
http://theses.gla.ac.uk/5926/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
TOTAL SYNTHESIS OF THE PROPOSED STRUCTURE OF SCLEROPHYTIN F AND STRUCTURE RE-EVALUATION

Laëtitia Delion

Thesis submitted in fulfilment of the requirements for the Degree of
Doctor of Philosophy

School of Chemistry
College of Science and Engineering
University of Glasgow

DECEMBER 2014
Sclerophytin F is a marine natural product that was isolated in 1989 from the soft coral *Sclerophytum capitalis* and belongs to the cladiellin family. Following intensive study towards the synthesis of cladiellins, the original structure of the natural product was revised in 2002. Importantly, the new structure possesses S-configuration at C-3, whereas the majority of other related compounds have the R-configuration at this position. The first section of this thesis provides details background to sclerophytin F as well as different strategies which have been developed towards the total syntheses of members of the cladiellin family. This is followed by a review of oxonium ylide formation and [2,3]-sigmatropic rearrangement, and radical cyclisation; two key reactions to this project.

The thesis presents the first enantioselective synthesis of the proposed structure of sclerophytin F and consequently, the first total synthesis of a cladiellin family member having the S-configuration at the C-3 stereocentre. Three novel enantioselective routes are described to access a pivotal intermediate; then, the synthesis follows three key steps: *i*) radical-mediated cyclisation, *ii*) oxonium ylide formation and [2,3]-sigmatropic rearrangement, *iii*) Diels-Alder cycloaddition to deliver the core of the natural product. The novelty of the route relies on the introduction of the C-3 methyl group at an early stage of the synthesis. As anticipated, the presence of this extra methyl had significant influence on many transformations. Finally, the elaboration of the core to meet the proposed structure was completed. Unfortunately, none of the recorded data matched those originally reported for the natural compound. A further three stereoisomers were synthesised but their data also did not match the original.
Overall, a successful synthesis of the proposed structure of sclerophytin F and three of its isomers was developed. Analysis of the spectroscopic data led to the conclusion that this structure is not sclerophytin F. Further comparison of the original isolation data for this natural product with data of securely considered cladiellins suggests that the sclerophytins F and E would be the same compound, the C-3 acetylated sclerophytin A.
Table of Contents

Abstract
1

Table of Contents
III

Acknowledgements
V

Author’s Declaration
VI

Abbreviations
VII

Introduction
1

1 The 2,11-Cyclised Cembranoids

1.1 Classification and Biosynthesis
1

1.2 The Cladiellin Class of Natural Products
3

1.2.1 Isolation and Characterisation
3

1.2.2 Bioactivity
5

1.3 Structural Determination and Reassignment
6

2 Synthetic Approaches to Cladiellin Natural Products

2.1 Overman: Prins-Pinacol and Nozaki-Hiyama-Kishi Reaction
8

2.2 Paquette: Diels-Alder and Claisen Rearrangement
13

2.3 Molander: [4+3]-Annulation
16

2.4 Crimmins: Ring-Closing Metathesis and Intramolecular Diels-Alder Cycloaddition
19

2.5 Kim: Alkylative Cyclisation and Diels-Alder Cycloaddition
22

2.6 Hoppe: Homo-aldol, Krämer Tetrahydrofuran Synthesis and Ring-Closing Metathesis
25

2.7 Johnson: [2+3] Cycloaddition and Ring-Closing Metathesis
27

2.8 Morken: Oshima-Utimoto Reaction, Radical Cyclisation and Ring-Closing Metathesis
30

2.9 Yang: Gold-Catalysed Cascade Reaction and Ring-Closing Metathesis
31

2.10 Clark: Oxonium Ylide and Rearrangement
35

3 Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement

3.1 Metal Carbene or Carbenoids
45

3.2 Intramolecular Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement
49

3.3 Application of Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement to Total Synthesis within the Clark Group
57
ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my supervisor Prof. J. S. Clark for his help and his support over the last four years. I really appreciated working with you. Many thanks for giving me the opportunity to do my PhD within your group and for your confidence. I would also like to thank Dr. J. Prunet for her advice and Dr. G. Cooke my second supervisor.

This PhD would not have been possible without funding and I acknowledge the university of Glasgow and WestChem for financial support. I would also like to thank the staff members of the chemistry department: Ted, Bruce and Shawn for the material supplying, Dr. D. Adam for the NMR analysis, Dr L. J. Farrugia for the X-ray crystallography, J. Tweedie and H. Jackson for the mass analysis, K. Wilson for the elemental analysis and Stuart for patience with my IT questions. I am also really thankful to Dr Brian Smith for running the final data on his “super” NMR.

Then, I would like to thank all the persons I met during my time in Glasgow because a PhD has difficult moments and it is people you have around you that help. I would like to deeply thank Alistair and Filo for their advices and their help in the lab. I extend my thanks to all the past and present members of the Clark group: Raphaelle, Fred, Alex, Euan, Thomas, Flavien, Emilie, Emelie, Derek, Ralph, Tony, Paloma, Guang, Andy, Helen, Laura, Alistair, David, Chao, Filo, Michael, Gayle, Ludo, Aurélien, Verena, Ian, Michael P. and Kirsten; thank you for the good moments we shared in and out the lab. A special mention to Chao with whom I shared so much time chatting and laughing.

Finally, I would like to thank my parents and Alex for their constant support and encouragement.

Many thanks to all, you made these four years amazing and unforgettable.
AUTHOR’S DECLARATION

I declare that, except where explicit reference is made to the contribution of others, that the substance of this thesis is the result of my own work and has not been submitted for any other degree at the University of Glasgow or any other institution.

Portion of the work described herein have been published elsewhere as listed below.

Laëtitia Delion

Prof. J. Stephen. Clark
ABBREVIATIONS

Ac Acetyl
acac Acetylacetone
AIBN 2,2’-Azo bis(isobutyronitrile)
aq. Aqueous

BHT Butylhydroxytoluene
Bn Benzyl
Bp Boiling point
brsm Based on recovered starting material
BTEX Brevetoxin
Bu Butyl
Bz Benzoyl

c.a Circa
CBS Corey-Bakshi-Shibata
Cl Chemical ionisation
COD 1,5-cyclooctadiene
COSY Correlation spectroscopy
CSA Camphorsulfonic acid

dba Dibenzylideneacetone
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE 1,2-Dichloroethane
DEPT Distortionless enhancement by polarisation transfer
DET Diethyl tartrate
DIBAL-H Diisobutylaluminium hydride
DIPEA Diisopropylethylamine
DMAP N,N-4-Dimethylaminopyridine
DMDO Dimethyl dioxirane
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME</td>
<td>1,2-Dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>dppm</td>
<td>1,1-Bis(diphenylphosphino)methane</td>
</tr>
<tr>
<td>dppp</td>
<td>1,3-Bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>dr</td>
<td>Diastereomeric ratio</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>ee</td>
<td>Enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>Electron ionisation</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HBpin</td>
<td>Pinacolborane</td>
</tr>
<tr>
<td>hfacac</td>
<td>Hexafluoroacetylacetonate</td>
</tr>
<tr>
<td>HMDS</td>
<td>1,1,1,3,3,3-Hexamethyldisilazane</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoramide</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum coherence spectroscopy</td>
</tr>
<tr>
<td>hv</td>
<td>Irradiation with light</td>
</tr>
<tr>
<td>i</td>
<td>iso</td>
</tr>
<tr>
<td>i.e</td>
<td>Id est</td>
</tr>
<tr>
<td>IBX</td>
<td>o-Iodoxybenzoic acid</td>
</tr>
<tr>
<td>IC50</td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared spectroscopy</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International union of pure and applied chemistry</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low resolution mass spectrometry</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
</tbody>
</table>
m \textit{meta} \\
m-CPBA \textit{meta}-Chloroperbenzoic acid \\
Me Methyl \\
Men (2-Methoxyethoxy)methyl \\
min Minute \\
MLn Transition metal with ligands \\
Mp Melting point \\
Ms Methanesulfonyl \\
MS Mass spectrometry \\
MVK Methyl vinyl ketone \\
NMM N-methylmorpholine \\
NMO N-methylmorpholine-N-oxide \\
NMR Nuclear magnetic resonance \\
NOE Nuclear Overhauser effect \\
o \textit{ortho} \\
p \textit{para} \\
PCC Pyridinium chlorochromate \\
pfb Perfluorbutyrate \\
pfm Heptafluorobutanamide \\
Ph Phenyl \\
PMB p-Methoxybenzyl \\
PPTS Pyridinium p-toluenesulfonate \\
Pr Propyl \\
quant. Quantitative \\
R$_f$ Retention factor in chromatography \\
rt Room temperature \\
s sec
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBAF</td>
<td>tetra-n-Butylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-Butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBHP</td>
<td>tert-Butyl hydroperoxide</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-Butyldimethylsilyl</td>
</tr>
<tr>
<td>Temp.</td>
<td>Temperature</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethyl-1-piperinyloxy</td>
</tr>
<tr>
<td>TES</td>
<td>Triethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>Trifluoromethanesulfonyl (triflyl)</td>
</tr>
<tr>
<td>tfa</td>
<td>Trifluoroacetate</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>tfacac</td>
<td>Trifluoroacetylacetonate</td>
</tr>
<tr>
<td>tfacam</td>
<td>Trifluoroacetamide</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilyl</td>
</tr>
<tr>
<td>TMCDA</td>
<td>trans-N,N’-Dimethylcyclohexane-1,2-diamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>tpa</td>
<td>Triphenylacetate</td>
</tr>
<tr>
<td>TPAP</td>
<td>Tetra-n-propylammonium perruthenate</td>
</tr>
<tr>
<td>Tr</td>
<td>Triphenylmethyl (trityl)</td>
</tr>
<tr>
<td>Ts</td>
<td>p-Toluenesulfonyl</td>
</tr>
</tbody>
</table>

VAZO® | 1,1’-Azobis(cyclohexanecarbonitrile)
Chapter 1: Introduction

INTRODUCTION

1 The 2,11-Cyclised Cembranoids

Over the last four decades, many 2,11-cyclised cembranoids have been isolated from marine invertebrates of Octocorallia species. These natural products have a unique skeleton that has not been found in natural products extracted from terrestrial sources. Their large structural diversity, as well as their varied biological and pharmacological activities, have made them very attractive as synthetic targets.

1.1 Classification and Biosynthesis

The 2,11-cyclised cembranoids are ether-bridged tricyclic diterpenes which fall into four subclasses depending on the substitution patterns of the tricyclic core: the cladiellins (also known as eunicellins), the briarellins, the asbestinins and the sarcodictyins (Figure 1). All of them are characterised by an oxatricyclic ring system. An ether bridge between C-2 and C-9 is common to the cladiellins, the briarellins and the asbestinins. However, the latter possess an additional oxepane ring between C-3 and C-16. In the sarcodictyins the ether bridge is found between C-4 and C-7.

Figure 1. Faulkner’s proposed biosynthesis of the four classes of oxygenated 2,11-cembranoids.

Upon the isolation of the first sarcodictyin, Faulkner et al. suggested that 2,11-cyclisation of the cembranoid diterpene backbone accounted for the biosynthetic origin of the four subclasses of marine diterpenes (Figure 1). Cyclisation of the cembrane skeleton between C-2 and C-11 and ether ring formation between C-4 and C-7 affords the sarcodictyins. Alternatively, when ether bridge formation occurs between C-2 and C-9, cladiellins are obtained. Briarellins and asbestinins feature an additional oxepane ring, which results from an oxygen bridge from C-3 to C-16 and the asbestinins arise from a suprafacial 1,2-methyl shift from C-11 to C-12 of the briarellins. Although Faulkner’s biosynthetic hypothesis is viable, it is important to note that there is no evidence to support it other than the fact that all members are isolated from a common class of organism.

1.2 The Cladiellin Class of Natural Products

The cladiellins represent the most abundant class of 2,11-cyclised cembranoids. Currently, more than 100 members of the cladiellin family have been isolated from marine invertebrates.1,2 Overall, the cladiellins can be characterised by a common oxatricyclo[6.6.1.02,7]pentadecane ring system bearing carbon substituents at C-3, C-7 and C-114 and an isopropyl group (or oxidised equivalent) at C-14.1,2 In some cases, an additional ether bridge exists and varying levels of oxygenation and unsaturation can be found (Figure 2).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{cladiellin_skeleton.png}
\caption{Representative skeleton of the cladiellin compounds.}
\end{figure}

1.2.1 Isolation and Characterisation

The first member of the cladiellin family to be isolated was eunicellin (1) in 1968 by Kennard \textit{et al} (Figure 3).5 This diterpene was extracted from soft coral \textit{Eunicella stricta} discovered off the coast of Banyuls-sur-Mer in France. The chemical structure was determined by NMR spectroscopy and X-ray analysis of a crystalline dibromide derivative 2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{eunicellin_dibromide.png}
\caption{Eunicellin (1) and its dibromide derivative 2.}
\end{figure}

4 Cladiellin numbering
Since then, numerous cladiellin natural products have been isolated from marine invertebrates. Among them, sclerophytins A (3) and B (4) were isolated from the coral *Sclerophytum capitalis* in 1988 (Figure 4). The original structures were proved to be incorrect and synthetic studies demonstrated that sclerophytn A is the triol 3 and sclerophytn B is the corresponding acetate 4. From this soft coral were also isolated four natural products, sclerophytins C–F (7–10). NMR experiments and X-ray analysis of sclerophytin C (7) confirmed its structure. Furthermore, comparison of the spectroscopic data concluded that sclerophytn D was the acetate (8). Sclerophytins C (7) and E (9) were also present in the marine invertebrate *Cladiella australis*. In addition to these cladiellins, this *alcyoniidae* contained 3-butanoyloxy sclerophytin E or litophynin E (11) and 6-isovaleroyl sclerophytin E (14). 6-Ethoxy sclerophytin E (13) was isolated as well, but was considered to be an artefact by the authors. Finally, the sclerophytin-type diterpene litophynin E (11) was extracted from *Lytophyton sp* and its acetylated form 12 was obtained by synthetic manipulations.

1.2.2 Bioactivity

Many of the cladiellins have shown interesting biological properties.1,2 The role of these metabolites seems to be the defence of octorals from predators as suggested by their repellent and molluscicidal activity against the muricid gastropods, their lethal activity towards the brine shrimp and their capacity to inhibit the cell division of starfish eggs at low concentrations.

\textit{In vitro}, cladiellins present cytotoxic activity against various human cancer cell lines, anti-inflammatory and anti-microbial properties, increasing the interest in these natural products. As an example, sclerophytin A (3) shows cytotoxicity to L1210 cells (mouse lymphocytic leukemia cells) at a concentration of 1 nM \textit{in vitro}.6 It also possesses anti-invasive and anti-metastatic activities toward the PC-3 human prostate cancer cells.17

1.3 Structural Determination and Reassignment

The structural determination of the members of the cladiellin family was achieved using NMR spectroscopy; however, where possible, X-ray crystallography was used in order to elucidate the relative configuration of the stereocentres. The absolute configuration of a cladiellin natural product was first established by the Ochi group in 1988 for litophynin C.\(^\text{18}\) Since then, the configuration of other natural products have been made by analogy to this original assignment and the development of the modified Mosher method,\(^\text{19}\) has allowed further determination of the absolute configuration of several members of the cladiellin family.

Total synthesis of natural products has provided confirmation of the structures without ambiguity, but, owing to the size of the natural product family, many of the cladiellins have not yet been synthesised. Importantly, the structures of sclerophytins E (9) and F (10) (Figure 4), 3-butanoyloxy sclerophy tin E or litophynin E (11), 6-acetoxy litophynin E (12), 6-ethoxy sclerophy tin E (13) and 6-isovaleroyl sclerophy tin E (14) remain unproven. These examples are especially relevant because of discrepancies that were observed following significant studies within the Paquette research group.\(^\text{20}\)

Differences for sclerophytins A and B between the synthetic compounds and the natural products led the Paquette group to re-evaluate the original assignments.\(^\text{9}\) In 2002, following the determination of the structure of these natural products 3 and 4,\(^\text{7,9,10}\) Paquette et al. revised the structural assignment of several sclerophytins for which the structures were deduced from the incorrect structures of sclerophytins A (3) and B (4).\(^\text{20}\) Spectroscopic comparisons with structurally secured compounds, sclerophytins A (3), B (4), C (7), D (8) (Figure 4), patagonicol (5)\(^\text{21}\) and sclerophy tin F methyl ether (6),\(^\text{22}\) suggested the presence of the \(R\)-configuration at the C-3 stereogenic centre in all of the

cladiellins. In fact, the S configuration was proposed in a number of cases, the configuration at the C-3 stereocentre is modified for: sclerophytins E (9), F (10), 3-butanoyloxy sclerophytin E (11) which is the same natural product than litophynin E, 6-acetoxy litophynin E (12), 6-ethoxy sclerophytin E (13) and 6-isovaleroyl sclerophytin E (14).
2 Synthetic Approaches to Cladiellin Natural Products

The complex architecture of the cladiellins has inspired many total syntheses using a vast array of strategies to access the tricyclic core which is common to this family of natural products. This section details the approaches used by different research groups, with a particular focus on the key strategies used to construct the natural framework and then functionalization.

2.1 Overman: Prins-pinacol and Nozaki-Hiyama-Kishi Reaction

The first total synthesis of a member of the cladiellin family was the synthesis of (−)-7-deacetoxyalcyonin acetate (15)23 reported in 1995 by Overman et al (Figure 5).24 The group pioneered the use of the Prins-pinacol cyclisation in natural product synthesis25 and this reaction was used to build the hydroisobenzofuran ring system within the target compound. A chromium-promoted Nozaki-Hiyama-Kishi coupling reaction closed the medium ring.

Figure 5. Overman’s approach.

The precursor for the pivotal reaction was readily constructed from iodide 16 and aldehyde 17 (Scheme 1). The key Prins-pinacol rearrangement reaction between dienyl diol 18 and enal 19 was promoted by BF$_3$•Et$_2$O and delivered the hexahydroisobenzofuran 22 as a single stereoisomer in 79% yield. The 1,2-diol 18 reacts with enal 19 to form the more stable (E)-oxacarbenium ion 20. The transition state orients all substituents in a pseudo-equatorial position, leading to the bicyclic carbocation 21 which subsequently undergoes the pinacol rearrangement forming the desired aldehyde 22.

Further functionalization resulted in the installation of vinyl iodide and aldehyde moieties within the present side chains. The preparation of oxacyclononane 24 was achieved employing a NiCl$_2$-CrCl$_2$ promoted Nozaki-Hiyama-Kishi reaction in DMSO.26 In this way the tricycle 24 was formed in 65% yield with excellent diastereoselectivity (>20:1). With the correct oxygen functionality in place, acetylation of the secondary alcohol 24 and silyl ether deprotection provided (−)-7-deacetoxyalcyonin acetate (15). Overall, the synthesis was achieved in 4% yield over 20 steps.

Chapter 1: Introduction

Scheme 1. Total synthesis of (−)-7-deacetoxyalcyonin acetate (15) by the Overman group.\(^\text{24}\)

The group also investigated the synthesis of two other members of this family: sclerophytin A and cladiell-11-ene-3,6,7-triol, using the same strategy.\(^\text{8,12}\) However, in order to access the targets, the Prins-pinacol rearrangement was modified to use (Z)-α,β-unsaturated aldehydes (e.g. 25, Scheme 2), that contain one more carbon atom than the substrate 19, which had been employed in the previous synthesis of (−)-7-deacetoxyalcyonin acetate (15) (Scheme 1).

First, condensation of the enal 25 and the dienyl diol 18 was carried out in the presence of p-toluenesulfonic acid and magnesium sulfate to give the acetal 26 as a mixture of four diastereomers in 76% yield (Scheme 2). Compound 26 was transformed into the hexahydroisobenzofuran on exposure to 10 mol% of tin tetrachloride, affording the Prins-pinacol rearranged product 27 in 88% yield. With compound 27 in hand, a nine-steps synthetic pathway led to iodoaldehyde
which underwent the Nozaki-Hiyama-Kishi cyclisation using NiCl₂-CrCl₂, to deliver the oxonene ring 24 in moderate yield (61%).

\[\text{Scheme 2. Modified synthesis of the allylic alcohol 24, a late stage intermediate in the total synthesis of the proposed structure of } (\text{−})\text{-sclerophytin A}. \]

Tricyclic alcohol 24 could be transformed into the originally proposed sclerophytin A in a five-step sequence (Scheme 3). Desilylation of 24 and treatment of the diol with mercury(II) acetate and sodium borohydride furnished the tetracyclic diether 28 in 47% yield. The light-induced isomerisation of 28 generated the exocyclic alkene 29 in high yield. Although the alcohol 29 was the proposed structure of the natural product sclerophytin A, the spectroscopic data for this compound did not match those reported for the natural product. This observation led the Overman group to synthesise the epimeric alcohol 30 in an oxidation-reduction sequence, but the \(^1\)H and \(^{13}\)C NMR spectra were still different to those reported for the natural product.
Scheme 3. Completion of the synthesis of the proposed structure of (−)-sclerophytin A by the Overman group.8,12

At the same time, spectroscopic studies of sclerophytin B demonstrated that this compound did not contain two ether bridges as had been proposed originally.9 Following these studies, Overman et al. undertook the synthesis of revised structure of sclerophytin A on the base of their retrosynthetic methodology.24,10,12

Tricycle alcohol 24 was subjected to an hydroxyl-directed epoxidation reaction to give 31 in 95% yield (Scheme 4). Subsequent regioselective reductive epoxide opening and removal of the silyl ether afforded cladiell-11-ene-3,6,7-triol (32).27 Conversion of the triol 32 by photochemical isomerisation concluded the synthesis of the sclerophytin A (3), albeit in a poor 28% yield. Importantly, the spectroscopic data and the optical rotation correlated to those of the natural product.6

Scheme 4. Synthesis of (−)-sclerophytin A (3) by the Overman group.10,12

Since then Overman et al. have worked on total syntheses of several other 2,11-cyclised cembranoids and the total syntheses of briarellin E and F were successfully completed using analogous strategies.28,29

2.2 Paquette: Diels-Alder and Claisen Rearrangement

Concurrently with the Overman group,8 Paquette et al. successfully reported the total synthesis of the originally proposed structure of sclerophytin A in 2000.7 Shortly after the correct configuration had been determined, Paquette et al. published the total synthesis of the correct structures of sclerophytns A and B in 2001.10,11,30 The strategy relied upon a Diels-Alder reaction to construct the hydroisobenzofuran core of the natural products and ring expanding Claisen rearrangement sequence to prepare the nine-membered cyclic ether embedded in the tricyclic core (Figure 6).

The synthesis commenced with an intramolecular Diels-Alder cycloaddition reaction between the Danishefsky diene 33 and the dienophile 34 to complete the hydroisobenzofuran ring system (Scheme 5). A further 10 steps were required to access the carboxylic acid 36. Yamaguchi macrolactonisation31 afforded the lactone 37 as a separable mixture of diastereomers. Subsequent Tebbe methylenation of the diastereomeric lactones (independently treated) led to the diene 38. Following this, Claisen rearrangement formed compound 39, establishing the core structure of the cladiellin. The next stage of the synthesis involved the preparation of the enone 40 in 6 steps form ketone 39. The copper-catalysed addition of isopropyl magnesium chloride proceeded in good yield with complete stereocontrol and installed the isopropyl side-chain of the natural product delivering 41. An additional 3 steps furnished the advance intermediate 42.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{paquette.png}
\caption{Paquette’s approach.}
\end{figure}

\begin{flushright}
\end{flushright}
Dihydroxylation of the alkene 42 in the presence of a molar equivalent of osmium tetroxide proceeded with a poor facial selectivity leading to the formation of the two diols 43 and 44 as a separable mixture (1:1.5). Oxidation and silyl ether cleavage afforded the alcohol 45. Subsequent dehydration using the Grieco process\(^\text{32}\) introduced the exocyclic double bond in good yield. Finally, conversion of 46 into the desired natural product (−)-sclerophytin A (3) was afforded by dissolving sodium pieces in ethanol. Acetylation generated (−)-sclerophytin B (4). The total synthesis of (−)-sclerophytin A (3) was achieved in 28 steps with an overall yield of 0.46%.

2.3 Molander: [4+3]-Annulation

In 2003, the Molander group completed the total synthesis of (−)-7-deacetoxyalcyonin acetate (15), a compound that had been synthesised previously by Overman et al. Molander and co-workers developed a [4+3]-annulation for the total syntheses of several natural products and extended this methodology to the cladiellin family (Figure 7).

Chapter 1: Introduction

Figure 7. Molander’s approach.

The first step of the synthesis was a thermally induced [2+2] cycloaddition reaction between α-phellandrene 47 and methoxy ketene (Scheme 7). Photochemical rearrangement of the cyclobutanone 48 occurred to give acetal 49 with complete retention of the configuration. The stage was set for the key reaction and treatment of the bis-acetal 49 with alkoxydiene in the presence of titanium tetrachloride allowed the [4+3] annulation to take place to deliver the tricyclic ester 51.

The reaction proceeded by Lewis acid promoted formation of the oxocarbenium ion 50 which underwent nucleophilic attack and a second ionisation followed by cyclisation to form the hydroisobenzofuran core 51 found in the diterpenes in a single step. The reaction occurred with complete regio- and stereoselectivity, which was assumed to be controlled by the approach of the nucleophile from the convex face of the oxocarbenium ion 50.

A further 7 steps were required to form the enol triflate 52 which was subjected to the Nozaki-Hiyama-Kishi cyclisation reaction\(^1\) providing a 2:1 diastereomeric mixture of cyclopentanols 53. The undesired alcohol was recycled via a Mitsunobu inversion in 71% yield. Acetylation of the required cyclopentanol delivered 54. Chemoselective epoxidation of the trisubstituted alkene and treatment of the allylic acetate with ozone furnished the epoxy dione 55, and subsequent tungsten-mediated deoxygenation of the epoxide delivered the diketone 56. Chemoselective silyl enol ether formation, Wittig olefination and diastereoselective methylation provided the desired (−)-7-deactoxyalcyonin acetate (15). The total synthesis was achieved in only 17 steps from commercially available (R)-(−)-α-phellandrene with an overall yield of 4%.

a) methoxyacetyl chloride, Et$_3$N, PhCH$_3$, rt, 25%; b) AcOH, hv, CH$_2$Cl$_2$, rt, 86%; c) CH$_3$C(OSiEt$_3$)CHC(OMe)(OSiEt$_3$), TiCl$_4$, CH$_2$Cl$_2$, −80 °C, 43-80%; d) CrCl$_2$, NiCl$_2$, DMF/THF, rt, 88%; e) DEAD, BzOH, PPh$_3$, THF, rt; f) MeONa, MeOH, rt, 71% (2 steps); g) Ac$_2$O, DMAP pyridine, rt, 100%; h) m-CPBA, CH$_2$Cl$_2$, 0 °C; i) O$_3$, CH$_2$Cl$_2$, −78 °C, then DMS, rt, 43% (3 steps); j) WCl$_6$, n-BuLi, THF, 93%; k) TBSOTf, KHMDS, THF, −78 °C; l) Ph$_3$PCH$_3$Br, t-BuOK, THF, 0 °C, then 1M HCl, 61% (2 steps); m) MeLi, YbOTf$_3$, THF, −78 °C, 66% (BRSM).

Scheme 7. Total synthesis of (−)-7-deacetoxyalcyonin acetate (15) by the Molander group.

Molander et al. also considered the possibility of using a SmI$_2$-mediated cyclisation reaction in order to construct the oxacyclononane sub-unit instead of the Nozaki-Hiyama-Kishi reaction. However, this new methodology proved to be unsuccessful and the only product formed was the 3,7-diastereomer of polyanthellin A 59 (Scheme 8).

Scheme 8. Formation of the oxacyclononane unit by SmI$_2$-mediated cyclisation.

2.4 Crimmins: Ring-Closing Metathesis and Intramolecular Diels-Alder Cycloaddition

Crimmins et al. entered the field of the 2,11-cyclised cembranoid synthesis with the total synthesis of ophirin B in 200439 and astrogorgin in 2006.40 Both syntheses relied upon the formation of the core ring-system by a route incorporating an intramolecular ring closing metathesis reaction and a Diels-Alder cycloaddition reaction (Figure 8).

![Figure 8. Crimmins approach.](image)

The synthesis of the oxonene unit of the ophirin B commenced with (S)-benzylglycidyl ether 62 (Scheme 9). Treatment with dimethyl sulfonium methyliide followed by protection of the allylic alcohol and oxidation under modified Wacker oxidation provided the methyl ketone 63. Further manipulations led to the carboxylic acid 64 in a 73% overall yield. Acylation and reaction with the oxazolidinone delivered the N-acyloxalidinone 65. An alkylation reaction was then employed to introduce the C-9 stereogenic centre selectively (>92:2 dr) and gave the ring-closing metathesis precursor 66. Unfortunately, only dimerization was observed when substrate 66 was subjected to the ring-closing metathesis reaction. To circumvent this problem, the chiral auxiliary was removed to the alcohol 67 and then cyclisation was performed in benzene at 80 °C in the presence of the Grubbs II catalyst leading to the oxonene 68 in 89% yield (isolated from a 15:1 mixture of oxonene and dimer). The oxonene 68 was then converted into the Diels-Alder substrate using an eleven-step sequence. A 3:1 mixture of tetraenes \textit{Z}-69 and \textit{E}-69 was obtained and the \textit{E}-isomer underwent spontaneous intramolecular Diels-Alder

40 Crimmins, M. T.; Brown, B. H.; Plake, H. R. J. Am. Chem. Soc. 2006, 128, 1371.
cycloaddition at 25°C delivering the oxatricyclic core 70. The unreacted Z-isomer 69 was irradiated in the presence of a sub-stoichiometric amount of diphenyl disulfide and slowly converted into the E-isomer. The process was repeated until consumption of the starting material was complete.

Scheme 9. Synthesis of intermediate 70 in the total synthesis of ophirin B (60) performed by the Crimmins group.\(^{39}\)

The initial end-game strategy involved addition of methyl magnesium chloride followed by the cleavage of the benzyl and triethylsilyl groups to generate triol 71 (Scheme 10). In a final step, ophirin B would have been obtained in an acetylation reaction. However, all attempts to perform direct acetylation failed and delivered the bridged ether 72 instead.
a) MeMgCl, THF, rt, 85%; b) TBAF, THF, rt, 94%; c) Na, naphtalene, THF, −78 °C, 90%; d) Ac₂O or AcCl, with a variety of bases and Lewis acid conditions; e) KHMs, Ac₂O, THF, 90% (brsm); f) Bi(OTf)₃, Ac₂O, rt, 75%; g) H₂, Pd/C, EtOAc, rt, 70%; h) Ac₂O, DMAP, pyridine, CH₂Cl₂, 95%.

Scheme 10. Completion of the total synthesis of ophirin B (60).³⁹

Crimmins et al. devised an alternative pathway in which the triethylsilyl ether 70 was firstly cleaved and the intermediate 73 was converted into the monoacetate 74 (Scheme 10). Reaction with bismuth trifluoromethanesulfonate, and acetic anhydride, followed by hydrogenolysis and acetylation afforded ophirin B (60) in 8% yield over 27 steps from commercially available starting material.

The same strategy was applied to the synthesis of the more complex natural product, astrogorgin (61) (Scheme 11). The intermediate 65 was subjected to an asymmetric alkylation reaction with allylic iodide 75 leading to the diene 76. The oxonene ring was formed by ring-closing metathesis and a further eleven-step sequence provided the Diels-Alder precursor 77. Intramolecular cycloaddition provided the desired oxatricycle 78 as a single diastereomer in the same manner as for the synthesis of ophirin B (60). Finally another twelve-step sequence afforded the target natural product.
Scheme 11. Completion of the total synthesis of astrogorgin (61) by the Crimmins group.

Following the publication of these results, the Crimmins group reported the total synthesis of 11-acetoxy-4-deoxyasbestinin D, \(^{41}\) asbestinin-12, \(^{42}\) the proposed structure of briarellin J, \(^{43}\) (+)-vigulariol and (-)-sclerophytin A \(^{44}\) using the same key-steps.

2.5 Kim: Alkylative Cyclisation and Diels-Alder Cycloaddition

In 2006, the Kim research group reported the first total synthesis of an (E)-cladiellin diterpene with the total synthesis of (-)-cladiella-6,11-dien-3-ol (79) (Figure 9). \(^{45}\) In order to achieve this synthesis, new methodology was developed to form the (E)-geometric isomer of the oxacyclononane core, while other synthesis efforts were focused on the synthesis of the (Z)-geometric isomer. The key strategy involved intramolecular amide acetate enolate

alkylation to construct the \((E)\)-cyclooxanone and intramolecular Diels-Alder cycloaddition to afford the hydroisobenzofuran ring system.

\[\text{Alkylation to construct the \((E)\)-cyclooxanone and intramolecular Diels-Alder cycloaddition to afford the hydroisobenzofuran ring system.} \]

Figure 9. Kim’s approach.

The synthesis of the \((E)\)-cyclooxanone unit started with an aldol reaction between glycolate oxazolidinone 80 and 5-methylhex-4-enal 81 (Scheme 12). The syn-aldol product was obtained in a highly diastereoselective fashion (dr 98:2) and moderate yield. Reductive cleavage of the chiral oxazolidinone and protection of hydroxyl groups led to the protected triol 82 in a 76% overall yield. The \((E)\)-allylic chloride 83 was obtained in 4 steps. Upon treatment with lithium bis(trimethylsilyl)amide, the cis-\((E)\)-oxonene 84 was obtained as a single diastereomer in excellent yield. A further 6 steps yielded the Diels-Alder precursor 85. The intramolecular Diels-Alder cyclisation was carried out in refluxing xylene. The addition of butylated hydroxytoluene to the reaction mixture was essential to avoid decomposition. The tricyclic core of the cladiellin 86 was subjected to a double methylation of the ester followed by deoxygenation to deliver the isopropyl group 87. Oxidation and addition of a methyl group introduced the C-3 tertiary alcohol and completed the synthesis of \((-)\)-cladiella-6,11-dien-3-ol (79). Overall, the total synthesis was realised in 6% yield over 21 steps.
a) n-Bu₂BOTf, Et₃N, CH₂Cl₂, −78 to −40 °C, then 81, −78 to 0 °C, 75%, dr 98:2; b) NaBH₄, THF/H₂O, rt, 89%; c) TBDPSCI, imidazole, 0 °C, 92%; d) trityl bromide, DMAP, pyridine, 100 °C, 93%; e) LiHMDS, THF, 45 °C, 92%; f) BHT, xylene, reflux, 85%; g) MeLi, CeCl₃, THF, −78 °C, 89%; h) Ac₂O, DMAP, Et₃N, CH₂Cl₂, rt; i) K, 18-crown-6, t-BuNH₂, THF, rt, 62% (2 steps); j) DMP, pyridine, CH₂Cl₂, rt; k) MeLi, NaBF₄, THF, −78 °C, 82% (2 steps).

Scheme 12. Total synthesis of (−)-cladiella-6,11-dien-3-ol (79) by the Kim group.⁴⁵

(−)-Cladiella-6,11-dien-3-ol (79) can be used as a common precursor for the synthesis of other diterpenes as shown in Scheme 13. Treatment with osmium tetroxide delivered (−)-cladiell-11-ene-3,6,7-triol (32) in a highly stereo- and chemo-selective manner. (+)-Polyanthellin A (89) was obtained using an oxymercuration, demercuration protocol followed by an acetylation reaction. Finally, (−)-7-deacetoxyalcyonin acetate (15) was obtained in 5 steps from (−)-cladiella-6,11-dien-3-ol (79). Protection of the tertiary hydroxyl group and dihydroxylation provided the corresponding diol 90. The secondary alcohol was acetylated and exposure of the resulting acetate to Burgess salt⁴⁶ followed by desilylation delivered the natural product 15.

a) BF$_3$•Et$_2$O, Et$_2$O, rt, 84%; b) i. Hg(OAc)$_2$, THF/H$_2$O, rt, then Et$_3$B, NaBH$_4$, 62%, ii. Ac$_2$O, DMAP, Et$_3$N, CH$_2$Cl$_2$, rt, 78%; c) OsO$_4$, NMO, THF/H$_2$O, 0 °C, 94%; d) TESOTf, CH$_2$Cl$_2$, rt, 97%; e) OsO$_4$, NMO, THF/H$_2$O, 0 °C, 99%; f) Ac$_2$O, DMAP, Et$_3$N, CH$_2$Cl$_2$, 0 °C, 97%; g) Burgess salt, PhCH$_3$, 70 °C; h) TBAF, THF, 50 °C, 92% (2 steps).

Scheme 13. Completion of the syntheses of three cladiellin natural products from (−)-cladiellia-6,11-dien-3-ol (79).

2.6 Hoppe: Homo-aldol, Krämer Tetrahydrofuran Synthesis and Ring-Closing Metathesis

(+)-Vigulariol (91) was synthesised first by the Paquette group as a by-product during work on the sclerophytins before its discovery as a natural product. A few years later, Hoppe et al. reported a short total synthesis of (+)-vigulariol. The strategy relied on an asymmetric homo-aldol reaction followed by Krämer’s tetrahydrofuran synthesis and a ring-closing metathesis reaction (Figure 10).

Chapter 1: Introduction

Figure 10. Hoppe’s approach.

The starting materials 93 and 96 were prepared in a few steps from commercially available cyclohexanone 92 and diol 95 respectively. Coupling by stereospecific deprotonation of the carbamate 93, using sec-butyllithium and N,N,N’,N’-tetramethyl-1,2-diaminocyclohexane delivered the lithiated intermediate 94 which underwent a lithium-titanium exchange in presence of chlorotriisopropoxytitanium (Scheme 14). Subsequent addition of aldehyde 96 led to a diastereomeric mixture of alcohols 97 (dr 83:17). Lewis acid mediated reaction with the acetal 98 and intramolecular aldol reaction delivered the hexahydroisobenzofuran products as separable diastereoisomers. The desired diastereoisomer 99 was the major product and was obtained in 71% yield. Ring closure was achieved using Grubbs II catalyst to give the ten-membered ring in a 45% yield. Epoxidation on the α-face of alkene 100 with dimethyldioxirane produced epoxide 101. O-Debenzylation and Wittig olefination delivered (+)-vigulariol (91). The natural product was afforded in 8 steps from the cyclohexanone 92 and in an overall yield of 63%.
2.7 Johnson: [2+3] Cycloaddition and Ring-Closing Metathesis

Three years following the publication of the total synthesis of (+)-polyanthellin A (89) by the Kim group, Johnson et al. reported this synthesis in 15 steps from methallyl alcohol (Figure 11). The hydroisobenzofuran core was formed by a [2+3] cycloaddition reaction and a ring-closing metathesis reaction afforded the oxonane ring.

Figure 11. Johnson’s approach.

The β-ketoester 103 was prepared from 3-methylbutanal 102 (Scheme 15). Intramolecular cyclopropanation of 103 in presence of iodine, triethylamine and magnesium perchlorate as Lewis acid failed.49 The problem was circumvented by the use of a two-step sequence involving an intermediate diazo compound. Intramolecular copper-catalysed cyclopropanation of 103 delivered compound 104 in 78% yield. The cycloaddition reaction between the aldehyde 106, which was obtained in 6 steps from methallyl alcohol 105, and the cyclopropane 104 failed to proceed in presence of a conventional Lewis acid. It was found that the sterically hindered MADNTf\textsubscript{2} catalyst 113 was able to drive the reaction and the desired product 107 was afforded in 76% yield. Ring-closing metathesis using the Grubbs II catalyst delivered the nine-membered ring 108. Removal of the ester function under Krapcho conditions50 led only to the cis-5,6-ring junction. Hydroboration and TPAP oxidation formed the ketone 109 selectively. Double Wittig olefination and cleavage of the silyl ether delivered the dienol 110, and this compound was then subjected to a sequential iodoetherification, oxymercuration and radical reduction to deliver a mixture of diastereomers (6:1) 111. Finally, acetylation and separation of diastereomers provided (+)-polyanthellin A (89). The total synthesis was realised in an overall yield of 3.1% in 15 linear steps from methallyl alcohol 105.

Scheme 15. Total synthesis of (+)-polyanthellin A (89) by the Johnson group.48
2.8 Morken: Oshima-Utimoto Reaction, Radical Cyclisation and Ring-Closing Metathesis

The total synthesis of (-)-sclerophytin A had been previously described by various research teams, but in 2010 Morken et al. reported the shortest total synthesis of this compound in 13 steps and 2.7% overall yield. The key components to the strategy involved palladium-catalysed coupling to form the furan ring and radical cyclisation to construct the hydroisobenzofuran core (Figure 12). Finally, a ring-closing metathesis reaction delivered the oxonane ring system.

Figure 12. Morken’s approach.

The synthesis started with Brown methallylation of geranial 114 leading to the (E)-allylic alcohol 115 with 98% ee (Scheme 16). Oshima-Utimoto reaction\(^{52}\) delivered the cyclic acetal 116 as a mixture of epimers in 62% yield. Jones oxidation and α-iodination allowed the formation of 117 which upon stereoselective radical cyclisation (>10:1 in presence of indium chloride and sodium borohydride) and reduction of the corresponding lactone afforded lactol 118. Ketone 119 was then formed through a three-steps sequence. Acylation of the alcohol, displacement with cyanide in presence of scandium triflate and addition of butenylmagnesium chloride led to the formation of ketone 119. Ring-closing metathesis, catalysed by the Grubbs II catalyst, provided the oxonane 120. Epoxidation with \(m\)-chloroperbenzoic acid gave a 1.8:1 mixture of the α- and β-stereoisomers 121. The mixture was treated successively under basic and acidic conditions and in this way only stereoisomer 122 was isolated in 88% yield. A final reaction with methylmagnesium chloride was required to deliver (-)-sclerophytin A (3).

Chapter 1: Introduction

Scheme 16. Total synthesis of (−)-sclerophytin A (3) completed by the Morken group.

2.9 Yang: Gold-Catalysed Cascade Reaction and Ring-Closing Metathesis

In 2014, the Yang research group reported a new synthetic strategy to form cladiellin natural products based on a gold-catalysed cascade reaction and ring-closing metathesis (Figure 13).

Figure 13. Yang’s approach.

Commercially available hex-5-ynoic acid 123 was first coupled with a chiral auxiliary to form amide 124. Subsequent diastereoselective α-alkylation installed the isopropyl group found at the C-14 of the cladiellin compounds 125. A further 8 steps were required to obtain the precursor for the gold-catalysed reaction 126. The 1,7-diyne, in the presence of an excess of p-nitrobenzyl alcohol and a gold catalyst, underwent a cascade reaction delivering the 6,5-bicyclic core 127 of the cladiellins. The resulting diastereomeric mixture was treated with (methylallyl)trimethylsilane and trimethylsilyl trifluoromethanesulfonate, and the two epimers 128 and 129 were separated. Ester 128 was transformed into the ring-closing metathesis precursor 130 by Weinreb amide formation and Grignard reaction. Finally, formation of the oxonane was performed by exposure to the Zhan metathesis catalyst\(^54\) and key intermediate 120 was isolated in 70% yield.

a) EDCI, t-BuOH, (−)-(1S,2S)-pseudoeophenamine, DIPEA, DMF, rt, 90%; b) LiCl, LDA, isopropyl iodide, THF, −78 °C to rt, 86%; c) [(IPr)AuCl] (5 mol%), AgSbF₆ (5 mol%), p-NO₂C₆H₄CH₃OH, CH₂Cl₂, rt, 65%; d) TMSOTf, methylallyl trimethylsilane, MeCN, −40 °C to rt, 60% of 128 and 20% of 129; e) Zhan 1B catalyst (10 mol%), PhCH₃, reflux, 70%.

Scheme 17. Synthesis of intermediate 120.

Applying known reaction conditions to this intermediate 120, Yang et al. prepared four natural products: (−)-sclerophytin A (3) and B (4), (+)-cladiella-6Z,11(17)-dien-3-ol (131) and (+)-vigulariol (91) (Scheme 18).
a) m-CPBA, CH₂Cl₂, −12 °C; b) LiOH, dioxane, H₂O, then KHSO₄, Sc(OTf)₃, MeCN, H₂O, rt; c) MeMgCl, THF, 52 °C, 37% (3 steps); d) Ac₂O, Et₃N, DMAP, CH₂Cl₂, 0 °C, 78%; e) MeMgCl, THF, 0 °C, 80%; f) m-CPBA, CH₂Cl₂, 0 °C (51%).

Scheme 18. Completion of the total syntheses of four cladiellins by the Yang group.⁵³

Five other cladiellin natural products were also synthesised from the key intermediate 120 (Scheme 19). Methyl addition using methylmagnesium chloride delivered (+)-cladiella-6Z,11(17)-dien-3-ol (131) which was transformed into (+)-deacetylpolyanthellin A (132) by a double oxymercuration reaction followed by reduction. Acetylation of the alcohol 132 afforded (+)-polyanthellin A (89). The final 3 natural products were obtained from intermediate 133 that was prepared from 120 in 5 steps. Treatment of the hemiketal 133 with methylmagnesium chloride delivered (−)-cladiellisin (134) with a single diastereomer. Acetylation led to the formation of (−)-pachycladin C (136), while oxidation with manganese oxide revealed (−)-pachycladin D (135).
Scheme 19. Completion of the total syntheses of five cladiellins by the Yang group.53

2.10 Clark: Oxonium Ylide and Rearrangement

After various studies towards the synthesis of the cladiellin family compounds56, Clark \textit{et al.} completed the racemic total synthesis of vigulariol in 2007 (Figure 14).57 The synthetic strategy involved reductive cyclisation to form the furan ring system. A [2,3]-sigmatropic rearrangement reaction was used to build the five- and nine-membered rings of the tricyclic core and an intermolecular Diels-Alder cycloaddition reaction installed the cyclohexane ring.

The synthesis started with reaction of acrolein with the Grignard reagent generated from the tert-butyl(dimethyl)silyl protected bromopropanol \textit{137} (Scheme 20). The allylic alcohol was O-alkenylated with ethyl propiolate. After cleavage of the silyl ether, the resulting alcohol was subjected to a Swern oxidation to afford aldehyde \textit{138}. The stage was set for the first pivotal ring formation reaction. Samarium diiodide-mediated reductive cyclisation reactions have successfully been applied to the synthesis of a wide range of natural products with excellent yield and selectivity (see introduction, section 4). In this instance, the samarium-mediated reaction gave the tetrahydropyranol \textit{139} with excellent diastereoselectivity. Protection of the hydroxy group as a silyl ether and saponification of the ethyl ester delivered the carboxylic acid, which was transformed into a mixed anhydride prior to being converted into the diazoketone \textit{140} by treatment with an excess of diazomethane. The reaction with Cu(hfacac)$_2$ in refluxing dichloromethane delivered the oxonium ylide \textit{141} (or a metal-bound ylide equivalent) that underwent a [2,3]-sigmatropic rearrangement delivering a 5:1 mixture of \textit{E}- and \textit{Z}-isomers \textit{E-142} and \textit{Z-142} in high yield. The influence of the solvent on the reaction outcome was investigated but the \textit{E}:\textit{Z} ratio remained in favour of the formation of the \textit{Z}-bicyclic ketone \textit{Z-142}.58 In the same way, the temperature of the reaction did not influence the isomer ratio significantly. The \textit{E}-alkene \textit{E-142} was converted into the desired \textit{Z}-isomer \textit{Z-142} in presence of azobisisobutyronitrile and ethanethiol in only 56% yield. Enol triflate formation and Stille cross-coupling delivered the unstable diene \textit{143}, which was immediately subjected to a Diels-Alder cycloaddition reaction. This reaction produced a 2:1 mixture of \textit{exo} and \textit{endo} diastereoisomers. Luckily, treatment of the mixture with potassium

58 Hayes, S. T., \textit{PhD Thesis University of Nottingham 2007.}
carbonate led to the epimerisation at the C-14 stereogenic centre adjacent to the carbonyl group and only the required ketone 144 was isolated. Wittig olefination formed the exocyclic alkene and hydrolysis of the enol ether afforded intermediate 145. The isopropyl substituent was installed by regioselective hydrogenation of the exocyclic alkene. A second Wittig olefination reaction furnished the exocyclic alkene at C-11 found in many of the cladiellin natural products and delivered 146. It is worth noting that while mild conditions (2 equivalents of phosphonium ylide at room temperature) were required for the transformation of the ketone into the alkene at C-15; the olefination at the C-11 position involved the use of 10 equivalents of ylide and high temperature (80 °C).

The next challenge was introduction of the methyl group at C-3. For this transformation, TBS removal and a Dess-Martin oxidation took place resulting in the formation of the ketone 120. Addition of methyl magnesium chloride produced the tertiary alcohol 131 as a single diastereomer, also known as natural product (+)-cladiella-6Z,11(17)-dien-3-ol. Finally, the natural product was produced by a regio- and stereoselective alkene epoxidation and subsequent nucleophilic ring-opening of the epoxide with the tertiary hydroxyl group. The total synthesis of vigulariol (91) was completed in 20 steps and in 4.1% overall yield.
Since then, Clark et al. developed an enantioselective synthesis of the cladiellin core ring system based on this route. This approach was used to synthesise 10 cladiellin natural products.55,59

The commercially available 1,4-butanediol \textit{147} was selectively mono-protected as a silyl ether and the remaining free hydroxyl was oxidised into aldehyde \textit{148}. Wittig olefination with the stabilized ylide \textit{149} delivered the α,β-unsaturated

ester 150 which was subsequently reduced into the allylic alcohol 151. Sharpless asymmetric epoxidation installed the stereocentre with 94% ee. Mesylation of the hydroxyl group 152 and treatment with sodium iodide and zinc powder furnished the allylic alcohol 153. The diazoketone 140 was obtained in 7 steps from the enantio-enriched allylic alcohol 153 by following the route used in the synthesis of (±)-vigulariol (91).

Scheme 21. Enantioselective synthesis of the E- and Z-bridged bicyclic ether 142 by Clark et al.55

Additional studies on the catalytic oxonium ylide formation and [2,3]-sigmatropic rearrangement reaction demonstrated that the choice of the catalyst, the solvent and the temperature of the reaction influence the yields and the diastereoselectivity significantly (Table 1). While the use of a copper complex gave a mixture of E and Z isomers in favour of the less strained bicyclic ketone Z-142 (entries 1-5), it appeared that the diastereoselectivity was reversed in presence of a rhodium catalyst affording the E-isomer as the major product (entries 8-12). Therefore, it was possible to tune the reaction towards
Chapter 1: Introduction

Indeed, the use of the copper catalyst Cu(hfacac)$_2$ in refluxing dichloromethane (entry 3) or tetrahydrofuran (entry 4) furnished the Z-bicyclic ketone Z-142 selectively with $Z:E$ ratios of a 5.0:1 and 6.9:1 respectively, while the rhodium catalyst Rh$_2$(tpa)$_4$ in refluxing DCE (entry 12) delivered a 1:6.3 mixture of Z-142 and E-142 in 53% yield. The use of different solvents also influenced the yield and the isomer ratio (entries 2, 4, 5, 10-12).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst a</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Time</th>
<th>Yield b (%)</th>
<th>Ratio $Z:E$ c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(acac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>3 h</td>
<td>30</td>
<td>3.5:1</td>
</tr>
<tr>
<td>2</td>
<td>Cu(hfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>15 min</td>
<td>95</td>
<td>5.0:1</td>
</tr>
<tr>
<td>3</td>
<td>Cu(hfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>rt</td>
<td>3 h</td>
<td>94</td>
<td>5.9:1</td>
</tr>
<tr>
<td>4</td>
<td>Cu(hfacac)$_2$</td>
<td>THF</td>
<td>reflux</td>
<td>45 min</td>
<td>74</td>
<td>6.9:1</td>
</tr>
<tr>
<td>5</td>
<td>Cu(hfacac)$_2$</td>
<td>MeCN</td>
<td>reflux</td>
<td>2 h</td>
<td>78</td>
<td>1.3:1</td>
</tr>
<tr>
<td>6</td>
<td>Rh$_2$(OAc)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>1 h</td>
<td>52</td>
<td>1.2:1</td>
</tr>
<tr>
<td>7</td>
<td>Rh$_2$(tfa)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>25 min</td>
<td>90</td>
<td>1.7:1</td>
</tr>
<tr>
<td>8</td>
<td>Rh$_2$(tfacam)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>15 min</td>
<td>63</td>
<td>1:1.2</td>
</tr>
<tr>
<td>9</td>
<td>Rh$_2$(pfm)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>15 min</td>
<td>71</td>
<td>1:2.7</td>
</tr>
<tr>
<td>10</td>
<td>Rh$_2$(tpa)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>15 min</td>
<td>63</td>
<td>1:4.3</td>
</tr>
<tr>
<td>11</td>
<td>Rh$_2$(tpa)$_4$</td>
<td>THF</td>
<td>rt</td>
<td>18 h</td>
<td>32</td>
<td>1.4:1</td>
</tr>
<tr>
<td>12</td>
<td>Rh$_2$(tpa)$_4$</td>
<td>DCE</td>
<td>reflux</td>
<td>15 min</td>
<td>56</td>
<td>1:6.3</td>
</tr>
</tbody>
</table>

a Catalyst loading 5 mol%; b Isolated yield of Z and E isomers; c Isomeric ratio determined by 1H NMR analysis on the crude mixture of isomers.

Table 1. Previous studies on metal-catalyzed reactions of diazoketone 140 to give bridged-bicyclic ethers E-142 and Z-142.

The intermediate Z-bridged bicyclic ether Z-142 led to the formation of (+)-cladiella-$6Z,11(17)$-dien-3-ol (131) and (+)-vigulariol (91) following the synthetic pathway described in the racemic synthesis of the natural product (Scheme 20). Further synthetic manipulations transformed the E-isomer E-142 into another 8 cladiellin natural products (Scheme 22): (-)-cladiella-$6,11$-dien-3-ol (79), (-)-3-acetoxycladiella-$6,11$-diene (154), (-)-cladiell-11-ene-$3,6,7$-triol (32), (-)-3-acetoxycladiell-11-ene-$6,7$-diol (155), (-)-sclerophytin A (3), (-)-

sclerophytin B (4), (+)-deacetylpolyanthellin A (132) and (+)-polyanthellin A (89).

Scheme 22. Cladiellin natural products synthesised by Clark et al.55

The \(E\)-bicyclic ketone was converted into the tricyclic core 156 by sequential enol triflate formation, Stille coupling, Diels-Alder cycloaddition and epimerisation. Wittig olefination and hydrolysis of the enol ether delivered the exocyclic alkene 157. Attempted selective hydrogenation as well as hydroboration failed to install the isopropyl group and to deliver ketone 158. Consequently, a reaction sequence used in Kim’s approach to the total synthesis of cladiellin natural product was employed.45 Methyl addition to ketone 156 produced the tertiary alcohol 159 which, after acetylation, was cleaved under reduction conditions to form the isopropyl group on 160 in good overall yield.61 Hydrolysis of the enol ether and protection of the tertiary alcohol revealed the ketone 161. Kinetic enol triflate formation and a Kumada-type coupling reaction62 with methylmagnesium chloride produced the diene 162. Removal of the TBS group, oxidation of the resulting alcohol and addition of methyl lithium furnished (−)-cladiella-6,11-dien-3-ol (79).

This alcohol 79 was used to prepare 3 other natural products (Scheme 24). Acetylation at the C-3 hydroxyl group furnished (−)-3-acetoxycladiella-6,11-diene (154). Subsequent dihydroxylation afforded (−)-3-acetoxycladielli-11-ene-6,7-diol (155). Finally, a last natural product was obtained from diene 79 by its dihydroxylation that delivered (−)-cladiell-11-ene-3,6,7-triol (32) as a single diastereomer in 66% yield.
Following the successful completion of the total syntheses of members of the cladiellin family having an endocyclic alkene at C-11–C-12, the Clark group reported the total syntheses of members possessing an exocyclic alkene at C-11–C-20.

The isopropyl group was installed by acetylation and deoxygenation of the tertiary alcohol, following a Wittig olefination on ketone 163. The common intermediate 166 allowed the synthesis of (−)-sclerophytin A (3) by dihydroxylation. Acetylation of the latter led to (−)-sclerophytin B (4). A two steps-sequence from tertiary alcohol 166 afforded (+)-deacetylpolyanthellin A (132) and (+)-polyanthellin A (89) after acetylation of the tertiary alcohol.
Scheme 25. Total syntheses of (−)-sclerophytin A (3) and B (4), (+)-deacetylpolyanthellin A (132) and (+)-polyanthellin A (89) by Clark et al. ⁵⁵

The route developed within the Clark group proved its efficiency with regard to the synthesis of cladiellin natural products in high yield. That is why this synthetic approach would be used as the basis for the total synthesis of the proposed structure of sclerophytin F.
3 Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement

The interaction of an electron-deficient metal carbenoid intermediate 167 with a lone pair of electrons from a Lewis basic atom (Scheme 26), such as nitrogen, oxygen or sulfur, results in the formation of an ylide. The latter can be defined as a metal complex-associated ylide 168 or as a “free”- ylide 169.

![Scheme 26. Mechanism of ylide formation.](image)

3.1 Metal Carbenes or Carbenoids

Generated from the decomposition of diazo compounds with transition metals, metal carbenoids are usually more stable and longer lived than “free” carbenes. Although they are stabilised by the formation of a complex with a transition metal, metal carbenoids remain highly reactive. Consequently, high yields and good to excellent selectivities are affordable via metal carbenoid
mediated transformations and multiple synthetic transformations result from the use of these intermediates.63

Mechanistically, the generally accepted scheme for the catalytic decomposition of diazo compounds starts with the nucleophilic addition of the diazo compound 170 to the metal complex MLₙ to form the diazonium ion 171 (Scheme 27). Subsequent loss of nitrogen gas generates the metal-stabilised carbene or metal carbenoid intermediate 172. Finally, transfer of the electrophilic carbene to an electron-rich substrate “S.” regenerates the metal complex and completes the catalytic cycle.

Scheme 27. Catalytic decomposition of diazo compounds.63a

Studies concerning metal-catalysed decomposition of the diazo compounds demonstrated that the diazonium ion intermediate 171 is formed thanks to spectroscopic analysis of reactions involving a iodorhodium(III) tetra-p-

tolylporphyrin complex; and spectroscopic and X-ray analysis of an intermediate (porphyrinorhodium)-diaminocarbene complex confirmed the formation of a metal-stabilised carbene 172.

Effective transition metals for the conversion of diazo compounds into metal carbenoids are Lewis acidic in character. Coordinative unsaturation at the metal centre allows them to react as electrophiles with diazo compounds. The stability and the reactivity of the resulting metal carbenoids depend on the degree of π back-donation from the metal to the carbene. The ligand-metal combination influences significantly the regio-, the chemo- and the stereo-selectivity of the reaction.

Since the first reported metal-catalysed reaction of a diazo compound with copper dust in 1906, copper had remained the metal of choice despite the development of diverse ligands until 1973, when rhodium(II) acetate dimer was found to be a highly efficient catalyst for the decomposition of diazocarbonyl compounds. So far, great advances have been made in the field and a wide variety of transition metals such as cobalt, palladium, platinium, rhodium, ruthenium, nickel, zinc, chromium, molybdenum, iron and osmium have been used for catalytic decomposition of diazo compounds. In addition, catalysts bearing various ligands (both chiral and achiral) are available for these reactions.

One of the most studied metal-catalysed reactions of the α-diazo compounds is cyclopropanation (Scheme 28). Due to the importance of the cyclopropanes in natural products, numerous approaches to the synthesis of these motifs have been investigated. Intermolecular and intramolecular reactions as well as asymmetric variants exist. Insertion reactions of metal carbenoids are also of great interest in organic synthesis. Although X-H insertion reactions proved effective with different heteroatoms (X = C, O, N, S and Si),

the most synthetically valuable transformation is C-H insertion because it creates a new carbon-carbon bond. Selective and asymmetric procedures for the X-H insertion have been developed.

A further important transformation involving α-diazo compounds is ylide formation. Highly reactive oxygen, nitrogen and sulfur ylide intermediates undergo rearrangement reactions to form stable products. Common reactions of ylide intermediates are the [1,2]-shift reaction, the [2,3]-sigmatropic rearrangement, the [1,4]-shift and, less frequently, β-hydride elimination and the dipolar cycloaddition can be observed.

Scheme 28. Overview of metal carbenoid transformations.68

Although metal carbenoids can undergo a wide range of reactions depending on substrate structure, only the formation of oxonium ylides and their subsequent [2,3]-sigmatropic rearrangement have relevance to this work.

3.2 Intramolecular Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement

A significant development of the chemistry involving intramolecular oxonium ylide formation and [2,3]-sigmatropic rearrangement was the synthesis of cyclic ethers independently reported by Pirrung and Werner,\(^69\) and by Roskamp and Johnson in 1986.\(^70\) Intramolecular rhodium-catalysed reaction between the allylic ethers and the α-diazoketone in substrate 173, 175 and 177 produced oxonium ylides that underwent subsequent [2,3]-sigmatropic rearrangement to afford the five-, six- and eight-membered heterocycles 174, 176 and 178 in moderate to good yields (Scheme 29). The authors noticed that for some substrates, a competing C-H insertion reaction resulted in lower yields. The efficient synthesis of medium-sized cyclic ethers demonstrated the value of this reaction to organic chemistry. Indeed, cyclic ethers are building blocks found in numerous natural products and the one-pot sequence of intramolecular [2,3]-sigmatropic rearrangement of oxonium ylides represented an acceptable method for the formation of O-heterocycles.

Pirrung and Werner

\[
\begin{array}{c}
\text{Oxonium Ylide} \\
\text{Formation} \\
\text{and Rearrangement}
\end{array}
\]

Roskamp and Johnson

\[
\begin{array}{c}
\text{Scheme 29. The first reported examples of intramolecular [2,3]-rearrangement of oxonium ylides.}^{69,70}
\end{array}
\]

Pirrung et al. also demonstrated that the [2,3]-sigmatropic rearrangement of an oxonium ylide was possible in the case of propargylic ethers 179 (Scheme 30). Treatment of the α-diazo β-keto ester 179 (R = CO₂Me) with Rh₂(OAc)₄ furnished the allene 180 in 91% yield. However, as previously reported, the reaction was found to be substrate dependent and the reaction of the corresponding α-diazo ketone 179 (R = H) failed.

![Scheme 30](image)

Scheme 30. Formation and [2,3]-rearrangement of propargylic oxonium ylides generated from the propargylic ethers 179.

The proposed and widely assumed mechanism for the [2,3]-sigmatropic rearrangement is shown in Scheme 31. The diazo substrate 181 is converted into the electrophilic metal carbenoid 182. Nucleophilic attack by one of the lone pair of electrons gives the metal-bound intermediate 183 and dissociation of the metal complex forms the oxonium ylide 184 which then undergoes a symmetry-allowed [2,3]-sigmatropic rearrangement. The existence of a metal-bound ylide or a free ylide is still the subject of debate. Results from some studies suggest that direct rearrangement from a metal-bound ylide can occur, whereas results from other reactions are consistent with a rearrangement of a free oxonium ylide.

Scheme 31. Proposed mechanism for the intramolecular reaction of an allylic ether with a metal cabenoid.73

Clark \textit{et al.} have contributed significantly to the development of intramolecular formation and [2,3]-sigmatropic rearrangement of oxonium ylides as a method for the synthesis of cyclic ethers and carbocycles.72,74,75,76,77,78,80,81,82

In the field of diastereoselective synthesis of tetrahydrofurans, the group demonstrated that the treatment of α-diazoketone 186 with Cu(acac)$_2$ or Rh$_2$(OAc)$_4$ furnished a diastereomeric mixture of the 2,5-dialkyltetrahydrofuran-3-ones 188 and 189 (Scheme 32).74 Although the cis:trans ratio of the products fluctuated as a function of the catalyst, the trans product 188 predominated in all cases.

When the reaction was applied to the synthesis of tetrahydropyran-3-ones, Clark et al. found that the use of copper catalysts such as Cu(acac)$_2$, Cu(hfacac)$_2$ and Cu(tfacac)$_2$ was preferred compared to Rh$_2$(OAc)$_4$ (Scheme 33). Indeed, although a mixture of tetrahydropyran-3-one and the C-H insertion product was obtained when the reaction was catalysed by Cu(acac)$_2$, the use of fluorinated analogues, Cu(tfacac)$_2$ and Cu(hfacac)$_2$, led to the formation of the [2,3]-sigmatropic rearrangement product exclusively. Replacing the catalyst with Rh$_2$(OAc)$_4$ led to a dramatic increase in the amount of the undesired C-H insertion product.

Based on these results, the methodology was successfully used for the synthesis of cyclic ethers containing six-, seven- and eight-membered rings.
In addition to the possibility of forming heterocycles, [2,3]-rearrangement of an allylic oxonium ylide can provide access to bridged-bicyclic ethers. As an example, the \(\alpha \)-diazoketone 193, in presence of a metal catalyst, reacted to give an oxonium ylide which underwent a [2,3]-sigmatropic rearrangement affording the bicyclic ethers 194 and 195 (Scheme 34).\(^{76}\) Again, the choice of the catalyst appeared to be important in controlling the stereochemical outcome of the reaction. \(\text{Rh}_2(\text{OAc})_4 \) led to the formation of a mixture of the \(E \)- and \(Z \)-alkenes, whereas \(\text{Cu(hfacac)}_2 \) furnished the \(E \)-alkene 195 exclusively.

Scheme 34. Synthesis of bridged-bicyclic ethers.\(^{76}\)

Finally, polycyclic ethers can also be synthesised using oxonium ylide and rearrangement chemistry.\(^{81}\) Treatment of the \(\alpha \)-diazoketone 196 with \(\text{Cu(hfacac)}_2 \) produced a mixture of three rearrangement products: the [2,3]-rearrangement product 197 was obtained in 10% yield, the [1,4]-shift migration product 198 in 28% yield and the ring-contracted [1,2]-shift product 199, as the major product in 34% yield. The [2,3]-rearrangement product 197 was isolated as the sole product of the reaction when the latter was performed using \(\text{Rh}_2(\text{OAc})_4 \).
Scheme 35. Synthesis of fused carbocycles.81

West et al. used the oxonium ylide formation and subsequent [2,3]-rearrangement reaction to synthesise trans-fused polycyclic ethers (Scheme 36).83 In the presence of Cu(tfacac)\textsubscript{2} in refluxing dichloromethane, diazoketone 200 reacted to give the [2,3]-rearrangement product 202 as major diastereomer along with the isomeric compound 201. The competing C-H insertion reaction led to the formation of the ketone 203. Epimerisation and reduction of the diastereomeric mixture of 201 and 202 gave the alcohol 204 which was subsequently converted into the \(\alpha \)-diazoketone 205. A further copper-catalysed oxonium ylide formation and [2,3]-rearrangement reaction produced the trans-fused tricyclic ether 206 as a single diastereomer.

Scheme 36. Synthesis of fused polycyclic ethers via an iterative approach.\(^{83a}\)

The synthesis of macrocycles has also been a subject of attention. Doyle et al. successfully synthesised the lactone 208 chemoselectively (Scheme 37).\(^{84}\) In presence of a metal carbenoid, the \(\alpha\)-diazo ester 207 was transformed into a 13-membered cyclic oxonium ylide. Subsequent [2,3]-sigmatropic rearrangement with three atoms contraction delivered the lactone 208 as well as 209 due to the competitive cyclopropanation.

Scheme 37. Synthesis of macrocycles.\(^{84}\)

The same year, an analogous transformation was reported for similar substrates and chiral complexes were employed as catalysts.\(^{85}\) However, in spite of

promising levels of asymmetric induction, macrocyclic cyclopropanes were the major products.

The asymmetric diazo decomposition to synthesise a chiral non-racemic [2,3]-sigmatropic rearrangement product was first reported by McKervey et al. in 1992. Treatment of the diazoketone 210 with a chiral dirhodium complex 212 afforded the furanone 211 in 92% yield and 30% enantiomeric excess (Scheme 38). Further studies on similar substrates with catalyst bearing different chiral ligands afforded products with higher enantiomeric excesses (up to 60% ee).

Scheme 38. First example of asymmetric oxonium ylide and rearrangement.

Recently, Hashimoto et al. succeeded in synthesising the 2,8-dioxabicyclo[3.2.1]octane ring system found in the zaragozic acid C in high enantiomeric excess. Oxonium ylide formation and [2,3]-sigmatropic rearrangement of the α-diazoketone 213 delivered the bicyclic compound 214 in 72% yield and 93% ee when the reaction was catalysed by the rhodium complex 215.

Scheme 39. Enantioselective synthesis of the ring system of zaragozic acid C.

3.3 Application of Oxonium Ylide Formation and [2,3]-
Sigmatropic Rearrangement to Total Synthesis within the
Clark Group

Functionalised cyclic ethers are important motifs that are found in a wide range of natural compounds. Therefore, oxonium ylide formation and [2,3]-
sigmatropic rearrangement offers rapid access to the important cores of many natural products. Examples of total syntheses using this methodology are described in this section.

In 2004, Clark et al. reported the successful synthesis of the A-ring fragment 218 of the gamberic acids (Scheme 40). Starting from (S)-dimethyl malate, the diazoketone 216 was obtained by a six-step synthesis. Copper-catalysed oxonium ylide formation and [2,3]-sigmatropic rearrangement delivered the trans-tetrahydrofuranone 217 in good yield and high diastereomeric excess. Further functionalisation completed the synthesis of the A-ring fragment of the gamberic acids.

![Scheme 40. Synthesis of the A-ring fragment of the gamberic acids.](image)

More recently, the synthetic strategy to form tetrahydrofuranones was employed in the total syntheses of amphidinolides T1, T3 and T4 (Scheme 41).96 Oxonium ylide formation and [2,3]-sigmatropic rearrangement of the α-diazoketone 219 led to the formation of the heterocycle 220 as a single diastereomer. This reaction was also a key step in the syntheses of the C-1–C-17 and C-18–C34 fragments of the amphidinolides C, C2 and C3.97,98

![Scheme 41. Synthesis of the tetrahydrofuran motif of amphidinolides T1, T3 and T4.96](image)

An example of the application of the reaction to the construction of tetrahydropyranones is the total synthesis of (+)-decarestrictine L.94 The route began with the conversion of ethyl (R)-3-hydroxybutyrate 221 into the α-diazoketone 222 through a five-step sequence (Scheme 42). Oxonium ylide formation promoted by Cu(tfacac)\textsubscript{2} and subsequent [2,3]-rearrangement delivered the tetrahydropyranone 223 in 60% yield and with good diastereoselectivity. An additional four steps were required to complete the synthesis of decarestrictine L (224).

![Scheme 42. Synthesis of the (+)-decarestrictine L (224).94](image)
The methodology developed for the oxonium ylide formation and \([2,3]\)-sigmatropic rearrangement can be applied to the construction of oxygen-containing heterocycles in more complex bridged-bicyclic ether systems. Clark et al. reported the synthesis of the tricyclic core of the natural products labiatin A and australin A from the diazoketone 225 (Scheme 43). Copper-catalysed tandem oxonium ylide formation and \([2,3]\)-sigmatropic rearrangement delivered the tricyclic ketone 226 in 76% yield. This compound corresponds to the core of the natural products.

![Scheme 43. Synthesis of the tricyclic core of labiatin A and australin A.](image)

Oxonium ylide chemistry offers many synthetic possibilities. Tandem oxonium ylide formation and \([2,3]\)-sigmatropic rearrangement allows the synthesis of highly substituted cyclic ethers, which are of great importance due to their presence in numerous natural products. Clark et al. reported this reaction for the synthesis of tetrahydropyrans, tetrahydrofurans but also more complex bridged-bicyclic ethers. This transformation will be a key step in the synthesis of the proposed structure of sclerophytin F.
4 Radical Cyclisation Reactions for the Synthesis of Oxacycles

Many natural products possess cyclic ether skeletons and a wide range of methodology to build these systems has been developed. One efficient method to synthesise oxacycles is the radical cyclisation using β-alkoxyacrylates as acceptors.

The first examples of such a reaction were reported by Araki et al. in 1989. Addition of tributyltin hydride to a solution of terminal halogenofuranoses 227 bearing an O-acrylate group in presence of azobisisobutyronitrile afforded the bicyclic compound 228 in high yield and as a single diastereomer (Scheme 44). Five- and six-membered cyclic ethers were obtained efficiently in this fashion, but the use of highly substituted acrylates 229 led to a reduction in the level of diastereocontrol.

Scheme 44. Radical-mediated cyclisations of sugar-derived alkoxyacrylates.99

Lee et al. extended this methodology to the general synthesis of tetrahydrofurans and tetrahydropyrans.100 It was demonstrated that halogenoalkanes bearing a \(\beta\)-alkoxyacrylate moiety \(231/233\) cyclised into the corresponding five- or six-membered oxacycles (Scheme 45). The yields were excellent and the radical cyclisation proceeded with complete diastereoselectivity affording \textit{cis}-2,5-disubstituted tetrahydrofurans \(232\) and \textit{cis}-2,6-disubstituted tetrahydropyrans \(234\). To explain the selectivity, Lee et al. suggested that the reaction proceeds through a chair-like transition state that favours formation of the \textit{cis}-disubstituted cyclic ether \(234\).

![Scheme 45. Synthesis of tetrahydrofurans and tetrahydropyrans by radical mediated-cyclisations of \(\beta\)-alkoxyacrylates.100](image)

The reaction was extended to the formation of 3-hydroxy oxacyclic rings.101 In this case, a ketyl radical was generated from the corresponding aldehyde \(235\) and intramolecular radical cyclisation delivered the hydroxy tetrahydropyran \(236\) (Scheme 46). It is important to note that under the reaction conditions, some of the products were converted to the corresponding

lactones 237/238. Although high yields were obtained, the diastereoselectivity was only 54:46, which was explained by similar energies for transition states 239 and 240.

Scheme 46. Synthesis of tetrahydropyrans, the radical mediated-cyclisation of aldehydes onto β-alkoxyacrylates.101

The possibility of using the methodology for the iterative synthesis of polycyclic ethers was also formulated and the fused bis-tetrahydropyran 243 was synthesised in 6 steps from lactone 241 (Scheme 47).

Scheme 47. Iterative synthesis of polycyclic ethers.101

More recently, major advances have been made in the field of radical cyclisation following the discovery of SmI\textsubscript{2} as a powerful reducing agent.102,103,104 In 1977, Molander and Kenny reported the first SmI\textsubscript{2}-mediated radical cyclisation

between a carbonyl and an alkene.105,106 During the following decade many publications attested the use of SmI\textsubscript{2} as initiator for radical cyclisation to form 2,3-\textit{trans}-tetrahydropyrans by intramolecular cyclisation between carbonyls and \(\alpha,\beta\)-unsaturated esters.107

In 1999, Nakata \textit{et al.} reported the use of SmI\textsubscript{2} for intramolecular cyclisation using \(\beta\)-alkoxyacrylates as electron acceptors.108 This single electron transfer reagent allowed the formation of a 2,6-\textit{syn}-2,3-\textit{trans}-tetrahydropyran 248 as a single diastereoisomer (Scheme 48). In this process, aldehyde 245 is first reduced into a ketyl radical with coordination to the samarium and chelation to the ester 246. The reaction then proceeds through a transition state in which the samarium is chelated to the ester functional group, which accounts for the observed selectivity. Finally, a new carbon-carbon bond is formed and a second electron transfer delivers the intermediate 247 which ultimately picks up a proton from methanol to give the product 248.

\textbf{Scheme 48.} Proposed mechanism of the SmI\textsubscript{2}-mediated cyclisation of 245.108

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{scheme48.png}
\caption{Proposed mechanism of the SmI\textsubscript{2}-mediated cyclisation of 245.}
\end{figure}

\begin{thebibliography}{99}
\end{thebibliography}
By increasing the distance between the aldehyde and the β-alkoxyacrylate, the SmI$_2$-mediated radical cyclisation reaction could be used to construct the 2,7-syn-2,3-trans-oxepane 251 (Scheme 49).109

![Scheme 49. Synthesis of an oxepane ring by SmI$_2$-mediated cyclisation.109]

Further studies, in the presence of an additive, confirmed the importance of chelation between the samarium and the ester functional group.110 In the presence of HMPA, the same starting materials 245/249 and reagents resulted in the formation of a complimentary set of products 254/255 and 257. In these cases, the selectivity was altered due to the coordination between the HMPA and the samarium. Indeed, steric hindrance is created in the transition state which results in different favoured conformations (Scheme 50).

a) Sml₂, MeOH, THF/HMPA (3:1), −78 °C, 56% of 254 and 17% of 255; b) Sml₂, MeOH, THF/HMPA (2:1), rt, 84%.

Scheme 50. Sml₂-mediated cyclisation in presence of HMPA.¹¹⁰

Impressively, this powerful Sml₂-mediated cyclisation reaction could be applied to the iterative synthesis of complex polycyclic natural products.¹⁰⁸,¹⁰⁹

Not only aldehydes but also ketones can be subjected to the Sml₂-mediated radical cyclisation. Nakata et al. demonstrated that the intramolecular reaction between a methyl ketone and β-alkoxyacrylate in the substrates 258 and 260 leads to the formation of 3-hydroxy tetrahydropyrans 259 and 261 bearing a quaternary stereocentre at the C-3 position (Scheme 51).¹¹¹,¹¹²

As pioneers of the SmI$_2$-mediated radical cyclisation cyclisation, Nakata et al. have applied this methodology to the total synthesis of several natural products containing trans-fused polycyclic ether ring systems.113

An excellent example is the total synthesis of brevetoxin-B (BTX-B).114 The skeleton of this marine polycyclic ether comprises six-, seven- and eight-membered fused cyclic ethers and possesses 23 chiral centres (Scheme 52). Overall, Nakata et al. achieved the total synthesis of this natural product in 59 steps.

Starting from the O-acetyl-d-glucal 263 a few synthetic steps led to the β-alkoxyacrylate 264, which underwent the radical cyclisation reaction. According to the methodology mentioned previously, lactone 265 was obtained in 86% yield and further transformations gave diketone 266. A bi-directional SmI$_2$-promoted intramolecular cyclisation reaction was then used to close the C- and the E-rings simultaneously to afford the tetracyclic core 267 in good yield. The I-ring 269 was also prepared from aldehyde 268. Subjecting 270 to a SmI$_2$-induced intramolecular Reformatsky-type reaction, the β-hydroxy lactone 271 was obtained to complete the IJK ring system.

One of the most challenging targets in the field of total synthesis is maitotoxin (Figure 15). This polyether marine natural product is one of the most complex natural products ever isolated with 32 fused-ether rings and 98 chiral centres. Impressively, Nakata has also applied the samarium-mediated
cyclisation reaction to the synthesis of several key fragments, namely the C'D'E'F'-, WXYZA'- and BCDE-ring systems.115,116,117

\begin{figure}
\centering
\includegraphics[width=\textwidth]{maitotoxin}
\caption{Maitotoxin.}
\end{figure}

In summary, the SmI\textsubscript{2}-mediated radical cyclisation is a powerful method for the formation of oxacyclic motifs and has been used very successfully for the synthesis of complex natural products.

\begin{flushleft}
\end{flushleft}
5 Synthesis Strategy

Cladiellins represent the largest sub-class of 2,11-cyclised cembranoids and the biological activity that this family display contributes to the interest in them by the scientific community. This is not only in synthetic research but also in biology because cladiellins possess great potential in pharmacology due to their cytotoxic activity against various cancer cell lines.\(^1,2\)

The relative configurations of these natural products has been deduced by comparison of spectroscopic data and X-ray analysis where possible. Later, the modified Mosher method allowed the determination of the absolute configuration.\(^19\) However, for some of the natural products, only total synthesis can confirm their structures. Indeed, the original structure of sclerophytin A, proposed by Sharma and Alam following its isolation was revealed to be incorrect after synthetic studies.\(^6,7,9,11,12,13\) Consequently, the structure of several sclerophytins, for which the structure has been deduced by comparison of spectroscopic data with those of sclerophytin A, had to be re-evaluated.\(^20\)

Structural reassignments of several sclerophytin-type natural products by Paquette and Friedrich challenged the assumption that all cladiellin natural products possess the \(R\)-configuration at the C-3 stereocentre. The obvious and most reliable way to confirm the existence of the \(S\)-configuration at this stereocentre in some of the cladiellin family members is by total synthesis.

Sclerophytin F is an important compound because it should be possible to prepare all of the other sclerophytins that have been proposed to have \(S\)-configuration at the C-3 position by functionalization of the hydroxyl groups.
The general approach to the synthesis of the cladiellin family of compounds developed in the Clark group proved to be efficient, as several natural products have been synthesised.55,57,59 By expanding this methodology, the retrosynthetic analysis for sclerophytin F is shown in Scheme 53. Disconnections of triol 10 reveal alkene 272. Conversion of the isopropyl group into a methyl ketone and the exocyclic alkene into an enol ether give the tricyclic system 273. The latter could be obtained by Diels-Alder cycloaddition between diene 274 and methyl vinyl ketone. Disconnection of 274 revealed the bicyclic ketone 275. Although no precedent has been reported for the synthesis of the oxonane unit 275 having the S-configuration at the C-3 stereocentre, we believe that the diazoketone 276 could be converted into an oxonium ylide and undergo a [2,3]-sigmatropic rearrangement to form the bicyclic ketone 275. Disconnections of the tetrahydropyran 276 give the methyl ketone 277. Finally, further functional group manipulations reveal the commercially available 1,4-butanediol 147.

Functional group manipulations at late stages in the synthesis of sclerophytin F (10) should allow the preparation of five other natural products: sclerophytin E (9), litophynin E (11), 6-acetoxy litophynin E (12), 6-ethoxy sclerophytin E (13) and 6-isovaleroyl sclerophytin E (14) (see Figure 4, introduction, section 1.2.1).
Scheme 53. Retrosynthetic analysis.
1 Project Aim

The cladiellin family is the largest subclass of cembranoids with more than 100 members isolated to date. The intriguing architecture and biological and pharmacological activities of the cladiellins make them very attractive targets. In 2002, Paquette and Friedrich performed a structural re-evaluation of several cladiellins and came to the conclusion that these natural products possess the S-configuration at the C-3 stereocentre (Figure 16) while the majority of the cladiellin natural products present a R-configuration at this position. Following the successful syntheses of ten cladiellin natural products in the Clark group, the total synthesis of the natural products with a different configuration at C-3 was an interesting challenge. Initial efforts were focused towards the total synthesis of the proposed structure of sclerophytin F.

![Figure 16. Proposed structure of the cladiellin natural products having a S-configuration at C-3.](image)

By expanding the methodology developed for the synthesis of the cladiellins, the synthetic strategy was dependent upon a SmI$_2$-mediated radical cyclisation, a [2,3]-sigmatropic rearrangement to form the oxabicyclo[6.2.1]-5-undecen-9-one 275 and an intermolecular Diels-Alder cycloaddition to build the tricyclic core 273 (Scheme 54). The novelty of the route stems from installation
of the methyl substituent at the C-3 position at an early stage of the synthesis and prior to the key ring-forming steps. In the case of the total syntheses of the cladiellins having a R-configuration at C-3, the methyl group was introduced stereoselectively at a very late stage, after the formation of the tricyclic core.

Scheme 54. General approach towards the proposed structure of sclerophytin F.
2 Synthesis of the Methyl Ketone 277

Previous work performed in the Clark group on the total synthesis of cladiellins showed that the tetrahydropyranol 278 having a S-configuration at the C-3 position (Scheme 54) could be obtained by reductive cyclisation of the methyl ketone 277.58,118 With this information in mind, three routes were designed to prepare methyl ketone 277 from diverse starting materials: 1,4-butanediol, 6-methyl-5-hepten-2-one and D-glutamic acid.

The synthesis of the proposed structure of sclerophytin F and the optimisation of some reactions were carried out using racemic material. The symbol (±) before the molecule number emphasizes the racemic form of the compound. Then, the enantioselective synthesis was reproduced under the optimised conditions.

2.1 Synthesis Starting from 1,4-Butanediol

Methyl ketone 277 can be prepared in racemic or enantiopure form from commercially available 1,4-butanediol 147.

Racemic allylic alcohol (±)-153 was obtained using a three-step sequence. Selective mono-protection of diol 147, oxidation of remaining alcohol functionality followed by Grignard addition produced the racemic allylic alcohol (±)-153 in good yield (Scheme 55).

Chapter 2: Results and Discussion

Scheme 55. Synthesis of the racemic allylic alcohol (±)-153.

The enantioenriched allylic alcohol 153 was prepared from 1,4-butanediol 147 as well following the route developed in the Clark group.\(^{55}\) Mono-protection, oxidation into the corresponding aldehyde and Wittig olefination with (carboxyethylidene)triphenylphosphorane furnished the \(\alpha,\beta\)-unsaturated ester 150 (Scheme 56).

Scheme 56. Synthesis of the \(\alpha,\beta\)-unsaturated ester 150.

Ester 150 was then reduced to give a primary alcohol 151 by treatment with DIBAL-H (Scheme 57). Sharpless asymmetric epoxidation\(^{119}\) installed the first stereocentre and delivered epoxy alcohol 152 in high yield and with high enantiomeric excess.\(^{120}\) Mesylation of the primary alcohol and epoxide opening by treatment with NaI and Zn powder provided allylic alcohol 153 as a single isomer in 94% yield over two steps.\(^{121}\)

\(^{120}\) Enantiomeric excess was determined by HPLC analysis of intermediate 281. Column AD-H, temperature 25 °C, hexane:(hexane:propan-2-ol [98:2]) 90:10, flowrate 0.5 mL.min\(^{-1}\), RT 46.3 min.

Chapter 2: Results and Discussion

Scheme 57. Synthesis of the enantiopure allylic alcohol 153.

With a large quantity of allylic alcohol 153 in hand, efforts were turned towards the formation of the methyl ketone 277. Alkylation of 153 with ethyl propiolate in presence of N-methyl morpholine afforded the E-vinyllogous carbonate selectively (Scheme 58). Subsequent treatment under acidic conditions cleaved the silyl ether to reveal the primary alcohol 281 (91-94% ee by chiral HPLC analysis). Finally, Swern or PCC oxidation of the alcohol afforded aldehyde 138.

Scheme 58. Synthesis of the aldehyde 138.

Previous work carried out in our group had shown that treatment of aldehyde (±)-138 with an excess of trimethylaluminium installed the methyl group at the C-3 position, and subsequent Swern oxidation furnished the desired methyl ketone (±)-277 in 45% yield over two steps (Scheme 59).

Chapter 2: Results and Discussion

Scheme 59. Clark synthesis of the methyl ketone (±)-277.

The relatively low yield of the reaction sequence led us to investigate other methylation conditions (Table 2). In a first approach, methylmagnesium bromide appeared to be the reagent of choice as the alcohol (±)-282 was obtained in 71% yield (entry 2) while the use of trimethylaluminium and methyl lithium delivered (±)-282 in yields of 58% and 37% respectively (entries 1 and 3). An excess of trimethylaluminium increased the yield dramatically (entries 4 and 5) and on large scale (∼31 mmol), these optimised conditions produced very satisfying results with the product isolated in 87% yield (entry 6). It is noteworthy that a moderate yield of 60% was obtained when the reaction was carried in presence of methylmagnesium bromide at this scale (entry 7).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AlMe₃, 1.0 eq CH₂Cl₂</td>
<td>58 [a]</td>
</tr>
<tr>
<td>2</td>
<td>MeMgBr, 1.2 eq THF</td>
<td>71 [a]</td>
</tr>
<tr>
<td>3</td>
<td>MeLi, 1.2 eq Et₂O</td>
<td>37 [a]</td>
</tr>
<tr>
<td>4</td>
<td>AlMe₃, 1.5 eq CH₂Cl₂</td>
<td>72 [a]</td>
</tr>
<tr>
<td>5</td>
<td>AlMe₃, 2.0 eq CH₂Cl₂</td>
<td>83 [a]</td>
</tr>
<tr>
<td>6</td>
<td>AlMe₃, 2.0 eq CH₂Cl₂</td>
<td>87 [b]</td>
</tr>
<tr>
<td>7</td>
<td>MeMgBr, 1.2 eq THF</td>
<td>60 [b]</td>
</tr>
</tbody>
</table>

Reagents were added at −78 °C, then reactions were warmed to 0 °C until completion. [a] Reactions carried on 1 mmol scale; [b] reactions carried on 31 mmol scale.

Table 2. Methylation of the aldehyde (±)-138.
The optimised procedure was then applied to non-racemic aldehyde 138 having high ee (Scheme 60). The synthesis of the desired methyl ketone 277 was completed by Swern oxidation of alcohol 282.

![Scheme 60](image)

Scheme 60. Completion of the synthesis of the methyl ketone 277.

Methyl ketone 277 was obtained in 13 steps from commercially available 1,4-butanediol 147 and in 33% overall yield. More than 50 g of this intermediate was prepared with 91-94% ee. In parallel, other routes were investigated with the aim of shortening the synthesis of the methyl ketone 277.

2.2 Synthesis Starting from 6-Methyl-5-hepten-2-one

A second approach towards the formation of the cyclisation precursor 277 was envisaged starting from 6-methyl-5-hepten-2-one 283 (Scheme 61). With the methyl ketone in place, only a few steps would be required to achieve the synthesis of the desired intermediate 277. In this case, disconnection of the vinylogous carbonate 277 leads to the allylic alcohol 284 that can derive from epoxy-alcohol 285. Further disconnections revealed the commercially available starting material 283.
Scheme 61. Retrosynthetic analysis of methyl ketone 277 starting from the 6-methyl-5-hepten-2-one.

The synthesis started with an allylic oxidation of the alkene 283 in presence of a catalytic quantity of SeO₂ and tert-butyl hydroperoxide (Scheme 62). The next step was the enantioselective allylic epoxidation of the alkene 286 but this reaction failed (Table 3, entries 1-4).

Scheme 62. Attempted Sharpless asymmetric epoxidation.

In the total synthesis of (+)- and (−)-frontaline, Lee reported the formation of an analogous epoxide with the ketone functionality protected as an acetal in excellent yield and with good enantiomeric excess. It is worth noting that the ketone moiety on 283 has to be protected as a bulky acetal using for example that derived from 2,2-dimethylpropane-1,3-diol; the use of ethylene glycol was proved to be unsuccessful. So, substrate 288 was synthesised in order to identify the appropriate reaction conditions for the formation of the epoxy-alcohol 285 (Scheme 63).

Chapter 2: Results and Discussion

Scheme 63. Synthesis of acetal 288.

With the two substrates 286 and 288 in hand, Sharpless asymmetric epoxidation119 was carried out at different temperatures and with various catalyst loadings (Table 3).

Entry	Substrate	Catalyst loading (%)	Temp. \((\degree C)\)	Time (h)	Outcome
-------	-----------	----------------------	---------------- weekdays	---------	------------------
1	286	Ti(Oi-Pr)\(_4\) 20	-20	168	complex mixture
2	286	(-)-DET 30	rt	168	complex mixture
3	286	(-)-DET 50	rt	120	complex mixture
4	286	(-)-DET 100	rt	28	complex mixture
5	288	(-)-DET 30	-20	18	47%
6	288	(-)-DET 30	rt	18	51%
7	288	(-)-DET 100	rt	48	decomposition

Reactions were carried on 0.10 mmol scale.

Table 3. Attempted epoxidation of allylic alcohols 286 and 288 using Sharpless asymmetric epoxidation conditions.

The results were consistent with Lee’s observations. In the absence of an acetal protecting group (entries 1-4), the reaction led to a complex mixture of products. The products were observed by \(^1\)H NMR analysis when the ketone was masked as an acetal with a bulky group only (entries 5 and 6). Under these conditions, epoxy-alcohol 289 was isolated in 47% yield (Scheme 64). The low yields and difficulties in obtaining reproducible yields meant that this route was abandoned.
In parallel to these attempts, a completely different approach was envisaged. In this case, the ketone was masked as the corresponding TBS protected alcohol.

Reduction of the ketone 283 to give the corresponding alcohol125 followed by protection as a silyl ether furnished 290 (Scheme 65).126 Catalytic selenium allylic oxidation in presence of tert-butyl hydroperoxide provided the allylic alcohol 291.123 The enantioenriched epoxy-alcohol 292 (a mixture of diastereomers) was afforded by asymmetric Sharpless epoxidation119 in high yield and enantiomeric excess.127 As previously observed (see results and discussion, section 2.1.), mesylation of the epoxy-alcohol 292 and treatment with NaI and Zn powder in refluxing butane-2-one led to the formation of the allylic alcohol 293 in 79% yield over two steps. The reaction-sequence ended by an O-alkylation with ethyl propiolate, TBS removal and oxidation of the corresponding secondary alcohol. Following this pathway, methyl ketone 277 was obtained in 26% yield over 10 steps and with 82-95% ee.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{scheme64}
\caption{Sharpless asymmetric epoxidation on substrate 288.}
\end{figure}

126 Hanessian, S.; Cantin, L. D.; Andreotti, D. J. Org. Chem. 1999, 64, 4893.
127 Enantiomeric excess was determined on methyl ketone 277. Column AD-H, temperature 25 °C, hexane:propan-2-ol 50:1, flowrate 1.0 mL.min-1, RT 23.9 min.
a) LiAlH₄, Et₂O, 0 °C, 88%; b) TBSCl, imidazole, DMF, rt, 93%; c) i. C₆H₄(OH)CO₂H, SeO₂, t-BuO₂H, CH₂Cl₂, rt, ii. NaBH₄, EtOH, 0 °C to rt, 55%; d) (-)-DET, Ti(Oi-Pr)₄, t-BuO₂H, CH₂Cl₂, -25 °C, 93%; e) MsCl, Et₃N, CH₂Cl₂, -15 °C; f) NaI, Zn, butan-2-one, 80 °C, 79% (2 steps); g) HCCO₂Et, NMM, CH₂Cl₂, rt; h) CSA, MeOH, 83% (2 steps); i) PDC, CH₂Cl₂, rt, 93%.

Scheme 65. Synthesis of methyl ketone 277 starting from 6-methyl-5-hepten-2-one.

2.3 Synthesis Starting from D-Glutamic acid

In order to decrease the number of steps for the synthesis of the methyl ketone 277, another route using enantiopure D-glutamic acid 295 as a starting material was investigated (Scheme 66). Disconnection through the methyl ketone and the α,β-unsaturated ester bonds of compound 277 revealed lactone 296. The propene moiety could be derived from the corresponding carboxylic acid 297 that could be formed by cyclisation of the D-glutamic acid 295. However, due to the fact that the unnatural D-glutamic acid is 25 times more expensive than the natural amino acid, the route was developed using the natural enantiomer, L-glutamic acid 298.¹²⁸

Scheme 66. Retrosynthetic analysis of methyl ketone 277 using D-glutamic acid as starting material.

¹²⁸ Sigma-Aldrich prices, December 2014.
Two intramolecular cyclisations of 298 under acidic conditions furnished lactone 299 in quantitative yield (Scheme 67).129 Treatment with oxalyl chloride in toluene at 60 °C produced the acyl chloride 300 which, after distillation, was reacted with methylmagnesium bromide to form 301.130 A Wittig olefination reaction was used to install the propene motif.131 Finally, methyl addition followed by alkylation with ethyl propiolate in presence of N-methylmorpholine provided the methyl ketone 303 in 65% yield over two steps but in only 62% ee (chiral HPLC analysis).132

![Scheme 67. Synthesis of the methyl ketone 303 starting from L-glutamic acid.](image)

It is necessary to understand which step is responsible of the erosion of the enantiomeric excess in order to improve the efficiency of the route. Berti \textit{et al.} reported that an optical purity of only 80% was obtained when the lactone 299 was distilled whereas crystallisation from chloroform furnished the product in 96% ee.133 It was also suggested that a racemisation could be observed during the concentration of the strongly acidic solution. Finally, the use of ethyl acetate or ethanol should be avoided because the solvent could react with the lactone.

133 Berti, G.; Caroti, P.; Catelani, G.; Monti, L. \textit{Carbohydrate Research}, 1983, 124, 35.
It is unlikely that epimerisation occurred during the conversion of the acid into the acyl chloride 300 or the Grignard addition since the $[\alpha]_D$ recorded for methyl ketone 301 corresponded to the one reported by Berti.133 No information about the enantiopurity of intermediate 302 had been reported previously, thus the main factor responsible for the erosion of the enantiopurity are the reaction conditions used in the Wittig olefination step.

Despite the modest yields and enantiomeric excess, we were pleased to observe the feasibility of this much shorter route. With further optimisations, this route would deliver the methyl ketone 277 in just 6 steps.

2.4 Summary

Three different routes have been developed to achieve the synthesis of methyl ketone 277. Building on previous experience, Sharpless asymmetric epoxidation allowed the installation of the key stereocentre in high enantiomeric excess. Overall, the desired intermediate 277 was prepared in 13 steps from 1,4-butanediol 147. The route was then improved and starting from 6-methyl-5-hepten-2-one 283, the methyl ketone 277 was obtained in only 10 steps.

A third promising route beginning from L-glutamic acid 298 was also investigated. Although the methyl ketone 303 was accessed in only 6 steps, erosion of the enantiomeric excess of the starting amino acid was observed. Thus this route requires further optimisation before being applied to the total synthesis of methyl ketone 277.
3 Synthesis of the Diazoketone 276

With access to a large quantity of methyl ketone 277, the synthesis of the diazoketone 276 was investigated. Treatment of methylketone 277 with a freshly prepared solution of SmI$_2$ in tetrahydrofuran provided a mixture (12:1) of inseparable diastereomers in which the desired 2,3-\textit{trans}-tetrahydropyranol 278 predominated (Scheme 68).118,134

Separate signals for the diastereomeric alcohols 278 and 304 are clearly distinguishable in the 1H NMR spectrum. The methyl group at the C-3 position appears as a singlet at 1.21 ppm for 278 while it is shifted to 1.15 ppm for the 2,3-\textit{cis} tetrahydropyranol 304. The chemical shifts for H-2 are also representative of the presence of the two diastereomers. They are found at 3.73 ppm and 3.98 ppm depending on the configuration. In the same way, the signal of the proton H-6 is at 3.79 ppm for 278 and at 4.12 ppm for 304. Finally, the representative signals of the alkene moiety are also slightly shifted. One of the protons of the CH$_2$ of the 2,3-\textit{trans} product 278 can be seen at 4.81 ppm,

Scheme 68. SmI$_2$-mediated radical cyclisation of methyl ketone 277.

the second one appearing at 4.93 ppm. In contrast, the minor diastereomer 304 shows the alkene signals at 4.93 ppm and 4.96 ppm.

Silylation of the two alcohols 278 and 304 in the mixture meant a change of the polarity and allowed the separation of the two diastereoisomers 305 and 306 by flash column chromatography (Scheme 69). NOE experiments on the two pure silyl ethers 305 and 306 confirmed that the 2,3-*trans* tetrahydropyranol was the major product derived from the SmI$_2$-mediated cyclisation reaction.118

![Scheme 69](image)

Scheme 69. Silyl ether protection of the tetrahydropyranols 278 and 304.

In order to characterise without ambiguity the diastereomers 278 and 304, small quantities of the corresponding silyl ethers 305 and 306 were treated with TBAF (Scheme 70).

![Scheme 70](image)

Scheme 70. Silyl ether cleavage of the tetrahydropyrans 305 and 306.
While TBS removal on substrate 305 led to the isolation of tetrahydropyranol 278, the corresponding tertiary alcohol 304, deriving from 306, was not observed. Instead, lactonisation occurred providing the lactone 307 (Scheme 70), a natural product that was isolated in 1993 from the sun-cured leaves of Greek tobacco.118,135 In the absence of acetic acid, after 24 hours, the lactone 307 was isolated in 41\% yield as well as the unreacted starting material 306 (18\% yield). It is noteworthy that, under the previously described conditions, the reaction was completed after 10 days at room temperature and traces of the corresponding opened diol 308 were observed.

The synthesis continued with the saponification of the ester 305 to give the corresponding carboxylic acid 309. Finally, the carboxylic acid 309 was converted into a mixed anhydride prior to be treated with a freshly distilled ethereal solution of diazomethane.136 After 4 days at room temperature, diazoketone 276 was isolated in 89\% yield.

\begin{center}
\textbf{Scheme 71.} Completion of the synthesis of the diazoketone 276.
\end{center}

135 Hudlický, M. J. Org. Chem. 1980, 45, 5377.
4 Synthesis of the Bicyclic Ketone: Oxonium Ylide Formation and [2,3]-Sigmatropic Rearrangement

Based on the previous work on the total synthesis of the cladiellin natural products within the Clark group,55,57,59 it was anticipated that the oxonene unit of the cladiellin natural products could be formed by treatment of the diazoketone 276 with a transition metal complex to produce a metal carbenoid 310 (Scheme 72). The latter would evolve into the oxonium ylide 312, or its metal-bound equivalent, that undergoes a [2,3]-sigmatropic rearrangement leading to an isomeric mixture of Z- and E- bicyclic ketones Z-275 and E-275.

\textbf{Scheme 72.} Mechanism of the oxonium ylide formation followed by the [2,3]-sigmatropic rearrangement.
This transformation had been carried out previously in our group on the closely related diazoketone (±)-140. It had been demonstrated that the choice of the catalyst, the solvent and the temperature of the reaction influence the yields and the diastereoselectivity significantly (Table 1 and see introduction, section 2.10).55 While the use of a copper complex gave a mixture of Z and E isomers in favour of the less strained bicyclic ketone Z-142, it appeared that the diastereoselectivity was reversed in presence of a rhodium catalyst affording the E-isomer as the major product. The use of different solvents also influenced the yield and the isomer ratio.

Scheme 73. Previous studies on metal-catalyzed reactions of diazoketone (±)-140 to give bridged-bicyclic ethers (±)-Z-142 and (±)-E-142.

In light of these results, investigations on the metal-mediated reactions of diazoketone (±)-276 were undertaken (Table 4). A good yield and Z:E ratio had been observed previously when copper(II) hexafluoroacetylacetonate was employed in refluxing dichloromethane (Scheme 73) and so, the diazoketone (±)-276 was initially subjected to these conditions. Interestingly, the ratio of the two isomers was only 1.8:1 in favour of the bicyclic ketone (±)-Z-275 with an excellent overall yield of 98%. The major product was isolated by flash column chromatography on silica gel impregnated with silver nitrate;137 subsequent 1H NMR, NOE experiments and X-ray analysis (Figure 17) allowed confirmation of the relative stereochemistry.

The significant differences between the Z:E ratios resulting from the metal-mediated reactions of diazoketone (±)-140 and those from the corresponding reactions of the C-3 methyl-substituted diazoketone (±)-276 was noteworthy. In order to probe the behaviour of the reaction when a methyl group is present at the C-3 position of the diazoketone, and hopefully increase the isomeric ratio, various catalysts were screened in refluxing dichloromethane. In the presence of copper(II) acetylacetonate, only the starting material was evident after 8 hours (entry 2). A slight increase in the Z:E ratio was observed by the use of copper(II) trifluoroacetylacetonate (entry 3) but this was accompanied of a lower yield (70%). Replacing the copper complex with a rhodium catalyst increased the diastereoselectivity towards the formation of the Z-bicyclic ketone, leading to a ratio of 7.5:1 with rhodium acetate (entry 4), and 5.0:1 when rhodium(II) heptafluorobutanamide was employed as catalyst (entry 5). However, these improved isomer ratios were accompanied by decreases in yield (61% and 42% respectively). Other rhodium catalysts such as rhodium(II) triluoroacetate, rhodium(II) trifluoroacetamide or rhodium(II) tetrakis (perfluorobutyrate) led to similar observations with moderate yields and diastereomeric ratios (entries 6, 7, 8). It is worth noting that Z-isomer (±)-Z-275 was isolated as the sole isomer but in poor yield (14%) when rhodium(II) triphenylacetate was used as the catalyst (entry 9).
Table 4. Studies on metal-catalyzed reactions of diazoketone (±)-276 to give bridged-bicyclic ethers (±)-Z-275 and (±)-E-275 in refluxing dichloromethane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst [a]</th>
<th>Time</th>
<th>Yield [b]</th>
<th>Ratio Z:E [c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(hfacac)$_2$</td>
<td>1 h</td>
<td>98</td>
<td>1.8:1</td>
</tr>
<tr>
<td>2</td>
<td>Cu(acac)$_2$</td>
<td>8 h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cu(tfacac)$_2$</td>
<td>30 min</td>
<td>70</td>
<td>2.3:1</td>
</tr>
<tr>
<td>4</td>
<td>Rh$_2$(OAc)$_4$</td>
<td>30 min</td>
<td>42</td>
<td>7.5:1</td>
</tr>
<tr>
<td>5</td>
<td>Rh$_2$(pfm)$_4$</td>
<td>15 min</td>
<td>61</td>
<td>5.0:1</td>
</tr>
<tr>
<td>6</td>
<td>Rh$_2$(tfacam)$_4$</td>
<td>1.5 h</td>
<td>72</td>
<td>2.0:1</td>
</tr>
<tr>
<td>7</td>
<td>Rh$_2$(tfa)$_4$</td>
<td>15 min</td>
<td>69</td>
<td>3.1:1</td>
</tr>
<tr>
<td>8</td>
<td>Rh$_2$(pfb)$_4$</td>
<td>30 min</td>
<td>69</td>
<td>2.1:1</td>
</tr>
<tr>
<td>9</td>
<td>Rh$_2$(tpa)$_4$</td>
<td>30 min</td>
<td>14</td>
<td>1.0:0</td>
</tr>
</tbody>
</table>

Reactions were performed on 55-156 µmol scale. [a] Catalyst loading 5 mol%; [b] Isolated yield of the E and Z isomers; [c] Isomer ratio determined by 1H NMR analysis of the crude mixture of isomers. For the Rh catalyst, filtration on alumina was done prior to the 1H NMR.

Based on these results, two catalytic systems required further attention: copper(II) hexafluoroacetylacetonate, which furnished a 1.8:1 mixture of Z- and E-bridged-bicyclic ethers in an excellent yield of 98%, and rhodium(II) heptafluorobutanamide, which delivered the bicyclic ketones (±)-275 with an improved ratio of 5:1 favouring the less strained Z-alkene but with a moderate yield of 61%.

Consequently, the metal-mediated reaction of diazoketone (±)-276 was studied in the presence of these two complexes in different solvents (Table 5). The reaction was completed in only one hour in refluxing dichloromethane in the presence of copper(II) hexafluoroacetylacetonate (entry 1), while a longer reaction time was necessary at room temperature (entry 2), affording the two bicyclic ketones (±)-Z-275 and (±)-E-275 in similar yields and ratios. An increase of the ratio in favour of the Z-isomer was observed when the reaction was
performed in refluxing DCE and toluene, but moderate to poor yields were obtained (entries 3 and 4). Interestingly, only the less strained Z-alkene was detected on 1H NMR analysis of the crude mixture when the reaction was performed in refluxing tetrahydrofuran. In this case, the desired product was isolated in low yield along with an unidentified by-product138 (entry 6). Using acetonitrile (entry 7) the formation of side-products was also observed correlating with a low isolated yield of 22% of the desired Z-isomer. Similar observations were made when a rhodium complex catalysed the reaction. Reactions performed in chlorinated solvents (dichloromethane and DCE) gave a moderate yields and Z:E ratios favouring the desired bridged-bicyclic ether (±)-275 (entries 8 and 9). A higher temperature and switching the solvent to toluene resulted in a slight increase in the Z:E ratio (entry 10) but was accompanied of a dramatic reduction in yield and the formation of by-products was observed. Reactions performed in tetrahydrofuran or acetonitrile led to the formation of the Z-bicyclic ketone exclusively, along with an unknown by-product (entries 11 and 12). It should be noted that different side-products were obtained under each set of reaction conditions. Despite their isolation and their NMR characterisation, we were not able to fully elucidate their structure.

138 NMR analysis did not allow the determination of its structure.
Table 5. Studies on Cu(hfacac)$_2$- and Rh$_2$(pfm)$_4$-catalyzed reactions of the diazoketone (±)-276 to give bridged-bicyclic ethers (±)-Z-275 and (±)-E-275 in various solvents.

The temperature did not significantly affect the yield and the diastereoselectivity. In contrast, the choice of the solvent appeared to be much more important, influencing the Z:E ratio and the formation of by-products. The best compromise between Z:E ratio and yield was observed when the reactions were carried in chlorinated solvents. Although a reversal of diastereoselectivity was reported by Clark et al. for reactions on substrate (±)-140, during the total synthesis of members of the cladiellin family of natural products, the presence of a methyl group at the C-3 position modified the outcomes of these reactions significantly. In no case was the bicyclic ketone (±)-E-275 formed as the major
product of the reaction. The best ratios in favour of the Z-alkene were accompanied of poor yields due to the formation of unidentified by-products.

In order to prove that isomerisation of the bicyclic ketone (±)-E-275 into the corresponding Z-alkene (±)-Z-275 had not occurred under the reaction conditions, several control reactions were performed: the E-isomer (±)-E-275 was re-subjected to the reaction conditions reported in Table 5 (entries 4, 6, 7, 10, 11 and 12). After 6 hours, the bridged-bicyclic ether (±)-E-275 was recovered and neither the alkene (±)-Z-275 nor by-products were detected.

In terms of the mechanism for the key process, analysis of the metal carbenoid and ylide conformers (Scheme 74) suggests that the transition state leading to the formation of the less strained bicyclic ketone Z-275 is more favourable than leading to the corresponding E-alkene E-275. Indeed, the formation of the oxonium ylide should occur preferentially via path a, since this reaction with the “axial” lone pair of the oxygen produces a less strained five-membered ring compared to path b. In path b, the lone pair of the ether oxygen is in an “equatorial” position giving a more strained bicyclic intermediate.

Scheme 74. Metal carbenoid conformers leading to the formation of the bicyclic ketones Z-275 and E-275.
Previous experiments and computational studies on the [2,3]-sigmatropic rearrangement reaction within the Clark group\(^{55}\) have led to the conclusion that the reaction proceeds through a metal-bound ylide and that the \(E:Z\)-ratio reflects the kinetics of the reaction. The low-yielding experiments can be attributed to formation of a number of by-products. It is important to note that other rearrangements (see introduction, section 3.1) could occur including: C-H insertion, [1,2]- and [1,4]- rearrangement, cyclopropanation reaction, dimerization and participation of the solvent. In conclusion, the presence of a methyl group had a significant influence on the outcome of the rearrangement reaction. Further studies need to be undertaken to completely understand the mechanism, the kinetics and the diastereoselectivity of the reaction.

Since none of the conditions tested for the tandem oxonium ylide formation and the [2,3]-sigmatropic rearrangement sequence proved to be particularly efficient for the selective formation of the desired \(Z\)-isomer \(Z-275\) in high yield, isomerisation was considered (Scheme 75).\(^{57}\) Total conversion of the \(E\)- into the \(Z\)-alkene was achieved in one hour when the reaction was performed in toluene in presence of sub-stoichiometric amounts of 1,1’-azobis(cyclohexane-carbonitrile) and ethanethiol. The bicyclic ketone \(Z-275\) was isolated in 85% yield. When the isomerisation was performed on the crude product of the previous reaction, the desired \(Z\)-alkene was obtained in an excellent 89% overall yield. This good result was unexpected. Indeed, in the absence of the methyl group at the C-3 position, the isomerisation proceeded with a low yield of 56%.\(^{57}\)

\[\text{Scheme 75. Isomerisation of the } E\text{- into the } Z\text{-bridged bicyclic ether.} \]
Gratifyingly, the outstanding 98% yield obtained from the reaction catalysed by copper(II) hexafluoroacetylacetonate combined with the ability to isomerise the undesired E-alkene into the corresponding Z-alkene constituted a very efficient way to obtain the desired bicyclic ketone Z-275 selectively.
5 Synthesis of the Oxatricyclic Ring System

5.1 General Approach

5.1.1 Construction of the Tricyclic Core

As outlined in the retrosynthetic analysis, it was anticipated that the tricyclic skeleton of sclerophytin F could be constructed using a three-step sequence as previously reported in the total syntheses of cladiellin natural products.55,57,59

The bicyclic ketone \textbf{Z-275} was first converted into the corresponding enol triflate \textbf{313} by treatment with \textit{N}-phenyl-\textit{bis}(trifluoromethanesulfonylimide) and sodium \textit{bis}(trimethylsilyl)amide (Scheme 76). Stille coupling of the triflate \textbf{313} with tributyl(1-ethoxyvinyl)tin furnished the unstable diene \textbf{274},139 and this diene was reacted with freshly distilled methyl vinyl ketone in a thermal Diels-Alder cycloaddition reaction. The intermolecular Diels-Alder reaction delivered a 1:1 mixture of \textit{exo} and \textit{endo} cycloadducts \textbf{273} in 65\% yield over three steps.

Chapter 2: Results and Discussion

a) NaHMDS, PhN(Tf)$_2$, THF, -78°C; b) CH$_2$C(OEt)SnBu$_3$, Pd(PPh)$_3$$_4$, LiCl, THF, 80 $^\circ$C; c) CH$_2$CHCOCH$_3$, PhCH$_3$, 120 $^\circ$C, 65% (3 steps), exo:endo 1:1.

Scheme 76. Synthesis of the tricyclic core 273 by Stille coupling and Diels-Alder cycloaddition.

The thermal Diels Alder cycloaddition reaction proceeded regioselectively and with diastereofacial selectivity. There was poor endo:exo selectivity but this was of no consequence. The matched electronics of the electron-rich diene and the electron-deficient dienophile in the two transition states 314 and 315 (Figure 18) results in high regioselectivity. It is assumed that the facial selectivity arises from the concave shape of the Z-bicyclic ketone Z-275 leading to an attack on the convex face.

Figure 18. Transition states involved in the Diels-Alder cycloaddition reaction.
Given that the tricyclic core was isolated as a 1:1 mixture of *endo* and *exo* cycloadducts, epimerisation at the C-14 position was undertaken (Table 6). Unexpectedly, treatment of the mixture with potassium carbonate did not lead to the formation of *(±)-exo-273* (entry 1). 1H NMR analysis of the crude material revealed that the *endo*:exo ratio had remained unchanged. It was postulated that an equilibrium between the two epimeric compounds could account for this observation, and so the based-induced epimerisation was performed in deuterated methanol to test the hypothesis. However, 1H NMR analysis showed that the characteristic proton at the C-14 position had not undergone proton-deuterium exchange, and so deprotonation at this position had not occurred. Consequently, different epimerisation conditions were screened (Table 6).

![Diagram](image)

Table 6. Studies on the based-induced epimerisation of ketone *(±)-273.*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Initial ratio $\text{endo} : \text{exo}$</th>
<th>Outcome</th>
<th>Final ratio $\text{endo} : \text{exo}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K$_2$CO$_3$, MeOH, rt, 18 h</td>
<td>1 : 1</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 1</td>
</tr>
<tr>
<td>2</td>
<td>NaOH, EtOH, rt, 18 h</td>
<td>1 : 1.3</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 1.7</td>
</tr>
<tr>
<td>3</td>
<td>NaOH, EtOH, 85 °C, 18 h</td>
<td>1 : 1.7</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.5</td>
</tr>
<tr>
<td>4</td>
<td>NaOH, EtOH, 85 °C, 48 h</td>
<td>1 : 2.5</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.7</td>
</tr>
<tr>
<td>5</td>
<td>NaOMe, MeOH, rt, 18 h</td>
<td>1 : 2.7</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.7</td>
</tr>
<tr>
<td>6</td>
<td>t-BuOK, EtOH, rt, 18 h</td>
<td>1 : 2.7</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.7</td>
</tr>
<tr>
<td>7</td>
<td>t-BuOK, EtOH, rt, 72 h</td>
<td>1 : 2.7</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 3.4</td>
</tr>
<tr>
<td>8</td>
<td>DBU, CH$_2$Cl$_2$, rt, 18 h</td>
<td>1 : 2.5</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.5</td>
</tr>
<tr>
<td>9</td>
<td>DBU, PhCH$_3$, 110 °C, 18 h</td>
<td>1 : 2.5</td>
<td>$\text{endo} : \text{exo}$</td>
<td>1 : 2.5</td>
</tr>
</tbody>
</table>

While the epimerisation proceeded under smooth conditions, potassium carbonate in methanol at room temperature, in the absence of the methyl group, in this case the reaction revealed to be problematic. The *endo*:exo ratio remained unchanged under these reaction conditions (entry 1). The use of
other bases such as sodium hydroxide (entries 2-4), sodium methoxide (entry 5) or potassium tert-butoxide (entries 6 and 7) at room temperature or in refluxing solvent did not induce the epimerisation of the C-14 stereocentre. Likewise, the non-nucleophilic base DBU proved to be inefficient (entries 8 and 9). Considering that the steric hindrance of the silyl group may prevent the access to the stereocentre C-14, it was decided to cleave the protecting group prior to perform the epimerisation reaction.

5.1.2 Cleavage of the Silyl Ether

Removal of the TBS group from the hydroxyl group at the C-3 position of related cladiellin systems has been reported by several groups.8,10,12,41,42,43,57,59 The use of TBAF under various conditions turned out to be efficient. Consequently, the 1:1 mixture of exo and endo cycloadducts (±)-273 was treated with TBAF. Unfortunately, after 6 hours at room temperature, the cycloadducts (±)-273 were recovered unreacted in 88% yield (Scheme 77). When harsher conditions were employed – neat reaction performed in sealed tube at 70 °C with a large excess of TBAF – there were marginal improvements and the product (±)-316 was isolated in only 37% yield with recovery of substantial amounts (42%) of starting material.

\[\text{a) TBAF, 70 °C, (±)-316 37% and (±)-273 42%}. \]

\textbf{Scheme 77.} Attempted cleavage of the TBS-ether using TBAF.

Following the failure of the deprotection reaction under standard reaction conditions, acid-catalysed TBS-ether cleavage was explored using a variety of acids (Table 7).140 Pleasingly, hydrolysis of the enol ether, epimerisation at the C-14 position and removal of the TBS group from the tertiary alcohol took place

140 Wutz, P. G. M.; Greene, T. W. \textit{Greene’s Protective Groups in Organic Synthesis}, 3rd edition.
in a tandem fashion leading to the formation of the diketone \((\pm)-317\) with the desired C-3 configuration. On a small scale, the use of a 5% solution of HF in acetonitrile\(^{141}\) seemed to be optimal and the diketone \((\pm)-317\) was isolated in an excellent 93% yield (entry 2). However, scale-up of the reaction revealed that treatment of the cycloadducts \((\pm)-273\) with hydrochloric acid\(^{142}\) gave similar results (entries 4 and 5). Furthermore, the manipulation of aqueous hydrochloric acid at large scale proved to be easier than the use of hydrofluoric acid on a large scale.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HF.pyr. THF (0.046 M), rt, 6 h</td>
<td>36(^{[a,b]})</td>
</tr>
<tr>
<td>2</td>
<td>HF.MeCN (5%), rt, 2 h</td>
<td>93 (^{[a]})</td>
</tr>
<tr>
<td>3</td>
<td>HCl conc., MeOH (0.015 M), rt, 18 h</td>
<td>72 (^{[a]})</td>
</tr>
<tr>
<td>4</td>
<td>HF.MeCN (5%), rt, 3 h</td>
<td>74 (^{[c]})</td>
</tr>
<tr>
<td>5</td>
<td>HCl conc., MeOH (0.034 M), rt, 18 h</td>
<td>79 (^{[c]})</td>
</tr>
</tbody>
</table>

\(^{[a]}\) Reactions were performed on 46-84 \(\mu\text{mol}\) scale; \(^{[b]}\) 42% brsm; \(^{[c]}\) Reactions were performed on larger scale (entry 4: 343 \(\mu\text{mol}\); entry 5: 673 \(\mu\text{mol}\)).

Table 7. Studies on the TBS-ether cleavage under acidic conditions.

The configuration of the diketone \((\pm)-317\) was confirmed by X-ray crystallography (Figure 19).

At this stage in the enantiopure synthesis, six stereocentres were in place. The first one was introduced thanks to a Sharpless asymmetric epoxidation reaction while a further two stereocentres had been installed during the radical cyclisation. After the synthesis of the oxabicyclo[6.2.1]-5-undecen-9-one 275, the diastereofacial Diels-Alder cycloaddition allowed the formation of a fourth stereocentre. Finally, two stereocentres were created by hydrolysis of the enol ether and the epimerisation under acidic conditions.

5.2 Optimisation of the Palladium-Mediated Cross-Coupling

Since the first report of the Stille cross-coupling reaction in the late 1970s, this reaction has demonstrated its utility to form C-C bonds during the total synthesis of many natural products. However, the toxicity of stannane reagents, their cost and other drawbacks linked to the product of tin waste prompted an investigation of other methods for the synthesis of diene 274.

Over the last forty years, palladium-catalysed cross-coupling reactions have become very powerful and widely used in synthesis. Of these palladium-catalysed reactions, the Negishi and the Heck cross-couplings captured our attention as potential alternatives to the Stille reaction.

It was hypothesised that coupling between enol triflate 313 and ethyl vinyl ether 318 could be accomplished in presence of a palladium catalyst leading to the formation of diene 274 (Scheme 78). In this case, the procedure would present the advantages that it would be catalytic, cheaper and avoid the formation of tin by-products.

5.2.1 The Negishi Cross-Coupling

Negishi cross-coupling is characterised by the use of organozinc reagents. For this purpose ethyl vinyl ether 318 was first transformed into the corresponding alkenylzinc 319 by treatment with tert-butylolithium and zinc dichloride in tetrahydrofuran (Scheme 79, Table 8). Attempted coupling between the organozinc 319 and enol triflate 313 was performed in presence of two different sources of palladium(0): palladium tetrakis(triphenylphosphine) (entries 1 and 3) or palladium bis(dibenzylideneacetone) and triphenylphosphine (entries 2 and 4).

Under mild conditions (50 °C in THF) and in presence of 10 mol% of catalyst, only the starting material 313 was observed by \(^1\)H NMR analysis of the crude product after 20 hours when palladium tetrakis(triphenylphosphine) was

used as the catalyst (entry 1). When a mixture of palladium bis(dibenzylideneacetone) and triphenylphosphine were employed, 11% conversion of triflate 313 to diene 274 was observed (entry 2). The lack of the reactivity prompted an increase in temperature of the reaction to 70 °C (entries 3 and 4). Using both catalyst systems, the starting material was consumed in less than one hour. The characteristic signals for the desired diene 274, a singlet at 5.92 ppm and a multiplet at 3.79-3.74 ppm, were absent in the ^1H NMR spectrum. After purification of the crude mixture by flash column chromatography, the dimer 320 was isolated along with other unidentified side products.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(PPh₃)₄ (10 mol%)</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>THF, 50 °C, 20 h [a]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pd(dba)₂ (10 mol%), PPh₃ (15 mol%)</td>
<td>313:274 (8:1)</td>
</tr>
<tr>
<td></td>
<td>THF, 50 °C, 20 h [a]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pd(PPh₃)₄ (10 mol%),</td>
<td>320 and by-products</td>
</tr>
<tr>
<td></td>
<td>THF, 70 °C, 1 h [b]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pd(dba)₂ (10 mol%), PPh₃ (15 mol%)</td>
<td>320 and by-products</td>
</tr>
<tr>
<td></td>
<td>THF, 70 °C, 1 h [b]</td>
<td></td>
</tr>
</tbody>
</table>

Reactions were performed on 0.15 mmol scale in THF. [a] Conditions a) were used for the preparation of 319; [b] Conditions b) were used for the preparation of 319.

Table 8. Studies on the Negishi cross-coupling of enol triflate 313 and ethyl vinyl ether 318.

As a consequence of the failure of this and other reactions, the Heck reaction was examined as an alternative.

5.2.2 The Heck Cross-Coupling

The Heck reaction was discovered in the 1970’s and has the advantage that it catalyses direct coupling to an sp² hybridized carbon centre. Thus, compared to the Neigishi cross-coupling, vinyl ethyl ether 318 could be used without modification.
In 1989, Halberg et al. published a procedure for the preparation of 2-alkoxy 1,3-dienes that involves palladium-catalysed reaction between a vinyl ether and an enol triflate (Scheme 80). Products were isolated in moderate to good yields and a good selectivity in favour of the α-substituted products.

Scheme 80. Selected examples of palladium-catalysed vinylolation of alkyl vinyl ether with enol triflates.

This precedent encouraged us to explore the palladium-catalysed coupling between enol triflate 313 and ethyl vinyl ether 318 (Table 9). Previous studies demonstrated that: i) palladium acetate is an efficient pre-catalyst, giving good yields for vinylolation reaction and ii) ligand selection influences the regioselectivity of the reaction. Thus, the choice of palladium acetate as catalyst was obvious. Furthermore, it was observed that ligands such as triphenylphosphine delivered poor selectivities while bidentate ligands improved these favouring α-vinylation of the alkyl vinyl ether significantly. The first palladium-catalysed trial reactions between enol triflate 313 and ethyl vinyl ether 318 (entries 1 and 3) were performed with 3 mol% of catalyst and either triphenylphosphine or dppp as ligands. Under these conditions, a mixture of starting material 313 and diene 274 was observed on 1H NMR analysis of crude material. It is noteworthy that the presence of other products was observed when triphenylphosphine was employed as a ligand (entries 1 and 2). However in

the presence of the bidendate ligand dppp, the reaction furnished the diene 274 without formation of by-products (entries 4 and 5). Increasing the catalyst loadings to 10-15 mol% depending on the conditions, allowed the reaction to reach completion (entries 2, 4 and 5).

\[
\text{Entry} \quad \text{Catalyst} \quad \text{Ligand} \quad \text{Outcomes} \\
1 \quad \text{Pd(OAc)}_2 \quad 3 \text{ mol\%} \quad \text{PPh}_3 \quad 6 \text{ mol\%} \quad 313:274 (2.6:1); \\
\text{other products} \\
2 \quad \text{Pd(OAc)}_2 \quad 10 \text{ mol\%} \quad \text{PPh}_3 \quad 20 \text{ mol\%} \quad 274 \text{ and other products} \\
3 \quad \text{Pd(OAc)}_2 \quad 3 \text{ mol\%} \quad \text{dppp} \quad 3.5 \text{ mol\%} \quad 313:274 (1.7:1) \\
4 \quad \text{Pd(OAc)}_2 \quad 10 \text{ mol\%} \quad \text{dppp} \quad 12 \text{ mol\%} \quad 274 \\
5 \quad \text{Pd(OAc)}_2 \quad 15 \text{ mol\%} \quad \text{dppp} \quad 18 \text{ mol\%} \quad 274
\]

Reactions were carried out with an excess of ethyl vinyl ether (10 eq.) and triethylamine (1.5 eq.) in DMF in sealed tube at 80 °C overnight.

Table 9. Heck cross-coupling of enol triflate 313 with ethyl vinyl ether 318.

Following identification of conditions for clean conversion, cheap reagents and simple reaction conditions, the three-step sequence, including the enol triflate formation, the Heck cross-coupling and the Diels-Alder cycloaddition, was undertaken (Scheme 81). Delightfully, a good overall yield of 69% was obtained. Subsequent treatment of the enol ether 273 under acidic conditions delivered the tricyclic skeleton 317.
Chapter 2: Results and Discussion

Scheme 81. Synthesis of the tricyclic core 273 by sequential Heck coupling and Diels-Alder cycloaddition.

5.3 Recycling of the By-Product 321

The three-step sequence delivering the tricyclic core of the natural product proceeded in good yield. However, the formation of the by-product 321 was sometimes observed (Figure 20). Its presence in the reaction mixture was detected by TLC or by 1H NMR analysis of the crude material obtained from the coupling reaction between the enol triflate 313 and the corresponding coupling partner [tributyl(1-ethoxyvinyl)tin or ethyl vinyl ether]. There were concerns about the loss of advanced intermediate Z-275, and so, recycling of the methyl ketone 321 was explored.

Figure 20. α,β-Unsaturated methyl ketone 321.
Silyl ether formation followed by Diels-Alder cycloaddition produced a mixture of exo and endo products (±)-323 (Scheme 82). The mixture of cycloadducts was subjected to a solution of hydrochloric acid in methanol and desired tricyclic core (±)-317 was isolated in a 35% overall yield.

\[
\begin{align*}
\text{(±)-321} & \xrightarrow{\text{a}} \text{(±)-322} & \quad \text{a) NaHMDS, THF, } -78 \, ^\circ \text{C then TESCl } -78 \, ^\circ \text{C to rt; b) CH}_2\text{CHCOCH}_3, \text{PhCH}_3, 120 \, ^\circ \text{C; c) HCl, MeOH, 0 \, ^\circ \text{C to rt, 35\% (3 steps).}} \\
\text{(±)-322} & \xrightarrow{\text{b}} \text{(±)-323} \\
\text{(±)-323} & \xrightarrow{\text{c}} \text{(±)-317}
\end{align*}
\]

Scheme 82. Conversion of the α,β-unsaturated methyl ketone (±)-321 into the diketone (±)-317.

With the assurance that the by-product 321 could be transformed into the tricyclic core 317, the synthesis was progressed to the next step: functionalization of the tricyclic core.
6 Functionalization of the Tricyclic Core

6.1 Installation of the Isopropyl Group

Following construction of the tricyclic skeleton, the next challenge was the installation of the isopropyl group at the C-14 position. In the previous syntheses of cladiellin family natural products within our group, the desired motif was prepared by Wittig methylenation followed by hydrogenation (see introduction, section 2.10). However, when these conditions were applied to a similar intermediate having 6E-conformation, installation of the isopropyl moiety appeared to be problematic. The difficulty was circumvented by the transformation of the methyl ketone into the tertiary alcohol, acetylation and subsequent deoxygenation reported by Kim et al. (see introduction, section 2.5).

By analogy with the route employed in total synthesis of the (±)-vigulariol, it was anticipated that methylenation of the diketone followed by selective hydrogenation of 324 would introduce the desired isopropyl group at the C-14 position leading to the formation of 327 (Scheme 83).

The diketone 317 was treated with two equivalents of methylene triphenylphosphonium ylide at room temperature (Scheme 83). Two products were obtained and they were separated by flash column chromatography. NMR analysis revealed that one of them corresponded to the triene 325 while the second product possessed a ketone (210.2 ppm in the 13C NMR spectrum). It was presumed that this compound was the desired ketone 324 and so hydrogenation
was carried out in presence of 10 mol% of platinium oxide. The reaction was completed within 30 minutes and two products were isolated. Surprisingly, neither of them had the characteristic signals of the isopropyl group present in their 1H NMR spectra. However, the presence of a ketone was clearly visible at 210.2 ppm and 211.3 ppm in the 13C NMR spectra. X-ray crystallography of the crystalline products revealed that they were diastereomeric compounds 328 and 329 (Figure 21). In fact, under optimised conditions, the methylenation occurred preferentially at C-11 versus C-15 furnishing a 1:5 mixture of separable triene 325 and ketone 326. Subsequent hydrogenation of the latter compound reduced the C-11 alkene to give two diastereomers 328 and 329 in a 2.4:1 ratio.

![Scheme 83](image)

Scheme 83. First approach to the construction of the isopropyl group.

![Figure 21](image)

Figure 21. X-ray crystal structures of ketones (±)-328 and (±)-329 (ORTEP plot with 50% thermal elipsoids).
Originally, the methylenation reaction was performed using 5 equivalents of methyltriphenylphosphonium bromide and 4 equivalents of potassium tert-butoxide, leading to the isolation of ketone 326 in 33% yield while the triene 325 was afforded in 64% yield. Careful monitoring of the reaction allowed the quantity of ylide to be reduced. Two equivalents of ylide was found to be sufficient for complete of the reaction within one hour and the ketone 326 was isolated in 60-80% yield.

The isopropyl group could not be installed by a selective methylenation followed by the hydrogenation, and so an alternative approach analogous to that used in the synthesis of cladiellin natural products having the 6E-configuration was explored. As previously described, methylenation of diketone 317 delivered a 1:5 mixture of triene 325 and methyl ketone 326 in good yield (Scheme 83). After separation of the products by flash column chromatography, the alcohol 326 was protected to form the corresponding triethylsilyl ether 330 (Scheme 84). Addition of methylmagnesium chloride then provided tertiary alcohol 331 in 84% yield. Despite the high yield, it should be appreciated that the reaction was not complete. A large excess of Grignard reagent as well as a prolongation of the reaction time did not lead to full conversion. Under the best conditions identified, 86% conversion to the desired tertiary alcohol 331 was observed upon 1H NMR analysis of the crude reaction mixture. Unreacted starting material 330 could be recovered and re-subjected to the methyl addition reaction. The tertiary alcohol 331 was then acetylated by treatment with acetic anhydride as solvent, triethylamine and DMAP at 40 °C. The required isopropyl group was finally formed by deoxygenation of the crude acetate 332 under dissolving metal reduction conditions. For this purpose and by analogy to the Kim and Clark syntheses of other cladiellins, potassium metal pieces were solvated in tert-butylamine in presence of 18-crown-6. The solution of crude acetate 332 in tetrahydrofuran was then added to the deep blue mixture. After reappearance of the blue colour, the reaction was quenched by addition of isopropanol and aqueous ammonium chloride furnishing 333 in 49% yield and the deprotected alcohol 272 in 7% yield. With the isopropyl substituent in place, cleavage of the silyl ether under acidic conditions revealed the crystalline
alcohol 272, the advanced precursor to sclerophytin F. The structure of compound 272 was fully confirmed by X-ray crystallography (Figure 22).

Scheme 84. Completion of the synthesis of the advanced precursor to the proposed structure of sclerophytin F.

Figure 22. X-ray crystal structure of the tricyclic skeleton 272 of the proposed structure of the sclerophytin F (ORTEP plot with 50% thermal elipsoids).
6.2 Studies on Selective Alkene Hydrogenation at C-15

6.2.1 Selective Hydrogenation

Methylenation of diketone 317 delivered a mixture of two products: the ketone 326 and the triene 325. As described previously, methyl ketone 326 was successfully transformed into intermediate 272 through a five-step sequence, while the triene 325 was left aside. It was decided to investigate the possibility of converting the triene 325 into alcohol 272 in one step by selective hydrogenation of the side chain alkene. If this strategy proved to be effective, the transformation would not only increase the quantity of intermediate 272 available for the completion of the synthesis, but would also reduce the number of steps required to prepare this key intermediate (Scheme 85). However, this approach was extremely challenging due to the presence of three alkenes in the starting material 325.

![Scheme 85. Proposed selective hydrogenation of the double bond at C-15.](image)

a) t-BuOK, Ph₂PCH₂Br, THF, rt, 325 14%, 326 69%.

The highly reactive Adam’s catalyst was tested first (Table 10, entry 1). The reaction was performed in presence of 5 mol% of PtO₂. Because of the similar polarity of the triene (±)-325 and the corresponding product (±)-272, TLC analysis was difficult and so the reaction was monitored by ¹H NMR. After 1.5 hours at room temperature, NMR analysis revealed a complex mixture of...
products. A shorter reaction time, i.e., 30 min (entry 2), gave analogous results, but the characteristic doublet of the isopropyl group was observed in the 1H NMR spectrum of the crude material at 0.74 ppm. Taking into account that hydrogenation might proceed too quickly to be selective, the catalyst was poisoned by addition of quinoline to the reaction mixture (entry 3). The reaction was slower under these new conditions: after one hour only the starting material was observed and the hydrogenation was still not complete after 24 hours. Characteristic signals corresponding to intermediate (±)-272 were observed in the crude 1H NMR spectrum. Unfortunately, several by-products were also formed under the reaction conditions. The second choice of catalyst was palladium on charcoal (entry 4). The hydrogenation reaction was performed with a catalyst loading of 10 mol%. Unexpected isomerisation of the double bond at C-11 occurred and the product (±)-334 was isolated in 22% yield along with the starting material (±)-325. Triene (±)-325 was then subjected to the hydrogenation in presence of the Wilkinson catalyst (entry 5). Upon treatment of (±)-325 with hydrogen in presence of 5 mol% of RhCl(PPh$_3$)$_3$ as catalyst for 24 hours at room temperature, only unreacted starting material was observed. A more powerful homogeneous catalyst – Crabtree’s catalyst – was tested (entries 6-8). Increasing the catalyst loading from 10 mol% to 100 mol% did not affect the rate of the reaction and the starting material (±)-325 was recovered after 24 hours in each case. Traces of product (±)-272 were seen in the 1H NMR spectrum of the crude reaction mixture when the hydrogenation was carried out using a stoichiometric quantity of catalyst (entry 8); characteristic signals at 5.69 ppm, 4.28 ppm and a singlet at 3.87 ppm were present among those of side-products and triene (±)-325. The reaction was repeated with a slow addition of the catalyst, but unfortunately no significant improvement in the level of conversion was observed.

When Crabtree’s catalyst was employed, traces of the desired product (±)-272 could be detected, so other iridium complexes were screened. Recently, Kerr et al. reported the synthesis of modified Crabtree-type catalysts in which the pyridine has been substituted with a NHC ligand to increase the efficiency
(Figure 23). When hydrogenation of various substrates was performed with these catalysts and the results were compared to those obtained using the standard Crabtree catalyst, it was clear that reaction times were shorter, and that yields and selectivities were improved even using a reduced loading of the new catalyst.

![Figure 23. Kerr’s catalysts.](image)

The first reaction was carried out in presence of \([\text{Ir(COD)PPh}_3(\text{C}_{21}\text{H}_{26}\text{N}_2)])\text{PF}_6\) for 2.5 hours (entry 9). Although the reaction was not complete, traces of \((\pm)-272\) were clearly visible in the \(^1\text{H}\) NMR spectrum. Purification by flash column chromatography and analysis of the fractions revealed that the hydrogenation had occurred at the \(\text{C}-15\) position. The reaction was repeated with a catalyst loading of 1 mol\% and allowed to proceed to completion (entry 10). The starting material was consumed within 3.5 hours and the reaction mixture was purified. However, the desired intermediate \((\pm)-272\) could not be separated from several by-products by flash column chromatography. Nevertheless, the mixture was subjected to the regioselective epoxidation at \(\text{C}-6\) (see results and discussion, section 7) and the desired product was formed. Unfortunately, it was not possible to isolate the epoxide from the reaction mixture at this stage of the synthesis either.

Selective hydrogenation of the isopropenyl group proved to be more challenging than expected even though promising results were obtained with the Kerr’s catalysts. Difficulties in developing an efficient hydrogenation method and time constraints meant the reaction was not further investigated.
6.2.2 Selective Hydroboration

To circumvent the unsuccessful hydrogenation of the isopropenyl group, an alternative approach based on a selective hydroboration was considered.

In 2004, Miyaura et al. reported the use of iridium-phosphine complexes as catalysts for the selective hydroboration of terminal and internal alkenes.154 Following this procedure, triene 325 was treated with pinacolborane in presence of 15 mol\% of iridium catalyst [Ir(COD)Cl\textsubscript{2}] and 1,1-bis(diphenylphosphino) methane in dichloromethane at room temperature (Scheme 86). After 24 hours no trace of the desired product 335 was observed. Additional amounts of catalyst, ligand, dppm, and pinacolborane were added and the solution was stirred for a further 60 hours. NMR analysis of the crude mixture revealed the formation of unknown products but unreacted starting material 325 was still the major component. The reaction was repeated using a stoichiometric amount of catalyst and ligand, but these conditions did not lead to any improvement. The starting material 325 was recovered after stirring for 22 hours at room temperature.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {(+)-325};
\node (b) at (2,0) {(+)-335};
\draw[->] (a) -- (b) node[midway, above] {a) HBpin, [Ir(COD)Cl\textsubscript{2} (1.5 mol\%), dppm (3 mol\%), CH\textsubscript{2}Cl\textsubscript{2}, rt.};
\end{tikzpicture}
\end{center}

\textbf{Scheme 86.} Attempted selective hydroboration of the isopropenyl group.

Following the failure of both the hydrogenation and the hydroboration reactions, our efforts were re-focused on the completion of the synthesis of the proposed structure of sclerophytin F.

7 Completion of the Synthesis of the Proposed Structure of Sclerophytin F

From the tricyclic skeleton 272, the next objective was the functionalization of the oxonene unit in order to complete the total synthesis of the natural product.

The total synthesis of (−)-sclerophytin A by Paquette et al. was achieved by dihydroxylation of the endo-cyclic alkene and an inversion of the configuration at the C-6 position (see introduction, section 2.2). A few years later, the dihydroxylation proved to be efficient as well on the endo-cyclic E-alkene and was reported by Kim et al. and Clark et al. (see introduction, sections 2.5 and 2.10).

Therefore dihydroxylation using osmium tetroxide was attempted on substrate 272 (Scheme 87). In the presence of one molar equivalent of osmium tetroxide, decomposition of the diene 272 was observed after one hour at room temperature. Under aqueous conditions, the reaction proceeded slowly and portionwise addition of one equivalent of osmium tetroxide over a period of 6 hours was required to consume the starting material completely. The reaction gave a complex mixture of products, but unfortunately the desired products 336 and 337 were not detected.
Chapter 2: Results and Discussion

119

a) OsO₄ (2.5% wt in t-BuOH), THF:pyridine (4:1), 0 °C to rt; b) OsO₄ (4% wt in H₂O), NMO, THF:H₂O (1:1), rt, (portionwise addition of OsO₄ over 6 hours).

Scheme 87. Attempted selective dihydroxylation of the diene 272.

In a different approach, starting from the intermediate 272, regioselective epoxidation of the more electron-rich trisubstituted double bond followed by nucleophilic opening of the resulting epoxide would be expected to deliver sclerophytin F (10) (Scheme 88).

Scheme 88. General approach to the synthesis of sclerophytin F by regioselective epoxidation and nucleophilic opening.

Clark et al.⁵⁵,⁵⁷ as well as Hoppe et al.⁴⁷ had succeeded in accomplishing the regioselective and stereoselective epoxidation of the trisubstituted double bond during their total syntheses of vigulariol, using m-CPBA and DMDO respectively (see introduction, sections 2.1.6 and 2.1.10). By way of contrast, Morken and co-workers had observed the formation of two epoxides in their total synthesis of (−)-sclerophytin A (see introduction, section 2.8).⁵¹ Although the DMDO epoxidation was performed on a similar substrate to that used by Hoppe in his synthesis of vigulariol, the presence of an additional C-3 carbonyl group caused a dramatic decrease in stereoselectivity (a 1.8:1 mixture of epoxides was obtained).

Epoxidation of the cycloalkene 272 was carried out under conditions described by Clark et al. (Scheme 89).⁵⁷ Pleasingly, oxidation of the alkene occurred on the α-face selectively, installing the C-7 stereocentre. Epoxide 338
was isolated in an excellent 91% yield and NOE-experiments confirmed its configuration. To avoid the overepoxidation of the second alkene present in the molecule, resulting in the formation of the compound 339, the reaction had to be performed at low temperature and \(m \)-CPBA had to be added as a solution in dichloromethane with careful monitoring of the reaction.

![Image of molecular structures](image)

Scheme 89. Stereoselective epoxidation of the C-6–C-7-alkene.

With epoxide 338 in hand, the next challenge was to open the epoxide regioselectively. Nucleophilic attack under basic conditions would introduce the hydroxyl group at the C-6 position (Scheme 90). Studies towards the synthesis of other cladiellin family members\(^58\) demonstrated that the opening of epoxide similar to 338 was not possible under basic conditions. However, it appeared that small differences between the substrates modified significantly the reaction outcomes. Opening of epoxide 338 was attempted in presence of an excess of sodium hydroxide. The reaction was stirred for several hours at room temperature, but progression of the reaction was not observed. Addition of a Lewis acid, such as scandium triflate, did not have any beneficial effect either and starting material 338 was recovered intact.

![Image of molecular structures](image)

Scheme 90. Attempted opening of the epoxide under basic conditions.
Due to the failure of the epoxide opening reaction under basic conditions, the analogous transformation under acidic conditions was explored. Thus, epoxide 338 was subjected to treatment with a large excess of potassium bisulfate in presence of scandium triflate as Lewis acid in a mixture of tetrahydrofuran and water (Scheme 91). Interestingly, ring opening furnished the allylic alcohol 340 as the major product in 63% yield. The use of a strong Brønsted acid, such as sulfuric acid, delivered the allylic alcohol 340 as well, in a slightly higher yield of 77%, and the triol 341 was isolated in 15% yield.

\[
a) \text{KHSO}_4, \text{Sc(OTf)}_3, \text{THF}:\text{H}_2\text{O} (1:1), \text{rt}, 340 \text{ 63%}; b) \text{H}_2\text{SO}_4, \text{THF}:\text{H}_2\text{O} (1:1), \text{rt}, 340 \text{ 77% and 341 15%}.
\]

Scheme 91. Opening of the epoxide 338 under acidic conditions.

The formation of this unexpected product could be explained by protonation of the epoxide functionality under acidic conditions resulting in the formation of the stabilised tertiary carbocation intermediate at the C-7 position 342 (Scheme 92). In this case, the elimination reaction which leads to the formation of the allylic alcohol 340 (path a) is favoured over the nucleophilic attack (path b). Steric hindrance at C-7 due to the configuration of the α-epoxide and the two methyl groups at C-3 and C-7 pointing to the β-face could explain why the reaction proceeds preferentially through the elimination pathway delivering the crystalline alcohol 340 as major product.
Scheme 92. Mechanism of the formation of the allylic alcohol 340.

The X-ray crystal structure of 340 was obtained. This data not only confirmed the structure of the allylic alcohol 340, but also fully confirmed the regiochemical and the stereochemical outcome of the epoxidation reaction of cycloalkene 272.

Figure 24. X-ray crystal structure of the allylic alcohol 340 (ORTEP plot with 50% thermal ellipsoids).

The fact that opening of the epoxide generated the allylic alcohol 340 meant that efforts were focused on the transformation of this compound into the final target. Stereospecific directed epoxidation of the allylic alcohol 340 had the potential to deliver the requisite S stereocentre at C-7 (Scheme 93). Reductive opening of the epoxide 343 followed by inversion of the configuration
at the C-6 position using an oxidation-reduction sequence would complete the synthesis of the proposed structure of sclerophytin F (10).

Scheme 93. General approach to the completion of the synthesis of the proposed structure of sclerophytin F.

Allylic alcohol 340 was subjected to Sharpless asymmetric epoxidation conditions. The reaction was performed in presence of 10 mol% of titanium isopropoxide and 15 mol% of (+)-diethyl tartrate at −30 °C. After 2 days, only the starting material was observed. The amounts of reagents: titanium isopropoxide and (+)-diethyl tartrate; were increased to 20 and 30 mol% respectively and the reaction was warmed to −20 °C. Further progression of the reaction was not observed after 24 hours, so the reaction was carried out using stoichiometric quantities of titanium isopropoxide and diethyl tartrate and the temperature was raised to 0 °C. After 5 days, a new major product was clearly visible by TLC analysis. Despite some remaining starting material, it was decided to isolate and characterise this new compound. Neither characteristic signal of the C-6 proton nor the formation of an epoxide was evident from the 1H NMR spectrum. Furthermore, the 13C NMR revealed the presence of a ketone, showing a characteristic peak at 207.7 ppm. Further analyses led to the conclusion that oxidation of the allylic alcohol 340 had occurred instead of epoxidation, providing allylic ketone 345 rather than the expected epoxide 343 (Scheme 94).
The structure of the product was confirmed by treatment of allylic alcohol \(340\) with Dess-Martin periodinane,\(^{155}\) which afforded quantitatively ketone \(345\).

\[
\begin{align*}
\text{a)} & \; (\pm)\text{-}\text{DET, Ti(Oi-Pr)}_4, \text{t-BuO}_2\text{H, CH}_2\text{Cl}_2, -25 ^\circ\text{C to rt}; \text{b)} \; \text{DMP, CH}_2\text{Cl}_2, \text{rt, 100%}.
\end{align*}
\]

Scheme 94. Attempted Sharpless asymmetric epoxidation of allylic alcohol \(340\).

It seemed possible that the \(R\)-configuration at the C-6 position might be responsible for the failure of the Sharpless asymmetric epoxidation because of a mismatch between substrate and catalyst. Consequently, inversion of the configuration at this carbon was undertaken prior to the epoxidation of the alkene (Scheme 95). The used of Dess-Martin periodinane\(^{155}\) delivered the enone \(345\) in quantitative yield. Luche reduction\(^{156}\) produced a 2:3 mixture of allylic alcohol \(340\) and \(346\) in 95% overall yield with the 6\(S\)-epimer \(346\) predominating. After separation of the isomers, the 6\(R\)-configured alcohol \(340\) was re-subjected to the oxidation-reduction sequence. Repetition of the reaction sequence allowed the almost complete transformation of allylic alcohol \(340\) into the 6\(S\)-diastereomer \(346\).

\[
\begin{align*}
\text{a)} & \; \text{DMP, CH}_2\text{Cl}_2, \text{rt, 100%}; \text{b)} \; \text{NaBH}_4, \text{CeCl}_3, 7\text{H}_2\text{O, MeOH, 0 }^\circ\text{C}, 346 \; 57\% \text{ and } 340 \; 38\%.
\end{align*}
\]

Scheme 95. Conversion of the 6\(R\)-allylic alcohol \(340\) into the 6\(S\)-allylic alcohol \(346\).

Upon isolation of a sufficient quantity of the 6S-allylic alcohol 346, catalytic Sharpless asymmetric epoxidation was carried out. Pleasingly, the reaction proceeded to completion in 22 hours at −20 °C, setting the last stereocentre at the C-7 position. The desired epoxy-alcohol 347 was isolated in an excellent yield.

\[
\text{Scheme 96. Sharpless asymmetric epoxidation of allylic alcohol 346.}
\]

Epoxide 347 is a crystalline solid and was submitted to X-ray analysis (Figure 25). The crystal structure confirmed that the eight stereocentres installed possess the configuration of those present in the proposed structure of the natural product.

\[
\text{Figure 25. X-ray crystal structure of the epoxide 347 (ORTEP plot with 50\% thermal elipsoids).}
\]

The last step of the synthesis—the opening of the epoxide 347 under reductive conditions—was accomplished with a large excess of diisobutylaluminium hydride (Scheme 97). Following addition of the reducing agent at 0 °C, the reaction mixture was stirred at room temperature for several days. To our delight, the final product was obtained in 45% yield.
Scheme 97. Completion of the synthesis of the proposed structure of sclerophytin F.

The synthesis of the proposed structure of sclerophytin F (10) was completed in 33 steps from the commercially available 1,4-butanediol 147. Mass, IR spectrum and the Rf value were close with the reported data. However the 1H and 13C NMR spectra recorded on a 500 MHz spectrometer at room temperature did not match with the NMR data reported for the natural product. Characteristic signals of some hydrogen atoms were not visible. Moreover, five signals of carbon atoms were of very low intensity and appeared to be absent in the 13C NMR spectrum. In order to increase the quality of the spectroscopic data, NMR analyses were performed at higher (40 and 55 ºC) and at lower temperatures (~30 ºC). Unfortunately, the resolution was not improved and so no conclusions could be derived from these experiments. High quality data were recorded on a Bruker 600 MHz spectrometer equipped with a cryoprobe. Major differences in the chemical shifts and multiplicity of the signals were observed between the 1H NMR spectra of the natural and the synthetic sample. Comparison of the 13C NMR spectra confirmed that the synthetic structure does not match with the natural product. This topic will be discussed in more details in the next section.

The crystal structure of the compound 347 gave a high degree of confidence that the compound corresponding to the proposed structure of sclerophytin F had been prepared. It was decided to synthesise the other three diastereomers at the C-6 and C-7 positions in order to investigate a mis-assignment of the natural product (Figure 26).
Figure 26. Proposed structure of sclerophytin F and its diastereomers.
8 Synthesis of the C-6 and C-7 Diastereoisomers of the Proposed Structure of Sclerophytin F

The synthesis of the proposed structure of sclerophytin F (10) revealed that it was in fact not the natural product. To investigate the possibility of a misassignment of the stereochemistry at the C-6 and C-7 positions, the synthesis of the three other diastereomers at these positions was undertaken.

The first barrier to the synthesis was the formation of the triol 336. As previously mentioned, when Sharpless asymmetric epoxidation was performed on the allylic alcohol 340 having the R-configuration at C-6, the desired product was not obtained (Scheme 94), and an alternative method was explored.

Hydroxyl-directed epoxidation of allylic alcohol 340 was attempted following the Overman conditions (see introduction, section 2.1).12,157 Treatment with vanadyl acetoacetonate and tert-butylhydroperoxide delivered a separable diastereomeric mixture (1:1.6) of epoxy-alcohols 343 and 348 in 73% overall yield (Scheme 98). The two crystalline solids were submitted to X-ray crystallography allowing the identification of the cis- and the trans-epoxy-alcohol (Figure 27). Surprisingly, the trans-epoxy-alcohol 348 was the major diastereomer formed in the reaction.

a) VO(acac)$_2$, t-BuO$_2$H, PhCH$_3$, rt, dr 1:1.6, 73%.

Scheme 98. Epoxidation of allylic alcohol 340 using VO(acac)$_2$.

The α-epoxy-alcohol 343 was expected to be the major product of the directed epoxidation reaction because i) the X-ray structure of the allylic alcohol 340 (Figure 24) shows that there is a steric hindrance on the β-face and ii) there is the potential for the hydroxyl group to form an oxygen-coordinated intermediate during the reaction. However, the reaction furnished the two epoxides in almost a 1:1 ratio.

With the two epoxy-alcohols in hand, regioselective ring opening using diisobutylaluminium hydride was carried out to obtain triols 336 and 341 in 43% and 22% yield respectively (Scheme 99).
Chapter 2: Results and Discussion

Scheme 99. Completion of the synthesis of the diastereomers 336 and 341.

Important differences in the 1H NMR and 13C NMR spectra (see results and discussion, section 9) between the natural product and the two synthetic samples 336 and 341 confirmed that neither of these diastereomers corresponds to the structure of the natural sclerophytin F.

At this stage, only the diastereomer 337 having R- and S-configuration at C-7 and C-6 respectively remained to be synthesised. It was suggested that starting from triol 341, oxidation of the secondary alcohol followed by the reduction of the resulting ketone 349 would produce the desired triol 337 as the major isomer under appropriate conditions.

Scheme 100. General approach towards the synthesis of the diastereomer 337.

Oxidation of the secondary alcohol in triol 341 using Dess-Martin periodinane155 furnished ketodiol 349 and the subsequent reduction was performed without purification of this compound (Scheme 101). The use of
lithium aluminium hydride led to the formation of a 1:4 mixture of triols in favour of the triol 341 (Table 11, entry 1). Treatment of ketodiol 349 with sodium borohydride reversed the selectivity of the reaction that delivered a 2.5:1 mixture of triols 337 and 341 (entry 2). Since a promising result had been obtained using a boron reducing agent, enantioselective ketone reduction with the CBS reagent was investigated (entry 3). Disappointingly only unreacted ketodiol 349 was recovered. When L-selectride was tested, no traces of the reduction products were detected (entry 4).

Scheme 101. Completion of the synthesis of the diastereomer 337.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Ratio cis:trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiAlH₄, Et₂O, 0 °C to rt</td>
<td>1:4</td>
</tr>
<tr>
<td>2</td>
<td>NaBH₄, MeOH, rt</td>
<td>2.5:1</td>
</tr>
<tr>
<td>3</td>
<td>BH₃·THF, (R)-CBS, PhCH₃, 0 °C to rt</td>
<td>[a]</td>
</tr>
<tr>
<td>4</td>
<td>L-selectride, THF, 0 °C to rt</td>
<td>[a]</td>
</tr>
<tr>
<td>5</td>
<td>DIBAL-H, CH₂Cl₂, 0 °C to rt</td>
<td>2.3:1</td>
</tr>
</tbody>
</table>

[a] The starting material 349 was recovered.

Table 11. Attempted conditions for the formation of triol 337.

Reduction of the α-hydroxy ketone 349 with diisobutylaluminium hydride at room temperature afforded a poor 2.3:1 mixture in favour of the triol 337 (Table 11, entry 5). Careful purification by flash column chromatography delivered a fraction with a 6.2:1 ratio of the triols 337 and 341 and data were recorded on this sample. Comparison of the ¹H NMR and ¹³C NMR spectra with those reported for the natural sample showed that the structure of compound 337 is not sclerophytin F.
It was clear that the NMR data for none of the synthetic triols correspond to those reported for the natural product, and so a mistake had been made during the structural re-assignment. The four possible diastereomers at the C-6 and C-7 positions with the opposite R-configuration (at the C-3 position) have been previously synthesised and characterised by Paquette et al.9,10,11 which means the NMR data of all eight possible diastereoisomers with different configurations at C-3, C-6 and C-7 have now been recorded. Unfortunately none of them was in accordance with the spectroscopic data reported for the natural sclerophytin F. Consequently, a further re-evaluation of the structure of sclerophytin F is required.
9 Re-evaluation of the Proposed Structure of Sclerophytin F

In the 2000’s, the total syntheses of (-)-sclerophytin A7,8,9,10,11,12 confirmed the structure of the natural product. Following this discovery, Paquette et al. revised the structure of the other sclerophytins20 for which the structures had been previously deduced on the basis of the incorrect structures originally assigned to sclerophytins A and B. Analysis of the spectroscopic data for these compounds highlighted important differences in the chemical shifts in the 13C NMR spectra at C-3 and it was concluded that some of the natural products possess a S-configuration at this stereocentre while the majority of the cladiellin natural products have a R-configuration. Among the revised natural products was sclerophytin F. However, the synthesis of the proposed structure of the natural product as well as of all its possible diastereoisomers at the C-6 and C-7 stereocentres concluded without any doubt that the proposed structure of sclerophytin F is incorrect. Furthermore it showed that compounds with both R- and S-configuration at C-3 have similar chemical shifts.

NMR differences were noticeable, in particular on the signal corresponding to the carbon C-3. Indeed, there is a difference of at least 10 ppm between the C-3 signal of natural sclerophytin F and the C-3 signal of (-)-sclerophytin A and other related compounds having an R configuration at this stereocentre as confirmed by X-ray crystallography or synthesis. It was discrepancies of the 13C signal of adjacent carbon atoms at the C-2 and C-18 positions between structurally known natural products and the revised compounds which agreed with a structural modification at the C-3 stereocentre.
On the basis of the new information obtained from the synthetic sample of the proposed structure of sclerophytin F and its diastereomers, an attempt to re-evaluate the structure of sclerophytin F is presented.

The data recorded for 13C NMR analysis of the proposed structure of sclerophytin F and its diastereomers are summarized in Table 12. The chemical shift of the C-3 for natural sclerophytin F is reported at 86.6 ppm. However, the characteristic signal for the synthetic sample of the proposed structure and its diastereomers is shifted upfield and the signal is found in the range of 76-74 ppm. With a significant difference of ca. 10 ppm, the C-3 signal is the major inconsistency. The adjacent carbon atoms to C-3 showed some discrepancies as well; the C-2 signal is shifted upfield by 4 ppm and the methyl at C-18 is shifted downfield by 4-5 ppm compared to the values recorded for the natural product.
Table 12

Comparison of the 13C NMR chemical shifts for the natural sclerophytin F with those of the synthetic sample corresponding to the proposed structure and the C-6 and C-7 diastereomers.

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Sclerophytin F</th>
<th>Sclerophytin F synthetic sample$^{[a]}$</th>
<th>336$^{[b]}$</th>
<th>337$^{[b],[c]}$</th>
<th>341$^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.4</td>
<td>42.3</td>
<td>43.3</td>
<td>44.1</td>
<td>44.4</td>
</tr>
<tr>
<td>2</td>
<td>91.9</td>
<td>87.0</td>
<td>90.4</td>
<td>90.8</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>86.6</td>
<td>75.1 / 73.9</td>
<td>74.7 / 73.6</td>
<td>75.5 / 74.8</td>
<td>76.3 / 74.4</td>
</tr>
<tr>
<td>4</td>
<td>35.9</td>
<td>33.2</td>
<td>33.2</td>
<td>35.1</td>
<td>34.2</td>
</tr>
<tr>
<td>5</td>
<td>30.5</td>
<td>29.8</td>
<td>28.2</td>
<td>29.2</td>
<td>30.8</td>
</tr>
<tr>
<td>6</td>
<td>80.1</td>
<td>75.4</td>
<td>76.8</td>
<td>76.3</td>
<td>79.8</td>
</tr>
<tr>
<td>7</td>
<td>77.0</td>
<td>75.1 / 73.9</td>
<td>74.7 / 73.6</td>
<td>75.5 / 74.8</td>
<td>76.3 / 74.4</td>
</tr>
<tr>
<td>8</td>
<td>45.8</td>
<td>45.2</td>
<td>46.3</td>
<td>45.6</td>
<td>44.2</td>
</tr>
<tr>
<td>9</td>
<td>78.2</td>
<td>75.8</td>
<td>76.1</td>
<td>77.5</td>
<td>77.4</td>
</tr>
<tr>
<td>10</td>
<td>52.9</td>
<td>47.8</td>
<td>48.4</td>
<td>50.8</td>
<td>48.5</td>
</tr>
<tr>
<td>11</td>
<td>147.6</td>
<td>146.1</td>
<td>146.0</td>
<td>146.7</td>
<td>146.2</td>
</tr>
<tr>
<td>12</td>
<td>31.4</td>
<td>30.3</td>
<td>30.4</td>
<td>30.9</td>
<td>28.7</td>
</tr>
<tr>
<td>13</td>
<td>24.7</td>
<td>24.8</td>
<td>24.8</td>
<td>24.9</td>
<td>25.0</td>
</tr>
<tr>
<td>14</td>
<td>43.9</td>
<td>40.5</td>
<td>41.2</td>
<td>42.1</td>
<td>41.8</td>
</tr>
<tr>
<td>15</td>
<td>29.1</td>
<td>29.4</td>
<td>29.5</td>
<td>29.4</td>
<td>29.0</td>
</tr>
<tr>
<td>16</td>
<td>21.9</td>
<td>22.2</td>
<td>22.1</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>17</td>
<td>15.7</td>
<td>20.7</td>
<td>19.8</td>
<td>18.5</td>
<td>18.4</td>
</tr>
<tr>
<td>18</td>
<td>23.2</td>
<td>28.5</td>
<td>29.8</td>
<td>27.5</td>
<td>27.9</td>
</tr>
<tr>
<td>19</td>
<td>22.3</td>
<td>22.7</td>
<td>28.3</td>
<td>26.1</td>
<td>26.5</td>
</tr>
<tr>
<td>20</td>
<td>109.3</td>
<td>107.9</td>
<td>108.8</td>
<td>108.9</td>
<td>109.7</td>
</tr>
</tbody>
</table>

$^{[a]}$C NMR spectra recorded in CDCl$_3$; $^{[b]}$Data recorded on Bruker 151 MHZ; $^{[c]}$Data recorded on Bruker 126 MHz; $^{[c]}$Data from DEPTQ spectra.
In Table 13, the 13C chemical shifts of the known cladiellin type-natural products are presented. Looking at the reported data for sclerophytins A (3) and B (4), the signal of the C-3 stereocentre is seen at 74.8 ppm. The same displacement is noted for the three corresponding diastereomers at the C-6 and C-7 positions of sclerophytin A (3), since the C-3 signal is found between 74.0 ppm and 75.1 ppm. The case of sclerophytin B (4) is interesting because while the 13C NMR signal for C-3 appears at 74.8 ppm, the carbon atom bearing an acetylated hydroxyl at the C-6 position gives a signal at 85.0 ppm. The corresponding carbon for sclerophytin A (3), i.e. in the absence of an acetate moiety, is shifted upfield by ca. 5 ppm and is found at 79.9 ppm. This observation suggests that the hydroxy group at the C-3 is acetylated in natural sclerophytin F and this would be consistent with the reported value of 86.6 ppm for this carbon atom. In order to confirm this idea, other acetylated natural products were analysed.
Table 13. Comparison of the 13C chemical shifts for some sclerophytin-type diterpenes.

<table>
<thead>
<tr>
<th>Carbon</th>
<th>A $^{[a]}$</th>
<th>B $^{[a]}$</th>
<th>F $^{[a]}$</th>
<th>C $^{[a,c]}$</th>
<th>F methyl ether $^{[a,c]}$</th>
<th>Patagonicol $^{[b,c]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.2</td>
<td>45.5</td>
<td>45.4</td>
<td>45.0</td>
<td>44.6</td>
<td>45.3</td>
</tr>
<tr>
<td>2</td>
<td>90.5</td>
<td>90.5</td>
<td>91.9</td>
<td>91.4</td>
<td>90.5</td>
<td>91.1</td>
</tr>
<tr>
<td>3</td>
<td>74.8</td>
<td>74.8</td>
<td>86.6</td>
<td>86.2</td>
<td>76.1</td>
<td>74.4</td>
</tr>
<tr>
<td>4</td>
<td>39.9</td>
<td>39.8</td>
<td>35.9</td>
<td>34.5</td>
<td>41.0</td>
<td>40.9</td>
</tr>
<tr>
<td>5</td>
<td>29.4</td>
<td>28.1</td>
<td>30.5</td>
<td>29.5</td>
<td>30.0</td>
<td>27.2</td>
</tr>
<tr>
<td>6</td>
<td>79.9</td>
<td>85.0</td>
<td>80.1</td>
<td>77.0</td>
<td>90.5</td>
<td>88.4</td>
</tr>
<tr>
<td>7</td>
<td>77.0</td>
<td>75.9</td>
<td>77.0</td>
<td>79.6</td>
<td>74.9</td>
<td>76.1</td>
</tr>
<tr>
<td>8</td>
<td>45.4</td>
<td>45.5</td>
<td>45.8</td>
<td>79.5</td>
<td>45.1</td>
<td>45.1</td>
</tr>
<tr>
<td>9</td>
<td>78.2</td>
<td>78.0</td>
<td>78.2</td>
<td>81.1</td>
<td>78.1</td>
<td>78.6</td>
</tr>
<tr>
<td>10</td>
<td>52.6</td>
<td>53.2</td>
<td>52.9</td>
<td>52.5</td>
<td>53.0</td>
<td>53.8</td>
</tr>
<tr>
<td>11</td>
<td>147.9</td>
<td>147.9</td>
<td>147.6</td>
<td>148.6</td>
<td>147.9</td>
<td>148.4</td>
</tr>
<tr>
<td>12</td>
<td>31.6</td>
<td>31.9</td>
<td>31.4</td>
<td>31.6</td>
<td>31.6</td>
<td>31.9</td>
</tr>
<tr>
<td>13</td>
<td>24.9</td>
<td>24.8</td>
<td>24.7</td>
<td>24.8</td>
<td>29.4</td>
<td>25.2</td>
</tr>
<tr>
<td>14</td>
<td>43.7</td>
<td>43.6</td>
<td>43.9</td>
<td>43.7</td>
<td>43.7</td>
<td>44.0</td>
</tr>
<tr>
<td>15</td>
<td>29.1</td>
<td>29.0</td>
<td>29.1</td>
<td>29.0</td>
<td>29.0</td>
<td>29.3</td>
</tr>
<tr>
<td>16</td>
<td>16.0</td>
<td>16.1</td>
<td>15.7</td>
<td>16.2</td>
<td>15.9</td>
<td>15.7</td>
</tr>
<tr>
<td>17</td>
<td>22.0</td>
<td>21.9</td>
<td>21.9</td>
<td>21.9</td>
<td>22.0</td>
<td>22.1</td>
</tr>
<tr>
<td>18</td>
<td>30.3</td>
<td>30.2</td>
<td>23.2</td>
<td>23.0</td>
<td>23.9</td>
<td>29.9</td>
</tr>
<tr>
<td>19</td>
<td>23.1</td>
<td>23.7</td>
<td>22.3</td>
<td>17.7</td>
<td>25.9</td>
<td>24.8</td>
</tr>
<tr>
<td>20</td>
<td>109.1</td>
<td>109.2</td>
<td>109.3</td>
<td>109.9</td>
<td>109.1</td>
<td>109.2</td>
</tr>
<tr>
<td></td>
<td>171.8</td>
<td>169.5</td>
<td>57.0</td>
<td>64.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{[a]}$ 13C NMR in CDCl$_3$; $^{[b]}$ 13C NMR in C$_6$D$_6$; $^{[c]}$ X-ray analysis confirmed the structure.
Sclerophytin C (7), patagonicol (5) and sclerophytin F methyl ether (6) are natural products for which X-ray analyses have confirmed their structures. An acetate substituent is found at the C-3 carbon atom of sclerophytin C and there is an extra hydroxyl at the C-8 position. In the 13C NMR spectra, the chemical shift of the C-3 carbon atom is 86.2 ppm, while the secured structures of the other natural products bearing free alcohol at the C-3 show a chemical shift between 74.4 and 76.1 ppm. In the same way, alkyl substitution of the alcohol at the C-6 stereocentre causes a shift in the signal which is found in the range of 85.0 to 91.0 ppm instead of 77.0 to 80.0 ppm. The 13C NMR spectrum of sclerophytin F has signals at 86.6 ppm and 80.1 ppm attributed to the C-3 and C-6 carbon atoms respectively. The close correspondence between the 13C NMR spectra of sclerophytin F and the other sclerophytin-type diterpenes depicted in Table 13 strongly suggests that sclerophytin F possesses the same configuration as these natural products and has a substituted alcohol at the C-3 position. Other C-3 acetylated products having the R-configuration at this stereocentre, such as 3-acetylcadiellisin, simplexin I, palmonines A-D, and epoxycladins A-D exhibit the characteristic signal of C-3 in the range of 84 to 87 ppm in the 13C NMR spectra.

The original goal of this project was the total syntheses of all the natural products belonging to the cladiellin family having a S-stereocentre at the C-3 position. According to Paquette’s reassignments (Table 14), these compounds bear, at this stereocentre, a free hydroxyl group (sclerophytin F (10)), or a substituted alcohol with an acetate group (sclerophytin E (9), 6-ethoxysclerophytin E (13) and 6-isovaleroylsclerophytin E (14)) or a butyrate group (litophynin E (11) and 6-acetoxylitophynin E (12)). In these cases, the C-3 carbon atom appears in the range of 86 to 87 ppm in the 13C NMR spectra. In the same way, the cladiellin sub-classes such as the simplexins A-H and hirsutalin E, which have a tertiary alcohol substituted with a butyrate motif, give rise to a signal between 84.6 and 86.0 ppm on the 13C NMR spectra.

corresponding to the C-3 carbon atom as well. However, these natural products possess the R-configuration at the C-3 position as it is the case for all the cladiellin diterpenes for which structures have been successfully confirmed by total synthesis and/or X-ray crystallography.

The natural products that had been the subject of structural re-evaluation have their 13C NMR data presented in Table 14. A chemical shift at 86 ppm, assigned to the C-3 carbon atom is evident for all of these compounds. As previously noted, despite the absence of an ester substituent at C-3, sclerophytin F (10) also has this characteristic signal in its 13C NMR spectrum. Moreover, a close correspondence between the chemical shifts of the carbons of sclerophytin F (10) and E (9) -0.4 ppm or less for all the carbon atoms with ten identical signals- is remarkable. A second point to be considered is the origin of sclerophytins E (9) and F (10), which have been isolated from the same species of soft coral. It is important to appreciate that typographical errors in the paper concerning the isolation of sclerophytins C-F have been identified by Faulkner et al.14
Chapter 2: Results and Discussion

140

Table 14. Comparison of the 13C chemical shifts for the sclerophytins structurally re-evaluated by Friedrich and Paquette in 2002.20

<table>
<thead>
<tr>
<th>Carbon</th>
<th>F [a]</th>
<th>E [a]</th>
<th>6-ethoxy E [a]</th>
<th>6-isovaleroyl E [a]</th>
<th>litophynin E [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.4</td>
<td>45.2</td>
<td>45.3</td>
<td>45.8</td>
<td>45.4</td>
</tr>
<tr>
<td>2</td>
<td>91.9</td>
<td>92.0</td>
<td>92.1</td>
<td>92.1</td>
<td>92.0</td>
</tr>
<tr>
<td>3</td>
<td>86.6</td>
<td>86.3</td>
<td>86.4</td>
<td>86.7</td>
<td>86.4</td>
</tr>
<tr>
<td>4</td>
<td>35.9</td>
<td>36.1</td>
<td>36.6</td>
<td>35.7</td>
<td>36.1</td>
</tr>
<tr>
<td>5</td>
<td>30.5</td>
<td>30.4</td>
<td>27.5</td>
<td>29.3</td>
<td>30.4</td>
</tr>
<tr>
<td>6</td>
<td>80.1</td>
<td>80.1</td>
<td>88.3</td>
<td>84.5</td>
<td>80.1</td>
</tr>
<tr>
<td>7</td>
<td>77.0</td>
<td>77.0</td>
<td>75.9</td>
<td>75.5</td>
<td>76.8</td>
</tr>
<tr>
<td>8</td>
<td>45.8</td>
<td>45.7</td>
<td>44.9</td>
<td>45.8</td>
<td>45.8</td>
</tr>
<tr>
<td>9</td>
<td>78.2</td>
<td>78.2</td>
<td>78.5</td>
<td>78.1</td>
<td>78.2</td>
</tr>
<tr>
<td>10</td>
<td>52.9</td>
<td>52.9</td>
<td>53.9</td>
<td>53.8</td>
<td>53.6</td>
</tr>
<tr>
<td>11</td>
<td>147.6</td>
<td>147.6</td>
<td>147.8</td>
<td>147.6</td>
<td>147.6</td>
</tr>
<tr>
<td>12</td>
<td>31.4</td>
<td>31.4</td>
<td>31.5</td>
<td>31.5</td>
<td>31.4</td>
</tr>
<tr>
<td>13</td>
<td>24.7</td>
<td>24.8</td>
<td>24.6</td>
<td>24.6</td>
<td>24.6</td>
</tr>
<tr>
<td>14</td>
<td>43.9</td>
<td>43.9</td>
<td>44.0</td>
<td>43.8</td>
<td>43.8</td>
</tr>
<tr>
<td>15</td>
<td>29.1</td>
<td>29.0</td>
<td>29.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>16</td>
<td>15.7</td>
<td>16.1</td>
<td>15.5</td>
<td>15.4</td>
<td>15.6</td>
</tr>
<tr>
<td>17</td>
<td>21.9</td>
<td>21.9</td>
<td>21.9</td>
<td>21.9</td>
<td>21.9</td>
</tr>
<tr>
<td>18</td>
<td>23.2</td>
<td>23.2</td>
<td>23.1</td>
<td>22.9</td>
<td>23.2</td>
</tr>
<tr>
<td>19</td>
<td>22.3</td>
<td>22.6</td>
<td>23.8</td>
<td>23.8</td>
<td>22.6</td>
</tr>
<tr>
<td>20</td>
<td>109.3</td>
<td>109.3</td>
<td>109.5</td>
<td>109.5</td>
<td>109.3</td>
</tr>
</tbody>
</table>

$^{[\text{a}]}$13C NMR in CDCl\textsubscript{3}
These observations led us to conclude that sclerophytins F and E are in fact the same compound that is consistent with the original mass spectrometry data. If they were structurally different (i.e., with a C-3 acetate group on one of the compounds) the 13C NMR chemical shifts should be significantly different. In addition, comparison of the NMR data of several sclerophytins for which the structures had been confirmed without ambiguity, and the data reported for the re-evaluated natural products, highlighted similarities. On the other hand, significant discrepancies were seen between the NMR data for the natural product and that for the synthetic sample of the proposed structure of sclerophytin F or its diastereomers. It is worth noting that the S-configuration at the C-3 stereocentre does not result in a shift of the signal for this carbon in the 13C NMR spectra to 86 ppm as has been reported for these structurally re-evaluated natural products.

The most likely explanation to account for the data is that sclerophytins E and F are the same and that the natural product corresponds to sclerophytin A with an acetylated hydroxyl group at the C-3 position. The fact that sclerophytins E and F are the same structure is also supported by the reported optical rotation. Indeed they are quite similar considering the quantity of the natural products available for data ([α]$_D$ +55, CHCl$_3$, c = 0.20 for sclerophytin F and [α]$_D$ +80, CHCl$_3$, c = 0.42 for sclerophytin E). Moreover, the absence of the acetate signals on the carbon spectrum could be easily explained by the sensitivity of the apparatus (NMR spectra were recorded at 74.5 MHz). Typographical errors also have to be taken into account as discussed previously. In an analogous manner to the structure reassignments of sclerophytins E and F, the four other natural products would also possess the R-configuration at the C-3 stereocentre, the chemical shift of this carbon atom being due to esterification of the hydroxyl group. Consequently, the biological common origin of the skeleton of the cladiellins would be consistent with the general stereochemistry found in these natural products; they all possess a R-configuration at the C-3 position. Only the total syntheses of sclerophytins for which the structures remain unconfirmed (with either S- or R-configuration at the C-3 stereocentre) will finally confirm these reassignments.
Towards the Synthesis of the Proposed Structure of Sclerophytin E

The proposed structure of sclerophytin F (10) had been shown to be incorrect and the existence of the S-configuration at the C-3 stereocentre for some of the cladiellin natural products remained to be demonstrated. The original aim of this project was the total synthesis of the six natural products that had been proposed to possess the S-configuration at the C-3 position. The absence of correlation between the four diastereomers of the proposed structure of sclerophytin F and the natural product revives the debate about the structure of this cladiellin natural product and closely related compounds. In order to confirm or refute the presence of the S-configuration at the C-3 stereocentre for other revised natural products, the total synthesis of sclerophytin E (9) was undertaken.

An acetate group at the C-3 position has been suggested to be the difference between the proposed structures of sclerophytins F (10) and E (9). The first approach towards the synthesis of the proposed structure of sclerophytin E (9) involved the acetylation of the hydroxyl group on the allylic ketone 345 followed by the reduction of the ketone to install the C-6 stereocentre (Scheme 102). Finally, Sharpless asymmetric epoxidation and reductive epoxide opening, as described in the total synthesis of the proposed structure of sclerophytin F (10), would be expected to deliver the proposed structure of sclerophytin E (9).
Scheme 102. General approach towards the total synthesis of the proposed structure of sclerophytin E.

Acetylation of the C-3 hydroxyl group followed by the reduction of the allylic ketone under Luche conditions156 furnished the allylic alcohol \textit{352} in moderate yield. The presence of the acetate group was clearly visible in the 1H NMR spectra (peak at 2.07 ppm). By analogy with the recorded data of the corresponding allylic alcohol \textit{346}, it was assumed that the configuration at the C-6 stereocentre was the desired S-configuration. Indeed, for both compounds the proton H-6 appears as a doublet of doublets in the 1H NMR spectra with similar coupling constants (4.48 ppm, $J = 10.6$, 4.8 Hz for \textit{346}; 4.55 ppm, $J = 9.9$, 4.4 ppm for \textit{352}), while the characteristic signal is a multiplet when this stereocentre has an R-configuration. Subsequent catalytic asymmetric Sharpless epoxidation was performed in the presence of titanium tetraisopropoxide and (+)-diethyl tartrate installing the C-7 stereocentre with S-configuration. The reaction was complete within 24 hours and the epoxy-alcohol \textit{351} was isolated in 34\% yield. The success of the reaction and the signature of an epoxide in the 1H NMR spectrum (a doublet of doublets at 3.16 ppm and a doublet at 2.99 ppm) suggested that the product possessed the desired configuration at the eight stereocentres. As previously observed (see results and discussion, section 8), epoxidation to form the \textit{cis} α-epoxy-alcohol did not occur under the Sharpless asymmetric reaction conditions and oxidation of the alcohol was observed when the C-6 stereocentre had the R-configuration. Opening of the epoxide \textit{351} was attempted by treatment with diisobutylaluminium hydride. Unfortunately, under these conditions the acetate was cleaved producing the epoxy-alcohol \textit{347} in 87\% yield.
Chapter 2: Results and Discussion

144

\[\text{Scheme 103. Attempted synthesis of the proposed structure of sclerophytin E from the allylic alcohol 345.} \]

Since the acetate group appeared to be more reactive than the epoxide under reduction conditions, the C-7 stereocentre has to be introduced prior to the functionalization of the C-3 hydroxyl.

In this synthetic strategy, the proposed structure of sclerophytin F was oxidised to give ketone 344 and this was subjected to acetylation conditions (Scheme 104). The reaction mixture was stirred at room temperature for 18 hours affording a complex mixture of products.

Scheme 104. Oxidation and acetylation of the proposed structure of sclerophytin F.

A final approach based upon the acetylation of the hydroxyl groups at the C-3 and C-6 positions followed by a selective de-acetylation of the secondary
alcohol was explored. It was expected that treatment of the proposed structure of sclerophytin F (10) with acetic anhydride in presence of pyridine would deliver the bis-acetate 354 resulting from acetylation at both the C-3 and C-6 positions. However, acetylation occurred at the C-6 position only (Scheme 105) and acetate 355 was isolated in 20% yield along with 24% of recovered starting material. It is worth noting that acetate 355 is the C-3 epimer of (−)-sclerophytin B (4).

Attempted acetylation of the triol was then repeated under harsher conditions. The use of acetic anhydride, 4-dimethylaminopyridine, and triethylamine at high temperature led to the formation of two major products. The acetate groups were visible in the 1H NMR at 2.08 ppm and 2.07 ppm for the first product and at 2.06 and 2.01 ppm for the second one. However, due to the inability to get thoroughly clean material for analysis, cleavage of the acetates by treatment with potassium carbonate was undertaken on both products. After complete consumption of the starting materials, crude 1H NMR analysis revealed the proposed structure of sclerophytin F (10) as the major product in both cases. Due to the lack of material and time constraints the synthesis of the proposed structure of sclerophytin E (9) could not be studied further.

Scheme 105. Acetylation at C-6 of the proposed structure of sclerophytin F.
11 Conclusions and Future Work

11.1 Conclusions

The first enantioselective total synthesis of the proposed structure of sclerophytin F (10) was achieved in a total of 33 steps starting from the commercially available 1,4-butanediol. The route featured SmI$_2$-mediated reductive cyclisation, oxonium ylide formation followed by a [2,3]-sigmatropic rearrangement to form the oxabicyclo[6.2.1]-5-undecen-9-one core and a thermal Diels-Alder cycloaddition reaction to give the tricyclic skeleton of the natural product.

In the reported total syntheses of cladiellin natural products having R-configuration at the C-3 position, the methyl group at this position was introduced at a very late stage in the synthesis. However, the stereocentre bearing the S-configuration was installed in the very beginning of this synthesis, requiring a modification of the route and careful optimisation of the reaction conditions. A relevant example is the [2,3]-sigmatropic rearrangement reaction: in the absence of the methyl group at the C-3 position, the reaction can be tuned to deliver selectively the Z- or the E-bicyclic ketone, but control of the outcome was impossible in our case. The rearrangement reaction led to the formation of a mixture of Z and E isomers although in excellent yield.

Unfortunately, spectroscopic data obtained for the synthetic sample of the proposed structure of sclerophytin F (10) did not match with those reported for the natural product revealing a mistake in the structural reassignment. The
syntheses of the three other diastereomers at the C-6 and C-7 positions of the proposed structure of sclerophytin F were also accomplished, but none of these compounds corresponded to the natural product either. These results combined with careful re-analysis of the NMR data reported for the sclerophytin natural products led to the conclusion that all the members of this family of natural products possess \(R \) configuration at the C-3 position, and that sclerophytins E and F are in fact the same product. However, this hypothesis has yet to be confirmed by total synthesis of the natural product.

11.2 Outlook

The lack of agreement between the recorded data for the synthetic sample of the proposed structure of sclerophytin F and those of the natural product calls into question the presence of the 3S-configuration in the cladiellin family natural products. Following structural re-evaluation of these products, the syntheses of these new sclerophytin diastereomers would be necessary in order to determine their configuration at the C-3 position.

As described in the introduction, many cladiellin natural products possess interesting biological properties, particularly sclerophytin A. In the course of this study a wide range of complex products have been synthesised and intermediates as well as the final products will be sent for biological evaluation. Furthermore, the proposed structure of sclerophytin F corresponds to the C-3 epimer of sclerophytin A, so testing of this final product will provide preliminary information about any correlation between the C-3 configuration and the biological activity of the cladiellins.
General Experimental Conditions

General Comments

Air and/or moisture sensitive reactions were performed under an atmosphere of argon in flame dried apparatus. Organic solvents were purified using a Pure Solv™ 500 Solvent Purification System. Starting materials were obtained from commercial sources and used as received unless otherwise specified. Petroleum ether used for column chromatography was the fraction with boiling point 40-60 °C.

Chromatography

All reactions were monitored by thin layer chromatography using Merck silica gel 60 covered alumina plates F254. Thin layer chromatography plates were viewed under UV light and stained using either potassium permanganate solution or acidic ethanolic anisaldehyde solution or phosphomolybdic acid solution. Flash column chromatography was accomplished with silica gel (Fluorochem LC60A, 35-70 micron, or Geduran® Si 60, 40-63 micron) as solid support.

Analysis Apparatus

Melting points were recorded with Electrothermal IA 9100 apparatus. Specific rotations of the chiral non-racemic compounds were recorded with an error ≤±0.1 using an automatic polarimeter Autopol® V. The wavelength of the light was 589 nanometers.
IR spectra were recorded with a type IIa diamond single reflection element on a Shimadzu FTIR-8400 instrument. The compound (solid or liquid) was analysed directly as a thin layer at ambient temperature.

NMR spectra were recorded on a Bruker 400 MHz Spectrospin spectrometer (\(^1\)H NMR at 400 MHz and \(^{13}\)C NMR at 101 MHz) or on a Bruker 500 MHz Spectrospin spectrometer (\(^1\)H NMR at 500 MHz and \(^{13}\)C NMR at 126 MHz) or on a Bruker 600 MHz Spectrospin spectrometer (\(^1\)H NMR at 600 MHz and \(^{13}\)C NMR at 151 MHz) at ambient temperature. Chemical shifts are reported in ppm. \(^1\)H NMR spectra were recorded with CDCl\(_3\) as solvent using (d = 7.26) as internal standard, and for \(^{13}\)C NMR spectra, the chemical shifts are reported relative to the central resonance of CDCl\(_3\) (d = 77.16). Signals in NMR spectra are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), septet (sept), multiplet (m), broad (br), apparent (app) or combination of these, which refers to the spin-spin coupling pattern observed. DEPT 135, and two dimensional (COSY, HSQC) NMR spectroscopy were used where appropriate to assist the assignment of signals in the \(^1\)H and \(^{13}\)C NMR spectra.

HRMS were recorded using positive chemical ionization (CI+), positive ion impact (EI+), positive or negative ion electrospray (ESI+/ESI–) techniques on a Jeol M-STATION JMS-700 instrument. Low resolution mass spectra (LRMS) were recorded using the same instrument. The intensity of each peak is quoted as a percentage of the largest, in cases where this information was available.

Elemental analyses were carried out on an Exeter Analytical Elemental Analyser EA 440.

X-ray crystallography was performed at the University of Glasgow by Dr. L. J. Farrugia.

Nomenclature

Compounds were named according to the IUPAC rules, whereas numbering of the carbons has been done independently to these rules to help at their identification.
Procedures and Products Characterisations

4-(tert-Butyldimethylsilyloxy)butan-1-ol (279)\(^{55,60}\)

\[\text{HO} \quad \text{Si-CH}_3 \]

\(C_{10}H_{24}O_2Si \)

To a stirred solution of 1,4-butanediol (75 mL, 0.42 mol) and triethylamine (60 mL, 0.43 mol) in anhydrous \(CH_2Cl_2 \) (790 mL) at 0 °C was added tert-butyldimethylsilyl chloride (42.0 g, 278 mmol). The mixture was stirred overnight at room temperature and the reaction was quenched by the addition of a saturated aqueous solution of \(NH_4Cl \) (400 mL). The phases were separated and the aqueous phase was extracted with \(CH_2Cl_2 \) (3 \(\times \) 100 mL). The organic extracts were combined, washed with brine (300 mL), dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 8:1 to 5:1) afforded alcohol 279 (53.3 g, 93%) as a colourless oil.

\(R_f = 0.55; \) (petroleum ether-ethyl acetate, 2:1); \(\nu_{\text{max}} \) (neat) 3324, 2929, 2884, 2856, 1472, 1254, 1098, 1059, 991, 975, 832, 772 cm\(^{-1}\); \(^1\text{H} \text{ NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 3.69–3.60 (4H, m, CH\(_2\)-C1, CH\(_2\)-C4), 2.56 (1H, br s, OH), 1.69–1.59 (4H, m, CH\(_2\)-C2, CH\(_2\)-C3), 0.89 (9H, s, CH\(_3\)-tBu), 0.06 (6H, s, Si-CH\(_3\)); \(^{13}\text{C} \text{ NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \) 63.5 (CH\(_2\)-C1), 62.9 (CH\(_2\)-C4), 30.4 (CH\(_2\)-C2), 30.0 (CH\(_2\)-C3), 26.0 (CH\(_3\)-tBu), 18.4 (C-tBu), -5.3 (Si-CH\(_3\)); HRMS (Cl+, Me\(_3\)CH) for C\(_{10}H_{25}O_2Si\) [M+H]\(^+\) calcd. 205.1624, found 205.1625, \(\Delta +0.4 \) ppm; LRMS (Cl+, Me\(_3\)CH) m/z (intensity); 205.2 (100%).
6-(tert-Butyldimethylsilanyloxy)-2-methyl-hex-1-en-3-ol (153)

\[
\text{C}_{13}\text{H}_{28}\text{O}_2\text{Si}
\]

To a solution of oxalyl chloride (1.10 mL, 12.8 mmol) in anhydrous CH\(_2\)Cl\(_2\) (10 mL) at -78 °C was added a solution of anhydrous DMSO (0.90 mL, 12.7 mmol) in anhydrous CH\(_2\)Cl\(_2\) (10 mL) dropwise. The solution was stirred for 15 min and alcohol 279 (2.06 g, 10.1 mmol) in anhydrous CH\(_2\)Cl\(_2\) (10 mL) was added dropwise. The reaction mixture was stirred at -78 °C for 1 h and triethylamine (7.00 mL, 94.7 mmol) was added. The solution was allowed to warm to room temperature and was stirred for an additional hour. The reaction was diluted with CH\(_2\)Cl\(_2\) (20 mL) and quenched by the addition of a saturated aqueous solution of NH\(_4\)Cl (50 mL). The organic phase was separated and washed with brine (40 mL), dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo} to afford the corresponding aldehyde.

To a stirred slurry of magnesium turnings (489 mg, 20.1 mmol) and iodine (trace) in anhydrous THF (10 mL) at reflux was added a solution of 2-bromopropene (1.50 mL, 17.2 mmol) in anhydrous THF (20 mL) dropwise while maintaining the reflux. After complete addition, the solution was stirred for 1.25 h and cooled to 0 °C. A solution of crude aldehyde in anhydrous THF (20 mL) was added dropwise and the mixture was stirred at 0 °C for a further 30 min. The reaction was quenched by the addition of a saturated aqueous solution of NH\(_4\)Cl (30 mL) and the phases were separated. The aqueous phase was extracted with Et\(_2\)O (2 × 20 mL). The organic extracts were combined, washed with brine (100 mL), dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification of the residue by flash column chromatography (petroleum ether-ethyl acetate from pure to 1:1) afforded the desired allylic alcohol 153 (1.68 g, 67%) as a colourless oil.

\(R_f = 0.43 \) (petroleum ether-ethyl acetate, 4:1); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 4.95 (1H, br s, CH\(_2\)-C1), 4.81 (1H, br s, CH\(_2\)-C1), 4.08–4.04 (1H, m, CH-C3), 3.64 (2H, t, \(J = 5.6 \) Hz, CH\(_2\)-C6), 2.62 (1H, d, \(J = 3.6 \) Hz, OH), 1.71 (3H, s, CH\(_3\)-C7), 1.70–1.54 (4H, m, CH\(_2\)-C5, CH\(_2\)-C4), 0.89 (9H, s, CH\(_3\)-tBu), 0.05 (6H, s, Si-CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 147.7 (C-C2), 110.9 (CH\(_2\)-C1), 75.4 (CH-C3), 63.3 (CH\(_2\)-C6), 32.3 (CH\(_2\)-C4), 28.9 (CH\(_2\)-C5), 25.9 (CH\(_3\)-tBu), 18.3 (C-tBu), 17.9 (CH\(_3\)-tBu).
C7), −5.3 (Si-CH₃); νₘₐₓ (neat) 3348, 2931, 2858, 1651, 1389, 1250, 1096, 1003, 895, 833, 771, 717, 663 cm⁻¹; HRMS (Cl⁺, Me₃CH) calcd. for C₁₃H₂₉O₂Si [M+H]⁺ calcd. 245.1937, found 245.1940, Δ −1.1 ppm; LRMS (Cl⁺, Me₃CH) m/z (intensity) 245.4 (87%), 227.3 (89%), 95.2 (100%).

Ethyl (2E)-(6)-(tert-butyldimethylsilyloxy)-2-methylhex-2-enoate (150)⁵⁵,⁶⁰

To a stirred solution of alcohol 279 (5.00 g, 24.5 mmol) in anhydrous CH₂Cl₂ (25 mL) was added TEMPO (0.15 g, 0.96 mmol). The solution was cooled to 0 °C and a solution of NaOCl (23 mL of a 1.4 M solution in water, 32.2 mmol), saturated aqueous solution of NaHCO₃ (60 mL), NaBr (397 mg, 3.86 mmol) and water (3.8 mL) was added dropwise over 20 min. The mixture was stirred for 10 min and the reaction was quenched by the addition of MeOH (50 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 100 mL). The organic extracts were combined, washed with brine (100 mL), dried (MgSO₄), filtered and concentrated in vacuo to afford the crude aldehyde which was used directly in the next step.

To a solution of the crude aldehyde in anhydrous THF (240 mL) was added ethyl 2-(triphenylphosphoranylidene)propanoate (13.8 g, 38.1 mmol) in one portion. The mixture was stirred at room temperature for 48 h and the reaction was quenched by the addition of water (100 mL). The aqueous phase was separated and extracted with EtOAc (2 × 50 mL). The organic extracts were combined, washed with brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 50:1) delivered ester 150 (6.03 g, 86% over two steps) as a colourless oil.

Rᶠ = 0.45; (petroleum ether-ethyl acetate, 10:1); νₘₐₓ (neat) 2955, 2929, 2857, 1710, 1256, 1094, 833, 774 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.76 (1H, tq, J = 7.3, 1.2 Hz, CH-C₃), 4.18 (1H, q, J = 7.1 Hz, CH₂-C₈), 4.18 (1H, q, J = 7.1 Hz,
CH₂-C8), 3.62 (2H, t, J = 6.3 Hz, CH₂-C6), 2.24 (2H, q, J = 7.3 Hz, CH₂-C4), 1.83 (3H, s, CH₃-C7), 1.64 (2H, tt, J = 7.3, 6.3 Hz, CH₂-C5), 1.28 (3H, td, J = 7.1, 0.6 Hz, CH₃-C9), 0.89 (9H, s, CH₃-tBu), 0.04 (6H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 168.4 (C-1), 142.0 (CH-C3), 128.2 (C-C₂), 62.5 (CH₂-C6), 60.5 (CH₂-C8), 31.8 (CH₂-C₅), 26.1 (CH₃-tBu), 25.3 (CH₂-C₄), 18.4 (C-tBu), 14.4 (CH₃-C₉), 12.4 (CH₃-C₇), −5.2 (Si-CH₃); HRMS (CI+, Me₃CH) for C₁₅H₃₁O₃Si [M+H]⁺ calcd. 287.2042, found 287.2047, Δ +1.5 ppm; LRMS (CI+, Me₃CH) m/z (intensity); 287.2 (100%), 241.2 (23%), 229.2 (13%).

(2E)-(6)-(tert-Butyldimethylsilyloxy)-2-methylhex-2-en-1-ol (151)⁵⁵,⁶⁰

To a stirred solution of ester 150 (20.2 g, 70.6 mmol) in anhydrous CH₂Cl₂ (720 mL) at −78 °C was added DIBAL-H (180 mL of a 1.0 M solution in CH₂Cl₂, 180 mmol) dropwise over 1 h. The resulting solution was stirred for 1.5 h and the reaction was quenched with a saturated aqueous solution of sodium potassium tartrate (250 mL). The solution was allowed to warm to room temperature, diluted with EtOAc (750 mL) and stirred vigorously until the appearance of two clear phases. The phases were separated and the aqueous phase was extracted with EtOAc (3 × 100 mL). The organic extracts were combined, washed with brine (300 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 20:1 to 5:1) delivered desired the allylic alcohol 151 (17.1 g, 98%) as a colourless oil.

Rᶠ = 0.55; (petroleum ether-ethyl acetate, 2:1); νmax (neat) 3337, 2955, 2929, 2856, 1472, 1387, 1253, 1095, 1004, 833, 772, 659 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.42 (1H, tq, J = 7.2, 1.3 Hz, CH-C₄), 4.00 (2H, d, J = 6.0 Hz, CH₂-C₁), 3.61 (2H, t, J = 6.4 Hz, CH₂-C₆), 2.09 (2H, q, J = 7.2 Hz, CH₂-C₄), 1.67 (3H, s, CH₃-C₇), 1.59 (2H, tt, J = 7.2, 6.4 Hz, CH₂-C₅), 1.24 (1H, t, J = 6.0 Hz, OH), 0.89 (9H, s, CH₃-tBu), 0.05 (6H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 135.2 (C-C₂), 126.1 (CH-C₃), 69.2 (CH₂-C₁), 62.8 (CH₂-C₆), 32.8 (CH₂-C₅), 26.1 (CH₃-tBu), 24.1
To a suspension of 4 Å powdered molecular sieves (2.70 g) in anhydrous CH$_2$Cl$_2$ (540 mL) at -25 °C were added freshly distilled titanium tetraisopropoxide (0.80 mL, 2.7 mmol), freshly distilled (−)-diethyl tartrate (0.70 mL, 4.1 mmol) and tert-butylhydroperoxide (18 mL of a 4.7 M solution in decane, 84.6 mmol) dropwise over 15 min. The solution was stirred for 1 h and a solution of the allylic alcohol 151 (13.2 g, 54.1 mmol) in anhydrous CH$_2$Cl$_2$ (50 mL) was added slowly over a period of 1 h, while the temperature maintained at -25 °C. The mixture was stirred for a further 1 h and the reaction was quenched by the addition of water (100 mL). The solution was warmed to 0 °C and a solution of 30% wt NaOH in brine (100 mL) was added. The mixture was allowed to warm to room temperature and then stirred for an additional 30 min. The molecular sieves were removed by filtration. The aqueous phase was separated and extracted with CH$_2$Cl$_2$ (3 × 100 mL). The organic extracts were combined, washed with brine (150 mL), dried (MgSO$_4$), filtered and concentrated in vacuo.

Flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 20:1 to 2:1) afforded the desired epoxy alcohol 152 (13.0 g, 93%) as a colourless oil.

The enantiomeric excess (92%) was determined by normal phase chiral HPLC analysis of the corresponding vinylogous carbonate 281.

$R_f = 0.37$; (petroleum ether-ethyl acetate, 2:1); [α]$_D^{23}$ -12.5 (c = 1.04, CHCl$_3$),

{Lit.}$_{55}$ [α]$_D^{23}$ +14.9 (c = 1.00, CHCl$_3$); $\nu$$_{max}$ (neat) 3440, 2953 2929, 2856, 1472, 1386, 1252, 1094, 1038, 833, 773, 660 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 3.71–3.55 (4H, m, CH$_2$-C1, CH$_2$-C6), 3.06 (1H, t, J = 5.6 Hz, CH-C3), 1.73–1.61 (5H, m, CH$_2$-C4, CH$_2$-C5, OH), 1.29 (3H, s, CH$_3$-C7), 0.89 (9H, s, CH$_3$-tBu), 0.05
(6H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 65.5 (CH₂-C1), 62.7 (CH₂-C6), 61.0 (C-C2), 60.1 (CH-C3), 29.8 (CH₂-C5), 26.1 (CH₃-tBu), 25.0 (CH₂-C4), 18.5 (C-tBu), 14.3 (CH₃-C7), −5.2 (Si-CH₃); HRMS (Cl+, Me₃CH) for C₁₃H₂₉O₃Si [M+H]⁺ calcd. 261.1886, found 261.1884, Δ −0.7 ppm; LRMS (Cl+, Me₃CH) m/z (intensity); 261.2 (69%), 243.2 (63%), 203.2 (100%), 129.1 (61%).

(3R)-6-(tert-Butyldimethylsilyloxy)-2-methylhex-1-en-3-ol (153)⁵⁵,⁶⁰

To a stirred solution of epoxy alcohol 152 (4.70 g, 18.1 mmol) and triethylamine (3.80 mL, 27.4 mmol) in anhydrous CH₂Cl₂ (90 mL) at −10 °C was added methanesulfonyl chloride (1.80 mL, 23.3 mmol) while the temperature was maintained at −10 °C. The solution was stirred for 25 min and the reaction was quenched by the addition of water (30 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The organic phase was washed with brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude mesylate was immediately used in the next step without further purification.

To a stirred solution of the crude mesylate in butan-2-one (90 mL) was added sodium iodide (13.9 g, 92.8 mmol) and the mixture was stirred at 80 °C for 30 min during which time the reaction mixture turned brown. Zinc powder (1.92 g, 23.4 mmol) was then added and the reaction mixture was stirred for a further 1 h at reflux. The reaction mixture was cooled to room temperature. The grey solution was diluted with EtOAc (160 mL) and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (80 mL). The aqueous phase was separated and extracted with EtOAc (3 × 40 mL). The organic extracts were combined, washed with brine (200 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 30:1 to 20:1) yielded the enantio-enriched allylic alcohol 153 (4.16 g, 94%) as a colourless oil.
R_f = 0.44; (petroleum ether-ethyl acetate, 4:1); [α]_D^{27} +9.9 (c = 1.05, CHCl₃),
{Lit.}^{55} [α]_D^{21} +8.7 (c = 1.01, CHCl₃); ν_max (neat) 3372, 2952, 2929, 2856, 1472,
1388, 1254, 1095, 1004, 896, 832, 772, 660 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.96
(1H, quint, J = 1.2 Hz, CH₂-C1), 4.83 (1H, quint, J = 1.2 Hz, CH₂-C1), 4.07 (1H, br t,
J = 5.7 Hz, CH-C3), 3.66 (2H, t, J = 5.6 Hz, CH₂-C6), 2.51 (1H, br s, OH), 1.72
(3H, s, CH₃-C7), 1.71-1.56 (4H, m, CH₂-C4, CH₂-C5), 0.90 (9H, s, CH₃-tBu), 0.06
(6H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 147.7 (C-C2), 110.9 (CH₂-C1), 75.6
(CH-C3), 63.5 (CH₂-C6), 32.5 (CH₂-C4), 29.0 (CH₂-C5), 26.1 (CH₃-tBu), 18.5 (C-
tBu), 18.0 (CH₃-C7), -5.2 (Si-CH₃); HRMS (CI+, Me₃CH) for C₁₃H₂₉O₂Si [M+H]^+
calcd. 245.1937, found 245.1937, Δ 0.0 ppm; LRMS (CI+, Me₃CH) m/z (intensity);
245.3 (68%), 227.3 (100%), 94.1 (87%).

Ethyl (E)-3-{{[3R]-6-hydroxy-2-methylhex-1-en-3-yl]oxy}-prop-2-enoate

To a stirred solution of alcohol 153 (12.5 g, 51.1 mmol) in anhydrous CH₂Cl₂ (200 mL) were added ethyl propiolate (11.0 mL, 108 mmol) and N-methylmorpholine (12.0 mL, 109 mmol). The resulting brown solution was stirred at room temperature overnight and concentrated in vacuo. The residue was filtered through a pad of silica gel (petroleum ether-ethyl acetate, gradient elution from 50:1 to 30:1) to afford the crude ester which was used in the next step without further purification.

To a stirred solution of the above silyl ether in MeOH (520 mL) was added camphorsulfonic acid (1.22 g, 5.25 mmol). The mixture was stirred at room temperature overnight and the reaction was quenched by the addition of NaHCO₃ (4.30 g). The remaining solid was removed by filtration and the solution was concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution
from 5:1 to 5:2) delivered the alcohol 281 (9.03 g, 78% over two steps) as a colourless oil.

$R_f = 0.41$; (petroleum ether-ethyl acetate, 1:1); $[\alpha]_D^{18} = -9.0$ (c = 1.08, CHCl$_3$),

{Lit. $^{55} [\alpha]_D^{18} = -8.3$ (c = 1.01, CHCl$_3$)}; ν_{max} (neat) 3450, 2978, 2946, 2872, 1706, 1636, 1620, 1200, 1126, 1045, 958, 935, 908, 831 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (1H, d, $J = 12.4$ Hz, CH$_3$C8), 5.26 (1H, d, $J = 12.4$ Hz, CH$_3$C9), 4.99 (1H, quint, $J = 1.4$ Hz, CH$_2$C1), 4.97 (1H, br s, CH$_2$C1), 4.27 (1H, dd, $J = 7.7$, 5.5 Hz, CH-C3), 4.19−4.09 (2H, m, CH$_2$C11), 3.72−3.63 (2H, m, CH$_2$C6), 1.86−1.52 (4H, m, CH$_2$C4, CH$_2$C5), 1.67 (3H, s, CH$_3$C7), 1.37 (1H, t, $J = 5.2$ Hz, OH), 1.26 (3H, t, $J = 7.1$ Hz, CH$_3$C12); 13C NMR (126 MHz, CDCl$_3$) δ 168.2 (C-C10), 161.5 (CH-C8), 142.8 (C-C2), 114.8 (CH$_2$C1), 98.2 (CH-C9), 86.5 (CH-C3), 62.5 (CH$_2$C6), 59.9 (CH$_2$C11), 29.7 (CH$_2$C4), 28.7 (CH$_2$C5), 17.1 (CH$_3$C7), 14.5 (CH$_3$C12); HRMS (ESI, Me$_3$OH:H$_2$O) for C$_{12}$H$_{20}$O$_4$Na $[M+Na]^+$ calcd. 251.1254, found 251.1250, Δ −1.4 ppm.

Ethyl (E)-3-([(3R)-2-methyl-6-oxohex-1-en-3-yl]oxy)-prop-2-enoate (138)55,60

![Chemical structure](image)

C$_{12}$H$_{18}$O$_4$

Method A: PCC oxidation

To a suspension of 4 Å powdered molecular sieves (4.56 g) in a stirred solution of alcohol 281 (9.35 g, 40.9 mmol) in anhydrous CH$_2$Cl$_2$ (210 mL) was added pyridinium chlorochromate (11.1 g, 51.3 mmol) portionwise. The mixture was stirred at room temperature overnight. The resulting solid was filtered through a pad of silica gel (petroleum ether-ethyl acetate 5:1) to afford the aldehyde 138 (7.89 g, 85%) as a colourless oil.
Method B: Swern oxidation

To a stirred solution of oxalyl chloride (1.40 mL, 16.6 mmol) in anhydrous CH$_2$Cl$_2$ (39 mL) at −78 °C was added anhydrous DMSO (2.20 mL, 31.0 mmol) in anhydrous CH$_2$Cl$_2$ (11 mL) slowly. The resulting solution was stirred for 30 min at −78 °C and the alcohol 281 (1.90 g, 8.32 mmol) in anhydrous CH$_2$Cl$_2$ (25 mL) was added slowly. The mixture was stirred at −78 °C for 2 h and the reaction was quenched by the addition of distilled triethylamine (6.00 mL, 43.3 mmol). The solution was allowed to warm to room temperature, stirred for an additional hour and diluted with CH$_2$Cl$_2$ (20 mL) and water (40 mL). The phases were separated and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The organic extracts were combined, washed with brine (50 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 5:1) yielded the aldehyde 138 (1.53 g, 81%) as a colourless oil.

$R_f = 0.32$; (petroleum ether-ethyl acetate, 5:1); [α]$_{D}^{21}$ -1.4 (c = 1.06, CHCl$_3$), {Lit.55 [α]$_{D}^{23}$ -1.9 (c = 1.00, CHCl$_3$)}; ν_{max} (neat) 2979, 2938, 1703, 1638, 1621, 1199, 1125, 1045, 953, 909, 832 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 9.78 (1H, t, $J = 1.1$ Hz, CH-C_6), 7.44 (1H, d, $J = 12.5$ Hz, CH-C_8), 5.26 (1H, d, $J = 12.5$ Hz, CH-C_9), 5.02 (1H, quint, $J = 1.4$ Hz, CH$_2$-C_1), 4.99 (1H, br s, CH$_2$-C_1), 4.29 (1H, dd, $J = 7.8$, 5.4 Hz, CH-C_3), 4.19–4.10 (2H, m, CH$_2$-C_11), 2.57–2.51 (2H, m, CH$_2$-C_5), 2.09–1.93 (2H, m, CH$_2$-C_4), 1.67 (3H, s, CH$_3$-C_7), 1.27 (3H, t, $J = 7.1$ Hz, CH$_3$-C_12); 13C NMR (126 MHz, CDCl$_3$) δ 201.1 (CH-C_6), 167.9 (C-C_{10}), 161.0 (CH-C_8), 142.3 (C-C_2), 115.2 (CH$_2$-C_1), 98.7 (CH-C_9), 85.1 (CH-C_3), 59.9 (CH$_2$-C_{11}), 39.8 (CH$_2$-C_5), 25.8 (CH$_2$-C_4), 17.2 (CH$_3$-C_7), 14.5 (CH$_3$-C_{12}); HRMS (Cl$^+$, Me$_3$CH) for C$_{12}$H$_{19}$O$_4$ [M+H]$^+$ calcd. 227.1283, found 227.1277, Δ -2.6 ppm; LRMS (Cl$^+$, Me$_3$CH) m/z (intensity); 251.7 (29%), 227.1 (100%), 111.1 (79%).
Ethyl \((E)-3\)-\{[(3R)-6-hydroxy-2-methylhept-1-en-3-yl]oxy\}-prop-2-enoate (282)\(^{58}\)

To a stirred solution of aldehyde 138 (7.89 g, 34.5 mmol) in anhydrous CH\(_2\)Cl\(_2\) (350 mL) at \(-78\) °C was added trimethylaluminium (36 mL of a 2.0 M solution in hexane, 72 mmol) slowly. The mixture was warmed to 0 °C, stirred for 2 h at this temperature and the reaction was quenched by the addition of a saturated aqueous solution of potassium sodium tartrate (60 mL). The mixture was allowed to warm to room temperature and diluted with water (150 mL). The solution was stirred vigorously at room temperature until the appearance of two clear phases. The aqueous phase was separated and extracted with EtOAc (3 × 100 mL). The organic extracts were combined, washed with brine (150 mL), dried (MgSO\(_4\)), filtered and concentrated \(\text{in vacuo}\). Purification of the residue by flash column chromatography on silica gel (petroleum ether - ethyl acetate, gradient elution from 5:1 to 5:2) delivered a 1:1 mixture of diastereomers of alcohol 282 (7.55 g, 87%) as a colourless oil.

\(R_f = 0.59; (\text{petroleum ether - ethyl acetate, 5:1); } \nu_{\text{max}} (\text{neat}) 3428, 2965, 2929, 1706, 1691, 1637, 1620, 1199, 1123, 1095, 953, 906, 832 \text{ cm}^{-1}; ^1H \text{ NMR (500 MHz, CDCl}_3\)} \delta 7.47 (2H, d, \(J = 12.4 \text{ Hz, CH-C9a, CH-C9b}\)), 5.26 (2H, d, \(J = 12.4 \text{ Hz, CH-C10a, CH-C10b}\)), 4.99 (2H, q, \(J = 1.4 \text{ Hz, CH}_2-C1a, CH_2-C1b\)), 4.97 (2H, d, \(J = 1.4 \text{ Hz, CH}_2-C1a, CH_2-C1b\)), 4.26 (2H, dd, \(J = 12.3, 5.8 \text{ Hz, CH-C3a, CH-C3b}\)), 4.19–4.09 (4H, m, CH\(_2\)-C12a, CH\(_2\)-C12b), 3.86–3.77 (2H, m, CH-C6a, CH-C6b), 1.93–1.63 (4H, m, CH\(_2\)-C4a, CH\(_2\)-C4b), 1.68 (6H, s, CH\(_3\)-C8a, CH\(_3\)-C8b), 1.60–1.32 (6H, m, CH\(_2\)-C5a, CH\(_2\)-C5b, OHa, OHb), 1.26 (6H, t, \(J = 7.1 \text{ Hz, CH}_3-C13a, CH_3-C13b\)), 1.21 (6H, d, \(J = 6.1 \text{ Hz, CH}_3-C7a, CH_3-C7b\); \(^{13}C \text{ NMR (126 MHz, CDCl}_3\)} \delta 168.2 (C-C11a, C-C11b), 161.5 (CH-C9a, CH-C9b), 142.9 (C-C2a or C-C2b), 142.8 (C-C2a or C-C2b), 114.8 (CH\(_2\)-C1a, CH\(_2\)-C1b), 98.3 (CH-C10a or CH-C10b), 98.2 (CH-C10a or CH-C10b), 86.9 (CH-C3a or CH-C3b), 86.6 (CH-C3a or CH-C3b), 67.9 (CH-C6a or CH-C6b), 67.7 (CH-C6a or CH-C6b), 59.9 (CH\(_2\)-C12a, CH\(_2\)-C12b), 35.1 (CH\(_2\)-C5a or CH\(_2\)-C5b), 34.9 (CH\(_2\)-C5a or CH\(_2\)-C5b), 29.7 (CH\(_2\)-C4a or CH\(_2\)-C4b),
29.4 (CH$_2$-C4a or CH$_2$-C4b), 23.9 (CH$_3$-C7a or CH$_3$-C7b), 23.8 (CH$_3$-C7a or CH$_3$-C7b), 17.1 (CH$_3$-C8a, CH$_3$-C8b), 14.5 (CH$_3$-C13a, CH$_3$-C13b); HRMS (Cl+, Me$_3$CH) for C$_{13}$H$_{23}$O$_4$ [M+H]$^+$ calcd. 243.1596, found 243.1594, Δ -1.0 ppm; LRMS (Cl+, Me$_3$CH) m/z (intensity); 243.2 (100%), 117.1 (68%).

Ethyl (E)-3-{{(3R)-2-methyl-6-oxohept-1-en-3-yl}oxy}-prop-2-enoate (277)58

![Chemical Structure](image)

To a stirred solution of oxalyl chloride (4.60 mL, 54.4 mmol) in anhydrous CH$_2$Cl$_2$ (120 mL) at -78 °C was added anhydrous DMSO (7.00 mL, 98.5 mmol) in anhydrous CH$_2$Cl$_2$ (34 mL) over 10 min. The resulting mixture was stirred for 30 min at -78 °C and a solution of the alcohol 282 (6.50 g, 26.8 mmol) in anhydrous CH$_2$Cl$_2$ (75 mL) was added over 25 min. The solution was stirred at -78 °C for 2 h and distilled triethylamine (20.0 mL, 143 mmol) was added. The mixture was allowed to warm to room temperature, stirred for an additional 1.5 h and diluted with CH$_2$Cl$_2$ (100 mL) and water (100 mL). The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 75 mL). The organic extracts were combined, washed with brine (200 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 8:1 to 5:1) delivered the ketone 277 (5.78 g, 89%) as a colourless oil.

R$_f$ = 0.61; (petroleum ether-ethyl acetate, 2:1); $[\alpha]_D^{24}$ -1.5 (c = 1.03, CHCl$_3$);

ν_{max} (neat) 2982, 1704, 1639, 1621, 1368, 1281, 1197, 1122, 1046, 950, 909, 831 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.44 (1H, d, $J = 12.4$ Hz, CH-C9), 5.25 (1H, d, $J = 12.4$ Hz, CH-C10), 4.99 (1H, quint, $J = 1.4$ Hz, CH$_2$-C1), 4.96 (1H, br s, CH$_2$-C1), 4.28 (1H, dd, $J = 7.8$, 5.4 Hz, CH-C3), 4.19–4.09 (2H, m, CH$_2$-C12), 2.56–2.44 (2H, m, CH$_2$-C5), 2.15 (3H, s, CH$_3$-C7), 2.03–1.87 (2H, m, CH$_2$-C4), 1.67 (3H, s, CH$_3$-C8), 1.26 (3H, t, $J = 7.1$ Hz, CH$_3$-C13); 13C NMR (126 MHz, CDCl$_3$) δ 207.7 (C-C6), 168.0 (C-C11), 161.3 (CH-C9), 142.5 (C-C2), 114.9 (CH$_2$-C1), 98.4 (CH-C10),
85.3 (CH-C3), 59.9 (CH$_2$-C12), 39.1 (CH$_2$-C5), 30.3 (CH$_3$-C7), 27.0 (CH$_2$-C4), 17.2 (CH$_3$-C8), 14.5 (CH$_3$-C13); HRMS (Cl+, Me$_3$CH) for C$_{13}$H$_{21}$O$_4$ [M+H]$^+$ calcd. 241.1440, found 241.1438, Δ -0.8 ppm; LRMS (Cl+, Me$_3$CH) m/z (intensity); 241.1 (87%), 125.1 (100%), 73.0 (85%).

(5E)-7-Hydroxy-6-methylhept-5-en-2-one (286)$_{162}^*$

![Structural formula of 286]

C$_8$H$_{14}$O$_2$

To a stirred solution of 6-methylhept-5-en-2-one (4.00 g, 31.5 mmol) in anhydrous CH$_2$Cl$_2$ (100 mL) was added selenium dioxide (0.70 g, 6.3 mmol) and tert-butyldihydroperoxide (8.50 mL of a 5.6 M solution in CH$_2$Cl$_2$, 47.3 mmol). The mixture was stirred at room temperature for 3 h. The solution was concentrated under vacuum and the residue was dissolved in EtOAc (50 mL). The solution was treated with a 1 M aqueous solution of NaOH (50 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 \times 50 mL). The organic extracts were combined and washed with brine (65 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 4:1 to 1:1) delivered the desired allylic alcohol 286 (2.42 g, 54%) as a pale yellow oil.

R$_f$ = 0.39; (petroleum ether-ethyl acetate, 1:1); ν_{max} (neat) 3429, 2915, 2859, 1708, 1358, 1160, 1068, 1009, 953, 863, 817, 788, 736 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.39–5.34 (1H, m, CH-C5), 3.99 (2H, d, J = 4.6 Hz, CH$_2$-C7), 2.49 (2H, t, J = 7.3 Hz, CH$_2$-C3), 2.32 (2H, q, J = 7.3 Hz, CH$_2$-C4), 2.14 (3H, s, CH$_3$-C1), 1.68 (3H, s, CH$_3$-C8), 1.30 (1H, t, J = 4.6 Hz, OH); 13C NMR (126 MHz, CDCl$_3$) δ 208.4 (C-C2), 136.1 (C-C6), 124.2 (CH$_2$-C5), 68.8 (CH$_2$-C7), 43.4 (CH$_2$-C3), 30.1 (CH$_3$-C1), 22.1 (CH$_2$-C4), 13.8 (CH$_3$-C8); HRMS (Cl+, Me$_3$CH) for C$_8$H$_{13}$O [M-OH]$^+$ calcd. 125.0966, found 125.0964, Δ -1.8 ppm; LRMS (Cl+, Me$_3$CH) m/z (intensity); 125.2 (100%), 124.1 (81%), 84.0 (86%).

2,5,5-Trimethyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxane (287)124

Method A: \(p \)-TsOH, neopentyl glycol, triethyl orthoformate

To a stirred solution of 6-methylhept-5-en-2-one (1.97 g, 15.6 mmol) were added \(p \)-toluenesulfonic acid monohydrate (0.61 g, 3.2 mmol), 2,2-dimethyl-1,3-propanediol (11.6 g, 111 mmol) and triethyl orthoformate (8.0 mL, 48 mmol). The mixture was stirred at 55 °C for 3 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO\(_3\) (8 mL). The mixture was diluted with Et\(_2\)O (25 mL). The phases were separated and the aqueous phase was extracted with Et\(_2\)O (3 \(\times \) 20 mL). The organic extracts were combined, washed with brine (30 mL), dried (MgSO\(_4\)), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 50:1) afforded the desired acetal \(287 \) (3.01 g, 91%) as a colourless oil.

Method B: \(p \)-TsOH, neopentyl glycol

To a stirred solution of 6-methylhept-5-en-2-one (5.05 g, 40.0 mmol) in toluene (100 mL) were added \(p \)-toluenesulfonic acid monohydrate (370 mg, 1.95 mmol) and 2,2-dimethyl-1,3-propanediol (4.56 g, 43.8 mmol). The mixture was heated at reflux until the theoretical amount of water was collected in the Dean-Stark apparatus (2.5 h). The solution was cooled to room temperature and washed with 1 \(\text{m} \) aqueous solution of NaOH (50 mL) and water (4 \(\times \) 50 mL). The organic phase was dried (MgSO\(_4\)), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-diethyl ether, gradient elution from pure to 5:1) delivered the desired acetal \(287 \) (1.46 g, 17%) as a colourless oil.

\[R_f = 0.51; \] (petroleum ether-ethyl acetate, 8:1); \(\nu_{\text{max}} \) (neat) 2954, 2858, 1371, 1249, 1210, 1186, 1125, 1084, 1043, 1023, 949, 906, 857, 791 cm\(^{-1}\); \(^{1}\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta 5.15-5.10 \) (1H, m, CH-12), 3.52 (2H, d, \(J = 11.3 \) Hz, CH\(_2\)-C4, CH\(_2\)-C6), 3.46 (2H, d, \(J = 11.3 \) Hz, CH\(_2\)-C4, CH\(_2\)-C6), 2.12–2.05 (2H, m, CH\(_2\)-C11),
1.73−1.69 (2H, m, CH$_2$-C10), 1.68 (3H, s, CH$_3$-C14 or CH$_3$-C15), 1.62 (3H, s, CH$_3$-C14 or CH$_3$-C15), 1.37 (3H, s, CH$_3$-C9), 0.98 (3H, s, CH$_3$-C7 or CH$_3$-C8), 0.92 (3H, s, CH$_3$-C7 or CH$_3$-C8); 13C NMR (126 MHz, CDCl$_3$) δ 131.8 (C-C13), 124.5 (CH-C12), 99.1 (C-C2), 70.6 (CH$_2$-C4, CH$_2$-C6), 37.5 (CH$_2$-C10), 30.2 (C-C5), 25.9 (CH$_3$-C14 or CH$_3$-C15), 23.0 (CH$_3$-C7 or CH$_3$-C8), 22.9 (CH$_3$-C7 or CH$_3$-C8), 22.4 (CH$_2$-C11), 21.2 (CH$_3$-C9), 17.9 (CH$_3$-C14 or CH$_3$-C15); HRMS (Cl+, Me$_3$CH) for C$_{10}$H$_{25}$O$_2$ [M+H]$^+$ calcd. 213.1855, found 213.1850, Δ −2.4 ppm; LRMS (Cl+, Me$_3$CH) m/z (intensity); 213.2 (100%), 212.2 (17%), 129.1 (19%); Anal. calcd. for C$_{13}$H$_{24}$O$_2$: C, 73.54%; H, 11.39%; found: C, 73.39%; H, 11.56%.

(2E)-2-Methyl-5-(2,5,5-trimethyl-1,3-dioxan-2-yl)pent-2-en-1-ol (288)124

To a stirred solution of acetal 287 (1.20 g, 5.65 mmol) in anhydrous CH$_2$Cl$_2$ (2.0 mL) were added salicylic acid (84 mg, 0.61 mmol), selenium dioxide (14 mg, 0.13 mmol) and tert-butyl hydroperoxide (3.3 mL of a 5.92 M solution in decane, 19 mmol). The mixture was stirred at room temperature for 24 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO$_3$ (25 mL). The solution was diluted with CH$_2$Cl$_2$ (25 mL) and the aqueous phase was extracted with Et$_2$O (3 × 25 mL). The organic extracts were combined and washed with brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to afford a mixture of the alcohol, aldehyde and starting material (12:1:11). The crude mixture was used in the next step without further purification.

To a stirred solution of the above crude mixture in EtOH (15 mL) at 0 °C was added sodium borohydride (0.21 g, 5.7 mmol). The mixture was stirred at room temperature overnight. The reaction was quenched by the addition of water and diluted with EtOAc (30 mL). The mixture was acidified to pH 6 with 1 M aqueous solution of HCl and the aqueous phase was separated and extracted with EtOAc (3 × 25 mL). The organic extracts were combined and washed with brine (30
mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 10:1 to 3:1) afforded the desired alcohol 288 (0.48 g, 38% over two steps) as a colourless oil.

$R_f = 0.40$; (petroleum ether-ethyl acetate, 7:4); ν_{max} (neat) 3427, 2952, 2865, 1373, 1249, 1210, 1125, 1084, 1017, 950, 907, 860, 737 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.45–5.40 (1H, m, CH$_2$-C3), 4.00 (2H, br s, CH$_2$-C1), 3.55 (2H, d, $J = 11.4$, CH$_2$-C11, CH$_2$-C13), 3.45 (2H, d, $J = 11.4$ Hz, CH$_2$-C11, CH$_2$-C13), 2.20–2.14 (2H, m, CH$_2$-C4), 1.76–1.72 (2H, m, CH$_2$-C5), 1.69 (3H, s, CH$_3$-C8), 1.38 (3H, s, CH$_3$-C7), 1.30 (1H, br s, OH), 1.01 (3H, s, CH$_3$-C14 or CH$_3$-C15), 0.91 (3H, s, CH$_3$-C14 or CH$_3$-C15); 13C NMR (126 MHz, CDCl$_3$) δ 135.1 (C-2), 126.2 (CH-C3), 98.9 (C-C6), 70.5 (CH$_2$-C11, CH$_2$-C13), 69.1 (CH$_2$-C1), 37.5 (CH$_2$-C5), 30.1 (C-C12), 22.9 (CH$_3$-C14 or CH$_3$-C15), 22.7 (CH$_3$-C14 or CH$_3$-C15), 21.9 (CH$_2$-C4), 20.8 (CH$_3$-C7), 13.8 (CH$_3$-C8); HRMS (ESI) for C$_{13}$H$_{24}$NaO$_3$ [M+Na]$^+$ calcd. 251.1618, found 251.1614, Δ –1.3 ppm; Anal. calcd. for C$_{13}$H$_{24}$O$_2$: C, 68.38%; H, 10.59%; found: C, 67.51%; H, 10.80%.

(2R,3R)-2-Methyl-3-[2-(2,5,5-trimethyl-1,3-dioxan-2-yl)ethyl]oxiran-2-yl]methanol (289)124

To a stirred suspension of 4 Å powdered molecular sieves (0.10 g) in anhydrous CH$_2$Cl$_2$ (1.5 mL) at –25 °C were successively added freshly distilled titanium tetraisopropoxide (15 µL, 51 µmol), freshly distilled (–)-diethyl tartrate (10 µL, 58 µmol) and tert-butyl hydroperoxide (200 µL of a 1.86 M solution in CH$_2$Cl$_2$, 0.37 mmol). The mixture was stirred at –25 °C for 30 min and a solution of allylic alcohol 288 (52 mg, 0.23 mmol) in anhydrous CH$_2$Cl$_2$ (0.5 mL) was added dropwise. The mixture was stirred at –20 °C for 18 h and the reaction was quenched by the addition of water (2 mL). The solution was allowed to warm to room temperature and was stirred for an additional 15 min. A saturated aqueous
solution of NaOH (30% wt) in brine (3 mL) was then added and the mixture was stirred at room temperature for a further 20 min. The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 4 mL). The organic extracts were combined and washed with brine (6 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 3:1 to 1:1) delivered the desired epoxy alcohol 289 (26.0 mg, 47%) as a colourless oil.

R$_f$ = 0.33; (petroleum ether-ethyl acetate, 1:1); [α]$_D^{30}$ +9.5 (c = 0.43, EtOH), (Lit.124 [α]$_D^{25}$ +9.0 (c = 2.00, EtOH)); ν$_{max}$ (neat) 3444, 2953, 2868, 1473, 1374, 1273, 1250, 1212, 1086, 1039, 950, 907, 863 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 3.66 (1H, dd, J = 12.1, 5.2 Hz, CH$_2$-C1), 3.60−3.53 (3H, m, CH$_2$-C1, CH$_2$-C11, CH$_2$-C13), 3.42 (2H, d, J = 11.1 Hz, CH$_2$-C11, CH$_2$-C13), 3.08−3.04 (1H, m, CH$_2$-C3), 1.94−1.85 (1H, m, CH$_2$-C5), 1.82 (1H, dd, J = 10.5, 5.2 Hz, OH), 1.79−1.67 (3H, m, CH$_2$-C4, CH$_2$-C5), 1.37 (3H, s, CH$_3$-C7), 1.30 (3H, s, CH$_3$-C8), 1.02 (3H, s, CH$_3$-C14 or CH$_3$-C15), 0.87 (3H, s CH$_3$-C14 or CH$_3$-C15); 13C NMR (126 MHz, CDCl$_3$) δ 98.6 (C-C6), 70.5 (CH$_2$-C11, CH$_2$-C13), 65.7 (CH$_2$-C1), 61.1 (C-C2), 60.3 (CH-C3), 35.2 (CH$_2$-C5), 30.1 (C-C12), 23.0 (CH$_3$-C14 or CH$_3$-C15), 22.6 (CH$_2$-C4, CH$_3$-C14 or CH$_3$-C15), 20.3 (CH$_3$-C7), 14.3 (CH$_3$-C8); HRMS (Cl+, Me$_3$CH) for C$_{13}$H$_{25}$O$_4$ [M+H]$^+$ calcd. 245.1753, found 245.1758, Δ +2.0 ppm; LRMS (Cl+, Me$_3$CH) m/z (intensity); 245.0 (70%), 141.0 (100%).

tert-Butyldimethyl[(6-methylhept-5-en-2-yl)oxy]silane (290)

![Structure of tert-Butyldimethyl[(6-methylhept-5-en-2-yl)oxy]silane (290)](image)

C$_{14}$H$_{30}$OSi

To a stirred solution of 6-methyl-5-hepten-2-ol (4.00 g, 31.2 mmol) in DMF (10 mL) were added imidazole (2.75 g, 40.4 mmol) followed by tert-butyldimethylsilyl chloride (11.7 g, 77.6 mmol). The mixture was stirred at room temperature for 36 h and the reaction was quenched by the addition of water.

(50 mL). The phases were separated and the aqueous phase was extracted with
\(\text{Et}_2\text{O} \) (2 × 50 mL). The organic extracts were combined, washed with water (4 × 25 mL) and brine (50 mL), dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification of the residue by flash column chromatography on silica gel (petroleum ether-diethyl ether, 40:1) delivered the silyl ether \(290 \) (7.07 g, 93%) as a colourless oil.

\(R_f = 0.26; \) (petroleum ether); \(\nu_{\text{max}} \) (neat) 2957, 2928, 2856, 1463, 1376, 1254, 1135, 1078, 1036, 1004, 939, 901, 888, 832, 800, 771, 710, 663 cm\(^{-1}\); \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 5.14−5.09 (1H, m, CH−C\(_5\)), 3.78 (1H, app sext, \(J = 6.0 \) Hz, CH−C\(_2\)), 2.10−2.01 (1H, m, CH\(_2\)-C\(_4\)), 1.98−1.89 (1H, m, CH\(_2\)-C\(_4\)), 1.68 (3H, s, CH\(_3\)-C\(_7\) or CH\(_3\)-C\(_8\)), 1.60 (3H, s, CH\(_3\)-C\(_7\) or CH\(_3\)-C\(_8\)), 1.50−1.35 (2H, m, CH\(_2\)-C\(_3\)), 1.12 (3H, d, \(J = 6.0 \) Hz, CH\(_3\)-C\(_1\)), 0.89 (9H, s, CH\(_3\)-tBu), 0.05 (6H, s, Si-CH\(_3\)); \(^{13}\text{C NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \) 131.5 (C−C\(_6\)), 124.7 (CH−C\(_5\)), 68.5 (CH−C\(_2\)), 40.0 (CH\(_2\)-C\(_3\)), 26.1 (CH\(_3\)-tBu), 25.8 (CH\(_3\)-C\(_7\) or CH\(_3\)-C\(_8\)), 24.6 (CH\(_2\)-C\(_4\)), 23.9 (CH\(_3\)-C\(_1\)), 18.3 (C-tBu), 17.8 (CH\(_3\)-C\(_7\) or CH\(_3\)-C\(_8\)), −4.2 (Si-CH\(_3\)), −4.6 (Si-CH\(_3\)); HRMS (Cl+, Me\(_3\)CH) for C\(_{14}\)H\(_{31}\)O\(_2\)Si [M+H]+ calcd. 243.2144, found 243.2148, \(\Delta +1.6 \) ppm; LRMS (Cl+, Me\(_3\)CH) \(m/z \) (intensity); 243.2 (100%), 185.2 (30%), 111.2 (27%).

\((2E)-6-[(\text{tert-butyldimethylsilyl}oxy)]-2\text{-methylhept}-2\text{-en}-1\text{-ol} \ (291)\)

To a stirred solution of salicylic acid (278 mg, 2.01 mmol) in anhydrous CH\(_2\)Cl\(_2\) (8.0 mL) were added selenium dioxide (45 mg, 0.41 mmol) and \(\text{tert-butyl} \) hydroperoxide (13.5 mL of a 5.38 M solution in decane, 72.6 mmol). A solution of the silyl ether \(290 \) (4.85 g, 20.0 mmol) in anhydrous CH\(_2\)Cl\(_2\) (8.0 mL) was added. The mixture was stirred at room temperature for 24 h. Selenium dioxide (49 mg, 0.44 mmol) and \(\text{tert-butyl} \) hydroperoxide (13.0 mL of a 5.38 M solution in decane, 69.9 mmol) were added and the mixture was stirred for an additional 24 h. The reaction was quenched by the addition of a saturated aqueous solution of NaHCO\(_3\) (30 mL). The phases were separated and the aqueous phase was extracted with Et\(_2\)O (3 × 10 mL). The organic extracts were combined, dried
(MgSO$_4$), filtered and concentrated *in vacuo* to afford a mixture of the alcohol and the corresponding aldehyde (4.9:1). The crude mixture was used in the next step without further purification.

To a stirred solution of the above mixture in EtOH (20 mL) at 0 °C was added sodium borohydride (0.78 g, 21 mmol). The mixture was stirred at 0 °C for 1 h. Sodium borohydride (0.76 g, 20 mmol) was added and the mixture was stirred at room temperature for an additional 24 h. The reaction was quenched by the addition of a 1 M aqueous solution of HCl (to pH 5) and diluted with Et$_2$O (50 mL). The phases were separated and the aqueous phase was extracted with Et$_2$O (3 × 30 mL). The organic extracts were combined, washed with water (30 mL) and brine (50 mL), dried (MgSO$_4$), filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 40:1 to pure ethyl acetate) delivered the alcohol **291** (2.84 g, 55% over two steps) and the diol **S1** (0.44 g, 8% over two steps) as colourless oils.

$R_f = 0.51$; (petroleum ether-ethyl acetate, 3:1); ν_{max} (neat) 3346, 2956, 2929, 2856, 1472, 1373, 1254, 1135, 1074, 1004, 938, 902, 889, 833, 771, 711, 662 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.44−5.39 (1H, m, CH$_2$-C$_3$), 4.00 (2H, s, CH$_2$-C$_1$), 3.80 (1H, app sext, $J = 6.2$ Hz, CH$_2$-C$_6$), 2.17−2.08 (1H, m, CH$_2$-C$_4$), 2.04−1.96 (1H, m, CH$_2$-C$_4$), 1.67 (3H, s, CH$_3$-C$_8$), 1.53−1.38 (2H, m, CH$_2$-C$_5$), 1.28 (1H, br s, OH), 1.13 (3H, d, $J = 6.2$ Hz, CH$_3$-C$_7$), 0.89 (9H, s, CH$_3$-tBu), 0.05 (6H, s, Si-CH$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 134.8 (C-C$_2$), 126.5 (CH-C$_3$), 69.2 (CH$_2$-C$_1$), 68.4 (CH-C$_6$), 39.6 (CH$_2$-C$_5$), 26.0 (CH$_3$-tBu), 24.1 (CH$_2$-C$_4$), 23.9 (CH$_3$-C$_7$), 18.3 (C-tBu), 13.8 (CH$_3$-C$_8$), −4.2 (Si-CH$_3$), −4.6 (Si-CH$_3$); HRMS (ESI, MeOH:H$_2$O) for C$_{14}$H$_{30}$NaO$_2$Si [M+Na]$^+$ calcd. 281.1907, found 281.1898, Δ −3.5 ppm.

2-[4-[[tert-Butyldimethylsilyl]oxy]pentylidene]propane -1,3-diol (S1)

$R_f = 0.47$; (petroleum ether-ethyl acetate, 1:2); ν_{max} (neat) 3341, 2955, 2928, 2855, 1472, 1374, 1253, 1133, 1088, 1069 1003, 938, 901, 832, 772, 711, 656
cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.56 (1H, t, J = 7.4 Hz, CH-C4), 4.32 (2H, s, CH₂-C1 or CH₂-C3), 4.21 (2H, s, CH₂-C1 or CH₂-C3), 3.81 (1H, app sext, J = 6.2 Hz, CH-C7), 2.23–2.13 (1H, m, CH₂-C5), 2.13–2.04 (1H, m, CH₂-C5), 1.54–1.41 (3H, m, CH₂-C6, OH), 1.13 (3H, d, J = 6.2 Hz, CH₃-C8), 0.88 (9H, s, CH₃-tBu), 0.05 (3H, s, Si-CH₃), 0.04 (3H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 137.1 (C-2), 131.3 (CH-C4), 68.3 (CH-C7), 67.8 (CH₂-C1 or CH₂-C3), 60.2 (CH₃-C1 or CH₃-C3), 39.6 (CH₂-C6), 26.0 (CH₃-tBu), 23.9 (CH₃-C8), 23.8 (CH₂-C5), 18.3 (C-tBu), −4.2 (Si-CH₃), −4.6 (Si-CH₃); HRMS (Cl⁺, Me₃CH) for C₁₄H₃₁O₃Si [M+H]+ calcd. 275.2042, found 275.2045, Δ +1.0 ppm; LRMS (Cl⁺, Me₃CH) m/z (intensity); 275.3 (47%), 257.3 (73%), 125.2 (76%), 107.1 (100%).

(2R,3R)-3-[3-[[tert-Butyldimethylsilyl]oxy]butyl]-2-methyloxiran-2-yl)methanol (292)

To a stirred suspension of 4 Å powdered molecular sieves (0.56 g) in anhydrous CH₂Cl₂ (40 mL) at −25 °C were added freshly distilled titanium tetraisopropoxide (60 µL, 0.2 mmol), freshly distilled (−)-diethyl tartrate (50 µL, 0.3 mmol) and tert-butyl hydroperoxide (1.0 mL of a 5.92 M solution in decane, 5.9 mmol). The mixture was stirred at −25 °C for 30 min and a solution of the allylic alcohol 291 (1.00 g, 3.87 mmol) in anhydrous CH₂Cl₂ (8.0 mL) was added dropwise over 10 min. The mixture was stirred for an additional hour at −20 °C and the reaction was quenched by the addition of water (10 mL). The mixture was allowed to warm to room temperature and was stirred for a further 15 min. A saturated aqueous solution of NaOH (30% wt) in brine (20 ml) was added and the solution was stirred for 45 min. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The organic extracts were combined, washed with brine (30 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 10:1 to 5:1) afforded
the desired epoxy alcohol 292 as a mixture of diastereomers (1:1, 0.94 g, 89%) as a colourless oil.

The enantiomeric excess (93%) was determined by normal phase chiral HPLC analysis of the corresponding methyl ketone 277.

\[R_f = 0.40; \text{ (petroleum ether-ethyl acetate, 2:1)}; [\alpha]_D^{23} +10.9 \text{ (c = 0.97, CHCl}_3); \]

\[\nu_{\text{max}} \text{ (neat) } 3435, 2956, 2927, 1742, 1374, 1253, 1147, 1124, 1038, 939, 902, 869, 832, 804, 772, 709, 678, 663 \text{ cm}^{-1}; \]

1H NMR (500 MHz, CDCl3) \[\delta \] 3.91–3.80 (2H, m, CH-C6a, CH-C6b), 3.67 (2H, ddd, \[J \] = 12.1, 4.5, 0.8 Hz, CH2-C1a, CH2-C1b), 1.69 (2H, dd, \[J \] = 8.6, 4.5 Hz, OHa, OHb), 1.67–1.47 (8H, m, CH2-C4a, CH2-C4b, CH2-C5a, CH2-C5b), 1.28 (6H, s, CH3-C8a, CH3-C8b), 0.89 (18H, s, CH3-tBua, CH3-tBub), 0.05 (6H, s, Si-CH3a, Si-CH3b), 0.04 (6H, s, Si-CH3a, Si-CH3b); 13C NMR (126 MHz, CDCl3) \[\delta \] 68.4 (CH-C6a or CH-C6b), 68.1 (CH-C6a or CH-C6b), 65.6 (CH2-C1a, CH2-C1b), 61.0 (C-C2a, C-C2b), 60.3 (CH-C3a or CH-C3b), 60.2 (CH-C3a or CH-C3b), 36.4 (CH2-C4a or CH2-C4b or CH2-C5a or CH2-C5b), 36.2 (CH2-C4a or CH2-C4b or CH2-C5a or CH2-C5b), 26.0 (CH3-tBua, CH3-tBub), 24.9 (CH2-C4a or CH2-C4b or CH2-C5a or CH2-C5b), 24.4 (CH2-C4a or CH2-C4b or CH2-C5a or CH2-C5b), 24.1 (CH3-C7a or CH3-C7b), 23.7 (CH3-C7a or CH3-C7b), 18.3 (C-tBua or C-tBub), 18.2 (C-tBua or C-tBub), 14.3 (CH3-C8a, CH3-C8b), –4.2 (Si-CH3a, Si-CH3b), –4.6 (Si-CH3a, Si-CH3b); HRMS (ESI) for C14H30NaO3Si [M+Na]+ calcd. 297.1856, found 297.1850, \(\Delta \) –2.3 ppm.

(3R)-6-[(tert-Butyldimethylsilyl)oxy]-2-methylhept-1-en-3-ol (293)

To a stirred solution of epoxy alcohol 292 (0.70 g, 2.6 mmol) in anhydrous CH2Cl2 (12 mL) at \(-15\) °C were added triethylamine (0.55 mL, 4.0 mmol) and methanesulfonyl chloride (0.25 mL, 3.2 mmol) dropwise. The mixture was stirred at \(-15\) °C for 30 min and the reaction was quenched by the addition of water (10 mL). The aqueous phase was separated and extracted with CH2Cl2 (3 ×
10 mL). The organic extracts were combined, washed with brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude mesylate was used immediately in the next step without further purification.

To a stirred solution of the above crude mesylate in butan-2-one (15 mL) was added sodium iodide (1.96 g, 13.1 mmol). The solution was stirred at 80 °C for 30 min during which time the solution turned brown. Zinc powder (0.29 g, 4.5 mmol) was added and the mixture was stirred for an additional 20 min. The grey solution was cooled to room temperature and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (20 mL). The mixture was diluted with EtOAc (20 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 10 mL). The organic extracts were combined, washed with brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 20:1) afforded the allylic alcohol 293 as a mixture of diastereomers (1:1, 0.52 g, 79%) as a colourless oil.

Rf = 0.41; (petroleum ether-ethyl acetate, 4:1); [α]D₂³⁺7.2 (c = 0.98, CHCl₃); νmax (neat) 3387, 2955, 2929, 2856, 1463, 1373, 1254, 1137, 1050, 1004, 896, 831, 806, 771, 713, 663 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.94 (2H, br s, CH₂-C1a, CH₂-C1b), 4.85–4.82 (2H, m, CH₂-C1a, CH₂-C1b), 4.08–4.00 (2H, m, CH-C3a, CH-C3b), 3.89–3.81 (2H, m, CH-C6a, CH-C6b), 3.13–3.11 (6H, m, CH₃-C8a, CH₃-C8b), 1.73–1.71 (6H, m, CH₃-C8a, CH₃-C8b), 1.14 (6H, d, J = 6.1, 4.1 Hz, CH₃-C7a, CH₃-C7b), 0.89 (9H, s, CH₃-tBuα), 0.89 (9H, s, CH₃-tBuβ), 0.06 (6H, s, Si-CH₂a or Si-CH₂b), 0.05 (6H, br d, J = 1.2 Hz, Si-CH₃a or Si-CH₃b); ¹³C NMR (126 MHz, CDCl₃) δ 147.8 (C-C2a or C-C2b), 147.7 (C-C2a or C-C2b), 111.1 (CH₂-C1a or CH₂-C1b), 111.0 (CH₂-C1a or CH₂-C1b), 76.2 (CH-C3a or CH-C3b), 75.9 (CH-C3a or CH-C3b), 68.7 (CH-C6a or CH-C6b), 68.6 (CH-C6a or CH-C6b), 35.9 (CH₂-C5a or CH₂-C5b), 35.2 (CH₂-C5a or CH₂-C5b), 31.3 (CH₂-C4a or CH₂-C4b), 30.8 (CH₂-C4a or CH₂-C4b), 26.1 (CH₃-tBuα, CH₃-tBuβ), 23.8 (CH₃-C7a or CH₃-C7b), 23.7 (CH₃-C7a or CH₃-C7b), 18.3 (C-tBuα, C-tBuβ), 17.8 (CH₃-C8a, CH₃-C8b), 17.5 (Si-CH₃a, Si-CH₃b), −4.2 (Si-CH₃a, Si-CH₃b), −4.5 (Si-CH₃a or Si-CH₃b), −4.6 (Si-CH₃a or Si-CH₃b); HRMS (ESI) for C₁₄H₃₉NaO₂Si [M+Na]+ calcd. 281.1907, found 281.1905, Δ −0.6 ppm.
Ethyl (E)-3-{{(3R)-6-hydroxy-2-methylhept-1-en-3-yl}oxy}prop-2-enoate (282)

To a stirred solution of allylic alcohol 293 (0.52 g, 2.0 mmol) in anhydrous CH$_2$Cl$_2$ (10 mL) were added ethyl propiolate (0.40 mL, 4.0 mmol) and N-methylmorpholine (0.45 mL, 4.1 mmol). The mixture was stirred at room temperature overnight and concentrated in vacuo. The residue was filtered through a pad of silica gel (petroleum ether-ethyl acetate, 50:1). The solvent was removed in vacuo and the crude product was used in the next step without further purification.

To a stirred solution of the crude vinylogous carbonate in MeOH (12 mL) was added camphorsulfonic acid (64.1 mg, 0.28 mmol). The mixture was stirred at room temperature overnight and the reaction was quenched by the addition of NaHCO$_3$ (0.24 g). The solid was filtered off and the filtrate was concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from petroleum ether to petroleum ether-ethyl acetate 5:3) afforded the alcohol 282 (0.40 g, 83% over two steps) as a colourless oil.

The recorded data were in accordance with those previously reported.

Ethyl (E)-3-{{(3R)-2-methyl-6-oxohept-1-en-3-yl}oxy}-prop-2-enoate (277)

To a suspension of activated 4 Å powdered molecular sieves (1.02 g) in anhydrous CH$_2$Cl$_2$ (10 mL) and alcohol 282 (0.20 g, 0.83 mmol) was added pyridinium dichromate (0.77 g, 2.1 mmol). The mixture was stirred at room
temperature overnight. The solution was filtered through silica gel (petroleum ether-ethyl acetate 5:1) to afford the desired methyl ketone 277 as a colourless oil (0.18 g, 93%).

The data were in accordance with those reported previously.

(2S)-5-Oxooxolane-2-carboxylic acid (299)\(^{129,133}\)

![Chemical structure](image)

\[\text{C}_5\text{H}_6\text{O}_4\]

To a stirred solution of L-glutamic acid (10 g, 68 mmol) in water (135 mL) was added concentrated HCl (10 mL, 0.10 mol). The solution was cooled to 0 °C and a solution of sodium nitrite (6.20 g, 89.6 mmol) in water (35 mL) was added dropwise over 10 min. The mixture was stirred for 30 min at 0 °C and then allowed to warm to room temperature. The solution was stirred overnight and volatiles were removed in vacuo. The residue was dissolved in warm EtOAc, dried (MgSO\(_4\)), filtered and concentrated in vacuo. The product was purified by crystallisation in petroleum ether-ethyl acetate to afford the desired lactone 299 (8.80 g, 100%) as a colourless solid.

\[R_f = 0.35\]; (ethyl acetate-methanol, 1:1); \([\alpha]_D^{28} +15.4\ (c = 1.13, \text{MeOH})\); \([\alpha]_D^{20} +14.6\ (c = 5.8, \text{MeOH})\); \(\nu_{\text{max}}\ (\text{film}) 3533, 1756, 1417, 1178, 1150, 1066, 899\ \text{cm}^{-1}\); \(^1\text{H} NMR (500 MHz, CDCl}_3) \delta 5.01-4.97 (1H, m, CH-C2), 2.68-2.51 (3H, m, CH_2-C3, CH_2-C4), 2.44-2.37 (1H, m, CH_2-C3); \(^{13}\text{C} NMR (126 MHz, DMSO-d_6) \delta 176.4 (C-C5 or C-C6), 171.2 (C-C5 or C-C6), 75.2 (CH-C2), 26.5 (CH_2-C4), 25.1 (CH_2-C3); HRMS (EI) for C\(_5\)H\(_6\)O\(_4\) [M]+ calcd. 130.0266, found 130.0266, \(\Delta -0.2\ \text{ppm}\); LRMS (EI) \(m/z\ (\text{intensity})\): 130.0 (11%), 85.0 (100%), 57.0 (50%);
(2S)-5-Oxooxolane-2-carbonyl chloride (300)129,133

To a stirred solution of carboxylic acid 299 (2.00 g, 15.4 mmol) in anhydrous toluene (4.0 mL) was added oxalyl chloride (2.50 mL, 30.8 mmol) dropwise at 60 °C. The mixture was stirred at 60 °C for 4 h and volatiles were removed under vacuum. The crude product was purified by distillation (bp = 96–102 °C at 3 mbar) to afford the unstable acyl chloride 300 (1.53 g, 67%) as a colourless oil.

ν_{max} (neat) 1780, 1138, 1057, 1043, 967, 907, 822, 771, 672 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.13 (1H, dd, $J = 8.6, 4.4$ Hz, CH$_2$-C2), 2.74–2.66 (1H, m, CH$_2$-C4), 2.65–2.54 (2H, m, CH$_2$-C3, CH$_2$-C4), 2.52–2.46 (1H, m, CH$_2$-C3); 13C NMR (126 MHz, CDCl$_3$) δ 174.3 (C$_{-}$C5 or C$_{-}$C6), 171.9 (C-C5 or C-C6), 81.3 (CH-C2), 26.2 (CH$_2$-C3), 25.5 (CH$_2$-C4).

(5S)-5-Acetyloxolan-2-one (301)133

To a stirred solution of acyl chloride 300 (1.44 g, 9.73 mmol) in anhydrous THF (33 mL) at −78 °C was added methylmagnesium bromide (8.50 mL of a 1.4 M in THF/toluene 1:3, 11.9 mmol) dropwise. The mixture was stirred at −78 °C for 3.5 h and the reaction was quenched by the addition of a saturated aqueous solution of NH$_4$Cl (15 mL). The solution was allowed to warm to room temperature and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 15 mL). The organic extracts were combined, dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 3:2) delivered methyl ketone 301 (0.69 g, 56 %) as a colourless oil.

$R_f = 0.48$; (petroleum ether-ethyl acetate, 1:4); $[\alpha]_D^{26} +18.8$ (c = 1.14, MeOH); {Lit.$^{133} [\alpha]_D^{20} +12.9$ (c = 0.35, MeOH)}; ν_{max} (neat) 1774, 1722, 1419, 1360, 1139,
Chapter 3: Experimental Section

1063, 1011, 963, 874, 815, 688, 668 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.79 (1H, dd, \(J = 8.1, 6.7\) Hz, CH-C5), 2.56–2.46 (3H, m, CH\(_2\)-C3, CH\(_2\)-C4), 2.29 (3H, s, CH\(_3\)-C7), 2.28–2.23 (1H, m, CH\(_2\)-C4); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 205.4 (C-C6), 175.7 (C-C2), 82.2 (CH\(_2\)-C3), 26.3 (CH\(_3\)-C7), 24.6 (CH\(_2\)-C4); HRMS (EI) for C\(_6\)H\(_8\)O\(_3\) \([M]^+\) calcd. 128.0473, found 128.0471, \(\Delta -1.6\) ppm; LRMS (EI) \(m/z\) (intensity); 128.0 (29%), 85.0 (100%), 83.9 (83%), 56.9 (33%), 42.9 (96%).

(5S)-5-(Prop-1-en-2-yl)oxolan-2-one (302)

\[
\text{C}_7\text{H}_{10}\text{O}_2
\]

To a stirred solution of methyltriphenylphosphonium bromide (2.42 g, 6.77 mmol) in anhydrous THF (7 mL) at 0 ºC was added potassium tert-butoxide (0.75 g, 6.7 mmol). The yellow suspension was stirred at 0 ºC for 1.2 h and methyl ketone 301 (0.68 g, 5.3 mmol) in anhydrous THF (4 mL) was added dropwise. The mixture was allowed to warm to room temperature and was stirred for 1 h. The reaction was quenched by the addition of water (10 mL) and was subsequently diluted with Et\(_2\)O (10 mL). The phases were separated and the aqueous phase was extracted with Et\(_2\)O (3 \times 10 mL). The organic extracts were combined, dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification of the residue by flash column chromatography on silica gel (solid load, petroleum ether-ethyl acetate, gradient elution from petroleum ether to petroleum ether–ethyl acetate 5:1) yielded the lactone 302 (0.28 g, 42%) as a colourless oil.

\([\alpha]_D^{26}\) +4.5 (c = 1.09, CHCl\(_3\)), \{Lit.\} \([\alpha]_D^{20}\) +6.3 (c = 1.30, CHCl\(_3\)); \(\nu_{\text{max}}\) (neat) 1766, 1453, 1326, 1177, 1141, 1047, 1005, 979, 901, 843, 820 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 5.06 (1H, d, \(J = 0.9\) Hz, CH\(_2\)-C8), 4.95 (1H, d, \(J = 0.9\) Hz, CH\(_2\)-C8), 4.88 (1H, br t, \(J = 7.4\) Hz, CH-C5), 2.57–2.52 (2H, m, CH\(_2\)-C3), 2.41–2.33 (1H, m, CH\(_2\)-C4), 2.09–2.00 (1H, m, CH\(_2\)-C4), 1.77 (3H, s, CH\(_3\)-C7); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 176.8 (C-C2), 142.4 (C-C6), 112.5 (CH\(_2\)-C8), 82.6 (CH\(_2\)-C5), 28.6 (CH\(_2\)-C3), 27.2 (CH\(_2\)-C4), 17.7 (CH\(_3\)-C7).
Ethyl (E)-3-[(3S)-2-methyl-6-oxohept-1-en-3-yl]oxy]prop-2-enolate (303)

To a stirred solution of lactone 302 (197 mg, 1.56 mmol) in anhydrous Et₂O (8 mL) at −78 ºC was added methyl lithium (1.2 mL of a 1.6 M solution in Et₂O, 1.7 mmol) dropwise. The mixture was stirred at −78 ºC for 2.5 h and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (5 mL). The aqueous phase was separated and extracted with Et₂O (3 × 10 mL). The organic extracts were combined, dried (MgSO₄), filtered and concentrated in vacuo to afford the crude alcohol which was used in the next step without further purification.

To a stirred solution of the above crude alcohol in anhydrous CH₂Cl₂ (13 mL) were added ethyl propiolate (0.35 mL, 3.4 mmol) and N-methylmorpholine (0.35 mL, 3.2 mmol). The mixture was stirred at room temperature for 15 h and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (10 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 5 mL). The combined organic extracts were washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from petroleum ether to petroleum ether–ethyl acetate 5:1) delivered the methyl ketone 303 (244 mg, 65%, 52% ee) as a colourless oil.

R_f = 0.51; (petroleum ether-ethyl acetate, 2:1); [α]_D²⁵ +1.45 (c = 1.19, CHCl₃);

ν_{max} (neat) 1704, 1638, 1621, 1368, 1323, 1281, 1199, 1123, 1045, 949, 909, 832 cm^{−1}; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (1H, d, J = 12.4 Hz, CH-C₉), 5.26 (1H, d, J = 12.4 Hz, CH-C₁₀), 4.99 (1H, quint, J = 1.4 Hz, CH₂-C₁), 4.96 (1H, br s, CH₂-C₁), 4.28 (1H, dd, J = 7.8, 5.5 Hz, CH-C₃), 4.18–4.12 (2H, m, CH₂-C₁₂), 2.52–2.47 (2H, m, CH₂-C₅), 2.14 (3H, s, CH₃-C₇), 2.03–1.89 (2H, m, CH₂-C₄), 1.68 (3H, s, CH₃-C₈), 1.26 (3H, t, J = 7.1 Hz, CH₃-C₁₃); ¹³C NMR (126 MHz, CDCl₃) δ 207.3 (C-C₆), 160.0 (C-C₁₁), 161.2 (CH-C₉), 142.7 (C-C₂), 114.7 (CH₂-C₁), 98.7 (CH-C₁₀), 85.4 (CH-C₃), 59.9 (CH₂-C₁₂), 39.1 (CH₂-C₅), 30.1 (CH₃-C₇), 27.3 (CH₂-C₄), 17.2
Ethyl 2-[(2R,6R)-3-hydroxy-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl] acetate (278 and 304)58,118

To a stirred solution of methyl ketone 277 (6.08 g, 25.3 mmol) and MeOH (4.20 mL, 104 mmol) in anhydrous THF (250 mL) was added a freshly prepared samarium diiodide solution (50 mL of a 0.2 M solution in THF, 0.10 mol) until the reaction mixture remained dark blue in colour. The mixture was stirred at room temperature for 2 h and the reaction was quenched by the addition of a saturated aqueous solution of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (400 mL). The solution was diluted with EtOAc (200 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (3 \times 100 mL) and the organic extracts were combined, washed with brine (300 mL), dried (MgSO\textsubscript{4}), filtered and concentrated \textit{in vacuo} to afford the product as a 1:12.4 mixture of diastereomers. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 6:1 to 3:2) delivered an inseparable mixture of the diastereomeric tetrahydropyranols 278 and 304 (5.47 g, 89%) as a colourless solids.

A sample of the alcohol 278 was obtained for characterisation purposes following separation of diastereomers in the next steps of the synthesis.

R\textsubscript{f} = 0.58; (petroleum ether-ethyl acetate, 3:2); \nu\textsubscript{max} (neat) 3288, 2945, 2875, 1735, 1429, 1373, 1288, 1184, 1128, 1072, 1033, 933, 902, 865, 843 cm-1; Major diastereomer: 1H NMR (500 MHz, CDCl\textsubscript{3}) \delta 4.93 (1H, br s, CH\textsubscript{2}-C6), 4.81 (1H, s, CH\textsubscript{2}-C6), 4.15 (2H, q, J = 7.2 Hz, CH\textsubscript{2}-C11), 3.79 (1H, br d, J = 11.5 Hz, CH-C4), 3.73 (1H, dd, J = 8.7, 4.2 Hz, CH-C8), 2.70 (1H, dd, J = 15.3, 4.2 Hz, CH\textsubscript{2}-C9), 2.42 (1H, dd, J = 15.3, 8.7 Hz, CH\textsubscript{2}-C9), 1.92 (1H, ddd, J = 12.3, 3.8, 2.6 Hz,
CH₂-C₂), 1.77–1.53 (4H, m, CH₂-C₂, CH₂-C₃, OH), 1.72 (3H, s, CH₃-C7), 1.25 (3H, t, J = 7.2 Hz, CH₃-C₁₂), 1.21 (3H, s, CH₃-Me); ¹³C NMR (126 MHz, CDCl₃) δ 172.6 (C-C₁₀), 145.2 (C-C₅), 110.7 (CH₂-C₆), 81.1 (CH-C₈), 81.0 (CH-C₄), 69.5 (C-C₁), 60.7 (CH₂-C₁₁), 40.4 (CH₂-C₂), 35.7 (CH₂-C₉), 29.1 (CH₂-C₃), 20.1 (CH₃-Me), 19.2 (CH₃-C₇), 14.4 (CH₃-C₁₂); Minor diasteromer: ¹H NMR (500 MHz, CDCl₃) δ 4.96 (1H, s, CH₂-C₆) 4.93 (1H, s, CH₂-C₆), 4.15 (2H, q, J = 7.2 Hz, CH₂-C₁₁), 4.12 (1H, m, CH-C₄), 3.98 (1H, dd, J = 9.8, 4.7 Hz, CH₂-C₈), 2.64 (1H, dd, J = 14.5, 9.8 Hz, CH₂-C₉), 2.58 (1H, dd, J = 14.5, 4.7 Hz, CH₂-C₉), 1.88–1.84 (1H, m, CH₂-C₂), 1.77–1.53 (4H, m, CH₂-C₂, CH₂-C₃, OH), 1.72 (3H, s, CH₃-C₇), 1.26 (3H, t, J = 7.2 Hz, CH₃-C₁₂), 1.15 (3H, s, CH₃-Me); ¹³C NMR (126 MHz, CDCl₃) δ 171.6 (C-C₁₀), 145.2 (C-C₅), 112.0 (CH₂-C₆), 77.7 (CH-C₈), 72.9 (CH-C₄), 69.4 (C-C₁), 60.9 (CH₂-C₁₁), 35.2 (CH₂-C₉), 33.5 (CH₂-C₂ or CH₂-C₃), 25.0 (CH₂-C₂ or CH₂-C₃), 22.9 (CH₃-Me), 19.6 (CH₃-C₇), 14.4 (CH₃-C₁₂); HRMS (ESI) for C₁₃H₂₂NaO₄ [M+Na]⁺ calcd. 265.1410, found 265.1408, Δ −1.0 ppm.

![Ethyl-2-[(2R,3S,6R)-3-(tert-butyldimethylsilyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetate](image1)

C₁₉H₃₆O₄Si

![Ethyl-2-[(2R,3R,6R)-3-(tert-butyldimethylsilyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetate](image2)

C₁₉H₃₆O₄Si

To a stirred solution of tetrahydropyranols 278 and 304 (5.47 g, 22.6 mmol) in anhydrous CH₂Cl₂ (225 mL) and freshly distilled 2,6-lutidine (5.5 mL, 47 mmol) at −78 °C was added tert-butyldimethylsilyl trifluoromethanesulphonate (16.0 mL, 69.7 mmol) dropwise. After 10 min, the mixture was allowed to warm to room temperature and was stirred overnight. The reaction was quenched by the addition of 1 M aqueous HCl (100 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 40 mL). The organic extracts were combined, washed with brine (100 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica
gel (petroleum ether-ethyl acetate, gradient elution from 60:1 to 10:1) delivered esters 305 (6.97 g, 87%) and 306 (0.43 g, 5%) as colourless oils.

Ethyl-2-[(2R,3S,6R)-3-(tert-butylidimethyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetate (305)

R_f = 0.51; (petroleum ether-ethyl acetate, 5:1); [α]_D^{24} +48.8 (c = 0.99, CHCl_3); ν_max (neat) 2952, 2929, 2858, 1740, 1654, 1472, 1375, 1297, 1251, 1189, 1151, 1130, 1075, 1047, 957, 899, 834, 773, 677 cm⁻¹; ¹H NMR (500 MHz, CDCl_3) δ 4.90 (1H, s, CH_2-C6), 4.78 (1H, s, CH_2-C6), 4.14 (2H, q, J = 7.1 Hz, CH_2-C11), 3.78 (1H, br d, J = 11.3 Hz, CH-C4), 3.72 (1H, dd, J = 10.4, 2.1 Hz, CH-C8), 2.69 (1H, dd, J = 15.3, 2.1 Hz, CH_2-C9), 2.31 (1H, dd, J = 15.3, 10.4 Hz, CH_2-C9), 1.91 (1H, ddd, J = 12.3, 4.9, 3.0 Hz, CH_2-C2), 1.79–1.69 (2H, m, CH_2-C2, CH_2-C3), 1.71 (3H, s, CH_3-C7), 1.57–1.48 (1H, m, CH_2-C3), 1.24 (3H, t, J = 7.1 Hz, CH_3-C12), 1.19 (3H, CH_3-Me), 0.85 (9H, s, CH_3-tBu), 0.10 (3H, s, Si-CH_3), 0.09 (3H, s, Si-CH_3); ¹³C NMR (126 MHz, CDCl_3) δ 172.6 (C-C10), 145.4 (C-C5), 110.4 (CH_2-C6), 81.6 (CH-C8), 80.7 (CH-C4), 71.8 (C-C1), 60.4 (CH_2-C11), 40.2 (CH_2-C2), 35.2 (CH_2-C9), 29.0 (CH_2-C9), 25.9 (CH_3-tBu), 20.9 (CH_3-Me), 19.3 (CH_3-C7), 18.1 (CH-tBu), 14.4 (CH_3-C12), −1.7 (Si-CH_3), −1.8 (Si-CH_3); HRMS (Cl+, Me_2CH) for C_{19}H_{37}O_3Si [M+H]^+ calcd. 357.2461, found 357.2460, Δ −0.2 ppm; LRMS (Cl+, Me_3CH) m/z (intensity): 357.2 (100%), 299.1 (24%), 225.1 (74%); Anal. calcd. for C_{19}H_{36}O_4Si: C, 64.00%; H, 10.18%; found: C, 63.98%; H, 10.22%.

Ethyl-2-[(2R,3R,6R)-3-(tert-butylidimethyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetate (306)

R_f = 0.41; (petroleum ether-ethyl acetate, 5:1); [α]_D^{23} −32.7 (c = 1.00, CHCl_3); ν_max (neat) 2954, 2929, 2856, 1738, 1472, 1375, 1302, 1251, 1188, 1142, 1125, 1084, 1056, 1031, 1004, 966, 897, 834, 772, 670 cm⁻¹; ¹H NMR (500 MHz, CDCl_3) δ 5.04 (1H, q, J = 1.4 Hz, CH_2-C6), 4.98 (1H, br s, CH_2-C6), 4.19–4.09 (3H, m, CH-C4, CH_2-C11), 3.77 (1H, dd, J = 10.4, 2.3 Hz, CH-C8), 2.67 (1H, dd, J = 14.6, 2.3 Hz, CH_2-C9), 2.33 (1H, dd, J = 14.6, 10.4 Hz, CH_2-C9), 2.02–1.96 (1H, m, CH_2-C2), 1.87–1.76 (2H, m, CH_2-C2, CH_2-C3), 1.74 (3H, s, CH_3-C7), 1.68–1.64 (1H, m, CH_2-C3), 1.26 (3H, t, J = 7.1 Hz, CH_3-C12), 1.20 (3H, s, CH_3-Me), 0.84 (9H, s,
Ethyl 2-[(2R,3S,6R)-3-hydroxy-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetate (278)

To a suspension of 4 Å powdered molecular sieves in anhydrous THF (8 mL) and silyl ether 305 (272 mg, 763 µmol) was added TBAF (4.0 mL of a 1.0 M solution in THF, 4.0 mmol). The mixture was stirred at room temperature overnight and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 10 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 10:1 to 10:3) afforded desired alcohol 278 (83.6 mg, 45%) as colourless solid.

R_f = 0.43; (petroleum ether-ethyl acetate, 5:3); m.p. 84.6-86.5°C; [α]_D^{25} +42.5 (c = 0.53, CHCl₃); ν_max (film) 3326, 2978, 2946, 2876, 1735, 1654, 1442, 1366, 1287, 1183, 1127, 1070, 1032, 1000, 967, 933, 903, 865, 843 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.93 (1H, s, CH₂-C₆), 4.81 (1H, s, CH₂-C₆), 4.15 (2H, q, J = 7.1 Hz, CH₂-C₁₁), 3.79 (1H, br d, J = 11.5 Hz, CH-C₄), 3.73 (1H, dd, J = 8.7, 4.2 Hz, CH-C₈), 2.69 (1H, dd, J = 15.3, 4.2 Hz, CH₂-C₉), 2.42 (1H, dd, J = 15.3, 8.7 Hz, CH₂-C₉), 1.92 (1H, ddd, J = 12.2, 3.8, 2.6 Hz, CH₂-C₂), 1.78-1.53 (4H, m, CH₂-C₂, CH₂-C₃, OH), 1.73 (3H, s, CH₃-C₇), 1.26 (3H, t, J = 7.1 Hz, CH₃-C₁₂), 1.21 (3H, s, CH₃-Me); ¹³C NMR (126 MHz, CDCl₃) δ 172.6 (C-C₁₀), 145.2 (C-C₅), 110.7 (C-C₇), 135.8 (C-C₁₃), 135.5 (C-C₉), 128.7 (CH₂-C₆), 126.4 (CH₂-C₉), 112.7 (C-C₁), 75.4 (CH-C₈), 72.4 (CH-C₄), 60.6 (CH₂-C₁₁), 36.8 (CH₂-C₃), 35.8 (CH₂-C₉), 25.9 (CH₃-tBu), 24.5 (CH₂-C₂), 21.7 (CH₃-Me), 20.2 (CH₃-C₇), 18.2 (C-tBu), 14.4 (CH₃-C₁₂), -1.8 (Si-CH₃), -1.9 (Si-CH₃); HRMS (CI+, Me₃CH) for C₁₉H₃₇O₄Si [M+H]+ calcd. 357.2461, found 357.2462, Δ +0.3 ppm; LRMS (CI+, Me₃CH) m/z (intensity); 357.2 (16%), 299.2 (8%), 225.2 (100%), 95.1 (30%).
C6), 81.1 (CH-C8), 81.0 (CH-C4), 69.5 (C-C1), 60.7 (CH2-C11), 40.4 (CH2-C2), 35.7 (CH2-C9), 29.1 (CH2-C3), 20.1 (CH3-Me), 19.2 (CH3-C7), 14.4 (CH3-C12); HRMS (Cl+, Me3CH) for C13H23O4 [M+H]+ calcd. 243.1596, found 243.1602, Δ +2.5 ppm; LRMS (Cl+, Me3CH) m/z (intensity); 243.2 (100%), 225.2 (95%), 197.2 (22%); Anal. calcd. for C13H22O4: C, 64.44%; H, 9.15%; found: C, 64.02%; H, 9.20%.

(3aR,5R,7aR)-7a-Methyl-5-(prop-1-en-2-yl)-hexahydro-2H-furo[3,2-b]pyran-2-one (307)\(^{118}\)

\[
\begin{array}{c}
\text{C11H16O3}
\end{array}
\]

To a suspension of 4 Å powdered molecular sieves in anhydrous THF (4.5 mL) and silyl ether 306 (155 mg, 435 µmol) were added acetic acid (0.15 mL, 2.17 mmol) and TBAF (2.2 mL of a 1.0 M solution in THF, 2.2 mmol). The mixture was stirred at room temperature for 10 days and the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 10 mL). The organic extracts were combined, washed with brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate from 10:1 to 1:1) afforded the lactone 307 (40.5 mg, 47%) as a colourless oil.

R\(_f\) = 0.56; (petroleum ether-ethyl acetate, 10:7); [\(\alpha\)]\(_D\)\(^{23}\) +53.3 (c = 0.44, CHCl₃); \(\nu\)\(_{max}\) (film) 2974, 2939, 2926, 1774, 1452, 1288, 1224, 1180, 1157, 1114, 1074, 1031, 935, 918, 856, 831, 817, 796, 694 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl₃) \(\delta\) 4.97–4.96 (1H, m, CH\(_2\)-C6), 4.85 (1H, quint, \(J = 1.4\) Hz, CH\(_2\)-C6), 4.08 (1H, d, \(J = 4.2\) Hz, CH-C8), 3.73 (1H, br d, \(J = 9.3\) Hz, CH-C4), 2.88 (1H, dd, \(J = 17.5, 4.2\) Hz, CH\(_2\)-C9), 2.54 (1H, d, \(J = 17.5\) Hz, CH\(_2\)-C9), 2.34–2.26 (1H, m, CH\(_2\)-C3), 1.72 (3H, s, CH\(_3\)-C7), 1.76–1.61 (2H, m, CH\(_2\)-C2, CH\(_2\)-C3), 1.61–1.55 (1H, m, CH\(_2\)-C2), 1.31 (3H, s, CH\(_3\)-Me); \(^{13}\)C NMR (126 MHz, CDCl₃) \(\delta\) 175.9 (C-C10), 145.0 (C-C5), 111.6 (CH\(_2\)-C6), 81.8 (C-C1), 78.8 (CH-C4), 77.7 (CH-C8), 38.4 (CH\(_2\)-C9), 32.5 (CH\(_2\)-C3), 25.4 (CH\(_3\)-Me), 25.2 (CH\(_2\)-C2), 18.6 (CH\(_3\)-C7); HRMS (Cl+, Me3CH) for
Chapter 3: Experimental Section

\[C_{11}H_{17}O_{3} \text{ [M+H]}^+ \text{ calcd. } 197.1178, \text{ found } 197.1178, \Delta -0.1 \text{ ppm; LRMS (Cl+, Me}_{3}\text{CH)} \]

\(m/z \) (intensity); 197.1 (100%).

(5R)-5-[(3R)-3-Hydroxy-4-methylpent-4-en-1-yl]-5-methyl-2,5-dihydrofuran-2-one (308)

Colourless oil; \(R_f = 0.25 \); (petroleum ether-ethyl acetate, 6:10); \(\nu_{\text{max}} \) (film) 3444, 2935, 2870, 1735, 1448, 1311, 1261, 1112, 1072, 1028, 952, 898, 821, 700 \(\text{cm}^{-1} \);

\(^1\text{H} \text{ NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \)

\(7.33 \) (1H, d, \(J = 5.6 \text{ Hz, CH} \cdot \text{C9}), 6.02 \) (1H, d, \(J = 5.6 \text{ Hz, CH} \cdot \text{C8}), 4.95–4.90 \) (1H, m, CH\(_2\)-C3), 4.83 (1H, br t, \(J = 1.0 \text{ Hz, CH} \cdot \text{C3}), 4.03 \) (1H, dd, \(J = 7.4, 5.2 \text{ Hz, CH-C4}), 1.91–1.79 (2H, m, CH\(_2\)-C6), 1.69 (3H, s, CH\(_3\)-C1), 1.58 (1H, br s, OH), 1.58–1.50 (1H, m, CH\(_2\)-C5), 1.48 (3H, s, CH\(_3\)-Me), 1.45–1.34 (1H, m, CH\(_2\)-C5); \(^{13}\text{C} \text{ NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \)

172.6 (C\(_{-}\)C10), 160.3 (CH\(_{\cdot}\)C9), 147.2 (C\(_{-}\)C2), 120.9 (CH-C8), 111.5 (CH\(_2\)-C3), 88.8 (C-C7), 75.5 (CH-C4), 34.3 (CH\(_2\)-C6), 28.9 (CH\(_2\)-C5), 24.5 (CH\(_3\)-Me), 17.8 (CH\(_3\)-C1); HRMS (Cl, Me\(_3\)CH) for \(C_{11}H_{17}O_{3} \text{ [M+H]}^+ \) calcd. 197.1178, found 197.1179, \(\Delta +0.8 \text{ ppm; LRMS } m/z \)

(intensity); 197.1 (29%), 179.1 (100%).

2-[(2R,3S,6R)-3-(tert-Butyldimethylsilyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]acetic acid (309)

To a stirred solution of ester 305 (6.97 g, 19.5 mmol) in EtOH (150 mL) and water (50 mL) was added lithium hydroxide (8.26 g, 197 mmol) portionwise. The mixture was stirred at room temperature overnight and acidified to pH 2–3 with 1 M aqueous HCl. The solution was diluted with EtOAc (300 mL) and water
(150 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 100 mL). The organic extracts were combined, washed with brine (150 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 20:1 to 5:1) afforded the carboxylic acid 309 (6.13 g, 96%) as a colourless oil.

Rᶠ = 0.61; (petroleum ether-ethyl acetate-acetic acid, 10:3:0.1); [α]ᵇ₂⁺¹ +67.1 (c = 1.02, CHCl₃); νₑₓₘₚ (film) 2955, 2930, 2859, 1715, 1437, 1311, 1253, 1153, 1132, 1080, 1051, 901, 835, 775 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.20 (1H, br s, CO₂H), 4.95 (1H, s, CH₂-C6), 4.84 (1H, s, CH₂-C6), 3.87 (1H, br d, J = 10.7, CH-C4), 3.68 (1H, dd, J = 10.5, 2.3 Hz, CH-C8), 2.77 (1H, dd, J = 15.8, 2.3 Hz, CH₂-C9), 2.40 (1H, dd, J = 15.8, 10.5 Hz, CH₂-C9), 1.97–1.90 (1H, m, CH₂-C2), 1.79–1.68 (2H, m, CH₂-C2, CH₂-C3), 1.73 (3H, s, CH₃-C7), 1.62–1.52 (1H, m, CH₂-C3), 1.21 (3H, s, CH₃-Me), 0.85 (9H, s, CH₃-tBu), 0.10 (3H, s, Si-CH₃), 0.09 (3H, s, Si-CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 175.0 (C-C₁₀), 144.7 (C-C₅), 111.3 (CH₂-C₆), 81.4 (CH-C₄), 81.1 (CH-C₈), 71.6 (C-C₁), 39.9 (CH₂-C₂), 34.5 (CH₂-C₉), 29.0 (CH₂-C₃), 25.9 (CH₃-tBu), 20.6 (CH₃-Me), 19.1 (CH₃-C₇), 18.1 (C-tBu), −1.7 (Si-CH₃), −1.9 (Si-CH₃); HRMS (Cl⁺, Me₃CH) for C₁₇H₃₃O₃Si [M+H]⁺ calcd. 329.2148, found 329.2156, Δ +2.3 ppm; LRMS (Cl⁺, Me₃CH) m/z (intensity); 329.2 (74%), 197.1 (100%), 85.1 (26%); Anal. calcd. for C₁₇H₃₃O₃Si: C, 62.15%; H, 9.82%; found: C, 62.18%; H, 9.72%.

1-[(2R,3S,6R)-3-(tert-Butyldimethylsilyloxy)-3-methyl-6-(prop-1-en-2-yl)oxan-2-yl]-3-diazopropan-2-one (276)

To a stirred solution of carboxylic acid 309 (3.07 g, 9.34 mmol) and distilled triethylamine (2.0 mL, 14 mmol) in anhydrous Et₂O (120 mL) was added isobutyl chloroformate (1.8 mL, 14 mmol) dropwise. The mixture was stirred at room temperature for 3 h. The solution was filtered and the solid residue was washed
with Et$_2$O (3 × 10 mL). The filtrate was immediately poured into a freshly prepared ethereal solution of diazomethane (92.5 mmol) at 0 °C. The mixture was stirred at room temperature for 4 days and the reaction was quenched by careful addition of glacial acetic acid (5 mL). The solution was added to a saturated aqueous solution of NaHCO$_3$ (200 mL) and the mixture was vigorously stirred for 15 min. The phases were separated and the aqueous phase was extracted with EtOAc (3 × 80 mL). The organic extracts were combined, washed with brine (150 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 20:1 to 10:1) afforded the diazoketone 276 (2.92 g, 89%) as a yellow oil.

R$_f$ = 0.68; (petroleum ether-ethyl acetate, 5:2); [α]$^D_{25}$ +92.9 (c = 1.03, CHCl$_3$); ν$_{max}$ (neat) 2952, 2929, 2857, 2099, 1472, 1341, 1250, 1131, 1048, 990, 955, 899, 833, 797, 773, 664 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.37 (1H, br s, CH-C11), 4.93 (1H, s, CH$_2$-C6), 4.80 (1H, s, CH$_2$-C6), 3.78 (1H, d, J = 11.2 Hz, CH-C4), 3.63 (1H, d, J = 10.2 Hz, CH-C8), 2.66 (1H, dd, J = 14.5, 1.7 Hz, CH$_2$-C9), 2.32 (1H, br s, CH$_2$-C9), 1.91 (1H, ddd, J = 12.3, 4.8, 2.9 Hz, CH$_2$-C2), 1.78–1.69 (2H, m, CH$_2$-C2, CH$_2$-C3), 1.72 (3H, s, CH$_3$-C7), 1.58–1.48 (1H, m, CH$_2$-C3), 1.18 (3H, s, CH$_3$-Me), 0.85 (9H, s, CH$_3$-tBu), 0.10 (3H, s, Si-CH$_3$), 0.09 (3H, s, Si-CH$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 194.3 (C-C10), 145.4 (C-C5), 110.5 (CH$_2$-C6), 81.8 (CH-C8), 80.9 (CH-C4), 71.8 (C-C1), 54.9 (CH$_2$-C11), 41.4 (CH$_2$-C9), 40.2 (CH$_2$-C2), 29.2 (CH$_2$-C3), 25.9 (CH$_3$-tBu), 20.8 (CH$_3$-Me), 19.2 (CH$_3$-C7), 18.2 (C-tBu), −1.7 (Si-CH$_3$), −1.8 (Si-CH$_3$); HRMS (ESI) for C$_{18}$H$_{32}$N$_2$NaO$_3$Si [M+Na]$^+$ calcd. 375.2074, found 375.2079, Δ +1.4 ppm; Anal. calcd. for C$_{18}$H$_{32}$N$_2$O$_3$Si: C, 61.32%; H, 9.15%; N, 7.95%; found: C, 61.16%; H, 9.25%; N, 7.95%.
(1R,2S,5Z,8R)-2-[(tert-Butyldimethylsilyl)oxy]-2,6-dimethyl-11-oxabicyclo[6.2.1]undec-5-en-9-one (Z-275) and (1R,2S,5E,8R)-2-[(tert-Butyldimethylsilyl)oxy]-2,6-dimethyl-11-oxabicyclo[6.2.1]undec-5-en-9-one (E-275)

To a stirred solution of Cu(hfacac)₂ (108 mg, 0.218 mmol) in anhydrous CH₂Cl₂ (45 mL) at 55 °C was added the α-diazoketone 276 (1.5 g, 4.4 mmol) in anhydrous CH₂Cl₂ (300 mL) dropwise over a period of 2.5 h. The resulting solution was stirred for 1 h at 55 °C, allowed to cool to room temperature and concentrated in vacuo to give a mixture of the E- and Z-alkene (1:1.6). Purification of the residue by flash column chromatography on silica gel impregnated with silver nitrate (10%) (petroleum ether-ethyl acetate, gradient elution from 50:1 to 1:1) delivered the Z-alkene Z-275 (0.77 g, 54%) as a colourless liquid and the E-alkene E-275 (0.44 g, 31%) as a colourless solid.

Preparation of silica gel impregnated with silver nitrate
To a stirred solution of silica gel in water was added silver nitrate (10% weight). The mixture was heated at 130-140 °C in order to remove the water. The silica gel was finally dried for in the oven (120 °C) for 24 to 48 h.

(1R,2S,5Z,8R)-2-[(tert-Butyldimethylsilyl)oxy]-2,6-dimethyl-11-oxabicyclo[6.2.1]undec-5-en-9-one (Z-275)

R_f = 0.37; (petroleum ether-ethyl acetate, 5:1); [α]_D^{25} +109.3 (c = 1.17, CHCl₃);

υ_max (neat) 2953, 2928, 2885, 2855, 1755, 1444, 1377, 1249, 1166, 1118, 1093, 1049, 995, 964, 878, 827, 802, 771, 700, 682 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.41 (1H, dd, J = 11.7, 6.0 Hz, CH-C6), 4.29 (1H, ddd, J = 8.4, 8.2, 2.2 Hz, CH-C2), 4.20 (1H, dd, J = 4.3, 2.2 Hz, CH-C9), 3.19 (1H, dddd, J = 13.2, 11.7, 7.8, 1.1 Hz, CH₂-C5), 2.78 (1H, br d, J = 14.5 Hz, CH₂-C8), 2.43 (1H, dd, J = 18.6, 8.2 Hz, CH₂-C1), 2.20 (1H, dd, J = 18.6, 8.4 Hz, CH₂-C1), 2.10 (1H, dd, J = 14.5, 4.3
Hz, CH$_2$-C8), 1.94–1.87 (1H, m, CH$_2$-C4), 1.83–1.75 (1H, m, CH$_2$-C5), 1.63 (3H, s, CH$_3$-C12), 1.51 (1H, dd, J = 15.2, 7.8 Hz, CH$_2$-C4), 1.03 (3H, s, CH$_3$-C11), 0.92 (9H, s, CH$_3$-tBu), 0.14 (3H, s, Si-CH$_3$), 0.12 (3H, s, Si-CH$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 216.5 (C-C10), 130.9 (CH-C6), 129.7 (C-C7), 82.8 (CH-C2), 79.3 (CH-C9), 76.4 (C-C3), 40.4 (CH$_2$-C1), 37.9 (CH$_2$-C4), 35.4 (CH$_2$-C8), 28.6 (CH$_3$-C11 or CH$_3$-C12), 28.5 (CH$_3$-C11 or CH$_3$-C12), 26.0 (CH$_3$-tBu), 22.7 (CH$_2$-C5), 18.6 (C-tBu), −2.00 (Si-CH$_3$); HRMS (EI+) for C$_{18}$H$_{32}$O$_3$Si [M]$^+$ calcd. 324.2121, found 324.2117, Δ −1.2 ppm; LRMS (EI+) m/z (intensity); 324.2 (29%), 267.1 (100%), 171.1 (42%), 147.1 (52%), 75.0 (41%); Anal. calcd. for C$_{18}$H$_{32}$O$_3$Si: C, 66.62%; H, 9.94%; found: C, 66.57%; H, 10.13%.

$(1R,2S,5E,8R)$-2-[(tert-butyldimethylsilyl)oxy]-2,6-dimethyl-11-oxabicyclo[6.2.1]undec-5-en-9-one (E-275)

R$_f$ = 0.35; (petroleum ether-ethyl acetate, 5:1); m.p. 68.8–71.4 °C; [α]$_D$24 +64.1 (c = 0.87, CHCl$_3$); ν_{max} (film) 2954, 2926, 2883, 2851, 1751, 1462, 1386, 1245, 1166, 1119, 1065, 1045, 996, 964, 886, 863, 835, 813, 772, 739, 685 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.87 (1H, dddd, J = 9.2, 7.9, 1.2, 0.7 Hz, CH$_2$-C9), 4.47 (1H, dd, J = 9.7, 7.4 Hz, CH-C2), 4.12 (1H, d, J = 6.4 Hz, CH-C9), 2.54 (1H, ddd, J = 13.3, 6.4, 0.7 Hz, CH$_2$-C8), 2.34 (1H, dd, J = 13.3, 1.2 Hz, CH$_2$-C8), 2.23–2.17 (2H, m, CH$_2$-C5), 2.03 (1H, dd, J = 19.9, 7.4 Hz, CH$_2$-C1), 1.63–1.54 (2H, m, CH$_2$-C4), 1.51 (3H, d, J = 1.2 Hz, CH$_3$-C12), 1.10 (3H, s, CH$_3$-C11), 0.96 (9H, s, CH$_3$-tBu), 0.19 (3H, s, Si-CH$_3$), 0.15 (3H, s, Si-CH$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 218.6 (C-C10), 132.9 (CH-C6), 124.0 (C-C7), 83.5 (CH-C2), 79.2 (CH-C9), 78.6 (C-C3), 42.0 (CH$_2$-C8), 38.8 (CH$_2$-C1), 36.0 (CH$_2$-C4), 31.7 (CH$_3$-C11), 26.2 (CH$_3$-tBu), 23.0 (CH$_2$-C5), 18.7 (C-tBu), 17.7 (CH$_3$-C12), −1.7 (Si-CH$_3$), −1.9 (Si-CH$_3$); HRMS (EI+) for C$_{18}$H$_{32}$O$_3$Si [M]$^+$ calcd. 324.2121, found 324.2123, Δ +0.6 ppm; LRMS (EI+) m/z (intensity); 324.2 (15%), 267.1 (100%), 239.2 (84%), 75.0 (73%); Anal. calcd. for C$_{18}$H$_{32}$O$_3$Si: C, 66.62%; H, 9.94%; found: C, 66.69%; H, 10.15%.
Conversion of the E-alkene into the Z-alkene

To a stirred solution of E-alkene E-275 (0.69 g, 2.1 mmol) in anhydrous toluene (40 mL) was added 1,1’-azobis(cyclohexane-carbonitrile) (0.10 g, 0.42 mmol) and ethanethiol (6.0 mL, 80 µmol). The mixture was stirred at 90 °C for 1 h and the volatiles were removed under vacuum. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 50:1) afforded the Z-alkene Z-275 (0.58 g, 85%) as a colourless oil.

1-[(Z)-(1R,2R,8R,14S)-14-(tert-butyl-dimethyl-silyloxy)-6-ethoxy-10,14-dimethyl-15-oxa-tricyclo[6.6.1.02,7]pentadeca-6,10-dien-3-yl]-ethanone (273)

Method A: Heck coupling

To a stirred solution of Z-bicyclic ketone Z-275 (1.00 g, 3.08 mmol) in anhydrous THF (60 mL) was added N-phenyl-bis(trifluoromethanesulfonylimide) (2.23 g, 6.24 mmol). The solution was cooled to −78 °C and sodium bis(trimethylsilyl)amide (8.0 mL of a 1.0 M solution in THF, 8.0 mmol) was added. The mixture was stirred at −78 °C for 2 h and the reaction was quenched by the addition of water (20 mL). The solution was warmed to room temperature and diluted with Et$_2$O (25 mL). The aqueous phase was separated and extracted with Et$_2$O (3 × 25 mL). The organic extracts were combined, washed with brine (50 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to afford the crude enol triflate 313, which was used in the next step without purification.

In a sealed tube were successively added palladium acetate (0.10 g, 0.46 mmol), 1,3-bis(diphenylphosphino)propane (0.24 g, 0.58 mmol), distilled triethylamine (0.65 mL, 4.7 mmol), a solution of the crude triflate in DMF (6.0 mL) and freshly distilled ethyl vinyl ether (3.0 mL, 31 mmol). The mixture was stirred at 80 °C overnight, cooled to room temperature and diluted with water (25 mL) and Et$_2$O
(20 mL). The phases were separated and the aqueous phase was extracted with
Et_2O (3×15 mL). The organic extracts were combined, washed with brine (50 mL), dried (MgSO_4), filtered and concentrated $\textit{in vacuo}$. Purification of the
residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 20:1 in presence of 1% triethylamine) removed baseline impurities. The
unstable diene 274 was immediately used in the next.

To a solution of diene in anhydrous toluene (120 mL) in a sealed tube was added
freshly distilled methyl vinyl ketone (3.0 mL, 37 mmol). The mixture was stirred
at 120 °C overnight and the volatiles were removed under vacuum. Purification
of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 30:1 in presence of 1% triethylamine) delivered the tricyclic
compound 273 (0.93 g, 69% over 3 steps) as a 1:1 mixture of \textit{exo} and \textit{endo}
cycloadducts.

Method B: Stille coupling

To a stirred solution of \textit{Z}-bicyclic ketone $\textbf{Z-275}$ (0.18 g, 0.55 mmol) in anhydrous
THF (11 mL) was added \textit{N}-phenyl-\textit{bis}(trifluoromethanesulfonimide) (0.40 g,
1.1 mmol). The solution was cooled to -78 °C and sodium
\textit{bis}(trimethylsilyl)amide (1.4 mL of a 1.0 m solution in THF, 1.4 mmol) was
added. The mixture was stirred at -78 °C for 3 h and the reaction was quenched
by the addition of water (10 mL). The solution was warmed to room temperature
and diluted with Et_2O. The aqueous phase was separated and extracted with
Et_2O (3×15 mL). The organic extracts were combined, washed with brine (20 mL), dried (MgSO_4), filtered and concentrated $\textit{in vacuo}$ to afford the crude enol
 triflate 313, which was used in the next step without purification.

To a solution of the crude trifalte in anhydrous THF (33 mL) were added
tributyl(1-ethoxyvinyl)stannane (0.60 mL, 1.8 mmol), lithium chloride (0.49 g,
3.7 mmol) and tetrakis(triphenylphosphine)palladium (96 mg, 83 μmol). The
mixture was stirred at 80 °C overnight. At room temperature, the solution was
diluted with water (10 mL) and Et_2O (15 mL). The phases were separated and
the aqueous phase was extracted with Et_2O (3×5 mL). The organic extracts
were combined, dried (MgSO_4), filtered and concentrated $\textit{in vacuo}$. Flash column
chromatography on silica gel (petroleum ether-ethyl acetate, 20:1 in presence of
1% triethylamine) removed baseline impurities. The unstable diene 274 was immediately used in the next step.

To a solution of diene in anhydrous toluene (20 mL) in a flame dried pressure tube was added freshly distilled methyl vinyl ketone (0.50 mL, 6.2 mmol). The mixture was stirred at 120 °C overnight and volatiles were removed under vacuum. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 20:1 in presence of 1% triethylamine) afforded the tricyclic compound 273 (0.16 g, 65% over 3 steps) as a 1:1 mixture of exo and endo cycloadducts.

Since they exist as an inseparable mixture, the diastereomeric cycloadducts were not characterised at this stage.

Note: By-product 321 was sometimes obtained as a colourless solid.

1-[(1R,2S,5Z,8R)]-2-[(Tert-butyldimethylsilyl)oxy]-2,6-dimethyl-11-oxabicyclo[6.2.1]undeca-5,9-dien-9-yl]ethan-1-one (321)

\[
\begin{align*}
\text{C}_{20}\text{H}_{34}\text{O}_{3}\text{Si} \\
R_f = 0.57; \text{ (petroleum ether-ethyl acetate, 5:1); m.p. 78.3–80.6 °C; } [\alpha]_D^{24} +9.9 (c = 1.07, \text{CHCl}_3); \nu_{\text{max}} \text{ (neat) 2928, 2855, 1674, 1462, 1370, 1246, 1186, 1141, 1102, 1084, 1043, 988, 940, 834, 772 cm}^{-1}; ^1\text{H NMR (500 MHz, CDCl}_3) \delta 6.49 (1H, \text{br t, } J = 1.9 \text{ Hz, CH-C1}), 5.45 (1H, \text{dd, } J = 11.5, 6.7 \text{ Hz, CH-C6}), 5.32–5.28 (1H, \text{m, CH-C9}), 4.77 (1H, \text{dt, } J = 4.2, 1.9 \text{ Hz, CH-C2}), 3.11–3.03 (1H, \text{m, CH-C5}), 2.86 (1H, \text{br d, } J = 15.0 \text{ Hz, CH-C8}), 2.37 (1H, \text{dd, } J = 15.0, 4.9, \text{CH}_2\text{-C8}), 2.32 (3H, \text{s, CH}_3\text{-C12}), 1.90–1.82 (1H, \text{m, CH}_2\text{-C4}), 1.74–1.64 (1H, \text{m, CH}_2\text{-C5}), 1.49 (3H, \text{s, CH}_3\text{-C14}), 1.19 (1H, \text{dd, } J = 4.9, 2.7 \text{ Hz, CH}_2\text{-C4}), 1.17 (3H, \text{s, CH}_3\text{-C13}), 0.91 (9H, \text{s, CH}_3\text{-tBu}), 0.14 (3H, \text{s, Si-CH}_3), 0.11 (3H, \text{s, Si-CH}_3); ^13\text{C NMR (126 MHz, CDCl}_3) \delta 194.7 (C-C11), 144.7 (C-C10), 139.4 (C-H-C1), 130.5 (C-H-C6), 129.6 (C-C7), 93.9 (C-H-C2), 83.2 (C-H-C9), 77.0 (C-C3), 39.5 (CH2-C4), 36.7 (CH2-C8), 28.7 (CH3-C13), 27.6 (CH3-C14), 27.5 (CH3-C12), 26.0 (CH3-tBu), 22.0 (CH2-C5),
\end{align*}
\]
18.6 (C-tBu), −2.0 (Si-CH₃), −2.1 (Si-CH₃); HRMS (Cl+, Me₃CH) for C₂₀H₃₅O₃Si [M+H]' calcd. 351.2355, found 351.2357, Δ +0.3 ppm; LRMS (Cl+, Me₃CH) m/z (intensity); 351.2 (67%), 219.2 (100%), 109.1 (37%).

Method A: conversion of the endo and exo cycloadducts
The diastereomeric mixture (1:1) of cycloadducts 273 (923 mg, 2.06 mmol) was dissolved in MeOH (70 mL). Concentrated HCl (10 mL) was added and the mixture was stirred at room temperature overnight. The solution was neutralised by the addition of a saturated aqueous solution of NaHCO₃ until pH 8 was reached. The mixture was diluted with water (50 mL) and EtOAc (50 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 80 mL). The organic extracts were combined, washed with brine (80 ml), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate 1:1) delivered the diketone 317 (0.43 g, 69%) as a colourless thick oil.

Method B: synthesis of the diketone 317 from Z-bicyclic methyl ketone 321
To a stirred solution of Z-bicyclic methyl ketone 321 (137 mg, 391 µmol) in anhydrous THF (7.5 mL) at −78 °C was added sodium bis(trimethylsilyl)amide (0.5 mL of a 1.0 M solution in THF, 0.5 mmol). The mixture was stirred for 15 min and triethylsilyl chloride (0.10 mL, 0.59 mmol) was added dropwise. After 15 min the mixture was allowed to warm to room temperature and was stirred for a further 1 h. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (5 mL). The phases were separated and the aqueous phase was extracted with Et₂O (3 × 5 mL). The organic extracts were
combined, washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude diene 322 was immediately used in the next step.

To a solution of diene 322 in anhydrous toluene (14 mL) in a sealed tube was added freshly distilled methyl vinyl ketone (0.30 mL, 3.67 mmol). The reaction was stirred at 120 °C overnight and volatiles were removed under vacuum.

Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 50:1 to 20:1 in presence of 1% triethylamine) afforded the tricyclic compound 323 as a 1:1 mixture of endo and exo cycloadducts.

The diastereomeric mixture of cycloadducts (104 mg, 232 µmol) was dissolved in MeOH (6 mL) and concentrated HCl (1 mL) was added at 0 °C. The reaction was warmed to room temperature and stirred overnight. The reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ until pH 6 was reached and the solution was subsequently diluted with EtOAc (15 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 10 mL). The organic extracts were combined, washed with brine (25 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 10:1 to 1:1) gave the desired diketone 317 (20.6 mg, 35% over four steps) as a colourless oil.

R_f = 0.27; (petroleum ether-ethyl acetate, 1:2); [α]_D^27 +22.3 (c = 1.07, CHCl₃);
ν_max (neat) 3496, 2964, 2925, 2854, 1707, 1452, 1356, 1251, 1161, 1087, 1057, 970, 899, 827 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.59−5.54 (1H, m, CH-C6), 4.86 (1H, ddd, J = 4.6, 2.6, 2.4 Hz, CH-C9), 3.57 (1H, d, J = 9.1 Hz, CH-C2), 3.37 (1H, td, J = 9.1, 4.3 Hz, CH-C1), 3.22 (1H, s, OH), 2.98 (1H, dd, J = 9.1, 2.6 Hz, CH-C10), 2.85 (1H, d, J = 14.9 Hz, CH₂-C8), 2.78−2.74 (1H, m, CH-C14), 2.71−2.64 (1H, m, CH₂-C5), 2.42−2.31 (2H, m, CH₂-C12), 2.27 (3H, s, CH₃-C16), 2.18−2.06 (2H, m, CH₂-C13), 1.90−1.82 (3H, m, CH₂-C4, CH₂-C5, CH₂-C8), 1.85 (3H, s, CH₃-C18), 1.54−1.49 (1H, m, CH₂-C4), 1.02 (3H, d, J = 0.5 Hz, CH₃-C17); ¹³C NMR (126 MHz, CDCl₃) δ 209.0 (C-C11 or C-C15), 208.2 (C-C11 or C-C15), 130.5 (CH-C6), 130.4 (C-C7), 89.4 (CH-C2), 75.1 (CH-C9), 73.4 (C-C3), 54.0 (CH-C10), 48.9 (CH-C14), 42.5 (CH-C1), 37.9 (CH₂-C4), 37.6 (CH₂-C12), 37.2 (CH₂-C8), 28.8 (CH₃-C16), 28.4 (CH₃-C18), 27.2 (CH₃-C17), 24.6 (CH₂-C13), 22.2 (CH₂-C5); HRMS (EI+)
for C\textsubscript{18}H\textsubscript{26}O\textsubscript{4} [M+] calcd. 306.1831, found 306.1834, Δ +0.9 ppm; LRMS (El+) m/z (intensity); 306.0 (29%), 194.0 (100%), 181.0 (92%), 113.0 (66%); Anal. calcd. for C\textsubscript{18}H\textsubscript{26}O\textsubscript{4}: C, 70.56%; H, 8.55%; found: C, 70.08%; H, 8.62%;

In the racemic form, the compound crystallised at room temperature, m.p. 119–120 °C.

In a round bottom flask, freshly distilled vinyl ethyl ether (30 µL, 0.31 µmol) in anhydrous THF (0.5 mL) was cooled to −78 °C. tert-Butyllithium (250 µL of a 1.9 M solution in pentane, 475 µmol) was added slowly. The yellow solution was stirred for 1 h and zinc chloride (500 µL of a 1.0 M solution in THF, 500 µmol) was added. The mixture turned colourless and was warmed to room temperature. A solution of crude triflate 313 (154 µmol), tris(dibenzylideneacetone)dipalladium (14.6 mg, 15.9 µmol) and triphenylphosphine (6.09 mg, 23.2 µmol) in anhydrous THF (1 mL) was added dropwise. The mixture was stirred at 70 °C for an additional 1 h and the reaction was quenched by the addition of water (2 mL). The solution was diluted with Et\textsubscript{2}O and the phases were separated. The aqueous phase was extracted with Et\textsubscript{2}O (3 × 5 mL). The organic extracts were combined, dried (MgSO\textsubscript{4}), filtered and concentrated in vacuo. The proton NMR highlighted the presence of several by-products among them, a pure sample of the dimer 320 was obtained as a colourless solid.

R\textsubscript{f} = 0.41; (petroleum ether-ethyl acetate, 10:1); m.p. 119.4–121.5 °C; \nu\textsubscript{max} (film) 2954, 2928, 2854, 1472, 1373, 1253, 1141, 1101, 1084, 1043, 990, 834,
809, 772 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.63 (2H, s, CH-C1), 5.43 (2H, dd, $J = 11.8$, 6.6 Hz, CH-C6), 5.10 (2H, br s, CH-C9), 4.68 (2H, br s, CH-C2), 3.17–3.10 (2H, m, CH$_2$-C5), 3.01 (2H, d, $J = 15.4$ Hz, CH$_2$-C6), 2.17 (2H, dd, $J = 15.4$, 4.6 Hz, CH$_2$-C8), 1.85–1.76 (2H, m, CH$_2$-C4), 1.74–1.65 (2H, m, CH$_2$-C5), 1.69 (6H, s, CH$_3$-C12), 1.23 (2H, ddd, $J = 13.4$, 5.0, 2.5 Hz, CH$_2$-C4), 1.12 (6H, s, CH$_3$-C11), 0.90 (18H, CH$_3$-tBu), 0.13 (6H, s, Si-CH$_3$), 0.10 (6H, s, Si-CH$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 136.4 (C-C10), 130.7 (CH-C6), 129.0 (C-C7), 125.9 (CH-C1), 94.4 (CH-C2), 84.2 (CH-C9), 77.1 (C-C3), 38.8 (CH$_2$-C4), 37.9 (CH$_2$-C8), 29.4 (CH$_3$-C12), 28.8 (CH$_3$-C11), 26.1 (CH$_3$-tBu), 22.1 (CH$_2$-C5), 18.6 (C-tBu), -2.0 (Si-CH$_3$), -2.0 (Si-CH$_3$); HRMS (ESI) for C$_{36}$H$_{62}$NaO$_4$Si [M+Na]$^+$ calcd. 637.4079, found 637.4049, Δ -4.7 ppm.

(1R,2S,6S,7S,8R,9S,12Z)-9,13-Dimethyl-3-methylidene-6-(prop-1-en-2-yl)-15-oxatricyclo[6.6.1.02,7]pentadec-12-en-9-ol (325) and 1-[(1R,2R,3S,7S,8R,10Z,14S)-14-Hydroxy-10,14-dimethyl-6-methylidene-15-oxatricyclo[6.6.1.02,7]pentadec-10-en-3-yl]ethan-1-one (326)

In a round bottom flask methyltriphenylphosphonium bromide (133 mg, 372 µmol) was suspended in anhydrous THF (7 mL). Potassium tert-butoxide (42.0 mg, 374 µmol) was added. The yellow suspension was stirred at room temperature for 1 h and diketone 317 (57.0 mg, 186 µmol) in anhydrous THF (5.5 mL) was added dropwise. The mixture was stirred for 30 min and the reaction was quenched by the addition of a saturated aqueous solution of NH$_4$Cl (7 mL) and diluted with Et$_2$O (10 mL). The phases were separated and the aqueous phase was extracted Et$_2$O (3 × 10 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to deliver a mixture (1:5) of triene 325 and ketone 326. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl
acetate, gradient elution from 10:1 to 5:2 and from 3:1 to 1:1) afforded the triene 325 (8.00 mg, 14%) and ketone 326 (39.2 mg, 69%) as colourless solids.

$R_f = 0.34$; (petroleum ether-ethyl acetate, 5:1); m.p. 121.4–123.7 °C; $\left[\alpha\right]_D^{29} \text{=} -94.8 \text{ (c = 0.87, CHCl}_3\text{)}; \nu_{\text{max}} \text{ (film) 3397, 3074, 2969, 2925, 2902, 2880, 2855, 1645, 1455, 1375, 1187, 1115, 1087, 1054, 974, 899, 826, 769, 652 \text{ cm}^{-1}; \text{^1H NMR (500 MHz, CDCl}_3\text{)} \delta 5.76–5.71 \text{ (1H, m, CH-C6), 4.84–4.80 (2H, m, CH}_2\text{-C17, CH}_2\text{-C20), 4.81 (1H, s, CH}_2\text{-C19), 4.73 (1H, s, CH}_2\text{-C20), 4.31 (1H, ddd, J = 10.3, 5.2, 1.2 Hz, CH-C9), 3.85 (1H, s, CH-C2), 3.17 (1H, dd, J = 10.3, 7.2 Hz, CH-C10), 2.88 (1H, d, J = 16.1 Hz, CH-C8), 2.77–2.70 (1H, m, CH-C2), 2.59 (1H, s, OH), 2.26 (1H, dt, J = 13.4, 3.8 Hz, CH-C12), 2.22–2.14 (2H, m, CH-C6, CH-C9), 1.98 (1H, ddd, J = 16.1, 5.2 Hz, CH-C8), 1.97–1.93 (1H, m, CH-C1), 1.92–1.85 (2H, m, CH-C4, CH-C8), 1.78–1.73 (1H, m, CH-C13), 1.76 (3H, s, CH-C19), 1.61 (3H, s, CH-C16), 1.39 (1H, qd, J = 12.7, 3.8 Hz, CH-C12), 1.33–1.28 (1H, m, CH-C4), 0.93 (3H, s, CH-C18); $\text{^13C NMR (126 MHz, CDCl}_3\text{)} \delta 146.6 \text{ (C-C11 or C-C15), 145.8 \text{ (C-C11 or C-C15), 131.7 \text{ (C-C7), 129.4 \text{ (C-C6), 113.6 \text{ (C-C17), 112.2 \text{ (C-C20), 92.6 \text{ (C-C2), 78.8 \text{ (C-C9), 72.4 \text{ (C-C3), 48.3 \text{ (C-C14), 47.2 \text{ (C-C10), 46.2 \text{ (C-C1), 36.7 \text{ (C-C4), 35.9 (C-C8), 32.5 (C-C13), 31.9 (C-C12), 28.5 (C-C19), 26.8 (C-C20), 22.5 (C-C20), 18.7 (C-C16); HRMS (El+) for C}_{20}\text{H}_{30}\text{O}_2 [M]^+ calcd. 302.2246, found 302.2245, \Delta -0.4 \text{ ppm; LRMS (El+) m/z (intensity); 302.1 (31%), 177.1 (100%), 176.0 (38%).}}$

1-[(1R,2R,3S,7S,8R,10Z,14S)-14-Hydroxy-10,14-dimethyl-6-methylidene-15-oxatricyclo[6.6.1.0²⁷]pentadec-10-en-3-yl]ethan-1-one (326)

$R_f = 0.49$; (petroleum ether-ethyl acetate, 1:1); m.p. 123.4–125.8 °C; $\left[\alpha\right]_D^{28} \text{=} -53.8 \text{ (c = 0.72, CHCl}_3\text{)}; \nu_{\text{max}} \text{ (neat) 3455, 2961, 2930, 2866, 1711, 1646, 1456, 1373, 1194, 1165, 1083, 1057, 972, 959, 898, 830 \text{ cm}^{-1}; \text{^1H NMR (500 MHz, CDCl}_3\text{)} \delta 5.74–5.68 \text{ (1H, m, CH-C6), 4.87 (1H, s, CH}_2\text{-C19), 4.78 (1H, s, CH}_2\text{-C19), 4.32 (1H, ddd, J = 8.8, 5.2, 1.5 Hz, CH-C9), 3.58 (1H, s, CH-C2), 3.14 (1H, dd, J = 8.8, 7.6 Hz, CH-C10), 2.88 (1H, d, J = 15.9 Hz, CH-C2), 2.76–2.66 (2H, m, CH-C2,}
Chapter 3: Experimental Section

194

CH-C14), 2.65 (1H, s, OH), 2.60 (1H, ddd, J = 9.6, 7.6, 2.4 Hz, CH-C1), 2.30–2.22
(2H, m, CH2-C12), 2.20 (3H, s, CH3-C16), 2.03–1.97 (1H, m, CH2-C13), 1.97 (1H,
dd, J = 15.9, 5.2 Hz, CH2-C8), 1.93–1.86 (2H, m, CH2-C4, CH2-C5), 1.77 (3H, s,
CH3-C18), 1.41–1.32 (2H, m, CH2-C19), 1.02 (3H, s, CH3-C17); 13C NMR
(126 MHz, CDCl3) δ 210.2 (C-C15), 144.3 (C-C11), 131.4 (C-C7), 129.6 (CH-C6),
112.6 (CH2-C19), 93.7 (CH-C2), 78.6 (CH-C9), 72.7 (C-C3), 52.7 (CH-C14), 46.5
(CH-C10), 44.0 (CH-C1), 36.9 (CH2-C4), 36.1 (CH2-C8), 31.4 (CH2-C12), 30.0 (CH3-
C16), 29.7 (CH2-C13), 28.4 (CH3-C18), 27.1 (CH3-C17), 22.4 (CH2-C5); HRMS (EI+)
for C19H28O3 [M]+ calcd. 304.2038, found 304.2036, Δ -0.9 ppm; LRMS (EI+) m/z
(intensity); 304.0 (19%), 286.1 (12%), 179.0 (100%), 95.0 (44%), 82.9 (73%).

1-[(1R,2S,3S,6R,7S,8R,10Z,14S)-14-Hydroxo-6,10,14-trimethyl-15-
oxatricyclo [6.6.1.02,7]pentadec-10-en-3-yl]ethan-1-one (328) and 1-
[(1R,2S,3S,6S,7S,8R,10Z,14S)-14-Hydroxo-6,10,14-trimethyl-15-oxatricyclo
[6.6.1.02,7]pentadec-10-en-3-yl]ethan-1-one (329)

Exocyclic ketone 326 (16.7 mg, 53.1 µmol) was dissolved in EtOAc (1.5 mL).
Platinum oxide (1.4 mg, 6.2 µmol) was added and the suspension was purged 3
times with H2. The mixture was stirred at room temperature under an
atmosphere of H2 for 0.3 h. The residue was filtered off and washed with EtOAc.
The solvent was concentrated under vacuo. Purification of the residue by flash
column chromatography on silica gel (petroleum ether-ethyl acetate, gradient
elution from 3:1 to 1:1) delivered two epimers 328 (10.7 mg, 64%) and 329 (4.4
mg, 26%) as colourless solids.
1-[(1R,2S,3S,6R,7S,8R,10Z,14S)-14-Hydroxo-6,10,14-trimethyl-15-oxatricyclo [6.6.1.0²,7]pentadec-10-en-3-yl]ethan-1-one (328)

R_f = 0.26; (petroleum ether-ethyl acetate, 5:2); m.p. 82.9–84.8 °C; ν_{max} (film) 3583, 2923, 1708, 1445, 1377, 1354, 1315, 1237, 1166, 1088, 1050, 964, 873, 817 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.47 (1H, br d, J = 8.9 Hz, CH-C6), 4.05 (1H, t, J = 1.9 Hz, CH-C9), 3.86 (1H, d, J = 10.6 Hz, CH-C2), 3.38 (1H, s, OH), 2.96 (1H, dd, J = 10.6, 7.7 Hz, CH-C1), 2.79 (1H, br d, J = 14.7 Hz, CH₂-C8), 2.76–2.66 (1H, m, CH₂-C5), 2.63 (1H, t, J = 3.2 Hz, CH-C14), 2.16 (3H, s, CH₃-C16), 1.97–1.90 (1H, m, CH₂-C13), 1.90–1.87 (1H, m, CH-C10), 1.89 (3H, s, CH₃-C18), 1.87–1.78 (3H, m, CH₂-C4, CH₂-C5, CH₂-C8), 1.78–1.68 (1H, m, CH₂-C13), 1.56–1.47 (2H, m, CH₂-C4, CH₂-C12), 1.39–1.22 (1H, m, CH₃-C11), 1.08 (3H, s, CH₃-C17), 0.88 (1H, qd, J = 13.4, 3.2 Hz, CH₂-C12), 0.87 (3H, d, J = 6.4 Hz, CH₃-C19); ¹³C NMR (126 MHz, CDCl₃) δ 210.2 (C-C15), 131.2 (C-C7), 129.8 (CH-C6), 87.2 (CH-C2), 80.9 (CH-C9), 73.9 (C-C3), 48.3 (CH-C10), 48.0 (CH-C14), 39.1 (CH-C1), 38.7 (CH₂-C8), 38.1 (CH₂-C4), 32.8 (CH-C11), 29.4 (CH₂-C12), 28.3 (CH₃-C16), 28.3 (CH₃-C18), 27.8 (CH₃-C17), 22.9 (CH₂-C13), 22.1 (CH₂-C5), 21.2 (CH₃-C19); HRMS (EI) for C₃₉H₆₀O₃ [M⁺] calcd. 306.2195, found 306.2197, Δ +0.8 ppm; LRMS m/z (intensity); 306.2 (27%), 181.1 (76%), 149.0 (43%), 82.9 (100%).

R_f = 0.33; (petroleum ether-ethyl acetate, 1:1); m.p. 117.4–119.4 °C; ν_{max} (film) 3448, 2921, 2861, 1711, 1453, 1356, 1167, 1080, 963, 937, 830, 768 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.70–5.64 (1H, m, CH-C6), 4.16 (1H, ddd, J = 8.7, 5.8, 3.3 Hz, CH-C9), 3.50 (1H, d, J = 1.6 Hz, CH-C2), 2.89 (1H, br d, J = 15.6 Hz, CH₂-C8), 2.72–2.64 (1H, m, CH₂-C5), 2.60 (1H, br s, OH), 2.59–2.51 (2H, m, CH-C1, CH₂-C4), 2.44–2.38 (1H, m, CH-C10), 2.18 (3H, s, CH₃-C16), 2.00 (1H, dd, J = 15.6, 5.8 Hz, CH₂-C8), 1.97–1.90 (1H, m, CH₂-C13), 1.90–1.84 (2H, m, CH₂-C4, CH₂-C5), 1.80 (3H, s, CH₃-C17 or CH₃-C18), 1.81–1.75 (1H, m, CH-C11), 1.57–1.52 (1H, m, CH₂-C12), 1.44–1.37 (1H, m, CH₂-C4), 1.37–1.22 (2H, m, CH₂-C12, CH₂-C13), 1.05 (3H, s, CH₃-C17 or CH₃-C18), 0.98 (3H, d, J = 7.2 Hz, CH₃-C19); ¹³C NMR (126 MHz, CDCl₃) δ 211.3 (C-C15), 131.3 (C-C7), 129.9 (CH-C6), 93.6 (CH-C2), 77.7 (CH-C9), 73.2 (C-C3), 52.9 (CH-C14), 43.0 (CH-C1 or CH-C10), 42.6
Chapter 3: Experimental Section

(CH-C1 or CH-C10), 38.5 (CH₂-C8), 37.1 (CH₂-C4), 30.5 (CH-C11), 29.9 (CH₃-C16), 29.2 (CH₂-C12), 27.9 (CH₃-C17 or CH₃-C18), 27.3 (CH₃-C17 or CH₃-C18), 27.2 (CH₂-C13), 23.1 (CH₂-C5), 20.5 (CH₃-C19); HRMS (ESI) for C₁₉H₃₀NaO₃ [M+Na]^+ calcd. 329.2087, found 329.2092, Δ +1.4 ppm.

1-[(1R,2R,3S,7S,8R,10Z,14S)-10,14-Dimethyl-6-methylidene-14-(triethylsilyloxy)-15-oxatricyclo[6.6.1.0²⁻⁷]pentadec-10-en-3-yl]ethan-1-one (330)

\[
\text{C}_{25}\text{H}_{42}\text{O}_3\text{Si}
\]

To a stirred solution of ketone 326 (95.0 mg, 312 µmol) in anhydrous CH₂Cl₂ (3.0 mL) and distilled 2,6-lutidine (0.20 mL, 1.72 mmol) at −78 °C was added triethylsilyl trifluoromethanesulphonate (0.15 mL, 0.66 mmol). The mixture was stirred for 1 h at −78 °C and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ (3 mL). The solution was allowed to warm to room temperature and was diluted with Et₂O (10 mL). The phases were separated and the aqueous phase was extracted with Et₂O (3 × 5 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 20:1 to 10:1) delivered the desired silyl ether 330 (0.12 g, 93%) as a colourless oil.

\(R_f = 0.26; \) (petroleum ether-ethyl acetate, 10:1); \([\alpha]_D^{27} = -41.7 \) (c = 1.02, CHCl₃); \(\nu_{\text{max}} \) (film) 3082, 2951, 2948, 2933, 2875, 1715, 1457, 1363, 1236, 1193, 1123, 1086, 1013, 992, 949, 847, 742, 668 cm⁻¹; \(^1\text{H} \) NMR (500 MHz, CDCl₃) \(\delta \) 5.71 (1H, dd, \(J = 9.5, 9.0 \) Hz, CH-C6), 4.83 (1H, t, \(J = 1.9 \) Hz, CH₂-C19), 4.75 (1H, s, CH₂-C19), 4.26 (1H, ddd, \(J = 10.4, 5.2, 1.2 \) Hz, CH-C9), 3.58 (1H, s, CH₂-C2), 3.16–3.07 (2H, m, CH-C10, CH₂-C5), 2.91 (1H, d, \(J = 16.0 \) Hz, CH₂-C8), 2.77 (1H, ddd, \(J = 12.7, 11.0, 3.4 \) Hz, CH-C14), 2.42 (1H, dd, \(J = 11.0, 7.1 \) Hz, CH-C1),
2.28 (1H, dt, J = 13.7, 3.5 Hz, CH₂-C12), 2.25–2.20 (1H, m, CH₂-C12), 2.19 (3H, s, CH₃-C16), 2.00 (1H, dq, J = 12.7, 3.5 Hz, CH₂-C13), 1.93 (1H, dd, J = 16.0, 5.2 Hz, CH₂-C8), 1.90–1.83 (1H, m, CH₂-C4), 1.78–1.70 (1H, m, CH₂-C5), 1.73 (3H, s, CH₃-C18), 1.30–1.20 (2H, m, CH₂-C4, CH₂-C13), 1.04 (3H, s, CH₃-C17), 0.94 (9H, t, J = 7.9 Hz, CH₃-SiEt), 0.64–0.52 (6H, m, CH₂-SiEt); ¹³C NMR (126 MHz, CDCl₃) δ 210.8 (C-15), 144.5 (C-11), 130.8 (C-C7), 130.3 (CH₂-C6), 112.9 (CH₂-C19), 95.1 (CH-C2), 78.8 (CH-C9), 75.3 (C-C3), 53.4 (CH-C14), 46.5 (CH-C10), 45.1 (CH-C1), 38.0 (CH₂-C4), 35.8 (CH₂-C8), 31.4 (CH₂-C12), 30.4 (CH₂-C16), 30.4 (CH₂-C13), 28.5 (CH₃-C17 or CH₃-C18), 28.4 (CH₃-C17 or CH₃-C18), 22.8 (CH₂-C5), 7.4 (CH₃-SiEt), 7.0 (CH₂-SiEt); HRMS (El⁺) for C₂₅H₄₂O₃Si [M⁺] calcd. 418.2903, found 418.2897, Δ -1.6 ppm; LRMS (El⁺) m/z (intensity); 418.1 (86%), 389.1 (59%), 271.1 (62%), 225.1 (100%), 185.1 (80%); Anal. calcd. for C₂₅H₄₂O₃Si: C, 71.72%; H, 10.11%; found: C, 71.62%; H, 10.08%.

To a stirred solution of ketone 330 (235 mg, 561 µmol) in anhydrous THF (12 mL) was added methylmagnesium chloride (4.0 mL of a 3.0 m solution in THF, 12.0 mmol) dropwise. The mixture was stirred at room temperature for 3.5 h and the reaction was quenched by the addition a saturated aqueous solution of NH₄Cl (5 mL). The phases were separated and the aqueous phase was extracted with Et₂O (3 × 10 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 50:1 to 10:1) afforded the desired alcohol 331
(218 mg, 84%) as a colourless oil and recovered the starting material XX (37.2 mg, 15%).

\[R_f = 0.77; \text{(petroleum ether-ethyl acetate, 5:1); } [\alpha]^{26}_D -28.3 \text{ (c = 1.01, CHCl}_3); \]

\(\nu_{\text{max}} \) (film) 3468, 2950, 2933, 2874, 1648, 1457, 1372, 1236, 1192, 1125, 1088, 1007, 968, 946, 895, 782, 741, 725 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \):

- 5.61 (1H, dd, \(J = 10.6, 6.9 \text{ Hz, CH}_2\-C6), 4.76 (1H, s, CH\(_2\)-C20), 4.69 (1H, d, \(J = 1.8 \text{ Hz, CH}_2\-C20), 4.60 (1H, br s, CH\(_2\)-C2), 4.18 (1H, ddd, \(J = 8.3, 4.0, 2.6 \text{ Hz, CH}_2\-C9),
- 3.15 − 3.06 (1H, m, CH\(_2\)-C5), 2.92 (1H, t, \(J = 8.3 \text{ Hz, CH}_2\-C10), 2.82 (1H, d, \(J = 15.2 \text{ Hz, CH}_2\-C8), 2.29 (1H, td, \(J = 8.3, 2.0 \text{ Hz, CH}_2\-C1), 2.19 (2H, dd, \(J = 7.8, 4.4 \text{ Hz, CH}_2\-C12), 1.95−1.79 (4H, m, CH\(_2\)-C4, CH\(_2\)-C5, CH\(_2\)-C8, CH\(_2\)-C13), 1.77 (3H, s, CH\(_3\)-C19), 1.72 (1H, ddd, \(J = 11.1, 9.1, 4.3 \text{ Hz, CH}_2\-C14), 1.52−1.46 (1H, m, CH\(_2\)-C4),
- 1.26 (3H, s, CH\(_3\)-C16 or CH\(_3\)-C17), 1.25 (3H, s, CH\(_3\)-C16 or CH\(_3\)-C17), 1.18−1.15 (1H, m, CH\(_2\)-C13), 1.14 (3H, s, CH\(_3\)-C18), 0.95 (9H, t, \(J = 7.9 \text{ Hz, CH}_3\-SiEt), 0.61 (6H, m, CH\(_2\)-SiEt); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \):

To a stirred solution of alcohol 331 (85.0 mg, 195 µmol) in distilled triethylamine (0.60 mL, 4.33 mmol) were added recrystallised DMAP (119 mg, 974 µmol) and freshly distilled acetic anhydride (0.28 mL, 2.96 mmol). The

\[\{[(1R,2R,6R,7R,8R,9S,12Z)\-9,13--Dimethyl-3-methylidene-6-(propan-2-yl)\-15-oxatricylo[6.6.1.0\^2.7]pentadec-12-en-9-yl]ooy\}triethylsilane (333) \]
mixture was stirred at 40 °C for 2.5 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ (3 mL). The solution was diluted with Et₂O (5 mL) and the phases were separated. The aqueous phase was extracted with Et₂O (3 × 5 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 20:1) removed baseline impurities. The crude acetate 332 was used in the next step without further purification. Small, freshly cut pieces of oil-free potassium metal were added to a solution of recrystallised 18-crown-6 (0.26 g, 0.99 mmol) in freshly distilled tert-butylamine (10 mL). The mixture was stirred at room temperature for 30 min during which time the solution turned dark blue in colour. Anhydrous THF (10 mL) was added and the mixture was stirred for further 30 min. A solution of the crude acetate 332 in anhydrous THF (0.4 mL) was added slowly. After complete the addition of the substrate, the mixture was stirred for 1.5 h and the reaction was quenched by the addition of 2-propanol (5 mL) and a saturated aqueous solution of NH₄Cl (10 mL). The solution was diluted with Et₂O (10 mL) and the phases were separated. The aqueous phase was extracted with Et₂O (3 × 5 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 50:1 to 10:1) delivered the silyl ether 333 (40.0 mg, 49%) as a colourless oil and the alcohol 272 (3.8 mg, 7%) as a colourless solid. Rᶠ = 0.61; (petroleum ether-ethyl acetate, 40:1); [α]D²³ −19.0 (c = 0.84, CHCl₃); νmax (film) 2956, 2932, 2874, 1646, 1456, 1373, 1190, 1123, 1088, 1013, 992, 896, 727 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.69 (1H, dd, J = 9.3, 9.0 Hz, CH-C6), 4.77 (1H, t, J = 2.0 Hz, CH₂-C20), 4.66 (1H, s, CH₂-C20), 4.24 (1H, ddd, J = 10.3, 4.9, 1.3 Hz, CH-C9), 3.89 (1H, s, CH-C2), 3.21–3.13 (1H, m, CH₂-C5), 3.06 (1H, dd, J = 10.3, 7.5 Hz, CH-C10), 2.88 (1H, d, J = 15.9 Hz, CH₂-C8), 2.22 (1H, dt, J = 13.3, 3.2 Hz, CH₂-C12), 2.13–2.06 (1H, m, CH₂-C12), 1.92 (1H, dd, J = 15.9, 4.9 Hz, CH₂-C8), 1.89–1.75 (5H, m, CH-C1, CH₂-C4, CH₂-C5, CH₂-C13, CH-C15), 1.74 (3H, s, CH₃-C19), 1.40–1.33 (1H, m, CH-C14), 1.28–1.23 (1H, m, CH₂-C4), 1.05 (3H, s, CH₂-C18), 0.98 (3H, d, J = 6.9 Hz, CH₃-C16 or CH₃-C17), 0.96 (9H, d, J = 6.9 Hz, CH₃-SiEt), 0.89–0.81 (1H, m, CH₂-C13), 0.70 (3H, d, J = 6.9 Hz, CH₃-C16
or CH₃-C₁₇), 0.67–0.55 (6H, m, CH₂-SiEt); 13C NMR (126 MHz, CDCl₃) δ 147.3 (C-C₁₁), 131.3 (C-C₇), 130.0 (CH-C₆), 111.0 (CH₂-C₂₀), 93.7 (CH-C₉), 78.8 (CH₂-C₂), 75.7 (C-C₃), 47.6 (CH-C₁₀), 47.2 (CH-C₁), 43.9 (CH-C₁₄), 38.2 (CH₂-C₄), 35.9 (CH₂-C₈), 31.9 (CH₂-C₁₂), 28.6 (CH₂-C₁₈, CH₃-C₁₉), 28.0 (CH-C₁₅), 26.0 (CH₂-C₁₃), 23.1 (CH₂-C₅), 22.1 (CH₃-C₁₆ or CH₃-C₁₇), 15.4 (CH₃-C₁₆ or CH₃-C₁₇), 7.4 (CH₃-SiEt), 7.1 (CH₂-SiEt); HRMS (ESI) for C₂₆H₄₆O₂NaSi $^{[M+Na]^+}$ calcd. 441.3159, found 441.3144, Δ −3.4 ppm.

![Structure](image_url)

C₂₀H₃₂O₂

To a stirred solution of silyl ether 333 (40.0 mg, 95.5 µmol) in MeOH (0.95 mL) at 0 °C was added concentrated HCl (0.2 mL). The mixture was stirred at 0 °C for 3 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ (3 mL). The solution was diluted with Et₂O (5 mL) and the aqueous phase was extracted with Et₂O (3 × 5 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 25:1 to 10:1) delivered the desired alcohol 272 (27.4 mg, 95%) as a colourless solid. Rₓ = 0.32; (petroleum ether-ethyl acetate, 5:1); m.p. 106.2–108.2 °C; $[^{[a]}]_D^{25}$ −69.2 (c = 0.87, CHCl₃); νₓ max (film) 3414, 2959, 2938, 2869, 1646, 1456, 1373, 1198, 1118, 1085, 1058, 1022, 974, 898, 837, 821, 763, 653 cm⁻¹; 1H NMR (500 MHz, CDCl₃) δ 5.74–5.67 (1H, m, CH-C₆), 4.80 (1H, t, J = 1.6 Hz, CH₂-C₂₀), 4.69 (1H, s, CH₂-C₂₀), 4.30 (1H, ddd, J = 9.6, 4.9, 0.9 Hz, CH-C₉), 3.87 (1H, dd, J = 1.6 Hz, CH₂-C₂₀), 3.09 (1H, d, J = 16.0 Hz, CH₂-C₈), 2.78–2.70 (1H, m, CH₂-C₅), 2.23 (1H, dt, J = 13.4, 3.9 Hz, CH₂-C₁₂), 2.14–2.06 (1H, m, CH₂-C₁₂), 1.97–1.81 (5H, m, CH-C₁, CH₂-C₄, CH₂-C₅, CH₂-C₈, CH-C₁₅),
Chapter 3: Experimental Section

201

1.75 (3H, s, CH$_3$-C19), 1.77-1.71 (1H, m, CH$_2$-C13), 1.60 (1H, br s, OH), 1.38-1.31 (2H, m, CH$_2$-C4, CH-C14), 1.13-1.03 (1H, m, CH$_2$-C13), 1.02 (3H, s, CH$_3$-C18), 0.97 (3H, d, J = 6.9 Hz, CH$_3$-C16 or CH$_3$-C17), 0.73 (3H, d, J = 6.9 Hz, CH$_3$-C16 or CH$_3$-C17); 13C NMR (126 MHz, CDCl$_3$) δ 146.7 (C-C11), 131.7 (C-C7), 129.3 (CH-C6), 111.2 (CH$_2$-C20), 92.8 (CH-C2), 78.8 (CH-C9), 72.9 (C-C3), 47.4 (CH-C10), 46.5 (CH-C1), 43.7 (CH-C14), 36.9 (CH$_2$-C4), 36.0 (CH$_2$-C8), 31.7 (CH$_2$-C12), 28.5 (CH$_3$-C19), 28.1 (CH-C15), 27.1 (CH$_2$-C18), 25.8 (CH$_2$-C13), 22.6 (CH$_2$-C5), 22.1 (CH$_3$-C16 or CH$_3$-C17), 15.8 (CH$_3$-C16 or CH$_3$-C17); HRMS (ESI) for C$_{20}$H$_{32}$NaO$_2$ [M+Na]$^+$ calcd. 327.2295, found 327.2284, Δ -3.3 ppm.

![Structure of 334](image)

C$_{20}$H$_{30}$O$_2$

Triene 325 (26.0 mg, 85.9 µmol) was dissolved in EtOAc (4.4 mL). Pd/C (~10 mol%) was added and the solution was purged 3 times with H$_2$. The mixture was stirred at room temperature under an atmosphere of H$_2$ for 16 h. The catalyst was filtered off through a pad of celite and the solvent was removed in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, 10:1) afforded 334 (5.80 mg, 22%) as a colourless solid and recovered the starting material 325 (11.5 mg, 44%).

R$_f$ = 0.24; (petroleum ether-ethyl acetate, 5:1); m.p. 102.3-104.9 °C; ν_{max} (film) 3416, 2964, 2919, 1452, 1376, 1321, 1274, 1203, 1119, 1090, 1057, 973, 902, 839, cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.59 (1H, dd, J = 10.2, 3.9 Hz, CH-C6), 5.47 (1H, br s, CH-C12), 4.79 (1H, quint, J = 1.4 Hz, CH$_2$-C17), 4.75 (1H, s, CH$_2$-C17), 4.17-4.13 (1H, m, CH-C9), 3.86 (1H, d, J = 6.6 Hz, CH-C2), 3.13 (1H, s, OH), 2.88 (1H, d, J = 15.0 Hz, CH$_2$-C8), 2.78-2.70 (1H, m, CH$_2$-C5), 2.54-2.47 (2H, m, CH-C1, CH-C10), 2.23-2.15 (2H, m, CH$_2$-C13, CH-C14), 2.12-2.04 (1H, m, CH$_2$-C13), 1.94 (1H, dd, J = 15.0, 4.5 Hz, CH$_2$-C8), 1.92-1.77 (2H, m, CH$_2$-C4,
(1R,3S,5R,8S,9R,10R,11R,15R)-3,8-Dimethyl-14-methylidene-11-(propan-2-yl)-4,16-dioxatetracyclo[7.6.1.0^3,5.0^{10,15}]hexadecan-8-ol (338)

\[
\text{C}_{20}\text{H}_{32}\text{O}_3
\]

To a stirred solution of diene 272 (78.0 mg, 256 \(\mu \text{mol} \)) in anhydrous \(\text{CH}_2\text{Cl}_2 \) (2.3 mL) at 0 °C was added a solution of \(m \)-CPBA (2.6 mL of a 0.15 \(m \) solution in \(\text{CH}_2\text{Cl}_2 \), 384 \(\mu \text{mol} \)). The mixture was stirred at 0 °C for 2.5 h and the reaction was quenched by the addition of a saturated aqueous solution of \(\text{Na}_2\text{S}_2\text{O}_3 \) (6 mL). The solution was diluted with \(\text{Et}_2\text{O} \) (10 mL) and the phases were separated. The aqueous phase was extracted with \(\text{Et}_2\text{O} \) (3 \(\times \) 6 mL). The organic extracts were combined, washed with brine (10 mL), dried (\(\text{MgSO}_4 \)), filtered and concentrated \textit{in vacuo}. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 5:1 to 3:1) delivered the epoxide 338 as a colourless solid (74.2 mg, 91%).

\(R_f = 0.33; \) (petroleum ether-ethyl acetate, 2:1); \([\alpha]_D^{30} +62.9 \) (c = 0.62, \(\text{CHCl}_3 \));

\(\nu_{\text{max}} \) (film) 3430, 2959, 2929, 2892, 2873, 1645, 1454, 1377, 1186, 1090, 1071, 1056, 1027, 983, 901, 879, 845, 775, 736, 681 cm\(^{-1}\);

\(^1\text{H NMR} \) (500 MHz, \(\text{CDCl}_3 \)), \(\delta \)

4.93 (1H, s, CH-2-C20), 4.85 (1H, s, CH-2-C20), 4.42 (1H, ddd, \(J = 6.7, 5.6, 1.8 \) Hz, CH-C9), 3.81 (1H, d, \(J = 3.8 \) Hz, CH-C2), 3.06 (1H, dd, \(J = 7.9, 6.7 \) Hz, CH-C10), 2.84 (1H, dd, \(J = 11.1, 4.0 \) Hz, CH-C6), 2.69 (1H, br s, OH), 2.24–2.06 (6H, m,
CH-C1, CH2-C5, CH2-C8, CH2-C12), 2.04–1.97 (1H, m, CH2-C5), 1.95–1.87 (1H, m, CH2-C4), 1.86–1.81 (1H, m, CH-C15), 1.77–1.71 (1H, m, CH2-C13), 1.63–1.56 (1H, m, CH2-C4), 1.43 (3H, s, CH3-C19), 1.42–1.28 (2H, m, CH2-C13, CH-C14), 1.11 (3H, s, CH3-C18), 0.99 (3H, d, J = 6.8 Hz, CH3-C16 or CH3-C17), 0.80 (3H, d, J = 6.8 Hz, CH3-C16 or CH3-C17); 13C NMR (126 MHz, CDCl3) δ 146.4 (C-C11), 111.2 (CH2-C20), 90.9 (CH-C2), 77.5 (CH-C9), 73.8 (C-C3), 65.7 (CH-C6), 59.7 (C-C7), 48.1 (CH-C10), 46.6 (CH-C1), 42.9 (CH-C14), 39.3 (CH2-C8), 33.2 (CH2-C4), 31.6 (CH2-C12), 28.5 (CH-C15), 27.6 (CH3-C19), 27.1 (CH3-C18), 26.3 (CH2-C13), 24.3 (CH2-C5), 22.2 (CH3-C16 or CH3-C17), 16.8 (CH3-C16 or CH3-C17); HRMS (ESI) for C20H32NaO3 [M+Na+] calcd. 343.2244, found 343.2236, Δ = −2.4 ppm.

Colourless oil; Rf = 0.63; (ethyl acetate); νmax (neat) 3494, 2961, 2932, 2872, 1453, 1379, 1107, 1040, 958, 860, 750, 635 cm⁻¹; 1H NMR (500 MHz, CDCl3) δ 3.85 (1H, d, J = 11.0 Hz, CH-C9), 3.69 (1H, t, J = 3.3 Hz, CH-C2), 3.20 (1H, s, OH), 2.83 (1H, dd, J = 4.2, 1.8 Hz, CH2-C20), 2.74 (1H, dd, J = 10.9, 2.9 Hz, CH-C6), 2.69 (1H, d, J = 5.9 Hz, CH-C1), 2.59 (1H, dd, J = 11.0, 5.9 Hz, CH-C10), 2.54 (1H, dd, J = 4.2, 0.9 Hz, CH2-C20), 2.07–1.95 (5H, m, CH2-C4, CH2-C5, CH2-C12, CH2-C8), 1.93–1.84 (2H, m, CH2-C5, CH2-C13), 1.82–1.78 (1H, m, CH-C15), 1.70 (1H, dt, J = 14.1, 3.8 Hz, CH2-C12), 1.65 (1H, dd, J = 14.7, 7.5 Hz, CH2-C4), 1.40–1.37 (1H, m, CH-C14), 1.38 (3H, s, CH3-C19), 1.17 (3H, s, CH3-C19), 1.08 (3H, d, J = 6.4 Hz, CH3-C16 or CH3-C17), 0.98 (3H, d, J = 6.4 Hz, CH3-C16 or CH3-C17); 13C NMR (125 MHz, CDCl3) δ 86.4 (CH-C9), 73.8 (C-C3), 73.3 (CH-C2), 66.3 (CH-C6), 59.4 (C-C7 or C-C11), 57.6 (C-C7 or C-C11), 52.2 (CH2-C20), 44.2 (CH-C1), 42.7 (CH-C10), 41.1 (CH2-C8), 39.6 (CH-C14), 34.0 (CH2-C4), 29.4 (CH2-C13), 29.3 (CH-C15), 27.8 (CH3-C18), 26.6 (CH3-C19), 23.2
(CH₂-C₁₂), 22.7 (CH₂-C₅), 22.7 (CH₃-C₁₆ or CH₃-C₁₇), 20.7 (CH₃-C₁₆ or CH₃-C₁₇);
HRMS (ESI) for C₂₀H₃₂NaO₄[M+Na]⁺ calcd. 359.2193, found 359.2179, Δ −3.7 ppm.

Method A: Scandium triflate and KHSO₄
To a stirred solution of epoxide 338 (12.5 mg, 39 µmol) in a mixture (1:1) of THF and water (0.8 mL) were added potassium bisulfate (208 mg, 1.53 mmol) and scandium triflate (38 mg, 77 µmol). The mixture was stirred at room temperature for 24 h and the reaction was quenched by the addition of a saturated aqueous solution of Na₂CO₃ (3 mL). The solution was diluted with water (1.5 mL) and EtOAc (5 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 5 mL). The organic extracts were combined, dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 5:1 to 1:1) afforded the allylic alcohol 340 (7.90 mg, 63%) as a colourless solid.

Method B: H₂SO₄
To a stirred solution of epoxide 338 (43.0 mg, 0.13 mmol) in a mixture (1:1) of THF and water (2.60 mL) was added sulphuric acid (0.15 mL, 2.81 mmol). The mixture was stirred at room temperature for 30 h and the reaction was quenched by the addition of a saturated aqueous solution of Na₂CO₃ (5 mL). The solution was diluted with water (6 mL) and EtOAc (6 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 8 mL). The organic extracts were combined, washed with brine (15 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column
chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 5:1 to pure ethyl acetate) delivered the allylic alcohol 340 (33.2 mg, 77%) as a colourless solid and the triol 341 (7.2 mg, 15%).

$R_f = 0.29$; (petroleum ether-ethyl acetate, 1:1); m.p. 168–170 °C; $[\alpha]_D^{27} +9.0$ (c = 0.16, CHCl$_3$); ν_{max} (film) 3403, 2957, 2932, 2871, 1646, 1458, 1370 1183, 1066, 1040, 969, 939, 897, 833, 732, 668 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.68 (1H, d, $J = 10.4$ Hz, OH-C6), 5.07 (1H, s, CH$_2$-C19), 5.06 (1H, s, CH$_2$-C19), 4.84 (1H, t, $J = 2.0$ Hz, CH$_2$-C20), 4.73 (1H, s, CH$_2$-C20), 4.53–4.51 (1H, m, CH$_2$-C20), 4.73 (1H, s, CH$_2$-C20), 4.13 (1H, ddd, $J = 10.5$, 4.8, 1.1 Hz, CH-C9), 3.94 (1H, s, CH$_2$-C9), 3.22 (1H, dd, $J = 10.4$, 7.7 Hz, CH-C10), 3.13 (1H, br s, OH-C3), 2.98 (1H, dd, $J = 14.5$, 4.8 Hz, CH$_2$-C8), 2.32–2.22 (3H, m, CH$_2$-C5, CH$_2$-C8, CH$_2$-C12), 1.95–1.82 (4H, m, CH-C1, CH$_2$-C4, CH$_2$-C5, CH-C15), 1.76 (1H, qd, $J = 13.1$, 3.3 Hz, CH$_2$-C13), 1.56–1.49 (1H, m, CH$_2$-C4), 1.35–1.27 (1H, m, CH-C14), 1.10 (3H, s, CH$_3$-C18), 1.01 (1H, qd, $J = 13.1$, 3.1 Hz, CH$_2$-C13), 0.98 (3H, d, $J = 6.9$ Hz, CH$_3$-C16 or CH$_3$-C17), 0.72 (3H, d, $J = 6.9$ Hz, CH$_3$-C16 or CH$_3$-C17); 13C NMR (126 MHz, CDCl$_3$) δ 147.4 (C-C7 or C-C11), 145.7 (C-C7 or C-C11), 116.3 (CH$_2$-C19), 111.9 (CH$_2$-C20), 94.6 (CH-C2), 78.8 (CH-C9), 74.0 (C-C3), 72.4 (CH-C6), 47.2 (CH-C10), 45.9 (CH-C1), 44.3 (CH-C14), 35.5 (CH$_2$-C8), 35.0 (CH$_2$-C5), 31.7 (CH$_2$-C4), 31.7 (CH$_2$-C12), 29.1 (CH$_3$-C18), 28.0 (CH-C15), 25.3 (CH$_2$-C13), 22.1 (CH$_3$-C16 or CH$_3$-C17), 15.2 (CH$_3$-C16 or CH$_3$-C17); HRMS (Cl+, Me$_3$CH) for C$_{20}$H$_{33}$O$_3$ [M+H]$^+$ calcd. 321.2430, found 321.2426, Δ –1.2 ppm; LRMS m/z (intensity); 321.0 (96%), 303.0 (100%).
(1R,2R,3R,7R,8R,14S)-14-Hydroxy-14-methyl-6,10-dimethylidene-3-(proparyl)-15-oxatricyclo[6.6.1.0^{2,7}]pentadecan-11-one (345)

To a stirred solution of allylic alcohol 340 (8.7 mg, 27 µmol) in anhydrous CH₂Cl₂ (1.40 mL) was added Dess-Martin periodinane (15.7 mg, 37.0 µmol). The mixture was stirred at room temperature for 2 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ (1 mL) and Na₂S₂O₃ (1 mL). The solution was stirred vigorously at room temperature for an additional 15 min. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 5 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo to afford the enone 345 (8.80 mg, 100%) as a colourless solid.

Rᵣ = 0.62; (petroleum ether-ethyl acetate, 1:1); m.p. 160.6–161.9 °C; [α]D²⁷

C₂₀H₃₀O₃

HRMS (EI+) for C₂₀H₃₀O₃ [M]⁺ calcd.
318.2195, found 318.2192, Δ −0.8 ppm; LRMS (El+) m/z (intensity); 318.3 (15%), 300.3 (17%), 162.2 (22%).

C₂₀H₃₂O₃

To a stirred solution of enone 345 (8.8 mg, 27 µmol) in MeOH (1.35 mL) at 0 °C were added cerium chloride heptahydrate (11.5 mg, 30.5 µmol) and sodium borohydride (2.3 mg, 74. µmol). The mixture was stirred at 0 °C for 30 min and the reaction was quenched by the addition of a 1 m aqueous solution of HCl (0.5 mL) and brine (0.5 mL). The solution was diluted with cold EtOH (1 mL) and a saturated aqueous solution of NH₄Cl (1 mL). The phases were separated and the aqueous phase extracted with EtOAc (3 × 5mL). The organic extracts were combined, dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 5:1 to pure ethyl acetate) afforded alcohols 340 (3.30 mg, 38%) and 346 (5.00 mg, 57%) as colourless solids.

R_f = 0.41; (ethyl acetate); m.p. 149.3–152.5 °C; [α]_D²⁵ −23.8 (c = 0.83, CHCl₃); ν_max (film) 3409, 3070, 2957, 2930, 2862, 1645, 1448, 1371, 1192, 1082, 1063, 1030, 1006, 923, 894, 794 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.46 (1H, br s, CH₂-C19), 5.13 (1H, s, CH₂-C19), 4.82 (1H, t, J = 2.0 Hz, CH₂-C20), 4.69 (1H, t, J = 2.0 Hz, CH₂-C20), 4.48 (1H, dd, J = 10.8, 4.9 Hz, CH-C6), 4.15 (1H, ddd, J = 10.5, 4.9, 1.2 Hz, CH-C9), 3.76 (1H, s, CH-C2), 3.06 (1H, dd, J = 10.5, 7.8 Hz, CH-C10), 2.78 (1H, ddd, J = 13.7, 4.9, 1.2 Hz, CH₂-C8), 2.32–2.24 (3H, m, CH₂-C5, CH₂-C8, CH₂-C12), 2.08–2.00 (1H, m, CH₂-C12), 1.87–1.79 (2H, m, CH-C1, CH-C15), 1.74 (1H, dq, J = 13.0, 3.3 Hz, CH₂-C13), 1.68–1.50 (5H, m, OH-C3, CH₂-C4, CH₂-C5, OH-C6), 1.33–1.23 (1H, m, CH-C14), 1.08 (3H, s, CH₃-C18), 1.00 (1H, qd, J = 13.0, 3.3 Hz, CH₂-C13), 0.97 (3H, d, J = 6.9 Hz, CH₃-C16 or CH₃-
C17), 0.71 (3H, d, J = 6.9 Hz, CH₃-C16 or CH₃-C17); ¹³C NMR (126 MHz, CDCl₃) δ 150.4 (C-C7 or C-C11), 146.1 (C-C7 or C-C11), 116.8 (CH₂-C19), 111.6 (CH₂-C20), 92.8 (CH-C2), 79.9 (CH-C9), 74.5 (C-C3), 72.5 (CH-C6), 47.2 (CH-C10), 45.3 (CH-C1), 44.6 (CH-C14), 39.0 (CH₂-C8), 34.4 (CH₂-C5), 32.6 (CH₂-C4), 31.9 (CH₂-C12), 28.6 (CH₃-C18), 27.9 (CH-C15), 25.3 (CH₂-C13), 22.1 (CH₃-C16 or CH₃-C17), 15.2 (CH₃-C16 or CH₃-C17); HRMS (ESI) for C₂₀H₃₂O₃NaO₃ [M+Na]+ calcd. 343.2244, found 343.2232, Δ -3.5 ppm.

(1'R,2R,2'R,3'R,7'R,8'R,11'S,14'S)-14'-Methyl-6'-methylidene-3'-(propan-2-yl)-15'-oxaspiro[oxirane-2,10'-tricyclo [6.6.1.0²,7]pentadecane]-11',14'-diol (347)

In a round bottom flask charged with 4 Å powdered molecular sieves in CH₂Cl₂ (1.0 mL) at -20 ºC were added successively freshly distilled (+)-diethyl tartrate (80 µL of a 116 µmol/mL solution in CH₂Cl₂, 9.3 µmol), freshly distilled titanium tetraisopropoxide (90 µL of a 67.5 µmol/mL solution in CH₂Cl₂, 6.1 µmol) and tert-butylhydroperoxide (60 µL of a 1.9 M solution in CH₂Cl₂, 0.11 mmol). The solution was stirred at -20 ºC for 30 min and allylic alcohol 346 (19.0 mg, 59.3 µmol) in CH₂Cl₂ (1.0 mL) was added dropwise. The mixture was stirred for 22 h at -20 ºC and the reaction was quenched by the addition of water (1 mL) and 30% wt solution of NaOH in brine (5 mL). The solution was allowed to warm to room temperature and was stirred for an additional 1 h. The mixture was diluted with CH₂Cl₂ (10 mL) and the aqueous phase was extracted with CH₂Cl₂ (3 × 6 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to 2% methanol) delivered the desired epoxyalcohol 347 (17.8 mg, 89%) as colourless crystals.
R_f = 0.35; (dichloromethane-methanol, 40:1); m.p. 168.1–170.3 °C; [α]_D^{24} +19.7 (c = 1.22, CHCl_3); ν_max (film) 3462, 2956, 2933, 2868, 1646, 1452, 1373, 1189, 1084, 1049, 927, 893, 846, 788, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl_3) δ 4.82 (1H, t, J = 1.6 Hz, CH₂-C₂₀), 4.63 (1H, s, CH₂-C₂₀), 4.41 (1H, ddd, J = 10.2, 5.2, 4.8 Hz, CH-C₆), 4.24 (1H, ddd, J = 10.7, 4.9, 1.5 Hz, CH-C₉), 3.84 (1H, s, CH-C₂), 3.12 (1H, dd, J = 4.6, 1.8 Hz, CH₂-C₁₉) 3.09 (1H, dd, J = 10.7, 7.7 Hz, CH-C₁₀), 2.98 (1H, d, J = 4.6 Hz, CH₂-C₁₉), 2.71 (1H, ddd, J = 14.5, 4.9, 1.8 Hz, CH₂-C₈), 2.53 (1H, d, J = 4.8 Hz, OH-C₆), 2.37–2.28 (1H, m, CH₂-C₁₂), 2.27–2.22 (1H, m, CH₂-C₁₂), 2.23 (1H, br s, OH-C₃), 2.09–2.01 (1H, m, CH₂-C₁₂), 1.92 (1H, dd, J = 11.0, 7.7 Hz, CH-C₁₁), 1.89–1.82 (1H, m, CH-C₁₅), 1.77–1.67 (2H, m, CH₂-C₄, CH₂-C₁₃), 1.60 (1H, dt, J = 15.5, 4.8 Hz, CH₂-C₄), 1.37 (1H, dd, J = 14.5, 1.5 Hz, CH₂-C₈), 1.37–1.30 (1H, m, CH-C₁₄), 1.26–1.18 (1H, m, CH₂-C₅), 1.11 (3H, s, CH₃-C₁₈), 1.02 (1H, qd, J = 13.6, 3.3 Hz, CH₂-C₁₃), 0.97 (3H, d, J = 6.8 Hz, CH₃-C₁₆ or CH₃-C₁₇), 0.73 (3H, d, J = 6.8 Hz, CH₃-C₁₆ or CH₃-C₁₇); ¹³C NMR (126 MHz, CDCl₃) δ 145.9 (C-C₁₁), 111.7 (CH₂-C₂₀), 93.0 (CH-C₂), 79.1 (CH-C₉), 74.4 (C-C₃), 69.5 (CH-C₆), 59.0 (C-C₇), 53.0 (CH₂-C₁₉), 48.6 (CH-C₁₀), 45.7 (CH-C₁), 44.2 (CH-C₁₄), 37.6 (CH₂-C₈), 32.1 (CH₂-C₅), 31.9 (CH₂-C₄), 31.5 (CH₂-C₁₂), 28.4 (CH₃-C₁₈), 28.0 (CH-C₁₅), 25.4 (CH₂-C₁₃), 22.0 (CH₃-C₁₆ or CH₃-C₁₇), 15.2 (CH₃-C₁₆ or CH₂-C₁₇); HRMS (ESI) for C₂₀H₃₂NaO₄ [M+Na]^+ calcd. 359.2193, found 359.2185, Δ –2.2 ppm.

(1R,2R,6R,7R,8R,9S,12S-13S)-9,13-Dimethyl-3-methylidene-6-(propan-2-yl)-15-oxatricyclo[6.6.1.0^2,7]pentadecane-9,12,13-triol – proposed structure of sclerophytin F (10)¹³

![sclerophytin F structure](image)

C₂₀H₃₄O₄

To a stirred solution of epoxyalcohol 347 (12.0 mg, 35.6 µmol) in anhydrous CH₂Cl₂ (2.0 mL) was added DIBAL-H (400 µL of a 1.0 M solution in CH₂Cl₂, 400 µmol) at 0 °C. The mixture was stirred at room temperature for 72 h and the
The reaction was quenched by the addition of a saturated aqueous solution of sodium potassium tartrate (2 mL). The solution was diluted with CH$_2$Cl$_2$ (1 mL) and was vigorously stirred at room temperature until the clear phases formed. The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 5 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from pure to 2%) afforded the triol 10 (5.1 mg, 45%) as a colourless oil.

Rf = 0.26; (ethyl acetate); $[\alpha]_D^{25} +51.0$ ($c = 0.20$, CHCl$_3$); ν_{max} (film) 3422, 2960, 2932, 2928, 1462, 1374, 1260, 1088, 1067, 1026, 1009, 920, 888, 803, 743 cm$^{-1}$; 1H NMR (600 MHz, CDCl$_3$)164 δ 4.91 (1H, s, CH$_2$-C20), 4.85 (1H, s, CH$_2$-C20), 4.75 (1H, d, $J = 10.1$ Hz, CH-C9), 4.64 (1H, br s, CH-C6), 3.72 (1H, d, $J = 8.7$ Hz, CH-C2), 2.50 (1H, d, $J = 6.1$ Hz, CH-C10), 2.40–2.33 (1H, m, CH-C1), 2.17–2.04 (4H, m), 1.93–1.85 (1H, ddd, $J = 15.5$, 12.9, 3.3 Hz), 1.84–1.69 (4H, m), 1.69 (1H, dd, $J = 15.2$, 3.6 Hz), 1.66–1.48 (4H, m), 1.42–1.36 (1H, m, CH-C14), 1.19 (3H, s, CH$_3$-C18), 1.09 (3H, s), 1.01 (3H, d, $J = 6.6$ Hz, CH$_3$-C16), 0.93 (3H, d, $J = 6.6$ Hz, CH$_3$-C17); 13C NMR (151 MHz, CDCl$_3$) δ 146.1 (C-C11), 107.9 (CH$_2$-C20), 87.0 (CH-C2), 75.8 (CH-C9), 75.4 (CH-C6), 75.1 (C-C3 or C-C7), 73.9 (C-C3 or C-C7), 47.8 (CH-C10), 45.2 (CH$_2$-C8), 42.3 (CH-C1), 40.5 (CH-C14), 33.2 (CH$_2$-C4), 30.3 (CH$_2$-C12), 29.8 (CH$_2$-C5), 29.4 (CH-C15), 28.5 (CH$_3$-C18), 24.8 (CH$_2$-C13), 22.7 (CH$_3$-C19), 22.2 (CH$_3$-C16), 20.7 (CH$_3$-C17); HRMS (ESI) for C$_{20}$H$_{34}$NaO$_4$ [M+Na]$^+$ calcd. 361.2338, found 361.2349, Δ +3.1 ppm.

164 The low quality of the COSY and HSQC analyses, partial assignment has been done.
In a round bottom flask charged with allylic alcohol 340 (25.0 mg, 78.0 µmol) was added VO(acac)$_2$ (1.95 mL of a 0.001 M solution in toluene, 1.95 µmol). tert-Butyl hydroperoxide (24.0 µL of a 5.9 M solution in decane, 118 µmol) was added dropwise. The mixture was stirred at room temperature for 24 h. VO(acac)$_2$ (1.95 µL of a 0.001 M solution in toluene, 1.95 µmol) was added and the mixture was stirred for an additional 24 h at room temperature. The reaction was quenched by the addition of a saturated aqueous solution of NaHCO$_3$ (5 mL) and was diluted with EtOAc (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 8 mL). The organic extracts were combined, dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (petroleum ether-ethyl acetate, gradient elution from 2:1 to 1:1) yielded the epoxyalcohol 343 (7 mg, 27%) and its epimer 348 (12 mg, 46%) as colourless crystalline solids.
= 15.3, 4.5, 1.9 Hz, CH₂-C8), 2.99 (1H, d, J = 4.3 Hz, CH₂-C19), 2.93 (1H, dd, J = 4.3, 1.9 Hz, CH₂-C19), 2.78 (1H, br s, OH-C3), 2.30–2.17 (2H, m, CH₂-C5, CH₂-C12), 2.11–2.03 (1H, m, CH₂-C12), 1.97 (1H, dd, J = 11.4, 8.1 Hz, CH-C1), 1.89–1.74 (4H, m, CH₂-C4, CH₂-C5, CH₂-C13, CH-C15), 1.67 (1H, dt, J = 14.9, 5.7 Hz, CH₂-C4), 1.39–1.31 (1H, m, CH-C14), 1.25–1.20 (1H, m, CH₂-C8), 1.14 (3H, s, CH₃-C18), 1.03 (1H, qd, J = 13.1, 3.2 Hz, CH₂-C13), 0.98 (3H, d, J = 6.8 Hz, CH₃-C16 or CH₃-C17), 0.74 (3H, d, J = 6.8 Hz, CH₃-C16 or CH₃-C17); ¹³C NMR (126 MHz, CDCl₃) δ 145.7 (C-C11), 112.1 (CH₂-C20), 94.5 (CH-C2), 78.6 (CH-C9), 75.1 (CH-C6), 74.0 (C-C3), 59.1 (C-C7), 53.8 (CH₂-C19), 48.4 (CH-C10), 46.3 (CH-C1), 44.0 (CH-C14), 34.5 (CH₂-C8), 33.0 (CH₂-C4), 31.4 (CH₂-C5 or CH₂-C12), 31.2 (CH₂-C5 or CH₂-C12), 28.6 (CH₃-C18), 28.1 (CH-C15), 25.5 (CH₂-C13), 22.0 (CH₃-C16 or CH₃-C17), 15.2 (CH₃-C16 or CH₃-C17); HRMS (ESI) for C₂₀H₃₂NaO₄ [M+Na]+ calcd. 359.2193, found 359.2177, Δ −4 ppm.

Rₐ = 0.38; (ethyl acetate); m.p. decomposition; [α]ᵣ⁺²² +7.3 (c = 0.31, CHCl₃); υmax (film) 3412, 2961, 2919, 1458, 1368, 1075, 1027, 909 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.53 (1H, br s, OH-C6), 4.84 (1H, t, J = 1.9 Hz, CH₂-C20), 4.79 (1H, t, J = 1.9 Hz, CH₂-C20), 4.16 (1H, ddd, J = 10.7, 4.8, 1.9 Hz, CH-C9), 4.03 (1H, s, CH-C2), 3.79 (1H, br s, CH-C6), 3.69 (1H, dd, J = 10.7, 7.6 Hz, CH-C10), 2.74 (1H, dd, J = 15.7, 4.8 Hz, CH₂-C8), 2.60 (1H, d, J = 5.3 Hz, CH₂-C19), 2.56 (1H, d, J = 5.3 Hz, CH₂-C19), 2.25 (1H, dt, J = 13.0, 3.4 Hz, CH₂-C12), 2.17–2.08 (1H, m, CH₂-C4), 2.08–2.00 (2H, m, CH₂-C5, CH₂-C12), 1.96 (1H, dd, J = 11.2, 7.6 Hz, CH-C1), 1.91–1.82 (2H, m, CH₂-C5, CH-C15), 1.73 (1H, dq, J = 13.0, 3.4 Hz, CH₂-C13), 1.70–1.64 (1H, m, CH₂-C4), 1.41–1.34 (1H, m, CH₂-C8), 1.31–1.21 (1H, m, CH-C14), 1.15 (3H, s, CH₃-C18), 1.05 (1H, dq, J = 13.0, 3.0 Hz, CH₂-C13), 0.99 (3H, d, J = 6.8 Hz, CH₃-C16 or CH₃-C17), 0.75 (3H, d, J = 6.8 Hz, CH₃-C16 or CH₃-C17); ¹³C NMR (126 MHz, CDCl₃) δ 145.1 (C-C11), 112.4 (CH₂-C20), 94.6 (CH-C2), 78.9 (CH-C9), 74.2 (C-C3), 72.2 (CH-C6), 58.7 (C-C7), 54.3 (CH₂-C19), 47.6 (CH-C10), 45.6 (CH-C1), 43.5 (CH-C14), 33.9 (CH₂-C8), 33.0 (CH₂-C4), 31.2 (CH₂-C12), 30.7 (CH₂-C5), 28.9 (CH₃-C18), 28.1 (CH-C15), 25.1 (CH₂-C13), 22.1 (CH₃-C16 or
CH$_3$-C17), 15.4 (CH$_3$-C16 or CH$_3$-C17); HRMS (ESI) for C$_{20}$H$_{32}$NaO$_4$ [M+Na]$^+$ calcd. 359.2193, found 359.2179, Δ -3.8 ppm.

(1R,2R,6R,7R,8R,9S,12R-13S)-9,13-Dimethyl-3-methylidene-6-(propan-2-yl)-15-oxatricyclo[6.6.1.02,7]pentadecane-9,12,13-triol (336)

To a stirred solution of epoxyalcohol 343 (4.2 mg, 12.5 µmol) in anhydrous CH$_2$Cl$_2$ (0.6 mL) was added DIBAL-H (60 µL of a 1.0 M solution in CH$_2$Cl$_2$, 60 µmol). The mixture was stirred at room temperature for 1 h and DIBAL-H (60 µL of a 1.0 M solution in CH$_2$Cl$_2$, 60 µmol) was added. The mixture was stirred for an additional 1 h and the reaction was quenched by the addition of a saturated aqueous solution of NH$_4$Cl. The solution was diluted with CH$_2$Cl$_2$ (1 mL) and the phases were separated. The aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 5 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to methanol 2%) afforded the triol 336 (1.8 mg, 43%) as a colourless oil.

R$_f$ = 0.27; (ethyl acetate); [α]$_D^{23} = +36.1$ (c = 0.36, CHCl$_3$); ν_{max} (film) 3399, 2964, 2925, 2854, 1445, 1371, 1260, 1059, 1028, 976, 953, 933, 889, 794 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 4.85 (2H, s, CH$_2$-C20), 4.61 (1H, ddd, J = 11.2, 3.9, 1.9 Hz, CH-C9), 3.88 (1H, d, J = 8.0 Hz, CH-C2), 3.55 (1H, br s, CH-C6), 2.62 (1H, d, J = 6.9 Hz, CH-C10), 2.39 (1H, ddd, J = 7.5, 6.0, 3.4 Hz, CH-C1), 2.34–2.25 (1H, m, CH$_2$-C5), 2.16–2.11 (2H, m, CH$_2$-C12), 2.06–1.98 (1H, m, CH$_2$-C4), 1.93–1.87 (1H, m, CH$_2$-C5), 1.86–1.74 (3H, m, CH$_2$-C8, CH-C15), 1.72–1.61 (3H, m, CH$_2$-C4, CH$_2$-C13), 1.40–1.35 (1H, m, CH-C14), 1.28 (3H, s, CH$_3$-C18) 1.13 (3H, s, CH$_3$-C19), 1.01 (3H, d, J = 6.7 Hz, CH$_3$-C16), 0.91 (3H, d, J = 6.7 Hz, CH$_3$-C17); 13C NMR (126 MHz, CDCl$_3$) δ 146.0 (C-C11), 108.8 (CH$_2$-C20), 90.4 (CH-C2), 76.8 (CH-C6),
76.1 (CH-C9), 74.7 (C-C3 or C-C7), 73.6 (C-C3 or C-C7), 48.4 (CH-C10), 46.3 (CH2-C8), 43.3 (CH-C1), 41.2 (CH2-C4), 33.2 (CH2-C1, CH2-C5), 30.4 (CH-C12), 29.8 (CH3-C18), 29.5 (CH-C15), 28.3 (CH3-C19), 28.2 (CH2-C5), 24.8 (CH2-C13), 22.1 (CH3-C16), 19.8 (CH3-C17); HRMS (ESI) for C20H34NaO4 \[M+Na]^{+} \text{calcd. 361.2349, found 361.2334, } \Delta -4.3 \text{ ppm.}

To a stirred solution of epoxyalcohol 348 (6.0 mg, 17.8 µmol) in anhydrous CH2Cl2 (0.9 mL) was added DIBAL-H (90 µL of a 1.0 M solution in CH2Cl2, 90 µmol). The mixture was stirred at room temperature for 1.5 h and DIBAL-H (90 µL of a 1.0 M solution in CH2Cl2, 90 µmol) was added. The mixture was stirred for an additional 1 h and DIBAL-H (350 µL of a 1.0 M solution in CH2Cl2, 350 µmol) was added and the mixture was stirred for a further 1h. The reaction was quenched by the addition of a saturated aqueous solution of NH4Cl (2 mL) and diluted with CH2Cl2 (2 mL). The phases were separated and the aqueous phase was extracted with CH2Cl2 (3 × 4 mL). The organic extracts were combined, washed with brine (10 mL), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to methanol 2.5%) afforded the triol 341 (1.3 mg, 22%) as a colourless oil. Rf = 0.33; (ethyl acetate); \([\alpha]_{D}^{22} +50.5 \text{ (c = 0.26, CHCl3); } \nu_{\text{max}} \text{(film) 3381, 2961, 2923, 2874, 1653, 1464, 1457, 1373, 1261, 1091, 1071, 1025, 976, 930, 888, 846, 801, 731 \text{ cm}^{-1}; } \nu_{j} \text{ NMR (500 MHz, CDCl3) } \delta 4.85 \text{ (1H, s, CH2-C20), 4.83 (1H, s, CH2-C20), 4.39–4.34 (1H, m, CH-C9), 3.90 (1H, d, } J = 5.9 \text{ Hz, CH-C2), 3.59 (1H, dd, } J = 6.3, 1.0 \text{ Hz, CH-C6), 3.03 (1H, br s, CH-C10), 2.22–2.08 (4H, m, CH-C1, CH2-C5, CH2-C12), 1.98–1.88 (4H, m, CH2-C4, CH2-C8, CH2-C12), 1.84–1.75 (2H,
m, CH₂-C₄, CH-C₁₅), 1.70–1.63 (1H, m, CH₂-C₁₃), 1.48–1.41 (1H, m, CH₂-C₁₃), 1.40 (3H, s, CH₃-C₁₉), 1.38–1.33 (1H, m, CH₂-C₁₄), 1.10 (3H, s, CH₃-C₁₈), 0.99 (3H, d, J = 6.7 Hz, CH₃-C₁₆), 0.85 (3H, d, J = 6.7 Hz, CH₃-C₁₇); ¹³C NMR (126 MHz, CDCl₃) δ 146.2 (C-C₁₁), 109.7 (CH₂-C₂₀), 91.8 (CH₂-C₂), 79.8 (CH₂-C₆), 77.4 (CH⁻C₉), 76.3 (C-C₃ or C-C₇), 74.4 (C-C₃ or C-C₇), 48.5 (CH-C₁₀), 44.4 (CH-C₁), 44.2 (CH₂-C₈), 41.8 (CH₂-C₁₄), 34.2 (CH₂-C₄), 30.8 (CH₂-C₅), 29.0 (CH-C₁₅), 28.7 (CH₂-C₁₂), 27.9 (CH₃-C₁₈), 26.5 (CH₂-C₁₉), 25.0 (CH₂-C₁₃), 22.0 (CH-C₁₆), 18.4 (CH₃-C₁₇); HRMS (CI, Me₃CH) for C₂₀H₃₅O₄ [M+H]⁺ calcd. 339.2535, found 339.2539, Δ +1.0 ppm; LRMS m/z (intensity); 339.4 (38%), 319.3 (100%), 303.3 (52%).

[Chemical Structure Image]

C₂₀H₃₄O₄

To a stirred solution of triol 341 (2.4 mg, 7.1 µmol) in anhydrous CH₂Cl₂ (0.7 mL) was added Dess-Martin periodinane (8.9 mg, 21. µmol). The mixture was stirred at room temperature for 2 h and an additional portion of Dess Martin periodinane (6.1 mg, 14 µmol) was added. The mixture was stirred for further 2 h and the reaction was quenched by the addition of saturated aqueous solutions of NaHCO₃ (1 mL) and Na₂S₂O₃ (5 mL). The solution was diluted with CH₂Cl₂ (5 mL) and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 5 mL). The organic extracts were combined, washed with a saturated aqueous solution of NaHCO₃ (2 × 5 mL) and brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo to afford ketone 349.

HRMS (ESI) for C₂₀H₃₂NaO₄ [M+Na]⁺ calcd. 359.2193, found 359.2180, Δ -3.6 ppm.

To a stirred solution of ketone 349 in anhydrous CH₂Cl₂ (0.7 mL) at 0 ºC was added DIBAL-H (70 µL of a 1.0 m solution in CH₂Cl₂, 70 µmol). The mixture was stirred at room temperature for 1 h and the reaction was quenched by the
addition of a saturated aqueous solution of sodium potassium tartrate (1 mL). The solution was diluted with CH$_2$Cl$_2$ (2 mL) and was stirred vigorously until two clear phases formed. The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 5 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to afford a mixture of syn and anti diol (1:2.3). Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to methanol 2.5%) delivered syn- and anti-diol 337 and 341 (0.6 mg, 25% over two steps) enriched in the syn-diol 337 (6.2:1) as a colourless oil.

$R_f = 0.52$; (ethyl acetate); $[\alpha]_D^{23} +108.3$ (c = 0.12, CHCl$_3$); ν_{max} (film) 3392, 2959, 2923, 2853, 1472, 1374, 1261, 1101, 1016, 971, 888, 799 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 4.81 (1H, s, CH$_2$-C$_{20}$), 4.78 (1H s, CH$_2$-C$_{20}$), 4.28 (1H, ddd, $J = 8.5$, 8.2, 2.9 Hz, CH-C$_9$), 4.15 (1H, br d, $J = 10.3$ Hz, CH-C$_6$), 3.76 (1H, d, $J = 6.1$ Hz, CH-C$_2$), 2.67 (1H, dd, $J = 6.9$, 4.7 Hz CH-C$_{10}$), 2.28 (1H, app q, $J = 6.6$ Hz, CH-C$_1$), 2.21–2.10 (2H, m, CH$_2$-C$_{12}$), 2.10–2.01 (1H, m, CH$_2$-C$_8$), 2.01–1.84 (3H, m, CH$_2$-C$_4$, CH$_2$-C$_5$), 1.84–1.76 (1H, m, CH-C$_{15}$), 1.74–1.63 (3H, m, CH$_2$-C$_4$, CH$_2$-C$_8$, CH$_2$-C$_{13}$), 1.48–1.42 (1H, m, CH$_2$-C$_{13}$), 1.41 (3H, s, CH$_3$-C$_{19}$), 1.34–1.29 (1H, m, CH$_2$-C$_{14}$), 1.15 (3H, s, CH$_3$-C$_{18}$), 0.99 (3H, d, $J = 6.7$ Hz, CH$_3$-C$_{16}$), 0.85 (3H, d, $J = 6.7$ Hz, CH$_3$-C$_{17}$); 13C NMR (126 MHz, CDCl$_3$) δ 146.7 (C-C$_{11}$), 108.9 (CH$_2$-C$_{20}$), 90.8 (CH-C$_2$), 77.5 (CH-C$_9$), 76.3 (CH-C$_6$), 75.5 (C-C$_3$ or C-C$_7$), 74.8 (C-C$_3$ or C-C$_7$), 50.8 (CH-C$_{10}$), 45.6 (CH$_2$-C$_8$), 44.1 (CH-C$_1$), 42.1 (CH-C$_{14}$), 35.1 (CH$_2$-C$_4$), 30.9 (CH$_2$-C$_{12}$), 29.4 (CH-C$_{15}$), 29.2 (CH$_2$-C$_5$), 27.5 (CH$_3$-C$_{18}$), 26.1 (CH$_3$-C$_{19}$), 24.9 (CH$_2$-C$_{13}$), 22.0 (CH$_3$-C$_{16}$), 18.5 (CH$_3$-C$_{17}$); HRMS (ESI) for C$_{20}$H$_{34}$NaO$_4$ [M+Na]$^+$ calcd. 361.2349, found 361.2336, $\Delta -3.7$ ppm.

165 Due to the low quantity of product, the assignment has been done from DEPTQ analysis.
(1R,2R,6R,7R,8R,9S,12S)-12-Hydroxy-9-Methyl-3,13-dimethylidene-6-(propan-2-yl)-15-oxatricyclo[6.6.1.0^{2,7}]pentadecane-9-yl acetate (352)

\[
\text{C}_{22}\text{H}_{34}\text{O}_{4}
\]

To a stirred solution of enone 345 (19.0 mg, 59.0 µmol) in anhydrous CH$_2$Cl$_2$ (0.6 mL) were added distilled triethylamine (0.16 mL, 1.18 mmol), recrystallised DMAP (37.1 mg, 303 µmol) and freshly distilled acetic anhydride (80 µL, 85 µmol). The mixture was stirred at room temperature for 32 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO$_3$ (0.8 mL). The solution was diluted with CH$_2$Cl$_2$ (2 mL) and stirred for an additional 15 min. The two phases were separated. The aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 3 mL). The organic extracts were concentrated and the residue was dissolved in Et$_2$O (10 mL) and washed successively with a 1 M aqueous solution of HCl (2 × 5 mL), a saturated aqueous solution of CuSO$_4$ (2 × 5 mL) and brine (10 mL). The organic phase was dried (MgSO$_4$), filtered and concentrated in vacuo. The crude acetate was used in the next step without further purification.

Crude acetate 350 was dissolved in MeOH (3 mL) and the solution was cooled to 0 °C. Cerium chloride heptahydrate (26.7 mg, 71.7 µmol) and sodium borohydride (3.6 mg, 95 µmol) were added. The mixture was stirred at 0 °C for 1 h. Additional portion of cerium chloride heptahydrate (24.8 mg, 66.6 µmol) and sodium borohydride (2.8 mg, 74 µmol) were added and the mixture was stirred for a further 4 h. The reaction was quenched by the addition of a 1 M aqueous solution of HCl (3 mL) and brine (3 mL). The solution was diluted with EtOAc (6 mL) and a saturated aqueous solution of NH$_4$Cl (3 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 5 mL). The organic extracts were combined, dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to methanol 2%) afforded the acetate 352 (8.7 mg, 43% over two steps).
R_f = 0.67; (ethyl acetate); 1H NMR (500 MHz, CDCl\textsubscript{3})166 \delta 5.47 (1H, s), 5.11 (1H, s), 4.82 (1H, t, J = 2.0 Hz), 4.70 (1H, s), 4.55 (1H, dd, J = 9.9, 4.4 Hz), 4.20–4.12 (2H, m), 3.04 (1H, dd, J = 10.3, 7.8 Hz), 2.78 (1H, dd, J = 13.3, 4.2 Hz), 2.32–2.23 (3H, m), 2.15–2.11 (1H, m), 2.07 (3H, s), 2.06–2.00 (1H m), 1.92–1.83 (2H, m), 1.79–1.56 (4H, m), 1.43 (3H, s), 1.38–1.28 (2H, m), 0.97 (3H, d, J = 6.8 Hz), 0.71 (3H, d, J = 6.8 Hz); HRMS (ESI) for C\textsubscript{22}H\textsubscript{34}NaO\textsubscript{4} [M+Na+] calcd. 385.2349, found 385.2339, Δ = 2.8 ppm.

\((1'R,2R,2'R,3'R,7'R,8'R,11'S,14'S)-11'-Hydroxy-14'-methyl-6'-methylidene-3'-(propan-2-yl)-15'-oxaspiro[oxirane-2,10'-tricyclo[6.6.1.0\textsubscript{2,7}]pentadecane]-14'-yl acetate (351)\)

To a suspension of 4 Å powdered molecular sieves in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (0.5 mL) at −20 °C were added freshly distilled (+)-diethyl tartrate (30 µL of a 116 µmol/mL solution in CH\textsubscript{2}Cl\textsubscript{2}, 3.5 µmol), freshly distilled titanium tetraisopropoxide (40 µL of a 67 µmol/mL solution in CH\textsubscript{2}Cl\textsubscript{2}, 2.7 µmol), and tert-butyl hydroperoxide (36 µL of a 1.9 m solution in CH\textsubscript{2}Cl\textsubscript{2}, 68 µmol). The solution was stirred for 30 min and allylic alcohol 352 (8.70 mg, 24.0 µmol) in CH\textsubscript{2}Cl\textsubscript{2} (1.0 mL) was added slowly. The mixture was stirred at −20 °C for 24 h and the reaction was quenched by the addition of water (1.5 mL) and 30% wt solution of NaOH in brine (3.5 mL). The solution was allowed to warm to room temperature and was stirred for an additional 30 min. The mixture was diluted with CH\textsubscript{2}Cl\textsubscript{2} and the phases were separated. The aqueous phase was extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 × 6 mL). The organic extracts were combined, washed with brine (10 mL), dried (MgSO\textsubscript{4}), filtered and concentrated in vacuo. Flash column chromatography on silica gel (dichloromethane-diethyl ether, gradient elution

166 The low quantity and due to time constraints, only 1H NMR analysis has been done and the next stage of the synthesis was performed.
from pure dichloromethane to 1:1) afforded the desired epoxylcohol \(351\) (3.10 mg, 34\%) as a colourless solid.

\(R_f = 0.72\); (ethyl acetate); \([\alpha]_D^{25} +34.6\) (c = 0.26, CHCl\(_3\)); \(\nu_{\text{max}}\) (film) 3475, 2957, 2934, 2869, 1728, 1691, 1444, 1370, 1252, 1187, 1078, 1049, 1031, 924, 896 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.84 (1H, s, CH\(_2\)-C\(_{20}\)), 4.66 (1H, s, CH\(_2\)-C\(_{20}\)), 4.44 (1H, dd, \(J = 9.4\), 4.0 Hz, CH-\(C_6\)), 4.26 (1H, s, CH-\(C_2\)), 4.26 (1H, ddd, \(J = 10.7\), 4.8, 1.6 Hz, CH-\(C_9\)), 3.16 (1H, dd, \(J = 4.7\), 7.6 Hz, CH-\(C_{10}\)), 2.99 (1H, d, \(J = 4.7\) Hz, CH-\(C_{19}\)), 2.71 (1H, ddd, \(J = 14.5\), 4.8, 1.6 Hz, CH\(_2\)-C\(_8\)), 2.35 (1H, br s, OH), 2.25 (1H, dt, \(J = 13.8\), 3.1 Hz, CH\(_2\)-C\(_{12}\)), 2.22–2.13 (2H, m, CH\(_2\)-C\(_4\), CH\(_2\)-C\(_5\)), 2.08 (3H s, CH\(_3\)-C\(_{22}\)), 2.07–2.05 (1H, m, CH\(_2\)-C\(_{12}\)), 1.99 (1H, dd, \(J = 11.8\), 7.6 Hz, C-C\(_1\)), 1.94–1.87 (1H, m, CH-C\(_{15}\)), 1.77 (1H, dq, \(J = 13.0\), 3.1 Hz, CH-\(C_{13}\)), 1.72–1.65 (1H, m, CH-\(C_{14}\)), 1.46 (3H, s, CH\(_3\)-C\(_{18}\)), 1.41–1.24 (3H, m, CH\(_3\)-C\(_5\), CH\(_3\)-C\(_8\), CH-\(C_{14}\)), 1.04 (1H, qd, \(J = 13.0\), 3.1 Hz, CH-\(C_{13}\)), 0.99 (3H, d, \(J = 6.8\) Hz, CH\(_3\)-C\(_{16}\) or CH\(_3\)-C\(_{17}\)), 0.74 (3H, d, \(J = 6.8\) Hz, CH\(_3\)-C\(_{16}\) or CH\(_3\)-C\(_{17}\)); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 170.9 (C-C\(_{21}\)), 145.8 (C-C\(_{11}\)), 111.9 (CH\(_2\)-C\(_{20}\)), 89.7 (CH-C\(_2\) or CH-C\(_9\)), 86.2 (C-C\(_3\)), 79.1 (CH-C\(_2\) or CH-C\(_9\)), 69.7 (CH-C\(_6\)), 59.1 (C-C\(_7\)), 52.9 (CH\(_2\)-C\(_{19}\)), 48.6 (CH-C\(_{10}\)), 45.8 (CH-C\(_1\)), 44.1 (CH-C\(_{14}\)), 37.3 (CH\(_2\)-C\(_8\)), 32.2 (CH\(_2\)-C\(_5\)), 31.5 (CH\(_2\)-C\(_{12}\)), 30.9 (CH\(_2\)-C\(_4\)), 27.9 (CH-C\(_{15}\)), 25.5 (CH\(_2\)-C\(_{13}\)), 24.2 (CH\(_3\)-C\(_{18}\)), 22.5 (CH\(_3\)-C\(_{22}\)), 22.1 (CH\(_3\)-C\(_{16}\) or CH\(_3\)-C\(_{17}\)), 15.3 (CH\(_3\)-C\(_{16}\) or CH\(_3\)-C\(_{17}\)); HRMS (ESI) for C\(_{22}\)H\(_{34}\)NaO\(_5\) \([M+Na]^+\) calcd. 401.2298, found 401.2287, \(\Delta -2.8\) ppm.

\((1R,2R,3R,7R,8R,10S,11S,14S)-10,14-Dihydroxy-10,14-dimethyl-6-methyldiene-3-(propan-2-yl)-15-oxatricyclo[6.6.1.0\(^2,7\)]pentadecane-11-yl acetate (355)\n
![Diagram](image_url)

To a stirred solution of triol \(10\) (5.0 mg, 15 \(\mu\)mol) in anhydrous pyridine (0.25 mL) was added freshly distilled acetic anhydride (12 \(\mu\)L, 0.13 mmol). The
mixture was stirred at room temperature for 9 h and the reaction was quenched by the addition of a saturated aqueous solution of NaHCO$_3$ (5 mL). The solution was diluted with CH$_2$Cl$_2$ (5 mL) and the phases were separated. The aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 4 mL). The organic extracts were combined and successively washed with water (5 mL), a saturated aqueous solution of CuSO$_4$ (2 × 5 mL) and brine (10 mL). The organic phase was dried (MgSO$_4$), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (dichloromethane-methanol, gradient elution from dichloromethane to methanol 3%) afforded mono-acetate 355 (1.1 mg, 20%) and recovered the starting material 10 (1.2 mg, 24%).

$R_f = 0.29$; (petroleum ether-ethyl acetate, 1:1); $[\alpha]_D^{24} +49.1$ (c = 0.22, CHCl$_3$); ν_{max} (film) 3452, 2957, 2925 2848, 1716, 1465, 1370, 1251, 1067, 1023, 894, 803 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$)167 δ 5.80 (1H, br s), 4.84 (1H, s), 4.82 (1H, s), 4.64 (1H, br s), 3.83 (1H, d, $J = 6.4$ Hz), 2.58 (1H, br s), 2.32–2.25 (1H, m), 2.15–2.10 (2H, m), 2.09 (3H, s), 2.07–1.99 (1H, m), 1.93–1.85 (1H, m), 1.83–1.74 (3H, m), 1.70–1.48 (6H, m), 1.40–1.34 (1H, m), 1.25 (3H, s), 1.11 (3H, s), 1.00 (3H, d, $J = 6.7$ Hz), 0.89 (3H, d, $J = 6.7$ Hz); 13C NMR (126 MHz, CDCl$_3$)165 δ 167.5, 146.3, 108.7, 79.3, 77.4, 76.4, 75.0, 72.0, 49.7, 43.7, 41.5, 30.6, 30.5, 29.5, 29.4, 27.8, 24.9, 22.8, 22.1, 21.1, 19.7, 14.3; HRMS (ESI) for C$_{22}$H$_{36}$NaO$_5$ [M+Na]$^+$ calcd. 403.2455, found 403.2435, $\Delta -4.9$ ppm.

167 The quality of the spectra did not allow the assignments.
REFERENCES

(4) Cladiellin numbering

(120) Enantiomeric excess was determined by HPLC analysis of intermediate 281. Column AD-H, temperature 25 °C, hexane:(hexane:propan-2-ol [98:2]) 90:10, flowrate 0.5 mL.min⁻¹, RT 46.3 min.
(127) Enantiomeric excess was determined on methyl ketone 277. Column AD-H, temperature 25 °C, hexane:propan-2-ol 50:1, flowrate 1.0 mL.min⁻¹, RT 23.9 min.
(128) Sigma-Aldrich prices, December 2014.
(138) NMR analysis did not allow the determination of its structure.
(164) The low quality of the COSY and HSQC analyses, partial assignment has been done.
(165) Due to the low quantity of product, the assignment has been done from DEPTQ analysis.
(166) The low quantity and due to time constraints, only 1H NMR analysis has been done and the next stage of the synthesis was performed.
(167) The quality of the spectra did not allow the assignments.
Appendix 1: H1 and C13 NMR spectra of compound 277.
Appendix 2: H1 and C13 NMR spectra of compound 276.
Appendix 3: H1 and C13 NMR spectra of compound Z-275.
Appendix 4: H1 and C13 NMR spectra of compound E-275.
Appendix 5: H1 and C13 NMR spectra of compound 317.
Appendix 6: H1 and C13 NMR spectra of compound 272.
Appendix 7: H1 and C13 NMR spectra of compound 347.
Appendix 8: H1 and C13 NMR spectra of compound 10.
Appendix 9: H1 and C13 NMR spectra of compound 343.
Appendix 10: H1 and C13 NMR spectra of compound 348.
Appendix 11: H1 and C13 NMR spectra of compound 336.
Appendix 12: H1 and C13 NMR spectra of compound 341.
Appendix 13: H1 and C13 NMR spectra of compound 337.
Appendix 14: H1 and C13 NMR spectra of compound 351.
Appendix 15: Crystal and structure refinement SVC_18 (Z-275).
Appendix 16: Crystal and structure refinement SVC_21 (317).
Appendix 17: Crystal and structure refinement SVC_23 (329).
Appendix 18: Crystal and structure refinement SVC_24 (328).
Appendix 19: Crystal and structure refinement SVC_38 (272).
Appendix 20: Crystal and structure refinement SVC_40 (340).
Appendix 21: Crystal and structure refinement SVC_60 (347).
Appendix 22: Crystal and structure refinement SVC_49 (343).
Appendix 23: Crystal and structure refinement SVC_48 (348).
Appendix 1: H1 and C13 NMR spectra of compound 277.
Appendix 2: 1H and ^{13}C NMR spectra of compound 276.
Appendix 3: 1H and ^{13}C NMR spectra of compound Z-275.
Appendix 4: 1H and 13C NMR spectra of compound E-275.
Appendix 5: 1H and 13C NMR spectra of compound 317.
Appendix 6: 1H and 13C NMR spectra of compound 272.
Appendix 7: 1H and ^{13}C NMR spectra of compound 347.
Appendix 8: 1H and 13C NMR spectra of compound 10.
Appendix 9: 1H and ^{13}C NMR spectra of compound 343.
Appendix 10: H1 and C13 NMR spectra of compound 348.
Appendix 11: 1H and 13C NMR spectra of compound 336.
Appendix 12: 1H and 13C NMR spectra of compound 341.
Appendix 13: 1H and 13C NMR spectra of compound 337.
Appendix 14: H1 and C13 NMR spectra of compound 351.
Appendix 15: Crystal data and structure refinement for SVC_18 (Z-275).

Identification code
SVC_18

Empirical formula
C18 H32 O3 Si

Formula weight
324.52

Temperature
100 (2) K

Wavelength
0.71073

Crystal system
Triclinic

Space group
P-1

Unit cell dimension
a = 6.6456(9) Å
b = 8.4081(11) Å
c = 18.488(2) Å
\(\alpha = 84.612(8)^\circ \)
\(\beta = 87.679(8)^\circ \)
\(\gamma = 73.945(6)^\circ \)

Volume
988.2(2) Å\(^3\)

Z
2

Density (calculated)
1.091 mg/m\(^3\)

Radiation type
MoK\(\alpha\)

Absorption coefficient
0.128 μ/mm

F(000)
356

Crystal size
0.4 × 0.25 × 0.2

Theta range for data collection
2.213 − 27.709 °

Index ranges
-8\(\leq h \leq +8\); -10\(\leq k \leq +10\); -24\(\leq l \leq +24\)

Number of reflections measured
25266

Number of independent reflections
4551

Rint
0.155

Completeness to theta = 25.242
1

Absorption correction type
Multi-scan

Max. and min. transmission
0.746 and 0.535

Refinement method
Full-matrix least-squares on \(F^2\)

Data / restraints / parameters
4551 / 0 / 207

Goodness-of-fit on \(F^2\)
1.554

Final R indices [I>2sigma(I)]
R1 = 0.1626, wR2 = 0.4041

R indices (all data)
R1 = 0.237, wR2 = 0.4469

Largest diff. peak and hole
1.150 and -0.621 e.Å\(^{-3}\)
Appendix 16: Crystal data and structure refinement for SVC_21 (317).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>SVC_21</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C18 H26 O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>306.39</td>
</tr>
<tr>
<td>Temperature</td>
<td>100 (2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimension</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1592.81(7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.278 mg/m³</td>
</tr>
<tr>
<td>Radiation type</td>
<td>MoKα</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.089 µ/mm</td>
</tr>
<tr>
<td>F(000)</td>
<td>654</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.65 × 0.467 × 0.256</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.436 - 34.947 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>−13<=h<=+13; −21<=k<=+21; −26<=l<=+26</td>
</tr>
<tr>
<td>Number of reflections measured</td>
<td>130578</td>
</tr>
<tr>
<td>Number of independent reflections</td>
<td>13962</td>
</tr>
<tr>
<td>Rint</td>
<td>0.029</td>
</tr>
<tr>
<td>Completeness to theta = 25.242</td>
<td>0.991</td>
</tr>
<tr>
<td>Absorption correction type</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.978 and 0.936</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>13962 / 0 / 461</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.026</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0358, wR2 = 0.102</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0426, wR2 = 0.1055</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.460 and −0.398 e.Å⁻³</td>
</tr>
</tbody>
</table>
Appendix 17: Crystal data and structure refinement for SVC_23 (329).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimension
Volume
Z
Density (calculated)
Radiation type
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Number of reflections measured
Number of independent reflections
Rint
Completeness to theta
Absorption correction type
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

SVC_23
C19H30O3
306.43
100 (2) K
0.71073
Monoclinic
P 21/n
a = 12.0614(2) Å α = 90(10)°
b = 13.1921(2) Å β = 118.3700(10)°
c = 12.2087(2) Å γ = 90(10)°
1709.28(5) Å³
4
1.191 mg/m³
MoKα
0.078 µ/mm
672
0.516 × 0.209 × 0.201
2.445 – 27.422°
-15<=h<=+15; -17<=k<=+71; -15<=l<=+15
57772
3895
0.039
1
Gaussian
0.989 and 0.964
Full-matrix least-squares on F²
3895 / 0 / 234
1.078
R1 = 0.0379, wR2 = 0.1022
R1 = 0.0477, wR2 = 0.1061
0.320 and −0.167 e.Å⁻³
Appendix 18: Crystal data and structure refinement for SVC_24 (328)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>SVC_24</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C19 H30 O3</td>
</tr>
<tr>
<td>Formula weight</td>
<td>306.43</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimension</td>
<td>a = 8.4212(2) Å, b = 9.4762(2) Å, c = 11.7943(2) Å, α = 94.845(10) °, β = 104.155(10) °, γ = 108.298(10) °</td>
</tr>
<tr>
<td></td>
<td>Volume 853.08(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.193 mg/m³</td>
</tr>
<tr>
<td>Radiation type</td>
<td>MoKα</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.078 µ/mm</td>
</tr>
<tr>
<td>F(000)</td>
<td>336</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.6 × 0.5 × 0.4</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.299 - 30.022 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11<=h<=+11; -13<=k<=+13; -16<=l<=+16</td>
</tr>
<tr>
<td>Number of reflections measured</td>
<td>55875</td>
</tr>
<tr>
<td>Number of independent reflections</td>
<td>4987</td>
</tr>
<tr>
<td>Rint</td>
<td>0.027</td>
</tr>
<tr>
<td>Completeness to theta = 25.242</td>
<td>1</td>
</tr>
<tr>
<td>Absorption correction type</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.928 and 0.782</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints/ parameters</td>
<td>4987 / 0 / 236</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.045</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0349, wR2 = 0.0977</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.038, wR2 = 0.0996</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.411 and −0.163 e.Å⁻³</td>
</tr>
</tbody>
</table>
Appendix 19: Crystal data and structure refinement for SVC_38 (272).

<table>
<thead>
<tr>
<th>Identification code</th>
<th>SVC_38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H32 O2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>304.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>C 2 2 21</td>
</tr>
<tr>
<td>Unit cell dimension</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>10.2463(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>90 °</td>
</tr>
<tr>
<td>b</td>
<td>19.1470(3) Å</td>
</tr>
<tr>
<td>β</td>
<td>90 °</td>
</tr>
<tr>
<td>c</td>
<td>36.5947(6) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90 °</td>
</tr>
<tr>
<td>Volume</td>
<td>7179.4(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>16</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.127 mg/m³</td>
</tr>
<tr>
<td>Radiation type</td>
<td>MoK\a</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.07 µ/mm</td>
</tr>
<tr>
<td>F(000)</td>
<td>2688</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.6 × 0.35 × 0.15</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.199 - 32.98 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-16刻<=h刻<=+16; -30刻<=k刻<=+30; -56刻<=l刻<=+56</td>
</tr>
<tr>
<td>Number of reflections measured</td>
<td>86896</td>
</tr>
<tr>
<td>Number of independent reflections</td>
<td>13517</td>
</tr>
<tr>
<td>Rint</td>
<td>0.045</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>25.242</td>
</tr>
<tr>
<td>Absorption correction type</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.992 and 0.96</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints/ parameters</td>
<td>13517 / 0 / 475</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.984</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0375, wR2 = 0.0884</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.048, wR2 = 0.092</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.302 and −0.169 e.Å⁻³</td>
</tr>
</tbody>
</table>
Appendix 20: Crystal data and structure refinement for SVC_40 (340).

Identification code: SVC_40
Empirical formula: C20 H32 O3
Formula weight: 320.45
Temperature: 298(2) K
Wavelength: 0.71073 Å
Crystal system: Trigonal
Space group: P 32 2 1
Unit cell dimension:

\[
\begin{align*}
a &= 17.4587(6) \text{ Å} & \alpha &= 90 ^\circ \\
b &= 17.4587(6) \text{ Å} & \beta &= 90 ^\circ \\
c &= 10.7319(6) \text{ Å} & \gamma &= 120 ^\circ
\end{align*}
\]
Volume: 2832.9(2) Å³
Z: 6
Density (calculated): 1.127 mg/m³
Radiation type: MoKα
Absorption coefficient: 0.074 μ/mm
F(000): 1056
Crystal size: 0.6 × 0.2 × 0.1
Theta range for data collection: 1.347 – 25.958 °
Index ranges:

\[-22 \leq h \leq +22; \quad -22 \leq k \leq +22; \quad -13 \leq l \leq +13\]
Number of reflections measured: 74902
Number of independent reflections: 3714
\[R_{int} = 0.091\]
Completeness to theta = 25.242°: 1
Absorption correction type: Multi-scan
Max. and min. transmission: 0.746 and 0.638
Refinement method: Full-matrix least-squares on F²
Data / restraints/ parameters: 3714 / 0 / 212
Goodness-of-fit on F²: 1.055
Final R indices [I>2sigma(I)]: R1 = 0.0509, wR2 = 0.1122
R indices (all data): R1 = 0.0764, wR2 = 0.1192
Largest diff. peak and hole: 0.244 and -0.223 e.Å⁻³
Appendix 21: Crystal data and structure refinement for SVC_60 (347).

![Crystal structure diagram]

<table>
<thead>
<tr>
<th>Identification code</th>
<th>SVC_60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H32 O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>336.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21 21 21</td>
</tr>
<tr>
<td>Unit cell dimension</td>
<td>a = 5.624(3) Å, b = 16.550(10) Å, c = 19.160(12) Å, α = 90 °, β = 90 °, γ = 90 °</td>
</tr>
<tr>
<td>Volume</td>
<td>1783.1 19 Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.253 mg/m³</td>
</tr>
<tr>
<td>Radiation type</td>
<td>MoKα</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.085 μ/mm</td>
</tr>
<tr>
<td>F(000)</td>
<td>736</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.5 × 0.2 × 0.2</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.626 - 22.443 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-6<=h<=+6; -17<=k<=+17; -20<=l<=+20</td>
</tr>
<tr>
<td>Number of reflections measured</td>
<td>13824</td>
</tr>
<tr>
<td>Number of independent reflections</td>
<td>2295</td>
</tr>
<tr>
<td>Rint</td>
<td>0.097</td>
</tr>
<tr>
<td>Completeness to theta = 25.242</td>
<td>0.727</td>
</tr>
<tr>
<td>Absorption correction type</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.655 and 0.527</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints/ parameters</td>
<td>2295 / 0 / 223</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.014</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.044, wR2 = 0.0941</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0701, wR2 = 0.1027</td>
</tr>
</tbody>
</table>
Appendix 22: Crystal data and structure refinement for SVC_49 (343).

Identification code: SVC_49
Empirical formula: C20 H32 O4
Formula weight: 336.45
Temperature: 100(2) K
Wavelength: 0.71073
Crystal system: Orthorhombic
Space group: P 21 21 21
Unit cell dimension:
- a = 5.9153(10) Å, α = 90°
- b = 16.5335(2) Å, β = 90°
- c = 18.3733(3) Å, γ = 90°
Volume: 1796.92(5) Å³
Z: 4
Density (calculated): 1.244 mg/m³
Radiation type: MoKα
Absorption coefficient: 0.085 μ/mm
F(000): 736
Crystal size: 0.5 × 0.5 × 0.5
Theta range for data collection: 2.217 – 30.029°
Index ranges: -8<=h<=+8; -23<=k<=+23; -25<=l<=+25
Number of reflections measured: 55772
Number of independent reflections: 5246
Rint: 0.039
Completeness to theta = 25.242: 0.999
Absorption correction type: Multi-scan
Max. and min. transmission: 0.862 and 0.698
Refinement method: Full-matrix least-squares on F²
Data / restraints/ parameters: 5246 / 0 / 258
Goodness-of-fit on F²: 1.022
Final R indices [I>2sigma(I)]: R1 = 0.0295, wR2 = 0.0317
R indices (all data): R1 = 0.0792, wR2 = 0.0805
Largest diff. peak and hole: 0.315 and -0.159 e.Å⁻³
Appendix 23: Crystal data and structure refinement for SVC_48 (348).

Identification code: SVC_48
Empirical formula: C20 H32 O4
Formula weight: 336.45
Temperature: 100(2) K
Wavelength: 0.71073
Crystal system: Trigonal
Space group: P 3 2 1
Unit cell dimensions:
- a = 17.4404(4) Å
- b = 17.4404(4) Å
- c = 10.4848(2) Å
- α = 90 °
- β = 90 °
- γ = 120 °
Volume: 2761.87(14) Å³
Z: 6
Density (calculated): 1.214 mg/m³
Radiation type: MoKα
Absorption coefficient: 0.083 μ/mm
F(000): 1104
Crystal size: 0.6 × 0.5 × 0.5
Theta range for data collection: 2.336 – 34.998 °
Index ranges:
- −28 <= h <= +28
- −28 <= k <= +28
- −16 <= l <= +16
Number of reflections measured: 285176
Number of independent reflections: 8105
Rint: 0.044
Completeness to theta = 25.242: 0.999
Absorption correction type: Multi-scan
Max. and min. transmission: 0.747 and 0.485
Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 8105 / 0 / 252
Goodness-of-fit on F²: 1.047
Final R indices [I>2sigma(I)]: R1 = 0.0364, wR2 = 0.0955
R indices (all data): R1 = 0.0398, wR2 = 0.0975
Largest diff. peak and hole: 0.653 and −0.541 e.Å⁻³