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SUMMARY 

 

Novel influenza A virus (IAV) genomes were recently discovered in two South American 

bat species and were designated the unique subtypes of H17N10 and H18N11.  Concerns 

are presented for cross-species transmission as the introduction of novel IAV subtypes into 

naïve populations is often linked to severe disease outbreaks. Previous studies have 

synthesised chimeric bat IAVs, with the six internal H17N10 gene segments and the HA 

and NA gene segments from laboratory IAVs, and have shown that reassortment between 

IAVs from bats and other species is unlikely (Juozapaitis et al., 2014, Zhou et al., 2014).  

It was also revealed that the H17N10 NS1 protein can antagonise the interferon-β (IFN-β) 

response in human cells to a level comparable to that of a human IAV NS1 (PR8 H1N1).  

However, in the context of a chimeric bat IAV, carboxy-terminal truncations affecting this 

ability had less of an effect on virus replication in vivo compared to the human virus.  This 

suggests that there may be functional differences between these NS1 proteins. 

This study sought to further characterise the H17N10 NS1 to include the H18N11 NS1 

protein, and to compare their molecular functions with a human H1N1, avian H5N1 and 

avian H7N9 NS1 proteins.  Functions of the bat IAV NS1 proteins were predicted with a 

preliminary sequence alignment analysis, which also elucidated their high sequence 

divergence.  Functional characterisation studies determined that, like all NS1 proteins, the 

two bat IAV NS1 proteins are able to antagonise the IFN-β response in a range of cell 

types from different species. In that regard, interactions with the host proteins RIG-I and 

Riplet were confirmed for the H17N10 NS1.  However, unlike many human-adapted IAV 

NS1 proteins, the two bat NS1 proteins were unable to block general gene expression in 

human and bat cells.  In fact, the bat IAV NS1 proteins appear to enhance gene expression, 

particularly in bat cells, however the mechanism behind this was not determined.  

A major laboratory interest was to discover neither of the bat IAV NS1 proteins can 

interact with the human p85β subunit of phosphoinositide 3-kinase (PI3K), representing 

the first naturally occurring NS1 proteins not to bind.  Other NS1 proteins are postulated to 

activate PI3K to benefit IAV replication.  Attempts to restore p85β binding with six single 

residue substitutions in the H17N10 NS1 were unsuccessful, suggesting multiple residue 

changes have occurred to abrogate binding.  Future work will focus on determining if the 

bat IAV NS1 proteins bind p85β subunits in the species from which these genomes were 

identified, or indeed if they have evolved to bind other bat cellular factors.  Furthermore, 

these NS1 proteins could be utilised for studying the functions of other NS1 proteins 

binding and activating the PI3K pathway. 
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Chapter 1:  INTRODUCTION 

 

1.1  Influenza A viruses (IAV) 

 

1.1.1 Orthomyxoviridae 

 

Influenza A viruses (IAVs) belong to the family Orthomyxoviridae which includes five 

other genera; influenza B viruses, influenza C viruses, Isaviruses, Thogotoviruses and 

Quaranjaviruses (Plarre et al., 2012, Leahy et al., 1997, Presti et al., 2009, Krossoy et 

al., 1999).  These viruses all have negative-sense, single stranded and segmented RNA 

genomes (Bouvier and Palese, 2008).   

 

Influenza A, B and C viruses are evolutionary distinct genera, with differences in viral 

morphology, number of gene segments and viral proteins encoded (Palese and Shaw, 

2013).  A further distinction lies in the natural host-range of these viruses; influenza B 

and C viruses have narrow host ranges encompassing solely humans and seals for 

influenza B viruses (Osterhaus et al., 2000) and humans and pigs for influenza C 

viruses (Kimura et al., 1997).  IAVs however have the remarkable propensity for 

infecting a wide range of species that include humans, birds, pigs, horses, dogs, various 

sea mammals and cats (Palese and Shaw, 2013).  

 

The wide range of IAVs necessitates the need for further classification according to the 

nature of their surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA), of 

which 18 subtypes of HA (H1 to H18) and 11 subtypes of NA (N1 to N11) have been 

described to date (Mehle, 2014). 

 

1.1.2 Influenza virus and disease 

 

Influenza A, B and C viruses are all capable of causing seasonal epidemics of influenza 

disease (Bouvier and Palese, 2008).  These epidemics peak annually between 

December and March and can affect up to 5 million people worldwide, causing up to 

500,000 deaths (WHO, 2014).  Influenza is characterised by the sudden onset of a high 

fever, cough, headache, and muscle and joint pains.  The majority of otherwise healthy 

people recover within a week (WHO, 2014),  however, in high risk groups such as the 

elderly, infants or pregnant women, influenza can lead to severe disease or even death 

(WHO, 2014).  What is of greater concern, however, is the occasional occurrence of 
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pandemic influenza disease which presents a much higher risk to the general 

population. 

 

1.1.3 Pandemic influenza  

 

Within the Orthomyxoviridae, IAVs are solely responsible for pandemic disease, partly 

due to their ability to infect a wide host range.  Three IAV pandemics have occurred in 

the 20
th

 century, including the Spanish influenza (H1N1) of 1918, the Asian influenza 

(H2N2) of 1957 and the Hong Kong influenza (H3N2) of 1968 (Kilbourne, 2006).  The 

deadliest of which was the 1918 pandemic which was responsible for up to 50 million 

deaths worldwide (Taubenberger and Morens, 2006).  The first influenza pandemic of 

the 21
st
 century was caused by the H1N1 influenza virus in 2009, which exhibited a 

case-fatality rate of only 0.4%, compared to that of the 1918 influenza which was 2.4% 

(Al Hajjar and McIntosh, 2010, Fraser et al., 2009). 

 

The ability of different IAVs to infect the same host leads to the potential production of 

novel viral strains though genetic reassortment due to the segmented nature of the viral 

genome.  Co-infection of the same host cell with two or more different IAVs can result 

in the reassortment of viral gene segments.  This can theoretically result in the 

production of 254 different progeny viral genotypes from two different IAVs (Palese & 

Shaw, 2013).  Reassortment can lead to the antigenic shift of the HA or NA 

glycoproteins, more specifically, a major antigenic change resulting in an 

immunologically distinct HA or NA that permits high infection rates in the presence of 

an immunologically naïve population (Palese & Shaw, 2013).   

 

The last three IAV pandemics of 1957, 1968 and 2009 have been caused by 

reassortment events.  The H2N2 subtype from the 1957 Asian pandemic contained 

avian HA, PB1 and NA gene segments reassorted with the circulating human H1N1 

IAV segments, whereas the 1968 Hong Kong pandemic was caused by a virus 

containing avian HA and PB1 segments reassorted with the remaining human IAV  

gene segments from the circulating 1957 H2N2 strain (Scholtissek et al., 1978, 

Kawaoka et al., 1989).  These reassortment events are documented in Figure 1.  The 

2009 H1N1 pandemic strain was generated from multiple reassortment events and 

included the NA and M segments from an avian-derived Eurasian swine lineage, HA, 

NP and NS segments from a classical swine lineage, PB2 and PA segments from an 
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avian-derived swine triple reassortment lineage, and finally the PB1 segment from a 

human-derived triple reassortment swine lineage (Garten et al., 2009). 

 

1.1.4 IAV viral proteins 

 

Previous characterisation of the IAV genome in the 20
th

 century presented the accepted 

view that the 8 IAV genome segments encoded for 10 canonically expressed proteins, 

however recent analyses have revealed the possible expression of  7 further IAV 

proteins, most of which are likely to be strain-specific (Dubois et al., 2014), Palese & 

Shaw, 2013).  The expression of these potential 17 proteins from their particular gene 

segments is shown in Figure 2.  Encoded on the 8 genomic segments are the 10 

canonically expressed proteins, the roles of which will be discussed in the context of 

the viral replication cycle; PB1, PB2 and PA which form the polymerase complex, the 

nucleoprotein (NP), surface glycoproteins haemagglutinin (HA) and neuraminidase 

(NA), the outer membrane ion channel (M2), the matrix protein (M1), the nuclear 

export protein (NEP/NS2), and the multifunctional virulence factor (NS1) (Palese & 

Shaw, 2013).  The less-well described proteins include PB1-N40, PB1-F2, PA-X, PA-

N182, PA-N155, M42 and NS3, the various functions of which will be discussed later.  

 

1.1.5 IAV replication cycle – viral entry 

 

The IAV surface glycoprotein HA is responsible for binding sialic acid receptors on the 

host cell surface, resulting in endocytosis and membrane fusion of the viral particle 

(Skehel and Wiley, 2000).  This is shown in Figure 2a/b.  IAVs attach to the terminal 

sialic acids present on glycoproteins and glycolipids, which can be linked to the 

penultimate galactose by an -2,3-linkage or an -2,6-linkage, the two predominant 

forms found in nature (Rogers and Paulson, 1983).  From this, receptor-binding 

specificity of different HA proteins has emerged, with human IAVs usually recognising 

the -2,6-linkage whereas avian IAVs usually recognise the -2,3-linkage (Connor et 

al., 1994).   

 

Binding of the viral HA and host cell sialic acid receptor results in endocytosis of the 

viral particle.  Inside the endosome a low pH activates the fusion of viral and 

endosomal membranes due to conformational changes in the HA glycoprotein (Skehel 

and Wiley, 2000).   
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Figure 1.  Schematic for the generation of pandemic influenza A viruses.  The three IAV 

pandemics of the 20
th
 century were caused by the presence of a novel IAV subtype entering the 

human population.  The Spanish influenza of 1918 was caused by the direct transmission of an 

avian H1N1 virus into the human population.  The 1957 Asian influenza pandemic was the 

result of a reassortment event between an avian H2N2 and a human H1N1 virus. The resultant 

pandemic H2N2 virus contained the PB1, HA and NA gene segments from the avian H2N2 

virus and the remaining gene segments from the human H1N1 virus.  The 1968 Hong Kong 

influenza pandemic was the result of another reassortment event between a novel avian H3Nx 

virus and the circulating 1957 H2N2 virus.  The resulting H3N2 pandemic virus contained PB1 

and HA gene segments from the avian H3Nx virus and the remaining segments from the 1957 

H2N2 virus (figure was adapted from (De Clercq, 2006). 
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Figure 2. IAV replication cycle a) IAV particle contains 8 genomic segments with the 

expressed proteins from each indicated. b) Viral HA mediates sialic acid binding to the cell 

surface followed by endocytosis of the virus. Low pH triggers HA-mediated membrane fusion 

and M2-mediated release of viral RNPs into the cytoplasm. NP-encoded nuclear localisation 

signals mediate nuclear import. c) Viral polymerase synthesises mRNA with 5’ caps cleaved 

by PB2 from host pre-mRNAs. d) Viral mRNAs are exported to the cytoplasm for translation. 

e) NS1 protein specifically blocks host gene expression. f) Viral polymerase also mediates 

replication of viral RNPs for transport to the cytoplasm and g) vRNPs are packaged into a 

new virion at the cell surface which is released. Diagram adapted from (Das et al., 2010). 

Viral proteins translated from the IAV genome 
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An acidic pH in the endosome also facilitates the flow of protons selectively through 

the M2 ion channel, allowing acidification of the virus whilst in the endosome and 

resulting in viral uncoating (shown in Figure 2b) (Pinto and Lamb, 2006).  Viral 

ribonucleoproteins (vRNPs) consisting of the RNA genomic segments, each associated 

with the trimeric viral polymerase (comprised of PB1, PB2 and PA) and the 

nucleoprotein, NP, are then released into the cytoplasm (Portela and Digard, 2002, 

Pinto and Lamb, 2006).   

 

1.1.6 IAV replication cycle – nuclear import of vRNPs 

 

A characteristic event in the IAV replication cycle is that viral transcription and 

replication occur in the nucleus of the host cell.  The vRNPs must therefore be 

imported into the nucleus, a process that is mediated by nuclear localisation signals 

(NLSs) present in all of the viral components of the vRNP complex (PB1, PB2, PA and 

NP) (reviewed in (Boulo et al., 2007)).  The two NLSs present on NP are necessary and 

crucial for the nuclear import of vRNPs (Wu et al., 2007, Cros et al., 2005).  

 

1.1.7 IAV replication cycle – viral transcription and replication 

 

In the nucleus, synthesis of viral mRNA is initiated by the PB2 subunit of the RNA 

polymerase complex, which binds the 5’ cap of host cell pre-mRNAs (shown in Figure 

2c) (Honda et al., 1999).  This allows the endonuclease activity-containing PA subunit 

to cleave the pre-mRNAs 10 to 13 nucleotides downstream from the cap (Plotch et al., 

1981, Dias et al., 2009).  Viral transcription is then initiated from the 3’ end of the 

cleaved template, with chain elongation catalysed by the major catalytic subunit of the 

RNA polymerase complex, PB1 (Kobayashi et al., 1996).   

 

Replication of vRNA does not require 5’ cap priming and involves the synthesis of 

full-length cRNA copies of vRNA (shown in Figure 2f).  The exact mechanism 

regulating the switch between viral transcription and replication are not yet clear. 

However, as newly synthesised cRNA must be encapsidated, it has been suggested that 

the availability of NP plays a role in controlling this switch (Portela and Digard, 2002).  

The nuclear export protein (NEP) has also been reported to be a key player in 

regulating the switch between transcription and replication, specifically by structurally 

altering the transcription or replication machinery (Robb et al., 2009).  Furthermore, it 

has been postulated that expression of IAV-derived small RNAs (svRNAs) during IAV 
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infection correlates with the accumulation of vRNA and the switch from transcription 

to genome replication, through interactions with the viral polymerase (Perez et al., 

2010). 

 

1.1.8 IAV replication cycle – packaging and budding  

 

After their synthesis in the nucleus, viral RNPs are exported to the cytoplasm in a 

process facilitated by NEP (O'Neill et al., 1998) (shown in Figure 2d).  Upon reaching 

the cell membrane, vRNPs are then packaged into new viruses (shown in Figure 2g).  

In particular, the M1 protein is essential for virus assembly and budding, and has been 

shown to interact with both viral RNPs and the cytoplasmic tails of the two 

glycoproteins HA and NA (Ali et al., 2000, Rossman and Lamb, 2011).  NEP has also 

been found to play a role in efficient virion formation and budding, through its 

interaction with the plasma membrane-associated F1F0-ATPase (Gorai et al., 2012).  

Additionally, M2 is involved in viral budding and is believed, upon its recruitment, to 

stabilise the budding site and to consequently mediate membrane curvature of the 

budding virus, finally causing membrane scission and particle release (Rossman and 

Lamb, 2011). 

 

The second surface glycoprotein NA acts to promote virus release from infected cells 

by preventing aggregation of viral particles by enzymatically cleaving the linkage 

between terminal sialic acids and the penultimate galactose residue on host cells 

(Colman, 1994, Wagner et al., 2002).   

 

1.1.9 Recently identified IAV proteins and their functions 

 

Two further proteins produced from segment 2 of the IAV genome, PB1-F2 and PB1-

N40, are translated in different open reading frames from each other (Palese & Shaw, 

2013).  PB1-F2 is a strain-specific mitochondrial protein that targets the inner 

mitochondrial membrane to induce apoptosis specifically in human immune cells 

(Chen et al., 2001, Gibbs et al., 2003). PB1-F2 has also been reported to bind the IFN-β 

signalling protein MAVS to inhibit the production of IFN-β (Varga et al., 2012).  PB1-

N40 is an N-terminally truncated version of PB1 whose function during viral infection 

remains unknown, though it has been hypothesised to be involved in the regulation of 

transcription and replication (Wise et al., 2009, Tauber et al., 2012).  
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Segment 3 encodes additional proteins; PA-X, produced by ribosomal frameshift, and 

two N-terminally truncated versions, PA-N155 and PA-N182.    PA-X is produced 

from an overlapping reading frame (X-ORF),  retaining the N-terminal endonuclease 

domain of PA but with a functionally distinct C-terminus produced from the X-ORF by 

+1 ribosomal frameshifting (Jagger et al., 2012).  PA-X was found to repress cellular 

gene expression and modulate the host response to IAV infection to reduce 

pathogenicity (Jagger et al., 2012).  PA-N155 and PA-N182 were identified as smaller 

proteins translated from the PA mRNA from start codons at amino acid positions 155 

and 182 respectively (Muramoto et al., 2013).  Functional attributions for these novel 

proteins have yet to be assigned, however there is some indication that PA-N155 may 

play a role in viral replication, though this is yet to be determined (Muramoto et al., 

2013). 

 

Segment 7 was previously thought to encode only two proteins; M1 and M2 (Allen et 

al., 1980).  In 2012, it was discovered that segment 7 of the IAV genome can encode a 

third M2-related protein termed M42 (Wise et al., 2012).  M42 was found to contain a 

distinct ectodomain, but is non-essential for virus replication and expression seems 

likely to occur in only a small number of IAV strains (Wise et al., 2012).  This was 

predicted from sequence analysis that revealed the presence of weak splice donor sites 

for M42 mRNA production in the major human-infecting IAV subtypes (Wise et al., 

2012). 

 

Lastly, until recently it was thought that segment 8 of the IAV genome also encoded 

only two proteins; NS1 and NEP, however the latest analysis has suggested a third non-

structural protein can be produced, termed NS3 (Lamb and Choppin, 1979, Selman et 

al., 2012).  NS1 and NEP are differentially synthesised due to splicing of the viral 

mRNA (Lamb and Choppin, 1979).  In 2012, the existence of the protein NS3 was 

discovered to be a strain-specific occurrence due to the acquisition of a single 

nucleotide mutation, A374G of segment 8 (Selman et al., 2012).  This mutation, and 

subsequent production of a novel protein spliced from NS1, was found in the context of 

a human IAV evolving in a mouse host and led to an increase in viral growth and 

antagonism of the IFN-β response (Selman et al., 2012).  NS3 is an isoform of NS1, 

with an internal deletion of the codons 126 to 168 in NS1 (Selman et al., 2012).  

Furthermore, the A374G mutation was identified in 33 IAV strains that have naturally 

or experimentally adapted from avian hosts to mammalian ones, including humans, 
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suggesting NS3 production may be associated with viral host switching (Selman et al., 

2012). 

 

The recent identification of 7 previously unknown IAV proteins (since 2001) which 

have divergent and important influences during the virus replication cycle highlights 

the importance of characterising novel viral proteins in order to understand what role 

they may play during influenza pathogenesis.  

 

1.2  Non-structural protein 1 (NS1) 

As the functional characterisation of novel NS1 proteins was the focus of this work, the 

canonical structure and functions of this protein will now be discussed in greater detail.  

The multifunctional virulence factor NS1 is encoded on segment 8 of the IAV genome 

and shares its first 10 amino acids with NEP, which is produced from an alternate open 

reading frame due to a splice site (Lamb and Lai, 1980).  NS1 mRNA is co-linear to 

the viral RNA transcript, translation of which produces a protein that has a strain-

specific length of as little as 202/215 residues, but which is usually between 230 and 

237 residues in length (Lamb and Lai, 1980).   

 

1.2.1 Structure of NS1 

 

The NS1 protein is comprised of several distinct domains which are depicted in Figure 

3A and B.  The N-terminal domain consists of residues 1 to 73 and is termed the RNA-

binding domain (RBD) (Liu et al., 1997).  The C-terminal domain consists of residues 

88 to 202 and is termed the effector domain (ED) (Bornholdt and Prasad, 2008).  The 

RBD and ED are capable of forming independent homodimers, both of which have 

been observed by X-ray crystallography (Liu et al., 1997, Hale et al., 2008a, Bornholdt 

and Prasad, 2006).  The two main functional domains of NS1 are connected by a 

flexible inter-domain linker, and additionally there is a disordered C-terminal tail 

region found after residue 202 (Hale et al., 2008c).  Lengths of the inter-domain linker 

and the C-terminal tail regions vary depending on IAV strains; linkers can be between 

10 and 15 residues in length whereas C-terminal tails can vary between 11 and 33 

residues (Hale, 2014).   
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1.2.1.1 RNA-binding domain 

 

The RBD of NS1 assembles into a symmetrical homodimer containing three α-helices 

per monomer (Liu et al., 1997).  The formation of the RBD dimer is essential for the 

binding of double-stranded RNA (dsRNA) which occurs via interactions between the 

phosphate backbone of dsRNA and highly conserved, basic and hydrophilic RBD 

residues (Yin et al., 2007).  Residues that have been identified as crucial for the binding 

of dsRNA include Arg35, Arg38, Lys41, Ser42 and Thr49, and are highlighted in 

Figure 2B (Cheng et al., 2009).  Specifically, Arg38 has been identified as being the 

only residue that is absolutely essential for the binding of dsRNA (Wang et al., 1999).  

Lys41 was shown to also contribute strongly to this binding, as an alanine mutant at 

this position results in a 10-fold decrease in dsRNA binding ability (Wang et al., 1999).  

Additionally, the serine at position 42 has been shown to undergo specific 

phosphorylation, with substitution to alanine resulting in a 10-fold decrease in dsRNA-

binding ability (Hsiang et al., 2012).   

 

1.2.1.2 Effector domain 

 

The NS1 ED homodimer consists of monomers each comprising 7 β-strands and 3 α-

helices (Bornholdt and Prasad, 2006).  The actual interface for ED dimerisation is, 

however, disputed.  Two models have been proposed, the strand-strand dimer and the 

helix-helix dimer, based on observations in X-ray crystallography structures (Bornholdt 

and Prasad, 2006, Hale et al., 2008a).  The strand-strand form was the first to be 

observed in a crystal structure of an NS1 from the A/Puerto Rico/8/34 (PR8) strain, 

with the interface occurring between the N-terminal β-strands of each monomer 

(Bornholdt and Prasad, 2006).  Later, a different dimerisation interface was observed in 

the crystal structure of an NS1 from the A/Duck/Albany/6/76 strain, and this was 

termed a helix-helix dimer due to the interface occurring between the long α-helices of 

each monomer (Hale et al., 2008a).  

 

Further studies have confirmed that the helix-helix dimer is the relevant dimer form in 

solution, suggesting that this interface is the biologically relevant one.  This was based 

on observations that the helix-helix form buries a greater surface area than the strand-

strand form, and additionally that mutation of tryptophan 187 (W187), a residue which 

is critical for helix-helix dimerisation, abolishes dimer formation in solution (Hale et 

al., 2008a, Aramini et al., 2011, Kerry et al., 2014).  Additionally, the residues involved 
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in the helix-helix dimer interface are highly conserved across all IAV strains, with 

W187 seen to be present in all IAVs that have been sequenced (Hale et al., 2008a, 

Aramini et al., 2011).   

 

1.2.1.3 Full-length NS1 

 

Whilst there have been crystal structures of full-length NS1 proteins, the precise 

conformations required for the biological functioning in the context of the host cell still 

remain unclear (Bornholdt and Prasad, 2008, Carrillo et al., 2014).  The first full-length 

crystal structure of an IAV NS1 (H5N1) suggested that the ED and RBDs interact with 

neighbouring NS1 molecules in an alternating manner (with their respective domains) 

to produce a long tubular structure in which to bind dsRNA (Bornholdt and Prasad, 

2008).  A second crystal structure of another NS1 (H6N6) revealed that whilst the RBD 

remains a stable homodimer, the ED is capable of shuffling between ‘open’ (i.e. 

monomeric), ‘semi-open’ and ‘closed’ (dimeric) conformations due to the flexibility of 

the inter-domain linker (Carrillo et al., 2014).  This conformational elasticity of the 

NS1 ED had previously been proposed, where the monomeric (or ‘helix-open’) form 

can preferentially interact with certain host proteins such as the cleavage and 

polyadenylation specificity factor (CPSF30), whose binding surface on the NS1 ED 

overlaps the dimerisation interface thus making this interaction and ED dimerisation 

mutually exclusive (Kerry et al., 2011, Das et al., 2008).  The ‘helix-closed’ or dimeric 

ED is instead preferential for the binding of dsRNA in the context of full-length NS1, 

where abrogation of ED dimerisation has been shown to result in decreased dsRNA 

binding by the entire NS1 molecule (Kerry et al., 2011, Ayllon et al., 2012b).  Thus it 

may be that alternating monomeric and dimeric NS1 ED conformations are related to 

the stage of IAV infection and the function of NS1 required at that particular time.  The 

functions of the IAV NS1 protein during the viral replication cycle will now be 

discussed in detail. 

 

1.2.2 Localisation of NS1 

 

During the early stages of IAV infection, NS1 primarily localises to the nucleus of the 

host cell, however at later stages of infection NS1 is more prominently located in the 

cytoplasm of the cell (Greenspan et al., 1988, Melen et al., 2007).  There have been two 

NLSs identified in the NS1 protein, an N-terminal NLS1 and a C-terminal NLS2 

(Greenspan et al., 1988, Melen et al., 2007).  The critical amino acids in the NLS1 were 



25 
 

found to be the same required for binding dsRNA; R35, R38 and K41, and it is thought 

that this signal mediates nuclear import via the classical importin α/β pathway (Melen 

et al., 2007).  A functional NLS2 sequence requires the presence of basic arginine or 

lysine residues at positions 219, 220, 231 and 232, with this signal also functioning as a 

nucleolar localisation signal (NoLS) (Melen et al., 2007).  Thus, these particular signals 

are strain-specific due to the varying C-terminal tail lengths of different NS1 proteins. 

 

NS1 translocation into the cytoplasm is mediated by the presence of a hydrophobic 

nuclear export signal (NES) which is located between residues 134 and 147 of the ED 

(Li et al., 1998).  This signal is specifically inhibited by 14 residues that are adjacent 

and downstream of the NES, therefore nuclear export of NS1 requires the alleviation of 

this specific inhibition, however the molecular mechanisms regulating this remain 

unknown (Li et al., 1998).  

 

1.2.3 Function of NS1 during IAV infection 

 

Among the many roles attributed to the NS1 protein during IAV infection are the 

abilities to disrupt host cell antiviral defences, particularly the interferon (IFN-α/β) 

response (Hale et al., 2008c), the ability to bind and activate the phosphoinositide 3-

kinase (PI3K) signalling pathway (Hale et al., 2006), the favoured translation of viral 

mRNAs over host cell mRNAs (Aragon et al., 2000), inhibition of host cell adaptive 

immune responses (Fernandez-Sesma et al., 2006), and control of host cell apoptosis 

(Schultz-Cherry et al., 2001, Zhirnov et al., 2002).  Many of these functions arise from 

the ability of NS1 to interact with a plethora of host cellular factors, of which a 

selection is shown in Figure 3A. 

 

1.2.3.1 Antagonism of the innate immune response 

 

During viral infection, the first-line antiviral defence mechanism for cells is the type I 

interferon (IFN) or IFN-α/β response, which is stimulated by the presence of viral 

factors for example viral RNA.  IFN secretion induces the up-regulation of many IFN-

stimulated genes (ISGs) which are responsible for the establishment of a cellular 

antiviral state (reviewed in (Randall and Goodbourn, 2008).  It is generally accepted 

that the major role of the NS1 protein during IAV infection is the antagonism of this 

IFN response.  Early observations using a mutant IAV deficient in NS1 showed that 

this virus could not replicate in wild type mice, but was able to do so in mice with 
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defective IFN signalling (STAT1-/-) pathways (Garcia-Sastre et al., 1998).  It has been 

postulated that presence of the NS1 protein allows IAV to replicate proficiently whilst 

evading the immune system, for up to two days post-infection (Moltedo et al., 2009). 

 

There are a number of functional mechanisms that the NS1 protein employs in order to 

antagonise host cell IFN responses.  NS1 is able to interfere with the pre-transcriptional 

production of IFN itself, firstly through the RBD’s ability to sequester dsRNA and 

therefore preventing its detection by the pattern-recognition receptor RIG-I which has 

been shown to preferentially recognise short genomic sequences of IAV (Kowalinski et 

al., 2011, Baum et al., 2010).  Another study found that an IAV encoding an NS1 

unable to bind dsRNA induced higher levels of IFN-β in cells in comparison to a virus 

able to sequester dsRNA (Donelan et al., 2003).  It may also be the case that NS1 is 

able to interact directly with RIG-I to prevent induction of IFN (Guo et al., 2007).  NS1 

has been reported bind directly to two cellular ubiquitin E3 ligases, TRIM25 and 

Riplet, in order to prevent the ubiquitination of the RIG-I CARD domains necessary for 

downstream signalling and induction of IFN (Gack et al., 2009, Rajsbaum et al., 2012).  

These functions of NS1 may be responsible for NS1’s ability to inhibit the activity of 

the transcription factors IRF-3 (Talon et al., 2000), NFκB (Wang et al., 2000) and c-

Jun/ATF-2 (Ludwig et al., 2002) to prevent the pre-transcriptional production of IFN.  

 

Antagonism of IFN production by NS1 also occurs at a global post-transcriptional 

level, particularly through interactions between NS1 and two cellular proteins: the 30 

kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30) and the 

poly(A)-binding protein II (PABPII).  CPSF30 is responsible for cleavage and 

polyadenylation at the 3’ end of host cellular pre-mRNAs in order to produce mature 

mRNAs (Li et al., 2001).  The NS1 ED is able to interact with the CPSF30 F2F3 zinc 

finger domains preventing its normal processing activities and resulting in the selective 

inhibition of cellular mRNA production as viral mRNAs are processed by the viral 

polymerase and are thus not affected (Nemeroff et al., 1998, Das et al., 2008).  

Additionally, binding of the PABPII protein by NS1 further blocks the processing of 

host cell pre-mRNAs by preventing poly(A) tail elongation and subsequent nuclear 

export of mRNAs (Chen et al., 1999). 

 

Finally, NS1 can also act to inhibit the functions of two host cell antiviral proteins; the 

2’-5’-oligoadenylate synthetase (OAS) and protein kinase R (PKR).  Inhibition of the 
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OAS/RNase L pathway is achieved by the sequestering of dsRNA by NS1, thus 

preventing activation OAS-mediated activation of RNase L and the subsequent 

degradation of viral RNA, which would inhibit viral replication (Min and Krug, 2006, 

Silverman, 2007).  In the case of the serine/threonine kinase PKR, binding of NS1 to 

PKR (through residues 123-127 of the ED) blocks its activation by either dsRNA or the 

protein PACT and prevents phosphorylation of PKR substrates such as the eukaryotic 

translation initiation factor 2α (eIF2α) which would detrimentally effect viral protein 

production (reviewed in (Clemens and Elia, 1997), (Li et al., 2006), (Min et al., 2007).  

The ability of NS1 to bind dsRNA or PACT themselves may also contribute to this 

antagonism (Tawaratsumida et al., 2014, Cheng et al., 2009). 

 

1.2.3.2 Antagonism of the adaptive immune response 

 

The adaptive immune response in a virus-infected host is the second-line of defence 

after the innate immune response, and the NS1 protein is also capable of interference 

with this system.  In particular, it was shown that NS1 is responsible for reducing the 

pulmonary pro-inflammatory cytokines TNF-α and IFN-γ to increase pathogenesis 

during IAV infection in mice (Hyland et al., 2006).  It has also been reported that NS1 

can attenuate the maturation of dendritic cells (DCs) by down-regulating specific genes 

and therefore reducing the production of necessary chemokine and cytokine factors 

(Fernandez-Sesma et al., 2006).  This abrogation of DC maturation prevents DC-

mediated priming of T-helper cells for the production of IFN-γ (Fernandez-Sesma et 

al., 2006). 

 

1.2.3.3 Modulation of host apoptotic response 

 

The role of the NS1 protein in the modulation of host cell apoptosis remains somewhat 

unclear, as there have been both pro- and anti-apoptotic functions associated with this 

protein.  NS1 has been reported to induce apoptosis in various cultured cell types, 

including human epithelial lung cells (Schultz-Cherry et al., 2001, Lam et al., 2008).  

However, it has also been shown that NS1 is capable of delaying apoptosis in a process 

associated with its ability to antagonise IFN production (Zhirnov et al., 2002).  It may 

be that the NS1 protein exhibits temporal effects on the modulation of apoptosis, 

whereby delaying apoptosis at early stages of IAV infection allows efficient viral 

replication, but up-regulation of apoptosis at later time-points could assist with the 

release of the virus from infected cells.   
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Figure 3.  Structural representation of the IAV NS1 protein (A) Schematic of the NS1 

functional domains and the host or viral factors it interacts with.  Shown in red are the 

interactions that result in antagonism of the host innate immune response and in green are 

interactions which appear to benefit viral replication (obtained from (Hale, 2014). (B) Crystal 

structure of a monomeric NS1 protein showing the effector (blue) and RNA binding (yellow) 

domains linked by the inter-domain region (cyan).  The interaction between the RBD and 

dsRNA is shown (not to scale) with the essential RBD residues for this interaction highlighted 

(R35, R38, L41, S42 and T49).  Also highlighted is the residue W187 located in the ED which 

is critical for the dimerisation of the ED (with another NS1 ED).  This figure was generated in 

PyMol using the Protein Data Bank ID 4OPH (Carrillo et al., 2014).   
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1.2.3.4 Preferential translation of viral mRNA 

 

During IAV infection, NS1 is capable of promoting the preferential translation of viral 

mRNAs over that of host cell mRNAs (de la Luna et al., 1995).  It appears that this 

process is facilitated by interaction between NS1 and the large subunit of the 

eukaryotic initiation factor 4F (eIF4F), which may result in binding of eIF4F to the 5’ 

UTR of viral mRNAs to promote their translation over cellular mRNAs (Aragon et al., 

2000). 

 

1.2.3.5 Strain-specific functions of NS1 

 

Studies involving NS1 proteins from various IAV strains have revealed several 

important strain-specific differences in the functional abilities of different NS1 

proteins.  Inhibition of RIG-I CARD domain ubiquitination occurs in a species-specific 

manner, as it was shown that NS1 proteins from human, avian, swine and mouse-

adapted viruses were all able to bind human TRIM25, however none could bind mouse 

TRIM25, and the avian virus NS1 preferentially interacted with chicken TRIM25 

(Rajsbaum et al., 2012).  It was also found that the human virus NS1 could interact 

alternatively with mouse Riplet in order to block RIG-I ubiquitination (Rajsbaum et al., 

2012).  

The interaction between NS1 and host cell CPSF30 has also been documented to be 

strain-specific.  This ability is known to be generally conserved amongst IAVs that 

infect humans, however the 2009 pandemic H1N1 virus was found to be unable to bind 

CPSF30 and thus could not block general gene expression (Hale et al., 2010).  Binding 

was however restored through substitutions at residues R108, E125 and G189 (Hale et 

al., 2010).  Several non-human adapted viruses are also unable to bind CPSF30, 

including the highly pathogenic avian H5N1 (pre-2004) and H7N9 viruses (Twu et al., 

2007, Ayllon et al., 2014).  

 

Comprehensive analysis of avian IAV sequences established that the C-terminal four 

residues of NS1 (residues 227-230) can form a consensus PDZ domain ligand, the 

amino acid sequence being either ESEV or EPEV (Obenauer et al., 2006).  This motif 

is only found in avian IAV NS1 proteins and has been attributed roles in viral 

pathogenicity and in preventing apoptosis in infected cells (Liu et al., 2010, Jackson et 

al., 2008).  In particular, insertion of the PDZ domain ligand motif residues into a 

human A/WSN/33 stain resulted in increased virulence in mice, an ability which may 
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stem from the demonstration that the NS1 PDZ domain ligand is able to bind around 30 

human PDZ-containing proteins (Jackson et al., 2008, Obenauer et al., 2006).  

 

Finally, the human H3N2 NS1 protein has been shown to harbour a unique functional 

ability by interacting with the human PAF1 transcription elongation complex 

(hPAF1C) (Marazzi et al., 2012).  This NS1 is unique in containing a histone tail-like 

motif formed by the C-terminal amino acids 226 to 229 (ARSK) which is analogous to 

the histone tail sequence (ARTK) found in the N-terminus of histone H3 proteins 

(Marazzi et al., 2012).  The H3N2 NS1 can therefore interact with hPAF1C via its 

PAF1 subunit to apparently target NS1 to inducible gene transcription sites to 

selectively reduce the transcription of antiviral host genes (Marazzi et al., 2012).  

 

The provided examples of the differing functional capacities of various NS1 proteins 

from different strains of IAV highlight the importance of understanding the basis for 

strain-specific abilities.  It is important to understand the particular mutations necessary 

for NS1 proteins to have a particular functional capacity, as a measure for the potential 

of cross species transmission, as well as viral replication and pathogenesis. 

 

1.3  NS1 and the phosphoinositide 3-kinase (PI3K) signalling pathway 

 

1.3.1 Class 1A PI3Ks and downstream signalling 

 

Class IA phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes which are 

comprised of a 110 kDa catalytic subunit (p110) and an 85 kDa regulatory subunit 

(p85), of which two isoforms of the p85 subunit are known (α and β)  (Cantrell, 2001).   

A major downstream signalling molecule of the PI3K pathway is the serine/threonine 

kinase, Akt.  Akt is recruited to the membrane where it is activated via specific 

phosphorylation at residues Thr308 and Ser473, enabling membrane dissociation and 

phosphorylation of cytoplasmic or nuclear downstream substrates (Alessi and Cohen, 

1998, Lawlor and Alessi, 2001).  Akt signalling effects include regulation of glucose 

metabolism, cellular apoptosis, cytoskeletal regulation and cell proliferation (Brazil 

and Hemmings, 2001). 
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1.3.2 NS1 activates the PI3K signalling pathway via p85β binding 

 

The IAV NS1 protein is known to activate the PI3K signalling pathway during IAV 

infection, specifically through binding the p85β subunit of PI3K (Hale et al., 2006, 

Shin et al., 2007, Ehrhardt et al., 2007).  NS1 interacts with the inter-Sh2 (iSH2) 

domain of p85β, thereby alleviating the usual inhibitory activity of this subunit upon 

the p110 catalytic subunit (Hale et al., 2008b).  In particular, the residue tyrosine 89 

was shown to be critical for binding of p85β by the NS1 ED, and is in fact conserved 

across all IAVs sequenced (Hale et al., 2006). 

 

The precise biological consequences stemming from IAV activation of the PI3K 

pathway remain unclear.  There have been polarising views in the literature regarding 

the regulation of apoptosis mediated by NS1-activation of Akt.  Initial studies 

suggested that inhibition of PI3K leads to an up-regulation of apoptosis in virally 

infected cells (Zhirnov and Klenk, 2007, Ehrhardt et al., 2007), however a later study 

showed that a rUdorn-Y89F virus, incapable of binding and activating PI3K, did not 

up-regulate apoptosis when compared to wild-type virus (Jackson et al., 2010).  What 

is clear is that the NS1-mediated activation of PI3K has strain-specific consequences 

for different IAVs, highlighted by the differences in the growth kinetics of recombinant 

A/Udorn/72 (rUd) and A/WSN/33 (rWSN) viruses encoding Y89F NS1 proteins, 

where only the rUd virus had attenuated growth kinetics due to an inability to activate 

the PI3K pathway (Hale et al., 2006).  A further study revealed that activation of PI3K 

promoted the replication of the PR8 IAV, but not the WSN virus (Ayllon et al., 2012a).  

It is therefore of great interest to elucidate the specific downstream consequences due 

to IAV-activation of this pathway, and in particular why it may be beneficial for the 

viral life cycle. 

 

1.4  Novel bat IAV genomes 

 

1.4.1 Discovery of H17N10 and H18N11 

 

In the last couple of years, RT-PCR analysis and next-generation sequencing enabled 

the reconstruction of two novel IAV genomes from two different species of South 

American bats.  The first was found in samples from Guatemalan little yellow-

shouldered bats (designated H17N10), and the second in samples from Peruvian flat-

faced fruit bats (designated H18N11) (Tong et al., 2012, Tong et al., 2013).  These 
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virus genomes were identified using consensus-degenerate RT-PCR primers designed 

to detect conserved signature sequences within the PB1 gene segment, which is highly 

conserved among IAVs (Tong et al., 2012, Poch et al., 1989).  Rectal swabs obtained 

from captured bats were then screened in this RT-PCR assay, with positive samples 

analysed by next-generation and Sanger sequencing to identify the full-length genomes 

of these viruses (Tong et al., 2012, Tong et al., 2013).  Serological studies to identify 

specific antibodies against recombinant H17 or H18 reported a high sero-prevalence 

consistent with a widespread occurrence of these viruses in Central and South 

American bat populations (Tong et al., 2013).  Therefore, despite the fact that a full 

virus has yet to be isolated, a high sero-prevalence suggests infection of bats by these 

viruses.   

 

Samples (oropharyngeal, faecal, rectal or urine) from 26 different Central European bat 

species were further examined using real-time RT-PCR (RT-qPCR) based on the M 

segment of the H17N10 virus, plus a generic IAV M segment to detect subtypes H1-

H16 (Fereidouni et al., 2014). This analysis did not detect any IAV or IAV-like 

sequences, suggesting circulation of these specific IAVs in European bats is unlikely 

(Fereidouni et al., 2014).  However the presence of divergent IAVs in other species of 

bats cannot be ruled out.  

 

The discovery of these viruses questions the evolutionary origin of influenza viruses, as 

both H17N10 and H18N11 are highly divergent lineages, indicating that they may have 

been evolving separately in bats for a significant period of time (Tong et al., 2012, 

Tong et al., 2013).  Indeed, the two virus genomes are highly distinct from even each 

other, with a greater genetic diversity between them than that present across all other 

IAVs sequenced (Tong et al., 2013).  Again this highlights the possibility for further 

distinct IAVs to be discovered in additional species of bats.  

 

A major concern stemming from the discovery of these viruses is the potential for them 

to cross species barriers and cause disease in humans or other animals, particularly as 

they represent novel subtypes.  This is particularly concerning due to the potential for 

novel IAV subtypes to cause pandemic disease in new populations, as previously 

discussed.  Therefore, characterisation of these bat IAVs is essential for determining 

any zoonotic potential.  
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1.4.2 Characterisation of HA and NA glycoproteins 

 

Early structural and functional characterisation of the HA and NA glycoproteins of the 

two bat IAVs highlighted major differences in comparison with other IAV subtypes.  

Sequence analysis of the H17 HA showed it shares, on average, 45% amino acid 

sequence identity to the H1-H16 IAV subtypes, compared to the 49% identity shared 

among these 16 subtypes (Tong et al., 2012).  Crystal structures of the H17 HA protein 

revealed that its overall structure is similar to that of other IAV HAs (Zhu et al., 2013, 

Sun et al., 2013).  However, these structures highlighted a putative receptor binding 

site that is structurally divergent from that of other IAV HAs, namely due to significant 

mutations of key residues in this area (Zhu et al., 2013).   

 

A further study showed that the H17 HA protein was unable to bind canonical human 

or avian sialic acid receptors due to its altered receptor-binding site (Sun et al., 2013).  

It is possible that the bat HA proteins are able to recognise alternate receptors other 

than sialic acids, or indeed different sialic acids, and may still work in tandem with the 

divergent NA protein to facilitate viral docking and release from host cells, but through 

as yet unidentified interactions.  There is also the possibility that the bat IAVs use 

proteinaceous receptors for cell entry, a prospect supported by the knowledge that 

different viruses in the Paramyxoviridae family can use sialic acid or protein receptors 

as their means of entry (reviewed in (Chang and Dutch, 2012).  For example, human 

parainfluenza virus 1 preferentially recognises oligosaccharides containing terminal 

Neu5Acα2-3Gal sialic acids (Villar and Barroso, 2006), however Nipah virus uses 

Ephrin B2/B3 for cellular fusion and entry (Bonaparte et al., 2005, Negrete et al., 

2006).  

 

The N10 NA protein was shown by sequence analysis to be highly divergent from the 

other 9 IAV subtypes.  Indeed, initial sequence analysis showed N10 shares only 24% 

sequence identity to other IAV NA subtypes, a similarity which is lower than that 

between influenza A and B virus NAs (Tong et al., 2012).  Upon acquisition and 

analysis of N10 crystal structures, it was seen that this protein exhibits a similar overall 

structure to other IAV NAs, containing a canonical sialidase fold (Li et al., 2012a, Zhu 

et al., 2012).  However N10 was subsequently found to have no sialidase activity due to 

an altered active site, in particular it lacks the usually conserved arginine triad (residues 

R118, R292 and R371) responsible for binding the carboxylate group of sialic acids (Li 



34 
 

et al., 2012a, Zhu et al., 2012).  It is unclear if this neuraminidase would have a 

separate function in the life cycle of this virus, or it may be that these viruses do not 

require sialidase activity to propagate their release from host cells.  Indeed, it seems 

more appropriate to designate N10 as an NA-like protein due to its non-canonical 

identity.  

 

1.4.3 Potential for zoonotic transmission 

 

Bat species are a well-characterised reservoir for zoonotic viruses.  Bats are of the 

order Chiroptera with a worldwide representation of more than 1150 species, 

accounting for approximately one quarter of all mammalian species.  Many important 

emerging infectious diseases have been found to use bat species as their natural 

reservoir, with such viruses capable of causing severe disease in humans such as 

filoviruses, for example Ebola (Leroy et al., 2005), coronaviruses, for example, severe 

acute respiratory syndrome (SARS) (Li et al., 2005) and lyssaviruses, for example 

Rabies (Lumio et al., 1986).  Thus, the discovery of two novel influenza viruses in two 

species of bats represented concern for a new reservoir of IAVs with the potential to 

infect humans, causing either severe or pandemic disease.  The understanding of these 

viruses is particularly essential due to the worldwide distribution, large population 

numbers and interactions with other mammalian species that are associated with bats, 

increasing the potential for cross-species virus transmission.  

 

Investigating whether these viruses follow a canonical IAV-like replication cycle is 

essential for understanding the potential for reassortment with other IAVs, a facet often 

associated with the production of pandemic IAVs.  Analysis of H17N10 polymerase 

complex (PB2, PB1, PA and NP) functionality has been investigated by minigenome 

reporter assay, and was demonstrated to efficiently transcribe RNA in human lung 

cells, showing that these bat virus components can function in human cells (Tong et al., 

2012).  Further investigation involved the N-terminal domain of the PA subunit (PAn) 

whose endonuclease activity is responsible for the production of small RNA primers 

essential for the initiation of viral transcription (Dias et al., 2009).  It was shown that 

the H17N10 PAn domain does indeed harbour endonuclease activity (Tefsen et al., 

2014).  Interestingly, the PAn domain from H17N10 shares only a 71-72% sequence 

identity with four other IAV strains (two avian H5N1s, a human pH1N1 and a human 

H3N2), compared with between 93-98% identity shared among these four strains 
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(Tefsen et al., 2014).  Analysis of the H17N10 PAn domain crystal structure showed no 

major differences between other IAV structures, with the active site containing the 

catalytically conserved residues H41, E80, D108, E119 and K134 (Tefsen et al., 2014).  

Furthermore, H17N10 PAn was demonstrated to possess endonuclease activity at a 

similar level to the other IAV domains tested.  These data therefore indicate that the 

H17N10 virus at least possesses seemingly canonical replication machinery. 

 

Efforts to rescue the full bat IAVs have been unsuccessful; however two separate 

studies have generated synthetic IAVs containing six out of the eight bat virus gene 

segments (Zhou et al., 2014, Juozapaitis et al., 2014).  These studies sought to 

determine the host species range and reassortment capabilities of these novel viruses.  

The first generated a chimeric bat IAV using the HA and NA segments from a 

A/SC35M (H7N7) virus, along with the internal segments of the H17N10 virus 

(Juozapaitis et al., 2014). Infectious virus was only obtained when additional 97-114 

nucleotides from the 5’ and 3’ ends of the H17 and N10-coding regions were added to 

the SC35M HA and NA coding regions; these coding regions contain specific 

packaging signals, suggesting that these signals are not compatible between bat IAVs 

and other IAVs (Juozapaitis et al., 2014).  The chimeric viruses were shown to 

replicate well in mammalian cell lines including human and pig, though to lower titres 

than the control SC35M virus, but showed impeded growth kinetics in avian cell lines 

(Juozapaitis et al., 2014).  However, further passage in avian DF-1 (chicken fibroblast) 

cells resulted in the acquisition of adaptive mutations in various gene segments 

including HA, PA, M1 and M2, which allowed higher titre replication in these cells 

(from 10
7
 to 10

8 
PFU per ml) (Juozapaitis et al., 2014).  Importantly, there was no 

evidence for the ability of the bat chimeric viruses to reassort with IAVs, either 

artificially through reverse genetic approaches, or during co-infection of MDCK cells 

(Juozapaitis et al., 2014).  These data suggest that the genomic segments of the 

H17N10 virus are not compatible with those of other IAVs, and that the differences in 

packaging signals may impede generation of reassortant bat viruses.   

 

A further study was also able to generate a synthetic bat IAV containing the internal 

H17N10 gene segments with the HA and NA segments from either the H1N1 

A/PR/8/34 (PR8) or the H3N2 A/swine/Texas/4199-2/1998 (Tx98) viruses (Zhou et al., 

2014).  Again, viral particles could only be generated with the putative packaging 

signals from H17 and N10 coding regions flanking the PR8 or Tx98 HA and NA 
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coding regions (Zhou et al., 2014). The PR8-based chimeric virus was able to infect 

and replicate in mice lungs with 75% mortality, compared to the 100% PR8 wild type 

virus mortality (Zhou et al., 2014).  A second chimeric virus using the Tx98 (a virus 

non-lethal in mice) glycoproteins also replicated in mice lungs, but had 0% mortality 

rate suggesting that the pathology of the Bat09:PR8 virus was due to the presence of 

the mouse-adapted PR8 HA and NA (Zhou et al., 2014).  

 

In agreement with a previous study, it was also confirmed that reassortment of the 

chimeric bat IAV with conventional IAVs does not readily occur.  Mini-genome 

reporter assays have shown functional compatibility between the NP protein of the bat 

IAV and other IAVs (Juozapaitis et al., 2014, Zhou et al., 2014).  However, 

substitution of individual components of the RNA polymerase complex (comprised of 

PA, PB1 and PB2) from different IAVs with the corresponding H17N10 components 

did not support efficient polymerase activity (Juozapaitis et al., 2014, Zhou et al., 

2014).  Interestingly, however, is the observation that the polymerase subunits from the 

H17N10 and H18N11 bat viruses are capable of reassortment in a mini-genome assay, 

and also during co-infection of chimeric viruses (using PR8 HA and NA glycoproteins) 

(Zhou et al., 2014).  This is particularly intriguing due to the divergent nature of these 

two virus genomes as they harbour more genetic diversity between each other than 

found between all other IAVs (Tong et al., 2013). 

 

1.4.4 Preliminary characterisation of the H17N10 NS1 protein 

 

Analysis of the H17N10 NS1 protein revealed that it shares some similarities and 

differences with the well-characterised PR8 NS1.  Firstly, the ability to antagonise the 

IFN-β response in human cells was found to be conserved (Zhou et al., 2014).  The 

H17N10 NS1 was able to inhibit host cell IFN-β induction to a level comparable to 

PR8 NS1, with C-terminal NS1 truncations (i.e. deletion of the NS1 ED) attenuating 

this ability for both (Zhou et al., 2014).  However, in the context of IAVs (either 

chimeric bat or wild type PR8), the truncated NS1 proteins showed differential 

consequences. Truncated H17N10 NS1-containing viruses replicated to titres 

corresponding to the wild type virus and remained lethal in mice, whereas the truncated 

PR8 NS1 virus had 100-1000 fold lower titres than the wild type (Zhou et al., 2014).  

These observations suggest that perhaps the bat NS1 ED does not function efficiently 



37 
 

in mice and the ability to antagonise the IFN-β response is due to the sequestering of 

dsRNA by the RBD.  

 

It is therefore of interest to further characterise this protein, and indeed the other 

proteins expressed by the bat IAV genomes.  It remains unclear if these viruses have 

the potential to present a future threat to the human population, and characterising them 

may help to address this whilst also providing new insights into the evolution and 

biology of IAVs.  

 

1.5  Thesis aims 

 

The objectives of this particular study were to characterise functions of the H17N10 

and H18N11 NS1 proteins from the two novel bat IAV genomes.  This characterisation 

would enable a comparison between the two bat IAV NS1 proteins themselves, and 

also involve a comparison with representatives from other human and avian IAV NS1 

proteins.  As discussed, the IAV NS1 protein is known to have a number of canonical 

and also strain-specific functional capabilities.  It was therefore of interest to determine 

if the novel bat IAV NS1 proteins would maintain the canonical functions associated 

with IAV NS1 proteins, and additionally whether they would present novel strain-

specific abilities.   

 

The first aim of this study was to analyse the divergences of these bat NS1 proteins by 

conducting an amino acid sequence alignment analysis for comparison with one human 

and two avian IAV NS1 representatives.  This would then enable a prediction of the 

functional capacities of the bat IAV NS1 proteins as many NS1 functions have been 

successfully mapped to certain residues involved in that particular function.  Following 

this, the aim was to clone the two bat IAV NS1 cDNAs into expression vectors which 

would allow expression of the NS1 proteins with N-terminal V5 tags.  The addition of 

a V5 tag facilitates the study of these NS1 proteins in assays where antibodies against 

the V5 tag can be utilised.   

 

Functional capabilities of the two bat NS1 proteins that were to be tested included: 

 

 The intracellular localisation in both human and bat cells. 
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 The ability to antagonise IFN-β induction in, firstly, human and bat cells, 

followed by testing this ability in a range of cell types from different species as 

a potential measure of the contribution to cross-species transmission.   

 The ability to block general gene expression in human and bat cells with a 

prediction for the ability to interact with host CPSF30 based on sequence 

analysis. 

 The ability to interact with the host cell factors RIG-I and Riplet as a 

mechanism for the antagonism of the IFN-β signalling pathway. 

 The ability to interact with the p85β subunit of PI3K as an indication of 

potential activation of this pathway. 
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Chapter 2:  MATERIALS AND METHODS 

 

 

2.1  Cell culture 

 

2.1.1 Cell lines used 

 

Cell lines that were used in this study include the following: 

 

293T: human embryonic kidney 293 cells containing the SV40 Large T-antigen which 

can bind to SV40 enhancers in expression vectors to increase expression (see Graham 

et al. (1977)). 

MRC5-hTERT: human telomerase reverse transcriptase-immortalised human lung 

fibroblast cells (MRC5). 

TB1-Lu: bat lung epithelial cells isolated from Mexican free-tailed bats. 

NBL6: horse dermal fibroblast cells. 

BF: mouse dermal fibroblast cells. 

MDBK: bovine epithelial-like kidney cells. 

 

2.1.2 Maintenance of cell lines 

 

All cell lines were maintained as monolayers in 25cm
2 

 and 75cm
2 

flasks in either 

DMEM (Dulbecco’s modified Eagle’s medium; Life Technologies, UK), or EMEM 

(Eagle’s minimal essential medium; Life Technologies, UK) supplemented with 10% 

heat-inactivated FBS (foetal bovine serum; Life Technologies, UK) and 1µg/µl 

Penicillin/Streptomycin (Life Technologies, UK).  Cells were incubated at 37°C and 

5% CO2.  Cells were maintained by trypsinisation (Trypsin, Life Technologies, UK) 

upon confluency and subsequent seeding into new tissue culture flasks in dilutions 

between 1 in 3 and 1 in 15 depending on the rate of cell growth. 

 

2.1.3 Cryopreservation and recovery of cell stocks 

 

Confluent cell monolayers in 75cm
2 

flasks were trypsinised, resuspended in 10ml of the 

appropriate growth medium, and subsequently pelleted at 1500 rpm for 5 minutes.  Cell 

pellets were then resuspended in freezing medium comprised of 90% DMEM 

(supplemented with 10% FBS) and 10% DMSO (dimethyl sulfoxide).  Resuspended 

cells were aliquoted into cryovials at 1ml per vial, and were frozen in a ‘slow-freeze’ 
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box for 2 days at -70°C before being transferred into liquid nitrogen for long-term 

storage.   

Recovery of cells involved thawing of cryovials at room temperature followed by 

centrifugation at 1500 rpm.  Cell pellets were resuspended in 5ml of the appropriate 

medium and seeded initially in 25cm
2 

flasks.  Growth media was changed the 

following day to remove any traces of DMSO or unattached, dead cells.  When the cell 

monolayer reached confluency, the cells were trypsinised and transferred to 75cm
2 

flasks. 

 

2.2  Cloning 

 

2.2.1 pLVX expression vector 

 

Specific NS1 cDNAs were amplified for insertion into the multiple cloning site (MCS) 

of separate pLVX.V5.MCS.IRES.zsGreen vectors (a schematic of this vector is shown 

in Figure 4).  This MCS encodes many restriction enzyme sites which can be used for 

the insertion of NS1 cDNA.  

 

2.2.2 Polymerase chain reaction (PCR) 

 

Amplification of DNA sequences for the cloning of NS1 cDNAs was achieved by 

polymerase chain reaction (PCR) to produce full-length NS1 cDNA.  Individual PCR 

reactions, made up to a final volume of 50μl using sterile water, consisted of the 

following: 

 

42.5 µl ddH20 

5.0 µl 10X pfu buffer (Promega, UK) 

0.5 µl  10 µM forward primer 

0.5 µl 10 µM reverse primer 

0.5 µl 10 mM dNTPs (Promega, UK) 

0.5 µl 0.1 µg/µl DNA template 

0.5 µl pfu DNA polymerase (Promega, UK) 

50 µl 

 

PCR reactions involved an initial denaturing step at 95°C for 2 minutes.  This was 

followed by 30 cycles consisting of; a further denaturing step at 95°C for 30 seconds, 
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an annealing step at a primer-dependent temperature for 30 seconds, and an extension 

step at 72°C for 1 minute.  A final extension step was performed at 72°C for 5 minutes.   

 

Primers were designed for the amplification of H5N1 (A/Nigeria/OG10/2007), H7N9 

(A/Shanghai/2/S1078/2013), H17N10 (A/little yellow shouldered 

bat/Guatemala/153/2009) and H18N11 (A/flat-faced bat/Peru/033/2010) NS1 cDNA, 

and are detailed in Table 1. These primers were designed to introduce a restriction 

enzyme site at the 5’ and 3’ positions of the NS1 cDNA, with particular restriction sites 

chosen when the appropriate coding sequence was absent from the NS1 cDNA.  In the 

case of the H5N1 NS1, the restriction enzyme coding sequences for SpeI (5’) and NotI 

(3’) were inserted into the primer sequences.  For the cloning of H7N9 NS1, the 

restriction sites for EcoRI (5’) and NotI (3’) were inserted at the given ends, whereas 

for the H17N10 and H18N11 the restriction sites EcoRI (5’) and XbaI (3’) were 

inserted.  To allow for efficient cutting, 5 or 6 nucleotides were added to the 5’ end of 

the restriction enzyme site.  In the case of the 5’ primers, an extra base was added 

between the restriction enzyme site and the NS1 coding region to allow in-frame 

expression of the NS1 cDNA after insertion into the vector.  Finally, around 21 

nucleotides from the NS1 coding sequence were included in the primers.  Table 1 also 

shows the melting temperatures for each primer, with the initial melting temperature 

given as that required for the sequence in black to anneal in the first reaction cycle.  

Subsequent annealing of the full-length primer sequence (including the region 

highlighted in red) would raise the melting temperatures as indicated. 

 

2.2.3 4-primer overlap PCR for NS1 mutants 

 

In order to create bat H17N10 NS1 proteins containing single amino acid substitutions, 

4-primer overlap PCR consisting of two-steps was performed, the steps in which are 

highlighted in Figure 5.  The first step produced two NS1 fragments (5’ and 3’) 

encoding the appropriate nucleotide mutations in an overlapping region.  These 

fragments were obtained using primers designed with one or two nucleotide changes at 

the appropriate positions, plus either the 5’ or 3’ primer for amplification of full-length 

H17N10 NS1 cDNA (shown in Table 2).  Specifically, the 5’ full-length primer was 

used with the 3’ mutation primer to produce the 5’ NS1 fragment, with the 3’ full-

length and 5’ mutation primers used to produce the 3’ NS1 fragment.  Altering more 
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than two nucleotides in the mutation primer sequences was avoided to assist with 

efficient annealing of the primers during the PCR reaction. 

 

A second step PCR was then performed, using the two NS1 cDNA fragments as the 

templates for amplification.  Full-length NS1 cDNAs were produced using the primers 

designed for the full-length PCR amplification and encoding the restriction enzyme 

sites.  

 

2.2.4 Agarose gel electrophoresis 

 

PCR product DNA was analysed by gel electrophoresis in 80ml 1% agarose gels made 

up in 1X TAE buffer (40mM Tris, 20mM acetic acid, 1mM EDTA) and containing 

30µg  ethidium bromide (at 10 µg/µl) for the visualisation of DNA.  To enable loading 

of DNA onto the gel, a 6X DNA loading dye was added to the PCR products at the 

appropriate dilution.  Samples were run at 90V in TAE buffer until the dye front 

reached the end of the gel.  A 1kb DNA ladder was run in parallel with the samples to 

determine the size of the PCR products.  Visualisation of agarose gels was achieved 

using a long-wave ultraviolet (UV) transilluminator with excision of products of 

interest under the UV light.  Excised bands were purified for DNA using a Gel 

Extraction Kit and following the manufacturer’s instructions (QIAquick, QIAGEN Ltd, 

UK). 

 

2.2.5 Restriction enzyme digest of PCR products and vector 

 

Purified PCR products (insert) were digested at the appropriate restriction enzymes 

sites encoded into their 5’ and 3’ ends (detailed in Table 1).  16.5µl of the purified 30µl 

DNA elute was digested in a reaction containing 2µl of 10X buffer D/H (depending on 

the restriction enzymes used, Promega, UK), 0.5µl BSA (10 mg/ml), and 0.5µl each of 

the two restriction enzymes at 10 units per µl (Promega, UK) for a reaction of 20µl 

final volume.  The reactions were incubated overnight at 37°C. 

 

The plasmid backbone (vector) of pLVX.V5.MCS.IRES.zsG at 1µg/µl was digested 

with the same restriction enzymes depending on the nature of the insert.  This reaction 

mixture contained 1µl of plasmid, 2µl 10X buffer D/H, 0.5µl BSA, 0.5µl each of the 

restriction enzymes and subsequently made up to a final volume of 20µl with 15.5µl of 

sterile water.  Digestion of the plasmid required incubation at 37°C for 2.5 hours. 
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Forward primers 

 

 

Reverse primers 

 

5-SpeI-H5N1-NS1 

                                  

5’ gcgaccactagtg 

ATGGACTCCAACACTGTGTCAAG 3’ 

 

(Mt = 55.3°C, increasing to 67.9°C) 

 

 

3-NotI-H5N1-NS1 

 

5’ gctaagcggccgc 

TCAAACTTTTGACTCAATTGTTCTC 3’ 

 

(Mt = 51.1°C, increasing to 66.6°C) 

 

 

5-EcoRI-H7N9-NS1  

 

5’ gctaccgaattcc 

ATGGATTCCAATACTGTGTCAAG 3’ 

 

(Mt = 51.7°C, increasing to 64.4°C) 

 

3-NotI-H7N9-NS1 

 

5’ gctaagcggccgc 

CTACTTTGTAGAGAGTGGAGATC 3’ 

 

(Mt = 53.5°C, increasing to 69°C) 

 

 

5-EcoRI-H17N10-NS1 

 

5’ ggtcagaattcg 
 

ATGGAACCAAACCCGACAACTATC 3’ 

 
(Mt = 63°C, increasing to 65.6°C) 

 

 

3-XbaI-H17N10-NS1 

 

5’ gcagtctaga 
 

CTATTCTGTTGAGCCATCTTGCGGTAG 3’ 

 
(Mt = 64.4°C, increasing to 66.7°C) 

 

 

5-EcoRI-H18N10-NS1 

 

5’ gctcagaattcc 
 

ATGGAATCGACCCCGACAACTATC 3’ 

 

(Mt = 64.4°C, increasing to 66.7°C) 

 

 

3-XbaI-H18N10-NS1 

 

5’ gcactctaga 
 

TCATTCTGCTGGCTCATTTTCCTG 3’ 

 

(Mt = 61.4°C, increasing to 64.4°C) 

 

 

Table 1: Forward and reverse primers designed for the amplification of H5N1, H7N9, 

H17N10 and H18N11 cDNA.  Primers encoded restriction enzyme sites to be present at the 5’ 

and 3’ ends of NS1 cDNA. These restriction sites are highlighted in red.  Also shown are the 

melting temperatures for the 1
st
 and subsequent PCR cycles, with the temperatures increasing 

upon incorporation of the restriction sites into the cDNA. 
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2.2.6 Ligation of digested insert and vector 

 

Digested vector was purified by agarose gel electrophoresis followed by recovery using 

a gel extraction kit as described previously.  Digested vector was run alongside an 

uncut plasmid on the gel to ensure successful digestion.  Digested inserts were purified 

by a ‘quick clean-up’ with the addition of 5X binding buffer (PB buffer, QIAGEN, 

UK), binding to a gel extraction column with subsequent steps followed in the gel 

extraction protocols (QIAquick, QIAGEN Ltd., UK). 

 

Purified insert and vector were then ligated together in a reaction mixture containing a 

1:1 ratio of vector to insert.  1µl of insert was mixed with 1µl vector, 1µl 10X ligase 

buffer, 1µl T4 DNA ligase (Promega, UK) and made up to a final volume of 10µl with 

6µl sterile water.  A negative control for ligation contained 7µl sterile water instead of 

the insert.  Ligation reactions were incubated for 5 hours at room temperature and 

stored at -20°C until transformation of bacterial cells as described below. 

 

2.2.7 Heat-shock transformation of competent bacterial cells 

 

5µl of the ligation reaction were added to highly competent DH5α E. coli cells 

(Invitrogen, UK) (thawed on ice in 50µl aliquots), with a positive control of 0.5µl of 

non-digested vector added to one tube.  Bacterial cells were incubated on ice for 30 

minutes with the ligation reactions, with occasional flicking of the tubes to mix.  Heat-

shock of cells lasted for 40 seconds at 42°C in a pre-heated water bath.  Cells were 

recovered on ice for 2 minutes before addition of 300µl of super optimal broth medium 

(SOC medium, Sigma-Aldrich, UK) and shaking incubation at 37°C for 45 minutes to 

stimulate cell growth.  100µl of cells of the mix was then plated onto LB-agar plates 

supplemented with 1 µg/µl ampicillin for selective growth of the ampicillin-resistance 

gene-containing bacteria. Plates were incubated, inverted, at 37°C overnight.  

 

2.2.8 Generation of plasmid stocks 

 

For growth of DNA in bacterial cells for mini-prep scale preparations, single colonies 

from transformation plates were picked and grown in 5ml of LB broth containing 1 

µg/µl ampicillin.  Growth was overnight in a shaking incubator at 37°C.  The next day, 

DNA was extracted from the cells using a DNA mini-prep kit (QIAGEN Ltd, UK) and 

according to the manufacturer’s instructions.  For the preparation of DNA stocks for 
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midi- or maxi-prep scale concentrations, bacterial cells were added in a 1:1000 dilution 

(from mini-culture stocks) to either 100ml (for midi-preps) or 200ml (for maxi-preps), 

again supplemented with 1 µg/µl ampicillin.  These cultures were again grown 

overnight in a shaking incubator at 37°C.  Again, DNA was extracted and purified 

using QIAGEN midi- or maxi-prep kits (QIAGEN Ltd, UK) following the 

manufacturer’s instructions.    

 

2.2.9 DNA spectrophotometry  

 

Purified DNA preparations were quantified by a NanoDrop Spectrophotometer 

(Thermo Scientific, UK), with 2µl of plasmid DNA read against elution buffer/sterile 

water to determine the DNA concentration.  The purity of the plasmid DNA was also 

calculated and indicated by the Abs260/Abs280 ratio, with a ratio of 1.8 or greater 

considered to be DNA of an acceptable purity.  An appropriate concentration of 

plasmid DNA preparations were then sent for sequencing using a primer for the CMV 

promoter region encoded in the pLVX plasmid to determine correct cloning of the 

appropriate insert (Dundee DNA Sequencing Services, UK). 

 

2.3  Reporter assays 

 

2.3.1 Interferon-β (IFN) induction assay 

 

This assay was performed in a range of cell types including human 293T, bat TB1-Lu, 

horse NBL6, mouse BF and dog MDCK to analyse the activation of the IFN-β 

promoter.  Cells were either transfected in suspension or seeded at an appropriate 

number for ~60% confluency the following day for transfection.  Cells in a 24-well 

plate were transfected with 12.5ng of p125luc containing Firefly luciferase (FF-luc) 

under the control of an IFN-β promoter, 12.5ng of pRL-TK containing Renilla 

luciferase (Ren-luc) under the control of a constitutively active herpes simplex virus 

thymidine kinase (HSV-TK) promoter and 0.25µg pLVX plasmid expressing either 

GST or an NS1 (Hale et al., 2010).  Transfection mixtures also contained 50µl of Opti-

MEM (Life Technologies, UK) and FuGene at a 3 µg:1 µl DNA ratio (Promega, UK) to 

facilitate transfection.  Cells were incubated at 37°C for 24 hours followed by infection 

with a 1 in 50 diluted Sendai virus (SeV) stock for a further 16 hours at 37°C.  Cells 

were harvested and luciferase activity determined by Dual-Luciferase Reporter Assay 

(Promega, UK) by following the manufacturer’s instructions.  .  
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Table 2: Primers designed for the 1
st
 step PCR in a 4-primer overlap PCR for the 

generation of 6 single amino acid substitutions in NS1.  The H17N10 NS1 was used as the 

background sequence for the substitutions Q95L, T98M, I99S, R143T, N161S and S164P 

achieved by the mutation of one or two nucleotides in the NS1 cDNAs.  The primers were 

designed to introduce a mutation in an overlapping region of NS1 cDNA.  Also shown in this 

table are the varying melting temperatures for the initial primer annealing steps where the 

nucleotides highlighted in red will not anneal.  The melting temperatures increase for 

subsequent annealing steps where the full-length primers will bind to the template DNA.  

 

1
st
 step PCR primers designed for single amino acid substitution NS1s 

 

 

Q95L 

 

5’ CA GAG ATG ACT CTC 

GAG GAA ACA ATC AG 3’ 

 

5’ CT GAT TGT TTC CTC 

GAG AGT CAT CTC TG 3’ 

 
Mt = 58°C, increasing to 59.9°C 

 

 

T98M 

                                                       

5’ G ACT CAA GAG GAA ATG 

ATC AGA AAC TGG 3’ 

 

5’ CCA GTT TCT GAT CAT TTC 

CTC TTG AGT C 3’ 

 
Mt = 56.4°C, increasing to 58.5°C 

 

 

I99S 

                                                   

5’ CAA GAG GAA ACA AGC 

AGA AAC TGG GTG 3’ 

 

5’ CAC CCA GTT TCT GCT TGT 

TTC CTC TTG 3’ 

 
Mt = 58°C, increasing to 59.5°C 

 

 

R143T 

                                               

5’ GGA AAA CTA GAA ACA 

CTT GTA TTA GCT AG 3’ 

 

5’ CT AGC TAA TAC AAG TGT 

TTC TAG TTT TCC 3’ 

 
Mt = 53.7°C, increasing to 55.9°C 

 

 

N161S 

 

5’ GTG GGT GAA ATC AGC 

CCT CTG TCT TTT G 3’ 

 

5’ C AAA AGA CAG AGG GCT 

GAT TTC ACC CAC 3’ 

 
Mt =58°C, increasing to 61.4°C 

 

 

S164P 

 

5’ C AAC CCT CTG CCT 

TTT GTT ACC GGA C 3’ 

 

5’ G TCC GGT AAC AAA 

AGG CAG AGG GTT G 3’ 

 
Mt = 59.3°C, increasing to 61.1°C 
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Figure 5.  4-primer overlap PCR method for the production of full-length NS1 cDNAs 

encoding a single amino acid substitution.  A first round PCR reaction is performed using 

primers (1 + 2 and 3 + 4) that introduce a specific mutation in an overlapping region. Details of 

these primers used can be found in Table 2.  This produces two NS1 cDNA fragments both 

encoding the mutation.  A second round PCR uses these fragments as templates to amplify full-

length (FL) NS1 cDNA using primers for the full-length construct (1 + 4). Diagram adapted 

from (Heckman and Pease, 2007).  
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Cells were lysed in 100µl passive lysis buffer for 15 minutes.  FF-luc levels were 

measured by addition of Luciferase Assay Reagent (LAR II) followed by Ren-luc 

levels measured by addition of the Stop & Glo Reagent.  Luciferase levels were 

determined by use of a luminometer. All transfection conditions were repeated in 

triplicate, with experiments also repeated independently twice.  

 

2.3.2 General gene expression assay 

 

To analyse the levels of general gene expression, human 293T and bat TB1-Lu cells in 

24-well plates were co-transfected with 12.5ng of pRL-TK and 0.25µg of pLVX 

expressing GST or an NS1, using FuGene at a 3:1 ratio (Promega, UK).  24 hours post-

transfection the activity of Ren-luc was determined by Renilla Luciferase Assay 

System (Promega, UK) by following the manufacturer’s instructions.   Cells were lysed 

in 100µl Renilla Luciferase Assay Lysis Buffer with Ren-luc activity measured using 

Renilla Luciferase Assay Reagent and read by luminometer.  All transfection 

conditions were repeated in triplicate, with experiments also repeated twice 

independently.  

 

2.4  Immunoprecipitations 

 

293T cells were co-transfected in T25 flasks with 2µg of plasmid for the expression of 

the tagged host protein of interest, and 2µg of NS1 or GST using FuGene (Promega, 

UK).  Cells were harvested 48 hours post-transfection by removing the medium and 

washing twice in ice-cold PBS.  Cells were lysed for 10 minutes on ice in 1ml (per T25 

flask) of immunoprecipitation (IP) buffer consisting of; 20mM Tris-HCl (pH 7.8), 

5mM EDTA, 0.5% (v/v) IGEPAL/NP-40 and 650mM NaCl, supplemented with a fresh 

protease inhibitor cocktail tablet (1 tablet per 10ml IP buffer, Roche Diagnostics, 

Germany).  Lysates were disrupted by syringing 3 times with a 1ml 25G syringe and a 

further 3 times with a 0.5ml 29G syringe.  Lysates were then clarified into insoluble 

and soluble fractions by centrifugation at 14,000 rpm for 50 minutes at 4°C.  

 

Following clarification, 50µl samples were taken from the soluble fraction and with 

addition of 2X urea disruption buffer (6M urea, 4% SDS, 1M β-mercaptoethanol, 

bromophenol blue) then represented ‘input’ samples.  Immune complexes were formed 

by incubating the remaining soluble antigen supernatant with 2µl of α-V5 336 antibody 
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for 2 hours at 4°C in an ‘end-over-end’ tumbler.  Immune complexes were precipitated 

by incubating with Protein G Sepharose Fast Flow beads (Sigma, Life Sciences, UK) 

overnight at 4°C in an ‘end-over-end’ tumbler.  Beads bound with immune complexes 

were washed 6 times by centrifugation at 2,000 rpm for 1 minute to pellet the beads 

followed by removal of the supernatant and addition of 1ml fresh IP buffer to the 

beads.  Following the last wash all supernatant was removed and samples lysed in 50µl 

2X urea disruption buffer to represent ‘pull-down’ samples.  Immune complexes were 

dissociated by heating at 100°C for 5 minutes and beads were pelleted by 

centrifugation at 2000 rpm for 1 minute.  Samples were then analysed by SDS-PAGE 

and western blot as described below.  

 

2.5  Protein analysis 

 

2.5.1 SDS-PAGE and western blot 

 

Cell media was removed and cells washed twice with 1X PBS before lysing in 2X urea 

disruption buffer (6M urea, 4% SDS, 2M β-mercaptoethanol with the addition of a 

small amount of bromophenol blue to colour appropriately).  Cells were lysed in 

varying volumes of disruption buffer depending on the well-size i.e. 100µl for 24-well 

plates and 150µl for 12-well plates.  Harvested samples were passed through a 0.5ml 

29G syringe 3 times in order to shear DNA, followed by boiling at 100°C for 5 

minutes.  Proteins were separated and analysed by sodium dodecyl sulphate – 

polyacrylamide gel electrophoresis (SDS-PAGE) using 4-12% NuPAGE 

polyacrylamide gradient gels (Novex, Life Technologies, UK).  Gels were run at 180V 

in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (Novex, Life Technologies, 

UK) until the dye front reached the bottom of the gel.  Samples were run alongside a 

protein molecular weight marker to determine their size (Bio-Rad Laboratories, USA).   

 

Following separation by SDS-PAGE, proteins were then transferred to either a 

polyvinylidene difluoride (PVDF) membrane (requires activation in methanol) or a 

nitrocellulose blotting membrane (GE Healthcare, Life Sciences, UK).  Membrane 

transference took place in XCell II Blot Modules (Invitrogen, UK) in NuPAGE 

Transfer Buffer (Novex, Life Technologies, UK) for 75 minutes at 28V.  Following 

transfer, membranes were blocked in 5% milk (5% skimmed milk powder in 1X PBS 

with 0.1% Tween-20, PBS-T) for 1 hour.  Blocking buffer was removed by washing 
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the membranes 3 times in PBS-T before addition of primary antibody diluted 

appropriately in 5% milk/PBS-T.  Incubation in primary antibody occurred overnight at 

4°C, or for 1 hour at room temperature.  Antibody was removed by washing 3 times 

initially in PBS-T, followed by 6 further washes over 30 minutes.  Secondary 

antibodies of horseradish peroxidase (HRP) conjugated anti-mouse or anti-rabbit IgG 

were also diluted appropriately in 5% milk/PBS-T and incubated on the membranes for 

1 hour at room temperature.  Final washes consisted of 3 times initially in PBS-T, a 

further 4 times in PBS-T followed by 2 times in either 1X PBS or distilled water (to 

remove the Tween-20, or in the case of distilled water to remove any background 

fluorescence from the presence of PBS on the membrane), over the course of 30 

minutes.   

 

Protein bands were visualised by one of two methods; by x-ray films or digital images.  

The first requires application of an enhanced chemiluminescence substrate, Western 

Lightning Plus-ECL (PerkinElmer, Inc., USA) to detect the HRP-conjugated 

antibodies, followed by exposure using KODAK Medical X-ray Film (Carestream 

Health, France).  The second uses an Odyssey CLx Infrared Imaging System (LI-COR, 

Biosciences, Ltd, UK) to detect the fluorescent antibody and transform it into a digital 

signal.  

 

2.5.2 Indirect Immunofluorescence 

 

For indirect immunofluorescence analysis, cells were grown on 10mm coverslips in 24-

well plates for 24 hours post-transfection with NS1 expressing plasmids.  Cells were 

subsequently washed twice with 1X PBS before fixing for 15 minutes in 5% 

formaldehyde (in 1X PBS).  Cells were washed twice in 1X PBS to remove the 

formaldehyde before permeablisation using 0.5% Triton-X-100 (in 1X PBS) for 5 

minutes at room temperature.  Coverslips were washed 3 times in 1X PBS and then 

blocked for 30 minutes with 1X PBS supplemented with 2% FBS.  Per coverslip, 35µl 

of α-V5 336 primary antibody (diluted in 1X PBS supplemented with 2% FBS) was 

added and incubated for 1 hour at room temperature.  Following 3 washes in 1X PBS, 

35µl of the secondary antibody, Alexa Fluor 555 Donkey anti-mouse IgG (Life 

Technologies, UK), was added (diluted in 1X PBS supplemented with 2% FBS) and 

incubated for 1 hour at room temperature.  Coverslips were kept in the dark for this 

incubation period to avoid bleaching of the fluorescence.  Incubation was followed by 
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3 washes using 1X PBS followed by 2 washes with sterile water.  Coverslips were then 

mounted on glass slides using 8µl VECTASHIELD HardSet Mounting Medium 

(Vector Laboratories Ltd., UK) incorporating DAPI for nuclei staining.  

Immunofluorescence was visualised using a Zeiss LSM 710 Confocal Microscope.  

 

2.5.3 Antibodies 

 

Antibodies were used for immunoprecipitation (IP), western blot (WB) and 

immunofluorescence (IF) studies.  Primary and secondary (HRP-conjugated) 

antibodies used in the duration of this study are detailed in Table 3, indicating the 

application in which the antibodies were used, the dilution they were used at, the 

species in which they were raised and from where they were obtained, including the 

catalogue number. 

 

2.5.4 Amino acid sequence alignment 

 

Multiple sequence alignment of various NS1 protein amino acid sequences was 

conducted using the Clustal Omega web service (EMBL-EBI, UK).   
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Primary  

antibody 

 

Application 

 

Species 

 

Dilution  

 

Source 

 

V5 336 

 

 

WB, IP and 

IF 

 

Mouse 

 

1:2000 for WB 

1:1000 for IF 

 

Kindly provided by Prof. Rick 

Randall (University of St. 

Andrews) 

 

V5 680 conjugate 

(Dylight) 

 

WB 

 

Mouse 

 

1:2000 

 

Thermo Fisher Scientific  

 

GFP 

 

WB 

 

Rabbit 

 

1:2000 

 

Abcam, UK  

 

HA-tag 

 

WB 

 

Mouse 

 

1:2000 

 

Cell Signalling, UK  

 

FLAG-tag 

 

WB 

 

Rabbit 

 

1:2000 

 

Sigma, UK  

 

β-actin 

 

WB 

 

Rabbit 

 

1:3000 

 

Sigma, UK 

 

Secondary 

antibody 

 

Application 

 

Species 

 

Dilution 

 

Source 

 

V5-HRP 

 

WB 

 

Mouse 

 

1:10,000 

 

AbD Serotec, Bio-Rad, UK 

 

Anti-mouse IgG 

 

WB 

 

Mouse 

 

1:4000 

 

Sigma, UK 

 

Anti-rabbit IgG 

 

WB 

 

Rabbit 

 

1:4000 

 

Sigma, UK 

Dylight 800 

conjugates 

 

WB 

 

Rabbit 

 

1:10,000 
Fisher Scientific 

 

Alexa-555 anti-

mouse 

 

IF 

 

Donkey 

 

1:1000 

 

Life Technologies, UK 

 

Table 3.  A list of the primary and secondary antibodies used for western blot, indirect 

immunofluorescence and immunoprecipitation analyses.  Detailed are the applications in 

which the indicated antibodies were used in, the species in which the antibodies were raised, 

the experimental dilution the antibodies were used at, and the source from which the antibodies 

were obtained (including the catalogue number shown in brackets). 
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Chapter 3:  RESULTS 

 

Characterisation of the HA and NA glycoproteins from the two novel bat IAVs 

revealed that neither has the canonical functions associated with these proteins in other 

IAVs, in particular, the H17 and H18 HA proteins cannot bind sialic acids, and the N10 

and N11 NA proteins cannot cleave them (Li et al., 2012a, Zhu et al., 2013, Zhu et al., 

2012, Sun et al., 2013).  It is intriguing to determine if the other proteins encoded by 

these bat viral gene segments have non-canonical functions also.  Indeed, a study from 

Zhou et al. presented preliminary characterisation of the H17N10 NS1 protein, 

compared with PR8 NS1, in the context of a synthetic virus (Zhou et al., 2014).  

Deletion of the NS1 ED highlighted functional differences between these NS1 proteins 

during infection of a mouse model; mainly that truncation of the bat IAV NS1 had less 

of an effect, in comparison to PR8 NS1, on viral replication or the antagonism of the 

host IFN response (Zhou et al., 2014).  These findings suggest that the H17N10 NS1 

ED differs in its functional abilities, or perhaps may not function efficiently in mice.  

This study therefore sought to further characterise the H17N10 NS1, alongside the 

H18N11 NS1, for a range of functional abilities in a variety of cell types from different 

species. 

 

3.1  Bat IAV NS1 proteins have divergent sequences compared to other 

IAV NS1 proteins 

 

3.1.1 Sequence alignment of a  panel of IAV NS1 proteins highlights 

differences 

 

An initial sequence alignment analysis was conducted with the two bat IAV NS1 

proteins alongside representatives from human (H1N1) and avian (H5N1 and H7N9) 

viruses for comparison of amino-acid level conservation (Figure 6).  This alignment 

highlighted the high variability of the two bat IAV NS1 proteins in comparison to the 

other IAV NS1 proteins.  The H17N10 and H18N11 NS1 proteins are both 221 amino 

acids in length, in comparison to PR8 NS1 which is 230 amino acids long, H5N1 NS1 

which is 225 amino acids long and finally H7N9 NS1 which is 217 amino acids long.  

The difference in length is mainly due to variable C-terminal tail regions, with both the 

bat IAV NS1 proteins and the H7N9 NS1 featuring truncated tail regions.  Also 

observed are two amino acid insertions in the bat NS1 sequences, featured at positions 
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3 and 115 in comparison to the PR8 NS1.  Therefore, for the remainder of this thesis, 

PR8 NS1 residue numbering will be referred to, with the corresponding bat IAV NS1 

numbering referred to in brackets, for example W187 in PR8 NS1 corresponds to 

W189 in the bat IAV NS1 proteins. 

 

Initial BLAST analysis gave insight into the divergence of NS1 proteins from different 

IAV strains.  Human PR8 NS1 was found to share only 45 and 49% protein level 

sequence similarity to the H17N10 and H18N11 bat NS1 proteins respectively.  

Furthermore, the avian H7N9 NS1 shares only 46 and 50% similarity to the bat 

H17N10 and H18N11 NS1s, but has a much closer similarity (86%) to the human PR8 

NS1.  Within species differences were also compared, with the two avian NS1 

representatives, H5N1 and H7N9, found to share 85% sequence identity.  The bat 

H17N10 and H18N11 NS1 proteins were found to share only a slightly lower 82% 

similarity at the protein level, showing that inter-species differences are much greater.  

As NS1 proteins are divided into two alleles based on sequence diversity (A and B), a 

further analysis using an NS1 representative from an allele B 

(A/Mallard/Alberta/827/78, H8N4) was conducted.  It was found that the H17N10 and 

H18N11 NS1 proteins share 49% identity with the H8N4 NS1, whereas the allele A 

NS1 proteins from PR8 and H7N9 share 67% with the H8N4 NS1.  As the bat IAV 

NS1 proteins share comparable sequence identities with both allele A and B NS1 

representatives, it is difficult to place the bat IAV NS1 proteins into either 

classification; indeed it may be that they require a separate allele grouping.   

 

3.1.2 Prediction of functional abilities of bat IAV NS1 proteins based on 

sequence analysis 

 

Analysis of the multiple NS1 protein alignment allows some predictions of the 

functional capabilities of the two bat NS1 proteins. Residues implicated in certain NS1 

functional properties are highlighted in the sequence alignment shown in Figure 6 and 

further summarised in Table 4.  Conservation of the NLS essential residues at R35, 

R38 and K41 (R36, R39 and K42) suggest that the two bat NS1 proteins will exhibit a 

nuclear localisation pattern (Melen et al., 2007).  Furthermore, conservation of R38 and 

K41 (R39 and K42) in both H17N10 and H18N11 NS1 proteins suggest that both 

RBDs of these proteins will have RNA-binding capabilities (Wang et al., 1999).   
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Figure 6. Amino acid sequence alignment of NS1 protein representatives from human, 

avian and bat IAVs.  The bat H17N10 (A/little yellow shouldered bat/Guatemala/153/2009) 

and H18N11 (A/flat-faced bat/Peru/033/2010) NS1 protein sequences are compared with the 

human H1N1 (A/Puerto Rico/8/34), the avian H5N1 (A/Nigeria/OG10/2007) and the avian 

H7N9 (A/Shanghai/2/S1078/2013) NS1 representatives.  Highlighted in grey are the conserved 

residues across the NS1 sequences shown.  The residues highlighted in green are those critical 

for the binding of dsRNA by the NS1 RNA-binding domain, residues highlighted in brown 

show the nuclear localisation and export signals (NLS and NES), residues highlighted in pink 

are those critical for binding of the p85β subunit of PI3K, residues in light blue indicate those 

essential for CPSF30 interaction, in orange are the residues associated with the binding of 

PKR, and finally the residue highlighted in dark blue is known to mediate the dimerisation of 

the NS1 effector domain. This multiple sequence alignment was produced using Clustal 

Omega. 
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The W187 residue (W189) is also conserved, again suggesting efficient RNA-binding 

as this residue is essential for ED dimerisation and contributes to effective dsRNA 

binding (Ayllon et al., 2012b, Kerry et al., 2011).  However, there is a difference in the 

S42 residue normally found in PR8 which occurs as A43 in both bat IAV NS1 proteins.  

This particular residue substitution has been shown previously to decrease RNA-

binding by approximately 10-fold in association with a loss of phosphorylation at the 

serine (Hsiang et al., 2012).   

 

Predictions can also be made about the binding capabilities of the bat IAV NS1 

proteins with cellular factors known to bind NS1 in a strain-specific manner.  Certain 

residues have been associated with the interaction between NS1 and CPSF30, namely 

at positions 103, 106, 108, 125 and 189 (Das et al., 2008, Hale et al., 2010).  

Differences occur at residues 103, 106 and 125 in the H17N10 and H18N11 NS1 

proteins, suggesting that these proteins may not form interactions with CPSF30 and 

would therefore be unable to block general host gene expression.  Due to this 

prediction an NS1 protein capable of interacting with CPSF30 (H5N1 NS1) was 

included in this study for the purposes of a comparative gene expression assay. 

 

Three other residues have been documented to be necessary for the interaction between 

NS1 and the p85β subunit of PI3K; Y89, P162 and P164.  Y89 is seen to be conserved 

in the bat IAV NS1 proteins, with P162 also conserved, but not P164.  This makes it 

unclear if these NS1 proteins would be able to bind p85β, particularly as more residues 

are likely to play a role in this interaction.  Finally, NS1 can interact with host PKR, 

involving residues 123 to 127 on NS1 (Min et al., 2007, Li et al., 2006).  There are 

several differences in the bat NS1 proteins in this PKR-binding motif, suggesting that 

neither may have the ability to interact with PKR. 
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Table 4. Predicting the functional capabilities of the H17N10 NS1 protein by sequence 

analysis. The sequence alignment of a panel of IAV NS1 proteins with the H17N10 bat IAV 

NS1 protein highlighted residues that were conserved and those with polymorphisms present.  

Functional abilities of the H17N10 NS1 could be predicted based on these residue 

observations.  This table displays certain known residue requirements for nuclear/nucleolar 

localisation signals (NLS1/2, NoLS), RNA-binding, ED dimerisation, CPSF30, PKR and 

PI3K-binding capabilities in NS1 proteins. The corresponding residues that are present in the 

H17N10 NS1 are also shown.  Any polymorphisms in the H17N10 NS1 are highlighted in red 

here with the predicted effect on its functional abilities also commented on.  

  

 

Residues of interest 

 

Corresponding 

residues in 

H17N10 NS1 
 

 

Predicted functional 

ability in bat NS1s 

 

References 

 
 

NLS1 

(R35, R38, K41) 

 

NLS2/NoLS 

(219-232) 

 

 

 

NLS1: R36, R39, 

K41 

 

NLS2/NoLS: not 

present 

 

Likely to have a nuclear 

but not nucleolar 

localisation pattern 

as NLS2 is only found 

in H3N2 NS1 proteins. 

 

 

(Melen et al., 2007, 

Greenspan et al., 1988) 

 

RNA-binding 

(R38, K41, S42) 

 

 

R39, K42, A43 

 

RNA binding capability 

may be reduced by the 

presence of A43 

 

 

(Wang et al., 1999, 

Cheng et al., 2009) 

 

ED dimerisation 

(W187) 

 
 

W189 

 

Dimerisation of ED 

should promote RNA-

binding 

 

 

(Ayllon et al., 2012b, 

Kerry et al., 2011) 

 

 

CPSF30 binding 

(F103, M106, K108, 

D125, D189) 

 

 

V103, Q106, K108, 

N125, D189 

 

Unlikely to bind 

CPSF30 due to several 

polymorphisms at 

interaction site 

 

 

 

(Das et al., 2008, Hale et 

al., 2010) 

 

PI3K binding 

(Y89, P162, P164) 

 

 

Y89, P162, S164 

 

Cannot predict 

interaction with p85β 

subunit of PI3K 

 

 

 

(Hale et al., 2008b) 

 

PKR binding 

(residues 123-127: 

IMDKN) 

 

 

123-127: 

VTNKV (H17) 

ITDKV (H18) 

 

May be unable to 

interact with PKR 

 

(Li et al., 2006, Min et 

al., 2007) 
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3.2  Construction of NS1 expression vectors 

 

3.2.1 Cloning strategy for NS1 cDNA 

 

In order to characterise the two bat IAV NS1 proteins, a cloning strategy was 

developed for the generation of a panel of IAV NS1 expression vectors. Three IAV 

NS1 proteins were chosen for comparison with the two bat IAV NS1 proteins in this 

study; H1N1, H5N1 and H7N9 NS1 proteins. A human representative (H1N1) from the 

A/Puerto Rico/8/34 virus was chosen as this NS1 is a well-studied, lab-adapted 

example and a good basis for comparative studies.  The avian NS1 (H7N9) from the 

A/Shanghai/2/S1078/2013 virus was chosen as it was found by preliminary BLAST 

analysis to be one of the closest related avian IAV NS1 proteins to the bat IAV NS1 

proteins. The H5N1 NS1 protein from the A/Nigeria/OG10/2007 virus was chosen as 

an example of an NS1 protein that can interact with CPSF30 in order to suppress host 

gene expression (Kainov et al., 2011). 

 

The H17N10, H18N11, H5N1 and H7N9 NS1 cDNAs were cloned into separate 

pLVX.V5.MCS.IRES.zsGreen vectors, with the PR8 H1N1 NS1 in the same vector 

already available in the lab.  The NS1 cDNAs were cloned into the MCS present in the 

vector (shown in Figure 4).  All NS1 cDNAs encoded silent mutations in the splice 

acceptor site to prevent expression of NEP (described in (Basler et al., 2001)).   The 

H17N10 and H18N11 NS1 cDNAs were restriction enzyme digested and ligated into 

the vector between the EcoRI and XbaI restriction site, the H5N1 NS1 cDNA was 

between the SpeI and NotI sites, whereas H7N9 NS1 cDNA was cloned using the 

EcoRI and NotI sites.  Use of these sites depended on their absence in the NS1 cDNA.   

 

Present in the vector is an internal ribosome entry site (IRES), designating the mRNA 

bicistronic as it produces the NS1 protein of interest along with a zsGreen fluorescent 

protein. Presence of the zsGreen protein was useful for determining the transfection 

efficiency of the NS1 expression plasmids during these studies.  A further feature of 

this vector is a stretch of nucleotides encoding the 14-amino acid V5 tag located at the 

5’ end of each NS1 cDNA. Thus the NS1 proteins were expression with the V5-tag 

present at the N-terminus as the NS1 C-terminus is variable and can be responsible for 

a number of functions in which interference is avoided.   
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3.2.2 Testing expression of NS1 proteins from the pLVX vector constructs 

 

To determine if the pLVX expression plasmids constructed were able to express the 

two bat NS1 proteins encoded, 293T cells were transfected with pLVX vectors 

encoding the PR8, H17N10, or H18N11 NS1 cDNAs.  48 hours post-transfection cells 

were lysed in UDB and analysed by SDS-PAGE and western blot using α-V5-336 

antibody to determine expression levels.  The total NS1 expression levels are shown in 

Figure 7 where the bat NS1 proteins, and the PR8 NS1, can be seen to express equally. 

 

3.3  Bat IAV NS1 proteins have nuclear localisation patterns in human and 

bat cells 

 

During the early stages of infection the IAV NS1 protein is known to localise to the 

nucleus, with this targeting predominantly mediated by the presence of an N-terminal 

NLS1, involving the residues R35, R38 and K41 (Melen et al., 2007, Greenspan et al., 

1988).  As these residues are conserved in the two bat NS1 proteins it was predicted 

that they would also exhibit nuclear localisation patterns.  There is also the presence of 

a second NLS (NLS2) in certain avian IAV NS1 proteins with an elongated length of 

237 amino acids, positioned between residues 219-232 (Melen et al., 2007).  However, 

as the H17N10 and H18N11 NS1 proteins are only 221 amino acids long this is not 

likely to be present or play a role in nuclear localisation. 

 

In order to determine the intracellular localisation of the two bat IAV NS1 proteins, 

and in particular compare between human and bat cells, human lung fibroblast (MRC5-

hTERT) and bat lung epithelial (TB1-Lu) cells were transfected with the V5-NS1 

expression plasmids for 24 hours.  Fixing of the cells was followed by 

immunofluorescence using α-V5 antibody, and intracellular localisation was observed 

by confocal microscopy.  Localisation patterns of the H1N1, H5N1, H7N9, H17N10 

and H18N11 NS1 proteins were seen to be all predominantly nuclear in both human 

and bat cells (shown in Figures 8A and B).  All NS1 proteins tested were absent from 

the nucleolus.  As a nucleolar location signal (NoLS) has been reported to be found in 

NS1 proteins in the NLS2 region (between residues 219 and 237), it was expected that 

none of the NS1 proteins tested would exhibit nucleolar localisation due to their 

truncated lengths (Melen et al., 2007).  
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Figure 7. Testing the expression of NS1 proteins from the constructed pLVX expression 

vectors.  293T cells were transfected with either a pLVX expression plasmid with no NS1 

encoded, or pLVX vectors encoding the PR8 (H1N1), H17N10 or H18N11 NS1 cDNAs.  

Cells were harvested after 48 hours with total lysates analysed by SDS-PAGE and western 

blot using α-V5 antibody to show total levels of NS1 present. Also shown is a further negative 

control (mock) where no DNA was transfected.  Levels of NS1 expression were seen to be 

similar for the PR8, H17N10 and H18N10 NS1 proteins.  Levels of NS1 expression were 

compared to that of β-actin as a loading control for the amount of protein.  
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Furthermore, there is perhaps a greater cytoplasmic presence in the bat cells for the two 

bat IAV NS1 proteins compared with the other IAV NS1 proteins which remain 

predominantly nuclear.  This could potentially be governed by differences seen in the 

NES residues in the bat IAV NS1 proteins which are located at positions 134 to 147 

(and highlighted in the sequence alignment shown in Figure 6).  Nuclear export 

requires the alleviation of inhibitory signals located 14 residues downstream, thus there 

may be differences in the functioning of these inhibitory signals amongst the NS1 

proteins (Li et al., 1998).  However, it may be that there are differences in the 

expression levels of the NS1 proteins and that the two bat IAV NS1 proteins are simply 

expressed at a higher level in these bat cells.   

 

3.4  Bat IAV NS1 proteins antagonise IFN-β induction in human and bat 

cells 

 

The ability to antagonise the IFN-β response is perhaps the major function of NS1 

during IAV infection (Garcia-Sastre et al., 1998) therefore this capability was tested for 

the two bat IAV NS1 proteins.  A previous study has shown the H17N10 NS1 to inhibit 

IFN-β induction to a level comparable to that of PR8 NS1 in human HEK-293T cells 

(Zhou et al., 2014).  This study sought to expand on these findings to include the 

H18N11 NS1 and to investigate the ability of these NS1 proteins to inhibit IFN 

induction in a range of cell types from various species. 

 

To determine the ability of the two bat IAV NS1 proteins to antagonise the induction of 

IFN-β in human and bat cells, a dual luciferase assay was conducted for the panel of 

IAV NS1 proteins.  Human 293T cells and bat TB1-Lu cells were co-transfected with a 

pLVX plasmid expressing the NS1 of interest, or GST as a negative control, plus two 

luciferase reporter plasmids; a Firefly luciferase (FF-luc) expressing plasmid under the 

control of the IFN-β promoter, and a Renilla luciferase (Ren-luc) expressing plasmid 

under the control of a constitutively expressed HSV-TK promoter.  FF-luc expression 

therefore is an indicator of the level of IFN-β activation, whereas the Ren-luc 

expression is used as an internal control for transfection efficiency.   

 



63 
 

 

 

 

Figure 8. Intracellular localisation of human, avian and bat IAV NS1 proteins in (A) 

human and (B) bat cells. Human lung fibroblast (MRC5-hTert) and bat lung epithelial (TB1-

Lu) cells were transfected with pLVX plasmids expressing V5-tagged NS1 proteins or an 

empty pLVX plasmid as a negative control.  Coverslips were fixed after 24 hours and 

immunostained with α-V5 antibody followed by an anti-mouse fluorescent antibody (Alexa-

555).  Cells were visualised using confocal microscopy.  Images shown represent observations 

from two independent experiments. 
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24 hours post-transfection the cells were infected with Sendai virus (SeV) for 16 hours, 

leading to induction of the IFN-β promoter and expression of FF-luc.  Luciferase levels 

were then determined by dual luciferase assay and read by luminometer.  Relative FF-

luc production was calculated as the ratio between the FF-luc and Ren-luc levels.  

Values were then converted to a relative percentage compared to that for GST 

transfected cells infected with SeV, which was designated as the maximum induction 

achieved, at 100%.  A further well of cells for each transfection condition was lysed to 

determine the levels of NS1 expression by SDS-PAGE and western blot analysis using 

α-V5-336 antibody. 

 

In order to establish the dual luciferase assay in new cell types (including a panel of 

cell types from different species later described), transfected cells were first tested for 

the ability of SeV to induce IFN-β reporter activity.  This was achieved by infecting 

replicate wells of reporter transfected cells with 10-fold dilutions of SeV, and the levels 

of FF-luc production were compared to that of non-infected cells.  Cell lines in which 

induction of the IFN promoter by SeV was successful included human, bat, horse, 

mouse and dog cells (raw data, not including dog cells, is provided in Table 5A).  

However the chicken, bovine and porcine cell lines were not found to support IFN-β 

reporter induction after SeV infection (raw data for the chicken and bovine cells is 

provided in Table 5B).  This could be due to issues with transfection efficiency of the 

luciferase plasmids, or indeed that SeV cannot competently infect these cell types.   

 

In human cells, in comparison to GST, the PR8 NS1 was found to antagonise IFN-β 

reporter activity by approximately 90% (shown in Figure 9A).  This was comparable 

to the two avian IAV NS1 proteins, H5N1 and H7N9, which inhibited induction by 

approximately 85 and 90%.  Additionally, the two bat IAV NS1 proteins, H17N10 and 

H18N11, were also able to inhibit IFN-β reporter activity by over 80 and 85% in 

human cells, therefore at a level comparable to the other IAV NS1 proteins tested.  

 

In bat cells, SeV infection also induced robust of the IFN-β reporter activity (shown in 

Figure 9B).  However, the human and avian IAV NS1 proteins were only able to 

antagonise induction by less than 50% compared to the GST control.  Similar abilities 

were again observed for the two bat IAV NS1 proteins, with an ability to limit IFN-β 

promoter induction to approximately 45% on average.  A lesser ability of the panel of 

NS1 proteins to antagonise IFN-β reporter activity in the bat cells may be due to the 
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NS1 proteins having less of an ability to interact with the bat cell specific factors 

involved in the IFN induction cascade, for example RIG-I or Riplet.  The remaining 

ability to limit IFN-β promoter activity could be solely due to the sequestering of 

dsRNA.  

 

Also shown in Figures 9A and B are the expression levels of each NS1 protein in 

human and bat cells.  In human cells these expression levels are seen to be comparable 

amongst the NS1 proteins, with the exception of the H5N1 NS1 which expressed at 

relatively low levels.  This may be due to its ability to bind CPSF30 thus affecting 

general gene expression and therefore its own expression.  In the bat cells, there is a 

noticeable decrease in H1N1 NS1 expression in comparison to the other NS1 proteins 

(aside from H5N1 NS1).  This finding is surprising given that PR8 NS1 is known to 

express well, and it may be that there were experimental issues with this particular 

plasmid stock having a lower concentration than thought.   

 

3.5  Bat IAV NS1 proteins antagonise IFN-β induction in a range of cell 

lines from different species 

 

The ability of the bat IAV NS1 proteins to limit the induction of IFN in cells from a 

range of species was tested to assess the potential contribution to the zoonotic ability of 

these bat viruses.  Studies involving the IFN-antagonist factors from other viruses have 

established that these viral proteins can play a role in determining host range.  The V 

protein of parainfluenza virus 5 (PIV5) circumvents the human innate immune 

response by STAT2-mediated STAT1 degradation, however due to the divergent 

STAT2 protein found in mice, the PIV5 V protein is unable to antagonise IFN 

signalling in mouse cells (Park et al., 1999, Didcock et al., 1999).  Another study 

established that the V protein of Newcastle disease virus (NDV) is a host range 

determinant due to species-specific effects on IFN-antagonism and apoptosis 

prevention (Park et al., 2003).   
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      A 

Cell type SeV dilution FF Ren Ratio Fold over 

mock 

 

Human 

(293T) 

Mock 17,277 458,914 0.04 0 

1:10 7,015,355 457,738 15.32 380 

1:100 2,881,533 475,871 6.0553 150 

 

Bat 

(TB1-Lu) 

Mock 1,703 2,007 0.85 0 

Neat 138,822 2,118 65.57 77 

1:10 162,883 3,348 48.65 57 

1:100 39,931 1,538 25.96 31 

 

Horse  

(NBL6) 

Mock 270 1,225 0.22 0 

Neat 1,044 182 5.73 26 

1:10 16,111 272 59.14 269 

1:100 2,028 196 10.32 47 

 

Mouse 

(BF) 

Mock 66,707 42,595 1.57 0 

Neat 312,187 21,534 14.50 9 

1:10 276,271 18,611 14.84 9.5 

1:100 256,560 19,399 13.23 8 

 

      B 

Cell type SeV dilution FF Ren Ratio Fold over 

mock 

 

Chicken 

(DF-1) 

Mock 1,676,649 1,969,866 0.85 0 

Neat 1,496,705 1,366,523 1.10 1.3 

1:10 1,486,409 1,631,255 0.91 1 

1:100 1,588,767 1,746,477 0.91 1 

 

Bovine 

(MDBK) 

Mock 173 2,719 0.064 0 

Neat 204 1,748 0.12 1.9 

1:10 262 2,294 0.11 1.7 

1:100 330 2,406 0.14 2 

 

Table 5. Raw data for the induction of the IFN-β reporter activity by Sendai virus in 

various cell types (A) Cell lines in which induction was successful. To establish the dual 

luciferase IFN- induction assay in various cell types, cells were infected with different 

dilutions of SeV 24 hours post-transfection with the FF-luc and Ren-luc plasmids.  Dilutions 

of SeV were 10-fold from mock (non-infected), neat SeV, a 1 in 10 dilution and a 1 in 100 

dilution.  After 16 hours of IFN- promoter stimulation by SeV, cells were lysed and luciferase 

levels read by luminometer. Cell lines in which IFN- promoter induction was successful 

include human 293T, bat TB1-Lu, horse NBL6, mouse BF and dog MDCK cells, though data 

for MDCK cell induction is not shown here.  An increase in the ratio between FF and Ren-luc 

readings following SeV infection denoted successful IFN- promoter induction. Values 

highlighted in red indicate successful induction of the IFN-β promoter by SeV.  (B) Cell lines 

in which induction was not successful. Certain cell lines in which induction of the IFN- 

promoter by various concentrations of SeV infection was not successful included chicken DF-

1, bovine MDBK and porcine PK15 cells, however raw data for the PK15 cells is not shown 

here. Any increases in FF-luc:Ren-luc ratios were not deemed great enough to represent 

successful induction in these cells.  
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Figure 9. Limitation of IFN-β reporter activity by various IAV NS1 proteins in (A) 

human and (B) bat cells. Human 293T and bat TB1-Lu cells were co-transfected for 24 hours 

with a pLVX plasmid expressing NS1 or GST, plus two luciferase reporter plasmids; an IFN-β 

promoter driven Firefly luciferase expressing plasmid (p125luc) and an HSV-TK promoter 

driven Renilla luciferase constitutively expressing plasmid (pRL-TK). Cells were infected with 

SeV 16 hours post-transfection to stimulate the IFN-β promoter. Following this, dual luciferase 

assay and luminometer readings determined the levels of luciferase produced. Relative FF-luc 

activity was determined as the ratio between the two luciferase readings.  Results were 

normalised to GST plus SeV as this was deemed the greatest level of induction possible.  Bars 

represent mean values for triplicate repeats and error bars represent the standard deviation for 

these repeats. Results are also representative of two independent experiments.  Also shown are 

western blot results for the expression of the GST/NS1 proteins for each condition. 
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To determine if the bat IAV NS1 proteins would have the ability to antagonise IFN 

induction in different species, a panel of mammalian and avian cell types were tested 

for this ability.  A panel of swine, bovine, horse, chicken, dog and mouse cells were 

chosen as these species are known host species for IAVs (aside from mice which are a 

laboratory model) or would potentially be in close contact with bats.  However, 

attempts at establishing this assay in swine, bovine and chicken cells were unsuccessful 

(data shown in Table 5B). 

 

Thus, the dual luciferase assay as described previously was performed successfully in 

only horse (NBL6), dog (MDCK) and mouse (BF) cells.  Cells were co-transfected 

with pLVX plasmids expressing NS1 or GST, and the two luciferase reporter plasmids 

(FF-luc and Ren-luc).  After 24 hours the cells were infected with SeV to stimulate the 

IFN-β promoter.  16 hours later cells were lysed and levels of FF- and Ren-luc 

determined by luminometer readings.  Relative FF-luc levels were converted to 

percentages and compared to GST-transfected cells infected with SeV as the positive 

control set at 100% reporter activity.  

 

Data presented here (shown in Figure 10) shows IFN-β reporter antagonism by the 

panel of IAV NS1 proteins in horse, mouse and dog cells.  For all three of these cell 

lines, the two bat NS1 proteins are able to antagonise induction of the IFN-β reporter to 

similar levels as the human and avian IAV NS1 proteins.  In the horse cells, all the NS1 

proteins antagonise IFN-β reporter induction around 80% compared to the GST 

control.  This antagonism was below the high background level seen in the GST 

control not infected with SeV for the horse cells, and it may be that the IFN response is 

highly active in these cells.  Again, in the dog cells the panel of NS1 proteins were able 

to antagonise IFN-reporter activity, this time to around 50% on average when 

compared to the GST control. 

 

In the mouse cells, there was more variation seen amongst the antagonism abilities of 

the NS1 proteins. The H1N1, H7N9, H17N10 and H18N11 NS1 proteins were capable 

of limiting induction of the IFN-β reporter to approximately 70% on average compared 

to the GST control.  However, in this particular assay it seems that the H5N1 NS1 

protein was unable to antagonise FF-luc production.  It may be that due to this NS1 

blocking general gene expression (discussed later), and the fact that this data is 

normalised to the levels of Ren-luc (reading general gene expression) that for the 
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H5N1 the effect on specific FF-luc antagonism is ‘masked’.  This is a caveat to this 

particular assay when NS1 proteins that dramatically affect gene expression are 

included.   

 

3.6  Bat IAV NS1 proteins do not block general gene expression 

 

A known strain-specific function of the IAV NS1 is the ability to interact with host cell 

CPSF30.  This interaction limits the cellular processing of mRNAs, thus suppressing 

general gene expression (Das et al., 2008, Nemeroff et al., 1998).  This ability has been 

mapped to specific NS1 residues and includes the residues found at positions 103 and 

106, where the presence of F103 and M106 is the consensus for CPSF30 binding (Hale 

et al., 2010, Kochs et al., 2007).  Interaction with CPSF30 is conserved in circulating 

IAVs that infect humans and in the H5N1 NS1 that was used in this study (Twu et al., 

2007).  However PR8 NS1 and the avian H7N9 NS1 are known to be unable to bind 

CPSF30 due to polymorphisms at residues 103 and 106, thus cannot block general host 

gene expression (Kochs et al., 2007, Ayllon et al., 2014).  

 

To determine the ability of the bat IAV NS1 proteins to block general gene expression 

in human and bat cells; 293T and TB1-Lu cells were co-transfected with a pLVX 

plasmid expressing the NS1 of interest, or GST, alongside a constitutively expressed 

Ren-luc reporter plasmid as described previously.  The total level of Ren-luc 

production was measured 24 hours later by luciferase assay and values were made 

relative to the GST control which was set to 100%. 

 

In human cells, PR8 NS1 was unable to block general gene expression whereas the 

H5N1 NS1 was able to do so, reducing the level of luciferase production approximately 

70% compared to the GST control (Figure 11A).  As H5N1 NS1 has the consensus 

residues (F103 and M106) for CPSF30 binding, whereas PR8 NS1 does not (S103 and 

I106), this was to be expected.  The H7N9 NS1 was also unable to block general gene 

expression in human cells, which is expected as it features the residues L103 and I106, 

and therefore is unable to bind CPSF30.  It was also found that the two bat IAV NS1 

proteins are also unable to block gene expression in human cells.  These NS1 proteins 

are also predicted to not interact with CPSF30 due to polymorphisms at residues 103 

(V/I) and 106 (Q).   
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Figure 10. Limitation of IFN-β reporter activity in different species: (A) horse, (B) 

mouse and (C) dog cells. Horse NBL6, mouse BF and dog MDCK cells were co-transfected 

for 24 hours with a pLVX plasmid expressing NS1/GST, plus two luciferase reporter 

plasmids; an IFN-β promoter driven Firefly luciferase expressing plasmid (p125luc) and an 

HSV-TK promoter driven Renilla luciferase constitutively expressing plasmid (pRL-TK). 

Cells were infected with SeV 16 hours post-transfection to stimulate the IFN-β promoter. 

Following this, dual luciferase assay and luminometer readings determined the levels of 

luciferase produced. Relative FF-luc activity was determined as the ratio between the two 

luciferase readings.  Results were normalised to GST plus SeV.  Bars represent mean values 

for triplicate repeats and error bars represent the standard deviation for these repeats.  Results 

are representative of two independent experiments.  Western blot results are also shown which 

indicate the levels of GST/NS1 expression in each of the experimental conditions.  
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Figure 11. Ability of the various NS1 proteins to block general host gene expression in 

(A) human and (B) bat cells. Human 293T and bat Tb1-Lu cells were co-transfected with a 

pLVX plasmid expressing a GST or NS1 and a constitutively expressed Renilla luciferase 

encoding plasmid (pRL-TK). Total Renilla luciferase expression levels were measured 24 

hours later by luciferase assay and luminometer readings.  Values obtained were converted to 

a percentage and made relative to the GST control which was designated 100%.  Bars 

represent mean values for triplicate repeats and error bars represent the standard deviation for 

these repeats.  Results are representative of two independent experiments.  Western blot 

results are also shown for the expression levels of GST/NS1 for each experimental condition.   
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In bat cells, it was also observed that the PR8 and H7N9 NS1 proteins cannot block 

general gene expression (11B).  However, conversely to the observation in human 

cells, the H5N1 NS1 was also unable to block gene expression in the bat cells.  It may 

be that this NS1 is unable to bind the bat specific CPSF30.  Furthermore, it was 

observed that the two bat NS1 proteins (alongside the H7N9 NS1) actually enhance 

gene expression to over 300% in comparison with the GST control.  The mechanism 

for this enhancement is unknown, however a previous study has reported PR8 NS1 to 

be an enhancer of reporter plasmid expression at the post-transcriptional level, in a 

non-specific manner (Salvatore et al., 2002).  Further work would be required to 

determine if it is at this level that the bat IAV NS1 proteins are enhancing gene 

expression. 

 

3.7  Investigating interactions with host cell factors 

 

3.7.1 H17N10 NS1 co-precipitates human RIG-I 

 

It has been previously reported that NS1 interacts with the pattern-recognition receptor 

RIG-I to prevent the pre-transcriptional activation and production of IFN (Guo et al., 

2007).  In order to assess the RIG-I binding ability of the two bat IAV NS1 proteins, an 

immunoprecipitation study was conducted using a FLAG-tagged RIG-I construct.  

293T cells were co-transfected with a pLVX vector expressing an NS1 or GST (or an 

empty vector as a negative control), plus a vector expressing FLAG-tagged RIG-I.  

Cells were harvested after 48 hours and soluble lysates precipitated with an α-V5 

antibody to pull-down the V5-tagged NS1 proteins, and any associated proteins.  

Soluble ‘input’ and the ‘pull-down’ fractions were analysed by SDS-PAGE and 

western blot, probing with α-FLAG and α-V5 antibodies to visualise the RIG-I and 

GST/NS1 proteins, respectively.   

 

Western blot analysis showed that there is a low level of non-specific RIG-I pull-down 

by GST (Figure 12A), however there is an enhanced pull-down of RIG-I for the PR8 

NS1 as expected.  This is also observed for the avian H7N9 and bat H17N10 NS1 

proteins, suggesting specific interactions with RIG-I.  The H18N11 NS1 protein is 

however unable to co-precipitate RIG-I to a level greater than the non-specific level of 

GST.  Therefore it cannot be concluded that this particular NS1 interacts with RIG-I.  

Furthermore, the H5N1 NS1 does not show co-precipitation of RIG-I, suggesting this 
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NS1 cannot interact with RIG-I.  Indeed, an H5N1 NS1 protein with the F103 and 

M106 residues which are the consensus for CPSF30 interaction showed an inability to 

bind RIG-I (Dankar et al., 2013).  However, the ability of the H5N1 NS1 to block 

general gene expression, and therefore its own expression may also explain a lack of 

noticeable co-precipitation.  A caveat of this system is expressing this NS1 and host 

factor in the same cell, whereas in the Dankar et al. study, separate bacterial expression 

vectors were employed.  

 

3.7.2 H17N10 NS1 co-precipitates human Riplet 

 

Another strain-specific NS1 capability is the interaction with the ubiquitin E3 ligase 

Riplet as a further means to prevent the pre-transcriptional production of IFN 

(Rajsbaum et al., 2012).  To determine if the bat IAV NS1 proteins could interact with 

human Riplet, a further immunoprecipitation was performed.  293T cells were co-

transfected with a pLVX vector expressing a V5-tagged NS1/GST and an HA-tagged 

Riplet.  Following harvesting 48 hours later, soluble cell lysates were precipitated with 

α-V5 336 antibody to pull-down V5-tagged NS1/GST and any associated proteins.  

Input and pull-down samples were analysed using SDS-PAGE and western blot, 

probing with α-HA and α-V5 antibodies to detect HA-tagged Riplet and V5-tagged 

GST/NS1 proteins.  

 

Again, western blot analysis shows that there is a non-specific interaction of HA-Riplet 

with the GST control; however co-precipitation levels of Riplet by the PR8 NS1 are 

much enhanced (12B).  This enhanced pull-down is also observed for the bat H17N10 

NS1, but not for the H18N11 NS1, whose co-precipitation levels of Riplet do not 

exceed that of GST.  Thus, specific interactions between H18N11 NS1 and Riplet 

cannot be concluded, but most likely can for the H17N10 NS1.  

 

Clear from these immunoprecipitation results is the difference in binding ability 

between the two bat IAV NS1 proteins.  The H17N10 NS1 is able to co-precipitate 

human RIG-I and Riplet to comparable levels to the human H1N1 NS1 protein.  

However, the H18N11 NS1, if it is able, does so to a much lesser extent.  This may 

highlight differences present between the two bat IAV NS1 proteins themselves, and 

could be an indication of the diversity of these bat viruses 
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Figure 12. Immunoprecipitation studies with various NS1 proteins and known host 

interactors (A) RIG-I and (B) Riplet. Human 293T cells were co-transfected with a plasmid 

expressing a tagged host protein of interest (FLAG-tagged RIG-I or HA-tagged Riplet) plus 

either an empty pLVX plasmid or one expressing V5-tagged GST/NS1. Cells were harvested 

48 hours post-transfection. Soluble lysates were immunoprecipitated using α-V5 antibody. 

The soluble ‘input’ samples and IP ‘pull-down’ samples were analysed by western blot.  α-V5 

HRP antibody was used to probe for GST/NS1, with α-FLAG and α-HA antibodies used to 

probe for tagged RIG-I and Riplet, respectively.  
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3.7.3 H17N10 and H18N11 NS1 proteins do not interact with human p85β 

 

A known function of NS1 proteins during IAV infection is the binding and activation 

of the PI3K signalling pathway (Hale et al., 2006).  This interaction occurs specifically 

between the NS1 ED and the p85β subunit of PI3K; however no major downstream 

consequences resulting from the IAV activation of this pathway have currently been 

elucidated.  Whilst all IAV NS1 proteins are known to bind p85β, it has been shown 

that a specific H5N1 NS1, from A/Chicken/Guangdong/1/05, whilst retaining p85β 

binding capabilities, is unable to activate the PI3K signalling pathway (Li et al., 

2012b).  Furthermore, there have been strain-specific consequences due to the 

activation of this pathway, with viral growth kinetics affected in only certain strains 

(Hale et al., 2006, Ayllon et al., 2012a).  It was therefore initially tested, using an 

immunoprecipitation assay, if the two bat IAV NS1 proteins could interact with the 

human p85β subunit.  

 

In order to assess the binding ability of the two bat IAV NS1 proteins to the p85β 

subunit of PI3K, co-transfection of 293T cells with EYC-tagged p85β and V5-tagged 

NS1/GST was conducted.  Soluble cell lysates were immune-precipitated for NS1 (and 

any co-precipitates) and analysed by SDS-PAGE and western blot, using an α-GFP 

antibody to detect p85β and a α-V5 antibody to detect GST or NS1.  As expected, the 

human PR8 and avian H5N1 and H7N9 NS1 proteins were able to co-precipitate p85β 

(Figure 13A).  However, the two bat IAV NS1 proteins were unable to co-precipitate 

human p85β.  Therefore, these bat IAV NS1 proteins represent the first naturally 

occurring IAV NS1 proteins that are unable to interact with p85β. 

 

3.7.4 Residues that may be responsible for lack of p85β binding 

 

The observation that the two bat IAV NS1 proteins do not bind human p85β presented 

two hypotheses for the lack of binding; firstly that the bat IAV NS1 proteins have 

evolved to preferentially bind a different factor, or secondly that the bat-specific p85β 

subunits have divergent sequences, with the bat IAV NS1 proteins interacting with 

their host-specific factor. 

 

It was intriguing that the two bat IAV NS1 proteins did not interact with p85β, given 

that they both possess the Y89 and P164 residues previously seen to play an important 

role in this interaction (Hale et al., 2006).  However in a parallel study a fellow student 
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has analysed the NS1-p85β interaction surface by alanine scanning, identifying many 

more important residues important for the binding of PR8 NS1 to p85β. The three 

residues found to be most critical included L95, M98 and I145; however the NS1-p85β 

interaction site involves 20 residues on NS1.  After analysis of the H17N10 NS1 

sequence, six particular residues that differ in the bat IAV NS1 sequence from that of 

PR8 NS1 were chosen for single amino acid substitution experiments (highlighted in 

Figure 13B).   

 

These particular six residues were chosen to be substituted to the corresponding 

residues found in PR8 NS1 to assess by immunoprecipitation if any has an effect on the 

ability to bind p85β. These residue substitutions included Q95L, T98M, I99S, R143T, 

N161S and S164P (PR8 NS1 numbering).  Three of the residues chosen were shown to 

be important in the alanine scan performed in the parallel study; these include positions 

95, 98 and 164.  The other three residues to be substituted were found to be less 

important for binding but were included to fully assess all potential residue 

contributions.  These residues include positions 99, 143 and 161.  Amino acid 

substitutions were generated in the H17N10 NS1 background, as opposed to the 

H18N11 background, as this NS1 was found to have more functional similarities to 

PR8 NS1. 

 

3.7.5 Single amino acid substitutions are unable to restore p85β-binding 

 

To determine the effect of single amino acid substitutions on p85β binding, an 

immunoprecipitation study was conducted as described previously for transfected 

EYC-tagged p85β and V5-tagged GST or NS1 proteins.  Figure 14 shows the 

immunoprecipitation results for the H17N10 NS1 mutants, compared with GST, PR8 

NS1 and wild-type H17N10 NS1.  As seen previously, the PR8 NS1 co-precipitates 

p85β, whereas the H17N10 NS1 is unable to co-precipitate p85β.  Strikingly, none of 

the six single amino acid H17N10 NS1 substitutions had a substantial effect on the 

ability of this NS1 to bind p85β.  It may be necessary to substitute multiple residues in 

this interaction surface of NS1 in order to restore p85β binding.   
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Figure 13. Investigating the interaction between the novel bat IAV NS1 proteins and 

the p85β subunit of PI3K. (A) Immunoprecipitation with various NS1 proteins and 

p85β. Human 293T cells were co-transfected with an empty pLVX expression plasmid or 

V5-tagged GST/NS1 alongside an EYC-tagged p85β. Cells were harvested 48 hours post-

transfection. Soluble lysates were immunoprecipitated with α-V5 antibody.  The soluble 

‘input’ fractions and the IP ‘pull-down’ fractions were analysed by western blot using α-V5 

HRP antibody for GST/NS1 detection and α-GFP antibody for p85β detection.  (B) Table 

showing residues of NS1 that interact with p85β with H17N10 polymorphisms 

highlighted.  Shown are the residues previously seen (unpublished data) to be either key for 

the NS1-p85β interaction (residues 89, 95, 98 and 164) or to be of a significant structural 

change between the H1N1 and H17N10 sequence (residues 99, 143 and 161). Highlighted in 

yellow are the residues at these positions that differ from the H1N1 consensus sequence, 

which is known to interact strongly with p85β. 
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3.7.6 Alignment of p85β sequences from various species reveals that 

NS1- interacting region is highly conserved 

 

The broader question for these NS1 proteins is however if they are specifically able to 

bind the p85β subunits found in the bat species from which the bat IAV genomes were 

discovered.  A sequence alignment of the NS1-interacting region of p85β (residues 556 

to 591) from a range of species was therefore performed.  These species included the 

four bat species that have been sequenced, plus a wider range of species. 

 

Figure 15A shows the multiple sequence alignment for residues 556-591 of the p85β 

sequences for 14 different species of animals.  This alignment shows that this region of 

p85β is essentially conserved across the mammalian species observed, with any 

polymorphisms occurring in more divergent species, such as the zebra fish.  

Conservation is also almost 100% across the bat species shown.  Residue positions 

with polymorphisms observed in this alignment (at positions 562, 567, 580, 583) are 

highlighted in red in 15A and are also shown and highlighted in red in the structure 

shown in 15B.  This structure represents the NS1 ED (shown in grey) and its p85β 

interaction surface (highlighted in yellow).  Binding of the p85β molecule (shown in 

blue) occurs in this cleft.  Highlighted in red are the residues of p85β that were shown 

in the alignment to vary in certain species.  The structural representation in 15B 

illustrates that the side chains of these varying residues do not form interactions with 

the surface of the NS1 ED, except for that of residue 562.  However, this residue was 

only seen to vary in the zebra fish and not mammalian species.  

 

The major caveat of this analysis is however that the two species of bat in which the 

virus genomes were discovered (little yellow shouldered and flat-faced bats) are not 

included here.  Additionally, the bat species included in the analysis have not been 

shown to be infected with IAVs.  It therefore cannot be concluded that all bat species 

have the same conserved p85β that should dictate NS1 interactions and it may be that 

these particular species have divergent p85β subunits.   
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Figure 14. Immunoprecipitation studies of various H17N10 NS1 single amino acid 

substitutions and p85β. Six single amino acid substitutions were made in the H17N10 NS1 

background at residues deemed potentially important for NS1 binding p85β. Substitutions 

were made in the H17N10 NS1 to the PR8 NS1 sequence at these positions. Cells were co-

transfected with either PR8 H1N1 NS1, wt H17N10 NS1 or one of the 6 H17N10 NS1 

mutants (Q95L, T98M, I99S, R143T, N161S and S164P) and EYC-tagged p85β.  Cells were 

harvested 48 hours post-transfection. Soluble lysates were immunoprecipitated with α-V5 

antibody.  The soluble ‘input’ fractions and the IP ‘pull-down’ fractions were analysed by 

western blot using α-V5 HRP antibody for NS1 detection and α-GFP antibody for p85β 

detection. 

  



80 
 

 

 

 

 

Figure 15. Conservation of the NS1 binding site in p85β subunits from different species (A) 

Multiple sequence alignment of the NS1-binding region of p85β from various species. The 

region of p85β that interacts with the NS1 ED encompasses residues 556-591.  Shown are the 

alignments for these regions represented by 14 distinct species including 4 species of bats 

highlighted in blue. Any polymorphisms are highlighted in red. (B) Structure of the NS1 ED 

interacting with the iSH2 domain of p85β. The NS1 ED is depicted in grey with the region 

that p85β interacts with shown in yellow. p85β is shown in blue with any residues seen to 

diverge in certain species from the alignment (residues 562, 567, 580 and 583) highlighted in 

red.  Only residue 562 has a side chain that forms interactions with the NS1 surface. This 

structure was generated in PyMOL using the published structure of the PDB ID: 3L4Q. 
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Chapter 4:  DISCUSSION 

 

4.1 Bat IAV NS1 proteins have conserved functions 

 

Immediately following the discoveries of two new subtypes of IAV in South American 

bats it was pertinent to begin characterisation of the viral proteins encoded by the novel 

gene segments.  This characterisation would aid understanding of the threat presented by 

these new viruses and the capability for cross-species transmission and/or reassortment 

with other IAVs.  Separate studies have revealed that the H17N10 and H18N11 HA and 

NA surface glycoproteins are highly divergent in terms of sequence identity and functional 

ability compared to other canonical IAVs: neither exhibited the functions expected during 

typical IAV replication, with the HA protein unable to bind sialic acids and the NA protein 

lacking sialidase activity (Zhu et al., 2013, Li et al., 2012a, Zhu et al., 2012, Sun et al., 

2013).  Thus, it was of particular interest to determine if the H17N10 and H18N11 NS1 

proteins would also exhibit functional divergences from their canonical IAV NS1 

counterparts, or indeed if some functions are conserved. 

 

Following initial sequence analysis of these NS1 proteins it was clear that they exhibited 

divergent sequence identities.  In particular, the two bat IAV NS1 proteins share only 

approximately 45 and 49% sequence identity with the well-characterised PR8 NS1. 

Therefore, it could be expected that these NS1 proteins would not exhibit the canonical 

functions associated with this virulence factor during the IAV replication cycle.  Closer 

inspection of the specific residues involved in certain NS1 functional abilities allowed 

further prediction of whether the bat NS1 proteins would possess these capabilities.  For 

example, it was observed that the NLS1 is conserved in the two bat NS1 proteins, but not 

the NLS2 with the incorporated NoLS (Melen et al., 2007).  This suggested that these NS1 

proteins would localise to the nucleus of a host cell upon expression, but not to the 

nucleolus.  Following expression of the NS1 proteins in human and bat cells this 

intracellular localisation pattern was indeed observed by immunofluorescence and confocal 

microscopy.  These predictions and observations highlight the value of the sequence 

analysis of novel viral proteins as a measure of potential functional capabilities. 

 

As the main function of the NS1 protein during IAV infection of a host cell is attributed to 

be antagonism of the IFN-β response (Garcia-Sastre et al., 1998), this ability was first 

tested for the two bat IAV NS1 proteins.  It was determined that both the H17N10 and 
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H18N11 NS1 proteins are capable of strongly inhibiting induction of IFN-β reporter 

activity in human and bat cells, with a much greater antagonism in human cells than in the 

bat cells.  There are however limitations to this assay, in particular it is not clear at which 

stage of the IFN response these NS1 proteins are affecting.  Further assays sought to 

determine at which stage in the IFN-induction pathway the bat IAV NS1 proteins are 

antagonising IFN-β reporter activity.  The ability to bind the intracellular receptor of the 

RIG-I induction cascade, RIG-I, and the E3 ubiquitin ligase, Riplet, were confirmed for the 

H17N10 NS1 protein, but not for the H18N11 NS1 protein.  This highlights the strain-

specific differences between the two bat NS1 proteins themselves.  Indeed, there are 

known strain-specific differences in the ability of NS1 proteins to bind species particular 

E3 ubiquitin ligases, in order to prevent activation of the RIG-I signalling pathway for IFN 

induction.  Specifically, a study revealed NS1 proteins from human, swine, avian and 

mouse IAVs are able to interact with human TRIM25, but not mouse TRIM25, however 

the human NS1 protein could preferentially bind mouse Riplet as an alternative means to 

antagonise RIG-I signalling (Rajsbaum et al., 2012).  It would be interesting to determine 

if the H18N11 NS1 is able to preferentially bind TRIM25 over Riplet, or indeed if this 

NS1 is only able to interact with the bat-specific versions of these factors.  Furthermore, 

the inability of the H18N11 NS1 to bind these factors presents the question of how this 

NS1 is able to antagonise the IFN response if it cannot interact with either the RIG-I 

signalling protein or the ubiquitin ligase Riplet.  It may be that this NS1 relies simply on 

sequestering dsRNA to limit the IFN response.   

 

The ability of the bat IAV NS1 proteins to antagonise induction of the IFN-β promoter was 

also confirmed in a preliminary panel of cell lines from different species including horse, 

mouse and dog.  This IFN antagonist ability in various species is a potential measure of the 

contribution to the zoonotic capability of the bat IAVs.  There have been documented 

examples of viral IFN-antagonists from other viruses playing roles in determining host 

range due to differing abilities to interfere with species-specific host cell innate immune 

responses.  For example, the V proteins of PIV5 and NDV act as host range determinants 

due to their varying abilities to antagonise IFN signalling in different species (Park et al., 

1999), (Park et al., 2003).  The ability of the two bat IAV NS1 proteins to antagonise the 

IFN response in these species therefore would not present a barrier to bat IAV infection, 

however there are other barriers that need to be considered including entry of IAV into a 

host cell and the ability of the viral polymerase to transcribe and replicate the viral genome 

(Reperant et al., 2012).  The IAV polymerase complex is a crucial determinant for host-



83 
 

switching and in fact a single amino acid mutation at position 626 in the PB2 subunit, from 

the glutamic acid found in avian IAVs to a lysine found in human IAVs (E627K), allows 

avian IAV polymerase complexes to function efficiently in mammalian cells (Subbarao et 

al., 1993, de Wit et al., 2008).  Interestingly, the same position in the bat IAV PB2 subunits 

is uniquely a serine, however these polymerase complexes have been seen to function 

efficiently in both human and avian cells   (Tong et al., 2012, Tong et al., 2013, Juozapaitis 

et al., 2014).  Furthermore, the bat H17N10 NP has been shown to have functional 

complementarity with the remaining polymerase complex subunits from various human 

and avian IAVs (H1N1, H3N2 and H5N1) (Juozapaitis et al., 2014).  Thus, the bat IAV 

polymerase does not appear to present a barrier for zoonotic transmission.  The most 

significant barrier for the bat IAVs to cross species barriers lies in the unknown identity of 

the host cell receptor, with neither the H17 or H18 HA able to recognise typical IAV sialic 

acid receptors (Sun et al., 2013, Zhu et al., 2013). 

 

4.2 Bat IAV NS1 proteins exhibit certain strain-specific functions 

 

The NS1 protein of IAV is well-documented as being a highly strain-specific virulence 

factor.  Different NS1 proteins from different strains of IAV are known to have varying 

functional abilities.  This includes the ability to block general gene expression, namely as a 

result of the ability to interact with host cell CPSF30 (Hale et al., 2010).  Here, the residues 

F103 and M106 in the NS1 ED are the consensus for CPSF30 binding, though other 

residues in NS1 do play a role (Hale et al., 2010, Twu et al., 2007).  Analysis of the 

H17N10 and H18N11 NS1 amino acid sequences showed that they possess residue 

polymorphisms of V or I103 and Q106, allowing the prediction that these NS1 proteins 

would not possess the ability to bind CPSF30 and would therefore not block general gene 

expression.  It was therefore to be expected that the bat IAV NS1 proteins were unable to 

block general gene expression in either human or bat cells, due to this inability to interact 

with CPSF30.  Whilst NS1 binding of CPSF30 is known to vary amongst NS1 proteins, 

attenuation in virus replication is associated with a lack of interaction has been previously 

documented.  A single amino acid substitution of I106M in the avian IAV H7N9 NS1 can 

restore CPSF30 binding and thus a block in general gene expression which was shown to 

increase virus replication and virulence in vivo (Ayllon et al., 2014).  Furthermore, when 

CPSF30 binding was restored to the 1997 H5N1 NS1, via substitution of residues 103 and 

106 to the F and M consensus for this interaction, there was a substantial 300-fold increase 

of lethality of the virus in mice (Spesock et al., 2011).  It could therefore be hypothesised 
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that if the bat IAVs were able to infect humans, or indeed other animals, that their 

virulence would perhaps be low due to an inability to block general gene expression, but 

could be dramatically increased if mutations occurred to enable CPSF30 binding.   

 

Of further note however is the intriguing ability of these NS1 proteins to instead enhance 

general gene expression, in both the human and bat cells, though more extensively in the 

bat cells.  It has been previously reported that the PR8 NS1 is capable of enhancing gene 

expression, thought to be at the level of translation due to the inhibition of PKR which is 

then unable to phosphorylate and inactivate the translation factor eIF-2α (Salvatore et al., 

2002).  The particular mechanism by which the bat IAV NS1 proteins could enhance gene 

expression was not determined, therefore it would be of interest to determine if these NS1 

proteins are able to also enhance at this level of translation. 

 

4.3 Bat IAV NS1 proteins do not co-precipitate human p85β 

 

Of particular interest in this study was the elucidation that neither of the bat IAV NS1 

proteins was able to co-precipitate p85β, representing the first naturally occurring NS1 

proteins not to do so.  This inability was potentially mapped by sequence analysis to a 

number of residue polymorphisms in those positions considered to be important for the 

NS1-p85β interaction.  As the normally conserved binding of the NS1 ED to the p85β 

subunit of PI3K has been associated with effects on viral replication and virulence, the 

inability of the bat NS1 proteins to interact with human p85β was intriguing.  Whilst these 

NS1 proteins are the first reported examples to not bind p85β, there has been a report of an 

NS1 protein from the avian H5N1 A/Chicken/Guangdong/1/05 that whilst being able to 

efficiently bind p85β is unable to activate the PI3K/Akt pathway (Li et al., 2012b).  This 

suggests that the activation of the PI3K signalling pathway during IAV infection may not 

always be beneficial for the virus.  Therefore, two hypotheses for the lack of bat NS1-p85β 

binding have been presented; including the possibility that the bat IAVs do not require 

activation of the PI3K signalling pathway to promote viral replication or pathogenicity, 

and thus their NS1 proteins may have evolved to preferentially bind an alternate host cell 

factor.  Secondly, as binding was only investigated with a human p85β, it was 

hypothesised that the bat IAV NS1 proteins may have evolved to interact with their 

species-specific p85β subunits.   
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Preliminary sequence alignment of the NS1 interacting regions of various p85β subunits 

from 14 different mammalian, avian and fish species revealed that this section of the iSH2 

p85β subunit is highly conserved amongst all these species.  This sequence analysis 

included the four bat species that have been previously sequenced, and again, the region of 

p85β with which the IAV NS1 protein interacts was found to be essentially conserved.  A 

polymorphism in the p85β subunit from a black flying fox was found at residue 580 which 

was observed in crystal structure analysis to probably not play a role in the interaction with 

the NS1 ED.  With the observation that the NS1 interacting regions of p85β subunits from 

divergent species are essentially conserved, it could be predicted that the bat IAV NS1 

proteins have simply lost this binding ability and may preferentially interact with novel 

cellular factors.  However, as the p85β subunits from the bat species in which the novel 

IAV genomes were discovered have not yet been sequenced, it is not possible to make any 

conclusions regarding the nature of this specific interaction.  It may be that these particular 

p85β subunits are divergent and thus the bat IAV NS1 proteins could be specifically 

interacting with their species-specific subunit.  Clearly, further work is required to clarify 

the potential of the H17N10 and H18N11 NS1 proteins to interact with the p85β subunits 

from the species from which they were isolated.  Additionally, it would be of interest to 

also determine if these novel NS1 proteins are also, or alternatively, interacting with host 

cellular factors that have not been described previously.  

 

4.4 Conclusions 

 

In conclusion, the two bat IAV NS1 proteins from the novel H17N10 and H18N11 IAV 

genomes have revealed some striking conservations of typical NS1 functional abilities, 

including the ability to antagonise the IFN-β response in a range of cell types, despite their 

highly divergent sequences.  Despite these particular conservations there were certain 

strain specific observations, for example the ability of the two bat IAV NS1 proteins to 

enhance general gene expression in human and bat cells and the inability to interact with 

the human p85β subunit of PI3K.  Additionally, there were differences observed between 

the H17N10 and H18N11 NS1 proteins, with the H17N10 NS1 able to interact with the 

human factors RIG-I and Riplet, but the H18N11 NS1 unable to do so.  Further 

investigations are needed to fully characterise these novel NS1 proteins and to potentially 

identify any unique functional abilities not yet described for this IAV virulence factor.  
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4.5 Future work 

 

This study has revealed certain functional characteristics of the H17N10 and H18N11 bat 

IAV NS1 proteins, however there is still further characterisation needed.  In particular, 

more work is needed on establishing IFN-β reporter assays in cell types from species in 

which IFN-β induction was not achieved.  These included swine, bovine and chicken cells.  

Gathering a data panel for the ability of the two bat IAV NS1 proteins to antagonise the 

IFN response in a range of relevant species for IAV infection could indicate the potential 

of these novel viruses to infect other species.   

 

Ongoing work in collaboration with the University of St Andrews has determined the 

crystal structure of the H17N10 and H18N10 NS1 RBDs (data not shown); however 

crystal structures of the EDs have not yet been elucidated.  Following observations in the 

crystal structure, future work should further characterise the ability of the H17N10 and 

H18N11 NS1 proteins to bind dsRNA.  As mentioned in this study, the critical residues for 

this ability, R38 (R39) and K41 (K42), are conserved in the H17N10 NS1 protein, however 

a polymorphism of A43 (usually S42 for effective RNA binding) could potentially reduce 

the dsRNA interaction.  Therefore, further experiments would include performing a 

dsRNA binding assay with the wild type bat IAV NS1 proteins along with any mutants that 

would be predicted to reduce binding ability or perhaps increase binding ability (i.e. R39A, 

K42A and A43S).  Indeed, as the H18N11 NS1 was reported not to bind human RIG-I and 

Riplet it is predicted that the major mechanism by which it can antagonise IFN-β induction 

is through dsRNA binding. 

 

Of particular interest following from this study was the observation that the two bat IAV 

NS1 proteins could not interact with the human p85β subunit of PI3K.  Six amino acid 

substitutions of the H17N10 NS1 in the NS1-p85β interaction region were found to have 

no effect on the p85β binding ability.  Therefore, future work should extend these 

substitution studies to explore more NS1 residues present in the p85β binding interface that 

may play a role in this interaction.  In addition, multiple substitutions will also be 

investigated, as it is more likely that changing more than one NS1 residue at the same time 

will show an effect on p85β binding.  

 

Despite the elucidation that the p85β subunits of many different species are essentially 

conserved, it will be of great interest to determine if the p85β subunits from the bat species 
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in which the novel IAV genomes were discovered have polymorphisms.  This would 

determine if the bat IAV NS1 proteins have evolved to preferentially interact with their 

species-specific p85β.  On the other hand, it may be that these bat NS1 proteins have 

evolved to preferentially bind a different cellular factor.  Therefore, it is also of interest for 

future work to investigate any novel host cell factors that these NS1 proteins may bind; 

achieved by transfection of the bat IAV NS1 proteins into cells, followed by 

immunoprecipitation and proteomics studies on any co-precipitated cellular factors.   

 

Furthermore, an additional experiment of interest would be a NS1 complementation assay 

to determine if the bat IAV NS1 proteins can functionally complement a human NS1 

protein (e.g. PR8 NS1) in the context of a human IAV.  This work would involve creating 

lentiviruses for the stable expression of NS1 proteins in various cell lines.  These cell lines 

could then be infected with a ΔNS1 virus (or a specific NS1 mutant lacking a known NS1 

function) and measurement of either viral titres or quantification via plaque assay could 

determine if the bat IAV NS1 proteins can complement the mutant NS1, or whether the bat 

IAV NS1 proteins possess the known function being tested.   
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