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i

"Physics is like sex: sure, it may give some practical results, but that's not

why we do it."- Richard P. Feynman
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Preface

This thesis is an account of work carried out between October 2000 and October 2004

towards the analysis of data from interferometric gravitational wave detectors for signals

from pulsars. This work was carried out mainly by myself under the supervision of

Graham Woan of the University of Glasgow with input from several members of the LIGO

Scientific Collaboration (LSC) Periodic Upper Limits Group unless noted otherwise.

Many members of the LSC were responsible for the operation of the detectors and the

collection of data in which I did not directly participate.

In the first chapter, I introduce the concept of gravitational waves, how they interact

with matter, and possible astrophysical sources. Several gravitational wave detectors are

introduced and background information on Bayesian probability theory is given. The

work in this chapter is mostly derived from published literature.

In Chapter 2, I present a new data analysis pipeline to search for gravitational waves

from periodic sources using interferometric gravitational wave detectors. The method

was developed specifically for targeted searches for signals from known radio pulsars

and is applied to GEO 600 and LIGO data in subsequent chapters. In this chapter, the

developed software is tested on simulated data and several sanity checks are carried out.

The work in this chapter was carried out mainly by myself with some input from Graham

Woan in the early stages.

In Chapter 3, the data set from the first science run (S1)of GEO 600 and LIGO is analysed



v

for gravitational wave signals from pulsar B1937+21. The analysis techniques developed

in Chapter 2 are applied to the SI data and an upper limit on the gravitational wave strain

from this source is set. Further software checks on the barycentring routines are presented

and the calibration procedure for the LIGO data is explained. The work in this chapter

was carried out by myself unless noted otherwise.

In Chapter 4, I report on the analysis the data from LlGO's second science run (S2)

searching for gravitational waves from 28 isolated pulsars. Hardware injections of two

periodic signals into the LIGO interferometers are analysed to provide a robust end-to-end

validation of the overall pipeline. A detailed assessment of the normality and stationarity

of the data is also given. Upper limits on the gravitational wave strain from those 28

pulsars are presented. The work presented in this chapter was carried out by myself

unless noted otherwise.

In Chapter 5, a preliminary analysis of the GE0600 and LlGO S3 data for the same 28

pulsars studied in S2 is described. The analysis is essentially a repeat of the previous

analyses with significantly more sensitive data. I also describe the outcome of the analysis

for 10hardware injections injected into the LIGO interferometers as well as one signal that

was simultaneously injected into GE0600 and LIGO. Preliminary results are provided

further constraining the gravitational wave strain from those sources. The work presented

in this chapter was carried out by myself unless noted otherwise.

In Chapter 6, brief conclusions are drawn from the drawn from the work presented in this

thesis.

The Appendix contains three papers published by myself and colleagues during the course

of my graduate studies on subject matters related to this thesis.



Summary

Gravitational waves, ripples in spacetime, are predictions of Einstein's General Theory

of Relativity. Since the 1960s, there has been an effort to detect these waves directly; a

pursuit so far unsuccessful. However, a new generation of interferometric gravitational

wave detectors with unprecedented sensitivity have begun collecting data. The success

of our hunt for gravitational waves will depend, in part, on our ability to extract weak

signals buried in noise. Several different types of gravitational waveforms are expected

to be emitted from various astrophysical sources. In order to make optimal use of the

data, specialized data analysis procedures have been developed for each class of signal.

Methods for searching for periodic gravitational wave signals from triaxial pulsars using

interferometric gravitational wave detectors have been developed. Since the gravitational

wave signals from pulsars are expected to be weak, long stretches of data must be used

for any detection. Over the course of a day, and a year, these periodic signals are Doppler

shifted due to the motion of the Earth. The response of the interferometers to each

polarisation of gravitational waves will also give rise to an amplitude modulation of

the periodic signal. These effects are taken into account and an end-to-end Bayesian

scheme for making inferences from the data is presented. Several software tests have

been performed to validate the core routines, such as barycentring, using independent

software.

The GEO 600 and LlGO interferometers had their first scientific data run (SI) for 17

days between 23 August and 9 September 2002. An analysis was carried out to search
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for gravitational wave signals from pulsar BI937+21. While no signals were detected,

a 95% upper limit of ho < 1.4 x 10-22 was determined using SI data where ho is the

amplitude of the gravitational waves. Given that pulsar B1937+21 is at a distance of

3.6 kpc, and assuming a moment of inertia of 1038kg m2, the corresponding upper limit

on the equatorial ellipticity was determined to be e ~ 2.9 x 10-4• The upper limit on

gravitational waves from pulsar B 1937+21 using SI data was over an order of magnitude

lower than the previous best limit at the time.

Data from LIGO's second science run (S2) in the spring of2003 was analysed with the

sensitivity of each detector in the network being roughly an order of magnitude better than

in SI across a large range of frequencies. Upper limits were placed on a total of28 isolated

pulsars using the S2 data. The ahalysis procedure for S2 was more robust to interfering

spectral lines and took advantage of the longer stationarity of the S2 data. Two hardware

injections of hypothetical pulsars were injected in the LIGO interferometers during S2.

The successful extraction of these signals from the LIGO S2 data significantly increased

our confidence in the the overall data analysis pipeline. For four of the closest pulsars

their equatorial ellipticities were constrained to less than € ~ 10-5 with 95% confidence.

These limits are beginning to reach interesting ellipticities which some exotic theories

suggest could be supported in neutron stars.

The third science run (S3) in which GEO 600 and LIGO participated took place from late

October 2003 to early January 2004. Again, the improvement in sensitivity compared to

the previous run (S2) was significant. Preliminary multi-detector results were determined

for the same previous 28 pulsars using S3 data. The equatorial ellipticities for 11 of these

pulsars are constrained to e ~ 10-5 with 95% confidence. With the S3 data, the upper

limit on the gravitational wave emission from the Crab pulsar was only approximately a

factor of four from the upper limits inferred from the spindown of the pulsar. When this

barrier is overcome the prospects of detecting gravitational waves from the Crab pulsar

will become more plausible.
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Future work based on these implementations will examine a larger set of missing known

pulsars including binary systems. Studies in Markov Chain Monte Carlo techniques may

also allow the expansion this method to a larger parameter space.
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Chapter 1

Introduction

1.1 Background

The General Theory of Relativity developed by Albert Einstein [1] predicts the existence

of gravitational waves; ripples in the fabric of space-time. The proposition that a grav-

itational field travels at a finite speed led to this phenomenon that was not previously

relevant in Newtonian physics, where gravity was thought to act instantaneously. For

several decades after the publication of Einstein's theory of gravitation in 1916, the ex-

istence of gravitational waves was either ignored or dismissed as a mathematical oddity.

It would be the 1960's before Joseph Weber at the University of Maryland began his

pioneering work in gravitational wave detection [2].

Although no direct detections have been confirmed to date, there is strong indirect evi-

dence for the existence of gravitational waves. In fact, the 1993 Nobel Prize for Physics

was awarded to Joseph Taylor and Russell Hulse for their joint discovery of the first

binary pulsar which provided such evidence [3]. They discovered this binary neutron star

system in 1973 and accurately measured the time-of-arrivals of the radio pulses from one

of the stars. Whereas Newtonian physics predicts that the orbital period should remain



1.1 Background 2

constant over time, General Relativity predicts that the period should decrease due to a

loss of orbital energy to gravitational waves. From these radio observations, Hulse and

Taylor were able to confirm that the 8 hours orbital period of this system was decreasing

within 1% of the rate predicted by General Relativity. With an orbital period of 8 hours,

however, we will not be able to detect these gravitational wave signals with ground based

detectors.

In addition to confirming one of the main predictions of General Relativity, the direct o~

servation of gravitational waves could open a new window on the universe; a new field of

observational astronomy. Gravitational waves could provide information on astrophysi-

cal phenomenon not seen via electromagnetic radiation. Even for sources already seen

electromagnetically, gravitational waves could provide a different view; whereas electro-

magnetic waves are usually emitted incoherently from astronomical sources, gravitational

waves are emitted coherently by the bulk motion of these objects.

Today there is a worldwide effort dedicated to the direct detection of gravitational waves

(see [4] for recent overview). The technological difficulties in constructing gravitational

wave detectors of sufficient sensitivity make it one of the most ambitious goals of present

day experimental physics. But the difficulties with establishing the field of gravitational

wave astronomy do not end there. Since the gravitational waves are expected to be weak,

and it takes a long time for the detectors to improve their sensitivities, a whole field of

research has emerged in trying to extract weak:gravitational wave signals buried in noise.

Indeed, the bulk of this thesis focuses on data analysis techniques for one potential source

of gravitational waves: rapidly rotating neutron stars.

In this chapter, a brief introduction to gravitational waves is given including a description

of their nature, the detectors, and potential astrophysical sources. Further discussion

concentrates on Bayesian methods in data analysis and finally an overview of the thesis

is provided.
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1.2 Nature of gravitational waves

The General Theory of Relativity explains gravitation as curvature in spacetime [5].

Gravitational waves are ripples in spacetime and propagate at the speed of light. In this

section, we explain very briefly the basics of relativity, the nature of gravitational waves,

and their effect on inertial masses.

The Einstein gravitational field equations describe the relationship between matter and

curvature. The form of the field equations is given by [5]

(1.1)

where Rp.v is the Ricci tensor, gil-v is the spacetime metric, R is the scalar curvature, G

is the gravitational constant, and Til-V is the energy momentum tensor. For the purposes

of this description, it is sufficient to note that in a vacuum the energy momentum tensor

Tp.v is null, so the field equations reduce to a simple wave equation [6]

(1.2)

with waves propagating at the speed of light c.

We will begin by describing the concept of proper distance between two events in fiat

spacetime and then introduce a small perturbation to examine the weak field gravitational

waves that result. In fiat spacetime we can use Einstein's Theory of Special Relativity to

define the invariant, ds2, between two events as

(1.3)

This can be expressed more generally as

(1.4)
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where summation is assumed over each index and the the flat Minkowski metric TIll-vis

given by

-Cl 0 0 0

0 1 0 0
TIll-v= (l.5)

0 0 1 0

0 0 0 1

In the presence of a gravitational field the generalised spacetime metric gil-v becomes

necessary. Here we use coordinates that are nearly Minkowski with a small pertubation

hll-v as a first approximation. The flat metric plus a small deviation can be expressed as

(1.6)

With the appropriate coordinate transformation, called transverse-traceless, it can be

shown that for a wave propagating in the z direction the metric takes the form

o hxx hxy 0
o hyx hyy 0

o 0 0 0

o 0 0 0

(1.7)

where s.; = hxx = -hyyandhx = hxy = hyx (transverse since there is no z component

and traceless since hxx +hyy = 0). The two distinct polarisations of gravitational waves,

'plus' and 'cross', are separated by 45 degrees. A passing gravitational wave will have a

stretching and squeezing effect on matter depending on the phase and polarisation of the

gravitational wave. A gravitational wave of amplitude h will give a total strain for each

polarisation of

h = 28L,
L

(l.8)

where, for example, L is the original radius of a ring of particles and 8L is its deviation

due to a passing a gravitational wave. The effect of this oscillating field on free falling
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Figure 1.1: Effect of gravitational wave, of amplitude h = 0.2, on a ring of free falling test
particles as function of time. from [7]. The upper part shows the effect of the 'plus' polarisation
and the bottom part shows the effect of the 'cross' polarisation. The propagation direction of the
wave is orthogonal to the plane in which the particles lie.

particles arranged in a circle is shown in Figure 1.1.

1.3 The detectors

There are two main types of detectors used in ground-based gravitational wave detection:

resonant bars and laser interferometers.

The first resonant bar detector was constructed by Joseph Weber in the 1960's [8]. The

main resonant bar detectors currently in operation around the world are Explorer [9],

Allegro [10], Niobe [11], Nautilus [12], and Auriga [13]. These detectors are generally

large metallic cylinders with sensitivity to gravitational waves around their fundamental

resonant frequencies. If a gravitational wave is incident on such a detector it will cause

the bar to vibrate which can, in principle, be measured accurately. The main drawback

to this type of detector is that it is only sensitive to gravitational waves in a narrow band

of a few tens of Hz.

Laser interferometric gravitational wave detectors can be sensitive to gravitational waves

in a wide bandwidth, from a few tens of Hz to several kHz. The nature of gravitational
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~------L1-------

Figure 1.2: Schematic layout of basic gravitational wave interferometer, from [18], where LJ
and L2 are the lengths of the arms, and R shows the location of the power recycling mirror which
recycles photons back into the interferometer.

waves make interferometric detectors ideal to measure the effects of gravitational waves

incident on free test masses. These interferometric detectors were first proposed in the

1970s with some details in [14]. Several prototypes constructed subsequently including

a 10m interferometer in Glasgow [15], a 30m interferometer in Garching [16], and a

40m interferometer at CITl [17]. For these detectors, a laser beam is incident on a

beamsplitter which transmits the light to mirrors suspended at the end of two orthogonal

arms. The light is then recombined and since a gravitational wave signal will affect the

light travel time in each arm differently it will influence the measured interference pattern.

Figure 1.2 provides a simple schematic layout for an interferometric gravitational wave

detector. The major interferometric gravitational wave detectors currently operating in

the world are:

GEO 600 A British and German collaboration with the detector located in Hannover,

Germany. This detector is a dual-recycled Michelson interferometer with 600 m

arms, an advanced optical layout including signal recycling, and fused-silica mirror

suspensions. The automatic alignment systems in GEO 600 have so far permitted

very high duty cycles during science runs [19].

1California Institute of Technology
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LlGO An American collaboration operated by CITand MIT2 with two detectors located

in Hanford, WA, and one detector in Livingston, LA. The two detectors in WA are

located at the same site and are 2km and 4 km in length, and the detector in LA

has arms of 4km in length. These are Michelson interferometers and make use

of Fabry-Perot cavities to increase the effective length of the arms. After about 2

years of operation at design sensitivity they will likely be upgraded to Advanced

LlGO [18].

VIrgO A French and Italian collaboration with the detector located near Pisa, Italy. This

is a 3km Michelson interferometer with Fabry-Perot cavities similar to LIGO.

The novel seismic isolation system in Virgo will give it the best sensitivity among

current detectors at low frequencies, from - 10Hz to 40Hz [20].

TAMA A Japanese detector located near Tokyo, Japan. This is a 300m arm length

Michelson interferometer with Fabry-Perot cavities in each arm. The main aim

of the project is research for the eventual construction of a future kilometer sized

interferometer in Japan [21].

Several noise sources will limit the sensitivity of current ground-based interferometers.

At low frequencies, below about 50Hz, the main source of noise is of seismic origin.

Thermal noise from the mirror masses and the suspensions wires limits the sensitivity

of the interferometers from about 50Hz to 250 Hz. The sensitivity of these detectors at

high frequencies is limited by photon shot noise which is due to statistical fluctuations

in the number of photons detected. A full review of the fundamental noise limits on

ground-based interferometers is given in [22].

Figure 1.3 shows the targeted sensitivities for GEO 600, LIGO, the proposed upgrade

Advanced LIGO, and VIrgo.

2Massachusetts Institute of Technology
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where pCr) is the mass density and the integral is over the volume of the source. It is

clear from Equation 1.9 that only massive objects with very large accelerations will emit

large amplitude gravitational waves. Since it is impossible to create such environments

in a controlled experiment we must turn to nature for sources of gravitational waves.

Binary neutron star systems lose energy to gravitational waves but even for those extreme

systems we can see that the strain at the Earth will be very small.

For example, here we use Equation 1.9 directly to calculate the gravitational wave strain

from a binary system (following an example in [23]). If we let the z-axis be normal to

the plane of the orbit, re be the orbital radius, foro be the orbital frequency, and M be the

mass of both objects, then from Equation 1.10 it follows that

2 [ 2 1]Qxx = 2M R cos (27rjorbt) - 3" ' (1.11)

2[.2 1]Qyy = 2M R sm (27rjorbt) - 3" ' 0.12)

and

Qxy = Qyx = 2M R2 [cos(27rforot) sin(27rforot)], (1.13)

with the other terms being either constant or zero. For a system that is a distance of R

along the z axis we can calculate the gravitational wave amplitude seen at the origin. By

calculating the double time derivatives of the previous equations and using the double

angle trigonometric identities ', we find from Equation 1.9 that

hxx = -hyy = h cos(47rforbt), 0.14)

and

hxy = hyx = -h sin(47rforbt), (1.15)

3sin(2u) = 2 sin u cos u and cos(2u) = cos2 u - sin2 u
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where

(1.16)

We note that gravitational waves are emitted at twice the orbital frequency of the system. If

we take two neutron stars with masses of 1.4M0 with an orbital radius of 20 km (almost

touching), Newtonian mechanics states that their orbital frequency will be '" 400 Hz.

Assuming the system is in the VIrgo Cluster at a distance of 15Mpc then we have that

h ~ 1 X 10-21• The number of binary neutron star systems in the universe is uncertain

and this will influence the rate and, thus, the likely distance of such sources. However,

arguments such as those given above are why it is believed that with the sensitivity of

the current detectors, shown in Figure 1.3, we may soon be able to detect gravitational

waves.

In a similar example, which is more relevant to this thesis, we can estimate the amplitude

of the gravitational wave signal emitted by a rotating neutron star. We consider a rotating

ellipsoid with semiaxes a, b, and c, which is rotating with angular velocity (0, 0, 0)

around one of the principal axes. Using the definition of the quadrupole moment and a

few trigonometric identities, the quadrupole moment can be written as

Q
_ h-II

/.tV - 2 - sin 2cp - cos 2cp 0 + constant

o
(1.17)

cos 2cp - sin 2cp 0

o o

where cp= Ot, II= Aff (b2 + c2), and h = Aff (c2 + a2). We note that the gravitational

wave frequency will be at twice the rotation frequency and that there is no gravitational

wave emission if the neutron star is axisymmetric about the rotation axis, that is if a = b.

If we let € = hi/' then from Equation 1.9 we get an expression for the gravitational

wave amplitude such that
4G02

h=-4-hE.c r
( 1.18)

We cover the waveform of such a signal from a neutron star more extensively in Chapter 2.
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The most likely astrophysical sources in the bandwidth for the current ground-based

detectors can be divided into three main classes: transients, periodic, and stochastic.

Transients sources are burst-type signals of short duration. Periodic signals are long

term continuous sources of nearly constant frequency in an inertial reference frame with

respect to the source. Stochastic sources, on the other hand, consist of a large number

of incoherent signals or a priomordial background analogous to the cosmic microwave

background.

For each type of signal, different data analysis strategies must be developed. Assuming

optimal analysis methods, the estimated signal strengths, hs, of various astrophysical

gravitational waves sources along with the expected sensitivities of LlGO detectors are

shown in Figure 1.4 (from Kip Thorne). The signal strengths, b», are defined in such a

way that if a signal is present at any direction in the sky with random orientation they

would be detectable with a false alarm probability of less that one percent.

For a detailed overview of astrophysical gravitational wave sources, see [24]. Below we

describe each of the sources in Figure 1.4, and others.

1.4.1 Coalescing binaries

We have already seen that orbiting compact objects inspiral together due to the loss of

orbital energy to gravitational waves. In the final stages of coalescence, binary systems

emit chirps of gravitational waves, characterized by a rise in frequency and amplitude of

the signal in the final seconds before merging. These systems can comprise of neutron

stars (NSINS), a neutron star and a black hole (NSIBH), or two black holes (BHlBH). The

three arrowed, long-dashed lines in Figure 1.4 show the strengths of these gravitational

wave signals in the last few seconds of inspiralling compared to the sensitivities of the

LlGO detectors. The main uncertainty for those signals is determining the expected rate

of such inspirals; this is related to the distribution of binary systems in the galaxy and



1.4 Generation of gravitational waves 12

'YCrah Spindown
Upper Limit

10 20 50 500 1000

frequency (Hz}

Figure 1.4: The target noise level for LIGO and Advanced LIGO plotted with estimated signal
strength for several sources of gravitational waves (figure from Kip Thorne). The signal strength
is defined in such a way that whenever a signal is present at that strength from any direction in the
sky, in any orientation, it will be detected with a false alarm probability of less than one per cent.

universe.

In 2003, a highly relativistic binary system containing pulsar J0737-3039 was discov-

ered using the Parkes radio telescope [25]. This system alone increased the previous

double neutron star (NS/NS) coalescence rate by a factor of 5 to 7 compared to previous

estimates [26]. The current best estimates for the coalescence rate for galactic NSINS

binaries is 83.0~~~~iIMyr-I at a 95% confidence level. That corresponds to detection

rates for initial LIGO and advanced LIGO of34.8~~~:~ x 1O-3yr-l and 186.8~i~~:~yr-l,

respectively. The detection rates are calculated assuming that initial and advanced LIGO

can detect NS/NS inspirals out to c- 20 Mpc and c: 350 Mpc, respectively.

The coalescence rates of NSIBH systems and BHlBH are more uncertain as no such

systems have yet been discovered.
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1.4.2 Supernovae

Supernovae are capable of outshining entire galaxies in the electromagnetic domain. If

only a small fraction of the explosion energy is converted into gravitational waves then

they could be important sources for advanced detectors. Initial detectors are not likely

to detect gravitational waves from extra-galactic supernovae since the signals would be

too weak. However, the complexity in modelling these sources still leaves doubt about

their gravitational wave signatures and strengths. The current consensus is that first

generation gravitational wave detectors would require a galactic event (or possibly from

the Magellanic Clouds) for detection. For a recent review on supernova physics, see [27].

For reviews on gravitational wave emission from supernovae, see [28] and [29].

1.4.3 Gamma-ray bursts

Gamma-Ray Bursts (GRBs) are intense flashes of gamma-rays that appear to be the most

energetic explosions in the universe. They were first observed in 1969 by military Vela

satellites meant to monitor nuclear weapon testing from space [30]. GRBs tend to be

divided into two classes, 'long' and 'short', depending on the duration of the bursts. There

is convincing evidence that long GRBs are related to supernovae where massive black

holes are created (collapsar model, see [31D. If these are indeed the physical origins of

these ORBs then the gravitational wave signals from the long bursts could be comparable

to those from supernova. Short ORBs, on the other hand, may come from the merger of

compact objects. These could emit significant amounts of gravitational waves detectable

by advanced detectors [32].
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1.4.4 Neutron stars

Gravitational waves can be emitted from rotating neutron stars due to asymmetric mass

distribution. normal modes of oscillation of a fluid core, or free precession. Figure 1.4

shows upper limits on the gravitational wave emission from two known pulsars, Vela

and the Crab, if we assume that the observed loss in rotational energy is due entirely to

gravitational waves. We provide further details and calculate this spindown based upper

limit for other pulsars in Section 3.3.

In this thesis, searches are performed to extract signals that would be generated from

triaxially shaped neutron stars [33]. The asymmetry could arise from strains in a solid

crust left over from its formation [34]. The triaxiality could also be supported by large

internal magnetic fields [35]. The black dashed lines on the right hand side of Figure 1.4

give the gravitational wave strengths for equatorial ellipticities of 10-7 and 10-6 for

pulsars at a distance of 10 kpc. More detail on the gravitational wave amplitude and

waveform from these systems is given inChapter 2.

Young, hot, fluid neutron stars may emit copious amounts of gravitational waves due to

Chandrasekhar-Friedman-Schutz (CFS) instabilities. CFS instabilities can occur for cer-

tain normal modes in rotating neutron stars (see [36] for a review of relativistic rotating

stars). These modes can become unstable because of the emission of gravitational waves.

Instead of damping them, the gravitational wave emission can actually increase the ampli-

tude of the modes. Inrecent years, much interest has been given to r-modes as a potential

source of gravitational waves from rapidly rotating young hot neutron stars where the

saturation amplitude of the waves may be large [37]. The gravitational wave signals from

r-modes would be at - ~ times the rotation frequency of the neutron star [38].

Perhaps themost likely source of gravitational waves from neutron stars are from sources

accreting matter from a companion star, such as Low-Mass X-Ray Binaries (LMXBs). For

these systems, the accreting material provides a clear mechanism for how an asymmetry
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could arise in the neutron star crust (for example, see [39]). The continuous accretion of

matter may also be able to keep the neutron star hot enough for r-modes to be important

not only at a young age. There is the added intriguing fact that most LMXBs seem to have

rotation frequencies that cluster near '" 450 Hz, which is far below the maximum rotation

rate for neutron stars. This is interesting since without a mechanism limiting neutron star

rotation rates one might expect to find some examples with rotation rates nearly breaking

up the star. It has been suggested that the clustering of LMXB frequencies is due to

an equilibrium forming between angular momentum gained by accretion and that lost

via gravitational wave emission [39]. Figure 1.4 shows the corresponding strengths of

gravitational waves from known LMXBs if these systems are in such an equilibrium. If

the spin-up torque is being balanced by a gravitational wave emission torque then signals

from Sco-Xl could be detected with advanced interferometers.

Recent analysis of data from the 76m Lovell radio telescope at Jodrell Bank has found

evidence that pulsar B1828-11 is freely precessing [40]. This particular pulsar, with

a period of 405 ms, is rotating too slowly to emit detectable gravitational waves. But

the discovery of this system begs the question of whether such systems could be impor-

tant sources of gravitational waves. Detailed analyses in [41] have looked carefully at

the gravitational waves emitted from freely precessing neutron stars and concluded that

generally the signals will be too low to be detectable by even second generation detectors.

1.4.5 Stochastic background

There could be a stochastic background of gravitational waves due to i) a cosmological

background left over from the early universe analogous to the cosmic microwave back-

ground, and/or ii) a number of unresolved gravitational waves signals from astrophysical

sources. The spectrum of stochastic gravitational waves is generally characterised by

nGw(f) which is the gravitational wave energy density per logarithmic frequency di-
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vided by the critical energy density to close the universe. Specifically, we have

fdPGw
rlGw(f) = ---,

Pc df
(1.19)

where Pc is the critical energy density to close the universe'' [42]. If the standard inflation

theory is correct then rlGW ::: 10-15 and the gravitational waves would be too weak:to be

detectable even with advanced interferometers [43]. The black dotted lines in Figure 1.4

show the different signal strengths assuming a cross-correlation of four months of data and

isotropic waves. For a good review on cosmological sources of stochastic gravitational

waves, see [44].

1.4.6 Cosmic strings

Cosmic strings may produce gravitational waves in two ways that could be detectable:

i) they could contribute to a stochastic background and, ii) they could emit individual

burst' cusps' of gravitational waves. The idea that cosmic strings could emit gravitational

radiation has been around for a long time [45] (and more recently in [46]) but has re-

cently received increased attention. In [47] it has been argued that certain cosmic strings

could produce gravitational bursts strong enough to be detectable by first generation

gravitational wave detectors.

1.4.7 Unknown sources

None of the astrophysical or cosmological sources described in this section are 'guaran-

teed' to be detected by the first generation of detectors. Indeed, the current consensus

among scientists is that the first generation of detectors could possibly make a detection

while advanced detectors should probably see gravitational waves. But perhaps, with

luck, the first discovery will come from an unexpected and/or unknown source.

"The critical density is Pc == 3c2 H6 /8trG where Ho is the Hubble expansion rate.
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1.5 Bayesian methods in data analysis

In data analysis, inferences are drawn from the data by the application of probability

and statistics. There are, however, different ways of defining the term probability. The

frequentist, classical, methodology uses probability to mean the expected frequency of

an event occurring. In a Bayesian framework, on the other hand, when we use the term

probability we mean degree of belief In essence, these two frameworks pose different

questions and that must be considered when deciding which one to use in statistical

problems.

In the searches presented in this thesis, we assess whether gravitational waves are emitted

by known pulsars. If no gravitational waves are observed, then we want to place upper

limits on emission by these objects. Since we fundamentally want to compare different

models, which have varying amplitudes of gravitational waves, the choice of a Bayesian

approach is quite natural for this problem. We want to use all of the data available to

make the best possible inference on physical properties of these stars.

In [48] (see Appendix), we compare upper limits on gravitational wave emission from

pulsar B1937+21 using both a Bayesian and frequentist approach to the analysis. The

results for the Bayesian analysis are described in detail inChapter 3. The frequentist ap-

proach used the maximum likelihood principle to derive detection statistics for the signal

as described in [49]. Although we would not expect the same numerical value between

the numerical results, we did find qualitative agreement between the two methodolo-

gies. While this was reassuring, in principle, the two results have completely different

meanings.

The merits of Bayesian analyses in astrophysics are discussed further in [50] and specif-

ically for gravitational wave data analysis in [51]. In the rest of this section, the basic

rules of Bayesian probability theory are presented.

Two basic axioms of probability theory, the sum rule and the product rule, lead to the
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foundations of Bayesian theory. The sum rule simply states that if we know how much

we believe something is true, then we implicitly also state how much we believe it is

false. It can be written in the form

p«()I/) + p(91/) = 1, (1.20)

where p( ()II) is the probability of (I given our background information I and p( 91/) is the

probability of the opposite. As is usually done, we have implicitly defined probability

on a scale of 0 to 1 with a larger number signifying larger probability and 1 meaning

certainty of the truth of the proposition. The product rule relates the probability of two

propositions, p«(I, DI/), with the probability of one of the proposition, p«()I/), and the

probability of the other one given the first one, p(DI(), I). In equation form we have

p«(), DI/) = p«()I/)p(DI(), /). (1.21)

Simple manipulation of the product rule gives rise to Bayes' Theorem. Given the inter-

changeability of (I and D in Equation 1.21, we get

«() D I) = p«()I/)p(DI(), I)
pI, p(DI/)' (1.22)

which is known as Bayes' Theorem. So we have

p«(lID, /) ex: p«(lI/)· p(DI(), I) or

posterior ex: prior' likelihood,

(1.23)

(1.24)

where we have replaced p(D, I) with a proportionality as it is not a function of (). This

is an important result for data analysis as it describes how to update our prior knowledge

on (I from p«()IJ) to p«()ID, I) with the use of the likelihood of data p(DI(), J).

The second rule of Bayesian theory can be derived by considering the sum rule and the
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product rule together. Using these rules, it is easy to show that

p(BII) = p(B, f311)+ p(B, fill). (1.25)

By considering f3as a continuous parameter representing a set of mutually exclusive and

exhaustive possibilities we can write

p(BI]) =i:p(B, f31])df3, (1.26)

which is known as the marginalisation rule. Since these represent a set of exhaustive

possibilities, we can also write a normalization requirement that

i:p(BII)dB = 1. (1.27)

The marginalisation rule is particularly useful in data analysis in order to deal with

parameters which are part of a model but of no interest to the analyst; we call these

nuisance parameters.

The use of prior probabilities in Bayesian statistics has caused unease among some who

regard them to be less objective than the methods of classical frequentist statistics. Never-

theless, the intuitive appeal of the Bayesian approach as well as the natural interpretation

of the results has led us to use Bayesian reasoning for the problems we address in the

following chapters. For a detailed discussion on the topic of priors and subjective prob-

abilities, the reader is referred to a set of papers by D' Agostini, especially [52] and [53].

1.6 Outline of the thesis

The field of gravitational wave astronomy is approaching and relevant data analysis

techniques are being developed to make optimal use of data from several detectors. This

thesis concerns the application of new data analysis methods to recent data from the
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GE0600 and LIGO gravitational wave detectors. In the second chapter, a pipeline is

developed to search for periodic gravitational wave signals from targeted sources such

as pulsars. The robust method presented makes use the known rotation phase of these

objects and a Bayesian statistical interpretation is employed. In Chapter 3, we place

upper limits on periodic gravitational waves from pulsar B1937+21 using data from the

first science run of GE0600 and LIGO. In Chapter 4, we use data from LlGO's second

science run to expand the search to 28 isolated pulsars. Two simulated signals injected

into the interferometers during the second science run are also analysed to increase our

confidence in the overall pipeline. In Chapter 5, the same analysis is carried out on the

LIGO data from the third science run. For one of the pulsars, B1937+21, a coherent

multi-detector analysis is performed making use of S3 data from GE0600. Finally, a

brief summary of the main results is provided in Chapter 6.



Chapter 2

Bayesian methods to search for

periodic gravitational waves

2.1 Introduction

In this chapter, we present a scheme designed to search for weak periodic gravitational

wave signals emitted by neutron stars. Specifically, the method is ideal for sources with

known sky positions and frequencies such as radio pulsars. The technique and statistical

methodology are described in detail and applied to simulated data. The method has been

successfully applied to real data from several science runs of GEO 600 and LIGO. These

results are presented in detail in the following three chapters.

We have seen that several mechanisms have been proposed that could lead to the emission

of continuous gravitational waves from neutron stars. Here we concentrate on data

analysis methods for emission from non-precessing triaxial neutron stars rotating about

their principal axes. For these neutron stars to be emitting gravitational waves they need

to be asymmetric about their rotation axes. The gravitational wave signal will be emitted

at twice the rotation frequency of the neutron star.
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Since gravitational wave signals from neutron stars are expected to be weak, it is advanta-

geous to integrate over long stretches of data (months to years). A periodic gravitational

wave signal being emitted by a neutron star will be Doppler shifted due to the motion

of the Earth, and will be amplitude modulated by the response of the interferometers.

In the work presented here we take into account both of these effects on the measured

gravitational wave signal.

Searches for periodic gravitational wave signals from neutron stars can be divided into

three classes: targeted, directed, and blind. If the location and the spin parameters

(frequency and frequency derivatives) of an object of interest are well known we refer to

a "targeted" search for a signal. This is the case for pulsars where the location and spin

parameters can be inferred directly and accurately from radio or X-ray observations. We

refer to "directed" searches when these parameters are poorly known, and possibly the

position is the only parameter known to any precision. For example, supernova remnants

are objects for which the location is approximately known and there mayor may not

be information about the spin parameters. Finally, blind all-sky searches correspond to

the situation where no parameters are known, not even the location of possible sources.

Due to the dependence of the signal on sky location and the very large parameter space

involved. such searches are typically computationally limited. Hierarchical strategies

that take advantage of fast algorithms (like the Fast Fourier Transform, FFT) have been

developed and must be used for blind searches. In this work, we will concentrate on

a targeted search technique that was specifically developed to search for signals from

known pulsars.

The fact that we can monitor radio pulsars make them particularly interesting sources to

target. There are several advantages to performing targeted searches when the locations

and frequencies are known in advance. First, for unknown sources we add extra parame-

ters into the problem: right ascension, declination, frequency, and frequency derivatives.

This results in a decrease in sensitivity since the statistical threshold for detection will

need to be increased. For targeted searches with a small number of unknown parameters
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the threshold can be lower. Another advantage of targeted searches is that we focus on a

narrow frequency band of data. Due to the presence of several interfering spectral lines

in interferometric data, the data characterisation problem can be reduced significantly by

only analysing narrow bands, and hopefully avoiding contaminating lines. Finally, since

we are only searching over a few parameters in a narrow band, targeted searches are not

computationally bound. Indeed, the algorithm presented here does not even need to take

advantage of fast algorithms like FFrs.

This chapter provides an end-to-end description of a robust and straightforward method to

search for periodic signals from pulsars with interferometric gravitational wave detectors.

In Section 2.2.2 we describe the nature of the gravitational wave signal from a pulsar

and introduce the relevant physical parameters. We explain the data processing and

the statistical methodology including how to incorporate coherently the data from several

detectors in Section 2.3. The performance of the algorithm on simulated data is described

in Section 2.4. We conclude in Section 2.5 by discussing natural extensions to this work

including Markov Chain Monte Carlo methods.

2.2 Nature of the gravitational wave signal

2.2.1 Response of interferometric detectors

The response of interferometers to incoming weak plane gravitational waves can be

expressed as a linear combination of the strain of each polarisation h+(t) and h x (I) by

(2.1)

where F+(t) and Fx (t) are called the beam pattern functions. The beampattern functions,

also called amplitude response functions, give the sensitivity of an interferometer to each

polarisation. Due to the diurnal motion of the Earth these functions are periodic with a
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period of half a sidereal day. The beam pattern functions are dependent on the geometry

of the interferometer and also the location and orientation of the source with respect to

the interferometer. We will use the same angles as in [49] to describe the beam pattern

functions here, namely: a as the right ascension of the source, 15as the declination of the

source, 1/1as the polarisation angle of the wave, ).,as the latitude of the detector's site, Or

as the rotational velocity of the Earth, lPr as a deterministic phase defining the position of

the Earth at time t = 0 (so that lPr + Ort is the local sidereal time (LST) of the detector's

site'), y as the angle between East and the bisector of the interferometer arms, and t; as

the angle between the arms.

The explicit formulae for the beam pattern are [49]:

F+(t) - sin s [aCt) cos 21/1+ bet) sin 21/1], (2.2)

(2.3)Fx(t) - sin~[b(t)cos21/t-a(t)sin21/1],

where

aCt) - l~ sin 2y(3 - cos 2),,)(3 - cos 215)cos[2(a - lPr - Ort)]

-~ cos 2y sin ),,(3- cos 215)sin[2(a - lPr - Ort)]

+~ sin 2y sin 2)"sin 28 cos]o - lPr - Ort]

-~ cos 2y cosx sin 215sin[a - lP,.- Or(t)]

+~ sin 2y cos2 )., cos2 15, (2.4)

bet) - cos 2y sin x sin 8 cos[2(a - <Pr - Ort)]

I
+4sin2y(3 -cos2)")sin8sin[2(a -<Pr - Ort)]

+ cos 2y cos x cos 15cos]o - <Pr - Ort]

1
+2 sin 2y sin 2)"cos 8 sin[a - lPr - Ort]. (2.5)

ILST: angle between local meridian and the vernal point.
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For a full derivation of these expressions the reader is referred to [49] and references

therein. Figure 2.1 and Figure 2.2 show the directional en itivity of an interferometer

to the plus and cross polarisations, respectively. The hypothetical interferometer would

be situated at the origin of the plots with perpendicular arms along the x-axis and y-axis.

Figure 2.3 shows the response of that interferometer to unpolarised gravitational waves.

We note that the response of interferometers to gravitational waves is nearly omnidirec-

tional. Unlike an optical telescope for which we need to point toward any source of

interest, gravitational wave interferometers are sensitive to a very large area of the sky at

all times. This is particularly convenient for continuous sources as they are nearly always

present in the data. For those signals, their locations can be determined by observing

the Doppler shifts due to the motion of the Earth. On the other hand, for short duration

signals, the non-directionality of the interferometers requires using times-of-arrival in-

formation from several detectors in order to determine the location of the source in the
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2.2.2 Gravitational waves from triaxial neutron tars

A perfectly symmetric rotating sphere will not mit quadrupole gravitational waves. Here

we consider the gravitational waves emitted from a rotating rigid axisymmetric body.

Figure 2.4 shows an example of uch a body with moment of inertia I zz = I yy f. Ix

where z is the axis of rotation. Such a body will emit gravitational waves as long at

the axial symmetry is not about the rotation axi . The gravitational wave emitted by

an rotating triaxial rigid body about any axis are de cribed in detail in l33J. H re we

consider the special case of a triaxial ellipsoid rotating about its principal axis. in this

case, it emits gravitational waves solely at twice it rotation frequency. If the star is
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precessing then there is an additional component to the gravitational wave signal at the

rotation frequency and the precession frequency may need to be taken into account (but

it may be small enough to be negligible). The regularity of the time-of-arrivals of signals

from the majority of radio pulsars suggests that most of them are not precessing on a

short time scale or maybe not at all. We will see an example pulsar in the next chapter

for which the timing residuals have been less than 4 I1-s over several years.

The gravitational wave amplitude, ho, for a triaxial neutron star is described by

(2.6)

where r its distance to the pulsar, Izz its moment of inertia about the rotation axis, fo is

the rotation frequency of the pulsar, and e is its equatorial ellipticity of the pulsars. The

equatorial ellipticity is defined as

Ixx - Iyy
€=--...<.,;..

Izz
(2.7)

The gravitational wave signal seen by the detector will be frequency modulated due to

the relative motion of the Earth to the pulsar. As we have seen, the signal will also

be amplitude modulated by the strain response pattern of the interferometer to each

polarization. Using the model described in [33], we can describe the measured signal,

h(t), by

h(t) = iF+(t; 1/I)ho(1+ cos2 z)cos2"'(t) + Fx(t; 1/I)hocos t sin2"'(t), (2.8)

where F+ and Fx are the beam patterns functions of the detectors/, 1/1 is the polarisation

angle, t is the inclination of the pulsar with respect to the line of sight, and "'(t) is the

phase of the signal.

21n addition to the polarisation angle the beam pattern functions depend on location and several other
fixed angles as described in the previous section.
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2.2.3 Pulsar timing: phase of the gravitational wave signal

We choose to express the pulsar phase with respect to the solar system barycentre which

is an inertial reference frame. We can model gravitational wave signal phase, neglecting

high order terms, as a function of barycentric time, T, by

\11 (T) = 4>0 + 21l' [/o(T - To)+~io(T - TO)2+~lo(T - To)3+ O(T4) ] (2.9)

where 4>0 is the phase of the pulsar at a fiducial time To, io is the rotation frequency of

the pulsar, io is the first frequency derivative, and 10 is the second frequency derivative.

The transformation between the barycentric time (T) and the topocentric time at the

detector (t) can be expressed as

T = t + 8t = t + L\Roemer + L\Shapiro + L\Einstein + L\Binary (2.10)

where L\Roemer is the classical Roemer delay, L\s0 is the Shapiro delay due to the curvature

of space-time near the Sun, L\E0 is the Einstein delay due to gravitational redshift and

time dilation, and L\Binary contains corrections related to the pulsar's orbit, if applicable.

More details on the magnitude of each of these timing effects is provided in Section 3.5.

The second term in Equation 2.10, the Roemer delay, is the largest component and due

to the motion of the Earth within the Solar System. For isolated pulsars the fifth term in

Equation 2.10 is not applicable (L\Binary = 0). For pulsars in binary systems this term

should include all the classical and relativistic corrections for the shifts in the time-of-

arrival of the signal due to the motion of the source within the binary system.

We will not consider binary pulsars in this analysis, but for more details on pulsar timing

of binary systems see [54] and references therein.
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2.3 Searching for signals from pulsars

Current ground-based interferometric detectors have broadband sensitivity to gravita-

tional waves up to several kilohertz, and thus the sampling rate for data needs to be

relatively high. For the GE0600 and LIGO detectors, the sampling rate has been set

to 16384Hz. This leads to large data sets when analyzing several months or years of

data as advantageous for pulsars. For example for GEO 600, which stores data in double

precision, this corresponds to (16384 samples/s x 86400 s/day x 8 bytes/sample)

11.3 gigabytes of data per day, or 4.1 terabytes per year. In practice this is a gross under-

estimate of the actual data stored since a large amount of environmental information is

also recorded.

The signal we are trying to extract in a targeted search, however, is actually contained in

a very narrow frequency band. The knowledge of the spin parameters of the source from

radio observations permits us to reduce the size of the data set considerably.

As explained in more detail in the next sections, we can perform a complex heterodyne

of the data and then reduce the sampling rate by a factor of '" 106without loss of relevant

information. A similar technique for data compression has been used in previous searches

for periodic gravitational waves [55]. Complex heterodyning can be used to remove the

expected phase evolution of a signal in the detector output leaving the processed signal

near zero frequency. For a pulsar signal recorded by an interferometric detector, the

only time varying component remaining in the heterodyned signal would be the response

pattern of the interferometer.

Since the beam pattern of the interferometer varies on a time scale much slower than the

original periodic signal, after heterodyning we can thus re-sample the data with a much

reduced sampling rate. Indeed, since the period of the beam pattern of the antenna is only

a sidereal day, in principle from the Nyquist theorem we could re-sample as low as twice

per day. However, for practical reasons is it better to have a larger sampling rate than
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this. The main reason is that the noise floor of the interferometers changes on time scales

of minutes, hours, and days. Inorder to correctly track the changing noise floor we have

found that a sampling rate of 1 sample per minute is quite adequate to deal with current

data. Since we keep both the real and imaginary part of the sample for each minute,

our effective bandwidth is 1/60Hz centered on the heterodyning frequency which is the

instantaneous frequency of the signal at the detector.

Once the data volume has been reduced to I sample per minute, we take a Bayesian

approach for the analysis. In the following section, we show explicitly the form of the

heterodyned gravitational wave signal in the reduced data set. This signal is dependent

on four unknown parameters: ho (gravitational wave amplitude), 1/1 (polarisation angle),

l/>o (phase of the signal at time To), and L (the angle between the angular momentum

vector of the pulsar and the line of sight). We proceed by calculating the probability

of the data given each set of parameters over their respective ranges. Finally, through

the application of Bayes' Theorem with suitable prior probabilities and marginalisation,

we obtain posterior posterior probabilities for each of these parameters given the data

collected.

2.3.1 Data processing

We take the calibrated output of a gravitational wave detector to be

s(t) = h(t) +n(t), (2.11)

where h(t) is a gravitational wave signal and n(t) is noise. We have already seen the

signal, h(t), that we are expecting from pulsars in Equation 2.8. We can rewrite this

equation using simple trigonometric identities' to give

(2.12)
~z -iz ~z =iz

3sin Z = ~ and cos z = __:i:,f--
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where

1 2 '2¢0 i '2¢0
Al(t) = 4F+(t; 1/I)ho(1 + cos L)e' - '2Fx(t; 1/I)hocos Le' , (2.13)

and

where 4J(t) = \II(t + ot) - ¢o as defined in Equations 2.9 and 2.10.

As we have seen, since the signal bandwidth is small compared to the detector bandwidth

no information is lost by reducing the bandwidth of the data around the signal. We do

this by complex heterodyning the data, low-pass filtering, and then averaging to reduce

the sample rate. We will denote each averaged data point as Bk where k is an index

representing the time period for each sample. These binned data points contain all of the

information that we need to extract a gravitational wave signal, h(t), from the data.

For the heterodyning step, we multiply the calibrated data from the interferometer by

e-i2r/>(t) and get

sttet(t) = s(t)e-i2r/>(t) = Al (t) + A2(t)e-i44>(I) + n(t)e-i2,4l(t). (2,15)

The heterodyning process removes the known phase evolution from the term AI. This

term will still vary over the day due to the antenna response of the interferometer, The

second term, A2,will oscillate at nearly twice the gravitational wave signal frequency.

We then apply a low-pass filter to the heterodyned data stream prior to averaging to

prevent aliasing noise from outside the signal band into our reduced data set In practice,

we have used a series of third order Infinite Impulse Response (IIR) Butterworth filters for

the time domain low-pass filtering. The frequency cutoffs of the IIR filters can be tuned

depending on the characteristics of the data. The main requirement is to prevent spectral
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disturbances from outside our signal bandwidth being aliased into our calculation of the

Bk'S. We want to use a low-pass IIR filters that will attenuate noise outside our 1160Hz

band. Ifwe wanted to reduce our sampling rate to less than 1 sample per minute, then

we could use IIR filters with a tighter cutoff. However, this would correlate the data for

longer periods of time and we have seen that this can be disadvantageous due to changing

noise levels. The selection of the IIR filters, and the sampling rate, ultimately depends

on the stationarity of the noise and whether a narrow band is required to avoid nearby

spectral lines

Finally, after applying a suitable low-pass filter, we can bin (average) the filtered data

(now S~t) to reduce the number of samples to

(2.16)

where k is the sample number, the index i is over each sample at 16384 Hz, and M is the

number of samples to average together.

The low-pass filtering and averaging procedure strongly suppress the second term in

Equation 2.15. Since the term is periodic and outside our band it is attenuated by the IIR

filters and the averaging in Equation 2.16.

There can be advantages in performing the heterodyning and re-sampling process de-

scribed above in two steps, to prevent having to recalculate the time delay to the solar

system barycentre for every sample. This can be done by first complex heterodyning

the data at a fixed frequency near signal frequency and reducing the bandwidth to, for

example, 4Hz. A second heterodyne can then be performed to the data to removed the

Doppler shifts due to the motion of the Earth. The advantage to this technique is that the

time delay from the detector to the solar system barycenter, which can be computationally

intensive, can be calculated at 4Hz instead of 16384 Hz. In practice, however, we have

found that it is not necessary to take advantage of this technique on modern computers.
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With the high frequency term inEquation 2.15 suppressed we have

where n(tk)' is the heterodyned and averaged complex noise in bin k. For example, if we

let M = 60 x 16384 in Equation 2.16 we get one binned data point, Bb every minute for

a detector acquiring data at 16384Hz. The central limit theorem tells us that we would

expect the noise, n(tk)', to be well described by a Gaussian distribution. However, as we

have seen, the width of this distribution may change over time as the detector sensitivity

evolves.

2.3.2 Bayesian analysis

We take a Bayesian approach for the statistical analysis. We use Bayes' Theorem to

calculate the posterior probability, p(al{Bk}), of a set of parameters a given the binned

data, {Bk}. For this problem, Bayes' Theorem states that

( I{B }) = p(a)p({Bk}la)
p a k P({Bk})' (2.18)

where a represents the set of parameters that could produce the set of data, {Bk}, with

likelihood p({Bk}la). Our prior beliefs in our set of parameters are reflected in the prior

probability term, p(a). Wewill use the least informative priors for most of the parameters

in their respective ranges: 4>0 uniform over [0,2n], 1/1 uniform over [-11'/4, n/4], and

t uniform in cos t over [-1, 1], corresponding to a uniform prior per unit solid angle of

pulsar orientation. Some comments on these priors are given below.

The principal range for the polarisation angle spans n rad due to the quadrupolar nature

of the waves. This is clear from the factor of 2 in front of 1/1 in Equation 2.2 and

Equation 2.3. For example, if a 'plus' mode is rotated by 11'/2rad then it is the opposite

of itself. However, for a given signal there are two degenerate solutions for 1/1 over n rad
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since we cannot differentiate between a given mode and its opposite. For this reason, we

have limited our range in"" to [-re /4, re/4].

It is easy to show why for the orientation angle we need to use a prior probability that

is uniform in cos t as opposed to t, If we consider the probability of a small interval in

orientation, dt , assuming no extra information on the orientation is known, we have

2re sin tdt 1
p(t)dt = = -sin(t)dt,

4re 2 (2.19)

where the factor of 4re can be interpreted as the surface area of a unit sphere and 2re sin tdt

as the area of a thin ring. By the transformation property of density functions'[ we thus

have that

1. I 1 I 1p(COSt)= - smt· --.- =-
2 sm z 2

(2.20)

and since t E [0, re] we have cos t E [-1, 1].

For ho we will use a fiat prior which permits the construction of confidence intervals so

that we can determine upper limits. If, on the other hand we used an improper prior,

such as a Jeffreys prior (ex 1/ ho) for ho, we would have the problem that such a prior

is not normalisable. In principle the prior on ho should reflect all our initial beliefs

on the gravitational wave strength, ho. But since the detectors are too insensitive to

detect any currently plausible signal, such a realistic prior would overwhelm the posterior

probability. We would not learn anything new from the experiment since the posterior

probability distribution function (pdf) would largely resemble the prior pdf we chose.

The main caveat in using a flat prior on ho is the awkward question that can be asked

when we set up a 95% upper limit: Do you really believe that there is 5% probability

that the signal is larger than your upper limit? In a strict sense, if we are using a flat

prior on ho, we should indeed believe what the posterior probability function tells us if

we trust our choice of prior probability. However, due to other information which we are

4p(u) = p(x) I: 1
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not including in the prior like pulsar spindown, which we will see in the next chapter, and

neutron star theory, we may actually believe less that a signal is present than our limit

suggests (with current detector sensitivities). It is clear, however, that the flat prior on ho

will simply give us more conservative upper limits (meaning larger) than we would get

ifwe were using realistic priors. With a flat prior like we have chosen, the upper limits

on ho simply reflect the sensitivity of the detectors. The main reason for not including

all of our prior knowledge is simplicity and the fact that we want to focus on the new

information the detectors are telling us.

When the posterior probability distribution functions (pdfs) are used to determine upper

limits it is important to remember that our choice of a flat prior will favour larger values

of ho. In fact, when using a uniform prior for ho, our resulting posterior distributions

are functionally equivalent to normalized likelihoods. If another researcher has different

prior beliefs, Bayes' formula can be applied directly on the normalised likelihoods to

give a new posterior pdf. The problem with only presenting the normalised likelihoods,

however, is that we cannot call the results probability limits without applying a prior

(from Bayes' Theorem). That is why we prefer presenting our results as posterior pdfs

with a flat prior, and then we can talk about degrees of belief of the value of the parameter

ho. For more discussion on how to chose a prior in similar cases to this one, in frontier

physics when the level of a signal may be below the sensitivity of the experiment or not

there at all, see [52]. Ultimately, if there is a strong detection the choice of the prior

should not play an important role in the results since the likelihood function would be

sufficiently strongly peaked.

In order to calculate the likelihood function we need to have a model of the signal in the

processed data. The model of the signal that we are searching for in the data set, {Bk}, is

obtained by processing the original gravitational wave signal h(t) in the same way that

we processed the data to give

(2.21)
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where a is again the parameter vector representing the four unknown parameters ho, c, "",

t/>o. We note that the model is complex and that the only time varying component is the

antenna pattern of the interferometers. As we have seen, the Nyquist frequency for this

signal is well below our reduced sampling rate of one Bk per minute. In the following

two sections we will present two different ways of evaluating the likelihood function

depending on whether the variance of the data is known or unknown.

2.3.3 Gaussian model- known variance

Here we give the expression for the likelihood function assuming that we know the

variance of the data independently. We assume that the data comprises a signal, y(tk),

which is embedded in Gaussian noise N(/J-, (1) of known variance (1k, that is

(2.22)

If the set of Bk are independent, then the likelihood function is simply the product of the

individual measurements. Inthis case, the the likelihood of the data is simply the product

of n bivariate normal distributions where n is the number of data points, Bk. Note that

the distribution is bivariate because the data are complex numbers after the heterodyning

process. The real and imaginary parts of the Bk'S have independent noise though their

variances should be of similar amplitude. The expression for the likelihood of the set of

data {Bk} is given by

(2.23)

where Yk is our model from Equation 2.21, n is the total number of data points Bi, and

(1k is the standard deviation of the noise of each Bk. In this expression, we are assuming

that the variance is the same for the real and imaginary parts of the data.

This Gaussian model for the likelihood was used for the first GEO 600 and LlGO analysis
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for signals from pulsar B1937+21 (see Chapter 3). As will be explained in detail in

Chapter 3, the noise level (lk was estimated for each Bk by using a 4Hz band of data

around the signal frequency. In the SI analysis we deemed the uncertainty in the point

estimate of (lk was small enough to be ignored. So we made the approximation that

the level of the noise could be taken as a known value. With a 4Hz bandwidth, if we

assumed that the data were stationary for one minute then we would have 240 x 2 points

contributing to our estimate of the variance. Using such a large bandwidth around the

signal frequency worked well as long as there were no spectral features distorting the

noise floor near the frequency of the signal. This was the problem we encountered when

we tried to search for signals from 28 different pulsars in S2 (see Chapter 4).

Although at 1284Hz (for pulsar BI937+21) there were no significant spectral features

in the 4 Hz band around the signal frequency, the same was not true for a many of the

other pulsars we analysed in S2 (see Chapter 4). In order to deal with this we decided

to reduce the bandwidth from which the noise was being estimated. While this did

remove contaminating lines, it also meant that it was necessary to assume stationarity

for a longer period to have the same confidence in the noise estimate. Specifically. we

moved to calculating the noise floor from a 4Hz to a 1160Hz band around the Doppler

shifted signal frequency. We also assumed that the noise level would be stationary for 30

minutes. So we had only 30 points from which to estimate the noise floor for each Bk.

We could no longer ignore the uncertainty in our estimates of (lk. This was taken into

account by treating (lk as another unknown parameter as described in the next section.

2.3.4 Gaussian model- unknown variance

In the previous section, we were evaluating the likelihood of the data assuming that the

noise level, (lk, was known for each Bi, Generally. however, the noise level in the Bk's

may not be known in advance and must be estimated from the data. H (lk is estimated

from the data itself, there can be non-negligible uncertainty in its value if only a few data
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values contribute to the estimate. We can correctly take account of this uncertainty by

treating the noise level as another nuisance parameter. We will begin by calculating the

likelihood of a subset of m j consecutive data points from {Bk} which have a constant

noise level Uj. Once we have that expression, we will calculate the global likelihood

simply using the product rule assuming that each segment of data is independent. We

will again define n to be the total number of data points Bk and let M be the number of

segments of data that we have assumed have the same noise level, so that

(2.24)

Using Bayes' theorem, we can rewrite the likelihood of the jth subset of data as

p({Bk}jla) ex 1000 p({Bkli, ujla) dUj

ex 1000 p(Uj la)p({Bk}jla, Uj) dUj, (2.25)

where p(Uj [a) states the prior knowledge of the noise floor and the likelihood is the same

as Equation 2.23. As Uj is a scale parameter, the least informative prior is uniform with

respect to log(uj), that is

=0 (Uj < 0). (2.26)

The conclusions would be essentially unchanged if a uniform prior was used instead of

a Jeffreys' prior. This will become clear later in this section. The procedure followed

here to integrate out the variance is the same as done by Sivia in [56]. Here we assume

that the Uj associated with each subset {Bk}j is constant for mj samples. In other words,

we assume that the noise level of the interferometer, in a narrow frequency band around

the gravitational wave signal, is stationary for m j samples. In practice, it is very useful

to allow the noise floor to change between each subset {Bkli of data. This allows us to
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dynamically track the noise floor seen in real interferometric data which can be changing

due to daily variations such as temperature, tides, etc. The length of the period, m j,

over the which the data is assumed to be stationary can also be adjusted to reflect the

instrumental performance.

Using Equation 2.25, the prior from Equation 2.26, and a Gaussian likelihood, we can

write that the likelihood of the subset {Bk} j of constant noise aj is

(2.27)

We can solve this integral by making the following substitutions

(2.28)

du -

which we can re-arrange as

1 ,.fiu
- lE 18k - Yk12'

1
du,

J2 L IBk - Ykl2

(2.29)

which leads to

p({Bk}jla) ex: 2mj (2: 18k - Yk12) -mj!e-u2 u2mj+1du, (2.30)

P({Bk}jla) ex: 2mrl (2: IBk - Yk12) -mj mj!. (2.31)

We can drop the constants and the solution is therefore

(2.32)

which approximates a Student's t-distribution with 2m j - 1 degrees of freedom as is
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Figure 2.5: Gaussiandistribution(solidline), Student's r-distributionwith5 degreesof freedom
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shown below. The overall shape of the t-distribution resembles a Gaussian distribution

except a bit lower and wider. As the number of degrees of freedom 2m j - 1 increases,

the t-distribution approaches the Gaussian distribution. Figure 2.5 shows a Gaussian

distribution along with two Student's t-distributions with 5 and 30 degrees of freedom.

Recall that the likelihood derived in Equation 2.32 is for a set of m j data points Bk with

the same ai:The joint likelihood of all the M stretches of data, taken as independent, is

therefore
M

p({Bk}la) ex IlP({Bk}jla).
j

(2.33)

We note again that both the noise levels. (fj, and the length of the intervals of constant

noise, m j» can change to reflect the performance of the detectors.

It is straightforward to show that the likelihood expression in Equation 2.32 approximates

a Student's r-distribution. The Student's t-distribution applies to estimating a constant

signal in the presence of noise with unknown variance. The standard expression for a
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Student's t pdf is
r [~(r + 1)]

fr{t) = (r+l)/2'
Jrifr Hr) (1+ t:)

(2.34)

which can be reduced to

(2.35)

where r is the number of degrees of freedom. Ifwe let n = (r + 1)/2, we can rewrite

Equation 2.35 as

fr{t) ex (1 + t2/(2n _ 1»)-n . (2.36)

A little algebra and one assumption will make it obvious that Equation 2.32 agrees with

Equation 2.36. Ifwe take Yt as constant over the M segments of data then the sum in

Equation 2.32 can be rewritten as

(2.37)

where

2 1 - 12t = mj(2mj -1) Bt - Yt , (2.38)

and
mj

V =L 1s, - Et 12 .
k=l

(2.39)

"Ek is the complex number that is the average of the elements in the set {Bt} j •

By substituting Equation 2.37 in Equation 2.32 we get

p({Bt}j la) ex ( t
2

+ v)-mj

Zm] -1

ex (1 + t
2 )-mj

,

(2mj -1)V

(2.40)

(2.41)

which is a Student's t-distribution with 2m j - 1degrees of freedom as noted earlier. It is

worth noting, however, that we have made the assumption that Yk was constant over each
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j interval. Inreality, the model Yk will vary due to the beam pattern of the interferometer.

However, if the M segments of data are 30 minutes long, as applied in the S2 analysis

(see Chapter 4), this effect is relatively small. For the S2 analysis, only about 12% of the

data was rejected due to using blocks of 30 minutes.

2.3.5 Combining data from a network of detectors

Several gravitational wave detectors are currently collecting data. Ideally, we should be

able to use the observations from all detectors in a coherent manner in order to draw the

best possible inference about the source parameters. In a Bayesian analysis, as presented

here, all observations enter via the likelihood function. Assuming that the data from

each interferometer are independent, by the product rule the global likelihood is simply

the product of the individual likelihoods. For example, by combining observations from

GE0600 and the three LIGO interferometers, we would get

p({Bkhointla) = p({Bk}GEOla) p({Bk}Hlla) p({Bk}H2la) p({Bk}L1la), (2.42)

where we denote HI as the 4km Hanford interferometer, H2 as the 2km Hanford inter-

ferometer, and LI as the 4km Livingston interferometer.

This likelihood embodies all we believe we know about the values of the parameters,

optimally combining the data from all the interferometers in a coherent way. Note that

the observation periods can be different and so can the sensitivity of the detectors. For

detectors with very different sensitivities, this will closely approximate the result from

the most sensitive instrument.
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2.3.6 Marginalisation over parameters and setting upper limits

The full 4-dimensional posterior pdf contains the complete result of our analysis but is

difficult to interpret directly. Using the rules of probability theory we can marginalise

over nuisance parameters to focus on the parameter of interest. The marginal distribution

can be viewed as a weighted average of all the distributions of one parameter given all

the possible combinations of the other parameters. Specifically, for the four unknown

parameters in our model, we have

p(hoI{Bk}) cc !!!p({Bklla)p(ho)p(¢o)p(y,)p(cos t) d¢o dy, d COSt,(2.43)

p(¢oI{Bk}) cc !!!p({Bk}la)p(¢o)p(ho)p(y,)p(cos t) dho dy, d cos t, (2.44)

p(Y,I{Bk}) cc !!!p({Bk}la)p(y,)p(¢o)p(ho)p(coSt) d¢odhodcost,(2.45)

p(COStI{Bk}) cc !!!p({Bk}la)p(cos t)p(¢o)p(y,)p(ho) d¢o d1/ldho, (2.46)

where the integrals are performed over the full ranges of the nuisance parameters and the

pdfs must be properly normalized. If a signal is detected, these results are very useful

for extraction of the individual parameters. We can also easily calculate the joint pdf for

any two parameters. For example, we can calculate

p(ho, ¢o1{Bk}) cc !!p({Bk}la)p(ho)p(¢o)p(y,)p(cOSt) dy, d cosr, (2.47)

p(ho, y,1{Bk}) cc !!p({Bklla)p(¢o)p(ho)p(y,)p(cos t) dho dcos c, (2.48)

p(ho, costl{Bkl) cc !!p({Bk}la)p(1/I)p(¢o)p(ho)p(coSt) d¢o dho, (2.49)

These 2-dimensional slices in the posterior pdf are useful for study of correlations between

parameters. Similar slices can be calculated for every other combination of parameters.

Even without a detection, placing upper limits on ho can be physically interesting as we

are essentially constraining the equatorial ellipticity of the neutron star. This topic will be

considered in more detail in the next chapter. We define the upper limit of ho bounding
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95% of the cumulative probability (from ho = 0) as the value h95 that satisfies

(2.50)

In a similar way upper limits with different levels of confidence, 68%, 90%, or 99%, can

be constructed. Note that such a limit can be placed on ho even if the pdf is peaked off

zero and a strong signal is detected.

2.4 Performance of algorithm OD simulated data

In this section we show the performance of the Bayesian part of the analysis on simulated

data. Several sanity checks are provided to make sure that our software has no obvious

coding bugs. The checks use generated data sets with Gaussian noise with and without

simulated signals injected. It is equally important to study the behavior of the method

when no signal is present since this will be the main use of this technique until gravitational

waves are discovered. We begin by comparing the results between using the Gaussian

and Student's t likelihoods. Then we confirm that the width of the posterior distributions

behaves as expected with changing observation times and noise levels. We also examine

the coherent analysis of artificial data from several detectors and we estimate parameters

by generating artificial signals. We comment on the correlation between ho and cos t

and the information that gives us on pulsar orientation even when ho is small due to our

flat prior on ho. Finally, we show the variability of the posterior pdfs when the same

experiment is repeated several times with independent noise.

For all these checks we start with sets of Bk which are generated at a rate of 1 per 60

seconds so that

(2.51)

where Yk is the signal and nk are independent samples of Gaussian noise. For the signals
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injected in this section we assume that the model, Yk, is for a signal from the same direction

in the sky as pulsar B1937+21 with a right ascension of 19i140m and a declination of

+210 34'. As we have seen, the direction of the signal will affect the response of the

interferometer. As an example, the beam pattern of pulsar B1937+21 over the course of

the first science run is given in Figure 3.5 (next chapter). Note that since we are starting

at the stage where we have sets of Bk'S, we assume the Doppler shift has already been

removed in the heterodyning process.

2.4.1 Comparison of Gaussian and Student's t likelihoods

Since the likelihood using the Student's t-distribution is wider than the Gaussian dis-

tribution, we would expect this to be reflected in the posterior distribution. In order to

compare the posterior pdfs from the two likelihoods we have conducted three experiments

averaging the marginalised posterior pdfs for ho for 1000 data sets using three different

likelihoods as explained below. Each data set consisted of 1440 Bk'S at a rate of one per

minute equivalent to one day of data. The beam pattern used in the likelihoods function

assumed that the data was from a detector at the location of GEO 600.

For each data set the Bk'S were generated from a Gaussian distribution with J1- = 0 and

(T = 1 with no signals injected. The experiments were performed using the following

three likelihood functions:

1. Gaussian likelihood function given by Equation 2.23,

2. Student's t likelihood given by Equation 2.32 and Equation 2.33 with m j = 5 and

thus 9 degrees of freedom,

3. Student's t likelihood given by Equation 2.32 and Equation 2.33 with m j = 30

and thus 59 degrees of freedom.

The averaged posterior pdfs, for p(hoI{Bk}), are shown in Figure 2.6 with the solid line
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Figure 2.6: Comparison of average posterior marginal ho pdfs using the Student's t and Gaussian
likelihoods. The solid line represents the average p(hol{BkD using the Gaussian likelihood, the
dotted line represents the average p(hol{BkD using the Student's t likelihood with 59 degrees of
freedom, and the dashed like represents the average p(hol{Bk}} using the Student's t likelihood
with 9 degrees of freedom.

representing the Gaussian likelihood and the dotted and dashed lines representing the

Student's t likelihood with 9 and 59 degrees of freedom, respectively. As expected the

Gaussian likelihood and the Student's t likelihood with 59 degrees of freedom essentially

give the same result with the latter only insignificantly wider. For the Student's t likelihood

with 9 degrees of freedom the tails are significantly broader. In the remainder of this

chapter, we will use the Student's t likelihood with 59 degrees of freedom.

2.4.2 Effects of changing the observation period

We expect the width of the posterior distributions to decrease approximately as a function

of the square root of observation time. Here we described a test that was carried out

comparing the marginalised posterior pdfs for ho using data sets of 1 day and 10 days of

length. A total of four data sets were analysed with these two observation times. Two

data sets had 1 day of data, one of which only contained noise and the other noise plus a
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Figure 2.7: The two solid lines represent the posterior density function obtained when there is
no signal using observation periods of 1 and 10 days. The two dashed lines represent the same
analysis when a signal is injected at ho = 0.5. In each case, the data set with 10 days of data is
the pdf with the smallest width.

signal. The two other data sets had 10 days of data with the same set up. Inall cases the

noise was generated from a Gaussian distribution with JL = 0 and (1 = 1 and the injected

signal had parameters of ho = 0.5, "" = 00, ¢o = 00, and cos l = O.

Figure 2.7 shows p(hoIBk) for the 4 sets of data. The two solid lines represent Gaussian

noise only with no signal injected, ho = O. The two dashed lines represent the cases

where the signal was injected into the noise, with ho = 0.5.

The wider solid line corresponds to the 1 day data set and the narrower line corresponds

to the 10 days set. This agrees, at least qualitatively, with what we expect. The matching

95% upper limits on are ho < 0.58 and ho < 0.16 giving a reduction in h95 of 3.6 with

10 times more data. Since we expect the width to decrease as the square root of time, we

would expect this factor to be JIO = 3.2. The discrepancy can be explained due to the

independent noise in each set. In the next section we conduct a similar experiment and

avoid this uncertainty by averaging several posteriors.
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The strongly peaked dashed line in Figure 2.7 represents the posterior on ho with the

10 days data set and the broader dashed line represents the same result for the I day

data set. The location of the peak is not exactly at ho = 0.5 but within the width of

the pdf in both cases. Using only one day of data the best fit is ho = 0.24 with 95%

confidence that 0 < ho < 0.73. While 10 days of data improves our inference to a best

fit of ho = 0.41 with 95% confidence that 0.27 < ho < 0.57. These intervals were

constructed by choosing the 95% interval with the smallest range in ho. Clearly these

numbers are only relevant for this particular set of data and would vary with different

noise. But again, at least qualitatively the results are as expected.

Note that the widths of the posterior pdfs for ho are larger than what we would expect if

we were simply estimating the variance of the average of the data. This extra uncertainty

comes from the antenna pattern and the marginalisation over the nuisance parameters.

2.4.3 Effects of changing the noise level

We expect the width of the posteriors to be directly proportional to the level of the noise.

Here we verify this hypothesis by analysing several sets of data with varying levels of

noise. We also let the level of the noise change for each 30 minute stretch. This is very

similar to comparing the results using data sets for different time intervals.

We compare three different scenarios and in each case the data sets correspond to 10

days of observations. The first data set contains Gaussian noise with p- = 0 and er = 1.

For the second data set, the noise level alternates each 30 minutes between er = 10 and

er = 2J2' For the third data set, the noise level varies each 30 minutes between er = 100

and er = 5.Jz. Two time series plots showing representative stretches of data from the

first and second sets are shown Figure 2.8.

For this test, we repeated and averaged the posterior pdfs for 100 generations of the

data sets described above. The average marginalised posterior pdfs for ho are shown in
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Figure 2.9. Using the 66% upper limit on ho to characterise the width of the pdfs we

have ho < 0.095 for the case with constant noise with (1 = 1, ho < 0.047 for the noise

alternating between (1 = 10 and (1 = 2J2' and ho < 0.019 for the noise alternating

between (1 = 100 and (1 = 5Ji' So compared to the first case the second case has a

narrower width by a factor of 2.02 and the third case a factor of 5.05.

How well do these widths agree with what we would expect? In the cases with alternating

noise levels, about half of the data has very low sensitivity. We can assume that half of the

data will not playa significant part in the posterior compared to the more sensitive half.

Thus compared to the first case with constant noise the two later cases with essentially

have half of the observation period. This reduces the sensitivity by a factor of ../2.
Thus compared to the first case with constant noise, we would expect the two sets with

alternating noise levels to have widths about a factor of 2 and 5 narrower from the

variance of their sensitive halves. There is very good agreement between the results and

the predictions.
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name ho COSt ¢o (degrees) 1/1 (degrees)
A 0.25 0.0 180 0
B 0.25 1.0 180 0

Table 2.1: Source parameters for both artificialsignalsextracted from data.

2.4.4 Combining results from several detectors

An advantage to our Bayesian approach to this problem is the simplicity with which we

can combine data from several detectors. As described in Section 2.3.5 the combined

posterior distribution is simply the product of the individual likelihoods from each detec-

tors multiplied by the priors. For illustration, we generated 4 sets of data with Gaussian

noise {J.L = 0 and (1 = 1) and assumed that they came from GEO, LI, HI, and H2. With

the data from the four IFOs having the same sensitivity we would expect the coherent

results to be approximately .J4 times tighter than the individual results. The four pos-

terior pdfs for each detector as well as the joint multi-detector posterior pdf for ho are

shown in Figure 2.10. The individual95% upper limits are 0.15 for GEO, 0.16 for HI,

0.18 forH2, andO.13 for Ll giving anaverageofO.I55. The combined 95% upper limit,

on the other hand, is 0.08, which is indeed approximately a factor of 2 better than the

average of the limits from the individual detectors. Since the noise level is the same in

each interferometer, adding extra detectors is approximately the same as having a larger

observation period. The beam patterns of each detector are different, however, and this

can lead to small differences in sensitivity.

2.4.5 Parameter estimation

Here we inject two signals into noise and attempt to extract the signal parameters via

the marginalised posterior pdfs. The parameters of the two injected signals are given in

Table 2.1. Ineach case we generated data sets consisting of 10days of data with Gaussian

noise with J.L = 0 and (1 = 1.

For both signals the phase was chosen to be 1800, and the polarisation angle was chosen
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Figure 2.10: The solid line represents the joint marginalised posterior pdf for housing the data
from GEO, Ll, HI, and H2. The dashed lines are the pdfs of the individual interferometers.

to be 00• The only parameter differing between both signals is cos t which is set to zero

for signal A, and 1.0 for signal B. These are two of the extreme orientations of the pulsar.

Signal A was injected in four data sets mimicking data from GE0600, HI, H2, and LI.

Figure 2.11 shows the marginalised posterior pdfs for each of the parameters. The solid

lines represents the marginalised pdfs for data from GEO 600 whereas the dotted line

represents the marginalised multi-detector pdfs. For each case, our resulting posterior

pdfs are consistent with the injected parameters which are denoted by the vertical dashed

lines.

Figure 2.12 shows the marginalised posterior pdfs for Signal B using only simulated data

from GEO 600. Again, each of the pdfs is statistically consistent with the parameters of

the injected signal.

The shapes of the pdfs for Signal B are quite different from those of Signal A. This is due

to the correlations between the parameters that arise when cos t is not zero. Specifically,

ho and cos t, as well as 1/1 and 4>0, are strongly anti-correlated. These can be appreciated
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by the contour plots of equal probability density in Figure 2.13.

2.4.6 Sensitivity to pulsar orientation

The correlation between ho and cos t can provide some information about the inclination

of the pulsar when ho is small (or zero). This is a consequence of our uniform prior

probabilities for ho. Ifwe used a more conservative prior, such as only allowing values

of ho less than the detector sensitivity, then obviously we do not get any information on

pulsar orientation. The peculiarity presented here is only relevant to the extent that we

believe that a flat prior for ho is appropriate.

Ifthe data are consistent with a small ho this is also indicating that cos t is likely to be small.

The reason for this is that the orientation of the pulsar is not as likely to be optimal if ho is

small. The strain produced by a signal is largest when the pulsar rotation axis is aligned

to our line of sight. When cos t = 0 the pulsar is oriented with the poles perpendicular

to our line of sight. In this case we are only irradiated with the plus polarisation of the

gravitational wave signal. On the other hand, when the pulsar is oriented with the angular
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momentum vector pointing toward us (cos t = 1) we are irradiated by both polarisations

of the signal at maximum amplitude.

Figure 2.14 is a contour plot of equal probability density for ho and cos t when no signal

is present (just Gaussian noise) using a flat prior for ho.

2.4.7 Repeated experiments with no signal

It is instructive to repeat the same analysis on different noise of the same amplitude to get

a better understanding of the expected spread of pdfs in repeated experiments. Here we

use 10000 data sets of 10 days long with noise from a Gaussian distribution with /1- = 0

and (J = 1. For each of the marginalised posterior pdfs for ho the location of the peak,

the most probable value, was recorded as well as the 95% upper limit.

Figure 2.15 shows the distribution of the most probable values of ho from each of the

experiments. In62% of the experiments the best estimate for ho was less than 0.005 (the

width of the bins in the histogram). So even when no signal is present we would expect

the peak in the pdf for ho to be off zero in 38% of the experiments.
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(10,000 data sets).

Figure 2.16 shows the distribution of95% upper limits obtained using the same 10,000

data sets. Note that the width of this distribution is quite large; about 50% of the size of

the upper limits.

2.5 Discussion

In this chapter we have presented an end-to-end Bayesian method of searching for grav-

itational waves from known pulsars. The method involves processing the data to reduce

the number of samples required in the analysis. We calculate the likelihood function

for given model parameters from the decimated data thus reducing computational re-

quirements. In order to validate the algorithm and test how well it can retrieve signal

parameters, we have analysed simulated data with signal injections. We have also shown

than it is easily adapted to deal with a network of detectors.

The methodology presented in this chapter was initially developed for targeted searches

with known locations and spin evolutions of the sources. Some work has been done

studying the feasibility of expanding the numbers of parameters by taking advantage
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of Monte Carlo Markov Chain (MCMC) techniques. Such a technique is required for

increasing the number of unknown parameters since the method presented here would

be too computationally intensive for a large number of parameters. More information on

these studies ofMCMC techniques can be found in the Appendix.



Chapter3

Analysis of the first data from GEO 600

andLIGO

3.1 Introduction

The GE0600 and LIGO gravitational wave detectors conducted their first coincident

science run (S1) for 17 days between 23 August and 9 September 2002. The main

objective of this short observation run was to collect scientifically interesting data to be

analysed for gravitational waves of astrophysical origin. The detectors, however, were

still in a commissioning phase and so their sensitivities were not yet optimal. In addition

to providing the first results from GEO 600 and LIGO, the data collected in SI provided

an opportunity to improve our understanding of the detectors and the analysis methods.

The analysis of the SI data was divided into four groups within the LIGO Scientific

Collaboration:

• a search for binary neutron star inspirals [57]

• a search for unmodelled bursts [58]
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• a search for a stochastic background [42]

• a search for periodic signals from pulsar BI937+21 [48]

Inall cases, the upper limits derived for each gravitational waves source were lower than

from previous broadband experiments. For the binary neutron star inspiral search, an

upper limit on their coalescence rate was set to less than 170 per Milky Way Equivalent

Galaxy per year with a 90% confidence. This analysis concentrated on binary neutron

star systems in which each component had a mass in the range of 1 - 3M0. The search

for gravitational wave bursts was able to constrain the event rate to less than 1.6 events

per day, at 90% confidence level. This result focused on short bursts where an event

had a duration from 4 ms to 100 ms with significant power in the sensitivity band of

150 to 3000 Hz. The stochastic background analysis established a 90% confidence

limit of QGWhrOO ~ 23 in the frequency band 40 to 314 Hz, where bv» is the Hubble

constant in units of 100 km/sec/Mpc and QGW is the gravitational wave energy density

per logarithmic frequency interval in units off the closure density (as defined inChapter

1). In this chapter, we present an analysis that was conducted to constrain the level of

gravitational waves from pulsar B1937+21 at twice its rotation frequency.

The main result from this chapter, the upper limit on gravitational waves from pulsar

B1937+21, was published in [48] (see Appendix). In that paper, two independent analysis

methods were used: a form of the time-domain Bayesian methods presented in Chapter

2, and a frequency domain technique using a statistic from the method of maximum

likelihood [49]. Inthis chapter a detailed description of the application of the time-domain

method to the SI data is presented. In Section 3.2 we describe the configuration and the

performance of the GE0600 and LIGO interferometers during the SI run. We describe

the expected sensitivity of the data to periodic signals and astrophysically motivated

existing limits on gravitational wave emission from these systems in Sections 3.3. We then

proceed to introduce the some properties of the targeted pulsar, B1937+21, inSection 3.4.

InSection 3.5 we address the issue of pulsar timing and validation of our timing software.



3.2 The detectors 62

Detector Total science data (hours) Duty cycle
GE0600 401 98%
LIGOHI 235 57.6%
LIGOH2 298 73.1%
LIGOLI 170 41.7%

Table 3.1: Totalperiods where the interferometerswere in-lock and the duty cycles for each
detectorduringthe SI run.

The calibration procedure for the LIGO detectors is explained and relevant measurements

are given in Section 3.6. The data analysis method is reviewed in Section 3.7. In

Section 3.8 we characterise the data in the frequency band of interest for this analysis,

near 1284 Hz. The results are presented in Section 3.9 and we conclude in Section 3.10.

3.2 The detectors

The GE0600 and LIGO interferometers had reached a sufficient level of sensitivity

by the summer of 2002 to warrant a short coincident science run (SI). A previous

coincident run, E7, had taken place in 2001 but no astrophysical results were published.

The sensitivities reached during the SI run were comparable or better than previous

broadband gravitational wave detectors. The locked times and duty cycles of the four

interferometers (lFOs) for the SI run are given in Table 3.1. Note that these numbers are

slightly higher than the observation periods that were analysed for periodic signals later in

this chapter. This reflects the fact some data had to be dropped from the analysis because

the detectors were not in 'science-mode'. For example, this could be due to periods when

the calibration lines (required for calibration) were not being measured properly but the

detector was in-lock. The high duty cycle (98%) of GE0600 is partly due to the control

systems that were specifically designed for automatic operation. The automatic alignment

system in GEO 600 was so stable and reliable during SI that no operator presence was

required overnight at the detector site [59]. For LIGO, the Livingston site had the lowest

duty cycle at 41.7%. Most of the time lost at LI was due to the interferometer falling

out-of-lock during the daytime. This was mostly caused by environmental noise sources
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Figure 3.1: Typicalsensitivityof the threeLIOO interferometersandOEO 600 during the SI
data run.

due to humans (e.g. logging).

Figure 3.1 shows typical amplitude spectra of equivalent strain noise for GEO 600 and

each of the LIGO IFOs during the S1run. The broadband sensitivity of the interferometers

did not change significantly over the course of the run. Note that at frequencies above I

kilohertz (where we searched for periodic signals) the sensitivities of all four detectors

were comparable. The Livingston IFO was the most sensitive, about a factor of two better

than the other LIGO IFOs at 1284 Hz.

3.2.1 Instrument configurations

Both GEO 600 and LIGO were still in commissioning mode during the SI run and nei-

ther were running at design sensitivity. GE0600 ran as a power-recycled Michelson

interferometer during SI without a signal recycling mirror. The signal recycling mirror

was installed in the autumn of 2003 and improved the sensitivity of GE0600 at high

frequencies for the S3 run [60]. The laser power build up in the power recycling cavity

was limited to 300 during SI (with a target of 2000) due to the poor quality of the power



3.3 Expected sensitivity to periodic signals 64

recycling mirror installed at that time. This contributed to poorer GEO sensitivity at high

frequencies where it was limited by shot noise. For the LIGO IFOs, the noise at high

frequencies can also be attributed to using lower laser power than the design configu-

ration. For more details and a complete description of the detector configurations and

performances in SI, see [59].

The IFOs are calibrated by injecting a series of sinusoidal forces of known amplitude

to the test masses. These signals are then recovered and used to construct a frequency

dependent transfer function to calibrate the raw output. For GEO 600, the data are

calibrated in a similar fashion in the time-domain in advance and then stored in the

Frame! data format. Details of the GE0600 calibration procedure are available in [62].

For LIGO, the data are stored in their raw form (error-signal) and must be calibrated

for interpretation. The procedure to follow to calibrate the LIGO data is described in

Section 3.6. The main uncertainty in the calibration process comes from the imprecision

in the electromechanical coupling coefficients of the force actuators [48]. For the analysis

presented in this chapter we only looked at data near 1284Hz for signals from pulsar

BI937+21. For the SI run, the total amplitude calibration uncertainty at this frequency

was estimated at ±4% for GEO, and ± 10% for each of the LIGO interferometers.

3.3 Expected sensitivity to periodic signals

From typical detector sensitivities we can determine the average 95% upper limit (h95)

expected as a function of observation time and noise power spectral density. We char-

acterise the noise level by its single-sided power spectral density Sn(f) where f is the

frequency of the signal. To calculate (h95) we calculated the upper limits in 4000 simu-

lations varying the location in the sky and detector site2 for each set. The locations of the

sources were picked so that they would be uniform per unit solid angle in the sky. For

1A common data format for interferometric gravitational wave detectors, see [61]
2Detector sites were between GEO 600, HI, H2, and L 1
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Figure 3.2: Distributionof 95% upper limits on ho for 4000 sourcescoveringthe whole sky
with T = 1 and S,,(f) = 1.

each of the hypothetical sources, however, we do not inject any signal into the Gaussian

noise. By averaging the upper limits obtained we found that

(3.1)

where T is the observation time in seconds. Figure 3.2 shows the distribution of h9S

when T = 1 and Sn(f) = 1. Note that the width of the distribution is relatively large so

the actual upper limits could easily be a factor of two larger than {h9S}.

The coloured upper curves on Figure 3.3 show (h9S) for the LlGO and GE0600 interfer-

ometers during SI. The observation times used correspond to the actual up-time of each

interferometer. The black lower curves represent (h9S) corresponding to the design sen-

sitivity of GEO 600 and LIGO. For the target sensitivities of the detectors, an observation

period of one year was assumed.

The amount of gravitational waves potentially emitted by pulsars can be limited by letting

the total loss in rotational energy be due to gravitational wave dissipation. In such a

model, we ignore the spin-down contribution from electromagnetic and particle emission.



3.3 Expected sensitivity to periodic signals 66

Equating the rotational energy loss to the gravitational luminosity of a rotating triaxial

star, we get [63]

(3.2)

where (J) = 21rfo is the pulsar angular frequency and € is its equatorial ellipticity. Equa-

tion 2.6 in Chapter 2 relates the ellipticity € to the gravitational wave amplitude ho, so

that
hoc4r

€ = 161r2Glf6·

From Equation 3.2 and Equation 3.3, it is easy to show that a spindown based upper limit

(3.3)

on the gravitational wave amplitude ho can be expressed as

ho=
5G I P
2c3 r2 p' (3.4)

where r is the distance to the source, P is the rotational period of the pulsar, and P is the

first time derivative of the period.

The solid circles on Figure 3.3 show the constraints on the gravitational wave amplitude

from the measured spindown rates for a selection of radio pulsars. For each pulsar

represented on the plot, a standard value of 1038 kg m2 was used for the moment of inertia.

Many of the known pulsars are clearly rotating too slowly to be detected by ground-based

interferometers. However, the number of known millisecond pulsars should continue to

increase with new radio surveys. A number of globular cluster pulsars are not included in

the figure since their measured spindown rate is positive! The observed spin-up of these

sources is attributed to proper motions of the pulsars within the clusters.

It is clear from the limits in Figure 3.3 that we did not expect to detect gravitational waves

from the known radio pulsars with the SI data. However, this does not exclude a potential

class of neutron star undiscovered that may be seen in all-sky gravitational wave surveys.

For known sources, the Crab pulsar (B0531+21) is the only pulsar where we will be able

to set limits tighter than those set by the spindown argument even with one year of data
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Figure 3.3: The coloured upper curves represent average 95% upper limits < h95 > expected
using typical GEO 600 and LIGO sensitivities during SI. The black lower curves represent the
expected < h95 > for the design sensitivities of GEO 600 and LIGO using an observation period
of one year. The arrow points to the solid circle representing pulsar B1937+21.

at design sensitivities.

3.4 Gravitational waves from pulsar B1937+21

For illustration we chose to set upper limits on pulsar Bl937+21 during SI. This is the

fastest rotating millisecond pulsar rotation frequency of 642 Hz and so we searched for

gravitational waves near 1284 Hz.

There are a few reasons why this specific pulsar was chosen as the first test case. In

previous commissioning runs of GEO 600 and LIOO, we had done preliminary testing

of our analysis methods on this pulsar. We had chosen B1937+21 because the detectors

had their best sensitivity above 1 kilohertz. This was argument was still true for GEO 600

during SI but not for the LIOO IFOs. Another reason for choosing this pulsar is that

the behaviour of the noise at such high frequency was relatively stationary and Gaussian

compared to lower frequencies. Since B1937+21 is the fastest rotating known pulsar we
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right ascension (J2000) 19h3<JD38s .560 210(2)
declination (J2000) +210 34' 59" .141 66(6)
RA proper motion -0.130(8) mas yr-1
dec proper motion -0.464(9) masyr"!

period 0.001557806468819794(2) s
period derivative 1.051193(2) x 1O-19ss-1

epoch of period and position MJDN 47500

Table 3.2: Parameters for pulsar B1937+2l also known as pulsar 11939+2134. Numbers in
parentheses indicate uncertainty in the last digit.

thought it would also provide one of the tightest limits on ellipticity. In retrospect, there

are a few nearby isolated pulsars with signal frequencies of a few hundred Hertz that

would have given us tighter limits on ellipticity due to their proximity and the sensitivity

of the LIGO IPOs in that band.

It was verified through radio observations that B1937+2l did not glitch during SI and

that the source parameters we used were still valid [64]. Table 3.2 gives the parameters

of pulsar B1937+21 taken from the literature [65]. Figure 3.4 shows the timing residuals

from pulsar B1937+2l over several years including the duration of the SI run. The

residuals are between the actual time-of-arrival of the radio signals and a standard timing

model as we use. These are small enough not to affect our analysis. However, timing

delays as small as a hundred microseconds could affect a multidetector analysis.

The declination of pulsar B1937+21 is relatively low at +21034' 59" (as indicated by its

name). Given the location of the GE0600 and LIGO interferometers on the Earth, one

might expect the Louisiana site to have the best view of the pulsar. Figure 3.5 shows

the beam profile for a source in the direction of pulsar B1937+21 for GE0600, LLO

(Ll), and LHO (HI and H2) during SI. The quantity plotted is (F~ + F;)1/2 which

is the overall sensitivity of the interferometers to both polarisations. In Figure 3.5 the

average sensitivities of each IPO to signals from the position of B1937+21 during SI are

shown (dashed lines) and they are: 0.54 for GE0600, 0.60 for LLO, and 0.56 for LHO.

As expected the Livingston IPO is slightly more sensitive to signals from B1937+21.

However, one must keep in mind that the LLO IPO had the worst duty cycle among the
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Figure 3.5: Sensitivity of GE0600, LLO (LI), and LHO (HI and H2), to gravitational waves
from the direction of pulsar BI937+2I during SI. The dotted line shows the average sensitivity
for each IPO and has a value of 0.54 for GEO 600, 0.60 for LLO, and 0.56 for LHO. The better
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~ Detector

Earth

XSSBO
Sun

Figure 3.6: Diagram of the Earth, Sun, Solar System Barycenter, and an incoming gravitational
wave from direction k. The vector Td indicates the position of the detector with respect to the
SSB. The goal of the timing software is to provide the transformation from topocentric time t at
the detector to time T at the SSB.

four IFOs during SI. Nonetheless since the Livingston IFO had the best sensitivity near

1284Hz it was that detector that provided the best upper limit.

3.5 Accuracy of timing software

A crucial part of the time domain analysis method is the demodulation of the phase of the

gravitational wave signal. In order to heterodyne the data with the appropriate phase we

need to use a reference frame which is inertial with the pulsar. For this purpose we use

time as measured by a clock at the Solar System Barycentre (SSB) but with the absence

of a massive object. Figure 3.6 is a schematic of the objects of interests including the

SSB which is situated just outside the surface of the Sun towards Jupiter. The vector

rd is the position of the detector with regard to the SSB. The unit vector k is pointing

toward the source of gravitational waves. The timing software used must transform the

time-of-arrival of a signal at the detector to the time-of-arrival of that signal at the SSB.

We want to use the time at the SSB so we must correct for the different gravitational
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potential between the detector and the SSB.

There are three main terms that must be taken into account for the Barycentric corrections.

For an isolated pulsar such as B1937+21, the time difference 8t between the topocentric

time at the detector, t, and the time as measured by a clock at the SSB, T, can be expressed

as

st = ~Roemer + .1.Shapiro+ ~Einstein. (3.5)

The largest of these corrections is the Roemer delay ~Roemer which can be as large as

"'" 8.5 minutes. The Roemer delay can be expressed as

rd' k (rd' k)2 - Irdl
~Roemer = -c- + 2cd (3.6)

where rd is the position of the detector with regard to the solar system barycentre, k is

a unit vector in the direction of the pulsar, and d is the distance from the detector to the

pulsar. In order to calculate the Roemer delay we obviously need accurate knowledge of

the position of the Earth with regard to the SSB. For our Barycentric software we use the

Solar System ephemerides published by the Jet Propulsion Laboratory [66]. The second

term in Equation 3.6 is known as the timing parallax. It is a measure of the curvature of the

wavefronts emitted from the source and is only important for nearby pulsars. Figure 3.7

shows the magnitude of the Roemer delay during and after SI for a source in the direction

ofB1937+21.

The second term in Equation 3.5 is the Shapiro delay .1.Shapiroand is a relativistic correction

due to the curvature of space-time near the SSB. Since this curvature is not negligible

there will be an extra time delay in the arrival of a signal. In principle this delay can be as

large as 120 JLS for signals passing near the edge of the Sun. The maximum contribution

from Jupiter is 200 ns and so not important for us. Figure 3.7 shows the Shapiro delay in

the direction ofB1937+21 during and after SI.

The last term in Equation 3.5 is the Einstein delay ~Einstein. This term describes the
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Figure 3.7: Roemerdelay (right)and Shapirodelay (left) for a source in the directionof pulsar
B1937+21 for a period of 1 year beginningat the startof SI.

combined effect of gravitational redshift and time dilation due to the motion of the Earth.

The Einstein delay correction takes into account the varying gravitational potential expe-

rienced by a clock on the Earth as it follows its elliptical orbit around the Sun. Figure 3.8

shows the effect of the Einstein delay for the SI analysis (aside from a constant offset).

The timing routines that we used are available in the LIGO Analysis Library and were

written by Curt Cutler [67]. We independently checked this software against a widely

used radio astronomy package called TEMPO for accuracy [68]. This comparison, see

Figure 3.8, confirmed a timing accuracy better than ±4/-Ls. This is sufficiently accurate

since this ensures no more than 0.01 rad phase mismatch between a putative signal and

its template.

3.6 Calibrating the LIGO data

The gravitational wave strain that we want to measure with the interferometers can be

described as

s(t) = [Lx(t) - Ly(t)] / Lo (3.7)
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where Lx" are the lengths of the orthogonal arms of the interferometer and Lo is the

effective length of the cavities in the absence of an external strain. The raw output of

the GE0600 and LIGO interferometers, the so-called error-signal q(t), is not calibrated.

In this section, the procedure for calibrating the LIGO data, going from q(t) to s(t),

will be describe. The data stored in the Frames files for the GEO 600 interferometer are

pre-calibrated by the method in [62].

The raw output, q(t), from the interferometers is derived from light from the anti-

symmetric port which is held close to a dark fringe. After going through the servo

loop (feedback mechanisms) it is stored in arbitrary units of counts. The response func-

tion, R(f). is defined as the function that will reconstruct the gravitational wave strain,

stt), from the raw output, q(t). In the frequency domain, we have

s(f) = R(f)q(f), (3.8)

where s(f) and q(f) represent the Fourier transforms of s(t) and q(t). respectively.

The so-called error signal q(f) differs from s(f) because of the control forces that keep
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Figure 3.9: Simple model of the LIGO length sensing and control feedback system. Two digital
signals, q(AS_Q) and D(DARM_CT RL), are recorded by the data acquisition system with the
names in parentheses representing their names as stored in the Frames files.

the motion of the mirrors small and the optical cavity in resonance. In order to reconstruct

the strain signal s(f) we need to undo these effects introduced by the feedback loop into

q(f). This is done via the response function R(f) which can be built from the feedback

loop equations.

The LlGO length sensing and control system subtracts a control signal Xc from the external

strain s to minimize the residual strain x, that enters the optical cavity. In the simple

model shown in Figure 3.9 two digital signals are recorded by the data acquisition system:

q(t) which is the digitized error signal, and d(t) which is a control signal that is fed back

to an actuator to adjust the length of the cavity.
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By going around the control loop in Figure 3.9, we get the following four expressions

'S(f) - xr(!) + xc(f),

q(f) - a(t)Co(f)xr(f),

d(f) - {J(t)Do(f)q(f),

xc(f) - A(f)d(f),

(3.9)

(3.10)

(3.11)

(3.12)

where 'S(f) is the calibrated data, Co(f) is the reference sensing function and a(t) is

an overall real gain, Do(f) is the reference digital feedback filter with a gain of P(t),

and A(f) is the actuation function. The three functions Co(f), Do(!), and A(f) are

complex. The reference open loop gain Go(f) is defined as the product of these three

functions, that is

Go(f) = A(f)Co(f)Do(f)· (3.13)

Using the equations above, along with Equation 3.8, it is easy to show that

R(f) = 1+ a(t){J(t)Go(f) •
a(t)Co(f)

(3.14)

Figure 3.10 shows the variation of the overall open loop gain ratio, a(t){J(t), during SI

for all three LIGO IFOs. The gain on the digital feedback filter, {J(t), was set to one

for HI and H2 for the duration SI. {J(t) only deviated from one for a short period of

time in Ll during SI. The gaps in Figure 3.10 pertain to periods when no data were

available. There were no data available on the first day of SI as that day was used for

calibration studies. The values of a(t) were calculated every 60 seconds and derived from

measurements of the amplitude of the calibration lines. A key assumption here is that

the gain varies on a time scale longer than 60 seconds. Figure 3.11 shows the reference

open loop gain functions used in for the calibration of the SI data. Figure 3.12 shows

the sensing functions used for the SI calibration. The measurements for HI and H2 were

done at GPS time 715156759. For Ll, however, a model was used made up of known
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Figure 3.10: Overall open loop gain factor a(t)p(t) over the course of SI for the three LIGO
IFOs. The gap of data on the first day of SI is due to calibration studies that interfered with taking
measurements of the gain that day. The other gaps in the data correspond to periods where the
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Figure 3.11: Reference open loop gain GoU) taken atGPS time 715156759 for the three LlGO
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Figure 3.12: Reference sensing function CoU) taken at GPS time 715156759 for the three
LIGO IFOs: HI in red, H2 in blue, and L1 in green.

components in the loop.

The S 1 LIGO data were calibrated keeping in mind that we were just interested in a narrow

bandwidth of data around 1284 Hz. Instead of calibrating the full 16384 Hz band of data

we only calibrated the data of interest. Since the frequency ofthe signal we are seeking is

1284 Hz, and the maximum Doppler shift is 10-4, the band we need to calibrate is less

than 1Hz wide. By examining the example response functions in Figure 3.13 it is clear

that it is reasonable to assume that a 1Hz wide band near 1284 Hz is quite fiat. In fact,

the change in the magnitude and phase of of the response function at 1284,Hz is less than

1% over a range of 1Hz. So we can assume that we only need one frequency bin of the

response function to calibrate the data. We simply used a point estimate of the response

function, in the center of our band, to calibrate the data. The width of the bandwidth in



3.7 Data analysis method 78

OJ-g 10-17...,
'2
OIl
<Xl

E

10-18

100
frequency (Hz)

1000 100
frequency (Hz)

1000

Figure 3.13: Reference response function at GPS time 715156759 for the three LIGO IFOs:
Hi in red, H2 in blue, and Ll in green.

this analysis is determined by the data products Bi described in Chapter 2. For S I we

produced one Bk every 60 seconds corresponding to a bandwidth of 1160Hz. We used

the gain measurements from the corresponding minute to calibrate the data. Since we are

analysing data at 1284Hz, we have

B(td = R(1284; tdB'(td, (3.15)

where B(tk) are the calibrated data, R(1284; tk) is the response function at 1284Hz at

time tb and B' (tk) is the uncalibrated data.

A more detailed description of the calibration of the LIGO IFOs during SI is available

in [69].

3.7 Data analysis method

The results presented here make use of the data analysis methods presented in Chapter 2.

The data were heterodyned and Doppler demodulated, low-passed filtered, and resam-

pled in order to generate one data product, Bi, per minute. For efficiency the complex

heterodyning was done in two steps for SI. The data set was first heterodyned at a fixed

heterodyne frequency 2io, near the signal's true frequency, and then down-sampled to
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a reduced data rate of 4Hz. We will denote as V(tj) this intermediate 4Hz time series

centered on the signal frequency 2/0. This permits us to do the Doppler shift corrections

at a much smaller computational cost; a useful strategy in case the analysis needs to be

repeated.

The time series V(tj) was generated by initially heterodyning the data at a frequency

of 2/0 (multiplying the data by e-41r/O). Then we applied a low-pass third order IIR

Butterworth filter to the real and imaginary components of the heterodyned data (at

16384Hz) to remove the rapidly oscillating term and prevent aliasing from outside the

band of interest. We then averaged each consecutive 4096 samples to reduce the sampling

frequency from 16384Hz to 4Hz. This was done in two steps, with two HR filters to

improve the performance of the filters. The data were first low-pass filtered with a cutoff

frequency of 128Hz and averaged. This 128Hz data stream was then low-pass filtered

by a second HR filter with a cutoff frequency of 4Hz and averaged once more to give 4

samples per second.

We used essentially the same Bayesian approach as described in Chapter 2 for parameter

estimation. For the likelihood we used a bivariate Gaussian distribution so that

where Ui{Bk} is the variance of the real parts of Bk and u5{Bk} is the variance of the

imaginary parts of Bk.

Since the frequency bins near the signal were relatively flat (except for GE0600), we

used data from our existing 4Hz band (V(tj» (centered on the signal frequency 2/0)

to estimate the noise in the Bk'S. The Bk'S were constructed from the 4Hz time series,

V(tj), as follows

(3.17)
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where

[
1 . 2 1 - 3J~(t) = 41l' lo(~t - To)+ 2/0(t +~t - To) + "6/0(1 +~t - To) (3.18)

where ~t is the time delay from the detector to the SSB, 10 is frequency of the pulsar, io is

the first time derivative of the frequency, 10 is the second time derivative of the frequency,

To is our reference epoch, and t is the topocentric time measured at the detector.

We estimated the noise variance in the bin values, Bk, from the sample variance of V (tj)

for the corresponding time interval. We estimated the variance of the real and imaginary

components of Bk separately as follows

2 L:7!?1 [ffl{V(tj)}k - (ffl{V(tj)}k) ]2
O"!Jt{Bk} ~ 240(240 - 1) , (3.19)

where
1 240

(ffl{V(tj)}k) = 240 L ffl{V(tj)}k,
j=l

(3.20)

and
2 '" L:7!?1 [:~{V(tj)}k - (~{V(tj)}k) f

O"~{Bk} - 240(240 - 1) , (3.21)

where
1 240

(~{V(tj)}k) = 240L ~{V(tj)}k'
j=l

(3.22)

The numerical factor in the above equation is 240 since there were 4 samples per second

for 60 seconds giving 240 samples per minute. For SI we did not marginalise over the

variance to compensate for the uncertainty in our estimate of the noise.

3.8 Characterisation of the data

For this analysis we only considered segments of at least 300 seconds of data during

which the detectors were in lock and science-mode. For the GE0600, half a day of data
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(642 minutes) from before the official start of SI, and one day and a half (2330 minutes)

after the official end were also included. The total number of minutes analysed were

26981 for GE0600, 12290 for HI, 11282 for H2, and 8275 for Lt.

Figure 3.14 shows a single-sided power spectral density of a band of 4Hz using SI data

for all four interferometers. The expected signal frequency during SI, taking into account

only the orbital Doppler shift, was 1283.8Hz. The dashed lines in Figure 3.14 indicate

that frequency bin. There is a clear broad spectral feature in the GEO 600 data near the

frequency where we expect a signal. The line, however, is not likely to be an astrophysical

signal but rather some instrumental artifact. The line has a width of about 0.5 Hz which

is broader than would be expected from Doppler modulations due to the motion of the

Earth. Perhaps the strongest case that this is not a gravitational wave signal is that it is

not visible in the other interferometers. Of course, we would expect a real gravitational

wave signal to appear in all detectors. Figure 3.15 shows a time-frequency spectrogram

showing the evolution of the line in the OEO 600 data over the course of SI. The time

resolution of the spectrogram is one day. The spectrogram covers a band of 4 Hz around

the frequency of the signal and the colour is proportional to the signal to noise.

Figure 3.16 shows in the top plot the modulus of Bk (in black) as a function of time as

well as the calculated estimate of the noise CJk (in red) for each sample where we have

(3.23)

In the bottom plot the ratio between IBkl and ICJkl is shown. It is evident that there are

variations in the level of the noise over the course of a day. It is comforting to take note,

however, than we seem to be correctly estimating these changes in the noise floor since

the bottom plots appears much more Gaussian. Figure 3.17, Figure 3.18, and Figure 3.19

show similar plots during SI for the UGO IFOs. The gaps in the data are for periods

when the detectors were out of lock and/or not in science mode. These plots are useful

monitors of the stationarity of the data in the band of interest. These plots are essentially
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Figure 3.14: Single-sided power spectral density ($",) of a band of 4 Hz (starting at I 28 IHz)
using the entire S I data set analyzed from the four interferometers. The noiseA is shown in
units of 10-20 Hz-1/2. The dashed vertical line indicates the expected frequency of the signal
received from B1937+2I (this figure is taken from [48]).
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Figure 3.15: This is a spectrogram of GEO600 data during SI for a4Hz band around the signal
frequency (l284Hz). The color of the pixels is proportional to the signal-to-noise of the pixel
compared to data of the same period.
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Figure 3.16: The time-series in the top plot shows IBkl in black (one sample per minute) and
the estimate of the noise 100k I in red for the GEO data for all of S1. In the bottom plot the time
series shows IBkl/lO"kl for the duration of SI for GEO.
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Figure 3.17: The time-series in the top plot shows IB, I in black (one sample per minute) and the
estimate of the noise Iak I in red for the HI data for all of SI. In the bottom plot the time series
shows IBkl/lakl for the duration of SI for HI.

showing the level of the noise in a band 1160Hz around the signal frequency (in this case

'" 1284Hz).

It is important to check that the distribution of Bk and ak is consistent with a Gaussian

distribution since this is an assumption for the likelihood function we are using. The

histograms in Figure 3.20 plot Bjo = !R(Bk)lam{Bkl + m(Bk)/am{Bkl which should be

Gaussian with a variance of one if we have correctly modeled the noise. We quantitatively

assessed the Gaussianity of the data by calculating the X 2 statistic, assuming a mean of

zero, for both the real and imaginary data. That is,

X2 =L ffi(Bk)2 la~{Bd + !R(Bk)2 la~{Bkl'
k

0.24)

If the data are consistent with a Gaussian distribution with a mean of zero then we would

expect the value of X2 to have a mean of N and a standard deviation of ,JfN where
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Figure 3.18: The time-series in the top plot shows IBkl in black (one sample per minute) and
the estimate of the noise lak I in red for the H2 data for all of S1. In the bottom plot the time series
shows IBk Iflak I for the duration of SI for H2.
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N is the number of degrees of freedom. We excluded a small number of outliers with

magnitudes of Bk/ak larger than 5 from the analysis. For the GE0600 data set we had

a total of 53955 (real + imaginary) data values (Bk) and a corresponding value of of

X2 = 61699. This represented a larger value of X2 that we would have expected which

could be due to a slight underestimation of the noise. This may be due to an excess of

transients in the GE0600 data which made our assumption of stationary over 60 seconds

not valid for some periods or the nearby spectral line. For the LIGO IFOs we had a set

of 24550 data values for HI, 22564 for H2, and 16544 for L1. The calculated values of

X 2 were 24623 for HI, 22829 for H2, and 16684 for L1 with standard deviations ../fFi
of 222, 212, and 183, respectively. The X2 values for the LIGO IFOs were all consistent

with a Gaussian data set.

3.9 Results

We set upper limits on the gravitational wave strain ho from pulsar B1937+21 by calcu-

lating the marginalised posterior probability distribution function of ho given the data.

Similarly to the examples given in Chapter 2 we used flat prior probabilities for p(¢o),

p( cos z), and p( 1/1). We chose the prior for ho as constant for ho ~ 0 and zero for ho < O.

The marginalised posterior pdfs for ho for each detector are shown in Figure 3.21. The

95% upper limits are 2.2 x 10-21 for GE0600, 1.4 x 10-22 for Ll, 3.3 x 10-22 for

HI, and 2.4 x 10-22 for H2. Unfortunately, due to timing uncertainties between the

interferometers in SI we were not able to perform a joint coherent analysis.

The dotted line in the GE0600 pdf in Figure 3.21 represents the result obtained if an

artificial signal was added to the data with ho = 2.2 X 10-21, ¢o = 0°, 1/1 = 0° and

t = 0°. If a signal with those parameters was present in the data we would have certainly

seen it.
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Figure 3.21: The solid line in each plot represents the marginalised posterior pdf for 110 for
pulsar B1937+21. The 95% upper limits at the edge of the shaded regions are 2.2 x 10-21 for
GE0600, 1.4 x 10-22 for Ll, 3.3 x 10-22 for HI, and 2.4 x 10-22 for H2. The dotted line for
GEO 600 shows the posterior PDP for ho if an artificial signal was injected into the GEO 600 SI
data with ho = 2.2 X 10-21,1>0 = 0°, 1ft = 0° and t = 0°.
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We can recast the upper limits on ho as an upper limit on the equatorial ellipticity of the

pulsar using Equation 3.3. Taking the distance to pulsar B1937+21 to be 3.6kpc [65],

and using our knowledge that ho ~ 1.4 x 10-22 from LI, we get

(3.25)

with 95% confidence. The limit on the ellipticity from spindown measurements for this

pulsar is e ~ 3.80 x 10-9 which is several orders of magnitude below our observational

limit. It is worth noting, however, that the uncertainty in the moment of inertia of the

pulsar and in the distance to the pulsar are not taken into account. For some pulsars, such

as the Crab, the current observational limits allow for a moment of inertia up to a factor

of two larger [70].

The uncertainty in the calibration adds 4% error-bars to the GE0600 result and a 10%

error-bars to the LIGO results (as mentioned in Section 3.2). We did not fold these uncer-

tainties into the Bayesian analysis for clarity, but in principle we could have marginalised

over this uncertainty in calibration.

3.10 Conclusions

Although the results are several orders ofmagnitude away from astrophysically interesting

results, the upper limit presented here was still the most stringent direct limit placed by

a gravitational wave detector for this pulsar (at the time of SI). As we discussed in [48]

two previous direct upper limits had been published on the strain of a signal from pulsar

B1937+21. One previous result using data from the Caltech 40m interferometer had set

limits of ho < 3.1 x 10-17 and ho < 1.5 X 10-17 for the first and second harmonics of

the rotation frequency, respectively [71]. The best previous upper limit of ho < 10-20

was determined using data from a divided bar at the University of Glasgow [72].



Chapter4

Analysis ofLIGO S2 data for 28 pulsars

4.1 Introduction

The second LIGO science run (S2) took place from Feb 14, 2003 16:00:00 UTC to

Apr 14, 2003 15:00:00 for a total 59 days. The sensitivity of the LIGO detectors had

improved by nearly an order of magnitude over a broad frequency range compared to

SI (see Figure 4.1). With this much improved sensitivity and a quadruple increase in

duration compared to SI, the S2 science run had goals of improving the upper limits set in

SI, trying out new searches, and with luck detecting gravitational waves. The GE0600

detector was being upgraded and did not participate in the S2 data run. The upgrades

included the installation of the final optics as well as the signal recycling mirror both

requirements for GE0600 to reach its design sensitivity. Similarly to SI, the analysis

of the data concentrated on four main signal classes (inspirals, bursts, stochastic, and

periodic).

In this chapter, we will focus on placing upper limits on the gravitational wave emission

from several radio pulsars. The main results from this chapter were submitted to Physical

Review Letters in October 2004 (see Appendix). First, we give a brief summary of the
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Figure 4.1: Typical sensitivities of the three LIGO interferometers during the S2 data run. The
LIGO SRD (Science Requirements Document) lines represent the target sensitivities ofthe initial
IFOs.

results from the other LIOO Scientific Collaboration (LSC) astrophysical searches with

S2 data.

The LSe Inspirals Search Group carried out the search for waveforms associated with

neutron star coalescences . More details on the neutron star inspirals analysis are available

in [73]. The inspiral analysis for the S2 data run was sensitive to neutron star coalescences

within a maximum distance of 1.5Mpc, which includes the Andromeda Galaxy and

other galaxies in the Local Group. In contrast, the SI analysis for binary neutron stars

inspirals would only have detected events within the Milky Way. The analysis pipeline

was changed from SI to add the additional criteria that a signal must be coincident in

at least two LIOO sites to be considered a candidate. While no inspiral gravitational

wave events were identified, the upper limit improved significantly over the SI results.

An upper limit was set of less than 45 inspiral events per year per Milky Way equivalent

galaxy with 90% confidence for binary systems with masses between 1-3 Mo·
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The LSe Burst Search Group carried out searches in the S2 data for unmodelled bursts

in the ISO-1100Hz range. Their analyses were sensitive to gravitational wave bursts

with root-sum-square (hrss == JJ Ihl2dt) amplitudes in the range hrss - 10-20 - 10-19•

No excess of burst events were found when the foreground rate was compared to the

estimated background rate. An upper limit on the rate of gravitational wave bursts was

set at the level of 0.24 events per day. A search for potential gravitational wave events

associated with Gamma Ray Burst GRB030329 was also carried out. The search did not

find any excess power which is perhaps not surprising since the source was at a distance

of r- 800Mpc. Nonetheless, an upper limit on the gravitational ft.uxfrom this source was

set and the tools were constructed to search for events coincident with GRBs in future

runs. More details on these analyses carried out by the LSe Burst Group are available in

[74] and [75].

The Lse Stochastic Search Group improved the previous direct upper limits for a stochas-

tic background of gravitational waves by several orders of magnitude with the S2 data.

In the band between 50-300Hz an upper limit of Qowhyoo < 0.018 was set in their

preliminary analysis. An analysis making use of data from the ALLEGRO bar detector

is also currently in progress.

In addition to the work presented in this chapter, the LSe Periodic Search Group under-

took several new analyses for the S2 run. Those include all-sky searches for periodic

signals using both coherent [49] and incoherent methods [76] [77], and also a search for

gravitational waves from the low-mass X-ray binary Sco X-I [78].

In this chapter, we report on upper limits placed on the gravitational wave strain from

28 radio pulsars using S2 data. We elaborate on the selected pulsars and explain why

some known pulsars were excluded from the analysis in Section 4.2. The details of the

statistical methodology are given in Section 4.3. During the S2 run, artificial periodic

signals were injected into the LIGO IPO's simulating the effect of gravitational waves.

These hardware injections and the extraction of the signal parameters are described in



4.2 Pulsar selection 94

Section 4.4. InSection 4.5, we characterize the S2 data in the pertinent frequency bands

for our analysis by checking the Gaussianity and stationarity of the data. The results,

including coherent multi-detector upper limits, are given in Section 4.6. Finally, the

significance of these results and future prospects are discussed in Section 4.7.

4.2 Pulsar selection

For the S2 run, we expanded our search for periodic gravitational waves to target all

known isolated pulsars with a rotational frequency above 20Hz. We only selected the

pulsars with gravitational wave signals above 40Hz because of the poor sensitivity of

the interferometers at low frequencies. We excluded the binary pulsars, even though

they correspond to a large fraction of rapidly rotating pulsars, saving them for future

analyses. To search for signals from binary pulsars would require an extra time delay in

the heterodyning function (as described in Chapter 2) to account for the orbital motion

of the pulsars. We plan to extend the search to include binary pulsars with the S3 data.

There were a total of38 known isolated pulsars with gravitational wave frequencies above

40Hz listed in the ATNF pulsar database [65] at the time of the S2 run. At the time of

writing, two further pulsars with high frequencies have been discovered but these were not

included in this analysis. Jodrell Bank Observatory (JBO) was able to provide up-to-date

measurements for 18 of the pulsars using radio observations taken during the S2 run [79].

These observations reduced the uncertainty in the timing and positional parameters of the

sources which were outdated for some pulsars in the ATNF catalogue. The radio data also

verified that none of the pulsars experienced a 'glitch' during the S2 run. Certain young

pulsars, like the Crab and Vela, occasionally have sudden changes in their rotational

frequencies known as glitches. Such a glitch would offset the gravitational wave phase

and thus could undermine the analysis if not taken into account. Many pulsars also exhibit

rotational irregularities known as timing noise which causes long term random deviations

in phase and frequency. This timing noise is believed to be related with the rotation rate
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of the stars and may be pinned to the gravitational wave phase. As with glitches, timing

noise is mostly prominent and pronounced in young pulsars, such as the Crab, and its

effect on millisecond pulsars can be ignored. For example, the timing noise measured for

pulsar B1937+21 is on the order of 5 JLS over 8 years [80] (also see [64] and Figure 3.4 in

Chapter 3) and thus negligible for our purposes. On the other hand, timing noise could

have introduced timing delays up to r- 2.1 ms for the Crab pulsar (B0531+21) over the

S2 run. The timing noise in the Crab pulsar was taken into account by including an

extra time delay into the heterodyning function when demodulating the signal. The JBO

collects radio data from the Crab pulsar on a monthly basis and those ephemerides where

used to estimate the timing noise over S2. Details on the interpolation procedure used to

estimate the timing noise are available in [81]. The timing noise was responsible for an

extra shift in phase of 45° for the Crab pulsar over S2. For longer data runs the effect of

timing noise on the Crab will be even more significant on gravitational wave searches.

Sufficiently precise timing data from radio observations were not available for all of the

38 known pulsars. For 10 of these pulsars, the uncertainties in the source parameters were

large enough to lead to a timing error larger than one cycle in the phase of the signal over

S2. Those pulsars were excluded from the analysis to leave a total of 28 pulsars. The

timing solutions for these remaining pulsars are given in Tables 4.1, 4.2, and 4.3. The

timing uncertainty came from two separate origins where the radio observations were

insufficiently accurate and/or outdated:

• uncertainties in frequency and spindown (Jo, Jl), and

• uncertainties in position (a, cS).

The dominant source of uncertainty in the spin evolution for most sources came from

propagating the uncertainty in the spindown from the measurement epoch to the time of

S2. In principle, we could have expanded our analysis method to search over a narrow

range of frequencies and positions. However, we decided to only include the pulsars
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where the uncertainty in these parameters was negligible with the intention of extending

later searches to include these pulsars.
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Pulsar name f2 uncertainty epoch(MJD)
11913+1011 I -1.407664115967E-23 4.55E-24 52692.l38313
B1937+21 18.947435804829E-27 9.17E-28 52328
11744-1134 -8.070333665728E-27 N/A 52685.613159
B1820-30A 5.211122925134E-25 N/A 52684.794128
B1821-24 1.842594529548E-28 2.70E-26 52718.906190
B1951+32 2.340810132146E-22 2.26E-23 52765.339561
B0531+21 1.2426E-20 0.OOO5E-20 52654.0

Table 4.3: Secondspin frequencyderivativefor the 7 pulsars for whichit is measured.

The maximum accumulated phase error that could result from uncertainties in frequency,

which we denote as 6.cI>freq, and position, which we denote as 6.<I>pos, were evaluated

separately. The uncertainties for each of the relevant parameters are given in Table 4.1 and

Table 4.2. For a few of the timing solutions provided by JBO, there were no uncertainty

estimates for the parameters, and in those cases we conservatively used older and larger

uncertainties from the ATNF catalogue. The accumulated phase error over S2 due to

uncertainties in the frequency and spin down was estimated by adding both errors in

quadruture, so that

(4.1)

where T = 59 days for S2, TS2 is the time in the middle of the S2 run (MJD 52714), To

is the epoch of the spin parameters from the radio observations, 8fo is the uncertainty in

frequency, and 8fl is the uncertainty in spindown. The factor of two in Equation 4.1 is

because the gravitational wave signal frequency is at twice the rotational frequency. For

10 of the pulsars in the ATNF catalogue the accumulated phase error (l:i<!>freq) over the

S2 run due to frequency uncertainties was above one cycle. For these pulsars we could

miss a signal that was present in the data by looking at the wrong frequency bin if we

did not search over frequency. Inother words, the phase of the signal would change by

more than 360° over S2. The timing error was negligible for the 28 remaining pulsars

as shown in Table 4.4. The largest potential discrepancy came from pulsar J0030+0451

where the accumulated phase error over S2 could be as large as 13.7% of a cycle. Such a

mismatch would only have a negligible effect (a few percent) on this analysis so we kept



4.2 Pulsar selection 100

Pulsar Spin Position Source
Name (cycles) (cycles)

B0021-72C 0.000097 0.000097 JB
B0021-72D 0.000116 0.000079 JB
B0021-72F 0.000276 0.000290 JB
B0021-72G 0.000493 0.000338 JB
BOO21-72L 0.001044 0.001456 JB
B0021-72M 0.001053 0.001297 JB
BOO21-72N 0.000539 0.000798 JB
Jl913+1011 0.001866 0.005108 JB
B1937+21 0.000029 0.000128 JB
11024-0719 0.000209 0.005590 JB
11730-2304 0.000064 0.006638 JB
Jl744-1134 0.000061 0.000315 JB
B1820-30A 0.000280 0.003479 JB
B1821-24 0.009102 0.069760 JB
B1951+32 0.005814 0.008969 JB
12124-3358 0.000286 0.000624 JB
12322+2057 0.000713 0.001134 JB
B0531+21 0.027031 0.004844 JB
J0030+0451 0.137120 0.049512 ATNF
10711-6830 0.000090 0.000046 ATNF
B1516+02A 0.007555 0.008163 ATNF
J1629-6902 0.008853 0.001160 ATNF
11721-2457 0.088527 0.042789 ATNF
11748-2446C 0.094059 0.067639 ATNF
J1910-5959B 0.050573 0.011851 ATNF
J191O-5959C 0.018477 0.003785 ATNF
11910-5959D 0.028493 0.006318 ATNF
11910-5959E 0.035645 0.012486 ATNF

Table 4.4: Cumulativephaseerror fromuncertaintiesin spinand position.

pulsar JOO30+0451.

The accumulated phase error due to using inaccurate positional information was calcu-

lated as follows

~4>pos = 2/0 max [T(ao, 80) - T(ao ± l:1a, 80± ~8)], (4.2)

where /0 is the rotational frequency, T(ao, 80) is the time delay from the detector to the

SSB from position (ao, (30), Il.a is the uncertainty in RA, 1:18is the uncertainty in dec,

and the error is the maximum between the four possible sky locations separated by l:1a



4.2 Pulsar selection 101

Figure 4.2: Antenna pattern ((F~ + F;» of LLO detector at the beginning of S2. The stars
represent the position of the 28 pulsars selected for the analysis.

and Llo. The results of this exercise on the 28 pulsars are given in Table 4.4. The largest

Ll<l>pos is for pulsar J1748+2446C where it could be as large as 6.7% of a cycle. This is

small enough to have only a negligible impact on the analysis.

It is worth noting that Teviet Creighton has performed a similar analysis regarding the

uncertainties as part of his role in the LSC review committee. His results also indicated no

problems with the accuracy of the frequency and position for the selected 28 pulsars 182].

It is interesting to examine whether the antenna pattern of the detectors will significantly

impact the sensitivity to specific pulsars. To do this we can calculate the average power,

(Fi +F; ), of the response function over the S2 run for different locations in the sky. In

Figure 4.2 and Figure 4.3 the response function of the LLO and LHO interferometers, at

the start of S2, are shown along with the location of the 28 pulsars in the sky. However,

since we are analysing data over 59 days, the response function will be averaged over RA

as the Earth rotates. Figure 4.4 shows (Fi + F;) 1/2 as a function of declination along

with a histogram showing the number of pulsars in each 100 intervals of declination. The

average of the response function is rather smooth over declination and should not have a

large impact on the sensitivity of the analysis for any of the pulsars.
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Antenna pattem for LHO at start of 52
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Figure 4.3: Antenna pattern ((F~ + F;}) ofLHO detectors at the beginning of S2. The stars
represent the position of the 28 pulsars selected for the analysis.
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Figure 4.4: Average antenna pattern ((F~ + F~) 1/2) of LIGO IFOs over the length of S2. The
bars indicate the number of pulsars in 10 degree intervals of declination. The red line represents
the average antenna pattern for LLO and the black line represents the average antenna pattern for
LHO.
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4.3 Analysis pipeline

The overall pipeline of the S2 analysis is very similar to the techniques used in SI. The

data is heterodyned to demodulate the signal as described in detail in Chapter 2, and

then we use a Bayesian approach for statistical inference. However, some changes were

implemented to make the pipeline more robust to a wide range of frequencies and to take

advantage of the improved stationarity of the instrumental noise.

The data were processed with tighter Butterworth IIR filters than SI in order to suppress

noise sources outside the signal band. Three third order HR filters with cutoff frequencies

of 0.5 Hz were applied after the heterodyning. Similarly to S I, the data sampled at

16384 Hz was then reduced to one estimate for the data each 60 s, which we denote Bi,

The index k goes from 1 to N where N is the total number of minutes of data processed.

Recall that these data points Bk are essentially a 1160Hz band-limited time series centered

on the instantaneous frequency of the signal.

For S2, we assumed that the noise floor for each band was constant over periods of 30

minutes. As will be shown later in Section 4.5, this was a reasonable assumption for a

majority of the pulsars. The noise floor in the S2 analysis is also implicitly calculated

over a 1160Hz bandwidth as opposed to the explicit estimation of the noise floor from a

4Hz bandwidth for SI. We say implicit because by using the Student's t likelihood in S2,

as explained in Chapter 2, we do not need to know the variance. In accordance with the

techniques presented in Chapter 2, we marginalised over the noise level using a Jeffreys

prior for each 30 minute segments of data. The likelihood of each 30 minute segment of

data, labelled by j, is given by

(4.3)

where Yk is the signal model, Bk are the data points, and m = kl(j) - k2(j) + 1 = 30

is the number of data points. In principle, we could dynamically adjust m to reflect the
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stationarity of the data over the run. By limiting the analysis to continuous 30 minute

segments we have excluded shorter stretches of good data. In practice, these shorter

segments represented less than 12% of the S2 science mode data and were left out for the

sake of simplicity.

Because of increased confidence in the timing between sites we were able to carry out

a coherent multi-detector analysis with the S2 data. Using the data from all three LIGO

IFOs, the global multi-detector likelihood is

(4.4)

from which we can calculate the multi-detector posterior distribution for each for the

parameters. Similarly to the SI analysis, we have used uniform priors for the angles

over their respective ranges, and a flat prior for ho ::: O. In principle, we could use the

results from SI as a prior probabilities for pulsar B1937+21. In practice, however. the

improvement in sensitivity in S2 is large enough to make this irrelevant. The likelihood

function with the S2 data will not change significantly whether the SI results are used as

a prior or a flat prior is used.

4.4 Hardware injections

We will use the term hardware injections for simulated signals that are added to the

interferometer control system to make the instrument behave in the same way as if a

gravitational wave signal was present. During the S2 run, two hardware injections were

carried out that mimicked periodic signals from pulsars in the LIGO interferometers.

These injections provide the only true end-to-end validation of the search codes and

the data acquisition pipelines. While a posteriori software injections can provide some

confidence in the search codes, they can overlook subtle problems such as dynamic range

issues.
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Name PI P2
RA (rads) 5.1471621319 2.345678901234567890
Dec (cads) 0.3766960246 1.234567890 12345

Frequency (Hz) 1279.123456789012 1288.901234567890123
Spindown (Hz/s) 0.0 -10-8

Phase cPo (rads) 0.0 0.0
Polarisation angle v (rads) 0.0 0.0

GW amplitude ho 2 x 10-21 2 X 10-21
Inclination angle t (rads) 7r/2 7r/2

SSB Epoch (GPS) 733967667.026112310 733967751.522490380

Table 4.5: Signal parameters for the S2 hardware injections.

Through periodic hardware injections we can increase our confidence that the timing

between sites is consistent. This is especially important for coherent multi-detector

searches where a large lag in timing between the detectors could severely reduce the

sensitivity of the search. Indeed, during the E71 data run, a hardware injection of a

stochastic signal in both sites revealed a large negative correlation in the data between

sites. That analysis, by the Stochastic Upper Limit Group, indicated that there was a

relative sign ambiguity between the LIGO detectors [83]. The group was expecting

a large positive correlation since the signal injected at both sites was supposed to be

equivalent. The Periodic Group injected its first two periodic signals in S2 and did not

inject any signals in the E7 run. In this section we describe the signals that were injected

and report on the results obtained.

The S2 pulsar hardware injections were carried out during a 12 hour period on 10April,

2003. The same signals as would be seen from an astrophysical source, with the correct

time of arrival offsets between sites, were injected into LI, HI, and H2. Approximately

9 hours of science data for each detector was collected with the detectors in lock most

of the time. 1\vo simulated pulsar signals were injected and their parameters are listed

in Table 4.5. The first pulsar signal, PI, had a constant frequency of r- 1279 Hz with

an antenna pattern consistent with a source in the direction of pulsar BI937+21. The

second signal, n, had an initial frequency of - 1289 Hz but was spinning down at a

rate of -10-8 Hz/s from an arbitrary direction in the sky. The spindown rate for P2 was

1LIGO and GEO commissioning run in December 2001 prior to the SI science run.
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Figure 4.5: Envelope of amplitude of the S2 hardware injections in both interferometers. The
solid lines represent the envelope for signal PI and the dash lines represent signal P2.

chosen to be large enough so the signal would shift by at least one frequency bin over

the observation period. Envelopes of amplitude of the injected signals into each IFO are

shown in Figure 4.5. Since the inclination angle is t = 1t/2 for both of the signals. the

cross polarisation term is zero. So these envelopes of the injected signals are essentially

just the absolute value of the plus polarization response of the interferometer properly

scaled.

The phase of the signals was properly modulated to simulate a Doppler shifted signal from

those directions in the sky. In fact, an initial problem in extracting the signals from the

S2 data was due to a mix up of the RA and dec in the analysis software. The observation

time is sufficiently long that the Doppler shifts must be taken into account.

The injection data was analysed using both the SI procedure estimating the noise over a

4Hz bandwidth, and also using the S2 analysis pipeline. Both methods gave qualitatively

similar results with correct extraction of the signal parameters. Figure 4.6 and Figure 4.7
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Figure 4.6: Recovered parameters for signal PI of the hardware injections. The dotted line
represents the signal parameter injected. The red curves are for HI data, the green curves for H2
data, and the blue curves are for LI data.
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The greatest achievement of these hardware injections was to verify that the phase of

the signal and the timing of the data acquisition system were consistent between sites.

With this assurance in hand we can confidently perform coherent multi-detector anal yses

for signals in the S2 data. The dashed black lines in Figure 4.6 and Figure 4.7 show

the marginalised pdfs using data from all three LIGO IFOs coherently. As expected, the

were used.

confidence in each of the parameters was improved when the data from all three IFOs
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Figure 4.7: Recovered parameters for signal P2 of the hardware injections. The dotted line
represents the signal parameter injected. The red curves are for HI data. the green curves for H2
data. and the blue curves are for LI data.

4.5 Characterisation of S2 data

4.5.1 Assessing Gaussianity and stationarity

The confidence in results from any analysis is only as good as your knowledge of the

behaviour of the underlying noise. It is thus imperative to characterize the data and

appreciate potential biases in the results due to wrong assumptions about the noise.

The effect of making a wrong assumption, however, can in some cases have negligible

consequences on the end result.

This section describes several studies that were performed to assess the Gaussianity and

stationarity of the S2 data. Here the S2 data refers to the band-limited 1/60 Hz set of data

points, {Bk}, heterodyned at the gravitational wave frequency. We show in Section 4.6

that even if the segments of data with non-normal characteristics are excluded from the
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data set, the final upper limits do not change by more than about 30% (in the worst case).

4.5.2 Issues with applying SI pipeline on S2 data

In the SI analysis we assumed that the data were consistent with a Gaussian distribution

which was reflected in our choice for the likelihood function of the data. For each sample

of demodulated data. Bk, we estimated its variance using a band-limited 4Hz time series

heterodyned around the signal frequency. Using 240 points for the calculation of the

variance for each Bi; we assumed that the uncertainty in the estimate of the variance was

small. We tested the assumption that the data was consistent with being drawn from a

Gaussian distribution, with J.I- = 0 and (T = Uk for each of the Bk, by calculating

X2 =L [fft(Bk)2 /U~{Bk} + ~(Bk)2 /(T~{Bk}] •

k

(4.5)

If the data are from a Gaussian distribution, we would expect X 2 as defined above to be

approximately N and with a standard deviation of ..fiN where N is the total number

of data points (real + imaginary). Figure 4.8 shows X2 / N for several pulsars, for each

detector, ifwe simply repeat the same analysis procedure as described in the SI analysis

on S2 data. If the data were normal we would expect this statistic to be approximately

one with a standard deviation of ,J2fN. It is clear from Figure 4.8, however, that when

using the SI procedure most bands are far from being consistent with being normally

distributed. Only in a few bands at high frequencies, such as for pulsar BI937+21, are

the data consistent with being Gaussian.

The failure of the SI procedure to properly track the noise for all frequency bands can be

attributed to two main causes. First, the cutoff frequencies for the fiR filters used in SI,

128Hz and 4Hz. that were meant to prevent aliasing from outside the band of interest

were not adequate. Since the noise floor is very large at low frequencies, the filters were

not sufficiently attenuating the noise from outside the band for signals at low frequencies.
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Figure 4.8: X 2/ N for all isolated pulsars when the noise is estimated from a 4 Hz bandwidth
with the SI HRfiltercutoffs.

For the bands at high frequencies the noise fioor is quite fiat and thus those wide low-pass

filters were not a problem. As a result, with the S1 filters the variance of the {Bk} were

not correctly estimated, especially at low frequencies where the gradient in the noise floor

is largest. Second, since our tightest HR filter had a cutoff frequency of 4 Hz, it did not

prevent any strong spectral lines within that 4 Hz from biasing our analysis. While the

band for B1937+21 was relatively fiat at such a high frequency, this was not the case for

several other pulsars. Such a strong spectral line in the band of pulsar 11910-59598 in

the S2 data is shown in Figure 4.9. These problems were fixed in the S2 analysis by

using narrower band to estimate the set of {Bd and their variances {a'l}.

4.5.3 Modified reduced chi-square test

For the S2 analysis we applied three third order low-pass HR Butterworth filters each

with a cutoff frequency of 0.5 Hz after demodulating the phase of the signal. Such a

tight bandpass prevented the contamination of our data from nearby spectral lines but

also limited our ability to assess the variance on a short time scale (e.g. each minute
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Figure 4.9: Fouriertransformofa 4 Hz bandaroundthe signalfrequencyforpulsarJ191 0-5959B
in the H2 data. The dashed line indicatestwice the spinfrequencyof Jl910-5959B.

for SI) since the sampling rate had to be reduced. For S2, we left out the intermediate

4Hz sampling rate to calculate the variance of the data and directly reduced the sampling

rate from 16384 Hz to one Bk per minute. For the S2 data, we have assumed that these

data were Gaussian within that 1/60Hz band and that the noise floor could be considered

constant (stationary) over 30 minutes (instead of each minute as in SI). For the purposes

of characterising this data in a similar fashion to SI, we can estimate the variance for

each contiguous segment of 30 minutes. The sample variance (assumed to be constant

over 30 samples) can be calculated as

(4.6)

where Ek is the average of 30 data points. In order to replicate as closely as possible the

Gaussianity tests from SI, the quantity we want to calculate is

(4.7)
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where N is the number of 30 minutes segments. While 240 samples contributed to the

estimate of the variance in SI procedure (from 4 Hz bandwidth each minute), only 30

data points contribute to the sample variance calculated from the data as described above.

As a result the goodness-of-fit statistic, X~, will be slightly larger than unity for Gaussian

data. This is because a Student's t-distribution approximates a Gaussian distribution for

large numbers but not for small numbers. The details of the expected value for Xk are

explained below for data consistent with a Gaussian distribution.

Each sample contributing to the sum in Equation 4.7 has the form

(4.8)

where W is from a standard normal distribution and V is from a chi-square distribution

with r degrees of freedom. The average value in the numerator and denominator in

Equation 4.7 cancel to give the standard distributions in Equation 4.8. The expectation

value of t2 can be used to calculate the expected value of x~. In fact, the expectation

value for X~ is simply the average of the expectation values of t2• We can similarly

calculate the variance of X~ by evalutating the variance of t2•

We proceed by first calculating the expectation value of t2• Using Equation 4.8, and the

fact that the expectation value of two independent random variables is multiplicative, we

have

(4.9)

The problem is thus reduced to finding the expectation value of E(W2) and E(r/V).

We can calculate the expectation value E (W2) by using the moment generating function

(mgt) of a Gaussian distribution. Since J.L = and a = 1, we have

(4.10)

for the moment generating function. By definition, we can calculate the expectation value
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of the nth moment of a distribution by taking n derivatives of the mgf, and setting the

random variable equal to zero. So we have

" 2M (0) = E(W ) = 1. (4.11)

To find the expectation value of t2 we must now determine E (7/ V). By definition, the

expectation value of a function is the integral of that function of a random variable over

the probability distribution of that random variable. So we have

l°or
E(r/V) = - f(v)dv,o v

(4.12)

where v is the random variable and f (v) is a chi-square probability distribution function

with 7 degrees of freedom. We can write out

(4.13)

and by letting y = v/2 and dy = dv/2 and simplifying the expression we get

E(r/V) 100 r 1 7/2-2-y (4.14)- o 4f'(r/2)Y e 2dy
r r(r/2 - 1)- 2 e-n
r f(r/2 - 1)

- -
2 (r/2 - l)f(r/2 - 1)

r- r - 2'

This is reassuring since this is the well known variance of the Student's r-distribution.

Thus the expected value for the reduced chi-square statistic will be

N
2 1", 2 r

(XR) = N z: E(t ) = --:-2'
. 1 7
1=

(4.15)

As expected, this value will approach one as the number of degrees of freedom increase

and the distribution approaches a Gaussian. The number of degrees of freedom in a 30
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minute segment is 29 since we calculate the average, and so the expected value of our

reduced chi-square statistic is

2 29
(XR) = 29 _ 2 ~ 1.074. (4.16)

For the SI analysis, there were 240 points contributing to the estimation of the variance and

thus239degreesoffreedom. So in that case we should have expected (X~) = 1.0084 ~ 1.

In a similar way, we can derive the expected variance of our reduced chi-square statistic.

In this case, we want to evaluate

(4.17)

where

From the previous calculation of E(t2) we know the second term is equal to (r~2)2.

We can calculate E(W4) by again making use of the moment generating function of a

Gaussian distribution. Ifwe calculate the fourth derivative of the mgf from Equation 4.10,

we get

(4.19)

so that

(4.20)

The last remaining term to calculate to get the variance in Equation 4.18 is E(r2/ V2).

We can calculate the expectation value E (r2 / V2) by evaluating

(4.21)

which, using the definition of the gamma function in a similar way to Equation 4.14, can
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be reduced to

(4.22)

Therefore, from Equation 4.18, we get that the variance of the reduced chi-square statistic

can be expressed as

1 [3r2 ( r )2]var(X2) = - - --
R N (r - 2)(r - 4) r - 2 '

(4.23)

where N is the total number of 30 minute segments.

Figure 4.10 shows the reduced chi-square values using for all 28 pulsars selected for the

analysis. For HI, only one pulsar (BOO2I-72C) has a Xk value, 0.80, that lies more

that 30' from the expected value. For H2, pulsar BI5I6+02A has a reduced chi-square

value ofO.95 which is slightly below the 30' level. And for LI, two pulsars B0531+2I

and B15I6+02A, are below the 30' level with reduced chi-square values ofO.90 and 0.77,

respectively. Generally having reduced chi-square values that are too small suggests that

the noise level is overestimated. This should translate into slightly more conservative

upper limits than ifwe were correctly modelling the noise.

4.5.4 Kolmogorov-Smimov (Lilliefors) normality test

The reduced chi-square calculations in the previous section provide information regarding

the Gaussianity of the set of Bk over over the run. Ultimately, however, if we use the

Student's t likelihood shown in Section 4.3 we want to know whether the individual Bk'S

in each 30 minute block are normal. It is promising that the set of Bk appear to be normally

distributed, but that is not surprising due to the central limit theorem. Deviations from

normality are more likely to reveal themselves in the non-averaged Bk'S.

In this subsection, we apply a Kolmogorov-Smirnov (K-S) test to assess whether the data

in contiguous segments of30 minutes are normally distributed. The K-S test can be used



4.5 Characterisation of S2 data 116

1.2

"""><
------

0.8

o 10 20
pulsar number (sorted in increasing frequency)

1.2 ·.. ·..·~·····..;· ........ ·(T·..·..·..·..·..·..·..·..·i········....··f·..·..·····..i·-r· ..·....·· ·i"
! ~ .L r ! 1! i r~! !! ~1 1 t-L,

1 l................................................................................... . .
! !

0.8

o 10 20
pulsar number (sorted in increasing frequency)

1.2 ..J ····························1··················

! fI!lI IIIIIIIIflt III-Ll-
··································1···················................................................. ....

f L10.8

o 10 20
pulsar number (sorted in increasing frequency)

Figure 4.10: (x;) for each detector when the noise level is estimated every 30 minutes from the
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with small sample sizes and is generally more powerful than the chi-square test. The

K-S statistic is based on comparing the cumulative distribution functions (cdt) of two

distributions. If the two sets of data are from the the same distribution then the deviations

between the cdfs should be small. The K-S test is useful because it is a method that

quantizes the difference between the two cdfs and provides a means to make statistical

statements about the two distributions.

The cumulative distribution function of 30 B~s (real and imaginary) can be constructed

as follows:

1. estimate variance of the 60 data points - assuming that real and imaginary parts of

Bk have same noise level

2. normalize the Bk'S by the standard deviation - we call the normalized data points x

3. construct cdf for the data, SN (x), by using the fraction of data points to the left of x

Now, we want to compare the experimental cdf, SN (x), of 60 data points with a Gaussian

cdf. The K-S test statistic is a simple method to quantitatively measure the difference of

two distributions. It is a measure of the distance between the two cdfs and is defined as

D; = max ISN(X) - P(x)1
=eo-ex-eec

(4.24)

where x is the normalized data, SN(X) is the cdf from the data, and P(x) is the cdf

for a Gaussian distribution. A graphical description of the D statistic from Numerical

Recipes [84] is shown in Figure 4.11.

As typically done in hypothesis testing, if the test statistic is larger than a critical value

then one will reject a null hypothesis at a given significance level. In this case, the

null hypothesis is that the observations are from a normal population. The critical values

given for the standard K-S test, however, are for the comparison of two completely known

distributions. Here the mean and variance of the original distribution were unknown and
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Figure 4.11: Kolmogorov-Smimov statistic defined as the vertical distance D between the two
cumulative distribution functions, from [84].
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Figure 4.12: Cumulative distribution of first 30 minute segment of S2 data for pulsar B1937+2l
compared to expected cumulative Gaussian distribution (red). The vertical distance between the
two distributions is less than the critical value of 0.114 for all three detectors. This period of data
for each IFO is thus consistent with a Gaussian distribution.

had to be estimated from the data. When normalized by the sample standard deviation

the data points, x, are approximately Gaussian. The critical values, however, will thus be

slightly different from the case where both distributions are completely described. The

Lilliefors critical values were calculated specifically for this problem, when the mean

and variance of a normal distribution are unknown, and are available in [85]. The critical

value for a sample size of 60 for a level of significance of 0.05 is D = 0.114. The

K-S statistic D, was calculated for every 30 minute segment of S2 data for each pulsar.

Figure 4.12 shows a Gaussian cdf compared to the cdf obtained from the first locked

30 minutes of data for pulsar B1937+21. For this specific time period and pulsar, the

calculated K-S statistic was less than the critical value in data from all three detectors.
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Figure 4.13: Cumulative distribution of first 30 minute segment of S2 data for the Crab pulsar
BOS31 +21 compared to expected cumulative Gaussian distribution (red). For this specific 30
minute segment, the cumulative distribution for H2 and Ll is not consistent with a Gaussian
distribution at a level of 0.05.

Thus the observations were consistent with being normal with a significance level of 5%.

As a second example, Figure 4.13 represent the cumulative distribution functions for the

first 30 minute segment for the Crab pulsar in S2. In this case, for both the H2 and L I

data sets the null hypothesis that the data are from a Gaussian distribution is rejected.

For each pulsar, the complete S2 reduced data set was analysed to test if each contiguous

30 minute segments of data was normal. By definition, at a level of significance ofO.05 we

would expect approximately 5% of the data to be rejected if the data was indeed normal.

Figure 4.14 shows the distribution of the fraction of 30 minute segments of data rejected

for each interferometer. For the majority of the pulsars between 5-10% of the data were

rejected. This is quite reasonable and suggests that the data is relatively well behaved

for most pulsars. For two pulsars, however, the Crab B0531+21, and BI516+02A, a

much larger fraction of the data is rejected in certain detectors. Both of these pulsars

are in highly contaminated frequency bands, near 60 Hz for the Crab, and near 360 Hz

for B1516+02A. For H2, 66% of the data is rejected for the Crab B0531+21 and 25% of

the data for pulsar BI516+02A. For Ll, 52% of the data for pulsar B1516+02A is not

consistent with a Gaussian distribution.
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Smirnov (Lilliefors) test for normality.
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4.5.5 F -test for equal variances

We assume that the variance of the data is stationary over the course of the 30 minute

segments. We can check this assumption by comparing the variance of the first and.

second 15 minutes of each 30 minute period. If the data is stationary over the course of

30 minutes then we would expect the sample variance not to change by a large amount.

We used the real and imaginary components of Bk in the first 15 minutes of each 30

minute segment to calculate the sample variance, sf. Then, the real and imaginary data

points for the corresponding last 15 minutes of each 30 minute segments were used to

calculate the sample variance, s~.

An F-test is a standard test used to determine whether the standard deviations of two

populations are equal. The F-statistic is defined as

(4.25)

where sf and s~ are the sample variances we want to compare. Obviously, the more this

ratio deviates from one the less likely the two data sets are to have the same variance.

Since the first and second half will have 30 samples contributing to the sample variance,

they will both be chi-square variables with 29 degrees of freedom. The F -statistic has a

so-called F-distribution with a probability function fn.m (x) given by

r (!!±!!!.) nn/2mm/2 xn/2-1

fn,m(x)= r
2
(!)r(T) (m+nx)(n+m)/2' (4.26)

where n and m are the number of degrees of freedom (both 29 in this case).

The F-statistic was calculated for each 30minute segment for each pulsar in each detector.

Figure 4.15 shows the distribution of the F-statistics for pulsar B1937+21 compared to

the theoretical function given by Equation 4.26. The agreement between the distributions

is very good and thus the variance within 30 minute segments does not seem to change

significantly. For the Crab pulsar, however, the agreement was not very good, especially
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Figure 4.15: Distribution of F-statistics for data for pulsar B1937+21 compared to expected
F -distribution in red.
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Figure 4.16: Distribution of F -statistics for data for the Crab pulsar B0531+21 compared to
expected F -distribution in red.

for H2. Figure 4.16 shows the distribution of the F -statistic for the Crab pulsar along

with the expected distribution. The last bin to the left and right of the histograms also

contains all of the counts smaller or larger than those bins, respectively. The fit for L I

is reasonable, but there is clearly an excess of outliers for HI, and H2. These are due to

different noise levels, or maybe just glitches, between the first and second half of the 30

minute segments.

Figure 4.17 shows the distribution for all pulsars of the percentage of segments where

the null hypothesis that the variances are equal is rejected at a significance level of 0.05.

The F -test was performed on all pulsars and for the majority of those the null hypothesis

is rejected for 5-10% of the data. The results seem consistent with the fraction of data

rejected with the Kolmogorov-Smirnov tests for normality. We find that a large fraction of

data from the Crab and pulsar B1516+02A are rejected. The fraction of data inconsistent

with constant variance over 30 minutes segments is 22%, 69%, and II % for the Crab for
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Figure 4.17: Percentage of 30 minute segments that are rejected at a significance level of 0.05
when the sample variances from the first and second 15 minutes are compared using an F-test.

HI, H2, and LI, respectively. The other peculiar pulsar is B1506+02A where 17%, 32%,

and 51% of the data is rejected for HI, H2, and Ll, respectively.

4.6 Results

The S2 data from HI, H2, and LI were analysed for the 28 selected pulsars using the

previously described search methods. Some data was discarded because: (i) no calibra-

tion information was available, (ii) lock stretches were shorter than 30 minutes, (iii) of
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the filter impulse response in the first minute of a segment of science data and, (iv) some

other data quality flag was highlighted by the operators. The results presented here made

use of a total of9IO hours of data from HI, 691 hours from H2, and 342 hours from Lt.

The calibration of the S2 data was implemented in the same way as the SI analysis

described in Chapter 3. The systematic errors due to calibration uncertainties were con-

servatively estimated to 10% and 8% for LI and H2, respectively. For HI, the maximum

uncertainty was up to 18% but typical value for a large part of the run were 6%. More

detailed information of calibration studies for the S2 run can be found in [86].

Table 4.6 shows the 95% upper limits on ho along with the corresponding limits on

equatorial ellipticity assuming a moment of inertia of 1038 kg m2• The distance to each

pulsar is also given in Table 4.6.

In addition to the data vetoes already mentioned, we could also remove the data that

failed the Kolmogorov-Smimov tests in Section 4.5. Recall that the fraction of data

failing the K-S test for pulsars B0531+21 and B1516+02A was above 50% for some

detectors. However, since that data is non-stationary, and non-Gaussian, we would expect

the likelihood of that data to have lower probability than normal data. Thus, for those

data sets where we are excluding a large fraction of non-normal data, the reduction

in sensitivity would not be as large as if we were excluding normal data. Indeed. the

maximum reduction in the sensitivity of an upper limit for all pulsars is '" 30% and even

less for B0531+21 and B1516+02A. Figure 4.18 shows the percent difference between

the upper limits on ho when the non-normal data are excluded. The small differences in

the width of the posteriors suggest that the non-normal data are not significantly affecting

our results. This is likely due to the fact that non-normal data would have low probability

when using a Gaussian likelihood.

The marginalised pdfs for each of the signal parameters are shown in Figure 4.19 to

Figure 4.25 for each of the pulsars. The tightest limit on gravitational wave strain comes

from pulsar 11910-5959D with a 95% upper limit of ho < 1.7 X 10-24• At the time
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Pulsar HI H2 Ll h95 Dist. (kpc) E95
B0021-72C 12 6.3 6.9 4.3 4.80 1.6x 10 4

B0021-72D 3.0 7.1 10 4.1 4.80 1.4x 10-4
BOO21-72F 7.7 8.2 25 7.2 4.80 5.7x 10-5
BOO21-72G 7.4 7.7 8.8 4.1 4.80 7.5x 10-5
B0021-72L 5.9 8.1 7.2 2.9 4.80 6.1 x 10-5

BOO21-72M 5.4 6.2 7.5 3.3 4.80 5.0x 10-5
BOO21-72N 5.2 7.9 21 4.0 4.80 4.3x 10-5
J0711-6830 3.3 6.0 5.1 2.4 1.04 1.8x 10-5
B1820-30A 4.8 9.4 9.8 4.2 8.00 2.4x 10-4
J1730-2304 3.7 6.3 5.3 3.1 0.51 2.5x 10-5
11721-2457 6.5 11 9.0 4.0 1.56 1.8x 10-5
J1629-6902 3.1 5.2 8.5 2.3 1.36 2.7x 10-5
B1821-24 6.5 11 15 5.6 5.80 7.1 x 10-5
B1937+21 19 27 39 13 3.60 2.7x 10-5
11910-5959E 22 11 7.9 7.5 2.15 7.9x 10-5
12124-3358 5.0 6.5 5.1 3.1 0.25 4.5x 10-6

1191O-5959C 4.2 7.1 5.6 3.3 2.15 4.7x 10-5

10030+0451 7.9 13 6.9 3.8 0.23 4.8x 10-6
J1024-0719 7.7 7.2 9.1 3.9 0.35 8.6x 10-6
J1910-5959D 3.7 7.3 2.9 1.7 2.16 7.2x 10-5
12322+2057 5.5 12 5.7 4.1 0.78 1.8x 10-5
B1516+02A 4.1 16 13 3.6 7.80 2.1 x 10-4
B1951+32 44 600 640 48 2.50 4.4x 10-2
J1748-2446C 4.7 5.9 4.3 3.1 4.56 2.4x 10-4
J191O-5959B 7.4 5.7 3.5 2.4 2.15 8.5x 10-5
J1913+1011 50 230 170 51 4.48 6.9x 10-2
B0531+21 33 440 99 41 2.00 2.1 x 10-2
J1744-1134 6.4 10 8.0 5.9 0.36 8.3x 10-6

Table 4.6: Upperlimitson ho (-:-10-24) for the28 selectedpulsarsusingtheS2data. Thecolumn
h9S represents the multi-detectorupper limit obtainedwhen the data from all three detectors is
includedin the likelihood.
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of S2 this was the lowest upper limit. for an astrophysically motivated source, ever set

by an interferometric gravitational wave detector. The four best limits on equatorial

ellipticity came from the four closest pulsars J0030+0451, J1024-0719, J1744-1134,

and 12124-3358 with 95% upper limits on the ellipticity of 4.8 x 10-6, 8.6 X 10-6,

8.3 x 10-6, and 4.5 x 10-6, respectively.

As expected the pdfs for each pulsar are consistent with there being no strong periodic

gravitational wave signal at those frequencies in the S2 data. However, the limits placed

on the pulsar's equatorial ellipticity for a few pulsars are approaching astrophysically

interesting levels. Some of the most exotic theories of neutron star matter could actually

support such a strain in the crust [87].

The observational limits set. however, are still2 - 3 orders of magnitude above the energy

conservation limits for the pulsars where we have an estimate of their intrinsic spindown.

An exception is the Crab pulsar B0531+21 for which we are only a factor of - 30 from the

spindown upper limit assuming a moment of inertia of I = 1038 kg m2• The spindown

based upper limit for the Crab pulsar is ho ~ 1.3 X 10-24 and the observation limit is

ho ~ 4.1 X 10-23• The previous best observational upper limit on the Crab pulsar was

approximately an order of magnitude larger [88].

4.7 Conclusions

For 26 of the 28 pulsars, the upper limits presented here are the first reported limits

focusing on these specific objects for gravitational wave emission. For the Crab pulsar

B0531+21 and pulsar B1937+21, their upper limits were improved by over an order of

magnitude compared to previous searches.

Nine of the pulsars studied have positive frequency derivatives and thus appear to be

spinning up. The generally accepted explanation is that these pulsars are being accelerated
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towards us. The pulsars in globular clusters can have large proper motions caused by

strong gravitational forces. For those pulsars the changing Doppler shift, which alters

the frequency more than the intrinsic spindown, gives the appearance that the pulsars are

spinning up. We cannot directly measure the intrinsic spindown of those pulsars. For the

pulsars in the globular cluster 47 Tucanae, such an explanation seems quite reasonable

from a study of ionized gas in the cluster [89]. The pulsars from 47 Tuc are those with

the prefix BOO21-72,and 6 of them have a positive spindown. The other two pulsars that

are spinning up are 11748-2446C and Jl910-5959B. For these two pulsars, our results

are slightly more interesting since we cannot constrain the gravitational wave flux, in

advance, by energy conservation arguments.

In this chapter, we have expanded the search from SI described in Chapter 3 to include

28 pulsars using the S2 data. The upper limits placed on gravitational wave emission

were the most sensitive limits set for those pulsars at the time of S2. With the sensitivity

of the detectors continuously improving at this stage of commissioning, we should be

able to reduce the limits to physically interesting levels in the near future.
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Figure 4.25: Marginalised probability distributions functions for pulsars 11910- 5959E,
11913+1011,12124-3358, and 12322+2057.



ChapterS

PreIiminary analysis of GEO 600 and

LIGOS3data

5.1 Introduction

The third science run (S3) for the LIGO interferometers took place from October 31, 2003

at 08:00 PST to January 9, 2004 at 08:00 PST giving a total of 70 days of observations.

The GEO 600 detector collected three weeks of data in coincidence with LIGO during

the S3 run. The GE0600 collaboration decided to label the run as "S3", even though

it did not officially participate in the S2 run. Due to the commissioning schedule of

GE0600, its operation in science mode was divided into two segments: S31 and S311.

The first segment, S31, started on 5 November, 2003 (13:30:00 UTe) and continued up

to November 12, 2003 (15:00:00 UTe). The second segment, S3 II, took place from 30

December,2003 (15:00:00 UTe) to 13 January, 2004 (16:00:00 UTe). Figure 5.1 shows

typical sensitivities for the four interferometers during the S3 run.

This chapter presents a preliminary analysis of the GEO 600 and LIGO S3 data for periodic

signals from pulsars. The pulsars selected for the analysis and the analysis methods are
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Figure 5.1: Typical sensitivities of the three LIGO and the GEO 600 interferometers during the
S3 data run.

the same as those presented in Chapter 4. The only difference with the analysis presented

here is the fact that the analysis was carried out on S3 data which were significantly more

sensitive than the S2 data. The calibration used for the analyses presented here was still

considered preliminary. The S2 timing solutions were used for the heterodyning and thus

corrections may be required before these results are considered final. For the majority of

the pulsars, the S2 timing solutions provided by Jodrell Bank Observatory should be fine

for S3. However, the Crab pulsar may have experienced a glitch during the S3 run 179].

If this is confirmed, then we will need to take this into account as the gravitational wave

phase could have been offset by the glitch.

Ultimately, we will use the S3 data to place upper limits on a much larger set of known

pulsars. Work is currently in progress to apply the analysis presented in Chapter 4 to

several binary pulsars in addition to isolated pulsars.
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Name ho ¢o 1/1 COSt 2foHz 2fl Hzls et s
PO 9.4x 10 -z» 152° 44° 0.79 265.6 -4.15 x 10 ·12 1.25 -0.98
PI 8.5x1O-24 73° 20° 0.46 849.1 -3.00x 10-10 0.65 -0.51
P2 1.6x 10-24 I 231° _13° -0.93 575.1 -1.37 x 10-13 3.76 0.06
P3 6.2x1O-23 317° 25° -0.08 108.9 -l.46x 10-17 3.11 -0.58
P4 ! 1.0x 10-21 277° -37° 0.28 1403.2 -2.54 x 10-08 4.89 -0.22
P5 1.8x 10-23 128° -21° 0.46 52.8 -4.03 x 10-18 5.28 -1.46
P6 5.2x1O-24 56° 27° -0.15 148.7 -6.73 x 10-09 6.26 -1.14
P7 2.8x 10-23 301° 29° 0.76 1221.0 -1.12x 10-09 3.90

~.~P8 6.0x 10-23 337° 10° 0.07 194.3 -8.65 x 10-09 6.13 -0.58
P9 1.6x 10-22 57° 0° -0.62 763.8 -1.45 x 10-17 3.47 1.32
PlO 7.5x1O-22 114° 21° 0.67 1125.6 -2.87x 10-11 0.78 -0.62

Table 5.1: Signalparametersfor the 11 periodicsignalsinjectedinto theUGO interferometers
in S3. The signalPlO was simultaneouslyinjectedinto theGE0600 detector.

5.2 Hardware injections

A total of 11 hypothetical pulsar signals were injected into the LIGO interferometers

during the S3 run. As described in the previous chapter, these hardware injections provide

robust end-to-end checks on our data analysis pipeline. Table 5.1 shows the signal

parameters for the 11 signals injected in the LIGO IFOs. The ensemble of injected signals

includes signals from various location in the sky of varying amplitude. The signals were

injected in a wide range in frequency from 53Hz to 1403Hz with spindowns as large as

- 2.54 x 108Hz/s,

Inaddition to the LIGO injections. GEO 600 attempted its first pulsar injection during S3 II

using the method described in [90]. The intent was to inject the same signal, PI0, into the

GE0600 and LIGO interferometers simultaneously. The signal injected into GE0600,

PlO, was the strongest of the LlGO injections. With an amplitude of ho = 7.5 X 10-22 it

was chosen so that it would be visible in GEO 600 as well as the LIGO interferometers.

For the hardware injections it is especially important that the amplitude and the phase

of the signals are consistent between the detectors. These are the parameters that are

most likely to be affected due to problems with the signal injection mechanism or data

acquisition. For this reason and since we know the values of 1/1and cos t, those parameters
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Figure 5.2: Posteriorprobabilitydistributionsfor ho and CPo for the injectedsignalsPO(left)and
PI (right).

are taken as known parameters in the analysis. This means having prior probabilities for

those parameters that have the shape of a delta function at the known values. This

prevents potentially large correlations between 1/f and CPo from obscuring whether the

injected phases are consistent between IFOs and will also improve our inference for

weak signals (since the parameters space is reduced).

Figures 5.2 to 5.7 shows the posterior probability distributions for ho and CPo for each of

the injected signals. The injected value for each parameter is indicated with the dashed

line in each figure. It can be seen from those figures that generally the signals were indeed

extracted from the data when the amplitudes were sufficiently large. On the other hand,

there are a few anomalous results that require further explanations.

Below we discuss each of the injected signals and attempt to explain some of the unusual

results.

PO, PI, P2, P3, PS, P6, and PS These represent 7 of the 8 weakest signals injected into

the LIGO IFOs during the S3 run. These signals were injected from the beginning

of S3 and were then switched off on December 1, 2003 for three weeks. All these
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signals except P3 and pg were subsequently switched on again on December 22,

2003 for the last third of the run.

For these signals the posterior distribution functions for ho and 4>0 are consistent

with expectations. The actual injected parameters are typically within the pdfs

though in some IFOs the signals are sometimes too weak to produce a sharp peak.

But nonetheless in those cases, the injected value is still within the width of the

pdfs.

P4 and P9 These signals were the two strongest signals injected in the LIGO IFOs in

roughly the first third of the S3 run. P4 was switched off permanently on November

25, 2003 to avoid any unanticipated contamination of the data that may affect other

analyses. P9 was switched off on December 1, 2003 for the rest of the run.

Although the pdfs are within '" 20% of the injected values, the location and widths

of the pdfs are in some cases inconsistent with the injected values. We believe

that these problems are due to systematic errors in the phase and amplitude of the

calibration information used to inject the signals. These systematic effects are only

noticeable for strong signals where they are significant compared to the noise floor.

For weak signals, the pdfs are so wide that these systematic shifts are well within

the expected uncertainty and no abnormality is noticed. Since these systematic

errors come from the signal injection mechanism they should not be an issue when

performing the analysis for real signals.

P7 This signal was injected in the first and last third of the run along with the majority

of other weak signals. While the pdfs look reasonable for HI and H2, the signal

appears to be completely absent from the LI data. The problem does not seem to

be that the Ll data is simply too insensitive to see the signal. The width of the pdf

for ho for Ll is similar to the width of the pdf for H2 but is simply shifted near zero

as if no signal was present. At the time of writing there are no obvious explanations

for this result in the LI data.

PlO This was the only signal that was injected in both the LIGO IFOs and GE0600.
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The signal was injected into the LIOO IFOs from December 22, 2003 until the end

of the run. It was present during the whole S3 II run for OEO 600,

Although the phases of the signals injected into LIOO agree with each other, they

seem to be systematically shifted by about 10° from the injected phase. The ampli-

tudes ho recovered from the LIOO IFOs are shifted by what appears to be similar

systematic errors as reported for P4 and P9, These systematic effects are noticeable

for this signal since this is such an unusually strong signal.

While the signal injected into OEO 600 is apparent, the recovered phase is off by

over 90° from the injected phase. The recovered amplitude is about 25% lower than

the expected strength. These problems were eventually tracked down to electronic

pickup of the signal injection hardware into the interferometer channels. Further

work, post-S3, confirmed that when these problems were resolved, the signals

injected into OEO 600 were consistent with the signals injected into LIOO [91],

These hardware injections are truly remarkable experiments, The forces acting on the

mirrors only displace them by r-;» 10-21 m and yet we are able (in most cases) to pre-
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serve the phase between sites thousands of kilometers apart. While some problems were

uncovered extracting the signals from UGO and GE0600, these seem to be due to the

injection mechanisms as oppose to more fundamental reasons. The post-S3 periodic sig-

nals that were injected into GE0600 were the first truly end-to-end tests that confirmed

the phases between the detectors on each continent were consistent.

5.3 Characterisation of the S3 data

The peak sensitivity ofGE0600 during S3 was near 1000Hz where it was comparable

with the LIGO IFOs. Since GE0600's sensitivity was poor at lower frequencies the

preliminary analysis presented here was only carried out on pulsar B1937+21 at 1284Hz

for GE0600. For the UGO interferometers the same 28 pulsars (including B1937+21)

as S2 were analysed.

The same statistical tests that were applied to the S2 data in Chapter 4 were applied to the

S3 data streams for the 28 pulsars. The Kolmogorov-Smirnov tests indicated that for the

majority of the pulsars about S% of the data were rejected for normality at a significance

1evelofO.OS. A few of the pulsars had larger fractions of data rejected up to nearly 50%.

Table S.2 gives the exact percentage of data failing the K-S test for each pulsar. Figure S.8

graphically shows the distribution of percentage of rejected data.

Similarly to the S2 analyses in Chapter 4, F -tests were applied to the data to assess whether

the variance in the first half and second half of 30 minute segments of data were from the

same distribution. The results are given in Table S.2 and Figure S.9. The percentage of

data rejected by the F-tests seems correlated with the amount of data rejected by the K-S

test. This was also seen in S2 and is a reasonable outcome since non-stationarity data or

a glitch would affect both tests.

For the GEO 600 data the same statistical tests were applied for pulsar B1937+21. A
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Pulsar F-test HI F-testH2 F-test LI K-S HI K-SH2 K-S LI
B002I-72C 8.2% 7.1% 9.9% 4.9% 5.0% 6.5%
B0021-72D 8.1% 7.3% 9.3% 5.7% 5.2% 6.9%
B0021-72F 7.8% 8.7% 8.7% 6.4% 5.1% 7.7%
B0021-72G 7.9% 6.7% 9.3% 5.7% 5.7% 7.1%
B0021-72L 9.2% 6.3% 8.3% 6.0% 5.4% 8.1%
B0021-72M 8.0% 6.7% 9.7% 5.6% 5.2% 5.5%
B0021-72N 7.5% 6.3% 7.9% 6.0% 5.0% 6.7%
J0030+0451 8.5% 6.8% 6.9% 5.8% 4.7% 5.l%
B0531+21 15.9% 29.6% 18.8% 12.8% 30.8% 14.4%
J0711-6830 12.5% 7.3% 10.5% 6.7% 5.9% 7.9%
11024-0719 8.9% 5.9% 9.9% 5.9% 4.2% 8.7%
B1516+02A 27.2% 37.6% 43.1% 22.5% 35.9% 48.6%
JI629-6902 8.6% 7.3% 10.5% 6.8% 6.5% 7.7%
JI721-2457 7.4% 6.7% 9.7% 5.6% 5.7% 7.5%
JI730-2304 11.1% 6.1% 8.9% 6.2% 6.0% 9.9%
JI744-1134 8.5% 5.7% 7.1% 6.8% 4.7% 6.5%
11748-2446C 10.4% 7.7% 12.6% 7.0% 5.7% 9.9%
B1820-30A 8.7% 5.9% 8.5% 6.3% 5.4% 7.3%
BI821-24 8.5% 5.6% 8.3% 6.4% 5.1% 7.7%
JI910-5959B 10.4% 6.9% 13.2% 7.0% 4.6% 9.5%
JI910-5959C 9.1% 6.2% 9.3% 5.3% 6.3% 7.7%
JI910-5959D 10.7% 7.9% 10.9% 7.2% 6.8% 10.7%
JI910-5959E 8.4% 6.4% 9.5% 5.2% 4.4% 4.9%
11913+1011 19.3% 42.3% 22.3% 14.9% 48.7% 21.9%
B1937+21 7.0% 4.8% 9.7% 4.5% 4.9% 5.7%
B1951+32 17.7% 37.8% 23.5% 15.9% 42.2% 18.0%
J2124-3358 8.0% 5.5% 9.3% 5.1% 5.0% 7.7%
J2322+2057 8.3% 6.1% 8.7% 5.7% 5.4% 7.3%

Table 5.2: Percentageof data rejected due to F-test and K-S test for each pulsarwith S3 data
with a significancelevelof 0.05.

total of 24.4% of the 30 min segments fail the K-S test for normality. The F-test rejected

29.6% of the data.

Similarly to S2, even though some of the data were non-normal, we have so far opted to

keep it despite the data only having a small amount of useful information. If the non-

normal data are excluded from the analysis the results are not significantly affected as

shown in the next section.
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5.4 Preliminary results for 28 pulsars

The same analysis procedure as in S2 for calculating the posterior distribution function for

each parameter was applied. We used the same fiat priors and the Student's t likelihood

function over 30 minute segments. The total amount of S3 data from each detector was:

62610 min for HI, 53970 min for H2, 15150 min for LI, and 15960 min for GE0600

(S3 IIonly).

The improved sensitivity of the interferometers in S3 translated to a reduction in the upper

limits on ho by a factors between I and 9 as shown in Figure 5.10.

For pulsar B1937+21 the multi-detector analysis included data from GE0600. Fig-

ure 5.11 shows the posterior pdfs for pulsar B1937+21 for data from each of the detectors

as well as thejointanalysis. ForB1937+21 the95% upper limits setonho were 8.6xIO-23

for GE0600, 8.4x 10-24 for HI, 5.5x 10-24 for H2, and 2.7x 10-23 for Ll. If the non-

normal data rejected by the K-S tests are excluded from the analysis these upper limits on

ho for pulsar B1937+21 change to 1.0xlO-22 forGE0600, 9.0xlO-24 for HI, 5.7xIO-24
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Figure 5.11: Posterior probability distributions for pulsar B1937+21 using S3 data from
GEO600 and the three LIGOIFOs.

for H2, and 2.6x 10-23 for Ll. The upper limits for all four detectors were only changed

by a few percent when the non-normal data were excluded.

The multi-detector 95% upper limits for each of the pulsars and the corresponding limits

on equatorial ellipticity are shown in Table 5.3. The limits on ellipticity were computed

using the source parameters listed in Chapter 4 and a moment of inertia of 1038 kg m2.

Figure 5.12 shows the change in upper limits for all of the pulsars if the non-normal data

are excluded from the analysis. The largest difference in upper limits is around 30%

and on average the limits are larger when the non-normal data are excluded. Presumably

the majority of the rejected data is not Gaussian and thus did not contribute much to the

posterior pdf due to its low likelihood.
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Pulsar h95 1:95
BOO2l-72C 3.6x 10 24 1.4x 10 4

BOO2l-72D 1.1 x 10-24 3.4x 10-5
BOO21-72F 1.6x 10-24 1.3x 10-5
BOO21-72G 7.0x 10-25 1.3x 10-5
BOO21-72L 7.9xlO-25 1.7x 10-5
BOO2l-72M 1.2x 10-24 1.9x 10-5
BOO21-72N l.4x 10-24 1.5x 10-5
J0711-6830 9.4x 10-25 6.9x 10-6
B1820-30A l.4x 10-24 7.8xlO-5
J1730-2304 6.9x 10-25 5.5x 10-6
J1721-2457 1.2x 10-24 5.6xlO-6
J1629-6902 5.5 x 10-25 6.4x 10-6
B182l-24 1.1 x 10-24 l.4x 10-5
B1937+21 5.6x 10-24 1.2x 10-5
J191O-5959E 8.4x 10-25 8.9x 10-6
J2124-3358 8.3x 10-25 1.2x 10-6

J1910-5959C 6.9x 10-25 9.8x 10-6
JOO30+0451 l.4x 10-24 1.8x 10-6
J1024-0719 1.2x 10-24 2.6x 10-6
J1910-5959D 5.9x 10-25 2.4x 10-5
J2322+2057 1.5x 10-24 6.4x 10-6
B1516+02A 1.7x 10-24 9.8x 10-5
B195l+32 3.4x 10-23 3.2x 10-2
J1748-2446C 6.0x 10-25 4.6x 10-4
J1910-5959B 4.9x 10-24 1.7 x 10-5
11913+1011 1.0x 10-23 1.4x 10-2
B0531+21 5.5 x 10-24 2.9x 10-3
J1744-1134 1.5x 10-24 2.2x 10-6

Table 5.3: Upper limits on ho for the 28 selected pulsars using the S3 data. The column
h95 represents the multi-detector upper limit obtained when the data from all three detectors are
included in the likelihood function.
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tests) is excluded from the analysis.
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5.5 Conclusions

For 11 of the 28 pulsars selected, this preliminary analysis places upper limits on the

ellipticity to less than 10-5• For the Crab pulsar we are now within a factor of 4 from the

spindown based upper limits (assuming moment of inertia of 1<ps kg m2). In addition to

these results a few more isolated pulsars-have now been discovered and will be analysed

with the S3 data in the future. The S3 data will also be used to place upper limits on

gravitational waves from several binary pulsars which we have excluded so far.

The results given in this chapter are to be considered preliminary as the calibration

information may be improved and the timing solutions for the pulsars have not been

verified with radio observations.



Chapter6

General conclusions

A new generation of gravitational wave detectors have begun collecting data in the past

few years. Though their sensitivities are orders of magnitude improved over previous

detectors, the expected gravitational waves are very weak. In order to make best use of

the data much effort has been devoted to developing optimised data analysis methods.

In this thesis, we have developed a new end-to-end scheme for searching for gravitational

waves signals from radio pulsars in data from interferometric detectors. We took a

Bayesian approach to the inference problem as it seemed the most natural interpretation

of the data.

Furthermore, the developed method was applied to data from the GEO 600 and LIGO

interferometers to search for periodic signals from a number of known pulsars. Ultimately,

with the most sensitive data from the S3 science run, 10 of the 28 upper limits set on

ho were below 10-24• The equatorial ellipticities for several pulsars were constrained to

less that 10-5 thus entering a zone which will soon to be astrophysically interesting.

Further work on known pulsars will attempt to place limits on all known pulsars, including

binaries, using the methods described in this thesis. By the next science run, S4, we

should be able to place gravitational wave upper limits on the Crab pulsar tighter than
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those obtained from spindown arguments. At that point, no doubt, we will be getting

closer to traditional astrophysics and closer to making a discovery.
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The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a
large number of parameters and under conditions of low signal-to-noise ratio, We present a Metropolis-
Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic
gravitational wave signature seen by laser interferometric detectors.

001: 1O.1103IPhysRevD.70.022001

I. INTRODUCTION

The worldwide network of laser interferometric gravita-
tional wave detectors has begun to acquire scientifically sig-
nificant data [1-4] and rapidly rotating neutron stars are an
important potential source of signals (we will reserve the
term "pulsar" to refer to the observed pulsating radio
sources). Although a spinning spherically symmetric neutron
star will not produce gravitational waves, a number of
mechanisms have been proposed that are capable of produc-
ing quasi-periodic gravitational waves from biaxial or tri-
axial neutron stars [5,6]. Any gravitational waves from these
neutron stars will likely be seen at Earth as weak continuous
wave signals.

The data analysis task of identifying such a signal in the
output of a laser interferometer is challenging and difficult,
both because of the weakness of the signal and because its
time evolution is characterized by a relatively large number
of parameters. Radio observations can provide the sky loca-
tion, rotation frequency and spindown rate of known pulsars,
but the problem of looking for unknown (or poorly param-
eterized) neutron star sources is significantly more challeng-
ing. SNl987A is a good example of a poorly parameterized
source for which the sky location in approximately known
but also for which there is a large uncertainty in the fre-
quency and spindown parameters of the putati ve neutron star
[7].

Much work has already gone into all-sky hierarchical
methods for searching for continuous gravitational waves
[8,9]. Here we address the specific problem of a "fuzzy"
parameter space search, in which a restricted volume of the
space needs to be thoroughly investigated. We take a Baye-
sian approach to this problem and use Markov chain Monte
Carlo (MCMC) techniques which have been shown to be
especially suited to similar problems involving numerous pa-
rameters [10]. In particular, the Metropolis-Hastings (MH)

*Electronic address: nchriste@carleton.edu
tElectronic address: rejean@astro.gia.ac.uk
tElectronic address: graham@astro.gia.ac.uk
§Electronic address: meyer@stat.auckland.ac.nz
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algorithm [11,12] has been used for estimating cosmological
parameters from cosmic microwave background data [13-
15], and the applicability of the MH routine has been dem-
onstrated in estimating astrophysical parameters for gravita-
tional wave signals from coalescing compact binary systems
[16,17]' MCMC methods have also provided Bayesian infer-
ence for noisy and chaotic data [18.19].

Here we demonstrate that a MH algorithm abo offers
great promise for estimating neutron star parameters from
their continuous gravitational wave signals. This work builds
on the development (by two of us) of an end-to-end robust
Bayesian method of searching for periodic signals in gravi-
t.ational wave interferometer data [20), summarized in Sec.
II. Starting with this Bayesian approach we apply :1 similar
MH routine to that used in [13.17]' The description of the
Bayesian MH method is given in Sec. Ill. In Sec. IV we
present the results of this study, using synthesized data, for
four and five parameter problems. We believe that this
method offers great hope for signal extraction as 1I\0re pa-
rameters are included, and this point is discussed in Sec. V.

II. SIGNAL CHARACTERISTICS

We will initially consider searching for signals from
known radio pulsars, and then expand the method to account
for an uncertainty in the frequency of the gravitational wave
signal. As gravitational waves from pulsars are certainly
weak at Earth, long integration periods are required to ex-
tract the signal, and we must take account of the antenna
patterns of the detectors and the Doppler shift due to the
motion of the Earth.

As in the previous study [20,21] we consider the signal
expected from a non-precessing triaxial neutron star. The
gravitational wave signal from such all object is at twice its
rotation frequency, Is= 2/r' and we characterize the ampli-
tudes of each polarization with overall strain factor. "0' The
measured gravitational wave signal will also depend on the
polarization antenna patterns of the detector F x ,+ gi ving a
signal

I
s(t)= iF +(t;l{I)ho( I +COS2t)cos '1/(1)

+ F x (I; l{I)hocos t sill \jt( t). (I)

70022001-1 ©2004 The American Physical Society
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where r/I is the polarization angle of the radiation (which
depends on the position angle of the spin axis in the plane of
the sky) and L is the inclination of the pulsar with respect to
the line of sight.

Using a simple slowdown model, the phase evolution of
the signal can be usefully parameterized as

[
1 - 2 I.- Jj'I'(t)=<Po+2'7T !s(T-To)+'2!s(T-To) +t/,(T-To) ,

where

rn
T=t+8t=t+ -+aT.c

Here, T is the time of arrival of the signal at the solar system
barycenter, <Pois the phase of the signal at a fiducial time
To, r is the position of the detector with regard to the solar
system barycenter, n is a unit vector in the direction of the
pulsar, c is the speed of light, and aT contains the relativistic
corrections to the arrival time [22].

The signal is heterodyned by multiplying the data by
exp[ - i'l'(l)] so that the only time varying quantity remaining
is the antenna pattern of the interferometer (which varies
over the day). For convenience, the result is low-pass filtered
and resampled. We are left with a simple model with four
unknown parameters: the overall amplitude of the gravita-
tional wave signal (ho), its polarization angle (r/I), its phase
at time To (<Po), and the angle between the spin axis of the
pulsar and the line of sight (L).

A detailed description of the heterodyning procedure is
presented elsewhere [20,21]; here we just provide a summary
of this standard technique. The raw signal, sell, is centered
near twice the rotation frequency of the pulsar, but is Dop-
pler modulated due to the motion of the Earth and the orbit
of the pulsar if it is in a binary system. The modulation
bandwidth is typically 104 times less than the detector band-
width, so one can greatly reduce the effective data rate by
extracting this band and shifting it to zero frequency. In its
standard form the result is one binned data point, B k' every
minute, containing all the relevant information from the
original time series but at only 2X 10-6 the original data
rate. If the phase evolution has been correctly accounted for
at this heterodyning stage then the only time-varying com-
ponent left in the signal will be the effect of the antenna
pattern of the interferometer, as its geometry with respect to
the neutron star varies with Earth rotation. Any small error,
S], in the heterodyne frequency will cause the signal to
oscillate at S], and for the second part of our study we have
!:;,.! as our fifth parameter. For both these studies we estimate
the noise variance, ai, in the bin values, B k' from the
sample variance of the contributing data. It is assumed that
the noise is stationary over the 60 s of data contributing to
each bin.
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III THE METROPOLIS-HASTINGS ALGORITHM

(2)

This section presents a brief review of the Bayesian MH
approach to parameter estimation. Comprehensive descrip-
tions of MCMC methods and the MH algorithm can be
found elsewhere [10.13.17].

We will denote the output from the above heterodyning
procedure as {Bd. with a joint probability distribution func-
tion (PDF) denoted by p( {B d la) conditional on unobserved
parameters a= (a 1 ••••• ad)' The PDF p( {B d la) is referred
to as the likelihood and regarded as a function of the param-
eters a. The parameters of interest for our four parameter
study are a=(ho.r/I.<po.L). while for the five parameter
study they are a=(ho.r/I.<po.L.Af).

From Eq. (I). the (now complex) heterodyned signal is

(3)

i
- -F (t . '~)h cos Lei</>O2 x bV' 0 • (4)

and the binning procedure should. by the central limit theo-
rem. give the noise a near-Gaussian probability density char-
acterized by a variance ai for the kth bin. The likelihood that
the data in this bin. taken at time t k. is consistent with the
above model is

(5)

and the joint likelihood that the data in all the bins Itaken as
independent) are consistent with a particular set of model
parameters is

Bayesian inference requires the specification 01 a prior
PDF for a. p(a). that quantifies the researcher'S pre-
experimental knowledge about a. The phase and polarization
priors are flat in their space. and are set uniform for <Po over
[0.17). and for r/I over [-1714.1714]. The prior for L is uni-
form in cos Lover [- 1.1]. corresponding to a uniform prior
per unit solid angle of pulsar orientation. Finally. in the
present study we take a prior for ha that is uniform for 0
<ho< 1000 (in OUf normalized units for which ak = I). and
zero for all other values.

Using Bayes' theorem. the post-experimental knowledge
of a is expressed by the posterior PDF of a:

p(a)p({Bdla)
p(al{Bk})= p({Bd) <xp(a)p({Bdlal. (7)

where p({Bd)= fp({Bdla)p(a)da is the marginal PDF of
{B k} which can be regarded as a normalizing constant as it is
independent of a. The posterior PDF is thus proport ional to
the product of prior and likelihood.
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The marginal posterior distribution for parameter a j is the
integral of the joint posterior PDF over all other components
of a other than ai, i.e.,

and contains all the analysis has to say about the value of a j

alone. However it is often useful to summarize this in a
single "point estimate" of a, using, for example, the poste-
rior mean:

Calculating the normalization constant p( {B k}) and calculat-
ing each marginal posterior PDF requires difficult d- and
(d- I )-dimensional integrations, respectively, that can be
evaluated using a sampling approach and MCMC methods
[10,13,17). Rather than sampling directly from p(al{B,}), a
sample from a Markov chain is generated which has
p(al{ B k}) as its equilibrium distribution. Thus. after running
the Markov chain for a certain "burn-in" period. these (cor-
related) samples can be regarded as samples from the limit-
ing distribution. provided that the Markov chain has reached
convergence. Despite their correlations, the ergodic theorem
guarantees that the sample average is still a consistent esti-
mate of the posterior mean Eq. (9) [23].

The specific MCMC technique used for this study was the
MH algorithm [11,12]' The MH algorithm generates a
sample from the target PDF p(al{Bk}) using a technique that
is similar to the well-known simulation technique of rejec-
tion sampling. A candidate is generated from an auxiliary
PDF and then accepted or rejected with some probabi Iity.
Starting with an arbitrary initial state aa, at time n a new
candidate a' is generated from the candidate generating PDF.
q(alan). which can depend on the current state all of the
Markov chain. This new candidate a' is accepted with a
certain acceptance probability a(a'lan). also depending on
the current state an • given by

{
p(a')p({Bk}la')q(anla') }

a(a'lall)=min ,I .
p(an)p( {Bdlan)q(a'lan)

For good efficiency a multivariate normal distribution cen-
tered at the current state an is used for q(a'lan). This then
implies that if the posterior probability at a' is larger than at
the current state an, the proposed step to a' is always ac-
cepted. However. if the step is in a direction of lower poste-
rior probability, then this step is accepted only with a certain
probability given by the ratio of the posterior PDFs (since
our multivariate normal generating function is symmetric in
a' and an and therefore cancels out). Lf the candidate is ac-
cepted, the next state of the Markov chain is an+ I =a'; oth-
erwise the chain does not move, i.e. an+ I=an.

The steps of the MH algorithm are therefore:
Step 0: Start with an arbitrary value ao;
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(9)

Step n+ I: Generate a' from q(alall) and II from V(O,I):
If u';;a(a'iall) set all+1 =a' (acceptance),
If u>a(a'iall) set all+1 =n, (rejection).
V(O,I) is the uniform distribution between 0 and I. The

efficiency of the MH algorithm depends heavily on the
choice of the proposal density. The closer the proposal is to
the target distribution. the faster convergence will be accom-
plished. This link between the closeness of the proposal to
stationary distribution and speed of convergence has also
been substantiated by Holden (24). In the study presented
here we dynamically altered the proposal distribution based
on information from the chain's history. The approach. called
pilot adaptation, is to perform a separate pilot run 10 gain
insight about the target density lind then tune the proposal
accordingly for the successive runs. Such adaptation can be
iterated but allowing it infinitely often will destroy the Mar-
kovian property of the chain and thereby often compromise
the stationarity of the chain and the consistency or sample
path averages ([25]: see [26] for an example).

Based on the central limit theorem, t.he posterior PDF
should be well approximated by a multivariate normal distri-
bution with mean equal to the posterior mode and covariance
matrix equal to minus the Hessian evaluated at the posterior
mode. Thus, we use a multivariate normal distribution for the
proposal density q(ala,,). As the mode is unknown. we try to
make use of pilot samples to estimate its covariance matrix.
When we initially run the MH algorithm, we sample candi-
date parameters from a normal distribution with covariance
matrix equal to the identit.y matrix and centered around the
current state. After t.he completion of this pilot run we use
the empirical covariance matrix of the sample as covariance
matrix of the multivariate normal proposal density. again
with mean equal t.o the current state.

rv. RESULTS

(10)

In the first part of our study we reproduced the results
presented in [20] where the four unknown parameters were
ho, t, V,, and ¢o. The signal set) was synthesized assuming a
source at right ascension= 4h4 I"'54' and declination
= 18°23'32", as would be seen by the LlGO-Livingst.on in-
terferometer. This was then added to white Gaussian noise.
net), which is a good approximation to the detector noise in
our band. Our normalized data had a noise variance of 0';
= I for each sample, and the amplitude of the signal used in
our test runs was varied in the range 100=0.0 to 10.0. We
were able to detect signals for "0>0.1. The length of the
data set corresponded to 14400 samples or 10 days (It' data at.
a rate of one sample per minute (which was the rare used for
the UGO/GEO S I analysis described in [21]). Although we
will work with strains normalized to O'k= I, the results can
be cast into a more conventional form by multiplying a, and
ha by (S,,160) tl2, where (S,,) 112is the strain noise spectral
density of the detector at the frequency of interest. in HZ-I.

An example of the MH routine output is shown in Fig. I.
Displayed are the trace plots and the kernel densit ie.' (poste-
rior PDFs). For this example the program ran for lOb itera-
tions. The first 105 iterations were discarded as the bum-in.
Short-term correlations in the chain were elimin.ued by
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FIG. I. Trace plot (left) and MCMC-estimated posterior PDFs (right) for the pulsar parameters II", <f;, <Po and cos t, In this cx.unple the
true parameters were ho~ 5.0, <Po~ 1.0, <f;~ 0.4, and L~ 0.5 implying cos t~0.88.

"thinning" the remaining terms; we kept every 250th item in
the chain. The true parameter values for this run were ho
=5.0, "'=0.4, cPo= 1.0 and L=0.5 (cos L=0.88). In the ex-
ample displayed in Fig. I the MCMC yielded mean values
and 95% posterior probability intervals of ho=4.9 (4.43 to
5.50), 1/1= 0.02 (- 0.68 to 0.69), ¢o= 1.34 (0.71 to 2.08), and
cos L=0.90 (0.79 to 0.99). The 95% posterior probability in-
terval is specified by the 2.5% and 97.5% percentiles of
p(aM B t}). In Fig. 2 we display the estimated posterior PDF
of ho on an expanded scale, along with the real and estimated
value for ho.

It is crucial that our algorithm is sensiti ve to the true value
of the gravitational wave amplitude, ho, even under condi-
tions of relatively low signal-to-noise ratio, and Fig. 3 shows
injected ho values versus their values inferred by the MH
routine. The error bars correspond to the 95% posterior prob-
ability interval, i.e. the lower and upper bound are specified
by the 2.5% and 97.5% percentiles of p(a;!{Bt}). The algo-
rithm clearly is successful in finding and estimating ho.
While the error bars increase as the signal gets larger, the
relative error aho / ho does diminish as ho increases. The fact
that the 95% posterior probability interval grows with ho for
constant noise level would seem to be counterintuitive. In
addition, the widths of the posterior probability distributions
for ho are larger than would be naively expected from a
search for a simple periodic signal. The reason is that these

error bars represent the uncertainty in the parameter rather
than just the level of the noise, and this is affected both by
the noise level and the posterior covariance between all of
the parameters. The MCMC technique also allow, one to
calculate cross-correlation coefficients from the Markov
chains of the parameters, and the value between ho and cos L

q r:
.,
ci

'i ID

0;:
ci

"ci
"f
0

0
ci

0 6
110

FIG. 2. An expanded view of the estimated posterior PDF based
on the MCMC sample for parameter ho. The vertical -olid line
shows the posterior mean of ho~ 4.9, while the vertical dotted line
marks the true parameter value of ho~5.0.
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10

10
lrue ho

FIG.3. The posterior mean based on the MCMC sample for the
gravitational wave amplitude parameter ho versus the actual value
of ho used in synthesizing the data. The error bars correspond to
lower and upper bounds at the 2.5% and 97.5% percentiles of the
posterior PDF.The solid line has a slope of I. The calculations were
performed over 14000 data points, each with noise variance of
0";= I.
in all of our runs was - - 0.95. As a result the data are
consistent with a relatively broad range of combinations of
the two parameters, making their individual values rather
uncertain here-an effect evident from Eq. (I).

The effect of the other unknown parameters (particularly
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0.0 0.5 1.0 1.5 2.0

FIG. 4. The posterior mean based on the MCMC sample for the
gravitational wave amplitude parameter ho (dotted line). along with
that produced via the method presented in [20J (solid lind. In this
example the true value was ho= 0.5. while the other '1"111' parameter
values were 1/1=0.4. ¢>= 1.0. and £=0.5.

L) on the posterior PDF for ho can be clearly shown by
repeating the analysis for Fig. 3 but with ho as the only
unknown. namely, all of the other parameters set to their
actual values in the MCMC routine. Under these circum-
stances the widths of all 95% posterior probability Intervals
are 0.116, independent of the value of ho. Comprehensive
analyses have investigated detection statistics for a periodic

Density of hO
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FIG. 5. Trace plot (left) and posterior POFs (right) for the pulsar parameters ho and Af. In this example from the five pararneici problem
the [rue values for these critical parameters were ho= 1.0 and Aj=0.0078125 Hz.

022001-5



PHYSICAL REVIEW D 70. 022<X11 (2004)

0.007812600

! 0.007812575

.... 0.007812550
<I

1 0.007812525
I

0.007812500
T

r
6 0.007812475
~ 0.007812450~

0.007812425

0.007812400
2 4 10

true ho
10

CHRISTENSEN et al.

6
true ""

FIG. 6. The posterior mean based on the MCMC sample for the
gravitational wave amplitude parameter ho versus the actual value
of ho used in synthesizing the data. This example is from the five
parameter problem. The error bars correspond to the lower and
upper bounds being specified by the 2.5% and 97.5% percentiles of
the posterior PDF. The solid line has a slope of l.

signal in a gravity wave detector [27]. However, these statis-
tics are concerned only with the amplitude of the periodic
signal, and not with parameter estimation (as described
above). If we write Eq. (I) as s(t)=A cos('I'+<I» (with A
being the periodic signal amplitude and <I> a phase term) then
the detection statistic of [27] would apply to finding a signal
amplitude A in the presence of the detector noise. In terms of
Eq. (I), the amplitude of the periodic signal would be

A = {[F +(t; I/I)ho(I + cos2 £)/2f+[F x(t; I/I)hocos £n1n
.

(II)

It is clear that A has a complicated dependence on ho and
cos £. We will never know, a priori, the value of all the pulsar
parameters. Our study here is about parameter estimation,
and not knowing the values of all the pulsar parameters ul-
timately increases the width in the posterior PDF for the
gravity wave magnitude ho·

As the magnitudes of the signals are diminished there
comes a point when one is no longer able to confidently
claim a detection. This threshold is somewhat arbitrary, and
dependent on the statistics and interpretation. In the study
presented here we claim that a signal is detected when the
ho =0 point is more that two standard deviations from the
mean value of the MeMC generated posterior PDF for ho.
For the synthesized signals we investigated this corre-
sponded to a threshold for detection of ho =0.1; in this case
the measured mean of the posterior PDF for ho was 2.1
standard deviations away from zero. For an initial detection
of gravitational radiation it is likely that the scientific com-
munity will demand a significantly larger signal-to-noise ra-
tio. However, the performance of the MCMC routine is still
very good for these relatively low signal levels.

Although 106 Monte Carlo iterations were used in this
study (taking I day on a I GHz processor) adequate distri-
butions can be generated from 105 iterations after the bum-
in, so good results can be achieved after just a few hours. In
fact the marginalizations discussed above can be tackled

FIG. 7. The posterior mean based on the MCM sample for the
uncertainty in the frequency. 6.J. versus the actual value "I "0 used
in synthesizing the data. This example is from the five parameter
problem. The error bars correspond to the lower and upper bounds
being specified by the 2.5% and 97.5% percentiles of the posterior
PDF. The horizontal line corresponds to the real value of 6.J
=0.007812500 Hz.

more quickly using simple summing methods as performed
by [20], and the result of a comparison of the two j, shown
in Fig. 4. The great advantage of the MCMC method for us is
its demonstrated ability to deal with problems thut have a
large number of parameters [10], where other numerical in-
tegration techniques (such as employed by [20]) are not. fea-
sible. The ultimate goal of our research is to expand Ihis
pulsar parameter estimation work to include more param-
eters. The next step in increasing the complexity of the pul-
sar signal is to consider potential sources of known location,
but with unknown rotation frequency. In order to start this
investigation we added a new parameter, the uncertainty in
the frequency of the source, ClJ. In this example the exact
value of the pulsar's gravitational wave signal is uncertain to
within 1/60 Hz. In the study we present here there is a di 1'-
ference, S], between the gravitational wave signal trequen 'y
and the heterodyne frequency. The addition of this new pa-
rameter did not significantly increase the rate at which the
code ran, but did (by about 20%) increase the length of t.he
bum-in time. If one wanted to increase this frequency range
to 5 Hz then this could be done by running the M MC code
on 300 processors, with each run differing in center fre-
quency by 1/60 Hz. The Markov chain using the correct
frequency would converge, while the other 299 chains would
not. This will be a future research project for us.

In our MH code we used a uniform prior for the uncer-
tainty in the frequency, Clf, over :to.016 67 Hz. The injec-
tion parameters used were 1/1=0.4, ¢= I.IJ, C:;./
=0.0078125 Hz, and 1=0.5 (cos 1=0.88). ho was again
injected with a number of values between 0.25 and 10.0. In
Fig. 5 we show sample trace plots and posterior PDh for Cl/
and ho when the injected value of ho was 1.0. For this ex-
ample the MCMC algorithm yielded mean values and 95%
posterior probability intervals of ho= 1.02 (0.86 to 1.26) and
ll/ = 0.007 812 497 Hz (0.007 812 480 Hz to 0.007 X12 515
Hz). The frequency PDF is quite narrow. which wa- respon-
sible for the increase in the burn-in time as the Markov chain
must find this narrow region of parameter space. In Fig. 6 we
display the estimate for the gravitational wave amplitude
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(ho) predicted by the five parameter MH routine versus the
actual ho. In Fig. 7 we display the estimate for the difference
in frequency J1j predicted by the five parameter MH routine
versus the injected ho.

V. DISCUSSION

Recent applications of MCMC techniques have provided
a Bayesian approach to estimating parameters in a number of
physical situations. These include cosmological parameter
estimation from cosmic microwave background data [13-
15], estimating astrophysical parameters for gravitational
wave signals from coalescing compact binary systems
[16,17], and parameter estimation of a chaotic system in the
presence of noise [18,19]' An all sky survey for periodic
gravitational waves from neutron stars must explore a very
large parameter space, and this has partially been addressed
in [8]. Generically, the Signal from a neutron star in a binary

PHYSICAL REVIEW 0 70. 022(XII (2004)

system will be characterized by at least 13 parameters. It is
our hope that the MCMC techniques will prove fruitful in
dealing with these complex signals.

In this paper we have demonstrated that the success of the
MH routine for the five parameter problem: ho, 'II. (/l", t and
J1j. Our longer term plans are to account for other param-
eters. such as spindown rate, pulsar wobble. and possibly
location of the signal in the sky. This research is currently in
progress.
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Data collected by the GEO 600 and LlGO interferometric gravitational wave detectors during their first
observational science run were searched for continuous gravitational waves from the pulsar J1939+ 2t34 III

twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this
paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing
new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is
used to interpret the limits as a constraint on the pulsar's equatorial ellipticity.

001: IO.II03IPhysRevD.69.082004

I. INTRODUCTION

This work presents methods to search for periodic gra vi-
tational waves generated by known pulsars, using data col-
lected by interferometric gravitational wave detectors. To il-
lustrate these methods, upper limits are placed on the
strength of waves emitted by pulsar J1939+2l34 at its ex-
pected 1284 Hz emission frequency during SI [I). SI is the
first observational science run of the Laser Interferometer
Gravitational Wave Observatory (LIGO) [2,3] and GEO [4.5]
detectors and it took place during 17 days between 23 Au-
gust and 9 September 2002. The sensitivity of the searches
presented here surpasses that of previous searches for gravi-
tational waves from this source. However, measurements of

PACS number(s): 04.80.Nn. 07.0S.Kf, 9S.5S.Ym, 97.60.Gb

the spin-down rate of the pulsar indicate that a detectable
signal is very unlikely given the instrument performance for
this data set: for these early observations the detectors were
not operating at their eventual design sensitivit.ies. Substan-
tial improvements in detector noise have been achieved since
the S I observations, and further improvements are planned.
We expect that the methods presented here will eventually
enable the direct detection of periodic gravitational waves.

In Sec. II, we describe the configuration and calibration f
the four L1GO and GEO interferometers and deri ve their
expected sensitivities to periodic sources having known lo-
cations, frequencies, and spin-down rates. In Sec. [II we con-
sider proposed neutron star gravitational wave emission
mechanisms and introduce notation for describing the nearly
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monochromatic signals emitted by isolated neutron stars.
Statistical properties of the data, analysis methods, and re-
sults are presented in Sec. IV. These results are then summa-
rized and compared in Sec. V. In Sec. V we also interpret the
upper limits on the signal amplitude as a constraint on the
ellipticity of the pulsar and consider our results in the context
of previous upper limits.

ILDETECl'ORS

Gravitational waves are a fundamental consequence of
Einstein's general theory of relativity [6,7], in which they
represent perturbations of the spacetime metric which propa-
gate at the speed of light. Gravitational waves produced by
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the acceleration of compact astrophysical objects may be de-
tected by monitoring the motions they induce on freely fall-
ing test bodies. The strength of these waves. called the
strain, can be characterized by the fractional variation in the
geodesic separation between these test bodies.

During the past decade, several scientific collaborations
have constructed a new type of detector for gravitational
waves. These large-scale interferometric detectors include
the U.S. Laser Interferometer Gravitational Wave Observa-
tory (LIGO), located in Hanford. WA, and Livingston, LA.
built by a Cal tech-MIT collaboration [2,3); the GEO 600
detector near Hannover. Germany, built by a British-German
collaboration [4,5]; the VIRGO detector in Pisa, Italy, built
by an French-Italian collaboration [8]; and the Japanese
TAMA 300 detector in Tokyo [9]. In these detectors, the
relative positions of suspended test masses are sensed inter-
ferometrically. A gravitational wave produces a time- varying
differential displacement t:.L(I) in an interferometer that is
proportional to its arm length L. The amplitude of the gravi-
tational wave is described by the dimensionless strain h(t)
= t:.L(t)1 L. For realistic periodic astrophysical sources we
typically expect strain amplitudes smaller than 10- :4.

The following sections introduce the operating configura-
tions of GEO 600 and LIGO detectors during the S I run. The
references provide more detailed descriptions of these
detectors.

A. lutrumeDt CODftlUl'lltions

The OEO 600 detector comprises a four-beam Michelson
delay line system of arm length 600 m. The interferometer is
illuminated by frequency-stabilized light from an injection-
locked Nd: YAG laser. Before reaching the interferometer, the
light is passed through two 8-m triangular mode-cleaning
cavities. During SI approximately 2 W of light was incident
on the interferometer. A power recycling mirror of I% trans-
mission was installed to increase the effective laser power
available for the measurement,

LIGO comprises three power-recycled Michelson interfer-
ometers with resonant Fabry-Perot cavity arms. A 4-km and
a 2-km interferometer are collocated at the Hanford site and
are designated HI and H2. respectively. and a 4-km interfer-
ometer at the Livingston site is designated Lt. Each interfer-
ometer employs a Nd:YAG laser stabilized using a mono-
lithic reference cavity and a I2-m mode-cleaning cavity.

In all four instruments the beam splitters. recycling mir-
rors, and test masses are hung as pendulums from multilayer
seismic isolation filters to isolate them from local forces. The
masses and beam paths are housed in high-vacuum enclo-
sures to preclude optical scintillation and acoustic interfer-
ence.

Sinusoidal calibration forces of known amplitude were
applied to the test bodies throughout the observing run.
These signals were recovered from the data stream and used
to periodically update the scale factors linking the recorded
signal amplitude to strain. The principal calibration uncer-
tainties arise from the imprecision in the electromechanical
coupling coefficients of the force actuators. These were esti-
mated by comparison with the known laser wavelength by
actuating a test mass between interference fringes. In the
Hanford interferometers. the calibration was also verified
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against piezoelectric displacement transducers connected to
mirror support structures. For the SI observations, the net
amplitude uncertainty near 1.3 kHz was estimated at :!:4%
for GEO, :!:10% for each of the UGO interferometers. These
uncertainties are mostly due to errors in the measurement of
the actuator's strengths and in the determination of the time-
varying optical gains. The more complex Fabry-Perot optical
configuration employed by LIGO contributes some addi-
tional calibration uncertainty over that of GEO. Details of
the calibration methods can be found in [1] and Refs. [42]
and [43] therein.

B. Expected 8eII8itiYlty

We define the gravitational wave strength ho of a continu-
ous signal from a given source as the maximum peak ampli-
tude which could be received by an interferometer if the
orientations of the pulsar and detector were both optimal.
Thus, ho depends on the intrinsic emission strength and
source distance, but not on the inclination of the pulsar's spin
axis or on the antenna pattem of the detector.

The calibrated interferometer strain output is a time series

s(t)=h(t)+n(t),

where h(t) is the received signal, n(t) is the detector noise,
and t is the time in the detector's frame.

The noise n(t) is characterized by its single-sided power
spectral density Si]). Assuming this noise is Gaussian and
taking some fixed observation time I T, we can compute the
amplitude ho of a putative continuous signal which would be
detected in, e.g., 90% of experimental trials if truly present,
but would arise randomly from the noise background in only
1% of trials (what we call a 1% "false alarm rate" and a 10%
"false dismissal rate").

If we fix a false alarm rate, it is clear that the lower the
desired false dismissal rate, the higher the signal needs to be.
The detection statistic used in Sec. IV C provides the lowest
false dismissal rate for a gi ven false alarm rate and signal
strength and it is thus optimal in the Neyman-Pearson sense
(see, for example, [10]). The amplitude of the average signal
that we could detect in Gaussian stationary noise with a false
alarm rate of 1% and a false dismissal rate of 10% using the
detection statistic described in [11] is given by

(ho) = 11.4~Sn(f.)IT,

where I, is the m,quency of the signal.3 The upper curves in

'Here we presume that we know the position, frequency, and spin-
down parameters of the source and that T is between a few days and
several months.
111e average is over different positions, inclinations, and polar-

izations of the source.
Jnus differs from [12] for three reasons: (I) the ho used here is

twice that defined in [12], (2) we use a different statistic for this
detection problem (a chi-square distribution with four degrees of
freedom), and (3) we have specified a false dismissal rate of 10%
whereas the derivation in [12] has an implicit false dismissal rate of
about 50%. If we use this false dismissal rate and the F statistic, we
get (ho)=7.6~S.(f,)/T.

PHYSICAL REVIEW D 69. 0820114(2004)

(2.1)

Fig. 1 show (ho) for the LIGO and GEO detectors during SI.
Observation times for respective interferometers arc given in
the figure. Because of ground motion, equipment failures,
and alignment drifts, the four interferometers were not al-
ways fully operational during the SI run; thus, the observa-
tion times vary from detector to detector.

The lower curves in Fig. 1 represent (ho) corresponding
to the design sensitivity of the various detectors. An obser-
vation of T= 1 yr was assumed.

The solid circles in Fig. I show the constraints that mea-
surements of spin-down rates of known pulsars place on the
expected gravitational wave signal, under the assumption
that the pulsars are rigid rotators with a moment of inertia of
10'45 g cm2 and that all of the observed spin-down rule is due
to the emission of gravitational waves.

As shown in Fig. I, under the above assumptions no de-
tection is expected for any known pulsar at the sensitivity
achieved during the SI run. Furthermore, many known pul-
sars are rotating too slowly to be detected by the initilll
ground-based interferometers. However, the number of mil-
lisecond pulsars observed in this band continues to increase
with new radio surveys, and the known targets plotted here
constitute a highly selected sample. Future searches for pre-
viously undiscovered rotating neutron stars using the meth-
ods presented here will sample a different and potentially
much larger subset of the total population.

(2.2)

m PERIODIC GRAVITATIONAL WAVES

A. Expected emilllion by neutron stan

The strongest argument that some neutron stars (NSs) art
emitting gravitational waves (GWs) with amplitude detect-
able by Advanced LIGO [13],110;0:10-27_10-26, j, due 10

Bildsten [14,15]' He noted that the inferred rotation frequen-
cies of low-mass x-ray binaries (LMXBs) are all clustered in
the range f,- 270-620 Hz (an inference strengthened by the
recent observations of [16,17]), whereas a priori there
should be no cutoff in f,. up to the (estimated) NS breakup
frequency of -1.5 kHz. Updating a suggestion by Wagoner
[18,19], Bildsten proposed that LMXBs have reached an
equilibrium where spin-up due to accretion is balanced by
spin-down from GW emission. Since the GW spin-down
torque scales like f~, a wide range of accretion rates then
leads to a rather narrow range of equilibrium rotation rates,
as observed.

Millisecond pulsars (MSPs) are generally believed to be
recycled pulsars: old pulsars that were spun up by accre-
tion during an LMXB phase [20,21]. The rotation rates of
MSPs also show a high-frequency cutoff [15]; the fastest
(PSR J1939+ 2134) has 1,=642 Hz. If the GWs that arrest
the spin up of accreting NSs continue to be emitted in the
MSP phase (e.g., because of some persistent deformation of
the NS shape away from axisymmetry), then they could also
account for the observed spin down of MSPs. In this case,
the GW amplitudes of MSPs would in fact be (very dose to)
the "spin-down upper limits" shown in Fig. 1. (Note that the
MSP spin-down rate is generally attributed entirely to the
pulsar magnetic field; indeed, pulsar magnetic fields are typi-
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FIG. I. (Color) Upper curves: characteristic
amplitude (ho) of a knownmonochrom.uic signal
detectable with a 1% false alarm rate and a 10%
false dismissal rate by the GEO and UCiO detec-
tors at SI sensitivity and with an observation time
equal to the up-time of the detectors during SI
(GEO: 401 h. Ll:137 h. HI: 209 h. He: 214 h).
Lower curves: (ho) for the design sensitivities
of the detectors for an assumed I-yr observation
lime. Solid circles: upper limit on (ho) from the
measured spin-down rate of known radio pulsars
assuming a moment of inertia of 10" g ern".
These upper limits were derived under the as-
sumption that all the measured loss 01" angular
momentum of the star is due to the emission of
gravitational waves. neglecting the spin-down
contribution from electromagnetic and particle
emission. The arrow points to the solid circle rep-
resenting pulsar JI939+2l34.
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cally inferred this way. However, there appears to be no
strong evidence supporting this inference.)

We now turn to the possible physical mechanisms respon-
sible for periodic GWs in this frequency range. The main
possibilities that have been considered are (I) NS spin pre-
cession, (2) an excited NS oscillation mode (most likely the
r-mode), and (3) small distortions of the NS shape away
from axisymmetry. At present, the third mechanism (small
ellipticity) seems the most plausible source of detectable
GWs, and in this paper we set upper limits for this particular
mechanism (the three mechanisms predict three different
GW frequencies for the same observed rotation frequency).
However, we begin by briefly commenting on the other two
possibilities.

A NS precesses (or "wobbles") when its angular momen-
tum J is not aligned with any principal axis of its inertia
tensor. A wobbling NS emits GWs at the inertial-frame pre-
cession frequency, which is very nearly the rotation fre-
quency I,. While large-amplitude wobble could plausibly
produce GW amplitudes ha-1O-27 over short time scales,
the problem with this mechanism is that dissipation should
damp NS wobble quickly [22]; while this dissipation time
scale is quite uncertain (it is perhaps of the order of a year
for a MSP), it is almost certainly orders of magnitude shorter
than the typical lifetimes of MSPs. So unless some mecha-
nism is found that regularly reexcites large-amplitude
wobble, it is unlikely that any nearby MSP would be wob-
bling. Moreover, most MSPs have highly stable pulse shapes
and typically appear not to be wobbling substantially. In par-
ticular, the single-pulse characteristics of PSR J]939+ 2134
have been observed to be extremely stable with no pulse-to-
pulse variation except for occasional giant pulses [23]. It has
been verified through radio observations that PSR J] 939

] (())([))lOJ

+ 2134 continued to spin according to a simple spin-down
model during SI [24].

r-modes (modes driven by Coriolis forces) have been a
source of excitement among GW theorists since 1998, when
Andersson [25] and Friedman and Morsink [26] showed that
they should be unstable due to gravitational back reaction
(the Chandrasekhar-Friedman-Schutz instability). Nonlinear
mode-mode coupling is predicted to saturate the growth of
r-modes at dimensionless amplitude a:S 1O-3U,/kHz)5/2
[27]. This implies r-mode radiation from nascent NSs in ex-
tragalactic supernovas will not be detectable, but r-mode
GWs from old, recycled Galactic NSs could still be detect-
able by Advanced LIGO. For example, GWs from an excited
r mode could balance the accretion torque in accreting NSs,
as in the Wagoner-Bildsten mechanism.

We now tum to GWs from small nonaxisymmetries in the
NS shape. If ha is the amplitude of the signal at the detector
from an optimally oriented source, as described above, and if
we assume that the emission mechanism is due to deviations
of the pulsar's shape from perfect axial symmetry, then

47T2GN 1,,1;
ha=--4---€'

c r
(3.1)

where r is the distance to the NS, ,,, is its principal moment
of inertia about the rotation axis, €=(/xx-1yy)I{" is its el-
lipticity, and the gravitational wave signal frequency I, is
exactly twice the rotation frequency f,. Here GN is New-
ton's constant, and c is the speed of light. This is the emis-
sion mechanism that we assume produces the gravitational
wave signal that we are targeting.

One possible source of ellipticity is tiny "hills" in the NS
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crust, which are supported by crustal shear stresses. In this
case, the maximum ellipticity is set by the crustal breaking
strain iJ ..... [28]:

The coefficient in Eq, (3.2) is low both because the NS crust
is rather thin (compared to the NS radius) and because the
crust shear modulus JL is small compared to the ambient
pressure p: JLlp-IO-3-1O-2• (If NSs have solid cores, as
well as crusts, then much larger ellipticities would be pos-
sible.) For the LMXBs, Ushomirsky, Cutler. and Bildsten
[28] showed that lateral temperature variations in the crust of
order 5% or lateral composition variations of order 0.5% (in
the charge-to-mass ratio) could build up NS ellipticities of
order 10-8_10-7, but only if the crust breaking strain is
large enough to sustain such hills.

Strong internal magnetic fields are another possible
source of NS ellipticity. Cutler [29] has argued that if a NS
interior magnetic field B has a toroidal topology (as expected
if the B field was generated by strong differential rotation
immediately after collapse), then dissipation tends to reorient
the symmetry axis of the toroidal B field perpendicular to the
rotation axis, which is the ideal orientation for maximizing
equatorial ellipticity. Toroidal B fields of the order of
1012_ IOn G would lead to sufficient GW emission to halt
the spin-up of LMXBs and account for the observed spin-
down of MSPs.

B. Signal reeeiftd from an Isolated pulsar

A gravitational wave signal we detect from an isolated
pulsar will be amplitude modulated by the varying sensitivity
of the detector as it rotates with the Earth (the detector "an-
tenna pattern"). The detected strain has the form [11]

1+cos2 ,
h(t)=F +(t.I/I)ho 2 cos4l>(t)

+F x(t.I/I)ho cos s sin 4I>(t). (3.3)

where , is the angle between neutron star's spin direction §

and the propagation direction of the waves, k. and 4I>(t) is
the phase evolution of the signal. F +.)( are the strain antenna
patterns of the detector to the plus and cross polarizations
and are bounded between - 1 and 1. They depend on the
orientation of the detector and source and on the polarization
of the waves, described by the polarization angle ",.4

The signal will also be Doppler shifted by the orbital mo-
tion and rotation of the Earth. The resulting phase evolution
of the received signal can be described by a truncated Taylor
series as

4Following the conventions of [11]. '" is the angle (clockwise
about k) from ix k to kX i, where i is directed 10 the North Ce-
lestial Pole. kX i is the x axis of the wave fram~so called the
wave's principal+polarization direction.
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timing residuals (p,s)

FIG. 2. Histogram of timing residuals between our burycenter-
ing routines and TEMPO. derived by comparing the phase evolution
of test signals produced by the two software packages. Here 156
locations in the sky were chosen at random and the residuals cal-
culated once an hour for the entire year 2002. The maximum timing
error is <4 lAS.

(3.4)

where
(3.5)

Here T is the time of arrival of a signal at the solar system
barycenter (SSB). CPo is the phase of the signal at fiducial
time To. rd is the position of the detector with respect 10 the
SSB. and Are and AS0 are the solar system Einstein and
Shapiro time delays. respectively (30).

The timing routines used to compute the conversion be-
tween terrestrial and SSB time [Eq. (3.5)] were checked by
comparison with the widely used radio astronomy liming
package TEMPO [31]. This comparison (Fig. 2) confirmed an
accuracy of better than ±4 jLS. thus ensuring no more than
0,01 rad phase mismatch between a putative signal and its
template. This results in a negligible fractional signal-to-
noise ratio loss, of order _10-4•

Table I shows the parameters of the pulsar that we have
chosen to illustrate our analysis methods [32].

IV. DATA ANALYSES

A. introduction

Two independent search methods are presented here: (i)
a frequency domain method which can be employed for ex-
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TABLE L Paramelers for the taIgd pulsar of the analyses pre-
seated here. PSR Jl939+2134 (also designated PSR BI937+21).
Numbers in parentheses indicate uncertainly in the lasl digil.

Righi ascension (J2000) 19"39"'38'.560210(2)
Declination (J2000) +21°34m59'.14166(6)
RApropermotion -0.130(8) masyr-I
Dec proper motion -0.464(9) mas yr-I

Period (III,) 0.001557806 468 819 794(2) s
Period derivative 1.051193(2)X 10-1955-1

Epoch of period and position MJDN 47 500

p10ring large parameter space volumes and (ii) a time do-
main method for targeted searches of systems with an arbi-
trary but known phase evolution.

Both approaches will be used to cast an upper limit on the
amplitude of the periodic gravitational wave signal: a
Bayesian approach for the time domain analysis and a fre-
quentist approach for the frequency domain analysis. These
approaches provide answers to two different questions and
therefore should not be expected to result in the exact same
numerical answer [33,34]. The frequentist upper limit refers
to the reliability of a procedure for identifying an interval
that contains the true value of ho. In particular. the frequen-
tist confidence level is the fraction of putative observations
in which. in the presence of a signal at the level of the upper
limit value identified by the actual measurement, h~s",, the
upper limit identified by the frequentist procedure would
have been higher than h~S'rt. The Bayesian upper limit, on
the other hand, defines an interval in ho that, based on the
observation made and on prior beliefs. includes the true
value with 95% probability. The probability that we associate
with the Bayesian upper limit characterizes the uncertainty in
ho given the observation made. This is distinct from the re-
liability, evaluated over an ensemble of observations. of a
procedure for identifying intervals.

All the software used for the analyses is part of the pub-
licly available LSe Algorithm Library (LAL) [35]. This is a
library that comprises roughly 700 functions specific to
gravitational wave data analysis.

B. s..tiIIdaII cbanderizatioD 01 the data

As a result of the narrow frequency band in which the
target signal has appreciable energy, it is most convenient to
characterize the noise in the frequency domain. We divided
the data into 6O-s blocks and took the Fourier transform of
each. The resulting set of Fourier transforms will be referred
to as short-time-baseline Fourier transforms (SFI's) and is
described in more detail in Sec. IV e 1.

The frequency of the pulsar signal at the beginning of the
observation for every detector is reported in Table II. Also
reported is the value of the spin-down parameter expressed
in units of Hz s-I. We have studied the statistical properties
of the data in a narrow frequency band (0.5 Hz) containing
the emission frequency. This is the frequency search region,
as well as the region used for estimating both the noise back-
ground and detection efficiency. Figure 3 summarizes our
findings. Two types of distributions are plotted. The first col-

PHYSICAL REVIEW D 69, 0820)4 (2004)

TABLE II. Run parameters for PSR Jl939+2134. The different
emission frequencies correspond to the different initial epochs at
which each of !he searches began. Numbers in parenthescs indicate
the uncertainty in the last digit or digits,

Spin-down parameter /,
Is at start of GEO observation
I, aI start of L1 observation
Is at Slarl of HI observation
Is aI start of H2 observation

-8.6633(43)X 10-14 Hzs-I

1283.856487705(5) HI.

1283.856487692(5) HI.

1283.856 487 687(5) HI.

1283.856487682(5) Hz

umn shows the distributions of bin power; for each SfT (la-
beled by a) and for every frequency bin (labeled by I ~k
<;;M) in the band 1283.75-1284.25 Hz, we have computed
the quantity

l.lakl2
Pak M •

Ik,I.lak,12IM

where .lat is the SFI' datum at frequency index k of the alb
SFI' and have histogrammed these values. If the data are
Gaussian and if the different frequency bins in every SfT are
independent realizations of the same random process, then
we expect the normalized power variable described above
(P ak) to follow an exponential distribution with a mean and
standard deviation of I, as shown by the dashed line. The
circles are the experimental points. The standard deviation of
the measured distribution for GEO data is 0.95. The UGO
Livingston, Hanford 4-km, and Hanford 2-km data are also
shown in Fig. 3. The standard deviation of the P ak for all of
these is 0.97.

The plots in the second column of Fig. 3 show the distri-
bution of phase differences between adjacent frequency bins.
With the same notation as above. we have computed the
quantity

(4.1)

(4.2)

where et> ak is the phase of the SFI' datum at frequency index
k of the ath SFT and the difference is reduced to the range
[ - 'IT. 'ITJ. Therefore, ~ <I> ak is the distance in phase between
data at adjacent frequency bins. If the data were from a
purely random process. we expect this distribution to be uni-
form between - 'IT and 'IT. as observed.

Figure 4 shows the average value of JS:. over a I-Hz
band from 1283.5 to 1284.5 Hz as a function of time in days
for the entire S I run starting from the beginning of S I (I5:00
UTe, 23 August 2(02). These plots monitor the stationarity
of the noise in the band of interest over the course of the run.

Figure 5 shows JS:. as a function of frequency between
1281 and 1285 Hz. During SI. the received signal is ex-
pected to have a frequency of 1283.8 Hz. This frequency is
shown as a dashed vertical line. During the S I observation
time. the Doppler modulation changed this signal frequency
by no more than 0.03 Hz, two SFT frequency bins. For these
plots S. has been estimated by averaging the power in each
frequency bin over the entire SI run. A broad spectral feature
is observed in the GEO data. This feature is 0.5 Hz wide.
comparatively broad with respect to the expected Doppler
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shift of the target signal, and represents only a 10% pertur-
bation in the local power spectral density.

C. Frequency domain technique

1. Short-lime-baseline Fourier transforms

In principle, the only constraint on the time baseline of
the SFTs used in the frequency domain analysis is that the
instantaneous frequency of a putative signal not shift during
the time baseline by more than half a frequency bin. For
frequencies in the kilohertz range this implies a maximum
time baseline of the order of 30 min (having assumed an
observation time of several months and a source declination

,> --
.'. - >; .' .... t .

1l5i 20l-
Efll

to) 15;-
FIG. 4. The square root of the average value of S; for all four

interferometers over a band of 1 Hz starting at 1283.5 Hz versus
time in days starting at the beginning of SI (23 August 2002, 15:00
UTC).

3.14 FIG. 3. Histograms of P ak and
of A <I> ak for the four detectors.

roughly the same as the latitude of the detector). However, in
practice, since we are also estimating the noise on the same
time baseline, it is advisable for the time baseline to be short
enough to follow the nonstationarities of the system. On the
other hand, for the frequency domain analysis, the computa-
tional time required to carry out a search increase, linearly
with the number of Fourier transforms. Thus the shorter the
time baseline, the higher the computational load. We have
chosen for the SI run a time baseline of 60 s as a compro-
mise between the two opposing needs.

Interruptions in interferometer operation broke each time
series into segments separated by gaps representing invalid
or contaminated data. Only valid data segments were in-

11283) OJ>

s!,,"''- _

FIG. 5. j5" in a band of 4 Hz (starting at 1281 Hz) using the
entire S I data set analyzed from the four interferometers. The noise
j5" is shown in units of 10-20 Hz-tn The dashed vertical line
indicates the expected frequency of the signal received from
J 1939+ 2134.
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eluded in the analysis. Each valid 6O-s data segment was
filtered with a fifth-order Butterworth high-pass filter having
a knee frequency of 100 Hz. Then a nearly-flat-top Tukey
window function was applied to each data segment in the
time domain. The window changes the value of less than 1%
of the data in each 6O-s chunk. Each data segment was then
fast Fourier transformed and written to an SFI' file. These
SFrs were computed once and then used repeatedly for dif-
ferent analyses.

2. ~ dIIIUtie

The detection statistic that we use is described in [II]. As
in [11] we call this statistic F,S though differences between
our definition and that given in [II] are pointed out below.

The :F statistic derives from the method of maximum like-
lihood. The log-likelihood function In A is, for Gaussian
noise,

I
InA=(slh)- z(hlh),

where

r"'s(J)y*(J)
(sly)=4'R. Jo SII(J) dl,

s is the calibrated detector output time series, h is the target
signal (commonly referred to as the template), the tilde is the
Fourier transform operator, and SII(J) is the one-sided power
spectral density of the noise. The F statistic is the maximum
value of In A with respect to all unknown signals parameters,
given our data and a set of known template parameters. In
fact, if some or all of the signal's parameters are unknown, it
is standard practice to compute the likelihood for different
template parameters and look for the highest values. The
maximum of the likelihood function is the statistic of choice
for matched filtering methods, and it is the optimal detection
statistic as defined by the Neyman-Pearson criterion: the
lowest false dismissal rate at a fixed false alarm rate (see, for
example, Sec. IIB).

In our case the known parameters are the position of the
source (a, B angles on the celestial sphere), the emission
frequency Is, and the first-order spin-down parameter value
is. The unknown parameters are the orientation of the pulsar
(angle s), the polarization state of the wave (angle 1/1), its
initial phase 4>0, and the wave amplitude ho.

The core of the calculation of F consists in computing
integraJs of the type given in Eq. (4.4), using templates for
the two polarizations of the wave. The results are optimally
combined as described in [II] except we consider a single-
frequency-component signal. Also, we do not treat SII(J) as
constant in time: we reestimate it every 60 s (for every a),
based on the average IXall2 in a 0.5-Hz band around the

~ote that this detection statistic has nothing to do with the F
statistic of the statistical literature. which is ratio of two sample
variances, or the F lest of the null hypothesis that the two samples
are drawn from distributions of the same variance.

PHYSICAL REVIEW D 69, 082004 (2004)

(4.3)

signal frequency. Thus, while the method is defined in [II] in
the context of stationary Gaussian noise, we adapt it ,0 that it
can be used even when the noise is nonstationary. The cal-
culation is easily performed in the frequency domam since
the signal energy is concentrated in a narrow frequency band.
Using the SFrs described in Sec. IV C I, some approxima-
tions can be made to simplify the calculation and improve
computational efficiency while still recovering most (>98%)
of the signal power.

The method of computing F was developed for a specific
computational architecture: a cost-effective Beowulf clus-
ter, which is an ensemble of loosely coupled processors with
simple network architecture. This becomes crucial when ex-
ploring very large parameter-space volumes for unknown
sources using long observation periods, because the search
depth and breadth are limited by computational resources.
The SI analyses described here were carried out usmg Con-
dor [36] on the Merlin and Medusa clusters at the AEI and
UWM, respectively [37,38]. Each cluster has 300 indepen-
dent CPUs.

As a point of reference, we note that it takes of order of a
few seconds of CPU time on a 1.8-GHz-class CPU to deter-
mine the F statistic for a single template with - 16 d of
observation time.

(4.4)
3, SdiIIg "" upper liIrdI 011 It.

The outcome F" of a specific targeted search represents
the optimal detection statistic for that search. Over an inde-
pendent ensemble of similar searches in the presence of sta-
tionary Gaussian noise, 2r is a random variable that fol-
lows a l- distribution with four degrees of freedom. If the
data also contain a signal, this distribution has a noncentral-
ity parameter A proportional to the time integra I of the
squared signal.

Detection of that signal would be signified by a large
value r unlikely to have arisen from the noise-only distri-
bution. If instead the value is consistent with pure noise (as
we find in this instance), we can place an upper limit on the
strength of any signal present, as follows.

Let :F* be the value of the detection statistic in our actual
experiment. Had there existed in the data a real signal with
amplitude greater than or equal to ho( C), then in an en-
semble of identical experiments with different realizations of
the noise, some fraction C of trials would yield a detection
statistic exceeding the value :F*. We will therefore say that
we have placed an upper limit ho( C) on the strength of the
targeted signal, with confidence C. This is a standard fre-
quentist upper limit.

To determine the probability distribution p(2Flho), we
produce II set of simulated artificial signals with fixed ampli-
tude ho from fictional pulsars at the position of our target
source and with the same spin-down parameter value, but
with intrinsic emission frequencies that differ from it by a
few tenths of a hertz. We inject each of these artificial signals
into our data and run a search with a perfectly matched tem-
plate. For each artificial signal we obtain an independent
value of the detection statistic; we then histogram these val-
ues. If the SFr data in nearby frequency bins (of order 100
bins) can be considered as different realizations of the same
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TABLE m. Smnmary of the frequcncy domain search analyses. Tobi indicates the total duration of the analyzed data set. F* is the
measured value of the detection statistic. Po(2:F*) is the probability of getting this value or greater by chance-i.e., in the absence of any
signal. hO'JOCI is the amplitude of the population of fake signals that were injected in the data set such that, when searched for with a perfectly
matched template, C.....% of the time the resulting value of F was greater than :F*. (liS.) is the average value of the inverse of the noise
in a smaIl frequency band around the target frequency. Vo is the time integral of the square of the targeted signal with an amplitude of 2
x 10-19, at the output of the interferometers. for observations times equal to Tobi and in the absence of noise. Aexpis the value of the
noncentraIity parameter that one expects for the distribution of F from searches with perfectly matched templates on a population (If injected
signals with amplitude h~j<Ctand noise with average power (liS.) -I. A_.fit is the best-fit noncentrality parameter value derived from the
distribution p(2Flh~njea) derived from the software signal injections and searches with perfectly matched templates. Cexp and C",,~."t are the
corresponding confidence values for :F*.

IFO Tobi [d) h,nJOCl 2:F* Po(2:F*) (IIS.)-I [HZ-I] Vo/lO-33 [sJ A.,.p AbeII.fit C.,.p C""t•fit C,,,,,,,:tAC0

GEO 16.7 I.94X 10-21 1.5 0.83 5.3x 10-38 1.0 3.6 3.3 95.7% 95.2% 95.01 :':0.23%
LI 5.73 2.70x 10-22 3.6 0.46 I.4XlO-~ 0.37 9.6 8.3 96.7% 95.0% 95.00:':0.23%
HI 8.73 5.37X 10-22 6.0 0.20 5.4XlO-~ 0.5 13.3 12.8 96.6% 95.0% 95.00:':0.23%
H2 8.90 3.97X 10-22 3.4 0.49 3.8X 1O-~ 0.45 9.3 7.9 96.8% 95.0% 95.00:':0.23%

random process (justified in Sec. IV B), then it is reasonable
to assume that the normalized histogram represents the prob-
ability density function p(2F!ho). One can then compute
the confidence

where ho( C) is the functional inverse of C( ho). In practice,
the value of the integral in Eq. (4.5) is calculated directly
from our simulations as follows: we count how many val-
ues of :F are greater or equal to :F* and divide this number
by the total number of :F values. The value derived in this
way does not rely on any assumptions about the shape of the
probability distribution function (PDF) curve p(2:F Iho).

There is one more subtlety that must be addressed: all
eight signal parameters must be specified for each injected
artificial signal. The values of source position and spin-down
parameters are known from radio data and are used for these
injections. Every injected signal has a different frequency,
but all such frequencies lie in bins that are close to the ex-
pected frequency of the target signal, 1283.86 Hz. The values
of , and '" are not known, and no attempt has been made in
this analysis to give them informative priors based on radio
data. However, the value of the noncentrality parameter that
determines the p(2:Flho) distribution does depend on these
values. This means that, for a given :F*, a different confi-
dence level can be assigned for the same signal strength,
depending on the choice of , and "'.

There are two ways to proceed: either inject a popula-
tion of signals with different values of L and ,p, distributed
according to the priors on these parameters," or pick a single
value for , and for ",. In the latter case it is reasonable to
choose the most pessimistic orientation and polarization of
the pulsar with respect to the detector during the observation
time. For fixed signal strength, this choice results in the low-
est confidence level and thus, at fixed confidence, in the most
conservative upper limit on the signal strength. We have de-

~ time domain mWysis assumes uniform priors on cos ,and ",.

cided to use in our signal injection the worst-case values for
£ (which is always w/2) and I/I-i.e., the values for which the
noncentrality parameter is the smallest.

4. FnqlWlCY do"";" SI tIIItIlylis lor PSR J1939+1134

Table III summarizes the results of the frequency domain
analysis. For every interferometer (column I) the value of
the detection statistic for the search for 11939 + 2D4 is re-
ported: 2:F*, shown in column 4. Next to it is the corre-
sponding value of the chance probability:

Po(2:F*)= f" p(2:Flho=O)d(2~. (4.6)2r

our estimate of how frequently one would expect to observe
the measured value of :F" or greater in the absence of a
signal. As can be seen from Po(2:F"), the measured values
of 2:F" are not significant; we therefore conclude that there
is DO evidence of a signal and proceed to set an upper limit.

T obs is the length of the live-observation time. h::"<L1 is the
amplitude of the population of injected signals that yielded a
95% confidence. The upper limit h~5'" differs from h~nj"",
only by the calibration uncertainty. as explained in Sec. IV E.
Here C_ is the confidence level derived from the injections
of fake signals, and ile its estimated uncertainty due to the
finite sample size of the simulation.

The quantities in the remaining columns can be used to
evaluate how far the reported results are from those that one
expects. The results shown are remarkably consistent with
what one expects based on the noise and on the injected
signal: the confidence levels that we determine differ from
the expected ones by less than 2%.

Given a perfectly matched template, the expected noncen-
trality parameter when a signal h(t) is added to white noise
with spectral density S. is

2U
>'=S'•

(4.7)
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where V= f T
obs
lh(t)i2dt. Here V can also be computed by

feeding the analysis pipeline pure signal and by performing
the search with a perfectly matched template" having set
Sn(f)= I s. In Table III we report the values of Vo, for the
worst-case het) signals for PSR 11939+2134 as "seen" by
the interferometers during their respective observation times
and with ho= 2 X lO-t9. The different values of Vo reflect
the different durations of the observations and the different
orientations of each detector with respect to the source. The
expected value of the noncentrality parameter can be esti-
mated as

[f the noise were stationary, then Sn may be easily deter-
mined. Our noise is not completely stationary, so the value
determined for the noncentrality parameter A is sensitive to
the details of how Sn is estimated. The value of ( liS n) used
to determine the expected value of A is computed as

where the frequency index k varies over a band -0.2 Hz
around 1283.89 Hz. Here Nand 6.t are the number of
samples and the sampling time of the 60-s time series that
are Fourier transformed, We choose an harmonic mean rather
than an arithmetic mean because this is the way Sn enters the
actual numerical calculation of the :F statistic. This method is
advantageous because the estimate it produces is relatively
insensitive to very large outliers that would otherwise bias
the estimate.

Aexp is the expected value of the noncentrality parameter
based on Sn and hh")ec" and Abes'.fi' is the best-fit value of the
noncentrality parameter based on the measured distribution
of :F values from the simulation. Cexp and CbeSl'fi' are the
confidence levels corresponding to these distributions inte-
grated between 2:F" and 00. . .

Figure 6 shows the distributions for p(2:Flh~"Jec,). The
circles result from the simulations described above. The solid
lines show the best fit noncentral / curves. The shaded re-
gion is the integral of p(2:Flhhnjec,) between 2;:* and 00. By
definition, this area is 0.95.

D. Time domain search technique

1. Overview

Frequency domain methods offer high search efficiencies
when the frequency of the signal and/or the position of the
neutron star are unknown and need to be determined along
with the other signal parameters. However, in the case of
known pulsars, where both the intrinsic rotation frequency of

7This is indeed one of the consistency checks that have been per-
formed to validate the analysis software. We have verified that the
two values of U agree within a I% accuracy.
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FIG. 6. Measured pdf for 2:;: for all four interferometer data
with injected signals as described in Table III. The circle, represent
the measured PDF values from the Monte Carlo simulations. The
lines represent X2 distributions with four degrees of freedom and
best-fit noncentrality parameters given in Table III. The Idled area
represents the integral of the pdfs between 2F and +0".

the neutron star and its position are known to high accuracy,
alternative time domain methods become attractive. At some
level the two domains are of course equivalent, but issues
such as data dropouts and the handling of signals with com-
plicated phase evolutions can be conceptually (and practi-
cally) more straightforward in a time series analysis than in
an analysis based on Fourier transforms.

The time domain search technique employed here in-
volves multiplying (heterodyning) the quasisinusoidal signal
from the pulsar with a unit-amplitude complex function that
has a phase evolution equal but of opposite sign to that of the
signal. By carefully modeling this expected phase (1)(1), we
can take account of both the intrinsic frequency and spin-
down rate of the neutron star and its Doppler shift. In this
way the time dependence of the signal is reduced to that of
the strain antenna pattern, and we are left with a relatively
simple model-fitting problem to infer the unknown pulsar
parameters ho, t, I/J, and cPo defined in Eqs. (3.3) and (3.4).

In the time domain analysis we take a Bayesian approach
and therefore express our results in terms of posterior prob-
ability distribution functions for the parameters of interest.
Such PDFs are conceptually very different from those used
to describe the :F statistic used in the frequency domain
search and represent the distribution of our degree of belief
in the values of the unknown parameters, based on the ex-
periments and stated prior PDFs.

The time domain search algorithm comprises stages of
heterodyning, noise estimation, and parameter estimation. In
outline, the data are first heterodyned at a constant frequency
close to the expected frequency of the signal, low-pass fil-
tered to suppress contamination from strong signals else-
where in the detector band, and rebinned to reduce the sam-
pling frequency from 16384 to 4 Hz. A second (fine)
heterodyne is applied to the data to account for the time-
varying Doppler shift and spin down of the pulsar and any
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final instnunentaI calibration. and the data are rebinned to
one sample per minute. We take the data as stationary during
this period and make an estimate of the noise variance in
each l-min bin from the variance and covariance of the data
contributing to that bin. This variance is used in the likeli-
hood function described below.

The parameter estimation stage. at which we set the Baye-
sian upper limit on ho• proceeds from the joint probability of
these I-min complex samples. {Bt}. We take these Bk values
to have a Gaussian likelihood with respect to our signal
model. y(rt ;8). where a is a vector in our parameter space
with components (ho.£.I/I.tPo) and tt is the time stamp of the
kth sample. The signal model. the complex heterodyne of
Eq. (3.3). is

We choose uniform prior ~bilities for tPo over [0.271]
and '" over [-m'4,m'4] and a prior for, that is uniform in
cos, over [ - 1.1]. corresponding to a uniform probability per
unit solid angle of pulsar orientation. These uniform priors
are uninformative in the sense that they are invariant under
changes of origin for the parameters. Although strictly a
scale parameter. the prior for ho is also chosen as constant
for ho;;'O and zero for ho<O. This is a highly informative
prior. in the sense that it states that the prior probability that
ho lies between 10-24 and 1O-2S is 10 times less than the
prior probability it lies between 10-23 and 10-24• but guar-
antees that our posterior PDF can be normalized.

The joint posterior PDF for these parameters is

where pea) (ex sin ,) is the prior on a, ~(Bt} is the variance
of the real parts of Bt. and ~{Bt} is the variance of the
imaginary parts of Bt.

The final stage in the analysis is to integrate this posterior
PDF over the I., 1/1. and tPo parameters to give a marginalized
posterior for Ito of

normalized so that iop(hoI{Bt}) dho= 1. This curve repre-
sents the distribution of our degree of belief in any particular
value of ho• given the model of the pulsar signal. our priors
for the pulsar parameters. and the data. The width of the
curve roughly indicates the range in values consistent with
our state of knowledge.
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By definition. given our data and priors. there is a prob-
ability of 0.95 that the true value of ho lies below Itci~'·where

(h95t;
0.95= Jo 0 p(hoI{Bt})dho• (4.13)

and this defines our 9S%-credible Bayesian upper limit
on ho.

An attraction of this analysis is that data from different
detectors can be combined directly using the appropriate sig-
nal model for each. The combined posterior distribution from
all the available interferometers comes naturally out of a
Bayesian analysis and. for independent observations. is sim-
ply the (normalized) product of the contributing probability
distributions-i.e .•

p(alall data) ex pea) Xp(GEOla)xp(Hlla)

Xp(H2la)Xp(Llla). (4.14)

This posterior PDF embodies all we believe we know about
the values of the parameters. optimally combining the data
from all the interferometers in a coherent way. For interfer-
ometers with very different sensitivities. this will closely ap-
proximate the result from the most sensitive instrument.
Again. we must marginalize over I., 1/1. and tPo to obtain the
posterior PDF for ho alone. We note that this is more than
simply a combination of the marginalized PDFs from the
separate interferometers as the coherence between the instru-
ments is preserved. and it recognizes the different polariza-
tion sensitivities of each.

Equipment timing uncertainties due to system response
delays of the order of 150 J.LS, constant duting the run but
unknown. cautioned against a coherent multi-interferometer
analysis with this data set.8 In principle, we could assign a
suitable prior for the resulting phase offsets and marginalize
over them. However. the dominant position of the Livingston
4-km interferometer means that even a fully a coherent
analysis would only improve our sensitivity by about 20%.
so we have not pursued this. Fully coherent analyses will be
possible in future observing runs.

SA constant (but unknown) timing offset of 150 fJ1'> at 1.3 kHz
does not affect the single interferometer (IFO) coherent analysis for
a 2-week observation time. For a constant time offset to mailer (i.e .•
reduce the detection statistic by -20%) in the single IFO analysis.
the offset must be of order lOOs or larger. This is because the
detection statistic is maximized over the unknown phase tPo of the
signal and the received signal is frequency modulated. The effect of
a constant time offset 6t is small if

l<f I years« (4.15)Is min(T abo, I year)'

where Is is the frequency of the signal and T00& is the observation
time (the factor la' is clivi. with v being the velocity of Earth
around the Sun).

082004-12



SEiI'lNG UPPER UMITS ON TIlE STRENG'IH OF ...

2. n-.... SI fI1UIlpn/or PSR /1939+2134

The time domain searcb used contiguous data segments
300 s or longer in duration.

The effectiveness of the noise estimation procedure de-
scribed above was assessed from histograms of Bl a
= 'R(B k)/ URJ..B.)+ J(B t)/ U~Bl)' If the estimates are correct
and our likelihood function is well modeled by a Gaussian,
these bistograms (Fig. 7) should also be Gaussian with a
variance of I. Since we divide the noise between the real and
imaginary components, we expect the value of X2 to be close
(within !iN) to the number of real and imaginary data, N
(twice the number of complex binned data values Bk). A
small number of outliers with magnitudes of Bt/Uk larger
than 5 were not included in Ibis or subsequent analyses.

The marginalized posterior PDFs for ho are plotted as the
solid lines in Fig. 8. These represent the distribution of our
degree of belief in the value of ho, following SI, for each
interferometer. The width of each curve roughly indicates the
range in values consistent with our priors and the data from
the instruments individually. The formal 95% upper limits
from this analysis are the upper bounds to the shaded regions
in the plots and are 2.2X 10-21 for GEO, I.4X 10-22 for Ll,
3.3X 10-22 for HI, and 2.4X 10-22 for H2.

The dotted line in the GEO plot of Fig. 8 shows the (very
different) marginalized posterior PDF obtained when a simu-
lated signal is added to the data with an amplitude of 2.2
x 10-21 and with IPo=O°, "'=0°, and £=0°. Here there is
a clear nonzero lower limit for the value of ho, and a result
such as this would have indicated a nominal detection, had
we seen it,

E. EItim8doII of unceI1aiDties

In the frequency domain analysis the uncertainty in the
upper limit value, h,/?'1., has two contributions. The first
stems from the uncertainty in the confidence (~C"'0.23%)
that results from the finite sample size of the simulations. In
order to convert this uncertainty into an uncertainty in h65% ,
we have performed several additional Monte Carlo simula-
tions. For every run we have injected a population of signals
with a given strength, h~nject , near h65 .. , searched for each of
them with a perfectly matched template, and derived a value
of F.With these values we were able to estimate the ho( C)
curve near h65% and its slope h~ and, from Ibis, the uncer-
tainty in the value of h~JJject:

(4.16)

The second contribution to the uncertainty in the value of
h'/r' comes from errors in the calibration of the instruments,
wbich influence the absolute sensitivity scale. In particular,
this reflects in an uncertainty in the actual value of the
strength of injected signals so that h65." = h~nject::t oh':. The
sum of Ibis error, estimated in Sec. Il A, and the error arising
from the finite sample size, Eq. (4.16), is given in the fre-
quentist results in Table IV.

Note that when a pulsar signal is present in the data, er-
rors in the calibration introduce errors in the phase and am-
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FIG. 7. Histograms of RIO'= 'R.(Rk)/O''RI.B,) + ,J(Bk)/" .1(B,) for
each interferometer.The dotted lines represent the expected Gauss-
ian distribution, with 1L" 0 and 0'= 1.

plitude of that signal. The errors in :F due to the signa! are
quadratic with the errors in the phase and are linear with the
errors in the amplitude. However, the estimate of the noise
spectral density is also affected by calibration errors and, in
particular, by amplitude errors. The net effect on :F is that the
resulting error in this quantity (which can be considered a
sort of signal-to-noise ratio) is quadratic in calibration errors,
thus insensitive, to first order, to calibration errors.

The errors quoted for the Bayesian results in Table IV
simply reflect the calibration uncertainties given in Sec. II A.
For clarity, no attempt has been made to fold a prior for this
calibration factor into the marginal analysis.

V. CONCLUSION

A. Summary or results

Table IV summarizes the 95% upper limit (UU results
that we have presented in the previous sections. We should
stress once more that the two analyses address two well-
posed but different questions, and the common nomenclature
is somewhat misleading.

The frequentist upper limit statements made in See. IV C
refer to the likelihood of measuring a given value of the
detection statistic or greater in repeated experiments. assum-
ing a value for ho and a least-favorable orientation for the
pulsar. The Bayesian limits set in Sec. IV D 1 refer to the
cumulative probability of the value of ho itself given the data
and prior beliefs in the parameter values. The Bayesian upper
limits report intervals in wbich we are 95% certain that the
true value resides. We do not expect two such distinct defi-
nitions of "upper limit" to yield the same numerical value.

Reeall that the frequentist UL is conservative: it is cal-
culated for the worst-case values of signal parameters £ and
r/J. The Bayesian IDS method marginalizes over these pa-
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FIG. 8. For each interferometer, the solid line represents the
marginalized posterior PDF for ho (PSR J 1939+ 2134) resulting
from the S I data. The 95% upper limits (extent of the shaded re-
gion) are 2.2x 10-21 for GEO, I.4X 10-22 for L1, 3.3X lQ-22 for
HI, and 2.4X 10-22 for H2. The dotted line in the GEO plot shows
the posterior PDF of ho in the presence of a simulated signal in-
jected into the GEO SI data stream using ho=2.2X 10-21. <Po
=0·,1/1=0·, and L=O·.

rarneters, gathering together the evidence supporting a par-
ticular ho irrespective of orientation. We have also per-
formed an alternative calculation of the frequentist ULs by
using a p(.1'Jho) derived from a population of signals with
cos L and '" parameters uniformly distributed, as were the
Bayesian priors in the time domain search. As expected, we
find that the resulting ULs have somewhat lower values than
the conservative ones reponed in Table IV: 1.2X 10-21,
1.5X 10-22, 4.5X 10-22, and 2.3X 10-22 for the GEO, LI,
HI, and H2 data sets, respectively.

Note that a conservative UL in one scheme (Bayesian or
frequentist) should not be expected to always produce a
higher number than an average or optimistic UL in the other
scheme. In particular, when .1'* is fairly low (as in the GEO
case), it is reasonable for the frequentist conservative UL to
actually be lower than the Bayesian UL [39], as we see in the

TABLE rv. Summary of the 95% upper limit values of ho for
PSR JI939+2134. The frequency domain search (FDS) quotes a
conservative frequentist upper limit and the time domain search
(TDS) a Bayesian upper limit after marginalizing over the unknown
L. 1/1,and <Po parameters.

!FO Frequentist FDS Bayesian TDS

GEO (1.9:!:0.1) X 10-21 (2.2:!:0.I)X 10-21

LI (2.7:!:OJ) X 10-22 (1.4:!:0.I)X 10-22

HI (S.4:!:0.6)X 10-22 (3.3:!:OJ) X 10-22

H2 (4.0:!:0.5) X 10-22 (2.4:!:0.2) X 10-22
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first line of Table IV. Conversely. the large value 01'.1'* for
H I translates into a relatively large ratio of the frcquentist
"average" UL to the Bayesian one.

B. Discussion of previous upper limit results

Two prior upper limits have been published on the strain
of a signal from our specific pulsar JI939+2134. A limit of
h<3.1 X 10- 17 and 1.5X 10-17 for the first and second har-
monics of the rotation frequency of the pulsar, respectively,
was set in [40] using 4 d of data from the Caltech 40-m
interferometer. A tighter limit h < 10-20 was determined us-
ing a divided-bar gravitational wave detector at Glasgow
University for the second harmonic alone [41].

More sensitive untargeted UL results on the strain of pe-
riodic GW signals at other frequencies come from acoustic
bar detector experiments [42,43,44]' As a consequence of the
narrow sensitivity bands of these detectors (less than I Hz
around each mode) and the fact that their frequencies do not
correspond to those of any known pulsars," studies with bar
antennas have not investigated possible emission from any
known pulsars.

In [42] a UL of 2.9X 10-24 was reported for periodic sig-
nals from the Galactic center, with 921.32 <I..<921.38 Hz
and no appreciable spin down over -95.7 days of observa-
tion. These data were collected by the EXPLORER detector
in 1991. This UL result was not obtained by a coherent
search over the entire observation time. due to insufficient
timing accuracy.

In [43] a fully coherent 2-day-long all-sky search was
performed again on 1991 EXPLORER data in a .I, search
band of about I Hz centered at 922 Hz and including one
spin-down parameter. It resulted in an UL of 2.8X 10-2) at
the 99% confidence level. This search was based on the same
detection statistic used in our frequency domain analysis.

Another parameter space search is presented in [44]. Data
taken from the ALLEGRO detector during the first three
months of 1994 were searched for periodic gravitational
wave signals from the Galactic center and from the globular
cluster 47Tuc, with no resolvable spin down and with /., in
the two sensitive bands of their antenna, 896.30-8\>7.30 Hz
and 919.76-920.76 Hz, with a 10-JLHz resolution. The re-
sulting UL at 8 X 10-24 is reponed.

There exist several results from searches using early
broadband interferometric detectors [40,41,46-49]. As a re-
sult of the poor sensitivities of these early detector proto-
types, none of these upper limits is competitive with the
strain sensitivity achieved here. However, many of the new
issues and complications associated with broadband search
instruments were first confronted in these early papers. lay-
ing the foundations for future analyses.

Data from the first science run of the TAMA detector were
searched for continuous waves from SN 1987A in a n.OS-Hz

9With the exception of the Australian detector NIOBE "lid of the
Japanese torsional antenna built specifically to detect periodic sig-
nals from the Crab pulsar [45].
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band at -934.9 Hz. The reported 99% confidence upper
limit was -5 X 10-23 [50].

Improved noise performance and longer observation times
achieved with interferometric detectors since SI has made
their sensitivities comparable to or better than the narrow
band peak sensitivity of the acoustic bars cited above, over
much broader bandwidths. Combined with the advances in
analysis methods presented in this paper, we anticipate sig-
nificant advances in search depth and breadth in the next set
of observations.

c. Upper limit OB the eJlipddty fA the pulsar

An UL on ho for J1939+ 2134 can be interpreted as an
UL on the neutron star's equatorial ellipticity. Taking the
distance to Jl939+ 2134 to be 3.6 kpc, Eq. (3.1) gives an UL
011 the ellipticity corresponding to h~~ = 1.4X 10- 22 of

( utS cm2
)

?=2.9X 10-4 I,~ .

Of course, the UL on the ellipticity of 11939+2134 de-
rived from SI data is about five orders of magnitude higher
than the UL obtained from the pulsar measured spin-down
rate: E:oe;;3.80X10-9 (l(fS gcm21J,)If2. However, an el-
lipticity of _10-4 could in principle be generated by an

PHYSICAL REVIEW D 69, 082004 (2004)

interior magnetic field of strength -1016 G or it could prob-
ably be sustained in a NS with a solid core. Therefore, the
above exercise suggests that with improved detector sensi-
tivities, even a null result from a search for unknowlI pulsars
will place interesting constraints on the eUipticities of rapidly
rotating neutron stars that might exist in our galactic neigh-
borhood.

(5.1)
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We place direct upper limits on the strain of the gravitational waves from 28 isolated radio
pulsars by a coherent multi-detector analysis of the data collected during the second science run of
the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars.
We use coordinated radio observations for the first time to build radio-guided phase templates for
the expected gravitational wave signals. The unprecedented sensitivity of the detectors allow U8 to
set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the
equatorial ellipticities of the pulsars, which are smaller than 10-& for the four closest pulsars.
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A worldwide effort is underway to detect gravitational
waves (GWs) and thus test a fundamental prediction of
General Relativity. In preparation for long-term opera-
tions, the LlGO and GEO experiments conducted their
first science run (81) during 17 days in 2002. The de-
tectors and the analyses of the SI data are described in
Refs. [IJ and [2J-[5J,respectively. LIGO's second science
run (82) was carried out from 14 Feb - 14 April 2003,
with dramatically improved sensitivity compared to SI.
During 82 the GEO detector was not operating.

A spinning neutron star is expected to emit GWs if it
is not perfectly symmetric about its rotation axis. The
strain amplitude ho of the emitted signal is proportional
to the star's deformation as measured by its ellipticity (
[6]. Using data from S2, this paper reports direct obser-
vationallimits on the GW emission and corresponding
ellipticities from the 28 most rapidly rotating isolated
pulsars for which radio data is complete enough to guide
the phase of our filters with sufficient precision. These
are the first such limits for 26 of the pulsars. We con-
centrate on isolated pulsars with mown phase evolutions
and sky positions to ensure that our targeted search re-
quires relatively few unlmown parameters.

The limits reported here are still well above the indi-
rect limits inferred from observed pulsar spindown, where
available (Fig. 1). However, fourteen of our pulsars are in
globular clusters, where local gravitational accelerations
produce Doppler effects that mask the true pulsar spin-
down, sometimes even producing apparent spinup. For
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these pulsars our observations therefore place the first
limits that are inherently independent of cluster dynam-
ics, albeit at levels well above what one would vxpect if
all globular cluster pulsars are similar to field pulsars.
Our most stringent ellipticity upper limit is 4.;' x IQ-6.

While still above the maximum expected from conven-
tional models of nuclear matter, distortions of this size
would be permitted within at least one exotic t.heory of
neutron star structure [7].

Detectors.-The LIGO observatory is composed of
three detectors. Each detector is a power-recycled
~fjche1son interferometer, with Fabry-Perot cavities in
the long arms. A passing GW produces a tinw-varying
differential strain in these arms, and the resulting dif-
ferential displacement of the cavity test mass mirrors is
sensed interferometrically. Two detectors, the 4 km arm
HI and the 2 km arm H2 detectors, are collocated in Han-
ford WA. The 4km arm Ll detector is situated in Liv-
ingston Parish LA. Improvements in noise performance
between SI and 82 were approximately an order of mag-
nitude over a broad frequency range. Modifications that
were made between SI and S2 to aid in noise reduction
and improve stability include i) increased laser power to
reduce high-frequency noise, ii) better angular control of
the mirrors of the interferometer and iii) the UBI' of lower
noise digital test mass suspension controllers in all detec-
tors.

During S2, the LIGO detectors' noise perfonuance in
the band 4O-2000Hz was better than any previous in-
terferometer. The best strain sensitivity, achieved by 1,1,
was '" 3 x 10-22 HZ-1/2 near 200Hz (Fig. 1). The relative
timing stability between the interferometers W8.' also sig-
nificantly improved. Monitored with GPS-synclironi1.ed
clocks to be better than 10J-lsover S2, it allowed the
coherent combination of the strain data of all three de-
tectors to form joint upper limits.

Analysis method.-In [2] a search for gravitational
waves from the millisecond pulsar PSR JI939+:l134 us-
ing SI data was presented. In that work, two different
data analysis methods were used, one in the time domain
and the other in the frequency domain. Here WI' extend
the former method [8]and apply it to 28 isolated pulsars.

Following [2] we model the sources as non-processing
triaxial neutron stars showing the same rotational phase
evolution as is present in the radio signal and perform a
complex heterodyne of the strain data from eadl detec-
tor at the instantaneous frequency of the expected grav-
itational wave signal, which is twice the observed radio
rotation frequency. These data are then downsampled
to 1160Hz and will be referred to as Bk. Auv gravi-
tational signal in the data would show a residual time
evolution reflecting the antenna pattern of the detector,
varying over the day as the source moved through the
pattern, but with a functional form that depended on
several other source-observer parameters: the antenna
responses to plus and cross polarisations, the amplitude
of the gravitational wave ho, the angle between the line-
of-sight to the pulsar and its spin axis L, the polarisation
angle of the gravitational radiation t/J (all defined in [6])
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FIG. 1: Upper curves: characteristic amplitudes detectable
from a known source with a 1% false alarm rate and 10%
false dismissal rate, as given by Eq. (2.2) in [21,using S2 sen-
sitivities and observation times. Lower curve: LIGO design
sensitivity for 1yr of data. Stars: upper limits found in this
paper for 28 known pulsars. Circles: spindown upper limits
for the pulsars with negative spindown values if all the mea-
sured loss of angular momentum were due to gravitational
waves and assuming a moment of inertia of 1045 g. cm2

.

and the phase 1>0 of the gravitational wave signal at some
fiducial time to. Let a be a vector in parameter space
with components (ho,~, tj;, 1>0)'

The analysis proceeds by determining the posterior
probability distribution function (pdf) of a given the
data Bk and the signal model:

p(al{Bk}) c< p(a)p({Bdla),

where p({Bdla) is the likelihood and p(a) the prior pdf
we assign to the model parameters. We have used a uni-
form prior for COS~, 1>0, tj; and ho (ho > 0), in common
with [2]. A uniform prior for ho has been chosen for its
simplicity and so that our results can readily be compared
with other observations. This prior favors high values of
ho (which comprise the majority of the parameter space)
and therefore generates a somewhat conservative upper
limit for its value. Indeed the reader might prefer to re-
gard our resulting posterior pdfs for ho as marginalised
likelihoods rather than probabilities for ho - these would
be functionally identical using our priors.

As in [2] we use a Gaussian joint likelihood for
p({Bdla). In [2] the SI noise floor was estimated over
a 60 s period from a 4 Hz band about the expected sig-
nal frequency. This gave a reliable point estimate for the
noise level but was sensitive to spectral contamination
within the band, as demonstrated in the analysis of the
CEO SI data. In this paper we exploit the improved
stationarity of the instruments and take the noise floor
to be constant over periods of 30 min. In addition we
restrict the bandwidth to 1/60 Hz, which makes it possi-
ble to search for signals from pulsars at frequencies close
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FIG. 2: Parameters of the artificial pulsar PI, recover d from
12 h of strain data from the Hanford and Livingst on inter-
ferometers. The results are displayed as marginal pdfs for
each of the four signal parameters. The vertical douod lines
show the values used to generate the signal, the col, wed lines
show the results from the individual detectors (HI ureen, H2
blue, L1 red), and the black lines show the joint ro-ult from
combining coherently data from the three.

(1)

to strong spectral disturbances. However, the noise level
now determined is less certain as the estimate relies on
fewer data. We take account of this increased uncertainty
by explicitly marginalising with a Jeffreys prior over the
constant but unknown noise level for each 30mill period
of data [9]. The likelihood for this analysis is I hen the
combined likelihood for all the 30 min stretches of data,
labeled by j in Eq. (2), taken as independent:

(2)

v( (B'}jla) " (,f" IB,- "I' r" (3)

where Yk is the signal model given by Eq. (4.10) in [2]
and m = k2(j) - kl(j) + 1 = 30 is the number or f3k data
points in a 30 min segment.

In principle the period over which the data are as-
sumed stationary need not be fixed, and can bp adjusted
dynamically to reflect instrumental performance over the
run. We have limited our analysis to continuous 30min
stretches of data, which included more than 88% "I' the S2
science data set. Inclusion of shorter data sections would
at best have resulted in a ~ 6% improvement on the
strain upper limits reported here (Eq. (2.2) of 1M. [2]).

Validation by hardware injections.-The analvsis soft-
ware was validated by checking its performance on fake
pulsar signals injected in artificial and real detec Ior noise
both in software ([2]) and in hardware. In particular,

4



two artificial signals (PI, P2) were injected into all three
detectors by modulating the mirror positions via the ac-
tuation control signals with the strain signal we should
expect from a hypothetical pulsar. These injections were
designed to give an end-to-end validation of the search
pipeline starting from as far up the observing chain as
possible.

The pulsar signals were injected for a 12 h period at fre-
quencies of 1279.123Hz (PI) and 1288.901Hz (P2) with
frequency derivatives of zero and -10-8 Hz s-1 respec-
tively, and strain amplitudes of 2 x 10-21. The signals
were modulated and Doppler shifted to simulate sources
at fixed positions on the sky with 1/1 = 0, cos t. = 0 and
<Po = O. To illustrate, posterior pdfs for the recovered
PI signal are shown in Fig. 2. The results derived from
the different detectors are in broad statistical agreement,
confirming that the relative calibrations are consistent
and that the assessments of uncertainty (expressed in
the posterior widths) are reasonable. Results for P2 were
very similar to these.

The phase stability of the detectors in S2 allowed us to
implement a joint coherent analysis based on data from
all three participating instruments. This technique was
noted in (2), but could not be performed on the SI data
because of timing uncertainties that existed when those
observations were performed. The solid lines in Fig. 2
show marginalisations of the joint posterior from HI, H2
and Ll, i.e.,

p(aIHI,H2,Ll) ocp(a)p(Hlla)p(H2la)p(Llla). (4)

With three detectors of ronghly similar sensitivities and
operational periods these coherent results should be ap-
proximately J3 times tighter than the individual results.
The posteriors for <Po clearly highlight the relative co-
herence between the instruments and verify that similar
joint methods can be used to set upper limits on our
target pulsars.
Results.-From the ATNF pulsar catalogue

(www.atnf.csiro.aulresearch/pulsar/psrcat/)
we selected 28 isolated pulsars with rotational frequen-
cies greater than 20 Hz and for which good timing data
were available (Table I). For 18 of these, we obtained up-
dated timing solutions from regular timing observations
made at the Jodreil Bank Observatory using the Lovell
and the Parkes telescopes, adjusted for a reference epoch
centred on the period of the S2 run (starred pulsars in
Table I). Details of the techniques that were used to do
this can be found in [10J. We also checked that none of
these pulsars exhibited a glitch during this period.

The list includes globular cluster pulsars (including iso-
lated pulsars in 47 The and NGC6752), the SI target mil-
lisecond pulsar (PSR JI939+2134) and the Crab pulsar
(PSR B0531+21). Although Table I only shows approx-
imate pulsar frequencies and frequency derivatives, fur-
ther phase corrections were made for pulsars with mea-
sured second derivatives of frequency. Timing solutions
for the Crab were taken from the Jodrell Bank online
ephemeris [11J, and adjustments were made to its phase
over the period of 82 using the method of [12J.

pulsar spin spindown hg5% f

f (Hz) j (HZS-l) LlO-'l4 /10-5
B0021-72C" 173.71 +l.50x 10-15 4.3 16
B0021-72D" 186.65 +1.19x 10-16 4.1 14
B0021-72F" 381.16 -9.37x 10-15 7.2 ;•.7

B0021-72G· 247.50 +2.58xlO-15 4.1 7.5

B0021-72L· 230.09 +6.46 x 10-15 2.9 (;.1

B0021-72M· 271.99 +2.84 X 10-15 3.3 ;•.0

B0021-72N* 327.44 +2.34 x 10-15 4.0 4.3
J0030+0451 205.53 _4.20x10-16 3.8 0.48
B0531+21· 29.81 -3.74x 10-10 41 e ieo
J0711-683O 182.12 _4.94xlO-16 2.4 l.8
J1024-0719· 193.72 -6.95 x 10-16 3.9 0.86
B1516+02A 180.06 -1.34 x 10-15 3.6 21

J1629-6902 166.65 -2.78 x 10-16 2.3 2.7

J1721-2457 285.99 -4.80 x 10-16 4.0 l.8

J1730-2304· 123.11 -3.06 x 10-16 3.1 2.5
J1744-1134· 245.43 -5.4Dx 10-16 5.9 0.83
J1748-2446C 118.54 +8.52 x 10-15 3.1 24
B1820-30A" 183.82 -1.14x 10-13 4.2 24
B1821-24· 327.41 -1.74 x 10-13 5.6 7.1

J1910-5959B 119.65 +1.14x 10-14 2.4 K.f)

J1910-5959C 189.49 -7.90x 10-17 3.3 1.7

J1910-5959D 110.68 -1.l8x 10-14 1.7 i.2

J191O-5959E 218.73 +2.09xlO-14 7.5 7.9
J1913+ lOll" 27.85 -2.61 x 10-12 51 (i900

J1939+2134· 641.93 -4.33 x 10-1• 13 2.7

B1951+32" 25.30 -3.74x 10-12 48 " 400
J2l24-3358· 202.79 _8.45xlO-16 3.1 11.45

J2322+2057" 207.97 -4.20 x 10-16 4.1 l.8

TABLE I: The 28 pulsars targeted in the 82 run, with approx-
imate spin parameters. Pulsars for which radio timing data
were taken over the 82 period are starred (*). The right-
hand two columns show the 95% upper limit on 110. based on
a ~~e~ent analysis using all the 82 data, and corre-ponding
elhptlclty values (f, see text). These upper limit values do
not include the uncertainties due to calibration and 10 pulsar
timing accuracy, which are discussed in the text, nor uncer-
tainties in r.

The analysis used 910 hours of da.ta from HI, tilll hours
from H2, and 342 hours from L1. There was no ..vidence
of strong spectral contamination in any of the hands in-
vestigated, such as might be caused by an instrumen-
tal feature or a potentially detectable pulsar t!i~na.l. A
strong gravitational signal would generate a parameter
pdf prominently peaked off zero with respect to it>! width,
as for the hardware injections. Such a pdf would trigger
a more detailed investigation of the pulsar ill question,
No such triggers occurred in the analysis of these data.,
and we therefore simply present upper limits.

The upper limits are presented as the value of ho
bounding 95% of the cumulative probability of the
marginalised strain pdf from ho = O. The joint upper
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limit h'f% therefore satisfies

~"
0.95= /""=0 dho fff p(aIHl,H2,Ll)d£d~d¢o, (5)

consistent with [2]. The uncertainty in the noise floor
estimate is already included, as outlined above.

The remaining uncertainties in the upper limit values
of Table I stem from the calibration of the instrument
and from the accuracy of the pulsar timing models. For
L1 and H2. the amplitude calibration uncertainties are
conservatively estimated to be 10% and 8%, respectively.
For HI, the maximum calibration uncertainty is 18%,
with typical values at the 6% level. Phase calibration
uncertainties are negligible in comparison: less than 10°
in all detectors. Biases due to pulsar timing errors are
estimated to be 3% or less for J0030+0451. and 1% or
less for the remaining pulsars (see [2] for a discussion of
the effect of these uncertainties).

Discussion.-The improved sensitivity of the LIGO
interferometers is clear from the strain upper limit for
PSR JI939+2134, which is more than a factor of ten
lower than was achieved with the SI data [2]. In this anal-
ysis the lowest limit is achieved for PSR J191O-5959D at
the level of 1.7x 10-24, largely reflecting the lower noise
floor around 200Hz.
Table I also gives approximate limits to the ellipticities

[6] of these pulsars from the simple quadrupole model

'" 0 237 ha r 1Hz2 lQ45 gcm2 (6)
£ _. 10-24 1kpc j2 Izz

where r is the pulsar's distance, which we take as the
dispersion measure distance using the model of Taylor
and Cordes [13], and I•• its principal moment of inertia
about the rotation axis, which we take as 1045 gcm2.

As expected. none of these upper limits improves on
those inferred from simple arguments based on the gravi-

tationalluminosities achievable from the observed loss of
pulsar rotational kinetic energy. However, as discussed
in the introduction, for pulsars in globular clusters such
arguments are complicated by cluster dynamics, which
the direct limits presented here avoid.

The result for the Crab pulsar (PSR B0531+21) is
within a factor of about 30 of the spindown limit and over
an order of magnitude better than the previous direct up-
per limit of [14J. The equatorial ellipticities of t he four
closest pulsars (JOO30+045I, J2124+3358. JI021-0719,
and JI744-1134) are constrained to less than JtI-6,

Once the detectors operate at design sensitivity for a
year, the observational upper limits will improve hy more
than an order of magnitude. The present analysis will
also be extended to include pulsars in hinary systems,
significantly increasing the population of objects under
inspection.
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