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from the ellipsoid surface and the nearest mesh points in Eq.3.22. The

graph illustrates messy boundary conditions. . . . . . . . . . . . . . . 81

ix



LIST OF FIGURES

3.3 Plot shows the surface boundaries of a 2D slice of the electric potential

for a dust grain has a = 10, b=5 and c = 5. The calculation used the

technique of Lagrange multiplier and the Finite difference method to

compute the potential outside the ellipsoidal grain. Graph illustrates

the smooth boundary conditions obtained via the interpolator method

introduced in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Ions’ Larmor radius(RL) at launch, which is comparable to the grain’s

semi axes (b),where parameter p = 8 [RL/b ' 1,p = 8]. The ellip-

soidal dust grain is represented in green. . . . . . . . . . . . . . . . . 90

4.2 Ions’ trajectories toward an ellipsoidal grain. The grain semi-axes

a, b, c are 10, 5, 5 , in length respectively. Ions’ Larmor radius(RL)

at launch is comparable to the grain’s semi-axes (b),where parameter

p = 8 [RL/b ' 1,p = 8]. Note that most ions collide with the grain.

The pink shape represents the dust. . . . . . . . . . . . . . . . . . . . 91

4.3 Energies of some ions represented in Fig.2 [RL/b ' 1,p = 8]. Plot rep-

resents non-colliding ions which gain the highest energies. Note that

the lowest energies are gained by ions start directly above the grain’s

surface . Ions starting further away gain higher energies. . . . . . . . 92

4.4 Ions Larmor radius(RL) at launch which is much less than the grain’s

semi axes (b),where parameter p = 8 [RL/b � 1,p = 8]. The pink

shape represents the dust. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c

are of lengthes 10, 5, 5 ,respectively. Ions Larmor radius(RL) at launch

is much lesser than the grain’s semi-axes (b),where parameter p = 8

[RL/b � 1,p = 8]. Note that most ions do not collide the grain. . . . . 94

x



LIST OF FIGURES

4.6 Energies of some ions represented in Fig.4.5 [RL/b � 1,p = 8]. The

plot represents colliding ions. Note that the lowest energies are gained

by ions start directly above the grain’s surface . Ions starting further

away gain higher energies. . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Ions’ Larmor radius(RL) at launch which is much greater than the

grain’s semi axes (b),where parameter p = 8 [RL/b � 1,p = 8]. The

dust is represented in pink color. . . . . . . . . . . . . . . . . . . . . 96

4.8 Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c

are 10, 5, 5 in length respectively. Ions Larmor radius(RL) at launch is

much greater than the grain’s semi-axes (b), where parameter p = 8

[RL/b � 1,p = 8]. Note that all ions collide with the grain’s surface. . 97

4.9 Energies of some ions represented in Fig.6 [RL/b � 1,p = 8]. Note

that the lowest energies are gained by colliding ions which start di-

rectly above the grain’s surface. Ions starting further away (non-colliding

ions) gain higher energies. . . . . . . . . . . . . . . . . . . . . . . . 98

4.10 Ions trajectories toward an ellipsoidal grain. The grain semi-axes a, b, c

are 10, 5, 5 in length, respectively. Ions Larmor radius(RL) at launch is

comparable to the grain’s semi-axes (b), and the electric field is large

p = 30 [RL/b ' 1,p = 30]. Note that the effect of drift motion is

clearer than orbit motion. Some ions collide with the grain. . . . . . . 99

4.11 Energies of some ions represented in Fig.10 [RL/b � 1,p = 30].

Note that the lowest energies are gained by colliding ions which start

directly above the grain’s surface . Ions starting further away (non-

colliding ions) gain the highest energies before they become stable. . . 100

xi



LIST OF FIGURES

4.12 Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c

are 10, 5, 5 in length respectively. Ions’ Larmor radius(RL) at launch

is comparable to the grain’s semi-axes (b), where parameter is small

p = 0.1 [RL/b ' 1,p = 0.1]. Note that the effect of orbit motion is

clearer than drift motion. Fewer ions collide with the grain than in the

previous case p = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Energies of some ions represented in Fig.12 [RL/b � 1,p = 0.1]. Note

that colliding ions which start directly above the grain’s surface gain

low energies . Some other Ions ( non-colliding ions) gain higher energies.102

4.14 Ions follow electric field lines of the negatively charged spherical grain

in the absence of a magnetic field (parameter p = 500). Therefore, ion

distribution on the grain’s surface is equal. . . . . . . . . . . . . . . . 103

4.15 Coloured points represent ion density on the grain’s surface. Every

coloured symbol indicates ions belonging to the same batch. The

grain’s semi-axes a, b, c are 10, 5, 5 in length respectively. Ions Larmor

radius(RL) at launch is comparable to the grain’s semi-axes (b),where

parameter p = 8 [RL/b ' 1,p = 8],and magnetic field is parallel to

x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.16 As the previous figure except the The initial positions of ion batches

are added here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.17 The initial positions of the ion batches, the expected direct colliding

positions in the absence of a magnetic field and the actual colliding

positions due to the combined influence of the grain electrostatic field

and the applied parallel magnetic field. Ions have shifted from their

directed hitting positions towards the grain surface. . . . . . . . . . . 106

4.18 As Figure 4.17 but for a different ion batch. Here ions tend to hit the

grain’s surface and end as they start their motion closer to the grain’s

end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



LIST OF FIGURES

4.19 As Figure 4.17 but for a different ion batch. As ions started moving

near the corner, their hitting positions shifted toward grain’s corner. . . 108

4.20 As Figure 4.17 but for a different ions batch. Ions from the the batch

in front of grain’s end tend to spread on the end. . . . . . . . . . . . 109

4.21 As the previous Figure but for the other end of the grain. . . . . . . . 110

4.22 As Figure 4.17 but for a different ion batch. Ions here start their motion

from the front of the grain’s side. Ions hit the directed positions on the

grain’s surface and positions around it. . . . . . . . . . . . . . . . . . 111

4.23 As the previous figure but ions start close to the other side of the grain. 112

4.24 Frequency plot of energies of ions where the magnetic field is parallel

to the x-axis. The presence of a discrete structure is evident. Explina-

tion for this is mentioned on p 100. . . . . . . . . . . . . . . . . . . . 113

4.25 Figure represents the initial positions of ions, and the colliding posi-

tions due to the combined influence of the grain electrostatic field and

the applied parallel magnetic field. Ions tend to hit the grain’s ends. . 114

4.26 Frequency plot of energies of ions represented in the previous figure

where the magnetic field is parallel to x-axis and ions were launched

from circular bar from the grain. Figure shows a continuum energy

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.27 Coloured points represent ion density on grain surface. Each colour in-

dicates ions belonging to the same batch. The grain’s semi-axes a, b, c

are 10, 5, 5 in length, respectively. Ions’ Larmor radius(RL) at launch

is comparable to the grain’s semi-axes (b), where parameter p = 8

[RL/b ' 1,p = 0.1], and the magnetic field is perpendicular to the x-axis.116

xiii



LIST OF FIGURES

4.28 Coloured points represent ion density on grain surface. Each colour in-

dicates ions belonging to the same batch. The grain’s semi-axes a, b, c

are10, 5, 5 in length, respectively. Ions’ Larmor radius(RL) at launch

is comparable to the grain’s semi-axes (b),where parameter p = 8

[RL/b ' 1,p = 0.1],and the magnetic field is perpendicular to x-axis.

Ions seem to hit their directed positions , however, some ions from

batches further away tend to hit the grain’s ends. This figure is similar

to the previous one. However, here the original batches are added. . . 117

4.29 The initial positions of ion batch, the expected direct colliding posi-

tions in the absence of a magnetic field and the actual colliding po-

sitions due to the combined influence of the grain’s electrostatic field

and the applied magnetic field. Ions starting their motion near grain’s

surface tend to hit near their expected hitting positions. . . . . . . . . 118

4.30 As Figure 4.29, but for a different ions batch. Some of the ions that

start near the grain’s end miss their expected hitting positions and shift

toward the end, while the rest of ions miss. . . . . . . . . . . . . . . . 119

4.31 As Figure 4.29, but for a different ions batch. Ions close to the grain’s

corner hit near their expected positions. . . . . . . . . . . . . . . . . 120

4.32 As Figure 4.29, but for a different ions batch. As ions start further

from the grain’s surface, their hitting positions shift toward the grain’s

end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.33 As Figure 4.32, but for a different ion batch. . . . . . . . . . . . . . . 121

4.34 As Figure 4.29, but for a different ion batch. Ions that start close to

the grain’s end, tend to hit near the expected positions. . . . . . . . . 121

4.35 Frequency plot of energies of ions where the magnetic field is perpen-

dicular to the x-axis. Figure shows a continuum energy distribution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



LIST OF FIGURES

4.36 The initial positions of ions, and the colliding positions due to the com-

bined influence of the grain’s electrostatic field and the applied perpen-

dicular magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.37 Frequency plot of energies of ions where the magnetic field is perpen-

dicular to x-axis and ions are launched from a circular bar around the

grain. The figure shows a continuum energy distribution . . . . . . . . 124

5.1 Electron attachment and metastable cross sections for molecular Oxy-

gen [Lawton and Phelps (2008)]. . . . . . . . . . . . . . . . . . . . . 138

5.2 Metastable ionization and ground state ionization cross sections for

molecular Oxygen (Morgon database, www.lxcat.net, retrieved on Febru-

ary 20, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Plot of electric potential when two grains approaching each other to a

gap distance equivalent to d = 120µm. The dust at left has potential

corresponding to φ̂ = −10V , its size is a : b = 5 : 2 . The right

dust has potential corresponding to φ̂ = 10V , its size is a : b = 4 : 8

Contour lines show the change in the electric potential distribution of

both grains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Plot shows the evolution of electrons trajectories at p = 103. Elec-

trons started from the first grain at left toward the second one at right

(showed as a small ellipse). Colors represent the electrons energy in

eV . Dark regions represent metastables formation when electrons lose

their energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Snapshots for the electrons density evolution when p = 103 at some

time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Plot shows metastables formation positions when p = 103. . . . . . . 143

5.7 Snapshots for self potential of the electrons when p = 103 at some

selected time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . 144

xv



LIST OF FIGURES

5.8 Histogram for the electrons gained energy evolution when pa = 103 at

some time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.9 Plot shows the evolution of one selected electron at pa = 102. The

electron started from the first grain at left and then evolved in an orbital

motion around the magnetic field lines and drifting motion around the

first grain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.10 Snapshots for the electrons density evolution when p = 102 at some

time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.11 Plot shows metastables formation positions when p = 102 at some time

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.12 Snapshots for self electrons potential when p = 102 at some selected

time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.13 Histogram for the electrons gained energy evolution when p = 102 at

some time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1 An electron beam form when electrons were ejected from a thunder-

cloud top and moved in an electrical distribution of positive ions and

negatively charged dust caused from a previous discharge [Füllekrug

et al. (2013a)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 A diagram shows a hollow cathode with an outside anode. . . . . . . 156

6.3 The simulated electrostatic environment after a sprite event without

simulating an ions column. Dust grains have collected electrons from

the sprite discharge represented by the negative region in the plot sides.

The negative region at the bottom shows the top part of the cloud. This

environment represent the one in Fig.6.1 but without simulating the

ions column. The coloured and contour lines represent the electric

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xvi



LIST OF FIGURES

6.4 As Fig.6.3 but this time with a positive ions column created by the

electrons avalanche during the sprite. This environment represent one

similar to Fig.6.1.The coloured and contour lines represent the electric

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 The evolution of one electron trajectory in an environment above a

thundercloud where a sprite event was expected to initiate (see plot 6.3) 163

6.6 Snapshots of electron density evolution in an environment similar to

Fig.6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.7 Snapshots of gained energy evolution in an environment similar to

Fig.6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.8 The evolution of one electron in an environment above a thundercloud

and after a sprite creation where positive ions were left (see plot 6.3).

The ellipse of electrons evolves in a long beam of electrons. . . . . . 166

6.9 Snapshots of electron density evolution in an environment similar to

Fig.6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.10 Snapshots of gained energy evolution in an environment similar to

Fig.6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xvii



Abstract

The main aim of this thesis is to understand and investigate some essential phys-

ical processes leading to dust grain growth and their interactions in plasmas. This is

achieved by applying both analytic and numerical models. Three main situations are

explored: dust grains growth in presence of electrostatic and electromagnetic fields,

dust grains interaction in submicron scales, and collective effects of dust grains above

thundercloud.

The evolution and character of plasma dust has wide-ranging implications for astro-

physics and laboratory plasmas, including plasma processes and fusion devices. The

local electromagnetic fields can influence the conditions for dust growth, leading in

some cases to naturally occurring prolate-spheroidal dust shapes. However, presence

of magnetic fields can have significant effects on dust growth. Results for dust growth

by ion accretion under the combined influence of an applied magnetic field and the

evolving electrostatic field arising from the charged grain in 1D and 3D have been

presented. The calculations show that most ions starting near the grain surface ulti-

mately collide with it, while those starting further away execute orbital motion around

the magnetic field lines and drift toward the grain. Moreover, the energy spectrum

for impacting ions shows discrete structure in presence of a parallel oriented magnetic

field. Finally, we note that the magnetic field influences the spatial deposition pattern

of ions, leading to increasing ions fluxes at the grain ends.

Microdischarge plasmas is an electrical discharges which occurs in geometries in

range of sub-millimetre length scales. However, a much extreme situation than mi-

crodischarge plasma where small size charged dust grains can cause breakdown for

the neutral gas when dust inter space reach to sub-micro scales. The interactions of

charged dust grains in plasma where molecules of Oxygen gas are present and the ef-

fect on the discharge of the ambient gas is investigated in presence of magnetic field.

The particle in cell model was used to simulate electrons motion in addition to using

xviii



Monte Carlo method to simulate the electrons collisions with neutrals. The importance

of the magnetic field was explored by varying the parameter (p) which gives the rela-

tive size of the electric field to the magnetic field. The distribution of electrons kinetic

energies was investigated in two cases when (p = 103) and (p = 102). At the first

case the gained energy increased dramatically, however, the gained energy did not ex-

ceed further than the metastables threshold as a result of consuming electrons energy

in metastable collisions. When magnetic field is increased (p = 102), gained energy is

fluctuated as a results of contribution in gyromotion orbits and electrons only involved

in metastable collisions. However, a number of metastable in this case is lower than

(p = 103) case.

The electron beam can occur just after sprites. The presence of charged dust above

thundercloud are thought to have a basic role in the electron beam formation in which

the electrons avalanche in sprite event leaving an environment of negative charged dust

and positive ions. This environment was simulated in a model like hollow cathode

with a column of positive ions inside. The particle in cell method was used to simulate

particles motion. Results for electrons evolution in such this environment with and

without presence of positive ions were presented. Electrons in environment without

positive ions evolve upwards gaining lower final energy. For the case when positive

column is presented, electrons evolve upwards in a long path and do not biased to

sidewalls. The trajectory of the electron shows an oscillator motion. The period of

such motion depends on the electron’s original position. Electrons gain higher energy

in a shorter time comparing to the case when the ions column is not simulated.
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Introduction

1.1 Plasmas

The term ‘plasma’ is used to describe the matter state in an electrical discharge which

contains nearly equal numbers of charged particles (electrons and ions) moving in ran-

dom directions. This term plasma was first introduced in 1928 by Langmuir [Tonks

and Langmuir (1929)] who had observed uncommon electron oscillations while con-

ducting his experiments in ionised gas. These unusual oscillations were oscillations

at the plasma frequency. plasma must be larger in extent than its debye length (the

characteristic shielding distance in a plasma), and the total number of particles in a

debye sphere (ie. the sphere of radius the debye length) should be large (also called the

plasma parameter), in order that the electrostatic fluctuations arise mostly from small

perturbations of the positions of many particles [?]. The presence of charged particles

in plasma is responsible for the good conductivity of the plasma as well as for the

presence of different wave and instability phenomena.

In an ionised gas (dissociated by an electrical discharge or by thermal means),

a mixture of free electrons and ions has been formed, leading to a new medium of

charged particles and neutral gas species: a plasma. Plasmas are ubiquitous in uni-

verse, either found naturally in the Earth’s atmosphere or within and outwith the solar
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1.2: DUSTY PLASMA

system or can be made in devices such as, light tubes, television screens, plasma etch-

ing systems for semiconductors, and Tokamaks.

1.2 Dusty plasma

Dusty plasma is a normal electron-ion plasma with solid dust particles with a few

nanometer to centimeter sizes [Shukla and Mamun (2010)]. This new system is en-

countered in many environments such as astrophysics [Goertz (1989); Szopa et al.

(2006)] and laboratory plasma including plasma processes [Mikikian et al. (2010)]

and fusion devices [Winter (2004)]. These dust particles acquire an electric charge

as a result of the absorption of electrons and ions. Because of the small mass of the

electrons, their mobility is greater than ions, consequently, grains become negatively

charged. Ions are accelerated toward the negatively charged grains in a region called

the sheath next to the grain [Shukla and Mamun (2010)].

Dust grain can be injected into a plasma or formed directly in the plasma depend-

ing on the environment [Shukla and Mamun (2010)]. For example, in space it can

be formed as a result of asteroid collision, while in a Tokamak it may be formed by

material ablation during contacting the hot plasma with the fusion vessel structure.

Dust is also composed of a range of elements depending on the environment. While

it is mainly water ice in Saturns rings, it may be carbon and tungsten components in

Tokamaks.

One should distinguish between two terms: dust in a plasma and a dusty plasma

depending on the plasma characteristic lengths. The when the dust grain radius (rd)

is much smaller than the plasma Debye radius (λD) rd � λD < a , where a is the

average distance , corresponds to dust in a plasma, while the case when rd � a < λD

corresponds to a dusty plasma. For the first situation, dust are considered as a collection

of isolated screened grains. In the other case, dust grains contribute in the collective

behaviour.

The presence of these dust particles add some complexity to the plasma system. It
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1.3: PLASMA BREAKDOWN

can affect the interaction between particles and external applied electric and magnetic

fields. Furthermore, dust in plasma can produce new kinds of waves, for example,

dust acoustic waves (DAW). The interaction between charged grains themselves adds

an extra load of complexity, which can be a reason to call this three component dust-

ion-electron plasma ‘complex plasma’. The dust acoustic wave (DAW) is an essential

normal mode of a dusty plasma. In this kind of waves, the restoring force comes from

the pressures of the hot electrons and ions, while the dust mass provides the inertia.

The frequency of the DAW is smaller than the dust plasma frequency (the electron and

ion thermal speeds)[Ghosh et al. (2004)].

1.3 Plasma breakdown

The transformation process of a neutral gas into a conducting self-sustaining discharge

is known as plasma breakdown or ignition. Gas discharges range from the very large

scale such as lightning and high altitude sprites [van der Velde et al. (2010)] to the very

small scale micro-discharges such as plasma display panels [Chen et al. (2006)]. It is

important to study discharge processes for fundamental understanding, as well as for

its applications [Radmilovi-Radjenovi and Radjenovi (2008)].

1.3.1 Townsend theory

In 1889, Paschen introduced his law for the minimum breakdown voltage after carrying

out experiments to study the minimum potential difference that can spark gas between

two electrodes in a glass tube [Raizer Yu (1991)]. In his law, the minimum voltage to

create breakdown depends on the kind of gas, the distance between the electrodes, d

, and the pressure in the tube, p. Furthermore, this minimum voltage is a function of

the product between the pressure and the gap distance, pd. It was possible at that time

to measure the breakdown voltage experimentally; however, the processes leading to

breakdown, were not clearly understood.

4



1.3: PLASMA BREAKDOWN

Later at the beginning of the twentieth century, Townsend introduced a theory that

expressed the breakdown process for gas discharge between parallel plate electrodes,

separated by a gap distance d at a pressure p [Meek (1940)]. His theory describes

the breakdown processes accurately at a set of conditions where the product pd is

at a range of about 0.1 − 100 Pa.m (0.075 − 75 Torr.cm) and the electrode has sim-

ple geometries. Townsend’s theory provides a description of microscopic processes

causing gas breakdown such as the ionization of atoms by electron impact, secondary

electron emission at the cathode by ion impact, and charge multiplication in electron

avalanches. Townsend’s theory is usually used in low-pressure discharge. The follow-

ing discussion of Townsend theory supposes a uniform electric field E = V
d between

parallel metal electrodes, where V is the voltage and d is the distance between elec-

trodes . If a single electron starts at the cathode and forms an electron avalanche to-

wards the anode, then the number of electrons , Ne, as a function of distance x between

electrodes is:

Ne = eαx (1.1)

where α is the ionization coefficient and can be given by the formula:

α

p
= A exp

(
−Bp

E

)
(1.2)

where constants A and B are gas-specific and are given from experiments, and E is

the electric field strength. While the number of ions, Ni, produced by electron impact

collision is:

Ni = (eαd − 1) (1.3)

The electrons during avalanche leave the resulting ions behind in the discharge gap,

as a result of the increase in the drift velocity of the electrons being greater than that

of the ions. When the electrons reach the anode, the ions have hardly started their drift

motion towards the cathode. When ions reach the cathode surface there is a probability,

γ, that a secondary electron is emitted from the cathode surface, the number of emitting
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1.3: PLASMA BREAKDOWN

secondary electrons for a discharge gap d, is:

Ne,sec = γ(eαd − 1) (1.4)

The new secondary electrons will be involved in a new electron avalanche process.

If other processes of production and losing charged particles, such as photoionization,

field emission and electron attachment are ignored, a criterion for self-sustainment

of the electron avalanches can be supposed. The electron avalanche is considered as

self-sustaining when the ions coming from a single electron avalanche create a single

electron by secondary emission at the cathode surface. This situation can be expressed

by:

γ(eαd − 1) = 1 (1.5)

This expression is known as the breakdown criterion and can be rewritten as:

eαd =
1
γ

+ 1 (1.6)

Combining equations 1.2, and 1.6 gives Paschen’s Law expression which describes

the voltage Vb needed to breakdown a gas and it is a function of pressure and electrode

separation distance:

Vb =
Bpd

ln(Apd)/ln(ln
(
1 + γ−1)) (1.7)

At high pressure and a large gap distance, discharge evaluates much faster than

what can be predicted by Townsend’s theory. A new breakdown theory, known as

streamer breakdown was introduced . Streamer breakdown theory takes into account

space charge effects through electron avalanches, leading to thin, weakly-ionized chan-

nels, called streamers.

1.3.2 Streamer breakdown

While the Townsend theory fails to explain the observed, high-speed breakdown fea-

tures, Loeb [Loeb (1951)], Meek and Raether [Petcharaks (1999)] developed the basis
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1.3: PLASMA BREAKDOWN

of a new breakdown theory known as streamer breakdown theory. This new theory

considers the space charge effects of a single electron avalanche which were neglected

in the Townsend theory. The breakdown process in the streamer theory still results in

the developing electrons in the avalanche. However, during avalanche the charge mul-

tiplication is very large in which the charges in the avalanche head change the applied

electric field. The number Q of space charges contribute to the electric field Es can be

given by:

Es =
Qe

4πε0r2 (1.8)

where e is the elementary charge, ε0 the vacuum permittivity, and r is the radial

distance from the centre of the charge region and it can be given by:

r =
√

4Dt (1.9)

where D is the diffusion coefficient and t is the time from the avalanche taking

place. Reather stated that the anode directed streamer would develop when the carrier

number in the avalanche head reached a value of about 108. His statement leads to an

empirical condition for streamer formation. The streamer formation starts if:

eαd = ψd (1.10)

with d being the distance that an electron avalanche travelled, α is the effective

ionization coefficient , and ψ = 1.5 × 104 , where ψ had been calculated based on

Friedrich’s experiment of synthetic air for α/p calculation.[Petcharaks (1999)]. Equa-

tion 1.10 indicates that the applied electric field and the gap distance have to be large

enough.

The streamer is described as a thin weakly-ionized channel that develops between

the electrodes. The space charge in the streamer head modifies the electric field distri-

bution leading to a high charge multiplication. This helps to develop the streamer very

fast. While electron speed is characterized by the electron drift velocity, the produced

ions drift very slowly towards the cathode and cause secondary electron emission.

Streamer developing velocities are in the order of 106m/s, and this makes it much

faster than in the Townsend breakdown (103m/s) [Aleksandrov and Bazelyan (2001)].
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1.4 Plasma parameters

1.4.1 The Debye Sphere

The Debye length is an important characteristic length scale in plasma in which at

length scales shorter than the Debye length, the quasi-neutrality condition is not valid.

For length scales larger than the Debye length, collective processes are dominant. To

clarify the Debye length concept, consider a uniform plasma in a thermal equilibrium

with temperature T. Since electrons are far more mobile than ions, they therefore re-

spond to the thermal fluctuations much faster than ions. For a 1-D treatment, an elec-

tron depletion layer of length L will be created. The electric potential of this layer can

be found by solving the Gausss equation:

φ(x) =
niq(d2 − x2)

2ε0
(1.11)

where ni is the ion density, q is the electron charge, d is the maximum width of the

no-electron layer, x is the co-ordinate distance, and ε0 is the permittivity of free space.

To find the Debye length which is equivalent to the maximum size d of the layer,

equating the maximum potential energy with the thermal energy 1/2kBT to give:

1
2

kBT =
ne2d2

2ε0
(1.12)

From equation 1.52 the Debye length is:

λD = d =

(
ε0kBT
nie2

)1/2

(1.13)

That means any fluctuations in charge in the plasma will be shielded by a length greater

than λD, leaving a quasi-neutral plasma on scales > λD. Fig. 1.1 represents the concept

of the Debye length.

1.4.2 Plasma Frequency

Consider a plasma averaged over length scales larger than the Debye length which

shields the electric field, then a force can be initiated to prevent charge separation.
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Figure 1.1: Suppose a small region of plasma of length 2λD, where λD is the Debye length.

The figure shows: (a) A 1-D slice of a quasi-neutral plasma. The − represents the electrons,

and + represents the protons. The plasma here is locally quasi-neutral. (b)The random thermal

fluctuation affect electrons more than the protons, leading to creation of a zone of electron

depletion. The characteristic length of the depletion zone is λD, the Debye length. Over length

scales greater than the Debye length, the plasma is quasi-neutral [Bennet (2012)].

From the continuity equation:
∂n
∂t

+ ∇.(nv) = 0 (1.14)

where n is the number density and v is the fluid velocity. Any perturbation occurring

leads to charge separation because electrons have a larger mobility than ions. This

separation causes an electric field leading to particle acceleration and can be given by:

E = −
me

e
dv
dt

(1.15)

For a perturbation n1 to a number density n0 is small, then the equation representing

this system can be given by:
∂2n1

∂t2 +
n0e2

ε0me
n1 = 0 (1.16)

This equation represents a simple harmonic motion with a frequency called ‘plasma

9



1.4: PLASMA PARAMETERS

frequency’:

ωp =

(
n0e2

ε0me

)1/2

(1.17)

The electric field fluctuations in plasma with a frequency equal to or less than the

plasma frequency will be absorbed by the electron motion. For fluctuations with fre-

quency greater than the plasma frequency the electron motion cannot be quick enough

to cancel these perturbations.

1.4.3 Electron and Ion Cyclotron Frequency

When a charged particle moves in a plasma only in the presence of a uniform constant

magnetic field, its motion is described by the Lorentz equation:

m
dv
dt

= qv × B (1.18)

Consider the magnetic field has a component in z direction only, then equation 1.18

components are:

dvx

dt
=

q
m

Bvy (1.19)

dvy

dt
= −

q
m

Bvx

dvz

dt
= 0

where vx, vy, vz are the components of the velocity vector. The time derivatives of

equations 1.19 are:

d2vx

dt2 =

(qB
m

)2

vx (1.20)

d2vy

dt2 =

(qB
m

)2

vy

Equations 1.20 represent a simple harmonic motion at a frequency known as the

cyclotron frequency:

ωc =
| q | B

m
(1.21)

10
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1.4.4 The Mean-Free Path

Consider a moving electron in a cube with dimensions xyz of atoms which can be seen

as a sphere from the moving electron. The number of atoms included in that cube is

nxyz where n is the atom density. The cross section of each atom can be represented as

σ = πr2 where r is the radius of the atom. The average distance that can be travelled

by the moving electron between collisions is called the mean-free path λ and can be

given by:

λ =
1

nσ
(1.22)

1.5 Plasma Sheath

Plasma usually is treated in three different scales with suitable matching parameters

at the boundaries, these are: quasi-neutral bulk plasma, a quasi-neutral collisional

presheath and a non-neutral sheath. The width of sheath Ls is normally much smaller

than the plasma dimensions. To clarify the concept of sheaths, consider a plasma con-

tained in a vacuum chamber of a finite size, since electrons are far more mobile than

ions, they reach the wall first resulting in a negatively potential wall. Ions will be at-

tracted by the negative potential at the wall causing the Debye length to confine the

potential gradient to a layer, called a sheath, of thicknesses equal to several Debye

lengths next to the wall. Sheaths depending on the plasma and wall conditions can be

treated as collisionless or collisional. Plasma boundary interactions are significant in

many plasma applications, such as semiconductor manufacturing [Tchertchian et al.

(2011)], and fusion [Meshkani et al. (2014)]. The concept of presheath arose to match

plasma potential at the plasma-sheath boundary . Presheath is a transition area where

ions must have a velocity, known as ‘Bohm velocity’, when directed to the sheath.

11
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1.5.1 Collisionless sheath

Consider a collisionless sheath in a plasma with Maxwellian electrons at temperature

Te cold ions (Ti = 0), and equal electron and ion densities at the plasma-sheath transi-

tion interface. If ions with velocity us at a position where φ = 0 at the plasma-sheath

interface, where φ is the potential, then ions energy is conserved if no collisions are

assumed [Lieberman and Lichtenberg (2005)]:

1
2

Mu2(x) =
1
2

Mu2
s − eφ(x) (1.23)

Also for the ion flux:

ni(x)u(x) = nisus (1.24)

with nis being the ion density at sheath edge. From equations 1.23, and 1.24, the ion

density is given by:

ni = nis

(
1 −

2eφ
Mu2

s

)−1/2

(1.25)

and from the Boltzmann relation, the electron density is:

ne(x) = neseφ(x)/Te (1.26)

Substituting equations 1.25, 1.26 into Poisson’s equation;

d2φ

dx2 =
e
ε0

(ne − ni) (1.27)

At sheath edge nes = nis = ns , equation 1.27 gives:

d2φ

dx2 =
en0

ε0

[
exp

φ

Te
− (1 −

φ

ξs
)−1/2

]
(1.28)

where eξs = 1
2 Mu2

s is the initial ion’s energy. Equation 1.28 gives the potential and

electron and ion density at the collisionless sheath. Ions, as mentioned previously,

must enter the sheath with Bohm velocity from the presheath layer, then accelerate

across the sheath leading to ion density decreasing. If the initial ion energy is low in

12
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comparison to the potential , then the ion energy and the flux conservation (equations

1.23, and 1.24) become:

1
2

Mu2(x) = −eφ(x) (1.29)

Also for the ion flux:

eni(x)u(x) = J0 (1.30)

where J0 is the constant ion current. Solving this for n(x), and using it in Poisson’s

equation, gives:
d2φ

dx2 = −
J0

ε0

(
−

2eφ
M

)−1/2

(1.31)

Multiplying by dφ/dx, integrating from 0 to x , taking the negative square root, and

integrating again leads to:

−φ3/4 =
3
2

(
J0

ε0

)1/2 (
−

2eφ
M

)−1/4

x (1.32)

Setting φ = −V0 at x = s gives:

J0 =
4
9
ε0

(
2e
M

)1/2 V3/2
0

s2 (1.33)

Equation 1.33 is known as: Child−Langmuir’s law. It gives the space charge current

between two electrodes and depends on the potential difference between them. Using

the following relation of current J0 in Child−Langmuir’s law:

J0 = ensuB (1.34)

gives:

Ls =

√
2

3
λDe

(
2V0

Te

)3/4

(1.35)

where λDe is the electron Debye length. This relation gives the sheath thicknesses as

a function of sheath potential and plasma parameters. Neglecting the electron number

density gives rise to the Child law sheath width to be in the order of 100λDe . However,

Child−Langmuir’s law can not be used for high pressure discharge and when the sheath

potential is not too large compared to electron temperature.

13
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1.5.2 Collisional sheath

If the sheath width is smaller than the mean free path of the ion momentum transfer

(Ls < λi), then the Child’s law discussed in the previous section is not valid. Therefore,

another treatment should be done to deal with the high voltage sheath region and the

ion velocity at the sheath edge [Lieberman and Lichtenberg (2005)]. For the sheath

region, equation 1.24 , if ionization collisions are not considered, is still valid:

niui = nsus (1.36)

where ns and us are the values at the sheath edge. Also, ion velocity when collisions

are not neglected is:

ui = µiE ≈
2eλi

πM | ui |
E (1.37)

where µi is the mobility, and E is the electric field. Solving 1.37 for ui > 0 then

substituting in 1.37 gives:

ni =
nsus

(2eλiE/πM)1/2 (1.38)

Substituting this equation in Gauss’ law, solving for E, and setting E(0) ≈ 0, φ(0) =

0 at the sheath edge, gives the constant currentJ0:

J0 =

(
2
3

) (
5
3

)3/2

ε0

(
2eλi

πM

)1/2 V3/2
0

L5/2
s

(1.39)

This equation is the collisional form of the Child’s law. It can be noticed that in this

case the current is proportional to the voltage as in the collisionless case but inversely

with the sheath width to a different power of the collisionless Child sheath.

1.6 Single particle dynamics

Studying and understanding single particle dynamics are important to get knowledge of

plasma processes. In this section an overview of charged particle dynamics in plasma
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in presence of an electric field only, magnetic field only, and electric and magnetic

fields backgrounds are discussed, in addition to some aspects of magnetized plasma.

1.6.1 Charged particle motion in a uniform electric field

The equation of motion for a particle with mass m, charge q, and velocity V in electric

field E and magnetic field B is shown by the Lorentz force F and is given as:

F = m
dv
dt

= q(E + v × B) (1.40)

v =
dr
dt

(1.41)

where r is the particle trajectory. In the presence of a constant electric field only,

the equation of motion will reduce to:

dv
dt

= qE (1.42)

In this situation the particle moves with a constant acceleration in the direction of

the electric field in the case of positive charged particles, and in the opposite direction

in the case of negative particles. In a direction perpendicular to the electric field the

particle is not accelerated and its motion remains unchanged [Bellan (2006)].

1.6.2 Charged particle motion in a uniform magnetic field

The equation of motion for a particle moving only in a static constant magnetic field is

given by:

m
dv
dt

= q(v × B) (1.43)

By taking the scalar product with the velocity vector equation 1.43 becomes:

mv.
dv
dt

=
d
dt

(
1
2

mv2) = qv.(v × B) = 0 (1.44)

15
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From this equation it is clear that the kinetic energy (w = 1
2mv2) is a constant. It is

convenient to separate the velocity to components parallel v‖ and perpendicular v⊥ to

the magnetic field. Because the v × B force has no component parallel to the magnetic

field, therefore the particle moves at a constant velocity along the magnetic field. Since

the kinetic energy is constant, v is also constant for the motion, which means that the

motion in the plane perpendicular to the magnetic field is a circle and the frequency of

this circular motion is known as the cyclotron frequency and it is given by:

wc =
|q|B
m

(1.45)

The centre of the rotational motion is called the guiding centre and the radius of

the circle is called the Larmor radius and is given by:

rc =
v⊥
wc

(1.46)

The Larmor radius is a characteristic minimum scale length for different plasma pro-

cesses. For a magnetic field pointing towards the observer, positive charged particles

rotate in a clockwise direction and in the opposite direction for negatively charged

particles[Goldston and Rutherford (1995)].

1.6.3 Motion in uniform electric and magnetic fields

If a particle moves in uniform electric and magnetic fields, the resulting motion consists

of a uniform circular motion around the magnetic field plus a uniform translational

motion in the E× B direction with velocity VE which is called the E× B drift velocity

and is given by:

VE =
E × B

B2 (1.47)

For v‖ = 0 , the particle trajectory is a cycloid in E,VE plane. The positively

charged particles rotate in the left-hand sense with respect to the magnetic field and

negatively charged particles rotate in the right-hand sense as shown in Figure 1.2. The
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(a) (b)

Figure 1.2: (a) A circular motion of charged particles (proton and electron)in a constant, uni-

form magnetic field directing out of the page. The particles orbit the guiding centre which is

shown in orange. The proton excludes a larger Larmor radius and with the opposite direction

to the electron. (b) The drift motion in addition to a circular motion of charged particles in the

presence of uniform electromagnetic fields. The guiding centre drifts upwards, in the direction

of E × B with velosity vgc [Bennet (2012)].

guiding centre moving at an E×B drift velocity. If v‖ , 0 , the guiding centre continues

to move with this velocity parallel to the magnetic field.

This drift does not depend on the charge or mass of the particle but only on the

magnitude and direction of the electric and magnetic fields. This means the guiding

centres of both electrons and ions move with the same velocity. Other particle drifts

in the magnetized plasma are grad-B drift and curvature drift. The former one forms

when the magnetic field is spatially nonuniform and results in the drift of charged

particles in opposite directions perpendicular to the magnetic field and its gradient

direction. The curvature drift exists in a curved magnetic field and accompanies the

grad-B drift. These two drifts are significant in the Tokamak magnetic confinement

process because these drifts encourage ions to drift towards Tokamak walls which

affect the maintenance of the confinement.

The case when the electric field is spatially non-uniform is different. While drift
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velocity is proportional to the kinetic energy and electric field magnitude differs around

the grain , the particles gain or lose energy when they move in different regions around

the grain. As a result, the cyclotron radius and the drift velocity change.

1.6.4 Energy changes

The Larmor radius increases with the perpendicular velocity. Consider a positively

charged particle moving in an electromagnetic field as shown in Figure 1.3(a), when

the particle moves in the upper half cycle (from point 1 to 3), the electric field will

accelerate it because the particle moves in the direction of the electric field. As a result,

the particle will gain energy and its Larmor radius will increase in size, see Figure

1.3(b) .As the particle moves against the electric field in the lower half cycle (point 3

to 1), it slows down and loses energy. The higher velocity on the top portion of the

trajectory and the lower velocity on the bottom portion lead to a drift perpendicular to

both E and B resulting from the different sizes of the average Larmor radius. However,

overall they will gain energy equivalent to moving at the drift speed [Freidberg (2007)].

In the case when the electric field is not constant or not uniform, the particle or-

bits may be quite complicated and particles can gain or lose energy as they drift into

different electrostatic regions due to the work done by the electric field.

1.7 Orbit-Limited Theory

It is common to calculate the charging of dust grains in plasma as well as their shielding

by using the orbit-motion-limit (OML) theory for spherical probes [Allen (1992)]. The

orbit-motion-limit predicts the electron and ion currents to the probe. The original

orbital motion of charged particles around a probe which is attributed to Mott-Smith

and Langmuir [Mott-Smith and Langmuir (1926)] assumed particle orbits within the

sheath enclosing a spherical or cylindrical probe, whereas plasma outside the sheath is

considered to be a neutral.
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Figure 1.3: (a) Effect of E⊥ on a positive charge and (b) the resulting perpendicular E×B drift.

(c)Effect ofE⊥ on a negative charge and (d) the resulting perpendicular E × B drift [Freidberg

(2007)].

The following discussion clarifies the assumptions and equations that OML theory

is based on [Allen (1992)]. Consider a cylindrical probe with an attracted potential (

consider it at a positive potential). The conservation law of energy gives:

1
2

mv2 =
1
2

mv2
p − eVp (1.48)

where vp is the velocity at the probe surface, and Vp is the probe potential. Conser-

vation of angular momentum gives, for an electron in a close incidence,

mvhp = mrpvp (1.49)
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where hp = rp(1+Vp/V0)1/2 is the impact parameter (see Figure 1.4), rp is the probe

radius, and eV0 is the initial energy of the electron. The previous equation expresses

the effective radius of the probe. The electron contribution to the current I to the probe

with velocities in a narrow range is given by:

dI = 2πrple(1 + Vp/V0)1/2(ν/π)dn (1.50)

where (ν/π)dn is the electron flux through the unit area for those moving in a

direction perpendicular to the probe axis. If we consider a Maxwellian distribution of

velocities in two dimensions:

dn = n0

(
m

2πkTe

)
e−mv2/2kTe2πvdv (1.51)

Substituting equation 1.54 in 1.50 and integration gives the total current:

I = 2πn0rple
(

kTe

2πm

)1/2 2
√
π

(
1 +

eVp

kTe

)1/2

(1.52)

when eVp/kT ≥ 2, then a plot for a relation between I2 and Vp represents a straight

line, with its slope giving n0 and the intersection with current axis gives Te. For a

spherical probe, the current relation is:

I = 4πn0r2
pe

(
kT
πm

)1/2

(1 + Vp/V0) (1.53)

For the ion current, the equation becomes :

I = 4πn0r2
pe(kTi/2πM)1/2(1 − eVp/kTi) (1.54)

The theory ignores collisions. However, it is important to include collisions if the

theory extends to infinity. Despite this neglect of ion-neutral collisions, OML assumes

that the mean free path is much longer than the Debye length [Chen (2009)].

OML theory also neglects the presence of potential barriers. This means ions can

reach positive energy points in phase space .The OM theory by Laframboise [Lafram-

boise (1966)] shows that in the limit rp � λD, the results reduce to the simpler OML

theory in which there is no absorption radius in that limit. However, Allen et al.[Allen
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Figure 1.4: Plot illustrates the impact parameter h and the closest approach distance p.

et al. (2000)] have confirmed for any negatively charged dust grain in a Maxwellian

plasma, the role of potential barriers in preventing some ions from reaching dust should

be considered. It has been shown [Lampe (2001b)] that the OML theory is very ac-

curate when used for small grain size, and in calculating the ion current to the grain

and the floating potential. However, potential barriers can have some effects on the

potential shielding at limit rp ≈ λD particulary for large dust size, and low Ti/Te.

1.8 Gas molecule processes

The presence of charged dust grains in plasma can lead to activation of ambient neutral

gas. In this section some aspects of gas molecule processes such as excitation, ioniza-

tion, radiation and metastable formation that can appear [Lieberman and Lichtenberg

(2005)]are discussed.

1.8.1 Electric Radiation and Metastable formation

Atom collisions with charged particles or expose to radiation can lead to atom excita-

tion where the atoms in a ground state transfer to a higher energy bound state. In most

bound states atoms emit photons by electric dipole radiation before returning to the
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ground state or to a lower energy bound state:

e + Ar → Ar∗ + e→ Ar + e + ~ω (1.55)

where ω is the photon frequency, and ~ω is its energy. This radiation is often in

the visible or ultraviolet ranges. It has be shown that the excited states lose energy

by electric dipole radiation more often than through collisions. A special excited state

where the dipole radiation is not allowed is called metastable, instead the particle can

relax by radiating as a quadrupole or through magnetic dipole radiation. However,

metastable atoms can be de-excited or ionized by collisions. Metastables states are

implicated in He-Ne gas lasers. A e-He collision results in Helium atom He excita-

tion which becomes de-excited by another collision with Ne atoms. Consequently, Ne

atoms become excited and then start to radiate leading to laser formation.

1.8.2 Electron Impact Ionization

Since an electron-atom can lead to excitation of the atom or to electric radiation, high

energy electrons (higher than ionization energy εioz) can produce atom ionization. An

incident electron has energy ε and can transfer part of its energy (equal to ionization

energy) to a target which loses an electron leading to the ionization of the target. Ion-

ization collisions cross section depend on the incident electron energy. For ε < εioz,

the σioz = 0 where σioz is the ionization cross section. The ionization cross section

[Lieberman and Lichtenberg (2005)] can be given by:

σioz = π

(
e

4πε0

)2 1
ε

 1
εiz −

1
ε

 (1.56)

where:

ε > εioz (1.57)

For an electron energy much more than ionization energy, the cross section falls

probational to ε−1. Like the ionization cross section, the ionization frequency also falls
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with v−1 when ε � εioz , where v is the electron velocity. The ionization frequency is

given by:

νioz = nσiozv (1.58)

Since there is usually a distribution of electron energies in any realistic plasma, the

tail of such a distribution is significant in ionization process.

1.9 Thesis Outline

The goal of this thesis is to investigate some essential physical processes leading to dust

grain growth and their interactions in plasmas. This introductory chapter introduces

a short discussion of the basic physical background related to the subject in hand.

The following chapters will discuss in greater details the physical mathematical and

computational treatment of the research carried out for this thesis.

The first subsequent chapter will discuss the mathematical and computational tech-

niques used in dust grain simulations. Chapter 2 will introduce the particle model in-

cluding the Monte-Carlo collision . Field solver in addition to the Lagrange multiplier

techniques that will be investigated in chapter 3. Poisson’s equation will be solved

using the Finite Difference method to calculate the electric potential of charged dust

grains in 3 dimensions as well as the electric potential resulting from the charged par-

ticles. Furthermore, 1-D examples of dust growth will be presented in chapter 3. The

model introduced in Chapter 2 as well as the numerical techniques discussed in Chap-

ter 3 will be utilized in Chapter 4 and simulation results will be discussed. Chapter 5

will investigate the possible gas discharge processes that can occur in the environment

of charged dust grains in plasma that can be measured in submicron scales. Chapter

6 will address a specific case for various dust interactions and their role in the for-

mation of electron beams above a thundercloud. The simulation results will also be

discussed. Chapter 7 is the conclusion, and will examine the possible extension of the

work presented in this thesis.
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2

Particle model

2.1 Introduction

This chapter introduces the particle model which will be applied in the simulation of

charged particles’ (electrons and ions) dynamics in the coming chapters. The parti-

cle model and its different aspects, such as collision processes, data interpolation and

other components are described here in detail. In addition to particle model, other tech-

niques, namely the Poisson solver and the Lagrange multiplier will be incorporated in

simulations and are the subject of chapter 3.

2.2 Interpolation

Interpolation is a method which is quite commonly used for the particle model. This

process allows the estimation of a function f (x, y) at untabulated points (x, y). In the

particle model, scaler quantities, for example the electric potential, are defined at grid

points. However, the computing of particle positions and velocities is required in a

continuous way in the computational domain. On the other hand, whilst particles can

move to positions that don’t coincide with grid points, their charge must be assigned to

the nearest set of grid points in order to allow the calculation of the electric potential.

The simplest interpolation method which applies the nearest grids points is the
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linear interpolation [Press (1992)] (or bilinear and trilinear interpolation in two and

three dimensions respectively). In such a method, the data at grids points are used to

find the value in the internal desired points or a value weighted to the nearest mesh

points.

In order to clarify the concept of the linear method the following example is con-

sidered: in two dimensions if ya( j, k) is an array of functional values, x1a is a given

array of length m, and x2a is an array of length l . These three arrays are combined by

the following relation:

ya( j, k) = y(x1a( j), x2a(k)) (2.1)

To estimate the value of function y at internal point (x1, x2) by bilinear interpola-

tion, the four mesh points which surround the desired point, as shown in Figure 2.1 ,

are related to point (x1, x2) by relations:

x1a( j) ≤ x1 ≤ x1a( j + 1) (2.2)

x2a(k) ≤ x2 ≤ x2a(k + 1) (2.3)

The following relations are then considered:

y1 = ya( j, k) (2.4)

y2 = ya( j + 1, k) (2.5)

y3 = ya( j + 1, k + 1) (2.6)

y4 = ya( j, k + 1) (2.7)

The value of ya at point (x1, x2) is given by:

y(x1, x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4 (2.8)

where:

t = (x1 − x1a( j))/(x1a( j + 1) − x1a( j)) (2.9)

u = (x2 − x2a(k))/(x2a(k + 1) − x2a(k)) (2.10)
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Figure 2.1: Interpolation diagram.

Similarly, when interpolation to mesh points is done, the internal value weighting

is applied to the surrounding grids hence the greatest weight is attributed to the nearest

grid point weighting the particle to the grid points, the largest weight is attributed to

the nearest grid point then; it follows that:

y1 = ( y(x1, x2) − t(1 − u)y2 + tuy3 − (1 − t)uy4) /(1 − t)(1 − u) (2.11)

y2 = (y(x1, x2) − (1 − t)(1 − u)y1 + tuy3 − (1 − t)uy4) /t(1 − u) (2.12)

y3 = (y(x1, x2) − (1 − t)(1 − u)y1 − t(1 − u)y2 − (1 − t)uy4) /tu (2.13)

y4 = (y(x1, x2) − (1 − t)(1 − u)y1 − t(1 − u)y2 + tuy3) /u(1 − t) (2.14)

Taking a simple case when t = 0 and u = 0, the value of the function lies on a mesh

point. The method can similarly be applied to three-dimensions.

2.3 Integration of particle motion

The coupled set of equations of motion that describe the individual particles motion

are as follows;

F = m
dv
dt

= q(E + v × B) (2.15)
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v =
dr
dt

(2.16)

equations 2.15, and 2.16 are ODE’s (Ordinary Differential Equations).

One effictive method for solving initial value problems for ODE’s is the Runge-

Kutta method [Press (1992)]. It is derived from a convenient Taylor method that ex-

panded to some n order terms, in which 4thRK is equated to the first five terms of

Taylor expansion, and the error term is of order of 5. In RK method the function f (x, t)

is evaluated at selected points on each step size. This method is stable and converges

to a good level. To illustrate the idea of the Runge-Kutta algorithm, let’s consider an

ODE:
dy
dx

= f (x, y) (2.17)

when subject to an initial value f (x) = x0 at x = 0 . The 4thRK, evaluate f (x) four

times per step h: Once at the initial point, twice at trial midpoints and once at a trial

end point. The final value of the function is computed from these four derivatives. The

fourth Runge-Kutta formula therefore has the form:

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5) (2.18)

in which:

k1 = h f (xn, yn) (2.19)

k2 = h f (xn +
h
2
, yn +

k1

2
) (2.20)

k3 = h f (xn +
h
2
, yn +

k2

2
) (2.21)

k4 = h f (xn + h, yn + k3) (2.22)

O(h5) is the error term of fifth order which indicates that each time step has an error

with an order five, as lower order errors are canceled out by each other.
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2.4 Particle in cell simulation

Many plasma simulations are intended to calculate the dynamics and possible colli-

sions of each particle. However, the large number of these particles in many plasma

environments makes this process difficult or even impossible. Therefore, the super-

particles technique has been introduced to represent the huge number of particles in

one super particle. In our simulations in this thesis only real particles are considered,

otherwise other PIC techniques are the same. The super-particle behaves in the same

way the real particle does by interacting with self fields and obeying Lorentz force

equations. Such simulation is known as the Particle-in-Cell [Petrovi et al. (2007)].

PIC simulation details can be found in many prior works, such as [Dowds et al.

(2003b), and MacLachlan (2009)]. The simulation begins by injecting the super-

particles into the computational domain and then their self fields are computed from

the particles’ positions and velocities via equations of motion under the influence of

the outer fields. The interpolation process is used to weight the particles’ charges to the

mesh points then solve Poisson equation. The electric fields are then calculated and

weighted to the particle positions through the simulation space. The new particles’

velocities and positions are then updated. Collisions between particles or neutrals are

simulated using a Monte-Carlo algorithm.

2.5 Monte Carlo method

The ideal particle model must include a treatment of particle collisions. This requires

us to add a new term to the equations of motion to include collisions. Equation 2.15

can be written as:

F = m
dv
dt

= q(E + v × B) + K (2.23)

where K is the collision term. Two important parameters in collision treatment are the

collision cross-section and the rate coefficient. A collision cross-section describes a

target particle interaction area which causes a reaction if intersected by the colliding
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particle. The cross-section is often dependent on energy. If particles with a distribution

of energies involved in collisions, then their rate coefficient combines the information

from the cross-section and the energy distribution. The rate coefficient is often used in

a fluid model; however, as the work here is dealing with individual particles, then its

treatment of collisions should use individual cross-sections. A common method to deal

with collision processes is a Monte Carlo collision (MCC) [Birdsall (1993)] scheme

which treats the collision processes using statistical methods. The type of the collision

should be determined after the collision occurring decision. The cross sections of each

interaction in addition to the particle energy are crucial parameters to decide that a

collision has occurred.

When an electron gains enough energy to cause a specific collision, such a collision

is considered to take place.

The probability, P, of the incident particle having a collision at a time step is ex-

pressed as:

P = ntv∆t
M∑

i=1

σiε (2.24)

where nt is the number density of the targets, v is the speed, ∆t is the computational

time step size, σi is the ith cross-section of a collision at particle energy ε, the sum in

equation 2.24 represents the total cross sections of all collisions types, and M is the

total number of collision types. The simulation is easy to extend to include any number

of collision types with heavier loads on the computer. If a target species includes

more than one type, the probability expression can easily be modified to consist of

different target species types. The collision probability at each time step is determined

by comparison of the probability with a random number. Another random number

is compared with the probability of each collision kind to determine the type of the

incident collision . The probability of a collision can be given for each collision type

as:

Pi = ntv∆tσi(ε) (2.25)
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Figure 2.2: Diagram showing a straightforward Monte-Carlo collision selection method. The

line shows the choice between a collision and no collision. A collision occurs if the random

number R1 is less than the total collision probability.

Figure 2.3: Diagram showing a straightforward Monte-Carlo collision selection method. After

deciding between a collision or no collision by comparison a first random number with the total

probability, the type of collision is chosen: a second random number is compared to the relative

sizes of each collision probability.

where Pi is the probability of the ith collision kind. If a generated random number

(R1) selected from a uniform distribution of numbers of between 0 to 1 is less than the

total probability of simulated collisions then the incident particle must undergo a col-

lision. In order to decide the collision type, another random number (R2) is compared

with the relative probabilities (Pi/P). Diagrams 2.2, and 2.3 clarify the Monte-Carlo

ideas described above.

Molecular gases can be involved in many inelastic reactions, such as attachment,

dissociation, charge exchange, or ionisation . These reactions can change the chemical

composition of the plasma. In addition, there are different kinds of elastic collisions,
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Figure 2.4: Figure showing pre- and post-collison dynamics for an elastic collision between

an electron and a neutral.

for example, vibrational, rotational, and electronic excitations. These excitations affect

the energy distributions of the particles. A general description of how Monte-Carlo

method treats some of these interactions now follows,

2.5.1 Elastic collisions

In an elastic collision, momentum and the total kinetic energy are redistributed between

the particles involved [Braithwaite (2000)] , e.g.

e−f ast + Aslow → e−less f ast + Alessslow (2.26)

As a result of an electron losing energy, it follows a scattered direction. The scat-

tering angle θ in the range of [−π : θ] can be expressed by a simple relation [Dowds

et al. (2003b)] as;

θ = 8π(R −
1
2

)3 (2.27)

where R is a random number between 1 and 0. There is no energy threshold for

elastic collisions. Figure 2.4, above, shows the properties of an elastic collision.
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Figure 2.5: Figure showing pre- and post-collision dynamics for an inelastic collision between

an electron and a neutral.

2.5.2 Inelastic collisions

Here, momentum is redistributed between the colliding particles; however, part of the

kinetic energy is transferred from one particle to the others, resulting in a state of ex-

citation or ionization. Figs. 2.5, and 2.6 show the properties of inelastic and ionization

collisions respectively.

e−f ast + A→ e−slower + A∗ (2.28)

or,

e−f ast + A→ 2e− + A+ (2.29)

A particular excited state of an atom or molecule that has a longer lifespan than the

usual excited states is known as metastable state. Therefore, a metastable can survive

to undergo a second collision that may transfer it to an ionized state. The ionization

process results in two electrons; the incident, plus another, leaving a positive ion.

The ionising electron’s initial speed and the neutral speed in lab frame are ve and

vn respectively, and the postcollision speeds of the ion and two electrons in the same

frame are vn, v1 and v2 respectively. The neutral speed is assumed to be unchanged pre-

and postcollision. In the rest frame of neutral [Lieberman and Lichtenberg (2005), and
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Figure 2.6: Figure showing pre- and post-collision dynamics for an ionization collision be-

tween an electron and a neutral.

MacLachlan (2009)] the velocities of the ionizing electron and the neutral are:

ue = ve − vn (2.30)

un = 0 (2.31)

move into the centre of momentum frame gives:

ue = un − ucm (2.32)

un = −ucm (2.33)

ucm =
meue

me + mn
(2.34)

The energy during the collision is given by:

εe + εn = ε1 + ε2 + ε+ + εiz (2.35)

The post collision energy,′ε′post, is:

εpost = εe + εn − εiz (2.36)

where εe is the incident electron energy, εn is the neutral energy, ε+ is the ion energy, εiz

is the ionisation energy, and ε1 and ε2 are the energies of the post-collision electrons.

The post collision momentum is given by the relation:

meu1 + meu2 + m+u+ = 0 (2.37)
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The energy that an ion can acquire through the collision is a random fraction of:

max(ε+) =
me

me + m+

εpost (2.38)

The rest of the energy must be shared randomly between the electrons. Another ran-

dom number is used to calculate the trajectory (φ1, θ1) of the first electron:

u1 =

√
2ε1

m2
(sin φ1 cos θ1, sin φ1 sin θ1) (2.39)

where θ1 ∈ [0 : π] and φ1 ∈ [0 : 2π] φ1usually has an isotropic distribution:φ1 = R2π ,

whereas θ1 has a non-isotropic distribution θ1 = cos(1 − 2R)

The second electron’s velocity can be calculated via the conservation of momen-

tum:

u2 = −
meu1 + m+u+

me
(2.40)

Finally, the velocities of electron and ion must be transformed back into the lab

frame by adding in the initial neutral velocities and the centre of momentum. The

work in this thesis considers the ion to be stationary, and so only the electrons share

the postcollision energy.

2.6 Algorithm

The particle model strategy described above can be ordered into the following steps:

• Initial conditions, such as the initial particle positions and velocities, the time

step size, number of steps and all nondimensional parameters, are determined.

The size of the time step is chosen to give a good resolution without a big load

on computer. This can be achieved by the trail and error.

• To calculate the trajectories and velocities of particles, the following procedures

are then followed:

– Computing the charge density of the charged particles through grids using

the following equation:
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TREATMENT

ρ = e(n+ − n−) (2.41)

where e is the electron charge, n− is the electron density, and n+ is the

positive ion density. The method of interpolation explained above is used

to assign particle charge to the surrounding grid points.

– Calculating the electric potential via a Poisson’s equation:

∇2φ =
ρ

ε0
(2.42)

where ε0 is the permittivity of free space, φ0 is the electric potential, and ρ

is the charge density. Further details regarding this step are found in chapter

3.

– Calculating the electric fields from the gradient of the electric potential.

– Applying the fourth-order Runge-Kutta method on the equations of motion

to get the updated positions and velocities of particles.

• Determining the energy of every particle to study the possibility of collisions

occurring and their effects on particle velocity.

• Updating the position and velocity of every particle postcollision.

• Storing all data in a file.

• Repeating the previous steps.

2.7 Particle model test: a simple 1D Dust grain growth

treatment

This section aims to apply and test some of the aspects of the particle model explained

earlier. Collisions will not be included here as they will be investigated in chapter 5.

35



2.8: CHARGING OF DUST GRAINS IN PLASMA

Neither the self fields of the ions nor of the electrons will be considered here. Instead,

the electric field will be given by analytical expressions depending on the particles’

positions. This section addresses the basic model of dust growth by ion accretion and

takes 1D dust to be a simple starting example.

Much prior researches have been done on the physical mechanisms that lead to

dust formation [Patzer et al. (1995),Nuth et al. (2002)] and on spheroidal dust grains’

impact on the transmission of electromagnetic radiation.

Stark et al.[Stark et al. (2006)] investigated the growth of elliptical dust grains via

plasma deposition and showed that this growth depends on the initial kinetic energy

of the ions and the magnitude of the electric field in the grain sheath. Ions with a

potential energy in the sheath which is much greater than their initial kinetic energy

cause elongated growth for grains above a certain eccentricity.

The growth of elliptical dust grains in many astrophysical and laboratory environ-

ments may require magnetic fields to be involved the calculations. In addition to the

electrostatic fields arising from the dust grains themselves, perpendicular and parallel

orientated magnetic fields will also be respectively considered . The results presented

in this chapter will later be compared with the results of the 3D simulations which

were carried out in chapter 4.

2.8 Charging of dust grains in plasma

The charging of dust grains in plasma occur through several methods; for example, dust

in astrophysical environments is usually charged electrostatically by the absorption of

charged particles. In addition to the photo ionization involving incidents of energetic

photons leading to the positive charge of the grains.

Dust particles acquire charges when they are immersed in plasma. Ions and elec-

tron currents flow to dust particles; however, dust grains charge negatively because

of the high mobility of the electrons. The negative-potential dust surfaces will be

surrounded by positive particles (ions) because the grains attract ions and repel elec-
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trons. These positive ions partially screen the negatively charged grains in a phenom-

ena called ‘Debye screening’. From the OML theory, the ion and electrons currents

which are collected by a spherical probe with radius a are [Lieberman and Lichtenberg

(1994)]:

Ie = −Ie0 exp(φd/Te) (2.43)

Ii = Ii0(1 − φd/Te) (2.44)

where φd is the probe (or the dust) potential, and Te is the electron temperature. If

one assumed isotropic Maxwellian distribution of both electrons and ions in the Debye

sphere, then:

Ie0 =
1
4

enev̄e.4πa2 (2.45)

Ii0 =
1
4

eniv̄i.4πa2 (2.46)

where a is the probe radius, v̄e = (8eTe/πm)1/2 and v̄i = (8eTi/πM)1/2. In case of

equilibrium, in which no secondary and field emission of electrons are occurred from

the dust surface, the φd is given by the total currents of ions and electrons. Using

equations 2.43 and 2.45, and taking the logarithm gives:

φd = −Te

[
ln

(
M
m

Te

Ti

n2
e

n2
i

)
− ln

(
1 −

φd

Ti

)]
(2.47)

An analytic expression for φd is given by:

φd ≈ −0.73Teln
(

M
m

Te

Ti

n2
e

n2
i

)
(2.48)

The charge on the dust surface can be found when the potential is known from the

relation:

Qd = Cdφd (2.49)

where the particle capacitance is given by:

Cd = 4πε0aea/λD (2.50)
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when a � λD:

Cd = 4πε0a (2.51)

In low temperature laboratory plasma , the dominant charging process is the ab-

sorption of free charge. This study focus on charging of dust grains by absorbtion of

charged particles. Studying and understanding single particle dynamics is important

in building a fuller knowledge of plasma processes. The interaction of dust grains

with magnetized plasma influences the levels of nucleation and agglomeration. We

will consider the spatially nonuniform electric field of a charged wire and a constant

magnetic field.

2.9 Model of 1D treatment of dust growth

In our model we consider a steady state magnetised plane parallel plasma sheath in

contact with the grain. Also, the magnetic field is chosen to be in z and x directions

(perpendicular and parallel to the grain, respectively). The sheath edge separates the

quasineutral plasma and the sheath region. It is assumed that the sheath consists of cold

ions and isothermal electrons to be in thermal equilibrium state. At the sheath edge, the

electric potential is taken to be zero. The sheath confines the electrons in the plasma

and accelerates the ions out of the plasma. The ions are accelerated into the plasma-

sheath boundary with critical velocity. The minimum value of the ion-entering velocity

is determined by Bohm criterion [Hershkowitz (2005)]. For a colisionless sheath, this

minimum value is regarded as the ion sound speed. Therefore, for ions entering the

sheath region ,the minimum velocity divided by the ion sound speed (which is known

as Mach number) must be greater than unity, hence,

M ≥ 1 (2.52)

However, in our model the ions are launched within the sheath with launch velocity

vlaunch at t = 0 , and at a perpendicular distance =
√

x̂2 + ŷ2 + ẑ2 from the grain, where

(x̂, ŷ, ẑ) is the initial position of the ion, and the grain is parallel to the x axis. In such
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Table 2.1: Parameters used in numerical simulations.

Simulation property Value

Number of launched ions 104

p 1

dt̂ 0.1

number of time steps 1500

φ −10V

L 10

x −L/2 to 3L/2

y L/5

a model, the grain size is assumed to be much smaller than the sheath length. If we

assume astrophysical dust, the size of dust in the model is in the range of micrometers

while the sheath is in the range of metres. The number of lunched ions toward the

grain surface is 104 ions to be consistent with the astrophysical regime, especially the

Coulomb crystal dust (see table 2.2. The ions distributed along the x-axis ( initial

x̂ = −L/2 to x̂ = 3L/2, and initial ŷ = L/5). To ensure that the ions hit the grain,

the perpendicular launch distance is chosen to be smaller than the ions Larmor radius

(ŷ < RL). The parameter p is set to one in the simulation. Table ?? represents the

parameters used in this simulation.

2.9.1 Electric field around a charged wire

To start with a simple model of dust growth, a thin long grain of finite length is consid-

ered. The electric field of such a model can easily be obtained using direct formulas.

That simplicity allows us to gain a clear insight into the dynamics of dust growth in

the presence of an electrostatic and magnetostatic fields. Furthermore, it is a good test

of some of the technics of the particle model described before. Other aspects of our

particle model will be taken into consideration in the later chapters of this thesis. In
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simulating a long thin grain as a simple wire in terms of the electric field that is gener-

ated by it when the wire is charged, the goal is to consider the trajectories of the ions

falling under the influence of such a field in combination with a global, uniform mag-

netic field. Presently, we consider an infinitely thin, uniformly charged wire of a finite

length L (L = 10 in our simulation) with a charge per unit length λ. First we consider

the x component of the field at P(a, b, c). The element of charge is dq = λdx for the

elemental length dx located at position x, as shown in figure 2.7. The electric field

vector arising from a charge q located at distance r is given by E =
q

2πr2 r̂ [Tipler and

Mosca (2007)]. Hence the electric element in the x direction arising from the charge

element in the diagram must be

dEx =
λdx

4πε0r2 sin θ =
λ

4πε0

xdx

(x2 + b2)
3
2

(2.53)

Integrating from x = −a to L − a yields the x-component of electric field

Ex(a, b) =
λ

4πε0
[

1
√

a2 + b2
−

1√
(L − a)2 + b2

] (2.54)

The same operation can be carried out for the electric field in the y-direction

Ey(a, b) =
λ

4πε0b
[

L − a√
(L − a)2 + b2

+
a

√
a2 + b2

] (2.55)

The x-component, y-component, and the resultant (E =
√

E2
x + E2

y ) of the electric

field of the wire can be seen in Figs. 2.8, 2.9, and 2.10. The x-component of the electric

field becomes extremum at points (0, 0) and (10, 0) as shown in 2.8, while the y-

component of the electric field becomes extremum above and bottom the charged wire

as shown in figure 2.9. Figure 2.10 shows that the electric field of the wire reaches its

maximum around the wire and then decreases gradually while moving away from the

wire. Overall, it can be observed that the electric field of the charged wire is spatially

non-uniform in magnitude and also that it changes its direction at the wire ends.

In case of a presence of a parallel magnetic field to the grain’s long axis, the

x−, y−, z− components of grain electric field are needed:
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Figure 2.7: An infinitely thin, non-uniformly charged wire of finite length L in xy dimensions.

Ex(a, b, c) =
λ

4πε0
[

1
√

a2 + r2
−

1√
(L − a)2 + r2

] (2.56)

Ey(a, b, c) =
λ

4πε0b
[

L − a√
(L − a)2 + r2

+
a

√
a2 + r2

] (2.57)

Ez(a, b, c) =
λ

4πε0
[

1
√

a2 + r2
−

1√
(L − a)2 + r2

] (2.58)

where,

r =
√

b2 + c2 (2.59)
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Figure 2.8: The x-component of the electric field for a charged wire. The x-component of the

electric field becomes extremum at points (0, 0) and (10, 0).
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Figure 2.9: The y-component of the electric field for a charged wire. The y-component of

electric field becomes extremum above and below the charged wire.
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Figure 2.10: The electric field for a charged wire. The electric field of the wire becomes

extremum around the wire and then decreases gradually while moving away from the wire.

2.9.2 Model equations

The equations of motion of a charged particle in presence of electric and magnetic

fields are re-iterated again here:

F = m
dv
dt

= q(E + v × B) (2.60)

v =
dr
dt

(2.61)

To simplify these equations, we select some appropriate non-dimensional variables,

u = v/v0, e = E/E0, b = B/B0, and t̂ = t/t0, where v0 is a characteristic speed, t0 is a

characteristic time, and E0 is a characteristic field.

Model equations are derived in two cases: in the presence of perpendicular ori-

entated magnetic fields with respect to the long axis of the charged wire, and in the

presence of parallel magnetic fields.

43



2.9: MODEL OF 1D TREATMENT OF DUST GROWTH

Perpendicular magnetic fields

Non-dimensional equations in two dimensions xy (when magnetic field lines are di-

rected perpendicularly to the wire) take the following forms:

dux

dt̂
= pex + suyb (2.62)

dx̂
dt̂

= ux

duy

dt̂
= pey − suxb

dŷ
dt̂

= uy

where p = t0qEo/(v0m) and s = qB0t0/m are non-dimensional parameters, x̂ and ŷ

are the non-dimensional positions of the particle. We will consider B as uniform in

space. To simplify the equations, we can choose t0 = 1/wc, where wc is the cyclotron

frequency, s = 1, and p = qE0/(mwcv0). By altering p the ratio of the electric field

to the magnetic field can be changed. It is noticeable that it is impossible to set B=0

formally in these equations (2.63) since these equations will vanish, instead different

normalisation of the equations of motion are required. Equations 2.63 can be written

as:

dux

dt̂
= pex + uyb (2.63)

dx̂
dt̂

= ux

duy

dt̂
= pey − uxb

dŷ
dt̂

= uy

Parallel magnetic fields

Applying the same approach as previously, and using non-dimensional variables in

equations of motion, when applying parallel magnetic fields, non-dimensional equa-

tions extend to three dimensions and take the following forms:

44



2.10: RUNGE KUTTA AND MODEL EQUATIONS

dux

dt̂
= pex (2.64)

dx̂
dt̂

= ux

duy

dt̂
= pey − suzb

dŷ
dt̂

= uy

duz

dt̂
= pez + suyb

dẑ
dt̂

= uz

The equations listed in 2.64 can be rewritten as:

dux

dt̂
= pex (2.65)

dx̂
dt̂

= ux

duy

dt̂
= pey − uzb

dŷ
dt̂

= uy

duz

dt̂
= pez + uyb

dẑ
dt̂

= uz

2.10 Runge Kutta and model equations

We will now apply the 4thRK solver to non-dimensional equations of motion, given the

following relations:

r̂n+1 = r̂n +
kr̂1

6
+

kr̂2

3
+

kr̂3

3
+

kr̂4

6
(2.66)

un+1 = un +
ku1

6
+

ku2

3
+

ku3

3
+

ku4

6
(2.67)

where dt̂ = T/N is the temporal step size, T is the integration time and N is the

number of time steps.
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2.11 The Algorithm

In order to solve the system of equations shown in 2.63, and 2.65, a Fortran 95 code

was written. The following steps clarify the idea of the code containing 4thRK :

1-The initial conditions are set:

These conditions include the positions and velocities of charged particles, the step

size and the value of parameter p. Ions are launched through a grain sheath with initial

velocities and positions which are chosen to lead to a distance from the grain equivalent

to ions’ Larmor radius to make sure that ions can reach the grain’s position. This

can be archived by choosing a distance from the grain within its sheath and selecting

appropriate velocities where the Larmor radius is proportional to the particle velocity.

In addition, the step size is fixed to give the correct resolution, so the ions can feel

the grain’s electric field without extra time consumption. For parameter p, two cases

are considered: in the first case, p = 1 when the electric field is comparable to the

magnetic field, and in the second case p < 1 when the magnetic field is dominant.

2- Electric fields components are calculated:

Because the simulated grain like wire is a simple model profile, the electric field

components in x, y and z directions can therefore be calculated using analytical expres-

sions 2.54, and 2.55 and 2.56, 2.57, and 2.59. Ions field contribution to the sheath field

is not included.

3- Applying the 4thRK to solve equations of motion at each time step in order to

compute the updated positions and velocity.

4- The sheath is considered as collisionless, therefore, collisions are not included

at this stage of the work, but are examined in later chapters.

5-The process is continued till charged particles collide with the grain.

6-The next particle is then selected and its trajectory and its velocity evolution

followed by repeating steps 2 − 5.

7-Results including ion positions and velocities are written to a file. Fig. 2.11

shows a flow chart summaries these steps.
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Figure 2.11: Figure showing a flow chart of steps used for calculating particles flow towards

the charged grain .

2.12 Results and Discussion

This section calculates and sets out the results of the growth of 1D dust in the presence

of the magnetic field and the electrostatic field arising from the grain itself. Two cases

will be considered; firstly, dust growth in the influence of a magnetic field which is

oriented perpendicularly to the long axis of the dust. In the second case, the magnetic

field is directed to the grain along the long axis direction. In both situations, the ions’

trajectories and energies will be calculated. In addition, the dynamic of dust growth

and the effect of the trapped particles will be discussed.

2.12.1 Perpendicular magnetic field

Here, a magnetic field oriented perpendicularly to the long axis of the grain is consid-

ered. Figure 2.12 shows a diagram of this configuration. The magnetic field direction

is set to a z-direction to be perpendicular to the x-axis where the long axis of grain is

directed. The trajectories of the ions toward the grain are calculated and the effect of

47



2.12: RESULTS AND DISCUSSION

Figure 2.12: Figure showing the direction of the perpendicular magnetic field with respect to

the long grain axis.

the magnetic field on dust growth is demonstrated.

Initial conditions

The trajectories of 20 ions distributed along the x-axis ( initial x̂ = −L/2 to x̂ =

−3L/2, and initial ŷ = L/5) are calculated. To ensure that the ions hit the grain, the

perpendicular launch distance is chosen to be smaller than the ions Larmor radius (ŷ <

RL). The ions Larmor radius is the radius of the circle in the plane perpendicular to the

magnetic field direction. The ions are launched with an initial velocity u (u=ux0 + uy0)

where ux0 = 0.2u0 and uy0 = 0.01u0, and are tracked when they hit the wire surface.

The positions (0, 0) and (L, 0) are the ends of the wire. It is important to note that p = 1

( p represents the ratio of the electric field to the magnetic field).

Trajectories of Ions

Fig. 2.13 shows the trajectories of the 20 ions distributed along the x-axis. It is clear

from the graph that the ions present very different trajectories while under the influence

of the constant magnetic field which is in z direction (towards the reader, perpendicular

to the plane of the paper) and due to variations in the magnitude and the direction of

the electric field in the different regions around the wire. Ions which start close to
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the wire( from x̂ = L/5 to x̂ = 9) move unimpeded toward the wire until they hit

its surface, whereas ions which start their motion from x̂ = −L/2 to x̂ = L/10 , and

ŷ = L/5 , move away from the wire and in a helical motion with large Larmor radius.

As the ions start their motion further from the left wire edge, their Larmor radius starts

to gradually decrease as they start from further positions from the grain’s edge which

has a strong electric field. Ions that start their motion from an initial position of x̂ = L

to x̂ = 3L/2 move towards the x-axis and present a helical motion with smaller Larmor

radius which starts to increase slightly since particles move from further positions from

the wire right edge. The motion behavior is similar but in an opposite direction when

the particles begin their motion with initial positions x̂ = −L/2 to x̂ = 3L/2 , and

ŷ = −L/5 as shown in Fig. 2.14.

One important observation from Fig. 2.13 is that the trajectories of these ions de-

viate from a straight line while they move towards the wire as a result of an E × B drift

which is in -x direction for ions moving toward the top surface of the wire and in x

direction for ions moving toward the bottom surface of the wire.

Energy of Ions

Energy was calculated for some of the ions (those which had initial positions x̂ = −L/5,

0, L/5, 4L/10, 6L/10,8L/10,L,6L/5 and ŷ = L/5) and the results are visualised in

Fig. 2.15. The energy curves of the selected ions are identical to those of the nonse-

lected ones, therefore the energy properties of only some of the ions are presented and

discussed here. The figure shows that the ions which hit the wire surface gained the

highest energy then their energy are set to zero when hitting the wire. In details, ions

starting from position x̂ = L/5, 8L/10, ŷ = L/5 gained the highest energy before giving

it to the wire while hitting the wire surface(yellow and blue lines), followed by ions

starting from x̂ = 4L/10, 6L/10 and ŷ = L/5 (pink and light blue lines). Ions that trav-

elled in alignment with the wire ends x̂ = 0, L, ŷ = 0 (green and black lines) still gain

high energy as a result of moving near the wire ends which are regions of very high

electric field magnitude and their high energies help them to escape from the wire’s
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Figure 2.13: Trajectories of 20 ions toward a charged wire. Their initial positions are x=-6 to

x=14 ,y=2 and p=1. Note that the wire is located at positions (0, 0) to (10, 0) and the magnetic

field is directed towards the reader, perpendicular to the plane of the paper. Ions which start

near the wire( from x = 2 to x = 9) move unimpeded toward the wire until they hit its surface,

whereas ions start their motion from x = −6 to x = 1 ,y = 2 , then move away from the wire

and show a helical motion with large Larmor radius before they start to decrease gradually as

the ions start their motion further from the left wire edge. Ions that start their motion from

initial x = 10 to x = 14 move toward the x-axis and present a helical motion with a smaller

Larmor radius which start to increase slightly when particles move from further positions along

the wire right edge.

electric field and to avoid hitting the wire. Ions that start from positions further from

the wire edges x̂ = −L/5, 6L/5, ŷ = l/5 will gain the lowest amount of energy (red and

red dashed lines). In the case of a strong magnetic field (where p < 1, as in Fig. 2.23),

it is clear that particles which start further away from the wire than a Larmor radius

will be impeded from reaching the wire itself; hence in a uniform magnetic field, only

those particles with more energy will reach the wire and collide with it. This carries
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Figure 2.14: Trajectories of 20 ions toward a charged wire. Their initial positions are; x=-6 to

x=14 ,y=-2 and p=1. The wire is located at positions (0, 0) to (10, 0) and the magnetic field is

directed towards the reader, perpendicular to the plane of the paper. The plot displays similar

behaviour but the opposite direction than that seen in Fig. 2.13, because the particles here are

launched from below the grain.

the implication that there is a population of trapped particles, orbiting close to the wire

but not hitting it, that will effectively shield the electrostatic field from other charged

particles, thereby reducing the effective sheath distance.

Trapped particles

In the case a of strong magnetic field, as in Fig. 2.23, it is clear that particles which

start further away from the wire than a Larmor radius will be impeded from reaching

the wire itself. Hence in a uniform magnetic field, only those particles with more

energy will reach the wire and collide with it.

The energetic particles have high velocity components, and as a result their Larmor

radius becomes larger as the Larmor radius is proportional to the velocity.
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Figure 2.15: Gained energies for eight ions moving towards a charged wire. Their initial

positions are; x = −2, 0, 2, 4, 6, 8, 10, 12 ,y = 2. Ions that hit the wire surface gain the highest

energy then their energies drop to zero when they hit the wire (blue, yellow, pink, and light

blue). Ions that travel align with the wire ends (x = 0, 10, y = 0)(green and black lines) still

gain high energy (but lower than those which were hit) as a result of moving near the wire ends.

rc =
v⊥
wc

(2.68)

This means that in this case the energetic particles can reach a larger distance from

their initial positions than other particles and may reach the grain’s position. Other

particles, which is orbiting close to the wire but not hitting it, will effectively shield the

electrostatic field from other charged particles, reducing the effective sheath distance.

There are two classes of particles that do not impact the grain, but have persistent

nearby trajectories which will shield the grain’s electrostatic field from other charged

particles: (i) distant particles, which execute Larmor orbits that prevent impact. Fig.

2.17 shows that the final energy gained by impacting ions increases with distance from

the grain up to a certain point (y = 3) where the ion is forced into a Larmor orbit before
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Figure 2.16: Ions in circular motion in the influence of a strong magnetic field. The ion’s

initial positions are; x = −1 to x = 11, y = 2. Note that the magnetic field is directed towards

the reader, perpendicular to the plane of the paper and p = 0.001. Particles execute Larmor

orbits that do not intersect the wire position, and so they are unable to collide with the wire.

reaching the grain. (ii) energetic particles, which orbit the grain,as shown in Fig. 2.18.

This effect of electrostatic field reduction is a consequence of repletion between

coming ions and trapped ones. That results in a reduction in the distances ions can

reach.

Ions Loading

Histograms are used to show the location and number of particles arriving at the grain

site. For the electric field dominating the magnetic field, particle distribution tends to

be more concentrated at the grain surface. For a dominant magnetic field, a skew in

particle distribution is noticeable as shown in Fig. 2.19.
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Figure 2.17: Plot of ion energy on impact as a function of their starting distance from the grain.

The final energy gained by impacting ions increases with the distance from the grain up to the

point (y=3) where the ion is forced into a Larmor orbit before reaching the grain. The increase

of impact energy with initial distance is entirely due to the ion falling a greater distance under

the electric field.

Figure 2.18: Examples of orbiting particles, initial velocities: ux = 8, uy = 1, initial starting

position:(5, 4).
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Figure 2.19: Histogram showing the location and number of particles arriving at the grain site.

Note the skew in particle distribution. The magnetic field directed perpendicular to the grain

long axis.

2.12.2 Parallel magnetic field

In this case the magnetic field is oriented to x-direction which is the same direction

of the long axis of the grain. Diagram 2.20 shows this situation. This requires the

simulation to be in three dimensions to allow the magnetic field’s alignment with the

grain axes. Again, positive ions’ trajectories toward the grain and ion accretion on the

grain surface will be calculated .

Initial conditions

The trajectories of 20 ions distributed along the x-axis ( initial x = −L/2 to x = −3L/2,

initial y = L/5 and z = L/20) were studied. The ions were launched with an initial

velocity (ux0, uy0, uz0) and tracked until they hit the wire surface. The wire is located

at position (0, 0, 0) to (L, 0, 0). It is important to mention that p = 1 ( p represents the

ratio of the electric field to the magnetic field).
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2.12: RESULTS AND DISCUSSION

Figure 2.20: Figure showing the direction of the parallel magnetic field with respect to the

long grain axis.

Trajectories of Ions

Fig.2.21 shows the trajectories of the 21 ions distributed evenly along the x-axis from

perpendicular non dimensional distance=1.1 from the grain. The initial positions are

x̂ = −L/2 to 3L/2, ŷ = L/10, and ẑ = L/20. The ions are launched with perpendicular

velocity= 1.2. In these conditions, the particles are found to tend to hit the grain. It is

clear from Fig.2.21 that the ions follow very different trajectories under the combined

influence of a constant magnetic field which is in x direction (parallel to the grain) and

a non-uniform electrostatic field arising from the charged grain. In broad terms, there

are two sets of trajectory solutions. Ions which start from positions near the grain,

but not at the corners (x in the range [0, L]) move in curved paths towards the grain

until they hit its surface, whereas those ions which start their motion near the corner(x

in range [L, 3L/2] and[−L/2, 0]) are driven towards the other grain’s corner(+ or −x

for ions starting from the left and right grain’s corner respectively) but are gradually

driven away from the grain (to +y ,−z direction) by the combination of local field

configurations, and follow a helical motion with an increasing Larmor radius (due to

the acceleration produced by the corner electric field). These corner particles cause
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some population around the grain, as shown in Fig.2.22.

As before, in this case the magnetic field is directed in x direction, then the x-

component is an acceleration along B.

The velocity components of equations array 2.64 are:

dux

dt̂
= ex (2.69)

duy

dt̂
= ey − uzb (2.70)

duz

dt̂
= ez + uyb (2.71)

Parameter p is set to p = 1 one. The solution of the first equation is:

ux(t) = ext + ux0 (2.72)

where ux0 is the initial velocity component in x direction, and the solution represents

an acceleration along B. This is a simple calculation and it is not the solution for the

actual problem, as the electric field in our problem is non constant but varies with

position. Rearranging these equations and taking the time derivative of the second and

third equations in 2.69 (where a dot above a quantity represents the derivative d/dt):

üy = −b(ez + uyb) = −b2(uy +
ez

b
) (2.73)

üz = b(ey − uzb) = −b2(uz −
ey

b
) (2.74)

The electron cyclotron frequency b and drift velocity uD is equal to uD = e
b . Solutions

of these equations are expressed as:

uy(t̂) = A cos(bt̂) + B sin(bt̂) − uD (2.75)

uz(t̂) = C cos(bt̂) + D sin(bt̂) + uD (2.76)

To find coefficients A, B,C and D, the initial conditions are applied in previous

equations.
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Figure 2.21: Trajectories of 21 ions moving towards the charged grain from initial positions:

x = −L/2 to L + 5, y = L/10, and z = L/20. The magnetic field is parallel to the grain. Ions

starting from positions closest to the grain corners undergo Larmor orbits which ensure that

they don’t intersect the grain surface; all other ions impact the grain.

So, the ion is accelerated by the electric field, and orbits the magnetic field lines

in a circular motion. In contrast, the guiding centre drifts in a direction perpendicular

to both the electric and magnetic fields. Therefore, the orbit of the particle in space is

that of a slanted helix with a changing pitch.

Ions’ energies

Energies were calculated for selected ions (having initial positions of x̂ = −L/2,−3L/10,

−L/10, 0, L/5, L/2, 6L/5, 7L/5) and are presented in Fig.2.23. The other of ions not

presented here (have initial x̂ = −2L/5, −L/5, L/10, 3L/10, 7L/5, 11L/10, 13L/10)

have identical energies to the selected ones. Fig.2.23 shows some colliding ions en-
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Figure 2.22: As Fig.2.21 but showing the corner particles’ population around the grain.

ergies. Those ions that impact the grain(initial x̂ = 0, L/5, L/2) have their energies

zeroed. Those with starting positions near the grain’s centre, gain the highest energies

before the collision.

Trapped particles

The Debye sheath of the negatively charged grain is considered to be an attractive well

for positive ions. These ions can be trapped in bounded orbits to the grain until they

freed if they undergo a collision. Including trapped ions in our calculations is important

because these ions can shield the charged particle from external electric fields.

In this case there are two classes of grain shielding:

1. Particles which orbit symmetrically about the grain, enclosing it in a smear of

charge; (see Fig.2.24(a)). These particles have a perpendicular velocity = 1.2,

an initial position (5, 4, 2.1), and a perpendicular distance=4.2. Such particles
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Figure 2.23: Energies acquired by ions moving towards the charged grain from initial positions

x = 0, 2, 5 (red,blue,and green lines respectively). Ions impacting the grain have their energies

zeroed; those impacting closest to the grain centre gain the highest energy.

can reduce the effective charge on the grain for all arriving particles.

2. Particles which perform strongly localised orbits which do not necessarily en-

tirely enclose the grain (Fig.2.24(b)). They have an initial position (5, 1, 5),

a perpendicular distance=5 ,and a perpendicular velocity=6.8. These particles

produce a localised perturbation to the field around the grain, and may deflect

particles arriving from particular directions.

Case (1) also has a special sub-case: particles that orbit close to the grain corners

for a short time before moving away; these orbits still have an element of symmetry,

but they do not persist for as long as the other symmetric orbiting particles which have

not started near the strong fields at the grain corners.

An effect of trapped ions is the reduction of the surface potential of a dust parti-

cle, or the presence of a large number of trapped ions in the Debye shielding cloud

which may affect the interaction of dust particles with electromagnetic forces or may
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influence dust interaction with each other. In our case, this reduction of the grain’s

potential can be taken into consideration by reducing the amount of overall charge on

the grain. Orbit-motion-limit (OML) theory [Laframboise (1966),Lampe (2001a)] for

spherical probes is often used to calculate the charge and to study the shielding of dust

grains in plasma. OML neglects the effect of bounded ions and ions-neutral collisions

[?], although collisions of ions can increase the ion current collected and change the

potential profile of the shielding sheath of the grain. Sternovsky et al. [Sternovsky

et al. (2004)] noted that the minimum surface potential value is at positions close to

where the maximum numbers of trapped ions has occured.

Ions Loading

About 104 particles were launched toward the grain to study the colliding particles dis-

tribution at the grain surface. A histogram shows the location and number of particles

arriving at the grain site, (see Fig.2.25). Note the gradual increase, from the grain cen-

tre to the ends, in terms of the number of impacting particles. Therefore, the dust grain

that aligned parallel to the magnetic field is subject to elongation growth.

2.13 Overview of the role of magnetic fields on dust

growth

Adding magnetic fields to dusty plasmas allows some interesting effects. The presence

of magnetic fields may cause unbalanced charge distributions on the surfaces of dust

grains. However, further simulation research in 3D is required to investigate this possi-

ble effect and this will be done in chapter 4. Furthermore, magnetic fields cause more

restricted motion for charged particles moving perpendicularly to magnetic fields di-

rection in comparison to particles moving parallel to a magnetic field’s direction. The

addition of a magnetic field can encourage elongated dust growth. A magnetic field

parallel to a long grain’s axis causes restrictions on ions’ motion toward the grains
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Figure 2.24: (a) Examples of Particles that start further away from the grain and do not inter-

sect the grain position and hence shield the grain’s electrostatic field. Their initial positions are

(5, 4, 2.1).(b) Examples of orbiting particle,its initial start position(5, 1, 0.55)

and its perpendicular velosity=6.8

surface. However, the ions’ movement is impeded in direction perpendicular to the

magnetic field, meaning more loading on the grain’s ends. Applying a perpendicular

magnetic field (to the long axes of dust grain direction) reveals a skewed dust growth,

and further tests of this behaviour are required in a more realistic configuration.
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Figure 2.25: Histogram showing the location and number of particles arriving at the grain site.

Note the congestion of colliding particles at grain ends. The magnetic field directed along the

grain constrains the particles’ motion ina perpendicular direction to the magnetic field, whereas

particles move freely in the direction of the magnetic field (towards the grain’s ends)in addition

to the higher electrostatic field at these locations.

2.14 Astrophysical and laboratory context

Understanding the process involving dust charging and growth leads to an improved

understanding of these processes in several different astrophysical and laboratory plasma

environments. Table 2.2 shows the typical parameters of various dust-plasma environ-

ments. There ne, nn and nd are the number densities of electrons, neutrals and dust,

respectively; a and Zd are the grain radius and charge state. T is the electron tempera-

ture in eV; while d, λD and Γd are the average inter-grain distance, the Debye shielding

distance and the grain Coulomb coupling parameter, respectively. It is obvious that

these parameters have quite different ranges in cosmic and laboratory regimes. How-

ever, the associated physical processes are still similar. Unlike terrestrial plasma, most

cosmic environments are low temperature plasma, meaning that the ionization fraction

is also low and more species are neutrals. The number of ions simulated here may lie
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on an astrophysical range, which are much less than terrestrial range. However, it is

still relevant as a general model which can easily be modified to the desired param-

eters. The chosen acquired electrostatic field by dust φ0 = −10 V is consistent with

astrophysical dust measurements. The selected value of parameter p = 1 (describes the

relative sizes of electrostatic field and applied magnetic fields). However, astrophys-

ical and laboratory magnetic fields differ by factors of tens in orders of magnitudes

and thereby requiring higher and lower values for parameter p to cover the low- and

highly- magnetic environments. The next chapter will cover these extra assumptions,

since this chapter has presented an initial and simple model of elongated dust growth.

Environment ne(cm−3) T (eV) nd(cm−3) a(µm) nn(cm−3) |Zd| d/λD

Interstellar molecular clouds 10−3 0.001 10−7 0.2 104 ∼ 1 0.3

Supernovae shells 103 0.2 10 0.01 − 20 ∼ 5 × 10−2

Flames > 1011 0.2 < 1011 0.01 5 × 1018 2 0.5

Lab-plasma (Dust-Ball) 108 2 − 4 103 5 5 × 1014 103 0.4 − 0.6

Process plasma (Chip manufacture) 3 × 109 2 103 − 108 ≤ 1 1015 < 3 × 103 0.1 − 3

Coulomb dust crystal 109 2 104 − 105 5 1016 104 0.3 − 1

Table 2.2: Typical properties of dust in different plasma environments [Mendis (2002)].

2.15 Conclusion

The simulations presented in this chapter show the influence of magnetic fields ori-

ented perpendicularly and parallel to the long-axis of the grain, respectively, on the

ion loading on a charged grain surface. Ions approaching the corners of a finite, rod-

shaped grain missed grain collisions, while ions that started close to the grain’s central

regions did experience collisions. Moreover, there is a population of trapped particles,

orbiting close to the wire but not hitting it, that effectively shields the electrostatic field

from other charged particles, reducing the effective sheath distance. The final energy

gained by the impacting ions increases according to the separation distance from the

grain, as the ions fall through an increasing electric potential. The grain shielding
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created by trapping ions requires more investigation and more calculations are pro-

vided in chapter 4. Finally, we have observed that the magnetic field influences the

spatial deposition pattern of the ions, leading to increasing ions fluxes at the grain’s

ends. However, a more reliable treatment of dust growth should be carried, dealing

with models in three dimensions and calculating an accurate electric potential on the

simulation domain. Chapter 3 demonstrates the method of finite difference to estab-

lish particle motion through a grain sheath, setting an accurate ellipsoidal dust surface.

Chapter 4 introduces the results of dust growth depending on chapter 3’s technics.
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The finite difference method and the

Lagrange multiplier

3.1 Introduction

The ideal simulation of dust grains growth needs to be done in three dimensions and

requires the dust grains to have a three dimensional shape. In a plasma, charged par-

ticles flow toward grains within a dust sheath requiring an effective way to calculate

electric potential field. A finite difference solver in three dimensions is discussed and

applied here to calculate the dust potential and the electric field’s components. As the

potential calculations need to set potential dust surface accurately, a good technique

based on a Lagrange multiplier is introduced and used to interpolate the dust shape.

3.1.1 The electric potential of ellipsoidal grains

Finding the electric potential of ellipsoidal grains in two and three dimensions requires

the solving of a Laplace equation in two and three dimensions. However, in this chapter

only a three dimensions approach will be discussed as the two dimensional process

follows the same technique. The Poisson equation in three dimensions is given by:
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(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φ = 0 (3.1)

with boundary conditions:

φ(x, y, z) =


φs, b2c2x2 + a2c2y2 + a2b2z2 − (abc)2 ≤ 0

0, x2 + y2 + z2 → ∞

where a,b, and c are the grain axes at x,y, and z coordinates respectively. These

conditions imply that the potential on the grain surface is φs and this potential reduces

to zero at the sheath edge. Laplace equation can be solved analytically. However,

to avoid complexities and to arrive at an accurate solution, numerical methods are

preferable. These numerical methods fall in two categories; direct and iterative. It is

well known that direct methods yield an exact solution of the differential equation by

solving a system of linear equations via a known number of prescribed operations. Al-

ternatively, iterative numerical solutions can be used to solve Laplace equation. These

methods depend on the estimation of an initial solution, allowing it to slowly relax in

to the exact solution. Several attempts have to be made to obtain the true solution. So,

one can use a relaxation method to allow the numerical solution converge to the exact

solution. That can be done by solving the diffusion equation:

∂φ

∂t
− D

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φ = 0 (3.2)

in which D is the diffusion constant.

In order to simplify the problem and make it applicable to computational solving,

non-dimensional relations were used as follows:

Φ =
φ

φ0
(3.3)

τ =
t
t0

(3.4)

r = (x, y, z) (3.5)
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r̂ = (x̂, ŷ, ẑ) (3.6)

That gives

∂Φ

∂τ
− σ(

∂2

∂x̂2 +
∂2

∂ŷ2 +
∂2

∂z2 )Φ = 0 (3.7)

where σ = Dt0/L is a dimensionless parameter, t0 is a characteristic time of diffu-

sion and L is the grain sheath’s characteristic length. The selection of D and t0 values

has no prior requirements, as their values only have numerical significance. A finite

difference method is used to solve equation 3.7 as it is simplest to implement. Further-

more, it is easy to converge, and stable.

3.2 The finite difference method

The basic concepts of the finite difference method [Lapidus and Pinder (2011),Press

(1992)] can be clarified as follows:

Replace the domain of the solution of PDE (partial differential equation) with a

finite number of mesh points. Then, the derivative of the equation is replaced at each

mesh point by a finite difference approximation .

First the x̂,ŷ,ẑ, and τ domain are divided into a set of nodes such that:

Φ(x̂) = Φ(mh) (3.8)

Φ(ŷ) = Φ(lh) (3.9)

Φ(ẑ) = Φ(nh) (3.10)

Φ(τ) = Φ(ok) (3.11)
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Φ(x̂, ŷ, ẑ, τ) = Φ(mh, lh, nh, ok) = Φo
m,l,n (3.12)

in which:

m ∈ [0,mmax] (3.13)

l ∈ [0, lmax] (3.14)

n ∈ [0, nmax] (3.15)

o ∈ [0, omax] (3.16)

The grid spacing in x̂,ŷ,ẑ directions is h and in τ direction is k. m, l, and n refer

to the location of function Φ in the x̂,ŷ, and ẑ coordinates, respectively. The Taylor

expression of Φ at point (x̂, ŷ, ẑ) yields:

Φo+1
m,l,n = [Φo

m,l,n + kδτΦo
m,l,n] (3.17)

where higher order terms were neglected. Using δτΦo
m,l,n = δ(∂2

x̂ +∂2
ŷ +∂2

ẑ )Φo
m,l,n; gives:

Φo+1
m,l,n = [Φo

m,l,n + kδ(∂2
x̂ + ∂2

ŷ + ∂2
ẑ )Φo

m,l,n] (3.18)

By replacing each second derivatives with finite difference approximation

Us,t,l =
1
6

[(Us+1,t,l + Us−1,t,l) + (Us,t+1,l + Us,t−1,l) + (Us,t,l+1 + Us,t,l−1)] (3.19)

yields;

Φo+1
m,l,n = (1− 6wσ)Φo

m,l,n + wσ(Φo
m+1,l,n + Φo

m−1,l,n + Φo
m,l+1,n + Φo

m,l−1,n + Φo
m,l,n+1 + Φo

m,l,n−1)

(3.20)

where w = k/h2 is the mesh ratio.
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3.2: THE FINITE DIFFERENCE METHOD

3.2.1 Stability

Finite difference approximation 3.20 is stable and converges if [Lapidus and Pinder

(2011)]:

0 < wσ ≤
1
6

(3.21)

The boundary conditions are:

φ(x, y, z) =


−1, b2c2(m − m0)2 + a2c2(l − l0)2 + a2b2(n − n0)2 − (abc)2 ≤ 0

0, (m − m0)2 + (l − l0)2 + (n − n0)2 − r2
s ≥ 0

where m0 = mmax/2, l0 = lmax/2, n0 = nmax/2 rs is an integer denoting the

radius of the plasma sheath and a, b, and c are integers that denote the semi-major and

minor axes of the ellipsoid on the discrete cartesian grid (mh; lh; nh). The parameter

omax is chosen to be suitably large to permit a numerical solution in order to converge

to the right solution. The finite difference method is convergent to the true solution if

the overall error approaches zero as k and h approach zero.

3.2.2 Boundary and initial conditions

An accurate interpolation technique was used to incorporate the grain shapes and to set

boundary conditions of the grain surface following steps used by Stark [Stark (2008)]:

• Potential distribution

The technique used here depends on the fact that the potential in a vacuum re-

duces by 1/d from the charge source , where d is the perpendicular distance from

the source. With this in mind, the potential on a point (x̂, ŷ, ẑ) outside the grain

can be written as:

Φ(x̂, ŷ, ẑ) =
γΦ0

γ + d(x̂, ŷ, ẑ)
(3.22)
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3.2: THE FINITE DIFFERENCE METHOD

where γ is a normalization factor and d(x̂, ŷ, ẑ) is the perpendicular distance from

the nearest mesh point outside the ellipsoid to a point (xs, ys, zs) on the grain

surface and Φ0 is the potential on the grain surface.

• Finding the nearest grid points outside the ellipsoid;

The points of intersection between the ellipsoid and the family of lines ŷ = lh

for l ∈ (l0 − b, l0 + b) and family of lines ẑ = nh for n ∈ (n0 − c, n0 + c) are

determined . This will give familly of points outside the ellipsoid (xs, ys, zs). For

each of these mesh points (lh) and (nh), determine which m satisfy the relation

m < xs < m − 1. This gives the nearest mesh points (xp, yp, zp) ≡ (mh, lh, nh)

in x̂ direction. To make sure mesh points are accurate, determine family of lines

x̂ = mh for m ∈ (m0−a,m0 + a) and family of lines ẑ = nh for n ∈ (n0− c, n0 + c),

yielding (xs, ys, zs). For each of these mesh points (mh) and (nh), determine

which l satisfy the relation l < ys < l − 1 this gives the nearest mesh points in ŷ

direction, then do same steps for family of lines x̂ = mh for m ∈ (m0 − a,m0 + a)

and family of lines ŷ = lh for l ∈ (l0−b, l0+b), giving (xs, ys, zs). For each of these

mesh points (mh) and (lh), determine which n satisfy the relation n < zs < n − 1

this gives the nearest mesh points (xp, yp, zp) ≡ (mh, lh, nh) in ẑ direction.

• Finding the perpendicular distance d(x̂, ŷ, ẑ):

The perpendicular distance d(x̂, ŷ, ẑ) from a point on the ellipsoid surface to the

nearest grid point (xp, yp, zp) can be calculated using the Lagrange multiplier

method [Press (1992)] which is used to maximize and minimize a general func-

tion, f (x, y, z), subject to the constraint g(x, y, z) .

∇L(x̂, ŷ, ẑ, λ) = ∇[ f (x̂, ŷ, ẑ) + λg(x̂, ŷ, ẑ)] (3.23)

where,

f (x̂, ŷ, ẑ) = [(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]
1
2 (3.24)
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Figure 3.1: Plot showing the execution of the boundary conditions. The left diagram illustrates

the step-wise approximation while the plot on the right illustrates the potential interpolator

implementation where the electric potential is specified at the nearest grid points outside the

ellipse boundary. The arrows show the immediate neighbour grid points where the potential is

set by the interpolator method. [Stark (2008)].

g(x̂, ŷ, ẑ) =
x̂2

a2 +
ŷ2

b2 +
ẑ2

c2 − 1 (3.25)

by considering the ellipsoid centered at (0, 0, 0) then:

x̂→ x̂ − x̂0 (3.26)

ŷ→ ŷ − ŷ0 (3.27)

ẑ→ ẑ − ẑ0 (3.28)

xp → xp − x̂0 (3.29)

yp → yp − ŷ0 (3.30)

zp → zp − ẑ0 (3.31)

Applying these relations in Eq. 3.23 leads to the following equations:

∂L
∂x̂

= −[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]
−1
2 ((xp − x̂) +

2λ
a2 x̂ = 0 (3.32)
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3.2: THE FINITE DIFFERENCE METHOD

∂L
∂ŷ

= −[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]
−1
2 ((yp − ŷ) +

2λ
b2 ŷ = 0 (3.33)

∂L
∂ẑ

= −[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]
−1
2 ((zp − ẑ) +

2λ
c2 ẑ = 0 (3.34)

∂L
∂λ

=
x̂2

a2 +
ŷ2

b2 +
ẑ2

c2 − 1 (3.35)

expressing Eqs. 3.32 , 3.33, and 3.34 in terms of λ gives:

λ =
a2

2x̂
[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]

−1
2 (xp − x̂) (3.36)

λ =
b2

2ŷ
[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]

−1
2 (yp − ŷ) (3.37)

λ =
c2

2ẑ
[(xp − x̂)2 + (yp − ŷ)2 + (zp − ẑ)2]

−1
2 (zp − ẑ) (3.38)

combining Eqs. 3.36 , and 3.37 to eliminate λ gives:

a2(xp − x̂)
x̂

=
b2(yp − ŷ)

ŷ
(3.39)

combining Eqs. 3.36 , and 3.38 gives:

a2(xp − x̂)
x̂

=
c2(zp − ẑ)

ẑ
(3.40)

and combining Eqs. 3.37 , and 3.38 to eliminate λ gives:

b2(yp − ŷ)
ŷ

=
c2(zp − ẑ)

ẑ
(3.41)

Rearranging these equations and subsisting them into equation 3.35 yields a 6th

order polynomial in x:
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3.2: THE FINITE DIFFERENCE METHOD

6∑
i=0

Aixi (3.42)

in which:

A0 = −a10x4
p (3.43)

A1 = −2a8b2x3
p − 2a8c2x3

p + 4a10x3
p (3.44)

A2 = a6b2x2
py2

p + a6b2x2
py2

p + a8x4
p − a6c4x2

p − 4a6c2b2x2
p

+ 6a8c2x2
p − b2a6x2

p + 6a8b2x2
p − 6a10x2

p (3.45)

A3 = 2a4c2b2y2
pxp − 2a6z2

pc2xp + 2a4b2c2xpy2
p − 2a4b2c4xp + 2a6b2x3

p

+ 2c2a6x3
p − 4a8x3

p − 2a4b2c4xp + 2c4a6xp + 8a6b2c2xp + 2c2a6xp

− 6a8b2xp − 6a8c2xp + 4a10xp (3.46)

A4 = b2a2c4y2
p−2a4b2c2y2

p +a6b2y2
p +a2b4c2z2

p +a4b4x2
p−2a4b2c2z2

p +4a4b2c2x2
p

−6a6b2x2
p +a4c4x2

p−6a6c2x2
p +6a8x2

p−a2b4c4 +2a4b4c2−a6b4 +2a4b2c4−4a6b2c2

+ 2a8b2 − a6c4 + 2a8c2 − a10 (3.47)

A5 = −2a4b4xp + 2a4b2c2xp + 2a2b2c4yp − 8a4b2c2yp

+ 6a6b2yp − 2a4c2xp + 6a6c2xp − 4a8xp (3.48)
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A6 = a4c4 − 2a2c4b2 + a4b4 + a4c4 − 2b4c2a2

+ 4a4b2c2 − 2a6b2 − 2a6c2 + a8 (3.49)

• Finding polynomial roots:

To get the x̂ coordinate of the point on the ellipsoidal grain surface which gives

the perpendicular distance to the mesh point (xp, yp, zp) outside the ellipsoid, the

real roots of the polynomial must be calculated. The Newton-Raphson method

[ Press (1992)] is one tool which can be used to find polynomial roots. This

method requires an initial guess (x0) of the root (r) of the function ( f (x)). The

goal of any numerical process is to make a good estimate of the root. The

Newton-Raphson method does so by finding the intersection ,(x), point of the

tangent line at the initial guess point (x0, f (x0)). The tangent equation at (x0) is;

f (x) = f (x0) + f́ (x0)(x − x0) (3.50)

for integer value of n:

xn → r

as

n→ ∞

if the tangent line intersects x−axis at (x1, f (x1)), this x value gives the next root

estimate, hence:

x1 = x0 −
f (x0)

f́ (x0)
(3.51)

The Newton-Raphson is an iterative method, therefore, the process is repeated

until a good convergence of the root is reached.

75



3.2: THE FINITE DIFFERENCE METHOD

The latter formula is the Newton-Raphson (N-R) formula for finding roots of

function by starting initial guess of the root, iterating the proceed to obtain a

good estimating of the root. For the problem at hand the initial guess for x̂ was

chosen to be xs, a point on the ellipsoid perimeter.

Applying N-R formula to polynomial 3.42 gives x̂-coordinate of its root .

• Calculating the ŷ-coordinate of the polynomial root:

The corresponding ŷ-coordinate of the root calculated in the previous step when

x̂ and ẑ coordinates are known can be given by the relation:

x̂2

a2 +
ŷ2

b2 +
ẑ2

c2 − 1 = 0 (3.52)

when x̂ and ẑ are known, the latter equation becomes a quadratic for ŷ of the

form:

2∑
i=0

Diyi = 0 (3.53)

where:

D0 = b2c2x2 + a2b2z2 − (abc)2 (3.54)

D1 = 0 (3.55)

D2 = (ac)2 (3.56)

The roots of a quadratic formula of the form q2x2 + q1x + q0 = 0 are given by:

x =
−q1 ±

√
q2

1 − 4q0q2

2q2
(3.57)

76



3.2: THE FINITE DIFFERENCE METHOD

• Calculating distance from the point (xs, ys, zs) to the point (xp, yp, zp) :

The points on the ellipsoid surface (xs, ys, zs) and the nearest grid point (xp, yp, zp)

outside the ellipsoid were calculated. The distance between these two points can

be calculated via the relation:

d(xp, yp, zp) =

√
(xs − xp)2 + (ys − yp)2 + (zs − zp)2 (3.58)

Then equation 3.22 can be used to calculate the potential at the grain surface.

Alternatively, one can express the polynomial with respect to the y-coordinate and

get:

6∑
i=0

Biyi (3.59)

in which:

B0 = −b10y4
p (3.60)

B1 = −2a2b8y3
p − 2b8c2y3

p + 4b10y3
p (3.61)

B2 = a2b6x2
py2

p + b6c2y4
pz2

p + b8y4
p − a4b6y2

p − 4a2c2b6y2
p + 6a2b8y2

p

− c2b6y2
p + 6b8c2y2

p − 6b10y2
p (3.62)

B3 = 2a2c2b4x2
pyp − 2a2x2

pb6yp + 2a2b4c2y2
pz2

p − 2a2b4c4yp + 2a2b6y3
p + 2c2b6y3

p

− 4b8y3
p + 2a4b4c2yp + 2c4b6yp + 8a2b2c2yp − 4c2b6z2

py3
p

− 6a2b8yp − 6b8c2yp + 4b10yp (3.63)
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B4 = b2a2c2x2
p − 2a2b4c2x2

p + a2b6x2
p + a4b2c2z2

p + 4a2b4c2y2
p − 6b6c2y2

p + a4b4y2
p

+ a4b4y2
p + 6b6c2y2

pz2
p − 4a2b4c2ypzp2 + 4a2b4c2yp2 − 6a2b6y2

p + b4c4y2
p − 6b6a2y2

p

+ 6b8y2
p − a4b2c4 + 2a4b4c2 − a4b6 + 2a2b4c4 − 4a2b6c2 + 2a2b8 − b6c4 + 2c2b8 − b10

(3.64)

B5 = −2c4b4yp + 2a4b2c2yp + 2a2b2c4yp − 8a2b4c2yp + 6a2b6yp − 2b4a4yp

+ 6b6c2yp − 4b8yp − 4b6c2z2
pyp + 2a2b4c2z2

p (3.65)

B6 = a4c4 − 2a4c2b2 + a4b4 − 2b2c2a2 + 4b4c2a2 − 2a2b6 + b6c2z2
p + b8 (3.66)

This is solved numerically via The Newton-Raphson Method to give the ŷ coordi-

nate of the point of the ellipsoid surface which gives the perpendicular distance to point

(xp, yp, zp). The corresponding x̂-coordinate is obtained via Eq. 3.52. This equation,

when ŷ and ẑ are known, becomes a quadratic for x̂:

2∑
i=0

Eixi = 0 (3.67)

where:

E0 = a2c2y2 + a2b2z2 − (abc)2 (3.68)

E1 = 0 (3.69)

E2 = (bc)2 (3.70)

The roots of quadratic formula 3.67 are given by equation 3.57

Also the polynomial can be expressed in relation to z via following similar proce-

dure ,
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6∑
i=0

Ci (3.71)

in which:

C0 = −c10z4
p (3.72)

C1 = −2c8a2z3
p − 2c8b2z3

p + 4c10z3
p (3.73)

C2 = c6a2x2
pz2

p + c6b2z2
py2

p + c8z4
p − a4c6z2

p − 4a2c6b2z2
p + 6a2c8z2

p − b4c6z2
p

+ 6b2c8z2
p − 6c10z2

p (3.74)

C3 = 2a2c4b2x2
pzp − 2a2x2

pc6zp + 2a2b2c4zpy2
p − 2a4b2c4zp + 2a2c6z3

p + 2b2c6z3
p

− 4c8z3
p − 2a2b4c4zp + 2a4c6zp + 8a2b2c6zp + 2c6b4zp − 6a2c8zp − 6b2c8xzp + 4c10zp

(3.75)

C4 = b4a2c2x2
p − 2a2b2c4x2

p + a2c6z2
p + a4b2c2y2

p + a4c4z2
p − 2a2b2c4y2

p

+ 4a2b2c4z2
p − 6a2c6z2

p + b4c4z2
p − 6b2c6z2

p + 6c8z2
p − a4b2c4 + 2a4b2c4 − a4c6

+ 2a2b4c4 − 4a2b2c6 + 2a2c8 − b4c6 + 2b2c8 − c10 (3.76)

C5 = −2a4c4zp + 2a4b2c2zp + 2a2b4c2zp − 8a2b2c4zp

+ 6a2c6zp − 2b4c4zp + 6b2c6zp − 4c8yp (3.77)

C6 = b4c4 − 2a4c2b2 + a4c4 + b4c4 − 2b4c2a2 + 4a2b2c4 − 2a2c6 − 2b2c6 + c8 (3.78)
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The technique described here is better than simply making the grid size small

enough that any irregularity in boundary conditions is negligible. Equation 3.22 is

used to describe the electric potential based on the distance d(x̂, ŷ, ẑ) from the source.

One can simply refine the mesh size to be very tiny and calculate the surface potential

to be the source potential in 3.22 without ignoring the distance d(x̂, ŷ, ẑ) from the ellip-

soid surface and the nearest mesh points. The result can be seen in fig.3.2, which shows

an example of the ellipsoid grain potential calculated using only a simple method to set

a small grid size. It can be noticed the un accurate boundary conditions and a messy

potential on the ellipsoid surface. In contrast, Fig.3.3 shows the electric potential of

an ellipsoidal dust using the technique described in this chapter, where Eq. 3.22 is

used and the distance d(x̂, ŷ, ẑ) from the source to the nearest grid points is calculated

using the technique of Lagrange multiplier and the Finite difference method to com-

pute the potential outside the ellipsoidal grain. It is clear from the figure the accurate

and smooth boundary conditions when using the interpolator methods described in this

chapter.

3.3 Ions’ surface deposition

In the presence of the electric field and the absence of the magnetic field, ions that have

certain kinetic energy follow the electric field lines of charged grains; consequently,

one can calculate the hitting positions of the ions on the grain surface (x̂d, ŷd, ẑd) by

calculating the intersection points between the grain and lines joining the initial posi-

tion outside the grain and the final ion positions inside the grain [Stark et al. (2006)].

However, the presence of the magnetic field in this study may affect the trajectories of

the ions, let them diverge from electric field lines. A way to compare the two situa-

tions is therefore, needed. Calculation of the hitting positions of ions in the presence

of electric and magnetic fields is done using the RK technique. To find the expected

collision positions under the influence of the electric field only, the points of intersec-

tions between the equation of the ellipsoid and the equation of the line join the initial
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Figure 3.2: Plot shows the surface boundaries of a 2D slice of the electric potential for a dust

grain has a = 80, b=40 and c = 40. The calculation here based on making the grid size small

enough that any irregularity in boundary conditions is negligible with ignoring calculating the

distance d(x̂, ŷ, ẑ) from the ellipsoid surface and the nearest mesh points in Eq.3.22. The graph

illustrates messy boundary conditions.

position of the ion outside the grain (x̂1, ŷ1, ẑ1) and the final ion positions inside the

grain (x̂2, ŷ2, ẑ2) are calculated:

The equation of the ellipsoid is:

x̂2 − x̂0

a2 +
ŷ2 − ŷ0

b2 +
ẑ2 − ẑ0

c2 − 1 = 0 (3.79)

where (x̂0, ŷ0, ẑ0) is the centre of the ellipsoid.

if M is the slop of the line joining the points (x̂1, ŷ1, ẑ1) and (x̂2, ŷ2, ẑ2) then:

ŷ = M(x̂ − x̂1) + ŷ1 (3.80)

ŷ = Mx̂ + d (3.81)
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Figure 3.3: Plot shows the surface boundaries of a 2D slice of the electric potential for a dust

grain has a = 10, b=5 and c = 5. The calculation used the technique of Lagrange multiplier

and the Finite difference method to compute the potential outside the ellipsoidal grain. Graph

illustrates the smooth boundary conditions obtained via the interpolator method introduced in

the text.

ẑ = M(x̂ − x̂1) + ẑ1 (3.82)

ẑ = Mx̂ + e (3.83)

ẑ = M(ŷ − ŷ1) + ẑ1 (3.84)

ẑ = Mŷ + i (3.85)

where:

d = ŷ1 − Mx̂1 (3.86)
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e = ẑ1 − Mx̂1 (3.87)

i = ẑ1 − Mŷ1 (3.88)

expanding the equation of the ellipsoid gives:

x̂2 − 2x̂x̂0 + x̂2
0

a2 +
ŷ2 − 2ŷŷ0 + ŷ2

0

b2 +
ẑ2 − 2ẑẑ0 + ẑ2

0

c2 = 1 (3.89)

substituting equation 3.81 and 3.82 in equation 3.89 yields a quadratic equation

in x̂:

2∑
i=0

Gi x̂i = 0 (3.90)

in which:

G0 = b2c2 + a2c2M2 + a2b2M2 (3.91)

G1 = −2b2c2 x̂2 + (2a2c2d − 2a2b2ŷ0 + 2a2b2e − 2a2b2ẑ0)M (3.92)

G2 = b2c2 x̂2
0 + a2c2d2 − 2a2c2dŷ0 + a2c2ŷ2

0 + a2b2e2 − 2a2b2eẑ0 + a2b2ẑ2
0

− a2b2c(Mx̂ + e)ẑ2 (3.93)

The roots of equation 3.90 are given by the quadratic formula:

x =
−G1 ±

√
G2

1 − 4G0G2

2G2
(3.94)

A quadratic equation in terms of ŷ can be obtained by substituting equation 3.81

and 3.82 in equation 3.89 yielding:
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2∑
i=0

Hiŷi = 0 (3.95)

where:

H0 = a2c2 (3.96)

H1 = −2a2c2ŷ2
0 (3.97)

H2 = b2c2 x̂2
0 + a2c2d2 − 2 ∗ a2c2dŷ0 + a2c2ŷ2

0 + a2b2e2 − 2 ∗ a2b2eẑ0 + a2b2ẑ2
0

− a2b2c(Mŷ + i)ẑ2
0 (3.98)

The polynomial is solved for ŷ using the quadratic formula (Eq.3.3). Once the

x̂, and ŷ coordinates have been obtained, the corresponding ẑ coordinate can be found

from equation 3.89. This yields the point of deposition on the ellipsoid surface (x̂d, ŷd, ẑd)

in the presence of the electric field only.

3.4 Conclusion

This chapter set out to extend the work carried out by Stark (2008) and develop the

technics of calculating the electric potential of the ellipsoidal dust in three dimen-

sions to be applied in the dust growth treatment in the magnetised plasma context . A

relaxation method used to solve the diffusion equation instead of Laplace equation de-

scribed the electric potential of a charged dust grain. The finite difference method was

explained in three dimensions and was applied to calculate the potential of ellipsoidal

grains in three dimensions. An accurate technique based on the Lagrange multiplier

was discussed and used to set potential on an ellipsoid grain surface. It was demon-

strated that the technique described in this chapter is better than simply making the

grid size small enough that any irregularity in boundary conditions is negligible. The
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calculating of the electric potential of an ellipsoidal dust using the technique described

in this chapter, where Eq. 3.22 is used and the distance d(x̂, ŷ, ẑ) from the source to

the nearest grid points is calculated using the technique of Lagrange multiplier and the

Finite difference method to compute the potential outside the ellipsoidal grain, gives

an accurate boundary conditions of the ellipsoidal grain. Computing the electric po-

tential in such a way is the first step in studying ellipsoidal dust grain growth in a

more reliable way. The next chapter uses the method by which the electric potential of

ellipsoids grains was calculated here to study dust grain growth in three dimensions.
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4

2D and 3D ellipsoidal dust growth

simulation

4.1 Introduction

This chapter aims to develop the work done in chapter 2. A fully three dimensional

model consisting of negatively charged ellipsoidal grains is considered. The finite

difference method discussed in Chapter 3 is applied to calculate electric potential of

the grain. The technique of setting a potential on an accurate ellipsoidal dust surface

which was investigated in the previous chapter is used. One important question is

what conditions imply a large aspect ratio growth for ellipsoidal grains. Results in this

chapter attempt to answer this question.

4.2 2D and 3D Model Description

In dust in plasma studies, several scale lengths can be examined; for example, grain

size, separation distance between dust and Debye length. In addition, Larmor radius

at launch is an important scale length in electromagnetic environments. In this simu-

lation, the relative sizes of Larmor radius versus characteristic grain length (α = RL/b
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were considered, where RL is the ion’s Larmor radius at launch and b the minor axes

of the grain) can be an important parameter affecting the possibility of ions hitting the

grain. Here three cases of α are considered: α ' 1, α � 1 and α � 1. Parameter

p (which gives the relative size between the electric field to the magnetic field) will

set to three values (p = 0.1, 30, 8). These values covers the high magnetic field, high

electric field cases, and the case where both electric and magnetic effects are present.

The number of simulated ions in the ions loading section is about 104 to be correspond

to Coulomb dust crystals (see table 2.2). For typical space and laboratory plasmas,

there is a distribution of grain sizes ∼ 0.01 − 5µm and ∼ 0.01 − 10µm for terrestrial

and space plasmas respectively. At the sheath edge, the electric potential is taken to

be zero. In such model, the grain size is assumed to be much smaller than the sheath

length as in astrophysical environments.

Ions were launched within the sheath with launch velocity vlaunch at t = 0 at two

different initial positions; ions were distributed evenly along x axis, from 2a−15−2a+5

where a is the major axis of the grain, and at perpendicular distance=
√

y2 + z2 = 2

from the long grain axis, where (x, y, z) is the initial position of the ion, and the grain

was parallel to x axis. The second initial positions ions were launched radially from

same distance from the grain’s centre. The value of this distance was equal to the

perpendicular distance in the first initial positions set and ions were launched with

same velocity=vlaunch.

4.3 Numerical Simulation

The electric potential of dust grain were calculated. The grain’s major axes was chosen

to be twice the grain’s minor axes; a = 2b = 2c, where a , b , and c are the major

and minor axes of the grain in x ,y, and z directions, respectively. By following ions

trajectories toward the dust grain and tracing their deposition sites on the grain surface,

the dust growth trend can be examined. Number of colliding ions on the grain surface

were compared with colliding ones at grain’s ends.
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Table 4.1: Parameters used in numerical simulations.

Simulation property Value

x−, y−boundaries φ = 0

Number of launched ions 104

p 0.1, 8, 30

dt̂ 0.1

number of time steps 1500

φ −10V

α 1,� 1,� 1

a : b : c 10 : 5 : 5

initial x a − 15 to 2a + 5

perp. launch distance 2a/5

4.4 Results and Discussion

4.4.1 Ion Dynamics

The ratio of Larmor radius to the grain size (α = RL/b , where RL is the ion’s Larmor

radius at launch and b the minor axes of the grain) can be an important parameter

affecting the possibility of ions hitting the grain. Here three cases of α are considered:

α ' 1, α � 1 and α � 1. The Larmor radius at launch is modified by changing the

launch velocity only, while parameter p will set in the three cases to 8. In general, ion

dynamics in the three choices of α have some similarity in that ions starting near the

grain surface tend to collide on grain surface, whereas ions starting further away move

in an orbital motion. The following sections illustrate the details of ion’ behaviours.

[α ' 1,p = 8]

The ion’s launch velocity is chosen to give a Larmor radius at launch comparable to the

grain size, as shown in Fig. 4.1. This velocity corresponds to vlaunch = 5. Fig. 4.2 shows
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some ion trajectories toward the grain. Most ions starting near the grain surface collide,

while those starting further away execute an orbital motion around the magnetic field

lines and drift toward the grain. Most of these ions collide on the grain at different

sites. Only three ions from those represented in Fig. 4.2 miss. This can be explained as

follows; the non-colliding ions start from positions far from the grain and as a result,

they acquire energy while moving. Then these ions move near the grain’s corner,

which provides more gained energy, therefore, their Larmor radius increases. Hence

they missed colliding because of their high velocities, resulting in their movement onto

different electric field regions.

Ion Energy

The gained energies by some of the ions are shown in Fig. 4.3. It can be noticed that

there are three ranges of acquired energies, according to the differences in the ions’

trajectories. For example, ions moving directly from their initial positions near the

grain’s surface gained the lowest energies, while ions starting from positions far from

the grain tend to acquire higher energies, as a result of moving for a longer time than

the nearer ions. The highest energies seen in the graph are acquired by those ions

which do not hit the grain, but instead follow trajectories near the grain’s corners, as

shown previously.

[α � 1,p = 8]

Here the Larmor radius is much smaller than the grain size (see Fig. 4.4); the velocity

is chosen as vlaunch = 2. Other initial conditions are the same as in the previous case.

Fig. 4.5 shows fewer colliding particles on a grain’s surface than in the former case.

Non colliding ions have a smaller Larmor radius that does not intersect with the grain

position.
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Figure 4.1: Ions’ Larmor radius(RL) at launch, which is comparable to the grain’s semi axes

(b),where parameter p = 8 [RL/b ' 1,p = 8]. The ellipsoidal dust grain is represented in green.

Ion Energy

Similar energy patterns to previous cases can be noticed in Fig. 4.9 for those particles

whose Larmor radius at launch is smaller than grain size in which colliding ions have

lower energies than non-colliding ones . However, the reduction of the initial energies

lead to a reduction in the final energies gained.

[α � 1,p = 8]

In this situation, the Larmor radius at launch is grater than the grain size (see Fig. 4.7)

where initial velocity vlaunch = 8 is used. It is clear from Fig. 4.8 that all ions hit the

grain. Unlike the two previous cases, the colliding ions are distributed along the grain’s

surface and corners, indicating that most ions with a Larmor radius at launch greater

than the grain size are more likely to contribute to the grain’s end growth.
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Figure 4.2: Ions’ trajectories toward an ellipsoidal grain. The grain semi-axes a, b, c are 10, 5, 5

, in length respectively. Ions’ Larmor radius(RL) at launch is comparable to the grain’s semi-

axes (b),where parameter p = 8 [RL/b ' 1,p = 8]. Note that most ions collide with the grain.

The pink shape represents the dust.

Ions Energy

As the magnitude of the initial velocity increases, the magnitude of the maximum

gained energies for particles have a larger Larmor radius than grain size also increases

as it is clear in Fig. 4.6. It can be seen that the highest energies were gained by colliding

ions, unlike the latter case, which start far from the grain and move near the grain’s

corners. However, the net acquired energies are lower here than previously (when

RL/b ' 1) for same particles at the same period of time.
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Figure 4.3: Energies of some ions represented in Fig.2 [RL/b ' 1,p = 8]. Plot represents

non-colliding ions which gain the highest energies. Note that the lowest energies are gained by

ions start directly above the grain’s surface . Ions starting further away gain higher energies.

4.5 Effect of Parameter p

An other important parameter is where the ratio of electric field to the magnetic field

demonstrates the effect of parameter p (where p =
qE0

mwcv0
). The following subsections

indicate two cases of parameter p; large p value and small p value respectively. In both

cases only the value of p changes; otherwise, all other conditions are similar to α ' 1

case.

4.5.1 Dominant Electric Field

[α ' 1,p = 30]

The parameter p here is large, corresponding to p = 30. Fig. 4.10 shows some
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Figure 4.4: Ions Larmor radius(RL) at launch which is much less than the grain’s semi axes

(b),where parameter p = 8 [RL/b � 1,p = 8]. The pink shape represents the dust.

ions trajectories. As the electric field increases, the effect of drift motion becomes

clearer than orbital motion. Ions are accelerated by the electric field resulting in large

Larmor radii. Consequently, ions tend to gain high energies as shown in Fig. 4.11.

The colliding ions have their lowest energies, whereas those starting from positions far

from the grain gain the highest energies before their energies become almost stable.

4.5.2 Dominant Magnetic Field

[α ' 1,p = 0.1]

Here parameter p is given a small value, corresponding to p = 0.1 to insure a

dominant magnetic field effect. Particles starting near the surface collide, while other

ions are forced into Larmor orbits that prevent them from reaching the grain, as shown

in Fig. 4.12. Fewer colliding ions can observed than in the previous case, as illustrated
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Figure 4.5: Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c are of

lengthes 10, 5, 5 ,respectively. Ions Larmor radius(RL) at launch is much lesser than the grain’s

semi-axes (b),where parameter p = 8 [RL/b � 1,p = 8]. Note that most ions do not collide the

grain.

in the figure. Fig. 4.13 represents energies curves for some ions. Again, colliding

ions have the lowest energies, while those moving near corners have the highest; then

energies decrease as particles move toward the grain from positions further away.

4.6 Mass Loading

The effect of electric field, magnetic field and the orientation of the magnetic field on

dust growth patterns have been investigated. This was examined in two different ways.

First, many ion batches with significant number of ions are launched from different

directions toward the grain. Every batch contains about 100 ions. Second, 104 ions are
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Figure 4.6: Energies of some ions represented in Fig.4.5 [RL/b � 1,p = 8]. The plot repre-

sents colliding ions. Note that the lowest energies are gained by ions start directly above the

grain’s surface . Ions starting further away gain higher energies.

launched from a circular bar surrounding the ellipsoidal grain. The initial conditions

are similar to those in case (α ' 1), except for the initial particles positions. The

following subsections address these effects.

4.7 The effect of electric and magnetic fields

Two cases will be considered: the growth of a spherical grain in the presence of an

electric field only and the growth of an ellipsoidal grain in the presence of electric and

magnetic fields, where the effect of magnetic field orientation will investigated.
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Figure 4.7: Ions’ Larmor radius(RL) at launch which is much greater than the grain’s semi

axes (b),where parameter p = 8 [RL/b � 1,p = 8]. The dust is represented in pink color.

4.7.1 Growth of spherical grain in electrostatic field only

In the presence of an electrostatic field and absence of a magnetic field for a spherical

dust grain, ions mass loading was studied. Ions were launched from a circular bar

around the sphere. As shown in Fig. 4.14 ions follow the electric field lines of the

negatively charged grain and hit the grain. Therefore, ions are distributed equally on

grain surface.

4.7.2 Growth of ellipsoidal grain in electrostatic and magnetostatic

fields

For an ellipsoidal grain and in the presence of electrostatic and magnetostatic fields,

ions loading on grain surface will be investigated. The direction of the magnetic field
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Figure 4.8: Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c are 10, 5, 5

in length respectively. Ions Larmor radius(RL) at launch is much greater than the grain’s semi-

axes (b), where parameter p = 8 [RL/b � 1,p = 8]. Note that all ions collide with the grain’s

surface.

is critical for dust growth. Two situations will be considered: the growth of ellipsoidal

grain in the presence of a parallel oriented ( in respect to the major axes of the grain)

magnetic field and the growth of ellipsoidal grain in the presence of a magnetic field

perpendicular to the grain’s surface (in z direction).

4.7.3 Parallel magnetic field

Batches of launched ions

Fig. 4.15 shows the density of ions colliding onto ellipsoidal grain surface. Every

colour represents positions of ions from the same batch. Colours represent the density

of colliding ions in different locations onto the grain’s surface. It can be noticed there
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Figure 4.9: Energies of some ions represented in Fig.6 [RL/b � 1,p = 8]. Note that the

lowest energies are gained by colliding ions which start directly above the grain’s surface. Ions

starting further away (non-colliding ions) gain higher energies.

is higher ion accumulation near the grain’s ends. The salient point here is that some

ions which start far from the gain tend to collide onto the grain’s surface as well as the

grain ends. The situation is different when the magnetic field is perpendicular to the

grain, as will be discussed later. Fig. 4.16 is similar to Fig. 4.15 represents ion density

on the grain’s surface with the initial batches positions are added. Ions’ Larmor radius

(RL) at launch is comparable to the grain’s semi-axis (b), where parameter p = 8

[RL/b ' 1,p = 8], and magnetic field is parallel to x-axis. Figs. 4.17- 4.23 each

represents the initial positions of one of the ion batches, the direct expected colliding

position in the absence of a magnetic field and the actual colliding positions due to

the combined influence of the grain’s electrostatic field and the applied magnetic field.

As the ions initial positions are near the grain’s surface, ions shift from their directed
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Figure 4.10: Ions trajectories toward an ellipsoidal grain. The grain semi-axes a, b, c are

10, 5, 5 in length, respectively. Ions Larmor radius(RL) at launch is comparable to the grain’s

semi-axes (b), and the electric field is large p = 30 [RL/b ' 1,p = 30]. Note that the effect of

drift motion is clearer than orbit motion. Some ions collide with the grain.

hitting positions towards the grain surface as in Fig.4.17. As ions start closer to the

grain’s end, they tend to hit the corner as well as the grain’s surface as can be seen in

Figs.4.18, and 4.19. For ions that start from batches that in front of the grain’s ends

or grain’s sides, the ions tend to spread around their expected hitting positions on the

grain, as in Figs.4.20-4.23. Fig. 4.24 shows frequency plot of the impact energies of

ions where the magnetic field is parallel to the x-axis . It can be noticed from Fig. 4.24

that there are discrete energy bands. The following section discusses this effect.
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Figure 4.11: Energies of some ions represented in Fig.10 [RL/b � 1,p = 30]. Note that the

lowest energies are gained by colliding ions which start directly above the grain’s surface . Ions

starting further away (non-colliding ions) gain the highest energies before they become stable.

4.7.4 Distribution of ion energy

In the case of a perpendicular magnetic field and a constant electric field in x direction,

the equations of motion in two-dimensions are given by,

dvx

dt
=

q
m

Ex ± ωcvy (4.1)

dvy

dt
= ±ωcvx (4.2)

by solving equations 4.1 and 4.2 the total speed v =
√

v2
x + v2

y gained by the particle

is v = µvD, where vD is the drift velocity and µ is given by,
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Figure 4.12: Ions trajectories toward an ellipsoidal grain.The grain semi-axes a, b, c are 10, 5, 5

in length respectively. Ions’ Larmor radius(RL) at launch is comparable to the grain’s semi-axes

(b), where parameter is small p = 0.1 [RL/b ' 1,p = 0.1]. Note that the effect of orbit motion

is clearer than drift motion. Fewer ions collide with the grain than in the previous case p = 30.

µ2 = 2[1 − cos(ωc/ωp] (4.3)

and the energy acquired by the particle becomes,

ε =
1
2
µ2mv2

D = [1 − cos(ωc/ωp)]mv2
D (4.4)

where ωc =
|q|B
m and ωp = q

√
n
ε0m

The reason of the presence of ions that have a final energy lower than the initial

energy is set in the following discussion: in the case of presence of a magnetic field,

where ωc > ωp then Debye length is larger than the Larmor radius and particles may

be prevented from reaching grain position. In addition, particles execute further orbits
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Figure 4.13: Energies of some ions represented in Fig.12 [RL/b � 1,p = 0.1]. Note that

colliding ions which start directly above the grain’s surface gain low energies . Some other

Ions ( non-colliding ions) gain higher energies.

during cyclotron orbit. This means that the energy of colliding particles that collide at

a time when they move against electric field direction reaches its minimum.

The reason of appearing of energy gaps is the following: for every half cycle of

Larmor orbit, ions gain a magnitude of energy while moving in a drifting motion and

they lose a magnitude of energy in the second half of the cycle. However, at these

points ions can not collide with the grain as they are moving away from it. Therefore,

gaps in energy curve are appeared and as ωc increases more energy gaps are produced.

That can be seen from Fig. 4.24 which shows a frequency plot of gained energies for

the hitting ions. The energy gaps are result of presence of non colliding ions that

moving in a second half of the Larmor orbit directed away from the grain or toward

the grain but did not collide at this time, therefore, their energies are not recorded in
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Figure 4.14: Ions follow electric field lines of the negatively charged spherical grain in the

absence of a magnetic field (parameter p = 500). Therefore, ion distribution on the grain’s

surface is equal.

the energy curve.

Circular bar of launched ions

Figs. 4.25, and 4.26 shows ion distribution on an ellipsoidal grain. Ions are launched

from a circular bar around the grain. It is clear from the graph that ions tend to hit

the grain’s ends. Ions moving parallel to magnetic field direction (ions starting near

the grain’s edge) do not meet any impediment to reaching the grain, while those ions

moving perpendicularly to the direction of the magnetic field orbits around the grain

preventing them from colliding with it.
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Figure 4.15: Coloured points represent ion density on the grain’s surface. Every coloured

symbol indicates ions belonging to the same batch. The grain’s semi-axes a, b, c are 10, 5, 5 in

length respectively. Ions Larmor radius(RL) at launch is comparable to the grain’s semi-axes

(b),where parameter p = 8 [RL/b ' 1,p = 8],and magnetic field is parallel to x-axis.

4.7.5 Perpendicular Magnetic field

Batches of launched ions

Under the same initial conditions as the previous case, except for the direction of the

magnetic field, the growth pattern of an ellipsoidal grain is addressed. Fig. 4.27 shows

ion density on the grain surface sites, represented by coloured points. Ion density and

their original batches are shown in Fig.4.28. It is clear from the figures that fewer ions

hit the grain than in the previous case (81% in this case against 92% in the parallel

magnetic field case). Most ions starting further away do not hit. However, colliding

ones tend to collide at the grain’s corners, accumulating in one corner more than others.

Applying a stronger magnetic field, as shown in 1D simulation, causes more growth at
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Figure 4.16: As the previous figure except the The initial positions of ion batches are added

here.

one end than another as a result of E × B drift, i.e. ions drift towards end where there

is greater growth, whereas ions near the other end drift away from it. That indicates

more rapid growth at one corner than the other. Therefore, dust is likely to grow more

elongated, although slowly, while the parallel magnetic field may cause more rapid

growth in size. This may indicate the presence of size and shape distribution of dust in

space environments. Figs. 4.29- 4.35 represent the initial positions of ion batches, the

expected direct colliding position in the absence of a magnetic field (ions follow elec-

tric field lines) and the actual colliding positions due to the combined influence of the

grain’s electrostatic field and the applied magnetic field. Fig. 4.35 shows a frequency

plot of energies of ions [α � 1,p = 8], where the magnetic field is perpendicular to

the x-axis. Fig. 4.35 shows a continuum energy distribution.
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Figure 4.17: The initial positions of the ion batches, the expected direct colliding positions in

the absence of a magnetic field and the actual colliding positions due to the combined influence

of the grain electrostatic field and the applied parallel magnetic field. Ions have shifted from

their directed hitting positions towards the grain surface.

Circular bar of launched ions

Ions were launched from a circular bar around the grain when the magnetic field was

oriented perpendicularly to the grain’s long axis. Figs. 4.36 and 4.37 represent the

distribution of ion density and ions energies for this situation respectively. Ions tend

this time to hit both the grain’s surface and ends, although not in a symmetric way,

while their energies have a continuum distribution.

4.8 Grain Shielding

The closed orbital motion of ions (trapped ions) in the vicinity of dust grains leads to a

reduction in the effective sheath length of the grains. Estimating the number of trapped

particles in the vicinity of grains is of significance in understanding dust growth mech-
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Figure 4.18: As Figure 4.17 but for a different ion batch. Here ions tend to hit the grain’s

surface and end as they start their motion closer to the grain’s end.

anism. In this section we try to estimate the percentage of grain growth reducing as a

result of the trapped ions effect. A cylinder of orbiting ions surrounding the grain was

simulated. The magnetic field was oriented along the x-axis. About 1000 ions beyond

the cylinder of trapped ions were launched from a circular bar.This can be compared

to the same simulation without the cylinder of trapped ions. With trapped ions effect,

only 95 ions collide with the grain corresponding to fewer than 25 percentage of ions

miss colliding with the grain as a result of the trapped ions effect. Trapped particles

shield electrostatic field of the grain and reduce its magnitude for other coming parti-

cles. The estimated percentage of non-colliding ions, as consequence of the effect of

trapped ions, is not low and can not be negligible in simulation.

107



4.9: MASS LOADING IMPLICATIONS IN 3D SIMULATION

 38  40  42  44  46  48  50  52  54  56  58  60

 44

 46

 48

 50

 52

 50

 52

 54

 56

z

grain
direct ions positions
initial ions positions

hitting positions

x

y

z

Figure 4.19: As Figure 4.17 but for a different ion batch. As ions started moving near the

corner, their hitting positions shifted toward grain’s corner.

4.9 Mass Loading implications in 3D simulation

Chapter 2 addressed the growth of 1D dust grain in presence of electrostatic and mag-

netostatic fields. Mass loading simulation showed more colliding ions at the grain’s

edges than at dust surface under the influence of a magnetic field in a direction parallel

to the grain. Mass loading when magnetic field was oriented perpendicular to grain di-

rection was unbalanced, where loading at one edge higher than the other which showed

higher loading from the opposite direction. The simulation in 3D for ellipsoidal grain

has some similarity in that a parallel magnetic field encourages mass loading at grain’s

ends, while prevents ions from reaching the grain’s surface. 3D simulation showed

much ellipsoidal growth than 1D case. Indicating that 3D simulation is required for

accurate dust growth simulation in the presence of a magnetic field. The perpendicular

magnetic field increase mass loading in one end more than the other end. However,
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Figure 4.20: As Figure 4.17 but for a different ions batch. Ions from the the batch in front of

grain’s end tend to spread on the end.

overall, there was mass loading on the entire grain surface.

4.10 Conclusion

Numerical simulations in this chapter for the growth of an ellipsoidal grain in 3D under

influence of electrostatic field arising from the charged grain and an applied uniform

magnetic field oriented perpendicularly and parallel to the major axis of the grain ,

respectively, have been addressed. The significance of the presence of a magnetic

field on the growth of dust grains was investigated via varying the parameter p . In

an electrostatically dominated regime, there were more deposited ions on dust surface

was than in the magnetically dominated case. The direction of the magnetic field also

played an important role in ellipsoidal dust growth , encouraging grain ends growth
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Figure 4.21: As the previous Figure but for the other end of the grain.

as well as giving rise to size growth when oriented parallel to the major axis of the

dust grain. A perpendicular magnetic field permitted surface and ends grain growth in

an asymmetrical manner. Simulations showed a significance of trapped ions on dust

grain growth. While Stark (2008) research of elongated dust growth in astrophysical

plasmas shows that the suggested growth process is an active tool providing the growth

mechanism in the Supernova remnant, results in this chapter can assist to understand

the the process of dust growth in magnetised plasma. In addition to be as an instru-

mental detection in the solar system to the presence of elliptical dust grains especially

in magnetized regions, which can be tool in aligning the dust grains giving rising to the

light polarization. Collisions between ions and neutrals, if involved in this simulation,

could reduce the velocity of the ions and so making them subject to the field near the

grain surface. Therefore, the ellipsoidal growth may increased. The question arising

here is what the situation would be if this work is extended to consider multiple grain
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Figure 4.22: As Figure 4.17 but for a different ion batch. Ions here start their motion from

the front of the grain’s side. Ions hit the directed positions on the grain’s surface and positions

around it.

charging, where charged grains are in close proximity and what possible process could

be initiated in such a situation. The next chapter investigates these questions.
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Figure 4.23: As the previous figure but ions start close to the other side of the grain.
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Figure 4.24: Frequency plot of energies of ions where the magnetic field is parallel to the

x-axis. The presence of a discrete structure is evident. Explination for this is mentioned on p

100.
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Figure 4.25: Figure represents the initial positions of ions, and the colliding positions due to

the combined influence of the grain electrostatic field and the applied parallel magnetic field.

Ions tend to hit the grain’s ends.
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Figure 4.26: Frequency plot of energies of ions represented in the previous figure where the

magnetic field is parallel to x-axis and ions were launched from circular bar from the grain.

Figure shows a continuum energy distribution .
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Figure 4.27: Coloured points represent ion density on grain surface. Each colour indicates ions

belonging to the same batch. The grain’s semi-axes a, b, c are 10, 5, 5 in length, respectively.

Ions’ Larmor radius(RL) at launch is comparable to the grain’s semi-axes (b), where parameter

p = 8 [RL/b ' 1,p = 0.1], and the magnetic field is perpendicular to the x-axis.
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Figure 4.28: Coloured points represent ion density on grain surface. Each colour indicates ions

belonging to the same batch. The grain’s semi-axes a, b, c are10, 5, 5 in length, respectively.

Ions’ Larmor radius(RL) at launch is comparable to the grain’s semi-axes (b),where parameter

p = 8 [RL/b ' 1,p = 0.1],and the magnetic field is perpendicular to x-axis. Ions seem to hit

their directed positions , however, some ions from batches further away tend to hit the grain’s

ends. This figure is similar to the previous one. However, here the original batches are added.
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Figure 4.29: The initial positions of ion batch, the expected direct colliding positions in the

absence of a magnetic field and the actual colliding positions due to the combined influence

of the grain’s electrostatic field and the applied magnetic field. Ions starting their motion near

grain’s surface tend to hit near their expected hitting positions.
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Figure 4.30: As Figure 4.29, but for a different ions batch. Some of the ions that start near the

grain’s end miss their expected hitting positions and shift toward the end, while the rest of ions

miss.
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Figure 4.31: As Figure 4.29, but for a different ions batch. Ions close to the grain’s corner hit

near their expected positions.
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Figure 4.32: As Figure 4.29, but for a different ions batch. As ions start further from the

grain’s surface, their hitting positions shift toward the grain’s end.
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Figure 4.33: As Figure 4.32, but for a different ion batch.
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Figure 4.34: As Figure 4.29, but for a different ion batch. Ions that start close to the grain’s

end, tend to hit near the expected positions.
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Figure 4.35: Frequency plot of energies of ions where the magnetic field is perpendicular to

the x-axis. Figure shows a continuum energy distribution .
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Figure 4.36: The initial positions of ions, and the colliding positions due to the combined

influence of the grain’s electrostatic field and the applied perpendicular magnetic field.
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Figure 4.37: Frequency plot of energies of ions where the magnetic field is perpendicular to x-

axis and ions are launched from a circular bar around the grain. The figure shows a continuum

energy distribution .
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5

Dust grains interactions in micro

discharge scales

5.1 Introduction

In this chapter, a more extreme situation than microdischarge plasma, the recent at-

tracted field, is investigated. Microdischarge plasmas are special case of electrical

discharges that occur in geometries where one dimension at least is in the range of

sub-millimetre length scales. However, small size charged dust grains may cause dis-

charge for the neutral gas when dust gaps reach to sub-micro scales. An overview

of microdischarge and its importance and implications is introduced. Our simulation

model followed by results on charged dust interaction and its effect in the gas neutrals

chemistry are presented.

5.2 Microdischarge plasma

Recently, microdischarge plasmas have attained much attention because of their signif-

icance in industrial applications. In addition, microdischarge plasmas helps to gain bet-

ter understanding of processes that take place in small-scales configurations [ Wilson
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and Gianchandani (2001); Eijkel et al. (2000); Radmilović-Radjenović et al. (2005);

Radmilovic-Radjenovic and Radjenovic (2007); Iza et al. (2008); Mariotti and Sankaran

(2010a); Eichwald et al. (2011); Jeon et al. (2014)]. Although the microdischarges

studies have started in 1990s, new applications have followed very quickly. As a result

of their small physical dimensions, micro plasmas have unique features such as:

1. Confining the plasma to scales of 1mm or less is a good way to generate stable

operation at atmospheric pressure. While low pressure plasmas need a large

cost due to the vacuum system, operation at atmospheric pressure is cheaper and

much favourable for industrial applications [Petrovi et al. (2007)].

2. Other properties make microplasmas desirable for different applications are non-

Maxwellian electron energy distribution functions and high electron densities.

Furthermore, the significant populations of energetic electrons (i.e.10 eV or

higher) lead to non-thermal dissociation of molecular gases which results in high

density of reactive radical species [Mariotti and Sankaran (2010b)].

3. As a consequence of their small size, microplasmas are used in etching or sput-

tering films locally to create microsize patterns directly without the use of pho-

tolithography [Mariotti and Sankaran (2010b)].

4. One advantage of using discharges in microscales is the low voltage and power

required to produce a discharge. In addition, Nonthermal plasmas ( a plasma

that has species in thermal equilibrium only with similar mass species, and the

velocity distribution of each specie can be represented by a Maxwell-Boltzmann

distribution) are more favourable for materials collection because of the pos-

sibility of encouraging chemical reactions that may not be simple by thermal

means. Also, low temperature processes permit temperature-sensitive materials

to be evolved.

In general, these properties differentiate microplasmas from other high-pressure

plasma sources such as arcs although arcs generate at atmospheric pressures makes
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them similar to microdischarge. Otherwise, the electron temperature and the nonequi-

librium properties of glow discharge are similar to those of microplasma [Radmilović-

Radjenović and Radjenović (2007)].

Microdischarge is not only interesting because of its applications, but also because

it is a good system to examine some electric discharge scaling laws, such as the known

Paschen law, that expresses the dependence of the breakdown voltage on the pressure

times the electrode gap. However, the failure of the Paschen law has been observed

in small gaps [Mariotti and Sankaran (2010b); Go and Pohlman (2010); Klas et al.

(2011)]. This departure from the Paschen law has been thought to be a result of elec-

tron field emission from the negative electrode in presence of the high electric field

at small gap. To describe gas breakdown at all separation distances, the modified

Paschen law has been introduced. At short gaps distances, the modified Paschen law

shows approximately linear increase in the breakdown voltage then data curve follows

the macroscale Paschen law. A numerous number of papers has revealed a departure

from the Paschens law at small gaps [Boyle and Kisliuk (1955); Chen et al. (2006)].

However, only over the last few years the deviation from Paschen law has been un-

derstood and referred to the field emission effect [Radmilovi-Radjenovi and Radjenovi

(2008); Torres and Dhariwal (1999)].

In this chapter, we will demonstrate through simulations that the small charged dust

grains in plasma at small inter-grain distances can acquire sufficient number of charges

that may lead to electrical discharge and may change the chemistry of the ambient

neutral gas.

5.3 Model of dust interaction

In order to simulate dust interaction properly, typical dust grains properties such as

dust size, density, plasma temperature, and plasma density have to be included. In

table 6.1, some typical dust parameters are shown. Dust grains immersed in plasma

can acquire such charge. For elliptical dust, if one suppose that the capacitance of the
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dust is equivalent to that of a conductor of the same size, therefore, the net number of

negative charges a grain can acquire can given by [Stark et al. (2006)]:

N =

(
4πε0kB

e2 Te

√
a2 − b2ln(

mi

2πme
)
)
/ln

a +
√

a2 − b2

a −
√

a2 − b2

 (5.1)

One can use the electrostatic potential for a charged ellipsoidal conductor which is

given by:

φ =
Ne

8πε0

√
a2 − b2

ln
a +

√
a2 − b2

a −
√

a2 − b2

 (5.2)

where a and b can be the major and minor axes of the grain respectively and they were

chosen to be in range of astrophysical grains.

In order to the dust can interact electrostatically with another charged dust grain,

the distance between them must be ∼ d < Ls, where Ls is the dust sheath Ls and it

is equal to a few Debye length if consider an astrophysical environment, and d is the

average distance between two adjusted grains and it can approximate as:

d = n
−1
3

d (5.3)

where nd is the dust density. When the potential difference of two adjusted grains is

larger than the work function of material of one of them, then electrons can be emitted

from dust surface of the higher work function:

(φ1 − φ2) > ω f 1 (5.4)

where ω f 1 is work function of the emitter dust surface. For these electrons to be col-

lected by the other dust grain, they must gain energy enough to overcome its energy

barrier Ebarrier.

Ebarrier = ω f 2 − e(φ1 − φ2) (5.5)

where ω f 2 is work function of the collector dust material.
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Table 5.1: Some typical parameters of different dusty plasma regimes [Shukla and Mamun

(2010)].

Plasma regimes dust density(nd/m−3) Electron temperature (T (K)) Electron density (ne/m−3) Dust radius(µm)

Interstellar plasma 10−6 104 105 2 − 10

DC discharge 109 − 1010 104 1016 1 − 5(Al2O3, 50 − 65(S ilicate)

Tokamak 104 108 1020 1 − 10?(Carbon)

5.4 The model equations

The governing equations of grains interaction in plasma model are,

m
dv
dt

= −q(E + v × B), (5.6)

52φ =
q
ε0

(n+ − ne), (5.7)

E = −∇φ (5.8)

These equations are the equation of motion, Poisson equation, and electric field,

respectively. In order to carry out the numerical simulation, the model equations are

required to be non dimensional. In chapter 2 the non dimensional treatment in addition

to setting an appropriate parameters have been done. However, self potential of the

charged particles have not been considered in the previous work (chapters 2 and 3).

Therefore, the non dimensional form of Poisson equation and electric field are:

5̂2φ̂ = Pc(n̂+ − n̂e), (5.9)

Ê = −Pd∇̂φ̂ (5.10)

where the parameters in the non-dimensional equations are:

Pc =
ql2

0n0

ε0φ0
(5.11)

Pd =
φ0

E0l0
(5.12)
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For further simplicity, the following substitutions can be used;

n0 =
1
l3
0

(5.13)

E0 =
φ0

l0
(5.14)

φ0 =
q
ε0l0

(5.15)

therefore:

Pc = 1 (5.16)

Pd = 1 (5.17)

5.5 Numerical model

A Fortran95 code was written to show what happens to electrons when they become

detached from the dust surface and move freely under the influence of the electric

field. At the beginning of the simulation, an isolated charged dust grain is assigned

a specific potential on its surface using the same techniques described in the previous

chapter. The isolated charged grain has a set of potential contours that can be calculated

with mean of Finite difference solver (details can be found in chapter 3). The distant

plasma allowed to set the zero potential to the edge of the grid. Perhaps bringing a

second charged grain close to the first one changes the surface electric field on both

grains, possibly triggering field emission.

To investigate what happens to detached electrons from the dust surface and move

freely under the influence of the electric field or combination of electric and magnetic

field, modifications were implemented in the code which was used in chapter 3. In

that code scheme, the equations that correspond to the charged particles motion and

the electric field interpolation are solved. Here the total electric field is self field of

charged dust in addition to field which contributed by the charged particles. To include

the effect of electrons emission on gas breakdown, following parts were introduced to
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the code: at the beginning of the modified simulation, the ejected electrons were accel-

erated by the high electric field and the particles new positions were calculated. The

self-created field and, hence, the force acting on the particles will change. Therefore,

at every time step weighting the positions of the particles to the nearest grid, yield-

ing changing the charge densities on the mesh point. Then the potential and electric

fields are updated on the grid points using finite difference solver. During collisions,

energy was conserved. Gas molecules were assumed to be fixed in space. Electrons

interact through their self field. To investigate the effect of magnetic field on energy

acquired by the emitted electrons, and consequently on the gas breakdown, a uniform

magnetic field will be applied. A background of molecular Oxygen at atmospheric

pressure and a temperature of approximately room temperature (300K) is assumed.

Other gases can be selected with appropriate cross sections. Secondary processes such

as electron-ion recombination, photon emission and absorption were not taken into

account in this simulation. Only the following collisions are taken in consideration

attachment, metastable excitation (O2(a1∆g)), metastable ionisation and ionization of

neutral gas [Gudmundsson (2004)]. To simulate these collision processes for neutral

gas in plasmas, the collision probability for every particle (electron) at each time step

should be computed.

The probability of a particle having a collision is dependent on the relevant cross-

sections. Inelastic collisions cross sections, such as collisions considered here, depend

strongly on the energy of the electron moving through the gas and can be written as:

Pi = nt

n∑
i=1

σi(ε)υ∆t (5.18)

where Pi is the probability of the collision , nt is the number density of the tar-

get atoms, υ is the electron speed, σi is the value of the cross-sections summation at

electron energy ε and ∆t is the computational time steps.

The cross-sections of the desired collisions (attachment, metastable, and ioniza-

tion) for electrons colliding with Oxygen melocules (O2) are taken from Phelps database

131



5.6: INITIAL CONDITIONS

(Phelps database, www.lxcat.net, retrieved on February 20, 2014)[Lawton and Phelps

(2008)]. The metastable ionization collision is taken from Morgon database (Mor-

gon database, www.lxcat.net, retrieved on February 20, 2014).The ionisation energy

threshold of O2 is 12.06 eV, the excitation threshold for the metastable is 0.97 eV and

the energy threshold for ionisation of the metastable is 11.0 eV. Cross sections of elec-

tron attachment, metastable, ionization of metastable and ionization of ground state

oxygen molecules are represented in Figures 5.1, and 5.2.

Given the energy of the incident electron the probability of a collision can be deter-

mined by selecting a random number. The collision is considered when the collision

probability is higher than the random number. To determine the type of such collision,

another random number is compared with the relative probability of every collision

type to the probability of the collisions. During the collision the total energy ,included

the kinetic energy plus the ionisation energy, is conserved. If εe is the energy of the ion-

ising electron, and εi is the ionisation energy, then the equation expressing the ionizing

electron energy during the collision can be written as:

εpost = εe − εi (5.19)

where εpost is the energy remained post collision which can be shared between

the two electrons by ratio determined again using a random number. However, since

the incident electron has a significant energy in respect to the target and the possible

produced ion, the latter have considered to be at rest during collision reflected the high

mobility of electrons than ions and neutrals. The available energy post collision can be

shared between the ionizing electron and the resulting electron only.

5.6 Initial conditions

A domain of M × N = 500 × 500 grids is used to simulate dust grains interactions.

All domain boundaries set to have zero potential. Two adjusted grains in different ori-

entations and different potentials were set within the domain with separation distance
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between them d. The major to minor axes of the first and the second grains are: a:b

5 : 2 and 4 : 8 respectively. The gap size was in range of 120µm and this size is nearly

12 order of the grain size (which is 10µm) and about 104 of the dust Debye length

(which is about 10 m). The dust sheath Ls is equal to a few Debye length if consider an

astrophysical environment. The dust grains acquire charge from the plasma, and when

two such grains come into close contact, the potential difference (caused by geometri-

cal effects mainly) could cause electron transfer from one to the other. The potential

distribution in such model was evaluated using finite difference method in similar tech-

nique to the one described in Chapter 3. The motion of emitted electrons was derived

via Rung-Kutta on equation of motion and acquired energies of electrons were calcu-

lated. Electrons energies can provide an initial guide to possibility of ionization, and

excitation of neutrals.

The two grains were separated by distance d in a range of micrometers. Fig.5.3

shows electric potential of the two adjusted grains. The magnetic field was oriented

along z-axis. The emitted electrons population consists of five hundreds electrons

moving from rest. Table 5.2 summaries initial conditions used in this simulation.

5.7 Results

The emission of surplus electrons from charged dust grains in Oxygen plasma and their

evolution in space between dust was calculated for several values of the parameter

p, which describes the relative sizes of the electric and magnetic forces. Electrons-

gas collisions were examined (including electron attachment, metastable, metastable

ionization, and molecules ionization). Results with different values of p were discussed

to represent some of the possible electrons process result in presence of dust in plasma.

In each case, snapshots were taken at regular time intervals from the start until electrons

hit the second grain . Snapshots were recorded for the parameters; electron density,

metastable density, and ions density. In addition, electrons energy and self electrons

potential at same intervals were presented. To simplicity, units of all these parameters
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Table 5.2: Parameters used in numerical simulations.

Simulation property Value

Domain dimensions 220 × 220

x−, y−boundaries φ = 0

Number of initial electrons 500

p 102, 103

dt̂ 0.1

φ1 −10V

φ2 +10V

d 120µm

a : b(1stgrain) 5 : 2µm

a : b(2ndgrain) 4 : 8µm

are dimensional.

5.7.1 [p = 103]

The case where p = 103 is presented in Figs.5.4-5.8. The evolution of electrons is

faster than the following case (when p = 102). Electrons are drifted close to the second

grain position. While the effect of the magnetic field (represented in an orbital motion)

lead to bend the electrons (the upper set of electrons) trajectories in the lower electric

field region, this effect is nearly trivial in the highest electric field region (the region

between the grains), where the drift motion leads to move the electrons ( the bottom

set) toward the second grain directly. Electrons self field is not changing noticeably

as a result of the small change in the electrons density as shown in Figs. 5.7 and 5.5

for the electrons self field and electrons density, respectively. The small change in

the electron density is a consequence of the high effect of drift motion which leads to

directing the electrons toward the second grain.

Fig.5.6 shows metastables collisions positions where metastables are expected to
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form. Comparing this plot with Fig. 5.4, white spaces in between metastables posi-

tions in Fig.5.6 and minimum energy regions in Fig.5.4 can be seen. These regions of

minimum energy (black regions) correspond to metastables formation collisions posi-

tions. Electrons gain energy over the metastable collision threshold (0.97 eV) then lose

this energy in metastable production.

It can be seen from Fig.5.8 different histograms showing the number of elec-

trons that acquire specific energy at some time intervals. Most electrons gain en-

ergy lower than metastable collisions energy and only small number of electrons ex-

ceed metastable collision threshold. However, electrons will lose their energy in a

metastable collision before they start to acquiring enough energy for a new collision.

Because of the lower energy required for metastable collision, it can be seen as the

dominant collision in this case and electrons do not have the chance to gain energy high

enough to exceed other collisions process such as attachment and ionization. However,

electrons may reach to higher energy leading to discharge of the neutral gas if the

simulation extend to contain enough number of charged dust. Therefore, a simulation

with reasonable number of charged dust grains may be required.

5.7.2 [p = 102]

For this case, p = 102, the motion of electrons in a direction perpendicular to the

magnetic field is inhibited. Electrons orbit the magnetic field lines. Figs.5.9-5.13

represent the evolution of electrons trajectories, electrons density, electric potential,

and electrons energy at some time intervals for this case. Fig.5.9 shows an evolution

of one electron de-attached from the first grain associated with its energy which is

represented in colors. The electron orbits the magnetic field lines which is directed

to the z-axis and drifts slowly toward the second grain position. It is noticed that

the orbital motion is lower at the region between grains as a results of increasing the

electric potential in that region.

Electrons self field is decreased slightly as shown in Fig.5.12 as a consequence of
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electron density decreasing as can be seen in Fig. 5.10.

Fig.5.11 shows the metastables production positions plotted in red color in the re-

gion between grains. The empty regions represent where electrons start to gain energy

before losing it in other metastable formation collisions.

The energy that electrons gain in some time intervals is showing in Fig.5.13. His-

tograms imply that a number of electrons that exceed the metastable collision energy

is low at the selected times. However, the high number of metastables represented in

Fig.5.11 indicates that most of the selected intervals represent electrons energy just

after or between metastable collisions. The lower gained energy positions in Fig.5.9

may show where the metastables collisions take place.

5.7.3 Comparison

Electrons in the case when p = 103 accelerate as they drift with electric field lines

gaining maximum energy at the closest region to the second grain. Fig.5.4 shows

electrons energy of this case presented in colors. Electrons in case p = 102 start to gain

energy since they move parallel to the electric field of the emitter grain. The orbital

motion of electrons around magnetic field lines causes electrons energy to fluctuate as

can be seen in Fig.5.9. When electrons travel a quarter of the cyclotron orbit, they move

with electric field direction of the emitter grain, hence start to gain energy. Then in the

following quarter of the orbit, electrons move perpendicularly to the electric field lines,

therefore, they keep their acquired energy. In the second half of gyromotion, electrons

travel against electric field lines results in decelerate them particularly when electrons

move close the grain region. That results in the reduction of the energy acquired by

the electrons. These fluctuations in energy do not give the electrons the chance to gain

enough energy to make more collisions. Therefore, the metastable number in this case

is less than the previous one. In both cases electrons energy does not exceed metastable

collision threshold. Although the increase of the electric field causes increasing in the

metastable production in the case (p = 103), case (p = 102) spreads out the electrons
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and metastables in a larger distance in the domain. That may have an effect when a

large number of charged dust and electrons is present.

5.8 Conclusion

Microdischarge plasmas is a special case of electrical discharges which occurs in ge-

ometries where one dimension at least is in range of sub-millimetre length scales.

However, in this chapter a much extreme situation than microdischarge plasma where

small size charged dust grains may cause discharge for the neutral gas when dust gaps

reach to sub-micro scales was investigated. The importance of the magnetic field was

explored by varying the parameter p which gives the relative size of the electric field

to the magnetic field. The distribution of electrons kinetic energies was investigated in

two cases when (p = 103) and (p = 102). In the first case the gained energy increased

dramatically, however, the gained energy did not exceed further than the metastables

threshold as a result of consuming electrons energy in metastable collisions. When

magnetic field is increased (p = 102), gained energy is fluctuated as a result of contri-

bution in gyromotion orbits. Therefore, a number of metastable in this case is lower

than (p = 103) case. The presence of the magnetic field can help electrons to persist

for longer and this gives electrons higher chance to involve in extra collisions.

The presence of he charged dust grains in plasma can activate the neutral gas in a

non-thermal way. The metastable population is an important key in determining the re-

quired breakdown voltage as well as they can be a source of photons. The metastables

have longer lifetime than the excited state. In addition, the metastables can be ionised

by electrons with a lower energy than the ground state neutral. Therefore, the required

electric field for breakdown becomes lower.
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Figure 5.1: Electron attachment and metastable cross sections for molecular Oxygen [Lawton

and Phelps (2008)].
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equivalent to d = 120µm. The dust at left has potential corresponding to φ̂ = −10V , its size is

a : b = 5 : 2 . The right dust has potential corresponding to φ̂ = 10V , its size is a : b = 4 : 8
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Figure 5.4: Plot shows the evolution of electrons trajectories at p = 103. Electrons started from
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Figure 5.5: Snapshots for the electrons density evolution when p = 103 at some time intervals.
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Figure 5.7: Snapshots for self potential of the electrons when p = 103 at some selected time

intervals.
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Figure 5.8: Histogram for the electrons gained energy evolution when pa = 103 at some time

intervals.
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Figure 5.9: Plot shows the evolution of one selected electron at pa = 102. The electron started

from the first grain at left and then evolved in an orbital motion around the magnetic field lines

and drifting motion around the first grain.
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Figure 5.10: Snapshots for the electrons density evolution when p = 102 at some time inter-

vals.
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Figure 5.11: Plot shows metastables formation positions when p = 102 at some time intervals.

148

astro
Textbox
y

astro
Textbox
x



5.8: CONCLUSION

Figure 5.12: Snapshots for self electrons potential when p = 102 at some selected time inter-

vals.
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Figure 5.13: Histogram for the electrons gained energy evolution when p = 102 at some time

intervals.
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6

The collective dust grains interaction

above thundercloud

Luminous relativistic electron beams inside thunderclouds have attracted scientists at-

tention in recent years [Dwyer (2010); Füllekrug et al. (2013b); Cohen et al. (2010);

Dwyer et al. (2008)]. They have been noticed via remote sensing radio waves of low

frequency in a range of ∼ 40− 400 kHz. These electron beams appear ∼ 2− 9 ms after

positive cloud-to-ground lightning discharges at altitudes of between ∼ 22 − 72 km

above thunderclouds [Füllekrug et al. (2011b)].

Electron beams above thunderclouds are thought to be initiated by cosmic ray

showers which are associated with intense lightning discharges [Füllekrug et al. (2011a)].

Cosmic rays which enter the Earths atmosphere with an energy of about ∼ 1016 eV

[Gurevich and Zybin (2005)] lead to the emission of electrons from air molecules. The

resulting electrons are accelerated by the strong electric field existing above 284 kV/m×

n, where n is the density of air relative to that at sea level, following an intense light-

ning discharge. Such electrons can produce secondary electrons by collisions with

gas constituents. These secondary electrons can also acquire energy from the elec-

tric field leading to an avalanche of runaway electrons. While the process proceeds,

the avalanche grows exponentially with time and distance resulting in a gas break-
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down [Babich et al. (2004); Dreicer (1960); Chanrion and Neubert (2010)]. The

primary electrons can reach relativistic energies with a mean energy of ∼ 7 MeV

[Füllekrug et al. (2011b)] and move upwards with a charge of ∼ −10 mC and a current

of ∼ 3 × 10−3 Am−2 directed downwards. The seed particles must have a population

above the runaway threshold of ∼ 10 keV or more, depending on the strength of the

electric field [Gurevich and Zybin (2005); Ebert et al. (2010)].

It was suggested that the fast removal of charges (∼ ms) from thunderclouds through

lightning can also initiate sprites. Sprites are physical process observed in the meso-

sphere and lower ionosphere at altitudes about 40 − 100 km [Dowds et al. (2003a);

Barrington-Leigh et al. (2001)]. The cause of sprites formation is the strong electric

field initiated in the lower ionosphere as a result of the fast charge removal from thun-

derclouds. The accelerated electrons ionize and excite the ambient neutral particles

during collision, which leads to a discharge [Hiraki and Fukunishi (2006)]. This dis-

charges can consist of thousands of growing channels which have diameters of the

order of tens to hundreds of meters [Ebert et al. (2010)].

6.1 Role of charged dust in electron beam formation

The special electrostatic field configuration in a hollow cathode pulsed discharges ef-

ficiently assists beam electrons acceleration [Baker et al. (2007)]. It is suggested that

a similar physical configuration might occur above thunderclouds in the presence of

aerosols [Füllekrug et al. (2013a)]. The free electrons produced through lightning dis-

charge attach to the aerosols and produce a quasi-static electric field. This electric field

represents the geometric design and the physical properties of the environment above

the thundercloud.

Recent observations regarding stratosphere layers which are possibly charged [Re-

nard et al. (2010)] have shown the presence of charged aerosols which supports the

suggestion that these stratospheric aerosols could be involved in the formation of rel-

ativistic electron beams above the thunderclouds, a process initiated by the lightning
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discharges. It is likely that the convective updrafts in the convective storm assist in

transporting the dust upwards into the troposphere. Furthermore, an ensemble of ice

particles was detected at ∼ 13−14 km height by CALIPSO [Helling et al. (2013)]. The

alignment and orientation of such dust could be proven in a similar scenario with ice

crystals in the electric field regions of thunderstorms [Saunders and Rimmer (1999);

Ulanowski et al. (2007)].

These accumulated ice particles above the thundercloud may have helped produce

a special electrostatic configuration which assisted electron beam formation. The fol-

lowing section presents more details about the formation of electron beams and the

role of the dust.

6.2 Physical model for electron beam initiation

The role of charged dust in electron beam formation can be expressed as follows

[ Füllekrug et al. (2013b)] (see Fig 6.1): when a large thundercloud has exceeded

the electrons near its upper surface, the region under the bottom surface of the cloud

becomes positively charged. As a result of losing electrons through strikes from the

thundercloud, electrons tend to gather at the top side of the cloud. By gaining extra

electrons on the cloud surface, the electric field becomes large; consequently, electrons

are launched to the region above the cloud. These electrons may cause the gas ioniza-

tion of molecules, however their energies vary depending on the initial parameters. The

resulting free electrons attach to the present dust population above the thundercloud

and positive tails of ions are created to act as a seed for the electric field in a radial

direction, paving the way for the creation of another acceleration of electrons starting

from the top of the thundercloud and directed upwards. Then, the ions columns that

were created from the previous event assist in acceleration the electrons and charged

dust and help to guide these accelerated electrons and to dislodge them from the top

of the cloud. As a result, more energetic and beamed electrons are produced. As was

mentioned before, the configuration that causes these subsequent events is close to a

153



6.3: NUMERICAL MODEL

hollow-cathode discharge [Mavrodineanu (1984); Lidsky et al. (2004)] (see Fig. 6.2

where a cathode-shaped configuration, which is analogous to negatively charged dust,

and outside anode ,which is similar to the positive ions tail produced from the previous

event, cause a strong electron beam.

In this chapter, a simulation of such an environment above the thundercloud is

presented, setting up suitable initial conditions including the presence of charged dust,

and showing their role in simulating the subsequent electron beam in a second event.

6.3 Numerical model

The simulation model of electron beam formation used in this study is the particle

model which has been discussed in detail in previous chapters (see chapters 2, and 3).

However, no collision processes are included here.

Calculations have been made with fixed background potential and zero potential

boundaries.

6.4 Governing equations

The model equations used to simulate the formation of electron beam are:

m
dv
dt

= −qE, (6.1)

dx
dt

= v, (6.2)

52φ =
q
ε0

(n+ − ne), (6.3)

E = −∇φ (6.4)
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Figure 6.1: An electron beam form when electrons were ejected from a thundercloud top and

moved in an electrical distribution of positive ions and negatively charged dust caused from a

previous discharge [Füllekrug et al. (2013a)].
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Figure 6.2: A diagram shows a hollow cathode with an outside anode.

These equations are the motion equation, a Poisson equation, and an electric field

equation respectively. In order to make these equations dimensionless, the following

parameters are used:

v 7→ v̂v0 (6.5)

t 7→ t̂t0 (6.6)

E 7→ ÊE0 (6.7)

φ 7→ φ̂φ0 (6.8)

ns 7→ n̂sn0 (6.9)

∇ 7→ ∇̂s−1
0 (6.10)

The denotation ˆ stands for the non-dimensional variables, whereas zero denotation

represents scale variables. Hence, equations 6.1, 6.3, and 6.4 become:

dv̂
dt̂

= PaÊ (6.11)
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dx̂
dt̂

= Pbv̂, (6.12)

5̂2φ̂ = Pc(n̂+ − n̂e), (6.13)

Ê = −Pd∇̂φ̂ (6.14)

The equation for electrons kinetic energy in non-dimensional scales can be written

as:

k̂ = Pev̂2 (6.15)

Where the non-dimensional parameters are defined as:

Pa =
qt2

0φ0

ml2
0

(6.16)

Pb =
t0v0

x0
(6.17)

Pc =
q

l0ε0φ0
(6.18)

Pd =
φ0

E0l0
(6.19)

Pe =
ml2

0

2qt2
0

(6.20)

The following substitutions are used to simplify the parameters:

n0 =
1
l3
0

(6.21)

v0 =
l0

t0
(6.22)

E0 =
φ0

l0
(6.23)

The non-dimensional parameters become:
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Pa =
qφ0t2

0

ml2
0

(6.24)

Pb = 1 (6.25)

Pc =
q

ε0l0φ0
(6.26)

Pd = 1 (6.27)

Pe =
mev2

0

2e
(6.28)

The non dimensional governing equations become:

dv̂
dt̂

= PaÊ (6.29)

dx̂
dt̂

= v̂, (6.30)

5̂2φ̂ = Pc(n̂+ − n̂e), (6.31)

Ê = −∇̂φ̂ (6.32)

k̂ = Pev̂2 (6.33)

6.5 Initial conditions for the simulation

A two dimensional computational domain with 15 × 60 grids is used to simulate the

electron beam . The typical height of the environment where an electron beam above

a thundercloud is produced is about 1km and its width is in the order of a few metres.

If a particle hits a boundary then calculations stop. The simulation is started by

injecting electrons from an ellipse with size a : b = 3 : 1, where a and b are the major

and minor axes of the ellipse, at the bottom of the simulation grids centred at position

[8, 4]. The number of initial electrons is ∼ 103. The electric potential of the suggested
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hollow-cathode-like model simulation is about −10 eV at the lateral dust columns and

for the top part of the thundercloud, a double positive potential for the ions column is

created after the first electrons avalanche event. Table6.1 shows the initial conditions

used in this simulation.

Table 6.1: Parameters used in numerical simulations.

Simulation property Value

Domain dimensions 15 × 60

Domain boundaries φ = −10

Number of initial electrons 103

Pa 1

6.6 Results

The results for the electrons’ evolution above the thundercloud with, and without the

presence of the ions column are presented in Figs.6.8-6.10 and 6.5-6.7 respectively.

Snapshots of the electrons’ density, and their kinetic energy, are taken at four time

intervals. Fig. 6.3 represents the electrostatic potential of the environment above the

thundercloud without simulating an ions column. Fig. 6.4 represents the electrostatic

potential of the environment above the thundercloud after producing positive ions by

an electron avalanche.

6.6.1 Electron evolution without an ions column

Fig.6.5 shows the evaluated trajectory of one of the electrons which started from the

initial ellipse of ∼ 103 electrons at the bottom of the simulation domain. The electron

trajectory evolved upwards on a wavy path with increased energy. Some electrons

which started at the centre of the initial ellipse moved upwards in a straight line and

gained the highest energy, as will be shown later. Decreased electron density results in

159



6.6: RESULTS

 0
 2

 4
 6

 8
 10

 12
 14 0

 10
 20

 30
 40

 50
 60

-10

-8

-6

-4

-2

 0

E
le

ct
ric

 p
ot

en
tia

l/V
E

le
ct

ric
 p

ot
en

tia
l/V

Figure 6.3: The simulated electrostatic environment after a sprite event without simulating an

ions column. Dust grains have collected electrons from the sprite discharge represented by the

negative region in the plot sides. The negative region at the bottom shows the top part of the

cloud. This environment represent the one in Fig.6.1 but without simulating the ions column.

The coloured and contour lines represent the electric potential.

reduced electric potential, as shown in Fig.6.6; however, electron density increased at

some points (at the third time interval in the figure). The energy gained by the electrons

in the first stage gain nearly equivalent energy, as shown in Fig.6.7 which represents

the electrons final gained energy at each snapshot. Then, the energy increases slowly

reaching the higher energy for the centered electrons and lower energy for the electrons

which started at the ellipse edges.

If we assume that no self field is present in the calculations, the period of the

oscillation of the electron can be found as follows: The equation of motion for the
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Figure 6.4: As Fig.6.3 but this time with a positive ions column created by the electrons

avalanche during the sprite. This environment represent one similar to Fig.6.1.The coloured

and contour lines represent the electric potential.

electron is:

mv̇ = −qE (6.34)

v̇ =
−q
m

E (6.35)

The electric field is the gradient of the electric potential:

E = −∇φ (6.36)

As the gradient of the electric potential between the central region and the sidewall

is constant:

∇φ = constant (6.37)
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therefore the electric field is constant except in the upper and lower regions of the

model.

Integrating equation 6.34 gives:

v =
−q
m

Et (6.38)

Integrating the equation again gives:

x =
−q
2m

Et2 + x0 (6.39)

that gives:

t = (x − x0)(
−2m
qE

)1/2 (6.40)

The previous equation gives the time the electron takes to reach the central axis

from its original starting position. Because of the linearity of the electric field, the

electron make a regular oscillator motion. Therefore, the electron’s oscillation period

is four times the time given in the equation. However, this is no longer applicable at

the above region of the simulation domain, as the zero potential boundary at the open

end will change it, increasing the time that the electron takes to make an oscillation

and leading to a non regular oscillation.

6.6.2 Electron beam formation

Fig.6.8 shows the evolution of one electron which started from an ellipse presented at

the bottom of the expected electrostatic environment in which a sprite event leaves a

column of positive ions surrounded by electrons attached to dust grains.

The electrons transport upwards along the positive column in a wavy trajectory

forming a thin path. The initial distribution of electrons spreads within the central

region and does not spread sideways towards the vertical edges. That is as a result of

the repulsion force from the side’s negative potential and the attraction force of the

central positive ions.
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Figure 6.5: The evolution of one electron trajectory in an environment above a thundercloud

where a sprite event was expected to initiate (see plot 6.3)

.

The electrons density as well as their electric potential are decreased during elec-

trons evolution as shown in Fig.6.9. The electric ellipse evolves upwards vertically.

Like the electrons’ evolution without the positive ions, there is a distribution of the

electrons’ energy; however; they reach a higher maximum energy in a shorter time.

The distribution of the gained energy in Fig.6.10 shows that the central electrons

gain higher energy than the sideways moving ones. That can be understood if the

stronger electric field in the central region compared to the sides is noticed and these

central electrons remain fixed in the central region. If the self field is involved in

the calculations, these central electrons will gain even more energy as the self field

from other electrons helps to repeal the central electrons, causing the formation of a

beam. However, in this work, although the self field of electrons are included in the
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Figure 6.6: Snapshots of electron density evolution in an environment similar to Fig.6.3.

calculation, the self field’s effect is nearly negligible as the number of initial electrons

is not huge.

6.7 Conclusion

The electron beam can occur after sprites events. The presence of charged dust above

thunderclouds is thought to have a basic role in electron beam formation in which

the electrons avalanche in a sprite event leaving an environment of negatively charged

dust and positive ions. This special electrostatic field configuration is similar to a

hollow cathode pulsed discharges with a column of positive ions inside. The results for

electrons’ evolution in such an environment with and without the presence of positive

ions have been presented. Electrons in an environment without positive ions evolve

upwards, gaining lower final energy. In case when a positive column is presented,
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Figure 6.7: Snapshots of gained energy evolution in an environment similar to Fig.6.3.

electrons evolve upwards in a long path and do not bias to sidewalls. The trajectories

of the electrons show an oscillator motion, the period of which depends on its original

position. Electrons gain higher energy in a shorter time compared to the case in which

the ions column is not simulated.

The distribution of the gained energy in presence of the column of positive ions

shows that the central electrons gain higher energy than the sideways moving ones as

a results of high electric field in the central region. Although the self field of electrons

are included in the calculation, the self field’s effect is nearly negligible as the number

of initial electrons is not huge. Simulating a large number of electrons may cause the

central electrons to gain even more energy as the self field from other electrons helps

to repeal the central electrons, causing the formation of a beam.
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Figure 6.8: The evolution of one electron in an environment above a thundercloud and after a

sprite creation where positive ions were left (see plot 6.3). The ellipse of electrons evolves in a

long beam of electrons.
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Figure 6.9: Snapshots of electron density evolution in an environment similar to Fig.6.4.
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Figure 6.10: Snapshots of gained energy evolution in an environment similar to Fig.6.4.
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7

Conclusion and Future work

The aim of this thesis was to investigate basic aspects of elliptical dust grains growth

and interactions in plasma where electrostatic and magnetostatic background is present

using various numerical techniques. Three main branches were explored: elliptical

dust growth in magnetized sheath, was investigated in chapter 2 for 1-D and in chapter

4 for 3-D, dust interaction in submicron scales in chapter 5, and the collective dust

grains interaction above thundercloud in chapter 6. Numerical methods were intro-

duced and discussed to investigate these physical situations.

7.1 Elliptical dust growth

The Results from 1D simulations of dust growth presented in chapter 1 show the influ-

ence of the magnetic field on the ion loading on a charged grain surface. The electric

field components acting on the ions motion were calculated analytically. Ions dynam-

ics near the grain depend on the orientation of the magnetic field in respect to the long

grain axis. For a perpendicular oriented magnetic field, ion deposition on grain surface

was unbalanced, whereas at a parallel magnetic field, ions fluxes tend to increase at

the grain’s ends. In both cases, there was a population of trapped particles, orbiting

close to the wire but not hitting it, that will effectively shield the electrostatic field

from other charged particles. Chapter 4 presented a more reliable treatments of dust
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growth, dealing the simulation in two and three dimensions using numerical techniques

introduced in chapter 3 including finite difference method and Lagrange multiplier to

solve the potential of an accurate ellipsoidal dust surface. The magnetic field was also

directed perpendicularly and parallely to the major axis of the grain. The significance

of the presence of magnetic field on growth of dust grains was investigated via varying

the parameter p . In electrostatically dominated regime, ions distribution on dust sur-

face was larger than magnetically dominated case. The direction of the magnetic field

had also important role on ellipsoidal dust growth , encouraging grain’s end growth

when oriented parallel to the major axis of dust grain. Perpendicular magnetic field

permits both surface and ends grain growth. Simulations showed a small significance

of trapped ions on dust grains growth. While Stark (2008) research of elongated dust

growth in astrophysical plasmas shows that the suggested growth process is an active

tool providing the growth mechanism in the Supernova remnant, results in this chapter

can assist to understand the the process of dust growth in magnetised plasma. In addi-

tion to be as an instrumental detection in the solar system to the presence of elliptical

dust grains especially in magnetized regions, which can be tool in aligning the dust

grains giving rising to the light polarization. Collisions between ions and neutrals, if

involved in this simulation, could reduce the velocity of the ions and so making them

subject to the field near the grain surface. Therefore, the ellipsoidal growth may in-

creased. For a much reliable simulation of dust growth, the growth processes could be

in presence of many charged dust grains. The combined electrostatic field arising from

all dust can influence the dynamics of ions loading on grains surfaces. In addition,

simulation the motion of charged dust while ions deposition can be interesting field of

research. Since magnetic field has a role in elliptical dust grains alignment and there-

fore gives rise to starlight polarization [Diver and Clarke (1996)], it could be useful to

include interstellar dust grain growth in model that account for their optical properties

[Perets and Biham (2006)]. This model can give more accurate interstellar polarized

light fitting.
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7.2 Dust plasma interaction

Microdischarge plasmas is a special case of electrical discharges which occurs in ge-

ometries where one dimension at least is in range of sub-millimetre length scales.

However a more extreme situation than microdischarge plasma where small size charged

dust grains may cause discharge for the neutral gas when dust gaps reach to sub-

micro scales was investigated. The interactions of charged dust grains in plasma where

molecules of Oxygen gas are present and the effect on the discharge of the ambient gas

were investigated in presence of magnetic field. The particle in cell model was used

to simulate electrons motion in addition to using Monte Carlo method to simulate the

electrons collisions with neutrals. The importance of the magnetic field was explored

by varying the parameter p which gives the relative size of the electric field to the mag-

netic field. The distribution of electrons kinetic energies was investigated in two cases

when (p = 103) and (p = 102). In the first case the gained energy increased dramati-

cally, however, the gained energy did not exceed further than the metastables threshold

as a result of consuming electrons energy in metastable collisions. When magnetic

field is increased (p = 102), gained energy is fluctuated as a result of contribution in

gyromotion orbits and electrons only involved in metastable collisions. However, a

number of metastable in this case is lower than (p = 103) case. The presence of the

magnetic field can help electrons to persist for longer and this gives electrons higher

chance to involve in extra collisions.

The presence of he charged dust grains in plasma can activate the neutral gas in a

non-thermal way. The metastable population is an important key in determining the re-

quired breakdown voltage as well as they can be a source of photons. The metastables

have longer lifetime than the excited state. In addition, the metastables can be ionised

by electrons with a lower energy than the ground state neutral. Therefore, the required

electric field for breakdown becomes lower.

For further improvement of this work, one can simulate many number of charged

dust grains in different orientation. Then electrons can transport in distances between
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dust rising the electric potential in the simulating space leading to very active interac-

tions of the ambient gas. This can cause to a faster breakdown of the gas.

7.3 Collective dust grains interaction above thunder-

clouds

The electron beam can occur just after sprites. The presence of charged dust above

thundercloud are thought to have a basic role in the electron beam formation in which

the electrons avalanche in sprite event leaving an environment of negative charged

dust and positive ions column. This environment was simulated in a model like hollow

cathode with a column of positive ions inside. The particle in cell was used to simulate

particles motion.The results for electrons’ evolution in such an environment with and

without the presence of positive ions have been presented. Electrons in an environment

without positive ions evolve upwards, gaining lower final energy. The trajectories of

the electrons show an oscillator motion, the period of which depends on its original

position. In case when a positive column is presented, electrons evolve upwards in a

long path and do not bias to sidewalls. Electrons gain higher energy in a shorter time

compared to the case in which the ions column is not simulated.

The distribution of the gained energy in presence of the column of positive ions

shows that the central electrons gain higher energy than the sideways moving ones as

a results of high electric field in the central region. Although the self field of electrons

are included in the calculation, the self field’s effect is nearly negligible as the number

of initial electrons is not huge. Simulating a large number of electrons may cause the

central electrons to gain even more energy as the self field from other electrons helps

to repeal the central electrons, causing the formation of a beam.

Results from this work can clarify some aspects of the physics of energetic process

in the earth’s atmosphere and their impact on the technological systems and the earth’s

climate.

172



7.3: COLLECTIVE DUST GRAINS INTERACTION ABOVE THUNDERCLOUDS

To modify this work, applying a strong electric potential on the environment above

thundercloud model, causes electrons to move in relativistic speed. This requires the

model equations that control particles motion to be in relativistic mode. Furthermore,

simulating large number of electrons lead to self field of the simulated electrons to

make effect in the particles motion and beam formation.
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