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SUMMARY 

 

Pancreatic cancer represents less than 3% of cancers diagnosed each year in the 

United Kingdom yet despite this low number, it is the fifth highest cause of death 

by cancer. This situation has changed little in the past few decades with median 

survival barely altering between 1971 and 2007. The availability of well 

characterised in vivo models that histologically recapitulate pancreatic ductal 

adenocarcinoma (PDAC) have revolutionised the field of PDAC research. These 

models not only recapitulate the central epithelial component of human pancreatic 

cancer but also the incredibly complex microenvironment, a feature for which 

PDAC is well known. Due to the failure of therapies targeting the neoplastic 

epithelial cells within PDAC, increasing interest has been given to targeting the 

tumour microenvironment. The tumour microenvironment is extremely complex 

and consists of both cellular and non-cellular components and in PDAC exhibits a 

number of characteristic features including the presence of pancreatic stellate 

cells. Work in our lab has also highlighted stromal constituents such as lysyl-

oxidase and tenascin C which are vital for PDAC viability and/or metastasis. In 

recent years increasing numbers of stromal targets have been evaluated in mouse 

models of PDAC with varying success. To date work characterising the stromal 

changes elicited by targeted therapies has utilised methods which we believe lack 

the required fastidiousness required to obtain reliable and meaningful results. In 

this work we have established reliable methods for stromal characterisation, we 

have established methods to characterise the expression of tenascin C on formalin 

fixed specimens and we have applied these methods to determine the changes 

elicited by stromal targeting therapies. 
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OBJECTIVES 

 

In this study we aimed to establish methods to reliably characterise the 

composition of the tumour microenvironment. We aimed to evaluate the 

expression of tenascin C in our murine models of PDAC and determine its 

importance in both these models and in human disease. Finally we aimed to utilise 

these methods to determine the effects of lysyl-oxidase inhibition and CXCR2 

inhibition on the stroma in murine models of PDAC. 
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Chapter 1 

Introduction 

 

1.1 Biology of the pancreas 

The pancreas is both an endocrine and an exocrine gland, the endocrine pancreas 

being composed of the islets of Langerhans and the exocrine pancreas being 

composed of ducts and acini. These acini connect to the gastrointestinal tract 

through a system of ducts which converge eventually joining the common bile duct 

which enters the duodenum. The ducts are lined by a simple cuboidal epithelium 

surrounding a central lumen (see Fig. 1). 

 

1.2 Pancreatic cancer 

Pancreatic cancer represents less than 3% of cancers diagnosed each year in the 

United Kingdom (http://www.cancerresearchuk.org/cancer-info/cancerstats/). Despite this low number, 

it is the fifth highest cause of death by cancer with a median survival post-

diagnosis of only 6 months and a five year survival rate of less than 5%. This 

situation has changed little in the past few decades with median survival barely 

altering between 1971 and 2007. Patients are often diagnosed late with 

aggressive and metastatic cancer making the disease particularly difficult to treat. 

For this reason, surgical resection is possible for only 20% of pancreatic cancer 

patients. Even in patients with surgically resectable tumours who receive adjuvant 

chemotherapy the five year survival rate only increases from 5% to 15-20%.   

 

Over the same time period during which the prognosis for pancreatic cancer has 

remained unchanged other tumour types such as melanoma have seen dramatic 

increases in survival as a result of the development of therapies that target specific 

molecular alterations within the cancer cells themselves (Jang and Atkins 2013; 

Yauch and Settleman 2012). This approach is yet to yield similar results in 

pancreatic cancer with the current standard-of-care chemotherapeutic gemcitabine 

producing only a minimal survival increase in addition to its palliative effects.  

 

The most common cancer affecting the pancreas is Pancreatic Ductal 

Adenocarcinoma (PDAC), with the majority of cases being sporadic. A number of 

risk factors have been associated with PDAC including; breast cancer type 2 

http://www.cancerresearchuk.org/cancer-info/cancerstats/
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(brca2) and liver kinase B1 (lkb1) germline mutations (Jaffee, Hruban et al. 2002). 

These risk factors however only account for around 5% of PDAC cases.  

 

In common with a number of other cancers, pancreatic cancer is characterised by 

a series of early preneoplastic lesions. These lesions are called pancreatic 

intraepithelial neoplasia (PanIN) and occur in three stages, PanIN 1, 2 and 3 (see 

Fig. 1). The PanIN1 stage however is divided into PanIN1A and PanIN1B, defined 

by specific histological characterisics (Hruban, Goggins et al. 2000; Hruban, Adsay 

et al. 2001; Kern, Hruban et al. 2001). PanIN1A lesions are characterised by flat 

epithelial lesions composed of tall columnar cells which have basally situated 

nuclei and abundant supranuclear mucin. PanIN1B lesions although similar to 

PanIN1A lesions demonstrate a papillary, micropapillary or basally 

pseudostratified architecture. PanIN2 lesions may be flat but are generally 

papillary and must exhibit nuclear abnormalities with loss of polarity, 

hyperchromatism, nuclear crowding and/or anisokaryosis. PanIN3 lesions show 

greater nuclear abnormalities and disorganisation than PanIN2 lesions with duct 

epithelial cells appearing to “bud off” into the lumen of the duct, loss of cell polarity, 

abundant mucin production and increased/abnormal mitoses. Finally carcinoma 

occurs when neoplastic cells invade through the basement membrane. 

Carcinomas may further progress with loss of differentiation, generation of a 

marked stromal reaction and ultimately disseminated metastatic disease.  

 

With KRas being mutated in over 90% of cases and genes such as p16INK4A and 

p53 being mutated in over 50% of cases a genetic progression model has been 

described for PDAC (Hruban, Wilentz et al. 2000; Almoguera, Shibata et al. 1988; 

Smit, Boot et al. 1988; Hruban, van Mansfield et al. 1993; van Es, Polak et al. 

1995). KRas mutation alone in mouse models of pancreatic cancer is capable of 

reproducing the stepwise progression to PDAC seen in human patients (Hingorani, 

Perticoin et al. 2003) however this model has a long latency suggesting a 

requirement for further mutations, such as loss or mutation of p53, in order to allow 

progression to PDAC. 
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Figure 1: Overview of the evolution of PDAC 
Initially KRas mutation alone is sufficient to allow PanIN 1 formation. Gradual evolution 

subsequently occurs with the accumulation of further mutations allowing progression through 

PanIN stages to adenoma and eventually adenocarcinoma. (Images by Jennifer Morton). 

 

 

 

 

 

1.3 KRas and MAPK signalling 

KRas is a small GTP-binding protein and an important component of the MAPK 

signalling pathway. Ras when released from its association with GDP is able to 

bind GTP and subsequently activate downstream signalling predominantly through 

Raf, MEK and ERK. Importantly oncogenic forms of Ras are constitutively active 

and have been shown to trigger transformation, invasion and angiogenesis (Ellis 

and Clark 2000).  

 

1.4 p53 

Encoded by the gene TP53, p53 has a vital role in regulating the cell cycle and 

conserving the stability and integrity of the genome (Strachan and Read, 1999). 

Under situations of stress, such as DNA damage or hypoxia, activation of p53 

permits its translocation to the nucleus where it modulates the transcription of a 

wide variety of gene targets. This altered transcription results in quiescence, 

senescence or apoptosis (Shaw, Bovey et al. 1992; Diller, Kassel et al. 1990). 

TP53 mutation occurs in 50-70% of human PDAC following an initiating KRas 

mutation. Mutation of p53 does not necessarily result in the loss of p53 protein 

expression, in fact commonly it results in the expression of a stable gain-of-

function p53 protein that when present specifically promotes metastasis (Morton, 

Timpson et al. 2010).    

 

1.5 Genetically engineered mouse (GEM) models of pancreatic cancer 

The availability of well characterised in vivo models that histologically recapitulate 

pancreatic ductal adenocarcinoma have revolutionised the field of PDAC research. 

These models not only recapitulate the central epithelial component of human 

                    
Normal Duct PanIN 1 PanIN 2 PanIN 3 PDAC 
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pancreatic cancer but also the incredibly complex microenvironment, the 

importance of which will be discussed in detail in this thesis. As such they provide 

a unique opportunity, unavailable in vitro, to develop a deeper understanding of 

the processes governing the composition of the microenvironment as well as the 

ability to trial targetted therapies, often combinatorial, and determine their 

therapeutic potential.  

 

The models used in this work have been previously described and include the 

Pdx-Cre, LSL-KrasG12D, LSL-Trp53R172H, LSL-Trp53loxP, CXCR2-/- and Tenascin C-

/- mouse strains (Hingorani, Perticoin et al. 2003; Olive, Tuveson 2004; Jackson, 

Willis et al. 2001; Jamieson, Clarke et al. 2012). The main mouse model used in 

this work is the KPC model previously described by Hingorani et al. 2003. This 

model utilises Pdx driven Cre recombinase in conjunction with LSL-KrasG12D and 

LSL-Trp53R172H. The resulting expression of the Cre recombinase enzyme under 

the control of the Pancreatic and duodenal homeobox 1 promoter results in 

recombination and expression of KrasG12D and LSL-Trp53R172H within pancreatic 

tissues.  

 

1.6 Tumour microenvironment 

Due to the failure of therapies targeting the neoplastic epithelial cells within PDAC, 

increasing interest has been given to targeting the tumour microenvironment, a 

characteristic for which PDAC is well known (Feig, Gopinathan et al. 2012). Many 

epithelial cancers are able to induce a desmoplastic reaction with the 

accumulation of stromal cells and their products around the tumour epithelium. 

Pancreatic cancer, particularly PDAC, shows a particularly prominent 

desmoplastic reaction which can account for up to 90% of the tumour volume. 

 

The tumour microenvironment is an extremely complex “ecosystem” consisting of 

both cellular and non-cellular components (Feig, Gopinathan et al. 2012). The 

non-cellular fraction is made up of an extracellular matrix (ECM) including 

structural proteins such as collagens and fibronectin as well as soluble factors and 

enzymes such as cytokines, growth factors and proteinases. The cellular 

components of the tumour microenvironment include; myofibroblasts (activated 
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fibroblasts), inflammatory/immune cells, blood vessels and pancreatic stellate cells 

(Feig, Gopinathan et al. 2012).  

In addition to the high percentage of the tumour that is made up by stroma; PDAC 

is also unique in the composition of that stroma. The pancreas, similar to the liver, 

contains a population of stellate cells which, upon activation, are considered vital 

in the production of the characteristic desmoplastic reaction seen in PDAC (Apte, 

Park et al. 2004).  

 

Pancreatic stellate cells in the normal pancreas are located surrounding the base 

of pancreatic acinar cells and are characterised by a central cell body and long 

cytoplasmic processes (Apte, Haber et al. 1998). Quiescent pancreatic stellate 

cells contain large numbers of cytoplasmic lipid droplets that are high in vitamin A; 

these are lost once a stellate cell becomes activated (Apte, Haber et al. 1998). 

Pancreatic stellate cells are also characterised by the presence of Glial Fibrillary 

Acidic Protein (GFAP), desmin, vimentin, nestin and synemin (Wehr, Furth et al. 

2011; Apte, Park et al. 2004). Upon activation pancreatic stellate cells take on a 

myofibroblast-like phenotype expressing alphaSMA (Apte, Park et al. 2004). They 

are highly motile and contractile and have a high mitotic index. They are thought to 

be responsible for the production of a wide variety of ECM proteins (e.g. collagen 

I, III, XI, fibronectin, periostin, tenascin C), matrix metalloproteases (MMPs), 

neurotrophic fators (e.g. NGF, Ach), growth factors and cytokines (e.g. PDGF, 

FGF, TGFβ, CTGF, IL-1beta, IL-8, VEGF) and are therefore seen to be centrally 

placed in orchestrating the desmoplastic reaction characteristic of PDAC (Apte, 

Park et al. 2004). Additional roles for stellate cell derived myofibroblasts in immune 

suppression have also been highlighted by Fearon et al. in which ablation of 

fibroblast activation protein alpha (FAP) positive cells, a population of alphaSMA 

positive myofibroblasts, permitted immunological control of tumour growth 

(Kraman, Bambrough et al. 2010).  

 

One further feature that characterises the PDAC microenvironment is the low 

density, poorly functional vascular supply within the tumour (Provenzano, Cuevas 

et al. 2012). It is this poor vascular supply in conjunction with the desmoplastic 

reaction that is thought to play a major role in limiting the efficacy of current 
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cytotoxics, such as gemcitabine, through limited drug delivery and hypoxia 

induced drug resistance (Provenzano, Cuevas et al. 2012). 

 

As well as being incredibly complex in its composition, the tumour 

microenvironment is also in constant flux. This flux is controlled and coordinated 

by continuous crosstalk between the neoplastic cells and the environment, 

involving a wide variety of autocrine and paracrine signalling pathways including 

TGFβ, Shh, CXCLs, HGF/Met, FGFs, IGF-1 and EGF among others (Neesse, 

Michl et al. 2011). Additionally there are also direct interactions between structural 

ECM molecules and neoplastic cells through cell surface receptors such as 

integrins which signal via focal adhesion complexes and in turn via the actin 

cytoskeleton (Chung, Tan et al. 2012). This cross-talk results in the production of 

enzymes such as lysyl-oxidase and MMPs, alterations in the quantity and quality 

of structural ECM molecules such as collagen and tenascin C, alterations in the 

immune cell infiltrate and alterations in the levels of chemokines and cytokines. 

This constant cross-talk is vital in many areas of tumourigenesis, tumour 

progression, invasion and metastasis. 

 

Increasingly therapies targeting stroma in PDAC are being explored in mouse 

models of PDAC and in human disease. Clinical trials with marimastat an MMP 

inhibitor showed no improvement compared to gemcitabine alone whereas recent 

work in mice has highlighted new potential targets with inhibition of hedgehog 

signalling and enzymatic depletion of hyaluronan separately enhancing delivery of 

chemotherapy agents to pancreatic tumours through suggested “stromal 

softening” and increased vascular delivery of chemotherapy agents (Bramhall, 

Rosemurgy et al. 2001; Moore, Goldstein et al. 2007; Provenzano, Cuevas et al. 

2012; Olive, Jacobetz et al. 2009; Jacobetz, Chan et al. 2013). Unfortunately these 

studies although showing altered vasculature and increased gemcitabine delivery 

did not extensively characterise stromal changes in response to hedgehog 

signalling inhibition or hyaluronan depletion.   

 

1.7 Available methods for tumour microenvironment characterisation 

With the increasing interest in stromal targeting in cancer therapy, particularly in 

PDAC, there have been increasing numbers of publications evaluating the effects 
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of different stromal targeting therapies (Olive, Jacobetz et al. 2009; Provenzano, 

Cuevas et al. 2012; Jacobetz, Chan et al. 2013; Ijichi, Chytil et al. 2011). 

Unfortunately the methods used in these publications vary greatly in their 

fastidiousness. Some groups have used FACS analysis to quantify cellular 

constituents of tumours, others have used Western blot and qPCR analyses to 

determine levels of non-cellular stromal constituents and others have used 

histological assessment to determine either cellular or non-cellular constituents. 

FACS analysis alone provides robust counts of cellular constituents of tissues 

however it provides no information regarding tissue organisation and architecture 

and there are also a multitude of issues surrounding tissue selection and 

preparation for analysis. Similar difficulties arise with Western-blot or qPCR 

analysis for non-cellular constituents as without histological assessment there is 

no confirmation of the piece of tissue actually being analysed or its organisation 

and architecture. Broadly speaking the histological methods used to date involve 

subjectively selecting areas with highest staining and then selecting small 

numbers of representative fields on which to score the stromal constituent of 

interest. From these selected fields an average is taken which is assumed to 

represent the tumour as a whole.  

 

1.8 Important stromal targets established within our lab  

Work by Jen Morton and Bryan Miller using in vitro screening techniques in 

combination with microarray data from murine pancreatic cancer models (both 

metastatic and non-metastatic) and human pancreatic cancer data has previously 

highlighted potential stromal targets within PDAC including, tenascin C, lysyl-

oxidase and CXCR2 signalling. As such we have applied a number of stromal 

targeting therapies to the KPC model of PDAC and have shown significant effects 

on survival in the KPC model.  

 

1.9 Tenascin C 

The tenascin family has four members: tenascin C, tenascin R, tenascin X and 

tenascin W. These members all share a characteristic modular structure with an 

oligomerization domain followed by EGF-like repeats, fibronectin (FN) type III 

repeats and a fibrinogen globe (Chiquet-Ehrismann 2004). In the case of tenascin 
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C and R alternative splicing can lead to the generation of multiple isoforms that 

contain additional FN type III repeats. 

Tenascin C is produced in response to a wide variety of cellular signals such as in 

states of hypoxia under the control of the transcription factor HIF-1α or in response 

to mechanical strain provided by the stiff stroma present within tumours (Jones 

and Jones 2000).  

Tenascin C has a number of receptors and mechanisms through which it signals 

to cells. These include signalling via integrins, EGFR, c-MET, TLR4, annexin II 

and through mechanotransduction by direct cytoskeletal rearrangements. It has 

also been shown to modulate TGFβ, Notch and WNT signalling pathways. One 

mechanism by which tenascin C modulates the WNT signalling pathway is via 

downregulation of Dkk1 a known inhibitor of the WNT pathway (Ramos, Chen et 

al. 1997; Sriramarao, Mendler et al. 1993; Yokosaki, Palmer et al. 1994; Varnum-

Finney, Venstrom et al. 1995; Yokosaki, Monis et al. 1996; Iyer, Tran et al. 2008; 

Midwood, Sacre et al. 2009; Brosig, Ferralli et al. 2010; Thomasset, Lochter et al. 

1998; Taraseviciute, Vincent et al. 2010; De Wever, Nguyen et al. 2004).  

Tenascin C has been shown to be expressed in the haematopoietic stem cell 

environment and the hair follicle bulb (Klein, Beck et al. 1993; Kloepper, Tiede et 

al. 2008) and is therefore considered to be an important component within the 

stem cell niche. Tenascin C has also been shown to be overexpressed in tumour 

associated stroma in a variety of cancers including pancreatic cancer (Juuti, 

Nordling et al. 2004; Bourdon, Wikstrand et al. 1983; Chiquet-Ehrismann, Mackie 

et al. 1986). Tenascin C is involved in many of the steps of tumorigenesis from 

early tumour development through to metastatic spread and colonisation. 

Work by Bryan Miller in our lab has shown the importance of tenascin C to 

pancreatic cancer cell lines growing in vitro. By using sh-RNA to block production 

of tenascin C by the tumour cells he has shown a significant decrease in cell 

viability. Tenascin C production by tumour cells has also been shown to be vital to 

breast cancer cells upon initial metastatic colonisation of the lungs. It has been 

shown that inhibiting tenascin C production by metastatic tumour cells at any time 

point up to 21 days post tail vein inoculation results in apoptosis of tumour cells 

and regression of any establishing micrometastases. After 21 days, inhibition of 
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tenascin C production by tumour cells had no effect on metastasis growth. It has 

been suggested that this is because the production of tenascin C which is initially 

undertaken by the colonising tumour cells themselves switches over to the 

mesenchymal cells in response to stimulation by the now established metastatic 

cells (Oskarsson, Acharyya et al. 2011). In contrast to these findings which 

highlight the importance of epithelial tenascin C production, it is generally 

considered that the source of tenascin C in epithelial tumours is the mesenchymal 

cells themselves. Indeed, it has been shown that fibroblasts produce tenascin C 

when co-cultured with neoplastic epithelial cells (Chiquet-Ehrismann, Kalla et al. 

1989). 

A major function of tenascin C is modulation of the adhesion status of cells. In 

turn, the state of cell adhesion is thought to modulate pathways controlling 

genomic stability. It is therefore possible that tenascin C through modulation of the 

adhesion status of cells may indirectly have an effect on genomic stability (Tlsty 

1998; Chiquet-Ehrismann and Tucker 2011). Indeed it has been shown that 

molecules with known functions in controlling genome stability such as H2AX and 

Brad1 are down-regulated in the presence of tenascin C in glioblastoma cells 

(Ruiz, Huang et al. 2004) and that tenascin C rich environments favour the 

development of tumours (Thomasset, Lochter et al. 1998).  

In addition to promoting genomic instability, the altered state of adhesion mediated 

by tenascin C also aids tumour cell migration. Tenascin C was initially shown to be 

an anti-adhesive molecule inhibiting in vitro tumour cell adherence to fibronectin. 

In fact it is increasingly apparent that tenascin C is able to specifically modulate 

adhesion status which results in an intermediate adhesion state in tumour cells 

thus allowing migration as opposed to firm attachment or total loss of adhesion. 

(Chiquet-Ehrismann, Kalla et al. 1988; Wenk, Midwoos et al. 2000; Murphy-Ullrich 

2001). 

Epithelial-mesenchymal transition (EMT) is a process utilised by epithelial cells 

developmentally to aid tissue formation and remodelling. EMT is characterised by 

loss of cell adhesion and increased cell mobility with additional loss of epithelial 

markers such as E-cadherin. Tenascin C appears to have a significant role in the 

induction of EMT as it has been consistently linked with cancer cells undergoing 

EMT and is vital in injury induced EMT in the lens epithelium of the eye (Dandachi, 
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Hauser-Kronberger et al 2001; Tanaka, Sumioka et al. 2010). EMT is normally 

under tight control as it is vital to tissue remodelling and development however it is 

also a process utilised by tumour cells allowing migration and invasive behaviours. 

Tenascin C has also been associated with increased tumour cell proliferation. It 

has been shown that melanoma sphere growth is severely diminished in the 

absence of tenascin C. High levels have also been demonstrated at the invasive 

edges of breast cancer where there is also a significantly higher proliferation rate 

(Fukunaga-Kalabis, Martinez et al. 2010; Jahkola, Toivonen et al. 1998). 

In addition to its functions triggering growth and migration, tenascin C is also pro-

angiogenic and able to stimulate endothelial cells to acquire a sprouting phenotype 

and become migratory (Canfield, Schor et al 1995; Chung, Murphy-Ullrich et al. 

1996). In any tissue, cells must reside within 100µm of a capillary blood vessel and 

this limitation inhibits tumour growth unless the tumour can induce the formation of 

new blood vessels (Bouck, Stellmach et al. 1996). Tenascin C has been shown to 

play an important role in stimulating angiogenesis in a number of models. 

Importantly, in vivo, it has been shown that xenograft tumours grown in tenascin C 

deficient mice had significantly reduced vasculature compared to xenografts grown 

in control animals. This reduced vasculature was due to the altered regulation of 

VEGF expression by tenascin C (Tanaka, Hiraiwa et al. 2004)  

Finally tenascin C has also been linked to chemotherapy resistance in a number of 

cancers including; melanoma, breast cancer and pancreatic cancer. Tenascin C 

has been shown to induce gemcitabine resistance in pancreatic cancer through 

annexin II signalling and activation of PI3K/Akt and ultimately activation of NF-kB 

(Gong, Lv et al. 2010; Fukunaga-Kalabis, Martinez et al. 2010; Wang, Liu et al. 

2010; Helleman, Jansen et al. 2008). 

Due to the wide range of roles that tenascin C plays in the microenvironment of 

tumours and the importance of tenascin C to tumour cells in culture and at 

metastatic sites we aim to further characterise tenascin C expression patterns in 

our models of pancreatic cancer and the changes in expression elicited by 

different microenvironment targeting strategies. We aim to determine the 

importance of tenascin C in human disease and determine the similarities in 

tenascin C expression between human disease and the KPC model.  
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1.10 Lysyl-oxidase 

ECM remodelling is a constant but highly regulated process in normal tissue 

development (Baker, Cox et al. 2011). Malignant cell growth is ordinarily 

suppressed by the normal microenvironment through the provision of appropriate 

forces that govern normal tissue organisation, cell growth, adhesion and migration. 

The absence of these normal forces in tumour ECM supports malignant cell 

proliferation, motility and adhesion (Weaver, Petersen et al. 1997; Paszek, Zahir et 

al. 2005). Enzymes that control ECM remodelling, which include members of the 

LOX family, are frequently either upregulated or downregulated in both tumour and 

stromal cells in various types of cancer (Payne, Hendrix et al. 2007; Zitka, 

Kukacka et al. 2010). Lysyl-oxidase (LOX) is a member of a multigene family with 

five members; LOX, LOXL1, LOXL2, LOXL3 and LOXL4. LOX is a secreted 

copper-dependent amine oxidase which functions to catalyse the cross-linking of 

collagens and elastins in the ECM resulting in increased tissue stiffness and 

tensile strength (Kagan and Trackman 1991). It is secreted as a proenzyme and 

subsequently activated by BMP-1. LOX family members have paradoxical roles as 

both tumour suppressors and metastasis promoters although many of the tumour 

suppressive roles of LOX have been attributed to the LOX-pro-peptide rather than 

LOX itself (Kagan and Li 2003). LOX has been shown to be elevated in invasive 

and metastatic breast cancer, has been validated as a prognostic marker in head 

and neck cancer and through inhibition with beta-aminoproprionitrile it has been 

shown to be vital to the invasion of melanoma cell lines in vitro (Kirschmann, 

Seftor et al. 2002; Erler, Bennewith et al. 2006; Le, Harris et al. 2009). LOX has 

been found to be highly expressed in stromal cells surrounding mammary ductal 

carcinoma in situ and increased tissue stiffness has been shown to promote 

progression to malignancy in in vivo models of breast cancer (Decitre, Gleyzal et 

al. 1998). It has also been suggested that LOX dependent collagen cross-linking is 

required for the provision of a microenvironment capable of supporting metastatic 

cell colonisation at distant sites (Erler, Bennewith et al. 2006; Erler, Bennewith et 

al. 2009). The progression to malignancy driven by LOX induced tissue stiffness is 

mediated primarily by altered focal adhesions, growth factor receptor signalling 

and altered cytoskeletal-dependent cell contractility (Butcher, Alliston et al. 2009; 

Discher, Janmey et al. 2005; Levental, Yu et al. 2009; Yeung, Georges et al. 

2005). LOX also promotes the secretion of VEGF both in vitro and in vivo and 
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inhibition in an in vivo breast cancer model resulted in decreased intra-tumoral 

blood vessel numbers (Baker, Bird et al. 2013). In breast cancer and head and 

neck cancer upregulation of LOX closely correlates with hypoxia which is itself well 

known for its ability to enhance both metastasis and resistance to both 

chemotherapy and radiotherapy (Erler, Bennewith et al. 2006). LOX acts in 

conjunction with a wider repertoire of ECM molecules and has been shown to 

interact with fibronectin which in turn increases the catalytic activity of LOX. 

Finally, secreted LOX has been shown to recruit inflammatory cells to distant sites 

thereby helping to establish suitable niches for metastatic cells (Erler, Bennewith 

et al. 2009). Work in our lab has shown that lysyl-oxidase inhibition in the KPC 

model of PDAC leads to a significant increase in survival. As such we aim to 

characterise the stromal changes elicited by this treatment both alone and in 

conjunction with gemcitabine therapy. 

1.11 CXCR2 signalling 

The link between inflammation and tumorigenesis, tumour maintenance and 

tumour progression is well established. Patients with a history of chronic 

pancreatitis have a seven fold increased risk of developing PDAC (Duell, Casella 

et al. 2006) and patients with ulcerative colitis have a twenty fold increased risk of 

colorectal cancer which is reduced 50% by NSAID use (Xie and Itzkowitz 2008).   

CXCR2 ligands are not produced in normal pancreatic tissue but have been 

shown to be highly expressed in cases of pancreatitis. Additionally CXCR2 

expression has been noted in up to 65% of surgically resected human pancreatic 

tumours and expression is associated with poor survival (Kuwada, Sasaki et al. 

2003; Li, King et al. 2011; Wente, Keane et al. 2006; Baggiolini, Dewald et al. 

1994; Takamori, Oades et al. 2000).  

CXCR2 is a G-protein-coupled cell surface receptor which binds to a number of 

low molecular weight chemotactic chemokines. Chemokines play important roles 

in the development of tumours and metastases by modifying the tumour immune 

response through co-ordinating leukocyte infiltration, angiogenesis and acting as 

growth factors (Murphy 2001; Raman, Baugher et al. 2007; Singh, Sadanandam et 

al. 2007). 
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CXCR2 is commonly found on neutrophils although it is also expressed on 

monocytes, dendritic cells, macrophages, endothelial cells, bone marrow derived 

endothelial progenitor cells, myeloid derived suppressor cells, mast cells, 

fibroblasts and can also be induced in tumour cells by activated oncogenes 

(Heidemann, Ogawa et al. 2003; Strieter, Burdick et al. 2006; Li, Cheng et al. 

2011; Soehnlein, Drechsler et al. 2013; Hallgren and Gurish 2011; Ijichi, Chytil et 

al. 2011; Sharma, Nawandar et al. 2013; Feijoo, Alfaro et al. 2005; Marotte, Ruth 

et al. 2010). 

CXCR2 predominantly interacts with ELR+ (glutamic acid-leucine-arginine) 

chemokines, including CXCL1, 2, 3, 4, 5, 6, 7 and 8. These chemokines are all 

proangiogenic and stimulate neutrophil chemotaxis (Li, Cheng et al. 2011; 

Rainczuk, Rao et al 2012; Ahuja and Murphy 1996). 

Multiple studies to date have shown that CXCR2 participates in chronic 

inflammation, sepsis, lung pathology, atherosclerosis, neuroinflammation and has 

critical roles in angiogenesis, tumourigenesis and metastasis of colorectal cancer, 

melanoma, lung cancer, prostate cancer, pancreatic cancer and head and neck 

cancers (Stadtmann and Zarbock 2012; Veenstra and Ransohoff 2012; Gabellini, 

Trisciuoglio et al. 2009; Baier, Wolff-Vorbeck et al. 2005; Singh, Singh et al. 2010; 

Ohri, Shikotra et al. 2010; Reiland, Furcht et al. 1999; Liu, Yang et al. 2011; 

Mestas, Burdick et al. 2005; Wang, Hendricks et al. 2006; Matsuo, Ochi et al. 

2009; Yang, Rosen et al. 2010; Han, Jiang et al. 2012; Li, Cheng et al. 2011; Li, 

King et al. 2011; Wente, Keane et al. 2006). 

The roles of inflammatory cells within the tumour microenvironment are varied with 

cells capable of being either tumorigenic or tumour suppressive. Macrophages and 

neutrophils for example in their pro-tumourigenic M2 or N2 phenotype may 

promote tumour angiogenesis, matrix breakdown and tumour cell mobility as well 

as producing oxidative bursts with the release of reactive oxygen species (ROS) 

that have many roles in tumourigenesis and maintenance but importantly are also 

mutagenic (DeNicola, Karreth et al. 2011; Sica and Mantovani 2012; Mentzel, 

Brown et al. 2001; Benelli, Morini et al. 2002; Van Coillie, Van Aelst et al. 2001; 

Nozawa, Chiu et al. 2006).  
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As well as through the indirect actions of inflammatory cells, CXCR2 has also 

been shown to directly promote angiogenesis with CXCR2 signalling vital to both 

endothelial cell and endothelial progenitor cell mobilisation and chemotaxis (Li, 

Cheng et al. 2011).  

Due to a central role in the co-ordination of the PDAC microenvironment the 

CXCR2 signalling pathway provides a clear target requiring evaluation for the 

treatment of PDAC. Work in our lab has shown a significant increase in survival in 

KPC mice treated with CXCR2 inhibitors. We therefore aim to determine the 

significant effects this inhibition is having on the tumour microenvironment.  

1.12 Project aims 

Given the importance of the tumour microenvironment and the increasing use of 

stromal targeting therapies we aim to establish rigorous methods for the 

quantification of stromal constituents. Given the importance of tenascin C we also 

aim to investigate the role of tenascin C in PDAC. Finally we will utilise these 

methods and staining procedures to evaluate the stroma of the models of PDAC 

used in our lab and the changes elicited by targeted stromal therapies.  
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Chapter 2 

MATERIALS AND METHODS 

2.1 In vivo experiments  

All experiments were performed in accordance with UK Home Office guidelines 

and the EU directive 2010 with local ethical approval. Mice were maintained under 

non-barrier conditions and given a standard diet [CRM (E) expanded diet from 

Special Diets Services; Cat nº 801730] and water ad libitum.  

 

Mice were examined three times per week for the development of pancreatic 

tumours. These signs include; hunched back, central abdominal distension, weight 

loss and/or palpable tumour. Once an endpoint was reached mice were 

euthanized and necropsied and tissues collected. Some mice developed skin 

papillomas and in these cases, the papilloma was measured three times weekly 

and once it reached 1.5cm in diameter the mouse was sacrificed. These rules 

were all clearly defined in the project licence as approved by the Home Office. 

 

2.2 Mouse genotyping  

Mice were genotyped externally using the service provided by Transnetyx 

(http://www.transnetyx.com/). The company uses a proprietary method based on 

real time PCR and DNA hybridisation to determine which alleles are present in the 

mice.  

 

2.3 Drug treatments 

Mice were selected according to genotype and Pdx1-Cre, KrasG12D/+; Trp53R172h/+ 

mice were randomised to treatment or control groups. Mice were aged to 70 days 

at which time they were commenced on the randomised treatment. Gemcitabine 

(LC labs) made up in phosphate buffered saline (PBS) was given at 100mg/Kg 

twice weekly via intraperitoneal injection (IP). Scrambled 14 amino acid sequence, 

‘scrambled pepducin’ (Genscript) made up in saline was given 200µl 

subcutaneously (SC), ½i-pal peptide (Genscript), a CXCR2 inhibiting peptide, 

‘pepducin’ was given 200µl subcutaneously daily. ½i-pal peptide is a cell-

penetrating lipopeptide directed against the third intracellular loop of the CXCR2 

G-protein coupled receptor and results in selective inhibition (Kaneider, Agarwal et 

al. 2005). Lox blocking antibody (Lox-Ab) and isotype control (kind donation by 

http://www.transnetyx.com/
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Janine Erler) made up in saline were given 100 µl IP daily. Drug doses utilised 

were consistent with those previously published (Jamieson, Clarke et al. 2012; 

Erler, Bennewith et al. 2006; Morton, Timpson et al. 2010). 

 

2.4 Tissue sampling 

Pancreas, lungs, liver, spleen and other tissues where appropriate were collected 

and fixed as necessary. Subsequent to fixation all samples were embedded in 

paraffin, sectioned at 5-10µm and stained with haematoxylin and eosin prior to 

microscopic analysis. 

 

2.5 Fixation protocols 

2.5.1 Long Fixation 

The tissues were incubated in 4% formalin [Leica; Cat nº 3800600E] for 24 hours 

before processing and paraffin embedding. 

 

2.5.2 Methacarn Fixation 

A solution of methanol [Sigma; Cat nº 32213], chloroform [Fisher Scientific; Cat nº 

C4960/PB17] and acetic acid [Sigma; Cat nº 695092] was made fresh at a ratio of 

4:2:1 respectively and used to fix tumour tissue samples for no more than 24 

hours. Tissues were then placed in formalin overnight before being processed and 

paraffin embedded.  

Methacarn fixation was undertaken for tumours requiring MPO staining. 

 

2.6 Histology 

Mouse tissues were embedded and cut by the Beatson Institute histology services. 

Routine histochemistry and immunohistochemistry (IHC) was performed by the 

Beatson Institute histology services except IHC for CD31, GFAP (mouse and 

human) and Tenascin C (mouse and human). Routine IHC was performed for CD3 

(Abcam, ab16669 rabbit monoclonal), alphaSMA (Abcam, ab15734 rabbit 

polyclonal), F4/80 (Abcam, ab16911 rat monoclonal), MPO (Abcam, ab9535 rabbit 

polyclonal), cleaved caspase 3 (Abcam, ab4052 rabbit polyclonal).    
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2.7 Immunohistochemistry on paraffin sections 

Slides were de-waxed for a minimum of 7 minutes in xylene and rehydrated for 2 

minutes each in decreasing concentrations of ethanol (100% - 95% - 70%) before 

finally being washed in dH2O. After immunohistochemistry, counterstaining was 

performed. Following which slides were dehydrated by immersion in increasing 

concentrations of ethanol (70%-95%-100%) before a final immersion in xylene for 

5 minutes. After dehydration slides were then mounted with a coverslip. 

 

2.7.1 CD31 

Sections were de-waxed as described previously. Antigen retrieval was performed 

by placing slides in pre-heated Citrate buffer (Thermo scientific) in a pressure 

cooker for 20 minutes. Following heating, pressure was released and slides were 

allowed to cool in the solution for 60 minutes at room temperature (RT). 

Endogenous peroxidase activity was blocked by incubation in 3% hydrogen 

peroxide (Fluka) in de-ionized water. Slides were washed in Tris-Buffered Saline 

and Tween 20 (TBST). Non-specific binding was then blocked by incubation with 

5% normal goat serum (NGS) for 30 minutes at RT. Primary anti-CD31 antibody 

(Abcam, ab28364 rabbit polyclonal) was applied overnight at 4oC at a 1/100 

dilution in 5% NGS. After washing in TBST, secondary antibody (Vector ABC Kit) 

was applied for 30 minutes at  a dilution of 1/200 in 5% NGS. After washing, signal 

amplification was performed using the ABC Complex (Vector ABC Kit), applied for 

30 minutes. After washing, positivity was then visualised with DAB, slides were 

washed in dH2O and counterstained and mounted as described previously.  

 

2.7.2 Tenascin C (anti-human)  

Sections were de-waxed as described above and antigen retrieval was performed 

using Proteinase K antigen retrieval for 7mins. Endogenous peroxidase activity 

was blocked as described above and non-specific binding was blocked with 5% 

NGS for 30 minutes at RT. Primary anti-Tenascin C antibody (Abcam antiTNC 

clone BC-24 ab6393) was applied and slides incubated overnight at 4oC at a 

dilution of 1/2000 in 5% NGS. After washing in TBST, secondary antibody (Vector 

ABC Kit) was applied for 30 minutes at  a dilution of 1/200 in 5% NGS. After 

washing, signal amplification was performed using the ABC Complex (Vector ABC 
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Kit), applied for 30 minutes. After washing, positivity was then visualised with DAB, 

slides were washed in dH2O and counterstained and mounted as described 

previously.  

 

2.7.3 Tenascin C (anti-mouse) 

Sections were de-waxed as described above and antigen retrieval was performed 

boiling slides in 1L of 1mM EDTA pH 8 for 20 minutes . Slides were allowed to 

cool for 20 minutes before endogenous peroxidase activity was blocked as 

described above. Slides had non-specific binding blocked with 5% NGS for 30 

minutes at RT before primary anti-Tenascin C antibody (Sigma, anti-TNC T3413 

rabbit polyclonal) was applied overnight at 4oC at a dilution of 1/2000 in 5% NGS. 

Slides were washed in TBST and secondary antibody (Vector ABC Kit) was 

applied for 30 minutes at  a dilution of 1/200 in 5% NGS. After washing, signal 

amplification, DAB positivity visualisation and mounting of the slides were 

performed as described previously.  

 

2.7.4 Glial acidic fibrillary protein (GFAP) 

Sections were de-waxed as described above and antigen retrieval was performed 

by placing slides in pre-heated Citrate buffer in a pressure cooker for 20 minutes. 

Following heating, pressure was released and slides were allowed to cool in the 

solution for 60 minutes at room temperature (RT). Endogenous peroxidase activity 

was blocked as described above and then washed in Tris-Buffered Saline (TBS). 

Non-specific binding was blocked with incubation in MOM mouse Ig blocking 

reagent for 1hour. Next slides were incubated in MOM diluent for 5 minutes before 

incubation in anti-GFAP (mouse monoclonal GA5 cell signalling) 1:50 in MOM 

diluent for 30 minutes at RT. Slides were washed in TBS before incubation in 

MOM biotinylated anti-mouse IgG reagent (Vector labs) for 10 minutes at RT. After 

washing; signal amplification, DAB positivity visualisation and mounting of the 

slides were performed as described previously.  
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2.8 Primary cell culture 

2.8.1 Medium for cell culture 

DMEM [Gibco; Cat nº 21969] with 10% Fetal Bovine Serum [PAA; Cat nº A15-

101], 1% Penicillin-Streptomycin [Gibco; Cat nº 15070], and 2mM L-Glutamine 

[Gibco; Cat nº 25030]. 

 

2.8.2 PDAC, primary cell line establishment and culture 

Pancreatic tumour tissue was collected in PBS at necropsy. The tissue was then 

homogenised with a scalpel blade and placed in 5mL of medium and shaken for 

30 seconds. The supernatant containing PDAC cells was collected, placed in a 

75cm2 flask [NUNC; Cat nº 153732] and a further 10mL of DMEM was added. The 

cells were cultured at 37ºC in a humidified 5% CO2 atmosphere until reaching 90% 

confluence at which time they were split using trypsin dissociation . 

 

2.9 Subcutaneous tumour growth in mice 

Primary cell lines derived from C57Bl/6 PDAC tumours were suspended in PBS 

and injected subcutaneously into the flank of control C57Bl/6 or Tenascin C-/- 

mice on a C57Bl/6 background. 1,000,000 cells were injected per mouse. Mice 

were monitored three times a week and tumours were measured from 6mm size. 

Mice were culled when tumours ulcerated or exceeded 15mm in size. The tumour 

was removed along with the overlying skin and underlying abdominal muscle and 

fixed in 10 % neutral buffered formalin pinned on wax discs. Organs (pancreas, 

liver, spleen and lungs) were also collected and evaluated for evidence of 

metastasis.  

 

2.10 Orthotopic models of pancreatic cancer 

Primary cell lines derived from C57Bl/6 PDAC tumours were suspended in 

matrigel (BD biosciences) and injected orthotopically into the tail of the pancreas 

of C57Bl/6 mice and Tenascin C-/- mice by Dr J Morton. 100 cells were injected 

per mouse.  

 

Mice were examined three times per week for the development of pancreatic 

tumours. These signs include; hunched back, central abdominal distension, weight 
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loss and/or palpable tumour. Once an endpoint was reached mice were 

euthanized and necropsied and tissues collected. 

 

2.11 Scoring: 

All scoring was performed blinded, counting 30 non-consecutive x20 magnification 

field of view (FOV) or 60 x40 magnification FOV always avoiding areas of necrosis 

except where necrosis itself was being scored. For cell counts numbers of positive 

staining cells per FOV were counted, for other immunostaining quantification either 

pixel counting or semiquantitative methods were used as described below. 

 

2.11.1 Necrosis scoring: 

Whole representative slides of tumours were scored at X20 magnification and 

average percentage necrosis was determined for each tumour. Necrosis was 

defined by set histological characteristics on haemotoxylin and eosin staining.  

These included; nuclear changes (pyknosis, karyorrhexis, karyolysis, and nuclear 

absence), cytoplasmic changes (early increased eosinophilia advancing to pale 

pink ghost like appearance), cell rupture (with release of dark basophilic nuclear 

remnants and eosinophilic protein). Necrotic areas may also contain RBCs in 

areas of haemorrhagic necrosis. 

 
2.11.2 Immunohistochemistry pixel quantification: 

30 x20 magnification images were taken at random from a representative slide 

from each tumour. The microscope (Olympus BX51) was optimised before taking 

complete sets of images therefore all images were taken with identical light levels 

and condenser setup. A manual exposure of 720µs and ISO 1600 were set as 

fixed parameters and all images were saved as TIFF files to standardise image 

quality. Finally all images were white balanced. 

 

Once acquired immunostaining was quantified using Adobe Photoshop (version 5; 

Adobe Systems, San Jose, CA) using a method that has been previously 

described (Lehr, van der Loos et al. 1999). Briefly, in photoshop with the picture 

open, click window option in the task bar and open the histogram window. Once 

this window is open click on the expand icon in the top right corner of the 

histogram window and select expanded view this will then display the total number 
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of pixels in the image and once a selection is made will show the number of 

selected pixels. Next click on the select option on the top bar of the photoshop 

window and click on colour range. Use the colour dropper within the colour range 

window to select the colour of interest and then alter the tolerance “fuzziness” 

setting to achieve a selection setting where the highlighted stained tissue is 

appropriate. This adjustment is made possible as the selected area is 

automatically highlighted on the image and therefore allows close control of the 

process. Once optimised this setting may then be saved as an .AXT file extension 

and reused for every image to be scored in a group. For each image selection the 

total number of stained pixels can then be recorded and the total staining 

represented as a percentage of the entire image in µm2 or cm2. 

2.12 Statistics: 

2.12.1 Scoring experiments: 

Three to eight mice per group were used in order to comply with guidelines 

recommended by “the three Rs”. These guidelines summarised as Refine, Reduce 

and Replace promote the ethical use of animals in research. Due to low numbers 

data cannot be assumed to be normally distributed and therefore non-parametric 

statistical tests are most appropriate. Here a Mann-Whitney test which allows the 

comparison of small groups of mice was used to determine the presence of 

statistically significant differences between groups. 

 

2.12.2 Tissue microarray analysis  

A human pancreatico-biliary tissue microarray was created within the West of 

Scotland Pancreatic Unit, University Department of Surgery, Glasgow Royal 

Infirmary. All patients gave written, informed consent for the collection of tissue 

samples, and the local Research Ethics Committee approved collection. All cases 

had undergone a standardized pancreaticoduodenectomy. A total of 1500 cores 

from a total of 224 cases with pancreatico-biliary cancer (including 119 pancreatic 

ductal adenocarcinomas) with a full spectrum of clinical and pathological features 

were arrayed in slides. At least 6 tissue cores (0.6mm diatmeter) from tumour and 

2 from adjacent normal tissue were sampled. Complete clinical follow up data was 

available for all cases within the TMA. 
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2.12.3 TMA histoscoring 

Tenascin C levels were scored based on staining intensity and area of positive 

staining stroma using a weighted histoscore (Morton, Timpson et al. 2010). The 

histoscore was calculated based on the sum of (1x% weak staining)+(2x% 

moderate staining)+(3x% strong staining), therefore providing a semi-quantitative 

classification of tenascin C levels in TMA cores. Tenascin C expression was 

defined as either high or low either being above or below the median histoscore 

value.  

 

2.12.4 TMA survival analysis 

Kaplan-Meier survival analysis was used to analyse the overall survival from the 

time of surgery and a log-rank test was performed to compare length of survival 

between the resulting two curves. 

 

2.12.5 TMA correlation  

Correlation between parameters within the TMA data set was determined using 

Spearman’s Rank-Order Correlation Coefficient. 

 

2.13 RNA microarray analysis 

Microarray analysis was performed on request by Nigel Jamieson at the Cancer 

Research Microarray Facility, Paterson Institute for Cancer Research, University of 

Manchester. 40ng of RNA was amplified using WT-Ovation Pico RNA amplification 

system (NuGEN, San Carlos, CA) with subsequent labelling and hybridisation to 

HG_U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA) using the FL-Ovation 

cDNA Biotin Module v2. Full datasets have been made public in MIAME VICE 

http://bioinformatics.picr.man.ac.uk/vice/Welcome.vice. Accession code is 

GE_PA(4). 

 

 

 

 

 

 

http://bioinformatics.picr.man.ac.uk/vice/Welcome.vice
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Chapter 3 

Results 

3.1 Establishing a method for quantification of stromal constituents in the 
KPC model 

Given the interest in targeting stroma it was first important to carefully characterise 

and develop reliable methods to quantify the stromal constituents within our 

models of PDAC. Previous work characterising the stromal constituents of various 

models including the KPC model of PDAC is limited and methods of quantification 

vary in their fastidiousness. Previous work characterising stromal characteristics 

such as intratumoural microvessel density have subjectively identified three to five 

representative fields of view and counted the stromal constituent of interest in 

these fields (Ijichi, Chytil et al. 2011; Olive, Jacobetz et al. 2009). The count from 

these three to five fields is then used to represent the entire tumour. Due to the 

inherent subjectivity of selecting representative fields of view our first aim was to 

establish methods that provided more objective quantification of stromal 

constituents for the tumours as a whole. 

To establish a reliable method I began by counting all non-consecutive fields of 

view in a single tumour at either X20 or X40 magnification depending on the ability 

to reliably identify stromal constituents at each magnification. During these 

counting procedures I calculated a running mean and the standard error and 

graphically it was possible to see when a suitable estimate of the mean had been 

reached for each constituent such that a truly representative value had been 

determined. I found that, for any stromal constituent, counting 30 fields of view 

was sufficient to generate a representative count (See Fig. 2). The procedure of 

counting 30 fields of view at x20 magnification generally sampled the majority of 

any given tumour and even in larger tumours 30 fields of view never accounted for 

less than half of a tumour. When counting at x40 magnification 30 fields of view 

was still adequate at generating a stable and reliable mean. However given the 

smaller field size I decided to count 60 fields of view such that the area of tumour 

sampled still accounted for over half of the tumour. 
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Figure 2: Counting 30 non-consecutive fields of view reliably quantifies any 
stromal constituent within a tumour. 

Representative graphs for single tumours showing consecutive FOV counts (blue line), running 
mean (red line) and running mean +/- standard error (green and purple lines), a) CD31,   b) F4/80, 
c) MPO quantification and d) Sirius red quantification. CD31, F4/80 and Sirius red quantification 
were performed at x20 magnification and MPO at x40 magnification.   

a)   

 

b) 
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c) 

 

d) 
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3.2 Characterising the stroma of normal pancreata and KPC PDACs 

I first performed initial stromal characterisation of normal pancreata and KPC 
PDAC tissue and in doing so validated staining techniques and highlighted 
significant constituents of the KPC tumour stroma. 

3.2.1 Establishing the normal presence of immune cells within normal 
pancreata and KPC PDAC stroma 

Utilising characteristic cellular and nuclear morphology and MPO immunopositivity 
I have shown that, as expected, neutrophils are not a normal stromal constituent of 
the pancreas whereas they are present in the stroma of KPC tumours. I have also 
shown that in KPC PDACs as opposed to normal pancreata there are large 
numbers of F4/80 positive macrophages but only small numbers of CD3 positive T 
cells (see Fig. 3). 
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Figure 3: Establishing the normal presence of neutrophils (MPO), 
macrophages (F4/80) and T cells (CD3) within normal pancreata and KPC 
PDAC stroma 

Representative images of MPO, F4/80 and CD3 immunostaining in normal murine pancreata and 
in KPC PDAC tissue. Note the lack of immune cell infiltrate in normal pancreata (n=5-8 for each 
stain).  
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3.2.2 Determining the presence of apoptosis and necrosis in normal 
pancreata and KPC PDACs 

Utillising the characteristic appearance of necrotic tissue and positivity of cells for 
cleaved caspase 3 it is apparent that apoptosis and necrosis are absent in the 
normal pancreas compared with KPC PDACs (see Fig. 4). 

 

Figure 4: Determining the presence of apoptosis and necrosis in normal 
pancreata and KPC PDAC tissue 

Representative images of cleaved-caspase 3 immunostaining (arrows) and H&E characteristics of 
necrosis (dashed black line) in normal pancreata and KPC PDAC tissue. Note the lack of apoptosis 
and necrosis in normal pancreata (n=5). 
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3.2.3 Characterisation of myofibroblasts/stellate cells in KPC models of 
PDAC 

Utilising alphaSMA immunohistochemistry I have confirmed that in the normal 
pancreas there are small numbers of alphaSMA positive cells. These cells are 
predominantly perivascular smooth muscle cells as would be expected. I have also 
shown that there are large numbers of alphaSMA positive activated myofibroblasts 
in KPC PDACs (see Fig. 5). As previously discussed pancreatic stellate cells are 
considered to be the primary source of alphaSMA positive cells in both human 
PDAC and mouse models of PDAC. Unfortunately alphaSMA is not a specific 
marker for activated stellate cells as other cell types will also stain for this marker. 
These include; pericytes, smooth muscle cells and any other activated 
myofibroblast not originating from a pancreatic stellate cell. Due to the lack of 
specificity of alphaSMA as a marker of stellate cell origin I looked to use GFAP 
expression which is generally considered to be a more specific marker of 
pancreatic stellate cells. Using cell morphology, tissue location and GFAP staining 
of normal murine pancreata and both human and KPC PDAC tumour tissue I have 
shown that GFAP specifically stains both Schwann cells and pancreatic stellate 
cells within the normal murine pancreas (as expected for cells of neural crest 
origin) (see Fig. 6). I have also shown that there are GFAP positive cells present in 
both KPC and human PDAC tissue (see Figs 7 and 8 respectively). Using GFAP 
and alphaSMA staining on serial sections of KPC PDAC tissue it is also clear that 
there are significantly more alphaSMA positive cells than GFAP positive cells (see 
Fig. 9). 

 

Figure 5: Characterisation of alphaSMA positive cells within normal 
pancreata and KPC PDAC tissue 

Shows representative images of alphaSMA staining within normal pancreata and KPC PDAC 
tissue. Notice the immunopositivity of cells surrounding vessels within the normal pancreas 
consistent with perivascular smooth muscle cells (see arrows) (n=5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Normal Pancreas – alphaSMA KPC PDAC – alphaSMA 
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Figure 6: Stellate cells within normal murine pancreas 
Shows a representative X20 magnification image of GFAP stained murine pancreatic tissue. The 
Inset image represents the highlighted red box showing a periacinar, GFAP positive pancreatic 
stellate cell (n=3). Inset shows magnified image of GFAP positive “stellate” cell in periacinar 
location. 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Stellate cells in pancreatic tumour tissue in KPC mice. 
Shows representative X40 magnification images of GFAP stained tumour tissue (n=5). 
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Figure 8: Stellate cells in pancreatic tumour tissue in human PDAC. 
Shows representative X40 magnification images of GFAP stained human PDAC tissue (n=2). 
Arrow points to GFAP positive spindle shaped “stellate” cell. 
 

 

 
Figure 9: Stellate cells in pancreatic tumour tissue in KPC mice. 
Shows representative X10 magnification images of GFAP and alphaSMA staining on consecutive 
tumour tissue sections (n=3). 
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3.2.4 Establishing the presence of blood vessels in the stroma of normal 
pancreata and KPC PDACs 

In the normal pancreas there are small to moderate numbers of well-formed blood 
vessels present between pancreatic acini, lobules and ducts. Within the stroma of 
KPC PDACs there are moderate numbers of poorly formed CD31 positive blood 
vessels (see Fig. 10). 

Figure 10: Microvessels within normal pancreata and KPC PDAC tissue 

Representative images of CD31 staining of endothelial cells of vessels within normal pancreata 
and KPC PDAC tissue (see arrows) (n=5-8). Arrow points to CD31 positive interlobular vessel. 

 

 

 

 

 

 

 

3.2.5 Establishing the presence of collagen within the stroma of normal 
pancreata and KPC PDACs 

Sirius red staining highlights, as expected, that there are moderate amounts of 
collagen present within the interlobular and periductal regions of the normal 
pancreas. It is also clear that there are large amounts of collagen present within 
the stroma of KPC PDACs surrounding the neoplastic epithelium (see Fig. 11). 

Figure 11: Stromal collagen in normal pancreata and KPC PDAC tissue 

Representative images of Sirius red staining (collagen and elastin) of normal pancreata and KPC 
PDAC tissue (n=5-8) 
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3.2.6 Establishing the presence of tenascin C within the stroma of normal 
pancreata and KPC PDACs 

Due to the wide range of roles that tenascin C plays in the microenvironment of 
tumours and the importance, as shown by our lab, of tenascin C to tumour cell 
viability in vitro I next characterised the presence of tenascin C in the normal 
pancreas and in KPC PDACs. Through establishing and optimising an 
immunohistochemistry protocol for staining tenascin C in formalin fixed, paraffin 
embedded tissue I have shown that there is significant production of tenascin C in 
the stroma of KPC PDACs whereas there is limited production of tenascin C in the 
normal pancreas (see Fig. 12). 

Figure 12: Tenascin C presence within normal pancreata and KPC PDAC 
tissue 

Representative images showing tenascin C immunostaining in normal pancreata and KPC PDAC 
tissue. Notice the increased expression in the stroma of the PDAC tissue (n=5-8). 

 

 

 

 

 

 

 

3.3 Tenascin C in Pancreatic ductal adenocarcinoma 

In response to our earlier findings and the wide ranging roles tenascin C plays 

from tumourigenesis through to metastatic spread I next looked to further 

characterise tenascin C expression in the murine models of PDAC available in our 

lab and to determine the importance of tenascin C in human PDAC  

 

3.3.1 Mutant p53 causes an increase in intra-tumoural tenascin C expression 
compared with loss of p53 

It has previously been shown by Jen Morton that PDAC expressing mutant p53 as 

opposed to loss of p53 is capable of metastatic spread (Morton, Timpson et al. 

2010). Most work regarding the effects of p53 loss versus p53 mutation in PDAC 

has focussed on the changes to the tumour cells themselves. Due to the lack of 

metastasis in KPflC mice and the important role tenascin C plays in supporting 

Normal Pancreas – Tenascin C KPC PDAC – Tenascin C 
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metastasis in other epithelial cancers we looked to characterise the expression of 

tenascin C in both the KPC and the KPflC models. We have shown that loss of 

p53 does not lead to production of tenascin C whereas the presence of a gain-of-

function mutant p53 does (see Fig. 13). 

 
Figure 13: Presence of gain-of-function mutant p53 as opposed to loss of 
p53 causes an increase in the production of tenascin-C in tumours in mice. 
Shows representative X4 magnification images of tenascin-C stained p53-/- (KPflC) and p53R172H 
(KPC) tumours. There is markedly reduced tenascin-C expression in p53-/- tumours compared with 
p53R172H tumours (n=5-8). 
 

P53-/- P53R172H

 
 

3.3.2 Tenascin C is produced by the tumour stroma and not the tumour 
epithelium 

Having shown high expression of tenascin C within the stroma of KPC PDAC 

tumours (see Figs. 12 and 13) I next looked to further characterise the production 

of tenascin C utilising other models of PDAC. As discussed previously, work in our 

lab by Bryan Miller has shown that tenascin C production by the tumour epithelium 

itself is vital to cell viability in vitro. This finding is interesting given the stromal 

staining pattern of tenascin C that I have demonstrated in KPC PDAC tumours 

(see Fig. 12) and the generally accepted view that in epithelial cancers it is stromal 

cells that are responsible for the production of tenascin C. Due to these 

contradictory findings I next used orthotopic and subcutaneous human PDAC cell 

line xenograft models in nude mice to confirm the source of tenascin C in PDAC. 

Tenascin C immunohistochemistry is species specific (see Fig. 14), therefore by 

utilising this species specific staining it is clear that tenascin C is not directly 

produced by the tumour epithelium but is produced by stromal cells (see Fig. 15). I 

further confirmed the finding that the stroma is responsible for the production of 



49 

 

tenascin C in epithelial cancers using human colorectal carcinoma HCT 116 

tumour cell line subcutaneous xenografts (see Fig. 15).  

 
Figure 14: Tenascin-C antibodies provide species specific 
immunohistochemical staining of human and murine tissues. 
Shows representative X10 magnification images of tenascin-C stained mouse and human primary 
PDAC tissue with anti-mouse and anti-human tenascin-C antibodies. Note that there is no inter-
species cross-reactivity.  
 

Anti-human tenascin-C antibody on human tissue Anti-human tenascin-C antibody on murine tissue

Anti-mouse tenascin-C antibody on human tissue Anti-mouse tenascin-C antibody on murine tissue  
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Figure 15: Species specific Tenascin-C immunohistochemistry provides 
evidence for the stromal production of tenascin-C. 

a) Shows representative X10 magnification images of anti-human and anti-mouse anti-
tenascin-C stained human PDAC cell xenograft nude mouse models. Staining is only seen 
using the anti-mouse anti-tenascin-C staining therefore confirming tenascin-C production 
by the microenvironment and not the tumour cells themselves.  

b) Shows representative X10 magnification images of anti-human and anti-mouse anti-
tenascin-C staining in human colorectal carcinoma HCT 116 tumour cell line subcutaneous 
xenografts. 

 

a) 
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3.3.3 Tenascin C is produced by the tumour epithelium in the absence of 
stromal production 

Due to previous results in our lab and work by others showing that tenascin C 

production by the tumour epithelium is vital in establishment and survival of early 

breast cancer metastases (Oskarsson, Acharyya et al. 2011) I next looked to 

determine whether tenascin C could be produced by the tumour epithelium in vivo. 

I used subcutaneous allograft models of C57Bl6 KPC cell lines in syngeneic wild 

type (WT) and tenascin C knockout C57Bl6 mice to determine the importance of 

stromal tenascin C production. In this model allografted tumour cells are able to 

produce tenascin C but in the tenascin C knockout mice the stroma cannot. I have 

shown that in a WT recipient the stroma produces the tenascin C and the tumour 

epithelium does not stain, whereas in the tenascin C knockout recipient the stroma 

is unable to produce tenascin C and we see production of tenascin C by the 

tumour epithelium itself (see Fig. 16) 

 

Figure 16: Tenascin-C expression is predominantly stromal however it may 
also be expressed within the tumour epithelium. 
Shows representative X10 magnification images of tenascin-C stained C57BL/6 KPC cell line 
subcutaneous allografts in WT and tenascin-C -/- mice. Note the stromal expression in the wild 
type recipients and the tumoural expression in the tenascin-C -/- recipient.  
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3.4 Tenascin C and its importance in human PDAC 

Having shown the importance of tenascin C production in murine models of PDAC 

I next looked to confirm the production of tenascin C and determine its importance 

in human PDAC. 

 

3.4.1 Tenascin C is produced by the stroma of human PDAC and high levels 
of expression correlate significantly with survival    

Previous studies have found increased expression of tenascin C in acute and 

chronic pancreatitis, early PanIN lesions and PDAC in humans. Tenascin C 

expression has also been shown to correlate with differentiation of PDAC (Juuti, 

Nordling et al. 2004; Esposito, Penzel et al. 2006). Utilising a human PDAC tissue 

microarray I have shown that tenascin C is a significant stromal constituent and 

that expression significantly correlates with survival (Log-Rank p=0.043). Also 

patients expressing high levels of stromal tenascin C (n=59) had a median survival 

of 13.4 months whereas patients expressing low levels of tenascin C (n=59) had 

nearly a 50% increase in survival with a median survival of 22.6 months (see Fig. 

17). Immunohistochemical staining of this TMA also confirms that tenascin C 

production in these tumours is exclusively stromal and highly variable (see Fig. 

17). 
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Figure 17: Tenascin-C expression is significantly associated with survival in 
human PDAC.  

a) Kaplan-Meier survival analysis. There was a significant difference in survival between the 
survival of patients with tenascin-C expression above or below the median as determined 
by TMA histoscore (Log-Rank p=<0.043, n=118).  

b) Representative images of tenascin C immunohistochemistry in human PDAC TMA samples 
highlighting high and low stromal staining. 

a) 
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3.4.2 Tenascin C expression strongly correlates with hypoxia in human 
PDAC 

Previous studies have found increased production of tenascin C in states of 

hypoxia (Jones and Jones 2000). In my analysis of the human PDAC TMA there is 

a strong positive correlation between the transcription factor Hypoxia-inducible 

factor 1-alpha (Hif1α) and tenascin C levels in human disease (p=0.018, see Fig. 

18). 

 
3.4.3 Tenascin C expression strongly correlates with proliferation in human 
PDAC 

Tenascin C has been shown to promote both glioblastoma and breast carcinoma 

cell proliferation in vitro and in vivo (Chiquet-Ehrismann, Mackie et al. 1986; 

Huang, Chiquet-Ehrismann et al. 2001; Fukunaga-Kalabis, Martinez et al. 2010). 

In my analysis of the human PDAC TMA I have shown a significant correlation 

between tenascin C expression and proliferation in human PDAC (p=0.045 see 

Fig. 18). 

 
3.4.4 Tenascin C expression strongly correlates with integrin signalling in 
human PDAC 

Tenascin C is known to signal through integrins a large family of cell surface 

receptors. Tenascin C has been shown to signal through α2β1, αvβ3, α7β1, α8β1, 

α9β1, α5β3 and α5β6 integrins (Sriramarao, Mendler et al. 1993; Yokosaki, 

Palmer et al. 1994; Varnum-Finney, Venstrom et al. 1995; Yokosaki, Monis et al. 

1996). Interestingly in my analysis there is a strong correlation between tenascin C 

expression and αvβ6 integrin (see Fig. 18). 

 

3.4.5 Tenascin C expression is significantly associated with both tumour 
grade and vascular invasion in human PDAC 

Tenascin C is considered to have important roles in both epithelial to 

mesenchymal transition (EMT) and tumour cell migration (Deryugina, Bourdon et 

al. 1996; Nishio, Kawaguchi et al. 2005; De Wever, Nguyen et al. 2004; Maschler, 

Grunert et al. 2004; Dandachi, Hauser-Kronberger et al. 2001; Tanaka, Sumioka 

et al. 2010). I have shown that high expression of tenascin C significantly 
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correlates with tumour grade (p=0.049) and there is also a trend towards 

increased vascular invasion (p=0.052) (see Fig. 19).  

 

Figure 18: Tenascin C expression significantly correlates with proliferation, 
hypoxia and integrin αvβ6 in human PDAC TMA analysis. 
There is a strong positive correlation with Ki67 a proliferation marker, Hif1alpha which is induced in 
states of hypoxia and integrin αvβ6 (n=118). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Tenascin-C expression significantly correlates with tumour grade 
There is a positive correlation between tumour grade and tenascin-C expression with higher grade 
tumours producing more tenascin-C. There is also a trend towards tumours with higher tenascin-C 
expression exhibiting vascular invasion (n=118). Vascular invasion 1= invasion, 0= no invasion. 
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3.4.6 Tenascin C expression is significantly associated with lysyl-oxidase 
expression in human PDAC 

Finally we have shown in a human PDAC RNA microarray that there is a 

significant positive correlation between lysyl-oxidase expression and tenascin C 

expression (p<0.0001 see Fig. 20). 

 

Figure 20: Tenascin-C expression significantly correlates with lysyl-oxidase 
expression in human PDAC RNA microarray analysis. 
There is a significant positive correlation between lox expression and tenascin-C expression in 
human PDAC (spearmans rho correlation 0.61, p=<0.0001). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spearmans rho correlation 0.61, P < 0.0001 
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3.5 Evaluating stromal changes elicited by stromal targeting treatments in 
the KPC model of PDAC 

Having established reliable methods for quantifying cellular and non-cellular 

constituents of tumour stroma and establishing the presence and possible 

importance of tenascin C in PDAC we next looked to use these methods and 

staining protocols to evaluate stromal changes elicited in the KPC model by lysyl-

oxidase inhibition and CXCR2 inhibition. 

 

3.6 Lysyl-oxidase inhibition in the KPC model  

The role of lysyl-oxidase in tumour metastasis is well established, and it has been 

shown that inhibition of lysyl-oxidase reduces metastatic spread rather than 

reducing tumour initiation (Erler, Bennewith et al. 2006). In light of recent work 

showing that tumour stroma inhibits penetration of gemcitabine into PDAC (Olive, 

Jacobetz et al. 2009), and given the role that lysyl-oxidase plays in cross-linking 

collagen, we next determined the effect of lysyl-oxidase inhibition alone and in 

combination with gemcitabine on both metastatic spread and on the primary 

tumour itself. 

 

3.6.1 Lysyl-oxidase inhibition delays tumorigenesis and stops metastasis 

Work by Jen Morten and Bryan Miller in our lab has shown that KPC mice treated  

with LOX-Ab show a significant increase in survival, furthermore mice treated with 

the combination of gemcitabine and LOX-Ab had a further increase in survival, 

with a median survival of 226 days (Log-Rank p<0.002) (see Fig. 21). Importantly 

in the groups of mice treated with LOX-Ab alone or LOX-Ab/gemcitabine 

combination there were reduced instances of metastasis (0/8 and 2/13 

respectively, compared with 9/11 treated with gemcitabine alone).  
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Figure 21: LOX inhibition significantly delays tumorigenesis and stops 
metastasis in KPC mice.  
 
Kaplan-Meier survival analysis. There was a significant difference in survival between the LoxAB 

treated and the LoxAB/Gemcitabine treated cohorts (Log-Rank p=<0.002). There was also reduced 

incidence of metastasis noted in the Lox-Ab and Lox-Ab/Gemcitabine treatment cohorts. 

(Results and figure courtesy of Jen Morton) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.2 Characterising the effects of Lox-Ab and gemcitabine treatment on the 
KPC tumour epithelium and microenvironment 

Having shown the significant effect of lysyl-oxidase inhibition on survival, alone 

and in combination with gemcitabine, it was next important to characterise the 

effects treatment was having on both the tumour epithelium and the tumour 

microenvironment 

 

3.6.3 Lysyl-oxidase inhibition significantly reduces the tumoural expression 
of tenascin C in KPC mice 

Considering the previously highlighted significant correlation between lysyl-

oxidase and tenascin C expression in human PDAC we next looked to determine 

the effects of lysyl-oxidase inhibition on the expression of tenascin C in the KPC 

model of PDAC. Additionally tenascin C is produced in response to a wide variety 

of cellular signals such as hypoxia and in response to mechanical strain (Jones 
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and Jones 2000) therefore we looked to quantify tumoural tenascin C expression 

in Lox-Ab treated mice. In the context of lysyl-oxidase inhibition elicited by Lox-Ab 

treatment there is markedly decreased tenascin C expression in tumours. We 

have also shown that gemcitabine treatment induces increased stromal tenascin C 

expression when compared with vehicle treated mice. It is also clear that Lox-Ab 

treatment is able to inhibit the increased stromal expression of tenascin C in 

response to gemcitabine (see Fig. 22). Interestingly in the treatment KPC tumours 

treated with the combination of gemcitabine and lysyl-oxidase inhibition we also 

begin to see increased expression by the tumour epithelium itself as opposed to 

the increased stromal expression noted in vehicle or gemcitabine alone treated 

KPC mice (see Fig. 23). 

 
Figure 22: Lysyl-oxidase inhibition significantly reduces the expression of 
tenascin-C in KPC tumours. 
Representative x4 magnification images of tenascin-C staining of tumour  tissues. 
Lox inhibition markedly decreases the expression of tenascin-C in Lox treated KPC tumours. 
Gemcitabine is also noted to markedly increase expression of tenascin-C, a change that is not 
noted when used in conjunction with Lox inhibition. 
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Figure 23: Tenascin-C expression is predominantly stromal however it may 
also be expressed within the tumour epithelium. 
Shows representative X20 magnification images of tenascin-C stained gemcitabine treated and 
lox/gemcitabine treated KPC tumours. Note the stromal staining pattern in the gemcitabine treated 
tumour compared to the mild cytoplasmic staining of tumour cells in the Lox/gemcitabine treated 
tumour. 

 

3.6.4 Lysyl-oxidase inhibition significantly increases intra-tumoural 
microvessel density 

Given the decrease in the stromal tenascin C expression caused by Lox-Ab 

treatment we looked to determine whether there was an effect on the tumour 

microvasculature. Amy Au in our lab has shown that there is a significant increase 

in intra-tumoural microvasculature in Lox-Ab and Lox-AB/gemcitabine combination 

treatment groups compared to vehicle treated and gemcitabine alone (data not 

shown).  

 

3.6.5 Lysyl-oxidase inhibition in conjunction with gemcitabine treatment 
significantly increases intra-tumoural necrosis but has no significant effect 
on apoptosis 

Work done in the lab by Jen Morten in KPC mice had previously shown that there 

was no significant change in tumour epithelium proliferation rate as assessed by 

Ki67 immunostaining and quantification. Given that there was no change in tumour 

proliferation I next characterised the changes in tumour cell survival by 

quantification of apoptosis and necrosis. Through quantification of intra-tumoural 

necrosis I have shown a significant increase in intra-tumoural necrosis in the Lox-

Ab/gemcitabine combination treatment group compared with gemcitabine alone 

and vehicle treated mice (p=0.034 and 0.022 respectively, see Fig. 24). There is 

also a trend towards increased necrosis in the Lox-AB/gemcitabine combination 

treatment group compared to lysyl-oxidase inhibition alone (p=0.101 see Fig. 24). 
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Through quantification of apoptosis (positive immunostaining for cleaved caspase-

3) I have shown that there is no significant alteration in apoptosis in the tumour 

epithelium (see Fig. 25). These findings are interesting given the increased intra-

tumoural microvessel density previously noted in the Lox-Ab treatment groups. 
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Figure 24: Lysyl-oxidase inhibition in combination with gemcitabine 
treatment significantly increases intra-tumoural necrosis in KPC mice. 

 
a) Shows representative X4 magnification images of PDAC necrosis in Lox treatment cohorts 
b) Quantification of necrosis in Lox treatment cohorts. There was a significant difference in necrosis 

between the LoxAB/Gemcitabine treatment cohort and vehicle treated and gemcitabine alone 
treated cohorts (Mann-Whitney U test, p=0.022 and 0.034 respectively, group size n≥3) and a 
trend towards increased necrosis over Lox treatment alone. 
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Figure 25: Lysyl-oxidase inhibition has no significant effect on apoptosis in 
PDAC in KPC mice 
Quantification of apoptosis (cleaved Caspase-3 positive cells) in Lox treatment cohorts. There was 
no significant difference in apoptosis between treatments (Mann-Whitney U test, group size n≥3). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.6 Lysyl-oxidase inhibition in combination with gemcitabine significantly 
increases intra-tumoural leukocyte infiltration 

Utilising characteristic morphology and F4/80 staining I have quantified the intra-

tumoural infiltrate of neutrophils and macrophages respectively. I have shown a 

significant increase in intra-tumoural neutrophils in the Lox-Ab/gemcitabine 

combination treatment group compared with gemcitabine alone and vehicle 

treated mice and a trend toward increased intratumoural neutrophils compared to 

lysyl-oxidase inhibition alone (p=0.027, 0.027 and 0.117 respectively) (see Fig. 

26). There is also a significant increase in intra-tumoural infiltration of 

macrophages in the Lox-Ab/gemcitabine combination treatment group compared 

to the vehicle treated, Lox-AB alone and gemcitabine alone treatment groups 

(p=0.014, 0.004, 0.023 respectively) (see Fig. 27). 
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Figure 26: Lysyl-oxidase inhibition in combination with gemcitabine 
treatment significantly increases intra-tumoural neutrophil infiltrates in KPC 
mice. 

a) Shows a representative image X40 magnification of neutrophil appearance on standard H&E 
stained tumour section. Inset note the characteristic nuclear shape and eosinophilic cytoplasm. 

b) Quantification of intra-tumoural neutrophil numbers in Lox treatment cohorts. There was a 
significant difference in intra-tumoural neutrophil numbers between the LoxAB/Gemcitabine 
treatment cohort and vehicle treated and gemcitabine alone treated cohorts (Mann-Whitney U 
test, p=0.027 and 0.027 respectively, group size n≥3) and a trend to increased intra-tumoural 
neutrophil infiltrate over Lox treatment alone. 
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Figure 27: Lysyl-oxidase inhibition in combination with gemcitabine 
treatment significantly increases intra-tumoural macrophage infiltration in 
KPC mice. 

a) Shows representative X40 magnification F4/80 stained images in Lox treatment cohorts. 
b) Quantification of intra-tumoural macrophage infiltration in Lox treatment cohorts by pixel count 

analysis of F4/80 stained tissues. There was a significant difference in intra-tumoural macrophage 
infiltration between the LoxAB/Gemcitabine treatment cohort and vehicle treated, LoxAB alone 
and gemcitabine alone treated cohorts (Mann-Whitney U test, p=0.014, p=0.004 and 0.023 
respectively, group size n≥3). 
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3.7 CXCR2 inhibition in the KPC model 

CXCR2 signalling has increasingly been implicated in cancer and inflammatory 

conditions (Matsuo, Ochi et al. 2009; Li, King et al. 2011; Gabellini, Trisciuoglio et 

al. 2009) and it is well known that inflammation may in part lead to the 

development of PDAC (Duell, Casella et al. 2006). CXCR2 is expressed on a wide 

variety of cell types including inflammatory cells, tumour epithelial cells and other 

stromal cells such as endothelial cells. Therefore we looked to determine the 

effects of CXCR2 inhibition alone and in combination with gemcitabine treatment 

on the both the tumour epithelium and the tumour microenvironment. 

 

3.7.1 CXCR2 inhibition significantly increases survival in KPC mice 

Work undertaken by Colin Steele in our lab has shown that pepducin treatment 

(inhibition of CXCR2) significantly increases survival in KPC mice (Log-Rank 

p=<0.002) (see Fig. 28). Furthermore it has been shown that combination of 

pepducin treatment with gemcitabine treatment also reduces incidence of 

metastasis. 

 
Figure 28: CXCR2 inhibition significantly increases survival in KPC mice.  
 
Kaplan-Meier survival analysis. There was a significant difference in survival between the pepducin 
treated and the vehicle treated cohorts (Log-Rank p=<0.002, group size n=20). There was also 
reduced incidence of metastasis noted in the pepducin/gemcitabine treatment cohort. 
(Results and figure courtesy of Colin Steele). 
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3.7.2 CXCR2 inhibition significantly increases intra-tumoural necrosis but 
has no effect on apoptosis 

Due to the increase in survival we first characterised the effects of CXCR2 

inhibition on the tumour epithelium itself. Work done in the lab by Colin Steele had 

previously highlighted that there was no significant change in cell proliferation rate 

as assessed by Ki67 immunostaining and quantification. Due to the lack of effect 

on proliferation I next characterised the changes in tumour cell viability by 

quantifying levels of apoptosis and necrosis. Quantification of intra-tumoural 

necrosis shows that pepducin treatment significantly increases intra-tumoural 

necrosis when compared to vehicle treatment or gemcitabine treatment alone 

(p=0.007 and 0.034 respectively). This increase in necrosis compared to vehicle 

was not seen in the gemcitabine alone treatment group and combination treatment 

with gemcitabine does not further increase intra-tumoural necrosis (see Fig. 29). 

Quantification of apoptotic tumour epithelium showed no significant difference 

between treatment groups (see Fig. 30). 
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Figure 29: CXCR2 inhibition significantly increases necrosis in KPC 
tumours. 

a) Shows representative X4 magnification images of PDAC necrosis in pepducin treatment cohorts 
b) Quantification of necrosis in pepducin treatment cohorts. There was a significant difference in 

necrosis between pepducin and pepducin/gemcitabine treatment compared with vehicle 
treatment (Mann-Whitney U test, p=0.007 and p=0.009 respectively, group size n≥3). There was a 
significant increase in necrosis in pepducin treatment alone compared to gemcitabine treatment 
alone (Mann-Whitney U test, p=0.034, group size n≥3) and there was a trend towards increased 
necrosis in the pepducin/gemcitabine treatment compared to the gemcitabine alone. 
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Figure 30: CXCR2 inhibition has no effect on apoptosis in KPC tumours. 
Quantification of apoptosis (cleaved caspase-3 positive cells) in pepducin treatment cohorts.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7.3 CXCR2 inhibition significantly reduces intra-tumoural microvessel 
density 

Given the increase in intra-tumoural necrosis produced by pepducin alone, the 

inability of gemcitabine to further increase necrosis when given in combination with 

pepducin and the importance of CXCR2 signalling in angiogenesis (Li, Cheng et 

al. 2011) I next quantified intra-tumoural microvessel density. Pepducin treatment 

(CXCR2 inhibition) significantly decreases intra-tumoural microvessel density 

when compared with vehicle treatment (p=0.025) (see Fig. 31). This change was 

consistent and unaffected by combination of pepducin with gemcitabine treatment 

(p=0.025) (see Fig. 31).   
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Figure 31: CXCR2 inhibition significantly decreases vessel count in KPC 
tumours. 

a) Shows a representative X20 magnification image of PDAC CD31 immunostaining in tumour tissue. 
b) Quantification of vessel counts in pepducin treatment cohorts. There was a significant difference in 

vessel counts between pepducin and pepducin/gemcitabine treatment compared with vehicle 
treatment (Mann-Whitney U test, p=0.025 and p=0.025 respectively, group size n≥3) and 
gemcitabine alone (Mann-Whitney U test, p=0.027 and p=0.050 respectively group size n≥3). 
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3.7.4 CXCR2 inhibition increases intra-tumoural expression of tenascin C in 
KPC mice 

As tenascin C is expressed in situations of hypoxia, I next characterised the 

change elicited in tenacin C expression in response to CXCR2 inhibition. I stained 

for tenascin C which shows that CXCR2 inhibition leads to increased tenascin C 

production within the stroma of KPC tumours (see Fig. 32). 

 

Figure 32: CXCR2 inhibition increases the expression of tenascin-C in KPC 
tumours. 
Representative x10 magnification images of tenascin-C staining of pepducin treatment cohorts. 
CXCR2 inhibition markedly increases the expression of tenascin-C in pepducin treated KPC 
tumours. Gemcitabine treatment is also noted to markedly increase expression of tenascin-C. 
Pepducin and gemcitabine when given in combination have an additive effect on the increase in 
tenascin-C expression (group size n=5). 
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3.7.5 CXCR2 inhibition reduces intra-tumoural leukocyte infiltration in KPC 
mice 

Previous studies have shown a significant reduction in neutrophil and macrophage 

numbers in response to CXCR2 inhibition (Ijichi, Chytil et al. 2011). In agreement 

with this finding I have shown that in pepducin treated KPC mice there is a non-

significant trend towards decreased numbers of intra-tumoural neutrophils and 

macrophages (see Figs. 33, 34 and 35). 

 

Figure 33: CXCR2 inhibition decreases neutrophil tumour infiltration in KPC 
mice (Haematoxylin and Eosin stain). 
Quantification of neutrophils (haematoxylin and eosin stain) in pepducin treatment cohort. There 
was a non-significant trend towards decreased neutrophil numbers in pepducin treated tumours. 
This reduction was not seen when combination treatment with gemcitabine was given (Mann-
Whitney U test, group size n≥3).  
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Figure 34: CXCR2 inhibition decreases neutrophil tumour infiltration in KPC 
mice (MPO immunostaining). 

 
a) Shows a representative X40 magnification image of PDAC myeloperoxidase (MPO) immunostaining 

in tumour tissue. 
b) Quantification of neutrophils (MPO positive cells) in pepducin treatment cohorts. There was a non-

significant trend towards decreased neutrophil numbers in pepducin treated tumours. This 
reduction was not seen when combination treatment with gemcitabine was given (Mann-Whitney 
U test, group size n≥3).  
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Figure 35: CXCR2 inhibition decreases macrophage tumour infiltration in 
KPC mice. 

a) Shows representative X40 magnification images of F4/80 stained vehicle treated and pepducin 
treated tumour tissue. 

b) Quantification of macrophages (F4/80 staining by pixel count analysis) in pepducin treatment 
cohorts. There was a non-significant trend towards decreased macrophage numbers in pepducin 
treated tumours. This reduction was not seen when combination treatment with gemcitabine was 
given (Mann-Whitney U test, group size n≥3).  
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3.7.6 CXCR2 inhibition reduces intra-tumoural collagen and elastin and intra-
tumoural myofibroblast number in KPC mice 

CXCR2 expression by neutrophils is widely appreciated, however other cell types 

including fibroblasts have also been shown to express CXCR2 (Ijichi, Chytil et al. 

2011; Marotte, Ruth et al. 2010). I quantified the levels of collagen and elastin in 

tumours utilising Sirius red staining and through immunohistochemical staining for 

alpha-SMA evaluated the numbers of myofibroblasts in treatment groups. CXCR2 

inhibition caused a significant decrease in the amounts of intra-tumoural collagen 

and elastin (p=0.021) (see Fig. 36) and a decrease in the number of alpha-SMA 

positive cells (see Fig. 37). 
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Figure 36: CXCR2 inhibition decreases collagen and elastin in KPC tumours. 
a) Shows representative X20 magnification images of Sirius Red stained vehicle treated and pepducin 

treated tumour tissue. 
b) Quantification of collagen and elastin (Sirius red staining by pixel count analysis) in pepducin 

treatment cohorts. There was a significant decrease in collagen and elastin in pepducin treated 
tumours (Mann-Whitney U test, p=0.021, group size n≥3). This reduction was not seen when 
combination treatment with gemcitabine was given.  
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Figure 37: CXCR2 inhibition decreases myofibroblast numbers in KPC 
tuours. 
Shows representative X20 magnification images of alphaSMA stained vehicle treated and pepducin 
treated tumour tissue. 
 

 

 

 

 

 

 

 

 
3.8 Constitutive CXCR2 knock out in the KPC model 

Our lab has shown that inhibition of CXCR2 by pepducin has significant effects on 

overall survival in the KPC model of PDAC (pharmacological deletion) as well as 

having profound effects on the tumour epithelium and the tumour 

microenvironment. Work by Colin Steele in the lab is on-going to characterise the 

effect of constitutive knock out of the CXCR2 gene in the KPC model using a 

genetic model and the following are early results highlighting the changes seen in 

the microenvironment.  

 

3.8.1 Constitutive CXCR2 knock out reduces intra-tumoural neutrophil 
infiltration in KPC mice 

CXCR2 signalling is vital for neutrophil chemotaxis to sites of inflammation. I have 

shown that constitutive CXCR2 knock out significantly reduces intratumoural 

neutrophil infiltration in KPC mice treated with gemcitabine and a there is a trend 

towards decreased neutrophil numbers in CXCR2 knock out KPC mice for which 

we currently have small numbers (p=0.034, p=0.083 respectively) (see Fig. 38). 

This trend is also seen with pepducin inhibition of CXCR2 signalling but is found to 

be a significant finding in the context of a constitutive CXCR2 knock out. 
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Figure 38: CXCR2 KO decreases neutrophil tumour infiltration in KPC mice. 
Neutrophil quantification (MPO positive cells) in tumours in CXCR2 KO mice and mice expressing 
functional CXCR2 (group size n=2, ongoing cohort). 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2 Constitutive CXCR2 knock out does not alter intra-tumoural 
microvessel density in KPC mice 

I have previously shown that inhibition of CXCR2 signalling with pepducin 

treatment significantly reduces intra-tumoural microvessel density in KPC mice. I 

therefore looked to characterise changes to the tumour vasculature in the context 

of constitutive knock out of CXCR2. In contrast to pepducin mediated CXCR2 

inhibition, constitutive knock out of CXCR2 does not have a significant effect on 

the intra-tumoural microvessel density (see Fig. 39). 
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Figure 39: CXCR2 KO has no effect on vessel count in KPC tumours. 
There is no change in vessel count between tumours in CXCR2 knockout mice and mice 
expressing CXCR2. 
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3.8.3 Constitutive CXCR2 knock out does not alter intra-tumoural expression 
of tenascin-C in KPC mice 

Having shown that constitutive knockout of CXCR2 has no effect on intra-tumoural 

microvessel density I next demonstrated that constitutive knock out of CXCR2 also 

has no effect on levels of intra-tumoural tenascin C (see Fig. 40). 

 

Figure 40: CXCR2 KO has no effect on tenascin-C expression in KPC 
tumours. 
There is no change in tenascin-C production between CXCR2-/- tumours and CXCR2 expressing 
tumours (group size n≥2). 
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Chapter 4 

Discussion 

4.1 Pancreatic ductal carcinoma and the importance of its microenvironment 

In this thesis I have established robust methods of stromal characterisation and 

novel immunohistochemistry protocols. I have subsequently applied these 

methods and characterised the stroma of the KPC model of PDAC and compared 

this with the normal pancreas as well as determining the stromal changes caused 

by specific targeted therapies. In the UK pancreatic cancer is the fifth highest 

cause of death by cancer with a median survival post-diagnosis of only 6 months. 

This situation has changed little in the past few decades with median survival 

barely altering between 1971 and 2007. To date therapies that target specific 

molecular alterations within the cancer cells themselves, which have been 

successful in other tumour types, have not been successful in treating PDAC 

(Jang and Atkins 2013; Yauch and Settleman 2012). In response to the lack of 

success in directly targeting the tumour epithelial cells, increasing interest has 

been given to targeting the tumour microenvironment, a characteristic for which 

PDAC is well known (Feig, Gopinathan et al. 2012). In our lab a number of 

approaches have been taken to target the tumour microenvironment and these 

have greatly increased survival in mouse models of PDAC. In order to begin to 

further understand the mechanisms by which these approaches affect the mouse 

tumours it was first vital to establish robust methods for stromal characterisation. 

 

4.2 Establishing robust methods for stromal characterisation 

With the increasing interest in stromal targeting in cancer therapy, particularly for 

pancreatic cancer, there have been increasing numbers of publications evaluating 

the effects of different stromal targeting therapies (Bramhall, Rosemurgy et al. 

2001; Provenzano, Cuevas et al. 2012; Olive, Jacobetz et al. 2009; Jacobetz, 

Chan et al. 2013). Unfortunately the methods used in these publications vary 

greatly in their fastidiousness. We argued that it should be possible to develop a 

methodological approach that is less open to variation due to the subjectivity that 

affects these other scoring methods. Through evaluating a broad range of cellular 

and non-cellular stromal constituents and scoring all non-overlapping tumour FOV 

whilst simultaneously evaluating the running mean and standard error in each 

example I have established a more robust method for stromal characterisation. I 
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have shown that reliable estimations of stromal constituents may be obtained by 

scoring a minimum of 30 FOV at X20 magnification or 60 FOV at X40 

magnification. This method, although more time consuming, is achievable and 

provides a minimum number of fields that must be evaluated in order to produce a 

representative average for any stromal constituent. I aimed to establish improved 

methods for histological analysis of stromal constituents and in so doing have 

increased the reliability of this method in stromal evaluation. Importantly however 

this approach will benefit from being run in tandem where possible with flow 

cytometry for cellular constituents and Western-blot and/or qPCR analysis where 

appropriate for other non-cellular components. Alone, and importantly in 

conjunction with these other methods of evaluation, the more robust method for 

histological assessment and quantification I have developed and used for all my 

analyses will lead to greater accuracy and more meaningful results when 

characterising stromal changes in models of cancer.  

 

4.3 Stromal characterisation of the KPC model of PDAC 

Through our initial analyses we have shown that the stromal constituents of PDAC 

differ greatly in composition and proportion from the stroma of the normal 

pancreas. We have shown that there is a prominent increase in the amount of 

stroma with a dramatic increase in the amount of collagen and the number of 

activated myofibroblasts. We have shown that there is an increase in the number 

of inflammatory cells within the stroma of PDAC compared to the normal 

pancreas. We have also shown that there are significant changes in the tumour 

epithelium with moderate to marked amounts of necrosis compared with the 

parenchyma of the normal pancreas. 

 

4.3.1 Characterisation of myofibroblasts and pancreatic stellate cell numbers 
in PDAC 

Existing literature regarding PDAC refers extensively to the significant contribution 

that pancreatic stellate cells make to the population of activated myofibroblasts in 

the stroma (Apte, Park et al. 2004). In this literature cellular alphaSMA positivity 

has been used to label and quantify pancreatic stellate cells. As discussed 

previously alphaSMA is not a specific marker for pancreatic stellate cells and any 

activated fibroblast from any origin as well as other cells such as pericytes will 
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stain for alphaSMA. The lack of specificity of alphaSMA as a marker for pancreatic 

stellate cells led us to investigate the utility of GFAP as a more specific marker for 

pancreatic stellate cells in PDAC. Pancreatic stellate cells are considered to be of 

neural crest origin and as such produce the intermediate filament GFAP. 

Unfortunately the characterisation of pancreatic stellate cells has been limited by 

the ability to isolate and study these cells in culture (Apte, Haber et al. 1998; Apte, 

Park et al. 2004; Wehr, Furth et al. 2011). One limitation is the fact that pancreatic 

stellate cells growing in an in vitro setting immediately become activated. 

Additionally the availability of specific markers which may be used to specifically 

isolate pancreatic stellate cells is also limited. GFAP is generally considered to be 

produced by quiescent pancreatic stellate cells however the literature surrounding 

activated pancreatic stellate cells is unfortunately less clear. I have shown that 

GFAP immunohistochemistry stains a small population of cells within the normal 

pancreas which are situated in the periacinar region as would be expected for 

pancreatic stellate cells. I have also shown that there is a small population of 

GFAP positive cells present in both human and KPC PDACs. Importantly however, 

the number of GFAP positive cells does not match the number of alphaSMA 

positive myofibroblasts in KPC tumours and this discrepancy is large in scale with 

the number of alphaSMA positive cells vastly exceeding the small number of 

GFAP positive cells present (see Fig. 9). This discrepancy may be explained by 

the fact that there are potentially multiple sources capable of contributing to the 

myofibroblast population in the KPC tumours. This is certainly a possibility with 

pericytes, fibrocytes, endothelial cells (through the process of endothelial to 

mesenchymal transition) and even epithelial cells (through epithelial to 

mesechymal transition) all capable of contributing to the cell population with a 

spindloid morphology and alphaSMA positivity (Kalluri and Neilson. 2003; van 

Meeteren and ten Dijke. 2012). It is also possible that although GFAP is a useful 

marker of quiescent stellate cells it may be unreliable as a marker once the cells 

have undergone activation and the associated cellular changes undertaken when 

becoming myofibroblasts. Indeed the morphology of the few GFAP positive cells 

within our KPC tumours is that of quiescent stellate cells (round and plump) and it 

is also possible that GFAP expression upon activation is dramatically reduced.  

Further evaluation of the origin of the myofibroblast population in pancreatic 

cancer will be required, utilising better and more specific markers, in order to 
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elucidate the true role played by pancreatic stellate cells in PDAC. The possibility 

of performing lineage tracing experiments utilising GFAP driven expression of Cre 

recombinase and LSL-GFP under the alphaSMA promoter is under investigation in 

our lab and may provide useful and vital insight into this population of cells.  If 

confirmed, the finding that the proportion of pancreatic stellate cell derived 

myofibroblasts is small does not rule out the possibility that these cells are central 

to guiding the formation and ongoing remodelling of the tumour stroma. However it 

would seem prudent, until further characterised, to designate these cells 

generically as activated myofibroblasts rather than implying they are derived from 

pancreatic stellate cells.  

 

4.3.2 Stromal characterisation highlights the increased levels of tenascin C 
in KPC stroma  

Having characterised the constituents of the stroma within the KPC model of 

PDAC I next looked to determine levels and location of expression of tenascin C. 

Tenascin C has been previously shown to be produced in human PDAC however 

tenascin C production has not been previously reported in the KPC model of 

PDAC (Juuti, Nordling et al. 2004). I have developed and optimised an 

immunohistochemistry protocol for staining formalin fixed, paraffin embedded 

tissues for tenascin C which has shown that tenascin C is not produced in the 

normal pancreas but is present in the stroma of KPC-driven PDAC. 

 

4.4 Tenascin C in PDAC 

Tenascin C expression has been detected with increased frequency in the 

progression from early PanIN lesions through to PDAC (Esposito, Penzel et al. 

2006). As a component of the extracellular matrix with significant effects on tumour 

cell behaviour and viability I looked to further characterise the expression of 

tenascin C in human PDAC and in our murine models of PDAC. I also looked to 

characterise changes in tenascin C expression in response to stromal targeted 

therapies. 

Having established and optimised an immunohistochemistry protocol for staining 

tenascin C in formalin fixed, paraffin embedded tissue I was able to show that 

there is significant stromal production of tenascin C in the KPC model of PDAC. 



85 

 

This showed, as we suspected, that the KPC model of PDAC mirrors the stromal 

production of tenascin C as seen in the human disease. This finding further 

highlights the usefulness of the KPC model for studying the complex stroma found 

within these tumours. 

Utilising the immunohistochemistry protocol for tenascin C I was next able to show 

that tenascin C expression is higher in tumours with mutated p53 (KPC) compared 

to those which have lost p53 (KPflC). It has previously been shown by Jennifer 

Morton in our lab that the presence of mutant p53 as opposed to loss of p53 

results in the capacity for tumour cells to metastasise. Interestingly the majority of 

the subsequent work focussing on the effects of mutant gain-of-function p53 has 

focussed on the changes resulting in the tumour epithelium yet here we have 

shown a clear difference between the stromal constituents of these tumours. This 

interesting finding perhaps provides a mechanism by which gain-of-function p53 

mutations may alter the stromal microenvironment and, given the established role 

of tenascin C in metastasis, increase their metastatic ability in a non-tumour cell 

autonomous way.  

Using human PDAC cell line xenografts and species specific tenascin C staining, I 

have shown that tenascin C production in PDAC is undertaken by stromal cells as 

opposed to the tumour cells themselves. Importantly however, using KPC cell line 

allografts in tenascin C knockout mice I have shown that the tumour epithelium 

itself will produce tenascin C in the absence of stromal production, therefore 

potentially highlighting a significant requirement for tenascin C expression within 

PDAC. This finding is consistent with the findings of Oskarsen et al. in which they 

found that production of tenascin C by metastatic mammary epithelial cells was 

vital for tumour cell survival until stromal production in the metastatic niche had 

reached adequate levels at 21 days (Oskarsson, Acharyya et al. 2011). 

Interestingly where the combination of Lox-Ab and gemcitabine is given eliciting 

dramatically reduced stromal tenascin the tumour epithelium itself appears to 

upregulate production of tenascin C. These results all confirm the importance of 

tenascin C to PDAC epithelial cells which was initially highlighted by the work of 

Bryan Miller in our lab showing that the production of tenascin C by PDAC cell 

lines in vitro is vital to cell viability. In this context it would seem that tenascin C is 

upregulated in vitro by cells growing in the absence of stromal cells and 
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associated ECM as a “stress response” due to a lack of supportive stromal 

signalling including altered mechanotransduction and other cytokine pathways. 

Taken together these findings all point to the vital role tenascin C plays in both the 

primary tumour and the metastatic niche and as such when the stroma is not 

capable of producing tenascin C the epithelium will produce tenascin C itself. 

In the KPC mouse model of PDAC I have shown that treatment with gemcitabine 

triggers a significant increase in the expression of tenascin C. It is interesting to 

speculate that this may be a specific response leading to resistance to 

gemcitabine therapy as has been shown previously (Gong, Lv et al. 2010) or a 

general tumour stress response.  

I have shown that lysyl-oxidase inhibition impairs the ability of the tumours to 

express stromal tenascin C. This impaired tenascin C expression may in part 

explain the loss of tumour viability through lack of supportive tumour-ECM 

signalling or it is tempting to speculate that the lack of protective annexin II 

signalling triggered by tenascin C possibly leads to a specific increase in 

susceptibility to gemcitabine therapy as demonstrated by Gong et al. (Gong, Lv et 

al. 2010). It is equally possible that the lack of tenascin C production is simply a 

result of reduced tissue hypoxia, due to the increase in vascular supply that we 

have demonstrated in response to lysyl-oxidase inhibition. If this is the case then it 

is possible that the tumoural responses noted are due to increased gemcitabine 

delivery and perhaps increased chemosensitivity due to increased vascular supply 

which in turn will reduce hypoxia. 

Interestingly in contrast to the changes elicited by lysyl-oxidase inhibition I have 

also shown that tenascin C is upregulated in KPC PDAC tumours in response to 

CXCR2 inhibition with pepducin. This increase is likely a stress response which 

may be a direct result of increased tissue hypoxia due to decreased intra-tumoural 

microvessel density. It is interesting to speculate that this increase in tenascin C is 

due to increased tissue hypoxia especially given the reduction in tenascin C 

production noted in the context of lysyl-oxidase inhibition which increases vascular 

supply. Importantly lysyl-oxidase inhibition leads to increased intratumoural 

microvessel density, increased necrosis, a reduction in tenascin C expression and 

an increase in infiltrating leukocytes whereas CXCR2 inhibition leads to decreased 
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intratumoural microvessel density, increased necrosis, increased tenascin C 

expression but no increase in infiltrating leukocyte numbers. Both however lead to 

increased survival and neither result in increased incidence of metastasis which is 

important especially in the context of CXCR2 inhibition given previous findings that 

hypoxia appears to be associated with increased metastasis in pancreatic ductal 

adenocarcinoma (Matsuo, Ding et al. 2013). The reduced incidence of metastasis 

in this example of increased hypoxia is in agreement with other findings in our lab 

where VEGF inhibition had no effect on metastasis in the KPC model. Importantly 

in the context of both lysl-oxidase inhibition and CXCR2 inhibition the presence or 

absence of hypoxia will need to be confirmed utilising methods such as 

pimonidazole or GLUT-1 staining. Tenascin C production however is also triggered 

by alterations in tissue stiffness (Jones and Jones 2000) so it is also possible that 

the increased production of tenascin C noted upon CXCR2 inhibition could be the 

result of altered ECM composition and architecture as highlighted by the reduction 

in collagen and elastin and also the reduction in myofibroblast numbers in treated 

tumours. Given preliminary findings in the setting of PDAC in a genetic model of 

CXCR2 deletion (CXCR2 -/-) where there is no decrease in tumour vasculature 

and concurrently there is also no increase in tenascin C production it seems 

plausible that the increased tenascin C production in response to pepducin 

treatment is likely due to hypoxia. This finding is consistent with my finding that the 

production of tenascin C in the human PDAC TMA strongly correlates with levels 

of HIF-1alpha.   

In agreement with others I have shown that tenascin C significantly correlates with 

differentiation in human PDAC (Juuti, Nordling et al. 2004). Additionally our data, 

to the best of our knowledge, show for the first time a significant correlation 

between high tenascin C expression and decreased survival in human PDAC 

patients (see Fig. 17). In my analysis of the tenascin C levels in the human TMA I 

have also shown that there is a significant positive correlation between tenascin C 

levels and tumour cell proliferation, tumour grade and there is also a trend towards 

a positive correlation between tenascin C expression and vascular invasion. As 

stated previously this analysis of the human PDAC TMA has also confirmed the 

positive correlation between hypoxia and tenascin C expression. These findings, 

which would benefit from confirmation in whole tumour sections in addition to this 

TMA, may in part explain the reasons for decreased survival in patients with high 
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levels of tenascin-C expression and again highlight the important role tenascin C 

plays in both the primary PDAC tumours and in the metastatic process. 

Interestingly in agreement with others, analysis of tenascin C production in the 

human PDAC TMA highlights a significant positive correlation between integrin 

signalling and tenascin C (Sriramarao, Mendler et al. 1993; Yokosaki, Palmer et al. 

1994; Varnum-Finney, Venstrom et al. 1995; Yokosaki, Monis et al. 1996). 

Analysis has also shown a significant correlation with tenascin C and the integrin 

αvβ6 which to our knowledge has not been shown previously. 

 

Finally data from a human PDAC RNA tissue microarray has confirmed that there 

is a significant positive correlation between lysyl-oxidase and tenascin-C 

expression in human PDAC. This finding supports the finding that lysyl-oxidase 

inhibition in the KPC model significantly decreases tenascin C expression. 

 

4.5 Lysyl-oxidase in PDAC 

The characteristic desmoplastic stroma found in PDAC has been implicated in 

promoting tumour growth, progression, invasion and metastasis. Recent studies 

have also suggested that the stroma functions to prevent drug delivery to the 

tumour epithelium (Provenzano, Cuevas et al. 2012). Lysyl-oxidase, an enzyme 

which catalyses the crosslinking of collagen and elastins, plays a central role in the 

generation and maintenance of this “stiff” desmoplastic stroma (Baker, Cox et al. 

2011).  

To date, lysyl-oxidase has been associated predominantly with the metastatic 

spread of cancers however through specific inhibition of lysyl-oxidase we have 

shown that it also plays a vital and ongoing role in an established primary tumour.  

Work in our lab has shown that inhibition of lysyl-oxidase alone increases survival 

in KPC mice and that combination with gemcitabine therapy further increases 

survival to a median of 226 days. 

Jen Morton and Bryan Miller in our lab have shown that expression of lysyl-

oxidase is high in all our mouse models of PDAC when compared with primary 

pancreatic ductal epithelial cells. Work by Jen Morton has shown that lysyl-oxidase 

expression is most significantly increased in those tumours that carry gain-of-
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function mutant p53. Interestingly this finding that lysyl-oxidase expression is 

highest in these tumours correlates with my work showing increased tenascin C 

expression in the same model. I have also shown that inhibition of lysyl-oxidase 

inhibits expression of tenascin C which again correlates with other work in the 

human PDAC RNA microarray that has shown that there is a strong positive 

correlation between lysyl-oxidase expression and tenascin C expression. These 

findings taken together are highly suggestive that lysyl-oxidase and tenascin C 

may play an important role in the mechanism through which gain-of-function 

mutant p53 (KPC) tumours are able to successfully metastasize to distant sites 

whereas tumours with only loss of p53 (KPflC) cannot.   

Work by Ewan McGhee, Paul Timpson and Jen Morton confirmed a significant 

decrease in collagen-crosslinking in Lox-Ab treated tumours through evaluation of 

the second harmonic resonance signal using multiphoton microscopy. This finding 

confirms the efficacy of the Lox-Ab being used in this study and the resultant 

“stromal softening”. 

Work undertaken in our lab has shown that in resectable human PDAC, lysyl-

oxidase expression correlates with expression of Hypoxia-inducible factor 1-alpha. 

The same work showed that high expression of both lysyl-oxidase and Hypoxia-

inducible factor 1-alpha signifies a bad prognosis in resectable human pancreatic 

ductal adenocarcinoma (See Fig. 41). This finding raises the interesting possibility 

that ultrasound elastography may provide a clinically useful biomarker which would 

mirror the lysyl-oxidase/HIF-1a axis and could be assessed utilising endoscopic 

ultrasound scanning in the clinic.  
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Figure 41: LOX expression and Hypoxia are significantly associated with 
survival in human PDAC.  
 
Kaplan-Meier survival analysis. There was a significant difference in survival between the Lox High 

and the Lox Low cohorts (Log-Rank p=8.1e-4) and patients with high levels of hypoxia also had 

significantly reduced survival (Log-Rank p=5.9e-4). (Figure and results courtesy of Jen Morton). 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well established that PDAC tumours have a poor vascular supply which leads 

to a state of hypoxia within tumours and has also been shown to limit drug delivery 

to tumour cells (Provenzano, Cuevas et al. 2012). Amy Au in our lab has shown 

that inhibition of lysyl-oxidase results in an increase in the intra-tumoural 

vasculature. This finding contradicts work that has shown that inhibition of lysyl-

oxidase leads to a reduction in the intra-tumoural vasculature (Osawa, Ohga et al. 

2013). It is possible that the reduction in the “stiffness” of the stroma due to lysyl-

oxidase inhibition permits increased migration of endothelial cells into the tumour 

thereby increasing blood supply to the tumour. It is also possible that the resultant 

stromal softening allows further opening of already existing vasculature, a 

mechanism highlighted in the context of hedgehog signalling inhibition (Olive, 

Jacobetz et al. 2009). 

The ability to stimulate angiogenesis is a process considered to be one of the 

major hallmarks of cancer (Hanahan and Weinberg 2000).  We might therefore 

find it concerning that a treatment aiming to treat cancer, through increasing 

vascular supply, is actually augmenting one of the processes considered 

fundamental to tumourigenesis. Contrary to this view we have shown that 

treatment with lysyl-oxidase alone significantly increases survival and more 
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importantly in combination with gemcitabine provides an additional survival 

advantage. 

This benefit may be explained by the selective increase in intra-tumoural necrosis I 

have shown in the Lox-Ab/gemcitabine combination treatment group. This 

increase in necrosis with the addition of gemcitabine suggests that lysyl-oxidase 

may be increasing delivery of gemcitabine to the tumour cells thereby triggering 

tumour cell death by necrosis. It is also well established that hypoxia itself can 

decrease the susceptibility of tumour cells to chemotherapeutic agents; therefore it 

is also possible that lysyl-oxidase by increasing tumour blood supply also 

decreases the tissue hypoxia and in so doing increases the sensitivity of the 

tumour to gemcitabine. 

In addition to the increased necrosis seen in the Lox-Ab/gemcitabine treatment 

group I have also shown an increase in the infiltration of intra-tumoural neutrophils 

and macrophages. It has been suggested that the poor vascular supply in PDAC 

may limit leukocyte infiltration in vehicle treated tumours however as this infiltration 

is not seen in KPC tumours treated with Lox-Ab alone it is likely that this infiltration 

is occurring in response to the significant intra-tumoural necrosis in the Lox-

Ab/Gemcitabine combination treatment group with leukocyte infiltration being 

aided by the increased tumour vasculature. 

As mentioned previously I have also shown that inhibition of lysyl-oxidase leads to 

dramatically reduced stromal tenascin C expression. It is possible that inhibition of 

lysyl-oxidase by increasing tumour vasculature in turn reduces tissue hypoxia 

thereby decreasing the drive for production of tenascin C. It is also possible that 

altered tissue “stiffness” reduces the expression of tenascin C by stromal cells. 

Additionally, tenascin C also has a large number of binding domains for 

extracellular matrix molecules such as fibronectin (Chiquet-Ehrismann 2004). As 

such it is possible that inhibition of lysyl-oxidase resulting in reduced crosslinking 

of collagen and elastin results in a significantly altered extracellular matrix 

architecture in which tenascin C is unable bind and interact in a normal manner. 

Finally as discussed previously I have shown that there is an increase in stromal 

tenascin C in response to gemcitabine treatment. Interestingly tenascin C has 

been shown to induce gemcitabine resistance in pancreatic cancer through 
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annexin II signalling in a PI3K/Akt/NF-kB dependent manner (Gong, Lv et al. 

2010). It is therefore possible that one mechanism by which lysyl-oxidase inhibition 

sensitizes PDAC to gemcitabine treatment in addition to increasing drug delivery is 

through the prevention of the protective upregulation of tenascin C.   

4.6 CXCR2 signalling in PDAC 

The role of CXCR2 signalling in epithelial cancers is well established and CXCR2 

and its ligands have been shown to be upregulated in both human disease and 

mouse models of PDAC (Takamori, Oades et al. 2000; Kuwada, Sasaki et al. 

2003; Hill, Gaziova et al. 2012; Ijichi, Chytil et al. 2011). Expression of CXCR2 is 

not limited to the PDAC tumour cells as a wide variety of cells including 

neutrophils, macrophages, endothelial cells and fibroblasts have been shown to 

express the receptor (Heidemann, Ogawa et al. 2003; Strieter, Burdick et al. 2006; 

Li, Cheng et al. 2011; Soehnlein, Drechsler et al. 2013; Hallgren and Gurish 2011; 

Ijichi, Chytil et al. 2011; Sharma, Nawandar et al. 2013; Feijoo, Alfaro et al. 2005; 

Marotte, Ruth et al. 2010). Given the high levels of expression of CXCR2 ligands 

and the widespread expression of the receptor; CXCR2 signalling has increasingly 

gained attention as a possible therapeutic target in pancreatic cancer.  

The expression of CXCR2 by a variety of cell types including the tumour cells 

themselves means that the effects of CXCR2 inhibition are potentially wide 

ranging within the tumour and its stroma.  

Inhibition of CXCR2 signalling in the KPC model of PDAC significantly increases 

survival (Colin Steele, personal communication). Furthermore combination therapy 

with gemcitabine provides a further but only moderate increase in survival. There 

is also no significant effect on tumour cell proliferation in response to CXCR2 

inhibition and I have shown that CXCR2 inhibition causes a dramatic increase in 

intra-tumoural necrosis with no alteration of tumour cell apoptosis.  

The expression of the CXCR2 receptor on endothelial cells and bone marrow 

derived endothelial progenitor cells is well characterised (Li, Cheng et al. 2011). 

The importance of CXCR2 signalling to the stimulation of angiogenesis in tumours 

is therefore of great importance. I have shown that inhibition of CXCR2 signalling 

with pepducin causes a significant reduction in the tumour vasculature. This 

reduction in vascular supply to the tumour may well be one of the important factors 
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triggering the dramatic increase in intra-tumoural necrosis. In contrast to this, Lox-

Ab treatment increases vascular supply resulting in increased drug delivery/ 

sensitivity and therefore increased necrosis. It is likely that the tumours which are 

characteristically hypovascular and hypoxic are on a knife-edge and through 

pepducin induced CXCR2 inhibition the decrease in tumour vasculature tips the 

tumour into a state of hypoxia in which tumour cells are no longer viable. Although 

results are preliminary it is interesting to note that constitutive knock out of the 

CXCR2 receptor in the KPC model of PDAC does not cause any significant 

alteration in tumour vasculature. The lack of suppression of tumour angiogenesis 

in this model may be due to the fact that, from early tumourigenesis tumours have 

developed in the absence of CXCR2 signalling and as such will have 

circumvented the requirement for CXCR2 signalling. Whereas pepducin induced 

CXCR2 inhibition was initiated after tumours had developed. Similarly, previous 

literature highlighting the importance of CXCR2 signalling in tumour induced 

angiogenesis has not evaluated tumour tissue that has developed in a CXCR2 -/- 

context and as such although they have shown that CXCR2 is vital to 

angiogenesis they do not prove that other mechanisms are not capable of fulfilling 

this role if required (Ijichi, Chytil et al. 2011). Utilising a pepducin molecule which 

inhibits CXCR2 signalling in the KPC model I have shown that CXCR2 signalling, if 

present during tumour development, is vital for triggering angiogenesis. 

Importantly work by others and results obtained in our pepducin treated mice have 

not shown that CXCR2 inhibition leads to a complete absence of vasculature in 

the tissues being investigated; therefore there must be other mechanisms capable 

of triggering angiogenesis in this context (Ijichi, Chytil et al. 2011). It is possible 

that although CXCR2 is the dominant receptor for proangiogenic ELR+ CXC 

chemokines other receptors such CXCR1 may still be able to play a significant 

role. Indeed CXCR1, although not the primary proangiogenic ELR+ chemokine 

receptor, is a receptor for a number of these chemokines (Strieter, Burdick et al. 

2006). Interestingly this raises the possibility that the CXCR2 inhibiting pepducin 

molecule used in this study may have additional minor inhibitory actions such as 

inhibition of CXCR1 signalling in addition to inhibiting CXCR2 which together 

results in greater inhibition of angiogenesis. In light of this it will be prudent to 

determine whether the pepducin used in this work has any effect on angiogenesis, 

as well as other parameters, in the KPC model on a CXCR2-/- background. In 
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addition to the CXCR2 and CXCR1 receptors there are also a variety of other 

ligands and receptors that have been shown to be important in triggering 

angiogenesis. For example CXCR4 and its ligand CXCL12 and nitric oxide 

synthase have been shown to have important roles in angiogenesis in 

xenotransplantation models of adenoid cystic carcinomas of the oral floor in mice 

(Takoaka, Hidaka et al. 2013). With further work the intricacies of the mechanisms 

of induction of angiogenesis utilised by tumours will be further clarified. It is likely 

that there are multiple pathways that tumours may utilise to trigger angiogenesis 

however given a greater understanding of these pathways the possibility of 

determining which signalling pathways are most important for angiogenesis in any 

given tumour may allow for patient and tumour specific targeted therapies.  

Interestingly given the massive increase in necrosis triggered by pepducin induced 

inhibition of CXCR2 signalling there is a trend towards decreased intra-tumoural 

leukocyte infiltration. Preliminary results indicate that this change is mirrored in 

KPC mice with constitutive knock out of CXCR2. The usual response to necrosis 

in vivo is the initial influx of neutrophils which are subsequently followed into the 

tissue by macrophages, a response that is conspicuously lacking in response to 

CXCR2 inhibition. We have shown that CXCR2 inhibition decreases the intra-

tumoural infiltration by leukocytes most likely by preventing leukocyte chemotaxis 

although it is possible that the reduced tumour vasculature also reduces the 

available window of entry for leukocytes into the tumour. This reduction of 

leukocytes is important but needs further investigation as the role of intra-tumoural 

leukocytes is highly context dependent and they may be either anti or pro-

tumourigenic. It has been shown that neutrophils and macrophages may exhibit 

either an N1/M1 anti-tumour phenotype or an N2/M2 pro-tumourigenic phenotype 

in response to polarizing cytokine signalling with macrophages for example in 

response to IL-10 and TGFβ signalling switching from an M1 to M2 phenotype 

(Sica and Mantovani 2012). It will therefore be interesting to determine whether an 

alteration in leukocyte phenotype occurs in response to CXCR2 inhibition.  

Macrophages and neutrophils have also both been shown to play important roles 

in angiogenesis (Sica and Mantovani 2012; Tazzyman, Lewis et al. 2009) and the 

reduction in tumour vasculature by CXCR2 inhibition may in part be due to the 

reduction in intra-tumoural leukocytes.  
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Macrophages and neutrophils have additionally been shown to promote tumour 

cell migration and invasion through release of enzymes such as MMPs and 

through opening holes in vessel basement membranes on extravasation (Smith 

and Kang 2013). Therefore reduction in intra-tumoural leukocyte numbers may 

additionally reduce the invasive and metastatic potential of a tumour which in 

addition to the reduced vascular window due to decreased vessel numbers may in 

part explain the reduced metastatic spread noted with CXCR2 inhibition in our 

model (Tazzyman, Lewis et al. 2009; Bohrer, Schwertfeger et al. 2012).  

In addition to reduced vasculature and leukocyte infiltration, CXCR2 inhibition 

caused a reduction in the number of myofibroblasts and amounts of collagen and 

elastin within treated tumours. It has been shown by others that CXCR2 signalling 

between tumour epithelium and fibroblasts leads to connective tissue growth factor 

(CTGF) expression which is important to tumour progression (Ijichi, Chytil et al. 

2011). The importance of the desmoplastic stroma to PDAC is well established 

and therefore any reduction in the stroma likely has a significant effect on the 

viability of the tumour. 

Interestingly, given the reduced stromal cell population in response to CXCR2 

inhibition, expression of tenascin C is markedly increased. Tenascin C is involved 

in tumour progression and maintenance, angiogenesis, metastasis migration and 

invasion. It is produced in a variety of situations including mechanical stress and 

hypoxia (Jones and Jones 2000). The increase in tenasin C expression in this 

instance is most likely a stress response as a result of decreased tumour 

vasculature resulting in tissue hypoxia which is driving production. The increased 

tenascin C is likely providing tumour epithelium with support for example through 

attempts at stimulating angiogenesis and through augmentation of WNT and 

Notch signalling. Finally we have shown that combination with gemcitabine again 

causes a further increase in tenascin C production as noted in our work 

characterising stromal changes elicited by lysyl-oxidase inhibition. As discussed 

previously this may be additional evidence of a tenascin C induced mechanism of 

gemcitabine resistance.     
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4.7 The interlinked roles of lysyl-oxidase, CXCR2 and tenascin C in PDAC 

The tumour microenvironment is an extremely complex “ecosystem” in a constant 

state of flux (Feig, Gopinathan et al. 2012). Within the microenvironment there are 

many factors seemingly essential for the maintenance of tumour cell viability 

however there is also extreme plasticity within the microenvironment allowing for 

continuous tumour adaptation and survival. The cellular and protein constituents of 

the microenvironment and the pathways that control them are complex and 

interlinked but crucial to this plasticity. CXCR2, lysyl-oxidase, tenascin C and 

hypoxia appear to be central components with significant roles within the tumour 

microenvironment (see Fig. 42) which is itself considered to promote 

tumorigenesis, maintenance of tumour cell viability, drug resistance and 

metastasis.          
 

Figure 42: The roles of Lysyl-oxidase, CXCR2 and Tenascin C in PDAC 
Summary of the roles of lysyl oxidase, CXCR2 and tenascin C as highlighted in this work. 
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Future Work 

Through the work undertaken in this thesis I have developed more robust methods 

for histological characterisation of stromal constituents in tumour tissues. I have 

shown that tenascin C is important in human PDAC having a significant effect on 

survival in patients and significantly correlating with hypoxia, lysyl-oxidase 

expression, differentiation and possibly invasive behaviour. I have also shown that 

it is produced and potentially has important roles in the KPC model of PDAC that 

mirror those found in human disease. In agreement with others we have shown 

that the stroma in PDAC is a useful and effective therapeutic target. We have 

shown that both CXCR2 inhibition and lysl-oxidase inhibition have significant 

effects on survival in KPC models of PDAC. I have also highlighted significant 

effects on tenascin C expression in the context of CXCR2 inhibition and lysyl-

oxidase inhibition.  

In the lab we are currently generating a cohort of tenascin-C knock out KPC mice 

which will allow us to assess the survival benefit in PDAC. From these mice it will 

be possible to generate tenascin C knock out KPC PDAC cell lines with which, in 

conjunction with tenascin C-/- and tenascin C +/+ allograft recipients, we will be 

able to further characterise the importance of tumour derived tenascin C as 

opposed to that produced by the stroma. The observation that tenascin C is 

upregulated in response to gemcitabine treatment also requires further 

assessment, specifically in reference to the mechanism by which lysyl-oxidase 

inhibition in combination with gemcitabine treatment triggers PDAC tumour cell 

necrosis. Tenascin C may also be a potential target in combination with other 

treatments. For example in pepducin treated KPC mice where there is an 

upregulation of tenascin C in response to CXCR2 inhibition as a result of hypoxia, 

tenascin C is likely playing a tumour supportive role. It will therefore be vital to 

determine the effects of CXCR2 inhibition in tenascin C knockout KPC models of 

PDAC or in combination with lysyl-oxidase inhibitors. The role of tenascin C and 

lysyl-oxidase in mutant p53 mediated metastasis is also potentially of great 

importance. Given that in the non-metastatic p53 null (KPflC) mouse model of 

PDAC there is minimal production of tenascin C and lysyl-oxidase evaluating the 

effect of overexpression of tenascin C and/or lysyl-oxidase in p53 null (KPflC) 

PDAC cell line xenografts and allografts will be of great interest.  
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I have also shown that CXCR2 inhibition significantly decreases the number of 

myofibroblasts in KPC PDAC models. Unfortunately I was unable to fully 

characterise the source of these myofibroblasts. It is generally accepted that 

pancreatic stellate cells are the source of myofibroblasts in PDAC (Apte, Park et 

al. 2004). This is a finding that we were unable to confirm. Work to attempt to 

lineage trace these cells is necessary and is ongoing in the lab. This work will 

allow clarification of the specific contribution pancreatic stellate cells make to the 

generation of the characteristic desmoplastic stroma in PDAC and allow 

characterisation of the changes that occur in this population of cells by stroma 

targeted therapies. This will be particularly important given the early work being 

undertaken by Fearon et al. which is highlighting the potential significance of a 

FAP alpha positive “stellate cell” population, the ablation of which results in T cell 

mediated immune control of the growth of pancreatic ductal adenocarcinoma 

(Kraman, Bambrough et al. 2010). 

Finally the failure of the human trial of IPI-926, a SHH inhibitor, likely highlights the 

need to fully and carefully evaluate stromal changes in response to targeted 

therapies in order to highlight robust alterations which are likely to represent 

significant changes relevant to human disease (Infinity pharmaceuticals. http://phx.corporate-

ir.net/pheonix.zhtml?c=12194&p=irol-newsArticle&ID=1653550&highlight= (accessed 09.08.13)) This we believe is 

achievable utilising the thorough methods that we have established.  
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