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Summary

This thesis is devoted to the description of the graph of links of some
skew-polynomial rings and skew-Laurent rings; and the characterization of some
crossed products which are Azumaya. The characterization of the Azumaya locus
and relation with the singular locus is also studied for some crossed products.

In chapter 2 we describe the links between prime ideals in skew-Laurent rings

of the form § = R[0;,67,...,0,,0,"; a1, ... ;) and in skew-polynomial rings
of the form T = R[#,,... ,6,;1,... ,a,] with basis ring R, commutative and
Noetherian, where o, ... ,a, are pairwise commuting automorphisms of R. In

order to do so, we start by studying the strong second layer condition.

Theorem The ring S is AR-separated.

Corollary The ring S satisfies the strong second layer condition.

Corollary The ring T satisfies the strong second layer condition.

We show that, in determining the clique of a prime of § or 7, there is no loss
of generality in assuming that R is semilocal and that the primes contract in the
basis ring R to an ideal of the form N = NM? where M is a maximal ideal of R
and the indicated intersection is finite. We can then describe the links in S and

T.

Proposition Let P and Q be prime ideals of S, with PN R = N. Suppose that
P~ Q. Then QN R = N and one of the following holds:

1.OANS=P=0Q;

2. NSGP=Q;
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3.0 # NS G P # Q and there exist a prime ideal P' of S} lying over
f)‘z/MSQ and i € {1,...,u} such that o;( P*) lies over C};;/MSg where Kt
is the algebraic closure of K = R/M, S; is a skew-Laurent ring, S, C S,
S} = K" Qx S2, Py and Q, are minimal primes over PN S, and () N Sy,
respectively, such that PNR=M = @201?, and o; are the automorphisms
determined by the action of Sy in K @ M/M?*.

Conversely, if one of case 1,2 or 8 holds, then P ~ ). O

The description of cliques in T will, in some cases, depend on the description

of cliques in S given before.

Theorem Let P,QQ € Spec(T) such that 0;41,...,0, € P and 6,,...,0; ¢ P.
Then P ~~ @ if and only if 0;4y,... ,0, € Q and either (a) P/(6; 1, T + ... +
0, T) ~ Q/(0:i1T + ...+ 0,T) in R[Oy,... ,0i;01,... ,0;] or (b) there is j €
{1 +1,...,n} such that P = a;(Q).

Corollary Let P,Q € Spec(T) such that 0;4y,...,0, € P N Q and
01,...,6; ¢ P. LY = {6V...6/9 : j(1),...,5() € N}, an Ore set in
T,P=P/0:1T+...40,T) and Q = Q/(0:in T + ...+ 6,T).

Then P ~ Q if and only if PY-! > QY-!
in R[0,,07,...,0:,07 a1,... ;] or if there is j € {i+ 1,...,n} such that
P = a;(Q).

In chapter 3 we study crossed products which are Azumaya and describe them

in terms of H-separability conditions.

Proposition Let R be any ring, J any group and R * J any crossed product.

Then the following are equivalent:

i) R*J is an Azumaya algebra and Z(R* J) C R;
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ii)) R+ J is an H-separable extension of R and R is a separable extension of

Z(R).

Then we restrict our attention to crossed products R * G where ( is a finite

group of automorphisms and the action of the crossed product is the one given

by G.

Proposition Let R be any ring and G a finite w-outer group of automorphisms
of R. Let R+ G be any crossed product constructed with the given action of G on
R. If R+ G is Azumaya then Z(R) is a G-Galois extension of Z(R)®.

Theorem Let R be any commutative ring, G a finite subgroup of Aut(R) and
RxG any crossed product of G over R constructed with the given action of G on R.
If R is a G-Galois extension of R, then R+ G is Azumaya and Z(R*G) = R®.

Proposition Let R be any ring, G a finite group of automorphisms of R and
R+ G any crossed product constructed with the given action of G on R. Consider

the following statements:
i) R+ G is Azumaya and Z(R* G) C R;
it) a) R+ G is an H-separable extension of R;
b) R is a separable extension of Z(R)®;

1) R is Azumaya and Z(R) is a G-Galois extension of Z(R)C.

Then 1) is equivalent to 11). If R is commutative ii1) implies i) and 7).
If G is w-outer on R, 1) and 1t) imply i11).

If R is commutative and G is w-outer on R, 1), 11) and 1i1) are equivalent.



Given a prime Noetherian ring R module-finite over its centre Z(R), the

Azumaya locus of R is the set
Ar = {M € Maz(Z(R)) : Rm is Azumaya}
and the singular locus of Z(R) is the set
Sr={M € Maz(Z(R)) : Z(R)nm is not regular}.

The rest of chapter 3 is dedicated to the study of the Azumaya locus and the

singular locus of some crossed products over some Noetherian domains.

Proposition Let G be a finite group of automorphisms of a commutative Noethe-
rian domain D and assume that D is finitely generated over DC. Let D x G be

any crossed product constructed with the given action of G on R. Then
Ap.c = {M € Maz(D°) : Ip(G) N D¢ € M}.

Where Ip(G) = yeq\(15} ID(9) and Ip(g) is the ideal of D generated by {g(d) —
d:de D}.

The next three results show that the Azumaya locus of some crossed products
is, under some conditions, the complement of its singular locus in the set of

maximal ideals of its centre.

Proposition Let G be a finite group of automorphisms of a commutative Noethe-
rian domain D with D a finitely generated DC-module. Form D * G any crossed

product constructed with the given action of G on R. If
i) gl.dim(D x G) is finite,
and

it) for all P € Spec(D) of height 1, Ip(G) € P,
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then AD*G = Maa:(DG)\SD,G.

Corollary Let GG be a finite group of automorphisms of a commutative Noethe-
rian domain D. Form D x G any crossed product and assume that D is finitely

generated over DC. If
i) gl.dim(D) is finite,

i1) for every mazimal ideal M of D with char(D/M) = p > 0, Gp(M) =
{g€G:d? —de M, for all d € D} contains no element of order p,

iii) for every prime ideal P of D of height one, Ip(G) ¢P,

then Ap.g = Ma:v(DG)\SD,G.

Proposition Let D be a commutative domain and an affine algebra over an
algebraically closed field K of characteristic zero and G a finite group of K-
automorphisms of D. Form the crossed product D x G constructed with the given
action of G on D. Assume also that gl.dim(D) is finite. We have that Ip(G) C P
for all P € Spec(D) of height 1 if and only if Ap.c = Maz(D®)\Sp.q.

In chapter 4 we study the skew-polynomial and skew-Laurent rings which are
fully-bounded Noetherian and the ones which satisfy a polynomial identity. Then,
using the results of the previous chapter, chapter 3, we describe the Azumaya
locus and singular locus of some skew-Laurent ring S over a ring R. Let G be
the group of automorphisms of R such that S = RK, *G. In particular we prove

the following result.

Proposition Suppose R is a commutative Noetherian domain of finite global
dimension and G is finite. Assume also that R is finitely generated as a module
over RC and that Igr(G) is not contained in any prime ideal of R of height 1.

Then the following sets of mazimal ideals of S are equal
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) {M € Maz(S) : Smnz(s) is Azumaya}.
i) {M € Maz(S): Z(S) is reqular at M N Z(S)}.
The above sets are contained in

{M € Maz(S): Ir(G) € M N R}

and they all coincide when R is a Hilbert ring.
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Introduction

It may be said that the theory of Noetherian rings began with Goldie’s paper
in 1958. Goldie’s theorem provides the analogue in the noncommutative case for
the usual field of fractions of a domain in the commutative case. Goldie proved
that given a prime Noetherian ring and C = Cgr(0), the set of regular elements of
R, the set of elements of the form ac™ for a € R and ¢ € C is a ring, the ring of
fractions of R, isomorphic to a matrix ring over a division ring. The existence of
such a ring of fractions is equivalent to the set C being both right and left Ore
(C is right Ore if for all @ € R and ¢ € C, there are elements '’ € R and ¢/ € C
with ac’ = d’c. The definion of left Ore is symmetric).

In the commutative case, given a prime ideal P of R we can form the
ring of fractions of the form rc™! for r € R and ¢ € R\P or equivalently,
c € Cp(P) ={r € R:r+ P € Cgrp(0)}, and in this case we say that we
localize R at a prime ideal P. A natural step after Goldie’s theorem and fol-
lowing the case of commutative rings, would be to extend the ideas of localizing
at a prime to noncommutative rings; we say that a prime ideal P of a Noethe-
rian ring is localizable if Cr(P) is a right and left Ore set. If P is localizable
we denote the corresponding fraction ring by Rp. Prime ideals usually are not
localizable; Jategaonkar pointed out that if P and @) are distinct maximal ideals
of a Noetherian ring R such that R/P and R/Q are artinian and if QN P # PQ,
then @ cannot be localizable. So prime ideals should be related in some way
depending on the existence of some factors of the bimodule P N Q/PQ. We say
that given two prime ideals P and @, P is linked to @, P ~~ @, if there exists
an ideal A of R such that PQ C A G PN Q and (P NQ)/A is torsionfree as
a left R/ P-module and as a right R/@-module. The graph of links of R is the
directed graph whose vertices are the elements of Spec(R) with an arrow from

P to @ whenever P ~» . The connected components of this graph are called
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cliques and if P € Spec(R), the unique clique containing P is denoted by C¢(P).

In 1982, Jategaonkar introduced a new condition on a Noetherian ring, the
second layer condition. This condition is satisfied by several classes of rings,
for instance enveloping algebras of finite dimensional solvable Lie algebras [57,
Theorem A.3.9]; group rings of polycyclic by finite groups [18, Proposition 2.2]
and [55, Theorem 4.5]. This condition is related with the way one can build some
series for a module over a Noetherian ring.

After briefly recalling some definitions and properties of skew-polynomial,
skew-Laurent rings and crossed products in chapter 1, we start our research with
chapter 2. Chapter 2 is devoted to the description of the graph of links of some
skew-polynomial ring, T and some skew-Laurent ring, S. The work of Chapter 2
is designed to provide analogues for rings such as S and T of results obtained by
K. R. Goodearl [43] for rings constructed in a similar fashion using derivations
rather than automorphisms. As a first step to study the prime links in S and 7,
we remark that it is known that S satisfies the second layer condition. In §2.2 we
prove that & is AR-separated, hence satisfies the strong second layer condition
and so does 7.

In §2.3 and §2.4 we describe the prime links in . We will show that the
prime links in § can be reduced to the study of prime links between prime ideals
that contract to a maximal ideal in R, the coefficient ring of S. In §2.3 we start
by describing the links between prime ideals contracting to maximal ideals in
the coefficiant ring of S. In §2.4 we show how to reduce the general problem to
the one in §2.3 and obtain the description. With the results obtained in §2.4,
we can easily describe the prime links in 7. Some examples are given in §2.6.
These examples are used not only to illustrate the description obtained but also
to explain the reason for some conjectures to fail.

So far we have been interested in the way the prime spectrum of skew-Laurent
and skew-polynomial rings can be divided into sets of primes, the cliques. The

most trivial case happens when there are just trivial links; not only a prime is



linked to itself but whenever for some prime @, P ~» @ or @ ~» P, then P = Q.
In this case the cliques will just be singletons. This situation occurs for instance
when the rings are Noetherian and Azumaya. If a ring is Azumaya, it is finitely
generated over its centre and its prime spectrum is determined by the prime
spectrum of its centre. By Miiller’s Theorem [44, Theorem 11.20], we have that
the cliques of a Noetherian Azumaya ring are singletons. Thus it is natural to
try to understand those classes of algebras & and 7 for which the graph of links
is particularly simple by first identifying those algebras which are Azumaya, and
(more generally) to describe the Azumaya locus of algebras of the type considered
in this thesis. This is the main objective in Chapter 3 and 4.

Azumaya rings are separable algebras over their centres, or central separable
algebras. The study of these algebras led to new notions of separability such as
separable extension of ring [49] and H-separability [50].

The main problem is now to describe when are the skew-Laurent rings Azu-
maya. Similar problem had been studied for skew-group rings of finite groups by
Ikehata in [52] and by R. Afaro and G. Szeto in [3]. While studying skew-Laurent
rings it became clear that some results obtained to deal with our algebras would
apply also to some crossed products of finite groups, and so generalise results in
[52] and [3].

In chapter 3, we study separabiliy and H-separability in some crossed prod-
ucts. We start by introducing the definitions and well known results in §3.1. In
§3.2 we obtain necessary conditions for a crossed product to be Azumaya. Given
a crossed product of the form R * J, the condition of R * J being Azumaya is
related with an H-separability condition: R % J is an H-separable extension of
R. In order to be able to describe when R x J is an H-separable extension of
R, we impose extra conditions on J and on R * J; thus we assume J is a finite
group of automorphisms of R, w-outer and R * J is defined with the given ac-
tion of J on R. This section is divided into two parts; in the first we study the
general crossed product R * J and in the second §3.2.1, we study what happens
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if R« J is H-separable, assuming the extra conditions on R and on J. In §3.3
we get a sufficient condition for a crossed product R * G to be Azumaya, where
R is a commutative ring, G is a finite group of automorphisms of R and R * &
1s any crossed product built with the given action. In §3.4 we study how far
some prime Noetherian crossed products are from being Azumaya; we describe
their Azumaya locus. Imposing some homological conditions on the commuta-
tive Noetherian domain R and some conditions on the group G, we will be able
to describe the Azumaya locus of R * G in terms of its nonsingular locus, the
complement in Maz(Z(R % G)) of the singular locus.

In chapter 4 we apply the results of chapter 3 to skew-Laurent rings. In a
similar way to the work of Damiano and Shapiro in [32], we obtain necessary
conditions for the skew-Laurent and skew-polynomial ring with a Noetherian
coefficient ring to be fully bounded Noetherian and describe the ones which satisfy
a polynomial identity, the PI rings. This study will be done in §4.1 and in §4.2.
Section §4.3 is totally dedicated to the study of the Azumaya locus of some
skew-Laurent rings.

Throughout this thesis we have tried to quote our references from the original
authors. However, sometimes for simplicity we refer to the books [44], [76], [86],

[45] and [38] for some well known results.

A short section named Additional remarks, is placed at the end of each chapter
to indicate whether a result appearing in the chapter is a well-known or a new

one. Most of chapter 2 appeared in [27].
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Notation

T O B O N

Z(R)
U(R)
Aut(R)
Inn(R)
CLK.dim(R)
Spec(R)
Maz(R)
Cr(0)
Cr(P)
J(R)
RX™!
Q(R)

Rp

R+xG
R#G

R'G
SpecS(R)

The set of natural numbers.

The set of natural numbers and zero.

The set integers.

The field of rational numbers.

The field of real numbers.

The field of complex numbers.

Associative ring with unit.

The centre of the ring R.

The group of units of R.

The set of all automorphisms of R.

The set of inner automorphisms of R.

The classical Krull dimension of R.

The prime spectrum of R.

The set of maximal ideals of R.

The set of regular elements of R.

The set of regular elements of R modulo P.
The Jacobson radical of R.

The right ring of fractions of R with respect to X.
The quotient ring of R.

The ring of fractions of R with respect to Cr(P).
The crossed product of G over R.

The skew-group ring of G over R.

The twisted group ring of G over R.

The set of G-prime ideals of R.
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P ~» () Prime link from P to Q.

tx(M)  The X-torsion submodule of M.
Ass(M) The set of all associated primes of M.
Rr(I)  The Rees ring of the ideal I of R.

M,(K) The ring of square matrices over K.

R® The fixed ring of G on R.

&y The set {r € R:rs? = sr,Vs € R}.
trg The trace map.

Ar The Azumaya locus of R.

Sk The singular locus of R.

Gr(M) The inertia group of M in R.
Ir(9g) The two-sided ideal of R generated by {r¢ —r:r € R}.
Ir(Q) The ideal Nyea\{14) Ir(9).
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Chapter 1

Preliminaries

In this preliminary chapter we will fix some notation and state a few well-known
results which will be needed in the following chapters. Other terminology and
notation will be introduced either when they appear for the first time in the text
or at the beginning of the chapters where they will be used. For more details

about this section one can see for instance [44], [76], [85] and [86].

1.1 Notation

All our rings are supposed to be associative with identity element. The identity
of a ring R will be denoted by 1g or just by 1 if the ring is well understood. A
subring of a ring R will always contain the identity of R and ring homomorphisms
are supposed to preserve the identity. The centre of R is denoted by Z(R). The
group of units of R is denoted by ¢/(R) and the set of all automorphisms of R is
denoted by Aut(R). For a € Aut(R) the image of r € R by a will be denoted
either by a(r) or by r*. An automorphism « of R is said to be inner if there
exists a unit u € U(R) such that r* = u~'ru, for all r € R; otherwise, « is said
to be outer (see [80]). The set of all inner automorphisms of R is denoted by
Inn(R) and is an invariant subgroup of Aut(R). A Noetherian (resp. Artinian)



ring will always mean a right and left Noetherian (resp. Artinian) ring and an
ideal a right and left ideal. The classical Krull dimension of a ring R will be
denoted by ClL.K.dim(R); for its definition and properties see [44].

The set of prime ideals of a ring R is denoted, as usual, by Spec(R) and the
set of all maximal ideals of R by Maz(R).

Given aring R and r € R, we say that r is right (resp. left) regular if whenever
rs = 0 (resp. sr = 0) for some s € R, s = 0. An element of a ring is regular if it
is right and left regular. The set of regular elements of R is denoted by Cg(0). If
P is any ideal of R, Cr(P) denotes the set of regular elements of R modulo P.

The intersection of all maximal right ideals (or equivalently, the intersection
of all maximal left ideals) of a ring R is denoted by J(R), the Jacobson radical
of R. If R is a ring such that R/J(R) is semisimple Artinian, R is said to be
semilocal, if R/J(R) is simple Artinian, R is said to be local.

For a ring R and a multiplicatively closed subset X of R, we shall denote by
RX™! the right ring of fractions of R with respect to X whenever it exists (see
[44]). As in [44], we shall abuse notation and write the elements of RX ! in the
form rz=!, for r € R and z € X. If I is an ideal of R, we denote by X! the
set {iz7!:1 € I,z € X}, the extension of I (see [44]). In the case of X = Cg(0)
instead of RX ™! we will write Q(R), the right quotient ring of R. In the case
X = Cgr(P) and RX™! exists, we denote this ring by Rp.

In this thesis all modules will be unitary modules. Given rings R and S, we
write Mg, sM, sMp to denote that M is a right R-module, M is a left S-module
or that M is an (S, R)-bimodule, respectively. In the case nothing is said, one
should assume that the structure of the module to be considered is the right hand
one. If M is a right R-module, the ring of R-endomorphisms of M will be denoted
by End(Mpg); similarly, if M is a left R-module, the ring of R-endomorphisms of
the left R-module M will be denoted by End(grM). If the structure of the module
M is well understood, we will just write End(M). For an (S, R)-bimodule M,
l.anng(M) and r.anng(M) are, respectively, the left annihilator of M in S and
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the right annihilator of M in R. If N is a submodule of M, we write N < M. If
N < M and for any non-zero m € M, there is r € R such that mr € N\{0}, we
say that N is an essential submodule of M or that M is an essential extension of

N and write N <, M.

1.2 Crossed products and skew-polynomial
rings

In this section we introduce the definitions of some noncommutative rings which
we will be studying throughout this thesis; the skew-Laurent and skew-polynomial

rings.

Definition 1.2.1 Let R be a ring and o an endomorphism of R. A left a-
derivation of R is an additive map § : R — R such that §(rs) = a(r)8(s) + &(r)s,
for all r,s € R.

Proposition 1.2.2 Let R be a ring, let o be an endomorphism of R and let
§ be a left a-derivation of R. Then there ezists a ring T, containing R as a
subring, such that T is a free left R-module with a basis of the form 1,0,6%,...
and Or = a(r)0 + (r) for allr € R.

Proof. [44, Proposition 1.10] O

Definition 1.2.3 The ring T' determined in Proposition 1.2.2 above is denoted
by R[6; a, é] and called a skew-polynomial ring or an Ore extension of R.

When a is the identity map on R, we abbreviate R[0;a,d] to R[0;4] and call
this ring a differential operator ring. In the case § = 0, we abbreviate R[6; a, 6]

to R[0;qa].



Remark 1.2.4 We can also define a right a-derivation, which is an additive map
0 of R satisfying the rule §(rs) = é(r)a(s) + rdé(s), for all r,s € R. Similarly to
what was done before, one can construct an Ore extension, which is a free right
R-module.

If o is an automorphism of R and § an additive map of R, § is a left a-
derivation of R if and only if —6a~! is a right a~!-derivation. In this case the

rings R[6; ,d] and R[f;a™!, —da~!] coincide.

An obvious example of skew-polynomial ring is the polynomial ring in one
indeterminate. For the case of skew-polynomial rings, we also have a version of

Hilbert’s Basis Theorem.

Theorem 1.2.5 Let R be a ring, let o be an automorphism of R and 6 a a-
derivation of R. If R is right (resp. left) Noetherian, then the skew-polynomial
ring T = R[#; «, ] is also right (resp. left) Noetherian.

Proof. [44, Theorem 1.12] O

Remark 1.2.6 1) The condition of a to be an automorphism in the Theorem
1.2.5 above, is needed as the example below shows.

2) The above theorem is true for other classes of rings as we will see.

Example 1.2.7 [76, Example 1.2.11] Let K be a field, R = K[y], o the endo-
morphism of R defined by o(f(y)) = f(y?) and T = R[6;a]. One can see that

Y T6y#' is a direct sum. If for any n € N, we set I, = 3", 0'yT, we get a strictly

increasing chain of right ideals. Hence T is neither left nor right Noetherian.

If o, is an automorphism of R and 4; is an a;-derivation of R, using Theorem
1.2.2, we can form the ring R[0;;a;,6]. Also by Theorem 1.2.2, given ay an

automorphism of R[f;; a;, ;] and &3 an ay-derivation of R[f;; @y, d1], we can form



the ring R[0;; ay, 6,][02; a2, 52]. Hence applying n times Proposition 1.2.2 and the

ideas above, we would get a ring of the form
R[gl, aq, 51][02, sy, 52] .e [gn, Qy 5,1]

Definition 1.2.8 The ring T = R[0y; a1, 61025 a2,8,]. .. [0,; an, 6,] (assuming
the notation above) is called an iterated skew-polynomial ring, for short we will

just call such a ring T' a skew-polynomial ring.

There are two cases of iterated skew-polynomial rings of particular interest to
us. First, consider the iterated skew-polynomial ring built from a ring R and a

finite list d,,... ,d, of pairwise commuting derivations of R
R[Hl, 61][02, 62] e [On, Jn]

which we will denote by R[6:,...,0,;6é1,...,9,). In this case we should note
that all the automorphisms in the definition of iterated skew-polynomal ring are
assumed to be the identity and that each derivation d; can be extended to a deriva-
tion of R[6y,...,0;_1;61,...,0;_1] by setting 6;(0;) = 0 for any 7 € {1,...,n}
and 7 € {1,...,7 —1}. This is possible because the derivations commute with
each other.

Another noteworthy class of iterated skew-polynomial rings can be obtained
if we take a family a4,... , o, of pairwise commuting automorphisms of R. For
a; we can form R[6,; ;] (assume derivation §; = 0) and extend a; to an auto-

morphism of R[0;; a1]. (We make (Y ri6]) = D_ az(r:)8] and then use the fact
=0 1=0
that aja; = aza; to prove that a, is an automorphism of R[0;;a1]). Iterating

the above procedure we obtain the ring

R[0:1; o1][02; az) . . . [0n; n)
that we shall denote by

R[0y,... .6, 00,... ,04]
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If one thinks of the polynomial ring R[z], it is well known that we can form
a new ring where the indeterminate becomes a unit, the Laurent ring R[z,z™}].

For some skew-polynomial rings the same happens.

Proposition 1.2.9 Let R be a ring and a an automorphism of R. Then there

exists a ring S, containing R as a subring, with a unit 6 € S such that S is a
free left R-module with a basis of the form 1,0,61,0%,6072,... and 0r = a(r)9,
forallT € R.

Proof. (44, Proposition 1.16]. O

Definition 1.2.10 Let R be a ring and « an automorphism of R. The ring S
constructed in Proposition 1.2.9 is denoted R[6,607'; a] and called a skew-Laurent

extension of R.

Remark 1.2.11 1) Given a ring R, if a = idR, then R[f,07; o] is just R[0,07!],
the ordinary Laurent polynomial ring,.
2) As was done for skew-polynomial rings, given ay, ... , a, pairwise commut-

ing automorphisms of R, one can apply Proposition 1.2.9 to form
R[6:,07 1] .. [0n,67"; ),
which we will denote
R[6,,07", ... ,0,,0 " a1, ... 0.

Although Definition 1.2.13 below is just a restatement of the definitions given
before, we decided to include it as it refers to the rings which we will be studying

throughout this thesis, in this way we will also fix some notation.

Notation 1.2.12 If Ris any ring, a, ... ,a, € Aut(R) commuting pairwise and
I =(41,...,1,) € Z™, we will denote by a’ the automorphism o) ...l of R If

01,...,0, are commuting indeterminates, 87 denotes the element 67' ... 8",
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Definition 1.2.13 Let R be a ring and «y,... ,a, commuting automorphisms
of R. We define the skew-polynomial ring 7 = R[0;,... ,0,;1,... , ;] and the
skew-Laurent ring S = R[0;,0;",... ,0,,0;";a1,... ,a,], whose additive group
coincides with the one of R[0;,...,0,] and R[6:,07",...,8,,07], respectively,

and multiplication is defined by the associative laws and by the rules

forallt,5 € {1,...,n} and r € R.

Remark 1.2.14 If we form 7 and S as in Definition 1.2.13, the elements of 7

and § are uniquely written in the form Z r0" and Z 10", respectively, where
IeNy Iezn
r1 € R and r; = 0 for all but finitely many I € Z".

The skew-Laurent rings defined above in Definition 1.2.13, can be seen as an

example of crossed products.

Definition 1.2.15 Let R be any ring and G any multiplicative group. A crossed
product of G over R, denoted by R * (G, is an associative ring containing for each
g€ Ganelement g€ R*G. Theset G = {g:g € G}, a copy of G, is a left
R-basis for R * GG so that every element is uniquely written as a finite sum

Z ry

9€G
with r, € R. The addition in R * G is the obvious one and the multiplication is

defined by the associative laws and by the rules
gh =eng(g, h)gh, forallg,h € G

where epg : G X G = U(R) is a map from G x G to the group of units of R,
U(R), and
gr = opc(g)(r)g, forallr € R,ge G
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where opg : G — Aut(R).
We say that op g is the action of G in R and ep is the twisting.
Whenever R and G are well understood, instead of op ¢ and cg ¢ we will write

o and ¢, respectively.

Remark 1.2.16 1) The ring R * G has an identity element, 1 = [¢(1,1)]7'I,
hence without loss of generality we will assume that 1 = 1. Moreover each 7 is
invertible, for each g € G.

2) One should note that for each ring R and each group G, there may be more

than one structure of crossed product, depending on the maps, o and ¢ defined.

Given a crossed product R#* G, in general the map og ¢ is not a group homo-

morphism as is shown in the next lemma. The next lemma. is well-known but we

were unable to find a reference.

Lemma 1.2.17 Let R be any ring, G any group and R+ G any crossed product.
The action of G in R, o, is a group homomorphism if and only if (g, h) € Z(R)
forall g,h € G.

Proof. Let g,h € G and r € R. Now

ghr = go(h)(r)h
= o(g)(o(h)(r))e(g, h)gh
and
ghr = e(g,h)ghr = (g, h)o(gh)(r)gh.

If e(g,h) € Z(R), for all g, h € G, then since (g, h) and gh are units we have
that
a(g)a(h) = a(gh)

for all g,h in G. Hence o is a group homomorphism.



Conversely, if we assume that ¢ is a group homomorphism, we have, for any

r € R that
o(g)a(h)(r)e(g, k) = (g, h)o(g)a(h)(r)

and the result follows. O

Definition 1.2.18 In the definition of crossed products, Definition 1.2.15, if ¢
is trivial, that is €(g,h) = 1, for all g,h € G, the crossed product is called a
skew-group ring (or trivial crossed product); in this case we write R#G. If o(g)
is the identity map in R for all ¢ € G, then R x G is called a twisted group ring
and instead of R x G we write R'G.

Notation 1.2.19 Given any crossed product R*G, in order to simplify notation

we will write, for any r € R, 9 instead of r\9) = o(g)(r).

Remark 1.2.20 1) Given a crossed product, if both op ¢ and egg are trivial,
the crossed product is just the ordinary group ring.

2) Let R#G be a skew-group ring. If G is finitely generated, abelian
and torsion free, then R#G is a skew-Laurent ring. Conversely, if R is
any ring, a,...,q, are pairwise commuting automorphisms of R and § =
R[0:,67,...,0,,0 " a4,... ,a,] the skew-Laurent ring, we can think of S as
a crossed product (actually as a skew-group ring) of the form R * H where H
is the multiplicative torsionfree group generated by 6,,...,0,, o is the group

homomorphism defined by o(8;) = o; and ¢ is trivial.

Lemma 1.2.21 Let R be a ring and G a group. Let R x G denote a crossed
product. If Gy is a normal subgroup of G, then

R+G=(R+G))*G/G,

where the latter is some crossed product of the group G/G, over the ring R G,.



Proof. [86, Lemma 1.3] O

The following example not only shows how to apply the lemma but also gives
a skew-Laurent ring S = R#G and (G, a normal subgroup of GG such that S is

not a skew-group ring over R#G,.

Example 1.2.22 Let S = C[4,07!; a] where a is complex conjugation. Hence
S =C#< 0> Take G =< 6?>. So<80>/G, = C; = {l,z} and S =
(C#G, ) * Cy where 02 = TT = ecc, 0,(T,2)2? = eca,.0,(z, ). Also, any other

choice of representative T for z leads to a non-trivial twisting e.

Lemma 1.2.23 Let R be any ring, G any group and Gy a normal subgroup of
G. Let R * G be any crossed product. Then any transversal set to G, in G is a
free basis of Rx G as a left (or right) R x Gy-module.

Proof. (86, §1.1] O

For some groups G, there is a version of the Hilbert’s Basis Theorem for a
crossed product of G over a right Noetherian ring R. Before stating this version

we need the following definition.

Definition 1.2.24 A group G is called polycyclic-by-finite if G has a finite sub-

normal series

1=Gp<eGy4...4G, =G

with each quotient G;.;/G; either infinite cyclic or finite for 0 <1 < n.

Proposition 1.2.25 If R is a right (resp. left) Noetherian ring and G is a
polycyclic-by-finite group, then the crossed product R * G is also right (resp.
left) Noetherian.

Proof. [86, Proposition 1.6] O

In [31] E.C. Dade introduced a more general class of ring extensions containing

the class of crossed products.
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Definition 1.2.26 Let R be a subring of a ring S and G a group, if there are
additive subgroups S(g) of S, ¢ € G, such that S(g)S(h) C S(gh), for any
g,h € G and R = S(1), we say that S = G,c¢S5(g) is a G-graded ring over R.

If S(g)S(h) = S(gh) for all g,h € G, we say that ®,ccS5(g) is a strongly

G'-graded ring over R.

1.3 Ideals and fraction rings of crossed products

In this section we will be concerned with the ideals of crossed products. A more
precise description of the prime ideals will be obtained in the next section for
some skew-Laurent rings. We start by describing some relations between ideals
of the crossed product and ideals of its basis ring. Also, we will describe the

fraction rings of crossed products with respect to some subsets of the basis ring.

Definition 1.3.1 Let G be a group and X a set. We say that G acts on X if
there is a group homomorphism o : G — Sym(X), from G to the symmetric

group on X.
For any g € G, the action of ¢ on X will be denoted by = — z9, for any

r € X.

Remark 1.3.2 Let R be a ring and G a group. We say that G acts on R if there
exists a group homomorphism ¢ : G — Aut(R).

If R is a ring and G a group, when in Definition 1.2.15 we defined the crossed
product R * G, we called opg the action. One should note that, as we saw in

Lemma 1.2.17, in general G doesn’t act on R in the sense of Definition 1.3.1.

Definition 1.3.3 Let R be a ring, G a group acting on the set of ideals of R,

an ideal of R and J an ideal of R.
We say that J is G-stable (or G-invariant) if J9 = J, for all g € G.

11



If I is a proper G-stable ideal of R and for all G-stable ideals of I, K" and J,
whenever K'J C I, either K C [ or J C I, we say that [ is a G-prime ideal of R.

In particular, we say that R is a G-prime ring if and only if 0 is a G-prime ideal.

The set of all G-prime ideals will be denoted by Spec®(R).

Remark 1.3.4 In the proof of Lemma 1.2.17, we have seen that given any ring

R, any group G and any crossed product R * GG

orc(9)ora(h)(r)erc(g, k) = erc(9, h)orc(gh)(r)

for any g,h € G and r € R. It is then easy to see that, although o may not
be a group homomorphism, it induces one o* : G = Aut(R)/Inn(R), from G to
Aut(R)/Inn(R). Since Inn(R) fixes all ideals of R, o* gives G an action on the
set of ideals of R.

For some groups G and some rings R, one can get a good description of
Spec®(R). The following lemma is stated here in a more general setting than we

will need as its proof in [86] depends only on the conditions stated below.

Lemma 1.3.5 Suppose that R is a right Noetherian ring and G is a group acting
on the set of ideals of R with an action that preserves inclusion. Then @) is a
G-prime ideal of R if and only if @ = Neec@’ = Q@ N...N Q"™ for any Q
minimal prime of R over Q and some gi,... ,gm € G such that {Q°',... ,Q°"}

forms a single G-orbit of Q. Thus, every G-prime ideal of R is semiprime.

Proof. [86, Lemma 14.2] O

Proposition 1.3.6 Let R be any ring and G any group. Form any crossed prod-
uct R+ G. We have:

i) If I is a G-stable ideal of R, then I(R x G) is an ideal of R x G with
I(R*G)NR = I. Moreover (R*xG)/I(RxG) = (R/I)* G, where the latter

is a suitable crossed product of G over R/I.
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i) If J is an ideal of R x G, then J N R is a G-stable ideal of R and
(JNRY(R*G)C J.

itt) If P is a prime ideal of Rx G, then PN R is a G-prime ideal of R.

Proof. ) and 1) follow from [86, Lemma 1.4] and :2) follows from [86, Lemma

14.11 O

It may happen that equality won’t hold in 7) of Proposition 1.3.6, as we will

see in the next example.

Example 1.3.7 Take S to be the skew-Laurent ring R[z][8,6~'; o] where « is
the R-algebra homomorphism defined by a(z) = 2z. Take P = zS + (6 — 1)S.
As S/P = R[0,671)/(6 — 1)R[0,0"!] = R, P is a prime ideal of S such that
PNRz] = zR[z]. Hence (PNR[z])5 =25 G P.

Let R be a ring and X a nonempty multiplicative subset of R. We say that X
is a right denominator set if X is right reversible (i.e. for any r € Rand z € X
such that zr = 0, there exists y € X such that ry = 0) and a right Ore set (i.e.
for any r € R and z € X, rX N zR is nonempty). Similarly we can define left
reversible, left Ore and left denominator. A nonempty subset X of R is said to
be a denominator, reversible or an Ore set if it is a right and left denominator,
right and left reversible or right and left Ore set, respectively. If X is a right
denominator set we can form RX ™!, the fraction ring of R with respect to X [44,
Theorem 9.7].

The quotient rings of group rings have been studied by P.F. Smith in [101].

Part i) of the following lemma is a generalization of [101, Lemma 2.6].
Lemma 1.3.8 Let R be a ring, G a group and R * G a crossed product.

i) If C is a right denominator set of R and is G-invariant, then C is a right
denominator set of R x G, the action and twisting can be extended from R
to RC™!, and

(R+G)C™' = RC™' % G.
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11) If R is a semiprime right Goldie ring and G is finite, then R* G is a right
order in an Artinian ring and Q(R* G) = Q(R) xG.

Proof. Part ¢) follows from [108, Lemma 4.2] and part i) from [71, Lemma 1.5].
ad

1.4 The Passman correspondence for skew-
Laurent rings

In [85] D. S. Passman described the prime ideals in crossed products of polycyclic-
by-finite groups over a right Noetherian ring. For the case of skew-Laurent rings of
the form R[6:,07",...,0,,0:%; a4,... ,a,] when R is a commutative Noetherian
ring and ay, ... , @, are automorphisms of B commuting pairwise, his description
becomes easier. We shall show how to get it using some of this author’s results
in [86].

Through this section we will assume the following hypothesis.

Hypothesis 1.4.1 Let R be a commutative Noetherian ring, let ay,... ,a, be
automorphisms of R commuting pairwise, H the multiplicative abelian torsionfree
group freely generated by 6,,...,0, and G the multiplicative abelian subgroup of
Aut(R) generated by ay,...,a,. Let ¥ : H — G be the group epimorphism
defined by W(6;) = ;. Let S = R[6,,07",... ,0,,0 % a1,... ,0,] = R#H.

Remark 1.4.2 As H acts on R via the group epimorphism ¥ : H — G, we will
talk about G-prime ideals of R instead of H-prime ideals.

Remark 1.4.3 Given an automorphism « of R that commutes with ay,... , a,,
we can define an automorphism o' of S given by o'(T;rs07) = T,a(rs)8’.

Instead of o’ we will write a. Hence we can think of G acting on S.
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Proposition 1.4.4 Assume Hypothesis 1.{.1. Let H be a subgroup of H. Then
i) S=(R#H)+ H/H.

i1) If I is a G-stable ideal of RxH, then [S is an ideal of S with ISN(R#H) =
Iand S/IS = (R#H)/I«H/H.

i) If J is an ideal of S, then J N (R#H) is a G-stable ideal of R#H and
[JN(R#H)S C J.

w) If P is a prime ideal of S, then PN (R#H) is a G-prime ideal of R#H.

Proof. i) follows from Lemma 1.2.21. By Remark 1.4.3, it is easy to see that G
acts on R# H. The proofs of i1), 133) and iv) are similar to the ones of Proposition

1.3.6. O

Hypothesis 1.4.5 Let N be a G-prime ideal of R.

Since N is a G-prime ideal of R, by Lemma 1.3.5, we can write N =
NaecM™ = M N M= N ...N M?* for some M, minimal prime of R over N
and z,,...,z; € G such that {M,M*2,... , M*} forms a single G-orbit of M
and M # M* # M% for all 1,5 € {2,...,t} such that : # j and z;,z; # lg.
Assume z; = 1g. So M = M*.

Let Gy a be the subgroup of G defined by

GLM:{CYEGIMO(:M}

and Hypy = U~ (Giy). Thus H/Hyp = G/Gim and this group is finite,
being isomorphic to a subgroup of the symmetric group on t symbols. Take

Si1,m = R# Hy 1, the skew-group ring of Hj ar over R, so Sy is a subring of S.

Proposition 1.4.6 Let P, be a G-prime ideal of Sy p such that PN R = N.
There exists Py, a minimal prime of Si.m over Py and By,...,0s € G, such that
P =NaecPe=PPn...0 PP, BNR=M and {P,... PP} forms a single
G-orbit of P,.
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Proof. Let P, be a G-prime ideal of Sy ar such that P, N R = N. Therefore
P = ﬂaegﬁf‘ = ISIB‘ Nn...N ﬁlﬁ’, for some 3; € G and some P;, minimal prime of
S1,m over Py.

Since N is a G-stable ideal of R, NSy s is an ideal of Sy a. As M is G -
stable, MS) a is an ideal of S;ar. As G is abelian we have also that for any
1 € {2,...,t}, M* is Gy pm-stable, hence M*S; p are ideals of S; u, for each
it € {2,...,t}. Now NS1p»y = MSiu N MBSy N...NM*S;m € Pr. So
there is z; such that M*S, »y C P,. Without loss of generality, we can assume
M C BNR Since [I,(P"NR)C PANR=NC M, thereis j € {1,...,t}
such that M# C 151[3’ NRCMC P NR. As M% and M are minimal over the
G-stable ideal N, M#% = f’lﬁ’ NR=M,hence M = 131 N R and the result follows.
O

Proposition 1.4.7 Let P € Spec(S) such that PN R = N. Then
P=(PN& m)S.

Proof. Let P be a prime ideal of S such that PN R = N and P; be a minimal
prime of Sy as over P N S; pr as in Proposition 1.4.6. Since the stabilizer of P in
H/H,y p is {H, ap} it follows from [86, Corollary 14.8] that (P NSy m)S is prime.

It’s obvious that (P N Sy m)S C P. Since H/H, a is finite, by [86, Theorem
16.2], P is a minimal prime over the ideal (P N S; a)S. Then P = (P N S m)S.
a

For every 4 € G} up, we can think of 7, the automorphism of B/M induced by
7, such that 5(r+M) = v(r)+M, and define Sy, p = Sy m/MSi1,m = R/IM#H, m
a skew-group ring over the ring R/M.

Take Gopr = {y € Gim : 5 = 1d} and Hopr = U~} (Gam) € Hy. Note that
Gom={y€G:vy(r)—re M, foralre R} FormS;p» = R#Hym CSim C
S. So Som = Sam/MSy 0 = (R/M)H, 1, the group ring of Hpa over R/M.
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Let A be the fraction field of the commutative domain R/M. For each
v € G um, we can extend ¥ to an automorphism 4" of K" in the obvious way. We

will abuse notation and write just -y instead of 5 or 4", Let S} py = (N# Hy ar).

Lemma 1.4.8 Let S7,,, K and Hyp be as above. Then CS{M(K) = NHyp

which is a commutative domain.

Proof. Let z = Z kn hi € Cs M(K). Then, for all k € K, zk = ka. That
hi€H M '
is, > knU(hy)(k)hy = >~ kkn hy. So kn,W(hi)(k) = kky,, for each hy €
hi€H M hieHy m
Hy . Since K is a field, ¥(h,)(k) = k, for all k € K, whenever kj, is nonzero.

Therefore each h; with a nonzero coefficient is in Hz ps and then £ € K Hy pp. [t's

obvious that K Hym C Cs: M(K). Consequently, Cs | (K) = KH;p. O

Take &’ a transversal set to Haar in Hya. Then by Lemma 1.2.23, this set

is a basis of Sy u, S1,m or S pr over Sy, Som or K Hy pr, respectively.
Proposition 1.4.9 Let P, be a Gy am-stable ideal of K Hypr. Then

Cs ({k+ PSi ik € KY) = {sa+ Py} py: 52 € KHan).

{'M/Pz"s{M

Proof. If P; is a Gy m-stable ideal of Cs; | (K) = KHaa, P35y is an ideal of
S1 - It’s obvious that {s; + P3S; ar:s2 € KHam} C CS{,M/P2’S{vM({k+ PiSi e
ke K}).

We can think of K H, s as being a K-vector space and of P; as a K-subspace

of KHyp. Let Q) be a complement of P) in KHap. Let s; + PS) ), €

CS{,M/P;s;,M({k + PjS{p k€ K}) and 52 = h%/shzhg, for some sy, € K Hy .
2
Since KHyp = Py @ Qf, without loss of generality, we can suppose that

$2= Y Qnyha, for some gx, € Q3. For all k € K, we have
hy€®’

kSz — Szk = Z (thz - th‘l’(h2)(k))h2
ha€®’
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Since qn, € Q) C KHanr, ksy — sk = ) (k— W(ha)(k))qnha.
he®’
By hypothesis, ks, — sk € P,S} 5. So, for each hy € &,

(k — U(ha)(k))an, € PN Q5.

So, ks3 — sk = 0. Therefore s; € K H; 3 and the result follows. O

Proposition 1.4.10 Let P{ be an ideal of S ps. Then (P{ 0 K Hya)S) y = P

Proof. It’s obvious that Py = P/ N K H, um is a Gy m-stable ideal of K Hy . We
have that P;S] 5y C P|. Suppose that P,S] s & Py and take p; € P\ P;S] . So

P = Z kn, hy, for some k;, € K. We can take p; with a minimal number of
hi€H)
nonzero ky,. Multiplying p; by an element of Hy a, if necessary, we may assume

ki, # 0, where 1y is the identity of H.
Let k € K. Then kp, — p1k € P/, but

kp, —pik = Z (kkh,hl - ‘I’(hl)(k)khlhl)
hi€Hy um
= Z (kkp, — Y(hy)(k)kn, )by
hy€Hy m

has coeflicient in 15 equal to 0. So, by the choice of p;, we have
kpi — pik € P3S] -

Since k was arbitrary in K, p1+ P,S5] p € Cst , /prsr  ({k+ PS8 p i k € K}).
, 291, M

By Proposition 1.4.9, there is p; € K Hy ap such that py + P;S] yy = p} + PS] 4

Then pi € P;, so pr € P;S] 5, what contradicts the choice of p;. Therefore

(PI0KHym)S) = P|. O

Let ®!_, K be the direct sum of ¢ copies of K. Given any v € Giu, then
v fixes M and all its G-conjugates, so v induces an automorphism of @!_, K
such that y(ky,... , k) = (y(k1),... ,v(kt)), for any ky,... , ks € K. Once again
we will abuse notation and write just v for these automorphisms. Let Si,, =

(EBf:lI()#HI,M and é’,M = (@leh’)Hg,M.
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Corollary 1.4.11 Let [ be any ideal of Sf jy. Then [ = (I NSy )] v

Proof. Let ey,...,e; be the primitive central idempotents of é!_, . Also, by
definition of H, pr, we have that the same elements are primitive central elements
of 8{ ys and that for all i € {1,... ,t}, ST e = &Sy = K# Him and S5 e =
€;S) p = K Hypr. Then, foralli € {1,...,t}, Ie;is anideal of ;57 y = K# H, m
and by Proposition 1.4.10, e; = (I N & yr€:)SY préi-
So, we have
I = ol

= @5=1(ln Sél,Mei)S{,,Mei

= [®i (I N ST pe)l[@iza (I N ST prei)]

= (INSIMm)Sim

and the result follows. O

Proposition 1.4.12 Let P be a prime ideal of S such that PN R = N. Then
P=(PN&S.uM)S.

Proof. By Proposition 1.4.6, PN S = ﬂaegﬁf’ = ISIﬂ1 Nn...N 131[35, for some
Bi,...,B, € G and P; a minimal prime of S; s over P NS 5 such that P.NR =
M.

Let Py, = P,/MS&) p, a prime ideal of Sy a and C = Crypm(0). Since R/M is
a commutative ring, C is an Ore set in R/M. As M is Gy m- and Gy m-invariant,
by Lemma 1.3.8, C is an Ore set in Sy p and in Spum, S1mC™' = Sy and
S:07' = KH, . By [44, Theorem 9.22], P,C™! is a prime ideal of S{ ;. By
Proposition 1.4.10,

P.C' = (P\C N KHym)Sy p-

Since P, NC = 0, Sim/P: is C-torsionfree [44, Lemma 9.21]. Hence

Sa.m/(P1 N Sy ) is C-torsionfree and furthermore
Sim/(PyNSam)Sim is C-torsionfree. (1)
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Now we have

P, = Flc—l ﬂgl'M
= (PC7'n K H)S{ N Si.m by Proposition 1.4.10
- (Fl N gZ,M)S{,M N gl,M

= (PiNSem)Sim by (1) and [44, Theorem 9.17].
So
P=(PNSm)Sim (2)
and
POSim = N PP by Proposition 1.4.6

= NL[(BNSm)Sim) by (2)
= (M= (P N So,m)?)S1,m] since 8y is free over Sy um
= [(ﬂ;=1131ﬁ]) N Sa,m]S1,m

= [PN S m NS m]Sim by Proposition 1.4.6

= (PN Sym)Sim

Now by Proposition 1.4.7, P = (PNS;m)S = (PNSa 0 )S1.mS = (PNSym)S.
O

Theorem 1.4.13 (Passman) There is an one to one correspondence, P, from
the set {P € Spec(S) : PNR = N} onto the set {P; € Spec®(Sa ) : LNR = N}
such that P(P) = PN S;pm and P = (PN S2.m)S.

Proof. If P € Spec(S) such that PN R = N, then P N S, p is obviously a
G-stable ideal of S, ps. Moreover P N S, is G-prime by Proposition 1.4.4.

If P; is a G-prime ideal of S; as such that ,NR = N, P,§ = SP; is an ideal of
S and by Proposition 1.4.4, P.SNS; pm = P,. Also, we have that P,S1p = S P2
is an ideal of S; p. We claim that it is a G-prime ideal of S) p. Let Ay, B, be
G-stable ideals of Sy as such that A; By C P28 u, where we may assume without

loss of generality that N C (A1NR)N(B1NR). Then (A;NS;m)(BiNSapr) C P,
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and Ay N Sy um, By N Sz a1 are G-stable ideals of Sz a7, Therefore A; NSy C P
or ByNS;p C P If A; N Saar C Py, then by Corollary 1.4.11, we deduce that
Ay = (A; N Sy m)S1m, so that Ay C P,S1 m. Hence, P28y a is a G-prime ideal
of 81 m. Then, by Proposition 1.4.6, P,S; pm = ﬂaec;f’f‘, for some minimal prime
Py of Si,m over P8y ar such that PN R = M. Now, as H/Hy  is finite and
the stabilizer of f’l/stl'M is {Hym}, it follows, by (86, Corollary 14.8], that
S/PS = (S1,m/P2S1,m) *x H/Hy p is prime. So P,S is a prime ideal of S.
By Proposition 1.4.12, we get the desired result. O

1.5 Additional remarks

1. All definitions and results of this chapter are well known.
2. The main references for §2 and §3 are [44], [76] and [86).

3. The main references for §4 are [86] and [85].

21



Chapter 2

Prime Links in Skew-Laurent and

Skew-Polynomial Rings

Given a commutative domain R and a prime ideal P, we can form a ring, con-
taining the first, where the elements of R\ P become units - that is, we localize
R at P. One could try to extend this process to noncommutative rings but, even
in Noetherian rings, we have some obstructions to localization. Some of these
obstructions are caused by the existence of some relations between prime ideals;
given two primes “related” in this way, it is impossible to localize at one without
localizing at the other as well. These relations are called links, or prime links.

In a Noetherian ring R, there is a link from P to @, for P,Q prime ideals of
R, if there is an ideal A of R such that PQ € A G PNQ and (PNQ)/A is
torsionfree as a left R/ P-module and as a right R/Q-module. In such a case we
will write P ~ Q.

The graph of links of R is the directed graph whose vertices are the elements
of Spec(R) with an arrow from P to ) whenever P ~» Q. The connected com-
ponents of this graph are called cligues, and if P € Spec(R) the unique clique
containing P will be denoted by C{(P).

Links between prime ideals play also an important role in the representation
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theory of Noetherian rings, see for instance [26]. For some classes of noncom-
mutative Noetherian rings, it was possible to describe the links between prime
ideals, for instance, for group rings ( K.A. Brown in [19], [20] ); universal envelop-
ing algebras ( K.A. Brown and F. Du Cloux in [22], [21] ) and certain differential
operator rings ( G. Sigurdson in [98] and K.R. Goodearl in [43] ).

In [56], Jategaonkar introduced a condition (*) for Noetherian rings which
enables us to localize the ring with respect to the intersection of primes in a
finite clique, [44, Theorem 12.21]. This condition became known as the second
layer condition. A similar condition was introduced by K.A. Brown in [18]. In
[55], Jategaonkar introduced another condition (), later called the strong second
layer condition by the same author in [57].

In this chapter we describe the prime links in 7 = R[fy,... ,0n; 01, ... , o]
and § = R[6,,67!,...,0,,07 ;01,...,a,], the skew-polynomial ring and the
skew-Laurent ring, respectively, when R is a commutative Noetherian ring and
ai,...,q, are pairwise commuting automorphisms of R. Let G be the group
generated by ay,...,q,, H the group generated by 0y,...,6, and ¥ the group
epimorphism from H onto G such that ¥(6;) = «, for every 1 € {1,... ,n}.

It is known that S satisfies the second layer condition, {13, Corollary 7.4].
In §2 we shall show that S is AR-separated, Theorem 2.2.11, so it satisfies the
strong second layer condition. Using this fact, it is then possible to prove that T
satisfies the strong second layer condition, Corollary 2.2.14.

The study of links between prime ideals in skew-polynomial rings for just one
automorphism was carried out by Poole [88]. This chapter extends his results in
a similar spirit to the work of Goodearl [43], who described the graph of links of
certain differential operator rings over a commutative Noetherian Q-algebra.

Let N be a G-prime ideal of R, so N = NaegM® for a minimal prime M
over N in R, Lemma 1.3.5. By a result of Passman, Theorem 1.4.13, there is
a one to one correspondence between prime ideals of S contracting to N and

some semiprime (actually G-prime) ideals of a new skew-Laurent ring S,, such
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that S;/MS; = (R/M)[y1,77 -, 7,7, ] Let So = S2/MS,. By a suitable
localization we will be able to assume that M is a maximal ideal of R and that
R i1s a semilocal ring with Jacobson radical N. Write K = R/M, a field.

We start by describing the links between prime ideals contracting in R to
M in the special skew-Laurent ring S;. The links between prime ideals of S,
contracting to M will be described in §3 with K"-automorphisms, oy,...,0,,
of K'® 8, = S!, where K! is the algebraic closure of K = R/M. For each
i € {l,...,u} and j € {1,...,v}, let o,(y;) = €ijy; for some ¢;; € K"\ {0},
determined by the action of the subgroup of G generated by ¥(vy;),...,¥(y,) on
K'® M/M?. We will show in Theorem 2.3.9 that if P, and Qz are distinct prime
ideals of S, contracting to M, then P, ~» Q. if and only if there is 7 € {1,... ,u}
and P!, Q" are prime ideals of S} lying over Py/MS; and Q,/MS;, respectively,
such that o;( P!) = Q"

In §4, we prove that the links between distinct prime ideals P and @ of S
both distinct from NS and contracting to N, arise from links between minimal
primes of S; over PN S; and @ NSy both contracting to the maximal ideal M,
Theorem 2.4.14.

Ignoring here for the moment technical complications caused by passage to
algebraic closures, we can sum up the above results as: the cliqgue C£(P) of a
prime ideal P of S consists of the set of images of P under the action of a
finitely generated abelian group of R-automorphisms of S. These automorphisms
are determined by the action of Sy in M/M?.

In §5, to describe the prime links in 7" we reduce this problem to the same one
in §, Corollary 2.5.2. In the final section, §6, we give some examples to illustrate

the computation of cliques in some skew-Laurent rings and in skew-polynomial

rings.
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2.1 Definitions and background

In this section we introduce the notation, definitions and properties we will need
for the rest of this chapter.

Let R be a ring. Given a right R-module M and X a right Ore set, we denote
by tx(M) = {m € M : mz = 0 for some ¢ € X}, the X-torsion submodule of
M. The module M is said to be X-torsion if tx(M) = M and X-torsionfree if
tx(M) = 0. In the case M = R, tx(R) is an ideal of R. If R is a semiprime
Goldie ring (in particular if it is a semiprime Noetherian ring), the set of regular
elements is an Ore set, by Goldie’s Theorem [44, Theorem 5.10]. In this case
instead of talking about a Cg(0)-torsion or a Cr(0)-torsionfree module, we will
only say R-torsion (or torsion as an R-module) or R-torsionfree (or torsionfree

as an R-module).

Definition 2.1.1 Let P and @ be prime ideals in a Noetherian ring . We say
that P is linked to Q and write P ~» @, if there is an ideal A of R such that
PQCAG PNQ and (PNQ)/A is torsion free as a left B/P-module and as a
right R/Q-module.

There are other definitions of links, the ones just defined are usually called
second layer links, although in this thesis we will just call them links. This defi-
nition was first introduced by Miiller in [83] for some special type of Noetherian

rings, the fully bounded Noetherian ones. Another type of link is defined below.

Definition 2.1.2 Let P and @) be prime ideals in a Noetherian ring. We say
that there is an ideal link or internal bond from P to Q, if there are ideals of R,
J G I'such that PI C J, IQ C J and I/J is a torsionfree right R/Q-module and
a torsionfree left R/P-module.

There is a bimodule link or bond from P to @, if there exists a nonzero

(R/P, R/Q)-bimodule which is finitely generated and torsionfree on each side.
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Definition 2.1.3 Let R be a Noetherian ring. The graph of links of R is the
directed graph whose vertices are the elements of Spec(R) with an arrow from
P to @ whenever P ~» ). The connected components of this graph are called
cliques, and if P € Spec(R) the unique clique containing P will be denoted by
Ce(P).

We say that P € Spec(R) has only a trivial link if whenever P ~» () or
Q ~» P, we have P = Q.

Remark 2.1.4 1) In a commutative Noetherian ring the only possible links are

the trivial ones. Thus in a commutative Noetherian domain, for every prime P,
Cl(P) = {P}.

2) If P and @ are prime ideals in a Noetherian ring and P ~» @), it may happen

C 0 C

0 C 0 C

that @ is not linked to P. For instance take R = and

bl

C C
Q=
0 0

to @, as P and @ are maximal ideals of R, it is enough to notice that (PNQ)/PQ

. As QP = QN P, Q is not linked to P. To prove that P is linked

is nonzero.

Given a Noetherian ring R, there is a relation between prime links and some
series for some R-modules. This relation is given by Jategaonkar’s Main Lemma,

Theorem 2.1.12. Before stating this theorem we need some more notation.

Definition 2.1.5 Let R be a ring and M a right R-module. A prime ideal P of
R is an associated prime of M if there exists a submodule 0 # N C M such that
P = r.anng(N'), for all 0 # N’ < N. The set of all associated primes of M is
denoted by Ass(M).

Lemma 2.1.6 If U is a uniform right module over a right Noetherian ring R,

then there exists a unique associated prime of U.
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Proof. [44, Lemma 4.22] O

Definition 2.1.7 If U is a uniform right module over a right Noetherian ring,

the unique associated prime of U is called the assassinator of U.

It is easy to see that if M is a right module over a right Noetherian ring that
Ass(M) equals the set of assassinators of uniform submodules of M. The next

proposition follows easily from the definitions given before.

Proposition 2.1.8 Let M be a right module over a Noetherian ring. For any
submodule N of M, Ass(N) C Ass{M). Moreover, if N is an essential submodule
of M, then Ass(N) = Ass(M).

Proof. [57, Proposition 4.2.1] O

Definition 2.1.9 Given a prime ideal P of a ring R, a right R-module M is
called P-primary if Ass(M) = {P}.

Definition 2.1.10 An affiliated series of a right R-module M is a sequence of
submodules of M

O=M0§M1g---§Mn—l;CtMn=M

together with a set of prime ideals of R, {P,...,P,} called affiliated primes
such that each P, is maximal among the annihilators of nonzero submodules of
M/M;_y and M;/M;_, = lannpyym,_,(P;). In particular each F; is maximal in
Ass(M/M;_,).

Proposition 2.1.11 Every nonzero finitely generated right module over a right

Noetherian ring R has an affiliated series.

Proof. [44, Proposition 2.13] O
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Theorem 2.1.12 (Jategaonkar [56, Lemma 2.2]) Let R be a Noetherian
ring, and let M be a right R-module with an affiliated series 0 g U g M and
corresponding affiliated prime ideals @ and P, such that U <. M. Let M' be a
submodule of M, properly containing U, such that the ideal A = r.anng(M’) s
mazimal among annihilators of submodules of M properly containing U. Then

exactly one of the following two alternatives occurs:

i) PG Q and M'P = 0. In this case, M’ and M'[U are faithful torsion
R/ P-modules.

i) P~ Q and (PN Q)/A is a linking bimodule between P and Q. In this
case, if U is torsionfree as a right R/Q-module then M'/U is torsionfree as
a right R/ P-module.

Definition 2.1.13 Let R be a Noetherian ring and @ any prime ideal of R. We
say that @ satisfies the right strong second layer condition if given the hypothesis
of Theorem 2.1.12, ¢) never occurs.

The ideal Q is said to satisfy the right second layer condition if given the
hypothesis of Theorem 2.1.12 and the additional hypothesis that U is torsionfree
as an R/Q-module, t) never occurs.

A ring is said to satisfy the right strong second layer condition and right second
layer condition if the corresponding condition holds for every prime @ of R.

The left strong second layer condition and the left second layer condition are
defined similarly.

A ring is said to satisfy the strong second layer condition or the second layer

condition if it satisfies these conditions on both the left and the right.

Theorem 2.1.12 shows that links between prime ideals may arise from affiliated
series of a module. The next theorem shows that all links between prime ideals

arise from affiliated series of some modules.
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Theorem 2.1.14 (Jategaonkar, Brown) Let R be a Noetherian ring and P
and @ prime ideals of R. Then P ~» @Q if and only if there exists a finitely
generated uniform right R-module M with an affiliated series 0 G U S M such
that U is isomorphic to a (uniform) right ideal of R/Q and M/U is isomorphic
to a uniform right ideal of R/P.

Proof. [44, Theorem 11.2] O

Proposition 2.1.15 Let @ be a prime ideal in a Noetherian ring R. The prime
tdeal Q) satisfies the right strong second layer condition if and only if there does
not erist a finitely generated uniform right R-module M with an affiliated series
0GU G M and corresponding affiliated prime ideals Q and P such that M/U is
uniform, P G Q and MP = 0.

Proof. {44, Proposition 11.3] O

Definition 2.1.16 Let R be a Noetherian ring and P, Q prime ideals of R. We
say that the pair (P, Q) is strongly undesirable if P G @ and there is a finitely
generated uniform R-module M containing a nonzero submodule U whose unique
assassinator prime is () and such that U = Lanny(Q), r.anng(M) = P and M/U

has unique associated prime P.

The following proposition gives us a useful criterion to check if a ring satisfies

the right (or left) strong second layer condition.

Proposition 2.1.17 A Noetherian ring R satisfies the right strong second layer

condition if and only if there are no pairs of strongly undesirable prime ideals.

Proof. Let R be a Noetherian ring. Suppose that R satisfies the right strong
second layer condition and (P, @) is a pair of strongly undesirable prime ideals of

R. So P g @ and there is a finitely generated uniform R-module M containing
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a nonzero submodule U whose unique associated prime is () and such that U =
lannp(Q), r.anng(M) = P and M/U has unique associated prime P.

As M/U has a uniform submodule, say M’/U, the module M’ will satisfy
all the properties of M above. Hence, we may assume that M = M’. As U
and M/U are uniform R-modules with assassinator @ and P, respectively, the
series 0 G U G M is an affiliated series with affiliated primes @ and P such
that P G @ and MP = 0. So, by Proposition 2.1.15, @ does not satisfy the
right strong second layer condition, a contradiction. Hence there are no pairs of
strongly undesirable primes.

Conversely assume that there are no pairs of strongly undesirable primes of
R and that there is Q and a finitely generated uniform right R-module M with
an affiliated series 0 G U G M and corresponding affiliated prime ideals @ and
P such that M/U is uniform, P G Q and MP = 0. As affiliated primes are
in particular associated primes of the corresponding factors, and M and M/U
are uniform, the associated primes of each of these modules is unique, hence
the assassinator of M is @ and the one of M/U is P. Since M is uniform,
the assassinator of M and of U is the same. Obviously P C r.anng(M). If
I = r.anng(M), then I C r.anng(M/U) C P. Hence r.anng(M) = P. So (P, Q)
is a pair of strongly undesirable primes of R, a contradiction. So for each Q) there

does not exist such a module. The result follows now by Proposition 2.1.15. O

Many classes of rings satisfy the second layer condition. For example, this is
the case for enveloping algebras of any solvable Lie algebra (A.V. Jategaonkar [57,
Theorem A.3.9]), polycyclic-by-finite group rings over a commutative Noetherian
ring (K.A. Brown [18, Proposition 2.2] and A.V. Jategaonkar {55, Theorem 4.5])
strongly graded rings of polycyclic-by-finite groups over commutative Noetherian
coeflicient rings (A.D. Bell [13, Corollary 7.4]), as well as Noetherian Pl-rings or
more generally FBN rings. On the other hand, many Noetherian rings do not

satisfy the second layer condition, for instance enveloping algebras of semisimple
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Lie Algebras (K.A. Brown [18, Theorem 4.4.3]) but no example is known of a ring
satisfying the second layer condition and not satisfying the strong second layer
condition. The next theorem and lemma describe some properties of bimodules

over rings satisfying the second layer condition.

Theorem 2.1.18 (Jategaonkar [57, 8.2.8]) Let R and S be Noetherian rings
satisfying the second layer condition, and suppose there erists a bimodule prBs
which is finitely generated and faithful on both sides. Then CLK.dim(R) =
CLK.dim(S).

The following lemma is an easy generalization of a similar result for faithful,
finitely generated bimodules over Noetherian prime rings satisfying the second

layer condition, [42, Lemma 1.3].

Lemma 2.1.19 Let R and S be semiprime Noetherian rings satisfying the sec-
ond layer condition, and let pBs be a bimodule which is finitely generated and
faithful on each side. Suppose also that CLK.dim(R) = CLK.dim(R/P) and
CLK.dim(S) = CLK.dim(S5/Q), for all P and Q), minimal primes of R and S,
respectively. Then the torsion submodules of B as a left R-module and right S-
module, are the same and different from B. Therefore, there exists a sub-bimodule

B' G B such that B/B' is torsionfree on each side.

Proof. Suppose B as above. By Theorem 2.1.18, C1.K.dim(R) = CL.K.dim(S).
Let C = Cgr(0) and D = Cs(0), Ore sets in R and S, respectively. Let
T = t¢(B), the C-torsion submodule of B. In fact, T is an (R, S)-bimodule.
We claim that T' C tp(B).
As T is an S-submodule of a finitely generated module over the Noetherian
ring S, T is finitely generated as a right S-module. Therefore, exists ¢ € C such
that ¢T' = 0. If T = B, ¢ € L.anng(B) = 0, a contradiction. Let I = Lanng(T).

Since ¢ € I, I is not contained in any minimal prime of R, by {44, Proposition
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6.3]. Thus setting J = r.anng(T),
CLK.dim(S/J) = CL.LK.dim(R/I) < CL.LK.dim(R) = CLK.dim(5)

by two applications of Theorem 2.1.18. Thus J N D # @, proving the claim.
Similarly, tp(B) C T. Take B’ = tp(B). O

Corollary 2.1.20 Let R be a Noetherian ring satisfying the second layer con-
dition, and let P and ) be prime ideals of R. Then P ~» @ if and only if
(PN Q)/PQ is faithful as a left R/ P-module and as a right R/Q-module.

Remark 2.1.21 Lemma 2.1.19 remains true without the assumption that R and
S are semiprime: it is enough to assume that R and S have classical quotient
rings. The proof is essentially the same, since any minimal prime ideal in a

Noetherian ring consists of zero divisors.

2.2 The strong second layer condition

In this section we will show that some skew-polynomial rings and skew-Laurent
rings over a commutative Noetherian ring satisfy the strong second layer con-
dition. To prove this we show that these rings belong to a larger class, the
AR-separated rings, which satisfy the strong second layer condition. We start
by describing the AR-property and by fixing some notation that we will keep

throughout the section.

Definition 2.2.1 An ideal I in a ring R has the right AR-property if for every
right ideal K of R, there is a positive integer n such that K N I" C K. The left
AR-property is defined similarly, and I has the AR-property if it has both the
right and the left AR-properties.
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Definition 2.2.2 If R is a ring and [ an ideal of R, then the Rees ring of I is
the subring Rg(I) of the polynomial ring R[z] defined by

Rr(I)=R+Tz+ 12" +.. . 4 I's' ...

Lemma 2.2.3 If [ is an ideal in a ring R, and the Rees ring Rg(I) is right
Noetherian, then I has the right AR-property.

Proof. (44, Lemma 11.12] O

Theorem 2.2.4 (Artin, Rees) If R is a Noetherian ring and I is an ideal of
R generated by central elements, then Rp(I) is Noetherian and hence I has the
AR-property.

Proof. [44, Theorem 11.13] O
Definition 2.2.5 A ring R is right AR-separated if for every pair of prime ideals
P and Q in R such that P G Q, there is an ideal / such that P G I C @ and I/P

has the right AR-property in R/P. Left AR-separated is defined symmetrically.
The ring R is said to be AR-separated if is both left and right AR-separated.

Proposition 2.2.6 If R is a Noetherian ring which is right AR-separated, then

R satisfies the right strong second layer condition.
Proof. [44, Lemma 11.14] O
Proposition 2.2.7 Let I be an ideal in a Noetherian ring R, and let P and Q

be prime ideals of R with P ~ Q. If I C Q and I has the right AR-property,
then I C P. Similarly, if I C P and I has the left AR-property, then I C Q.

Proof. {44, Proposition 11.16] O
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Notation 2.2.8 If R is any ring, ap,...,a, € Aut(R), commuting pair-
wise and I = (iy,...,3,) € Z", we will denote by o' the automorphism

a'l"...a;" of R and by 6! the element 6i'...0» of the skew-Laurent ring

R[91,91_1,. .. ,0n,0_1;a1,. .. ,an].

n

For the rest of the chapter R will always be a commutative

Noetherian ring, oai,...,a, pairwise commuting automorphisms of R,
T = R[6,,...,0,;01,... ,0,] the skew-polynomial ring and
S = R[0,,07",... ,0,,07% a1,. .., the corresponding skew-Laurent ring.

We let H be the multiplicative abelian subgroup of the group of units of S gen-
erated by 6,,... ,0,, G the multiplicative abelian subgroup of Aut(R) generated
by ai,... ,a, and ¥ : H — G the group homomorphism such that ¥(6;) = «;.
Write S = R* H.

The following lemma shows that, when calculating the cliques of S, one can
fix an ideal of R as prime ideals of S in the same clique will contract to the same

ideal of R.

Proposition 2.2.9 If P and Q are prime ideals of S such that P ~» @Q, then
PNR=QNRA.

Proof. As R is a commutative Noetherian ring, Rg(P N R) is Noetherian and
P N R has the AR-property, Theorem 2.2.4.

Since Rs((P N R)S) = S+ PN RS + (PN RS+ .. =
Rer(PNR)[0,,607",...,0,,07% a1,... ,a.], Rs((P N R)S) is Noetherian by [44,
Theorem 1.17] and so (P N R)S has the AR-property.

By the two parts of Proposition 2.2.7, PN R=QNR. O

Notation 2.2.10 Let N be a G-prime ideal of R and let M be a prime ideal of R
minimal over N. Then by Lemma 1.3.5, N = NgecM® = M M2 N...O M,

where z,,z2,...,2; is a complete set of coset representatives of the stabilizer
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Gim={a€G:M*= M} in G. We will write M; = M*. For conveniencc we
take | = 15, whence M, = M. Note that M; # M, forall i # 7, 4,5 =1,...,¢
and that {M,, M,, ..., M,} is the G-orbit of M in Spec(R).

We set Hy p = W~1(Gy,m) and Sy p = R* Hy p, the skew group ring of H,
over R.

For every a € G, p, we will write @ for the automorphism of B = R/M
induced by a and denote by G u, the group of these induced automorphisms of
R. Let Sym = Sim/MSim = (R/M) * Hy 1, a skew group ring over the ring
R/M.

Take Gopr = {a € Gim : @ = id|gym} and Honr = ¥ (Gapr) € Him. Note
that G,y = {a € G:a(r) —r € M, forall r € R}. Form S;p = R* Hypr C
SimMm ©S. So Sm/MSay = (R/M) x Hyp and write Som = Sapm/MS,
Let H,a be freely generated by vy ar,. .- YoM+ As G2 acts trivially on R/M,
we have that Sy = (R/M)[yi.0, it -+ - »YuM> YoM, @ commutative Laurent
polynomial ring.

As N is a G-stable ideal of R, NS and NS&;a are ideals of S and Sy,
respectively. We let S = §/NS and Som = Sam/NSypr = R/N * Hypp. Since
G is an abelian group and because of the way we defined G ur, it is easy to see
that this group acts trivially on R/N. Hence §2,M = (R/N)H; m, a commutative
Laurent polynomial ring.

Whenever M is well understood, we will just write S;, S, S1, Sa, fg, H,, Gy,
Hy, Gy, m1,... ,7, instead of Sy, Som, Sim, Sa.uM, §2,M, Him, Gim, Hom,s

GZ,M’ MMy s Yo ,M-
Theorem 2.2.11 The ring S is AR-separated.

Proof. Let P and @ be prime ideals of S such that P G Q.
Suppose first that PN R G Q@ N R. As R is commutative, Rr(Q N R), the
Rees ring of @ N R over R, is Noetherian, Theorem 2.2.4.
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Since Rs((@ N R)S) = S + HQ N RS + t3(Q N R3S + ... =
Re(QN R)[0,,07",...,0,,07ay,...,a,), Rs((Q N R)S) is Noetherian by [44,
Theorem 1.17] and so (P + (@ N R)S)/P has the AR-property in S/ P.

Suppose now that QN R=PNR=N. Let H, =< v,...,7% > be Hypm
as before. If PN S; = Q@ N Ss, then @ = P by Theorem 1.4.13, a contradiction.
Hence P G P+(QNS))S. As S, = §;/NS, is commutative, Rz ((QNS2)/NS,)
is Noetherian by Theorem 2.2.4. Since

S+((QNS)/NS)St+ ...
= < 'R/EQ((Q082)/N82),01701_1,"' a0n70;1 >,

R=((Q N 8;)S/NS)

and for each i € {1,...,n}, 0,-7?,§2((Q N S;)/NS;) = ’Rgz((Q N S;)/NS,)0;,
R=((Q N 8;)S/NS) is Noetherian, {75, Theorem 9]. Hence (P + (Q N &2)S)/P
has the AR-property. Thus in all cases we have found a nonzero ideal of S/P
contained in /P, with the AR-property in S/P, and so S is AR-separated. O

Corollary 2.2.12 The ring S satisfies the strong second layer condition.

Proof. Theorem 2.2.11 and Proposition 2.2.6. O

The following proposition and Corollary 2.2.12 will allow us to prove that the

ring 7 satisfies the strong second layer condition.

Proposition 2.2.13 Let W be a Noetherian ring, let Y be a set of normal ele-
ments in W and let X be the multiplicative submonoid of W generated by Y. The
ring W satisfies the strong second layer condition if and only if W/yW satisfies
the strong second layer condition for all y € Y and WX~ satisfies the strong

second layer condition.

Proof. Assume Y as above. As Y is a set of normal elements of W, X is a right

and left Ore set.
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Assume that WX~ and W/yW satisfy the right strong second layer condition
for all y € Y. (The proof for the left case is similar). Suppose that there is a
pair (P, Q) of strongly undesirable prime ideals of W as in Definition 2.1.16;
that is P ; () and there is a finitely generated uniform W-module V containing
a nonzero submodule U whose unique assassinator prime is () and such that
U = lanny(Q), r.annw (V) = P and V/U has unique assassinator prime P.

We consider each of the following cases: (1) PNY =0=Q NY; (2) there is
y € Y such that y € Q\P;and (3) QNY # 0 and for y € Y, y € Q if and only
ifyeP.

If case (1) occurs, since Y is a set of normal elementsof W, PNX = @QNX = 0.
By [44, Theorem 9.22], PX~! and QX! are distinct prime ideals of WX~1.
Suppose that U is not X-torsionfree. Then, there would be v € U\{0} and z € X
such that uz = 0. As X is a set of normal elements, we have (ulW)(zW) = 0,
whence Q@ & Q +2W C r.anny (uW), contradicting the assumption that @ is the
assassinator prime of U. Hence U is X-torsionfree. As U is essential in V| V is
X-torsionfree as well.

As V is a finitely generated uniform right W-module, VX! is a finitely
generated right WX ~'-module. The X-torsionfreeness of V and U shows that
the modules VX! and UX ™! have annihilators PX~! and QX ™!, respectively.
Hence as PX~' and QX! are distinct, VX~! contains properly the WX ~!-
submodule U X!, whose unique assassinator prime is @ X!, Assume that V/U
is not X-torsionfree. As we may suppose that V/U is uniform, we may as well
assume that V/U is X-torsion. Hence VX' = UX ™!, a contradiction. The X-
torsionfreeness of V/U implies that VX~!/UX™! has unique assassinator prime
PX~'. Therefore (PX~!,QX~') will be a strongly undesirable pair of prime
ideals of WX ™1, a contradiction.

If case (2) occurs, let y € Y be in Q\P. As y is a normal element of W, yW
is an AR-ideal of W [76, Proposition 4.2.6], and so (P + yW)/P is an AR-ideal
of W/P. Since V is an W/P-module and U(P + yW) = 0, there is m such
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that V(P 4+ yW)™ = 0, [44, Lemma 11.11]. Since lLannw (V) = P, yW C P, a
contradiction.

If case (3) occurs, let y € PN QNY. Hence (P/yW,Q/yW) is a strongly
undesirable pair of primes of W/yW, contradicting the hypothesis.

Hence no strongly undesirable pair of primes exists in W and so W satisfies
the right strong second layer condition.

Conversely, assume that W satisfies the right strong second layer condition.
Then so does W/yW, for all y € Y. We will show that there are no pairs of
strongly undesirable primes of WX ~1.

By [44, Theorem 9.22], every prime ideal of W X! is of the form PX~! where
P is a prime ideal of W such that PN X = {). Let P and @ be prime ideals of W
such that PNX =0 = QNX and (PX™',QX™") is a pair of strongly undesirable
prime ideals of WX ~!; s0o PX~! G QX ™! and there is a finitely generated uniform
W X '-module V'’ containing a nonzero submodule U/ whose unique associated
prime is @X~! and such that U’ = L.anny/(QX™!), r.anny x-1 (V') = PX~! and
V!/U’ has unique associated prime PX~'.

Assume that V' is generated by vy,... ,v, as a WX ~!-module. Then V =
izy uiW is an W-submodule of V/, finitely generated and such that VX! = V'
Also V is X-torsionfree. If V; and V; are W-submodules of V such that VNV, = 0,
then V,X~! and V, X! are WX~! submodules of V' with intersection 0. As V’
is uniform either VX! =0 or VX! = 0. As V is X-torsionfree, either V; = 0
or Vo = 0, hence V is uniform as an W-module.

Take U = U' N V. By [44, Proposition 9.17], U/ = UX™! and so
U#0and U # V. Since UQ C U'QX™! = 0, U C lanny(Q). Since
(Lanny(@))@X~! = 0, Lanny(Q) € U’. So U = lanny(Q). Also we have
VPCV'PX™' =0,s0 P Cr.annw(V). Let I = r.annw(V), which is an ideal of
W. As W is Noetherian by [44, Theorem 9.20], IX~! is an ideal of WX~!. As
Vi=2VX-LVIX1T=VIX'=0,s0 X' CPX! Since PNX =0, by [44,
Lemma 9.21] X C Cw(P), so I C P. Hence r.annw (V) = P.
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As Ass(U’) = {Q X'}, there exists U” an RX~'-submodule of U’, such that
ranny x-1(U"”) = QX! and all non-zero submodules of U” have annihilator
QX' By [44, Theorem 9.17), U” = (U" N V)X~ As before we can conclude
that r.annw (U"NV) = Q. Also as the annihilator of any non-zero W-submodule
of U" NV, say J, will be such that JX~! will annihilate a W X ~!-submodule of
U', JX7' C QX' As X CCw(Q), J C Q. So, as U is uniform, we conclude
that Ass(U) = {Q}.

As V'/U’ has unique associated prime PX~!, we may assume that V'/U’ is
uniform with assassinator PX~!. As V is X-torsionfree so is U' NV. It is then
clear that V/U’' NV is uniform. By an argument similar to the one before, we
can see that P is an associated prime of V/U’ NV, hence is unique. So (P, Q)
is a pair of strongly undesirable primes of W, contradicting the hypothesis. So
W X! satisfies the right strong second layer condition. The left version is proved

in a similar way. [J

Corollary 2.2.14 The ring T satisfies the strong second layer condition.

Proof. We will argue by induction on the number n of automorphisms of R.

If n =0, then 7 = R and by Theorem 2.2.4, T is an AR-separated ring.
Hence it satisfies the strong second layer condition by Proposition 2.2.6.

Suppose that for all | < n — 1 and for all 4,,...,4; € {1,...,n},
R[B;,,...,0,;0,... ;] satisfies the strong second layer condition. Let Y =
{61,...,6,} and X = {67 : J € N}, an Ore subset of 7. As TX ! = S, by
Corollary 2.2.12, T X! satisfies the strong second layer condition. By the induc-
tion hypothesis, 7/0;T = R[0;,... ,0i—1,0i41,-.. ,0n;01,... ,Qic1, Cig1,. .. ,Qn)
satisfies the strong second layer condition, for any : € {1,... ,n}. By Proposition

2.2.13, T satisfies the strong second layer condition. O
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2.3 Prime links in skew-Laurent rings contract-
ing to a maximal ideal

In this section we describe the links between prime ideals contracting to maxi-
mal ideals in some skew-Laurent rings. The general case will be studied in the
following sections. Proposition 2.3.2, 2.3.3 and Theorem 2.3.4 can and will be
generalised in the next section. We start by fixing some notation that we will

keep through the rest of this chapter.

Notation 2.3.1 Let R be a commutative Noetherian ring, 4,... ,, automor-
phisms of R commuting pairwise and Sz = Rly1,77 ", s Yus ¥y 53 Bty - -+ , B the
skew-Laurent ring. Denote by G, the abelian group generated by £, ... , 3, and
H, the torsionfree group generated by 7v1,..., 7.

Take M a maximal ideal of R, write K = R/M and assume that each
B € G, fixes M and induces the identity in K. Write S; = S;/MS; =
Klyi,77Y . 7,75 = KH,. Note that S; is Saar of Notation 2.2.10 and
B; = ¥(y;) where ¥ is as in Notation 2.2.8.

Proposition 2.3.2 The ideal MS, is a prime ideal of S;, CL(MS;) = {MS,}
and MS; ~ MS, if and only if M # M?2.

Proof. As S;/MS; = KH, is a commutative Noetherian domain, MS; is a
prime ideal of S,.

Suppose that there is a prime P of &; such that P ~» MS; or MS; ~ P.
Then by Proposition 2.2.9, PN R = MS; N R = M and so MS; € P. By
Theorem 2.1.18, CLK.dim(S;/M S;) = CLK.dim(S;/P), so MS; = P.

Obviously, if MS; ~» MS,, then MS; # M?2S, and so M # M?. Conversely,
suppose M # M?. As S, is free as a right and left R-module, MS;/M?2S, is
faithful as a right and left S;/ M S;-module. Thus MS; ~ MS;. O
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Proposition 2.3.3 Every prime ideal of Sy, properly containing MS, is linked
to itself.

Proof. Let P be a prime ideal of S;, properly containing M S,.

As 8, satisfies the second layer condition, by (23, Proposition 2.5], there will
be some prime of S, linked to the non-minimal prime P/MS, of S;. Since S, is
commutative, there are no links between distinct primes of S,, so we will have

P/MS; ~» P/MS, and so P ~ P. O

Theorem 2.3.4 Let P, and Q, be distinct prime ideals of S,, distinct from MS,,
such that P,NR = Q,NR = M. Then Py ~ Q, if and only ifMSg/(ﬁgM-{-M@g)
is faithful as a left Sg/ﬁz-module and as a right 52/Q~2-module

Proof. Let B,,(, be as stated. Suppose P, ~ Q, via (P, N Q;)/A, for some
ideal A of S, such that P,Q, C A G PnNQ,.

If MS, C A, then f’g/Msg ~ é2/M82 and since S, is commutative P, =
Q2, a contradiction. So A G MS; + A. Hence MS;/(MS; N A) is faithful
as a left Sz/lsg-module and as a right SQ/C?Q—module. The same happens with
MS,/(P,M + MQ,), since this bimodule has MS;/(MS, N A) as a factor.

Conversely, suppose that M S, /(P;M+MQ,) is faithful as a left S,/ P,-module
and as a right S;/@,-module. Since, by Corollary 2.2.12, S, satisfies the second
layer condition, by Theorem 2.1.18,

CLK.dim(S;/P;) = CLK.dim(S2/Q). (2.1)

By Lemma 2.1.19 there is an ideal A of S, such that ,M + MQ, C A g MS,
and MS;/A is torsionfree as a left S;/ P;-module and as a right S;/Q,-module.
Therefore the bimodule MS;/A is a bond from P,/A to Q,/A. By [42, Theorem
1.1], there are Py/A, ..., P./A, with » > 1, distinct prime ideals of S;/A such
that

PyJA = PyJA~s PiJA ~ ...~ P.JA=(Q,/A.
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Suppose Py/A ~» Py/A via (Py/A N Pi/A)/(B/A), for some ideal B of S, such
that A C Band PoP, C B G PoN Py. Then, Py~ Py via (PN Py)/B. As above
MS,/(MS;N B) is faithful as a (S3/ P;,S;/ P;)-bimodule. As MQ,; € MS,NAC
MS; N B, it follows that Q, C P,.

Since P,/A ~ PJA, CLK.dim(S,/P;) = CLK.dim(S;/P,) and thus
CLK.dim(S;/P) = CLK.dim(S;/Q,), by (2.1) above. Hence P, = (), and
P,/A ~ Q,/A. Therefore P, ~ Qp. O

Suppose two distinct prime ideals P, and Q; of S; both contract to M. If
there is a link between them, then as S; = S;/MS; is a commutative Noetherian
ring, M? g M. Without loss of generality, in studying the relation between P,
and Q,, we can suppose M? = 0, and we shall do so until Theorem 2.3.11.

By Theorem 2.3.4, any two distinct primes 132 and @2 of Sy, both distinct
from MS,, such that P, N R = Q, N R = M, are linked if and only if B =
MS,/(P,M + MQ@,) is faithful as a left S;/P,-module and as a right S,/Q,-
module. Let S; = S;/MS, = KH;, P, = P,/MS, and Q, = Q2/MS,. Then B
is a factor bimodule of M S,, faithful on each side as an (S,/P3, S2/Q,)-bimodule.

Let K' be the algebraic closure of K. Take M = K' @ M and S! =
K'®k 82 = K'lyi, 7%, . v, 1Y)

We can view M! = K' @x M as a left S-module, by defining v:.(k ® m) =
Yilk @ m)y7! = k ® yim~y7!, for every i € {1,...,v}, m € M and k € K.
Obviously y;m~; ! = Bi(m), for each i € {1,... ,v}.

As M is an ideal of a Noetherian ring, it is a finite dimensional vector space
over K, so the same is true for M! as a K"-vector space. Hence as a left Si-
module, M* has a composition series whose composition factors are isomorphic
to St/ E;, for some distinct maximal ideals Ei, ... , E, (with some multiplicities).
Since K* is algebraically closed, we may write E; = < 71 — €15+ -+ , Y0 — Eiv >,
where €;1,... ,£;, € K"\{0}. As S} is commutative, we get (E#v... E¥').M¥! =0

with each u; chosen minimal. Now, decomposing U = SQ/E:;" ...E" into a
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direct sum of primary rings, we can think of M" as a left U/-module and write
M=D'a.. oD
where, for each i € {1,... ,u}, D} = {nf € M": E* . n! = 0}, an Si-submodule
of MH,
For each i € {1,...,u} define the K*-algebra automorphism
. Sﬂ SU
0;:0y — 2
Vi &7
Taking a composition series of D! as a left Si-module we get a K!-basis for
D!, say {mi1,... ,min}, such that for all j € {1,... ,v} and k € {2,... ,n:},
k-1
(’)’j — 6,']‘) My = 0 (mod Z I\"ﬂm“) and (’)’j — Ei]').m“ =0.
=1
Then, letting v = vi(") .. 4@ for some j(1),...,7(v) € Z,

k-1

-1 _ -1 — _3(1) i(v) -
vimayy ' = ema,  ymay =€l el mi (mod Y K'my),
=1
-1 -1 _ _i(y) J(v)
YimaY; T = €ijMi and Ympy~ =€ .. € M.

Hence
k=1
vima = maoi(y;),  ymae = maoi(y)  (mod Y Shma),
=1
yimi = maoi(y;) and  ymy = maoi(y).
Notation 2.3.5 We will retain the notation introduced before in Notation 2.2.8.
In addition, we assume that M2 = 0, and S}, M¥, D} ... DY, e, my, fori €

{1,...,u},5€{1,...,v}, ki €{l,... ,p;} and oy, ... , 0, will be as immediately

above.

Lemma 2.3.6 Let B be a finitely generated faithful module over a commutative
Noetherian ring R. Let QQ be a minimal prime of R. Then B/BQ is faithful as an

R/Q-module, so B has a nonzero factor which is torsionfree as an R/Q-module.
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Proof. By Proposition 2.1.11, we can build an affiliated series for B,

with corresponding affiliated primes P,..., P,. Hence BP,... P, = 0 and so
Py...P, =0 C Q. Then, thereis ¢ € {1,...,n} such that P, = Q. Without
loss of generality, we can suppose that P, is the last occurence of @) in the list
{P,...,P,}.

Let I = r.ann(B/BQ). Then BIP,...Pyy C Bi_y. Hence IP,... Py C
rann(B;/Bi-1) = Q. As Q ¢ {Pit1,...,P.} and @ is a minimal prime of R,
I € Q. Hence I = Q and B/BQ is faithful as a right R/Q)-module. [

Theorem 2.3.7 Retain Notation 2.3.5. Let Py and Qg be distinct primes of S,
both distinct from MS,, such that LN R=Q,NR= M. Take P, = P,/MS,,
Q, = Q2/MS, and Q! a prime ideal of S} lying over Q,. If Py ~» Q4 then there
isi € {1,...,u} such that o7*(Q") lies over P,.

Proof. Let P, Q, and accompanying notation be as in the statement of the
theorem. As 8! is Noetherian and P,S%, Q,S! are ideals of S}, there is just a
finite number of minimal primes over P,S! and Q,S5. These are exactly the
primes of S} lying over P, and Q,, respectively, by GU and INC, [63, Theorem
44].

By Theorem 2.3.4, MS,/(PoM + MQ,) is faithful as an (S2/P;,S2/Q,)-
bimodule. As Sg is commutative and free over S,, Sg ®s, (MSz/Ing + M@g)
is faithful as a left S!/P,S%-module and as a right S/Q,Ss-module. Hence the
(S} P,St S8/Q,8%)-bimodule, M!S}/ (P,SEM! + M¥Q,S}E) is faithful. Using the
notation introduced in Notation 2.3.5, each D! is a left S-module under the
conjugation action. So it is easy to see that each D!S} is an (83, 81)-bimodule
left and right under the multiplication actions and we can write, as (S8, 8H)-

bimodule,
DiS} DL}

M!S} ~
S st L i o
P.S; D + DuQ,S;

— — = — — b..
P,SIMY + M¥Q,SE — P,SiDY + D'Q,S)
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By Lemma 2.3.6, the (S5/P,SE, SE/Q)-bimodule
M!S} N DiS} DiS}
PoSIMt + MiQt ~ P,SIDY + DI e P,SEDE 4+ DL
is faithful on the right.
So NI, r.anng(D!S;/(P2S;D} + DIQY) € Q" As Q" is a minimal prime of
Si, there willbe : € {1,. .., u} such that D!S}/(P,SID!+ D}Q") is faithful on the

right as a S§/Q"-module. Without loss of generality suppose i = 1. Factoring this
bimodule by its Sg/Qu-torsion bimodule, we get a (Si/P,S), S1/Q")-bimodule,
say D§S§/A, faithful and torsionfree on the right.

By [44, Proposition 7.7], there is a left affiliated series for DiSY/A, say

0=Ao/AG AJAG ... C Au/A = DiS}/A

such that each factor D!S!/A,_,, | € {1,...,w}, is a torsionfree right St
module. Let P,/P,S},. .. ,Pw/ngg be the left affiliated primes of such a series.
Then D!S3/A,_; is faithful as a left S}/P,-module. As DiS3/A,_, is finitely
generated and torsionfree on the right over the prime ring S/Q", DiS}/A,-, is
faithful as a (S3/P,, St/Q")-bimodule. Then,

CLK.dim(S}/P,) = CLK.dim(S}/Q"),

by Theorem 2.1.18. As P,S! C P,, P, contains one of the minimal primes over

P,S}, say P'. By [63, Theorem 44, Theorem 47],
CLK.dim(S}/P") = CLK.dim(3,/P) and CLK.dim(S!/Q") = CLK.dim(3,/Q,).
As P, ~ Q,, we have C1.K.dim(S,/P;) = CL.K.dim(S,/@Q,). But then
CLK.dim(S!/P,) = CLK.dim(S}/ P).

Therefore P, = P! and D!S!/A._ is a faithful (S!/P*, S4/Q")-bimodule tor-
sionfree on the right. By Lemma 2.1.19, D!S4/A,,_; is also torsionfree as a left

S}/ P-module.
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Take {myy,... ,my, } the K®-basis of D! built in the beginning of the section.
Take the first { € {1,... ,m} such that m;, ¢ A,_;. We have

0= Pu(mll + Ayoy) = mllo'l(Pu) + Ay

As D§$§/Aw_1 is torsionfree as a right Si/Q!-module, oy (P!) € Q. We have
seen that CLK.dim(S!/PY) = CLK.dim(S}/Q"). Hence

CLK.dim(S}/o(PY)) = CLK.dim(S3/QY).

Therefore a;(P*) = Q. O

Theorem 2.3.8 Retain Notation 2.3.5. Let P, and @2 be distinct primes of S,
both distinct from MS,, such that BN R = Q, N R = M. Take P, = P,/MS,
and Q, = Q2/MS,. If there isi € {1,... ,u} such that o;(P") = Q, for some
prime ideals, P¥,Q!, of S}, lying over Py and Q,, respectively, then Py ~ Q5.

Proof. Suppose that P!, Q! are primes of S} lying over P, and Q,, respectively,

such that o;(P*) = Q". Take the basis of D} chosen in the beginning of the section
ni—1

and V; = Z K”m,-j. Hence V; is a left Sg—module under the conjugation action
J=1

and V8! is a right and left Sg-module under the multiplication action. Take the

left S}/ P'-module,

___ Dis}

 Phmy, + SEVi
As S}D!/SIVi = S} @1 (DI/V;) is a free left Si-module of rank one with ba-
sis my,, + SiV;, B is a free left Si/P!-module of rank one with basis element
Min; + (P'miy, + SIV)). As miy, Q" = 07 (QY)myy, = Plmy,,  (mod SiVi), B is a
right S3/Q"-module. Let I = r.anng(B). Then

CLK.dim(S}/I) = CLK.dim(S}/P*) = CLK.dim(S5/Q").

As Q' C I, we have Q' = I. Hence B is faithful as an (S/P! St/QY-
bimodule. Thus, so too is the (S3/P!, S!/Q")-bimodule D!SE/(PD! + D!QY).
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As we have the following isomorphism of SE-Si-bimodules,

MYSE . DI} P D st
PEMY+ MEQY — piDt 4 DIQY T PEDL + DRQY

MUSS/(P*M* + M*QY) is faithful as an (SE/P¥ S!/Q")-bimodule.
Let 5 € S, be such that SM C P,M + MQ@Q,. Then

sSMY C PPMY + MPQY.

Hence 5 € P! NS, = P,. Therefore MS,/(PoM + MQ,) is faithful as a left
82/Py-module and, similarly, as a right S;/Q,-module. Hence by Theorem 2.3.4,
P 2™ @2- O

Combining the previous two results yields:

Theorem 2.3.9 Retain Notation 2.5.5. Let P, and Q, be distinct primes of S,
both distinct from MS,, such that LN R = Q;NR = M. Take P, = P,/MS,,
Q; = Q2/MS, and Q' a prime ideal of Sg lying over Q,. Then Py~ Qs if and
only if there is i € {1,... ,u} such that o7 (Q") lies over P,. O

Theorem 2.3.10 Retain Notation 2.3.5. Let Py and Q; be distinct primes of S,
both distinct from MS,, such that AR = Q,NR= M. Take P, = B,/MS,,
Q, = Q2/MS, and P! a prime ideal of S§ lying over Py. Then Py ~ Q, if and
only if there is 1 € {1,... ,u} such that o;(P") lies over Q,.

Proof. Let © be the natural ring isomorphism from &, onto S;7 =
Rlvi,vi' ooy 580,87, defined by O(y) = 7' and
O(y7') = =, for every i € {1,...,v} with O(r) = r for all r € R. As
O(MS;) = MS,, O induces an automorphism of S;. In this case, the K*-algebra
automorphism of S}, determined by the action of the subgroup generated by
Brl,....8;  on M will be o7',... 02!, Now P, ~ Q; in S, if and only if
Q; ~ P, in 8. By Theorem 2.3.9 and what was said before, this happens if
and if there is 1 € {1,...,u} such that o;(P*) = (¢7")"1(P") lies over Q,. O
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It is now possible to describe the cliques of primes of S; contracting to the

maximal ideal M and distinct from MS,.

Theorem 2.3.11 Retain Notation 2.3.5, let P, be a prime ideal of S;, distinct
from MS, such that P,N R = M. Take Py = P,/MS; and P! a prime ideal of
S lying over P;. Then

CUP,) = {Q; € Spec(Sz) : Q2/MS,y = iV .. .ol (PG, fori(l),... ,i(u) € Z)}.
Proof. Let Qg be a prime ideal in the clique of P, Let Q, = QQ/MSQ. If
Qz = ]32, then clearly Qg belongs to the set on the right. If P, # C}z, there is a
sequence of primes in Sz, Py, P, ... , P, = Qa, such that for all7 € {2,... ,n—1},
either B; ~ }3,-+1 or 13,-+1 ~+ P.. Write P! = P!. By Theorems 2.3.9 and 2.3.10,
for each j € {2,... ,n—1}, there are 7; € {1,... ,u} and primes P},..., P! in S}
such that P}’H = aiJ(Pf) or ng+1 = aijl(P]p) and Pf+1 lies over Pj,y = Piy  /MS,.

Hence, as the K*-automorphisms o, ... , 0, commute pairwise, the result follows.

Conversely, let (), be a prime ideal of S; such that Q,/MS; =
ot . (P NS, for some i(1),...,i(u) € Z. Ifi(l) = ... = i(u) = 0,
then Q, = P, and by Proposition 2.3.3 it follows that Q, is linked to itself.
If some of the i(1),...,i(u) are nonzero, as oy,...,0, commute pairwise, we
can write Q,/MS, = afl‘...of:(P”) N Ss, for some 7y,...,1, € {1,...,u} and

81,... 16, € {=1,1}. For L € {1,... ,v}, write P}, = o2'o"*! .. .o} (P") and take
132,; a prime ideal of S, containing MS; such that qu,, lies over Fg'l = I‘SQV[/MS2.
Obviously 132,1 = @2. By Theorem 2.3.9 and Theorem 2.3.10, either }32,1 ~ ﬁ2,1+1
or 132,1+1 ~ 132,1 for l € {1,...,v — 1} and one of the cases happens, Py ~» 132_,,

or 132,1, ~ P,. So @, belongs to the clique of p. 0O

2.4 Prime links in skew-Laurent rings

In this section we generalize the results obtained in the last. By Proposition 2.2.9,

linked prime ideals contract to the same ideal of R, say N. We will see that it is
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possible to assume that R is semilocal and that N is its Jacobson radical.

Theorem 2.4.1 Let N be a G-prime ideal of R. Then

1. The sets {P € Spec(S) : PN R = N} and {P' € Spec(SCi'(N)) :
P’ RCR'(N) = NCR'(N)} are link-closed;

2. There is an isomorphism of directed graphs between the graph of links of the
two above sets of primes given by the rule P~ PSCg'(N).

Proof. By Proposition 2.2.9 the above two sets are link closed. By [44, Theorem
9.22] contraction and extension provide inverse bijections between the set of prime
ideals of SC;*(N) and those prime ideals of S that are disjoint from Cz'(N) and
by [98, Lemma 2.11] two prime ideals of S are linked if and only if their extension
are linked in SCR'(N), so we have 2. O

Theorem 24.1 reduces our study of links in
S = R[0,,67",...,0,,07" ay,... e, to the special case where R is semilocal
and the primes intersect R in its Jacobson radical.
Notation 2.4.2 We retain Notation 2.2.8 and 2.2.10. In addition, we suppose
that R is semilocal with Jacobson Radical N, a G-prime ideal of R. Hence

R/N = ﬁ, is a semisimple Artinian ring. Let K = R/M, a field.

Theorem 2.4.3 Retain Notation 2.4.2. Every prime ideal P of§ = S/NS is

such that R=(P) is Noetherian.

Proof. Let P be a prime ideal of S such that NS C P and P = P/NS. As
P contracts in R to a G-prime ideal containing N, the Jacobson radical of the
semilocal commutative Noetherian ring R, PN R = N. By Passman’s Theorem,
Theorem 1.4.13, P = (PN &;)S and P, = PN S; is a G-prime ideal of S,

As 8, = S;/NS, is a commutative ring and P/NS = ((P N S;)/NS;)S/NS,
by Theorem 2.2.4, R_:S-z((P N 83)/NS,) is Noetherian and by {13, Lemma 7.1],

R=(P) is Noetherian. O

S
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Proposition 2.4.4 Retain Notation 2.4.2. There are no links between distinet

primes of§ =S/NS.

Proof. Let P and @ be prime ideals of & containing NS such that
P/NS ~» Q/NS. By Theorem 2.4.3 and Lemma 2.2.3, P/NS and Q/NS have
the AR-property. By Proposition 2.2.7, P/NS = Q/NS. O

The previous notations, Notation 2.2.8, 2.2.10 and 2.4.2, will remain in effect

throughout this section.

Lemma 2.4.5 Let W be any commutative Noetherian ring and I an ideal of W

which is the intersection of distinct mazimal ideals, I,,... ,I,. Then
Pen/ile...e L/
as W-modules.

Proof. By [63, Theorem 166], I = I} N...N I%. It follows from (110, Theorem
31], that the ideals I? and I7 are comaximal (that is, their sum is W), for i # ;.

Now by [110, Theorem 32], there is a ring isomorphism

FEEe O

Comparing the Jacobson radical of each of the sides of the isomorphism, we have
T(WIP) = I/? and J(@0,W/I?) = &%, (W/I?) = &2, (I;/I2), hence we
have the result. O

Proposition 2.4.6 Retain Notation 2.4.2. The ideal NS is a prime ideal of S,
CUNS) = {NS} and NS ~» NS if and only if N # 0.

Proof. By [86, Corollary 14.8], /NS = R/N x H is prime if and only if
(R/N x H))/(M/N x Hy) = K % H, is prime. As K is a field, K * H, is a

Noetherian domain, and so NS is a prime ideal of S.
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Suppose that there is a prime P of § such that P ~» NS or NS ~» P. Then
by Proposition 2.2.9, PNR = NSNR = N and so NS C P. By Theorem 2.1.18,
CLK.dim(S/NS) = CLK.dim(S/P), so NS = P.

As N is the Jacobson radical of R, N # 0 if and only if N? # N.

By [63, Theorem 166], N> = M? n...N M?. One checks casily that N # N?
if and only if M # M?. Obviously, if N§ ~» NS, then NS # NS and so
N # 0. Conversely, suppose N # 0. Then M # M? By Lemma 2.4.5 and
the G-conjugacy of M;, N/N? is a faithful R/N-module. As S is free as a right
and left R-module, N§/N?S is faithful as a right and left S/NS-module. Thus
NS~ NS. O

Proposition 2.4.7 Retain Notation 2.4.2. Every prime ideal of S properly con-
taining NS is linked to itself.

Proof. Let P be a prime ideal of S, properly containing NS. Write P= P/NS.

By Proposition 2.4.6, S = S/NS is a prime ring and by [23, Proposition 2.5],
as S satisfies the second layer condition, there will be some prime of S linked
to the non-minimal prime P of S. Since by Proposition 2.4.4 there are no links

between distinct primes of ?, we will have P/NS ~» P/NS and so P~ P. O

Theorem 2.4.8 Retain Notation 2.4.2. Let P and @ be distinct prime ideals of
S, distinct from NS, such that PN R=QNR = N. Then P ~~ @ if and only
if NS/(PN + NQ) is faithful as a left S/ P-module and as a right S/Q-module.

Proof. Let P,Q be as stated. Suppose P ~» @ via (P N Q)/A, for some ideal A
of S such that PQCAG PNQ.

If NS C A, then P/INS ~» Q/NS and by Proposition 2.4.4, P = @, a
contradiction. So A G NS + A. Hence NS/(NS N A) is faithful as a left S/P-
module and as a right §/@-module. The same happens with NS/(PN + NQ),
since this bimodule has N§/(NS N A) as a factor.
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Conversely, suppose that NS/(PN + NQ) is faithful as a left §/P-module
and as a right §/@Q-module. Since, by Corollary 2.2.12, S satisfies the second

layer condition, by Theorem 2.1.18,
CLK.dim(S/P) = CL.K.dim(S5/Q). (2.2)

By Lemma 2.1.19 there is an ideal A of S such that PN + NQ C A g NS and
NS /A is torsionfree as a left S/ P-module and as a right §/@-module. Thercfore
the bimodule N§/A is a bond from P/A to @)/A. By [42, Theorem 1.1], there
are Py/A, ..., P./A, with r > 1, distinct prime ideals of §/A such that

P/A = PyJA~ PiJA~ ...~ P.JA=Q/A.

Suppose Py/A ~» Py/A via (Poy/AN P /A)/(B/A), for some ideal B of S such
that A C B and PyP, C B G Py P,. Then, P~ P; via (P01 P)/B. As above
NS/(NS N B) is faithful as an (S/P,S/P;)-bimodule. As NQ € NSN A C
NSAB,QC P,

Since P/A ~ Pi/A, CLK.dim(S/P) = CLK.dim(S/P,) and thus
ClLK.dim(S§/P)) = CLK.dim(S/Q), by (2.2) above. Hence P, = @ and
PJ/A ~ @Q/A. Therefore P ~ Q. O

Theorem 2.4.9 Retain Notation 2.4.2. Let P,Q be distinct prime ideals of S,
distinct from NS, such that PNR = QNR = N. Let PNS,; = P, and QNS; = Q.
Then P ~ Q if and only if NS3/(PaN + NQs) is faithful as a left Sy/ Py-module
and as a right S;/Q2-module.

Proof. Suppose P, are distinct prime ideals of S, different from NS, such that
PNR=N=QnNRand P~ Q. Then, by Theorem 2.4.8, NS/(PN + NQ) is
faithful as a left §/P-module and as a right $/@Q-module.

By Theorem 1.4.13, P = P,S, Q = @28 and P,,Q, are G-prime ideals of S,.
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Let s, € S be such that s, NS; € PN + NQ,. As SN is an ideal of S, we

will have

SQNS:32NSQSQ P2N8+NQ2$: PN+NQ

Therefore, s, € PNS; and NSy /(PN + NQ2) is faithful as a left S;/ P,-module.
Similarly, NS /(P, N + NQ,) is faithful as a right S,/Q;-module.

Now, suppose that NS;/(P,N + NQs) is faithful as a left Sy/Ps-module and
as a right S;/@Q.-module. As S is free as a right or left S;-module, it follows
easily from Theorem 2.4.8 that P ~ @. O

Lemma 2.4.10 Retain Notation 2.4.2. Let P be a prime ideal of S such that
PN R = N. Then there is a minimal prime 132 over PN S, in S, such that
P,nR= M. It is then possible to write P NS, in the form

PNS, =2 n.. . nBn...nBn...nPle
for some B, € G, L {1,...,t}, ke {1,... ,w} and B, = lg, such that

i) MPux = f)f"" NR=M=, foranyle{l,... ,t} and k€ {1,... ,w};

i) {135“, . ,135"‘”} forms a single G-orbit of Py in Sy;
ii) for anyl € {1,...,t}, {pf"',... ,ﬁf"‘”} forms a single Gy-orbit of P in
S, and

PP 0 B = nge, (PR

Proof. Let P be a prime ideal of S such that PN R = N. By Theorem 1.4.13,
PN S, is a G-prime ideal of S;. By Lemma 1.3.5

PNS =NaecPl =P10...0 P

for any minimal prime B, over PNS, in S; and some Y1,Y2,--- , Yy € G. We can
and shall assume that y, = 1. Thus {132,... ,152y"} form a single G-orbit of P,

and we can assume that PY* # PY, whenever i # j, for all 1,5 € {1,... ,¢'}.
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Since M is a G,-stable ideal of R, M*:S; are ideals of $,. Since NS, =
M%8,N...N M*S, C P,, there will be i € {1,...,t} such that M*S, C P,
As M® is maximal, M* = P, N R. Without loss of generality, we can suppose
PBNR=M.

AsnNi_,M* =N = PNR = PNS;NR = ﬂ}'___l(ﬁfj NR) foreachi € {1,...,t},
there is j; € {1,...,t'} such that

P NnRC M=,

Also ;" N R = (PN R)¥ = M%. As M is maximal, M* = M% and
P/ N R = M®. Since M* # M= for i,j € {1,...,t} and i # j, it is then
possible to conclude that each M*: is the intersection with R of one of the primes
Py , PY" and that each of these primes contract in R to one and only one

M?s, for j € {l,...,t}. Hencet <t and we can write
Pp=Pn. .ol Bl B

™ “'ﬁ )3 .
where {$11 = 16,012,.-.,08t:.} = {1G,¥2,--- ,yr}, and Pf"’,... , P, are dis-

tinct and contract to M®s in R, for every j € {1,... ,t}.
Let l € {1,...,t}. For any g € G, we have

(P5'y O R = (Pf N RY = (M™)? = (M) = M*.

As {f’f"‘,... , 1351"‘, 132,5"’,... ,Isf"“} forms a single G-orbit of P, and by

the way we chose the Pﬂ' ., we have
DTG ﬁl 1 iﬁﬂ’,l(
(P} e{R",..., P, "}
Hence {P, ﬂ“ ,}35""’} forms a single Gy-orbit of 1321‘ in 8&; and
B n B Cngea, (B Y.

Also, as for each k € {1,...,i;}, we have MP» = M™ = M|, Birz! =
;'8 x € G, and so 132[3"" e {(Pf)? : g € G;}. Hence

PRn. n B = Nyea, (PY.
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It remains to prove that ¢, = 14, = ... = 1. As for each
L€ {18}, {(BPy=, . (P)y=y < (PP, B and also
(B (BT Y S B = et w =i = L=
O

Remark 2.4.11 1) If S} = S,, then for P satisfying the same conditions as in

Lemma 2.4.10, we would have
PNS;=Pon...n P

and {P{',..., P?} forms a single G-orbit.

Assuming the same notation as in the statement of Lemma 2.4.10, and in
addition S; = S, ﬁf”’ﬂR = Isgﬁ"kﬂRfor any1 € {1,...,t}and k€ {1,...,i}.
So

MPBit = M= = MPix

hence ,@,-vzﬁ,fkl € Gy = G,. As P, is an ideal of S, = Sy, it is G)-stable, hence
ﬁf"' = Isf"". So w =1 and {132"‘,... , 132'6"‘} is a single G-orbit of P, in S;. As

132‘”‘ ,-.., Pyt are all distinct (as the same happens with their intersections in R)

and belong to {P{*, ..., P}, we will have
PNS =P n...n P

2) Assuming the same notation as in Lemma 2.4.10, it is possible that
w # 1. For instance take S = C[f;,07",0,05";idc, az] where o is complex
conjugation. Take M = N =0, so S; = C[;,07",62,07%]. Let P, = (6; —1), a
prime ideal of 8. Take P = [(6; —¢)N (8 +1)]S. As PN P2 is an < ap >-stable
ideal of C[6,,67",62,05?%], by Theorem 1.4.13, P is a prime ideal of S. In this
case PNC =0but PNS; = (6; —1)S2 N (61 + 1)Sa.

Proposition 2.4.12 Retain Notation 2.4.2. Let P be a prime ideal of S, distinct
from NS, such that PNR = N. Put P, = PNS,; and let }32 be a minimal prime
over PNS, in S; such that PBNR=M.
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If there is a prime ideal @2 of Sy, distinct from 132, such that P, ~ (}2 in Sy,
then P ~» (NaecQ3)S in S.

Proof. let P be as stated and suppose there is a prime ideal @2 of §,, distinct
from B,, such that P, ~ Q in S;. Then M = P, N R = Q, N R, by Proposition
2.2.9.

As Q2 = NaecQF is a G-prime ideal of & such that Q2N R = N, (Naec@y)S
is a prime ideal of S, by Theorem 1.4.13.

If Q, = MS, then, since CLK.dim(S:/P;) = CLK.dim(S,/Q;) and
MS, C P,, P, = (,, a contradiction. By Theorem 2.3.4 the bimodule
MS,/(P,M + MQ,) is faithful as a left S,/ Pr-module and as a right Sy/Q,-
module.

If we think about the (82, S2)-bimodule

MS,
(Nge, PH)M + M(Nyec, Q%)
the left and right annihilators of C; in S, are G;-stable ideals of S;. Also, as
MS,/(P,M + MQ,) is a factor bimodule of Cy, we have lLanns,(Cy) € P, and
r.anns, (Cy) € Q. Hence Lanns,(C1) C Ngeg, P§ and r.anns,(C) C Nyeg, @3- So

C,=

lLanng, (C;) = Nyeg, P§ and r.anng,(Cy) = Nyec, Q3.
Similarly, for all i € {1,... ,t}, M; = M* and
0 - M;S;
T (Ngea (P3)9) M + Mi(Nge, (QF1)9)

is a left S3/ Nyeq, (PF)9-module and a right S3/ Nyeq, (Q3')9-module, faithful on
both sides.

By Lemma 2.4.5, we have

NSz ~ Mlsz 65 @ Mt82
NTS, - MIS, M2S,”
Hence,
NS, . S;M, 5:M,
PN+ NQ. P.M, +M1Q2+M252 PQM,+M1Q2+M, Sy’
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Thus lann52(N$2/(P2N + NQ2)) € N, lanng, (S; M/ (Ngea, (P5)9)M; +

M;(Ngec, (Q2)9) = Niey(Neeq, (PE)9). By Lemma 2.4.10, N'_,(Nyeq, (P51)?) =
P, and the left Sg/Pg-module NS; /(PN + N@Q,) is faithful.  Similarly,
NS, /(P,N + NQ.) is faithful as a right S/@)2-module. Since Q2S5 NSz = @, by
Theorem 2.4.9, we have that P ~ (MaegQ3)S in S. O

Theorem 2.4.13 Retain Notation 2.4.2. Let P and Q be distinct prime ideals of
S, distinct from NS, such that P~ Q and PNR=N =QNR. Let P, = PNS,
and Q; = QN S,. There are minimal primes, P, and QZ, over Py and @), in S,
respectively, such that BNR=M= @2 N R and Py ~» ©2.

Proof. Let P and Q be as stated. Then, by Theorem 2.4.9, NS;/(P.N+ NQ,) is
faithful as a left S;/ P,-module and as a right S2/@2-module. By [57, Proposition
8.2.6,

CLK.dim(S;/P;) = max {CLK.dim(S2/B)"):i € {1,...,t}, 7€ {1,... ,w}}
= CLK.dim(S,/PF),

for any ¢ € {1,...,t}. Therefore CL.K.dim(S;/P;) = CL.K.dim(S2/F;), for any
P;, minimal prime over P; in ;. The same happens to S3/Q2. As S; is a
Noetherian ring that satisfies the second layer condition, if C = Cs,/p,(0) and
D = Cs,/0,(0), by Lemma 2.1.19, the left C-torsion submodule and the right
D-torsion submodule of NS,/(P,N + NQ.) are the same and different from
NS3/(P;N + NQ,). Since

NS;) o SQMl Sth
P,N + NQ, P2M1+M1Q2+M182 Pth+M:Q2+M152

as an Sz-module (right or left), it follows that, for all j € {1,...,t},

te(M;S2/(PaM; + M;Q2 + M} 83)) = tp(M;8:/(PaM; + M;Q: + M1S;)).

Also, there is ¢ € {1,...,t}, such that tc(M;Ss/(PM; + MiQ2 + M?S;)) #
MiSQ/(PQM{ + Mng + M?Sz). Let A,‘/(PQM,' + M,'Qz + M1'282) be this torsion
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(S2/ P2, 83/Q2)-bimodule. Therefore S; M;/A; is nonzero and torsionfree as a left
82/ P;-module and as a right S;/@Q,-module.

Take a (Sy/ Py, S3/Qz)-subbimodule B, of SyM; such that A; < B, < M.S,
and the bimodule B,/A; has prime annihilators P'/Ps, Q'/Q; as a left S,/P,-
module and as a right S3/@Q2-module and is torsionfree as a left S,/ P’-module
and as a right S;/@’-module. Such a bimodule exists by [44, Corollary 7.6]. Since
M;S,/A; is torsionfree as a left Sy/ P;-module and as a right S,/Q,-module, P’
and Q' are minimal primes over P, and @, respectively, [44, Proposition 6.3].

As §;M; C lanng,{B;/A;) = P/, PPN R = M;. Also @' N R = M;. Therefore
B,/A; is a bimodule subfactor of M;S;/M?2S; which is a bond from P’ to Q'
As P, @' are prime ideals of S; containing M;S; and S;/M;S, is a commutative
Noetherian domain, P’ ~ Q' by [23, Lemma 2.9]. If we let P, = (P')*" and
Q2 = (Q")*", the result follows. O

The next result summarises the conclusions of Theorem 2.4.1, Propositions

2.4.6, 2.4.7, 2.4.12 and Theorem 2.4.13.

Theorem 2.4.14 Retain Notation 2.2.8, 2.2.10 where M is not necessarily maz-
tmal. Let P and Q be prime ideals of S, with PN R = N. Suppose that P ~ Q.
Then QN R = N and one of the following holds:

1.0#NS=P=Q;
2. NSGP=Q;

3. 0#£NS g P # Q and Py~ QQ where ]32 and Qg are minimal primes over
PNS; and QN S, such that PNR=0Q;NR.

Conversely, if one of case 1,2 or 3 holds, then P ~~ Q. O

The description of links in a skew-Laurent ring is now obtained if we combine

Theorem 2.4.14 and the results of section 3.
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Proposition 2.4.15 Retain Notation 2.2.8, 2.2.10 where M is not necessarily
mazximal. Let P and Q be prime ideals of §, with PN R = N. Suppose thal
P~ Q. Then QN R = N and one of the following holds:

LO#£NS=P=Q;
2. NSGP=Q;

3.0 # NS & P # Q and there exist a prime ideal P' of S ly-
ing over ﬁQ/AMSQCEI(N) and i € {1,...,u} such that a;(P") lies over
Q2/MS,C5* (N) where, P, and Q, are minimal primes over PCR'(N) N
S:CRY(N) and QCr' (N)NS,CRY(N), respectively, such that B,ARCR'(N) =
MC7}(N) = QN RC7(N), o; are the automorphisms defined as in section

3 and if K = RC3'(N)/MCz'(N) and S} = K @ S:CR'(N).
Conversely, if one of case 1,2 or 3 holds, then P ~ Q). O

As the statement of the following result depends on some conditions on the
elements ¢;; for ¢ € {1,...,u} and j € {1,... ,v} determined in section 3, in
order to simplify we will assume once again that the ideal M of Notation 2.2.8

and 2.2.10 is maximal.

Proposition 2.4.16 Retain Notation 2.4.2 and 2.3.5. All the cliques of prime
ideals of S contracting to the ideal N are finite if and only if the multiplicative
subgroup of K generated by e;; fori € {1,... ,u} and j € {1,... ,v} is finite.

Proof. If the order of the group generated by ¢;; is finite, then each o, has finite
order and by Theorem 2.3.11 and Proposition 2.4.15, the clique of any prime of
S will be finite.

Conversely, if the cliques of prime ideals of S contracting to the ideal N
and different from NS are finite, by Proposition 2.4.15, the cliques of primes
of S; contracting to M and different from M S, will be finite as well. Take the
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prime of Sy, P, = MS, + (1 — Ly... y7 — 1)S2. By Theorem 2.3.10, for every
1 € {1,... ,u} there are j, k € Z such that j # k and (1 —Ei_lj,... y Yo —55}) =
dn—1..., %= =ckn—1L....,m—1=(n-e' % —eit)

But then ;7 = %, for every [ € {1,... ,v}. So, for every i € {1,... ,u} and
le€{l,...,v}, €y has finite order. O

Remark 2.4.17 Suppose that every ¥(v;)|m has finite order, p; say, for j €
{1,...,n}. Then for eachi € {1,...,u}, if we take the basis D! chosen before in
section 3, then (vy; — ¢;,).m;; = 0. So v;.m;; = €;;mi. By induction, we can see
that 7;-” ‘my = afjm;l. Hence each ¢;; has finite order and by Proposition 2.4.16,
it follows that the clique of each prime P of S is finite. However the converse is

not true as example 4 in §2.6 shows.

2.5 Prime links in skew-polynomial rings

In this section we reduce the study of links between prime ideals in skew-
polynomial rings to the similar problem in skew-Laurent rings. We will keep
the notation introduced before in Notation 2.2.8 and 2.2.10. The description of
cliques in T will, in some cases, depend on the description of cliques in S given

before in section 4.

Theorem 2.5.1 Retain Notation 2.2.8 and 2.2.10. Let P,Q € Spec(T) such
that 6;4y,...,6, € P and 6,,...,0; ¢ P. Then P ~» Q if and only f
Oit1,.-.,0, € Q and either (a) P/(0:iaT +...+0,.T) ~ Q/(0iaT +...4+0,T)
in R[6y,...,0;;0a1,...,05] or (b) thereisj € {i+1,...,n} such that P = a;(Q).

Proof. Suppose P ~ Q in T via (PN Q)/A.
As 0y,...,0, are normal elements of T, 0;,1,...,0, € Q and 0;,...,0; ¢ Q,
by Proposition 2.2.7.
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If thereis j € {¢ +1,... ,n} such that 6; ¢ A, then (A+6,T)/A is a nonzero
subbimodule of (P N Q)/A. As (P N Q)/A is torsionfree as an (R/P, R/Q))-
bimodule, so is (A + 8;7)/A, and hence this is a faithful bimodule. Since
fia;'(P) = PO; C A and o;(Q)0; = 0,Q C A, we have o;(Q) = P and so
(b) happens.

If 6;41,...,0, € A, obviously case (a) occurs.

Conversely, if we have (a), obviously P ~ @) in T. Suppose (b) and take the

skew-polynomial ring,
Rj = R[01,. e ,0j-1,0j+1, e ,0n;a1,. EER SRR Py e FEE PR ,an].

Let t € T be such that ¢(c;(Q) N Q) C o;(Q)Q and write Q@ = 6,7 + @Q;, where
®; = QN R;. Hence

t0; € (0,7 + o (Q))(6;T + Q;) C T8 + ;(Q;)8; + ;(Q;) Q-
Since T = @upoR;0* and o;(Q;)Q; C R;, the above inclusion shows that
t € T8 + a;(Q;). That is, t € a;(Q). So, (a;(Q) N Q)/a;(Q)Q is faithful
as a left T/a;(Q)-module. Similarly, one can prove that the module is faithful as

a right 7/Q-module. Hence P = ¢;(Q) ~» @, since T satisfies the second layer
condition by Corollary 2.2.14. O

Corollary 2.5.2 Retain Notation 2.2.8 and 2.2.10. Let P,Q € Spec(T) such
that 0;11,...,0, € PNQ and 61,...,0; ¢ P. Let Y = {0 . ¢0 .
J(1),...,j() € N}, an Ore set in T, P = P/(0:isT + ... + 6,T) and
Q=Q/(0:i1T +...4+6,T).

Then P ~ Q if and only if PY-! ~ QY !
in R[0,,07",...,0;,07 1,...,0] or if there is j € {i+ 1,...,n} such that
P = a;(Q).

Proof. As R[#y,...,0;ay,...,0]Y"" = R[0,,07",...,0,,07 ;ay,... , ;] the
result follows from Theorem 2.5.1 and from the fact that two prime ideals are

linked if and only if their extensions are, [98, Lemma 2.11]. O
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The complete description of the cliques in T follows now from Corollary 2.5.2

and Proposition 2.4.15.

2.6 Examples

The following examples illustrate how to apply the theorem proved before. In
particular with examples 4 and 5 we discuss the problem of finite cliques in

relation with what has been done in Proposition 2.4.16.

1. Let § = R[z][0,07%; o], where a is the R-automorphism of R[z] such that
a(z) = ax for some a € R\{0}. Let N = zR[z]. Then S, = S and any prime of §
strictly containing N is of the form P = 25 + p(#)S where p(0) is an irreducible
polynomial of R[6].

In this case S, = R[§,071], S§ = C[9,0"] and N* = zC[z]. The composition
series of N*/(N*)? has length one with a factor isomorphic to S/(#—a)S}. Hence
the automorphism of C-algebras o, is such that o,(8) = af.

If we take P = zS + (62 + 1)S, then P, = (6% +1)S; and (6 — i)S} is a prime
of C[#,07'] lying over P,. Take @ a prime ideal of S, distinct from P. Hence
P~ Q if and only if Q, = (6 — a~'1)S} lies over Q/NS,. That is

P~ Q ifandonlyif Q==zS+ (6°+a%)S.

Thus C4(P) = {zS + (0* + a¥)S : L € Z}.

2. Let S = Clz,y][01,07",02,05"; 1, 2], where ay,a; € Aut(Clz,y]) are
C-algebra automorphisms such that a;(z) = 3z,0:1(y) = 2y, a2(r) = 2z and
az(y) = 4y. Take N = zClz,y] + yClz,y]. In this case $; = § = &, =
Clz,y)[0:,07 !, 02,67 1, 0;) and Sy = St = ey, 07", 6,85

The composition series for N/N? has length 2 and the factors are isomorphic
to S3/(0; — 2,6, — 4) and Si/(6, — 3,0, — 2). So the link generating C-algebra

automorphisms oy, 0, are given by ¢1(6,) = 201, 01(0;) = 462, 02(0,) = 36, and
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02(02) = 20,.
Let P= NS + (6, — a,0; — b)S for some a,b € C\{0}. Then

CUP) = {NS+ (0, — 32'a,0, - 24'0)S : 1, j € Z}.

3. Let T = Clz,y][01,02,03; a1, a2, a3] where a1, 03,03 € Aut(Cz,y]) are
such that «y,a; are C-algebra automorphisms defined by «,(z) = 3z, oy(y) =
2y, aa(z) = 2z, as(y) = 4y, and as is an R-algebra automorphism such that
a3(t) = —1, ag(z) = z and a3(y) = y.

Take N = ¢Clz,y] + yClz,y] and P = NT + 63T + (6, +4,0, — )T, a prime
ideal of T. As 63 € P, we have by Theorem 2.5.1 that

P o (P)= NT + 0T + (0, —4,0,+4)T ~ P.

Write X = {9{05 : 5,0 € N} and S = Clz,y][6,07",0,,05%; a1, 3], so that
(P/0sT)X™' = NS+ (8, +1,0,—i)S. By example 2 we can calculate the cliques
of (P/6;5T)X ™! and of (a3'(P)/6:T)X!. Putting these together and noting
that o} = id|q, 4, we find by Corollary 2.5.2 that

CUP) = {NT+0:T+(0,4372%,0,—2°4')T, NT+0:T +(0,—-3'2",0,42/4"))T : |,j € Z}.

4. Let a be the C-automorphism of C[z,y] such that o(z) = z + 2y and
a(y) = y. Define S = Clz,y][0,67*; ] and take N = 2Clz,y} + yClz,y]. In
this case S; = & = S, S; = C[,07!] and o : C[0,07'] - C[h,07'] is just the
identity.

In example 4 the cliques are obviously finite but the order of ¥(0) = « is
not (in this case y; = 6). The next example, example 5, shows that it may well
happen that the clique of a fixed prime in a skew-Laurent ring is finite but the
order of the multiplicative subgroup of K* generated by ¢;;, for 1 € {1,... ,u}
and j € {1,...,v} is not.
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3. Let a; be a C-automorphism of C[z,y] such that a;(z) = iz, a|(y) = y
and a, the C-automorphism defined by ay(z) = 2z and ay(y) = 4y. Take
S = Clz,y|[01,071, 04,05 ;5 01,00), N = 2Clz,y] + yCz,y] and the prime P =
NS + (0, — 1)S. In this case S = 8 = S;, Sy = C[6,,0;",0,,05"] and the link
generating C-algebra automorphisms oy, 0, are given by o,(6,) = i0,,0,(0;) =

202,0(0,) = 0, and 0,(0;) = 46,. Hence

CHP)={NS+ (6, —1)S,NS + (6, + 1)§,NS + (6, —i)S,NS + (6, +:)S}.

2.7 Additional remarks

1. Most of this chapter is part of the paper [27].

2. All the results in §1 are well known and can be found in [44] or in [57]. The
only exception is Lemma 2.1.19 which is our generalization of [43, Lemma

1.3].

3. Proposition 2.2.13 was obtained with a suggestion of the referee of the paper

[27].
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Chapter 3

Azumaya Algebras and Crossed
Products

The concept of Azumaya algebra is related with several other notions such as
separability and H-separability. There have been some studies for some classes
of rings to decide whether they are Azumaya or not. For instance, given a ring
R and a finite group G, DeMeyer and Janusz in [36] studied when the group ring
RG is an Azumaya algebra.

In [52], Ikehata proves that given a commutative ring R and G a finite group
of automorphisms of R, the skew-group ring R#G is an Azumaya R-algebra if
and only if R is a G-Galois extension of R®. ( For the definition of G-Galois
extension and other terms introduced in these introductory paragraphs, see §3.1
and §3.2.1.)

Ricardo Alfaro and George Szeto in [3] generalize Ikehata’s result proving that
given a ring R and G a finite group of automorphisms of the ring, the following

are equivalent:
1) R#G is Azumaya and Z(R#G) C R;

i) R#G is an H-separable extension of R and R is a separable extension of

Z(R)%;
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iii) (a) R® is Azumaya,
(b) R is finitely generated and projective as an R-module;

(¢) R#G = Endps(R) as rings.

Ricardo Alfaro and George Szeto’s result doesn’t apply for instance to the
skew-Laurent ring C[f,07}; ], where a is complex conjugation, since this ring
can be expressed as a crossed product of a finite group over a commutative ring,
but not as a skew-group ring of a finite group. In this chapter we try to obtain a
similar description to the one in [3] for some crossed products. Such description
will allow us to conclude that rings such as C[6,67!; ], are Azumaya.

In [48] R.B. Howlett and I.M.Isaacs, for the proof of their main result, The-
orem 8.2, built a non-abelian finite group of central type. There is then a finite
nontrivial group, J, and a twisted group ring C'J of J over C, such that C'.J is
simple, Artinian and Z(C'J) = C. Hence C'J is a central simple algebra and
by [76, Proposition 7.7], an Azumaya algebra. Hence ¢) as above, holds but as
C'J or CJ are not isomorphic to C, it follows that iii)(c) of the same result does
not. Therefore, we will not be able to generalize the above to crossed products
in general.

Throughout this chapter, whenever we have a ring R, GG a group of automor-
phisms and form a crossed product, we will assume that the action o, as defined
in Definition 1.2.15, will be such that o{g) = g, for any g € G, and the twisting
€ 1s arbitrary, unless stated otherwise. We will show that given a commutative
ring R, a finite subgroup of automorphisms of R and a crossed product of GG over
R, if R and G satisfy the same conditions as 2:i)b) and iii)c) above, then R x G
is Azumaya and Z(R * G) = RY, Theorem 3.3.6. The converse is true provided

we impose an extra condition on G.
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3.1 Azumaya algebras and separability

Let A be an algebra over a commutative ring R. The opposite algebra of A is the
R-algebra A° which coincides with A as an R-module and has multiplication o
defined by yoxr = zy for each r and y in A. The R-algebra A ®p A = A° we
call the enveloping algebra of A.

We can define a left A°-module structure on A induced by (¢ @ a')b = abd/,

for all a,a’,b € A.

Definition 3.1.1 An R-algebra A is separable if A is projective as a left A°-

module.

We define a left A®>-module homomorphism p, from A€ onto A given by

p: AQrA® — A
Yiai@a — T
Let J = Ker (). Then J is the left ideal of A° generated by all elements of the
forma®1~1®a, for any a € A.

Theorem 3.1.2 Let A be an R-algebra. Then the following are equivalent;
i) A is separable;
i) 0 =J = A° & A -0 splits as a sequence of left A°-modules;
i) There is e € A® such that u(e) =1 and Je = 0.
Proof. (34, Theorem II.1.1]. O
Remark 3.1.3 The element ¢ € A ®g A taken in Theorem 3.1.2 1) is an

idempotent. To see this, note that u(e—1®1) = 0 and write e2—e = (e~1®1)e €
Je=0.
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Definition 3.1.4 If A is a faithful R-algebra such that R.1 coincides with the
centre of A, we say that A is a central R-algebra. A separable central [{-algebra

1s sald to be an Azumaya R-algebra.

Proposition 3.1.5 Let A be an R-algebra. Then the following are equivalent:

i) A is an Azumaya R-algebra;

op e

ii) A is finitely generated and projective as an R-module and A ®p AP =
Endr(A) via the map 6 : a®b — Ayps, where Nopy(x) = azxb, for all z € A.

Proof. [34, Theorem 11.3.4 and Corollary 1.1.10] O

Definition 3.1.6 A ring is said to be Azumaya if it is an Azumaya algebra over

the centre.

In [49], Hirata and Sugano, generalized the notion of separable algebras defin-

ing “separable extensions of a ring”.

Definition 3.1.7 Let S be a ring and T a subring of S. We say that S is a

separable extension of T if there exists an element 3~ s; @ s! in .S @7 .S such that
1) Ssst=1;
i) Yzs; Qs =Y s, @slz,forallz € 5.

Remark 3.1.8 In the situation of Definition 3.1.7, we note the following points:
1) S®t S is just an (5, S)-bimodule and not, in general, a ring.

i) If T is in the centre of S, by Theorem 3.1.2 iiz), S is separable as an
T-algebra. If T is the centre of S, then S is Azumaya.
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Given T a subring of a ring S, we can define an (.5, .5)-homomorphism o from

S @7 S onto S such that

p: S®rS — S
Yisi®s: > Y isish
The following proposition is well-known, but we were unable to find a refer-

ence.

Proposition 3.1.9 Let T be a subring of a ring S. Then S is a separable exten-
sion of T if and only if ¢ splits as an (S, S)-homomorphism.

Proof. Suppose S a separable extension of T and take 3,5, @ s/ € S @7 S as
in Definition 3.1.7. Then we can define a (.5, S)-homomorphism ¢ : S — S @ S
such that (1) = Y s; @ sl. It is easy to verify that ¢ = ids.

Conversely, suppose that ¢ splits. Let ¢ be an (5,5)-homomorphism such
that i = ids. Let ¥(1) = 3 ;s ® si. Then ¢(¥(1)) = 1 and for all x € 9,
Lirsi@sh=a(l) =¢(z) =¢(l)z = X;si @ siz. O

Proposition 3.1.10 Let S be a ring, T and U subrings of S such that U C T
i) If S is a separable extension of U, then S is a separable extension of T';

i) If S is a separable extension of T and T is a separable extension of U, then

S is a separable extension of U.
Proof. [49, Proposition 2.5]. O

In [50], Hirata gave new insight into the notion of separable extensions. He

proved

Theorem 3.1.11 Let S be a ring with centre C, T a subring of S. If S®t S is
isomorphic to a two-sided S-direct summand of a finite direct sum of copies of S,

then Cs(T) is C-finitely generated projective and S is a separable extension of T'.
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Proof. [50, Theorem 2.2] O

Definition 3.1.12 Let S and T satisfy the hypothesis of Theorem 3.1.11. We

say that S is an H-separable extension of T.

By Theorem 3.1.11, every H-separable extension is a separable extension. This
theorem was an attempt to introduce the notion of central separable algebras to
separable extensions; as we shall see in the next proposition, every Azumaya

algebra is an H-separable extension of its centre.

Proposition 3.1.13 A ring R is an H-separable extension of its centre if and

only if R is Azumaya.

Proof. [103, Proposition 1.1] O

Proposition 3.1.14 Let S be a ring and T a subring of S. If S is an H-separable
extension of T and T is a direct summand of S as a (T, T')-bimodule, then Cs(T')

is a separable extension of Z(S).

Proof. [104, Proposition 1.3] O

3.2 A necessary condition

One could try to state a similar result to the one of Ricardo Alfaro and George
Szeto in [3], for some crossed product. Their proof (to prove that iz) implies
ii1)), and indeed the very statement of iiz)c) depends on the fact that given any
ring R, any group of automorphisms G of R and any skew-group ring R#G, one
can think of R as an R#G-module. In general this is not the case for crossed

products.
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We will split this section into two parts. In the first one we will work with
any crossed product R *.J and describe the ones which are Azumaya in terms of
H-separability and separability conditions. This description will follow the same
ideas as Ricardo Alfaro and George Szeto in [3]. In this part we will also describe
the centre of R * J and centralizers of R in R * J. In the second part the idea is
to relate, like Ricardo Alfaro in [1] did for skew-group rings, the H-separability
condition with the concept of Galois extensions. For this to be possible we will
impose some restrictions on the crossed product; we will take any ring R and
any group G of automorphisms of R and a crossed product R * G. As it was
already mentioned in the introduction to this chapter, whenever we will form a
crossed product of a group of automorphisms G of a ring R over R, the action
o as defined in Definition 1.2.15, is such that o(g) = g for all ¢ € (7, and the

twisting will be arbitrary.

Definition 3.2.1 Let R be any ring and G a subgroup of Aut(R). The fired
subring of G on Ris R = {r € R:g(r)=r, forallg € G}. If r € R, we say
that 7 is a fized point.

If R is any ring, J is any group and R * J any crossed product, by 2/ we

denote the set of elements of r € R such that 7 = r, for all J€J.

Lemma 3.2.2 Let R be any ring, J any group and R+ J any crossed product,
then Z(R* J) C R if and only if Z(R* J) = Z(R)”.

Proof. It’s obvious that Z(R)’ C Z(R * J).
If Z(R+J) C R, as any element r € Z(R+*J) will commute with the elements

of R and with each g, for any g € J, we have r € Z(R)”, and equality holds. O

As we shall see later, there are natural circumstances where the condition
Z(R*J) C R holds, see for instance Lemma 3.2.11. The proof of the following

result is similar to that of the analogous result for skew-group rings, [3, Theorem
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1], and shows that the first two of the three equivalent statements of Alfaro and

Szeto in the introduction of the chapter remain equivalent for crossed products.

Proposition 3.2.3 Let R be any ring, J any group and R+J any crossed product.

Then the following are equivalent:
i) RxJ is an Azumaya algebra and Z(R* J) C R;

it) R*J is an H-separable extension of R and R is a separable extension of

Z(R)’.

Proof. Assume that R*J is Azumaya with Z(R*J) contained in R. As R J is
free as an R-module, R* J is projective as an R-module. As Z(R+J) = Z(R)’ C
R by Lemma 3.2.2, R+ J is Azumaya and is projective over a ring containing its
centre, it follows from [52, Theorem 1] that R * J is an H-separable extension of
R. Since R is a two-sided R-direct summand of R x J, Cr.yj(R) is a separable
extension of Z(R * J) = Z(R)’, Proposition 3.1.14. Hence, by [34, Theorem
11.4.3], Cr.y(Cr.s(R)) is a separable extension of Z(R)’.

As R x J is an H-separable extension of R and R is a two-sided R-direct
summand of R * J, by [103, Proposition 1.2], Cr.s(Cr«s(R)) = R. Hence R is a
separable extension of Z(R)”.

Conversely, assume that R * J is an H-separable extension of R and R is a
separable extension of Z(R)’. Hence, by Theorem 3.1.11, R * J is a separable
extension of R and by Proposition 3.1.10, R*J is a separable extension of Z(R)’.

By [103, Proposition 1.2], R = Cr.j(Crx(R)). As Z(R*J) € Cras(Cr.y(R)),
Z(R*J) = Z(R)’ by Lemma 3.2.2. Hence R+ J is Azumaya and Z(R+J) C R.
O

Given a ring R and G a group of automorphisms of R, by Proposition 3.2.3, if
a crossed product R * G is Azumaya and Z(R*G) C R, R+ is an H-separable

extension of R. In order to study when this happens, we will need to describe
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the centre of such rings and the centralizer of R in R * G, Cr.g(R). We start by
introducing the definition of an w-outer group of automorphisms. This definition
will play an important role in the description of some crossed products that are

Azumaya.
Definition 3.2.4 Let R be any ring and g an automorphism of R. Let
¢,={r € R:rs’ =sr,Vs € R}.

If J is any group and R * J is any crossed product, for each j € J, ¢; = ¢,

is defined exactly in the same way as before.

Definition 3.2.5 Let R be any ring and G a nontrivial group of automorphisms

of R. If for all g € G\{id}, ¢, = 0, we say that G is w-outer.

Obviously, if R is a commutative domain and (' is any nontrivial group of
automorphisms of R, G is w-outer. One should note that, as the next example
shows, R commutative is not sufficient for a nontrivial group of automorphisms

of R to be w-outer.

Example 3.2.6 Let C be the complex field, R = C? and g an automorphism of
C? such that g(a,b) = (a,b), where b denotes the complex conjugation of C. Let
G be the group of order two generated by g. We have that, for any r € R

(g(r) —r)(1,0) = 0.
In this case we can easily see that ¢, = C@® 0 and ¢, = CH C.

We would like to remark that there are other concepts of outer, for instance

the definition of outer automorphism introduced in §1.1 and

Definition 3.2.7 (V.K. Kharchenko in [65], [82]) Let R be a semiprimering and
M(R) the left Martindale ring of quotients. If G is a group of automorphisms of
R, for each g € G, let

¢, = {z € M(R) : zy° = yz, for ally € R}.
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Let Gipn = {g € G : ag # 0}. If Ginyn is a subgroup of G, let Gy = G/ (4.
We say that G is X -outer if G;,, = {id}.

Remark 3.2.8 1) In definition 3.2.7, if G, is a subgroup, it will be a normal
one. To see this, let ¢ € Gi,, and h € G. Then there is @ # 0 such that
29 = zz, forall z € R. Leth € G and w = 2" # 0. Then, for all y € R,
wyhth™t = (gyho)hTt = (yhwh)h ™" = yuw.

12) If R is a semiprime ring and F the set of all essential two-sided ideals of
R, then M(R) = Rr = UQIE;Hom(RI, rR), the ring of left quotients of I with
respect to F.

1217) The ring M(R) was first defined for prime rings by W.S.Martindale in
[73] [see also [82])]. S.A.Amitsur in [4] [see also [82]], extended the definition to
semiprime rings.

iv) X-outer automorphisms are sometimes called F-outer (sce for in-
stance [82]) to indicate that this definition is related to the filter F =
{essential ideals of R}.

v) There is at least one more definition of outer automorphisms, the one of

completely outer automorphisms given by Y. Miyashita in [78] [see also [82]].

Obviously, if a group G of automorphisms of a semiprime ring R is w-outer
when extended to M(R), then G is X-outer. If R is a simple ring with identity
then M(R) = R and the notions of X-outer and w-outer are the same. The

following theorem gives a clarification of the concept of X-outer.

Theorem 3.2.9 Let R be a semiprime right and left Goldie ring and G a group
of automorphisms of R. Then, G is X-outer on R if and only if G is X -outer
when extended to Q(R), the classical ring of quotients of R. In particular, when
R is a prime right and left Goldie ring, G is X-outer on R if and only if the
identity is the only inner automorphism of Q(R) in G.

Proof. [82, Theorem 1.4]. O
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Remark 3.2.10 If R is a semiprime Goldie PI ring, one can form Q(12) by
inverting central elements. From Theorem 3.2.9 it follows that the two definitions

3.2.5 and 3.2.7 coincide in this case.

Lemma 3.2.11 Let R be any ring, J any multiplicative group and R * J be any
crossed product of J over R.
Then

CR*J Z ¢gg

geJ

If J is a group of automorphisms of R which is w-outer, then
Cres(R)=Z(R) and  Z(R+J)= Z(R)’.

If R#J is any skew-group ring and J is abelian then ¢, is J-invariant for all
g€ J and

Z(R#J) =Y 49

9€J

Proof. Let R be any ring and s = ¥, 7 € Crus(R). Then, for all r € R,
> rrg = Z regr = Z At
g 9 9

So, for each g, r,r°®) = rry, for all r € R and so s € T s #,g. The other
inclusion is obvious.

If J is an w-outer group of automorphisms, then ¢, = Z(R) for g = id,
otherwise ¢, = 0. So, Cr.s(R) C Z(R). Obviously, Z(R) C Cpr.s(R). Hence
Z(R) = Cpuy(R). Let s € Z(R*J) C Cray(R) = Z(R). Then, for all g € J,
$9G = gs = sg, and so s € Z(R)’. Then Z(R*J) = Z(R)’.

Suppose that R#J is a skew-group ring and J is abelian. Let o be the action
of the crossed product as in Definition 1.2.15 and take g,h € J, r € ¢, and
s € R. Then rts? = (rs" )b = (rsh7'9)h = (s"7 )b = srh. Hence r* € ¢,
and ¢, is J-invariant. We already have Z(R#J) C Crys(R) C 2yecs dy9. Let
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s € Z(R#J). Then s = 3¢9 for some 7y € ¢g. Now, for all h € J, hs = sh.
So

> r;(h)hg =Y rygh

ge€J g€J
and so r;(h) =71y forall h € J. Then Z(R#J) C Xyey qf)‘g]g and the equality
holds. O

Example 3.2.12 Let R and G be as in Example 3.2.6 and form S = R#( the

skew-group ring of G on R constructed with the given action of G on K. Then

by Lemma 3.2.11, Z(S) = (C® 0)°g + (Ca O)° = (CH0)g+ (CHR).

Remark 3.2.13 Example 3.2.12 gives a counterexample to what has been
claimed in Remark 1 of [3]. In particular it shows that Ikehata’s result [52,

Theorem 2] cannot be deduced as a corollary of [3, Theorem 1].

3.2.1 Galois extensions and H-separability

In the first part of section 2, we described some crossed products that are Azu-
maya in terms of H-separability and separability. In this subsection we will
describe the H-separability condition obtained in terms of Galois extensions in a
similar spirit to the work of Alfaro in [1]. We will have to make some restrictions
on the crossed products we consider.

In [9], M.Auslander and O. Goldman introduced the notion of a Galois exten-
sion of commutative rings. In [61], T.Kanzaki generalized the notion of Galois

extensions to noncommutative rings, as follows.

Definition 3.2.1.1 Let T be a ring, U a subring of T and G a finite subgroup
of Aut(T). We say that T is a G-Galois extension of U if

i) U=TE¢
i1) T is a finitely generated projective right U-module;
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iii) the natural map ¢ : T#G — End(Ty) such that ¢(tg)(s) = tg(s), for any

t,s € T and g € (4, is an isomorphism of rings.

Remark 3.2.1.2 i) To be precise, in Definition 3.2.1.1, we should have called
such an extension a right G-Galois extension of U. We will omit the word “right”,
so that we will use the same term as the one found in the literature about the
subject.

1) We regard T as a left T#G-module by setting s.t = ¢(s)(¢), for all s €
T#G and teT.

111) For a commutativering T, i7) and 7:t) together imply that 7" is a projective
T#G-generator. (See [8, Proposition A.3] and {76, Definition 3.5.3] or [34] for
the definition of generator.)

If we assume T to be a T#G-generator (in this case we won’t need the com-
mutative hypothesis) it is easy to verify that Homrgo(T,T) may be identified
with T, Then by [8, Theorem A.2, c) and f)] we have that T is a finitely gen-
erated projective T®-module and the natural map ¢ : T#G — End(Ty) is an
isomorphism.

v) In [10], M. Auslander, I. Reiten and S. O. Smalg gave a different definition
of Galois extension for noncommutative rings: Given a ring T, U a subring of
T and G a finite group of automorphisms of T', T is a pregalois extension of U
with group G if U = TG, T is a finitely generated U-module and T' is a projective
T#G-generator.

For these authors, a Galois extension would be a pregalois extension T" of U
with a group G such that for every simple left or right T-module S, U/anny(S)
is a semisimple artinian ring.

It is a consequence of [8, Theorem A.2] or [10, Proposition 1.6] that if 7" is a
pregalois extension of U in the Auslander-Reiten-Smalg sense then T' is a G-Galois
extension of U in the sense of Definition 3.2.1.1. Moreover the reverse implication

is valid when T is commutative, by note i77). Whether the two definitions are
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equivalent in general appears unclear. (It’s worth noting, however, that a finitely
generated projective R-module is not in general projective over its endomorphism
ring; see Remark in [8] after Proposition A.3.)

v) Throughout this chapter we will use the definition of Galois extension given

in Definition 3.2.1.1.

The following proposition is a well-known characterization of Galois exten-

sions for commutative rings. For more details see Chapter III of [34].

Proposition 3.2.1.3 Let T be a commutative ring, U a subring of T and G a
finite subgroup of Aut(T). The following are equivalent:

1. T is a G-Galots extension of U.

Q. (a) TG=U;

(b) For each non-zero idempotent e € T and each pair g # h in G, therc
is an element x € T such that g(z)e # h(z)e;

(c) T is a separable U-algebra.
3. (a) T =U;
(b) Tnhere erist n € N and z1,...,%55y1,...,yn in T such that
2_ig(yi) = 8gu-
=1
4 (a) TS =U;
(b) For every mazimal ideal M of T and each g € G\{1} there ist € T
such that g(t) —t ¢ M.

Proof. [34, Proposition I11.1.2] O

For the case of Galois extensions for noncommutative rings, at least condition
3 of the above proposition holds, as we record below. For other characterizations

of Galois extensions for noncommutative rings, see [1], [39], [61] and [62].
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Proposition 3.2.1.4 Let T be any ring, U a subring of T and (i a finite subgroup
of Aut(T). Then T is a G-Galois extension of U if and only if

1. TS =U;

2. There exist n € N and zy,... ,T5;y1,... ,Yn in T such that, for g € (J,
2 2i9(y;) = dg1-
=1

Proof. [62, Proposition 2.4]. [

Lemma 3.2.1.5 Let T be a ring, H any group and G a finite subgroup of Aut(T').
Let TH be the group ring and extend each automorphism of T to one of TH in
the usual way. Then T is a G-Galois extension of TC if and only if TH is a
G-Galois ertension of T H.

Proof. Suppose first that T is a G-Galois extension of T¢. Obviously, (T H)¢ =
TSH. By Proposition 3.2.1.4, we have that T H is a G-Galois extension of T¢[{.

Conversely suppose that TH is a G-Galois extension of T“H. Again by
Proposition 3.2.1.4, there are z1,... ,Zn,¥1,--- ,Yn € TH such that, for g € G

225=1239(y;) = .1
For each j € {1,... ,n}, write £; = Y pcm ajnh and y; = e bjil, for some

ajh,b;1 € T. Then

n

ZZ“MQ i)l = 8g,1.

j=1h

Hence

Z a;jhg(b 9,1+

€H

I/\ IIMS

So, {ajn;bjn— : 1 < j <nh € H} is a family of elements of T satisfying

condition 2 of Proposition 3.2.1.4. Hence T is a G-Galois extension of T¢. O
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Definition 3.2.1.6 If G is a finite group of automorphisms of a ring R, we define

the trace map, an R°-module homomorphism, by

tra: B —» RC
T decg("').

Whenever the group G is well understood, we will just write ¢r.

Remark 3.2.1.7 In the situation of Definition 3.2.1.6, obviously trq(r) € R“

and if r is a fixed point then trg(r) = |G|r.
The following lemma follows easily from the remark and definitions above.

Lemma 3.2.1.8 If G is a finite group of automorphisms of the ring R, then trq
is an RC-bimodule homomorphism from R to R® and |G|RC C tra(R) < R%. O

Lemma 3.2.1.9 Let R be a commutative ring and G a finite group of automor-
phisms of R. If |G| € R or R is a G-Galois extension of R® then 1 € Im(tr)
and tr is onto as @ map from R to RC. If tr is onto as a map from R to RY, IC

is isomorphic to a direct summand of R as an R®-module.

Proof. If |G|™! € R, then 1 = tr(|G|™'.1) and by Lemma 3.2.1.8 tr is onto.
If R is a G-Galois extension of R®, then 1 € Im(¢r) by [34, Corollary I11.1.3],
and hence tr is onto as a map from R to R®. Since R -» R® — 0 is an exact

sequence of R%-modules, the sequence splits and the result follows. O

Remark 3.2.1.10 Given any ring R, G any subgroup of Aut(R), and M a G-
stable ideal of R, for every ¢ € G we can define an automorphism ¢’ of R/M
by ¢'(r + M) = g(r) + M. We shall abuse notation and denote g’ by g and
the subgroup of Aut(R/M) generated by these elements by G (even if G is not
isomorphic to a subgroup of Aut(R/M)).

Lemma 3.2.1.11 Let R be a ring and G a finite subgroup of Aut(R) such that
tr is onto as a map from R to RC. If M is a proper G-stable ideal of R then:
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i) (RIM)® = (RC + M)/M = R°/(M n RS);

i1) If R is a commutative ring and a G-Galois extension of RC then R/M is a
G-Galois extension of (RS + M)/M .

Proof. Suppose R and G as above. Assume that ¢r is onto as a map from I? to
RC. Take d € R such that tr(d) = 1.
Let r € R be such that g(r) —r € M for all g € G. Then, as M is an ideal of

R, g(r)g(d) — rg(d) € M, for all g € G. Hence
Zg(rd) - ng(d) € M.
9 g

Sotr(rd) —r € M and r + M = tr(rd) + M € (R® + M)/M. Obviously,
(R® 4+ M)/M C (R/M)® and the equality holds. So we have ).

Assume that R is a commutative ring and a G-Galois extension of R%. Let
M /M be a maximal ideal of R/M and g € G\{id}. As R is a G-Galois extension
of RS, there is r € R, such that g(r) — r ¢ M. But then g(r + M) — (r + M) ¢
M/M. So, by ) and Proposition 3.2.1.3 (4), we have that R/M is a G-Galois
extension of (RS + M)/M. O

Lemma 3.2.1.12 Let R be any ring and G a finite subgroup of Aut(R) such thal

R is a G-Galois extension of R® and RC is a field. Then R is semiprime.

Proof. Since R is a G-Galois extension of R®, by definition R#G = Endgs(R)
and R is finitely generated as a right module over R®. As RC is a field, R has a
finite basis over RC, say of cardinality ¢. Hence Endpe(R) = M,(R®) is a simple
artinian ring.

Let J(R) and J(R#G) be the Jacobson radical of R and R#G, respectively.
As J(R) is G-invariant and is nilpotent (Hopkins Levitzki’s Theorem [44, The-
orem 3.15]), so is J(R)#G. As R#G is prime, J(R)#G =0 and so J(R) = 0.

So R is semisimple, hence semiprime. O
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In [1] Ricardo Alfaro gives a necessary condition for a skew-group ring R#(/
to be H-separable over R where G is a finite group acting faithfully as automor-
phisms of R. He proves that:

Let R be any ring, G a finite group acting faithfully as automorphisms of R
and R#G the skew-group ring. If R#G is an H-separable ertension of R, then:

i) G is w-outer;
i)) Cryc(R) = Z(R);
i) Z(R) is a G-Galois extension of Z(R)°.

His proof depends essentially on the fact that, assuming R and G as above,
Crac(R) = Z(R) and if R#G is an H-separable extension of R, then (' is w-
outer. The next proposition and its proof is the analogue to [1, Theorem 3.4],
although his result is just for skew-group rings and his proof is rather obscure.
In this thesis we clarify the proof using some of Alfaro’s ideas and especially his
remark that precedes [1, Theorem 3.4] and generalize to some crossed products of

the form Rx G where G is a finite group acting faithfully on R as automorphisms
of R.

Remark 3.2.1.13 We should note that if R is any ring, G any group and R* G
any crossed product of G over R, we are assuming that an action o : G — Aut(R)
as in Definition 1.2.15, is defined such that 79 = r°@) | Hence it is obvious that,
under these conditions, R® is a subring of R.

As already discussed in Lemma 1.2.17, the action ¢ does not have to be
a homomorphism. Although, by the same lemma, o is a homomorphism if R
1s a commutative ring. For some results in this section and in the following
one, we will have to assume that o is actually a homomorphism or even that
it is a monomorphism; this is the real meaning of phrases like “G a group of

automorphisms of R”.
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Proposition 3.2.1.14 Let R be any ring and G a finite group acling faithfully
on R as automorphisms of R. Suppose that G is w-outer on R. Suppose that
there exists a crossed product R *+ G whose action of G on R is the given one,
such that R x G is an H-separable extension of R. Then Z(R) is a G-Galois
extension of Z(R).

Proof. As R+G is an H-separable extension of R and since R is a direct summand
of R+ (G as an (R, R)-bimodule, Cr.c(R) is a separable extension of Z(R* (7) by
Proposition 3.1.14.

Since G is w-outer and acts faithfully on R as a group of automorphisms of R,
Proposition 3.2.11 implies that Z(R* G) = Z(R)% and Cr.g(R) = Z(R). Hence
Z(R) is a separable extension of Z(R)°.

Assume there is a nonzero idempotent e in Z(R) and h # g in G such that
rhe =rde forall r € Z(R). Then for all z € Z(R),

-1 -1 -1
red” =M e,

Hence, for all z € Z(R),
¢ hg iz = 9 h T hg T
- xhg“eg"};F
= zeb hgl.
So, €97 hg T € Crug(Z(R)) = Cruc(Crsc(R)). As R+G is an H-separable exten-
sion of R and R is a direct summand of R*G, we know that Cr.¢(Cr.c(R)) = R,
by [103, Proposition 1.2]. Therefore hg™' = 1 and so g = h, a contradiction.

Hence there is r € Z(R) such that rhe # r9e. By Proposition 3.2.1.3, 2, Z(R) is
a G-Galois extension of Z(R)¢. O

Proposition 3.2.1.15 Let R be any ring and G a finite w-outer group of au-
tomorphisms of R. Let R * G be any crossed product constructed with the given
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action of G on R. If R+ G is Azumaya then Z(R) is a G-Galois ertension of
Z(R)“,

Proof. Assume R and G as above. By Lemma 3.2.11, Z(R * () C Z(I}). If
R * G is Azumaya, then by Proposition 3.2.3, R * G is an H-separable extension
of R and by Proposition 3.2.1.14, Z(R) is a G-Galois extension of Z(R)“. O

Corollary 3.2.1.16 Let D be a commutative domain and G a finite group acting
faithfully as automorphisms of D and D x G any crossed product constructed with
the given action of G on R. If D+ G is Azumaya, then D is a G-Galois extension
of D,

Proof. Suppose D x (G as stated above. Then, G is w-outer and the result follows

from Proposition 3.2.1.15. O

Remark 3.2.1.17 We should note that in the statement of Corollary 3.2.1.16
we could have started with a commutative domain D and any crossed product
D * G and assumed that the action is faithful. By Remark 3.2.1.13, this would

mean that ¢ is actually isomorphic to a group of automorphisms of D.

3.3 A sufficient condition

In this section we would like to give a sufficient condition for a crossed product of
a finite group G over a commutative domain D such that G acts faithfully on D
to be Azumaya. For that, we start by taking any ring R and any finite group of
automorphisms of R, then we try to describe the maximal ideals of R in terms
of G-prime ideals of R. To do so, we need some general results of the theory of

finite group actions.
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Proposition 3.3.1 If R is any commutative ring, G a finite group of automor-
phisms of R and P,Q € Spec(R) are such that PN R = QN RC, then P and ()
are in the same G-orbit of Spec(R).

Proof. The proof follows the proof of [81, Proposition 1.1]. O

Proposition 3.3.2 Let R and G be as stated in Proposition 3.3.1. Then the pair
RS R of rings satisfy:

i) Lying over (LO): for any prime P of RC there exzists a prime ) in R with
QNRY =P;

1t) Going up (GU): given primes P G Py in RC and Q in R with QO R = P,
there exists a prime Qg in R satisfying Q g Qo and Qo N R = Py;

1ii) Going down (GD): given primes P G Py in RS and Qo in R with QoN RE =
Py, there exists a prime Q in R satisfying Q G Qo and QN R = P;

w) Incomparability (INC): if Q and Qo are distinct primes in R with QN R® =
Q() N RG, then Q g Qo and QO Z Q

Proof. As every element r € R is a root of the polynomial of R%[z],
[Tyec(z — g(r)), R is integral over R®. So R® C R satisfies LO, GU and INC,
[63, Theorem 42 and Theorem 44]. Let P G P, be prime ideals of RS and Qo a
prime ideal of R such that Qo N R¢ = P,. By LO, there is a prime ideal of R, @,
such that @ N R = P C Qo N R®. By GU there is a prime ideal @, of R such
that @ & @, and @, N RS = Py = Qo N R®. By Lemma 3.3.1, there is 8 € G
such that @f = @Qo. Hence @ﬂ G Q_f = o and @'6 NRE=QNRY=P. If we
take Q = Q°, Q will satisfy 4ii). O

Proposition 3.3.8 Let R be a commutative ring and G a finite group of auto-
morphisms of R. If M is a mazimal ideal of R® then M = N,egM° N RC, for

some mazimal ideal M of R.
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Proof. By LO, there is a prime ideal M of R such that M = M N R%. Obviously,
NgecM’ N RE = M N RC. Since M is maximal in R by INC we have that M is

maximal in £. O

Proposition 3.3.4 Let R be a commutative ring, G a finite group of automor-
phisms of R and M a mazimal ideal of RS. If MR is a semiprime ideal of R,
then MR = N,egM’ for some mazimal ideal M of R.

Proof. By INC and LO the set M of primes of R lying over M is non-empty and
consists of maximal ideals. By Proposition 3.3.1, M consists of a single G-orbit.
In particular, M is finite. Finally, MR = N{M : M € M}, because M R, being
semiprime is certainly an intersection of prime ideals of R, but all such are by

definition in M. O

Proposition 3.3.5 Let R be a commutative ring, G a finite group of automor-
phisms of R such that R is a G-Galois extension of R¢. Then for all mazimal
ideals M of RS, M = MRN RS and MR = NyegM’ for some mazimal ideal M
of R.

Proof. Let R and G be as stated above and M a maximal ideal of R¢. Obviously,
MR is a G-stable ideal of R. By Lemma 3.2.1.9, R® is a direct summand of R
as an R%-module, hence M = MRN RY. So MR # R. By Lemma 3.2.1.11,
(R/MR)® = RG /M, where this ring is a field and R/M R is a G-Galois extension
of (RIMR)®. Now, by Lemma3.2.1.9 and Lemma 3.2.1.12, R/M R is a semiprime

ring and the result follows from Proposition 3.3.4. O

Theorem 3.3.6 Let R be any commutative ring, G a finite subgroup of Aut(R)
and R x G any crossed product of G over R constructed with the given action
of G on R. If R is a G-Galois extension of R®, then R * G is Azumaya and
Z(RxG) = RC.
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In order to prove the Theorem we need the following Lemma:

Lemma 3.3.7 Let R be a commutative ring, G a finite subgroup of Aut(R) such
that R is a G-Galois extension of R® and R+ G any crossed product of (i over I}
constructed with the given action of G on R. Then (i is w-outer and Z(R* (/) =
RS,

Proof. Let g € G\{id} and r € R be such that rg(z) — zr = 0 for all + € R.
That is, r(g(z)—z) = 0 for all z € R. Let r.anng(r) = I and suppose r # 0. Then
I'is a proper ideal of R and there is a maximal ideal M of R, such that / C M.
Since R is a G-Galois extension of R®, there is € R such that g(z) — = ¢ M.
So g(z) —z ¢ I and r(g(z) — z) # 0, a contradiction. So (7 is w-outer and by
Lemma 3.2.11 we have Z(R* G) = R°. O

Proof of Theorem 3.3.6:

Let R and G be as stated above. Assume that R is a G-Galois extension
of RS, So R is finitely generated over R®. Since G is finite, R * (i is finitely
generated over R and also over R®, which equals Z(R * G) by Lemma 3.3.7.

By [34, Theorem I11.7.1], R+ G is Azumaya if and only if for all maximal ideals
M of Z(R+G), (R+G)/M(R * G) is a separable RS /M-algebra.

Let M be a maximal ideal of R®. Obviously M R is a G-stable ideal of I and
by Lemma 3.3.5, M = MRNRS. So MR # R. As (R+G)/M(R+G) = (R/M ) *
G, it follows from Lemma 3.3.7 and 3.2.1.11 that Z((R*G)/M(R*G)) = R /M.
So (R*G)/M(R*G) is a separable R®/M-algebra if and only if (RxG)/M(R*()
is Azumaya.

We claim that for all maximal ideals M of RS, M(R * G) is a maximal idcal
of R* G. We show first that this claim will prove the result. Since G is finite
R x G is finitely generated as a module over a commutative ring so, by [76,
Corollary 13.1.13 iii)] R+ G is P1. Hence so is (R*G)/M(R*G). Using the claim
(R*G)/M(R*GQ) is a simple PI ring and by Kaplansky’s Theorem (76, Theorem
13.3.8], a central simple algebra, hence Azumaya [76, Proposition 13.7.7].
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We will now prove the claim. Let M be a maximal ideal of R7. By Proposition

3.3.5, there is a maximal ideal M of R such that
M =NaecM® N R =M N RE,
and
MR = maecﬁa.

As R/MR is artinian, M is a minimal prime over M R.
Let M™',... [ M" be the distinct maximal ideals in {M" : « € G'}. Hence

RxG R R
(=5 c B ==7) xG.
MERG) - @O

By [86, Corollary 14.8], (R + G)/M(R x G) is prime if and only if (R/M)* (i,
is prime for G, = {g € G : M° = M}. Set G, = {g € G : M’ =
M and g induces the identity on R/M}. Then R/M is a field and by [86, Corol-
lary 15.9], (R/M) % G, is prime if and only if the twisted group ring [R/M]'[(i;]
is Gi-prime. Let g € Gy, so that g(z) —z € M, for all z € R. So g = id since R
is a G-Galois extension of R®. Hence G, = {id} and (R* G)/M(R * (7) is prime.

As (RxG)/M(Rx*G) is finite dimensional over the field RS /M, (R*xG)/M( R+
G) is Artinian, hence M(R * G) is maximal. This proves the claim. O

Example 3.3.8 Take § = C[f,07!;q], where a is complex conjugation on C.
We can think of S as C[#?,0-%] * G where G is the group of order 2 generated
by a. 1t is obvious that (C[6?,072])¢ = R[6%,672]. Let M be a maximal idcal of
Cl[6?,672). If (i) —i = —2i € M, then 1 € M, a contradiction. Hence we can
deduce that C[6%,607?] is a G-Galois extension of R[#? 6-2]. By Theorem 3.3.6,

S is Azumaya.
Combining several results obtained so far, we get

Proposition 3.3.9 Let R be any ring, G a finite group of automorphisms of
R and R * G any crossed product constructed with the given action of G on R.

Consider the following statements:
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i) Rx G is Azumaya and Z(R* G) C R;

i) a) R*G is an H-separable extension of R;

b) R is a separable extension of Z(R)%;
111) R is Azumaya and Z(R) is a G-Galois extension of Z(R)“.

Then 1) is equivalent to it). If R is commutative 111) implies i) and ii).
If G is w-outer on R, 1) and 1) imply i11).

If R is commutative and G is w-outer on R, 1), 11) and 1i1) are equivalent.

Proof. Assume R and G as above. By Proposition 3.2.3, i) is equivalent to 7).
If R is commutative then ¢i:) implies ¢) by Theorem 3.3.6.

If G is w-outer on R then Z(R*G) = Z(R)® by Lemma 3.2.11. By Proposition
3.2.1.14 and Proposition 3.1.10, 7¢) implies 7:1).

If R is commutative and G is w-outer on R, by the above, 1), 71) and 7:z) are

equivalent. (J

Corollary 3.3.10 Let D be a commutative domain, (G a finite subgroup of
Aut(D). Let D x G be any crossed product of D by G constructed with the given
action of G on D. Then D x G is Azumaya if and only if D is a (/-Galois

ectension of DC.

Proof. As D is a commutative domain, G is w-outer and the corollary follows

from Proposition 3.3.9 O

We will state an improved version of Corollary 3.3.10 as Proposition 3.4.9 in
§3.4, after introducing the notion of inertia group.

One could try to generalize the results obtained so far to any crossed product.
In the general case, given a crossed product R * J, we could try to replace ii1) of

Proposition 3.3.9 by i1:')

89



a) R is Azumaya;

b) R is finitely generated projective as an R’-module;

¢) R#J = End(Rps).

The following example shows that such a generalization will not be possible.

Example 3.3.11 In [48], R.B. Howlett and I.M. Isaacs, for the proof of their
main result, Theorem 8.2, built a non-abelian finite group H of central type
(given any field K, there exists a faithful irrreducible A'-representation of degree
|H : Z(H)|'/?). By [35, Theorem 1] and its proof, if H is of central type then
we can form a certain twisted group algebra C'[H/Z(H)] with centre C and
isomorphic to M, (C) where n? = [H : Z(H)]. Hence C'[H/Z(H))] is simple. So
if J = H/Z(H), J is a nontrivial finite group such that C'J is simple. As it is
finitely generated as a C-module, it is artinian. Hence C'J is a central simple
algebra and by [76, Proposition 13.7.7], Azumaya. Hence 2) of Proposition 3.3.9
holds but as C/ = C ( J acts trivially on C by definition of the twisted-group
ring ), CJ = C#J is not isomorphic to C & End(Cc).

3.4 The Azumaya locus

Let R be any ring and M any maximal ideal of Z(R). It is obvious that one can
form Z(R)p. Also the set Czgry(M) is a right denominator set in R, hence we
can form RCE(IR)(M ) which we shall denote by Ras.

Given a ring R which is finitely generated as a module over its centre Z(1?),
R is Azumaya if and only if Ry is separable over Z(R)a for all maximal idcals
M of Z(R), [34, Theorem IL.7.1].

When R is prime, it is trivial to confirm that Z(R)a is Z(Rum). If R is finitely

generated as a module over its centre, R is Azumaya if and only if
{M € Maz(Z(R)) : Ry is Azumaya} = Maz(Z(R)),
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[34, Theorem I1.7.1].

Notation and Definition 3.4.1 For a ring R and a (right or left) 2-module X,
the projective dimension and injective dimension of X are denoted by pr.dimy,(X)
and inj.dimg(X), respectively. If there is no ambiguity we may omit the ring K
and simple denote them by pr.dim(X) and inj.dim(X), respectively. The right
(respectively left) global dimension of R is denoted by r.gl.dim(R) (respectively
l.gl.dim(R)). If the right global dimension and the left global dimension are
equal, we simple denote the common value by gl.dim(R). The injective dimension
of a ring R as a right (respectively left) R-module is denoted by r.inj.dim(R)
(respectively linj.dim(R)), and simply by inj.dim(R) if the two values are the
same. A ring R is said to be regular if has finite global dimension. For the

definitions of these concepts see [87] and [91].

Remark 3.4.2 i) If R is a Noetherian ring, r.gl.dim(R) = l.gl.dim(R), by [91,
Corollary 9.20].

iz) One should note that the definition of regular rings given in Definition
3.4.1 is not the same as the one given in [76]. In [76, Definition 7.7.1], a ring
is right regular if every right cyclic module has finite projective dimension. In
[76, Example 7.7.2.], an example is given of a commutative Noetherian integral
domain of infinite global dimension but regular in the sense of [76]. However, if i
is a commutative Noetherian local ring, the two concepts coincide [63, Theorem
121 and Theorem 173].

The definition of regular ring that we will use throughout this thesis, is the

one given in Definition 3.4.1.

Definition 3.4.3 Let R be a prime Noetherian ring which is module-finite over

its centre Z(R). The Azumaya locus of R is the set

Ar = {M € Maz(Z(R)) : Rm is Azumaya},
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and the singular locus of Z(R) is the set
Sp={M € Maz(Z(R)) : Z(R)pm is not regular}.

Remark 3.4.4 i) Let R be a prime ring and M a maximal ideal of Z(R) such
that Ry is Azumaya. By [76, Proposition 13.7.11] Ra/M Ry is a central simple
(simple artinian) algebra with centre Z(R)ar/MZ(R)p. If R is a prime Nocthe-
rian ring module finite over its centre, Ry /M Ry = R/MR and Ap is the set of
maximal ideals M of Z(R) such that R/MR is a central simple algebra over its
centre, Z(R)/M.

1¢) Under suitable hypothesis on the ring R, the Azumaya locus of R contains
a non-empty open set of Maz(Z(R)). (In this case we are considering the Zariski
topology defined on Maz(Z(R)) in which open sets are the ones of the form
W(I)={P ¢ Maz(Z(R)): I ¢ P}, for any ideal I of Z(R).)

Let R be a prime PI ring of degree n. By [93, Corollary 6.1.36] and definition
of PI ring of degree n [92, Definition 1.4.30], there is s € Z(R)\{0} such that
R[s™'] is Azumaya. Hence, for any maximal ideal of Z(R) such that s ¢ M, [ty
is Azumaya. So W(sR) := {M € Maz(Z(R)) : sSR € M} C Ag, and W(sR) is
open and nonempty.

212) If we impose some conditions on the centre of the prime Noctherian ring
R, the singular locus of Z(R) is a proper closed subset of Maz(Z(R)).

Assume for instance that K is an algebraically closed field of characteristic
zero and Z(R) a domain which is affine over K. Then Z(R) = K(z,... ,x,]/P
which is the affine coordinate ring of some affine variety Y (Y = Z(P) = {r €
K™ : f(r) = 0,for all f € P}.) Let c be the height of P in K{zy,...,z,]. In
this case by [38, Corollary 16.20 and Theorem 19.12] the singular locus of R (and
Z(R)) is defined by the set of maximal ideals M of Z(R) containing the ¢ x ¢
minors of the Jacobian matrix [f;/0z;] (built with f,,... , f, generators of P).
Hence Sk is closed. By the Nullstellensatz, [38, Corollary 1.9], there is a one to

one correspondence between the maximal ideals of Z(R) and the points of Y, by
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[45, Theorem 1.5.3 and Theorem 1.3.2] we have that Sg is a proper closed subset
of Maz(Z(R)).

Moreover, if @ is any prime ideal of Z(R) and if J is the ideal of Z(1?)
generated by the minors of the Jacobian matrix [df;/dx;], by [38, Corollary
16.20], Z(R)q is regular if and only if Q doesn’t contain J.

Let D be any commutative Noetherian domain and G a finite group acting
faithfully on D as automorphisms of D. Form D x G, any crossed product of (+
over D, and assume that DG is finitely generated over its centre Z(DxG) = D,
Lemma 3.2.11. In this section we will describe the Azumaya locus of D * (& and
try to relate it with the singular locus of D€. To achieve this we will impose
some basic homological conditions on D (for instance we will assume that D has
finite global dimension) and on D * G (we will assume that D x G is height |
Azumaya, see below for definition). We will start by describing when (D * (7)), is
Azumaya for M a maximal ideal of D®. In order to do so, we need to introduce

some definitions.

Definition 3.4.5 Let R be any ring, G a group acting on R and M an ideal of
R. Set
Gr(M)={geG:r* —r e M, for all r € R}.

Gr(M) is usually called the inertia group of M.
For each g € G, let

Ir(g) =<r9—r:reR>

the two-sided ideal of R generated by {r? —r : r € R}. Define the two-sided idcal
of R

IR@) = () Ir(g).
9€G\{1g}

The following lemma follows easily from the definitions.
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Lemma 3.4.6 Suppose that R is a ring, G a group acting on R and M an idcal
of R. Then

i) Gr(M) is the unique largest subgroup H of G such that M is H-invariani
and H acts trivially on R/M;

i) if N is an ideal of R such that N C M, then Gp(N) C Gr(M);

i) if N is a G-invariant ideal of R such that N C M, then Gr(M) =
Grin(M/N);

i) forlg # g € G and an ideal M of R, Ir(g) C M if and only if g € Gp(M).

Corollary 3.4.7 Let R be any ring and G a finite group acting on R and M «
prime ideal of R. Then Gr(M) = {1¢} if and only if Ir(G) € M.

Proof. Assume Gr(M) = {lg}. By Lemma 3.4.6 (iv), Ir(g) € M, for any
g # lg. So, as M is prime, Ir(G) € M. Conversely assume [p(G) € M. Then
Ir(g) € M for any g € G\{1g}. Hence by Lemma 3.4.6 (iv), Gr(M) = {1}. O

Lemma 3.4.8 Let R be a commutative ring and G a finite group acting on R.

The following are equivalent:
i) R is a G-Galois extension of RC;
1) For all mazimal ideals M of R, GR(M) = {1g};
iii) In(G) = R.

Proof. By Proposition 3.2.1.3, R is a G-Galois extension of R® if and only if
for every maximal ideal M of R and each g € G\{lg}, there is t € R such that
9(t)—t ¢ M. But this is equivalent to ii). As Ir(G) is an ideal of R, by Corollary

3.4.7, 11) is equivalent to ii7). O
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Proposition 3.4.9 Let G be a finite group of automorphisms of a commutative
domain D and D *G be any crossed product of D by G constructed with the given

action of G on D. The following are equivalent:
i) DxG is Azumaya;
i) Ip(G) = D;
ii) For all M € Maz(D), Gp(M) = {1}

Proof. By Corollary 3.3.10, D * G is Azumaya if and only if D is a G-Galois

extension of DC. The result follows now from Lemma 3.4.8. O

Lemma 3.4.10 Let R be any ring and G a subgroup of Aut(R). Then the fol-
lowing holds:

i) For any ideal M of R and any g € G, Gr(M?) = (Gr(M))™';
ii) For any subgroup H of G and any g € G, In(H%) = (In(H))*"';

iii) Let H be any subgroup of G and N = Ng(H) = {g € G : gHg™' = I},
Then Ir(H) is N-stable. In particular if ¢ € G and < g > is a normal
subgroup of G, then Ig(< g >) is G-stable.

Proof. Let M be any ideal of R and g € G. If h € Gr(M?), then for all r € R,
h(r) —r € M9. So, for all r € R, g *hg(r) —r = g 'hg(r) — g7 'g(r) € M. Then
g7'hg € Gr(M) and so Gr(M?) C Gr(M)~'. Conversely, if h € Gr(M)?™",
g7'hg € Gr(M) and so, for allr € R, g~'hg(r)—r € M. Then hg(r)—g(r) € M7,
for all r € R. Therefore h € Gr(M?), whence 1) holds.

Let H be any subgroup of G and g € G. As for any h € G, we have

Ir(¢g7*hg) = < g 'hg(r)—r:TE€R>
= <gh(r)-g(r):r€R>

= <h(r)—-r:r€R>9—l
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Hence Ip(H9) = NrenrIr(g™'hg) = NrerIr(h)?™ = (Ir(H))*"" and we have
ii).

Let H be any subgroup of Gand N = Ng(H). Takeg € N. By ii) (Ix(11))? =
Ip(H™") = Ip(H). Hence Ix(H) is N-stable. If g € G and < ¢ > is a normal
subgroup of G, Ng(< g >) = G and by the above Ir(< g >) is G-stable. O

Remark 3.4.11 If G is not abelian Ir(g) doesn’t have to be G-invariant. For
instance take G =< a,b: a® = b® = 1,aba = b! > and R = C[z,y]. One can
define an action of G on V = Cz + Cy and then extend it to an action on R. We
think of G acting on V as a group of homomorphisms of a C-vector space in the

following way

and for any vy € C\{1} such that v® =1
b(z) =z

b(y) = v*y.

If Ir(a) were G-stable, in particular we would have (Ig(a))® = Ig(a). By

Lemma 3.4.10 1), we would have
Ir(b™'ab) = Ig(a).
As b~'ab = ba, in particular, we would have
Ir(ba) NV = Ig(a) NV,
Now Ip(a)NV ={czx —cy:c€ C} and ba(y)—y =b(z) —y =71z —y. So
vz —y € Ir(ba)\Ig(a).
Hence Ig(a) is not G-invariant.
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Lemma 3.4.12 Let R be a commutative Noetherian ring, GG a finite subgroup
of Aut(R), M a mazimal ideal of R® and M any mazimal ideal of R such that
MN RS = M. We can form the ring Ry = RCR&(M) and extend each g € (7 to

an automorphism of Ras. Then, the following are equivalent
i) Ry is a G-Galois extension of (Ry)®;
i) Gr(M) = {lg};
i) Ip(G) ¢ M.

Proof. Assume R, G and M as stated above. If g € G, then the map
re~! — g(r)z~!, for all r € R, * € Cra(M) is an automorphism of Ras (One
should note that, as was said in the first chapter, we are abusing notation when
we write rz~! for an arbitrary element of RX™!).

Since M is a maximal ideal of R, by Proposition 3.3.3, there is a maximal
ideal M of R such that M = M N RC,

By [44, Theorem 9.22], every prime ideal of Ry is of the form IRy for I a
prime ideal of R such that /N R C M.

Let MRy be a maximal ideal of Ry, where M is an ideal of R such that
MRS CM=MnNR®. SoMisa prime ideal of R maximal among the primes
M’ such that M'N R C M = M N RE. Then by GU, Proposition 3.3.2, we have
that M N R = M = M N R® and by Proposition 3.3.1, there is a € GG such that

M = M°. Obviously, for any 8 € G, M” Ry is a maximal ideal of Ry. So
Maxz(Ry) = {M Ry : a € G}

By Proposition 3.2.1.3, Ry is a G-Galois extension of (Rm)C if and only if
for all B € G and for each o € G\{1g}, there is £ € Rp such that

alz) -z ¢ M’ Ry
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As Ry = RCL5(M), it is then easy to conclude that Ry is a G-Galois extension
of (Ra)¢ if and only if for all 8 € G and for each a € G\{lg}, there is » € It
such that

a(ry)—r¢ M.

This holds, if and only if, for all 8 € G and each a € G\{lg}, In(a) M e
if and only if Ip(G) ¢ _M—ﬁ, for any § € G. By Lemma 3.4.10 17), [r(G) ¢ M if
and only if Ip(G) = Ip(G®) = (Ir(G))’™" ¢ M. So we have that 7) is equivalent
to 111). By Corollary 3.4.7, ii) is equivalent to iii). O

Proposition 3.4.13 Let G be a finite group of automorphisms of a commutative
Noetherian domain D and assume that D is finitely generated over D¢. Let D+(/

be any crossed product constructed with the given action of G on D. Then

Ap.c = {M¢ Maz(D®) :YM € Maz(D) with M N D¢ = M, Ip(G) ¢ M}
= {M € Maz(D®):3IM € Maz(D) with M N D = M, Ip(G) ¢ M}
= {M € Maz(D°): Ip(G)n D° ¢ M}.

Proof. By (86, Proposition 1.6 and Corollary 12.6], D * G is prime and Noethe-
rian. Let M be a maximal idea] of DC. By Corollary 3.3.10, (D*G)p = Dy + GG
is Azumaya if and only if Dy is a G-Galois extension of (Dp)®. The first two
equalities follow now from Lemma 3.4.12.

Let A" = {M € Maz(D®) : Ip(G)N D¢ ¢ M}. It is obvious that A’ C
Ap.c. Conversely let M € Ap.g. Then, by the first two equalities above,
Ip(G) € M for all maximal ideals M of D such that MNDS = M. It is then easy
to see (for instance by induction on the number of maximal ideals contracting
in D% to M), that Ip(G) ¢ U{M € Maz(D) with M N DY = M}. Take
d € Ip(G)\U{M € Maz(D) with MND® = M} and d = [[,ec d° € Ip(G)NDC.
If d € M for some M maximal ideal of D such that M N DS = M, then d? ¢ M,
for some g € G. Hence d ¢ M but M € Maz(D) and M A DE = M,
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contradicting the choice of d. Hence d € (Ip(G)ND®)\U{M € Max(D) with AN
D% = M}. So Ip(G)N DG ¢ M and Ip(G)N DS ¢ MNDC =M. O

The following results relate the Azumaya locus of some prime Noetherian

rings module-finite over their centres, with the singular locus of their centres.

Lemma 3.4.14 Let R be a prime Noetherian ring, module-finite over its centre.

If gl.dim(R) is finite, then Ap C Maz(Z(R))\Sr.

Proof. See [24, Lemma 3.3] O

Corollary 3.4.15 Let G be a finite group of automorphisms of a commutative
Noetherian domain D of finite global dimension. Form DG any crossed product
of G over D constructed with the given action of G on D and assume that D » (i

is Azumaya. Then Sp.g = 0.

Proof. Let G and D be as above. By Lemma 3.2.11, Z(D * G) = D% As
D *G is Azumaya, Ap.g = Maz(D®). By Corollary 3.4.9, we have that for cach
maximal ideal M of D, Gp(M) = {1¢}. Then by [108, Corollary 5.7], D * (i has

finite global dimension. The result follows from Lemma 3.4.14. O

Definition 3.4.16 Let R be a prime Noetherian ring, module finite over its
centre. We say that R is height 1 Azumaya if Rp is Azumaya over Z(R)p =
Z(Rp), for all primes P of Z(R) of height 1.

Lemma 3.4.17 Let D be a commutative Noetherian domain, G a finite subgroup
of Aut(D) and P a prime ideal of D€ of height one. Let P be any prime ideal of
D such that P = PN DS. Then ht(P) =1 and the following are equivalent:

i) Dp is a G-Galois extension of (Dp)®;
) Gp(P) = {lg};

99



iii) Ip(G) ¢ P.

Proof. Let D, (¢ and P be as above. If P is a prime ideal of ) such that
P = PN D%, then by INC, Proposition 3.3.2, P is a prime of height less than or
equal to 1. As P # 0 (P is of height 1), P # 0 and so P is of height 1.

Let C = Cps(P) = D°\P and MC™' € Maxz(Dp). Hence M is maximal
among the prime ideals N of D such that N N D% C P. As P has height 1 and
D is a domain, MNDS =0or MND® =P. If MNDE =0, by INC, M =0, a
contradiction. Hence MN D% = P=PNDC. So M = 13"‘, for some a € (4, by
Lemma 3.3.1. Hence the set of maximal ideals of MC™! is just {P°C™' : a € (i}.

Now the proof follows as the proof of Lemma 3.4.12. O

Proposition 3.4.18 Let G be a finite group of automorphisms of a commutative
Noetherian domain D with D a finitely generated D-module. Form D x G any
crossed product constructed with the given action of G on D. Then the following

are equivalent
i) D* G is height 1 Azumaya;
it) for all P € Spec(D) of height 1, Ip(G) ¢ P;
1) for all P € Spec(D) of height 1, Gp(P) = {1c};

i) for all P € Spec(D) of height 1 and for all 1 # g € Stabg(P) ={g € (' :
P = P}, g acts non-trivially on D/P.

Proof. Let D and G be as above. In this case, D * G is finitely generated as
a D%module. The crossed product D * G is height 1 Azumaya if and only if
for all P € Spec(DC) such that ht(P) = 1, Dp * G is Azumaya. By Corollary
3.3.10 D % G is height 1 Azumaya if and only if for all P € Spec(D%) such that
ht(P) = 1, Dp is a G-Galois extension of (Dp)C.
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As prime ideals of D of height 1 contract to prime ideals of D of height 1
(by GD), by Lemma 3.4.17 i) and 1) are equivalent. By Corollary 3.4.7, i7) is

equivalent to i77) and it is obvious that i17) is equivalent to iv) O

To prove the following proposition, we need to introduce some more definitions

which will only be used in the proof of Proposition 3.4.21 and Lemma 3.4.22.

Definition 3.4.19 Let R be a ring and M a finitely generated right or left R-
module. The grade of M is defined to be

J(M) = inf{n|Exth(M, R) # 0} € NoU {400}
see [59] and [91].

Definition 3.4.20 Let R be a Noetherian ring and let M be a finitely generated
right or left R-module. We say that M satisfies the Auslander condition if the fol-
lowing holds: for every non-negative integer ¢ and every non-zero submodule N of
Ezty(M, R), j(N) > i. (Note that Ezth(M, R) is an R-module on the opposite
side to M in view of the fact that R is an R-module.) If every finitely generated
right and left R-module satisfies the Auslander condition, then we say that R sat-
isfies the Auslander condition. A Noetherian ring is called Auslander-Gorenstein
(respectively Auslander-regular), if it satisfies the Auslander condition and has
finite right and left injective dimension (respectively global dimension).

An Auslander-Gorenstein ring R is called Macaulay if j(M) + K.dim(M) =
K.dim(R) holds for every finitely generated right or left R-module M, where
K.dim( ) denotes the (Gabriel-Rentschler) Krull dimension (see [44] for the defi-

nition and properties of K.dim).

Proposition 3.4.21 Let G be a finite group of automorphisms of a commutative
Noetherian domain D with D a finitely generated DS -module. Form any crossed

product D * G constructed with the given action of G on D. If

101



i) gl.dim(D * G) is finite,
and

ii) for all P € Spec(D) of height 1, Ip(G) € P,
then Ap.c = Maz(D%)\Sp.q.

In order to prove Proposition 3.4.21, we need the following lemma.

Lemma 3.4.22 Let D be a commutative Noetherian domain of finite injective
dimension. Assume that D is a semilocal ring with mazimal ideals X,,..., X,
and that K.dim(D) = K.dim(Dyy,), for all i € {1,... ,t}. Then D is Auslander-

Gorenstein and Macaulay.

Proof. Let D be as above. By [12, Corollary 3.4 and §1], every commutative
Noetherian ring of finite injective dimension is Auslander-Gorenstein. So D is
Auslander-Gorenstein. Also D is such that Dy is Auslander Gorenstein-Macaulay
for every X maximal ideal of D, [109, Proposition 3.6]. Hence, if M is a finitely
generated D-module, M Dy, is a finitely generated Dx,-module and

J(MDy,) + K.dim(MDy,) = K.dim(Dyx,) = K.dim(D) (1)

foralli e {1,...,t}.

As for all 1+ € {1,...,t}, (Ezth,(M,D))Dx, = Ewt‘Dx'_(MDx.,l)x,), (25],
J(M) < j(MDy,). Also as annp(Ext},(M, D)) is an ideal of D, it will be con-
tained in one of the maximal ideals, Xx say. Hence Eztl, (M, D) is not (D\ Xy)-
torsion and j(M) = j(MDy,). So

j(M) =inf{j(MDx,):i €{1,... ,t}} (2).

Let M be a finitely generated D-module. Then if ht( ) denotes the
height of a prime ideal we have K.dim(M) = K.dim(D/r.annp(M)) =
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maz{ht(X;/r.annp(M)) : r.annp(M) C X;}. Foreach i = 1,... ¢,

-1 ifannp(M X;
K.dim(MDy,) = o(M) ¢ :
ht(X;/r.annp(M)) ifrannp(M) C X;

since ht(X;Dy, /r.annp(M)Dy,) = ht(X;/r.annp(M)) in the second case. Hence
K.dim(M) = maz{K.dim(M Dy, ),? € {1,... ,t}} (3).

Without loss of generality we will assume K.dim(MDy,) = K.dim(M) and
3(Mp,,) = j(M), for some u,v € {1,...,t}. Then by (1) and (2)

K.dim(D) = K.dim(MDx,)+ j(MDx,) = K.dim(M) + j(Mp,_)
> K.dim(M) + j(M);

also, by (1) and (3)

K.dim(D) = K.dim(MDyx,)+ j(MDx,)= K.dim(MDx,) + j(M)
< K.dim(M) + j(M).

So D is Auslander-Gorenstein Macaulay O

Remark 3.4.23 We should note that Lemma 3.4.22 is false without the un-
mixedness condition. For instance take R = C[z,y], P =< z,y > the idcal of
R generated by = and y and Q =< = + 1 > the ideal of R generated by z + 1.
Let D be the localization of R at P N Q. The commutative Noetherian domain
D has finite injective dimension. In this case the maximal ideals are QD and
PD. As @Q has height 1, K.dim(Dgp) = 1 but K.dim(D) = 2. If we take the
D-module W = D/QD, K.dim(W) = 0. As pr.dim(W) = 1, by [91, Theorem
9.6], j(W) < 1 and the ring D is not Auslander-Gorenstein Macaulay.

Proof of Theorem 3.4.21: As D is a commutative domain Z(D * G) = DY,
by Lemma 3.2.11.
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Let M ¢ Ma:r.(DG). Then MDI?,, is a maximal ideal of Df,,. Also M € Aj...
if and only if Dp * G is Azumaya. As Z(Dy * G) = D§; and (DM)MD,@ is just
Dy, M € Ap.c if and only if MD§; € Ap,ug. Moreover M € Sp.g if and only
if MD§, € Spg G-

As D is finitely generated over DY, Dps/M Dy is finitely generated over
DS/M, a field, hence is Artinian. As in the proof of Lemma 3.4.12, we have
that Maz(Dy) = {M° Dy : g € G}, where M is a maximal ideal of D such that
MND% =M. SoMDy C J(Dp) and Dy is semilocal.

As D is a subring of D*G and a direct summand of D*G as a D-bimodule, by
[76, Theorem 7.2.8], gl.dim(D) < gl.dim(D*G)+pr.dimp(D*G). As D+G is free
as a module over D and of finite global dimension, we have that D also has finite
global dimension. Hence Dy has finite global dimension as well, [76, Proposition
15.2.8]. By [91, Theorem 9.12], the supremum of the injective dimensions of Dy-
modules is equal to the supremum of the projective dimensions of Djs-modules,
hence the injective dimension of Dy (as a Dy-module) is finite.

By Lemma 3.4.22, we have that Djps is an Auslander-Gorenstein Macaulay
ring. By [109, Proposition 3.9] any ring strongly graded by a finite group and
with Noetherian coefficient ring is Auslander-Gorenstein and Macaulay if and
only if the same happens for the basis ring, so Dy * G is Auslander-Gorenstein
and Macaulay. As D *G is regular, Das * G is regular as well [76, Corollary 7.4.3].
So Dy * G is Auslander-regular Macaulay.

By ii) and Proposition 3.4.18, D * G is height 1 Azumaya. By [86, Corollary
12.6] Dar*G is prime. Hence Dp*G is a prime Noetherian ring, module finite over
its centre, Auslander-regular and Macaulay, and Das*G is height 1 Azumaya. So,
by (24, Theorem 3.8}, we have Ap,,.c = Maz(D$)\Spy+c. By the discussion at
the start of the proof, Ap.q = Maz(D%)\Sp.g. O

Remark 3.4.24 Let D = Kl[z,,z7',... ,%n,2;'] and identify the multiplica-

tive abelian group generated by z,,...,z, with Z". Take G a subgroup
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of the group of linear isomorphisms of Z", GL(Z") = GL,(Z), the group
of invertible n x n matrices with integer entries. We say that ¢ € ( is
a reflection if and only if it is a conjugate in GL,(Z) of one the matrices
[ 1 q [ -1 1 -

1 1

d= or e =

[ L] 1]
In this case, by [60, Lemma 2.3], condition ¢i) of Proposition 3.4.21 is equiv-

alent to

1t') There are no reflections in G\{1}.

We would like to establish when, given a finite group G of automorphisms
of a commutative Noetherian domain D satisfying condition i) of Proposition
3.4.21, the crossed product will have finite global dimension.

In [108], Zhong Yi, gave a sufficient condition for a crossed product of a
commutative Noetherian ring with finite global dimension by a polycyclic-by-
finite group to have finite global dimension. In [108, Corollary 5.7] he proved:
Let R be a commutative Noetherian ring with finite global dimension. Let G be a
polycyclic-by-finite group and S = R * G a crossed product. If for every mazimal
ideal of M of R with characteristic char(R/M) of R/M equal to p, a positive
(prime) integer, Gr(M) contains no element of order p, then gl.dim(R x G) is
finite.  This condition has already been used in the proof of Corollary 3.4.15,
where Gp(M) was {15}.

Corollary 3.4.25 Let G be a finite group of automorphisms of a commutative
Noetherian domain D. Form D % G any crossed product constructed with the

given action of G on D and assume that D is finitely generated over D%. If
i) gl.dim(D) is finite,

it) for every mazimal ideal M of D with char(D/M) = p > 0, Gp(M) contains

no element of order p,
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ti) for every prime ideal P of D of height one, Ip(G) € P,

then Ap.g = Ma:r.(DG)\SD,.G. Moreover the closed subset of singular (or,

equivalently, non-Azumaya) points of Max(D) is given by
Sp.c = {M € Maz(D®) : In(G)n D¢ C M}.

Proof. Since G is finite, D % G is finitely generated as a module over D). As
D is finitely generated over D, D * G is finitely generated over D%. By [108,
Corollary 5.7] gl.dim(D @) is finite and the Corollary follows from Proposition

3.4.21, with the last sentence being a consequence of Proposition 3.4.13. O

In the case when D is a commutative domain and an affine algebra over an
algebraically closed field of characteristic zero, every maximal ideal M of D is
such that D/M = K and the characteristic of D/M is zero, so if D has finite
global dimension then so too does D * G, [108, Corollary 5.7].

In the next proposition we show that condition #ii) of Corollary 3.4.25 is nec-
essary as well as sufficient provided we assume that D has finite global dimension
and is an affine commutative Noetherian algebra over an algebraically closed field

K of characteristic zero.

Proposition 3.4.26 Let D be a commutative domain and an affine algebra over
an algebraically closed field K of characteristic zero and G a finite group of K -
automorphisms of D. Form the crossed product D x G constructed with the given
action of G on D. Assume also that gl.dim(D) is finite. Then Ip(G) € P for all
P € Spec(D) of height 1 if and only if Ap.g = Maz(D®)\Sp.c.

Proof. Assume D and G as above. By Noether’s Theorem [99, Theorem 2.3.1],
DC is affine and D is finitely generated as a module over D€. By Lemma 3.2.11,
Z(DxQ) = DG,

If M is a maximal ideal of D, D/M = K of characteristic zero, hence D * G

has finite global dimension, [108, Corollary 5.7).
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By Corollary 3.4.25 and Proposition 3.4.18, we may assume that
Ap.c = Maz(D%\Sp.c

and aim to prove that D * G is height 1 Azumaya.

As D is a Noetherian domain of finite global dimension, D is integrally closed
[74, Theorem 19.4 and Theorem 11.5]. Hence so is D®. By Serre’s Theorem [45,
Theorem 11.8.22A], as D€ is Noetherian, for every prime ideal P of DS of height
1, D is regular. (See also [38, Theorem 19.12] for the relation of the different
concepts of regular rings used).

Let P be a prime of DE of height 1. As D® is a domain and an affine A-
algebra, for K an algebraically closed field of characteristic zero, as in Remark
3.4.4 iii), Sp.g = {M € Maz(D®) : J C M}, for a certain ideal J of D°.
Suppose that for all maximal ideals M of DS such that P C M, M € Sp.c;. As
DS is a Hilbert ring every prime ideal is the intersection of maximal ideals 58,
Corollary 5.4]. So N{M € Maz(D): P C M} = P. Hence J C P and so D§
is not regular, a contradiction. So there is a maximal ideal M of D such that
P C M and M ¢ Sp.g. As by hypothesis Ap.c = Maz(D%)\Sp.c, we have
Dn * G Azumaya. As P C M, Dp * G is Azumaya, [34, Corollary 11.1.7]. So
D % G is height 1 Azumaya as required. O

The next three examples show that there are cases of commutative Noetherian
domains D of finite global dimension which are affine algebras over algebraically
closed fields of characteristic zero and such that Ap.g # Maz(D%)\Sp.c or
equivalently, condition 74i) of Corollary 3.4.25 is not satisfied. In both of the first
two examples the singular locus is empty. The last example gives a case when
all the conditions of Proposition 3.4.26 are verified and the singular locus is not

empty.

Example 3.4.27 1) Take the group ring CG where G =< a,b: b 'ab = a"! >,
We can think of CG as C < a,b* > *G where G = G/ < b* >= C;. As b2ab™? =
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b(bab™')b™! = ba~'b"! = a, b’a = ab?® and CG = Cla,a!,b%,b7% * G where the
action o is a homomorphism such that o(b)(c) = ¢, for all ¢ € C, a(b)(b?) = b?,
o(b)(a) = bab~! = (ba~'6"')! = a~" and o(b)(a~!) = ba~'b"! = (bab~!)"! = a.
So we can think of G as a finite group of C-automorphisms of the commutative
Noetherian domain and affine C-algebra, Cla,a™!,b%,b72].

By Lemma 3.2.11, Z(CG) = (Cla,a™',b?,b72])¢ = C[6?,67%,a + a™!] and
C < a,b® > is finitely generated over (Cla,a™,b2,5672])C.

By (108, Corollary 5.7] Cla,a™!,b% b7%] and Z(CG) have finite global dimen-
sion. So, by [76, Proposition 15.2.8], So¢ = @ but CG is not Azumaya as the
augmentation ideal {¥,eqcog @ Syec € = 0} and < a —1,b+ 1 >, the ideal
generated by a — 1 and b+ 1, are both maximal but contract to the same max-
imal ideal of Z(CG), < b* —1,a + a™' — 2 >, the ideal generated by b%* — 1 and
a+a!-2. So the non-Azumaya locus must be non-empty.

2) Take D = Clz] and G = {1,g} where g is the C-automorphism of D
defined by g(z) = —z. Hence D° = C[z?] and D is finitely generated over
D®. Take the crossed product D * G constructed with the given action. As
Z(D x G) = C[z?), a regular ring [76, Theorem 7.5.3], Sp.c = 0, [76, Proposition
15.2.8]. As Ip(G) =< z >, the ideal generated by = which is a prime ideal of
height 1, Ap.g # Maz(Z(D * G))\Sp.c-

3) Let D = C[z,y] and G = {1,g} where g is the C-algebra automorphism
of D such that g(z) = —z and g(y) = —y. Form the crossed product D x G
with the given action. In this case D¢ = C[z?,zy,y?| and does not have finite
global dimension, see [76, Example 7.8.10]. So Sp.c # @ by (76, Proposition
15.2.8]. Since z and y are in Ip(G) and G fixes the ideal of D generated by z
and y, < z,y >, and acts trivially on the factor, we have Ip(G) =< z,y >. So
Ap.c = Maz(D®)\Sp.c = Maz(D°)\{< %, zy,y* >}, by Corollary 3.4.25.

Remark 3.4.28 It is not true in general that given a ring R and a fi-

nite group of automorphisms G, that R will be finitely generated over RC.
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For instance take R = , and the automorphism g of R such that
Q Z
a 0 a O . , , Z
g: — . Then if G = {id, g}, we have R® =
b ¢ -b ¢ 0 Z

but R is not finitely generated over RC.

However, if R is a commutative affine algebra over a field A" and G is a
finite subgroup of K-automorphisms of the algebra, then RC is affine and R is
finitely generated as an RG-module [99, Noether’s Theorem, Theorem 2.3.1]. The
problem of when is R finitely generated over RC is discussed in [41], §10 and in
(80], §2.

3.5 Additional remarks

1. All definitions and results of §1 are well known. The main references are

[34], [49], [50], [103] and [104].

2. Section §2 follows the ideas of [3] and [1]. Proposition 3.2.2 and Proposi-
tion 3.2.1.14, are respectively, our generalization for crossed products of [3,

Theorem 1] and [1, Theorem 3.4], using the same type of arguments as in

[3] and [1].

3. We consider Theorem 3.3.6 to be our main result of section 3. The other
results of section 3, unless stated otherwise and with the exception of Propo-

sition 3.3.2, are new.

4. Lemma 3.4.6, Corollary 3.4.7 and Lemma 3.4.10 are easy and known, their
proof was included as we were not able to find any good reference. Proposi-
tion 3.4.13, Proposition 3.4.21 and Proposition 3.4.26 are our main results

of this section.
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Chapter 4

FBN and PI Skew-Laurent Rings

In this chapter we study when some skew-polynomial and skew-Laurent rings over
Noetherian rings are fully bounded Noetherian rings (or FBN rings for short).
(See below for the definitions). So far we have been unable to completely de-
termine which of these rings are FBN, although one can describe completely the
ones which satisfy polynomial identities, a subfamily of FBN rings.

The results in §1 and §2 are an easy generalization of the ones of R. I.
Damiano and J. Shapiro in [32], who studied the above properties for the case
of skew-polynomial rings with one indeterminate and one automorphism of the
Noetherian basis ring.

As every Azumaya ring is a PI ring, in section 3, we combine the results of
section 2 and chapter 3 to describe the Azumaya Locus of some skew-Laurent

rings.

4.1 Fully bounded rings

In this section we introduce the basic definitions and some descriptions of FBN
rings. For more details see [29] and [44]. We show also that the necessary

condition obtained for our rings to be FBN is not sufficient.
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Definition 4.1.1 A ring R is said to be right bounded if every cssential right

ideal of R contains an ideal which is essential as a right ideal.

Remark 4.1.2 A prime ring is right bounded if and only if every essential right

ideal contains a non-zero ideal.

Definition 4.1.3 A ring R is said to be right fully bounded if every prime factor
ring of R is right bounded.

A right (left) FBN ring is any right (left) fully bounded right (left) Noetherian
ring. An FBN ring is any right and left FBN ring.

Proposition 4.1.4 Let R be a right Noetherian ring. Then R is right FBN if
and only if for every right ideal ] of R, there arery,... ,r, € R such that

r.anng(R/I) =N {r € R:mir € I} ()

Proof. [28, Corollaire II 9] and [67, Theorem 3.5]. O

Definition 4.1.5 Condition (%) is called Gabriél’s condition.

Proposition 4.1.6 Let S be a right FBN ring and R a subring of S. If as a left
R-module, S is free of basis {1,s4 : @ € A,so € S}, then R is right FBN.

Proof. [29, Proposition 2.1) O

Theorem 4.1.7 (Letzter) If R is a right FBN ring and R is a subring of a
ring S such that S is finitely generated as a right R-module, then S is right IFBN.

Proof. [44, Theorem 10.7) O

Proposition 4.1.8 Let R be a ring and X C Cr(0) a right Ore set. If R is right
FBN so is RX 1.
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Proof. [29, Proposition 1.5] and [67, Theorem 3.5] O

The following notation will be kept through the rest of this chapter.

Notation 4.1.9 Let R be any Noetherian ring, ai,...,@, automorphisms
of R commuting pairwise, 7 = R[f,... 0. 01,... ,an] and § =
R[6,,67, ... ,0,, 0-';a,... ,ay) the skew-polynomial ring and the skew-Laurent

ring, respectively.

We will denote by G the abelian group generated by ai,. .., a, and by Il the
abelian torsionfree group generated by 8y, ... ,0,.

Define ¥ the group homomorphism from H onto G such that ¥(8;) = «,. for
alli € {1,... ,n}. Let K. = Ker (¥). Hence G = H/K..

We can think of S as being a crossed product of R over H, R+ H.

Each s € S can be written as

S=Zrhh

heH

for some r, € R or
S = Z?"JGJ
J
where J = (j(1),...,j(n)) € Z", r; € Rand 87 = 1) .. g1,

Remark 4.1.10 One should note that although Notation 4.1.9 is almost the
same as Notation 2.2.8 in the second chapter, in this chapter we won’t assume

that R is commutative as we did in the previous one.

Notation 4.1.11 If R is any ring and P the prime radical of R, for every auto-

morphism « of R, we can define an induced automorphism of R/P, &, such that

a(r+P) =a(r) 4+ P, for any r € R.

As was said in the introduction of the chapter, in [32] Damiano and Shapiro
gave a necessary condition for a twisted polynomial ring of the form R[0; ],
where o is an automorphism of the Noetherian ring R, to be an FBN ring. The

following proposition is a generalization of their results.
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Proposition 4.1.12 Let P be the prime radical of the Noctherian ring R. If S s
right (left) FBN, then R is right (left) FBN and for all i € {1,... ,n}. @]z r)

has finite order.

Proof. Suppose that S is right FBN. Then by Proposition 4.1.6 R is right FBN.

We will assume first that R is a prime ring. So S is a prime ring as well
[76, Theorem 1.2.9]. Fix ¢ € {1,...,n}. Since §; — 1 is a regular clement of S.
(6; —1)S is an essential right ideal of S. By hypothesis, S is right FBN, so there
exists a nonzero ideal I of S contained in (8; —1)S.

Take a nonzero element of I, p = ¥ jea r;07 € I say, with a minimal number
of nonzero coefficients. Multiplying p by suitable powers of the 8, if necessary,
we can assume that A C N?. We will assume j(!) € {0,... ,m} for any J € A
and 1 <! < n such that ry # 0.

Since p € (; — 1)S, there will be r’; € R such that

e = (6, -1) 3 8 er, (1.1)
JEA J'eN!
Comparing both sides of 4.1, as A C Ng those J' in A’ such that rf, # 0 are in
N§. So we can assume that A’ C Np. Also by adding zero in either side of the
equation if necessary, we can and will assume that A = A’.

Then, for each j(1),...,j( = 1),j(i +1),...,3(n),

T((1)ssd(i=1),0,§(41) 0 i(n)) = —Tfj(x)....,j(i-l),o,j(i+1),...,j(n)),
PG vndi=1) i (41),i(n) = ai(rij(l),...,j(i—l),l—l,j(i+l).....j(n)))_r(j(l).---.J(l—l)J-J(Wl)--»-J("))
0<l<m,
0 = ai("(,’(l)....,j(.'-x),m,j(m).....j(n)))'

From (4.1) and the equalities above it is obvious that there is A =

(a(1),...,a(n)) € A such that a(i) # 0 and ra # 0. Otherwise, for every
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A € A we would have

T(a(1),... .a(i=1),0,a(i+1),...,a(n)) = *Tfa(x),....a(i—1),0,a(i+1),...,a(n))*
!
0 = ai(r(a(l),...,a(i—l).l—-l,a(i+l),...‘a(n))) - ,‘E!l(l),...,vl(l—l)./.rl(l? 1), Lt
0<l<m,
0 = ai(rza(l),....a(i—l),m,a(i+l),....a(n)))’

but then r4 = 0 for any A, a contradiction.
We claim that there is an element B = (b(1),...,b(n)) of A such that ry # 0.
b(¢) # a(i) and b(l) = a(l) for all [ # i. Suppose not. Then we would have

—_ /

0 = “T(a(1),..,a(i=1),0,a(i+1),...,a(n))’

0 = ai(TEG(I),...,a(i—l),O,a(i+l)v--ya("))) - ria(l)w-va("—l)vl-"(‘“)'"--“("”
— 7

0 = ai(rza(l),...,a(i-l),a(i)—-2,a(t'+l),...,a(n))) - r(a(l),....a(i—-l),a(i)—l,a(i+l),....a(n))
— /

ra = ai("(a(l),...,a(i—1),a(i)-1,a(i+1),...,a(n))) - Tza(l),...,a(i-n),a(i),a(.‘n) ..... a(n))

0 = at(rza(l), ,a(i—l),a(i),a(i+l),...,a('n))) - rZa(l),...,a(i—l),a(i)-{-l,a(i+l) ..... a(n))
— / !

0 = ai(r(a(l),...,a(i—l),m—l,a(i+l),...,a(n))) — T(a(1),....a(i=1),m,a(i+}).....a(n}))

0 = ai(’"(a(l)....,a(i-l),m,a(m),...,a(n))),

so r4 = 0, a contradiction.
Then, there are A, B € A such that rg,r4 # 0, a(i) # b(i) and a(l) = b(l) for
allle {1,... ,m}\{i}.

Let 2 € Z(R). Hence, as oy, ... ,a, commute pairwise,

—-a

P = zp — poy (l)...a;a(")(z)

= Z (2ry — r_;a{(l)_a(l) v a',’;(")_a(")(z))ﬂ" el
J=((1)j(n))EA

has a number of nonzero coefficients strictly less than that of p (because ry # 0

but the coefficient of 84 in p is zero). So p = 0. In particular the coefficient of 6%
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is zero. As a(l) = b(l) for all [ € {1,...,m}\{i}, we have that, for any = € /().
zrg — rBa?(i)_a(i)(z) =0. (1.2)

Since z € Z(R) also a?(i)"a(i)(z) € Z(R). As R is prime and rg # 0 from (-1.2).
we have af(i)—a(i)(z) = z. Hence a;|z(r) has finite order.
Now assume that R is any right Noetherian ring and let P be its prime radical.

Since P is a G-stable ideal of R
S/PS = R/P[6,,6;},...,0,,0  ay,... &)

Moreover, if S is right FBN then so is S/PS. Thus, without loss of generality,
in deriving the conclusions of the proposition, we can assume P = (0). As I is
Noetherian (0) = P,N...N P, a finite intersection of distinct minimal primes of
R.

Since, for each i € {1,...,n}, o; permutes the minimal primes £,..., I,
there exists v; € N, such that a!*(P;) = P;, for all j € {1,...,(}.

As Sisright FBNsois S’ = R[8%,07“,...,05, 0, af', ... ,a%], by Propo-
sition 4.1.6. Hence, for each j € {1,...,(}, P;S"is an ideal of S’ and

S'/P;S' = R/P;[67,07", ... 00,0 a, ... o]
is bounded. From what was said above, there are k; ; such that
. Va'kt',] — d
a:|Z(R/P,) = 14Z(R/Py)-
Take k; = l.e.m.{viki; : j € {1,...,(}}. Hence, for any z € Z(R), we have
a¥i(z)—ze Py, forallje{1,...,¢).
So,
af¥i(z2)—2=0

and a;|z(py has finite order. The proof for the left case is similar. O
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Proposition 4.1.13 Let P be the prime radical of the Noctherian ring k. If T
18 right (left) FBN, then R is right (left) FBN and for alli € {1,... ,n}. & zinsr)

has finite order.

[

Proof. By Proposition 4.1.6, we have that R is right FBN. Thenas § = T X! =
X 'Tlor X={67:J= (4(1),...,73(n)) € Z"}, the result follows from Propo-
sition 4.1.8 and Proposition 4.1.12. O

In the converse direction to the above results, we have:

Proposition 4.1.14 Let P be the prime radical of the Noetherian ring It.
Suppose that R/P is finitely generated as a Z(R/P)-module and for all i €
{L,...,n}, Qi|z(r/p) has finite order. Then S and T are FBN.

Proof. Since R is Noetherian, P is nilpotent, [44, Theorem 2.11]. Hence PS,
[resp. PT] is contained in every prime ideal of S, [resp. T]. It suffices to prove
that

S/PS = R/P[6,,07",...,0.,0; @, ... &)

and

T/PT = R/Plby,...,0.;@,...,4,)

are FBN. Hence, without loss of generality suppose P = (0).

Let n; be the order of oi|lzr- Then Z(R)[6,,... .00 1,... ,0,] and
Z(R)[0,,67,. .. y0n, 0% p,. .., ap] are finitely generated as modules over the
commutative subrings Z(R)[607',...,00"], Z(R)[67*,07™,... .00, 0] respec-
tively. As R is a Noetherian ring finitely generated over the centre Z(FR),
by Einsenbud’s Theorem [37, Theorem 1], Z(R) is a Noetherian ring and so
Z(R)[67,...,67"] and Z(R)[6},0;™,...,6%,07""] are FBN rings. By Let-
zter’s Theorem, Theorem 4.1.7, we have that Z(R)[br,...,0n;qq,... ,a,] and
Z(R)[61,07",... ,0,,0-%:4,... ,a) are FBN.

n¥n
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Since S and T are finitely generated over Z(R)[01,...,0.;a1,... .a,] and
Z(R)[0,,077,...,0,,0: ; aq,... , ), respectively, S and T are FBN, by Letzter's

nyYm

Theorem, Theorem 4.1.7. O

One might naturally ask whether the converses of Propositions 4.1.12 and
4.1.13 are true. Proposition 4.1.17 provides a negative answer to this question.

In [90], Guy Renault proved:

Proposition 4.1.15 Let D be any division ring. Then the following are equirva-

lent:
1. D[x] is (left, right) FBN;
2. for all n > 1 M,(D) is algebraic over Z(D).

Proof. The result follows from [90, Proposition 8 and Theorem 3]. O
In [29], Cauchon generalized this result, proving the following:

Theorem 4.1.16 Let U be any ring. Then the following are equivalent:
1. Ulz] is (left, right) FBN;

2. (a) U is (left, right) FBN;

(b) for every prime ideal P of U, the (left, right) quotient ring of U/ P is
isomorphic to the ring M,(K) for some division ring I\' satisfying:

For every integer m > 0, M,,(K) is algebraic over its centre.
Following the same ideas as [90] and [29], we have
Proposition 4.1.17 Let U be any ring. Then the following are equivalent
1. Ulz] is (left, right) FBN;

2. Ulx,z™1) is (left, right) FBN;
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3. i) U is (left, right) FBN;
ii) For every prime ideal P of U, the (left, right) quotient ring of U/’ is
isomorphic to the ring M, (K') for some division ring W satisfying:

For every integer m > 0, M, (K) is algebraic over its centre.

Proof. If we assume 1 then, by Proposition 4.1.8, U[z,z™"] is (left, right) FBN.

Now assume that U[z,z7!] is left FBN. As U[z,z7'] is a free {/-module of
basis {2* : i € Z}, by Proposition 4.1.6 U is left FBN and we have 3.i).

Let P be a prime ideal of U. Obviously, P = PU[z,z™"]is an ideal of !/[r..r ™!
and as

Ulz,z™")/P 2 U/Plz,z7"]
P is a prime ideal of Ulz,z"']. Let $ = Cyp(0) and Uy = U/P. Then
S7'W\[z,z7!] is left FBN and S~'Uj is a left FBN simple artinian ring. Hence
S7U, & M, (D) for some division ring D. As S™'U\[z, &™) = My(D)[x, 7' =
M, (D[z,z~']), by Proposition 4.1.6 and Letzer’s Theorem, Theorem 4.1.7,
S=1Uy[z,z7"] is left FBN if and only if D[z,z"!] is left FBN.

Let p(z) be a nonzero element of D[z]. Then p(zx) is a regular element of
D[z,z7!] and D[z,z!]p(z) is essential as a left ideal of D{z,z™']. As D{r.r7'|
is left FBN, there is a non-zero two-sided ideal I of D[z,z~!] such that / C
D[z, z~'|p(z). Whence I is generated by an element of Z(D)[z, s '), q(a,07h)
say. Hence, there is a(z,z~!) € D[z,z™!] such that

q(z,z7") = a(z,z”")p(z). (4.3)

Multiplying (4.3) by a suitable power of z it follows that every polynomial of
Dlz] is a factor of a polynomial of Z(D)[z]. Hence by [90, Theorem 3], M,.(D)
is algebraic over Z(D) for every m > 0 and 3.ii) follows.

If we had assumed U[z,z~!] right FBN, in a similar way, we would get con-
dition 3.

If we assume 3, condition 1 follows from Theorem 4.1.16. O
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4.2 Polynomial identities in skew-polynomial
and skew-Laurent rings

Definition 4.2.1 Let R be any ring and f(z,,...,7.) an element of the free
algebra Z < zy,... ,z, >. We say that R satisfies f or f is a polynomial identity
of Rif f(ry,...,r,) =0, for all r; € R.

If at least one of the monomials of f of highest degree has coefficient 1. we
say that f is monic.

If R satisfies some monic polynomial in Z < zy,...,r, >, for some n € N,

we say that R is a polynomial identity ring or a PI ring.

Proposition 4.2.2 Let R be a Noetherian ring with prime radical P. The fol-

lowing are equivalent:

i) S is a PI ring;

i) T is a PI ring;
i6i) R is a PI ring and for all i € {1,... ,n}, Gilzryp) has finite order;

w) The ring R is PI and the image of the canonical homomorphism from (i to
Aut(Z(R/P)) is finite.

Proof. We shall prove that 1) => 1), 45) => i) and i) => 7). It is clear that
ii1) <=> iv).

As R is a Noetherian ring, S and T are Noetherian as well.

If S is a Pl ring, as 7 is a subring of S, T is a PI ring. Hence i) => ii).

Suppose that T is a PI ring. As R is a subring of 7, R will be Pl as well. By
[76, Corollary 13.6.6], T is FBN and by Proposition 4.1.13, forany 1 € {l,... .n},
there is m; € N such that (@i|zryP))™ = idz(r/p) and we have 111).

Suppose 7i1). As the prime radical P of R is obviously G-stable, PS5 is an
ideal of S and

S/PS = (R/P)*H.
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As R is Noetherian, by [44, Theorem 2.11], P is a nilpotent ideal and so is
PS. By [76, Lemma 13.1.7), S is P if and only if (R/P) * I is Pl. So. without
loss of generality we can suppose that P = (0) and so R is semiprime.

Let X be the set of all regular elements of Z = Z(R). Since R is a semiprime
PI ring, Z(RX~') = ZX~! by [92, Proposition 1.7.18]. By [92, Proposition
1.7.22], RX ! is semisimple Artinian. As ZX~! = Z(RX "), ZX ! is semisimple
Artinian as well.

We can thus write ZX ™! = @!_, F,, for F; a field, and then, by [92, Theorem
1.7.20], RX~! = @!_, R;, for R; a simple ring of centre F;. As R is a Pl-ring, by
Kaplansky’s Theorem, [76, Theorem 13.3.8], each R, is a central simple algebra
over F, hence RX ! is finitely generated over ZX .

For every 1 € {1,...,n}, since ;(X) C X, we can define o] € Aut(RN™'),
by setting o!(rz=!) = oy(r)a;(z)!, for each r € R and r € X. Then, we can
form the skew-Laurent ring, 8’ = RX~1[61,07",... ,0.,0; 5 a), ... ,al]. As His
a semiprime PI ring, by [92, Lemma 1.7.17], X C Cg(0), hence we can think of /¢
as a subring of RX~! and of S as a subring of &’. So it will be enough to prove
that 8’ is a PI ring.

my .

Also, for every i € {1,... ,n}, (allzr)) idz(R)-

Set 8" = RX77,67™,...,0m, 0™ (ay)™, ..., (ah)™]. The ring &'
is obviously finitely generated as an S”-module. As RX~! is finite dimen
sional over ZX~!, S” is finitely generated as a ZX~'[07',0;™,... 00 0,™"]
module.  Hence &' is finitely generated over the commutative subring
ZX7 o, 0™, ... 0™ 6-™n]. So 8’ is a Pl ring [76, Corollary 13.1.13], and

we have 7). O

Remark 4.2.3 There are examples of semiprime PI rings R and a € Aut(/1),
such that a|z(g) has finite order but o doesn’t. For instance take, as in [32,

Example 2], R to be the ring of 2 x 2 matrices over the rationals and let u =
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11
of « is the identity.

. Take a to be the conjugation by u. Then a|z) = 17(x) but no power

4.3 The Azumaya locus of some skew-Laurent
rings

In this section we apply the results of the preceding sections and chapter 3 to

some skew-Laurent rings. Throughout this section we retain Notation 4.1.9.

Proposition 4.3.1 Assume that R is a commutative Noetherian domain. The

ring S is Azumaya if and only if
i) G is finite;
i) R is a G-Galois extension of RC.

Proof. Suppose S as stated above is Azumaya. Then by {76, Proposition 13.7.7]
S is PI and by Proposition 4.2.2, G is finite.

We can write S as S = RK. x H/K, where H/K, is isomorphic to (¢, a
subgroup of Aut(R). By Lemma 3.2.1.5, RK., is a G-Galois extension of 'K,
if and only if R is a G-Galois extension of R®. Now the result follows from

Corollary 3.3.10. O

Example 4.3.2 Let S = C[0,07!; a] where a is the automorphism of C defined
by a(z) = z, for all z € C as in Example 3.3.8. As G =< a > is of finite order
and C is a G-Galois extension of C* = R (by Proposition 3.2.1.3), it follows from
Proposition 4.3.1 that S is Azumaya.

The following proposition describes the Azumaya locus of skew-Laurent rings

over commutative Noetherian domains. One can obtain a better description if we
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assume [ not only to be a commutative Noetherian domain but also affine over

an algebraically closed field A" and G a group of K-automorphisms, Corollary

4.3.4.

Proposition 4.3.3 Suppose that R is a commutative Noetherian domain, mod-

ule finite over R, and that G is finite. Then
As = {M € Maz(R°K.) : Ir(G) N R® ¢ M N R%}.

Proof. Let R and G be as above. We can write S = RK, * l{/K, where
H/K. = G and this group acts faithfully on the commutative Noetherian domain
RK.. By Lemma 3.2.11, Z(S) = R°K,. As R is finitely generated over R,
RK, is finitely generated over REK,. Let M € Maz(RCK.). By Proposition
3.4.13, M € As if and only if Igrk.(G) N REK. € M. By definition it is casy
to see that Irk.(G) = Ir(G)RK,. Hence Irk,(G) N REK, € M if and only if
Ir(G)N R® € M N R® and the equality follows. O

Corollary 4.3.4 Suppose that R is a commutative Noetherian domain which is
affine over an algebraically closed field K, and that G is a finite group of K-

automorphisms of R. Then
As = {M € Maz(R°K.) : MNRE® is contained in |G| distinct marimal ideals of It}

Proof. By Noether’s Theorem [99, Theorem 2.3.1], R is an affine A-algebra
and R is finitely generated over R®. So § is finitely generated as a module over
its center Z(S) = R°K., Lemma 3.2.11.

Let M € As. By Proposition 4.3.3, Ip(G)NR® ¢ MNR®. As M is a maximal
ideal of R°K,, a commutative affine algebra over an algebraically closed field, by
the Nullstellensatz REK,/M = K. Then RE/(M N RE) = K and M N R" is a
maximal ideal of R®. By Proposition 3.3.3, there are maximal ideals of 1 lying

over M N RS. Take M € Maz(R) such that M N RS = MNRY. So In((7) ¢ M.
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Hence, by Corollary 3.4.7, G(M) = {lg}. Take B € G\{l1¢}. Then. there is
r € R such that B(r) —r ¢ M.

Since R is a commutative affine algebra over an algebraically closed field i,
by the Nullstellensatz R/M = K. Now write r = m + ro, for some m € M
and ro € K. Hence 3(m)—m ¢ M and 17 # M for any 3 € (/\{l.}. Hence
#{M :aeG}=|G|

Conversely assume that M € Maz(RCK,) is such that M N RS is contained
in |G| distinct maximal ideals of R. Let M € Maz(R) be such that A n k¢ =
M N R%. So M” # M for any a € G\{lg}. So, for B € G\{1¢}, there is 77 € M
such that 8(m) — m ¢ M. Hence, for all 8 € G\{lg}, Ir(B) &€ M. Therefore
Ir(G) € M. Let N be any maximal ideal of RK, such that NN REK, = M. As
Irk.(G) = Ip(G)K, and N N R is a maximal ideal of R lying over M N ¥, we
have Irg,(G) € N and by Proposition 3.4.13 we have that M € As. O

Corollary 4.3.5 Suppose that R is a commutative Noetherian domain, affine
over an algebraically closed field K and G a finite group of K -automorphisms.
Then the ring S is Azumaya if and only if for all M € Mar(ll),
M e G} =|q).

Proof. As in the proof of Corollary 4.3.4, S is finitely generated as a module over
its centre. Hence S is Azumaya if and only if As = Maz(Z(S)) = Maxr(RYK,).

So the result is an immediate consequence of Corollary 4.3.4. O

Proposition 4.3.6 Suppose that R is a commutative Noetherian domain, (7 is
finite and R is finitely generated over RG. Then S is height | Azumaya if and
only if In(G) is not contained in any height 1 prime of R.

Proof. If Q is a prime ideal of R, QRK., is a prime ideal of RA.. Hence prime
ideals of height 1 of RK, contract in R to prime ideals of height less or cqual
than 1.
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Let P be a prime ideal of RA, of height 1. Then either the height of PN 12
is zero and in this case [p(G) € P (by definition we have that /p((/) # 0 when
R is a domain) or the height of PN R is 1 and in this case > = (PN R)RK,. So
we have that Ipp (G) € P if and only if Ir(G) € P N R. The result follows now
from Proposition 3.4.18. O

Proposition 4.3.7 Suppose R is a commutative Noetherian domain of finite
global dimension and G is finite. Assume also that R is finitely generated as a
module over RS and that Ig(G) is not contained in any prime ideal of R of height

1. Then the following sets of mazimal ideals of S are equal
i) {M € Maz(S): Smnz(s) is Azumaya}.
i) {M € Maz(S): Z(S) is regular at M N Z(S)}.
The above sets are contained in
{M € Maz(S): In(G) € M N R}
and they all coincide when R is a Hilbert ring.

Proof. Suppose R, G and S as above. As S = RK. * G, Z(S) = ROK.. As It
is finitely generated as a module over R® and G is finite, S is finitely gencrated
over its centre. Hence by [37, Theorem 1], Z(S) is Noetherian. So S is a PI ring
integral over Z(S), [76, Lemma 13.8.4], and by [76, Theorem 13.8.14] Z(S) C S
satisfy going up and lying over. Whence, if M € Maz(S), MNZ(S) is a maximal
ideal of Z(S) (by GU).

Since R has finite global dimension, so does the Laurent ring RA, [76, The-
orem 7.5.3]. By Proposition 4.3.6 and Proposition 3.4.21, we have Ag is the
complement in Maz(REK,) of the singular locus of S.

Let M € Maz(S). The ring Smnz(s) is Azumaya if and only if MNZ(S) € As.
Hence Sarnz(sy is Azumaya if and only if Z(S)mnz(s) is regular. So the first two

sets are equal.

124



Also, if M N Z(8S) € As, by Proposition 4.3.3, [r(G)N RS € M N RY. Hence
Ir(G) ;t_ M N R and

{M € Maz(S) : Smnz(sy Is Azumaya} € {M € Max(S): Ip(G) € M N R}

Assume now that R is a Hilbert ring. Take M a maximal ideal of S such
that Tr(G) ¢ M N R. As M is a maximal ideal of S, by Proposition 1.3.6 and
Lemma 1.3.5, M N R = N,egP?, for some prime ideal P of R. So Ip((i) & 1
for some ¢ € G. By Lemma 3.4.10, Ir(G) € P. Take M any maximal ideal
of RK, such that M N R°K, = M N Z(S),so MNR® = MNRE. As Ris a
Hilbert ring M N R is a maximal ideal of R, by [63, Theorem 27 and Theorem
30]), and (M n R)n R = P n RS. By Proposition 3.3.1, MN R = P4, for
some g € G. If Ipk,(G) C M, then Ir(G) C M N R = PS. By Lemma 3.4.10,
Ir(G) C P, a contradiction. So Ipk.(G) € M for all M € Max(RK.) such that
M N R°K, = M n Z(S) and by Proposition 3.4.13, M N Z(S) € As. So the

above three sets are all equal. [J

4.4 Additional remarks

1. The main Proposition of section 1 is Propostion 4.1.12, which extends the
results of [32, Proposition 4]. The main references for this section are [29]

and [44].

2. Proposition 4.2.2 is the main result of this section and follows the ideas of

[32]. The main reference for this section is [92].

3. All the results of section 3 are new.
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G-graded ring over R 11

G-invariant 11

G-prime ideal 12

G-prime ring 12

G-stable 11

Gabriel’s condition 111
grade 101

graph of links 26
H-separable extension 70
height 1 Azumaya 99

ideal link 25

inertia group 93

inner 1

internal bond 25

iterated skew-polynomial ring 5
left a-derivation 3

link between prime ideals 25
local ring 2

Macaulay 101

Ore extension 3

Ore set 13

outer 1

P-primary 27

PI ring 119
polycyclic-by-finite 10
polynomial identity ring 119



polynomial identity 119

Rees ring 33

regular element 2

regular ring 91

reversible 13

right bounded 111

right fully bounded 111

second layer condition 28

semilocal ring 2

separable extension 68

separable algebra 67

singular locus 92

skew-group ring 9

skew-Laurent extension of B 6

skew-polynomial ring 3, 5

strong second layer condition 28

strongly G-graded ring over R 11

strongly undesirable pair of primes
29

torsion submodule 25

torsionfree 25

torsion 25

trace map 80

trivial crossed product 9

trivial link 26

twisted group ring 9

X-outer 74

w-outer 73
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