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Abstract

This thesis contributes to the ongoing discussion about the financial and statisti-

cal modelling of returns on financial stock markets. It develops the asset pricing

model concept which has received continuous attention for almost 50 years in

the area of finance, as a method by which to identify the stochastic behaviour of

financial data when making investment decisions, such as portfolio choices, and

determining market risk.

The best known and most widely used asset pricing model detailed in the

finance literature is the Two-Moment Capital Asset Pricing Model (CAPM) (con-

sistent with the Linear Market Model), which was developed by Sharpe-Lintner-

Mossin in the 1960s to explore systematic risk in a mean-variance framework and

is the benchmark model for this thesis. However, this model has now been criti-

cised as misleading and insufficient as a tool for characterising returns in financial

stock markets. This is partly a consequence of the presence of non-normally dis-

tributed returns and non-linear relationships between asset and market returns.

The inadequacies of the Two-Moment CAPM are qualified in this thesis, and the

extensions are proposed that improve on both model fit and forecasting abilities.

To validate and extend the benchmark Linear Market Model, the empirical

work presented in this thesis centres around three related extensions. The first

extension compares the Linear Market Model’s modelling and forecasting abil-

ities with those of the time-varying Linear Market Model (consistent with the

conditional Two-Moment CAPM) for 19 Turkish industry sector portfolios. Two

statistical modelling techniques are compared: a class of GARCH-type models,

which allow for non-constant variance in stock market returns, and state space

models, which allow for the systematic covariance risk to change linearly over

iv



time in the time-varying Linear Market Model. The state space modelling is

shown to outperform the GARCH-type modelling. The second extension concen-

trates on comparing the performance of the Linear Market Model, with models

for higher order moments, including polynomial extensions and a Generalised

Additive Model (GAM). In addition, time-varying versions of the Linear Market

Model and polynomial extensions, in the form of state space models, are consid-

ered. All these models are applied to 18 global markets during three different time

periods: the entire period from July 2002 to July 2012, from July 2002 to just

before the October 2008 financial crisis, and from after the October 2008 financial

crisis to July 2012. Although the more complex unconditional models are shown

to improve slightly on the Linear Market Model, the state space models again im-

prove substantially on all the unconditional models. The final extension focuses

on comparing the performance of four possible multivariate state space forms of

the time-varying Linear Market Models, using data on the same 18 global mar-

kets, utilising correlations between markets. This approach is shown to improve

further on the performance of the univariate state space models.

The thesis concludes by drawing together three related themes: the inappro-

priateness of the Linear Market Model, the extent to which multivariate modelling

improves the univariate market model and the state of the world’s stock markets.
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Chapter 1

Introduction

The concept of an asset pricing model has received continuous attention for almost

50 years from researchers working in the finance domain. Their aim has been to

identify the stochastic behaviour of financial data in order to determine risk and

to provide guidelines for financial investment decisions such as portfolio choice. In

finance, there are different types of risk such as credit risk, business risk, liquidity

risk and market or systematic risk. The purpose of an asset pricing model is to

address systematic risk and this is the focus of this thesis.

The best known and most widely used asset pricing model is the Two-Moment

Capital Asset Pricing Model (CAPM) which was introduced by Sharpe-Lintner-

Mossin in the 1960s for exploring systematic risk in the mean-variance frame-

work. This model assumes a linear relationship between the expected return on

a financial asset and that over the whole market in which the asset is traded,

summarised in a single parameter, the systematic covariance (beta) risk, which

is assumed to be constant over time. The validity of this model depends on

two restrictive assumptions, namely that asset returns are normally distributed

and that the investor’s utility function is quadratic, so that the distribution of

wealth can be adequately summarised by just its mean and variance. However,

empirical evidence (e.g. Kraus and Litzenberger (1976), Fang and Lai (1997),

Hwang and Satchell (1999), Mergner and Bulla (2008) and Choudhry and Wu

(2009)) suggests that the Two-Moment CAPM with constant systematic covari-

ance risk may be misleading and insufficient to characterise asset returns since

1
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returns on assets are currently understood to be non-normally distributed and to

be non-linearly related to market returns. The inadequacies of the Two-Moment

CAPM have motivated financial researchers to explore alternative extensions to

the benchmark Linear Market Model.

One extension in this vein has been to incorporate higher order moments

into the Two-Moment CAPM. According to the literature, the Higher-Moment

CAPMs, namely the Three-Moment and Four-Moment CAPMs, capture system-

atic skewness (co-skewness) and systematic kurtosis (co-kurtosis) in the distribu-

tions of financial data. The theory of these was developed by Kraus and Litzen-

berger (1976), Fang and Lai (1997) and Hwang and Satchell (1999). Authors em-

pirically investigated the necessity for more complicated models by fitting Higher

order Data Generating Processes (DGPs) to financial data; namely the Quadratic

Market Model and Cubic Market Model. They proposed several formulations of

Higher order DGPs with the intention of successfully illustrating the link between

Higher order DGPs and their equivalent Higher-Moment CAPMs. For example,

Barone-Adesi (1985) proposed the Quadratic Market Model to be consistent with

the Three-Moment CAPM that also captures co-skewness. Fang and Lai (1997)

and Hwang and Satchell (1999) proposed the Cubic Market Model (consistent

with the Four-Moment CAPM which captures both co-skewness and co-kurtosis)

to explain time series returns for various sets of financial data. Similar work in

the context of even higher moments is as yet unreported.

Another extension has been to allow the systematic covariance (beta) risk to

change linearly over time in a Two-Moment CAPM. This extension will be referred

to as the conditional Two-Moment CAPM in this thesis. In recent literature,

researchers (e.g. Faff et al. (2000), Mergner and Bulla (2008) and Choudhry

and Wu (2009)) extensively investigated the instability of systematic covariance

risk for different countries and firms, by comparing the modelling and forecasting

abilities of unconditional and conditional Two-Moment CAPMs.

The previously mentioned extensions of the Two-Moment CAPM occur in a

univariate context. This does not utilise the correlation structure among returns

on different assets as a part of the estimation process, but a significant correlation

structure can be expected as a consequence of economic and financial integration,
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as was revealed by Yavas (2007). Prominent papers such as those by Gibbons

et al. (1989), Mackinlay and Richardson (1991) and Hansen and Jagannathan

(1997) have considered asset pricing models in a multivariate context with time-

invariant systematic covariance risk. However, similar work in the conditional

Two-Moment CAPM with time-varying systematic covariance risk in the form of

multivariate state space model is yet to be undertaken.

This thesis addresses the modelling and forecasting of time-invariant and time-

varying parameters in DGPs, as consistent with their equivalent CAPMs, by

applying alternative statistical modelling techniques. The best known technique

for modelling and forecasting time-invariant parameters in Higher order DGPs is

the Ordinary Least Squares (OLS) method. Hastie and Tibshirani (1990) have

developed an additive model that extends the linear model to include smooth

functions of covariates, but applications to CAPMs in finance have not been

identified from the literature.

The best known approaches for modelling and forecasting time-varying sys-

tematic covariance risk in a Linear Market Model are GARCH-type models (En-

gle (1982) and Bollerslev (1986)). These are based on estimating the conditional

variances and covariances between returns on assets and a market portfolio.

Another modelling technique for time-varying parameters in DGPs is pre-

sented by the state space model. The powerful recursive algorithm for estimating

the unobserved components in the state space model, which was proposed by

Kalman (1960) and Kalman and Bucy (1961), is known as the Kalman Filter

algorithm. In this thesis, the Kalman Filter algorithm plays a central role in

modelling time-varying systematic covariance risk in a Two-Moment CAPM in

both univariate and multivariate contexts. These approaches have already been

applied to different countries and firms (e.g. Faff et al. (2000), Brooks et al.

(2002) and Choudhry and Wu (2009)) in order to analyse time series in finance

in a univariate context. Similar work on the time-varying systematic covariance

risk in the Two-Moment CAPM in a multivariate context using the state space

model via the Kalman Filter algorithm is yet to be undertaken.

This thesis focuses on closing the aforementioned gaps to validate and extend

the benchmark Linear Market Model. The following three research aims will be
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addressed.

1. Evaluate the effectiveness of the widely used Two-Moment CAPM and its

DGP, equivalent to the Linear Market Model, for modelling and forecasting

returns in financial time series data.

2. Investigate whether a multivariate approach to modelling and forecasting

systematic covariance (beta) risk, which allows for between market correla-

tions, outperforms a univariate, one stock market at a time, approach.

3. Evaluate the ability of a variety of statistical modelling techniques to fore-

cast recent returns in financial data across a variety of stock market condi-

tions.

To investigate the above aims, the empirical work presented in this thesis cen-

tres around three related extensions. The first extension focuses on comparing the

modelling and forecasting abilities of the Linear Market Model (consistent with

the Two-Moment CAPM) and the time-varying Linear Market Model (consistent

with the conditional Two-Moment CAPM) for 19 Turkish industry sector port-

folios. Two statistical modelling techniques, the class of GARCH-type models,

which allow for non-constant variance in stock market returns, and state space

models, which allow for the systematic covariance risk to change linearly over

time in the time-varying Linear Market Model, are used. The second extension

concentrates on comparing the performance of the Linear Market Model, newly

reformulated forms of Higher order DGPs as polynomial extensions (consistent

with their equivalent Higher-Moment CAPMs), the Generalised Additive Model

(GAM) and the time-varying versions of the Linear Market Model and polynomial

extensions (consistent with their equivalent conditional Higher-Moment CAPMs),

in the form of state space models, for modelling market returns in 18 global mar-

kets. The final extension focuses on comparing the performance of four possible

multivariate state space forms of time-varying Linear Market Models, using data

on the same 18 global markets, utilising correlations between markets.

The remainder of this introduction describes the individual chapters of this

thesis in greater detail.
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Chapter 2 reviews the financial models used in this thesis. These include

higher order DGPs with equivalent Higher-Moment CAPMs. The Two-Moment

CAPM, which is the benchmark model, not only for this thesis but also in the

literature overall, and which is consistent with the Linear Market Model, is out-

lined. Then, the problems related to the assumptions of the Two-Moment CAPM

are discussed. After this, the Higher-Moment CAPM, which extends the Two-

Moment CAPM by including the Third (skewness) and Fourth (kurtosis) central

moments, is outlined. Moreover, newly formulated forms of Higher order DGPs,

with their equivalent Higher-Moment CAPMs, which form the basis of the model

comparisons in Chapter 5, are defined.

Chapter 3 reviews the statistical methodology which will be applied through-

out the thesis, focusing on both time-invariant and time-varying coefficient mod-

els. It includes a brief review of linear models and additive models for time-

invariant coefficients. A large proportion of this chapter outlines time-varying

coefficient models, including a state space model, as well as the Kalman Filter

and Smoother. In addition, a brief review of GARCH-type models is included.

The chapter concludes by discussing appropriate model selection techniques and

diagnostics.

Chapter 4 compares the modelling and forecasting abilities of the Linear

Market Model and time-varying Linear Market Model. GARCH-type models,

such as GARCH and GJR-GARCH with normal and t (which captures heavy

tails on returns) conditional distributions, and Kalman Filter based approaches,

such as random coefficients (KFRC), random walk (KFRW) and mean revert-

ing (KFMR), are utilized. Using weekly data, a comparison is generated for 19

Turkish industry sector portfolios from the period 1 August 2002 to 16 February

2012. In all cases the Istanbul Stock Exchange (ISE) All-Share index and the

three-month Turkish Interbank Offer Rate (TRLIBOR) interest rate are used as

proxies for the market portfolio and the risk-free rate, respectively.

Chapter 5 assesses the appropriateness of the Linear Market Model. Its per-

formance is compared to six possible extensions. The first two are newly reformu-

lated forms of Higher order DGPs, as simple polynomial extensions of the Linear

Market Model, namely the Quadratic Market Model and the Cubic Market Model
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(allowing for systematic covariance, systematic skewness and systematic kurto-

sis risks). Using a GAM relaxes some of the assumptions underpinning these

polynomial models. The next approach is the time-varying Linear Market Model

(allowing for a time-varying systematic covariance risk) via KFMR. The last

two are the time-varying extensions of the new formulated forms of the Higher

order DGPs, namely the time-varying Quadratic Market Model and the time-

varying Cubic Market Model (allowing for time-varying systematic covariance,

time-varying systematic skewness and time-varying systematic kurtosis risks) via

KFMR. Using weekly data, a comparison is generated for the 9 developed and

9 emerging markets, extending during the three time periods: the entire period

from July 2002 to July 2012, from July 2002 to before the October 2008 financial

crisis, and from after the October 2008 financial crisis to July 2012. In all cases,

the Morgan Stanley Capital International (MSCI) World Index and the three-

month US dollar London Interbank Offered Rate (LIBOR) interest rate serve as

the proxies for the market portfolio and the risk-free rate, respectively.

Chapter 6 models and forecasts the time-varying systematic covariance risks

for the same 18 global markets based on multivariate state space forms of the

time-varying Linear Market Model, using a KFMR model. To determine whether

this outperforms a univariate approach, in-sample modelling and out-of-sample

forecasting performance is considered. Four possible multivariate state space

model formulations are considered.

Finally, Chapter 7 discusses the main conclusions of this thesis and the key

themes which should affect future research related to this topic, while also pro-

viding an outline of some possible extensions and further work.



Chapter 2

Financial Methodology

This chapter describes the financial models used in this thesis, which includes the

Capital Asset Pricing Models (CAPM, Sharpe-Lintner-Mossin (1960s), Kraus and

Litzenberger (1976), Fang and Lai (1997) and Hwang and Satchell (1999)). In

section 2.1 we derive the Two-Moment CAPM, which is the benchmark model

both in this thesis and in the financial literature. In section 2.2 we discuss the

problems with the Two-Moment CAPM. In section 2.3 we derive the Higher-

Moment CAPM, which extends the Two-Moment CAPM by including the Third

(skewness) and Fourth (kurtosis) central moments.

2.1 Two-Moment Capital Asset Pricing Model

The Two-Moment (also known as Traditional or Mean-Variance) Capital Asset

Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin (1966) is the

best known and most widely used approach for modelling financial risk. The idea

of this model is to derive a theory of asset valuation in an equilibrium situation,

which relates an asset expected return to the market risk. The Two-Moment

CAPM, in equilibrium, can be represented as

E(Ri)−Rf = βim[E(Rm)−Rf ], i ε {1, . . . , N} , (2.1)

where Ri, E(Ri) and Rf are the return and the expected return on asset i and

the risk-free rate of return, respectively. The left hand side of (2.1) represents

7
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the expected excess return on asset i relative to a risk-free return, and is related

to a product of two terms. Here, [E(Rm) − Rf ] is the expected excess return

on the market portfolio (Rm) relative to the risk-free return, and βim quantifies

the risk of investment of asset i, and has been called the market risk, systematic

risk, market beta or systematic covariance (beta). In this thesis, we use the

terminology systematic covariance. This is defined as

βim =
Cov(Ri, Rm)

σ(Rm)2
=
E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
, (2.2)

where Rm, E(Rm) and σ(Rm)2 are the return, the expected return and variance

on the market portfolio. Cov(Ri, Rm) is the covariance between the return on

asset i and on the market portfolio.

The following section is organized as follows. In section 2.1.1, we present how

to derive the Two-Moment CAPM from portfolio theory. In section 2.1.2, we

discuss how to estimate the systematic covariance (βim) from a Data Generat-

ing Process (DGP), which in the financial literature is called the Linear Market

Model. In section 2.1.3, we present how to derive the Two-Moment CAPM using

a utility function. The portfolio theory approach is conceptually simpler, but

the utility function approach will be extended in section 2.3 when considering

Higher-Moment CAPMs.

2.1.1 Derivation of Two-Moment CAPM from Portfolio

Theory

To derive the Two-Moment CAPM, we follow the approach of portfolio optimiza-

tion by the mean-variance principle, which was developed by Markowitz (1952).1

According to Markowitz (1952), the investor aims to achieve the highest possible

expected return for a given variance of return.

Assuming the initial wealth, W0 is 1, the investor wealth at the end of the
1The derivation of Two-Moment CAPM from portfolio theory throughout this thesis follows

that of Levy and Sarnat (1994, App. 12A).



CHAPTER 2. FINANCIAL METHODOLOGY 9

period, WF is defined as

WF = x0(1 +Rf ) +
N∑
i=1

xi(1 +Ri), (2.3)

where Rf is the return on the single riskless asset and Ri is the return on the ith

of N risky assets i ε {1, . . . , N}. Here, x0 and xi are the proportions of the initial

wealth invested in a riskless asset and the N risky assets, respectively, where

x0 +
∑N

i=1
xi = 1.

To simplify the analysis, we assume that the rate of return of the portfolio

held by an investor is defined as

Rp =
WF −W0

W0

, (2.4)

where W0 is the initial and WF is the final wealth of the investor. Assuming the

initial wealth W0 is 1, the portfolio return, Rp, can be represented by

Rp =
WF −W0

W0

= x0(1 +Rf ) +
N∑
i=1

xi(1 +Ri)− 1. (2.5)

This can be further simplified to

Rp = x0 + x0Rf +
N∑
i=1

xi +
N∑
i=1

xiRi − 1,

Rp = x0Rf +
N∑
i=1

xiRi,

using the relation

x0 +
N∑
i=1

xi = 1.

Here, subscript p is referring to the portfolio of the single risk free asset and N

risky assets. The mean and standard deviation (volatility, risk) of the portfolio
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return, Rp, can be represented by

E(Rp) = x0Rf +
N∑
i=1

xiE(Ri) = Rf +
N∑
i=1

xi(E(Ri)−Rf ), (2.6)

which again uses the fact that x0 +
∑N

i=1
xi = 1.

σ(Rp) =

[
N∑
i=1

x2iσii +
N∑
i=1

N∑
j=1, j 6=i

xixjσij

]1/2

, (2.7)

where the risk free rate is a constant and not subject to variation. In addition,

σij = E [(Ri − E(Ri)) (Rj − E(Rj))] ,

the covariance between the returns of assets i and j.

Now, we will discuss that for a given E(Rp), the individual investor should

allocate wealth among assets so as to minimize the standard deviation (volatility,

risk), σ(Rp) of his portfolio subject to E(Rp) = Rf +
∑N

i=1
xi[E(Ri) − Rf ]. To

determine how best to allocate wealth (i.e. choose the values of xi) according

to this criterion, a Lagrangian multiplier approach can be adopted. Define the

function L as follows

L = σ(Rp) + λ

(
E(Rp)−Rf −

N∑
i=1

xi(E(Ri)−Rf )

)
, (2.8)

L =

[
N∑
i=1

x2iσii +
N∑
i=1

N∑
j=1, j 6=i

xixjσij

]1/2

+ λ

(
E(Rp)−Rf −

N∑
i=1

xi(E(Ri)−Rf )

)
,

where λ is the Lagrangian multiplier and the expression in brackets equals zero.

After taking first order derivatives of the Lagrangian form in (2.8) with respect to

proportions xi and setting these derivatives equal to zero, the following equations
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are obtained.

∂L

∂xi
=

1

2
√
σ(Rp)2

{
2xiσii + 2

∑
j 6=i

xjσij

}
− λ(E(Ri)−Rf ) = 0, (2.9)

=
1

σ(Rp)

{
xiσii +

∑
j 6=i

xjσij

}
− λ(E(Ri)−Rf ) = 0,

for i ε {1, . . . , N}. Then multiplying both sides of the set of equations (2.9) by

xi gives

1

σ(Rp)

{
x2iσii +

∑
j 6=i

xixjσij

}
= λxi(E(Ri)−Rf ). (2.10)

Summing equation (2.10) over i ε {1, . . . , N} gives

1

σ(Rp)

{
N∑
i=1

x2iσii +
N∑
i=1

∑
j 6=i

xixjσij

}
= λ

N∑
i=1

xi(E(Ri)−Rf ), (2.11)

where the term in the brackets on the left hand side of equation (2.11) is the

variance of the portfolio {σ(Rp)}2.

Now, assuming that x0 = 0, that is no wealth is assigned to the riskless asset

gives
∑N

i=1
xi = 1. Then, we obtain the following equation.

1

σ(Rp)
{σ(Rp)}2 = λ

(
N∑
i=1

xiE(Ri)−
N∑
i=1

xiRf

)
, (2.12)

1

σ(Rp)
{σ(Rp)}2 = λ (E(Rp)−Rf ) ,

1

λ
=

E(Rp)−Rf

σ(Rp)
.

Rearranging equation (2.9) and substituting in equation (2.12) gives

E(Ri)−Rf =
1

λσ(Rp)

{
xiσii +

∑
j 6=i

xjσij

}
, (2.13)

=
E(Rp)−Rf

{σ(Rp)}2

{
xiσii +

∑
j 6=i

xjσij

}
.
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Now as x0 = 0 here this special case is known as the market portfolio, that is

Rm =
N∑
i=1

xiRi, (2.14)

so Rp is replaced by Rm. Then, the covariance between the return on the market,

Rm and the return on asset i, Ri is given by

Cov(Ri, Rm) =
N∑
j=1

xjCov(Ri, Rj) =

{
xiσii +

∑
j 6=i

xjσij

}
. (2.15)

Then, equation (2.13) can be written as

E(Ri)−Rf =
E(Rm)−Rf

σ(Rm)2

{
xiσii +

∑
j 6=i

xjσij

}
, (2.16)

E(Ri)−Rf =
E(Rm)−Rf

σ(Rm)2
Cov(Ri, Rm), (2.17)

E(Ri)−Rf = βim[E(Rm)−Rf ], (2.18)

where

βim =
Cov(Ri, Rm)

σ(Rm)2
, (2.19)

which is the Two-Moment CAPM defined earlier.

2.1.2 Data Generating Process of Linear Market Model

The Linear Market Model is the most widely used statistical model in finance

to estimate the risk measure systematic covariance (beta) in the Two-Moment

CAPM. The Data Generating Process (DGP) of the Linear Market Model can

be represented by

Ri −Rf = κi + α1i(Rm −Rf ) + εi, (2.20)

which is a simple linear regression of the response Ri−Rf on the single covariate

Rm − Rf . The errors are assumed to be independent and identically distributed

with E(εi)=0 and V ar(εi)=σ2.
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The Linear Market Model (equation (2.20)) is consistent with the Two-Moment

CAPM (equation (2.1)) as taking expectations in (2.20) gives equation (2.1) if

κi=0 and α1i=βim. However, the systematic covariance βim in Two-Moment

CAPM can be expressed as

βim = α1i, (2.21)

without the need for the assumption κi=0.

Proof : Start by taking expectations of the Linear Market Model, which gives

E(Ri −Rf ) = κi + α1iE(Rm −Rf ) + E(εi). (2.22)

Subtract equation (2.22) from equation (2.20)

(Ri −Rf )− E(Ri −Rf ) = α1i ((Rm −Rf )− E(Rm −Rf )) + εi, (2.23)

Ri − E(Ri) = α1i(Rm − E(Rm)) + εi.

Multiply both sides of equation (2.23) by Rm − E(Rm)

(Ri − E(Ri))(Rm − E(Rm)) = α1i(Rm − E(Rm))(Rm − E(Rm)) (2.24)

+ εi(Rm − E(Rm)).

Take expected values both sides of equation (2.24)

E[(Ri − E(Ri))(Rm − E(Rm))] = α1iE[(Rm − E(Rm))2]. (2.25)

Divide both sides in equation (2.25) by the variance of the market return,

E[(Rm − E(Rm))2]

E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
= α1i

E[(Rm − E(Rm))2]

E[(Rm − E(Rm))2]
, (2.26)

giving

βim =
E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
= α1i. (2.27)
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Thus to estimate βim one simply fits the Linear Market Model to financial data

and obtains the estimates of α̂1i. However, the Linear Market Model (2.20) only

contains a single data point Ri − Rf , as each asset i has its own risk parameter

βim=α1i.

Throughout this thesis, the parameters of the Linear Market Model, including

βim=α1i, must be estimated from more data, usually time series data of returns at

regular (for example, daily or monthly) intervals. Assuming that the parameters

are constant over the whole time period being considered, then the excess return

on asset i in period t (Rit−Rft) might be assumed to be generated by the following

model2

Rit −Rft = κi + α1i(Rmt −Rft) + εit, t ε {1, . . . , T}, (2.28)

where Rit, Rft and Rmt are the returns on asset i, the risk-free rate and the

market portfolio at time t. The errors εit ∼ N(0, σ2) so the maximum likelihood

estimator of βim = α1i is

β̂im = α̂1i =

T∑
t=1

[
(R∗it − R̄∗i )(R∗mt − R̄∗m)

]
T∑
t=1

[
(R∗mt − R̄∗m)2

] ,

where R∗mt=Rmt − Rft, R∗it=Rit − Rft and R̄∗m=
1

T

∑T

t=1
R∗mt, R̄

∗
i=

1

T

∑T

t=1
R∗it.

Here, R∗it and R
∗
mt are the excess returns on asset i and the market portfolio at

time t, while R̄∗i and R̄
∗
m are the expected excess returns on asset i and the market

portfolio overall time points.

2.1.3 Derivation of Two-Moment CAPM using Utility

Function

To lead into the derivation of Higher-Moment CAPMs, we now re-derive the

Two-Moment CAPM using a utility function and expanding it in a Taylor series
2See details in Kraus and Litzenberger (1976) and Hung et al. (2004).
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expansion.3 In this derivation we define the individual’s expected utility function

for the Two-Moment CAPM and then maximize it as a Lagrangian form. Finally,

we move from the individual equilibrium model to a market equilibrium model,

and the Two-Moment CAPM is obtained. Consider any arbitrary utility function

of the individual’s wealth, U(WF ), which can be approximated by an nth order

Taylor series expansion

U(WF ) = U [E(WF )] + U
′
[E(WF )][WF − E(WF )] (2.29)

+
1

2!
U
′′
[E(WF )][WF − E(WF )]2

+
∞∑
n=3

1

n!
Un[E(WF )][WF − E(WF )]n,

where E(WF ) is the expected individual wealth at the end of period. Here, U
′
(.),

U
′′
(.) and Un(.) denote the first, second and nth derivative of the utility function.

Previously, we discussed the Markowitz’s mean-variance approach, which provides

that the investor aims to achieve the highest possible expected return, for a given

variance of that return. Under this approach, the utility function above implicitly

depends only on the mean and variance of the end of period wealth. Therefore,

assuming that, the utility function is quadratic and the returns are normally

distributed, allows us to write the expected utility function4 only in terms of

the mean and variance of WF . This result allows us to derive the Two-Moment

CAPM. Under this assumption the utility function is quadratic, the higher order

derivatives are equal to zero (Un(.)=0, n ≥ 3). Then taking expectations of

equation (2.29) gives5

E[U(WF )] = U [E(WF )] +
1

2!
U
′′
[E(WF )]σ(WF )2, (2.30)

since E[WF − E(WF )]=0 and E[WF − E(WF )]2=σ(WF )2.

To simplify the analysis, it is possible to show the link between the end of

period wealth, WF (equation (2.3) and the portfolio return, Rp, (equation (2.5))
3The derivation of CAPMs using utility function throughout this thesis follows that of Hwang

and Satchell (1999), Ranaldo and Favre (2005), Liow and Chan (2005) and Ziemann (2004).
4It is also known as Von Neumann-Morgenstern Utility.
5See details in Cuthbertson and Nitzsche (2005) and Pennacchi (2008, Chap. 4).
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while assuming the initial wealth W0 is 1. The following equations are obtained.

Rp =
WF − 1

1
= x0Rf +

N∑
i=1

xiRi. (2.31)

So we have

E(Rp) = E(WF )− 1, (2.32)

σ(Rp) = σ(WF ). (2.33)

Now to derive the Two-Moment CAPM, we also need to show that

σ(WF ) =
N∑
i=1

xiβipσ(Rp), (2.34)

where

βip =
E[(Ri − E(Ri))(Rp − E(Rp))]

E[(Rp − E(Rp))2]
, (2.35)

is the systematic risk measure of an asset i relative to the portfolio variance. The

proof requires us to show that
∑N

i=1
xiβip=1.

N∑
i=1

xiβip =
N∑
i=1

xi
E[(Ri − E(Ri))(Rp − E(Rp))]

E[(Rp − E(Rp))2]
, (2.36)

=

E

[(
N∑
i=1

xiRi −
N∑
i=1

xiE(Ri)

)
(Rp − E(Rp))

]
E[(Rp − E(Rp))2]

,

=
E [((Rp − x0Rf )− (E(Rp)− x0Rf ))(Rp − E(Rp))]

E
[
(Rp − E(Rp))

2
] ,

=
E [(Rp − E(Rp))(Rp − E(Rp))]

E [(Rp − E(Rp))2]
= 1,

using equations (2.5) and (2.6).

Now, the next step is to maximize the individual investor’s expected utility
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of the end of period wealth, WF subject to a budget constraint, that is

max
{x0,x1,...,xN}

E[U(WF )], (2.37)

subject to x0 +
N∑
i=1

xi = 1.

A Lagrangian multiplier approach can be adopted in order to maximize the indi-

vidual investor’s expected utility and solve the equilibrium condition in equation

(2.37). Define the function L as follows

L = E[U(WF )]− λ

(
x0 +

N∑
i=1

xi − 1

)
, (2.38)

and note that as E[U(WF )]=U [E(WF )]+
1

2!
U
′′
[E(WF )]σ(WF )2, then we can write

E[U(WF )] = f (E(WF ), σ(WF )) ,

as a function of (E(WF ), σ(WF )). Hence

L = f (E(WF ), σ(WF ))− λ

(
x0 +

N∑
i=1

xi − 1

)
. (2.39)

Here, λ is the Lagrangian multiplier and the expression in the brackets is equal to

zero. Now, we start taking the first order total derivatives of the Lagrangian form

(which is necessary and sufficient conditions for a maximum6) in equation (2.39)

with respect to proportions, x0 and xi, and setting these derivatives equal to zero.

Note that implicitly, these total derivations, which use the fact (from equation

(2.39)) that E[U(WF )] is a function of E(WF ) as a function of x0, x1, . . . , xN and

σ(WF ) as a function of x1, . . . , xN , are obtained from multivariate calculus as
6The first order derivative of the Lagrangian form is necessary and sufficient conditions for a

maximum, because that of the second order has a negative definite Hessian matrix. (Tepmony
(2010))
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follows.

∂L

∂x0
=

∂E[U(WF )]

∂E(WF )

∂E(WF )

∂x0
+
∂E[U(WF )]

∂σ(WF )

∂σ(WF )

∂x0
− λ = 0, (2.40)

=
∂E[U(WF )]

∂E(WF )
(1 +Rf )− λ = 0,

using

∂E(WF )

∂x0
= (1 +Rf ), from equation (2.3), (2.41)

∂σ(WF )

∂x0
= 0, from equation (2.34). (2.42)

Similarly, the first derivative of equation (2.39) with respect to xi yields

∂L

∂xi
=

∂E[U(WF )]

∂E(WF )

∂E(WF )

∂xi
+
∂E[U(WF )]

∂σ(WF )

∂σ(WF )

∂xi
− λ = 0, (2.43)

=
∂E[U(WF )]

∂E(WF )
(1 + E(Ri)) +

∂E[U(WF )]

∂σ(WF )
βipσ(Rp)− λ = 0,

using

∂E(WF )

∂xi
= 1 + E(Ri), from equation (2.3), (2.44)

∂σ(WF )

∂xi
= βipσ(Rp), from equation (2.34). (2.45)

Rearranging equations (2.40) and (2.43) gives

∂E[U(WF )]

∂E(WF )
(1 +Rf ) =

∂E[U(WF )]

∂E(WF )
(1 + E(Ri)) +

∂E[U(WF )]

∂σ(WF )
βipσ(Rp),

(1 +Rf ) = (1 + E(Ri)) +

∂E[U(WF )]

∂σ(WF )

∂E[U(WF )]

∂E(WF )

βipσ(Rp), (2.46)

E(Ri)−Rf = −

∂E[U(WF )]

∂σ(WF )

∂E[U(WF )]

∂E(WF )

βipσ(Rp),

where −∂E[U(WF )]

∂σ(WF )
/
∂E[U(WF )]

∂E(WF )
equals the investor’s marginal rate of substitu-
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tion (which is defined by minus the slope of the expected utility curve (indifference

curve)7) between the expected and the standard deviation of the end of period

wealth, WF . Then, we rearrange the investor’s marginal rate of substitution

computed by partial differentiation. Start by taking the total differential of the

expected utility function, E[U(WF )]=f(E(WF ), σ(WF )) from (2.30), which gives

dE[U(WF )] =
∂E[U(WF )]

∂E(WF )
dE(WF ) +

∂E[U(WF )]

∂σ(WF )
dσ(WF ). (2.47)

Divide both sides in equation (2.47) by dE(WF )

dE[U(WF )]

dE(WF )
=

∂E[U(WF )]

∂E(WF )
+
∂E[U(WF )]

∂σ(WF )

dσ(WF )

dE(WF )
. (2.48)

Know that through any point on the expected utility curve,
dE[U(WF )]

dE(WF )
=0, be-

cause E[U(WF )] is constant, then, following equation is obtained.

dE[U(WF )]

dE(WF )
=
∂E[U(WF )]

∂E(WF )
+
∂E[U(WF )]

∂σ(WF )

dσ(WF )

dE(WF )
= 0. (2.49)

Rearranging equation (2.49) yields

dE(WF )

dσ(WF )
= −

∂E[U(WF )]

∂σ(WF )

∂E[U(WF )]

∂E(WF )

. (2.50)

Substituting (2.50) in equation (2.46) gives

E(Ri)−Rf =
dE(WF )

dσ(WF )
σ(Rp)βip. (2.51)

The final step is to proceed from the individual equilibrium model to a market

equilibrium model. For this case, the individual investor optimum portfolio is

equivalent to the market portfolio; so, Rp is replaced by Rm. Then, equation
7See details in Pennacchi (2008, Chap. 2) and Hwang and Satchell (1999).
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(2.51) can be written as

E(Ri)−Rf =
dE(WF )

dσ(WF )
σ(Rm)βim, (2.52)

where Rm is the return on the market portfolio, σ(Rm) is the standard deviation

of the market portfolio return. Here, βim is the systematic risk measure of an

asset i relative to market variance. Clearly, this equivalent to the Two-Moment

CAPM (equation (2.1)) if

E(Rm)−Rf =
dE(WF )

dσ(WF )
σ(Rm). (2.53)

This is true because if we apply equation (2.51) to the return on the entire market

portfolio, Rm, we get

E(Rm)−Rf =
dE(WF )

dσ(WF )
σ(Rm)βmm, (2.54)

and βmm=
Cov(Rm, Rm)

σ2(Rm)
=1. Hence, the result is proved.

2.2 Problems with the Two-Moment Capital

Asset Pricing Model

The most widely used asset pricing model detailed in the financial literature is

the Two-Moment CAPM, a simple asset pricing theory, as discussed in section

2.1. However, this model has recently been criticised as misleading and insuf-

ficient to adequately characterise stock market returns. This may partly be a

consequence of its restrictive assumptions. Therefore, possible extensions have

been proposed in the literature to relax some of assumptions underlying the Two-

Moment CAPM. These are discussed below.8

One extension of the Two-Moment CAPM is intended to answer criticism of

the existence of a riskless asset. Black (1972) derived a Zero-Beta model demon-
8The extensions of the Two-Moment CAPM are mainly discussed and primarily followed

from Ziemann (2004).
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strating that the results of the Two-Moment CAPM do not in fact require the

existence of a riskless asset. The next extension of the Two-Moment CAPM deals

with criticism of the single time period assumption, in which investors maximize

their portfolio at the end of the current period, so that there does not exist any op-

portunity for investors to restore their portfolios repeatedly over time. Therefore,

Merton (1973) derived a multi-period model known as the Intertemporal CAPM

(ICAPM). Another extension relaxes the assumption that the market portfolio

is not observable. Breeden (1979) derived the Consumption CAPM (CCAPM)

as an extension of the multi-period model, while using the consumption growth

rate instead of market portfolio returns when explaining asset returns. In ad-

dition, Roll (1977) derived an arbitrage asset pricing model (APT) without a

market portfolio return. A further extension allows for the size and value of the

assets which cannot be explained by the Two-Moment CAPM while explaining

asset returns. Investors assume that the size and value of assets can affect the

expected return of assets, so the risk level of assets can change in terms of their

size and value. Hence, Fama and French (1993) derived the Fama-French model,

extending the Two-Moment CAPM to fit additional factors such as size and value

factors. Since then, other authors have also added additional factors. All of these

led to a better description of the asset returns. The majority of these extensions,

however, lacked simple interpretations in terms of risk.

This thesis will criticise the simple assumptions of normally distributed asset

returns and quadratic utility (as summarised by mean and variance) as well as

linear relationships between asset and market returns. This follows the literature

where, for example, Kraus and Litzenberger (1976), Fang and Lai (1997) and

Hwang and Satchell (1999) derived Higher-Moment CAPMs, which extend the

Two-Moment CAPM by including higher moments, as will be discussed in the

section 2.3. These extensions are derived from a single factor (market portfolio

return) instead of developing new factors. Hence, these models provide a simple

interpretation in terms of risk, comparative to the other Two-Moment CAPM

extensions, and are also easier to put into practice.
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2.3 Higher-Moment Capital Asset Pricing Models

Previously, we discussed the Two-Moment CAPM depending on two restrictive

assumptions, that asset returns are normally distributed and the utility function

is quadratic (so it can be expressed in terms of the mean and variance of wealth

only). However, literature (e.g. Kraus and Litzenberger (1976), Fang and Lai

(1997) and Hwang and Satchell (1999)) suggests that the Two-Moment CAPM

may be misleading and insufficient to characterize asset returns. Returns on many

assets are now believed to be non-normally distributed, so they are characterized

by their skewness, lack of symmetry of the return distribution around its mean,

and kurtosis, relative peakness and flatness of a distribution compared with the

normal distribution, as well as their mean and variance. In addition, literature

(e.g. Roll (1977)) makes the criticism that a quadratic utility function suggests

that the investor’s risk aversion increases instead of decreases with increasing

wealth.

All of these inadequacies of the Two-Moment CAPM would encourage finan-

cial research to explore further beyond this benchmark model. Hence, research

frameworks incorporate higher order moments into the Two-Moment CAPM.

In the literature, Higher-Moment CAPMs, namely Three-Moment and Four-

Moment CAPMs include higher order moments, such as skewness and kurtosis.

The Three-Moment CAPM was developed by Kraus and Litzenberger (1976).

Moreover, Friend and Westerfield (1980), Barone-Adesi (1985), Lim (1989), Har-

vey and Siddique (2000a) and Harvey and Siddique (2000b) all identify skew-

ness, characterizing the degree of symmetry of a return distribution around its

mean, as playing an important role for asset pricing in the Three-Moment CAPM.

The Four-Moment CAPM was investigated by Fang and Lai (1997), Hwang and

Satchell (1999), Christie-David and Chaudhry (2001), Galagedera et al. (2002),

Ranaldo and Favre (2005), Liow and Chan (2005), Jurczenko and Maillet (2006)

and Javid (2009); and they also identify kurtosis, characterizing the relative peak-

ness and flatness of a distribution compared with the normal distribution.

This section is organized as follows. In section 2.3.1-2.3.2 we derive the Higher-

Moment CAPMs, namely Four- and Three-Moment CAPM. In section 2.3.3
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we discuss how to estimate the systematic risk measures, systematic covariance

(beta), systematic skewness (co-skewness) and systematic kurtosis (co-kurtosis)

in the Higher-Moment CAPMs from Data Generating Processes (DGPs), which

in the literature is called the Cubic Market Model and Quadratic Market Model.

2.3.1 Four-Moment CAPM

The Four-Moment CAPM, in equilibrium, can be represented as

E(Ri)−Rf = c1βim + c2γim + c3δim, (2.55)

where E(Ri) and Rf are expected asset return on asset i and the risk-free rate,

respectively. The systematic risk measures, βim, γim and δim, which are respec-

tively the systematic covariance (beta), systematic skewness (co-skewness) and

systematic kurtosis (co-kurtosis), are defined as

βim =
E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
=

Cov(Ri, Rm)

E[(Rm − E(Rm))2]
, (2.56)

γim =
E[(Ri − E(Ri))(Rm − E(Rm))2]

E[(Rm − E(Rm))3]
=

Cos(Ri, Rm)

E[(Rm − E(Rm))3]
, (2.57)

δim =
E[(Ri − E(Ri))(Rm − E(Rm))3]

E[(Rm − E(Rm))4]
=

Cok(Ri, Rm)

E[(Rm − E(Rm))4]
. (2.58)

Here, βim is the covariance between the return on asset i and on the market

portfolio (Cov(Ri, Rm)) divided by the variance of market portfolio return. γim

is the co-skewness between the return on asset i and on the market portfolio

(Cos(Ri, Rm)) divided by the third central moment of market portfolio return.

δim is the co-kurtosis between the return on asset i and on the market portfolio

(Cok(Ri, Rm)) divided by the fourth central moment of market portfolio return.

In this thesis, we use the terminology of systematic risk measures: systematic

covariance, systematic skewness and systematic kurtosis. Let c1, c2 and c3, be

the market prices or risk premiums for systematic covariance (βim), systematic

skewness (γim); systematic kurtosis (δim) in equation (2.55), respectively, which
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are given by

c1 =
dE(WF )

dσ(WF )
σ(Rm), (2.59)

c2 =
dE(WF )

dS(WF )
S(Rm), (2.60)

c3 =
dE(WF )

dK(WF )
K(Rm). (2.61)

Here, σ(Rm), S(Rm) and K(Rm) are called standard deviation (volatility), skew-

ness and kurtosis of the market portfolio return, Rm, respectively, which are

defined as

σ(Rm) = E[(Rm − E(Rm))2]1/2, (2.62)

S(Rm) = E[(Rm − E(Rm))3]1/3,

K(Rm) = E[(Rm − E(Rm))4]1/4.

Let E(WF ), σ(WF ), S(WF ) andK(WF ) be the expected value, standard deviation

(volatility), skewness and kurtosis of an individual investor’s end of period wealth,

WF , which are defined as

σ(WF ) = E[(WF − E(WF ))2]1/2, (2.63)

S(WF ) = E[(WF − E(WF ))3]1/3,

K(WF ) = E[(WF − E(WF ))4]1/4.

In equations (2.62)-(2.63), σ2(.), S3(.) and K4(.) are the second, third and fourth

central moments of the market portfolio return, Rm and investor’s end of period

wealth, WF , respectively. In the financial literature and throughout this thesis,

S(.) and K(.) are called skewness and kurtosis, respectively, whereas in statistics,

for example, skewness and kurtosis of the investor’s end of period wealth, WF are
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given by the scaled versions.

σ(WF ) = E[(WF − E(WF ))2]1/2, (2.64)

S(WF ) = E[(WF − E(WF ))3]/σ(WF )3,

K(WF ) = E[(WF − E(WF ))4]/σ(WF )4.

In the following section we derive the Four-Moment CAPM with utility func-

tion approximation, including the systematic risk measures, systematic covari-

ance (βim), systematic skewness (γim), and systematic kurtosis (δim) in equations

(2.56)-(2.58), and the corresponding market prices, c1, c2 and c3 in equations

(2.59)-(2.61), respectively.

2.3.1.1 Derivation of Four-Moment CAPM using Utility Function

To derive the Four-Moment CAPM, we start to define the individual’s expected

utility function extending with skewness and kurtosis terms into that of quadratic

form in equation (2.30) and then maximize it as a Lagrangian form. Next, we

arrive from the individual equilibrium model to a market equilibrium model, and

then the Four-Moment CAPM is obtained. Consider an individual investor’s

expected utility function9 of the investor’s wealth, E[U(WF )] which can be ap-

proximated by an fourth order Taylor series expansion, which is represented by

E[U(WF )] = U [E(WF )] +
1

2!
U
′′
[E(WF )]σ(WF )2 (2.65)

+
1

3!
U
′′′

[E(WF )]S(WF )3 +
1

4!
U
′′′′

[E(WF )]K(WF )4.

Note that under the assumption of normality, the expected utility is equiv-

alent to a quadratic function (section 2.1), which is an exponential function of

the mean and variance of wealth at the end of a period. More generally, with-

out the assumption of normality, the utility function of investors is usually as-

sumed to be the CARA (Constant Absolute Risk Aversion) utility (e.g. Levy and

Markowitz (1979), Pulley (1981), Simaan (1993)).10 For example, Jondeau and
9The individual investor’s expected utility function of the investor’s wealth, E[U(WF )] can

be approximated by the nth order Taylor series expansion defined in equation (2.29).
10Further details of special utility functions such as Constant Relative Risk Aversion (CRRA),
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Rockinger (2004) showed that the fourth order Taylor expansion of the CARA

utility function provided excellent performance for portfolio optimisation under

the non-normality case. The CARA utility function is defined as follows.11

U(WF ) = − exp(−λWF ).

Here, λ denotes an absolute risk aversion. In the case of the CARA utility, the

individual investor’s expected utility function of the investor’s wealth, E(U(WF )),

is represented by

E(U(WF )) = − exp(−λE(WF ))

[
1 +

λ2

2!
σ(WF )2 − λ3

3!
S(WF )3 +

λ4

4!
K(WF )4

]
.

To simplify the analysis, it is possible to show the link between the end of

period wealth, WF and the portfolio return, Rp, while assuming the initial wealth

W0 is 1 (equation (2.31)). The following equations are obtained.

E(WF ) = E(Rp) + 1, (2.66)

σ(WF ) = σ(Rp), (2.67)

S(WF ) = S(Rp), (2.68)

K(WF ) = K(Rp). (2.69)

Now to derive Four-Moment CAPM, we also need to display that

σ(WF ) =
N∑
i=1

xiβipσ(Rp), (2.70)

S(WF ) =
N∑
i=1

xiγipS(Rp), (2.71)

K(WF ) =
N∑
i=1

xiδipK(Rp), (2.72)

and Decreasing Absolute Risk Aversion (DARA) can be found in Ziemann (2004) and Cuth-
bertson and Nitzsche (2005).

11This is primarily taken from Jondeau and Rockinger (2004).
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where

βip =
E[(Ri − E(Ri))(Rp − E(Rp))]

E[(Rp − E(Rp))2]
, (2.73)

γip =
E[(Ri − E(Ri))(Rp − E(Rp))

2]

E[(Rp − E(Rp))3]
, (2.74)

δip =
E[(Ri − E(Ri))(Rp − E(Rp))

3]

E[(Rp − E(Rp))4]
, (2.75)

are the systematic risk measures of asset i relative to portfolio. The proof requires

us to show
∑N

i=1
xiβip = 1,

∑N

i=1
xiγip = 1, and

∑N

i=1
xiδip = 1. We have

showed
∑N

i=1
xiβip = 1 in equation (2.36). To display

∑N

i=1
xiγip = 1 and∑N

i=1
xiδip = 1, the same methods in equation (2.36) can be followed.

Now, the next step is to the maximization of individual investor’s expected

utility of the end of period wealth, WF subject to a budget constraint, that is

max
{x0,x1,...,xN}

E[U(WF )], (2.76)

subject to x0 +
N∑
i=1

xi = 1.

To maximize the individual investor’s expected utility and solve the equilibrium

condition in equation (2.76), a Lagrangian multiplier approach can be adopted.

Define the function L as follows.

L = E[U(WF )]− λ

(
x0 +

N∑
i=1

xi − 1

)
, (2.77)

and note that from equation (2.65)

E[U(WF )] = f(E(WF ), σ(WF ), S(WF ), K(WF )),

as a function of (E(WF ), σ(WF ), S(WF ), K(WF )). Hence,

L = f(E(WF ), σ(WF ), S(WF ), K(WF ))− λ

(
x0 +

N∑
i=1

xi − 1

)
. (2.78)

Here, λ is the Lagrangian multiplier and the expression in the brackets is equal
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to zero. Now we start by taking the first order total derivatives of the Lagrangian

form in equation (2.78) with respect to proportions, x0 and xi, and setting these

derivations equal to zero. Note that implicitly, these total derivatives, which use

the fact (from equation (2.78)) that E[U(WF )] is a function of E(WF ) as a func-

tion of x0, x1, . . . , xN and σ(WF ), S(WF ) and K(WF ) as functions of x1, . . . , xN ,

are obtained from multivariate calculus as follows.

∂L

∂x0
=

∂E[U(WF )]

∂E(WF )

∂E(WF )

∂x0
+
∂E[U(WF )]

∂σ(WF )

∂σ(WF )

∂x0
(2.79)

+
∂E[U(WF )]

∂S(WF )

∂S(WF )

∂x0
+
∂E[U(WF )]

∂K(WF )

∂K(WF )

∂x0
− λ = 0,

=
∂E[U(WF )]

∂E(WF )
(1 +Rf )− λ = 0,

using equations (2.41), (2.42) and

∂S(WF )

∂x0
= 0, from equation (2.71), (2.80)

∂K(WF )

∂x0
= 0, from equation (2.72). (2.81)

Similarly, the first derivatives of equation (2.78) with respect to xi gives

∂L

∂xi
=

∂E[U(WF )]

∂E(WF )

∂E(WF )

∂xi
+
∂E[U(WF )]

∂σ(WF )

∂σ(WF )

∂xi
(2.82)

+
∂E[U(WF )]

∂S(WF )

∂S(WF )

∂xi
+
∂E[U(WF )]

∂K(WF )

∂K(WF )

∂xi
− λ = 0,

=
∂E[U(WF )]

∂E(WF )
(1 + E(Ri)) +

∂E[U(WF )]

∂σ(WF )
βipσ(Rp)

+
∂E[U(WF )]

∂S(WF )
γipS(Rp) +

∂E[U(WF )]

∂K(WF )
δipK(Rp)− λ = 0,

using equations (2.44), (2.45) and

∂S(WF )

∂xi
= γipS(Rp), from equation (2.71), (2.83)

∂K(WF )

∂xi
= δipK(Rp), from equation (2.72). (2.84)
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Rearranging equation (2.79) and (2.82) gives

E(Ri)−Rf = −

∂E[U(WF )]

∂σ(WF )

∂E[U(WF )]

∂E(WF )

βipσ(Rp)−

∂E[U(WF )]

∂S(WF )

∂E[U(WF )]

∂E(WF )

γipS(Rp) (2.85)

−

∂E[U(WF )]

∂K(WF )

∂E[U(WF )]

∂E(WF )

δipK(Rp),

where −∂E[U(WF )]

∂σ(WF )
/
∂E[U(WF )]

∂E(WF )
, −∂E[U(WF )]

∂S(WF )
/
∂E[U(WF )]

∂E(WF )
and

−∂E[U(WF )]

∂K(WF )
/
∂E[U(WF )]

∂E(WF )
equal to the investor’s marginal rates of substitution

(which is defined by minus the slope of the expected utility curve) between the

expected and the standard deviation, skewness and kurtosis of end of period

wealth, WF , respectively. With same method in equations (2.47), (2.48), we now

rearrange the investor’s marginal rate of substitution. By knowing that through

any point on the expected utility curve,
dE[U(WF )]

dE(WF )
= 0, because the expected

utility, E[U(WF )] = f(E(WF ), σ(WF ), S(WF ), K(WF )) from equation (2.65), is

constant while changing in expected return and variance of WF are zero given

the skewness and kurtosis of WF , the following results are obtained.

dE[U(WF )]

dE(WF )
=

∂E[U(WF )]

∂E(WF )
+
∂E[U(WF )]

∂σ(WF )

dσ(WF )

dE(WF )
= 0, (2.86)

dE(WF )

dσ(WF )
= −

∂E[U(WF )]

∂σ(WF )

∂E[U(WF )]

∂E(WF )

, (2.87)

dE[U(WF )]

dE(WF )
=

∂E[U(WF )]

∂E(WF )
+
∂E[U(WF )]

∂S(WF )

dS(WF )

dE(WF )
= 0, (2.88)

dE(WF )

dS(WF )
= −

∂E[U(WF )]

∂S(WF )

∂E[U(WF )]

∂E(WF )

, (2.89)
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dE[U(WF )]

dE(WF )
=

∂E[U(WF )]

∂E(WF )
+
∂E[U(WF )]

∂K(WF )

dK(WF )

dE(WF )
= 0, (2.90)

dE(WF )

dK(WF )
= −

∂E[U(WF )]

∂K(WF )

∂E[U(WF )]

∂E(WF )

. (2.91)

Substituting equations (2.87), (2.89) and (2.91) in equation (2.85) gives

E(Ri)−Rf =
dE(WF )

dσ(WF )
βipσ(Rp) +

dE(WF )

dS(WF )
γipS(Rp) (2.92)

+
dE(WF )

dK(WF )
δipK(Rp).

The final step is to define market case where the individual investor optimum

portfolio is equivalent to the market portfolio; so, Rp is replaced by Rm. Then,

equation (2.92) can be written as

E(Ri)−Rf =
dE(WF )

dσ(WF )
σ(Rm)βim +

dE(WF )

dS(WF )
S(Rm)γim (2.93)

+
dE(WF )

dK(WF )
K(Rm)δim,

where Rm, E(Ri) and Rf are the market portfolio, expected asset i return and the

risk-free rate, respectively. σ(Rm), S(Rm) and K(Rm) are standard deviation,

skewness and kurtosis of the market portfolio return, Rm, respectively. Here,

βim, γim and δim are the systematic risk measures of an asset i relative to market

variance, skewness and kurtosis, such as systematic covariance (beta), systematic

skewness (co-skewness) and systematic kurtosis (co-kurtosis), respectively. Let

c1, c2 and c3 be given by

c1 =
dE(WF )

dσ(WF )
σ(Rm), c2 =

dE(WF )

dS(WF )
S(Rm), c3 =

dE(WF )

dK(WF )
K(Rm),

which are the market prices for systematic risk measures in the Four-Moment

CAPM defined earlier.
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2.3.2 Three-Moment CAPM

When the individual investor’s expected utility of the end of period wealth with a

budget constraint (equation (2.65)) is independent of the kurtosis (i.e. c3 = 0 in

equation (2.55)); that is, the individual investor’s expected utility function can be

represented as the third order Taylor series expansion, the Four-Moment CAPM

is reduced to the Three-Moment CAPM, developed by Kraus and Litzenberger

(1976), identifies skewness term. It can be represented as

E(Ri)−Rf = c1βim + c2γim, (2.94)

where E(Ri) and Rf are the expected asset return and the risk-free rate, respec-

tively. Here, the systematic risk measures, systematic covariance, βim and sys-

tematic skewness, γim, are defined as in equation (2.56) and (2.57), respectively.

Let c1 and c2 be the market prices for βim and γim from equations (2.59)-(2.60),

defined as

c1 =
dE(WF )

dσ(WF )
σ(Rm), (2.95)

c2 =
dE(WF )

dS(WF )
S(Rm). (2.96)

2.3.3 Data Generating Processes for Higher-Moment

CAPMs

To assess the necessity for the Higher-Moment CAPMs, Higher order Data Gen-

erating Processes (DGPs), namely the Quadratic Market Model and the Cubic

Market Model, are discussed in the literature. For example, Barone-Adesi (1985)

provides that the Quadratic Market Model is consistent with Kraus and Litzen-

berger’s (1976) Three-Moment CAPM. Fang and Lai (1997) and Hwang and

Satchell (1999) have also illustrated that the Higher order DGPs are consistent

with their equivalent Higher-Moment CAPMs.

The Cubic Market Model is given by the following model

Ri −Rf = κi + α1i(Rm −Rf ) + α2i(Rm −Rf )
2 + α3i(Rm −Rf )

3 + εi, (2.97)
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which is a simple polynomial regression of order three of the response, Ri − Rf

on the covariate (Rm − Rf ). The errors are assumed to be independent and

identically distributed with E(εi) = 0 and V ar(εi) = σ2.

The Cubic Market Model (equation (2.97)) is consistent with Four-Moment

CAPM (equation (2.55)). To show the link between the Four-Moment CAPM

and Cubic Market Model, the systematic risk measures (βim, γim and δim) can be

expressed as

βim =
E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
= α1i (2.98)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2)(Rm − E(Rm))]

E[(Rm − E(Rm))2]

+ α3i
E[((Rm −Rf )

3 − E(Rm −Rf )
3)(Rm − E(Rm))]

E[(Rm − E(Rm))2]
,

γim =
E[(Ri − E(Ri))(Rm − E(Rm))2]

E[(Rm − E(Rm))3]
= α1i (2.99)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2)(Rm − E(Rm))2]

E[(Rm − E(Rm))3]

+ α3i
E[((Rm −Rf )

3 − E(Rm −Rf )
3)(Rm − E(Rm))2]

E[(Rm − E(Rm))3]
,

δim =
E[(Ri − E(Ri))(Rm − E(Rm))3]

E[(Rm − E(Rm))4]
= α1i (2.100)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2)(Rm − E(Rm))3]

E[(Rm − E(Rm))4]

+ α3i
E[((Rm −Rf )

3 − E(Rm −Rf )
3)(Rm − E(Rm))3]

E[(Rm − E(Rm))4]
.

Note that the Four-Moment CAPM could only be employed if the DGP was

at least cubic, that is, α3i should be statistically significantly different from zero.

If not, there will be collinearity in the systematic risk measures (βim, γim and

δim) of the Four-Moment CAPM.
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Proof: For systematic covariance, βim: Start by taking expectations of the Cubic

Market Model, which gives

E(Ri −Rf ) = κi + α1iE(Rm −Rf ) (2.101)

+ α2iE(Rm −Rf )
2 + α3iE(Rm −Rf )

3 + E(εi).

Subtract from equation (2.97) to (2.101)

(Ri −Rf )− E(Ri −Rf ) = α1i((Rm −Rf )− E(Rm −Rf )) (2.102)

+ α2i

(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

+ α3i

(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

+ εi,

Ri − E(Ri) = α1i(Rm − E(Rm))

+ α2i

(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

+ α3i

(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

+ εi.

Multiply both sides of equation (2.102) by Rm − E(Rm)

(Ri − E(Ri))(Rm − E(Rm)) = α1i(Rm − E(Rm))(Rm − E(Rm)) (2.103)

+ α2i

(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

(Rm − E(Rm))

+ α3i

(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

(Rm − E(Rm))

+ εi(Rm − E(Rm)).

Take expected values both sides of equation (2.103)

E [(Ri − E(Ri))(Rm − E(Rm))] (2.104)

= α1iE [(Rm − E(Rm)) (Rm − E(Rm))]

+ α2iE
[(

(Rm −Rf )
2 − E(Rm −Rf )

2
)

(Rm − E(Rm))
]

+ α3iE
[(

(Rm −Rf )
3 − E(Rm −Rf )

3
)

(Rm − E(Rm))
]
.
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Divide both sides in equation (2.104) by the variance of the market return,

E
[
(Rm − E(Rm))2

]
, which gives

βim =
E [(Ri − E(Ri))(Rm − E(Rm))]

E
[
(Rm − E(Rm))2

] = α1i (2.105)

+ α2i
E [((Rm −Rf )

2 − E(Rm −Rf )
2) (Rm − E(Rm))]

E[(Rm − E(Rm))2]

+ α3i
E [((Rm −Rf )

3 − E(Rm −Rf )
3) (Rm − E(Rm))]

E[(Rm − E(Rm))2]
.

For systematic skewness, γim: Similarly, multiply both side of equation (2.102)

by (Rm − E(Rm))2

(Ri − E(Ri))(Rm − E(Rm))2 (2.106)

= α1i(Rm − E(Rm))(Rm − E(Rm))2

+α2i

(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

(Rm − E(Rm))2

+α3i

(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

(Rm − E(Rm))2

+εi(Rm − E(Rm))2.

Take expected values both sides of equation (2.106)

E
[
(Ri − E(Ri))(Rm − E(Rm))2

]
(2.107)

= α1iE
[
(Rm − E(Rm))(Rm − E(Rm))2

]
+ α2iE

[(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

(Rm − E(Rm))2
]

+ α3iE
[(

(Rm −Rf )
3 − E(Rm −Rf )

3
)

(Rm − E(Rm))2
]
.

Divide both sides in equation (2.107) by the third central moment of the market

return, E
[
(Rm − E(Rm))3

]
, which gives

γim =
E[(Ri − E(Ri))(Rm − E(Rm))2]

E[(Rm − E(Rm))3]
= α1i (2.108)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2) (Rm − E(Rm))2]

E[(Rm − E(Rm))3]

+ α3i
E[((Rm −Rf )

3 − E(Rm −Rf )
3) (Rm − E(Rm))2]

E[(Rm − E(Rm))3]
.
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For systematic kurtosis, δim: Finally, multiply both side of equation (2.102)

by (Rm − E(Rm))3

(Ri − E(Ri))(Rm − E(Rm))3 (2.109)

= α1i(Rm − E(Rm))(Rm − E(Rm))3

+ α2i

(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

(Rm − E(Rm))3

+ α3i

(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

(Rm − E(Rm))3

+ εi(Rm − E(Rm))3.

Take expected values both sides of equation (2.109)

E[(Ri − E(Ri))(Rm − E(Rm))3] (2.110)

= α1iE[(Rm − E(Rm))(Rm − E(Rm))3]

+ α2iE[
(
(Rm −Rf )

2 − E(Rm −Rf )
2
)

(Rm − E(Rm))3]

+ α3iE[
(
(Rm −Rf )

3 − E(Rm −Rf )
3
)

(Rm − E(Rm))3].

Divide both sides in equation (2.110) by the fourth central moment of the market

return, E
[
(Rm − E(Rm))4

]
, which gives

δim =
E [(Ri − E(Ri))(Rm − E(Rm))3]

E[(Rm − E(Rm))4]
= α1i (2.111)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2) (Rm − E(Rm))3]

E[(Rm − E(Rm))4]

+ α3i
E[((Rm −Rf )

3 − E(Rm −Rf )
3) (Rm − E(Rm))3]

E[(Rm − E(Rm))4]
.

Provided that, the definition of systematic risk measures βim, γim and δim, con-

sistent with Four-Moment CAPM.

Throughout this thesis, the parameters of the Cubic Market Model must be

estimated from more data, usually time series data of returns at regular intervals.

Assuming that the parameters are constant over the whole time period being

considered, then the excess return on asset i in period t (Rit − Rft) might be
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assumed to be generated by the following model

Rit −Rft = κi + α1i(Rmt −Rft) + α2i(Rmt −Rft)
2 + α3i(Rmt −Rft)

3 + εit,

(2.112)

where Rit, Rft and Rmt are the returns on asset i, the risk-free rate and the market

portfolio at time t (t ε {1, . . . , T}). The errors are assumed to be independent

and identically distributed with εit ∼ N(0, σ2). Here, using κ̂i, α̂1i, α̂2i, and α̂3i

from maximum likelihood estimation, and others, for example,

E
(
(Rm −Rf )

2
)
≈ 1

T

∑T

t=1
(Rmt − Rft)

2 ; then, the systematic risk measures in

equations (2.98), (2.99) and (2.100) can be estimated.

When α3i = 0 in equation (2.97), the Quadratic Market Model is given by the

following model

Ri −Rf = κi + α1i(Rm −Rf ) + α2i(Rm −Rf )
2 + εi, (2.113)

which is a simple polynomial regression of order two of the response, Ri − Rf

on the covariate (Rm − Rf ). The errors are assumed to be independent and

identically distributed with E(εi) = 0 and V ar(εi) = σ2.

The Quadratic Market Model (2.113) is consistent with the Three-Moment

CAPM (2.94). To show the link between the Three-Moment CAPM and Quadratic

Market Model (see details in the Cubic Market Model), the systematic risk mea-

sures (βim and γim) can be expressed as

βim =
E[(Ri − E(Ri))(Rm − E(Rm))]

E[(Rm − E(Rm))2]
= α1i (2.114)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2) (Rm − E(Rm))]

E[(Rm − E(Rm))2]
,

γim =
E[(Ri − E(Ri))(Rm − E(Rm))2]

E[(Rm − E(Rm))3]
= α1i (2.115)

+ α2i
E[((Rm −Rf )

2 − E(Rm −Rf )
2) (Rm − E(Rm))2]

E[(Rm − E(Rm))3]
.

Note that the Three-Moment CAPM could only be employed if the DGP was

at least quadratic, that is, α2i should be statistically significantly different from
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zero. If not, βim and γim are equal.

Throughout this thesis, the parameters of the Quadratic Market Model must

be estimated from more data, usually time series data of returns at regular in-

tervals. Assuming that the parameters are constant over the whole time period

being considered, then the excess return on asset i in period t (Rit − Rft) might

be assumed to be generated by the following model

Rit −Rft = κi + α1i(Rmt −Rft) + α2i(Rmt −Rft)
2 + εit, (2.116)

where Rit, Rft and Rmt are the returns on asset i, the risk-free rate and the market

portfolio at time t (t ε {1, . . . , T}). The errors are assumed to be independent

and identically distributed with εit ∼ N(0, σ2). Here, using κ̂i, α̂1i, and α̂2i from

maximum likelihood estimation, and others, for example,

E
(
(Rm −Rf )

2) ≈ 1

T

∑T

t=1
(Rmt − Rft)

2 ; then, the systematic risk measures in

equations (2.114) and (2.115) can be estimated.



Chapter 3

Statistical Methodology

This chapter describes the statistical methodology used in this thesis, focusing

on both time-invariant and time-varying coefficient models. In section 3.1, we

review the linear model, and in section 3.2, we present a brief review of the

additive model. In section 3.3, we describe a linear Gaussian state space model

estimated via Kalman Filter approaches, and in section 3.4, we review the basic

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and

some of its extensions. In section 3.5, we discuss model selection and diagnostics.

Throughout this thesis, vectors are denoted by bold type, while matrices are

denoted by capital letters.

3.1 Linear Models

The basic form of the linear model is written as

Yt = x
′

tβ + εt, t = 1, . . . , n, (3.1)

where Yt is a response variable which depends on covariates, x
′

t=(1, xt2, . . . , xtp).

Here, β = (β1, β2, . . . , βp)
′
are unknown time-invariant coefficients, and {εt} are

independent and identically distributed random errors satisfying E(εt) = 0 and

Var(εt) = σ2 for t = 1, . . . , n. In matrix notation, equation (3.1) is rewritten as

Y = Xβ + ε, (3.2)

38
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where Y = (Y1, . . . , Yn) is an n× 1 random vector of responses; X = (xtk) is an

n× p design matrix of covariates; β is a p× 1 vector of unknown time-invariant

coefficients, and ε = (ε1, . . . , εn) is an n× 1 random vector of errors with

E(ε) = 0 and Var(ε) = σ2I. Hence, E(Y ) = Xβ and Var(Y ) = σ2I.

3.1.1 Estimation

A sensible approach is needed to estimate the value of β so that Xβ is as close as

possible to Y . One approach is to minimize the residual sum of squares (RSS)

with respect to β, which is known as the method of least squares. This method

thus attempts to choose β by minimizing

Q =
n∑
t=1

ε2t = ε
′
ε = (Y −Xβ)

′
(Y −Xβ). (3.3)

This can be achieved by expanding equation (3.3), which yields

Q = Y
′
Y − 2β

′
X
′
Y + β

′
X
′
Xβ. (3.4)

Differentiating equation (3.4) with respect to β and setting it equal to zero gives

∂Q

∂β
= −2X

′
Y + 2X

′
Xβ = 0. (3.5)

Dividing equation (3.5) by 2 and replacing β by β̂, called the least squares esti-

mator for β, gives

X
′
Xβ̂ = X

′
Y . (3.6)

This matrix form (equation (3.6)) is called the normal equations. Then, β̂ is

obtained as

β̂ = (X
′
X)−1X

′
Y , (3.7)
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as long as the design matrix X is of full rank, so that (X
′
X)−1 exists. The least

squares estimator is unbiased i.e.

E(β̂) = (X
′
X)−1X

′
E(Y ) (3.8)

= (X
′
X)−1X

′
Xβ = Iβ = β,

since E(Y ) = Xβ. The variance-covariance matrix of β̂ is obtained as follows

Var(β̂) = (X
′
X)−1X

′
Var(Y )X(X

′
X)−1 (3.9)

= σ2(X
′
X)−1X

′
X(X

′
X)−1 = σ2(X

′
X)−1,

since Var(Y ) = σ2I. The residual sum of squares is the smallest possible value

of Q, obtained at β̂: RSS = (Y − Xβ̂)
′
(Y − Xβ̂). An unbiased estimator for

the variance σ2 is

σ̂2 =
RSS

n− p
=

(Y −Xβ̂)
′
(Y −Xβ̂)

n− p
, (3.10)

where p is the number of parameters in the linear model.

3.1.2 Inference

To construct confidence intervals for β or to test a hypothesis related to the

model, it is necessary to add an assumption about the distribution of the errors.

Under the usual assumption of normality, the errors remain independent and

identically distributed with mean zero and variance σ2, so we assume that

ε ∼ N(0, σ2I), which is equivalent to assuming Y ∼ N(Xβ, σ2I). Under these

assumptions, it is straightforward to show that β̂ is also the maximum likelihood

estimator for β. It also follows that

β̂ ∼ N(β, σ2(X
′
X)−1). (3.11)
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To test a null hypothesis of the formH0 : βi = C versus the alternative hypothesis,

HA : βi 6= C the test statistic is defined as follows.

T =
β̂i − C

σ̂
√

((X ′X)−1)ii
. (3.12)

Here, under the null hypothesis, T follows a t-distribution with n− p degrees of

freedom. Here,
(

(X
′
X)−1

)
ii
is the ith diagonal element of (X

′
X)−1. Then, reject

H0 at the α level (e.g. α = 0.05) if |T | > tn−p,1−α/2. Also, the p-value will be

given by Pr
(
|tn−p,1−α/2| > |T |

)
. The (1− α) confidence interval for βi is

β̂i ± tn−p,1−α/2 σ̂
√

((X ′X)−1)ii. (3.13)

For a comprehensive review of the linear model see Shumway and Stoffer

(2006, Chap. 2), Faraway (2004, Chap. 2-3), Kutner et al. (2005, Chap. 5) and

Wood (2006, Chap. 1).

3.2 Additive Models

The additive model, which was developed by Hastie and Tibshirani (1990), ex-

tends the linear model to include smooth functions of covariates whose shapes

are estimated from the data rather than being specified by the investigator. The

general form of an additive model with one additional covariate can be written

as

Yt = x
′

tβ + f(zt) + εt, t = 1, . . . , n. (3.14)

Here, the response Yt is related to the covariates from the linear model xt and

a new covariate zt . This new covariate has a potentially non-linear relationship

with the response, which is represented by f(.) and whose shape is estimated

from the data. We note that equation (3.14) can be extended to have multiple

covariates with non-linear shapes. However, as only the univariate case is used

in this thesis, we do not discuss this possibility here. The function f(zt) can

be constructed as a linear combination of (m + 1)th order spline basis terms as
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follows.

f(zt) =
r∑
i=1

Bm
i (zt)αi. (3.15)

Here, α = (α1, . . . , αr) are unknown parameters and Bm
i (zt), which is the ith

B-spline basis function of degree at m a point zt, is the most popular choice for

smoothing. Without considering the choice of knots, the B-spline basis functions

are defined recursively as follows.

Bm
i (zt) =

zt − zt i
zt i+m+1 − zt i

Bm−1
i (zt) +

zt i+m+2 − zt
zt i+m+2 − zt i+1

Bm−1
i+1 (zt), i = 1, . . . , r,

and

B−1i (zt) =

 1 if zt i ≤ zt < zt i+1,

0 otherwise.

Throughout this thesis, cubic spline (m = 2) is used (see Wood (2006)). For a

comprehensive review of the properties of B-splines see de Boor (1978) and Eilers

and Marx (1996).

To determine the degree of the smoothing for f(zt), a penalized regression

spline approach can be adopted. This approach includes an overly large number

of basis functions in equation (3.15) (large r), and minimizes excessive roughness

via a penalty term. Estimation is achieved by minimizing the sum of squared

residuals with a penalty term, that is minimizing

Q = (Y −Xβ −Bα)
′
(Y −Xβ −Bα) + λα

′
Sα, (3.16)

with respect to (α, β). Here, B is a matrix of B-spline basis functions represented

B =


B1(z1) B2(z1) . . . Br(z1)

B1(z2) B2(z2) . . . Br(z2)
...

... . . . ...

B1(zn) B2(zn) . . . Br(zn)

 .
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Here, we setm = 2 and drop the subscriptm. α is the vector of spline coefficients.

S is a penalty matrix that is necessary to control the smoothness of f(zt) and

reduce the effective degrees of freedom (EDF). Here, a common choice for penalty

part is defined as

r−1∑
i=2

(αi−1 − 2αi + αi+1)
2 = α

′
Sα.

Here, the corresponding penalty matrix S is a second order random walk matrix

given by

S =



1 −2 1

−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


.

Let X∗ = (X,B) denote the combined matrix of X and B, the penalized least

squares estimator of θ = (α, β) is given by

θ̂ = (X∗
′
X∗ + λS∗)−1X∗

′
Y . (3.17)

Here, S∗ =

0 0

0 S


(p+r)×(p+r)

and λ is a smoothing parameter, which determines

the flexibility and smoothness of f̂(zt). The data will be either under- or over-

smoothed if λ is too low or too high. Many approaches exist to estimate λ, includ-

ing the Akaike Information Criteria (AIC ) (Hastie and Tibshirani (1990)), the

Bayesian Information Criteria (BIC ), the bias-corrected AIC (AICc) (Hurvich

and Tsai (1989)) and the Generalized Cross Validation (GCV ) (Wood (2006)).

The aim is to minimize these criteria over all possible λ values and these are given
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by

AIC(λ) =
1

n

n∑
t=1

(Yt − µ̂t(λ))2 + 2tr(A(λ)), (3.18)

AICc(λ) = log

(
1

n

n∑
t=1

(Yt − µ̂t(λ))2
)

+ 1 +
2 (tr(A(λ)) + 1)

n− tr(A(λ))− 2
,

BIC(λ) =
1

n

n∑
t=1

(Yt − µ̂t(λ))2 + tr(A(λ)) log(n),

GCV (λ) =

1

n

n∑
t=1

(Yt − µ̂t(λ))2

(1− tr(A(λ))/n)2
.

Here, µ̂t(λ) is the mean of Yt and A(λ) is the smoother matrix given by

A(λ) = X∗(X∗
′
X∗ + λS∗)−1X∗

′
, and tr(A(λ)) is defined as the effective degrees

of freedom (EDF ). For a comprehensive review of other types of the smoothing

parameter λ selection criteria such as the UnBiased Risk Estimator (UBRE )

(Craven and Wahba (1978)) and the REstricted Maximum Likelihood (REML)

see Wood (2006). For a comprehensive review of penalized regression smoothers

based on splines, cubic regression splines and penalized splines see Wood (2006).

3.3 Linear Gaussian State Space Models

3.3.1 Introduction

The linear state space form of a dynamic system with unobserved components is

a powerful instrument for analyzing time series in many scientific areas such as

engineering, physics, medicine and biostatistics (e.g. Hutchinson (1984), Roberts

(1986), Zivot and Wang (2006) and Welch and Bishop (2006)). This general

approach has also found numerous applications in the financial literature, with

Harvey (1989), Harvey and Shephard (1993), Wells (1996), Durbin and Koopman

(2001), Shumway and Stoffer (2006) and Mergner (2009) providing details about

the use of the linear state space model for analyzing time series in finance.

The general form of the linear state space model with a normality assump-

tion, which is referred to as a linear Gaussian state space model, consists of an



CHAPTER 3. STATISTICAL METHODOLOGY 45

observation or measurement equation and a state or transition equation. The

observation equation can be written in the form

Yt = Atαt + εt, t = 1, . . . , n. (3.19)

Here, At is a q × p observation or measurement matrix that specifies how αt,

which is an unobserved p × 1 state vector, can be converted into a q × 1 vector

of observations, Yt, at each time t. The observation equation is finished by

assuming that the q × 1 vector of errors, {εt}, for t = 1, . . . , n, are independent

and identically distributed with εt ∼ N(0, Ht), where Ht is a q × q variance

matrix that is allowed to vary over time. The state equation can be modeled in

the form

αt = Φtαt−1 +wt, t = 1, . . . , n, (3.20)

which relates the state vector αt to its value αt−1 at the previous time point.

Here, the transition or speed parameter, Φt, is a p × p matrix, and {wt} is

assumed to be a p × 1 vector of independent and identically distributed errors

withwt ∼ N(0, Qt). Qt is a p×p variance matrix of the errors in the state vector.

The linear Gaussian state space model is completely specified by two further

assumptions. Firstly, assuming that the initial state vector α0, is Gaussian with

mean, µ0 and positive semi-definite variance matrix Σ0. That is,

α0 ∼ N(µ0, Σ0), (3.21)

and is independent of {wt}. Secondly, assuming that the observation and state

errors {wt} and {εt} are also independent of each other for all t.

The matrices, At, Ht, Φt and Qt defined in equations (3.19) and (3.20) are

referred to as system matrices. Typically, the system matrix At is assumed known,

while (Ht, Qt, Φt) are estimated from the data together with (µ0, Σ0). For a

comprehensive review of the linear Gaussian state space model see Harvey (1989,

Chap. 3) and Durbin and Koopman (2001, Chap. 3). Throughout this thesis, the

Kalman Filter, which was introduced by Kalman (1960) and Kalman and Bucy

(1961), is used to estimate the parameters in the linear Gaussian state space
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model. In section 3.3.2 we present the Kalman Filter and Smoother algorithm

used to estimate the unobserved state vector, αt and in section 3.3.3 we consider

the estimation of the unknown hyperparameters using maximum likelihood. In

section 3.3.4 the three forms of state space model used in this thesis are discussed.

3.3.2 The Kalman Filter and Smoother

The simplest Kalman Filter and Smoother algorithm is based on the following

simplified model

Yt = Atαt + εt, εt ∼ N(0, H), (3.22)

αt = Φαt−1 +wt, wt ∼ N(0, Q), (3.23)

and initial state vector α0 ∼ N(µ0,Σ0) for t = 1, . . . , n. The elements of the

system matrices (H, Q, Φ) are constant over time. Here, the primary aim of

this analysis is to estimate the unobserved state vector, αt, at time t given the

available information Yn={Y1, Y2, . . . , Yn} at time n. During this process, three

types of problem are defined as follows: if t > n, this is a prediction problem, if

t = n, this is a filtering problem, and if t < n, this is a smoothing problem. To

achieve the solution to these problems, the Kalman Filter (forward recursions)

and Smoother (backward recursions) are defined below. The Kalman Filter and

Smoother algorithm is primarily taken from Shumway and Stoffer (2006, Chap.

6) where its proof can be found.

The conditional mean and variance of the state vector αt given data up to

time n can be characterized as

αnt = E(αt | Yn), (3.24)

P n
t = Var(αt | Yn). (3.25)

To deal with the prediction (t > n) and filtering (t = n) problems, the forward re-

cursion steps of the Kalman Filter and Smoother algorithm with initial conditions

α0
0 = µ0 and P 0

0= Σ0, can be implemented as follows, for t = 1, . . . , n.
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Prediction:

Set the state prediction

αt−1t = Φαt−1t−1. (3.26)

Set the state variance prediction

P t−1
t = ΦP t−1

t−1 Φ
′
+Q. (3.27)

Filtering:

Set the innovations (one-step ahead prediction error)

vt = Yt − Atαt−1t . (3.28)

Set the variance matrices of the innovations

Σt = V ar(vt) = AtP
t−1
t A

′

t +H. (3.29)

Set the Kalman gain

Kt = P t−1
t A

′

tΣ
−1
t . (3.30)

Set the state filtering

αtt = αt−1t +Ktvt. (3.31)

Set the state variance filtering

P t
t = P t−1

t −KtAtP
t−1
t . (3.32)

Cycle through equation (3.26) to (3.32) for each time t. Here, the forward

recursion in equations (3.28) through (3.32) is called the Kalman Filter. For a

comprehensive review of alternative derivations of the Kalman Filter see Harvey

(1989, Chap. 3), Durbin and Koopman (2001, Chap. 4) and Mergner (2009,

Chap. 3).

To deal with the smoothing (t < n) problem, the backward recursion of the

Kalman Filter and Smoother is implemented, which starts with initial condi-
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tions αnn (from equation (3.31)) and P n
n (from equation (3.32)) obtained from

the Kalman Filter with t = n. The Kalman Smoother works as follows. For

t = n, n− 1, . . . , 1,

Set the smoothed state

αnt−1 = αt−1t−1 + Jt−1(α
n
t −αt−1t ). (3.33)

Set the smoothed error variance

P n
t−1 = P t−1

t−1 + Jt−1(P
n
t − P t−1

t )J
′

t−1, (3.34)

where

Jt−1 = P t−1
t−1 Φ

′
[P t−1
t ]−1. (3.35)

This backwards recursion is referred to as a “classical fixed interval smoother”. It

was introduced by Anderson and Moore (1979). For a comprehensive review of

the derivation of the fast variants for state smoothing and disturbance smoothing,

see Kohn and Ansley (1989), Jong (1991), Koopman (1993), Harvey (1989, Chap.

3), Durbin and Koopman (2001, Chap. 4), Fahrmeir and Tutz (2001, Chap. 8)

and Mergner (2009, Chap. 3).

Throughout this thesis, to estimate a state αt given Yn with n > t, we first

apply the Kalman Filter (equations (3.28)-(3.32)) recursively until reaching the

state αn and while moving forward we store the values αt−1t , αtt, P
t−1
t and P t

t ,

t = 1, . . . , n. Then, we move backwards by applying the Kalman Smoother (equa-

tions (3.33)-(3.35)) until reaching the state t, which we would like to estimate.

3.3.3 Estimation of Hyperparameters

Previously, we assumed that the system matricesH, Φ and Q and the initial mean

µ0 and variance Σ0 are known, but we now consider the more usual situation in

which at least some elements of the system matrices H, Φ and Q depend on a

vector of unknown parameters, Θ, which are referred to as hyperparameters, that
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is,

Φ = Φ(Θ), Q = Q(Θ), H = H(Θ), (3.36)

Here, we focus on the estimation of the vector of unknown parameters, Θ, by

maximum likelihood. For the linear Gaussian state space model, we now de-

rive the likelihood function which can be calculated by a routine application of

the Kalman Filter based on the following assumptions (Durbin and Koopman

(2001)): α0 ∼ N(µ0,Σ0) where µ0 and Σ0 are known; ε1, . . . , εn ∼ N(0, H);

and w1, . . . ,wn ∼ N(0, Q). For simplicity we continue to assume {wt} and {εt}

are uncorrelated. The likelihood function is

LY (Θ) = p(Y1,Y2, . . . ,Yn; Θ) = p(Y1; Θ)
n∏
t=2

p(Yt | Yt−1; Θ), (3.37)

where p(Yt | Yt−1; Θ) is the conditional density function of Yt given the data set

at time t − 1; assuming that Θ is the value of the unknown parameters vector.

In practice the loglikelihood function is generally defined as

logLY (Θ) =
n∑
t=1

log p(Yt | Yt−1; Θ), (3.38)

where p(Y1 | Y0; Θ) = p(Y1; Θ). For the linear Gaussian state space model in

equations (3.22) and (3.23), it can be shown that the conditional distribution of

Yt is Gaussian with conditional mean

E(Yt | Yt−1; Θ) = Atα
t−1
t , (3.39)

and conditional variance matrix (equation (3.29))

Var(Yt | Yt−1; Θ) = Σt. (3.40)

Thus the conditional density function of Yt is

p(Yt | Yt−1; Θ) =
1

2πq/2
| Σt(Θ) |−1/2 exp

(
−1

2
vt(Θ)

′
Σt(Θ)−1vt(Θ)

)
, (3.41)
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where vt = Yt − Atα
t−1
t (equation (3.28)). Substituting equation (3.41) into

equation (3.38), the loglikelihood function can be written

logLY (Θ) = −nq
2

log(2π)− 1

2

n∑
t=1

log | Σt(Θ) | −1

2

n∑
t=1

vt(Θ)
′
Σt(Θ)−1vt(Θ).

(3.42)

Here, vt(Θ) and Σt(Θ) are calculated routinely by the Kalman Filter (equation

(3.26)-(3.32)). Also, we assume that Σt(Θ) is nonsingular for t = 1, . . . , n. If this

condition is not satisfied initially, the model can be redefined. This representation

(equation (3.42)) of the loglikelihood function was first introduced by Schweppe

(1965) and called prediction error decomposition by Harvey (1989, Chap. 3). For

a comprehensive review of the loglikelihood function see Harvey (1989, Chap. 3),

Durbin and Koopman (2001, Chap. 7) and Mergner (2009, Chap. 3).

The loglikelihood function (equation (3.42)) can be computed and maximized

by numerical search algorithms to estimate the unknown parameter vector Θ. A

Newton-Raphson method (also known as Newton’s method) is the most widely

used numerical search algorithm to update the unknown parameter vector Θ by

maximizing the loglikelihood function (equation (3.42)). The overall algorithm

to update Θ is primarily taken from Shumway and Stoffer (2006, Chap. 6) and

defined as follows.

1. Start by selecting initial values (see details in Harvey (1989), Wells (1996))

for the unknown parameters vector, Θ(0).

2. Run the Kalman Filter using the initial values Θ(0) from step 1. Compute

the set of innovations {v(0)t ; t = 1, . . . , n} and the variance matrices of the

innovations {Σ(0)
t ; t = 1, . . . , n} used to calculate logLY (Θ).

3. Run one iteration of the Newton-Raphson algorithm to update the estimates

of Θ to obtain a new set of estimates Θ(1).

4. Repeat steps 2 and 3 to obtain Θ(j+1) from Θ(j) and obtain the innovations

{v(j+1)
t ; t = 1, . . . , n} and the variance matrices of the innovations {Σ(j+1)

t ;

t = 1, . . . , n} for j = 1, 2 . . . . The production of the innovations also

produces the estimates of the state vectors α(j+1)
1 , . . . ,α(j+1)

n .
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5. The algorithm stops when the value of Θ(j+1) differs from Θ(j), or when

LY (Θ(j+1)) differs from LY (Θ(j)), by less than a predetermined small amount.

In the Newton-Raphson method, for a given value of Θ, the direction of the

step in each iteration is determined by the gradient or score vector denoted as

g(Θ) = ∂logLY (Θ)/∂Θ, while the size of the step is modified by the Hessian ma-

trix denoted as H(Θ) = ∂2 logLY (Θ)/∂Θ∂Θ
′ . Throughout this thesis the Newton-

Raphson estimation of Θ is accomplished using the optim package in the R soft-

ware, using the BFGS (Broyden-Fletcher-Goldfarb-Shannon) method for solving

an unconstrained nonlinear optimization problem numerically. Further details of

the optimization with Newton’s method and the BFGS method can be found in

Fletcher (1987). For a comprehensive review of the gradient vector (g(Θ)) and

the Hessian matrix (H(Θ)) see Durbin and Koopman (2001, Chap. 7).

In the numerical optimization step, some elements of the unknown parameter

vector Θ are sometimes constrained. For example, the diagonal elements of the

variance matrices Q andH are restricted to be positive, and the diagonal elements

of the transition matrix Φ are restricted to the range [0, 1]. However, implement-

ing these constraints within the numerical search algorithm (i.e. BFGS method)

is inconvenient, and it is preferable that the maximization of the loglikelihood

routines is performed with respect to unconstrained quantities. Therefore, the

following transformations are defined while maximizing the loglikelihood function.

A diagonal element, σ2, from the observation or state variance matrices H

and Q, is restricted to be positive, so the loglikelihood function is maximized

with respect to the unconstrained parameter

Θσ = log σ2, −∞ < Θσ <∞. (3.43)

A diagonal element, φ, of the transition matrix Φ is restricted to the range from

zero to one, so the loglikelihood function is maximized with respect to the un-

constrained parameter

Θφ =

√
φ

1− φ
, −∞ < Θφ <∞. (3.44)
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Further details of these transformations can be found in Wells (1996). For a

comprehensive review of the initialization of the unknown parameter vector, Θ,

while using these transformations within the maximization of the loglikelihood

function via the Newton-Raphson method, see Harvey (1989), Wells (1996), Petris

et al. (2009) and Mergner (2009).

3.3.4 Kalman Filter Based Models

Previously we presented the linear Gaussian state space model consisting of an

observation equation (equation (3.22)) and a state equation (equation (3.23)).

The observation equation can be seen as a time-varying coefficient regression

model represented by

Yt = Atαt + εt, εt ∼ N(0, H), (3.45)

where the covariates At are multiplied by time-varying parameters αt. For the

state equation determining the evolution of αt, three specific models are widely

used in the financial literature. All of them are applied in this thesis and are

outlined below. These specifications are defined and primarily taken from Wells

(1996) and Mergner (2009).

Kalman Filter Random Coefficient

The Kalman Filter Random Coefficient (KFRC) model was first noted by Schaefer

et al. (1975). The state equation of the time-varying coefficient regression model

is written as

αt = ᾱ+wt, wt ∼ N(0, Q), (3.46)

where ᾱ is the mean of α0, . . . ,αn. Here, α0, . . . ,αn are uncorrelated in time,

and are globally smoothed towards a common mean ᾱ. The set α0, . . . ,αn form

a stationary sequence in time, with constant mean and variance.
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Kalman Filter Random Walk

The Kalman Filter Random Walk (KFRW) model, which was first introduced

by Samuelson (1965) in finance, has already been widely used in many scientific

areas. The state equation of the time-varying coefficient model is written as

αt = αt−1 +wt, wt ∼ N(0, Q). (3.47)

This first order random walk model assumes α0, . . . ,αn are autocorrelated, as

αt equals αt−1 plus random error. The set α0, . . . ,αn form a non-stationary

sequence as Var (αt) increases with t.

Kalman Filter Mean Reverting

The Kalman Filter Mean Reverting (KFMR) model, which was proposed by

Rosenberg (1973), is the primary model used in this thesis, because the first

two models are special cases. The state equation of the time-varying coefficient

regression model is written as

αt − ᾱ = Φ(αt−1 − ᾱ) +wt, wt ∼ N(0, Q). (3.48)

To be a stationary sequence α0, . . . ,αn, the diagonal elements of the transition

matrix, Φ should have modulus less than one. We note that these specifications

are nested, because if Φ = I, KFMR becomes KFRW (equation (3.47)), while if

Φ = 0, KFMR becomes KFRC (equation (3.46)).

3.4 Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) Models

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model

is widely used to model conditional (time-varying) volatility, which is a funda-

mental characteristic of financial time series. The GARCH-type models have

also been applied in numerous empirical studies in finance, such as Engle (1982),
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Bollerslev (1986), and Glosten et al. (1993).

The rest of this section is outlined as follows. In section 3.4.1 we introduce

the properties of GARCH-type models, and in section 3.4.2 we introduce the

maximum likelihood estimation method in order to estimate the parameters of

GARCH-type models.

3.4.1 Properties of GARCH-type Models

The basic form of the univariate time series model is written as

Yt = σtzt, t = 1, . . . , n, (3.49)

where z1, . . . , zt are independent and identically distributed with each E(zt)=0

and Var(zt)=1, and σt is the volatility that evolves over time. By definition,

Yt is serially uncorrelated with mean zero, but its conditional variance equals

σ2
t . There are several models proposed to specify the dynamic evolution of σ2

t

in the literature. The following models, which have been widely used in the

literature, are described and primarily taken from Peters (2001), Ruiz (2008),

Mergner (2009) and Danielsson (2011).

ARCH Model

The Autoregressive Conditional Heteroskedasticity (ARCH) model, which is the

simplest GARCH model, was introduced by Engle (1982). The conditional vari-

ance of the ARCH(p) model is given by

σ2
t = Var(Yt|Yt−1, . . . , Yt−p) = ω +

p∑
i=1

ψiY
2
t−i, t = p+ 1, . . . , n, (3.50)

in which p is the number of time lags over which the series is assumed to be

autoregressive. The parameter restrictions for the ARCH(p) model are ω > 0 and

ψi > 0 for i = 1, . . . , p, which are required to ensure positive conditional variance

at every time t. Furthermore,
∑p

i=1
ψi < 1 is required to ensure stationarity of
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σ2
t . The conditional variance of the ARCH(1) model can be specified as

σ2
t = ω + ψ1Y

2
t−1, (3.51)

in which the current conditional variance, σ2
t , depends on a constant and the

response squared lagged by one time point. Suppose that the process is stationary

and hence the unconditional variance of the ARCH(1) model, σ2, is the same for

all Yt. Then,

E[Yt] = E [E(Yt|Yt−1)] = E[σtE(zt|Yt−1)] = 0 (3.52)

for all t. Therefore, as E(Yt|Yt−1) = 0

σ2 = Var[Yt] = Var [E(Yt|Yt−1)] + E [Var(Yt|Yt−1)] , (3.53)

= E
[
E(Y 2

t |Yt−1)− E(Yt|Yt−1)2
]
,

= E
[
E(Y 2

t |Yt−1)
]

= E
[
σ2
tE(z2t |Yt−1)

]
= E

[
σ2
t

]
.

So, using (3.51),

σ2 = ω + ψ1E[Y 2
t−1], (3.54)

σ2 = ω + ψ1σ
2,

σ2 =
ω

1− ψ1

.

Here, for stationarity and finite unconditional variance σ2, it is necessary for

ψ1 < 1.

GARCH Model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model

of Bollerslev (1986) was created as an extension of the ARCH process to capture

more complex volatility structure. The conditional variance of the GARCH(p, q)

model is represented by

σ2
t = ω +

p∑
i=1

ψiY
2
t−i +

q∑
j=1

θjσ
2
t−j, t = min(p, q) + 1, . . . , n, (3.55)
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where parameter restrictions, ω > 0, ψi > 0, and θi > 0 are required to ensure

positive conditional variance at every t, these restrictions have been derived by

Nelson and Cao (1992). Furthermore,
∑p

i=1
ψi +

∑q

j=1
θi < 1 is required to en-

sure covariance stationarity. The conditional variance of the GARCH(1,1) model

is defined as

σ2
t = ω + ψ1Y

2
t−1 + θ1σ

2
t−1, (3.56)

in which current conditional variance, σ2
t , depends on a constant, and both the

response and conditional variance lagged by one time point. Under the assump-

tion of covariance stationarity, the unconditional variance of GARCH(1,1) model

can be represented as

σ2 ≡ E[σ2
t ] = ω + ψ1E[Y 2

t−1] + θ1E[σ2
t−1], (3.57)

σ2 = ω + ψ1σ
2 + θ1σ

2,

σ2 =
ω

1− ψ1 − θ1
,

Therefore, for stationarity and finite unconditional variance σ2, it is required that

ψ1 + θ1 < 1.

GJR-GARCH Model

The GJR-GARCH(p, q) model, which was developed by Glosten et al. (1993), is

also widely used to capture the leverage effect with an indicator variable. The

leverage effect, which was first described by Black (1976), refers the asymmetric

response of the volatility to positive and negative movements in financial time

series. The conditional variance of the GJR-GARCH(p, q) model is defined as

σ2
t = ω +

p∑
i=1

(ψiY
2
t−i − ζiIt−iY 2

t−i) +

q∑
j=1

θjσ
2
t−j, (3.58)

where ζi shows the leverage term. Also, It−i is an indicator variable that takes

the value 1 if the tth return is negative or zero and the value 0 otherwise. Let the
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conditional variance of the GJR-GARCH(1,1) model be represented as

σ2
t = ω + ψ1Y

2
t−1 + ζ1It−1Y

2
t−1 + θ1σ

2
t−1, (3.59)

where It−1 takes the value 1 for Yt−1 6 0 and 0 otherwise. Note that for symmetri-

cally distributed zt (3.49), the process is covariance stationary if ψ1+θ1+
1

2
ζ1 < 1.

3.4.2 Maximum Likelihood Estimation

To estimate the unknown parameters of GARCH-type models maximum likeli-

hood estimation (MLE) method can be employed. Throughout this thesis two

error distributions, the normal and the student-t, are considered in the MLE

which are taken from Peters (2001), Christoffersen (2003) and Danielsson (2011).

Normal Distribution

The normal distribution is the one that is most widely used to estimate and

forecast GARCH-type models. In this case, the observed return at time t is

defined as

Yt = σtzt with zt ∼ N(0, 1), t = 1, . . . , n. (3.60)

Note that the conditional variance σt starts at t = 2, since we do not know Y0.

The joint likelihood function is thus

L =
n∏
t=2

lt =
n∏
t=2

1√
2πσ2

t

exp

(
− Y

2
t

2σ2
t

)
, (3.61)

but it is the loglikelihood function

logL =
n∑
t=2

log(lt), (3.62)

=
n∑
t=2

[
−1

2
log(2π)− 1

2
log(σ2

t )−
1

2

Y 2
t

σ2
t

]
.

that is maximised instead.



CHAPTER 3. STATISTICAL METHODOLOGY 58

Student-t Distribution

The student-t distribution is generally used for capturing heavy tails when esti-

mating and forecasting GARCH-type models. In this case, the observed return

at time t is defined as

Yt = σtzt with zt ∼ tv, t = 1, . . . , n. (3.63)

The same issue as before arises with unknown Y0. Therefore, the density function

starts at t = 2, and the joint likelihood function is

L =
n∏
t=2

lt =
n∏
t=2

Γ

(
v + 1

2

)
Γ
(v

2

)√
π(v − 2)σ2

t

(
1 +

1

(v − 2)

Y 2
t

σ2
t

)−v + 1

2
. (3.64)

As before the logarithm of the joint likelihood function is maximised. Here, v de-

notes the degrees of freedom and satisfies v > 2, and Γ(.) is the gamma function.

The lower value of v, the fatter the tails, and as v −→∞, this distribution tends

to the standard normal.

For the GARCH(1,1) model (3.56) with a normal likelihood function the pa-

rameter estimation algorithm is as follows (Danielsson (2011)). Other models

utilise similar algorithms, and are not described here.

1. Initialise the algorithm by setting

σ2
1 =

1

n

n∑
t=1

Y 2
t , (3.65)

as E(Yt) = 0.

2. Create a grid of pairs
(
ψ

(j)
1 , θ

(j)
1

)
of candidate values satisfying

(a) ψ(j)
1 + θ

(j)
1 < 1,

(b) ψ(j)
1 , θ

(j)
1 ≥ 0.

3. For each candidate pair
(
ψ

(j)
1 , θ

(j)
1

)
compute ω(j) from (3.57) (which re-
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duces the number of parameters estimated in the model by one) assuming

that σ2
1 = σ2. Then using (3.56) compute σ2

2, . . . , σ
2
n. Then evaluate the

loglikelihood function (3.62).

4. Choose
(
ψ

(j)
1 , θ

(j)
1

)
that maximize (3.62) overall pairs of values considered

as the MLE.

3.5 Model Selection and Diagnostics

Previously Linear (3.1), Additive (3.2), State Space (3.3) and GARCH (3.4) mod-

els have been discussed, but after a model has been implemented, it is necessary

to check whether the assumptions underlying the model hold. By applying vari-

ous statistical tests and graphical procedures, we can evaluate the quality of the

fitted model, and a sample of these techniques are described in sections 3.5.1 and

3.5.2.

3.5.1 Model Selection

While many criteria for comparing the fit of multiple models have been developed,

we only focus on six: R2, Adjusted R2, the Mean Absoulate Error (MAE), the

Mean Square Error (MSE), the Akaike Information Criterion (AIC ) and the

Bayesian Information Criterion (BIC ). Further details of these and other criteria

are given in Faraway (2004) and Kutner et al. (2005).

The coefficient of determination or the percentage of variance explained, R2,

is one of the most widely used measures of how well the model fits the data. It

is defined as

R2 = 1−

n∑
t=1

(Yt − Ŷt)2

n∑
t=1

(Yt − Ȳ )2
= 1− RSS

TSS
, (3.66)

where Ȳ denotes the mean of the data and Ŷt is the fitted value for the tth

(t = 1, . . . , n) unit. Here, RSS and TSS are the residual sum of squares and

the total sum of squares, respectively. Note that adding a predictor to a model

can only decrease the RSS and so only increase the R2. Hence, R2 by itself is
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not a good criterion, because it always chooses the largest possible model. To

penalize models having large number of predictors, another commonly used model

selection criterion is Adjusted R2 and is denoted as R̄2. It is represented by

R̄2 = 1−
(
n− 1

n− p

)
RSS

TSS
, (3.67)

where n is the number of data points and p is the number of estimated predictors.

Models with larger Adjusted R2 values indicates better fit.

The fit of models is compared using two different summaries of the errors, the

Mean Absolute Error (MAE) and the Mean Squared Error (MSE). The MAE is

defined as

MAE =
1

n

n∑
t=1

|Ŷt − Yt|. (3.68)

Here, a potential problem with using MAE is it weighs all errors equally. Alter-

native approach is the MSE represented as

MSE =
1

n

n∑
t=1

(Ŷt − Yt)2. (3.69)

Here, the use of a squared term in the equation places a heavier penalty on

outliers than the MAE. Using MAE and MSE in out-of-sample procedures gives a

measure of the forecasting ability of the models. According to these two measures

of forecasting error, the models with lowest MAE and MSE values indicate better

forecasting performance.

Another way of comparing different models is to compare the loglikelihood

from the fitted model, denoted by logLY , with the corresponding loglikelihood

values from competing models. In general, the larger number of predictors that a

model contains the larger its loglikelihood. To penalize models having large num-

ber of predictors, two popular alternatives, the Akaike information criterion (AIC,

Akaike (1974)) and the Bayesian information criterion (BIC, Schwarz (1978)) have
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been proposed. They are defined in terms of the loglikelihood function as follows.

AIC = −2 logLY + 2w, (3.70)

BIC = −2 logLY + w log n, (3.71)

where w is the number of predictors in the regression model, and LY is the

maximized value of the likelihood function for the fitted model. Note that in the

special case of least squares estimation with normally distributed errors,

−2 logLY ≈ n(1+log(2π))+n log(σ̂2). Here, σ̂2 = RSS/n is the estimated variance

of the residuals after fitting the model. In model comparisons on the same data,

the constant can be ignored, because it is the same for a given data set and

assumed error distribution (Faraway (2004)). In theory, the smaller AIC and

BIC values, the better fitting the model is to the data.

3.5.2 Model Diagnostics

3.5.2.1 Univariate Model Diagnostics

Univariate diagnostic procedures are intended to check how well the assumptions

of the regression model are satisfied. These assumptions underlying the regression

model are that the residuals are normally distributed, independent and have

constant variance. Throughout this thesis, these assumptions need to be checked

using various univariate diagnostic tests and graphical procedures based on the

residuals. These techniques are primarily taken from Harvey (1989), Durbin

and Koopman (2001) and Faraway (2004). The simple raw residuals can be

represented as

rt = Yt − Ŷt, (3.72)

where Yt is the observed response and Ŷt is the fitted value for the tth (t = 1, . . . , n)

unit. The problem of using the residuals {rt}nt=1 is that their variances may differ,

so detecting outliers is difficult. The problem is overcome using standardised

residuals defined as

st =
Yt − Ŷt√

Var(Yt − Ŷt)
. (3.73)
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The standardised residuals {st}nt=1 will have approximatelyN(0, 1) distributions if

the linear Gaussian model holds. Data points with standardised residuals which

are unusually large relative to N(0, 1) (e.g. | st |> 3 or | st |> 4) may be

considered potential outliers in the sense that these Yt’s are much farther away

from their Ŷt’s.

Normality

To test normality of the residuals, the Jarque-Bera test (JB, Jarque and Bera

(1980)) is a goodness-of-fit test of whether the skewness and kurtosis of the data

are appropriate for a Gaussian distribution. The sample skewness and kurtosis

of the standardised residuals are given by

S =

1

n

n∑
t=1

(st − s̄)3(
1

n

n∑
t=1

(st − s̄)2
)3/2

, K =

1

n

n∑
t=1

(st − s̄)4(
1

n

n∑
t=1

(st − s̄)2
)2 , (3.74)

where s̄ is the mean of the standardised residuals, {st}nt=1. The Jarque-Bera (JB)

test statistic is defined as

JB = n

{
S2

6
+

(K − 3)2

24

}
. (3.75)

Here, under the null hypothesis of normality, JB follows a chi-squared distribu-

tion with 2 degrees of freedom. Alternatively, the standardised residuals can be

assessed for normality using a Q-Q plot. This plot compares the standardised

residuals to ideal normal observations. The ordered standardised residuals are

plotted against Φ−1
(

t

n+ 1

)
for t = 1, . . . , n. In a Q-Q plot a straight line sug-

gests the distributional assumption is appropriate, while a curved line suggests

that a heavier or lighter tailed distribution is appropriate.

Heteroskedasticity

To test for heteroskedasticity (non-constant variance), the simplest diagnostic
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test statistic is defined (Durbin and Koopman (2001)) by

Het(h) =

n∑
t=n−h+1

s2t

h∑
t=1

s2t

. (3.76)

Here, given the null hypothesis of homoscedasticity (constant variance), Het(h)

follows a Fh,h distribution for some preset positive integer h which is the nearest

integer to n/3. In contrast, a graphical technique is to plot the standardised

residuals against the fitted values and non-constant variance is apparent by any

striking pattern.

Time Series Autocorrelation

To test for temporal autocorrelation, the Ljung-Box test is widely used, which

was developed by Ljung and Box (1978), and is often called a portmanteau test.

The test statistic is

LB(L) = n(n+ 2)
L∑
k=1

ρ2k
n− k

, (3.77)

where L is the number of lags being tested and ρk is the sample autocorrelation

of the standardised residuals at lag k defined as

ρk =

n∑
t=k+1

(st − s̄)(st−k − s̄)

n∑
t=1

(st − s̄)2
, k = 1, 2, . . . . (3.78)

Here, given the null hypothesis of no autocorrelation, LB(L) follows a chi-squared

distribution with L degrees of freedom. Also, the plot of the sample autocor-

relation (3.78) of {st}nt=1 can be visually assessed to check for the presence of

autocorrelation.

3.5.2.2 Multivariate Model Diagnostics

Multivariate diagnostic procedures are intended to check how well the assump-

tions of the multivariate regression model are satisfied. The assumptions under-

lying the multivariate regression model are that the residuals are multivariate
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normally distributed, multivariate independent and have multivariate constant

variance. These assumptions need to be checked using various multivariate diag-

nostic tests and graphical procedures based on the residuals in this thesis. Note

that the grapical procedures which are discussed in section 3.5.2.1 for checking

the regression model assumptions in the univariate context can be extended to

the multivariate context. Here, multivariate diagnostic tests are only represented

and primarily taken from Harvey (1989), Pfaff (2008) and Mahdi (2011). The

raw residuals vector can be defined as

rt = Yt − Ŷt, (3.79)

Here, Yt is a q × 1 observed response vector and Ŷt is a q × 1 fitted value vector

for the tth (t = 1, . . . , n) unit. The standardized residuals vector is defined as

st = P−1t rt. (3.80)

Here, Pt is a q × q lower triangular matrix for the tth (t = 1, . . . , n) unit (its

diagonal elements are positive) such that PtP
′

t = Σrt . Here, Σrt is the residual

variance matrix for the tth unit (Pfaff (2008)).

Multivariate Normality

To test for multivariate normality, the multivarite Jarque-Bera test is a goodness-

of-fit test of whether the multivariate skewness and multivariate kurtosis of the

data are appropriate for a multivariate Gaussian distribution. Here, the centered

standardized residuals vector is used and defined as

cst = P−1t (rt − r̄t). (3.81)
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The multivariate skewness (S) is defined as

Si =

1

n

n∑
t=1

(csit)
3

(
1

n

n∑
t=1

(csit)2
)3/2

, i = 1, . . . , q, (3.82)

S = (S1, . . . , Sq)(S1, . . . , Sq)
′
.

The multivariate kurtosis (K) is defined as

Ki =

1

n

n∑
t=1

(csit)
4(

1

n

n∑
t=1

(csit)2
)2 , i = 1, . . . , q, (3.83)

K = (K1 − 3, . . . , Kq − 3)(K1 − 3, . . . , Kq − 3)
′
.

The multivariate Jarque-Bera (MJB) test statistic is defined as

MJB = n

{
S

6
+
K

24

}
. (3.84)

Here, under the null hypothesis of multivariate normality, MJB follows a chi-

squared distribution with 2q degrees of freedom. In addition, the multivariate

skewness and the multivariate kurtosis tests follow a chi-squared distribution

with q degrees of freedom (Pfaff (2008)).

Multivariate Heteroskedasticity

To test for multivariate heteroskedasticity, the simplest diagnostic test statis-

tic defined in 3.76 which can be extended to the multivariate context as follows.

MHet(hq) =

nq∑
j=(nq)−(hq)+1

v2j

hq∑
j=1

v2j

. (3.85)

Here, v is a nq × 1 vector of the ordered standardized residuals sit (t = 1, . . . , n;

i = 1, . . . , q). Here, given the null hypothesis of multivariate homoscedastic-

ity (constant variance), MHet(hq) follows a Fhq,hq distribution for some preset
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positive integer h, which itself is the nearest integer to n/3.

Multivariate Time Series Autocorrelation

To test for multivariate temporal autocorrelation, the multivariate extension

of the Ljung-Box test (multivariate portmanteau test) is proposed by Hosking

(1980). The test statistic for the multivariate portmanteau test is defined as

MLB(L) = n
L∑
k=1

tr
(
C
′

kC
−1
0 CkC

−1
0

)
. (3.86)

Here, Ck =
1

n

∑n

t=k+1
sts

′

t−k and L is the number of lags being tested. Here,

given the null hypothesis of no multivariate autocorrelation, MLB(L) follows a

chi-squared distribution with q2L − m degrees of freedom where m is the total

number of estimated parameters (Harvey (1989)).



Chapter 4

Modelling the Time-varying

Systematic Covariance Risk of

Turkish Industry Sector Portfolios

4.1 Introduction

Financial researchers have utilised systematic risk measures to provide guidelines

for testing asset pricing models, determining risk, and financial investment deci-

sions such as portfolio choice and capital budgeting over recent decades. The most

widely used systematic risk measure, systematic covariance risk, is summarised

by the parameter beta in the Two-Moment Capital Asset Pricing Model (CAPM)

of Sharpe-Lintner-Mossin (1960s). In the context of this CAPM, the systematic

covariance (beta) risk is stable over time and is commonly estimated via Ordinary

Least Squares. However, there is now substantial empirical evidence in the recent

literature (e.g. Brooks et al. (1998), Faff et al. (2000), Mergner and Bulla (2008)

and Choudhry and Wu (2009)) that the Two-Moment CAPM with constant sys-

tematic covariance risk may be misleading and insufficient for modelling and

forecasting the returns of financial data. The inadequacies of the Two-Moment

CAPM have encouraged financial researchers to explore the stochastic behaviour

of the systematic covariance risk in the Two-Moment CAPM.

One extension in this vein is to allow the systematic covariance (beta) risk to

67
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change linearly over time in the Two-Moment CAPM, which is often known as the

conditional Two-Moment CAPM. Recently, several papers have extensively inves-

tigated the instability of the systematic covariance risk for different countries and

firms, by comparing the modelling and forecasting abilities of the unconditional

and conditional Two-Moment CAPMs. Examples include financial data relating

to Australia (Faff et al. (1992), Brooks et al. (1992), Brooks et al. (1998), Brooks

et al. (2002)), the United Kingdom (Faff et al. (2000)), firms within the UK

(Choudhry and Wu (2009)), Europe (Wells (1994), Mergner and Bulla (2008)),

the USA (Fabozzi and Francis (1978), Sunder (1980), Bos and Newbold (1984),

Kim (1993)), and Turkey (Odabasi (2003)). Most of this research has modelled

developed countries and firms systematic covariance risks, and only a few papers

have focused on emerging countries and firms. Because of this lack of emerging

market research, we focus this chapter on confirming the evidence for the instabil-

ity of the systematic covariance risk in Turkish industry sector portfolios, which

are classified among the emerging markets (http://www.msci.com). The most

well-known modelling techniques for assessing this instability are GARCH-type

models and Kalman Filter based approaches, which have been applied in many

studies with differing results. In this chapter we apply these techniques to Turkish

industry sector portfolios data, and undertake the comparison of the modelling

and forecasting performance of these modelling techniques.

The first technique for modelling and forecasting time-varying systematic

covariance risk are GARCH-type models (Engle (1982) and Bollerslev (1986)),

which are based on estimating the conditional variance and covariance between

asset and market portfolio returns. In this chapter the most widely used GARCH-

type models, the standard GARCH (Bollerslev (1986)) and Glosten-Jagannathan-

Runkle GARCH (GJR-GARCH, a non-linear extension of the GARCH model,

(Glosten et al. (1993)) have been applied. GJR-GARCH models can capture

asymmetric effects of the conditional volatility of negative and positive shocks

on returns. In the literature the performance of these models has been com-

pared using in-sample and out-of-sample procedures. For example, Mergner

and Bulla (2008) compared GARCH-type models, such as GARCH and GJR-

GARCH, for the time-varying behaviour of systematic covariance risk for 18 pan-

http://www.msci.com
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European sectors using weekly data over the period December 1987 to February

2005, and assessed both in-sample modelling and out-of-sample forecasting per-

formance. Also, Choudhry and Wu (2009) estimated the weekly time-varying sys-

tematic covariance risk of UK firms from January 1989 to December 2003 using a

GJR-GARCHmodel and a bivariate GARCH, Baba-Engle-Kraft-Kroner GARCH

(BEKK-GARCH, Engle and Kroner (1995)), and forecasts of the time-varying be-

tas were examined to evaluate out-of-sample forecasting ability. Although there

is a lot of literature on GARCH-type models, no single GARCH-type model has

been found to be superior to all others to model and forecast the time-varying

systematic covariance risk.

Another technique for modelling and forecasting time-varying systematic co-

variance risk is based on the state space model estimated via Kalman Filter

based approaches, which are recursive algorithms for estimating and forecasting

unobserved time-varying systematic covariance (beta) risk. The most well-known

Kalman Filter based approaches are the Random Coefficients (KFRC), Random

Walk (KFRW), and Mean Reverting (KFMR) models. For example, Brooks

et al. (1998) investigated the time-varying systematic covariance risk for both in-

sample and out-of-sample procedures using the Kalman Filter based approaches

for an Australian industry portfolio. Mergner and Bulla (2008) examined the

KFRW and KFMR to determine the behaviour of the time-varying systematic

covariance risk for 18 pan-European sectors in both the in-sample modelling and

out-of-sample forecasting performance. Using UK industry sectors data from

January 1969 to April 1998, Faff et al. (2000) employed the Kalman Filter based

approaches to estimate the behaviour of the time-varying systematic covariance

risk. Choudhry and Wu (2009) also investigated the weekly stock returns fore-

casts of 20 UK firms from January 1989 to December 2003 using the KFRW

approach to evaluate the time-varying betas’ accuracy in an out-of-sample fore-

casting procedure. Although there is much literature on the Kalman Filter based

approaches, no single Kalman Filter model has been found to be superior to all

others to model and forecast the time-varying systematic covariance risk.

The main purpose of this chapter is to confirm the instability of the systematic

covariance (beta) risk in an emerging market, by comparing the modelling and
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forecasting abilities of the unconditional and conditional Two-Moment CAPMs.

For the latter GARCH-type models such as GARCH and GJR-GARCH with nor-

mal and t (capturing heavy tails on returns) conditional distributions, and the

Kalman Filter based approaches such as KFRC, KFRW and KFMR are used.

The aim of this chapter is to compare the performance of these models, to con-

tribute to the literature about the possible time-varying systematic covariance

(beta) risk and possible approaches for capturing it. The comparison is made

using weekly data, generated by 19 Turkish industry sector portfolios over the

period from 1 August 2002 to 16 February 2012. In all cases the Istanbul Stock

Exchange (ISE) All-Share index and the three-month Turkish Interbank Offer

Rate (TRLIBOR) interest rate are used as a proxy for the market portfolio and

risk-free rate, respectively. The modelling and forecasting abilities of models are

evaluated using two different summaries of the errors, the Mean Square Error

(MSE) and the Mean Absolute Error (MAE).

The rest of this chapter is outlined as follows. Section 4.2 presents the models

to be compared and section 4.3 presents a description of the data. Section 4.4

presents the empirical results obtained from the model comparison, and section

4.5 presents further results from the best fitting model. Section 4.6 presents our

conclusions.

4.2 Methodology

4.2.1 Linear Market Model

The Data Generating Process (DGP) of the Two-Moment CAPM is the Linear

Market Model, which is described in section 2.1.2 where more theoretical details

are provided. The Linear Market Model can be written as

Rit −Rft = κi + α1i(Rmt −Rft) + εit, (4.1)

where Rit and Rmt are the returns for industry sector i (i=1,. . . ,19) and the ISE

market portfolio at time t (t=1,. . . ,T ) respectively. Rft is the risk-free rate at
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time t, and εit are the residuals with εit ∼ N(0, σ2
i ) and E(εitεkt)=0, for i 6= k

and E(εitεi t+j)=0 for j > 0. Here, the regression intercept, κi, and the regression

slope, α1i accounts for the systematic covariance (proxy for βim) risk. These are

constant over time. To show the link between the Two-Moment CAPM and the

Linear Market Model (4.1), the systematic covariance (βim) risk can be expressed

as

α1i = βim =
Cov(Rit −Rft, Rmt −Rft)

V ar(Rmt −Rft)
, (4.2)

where the proof has been displayed in section 2.1.2. Note that the value of κi

is expected to be zero in the Two-Moment CAPM, because the risk-free rate

(Rft) is subtracted before estimation (see e.g. Campbell et al. (1997), Faff et al.

(2000), Mergner and Bulla (2008) and Choudhry and Wu (2009)). Hence, κi

will be assumed to be zero for the rest of this chapter. Note that the parameter

estimates of the Linear Market Model are obtained using the lm function from

the stats package in the R software.

4.2.2 GARCH-type Models

To estimate and asses the instability of the time-varying systematic covariance

(beta) risk, the time-varying Linear Market Model (consistent with a conditional

Two-Moment CAPM) can be extended to allow βim to evolve over time. Here,

the estimation of βimt is based on GARCH-type models, such as GARCH and

GJR-GARCH with conditional distributions that are normal or t with the latter

allowing for heavy tails. These models represent the time-varying systematic

covariance risk indirectly by estimating the conditional variance of, and assuming

a constant correlation between, the industry sector i and ISE market portfolio

excess returns. In accordance with equation (3.56), the simplest model considered

is the GARCH(1,1) model which is given by

σ2
it = ωi + ψ1i(Ri t−1 −Rf t−1)

2 + θ1iσ
2
i t−1, t = 2, . . . , T, (4.3)
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in which the variance for industry sector i at time t, σ2
it, (with i = m for ISE

market) depends on a constant, the excess returns and the conditional variance

lagged by one time period. The parameters are restricted to be ωi > 0, ψ1i ≥ 0

and θ1i ≥ 0 to ensure positive conditional variance at every time t. To ensure

stationarity, it is required that ψ1i + θ1i < 1.

For the GJR-GARCH model (equation (3.59))

σ2
it = ωi + ψ1i(Ri t−1 −Rf t−1)

2 + ζ1iIt−1(Ri t−1 −Rf t−1)
2 + θ1iσ

2
i t−1, (4.4)

for t = 2, . . . , T , where It−1 denotes an indicator function, taking a value of 1 if

(Ri t−1 −Rf t−1) ≤ 0 and 0 otherwise.

Note that the conditional variance (equations (4.3) and (4.4)) starts at t = 2,

since we do not know Ri0 and Rf0. At t = 1, σ2
i1 =

1

T

∑T

t=1
(Rit −Rft)

2 is com-

monly set in the literature (e.g. Christoffersen (2003) and Danielsson (2011)) and

the parameter estimation algorithm for GARCH-type models is briefly outlined

in section 3.4.2. Parameter estimation for these models was implemented in the

rugarch package (Ghalanos (2013)) in the R software.

The time-varying systematic covariance (beta) risk obtained from GARCH-

type models is often expressed in the form

βimt =
Cov(Rit −Rft, Rmt −Rft)

V ar(Rmt −Rft)
= ρim

√
σ2
it√

σ2
mt

, (4.5)

where σ2
it and σ

2
mt are the conditional variances of the industry sector i and ISE

market excess returns at time t. Here, σimt = Cov(Rit − Rft, Rmt − Rft) =

ρim

√
σ2
itσ

2
mt is the covariance between industry sector i and ISE market at time t,

and for computational simplicity, ρim is assumed to be a time-invariant correlation

coefficient between Rit − Rft and Rmt − Rft. This is in accordance with the

Constant Conditional Correlation GARCH (CCC-GARCH) model, introduced by

Bollerslev (1990), in which the conditional variances of Rit −Rft and Rmt −Rft

follow univariate GARCH-type models (equations (4.3) and (4.4)). Note that

the constant correlation ρim is estimated using the cor function from the stats

package in the R software.
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4.2.3 Kalman Filter Based Models

The final set of models to be compared are the time-varying Linear Market Mod-

els, where the systematic covariance (βimt) risk evolves over time via a Kalman

Filter type model, such as Random Coefficient (KFRC), Random Walk (KFRW)

and Mean Reverting (KFMR) as outlined in section 3.3. Model (4.1) with κi

treated as zero is the observation equation of the state space model, and is ex-

pressed as follows.

Rit −Rft = α1it(Rmt −Rft) + εit, εit ∼ N(0, Hi). (4.6)

In accordance with equations (3.46, 3.47 and 3.48), the state equation can be

expressed as any of the following three options:

KFRC

α1it = ᾱ1i + wit, wit ∼ N(0, Qi), (4.7)

where ᾱ1i =
1

T

∑T

t=1
α1it. This model suggests that shocks to the time-varying

systematic covariance risk have no persistence from period to period.

KFRW

α1it = α1i t−1 + wit, wit ∼ N(0, Qi). (4.8)

This model suggests that shocks to the time-varying systematic covariance risk

persist in the future.

KFMR

α1it = ᾱ1i + φi (α1i t−1 − ᾱ1i) + wit, wit ∼ N(0, Qi). (4.9)

This model suggests that shocks to the time-varying systematic covariance risk

have some persistence, but the coefficients return to their mean values (Faff et al.

(2000)). These three models are finished with the prior specification

α1i0 ∼ N(µα1i
,Σα1i

). (4.10)
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Here, µα1i
and Σα1i

for α1i0 are set to the maximum likelihood estimates from the

Linear Market Model. To show the link between the conditional (time-varying)

Two-Moment CAPM and the time-varying Linear Market Model (4.6), the time-

varying systematic covariance (βimt) risk can be expressed as

α1it = βimt, (4.11)

which is an extension of the result proved in section 2.1.2. Note that software

to implement the three Kalman Filter models is not generally available, and was

written as part of this PhD thesis. The algorithm used is a modified version of

that described in Shumway and Stoffer (2006), and is summarised in Appendix

A of this thesis.

4.3 Data Description

The data for this study are weekly returns from 1 August 2002 to 16 February 2012

across 19 Istanbul Stock Exchange (ISE) industry sector indices maintained by the

Borsa Istanbul (BIST) AS. This was founded on December 30, 2012 and combined

the former Istanbul Stock Exchange (ISE), the Istanbul Gold Exchange (IAB)

and the Derivatives Exchange of Turkey (VOB). The data were obtained from

the Thomson Reuters Financial Datastream database provided by the University

of Glasgow, UK on February 17, 2012. Table 4.1 represents an overview of all 19

industry sectors and their abbreviations utilized in this study. The main criteria

that were used to select the industry sectors were: (1) industry sector classification

based on predetermined criteria in the ISE database; and (2) continuous listing

from 1 August 2002 to 16 February 2012. The market proxy for this study is

the ISE National-All Share Index (ISE) capturing all National Market companies

except investment trusts.

The one-week returns for all 19 industry sectors and the ISE market portfolio

were obtained from the first difference in the logarithm of Wednesday’s closing
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Table 4.1: ISE industry sector classification.

Abbreviation Industry Sector
Bank Banks
Basic Basic Materials
Chemical Chemical & Petroleum & Plastic
Electricity Electricity
Food Food & Beverage
Holding Holding & Investment
Info Tech Information Technology
Insurance Insurance
Investment Investment Trusts
Leasing Leasing & Factoring
Metal Metal Goods & Machinery
Mineral Non-Metal Mineral Products
REIT Real Estate Investment Trusts
TeleCom Telecommunications
Textile Textile & Leather
Tourism Tourism
Transport Transportation
Wood Wood & Chapter & Print
Wholesale Wholesale & Retail Trade
Notes: Further details about ISE industry sector portfolios which are maintained
by the Borsa Istanbul A.S. are available at http://borsaistanbul.com/en.

price expressed in Turkish liras as follows

Rit = log(Pit)− log(Pi t−1), (4.12)

for t = 2, . . . , T and i = 0, 1, . . . , 19, where i = 0 refers to the ISE market portfolio

(Rmt). Here, Pit and Pi t−1 denote Wednesday’s closing price in weeks t and t−1,

respectively. The simple return rit, meaning the gain or loss on an investment

over the period t− 1 to t, expressed as a proportion of the original investment, is

represented as

rit =
Pit − Pi t−1
Pi t−1

=
Pit
Pi t−1

− 1, (4.13)

1 + rit =
Pit
Pi t−1

.

http://borsaistanbul.com/en
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Taking the logs (natural logarithm) of both sides of equation (4.13),

log(1 + rit) = log

(
Pit
Pi t−1

)
= log(Pit)− log(Pi t−1). (4.14)

When the one period simple return rit is small, we can use a first-order Taylor

expansion to approximate the simple return rit and obtain

log(1 + rit) =
∞∑
n=1

(−1)n+1 r
n
it

n
≈ rit, −1 < rit ≤ 1. (4.15)

Rewriting equation (4.14),

rit ≈ Rit = log(Pit)− log(Pi t−1). (4.16)

The three-month Turkish Interbank Offered Rate (TRLIBOR) interest rate

served as a proxy for the risk-free rate. As the TRLIBOR yields (TRLIBORt)

are in percentage per annum, they can be converted to a weekly rate of return as

follows (Mergner (2009)).

Rft =

(
1 +

TRLIBORt

100

)1/52

− 1. (4.17)

Table 4.2 shows descriptive statistics for the returns on the ISE market port-

folio and the 19 industry sectors. The table details some key points. The mean

return on the weekly ISE market portfolio is approximately 0.0036, with a stan-

dard deviation of about 0.0428. The range of mean weekly returns varies from

0.0008 for Electricity to 0.0046 for Basic, meaning that Basic generated greater

financial gain on investment than Electricity during this period. The mean return

on 13 out of 19 industry sectors is less than the mean risk-free rate (TRLIBOR),

which represents the minimum return an investor theoretically expects for any

investment, suggesting that investors would prefer not to invest in these indus-

try sectors during this period. The highest unconditional volatility (standard

deviation) is that for Tourism (0.0625), while the lowest one is that of Mineral

(0.0359). Therefore, Tourism is deemed the riskiest sector when risk is measured

by unconditional volatility.
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Table 4.2: Descriptive statistics of weekly returns.

Industry Mean Std.Dev.a Skewness Kurtosis JBb LB(22)c

ISE 0.0036 0.0428 -0.10 7.10 354.21* 54.23*

Bank 0.0044 0.0555 0.36 6.80 314.66* 38.69*
Basic 0.0046 0.0554 -0.49 6.32 252.56* 166.35*
Chemical 0.0033 0.0446 -0.16 7.49 425.79* 61.80*
Electricity 0.0008 0.0534 -0.28 9.31 842.06* 82.92*
Food 0.0040 0.0404 -0.36 4.53 60.71* 52.15*
Holding 0.0024 0.0496 -0.28 6.28 232.29* 88.76*
Info Tech 0.0017 0.0475 -0.08 7.85 495.90* 47.50*
Insurance 0.0038 0.0571 -0.19 6.63 280.87* 54.04*
Investment 0.0027 0.0470 1.05 17.04 4223.66* 22.18
Leasing 0.0032 0.0587 -0.18 7.92 512.53* 19.35
Metal 0.0025 0.0460 -0.48 7.04 362.62* 73.55*
Mineral 0.0034 0.0359 -0.36 7.35 408.11* 49.02*
REIT 0.0027 0.0490 -0.05 10.85 1294.14* 31.17
TeleCom 0.0032 0.0533 0.10 5.16 99.36* 48.76*
Textile 0.0022 0.0415 -0.89 6.47 319.61* 48.54*
Tourism 0.0023 0.0625 0.50 11.01 1367.75* 74.39*
Transport 0.0028 0.0566 -0.49 5.68 171.51* 141.67*
Wood 0.0017 0.0466 -0.34 4.71 71.49* 37.40*
Wholesale 0.0043 0.0436 -0.28 19.88 5974.64* 104.43*

risk-free rate 0.0033 0.0018 1.26 4.14 161.31* 8051.22*
Notes: The portfolio has 498 observations for the weekly returns for each of the 19 industry sector
portfolios. a Std.Dev. is the standard deviation. bJB is the Jarque-Bera statistic for testing the normality.
JB follows χ2 with 2 degrees of freedom so the critical value at the 5% level is 5.99. cLB(22) is the
Ljung-Box test statistic for the null hypothesis of no autocorrelation in the squared returns up to order√
498 ≈ 22. LB statistic follows χ2 with 22 degrees of freedom so the critical value at the 5% level is

33.92. * means the appropriate null hypothesis is rejected at the 5% significance level.

The return distributions of all 19 industry sectors, except for Bank, Invest-

ment, TeleCom and Tourism and the ISE market portfolio exhibit negative skew-

ness, while the risk-free rate returns exhibit positive skewness. Negative skewness

means that there are frequent small increases and a few extreme drops in returns,

while positive skewness means that there are frequent small drops and a few

extreme increases in returns (see Algieri (2012)). The range of skewness varies

between -0.89 for Textile and 1.05 for Investment. This suggests that Invest-

ment experiences frequent small drops and a few extreme increases, while Textile

reports increases and a few extreme drops in terms of investment returns.

The return distributions of all 19 industry sectors, ISE market portfolio and

risk-free rate are leptokurtic, meaning that the market has fatter tails than the
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normal distribution (which has kurtosis=3) and more chance of extreme out-

comes. The range of kurtosis varies between 4.53 (Food) and 19.88 (Wholesale).

This suggests that Wholesale has more chance of extreme financial losses or gains

than the other sectors. The normality of each industry sector, ISE market port-

folio and risk-free rate is also rejected at the 5% significance level using the

Jarque-Bera (JB) test (see details in section 3.5.2.1) which is likely to be due

to the substantial skewness and kurtosis observed from Table 4.2. To test the

autocorrelation for the squared returns (proxies for volatilities) of the 19 industry

sectors, the ISE market portfolio and the risk-free rate, the Ljung-Box (LB(22))

test (see details in section 3.5.2.1) is used in this thesis. According to the Ljung-

Box (LB(22)) test, the null hypothesis of no autocorrelation for the squared

returns is rejected at the 5% significance level for 16 out of the 19 industry sec-

tors and the ISE market portfolio and the risk-free rate, meaning that there exists

a statistically significant autocorrelation for the squared returns. These results

provide strong evidence for the predictability of the volatility of the 16 industry

sectors, the ISE market portfolio and the risk-free rate (Christoffersen (2003)).

These results provide a positive effect over the performance of all models while

predicting the time-varying volatility in the next section.

Overall, the main features of these data are the positive mean, relatively high

volatility, asymmetry (left-skew and right-skew), and leptokurtosis (fat tails).

These findings match the most common features of emerging market studies. (e.g.

Harvey (1995) and next chapter of this thesis). This justifies the consideration

of models that capture time-varying variance and covariance, rather than simply

the Two-Moment CAPM for each industry sector portfolio.

Figure 4.1 displays the time series plots of returns on the ISE market and

Bank, Chemical, TeleCom, and Tourism industry sectors, respectively. To save

space the remaining industry sectors are displayed alphabetically and are a smaller

size in Figures 4.2 and 4.3. The figures reveal some key points. Extreme events

appear in 2002, resulting from the effect of the Turkish Stock Market Crash of

2001, and in October 2008, when a financial crisis began its global spread. It can

be clearly seen that all industry sectors and the ISE market displayed even more

volatility and extreme values in those weeks. These findings match the behaviour
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Figure 4.1: The time series plot of weekly returns on the ISE market and 4 industry sectors.
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Figure 4.2: The time series plot of weekly returns on 7 industry sectors.
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Figure 4.3: The time series plot of weekly returns on 8 industry sectors.
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described in previous emerging market studies such as Harvey (1995) and that

presented in the next chapter of this thesis. Even though these extreme values

can affect the modelling and forecasting of asset returns, they are included in the

dataset, since extreme behaviour is an inherent characteristic of financial markets

(Ranaldo and Favre (2005)).

4.4 Comparison of Models

4.4.1 In-sample Model Fit

This section presents a comparison of the in-sample model fit performance for

the Linear Market Model, GARCH-type models (GARCH and GJR-GARCH

with conditional distributions normal and t) and Kalman Filter based approaches

(KFRC, KFRW and KFMR). Note that while the GARCH-type models calcu-

late the time-varying betas indirectly by estimating the conditional variance of

(assuming a constant correlation) the industry sector i and ISE market portfo-

lio excess returns, the time-varying betas are derived by Kalman Filter based

approaches directly, as outlined in section 4.2. The comparison of model perfor-

mance is in terms of two different measures of error, which are the Mean Absolute

Error (MAE) and Mean Square Error (MSE), as outlined in section 3.5.1. The

MAE and MSE values across all industry sectors for all modelling techniques in

the in-sample procedure are presented in Tables 4.3 and 4.4, respectively.

A comparison of the different modelling techniques in the in-sample proce-

dure results demonstrate overwhelming support for the Kalman Filter based ap-

proaches. Even though the average MAE and MSE of the KFRC model, equalling

1.825 and 6.914, respectively, are slightly lower than the average MAE (1.834) and

MSE (6.961) for the KFMR, the MAE (MSE) values of the KFMR are equivalent

to or less than those of the KFRC in 10 (9) out of 19 industry sectors. In addition,

the KFMR is the preferable model as it is a general form that encompasses the

KFRC (φi = 0) and KFRW (φi = 1) models as special cases.

It can be seen clearly that the average MAE and MSE values of the Kalman

Filter based approaches are lower than those for the GARCH-type models re-
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Table 4.3: MAE (×102) of in-sample model fit.

Industry LMM G-n G-t GJR-n GJR-t KFRW KFRC KFMR
Bank 1.182 1.190 1.196 1.207 1.305 1.182 0.900 0.900
Basic 2.470 2.475 2.500 2.484 2.513 2.448 2.164 2.178
Chemical 1.889 1.870 1.881 1.874 1.866 1.729 1.590 1.666
Electricity 2.860 2.801 2.799 2.816 2.847 2.722 2.328 2.332
Food 2.380 2.359 2.359 2.353 2.357 2.350 1.981 1.981
Holding 1.213 1.218 1.237 1.222 1.306 1.152 1.002 1.026
Info Tech 2.240 2.225 2.237 2.225 2.256 2.187 1.989 1.977
Insurance 2.212 2.223 2.224 2.240 2.447 2.172 1.809 1.809
Investment 2.159 2.168 2.159 2.168 2.255 2.036 1.758 1.758
Leasing 3.013 3.025 3.039 3.049 3.140 2.979 2.507 2.507
Metal 1.685 1.711 1.673 1.691 1.789 1.669 1.411 1.408
Mineral 1.573 1.557 1.570 1.557 1.558 1.531 1.338 1.341
REIT 1.949 1.904 1.933 1.899 2.065 1.723 1.504 1.546
TeleCom 2.979 2.973 2.971 2.991 3.005 2.942 2.378 2.378
Textile 2.094 2.080 2.071 2.082 2.144 1.938 1.569 1.585
Tourism 3.397 3.423 3.419 3.422 3.561 3.361 2.774 2.725
Transport 2.909 2.909 2.887 2.909 2.978 2.867 2.477 2.476
Wood 2.162 2.169 2.142 2.099 2.127 2.040 1.566 1.596
Wholesale 2.085 2.081 2.079 2.048 2.102 1.910 1.638 1.659

Average 2.234 2.230 2.230 2.228 2.296 2.155 1.825 1.834
Notes: The abbreviations of models are: LMM: Linear Market Model, G-n: GARCH-normal distribution,
G-t: GARCH-t distribution, GJR-n: GJR-GARCH-normal distribution, GJR-t: GJR-GARCH-t distribu-
tion, KFRW: Kalman Filter Random Walk, KFRC: Kalman Filter Random Coefficient, KFMR: Kalman
Filter Mean Reverting. Bold displays the best model for each industry sector in terms of lowest MAE.

gardless of the choice of conditional distributions in the case of each industry

sector, meaning that GARCH-type models perform relatively poorly. Comparing

the GARCH-type models, the average MAE (2.228) of the GJR-GARCH-normal

is close to the average MAE (2.230) of the GARCH-normal and GARCH-t mod-

els. The average MAE of the GJR-GARCH-t is higher than that for the other

GARCH-type models. Within the GARCH-type models, the lowest average MSE

is for the GJR-GARCH-normal at 10.249, while the highest average MSE for

the GJR-GARCH-t is 10.831. This suggests that improved modelling cannot be

clearly observed when using t distributed errors compared with normal distributed

errors.

In addition, the modelling performance of the Linear Market Model is clearly

worse than the time-varying Linear Market Model via Kalman Filter based ap-

proaches, but similar to the GARCH-type models. This suggests that the extra
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Table 4.4: MSE (×104) of in-sample model fit.

Industry LMM G-n G-t GJR-n GJR-t KFRW KFRC KFMR
Bank 2.389 2.436 2.464 2.483 3.019 2.389 1.371 1.371
Basic 11.503 11.505 11.880 11.419 11.458 11.216 8.792 8.965
Chemical 5.982 5.783 5.875 5.844 5.760 4.992 4.247 4.614
Electricity 16.139 15.841 16.032 15.677 16.183 14.687 10.685 10.718
Food 9.844 9.756 9.766 9.669 9.720 9.601 6.768 6.832
Holding 2.656 2.685 2.804 2.715 3.144 2.362 1.768 1.864
Info Tech 9.659 9.549 9.640 9.505 9.723 9.214 7.687 7.642
Insurance 9.808 10.118 10.010 10.414 12.101 9.424 6.672 6.672
Investment 9.703 9.733 9.781 9.702 10.226 8.328 6.353 6.376
Leasing 19.323 19.674 19.449 19.700 20.552 18.820 13.682 13.682
Metal 5.167 5.611 5.228 5.313 6.122 5.083 3.630 3.618
Mineral 4.295 4.292 4.288 4.279 4.318 4.039 3.140 3.167
REIT 6.577 6.367 6.450 6.321 7.358 5.078 3.925 4.114
TeleCom 16.193 15.913 16.045 16.029 16.222 15.633 10.356 10.356
Textile 8.121 7.954 7.980 7.965 8.636 6.821 4.622 4.695
Tourism 22.692 23.057 22.931 22.871 24.554 22.170 15.311 15.051
Transport 17.065 17.497 17.429 17.433 18.384 16.736 12.420 12.415
Wood 8.513 8.573 8.311 8.316 8.591 7.416 4.469 4.654
Wholesale 9.749 9.146 9.392 9.068 9.724 7.236 5.459 5.445

Average 10.283 10.289 10.303 10.249 10.831 9.539 6.914 6.961
Notes: The abbreviations of models are: LMM: Linear Market Model, G-n: GARCH-normal distribution,
G-t: GARCH-t distribution, GJR-n: GJR-GARCH-normal distribution, GJR-t: GJR-GARCH-t distribu-
tion, KFRW: Kalman Filter Random Walk, KFRC: Kalman Filter Random Coefficient, KFMR: Kalman
Filter Mean Reverting. Bold displays the best model for each industry sector in terms of lowest MSE.

complexity of the GARCH-type models does not lead to improved modelling per-

formance compared with the Linear Market Model. This is surprising at first

sight, but may be due to the constant correlation assumption implicit in the

computation of the time-varying betas from the GARCH-type models. In con-

trast, the Kalman Filter based approaches offer a substantial improvement on

the Linear Market Model. To summarise, of the different modelling techniques

used for in-sample procedure, the KFMR seems to be best qualified to model the

weekly time-varying systematic covariance (beta) risk for the 19 industry sector

portfolios in the CAPM.
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4.4.2 Out-of-sample Forecasting

This section presents a comparison of the forecasting performance of the same

models, using an out-of-sample procedure which allows us to evaluate the mod-

els predictive performance. Recently (e.g. Tsay (2005) and Mergner and Bulla

(2008)) a rolling window technique has been used to undertake an out-of-sample

performance comparison, and this is the approach adopted here. Firstly, the

length of the rolling window needs to be defined, and Tsay (2005) suggests that

the length should be T/2 for large data or 2T/3, where T is the length of data,

which is enough data to generate stable parameter estimates. The length of the

rolling window used in this study is 5 years (260 weeks), which is approximately

equal to T/2. All models are fitted to 5 years worth of data, and each is then

used to predict beta one-week ahead (one-step ahead prediction). The 5 years

worth of data are then rolled forward by one week and the process of one-step

ahead prediction is repeated. This process is continued for 2 years (104 weeks)

which is short enough to reflect current market conditions (Mergner and Bulla

(2008)), and the MAE and MSE between these predicted excess returns and the

actual excess returns are computed over these 104 values. The predictions are

over the period from February 25, 2010 to February 16, 2012. Tables 4.5 and 4.6

present the MAE and MSE measures across all industry sectors respectively, for

each modelling technique for the out-of-sample forecasting process.

A comparison of the different modelling techniques resulting from the out-of-

sample rolling window results show overwhelming support for the Kalman Filter

based approaches. The average MAE and MSE values of the KFRC model,

equalling 1.532 and 4.344, respectively, are slightly lower than the average MAE

(1.541) and MSE (4.391) of the KFMR; whereas, the MAE (MSE) values of the

KFMR are equal to or less than those of the KFRC for 11 (12) out of the 19

industry sector porfolios. Moreover, the average MAE and MSE of the KFRW,

equalling 1.769 and 5.765, are higher than those for the KFMR and KFRC. To

sum up, the KFMR is again the preferable model as it is the general form of the

other two and competitive with the KFRC.

Within the GARCH-type models, the average MAE and MSE values for the
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Table 4.5: MAE (×102) of out-of-sample forecasts.

Industry LMM G-n G-t GJR-n GJR-t KFRW KFRC KFMR
Bank 1.108 1.146 1.128 1.190 1.167 1.101 0.880 0.880
Basic 1.847 1.692 1.685 1.688 1.674 1.628 1.458 1.453
Chemical 1.869 1.779 1.775 1.748 1.754 1.608 1.580 1.620
Electricity 2.361 2.162 2.163 2.124 2.256 2.139 1.853 1.854
Food 2.926 2.049 2.036 2.054 2.042 1.997 1.705 1.690
Holding 1.116 1.028 1.025 1.015 1.019 0.949 0.867 0.873
Info Tech 2.535 2.248 2.202 2.218 2.218 2.224 2.073 2.060
Insurance 1.620 1.476 1.524 1.488 1.593 1.464 1.251 1.251
Investment 2.234 1.719 1.722 1.707 1.787 1.693 1.291 1.291
Leasing 2.516 2.274 2.394 2.249 2.374 2.152 1.808 1.808
Metal 1.791 1.625 1.701 1.607 1.649 1.622 1.398 1.391
Mineral 2.041 1.549 1.514 1.525 1.523 1.546 1.355 1.356
REIT 1.765 1.733 1.834 1.790 1.780 1.580 1.348 1.382
TeleCom 2.450 1.920 1.922 1.935 1.923 1.882 1.586 1.586
Textile 2.577 2.205 2.230 2.284 2.339 2.053 1.783 1.796
Tourism 2.468 2.149 2.335 2.265 2.254 2.208 1.829 1.810
Transport 2.246 2.226 2.229 2.211 2.213 2.229 1.961 1.961
Wood 2.071 1.922 1.908 1.888 1.932 1.750 1.374 1.493
Wholesale 2.509 2.033 2.021 2.065 2.050 1.792 1.715 1.727

Average 2.108 1.839 1.860 1.845 1.871 1.769 1.532 1.541
Notes: The abbreviations of models are: LMM: Linear Market Model, G-n: GARCH-normal distribution,
G-t: GARCH-t distribution, GJR-n: GJR-GARCH-normal distribution, GJR-t: GJR-GARCH-t distribu-
tion, KFRW: Kalman Filter Random Walk, KFRC: Kalman Filter Random Coefficients, KFMR: Kalman
Filter Mean Reverting. Bold displays the best model for each industry sector in terms of lowest MAE.

GARCH-normal and GARCH-t are slightly lower than those of the GJR-GARCH-

normal and GJR-GARCH-t. The average MAE (1.839) and MSE (6.216) of the

GARCH-normal are the lowest from the GARCH-type models considered, while

the highest average MAE and MSE are for the GJR-GARCH-t, equalling 1.871

and 6.446, respectively. This suggests that an improved forecasting performance

is not clearly evident when using t rather than normal distributions with the GJR-

GARCH model. Also, the GARCH-normal model outperforms all other GARCH-

type models. The average MAE and MSE values of the Linear Market Model,

equal to 2.108 and 8.013, respectively, are higher than those for any time-varying

modelling technique. In particular, the results are substantially worse than those

from the GARCH-type models, which was not the case for the in-sample model

comparison. However, overall, the KFMR seems to be the best model for weekly

time-varying systematic covariance (beta) risk for the 19 industry sector portfolios
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Table 4.6: MSE (×104) of out-of-sample forecasts.

Industry LMM G-n G-t GJR-n GJR-t KFRW KFRC KFMR
Bank 2.038 2.228 2.115 2.636 2.481 1.968 1.227 1.227
Basic 5.759 4.835 4.893 4.835 4.776 4.509 3.816 3.785
Chemical 6.086 4.916 4.916 4.834 4.837 4.207 3.969 4.194
Electricity 9.433 8.805 8.353 8.481 9.474 8.389 6.552 6.545
Food 14.660 6.719 6.684 6.710 6.668 6.411 4.767 4.747
Holding 2.203 1.751 1.795 1.707 1.715 1.419 1.204 1.223
Info Tech 13.022 11.286 10.731 10.997 10.797 10.985 9.515 9.364
Insurance 4.749 4.282 4.424 4.451 4.939 3.943 2.713 2.713
Investment 9.199 5.307 5.279 5.327 5.765 5.073 2.973 2.973
Leasing 9.936 8.582 9.363 8.288 9.100 8.020 5.934 5.934
Metal 5.355 4.353 4.986 4.296 4.489 4.328 3.162 3.147
Mineral 6.704 3.740 3.643 3.603 3.591 3.763 2.894 2.899
REIT 5.186 5.140 5.889 5.441 5.213 4.114 3.210 3.308
TeleCom 10.667 6.644 6.770 6.671 6.727 6.382 4.350 4.350
Textile 11.032 8.667 8.465 9.350 9.714 6.992 5.485 5.548
Tourism 10.073 8.589 11.583 10.253 9.130 9.400 5.823 5.810
Transport 8.100 8.159 8.204 8.368 8.299 8.156 6.333 6.333
Wood 8.164 6.991 6.943 7.087 7.519 5.726 3.178 3.842
Wholesale 9.883 7.107 7.051 7.280 7.236 5.744 5.428 5.479

Average 8.013 6.216 6.426 6.348 6.446 5.765 4.344 4.391
Notes: The abbreviations of models are: LMM: Linear Market Model, G-n: GARCH-normal distribution,
G-t: GARCH-t distribution, GJR-n: GJR-GARCH-normal distribution, GJR-t: GJR-GARCH-t distribu-
tion, KFRW: Kalman Filter Random Walk, KFRC: Kalman Filter Random Coefficients, KFMR: Kalman
Filter Mean Reverting. Bold displays the best model for each industry sector in terms of lowest MSE.

in the CAPM.

4.5 Time-Varying Linear Market Model via KFMR

As the KFMR is the general form of the KFRW and KFRC models outlined in

section 4.2.3, and because it is one of the best performing models in section 4.4,

we examine it in greater detail here. The hyperparameter estimates of the KFMR

model using equations (4.6) and (4.9) for 19 weekly Turkish industry sectors are

presented in Table 4.7.

The parameter φi summarises the temporal autocorrelation in {α1it}Nt=1 and

will lie in the range 0 to 1 for a stationary series (see details in section 3.3).

Here, estimated φ̂i is close to 0 for 5 (Bank, Insurance, Leasing, TeleCom and

Transport) out of the 19 industry sectors, so that the time-varying systematic
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Table 4.7: Time-varying Linear Market Model hyperparameter estimates (standard
errors) via KFMR.

Industry Q̂i × 100 Ĥi × 100 φ̂i

Bank 4.144 0.017 0.000
(1.113) (0.002) (0.000)

Basic 5.817 0.099 0.611
(4.891) (0.009) (0.373)

Chemical 1.462 0.050 0.851
(0.789) (0.004) (0.524)

Electricity 15.217 0.124 0.410
(5.339) (0.010) (0.121)

Food 9.168 0.079 0.457
(3.897) (0.006) (0.168)

Holding 1.843 0.021 0.630
(1.132) (0.002) (0.374)

Info Tech 3.966 0.083 0.623
(2.444) (0.006) (0.311)

Insurance 12.361 0.078 0.000
(4.841) (0.007) (0.000)

Investment 9.874 0.074 0.234
(3.824) (0.006) (0.098)

Leasing 20.472 0.158 0.000
(7.321) (0.013) (0.000)

Metal 5.275 0.042 0.220
(1.779) (0.003) (0.066)

Mineral 3.676 0.036 0.284
(1.826) (0.003) (0.169)

REIT 4.285 0.048 0.745
(2.127) (0.004) (0.347)

TeleCom 23.673 0.125 0.000
(7.809) (0.011) (0.000)

Textile 13.156 0.058 0.209
(4.452) (0.005) (0.098)

Tourism 23.674 0.176 0.437
(8.458) (0.015) (0.113)

Transport 16.145 0.141 0.037
(5.642) (0.011) (0.029)

Wood 16.415 0.059 0.195
(6.878) (0.007) (0.110)

Wholesale 11.485 0.065 0.224
(2.798) (0.005) (0.052)

Notes: Italic numbers in parentheses denote the standard errors of
the time-varying Linear Market Model hyperparameter estimates
via KFMR.
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Table 4.8: Time-varying Linear Market Model state parameter estimates (standard
errors) via KFMR.

Industry ˆ̄βimt Range (β̂imt)

Bank 1.265 (0.848;1.651)
(0.026)

Basic 0.978 (0.491;1.614)
(0.049)

Chemical 0.826 (0.477;1.293)
(0.039)

Electricity 0.748 (0.098;1.909)
(0.042)

Food 0.589 (-0.429;1.160)
(0.027)

Holding 1.090 (0.840;1.569)
(0.028)

Info Tech 0.812 (0.434;1.223)
(0.036)

Insurance 1.079 (0.469;1.815)
(0.045)

Investment 0.720 (0.132;1.533)
(0.030)

Leasing 0.862 (-0.272;2.104)
(0.049)

Metal 0.911 (0.493;1.501)
(0.028)

Mineral 0.662 (0.347;0.969)
(0.018)

REIT 0.911 (0.376;1.428)
(0.044)

TeleCom 0.824 (-0.075;1.671)
(0.044)

Textile 0.650 (-0.126;1.324)
(0.026)

Tourism 0.870 (0.197;2.730)
(0.060)

Transport 0.892 (0.154;1.743)
(0.047)

Wood 0.852 (-0.311;1.711)
(0.036)

Wholesale 0.625 (-0.152;1.969)
(0.025)

Notes: Range displays the range of β̂imt = α̂1it. Italic numbers in
parentheses denote the standard errors of the time-varying Linear
Market Model state parameter estimates via KFMR.
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covariance (beta) series of the KFMR becomes similar to the KFRC. Therefore

the MAE and MSE of the KFMR model are close to those of the KFRC model for

these industry sectors (see in Tables 4.3 and 4.4). The time-varying systematic

covariance (beta) series of the KFMR, on the other hand, becomes similar to the

KFRW when φi is close to 1, although the highest estimated value for φ̂i in the

data is 0.851 with a standard error of only 0.524 for Chemical.

The estimated values of Q̂i are much higher than those of Ĥi for all 19 industry

sectors, meaning that the state variance captures the volatility of the industry

sector’s excess returns more than the observation variance. In addition, Tourism

has the highest estimated Q̂i (23.674) and Ĥi (0.176) of all industry sectors, and

it is notable that this sector also had the maximum unconditional volatility shown

in Table 4.2.

Table 4.8 presents mean and range for the time-varying systematic covariance

(beta) parameter estimates of the KFMR (equations (4.6) and (4.9)) for all 19

Turkish industry sectors. The mean of the time-varying systematic covariance

β̂imt for all of the 19 industry sectors is positive, and is close to 1, with a standard

error close to 0.04. Note that a systematic covariance (β̂im) value of 1 means that

the industry sector moves in step with the ISE market portfolio. A value of β̂im in

the range from 0 to 1 means that the industry sector is less volatile than the ISE

market portfolio, whereas a β̂im value greater than 1 indicates that the sector is

more volatile than the ISE market portfolio. In addition, a value (β̂im) of 0 would

mean that the industry sector is not correlated to the ISE market portfolio, and

a negative (β̂im) value would mean that the industry sector moves in the opposite

direction with relation to the ISE market portfolio.

The final column of Table 4.8 shows the range of estimated beta values across

the time period. The wider the range of values, the less consistent is the rela-

tionship between excess returns in that sector and the market as a whole. For

Tourism, the KFMR provides a wider range of time-varying systematic covari-

ance (β̂imt) than the other sectors, while Mineral has a narrower range than the

other sectors. As can be seen from Table 4.2, Tourism is also the sector with the

highest, and Mineral the sector with the lowest, unconditional volatility. Also,

negative β̂imt values appear in the Food, Leasing, TeleCom, Textile, Wood and
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Wholesale sectors, meaning that, from time to time, these sectors move in the

opposite direction to the ISE market portfolio.

Figure 4.4 also displays the time-varying systematic covariance (β̂imt) risk

series of Bank, Chemical, TeleCom, and Tourism industry sectors, respectively.

These industry sectors have been chosen to illustrate the effects on the time-

varying beta series of the speed parameter, φi, and the state variance, Qi. To

save space the remaining industry sectors are not displayed in this thesis. It

can be clearly seen that the time-varying systematic covariance (α̂1it = β̂imt)

risk series fluctuates about the equivalent Linear Market Model (LMM) estimate

(α̂1i = β̂im) in all 4 industry sectors.

φ̂i controls the speed of fluctuation (temporal autocorrelation) in the series of

time-varying beta values. The Chemical sector has the highest φ̂i value (0.851,

close to 1 which is consistent with a random walk model), while φ̂i = 0.000 (which

is consistent with a random coefficient model) for both Bank and TeleCom, in

the Tourism (φ̂i = 0.437) somewhere between these extremes. The closer φ̂i is to

0, the less correlated successive β̂imt values are and the more rapidly the series

changes.

On the other hand, Q̂i controls the amplitude of the overall fluctuation in the

betas. Bank and Chemical have relatively low Q̂i values, whereas TeleCom and

Tourism have the highest values and it is clear that there is much larger variation

in β̂imt in those industry sectors.
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Figure 4.4: The estimated β̂imt = α̂1it plots of Bank, Chemical, Telecom, and Tourism industry sectors.
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Table 4.9: Diagnostic test statistics for KFMR.

Industry JB Het(166) LB(22) Industry JB Het(166) LB(22)

Bank 12.80* 0.97 18.83 Metal 404.69* 2.57* 25.12
(0.002) (0.578) (0.468) (0.000) (0.000) (0.157)

Basic 135.27* 0.69 18.49 Mineral 84.33* 0.85 37.23*
(0.000) (0.991) (0.490) (0.000) (0.852) (0.007)

Chemical 39.68* 1.07 23.88 REIT 42.56* 0.95 19.95
(0.000) (0.332) (0.201) (0.000) (0.629) (0.398)

Electricity 483.68* 1.34* 39.82* TeleCom 72.13* 0.34 36.62*
(0.000) (0.030) (0.003) (0.000) (0.999) (0.009)

Food 51.07* 0.87 44.96* Textile 242.60* 1.62* 27.12
(0.000) (0.815) (0.001) (0.000) (0.001) (0.102)

Holding 35.69* 1.39* 20.79 Tourism 1474.47* 0.44 12.02
(0.000) (0.017) (0.349) (0.000) (0.999) (0.885)

Info Tech 494.56* 2.20* 28.52 Transport 354.81* 1.04 14.79
(0.000) (0.000) (0.074) (0.000) (0.400) (0.736)

Insurance 942.97* 1.16 22.73 Wood 54.34* 1.21 50.95*
(0.000) (0.171) (0.249) (0.000) (0.110) (0.000)

Investment 332.06* 0.38 13.27 Wholesale 346.36* 2.20* 31.54*
(0.000) (0.999) (0.824) (0.000) (0.000) (0.035)

Leasing 1298.84* 0.53 39.86*
(0.000) (0.999) (0.003)

Notes: JB is the Jarque-Bera test statistic for the null hypothesis of normally distributed standardised
residuals. JB follows χ2 with 2 degrees of freedom so the critical value at the 5% level is 5.99.
LB(22) is the Ljung-Box test statistic for the null hypothesis of no autocorrelation in the standardised
residuals up to order

√
498 ≈ 22. LB statistic follows χ2 with 22-(m-1) degrees of freedom where m is the

total number of estimated parameters. The relevant critical value at the 5% level is 30.14 (Harvey (1989)).
Het(166) is the test statistic for the null hypothesis of no heteroskedasticity in the standardised residuals up
to order 498/3 = 166. Het(166) statistic follows F(166,166) distribution so the critical value at the 5% level is
1.29. * means the appropriate null hypothesis is rejected at the 5% significance level.

Table 4.9 presents the diagnostic test statistics for the residuals from KFMR

model outlined in section 3.5.2.1. According to the Jarque-Bera (JB) test, the

residuals are not normally distributed at the 5% significance level for all 19 indus-

try sectors, implying that KFMR is poor in terms of non-normal errors. According

to the H (Het(166)) test, the null hypothesis of no heteroskedasticity cannot be

rejected in 13 out of the 19 industry sectors at the 5% significance level, imply-

ing that KFMR is adequate in terms of no heteroskedasticity for more than half

of the 19 industry sectors. According to the Ljung-Box (LB(22)) test, the null

hypothesis of no autocorrelation cannot be rejected at the 5% significance level

for 12 out of the 19 industry sectors, meaning that KFMR is adequate in terms

of no autocorrelation for more than half of the 19 industry sectors.
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4.6 Conclusion

The focus of this chapter has been on confirming the instability of the systematic

covariance (beta) risk in Turkish industry sector portfolios, by comparing the

modelling and forecasting abilities of both unconditional and conditional Two-

Moment CAPMs. In both cases the performance of the Linear Market Model is

compared with that of the GARCH-type models and the Kalman Filter based

approaches.

The performance of the different modelling techniques, when using the in-

sample and out-of-sample procedures, were evaluated using MAE and MSE. The

Linear Market Model is generally worse than the time-varying modelling tech-

niques according to both criteria in the in-sample and out-of-sample procedures,

but the GARCH-type models do not provide improved modelling performance

compared with the Linear Market Model. In addition, within the GARCH-type

models, an increase in performance can be clearly observed when assuming nor-

mal distributed errors compared with t distributed errors in both the in-sample

and out-of-sample procedures. The model evaluation criteria clearly show that

Kalman Filter based approaches provide a much better performance than any

of the others in both the in-sample and out-of-sample procedures. In addition,

within the Kalman Filter based approaches, the KFMR specification seems to be

the best as it is the most flexible model.

The results confirm the instability of the systematic covariance (beta) risk

in the Two-Moment CAPM found in the existing literature. In addition, this

chapter confirms previous studies (e.g. Australia (Brooks et al. (1998)), and UK

(Faff et al. (2000))) which found that Kalman Filter based approaches outperform

GARCH-type models. In addition, both KFRC and KFMR models outperform

KFRW, and are generally found to be superior to all other models to model and

forecast the time-varying systematic covariance (beta) risk.

Note that in section 4.5, diagnostic procedures are discussed to check how

far the assumptions of the state space model are satisfied. These assumptions

are that the residuals are normally distributed, independent (no autocorrelation)

and have constant variance (no heteroskedasticity). When these assumptions are
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violated, the performance of the state space model can be affected, though there

are possible extensions of the state space model as discussed below.

The first assumption is that the distribution of the residuals is Gaussian.

This assumption is violated in the modelling described in this chapter, which is a

consequence of asymmetry and heavy tails due to unexpected increases and drops

in asset returns, which may be caused by national events (e.g. wars or disasters),

political events (e.g. elections) and economic factors (e.g. unemployment rate).

The Gaussian distribution can be replaced by heavy-tailed distributions such as

the t distribution, or a mixture of normals, or a general residual distribution

(see Durbin and Koopman (2001)), or by an asymmetric distribution, such as a

skewed-t distribution. In fact, Meinhold and Singpurwalla (1989) showed that

using a t distribution for the residuals increases the robustness of the Kalman

Filter against outliers.

The second assumption is that the variance of residuals is assumed to be

constant. In finance, stock market time series data are subject to temporally

non-constant fluctuations resulting from changing market conditions, therefore

a constant variance assumption is often unrealistic. When the constant vari-

ance (homoskesdaticity) assumption is violated, researchers can use the stochas-

tic volatility model, which allows them to capture a time-varying variance. This

model is similar to the state space model, and various extensions of stochastic

volatility models exist, allowing a combined GARCH-type and state space model,

with not only Gaussian but also non-Gaussian residuals (see Durbin and Koop-

man (2001)).

The final assumption is that the residuals are independent (no autocorrela-

tion). In this thesis, this assumption is invalid. One approach would be to allow

the intercept term to vary over time via a random walk model within the Kalman

Filter algorithm, in addition to the slope parameter βimt.



Chapter 5

Is the Linear Market Model

appropriate for Developed

and Emerging Markets?

5.1 Introduction

In the financial literature the Two-Moment Capital Asset Pricing Model (CAPM)

of Sharpe-Lintner-Mossin (1960s) is the most widely used framework for explor-

ing systematic covariance (beta) risk. It depends on two restrictive assumptions,

namely that asset returns are normally distributed and that the investor’s utility

function is quadratic (so, it can be expressed in terms of just the mean and vari-

ance of wealth). However, literature (e.g. Kraus and Litzenberger (1976), Fang

and Lai (1997) and Hwang and Satchell (1999)) suggests that the Two-Moment

CAPM may be misleading and insufficient to characterize asset returns, since

returns on many assets are now believed to be non-normally distributed. These

inadequacies of the Two-Moment CAPM have encouraged financial researchers

to explore beyond the benchmark Linear Market Model.

One extension in this vein is to incorporate higher order moments into the

Two-Moment CAPM. In the literature, the Higher-Moment CAPMs, namely the

Three-Moment and Four-Moment CAPMs can capture the systematic skewness

(co-skewness) and systematic kurtosis (co-kurtosis) in financial data. The ne-

96
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cessity for these is assessed by fitting Higher order Data Generating Processes

(DGPs) to the financial data, namely the Quadratic and Cubic Market Mod-

els. For example, Barone-Adesi (1985), Fang and Lai (1997) and Hwang and

Satchell (1999) proposed several formulations of Higher order DGPs for the pur-

poses of illustrating the link between the Higher order DGPs and their equivalent

Higher-Moment CAPMs and reducing the multicollinearity of the systematic risk

measures in the Higher-Moment CAPMs.

Research by Hwang and Satchell (1999) assesses the appropriateness of Higher-

Moment CAPMs via Higher order DGPs for monthly returns in emerging markets

but not developed markets. They conclude that emerging markets are better

explained by including additional systematic risk measures, such as co-skewness

and co-kurtosis into the model. Fang and Lai (1997) also confirm that not only co-

skewness but also co-kurtosis has an important role for explaining returns on the

New York Stock Exchange (NYSE). Barone-Adesi (1985) proposes the Quadratic

Market Model (consistent with the Three-Moment CAPM only capturing co-

skewness) for security pricing. More recently, Hung (2007) suggests that the

Quadratic Market Model is useful for explaining time-series weekly returns for

developed markets.

Other financial economists have focused on confirming the instability of the

systematic covariance (beta) risk (e.g. Brooks et al. (1998) and Faff et al. (2000)),

by comparing the forecasting ability of the unconditional and conditional (time-

varying) Two-Moment CAPMs. In the recent literature (e.g. Mergner and Bulla

(2008) and Choudhry and Wu (2009)) comparisons based on forecasting errors

confirm that the Two-Moment CAPM with a time-varying systematic covariance

risk is more efficient than the simpler time invariant model for forecasting returns

on assets. In these literatures a number of different methods have emerged for

modelling and forecasting time-varying systematic covariance risk in the condi-

tional Two-Moment CAPM. Previously in Chapter 4, we compared the ability

of GARCH-type models and Kalman Filter based approaches to model and fore-

cast time-varying systematic covariance (beta) risk. The results suggested that

the Kalman Filter based approaches outperform the GARCH-type models. The

most well-known of these, the Kalman Filter Mean Reverting (KFMR) model
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(e.g. Wells (1996), Faff et al. (2000) and Mergner and Bulla (2008)), is employed

again in this chapter.

The main purpose of this chapter is to assess the appropriateness of the Linear

Market Model (allowing for only systematic covariance), which is consistent with

the Two-Moment CAPM. We simultaneously compare its performance against

six possible extensions, and such a comparison is yet to be undertaken in the

literature. The first two are new reformulated forms of Higher order DGPs as

simple polynomial extensions of the Linear Market Model, namely the Quadratic

Market Model (allowing for systematic covariance and systematic skewness) and

the Cubic Market Model (allowing for systematic covariance, systematic skewness

and systematic kurtosis). The third approach relaxes some of the assumptions

underpinning polynomial models by using a Generalized Additive Model (GAM),

which is yet to be applied to assess the superiority of Higher order DGPs in

finance. The last three approaches are the time-varying versions of the Linear

Market Model and polynomial extensions in the form of state space models via

KFMR; namely, the time-varying Linear Market Model (allowing for only time-

varying systematic covariance), the time-varying Quadratic Market Model (allow-

ing for time-varying systematic covariance and time-varying systematic skewness)

and the time-varying Cubic Market Model (allowing for time-varying systematic

covariance, time-varying systematic skewness and time-varying systematic kur-

tosis). The models are fitted by maximum likelihood, though in the case of the

polynomial models a least squares estimation approach is equivalent. The aim of

this chapter is to compare the performance of these models. In addition, the GAM

is yet to be applied in the CAPM research in finance as well, so that is new. The

Cubic Market Model is the most popular extension to the Linear Market Model,

so we investigate whether it is really the best. In addition, the time-varying

Higher order DGPs are possible extensions to the time-varying Linear Market

Model. Thus, we examine whether these extensions are necessary to improve the

model fit to the data. The comparison is made by using weekly data, generated

by 9 developed and 9 emerging markets during three different time periods: the

entire period from July 2002 to July 2012, from July 2002 to before the October

2008 financial crisis, and from after the October 2008 financial crisis to July 2012,
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thereby allowing one to investigate the effect of the October 2008 financial crisis

when modelling stock market returns. In all cases the Morgan Stanley Capital

International (MSCI) World Index and the three-month US dollar London In-

terbank Offered Rate (LIBOR) interest rate are used as a proxy for the market

portfolio and the risk-free rate, respectively. The models are assessed by overall

measures of model fit using AIC, BIC and Adjusted R2, residual diagnostics, and

by graphical summary of the fitted models to the data.

The rest of this chapter is outlined as follows. Section 5.2 outlines the seven

models to be compared. Section 5.3 presents a description of the data. Section

5.4 presents the empirical results obtained from the model comparison during the

entire period from July 2002 to July 2012, while section 5.5 presents the empirical

results obtained from the model comparison during two different periods: from

July 2002 to before the October 2008 financial crisis and from after the October

2008 financial crisis to July 2012. Section 5.6 presents our conclusions.

5.2 Methodology

5.2.1 Higher DGPs

The Four-Moment CAPM extends the Two-Moment CAPM by incorporating the

systematic skewness (co-skewness) and systematic kurtosis (co-kurtosis) in the

data. The model is described in section 2.3 where more theoretical details are

provided. To assess the necessity for the Four-Moment CAPM, the Cubic Market

Model is fitted to the data in the form of a polynomial extension to the Linear

Market Model. In this form, the Cubic Market Model is a third order polynomial

in excess market returns, and can be written in the form

Rit−Rft = κi +α1i(Rmt−Rft) +α2i(Rmt−Rft)
2 +α3i(Rmt−Rft)

3 + εit, (5.1)

where Rit and Rmt are the stock market returns in country i and MSCI World

market returns at time t (t = 1, . . . , T ), respectively. Rft is the risk-free rate

at time t. εit are the residuals with εit ∼ N(0, σ2
i ), E(εitεkt)=0, for i 6= k and
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E(εitεi t+j)=0, for j > 0. Here, the regression intercept, κi. Of the regression

slopes, α1i accounts for the systematic covariance (proxy for βim), α2i accounts

for the systematic skewness (proxy for γim), and α3i accounts for the systematic

kurtosis (proxy for δim) and the proofs have been provided in section 2.3.3. Note

that the Four-Moment CAPM is only appropriate if the DGP is at least cubic;

that is if α3i is statistically significantly different from zero. If not, then there will

be collinearity in the systematic risk measures (βim, γim and δim). The Quadratic

Market Model (α3i = 0 in (5.1)) and the Linear Market Model (α2i = 0 and

α3i = 0 in (5.1)) are reduced forms of the Cubic Market Model, and the latter

is also the benchmark market model in finance. We have already illustrated that

the Linear Market Model and the Quadratic Market Model are consistent with

their equivalent CAPMs in section 2.1.2 and section 2.3.3.

5.2.2 Generalized Additive Model

The generalized additive model (GAM), was generated by Hastie and Tibshirani

(1990), and is employed as a comparator to the polynomial models given by (5.1)

to see if the latters rigid parametric shapes are too restrictive. In accordance

with equation (3.14), the GAM function can be expressed as

Rit −Rft = κi + fi(Rmt −Rft) + εit. (5.2)

Here, εit ∼ N(0, σ2
i ) with E(εitεkt)=0, for i 6= k, and E(εitεi t+j)=0, for j > 0,

and fi(Rmt −Rft) is a smooth function of Rmt −Rft. The parameter estimation

procedure used in generalized additive models is briefly outlined in section 3.2.

5.2.3 Time-varying Higher DGPs

In the financial literature, there now exists widespread evidence of the instability

of the systematic risk measures, systematic covariance (beta), systematic skewness

(co-skewness) and systematic kurtosis (co-kurtosis) in the Four Moment CAPM

which is consistent with the Cubic Market Model. For the purpose of assessing

this instability and to estimate its time-varying systematic risk measures, the
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Cubic Market Model (5.1) can be extended to allow α1i, α2i and α3i to evolve

over time. This can be achieved using the model defined below, where estimation

is via the Kalman Filter Mean Reverting (KFMR) algorithm which was outlined

in section 3.3. The model has a state space form and is modified to become an

observation equation expressed as

Rit−Rft = κi+α1it(Rmt−Rft)+α2it(Rmt−Rft)
2 +α3it(Rmt−Rft)

3 +εit. (5.3)

Here, εit ∼ N(0, Hi). In accordance with equation (3.48), the state equations can

be expressed as

α1it = ᾱ1i + φ1i(α1i t−1 − ᾱ1i) + w1it, w1it ∼ N(0, Q1i), (5.4)

α2it = ᾱ2i + φ2i(α2i t−1 − ᾱ2i) + w2it, w2it ∼ N(0, Q2i), (5.5)

α3it = ᾱ3i + φ3i(α3i t−1 − ᾱ3i) + w3it, w3it ∼ N(0, Q3i), (5.6)

with priors

α1i0 ∼ N(µα1i
,Σα1i

), α2i0 ∼ N(µα2i
,Σα2i

), α3i0 ∼ N(µα3i
,Σα3i

), (5.7)

where the parameters of these distributions estimated from the data as part of

estimation algorithm.

Here, the regression intercept, κi and of the regression slopes, α1it accounts

for the time-varying systematic covariance (proxy for βimt), α2it accounts for

the time-varying systematic skewness (proxy for γimt), and α3it accounts for the

time-varying systematic kurtosis (proxy for δimt). These are the extensions of the

results proved in section 2.3.3. Note that the conditional Four-Moment CAPM

is only appropriate if the time-varying DGP is at least cubic; that is if α3it is

statistically significantly different from zero. If not, then there will be collinearity

in the time-varying systematic risk measures (βimt, γimt and δimt).

Note that the time-varying Quadratic Market Model (α3it = 0 in (5.3)) and the

time-varying Linear Market Model (α2it = 0 and α3it = 0 in (5.3)) are reduced

forms of the time-varying Cubic Market Model. The time-varying Quadratic
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Market Model (consistent with the conditional Three-Moment CAPM) and the

time-varying Linear Market Model (consistent with the conditional Two-Moment

CAPM) which are the extensions of the results proved in sections 2.3.3 and 2.1.2,

respectively.

5.3 Data Description

All data for this study are weekly returns from 17 July 2002 to 18 July 2012 across

18 global market indices maintained by the Morgan Stanley Capital International

Incorporation (MSCI Inc.). The data were obtained from the Thomson Reuters

Financial Datastream database provided by University of Glasgow, UK. The 18

global markets include 9 developed markets: France, Germany, Italy, Japan,

Norway, Sweden, Switzerland, the United Kingdom (UK) and the United States

of America (USA); and 9 emerging markets: Brazil, Chile, India, Korea, Malaysia,

Mexico, Poland, Russia and South Africa. The two criteria that were used to

select the countries were: (1) regional classification in the database; and (2)

continuous listing from 17 July 2002 to 18 July 2012. Table 5.1 represents an

overview of all 18 global markets and their regions. The market proxy for this

study is the Morgan Stanley Capital International World Market Index (MSCI)

capturing 1,606 constituents including the large and mid cap representation across

24 developed markets countries (see further details at http://www.msci.com/).

The one-week returns for all 18 global markets and the MSCI World market

portfolio were obtained from the first difference in the logarithm of Wednesday’s

closing price index as follows

Rit = log(Pit)− log(Pi t−1), (5.8)

for t = 2, . . . , T and i = 0, 1, . . . , 18, where i = 0 refers to the MSCI World

market (Rmt) and 1 ≤ i ≤ 9 refers to the developed markets, 10 ≤ i ≤ 18 refers

to the emerging markets. Pit is Wednesday’s closing price index in week t. All

indices are expressed in US dollars. The three-month US dollar London Interbank

Offered Rate (LIBOR) interest rate served as a proxy for the risk-free rate, being

http://www.msci.com/
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Table 5.1: Country stock market and regional classification.

Market Region
Developed
France Europe & Middle East
Germany Europe & Middle East
Italy Europe & Middle East
Japan Pacific
Norway Europe & Middle East
Sweden Europe & Middle East
Switzerland Europe & Middle East
UK Europe & Middle East
USA Americas
Emerging
Brazil Americas
Chile Americas
India Asia
Korea Asia
Malaysia Asia
Mexico Americas
Poland Europe, Middle East & Africa
Russia Europe, Middle East & Africa
South Africa Europe, Middle East & Africa
Notes: Further details about country stock market and regional classifications which
are maintained by the Morgan Stanley Capital International Incorporation (MSCI
Inc.) are available at http://www.msci.com/products/indices/.

not constant through time in this research. As the LIBOR yields (LIBORt)

are in percentage per annum, they can be converted to weekly rates as follows

(Mergner (2009))

Rft =

(
1 +

LIBORt

100

)1/52

− 1. (5.9)

Table 5.2 shows descriptive statistics for the returns on the MSCI World

market portfolio and the 18 global markets. The table provides some key points.

The mean return in the emerging markets (0.0024) is higher than that of the

developed markets (0.0007), which means that the emerging markets outperform

the developed markets in this time period. The range of mean weekly returns

varies from -0.0007 for Italy to 0.0033 for Brazil, meaning that Italy has a financial

loss while Brazil has a financial gain on an investment during this period.

The average unconditional volatility of the returns in the emerging markets

http://www.msci.com/products/indices/
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Table 5.2: Descriptive statistics of weekly returns.

Market Mean Std.Dev.a Skewness Kurtosis JBb LB(23)c

World 0.0007 0.0264 -0.91 7.62 535.90* 200.08*

Developed
France 0.0003 0.0376 -0.62 5.69 190.31* 195.38*
Germany 0.0007 0.0394 -0.84 6.09 268.87* 175.86*
Italy -0.0007 0.0385 -0.53 5.73 186.32* 314.50*
Japan 0.0002 0.0281 -0.39 5.59 159.38* 138.98*
Norway 0.0017 0.0480 -1.04 8.06 650.17* 407.92*
Sweden 0.0018 0.0429 -0.73 6.08 253.39* 205.03*
Switzerland 0.0011 0.0285 -0.50 5.27 134.08* 156.26*
UK 0.0006 0.0317 -0.63 5.96 224.26* 335.73*
USA 0.0008 0.0258 -0.77 8.73 767.03* 162.09*
Average 0.0007 0.0356 -0.67 6.36

Emerging
Brazil 0.0033 0.0526 -1.68 13.50 2640.05* 47.37*
Chile 0.0032 0.0343 -1.80 19.08 5904.80* 17.54
India 0.0028 0.0431 -0.26 5.56 148.12* 228.78*
Korea 0.0017 0.0469 -0.42 10.09 1108.05* 521.15*
Malaysia 0.0018 0.0243 -0.16 5.46 134.40* 152.18*
Mexico 0.0027 0.0394 -1.99 19.05 5943.54* 45.60*
Poland 0.0015 0.0498 -1.08 7.07 461.36* 277.23*
Russia 0.0018 0.0587 -1.44 15.55 3604.33* 215.49*
South Africa 0.0025 0.0422 -0.89 7.61 530.74* 219.64*
Average 0.0024 0.0435 -1.08 11.44

risk-free rate 0.0004 0.0003 0.63 1.90 60.96* 10762.17*
Notes: The portfolio has 522 observations for the weekly returns for each of the 18 global markets.
aStd.Dev. is the standard deviation. bJB is the Jarque-Bera test statistic for testing the normality. JB
follows χ2 with 2 degrees of freedom and the critical value at the 5% level is 5.99. cLB statistic follows
χ2 with 23 degrees of freedom so the critical value at the 5% level is 35.17. * means the appropriate null
hypothesis is rejected at the 5% significance level.

(0.0435) seems to be slightly higher than that of the developed markets (0.0356),

which may be due to the variables capturing financial and economic integration,

such as country credit risk ratings and the relative size of markets, being different

in emerging markets as suggested by Bekaert and Harvey (1997). Therefore, the

emerging markets are more risky in terms of the risk measured by unconditional

volatility than the developed markets, which offsets their increased mean returns.

The highest unconditional volatility (standard deviation) is that of the Russian

market (0.0587) while the lowest one is that of Malaysia (0.0243).

The return distributions of the global markets and MSCI World market port-
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folio exhibit negative skewness, while the risk-free rate returns exhibit positive

skewness. Negative skewness means that there are frequent small increases and

a few extreme drops in returns, while positive skewness means that there are

frequent small drops and a few extreme increases in returns (see Algieri (2012)).

The range of skewness varies between -1.99 for Mexico and -0.16 for Malaysia.

The average skewness of the returns in the emerging markets (-1.08) is also more

negative than those of the developed markets (-0.67). This suggests that the

developed markets have fewer extreme losses than the emerging markets when

applied to investment returns.

The return distributions of the global markets, MSCI World market portfolio

and risk-free rate are leptokurtic, meaning that the market has fatter tails than

the normal distribution (which has kurtosis=3) and more chances of extreme

outcomes. The range of kurtosis varies between 5.27 (Switzerland) and 19.08

(Chile). Emerging markets (11.44) demonstrate higher kurtosis than developed

markets (6.36). This suggests that the emerging markets have more chance of

extreme either financial losses or gains than the developed markets when applied

to investment returns. The normality of each global market, MSCI World market

portfolio and risk-free rate is also rejected at the 5% significance level using the

Jarque-Bera (JB) test (see details in section 3.5.2.1) which is likely to be due

to the substantial skewness and kurtosis observed from Table 5.2. According to

the Ljung-Box (LB(23)) test, the null hypothesis of no autocorrelation for the

squared returns (proxies for volatilities) is rejected at the 5% significance level for

18 global markets except for Chile, the MSCI World market portfolio and the risk-

free rate, meaning that there exists a statistically significant autocorrelation for

the squared returns which, in turn, provides strong evidence for the predictability

of the volatility of 17 global markets, the MSCI World market portfolio and the

risk-free rate (Christoffersen (2003)).

To sum up, the main features of these data in the developed and emerging

markets are the positive mean (except for Italy), volatility, asymmetry (left-skew),

and leptokurtosis (fat tails). The conclusions of Harvey’s 1995 study match with

the findings of this research, as he concluded that the most common features

of stock market returns in emerging markets are high volatility, asymmetry, and



CHAPTER 5. IS THE LINEAR MARKET MODEL APPROPRIATE? 106

leptokurtosis. This justifies giving consideration to higher moments, such as third

and fourth moments, rather than just the Two-Moment CAPM for both developed

and emerging markets.

Figure 5.1 displays time series plot of returns on the MSCI World market

and 2 developed markets (UK and USA) and 2 emerging markets (Brazil and

Russia), respectively. To save space the remaining markets are displayed in a

smaller size in Figures 5.2 and 5.3. The figure provides some key points. In the

whole time period, there is greater volatility in the emerging markets than in the

developed markets and MSCI World market. Extreme events appear in October

2008, which is because in those weeks the financial crisis was starting to spread

all over the world and October 6-10 turned out to be the worst week for stock

markets in 75 years. It can be clearly seen that the emerging markets (Brazil and

Russia) display even more volatility and extreme values in those weeks than the

developed markets (UK and USA) and the MSCI World market, meaning that

the emerging markets might be becoming increasingly integrated with this crisis

than the developed markets. These extreme values can affect the modelling of

asset returns. Hence, we choose three different time periods: the entire period

of July 2002-July 2012, from July 2002 to before October 2008 and from after

October 2008 to July 2012 which are analysed separately to investigate the effect

of these extreme values while modelling asset returns.



C
H

A
P

T
E

R
5.

IS
T

H
E

LIN
E

A
R

M
A

R
K

E
T

M
O

D
E

L
A

P
P

R
O

P
R

IA
T

E
?

107

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

W
orld

U
K

U
S

A
B

razil
R

ussia

2004 2006 2008 2010 2012

Date

R
it

Weekly Stock Market Returns

Figure 5.1: The time series plot of weekly returns on the MSCI World, 2 developed (UK and USA) and 2 emerging (Brazil and Russia) markets.
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Figure 5.2: The time series plot of weekly returns on the MSCI World and 7 developed markets.
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Figure 5.3: The time series plot of weekly returns on the MSCI World and 7 emerging markets.
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5.4 Comparison of Models

5.4.1 Model Fit

In this section, a comparison is made between the Linear Market Model (LMM),

the Quadratic Market Model (QMM), the Cubic Market Model (CMM), the gen-

eralized additive model (GAM), the time-varying Linear Market Model (TvLMM),

the time-varying Quadratic Market Model (TvQMM) and the time-varying Cubic

Market Model (TvCMM) for 18 global markets over the entire period from July

2002 to July 2012. The comparison is in terms of overall measures of model fit,

using the Akaike Information Criterion (AIC ), the Bayesian Information Crite-

rion (BIC ) and Adjusted R2 and residual diagnostics defined in section 3.5. A

graphical comparison of the fit of each model to the data is also undertaken to

determine the behaviour of the models. The model fit results are given in Tables

5.3, 5.4 and 5.5, which respectively display the AIC, BIC and Adjusted R2.

Table 5.3: AIC values for all models & markets.

AIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -2973.43 -2976.52 -2978.89 -2980.00 -3019.84 -3013.89 -3007.98
Germany -2803.08 -2801.23 -2813.00 -2812.37 -2903.23 -2904.75 -2895.41
Italy -2665.43 -2664.81 -2664.80 -2679.68 -2702.24 -2696.17 -2692.78
Japan -2515.70 -2517.87 -2519.49 -2530.32 -2554.98 -2550.25 -2548.07
Norway -2209.86 -2221.09 -2224.40 -2250.47 -2268.05 -2264.64 -2271.88
Sweden -2582.33 -2581.50 -2588.09 -2594.19 -2629.81 -2624.56 -2618.88
Swit. -2912.59 -2911.91 -2917.11 -2916.91 -2939.59 -2934.24 -2928.89
UK -3044.62 -3042.94 -3045.70 -3054.95 -3065.71 -3059.75 -3054.02
USA -3547.68 -3545.68 -3559.93 -3562.28 -3606.95 -3602.03 -3599.25
Emerging
Brazil -1954.09 -2001.36 -2001.16 -2028.72 -2116.05 -2121.09 -2115.92
Chile -2332.24 -2347.09 -2354.47 -2405.01 -2418.98 -2423.67 -2418.97
India -2038.91 -2037.51 -2040.67 -2049.69 -2084.05 -2081.06 -2078.68
Korea -1993.95 -1995.51 -1993.58 -2001.04 -2072.41 -2066.42 -2060.86
Malaysia -2609.18 -2607.40 -2618.40 -2621.46 -2637.40 -2632.02 -2629.74
Mexico -2407.61 -2437.78 -2442.38 -2470.70 -2518.91 -2515.21 -2509.27
Poland -1996.52 -1997.03 -2012.24 -2011.63 -2059.04 -2056.95 -2054.96
Russia -1805.35 -1845.15 -1847.84 -1865.03 -1916.32 -1914.20 -1908.88
S.Africa -2248.16 -2251.53 -2251.99 -2254.15 -2281.66 -2277.33 -2272.27

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest AIC.
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Table 5.3 shows that the lowest AIC value comes from the time-varying Lin-

ear Market Model (TvLMM) via KFMR for all developed and emerging markets,

with the exceptions being Germany, Brazil and Chile, where the time-varying

Quadratic Market Model (TvQMM) via KFMR has the lowest AIC values, as

well as Norway, where the time-varying Cubic Market Model (TvCMM) via

KFMR has the lowest AIC value. In addition, the AIC value of the time-varying

Quadratic Market Model is lower than that of the time-varying Cubic Market

Model (TvCMM) for all 18 global markets except for Norway, suggesting that

the model fit performance of the time-varying Cubic Market Model is worse than

that of other time-varying DGPs. The time-varying Cubic Market Model out-

performs the Higher order DGPs and the generalized additive model (GAM) for

all developed and emerging markets, with the exception being the UK, where the

GAM is better. In addition, the GAM outperforms the Higher order DGPs in

general across the 18 global markets, with the exceptions being Switzerland and

Table 5.4: BIC values for all models & markets.

BIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -2960.66 -2959.49 -2957.61 -2951.83 -2998.55 -2979.82 -2961.15
Germany -2790.30 -2784.20 -2791.71 -2782.89 -2881.94 -2870.69 -2848.58
Italy -2652.65 -2647.78 -2643.51 -2637.88 -2680.96 -2662.11 -2645.94
Japan -2502.92 -2500.84 -2498.20 -2500.29 -2533.69 -2516.19 -2501.24
Norway -2197.09 -2204.06 -2203.11 -2205.78 -2246.76 -2230.58 -2225.05
Sweden -2569.56 -2564.47 -2566.80 -2552.05 -2608.52 -2590.49 -2572.05
Swit. -2899.82 -2894.88 -2895.82 -2890.55 -2918.30 -2900.18 -2882.05
UK -3031.85 -3025.91 -3024.41 -3013.69 -3044.42 -3025.69 -3007.18
USA -3534.90 -3528.65 -3538.65 -3527.01 -3585.66 -3567.97 -3552.42
Emerging
Brazil -1941.31 -1984.33 -1979.87 -1988.11 -2094.77 -2087.03 -2069.09
Chile -2319.47 -2330.06 -2333.18 -2362.57 -2397.69 -2389.61 -2372.14
India -2026.14 -2020.48 -2019.39 -2013.33 -2064.76 -2047.00 -2031.85
Korea -1981.18 -1978.48 -1972.29 -1966.85 -2051.12 -2032.36 -2014.03
Malaysia -2596.41 -2590.37 -2597.11 -2578.70 -2616.11 -2597.96 -2582.91
Mexico -2394.83 -2420.75 -2421.09 -2431.38 -2497.63 -2481.15 -2462.44
Poland -1983.75 -1980.00 -1990.95 -1972.88 -2037.75 -2022.89 -2008.13
Russia -1792.58 -1828.12 -1826.55 -1821.01 -1895.03 -1880.14 -1862.05
S.Africa -2235.39 -2234.50 -2230.70 -2215.23 -2260.37 -2243.27 -2225.44
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest BIC.
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Poland, where the Cubic Market Model (CMM) is better. Also, the Linear Market

Model (LMM) outperforms the Quadratic Market Model (QMM) in Germany,

Italy, Sweden, Switzerland, the UK, the USA, India and Malaysia.

Table 5.4 shows that, based on the lowest BIC, the time-varying Linear Market

Model (TvLMM) via KFMR is the most appropriate model for all developed and

emerging markets. Among the time-varying DGPs, the time-varying Quadratic

Market Model (TvQMM) has lower BIC values than the time-varying Cubic

Market Model (TvCMM) for all 18 global markets, suggesting that the time-

varying Quadratic Market Model is preferable to the time-varying Cubic Market

Model. It can be seen that the Linear Market Model outperforms the time-

varying Quadratic Market Model for the UK and the time-varying Cubic Market

Model for 4 developed markets, Italy, Japan, Switzerland and the UK as well as 2

emerging markets, Malaysia and South Africa. The Linear Market Model (LMM)

also outperforms the other Higher order DGPs and the GAM for 6 developed

markets, France, Italy, Japan, Sweden, Switzerland and the UK, as well as 3

emerging markets, India, Korea and South Africa. This is because the BIC has

a larger penalty than the AIC, and thus chooses simpler models. Also, the GAM

outperforms the Higher order DGPs for only 1 developed market, Norway, as well

as 3 emerging markets, Brazil, Chile, and Mexico. These results show that the

time-varying Linear Market Model outperforms all other models, even in terms of

BIC which prefers simplier models than AIC. This suggests that it represents a

substantial improvement in model fit compared with all other models. In contrast,

the remaining models sometimes do not fit the data as well as the Linear Market

Model as measured by BIC, suggesting that their additional complexity does not

greatly improve model fit.

The results for Adjusted R2 are given in Table 5.5. Again, this shows that

the time-varying Linear Market Model (TvLMM) provides a better performance

than the time-varying Higher order DGPs for all 18 global markets, with the

exception of France, Italy, Norway, the USA, India and Poland, where the time-

varying Quadratic Market Model has an equal or a better performance to that of

the time-varying Linear Market Model and of Germany, where the time-varying

Cubic Market Model has an equal performance to that of the time-varying Linear
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Table 5.5: Adjusted R2 values for all models & markets.

Adjusted R2

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 0.862 0.863 0.864 0.865 0.921 0.921 0.920
Germany 0.826 0.825 0.830 0.830 0.928 0.909 0.928
Italy 0.763 0.763 0.764 0.772 0.868 0.868 0.866
Japan 0.407 0.411 0.414 0.428 0.661 0.658 0.655
Norway 0.634 0.642 0.645 0.666 0.772 0.780 0.746
Sweden 0.775 0.775 0.779 0.783 0.869 0.863 0.868
Swit. 0.730 0.731 0.734 0.734 0.814 0.812 0.810
UK 0.831 0.831 0.832 0.836 0.883 0.881 0.882
USA 0.903 0.903 0.905 0.906 0.954 0.954 0.953
Emerging
Brazil 0.502 0.546 0.547 0.574 0.822 0.810 0.811
Chile 0.435 0.452 0.461 0.515 0.698 0.653 0.649
India 0.370 0.369 0.374 0.389 0.525 0.542 0.522
Korea 0.422 0.424 0.423 0.435 0.745 0.744 0.743
Malaysia 0.334 0.333 0.349 0.358 0.607 0.606 0.595
Mexico 0.628 0.650 0.654 0.675 0.845 0.843 0.843
Poland 0.489 0.491 0.506 0.510 0.753 0.754 0.750
Russia 0.469 0.509 0.512 0.533 0.740 0.733 0.734
S.Africa 0.560 0.564 0.565 0.570 0.752 0.749 0.747

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold
displays the best market pricing model for each market in terms of the highest Adjusted R2.

Market Model. Nevertheless, the improvements in model fit to the time-varying

Higher order DGPs are not substantial. For example, the time-varying Linear

Market Model improves on the time-varying Quadratic Market Model in terms

of Adjusted R2 by on average 0.3% for the developed markets and 0.6% for the

emerging markets. The time-varying Linear Market Model also improves on the

time-varying Cubic Market Model in terms of Adjusted R2 by on average 0.5% for

the developed markets and 1% for the emerging markets. In addition, the time-

varying Quadratic Market Model outperforms the time-varying Cubic Market

Model for 12 out of 18 global markets, and it improves on the time-varying Cubic

Market Model in terms of Adjusted R2 by on average 0.2% for the developed

markets and 0.4% for the emerging markets. These results confirm what is seen

in Tables 5.3 and 5.4, namely, that the additional complexity of the time-varying

Higher order DGPs does not improve model fit compared to the time-varying

Linear Market Model.
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The time-varying Linear Market Model via KFMR provides a much better

performance than the Higher order DGPs and the GAM. The time-varying Lin-

ear Market Model improves on the Linear Market Model in terms of Adjusted

R2 by on average 10.4% for the developed markets and 25.3% for the emerging

markets. This suggests that emerging markets are more unstable than the de-

veloped markets. In addition, the GAM outperforms the Higher order DGPs in

general across the 18 global markets, but the improvements in model fit are not

substantial. For example, the GAM improves on the Linear Market Model in

terms of Adjusted R2 by on average only 1% for the developed markets and 3.9%

for the emerging markets. The average increase in Adjusted R2 from the Linear

Market Model to the Cubic Market Model is 0.4% for the developed markets and

2% for the emerging markets. Indeed, the Linear Market Model outperforms the

Quadratic Market Model in Germany, India and Malaysia in terms of Adjusted

R2. These results confirm what is seen in Tables 5.3 and 5.4, namely that the

time-varying Linear Market Model offers a substantial improvement in model fit

to the Linear Market Model, but that the other non-linear DGPs do not. In addi-

tion, this improvement in model fit is most substantial for the emerging markets,

suggesting they are less able to be charactered by a straight line.

5.4.2 Residual Diagnostics

Diagnostic test statistics are provided in Tables 5.6, 5.7 and 5.8 outlined in section

3.5.2.1. According to the Jarque-Bera (JB) test, the residuals are not normally

distributed at the 5% significance level for all markets and models, implying that

all models are poor in terms of non-normal errors. The time-varying DGPs via

KFMR have not solved this. According to the Ljung-Box (LB(23)) test, the

null hypothesis of no autocorrelation can be rejected at the 5% significance level

for most markets and models. Although autocorrelation remains in most data

sets after fitting most models, it is vastly reduced using the time-varying DGPs

via KFMR model. Average decrease in the LB(23) test statistics for the time-

varying Linear Market Model (TvLMM) via KFMR model compared with the

Cubic Market Model (CMM) are 38.6% for the developed markets and 22.6% for
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Table 5.6: Normality test statistics for all models & markets.

JB

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 102.07* 118.72* 105.97* 113.38* 261.89* 261.37* 259.85*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Germany 294.06* 304.79* 207.74* 222.41* 100.54* 32.87* 90.37*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Italy 45.93* 40.50* 46.51* 32.64* 109.24* 108.27* 102.12*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Japan 67.18* 68.79* 78.77* 106.71* 87.98* 86.15* 87.56*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Norway 133.22* 116.82* 139.58* 72.24* 78.68* 83.59* 75.18*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Sweden 114.67* 130.52* 112.57* 64.10* 93.02* 78.38* 86.64*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Swit. 33.59* 40.53* 33.67* 32.22* 33.14* 31.11* 30.39*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

UK 141.63* 138.33* 137.64* 151.64* 312.38* 296.67* 297.09*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

USA 88.34* 88.13* 107.05* 97.22* 44.43* 43.31* 40.82*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Emerging
Brazil 4383.99* 2005.36* 1821.74* 1948.91* 66.93* 56.38* 53.76*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Chile 817.98* 124.25* 62.88* 59.35* 55.92* 34.08* 32.88*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

India 132.74* 134.65* 131.79* 115.64* 105.81* 133.65* 134.71*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Korea 1900.93* 2163.24* 2192.52* 2337.99* 488.12* 489.66* 493.80*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Malaysia 229.48* 230.47* 293.06* 268.82* 304.55* 308.31* 317.86*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mexico 1054.32* 75.38* 52.96* 44.84* 26.92* 26.71* 27.10*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Poland 513.14* 498.66* 413.96* 455.74* 57.47* 56.48* 50.99*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Russia 403.55* 297.95* 274.03* 169.71* 247.08* 218.84* 221.52*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

S.Africa 616.13* 598.02* 535.16* 612.09* 14.24* 13.69* 13.23*
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. JB is the Jarque-
Bera test statistic for the null hypothesis of normally distributed standardised residuals. JB follows χ2 with
2 degrees of freedom so the critical value at the 5% level is 5.99. * means the null hypothesis of normality is
rejected at the 5% significance level.
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Table 5.7: Autocorrelation test statistics for all models & markets.

LB(23)

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 35.26* 37.61* 38.79* 37.32* 24.49 24.41 24.34*

(0.049) (0.028) (0.021) (0.030) (0.178) (0.081) (0.028)

Germany 29.69 29.36 27.61 27.35 17.50 15.04 17.55
(0.159) (0.169) (0.231) (0.241) (0.556) (0.522) (0.175)

Italy 15.46 15.85 17.02 17.18 9.80 9.89 10.50
(0.877) (0.862) (0.808) (0.800) (0.958) (0.872) (0.653)

Japan 28.46 32.16 33.17 32.43 16.94 17.73 18.09
(0.199) (0.097) (0.078) (0.092) (0.594) (0.340) (0.154)

Norway 60.44* 67.82* 68.65* 59.80* 32.88* 31.51* 32.88*
(0.000) (0.000) (0.000) (0.000) (0.025) (0.012) (0.002)

Sweden 72.31* 71.65* 64.02* 60.01* 34.37* 33.77* 33.29*
(0.000) (0.000) (0.000) (0.000) (0.017) (0.006) (0.002)

Swit. 32.05 31.83 36.06* 33.73 29.93 29.46* 29.32*
(0.099) (0.104) (0.041) (0.069) (0.053) (0.021) (0.006)

UK 58.57* 58.68* 53.62* 52.40* 41.34* 41.41* 41.15*
(0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000)

USA 55.58* 55.63* 56.34* 53.43* 31.17* 30.51* 30.63*
(0.000) (0.000) (0.000) (0.000) (0.039) (0.016) (0.004)

Emerging
Brazil 65.37* 43.18* 42.71* 34.16 19.73 21.41 22.23

(0.000) (0.007) (0.007) (0.063) (0.411) (0.163) (0.052)

Chile 23.98 18.79 16.81 21.96 21.15 18.93 18.97
(0.405) (0.713) (0.818) (0.522) (0.329) (0.272) (0.124)

India 36.82* 37.28* 40.88* 40.74* 34.11* 33.42* 36.87*
(0.034) (0.030) (0.012) (0.013) (0.018) (0.006) (0.000)

Korea 108.26* 117.69* 116.85* 119.68* 18.70 18.78 18.80
(0.000) (0.000) (0.000) (0.000) (0.476) (0.280) (0.129)

Malaysia 21.05 21.61 19.82 20.03 24.29 24.37 23.71*
(0.578) (0.544) (0.653) (0.640) (0.185) (0.082) (0.034)

Mexico 56.09* 42.84* 39.69* 36.35* 29.18 29.90* 29.84*
(0.000) (0.007) (0.017) (0.038) (0.063) (0.019) (0.005)

Poland 57.00* 56.81* 55.36* 54.11* 41.28* 38.77* 38.13*
(0.000) (0.000) (0.000) (0.000) (0.002) (0.001) (0.000)

Russia 32.29 32.75 30.65 26.09 25.09 25.03 24.97*
(0.094) (0.086) (0.132) (0.297) (0.158) (0.069) (0.023)

S.Africa 47.84* 42.26* 43.60* 41.16* 31.66* 31.10* 30.95*
(0.002) (0.008) (0.006) (0.011) (0.034) (0.013) (0.003)

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. LB(23) is
the Ljung-Box test statistic for the null hypothesis of no autocorrelation in the standardised residuals
up to order

√
522 ≈ 23. In the DGPs and GAM, LB statistic follows χ2 with 23 degrees of freedom

so the critical value at the 5% level is 35.17 (Mergner (2009)). In the time-varying DGPs via KFMR,
LB statistic follows χ2 with 23-(m − 1) degrees of freedom where m is the total number of estimated
parameters (Harvey (1989)). * means the null hypothesis of no autocorrelation is rejected at the 5%
significance level.
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Table 5.8: Heteroskedasticity test statistics for all models & markets.

Het(174)

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 0.87 0.84 0.84 0.87 0.72 0.72 0.72

(0.820) (0.875) (0.875) (0.820) (0.984) (0.984) (0.984)

Germany 0.80 0.80 0.83 0.85 0.69 0.79 0.70
(0.930) (0.930) (0.890) (0.858) (0.993) (0.939) (0.990)

Italy 1.85* 1.75* 1.78* 1.87* 1.53* 1.52* 1.54*
(0.000) (0.000) (0.000) (0.000) (0.003) (0.003) (0.002)

Japan 0.81 0.82 0.85 0.88 0.76 0.76 0.78
(0.917) (0.904) (0.858) (0.800) (0.964) (0.964) (0.948)

Norway 0.50 0.58 0.60 0.61 0.59 0.57 0.67
(0.999) (0.999) (0.999) (0.999) (0.999) (0.999) (0.996)

Sweden 1.00 0.99 0.98 1.02 0.84 0.85 0.84
(0.500) (0.526) (0.552) (0.448) (0.874) (0.858) (0.874)

Swit. 0.78 0.79 0.78 0.79 0.73 0.73 0.73
(0.948) (0.939) (0.948) (0.939) (0.980) (0.980) (0.980)

UK 0.59 0.58 0.58 0.61 0.57 0.57 0.57
(0.999) (0.999) (0.999) (0.999) (0.999) (0.999) (0.999)

USA 0.97 0.97 1.03 1.00 0.77 0.78 0.78
(0.579) (0.579) (0.423) (0.500) (0.955) (0.949) (0.949)

Emerging
Brazil 0.23 0.31 0.33 0.30 0.46 0.47 0.47

(0.999) (0.999) (0.999) (0.999) (0.999) (0.999) (0.999)

Chile 0.88 1.02 0.95 1.01 0.72 0.79 0.79
(0.800) (0.448) (0.632) (0.474) (0.985) (0.939) (0.939)

India 1.04 1.07 1.08 1.06 1.06 1.03 1.05
(0.398) (0.328) (0.306) (0.350) (0.350) (0.423) (0.374)

Korea 0.76 0.79 0.79 0.80 0.63 0.63 0.64
(0.964) (0.939) (0.939) (0.929) (0.999) (0.999) (0.998)

Malaysia 0.76 0.77 0.82 0.82 0.63 0.63 0.64
(0.964) (0.957) (0.904) (0.904) (0.999) (0.999) (0.998)

Mexico 0.63 0.76 0.71 0.72 0.60 0.60 0.61
(0.998) (0.964) (0.987) (0.985) (0.999) (0.999) (0.999)

Poland 0.91 0.95 0.98 0.96 0.77 0.78 0.79
(0.732) (0.632) (0.552) (0.606) (0.957) (0.949) (0.939)

Russia 0.39 0.49 0.47 0.47 0.38 0.39 0.39
(0.999) (0.999) (0.999) (0.999) (0.999) (0.999) (0.999)

S.Africa 0.74 0.80 0.83 0.81 0.74 0.75 0.75
(0.976) (0.929) (0.890) (0.917) (0.976) (0.970) (0.970)

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Het(174)
is the test statistic for the null hypothesis of no heteroskedasticity in the standardised residuals
up to order 522/3 = 174. Het(174) statistic follows F(174,174) distribution so the critical value at
the 5% level is 1.28. * means the null hypothesis of no heteroskedasticity is rejected at the 5%
significance level.
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the emerging markets. According to the H (Het(174)) test, the null hypothesis of

no heteroskedasticity cannot be rejected for all 18 global markets except for Italy

and models at the 5% significance level, implying that all models are adequate in

terms of no heteroskedasticity.

5.4.3 Graphical Summary

Figure 5.4 presents the scatter plots of the relationship between each stock market

excess return and the MSCI World market excess return for 2 developed (UK and

USA) and 2 emerging (Brazil and Russia) markets, respectively. To save space the

remaining markets are displayed in a smaller size in Figures 5.5 and 5.6. These

plots include the fitted models for the Linear Market Model (LMM), the Cubic

Market Model (CMM), the GAM function and the time-varying Linear Market

Model (TvLMM) via KFMR. The figure provides some key points. The fitted

curve for the Quadratic Market Model (QMM) is similar to that of the Cubic

Market Model (CMM). Also, the fitted curves for the time-varying Quadratic

Market Model (TvQMM) and the time-varying Cubic Market Model (TvCMM)

are similar to the time-varying Linear Market Model (TvLMM). These are not

shown for ease of presentation.

It can be seen that the weekly excess market returns of both developed and

emerging markets are positively correlated with the MSCI World market weekly

excess returns, with a correlation coefficient ranging from 0.58 (Malaysia) to 0.95

(USA). The time-varying Linear Market Model (TvLMM) provides a much closer

fit to the data than the others due to the time-varying relationship estimated

between Rit −Rft and Rmt −Rft. Such short-term volatility in this relationship

cannot be captured by the globally smooth polynomial or generalized additive

models. The figure also suggests that the Linear Market Model (LMM) can be

appropriate for capturing the risk-return relationship without extreme values in

the data sample, as the majority of the UK and USA data exhibit a close to linear

relationship. Note that the non-linear models exhibit estimated relationships that

are close to that of the linear one. This is not true for the emerging markets

however. Finally, the curvature observed from the GAM fit appears to be driven
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Figure 5.4: The scatter plots of 2 developed (UK and USA) and 2 emerging (Brazil and Russia) markets weekly excess returns.
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Figure 5.5: The scatter plots of 7 developed markets weekly excess returns.
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Figure 5.6: The scatter plots of 7 emerging markets weekly excess returns.
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largely by a small number of outlying values, as it appears roughly linear for the

vast majority of the data.

To sum up, the time-varying Linear Market Model (TvLMM) via KFMR with

time-varying systematic covariance (beta) risk appears to be the most appropriate

model for developed and emerging markets in terms of overall measures of model

fit and the graphical summary of the fitted models to the data.

5.4.4 Time-varying Linear Market Model

As the time-varying Linear Market Model (TvLMM) exhibits the best fit to the

data, we examine it in greater detail here. Table 5.9 presents hyperparameter

estimates from the time-varying Linear Market Model via KFMR, which has

been applied using equations (5.3) and (5.4).

The parameter φ1i, which is crucial to clarify the temporal autocorrelation in

{α1it} within the Kalman Filter based approaches, should lie in the range 0 to

1 for a stationary series (see details in section 3.3). Here, estimated φ̂1i is close

to 1 for India, so that the time-varying systematic covariance (beta) series of

the KFMR becomes similar to the KFRW. On the other hand, the time-varying

systematic covariance series of the KFMR becomes similar to the KFRC when

φ̂1i is close to 0 (for Germany, Japan, Sweden and USA in the developed markets

and Chile, Korea, Malaysia, and Mexico in the emerging markets).

Across all 18 global markets, the estimated values of Q̂1i are higher than

those of the Ĥi, meaning that the state variance captures the volatility of the

stock market excess returns more than the observation variance. Also, both the

estimated Ĥi and Q̂1i values for the emerging markets are generally higher than

those of the developed markets, meaning that the emerging markets are more

volatile than the developed markets.

Table 5.10 presents state parameter estimates from the time-varying Linear

Market Model via KFMR (equations (5.3) and (5.4)) in both developed and

emerging markets.

The regression intercept, κ̂i, of all 18 global markets is close to zero. This is

an expected result for κ̂i in the Two-Moment CAPM because the risk-free rate
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Table 5.9: Time-varying Linear Market Model hyperparameter estimates (standard
errors) via KFMR.

Market Q̂1i × 100 Ĥi × 100 φ̂1i

Developed
France 8.081 0.014 0.223

(2.106) (0.001) (0.053)

Germany 16.920 0.015 0.029
(2.917) (0.001) (0.011)

Italy 17.249 0.024 0.119
(4.223) (0.002) (0.032)

Japan 21.197 0.033 0.057
(5.111) (0.003) (0.028)

Norway 20.077 0.061 0.575
(12.042) (0.005) (0.339)

Sweden 16.739 0.029 0.000
(4.110) (0.002) (0.000)

Switzerland 5.873 0.017 0.278
(2.167) (0.001) (0.098)

UK 4.433 0.014 0.418
(1.810) (0.001) (0.135)

USA 3.914 0.004 0.020
(0.811) (0.000) (0.009)

Emerging
Brazil 70.647 0.066 0.436

(14.591) (0.006) (0.081)

Chile 26.008 0.043 0.000
(5.871) (0.003) (0.000)

India 5.204 0.095 0.927
(3.695) (0.007) (1.144)

Korea 79.346 0.075 0.000
(14.584) (0.006) (0.000)

Malaysia 17.703 0.028 0.000
(4.871) (0.002) (0.000)

Mexico 33.105 0.032 0.000
(6.431) (0.003) (0.000)

Poland 68.183 0.079 0.312
(15.238) (0.007) (0.065)

Russia 62.157 0.110 0.526
(19.726) (0.009) (0.160)

SouthAfrica 36.599 0.055 0.254
(8.902) (0.005) (0.063)

Notes: Italic numbers in parentheses denote the standard errors of the
time-varying Linear Market Model hyperparameter estimates via KFMR.
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Table 5.10: Time-varying Linear Market Model state parameter estimates (standard
errors) via KFMR.

Market κ̂i ˆ̄α1it Range

Developed
France 0.000 1.337 (0.651;1.962)

(0.000) (0.043)

Germany 0.000 1.386 (0.302;2.561)
(0.000) (0.050)

Italy -0.002 1.272 (0.462;2.376)
(0.000) (0.054)

Japan 0.000 0.741 (-0.288;1.773)
(0.000) (0.036)

Norway 0.002 1.380 (0.281;2.772)
(0.000) (0.104)

Sweden 0.001 1.456 (0.499;2.310)
(0.000) (0.062)

Switzerland 0.000 0.944 (0.389;1.463)
(0.000) (0.031)

UK 0.000 1.088 (0.608;1.686)
(0.000) (0.034)

USA 0.000 0.910 (0.494;1.374)
(0.000) (0.016)

Emerging
Brazil 0.004 1.487 (-2.722;3.382)

(0.000) (0.142)

Chile 0.003 0.862 (-0.323;1.913)
(0.000) (0.046)

India 0.002 1.120 (0.148;2.350)
(0.000) (0.177)

Korea 0.001 1.199 (-1.833;4.408)
(0.000) (0.094)

Malaysia 0.002 0.582 (-0.350;1.653)
(0.000) (0.025)

Mexico 0.003 1.167 (-0.047;2.645)
(0.000) (0.060)

Poland 0.002 1.405 (-0.565;4.748)
(0.000) (0.125)

Russia 0.002 1.367 (-0.333;4.230)
(0.000) (0.152)

SouthAfrica 0.002 1.238 (-0.162;3.794)
(0.000) (0.083)

Notes: Range displays the range of β̂imt = α̂1it. Italic numbers in
parentheses denote the standard errors of the time-varying Linear Market
Model state parameter estimates via KFMR.
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(Rft) is subtracted before estimation (see Campbell et al. (1997)). Hence, κ̂i can

be assumed to be zero in the Two-Moment CAPM in many studies (e.g. Mergner

and Bulla (2008) and Choudhry and Wu (2009)) and in the previous chapter,

but not here. The mean of the time-varying systematic covariance α̂1it for all of

the 18 global markets is positive, and is close to 1, with a standard error close

to 0.06. Note that a systematic covariance (α̂1i) value of 1 means that the stock

market moves in step with the MSCI World market portfolio. A value of α̂1i less

than 1 means that the stock market is less volatile than the MSCI World market

portfolio, whereas α̂1i greater than 1 indicates that the stock market is more

volatile than the MSCI World market portfolio. The KFMR provides a wider

range of time-varying systematic covariance (α̂1it) risk in the emerging markets

than the developed markets. This suggests that the relationship between excess

returns in emerging markets and the MSCI World market portfolio as a whole is

less consistent than the relationship between excess returns in developed markets

and the MSCI World market portfolio as a whole.

Figure 5.7 also displays the time-varying systematic covariance (α̂1it) series of

2 developed markets (UK and USA) and 2 emerging markets (Brazil and Russia),

respectively. To save space the remaining markets are displayed in a smaller size

in Figures 5.8 and 5.9. It can be clearly seen that the time-varying systematic

covariance (α̂1it) series fluctuate about the equivalent Linear Market Model es-

timates (α̂1i) in all 18 global markets. The time-varying systematic covariance

(α̂1it) of the emerging markets is more volatile than that of the developed markets.

Also, in the presence of extreme events around October 6-10, 2008 due to the fi-

nancial crisis, the time-varying systematic covariance (α̂1it) is potentially more

volatile in the emerging markets (Brazil and UK) than the developed markets

(UK and USA). In addition, it can be clearly seen that India has qualitatively

different behaviour than the rest as {α1it} varies smoothly over time as φ̂1i ≈ 1.

For the rest it is more random as 0 ≤ φ̂1i < 1.
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Figure 5.7: The estimated α̂1it plots of 2 developed (UK and USA) and 2 emerging (Brazil and Russia) markets.
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Figure 5.8: The estimated α̂1it plots of 7 developed markets.
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Figure 5.9: The estimated α̂1it plots of 7 emerging markets.
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5.5 Comparison of Models Before and After

the October 2008 Financial Crisis

A seperate comparison between the same models, for the periods before and after

the October 2008 financial crisis, is made in sections 5.5.1 and 5.5.2 to investigate

the effect of the crisis whilst modelling stock market returns. The comparison

is made in terms of overall measures of model fit, using the Akaike Information

Criterion (AIC ), the Bayesian Information Criterion (BIC ) and Adjusted R2.

5.5.1 Model Fit Before the October 2008 Financial Crisis

The model fit results for the period from July 2002 to before the October 2008

financial crisis are given in Tables 5.11, 5.12 and 5.13, which respectively display

the AIC, BIC and Adjusted R2.

Table 5.11: AIC values for all models & markets before October 2008.

AIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -1889.16 -1889.45 -1903.04 -1903.46 -1907.17 -1905.89 -1905.07
Germany -1773.67 -1778.43 -1778.26 -1779.58 -1831.01 -1842.46 -1834.88
Italy -1824.52 -1828.59 -1826.78 -1830.50 -1836.04 -1832.24 -1829.35
Japan -1573.52 -1577.96 -1598.63 -1607.15 -1603.25 -1606.41 -1603.37
Norway -1362.55 -1382.31 -1380.39 -1382.69 -1393.44 -1400.08 -1394.30
Sweden -1674.13 -1677.62 -1685.41 -1690.10 -1687.17 -1683.66 -1683.10
Swit. -1823.81 -1822.61 -1832.77 -1835.43 -1831.47 -1827.52 -1826.41
UK -1905.57 -1903.93 -1903.12 -1917.45 -1920.46 -1914.51 -1911.68
USA -2247.78 -2258.35 -2259.06 -2258.72 -2267.24 -2266.58 -2264.01
Emerging
Brazil -1149.20 -1189.76 -1202.31 -1212.53 -1281.11 -1283.82 -1281.81
Chile -1499.76 -1502.93 -1518.17 -1515.42 -1518.82 -1516.38 -1513.46
India -1251.66 -1256.96 -1267.28 -1267.40 -1297.10 -1293.91 -1292.98
Korea -1350.46 -1355.16 -1366.39 -1368.13 -1357.08 -1353.04 -1355.65
Malaysia -1623.05 -1633.95 -1641.67 -1639.86 -1641.28 -1639.42 -1641.51
Mexico -1508.42 -1520.91 -1533.71 -1535.39 -1555.29 -1561.70 -1556.77
Poland -1318.39 -1327.18 -1329.08 -1331.56 -1331.72 -1332.88 -1329.45
Russia -1137.42 -1151.23 -1150.44 -1153.17 -1186.18 -1184.67 -1178.54
S.Africa -1414.34 -1430.55 -1431.98 -1434.06 -1447.90 -1454.81 -1446.74

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest AIC.
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Table 5.11 shows that in the period before the October 2008 financial crisis,

the lowest AIC value comes from the time-varying Linear Market (TvLMM) and

the time-varying Quadratic Market Models (TvQMM) via KFMR for all devel-

oped markets and emerging markets, with the exceptions being Japan, Sweden,

Switzerland and Korea, where the generalized additive model (GAM) has the

lowest AIC value, and Malaysia, where the Cubic Market Model (CMM) has the

lowest AIC value. In addition, the GAM outperforms the Higher order DGPs

in general across most of the 18 global markets, with the exception of the USA,

Chile and Malaysia. The Linear Market Model (LMM) also outperforms the

Higher order DGPs in the UK.

Table 5.12: BIC values for all models & markets before October 2008.

BIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -1877.83 -1874.34 -1884.15 -1881.57 -1888.29 -1875.66 -1863.51
Germany -1762.34 -1763.32 -1759.37 -1762.32 -1812.12 -1811.84 -1793.32
Italy -1813.19 -1813.48 -1807.89 -1796.20 -1817.15 -1802.03 -1787.80
Japan -1562.18 -1562.85 -1579.74 -1571.74 -1584.36 -1576.19 -1561.82
Norway -1351.22 -1367.20 -1361.50 -1350.37 -1374.55 -1369.86 -1352.74
Sweden -1662.80 -1662.51 -1666.53 -1658.57 -1668.28 -1653.43 -1641.55
Swit. -1812.48 -1807.49 -1813.88 -1809.91 -1812.58 -1797.30 -1784.86
UK -1894.24 -1888.82 -1884.23 -1879.54 -1901.57 -1884.29 -1870.13
USA -2236.45 -2243.24 -2240.17 -2240.10 -2248.35 -2236.36 -2222.45
Emerging
Brazil -1137.87 -1174.65 -1183.42 -1174.32 -1262.22 -1253.59 -1240.26
Chile -1488.43 -1487.82 -1499.28 -1489.54 -1499.94 -1486.16 -1471.90
India -1240.33 -1241.85 -1248.39 -1239.24 -1278.21 -1263.69 -1251.42
Korea -1339.13 -1340.05 -1347.50 -1337.09 -1338.19 -1322.82 -1314.10
Malaysia -1611.72 -1618.83 -1622.78 -1618.64 -1622.39 -1609.20 -1599.96
Mexico -1497.09 -1505.80 -1514.82 -1512.41 -1536.40 -1531.48 -1515.22
Poland -1307.06 -1312.07 -1310.19 -1311.04 -1312.84 -1302.66 -1287.90
Russia -1126.09 -1136.12 -1131.56 -1119.65 -1167.29 -1154.45 -1136.98
S.Africa -1403.00 -1415.44 -1413.09 -1412.66 -1429.01 -1424.59 -1405.18
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest BIC.

Table 5.12, on the other hand, illustrates that, based on the lowest BIC, the

time-varying Linear Market Model (TvLMM) via KFMR outperforms all of the

other models during the period before the October 2008 financial crisis for all

developed and emerging markets, with the exception of Switzerland, Korea and



CHAPTER 5. IS THE LINEAR MARKET MODEL APPROPRIATE? 131

Malaysia, where the Cubic Market Model (CMM) is more appropriate. Within

the time-varying Higher order DGPs, the time-varying Quadratic Market Model

(TvQMM) outperforms the time-varying Cubic Market Model (TvCMM) for all 18

global markets; suggesting that in this case the time-varying Quadratic Market

Model is preferable to the time-varying Cubic Market Model for all 18 global

markets. Moreover, it has been shown that the Higher order DGPs outperform

the GAM for all developed and emerging markets. This is because the BIC

has a larger penalty than the AIC, and thus chooses simpler models. These

results show that the time-varying Linear Market Model (TvLMM) is preferable

to other models, in that the additional complexity of other models does not greatly

improve their model fit performance in relation to the time-varying Linear Market

Model.

Table 5.13: Adjusted R2 values for all models & markets before October 2008.

Adjusted R2

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 0.829 0.829 0.837 0.838 0.889 0.876 0.886
Germany 0.785 0.789 0.789 0.790 0.899 0.874 0.879
Italy 0.709 0.713 0.712 0.719 0.808 0.804 0.802
Japan 0.344 0.355 0.397 0.420 0.575 0.545 0.527
Norway 0.431 0.466 0.464 0.474 0.546 0.567 0.563
Sweden 0.754 0.758 0.764 0.770 0.828 0.824 0.806
Swit. 0.716 0.716 0.726 0.730 0.791 0.787 0.776
UK 0.764 0.764 0.764 0.777 0.814 0.815 0.814
USA 0.874 0.878 0.879 0.879 0.923 0.901 0.898
Emerging
Brazil 0.294 0.379 0.405 0.432 0.790 0.772 0.775
Chile 0.334 0.343 0.375 0.373 0.512 0.502 0.486
India 0.235 0.250 0.276 0.281 0.559 0.547 0.567
Korea 0.332 0.343 0.368 0.377 0.506 0.488 0.433
Malaysia 0.245 0.272 0.292 0.289 0.560 0.534 0.467
Mexico 0.496 0.517 0.537 0.541 0.678 0.669 0.663
Poland 0.325 0.345 0.351 0.357 0.414 0.424 0.412
Russia 0.227 0.262 0.262 0.277 0.532 0.513 0.514
S.Africa 0.407 0.438 0.442 0.447 0.519 0.536 0.548
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the highest Adjusted R2.

The results for Adjusted R2 are given in Table 5.13. Again these show that the

time-varying Linear Market Model (TvLMM) via KFMR performs better than the
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time-varying Higher order DGPs for all 18 global markets, with the exceptions

being that of Norway, the UK and Poland, where the time-varying Quadratic

Market Model (TvQMM) is better, as well as India and South Africa, where the

time-varying Cubic Market Model (TvCMM) is better. Nevertheless, use of these

models does not result in improvements in model fit over the time-varying Linear

Market Model. For example, the time-varying Linear Market Model improves on

the time-varying Quadratic Market Model in terms of Adjusted R2 by on average

0.9% for both the developed and emerging markets. The time-varying Linear

Market Model also improves on the time-varying Cubic Market Model in terms

of Adjusted R2 by on average 1.4% for the developed markets and 2.3% for the

emerging markets. These results confirm what is reported in Tables 5.11 and

5.12, namely, that the time-varying Linear Market Model (TvLMM) outperforms

all other time-varying DGPs. This confirms that the additional complexity of

the time-varying Higher order DGPs does not improve the model fit performance

of the time-varying Linear Market Model during the period before the October

2008 financial crisis.

The time-varying Linear Market Model (TvLMM) provides a much better

performance during this period than the Higher order DGPs and the generalized

additive model (GAM). The time-varying Linear Market Model improves on the

Linear Market Model (LMM) in terms of Adjusted R2 by on average 9.6% for the

developed markets and 24.2% for the emerging markets, suggesting that, during

the period before the October 2008 financial crisis, the emerging markets were

more unstable than the developed markets. In addition, the GAM outperforms

all DGPs for all 18 global markets, although the improvements in model fit are

not substantial. For example, the GAM improves on the Linear Market Model in

terms of Adjusted R2 by on average only 2.1% for the developed markets and 5.3%

for the emerging markets. The average increase in Adjusted R2 from the Linear

Market Model to the Cubic Market Model (CMM) is 1.4% for the developed

markets and 4.6% for the emerging markets. The average increase in Adjusted

R2 from the Linear Market Model to the Quadratic Market Model (QMM) is

0.7% for the developed markets and 2.8% for the emerging markets. As seen in

Tables 5.11 and 5.12, these results confirm that, in the period before the October
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2008 financial crisis, the time-varying Linear Market Model offers a substantial

improvement in model fit to the Linear Market Model, but the other non-linear

DGPs do not.

5.5.2 Model Fit After the October 2008 Financial Crisis

The model fit for the period from after the October 2008 financial crisis to July

2012 results are given in Tables 5.14, 5.15 and 5.16, which respectively display

the AIC, BIC and Adjusted R2.

Table 5.14: AIC values for all models & markets after October 2008.

AIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -1068.73 -1068.98 -1068.81 -1071.16 -1085.15 -1080.62 -1075.70
Germany -1024.33 -1022.78 -1021.60 -1024.33 -1048.74 -1042.78 -1037.39
Italy -928.17 -929.79 -928.30 -929.95 -928.33 -924.35 -918.69
Japan -955.82 -954.68 -955.97 -956.01 -957.48 -953.08 -949.25
Norway -878.52 -885.72 -884.10 -891.58 -896.71 -893.37 -887.93
Sweden -908.17 -906.31 -907.21 -908.17 -920.59 -915.00 -909.98
Swit. -1076.68 -1075.17 -1078.55 -1077.87 -1074.94 -1069.57 -1068.38
UK -1114.71 -1113.97 -1111.98 -1114.71 -1118.06 -1112.42 -1106.35
USA -1316.31 -1314.32 -1318.88 -1320.68 -1330.70 -1324.73 -1322.32
Emerging
Brazil -872.91 -870.92 -870.18 -872.91 -876.30 -870.30 -865.62
Chile -877.85 -879.19 -877.76 -880.39 -889.21 -883.91 -879.45
India -780.97 -780.45 -781.28 -781.58 -788.75 -786.02 -780.22
Korea -785.30 -783.67 -783.21 -785.30 -789.66 -783.71 -779.02
Malaysia -1015.19 -1013.84 -1015.49 -1015.60 -1019.80 -1014.10 -1010.21
Mexico -972.24 -971.82 -970.13 -972.25 -977.82 -972.23 -966.44
Poland -721.17 -720.08 -720.76 -726.05 -740.00 -734.32 -729.92
Russia -736.71 -739.21 -738.44 -739.82 -746.23 -744.30 -738.94
S.Africa -877.69 -876.85 -874.99 -877.82 -876.40 -871.76 -865.76
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest AIC.

Table 5.14 shows that, based on the lowest AIC, the time-varying Linear Mar-

ket Model (TvLMM) via KFMR is the most appropriate model for all 18 global

markets, with the exception of Italy and South Africa, where the generalized ad-

ditive model (GAM) has the lowest AIC value, and of Switzerland, where the

Cubic Market Model (CMM) has the lowest AIC value. It can be clearly seen
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that the time-varying Quadratic Market Model (TvQMM) outperforms the time-

varying Cubic Market Model (TvCMM) for all 18 global markets, and is thus

preferable to the latter. In addition, the GAM outperforms the time-varying

Cubic Market Model for 5 of the developed markets, including Italy, Japan, Nor-

way, Switzerland and the UK, as well as all of the emerging markets except for

Poland. This suggests that the additional complexity of the time-varying Cubic

Market Model via KFMR does not improve the model fit in terms of AIC. The

GAM also outperforms the Higher order DGPs for all 18 global markets apart

from Switzerland, where the Cubic Market Model is preferred. It can be clearly

seen that the Linear Market Model (LMM) outperforms the Higher order DGPs

in Germany, Sweden, the UK, Brazil, Korea, Mexico, Poland and South Africa,

suggesting that the additional complexity of the Higher order DGPs does not

greatly improve model fit in terms of AIC during the period after the October

2008 financial crisis.

Table 5.15: BIC values for all models & markets after October 2008.

BIC
Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France -1058.94 -1055.93 -1052.50 -1053.61 -1068.84 -1054.52 -1039.79
Germany -1014.54 -1009.73 -1005.29 -1014.54 -1032.43 -1016.67 -1001.50
Italy -918.38 -916.74 -911.99 -917.08 -912.02 -898.25 -882.80
Japan -946.03 -941.63 -939.66 -943.75 -941.17 -926.98 -913.36
Norway -868.73 -872.67 -867.79 -859.57 -880.40 -867.27 -852.04
Sweden -898.38 -893.26 -890.90 -898.38 -904.28 -888.90 -874.09
Swit. -1066.89 -1062.12 -1062.24 -1061.85 -1058.63 -1043.47 -1032.46
UK -1104.92 -1100.92 -1095.67 -1104.92 -1101.75 -1086.31 -1070.46
USA -1306.53 -1301.27 -1302.57 -1299.09 -1314.39 -1298.62 -1286.43
Emerging
Brazil -863.12 -857.87 -853.87 -863.12 -859.99 -844.20 -829.73
Chile -868.07 -866.14 -861.45 -865.38 -872.89 -857.81 -843.56
India -771.18 -767.40 -764.96 -767.33 -772.43 -759.92 -744.33
Korea -775.52 -770.62 -766.90 -775.52 -773.35 -757.61 -743.13
Malaysia -1005.40 -1000.79 -999.18 -999.95 -1003.48 -988.00 -974.32
Mexico -962.46 -958.77 -953.82 -962.21 -961.51 -946.14 -930.55
Poland -711.38 -707.03 -704.45 -693.42 -723.68 -708.21 -694.03
Russia -726.92 -726.16 -722.12 -718.98 -729.92 -718.20 -703.05
S.Africa -867.91 -863.80 -858.68 -866.87 -860.09 -845.65 -829.87
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the lowest BIC.
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Table 5.15 shows that the lowest BIC value comes from the time-varying

Linear Market Model (TvLMM) via KFMR during the period after the October

2008 financial crisis for 5 of the developed markets, including France, Germany,

Norway, Sweden and the USA, as well as 4 of the emerging markets, including

Chile, India, Poland and Russia. It can also be seen that the Linear Market Model

(LMM) outperforms the time-varying Higher order DGPs and the Higher order

DGPs for 4 of the developed markets including Italy, Japan, Switzerland and

the UK, as well as 5 of the emerging markets, including Brazil, Korea, Malaysia,

Mexico and South Africa. This is because the BIC has a larger penalty than the

AIC, and thus chooses simpler models. These results suggest that the additional

complexity of these models does not greatly improve model fit compared to the

Linear Market Model in terms of BIC during the period after the October 2008

financial crisis.

Table 5.16: Adjusted R2 values for all models & markets after October 2008.

Adjusted R2

Model LMM QMM CMM GAM TvLMM TvQMM TvCMM
Developed
France 0.884 0.885 0.885 0.887 0.944 0.942 0.942
Germany 0.860 0.859 0.859 0.860 0.944 0.943 0.943
Italy 0.814 0.816 0.816 0.817 0.863 0.859 0.858
Japan 0.453 0.452 0.459 0.455 0.624 0.621 0.597
Norway 0.792 0.800 0.800 0.812 0.891 0.883 0.878
Sweden 0.782 0.781 0.783 0.782 0.877 0.866 0.875
Swit. 0.760 0.760 0.765 0.764 0.809 0.808 0.770
UK 0.872 0.872 0.871 0.872 0.922 0.921 0.920
USA 0.929 0.929 0.931 0.932 0.966 0.965 0.963
Emerging
Brazil 0.734 0.733 0.733 0.734 0.792 0.790 0.790
Chile 0.468 0.475 0.474 0.480 0.650 0.695 0.698
India 0.484 0.486 0.490 0.490 0.588 0.600 0.593
Korea 0.564 0.562 0.564 0.564 0.739 0.737 0.733
Malaysia 0.463 0.462 0.469 0.469 0.690 0.686 0.677
Mexico 0.752 0.752 0.752 0.752 0.863 0.861 0.861
Poland 0.618 0.617 0.621 0.640 0.841 0.841 0.842
Russia 0.658 0.664 0.665 0.669 0.785 0.761 0.758
S.Africa 0.697 0.697 0.696 0.698 0.769 0.774 0.772
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa. Bold displays
the best market pricing model for each market in terms of the highest Adjusted R2.

The results for Adjusted R2 are given in Table 5.16. This again shows that



CHAPTER 5. IS THE LINEAR MARKET MODEL APPROPRIATE? 136

the time-varying Linear Market Model (TvLMM) via KFMR provides a better

performance than the time-varying Higher order DGPs during the period after

the October 2008 financial crisis for all developed and emerging markets, with

the exceptions being Chile and Poland, where the time-varying Cubic Market

Model (TvCMM) performs better, as well as India and South Africa, where the

time-varying Quadratic Market Model (TvQMM) achieves better results. The

improvements in model fit to the time-varying Linear Market Model, however, are

not substantial. For example, the time-varying Linear Market Model improves on

the time-varying Quadratic Market Model in terms of Adjusted R2 by on average

0.4% for the developed markets; however, the time-varying Linear Market Model

reduces on the time-varying Quadratic Market Model in terms of Adjusted R2

by on average 0.3% for the emerging markets. In addition, whilst the time-

varying Linear Market Model improves on the time-varying Cubic Market Model

in terms of Adjusted R2 by on average 1% for the developed markets, the time-

varying Linear Market Model worsens on the time-varying Cubic Market Model in

terms of Adjusted R2 by on average 0.1% for the emerging markets. These results

may be due to the fact that the emerging markets were more unstable than the

developed markets during this period, and might have become more integrated

with the October 2008 financial crisis than the developed markets. These results

confirm what is seen in Tables 5.14 and 5.15, namely that adding the additional

complexity of the time-varying Higher order DGPs provides a slight improvement

in model fit in comparison to the time-varying Linear Market Model during the

period after the October 2008 financial crisis in the emerging markets, but not in

the developed markets.

The time-varying Linear Market Model (TvLMM) via KFMR again provides

a much better performance than the Higher order DGPs and the generalized

additive model (GAM) for this period. The time-varying Linear Market Model

improves on the Linear Market Model (LMM) in terms of Adjusted R2 by on

average 7.7% for the developed markets and 14.2% for the emerging markets.

It can be seen that the GAM outperforms the Higher order DGPs for all 18

global markets, but that the improvements in model fit are not substantial. For

example, the average increase in Adjusted R2 from the Cubic Market Model
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(CMM) to the GAM is 0.1% for the developed markets and 0.4% for the emerging

markets. Furthermore, the GAM improves on the Linear Market Model in terms

of Adjusted R2 by on average only 0.4% for the developed markets and 0.6%

for the emerging markets. The average increase in Adjusted R2 from the Linear

Market Model to the Cubic Market Model is 0.3% for both the developed and

emerging markets. These results confirm what is seen in Tables 5.14 and 5.15,

namely, that in the period under discussion, the time-varying Linear Market

Model offers a substantial improvement in model fit to the Linear Market Model,

but that the other non-linear DGPs do not.

5.6 Conclusion

The focus of this chapter has been on assessing the appropriateness of the Lin-

ear Market Model (consistent with the Two-Moment CAPM) by comparing it to

Higher order DGPs, consistent with their equivalent Higher-Moment CAPMs, a

generalized additive model (GAM), the time-varying Linear Market Model and

the time-varying Higher order DGPs via KFMR when applied to the 18 global

markets during the three different time periods (July 2002-July 2012; July 2002-

before October 2008; and after October 2008-July 2012) for the purpose of in-

vestigating the effect of the October 2008 financial crisis when modelling stock

market returns.

The appropriateness of the models was assessed by overall measures of model

fit using AIC, BIC and Adjusted R2, residual diagnostics, and by a graphical

summary of the fitted models to the data over the entire period of July 2002-

2012. The Linear Market Model (LMM) performs worse under both metrics.

The Cubic Market Model (CMM) provides a slight improvement on the Linear

Market Model in terms of Adjusted R2, by on average 0.4% for the developed

markets and 2% for the emerging markets. Using a Quadratic Market Model

(QMM), the Adjusted R2 decreases compared to the Linear Market Model for

Germany, India and Malaysia. In addition, the GAM outperforms the Higher

order DGPs in all 18 global markets, but the GAM improves on the Linear Market

Model in terms of Adjusted R2 by on average only 1% for the developed markets



CHAPTER 5. IS THE LINEAR MARKET MODEL APPROPRIATE? 138

and 3.9% for the emerging markets. The time-varying Linear Market Model

(TvLMM) via KFMR provides a much better performance than any of the non-

linear DGPs. Furthermore, it improves on the Linear Market Model in terms of

Adjusted R2 by on average 10.4% for the developed markets and 25.3% for the

emerging markets. The time-varying Linear Market Model also provides a better

performance than the time-varying Higher order DGPs, but the improvements in

model fit are not substantial. The time-varying Linear Market Model improves

on the time-varying Quadratic Market Model (TvQMM) in terms of Adjusted R2

by on average 0.3% for the developed markets and 0.6% for the emerging markets.

The time-varying Linear Market Model also improves on the time-varying Cubic

Market Model (TvCMM) in terms of Adjusted R2 by on average 0.5% for the

developed markets and 1% for the emerging markets. These results confirm that

the additional complexity of the time-varying Higher order DGPs does not provide

an improvement in model fit compared to the time-varying Linear Market Model

for both the developed and emerging markets over the entire period from July

2002 to July 2012.

The model fit results for the periods before and after the October 2008 fi-

nancial crisis also confirm that the Linear Market Model performs worse in both

cases. The GAM outperforms the Higher order DGPs in terms of average Adjusted

R2 for both the developed and emerging markets, but it provides only a slight

improvement on the Linear Market Model. For example, the GAM improves on

the Linear Market Model in terms of Adjusted R2, by on average 2.1% for the de-

veloped markets and 5.3% for the emerging markets during the period before the

October 2008 financial crisis, and an average 0.4% for the developed markets and

0.6% for the emerging markets in the post-crisis period. The time-varying Linear

Market Model provides overall a much better performance than any of the other

models in the periods both before and after the crisis for both the developed and

emerging markets; the exception being the emerging markets in the period after

the crisis, where the time-varying Quadratic Market Model performs better in

terms of average Adjusted R2. However, in this case the improvements in model

fit to the time-varying Linear Market Model are not substantial. For example,

the time-varying Quadratic Market Model improves on the time-varying Linear
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Market Model in terms of Adjusted R2 by on average 0.3% for the emerging

markets. It can be seen that the improvements in model fit in terms of average

Adjusted R2 from the Linear Market Model to the time-varying Linear Market

Model for the developed markets (9.6%; and 7.7%, respectively), are less than

the corresponding improvements for the emerging markets (24.2%; and 14.2%,

respectively) during these periods. These results may be due to the fact that

the developed markets were more stable than the emerging markets during the

periods both before and after the October 2008 financial crisis.

These results support the pricing of the time-varying systematic covariance

risk rather than the other time-varying systematic risk measures, time-varying

systematic skewness and time-varying systematic kurtosis as well as the time-

invariant systematic risk measures, systematic covariance, systematic skewness

and systematic kurtosis in the CAPMs. They also confirm the instability of the

systematic covariance risk mentioned in the existing literature and the previous

chapter with regard to the Two-Moment CAPM.

Note that residual diagnostics are discussed in section 5.4.2. These assump-

tions are that the residuals are normally distributed, independent (no autocorre-

lation) and have constant variance (homoskedasticity). When these assumptions

are violated, the state space models can be affected but appropriate extensions

of the state space model were discussed in section 4.6.



Chapter 6

Multivariate State Space Modelling

6.1 Introduction

The Two-Moment Capital Asset Pricing Model (CAPM), devised by Sharpe

(1964), Lintner (1965) and Mossin (1966), remains a well known and still widely

used pricing model. The model implies a linear relationship between the ex-

pected return on a countries stock market and its systematic covariance (beta)

risk, which is constant over time. However, as discussed in the previous chapters,

there is substantial empirical evidence to suggest that systematic covariance risk

varies over time, possibly in response to economic factors, such as unemployment

rate, credit score, etc.. In Chapter 5, the appropriateness of the unconditional

and conditional Two-Moment CAPMs for developed and emerging stock markets

was assessed, and the results suggested that a time-varying Linear Market Model

(consistent with the conditional Two-Moment CAPM) provides a much better

performance when explaining stock market excess returns than a simpler Linear

Market Model whose systematic covariance risk is constant over time. However,

the performance of these models was evaluated in a univariate context separately

for each stock market, which does not utilise the correlation structure among

different countries’ stock markets in the estimation process.

The correlation in countries’ stock markets is understood to be a consequence

of economic and financial integration. Research by Yavas (2007) reveals that

increasing levels of international trade and international financial transactions

140
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have influenced the correlation between national economies worldwide in recent

decades. This economic integration has contributed to an increased level of cor-

relation between stock markets and heightened their integration.

According to the CAPM and portfolio theory (Markowitz (1952)), the likely

presence of correlations between various stock markets is important for generat-

ing a well diversified portfolio to reduce overall risk. This encouraged financial

researchers to explore dependencies between stock markets in a multivariate Two-

Moment CAPM. For example, prominent papers such as Gibbons et al. (1989),

Mackinlay and Richardson (1991) and Hansen and Jagannathan (1997) have con-

sidered analysing the assets pricing data model in a multivariate context with

time invariant systematic covariance risk. This chapter considers this multivari-

ate context across several countries’ stock markets simultaneously, and extends

the above literature to consider time-varying systematic covariance risks. Our

overall approach is to extend the time-varying systematic covariance risk models

used in Chapter 5 to the multivariate domain, which allows the between stock

market correlation to be utilised in the estimation process. A multivariate state

space approach, which is the first such approach in this literature, is taken, and

considering the superiority of the performance of the mean reverting specifica-

tion in Chapter 4 and Chapter 5, this is the only model considered here. (The

random walk and random coefficients models are special cases and are not con-

sidered explicitly.). Note that the direction of the stock market co-movement

can be measured using various methodologies such as multivariate GARCH (e.g.

Chiang et al. (2007), Wang and Moore (2008) and Saleem (2009)) and vector

auto-regression (VAR) (e.g. Liu et al. (1998), Chang and Nieh (2001) and Jaya-

suriya (2011)) in the financial literature.

The main purpose of this chapter is to model and forecast time-varying sys-

tematic covariance (beta) risks based on a multivariate state space form of the

time-varying Linear Market Model (consistent with conditional Two-Moment

CAPM) using a Kalman Filter Mean Reverting model, and to see if this out-

performs a univariate approach. Both in-sample modelling and out-of-sample

forecasting procedures are considered, and are used to quantify model perfor-

mance. Four possible multivariate state space model formulations are consid-
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ered, a comparison that is yet to be undertaken in the literature. The aim of this

chapter is to compare the performance of these models to evaluate the extent to

which accounting for the between country stock market correlation structure aids

in modelling and forecasting country’s stock market returns. The comparison is

made using weekly data (as also used in Chapter 5), generated by 9 developed

(France, Germany, Italy, Japan, Norway, Sweden, Switzerland, UK and USA)

and 9 emerging markets (Brazil, Chile, India, Korea, Malaysia, Mexico, Poland,

Russia and South Africa) over the period from July 2002 to July 2012 together

with the three-month US dollar London Interbank Offered Rate (LIBOR) interest

as a proxy for the risk-free rate. In all cases the Morgan Stanley Capital Inter-

national (MSCI) World Index is used as a proxy for the market portfolio. The

modelling and forecasting abilities of models are evaluated using two different

measures of error, the Mean Square Error (MSE) and the Mean Absolute Error

(MAE).

The distributional characteristics of this data set were presented in section

5.3. However, to motivate the multivariate modelling undertaken here, Table 6.1

displays the correlation coefficients between stock markets. The table shows cor-

relations within developed (top panel), and emerging (middle panel) markets, as

well as between the two market groups (bottom panel). All correlation coefficients

are positive between stock markets, which means that all of the stock markets

move in the same direction, up or down, instead of moving in the opposite di-

rection. The average correlation among the developed markets (0.76) is higher

than that of the emerging markets (0.60). This may be explained by volatil-

ity, which is lower in developed markets hence resulting in higher between stock

market correlations. For example, researches on the Japanese and US stock mar-

ket integration by Takatoshi and Wen-Ling (1993) and on the German, US and

Japanese stock market integration by Yavas (2007) have indicated that volatility

affects cross stock market correlation. In addition, the average correlation be-

tween the emerging markets and the developed markets is 0.61 which is about

the same as the average correlation within emerging markets. These findings

match those identified by previous researchers (e.g. Harvey (1995), Bekaert and

Harvey (1997)) and suggest a priori that a multivariate approach will be of most
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Table 6.1: Correlation matrix between countries’ stock markets.

Developed Markets
France Germany Italy Japan Norway Sweden Swit. UK USA

France 1.00 0.95 0.93 0.57 0.79 0.89 0.90 0.91 0.81
Germany 1.00 0.89 0.57 0.76 0.88 0.86 0.87 0.80
Italy 1.00 0.56 0.78 0.82 0.83 0.86 0.75
Japan 1.00 0.56 0.54 0.54 0.53 0.49
Norway 1.00 0.78 0.72 0.80 0.67
Sweden 1.00 0.83 0.85 0.78
Swit. 1.00 0.85 0.73
UK 1.00 0.80
USA 1.00

Emerging Markets
Brazil Chile India Korea Malaysia Mexico Poland Russia S.Africa

Brazil 1.00 0.68 0.55 0.55 0.50 0.76 0.63 0.68 0.72
Chile 1.00 0.51 0.53 0.51 0.68 0.50 0.59 0.60
India 1.00 0.61 0.61 0.57 0.54 0.57 0.58
Korea 1.00 0.62 0.62 0.54 0.58 0.57
Malaysia 1.00 0.52 0.52 0.53 0.51
Mexico 1.00 0.65 0.67 0.71
Poland 1.00 0.68 0.72
Russia 1.00 0.67
S.Africa 1.00

Brazil Chile India Korea Malaysia Mexico Poland Russia S.Africa
France 0.66 0.62 0.57 0.60 0.54 0.70 0.70 0.65 0.75
Germany 0.67 0.60 0.57 0.62 0.53 0.70 0.71 0.65 0.74
Italy 0.64 0.60 0.58 0.59 0.56 0.69 0.70 0.67 0.70
Japan 0.49 0.47 0.52 0.66 0.54 0.52 0.48 0.54 0.52
Norway 0.68 0.59 0.57 0.60 0.58 0.66 0.69 0.74 0.71
Sweden 0.64 0.61 0.56 0.62 0.52 0.70 0.69 0.64 0.70
Swit. 0.56 0.56 0.52 0.54 0.48 0.65 0.63 0.56 0.68
UK 0.65 0.63 0.58 0.58 0.57 0.70 0.69 0.65 0.75
USA 0.64 0.59 0.50 0.53 0.46 0.75 0.59 0.58 0.63
Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa.

benefit in modelling developed markets.

It is worth noting that Japan has the lowest correlations within the developed

markets. This implies that Japan is the least integrated with the other developed

markets due perhaps to having fewer mutual trade and financial transactions.

Conversely, Japan has a higher correlation with Korea (an emerging market) than
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any of the developed markets, which is possibly a consequence of its geographical

proximity and the fact that both are affected by regional factors such as political

decisions or environmental influences (e.g. earthquake, flood). These are called

common border effects by Flavin et al. (2002).

The rest of this chapter is outlined as follows. Section 6.2 introduces the mul-

tivariate state space model and presents the alternative correlation structures to

be compared. Section 6.3 presents the empirical results obtained from the model

comparison, and section 6.4 presents further results from the best forecasting

model. Section 6.5 presents the extension of the best forecasting model. Finally,

section 6.6 presents our conclusions.

6.2 Methodology

The model proposed here is a multivariate state space model, which generalizes

the univariate Kalman Filter Mean Reverting (KFMR) model presented in section

3.3 and applied in Chapter 5 to data on 9 developed and 9 emerging markets. The

model is applied to data on the 9 developed and 9 emerging markets separately, as

the two are thought to exhibit different behaviours. Thus, the models considered

will be applied to a vector of 9 stock market excess returns in this chapter, but

can obviously be extended to other dimensions. The response vector here is

Rt − Rft = (R1t − Rft, . . . , R9t − Rft)
′
, the 9 × 1 vector of excess returns for

developed or emerging markets in week t.

The general form of the observation and state equations for the model pro-

posed for these data are given by

Rt −Rft = κ+ ((Rmt −Rft)⊗ I9)α1t + εt, εt v N (0, H) , (6.1)

α1t = ᾱ1 + Φ (α1 t−1 − ᾱ1) +wt, wt v N (0, Q) . (6.2)

The 9 × 1 state vector at time t for the set of developed or emerging markets is

denoted by α1t = (α11t, . . . , α19t)
′
, and quantifies the time-varying relationship

between each country’s stock market (Rt −Rft) and the MSCI market portfolio
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for week t. The vector is initialised at time zero by

α10 ∼ N(µα1 ,Σα1), (6.3)

where the parameters of this distribution estimated from the data as part of the

estimation algorithm.

The observation and state errors (εt, wt) are assumed to be mutually inde-

pendent of each other and independent in time, and are assigned multivariate

Gaussian distributions with zero means and variance matrices (H, Q) respec-

tively. Finally, Φ is a 9 × 9 matrix quantifying the temporal autocorrelations in

the state vector within each stock market, and is typically assumed to be diagonal

so that the between stock market correlations in the state vector are modelled

through Q. Thus, in this formulation H captures the correlations between stock

markets in the data, while Q captures these correlations in the state vector.

Recall, that in the time-varying Linear Market Model (6.1), the time-varying

systematic covariance (βmt) risk can be expressed as

α1t = βmt, (6.4)

which is an extension of the result proved in section 2.1.2 in a univariate form,

which can then be extended to the multivariate form here.

In this chapter we consider four special forms of (6.1) to (6.2) which make

different assumptions about the data. The four alternative forms are labelled A

to D and are as follows.

Model A

This model is based on the proposition that the 9 individual developed or

emerging countries’ stock markets are uncorrelated which is the multivariate

equivalent to the univariate analysis in Chapter 5. This is achieved by defin-

ing Q and H as (9 × 9) diagonal matrices with their own stock market specific

variances. In addition, Φ is a (9 × 9) diagonal matrix including an individual

temporal autocorrelation parameter φi for each stock market, which allows for
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the different levels of temporal autocorrelation in the time-varying systematic

covariance risks in the state equation (6.2) for each stock market. Thus, the

parameters in this model are defined as follows.

H
(9×9)

= diag (H1, . . . , H9) , (6.5)

Q
(9×9)

= diag (Q1, . . . , Q9) ,

Φ
(9×9)

= diag (φ1, . . . , φ9) .

Model B

Model B is a simplification of Model A, which retains the assumption that the

individual countries’ stock markets are uncorrelated. The difference between this

model and Model A is that Φ is a diagonal matrix including a common temporal

autocorrelation parameter φ for every country’s stock market, instead of allowing

a market specific φi as in Model A. This model thus enforces the same level of

temporal autocorrelation in the time-varying systematic covariance risks for each

stock market, which borrows strength in its estimation. The parameters in this

model are represented by

H
(9×9)

= diag (H1, . . . , H9) , (6.6)

Q
(9×9)

= diag (Q1, . . . , Q9) ,

Φ
(9×9)

= diag (φ, . . . , φ) ,

and this model is only likely to be appropriate if the temporal autocorrelations

are similar across stock markets.

Model C

Model C extends Model A by allowing for the likely correlation present be-

tween the time-varying systematic covariance risks (α1t) of the 9 developed or

emerging markets. This between stock market correlation is modelled at the level

of the state equation; so the observation equation is based on the assumption of

independence and hence H is a diagonal matrix with stock market specific vari-

ances as in (6.5). Different levels of temporal autocorrelation are allowed in the
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time-varying systematic covariance risks in the state equation, by specifying a

different temporal autocorrelation parameter φi for each stock market as in (6.5).

The difference between this model and Model A is that the state variance matrix

Q is not diagonal, which allows for correlation between stock markets at the same

time period. The specification of Q used here is given by

Q
(9×9)

=



Q1 ρ
√
Q1Q2 ρ

√
Q1Q3 · · · ρ

√
Q1Q9

ρ
√
Q2Q1 Q2 ρ

√
Q2Q3 · · · ρ

√
Q2Q9

ρ
√
Q3Q1 ρ

√
Q3Q2 Q3 · · · ρ

√
Q3Q9

. . .

ρ
√
Q9Q1 ρ

√
Q9Q2 ρ

√
Q9Q3 · · · Q9


, (6.7)

which allows for a separate variance parameter for each stock market, but a

constant correlation between stock markets. This constant correlation was as-

sumed for computational simplicity and because no other factors were identified

that would suggest how the correlation should be modified depending on the two

stock markets in question. For example, a spatial correlation function of distance

between each pair of countries could be specified, but that was considered not

to be appropriate for financial data on this scale. Thus, this model takes into

account two separate sources of correlation in the time-varying systematic covari-

ance risks, the correlation over time within the same stock market (captured by

φ1, . . . , φ9) and the correlation in the systematic covariance risk at the same time

period between stock markets (captured by ρ).

Model D

Model D extends Model B by allowing for the likely correlation between the

time-varying systematic covariance risks of the individual countries’ stock mar-

kets. In particular, as for Model B, H is assumed to be a diagonal matrix with

stock market specific variances and Φ is a diagonal matrix including a common

φ for each stock market, thereby enforcing the same level of temporal autocorre-

lation in the time-varying systematic risks for each stock market. The difference
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between this model and Model B is that Q allows for between stock market

correlation, and is defined by (6.7) as in Model C.

Notation

Here, using the notation of the linear Gaussian state space model (3.22) and

(3.23), we have

Yt = Rt −Rft,

At = ((Rmt −Rft)⊗ I9) ,

αt = α1t,

Φ = Φ,

in (6.1) and (6.2). The estimation of the state vector and the remaining pa-

rameters vector Θ = (κ, ᾱ1,Φ, Q,H) is as described in section 3.3. Software to

implement these multivariate state space models using the Kalman Filter algo-

rithm is not generally available, so code was written in R software as part of

this PhD thesis. The algorithm used is a modified version of that described in

Shumway and Stoffer (2006), and is included in Appendix A of this thesis.

6.3 Comparison of Models

6.3.1 In-sample Model Fit

This section compares the in-sample model fit performance for the four multi-

variate state space forms of the time-varying Linear Market Model described in

section 6.2 and is applied separately to the 9 developed and 9 emerging markets.

The comparisons in the model performance is achieved in terms of two different

measures of error, which are the Mean Absolute Error (MAE) and the Mean

Square Error (MSE), as outlined in section 3.5.1. Tables 6.2 and 6.3 display the

MAE and MSE values respectively, across all 18 stock markets for each model

produced by the in-sample procedure. Note that median MAE and MSE values

for all four models are calculated here in addition to the mean because relatively
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Table 6.2: MAE (×102) of in-sample model fit.

Model A B C D
Developed
France 0.786 0.780 0.480 0.479
Germany 0.796 0.794 0.633 0.630
Italy 1.046 1.046 0.772 0.769
Japan 1.247 1.246 1.643 1.643
Norway 1.707 1.621 1.768 1.755
Sweden 1.178 1.191 1.163 1.159
Switzerland 0.941 0.933 0.843 0.835
UK 0.789 0.782 0.797 0.791
USA 0.423 0.423 0.598 0.601

Mean 0.990 0.980 0.966 0.962
Median 0.941 0.933 0.797 0.791

Emerging
Brazil 1.671 1.591 1.573 1.512
Chile 1.427 1.423 1.415 1.404
India 2.260 1.961 1.924 1.886
Korea 1.725 1.748 1.822 1.847
Malaysia 1.126 1.139 1.100 1.107
Mexico 1.187 1.181 1.219 1.215
Poland 1.845 1.831 1.756 1.732
Russia 2.176 2.093 2.074 2.039
SouthAfrica 1.619 1.632 1.554 1.536

Mean 1.671 1.622 1.604 1.586
Median 1.671 1.632 1.573 1.536
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MAE.

big differences exist between the stock market MAE and MSE values.

A comparison of the four multivariate state space model formulations results

display that Model C and Model D are preferable in 12 (5 developed and 7

emerging markets) out of 18 stock markets. This suggests that accounting for the

correlation in the time-varying systematic covariance risks between stock markets

aids in estimating stock market excess returns. In addition, the performance of

Model A, which ignores the between stock market correlation and is essentially

a multivariate equivalent to the univariate models described in Chapter 5, is

generally worse than the other models in both developed and emerging markets.

Overall, Model D (lowest MAE and MSE) improves on Model A (highest MAE

and MSE) in terms of MAE (MSE) on average (median) by 15.9% (23.5%) for
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Table 6.3: MSE (×104) of in-sample model fit.

Model A B C D
Developed
France 1.116 1.103 0.492 0.492
Germany 1.109 1.108 0.733 0.725
Italy 1.949 1.949 1.164 1.155
Japan 2.675 2.673 4.673 4.674
Norway 5.207 4.737 5.564 5.491
Sweden 2.404 2.456 2.438 2.428
Switzerland 1.505 1.484 1.174 1.152
UK 1.170 1.159 1.142 1.125
USA 0.307 0.308 0.643 0.648

Mean 1.938 1.886 2.003 1.988
Median 1.505 1.484 1.164 1.152

Emerging
Brazil 4.901 4.580 4.473 4.236
Chile 3.550 3.523 3.444 3.422
India 8.773 6.746 6.590 6.440
Korea 5.596 5.766 6.029 6.277
Malaysia 2.306 2.357 2.212 2.240
Mexico 2.404 2.386 2.519 2.499
Poland 6.104 6.032 5.539 5.392
Russia 8.910 8.266 8.058 7.849
SouthAfrica 4.399 4.472 4.046 3.977

Mean 5.216 4.903 4.768 4.704
Median 4.901 4.580 4.473 4.236
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MSE.

developed markets, and by 8.1% (13.6%) for emerging markets. This means

that the relative improvement in performance of Model D compared to Model A

is higher in developed markets than in emerging markets. This may be due to

highly correlated developed markets, which Table 6.1 shows have greater between

stock market correlations than the emerging markets. Also, it can be clearly seen

that the performance of all four models in the emerging markets is worse than

that for the developed markets. This may be due to the fact that the developed

markets are more stable than the emerging markets, as evidenced in Chapter 5.

It is worth noting that the comparisons between Model A (including φi) and

Model B (including φ), and Model C (including φi) and Model D (including φ)

have been made to evaluate the consistency of the temporal autocorrelation in
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the time-varying systematic covariance risks for each stock market. The results

of the MAE and MSE display that there is not a large difference in model fit from

making the simplification that φi = φ for both developed and emerging markets.

To summarise, Model D which is the simplification of Model C with φi = φ, seems

to be preferable when modelling the weekly time-varying systematic covariance

(beta) risk for both developed and emerging markets overall, as it has the lowest

MAE and MSE on average (median).

6.3.2 Out-of-sample Forecasting

A comparison of forecasting performances is now made between the same models,

using an out-of-sample procedure which allows the models’ predictive performance

to be evaluated. A rolling window technique is considered here to undertake

the out-of-sample forecasting comparison, and more theoretical details of this

technique are provided in section 4.4.2. In this case, the length of the rolling

window is 5 years (260 weeks approximately equal to half of the data presented),

and is used to predict α1t = βmt one-week ahead (one-step ahead prediction).

The length of the prediction period is 2 years (104 weeks) over the period from

July 28, 2010 to July 18, 2012, which is short enough to reflect current stock

market conditions. The MAE and MSE values between predicted excess returns

and the actual excess returns on the stock markets are computed over these 104

values for all 18 stock markets for each model. The MAE and MSE values across

the developed and emerging markets for all models are presented in Tables 6.4

and 6.5, respectively.

A comparison of the four models show that Model C and Model D are better

able to predict developed and emerging markets excess returns overall, based on

the median MAE and MSE values across the 9 stock markets. However, the

individual stock market results suggest that the correlation in the systematic

covariance risk between stock markets at the same point in time is beneficial

to forecast stock market excess returns in all emerging markets, but only in 4

of the 9 developed markets. The problem here may be Japan, which exhibits

relatively low correlation with the other developed markets (see in Table 6.1).
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Table 6.4: MAE (×102) of out-of-sample forecasts.

Model A B C D
Developed
France 0.845 0.845 0.514 0.520
Germany 0.764 0.774 0.595 0.591
Italy 1.396 1.398 1.113 1.112
Japan 1.165 1.163 1.465 1.486
Norway 1.231 1.226 1.456 1.442
Sweden 1.055 1.058 1.109 1.117
Switzerland 0.876 0.875 0.867 0.866
UK 0.619 0.620 0.735 0.733
USA 0.358 0.358 0.509 0.514

Mean 0.923 0.924 0.929 0.931
Median 0.876 0.875 0.867 0.866
Emerging
Brazil 1.537 1.539 1.372 1.388
Chile 1.346 1.346 1.322 1.319
India 2.224 2.121 1.900 1.911
Korea 1.374 1.374 1.388 1.389
Malaysia 0.939 0.939 0.864 0.859
Mexico 0.943 0.943 0.917 0.919
Poland 1.532 1.548 1.440 1.439
Russia 1.496 1.500 1.348 1.374
SouthAfrica 1.398 1.410 1.312 1.314

Mean 1.421 1.413 1.318 1.324
Median 1.398 1.410 1.348 1.374
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MAE.

Overall, Model C (either the lowest or one of the lowest median MAE and MSE)

improves on Model A (either the highest or one of the highest median MAE and

MSE) in terms of MAE (MSE) on average (median) by 1% (8.4%) for developed

markets and by 3.6% (7.7%) for emerging markets. Also, the MAE and MSE

values for all models in the emerging markets are higher than those in developed

markets, which is possibly in response to the outliers that are more common in

the emerging markets than in the developed markets.

Comparisons of Model A (including φi) to Model B (including φ) and Model C

(including φi) to Model D (including φ) allow us to judge the level of consistency

in the temporal autocorrelation in the time-varying systematic covariance risks

for each stock market in the out-of-sample procedure. Here, it can be clearly
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Table 6.5: MSE (×104) of out-of-sample forecasts.

Model A B C D
Developed
France 1.200 1.201 0.527 0.534
Germany 1.057 1.074 0.564 0.565
Italy 3.387 3.390 2.320 2.315
Japan 2.393 2.391 3.700 3.771
Norway 2.407 2.388 3.307 3.255
Sweden 2.091 2.099 2.326 2.352
Switzerland 1.417 1.416 1.298 1.328
UK 0.667 0.669 0.880 0.886
USA 0.231 0.231 0.414 0.421

Mean 1.650 1.651 1.704 1.714
Median 1.417 1.416 1.298 1.328
Emerging
Brazil 3.819 3.824 3.232 3.282
Chile 3.393 3.393 3.200 3.173
India 7.053 6.568 5.453 5.546
Korea 3.500 3.500 3.489 3.481
Malaysia 1.589 1.589 1.333 1.324
Mexico 1.636 1.636 1.551 1.554
Poland 4.155 4.254 3.669 3.657
Russia 4.168 4.184 3.369 3.445
SouthAfrica 3.137 3.173 2.797 2.816

Mean 3.606 3.569 3.121 3.142
Median 3.500 3.500 3.232 3.282
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MSE.

seen that there is no clear differences in prediction performance from making

the simplification that φi = φ for the developed markets, but that there is a

small reduction in performance for emerging markets. Therefore, overall, Model

C seems to be preferred when forecasting the weekly time-varying systematic

covariance (beta) risk, as it has either the lowest or one of the lowest MAE and

MSE values on average (median).

6.3.3 Developed markets without Japan

This section compares the in-sample model fit and out-of-sample forecasting per-

formance of the same models in a multivariate context for the developed markets
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with Japan removed. Table 6.1 shows that Japan has the lowest correlations with

the other developed markets and its inclusion may be the cause of the relative

poor performance of Model C and Model D (which include between stock market

correlation structure) for some of the individual developed markets as well as

the mean. The MAE and MSE values across the developed markets except for

Japan and for all four models in both in-sample and out-of-sample procedures

are presented in Tables 6.6, 6.7 and 6.8, 6.9.

Table 6.6: MAE (×102) of in-sample model fit without Japan.

Model A B C D
Developed
France 0.785 0.780 0.480 0.479
Germany 0.796 0.795 0.633 0.629
Italy 1.046 1.046 0.772 0.768
Norway 1.707 1.622 1.768 1.756
Sweden 1.178 1.192 1.163 1.159
Switzerland 0.941 0.933 0.843 0.835
UK 0.789 0.782 0.797 0.790
USA 0.423 0.423 0.598 0.600

Mean 0.958 0.947 0.882 0.877
Median 0.869 0.864 0.785 0.779
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MAE.

Table 6.7: MSE (×104) of in-sample model fit without Japan.

Model A B C D
Developed
France 1.116 1.104 0.491 0.492
Germany 1.110 1.108 0.733 0.724
Italy 1.949 1.949 1.164 1.155
Norway 5.209 4.739 5.568 5.500
Sweden 2.404 2.458 2.438 2.427
Switzerland 1.506 1.484 1.175 1.153
UK 1.171 1.159 1.142 1.123
USA 0.307 0.308 0.643 0.647

Mean 1.847 1.789 1.669 1.653
Median 1.339 1.322 1.153 1.138
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MSE.
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Table 6.8: MAE (×102) of out-of-sample forecasts without Japan.

Model A B C D
Developed
France 0.845 0.845 0.515 0.520
Germany 0.765 0.773 0.595 0.596
Italy 1.396 1.393 1.112 1.121
Norway 1.231 1.227 1.459 1.443
Sweden 1.054 1.058 1.110 1.120
Switzerland 0.872 0.870 0.868 0.870
UK 0.617 0.617 0.736 0.734
USA 0.358 0.358 0.510 0.511

Mean 0.892 0.893 0.863 0.864
Median 0.859 0.858 0.802 0.802
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MAE.

Table 6.9: MSE (×104) of out-of-sample forecasts without Japan.

Model A B C D
Developed
France 1.202 1.201 0.530 0.536
Germany 1.057 1.070 0.566 0.568
Italy 3.382 3.372 2.321 2.346
Norway 2.410 2.393 3.321 3.256
Sweden 2.092 2.101 2.328 2.354
Switzerland 1.409 1.406 1.305 1.338
UK 0.663 0.663 0.884 0.888
USA 0.231 0.231 0.415 0.416

Mean 1.556 1.555 1.459 1.463
Median 1.306 1.304 1.095 1.113
Notes: Bold displays the best market pricing model for each stock market
in terms of the lowest MSE.

A comparison of the four models in both the in-sample and out-of-sample pro-

cedures show that Model C and Model D which incorporate between stock market

correlation seem to be preferable for modelling and forecasting the weekly time-

varying systematic risks for the developed markets based on both the mean and

median MAE and MSE values, which was not the case when Japan was included.

In addition, a comparison of the developed markets with Japan (see in Tables

6.2, 6.3, 6.4 and 6.5) and without Japan (see in Tables 6.6, 6.7, 6.8 and 6.9) show

that the mean and median MAE and MSE values have decreased now Japan has
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been removed in both the in-sample and out-of-sample procedures. However, in-

dividually the MAE and MSE values for each developed market without Japan

display the fact that there are no clear differences compared with including Japan.

This may be because Japan has no clear impact when estimating models param-

eters in a multivariate context, as it was only one of the 9 stock market data

sets modelled. This will be discussed in next section 6.4. Thus, the reduction

in the average MAE and MSE values appears to be due to simply removing the

series with the largest MAE and MSE values, rather than improving the fit of

the models in the remaining markets.

6.4 Best Forecasting Model

This section focuses on the best forecasting model for developed and emerging

markets, which is important for making profitable investment decisions for stock

market investors in the future. Model C exhibited the best prediction performance

overall and it is examined in greater detail here. Tables 6.10 and 6.11 represent the

hyperparameter estimates of Model C using KFMR, which is defined in section

6.2. The table shows developed markets with Japan (top panel) and without

Japan (middle panel), as well as emerging markets (bottom panel).

The average estimated Ĥi and Q̂i values for emerging markets are generally

higher than those of developed markets, which may be due to emerging markets’

being more volatile. This may be due to the variable involved in capturing finan-

cial and economic integration, such as the trade volume of stock markets. For

example, the trade volume of developed markets is greater than that of emerging

markets. This suggests that emerging markets are more vulnerable to financial

speculation (e.g. the buying and selling of stocks, bonds, currency etc.) than

developed markets; thus, the fluctuation in emerging markets is anticipated to

be larger than that in developed markets. Also, the average estimated values

of Q̂i are higher than those of Ĥi, meaning that the state variance captures the

volatility of the stock market excess returns more than the observation variance.

It is worth noting that the estimated Q̂i for the USA is 0 (3 decimals), meaning

that systematic covariance risk is constant over time.
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Table 6.10: Model C parameter estimates (standard errors) via KFMR for the developed
markets.

Market Q̂i × 100 Ĥi × 100 ρ̂ φ̂i κ̂i ˆ̄α1i

Developed
France 43.651 0.007 0.892 0.154 0.001 1.298

(6.775) (0.001) (0.179) (0.015) (0.000) (0.056)

Germany 53.628 0.010 0.892 0.129 0.001 1.343
(7.843) (0.001) (0.179) (0.014) (0.000) (0.064)

Italy 71.253 0.016 0.892 0.110 0.000 1.228
(11.613) (0.001) (0.179) (0.014) (0.000) (0.068)

Japan 0.008 0.047 0.892 0.000 0.000 0.682
(0.062) (0.003) (0.179) (0.000) (0.000) (0.024)

Norway 69.323 0.062 0.892 0.024 0.003 1.386
(15.385) (0.005) (0.179) (0.008) (0.000) (0.092)

Sweden 41.231 0.028 0.892 0.077 0.002 1.415
(8.216) (0.002) (0.179) (0.014) (0.000) (0.069)

Switzerland 25.783 0.014 0.892 0.282 0.001 0.904
(5.485) (0.001) (0.179) (0.037) (0.000) (0.038)

UK 13.957 0.013 0.892 0.191 0.001 1.075
(3.298) (0.001) (0.179) (0.030) (0.000) (0.035)

USA 0.000 0.006 0.892 0.988 0.000 0.913
(0.000) (0.000) (0.179) (0.552) (0.000) (0.015)

Average 35.426 0.023 0.892 0.217 0.001 1.138

Without Japan
France 43.684 0.007 0.892 0.153 0.001 1.298

(6.776) (0.001) (0.179) (0.015) (0.000) (0.056)

Germany 53.678 0.010 0.892 0.129 0.001 1.343
(7.846) (0.001) (0.179) (0.014) (0.000) (0.064)

Italy 71.312 0.016 0.892 0.109 0.000 1.229
(11.618) (0.001) (0.179) (0.014) (0.000) (0.068)

Norway 69.277 0.062 0.892 0.024 0.003 1.386
(15.389) (0.005) (0.179) (0.008) (0.000) (0.092)

Sweden 41.247 0.028 0.892 0.077 0.002 1.415
(8.218) (0.002) (0.179) (0.014) (0.000) (0.069)

Switzerland 25.784 0.014 0.892 0.281 0.001 0.904
(5.486) (0.001) (0.179) (0.037) (0.000) (0.038)

UK 13.982 0.013 0.892 0.190 0.001 1.075
(3.300) (0.001) (0.179) (0.030) (0.000) (0.035)

USA 0.000 0.006 0.892 0.988 0.000 0.913
(0.000) (0.000) (0.179) (0.552) (0.000) (0.015)

Average 39.871 0.020 0.892 0.244 0.001 1.195
Notes: Italic numbers in parentheses denote the standard errors of Model C parameter estimates via
KFMR for the developed markets.
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Table 6.11: Model C parameter estimates (standard errors) via KFMR for the emerging
markets.

Market Q̂i × 100 Ĥi × 100 ρ̂ φ̂i κ̂i ˆ̄α1i

Emerging
Brazil 106.051 0.060 0.635 0.326 0.005 1.483

(17.981) (0.005) (0.051) (0.040) (0.000) (0.140)

Chile 35.515 0.041 0.635 0.312 0.003 0.884
(7.620) (0.003) (0.051) (0.061) (0.000) (0.054)

India 62.870 0.078 0.635 0.405 0.003 1.102
(19.029) (0.007) (0.051) (0.097) (0.000) (0.098)

Korea 91.725 0.075 0.635 0.000 0.002 1.223
(16.472) (0.006) (0.051) (0.000) (0.000) (0.095)

Malaysia 24.665 0.026 0.635 0.000 0.002 0.597
(5.572) (0.002) (0.051) (0.000) (0.000) (0.026)

Mexico 38.766 0.031 0.635 0.146 0.003 1.189
(6.892) (0.003) (0.051) (0.025) (0.000) (0.064)

Poland 108.420 0.071 0.635 0.118 0.003 1.427
(19.554) (0.006) (0.051) (0.020) (0.000) (0.121)

Russia 112.096 0.100 0.635 0.302 0.003 1.416
(21.917) (0.008) (0.051) (0.047) (0.000) (0.146)

SouthAfrica 54.385 0.050 0.635 0.202 0.003 1.253
(10.858) (0.004) (0.051) (0.031) (0.000) (0.084)

Average 70.499 0.059 0.635 0.201 0.003 1.175
Notes: Italic numbers in parentheses denote the standard errors of Model C parameter estimates via
KFMR for the emerging markets.

The average temporal autocorrelation in the time-varying systematic covari-

ance risk is similar for the developed markets and emerging markets, with average

values of 0.217 and 0.201 respectively. These values are much closer to 0 than

1, suggesting that the time-varying systematic covariance risks change rapidly

due to the low autocorrelation. The exception to this is the USA, which has

φ̂i = 0.988. This, taken with Q̂i = 0.000, suggests that its systematic covari-

ance risk is constant over time. The common correlation in the time-varying

systematic covariance risk between stock markets (captured by ρ̂) in developed

markets (0.892 with a standard error of 0.179) is higher than that of the emerg-

ing markets (0.635 with a standard error of 0.051). This may be explained by

volatility, which is lower in developed markets hence resulting in higher between

stock market correlations.

The average regression intercept, κ̂i (proxy for the unexpected risk) is close to
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0 in developed and emerging markets, which likely to be a consequence of the risk-

free rate’s (Rft) being subtracted before estimation (see Campbell et al. (1997)).

The mean of the time-varying systematic covariance risk α̂1it for developed and

emerging markets is positive, and is greater than 1, indicating that the stock

market is more volatile than the MSCI World market portfolio.

It is worth noting that a sensitivity analysis for developed markets including

Japan (top panel) and with Japan removed (middle panel) shows that on average

that estimate for Q̂i, ¯̂α1i and φ̂i increase and that the average for Ĥi decreases,

while common ρ̂ and average κ̂i are the same when Japan is included. However,

the individual parameter estimates in each stock market are the same when Japan

is removed, meaning that the individual parameter estimates in developed mar-

kets including Japan are likely to be consistent with or without it. This suggests

a certain robustness to the choice of countries included in the model, even for the

models that account for between stock market correlations.

Table 6.12: Univariate diagnostic test statistics for Model C via KFMR.

Market JB Het(174) LB(23) Market JB Het(174) LB(23)

Developed Emerging
France 3807.92* 0.54 27.65 Brazil 73.74* 0.45 16.38

(0.000) (0.999) (0.090) (0.000) (0.999) (0.632)

Germany 589.46* 0.50 25.85 Chile 76.91* 0.67 26.34
(0.000) (0.999) (0.134) (0.000) (0.996) (0.121)

ltaly 732.54* 1.78* 13.44 India 133.07* 0.82 22.37
(0.000) (0.000) (0.815) (0.000) (0.905) (0.266)

Japan 65.93* 0.81 28.34 Korea 441.09* 0.66 24.31
(0.000) (0.917) (0.077) (0.000) (0.997) (0.185)

Norway 73.03* 0.57 28.98 Malaysia 276.25* 0.59 22.81
(0.000) (0.999) (0.066) (0.000) (0.999) (0.246)

Sweden 173.79* 0.94 28.46 Mexico 28.72* 0.56 34.10*
(0.000) (0.658) (0.075) (0.000) (0.999) (0.018)

Swit. 49.20* 0.79 23.84 Poland 90.26* 0.78 42.21*
(0.000) (0.940) (0.202) (0.000) (0.949) (0.002)

UK 363.44* 0.64 35.76* Russia 368.70* 0.33 26.96
(0.000) (0.998) (0.011) (0.000) (0.999) (0.106)

USA 94.60* 0.98 55.84* S.Africa 59.36* 0.73 33.42*
(0.000) (0.553) (0.000) (0.000) (0.980) (0.021)

Notes: The abbreviations of countries are: Swit: Switzerland and S.Africa: South Africa.
JB is the Jarque-Bera test statistic for the null hypothesis of normally distributed standardised residuals.
JB follows χ2 with 2 degrees of freedom so the critical value at the 5% level is 5.99.
LB(23) is the Ljung-Box test statistic for the null hypothesis of no autocorrelation in the standardised
residuals up to order

√
522 ≈ 23. LB(23) statistic follows χ2 with 23-(m− 1) degrees of freedom where m

is the total number of estimated parameters.
Het(174) is the test statistic for the null hypothesis of no heteroskedasticity in the standardised residuals
up to order 522/3 = 174. Het(174) statistic follows F(174,174) distribution so the critical value at the 5%
level is 1.28. * means the appropriate null hypothesis is rejected at the 5% significance level.
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Table 6.12 presents the univariate diagnostic test statistics for the residuals

from Model C via KFMR outlined in section 3.5.2.1. According to the Jarque-

Bera (JB) test, the residuals are not normally distributed at the 5% significance

level for all 18 global markets, implying that Model C is poor in terms of non-

normal errors. According to the H (Het(174)) test, the null hypothesis of no

heteroskedasticity cannot be rejected for all 18 global markets except for Italy

at the 5% significance level, implying that Model C is adequate in terms of no

heteroskedasticity. According to the Ljung-Box (LB(23)) test, the null hypothesis

of no autocorrelation cannot be rejected at the 5% significance level for 13 out

of the 18 global markets, meaning that Model C is not adequate in terms of no

autocorrelation.

Table 6.13: Multivariate diagnostic test statistics for Model C via KFMR.

Market MJB MHet(1566) MLB(23)

Developed 325.47* 0.96 2075.49*
(0.000) (0.790) (0.000)

Emerging 135.68* 1.08 1907.85
(0.000) (0.064) (0.089)

Notes: MJB is the multivariate Jarque-Bera test statistic for the null hypothesis of mul-
tivariate normally distributed standardised residuals. MJB follows χ2 with 2× 9 degrees
of freedom so the critical value at the 5% level is 28.87.
MLB(23) is the multivariate Ljung-Box test statistic for the null hypothesis of no mul-
tivariate autocorrelation in the standardised residuals up to order

√
522 ≈ 23. MLB(23)

statistic follows χ2 with (92 × 23)-m degrees of freedom where m is the total number of
estimated parameters.
MHet(1566) is the test statistic for the null hypothesis of no multivariate heteroskedas-
ticity in the standardised residuals up to order 9 × 522/3 = 1566. MHet(1566) statistic
follows F(1566,1566) distribution so the critical value at the 5% level is 1.09. * means the
appropriate null hypothesis is rejected at the 5% significance level.

Table 6.13 presents the multivariate diagnostic test statistics for the residuals

from Model C via KFMR outlined in section 3.5.2.2. According to the mul-

tivariate Jarque-Bera (MJB) test, the residuals are not multivariate normally

distributed at the 5% significance level for both the developed and emerging

markets, implying that Model C is poor in terms of multivariate non-normal er-

rors. According to the multivariate H (MHet(1566)) test, the null hypothesis

of no multivariate heteroskedasticity cannot be rejected at the 5% significance

level for both the developed and emerging markets, implying that Model C is ad-

equate in terms of multivariate homoskedasticity. According to the multivariate

Ljung-Box (MLB(23)) test, the null hypothesis of no multivariate autocorrela-
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tion is rejected at the 5% significance level for the developed markets, but not

for the emerging markets, meaning that Model C is not adequate in terms of no

multivariate autocorrelation for the developed markets.

6.5 Extension of Best Forecasting Model

Previously, we found that Model C exhibited the best prediction performance

overall and it was examined in greater detail in section 6.4. Here, we suggest a

new model called Model E which extends Model C by allowing for the likely differ-

ent levels of correlation present between the time-varying systematic covariance

risks of the 9 developed or emerging markets (captured by ρij, (i, j = 1, . . . , 9)).

In particular, for Model C, H is assumed to be a diagonal matrix with stock mar-

ket specific variances, and Φ is a diagonal matrix including the different levels of

temporal autocorrelation in the time-varying systematic covariance risks for each

stock market (captured by φ1, . . . , φ9). The difference between this model and

Model C is that the state variance matrix Q (equation (6.7)) allows for the dif-

ferent levels of correlation in the time-varying systematic covariance risks during

the same time period between stock markets, and is defined as

Q
(9×9)

=



Q1 ρ12
√
Q1Q2 ρ13

√
Q1Q3 · · · ρ19

√
Q1Q9

ρ12
√
Q1Q2 Q2 ρ23

√
Q2Q3 · · · ρ29

√
Q2Q9

ρ13
√
Q1Q3 ρ23

√
Q2Q3 Q3 · · · ρ39

√
Q3Q9

. . .

ρ19
√
Q1Q9 ρ29

√
Q2Q9 ρ39

√
Q3Q9 · · · Q9


. (6.8)

Here we enforce symmetry on Q so that ρij=ρji ( i, j = 1, . . . , 9).

Note that the optim package in R is used throughout this thesis while estimat-

ing the unknown parameters of the state space models. Here, we again focused on

the estimation of the unknown parameters of Model E through the loglikelihood

function which can be computed and maximized by a Newton-Raphson numeri-

cal search algorithm via the optim package (see details in section 3.3). However,
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optim package failed to converge in the optimization step while maximizing the

loglikelihood function of Model E. Petris (2014) suggests that this may be due to

the large number of unknown parameters of the multivariate state space model

via the Kalman Filter. Hence, Model E is not discussed further in this thesis.

6.6 Conclusion

The focus of this chapter was on modelling and forecasting time-varying system-

atic covariance (beta) risks, using a multivariate state space form of the time-

varying Linear Market Model (consistent with conditional Two-Moment CAPM)

using a KFMR. In particular, the aim was to see if the multivariate context

which accounted for between stock market correlations outperforms a univariate

approach, using both in-sample and out-of-sample procedures. The modelling

and forecasting abilities of four multivariate state space forms of the time-varying

Linear Market Model as described in section 6.2 were applied separately to the 9

developed and 9 emerging markets. In addition, the developed markets were also

modelled without Japan in a sensitivity analysis, because it had the lowest cor-

relations within the developed markets (see in Table 6.1), and may have affected

model performance.

The performance of these models, when using the in-sample and out-of-sample

procedures, were evaluated using MAE and MSE. Overall, Model A, which ig-

nores the correlation structures and applies a multivariate context equivalent to

the univariate context in Chapter 5, is generally worse than the other models

in both developed (with and without Japan) and emerging markets. Model B

simplifies the temporal autocorrelation in the time-varying systematic covariance

risks; so that φi = φ in for both developed and emerging markets. This simpli-

fication does not greatly reduce the performance compared to Model A in both

the in-sample and out-of-sample procedures, which may suggest that either the

stock markets exhibit common temporal autocorrelation (φ), or that the use of

9 stock markets data improves the estimation of φi. However, the key finding

from this chapter is that incorporating between stock market correlations into

the modelling, as in Model C and Model D, improves both the in-sample mod-
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elling and out-of-sample forecasting abilities of the time-varying Linear Market

Model. This latter result will be of most interest to researchers and stock market

investors, who are concerned with forecasting future stock market movements to

make profitable investment in stock markets. This study is one of the few in

the financial literature to undertake a multivariate stock market approach which

utilizes between stock market correlation, as the majority of the financial mod-

els of this type are univariate and treat each market individually. The presence

of such between stock market correlation is not surprising, especially in the de-

veloped economies which are becoming increasingly financially integrated. For

example, the increased financial integration of the Eurozone countries using the

same currency may result in increased trade flow within these countries. The rel-

ative improvements in the performance of Models C and D compared to Model A

(univariate context) in developed markets was generally higher than in emerging

markets in the in-sample procedure. This may be explained by stock market cor-

relations, which are higher in developed markets, as displayed in Table 6.1 hence

resulting in greater improvements to the performance of Models C and D. The

differences in model performance between Model C and Model D were generally

slight and not universally consistent, which suggests that incorporating single (φ)

or market specific (φi) temporal autocorrelation parameters does not make a big

impact on model performance. This is likely to be because Table 6.10 shows

that when Model C is fitted (market specific (φi) temporal autocorrelations) the

estimated temporal autocorrelation parameters are all similar and close to 0.2,

with the exception of the USA which is estimated as 0.988.

The sensitivity analysis for developed markets with and without Japan high-

lights that the country specific estimation performance of the majority of markets

is likely to be consistent in the presence of a single outlying country. This suggests

a certain robustness of prediction performance to the choice of countries included

in the model, even for the models that account for between stock market cor-

relations. However, the estimation for the outlying country itself is relatively

poor compared with assuming all countries are independent. This suggests that

if multivariate modelling is to be undertaken, then the choice of a sensible set of

countries to model is crucial to ensure good prediction performance for all (and



CHAPTER 6. MULTIVARIATE STATE SPACE MODELLING 164

not just the majority) countries’ markets. Thus if this PhD was longer than it

would be interesting to attempt to group countries together based on similar fi-

nancial markets, which would then aid in the multivariate modelling considered

here.

Note that residual diagnostics are discussed in section 6.4. These assump-

tions include that the residuals are multivariate normally distributed, indepen-

dent (no multivariate autocorrelation) and have constant variance (multivariate

homoskedasticity) for the multivariate context. When these assumptions are vi-

olated, the performance of the multivariate state space model can be affected, so

possible extensions of the multivariate state space model are discussed as follows.

The first assumption is that the residuals are multivariate Gaussian dis-

tributed. This assumption is violated, which is a consequence of the asymmetry

and the heavy tails of the multivariate case. The multivariate Gaussian distribu-

tion can be replaced by multivariate heavy-tailed distributions such as the multi-

variate t distribution, or a mixture of multivariate normals, or by a multivariate

asymmetric distribution, such as a multivariate skewed-t distribution.

The second assumption is that the variance of residuals is assumed to be con-

stant (multivariate homoskedasticity) for the multivariate context. When this

assumption is violated, a multivariate stochastic volatility model allows a com-

bined GARCH-type and state space model to capture the time-varying variance

of residuals for the multivariate context. The various extensions of multivariate

stochastic volatility models exist not only with multivariate Gaussian residuals

but also with multivariate non-Gaussian residuals.

The final assumption is that the residuals are independent (no multivariate

autocorrelation) for the multivariate context. When this assumption is invalid,

we would suggest an approach which allows the intercept vector to vary over time

via a random walk model within the Kalman Filter algorithm, in addition to a

slope parameter vector α1t = βmt.



Chapter 7

Conclusion and Further Work

7.1 Summary

This thesis focuses on financial and statistical modelling of returns in financial

stock markets, using the concept of the asset pricing model in finance. This

model is important for making investment decisions such as portfolio choice, and

determining market risk for investors and researchers.

The best known and most widely used asset pricing model in the finance liter-

ature is the Two-Moment Capital Asset Pricing Model (CAPM) (consistent with

the Linear Market Model) developed by Sharpe-Lintner-Mossin in the 1960s and

is the benchmark model of this thesis. This model implies a linear relationship

between the expected return on a financial asset and that over the whole market

in which the asset is traded. The slope coefficient is called the systematic covari-

ance (beta) risk, which is assumed to be constant over time. The literature (e.g.

Kraus and Litzenberger (1976), Fang and Lai (1997), Hwang and Satchell (1999),

Mergner and Bulla (2008) and Choudhry and Wu (2009)) however, shows that

this model may be misleading and insufficient as a tool for characterising returns

in financial time series data, which is possibly a consequence of the non-linearity

in the relationship between returns on asset and whole market. The inadequacies

of the Two-Moment CAPM motivated me to validate and extend the benchmark

Linear Market Model in this thesis. In doing this, the following three research

aims were addressed:

165
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1. Evaluate the effectiveness of the widely used Two-Moment CAPM and its

Data Generating Process (DGP) equivalent, the Linear Market Model, for

modelling and forecasting returns in financial time series data. In doing

this, I have

(a) Assessed the extent to which the linearity assumptions underpinning

the Linear Market Model are appropriate, or whether increasing its

flexibility by adding higher order moments, for the purpose of allowing

for skewness and kurtosis, or non-linearities could improve the fit of

the model to the stock market returns data.

(b) Assessed whether the linearity assumption of the Linear Market Model

is realistic locally rather than globally, which is achieved by comparing

its modelling and forecasting performance against a Linear Market

Model with a time-varying systematic covariance (beta) risk parameter

estimated using state space models.

(c) Assessed whether the local linearity assumption of the time-varying

Linear Market Model is appropriate by comparing its performance to

the time-varying Quadratic Market Model and the time-varying Cu-

bic Market Model which incorporate time-varying systematic skewness

(co-skewness) and time-varying systematic kurtosis (co-kurtosis) risk

parameters.

(d) Assessed whether the constant variance assumption underpinning the

Linear Market Model is appropriate by comparing its performance to

that of GARCH-type models.

2. Investigate whether a multivariate approach to modelling and forecasting

systematic covariance (beta) risk, which allows for between stock market

correlations, outperforms a univariate, one stock market at a time, ap-

proach. Due to the results in earlier chapters, this investigation was un-

dertaken in the context of allowing time-varying systematic covariance risk

parameter using multivariate state space models.
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3. Evaluate the ability of a variety of statistical modelling techniques to fore-

cast recent returns in financial data across a variety of stock market con-

ditions such as before and after the October 2008 financial crisis, including

not only developed markets (which typically exhibit stable behaviour) but

also emerging markets (which are more volatile and prone to large fluctu-

ations and instabilities). In particular, in order to assess the latter, a case

study on Turkey’s industry sector portfolios was undertaken.

This thesis was organised as follows. The theoretical details of the financial

and statistical methodologies used were provided in Chapter 2 and Chapter 3,

respectively. The empirical work for investigating the research aims was presented

in Chapter 4 and Chapter 5 for the univariate context, and in Chapter 6 for the

multivariate context. Finally, this chapter reviews the main conclusions and key

themes which affect the direction of continuing and future research connected

with this thesis’s findings.

Chapter 4 compared the commonly used benchmark model, the Linear Market

Model, with time-varying Linear Market Models for 19 Turkish industry sector

portfolios, using both in-sample and out-of-sample procedures. Two time-varying

Linear Market Model specifications were considered: GARCH-type models, which

allow for non-constant variance in stock market returns, and state space mod-

els, which allow for the systematic covariance risk to change linearly over time.

The main conclusions from this chapter are that, while GARCH-type models do

outperform the Linear Market Model, particularly in terms of their forecasting

performance, the differences are not large. The state space models, however, per-

form consistently better than both the Linear Market Model and GARCH-type

models, in terms of both modelling (in-sample MAE and MSE) and forecasting

(out-of-sample MAE and MSE) performance. In particular, the mean revert-

ing (KFMR) formulation of the state space model is superior to the random walk

(KFRW) and random coefficients (KFRC) specifications, due both to its improved

modelling and forecasting performance and to its increased flexibility.

Chapter 5 extended the Linear Market Model to allow for non-linearity in

six main ways. The first two were polynomial extensions of the Linear Mar-
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ket Model as outlined in Chapter 2, namely the Quadratic Market (allowing for

systematic covariance and systematic skewness) and Cubic Market Models (al-

lowing for systematic covariance and systematic skewness, as well as systematic

kurtosis). The third approach relaxed the rigid shapes enforced by polynomial

models by using a generalised additive model (GAM). The next approach is the

time-varying Linear Market Model compared was a state space model as used

in Chapter 4. The last two approaches are the time-varying versions of poly-

nomial extensions, namely, the time-varying Quadratic Market Model (allowing

for time-varying systematic covariance and time-varying systematic skewness)

and the time-varying Cubic Market Model (allowing for time-varying systematic

covariance, time-varying systematic skewness and time-varying systematic kurto-

sis). The models were applied to the 18 global markets, including the 9 developed

and 9 emerging markets, during the three different time periods: the entire period

from July 2002 to July 2012, from July 2002 to before the October 2008 financial

crisis, and from after the October 2008 financial crisis to July 2012. The main

conclusions from this chapter are that the proposed time-varying Linear Market

Model via KFMR yields the best modelling of the 18 global market returns during

these three different time periods.

During the entire period from July 2002 to July 2012, the proposed time-

varying Linear Market Model via KFMR improves on the time-varying Quadratic

Market Model via KFMR in terms of Adjusted R2 by on average 0.3% for the

developed and 0.6% for the emerging markets while the proposed time-varying

Linear Market Model improves on the time-varying Cubic Market Model via

KFMR in terms of Adjusted R2 by on average 0.5% for the developed markets and

1% for the emerging markets. Furthermore, it can be seen that the proposed time-

varying Linear Market Model via KFMR improves on the Linear Market Model in

terms of Adjusted R2 on average by 10.4% for the developed markets and 25.3%

for the emerging markets. However, the GAM outperformed the Higher order

DGPs in all 18 global markets while improving on the Linear Market Model in

terms of Adjusted R2 on average by only 1% for the developed markets and 3.9%

for the emerging markets. In addition, the Cubic Market Model provides a slight

improvement on the Linear Market Model, while the modelling performance of
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the Quadratic Market Model is worse than that of the Linear Market Model in

some stock markets such as Germany, India and Malaysia during this period.

During the periods before and after the October 2008 financial crisis, the

proposed time-varying Linear Market Model provides a much better performance

than any of the other models for both the developed and emerging markets, with

the exception of the emerging markets during the period after the October 2008

financial crisis, where the time-varying Quadratic Market Model performs better

in terms of average Adjusted R2; however, the improvements in model fit to the

proposed time-varying Linear Market Model are not substantial. For example,

the time-varying Quadratic Market Model improves on the proposed time-varying

Linear Market Model in terms of Adjusted R2 by on average 0.3% for the emerging

markets. It can be seen that the proposed time-varying Linear Market Model

improves on the Linear Market Model in terms of Adjusted R2 by on average

9.6% for the developed markets and 24.2% for the emerging markets during the

period before the October 2008 financial crisis, whilst making improvements in

model fit from the Linear Market Model to the proposed time-varying Linear

Market Model in terms of Adjusted R2 by on average 7.7% for the developed

markets and 14.2% for the emerging markets during the period after the October

2008 financial crisis. In addition, the GAM outperformed the Higher order DGPs

in terms of average Adjusted R2 for all 18 global markets, while improving on the

Linear Market Model in terms of Adjusted R2. Improvements were on average

2.1% for the developed markets and 5.3% for the emerging markets in the pre-

crisis period; while in the post-crisis period, improvements were on average 0.4%

for the developed markets and 0.6% for the emerging markets.

The previous empirical investigations in Chapter 4 and Chapter 5 focused the

evaluation in a univariate context. In contrast, Chapter 6 compares the perfor-

mance of four possible multivariate state space forms of the time-varying Linear

Market Model using a state space model via KFMR, again in 18 global markets

in both the in-sample and out-of-sample procedures. In addition, the developed

markets were also modelled without Japan in a sensitivity analysis, because it had

the lowest correlations within the developed markets and may have affected the

model’s performance. The main conclusions from this chapter are that Models C
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and D, which incorporate between stock market correlations into the modelling,

improve the quality of the modelling (in-sample median MAE and MSE) and the

forecasting (out-of-sample median MAE and MSE) abilities of the time-varying

Linear Market Model in both developed and emerging markets. In addition, the

relative improvement in the in-sample performance of Models C and D, when com-

pared to the univariate context, was generally greater in the developed markets

than in the emerging markets, which is likely to be because these markets exhibit

larger between market correlations and are thus more suited to a multivariate ap-

proach. It is worth noting that the differences between the performance of Model

C and Model D were generally slight and not universally consistent, suggesting

that incorporating a single (φ) or market specific (φi) temporal autocorrelation

does not have a big impact on model performance. It is worth noting that the

out-of-sample forecasting results were generally supportive by Model C, which is

of interest to stock market investors and those researchers who are concerned with

forecasting future stock market movements and making profitable investments in

the stock market. In addition, the results of the sensitivity analysis for developed

markets, either with or without Japan, display the fact that country specific esti-

mation performance for the majority of markets are likely to be consistent in the

presence of a single outlying country. However, the estimation for the outlying

country itself was relatively poor when contrasted with the results obtained on

the assumption that all countries are independent. Hence, it would be interesting

to attempt to group countries together based on similar financial stock markets,

thereby assisting the multivariate modelling considered here.

7.2 Key Themes

7.2.1 Inappropriateness of the Linear Market Model

The Linear Market Model, which was the benchmark model in this thesis and in

the literature, performs relatively well in developed markets but not so well in

emerging markets. Also, I have found that adding in higher order moments (or

GAM) does not lead to large improvements over the Linear Market Model, in
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contrast with results from the existing literature (e.g. Fang and Lai (1997) and

Hwang and Satchell (1999)) which uses them. This is may be due to the fact that

the financial data used here are more stable with fewer outliers than those used

in the existing literature.

Similarly, allowing for non-constant variance via GARCH-type models while

improving the forecasting performance of the Linear Market Model does not do so

to a large extent. However, allowing for local linear behaviour in the systematic

covariance (beta) risk in the time-varying Linear Market Model via state space

models does dramatically improve the modelling and forecasting performance

when compared with the Linear Market Model. Similarly, the time-varying ver-

sions of polynomial extensions, namely, the time-varying Quadratic Market Model

and the time-varying Cubic Market Model have also led to large number of im-

provements over the Linear Market Model, but the modelling performance of

these models was generally worse than the time-varying Linear Market Model.

This suggests that the relationship between returns on asset and the whole market

is locally linear rather than quadratic or cubic (or any other non-linear shapes),

but that the slope of the linear relationship varies over time.

7.2.2 Multivariate modelling improves univariate market

modelling

Financial stock market data are correlated between stock markets. A univariate

modelling approach for each stock market that ignores this correlation is relatively

poor. In contrast, undertaking a multivariate modelling approach which allows

for this between stock market correlation improves the modelling and forecasting

performance of state space models, because it borrows strength in the estimation

across similar stock markets. Higher correlations were observed between devel-

oped markets compared to emerging markets, making the multivariate approach

most beneficial in this context. However, as demonstrated by the Japan stock

market (which had the lowest correlations within developed markets), the choice

of the markets included will affect the accuracy of the forecasting performance

for an individual stock market. This between stock market correlation suggests
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that the use of univariate approaches in the majority of the existing financial

literature is non-optimal, and that multivariate models should become the norm.

7.2.3 State of the world’s stock markets

In the developed world, their financial stock markets are similar and move largely

in unison, due to their increased financial integration such as Eurozone countries

using the same currency, etc. This backs up the previous theme that a multi-

variate context is beneficial in modelling such data. Emerging markets are less

correlated and more volatile; thus, in general, modelling and forecasting their

values can be done with less accuracy than for developed markets. With the

Turkish industry sector portfolio data the main features of these data are the

positive mean, relatively high volatility, asymmetry (left-skew and right-skew)

and leptokurtosis (fat tails). These findings match the most common features of

emerging markets found by previous authors. This justifies the consideration of

the conditional Two-Moment CAPM model for capturing time-varying variance

and covariance, rather than simple the Two-Moment CAPM for each industry

sector portfolio.

7.3 Further Work

There are still many interesting ideas open for further research. One idea for

future work is that these financial models and statistical modelling techniques

be applied to different financial stock markets, to different sample time periods

(such as during a financial crisis), and to different data frequencies (such as

daily, monthly, etc.). This would then further our understanding about how

the modelling and forecasting performance of these models are affected by stock

markets, sample time periods and data frequency, particularly the presence of

temporal autocorrelation.

The poor performance of GARCH-type models which was observed may be

due to the assumption of a constant correlation across time. This could be re-

laxed by allowing it to vary smoothly over time. Thus another possible extension
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could be made by considering GARCH-type models with a dynamic conditional

correlation, i.e. one that varies over time.

Another possible extension could be made by using a stochastic volatility

model allowing a combined GARCH-type and state space model. It would be

interesting to see if the modelling and forecasting performance is affected by

a combined GARCH-type and state space model for both the univariate and

multivariate contexts.

Another possible extension could be made by extending the multivariate state

space models considered here with time-varying Higher order DGPs (i.e. the mul-

tivariate time-varying Quadratic Market and time-varying Cubic Market Models).

It would be interesting to see if the modelling and forecasting performance in the

multivariate contexts is affected by incorporating Higher order DGPs.

The poor performance of all models observed in the financial literature may

possibly be a consequence of the non-normally distributed returns and non-linear

relationship between asset and market portfolio returns. In this thesis, we dis-

cussed how to deal with the non-linearity which exits between asset and market

portfolio returns for both the univariate and multivariate contexts. Thus, it is

worth considering further possible extensions which would deal with the non-

normally distributed returns for both the univariate and multivariate contexts.

The non-normality case is a consequence of asymmetry and heavy tails for both

the univariate and multivariate contexts. Therefore, the normal distribution can

be replaced by heavy-tailed distributions such as the t distribution, or a mix-

ture of normals or a general residual distribution, or by an asymmetric distri-

bution, such as a skewed-t distribution for the univariate context. In addition,

the multivariate normal distribution can be replaced by multivariate heavy-tailed

distributions such as the multivariate t distribution, or a mixture of multivari-

ate normals, or by a multivariate asymmetric distribution, such as a multivariate

skewed-t distribution for the multivariate context. Indeed, it would be interesting

to observe whether these extensions would improve the modelling and forecasting

performance of all models.



Appendix A

R Code for Kalman Filter Mean

Reverting Model

This section summarizes R software code for a state space model via Kalman

Filter Mean Reverting (KFMR) model used in this thesis corresponding to the

following lines:

Lines 1-102 : Kalman Filter and Smoother algorithm code

Lines 103-154 : KFMR in Chapter 4 code

Lines 155-206 : TvLMM in Chapter 5 code

Lines 207-382 : Model C in Chapter 6 code

Note that Kalman Filter and Smoother algorithm code used in this thesis is a

modified version of that described in Shumway and Stoffer (2006).

1 #######################################################################

2 ########## Kalman Filter and Smoother Algorithm #####################

3 #######################################################################

4 #################### Kalman Filter ####################################

5 #######################################################################

6 kfilter=function(num ,Y,A,mu0 ,Sigma0 ,Phi ,Kappa ,Alpham ,Q,H){

7 Phi=as.matrix(Phi) # Phi

8 pdim=nrow(Phi)

9 Y=as.matrix(Y) # Y_t

10 qdim=ncol(Y)

11 B<-as.matrix(A) # A_t

12 Alphap=array(NA , dim=c(pdim ,1,num)) # Alphap=Alpha_t^{t-1} Prediction Alpha

174
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13 Pp=array(NA, dim=c(pdim ,pdim ,num)) # Pp=P_t^{t-1} Prediction Alpha Variance

14 Alphaf=array(NA , dim=c(pdim ,1,num)) # Alphaf=Alpha_t^t Filter Alpha

15 Pf=array(NA, dim=c(pdim ,pdim ,num)) # Pf=p_t^t Filter Alpha Variance

16 v=array(NA, dim=c(qdim ,1,num)) # Innovation

17 sig=array(NA, dim=c(qdim ,qdim ,num)) # Innovation Variance

18 K=array(NA, dim=c(pdim ,qdim ,num)) # Kalman gain

19 Alpham=array(Alpham , dim=c(pdim ,1,num)) # Alphamean

20 Kappa=as.matrix(Kappa ,nrow=pdim ,ncol =1) # Kappa

21 #########################################################

22 ############### Kalman Filter t=1 ######################

23 #########################################################

24 # initial values

25 Alpha00=as.matrix(mu0 , nrow=pdim , ncol =1) # Mu_0

26 P00=as.matrix(Sigma0 , nrow=pdim , ncol=pdim) # Sigma_0

27 #################### Prediction #########################

28 Alphap [,,1]=Phi%*%(Alpha00 -Alpham [,,1]) + Alpham[,,1] # Prediction Alpha

29 Pp[,,1]=Phi%*%P00%*%t(Phi)+Q # Prediction Alpha variance

30 #################### Filtering #########################

31 A=diag(B[1],nrow=qdim ,ncol=qdim) # A_1

32 sigtemp=A%*%Pp[,,1]%*%t(A)+H # Innovation variance

33 sig[,,1]=(t(sigtemp)+sigtemp)/2 # Symmetric matrix

34 siginv=solve(sig[,,1]) # Innovation variance inverse

35 K[,,1]=Pp[,,1]%*%t(A)%*%siginv # Kalman gain

36 v[,,1]=Y[1,]-A%*%(Alphap [,,1])-Kappa # Innovation

37 Alphaf [,,1]= Alphap [,,1]+K[,,1]%*%v[,,1] # Filter Alpha

38 Pf[,,1]=Pp[,,1]-K[,,1]%*%A%*%Pp[,,1] # Filter Alpha variance

39 #################### MLE ###############################

40 sigmat=as.matrix(sig[,,1], nrow=qdim , ncol=qdim) # Innovation variance

41 like =-0.5*(log(det(sigmat))+t(v[,,1])%*%siginv%*%v[,,1])# Loglikelihood Func.

42 ########################################################

43 ########## Filter iterations t=2,...,n ##############

44 ########################################################

45 for (i in 2:num){

46 ##################### Prediction #######################

47 Alphap[,,i]=Phi%*%(Alphaf[,,i-1]- Alpham[,,i])+ Alpham[,,i]

48 Pp[,,i]=Phi%*%Pf[,,i-1]%*%t(Phi)+Q

49 ##################### Filtering ########################

50 A=diag(B[i],nrow=qdim ,ncol=qdim)

51 sigtemp=A%*%Pp[,,i]%*%t(A)+H

52 sig[,,i]=(t(sigtemp)+sigtemp)/2

53 siginv=solve(sig[,,i])

54 K[,,i]=Pp[,,i]%*%t(A)%*%siginv

55 v[,,i]=Y[i,]-A%*%(Alphap[,,i])-Kappa

56 Alphaf[,,i]= Alphap[,,i]+K[,,i]%*%v[,,i]

57 Pf[,,i]=Pp[,,i]-K[,,i]%*%A%*%Pp[,,i]

58 ###################### MLE ###############################

59 sigmat=as.matrix(sig[,,i], nrow=qdim , ncol=qdim)

60 like=like -(0.5*(log(det(sigmat))+t(v[,,i])%*%siginv%*%v[,,i]))
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61 }

62 like=like -((( num*qdim)/2)*log(2*pi))

63 list(Alphap=Alphap ,Pp=Pp,Alphaf=Alphaf ,Pf=Pf,like=like ,Innov=v,sig=sig ,Kn=K)

64 }

65 #########################################################

66 ############## Kalman Smoother ##########################

67 #########################################################

68 ksmooth=function(num ,Y,A,mu0 ,Sigma0 ,Phi ,Kappa ,Alpham ,Q,H){

69 kf=kfilter(num ,Y,A,mu0 ,Sigma0 ,Phi ,Kappa ,Alpham ,Q,H)

70 pdim=nrow(as.matrix(Phi))

71 Alphas=array(NA , dim=c(pdim ,1,num)) #Smoothing Alpha_n

72 Ps=array(NA, dim=c(pdim ,pdim ,num)) #Smoothing Alpha_n variance

73 J=array(NA, dim=c(pdim ,pdim ,num))

74 #########################################################

75 ########## Smoothing inital condition t=n ############

76 #########################################################

77 # Smoothing Alpha_n = Filter Alpha_n

78 # Smoothing Alpha_n Variance= Filter Alpha_n Variance

79 #########################################################

80 Alphas[,,num]=kf$Alphaf[,,num]

81 Ps[,,num]=kf$Pf[,,num]

82 #########################################################

83 ########## Smoothing iterations t=n,...,2 ##############

84 #########################################################

85 for(k in num:2) {

86 J[,,k -1]=(kf$Pf[,,k-1]%*%t(Phi))%*%solve(kf$Pp[,,k])

87 Alphas[,,k-1]=kf$Alphaf[,,k-1]+J[,,k-1]%*%(Alphas[,,k]-kf$Alphap[,,k])

88 Ps[,,k-1]=kf$Pf[,,k-1]+J[,,k-1]%*%(Ps[,,k]-kf$Pp[,,k])%*%t(J[,,k-1])

89 }

90 #########################################################

91 ########## Smoothing iteration t=1 ###################

92 #########################################################

93 # initial values

94 Alpha00=mu0

95 P00=Sigma0

96 #########################################################

97 J0=as.matrix ((P00%*%t(Phi))%*%solve(kf$Pp[,,1]), nrow=pdim , ncol=pdim)

98 Alpha0n=as.matrix(Alpha00+J0%*%(Alphas[,,1]-kf$Alphap [,,1]), nrow=pdim , ncol =1)

99 P0n= P00 + J0%*%(Ps[,,k]-kf$Pp[,,k])%*%t(J0)

100 list(Alphas=Alphas ,Ps=Ps,Alpha0n=Alpha0n ,P0n=P0n ,J0=J0 ,J=J,Alphap=kf$Alphap ,Pp=

kf$Pp ,Alphaf=kf$Alphaf ,Pf=kf$Pf,Innov=kf$Innov ,sig=kf$sig ,like=kf$like ,Kn=

kf$K)

101 }

102
103 #####################################################################

104 ############################ Chapter 4 ###########################

105 #####################################################################

106 library(numDeriv)
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107 set.seed (1013314)

108 ##########################################################

109 ######################## Read Data #####################

110 ##########################################################

111 sp<-read.csv("P1ISE.csv", header=T)

112 sp<-data.frame(sp)

113 m<-length(sp[,1])

114 ############# R_it - R_ft and R_mt - R_ft #######

115 st<-matrix(NA ,m-1 ,20) # R_it

116 risk <-matrix(NA,m-1,1) # R_ft

117 risk <-(((1+( sp[2:m,22]/100))^(1/52)) -1) # Weekly R_ft

118 for(i in 2:21){ # R_it=(log(P_t)-log(P_(t-1)))-R_ft

119 st[,i-1] <-diff(log(sp[,i]))-risk

120 }

121 st<-data.frame(st) # Data used in analyse

122 #########################################################

123 ############### Kalman Filter and Smoother ############

124 #########################################################

125 # k=2,...,20 :> 19 Industry Sector Portfolios

126 rm<-st[,1] # R_mt - R_Ft ISE Market

127 rt<-st[,k] # R_it - R_Ft Sector Portfolio_i

128 # OLS estimates for initialization

129 datam <-data.frame(cbind(rt,rm))

130 fm<-lm(rt~rm -1,data=datam)

131 sumy <-summary(fm)

132 HH<-deviance(fm)/df.residual(fm)

133 coef <-cbind(sumy$coefficients [1,1],sumy$coefficients [1 ,2])

134 ols <-(coef [1,])

135 print(ols)

136 # MLE Process

137 # Use Transformed parameters , then convert back to unconstrained parameters

138 Linn=function(param){

139 phi=param [1]^2/(1+( param [1]^2)) # Phi

140 sigw=exp(param [2]) # Q

141 sigeps=exp(param [3]) # H

142 kappa =0 # Kappa

143 betam=param [4] # Beta mean

144 mu0=c(ols [1]) # Mu_0

145 sigma0 <-c(ols [2]) # Sigma_0

146 sigma0 <-sigma0%*%sigma0

147 kf=kfilter(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps) # Kalman Filter

148 return(-kf$like)

149 }

150 #Define the starting values for the unknown parameters.

151 #Use optim package to estimate the unknown parameters.

152 #Use the estimated parameters in the smoother process.

153 ksmooth(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps)

154
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155 ####################################################################

156 ######################### Chapter 5 ###########################

157 #####################################################################

158 library(numDeriv)

159 set.seed (1013314)

160 ##########################################################

161 ######################## Read Data #####################

162 ##########################################################

163 sp<-read.csv("msci.csv", header=T)

164 sp<-data.frame(sp)

165 m<-length(sp[,1])

166 ############# R_it - R_ft and R_mt - R_ft #######

167 st<-matrix(NA ,m-1 ,19) # R_it

168 risk <-matrix(NA,m-1,1) # R_ft

169 risk <-(((1+( sp[2:m,21]/100))^(1/52)) -1) # Weekly R_ft

170 for(i in 2:20){ # R_it=(log(P_t)-log(P_(t-1)))-R_ft

171 st[,i-1] <-diff(log(sp[,i]))-risk

172 }

173 st<-data.frame(st) # Data used in analyse

174 ########################################################

175 ############### Kalman Filter and Smoother ###########

176 ########################################################

177 # k=2,...,19 :> 18 global markets

178 rm<-st[,1] # R_mt - R_ft Market

179 rt<-st[,k] # R_it - R_ft for Country_i

180 # OLS estimates for Initialization

181 datam <-data.frame(cbind(rt,rm))

182 fm<-lm(rt~rm,data=datam)

183 sumy <-summary(fm)

184 HH<-deviance(fm)/df.residual(fm)

185 coef <-cbind(sumy$coefficients [1:2,1], sumy$coefficients [1:2 ,2])

186 ols <-(coef [1:2 ,])

187 print(ols)

188 # MLE Process

189 # Use Transformed parameters , then convert back to unconstrained parameters

190 Linn=function(param){

191 phi=param [1]^2/(1+( param [1]^2)) # Phi

192 sigw=exp(param [2]) # Q

193 sigeps=exp(param [3]) # H

194 kappa=param [4] # Kappa

195 betam=param [5] # Beta Mean

196 mu0=c(ols[2,1]) # Mu_0

197 sigma0 <-c(ols[2,2]) # Sigma_0

198 sigma0 <-sigma0%*%sigma0

199 kf=kfilter(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps) # Kalman Filter

200 return(-kf$like)

201 }

202 #Define the starting values for the unknown parameters.
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203 #Use optim package to estimate the unknown parameters.

204 #Use the estimated parameters in the smoother process.

205 ksmooth(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps)

206
207 #####################################################################

208 ###################### Chapter 6 ###############################

209 ############ Kalman Filter and Smoother ###########################

210 #####################################################################

211 # 2---10 Developed

212 # 11---19 Developed

213 rm<-st[,1] # R_mt - R_Ft Market

214 rt<-st[ ,2:10] # R_it - R_Ft Country_i

215 # OLS estimates for Initialization

216 datam <-data.frame(cbind(rt,rm))

217 cols <-matrix(c(0,0) ,2,2)

218 HH<-rep(0,9)

219 k<-1

220 while (k<=9){

221 fm<-lm(datam[,k]~datam [,10],data=datam)

222 sumy <-summary(fm)

223 HH[k]<-deviance(fm)/df.residual(fm)

224 coef1 <-cbind(sumy$coefficients [1,1],sumy$coefficients [1,2])

225 coef2 <-cbind(sumy$coefficients [2,1],sumy$coefficients [2,2])

226 coef <-rbind(coef1 ,coef2)

227 sols <-(coef [1:2 ,])

228 cols <-rbind(cols ,sols)

229 k<-k+1

230 }

231 ols <-cols [3:20 ,]

232 # MLE Process

233 # Use Transformed parameters , then convert back to unconstrained parameters

234 Linn=function(param){

235 phi1=param [1]^2/(1+( param [1]^2)) # phi 1

236 phi2=param [2]^2/(1+( param [2]^2)) # phi 2

237 phi3=param [3]^2/(1+( param [3]^2)) # phi 3

238 phi4=param [4]^2/(1+( param [4]^2)) # phi 4

239 phi5=param [5]^2/(1+( param [5]^2)) # phi 5

240 phi6=param [6]^2/(1+( param [6]^2)) # phi 6

241 phi7=param [7]^2/(1+( param [7]^2)) # phi 7

242 phi8=param [8]^2/(1+( param [8]^2)) # phi 8

243 phi9=param [9]^2/(1+( param [9]^2)) # phi 9

244 sigw1=abs(sqrt(exp(param [10]))) # Q 1

245 sigw2=abs(sqrt(exp(param [11]))) # Q 2

246 sigw3=abs(sqrt(exp(param [12]))) # Q 3

247 sigw4=abs(sqrt(exp(param [13]))) # Q 4

248 sigw5=abs(sqrt(exp(param [14]))) # Q 5

249 sigw6=abs(sqrt(exp(param [15]))) # Q 6

250 sigw7=abs(sqrt(exp(param [16]))) # Q 7
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251 sigw8=abs(sqrt(exp(param [17]))) # Q 8

252 sigw9=abs(sqrt(exp(param [18]))) # Q 9

253 corw1= param [19]/sqrt (1+( param [19]^2)) # Rho

254 sigeps1 =(exp(param [20])) # H 1

255 sigeps2 =(exp(param [21])) # H 2

256 sigeps3 =(exp(param [22])) # H 3

257 sigeps4 =(exp(param [23])) # H 4

258 sigeps5 =(exp(param [24])) # H 5

259 sigeps6 =(exp(param [25])) # H 6

260 sigeps7 =(exp(param [26])) # H 7

261 sigeps8 =(exp(param [27])) # H 8

262 sigeps9 =(exp(param [28])) # H 9

263 Kappa1=param [29] # Kappa 1

264 Kappa2=param [30] # Kappa 2

265 Kappa3=param [31] # Kappa 3

266 Kappa4=param [32] # Kappa 4

267 Kappa5=param [33] # Kappa 5

268 Kappa6=param [34] # Kappa 6

269 Kappa7=param [35] # Kappa 7

270 Kappa8=param [36] # Kappa 8

271 Kappa9=param [37] # Kappa 9

272 Betam1=param [38] # Beta mean 1

273 Betam2=param [39] # Beta mean 2

274 Betam3=param [40] # Beta mean 3

275 Betam4=param [41] # Beta mean 4

276 Betam5=param [42] # Beta mean 5

277 Betam6=param [43] # Beta mean 6

278 Betam7=param [44] # Beta mean 7

279 Betam8=param [45] # Beta mean 8

280 Betam9=param [46] # Beta mean 9

281 # Phi Matrix

282 phi=diag(c(phi1 ,phi2 ,phi3 ,phi4 ,phi5 ,phi6 ,phi7 ,phi8 ,phi9) ,9,9)

283 # Kappa and Beta mean vector

284 kappa=c(Kappa1 ,Kappa2 ,Kappa3 ,Kappa4 ,Kappa5 ,Kappa6 ,Kappa7 ,Kappa8 ,Kappa9)

285 betam=c(Betam1 ,Betam2 ,Betam3 ,Betam4 ,Betam5 ,Betam6 ,Betam7 ,Betam8 ,Betam9)

286 # H Matrix

287 sigeps <-diag(c(sigeps1 ,sigeps2 ,sigeps3 ,sigeps4 ,sigeps5 ,sigeps6 ,sigeps7 ,sigeps8 ,

sigeps9))

288 # Q Matrix

289 sigw <-matrix (0,9,9)

290 sigw [1,1] <- sigw1 ^2

291 sigw [1,2] <- corw1*sigw1*sigw2

292 sigw [1,3] <- corw1*sigw1*sigw3

293 sigw [1,4] <- corw1*sigw1*sigw4

294 sigw [1,5] <- corw1*sigw1*sigw5

295 sigw [1,6] <- corw1*sigw1*sigw6

296 sigw [1,7] <- corw1*sigw1*sigw7

297 sigw [1,8] <- corw1*sigw1*sigw8
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298 sigw [1,9] <- corw1*sigw1*sigw9

299 sigw [2,1] <- corw1*sigw2*sigw1

300 sigw [2,2] <- sigw2 ^2

301 sigw [2,3] <- corw1*sigw2*sigw3

302 sigw [2,4] <- corw1*sigw2*sigw4

303 sigw [2,5] <- corw1*sigw2*sigw5

304 sigw [2,6] <- corw1*sigw2*sigw6

305 sigw [2,7] <- corw1*sigw2*sigw7

306 sigw [2,8] <- corw1*sigw2*sigw8

307 sigw [2,9] <- corw1*sigw2*sigw9

308 sigw [3,1] <- corw1*sigw3*sigw1

309 sigw [3,2] <- corw1*sigw3*sigw2

310 sigw [3,3] <- sigw3 ^2

311 sigw [3,4] <- corw1*sigw3*sigw4

312 sigw [3,5] <- corw1*sigw3*sigw5

313 sigw [3,6] <- corw1*sigw3*sigw6

314 sigw [3,7] <- corw1*sigw3*sigw7

315 sigw [3,8] <- corw1*sigw3*sigw8

316 sigw [3,9] <- corw1*sigw3*sigw9

317 sigw [4,1] <- corw1*sigw4*sigw1

318 sigw [4,2] <- corw1*sigw4*sigw2

319 sigw [4,3] <- corw1*sigw4*sigw3

320 sigw [4,4] <- sigw4 ^2

321 sigw [4,5] <- corw1*sigw4*sigw5

322 sigw [4,6] <- corw1*sigw4*sigw6

323 sigw [4,7] <- corw1*sigw4*sigw7

324 sigw [4,8] <- corw1*sigw4*sigw8

325 sigw [4,9] <- corw1*sigw4*sigw9

326 sigw [5,1] <- corw1*sigw5*sigw1

327 sigw [5,2] <- corw1*sigw5*sigw2

328 sigw [5,3] <- corw1*sigw5*sigw3

329 sigw [5,4] <- corw1*sigw5*sigw4

330 sigw [5,5] <- sigw5 ^2

331 sigw [5,6] <- corw1*sigw5*sigw6

332 sigw [5,7] <- corw1*sigw5*sigw7

333 sigw [5,8] <- corw1*sigw5*sigw8

334 sigw [5,9] <- corw1*sigw5*sigw9

335 sigw [6,1] <- corw1*sigw6*sigw1

336 sigw [6,2] <- corw1*sigw6*sigw2

337 sigw [6,3] <- corw1*sigw6*sigw3

338 sigw [6,4] <- corw1*sigw6*sigw4

339 sigw [6,5] <- corw1*sigw6*sigw5

340 sigw [6,6] <- sigw6 ^2

341 sigw [6,7] <- corw1*sigw6*sigw7

342 sigw [6,8] <- corw1*sigw6*sigw8

343 sigw [6,9] <- corw1*sigw6*sigw9

344 sigw [7,1] <- corw1*sigw7*sigw1

345 sigw [7,2] <- corw1*sigw7*sigw2
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346 sigw [7,3] <- corw1*sigw7*sigw3

347 sigw [7,4] <- corw1*sigw7*sigw4

348 sigw [7,5] <- corw1*sigw7*sigw5

349 sigw [7,6] <- corw1*sigw7*sigw6

350 sigw [7,7] <- sigw7 ^2

351 sigw [7,8] <- corw1*sigw7*sigw8

352 sigw [7,9] <- corw1*sigw7*sigw9

353 sigw [8,1] <- corw1*sigw8*sigw1

354 sigw [8,2] <- corw1*sigw8*sigw2

355 sigw [8,3] <- corw1*sigw8*sigw3

356 sigw [8,4] <- corw1*sigw8*sigw4

357 sigw [8,5] <- corw1*sigw8*sigw5

358 sigw [8,6] <- corw1*sigw8*sigw6

359 sigw [8,7] <- corw1*sigw8*sigw7

360 sigw [8,8] <- sigw8 ^2

361 sigw [8,9] <- corw1*sigw8*sigw9

362 sigw [9,1] <- corw1*sigw9*sigw1

363 sigw [9,2] <- corw1*sigw9*sigw2

364 sigw [9,3] <- corw1*sigw9*sigw3

365 sigw [9,4] <- corw1*sigw9*sigw4

366 sigw [9,5] <- corw1*sigw9*sigw5

367 sigw [9,6] <- corw1*sigw9*sigw6

368 sigw [9,7] <- corw1*sigw9*sigw7

369 sigw [9,8] <- corw1*sigw9*sigw8

370 sigw [9,9] <- sigw9 ^2

371 # m_0 vector

372 mu0 <-matrix(c(ols[2,1],ols[4,1],ols[6,1],ols[8,1],ols[10,1],ols[12,1],ols[14,1],

ols[16,1],ols [18 ,1]) ,9,1)

373 #Sigma_0 matrix

374 sigma0 <-diag(c(ols[2,2],ols[4,2],ols[6,2],ols[8,2],ols[10,2],ols[12,2],ols

[14,2],ols[16,2],ols [18 ,2]) ,9,9)

375 sigma0 <-sigma0%*%sigma0

376 kf=kfilter(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps) # Kalman Filter

377 return(-kf$like)

378 }

379 #Define the starting values for the unknown parameters.

380 #Use optim package to estimate the unknown parameters.

381 #Use the estimated parameters in the smoother process.

382 ksmooth(n,rt,rm ,mu0 ,sigma0 ,phi ,kappa ,betam ,sigw ,sigeps)
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