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Abstract 

This project developed a robust and reliable process to pattern < 5 nm features in 

negative tone Hydrogen silsesquioxane (HSQ) resist using high resolution electron beam 

lithography and developed a low damage reactive ion etch (RIE) process to fabricate silicon 

nanowires on degenerately doped n-type silicon-on-insulator (SOI) substrates. A process to 

thermally grow high quality silicon dioxide (SiO2) (between 5-15 nm) is also developed to 

passivate onto the etched silicon nanowire devices to serve the purposes of gate dielectric and 

a diffusion barrier to minimize the donor deactivation. The measured interface state trap 

density (Dit) of the 10 nm thermally grown oxide is 1.3 x 1010 cm−2 eV−1 with a breakdown 

voltage of ~7 V. 

Using optimized processes for lithography, dry etch and thermal oxidation, Hall bar and 

Greek cross devices are fabricated with mean widths from 45 to 4 nm on SOI substrates with 

a doping density ~ 2 x1019, 4 x1019, 8 x1019 and 2 x1020 atoms/cm3 and electronically 

characterized at room and cryogenic temperatures (from 1.4 to 300 K) to allow resistivity, 

mobility and carrier density to be extracted directly as a function of temperature. This allowed 

to probe electron transport and scattering mechanisms in degenerately doped silicon 

nanowires. The mean free path is theoretically calculated and directly compared with the widths 

of the nanowires by which it can be approximated that the electron transport is 3 dimensional 

(3D) for the 12 nm wide nanowire which has likely to be changed to 2D and 1D for the 7 nm 

and 4 nm wide nanowires respectively. Moreover the experimental mobility is directly 

compared with a number of theoretically calculated mobilities using Matthiessen’s rule, where 

it has been determined that the neutral impurity scattering is the dominant scattering 

mechanism limiting the performance of silicon nanowires.  

Using silicon nanowires, junctionless transistors are fabricated on SOI substrate with a 

doping density ~ 4 x 1019 atoms/cm3 and electronically characterized at room and cryogenic 

temperatures (from 1.4 to 300 K). It was observed that reducing the width of channel from 24 

to 8 nm, the transistor changed their operation from depletion to enhancement mode due to 

increase in the surface depletion at smaller length scales. Since the drain current in a junctionless 

transistor is proportional to the doping density, a high on-state drive current ~ 1.28 mA/μm 
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has been observed with sub-threshold slope (SS) ~ 66 mV/decade at 300 K. Moreover 

temperature dependent measurements revealed a low SS ~ 39 mV/decade at 70 K and single 

electron oscillations at 1.4 K.  

Finally, independent arrays of 2 terminal nanowires devices with mean widths from 45 to 

4 nm are fabricated on SOI substrate with a doping density ~ 8 x1019 atoms/cm3 to detect 

polyoxometalate (POM) molecules [W18O54(SeO3)2]4−. A change in resistivity has been 

observed ~ 3.6 m ohm-cm (corresponds to ~ 13 % increase) when POM molecules are coated 

around the nanowires, shown n-type behaviour of molecules. POM molecules exhibit highly 

redox properties, therefore side-gated FETs with mean width ~ 4 nm were fabricated on SOI 

substrate with a doping density ~ 4 x1019 atoms/cm3 where side-gate was used to apply 

alternative ± pulses of 20 V to charge and discharge the POM molecules to demonstrate flash 

memory operation. The average change in the threshold voltage was ~ 1.2 V between the 

charging (program) and the discharging (erase) cycles. The program/erase time is currently 

limited to 100 ms for a reasonable single-to-noise ratio. Moreover no significant decay in the 

stored charge has yet been measured over a period of 2 weeks (336 hours). 
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1. Introduction     

Over the last few decades, advancements in silicon nanowire technology have shown 

promising potential in future-generation electronics, opto-electronics and chemical/biological 

sensing applications. Silicon nanowires have been used to demonstrate nanoelectronic 

transistors [1], memories [2], quantum information processing [3], sensors [4], thermoelectric 

energy harvesting [5], solar cells [6] and electrometers [7]. Silicon is an ideal material for these 

applications as it is considerably cheaper compared with other materials and many 

semiconductor foundries use it for mass manufacturing of devices.  

In particular, scaling the dimensions of the silicon metal-oxide-semiconductor field-effect-

transistors (MOSFETs) has remarkably achieved over 2.5 billion transistors in present day 

microprocessor chips with continued scaling evolution of silicon nanowire (fin) - based multi-

gate transistors, which emerged as successors to ultra-scaled planar gate silicon MOSFETs due 

to intimidating short-channel effects (SCE) in nanometer regime, such as drain-induced barrier 

lowering (DIBL), channel length modulation and hot-carrier effects, which deteriorates the 

controllability of the gate over the channel and result in degradation of sub-threshold slope and 

increase in off-state current. However the multi-gate transistors such as FinFETs [8], double-

gate FETs [9] and tri-gate FETs [10] has not only downsized the technology node to present 

day 14 nm, but also demonstrated better electrostatic control of the channel due to proximity 

of multiple gates, which has remarkably suppressed the short-channel effects (SCE) even at 

shorter gate lengths and delivered near ideal sub-threshold slopes with reduced threshold 

voltage roll-off [11]. The advancements and innovations such as process-induced strain in silicon 

channels enhances the mobility without additional process complexity [12], addition of high-k 

dielectric stacks which delivers desired threshold voltage by tuning the work-function and 

provides better electrostatic control over the channel while preserving low gate leakage and 

replacement of the poly silicon with metal gate to eliminate the poly-depletion effects [8] are 

some of improvements being made to the planar gate silicon MOSFETs along with the scaling 

to improve transistor characteristics.  
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Apart from the transistors, silicon nanowires are predominantly used for a range of 

biochemical sensors, where the dimensions required is below 10 nm to achieve higher 

sensitivity through large surface-to-volume ratio. The operation of a silicon nanowire is based 

on the electric field effect where the charge on surface of the nanowire modulates the free 

carrier concentration in the channel region which modulates the conductivity. Hence the silicon 

nanowire becomes a resistive sensor, ideal to sense gases such as NO2 & NH3 [13], hydrogen 

[14] and diagnose a wide range of diseases for the point-of-care healthcare applications 

including proteins [15], DNA [16], cancer biomarkers [4,17] and viruses [18]. Similarly quantum 

information processing also requires devices below 10 nm in order to reduce the capacitance 

of the channel region for potentially high temperature operation.  

Over the years, many fabrication techniques have been developed to fabricate silicon 

nanowires, which are based on top-down and bottom-up approaches or hybrid top-

down/bottom-up approaches. The nanowires fabricated with bottom-up approaches use 

catalyst-assisted growth mechanisms such as vapour-liquid-solid (VLS) mechanism, which 

involves three main stages for the nanowire growth, i.e. metal alloying, crystal nucleation and 

axial growth [19]. However VLS mechanism exhibits Gibbs-Thomson effect, which relates 

surface curvature to vapour pressure and chemical potential to describe the diameter-

dependent growth rate of a highly curved particle [20]. The growth rate controlled by the 

growth conditions can be varied to obtain the desired length of nanowire. Generally the 

nanowires with smaller diameter grows slower than larger ones and the diameter of the 

nanowire is limited by the radius of the metallic particle. Bottom-up nanowires can be grown 

on any substrate with extremely small diameter down to ~1 nm with very high aspect ratio, 

however yield is too low to be economical for mass manufacturing in semiconductor foundries, 

because the nanowires are not directionally aligned when grown on a non-silicon substrates 

and subject to complex integration problems such as mechanically transfer nanowires to the 

substrate, position individual nanowires and add ohmic contacts.  

On the contrary, top-down approach provides better lithographic control to fabricate 

nanowires and still results in industry yields of over 99 %, which is required to sell products in 

the market. It involves deposition of resist material on the substrate and exposure using various 

energy sources, which after resist development result in a mask for pattern transfer via dry or 

wet etch techniques. The energy sources used in top-down lithographic processes consists of 
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photons (visible to ultraviolent radiation and x-rays), particle beams (electrons and ions), 

physical contact printing (nano-imprint), edge based techniques (shadow evaporation). Other 

methods of lithography include the uses scanning probe microscopy (SPM) to modify and 

manipulate the deposited material on the surface at atomic scale but pattering a large area using 

a single tip would take an enormous time. The considerations for any lithographic technique 

are resolution (minimum achievable feature size), process stability, registration (layer-to-layer 

alignment), yield and throughput. Electron beam lithography uses a beam of electrons (with 

minimum spot size ~ 3 nm) and exposes the pattern in resist either pixel-by-pixel or shape-by-

shape, hence provides the minimum feature size of ~ 3 nm with highest pattern fidelity in terms 

of shape, accuracy, precision of features and overlay, over all the existing top-down approaches. 

Whilst electron beam lithography is commercially only used for writing masks and templates 

because of very low throughput, however it is useful for limited large scale integration and R&D 

to develop the technological nodes ahead of mass production. For high volume manufacturing, 

throughput is the prime criterion for choosing any lithographic technique. Therefore over the 

years, multi-beam lithography tools has been developed, which can decrease the exposure time 

of electron beam lithography by several orders of magnitude. Mapper has developed such a 

multi-beam lithography tool [21] where 13,000 electron beams are generated by splitting up a 

single electron beam, originating from a single electron source. Each of the beam has its own 

optical column to avoid cross-over during the wafer exposure. The beams are switched on/off 

by 13,000 light signals (each for a beam directed by the pattern generator), which are streamed 

to the electron beams at 1-10 GHz. This technique result in a throughput of over 10 wafers 

(300 mm) per hour at a resolution of < 45 nm half pitch.   

Despite substantial progress towards multi-beam lithography tools, industry however still 

relies on various photolithographic techniques, which provides the highest throughput with 

lowest manufacturing cost. The resolution of photolithography is limited by the wavelength of 

the light and numerical aperture (NA). Typically feature sizes below 500 nm are extremely 

difficult to realize with 365 nm ultraviolent (UV) photolithographic techniques, because of the 

diffraction of light at the mask openings, however advance photolithographic techniques such 

as immersion lithography enhances resolution by 30−40 % by replacing the air gap between 

final lens and substrate with various fluids such as water, aluminium chloride, hydrogen 

phosphate and sodium sulphate [22], which increases the numerical aperture (NA) above 1. 
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Currently deep ultraviolent (DUV) lithography uses argon fluoride (ArF) 193 nm wavelength 

excimer lasers to deliver a throughout of ≥130 wafers (300 mm) per hour with a resolution 

of ≤ 45 nm [Nikon NSR-S610C]. Currently Intel is using 193 nm wavelength DUV lithography 

along with double patterning techniques for the production of Xeon, Core and Atom 

processors based on 14 nm technology node.  

So far, both top-down and bottom-up approaches have produced high performance 

silicon nanowire transistors. Intel’s 14 nm technology node which is currently in high-volume 

manufacturing, is based on 2nd generation 20 nm gate length bulk FinFETs with 8 nm wide and 

42 nm tall rectangular fins. For NMOS, at 0.7 V supply voltage, ION = 1.04 mA/μm has been 

reported which is more than 15% improvement on that reported for 1st generation 26 nm gate 

length bulk FinFETs (22 nm technology node). About ~6 orders of ION/IOFF has been observed 

with a sub-threshold slope of ~65 mV/decade and DIBL of 50 mV/V [23]. The silicon nanowire 

transistors fabricated on SOI substrate using electron beam lithography are reported in [11]. 

Here the gate length is 1 μm whereas the fin width and height is 30 and 10 nm respectively, 

whereas ~10 nm SiO2 is thermally grown and used as a gate dielectric. Measurements shown 

that at 1.0 V supply voltage, ION = 2 μA/μm has been observed with ratio between ION/IOFF ~ 8 

orders and sub-threshold slope of ~64 mV/decade. Silicon nanowire transistors with channel 

width down to 4 nm has been realized using atomic force microscopy (AFM) lithography [24]. 

Whilst the channel is oxidized with ~2.5 nm SiO2 but a back gate is used to modulate the 

channel. Here at 1.0 V supply voltage, ION = 0.5 μA/μm has been observed with a sub-threshold 

slope of over a V/decade. Silicon nanowire transistors fabricated using a bottom-up approach 

is reported in [25]. Here the grown nanowire has a diameter below 5 nm after thermal 

oxidization and a channel length range from 1.0 −1.5 μm. Results from 300 nm gate length 

devices shown that at 1.25 V supply voltage, ION = 0.2 mA/μm has been observed with ratio 

between ION/IOFF ~ 5 orders and sub-threshold slope of ~120 mV/decade.  

There are quite a few demonstrations electronically characterizing 10 nm silicon 

nanowires to understand the transport mechanisms at smaller length-scales. Bottom-up 

approach has been used to fabricate silicon nanowires from 60 – 5 nm in diameter [26]. An 

increase in ionization energy with decreasing nanowire diameter has been observed due to lack 

of surface passivation, which may have profound implications for the design of scaled devices 

such as FETs for bio-sensing, where a change in dielectric properties could modify the 
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conductance of nanowires. A number of top-down approaches are employed to fabricate 

silicon nanowires for transport studies [27,28,29,30], the majority of which show either no or 

hopping conductivity for nanowires below 10 nm. The main reason for poor electrical 

characteristics in top-down nanowires is the need of developing etch processes for pattern 

transfer with minimized plasma-induced sidewall damage [31,32].  

The term damage refers to any effect of the etch process which disrupts the lattice 

structure, creates dangling bonds on the etched interface, contaminate the etched surface with 

polymer passivation layer or heavy metals, which result in deep traps for charge carriers, and 

deteriorates the electrical characteristics of the nanowire. Such damage has become more 

critical with continued scaling evolution of CMOS technology with modified transistor designs, 

such as FinFETs where the active channel region is formed either through inversion or 

accumulation layer near the Si-SiO2 interface on the multiple sidewalls of the etched Si. The 

plasma-induced sidewall damage introduces defect states and can potentially pin the Fermi level 

at the middle of the energy gap and trap electrons at the sidewall surfaces which can reduce 

the number of charge carriers in the channel region since the electrons on the sidewalls would 

not gain sufficient energy to reach the conduction band. These defects and trapped charges 

also becomes the scattering sites for the charge carriers which deteriorates the mobility of the 

channel region. Therefore the sidewall carrier depletion results in poor or no electrical 

conductivity if the channel width is comparable to the depletion width. The mechanisms result 

in sidewall damages often correlates with the etch process parameters such as bias voltage, this 

can’t be independently controlled in an RIE system but typically low RF power result in smaller 

bias voltage, which reduces the ion bombardment energy and ion flux to the substrate, and 

hence helps to minimize the plasma induced sidewall damage. The work in this thesis is based 

on developing a low damage etch process for high quality pattern transfer to fabricate a number 

of different types of nanowire devices discussed in subsequent chapters.  

1.1. Project Overview 

For this project, 200 mm diameter (100) crystal orientated silicon-on-insulator (SOI) 

wafers purchased from SOITEC with a top silicon layer of 55 nm and buried oxide of 150 nm 

on 735 μm thick silicon substrate. The cross-section of SOI substrate is shown in figure 1-1. 

Initially the top silicon layer was doped with boron (~ 1.5 x 1015 atoms/cm3) and later heavily 
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implanted with phosphorus to dope above metal-insulator transition. However the bottom 

silicon substrate was doped with boron (~ 9 x 1014 atoms/cm3). The quarters of SOI wafers 

were implanted from ion beam services (IBS) at France, detail of which is shown in table 1-1. 

 

Figure 1-1: Cross-sectional illustration of silicon-on-insulator (SOI) substrate. 

After implantation, dopant is activated in rapid thermal annealing (RTA) furnace under 

nitrogen gas environment at 1000 °C for 75 seconds. Transmission line measurement (TLM) 

structures were made with nickel silicide contacts to optimize the dopant’s activation time and 

temperature to make sure that the metal contacts made to SOI substrate are ohmic and the 

dopant is fully activated. 

Implantation Dose 
(cm−2) 

Implantation Energy 
(KeV) 

Activated Doping 
Density (cm−3) 

2 x 1013 10 3 x 1018 

5 x 1013 10 6 x 1018 

2 x 1014 10 2 x 1019 

4 x 1014 15 4 x 1019 

1 x 1015 15 8 x 1019 

5 x 1015 15 2 x 1020 

Table 1-1: Implantation dose and energy used to implant quarters of 8 inch 

SOI wafers with phosphorus. 
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This project has been divided into three main parts. In first part, processes for nano-

lithography, reactive ion etch and thermal oxidation (SiO2) are developed and well optimized 

so that they can be repeatedly used to deliver consistent HSQ linewidths, silicon etch profile 

and thin oxide film for the fabrication of a number of different types of silicon nanowire devices. 

To begin with, a robust, reliable and reproducible process is developed to pattern < 5 nm 

isolated lines on SOI substrate using hydrogen silsesquioxane (HSQ) resist by high resolution 

electron beam lithography tool. This process is optimized in terms of investigating the resist 

cleaning procedures, patterning strategies, resist prebake time/temperature and resist post-

exposure development. By varying the exposure dose, resist developer dilution, developing 

time and developing temperature are the key parameters predominantly examined to 

determine the optimum conditions that can deliver consistent HSQ linewidths with very 

smooth line edge roughness, these results are discussed in chapter 2.  

HSQ linewidths are fabricated typically from 100 – 5 nm to optimize silicon nanowire 

etch process using reactive ion etching (RIE). Initially tetrafluoromethane (CF4) based etch 

chemistries are explored to etch silicon but it was found that the selectivity (i.e. ratio of the 

resist: etch) can’t be improved any further (3:1), Therefore sulphur hexafluoride (SF6) and 

octafluorocyclobutane (C4F8) based etch chemistries are investigated and a low damage RIE 

process is optimized to transfer < 5 nm features onto SOI substrate with a relatively good 

selectivity (1:2.5). These results are discussed in detail in chapter 3. Another process is 

optimized to thermally grow ~ (5-15 nm) silicon dioxide (SiO2) in a dedicated high temperature 

oxidation furnace in order to passivate the silicon surface with oxygen to remove any dangling 

bonds and trap charges present at the silicon interface. The oxide quality has been determined 

from circular metal-oxide-semiconductor (MOS) capacitors fabricated on silicon substrate, 

which revealed a low Dit = 1.3 x 1010 cm−2 eV−1 (determined from 10 nm SiO2 using 

conductance method) after capacitors annealed in forming gas.    

In second part, silicon nanowire devices are fabricated using optimized processes for 

lithography, dry etch and thermal oxidation. The device fabrication techniques are discussed in 

chapter 4. Hall bar and Greek cross devices are fabricated on SOI substrates with a doping 

density ~ 2 x 1019, 4 x 1019, 8 x 1019 and 2 x 1020 cm−3 with mean widths from 45 to 4 nm to 

determine the resistivity, mobility and carrier density as a function of temperature to identify 

major scattering mechanisms dominating the electron transport. By directly comparing the 
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theoretically calculated mean free path of an electron with the widths of the nanowires, it has 

been approximated that the electron transport is 3 dimensional (3D) for the 12 nm wide 

nanowire which has likely to be changed to 2D and 1D for the 7 nm and 4 nm wide nanowires 

respectively. Furthermore different scattering mechanisms are modelled to estimate the total 

mobility using Matthiessen’s rule, which has been directly compared with experimental mobility 

to determine the dominant scattering mechanism limiting the performance of the nanowires. 

These results are discussed in chapter 5.  

Using silicon nanowires, Junctionless transistors with widths from 24 to 8 nm are 

fabricated on SOI substrate with a doping density ~ 4 x 1019 atoms/cm3 and electronically 

characterized at room and cryogenic temperature. Such high doping density is normally 

required to maintain an electrostatic integrity in the channel especially with smaller length scales. 

The 24 and 16 nm wide transistors were found to be operating in depletion mode whereas for 

the 8 nm wide transistor, a transition has been observed where the transistor changed their 

operation from depletion to enhancement mode possibly due to an increase in the surface 

depletion. For an 8 nm wide transistor, a high on-state drive current ~ 1.28 mA/μm has been 

observed with sub-threshold slope (SS) ~ 66 mV/decade, attributed to the high doping density 

and potentially 1D transport, established from determining electron transport at 4 nm wide 

nanowires. The absence of junctions provides immunity to short channel effects, hence a low 

DIBL ~ 106 mV/V has been observed. Moreover temperature dependent measurements were 

performed onto 8 nm wide transistor which revealed a low SS ~ 39 mV/decade at 70 K and 

single electron oscillations at 1.4 K. 

Finally, polyoxometalate based CMOS compatible non-volatile flash memory devices are 

fabricated. This work has been done in collaboration with several groups across the school of 

engineering who have been involved with synthesis, characterization, electrochemical analysis, 

electron paramagnetic resonance (EPR) studies, crystallography, density flow theory (DFT) 

calculations and industrial level device modelling of the polyoxometalate (POM) based clusters 

after which electronic devices are fabricated such as side-gated FETs to realize the flash 

memory operation as predicted. These FETs with mean width ~ 4 nm were fabricated on SOI 

substrate with a doping density ~ 4 x1019 atoms/cm3 by adding a side gate to the Hall bar 

geometry and tested before and after deposition of POM molecules around the channel. There 

are different versions of POM molecules but in this work selenium-based polyoxotungstates 
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are used. A shift in the sub-threshold slope of the transistor has been observed after the 

deposition of POM molecules indicated an n-type behaviour. Furthermore, side-gate is used to 

apply ± pulses to charge (−) and discharge (+) the POM molecules, hence demonstrated the 

flash memory operation. These results are discussed in chapter 7.  
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2. Electron Beam Lithography in HSQ Resist  

This chapter begins with an introduction to electron beam lithography (EBL) which is 

being extensively used throughout this project for patterning micro- and nano-scale features in 

positive tone polymethyl methacrylate (PMMA) and negative tone hydrogen silsesquioxane 

(HSQ) EBL resists. PMMA is primarily used for metal lift-off purposes whereas HSQ is the key 

resist used for pattern transfer in silicon via reactive ion etch (RIE) process. A robust and reliable 

process has been optimized to pattern 10 nm isolated lines in HSQ resist is discussed in detail 

which enabled to fabricate a diverse range of nano-scale devices discussed in next chapters. 

2.1. Electron Beam Lithography  

Vistec vector beam (VB) 6 ultra-high resolution (UHR) extra wide field (EWF) electron 

beam lithography tool is installed in James watt nanofabrication centre (JWNC). It is classified 

as a Gaussian-beam lithography tool where each shape is formed as a series of exposures with 

a focused electron beam. The schematic representation of Vistec VB6 is shown in figure 2-1, 

mainly comprises of an electron gun, column, chamber, stage and loadlock all of which are 

mounted over the vibration isolated ‘plinth’ where all the vacuum systems are installed. A beam 

of electrons is generated by an electron gun using a cathode emission process with a thermally 

assisted field emitter (TFE) source. In Vistec VB6, Schottky emitter is installed which is equipped 

with a heated zirconium oxide (ZrO2) coated tungsten (W) tip surrounded by the suppressor 

and extractor electrodes to control the electron emission process. The suppressor electrode 

prevents the electron emission from the cathode shank except from the tip region. The 

potential is applied between the tip and the extractor electrode which creates a large electric 

field allows the electrons to tunnel through the tip and form a beam of electrons also referred 

as spot size of orders of few nm in diameter. These electrons then passed through another 

electrode for focusing the beam and then accelerated towards the anode in the column where 

they are further accelerated at fixed 100 keV potential. The suppressor, extractor and focusing 

electrodes are characterized as electrostatic lens and forms lens 1 assembly of the electron gun 

by which the electrons trajectory can be controlled (focused and deflected) due to the Lorentz 

force produced by the electromagnetic field onto the beam of electrons. 
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Figure 2-1: Schematic representation of the key components of Vistec VB6 

electron beam lithography tool. 
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The column consists of gun aligner, magnetic lens II, electrostatic beam blanker, main & 

sub-field deflection coils and magnetic lens III, all through which the electron beam is kept 

aligned down to the substrate. The gun aligner consists of two pairs of magnetic deflection coils 

to shift and tilt the electron beam in the optical axis. There are 6 different sized apertures used 

at different places throughout the column so that any required beam diameter can be produced 

by varying the current density. A combination of lens 1 and lens II work as a zoom lens where 

the focus point of lens II is fixed such that the beam diameter can be varied onto substrate 

while holding the focus and current density constant [1]. This feature is useful for electrostatic 

beam blanker which is positioned in the middle of the focal point known as beam crossover 

created by the lens placed above beam blanker plates. While the beam blanker is in switched 

on state, the electron beam is not deflected and substrate is being exposed whereas in switched 

off state, the electron beam is electrostatically deflected from optical axis at a large angle onto 

a limiting aperture and substrate is not exposed. 

 

Figure 2-2: Vector scan of Vistec VB6. 

Vistec VB6 uses vector scan exposure technique to write onto the substrate which 

employs the electrostatic beam blanker and main & sub-field deflection coils synchronized by 

the pattern generator. Unlike the beam blanker which is electrostatically deflecting the electron 
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beam, main & sub-field deflection coils creates electromagnetic field perpendicular to the 

optical axis to deflect the electron beam while not affecting its focus. This mechanism keeps the 

electron beam independent of the voltage applied to beam blanker plates until the beam is 

switched off, known as conjugate plane blanking. Pattern generator reads the digital pattern 

from the central computer and generates analogue signals to the beam blanker and main & sub-

field deflection coils to rapidly switch on/off the beam and deflect the beam onto the substrate 

respectively. Lens III is the ultra-high resolution (UHR) final lens installed at the end of the 

column which accurately focus the final spot size generated onto the substrate for writing.  

Figure 2-2 shows vector scan of Vistec VB6 exposure onto a designed pattern where the 

electron beam only scanned and exposed the designed pattern fractured into different shapes. 

The exposure start from the bottom left of the shape and once fully exposed through moving 

(deflecting) the beam onto the substrate by main & sub-field deflection coils, the beam is 

blanked and immediately moved to the bottom left of another shape to start the exposure. In 

conventional raster scan lithography tools the entire subfield is scanned back and forth and 

exposed accordingly, thus making vector scan tools not only more efficient in writing but also 

more expensive. Pattern generator equipped with a 20 bit digital to analogue converter (DACs) 

that defines the maximum deflection limit of the electron beam which is given by, 

Maximum field size = Resolution grid × 220 

Maximum field size = 1.25 nm × 1048576 = 1310.72 μm 

Where resolution grid is the minimum deflection limit of the electron beam that defines 

that accuracy of the Vistec VB6 tool to place and expose a pattern. Thus there are 1048576 

points which can be addressed in x and y direction on 1.25 nm resolution grid in a maximum 

field size of 1310.72 μm without stage being moved. There are two other resolution grids that 

can be used with Vistec VB6 are 0.5 and 1.0 nm which gives a maximum field size of 524.288 

and 1048.576 μm respectively. Often the desired pattern is larger than the maximum field size 

for which the stage can be moved with linear motors in x and y direction but it could potentially 

result in possible drift or misalignment of few microns comes with each stage movement. A 

beam error feedback (BEF) correction unit employs /1024 interferometer to measure the 

actual stage position with a resolution of 0.62 nm. The difference between the desired and the 
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actual stage position is reimbursed by an offset to the beam by deflecting it to its correct 

position and eradicate the misalignment caused by stage movement.  

The substrates from 5 mm up to 6 inch can be mounted onto different sized holders and 

are loaded onto the stage with kinematic mounts to allow the substrates to be repeatedly 

loaded at the same position onto the stage. The separation between the principle plane of the 

lens III and the substrate is approximately ~ 35.4 mm and retaining this distance for each 

substrate is very critical since the substrates comes with different thicknesses and also spun with 

diverse range of resists with different thicknesses. A height meter is used to confront this issue 

where the infrared laser is spotted onto each substrate and further detected by a charge 

coupled device (CCD) array sensor to accurately measure the separation between the principle 

plane of lens III and the substrate, so that any correction can be applied to the electron optics 

to finely focus the electron beam onto the substrate. The Vistec VB6 is also equipped with 

secondary electron (SE) and backscattered electron (BSE) detectors in the column to turn the 

tool into scanning electron microscopy (SEM), used to scan over the substrates to find markers 

for layer-to-layer alignment.      

 

Figure 2-3: Interaction volume of electron beam exposure. 

In principle the resolution of the electron beam exposure should be limited by the 

wavelength of an electron, for example for 100 KeV accelerating voltage the wavelength is 
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0.003 nm but fact of the matter is that such high resolution is actually limited by the scattering 

mechanisms and proximity effects. The electrons generated by the electron gun are normally 

referred as “primary electrons” which penetrates in the resist and do exposure. An exposure 

is a combination of several scattering take place due to the electron-solid interactions and mainly 

dominated by the forward scattering and backscattering of electrons. The interaction volume 

of such exposure is shown in figure 2-3, at 100 keV accelerating voltage the electrons can 

penetrate a few orders of 10 μm deep into silicon substrate. The energy of an electron 

influences the scattering angle. In forward scattering, the primary electrons collides with the 

orbital electron of an atom from resist and substrate to either excite or ionize the atom and 

result in an inelastic scattering event, the lower energy electrons scatter to a larger angle 

whereas higher energy electrons scatter to a smaller angle. Thus, the penetration depth of an 

exposure depends on the accelerating voltage, larger the accelerating voltage, larger is the 

penetration depth and lower forward scattering. The primary electrons are the source of 

secondary electrons generated through the ionization process are mainly responsible for most 

part of the exposure throughout the resist. However the backscattering electrons are due to 

the collision of an electron with the nucleus of an atom from substrate result in an elastic 

scattering event, whilst with increasing accelerating voltage there will be less backscattering 

events but with a larger angle that could potentially bring in proximity effects.  

Proximity effects deteriorates the performance limitations of the electron beam 

lithography tool. It is an undesired exposure in addition to the designed pattern often causes 

broadening of the resist, initially the forward scattering broaden the spot size into the resist and 

later due to the backscattering elections which return back to the surface cause further 

exposures. Normally the resist thickness is only a few percent of the total electron penetration 

depth. Therefore, the forward scattering can be controlled by using a higher accelerating 

voltage to narrower the beam penetration into the resist. Whereas backscattering can be 

controlled by approximating the backscattered electron intensity distribution which is often the 

sum of two Gaussian functions (one for forward scattering and other for backscattering) by 

simulating the designed pattern using Monte Carlo simulations with respect to the resist 

thickness and substrate to determine the optimum dose for the different shapes within a 

pattern, This allows to generate a point spread function (PSF) that modulates the dose and do 

the proximity correction accordingly.  
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Some of the common spot sizes corresponds to the beam current available in Vistec VB6 

are shown in table 2-1. The beam current is measured using Faraday’s cup were the electron 

beam is directed into a large conductive bucket through a very small aperture so that the 

majority of the incident and scattered electrons are captured within the bucket and their 

current flow is measured accurately by an ammeter. However to measure the spot size for a 

given beam current, the most accurate method in practice is known as a knife-edge 

measurement [2]. Here a transmission detector is positioned under the beam (on the stage) 

with a sharp edges or wire positioned above the detector. The electron beam is scanned over 

the edge and a plot of intensity against beam position over the edge gives a direct measure of 

the beam width. This method is a complicated process to do routinely, so it is generally done 

once across a range of beam currents and controlling the beam current allows a simple method 

to keep the beam size consistent.  

Beam current Spot size 

1 nA ~3 - 4 nm 

2 nA 6 nm 

4 nA 9 nm 

8 nA 12 nm 

16 nA 19 nm 

32 nA 24 nm 

64 nA 33 nm 

100 nA 45 nm 

Table 2-1: Spot size corresponds to the beam current. 

The number of electrons required to do an exposure is expressed in terms of ‘area dose’ 

if the spot size is larger than the pattern, and ‘line dose’ if the spot size equals the width of the 

pattern. Area dose is a function of beam current which corresponds to a spot size and the 

frequency of the exposure shots between two points defined by beam step size (BSS) on a 

exposure gird is given by, 

Area dose = 
Beam current (I)

Frequency (f) x (BSS)2 
 (µC/cm2) 
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BSS = Variable resolution unit (VRU) × Resolution grid (1.25 nm) 

The area dose is limited by the frequency of the pattern generator which is fixed, so 

either beam current has to be adjusted or the BSS in order to optimize the area dose. Some 

of the basic rules to select appropriate BSS are, 

BSS ≈ 
Minimum feature size

5 
 

Spot Size > 2 × BSS 

 VRU can be any integer from 1 to 512. Since the resolution grid is very small, BSS offers 

a secondary grid used during the exposure and it should always be integer multiple of resolution 

gird. The spot size should be at least twice or more than BSS, so that all the pattern get full 

exposure. The width and height of the every shape of the designed pattern should be in round 

numbers and also the multiple of BSS as shown in figure 2-2, else Vistec VB6 will round the 

shapes into the multiple of BSS and resulting exposure may slightly shorter than expected which 

may introduce small gaps between different shapes. 10 nm designed linewidths with exposure 

shots shown in figure 2-4, where the BSS is 2.5, 5 and 10 nm as a result of VRU 2, 4 and 8 

respectively and a spot size of ~3 - 4 nm. Whilst 10 nm lithography can be achieved with 

different BSS as illustrated but the line edge roughness can be significantly improved by using a 

smaller BSS.  

 

Figure 2-4: 10 nm linewidth exposure with different VRU’s. 
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The patterns with multiple layers are designed in Tanner EDA L-Edit software on 1.25 

nm resolution grid, they are exported as GDSII format. Layout beamer is the fracturing 

software which converts the designed patterns into trapezium shapes and defines the field & 

sub-fields for the electron beam exposure compatible with Vistec VB6. The GDSII file is 

imported in layout beamer where initially all the designed layers are extracted together to keep 

the overall field size identical for all the different layers, after that each individual layer is 

extracted and healed to remove any overlaps and join adjacent polygons, overlaps may result 

in double exposure. After healing, proximity effect correction (PEC) is applied onto the layer 

if needed, whilst layout beamer offers verity of PEC’s but for this work conventional PEC 

method is used. The value of isodose grid should be multiple of BSS and should not be less than 

the spot size. For example for 10 nm linewidths, isodose grid value been set to 5 nm and a 

short range correction is being applied. The layer is then fractured and exported as VEP format. 

All the subsequent layers are fractured and exported in the similar way. The VEP files are then 

imported onto the Belle which is a java based tool to draw a schematic of substrate and then 

apply the dose, spot size and VRU to the each layer for the exposure in a sequential order along 

with the cross & marker positions and search parameters for the layer-to-layer alignment if 

required. A ‘layout file’ is then exported to the EBL server which is loaded by the Vistec VB6 

software to run the job. The hierarchical flow of all this job submission process is shown in 

figure 2-5.  

 

Figure 2-5: Flow of electron beam lithography job submission process. 
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The total writing time for any pattern using electron beam lithography tool is 

predominantly made up of four major things i.e. dwell time, calibration time, stage time and 

shape time. Dwell time is the time that the beam incident on the substrate and start exposing 

the resist. It is dependent on the area of the pattern to be written, the dose required and the 

beam current. Calibration time is the fixed time required at the start of the job to setup the 

height map and run a full calibration to select the resolution setting and to restore a given beam 

current. It is roughly 10 minutes at the start of a job. Stage time is the total time required for 

moving the stage around so the whole pattern gets exposed. There is some movement time 

and an associated dwell time after every move. A typical move time will be of order of 250 ms 

but depends on the distance the stage is being moved and the dwell time, which is typically 10 

ms, but again is dependent on the length of the preceding move. Shape time is the time 

associated with processing a shape element within the data. Settling time required when 

deflecting the beam to the start of a new shape, it is generally between 2-10 μs depending on 

the distance of the deflection from the previous shape. There are a few more short delays such 

as sub-field settling delays (normally ~ 1 ms), which is the dwell time after moving the beam to 

a new sub-field before writing commences. The time to transfer the pattern across the network 

from the control computer to the pattern generator, shape synchronisation time, layer to layer 

alignment time are other overheads which accounts in overall writing time.  

The dwell time for one 10 nm wide (1 μm long) nanowire is ~ 0.156 μs when exposed 

with a dose of 2500 μC/cm2, beam current of 1 nA and BSS of 2.5 nm. However the overall 

writing time to complete the exposure is 10.02 minutes, which is mainly dominated by the 

calibration time. With similar parameters writing 1000 nanowires would take 21.36 minutes in 

total where the calibration time is 10.02 minutes and stage time of 11.34 minutes.    

2.2. Electron Beam Lithography Resists 

The resists used for electron beam lithography are classified as either positive tone or 

negative tone resist. Resists are polymers which dissolves in various solvents (developer). An 

electron beam exposure substantially modifies a resist. For a positive tone resist, the exposed 

area becomes soluble in the developer as a result of bond scission process of breaking the long 

polymer chains into small fragments during an electron beam exposure. On the contrary for a 

negative tone resist, the exposed area becomes insoluble in the developer as a result of cross-
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linking process of joining polymer chains which generates a cross-linked 3D network after an 

electron beam exposure. Hence positive and negative resist profile can be obtained.  

A brief comparison of high resolution electron beam lithography resists is shown in table 

2-2. These resists are trade-off between sensitivity, contrast and resolution but these 

parameters ultimately depends on pattern density, accelerating energy, resist pre bake 

temperature, developer and developing conditions. In high resolution electron beam 

lithography, resist with a lower sensitivity is preferred for better reproducibility and throughput. 

In context of this work, both positive and negative resists were required for metal lift-off and 

dry etch mask purposes respectively. PMMA (see section 2.3) and ZEP-520 are both positive 

resists which can be used to develop process for metal lift-off. ZEP-520 consists of a copolymer 

of -chloromethyl acrylate and methyl styrene in anisole (solvent). It can be developed with amyl-

acetate and xylene but xylene is preferred. Whilst ZEP-520 provides higher contrast and over 

3 times dry etch resistance over PMMA, but requires low acceleration voltages ~ 10 KeV to 

deliver re-entrant profiles suitable for metal lift-off purposes. Moreover it often requires hexa-

methyl-di-silazane (HDMS) primer layer to achieve good adhesion between the resist and the 

substrate which is not required with PMMA. Since the electron beam lithography tool at 

Glasgow operates at fixed 100 KeV, therefore PMMA was used to develop process for metal 

lift-off. Whereas for dry etch mask purposes, NEB-31 and HSQ are most commonly used 

negative tone resists for high resolution electron beam lithography. NEB-31 is a chemically 

amplified resist and has higher dry etch resistance, comparable to most of the photo resists but 

in terms of resolution and contrast, HSQ (see section 2.4) was preferred which also has smaller 

linewidth fluctuations for features below 10 nm. Both NEB-31 and HSQ are generally 

developed with TMAH based developer.  

Resist Tone Sensitivity Contrast 
Etch 

Resistance 
Developer Resolution 

PMMA Positive High Low Poor MIBK : IPA ~ 4 nm [3] 

ZEP- 520 Positive High High High Xylenes ~ 12 nm [4] 

NEB - 31 Negative Low High High TMAH ~ 25 nm [5] 

HSQ Negative Low High High TMAH ~ 2.5 nm [6] 

Table 2-2: Comparison of high resolution electron beam lithography resists. 
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2.3. Polymethyl Methacrylate (PMMA) Resist 

Polymethyl methacrylate (PMMA) is one of the most widely used positive tone electron 

beam lithography resist which is still prevailing since reported over 4 decades ago [7]. Whilst it 

has low contrast and poor dry etch resistance but provides extremely high resolution features 

close to the fundamental limits of lithography and also has a wider process latitude. PMMA 

comes with different molecular weights. In this work, PMMA 2010 (lower molecular weight) 

and 2041 (higher molecular weight) are used, which are diluted from 15% to 2.5% with anisole 

to achieve various resist thicknesses. The average molecular weight of PMMA 2010 and PMMA 

2041 is 150,000 MW and 500,000 MW which allows maximum resist thickness of 2 μm and 1 

μm respectively. After electron beam exposure, PMMA is developed in a solution of methyl 

isobutyl ketone (MIBK) diluted with isopropyl alcohol (IPA) to clear the exposed areas. Diluted 

developers tends to give high resolution but with low contrast and selectivity, also the cold 

development is reported to enhance the resolution [3] and improve feature quality.   

In this work, PMMA is used to selectively deposit metal bond pads to the devices by 

developing a simple metal lift-off process, by spinning a lower molecular weight PMMA layer 

underneath a heavier molecular weight PMMA layer. After electron beam exposure, the 

exposed lower molecular weight PMMA develops much quicker than heavier since it requires 

low dose for dissolution, which allows a large undercut after development, hence aids the lift-

off process illustrated in figure 2-6. The minimum feature lifted off is ~ 1 μm (wide) that 

connects the etched semiconductor to a 200 μm bond pad to allow electronic characterization. 

Prior to resist spinning, substrates cleaned ultrasonically in successive baths of acetone/ 

isopropyl alcohol/ de-ionized (DI) water and dehydrated bake on vacuum hotplate for 2 

minutes at 140 ̊ C to remove any residues. A bi-layer of 15% 2010 PMMA and 4% 2041 PMMA 

spun onto the substrate at 5000 rpm, which roughly gave a resist thickness of 1.2 μm and 0.125 

μm respectively and then baked on vacuum hotplate for 2 minutes at 140 ˚C each. The 

substrates were then exposed with a dose of 450 μC/cm2, BSS of 25 nm and spot size ~ 45 

nm. After exposure, the substrate developed in a solution of 1:3 (MIBK:IPA) for 60 seconds 

and rinsed in IPA for 10 seconds before blown dry with nitrogen (N2). Substrate is then ashed 

in oxygen (02) plasma at 10 SCCM, 50 mTorr and 10 W for 30 seconds in a reactive ion etch 

(RIE) tool to remove any remaining resist residues and immersed in a diluted 30:1 HF for 45 

seconds as a final step to de-oxidize the semiconductor surface before metallization. The metal 
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is then evaporated ~ 400 nm by using Plassys electron beam evaporator tool and after which 

the substrate is left in acetone which is kept in a hot water bath at 50 ˚C for approximately two 

hours to lift-off the undesired metal leaving behind the bond pads. In ideal case the metal should 

not be evaporated more than 1/3rd of the thickness of bottom layer of PMMA to allow 

smoother lift-off without using ultrasonic agitation. 

 

Figure 2-6: Lift-off steps using PMMA resist. 

2.4. Hydrogen Silsesquioxane (HSQ) Resist 

HSQ is most predominantly explored negative tone inorganic resist and has a capability 

to get a resolution down to 2.5 nm [5]. It was originally used in semiconductor industry as 

interconnect insulating layer for gap filling and planarization and has low dielectric constant 

which helps to minimize the capacitance. Namatsu et al. [8] being first to use HSQ as resist for 

electron beam lithography and demonstrated the linewidths with line edge roughness (LER) 

below 2 nm. HSQ is a cage like structure shown in figure 2-7, where each silicon atom is bonded 

to 3 oxygen and 1 hydrogen atom. During an electron beam exposure the caged structure 

turned into a linear networked structure through cross-linking process, initially Si-H bonds 

which are weaker than Si-O bonds broke up as a result of exposure and turned into the silanols 

(Si-OH) due to presence of absorbed moisture in the HSQ resist, these silanols are unstable 

and condensed to form a linear network of Si-O-Si bonds which is similar to silica insoluble in 

developer [7-9]. After exposure when developed with a hydroxide (OH¯) based developer, 
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OH¯ reacts with unexposed HSQ molecules to form significant number of ionized silanols (Si-

O¯) to make the molecules soluble in developer [10].  

 

Figure 2-7: Caged structure of HSQ molecule. 

There are a number of hydroxide based solutions can be used to develop HSQ patterns, 

Tetramethylammonium hydroxoide (TMAH) [ 11 ] is the most widely used developer, a 

competitive contrast and sensitivity can be achieved by simply increasing the developer strength 

and temperature, but recently potassium hydroxide (KOH) [12], sodium hydroxide (NAOH) 

and lithium hydroxide (LiOH) based salty [potassium chloride/ sodium chloride (KCL/ NaCl)] 

developers [13] are also being used to develop HSQ patterns results in better contrast 

compared to conventional TMAH developer [14]. This is due to the fact that the neat hydroxide 

developers covers the HSQ pattern with an insoluble layer which stops the further 

development and limits the contrast [15] whereas by adding salt to the hydroxide further allows 

to etch the insoluble scum and helps to improve the contrast and also reduce the linewidth. 

Generally with a thicker HSQ resist, 10 nm lines mostly collapse during development stage due 

to increase in the surface tension while agitating the sample, whilst supercritical resist drying 

allows fabrication of very high aspect ratio 18 nm HSQ lines in 770 nm thick resist [16] but 

most of the 10 nm lithography in HSQ has been demonstrated using a thin resist layer ~ 30 

nm. Therefore, this work specifically investigates and optimizes processes to pattern 10 nm 

HSQ lines in thicker resist, adequate for pattern transfer.  
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2.4.1. Experiment 

All the experiments were performed on 100 mm diameter silicon (100) wafers (~ 525 

μm thick) cleaved into 10 × 10 mm substrates. These wafers has 100 Ω-cm resistivity purchased 

from university wafers. Initially each substrate was cleaned with successive solutions of acetone, 

isopropyl alcohol (IPA) and de-ionized (DI) water for 5 minutes each in ultrasonic bath. The 

substrate then blown dry with N2 and baked on vacuum hotplate for at 140 °C for at least 10 

minutes. It was observed that cleaning the substrate with DI water followed by a dehydration 

bake not only removes the remaining residues of acetone and IPA but also promotes strong 

adhesion between HSQ and silicon due to the formation of native oxide. It has been tested and 

verified that without DI water cleaning and dehydration baking, the thicker HSQ lines always 

collapsed. The HSQ used in this work supplied from Dow Corning FOX 16 which was further 

diluted with MIBK at a volume of 1:1, 1:2 and 1:3 and spin coated at 2000, 2000 and 5000 rpm 

resulting a desired thickness of 250, 150 and 50 nm HSQ resist. The resist was then pre-baked 

on vacuum hotplate at 90 °C for 2 minutes before loaded onto the Vistec VB6 by the trained 

operators. 

On average the time between resist spinning and exposure is ~ 6 -20 hours. The 

sensitivity of HSQ resist increases with the development delay [5], so most of the substrates 

are developed within 24 hours. The linewidths from 100 – 10 nm are designed with a period 

of 1 μm to prevent any proximity effects using Tanner L-Edit software on a resolution grid of 

1.25 nm and fractured using layout beamer software without any proximity correction. The 

lines were written with a dose ranging from 500 – 5000 μC/cm2, using a ~ 3 nm spot size with 

a beam step size of 2.5, 5 and 10 nm at 100 keV accelerating energy. After exposure the 

substrates developed in 25% TMAH developer further diluted with DI water to make 12.5% 

to 1.19% TMAH dilutions and developed between 30 and 120 seconds, the temperature of 

the developer is also varied between 10 °C to 75 °C to fully understand the effect of changing 

developer concentration, time and temperature to optimize a reproducible process for 10 nm 

linewidths. All the substrates are examined using secondary electron detector without any 

sputter coating on FEI Nano Nova SEM 930 and Hitachi S-900 for top view and cross sectional 

view respectively. With these SEMs it has been investigated that the standard error between 

secondary electron and backscattered electron detector is ~1 nm for 5 and 10 nm lithography 

[5]. The thickness of resist is measured on Vecco atomic force microscopy (AFM).  
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Figure 2-8: Sample preparation stages for HSQ resist. 

 

Figure 2-9: Resist development stages of HSQ resist. 



Chapter 2 – Electron Beam Lithography in HSQ Resist 

29 

 

2.4.2. Results & Discussions 

To understand the patterning and resist development mechanisms, initially 150 nm thick 

HSQ is used for the experiments and once the process is optimized, it has been applied to 

different thickness. Line edge roughness (LER) limits the performance of the nanoscale devices 

and increases the overall resistivity of the channel especially when widths are below 50 nm. It 

should be as small as possible to reduce the fluctuations in linewidth. In HSQ, LER depends on 

number of factors including resist pre-bake temperature, exposure dose and developer 

concentration but pre-bake temperature has a greater influence on LER. It has been reported 

that rise in pre-bake temperature from 90 °C to 220 °C increases an overall surface roughness 

of 0.75 nm prior to exposure whereas the contrast decreases substantially with increase in 

sensitivity after exposure [17]. This is due to the fact that during the curing process, the bond 

scission and recombination takes place and reduces the ratio between cage to network with 

increasing pre-bake temperature and as a result there is significant reduction of hydrogen 

concentration and increase in silicon dangling bonds. The pre-bake temperature influences the 

LER more than the developer concentration since it distorts the overall HSQ film and its 

granularity, under these considerations the resist was pre-baked at 90 °C for 2 minutes which 

is believed to not effectively disrupt the cage to network ratio. 

There are different strategies to pattern 10 nm lines, single (pass) pixel exposure is the 

most common but could potentially result in larger LER, therefore we first investigated the 

effect of LER as a function of beam step size (BSS). Figure 2-4 illustrates the exposure shots of 

10 nm lines with a BSS of 2.5, 5 and 10 nm corresponds to 4, 2 and 1 electron beam exposure 

passes through the designed line with a ~ 3 nm spot size. The substrate developed with 6.25% 

TMAH for 60 seconds and rinse in DI water and IPA for 60 and 15 seconds respectively and 

below dry with N2. I found that exposure dose reduced linearly from 2700 μC/cm2, 2500 

μC/cm2 and 2300 μC/cm2 for HSQ lines exposed with 2.5, 5 and 10 nm BSS. Figure 2-10 shows 

the fabricated where the LER increases with increase in the BSS, whilst the linewidth is reduced 

to ~ 8 nm with a 10 nm BSS but the LER is > 2 nm corresponds to 20% of the linewidth. The 

HSQ lines written with 5 nm BSS has > 1 nm LER, whereas with 2.5 nm BSS there is almost no 

visible LER. Therefore for the rest of the experiments, the substrates are written with a BSS of 

5 nm whereas for the devices where LER is very critical a smaller BSS is used.  
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Figure 2-10: Top view SEM images of HSQ lines written with a) BSS = 2.5 

nm, b) BSS = 5 nm and c) BSS =10 nm. 

Several demonstrations suggests low resist pre-bake temperature, higher exposure dose 

and stronger developer concentration result in better throughput [16] but in this work since 

we used thicker (~150 nm) HSQ resist with a strategy to achieve 10 nm linewidths, we 

observed and came out with a slightly different conclusion explained shortly. For a better 

comparison and understanding, I investigated each development parameter one at a time. 

   

Figure 2-11: The HSQ linewidths as a function of exposure doses. 
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Figure 2-12: The contrast curve of HSQ resist for 10 nm linewidths. 

To investigate the effect of developer dilution onto 10 nm linewidths, the substrates 

exposed with a dose ranging from 500 to 5000 μC/cm2 and developed for 60 seconds at 23 

°C in 25% TMAH developer diluted with DI water to make dilutions from 12.5% to 1.56% 

TMAH. All the substrates are further rinsed in DI water for 60 seconds and in IPA for 15 

seconds before blown dry with N2. The substrates then investigated under SEM and AFM to 

determine the linewidths and resist thickness without been coated/sputtered with any metal. 

Figure 2-11 and figure 2-12 shows the change in the linewidths and resist thickness as a function 

of exposure dose by varying TMAH developer dilution from 8.33% to 1.56%. I found that 10 

nm lines completely washed out with 25% TMAH whereas ~15 nm faded linewidths appeared 

with 12.5% TMAH show in figure 2-12a where the resist is mostly collapsed, whilst the 

exposure dose is increased to allow lines to stand firmly but the overall linewidths increased  

with increasing dose. This is probably happen due to increase in the surface tension during resist 

development where strong developer tends to remove the unexposed resist more aggressively 

and result in wispy and faded HSQ lines below 15 nm.  
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Figure 2-13: Cross sectional SEM images of HSQ lines with a) 12.5% TMAH, 

b) 2.27% TMAH and c) 1.19% TMAH. 

The contrast of the negative tone resist is given by, 

Contrast () = 
1

Log D1 - Log D0 
 

Where sensitivity is inversely proportional to the contrast, D0 is the initial dose at which 

the exposure starts and D1  is the dose at which the resist is fully exposed. The resist 

development curve is shown in figure 2-12, the developer concentrations from 8.33% to 1.56% 

TMAH result in much stable linewidths from ~ 9 nm to 15 nm respectively, whereas the 

development completely stopped at 1.19% TMAH show in figure 2-13c. The numbers 

extracted from development curve for contrast and sensitivity are high because the pitch of 

the designed pattern is 1 μm but the overall trend is equitable i.e. contrast in decreased from 

10.31 to 5.68 and sensitivity is increased from 0.097 to 0.176 μC/cm2 at 100 keV when HSQ 

lines are developed from 8.33% to 1.56% TMAH. Hence the area dose is significantly reduced 

for 10 nm lines from 2500 to 1500 μC/cm2 due to increase in sensitivity by lowering the 

developer concentration. It is observed that at a dose of 2500 μC/cm2 and above almost all the 

HSQ lines were stable with all developer concentrations and the linewidth varied only by ~ 1 

nm from 8.33% to 5% TMAH. The dose values in our case are much lower than the 10 nm 

HSQ lines produced in 40 nm thin resist and developed in 25% TMAH where the exposure 

dose is ~ 28,000 μC/cm2 on the same lithography system [18].  
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So it can be concluded that 6.25% TMAH provides the optimum balance between the 

minimum linewidth and the reproducibility. So, the next parameter which was investigated was 

resist developing temperature. The substrate exposed with a fixed dose of 2500 μC/cm2 and 

developed in 6.25% TMAH for 60 seconds at different temperatures between 10 °C to 75 °C. 

High temperature TMAH development is known to rapidly remove lower molecular weight 

partially cross-linked HSQ molecules more vigorously while maintaining the mechanical integrity 

of exposed regions [19]. Hence the contrast increases with increasing temperature whereas 

the sensitivity decreases. The exposed substrates were developed at different temperatures 

and it was found that the linewidth decreases as expected by ~ 3.5 nm from development 

between 10 °C to 45 °C but the overall uniformity of HSQ lines also decreased along with the 

resist thickness. At 75 °C the HSQ lines effectively reflowed as shown in figure 2.14c. This 

suggests that the development around 23 °C is ideal since there is no significant change in the 

linewidth and the HSQ lines are much smoother at room temperature. 

 

Figure 2-14: Cross sectional SEM images of HSQ lines developed at a) 10 

°C, b) 45 °C and c) 75 °C. 

The final parameter which was investigated is resist developing time. The substrate 

exposed with a fixed dose of 2500 μC/cm2 and developed in 6.25% TMAH between 30 and 

120 seconds at 23 °C. Figure 2-15b shows the resist developing time as function of linewidth 

and resist thickness, it was observed that the resist is not fully developed below 30 seconds and 

there is no major change in linewidth when resist developed between 60 and 120 seconds apart 

from the fact that the resist thickness is reducing with increasing development time. Hence it is 

clear that 60 seconds is the optimum time for development while preserving the maximum 

resist thickness.   
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Figure 2-15: The resist developing temperature (a) and developing time (b) 

as a function of HSQ linewidth and resist thickness. 

 

Figure 2-16: Cross sectional SEM images of HSQ lines developed for a) 30 

seconds b) 90 seconds and c) 120 seconds 

2.4.3. Summary 

A process for patterning 10 nm features in negative tone HSQ resist has been developed 

by investigating a wide range of TMAH developer dilutions from 12.5% to 1.56%. Based on the 

optimized developer strength and dose, developing time and temperature are also investigated 

with view to pattern high aspect ratio 10 nm HSQ lines. From results it can concluded that to 

produce high aspect ratio 10 HSQ nm lines, the optimum development parameters are 6.25 % 

TMAH developer concentration, 60 seconds development time at 23 °C with an exposure 

dose of 2500 μC/cm2 using 5 nm BSS and ~3 nm spot size. Similar process parameters are 
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applied to 50 and 250 nm thick resist and which repeatedly produced similar results. Figure 2-

17 shows a) 5:1, b) 15:1 and c) 25:1 aspect ratio 10 nm linewidths. These results are best in our 

knowledge are the first demonstration of ultra-high aspect ratio 10 nm HSQ linewidths and 

have potential to realize many new types of devices where deep etches are required at smaller 

linewidths. In chapter 3, these HSQ lines are extensively used as a dry etch mask to optimize 

processes for high resolution pattern transfer in silicon substrate with great reproducibility and 

reliability. 

 

Figure 2-17: Cross sectional SEM images of 10 nm HSQ linewidths using a) 

50 nm, b) 150 nm and c) 250 nm thick resist. 
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3. Reactive Ion Etching Silicon Nanowires 

This chapter explains the different processes developed for the nanofabrication of highly 

anisotropic (vertical), smooth and uniform silicon nanowires using reactive ion etching (RIE). A 

particular effort has been made to enhance the quality and flexibility of the pattern transfer 

process using SF6/C4F8 based plasma chemistry to fabricate high aspect ratio silicon nanowires 

using an optimized HSQ resist process that repeatedly deliver 10 nm linewidths. The key 

strategy in here is to start with a thicker HSQ resist and then improve and optimize the etch 

process in terms of investigating the combination of different etchant and passivation gases, 

their flow rates, chamber pressure, chamber temperature and the platen/coil power to achieve 

higher etch rate and selectivity while reducing the linewidth and preserving a highly anisotropic 

etch profile to allow thinner resist to be used to etch silicon nanowires with very close proximity 

in order to realize a number of different types of silicon nanowire devices.    

3.1. Reactive Ion Etching 

Reactive ion etching is the most widely used pattern transfer technique for top-down 

fabrication of micro and nano-scale features by etching the substrate with reactive ions comes 

from the plasma. Plasma is a partially or fully ionized gas which is almost neutral and consists of 

energetic molecules, electrons and ions. Figure 3-1 shows conventional RIE system where 

plasma is generated in presence of reactive gases under high vacuum of orders of few millitorr 

(mTorr) by applying a radio frequency (RF) power between the capacitively coupled cathode, 

which carries the substrate to be etched and the anode which is grounded. The free electrons 

accelerated from the electric field collides with the gas molecules result in more electrons and 

ions through a dissociative process, which continues until the plasma is generated. The mobility 

of electrons are higher than ions, hence during first few cycles the electrons collides with the 

walls of the chamber to build a negative charge and once that’s established, it repels further 

electrons, meanwhile the substrate electrode acquires a negative potential (DC bias voltage) 

onto the coupling capacitor, ultimately creates a dark space above the substrate electrode which 

penetrate the electrons and accelerate ions perpendicular to the substrate result in physical and 

chemical etching. There is only a small proportion of ions can be generated from the reactive 
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gas, typically 108 – 1010 cm-3 which can be increased by increasing the RF power and lowering 

the chamber pressure [1]. In order to etch anisotropically, the physical and chemical etching 

mechanisms has to be balanced by optimizing RIE parameters i.e. RF power, gas flow ratio, 

chamber pressure and chamber temperature.  

 

Figure 3-1: Schematic diagram of the conventional RIE system. 

 

Figure 3-2: Schematic diagram of the STS ICP-RIE system. 
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Figure 3-3 [1] illustrates different etching mechanisms takes place simultaneously during 

ion bombardment in a typical RIE process which are as follow, 

1. Ions sputter onto the surface of the substrate and transfer their momentum to 

knockout the surface atoms, attributed to physical etching. Initially this is helpful to 

remove any hydrocarbon contaminations and native oxide to prepare a clean surface 

to promote gas molecules to get absorb onto the surface [2] 

2. Some ions are extremely reactive and they directly react chemically with surface 

atoms and form volatile products, attributed to reactive etching 

3. Most of the ions releases energy on the surface of the substrate results in formation 

of radicals, which reacts chemically with the surface atoms to form volatile products, 

attributed to radical etching, It is these radicals which predominantly contribute 

towards the etching 

4. The radicals move around through surface migration and reacts with the surface 

atoms to form volatile products 

5. All the volatile products are frequently pumped away from the chamber to avoid any 

re-deposition during RIE process 

 

 

Figure 3-3: Etching mechanisms during RIE process. 
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Nano-scale device fabrication heavily depends on the quality of the pattern transfer to 

achieve high reliability, moderate etch rates and selectivity, smooth and anisotropic etch profiles 

and most importantly low plasma-induced sidewall damages. Whilst high density plasma allows 

to achieve high etch rates but requires higher RF power which increases the bias voltage and 

effectively accelerates the high energy ions from the plasma towards the substrate to etch, but 

it may introduce trap states on the surface of substrate which is the major cause of plasma-

induced sidewall damages, termed as ‘sidewall depletion’ in nanowires, limits the performance 

of the devices. In general, these damages increases with higher RF power.  

In a typical RIE system as shown in figure 3-1, the density of the plasma is proportional to 

the RF power which in turn increases the bias voltage. The etch rates are associated with the 

density of the plasma whereas the substrate damages are due to higher bias voltages. In order 

to keep them separate, inductively coupled plasma (ICP) RIE systems are used where the coil 

is wrapped around the chamber and provided with a RF power (coil) to generate the high 

density plasma, whereas to extract the ions, another RF power (platen) is provided to the 

substrate electrode to allows the generation of high density plasma at expense of low bias 

voltages. Silicon can be etched with any halogen containing gas including CF4, SF6, NF3, SiCl4, BCl3 

and HBr. These gases are chemically reactive and produce enormous amount of radicals which 

are the primary source etching and often mixed with a passivation gas to improve the etch 

profile. Fluorine (F) based gases result in isotropic etching whereas chlorine (Cl) based are 

known to etch anisotropically since etching is dominated by ions, Therefore the etch rate and 

selectivity is higher with F comparing Cl based gases [3]. 

High aspect ratio silicon etching is widely realized with ICP-RIE system using a Bosch 

process with SF6/C4F8 based plasma [4] with particular applications in microelectromechanical 

(MEMS) systems, but the Bosch process comes with a fundamental problem of sidewall 

scalloping where the alternating etch steps i.e. etching and passivation create undulations in 

sidewall profile deteriorate the surface roughness down to ~ 100 nm [5], whilst such roughness 

is negligible for etching micro-scale features in MEMS but become comparable while etching 

nano-scale features, because the size of scallops can be more than the width of the nanowire. 

Minimizing the etching-passivation cycle duration can possibly average out the scallops but at an 

expanse of reducing the etch rate and selectivity which is distinctive feature of Bosch process. 

The SF6/O2 based plasma can anisotropically etch nano-scale features in silicon with smooth 
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sidewalls by cryogenic cooling of the wafer [6], but it may result in thermal stress, shrinkage and 

cracking issues comes from the different layers of resist/metal/semiconductor due to difference 

in their thermal expansion coefficients. Therefore, in this particular work, realizing the silicon 

nanowires requires very smooth and vertical sidewalls with good etch rate and selectivity, the 

main focus is on etching 10 nm silicon nanowires using a continuous – mixed mode SF6/C4F8 

based ICP etch process at 20 °C.  

3.2. Sample Preparation for Etching Experiments 

HSQ resist has proven to be the best candidate for high resolution 10 nm electron beam 

lithography, it has low line edge roughness, high dry etch resistance and good mechanical 

strength make it suitable to be used for pattern transfer. Therefore we used HSQ resist not 

only for patterning nano-scale features but also used it as a hard mask for direct pattern 

transfer. Most of the demonstrations such as [7] used thinner HSQ resist layers to achieve high 

resolution lithography, since it’s difficult to maintain the strength of the high aspect ratio resists 

at smaller linewidths due increase in the surface tension during resist development stage results 

in adhesion problems but such thin HSQ resist layers restricts the etch depths. To overcome 

this, we developed processes to pattern 10 nm HSQ lines in thicker resists to be able to achieve 

high aspect ratio etching.   

 

Figure 3-4: Top view SEM image of designed pattern for etching trials showing HSQ 

linewidths from 80 – 40 nm and 30 – 10 nm (left to right).  
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HSQ resist is patterned on 100 mm diameter silicon (100) wafers with 100 Ω-cm 

resistivity cleaved into 10 × 10 mm substrates. The detail of processing is briefly as follow which 

has already been discussed in detail in section 2.4. Each substrate is cleaned successively with 

acetone, IPA and DI water for 5 minutes each in ultrasonic bath before blown dry with N2, 

substrates are then dehydrated baked on vacuum hotplate at 140 °C for 10 minutes after which 

the neat HSQ resist diluted 1:1, 1:2 and 1:3 with MIBK is spun onto the substrates at 2000, 2000 

and 5000 rpm to get a thickness of 250, 150 and 50 nm respectively, the resist is pre-baked on 

vacuum hotplate at 90 °C for 2 minutes before electron beam exposure. Three sets of different 

linewidths are designed with 0.75 μm period in L-Edit on 1.25 nm grid resolution, first from 

1000 – 100 nm , second from 80 – 40 nm and third from 30 – 10 nm, and fractured using 

layout beamer software. Vistec VB6 is used to do exposure, first pattern written with a dose 

of 1500 μC/cm2, BSS of 25 nm and spot size of ~ 33 nm whereas second and third pattern 

written with a dose of  2700 μC/cm2, BSS of 5 nm and spot size of ~ 3-4 nm. After exposure 

the substrates developed in 6.25% TMAH solution for 60 seconds, rinsed in DI water twice for 

30 seconds each and finally rinsed in IPA for 15 seconds before blown dry with N2. Finally the 

substrates are baked at 120 °C for 2 minutes in oven to dry it properly to remove any moisture. 

Figure 3-3 shows top-view SEM image of sample prepared for etch trails.  

3.3. RIE Silicon Nanowires Using CF4 Based Chemistry 

Mechanisms of etching silicon with fluorocarbons such as CF4 has been extensively 

explored [8] along with effects of addition of O2 to the CF4 plasma [9,10] to compensate the 

isotropic etching by the passivation of silicon oxyfluorides (SiOxFy) polymers onto the sidewalls. 

The F radicals reacts with the silicon surface to form SiFx species as a volatile product, whereas 

the addition of O2 to the CF4 plasma forms volatile carbon oxyfluorides (COxFy) from CFx
+ 

molecules, reduces the recombination of F radicals with CFx
+, hence rises the concentration of 

F radicals that increases the overall etch rate [11,12], however excessive increase of O2 result 

in decrease in etch rate due to the thick passivation and reduction of F radicals as a result of 

recombination of F radicals with O2.  

In this particular work, oxford instruments 80 plus RIE system is used to etch HSQ lines 

(in 150 nm thick resist) shown in figure 3-4. Initially the sample is etched in CF4 at 25 sccm gas 

flow, 25 W platen power and 25 mTorr chamber pressure at 20 °C. With these conditions, 
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silicon was etched at 15 nm/minute but with an undercut of ~ 30 nm result in highly isotropic 

80 nm silicon nanowires with selectivity below ~0.5. That was expected since CF4 is a highly 

reactive gas, therefore O2 at 2 sccm fed into the chamber with same etch parameters to 

passivate the sidewalls with polymer, whilst the undercut reduced down to ~ 10 nm for 30 nm 

silicon nanowires (figure 3-5a) but the etch rate is also reduced to 6 nm/minute and so the 

selectivity ~ 0.45. The flow of O2 is further increased to 3 sccm, which aided the passivation 

but etched 10 nm silicon nanowires with ~ 4 nm undercut (figure 3-6c), increasing further the 

concentration of O2 result in tapered sidewalls due to excessive passivation. Due to the low 

etch rate and high bias voltage, platen power has not been changed throughout but only the 

chamber pressure which was reduced down to 9 mTorr but vertical sidewalls has never been 

achieved. The bias voltage was carefully monitored throughout the etching trials which was 

increased from −77 V to −128 V when O2 was added to CF4.   

 

Figure 3-5: SEM images of silicon nanowires a) 30 nm, b) 20 nm and c) 10 nm etched 

using CF4/O2 = 25/2 sccm, 25 W platen power and 15 mTorr chamber pressure. 

 

Figure 3-6: SEM images of silicon nanowires a) 30 nm, b) 20 nm and c) 10 nm etched 

using CF4/O2 = 25/3 sccm, 25 W platen power and 15 mTorr chamber pressure. 
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The similar efforts been made to etch silicon nanowires using CF4/CHF3 plasma, and after 

optimizing the gas flow ratios and chamber pressure, a process is optimized to etch 10 nm 

silicon nanowires with smooth and vertical sidewalls shown in figure 3-7 using CF4/CHF3 = 

25/10 sccm, 25 W platen power and 15 mTorr chamber pressure. This process etch silicon ~ 

4 nm/minute with a selectivity of ~0.7 at a bias voltage of – 180 V. Such low etch rate and 

selectivity requires a very thin mask for pattern transfer and can only be useful to fabricate 

isolated nanowires. Since the proximity effect starts dominating in thicker resists, doesn’t allow 

to make pattern with close pitch, hence the contrast will be low with thicker resists, also the 

etching can be trivial and can potentially dominated by resist lag effect. The other issue 

associated that process is the high bias voltage that could bring in high plasma induced sidewall 

damages which can limit the performance of nano-scale devices.  

 

Figure 3-7: SEM images of silicon nanowires a) 30 nm, b) 20 nm and c) 10 nm etched 

using CF4/CHF3 = 25/10 sccm, 25 W platen power and 15 mTorr chamber pressure. 

3.4. ICP − RIE Silicon Nanowires Using SF6/C4F8 Based Chemistry 

Bosch process is widely acclaimed for high aspect ratio silicon etching, but for etching 

nanowires with widths down to 10 nm, a continuous mixed mode SF6/C4F8 based ICP etching 

is a preferred to avoid scallops and achieve highly vertical nanowires with smooth sidewalls 

[13,14,15]. Mixed mode allows etch and passivation at the same time, F radicals from SF6 reacts 

the silicon surface and form volatile SiFx species to initiate the etching, meanwhile C4F8 is used 

for passivation, deposits a very thin layer of fluorocarbon polymer (CxFy)n similar to Teflon onto 

the substrate which is being etched horizontally by the directional bombardment of energetic 

ions (SFx
+) whereas sidewalls remains protected from being etched further [16]. 
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 In this work we aimed to optimize the etch process by balancing the etch and passivation 

through changing the gas flow ratios of SF6 and C4F8 gases, coil/platen power and chamber 

pressure with approach to achieve moderate etch rate and selectivity with minimum possible 

platen power to minimize plasma induced damages. SF6 is the main etchant gas used with a flow 

rate between 20 – 40 SCCM whereas C4F8 is used for passivation whose flow rate kept fixed 

at 90 SCCM for all the experiments, whereas the chamber pressure varied between 15 – 8.5 

mTorr. All the etching experiments performed onto surface technology systems (STS) ICP-RIE 

system, schematic diagram of this system is shown in figure 3-2 [17]. This system consists of a 

1000 W, 13.56 MHz coil source, inductively coupled to the chamber to generate high density 

plasma and another 30 W, 13.56 MHz platen source attached to the wafer electrode to allow 

independent control of bias voltage to extract ions from plasma. We selected a nominal coil 

power i.e. 600 W to generate a moderate ion density and selected a relatively low platen power 

i.e. 12 W to optimize a highly anisotropic RIE process by changing gas flow ratios and chamber 

pressure, and once the process is optimized the paten power is reduced down to 1 W to 

examine if the platen power can be reduced with minimum disruption to the optimized process.  

The substrate is mounted over the carrier wafer which is normally coated with any 

photoresist to allow only the patterned substrate be etched, it also helps in reducing the loading 

effect. The wafer is mechanically clamped onto the wafer electrode and supplied with helium 

gas coolant to consistently maintain 20 °C temperature during the run. This system is equipped 

with automatic pressure controller (APC) value to automatically adjust the position of valve in 

accordance with the chamber pressure at a predetermined value. 

 

Figure 3-8: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 40:90 

sccm, 12/600 W platen/coil power and 15 mTorr chamber pressure (1 min). 
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3.4.1. Effect of Gas Flow Ratio 

The effect of gas flow ratios of SF6/C4F8 are investigated in detail to determine the 

optimum balance between the etchant and the passivation gases. The etching and passivation 

processes simultaneously takes place, passivation is a complicated process involves ion induced 

reactions and sputtering of chemical components takes place in the chamber, this works in a 

way that the SF6 produce fluorine radicals to initiate spontaneous isotropic etching, whereas 

C4F8 deposits a layer of (CxFy)n polymer everywhere onto the substrate, especially on sidewalls 

to protect them from being etched. So, in order to achieve highly anisotropic etching, the 

etching and passivation has to be carefully adjusted by optimizing gas flow ratios. 

Figure 3-4 shows the HSQ lines (in 150 nm thick resist) prepared for etching trails. All 

the samples simply placed in the middle of the carrier wafer without the use of any cool grease 

or wax, normally used in DRIE to increase thermal conductivity between the wafer and the 

sample. Initially the first sample etched for 1 minute with SF6/C4F8 = 40:90 sccm, 12/600 W 

platen/coil power at 15 mtorr chamber pressure, resulted in a large concave shaped undercut 

of ~ 70 nm. It implies from figure 3-8 that only larger Si features managed to survive after 1 

minute of etch duration due to significant flow of etchant over passivation gas.     

 

Figure 3-9: SEM cross-sectional image of Si nanowires etched using SF6/C4F8 = 30:90 

SCCM, 12/600 W platen/coil power and 15 mTorr chamber pressure (1 min). 

Whilst these etch conditions allowed to etch Si nanowires with widths above 500 nm but 

provided a start point to optimize the gas flow ratios, Three samples then etched with 

decreasing the flow of SF6 from 40 to 20 SCCM whereas the flow of C4F8 kept fixed at 90 

SCCM along with other etch parameters previously used. It is observed that the sidewall profile 



Chapter 3 – Reactive Ion Etching Silicon Nanowires 

48 

 

changed dramatically from undercut to slightly tapered (positive) profile with decrease in the 

flow of SF6. Figure 3-9 shows the etch results where the flow of SF6 reduced from 40 to 30 

sccm, Whilst the undercut reduced and allow to etch 20 nm Si nanowires but the flow of SF6 

was still slightly higher for 10 nm Si nanowires which are mostly found collapsed. All the Si 

nanowires with widths down to 10 nm etched at SF6 = 25 and 20 sccm able to completely 

survive shown in figure 3-10 and 3-11 respectively. A slight undercut has been observed with 

SF6 = 25 sccm which was compensated when SF6 decreased to 20 sccm result in slightly over 

passivated etch profile. Thus from these results it is clear that the gas flow ratios has larger 

impact onto the etch profile and has to be carefully adjusted in order to accurately control 

between etching and passivation onto the sidewalls to achieve 10 nm Si nanowires.  

 

Figure 3-10: SEM cross-sectional image of Si nanowires etched using SF6/C4F8 = 25:90 

sccm, 12/600 W platen/coil power and 15 mTorr chamber pressure (1 min). 

 

Figure 3-11: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 20:90 

sccm, 12/600 W platen/coil power and 15 mTorr chamber pressure (1 min). 
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Figure 3-12 shows the vertical and lateral etch rates as a function of gas flow ratios, 

whereas selectivity as a function of gas flow ratios is shown in figure 3-13. These data values are 

extracted from the SEM images, where the lateral etch determined from the middle of the 

nanowire at which it was concaved. Here the selectivity is defined as the ratio of the Si etched 

over the remaining HSQ resist. It is observed that the etch rate reduced from 360 nm/min 

down to 40 nm/minute when the flow of SF6 reduced from 40 to 20 sccm, meanwhile the 

selectivity is reduced from 4.65 to 0.72, this is due to the reduction of fluorine radials in the SF6 

/C4F8 plasma. On the other side, lateral etch rate significantly reduced from 85 nm/minute to 8 

nm/minute when the flow of SF6 reduced by 25% i.e. from 40 to 30 sccm, this is a dramatic 

90.5% decrease in overall lateral etch rate, which means that there is more passivation then 

etching onto the sidewalls as a result of reduction of F radicals which were provoking 

spontaneous isotropic etching at higher flow of SF6. Reducing the flow of SF6 further down to 

20 sccm completely stopped the lateral etching which is attributed as the optimum balance 

between etching and passivation through adjusting gas flow ratios. The passivation on the 

bottom of the nanowire is more preferentially removed as compared to sidewalls, forcing Si 

nanowire to etch anisotropically.  

 

Figure 3-12: Vertical and lateral etch rates as a function of gas flow ratios. 
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Figure 3-13: Selectivity as a function of gas flow ratios. 

3.4.2. Effect of Chamber Pressure 

The effect of chamber pressure on etch rate, selectivity and etch profile is investigated 

after optimizing the gas flow ratio to SF6 /C4F8 = 25:90 sccm in previous section. Whilst we able 

to etch 10 nm Si nanowire with SF6 = 20 sccm, but the etch profile was slightly over passivated 

result in a low etch rate, therefore we used a slightly higher flow of SF6 (25 sccm) which 

although has a lateral etch rate of 1.5 nm/minute (i.e. 30% of the width of 10 nm Si nanowire), 

but we are aiming to improve the etch profile through optimizing the chamber pressure 

without compromising over the etch rate and the selectivity.  

We etched the samples with SF6 /C4F8 = 25:90 sccm, 12/600 W platen/coil power and 

varied the chamber pressure between 15 – 8.5 mTorr. As mentioned before, 8.5 mTorr is the 

minimum achievable pressure with STS ICP-RIE system. Reducing the chamber pressure is 

known to make the plasma more electronegative that aids to etch sidewalls smoother and 

vertical, because the residence time of plasma species reduces by lowering the chamber 

pressure and as a result there will be fewer interactions of F radicals with the sidewalls which 
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helps to minimize lateral etching [18]. Figure 3-14 shows Si nanowires etched with 10 mTorr 

for 1 minute, comparing this with figure 3-10 in previous section, it is clear that by decreasing 

the chamber pressure from 15 mTorr to 10 mTorr, the etch profile changed from the 

concaved to highly vertical sidewall. Moreover we etched another sample by decreasing the 

chamber pressure further down to 8.5 mTorr and etched it for 1 minute and 45 seconds, these 

conditions allowed to etch 10 nm Si nanowire with ~ 20:1 aspect ratio shown in figure 3-15c.  

 

Figure 3-14: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 25:90 

sccm, 12/600 W platen/coil power and 10 mTorr chamber pressure (1 min). 

 

Figure 3-15: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 25:90 

sccm, 12/600 W platen/coil power and 8.5 mTorr chamber pressure (1 min 45 sec). 

Figure 3-16 shows the vertical etch rate and selectivity as a function of chamber pressure, 

the data points are extracted from the SEM images. Since there is no measurable lateral etch 

rate, hence not included in analysis. The etch rate is increased from 90 nm/minute to 126 

nm/minute when chamber pressure is reduced from 1 to 8.5 mTorr. Whereas the selectivity 
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is also increased from 2 to 2.4 as chamber pressure is reduced. This is obvious because the 

chamber pressure controls the amount of gas for ionization and the mean free path of the 

particles decreases with increasing chamber pressure which result in more electron-ion 

interactions, hence reducing the plasma density. In other terms the concentration of F radicals 

decreases as chamber pressure increases and as a result etch rate decreases which is evident 

from the plot.     

 

Figure 3-16: Chamber pressure as function of vertical etch rate and selectivity. 

3.4.3. Process Optimization for High Aspect Ratio Etching 

Optimizing the gas flow ratio and chamber pressure adequately controls the etch profile. 

The etch processes are optimized according to the resist thickness and required etch depths 

because the etch rate and selectivity changes as etching is initiated and normally increased as a 

function of etch duration. A gas flow ratio to SF6 /C4F8 = 25:90 sccm, 12/600 W platen/coil 

power and 8.5 mTorr of chamber pressure allowed to etch 10 nm Si nanowires with more 

than 200 nm etch depth (figure 3-15c), where ~ 60 nm HSQ resist is still remaining over the 
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nanowire. To etch even deeper, the process need a bit of further optimization, since the 

pressure can’t be reduced below 8.5 mTorr, the flow of SF6 is reduced down to 22 sccm. Figure 

3-17b shows the 10 nm Si nanowires etched with SF6 /C4F8 = 22:90 sccm, 12/600 W platen/coil 

power and 8.5 mTorr of chamber pressure, etched for 2 minutes and 30 seconds. Almost all 

of the 150 nm thick HSQ resist is consumed to be able to etch ~ 350 nm deep in silicon, 

corresponds to ~ 30:1 aspect ratio etching. We used a ~250 nm thicker HSQ lines as hard 

mask and reduced the flow of SF6 to 20 SCCM in the recipe and able to etch 10 nm Si nanowire 

~ 500 nm deep in silicon (~50:1 aspect ratio) shown in figure 3-18b. Thus, by carefully 

optimizing the etch parameters, we able to demonstrate highly vertical and smooth ultra-high 

aspect ratio 10 nm Si nanowires. These processes provides very controlled etch depths with 

great reproducibility. 

 

Figure 3-17: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 22:90 

sccm, 12/600 W platen/coil power and 8.5 mTorr chamber pressure (2 min 30 sec). 

 

Figure 3-18: SEM cross-sectional image of Si nanowire etched using SF6/C4F8 = 20:90 

sccm, 12/600 W platen/coil power and 8.5 mTorr chamber pressure (3 min 30 sec). 
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3.4.4. Effect of Platen Power 

The effect of platen power is investigated to minimize the plasma-induced sidewall 

damages. The dc bias voltage builds up as a result of applied platen power which controls the 

directionality of the ion bombardment perpendicular to the etching surface result in anisotropic 

etching. Ion bombardment helps to remove the passivation from the etching surface while 

retaining the passivation onto the sidewalls. The dc bias voltage is calculated as an average over 

the total etch duration. To investigate and understand the effect of platen power, we started 

with an optimized recipe, i.e. SF6 /C4F8 = 22:90 sccm, 12/600 W platen/coil power and 10 

mTorr of chamber pressure, results of which are shown in figure 3-14. 

 

Figure 3-19: Platen power as a function of vertical etch rate and bias voltage. 

We swept the platen power in that recipe from 12 to 1 W and observed the etch rate, 

selectivity and the etch profile. Figure 3-19 shows the platen power as function of vertical etch 

rate and bias voltage, the overall etch rate is reduced from 110 down to 5 nm/minute when 

platen power is reduced from 12 to 1 W, whereas the corresponding bias voltage is decreased 

from -70 to -2 V. The etch rate dropped by 27% between 12 and 6 W platen power whereas 
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the bias voltage is reduced by ~ 67%, which is the optimum balance between a moderate etch 

rate and a low bias voltage. The profile remained very anisotropic even with a 6 W platen 

power whereas the samples etched with platen power below 6W has some lateral etching due 

to dominance of chemical etching over ion enhanced etching. A higher bias voltage causes 

intense ion sputtering onto the etching substrate enhances the efficiency of bond breaking and 

formation of etch products, thus increases the overall etch rate. Typically higher bias voltage 

results in significant percentage of plasma induced sidewall damages, so the etch processes 

should be optimized with a view to keep the bias voltage as low as possible.  

Therefore, a low damage etch process is also optimized to minimize plasma-induced 

sidewall damages, an example of which is shown in figure 3-20 where a 5 nm HSQ line is 

patterned in thin HSQ resist ~ 30 nm, which is used as a mask to etch highly anisotropic 5 nm 

Si nanowire at an etch rate of 80 nm/minute with a selectivity over 2. The average bias voltage 

for this process is −23 V, which allows high quality pattern transfer for nanoscale devices   

 

Figure 3-20: SEM images of a) 5 nm HSQ line, b) 5 nm Si nanowire etched using SF6/C4F8 

= 25:90 sccm, 6/600 W platen/coil power and 10 mTorr chamber pressure. 

3.4.5. Summary  

Results are presented for the fabrication of Si nanowires with widths below 5 nm. Initially 

different etch chemistries have been investigated, where the effects of RF power, gas flow ratio 

and chamber pressure are studied in detail using CF4, CF4 /O2, CF4 /CHF3 based RIE and SF6 

/C4F8 based ICP-RIE plasma. Results indicated a large undercut ~ 30 nm, when Si nanowires are 

etched with CF4 plasma, therefore O2 was added as a functional gas to CF4 plasma to reduce 
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the chemical reactivity of F radicals, which increased the sidewall protection but reduced the 

etch rate and lowered the selectivity, the process able to etch 10 nm Si nanowires with a ~ 4 

nm undercut. Later O2 was replaced with CHF3 to investigate if sidewalls can be further 

improved, whilst smooth and vertical 10 nm Si nanowires are etched with CF4 /CHF3 based 

plasma but at an etch rate of 4 nm/minute with a poor selectivity of ~0.7. Such etch selectivity 

requires thicker resists for etching and can only be useful to pattern simple geometries due to 

increase in the proximity effects, where pattern is designed with a smaller pitch. Moreover the 

bias voltage, which corresponds to the plasma induced sidewall damages was carefully 

monitored throughout the etching experiments, which has been varied between −77 V to 

−180 V. The term damage refers to any effect of the etch process, which includes disruption 

of the lattice structure, creation of dangling bonds on the interface, contamination of etched 

surface with polymer passivation layer and heavy metals, which result in deep traps for charge 

carriers, deteriorates the electrical characteristics of the nanowires. These damages can be 

reduced by optimizing the process parameters to etch the substrate with low bias voltages, 

detail of which can be found in [19,20,21,22].  

Gases CF4 CF4 /O2 CF4 /CHF3 SF6 /C4F8 

Etch rate 15 nm/min 5 nm /min 4 nm/ min 80 nm/min

Undercut 30 nm 4 nm - < 1 nm 

Selectivity 0.5 0.4 0.7 2 

Bias Voltage −77 V −128 V −180 V −23 V 

Table 3-1: A comparison of the etch processes optimized for 10 nm Si 

nanowire etching 

 With a view to develop a process to etch faster with good selectivity and low bias voltage, 

SF6 /C4F8 based ICP-RIE plasma has also been investigated.  A process is optimized to deliver 

smooth and vertical high aspect ratio (50:1) 10 nm Si nanowires at an etch rate of 110 

nm/minute with a selectivity over 2.4. The averaged bias voltage of the process was −70 V. To 

ensure low damage etching, the platen power was lowered, which although reduced the etch 

rate to 80 nm/minute but significantly lowered the bias voltage to −23 V to ensure high quality 

pattern transfer. 
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4. Device Fabrication and Characterization Tools 

This chapter explains the nanofabrication of integrated silicon nanowire devices based 

upon the processes developed for lithography in HSQ resist and low damage reactive ion 

etching of silicon nanowires, explained in detail in chapter 2 and 3 respectively. The instruments 

and tools used for the electronic characterisation are the part of discussion along with the 

cryogenic systems to allow low temperature measurements.    

4.1. Device Fabrication 

The main steps involved in nanofabrication of 2 terminal nanowire devices, Hall-bar & 

Greek-cross devices, wrap-around gate field-effect transistors and side-gated field-effect 

transistors are discussed in detail in the following section.  

4.1.1. Layer-to-Layer Alignment 

Figure 1-1 shows the cross-sectional illustration of silicon-on-insulator (SOI) substrate 

used in this work to fabricate silicon nanowire devices. Since the fabrication involves in multiple 

steps of lithography, etching and metallization, the square alignment marks are used to allow 

layer-to-layer alignment to precisely pattern the layers with respect to the existing patterns. 

Whilst metal alignment marks are preferred for high precision alignment on Vistec VB6 and 

Penrose marks are developed to achieve alignment accuracy down to ~ 1 nm [1], but the 

devices are subject to anneal at high temperatures ~950 °C and any metal in furnace can 

contaminate not only the furnace tubes but also the grown oxide, therefore etched marks are 

used throughout this work. 

 

Figure 4-1: Illustration of etched marks, cross-sectional (left) and top-view (right). 
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The SOI wafer diced into 12 mm2 chips where each chip initially patterned with a set of 

50 μm2 marks separated by 200 μm on each corner of the chip to allow global alignment. A tri-

layer of PMMA is used for patterning where 15% 2041, 15% 2041 and 4% 2010 spun at 5K and 

baked at 140 °C for 2 minutes each. The pattern is exposed with a dose of 750 μC/cm2, BSS 

of 25 nm and spot size of ~ 33 nm. The exposed pattern developed in a solution of 1:2 

(MIBK:IPA) for 60 seconds followed by a rinse in IPA for 10 seconds before blown dry with 

N2. After patterning, the different layers of SOI substrate are etched as follow: 

Si (top): CF4 = 25 SCCM, 25 W, 25 mTorr for 9.5 minutes 

SiO2 (middle): CHF3/Ar = 25/18 SCCM, 200 W, 30 mTorr for 8 minutes 

Si (bottom): SF6 /C4F8 = 90:30 SCCM, 12/600 (platen/coil) W, 12 mTorr for 7 minutes 

Figure 4-1 shows the illustration of etched marks, all the layers are etched down to 2.5 

μm to able to get enough contrast for VB6’s backscattered detector to locate marks. These 

etched alignment marks yields to ~ 50 nm layer-to-layer accuracy using global alignment and ~ 

10 nm with cell alignment where the size of cell is less than the maximum field size of VB6.   

4.1.2. Lithography & Pattern Transfer 

After the alignment marks transferred into SOI substrate, the chips are first cleaned 

ultrasonically in successive baths of acetone and isopropyl alcohol to remove remaining PMMA 

resist and later cleaned in a solution of de-ionized water, sulphuric acid (H2SO4) and hydrogen 

peroxide (H2O2) at a concentration of 20:1:1 for 5 minutes to remove any organic residues 

from the surface of the substrate. Lithography for pattern transfer in silicon is proceeded using 

HSQ resist which is discussed in section 2.8. Figure 2-8 and 2-9 shows the illustration of steps 

followed after cleaning the chips with concentrated piranha solution. For all the device 

fabrication, ~30 nm thick HSQ resist is used for pattern transfer which is obtained by diluting 

HSQ with MIBK at a proportion of 1:5 and spinning the substrate at 5 K rpm. The thinner resist 

allows to pattern designs with close proximity and using an optimized silicon nanowire etch 

process [SF6/C4F8 = 25:90 SCCM, 6/600 W platen/coil power and 10 mTorr] the pattern is 

transferred with a good selectivity (>2) in SOI substrate. Laser interferometer is used to 

monitor the etching through different layers. Each of the chip is individually etched in STS-RIE 

system with ~ 20% over-etch time to completely remove the unexposed silicon areas.  
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Figure 4-2: Cross-sectional illustration of etched silicon pattern. 

4.1.3. Thermal Oxidation  

The thermal oxidation is a process to grow a thin layer of oxide (SiO2) by the reaction of 

oxygen with silicon typically at high temperatures (850−1100 °C). It is performed onto the 

etched silicon nanowire devices to serve different purposes, primarily to passivate any dangling 

bonds and trap charges present at the silicon interface with oxygen atoms to remove electrical 

defects which result in current leakage along the interface through electron tunnelling, secondly 

to use SiO2 as gate oxide to fabricate devices with wrap around gates and thirdly to use SiO2 

as a barrier to prevent dopant diffusion from the silicon. The growth of SiO2 result in low Si-

SiO2 interface state density [2]. In order to grow high quality oxide, the silicon surface should 

be perfectly cleaned, therefore piranha and RCA cleaning procedures [3] are followed prior to 

oxidation which are as follow, 

1. Piranha cleaning: Agitate the substrate in a solution of de-ionized water, sulphuric acid 

(H2SO4) and hydrogen peroxide (H2O2) at a concentration of 5:1:1 for 30 seconds 

and rinse in DI water for 1 minute and blown dry with N2 

2. RCA 1 cleaning: Agitate the substrate in a solution of de-ionized water, ammonium 

hydroxide (NH4OH) and hydrogen peroxide (H2O2) at a concentration of 5:1:1 for 

30 seconds and rinse in DI water for 1 minute and blown dry with N2 

3. RCA 2 cleaning: Agitate the substrate in a solution of de-ionized water, hydrochloric 

acid (HCL) and hydrogen peroxide (H2O2) at a concentration of 6:1:1 for 30 seconds 

and rinse in DI water for 1 minute and blown dry with N2 

4. HF dip: Agitate the substrate in buffered hydrofluoric (HF) acid (10:1) diluted 1:3 with 

DI water for 45 sec and rinse in DI water for 1 minute and blown dry with N2 
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The piranha and RCA 1 solution removes any traces of organic residues whereas RCA 2 

solution removes any metallic contaminations by oxidizing the silicon surface (Hydrogen 

peroxide is an oxidizing agent which promotes ~ 1−2 nm of oxide with the silicon surface). HF 

dip removes this oxide and prepares a neat surface for oxidation. A thin layer of polymer is 

deposited onto the sidewalls during silicon pattern transfer which is also being stripped off 

during these cleaning procedures. 

 

Figure 4-3: Cross-sectional illustration of etched silicon being thermally oxidized. 

ATV PEO 145 furnace was used for thermal oxidation, the substrates were loaded for 

oxidation right after the HF dip. Initially, nitrogen was used at a flow of 350 litre/hour to ramp 

up the furnace to a temperature of 950 °C in 30 minutes after which substrates were exposed 

to oxygen at a flow of 400 litre/hour between 1−5 minutes to grow ~ 5−10 nm SiO2. After 

oxidation, the gas was switched back to nitrogen under which the furnace was slowly ramped 

down in another 30 minutes to room temperature. The high temperature annealing 

recrystallize the silicon atoms with dopant and remove the damage caused by the ion 

implantation, whereas the slow ramp down of temperature under nitrogen helps to lowers the 

fixed and interface trap charges present at the Si-SiO2 interface [4].  

4.1.4. Device Metallization and Annealing  

A nickel silicide process was optimized to make ohmic contacts with the etched silicon 

nanowire devices. Nickel silicide is formed by migration of nickel into silicon to initially form 

Ni2Si and after annealing the contact between 400−600 °C it forms NiSi. It has low sheet 

resistivity and low silicon consumption that makes it suitable to use in CMOS applications [5,6]. 

The platinum is often used along with nickel as a diffusion barrier which also aids to improve 

the thermal stability of the NiSi contact [7]. In this work, Ni-Pt: 20-50 nm is deposited using 
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Plassys-4 electron beam evaporator tool. The lithography for lift-off has been discussed in 

section 2.3 in detail. Prior to metal evaporation, the thermal oxide is stripped from the silicon 

pads opened for metallization using a HF dip by agitating the substrate in buffered hydrofluoric 

(HF) acid (10:1) diluted 1:3 with DI water for 45 sec and rinse in DI water for 1 minute and 

blown dry with N2. 

 

Figure 4-4: Illustration of depositing metal contacts to the etched silicon 

nanowire device. 

 

Figure 4-5: High frequency CV characteristics of a 100 μm circular n-MOS capacitor 

measured between 1 MHz −1 KHz before and after forming gas (FG) annealing. 
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Figure 4-6: Conductance measurements preformed before and after forming gas 

(FG) annealing on a 100 μm circular n-MOS capacitor. 

The contacts are annealed in forming gas (5% H2, 95% N2) using a tube furnace pre-

heated to a temperature of 360 °C for 15 minutes. Annealing alloys the Ni to form NiSi ohmic 

contact with a specific contact resistivity of 1.5 x 10−9 Ω-m2, which is determined from TLMs 

made on SOI substrate doped ~ 8 x 19 atoms/cm3 (TLM data in appendix 9.1). The quality of 

the oxide film and the effect of forming gas annealing has been determined from capacitance-

voltage (CV) measurements performed on 100 μm circular MOS capacitors fabricated on 

(100) crystal oriented n-type silicon substrate (ND=3.5 x 10−15 cm−3) with ~10 nm thermally 

grown SiO2. Forming gas passivates the dangling bonds and trap charges with hydrogen atoms 

and lowers the interface state trap density (Dit) [8]. The high frequency CV measurements 

performed between 1 MHZ – 1 KHZ are presented in figure 4-5 and 4-6. The results revealed 

the presence of mid-gap states in the thermally grown oxide with a large Dit = 2.3 x 1011 cm−2 

eV−1 measured at 1MHz (see figure 4-7). Here the Dit was extracted by using conductance 

method [9]. It was observed that after the forming gas annealing, the conductance peak at 1 

MHz was smeared out, whereas small conductance peaks appeared between 100 KHz to 1 

KHz. Since the conductance method is no longer valid in absence of a conductance peak, 
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therefore the Dit after the forming gas annealing was extracted at 100 KHz. The forming gas 

annealing reduced the Dit by over an order down to 1.3 x 1010 cm−2 eV−1. Moreover the oxide 

breakdown voltage was determined from ramped voltage technique which was ~ 7 V (or 7 

MV/cm).  

 

Figure 4-7: The Dit extracted using conductance method before and 

after FG annealing. 

4.1.5. Top Gate Metallization 

A thick layer of aluminium ~ 400 nm was deposited for both bond pads and warp around 

gate using a lift-off process in two lithography steps. The lift-off process was optimized using 

PMMA resist discussed in section 2-3. The first lithography allows to deposit aluminium on Ni-

Pt after the contacts are de-oxidized in solution of HCL diluted 1:4 with DI water for 30 

seconds followed by rinsing in DI water for 1 minute. Similarly second lithography step allows 

to deposit aluminium over the grown thermal oxide to realize wrap around gate to modulate 

the silicon nanowire channel. Another layer of aluminium was also deposited on the back of the 

substrate to realize back gate operation. The Plassys-4 electron beam evaporator was used to 

deposit aluminium at 4 nm/sec.  
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Figure 4-8: Illustration of depositing bond pads and wrap around gate. 

4.2. Tools for Electronic Characterization 

4.2.1. Semiconductor Parameter Analyser (DC Measurements) 

The Agilent B1500 semiconductor parameter analyser allows to electronically 

characterize the devices using source monitor units (SMU’s). The SMU’s can either force the 

voltage or current to simultaneously measure the current or voltage and are capable of 

measuring the current down to ~10 fA. SMU’s are characterized into high power, medium 

power and high resolution and should be selected based on the required measurement. The 

Agilent B1500 is equipped with Cascade Microtech probe station to allow on-wafer 

measurements using micromanipulators having either single tip or kelvin probes.  

 

Figure 4-9: Illustration of kelvin probes for 4 terminal measurements. 
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The kelvin probes (shown in figure 4-9 [10]) are especially designed to eliminate the 

series resistance comes from the cables by separating the lines carrying the force and the sense, 

hence accurately measures the resistance across the device. The Agilent B1500 is also equipped 

with capacitance monitor units (CMU), high voltage pulse generator and waveform generator 

units to facilitate a diverse range of device characterization.  

4.2.2. Lock-in-Amplifiers (AC Measurements) 

The major source of noise comes from the power lines operating at 50 Hz which can 

possibly superimpose noise through electromagnetic fields into the measurements. Whilst 

increasing the integration time may help to remove the noise but at the same time it can smear 

out the quantum effects of interest. For this work, Stanford research SR-830 DSP lock-in-

amplifiers are used to take measurements onto the SETs and the Hall bar devices. Lock-in-

amplifiers uses phase-sensitive-detection technique to accurately measures voltage or current. 

An AC signal excited at 77 Hz is superimposed onto the DC signal to apply either constant 

current or voltage to the device to measures voltage or current at that frequency within a 

bandwidth of a few hundred of millihertz. The time constant should be selected 3x T (i.e. 30 

ms for 77 Hz AC signal) to average the data value. A virtual instrument (VI) is programmed in 

LabView to record the data value from lock-in-amplifier to the computer, a delay of 3x time 

constant (i.e. 90 ms) is applied in the VI to allow the data value to have adjusted to represent 

the actual value. In order to break any possible ground loops between different instruments 

connected together, the Stanford research SIM910 JFET voltage and SIM 918 precision current 

pre-amplifiers are also used.  

4.2.3. Cryogenic Systems 

Low temperature measurements allows to reduce the thermal energy (kBT) in order 

to probe the energy levels defined by the device physics. Most of the low temperature 

measurements in this work are taken on to the Oxford Instruments Teslatron, based on pulse 

tube refrigerator (PTR) which is a closed-cycle regenerative mechanical cryofree cooler. The 

block diagram of the Teslatron is shown in figure 4-10. It is integrated with a superconducting 

magnet and a variable temperature insert (VTI) to sweep the magnetic field up to 10 Tesla and 

temperature over a wide range from 1.4 to 300 K.  
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Figure 4-10: Schematic diagram of oxford instruments Teslatron. 
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The main components are PTR, VTI and superconducting magnet. The intelligent 

temperature controller (ITC) 503 monitors and controls the temperature of sample, heat 

exchanger and superconducting magnet whereas intelligent power supply (IPS) 120 is used to 

sweep on the magnet. These controllers can either be programmed through GBIP/ RS232 

interfaces or used manually using Maglab measurement software. The Teslatron is cooled down 

to cryogenic temperatures by expansion of helium in a closed-cycle using PTR, consists of 

helium compressor, rotary valves, regenerator and cold head. The compressor uses 99.99% 

pure helium refrigerant and produces continuous high and low pressures, whereas rotary valves 

generates pressure oscillations to pump-in high pressure helium into the cold head where the 

regenerator takes out the further heat from the compressed helium and allows it to pass 

through the pulse tube which has cold and hot heat exchangers on its ends, after which the low 

pressure helium is pump-out of the system. 

The compressor is connected to a closed-cycle water chiller and has a room temperature 

heat exchanger to remove heat from the low pressure helium and returns back high pressure 

helium to the cold head [ 11 ]. Assuming the complete system is pumped-out, the 

turbomolecular pump is turned on to achieve an ultimate low pressure ~ 7 x 10−6 mbar, 

required to evacuate the empty space of the Teslatron. The gas handling components for the 

VTI consists of helium reservoir, circulation (scroll) pump, zeolite trap and a vacuum pump. A 

couple of purges of helium are required to push the air out of the gas lines meanwhile the scroll 

pump kept isolated and turned off. The helium from the main bottle is fed into the gas line 

through the zeolite trap to fill the helium reservoir up to ~ 1400 mbar, the scroll pump is then 

turned on to circulate the helium in the VTI loop, this will eventually reduce the pressure of 

helium reservoir down to 1280 mbar. The helium is circulated for about 2 hours to scrub out 

all the moisture in the zeolite trap. Later, the zeolite trap is isolated from the loop and scroll 

pump is turned off to put the helium back into the helium reservoir. The zeolite trap is pumped 

out and baked for 24 hours in order to remove the moisture. At that point the helium 

compressor and the scroll pump is turned on to circulate helium in PTR and VTI loops 

respectively. The pressure of needle valve in VTI normally set to 20 mbar before Teslatron 

being set to cool down. The magnet is independently cooled down to 4 K via PTR and should 

not be operated above 6 K.  
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Figure 4-11: Illustration of device being bonded in 28 pin LCC header package. 

The sample probe of the Teslatron has a 28 pin LCC live bug loading socket soldered to 

lemo connectors using cooper wires on the other end of the probe. The devices were bonded 

using gold wire wedge bonder on 28 pin LCC header packages shown in figure 4-11. These 

header packages were loaded onto the socket of sample probe and accessed using BNC pinout 

box (which has lemo-BNC connectors). The sample space in Teslatron was completely isolated 

from the VTI heat exchanger which allows to load the sample probe at any temperature. While 

loading or unloading the sample probe, the sample area should be supplied with a continuous 

helium just above1000 mbar to keep a good thermal contact between the sample and the VTI 

heat exchanger [12].      
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5. Electron Transport in Silicon Nanowires 

Understanding the electron transport properties of silicon nanowires is essential, since 

the recent development in nanowire technology has gained interest in potential applications in 

transistors [1], qubits [2], biosensors [3], thermoelectric generators [4] and color selective 

photodetectors [5], where majority of the applications are based on silicon material. A number 

of studies have investigated the effects of donor deactivation, surface roughness scattering [6] 

and noise [7] in silicon nanowires but being able to determine the carrier density directly rather 

than extracting it from the electrical conductivity which has been more of a challenge. Recently 

Hall effects measurements onto the InP nanowires are reported [8] but only carrier densities 

and motilities have been extracted, whereas determining the performance limiting scattering 

mechanisms of nanowires are requisite to allow the high performance devices to be optimized 

for the wide range of applications.  In this work, electron beam lithography and dry etch is used 

to fabricate silicon nanowires typically from 45 to 4 nm (mean widths) using top-down 

fabrication techniques in a Hall bar and Greek cross configuration with low LER, minimized 

plasma induced sidewall damages and high quality surface passivation (SiO2). Both of these 

devices allowed to directly extract resistivity, mobility and carrier density as function of 

temperature and enabled to identify major scattering mechanisms limiting the performance of 

silicon nanowires. The critical length scales are theoretically calculated and directly compared 

with widths of the nanowires, which demonstrates that the electron transport is likely to be 

changed from 3D for the 12 nm to 2D for 7 nm and 1D for 4 nm wide nanowires.   

5.1. Device Physics 

5.1.1. Hall’s Effect 

Hall’s effect was discovered by Edwin Hall in 1879, it describers the behaviour of the free 

charge carriers and accurately determines the resistivity, mobility and carrier density of any 

conducting material [9]. The whole idea is to apply a constant current (𝐼𝑥) to the conductor and 

measure the hall voltage (𝑉𝐻) across the conductor which is transverse to the current in the 

presence of magnetic field (𝐵𝑧) which perpendicular to the current. Figure 5-1 shows a 6 

terminal Hall bar configuration. Assuming the conducting material is n-type semiconductor 
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where the electrons are in majority carrier, when current 𝐼𝑥 flows through the material in x 

direction, the charge particles i.e. electrons (with charge – 𝑞) moves towards –x direction with 

drift velocity (𝑉𝑥)  which is on opposite side of the conventional current. In presence of 

magnetic field in z direction, there will be Lorentz force acting upon the electrons in y direction 

given by, 

𝐹𝑦 =  −𝑞 (𝑉−𝑥  × 𝐵𝑧) 

The electrons start deflecting towards the top side whereas the holes towards the 

bottom side of the semiconductor, thus separating the charge particles. The piling up of 

electrons give rise to the potential difference and as a result electric field (𝐹𝑒) increases which 

is given by, 

𝐹𝑒 =  −𝑞 𝐸−𝑦 

Where 𝐸−𝑦 is given by, 

𝐸𝐻 =  
𝑉𝐻
𝑤

 

 

Figure 5-1: Illustration of 6 terminal Hall bar device configuration. 

 At some point the electric field reaches the magnitude of the magnetic field, thus both 

forces 𝐹𝑦 and 𝐹𝑒 balances out each other and the semiconductor will reach in a steady state 

equilibrium state where there will be no net force on to the carriers. This is given by, 
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𝑉𝑥𝐵 =  
𝑉𝐻
𝑤

 

The drift velocity, 𝑉𝑥  can be written in form of total current (𝐼𝑥  =  −𝑞𝑛𝑉𝑥𝑤𝑡) to 

workout Hall voltage (𝑉𝐻) from the above equation, 

𝑉𝐻 = − 
𝐼𝑥 𝐵𝑧
𝑞 𝑛 𝑡

 

Where 𝑡 is the thickness of the semiconductor. The Halls coefficient (𝑅𝐻) is given by, 

 𝑅𝐻 =
𝑉𝐻 𝑡
𝐼𝑥 𝐵𝑧

= −
1

𝑞 𝑛
        (Eq. 5.1) 

From the Halls coefficient, the carrier density (𝑛) of the semiconductor can be calculated. 

Whereas in order to determine the mobility, the conductivity can be written in terms of 

mobility as, 

𝜎 =  − 𝑛𝑞𝜇 

By rearranging this, the mobility (𝜇) is given by, 

 𝜇 = 𝑅𝐻 𝜎        (Eq. 5.2) 

Where the conductivity (𝜎) is, 

 𝜎 =
1
𝜌

=
𝐼𝑥 𝐿

𝑉𝑥𝑥 𝑤 𝑡
        (Eq. 5.3) 

Some geometrical considerations must be accounted before designing the Hall bar 

devices to minimize the error percentage in determining the mobility and carrier density. These 

considerations minimizes the Hall voltage shorting effects to determine the true Hall voltage 

[10,11].  

 
𝐿𝑠
𝑤

 ≥ 3,    𝐿𝑤 ≤
𝑤
3

,   
𝐿𝑝

𝑤
 > 1 𝑜𝑟 𝐿𝑝 >

1
4

𝐿𝑠
𝑤

 𝑎𝑛𝑑 𝐿 ≥ 4𝑤            

Where 𝐿𝑠 = 2𝐿𝑝 + 𝐿 
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5.1.2. Characteristic Length Scales and Transport Regimes 

The electronic transport mechanisms in semiconductors/metals are defined in terms of 

transport regimes, various characteristic length scales and scattering mechanisms. Some of the 

length scales are given below [12] which defines the different transport regimes, 

Inelastic scattering length (𝒍𝒊𝒏): The length an electron travels without any change in its 

kinetic energy. The collisions such as electron-electron and electron-phonon are as a result of 

inelastic scattering events. It is defined as, 

𝑙𝑖𝑛 =  𝑣𝐹 𝜏𝜑 

Where 𝑣𝐹 is the Fermi velocity and 𝜏𝜑 is inelastic scattering time. 

Elastic scattering length (𝒍𝒆): The length an electron travels without change in its wave 

vector. The collisions between electrons and fixed Coulombic impurities are an example of 

elastic scattering events. It is defined as, 

𝑙𝑒 =  𝑣𝐹 𝜏 

Phase coherence length (𝒍𝝋): The length an electron travels before initial phase of the 

wave function is disrupted by some scattering event. The scattering length (𝑙𝜑) associated with 

scattering time (𝜏𝜑) is linked through the diffusion constant 𝐷 given by, 

𝑙𝜑 =  
􏽯

 𝐷 𝜏𝜑   

Electric length (𝒍𝑭 ): The length scale due to electric field (𝐹) is 

𝑙𝐹 = 􏿶 
𝐷ℏ
𝑞𝐹

 􏿹
􏷠/􏷢

 

Magnetic length (𝒍𝑩): The length scale due to magnetic field (𝐵) is 

𝑙𝐵 =  
􏽱

 
ℏ

 𝑞𝐵 
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Thermal length (𝒍𝒕): The length scale due to thermal motion of carriers is 

𝑙𝑡 =  
􏽱

 
ℏ𝐷

 𝑘𝐵𝑇 
  

Mean free path ( 𝒍 ): The minimum length an electron travels between successive 

scattering events. Elastic scattering length is the shortest of all other lengths scales, hence defines 

the mean free path as [13] 

 𝑙 = 𝑣𝐹 𝜏 =
ℏ 𝑘𝐹
𝑚∗ 𝜏  

Where 𝑘𝐹 is a Fermi wavenumber. For specific 3D, 2D and 1D transport, the mean free 

path is defined as, 

 
𝑙􏷢𝐷 =

ℏ𝜇
𝑞

𝑘𝐹 􏷢𝐷 =
ℏ𝜇
𝑞 􏿶 3𝜋􏷡 𝑛

𝑔𝑣
􏿹

􏷠/􏷢

  (Eq. 5.4) 

 
𝑙􏷡𝐷 =

ℏ𝜇
𝑞

𝑘𝐹 􏷡𝐷 =
ℏ𝜇
𝑞 􏽰

2𝜋
𝑛
𝑔𝑣

 
 (Eq. 5.5) 

 𝑙􏷠𝐷 =
ℏ𝜇
𝑞

𝑘𝐹 􏷠𝐷 =
ℏ𝜇
𝑞

𝜋
𝑛
𝑔𝑣

 
 (Eq. 5.6) 

Where 𝑔𝑣 = 2  is the valley degeneracy and 𝑔𝑠 = 2 is the spin degeneracy of the 

semiconductor material. 

3D Fermi wavelength (𝝀𝑭 ): The majority of the electron transport is due to the 

electrons near the Fermi level, so the appropriate length scale to consider these electrons is 3D 

Fermi wavelength which is given by [13] 

 
𝜆𝐹 =

2𝜋
𝑘𝐹

= 2𝜋 􏿵
𝑔𝑣

3𝜋􏷡 𝑛
􏿸

􏷡/􏷢
       (Eq. 5.7) 
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Debye length (𝑳𝑫): The length scale over which the charge separation can occur. Debye 

length limits the electrostatic interaction between charged particles. It is defined as,  

 
𝐿𝐷 =

􏽱

𝜖𝑟𝜖𝑜𝑉𝑇
 𝑞𝑁𝐷

=
􏽱

𝜖𝑟𝜖𝑜𝑘𝐵𝑇
 𝑞􏷡𝑁𝐷

  (Eq. 5.8) 

Where 𝜖𝑟 is the relative permittivity of a material, 𝜖𝑜 is the permittivity of a vacuum, 𝑉𝑇  

is the thermal voltage, 𝑘𝐵 is the Boltzman constant, 𝑇  is the temperature, 𝑞 is an electron charge 

and 𝑁𝐷 is the carrier density. 

 

Figure 5-2: Illustration of transport regimes in nanostructures. 

Transport Regimes: Based on some of these length scales, if we consider an active 

channel with dimensions length (𝐿) and width (𝑊 ), then electrons can have four distant 

transport regimes. These are illustrated in figure 5-2 [14] and defined on the basis of mean free 

path (𝑙) and dimensionality. The transport regime is diffusive where the length and width of the 

channel is larger than the mean free path (𝑙) of electrons and is dominated by scattering events 

(shown by blue asterisks). In quasi-ballistic regime the mean free path is larger than the width 
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of the active channel but smaller than the length, in this case only a few scattering events takes 

place and the transport is mostly quantized in one whereas diffusive in other dimensions. In 

ballistic regime the mean free path is larger than both length and width and electrons are not 

scattered within the channel.   

5.1.3. Scattering Mechanisms 

The electrons/holes travelling through a channel undergo a variety of interactions with 

the semiconductor material and the nature of those interactions can be determined from the 

mobility of the channel. Whilst mobility for any absolute temperature 𝑇  can be calculated from 

Einstein relation (5.9) but it does not provide any further information to determine any specific 

scattering mechanism, limiting the performance of the channel.  

 𝜇 =
𝑞𝐷

𝑘𝐵 𝑇
  (Eq. 5.9) 

 

Figure 5-3: Scattering mechanisms in semiconductors. 

Some of the scattering mechanisms in semiconductors are listed in figure 5-3 [18]. In 

degenerately doped semiconductors, Fermi level will be inside the conduction band of the 

channel and to account this into the calculations, the effective mass (𝑚∗) defined to include a 

non-parabolicity factor as, 
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 𝑚∗ = 𝑚𝑐
∗ ⎣⎢⎢⎢

⎢⎢
⎡
1 + 2𝐶

ℏ􏷡

𝑚𝑐
∗ 􏿶

3𝜋􏷡 𝑛
𝑔𝑣

􏿹
􏷡/􏷢

⎦⎥⎥⎥
⎥⎥
⎤
 (Eq. 5.10) 

Where 𝑚𝑐
∗ is the conductivity effective mass defined as, 

𝑚𝑐
∗ = 3 􏿵  

1
𝑚𝑙

+ 
2

𝑚𝑡
 􏿸

−􏷠
 

The values of longitudinal electron mass is 𝑚𝑙 = 0.98𝑚􏷟 and transverse electron mass is 

𝑚𝑡 = 0.198𝑚􏷟, where 𝑚􏷟 is the free electron mass, 𝑛 is the carrier density, 𝑔𝑣 = 2 is the valley 

degeneracy of conduction band and 𝐶 = 0.5 eV−􏷠 is nonparabolicity parameter [15]. 

5.1.3.1. Acoustic Phonon Scattering 

The acoustic phonon scattering mechanism based on lattice vibrations as a result of a 

potential shift known as deformation potential. The deformation potential is due to phonon 

induced strain in the material which disrupts the band structure as a result of change in the 

crystal potential which in turn changes the lattice spacing, hence varies the lattice constant. This 

scattering mechanism is due to the collective vibration of the atoms in the lattice about their 

equilibrium positions [16]. For degenerative semiconductors, the acoustic phonon scattering 

has quasi-elastic characteristics and has a small acoustic phonon energy which result in a small 

wave vector change and due to reservation of momentum, the scattering mechanism limits the 

acoustic phonon to long wavelength range [17]. The mobility due to acoustic phonon scattering 

defined in terms of deformation potential which depends on temperature and electron density 

is defined as [18] 

 𝜇𝑎𝑐 =
16√2𝜋𝑐𝐿ℏ􏷣𝑞

3Ξ𝑎𝑐
􏷡 𝑚∗􏷤/􏷡 ( 𝑘𝐵𝑇 )− 􏷡/􏷢 (Eq. 5.11) 

𝑐𝐿 =  𝑐􏷠􏷡 + 2𝑐􏷣􏷣 + 􏷠
􏷢
 (𝑐􏷠􏷠 −  𝑐􏷠􏷡 −  2𝑐􏷣􏷣) [19] 

Where 𝑐𝐿  is averaged longitudinal elastic modulus and values of elastic constants 

are  𝑐􏷠􏷠 = 165.77 GPa , 𝑐􏷠􏷡 = 63.93 GPa  and 𝑐􏷠􏷠 = 79.62 GPa  and acoustic deformation 

potential Ξ𝑎𝑐 = 8.6 eV [20] 
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5.1.3.2. Optical Phonon Scattering 

The optical phonon scattering is generally due to the relative displacement of atoms 

within a unit cell caused by deformation potential [17]. Optical phonon energy is higher than 

thermal energy of electron at room temperature, so after a collision electron losses most of its 

energy and result in an inelastic scattering process. Whereas at low temperatures typically 

below 100 K, the electrons do not emit optical phonons due to low thermal energy. So, optical 

phonon scattering is dominant at room and negligible at low temperature. 

In this particular work optical phonon scattering model of Hamaguchi [18,21] is used since 

it allows all temperature to be considered. The mobility due to optical phonon scattering 

calculated using, 

 𝜇𝑜𝑝 =
4√2𝜋 𝑞ℏ􏷣√ℏ𝜔𝐿𝑂

3Ξ𝑜𝑝
􏷡 𝑚∗􏷤/􏷡 𝑓(𝑧􏷟) (Eq. 5.12) 

Where LO optical deformation potential between  ∆-valleys defined as Ξ = 11.0 ×

10􏷠􏷟 𝑒𝑉/𝑚  [15] and LO optical phonon energy, ℏ𝜔𝐿𝑂 = 63 𝑚𝑒𝑉  and 𝜌 = 2329 𝑘𝑔 𝑚−􏷢 is 

density of silicon. Also 𝑓(𝑧􏷟) is given by,  

𝑓(𝑧􏷟) =  𝑧􏷟
􏷤/􏷡(𝑒𝑧􏷩 − 1) 􏾙 𝑧𝑒−𝑧 1

􏿴1 + 𝑧􏷟
𝑧 􏿷

􏷠/􏷡
+ 𝑒𝑧 􏿴1 − 𝑧􏷟

𝑧 􏿷
􏷠/􏷡

∞

􏷟
 𝑑𝑧 

𝑧􏷟 =  
ℏ𝜔𝐿𝑂
𝑘𝐵𝑇

 𝑎𝑛𝑑 𝑧 =  
𝐸

𝑘𝐵𝑇
  

Where 𝐸 is the energy under consideration for phonons. 

5.1.3.3. Ionized Impurity Scattering 

 The ionized impurity scattering is due to the presence of charged impurity atoms in the 

semiconductors after being doped. The scattering is as a result of coulomb potential produced 

by the ionized impurity atoms. In degenerately doped semiconductors, the probability of 

carriers being scattered by ionized impurity atoms increases as increase in the doping density 

and becomes a dominant scattering mechanisms limiting the mobility. At low temperatures, the 



Chapter 5 – Electron Transport in Silicon Nanowires 

81 

 

carriers slows down due to low thermal velocity and are subject to spend longer time in the 

vicinity of ionized impurities, hence increases the probability of being scattered more strongly 

by Coulombic interaction forces as compared at high temperatures. 

The expression for mobility due to ionized impurity scattering is given by [18],    

 𝜇𝐼 =
24𝜋􏷢𝜀􏷟

􏷡𝜀𝑟
􏷡ℏ􏷢𝑛

𝑁𝐼𝑍􏷡𝑞􏷢𝑚∗􏷡 􏿯ln(1 + 𝛾𝐹) െ 𝛾𝐹
1 ൅ 𝛾𝐹	

􏿲
 (Eq. 5.13) 

Where 𝜀􏷟  is the permittivity of vacuum, 𝜀𝑟 = 11.9 is the relative dielectric constant of 

silicon and 𝑍 = 1 is the charge on the donor and 𝛾𝐹 is given by,   

𝛾𝐹 =  
4√3􏷬 𝜀􏷟𝜀𝑟𝜋􏷧/􏷢ℏ􏷡𝑛􏷠/􏷢

𝑞􏷡𝑚∗  

The ionized donor concentration is defined as, 

𝑁𝐼 =  
𝑁𝐷

1 + 𝑔𝐷 𝑒𝑥𝑝 􏿯𝐸𝐹 − 𝐸𝐷
𝑘𝐵𝑇 􏿲

 

Where 𝑔𝐷 = 2 for the phosphorus donor, 𝑁𝐷 is the doping density and 𝐸𝐷 is the donor 

activation energy. 

5.1.3.4. Neutral Impurity Scattering 

The neutral impurity scattering is generally accompanied by other impurity and lattice 

scattering mechanisms. It becomes a dominant scattering mechanism especially at low 

temperatures where ionized impurities become neutral due to carrier freeze out and 

conduction electrons no longer emit photons due to low thermal energy [22].  

The mobility due to neutral impurity scattering is given by [23], 

 𝜇𝑁𝐼 =
𝑚∗𝑞􏷢

20𝜀𝑜𝜀𝑟(𝑁𝐷 − 𝑛)ℏ􏷢 (Eq. 5.14) 

Where 𝑁𝐷 − 𝑛 determines the density of neutral impurities in the semiconductor. 
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5.1.3.5. Interface Roughness Scattering 

The interface roughness scattering due to the scattering of carriers by the roughness of 

the semiconductor interfaces. If the surface roughness is comparable to the de Broglie 

wavelength, then this scattering mechanism becomes significant [18]. The interface is modelled 

to determine the mobility due to interface roughness scattering [24] is based on Gaussian-type 

autocorrelation for an interface roughness height of ∆ and lateral correlation length of Λ. A 

Gaussian model was chosen as it has demonstrated better fits to the experimental mobility in 

quantum well devices without a vertical electrical field, whilst  the exponential model used in 

MOSFETs has demonstrated superior descriptions of mobility under large vertical electrical 

fields [25]. The mobility due to interface roughness scattering is defined as 

 𝜇𝐼𝑅𝑆 =
𝑞ℏ􏷢𝑘𝐹

2𝑚􏷡√𝜋Λ∆􏷡|Γ|􏷡
exp 𝑘𝐹

􏷡 Λ􏷡 (Eq. 5.15) 

Where the confinement assumed to be a potential well of width 𝑤, producing a scattering 

rate Γ given by, 

Γ =  
ℏ􏷡𝜋􏷡

𝑚𝑤􏷢 

5.2. Device Fabrication and Experimental Setup 

In order to investigate the electron transport properties of silicon nanowires, Hall bar 

and Greek cross devices are fabricated with mean widths from 45 – 4 nm. The device 

fabrication techniques are discussed in detail in section 4.1. Pattering nanowire devices are more 

challenging then pattering isolated nanowires, because the bond pads accessing the nanowire 

can bring in proximity effects which often result in widening of the nanowire channel. For both 

kind of devices, the layout for the pattern transfer is designed to get three different electron 

beam exposures, i.e. the nanowire channel (layer 1), nanowire connecting smaller bond pads ~ 

2.25 μm2 (layer 2) which ultimately joins larger bond pads ~ 400 μm2 (layer 3) to add ohmic 

contacts to the devices. This allows to write nanowire channel with smallest beam diameter and 

beam step size (BSS) to minimize line edge roughness (LER) and the bond pads to a relatively 

larger beam diameter with low doses to minimize proximity effects. The electron beam 
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exposure parameters used for the pattern transfer of the Hall bar and Greek cross devices are 

shown in table 5-1. Following the lithography, the devices are etched, oxidized and metalized as 

discussed in section 4.1.   

 Dose (μC cm−2) Beam step size (nm) Spot size (nm) 

HBD GCD HB & GC Devices HB & GC Devices 

Layer 1 2500 4700 2.5 3 

Layer 2 2000 2500 5 3 

Layer 3 1800 1800 25 33 

Table 5-1: Electron beam exposure parameters used for pattern 

transfer of the Hall bar and Greek cross devices. 

The SEM images of fabricated Hall bar and Greek cross devices are shown in figure 5-4. 

In this work, Hall bar devices are used to extract mobility whereas Greek cross devices for 

carrier density. These devices are made on the samples from four different SOI wafers. The 

activated dopant density of four wafers were 2 x 1019, 4 x 1019, 8 x 1019 and 20 x 1019 cm−3 

measured from large area Hall bar devices. Figure 5-5 shows cross sectional transmission 

electron microscopy (TEM) images of final devices with lithographic widths 10, 15, 20 and 25 

nm (from left to right).  

The thickness of SiO2 oxide is ~ 4 nm determined from the capacitance-voltage 

measurements (shown in figure 4-5) which is also confirmed from the TEM images. There is 

clear footing reviled from the TEM images due to RIE and enhanced oxidation rates at the top 

edges of the nanowire, figure 5-5a shows the smallest made nanowire with top section as small 

as 1.9 nm whilst the bottom is 10.7 nm, whereas similar effects are observed with other 

nanowires as well. Therefore widths quoted throughout the thesis are the mean widths 

determined from ten cross sectional measurements of the physical width of silicon over ten 

equally spaced positions in height of the nanowire. Whilst it defines the width of the smallest 

nanowire ~ 4 nm but it’s believed that the majority of the transport will be dominated by the 

wider 10.7 nm bottom foot.   
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Figure 5-4: SEM images of 4 nm (mean width) Hall bar (left) and Greek 

cross (right) devices etched on SOI substrate. 

 

Figure 5-5: Cross-sectional TEM images of thermally oxidized silicon nanowires 

fabricated on SOI substrated labelled with mean widths. 
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The experimental setup used to probe Hall bar and Greek cross devices is shown in 

figure 5-6. AC (alternating current) constant current measurement technique is used to 

minimize electron heating in the nanowire channel for which Agilent 33521A arbitrary 

waveform generator source and Stanford Research SR-830 lock-in amplifiers are used. 1 V at 

77 Hz is generated across a 10 MΩ resistor to provide ~100 nA constant current to the 

nanowire channel, whereas a calibrated 1 KΩ resistor at the output is used to determine the 

constant current during the measurements. Separate lock-in-amplifiers are used to record Vxx, 

Vxy and Vout simultaneously. Temperature dependent characteristics of nanowires are measured 

using Oxford Instruments Teslatron cryostat with variable temperature insert (VTI) and 12 T 

magnet. All these instruments were accessed and controlled using a LabView’s virtual 

instrument (VI) program connected to the computer via GBIP interfaces.  

 

Figure 5-6: Experimental setup to probe Hall bar and Greek cross devices. 

5.3. Results & Discussions 

The DC measurements are performed onto the both types of fabricated devices using 

Agilent B1500 parameter analyser before temperature dependent AC measurements are 

performed under cryostat. For clarity, results for the nanowires fabricated on SOI substrate 

with a doping density below 2 x 1019 cm−3 are not included for the analysis, because of poor or 

no conductivity for the nanowires with widths below ~ 30 nm. Results from the ND = 2 x 1019 
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cm−3 indicated that the doping was still not sufficient for the nanowires below ~ 12 nm. Even 

for 12 nm wide nanowires, non-linear I-V characteristics are observed with a large energy gap 

of ± 0.4 V shown in figure 5-7 (red). These non-linear I-V characteristics are similar to those 

reported for Coulomb blockade and single electron tunnelling at lower temperatures [26], 

whilst this has not been probed further but there is significant possibility that the combination 

of depletion and sidewall roughness reduced the nanowire channel into number of small islands 

of charge through which electrons might have been tunnelling, however further work is 

required to exactly determine if the device has a Coulomb gap or a non-linear behaviour as a 

result of Schottky barriers at the source/drain end of the channel. Ohmic conduction has been 

observed for the nanowires with widths down to 7 nm and non-linear conduction for the 

smallest 4 nm nanowire fabricated on ND = 4 x 1019 cm−3, but to significantly enhance the 

reproducibility and reliability, the doping density is further increased. 

 

Figure 5-7: I-V characteristics of 12 nm (red) and 7 nm (blue) silicon 

nanowires with different doping densities. 

The electrical resistivity as function of nanowire width for different doping densities is 

shown in figure 5-8. Here the resistivity has been measured from the two terminals of the Hall 

bar devices. The geometry of the Hall bar devices are designed in a way to lower the contact 

and access resistances which are negligible as compared to the resistance of the nanowires. 
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Hence there is only a small difference observed between the two and four terminal resistance 

measurements, this has been shown in appendix 9.1. From resistivity plot it’s clear that for ND 

= 2 x 1019 cm−3 all the nanowires tends to have significant depletion effects and the resistance 

of nanowires below 12 nm is as high as 100 MΩ, indicating the insulating behaviour 

demonstrating that the nanowire channel is completely depleted out of carriers. Whereas for 

ND = 4 x 1019 cm−3 the depletion effects became significant in nanowires below 18 nm and the 

smallest 4 nm nanowire have similar insulating properties. Only the nanowires fabricated on ND 

= 8 x 1019 cm−3 and above, haven’t demonstrated any depletion effects and could potentially 

be used to examine electrical properties of the nanowires.   

     

Figure 5-8: Resistivity as function of nanowire width for different doping densities. 

Figure 5-9 shows the electrical resistivity as function of temperature extracted from four 

terminals of the Hall bar devices. It is observed that the wider nanowires had strong metallic 

connectivity which was expected since the doping densities is significantly above the Mott 

criterion [27] for Si:P of 3.5 x 1018 cm−3 whereas the 4 nm nanowire behaved differently at high 

temperatures suggesting that the depletion of the conducting part of the channel may have 

reduced the dimensionality for the electron transport to 1D.  
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Figure 5-9:  Four terminal resistivity measured for the devices fabricated on 

ND = 8 x 1019 cm−3 as a function of temperature. 

The extraction of carrier density and mobility requires to measure the Halls voltage 

generated in the nanowires which is independent of the cross sectional geometry of the 

nanowire. The accuracy of the Halls measurements relies on the width the voltage probes 

rather than the width of the nanowire channel, for the nanowires with widths below 20 nm, 

the proximity effects result in widening of the nanowire, voltage probes and their junctions, 

hence limits the accuracy of any extracted Hall voltage. Whilst smaller voltage probes are 

desirable to determine true Hall voltage but wider voltage probes allows to minimize the access 

resistance to prevent any electron heating. Since the doping densities of the nanowires devices 

is considerably very high, the resulting Hall voltage is extremely small and orders of few μV. The 

geometrical uncertainty from [10] in measuring the carrier density from the Halls effect in 

fabricated Hall bar devices with widths below 20 nm provides a value accurate within a factor 

of 2 of the true Hall voltage. For these reasons the Greek cross devices are fabricated which 

allowed to measure the carrier density by the Hall’s effect with geometrical uncertainty below 

1% even for the 7 nm nanowire. Whereas due to larger uncertainty in 4 nm nanowire, the 

results are only be estimated to be accurate within a factor of 2. 
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Figure 5-10: Extracted carrier density of nanowires as function of temperature. 

    

Figure 5-11: Extracted Hall mobility of nanowires as function of temperature. 
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In this work, Hall voltage was extracted by applying a linear fit to the data obtained by 

sweeping the magnet from −1 T to 1 T which can potentially remove any stray field effects. 

The results from both Hall bar and Greek cross devices found to be identical, so for the results 

presented in here are from Hall bar devices. Figure 5-10 shows the extracted carrier density 

as function of temperature for the nanowires with widths of 4, 7, 12 and 18 nm, fabricated on 

ND = 8 x 1019 cm−3. Results from widest nanowires indicated the difficulty in extracting accurate 

carrier density which is measured to be 1.5 x 1020 cm−3 whereas all the nanowires demonstrates 

the expected trend when the widths, carrier density and temperature are varied i.e. the carrier 

density reduced as the width of the nanowire is reduced through surface depletion. Also for 

the nanowires between 7 – 18 nm, the carrier density is reduced as the temperature is reduced, 

shows the activated behaviour. For 12 nm nanowire which is nominally doped at ND = 8 x 1019 

cm−3, the measured carrier density at 300 K is 7 x 1019 cm−3 which is reduced to 4.1 x 1019 cm−3 

when temperature is reduced down to 1.4 K. In case of 4 nm nanowire, an anomalous 

behaviour is observed which is probably due to large geometrical uncertainty in extracting the 

carrier density which might have been related to change in the dimension of the transport. 

Figure 5-11 shows the hall mobility as function of temperature for the nanowires fabricated on 

ND = 8 x 1019 cm−3. The hall mobility of nanowires with widths between 7−18 nm tends to 

decrease as the temperature goes higher due to increase in scattering events. However the 4 

nm nanowire has initially shown reduction in mobility from 1.4 to 150 K after which mobility 

increased from 150 to 300 K, indicated multiple scattering mechanisms. Also mobility at 300 K 

increased from 7 to 70 cm2/Vs as the width of the nanowires reduced from 18 to 4 nm. These 

results have not completely understood and attributed to the large geometrical uncertainty of 

the Hall bar devices. For these reasons Greek cross devices were fabricated which also has 

shown the same trend of an increase in mobility as with width of the nanowires reduced.  

It is very unlikely that the electrical width can be similar to the physical width of the 

nanowire. In case of non-degenerately doped semiconductors, the depletion approximation 

allows to determine the sidewall depletion width which enables to determine the electrical 

width, where in degenerately doped semiconductors, the depletion approximation is no longer 

valid and the correct screening length is Debye length which is being true from the theoretical 

analysis of electron-electron, electron-impurity [ 28 ] and p-n junction potentials [ 29 ] in 

degenerately doped semiconductors. Therefore to determine the electrical width from the 
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physical width, the simplest approach is to subtract the physical width from twice the Debye 

screening length. From this approach the minimum and maximum electrical widths and heights 

are determined of the nanowires. The mean free path (𝑙), 3D Fermi wavelength (𝜆𝐷) and 

Debye length (𝐿𝐷) are theoretically calculated from Eq. 5.4 to 5.8 and their values are presented 

in table 5-2. By directly comparing the mean free path with the physical width of the nanowire, 

it has been approximated that the dimensionality of the electron transport in 18 nm and 12 nm 

nanowire is likely to be 3D, whereas for 7 nm the transport is predominantly 2D but as the 

bottom foot of the nanowire is wider, some of the transport can be 3D. Similarly for 4 nm 

nanowire, the transport is likely to be 1D but can have 2D transport as some extent. This all 

shows that even at such smaller scales the transport is 1D only for the smallest 4 nm nanowire.   

Mean 
nanowire 

width    
(nm) 

Max. 
electrical 

width 
(nm) 

Min. 
electrical 

width 
(nm) 

Electrical 
height 
(nm) 

𝐿𝐷 
(nm)

𝜆𝐹 
(nm) 

𝑙 
(nm) Dim. 

4 9.2 0.1 18.1 1.5 13 20.4 1D 

7 11.1 1.4 42.3 0.81 8.7 6.7 2D / 3D 

12 18.5 6.0 51.0 0.49 6.2 6.2 3D 

18 25.6 12.4 51.9 0.30 4.5 4.5 3D 

Table 5-2: The main characteristics length scales at 300 K for the nanowires 

doped at 8 x 1019 cm−3. 

The donor activation energy can be determined from the slope of the carrier density 

plotted versus temperature on a log-log scale. Figure 5-12 shows the extracted activation 

energy for the 7 nm, 12 nm and 18 nm nanowires determined from the activated function for 

the carrier density, 

𝑛 ∝ exp 􏿵
𝐸𝐷

 2𝑘𝐵𝑇 
􏿸 

Where 𝐸𝐷 is the donor activation energy. It is observed that the extracted activation 

energies for nanowires are significantly lower than demonstrated from bottom-up grown 
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nanowires without any surface passivation [30]. The lower value of donor activation energy for 

7 nm nanowire as compared to 12 nm nanowire is possibly because of the change in the 

dimensionality of transport from 3D to 2D. The donor activation energy for the 4 nm nanowire 

is not extractable due to high geometrical uncertainty in determining the carrier density but 

could also be as a result of change in transport dimension.  

 

Figure 5-12: Extracted dopant activation energy from nanowires fabricated 

on ND = 8 x 1019 cm−3. 

   The donor deactivation is addressed to be primarily issue in unpassivated nanowires 

grown from bottom-up technique [30]. Here the donor activation energy for 12 nm nanowire 

is 10.3 ± 0.6 meV which is significantly lower than demonstrated in [30] for 15 nm nanowire 

unpassivated nanowire where the activation energy is 46 meV. The reason behind this is that 

the SiO2 has a dielectric constant of 3.9 compared to air which has 1, which will significantly 

reduce the donor deactivation [31]. Other reason is that the grown thermal oxide in this work 

has a low surface trapped charge density of 1.1 x 1010 cm−2 eV−1 which helps to improve the Si-

SiO2 interface. Whilst the etched nanowires would have higher surface state densities than 
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normally determined from MOS capacitors but it will still be lower than any surface without 

any oxidation and forming gas treatment.  

In order to extract the drift mobility from the Hall mobility, it requires the knowledge of 

the Hall factor which is dependent onto the dominant scattering mechanism in the nanowires. 

The scattering mechanisms which are limiting the mobility of these nanowires are determined 

from the direct comparison of the experimental Hall mobility with a number of different 

theoretical calculated motilities corresponds to the scattering mechanisms discussed in section 

5.1.3. The total mobility was estimated by using the Matthiessen’s rule defined as, 

1
𝜇

=  
1

𝜇𝑎𝑐
+

1
𝜇𝑜𝑐

+
1
𝜇𝐼

+
1

𝜇𝑁𝐼
+

1
𝜇𝐼𝑅𝑆

 

Whilst the Matthiessen’s rule has a significant uncertainty as the weighting of the scattering 

mechanism is not taken into account but still has sufficient accuracy to allow to determine the 

dominant scattering mechanism without going into details of Monte Carlo modelling 

approaches. Figure 5-13 shows the experimental Hall mobility compared with different 

scattering mechanism for 7 nm nanowire doped at ND = 8 x 1019 cm−3.  

 

Figure 5-13: Comparison of experimental Hall mobility with different scattering 

mechanisms for the 7 nm nanowire doped at ND = 8 x 1019 cm−3. 
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It is determined from the modelling that neutral impurity scattering is the dominant 

scattering mechanism limiting the mobility in these nanowires. The interface roughness 

scattering is not found to be significant as compared to the neutral impurity scattering, even for 

Δ = 2 nm and Λ = 1 nm, the interface roughness scattering is still insignificant for compared to 

other scattering mechanisms. As neutral impurity scattering is dominant scattering mechanisms, 

therefore Hall factor is 1 for these degenerately doped nanowires and so the drift mobility 

equals to the Hall mobility.  

5.4. Summary 

Silicon nanowires are fabricated using top-down fabrication approach down to 4 nm, the 

transport properties are studied for degenerately doped silicon nanowires and determined that 

neutral impurity scattering is the performance limiting scattering mechanism in these nanowires. 

The characteristic length scales are theoretically calculated and directly compared with the 

physical width of the nanowires to approximate that the electron transport is likely to be 3D in 

12 nm nanowire and 2D and 1D in 7 nm and 4 nm nanowires respectively. The Hall factor is 

determined from experiments to be 1, indicating that the Hall mobility equals the drift mobility 

for these nanowires. Moreover, the donor deactivation and surface roughness are the major 

challenges in bottom up grown nanowires, which are not determined to be significant in top-

down fabricated nanowires, indicating the importance of high quality surface passivation for all 

the nanowires at these length scales. 
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6. Silicon Nanowire Junctionless Transistors 

Over a few decades, scaling the dimensions of the silicon based metal-oxide-

semiconductor field-effect-transistors (MOSFETs) has remarkably achieved over 2.5 billion 

transistor in present day microprocessor chip. Whilst scaling allows to achieve higher packing 

density, but downsizing the transistor with gate length (LG) below ~100 nm has not been 

brought up significant improvements in the device performance, hence strained silicon [1] been 

introduced to enhance velocity saturation [2]. Moreover the gate dielectric (SiO2) has also been 

scaled down to its physical limit ~ 1.2 nm and scaling further has markedly affected by quantum 

mechanical tunnelling effect, result in significant static current leakage from gate to channel, 

which increased the off current and the power consumption [3]. The switching operation of 

the transistors below LG ~ 50 nm is predominantly affected because it is quite challenging to 

control the on/off current at smaller length scales due to poor electrostatic control of the gate 

over the channel. Whilst high-k gate dielectric materials such as hafnium oxide (HfO2) has also 

been preferred over conventional gate dielectric (SiO2) to gain better electrostatic control [4] 

and metal gates are replaced with poly-silicon to avoid depletion effects [5] but despite of all 

these sustained efforts, scaling has further increased the short channel effects and high off 

current made that extremely difficult to exponentially shrink the planar-gate MOSFETs any 

further by using conventional approaches.  

Therefore, the conventional planar-gate is being replaced with wrap-around-gate to 

realize transistors with better electrostatic control over the channel to allow further downsizing 

without trading-off the performance of the transistors. Figure 6-1 [6] illustrates a number ways 

in which wrap-around-gate can be modified to realize different types of FETs, such as FinFETs 

[7], Tri-gate FinFETs [8,9], π-gate FETs [10,11], Ω-gate FETs [12], gate-all-around FETs [13,14] 

and bulk tri-gate FinFETs [15]. These all structures are termed as multigate transistors since the 

channel is being wrapped around by the gate from the multiple sides. The electrostatic control 

which is the capacitive coupling between the gate and the channel (achieved through the gate 

oxide) tends to improve as the wrap-around-gate is modified from figure 6-1a to 6.1e, hence 

the gate-all-around provides the maximum electrostatic control over the channel. Multigate 

transistors has reduced short channel effects and has low off-state and high on-state current 
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drive which allows faster switching operation. Low drain voltage (VDS), reduced swing in 

threshold voltage (VTh) and minimized random dopant fluctuations (RDF) made multigate 

transistors suitable candidate for future CMOS technologies.   

 

Figure 6-1: Illustration of different types of wrap-around-gate (multigate) FETs. 

This chapter demonstrates 150 nm gate length junctionless transistors fabricated with 

widths from 24 – 8 nm on ND = 4 x 1019 cm−3. It was observed that the electric field from the 

gate unable to modulate the drive current of the widest channel (24 nm) due to screening 

effects from the high electron concentration which prevents carrier depletion in the channel. 

However as the channel width was reduced from 16 nm to 8 nm, the drive current been 

modulated by the applied gate voltage and a high drive current ~ 1.28 mA/μm has been 

observed for 8 nm wide transistor where the ratio between on/off was over ~108 orders with 

a low SS of 66 mV/decade and VTh ~ 0.18 V at VD = 1.5 V. Moreover, the 8 nm wide transistor 

behaved like an insulator at low temperatures and revealed single electron oscillations at 1.4 K.   

6.1. Conduction Mechanisms in Junctionless Transistors 

The multigate transistors as figure 6-1 depicts are further characterized based on the 

doping of the source, drain and channel regions. Generally there are three main conduction 

mechanisms in multigate FETs from the doping prospective, i.e. inversion, accumulation and 

partial depletion mode, where the source, drain and channel regions are doped as N+P N+, 

N+N N+ and N+N+N+ respectively. The inversion and accumulation mode transistors [16,17] 

are the standard MOSFETs based on the formation of PN or Schottky junctions where the 
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drain is initially reverse biased to restrict any current flow in the channel region unless a 

sufficient gate voltage is being applied to create an inversion layer to provide a way for the 

carriers to flow between the source and drain regions. Hence these transistors are normally 

off and after the inversion layer being created, the current flows and transistor turned on. This 

is further illustrated in figure 6-2 [18] where the gate voltage is plotted as a function of Log of 

drain current to demonstrate these conduction mechanisms in more detail.  

For the inversion mode transistors, the channel region is depleted for the gate voltage 

(VG) below the threshold voltage (VTh) and the flatband voltage (VFb) lies well below the VTh 

where the transistor is switched off and channel region is predominantly neutral below the VFb. 

Above the VFb, depletion starts and an inversion layer is formed for the VG > VTh to turn on the 

transistor. Whereas for the accumulation mode transistors, the channel region is depleted 

below the VTh and partially depleted above the VTh until the VG = VFb where the channel region 

becomes neutral. Above VG > VFb accumulation layer being formed to keep the transistor on.  

 

Figure 6-2: Illustration of conduction mechanisms in multigate FETs from doping 

prospective a) inversion b) accumulation and c) partial depletion mode.  

On the contrary, the transistors which operates in partial depletion mode are normally 

on, they are referred as junction-less transistors or gated resistors [18, 19, 20] since all the 

transistor regions are degenerately doped with either N+ or P+, hence no doping density 

gradients are required to form any PN junctions which is a pre-requisite for inversion and 

accumulation mode transistors. The junctionless transistor works quite similar to an 

accumulation mode transistor, the channel region is fully depleted in sub-threshold regime (VG 

< VTh) and becomes partially depleted as the VG increases which causes degradation of the 
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depletion width, allows the current to flow from the neutral path. At VG = VTh the electron 

concentration reaches the doping density of the channel, increasing VG beyond VTh reaches the 

VFb where the channel region becomes fully neutral. Applying VG > VFb makes the channel 

behaves like a resistor because of the formation of accumulation layer near the interface which 

is not desirable since a high current drive has already been achieved through the higher doping 

density in the partial depletion regime with a lower electric field as compared to an 

accumulation mode transistor [18]. This is due to the work function difference between the 

gate and the channel which shifts both the VTh and VFb to the positive values [21]. The 

conduction mechanisms in a junctionless transistor are illustrated in figure 6-3.  

 

Figure 6-3: Illustration of top view of n-type junctionless transistor in a) depleted 

b) partially-depleted c) flat-band and d) accumulation mode. 

It is worth mentioning that in inversion mode transistors, for VG > VTh the most of the 

conduction is through the formation of inversion layer on the interface, where the majority of 

the carriers are confined on the top surface and sidewalls with peaks of the carrier 

concentration lies on the corners of the channel, as illustrated in figure 6-4a [21]. The same 

holds true for an accumulation mode transistor where the carrier concentration of the middle 

part equals the doping density of the channel for the VG > VTh and only a small current is being 

added before the flatband is reached. Hence in both cases the conduction is mainly through the 
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surface inversion/accumulation. However in the case of junctionless transistor, the conduction 

is through the bulk or centre of the channel (figure 6-4c [21]) for both the off-state and the 

on-state current, thus requires significantly lower electric field to direct the carriers which 

doesn’t deteriorate the mobility at higher gate voltages [22].   

 

Figure 6-4: The conduction path in an a) inversion mode b) accumulation mode 

and c) partial depletion mode (junctionless transistor) for the VG > VTh. 

The on-state current drive of the junctionless transistor is given by [19],  

𝐼𝐷𝑆𝑎𝑡  ≈  𝑞𝜇𝑁𝐷
𝑇𝑐ℎ𝑊𝑐ℎ

𝐿
 𝑉𝐷 

𝑉𝐷𝑆𝑎𝑡 =  𝑉𝐺 − 𝑉𝐹𝑏 − 􏿵
𝑞𝑁𝐷𝑇𝑐ℎ

2𝜀𝑐ℎ
+

𝑞𝑁𝐷𝑇𝑐ℎ
𝐶𝑜𝑥

􏿸 

Where 𝑁𝐷 is the doping density, 𝑇𝑐ℎ and 𝑊𝑐ℎ are the thickness and width of the channel, 

𝑉𝐷  is the drain voltage, 𝐿 is the gate length, 𝜀𝑐ℎ  is the relative permittivity of the channel 

material and 𝐶𝑜𝑥 is the gate oxide capacitance. Clearly, the drain current is proportional to the 

doping density and doesn’t directly related to the gate oxide capacitance unlike the inversion 

mode transistors. Hence the drain current increases with increasing the doping density [19]. 

The effective channel length is the distance between the source and the drain region and 

becomes critically important if the dimensions of the source, drain and channel are comparable. 

The source and the drain creates a depletion region due to the formation of PN junction which 

penetrates the into the channel region and take control of the part of the channel from the 

gate. Thus the effective channel length if equals the gate length shortens (figure 6-5a [21]) and 

result in short channel effects (SCE). The primarily cause of SCE is drain-induced barrier 

lowering (DIBL) which is due to a further increase in the depletion region from the drain side 
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as the VD is increased. DIBL lowers the VTh with increasing VD which directly influences the sub-

threshold slope as leakage current increases which in turn increases the off-state current of the 

inversion/accumulation mode transistors. Thus lowers the switching speed of the transistor by 

[19], 

∆𝑓
𝑓

= − 
2 𝐷𝐼𝐵𝐿

𝑉𝐷 − 𝑉𝑇ℎ
 

 However in a junctionless transistor, the source and the drain regions are rather 

squeezed as shown in figure 6-5b which result in an increases in the effective channel length, 

typically larger than the gate length, hence significantly reduces the unnecessary SCE which are 

limiting the junction based transistors to be further scaled down.  

 

Figure 6-5: Effective channel length as a result of short channel effects in an 

a) inversion mode and b) junctionless transistor. 

The sub-threshold slope SS determines the efficiency of a transistor to switch from its 

off-state to its on-state. It is SS defined as, 

𝑆𝑆 =  
𝛿𝑉𝑔

𝛿(𝑙𝑜𝑔𝐼𝐷)
=  

𝑘𝐵𝑇
𝑞

ln(10)݊ 

Where 𝑛 is the body effect and set to unity if the gate is effectively controlling the 

channel, at 𝑇 = 300 𝐾  the ideal SS a transistor could have is ~ 59.52 mV/decade [19]. The 

threshold voltage is the gate voltage at which the magnitude of diffusion current equals drift 

current and transistor turns on. Whilst several analytical models have been proposed to 

determine VTh but given below also accounts fully depleted channel at threshold [23], 

𝑉𝑇ℎ =  𝜙𝑀𝑆 − 𝑞𝑁𝐷 􏿰
𝑊𝐻
𝐶𝑜𝑥

+
1

𝜀𝑐ℎ
􏿵

𝑊𝐻
2𝐻 + 𝑊

􏿸
􏷡

􏿳 +
𝜋􏷡ℏ􏷡

2𝑞𝑚∗ 􏿯
1

𝐻􏷡 +
1

𝑊􏷡􏿲 
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Where 𝜙𝑀𝑆 is the metal-semiconductor work function, 𝑁𝐷 is the carrier density, 𝑊 and 

𝐻 are the width and height of the channel, 𝜀𝑐ℎ is the relative permittivity of the channel material, 

𝐶𝑜𝑥 is the gate oxide capacitance, 𝑚∗ is the effective mass and ℏ is the Planck’s constant divided 

by 2𝜋. There are number of ways to extract VTh but the most profound method used in 

multigate transistors is transconductance to drain current ratio to determine the point where 

magnitude of the drift current equals diffusion current, which is satisfied at the half of the 

maximum value of the ratio.  

𝑔𝑚
𝐼𝐷

=  
1
 2 

 􏿵
𝑔𝑚
𝐼𝐷

􏿸
𝑚𝑎𝑥

 

6.2. Device Fabrication and Experimental Setup 

Junctionless transistors are fabricated using SOI substrate on ND = 4 x 1019 cm−3. These 

are fabricated with channel widths from 24 − 8 nm where the channel length is 150 nm. The 

top silicon layer is initially etched before any pattern transfer from 55 to 10 nm to minimise 

unnecessary corner effects which becomes more visible as the channel width of hall bar devices 

reduced from 24 – 4 nm (figure 5-5). Similar device fabrication techniques are used for the 

fabrication of junctionless transistors as discussed in section 4.1, except that Al is deposited for 

source-drain metallization instead of two stage metallization i.e. Ni-Pd for make ohmic contacts 

and Al for bond pads.  

Description Dose (μC cm−2) Beam step size (nm) Spot size (nm) 

Pattern 
Transfer

Layer 1 4700 2.5 3 

Layer 2 2800 5 3 

Layer 3 2500 25 33 

Metallization 2200 25 33 

Table 6-1: Electron beam exposure parameters used for pattern transfer and source-

drain & top-gate metallization of the junctionless transistors. 

Moreover to avoid leakage current from the gate, a thicker SiO2 (~18 nm) is grown at 

an oxygen flow of 525 litre/hour at 950 ºC for 1 minute and 40 seconds. The layout for the 

pattern transfer is designed in similar way the Hall bar layouts are designed. The electron beam 
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exposure parameters are shown in table 6-1. The SEM image of the fabricated ~8 nm wide 

junctionless transistor is shown in figure 6-6 whereas it’s cross-sectional TEM image is shown in 

figure 6-7. The TEM image confirms the top-gate deposited resembles to a tri-gate as depicted 

in figure 6-1.    

  

Figure 6-6: a) SEM image of junctionless transistor with channel width = 8 nm and 

effective channel length = 150 nm. 

 

Figure 6-7: Cross-sectional TEM image of the 8 nm channel width. 

The experimental setup used to perform DC and AC measurements onto the 

junctionless transistor is shown in figure 6-8. For DC measurements, Agilent B1500 
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semiconductor parameter analyser was used which was connected to probe of Oxford 

Instruments Teslatron via a BNC pin-out box to access the bonded device inside the cryostat. 

This allowed to perform temperature dependent DC measurements ranging from 300 to 1.4K. 

Similarly low noise/ low current AC measurements are performed to probe Coulomb blockade 

and single electron tunnelling in a junctionless transistor typically at cryogenic temperatures. An 

Agilent 33521A arbitrary waveform generator source was used with a voltage divider to apply 

low voltage to the source of orders of few mV whereas Stanford Research SR-830 lock-in 

amplifiers were used to record Vin at the source input and Iout drain output simultaneously while 

VG being applied from Agilent 3631A power supply.  All these instruments were accessed and 

controlled using a LabView’s virtual instrument (VI) program connected to the computer via 

GBIP interfaces.   

 

Figure 6-8: Experimental setup for DC and AC measurements taken at room and 

cryogenic temperatures using Oxford instruments Teslatron. 

6.3. Results & Discussions 

Degenerately doped junctionless transistors are fabricated on SOI substrate with channel 

width = 24, 16 and 8 nm, channel height = 10 nm and channel length = 150 nm, where ND = 

4 x 1019 cm−3. A 2 μm wide wrap-around-gate (resembles to a tri-gate, figure 6-1) is deposited 

over the channel covering the effective channel length. Initially DC measurements were 
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performed with B1500 semiconductor parameter analyser at room temperature in a Cascade 

microtech probe station. The drive current in a planar gate transistor is generally normalized 

by the width but in a tri-gate configuration, since the channel is being electrostatically controlled 

by the 3 sides, the effective width becomes 2H + W, where H is the height and W is the width 

of the channel. The variation in the drive current as a function of channel width measured at 

VD = 1.5 V is shown in figure 6−9.  Results indicated an increase in drive current from 1.28 

mA/μm to 1.75 mA/μm as the width of the channel increases from 8 to 24 nm for the fixed 

channel length. Clearly this is attributed to the doping density, since the drain current in a 

junctionless transistor is proportional to the doping density. Also the carrier density tends to 

increase with the increasing width (figure 5-10), so the drive current increases proportionally. 

In previous discussion while determining the resistivity of the nanowires (figure 5-8) fabricated 

on SOI substrate with a doping density ND = 4 x 1019 cm−3, a significant degradation in resistivity 

has been observed due to depletion effects and as the nanowire widths reduced from 24 to 7 

nm, the resistivity increased from 8 to 70 m-ohm-cm respectively. Hence it can be anticipated 

that the doping in the wider channels is N+ which becomes predominantly N as the channel 

width is reduced due to increase in the depletion effects.  

 

Figure 6-9: Drive current in a junctionless transistor as a function of 

different channel widths. 
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Figure 6-10: Transfer characteristics (ID−VG) of junctionless transistor with 

widths 8, 16 and 14 nm measured at VD = 1.5 V. 

For 8 nm wide transistor, the measured off-state current ~ 1 x 10−14 A (or 0.35 pA/μm) 

is below the minimum current detection level of the B1500 semiconductor parameter analyser 

whereas the on-state drive current is ~ 3.6 x 10−5 A (or 1.28 mA/μm) at VG = 1.5 V, hence an 

enormous enhancement in the current has been observed where the ratio between on/off 

current is over ~ 108 orders. With similar doping density, the drive current is over an order 

higher than previously demonstrated [19], but this could potentially be due to shorter channel 

length in our transistors, since most of the demonstrations typically has a channel length over 1 

μm [19−21] and drive current is known to increase as the channel length is reduced [24]. The 

peak transconductance lies at VD = 1.2 V which is ~ 26.5 μS. The threshold voltage is extracted 

from transconductance to drain current ratio method. For 8 nm wide transistor, VTh is ~ 0.18 

V measured at VD = 1.5 V, whereas for 16 and 24 nm wide transistors, VTh is − 0.37 V and – 

1.75 V respectively. Hence wider transistors are predominantly depletion mode devices 

whereas the 8 nm wide transistor is on the edge of depletion and enhancement mode, since 

VTh is close to zero for higher drain voltages whereas in minus for lower drain voltages. 
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Figure 6-11: Output characteristics (ID−VD) of an 8 nm wide junctionless 

transistor at VG ranging from 0 to 1.5 V in steps of 300 mV. 

            

Figure 6-12: Transfer characteristics (ID−VG) of an 8 nm wide junctionless 

transistor at VD ranging from 5 mV to 1.5 V. 
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Analysing the sub-threshold slopes of different channel widths measured at VD = 1.5 V, 

the 8 nm wide transistor has a minimum sub-threshold slope of 66 mV/decade (measured 

between 1 x 10−12 to 1x 10−11 A). Such low sub-threshold slope is close to the ideal theoretical 

limit of ~59.52 mV/decade and reveals body effect 𝑛 = 1.11, which means that the gate is 

controlling the channel with over ~ 89% efficiency. In contrast for 16 nm wide transistor, sub-

threshold slope increased dramatically to 580 mV/decade where the ratio between on/off 

current fallen to less than ~103 orders as compared with ~108 orders with 8 nm wide transistor, 

moreover the off-state current increased to 4.89 x 10−7 A. For 24 nm wide transistor, the sub-

threshold becomes nearly flat as the drain current increased linearly from 2.55 x 10−5 to 6.41 

x 10−5 A for the gate voltages between VG = −1.5 to 1.5 V. So the wider channels has metallic 

conductivity and behaving more like a resistor but as the channel width is reduced and surface 

depletion increases, the gate has got effective control over the channel. A 2 nm surface 

depletion for an 8 nm wide transistor accounts 50% of the channel, hence provides room to 

be operated in a junctionless mode. To evaluate the short channel effects, DIBL is determined 

from the following relation, 

𝐷𝐼𝐵𝐿 = − 
𝑉𝑇ℎ

ℎ𝑖𝑔ℎ −  𝑉𝑇ℎ
𝑙𝑜𝑤

𝑉𝐷
ℎ𝑖𝑔ℎ −  𝑉𝐷

𝑙𝑜𝑤
 

Where 𝑉𝑇ℎ
ℎ𝑖𝑔ℎ and 𝑉𝑇ℎ

𝑙𝑜𝑤 is the threshold voltage extracted at a higher (𝑉𝐷
ℎ𝑖𝑔ℎ) and a lower 

(𝑉𝐷
𝑙𝑜𝑤) drain voltage respectively. For an 8 nm wide transistor, change in the threshold voltage 

extracted at 1.5 and 10 mV drain voltages is ~159 mV, hence the DIBL is ~106 mV/V. For such 

low DIBL the loss in switching operation is ~16%. Moreover an enormous increase in DIBL 

(~1340 mV/V) has observed for 16 nm wide transistor which corresponds to further 

deterioration of switching operation by ~237%. Hence with fixed channel width ~ 150 nm, 

increasing the channel width incorporates severe short channel effects. The junctionless 

transistors has slightly higher threshold voltage dependence on temperature than its rivals, 

therefore transfer characteristics of an 8 nm wide transistor are measured at different 

temperatures. Earlier the resistivity of the nanowires as function of temperature (figure 5-9) is 

discussed in section 5.3. It was observed that for wider widths the resistivity decreases as 

temperature goes down from 300 – 1.4 K due to metallic conductivity, however for the 

nanowire with the smallest width, resistivity increased as the temperature goes down from 300 

to 150 K after which resistivity decreased as the temperature is further reduced to 1.4 K.  
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Figure 6-13: Transfer characteristics (ID−VG) of an 8 nm wide junctionless 

transistor for VD = 1.5 V measured at 300 K and 70 K.     

 

Figure 6-14: Temperature dependent transfer characteristics of an 8 nm wide 

junctionless transistor measured at VD = 10 μV using AC techniques. 
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This is due to swap over in the transport mechanism observed in partially depleted 

nanowires. Similar characteristics has been observed while measuring the transfer 

characteristics of 8 nm wide junctionless transistor. The threshold voltage is moved towards 

more +ive values as the temperature goes down but below 150 K a swap over has been 

observed and threshold voltage started moving the other way. Figure 6-13 depicts the threshold 

voltage measured at VD = 1.5 V at 70 K, revealed a decrease in threshold voltage to ~ 0.06 V 

as compared to ~ 0.18 V measured at 300 K. The sub-threshold slope however decreased as 

function of temperature since it’s predominantly depends on the diffusion current. The 

minimum sub-threshold measured at 70 K is ~39 mV/decade (between 1 x 10−12 to 1x 10−11 

A). However due to fewer measurements, the discrepancy between sub-threshold slope and 

temperature can’t be established. The sub-threshold slope at 300 K is 66 mV/decade which 

revealed body effect n = 1.1. Considering the similar body effect, theoretically the sub-

threshold slope at 70 K would be 15.4 mV/decade, whereas experimentally 39 mV/decade has 

been observed at 70 K. This could be due to the argument established from the measurements 

and theoretical calculations in chapter 5 that only half of the donors has been activated and the 

mobility is vastly affected by the neutral impurity scattering mechanism. Hence the sub-

threshold slope has not been linearly decreased as function of temperature due to degradation 

of mobility.    

Further it was observed that the current in sub-threshold regime is supressed for small 

applied voltages ~ 10 mV below 70 K, indicated the evidence of Coulomb blockade and single-

electron tunnelling effects. This has been further explored with another 8 nm wide transistor 

using low noise/ low current AC technique, where a constant VD = 10 μV is applied to the 

source and current is measured at drain terminal using lock-in-amplifiers while the VG is swept 

from 0−2V. Assuming an 8 nm wide transistor has a surface/line-edge roughness of a nm, 

corresponds to 25% of the channel total width of the channel. There is a fair possibility that the 

channel has formed into a number of islands of charge through which the electrons are 

tunnelling. Results are presented in figure 6-14, shows a non-linear sub-threshold current below 

50 K which turned into a number of periodic single-electron oscillations at 1.4 K for the VG 

between 0.6 – 1.75 V. The average width of the oscillation is ~12 meV which corresponds to 

an island size of ~ 7 aF. However when the temperature is increased to 25 K, most of the 

oscillations are smeared out because the thermal energy exceeded the charging energy of the 

corresponding islands. 
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6.4. Summary 

Results are presented for the short-channel junctionless transistors fabricated with widths 

from 24 – 8 nm where the channel length is fixed to ~150 nm. It was observed that wider 

channels has metallic conductivity but as the width is reduced to 8 nm, an increase in surface 

depletion makes the channel partially depleted to be operated in junctionless mode. A high 

drive current ~ 1.28 mA/μm has observed for 8 nm wide transistor where the ratio between 

on/off was over ~108 orders with a low SS of 66 mV/decade and VTh ~ 0.18 V at VD = 1.5 V. 

Moreover a low DIBL ~ 106.6 mV/V has also been observed indicated reduced SCE. However 

the threshold voltage extracted for the lower drain voltages found to be predominately in 

negative. At VG = 0, there is significant drive current in the channel of orders of 10−6 A, whereas 

the off-state current (1 x 10−14 A) is measured at VG = − 0.75 V. These issues can be addressed 

by replacing the aluminium with another metal, which has a higher work function. For example, 

molybdenum and tungsten (has a work function varies between 4.36 – 4.95 and 4.32 – 5.22 

respectively) can be used to shift the off-state current and sub-threshold characteristics 

towards the positive values by a volt. Moreover, etch process has to be optimized for any of 

these metals using SF6/C4F8 based ICP plasma to downsize the present gate length from 2 μm 

down to a few nm.  
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7. Molecular Metal Oxide Nanoelectronics 

The molecular electronics has gained substantial interest in potential application in non-

volatile flash memory devices due to the requirement of the low operational power for the 

electronic devices. The molecular reduction-oxidation (redox) states allows to reversibly charge 

and discharge the molecules by applying alternative ± voltage pulses if they being used as a 

floating gate (FG) in a typical metal oxide semiconductor (MOS) transistor [1]. The charge 

stored in the floating node changes the surface potential and so the conductivity of the channel 

which controls the sub-threshold slope (SS) of the MOS transistor. Encapsulating the molecular 

charge in the FG provides strong charge confinement and has advantages over conventional 

poly-silicon FG memory devices where the interference due to FG result in a shift of 0.2 V in a 

multilevel cell operation due to capacitive coupling between the cells [2]. Whilst this issue can 

be addressed by introducing the charge trapping dielectrics [3] or metallic nano clusters [4] in 

the FG but can potentially result in large variability in charge trap density.  

The redox active molecules produced as a result of chemical synthesis have better self-

assembly and yields to linear spatially distribution in the charge storing centres [5] allows to 

realize FG down to a few nm. Efforts has been made in pursuit of molecule based flash memory 

devices, such as organic redox active molecules based on ferrocene [6], porphyrin [5] and 

fullerenes [7] are used to demonstrate memory devices but these are subject to low retention 

time (due to lower redox potential) and high thermal budget. Also these demonstrations suffers 

from low electrical conductivity, high access resistance and difficulty to produce in high yield. 

There are other practical issues associated such as requirement to chemically attach the 

molecules to the substrate [8], complicated molecule in-device assembly steps [9], electrode 

materials incompatible with MOS [10], complex write processes using optical input [11] and 

most importantly the molecules are not compatible with high temperatures to properly 

integrate them into the current MOS technologies. On the contrary, the inorganic redox active 

molecules are not been predominately explored in the quest for memory devices. Therefore 

this work in particular explores Wells-Dawson’s class of polyoxometalate (POM) molecules, 

which are inorganic metal-oxide-nano clusters formed from early transition of metal ions and 
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oxo ligands, These molecules are extensively studied in [12]. The work presented in this chapter 

has been done in a collaboration with several groups across the school of engineering as part 

of the EPSRC Molecular MOS project. Lee Cronin’s group was involved with synthesis, 

characterization, electrochemical analysis, electron paramagnetic resonance (EPR) studies, 

crystallography, density flow theory (DFT) calculations whereas Asen Asenov’s group was 

responsible for industrial level device modelling of the POM clusters by encapsulating them in 

the FG of a single transistor flash memory cell. However the practical devices i.e. 2 terminal 

nanowires for sensing POM molecules and side-gated FETs to realize flash memory operation 

using POM molecules were fabricated, tested and analysed by myself. 

 

Figure 7-1: A selenium-based polyoxotungstate inorganic redox active 

(parent) molecule. 

7.1. Polyoxometalate (POM) Molecules 

POM molecules are nano-scale sized (ca. 1.2 x 1 x 1 nm) molecules having highly charged 

poly-anions, electronically (redox) active metal-oxygen clusters and have exceptional thermal 

stability (ca. 600 °C), moreover the multiple redox states of POM molecules can allow to realize 

multi-bit storage cells. Thus POM molecules are potential candidate to be used for the 

integration in molecular flash memory devices with current MOS technologies. The POM 

molecules are Dawson-like archetype with general formula {M18O54(XOn)2}m− where M = Mo 
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or W, X = P, S or Se, n = 3 or 4 and m = 2 to 8. Thus the core-shell nature of POM molecules 

allows dopants to be included to control the electronic behaviour at the molecular level [13]. 

The doping of metallic cage by various materials allows to modulate the electronic properties 

of the molecular capsule especially if electronically active templates are embedded [14].  

The thermal stability of tungsten based clusters are better than molybdenum, also density 

functional theory (DFT) calculations allowed to understand the reactivity and electronic 

structures of the clusters to choose appropriate heteroatom [15]. After careful considerations 

it is been found that {SeIVO3} would provide optimum balance in terms of structural stability 

and electronic reactivity, concluded that the cluster anion [W18O54(SeO3)2]4− would be most 

suitable candidate to explore molecular flash memory devices. Figure 7-1 shows ball-and-stick 

illustration of the atomic structure of [W18O54(SeO3)2]4− where two core Se dopants (shown 

by red balls) bonded with three O atoms (shown by grey balls) each and encapsulated in a 

cluster cage of W and O atoms (shown by blue and grey sticks respectively). These molecules 

are synthesized via dehydration of two selenite containing clusters [W18O54(SeO3)2(H2O)2]8−  

by a cation exchange reaction in which the cluster undergoes dehydration and rearrangement 

of the tungsten scaffolding.  

 

Figure 7-2: a) Cyclic voltammetry plot of the [W18O54(SeO3)2]4− molecules and 

illustration of atomic structure of molecules in b) LUMO and c) HOMO states.     
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 The core elliptical shell of the [W18O54(SeO3)2]4− molecules is ~ 1 nm in length and 

accommodates two anions in their intermediate oxidation state [SeIVO3]2− and demonstrates 

exceptionally rich redox behaviour associated with the reduction and oxidation of the {W18O54} 

cluster cage.  Figure 7-2a [22] shows the cyclic voltammetry of the [W18O54(SeO3)2]4− 

molecules, which is obtained from the microcrystals adhered to a glass carbon electrode (GCE) 

of diameter 1.5 mm in a 0.1M tert-butyl alcohol (TBA) PF6 acetonitrile solution at a scan rate 

of 200 mV s−1 and scanning range of -2.5 V to 1.8 V against Ag/AgCl electrodes. Figure 7-2a 

shows that the {W18O54} cluster cage can be reduced up-to six times by trapping an electron 

into the cluster (shown by top-blue peaks), whereas by reversing the sweep, the trapped 

electrons can be released from the cluster (shown by the bottom-blue peaks). Thus the cluster 

can undergo a series of reversible electronic states in addition to the oxidation of Se (shown 

by red peak) which result in a transition of SeIVV and formation of a Se∙∙∙Se bond in an O3Se-

SeO3 moiety containing two SeV within the cluster shell, (illustrated in figure 7-3d) feasibility of 

which was determined from DFT calculations. On the contrary reduction does not change the 

internal heteroatom and additional goes to the symmetry adapted orbitals [16].The HOMO-

LOMO gap (HLGAP) is the difference between the highest occupied molecular orbital (HOMO) 

and lowest un-occupied molecular orbital (LUMO). The HLGAP of the parent molecules is 3.45 

eV determined from the DFT calculations whereas upon oxidation the HLGAP reduced to 2.01 

eV. Figure 7.2b and 7.2c shows the illustration of atomic structure of the [W18O54(SeO3)2]4− 

molecule in LUMO (in reduced form) and HOMO (in its parent form) respectively. The LUMO 

are d-like and are generally delocalized over the metal centres connecting W-O-W by relatively 

large angles whereas HOMO are p-like and are primarily delocalized over the oxygen atoms 

[17,18]. It is worth mentioning that these orbitals don’t form any bands because they are 

separated by discrete energy levels [19].  

 

Figure 7-3: A summary of the redox behaviour of [W18O54(SeO3)2]4− molecule. 
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The [W18O54(SeO3)2]4− molecule will now be referred as POM molecule for the rest of 

the text. The POM molecules are stable in both the solid state or in the dilute solution [20]. For 

example, acetonitrile solution is used as solvent to prepare a solution of POM molecules. The 

parent POM molecule has a charge of –4, which is balanced by +4 counter-cations from the 

acetonitrile solution, so the parent POM molecule would be in its stable state with no net 

charge. When an electron is pumped-in to the POM molecule, the net charge becomes –1, so 

the molecule behaves like n-type. Similarly if 2 electrons are pumped-out from the POM 

molecule the net charge becomes +2 and molecule behaves like p-type. So these POM 

molecules are highly redox-active and exhibit multiple and stable oxidation and reduction states 

which are reversible as evident from the cyclic voltammetry of the POM molecules shown in 

figure 7.2a. 

7.2. Device Modelling 

A multi-scale and multi-level computational framework is designed by the ‘Device 

Modelling Group’ in school of engineering to evaluate the possibility and perform realistic 

modelling and simulations of the POM molecules to replace them with the conventional poly-

silicon in a floating gate (FG) to realize a non-volatile molecular flash memory device, details of 

which can be found in [21,22] but some of the results are summarized in here for the clarity 

to link between the modelled and practical devices. Figure 7-4 [21] shows the illustration of a 

non-volatile flash memory cell designed with shallow trench insulation (STI) using 18 nm gate 

length n-type single transistor to deliver accurate results.  

 

Figure 7-4: Illustration of a non-volatile flash memory cell based on POM molecules. 
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Figure 7-5 [21] shows the block diagram representation of the simulation methodology 

used to perform modelling of a flash memory cell. At first instance, density functional theory 

(DFT) simulations are done onto the POM molecules to determine the atomic charges and 

obtain the spatial charge distribution for the POM molecules at different redox states which 

are later transferred to the commercial three-dimensional (3D) numerical device simulator 

(GARAND) [23] via a custom build ‘Simulation Domain Bridge’ connecting two very distinct 

simulation softwares. This hierarchy allows to accurately analyse the POM molecules involving 

~ 100 atoms at molecular level and links it to the GARAND simulator which determines the 

current flow through the flash memory cell requires continues modelling at mesoscopic level 

involving millions of atoms [21].  

 

Figure 7-5: Illustration of the simulation methodology. 

The DFT calculations gives insight into the POM molecules and helps to understand and 

analyse the structural, electronic and magnetic properties. Here the purpose of DFT was to 

extract the atomic and electronic structure of the POM molecules in a given redox state, but it 

is worth mentioning that these calculations can only be liable for individual molecules. The POM 

molecules are deposited in the FG either randomly or in a matrix of 3 x 3 and a minimum 

number of 10 molecules were required to realize sufficient storage in the FG. The purpose of 
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simulation domain bridge was to generate a spatial charge distribution of the POM molecule in 

a given redox state taking account the counter-cations (from solvent) balancing the net charge 

onto the POM molecule. This spatial charge distribution (shown in figure 7-5) is imported to 

the GARAND simulator as a fixed fractional charge in the gate-oxide of the flash memory cell. 

This allows to realize the charge stored in the FG for various spatial and redox configurations 

and 3D numerical simulations were performed considering drift-diffusion transport 

mechanisms and density gradient quantum corrections required for accurate modelling [21]. 

Thus, transfer characteristics are calculated in this way to extract the programming window 

(the threshold voltage change between the charged and discharged molecule) [21].  

In flash memory cell, the doping of the channel was ~ 5 x 1018 cm–3 to allow sufficient 

carriers in the channel adequate enough to maintain an electrostatic integrity at smaller length 

scales. Such high doping is also necessary to able to get a clear response from the charge stored 

in the FG on the drain current of the transistor which changes the threshold voltage and so the 

sub-threshold slope. The ratio between W/L is considered 1 for all the simulations which means 

the gate area is 18 nm square. The total thickness of the gate oxide (SiO2) is ~ 4 nm whereas 

the POM molecules are deposited 1.5 nm apart from the channel, the modelling is mainly 

focused on the ∆𝑉𝑇ℎ and sheet charge approximation (SCA) which is related to the gate oxide 

as follow [21], 

𝑄𝑆 =  − 𝑞𝑛𝑁𝑆 

∆𝑉𝑇ℎ =  
𝑄𝑆𝑇𝐶𝑂𝑁

𝜀𝑂𝑥𝑖𝑑𝑒
 

Where 𝑞  is the electron charge, 𝑛  is the number of times the POM molecules are 

reduced, 𝑁𝑆  is the sheet density, 𝜀𝑂𝑥𝑖𝑑𝑒  is the permittivity of the gate oxide, 𝑇𝑇𝑢𝑛  is the 

thickness of the tunnelling oxide (between the channel and the FG) and 𝑇𝐶𝑜𝑛 is the thickness 

of the control oxide (between the FG and the control gate). Thus SCA allows to compute 

∆𝑉𝑇ℎ as function of total number of POM molecules and associated charges, where ∆𝑉𝑇ℎ 

entirely depends on 𝑇𝐶𝑜𝑛 and is independent of 𝑇𝑇𝑢𝑛. Here 𝑁𝑆 is assumed ~ 3 x 1012 cm2 and 

5 x 1012 cm2 which corresponds to the 9 and 12 POM molecules in an arrangement of a matrix 

of 3 x 3 and 4 x 4 respectively separated by ~ 3nm. Figure 7-6 [21] shows the charge density 

as function of ∆𝑉𝑇ℎ when POM molecules are reduced 1x and 2x for various thickness of 
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control oxide. For 7.8 nm control oxide, ∆𝑉𝑇ℎ of 1.2 V is observed when 1 electron is trapped 

into the POM molecule. Whilst increasing the thickness of control gate increases the ∆𝑉𝑇ℎ but 

may result in degradation of the electrostatic integrity. Since the conduction and the valence 

band edges of the SiO2 are far larger than the LUMO and HOMO of the POM molecules, it 

can provide strong insulation barrier for the retention of charges in the FG [21, 22].  

 

Figure 7-6: Sheet density as function of ΔVTh for various thickness of TCON. 

Figure 7-7 shows the current – voltage (ID-VG) characteristics of the flash memory cell 

measured at a drain voltage of 50 mV, here 9 POM molecules are placed in an arrangement of 

3 x 3 matrix. It clearly demonstrates that the while adding an electron to each parent POM 

molecule, the off current at VG = 0 is reduced by 3 orders, further when 2 electron been 

trapped in the POM molecule, the OFF current is reduced by 5 orders. Similarly when 2 

electron are removed from the parent POM molecule, the OFF current is increased by more 

than 4 orders. This is due to the fact that the OFF currently is influenced by the electron density 

distribution of the channel and adding more negative charge in the FG will repel the electrons 

in the channel of the transistor. Change in the OFF current is evident from the change in the 

threshold voltage and for each time an electron is pumped into the POM molecule, the 

threshold voltage changes by ~1.2 V at drain current = 2 x 10–6 A.  
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Figure 7-7: Transfer characteristics a) linear and b) logarithmic scale of the flash 

memory cell measured at drain voltage of 50 mV for POM molecules in the FG at 

various redox states. 
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7.3. Device Fabrication and Experimental Setup 

In order to probe POM molecules and demonstrate molecule flash memory operation, 

initially 2 terminal nanowires were designed and fabricated with mean widths from 24 to 7 nm 

to be able to detect the presence of POM molecules on the nanowire surface. Furthermore 

side-gated FETs with mean width ~ 4 nm are fabricated which is actually a Hall bar device with 

a side gate to able to demonstrate transistor characteristics. The purpose of side gate is to 

charge and discharge the POM molecules with alternative ± pulses to determine any 

subsequent change in the threshold voltage and sub-threshold slope of the transistor. This 

configuration of side-gated FETs differs from the flash memory cell being modelled in section 

7.2 but allows to deposit POM molecules at any stage and can provide sufficient evidence for 

the proof of concept. The device fabrication techniques used for the 2 terminal nanowire 

devices and the side gated-FETs are discussed in detail in section 4.1, the only exception is that 

the Al is replaced with Au for the bond pads deposited over Ni-Pd contacts to allow electrical 

characterization. Au is preferred because the POM molecules reacts with Al and overall surface 

being coated showed evidence of significant conduction between the bond pads. The layout 

for the pattern transfer is designed in similar way the Hall bar layouts are designed. The electron 

beam exposure parameters used for the pattern transfer of both kind of devices is shown in 

table 7-1.  

 Dose (μC cm−2) Beam step size (nm) Spot size (nm) 

2T-D SGFET-D 2T & SGFET Devices 2T & SGFET Devices 

Layer 1 3100 2500 2.5 3 

Layer 2 2500 2000 5 3 

Layer 3 2200 1800 25 33 

Table 7-1: Electron beam exposure parameters used for the pattern of the 

2 terminal nanowire devices and side-gated FETs. 

Agilent B1500 semiconductor parameter analyser is used to perform all DC 

measurements onto the 2 terminal nanowires and side-gated FETs at 300 K. The POM 

molecules are delivered in a crystalline form the ‘Cronin’s Group – School of Chemistry’ which 



Chapter 7 – Molecular Metal Oxide Nanoelectronics  

127 

 

were dissolved in acetonitrile solution at a concentration of 2.5 mg/mL. The solution is then 

agitated in ultrasonic bath for ~ 5 minutes at 30 °C to ensure it is fully dissolved. The devices 

were then immersed in the solution for ~ 5 minutes and blown dry with the nitrogen gun.     

 

Figure 7-8: SEM image of a 2 terminal nanowire device with mean width ~ 7 nm 

used to detect POM molecules. 

   

Figure 7-9: SEM image of a side-gated FET with mean width ~4 nm used to 

charge/discharge POMs to demonstrate flash memory operation. 
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7.4. Results & Discussions 

The 2 terminal nanowires devices are fabricated on SOI substrate with a doping density 

ND = 8 x 1019 cm−3 in order to investigate any change in the resistivity of the nanowires due to 

the presence of POM molecules. Coating nanowires with any solvent result in some change in 

the surface potential due to change in the work function which certainly changes the resistivity 

of the nanowires. Since acetonitrile is the solvent used for the POM molecules, therefore at 

first instance, the resistivity of nanowires was being measured after devices been dipped in 

acetonitrile solution for few minutes and blow dry with the nitrogen to consider any effect 

from the solvent. Later, same devices were dipped in a solution of POM molecules and 

measured right after to determine any change in the resistivity.  

 

Figure 7-10: Change in the resistivity of nanowires coated with and without 

POM molecules. 

The results from cyclic voltammetry and device modelling predicted that the parent POM 

anion has a net charge of −4 but it will be balanced by +4 counter-cautions from the acetonitrile 

solution, so the parent POM molecule would be in its stable state with no net charge. However 
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in reality that was not the case and a negative charge on the POM molecule has been observed. 

This could potentially be due the fact that not all the POM anions are being balanced by counter-

cations and there are vast majority of clusters being unaffected or still has some negative charge. 

This is evident from the figure 7-10 that the resistivity of all the nanowires tend to increase 

after nanowires been coated with POM molecules, hence clearly indicates the negative (n-type) 

behaviour of POM molecules. The average change in the nanowire resistivity after nanowires 

been coated with POM molecules is ~ 3.6 m ohm-cm which corresponds to ~ 13 % increase 

in the resistivity. To confirm whether this change is due to negative charge associated with the 

POM molecules, not due to the electron heating expected in such thin nanowires, a voltage 

divider low noise / low current AC setup (similar to figure 6-8) is used to apply 0−5 mV across 

the nanowires, where the input voltage and output current is measured using lock-in-amplifiers. 

Similar results have been obtained with both DC and AC techniques which convinced that the 

change in nanowire resistivity is due to negative behaviour of the POM molecules and not all 

the clusters are in their stable state.  

 

Figure 7-11: Output characteristics of the side-gated FET at different gate 

voltages in steps of 2 V. 
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To provide first demonstration of non-volatile flash memory device based upon POM 

molecules, side-gated FETs with mean channel width ~ 4 nm were fabricated on SOI substrate 

with a doping density ND = 4 x 1019 cm−3 by introducing a side-gate to the Hall bar device. The 

side-gated FETs were designed and fabricated in an array of 9 independent devices where the 

distances from side-gate to channel was varied between 30 to 100 nm. From experiments a 

gap of 60 nm was found most suitable to deposit POM molecules between gate and channel 

and able to demonstrate reproducible results. Whilst the device was expected to a depletion 

mode FET but due to sufficient surface depletion, it turned out to be an enhancement mode 

FET. Figure 7-11 shows the output characteristics of the side-gated FET clearly demonstrates 

that high gate voltages are applied to turn on the transistor. The key advantage of this design 

over the modelled vertical flash memory cell is that the POM molecules can be deposited at 

any stage. Hence allows to measure the output and transfer characteristics of the transistor 

with/without POM molecules and charge/discharge the clusters by applying alternative ± pulses 

from the side-gate and re-measure the transistor characteristics.  

Figure 7-12 shows a) linear and b) logarithmic scale transfer characteristics of the side-

gated FET measured at a drain voltage of 500 mV, demonstrates flash memory operation, 

measured at 300 K. Figure 7-12b shows the sub-threshold slope of the gated-FET without POM 

molecules been coated (blue), over 8 orders of enhancement in on-state drive current been 

observed where the ratio between the on and off-state current (VG = 0V) is more than 4 

orders. A change in threshold voltage of 1.1 ± 0.1 V has been observed from the bare nanowire 

to the nanowire been coated with POM molecules, indicates a sheet charge density stored in 

the POM molecules of ~ 2 x 1015 cm−2.  This is similar behaviour observed while determining 

the change in resistivity of nanowires with/without POM molecules being coated, that not all 

the clusters are in their stable state and there are significant number of POM molecules in their 

oxidation states. The OFF current at VG = 0 is reduced by more than 2 orders confirms the 

similar trend been observed in the modelled flash memory cell where the OFF current was 

reduced due to presence of POM molecules in their oxidation state. Later, side-gate has been 

used to apply large alternative ± pulses to charge and discharge the POM molecules in order 

to exploit their redox nature.  



Chapter 7 – Molecular Metal Oxide Nanoelectronics  

131 

 

    

        

Figure 7-12: Transfer characteristics a) linear b) logarithmic scales of the side-gated FET 

measured at drain voltage of 500 mV with and without POM molecules and after 

alternative ± pulses from side-gate to demonstrate flash memory operation. 
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 Since a large gate voltage was applied to obtain transfer characteristics, so doubled the 

gate voltage is used (20 V) to apply the pulses, which is 40 MV/m between the side gate and 

the channel, well below the breakdown voltage of thermal oxide (SiO2) of 109 V/m, therefore 

it is very unlikely that thermal oxide around the nanowire is charging [24]. A gate voltage of 

−20 V for 3 seconds is applied to inject the charge in the POM molecule above the LUMO 

energy state after which transfer characteristics were measured. A change in threshold voltage 

of 1.2 ± 0.1 V (at 10−10 A) has been observed demonstrating the POM molecules been charged 

with a negative potential, similarly a gate voltage of +20 V for 3 seconds is applied to remove 

the stored charge from the POM molecules after which transfer characteristics measured again, 

demonstrating the POM molecules been discharged with a positive potential, hence the sub-

threshold slope returned back to its original discharged state. There is more than an order of 

current varied in charging and discharging mechanism. This effect is highly repeatable and clearly 

demonstrates the programming window of ~1.2 V at low gate voltages for charging and 

discharging the POM molecules. Whilst the current geometry of the side-gated FET is not 

optimized and high voltages are required to charge and discharge the POM molecules, figure 

7-13 shows the logarithmic plot of program/erase time (pulse time) as function of change in 

the threshold voltage demonstrates that the present limit of program/erase time is limited by 

100 ms. The charge retention time of POM molecules measured to be non-volatile for at least 

2 weeks (336 hours). Whilst ultimate retention time is still not know but can be significantly 

longer, since no decay in the stored charge has been measured over the two 2 weeks.  

The read time however is presently limited only by the RC time constant (i.e. product of 

resistance and capacitance: 22.3 pF x 250 kΩ = 56 μs) of the channel and especially by the large 

bond pad capacitance. A radio-frequency (RF) design of the device and optimization of the 

capacitance and resistance should able to reduce this to sub-nanosecond read times. Moreover 

the write/erase time is also limited by the large density of POM molecules (~2 x 1015 cm−2) and 

current compliance of the Agilent B1500 semiconductor parameter analyser. Preliminary 

calculations suggested that 100 POM molecules would have a sub-picosecond write time, 

subject to the device and characterization limits, but we expect the fundamental charging 

mechanisms of the POM molecules to dominate at such device dimensions. The above analysis 

clearly demonstrates that the ultimate performance of the POM molecules has not been 

reached and further work is required to determine the fundamental limits of the proposed 
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technology. The sub-threshold slope in charged state indicates additional charging mechanisms 

in the device in addition to the POM molecule charging and discharging mechanisms. This is 

because the POM molecules have been distributed over the entire device with high density, 

there are many potential charging mechanisms that could provide this type of non-optimal 

behaviour. The sub-threshold slope in discharged state also indicate that the return to the 

original state has not been completed, suggesting that optimization of the device geometry and 

POM molecule positioning is required to improve the performance, Nevertheless, these 

measurements demonstrate that it’s possible to produce functional flash devices using POM 

molecules owing to their intrinsic n-type properties simply by drop-casting a solution of the 

POM directly onto the gate architecture in a one-step process. 

 

Figure 7-13: Change in VT as function of pulse time applied from side-gate to 

charge and discharge (program and erase) the POM molecules. 

7.5. Summary 

Efforts has been made to demonstrate first ever POM molecules ([W18O54(SeO3)2]4−) 

based non-volatile flash memory devices. The POM molecules exhibit highly redox properties 

determined from the cyclic voltammetry indicated at least 6 reversible reduction states and an 
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oxidation state responsible for the transition of SeIVV. DFT calculations are made to determine 

atomic charges and spatial charge distribution of POM molecules which are used for highly 

accurate modelling of molecular flash memory cell using GRAND simulator. These results are 

compared to the practical nano-scale fabricated devices. At first instance, 2 terminal n-type 

nanowires are used to probe the presence of POM molecules, results indicated that the 

resistivity of nanowires increased after POM molecules deposited around the nanowire, shown 

n-type behaviour of the POM molecules. Furthermore side-gated FETs are fabricated with 

mean widths ~ 4 nm, where alternative ± pulses (− for charge, + for discharge) from the side-

gate were applied to charge and discharge POM molecules to demonstrate molecular flash 

memory operation. The average change in the threshold voltage was ~ 1.2 V between the 

charging and the discharging cycles, which was predicted by the device been modelled. The 

program/erase time was limited by 100 ms for a reasonable single-to-noise ratio whereas the 

stored charge has been found to be non-volatile over the period of 2 weeks.  
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8. Conclusions & Future Work 

Results are presented in previous chapters involves process optimization for pattering 10 

nm features in negative tone HSQ resist using high resolution electron beam lithography, 

reactive ion etching 10 nm silicon nanowires for pattern transfer and thermal oxidation for high 

quality surface passivation for the fabrication of silicon nanowires devices on phosphorus doped 

silicon-on-insulator (SOI) substrate. The procedures and techniques developed to pattern 10 

nm features in HSQ resist, are discussed in chapter 2. HSQ is widely acknowledged for 

producing high resolution features down to ~3 nm but most of the demonstrations typically 

involved patterning in thin HSQ films ~ 30 nm or below. One of the reason to use such thin 

films for patterning is the increase in surface tension as the feature size goes down and lines 

below 10 nm (with thicker resists) generally fell over. It’s worth mentioning that HSQ is 

predominantly used as a dry etch mask for pattern transfer and thin HSQ layer is often 

inadequate for pattern transfer, especially if the etchant gas also etch resist and substrate at the 

same time.  

Therefore, a process is optimized to produce high aspect ratio smaller linewidths with a 

view to etch deep in silicon. Initially, linewidths from 100 − 10 nm were designed and exposed 

with a dose ranging from 500 – 5000 μC/cm2 with a spot size of ~ 3 nm, beam step size of 2.5 

nm at 100 keV accelerating energy. The linewidths were patterned in a thick HSQ resist ~150 

nm and developed after electron beam exposure with a range of 25% TMAH developer 

dilutions from 12.5% − 1.56%. That allowed to optimize the exposure dose and developer 

strength. Results indicated that an exposure dose of 2500 μC/cm2 along with 6.25% TMAH 

provides the optimum balance to pattern 10 nm linewidths with great reproducibility. 

Moreover, with these optimized conditions, the effect of development time and temperature 

are also investigated. It has been observed that by weaken the developer strength, the 

development time between 60−120 seconds only varies the linewidths by ~ 1 nm. However, 

the development temperature above 45 °C etches the exposed resist more vigorously and 

resist effectively reflowed when developed at 75 °C. Therefore we suggests that, 6.25% TMAH, 

60 seconds development time and 23 °C development temperature are the ideal parameters 

at an exposure dose of 2500 μC/cm2 to pattern 10 nm linewidths in thicker resist. Similar 
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process parameters were applied to 250 nm HSQ resist which allowed to produce 10 nm 

linewidths with 25:1 aspect ratio. This process has been extensively used throughout the course 

of research as it provided the optimum balance to pattern smaller linewidths with thicker resist. 

However this process is only be useful to pattern simple geometries with larger periods and 

gaps, because the resist contrast has been poorly affected when standard 25% TMAH 

developer strength weaken to 6.25%. When this process was used to pattern complex 

geometries, it was observed that the minimum achievable pitch was 50 nm with 30 nm resist 

thickness, which became even worst when thickness of resist was increased. Therefore, to 

achieve a higher contrast, the process is required to be optimized to a stronger developer 

strength and etch process should be optimized with a high selectivity, so thinner resists could 

be used to etch deep in substrate. 

Chapter 3 describes the optimization of reactive ion etch process, where HSQ resist is 

used as a dry etch mask to fabricate of silicon nanowires with widths below 5 nm. Different 

etch chemistries have been investigated to etch silicon, such as CF4, CF4 /O2, CF4 /CHF3 and SF6 

/C4F8 where the effects of RF power, gas flow ratio and chamber pressure have been studied 

in detail. A large undercut ~ 30 nm has been observed when silicon nanowires etched with CF4 

based plasma because of excessive amount of F radicals, therefore O2 was introduced along 

with etchant gas to reduce the chemical reactivity of F radicals in the plasma, which although 

increased the sidewall protection but reduced the etch rate to 5 nm/minute and lowered the 

selectivity to 0.4. Also the 10 nm silicon nanowires were etched with a ~ 4 nm undercut. We 

also attempted to etch silicon nanowires with CF4 /CHF3 based plasma, whilst vertical 10 nm 

silicon nanowires been able to etched but at an etch rate of 4 nm/minute with a poor selectivity 

of ~0.7. Such etch selectivity requires thicker resists to be used for patterning which limits the 

contract of the pattern due to the proximity effects. Moreover the bias voltage for the each 

process was monitored throughout the etching experiments, which varied between −77 to 

−180 V. Such high bias voltages are often associated with enormous plasma induced sidewall 

damages. In RIE tools, the bias voltage is directly related to the RF power, hence can’t be 

independently controlled. However in ICP-RIE tools, the high density plasma is generated 

separately with a high coil power whereas a low platen power is generally used to etch the 

substrate. Thus allows to achieve higher etch rate at a low platen power. Therefore, with a view 

to develop a process to etch faster with a good selectivity and low bias voltage, I moved onto 
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the ICP-RIE tool where SF6 /C4F8 based plasma was used to optimize a process to deliver 

smooth and vertical high aspect ratio (50:1) 10 nm Si nanowires at an etch rate of 110 

nm/minute with a selectivity over 2.4. The averaged bias voltage of the process was −70 V but 

to ensure low damage etching, the platen power was lowered from 12 to 6 W, which although 

reduced the etch rate to 80 nm/minute but significantly lowered the bias voltage to −23 V to 

ensure high quality pattern transfer. That process is repeatedly used to fabricate a number of 

different types of silicon nanowire devices on SOI substrate.  

After optimizing the processes for lithography and etching, another process is optimized 

to passivate the etched silicon nanowire devices with a high quality thermal oxide (SiO2) to 

remove dangling bonds and trap charges from the silicon interface. A dedicated furnace was 

used to thermally grow ~ 5-15 nm SiO2 oxide at 950 °C for 80 seconds. The quality of oxide 

was determined from n-MOS capacitors made with ~10 nm thermally grown oxide, where CV 

measurements made between 1 MHZ – 10 KHZ revealed the presence of mid-gap states in the 

thermally grown SiO2 with a large interface state trap density (Dit) of 2.3 x 1011 cm−2 eV−1. 

Therefore, the capacitors were annealed in forming gas (5% H2, 95% N2) at 360 °C for 15 

minutes, which significantly lowered the Dit down to 1.3 x 1010 cm−2 eV−1 by passivating the 

remaining dangling bonds with H2. The breakdown voltage of the thermally grown oxide is ~ 7 

V. Moreover, NiSi ohmic contact to n-type silicon also developed with a low specific contact 

resistivity of 1.5 x 10−9 Ω-m2, which has been determined from TLMs (shown in appendix).  

Using above optimized processes for lithography, etch and thermal oxidation, a number 

of different types of silicon nanowire devices has been fabricated and tested on phosphorus 

doped 55 nm silicon on insulator (SOI) substrates. Initially silicon nanowires were fabricated 

with mean widths from 45 to 4 nm on SOI substrates with a doping density ND = 2 x 1019, 4 x 

1019, 8 x 1019 and 2 x 1020 cm−3 in a Hall bar and Greek cross configuration to determine 

resistivity as function of linewidths. A high depletion has been observed in the nanowires made 

on ND = 2 x 1019 cm−3 but as the doping density was increased, the depletion effects significantly 

reduced and the conduction changed from non-linear to ohmic. Moreover, the transport 

properties were studied in silicon nanowires fabricated on substrate with a doping density ND 

= 8 x 1020 cm−3. The carrier density and mobility as a function of temperature for different 

widths was directly extracted from the Hall bar device. The carrier density has reduced whereas 
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the mobility increased as the width of nanowire has reduced, because of an increase in the 

surface depletion. The scattering mechanisms limiting the mobility in these nanowires has also 

been studied, where the experimental mobility was compared with a number of different 

theoretically calculated mobilities corresponds to various scattering mechanisms. It was 

determined that the neutral impurity scattering is the scattering mechanism limiting the mobility 

in fabricated nanowires. Moreover, various characteristic length scales such as mean free path 

for 3D, 2D and 1D transport are theoretically calculated and directly compared with the 

physical width of the nanowires. It has been approximated that the transport is likely to be 3D 

for nanowires with widths from 45 to 12 nm, whereas 2D and ID for 7 nm and 4 nm nanowires 

respectively. It’s worth mentioning that the depletion approximation no longer valid in these 

degenerately doped nanowires, so the correct screening length is Debye length which is 

theoretically calculated allows to determine the electrical width of these nanowires. Moreover, 

the donor deactivation and surface roughness, which are the major challenges in bottom up 

grown nanowires, have not been found to be significant in top down fabricated nanowires, 

indicates the importance of high quality surface passivation which confines the carriers in the 

channel. 

    To extract the carrier density and mobility, the Hall voltage is required to be measured 

accurately, which relies on the width of the voltage probes rather than the width of the channel. 

Here the Hall bar devices have been fabricated with ~ 50 nm voltage probes for all the 

nanowire widths to reduce the access resistance and prevent any electron heating, but it came 

up a number of challenges. Measuring extremely small Hall voltage of orders of few μV, has 

been a challenge itself. Moreover, the geometrical uncertainty in measuring the carrier density 

increased as the width of nanowire was reduced. The Hall bar devices fabricated with channel 

width below 20 nm provided a value accurate to within a factor of 2 of the true value. For 

these reasons, the Greek cross devices were fabricated, which allowed to determine the carrier 

density with geometrical uncertainty below 1% even for the 7 nm wide nanowire. However 

both type of devices has produced almost similar results except for 4 nm wide nanowire which 

has shown an anomalous behaviour, probably due to a large geometrical uncertainty, which 

might have been related to change in the transport dimension, hence future work is required 

to fabricate devices according to the geometrical considerations mentioned in section 5.1.1. 
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  Whilst the nanowires were etched very smooth and vertical, but the thermal oxidation 

has made them wider from the bottom and thinner because the oxidization is more towards 

the corners and sidewalls regions, whereas the foot is barely oxidized. This has not been a 

problem with wider nanowires, but as the lithographic width was reduced down to ~10 nm, 

the oxidized nanowire has ~ 10.2 nm foot and 1.9 nm top, hence turned out to be a tapered 

shape nanowire. The key disadvantage of such shape is that the transport also goes through the 

off-axis plane which is not desirable. Moreover the cornered nanowire is also not desirable, 

especially in a multigate architectures. Because the electric field at the corners is always amplified 

as compared with the sidewall of the nanowire, as a result the current density is generally higher 

at the corners then the sidewalls, which result in multiple threshold voltages operating in the 

channel due to premature inversion at the corners, hence lowers the overall sub-threshold 

slope of the transistor. Therefore, before the junctionless transistors were fabricated, the 

thickness of the top silicon layer of the SOI structure has been reduced from 55 nm to 10 nm, 

using a controlled reaction ion etching process. After patterning the junctionless transistors, the 

devices were 20% over etched to clear the foot, whereas before the oxidation step, the devices 

were dipped in the buffered hydrofluoric acid for a bit longer to remove the buried oxide 

under the channel region, which has allowed to thermally oxidize the channel equally from all 

the sides. Hence the channel has the round corners with minimized off-axis plane area, as 

compared with 55 nm etched nanowire. Thinning the silicon reduces the gate capacitance which 

in turn reduces the gate intrinsic delay, whereas rounding the corner eliminates electric field 

overlapping and allows a homogenous transition through all the three sides of the channel in a 

multigate transistor. I suggest that thinning the silicon using a reaction ion etch process is not a 

permanent solution and a process is required to be optimize to thin down the silicon using 

chemical mechanical polishing (CMP) tool.  

Junctionless transistors with channel widths from 24 – 8 nm were fabricated on SOI 

substrate with a doping density ND = 4 x 1019 cm−3, where the channel length kept fixed to 

~150 nm. It has been observed that the transistors with wider channels has metallic conductivity 

but as the width is reduced to 8 nm, an increase in surface depletion makes the channel partially 

depleted to be operated in junctionless mode. A high drive current ~ 1.28 mA/μm has 

observed for 8 nm wide transistor where the ratio between on/off was over ~108 orders with 

a low SS of 66 mV/decade and VTh ~ 0.18 V at VD = 1.5 V. Moreover a low DIBL ~ 106.6 mV/V 
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has also been observed indicated reduced SCE as junctionless transistor has some immunity to 

SCE due to absence of PN junctions. However the threshold voltage extracted for the lower 

drain voltages was predominately negative. At VG = 0, there is significant drive current in the 

channel of orders of 10−6 A, whereas the off-state current (1 x 10−14 A) is measured at VG = 

− 0.75 V. The above issues can be easily addressed by using the multigate with a higher work 

function then aluminium (4.08 eV). We purpose that molybdenum or tungsten should be used, 

which has a work function varies between 4.36 – 4.95 eV and 4.32 – 5.22 eV respectively, can 

potentially shift the off-state current and threshold characteristics towards the positive values 

by more than a volt. 

Moreover, the conformal deposition of tri-gate around the channel using standard 

electron beam evaporator tools has not really possible, especially if the surface is not clamped 

flat enough and fin is ultra-thin. We therefore purpose that tungsten should be sputtered as 

gate-all-around, which can provide enormous electrostatic control over the channel and can 

further improve the transistor characteristics. Moreover, after the thermal oxidation, high-k 

dielectrics such as hafnium oxide (HfO2) or aluminium oxide (Al2O3) should be deposited over 

thermal oxide as a stop layer to etch tungsten gates using SF6/C4F8 based inductively coupled 

plasma. Since tungsten oxidizes in the air and the oxidized surface can provide a strong adhesion 

between the tungsten and the HSQ mask. Therefore patterning ~ 5 nm HSQ lines over 

tungsten can scale down the fabricated 2 μm gate down to a few nm. However, sputtering the 

tungsten film itself is quite a bit challenging. A process is required to be optimize to sputter a 

low stress tungsten film. Van der Pauw structures should be made on SOI substrate to measure 

the resistivity, carrier density and mobility before and after sputtering the tungsten film in order 

to investigate sputter induced damages caused by the direct current magnetron sputter coater. 

A few thoughts are to develop the recipe with low sputtering current, large source to substrate 

distance and high sputtering pressure to able to compromise between the density of the film 

and the sputter induced damages. Post-annealing tungsten could also help to reduce the 

damages. Moreover, the work function of the sputtered film should be determined from the 

MOS capacitors.   

The polyoxometalates (POM) ([W18O54(SeO3)2]4−) are inorganic molecules, which 

exhibit highly redox properties with at least 6 reversible reduction states and an oxidation state 
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responsible for the transition of SeIVV. DFT calculations made to determine atomic charges 

and spatial charge distribution of POM molecules which imported to the GARAND simulator 

to accurately model a non-volatile flash memory cell designed with shallow trench insulation 

(STI) using 18 nm gate length n-type single transistor. To experimentally evaluate the possibility 

of a molecular flash memory based upon POM molecules, initially 2 terminal nanowires were 

fabricated from mean widths from 45 – 7 nm on ND = 8 x 10−19 cm−2. The change in the 

resistivity has been measured before and after devices been dip coated with a solution of POM 

molecules. Results indicated a consistent trend of an increase in the resistivity with presence of 

POM molecules around the nanowires. POM molecules changes the surface potential of the 

nanowire surface and from results we concluded that they are negatively charged. The POM 

molecule has a net charge of −4, after they are diluted with a solution of acetonitrile, ideally −4 

should be counter balanced by the +4 of the acetonitrile, but we observed that not all the POM 

molecules went to their stable state and most of the clusters are still in oxidation state with 

negative charge.  

I suggest that further work is required for a better understanding. For example, it’s worth 

measuring the resistivity of nanowires after applying a positive bias of say 10 V from the back 

gate and measuring the resistivity after coating nanowires with POM molecules. Similarly, 

resistivity of nanowires should be measured after applying a negative bias of −10 V from the 

back gate and measuring the resistivity afterwards. That would allow to understand that how 

surface potential of the nanowire device affecting the deposited POM molecules. Generally if 

the surface is pre-charged to +ive charges, the change in resistivity should be smaller after the 

deposition of POM molecules, similarly if the surface is pre-charged to –ive charges, the change 

in resistivity should be larger after the deposition of POM molecules. After detecting the 

presence of POM molecules on the nanowire surface. The side-gated FETs with mean channel 

width ~ 4 nm were fabricated on SOI substrate with a doping density ND = 4 x 10−19 cm−2. A 

change in the sub-threshold slope of the transistor has been observed after the deposition of 

POM molecules, which confirmed that clusters are negatively charged. Using a side gate, 

alternative ± pulses (− for charge, + for discharge) were applied to charge and discharge POM 

molecules to demonstrate molecular flash memory operation. The average change in the 

threshold voltage was ~ 1.2 V between the charging and the discharging cycles, which was 

predicted by the device been modelled. We observed that the program/erase time was limited 
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by 100 ms for a reasonable single-to-noise ratio whereas the stored charge has been found to 

be non-volatile over the period of 2 weeks. The read time however was presently limited only 

by the RC time constant (56 μs) of the channel and especially by the large bond pad capacitance. 

Therefore, RF design of the device and optimization of the capacitance and resistance should 

able to reduce this to sub-nanosecond read times. Moreover the write/erase time is also limited 

by the large density of POM molecules (~2 x 1015 cm−2). Preliminary calculations suggested that 

100 POM molecules would have a sub-picosecond write time, subject to the device and 

characterization limits, but we expect the fundamental charging mechanisms of the POM 

molecules to dominate at such device dimensions.  

 

Figure 8-1: Purposed design of a flash memory cell based on a double-gate junctionless 

transistor and a single electron transistor 

Generally the POM molecules are dissolved in acetonitrile solution at a concentration of 

2.5 mg/mL. I suggest that the density of POM molecules should be reduced in order to lower 

the program/erase time to picosecond regime, one of the thoughts is to dilute the POM 

molecules in acetonitrile with different concentrations and embed them into a MOS capacitor 

between the gate and the oxide material. Ideally POM molecules are oxidized, hence they don’t 

conduct and by embedding them in a MOS capacitor, we can determine the minimum change 

in the surface potential as a function of different concentration of POM molecules. That would 
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allow us to accurately determine the minimum density of POM molecules necessary to observe 

a clear change. Moreover, there are a number of drawbacks in the current geometry of side-

gated FETs. For example the side gate was quite far from the channel ~ 50 nm, which was 

mainly limited by the proximity effects, hence due to poor electrostatic control, normally high 

gate voltages were required to obtain the transfer characteristics. The same side-gate was used 

to charge and discharge the POM molecules and measuring the transfer characteristics, which 

could potentially charge and discharge the POM molecules at least twice, i.e. when pulses were 

applied to program/erase and when transfer characteristics measured again.   

Therefore I propose a new design of a flash memory cell depicted in figure 8-1, which 

could explicitly able to program/erase the POM molecules and measure the transfer 

characteristics more efficiently by incorporating a side gate to charge and discharge the 

molecules and a double-gate junction less transistor to measure the transfer characteristics 

independently. The POM molecules should be embedded horizontally in the floating node 

between the channel and the side gate, by etching a deep trench in PECVD oxide. Instead of a 

tri-gate, a double gate architecture would allow to sense the presence of POM molecules on 

third side. Moreover, a single electron can be placed near the nanowire to probe the reduction 

and oxidation states predicted by cyclic voltammetry of the POM molecules (figure 7-2). Whilst 

the results for the single electron transistor has not been presented in the thesis but shown 

structure has successfully been tested, where two side (corner) gates were used to deplete the 

nanowire into a quantum dot and middle gate was used to observe single electron oscillations 

at 1.4 K with average charging energy ~ 100 meV, the capacitance of the quantum dot 

measured to be ~ 0.8 aF, suggests the quantum dot formed of orders of less than ~ 10 nm. 

The source and drain pads should be made as small as possible of orders of few μm and 

should be placed as close to the channel region. Moreover, via holes should be etched after 

deposition of thick PECVD oxide to access the source and drain contacts to evaporate large 

contact pads. Similarly, tungsten gate should be used to fabricate double gate over the channel 

and electroplated afterwards to copper using conventional T-gate techniques. These are some 

of RF design considerations, which should allow to optimize the flash cell to lower the read 

times.  
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9. Appendix 

9.1. Ohmic Contacts to the SOI Substrate 

The nickel-silicide (NiSi) ohmic contacts are made onto SOI substrate doped with 

phosphorus to achieve doping density (ND) from 2 x 1019 cm−3 to 2 x 1020 cm−3. There are a 

number of two and four terminal measurements undertaken throughout the project and both 

produced almost identical results. Each contact has a transfer resistance of 0.3 Ω-mm, sheet 

resistivity of 60 Ω/sq and specific contact resistivity of 1.5 x 10−9 Ω-m2. Each contact is designed 

to have an area of 5 x 10−10 m2 and by combining a square with a triangle narrowing to the 

nanowire allows to reduce the access resistance and resulting in each contact having an overall 

resistance of 3 Ω. The resistance of the nanowires is typically above 100 KΩ and the contact 

and access resistance is negligible in the measurements for ND = 8 x 1019 cm−3. Hence, 

experimentally there is no differences found between two and four terminal measurements at 

any temperature. 

 

Figure 9-1: Data from a TLM device with an effective width of 150 μm. 
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The NiSi contact has a Schottky barrier height which has been measured to be 0.67 eV 

[1]. This contact is expected to be operating in the field emission regime provided that, 

𝑘𝐵𝑇 ≪  𝐸􏷟􏷟 

Where 𝐸􏷟􏷟 is given by, 

𝐸􏷟􏷟 =  
𝑞ℏ
2 􏽱

𝑁𝐷
𝑚∗𝜀􏷟𝜀𝑟

 

Where 𝑞 is the electronic charge of an electron, ℏ is Plank’s constant divided by 2𝜋, 𝜀􏷟 is 

the free space permittivity and 𝜀𝑟 is the relative dielectric constant for silicon (=11.9). This is 

true for the ND = 8 x 1019 cm−3 samples below 1077 K s the current density is dominated at all 

measured temperatures by the quantum mechanical tunnelling current through the Schottky 

battier and the barrier width is kept small by the large doping density in the semiconductor 

resulting in a large current density and Ohmic behaviour. The specific constant resistance as a 

function of temperature can be calculated for this regime using [2,3] 

 𝜌𝑐 =
𝑘𝐵sin(𝜋𝑐􏷠𝑘𝐵𝑇)

𝐴∗∗𝜋𝑞𝑇
𝑒𝑥𝑝 􏿵

𝑞𝜙𝐵𝑛
𝐸􏷟􏷟

􏿸 Eq. 9.1 

Where 𝑘𝐵 is Boltzmann’s constant, 𝑇  is the temperature, 𝐴∗∗ is the reduced Richardson 

constant (= 3.23 x 105 A cm−2K−2) and 𝜙𝐵𝑛 is the Schottky barrier height (in V). The other 

undefined parameters are as follow, 

 𝑐􏷠 =
1

𝐸􏷟􏷟
𝑙𝑛 􏿰

4𝜙𝐵𝑛 − 𝑉𝐹
−𝜙𝑛

􏿳  

 𝜙𝑛 ≃
𝑘𝐵𝑇

𝑞 􏿯𝑙𝑛 􏿵
𝑛

𝑁𝑐
􏿸 + 2−􏷢/􏷡 􏿵

𝑛
𝑁𝑐

􏿸􏿲 
 

 
𝜌𝑐 = 𝑔𝑠𝑔𝑣 􏿵

2𝜋𝑚𝑑𝑒
∗ 𝑘𝐵𝑇

ℏ􏷡 􏿸
􏷢/􏷡
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Where 𝑉𝐹 is the forward bias voltage for the contact (=0.0196 V for experiments), 𝑛 is 

the measured carrier density as a function of temperature, 𝑔𝑠 is the spin degeneracy (=2), 𝑔𝑣 is 

the valley degeneracy (=2), 𝑚𝑑𝑒
∗  is the density of states effective mass and ℏ is Plank’s constant 

divided by 2𝜋. 

 

Figure 9-2: Temperature dependence of each Ohmic contact made the silicon nanowire 

doped at 8 x 1019 cm−3. 

Figure 9-2 shows the calculated temperature dependence for a single Ohmic contact to 

the nanowire using equation 9.1 and area of the contact. Whilst there is a small increase, at the 

lowest temperatures the contact resistance decreases as the quantum mechanical tunnelling 

current density increases due to the reduction in thermal smearing. Figure 9-1 provides data 

from transmission line measurement (TLM) structure for the same doped sample which for a 

contact of area 5 x 10−10 m2 provides a resistance of 3 Ω which is the same order as the 

calculated value of 0.7 Ω which excludes all other scattering mechanisms. Therefore for all the 

temperature for the ND = 8 x 1019 cm−3 doped samples in this work, two and four terminal 

measurements produce nominally identical results. 
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9.2. Modelling of Scattering Mechanisms in Matlab 

% Scattering processes as a function of Temperature for Si Nanowires 

 

T = linspace(1,300,299); % Lattice temperature in K 

rho = 2329; % Si mass density in kg/m^3 

hbar = 1.054571726*10^-34; % Js 

kB = 1.3806488*10^-23; % m^2kgs^-2K^-1 

q = 1.602176463*10^-19; % C 

epsilon0 = 8.854187817*10^-12; % permittivity of a vacuum F m^-1 

mDOS = 0.328 * 9.10938215 * 10^-31; % Si DOS average electron mass in kg 

mc = 0.269 * 9.10938215 * 10^-31; % Si conductivity average electron mass in kg 

c11 = 165.77; % elastic constant in GPa 

c12 = 63.93; % elastic constant in GPa 

c44 = 79.62; % elastic constant in GPa 

cL = (c12+ 2*c44 + (1/3)*(c11-c12-2*c44))*10^9; % in Pa 

chiDelta = 8.6 * q; % Deformation potential for Delta-valleys in eV 

N = 8*10^25; % ionized impurity density in nanowire in m^-3 

epsilon = 11.9 * epsilon0; % relative dielectric constant 

Z=1; % Number of charge units of the impurity centre 

gD = 2; % donor degeneracy factor for doping; 

omegaLO = (0.063*1.6*10^-19)/hbar; % LO phonon energy in rad/s 

% NI = N./(1+gD.* exp((0.0096*q)./(kB.*T))) % ionised donor density - 

% Jacoboni & Reggiani, Rev. Mod. Phys. 55(3), 645 (1983)% 

% 12 nm nanowire n = (4.1906*10^25)-(T.*7.0065*10^22)+((T.^2).*9.6789*10^20)-

((T.^3).*1.3988*10^18); % cubic fit to measured carrier density in m^-3 for Si nanowire in 

April 2014 

n = (2.1465*10^25) - (5.6557*10^21).*T + (4.3998*10^19).*(T.^2) + 

(7.1734*10^16).*(T.^3); 

% NI = (4.0398*10^25)+(T.*3.409*10^21)+((T.^2).*3.3591*10^20); % quadratic fit to 

measured carrier density in m^-3 for Si nanowire in April 2014 

N0 = 1./(exp(hbar.*omegaLO./(kB.*T))-1); % Phonon occupation number 
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EF = ((hbar*(1.5.*(pi^2).*n).^(1/3)).^2)./(2*mDOS); 

NI = (N)./(1+2*exp(EF-(0.00055*q))); 

C = 0.5/q; %Non-parabolicity of the conduction band edge in eV-1 

mstar = (mc*(1+2*C*((hbar^2)/mc).*(3*(pi^2).*n).^(2/3))); 

 

%plot(T,N0); 

DeltaE=0.063*1.6*10^-19; % Energy between initial and final valley for scattering process in J 

 

% Acoustic Phonon Scattering - H. Morkoc "Nitride Semiconductor Devices" Wiley (2013)  

muAP = (2*((2*pi)^0.5)*cL*(hbar^4)*q ./ (3 *(chiDelta^2) .*(mstar.^2.5))) .* ((kB.*T).^(-

1.5))*10000; % mobility of acoustic phonon scattering in cm^2/Vs 

%tauAP = (pi*(hbar^4)*cL)./((2^0.5)*(chiDelta^2)*(m^1.5)); 

 

% Ionised Impurity Scattering - H. Morkoc "Nitride Semiconductor Devices" Wiley (2013)  

gamma = 24* epsilon * mstar .* ((kB.*T).^2)/(hbar*hbar*q*q*N); % for ionised impurity 

scattering 

gammaF = 4*(3^(1/3))*epsilon*(pi^(8/3))*(hbar^2).*(n.^(1/3))/((q^2)*mstar); % for 

ionised impurity scattering in degenerate semiconductors 

% muII = 10000*128 * ((2*pi)^0.5)*epsilon*epsilon .*((kB.*T).^1.5) 

./(NI.*Z.*Z.*q.*q.*q.*(mDOS^0.5).*(log(1+gammaF) - (gammaF/(1+gammaF))) ); % mobility 

from ionised impurity scattering Brooks-Herring in cm2/Vs 

muII = 10000* 

((24*(pi^3)*(epsilon^2)*(hbar^3))./((Z^2)*(q^3).*(mstar.^2).*(log(1+gammaF) - 

(gammaF./(1+gammaF))))).*(n./NI); % Degenerately doped ionised impurity scattering 

 

%Optical Phonon Scattering - H. Morkoc "Nitride Semiconductor Devices" Wiley (2013)  

chiDeltaLO =11.0*10^10 * q; % J from Ferry "Semiconductors" Maxwell MacMillan (1991) 

% chiDeltaLO =5.0 *10^10 * q; % from Ridley Quantum Processes in Semiconductors p113 

%chiDeltaLO =5.6 * q; % J from Ferry "Semiconductors" Maxwell MacMillan (1991) 

OpticalTemperature = hbar * omegaLO / kB % Temperature of change of scattering formula 
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muoptical = 

10000*(2^0.5)*pi*q*rho*(hbar^4)*((hbar*omegaLO)^0.5)./(((chiDeltaLO^2)*(mstar.^2.5)

).*N0); % optical phonon scattering in cm2/Vs 

muoptical2 = 

10000*(2^1.5)*(pi^0.5)*q*rho*(hbar^2)*((hbar*omegaLO)^2)./(3*(chiDeltaLO^2).*(msta

r.^2.5).*((kB.*T).^1.5)); % optical scattering in cm2/Vs above hbar omegaLO  

 

% Hamaguchi non-polar optical phonon scattering fromC. Hamaguchi "Basic 

% Semiconductor Physics" Springer (2001) 

x0 = hbar.*omegaLO./(kB.*T); 

format long; 

fun = @(x) x.* exp(-x).*(1./(((1+(x0./x)).^0.5)+(exp(x0).*(1-(x./x0).^0.5)))); 

gx = integral(fun,0,Inf,'ArrayValued',true,'RelTol',0,'AbsTol',1e-12); 

fx = (x0.^2.5).*(exp(x0)-1).* gx; 

muoptical3 = 

10000.*fx.*(4.*(2.^0.5).*q.*(hbar.^2).*rho.*((hbar.*omegaLO).^0.5))./(3.*(mstar.^2.5).*(chi

DeltaLO.^2)); 

semilogy(T,muoptical3,'k'); 

 

% Intervalley phonon scattering 

omegaij = 0.063*q/hbar;  

gij = 4; 

Chiij = 11*q;  

%a = hbar * omegaij./(kB.*T); 

%z = int(x*exp(-x)*(1/(((1+a/x)^0.5)+(exp(a)*(1-(a/x))^0.5))),x = 0..infinity); 

%g = (a.^2.5)*(exp(a)-1).*z 

%muInterValley = 

(4*gij*(2^0.5)*q*(hbar^2)*rho*((hbar*omegaij)^0.5)/(3*(mDOS^2.5)*Chiij^2)).*g;  

 

%Dislocation - H. Morkoc "Nitride Semiconductor Devices" Wiley (2013)  

Ndislocations = 10^5; % Dislocation density in m^-2 

space = 0.3*10^-9; % Spacing between donors 
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f = 1; % occupation of acceptor centres 

Debye = (epsilon.*kB.*T./(q*q*n)).^0.5; % Debye screening length 

% plot(T,Debye) 

% muDislocations = 

% 

10000.*((8*(epsilon^2)*(2^1.5)).*(space.^2).*((kB.*T).^1.5))./(Ndislocations*(f^2)*(q^3)*

(mDOS^0.5)*Debye); 

% % Mobility due to dislocations in cm2/VsMorkoc 

muDislocations = 

10000.*((30*(2^0.5)*(epsilon^2)*(space.^2)).*((kB.*T).^1.5))./(Ndislocations*(f^2)*(q^3)

*(mDOS^0.5)*Debye); % Mobility due to dislocations in cm2/Vs Seeger 

 

% Interface roughness scattering - Motohisa, J.; Sakaki, H. Appl. Phys. Lett. 1992, 60, 

1315?1317. 

Delta = 2*10^-9; % Roughness height in m 

Lambda = 1*10^-9; % Roughness correlation length in m 

width = (7*10^-9)-2.*Debye; % width of Si nanowire in m 

gammaR1 = (hbar^2)*(pi^2)./(mstar.*(width.^3)); % Strength of scattering for quantum well 

% kF = (n.^(1/3)); % Fermi wavelength in 1D 

kF = (pi.*(n.*width)).^0.5; % 2D Fermi wavenumber 

%kF = (1.5.*(pi^2).*n).^(1/3); % 3D Fermi wavenumber 

EQ=epsilon.*(1+((q^2).*mstar)./(epsilon.*kF.*2.*pi.*(hbar^2)).*((hbar^2).*(kF.^2)./(2.*mst

ar))); 

muIRS = 

10000*(q*(hbar^3)./(2.*(mstar.^2)*(pi^0.5)*Lambda*(Delta^2).*(gammaR1.^2))).*kF.*exp

((kF.*Lambda).^2); % Interface roughness scattering from APL 60, 1315 (1992) 

% muIRS = 

10000*(((hbar^3).*(EQ.^2))./(pi*(mstar.^2).*(Lambda^2).*(Delta^2).*(q^3).*(n.^2))).*kF.

*exp(0.25.*((kF.*Lambda).^2)); % Interface roughness scattering from Hamaguchi 

%plot(T,muIRS,'r'); 

 

% Potential well - H. Morkoc "Nitride Semiconductor Devices" Wiley (2013)  
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EB = 3.15*q; % Si/SiO2 barrier height in J; 

muQW=10000.*(q*(mstar.^0.5).*EB./((2^1.5)*(pi^2.5)*(hbar^2)*n)).*((kB.*T).^-0.5); 

 

% plot(T,muQW,'r'); 

 

% Neutral impurity scattering - C. Erginsoy "Neutral Impurity Scattering in Semiconductors" 

Phys. Rev. 79, 1013 (1950) 

% and B.K. Ridley "Quantum Processes in Semiconductors" 2nd Ed OUP(1988) 

% aB=(epsilon*4*pi*(hbar^2))./(mstar.*(q^2)); 

%muNI = 10000*q./(20.*aB.*hbar.*n); 

muNI = 10000.*mstar.*(q^3)./(20*epsilon*(N-n)*(hbar^3)); 

 

% Mathesson's rule NB accuracy limited 

mu = 1./((1./muAP)+(1./muII)+(1./muoptical3)+(2.*(1./muIRS))+(1./muNI)); 

 

%plot(T,muIRS,'k',T,mu,'r'); 

%semilogy(T,muIRS,'k'); 

semilogy(T,muAP,'b',T,muII,'r',T,muoptical3,'c',T,mu,'g',T,muIRS,'k',T,muNI,'m'); 

xlabel('Temperature (K)'); 

ylabel('Mobility (cm2/Vs)'); 

 

Tout=transpose(T); 

muAPout=transpose(muAP); 

muOpticalOut=transpose(muoptical3); 

muIIout=transpose(muII); 

muNIout=transpose(muNI); 

muIRSout=transpose(muIRS); 

muOut=transpose(mu); 

Output=[Tout,muAPout,muOpticalOut,muIIout,muNIout,muIRSout,muOut]; 

dlmwrite('output',Output,'delimiter','\t','precision','%.8f'); 
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