicative submonoid ofW generated by Y. The

ring W satisfies the strong second layer condition if and only if W / yW satisfies

the strong second layer condition for all y E Y and W X-I satisfies the strong

second layer condition.

Proof. Assume Y as above. As Y is a set of normal elements of W, X is a right

and left Ore set.

36



Assume that W X-I and WjyW satisfy the right strong second layer condition

for all y E Y. (The proof for the left case is similar). Suppose that there is a

pair (P, Q) of strongly undesirable prime ideals of W as in Definition 2.1.16;

that is P ~ Q and there is a finitely generated uniform W-module V containing

a nonzero submodule U whose unique assassinator prime is Q and such that

U = l.annv(Q), r.annw(V) = P and VjU has unique assassinator prime P.

We consider each of the following cases: (1) P n Y = 0 = Q n Y; (2) there is

y E Y such that yE Q\P; and (3) Q n Y =I- 0 and for y E Y, y E Q if and only

if YEP.

If case (1) occurs, since Y is a set of normal elements of W, Pnx = Qnx = 0.
By [44, Theorem 9.22], PX-I and QX-l are distinct prime ideals of W X-I.

Suppose that U is not X-torsionfree. Then, there would be u E U\{O} and x E X

such that ux = O. As X is a set of normal elements, we have (uW)(xW) = 0,

whence Q ~ Q+xW ~ r.annw(uW), contradicting the assumption that Q is the

assassinator prime of U. Hence U is X -torsionfree. As U is essential in V, V is

X -torsionfree as well.

As V is a finitely generated uniform right W-module, VX-I is a finitely

generated right WX-I-module. The X -torsionfreeness of V and U shows that

the modules VX-I and UX-I have annihilators PX-I and QX-1, respectively.

Hence as pX-I and QX-I are distinct, VX-I contains properly the WX-I-

submodule UX-I, whose unique assassinator prime is QX-I. Assume that VjU

is not X-torsionfree. As we may suppose that VjU is uniform, we may as well

assume that VjU is X-torsion. Hence VX-1 = UX-t, a contradiction. The X-

torsionfreeness of VjU implies that VX-I /U X-I has unique assassinator prime

PX-I. Therefore (P X-I, QX-I) will be a strongly undesirable pair of prime

ideals of WX-I, a contradiction.

If case (2) occurs, let y E Y be in Q\P. As y is a normal element of W, yW

is an AR-ideal of W [76, Proposition 4.2.6]' and so (P + yW)j P is an AR-ideal

of Wj P. Since V is an WI P-module and U(P + yW) = 0, there is m such
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that V(P + yw)m = 0, [44, Lemma l1.11J. Since l.annw(V) = P, yW ~ P, a

contradiction.

If case (3) occurs, let yEP n Q n Y. Hence (P/yW,QlyW) is a strongly

undesirable pair of primes of WlyW, contradicting the hypothesis.

Hence no strongly undesirable pair of primes exists in Wand so W satisfies

the right strong second layer condition.

Conversely, assume that W satisfies the right strong second layer condition.

Then so does W/yW, for all y E Y. We will show that there are no pairs of

strongly undesirable primes of WX-I.

By [44, Theorem 9.22J, every prime ideal of WX-I is of the form PX-I where

P is a prime ideal of W such that P n X = 0. Let P and Q be prime ideals of W

such that pnx = 0 = Qnx and (P X-I, QX-1) is a pair of strongly undesirable

prime ideals of WX-I; so PX-I ~ QX-I and there is a finitely generated uniform

WX-I-module V' containing a nonzero submodule V' whose unique associated

prime is QX-I and such that V' = l.annv,(QX-I), r.annWX-I (V') = PX-I and

V'IV' has unique associated prime PX-I.

Assume that V' is generated by VI, ... ,Vr as a WX-I-module. Then V =

2:i"=1 ViW is an W-submodule of V', finitely generated and such that VX-I = V'.

Also V is X-torsionfree. If Vi and V; are W-submodules of V such that vlnv; = 0,

then VIX-1 and V2X-I are WX-I submodules of V' with intersection o. As V'

is uniform either VI X-I = 0 or V2X-I = 0. As V is X-torsionfree, either Vi = 0

or V; = 0, hence V is uniform as an W-module.

Take V = V' n V. By [44, Proposition 9.17], V' = VX-I and so

V =1= 0 and V =f: V. Since VQ C V'QX-I = 0, U ~ l.annv(Q). Since

(l.annv(Q))QX-I = 0, l.annv{Q) C U'. So U = l.annv(Q). Also we have

V P ~ V' PX-I = 0, so P ~ r.annw{V). Let I = r.annw(V), which is an ideal of

W. As W is Noetherian by [44, Theorem 9.20]' I X-I is an ideal of WX-I. As

V' = VX-I, V'IX-I = VIX-I = 0, so IX-1 ~ PX-1• Since Pnx = 0, by [44,

Lemma 9.21] X ~ Cw{P), so I ~ P. Hence r.annw(V) = P.
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As Ass(U') = {QX-I}, there exists U" an RX-l-submodule of U', such that

r.annWx-l(U") = QX-I and all non-zero submodules of [J" have annihilator

QX-I. By [44, Theorem 9.17], U" = (U" n V)X-I. As before we can conclude

that r.annw(V" nV) = Q. Also as the annihilator of any non-zero W-submodule

of V" n V, say J, will be such that JX-I will annihilate a WX-I-submodule of

V", JX-I ~ QX-I. As X ~ Cw(Q), J ~ Q. SO, as U is uniform, we conclude

that Ass(V) = {Q}.

As V' / U' has unique associated prime PX-I, we may assume that V' / U' is

uniform with assassinator PX-I. As V is X-torsionfree so is U' n V. It is then

clear that V/U' n V is uniform. By an argument similar to the one before, we

can see that P is an associated prime of V/U' n V, hence is unique. So (P, Q)

is a pair of strongly undesirable primes of W, contradicting the hypothesis. So

WX-I satisfies the right strong second layer condition. The left version is proved

in a similar way. 0

Corollary 2.2.14 The ring T satisfies the strong second layer condition.

Proof. We will argue by induction on the number n of automorphisms of R.

If n = 0, then T = R and by Theorem 2.2.4, T is an AR-separated ring.

Hence it satisfies the strong second layer condition by Proposition 2.2.6.

Suppose that for all l ::; n - 1 and for all il, ... ,il E {I, ... ,n},

R[Oill ,Oi,; aill ... , ai,] satisfies the strong second layer condition. Let Y =
{Ol, ,On} and X = {OJ: J EN}, an Ore subset of T. As TX-I ~ S, by

Corollary 2.2.12, TX-I satisfies the strong second layer condition. By the induc-

tion hypothesis, T/OjT ~ R[OI,'" ,Oi-I,Oi+1,'" ,OnjaI,'" ,ai-hai+I, ... ,an]
satisfies the strong second layer condition, for any i E {I, ... ,n}. By Proposition

2.2.13, T satisfies the strong second layer condition. 0
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2.3 Prime links in skew-Laurent rings contract-

ing to a maximal ideal

In this section we describe the links between prime ideals contracting to maxi-

mal ideals in some skew-Laurent rings. The general case will be studied in the

following sections. Proposition 2.3.2, 2.3.3 and Theorem 2.3.4 can and will be

generalised in the next section. We start by fixing some notation that we will

keep through the rest of this chapter.

Notation 2.3.1 Let R be a commutative Noetherian ring, /31, ... ,/3v automor-

phisms of R commuting pairwise and 52 = Rbi, '11,... "V, ,;1; /31, ,/3v] the

skew- Laurent ring. Denote by G2 the abelian group generated by /31, ,{3v and

H 2 the torsionfree group generated by ,1, ... "v·

Take M a maximal ideal of R, write K = RI M and assume that each

{3 E G2 fixes M and induces the identity in K. Write 52 = 5d M 52 ~

Kb1,,11, ... "v,,;l] = KH2. Note that S2 is S2.M of Notation 2.2.10 and

(3i = \II(Ji) where \II is as in Notation 2.2.8.

Proposition 2.3.2 The ideal MS2 is a prime ideal ofS2, Cf(MS2) = {MS2}

and MS2 .."...MS2 if and only if M=/:-M2.

Proof. As S21M S2 ~ K H2 is a commutative Noetherian domain, M S2 IS a

prime ideal of S2.

Suppose that there is a prime P of S2 such that P .."...M S2 or M S2 .."...P.

Then by Proposition 2.2.9, P n R = MS2 n R = M and so MS2 ~ P. By

Theorem 2.1.18, Cl.K.dim(S2/MS2) = Cl.K.dim(S21 P), so MS2 = P.

Obviously, if MS2 .."...MS2, then MS2 =/:- M2S2 and so M =/:- M2. Conversely,

suppose M =/:- M2. As S2 is free as a right and left R-module, M 52 1M2 52 is

faithful as a right and left S2/MSTmodule. Thus MS2 .."...MS2• 0
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Proposition 2.3.3 Every prime ideal oj S21 properly containing M S2 is linked

to itself.

Proof. Let P be a prime ideal of S2, properly containing MS2.

As S2 satisfies the second layer condition, by [23, Proposition 2.5]' there will

be some prime of S2 linked to the non-minimal prime P/MS2 of S2. Since S2 is

commutative, there are no links between distinct primes of S2, so we will have

P/MS2 ~ P/MS2 and so P ~ P. 0

Theorem 2.3.4 Let P2 and Q2 be distinct prime ideals o] S2, distinct [rom MS2,

such that P2nR = Q2nR = M. Then P2 ~ Q2 iJ and only iJ MSl/(P2M +M(2)

is faithful as a left S2/ P2-module and as a right SdQ2-module

Proof. Let P2, Q2 be as stated. Suppose P2 ~ Q2 via (P2 n (2)/ A, for some

ideal A of S2 such that P2Q2 ~ A ~ P2 n Q2.

If MS2 ~ A, then P2/MS2 ~ OdMS2 and since S2 is commutative P2 =

Q2, a contradiction. So A ~ MS2 + A. Hence MSl/(MS2 n A) is faithful

as a left S2/ P2-module and as a right Sl/Q2-module. The same happens with

MS2/(P2M + M(2), since this bimodule has MS2/(MS2 n A) as a factor.

Conversely, suppose that M S2/(P2M +M(2) is faithful as a left S2/ P2-module

and as a right SdQ2-module. Since, by Corollary 2.2.12, S2 satisfies the second

layer condition, by Theorem 2.1.18,

(2.1 )

By Lemma 2.1.19 there is an ideal A of S2 such that P2M + MQ2 < A ~ MS2

and M S2/ A is torsionfree as a left Sl/ P2-module and as a right SdQ2-module.

Therefore the bimodule MSl/A is a bond from P2/A to Q2/A. By [42, Theorem

1.1], there are Po/A, ... ,Pr/A, with r 2:: 1, distinct prime ideals of Sl/A such

that

41



Suppose Po/A ~ PdA via (Po/A n PdA)/(B/A), for some ideal B of S2 such

that A ~ Band POPI ~ B ~ Pon PI. Then, Po ~ PI via (Po n PI)/ B. As above

l'vf Sd (M S2 n B) is faithful as a (Sd j\, S2/ PI )-bimodule. As M Q2 ~ M S2 n A <
MS2 nB, it follows that Q2 ~ Pl.

Since FdA ~ PdA, Cl.K.dim(S2/ P2) = Cl.ICdim(S2/ pt) and thus

Cl.K.dim(Sd Pd = Cl.K.dim(Sz/Q2), by (2.1) above. Hence PI = Q2 and

P2/A ~ Q2/A. Therefore P2 ~ Q2' 0

Suppose two distinct prime ideals P2 and Q2 of S2 both contract to M. If

there is a link between them, then as S2 = S2/MS2 is a commutative Noetherian

ring, M2 ~ M. Without loss of generality, in studying the relation between P2

and Q2, we can suppose M2 = 0, and we shall do so until Theorem 2.3.11.

By Theorem 2.3.4, any two distinct primes P2 and Q2 of S2, both distinct

from MS2, such that P2 n R = Q2 n R = M, are linked if and only if B =

MSd(F2M + M(2) is faithful as a left Sz/ P2-module and as a right S2/Qz-

module. Let S2 = Sz/MS2 ~ KH2, P2 = Pz/MS2 and Q2 = Q2/MS2' Then B

is a factor bimodule of M S2, faithful on each side as an (S2/ P2, S2/Q2)-bimodule.

Let [{ti be the algebraic closure of K, Take Mti = [{ti @K M and S~ =

Kti @K S2 ~ [{tibhlll, ... "v,,;lj.

We can view Mti = [{ti @K M as a left S~-module, by defining li.(k ® m) =

li(k@mhi-l = k@'im'i-I, for every i E {I, ... ,v}, m E M and k E Kti.

Obviously ,jm,i-I = (3j(m), for each i E {I, ... ,v}.

As M is an ideal of a Noetherian ring, it is a finite dimensional vector space

over [{, so the same is true for Mti as a [{ti-vector space. Hence as a left S~-

module, Mti has a composition series whose composition factors are isomorphic

to sV Ej, for some distinct maximal ideals El, ... ,Eu (with some multiplicities).

Since [{ti is algebraically closed, we may write E, = < II - Cil, "V - Civ >,
where Cil, ... ,Civ E Kti\{O}. As S~ is commutative, we get (E~u Ei').Mu = 0

with each J.lj chosen minimal. Now, decomposing U = sV E~u Ei' into a

42



direct sum of primary rings, we can think of w as a left V-module and write

where, for each i E {I, ... , u}, D~= inti E Mti : Et' . nti = OJ, an S~-submodulc

of u«.
For each i E {I, ... , u} define the [{ti-algebra automorphism

Ij t--+ Cij/j

Taking a composition series of D~ as a left S~-module we get a [{ti-basis for

D~, say {mil,'" ,mini}' such that for all j E {I, . .. ,v} and k E {2, . .. ,7]i},
k-l

hj - Cij) . mik = 0 (mod L [{timi!) and hj - Cij).miI = O.
1=1

Th I tti j(l) j(v) r '(1) .() '7Jen, e mg I = 11 .. 'Iv ,lor some) , ... ,) v E ILJ,

Hence
k-l

Ijmik - mikO"ihj), ,mik = mik(7ih) (mod L S~mil),
1=1

Notation 2.3.5 We will retain the notation introduced before in Notation 2.2.8.

In addition, we assume that M2 = 0, and S~, Mti, DL ... ,D~, Cij, mik. for i E

{I, ... ,u}, j E {I, ... ,v}, k, E {I, ... ,7];} and O"t, ••• ,O"uwill be as immediately

above.

Lemma 2.3.6 Let B be a finitely generated faithful module over a commutative

Noetherian ring R. Let Q be a minimal prime of R. Then B I BQ is faithful as an

RIQ-module, so B has a nonzero factor which is torsionfree as an RIQ-module.
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Proof. By Proposition 2.1.11, we can build an affiliated series for B,

with corresponding affiliated primes PI,'" ,Pn. Hence BPn ... PI = 0 and so

Pn ... PI = 0 ~ Q. Then, there is i E {I, ... ,n} such that Pi = Q. Without

loss of generality, we can suppose that Pi is the last occurence of Q in the list

{PI,'" ,Pn}.

Let 1= r.ann(B/BQ). Then BIPn ... Pi+I ~ Bi-I. Hence IPn ... Pi+I ~

r.ann(Bi/ Bi-I) = Q. As Q t!. {Pi+1,'" ,Pn} and Q is a minimal prime of R,

I ~ Q. Hence 1= Q and B/ BQ is faithful as a right R/Q-module. 0

Theorem 2.3.7 Retain Notation 2.3.5. Let P2 and Q2 be distinct primes of S2,

both distinct from MS2, such that P2 n R = Q2 n R = M. Take P2 = P2/MS2,

Q2 = Q2/ M S2 and Qti a prime ideal of S~ lying over Q2' If P2 -v-+ Q2 then there

is i E {I, ... ,u} such that O'i1(Qti) lies over P2'

Proof. Let P2, Q2 and accompanying notation be as in the statement of the

theorem. As S~ is Noetherian and P2S~, Q2S~ are ideals of S~, there is just a

finite number of minimal primes over P2S~ and Q2S~, These are exactly the

primes of S~ lying over P2 and Q2' respectively, by GU and INC, [63, Theorem

44].

By Theorem 2.3.4, MS2/(P2M + M(2) is faithful as an (S2/ P2, Sz/Q2)-

bimodule. As S~ is commutative and free over S2, S~ 052 (MSz/ P2M + M(2)

is faithful as a left sV P2S~-module and as a right SVQ2S~-module. Hence the

(SV p2st SVQ2S~)-bimodule, MtiSV(P2S~Mti + MtiQ2S~) is faithful. Using the

notation introduced in Notation 2.3.5, each D~ is a left S~-module under the

conjugation action. So it is easy to see that each D~S~ is an (S~,S~)-bimodule

left and right under the multiplication actions and we can write, as (st S~)-

bimodule,
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By Lemma 2.3.6, the (SV p2st SVQd)-bimodule

MtiS~ rv D~S~ ffi ill D~S~
ti - d ~ ~ <:I7 ... Q) ~ ~ tiP2S2Mti + A1dQti P2S2D1 + Dl Qd P2S2 Du + DuQti

is faithful on the right.

So ni=lr.annsu(D~SV(P2S~D~ + D~Qti)) ~ QU. As Qti is a minimal prime of
2

S~, there will be i E {I, ... ,u} such that D~S~/( P2S~D~+D~Qd) is faithful on the

right as a SVQ~-module. Without loss of generality suppose i = 1. Factoring this

bimodule by its SVQttorsion bimodule, we get a (SV P2S~, SVQU)-bimodule,

say D~SVA, faithful and torsionfree on the right.

By [44, Proposition 7.7], there is a left affiliated series for D~SVA, say

0= Ao/A ~ AdA ~ ... ~ Aw/A = D~S~/A

such that each factor D~SVA1-h I E {I, ... ,w}, is a torsionfree right sVQti-

module. Let Pt! P2S~, ... ,Pw/ P2S~ be the left affiliated primes of such a series.

Then D~SVAw-l is faithful as a left sV Pw-module. As D~SVAw-l is finitely

generated and torsionfree on the right over the prime ring sV Qti, D~SVAW-1 is

faithful as a (SV Pw, SVQti)-bimodule. Then,

Cl.K.dim(SV Pw) = Cl.K.dim(SVQd),

by Theorem 2.1.18. As P2S~ ~ Pw, Pw contains one of the minimal primes over

P2S~, say i». By [63, Theorem 44, Theorem 47],

Cl.K.dim(SV Pw) = Cl.K.dim(SV pti).

Therefore P; = pU and D~SVAw-l is a faithful (SV i»,SVQti)-bimodule tor-

sionfree on the right. By Lemma 2.1.19, D~SVAw-l is also torsionfree as a left

sV Pti-module.
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Take {mu, ... ,ml7)l} the [{~-basis of D~ built in the beginning of the section.

Take the first I E {I, ... ,1Jd such that mu t/:. Aw-1' We have

As D~SVAw-l is torsionfree as a right SVQLmodule, O"l(P~) ~ Q~. We have

seen that Cl.K.dim(SV pti) = Cl.K.dim(SVQtt). Hence

- -Theorem 2.3.8 Retain Notation 2.3.5. Let P2 and Q2 be distinct primes of S2!

both distinct from M S2! such that P2 n R = (h n R = M. Take P2 = P2/M S2

and Q2 = (h/MS2. If there is i E {I, ... ,u} such that O"j(PU) = QU, f07' some

prime ideals, t»,Qtt, of st lying over P2 and Q2' respectively, then P2 -v-+ (h.

Proof. Suppose that pu, QH are primes of S~ lying over P2 and Q2' respectively,

such that O"j(ptt) = Qtt. Take the basis of D~chosen in the beginning of the section
7);-1

and \Ii = L [{ttmij, Hence \Ii is a left S~-module under the conjugation action
j=1

and \liS~ is a right and left S~-module under the multiplication action. Take the

left sV ptt-module,

B _ D~S~
- tt .

pttmi7), + S2 \Ii

As S~D~/S~Vi ~ S~ Q9KI (D~/Vi) is a free left S~-module of rank one with ba-

sis mi7)i+ S~\Ii, B is a free left sV PU-module of rank one with basis element

mi7)i + (Pttmi7)i + S~Vi). As mi7)iQtt= O";I(Qtt)mi7)i= pttmi7); (mod S~Vi), B is a

right SVQU-module. Let I = r.annsu(B). Then
2

Cl.K.dim(SV I) = Cl.K.dim(SV ptt) = Cl.K.dim(SVQU).

As Qtt ~ I, we have QU = I. Hence B is faithful as an (SV i»,sV Qtt)_

bimodule. Thus, so too is the (SV t», SVQtt)-bimodule D~SV(Ptt D~+ D~Qtt).
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As we have the following isomorphism of S~-S~-bimodules,

MUSV(PU M~ + MUQU) is faithful as an (SV t»,SVQd)-bimodule.

Let 8 E S2 be such that 8M ~ P2M + MQ2' Then

Hence 8 E p~ n S2 = P2. Therefore MS2/(P2M + MQ2) is faithful as a left

S2/ P2-module and, similarly, as a right SdQ2-module. Hence by Theorem 2.3.4,

P2 ~ Q2' 0

Combining the previous two results yields:

Theorem 2.3.9 Retain Notation 2.3.5. Let P2 and Q2 be distinct primes of S2)

both distinct from MS2) such that P2 n R = Ch n R = M. Take P2 = Pz/MS2!

Q2 = Ch/MS2 and Q~ a prime ideal of S~ lying over Q2' Then P2 ~ Q2 if and

only if there is i E {I, ... ,u} such that (J;l(Q~) lies over P2. 0

Theorem 2.3.10 Retain Notation 2.3.5. Let P2 and Q2 be distinct primes of S2)

both distinct from M S2, such that P2 n R = Ch n R = M. Take P 2 = P2/ M S2 )

Q2 = Q2/MS2 and pU a prime ideal of S~ lying over P2• Then P2 "-"'+ Q2 if and

only if there is i E {I, ... ,u} such that ai(P~) lies over Q2'

Proof. Let 8 be the natural ring isomorphism from S2 onto S;P ~

R[ -1 -1 (3-1 (3-1],1,'1 , ... "V"v ; 1 , ... , v , defined by 8hi) -1 dIi an

8h;l) = Ii, for every i E {I, ... ,v} with 8(r) = r for all r E R. As

E>(MS2) = MS2, E> induces an automorphism of S2. In this case, the I<talgebra

automorphism of S~, determined by the action of the subgroup generated by

(3l1, ... , (3;;1 on M will be all, ... ,0';:-1. Now P2 "-"'+ Q2 in S2 if and only if

Q2 ~ P2 in S;p. By Theorem 2.3.9 and what was said before, this happens if

and if there is i E {I, ... ,u} such that ai(P~) = ((Ji-l)-l(P~) lies over Q2' 0
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It is now possible to describe the cliques of primes of S2 contracting to the

maximal ideal M and distinct from M S2.

Theorem 2.3.11 Retain Notation 2.3.5, let F2 be a prime ideal of S2, distinct

from MS2 such that P2 n R = M. Take P 2 = P2/ M S2 and pti a prime ideal of

S~ lying over P 2. Then

Cf(P2) = {Q2 E Spec(S2): Q2/MS2 = O"~(l) .•• 0"~(u)(pti)nS2fori(1), ... ,i(u) E Z}.

Proof. Let Q2 be a prime ideal in the clique of P2' Let Q2 = Q2/ M S2. If

02 = P2, then clearly 02 belongs to the set on the right. If P2 =f 02, there is a

sequence of primes in S2, P2, P3, .•• .i; = Q2, such that for all i E {2, ... ,n -I},
- - - - tieither Pi -v-+ Pi+l or Pi+1 -v-+ Pi. Write pti = P2• By Theorems 2.3.9 and 2.3.10,

for each j E {2, ... ,n -I}, there are ij E {I, ... , u} and primes pt ... ,P~ in S~
ti ti ti -1 ti ti· - -such that Pj+1 = O"iJ (Pj ) or Pj+1 = O"jJ (Pj) and Pj+1 lies over P j+l = Pj+1 / M S2'

Hence, as the Kti-automorphisms O"t, ... ,0"11.commute pairwise, the result follows.

Conversely, let 02 be a prime ideal of S2 such that 02/ M S2

0"~(1)... 00~(11.)(pti)n S2 for some i(I), ... ,i(u) E Z. If i(l) = ... = i(u) = 0,

then 02 = P2 and by Proposition 2.3.3 it follows that 02 is linked to itself.

If some of the i(I), ... ,i(u) are nonzero, as 0"1,'" ,0"11.commute pairwise, we

can write (h/MS2 = O"f
l
l ••• O"f:(pti)nS2, for some sj , ... ,iv E {I, ... ,u} and

81, .•. ,8v E {-I, I}. For I E {I, ... , v}, write P~,I = 0'1,'0':,':11 ... O'f:(pti) and take

P2,I a prime ideal of S2 containing MS2 such that P~,I lies over P2,I = P2,dMS2•

Obviously P2,1 = 02. By Theorem 2.3.9 and Theorem 2.3.10, either F2,I "V'+ P2,1+l

or P2,1+l -v-+ P2,1 for l E {I, ... ,v - I} and one of the cases happens, P2 "V'+ P2,v

or P2,v "V'+ P2• SO 02 belongs to the clique of P2• 0

2.4 Prime links in skew-Laurent rings

In this section we generalize the results obtained in the last. By Proposition 2.2.9,

linked prime ideals contract to the same ideal of R, say N. We will see that it is
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possible to assume that R is semi local and that N is its Jacobson radical.

Theorem 2.4.1 Let N be a G-prime ideal of R. Then

1. The sets {P E Spec(S) : P n R = N} and {PI E Spec(SCR1(N))

P' n RCR1(N) = Nc.ql(N)} are link-closed;

2. There is an isomorphism of directed graphs between the graph of links of the

two above sets of primes given by the rule P I----T PSCR1(N).

Proof. By Proposition 2.2.9 the above two sets are link closed. By [44, Theorem

9.22] contraction and extension provide inverse bijections between the set of prime

ideals of SCR1(N) and those prime ideals of S that are disjoint from CR1(N) and

by [98, Lemma 2.11] two prime ideals of S are linked if and only if their extension

are linked in SCi/ (N), so we have 2. 0

Theorem 2.4.1 reduces our study of links In

S = R[Ol,011, ... ,On,O:;;l;al,'" ,an] to the special case where R is semi local

and the primes intersect R in its Jacobson radical.

Notation 2.4.2 We retain Notation 2.2.8 and 2.2.10. In addition, we suppose

that R is semi local with Jacobson Radical N, a G-prime ideal of R. Hence

RIN = R, is a semisimple Artinian ring. Let K = RIM, a field.

Theorem 2.4.3 Retain Notation 2.4.2. Every prime ideal P of S = SINS is

such that Rs(P) is Noetherian.

Proof. Let P be a prime ideal of S such that N S ~ P and P = PINS. As

P contracts in R to a G-prime ideal containing N, the Jacobson radical of the

semilocal commutative Noetherian ring R, P n R = N. By Passman's Theorem,

Theorem 1.4.13, P = (P n S2)S and P2 = P n S2 is a G-prime ideal of S2.

As S2 = SdNS2 is a commutative ring and PINS = ((P n S2)INS2)SINS,

by Theorem 2.2.4, R=: ((pnS2)INS2) is Noetherian and by [13, Lemma 7.1]'
S2

Rs(P) is Noetherian. 0
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Proposition 2.4.4 Retain Notation 2.4-2. There are no links between distinct

primes oj S = SINS.

Proof. Let P and Q be pnme ideals of S containing N S such that

PINS ~ QINS. By Theorem 2.4.3 and Lemma 2.2.3, PINS and QINS have

the AR-property. By Proposition 2.2.7, PINS = QINS. 0

The previous notations, Notation 2.2.8, 2.2.10 and 2.1.2, will remain in effect

throughout this section.

Lemma 2.4.5 Let W be any commutative Noetherian ring and I an ideal oj W

which is the intersection oj distinct maximal ideals, II,'" ,Ip. Then

as W -modules.

Proof. By [63, Theorem 166], 12 = I? n ... n I;. It follows from [110, Theorem

31], that the ideals Il and I] are comaximal (that is, their sum is W), for i =I- j.

Now by [110, Theorem 32], there is a ring isomorphism

Comparing the Jacobson radical of each of the sides of the isomorphism, we have

J(WII2) = If I? and J(ffif=IWllf) = EBf=IJ(Wllf) = ffif=IUi/Il), hence we

have the result. 0

Proposition 2.4.6 Retain Notation 2.4.2. The ideal NS is a prime ideal oj S,

C£(NS) = {NS} and NS ~ NS iJ and only iJ N =1= o.

Proof. By [86, Corollary 14.8], SIN S ~ RI N * H is prime if and only if

(RIN * Hd/(MIN * Hd ~ K * HI is prime. As K is a field, K * HI is a

Noetherian domain, and so N S is a prime ideal of S.
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Suppose that there is a prime P of S such that P "-""+ NS or NS "-""+ P. Then

by Proposition 2.2.9, PnR = NSnR = N and so NS ~ P. By Theorem 2.1.18,

Cl.K.dim(SINS) = Cl.K.dim(SI P), so NS = P.

As N is the Jacobson radical of R, N =f:. 0 if and only if N2 =f:. N.

By [63, Theorem 166J, N2 = Mf n ... nMr One checks easily that N =f:. N2

if and only if M =f:. AP. Obviously, if NS "-""+ NS, then NS =f:. N2S and so

N =f:. O. Conversely, suppose N =f:. O. Then M =f:. M2. By Lemma 2.4.5 and

the G-conjugacy of Mj, NI N2 is a faithful RI N -module. As S is free as a right

and left R-module, NSIN2S is faithful as a right and left SINS-module. Thus

NS"-""+NS. 0

Proposition 2.4.7 Retain Notation 2.4.2. Every prime ideal of S properly con-

taining N S is linked to itself.

Proof. Let P be a prime ideal of S, properly containing NS. Write P = PINS.

By Proposition 2.4.6, S = SINS is a prime ring and by [23, Proposition 2.5],

as S satisfies the second layer condition, there will be some prime of S linked

to the non-minimal prime P of S. Since by Proposition 2.4.4 there are no links

between distinct primes of S, we will have PINS "-""+ PINS and so P "-""+ P. 0

Theorem 2.4.8 Retain Notation 2.4.2. Let P and Q be distinct prime ideals of

S, distinct from NS, such that P n R = Q n R = N. Then P "-""+ Q if and only

if NSI(PN + NQ) is faithful as a left SfP-module and as a right SIQ-module.

Proof. Let P, Q be as stated. Suppose P"-""+Q via (P n Q)IA, for some ideal A

of S such that PQ ~ A ~ P n Q.

If NS ~ A, then PINS "-""+ QINS and by Proposition 2.4.4, P = Q, a

contradiction. So A ~ NS + A. Hence NSI(NS n A) is faithful as a left SIP-

module and as a right SIQ-module. The same happens with NSI(PN + NQ),

since this bimodule has N SI (N S n A) as a factor.
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Conversely, suppose that NSI(PN + NQ) is faithful as a left SIP-module

and as a right SIQ-module. Since, by Corollary 2.2.12, S satisfies the second

layer condition, by Theorem 2.1.18,

Cl.K.dim(S I P) = Cl.K.dim(S IQ)· (2.2)

By Lemma 2.1.19 there is an ideal A of S such that PN + NQ ~ A ~ NS and

N S IA is torsionfree as a left SIP-module and as a right SI Q-module. Therefore

the bimodule NSIA is a bond from PIA to QIA. By [42, Theorem 1.1J, there

are Pol A, ... ,PrIA, with r ::::1, distinct prime ideals of SIA such that

PIA = PoIA -v-+ Pd A -v-+ ••• -v-+ P,.IA = QIA.

Suppose PolA -v-+ PdA via (PoIA n Pt/A)/(BIA), for some ideal B of S such

that A ~ Band POPI < B ~ Po n Pl. Then, P -v-+ r. via (P n PI)I B. As above

NSI(NS n B) is faithful as an (SIP,SIPt}-bimodule. As NQ ~ NS n A ~

NSn B, Q ~ Pl.

Since PIA -v-+ PdA, Cl.K.dim(SIP) Cl.K.dim(SIPJ) and thus

Cl.K.dim(S IPt} Cl.K.dim(S IQ), by (2.2) above. Hence PI = Q and

PIA -v-+ QlA. Therefore P -v-+ Q. 0

Theorem 2.4.9 Retain Notation 2.4.2. Let P, Q be distinct prime ideals of S,

distinct from N S, such that Pc: R = QnR = N. Let pns2 = P2 and QnS2 = Q2.

Then P -v-+ Q if and only if NS2/(P2N + NQ2) is faithful as a left S2/ P2-module

and as a right S2/Q2-module.

Proof. Suppose P,Q are distinct prime ideals of S, different from NS, such that

P n R = N = Q n Rand P -v-+ Q. Then, by Theorem 2.4.8, NSI(PN + NQ) is

faithful as a left SIP-module and as a right S IQ-module.

By Theorem 1.4.13, P = P2S, Q = Q2S and P2, Q2 are G-prime ideals of S2.
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Let S2 E S2 be such that S2NS2 ~ P2N + NQ2. As SN is an ideal of 5, we

will have

Therefore, S2 E P n 52 and N 5d( P2N + NQ2) is faithful as a left 5d P2-modlllc.

Similarly, N52/(P2N + NQ2) is faithful as a right SdQrmodule.

Now, suppose that NSd(P2N + NQ2) is faithful as a left 52/ P2-module and

as a right SdQ2-module. As S is free as a right or left S2-module, it follows

easily from Theorem 2.4.8 that P 'V'+ Q. 0

Lemma 2.4.10 Retain Notation 2.{2. Let P be a prime ideal of S such thal

P n R = N. Then there is a minimal prime P2 over P n S2 in S2 such that

P2 n R = M. It is then possible to write P n S2 in the form

P S P-{311 n p-{31,w n n p-{3t,l n n p-{3t,wn 2= 2'n ... 2 ... 2 ... 2

for some i31,k E C, t « {I, ... , t}, k E {I, ... ,w} and f31,1 = Ie, such that

i) M{3,·k = pf"k n R = MX1, for any l E {I, ... , t} and k E {I, ... ,w};

ii) {Pfl ,1 , ••• , pft.W} forms a single C -orbit of P2 in S2;

iii) for any t « {I, ... ,t}, {Pfl.l, ... ,pf"W} forms a single Cl-orbit of p;' In

S2 and

Proof. Let P be a prime ideal of S such that P n R = N. By Theorem 1.4.13,

P n S2 is a G-prime ideal of S2. By Lemma 1.3.5

for any minimal prime P2 over P n S2 in S2 and some Yl, Y2, ... , Yt' E G. We can
- -y -and shall assume that Yl = Ie. Thus {P2, ... , P2 t'} form a single G-orbit of P2

and we can assume that Pl' f. pi), whenever i f. i. for all i, j E {I, ... , tf}.
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Since M is a G2-stable ideal of R, lv[X'52 arc ideals of 52. Since N52 =

MX'52 n ... n MXt52 ~ P2, there will be i E {I, ... ,t} such that MI'52 ~ P2'

As MXj is maximal, MX' = P2 n R. Without loss of generality, we can suppose

P2 n R = M.

As n~=IMXj = N = PnR = pn52nR = nj~l(pi) fiR) for each i E {I, ... ,t},

there is ji E {I, ... ,tf} such that

-Y -Also P2), n R = (P2 n R)YJj = MY)i. As M is maximal, MX'

pi]i n R = MXi. Since MXi =1= MX) for i,j E {I, ... ,t} and i =1= i, it is then

possible to conclude that each MXi is the intersection with R of one of the primes

Pi' , . " ,Pit' and that each of these primes contract in R to one and only one

MX], for j E {I, ... , t}. Hence t :s; t' and we can write

P - p-Ol,l n n p-Ol,i1 n n p-Ot,l n n p'""Ot"t2- 2 ... 2 ... 2 ... 2

h {f3 - 1 f3 f3 . } - {I } d p-f3],l p-f3],,]were 1,I-O,I,2, ... ,t,'t - O,Y2,···,yt',an 2 ""'2 are dis-

tinct and contract to MX] in R, for every j E {I, ... , t}.

Let t e {I, ... ,t}. For any g E Gl we have

As {pf1,1, ... , pf1,i1, ... , jif"!, ... , pft'it} forms a single G-orbit of P2 and by
-0the way we chose the P2 I,] , we have

(P-XI)g E {P-Ol,! p-f3I",}
2 2' ... , 2 .

Hence {Pf',! , ... , p:"i'} forms a single G l-orbi t of P!{' in 52 and

P-OI,! n n p-f3I"1 c n (P-XI)g
2 . • • 2 - gEOl 2 •

Also, as for each k E {I, ... , ill, we have Mf3I,k

x1lf3l,k E Gl and so pf"k E {(P!{I)g : g E Gd. Hence

P-f3I,! n n p-f3I"1 - n (P-XI)g2 • • • 2 - gEO! 2 •
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It remains to prove that il Z2 Zt. As for each

E {I, ... ,t}, {(P;I.I)XI, ... ,(P;I"I)XI} c {p~31.1, ... ,p~il"l} and also

{(pf3I.1 )Xil (P-f3I"1 )Xil} C {P-;31.1 p-;3I,'I}' . Lt' .2 , .•. , 2 _ 2 , •.. , 2 , Zl = I/. e W =ll = ... = It·

o

Remark 2.4.11 1) If SI = S2, then for P satisfying the same conditions as in

Lemma 2.4.10, we would have

- -P n S2 = Pt1 n ... n Ptl

and {P:l, ... ,]5:I} forms a single G-orbit.

Assuming the same notation as in the statement of Lemma 2.4.10, and in

addition SI = S2, p; e , l nR = «:nR for any i E {I, ... ,t} and l, k E {I, ... ,i}.

So

hence f3i,d3i~1 E G, = G2. As P2 is an ideal of S2 = SI, it is Cl-stable, hence

P-;3·,1 p-;3'.k -;311 -;311} . . I . -.
2 = 2 . So W = 1 and {P2 . , ... ,P2' IS a SIng e C-orblt of P2 In S2. As

]5:1,... ,]5tl are all distinct (as the same happens with their intersections in R)

and belong to {P;I,I, ... ,]5;I,I}, we will have

2) Assuming the same notation as in Lemma 2.4.10, it is possible that

w "# 1. For instance take S = qOl, 011, O2,02"1; ide, 02] where 02 is complex

conjugation. Take M = N = 0, so S2 = qOl, 011, O~,02"2]. Let P2 = (01 - i), a

prime ideal of S2. Take P = [(01- i) n (01+ i)]S. As P2 n P::2 is an < 02 >-stable

ideal of q01,oll,O~,02"2], by Theorem 1.4.13, P is a prime ideal of S. In this

case P n C = 0 but P n S2 = (01 - i)S2 n (01 + i)S2'

Proposition 2.4.12 Retain Notation 2.4-2. Let P be a prime ideal of S, distinct

from N S, such that P n R = N. Put P2 = P nS2 and let P2 be a minimal prime

over P n S2 in S2 such that P2 n R = M.
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If there is a prime ideal Q2 of S2, distinct from ]52, such that ]52-v-+ (J2 in S2,

then P -v-+ (naEGQ2)S in S.

Proof. Let P be as stated and suppose there is a prime ideal Q2 of S')" distinct

from ]52, such that ]52 -v-+ Q2 in S2. Then M = ]52n R = Q2 n R, by Proposition

2.2.9.

As Q2 = naEGQ2' is a C-prime ideal of S2 such that Q2 n R = N, (naEOQ~)S

is a prime ideal of S, by Theorem 1.4.13.

M S2 ~ P2, P2 = Q2, a contradiction. By Theorem 2.3.4 the bimodulc

M Sd(P2M + M(2) is faithful as a left Sd P2-module and as a right SdQT

module.

If we think about the (S2, S2)-bimodule

MS2Cl= - -
(n9EGIpnM + M(ngEGI Q~)

the left and right annihilators of Cl in S2 are Cl-stable ideals of S2. Also, as

MSd(P2M + M(2) is a factor bimodule of Cl, we have l.anns2(Cd ~ P2 and

r.anns2(Ct} ~ Q2' Hence l.anns2(Ct} ~ ngEG1P,f and r.anns2(C) ~ n9EGIQ~. So

l.anns2(Ct} = n9EG1P,f and r.anns2(Cd = n9EGIQ~·

Similarly, for all i E {I, . .. ,t}, M, = MXi and

C
j
= _ MiS2 _

(n9EGl(Pti)g)Mi + Mi(n9EGl(Q~i)g)

is a left S2/ n9EGI (Pti )9-module and a right S2/ n9EGI (Q~I)g-module, faithful on

both sides.

By Lemma 2.4.5, we have

Hence,

~ ~M ~M
P2N + NQ2 ~ P2Ml + MIQ2 + MlS2 ffi ... ffi P2Mt + MtQ2 + M?S2'
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Thus l.annj, (N Sd (P2N + N Q2)) ~ n;=l l.ann.e, (S2Md (ngEGI (Pf' )9) Mi +
Mj(n9EG1(0~,)g) = n;=1(ngEG1(Pf,)g)· By Lemma 2.4.10, n;=1(ngEG1(Pf')!1) =

P2, and the left Sd P2-module NSd(P2N + NQ2) is faithful. Similarly,

NSd(P2N + NQ2) is faithful as a right S2/Qrmodule. Since Q2SnS2 = Q2, by

Theorem 2.4.9, we have that P ""....(naEGQ~)S in S. 0

Theorem 2.4.13 Retain Notation 2.4.2. Let P and Q be distinct prime ideals of

S, distinct from NS, such that P ""....Q and Pt: R = N = Qn R. Let P2 = Pci S;

and Q2 = Q n S2. There are minimal primes, P2 and 02, over P2 and Q2 in S2,

respectively, such that P2 n R = M = Q2 n Rand P2 ""....02'
Proof. Let P and Q be as stated. Then, by Theorem 2.4.9, NS2/{P2N +NQ2) is

faithful as a left S2/ P2-module and as a right SdQ2-module. By [57, Proposition

8.2.6],

max {Cl.K.dim(S2/Pfi•J): i E {1, ... ,t},j E {I, ... ,w}}

Cl.K.dim(S2/ P;i),

for any i E {1, ... ,t}. Therefore Cl.K.dim(Sd P2) = Cl.K.dim{Sd P~), for any

P~, minimal prime over P2 in S2' The same happens to SdQ2' As S2 is a

Noetherian ring that satisfies the second layer condition, if C = CS2lP2(O) and

V = CS2/Q2(O), by Lemma 2.1.19, the left C-torsion submodule and the right

V-torsion submodule of NSd(P2N + NQ2) are the same and different from

NS2/(P2N + NQ2). Since

NS2 S2Ml S2Mt

P2N + NQ2 ~ P2M1 + MIQ2 + MlS2 Efl ... Efl P2Mt + MtQ2 + M?S2'

as an S2-module (right or left), it follows that, for all j E {1, ... ,t},

Also, there is i E {1, ... ,t}, such that tc(MiS2/(P2Mi + MiQ2 + M?S2)) #
MiSd(P2Mi + MiQ2 + M?S2). Let A;/(P2Mi + MiQ2 + MlS2) be this torsion
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(S2/ P2, SdQ2)-bimodule. Therefore S2Md A is nonzero and torsionfree as a left

Sd P2-module and as a right S2/Q2-module.

Take a (Sd P2, SdQ2)-subbimodule BI of S2]\;fi such that Ai :::;131 :::; AfiS2

and the bimodule Bt! A has prime annihilators pi / P2, Q'/Q2 as a left Sd P2-

module and as a right SdQrmodule and is torsionfree as a left Sd P'-module

and as a right SdQ'-module. Such a bimodule exists by [44, Corollary 7.6J. Since

MiS2/Ai is torsionfree as a left Sd P2-module and as a right S2/Q2-module, pi

and Q' are minimal primes over P2 and Q2, respectively, [44, Proposition 6.3J.

As S2/'.{ ~ l.anns2(BdA) = pi, P' n R = Mi. Also Q' n R = Mi. Therefore

Bd Ai is a bimodule subfactor of MiS2/ MlS2 which is a bond from pi to Q'.

As P', Q' are prime ideals of S2 containing MiS2 and Sd MjS2 is a commutative
- -1Noetherian domain, pi 'V"-t Q' by [23, Lemma 2.9J. If we let P2 = (P')X, and

02 = (Q')X;l , the result follows. 0

The next result summarises the conclusions of Theorem 2.4.1, Propositions

2.4.6, 2.4.7, 2.4.12 and Theorem 2.4.13.

Theorem 2.4.14 Retain Notation 2.2.8,2.2.10 where M is not necessarily max-

imal. Let P and Q be prime ideals of S, with P n R = N. Suppose that P 'V'I Q.

Then Q n R = N and one of the following holds:

1. 0 -=I- NS = P = Q;

2. NS ~ P = Qj

3. 0 -=I- N S ~ P -=I- Q and P2 'V"-t 02 where P2 and 02 are minimal primes over

P n 52 and Q n 52 such that P2 n R = Q2 n R.

Conversely, if one of case 1,2 or 3 holds, then P 'V"-t Q. 0

The description of links in a skew-Laurent ring is now obtained if we combine

Theorem 2.4.14 and the results of section 3.
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Proposition 2.4.15 Retain Notation 2.2.8, 2.2.10 where M is not necessarily

maximal. Let P and Q be prime ideals of 5, with P n R = N. Suppose thai

P "-"+ Q. Then Q n R = N and one of the following holds:

1.0iN5=P=Q;

2. N5 ~ P = Q;

3. 0 ::J N 5 ~ P ::J Q and there exist a prune ideal pti of 5~ ly-

ing over Pd [\1S2Ci/ (N) and i E {1, ... , u} such that a, (P~) lies over

QdM52C'i/(N) where, P2 and Q2 are minimal primes over PCi/(N) n

52Ci/(N) and QCi/(N)n52Ci/(N), respectively, such that P2nRCi/(N) =

MCi/ (N) = Q2nRCi/ (N), a, are the automorphisms defined as in section

3 and if K = RCi/(N)/MCi/(N) and 5~= [{~@K 52Ci/(N).

Conversely, if one of case 1,2 or 3 holds, then P "-"+ Q. 0

As the statement of the following result depends on some conditions on the

elements Cjj for i E {1, ... ,u} and j E {1, ... ,v} determined in section 3, in

order to simplify we will assume once again that the ideal M of Notation 2.2.8

and 2.2.10 is maximal.

Proposition 2.4.16 Retain Notation 2.4.2 and 2.3.5. All the cliques of prime

ideals of S contracting to the ideal N are finite if and only if the multiplicative

subgroup of [{~ generated by Cjj for i E {I, ... , u} and j E {I, ... , v} is finite.

Proof. If the order of the group generated by Cjj is finite, then each a, has finite

order and by Theorem 2.3.11 and Proposition 2.4.15, the clique of any prime of

5 will be finite.

Conversely, if the cliques of prime ideals of 5 contracting to the ideal N

and different from N 5 are finite, by Proposition 2.4.15, the cliques of primes

of 52 contracting to M and different from M52 will be finite as well. Take the
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prime of S2, ]52 = M S2 + bl - 1, ... "V - 1)S2. By Theorem 2.3.10, for every

i E {I, ... ,u} there are i, k E Z such that j i- k and hi - c::~J, ... ,IV - c::£;/) =

O'ibl -1, ... "V -1) = O'fbl -1, ... "V -1) = hi - Eilk, .. · "V - Ei;_,k).

But then c~j = C::i/, for every I E {I, ... ,v}. So, for every i E {I, ... ,u} and

l E {I, ... ,v}, Ci/ has finite order. 0

Remark 2.4.17 Suppose that every \l1(,j)JM has finite order, Pj say, for j E

{I, ... ,n}. Then for each i E {I, ... ,u}, if we take the basis D~chosen before in

section 3, then hj - ci;).mil = o. So Ij.mil = Cijmil. By induction, we can see

that ,? .mil = cfjmil. Hence each Cij has finite order and by Proposition 2.4.16,

it follows that the clique of each prime P of S is finite. However the converse is

not true as example 4 in §2.6 shows.

2.5 Prime links in skew-polynomial rings

In this section we reduce the study of links between prime ideals III skew-

polynomial rings to the similar problem in skew-Laurent rings. We will keep

the notation introduced before in Notation 2.2.8 and 2.2.10. The description of

cliques in T will, in some cases, depend on the description of cliques in S given

before in section 4.

Theorem 2.5.1 Retain Notation 2.2.8 and 2.2.10. Let P,Q E Spec(T) such

that (Ji+l, ... ,On E P and Ob ... ,Oi rt. P. Then P - Q if and only if

Oi+l, ... ,On E Q and either (a) P / (Oi+lT + ... +OnT) - Q/ (Oi+1T + ... +OnT)

in R[Oll' .. ,OiiOI,.'. ,oil or (b) there isj E {i+I, ... ,n} such that P = OJ(Q).

Proof. Suppose P - Q in T via (P n Q)/A.

As Ob ... ,On are normal elements of T, Oi+l, ... ,On E Q and 01, •.. ,OJ t/:. Q,
by Proposition 2.2.7.
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If there is j E {i + 1, ... ,n} such that OJ t/:. A, then (A + OjT)/A is a nonzero

subbimodule of (P n Q)/A. As (P n Q)/A is torsionfrcc as an (R/P,R/CJ)-

bimodule, so is (A + OjT)/A, and hence this is a faithful bimodule. Since

OjCtjl(P) = POj ~ A and Ctj(Q)Oj = OjQ ~ A, we have Ctj(Q) = P and so

(b) happens.

If Oi+l, ... ,On E A, obviously case (a) occurs.

Conversely, if we have (a), obviously P ~ Q in T. Suppose (b) and take the

skew-polynomial ring,

Let t E T be such that t( Ctj(Q) nQ) ~ Ctj(Q)Q and write Q = OjT +o; where

o, = Q n n; Hence

Since T = ffiu?oRj0'j and Ctj(Qj)Qj ~ Rj, the above inclusion shows that

t E TOj + Ctj(Qj). That is, t E Ctj{Q). So, (Ctj(Q) n Q)/Ctj(Q)Q is faithful

as a left T / Ctj(Q)-module. Similarly, one can prove that the module is faithful as

a right T IQ-module. Hence P = Ctj(Q) ~ Q, since T satisfies the second layer

condition by Corollary 2.2.14. 0

Corollary 2.5.2 Retain Notation 2.2.8 and 2.2.10. Let P, Q E Spec(T) such
j(l) j(i)that Oi+1, ... , On E P n Q and 01, ... ,Oi t/:. P. Let Y = {01 ... 0i :

j(1), ... ,j(i) EN}, an Ore set in T, P = P/(()i+lT + ... + ()nT) and

Q = Q/(Oi+1T + ... + ()nT).
Then P ~ Q if and only if py-l ~ Qy-l

in R[Ol,011, ... ,()j,();1jCtl, ... ,Cti] or if there is j E {i + 1, ... ,n} such that

Proof. As R[()l, ... ,0ijCtl, ... ,ady-l ~ R[Ol,011, ... ,OJ,();ljal, ... ,ail the

result follows from Theorem 2.5.1 and from the fact that two prime ideals are

linked if and only if their extensions are, [98, Lemma 2.11]. 0
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The complete description of the cliques in T follows now from Corollary 2.!'i.2

and Proposition 2.4.15.

2.6 Examples

The following examples illustrate how to apply the theorem proved before. In

particular with examples 4 and 5 we discuss the problem of finite cliques III

relation with what has been done in Proposition 2.4.16.

1. Let S = lR[x][O, 0-1; a], where a is the IR-automorphism of lR[x] such that

a(x) = ax for some a E 1R\{O}. Let N = xlR[x]. Then S2 = S and any prime of S

strictly containing N is of the form P = xS + p( B)S where p( B) is an irreducible

polynomial of IR[O].

In this case S2 = IR[O, 0-1], S~ = qO,O-l] and NH = xqx]. The composition

series of NH/ (NH)2 has length one with a factor isomorphic to sV (B - a )S~. Hence

the automorphism of <C-algebras al is such that a1 (B) = al),

If we take P = xS + (02 + l)S, then P2 = (02 + 1)S2 and (0 - i)S~ is a prime

of qo, 0-1] lying over P2• Take Q a prime ideal of S, distinct from P. Hence

P ~ Q if and only if Q2 = (0 - a-1i)S~ lies over Q/NS2. That is

P ~ Q if and only if Q = xS + (02 + a-2)S.

Thus Cf(P) = {xS + (02 + a21)S : L E Z}.

2. Let S = qx,y][Ol,Oi1,02,O;-I;a1,0!2j, where a1,a2 E Aut(<C[x,y]) are

CC-algebra automorphisms such that a1(x) = 3x,al(Y) = 2Y,0!2(X) = 2x and

a2(y) = 4y. Take N = x<C[x, y] + y<C[x, y]. In this case SI = S = S2 =

qx,y][B1,011,02,B21;0!t,a2] and S2 = S~ = Q01,Oi1,02,O;-1].

The composition series for N / N2 has length 2 and the factors are isomorphic

to SV(Ol - 2, ()2 - 4) and SV(()1 - 3, O2 - 2). So the link generating <C-algebra

automorphisms ai, a2 are given by a1(Od = 201, a1(()2) = 402, a2(Od = 301 and
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(J"2((2) = 202.

Let P = NS + (01 - a,02 - b)S for some a.b E C\{O}. Then

3. Let T = qX,y][01,02,03;01,02,03] where 01,02,03 E Aut(crx,y]) are

such that 01,02 are C-algebra automorphisms defined by 0'1 (x) = 3x, 0'1 (y) =

2y, 02(X) = 2x, 02(y) = 4y, and 03 is an IR-algebra automorphism such that

03(i) = -i, 03(X) = x and 03(y) = y.

Take N = xqx,y] + yqx,y] and P = NT + 03T + (01 + i,02 - i)T, a prime

ideal of T. As 03 E P, we have by Theorem 2.5.1 that

Write X = {o{ O~ : j, lEN} and S = qx, y][OI, 011, O2,021; 01,02]' so that

(Pj03T)X-l = NS + (01+ i, O2- i)S. By example 2 we can calculate the cliques

of (P/03T)X-I and of (a31(P)/03T)X-I. Putting these together and noting

that o~= idlqx,y], we find by Corollary 2.5.2 that

4. Let a be the C-automorphism of qx,yj such that a(x) = x + 2y and

o(y) = y. Define S = qx,y][0,0-1;aj and take N = xqx,yj + yqx,yj. In

this case S2 = SI = S, S2 = qO,O-I] and (J"1 : qe, e-l] --t qe, e-l j is just the

identity.

In example 4 the cliques are obviously finite but the order of \]I( e) = 0' IS

not (in this case /1 = ()). The next example, example 5, shows that it may well

happen that the clique of a fixed prime in a skew-Laurent ring is finite but the

order of the multiplicative subgroup of K~ generated by Eij, for i E {I, ... , u}

and j E {I, ... ,v} is not.
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5. Let a, be a C-automorphism of qx,yJ such that a,{x) = ix, O',(y) = Y

and a2 the C-automorphism defined by a2{x) = 2x and a2{Y) = 4y. Take

S = qx, yJ[O" 011, O2,O2'; a" 0'2]' N = xqx, yJ + yqx, y] and the prime P =

NS+ (0, -l)S. In this case S = S, = S2, S2 = qO,,01',02,0;-'] and the link

generating C-algebra automorphisms (Jl,(J2 are given by (J,(Od = iO,,(Jd02) =

202,(J2(Od = Ol and (J2(02) = 402. Hence

CR(P) = {NS + (01 - l)S, NS + (0, + l)S, NS + (Ol - i)S, NS + (0, + i)S}.

2.7 Additional remarks

1. Most of this chapter is part of the paper [27].

2. All the results in §1 are well known and can be found in [44] or in [57J. The

only exception is Lemma 2.1.19 which is our generalization of [43, Lemma

1.3J.

3. Proposition 2.2.13 was obtained with a suggestion of the referee of the paper

[27J.
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Chapter 3

Azumaya Algebras and Crossed

Products

The concept of Azumaya algebra is related with several other notions such as

separability and Il-separability. There have been some studies for some classes

of rings to decide whether they are Azumaya or not. For instance, given a ring

R and a finite group G, DeMeyer and Janusz in [36] studied when the group ring

RG is an Azumaya algebra.

In [52], Ikehata proves that given a commutative ring Rand G a finite group

of automorphisms of R, the skew-group ring R#G is an Azumaya R-algebra if

and only if R is a G-Galois extension of RG. (For the definition of G-Galois

extension and other terms introduced in these introductory paragraphs, see §3.1

and §3.2.1.)

Ricardo Alfaro and George Szeto in [3] generalize Ikehata's result proving that

given a ring Rand G a finite group of automorphisms of the ring, the following

are equivalent:

i) R#G is Azumaya and Z(R#G) ~ R;

ii) R#G is an Il-separable extension of Rand R is a separable extension of

Z(R)G;
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iii) (a) RC is Azumaya:

(b) R is finitely generated and projective as an RC -rnodule;

(c) R#G ~ EndRG(R) as rings.

Ricardo Alfaro and George Szeto's result doesn't apply for instance to the

skew-Laurent ring qe, e-1; o], where a is complex conjugation, since this ring

can be expressed as a crossed product of a finite group over a commutative ring,

but not as a skew-group ring of a finite group. In this chapter we try to obtain a

similar description to the one in [3] for some crossed products. Such description

will allow us to conclude that rings such as qo, 0-1; aJ, are Azumaya.

In [48] R.B. Howlett and LM.lsaacs, for the proof of their main result, The-

orem 8.2, built a non-abelian finite group of central type. There is then a finite

nontrivial group, J, and a twisted group ring et J of J over C, such that Ct.J is

simple, Artinian and Z(et J) = C. Hence et J is a central simple algebra and

by [76, Proposition 7. 7J, an Azumaya algebra. Hence i) as above, holds but as

er: J or CJ are not isomorphic to C, it follows that iii)( c) of the same result does

not. Therefore, we will not be able to generalize the above to crossed products

in general.

Throughout this chapter, whenever we have a ring R, G a group of automor-

phisms and form a crossed product, we will assume that the action a, as defined

in Definition 1.2.15, will be such that a(g) = g, for any 9 E G, and the twisting

E: is arbitrary, unless stated otherwise. We will show that given a commutative

ring R, a finite subgroup of automorphisms of R and a crossed product of Gover

R, if Rand G satisfy the same conditions as iii)b) and iii)c) above, then R * G

is Azumaya and Z(R * G) = RC, Theorem 3.3.6. The converse is true provided

we impose an extra condition on G.
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3.1 Azumaya algebras and separability

Let A be an algebra over a commutative ring R. The opposite algebra of A is the

R-algebra AOP which coincides with A as an R-module and has multiplicat.ion 0

defined by yox = xy for each x and y in A. The R-algebra A 0:)R AOP = AC wr-

call the enveloping algebra of A.

We can define a left Ae-module structure on A induced by (a () a')b = aim',

for all a, a', b E A.

Definition 3.1.1 An R-algebra A is separable if A is projective as a left AE_

module.

We define a left Ae-module homomorphism p, from Ae onto A given by

p; A 0:) R Aop -t A

Eia, 0 a~ t---t Eiaia~.

Let J = Kef (Ji')' Then J is the left ideal of Ae generated by all elements of the

form a 0 1- 10 a, for any a E A.

Theorem 3.1.2 Let A be an R-algebra. Then the following are equivalent;

i) A is separable;

ii) 0 -+J -+Ae -4 A -+0 splits as a sequence of left Ae-modules;

iii) There is e E Ae such that p(e) = 1 and Je = o.

Proof. [34, Theorem 11.1.1]. 0

Remark 3.1.3 The element e E A 0R AOP taken in Theorem 3.1.2 iii) is an

idempotent. To see this, note that J.l( e -101) = 0 and write e2 - e = (e -101)e E

Je = O.
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Definition 3.1.4 If A is a faithful R-algebra such that H.l coincides with the

centre of A, we say that A is a central R-algebra. A separable central R-algf'hra

is said to be an Azumaya R-algebra.

Proposition 3.1.5 Let A be an R-algebra. Then the following are equivalent:

i) A is an Azumaya R-algebra;

ii) A is finitely generated and projective as an R-module and A 0n AOP ~

EndR{A) via the map (): a0b H >'aPb, where '\aPb{X) = axb, Jor all x E A.

Proof. [34, Theorem 11.3.4 and Corollary 1.1.10J0

Definition 3.1.6 A ring is said to be Azumaya if it is an Azumaya algebra over

the centre.

In [49], Hirata and Sugano, generalized the notion of separable algebras defin-

ing "separable extensions oj a ring".

Definition 3.1.7 Let 5 be a ring and T a subring of 5. We say that S is a

separable extension of T if there exists an element LSi 0 s~ in 5 0T 5 such that

i) "sos'=I·l...J 't ,

ii) LXSi 0 s~= LSi 0 s~x, for all X E 5.

Remark 3.1.8 In the situation of Definition 3.1.7, we note the following points:

i) 5 0T 5 is just an (5, 5)-bimodule and not, in general, a ring.

ii) If T is in the centre of 5, by Theorem 3.1.2 iii), 5 is separable as an

T-algebra. If T is the centre of 5, then 5 is Azumaya.
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Given T a subring of a ring 5, we can define an (5, S)-homomorphislll y [rom

5 0T 5 onto 5 such that

<p: 5 0T 5 --+

The following proposition is well-known, but we were unable to find a refer-

ence.

Proposition 3.1.9 Let T be a subring of a ring 5. Then 5 is a separable exten-

sion of T if and only if <p splits as an (5, 5)-homomorphism.

Proof. Suppose 5 a separable extension of T and take Li Si 0 s~ E 50'1' 5 as

in Definition 3.1.7. Then we can define a (5, 5)-homomorphism '¢ : S -t S @T S'

such that '¢( 1) = LSi 0 si. It is easy to verify that <p'¢ = ids.

Conversely, suppose that <p splits. Let '¢ be an (5, S)-homomorphism such

that <p'¢ = ids. Let '¢(l) = Li Si 0 si. Then <p('¢(l)) = 1 and for all :r E S,

Li XSi 0 si = x1jJ(l) = 1jJ(x) = '¢(l)x = Li Si 0 s~x. 0

Proposition 3.1.10 Let S be a ring, T and U subrings of S such that U ~ T.

i) If S is a separable extension of U, then S is a separable extension of T;

ii) If 5 is a separable extension of T and T is a separable extension of U, then

S is a separable extension of U.

Proof. [49, Proposition 2.5]. 0

In [50], Hirata gave new insight into the notion of separable extensions. He

proved

Theorem 3.1.11 Let S be a ring with centre C, T a subring of S. If S 0T 5 is

isomorphic to a two-sided S -direci summand of a finite direct sum of copies of S,

then C s(T) is C -finitely generated projective and S is a separable extension of T.
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Proof. [50, Theorem 2.2] 0

Definition 3.1.12 Let Sand T satisfy the hypothesis of Theorem :U .11. \;\Ie

say that S is an H-separable extension of T.

By Theorem 3.1.11, every H-separable extension is a separable extension. This

theorem was an attempt to introduce the notion of central separable algebras to

separable extensions; as we shall see in the next proposition, every Azurnaya

algebra is an H-separable extension of its centre.

Proposition 3.1.13 A ring R is an H-separable extension of its centre if and

only if R is Azumaya.

Proof. [103, Proposition 1.1] 0

Proposition 3.1.14 Let S be a ring and T a subring of S. IfS is an If-separable

extension ofT and T is a direct summand of S as a (T, T)-bimodule, then (,'s(7')

is a separable extension of Z(S).

Proof. [104, Proposition 1.3] D

3.2 A necessary condition

One could try to state a similar result to the one of Ricardo Alfaro and George

Szeto in [3], for some crossed product. Their proof (to prove that ii) implies

iii)), and indeed the very statement of iii)c) depends on the fact that given any

ring R, any group of automorphisms G of R and any skew-group ring R#G, one

can think of R as an R#G-module. In general this is not the case for crossed

products.
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We will split this section into two parts. In the first one we will work with

any crossed product R * J and describe the ones which arc Azumaya ill terms of

H-separability and separability conditions. This description will follow the same-

ideas as Ricardo Alfaro and George Szeto in [3J. In this part we will also describe

the centre of R * J and centralizers of R in R * J. In the second part the idea is

to relate, like Ricardo Alfaro in [IJ did for skew-group rings, the Ii-separability

condition with the concept of Galois extensions. For this to be possible we- will

impose some restrictions on the crossed product; we will take any ring El and

any group G of automorphisms of R and a crossed product R * G. As it was

already mentioned in the introduction to this chapter, whenever we will form a

crossed product of a group of automorphisms G of a ring Rover R, the action

a as defined in Definition 1.2.15, is such that a(g) = 9 for all 9 E G, and the

twisting will be arbitrary.

Definition 3.2.1 Let R be any ring and G a subgroup of Aut(R). The fixed

subring ofG on R is RG = {r ER: g(r) = r, for all 9 E G}. Ifr ERG, we say

that r is a fixed point.

If R is any ring, J is any group and R * J any crossed product, by Ie we

denote the set of elements of r E R such that ri = r, for all j E J.

Lemma 3.2.2 Let R be any ring, J any qroup and R * J any crossed product;

then Z(R * J) S;;; R if and only if Z(R * J) = Z(R)J.

Proof. It's obvious that Z(R)J ~ Z(R * J).

If Z( R * J) ~ R, as any element r E Z( R * J) will commute with the elements

of R and with each g, for any 9 E J, we have rE Z(R)J, and equality holds. 0

As we shall see later, there are natural circumstances where the condition

Z(R * J) ~ R holds, see for instance Lemma 3.2.11. The proof of the following

result is similar to that of the analogous result for skew-group rings, [3, Theorem

71



1], and shows that the first two of the three equivalent statements of Alfaro and

Szeto in the introduction of the chapter remain equivalent for crossed products.

Proposition 3.2.3 Let R be any ring, J any group and R*J allY crossed product.

Then the following are equivalent:

i) R * J is an Azumaya algebra and Z(R * J) ~ R;

ii) R * J is an H-separable extension of Rand R is a separable extension of

Proof. Assume that R * J is Azumaya with Z( R * J) contained in R. As R * J is

free as an R-module, R* J is projective as an R-module. As Z(R* J) = Z(R)J ~

R by Lemma 3.2.2, R * J is Azumaya and is projective over a ring containing its

centre, it follows from [52, Theorem 1] that R * J is an Il-separable extension of

R. Since R is a two-sided R-direct summand of R * J, CR*J(R) is a separable

extension of Z(R * J) = Z(R)J, Proposition 3.1.14. Hence, by [34, Theorem

II.4.3], CR*J(CR*J(R)) is a separable extension of Z(R)J.

As R * J is an H-separable extension of Rand R is a two-sided R-direct

summand of R * J, by [103, Proposition 1.2], CR*J(CR*J(R)) = R. Hence R is a

separable extension of Z (R)J .

Conversely, assume that R * J is an H-separable extension of Rand R is a

separable extension of Z(R)J. Hence, by Theorem 3.1.11, R * J is a separable

extension of R and by Proposition 3.1.10, R*J is a separable extension of Z(R)J.

By [103, Proposition 1.2], R = CR*J(CR*J(R)). As Z(R*J) ~ CR*J(CR*J(R)),

Z(R * J) = Z(R)J by Lemma 3.2.2. Hence R* J is Azumaya and Z(R * J) ~ R.

o

Given a ring Rand G a group of automorphisms of R, by Proposition 3.2.3, if

a crossed product R * G is Azumaya and Z(R * G) ~ R, R * G is an H-separable

extension of R. In order to study when this happens, we will need to describe
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the centre of such rings and the centralizer of R in R * C, Cn*G( R). We start by

introducing the definition of an w-outer group of automorphisms. This definition

will play an important role in the description of some crossed products that are

Azurnaya.

Definition 3.2.4 Let R be any ring and 9 an automorphism of R. Let

cPg = {r ER: rsg = sr, Vs ER}.

If J is any group and R * J is any crossed product, for each j E J, cPj = cPa(j)

is defined exactly in the same way as before.

Definition 3.2.5 Let R be any ring and C a nontrivial group of automorphisrns

of R. If for all 9 E C\ {id}, cPg = 0, we say that C is co-outer,

Obviously, if R is a commutative domain and C is any nontrivial group of

automorphisms of R, C is w-outer. One should note that, as the next example

shows, R commutative is not sufficient for a nontrivial group of automorphisms

of R to be w-outer.

Example 3.2.6 Let C be the complex field, R = C2 and 9 an automorphism of

CC? such that g(a, b) = (a, b), where b denotes the complex conjugation of cc. Let

G be the group of order two generated by g. We have that, for any r E R

(g(r) - r)(l, 0) = o.

In this case we can easily see that cPg = C EB0 and cPl = C EBC.

We would like to remark that there are other concepts of outer, for instance

the definition of outer automorphism introduced in §1.l and

Definition 3.2.7 (V.I<. Kharchenko in [65], [82}} Let R be a semiprime ring and

M(R) the left Martindale ring of quotients. If C is a group of automorphisms of

R, for each 9 E C, let

4>g= {x E M(R) : xyg = yx, for all y ER}.
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Let Ginn = {g E G : ¢g =1= OJ. If Ginn is a subgroup of G, let GOllt = C'jnirllL'

We say that G is X -outer if Ginn = {id}.

Remark 3.2.8 i) In definition 3.2.7, if Ginn is a subgroup, it will he a normal

one. To see this, let 9 E Ginn and h E G. Then there is x -I- 0 such that

xzg = zx, for all z E R. Let h E G and tv = xh-1 -I- O. Then, for all yEll,

wyhgh-1 = (xyhg)h-1 = (yhwh)h-l = yw.

ii) If R is a semiprime ring and F the set of all essential two-sided ideals of

R, then M(R) = R;: = !b¥IEFHom(RI, RR), the ring of left quotients of R with

respect to F.

iii) The ring M(R) was first defined for prime rings by W.S.Martindale in

[73] [see also [82]]. S.A.Amitsur in [4] [see also [82]], extended the definition to

semi prime rings.

iv) X-outer automorphisms are sometimes called F-outer (see for in-

stance [82]) to indicate that this definition is related to the filter F =

{essential ideals of R}.

v) There is at least one more definition of outer automorphisms, the one of

completely outer automorphisms given by Y. Miyashita in [78] [see also [82]].

Obviously, if a group G of automorphisms of a semi prime ring R is w-outcr

when extended to M(R), then G is X-outer. If R is a simple ring with identity

then M(R) = R and the notions of X-outer and w-outer are the same. The

following theorem gives a clarification of the concept of X-outer.

Theorem 3.2.9 Let R be a semiprime right and left Goldie ring and G a qroup

of automorphisms of R. Then, G is X -ouier on R if and only if G is X -outer

when extended to Q(R), the classical ring of quotients of R. In particular, when

R is a prime right and left Goldie ring, G is X -outer on R if and only if the

identity is the only inner automorphism of Q( R) in G.

Proof. [82, Theorem 1.4]. 0
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Remark 3.2.10 If R is a semiprimc Goldie PI ring, one can form Q( In by

inverting central elements. From Theorem 3.2.9 it follows that the two dclini tious

:3.2.5 and 3.2.7 coincide in this case.

Lemma 3.2.11 Let R be any ring, .l any multiplicative group and R * J be any

crossed product of J over R.

Then

CR*J(R) =E<Pg9·
gEJ

If J is a group of automorphisms of R which is ui-ouier, then

and

If R#} is any skew-group ring and} is abelian then <pg is J -invariant for all

9 E J and

Z(R#J) =E<p;g.
gEJ

Proof. Let R be any ring and s = Lg rg9 E CR*J(R). Then, for all rEil,

E rrg9 = E rg9r = E rgr<7(g)g.
9 9 9

So, for each g, rgr<7(g) = rrg, for all I' E R and so s E LgEJ <pgg. The other

inclusion is obvious.

If J is an w-outer group of automorphisms, then <pg = Z(R) for g = id,

otherwise <pg= O. So, CR*J(R) ~ Z(R). Obviously, Z(R) ~ CR*J(R). lienee

Z(R) = CR*J(R). Let s E Z(R *}) ~ CR*J(R) = Z(R). Then, for all 9 E .1,

sgg = gs = sg, and so s E Z(R)J. Then Z(R *}) = Z(R)J.

Suppose that R#} is a skew-group ring and} is abelian. Let a be the action

of the crossed product as in Definition 1.2.15 and take g, hE}, r E <pg and

s E R. Then rhsg = (rsgh-I)h = (rsh-Ig)h = (sh-Ir)h = srh. Hence rh E <pg

and <pg is J-invariant. We already have Z( R#J) ~ CR#J( R) ~ LgE) <pgg. Let
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s E Z(R#J). Then s = LgEJ rgg for some rg E cPg. Now, for all h E .J, h.s = sh..

So

~ r;(h)!Ig = ~ rggh
gEJ gEJ

and so r;(h) = rg for all h E J. Then Z( R#J) ~ L.gEJ cp:g and the equality

holds. 0

Example 3.2.12 Let Rand G be as in Example 3.2.6 and form S = R#G the

skew-group ring of G on R constructed with the given action of G on R. Then

by Lemma 3.2.11, Z(S) = (C EElO)Gg + (C EBC)G = (C EElO)g + (C ttl IR).

Remark 3.2.13 Example 3.2.12 gives a counterexample to what has been

claimed in Remark 1 of [3]. In particular it shows that Ikehata's result [G2,

Theorem 2] cannot be deduced as a corollary of [3, Theorem 1].

3.2.1 Galois extensions and H-separability

In the first part of section 2, we described some crossed products that are Azu-

maya in terms of H-separability and separability. In this subsection we will

describe the H-separability condition obtained in terms of Galois extensions in a

similar spirit to the work of Alfaro in [1]. We will have to make some restrictions

on the crossed products we consider.

In [9], M.Auslander and O. Goldman introduced the notion of a Galois exten-

sion of commutative rings. In [61], T.Kanzaki generalized the notion of Galois

extensions to noncommutative rings, as follows.

Definition 3.2.1.1 Let T be a ring, U a subring of T and G a finite subgroup

of Aut(T). We say that T is a G-Galois extension of U if

i) U = TG;

ii) T is a finitely generated projective right U-module;
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iii) the natural map ¢: T#G ---+ End(Tu) such that ¢(tg)(s) = tg(s), for any

t ,« E T and g E G, is an isomorphism of rings.

Remark 3.2.1.2 i) To be precise, in Definition 3.2.1.1, we should have called

such an extension a right G-Galois extension of U. We will omit the word "right",

so that we will use the same term as the one found in the literature about the

subject.

ii) We regard T as a left T#G-module by setting s.t = ¢(8)(t), for all s E

T#G and t E T.

iii) For a commutative ring T, ii) and iii) together imply that T is a projective

T#G-generator. (See [8, Proposition A.3] and [76, Definition 3.5.3] or [:J4] for

the definition of generator.)

If we assume T to be a T#G-generator (in this case we won't need the com-

mutative hypothesis) it is easy to verify that HomT#G(T, T) may be identified

with TG. Then by [8, Theorem A.2, c) and f)] we have that T is a finitely gen-

erated projective TG-module and the natural map ¢ : T#G ---+ End(Tu) is an

isomorphism.

iv) In [10], M. Auslander, J. Reiten and S. O. Smale gave a different definition

of Galois extension for noncommutative rings: Given a ring T, if a subrinq of

T and G a finite group of automorphisms of T, T is a preqalois extension of U

with group G if U = TG, T is a finitely generated U -tnodule and T is a projective

T#G-generator.

For these authors, a Galois extension would be a pregalois extension T of lJ

with a group G such that for every simple left or right T-module S, Ujannu(S)

is a semisimple artinian ring.

It is a consequence of [8, Theorem A.2] or [10, Proposition 1.6] that if T is a

pregalois extension of U in the Auslander-Reiten-Smale sense then T is a G-Galois

extension of U in the sense of Definition 3.2.1.1. Moreover the reverse implication

is valid when T is commutative, by note iii). Whether the two definitions are
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equivalent in general appears unclear. (It's worth noting, however, that a finitely

generated projective R-module is not in general projective over its endomorphism

ring; see Remark in [8J after Proposition A.:q
v) Throughout this chapter we will use the definition of Galois extension giv(,ll

in Definition 3.2.1.1.

The following proposition is a well-known characterization of Galois exten-

sions for commutative rings. For more details see Chapter III of [34J.

Proposition 3.2.1.3 Let T be a commutative ring, U a subring of T and C; a

finite subgroup of Aut(T). The following are equivalent:

1. T is a G-Galois extension of U.

2. (aJ TG = U;

(b) For each non-zero idempotent e E T and each pair g =I- h in (J, there

is an element x E T such that g(x)e =I- h(x)e;

(c) T is a separable U -algebra.

3. (aJ TG = U;

(b) There exist n E N and Xl, .•• , Xn; Yl, ... ,Yn m T such that
n

LXjg(Yj) = Og,l.
j=l

4. (aJ rG = U;

(b) For every maximal ideal M of T and each g E G\ {I} there is t E T

such that g( t) - t </: M.

Proof. [34, Proposition III.1.2] 0

For the case of Galois extensions for noncommutative rings, at least condition

3 of the above proposition holds, as we record below. For other characterizations

of Galois extensions for noncommutative rings, see [1], [39J, [61] and [62J.
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Proposition 3.2.1.4 Let T be any ring, U a subring oJT and G a find! subg"oup

oj Aut(T). Then T is a G-Galois extension o] U iJ and only iJ

1. TG = U;

2. There exist n E N and Xl, ... , Xn; Yl, ... , Yn in T such that, [or 9 E OJ
n

LX jg(YJ) = 09,1'
j=l

Proof. [62, Proposition 2.4]. 0

Lemma 3.2.1.5 Let T be a ring, H any group and G a finite subgroup of Aut(l').

Let T H be the group ring and extend each automorphism of T to one o] THin

the usual way. Then T is a G-Galois extension o] TG iJ and only if T El is a

G-Galois extension of TG H.

Proof. Suppose first that T is a G-Galois extension of TG. Obviously, (T ll)G =

TGH. By Proposition 3.2.1.4, we have that THis a G-Galois extension of rG fl.
Conversely suppose that THis a G-Galois extension of TG If. Again by

Proposition 3.2.1.4, there are Xl, ••• ,Xn, Y1, ... , Yn E T 1I such that, for 9 E G

2:.7=1Xjg(Yj) = Og,l'

For each j E {I, ... ,n}, write Xj = 2:hEHaj,hh and Yj = 2:IEHbj,ll, for some

aj,h, bj,1 E T. Then
n

I: I: aj,hg(bj,dhl = c5g,l'
j=l h,1

Hence
n

I: L aj,hg(bj,h-I) = s.;
j=1 hEH

So, {aj,h; bj,h-I : 1 ::; j ::;n, h E H} is a family of elements of T satisfying

condition 2 of Proposition 3.2.1.4. Hence T is a G-Galois extension of TG. 0
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Definition 3.2.1.6 IfG is a finite group of automorphisms of a ring R, we dr-fi lit'

the trace map, an RG-module homomorphism, by

trG: R ~ RG

T' f----t L9EGg(1').

Whenever the group G is well understood, we will just write ir,

Remark 3.2.1. 7 In the situation of Definition 3.2.1.6, obviously tr'c;(T') E Rn

and if r is a fixed point then trG(r) = IGlr.

The following lemma follows easily from the remark and definitions above.

Lemma 3.2.1.8 If G is a finite group of automorphisms of the ring R, then IrG

is an RG -bimodule homomorphism [rom R to RG and IGIRG ~ tra( R) <1 tr: D

Lemma 3.2.1.9 Let R be a commutative ring and G a finite group of aulomor-

phisms of R. If IGI-1 E R or R is a G-Galois extension of RG then 1 E Im(tl')

and tr is onto as a map from R to RG. If tr is onto as a map from R to RG, nG
is isomorphic to a direct summand of R as an RG -module.

Proof. If IGI-1 E R, then 1 = tr(IGI-1.1) and by Lemma 3.2.1.8 tr is onto.

If R is a G-Galois extension of RG, then 1 Elm (tT') by [34, Corollary II I.1.:J],

and hence tr is onto as a map from R to RG. Since R - RG -; 0 is an exact

sequence of RG-modules, the sequence splits and the result follows. D

Remark 3.2.1.10 Given any ring R, G any subgroup of Aut(R), and M a G-

stable ideal of R, for every 9 E G we can define an automorphism g' of RI M

by g'(r + M) = g(r) + M. We shall abuse notation and denote g' by g and

the subgroup of Aut(R/M) generated by these elements by G (even if G is not

isomorphic to a subgroup of Aut(RI M)).

Lemma 3.2.1.11 Let R be a ring and G a finite subgroup of Aut(R) such that

tr is onto as a map from R to RG. If M is a proper G-stable ideal of R then:
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ii) If R is a commutative ring and a G-Galois extension of RC then RI At is a

G-Galois extension of (RC + M) INI.

Proof. Suppose Rand G as above. Assume that ir is onto as a map from R to

RC. Take d E R such that tr(d) = 1.

Let r E R be such that g(r) - rEM for all 9 E G. Then, as M is an ideal of

R, g(r)g(d) - rg(d) E M, for all 9 E G. Hence

Lg(rd) - L rg(d) E M.
9 9

So tr(rd) - rEM and r + M = tr(rd) + M E (RC + M)IM. Obviously,

(RG + M)IM ~ (RIM)G and the equality holds. So we have i).

Assume that R is a commutative ring and a G-Calois extension of RC. Let

M IM be a maximal ideal of RI M and 9 E G\ {id}. As R is a G-Calois extension

of RC, there is r E R, such that g(r) - r ~ M. But then g(r + M) - (r + M) tI.
M 1M. So, by i) and Proposition 3.2.1.3 (4), we have that RI M is a G-Galois

extension of (RC + M) IM. 0

Lemma 3.2.1.12 Let R be any ring and G a finite subgroup of Aut(R) such thai

R is a G-Galois extension of RG and RC is a field. Then R is semiprime.

Proof. Since R is a G-Calois extension of RC, by definition R#G ~ EndRG(R)

and R is finitely generated as a right module over RG. As RG is a field, R has a

finite basis over RG, say of cardinality t. Hence EndRG(R) ~ Mt(RC) is a simple

artinian ring.

Let .J(R) and .J(R#G) be the Jacobson radical of Rand R#G, respectively.

As .J( R) is G-invariant and is nilpotent (Hopkins Levitzki's Theorem [44, The-

orem 3.15]), so is .J(R)#G. As R#G is prime, .J(R)#G = 0 and so .J(R) = o.
So R is semisimple, hence semi prime. 0
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In [1] Ricardo Alfaro gives a necessary condition for a skew-group ring 11.#(;

to be H-separable over R where G is a finite group acting faithfully as automor-

phisms of R. He proves that:

Let R be any ring, G a finite group acting faithfully as auiomorphisms of R

and R#G the skew-group ring. If R#G is an H-separable extension of R, then:

i) G is cc-outer;

ii) CR#G(R) = Z(R);

iii) Z(R) is a G-Galois extension of Z(R)G.

His proof depends essentially on the fact that, assuming Rand G as above,

CR#G(R) = Z(R) and if R#G is an H-separable extension of R, then G is w-

outer. The next proposition and its proof is the analogue to [1, Theorem 3.4]'

although his result is just for skew-group rings and his proof is rather obscure.

In this thesis we clarify the proof using some of Alfaro's ideas and especially his

remark that precedes [1, Theorem 3.4] and generalize to some crossed products of

the form R *G where G is a finite group acting faithfully on R as automorphisms

of R.

Remark 3.2.1.13 We should note that if R is any ring, G any group and R * G
any crossed product of Gover R, we are assuming that an action a :G -+ Aut(R)

as in Definition 1.2.15, is defined such that 1'g = 1'11(g) • Hence it is obvious that,

under these conditions, RG is a subring of R.

As already discussed in Lemma 1.2.17, the action o does not have to be

a homomorphism. Although, by the same lemma, a is a homomorphism if R

is a commutative ring. For some results in this section and in the following

one, we will have to assume that a is actually a homomorphism or even that

it is a monomorphism; this is the real meaning of phrases like "G a group of

automorphisms of R".
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Proposition 3.2.1.14 Let R be any ring and G a finite group aclinq Jaithfully

on R as auiomorplusms o] R. Suppose that G is co-outer on R. SUPPO,'-i(thai

there exists a crossed product R * G whose action oj G on R is the given one,

such that R * G is an H-separable extension o] R. Then Z( R) is a G-Galois

extension oj Z( R)c.

Proof. As R*G is an Il-separable extension of R and since R is a direct summand

of R * G as an (R, R)-bimodule, CR*c(R) is a separable extension of Z( it *G) by

Proposition 3.1.14.

Since G is w-outer and acts faithfully on R as a group of automorphisms of R,

Proposition 3.2.11 implies that Z(R * G) = Z(R)C and CR*c(R) = Z(R). Hence

Z(R) is a separable extension of Z(R)c.

Assume there is a nonzero idempotent e in Z( R) and h -# g in G such that

rhe = rge, for all r E Z(R). Then for all x E Z(R),

-I h -I -I
xe" = x 9 eg

Hence, for all x E Z(R),

eg-I xh9-1 hg-1

xhg-I e9-
1 hg-1

So, eg
-
I hg-1 E CR*c(Z(R)) = CR*C(CR*c(R)). As R*G is an Il-separable exten-

sion of Rand R is a direct summand of R*G, we know that CR*C(CR*C(R)) = R,

by [103, Proposition 1.2J. Therefore hg-1 = 1 and so g = h, a contradiction.

Hence there is rE Z(R) such that rhe -# rge. By Proposition 3.2.1.3, 2, Z(R) is

a G-Galois extension of Z(R)c. 0

Proposition 3.2.1.15 Let R be any ring and G a finite ea-outer group of au-

tomorphisms of R. Let R * G be any crossed product constructed with the given
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action of G on R. If R * G is Azumaya then Z( R) is a GsGalois extension of

Z(R)c.

Proof. Assume Rand G as above. By Lemma 3.2.11, Z(R * G) ~ Z( H). If

R * G is Azumaya, then by Proposition 3.2.3, R * G is an Il-separable extension

of R and by Proposition 3.2.1.14, Z(R) is a G-Galois extension of Z(R)G. 0

Corollary 3.2.1.16 Let D be a commutative domain and G a finite group acl.itu)

faithfl111y as automorphisms of D and D * G any crossed product constructed with

the given action of G on R. If D *G is Azumaya, then D is a G-Galois extension

of DC.

Proof. Suppose D *G as stated above. Then, Gis w-outer and the result follows

from Proposition 3.2.1.15. D

Remark 3.2.1.17 We should note that in the statement of Corollary 3.2.1.16

we could have started with a commutative domain D and any crossed product

D * G and assumed that the action is faithful. By Remark 3.2.1.13, this would

mean that G is actually isomorphic to a group of automorphisms of D.

3.3 A sufficient condition

In this section we would like to give a sufficient condition for a crossed product of

a finite group G over a commutative domain D such that G acts faithfully on D

to be Azumaya. For that, we start by taking any ring R and any finite group of

automorphisms of R, then we try to describe the maximal ideals of RC in terms

of G-prime ideals of R. To do so, we need some general results of the theory of

finite group actions.
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Proposition 3.3.1 If R is any commutative ring, G a finite qrotip of aulomor-

phisms of Rand P, Q E Spec( R) are such that P nRc = Q n RC, then P and CJ

are in the same G-orbit of Spec(R).

Proof. The proof follows the proof of [81, Proposition l.1]. 0

Proposition 3.3.2 Let Rand G be as stated in Proposition 3.,1.1. Then the pair

RC, R of rings satisfy:

i) Lying over (La): for any prime P of RC there exists a prime Q in R with

Q n RG = P;

ii) Going up (GU): given primes P ~ Po in RC and Q in R with Q nRc = P,

there exists a prime Qo in R satisfying Q ~ Qo and Qo n RC = Po;

iii) Going down (GD): given primes P ~ Po in RC and Qo in R with Qon RC =

Po, there exists a prime Q in R satisfying Q ~ Qo and Q n RC = P;

iv) Incomparability (INC): ifQ and Qo are distinct primes in R with Qn RC =

o« n RC, then Q rz. Qo and Qo % Q.

Proof. As every element r E R is a root of the polynomial of RC[x],

OgEC(X - g(r)), R is integral over RC. So RC ~ R satisfies LO, GV and INC,

[63, Theorem 42 and Theorem 44]. Let P ~ Po be prime ideals of RC and Qo a

prime ideal of R such that Qo nRc = Po. By LO, there is a prime ideal of R, Q,

such that Q n RC = P ~ Qo n RC. By GU there is a prime ideal Ql of R such

that Q ~ Ql and o, n RC = Po = Qo n RC. By Lemma 3.3.1, there is (3 E G

such that Q~ = Qo. Hence Q13 ~ Q~ = Qo and Q,f)n RC = Q n RG = P. If we

take Q = Q13, Q will satisfy iii). 0

Proposition 3.3.3 Let R be a commutative ring and G a finite group of auto-

morphisms of R. If M is a maximal ideal of RC then M = ngEcM9 n RC, for

some maximal ideal M of R.
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Proof. By LO, there is a prime ideal M of R such that M = M nRG. 0 bviously,

ngEcM
g n RC = M n RC. Since M is maximal in RC by INC we have that At is

maximal in R. 0

Proposition 3.3.4 Let R be a commutative ring, G a finite group of auiomor-

phisms of R and M a maximal ideal of RC. If M R is a semiprime ideal of R,

then M R = ngEcMg for some maximal ideal M of R.

Proof. By INC and LO the set M of primes of R lying over M is non-empty and

consists of maximal ideals. By Proposition 3.3.1,M consists of a single G-orbit.

In particular, M is finite. Finally, M R = n{M : M EM}, because M R, being

semiprime is certainly an intersection of prime ideals of R, but all such arc by

definition in M. 0

Proposition 3.3.5 Let R be a commutative ring, G a finite group of auiomor-

phisms of R such that R is a G-Galois extension of RC. Then for all maximal

ideals M of RC, M = M Rn RC and M R = ngEcMg for some maximal ideal M

of R.

Proof. Let Rand G be as stated above and M a maximal ideal of RC. Obviously,

M R is a G-stable ideal of R. By Lemma 3.2.1.9, RC is a direct summand of R

as an RC-module, hence M = MRn RC. So MR # R. By Lemma 3.2.1.11,

(RI M R)C ~ RC IM, where this ring is a field and RIM R is a G-Galois extension

of(RIM R)c. Now, by Lemma3.2.1.9 and Lemma3.2.1.12, RI M R is a semiprime

ring and the result follows from Proposition 3.3.4. 0

Theorem 3.3.6 Let R be any commutative ring, G a finite subgroup of Aut(R)

and R * G any crossed product of Gover R constructed with the given action

of G on R. If R is a G-Galois extension of RC, then R * G is Azumaya and

Z(R * G) = RC.
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In order to prove the Theorem we need the following Lemma:

Lemma 3.3.7 Let R be a commutative ring) C a finite subqrottp ofAltt(H) su.cl:

that R is a C-Calois extension of RG and R * C any crossed product of (,' OP( ,. f(

constructed with the given action of C on R. Then C is W-OUtCl' arul /:( H * (,') =
RG.

Proof. Let g E C\ {id} and r E R be such that rg(x) - xr = 0 for all :r E R.

That is, r(g(x)-x) = 0 for all x E R. Let r.annR(r) = I and suppose]' -:f O. Theil

I is a proper ideal of R and there is a maximal ideal M of R, such that I ~ AI.

Since R is a G-Galois extension of RG, there is x E R such that g( x) - .r ~ M.

So g( x) - x ~ I and r(g( x) - x) "# 0, a contradiction. So C is w-outer and by

Lemma 3.2.11 we have Z(R * G) = RG. 0

Proof of Theorem 3.3.6:

Let Rand C be as stated above. Assume that R is a G-Galois extension

of RG. So R is finitely generated over RG. Since C is finite, R * G is finitely

generated over R and also over RG, which equals Z(R * C) by Lemma :l.:L7.

By [34, Theorem II.7.1], R*G is Azumaya if and only if for all maximal ideals

M of Z(R * C), (R * C)IM(R * G) is a separable RG1M-algebra.

Let M be a maximal ideal of RC. Obviously MR is a C-stable ideal of Il and

by Lemma3.3.5, M = MRnRc. So MR -:f R. As (R*G)IM(R*G) ~ (HIM H)*

C, it follows from Lemma 3.3.7 and 3.2.1.11 that Z((R* C)I M(R* C)) ~ It; /M.

So (R*C)I M(R*C) is a separable RC /M-algebra if and only if (R*C)/ M( R* G)

is Azumaya.

We claim that for all maximal ideals M of RC, M(R * G) is a maximal ide-al

of R * C. We show first that this claim will prove the result. Since C is finite

R * C is finitely generated as a module over a commutative ring so, by [76,

Corollary 13.1.13 iii)] R*G is PI. Hence so is (R*G)/M(R*G). Using the claim

(R * C)I M(R * C) is a simple PI ring and by Kaplansky's Theorem [76, Theorem

13.3.8]' a central simple algebra, hence Azumaya [76, Proposition 13.7.7J,
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We will now prove the claim. Let M be a maximal ideal of tr>. By Proposi! ion

3.3.5, there is a maximal ideal M of R such that

-a G - GM = naEGM n R = M n R ,

and

As RI M R is artinian, M is a minimal prime over MR.

Let Fl, ... ,M"""O' be the distinct maximal ideals in {Jil : a E G}. Hence

R*G R R
M(R * G) ~ (Mal EEl .•• EEl Xl') * G.

By [86, Corollary 14.8], (R * G)IM(R * G) is prime if and only if (RI M) * (,'1

IS prime for Gl = {g E G : Mg = M}. Set G2 = {g E G' : l\{J =
M and 9 induces the identity on RI M}. Then RI M is a field and by [8(), Corol-

lary 15.9], (RI M) * Gl is prime if and only if the twisted group ring [RI MjI[(,'2]

is Gl-prime. Let 9 E G2, so that g(x) - x E M, for all x E R. So 9 = id since R

is a G-Galois extension of RG. Hence G2 = {id} and (R * G) /M (R * G) is prime.

As (R*G)I M(R*G) is finite dimensional over the field RG I M, en- G)I M(Jh

G) is Artinian, hence M(R * G) is maximal. This proves the claim. 0

Example 3.3.8 Take S = qe, e-l j a], where a is complex conjugation on C.

We can think of S as q02, 0-2] * G where G is the group of order 2 generated

by o. It is obvious that (qe2, 0-2])G = JR[02,0-2]. Let M be a maximal ideal of

q02,0-2]. If a(i) - i = -2i E M, then 1 E M, a contradiction. Hence we can

deduce that q02, 0-2] is a G-Galois extension of JR[02,0-2]. By Theorem :J.:J.6,

S is Azumaya.

Combining several results obtained so far, we get

Proposition 3.3.9 Let R be any ring, G a finite group of auiomorpliisms of

Rand R * G any crossed product constructed with the given action of G on R.

Consider the following statements;
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i) R * G is Azumaya and Z(R * G) ~ R;

ii) a) R * G is an H-separable extension of R;

b) R is a separable extension of Z(R)C;

iii) R is Azumaya and Z( R) is a G-Galois extension of Z( R)G.

Then i) is equivalent to ii). If R is commutative iii) implies i) and ii'[.

If G is co-outer on R, i) and ii) imply iii).

If R is commutative and G is cc-outer on R, i), ii) and iii) are equivalent.

Proof. Assume Rand G as above. By Proposition 3.2.3, i) is equivalent to ii).

If R is commutative then iii) implies i) by Theorem 3.3.6.

If Gis w-outer on R then Z(R*G) = Z(R)C by Lemma 3.2.11. By Proposition

3.2.1.14 and Proposition 3.1.10, ii) implies iii).

If R is commutative and Gis w-outer on R, by the above, i), ii) and iii) are

equivalent. 0

Corollary 3.3.10 Let D be a commutative domain, G a finite subgroup of

Aut( D). Let D * G be any crossed product of D by G constructed with the qiucu

action of G on D. Then D * G is Azumaya if and only if J) is a (,'-Galois

extension of DC.

Proof. As D is a commutative domain, G is w-outer and the corollary follows

from Proposition 3.3.9 0

We will state an improved version of Corollary 3.3.10 as Proposition 3.4.9 in

§3.4, after introducing the notion of inertia group.

One could try to generalize the results obtained so far to any crossed product.

In the general case, given a crossed product R * J, we could try to replace iii) of

Proposition 3.3.9 by iii')
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a) R is Azumaya;

b) R is finitely generated projective as an RJ -module;

The following example shows that such a generalization will not be possible.

Example 3.3.11 In [48], R.B. Howlett and I.M. Isaacs, for the proof of their

main result, Theorem 8.2, built a non-abelian finite group H of central type

(given any field K, there exists a faithful irrreducible K -representation of degree

IH : Z(H)ll/2). By [35, Theorem 1] and its proof, if H is of central type then

we can form a certain twisted group algebra C[HjZ(H)] with centre C and

isomorphic to Mn(C) where n2 = [H : Z(H)]. Hence C[HjZ(H)] is simple. So

if J = HjZ(H), J is a nontrivial finite group such that C J is simple. As it is

finitely generated as a ([:-module, it is artinian. Hence CJ is a central simple

algebra and by [76, Proposition 13.7.7], Azumaya. Hence i) of Proposition :~.:t9
holds but as «:Y = C ( J acts trivially on C by definition of the twisted-group

ring ), CJ = C#J is not isomorphic to <c ~ End(Cc).

3.4 The Azumaya locus

Let R be any ring and M any maximal ideal of Z( R). It is obvious that one can

form Z(R)M. Also the set CZ(R)(M) is a right denominator set in R, hence we

can form RC'ZlR)(M) which we shall denote by RM.

Given a ring R which is finitely generated as a module over its centre Z( R),

R is Azumaya if and only if RM is separable over Z(R)M for all maximal ideals

M of Z(R), [34, Theorem II.7.1].

When R is prime, it is trivial to confirm that Z(R)M is Z(RM)' If R is finitely

generated as a module over its centre, R is Azumaya if and only if

{M E Max(Z(R)) : RM is Azumaya} = Max(Z(R)),
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[34, Theorem 11.7.1].

Notation and Definition 3.4.1 For a ring R and a (right or left) H-Illodlll(' X,

the projective dimension and injective dimension of X are denoted by pr.dilll//( X)

and inj .dimR(X), respectively. If there is no ambiguity we may omit the ring /(

and simple denote them by pr.dim(X) and inj.dim(X), respectively. The right

(respectively left) global dimension of R is denoted by r.gl.dim( R) (respectively

l.gl.dim( R)). If the right global dimension and the left global dimension are

equal, we simple denote the common value by gl.dim( R). The injective dimension

of a ring R as a right (respectively left) R-module is denoted by r.inj .dim( R)

(respectively l.inj.dim(R)), and simply by inj.dim(R) if the two values are the

same. A ring R is said to be regular if has finite global dimension. For the

definitions of these concepts see [87] and [91].

Remark 3.4.2 i) If R is a Noetherian ring, r.gl.dim(R) = I.gl.dim(R), by [91,

Corollary 9.20].

ii) One should note that the definition of regular rings given in Defillition

3.4.1 is not the same as the one given in [76]. In [76, Definition 7.7.1]' a ring

is right regular if every right cyclic module has finite projective dimension. In

[76, Example 7.7.2.]' an example is given of a commutative Noetherian integral

domain of infinite global dimension but regular in the sense of [76]. However, if H

is a commutative Noetherian local ring, the two concepts coincide [63, Theorem

121 and Theorem 173].

The definition of regular ring that we will use throughout this thesis, is the

one given in Definition 3.4.1.

Definition 3.4.3 Let R be a prime Noetherian ring which is module-finite over

its centre Z(R). The Azumaya locus of R is the set

AR = {M E Max(Z(R)) : RM is Azumaya},
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and the singular locus of Z( R) is the set

SR = {J\1 E Max(Z(R)): Z(R)M is not regular}.

Remark 3.4.4 i) Let R be a prime ring and M a maximal ideal of Z( /l) such

that RM is Azumaya. By [76, Proposition 13.7.11J RMIM RM is a central simple

(simple artinian) algebra with centre Z(R)MIMZ(R)M. If R is a prime Nool.hc-

rian ring module finite over its centre, RMI M RM ~ RI M R and An is the sd of

maximal ideals M of Z (R) such that RI M R is a central simple algebra over its

centre, Z(R)I M.

ii) Under suitable hypothesis on the ring R, the Azumaya locus of R contains

a non-empty open set of M ax( Z( R)). (In this case we are considering the Zariski

topology defined on M ax( Z( R)) in which open sets are the ones of the form

W(I) = {P E Max(Z(R)) : I ~ P}, for any ideal I of Z(R).)

Let R be a prime PI ring of degree n. By [9J, Corollary 6.1.:J6J and definition

of PI ring of degree n [92, Definition 1.4.30], there is s E Z(R)\{O} such that

R[S-l J is Azumaya. Hence, for any maximal ideal of Z( R) such that 8 tI: M, HM

is Azumaya. So W(sR) := {M E Max(Z(R)) : sR i. M} S;;; AR, and W($R) is

open and nonempty.

iii) If we impose some conditions on the centre of the prime Noetherian ring

R, the singular locus of Z( R) is a proper closed subset of M ax( Z( R)).

Assume for instance that K is an algebraically closed field of characteristic

zero and Z(R) a domain which is affine over K. Then Z(R) = K[Xl, ... ,In]1 P

which is the affine coordinate ring of some affine variety Y (Y = Z( P) = {r E

K" : f(r) = 0, for all f E P}.) Let c be the height of P in K[Xl' ... ,xnJ. III

this case by [38, Corollary 16.20 and Theorem 19.12J the singular locus of R (and

Z(R)) is defined by the set of maximal ideals M of Z(R) containing the c x c

minors of the Jacobian matrix [aii/oxjJ (built with il, ... ,in generators of P).

Hence SR is closed. By the Nullstellensatz, [38, Corollary 1.9], there is a one to

one correspondence between the maximal ideals of Z(R) and the points of Y, by
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[45, Theorem 1.5.3 and Theorem 1.3.2] we have that SR is a proper closed subset

of Max(Z(R)).

Moreover, if Q is any prime ideal of Z( R) and if J is the ideal of ~(N)

generated by the minors of the Jacobian matrix [ali/axj], by [:38, Corollary

16.20], Z(R)Q is regular if and only if Q doesn't contain J.

Let D be any commutative Noetherian domain and G a finite group acting

faithfully on D as automorphisms of D. Form D * G, any crossed product of (,'

over D, and assume that D*G is finitely generated over its centre Z(D*G) = ir:
Lemma 3.2.11. In this section we will describe the Azumaya locus of D * G ami

try to relate it with the singular locus of DC. To achieve this we will impose

some basic homological conditions on D (for instance we will assume that D has

finite global dimension) and on D * G (we will assume that D * G is height 1

Azumaya, see below for definition). We will start by describing when (f) *G)M is

Azumaya for M a maximal ideal of DC. In order to do so, we need to introduce

some definitions.

Definition 3.4.5 Let R be any ring, G a group acting on R and M an ideal of

R. Set

GR(M) = {g E G: r9 - rEM, for all r ER}.

GR(M) is usually called the inertia group of M.

For each 9 E G, let

the two-sided ideal of R generated by {r9 - r : r ER}. Define the two-sided ideal

of R

IR(G) = n IR(g).
gEC\{la}

The following lemma follows easily from the definitions.
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Lemma 3.4.6 Suppose that R is a ring, G a group acting OTt R and M ([11 id( al

of R. Then

i) GR(M) is the unique largest subgroup H of G such thai M is /1-//11'0/'1([111

and H acts trivially on R/ M;

ii) if N is an ideal of R such that N ~ M, then GR(N) ~ Gn(M);

iii) if N is a G-invariant ideal of R such that N ~ M, then GH(M)

GR/N(M/N);

iv) for la =1= 9 E G and an ideal M of R, IR(g) ~ M if and only if 9 E Gu(M).

Corollary 3.4.7 Let R be any ring and G a finite group acting on R and AI a

prime ideal of R. Then GR(M) = {la} if and only if IR(G) 1: M.

Proof. Assume GR(M) = {la}. By Lemma 3.4.6 (iv), IR(g) 1: M, for any

9 =I- la. So, as M is prime, IR(G) 1: M. Conversely assume IR(G) 1: M. Theil

IR(g) 1: M for any 9 E G\{la}. Hence by Lemma 3.4.6 (iv), Gn(M) = {In}. 0

Lemma 3.4.8 Let R be a commutative ring and G a finite group acting 011 R.

The following are equivalent:

i) R is a G-Galois extension of Ra;

ii) For all maximal ideals M of R, GR(M) = {la};

iii) IR(G)=R.

Proof. By Proposition 3.2.1.3, R is a G-Galois extension of Ra if and only if

for every maximal ideal M of R and each 9 E G\ {la}, there is t E R such that

g( t) - t tI. M. But this is equivalent to ii). As IR( G) is an ideal of R, by Corollary

3.4.7, ii) is equivalent to iii). 0
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Proposition 3.4.9 Let C be a finite group of auiomorphisms of a commut ai ire

domain D and D * C be any crossed product of D by C constructed with llu: !linlll

action of G on D. The following are equivalent:

i) D * G is Azumaya;

ii) ID(G) = D;

iii) For all M E Max(D), CD(M) = {la}.

Proof. By Corollary 3.3.10, D * G is Azumaya if and only if D is a G-Galois

extension of Da. The result follows now from Lemma 3.4.8. 0

Lemma 3.4.10 Let R be any ring and G a subgroup of Aut(R). Then the fol-

lowing holds:

i) For any ideal M of R and any 9 E G, GR(M9) = (GR(M))9-1;

ii) For any subgroup H ofG and any 9 E C, IR(H9) = (/n(H))9-1
;

iii) Let H be any subgroup ofG and N = Na(H) = {g E G: gHg-1 = II}.

Then I R( H) is N -siable. In particular if 9 E G and < g > is a rlO1'TT!a/

subgroup of C, then IR( < 9 » is C-stable.

Proof. Let M be any ideal of Rand 9 E C. If h E GR(M9), then for all 7' E R,

h(1') - r E M9. So, for all r E R, g-lhg(1') - r = g-lhg(1') - g-lg(1') E M. Theil

g-lhg E GR(M) and so GR(M9) ~ GR(M)g-l. Conversely, if h E GIl(M)9-1,

g-lhg E CR(M) and so, for all r E R, g-lhg(1')-1' E M. Then hg(1')-g(1') E MY,

for all r E R. Therefore h E GR(M9), whence i) holds.

Let H be any subgroup of G and 9 E G. As for any h E C, we have

<g-lhg(1')-1':1'E R>

< g-lh(1') - g-I(1') : rE R>
-I< h( 1') - r : r E R >9
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ii).

Let H be any subgroup ofGand N = NG(H). Takeg EN. Byii) (/u(/I))'} =

IR(Hg-
1
) = IR(H). Hence IR(H) is N-stable. If 9 E G and < 9 > is a normal

subgroup of G, NG( < 9 » = G and by the above IR( < 9 » is G-stable. 0

Remark 3.4.11 If G is not abelian IR(g) doesn't have to be G-invariant. For

instance take G =< a, b : a2 = b3 = 1, aba = b:' > and R = qx, y]. One call

define an action of G on V = <ex +Cy and then extend it to an action on H. We

think of G acting on V as a group of homomorphisms of a C-vector space in the

following way

a{x) = y

a(y) = x

and for any I E C\ {I} such that ,3 = 1

b(x) = ,x

If IR(a) were G-stable, in particular we would have (IR(a))b

Lemma 3.4.10 ii), we would have

As b+ab = ba, in particular, we would have

Now IR{a) n V = {ex - ey : e E C} and ba(y) - y = b(x) - y =,x - y. So

Hence IR( a) is not G-invariant.
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Lemma 3.4.12 Let R be a commutative Noetherian ring, 0 Cl finite subgroujJ

of Aut( R), M Cl maximal ideal of RC and M any maximal ideal of R sucl: that

M nRc = M. We can form the ring RM = RC'Rb (M) and extend each _q E (; to

an automorphism of RM. Then, the following are equivalent

i) RM is a C-Calois extension of (RM)C;

Proof. Assume R, 0 and M as stated above. If 9 E C, then the map

rx-1 --+ g(r)x-l, for all r E R, x E CRG(M) is an automorphism of RM (One

should note that, as was said in the first chapter, we are abusing notation when

we write rx-1 for an arbitrary element of RX-1).

Since M is a maximal ideal of RC, by Proposition 3.3.3, there is a maximal

ideal M of R such that M = M nRc.

By [44, Theorem 9.22], every prime ideal of RM is of the form J RM for J a

prime ideal of R such that I n RC ~ M.

Let M RM be a maximal ideal of RM, where M is an ideal of R such that

M n RC ~ M = M nRc. So M is a prime ideal of R maximal among the primes

M' such that M' nRC ~ M = M nRc. Then by GU, Proposition 3.3.2, we haw'

that M nRc = M = M n RC and by Proposition 3.3.1, there is a E C such that

M = MOl. Obviously, for any f3 E 0, M{3RM is a maximal ideal of RM. So

By Proposition 3.2.1.3, RM is a G-Galois extension of (RM)C if and only if

for all {3 E G and for each a E G\ {lc}, there is x E RM such that
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As RM = RC"Rb( M), it is then easy to conclude that RM is et G-Galois r-xtc-nsiou

of (RM)G if and only if for all f3 E G and for each a E G\{lG}, there is 7' E /I

such that
-(3a(r) - rtf. M .

This holds, if and only if, for all j3 E G and each a E G\{lG}, IR(a) 1= Mil i.r-.

if and only if IR(G) 1= Mf3, for any j3 E G. By Lemma 3.4.10 ii), IR(G) 1= MP if

and only if IR(G) = IR(G(3) = (lR(G))(3-J 1= M. So we have that i) is equivalent

to iii). By Corollary 3.4.7, ii) is equivalent to iii). 0

Proposition 3.4.13 Let G be a finite group of automorphisms of a commulaiioc

Noetherian domain D and assume that D is finitely generated over DG. Let J) *G
be any crossed product constructed with the given action of G on D. Then

AD*G - {M E Max(DG) : 'tiM E Max(D) with M n DG = M, ID(G) i M}

{M E Max(DG) : :3M E Max(D) with M n DG = M, ID(G) i M}

{M E Max(DG): ID(G) n DG i M}.

Proof. By [86, Proposition 1.6 and Corollary 12.6], D * G is prime and Noethe-

rian. Let M be a maximal ideal of DC. By Corollary 3.3.10, (D * G)M ~ DM * G
is Azumaya if and only if DM is a G-Galois extension of (DM)G. The first two

equalities follow now from Lemma 3.4.12.

Let A' = {M E Max(DG) : ID(G) n DG % M}. It is obvious that A' <;;;

AD*G. Conversely let M E AD.G. Then, by the first two equalities above,

ID(G) 1:. M for all maximal ideals M of D such that MnDG = M. It is then easy

to see (for instance by induction on the number of maximal ideals contracting

in DG to M), that ID(G) % U{M E Max{D) with M n DG = M}. Take

dE ID(G)\U{M E Max(D) with MnDG = M} and d = IlgEGdg E ID(G)nDG.

If d E M for some M maximal ideal of D such that M n DG = M, then dg E M,

for some g E G. Hence d E Mg-1 but My-I E Max(D) and My-I n DC = M,
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contradictingthechoiceofd. HencedE (ID(G)nDC)\U{M E Ma:r(J)) with iITn

DC = M}. So ID(G) n DC % M and ID(G) n DC % M n DC = M. 0

The following results relate the Azumaya locus of some prime Noet herian

rings module-finite over their centres, with the singular locus of their centres.

Lemma 3.4.14 Let R be a prime Noetherian ring, module-finite over its centre,

If gl.dim(R) is finite, then AR ~ Max(Z(R))\SR.

Proof. See [24, Lemma 3.3] 0

Corollary 3.4.15 Let G be a finite group of automorphisms of a commutative

Noetherian domain D of finite global dimension. Form D *G any crossed product

of Gover D constructed with the given action of G on D and assume that D * (,'
is Azumaya. Then SD*C = 0.

P aroof. Let G and D be as above. By Lemma 3.2.11, Z(D * G) = D'. As

D * G is Azumaya, AD*c = Max( DC). By Corollary 3.4.9, we have that for each

maximal ideal M of D, GD(M) = {lc}. Then by [108, Corollary 5.7], D * G has

finite global dimension. The result follows from Lemma 3.4.14. 0

Definition 3.4.16 Let R be a prime Noetherian ring, module finite over its

centre. We say that R is height 1 Azumaya if Rp is Azumaya over Z( R)p

Z(Rp), for all primes P of Z(R) of height 1.

Lemma 3.4.17 Let D be a commutative Noetherian domain, G a finite subgroup

of Aut(D) and P a prime ideal of DC of height one. Let P be any prime ideal of

D such that P = P n DC. Then ht(P) = 1 and the following are equivalent:

i) D» is a G-Galois extension of (Dp)C;

ii) GD(P) = {lc};
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iii) ID(G)1=P.

Proof. Let D, G and P be as above. If P is a prime ideal of [) such that

p = P n DC, then by INC, Proposition 3.3.2, P is a prime of height less than or

equal to 1. As P =f 0 (P is of height 1), P =f 0 and so P is of height 1.

Let C = CDc(P) = DC\P and MC-1 E Max(Dp). Hence M is maximal

among the prime ideals N of D such that N n DC ~ P. As P has height land

D is a domain, M n DC = 0 or M n DC = P. If M n DC = 0, by INC, M = 0, a.

contradiction. Hence M n DC = P = j5 n DC. So M = pet, for some a E G, by

Lemma 3.3.1. Hence the set of maximal ideals of MC-1 is just {petC-1 : a E G}.

Now the proof follows as the proof of Lemma 3.4.12. 0

Proposition 3.4.18 Let G be a finite group of automorphisms of a commutative

Noetherian domain D with D a finitely generated DC -module. Form D * G any

crossed product constructed with the given action of G on D. Then the [ollounuq

are equivalent

i) D * G is height 1 Azumaya;

ii) for all P E Spec(D) of height 1, ID(G) i P;

iii) for all P E Spec(D) of height 1, GD(P) = {lc};

iv) [or all P E Spec(D) of height 1 and for all1c =f 9 E Stabc(P) = {g E G :
-g - -P = P}, g acts non-trivially on D / P .

Proof. Let D and G be as above. In this case, D * G is finitely generated as

a DC-module. The crossed product D * G is height 1 Azumaya if and only if

for all P E Spec(DC) such that ht(P) = 1, Dp * G is Azumaya. By Corollary

3.3.10 D * G is height 1 Azumaya if and only if for all P E Spec(DC) such that

ht(P) = 1, Dp is a G-Galois extension of (Dp)c.
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As prime ideals of D of height 1 contract to prime ideals of Dr; of height I

(by GD), by Lemma 3.4.17 i) and ii) are equivalent. By Corollary 3.4.7, ii) is

equivalent to iii) and it is obvious that iii) is equivalent to iv) 0

To prove the following proposition, we need to introduce some more definitions

which will only be used in the proof of Proposition 3.4.21 and Lemma 3.4.22.

Definition 3.4.19 Let R be a ring and M a finitely generated right or left R-

module. The grade of M is defined to be

j(M) = inf{nIExtR(M, R) :j:. O} E No U {+oo}

see [59] and [91].

Definition 3.4.20 Let R be a Noetherian ring and let M be a finitely generated

right or left R-module. We say that M satisfies the Auslander condition if the fol-

lowing holds: for every non-negative integer i and every non-zero submodule N of

Extk(M, R), j(N) ~ i. (Note that Extk(M, R) is an R-module on the opposite

side to M in view of the fact that R is an R-module.) If every finitely generated

right and left R-module satisfies the Auslander condition, then we say that R sat-

isfies the A uslander condition. A Noetherian ring is called Auslonder- Gorenslein

(respectively Auslander-regular), if it satisfies the Auslander condition and has

finite right and left injective dimension (respectively global dimension).

An Auslander-Gorenstein ring R is called Macaulay if j(M) + K.dim(M) =

K.dim(R) holds for every finitely generated right or left R-module M, where

K.dim( ) denotes the (Gabriel-Rentschler) Krull dimension (see [44] for the defi-

nition and properties of K.dim).

Proposition 3.4.21 Let G be a finite group of automorphisms of a commutative

Noetherian domain D with D a finitely generated DG -module. Form any crossed

product D * G constructed with the given action of G on D. If
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i) gl.dim( D * G) is finite,

and

ii) for all P E Spec(D) of height 1, ID(G) % P,

In order to prove Proposition 3.4.21, we need the following lemma.

Lemma 3.4.22 Let D be a commutative Noetherian domain of finite injective

dimension. Assume that D is a semilocal ring with maximal ideals XI, ... ,XI

and that K.dim(D) = K.dim(DxJ, for all i E {I, ... ,t}. Then D is Auslander-

Gorenstein and Macaulay.

Proof. Let D be as above. By [12, Corollary 3.4 and §l], every commutative

Noetherian ring of finite injective dimension is Auslander-Gorenstein. So f) is

Auslander-Gorenstein. Also D is such that Dx is Auslander Gorenstein-Macaulay

for every X maximal ideal of D, [109, Proposition 3.6j. Hence, if M is a finitely

generated D-module, M Dx. is a finitely generated DX,-module and

j(MDxJ + K.dim(MDx.) = K.dim(Dx.) = K.dim(D) (1)

for all i E {I,. . . ,t}.

As for all i E {I, ... ,t}, (Extb(M,D))Dx. ~ Extbx(MDx"Dx'), [2Sj,,

j(M) ~ .i(M Dx,). Also as annD(Exth(M, D)) is an ideal of D, it will be con-

tained in one of the maximal ideals, Xk say. Hence Extb(M, D) is not (D\Xd-

torsion and j(M) = j(M DXk)' So

j(M) = inf{j(M Dx.) : i E {I, ... ,i}} (2).

Let M be a finitely generated D-module. Then if ht( ) denotes the

height of a prime ideal we have K.dim(M) = K.dim(Djr.annD(M)) =
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max{ht(Xi/r.annD(M)) : r.annD(M) ~ Xd. For each i= 1, ... .i ,

, . { -1 ifannD(AI) cz. Xi
K.dlm(M DXi) =

ht(Xi/r.annv(M)) ifr.annD(M) ~ .\j

since ht(X;Dx,/r.annD(M)Dx,) = ht(X;fr.annD(M)) in the second casco Hence

K.dim(M) = max{K.dim(M Dx.), i E {I, ... ,t}} (:3) .

Without loss of generality we will assume K.dim(MDxJ = K.dim(M) and

j(MDx.) = j(M), for some u, v E {I, ... ,t}. Then by (1) and (2)

K.dim(D) K.dim(M DxJ + j{M DxJ = K.dim{M) + j(MDxJ

> K.dim(M) + j(M);

also, by (1) and (3)

K.dim(D) K.dim(M Dx.) + j(M Dx.) = K.dim{M Dx.) + j(M)

< K.dim(M) + j(M).

So D is Auslander-Gorenstein Macaulay 0

Remark 3.4.23 We should note that Lemma 3.4.22 is false without the un-

mixedness condition. For instance take R = <C[x,y], P =< x,y > the ideal of

R generated by x and y and Q =< x + 1 > the ideal of R generated by x + 1.

Let D be the localization of R at P n Q. The commutative Noetherian domain

D has finite injective dimension. In this case the maximal ideals are QD and

PD. As Q has height 1, K.dim(DQD) = 1 but K.dim(D) = 2. If we take the

D-module W = D/QD, K.dim(W) = O. As pr.dim(W) = 1, by [91, Theorem

9.6], j(W) :::;1 and the ring D is not Auslander-Gorenstein Macaulay.

Proof of Theorem 3.4.21: As D is a commutative domain Z(D * G) = DC,

by Lemma 3.2.11.
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Let M E Max(DG). Then M D~ is a maximal ideal of D~. Also M E Af).(;

if and only if DM * G is Azumaya. As Z(DM * G) = D~ and (DM )MDG is just
M

DM, M E AD*c if and only if M D~ E ADM*G. Moreover M E SD*G if and only

if M DZr E SDft*C'

As D is finitely generated over DC, DM IM DM is finitely generated over

DG 1M, a field, hence is Artinian. As in the proof of Lemma 3.4.12, we have

that Max(DM) = {MY DM : 9 E G}, where M is a maximal ideal of D such that

M n DC = M. So M DM ~ .J(DM) and DM is semi local.

As D is a subring of D*G and a direct summand of D*G as a D-bimodule, by

[76, Theorem 7.2.8], gl.dim(D) ::; gl.dim(D*G)+pr.dimD(D*G). As D*G is free

as a module over D and of finite global dimension, we have that D also has finite

global dimension. Hence DM has finite global dimension as well, [76, Proposition

15.2.8]. By [91, Theorem 9.12]' the supremum of the injective dimensions of DM-

modules is equal to the supremum of the projective dimensions of DM-modules,

hence the injective dimension of DM (as a DM-module) is finite.

By Lemma 3.4.22, we have that DM is an Auslander-Gorenstein Macaulay

ring. By [109, Proposition 3.9] any ring strongly graded by a finite group and

with Noetherian coefficient ring is Auslander-Gorenstein and Macaulay if and

only if the same happens for the basis ring, so DM * G is Auslander-Gorenstein

and Macaulay. As D*G is regular, DM*G is regular as well [76, Corollary 7.1.:lj.

So DM * G is Auslander-regular Macaulay.

By ii) and Proposition 3.4.18, DM *G is height 1 Azumaya. By [86, Corollary

12.6] DM*G is prime. Hence DM*G is a prime Noetherian ring, module finite over

its centre, Auslander-regular and Macaulay, and DM*G is height 1 Azumaya. So,

by [24, Theorem 3.8], we have ADM*G = Max(D~ )\SDM*G. By the discussion at

the start of the proof, AD*c = Max(DG)\SD*G' 0

Remark 3.4.24 Let D = K[xt, xlI, ... ,Xn, x~I] and identify the multiplica-

tive abelian group generated by XI, ..• ,Xn with zn. Take G a subgroup
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of the group of linear isomorphisms of zn, GL{zn) ~ GLn(Z), the group

of invertible n x n matrices with integer entries. We say that 9 E (; is

a reflection if and only if it IS a conjugate in GLn (Z) of one the matrices

-1 -1 1

1 1
d= or e =

11
In this case, by [60, Lemma 2.3], condition ii) of Proposition 3.4.21 is equiv-

alent to

ii') There are no reflections in G\{l}.

We would like to establish when, given a finite group G of automorphisms

of a commutative Noetherian domain D satisfying condition ii) of Proposition

3.4.21, the crossed product will have finite global dimension.

In [108], Zhong Vi, gave a sufficient condition for a crossed product of a

commutative Noetherian ring with finite global dimension by a polycyclic-by-

finite group to have finite global dimension. In [108, Corollary 5.7J he proved:

Let R be a commutative Noetherian ring with finite global dimension. Let G be a

poiycyclic-by-finite group and S = R * G a crossed product. If for every maximal

ideal of M of R with characteristic char( RI M) of RI M equal to p, a positive

(prime) integer, GR{ M) contains no element of order p, then gl.dim( R * G) is

finite. This condition has already been used in the proof of Corollary :t4.15,

where GR{M) was {le}.

Corollary 3.4.25 Let G be a finite group of automorphisms of a commutative

Noetherian domain D. Form D * G any crossed product constructed with the

given action of G on D and assume that D is finitely generated over DG. If

i) gl.dim(D) is finite,

ii) for every maximal ideal M of D with char{DIM) = p > 0, GD(M) contains

no element of order p,
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iii) for every prime ideal P of D of height one, ID(G) et P,

then AD*G = NI ax( DG) \SD*G. Moreover the closed subset of singular (or,

equivalently, non-Azumaya) points of M ax( D) is given by

Proof. Since G is finite, D * G is finitely generated as a module over D. As

D is finitely generated over DG, D * G is finitely generated over DC. By [108,

Corollary 5.7] gl.dim( D * G) is finite and the Corollary follows from Proposition

3.4.21, with the last sentence being a consequence of Proposition 3.4.13. 0

In the case when D is a commutative domain and an affine algebra over an

algebraically closed field of characteristic zero, every maximal ideal M of D is

such that Dj M ~ K and the characteristic of Dj M is zero, so if D has finite

global dimension then so too does D * G, [108, Corollary 5.7].

In the next proposition we show that condition iii) of Corollary 3.4.25 is nec-

essary as well as sufficient provided we assume that D has finite global dimension

and is an affine commutative Noetherian algebra over an algebraically closed field

K of characteristic zero.

Proposition 3.4.26 Let D be a commutative domain and an affine algebra OV'T

an algebraically closed field K of characteristic zero and G a finite group of lv-

automorphisms of D. Form the crossed product D * G constructed with the given

action ofG on D. Assume also thatgl.dim(D) is finite. Then ID(G) et P for all

P E Spec(D) of height 1 if and only if AD*G = Max(DG)\SD*G.

Proof. Assume D and G as above. By Noether's Theorem [99, Theorem 2.3.1],

DG is affine and D is finitely generated as a module over DG. By Lemma 3.2.11,

Z(D * G) = DG.

If M is a maximal ideal of D, Dj M 3:' K of characteristic zero, hence D * G
has finite global dimension, [108, Corollary 5.7].
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By Corollary 3.4.25 and Proposition 3.4.18, we may assume that

and aim to prove that D * C is height 1 Azumaya.

As D is a Noetherian domain of finite global dimension, D is integrally closed

[74, Theorem 19.4 and Theorem 11.5]. Hence so is DG. By Serre's Theorem [45,

Theorem II.8.22A], as DG is Noetherian, for every prime ideal P of DG of height

1, D~ is regular. (See also [38, Theorem 19.12] for the relation of the different

concepts of regular rings used).

Let P be a prime of DG of height 1. As DG is a domain and an affine K-

algebra, for K an algebraically closed field of characteristic zero, as in Remark

3.4.4 iii), SD*G = {M E Max(DG) : J ~ M}, for a certain ideal J of DC.

Suppose that for all maximal ideals M of DG such that P ~ M, M E SD*G. As

DG is a Hilbert ring every prime ideal is the intersection of maximal ideals [58,

Corollary 5.4]. So n{M E Max(DG) : P ~ M} = P. Hence J ~ P and so D~

is not regular, a contradiction. So there is a maximal ideal M of DG such that

P ~ M and M rt SD*G. As by hypothesis AD*G = Max(DG)\SD*G, we have

DM * G Azumaya. As P ~ M, D» * C is Azumaya, [34, Corollary 11.1.7J. SO

D * G is height 1 Azumaya as required. 0

The next three examples show that there are cases of commutative Noetherian

domains D of finite global dimension which are affine algebras over algebraically

closed fields of characteristic zero and such that AD*G of Max(DG)\SIJ.G or

equivalently, condition iii) of Corollary 3.4.25 is not satisfied. In both of the first

two examples the singular locus is empty. The last example gives a case when

all the conditions of Proposition 3.4.26 are verified and the singular locus is not

empty.

Example 3.4.27 1) Take the group ring CC where G =< a,b: b-lab = a-l ».
We can think of CC as C < a,b2 > *C where G = Cl < b2 >~ C2• As b2ab-2 =
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b(bab-1 )b-1 = ba-1b-1 = a, b2a = ab2 and CC = qa, a-I, b2, b-2] * G where the

action a is a homomorphism such that a(b)(c) = c, for all c E C, a(b)(b2) = b'2,

a(b)(a) = bob:' = (ba-1b-I)-1 = a-I and a(b)(a-I) = ba-Ib-I = (bab-1)-1 = a.

So we can think of G as a finite group of C-automorphisms of the commutative

Noetherian domain and affine C-algebra, qa, a-I, b2, b-2].

By Lemma 3.2.11, Z(CG) = (C[a, a-I, b2, b-2])O' = qb2, b-2, a + a-I] and

CC< a, b2 > is finitely generated over (qa, a-I, b2, b-2])O'.

By [108, Corollary 5.7] qa,a-l,b2,b-2] and Z(CC) have finite global dimen-

sion. So, by [76, Proposition 15.2.8], Sea = 0 but CC is not Azumaya as the

augmentation ideal {LgEC Cgg : LgEC Cg = a} and < a-I, b+ 1 >, the ideal

generated by a-I and b+ 1, are both maximal but contract to the same max-

imal ideal of Z(CC), < b2 - 1, a + a-I - 2 >, the ideal generated by b2 - 1 and

a + a-I - 2. So the non-Azumaya locus must be non-empty.

2) Take D = C[x] and G = {1,g} where 9 is the C-automorphism of D
defined by g(x) = -x. Hence DC = C[x2] and D is finitely generated over

DC. Take the crossed product D * C constructed with the given action. As

Z(D * C) = C[x2], a regular ring [76, Theorem 7.5.3], SD.C = 0, [76, Proposition
15.2.8]. As ID(G) =< x >, the ideal generated by x which is a prime ideal of

height 1, AD•C # Max(Z(D * G))\SD.C.

3) Let D = C[x,y] and G = {1,g} where 9 is the C-algebra automorphism

of D such that g(x) = -x and g(y) = -yo Form the crossed product D * G

with the given action. In this case DC = qx2, xy, y2] and does not have finite

global dimension, see [76, Example 7.8.10]. So SD.C =I 0 by [76, Proposition

15.2.8]. Since x and yare in ID(G) and G fixes the ideal of D generated by x

and y, < x,y >, and acts trivially on the factor, we have ID(G) =< x,y >. So

AD•C = Max(DC)\SD.C = Max(DC)\{< x2,xy,y2 >}, by Corollary 3.4.25.

Remark 3.4.28 It is not true in general that given a ring R and a fi-

nite group of automorphisms G, that R will be finitely generated over RC.
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For instance take R = [~ ~], and the automorphism 9 of II such [hal

9 : [: ~] -+ [ ~b ~]. Then if G = {id,g}, we have RG [~; ]

but R is not finitely generated over RG.

However, if R is a commutative affine algebra over a field K and G is a

finite subgroup of K-automorphisms of the algebra, then RG is affine and H is

finitely generated as an RG-module [99, Noether's Theorem, Theorem 2.3.1j. The

problem of when is R finitely generated over RG is discussed in [41], §10 and ill

[80], §2.

3.5 Additional remarks

1. All definitions and results of §1 are well known. The main references an'

[34], [49], [50], [103] and [104].

2. Section §2 follows the ideas of [3] and [1]. Proposition 3.2.2 and Proposi-

tion 3.2.1.14, are respectively, our generalization for crossed products of [:1,

Theorem 1] and [1, Theorem 3.4], using the same type of arguments as ill

[3] and [1].

3. We consider Theorem 3.3.6 to be our main result of section 3. The other

results of section 3, unless stated otherwise and with the exception of Proper

sition 3.3.2, are new.

4. Lemma 3.4.6, Corollary 3.4.7 and Lemma 3.4.10 are easy and known, their

proof was included as we were not able to find any good reference. Proposi-

tion 3.4.13, Proposition 3.4.21 and Proposition 3.4.26 are our main results

of this section.
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Chapter 4

FBN and PI Skew-Laurent Rings

In this chapter we study when some skew-polynomial and skew-Laurent rings OV('r

Noetherian rings are fully bounded Noetherian rings (or FBN rings for short).

(See below for the definitions). So far we have been unable to completely de-

termine which of these rings are FBN, although one can descri be com pletely tilt'

ones which satisfy polynomial identities, a subfamily of FBN rings.

The results in §1 and §2 are an easy generalization of the ones of H. F.

Damiano and J. Shapiro in [32], who studied the above properties for tlu- case

of skew-polynomial rings with one indeterminate and one automorphism of till'

Noetherian basis ring.

As every Azumaya ring is a PI ring, in section 3, we combine the results of

section 2 and chapter 3 to describe the Azumaya Locus of some skew-Laurent

rmgs.

4.1 Fully bounded rings

In this section we introduce the basic definitions and some descriptions of FBN

rings. For more details see [29] and [44]. We show also that the necessary

condition obtained for our rings to be FBN is not sufficient.
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Definition 4.1.1 A ring R is said to be right bounded if every CSSCll! ial ril!,ht

ideal of R contains an ideal which is essential as a right ideal.

Remark 4.1.2 A prime ring is right bounded if and only if every essential right

ideal contains a non-zero ideal.

Definition 4.1.3 A ring R is said to be right fully bounded if every prime factor

ring of R is right bounded.

A right (left) FBN ring is any right (left) fully bounded right (left) Noetherian

ring. An FBN ring is any right and left FBN ring.

Proposition 4.1.4 Let R be a right Noetherian ring. Then R is right FUN if

and only if for every right ideal I of R, there are rt, ... ,r n E R such that

Proof. [28, Corollaire II 9] and [67, Theorem 3.5]. 0

Definition 4.1.5 Condition (*) is called Gabriel's condition.

Proposition 4.1.6 Let S be a right FBN ring and R a subrinq of S. If as II 11ft

R-module, S is free of basis {1,sa: a E A,sa E S}, then R is right FUN.

Proof. [29, Proposition 2.1] 0

Theorem 4.1.7 (Letzter) If R is a right FBN ring and R is a subriuq of II

ring S such that S is finitely generated as a right R-module, then S is l'i!Jhl FUN.

Proof. [44, Theorem 10.7] 0

Proposition 4.1.8 Let R be a ring and X ~ CR(O) a right Ore set. If R is right

FBN so is RX-l.
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Proof. [29, Proposition 1.5J and [67, Theorem 3.5J 0

The following notation will be kept through the rest of this chapter.

Notation 4.1.9 Let R be any Noetherian ring, al,'" ,an automorphisms

of R commuting pairwise, T R[OI, ... ,On;al,'" ,anJ and S __
R[OI, 011, ... , On, 0;;1; ab' .. , anJ the skew-polynomial ring and the skew-Laurent

ring, respectively.

We will denote by G the abelian group generated by aI, ... , an and by /I t.lu-

abelian torsionfree group generated by 01, •.. ,On'

Define'll the group homomorphism from H onto G such that \lI( Od = 0',. for

all i E {I, ... ,n}. Let K; = Ker ('II). Hence G ~ HIKe.

We can think of S as being a crossed product of Rover H, R * H.

Each s E S can be written as

for some rh E R or

S = L rJOJ
J

where J = (j(l), ... , j( n)) E zn, r J E R and oj = Oi(l) ... o~(n).

Remark 4.1.10 One should note that although Notation 4.1.9 is almost. t.hr-

same as Notation 2.2.8 in the second chapter, in this chapter we won't assUIIH'

that R is commutative as we did in the previous one.

Notation 4.1.11 If R is any ring and P the prime radical of R, for every allto-

morphism a of R, we can define an induced automorphism of RIP, n, such thaI

a( r + P) = a( r) + P, for any r E R.

As was said in the introduction of the chapter, in [32] Damiano and Shapiro

gave a necessary condition for a twisted polynomial ring of the form H[O; 0].
where a is an automorphism of the Noetherian ring R, to be an FBN ring. TIlt'

following proposition is a generalization of their results.
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Proposition 4.1.12 Let P be the prime radical of the Noetherian rill.'! H. IfS I.'

right (left) FBN, then R is right (left) FEN and for all i E {l, ... , II}. 0,1/(/1/1'1

has finite order.

Proof. Suppose that S is right FBN. Then by Proposition 4.1.6 R is right FB\.

We will assume first that R is a prime ring. So S is a prime ring as w('11

[76, Theorem 1.2.9J. Fix i E {1, ... ,n}. Since Oi -1 is a regular clement of S.

(Oi -l)S is an essential right ideal of S. By hypothesis, S is right FBN, so t hr-n-

exists a nonzero ideal I of S contained in (Oi - l)S.

Take a nonzero element of I, p = L:JEA r JOJ E I say, with a minimal number

of nonzero coefficients. Multiplying p by suitable powers of the OJ, if necessary,

we can assume that A ~ N~. We will assume j(l) E {O, ... ,rn} for any J E .\

and 1 :s; l :s; n such that r J =F O.

Since p E (Oi - l)S, there will be Tj E R such that

~ r LJj(l) LJj(n) _ ((). _ 1) ~ r' ()jl(l) nj'(n)L...J JUI ••• un - I L...J JI 1 ••• un .
JEA JIEA'

(-1. 1 )

Comparing both sides of 4.1, as A ~ N~ those J' in A' such that t'» i- 0 an' in

N~. So we can assume that A' ~ N~. Also by adding zero in either side of tilt'

equation if necessary, we can and will assume that A = A'.

Then, for each j(l), ... ,j(i - l),j(i + 1), ... ,j(n),

r(j(1 ),... ,j( i-I ),I,j( i+l ), ... ,j(n))

,
-r (j( 1),... ,j(i-l ),O,i( i+l ),...,i( n))'

(Yi(r(i(I), ...,j( i-I ),I-l,j( i+ 1), ... ,j( n))) - T(j(l ), ... ,J( t r- I ),/ ,J( I+ I) .... J (,,))

r(j( 1), ... ,j( i-I ),O,j( i+1), ... ,j(n))

o < 1 :s; rn,

o - (Yi(r(j(l), ... ,j(i-l),m,j(i+l), ... ,i(n)))·

From (4.1) and the equalities above it is obvious that there is :1 =
(a(l), ... ,a(n)) E A such that a(i) =1= 0 and TA =1= O. Otherwise, for ('very
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A E A we would have

T( a(1 ), ... ,at i-I) ,O,a( i+ 1),... ,at n))
,

-T (a(I), ... ,a(i-l ),O,a(i+l ),... ,at n))'

o O'(T' . . ) - ,.''(a(I), ... ,a(l-l),I-l,a(l+l), ... ,<1(lI)) ([1(1 ), ... ",(,-1),/",(, t I) .. n: I!

0< l ~ rn,

o = Oi(T(a(I), ... ,a(i-l),m,a(i+l), .."a(n»))'

but then TA = 0 for any A, a contradiction.

We claim that there is an element B = (b(l), ... , b(n)) of A such that r« j ().

b( i) i- a( i) and b(l) = a(l) for alll :f:. i. Suppose not. Then we would haw'

o ,
-T (a( 1),... ,a( i-I) ,O,a( i+ 1), ,a(n»,

OJ (T( a( 1)" .. ,a( i-I ),O,a( i+ 1), ,at n») - T(a( 1), ... ,a( i-I ),1 ,a( i+ I ),... ,at n))o

o = OJ (T( a( 1), ,a(i-l ),a( i)-2,a( i+l ), ,at n») - r( a(1 ), ,a( i-I ),a( i) -I ,at i+ I),... ,at H))

r A - Oi( T(a(I), ,a(i-l),a(i)-I,a(i+1 ), ,a(n») - rla( I ), ,a(i-I ),a(i),a(i+ I ), ,ca(H))

o Oi( Tla(l), ,a(i-l ),a(i),a(i+l), ... ,a(n») - r(a(I), ... ,a(i-I ),a(i)+1 ,a(i+ 1) ,ca(H))

o = OJ(T(a(l), ,a(i-l),m-l,a(i+l), ... ,a(n))) - r(a(I), .."a(i-l),m,a(i+I) ..... ca(n))

o = Oi(T(a(I), ,a(i-l),m,a(i+1), ... ,a(n»)'

so rA = 0, a contradiction.

Then, there are ,4,B E A such that rB,rA i- 0, a(i) i- b(i) and a(l) = b(l) for

alIi E {I, ... ,m}\{i}.

Let z E Z(R). Hence, as 01,." ,On commute pairwise,

p = zp - po~a(l) ••. o;;a(n)(z)

__ "" ( j(I)-a(l) ",j(n)-a(n)(~))(}J E IL...J zrJ-TJol "'Un '"

J=(j(I), ... ,j(n»EA

has a number of nonzero coefficients strictly less than that of p (because 7'A 1- ()
but the coefficient of ()A in p is zero). So p = O. In particular the codfici('lIl of OH
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IS zero. As a(/) = b(l) for alII E {I, ... ,m}\{i}, we have that, for any c E /.( H).

(.I.:!)

Since Z E Z(R) also O'~(i)-a(i)(z) E Z(R). As R is prime and r» f 0 Irom (I.:!).

we have O'~(i)-a(i\z) = z. Hence O'ilz(R) has finite order.

Now assume that R is any right Noetherian ring and let P be its primp radical.

Since P is a G-stable ideal of R

Moreover, if S is right FBN then so is SIPS. Thus, without loss of genr-rality.

in deriving the conclusions of the proposition, we can assume P = (0). As H is

Noetherian (0) = PI n ... n Pc, a finite intersection of distinct minimal primes of

R.

Since, for each i E {I, ... ,n}, O'i permutes the minimal primes PI, ... , I),.

there exists Vi EN, such that O'r' (Pj) = Pj, for all j E {I, ... ,(}.

As S is right FBN so is S' = R[Orl, 01111
, ••• ,O~n, O;;lIn; O'rl , .•• ,O'~" 1, by Propo-

sition 4.1.6. Hence, for each j E {I, ... ,Cl, PjS' is an ideal of S' and

S'Ll? S' 1"..1 RIP [0111 1I-1I1 1I11n lI-Vn. VI v" 1j = j l' Ul , •.. 'Un ,un ,0'1"'" On

is bounded. From what was said above, there are ki•i such that

Take ki = l.c.m.{viki.j : j E {I, ... ,Cl}. Hence, for any z E Z( R), W(' haw'

0'7' (z) - z E Pj, for all j E {I,. .. ,(}.

So,

and O'ilz(R) has finite order. The proof for the left case is similar. 0

115



Proposition 4.1.13 Let P be the prime radical of the Noetherian 1'/11,1/ H. If T

is right (left) FBN, then R is right (left) FBN andfor alii E {l, ... ,II}. O,I/(H/I')

has finite order.

Proof. By Proposition 4.1.6, we have that R is right FBN. Then as S ~ TX-1 ~

X-IT for X = {OJ: J = (j(1), ... ,j(n)) E zn}, the result follows from Propo-

sition 4.1.8 and Proposition 4.1.12. 0

In the converse direction to the above results, we have:

Proposition 4.1.14 Let P be the prime radical of the Noetherian 1'1119 H.

Suppose that RIP is finitely generated as a Z( RIP)-module and f07' all i E

{I, ... , n}, Qilz(R/p) has finite order. Then Sand Tare FBN.

Proof. Since R is Noetherian, P is nilpotent, [44, Theorem 2.11J. Helice PS,

[resp. PT] is contained in every prime ideal of S, [resp. T]. It suffices to prove

that

and

are FBN. Hence, without loss of generality suppose P = (0).

Let nj be the order of oilz(R)' Then Z(R)[O), ... ,On;OI,." ,on] and

Z(R)[OI,Oll, ... ,On,O;;l;al,'" ,OnJ are finitely generated as modules over t lu-

commutative subrings Z(R)[O~l, ... ,O~nJ, Z(R)[O~l,Oln" ... ,O~..,(J;;-"n] n'S)w('-

tively. As R is a Noetherian ring finitely generated over the centre- 7.( /I),

by Einsenbud's Theorem [37, Theorem IJ, Z(R) is a Noetherian ring and so

Z(R)[O~', ... ,O~nJ and Z(R)[O~l,Olnl, ... ,O~n,o;;nnJ are FBN rings. By Lt't-

zter's Theorem, Theorem 4.1.7, we have that Z(R)[OI,". ,On;al, ... ,0',,1 and

Z(R)[OI,Oll, ... ,On,O;;l;al,'" ,on] are FBN.
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Since Sand T are finitely generated over Z(R)[OI,'" ,On;o(, ... ,0,,] illld

Z( R)[OI, OIl, ... , On, 0;;1; ai, ... , an], respectively, Sand Tare FBN, by Let zt('r's

Theorem, Theorem 4.1.7. 0

One might naturally ask whether the converses of Propositions ·1.1.1:! and

4.1.13 are true. Proposition 4.1.17 provides a negative answer to this quest.ion.

In [90], Guy Renault proved:

Proposition 4.1.15 Let D be any division ring. Then the following arc equiru-

lent:

1. D[x] is (left, right) FEN;

2. for all n ~ 1 Mn(D) is algebraic over Z(D).

Proof. The result follows from [90, Proposition 8 and Theorem 3]. 0

In [29], Cauchon generalized this result, proving the following:

Theorem 4.1.16 Let U be any ring. Then the following are equivalent:

1. U[x] is (left, right) FBN;

2. (a) U is (left, right) FBN;

(b) for every prime ideal P of U, the (left, right) quotient ring of (1/ IJ i.-;

isomorphic to the ring Mn( K) for some division ring I~' satis/yin,q:

For every integer m > 0, Mm(K) is algebraic over its centre.

Following the same ideas as [90] and [29], we have

Proposition 4.1.17 Let U be any ring. Then the following are equivalent

1, U[x] is (left, right) FEN;

2. U[x,x-1] is (left, right) FEN;
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3. i) V is (left, right) FBN;

ii) For every prime ideal P of V, the (left, right) quotient ring of ('I l ' I....

isomorphic to the ring Mn(K) for some division ring /\' sali:;j!Ji7lq:

For every integer m > 0, Mm(K) is algebraic over ifs centre,

Proof. If we assume 1 then, by Proposition 4.1.8, V[x,x-I] is (left, right) FB\.

Now assume that V[x, X-I] is left FBN. As V[x, X-I] is a free U-Hlodul(' of

basis {xi: i E Z}, by Proposition 4.1.6 V is left FBN and we have 3.i).

Let P be a prime ideal of V. Obviously, P = PV[x, X-I] is an ideal of f![;' ..r-I]

and as

V[x, X-I]/ p ~ V/ P[x, X-I]

P is a prime ideal of U[x, X-I]. Let S = Cu/p(O) and VI = U/ V Tll('11

S-IUdx, X-I] is left FBN and S-IVI is a left FBN simple artinian ring. 11('11("('

S-IU1 ~ Mn(D) for some division ring D. As S-IUdx, X-I] ~ Mn(I))[.r, ).-1] ~

Mn(D[x,x-I]), by Proposition 4.1.6 and Letzer's Theorem, Theorem ·1.1.7,

S-IUdx, X-I] is left FBN if and only if D[x, X-I] is left FBN.

Let p(x) be a nonzero element of D[x]. Then p(x) is a regular d('IJH'lIt of

D[x,x-I] and D[x,x-I]p(x) is essential as a left ideal of D[x,x-']. As J)[.r,.r-1]

is left FBN, there is a non-zero two-sided ideal I of D[x,x-I] such that I C~

D[x,x-I]p(x). Whence I is generated by an element of Z(D)[x,.r-I], (/(.r,.r-I)

say. Hence, there is a(x, x-I) E D[x, x-I] such that

MUltiplying (4.3) by a suitable power of x it follows that every polynomial of

D[x] is a factor of a polynomial of Z(D)[x]. Hence by [90, Theorem :1]. M",(I))

is algebraic over Z(D) for every m > 0 and 3.ii) follows.

If we had assumed U[x, X-I] right FBN, in a similar way, we would gt't ('011-

dition 3.

If we assume 3, condition 1 follows from Theorem 4.1.16. 0
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4.2 Polynomial identities in skew-polynomial

and skew-Laurent rings

Definition 4.2.1 Let R be any ring and f(xI,'" ,Tn) an element of t h« frl'l'

algebra Z < XI, ..• ,Xn >. We say that R satisfies / or f is a polynomial itiflllily

of R if f(rl, ... ,rn) = 0, for all rt E R.

If at least one of the monomials of f of highest degree has coefficir-nt I. \\'1'

say that / is monic.

If R satisfies some monic polynomial in Z < Xl,' .. ,In>, for SOBit' 11 E N,

we say that R is a polynomial identity ring or a PI ring.

Proposition 4.2.2 Let R be a Noetherian ring with prime radical P. Ttu fol-

lowing are equivalent:

i) S is a PI ring;

ii) T is a PI ring;

iii) R is a PI ring and/or all i E {1, ... ,n}, (lilz(R/P) has jinitr order;

iv) The ring R is PI and the image of the canonical homomorphism /1'0111 (,' to

Aut(Z(RIP)) is finite.

Proof. We shall prove that i) => ii), ii) => iii) and iii) => i). It is ch-ar thai

iii) <=> iv).

As R is a Noetherian ring, Sand T are Noetherian as well.

If S is a PI ring, as T is a subring of S, T is a PI ring. Hence i) => ii).

Suppose that T is a PI ring. As R is a subring of T, H will be PI as w(·II. By

[76, Corollary 13.6.6], Tis FBN and by Proposition 4.1.13, for any i E {I, ... ,71}.

there is mi E N such that (ailz(R/p»)m. = idz(R/p) and we have iii).

Suppose iii). As the prime radical P of R is obviously G-stable, P ...,·is all

ideal of Sand

SIPS ~ (RIP) * H.
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As R is Noetherian, by [44, Theorem 2.11J, P is a nilpotent id(·,t! <lIId S() j"

PS. By [76, Lemma 13.1.7], S is PI if and only if (RIP) * /I is PI. So. wit hUll!

loss of generality we can suppose that P = (0) and so R is semiprime.

Let X be the set of all regular elements of Z = Z( R). Since H is a s('llliprilJll'

PI ring, Z(RX-1) = ZX-1 by [92, Proposition 1.7.18]. By [92, Proposit iou

1.7.22], RX-1 is semisimple Artinian. As ZX-1 = Z(RX-I), Z.1.'-1 is semisimph-

Artinian as well.

We can thus write ZX-1 = EB~=1Fj, for F; a field, and then, by [92, '1'1u-orr- II I

1.7.20], RX-1 = EB!=IRi, for R, a simple ring of centre F: As R is a Pl-riug. I)y

Kaplansky's Theorem, [76, Theorem 13.3.8], each R, is a central simple alg(·bra

over Fi, hence RX-l is finitely generated over ZX-l.

For every i E {I, ... ,n}, since ll'i(X) s:; X, we can define 0: E Allf(UX-I),

by setting n:(rx-1) = ni(r)ni(xtl, for each r E R and x E X. Th('II, we ran

form the skew-Laurent ring, S' = RX-l[OI,Oll, ... ,On,O;;I;O'~, ... ,o~.J. As /( is

a semiprime PI ring, by [92, Lemma 1.7.17], X s:; CR(O), hence we can think of U

as a subring of RX-1 and of S as a subring of S'. So it will be enough to prove-

that S' is a PI ring.

Also, for every i E {I, ... ,n}, (n:IZ(R»)m. = idz(R)'

Set S" = RX-I[(}~l,Olml, ... ,O:n,o;mnj(a'dm" ... ,(n~)"'''I. '1'1)(' ring S'

IS obviously finitely generated as an S"-module. As UX-I is finite diuu-n

sional over ZX-1, S" is finitely generated as a ZX-I [Orl, Olm" ... ,O;~''',O,~"'"J

module. Hence S' is finitely generated over the commutative suhring

ZX-l[Or1,Olml, ... ,O:n,o;;mn]. So S' is a PI ring [76, Corollary l:U.l:iJ, and

we have i). 0

Remark 4.2.3 There are examples of semiprime PI rings Rand 0' E Aut( U).

such that nIZ(R) has finite order but o doesn't. For instance take, as ill [:t~,

Example 2], R to be the ring of 2 x 2 matrices over the rationals and let II =
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[: ~]. Take" to be the conjugation by u. Then oiz(ll) = 1XlI/' 1>", "0 1"""·'

of Cl! is the identity.

4.3 The Azumaya locus of some skew-Laurent
.rrngs

In this section we apply the results of the preceding sections and chapter J tu

some skew-Laurent rings. Throughout this section we retain Notation 4.1.9.

Proposition 4.3.1 Assume that R is a commutative Noetherian domain. TIlt

ring S is Azumaya iJ and only iJ

i) G is finite;

ii) R is a G-Galois extension oj ftJ .

Proof. Suppose S as stated above is Azumaya. Then by [76, Proposition 1:1.7.7]

S is PI and by Proposition 4.2.2, G is finite.

We can write S as S ~ RKe * H/ «, where H/ tc, is isomorphic to c. Cl

subgroup of Aut(R). By Lemma 3.2.1.5, RKe is a G-Galois extension of H(; /\',

if and only if R is a G-Galois extension of ftJ. Now the result follows from

Corollary 3.3.10. 0

Example 4.3.2 Let S = qo,0-1; 0] where 0 is the automorphism of C defined

by o(z) = z, for all z E C as in Example 3.3.8. As G =< Q > is of finite order

and C is a G-Galois extension of ca = IR(by Proposition 3.2.1.3), it follows [rom

Proposition 4.3.1 that S is Azumaya.

The following proposition describes the Azumaya locus of skew-Laurent rill!?;S

over commutative Noetherian domains. One can obtain a better description if W('
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assume R not only to be a commutative Noetherian domain hut also allino over

an algebraically closed field K and G a group of K-autoll1orphisIlls, Corollarv

4.3.4.

Proposition 4.3.3 Suppose that R is a commutative Noetherian domain, nuul-

ule finite over RC, and that G is finite. Then

Proof. Let Rand G be as above. We can write S = RKe * IIIK, where

HI K; ~ G and this group acts faithfully on the commutative Noetherian domain

RKe. By Lemma 3.2.11, Z(S) = RC«; As R is finitely generated over tr',
RKe is finitely generated over RC K; Let M E Max(RG Kc). By Proposition

3.4.13, M E As if and only if IRKe(G) n RCK, i. M. By definition it is easy

to see that 1RKe(G) = IR(G)RKe. Hence IRKe(G) n RCK, et. M if and only if

IR( G) n RC i. M n RC and the equality follows. 0

Corollary 4.3.4 Suppose that R is a commutative Noetherian domain which is

affine over an algebraically closed field K, and that G is a jinitf' group of K>

automorphisms of R. Then

As = {M E Max(Rc Ke) : MnRc is contained in IGI distinct maximal ideals of If}.

Proof. By Noether's Theorem [99, Theorem 2.3.1], RC is an affine A'-algebra

and R is finitely generated over RC. So S is finitely generated as a module over

its center Z(S) = RC Ke, Lemma 3.2.11.

Let M E As. By Proposition 4.3.3, IR(G)nRC i. MnRc. As M is a maximal

ideal of Ra Ke, a commutative affine algebra over an algebraically closed field, by

the Nullstellensatz Ra KelM ~ K. Then Ra I(M n Ra) ~ K and M n R(" is a

maximal ideal of Ra. By Proposition 3.3.3, there are maximal ideals of H lying

over M n Ra. Take M E Max(R) such that M n Ra = M n RC. So lu(G) i. M.

122



Hence, by Corollary 3.4.7, C(M)

r E R such that f3(r) - r ~ }vI.

Since R is a commutative affine algebra over an algebraically closed field lv.

by the Nullstellensatz RI M ~ K. Now write r = m + ro, for some HI E M

and "o E K. Hence f3(m) - m ~ M and M{3 i= M for any f3 E G\{lr;}. 11('11<'('

#{Ar :a E C} = ICI.

{L«}, Take /3 E C\{lc;}. Theil, t lu-rr- is

Conversely assume that M E Max(RG f(e) is such that M n Rc; is containr-d

in ICI distinct maximal ideals of R. Let M E Max(R) be such that Af n Ur; =
Mn RG. So MO: i= M for any a E C\{lG}. So, for f3 E C\{lG}, then' is mE !If

such that f3(m) - m ~ M. Hence, for all f3 E C\{le}, IR(f3) et M. Therefore

IR(C) rt. M. Let N be any maximal ideal of RKe such that N nRc; i; = u. As

1RKe( C) = IR( C)Ke and N n R is a maximal ideal of R lying over M n U(;, we-

have 1RKe(C) % N and by Proposition 3.4.13 we have that M E As. 0

Corollary 4.3.5 Suppose that R is a commutative Noetherian domain, alJillt

over an algebraically closed field K and C a finite group of A' -aulotnorpliisnis.

Then the ring S is Azumaya if and only if for all M E !II a.r( U),

#{Nr :a E G} = ICI.

Proof. As in the proof of Corollary 4.3.4, S is finitely generated as a modulo !l\'I'1"

its centre. Hence S is Azumaya if and only if As = M ax(Z(S)) = M aJ'(/{; /\',.).

So the result is an immediate consequence of Corollary 4.3.4. 0

Proposition 4.3.6 Suppose that R is a commutative Noetherian domain, (r' 1.0;

finite and R is finitely generated over RG. Then S is height 1 A zUn!aya if awl

only if IR( C) is not contained in any height 1 prime of R.

Proof. If Q is a prime ideal of R, QRKe is a prime ideal of Rh'e. Hence prime

ideals of height 1 of RKe contract in R to prime ideals of height less or equal

than 1.
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Let P be a prime ideal of RKe of height 1. Then either the height of I) n It

is zero and in this case IR(G) r:z P (by definition we have that In((n f- () whr-u
R is a domain) or the height of P n R is 1 and in this case P = (I) nit) U1\',. S()

we have that 1RKe(G) i P if and only if IR(G) i P n R. The result follows 1I0\\'

from Proposition 3.4.18. D

Proposition 4.3.7 Suppose R is a commutative Noetherian domain of [iuit,

global dimension and G is finite. Assume also that R is finitely qcnerat ed us a

module over RG and that IR( G) is not contained in any prime ideal of R of high!

1. Then the following sets of maximal ideals of S are equal

i) {M E Max(S) : SMnZ(S) is Azumaya}.

ii) {M E Max(S) : Z(S) is regular at M n Z(S)}.

The above sets are contained in

{M E Max(S) : IR(G) i M n R}

and they all coincide when R is a Hilbert ring.

Proof. Suppose R, G and S as above. As S ~ RKe * G, Z(S) = HG I\'~. As U

is finitely generated as a module over RC and G is finite, S is finitely generated

over its centre. Hence by [37, Theorem 1], Z(S) is Noetherian. So S is a PI ring

integral over Z(S), [76, Lemma 13.8.4], and by [76, Theorem 13.8.11] Z(S) ~ S

satisfy going up and lying over. Whence, if M E M ax(S), M nZ(S) is a maximal

ideal of Z(S) (by GU).

Since R has finite global dimension, so does the Laurent ring RKc, [7G, '1'11<'-

orem 7.5.3]. By Proposition 4.3.6 and Proposition 3.4.21, we have As is t.h«

complement in Max(RC I<e) of the singular locus of S.

Let M E Max(S). The ring SMnZ(S) is Azumaya if and only if MnZ(S) E As·
Hence SMnZ(S) is Azumaya if and only if Z(S)MnZ(S) is regular. So the first two

sets are equal.
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Also, if M n Z(S) E As, by Proposition 4.3.3, IR( G) n RC c;;_ AIn H(;. 11('11("('

IR(G) et: M n Rand

{M E Max(S) : SMnZ(S) is Azumaya} ~ {M E Max(S) : In(G) c;;_ M n H}.

Assume now that R is a Hilbert ring. Take M a maximal ideal of S surh

that IR(G) et: AI n R. As M is a maximal ideal of S, by Proposition LUi and

Lemma 1.3.5, M n R = ngEGpg, for some prime ideal P of R. So In( (;) % 1)9

for some 9 E G. By Lemma 3.4.10, IR(G) <Z. P. Take M any maximal ideal

of RKe such that M n RG tc. = M n Z(S), so M n RG = M n /lG. As Il is a

Hilbert ring M n R is a maximal ideal of R, by [63, Theorem 27 and Theorem

30J, and (M n R) n RC = P n RG. By Proposition 3.3.1, M n R = t», for

some 9 E G. If IRK.(G) ~ M, then IR(G) ~ M n R = t». By Lemma :3..1.10,

IR(G) ~ P, a contradiction. So 1RKe(G) <Z. M for all M E Max(R/\,.) such that

M n RGK, = M n Z(S) and by Proposition 3.4.13, M n Z(S) E As. So t.lu-

above three sets are all equal. 0

4.4 Additional remarks

1. The main Proposition of section 1 is Propostion 4.1.12, which extends til('

results of [32, Proposition 4J. The main references for this section are [2!)j

and [44J.

2. Proposition 4.2.2 is the main result of this section and follows the idoas of

[32]. The main reference for this section is [92].

3. All the results of section 3 are new.
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