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Abstract

Integral-type nonlocal models provide a mesh-independent description of fracture in
quasi-brittle materials. According to these constitutive models, the stress at a point
is evaluated by a weighted average of the variable describing the state of the material
in the vicinity of this point. The weights of the material points depend on a model
parameter, called interaction radius, that controls the size of the final failure zones. The
objective of the present thesis is to develop nonlocal models, that can provide a realistic
description of failure in quasi-brittle materials. In particular, it is aimed to identify a
realistic approach to take into account boundaries. Furthermore, a strategy to calibrate
the nonlocal radius is developed. It is also required to demonstrate that the nonlocal
models can describe fracture in reinforced concrete structures mesh-independently.

The performance of different nonlocal models in analysing boundaries is investigated.
Nonlocal damage models with different averaging schemes as well as nonlocal and over-
nonlocal damage-plasticity models are applied to analyse failure in beams subjected to
three-point bending. The original formulation of nonlocal averaging and the overnon-
local damage-plasticity model lead to excessive energy dissipation close to boundaries
compared to meso-scale analysis results. The spurious energy dissipation is reduced in
the analyses with the modified averaging schemes.

A new calibration strategy to determine the interaction radius is proposed based on
the final experimental fracture patterns. The main assumption is that the majority
of energy is dissipated in a localised rough crack and is validated based on meso-scale
analyses results. The potential of the calibration strategy was shown by applying it
to calibrate a nonlocal damage model based on the experimental fracture surface and
load-displacement curve of a beam subjected to three-point bending.

Furthermore, a nonlocal extension of the damage-plasticity model CDPM2 is applied
in the analyses of a reinforced concrete beam and a column. These experiments were
selected because both localised and distributed cracking are experimentally observed
and the material points are subjected to various stress states. It was illustrated that
nonlocal models describe failure in reinforced concrete mesh-independently.
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εt
eq Equivalent strain referring to the compressive part of the constitutive law
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ν Poisson’s ratio
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σ Stress tensor
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σy Yield stress defined in (3.16)

ω Damage variable

ωc Compressive damage variable

ωt Tensile damage variable
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Chapter 1

Introduction

1.1 Background

Fracture in quasi-brittle materials has been investigated for more than 100 years and
numerous experiments have been conducted on various materials such as cementitious
composites, fibreglass or toughened ceramics, used in a wide range of applications.
Concrete is the most intensively studied material, with the largest experimental effort
but its failure is not yet fully understood. The inelastic behaviour of concrete members
observed during experiments is not always in agreement with the one predicted during
the design process and designers have to either increase the safety margins by underes-
timating the material properties or resort to extensive large-scale testing. The reason is
that the material’s fracture properties observed in small-sized specimens during labora-
tory experiments cannot be used directly to model larger structures using macroscopic
constitutive laws that do not take into account the actual failure mechanisms.

Macroscopic constitutive models for quasi-brittle materials should provide an objective
description of the final failure zones. This is achieved by including in the constitutive
law information about the geometry of the Fracture Process Zone (FPZ), that forms
during failure. In these regions, energy is dissipated by failure mechanisms, such as dis-
tributed micro-cracking, crack-bridging, as well as aggregate interlocking. Commonly
used constitutive models for fracture in quasi-brittle materials are cohesive crack, crack-
band and nonlocal models.
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Nonlocal models are divided in gradient and integral type models and describe the FPZs
by regularised strain profiles. The latter are used throughout the present thesis and are
known to provide mesh-independent results for both tensile and compressive failure in
nonlinear finite element analyses. In these models, the stress at a point is evaluated by
a weighted average of the variable describing the state of the material in the vicinity of
this point. The weights are defined by a weight function, whose main parameter is the
interaction radius controlling the width of the final failure zones. Although integral-
type nonlocal models are considered to be very suitable to describe fracture in quasi-
brittle materials, they exhibit shortcomings, which need to be addressed. In particular,
there is no consensus in the literature on how to calibrate the interaction radius and on
how to take into account the influence of boundaries in nonlocal averaging. Modeling
of boundaries is important because it is common for cracks to initiate at these areas
due to local stress gradients and due to the increased density of smaller aggregates
close to boundaries.

1.2 Aims & Objectives

The aim of the present thesis is to provide a framework for the development of nonlo-
cal models, that provide a realistic description of failure in quasi-brittle materials. To
achieve this aim the following three objectives should be met. A realistic approach to
take into account boundaries should be identified (Chapter 4). A strategy to calibrate
the interaction radius in nonlocal models should be developed (Chapter 5). A nonlo-
cal approach to modelling failure in reinforced concrete members should be presented
and the capability of nonlocal models to provide mesh-independent results should be
demonstrated (Chapter 6).

1.3 Assumptions

The present thesis focuses on the mechanical response of concrete. Phenomena related
to heat transfer, moisture transport and chemical reactions are not taken into account.
The mechanical problem is formulated according to the theory of small strains. Quasi-
static loading conditions are assumed. Fracture is investigated at two different scales:
the meso- and the macro-scale. At the meso-scale, concrete is considered as a heteroge-
neous three phase composite composed of a mortar matrix, coarse aggregates and ITZs
between the two other phases. Coarse aggregates are modelled as linear elastic. The
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spatial variation of the fracture properties in mortar and ITZ due to finer aggregates
and the micro-structure of the mortar phase is included by auto-correlated random
fields. The structural response is modelled by a 2D lattice consisting of structural ele-
ments. At the macroscale, concrete is modelled as homogeneous continuum by applying
the Finite Element Method (FEM) using 3D tetrahedra or 2D plane strain triangles.
Fracture is modelled implicitly by damage or damage-plasticity material models for-
mulated according to the nonlocal or the crack-band approach. Steel reinforcement is
analysed directly by beam and truss elements with elastic-perfectly plastic constitutive
laws.

1.4 Outline

The present thesis is divided in 7 chapters. In Chapter 2, the literature review is pre-
sented. The fracture processes in quasi-brittle materials are reviewed including a de-
tailed description of the FPZ and the factors that influence its formation. Macroscopic
material models for concrete are briefly discussed focusing on damage-plasticity ap-
proaches and on nonlocal models. Different nonlocal averaging procedures reported in
the literature are described, which lead to a reduction of the spurious energy dissipation
close to boundaries observed in analyses with standard nonlocal models. Furthermore,
existing calibration strategies of the interaction radius are presented.

In Chapter 3, the modelling approaches, which will be applied in the subsequent chap-
ters, are described. Macroscopic nonlocal models are presented, that are based on
damage mechanics and a combination of damage mechanics and plasticity. The main
features of the meso-scale approach are reviewed. The next three chapters address the
objectives set in Section 1.2.

In Chapter 4, different nonlocal approaches are investigated and the nonlocal model
that provides a realistic description of boundaries is identified. The constitutive laws
are calibrated against meso-scale analyses results by analysing specimens, in which the
influence of the boundary conditions is eliminated. The calibrated material models
and the meso-scale approach are applied to analyse unreinforced concrete beams with
different types of boundaries. The performance of the nonlocal models in analysing
boundaries is evaluated by comparing the load-displacement curves and the dissipated
energy profiles with the meso-scale analyses results.
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In Chapter 5, a new calibration strategy for nonlocal models based on the final crack
patterns is developed. The main assumptions of the calibration procedure are validated
based on meso-scale analyses results. The performance of the calibration procedure is
evaluated by means of a simple application of a concrete beam subjected to three-point
bending.

In Chapter 6, the potential of nonlocal models to describe failure in reinforced concrete
specimens mesh-independently is highlighted. A damage-plasticity material model for-
mulated according to the crack-band approach is presented, which is capable of de-
scribing the material response under various stress states. An extension of this ma-
terial model according to the nonlocal theory is proposed. The two material models
are applied to analyse failure of a reinforced concrete beam and a column and their
mesh-dependence is investigated. The results are evaluated globally in the form of
load-displacement curves and locally in the form of principal strain contour plots and
mesh-independence of nonlocal models is investigated.

In Chapter 7 conclusions arising from this thesis are presented along with recommen-
dations for future work.
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Chapter 2

Literature Review

This chapter presents a review of the literature, on which the research of the present
thesis was based. The fracture processes in concrete are presented by focusing on the
Fracture Process Zone (FPZ), in which the fracture energy is dissipated. This is a non-
linear zone of distributed microcracking, that forms around the mean crack front during
failure. Two numerical approaches to model fracture are presented. The first approach
relies in directly modelling the mechanical response of the material meso-scale. Cracks
are modelled as displacement discontinuities by a lattice of structural elements. In
the second approach concrete is modelled as a continuum in the macroscale. Failure
is described as permanent deformations by plasticity models, or as a reduction of the
material stiffness by damage models, or by combinations of both models, all of which
are reviewed. It is illustrated that localised failure can be described by formulating
these material models according to the crack-band or the nonlocal theory. The main
issues of the nonlocal approaches are discussed including modelling of boundaries and
the calibration of nonlocal models.

2.1 Fracture Processes in Concrete

Recent developments in quasi-brittle fracture aim at understanding the failure mech-
anisms occurring in the material meso-structure and their effects on the macroscopic
behaviour of structures (Landis, 1999). The key assumption to bridge these two scales
is to investigate the nonlinear zone, defined as FPZ, that forms around the crack front
during failure. In this region, energy is dissipated at each loading step (Muralidhara
et al., 2010). In very large structures made of very brittle materials, such as ceramics,
the size of the FPZ is much smaller than the structure size (Bažant, 1999) and its
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influence can be ignored. Fracture can be analysed with constitutive laws, formulated
according to Linear Elastic Fracture Mechanics (LEFM), that are based solely on the
material strength (Hillerborg et al., 1976). In any other case, the FPZ needs to be
included in the material model, which should be formulated according to Nonlinear
Elastic Fracture Mechanics (NLEFM) to account for the nonlinear stress distribution
within the FPZ (Cedolin et al., 1983).

The influence of the material composition needs to be considered to accurately describe
the FPZ. The maximum diameter of the aggregates dmax in the concrete mix influences
the size of the FPZ but this relationship was not identified in Cedolin et al. (1987).
Single Edge Notched (SEN) and unnotched specimens were subjected to tension and
the FPZ was monitored by recording the displacement patterns of a photoelastic coat-
ing on the specimen surface. The FPZ is a three-dimensional region and cannot be
specified only from the deformation patterns at the surface because they can vary from
the ones in the core of the specimen. The incompatibility of the deformation patterns
can be attributed to the increased density of smaller aggregates close to the specimen
boundaries (Kreijger, 1984). In Mihashi et al. (1991), concrete specimens were sub-
jected to compact tension and the FPZ was monitored by the Acoustic Emissions (AE)
technique, that involves recording the location and the intensity of the AE signals in the
specimen during fracture. It was illustrated, that the FPZ size increases for increasing
dmax. This is in accordance with other experimental results reported by Otsuka and
Date (2000), where the FPZ was investigated in compact tension tests by means of
the AE technique and X-ray scans at different loading stages. The results indicated a
change of both the FPZ shape and size in the form of an increase of the width and a
decrease of the length for increasing dmax. Similar conclusions can be drawn for other
heterogeneous quasi-brittle materials, such as rocks (Přikryl et al., 2003). The effect of
concrete porosity on the size of the FPZ was investigated, for instance in Haidar et al.
(2005). Concrete beams were subjected to three-point-bending and failure was moni-
tored by recording AEs in the specimen. It was shown, that the FPZ size increases for
increasing material porosity. Furthermore, the FPZ geometry may completely change
due to self-healing processes, that depend on the content of unhydrated cement and the
curing environment, in which the structure is exposed (Granger et al., 2007). Hence,
the size of the FPZ increases for increasing dmax, increasing material porosity and is
influenced by self-healing processes.

The boundary conditions in the form of specimen geometry and loading type have
been reported to strongly influence the FPZ (Guinea et al., 1992; Tang et al., 1996).
Jankowski and Styś (1990) investigated the evolution of the FPZ in geometrically sim-
ilar notched beams subjected to four-point bending by means of a photoelastic coating
method. It was illustrated that the FPZ width increases as the crack propagates away
from the notch. This effect was investigated in Hu and Wittmann (1990) by implicitly
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Figure 2.1: Schematic description of the micro-cracking and crack bridging zones on
a plane through the thickness of a compact tension specimen.

specifying the FPZ width in specimens subjected to wedge-splitting with an iterative
technique. The elastic compliance-notch length calibration curve was initially con-
structed based on experimental results from specimens with different notch depths.
Then, the FPZ was measured at a certain loading stage by loading, unloading and
reloading the specimen to measure its compliance. The notch was extended to match
the notch length for the measured compliance based on the calibration curve. The
procedure was repeated until no notch extension was needed indicating that the cur-
rent notch tip was outside the FPZ. Hu and Wittmann (1992) applied an analytical
technique based on dissipated energy arguments to demonstrate that the FPZ size in-
creases as the crack propagates away from the specimen boundary. The influence of
the type of the boundary was experimentally investigated in Labuz and Biolzi (1998)
by recording the AE signals in notched and unnotched granite and sandstone beams
subjected to four-point bending. High energy AEs were distributed in a larger area in
the unnotched specimens than in the notched ones, which indicates the influence of the
strain field around the specimen boundary on the FPZ size. Otsuka and Date (2000)
illustrated that the FPZ size increases as the crack propagates away from the boundary
until it attains its maximum “saturated” size for a long enough ligament length, i.e. the
distance between the notch tip and the opposite boundary of the beam. Then, it starts
to decrease as it approaches the other boundary of the structure. Chen and Liu (2004)
investigated in notched three-point bending specimens the influence of the ratio of the
ligament length to the total beam depth on the FPZ by applying an AE technique.
It was argued that the maximum recorded width of the FPZ increases for increasing
values of the absolute ligament length. Moreover, a Digital Image Correlation (DIC)
technique was applied to monitor the FPZ size in Wu et al. (2011). The displacements
of individual points on the specimen were calculated at a certain loading stage by
comparing images of the specimen in the deformed and the undeformed state. These
values were then used to reconstruct the displacement field. The FPZ width can be
only qualitatively determined based on the DIC results because the calculated values
depend on the density of the monitored points. From all the abovementioned exper-
imental results it can be concluded that the maximum width of the FPZ in notched
specimens depends on the ligament length as its width increases for increasing distance
of the crack front from the boundaries.
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The FPZ is the result of a set of dissipative mechanisms that act in the concrete meso-
scale. At this scale, concrete is considered as a heterogeneous three phase composite
composed of a mortar matrix, aggregates and Interface Transition Zones (ITZs) be-
tween the two other phases. Li and Maalej (1996) argued that crack bridging and
micro-cracking are the main failure mechanisms in normal strength concrete 2.1. Mi-
crocracking is the result of the failure of the interface zones between aggregates and
mortar occurring in a zone around the macroscopic crack-tip and accounts for less than
20% of the total fracture energy (Cedolin et al., 1987; Nirmalendran and Horii, 1992).
Crack-bridging dissipates most of the fracture energy mainly in the post-peak result-
ing in softening, i.e. decreasing stresses for increasing strains. This mechanism acts in
the wake of the main crack front and is attributed to aggregate bridging in mode I or
aggregate interlocking and friction between the crack surfaces in modes II and III of
cracking, respectively (van Mier, 1991; Landis, 1999).

A group of researchers focused on the investigation of the FPZ in the meso-scale based
on the geometry of the final crack-patterns. Saouma et al. (1990) recorded the crack
patterns of concrete specimens with different dmax failing in uniaxial compression. The
fracture surfaces were scanned by a mechanical profilometer and the average standard
deviation of the crack patterns from the mean crack plane was calculated for different
sampling window sizes. It was illustrated that the crack patterns are fractal, i.e. their
geometrical properties are invariant to the investigated length-scale. Bouchaud et al.
(1990) applied scanned electron microscopy to record the fracture surface of aluminum
compact tension specimens subjected to different heat treatment. The validity of the
fractality assumption was proven and it was shown that the fractal properties were
comparable to the ones for concrete. In Lange et al. (1993), confocal microscopy was
applied to scan the fracture surface of notched mortar beams with different composi-
tions subjected to three-point bending. It was illustrated, that the average standard
deviation of the fracture surface from the mean crack plane for a given window size is
correlated with the fracture toughness KIC. In a similar experimental campaign, Morel
et al. (2008) investigated notched mortar beams subjected to four-point bending. It
was concluded that the fractality does not hold for larger length scales. Moreover, it
was suggested that the largest window size for which fractality is still valid can be
related to the FPZ size.

The concept of relating the FPZ size to the final fracture patterns is adopted in the
present thesis. The reason is that the final crack patterns are preceded by the FPZ
which affects their tortuosity in the form of the standard deviation of the crack surface
from the mean crack plane. This was reflected in the presented experimental results
from the literature where both the FPZ and the tortuosity of the crack patterns were
influenced similarly by the same factors. The relationship between the standard devi-
ation of the crack patterns and the width of the FPZ is used in Chapter 4 to calibrate
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(a) (b) (c)

Figure 2.2: Schematic overview of meso-scale modelling approaches for the meso-
structure shown in (a): (b) The analysed lattice is related to the meso-structure, (c) The
meso-structure is not related to the analysed lattice.

a nonlocal constitutive law.

2.2 Meso-scale approach

Numerical approaches were applied to investigate the FPZ and some of them aimed
at directly analysing the mechanical response of the meso-scale. According to a group
of these models, concrete is considered as a three-phase composite including mortar,
ITZs and aggregates and is analysed by structural truss or beam elements (Kawai,
1978). The displacements are calculated at the nodes of the elements and the material
response is evaluated at a point between the two nodes (Cundall and Strack, 1979). A
group of those models, the particle models, take into account the evolution of the nodal
arrangement during the loading process and are suitable for large-strain problems.
Another set of approaches, known as the lattice approaches, rely in a lattice of beam
elements, that connects the centres of the cells remaining unchanged during loading
(Kawai, 1980). This approach is computationally efficient and is suitable for the small-
strain problems investigated in the present thesis (Herrmann et al., 1989).

In the lattice approaches, the concrete meso-structure is described in at least two
ways (Figure 2.2). In the first approach, lattice elements connect the centres of the
aggregates in order to model the kinematics of the meso-structure (Zubelewicz and
Bažant, 1987). The nonlinearity of the material response between two aggregates is
evaluated at single point between them by a stress–strain law. The second approach
relies in mapping information of the heterogeneous meso-structure of concrete on a
lattice in the form of spatially varying material properties (Schlangen and van Mier,
1992). Smaller lattice element sizes are used leading to an increased computational
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cost because individual aggregates are represented by several lattice elements. In this
approach, lattice nodes are placed randomly to ensure that the resulting failure patterns
do not follow the mesh lines (Jirásek and Bažant, 1995). The lattice edges and their
cross-sections are specified based on the Delaunay and the Voronoi tessellation of the
set of lattice nodes, respectively (Bolander and Saito, 1998). This approach was shown
to be suitable for fracture simulations and is applied in the present thesis (Bolander
and Sukumar, 2005). Smaller aggregates are modelled by applying an auto-correlated
random field on the fracture properties of mortar and ITZs, which is generated by a
spectral representation technique (Shinozuka and Jan, 1972; Shinozuka and Deodatis,
1996). Furthermore, the constitutive response is evaluated at the centre of the Voronoi
cross-section by damage constitutive laws, as it was suggested in Grassl and Bažant
(2009). These material models are successful in describing mode-I fracture, analysed
in the present thesis as shown in Grassl and Jirásek (2010). However, combinations
of damage and plasticity constitutive laws can be used in other types of failure, for
example uniaxial compressive failure, like the one presented by (Grassl et al., 2012).

Meso-scale analyses results have provided important insight in the fracture processes
in concrete. The influence of the aggregate density on the fracture process was investi-
gated in two- and three-dimensional concrete specimens subjected to uniaxial tension
by Prado and van Mier (2003); Lilliu and van Mier (2003). The sequence of meso-scale
failure mechanisms included debonding of the aggregates from the mortar matrix in the
pre-peak and crack bridging along the main crack in the post-peak. For low aggregate
densities, micro-cracks appeared due to debonding in the ITZs around aggregates that
are far from the final macro-crack. The latter was formed as soon as the micro-crack
density had sufficiently increased. For high aggregate densities, micro-cracks appeared
around aggregates, that were closer to each other, and coalesced to form the final
macro-crack. This effect led to a decreased pre-peak nonlinearity for increasing parti-
cle density in the final stress-strain curve. Grassl and Jirásek (2010) illustrated that
parameters of macroscopic material models can be specified from the FPZ observed
from meso-scale analyses results. A nonlocal damage model was calibrated by fitting
the load-displacement curves and the dissipated energy profiles against the meso-scale
analyses results. Grassl et al. (2012) investigated the influence of the beam depth and
of the notch type in analyses of two-dimensional notched concrete beams, subjected
to three-point bending. It was illustrated that the FPZ width depends on the notch
type whereas the dissipated energy distribution along the ligament is insensitive to the
boundary type. Grégoire et al. (2015) compared meso-scale analyses and experimental
results of concrete beams subjected to three-point bending. The energy distribution of
the recorded AE signals during failure was compared to meso-scale energy dissipation
profiles. The agreement between the two graphs indicated that the meso-scale model
described the evolution of the FPZ during failure consistently. Moreover, both the
experimental and the numerical results indicated that the larger the ligament length
the larger the size of the FPZ.
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2.3 Macroscopic approaches

Concrete failure is commonly modelled by macroscopic material models, that are based
on phenomenological descriptions of the material failure. These models are formulated
within the framework of either damage mechanics or plasticity or a combination of
both theories (Luccioni and Oller, 2003; Červenka and Papanikolaou, 2008; Hofstetter
and Valentini, 2013).

Stress-based plasticity models rely in the decomposition of the total strains in elas-
tic and inelastic plastic strains, that describe the permanent deformations and the
path dependence observed in concrete during unloading and cyclic loading (van Mier,
1986; de Borst, 1987). Plastic strains increase so that the analysed stress state is al-
ways within the domain of admissible stress states, defined by the yield surface (Etse
and Willam, 1994). This surface corresponds to the strength envelope at a certain
loading stage and allows for the modelling of multi-axial stress states (Imran and Pan-
tazopoulou, 1996; Bićanić and Pearce, 1996). The direction of the plastic strains is
provided by the flow rule, which is a function of the plastic potential. Excessive vol-
umetric expansion under high confinement followed by overprediction of the material
strength is observed in associated flow rules, where the same function is used for both
the plastic potential and the yield surface (Grassl et al., 2002; Grassl, 2004). A remedy
to this problem are the non-associated flow rules, where the plastic potential is different
from the yield function (Grassl, 2004; Papanikolaou and Kappos, 2007). Hardening or
softening processes are included in the models by the cumulative plastic strain which
is a variable of the yield surface and the plastic potential (Folino and Etse, 2012).

Furthermore, damage models are able to describe the reduction of stiffness during un-
loading or cyclic loading in tension and low confined compression, that was observed
for example in Bahn and Hsu (1988). This is achieved in isotropic damage models
by multiplying the effective stress, which is the product of the undamaged material
stiffness matrix and the strain vector, by a scalar function of the damage parameter
ranging between 0 and 1 for intact and fully damaged material. These material models
are not able to describe the recovery of the initial material stiffness due to crack clo-
sure occurring upon change of the initial loading system in non-proportional loading
experiments (Ortiz, 1985). Crack closure can be described by anisotropic damage laws,
in which the damage variable is replaced by a damage tensor or a vector (Murakami
and Ohno, 1981; Yazdani and Schreyer, 1988; Chaboche, 1993). A particular group of
vectorial formulations of damage is applied in the present thesis. The effective stress
tensor is decomposed in a tensile and a compressive tensor in the principal effective
stress space and each part is multiplied by a separate damage parameter (Mazars and
Pijaudier-Cabot, 1989; Fichant et al., 1999). According to Carol et al. (1994), the
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damage surface is the equivalent of the yield surface in damage models and defines
the domain of admissible stress states. The shape of the surface is controlled by the
formulation of the equivalent strain (Tao and Phillips, 2005). The evolution of the
damage surface at each loading stage is determined by the value of the set of the
history parameters and the damage law (Voyiadjis and Kattan, 2009).

Damage-plasticity constitutive laws combine the advantages of both theories (Simo and
Ju, 1987; Meschke et al., 1998; Jason et al., 2006). The advanced damage-plasticity
model CDPM2, presented in Grassl et al. (2013), is applied in the present thesis.
This constitutive law is able to describe the concrete behavior under multi-axial stress
states, the irreversible deformations, stiffness decrease and the hardening observed
during triaxial concrete failure.

Moreover, two versions of CDPM2 are used for structural analysis that rely in formu-
lating the damage part, used to analyse softening, according to the nonlocal and the
crack-band approach. If the local version of the constitutive law was applied, i.e. the
tangential material stiffness, used to calculate the stress at a point, depends uniquely
on the strain history at that point only, failure would localise in a zone of zero width
leading to mesh-dependent results in the context of finite element analyses. Various
researchers investigated this effect from a mathematical point of view by considering
a one-dimensional rod subjected to longitudinal tension waves of constant amplitude
that propagate from its edges to the middle of the structure resulting in a constantly
increasing wave amplitude in the midpoint of the bar (Bazant and Pijaudier-Cabot,
1988; Rizzi et al., 1995; Liebe and Willam, 2001). During material softening, failure lo-
calised in a zone in the centre of the bar, such that waves with longer wavelengths than
the localisation zone width cannot propagate (Pijaudier-Cabot and Benallal, 1993). A
localisation zone of zero width would mean that wave propagation with real velocity is
not possible in this medium and failure occurs with zero fracture energy. In the con-
text of finite element analysis these constitutive laws would lead to mesh dependence
because failure localises always in a single element zone and the total fracture energy
would depend on the width of the localisation zone. Furthermore, local constitutive
models fail to describe the localisation of failure in a finite zone, which is observed in
experiments (Grégoire et al., 2015).

2.3.1 Nonlocal constitutive model

Nonlocal material models describe the stress state at a material point based on the
strain state of all material points in its vicinity. This is a way to describe phenomeno-
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logically interactions between material points taking place in lower scales due to fric-
tion, interparticle forces and micro-crack interactions (Kröner, 1967). If correctly for-
mulated, nonlocal models describe the FPZ by regularised mesh-independent strain
profiles (Pamin and de Borst, 1998; Bažant and Jirásek, 2002; Huerta et al., 2002).

Nonlocal models are divided in gradient and integral-type models depending on their
formulation (Eringen and Edelen, 1972; Aifantis, 1984). Gradient formulations are
separated in explicit, where the nonlocal state variable is a function of the spatial
derivatives of the field of the local state variable, and implicit according to which
the nonlocal variable is the solution of a second order nonhomogeneous differential
equation (Mühlhaus and Alfantis, 1991; Fleck et al., 1994). In integral-type nonlocal
models the nonlocal variable at a receiver material point is evaluated as a weighted
average of the state variable at all source points in its vicinity (Pijaudier-Cabot and
Bažant, 1987). The weight of the contribution of each material point is provided by
the weight function, which is a decreasing function of the distance between the source
and the receiver points. The weight function is formulated such that homogeneous
state variable fields are preserved. Typical weight functions are the Gauss, Green and
the Bell-shaped truncated polynomial functions. The width of the final failure zones
depends on the value of the interaction radius, which is a parameter of the weight
function. Peerlings et al. (1996) compared the solutions of a 1D bar subjected to
tension, analysed by an implicit gradient and and an integral-type nonlocal model.
It was shown, that the solution provided by applying an integral-type nonlocal model
with a Green-type weight function is same solution to the one from an implicit gradient
type model. Grassl and Jirásek (2010) compared the dissipated energy profiles from
different weight functions for a one-dimensional specimen subjected to tension against
meso-scale analyses results of a periodic specimen subjected to direct tension. It was
illustrated, that integral-type nonlocal models with the Green-type weight function
result in dissipated energy density profiles that fit better the meso-scale analyses results.

Original formulations of integral-type nonlocal models result in excessive spurious en-
ergy dissipation distributed in wide zones close to non-convex boundaries, such as
notches. This effect is followed by an overestimation of the experimental peak load
and fracture energy (Jirásek et al., 2004). The main reason are the nonlocal contri-
butions of the undamaged source points around the notch that lead to a reduction of
the nonlocal equivalent strains of the receiver points lying close to the notch tip. The
evolution of the damage variables at these receiver points does not follow the increase
of the stress that rises to very high levels and an increased spurious dissipation is ob-
served. Another reason are the multi-axial stress states observed in notched specimens
due to the significant stresses along the other two principal axes. This effect is more
pronounced for material points lying in the vicinity of the notch tip. A different formu-
lation of the equivalent strain could therefore result in a reduction of the analytically
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(a) (b) (c)

Figure 2.3: Schematic overview of distance-based nonlocal approaches for a V-Notched
beam: (a) Bolander and Hikosaka (1995), (b) Bažant et al. (2010), (c) Krayani et al.
(2009).

observed peak load (Jirásek and Bauer, 2012). In the present thesis, different nonlocal
averaging approaches that can be applied to resolve this problem are investigated.

The first group of nonlocal models are referred to as distance-based approaches and
involve modifying the interaction radius depending on the distance of the receiver point
from the boundaries (Figure 2.3). Bolander and Hikosaka (1995) applied this concept
for the material points within a predefined ellipse around a sharp notch. The interaction
radius increased for increasing distance of the receiver point from a minimum value on
the notch tip to the maximum value on the ellipse boundaries. A hybrid approach
approach was proposed to analyse a beam subjected to three-point bending in Bažant
et al. (2010). The material points close to the specimen boundaries were considered to
form an outer layer, whose constitutive response was modelled by a crack-band model
calibrated according to a stress-inelastic displacement law (see Section 2.3.2). Failure
in the inner part of the structure was modelled by a nonlocal model. Krayani et al.
(2009) assumed a symmetric equivalent strain field on the other side of the boundary.
In this approach, the response of the material points close to the boundaries is almost
local despite the use of a nonlocal material model because only the contributions from
source points lying on the boundary are taken into account. In a finite element analysis
the accuracy of the calculated values of the nonlocal parameters depends on the number
of material points that are taken into account during nonlocal averaging. Hence, for a
coarse finite element mesh this approach could lead to mesh-dependent results.

In stress-based approaches, nonlocal averaging is modified according to the stress state
of the material points (Figure 2.4). Planas et al. (1993) argued that the most critical
nonlocal contributions should be from source points lying across the FPZ and proposed
that the weights of the nonlocal interactions of material points along the compressive
principal axes should be reduced. In the case of notches or other physical boundaries,
the stress-based approaches incorporate the influence of boundaries through the stress
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(a) (b)

Figure 2.4: Schematic overview of the stress-based nonlocal approaches for a specimen
subjected to tension with Poisson’s ratio equal to zero. (a) Single nonlocal weights
contour for a source point for different receiver points lying around it at the same
distance (Giry et al., 2011). (b) Interaction zones of a crack according to the crack-
interactions model (Bažant, 1994).

field. For example, on a free boundary of the specimen with no applied surface trac-
tions, the principal stress directions are normal and tangential to the boundary and the
principal stress perpendicular to the boundary vanishes. If the principal stress along
the boundary is tensile, the internal length is reduced in the perpendicular direction.
This produces a similar effect as in the distance-based approaches. Probably the first
stress-based approach, motivated by the interactions between microcracks was formu-
lated by Bažant (1994) and was analysed in a simplified form in Jirásek and Bažant
(1994). In these studies the effective local stress state of both the source point with
respect to the receiver point influenced the weight of its contribution resulting in am-
plification and shielding zones. In addition the damage-based approach presented in ?
inspired the work by Giry et al. (2011), who formulated a stress-based weight function
by modifying the weight of source material points according to their stress state. A
similar but more efficient approach will be presented in the present thesis which is
based on the stress state of the receiver point.

Figure 2.5: Illustration of the local complement method (Borino et al., 2002).
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Moreover, an additional set of approaches is investigated that do not break the sym-
metry of the weight function with respect to the coordinates of the receiver and the
source points (Borino et al., 2002). In a formulation, known as the local complement
method, the calculated weight depends solely on the distance between the two points
and the boundaries are taken into account by increasing the local contribution of the
receiver point. This is achieved by increasing the weight of the local contribution to
compensate for the missing part of the integration domain (Figure ??). The nonlocal
state variable is then calculated either as the arithmetic or the geometrical mean of
the local and the nonlocal contributions (Borino et al., 2003; Grassl and Jirásek, 2008).
Alternatively, material models, based on damage mechanics and perfect plasticity, do
not break the symmetry of the weight function and may result in a reduction of the
dissipation close to boundaries because the stresses are limited by the yield surface.
Jirásek and Rolshoven (2003) showed that nonlocal perfectly plastic models result in
localisation in a zone of zero width. In overnonlocal models (Vermeer and Brinkgreve,
1994), the state variables are determined from a linear combination of the nonlocal
and the local variables. Localisation analysis on these models illustrated that mesh
independent formulations are only the ones, where local and nonlocal contributions
are multiplied by a negative and a positive factor, respectively (Di Luzio and Bažant,
2005). In addition, Grassl and Jirásek (2010) argued that these formulations should be
applied in a damage-plasticity model in order to have a mesh-independent description
of the plastic strains.

The boundaries should also be integrated in the model at a structural level. Jirásek
et al. (2004) investigated several alternative representations of the boundaries of notched
compact tension specimens. The notch was analysed by a fully damaged material,
resulting in an unjustified dependence of the load-displacement curve on the notch
thickness when the nonlocal variable was set equal to the average of the local damage
energy release rate. The reason is that the damage release rate in the notched area
is inversely proportional to the square of the notch thickness and this term does not
cancel out during nonlocal averaging across the notch thickness leading to results sen-
sitive to the notch geometry. In an alternative approach, boundaries were considered
as nonlocal barriers blocking nonlocal interactions between points lying on either sides
of the notch. This idea is physically motivated because there is no linear path con-
necting the two points that is entirely within the specimen and taking into account the
lengths of alternative paths would result in negligible weights. This concept was not
very efficient in decreasing the energy dissipation around the notch as the points that
dissipate most of the energy are above the notch tip and are directly connected with
each other. This approach will be applied in all nonlocal simulations in the present
thesis due to its physical motivation.

A group of alternative averaging schemes, reported in the literature, were characterised
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Figure 2.6: Schematic overview of the calibration methodology proposed in Bažant
and Pijaudier-Cabot (1989). The cross-sectional area for both both specimens in the
failure zone is equal to A. The width of the failure zone is equal to h.

by either a complex concept or by an increased computational load. These models will
not be included in the analyses performed in the present thesis but are briefly reviewed.
A set of approaches focus on the paths that the nonlocal contributions follow from
the source to the receiver point in order to define the weight function (Ganghoffer and
de Borst, 2000; Polizzotto et al., 2006). These approaches are computationally intensive
due to the large number of potential paths that need to be investigated. Furthermore,
Rojas-Solano et al. (2013) defined the weight function by calculating the weights of a
source point for all receiver points based on the distribution of the state variable from
the solution of an expanding elastic sphere centered the source point.

Another major topic in nonlocal models is the calibration of the interaction radius that
determines the width of the final failure zones. A group of calibration approaches rely
on reconstructing the dissipated energy profiles and strain profiles based on experimen-
tal results in order to determine the size of the FPZ width. Bažant and Pijaudier-Cabot
(1989) investigated a Double Edge Notched (DEN) and an unnotched specimen sub-
jected to tension (Figure 2.6). In the unnotched specimen localisation of failure was
prevented by placing steel bars. The load-displacement curves were recorded for both
specimens and were converted for the case of the unnotched specimen to stress-strain
curves by dividing the load and the displacement by the specimen cross-sectional area
and length, respectively. The experimental dissipated energy profile was reconstructed
in both cases by considering that the global fracture energy is homogeneously dis-
tributed within the FPZ. The width of the FPZ was then calculated by dividing the
integral of the load-displacement curve of the notched specimen with the cross-sectional
area and with the integral of the stress-strain diagram of the unnotched one. The strain
profile at peak was reconstructed for the notched specimen by assuming all material
points within the FPZ are equally strained. A nonlocal model was used to analyse
an one-dimensional specimen subjected to tension and was calibrated so that the in-
tegral of the strain profile at peak stress fits the integral of the reconstructed strain
profile. This methodology does not account for the nonlinear dissipated energy and
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strain distributions within the FPZ. Moreover, the FPZ is not uniquely determined
as it depends on the constitutive laws used in the calibration. In the present thesis a
new calibration methodology is proposed, which is based on the final crack patterns of
notched specimens.

Another group of theoretical approaches proposed for explicit gradient-type nonlocal
models were based on the Representative Volume Element (RVE) concept (Frantzisko-
nis, 1995; Gitman et al., 2005). The RVE corresponds to the minimum volume of the
laboratory scale specimen, whose experimental results can still be regarded as repre-
sentative for the continuum. The RVE concept was applied for the calibration of the
gradient models in the elastic regime by Gitman et al. (2006). However, as it was
illustrated by Gitman et al. (2008), an RVE cannot be found in the softening regime.

Alternatively, calibration strategies based on inverse optimisation techniques may be
applied. According to these approaches, the interaction radius is defined by minimising
an objective function which is the sum of the difference between experimental variables
and the corresponding analytical ones. The selection of the set of variables used in
the calibration is important as it might lead to an ill-posed problem characterised by
convergence problems due to the existence of multiple or no solutions (Carmeliet, 1999).
When the results of a single experiment are used in the calibration, both global and local
information need to be considered in the form of the load-displacement curve and local
displacements at material points lying inside and outside the FPZ (Mahnken and Kuhl,
1999). Results from experimental campaigns with geometrically similar specimens can
be used in the calibration of nonlocal models by using both global load-displacement
curves and local displacements (Bellégo et al., 2003; Iacono et al., 2006). Iacono et al.
(2008) calibrated a nonlocal model against the experimental results from specimens
of different sizes subjected to three-point bending tests and uniaxial tension. It was
illustrated that calibration provided unsatisfactory predictions for the tensile tests,
which could be attributed to structural effects that influence the calibration process.
Hence, a successful calibration algorithm needs to be based on both local and global
parameters.

The present section focused on different nonlocal approaches formulated in the litera-
ture and on the calibration of nonlocal models. Among the different groups of nonlocal
models, that were presented, the distance-based, the stress-based and the local comple-
ment formulations were based on simple concepts and took into account the influence of
boundaries either implicitly or explicitly in the averaging scheme. In Chapter 4 nonlo-
cal models belonging in these groups are applied to model different types of boundaries
in order to evaluate their performance. Moreover, calibration methodologies based
on theoretical approaches, inverse optimisation techniques and the reconstruction of
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Figure 2.7: Schematic overview of the crack-band width h of the crack-band approach
for the case of a triangular element and Poisson’s ratio equal to zero.

the experimental dissipated energy profiles were discussed. It was concluded from the
literature review that both global and local variables should be included in the cali-
bration procedure in order to take into account the local dissipation within the FPZ
during failure. Therefore, the calibration methodology that is presented in Chapter 5 is
based on the experimental global load-displacement relationship and the local standard
deviation of the experimental final crack patterns from the mean crack plane.

2.3.2 Crack-band approach

The initial motivation of this theory was that material failure can be modelled in ten-
sion as a band of parallel, densely distributed microcracks (Bažant and Oh, 1983). In
crack-band models, failure localises in a single row of finite elements and the stress-
strain relationship is adjusted based on the width of the band to match stress-inelastic
displacement law. In Jirásek and Grassl (2008), it was observed that analysing a struc-
tured mesh using the crack band approach results in failure zones that follow the mesh
lines. This phenomenon is defined in the literature as directional mesh bias. Jirásek
and Bauer (2012) compared different definitions of the crack-band width in tension
proposed in the literature. Beams subjected to three-point bending were analysed and
it was concluded that independently of the number of Gauss Points per element the
crack band width should be equal to the projected length at the centre of the element
along the first principal strain axis at the initiation of damage (Figure 2.7).

In Bažant and Xiang (1997), the crack-band approach was extended in compression
and shear failure by considering a band of splitting cracks that propagate perpendicular
or at an angle to the loading axis but there is no consensus on how to define this band.
A group of researchers suggested, that a stress-strain law is sufficient for providing
mesh-independent results in compression (Grassl and Jirásek, 2006a; Grassl et al.,
2013). Recently, Červenka et al. (2014) performed a mesh study by analysing cylindrical
specimens subjected to compression that were investigated by Nakamura and Higai
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(2001). The analytical results were shown to be mesh-dependent. The main reason of
this response is the dense spacing of the cracks which means that failure localised in
much smaller zones than the ones considered in stress-inelastic displacement law. This
was illustrated in the contour plots of damage where failure localised in multi-element
zones.
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Chapter 3

Modelling approaches

Four macroscopic and one meso-scale approach are presented, which are applied in the
subsequent chapters to model concrete failure. The macroscopic approaches are formu-
lated within the context of continuum mechanics and the nonlinear material response
is described by either nonlocal damage or nonlocal damage-plasticity constitutive laws.
These material models are suitable for the nonlinear analysis of specimens, where tensile
failure dominates, and are simpler than the advanced macroscopic damage-plasticity
law CDPM2 presented in Chapter 6. In the meso-scale approach, concrete is considered
as a heterogeneous three-phase composite consisting of mortar, aggregates and Inter-
facial Transition Zones (ITZs) between the two other phases. The meso-structure is
modelled explicitly by a lattice approach combined with an isotropic damage mechan-
ics constitutive law. Autocorrelated random fields are applied to model the spatial
variation of the material properties. Special techniques are presented to eliminate
the influence of the boundary conditions. These techniques are used to calibrate the
macroscopic constitutive laws based on meso-scale analyses results.

44



3.1 Macroscopic approaches

3.1.1 Nonlocal isotropic damage models

In this section two damage constitutive laws are presented, that are based on isotropic
damage mechanics. They are referred to as nonlocal isotropic damage model A and
B and are used in Chapters 4 and 5, respectively. The stress-strain relationship is in
both models

σ = (1− ω)σ̄ = (1− ω)De : ε (3.1)

where σ is the total stress tensor, ω is the damage variable, σ̄ is the effective stress
tensor, ε is the strain and De is the isotropic elastic stiffness that depends on Young’s
modulus E and Poisson’s ratio ν.

Damage ω is determined by the damage function, which depends on the history vari-
able κd. For the nonlocal isotropic damage model A,

ω(κd) =



1− exp

(
− 1

md

(
κd

ε0

)md
)

, κd ≤ ε1

1− ε3

κd

exp

− κd − ε1

εf

[
1 +

(
κd − ε1

ε2

)n]
 , κd > ε1

(3.2)

where
md =

1

ln(Eε0/ft)
(3.3)

and ft is the uniaxial tensile strength. Parameter ε0 is the axial strain at peak stress,
and ε1, ε2 and n are additional parameters that control the softening part of the stress-
strain diagram.

Furthermore,
εf =

ε1

(ε1/ε0)md − 1
(3.4)

and
ε3 = ε1 exp

(
− 1

md

(
ε1

ε0

)md
)

(3.5)

This damage model exhibits pre- and post-peak nonlinearities in uniaxial tension as it
is illustrated for the 1D case in Figure 3.1 (a).
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(a) (b)

Figure 3.1: Schematic representation of the stress-strain relationship of the (a) nonlocal
isotropic damage model A and the (b) nonlocal isotropic damage model B

In nonlocal isotropic damage model B, the function for ω is

ω(κd) =


0 , κd ≤ εo

1−
(
ε0

κd

)
exp

(
−κd − ε0

εf − ε0

)
, κd > εo

(3.6)

Here, ε0 is again the strain, at which peak stress is reached, and εf controls the slope
of the softening curve at peak stress (Figure 3.1 (b)).

The history variable κd, used in (3.2) and (3.6) to obtain the damage parameter,
represents the maximum level of nonlocal equivalent strain ε̄eq reached in the history
of the material. It is determined by the loading-unloading conditions

fd ≤ 0, κ̇d ≥ 0, κ̇dfd = 0 (3.7)

in which
fd(ε̄eq, κd) = ε̄eq − κd (3.8)

is the damage loading function.

The nonlocal equivalent strain ε̄eq is evaluated as

ε̄eq(x) =

∫
V

α(x, ξ) εeq(ξ) dξ (3.9)

At a point x, εeq is the weighted average of the value of the local equivalent strain εeq

at all points ξ in the vicinity of x within the integration domain V (Figure 3.2(a)).
The weight function α(x, ξ) used in the nonlocal models should not modify uniform
fields after averaging. According to the standard scaling approach, this is achieved by
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normalising the original weight function α0(x, ξ) by its integral over the integration
domain V (Pijaudier-Cabot and Bažant, 1987), as

α(x, ξ) =
α0(x, ξ)∫

V

α0(x, ξ) dξ
(3.10)

In the present thesis, α0(x, ξ) corresponds to an exponential (Green-type) function

α0(x, ξ) = exp

(
−‖x− ξ‖

R

)
(3.11)

Here, R is the interaction radius, that determines the slope of the weight function α0

for ξ ≡ x and controls the size of the final failure zones (Figure 3.2(b)).

Modifications of the standard scaling scheme in order to model boundaries are presented
in Chapter 4.

For the nonlocal isotropic damage model A, the formulation of the local equivalent
strain εeq, introduced in (3.9), is

εeq =
1

E
max
I=1,2,3

σ̄I (3.12)

where σ̄I denotes the Ith principal component of the effective stress σ̄ introduced in
(3.1). This equivalent strain formulation results in a Rankine strength envelope (Fig-
ure 3.3(a)). The damage law and the failure surface selected for this model result in
a similar stress-strain behavior to the one provided by the damage-plasticity model
presented in Section 3.1.2. Both material models will be applied in the comparative
study presented in Chapter 4.

In nonlocal isotropic damage model B, εeq is formulated as

εeq =
1

E

√√√√ 3∑
I=1

< σ̄I >2
+ (3.13)

where < . >+ are the MacAuley brackets (positive part operator). This equivalent
strain formulation results in a more detailed description of the strength envelope for
biaxial stress states, which is important for testing the calibration strategy shown in
Chapter 5 (Figure 3.3(b)).
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(a) (b)

Figure 3.2: (a) Schematic representation of the nonlocal concept. (b) Exponential-type
weight function α0.

(a) (b)

Figure 3.3: Plane stress representation of the damage surface at the onset of damage
(εeq = ε0) for the (a) nonlocal isotropic damage law A and (b) nonlocal isotropic
damage law B.
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3.1.2 Nonlocal damage-plasticity model

The other two macroscopic constitutive approaches are based on both isotropic damage
mechanics and hardening plasticity. The constitutive relationship is

σ = (1− ω)σ̄ = (1− ω)De : (ε− εp) (3.14)

where εp is the plastic strain. The plasticity part is formulated in the effective stress
space. The domain of admissible stress states is described by the yield function
fp(σ̄, σy) that corresponds to a Rankine failure surface:

fp(σ̄, σy) = max
I=1,2,3

< σ̄I >+ −σy (3.15)

Here, σy is the yield stress, which is given by the hardening law

σy(κp) =

E0κp exp

(
− 1

md

(
κd

εp,max

)mp
)

, κp ≤ εp,max

ft , κp > εp,max

(3.16)

where εp,max is the plastic strain at peak stress and κp is the plastic hardening vari-
able (cumulative plastic strain) defined in rate form as κ̇p = ‖ε̇p‖. Exponent mp is
calculated as

mp =
1

ln(E0εp,max/ft)
(3.17)

The exponential terms in the first branches of the damage function of the nonlocal
isotropic damage law, introduced in (3.2), and the hardening laws of the present con-
stitutive laws in (3.16) are similar. However, the damage parameter used in the former
model relates stresses to total strains, whereas in the present model the hardening
law describes the effective stress-plastic strain relationship. Consequently, parameter
E0 in (3.16), is an additional model parameter, which is independent of the Young’s
modulus E used in (3.3). It corresponds to the initial hardening modulus and its value
is typically very high to ensure that the nonlinearity at low stress levels is negligible.

The loading-unloading conditions of the plasticity part are

fp ≤ 0, λ̇ ≥ 0, λ̇fp = 0 (3.18)

In the damage part, the damage variable ω in (3.14) is determined by

ω(κd) =

0 , κd ≤ 0

1− d5 exp(−d1(κd)d2)− (1− d5) exp(−d3(κd)d4) , κd > 0
(3.19)
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with dimensionless parameters d1 to d5. The model parameters are calibrated according
to the procedure described in Section 4.2. Variable κd is given by

κd =
κ̂p − εp,max

εp,max

(3.20)

in which
κ̂p = mκ̄p + (1−m)κp (3.21)

Here, κ̄p is the nonlocal cumulative plastic strain, calculated as

κ̄p(x) =

∫
V

α(x, ξ) κp(ξ) dξ (3.22)

where α(x, ξ) is the weight function defined in (3.10) and m is an additional model
parameter. For m = 1 the nonlocal formulation is recovered and this model is called in
the present thesis nonlocal damage-plasticity model. In Jirásek and Rolshoven (2003),
it was shown that this model provides mesh-dependent results for a hardening law
with constant yield stress in the post-peak. This issue is resolved if a over-nonlocal
formulation is applied in which m should be larger than 1 as shown in Di Luzio and
Bažant (2005). This approach was introduced in the context of nonlocal plasticity
by Vermeer and Brinkgreve (1994) and was adapted to nonlocal damage-plasticity by
Grassl and Jirásek (2006a). In the second model, defined in the present thesis as over-
nonlocal damage-plasticity model, m is set equal to 2, which is the value used in a
similar study in Grassl and Jirásek (2006a).

3.2 Meso-scale approach

In the meso-scale approach, the material meso-structure is analysed by a two-dimensional
lattice of structural elements, as described in (Grassl and Jirásek, 2010). The lattice
nodes are generated randomly subject to the constraint of minimum distance dmin

(Zubelewicz and Bažant, 1987). A Delaunay triangulation is found for this set of
nodes to define the lattice edges. The cross-sections of the lattice elements are the
edges of the Voronoi diagram, which is the dual graph to the analysed lattice (Figure
3.4 (a)).

The meso-scale approach is limited to a two-dimensional plane stress analysis. Each
lattice node possesses three degrees of freedom (two translations and one rotation).
In the global coordinate system, shown in Figure 3.4(b), the degrees of freedom ue =

(u1, v1, φ1, u2, v2, φ2)T are linked to the displacement discontinuities uc = (uc, vc) in the
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(a) (b)

Figure 3.4: (a) Lattice based on Delaunay tessellation based on a random set of points.
(b) Lattice element in the global coordinate system.

local coordinate system at Point C, which lies in the centre of a Voronoi cross-section.
The relationship is

uc = Bue (3.23)

where

B =

[
− cosα − sinα −e cosα sinα e

sinα − cosα −h/2 sinα cosα −h/2

]
(3.24)

The displacement discontinuities uc are normalised by the length of the lattice element
h in order to calculate the strains ε = (εn, εs)

T = uc/h. The stiffness matrix of a
lattice element is calculated in the local coordinate system by

K =
l

h
BTDB (3.25)

where l is the length of the Voronoi segment, h is the length of the lattice element and
D is the material stiffness.

An isotropic damage constitutive model is applied to describe the nonlinear stress-
strain relationship within the lattice elements and the constitutive relationship is given
in

σ = (1− ω)Deε = (1− ω)σ̄ (3.26)

where σ = (σn, σs)
T is the total stress, ω is the damage variable, De is the elastic

stiffness, ε = (εn, εs)
T is the strain, and σ̄ = (σ̄n, σ̄s)

T is the effective stress.
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Figure 3.5: Elliptic strength envelope in the nominal stress space at the onset of
damage (εeq = ε0).

The elastic stiffness matrix

De =

[
E 0

0 γE

]
(3.27)

depends on the parameters E and γ that control Young’s modulus and Poisson’s ratio
of the material. A relationship between these parameters and the elastic material
properties has been established for a regular lattice for various structures in Griffiths
and Mustoe (2001). For plane stress conditions the resulting Poisson’s ratio is

ν =
1− γ
3 + γ

(3.28)

and the Young’s modulus is

Em = 2E

(
1 + γ

3 + γ

)
(3.29)

The evolution of the damage parameter ω depends on the equivalent strain εeq that
corresponds to an elliptic strength envelope at the onset of damage (Figure 3.5). For
pure tensile loading, the effective stress is limited by tensile strength ft = Eε0, whereas
for pure compressive loading it is limited by the compressive strength fc = cft. In pure
shear, total stress is limited by the shear strength fq = qft. The damage parameter
ω is a function of the history parameter κd, which is equal the maximum equivalent
strain εeq reached in the loading history. An exponential softening law is applied to
describe the post-peak stress-strain response. The main parameter is wf , that controls
the initial slope of the softening curve and is related to the meso-level fracture energy
Gft = ftwf .
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Figure 3.6: Exponential autocorrelation function of separation distance d.

The material heterogeneity is taken into account by mapping the spatially varying ma-
terial properties to the material parameters of the elements of the lattice. Aggregates
with diameters greater than φmin are modelled directly assuming linear elastic proper-
ties. The random distribution of aggregate diameters φ is defined by the cumulative
distribution function used in Carpinteri et al. (2004). Aggregates are placed randomly
within the specimen, avoiding overlaps with each other. The heterogeneity of the ma-
terial properties of finer particles is taken into account by autocorrelated Gaussian
random fields applied on the tensile strength and the fracture energy. The two random
fields are generated based on a spectral representation method and are assumed to
be fully correlated (Shinozuka and Jan, 1972; Shinozuka and Deodatis, 1996). In the
present thesis, an exponential autocorrelation function is applied, formulated as

R(d) = exp

(
−d

2

b2

)
(3.30)

which for a one-dimensional random field the autocorrelation function is calculated as

R(d) =

∫ ∞
−∞

f(x)f(x− d)dx (3.31)

Here, parameter d is the separation distance between two points and x is the spatial
coordinate. In 3.30, b is a parameter related to autocorrelation length la as

b =
2 la√
π

(3.32)

The autocorrelation length la is independent of the spacing dmin of the lattice nodes
(Grassl and Bažant, 2009) and determines the area in which the random field assumes
values of comparable magnitude (Figure 3.6). The autocorrelation length is related
implicitly to the size of the heterogeneities as it determines the geometry of strong and
weak zones within the specimen. A threshold is set in the Gaussian distribution in
order to avoid negative values of strength and fracture energy.
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Figure 3.7: Periodic cell.

3.3 Calibration based on the direct tensile test

Special analysis setups are presented for the macroscopic and the meso-scale approaches,
where a specimen is subjected to direct tension. The aim is to eliminate the influence
of the boundary conditions and to take into account the nonlocal interactions in a
multi-dimensional domain.

The meso-scale approach is applied to analyse an initially rectangular computational
cell, that is periodically repeated parallel to its sides (Figure 3.7). The final results are
neither influenced by the boundary conditions nor by the “wall effect” caused due to the
inability of the aggregates to penetrate the boundaries (Unger and Eckardt, 2011). The
periodic cell is generated by introducing three extra degrees of freedom (Ex, Ey, and
Exy) to the existing ones of the lattice nodes in order to describe the average strains of
the computational cell (Grassl and Jirásek, 2010). Average strains are linked to average
stresses. In this specimen, the application of mixed loading conditions is simplified.
For example in the uniaxial tension case, the average strain Ey is incremented and the
average lateral and shear stresses are set to zero.

A periodic mesh is generated such that for every node in an adjacent cell there is
a periodic image in the analysed cell. Lattice elements with both nodes inside the
computational cell are modelled according to the formulation presented in the previous
section. A different formulation is adopted for the lattice elements, which intersect
with the cell boundaries connecting nodes of the analysed cell and the of adjacent
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cells. The degrees of freedom of the nodes outside the analysed cell are linked to the
degrees of freedom of their periodic images inside the cell so that their rotations are
equal and their translational degrees of freedom differ by a fixed contribution of the
average strains. In Figure 3.7, the kinematics of the node J ′ of the lattice element IJ ′

are calculated based on only the displacements of J as

uJ ′ = uJ + kxaEx + kybExy

vJ ′ = vJ + kybEy (3.33)

Here kx and ky are integer variables that take values 0, 1 or -1 depending on the
position of J ′ ( for this case kx = ky = 1). The rigid body rotation on the entire lattice is
suppressed by constraining the rotation around the out-of-plane axis. The contribution
of the average shear strain Exy is therefore considered only for the calculation of the
translations along the x-direction. Furthermore, both translations of a lattice node are
fixed to suppress the other two rigid body modes. The transformation rule for the
displacements of element IJ ′ is



uI

vI

φI

uJ ′

vJ ′

φJ ′


=



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 kxa 0 kyb

0 0 0 0 1 0 0 kyb 0

0 0 0 0 0 1 0 0 0





uI

vI

φI

uJ

vJ

φJ

Ex

Ey

Exy


(3.34)

The meso-scale analyses are performed to obtain the mean average stress-average strain
curve and the mean dissipated energy density profile parallel to the loading direction.
This is not possible by processing the results of a single meso-scale analysis because for
the same input there are different potential realisations of the meso-structure, of the
auto-correlated random field and the lattice, leading to different results. Therefore, a
set of 100 analyses was performed with the same input. As it was shown by Grassl
and Jirásek (2010), this is a statistically representative sample to calculate the mean
curves.

The location of the damage localisation area is included in the calculation of the dissi-
pated energy density profiles. The position of the localisation zone is different in each
meso-scale analysis. The mean profile was calculated by centering the individual curves
in the middle of the specimen. Initially, the dissipation density profile was calculated
for each meso-scale analysis by integrating along the x-axis and the point of maximum
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dissipation was determined. Then, the profile was translated along the y-axis so that
the point of maximum dissipation lay on the middle of the specimen. After the trans-
lation, the part of the profile outside the cell boundaries was shifted by a length of
the periodic cell to fill in the missing one. This procedure is acceptable because the
specimen material properties and boundary conditions are periodic.

The equivalent problem is formulated within the finite element framework and is anal-
ysed with nonlocal constitutive laws (Figure 3.8). This setup is used in the present
thesis for the calibration of nonlocal models. A two-dimensional cell is analysed by a
regular mesh of plane stress quadrilateral elements. Kinematic constraints are applied
to the horizontal displacements of all nodes along the left boundary of the specimen and
the transversal displacements of the nodes lying along the midheight of the specimen.
A prescribed horizontal displacement is applied at a single node on the right boundary
of the specimen. Additionally, nodal displacements are restrained such that all nodes
lying along the same horizontal mesh line have the same transversal displacements and
all nodes along the same vertical mesh line share the same horizontal displacement.
Hence, the transversal strains are the same at all elements.

During failure, the position of the localised failure zone depends on the location of
imperfections introduced within the specimen. In order to ensure that this zone is
completely unaffected by the specimen boundaries, an element is slightly weakened
in the middle of the specimen to trigger localisation in that area. In this setup, the
transversal strain is uniform in the entire specimen and the mean transversal stress is
always zero, whereas the resulting local transversal stress becomes nonzero after the
onset of localisation. At this loading stage the local transversal stress varies and is
typically tensile in the localisation zone and compressive in the rest of the specimen.

The computational effort is reduced by analysing a single row of elements with one
integration point per element and by using a modified nonlocal weight function (Fig-
ure 3.8). The equivalent strain field is constant along axis s and the weight function
formulated in a two-dimensional domain should depend only on one axial coordinate
parallel to axis r as given in

ε̄eq (xr, xs) =

∫ ∞
−∞

∫ ∞
−∞

α∞

(√
(xr − ξr)2 + (xs − ξs)2

)
εeq(ξr)dξrdξs

=

∫ ∞
−∞

α∗∞ (xr − ξr) εeq(ξr)dξr (3.35)

Setting the origin of the coordinate system at the receiver point, r = ξr and s = ξs the
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Figure 3.8: Geometry and loading setup of the specimen analysed with the nonlocal
models.

weight function α∗∞(xr − ξr) in (3.35) becomes

α∗∞(r) =

∫ ∞
−∞

α∞

(√
r2 + s2

)
ds (3.36)

as a modified weight function (reduced from 2D to 1D). The integral of (3.36) is eval-
uated numerically because there is no closed form solution.

In the 3D domain, the modified weight function is formulated for the exponential weight
function, given in (3.11), as

α∗∞(r) =

∫ ∞
−∞

α∞

(√
r2 + s2 + t2

)
ds dt =

1

4R2
exp

(
−|r|
R

)
(R + |r|) (3.37)

Here, r, s and t are the distances between the receiver and source points along the x-,
y- and z-axis of the coordinate system.

For certain weight functions, such as the Gaussian, the original and the modified weight
functions are equal (α∗∞ (xr − ξr) = α∞ (xr − ξr)). This adjustment increases the ef-
ficiency of the model and the nonlocal constitutive laws are calibrated by taking into
account nonlocal multi-dimensional interactions.
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Chapter 4

Nonlocal boundary approaches

The first topic of the present thesis is the description of non-convex boundaries with
nonlocal models and is addressed in this chapter. Nonlocal isotropic damage model A
is combined with different averaging procedures and the resulting models are applied to
modelling fracture. The macroscopic material models are calibrated by fitting the load-
displacement curves and dissipated energy profiles of a specimen subjected to tension
to the results of the meso-scale analyses for the direct tension test, as described in
Grassl and Jirásek (2010). These analysis setups are used to eliminate the influence of
boundaries on the results and to obtain the same solution from all averaging schemes.
The calibrated models are applied to two-dimensional simulations of sharp-notched, V-
notched and unnotched beams subjected to three-point bending. The performance of
the nonlocal models is evaluated by comparing load-displacement curves and dissipated
energy profiles along the ligament of the beams with the meso-scale results. As an
alternative approach, both damage-plasticity laws, reported in Section 3.1.2, are also
included in the comparative study.

4.1 Modified nonlocal approaches for modelling fracture

close to boundaries

The nonlocal isotropic damage law A, reported in Section 3.1.2 is combined with dif-
ferent averaging approaches, which are based on three modifications of the standard
scaling approach (Figure 4.1), given in (3.10): (i) the distance-based, (ii) the stress-
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based, and (iii) the local complement approach. The resulting nonlocal models are
characterised by a simple concept, are easy to implement and are computationally
efficient.

The distance-based approach, shown in Figure 4.2, is similar to the approach described
in Bolander and Hikosaka (1995). Standard scaling is applied to the basic weight
function α0(x,y), which depends also on the minimum distance d(x) of point x from
the specimen boundary (Figure 4.2):

α0(x,y) = exp

(
−‖x− ξ‖
γ(x)R

)
(4.1)

where

γ(x) =

1 , d(x) ≥ tR
1− β
tR

d(x) + β , d(x) < tR
(4.2)

Here, β and t are the parameters of the distance-based approach. For a material point
x lying on the boundary, the distance d(x) = 0 and (4.2) yields γ(x) = β. On the
other hand, when d(x) is greater than tR then γ(x) = 1 and the standard scaling
approach is recovered. In the boundary layer of thickness tR, the value of γ increases
linearly from β to 1. For β = 0 the material behavior on the boundary is fully local.

The stress-based approach, shown in Figure 4.3, is motivated by the interaction of
micro-cracks formulated by Bažant (1994) and was applied in a simplified form by
Jirásek and Bažant (1994). A transformation matrix T is calculated that depends on
the effective stress state σ̄ at x:

T =

(
1 0

0 1/γ

)(
n1x n1y

−n1y n1x

)
=

(
n1x n1y

−n1y/γ n1x/γ

)
(4.3)

where n1x and n1y are the components of the unit eigenvector n1 associated with the
maximum tensile principal eigenvalue σ̄1 of the effective stress tensor σ̄. Multiplication
by T transforms an ellipse with principal axes aligned with the principal directions of
σ̄ and major and minor semi-axes lengths 1 and γ into the unit circle. Hence, the
weights of the contributions of source points ξ lying along the minor axis of the ellipse
are decreased.

The new weight function

α0(x, ξ) = exp

(
−‖T (x) · (x− ξ)‖

R

)
(4.4)
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Figure 4.1: Illustration of the standard scaling approach.

Figure 4.2: Illustration of the distance-based scaling approach.

Figure 4.3: Illustration of the stress-based scaling approach.
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Figure 4.4: Illustration of the local complement scaling approach.

is influenced by the effective stress at point x. In (4.3) γ is a scaling factor, defined as

γ(x) =

β + (1− β)

(
< σ̄2 >+

σ̄1

)
, σ̄1 > 0

1 , σ̄1 ≤ 0

(4.5)

Here, β is a parameter of this approach, σ̄2 is the minimum (second in the 2D domain)
principal effective stress and < . >+ denotes again the MacAuley brackets (positive
part operator). In uniaxial tension the principal effective stresses are σ̄1 = σ̄t > 0 and
σ̄2 = 0, which gives γ = β. A minimum value of γ is enforced by parameter β to
ensure that the integration domain does not degenerate into an infinitely small area.
In a finite element analysis, the calculation of the nonlocal parameters is based on the
Gauss integration scheme and would be very inaccurate in the case of an infinitely
small averaging domain. For equi-biaxial stress states all principal stresses are equal
(σ̄1 = σ̄2), γ is equal to 1 and the matrix T is equal to the identity matrix such that
‖T (x) · (x− ξ)‖ = ‖(x− ξ)‖. Hence, the standard scaling approach is recovered.

In the stress-based approach, the assigned weights are modified based on the effective
stress state of the receiver point x. Boundaries are taken into account implicitly based
on the resulting effective stress field. On a free boundary of a specimen with no
applied surface tractions, the principal stress directions are normal and tangential to
the boundary whereas the principal component that is perpendicular to the boundary
vanishes. If the principal stress field along the boundary is tensile, the internal length
is reduced in the perpendicular direction similarly to the distance-based approach.

All the aforementioned methods break the symmetry of the nonlocal weight function
with respect to its arguments x and ξ. A modification preserving this symmetry
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was proposed by Borino et al. (2003) and will be referred as the local complement
method (Figure 4.2). This methodology is based on increasing the weight of the local
contribution to compensate for the missing contributions from material points of the
nonlocal domain located beyond the physical boundary of the body. Mathematically,
this can be described by a weight function

α(x, ξ) = α∞(x, ξ) + v(x)δ(x− ξ) (4.6)

where α∞(x, ξ) is the normalised weight function described in (3.10) for an infinite
medium,

v(x) = 1−
∫
V

α∞(x, ξ)dξ (4.7)

where v(x) is the relative weight of the missing volume, and δ is the Dirac distribution.
The function α∞(x, ξ) depends only on the distance between points x and ξ and
is normalised according to the standard scaling approach such that the integral of
α∞(x, ξ) in an infinite integration domain is equal to unity. In an infinitely large
medium, the standard scaling approach is recovered because v(x) = 0.

The physical meaning of (4.6) is that the nonlocal variable, e.g. nonlocal equivalent
strain, is computed as the linear combination of the weighted average evaluated with
a fixed weight function α∞(x, ξ) and an additional term that contains the local value

ε̄eq(x) =

∫
V

α∞(x, ξ)εeq(ξ)dξ + v(x)εeq (4.8)

The extra term is called the local complement.

4.2 Calibration

The nonlocal damage and the two damage plasticity constitutive laws were calibrated
against meso-scale analyses results. The aim was to determine the basic parameters
from the direct tension test, reported in Section 3.3, in which the influence of the
boundaries is eliminated. In an infinitely large periodic specimen, all the nonlocal
averaging approaches lead to the same results and therefore only the standard scaling
approach is used in the calibration of the nonlocal models.

The periodic cell, presented in Section 3.3, with edge size α = 100 mm was analysed
with the meso-scale approach. The lattice was generated with dmin = 0.75 mm. The ag-
gregate volume fraction was chosen as ρ = 0.3 with maximum and minimum aggregate
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Table 4.1: Material parameters of the meso-scale model

E [GPa] γ ft [MPa] q c Gf [N/m]
Mortar 30 0.33 5.3 2 10 93
ITZ 45 0.33 1.8 2 10 31

Aggregate 90 0.33 - - - -

diameters φmax =12 mm and φmin =4.75 mm, respectively. The material parameters for
each phase of concrete are shown in Table 4.1. The random field was characterised by
an autocorrelation length la = 1 mm and a coefficient of variation cv = 0.2. The mean
average stress-average strain curve and the dissipated energy density profile parallel to
the loading direction were calculated from a set of 100 analyses.

The nonlocal models were calibrated against the meso-scale results by analysing the
equivalent problem, specified in Section 3.3. The specimen was analysed by a row of
quadrilateral elements with length and width equal to a =100 mm. The resulting load-
displacement diagrams were converted into average stress-average strain after dividing
by the initial cross-sectional area and by the initial specimen length, respectively. The
nonlocal isotropic damage model A and the two damage-plasticity approaches were
calibrated against the meso-scale analyses results by getting the best fit of the average
stress-average strain curve and of the mean dissipated energy density profile. In all cases
standard scaling was applied and the value of the interaction radius R of the nonlocal
model is specified by fitting the width of the dissipated energy density profiles with
the meso-scale approach results. The elastic parameters provided by the calibration
procedure are E = 29.6 GPa and ν = 0.2 for all macroscopic constitutive laws. The
remaining parameters of the damage model are: ft = 2.86 MPa, εmax = 0.000198, ε1 =

0.00024, ε2 = 0.00052, n = 0.85 and R = 4 mm. The parameters of the plastic part of
the damage-plasticity models control the pre-peak part of the load-displacement curve
and their optimised values are: ft = 2.86 MPa, εp,max = 0.0001234, E0 = 1480 GPa.
Optimised parameters of the damage part of the damage-plasticity model, which control
softening, were specified as d1 = 0.08, d2 = 1.3, d3 = 0.04, d4 = 1 and d5 = 0.65 and
R = 5 mm for the nonlocal damage-plasticity model (m = 1), and d1 = 0.08, d2 = 1.3,
d3 = 0.08, d4 = 0.9 and d5 = 0.6 and R = 2.4 mm for the over-nonlocal damage
plasticity model (m = 2).

The results of the calibration are shown in Figure 4.5 in the form of average stress-
average strain curves and dissipated energy density profiles across the fracture process
zone. The stress-strain curves of the nonlocal models agree very well with the meso-
scale results. The dissipation profile of the nonlocal damage model fits the curve
obtained from meso-scale analyses. The over-nonlocal damage-plasticity model (m = 2)
results in a profile, which has a different shape to the meso-scale one and its width was
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Figure 4.5: Average stress-average strain curves of the direct tension specimen.

adjusted to get the best fit in the least-square sense. The nonlocal formulation (m = 1)
is leading to mesh-independent load-displacement curves, as illustrated by Grassl and
Jirásek (2006a). However, the shape of the dissipation profile cannot be captured
properly because the plastic strains localise into a single element and the dissipation
in the damaged zone outside the fully localised plastic zone is very small. Hence, the
total dissipation is enforced to be the same as in the meso-scale analysis.
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Figure 4.6: Dissipated energy density across the fracture process zone in the last loading
step of the direct tension specimen.

4.3 Analyses

The performance of the four nonlocal damage and the two damage-plasticity ap-
proaches, described in Sections 4.1 and 3.1.2, is evaluated in modelling specimens with
different types of boundaries. The calibrated constitutive laws are applied to model
concrete beams subjected to three-point bending in 2D plane-stress conditions. Differ-
ent types of boundaries are investigated by modelling an unnotched beam (α = 90◦), a
sharp notched beam (α = 0◦) and a V-notched beam (α = 45◦), as shown in Figure 4.7.
From each analysis the load-displacement curve and the dissipated energy profile along
the beam ligament were extracted and compared to the meso-scale results, that are
averages of 100 analyses and were reported in Grassl et al. (2012). Hence, the perfor-
mance of the nonlocal approaches in modelling boundaries is evaluated.

Figure 4.7: Geometry and loading setup of the notched beams subjected to three point
bending.
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4.3.1 Nonlocal damage models

The results from the analyses with the different nonlocal damage approaches are pre-
sented in this section. The additional parameters of the modified averaging schemes
were chosen as β = 0.15, and t = 1.0 for the distance-based approach and as β = 0.15

for the stress-based approach. The load-displacement curves and the dissipated energy
profiles from the beam analyses with the four nonlocal damage approaches are shown
in Figures 4.8-4.13. The dissipated energy profiles are presented only for the first 3 cm
of the ligament, where the influence of the notch is pronounced, in order to improve
the clarity of the figures. In Figures 4.8-4.10, it can be seen that the peak load of the
meso-scale approach is overestimated by all nonlocal models for all beam geometries.

Away from the notch, the energy dissipation is almost uniform and is slightly over-
estimated for all nonlocal averaging methodologies. This effect may be attributed to
the multiaxiality of the stress state. In the bending test the second and third principal
effective stresses at all material points along the ligament are nonnegligible and close to
the notch the stress state is highly biaxial. Therefore, applying a different formulation
of the local equivalent strain could resolve this issue as it was illustrated in Jirásek and
Bauer (2012).

For the unnotched specimen (α = 90◦) all models overestimate the peak load but the
predicted energy dissipation on the specimen boundary is comparable to the meso-scale
analyses results. However, the standard and the stress-based model still overpredict
the energy dissipation close to the boundary, which is underestimated by the distance-
based and the local complement approach.

In the vicinity of the notch, a much higher dissipation is observed for the beams with
α = 0◦ and 45◦, which is not in accordance with the meso-scale analyses results (Fig-
ures 4.8 and 4.9). The distance-based approach results in a reduction of the dissipation
within a zone of radius tR away from the boundary but outside this region the dissipa-
tion profile is similar to the analyses with the standard scaling approach (Figures 4.11
and 4.12). The stress-based approach leads to a lower dissipation density compared
to standard scaling for all beams. For the local complement method, a relationship
may be identified between geometry of the notch and the performance of the nonlocal
model. In the sharp-notched (α = 0◦) beam, excessive dissipation is still observed
around the notch whereas in the V-notched case there is a good agreement with meso-
scale analyses results. It can be concluded, that the larger the missing area, outside the
beam, the smaller the dissipated energy close to the notch compared to the standard
scaling approach.
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Figure 4.8: Comparison of the load-displacement curves of four nonlocal damage ap-
proaches and meso-scale analysis for specimen with a sharp notch (α = 0◦).
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Figure 4.9: Comparison of the load-displacement curves of four nonlocal damage ap-
proaches and meso-scale analysis for specimen with a V-notch (α = 45◦).
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Figure 4.10: Comparison of the load-displacement curves of four nonlocal damage
approaches and meso-scale analysis for the unnotched specimen (α = 90◦).
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Figure 4.11: Comparison of the dissipated energy profiles of four nonlocal damage
approaches and meso-scale analysis for specimen with a sharp notch (α = 0◦).
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Figure 4.12: Comparison of the dissipated energy profiles of four nonlocal damage
approaches and meso-scale analysis for specimen with a V-notch (α = 45◦).
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Figure 4.13: Comparison of the dissipated energy profiles of four nonlocal damage
approaches and meso-scale analysis for the unnotched specimen (α = 90◦).
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The evolution of the constitutive response provides more insight into the performance
of the nonlocal approaches. For each nonlocal approach the point with the highest
nonlocal equivalent strain next to the notch tip of the V-notched beam was investigated.
In the distance-based approach, this point lay on the left and in all other models on
the right of the notch (Figure 4.14(a)). The nonlocal equivalent strain versus the local
one is plotted in Figure 4.15. For an infinitely small interaction domain the nonlocal
and the local equivalent strains are equal. However, the assumed averaging domain is
nonzero and the nonlocal equivalent strain of the material points lying in the centre
of the fracture process zone is reduced due to the contributions from points, that are
subjected to lower strains. This effect is more pronounced close to the notch, where
material points exhibit higher local equivalent strains than their neighbouring points
as it is illustrated in the contour plots in Figures 4.14(b)-(d). In addition, the peak
stress at these material points is not equal to the tensile strength, set in the present
analyses to ft = 2.86 MPa, which could be the case if local equivalent strains were used
instead of the nonlocal ones (Figure 4.13). However, nonlocal equivalent strains are
always lower than the local ones leading to lower values of the damage parameter and
the damage evolution does not follow the increase of the effective stress field. Hence,
an artificial strengthening of the material is observed followed by excessive dissipation
near the notch, which is stronger for the standard scaling approach (Figure 4.13).

The reader might think that this artificial strengthening effect occurs also in the direct
tension model that was used for the calibration of those models. This statement is not
true because the evolution of the strain field in this case is different. Before reaching
the peak load, the strains are uniformly distributed throughout the specimen, which
means that the local and consequently the nonlocal equivalent strain fields are uniform
so that the peak stress should always be equal to the chosen tensile strength. Moreover,
in the inelastic regime the strains localise but the field is still uniform along the axis
perpendicular to the loading direction and only the variation along the loading direction
may slightly reduce the calculated nonlocal equivalent strains. On the other hand, the
strain field of the analysed beams is always non-uniform and varies in all directions.

Moreover, nonlocal averaging does not remove the singularity of the strain field close to
the notch. Before the onset of damage, the solution corresponds to the elastic solution
and the stress is calculated based on the local strain state. The type of singularity
depends on the type of the notch but the stresses are unbounded at the notch. Hence,
the peak stress recorded in Figure 4.13 for the V-notched beam could be arbitrarily
large depending on the distance of the examined point from the notch tip.

Parameter β controls the amount of nonlocal interactions in the weight function α(x, ξ)

for both the distance- and the stress-based approach. Small values of β result in a
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(a) (b) (c) (d) (e)

Figure 4.14: (a) Finite element mesh near the V-notch, (b)–(e) contour plots of the
local equivalent strain for the four damage models: (b) standard averaging, (c) local
complement, (d) distance-based approach and (e) stress-based approach, plotted for
the states marked in Figure 4.15. The white shapes indicate the boundaries of the
region that contributes to the weighted average of equivalent strain at the integration
point near the notch considered in Figure 4.15. The black colour indicates εeq ≥ 0.0001.
Only a part of the beam depth is shown.
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Figure 4.15: Nonlocal versus local equivalent strain of an integration point directly
above the V-shaped notch for the four nonlocal damage models.The circles indicate
the state for which the contour plot of local equivalent strain in Figure 4.14 is shown.
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Figure 4.16: Maximum principal stress versus local equivalent strain for an integra-
tion point directly above the V-shaped notch for the four nonlocal damage models.
The circles indicate the state for which the contour plot of local equivalent strain in
Figure 4.14 is shown.

narrower contours of the weight function around receiver point x and for β = 0 the
model becomes local because the nonlocal equivalent strain ε̄eq becomes equal to the
local one. In order to obtain mesh-independent results, i.e. damage and strains localise
in multi-element bands, non-zero values of β should be chosen and the mesh size should
be smaller than the width of the final failure zone. The minimum value of β = 0.15

was enforced for the meshes analysed in the present study so that failure was described
accurately without the need to select extremely small mesh sizes.

In Figure 4.17, the influence of parameter β on the final results is investigated for
both the distance- and the stress-based approaches. The V-notched specimen is used
for the comparisons because it represents an intermediate case between the unnotched
and the sharp-notched beam. In both averaging techniques, β controls the dissipation
around the notch. The smaller the values of β, the stronger is the reduction of the
dissipated energy. Furthermore, in the stress-based approach parameter β influences
only the dissipation around the notch leaving the shape of the dissipated energy profile
unchanged. It may be concluded that the value of β should be chosen as small as
possible for the stress-based approach, same as in Giry et al. (2011). The distance-
based approach results in a reduction of the peak value of the dissipated energy, but
its effect is limited within distance tR = 4 mm from the boundary.

The influence of the values of t is investigated and the distribution of dissipated energy
along the ligament of the V-notched specimen is plotted for t = 1, 2 and 4 with
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fixed β = 0.35 and R = 4 mm in Figure 4.19. As expected, the reduction of the
dissipation around the notch is stronger for higher values of t and is always limited
within a distance tR from the specimen boundaries. Furthermore, large values of t
may result in an underestimation of the dissipated energy which may be prevented by
selecting larger values of β. However, as illustrated by the dashed and dotted curves in
Figure 4.19 (b), values of β > 0.35 typically lead to the formation of a local dissipation
peak at the notch tip, even for values of t larger than 1. Certain combinations of
parameters β and t lead to a successful prediction of the dissipation near the notch
but the profile is still irregular. A further improvement is achieved by using a smooth
dependence of the reduction factor γ on the distance from the boundary, instead of the
piecewise linear dependence according to formula (4.2). The exponential formula

γ(x) = 1− (1− β) exp

(
−d(x)

tR

)
(4.9)

still uses just two parameters, same as the piecewise linear formula (4.2), but it can
eliminate the local peak and provide a very good overall shape of the dissipation density
distribution, as illustrated in Figure 4.19 (b) for β = 0.3 and t = 1. In the exponential
formula (4.9), the effect of the boundary on the reduction of the nonlocal interaction
distance does not vanish for d(x) ≥ tR, and so the value t = 1, which was too small
for the piecewise linear formula (4.2), turns out to be appropriate.

Parameter β, that controls the minimum interaction radius, is the most critical one of
both nonlocal approaches. Low values of β correspond to assigning lower weights to
points that lie further away from boundaries and have lower local equivalent strains
upon damage initiation compared to the points lying on the boundary. The nonlocal
equivalent strain for the reduced interaction radius is then higher and follows the
increase of the local equivalent strain leading to lower local dissipation. Compared
to the standard approach, the stress-based approach includes one parameter less than
in the distance based approach and is easier to calibrate. However, the additional
parameter t in the distance-based approach is physically motivated from experimental
results, where it was demonstrated that the FPZ decreases as the crack front propagates
away from the boundary.
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Figure 4.17: Effect of parameter β on the dissipated energy profiles along the ligament
length for the V-notched specimen (α = 45◦) and the distance-based approach.
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Figure 4.18: Effect of parameter β on the dissipated energy profiles along the ligament
length for the V-notched specimen (α = 45◦) and the stress-based damage approach.
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Figure 4.19: Variation of parameter t at fixed β = 0.35 of the distance-based approach
on the dissipated energy profiles along the ligament length for the V-notched specimen
(α = 45◦).
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Figure 4.20: Variation of parameters t and β of the distance-based approach on the
dissipated energy profiles along the ligament length for the V-notched specimen (α =
45◦).
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4.3.2 Nonlocal damage-plastic models

Nonlocal approaches based on a combination of isotropic damage mechanics and perfect
plasticity were also investigated in this study. In these models, the effective stress is
limited due to the perfect plasticity and cannot increase beyond the value specified
by the yield surface. At a point lying on the boundary, the increase of the damage
parameter and nonlocal equivalent strain might not follow the increase of the local
equivalent strain due to the contributions of points with low equivalent strains but the
effective stress cannot exceed the yield value. Hence, lower local dissipation is expected
compared to the one provided by the standard nonlocal damage approach.

The nonlocal damage-plasticity models are limited to analyse the three point bending
beam geometries and are compared to meso-scale results in Figures 4.21-4.26. In these
models the maximum principal stress cannot exceed the tensile strength, which should
lead to lower dissipation around the notch than in the nonlocal damage approaches.
However, the overnonlocal formulation withm = 2 exhibits a high peak in dissipation at
the notch which is comparable to the nonlocal damage model with standard averaging.
Furthermore, in the nonlocal damage-plasticity model with m = 1 there is excessive
dissipation near the notch that is slightly higher than the dissipation along the ligament
of the beam.

In damage-plasticity models the effective stress is calculated based on a hardening law
which in the present case allows only for limited hardening in the pre-peak (Figure 4.5).
The tensile strength cannot exceed the specified tensile strength as it is demonstrated
for one element just above the notch in Figure 4.27 by plotting the maximum tensile
principal stress versus maximum tensile principal strain. The excess in dissipation
may not be attributed to the development of very large stresses but only to the slower
evolution of the damage variable compared to the local cummulative plastic strains,
which is induced by the nonlocality. Finally, the over-nonlocal damage-plasticity model
(m = 2) ensures that a distributed and mesh-independent plastic strain profile is
obtained (Figure 4.28(b)). This is not the case for the nonlocal damage-plasticity
model, as shown in Figure 4.28(a), for which a better fit with the meso-scale results is
obtained Figures 4.22.
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Figure 4.21: Comparison of the load-displacement curves of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
sharp-notched specimen (α = 0◦).
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Figure 4.22: Comparison of the load-displacement curves of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
V-notched specimen (α = 45◦).
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Figure 4.23: Comparison of the load-displacement curves of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
unnotched specimen (α = 90◦).
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Figure 4.24: Comparison of the dissipated energy profiles of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
sharp-notched specimen (α = 0◦).
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Figure 4.25: Comparison of the dissipated energy profiles of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
V-notched specimen (α = 45◦).
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Figure 4.26: Comparison of the dissipated energy profiles of the nonlocal (m = 1) and
the over-nonlocal (m = 2) damage-plastic approaches and meso-scale analysis for the
unnotched specimen (α = 90◦).
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Figure 4.27: Results for the damage-plastic model for the V-notched specimen (α =
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the notch.

(a) (b)

Figure 4.28: Contour plots of the local plastic hardening parameter for (a) m = 1 and
(b)m = 2 at a displacement of 1.88 mm in Figure 4.22. Black colour indicates ε1 > 0.1.
Only a part of the depth of the beam is shown.
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4.4 Discussion

The modelling of boundaries with nonlocal models is addressed in this chapter. An
isotropic damage model was combined with four different averaging procedures and a
damage-plasticity model was formulated according to the nonlocal and the overnonlocal
approach. The constitutive laws were applied to model fracture in beams subjected
to three-point bending with three different notch geometries and their results were
compared with meso-scale analyses results.

The nonlocal damage model formulated according to the standard scaling approach
overestimates the dissipation around the notch which leads to an overprediction of the
peak load of the beam. This effect is attributed to the slow evolution of the nonlocal
equivalent strain compared to the local one. The modified averaging approaches reduce
this excess in energy dissipation close to the notch and result in a better agreement
with the meso-scale analyses results. The reduction of the spurious energy dissipation
close the notch depends in the local complement method on the type of notch. The
distance-based approach requires two additional input parameters, compared to the
standard scaling approach, whereas the stress-based approach requires only one and
the local complement method does not include any extra parameters.

The damage-plasticity approaches, considered in this study do not require any addi-
tional parameters and are still leading to an overestimation of the dissipated energy
close to the notch. This effect is more pronounced in the case of the overnonlocal
formulation whereas it is limited for the standard averaging methodology for which
a better agreement with the meso-scale results is achieved. However, in the nonlocal
damage-plasticity model (m = 1) the width of the fracture process zone depends on
the mesh size.
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Chapter 5

A strategy to calibrate nonlocal models
for modelling quasi-brittle fracture

The present chapter focuses on the calibration of nonlocal models, which is the second
topic addressed in the present thesis. A novel strategy to calibrate nonlocal models is
proposed based on the experimental final crack patterns. The calibration procedure
is simple and relies in scanning and statistically processing the final fracture surface.
The tolerances of the scanning setup are considerably lower than the ones of the AE
techniques used for the determination of the FPZ. The interaction radius of the nonlocal
model is calibrated by matching the experimental and numerical standard deviations
of the crack patterns and the dissipated energy density profile of the 1D bar subjected
to direction tension, presented in Section 4.2. The selection of the variables used in
the calibration is physically motivated and does not rely solely on the convergence
behaviour of the calibration procedure, which is the case in inverse analysis techniques.
The main assumption is that the majority of the fracture energy is dissipated in a
localised rough crack and is validated from the meso-scale analyses results of a periodic
specimen. An application of calibration strategy is presented and the parameters of the
nonlocal isotropic damage model B, presented in Section 3.1.1, are determined based
on experimental crack patterns of a beam subjected to three-point bending.

5.1 Calibration strategy

The objective of the calibration procedure is to provide the value of the interaction
radius R, that enters the weight function α0(x, ξ) in nonlocal models and determines
the width of the final FPZ (see (3.10)). The calibration procedure, illustrated in
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(a) (b)

(c) (d)

Figure 5.1: Schematic overview of the calibration strategy: (a) Experimental input,
(b) Calibration, (c) Nonlocal constitutive model and (d) Structural analysis.

Figure 5.1, may be summarised in the following steps:

1. Perform a fracture test and calculate the fracture energy and the roughness dis-
tribution, which is the distribution of the heights of the material points lying
on the fracture surface from the mean crack plane (Figure 5.1(a)). Evaluate the
experimental standard deviation of the roughness distribution ∆hexp from the
mean crack plane.

2. Determine the dissipated energy density profile of a 1D bar subjected to ten-
sion, analysed with the nonlocal model, based on either a numerical analysis or a
closed-form solution (Figure 5.1(b)). Evaluate the analytical standard deviation
∆han of this dissipated energy density profile (Figure 5.1(b)). Here, the stan-
dard deviation is computed as the spatial deviation from the material point of
maximum dissipation energy density of the profile. This standard deviation has,
similarly to the one calculated in the previous step, the unit of length.

3. Calibrate the nonlocal interaction radius R and the other constitutive model
parameters such that the standard deviation of the dissipated energy density
profile in step 2 is equal to the standard deviation of the roughness distribution
measured in step 1, and the numerically obtained dissipated energy per nominal
fracture surface is equal to the experimental one (Figure 5.1(c)).
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The calibrated nonlocal interaction radius R can then be used in nonlinear analyses of
structures in which tensile failure dominates (Figure 5.1(d)).

The experimental standard deviation of the roughness distribution ∆hexp is an im-
portant input in the described calibration process. Suitable fracture tests need to be
performed, such as three-point bending or compact tension test and scanning setups,
like optical profilometers, need to be applied to scan the final fracture surface. This
results in points located on a regular grid, whose heights are measured from a reference
plane. Boundary effects are excluded by discarding areas close to the notch or to the
surface of the compressive zone of the specimens. The measurements of the points,
lying within the accepted zone of the fracture surface, are then corrected by a multiple
linear regression analysis to remove errors due to an overall tilt of the fracture surface,
that is introduced during sample preparation. The corrected fracture surface is pro-
cessed by calculating the height zi as an average of the heights of the four corner points
that define each crack facet i (see Fig. 5.2). Initially the mean of all height heights zi
is calculated as

z̄ =
N∑
i=1

wizi (5.1)

Here, wi are the weights of the individual fracture facets, which for the evaluation of
the ∆hexp are evaluated as

wi =
Ai
N∑
k=1

Ak

(5.2)

where Ai is the area of each facet. It is assumed that all fracture facets dissipate the
same energy, since information about individual dissipation for each fracture facet is
normally not available from optical profiling. Then, the standard deviation is defined
as

∆h =

√√√√ N∑
i=1

wi(zi − z̄)2 (5.3)

The local dissipation density is available in the meso-scale analyses in Section 5.2 and
it is included in the evaluation of the standard standard deviation by modifying (5.2)
to

wi =
Aidi
N∑
k=1

Akdk

(5.4)

where di is the dissipation per unit area of the fracture facet i.
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Figure 5.2: Description of the values retrieved from each crack facet for the statistical
evaluation of the final crack pattern and of the assumed dissipated energy density
distributions.

5.2 Meso-scale validation of the main assumptions

The calibration procedure, presented in the previous section, is based on the assump-
tions that the majority of the fracture energy is dissipated in the localised macro-crack
and that ∆hexp calculated for uniform dissipation energy density in (5.3) along the
fracture surface is a good approximation of the nonuniform dissipation case in (5.4),
which is typical in heterogeneous materials. In the present section, the validity of
these two assumptions and the influence of the size of the heterogeneity on ∆hexp were
investigated by means of meso-scale analyses of a specimen subjected to direct tension.

The meso-scale modelling approach has already been described in Chapter 3 and was
used to analyse a periodic cell subjected to direct tension, presented in Section 3.3.
The edge length of the cell was a = 100 mm. In these analyses, the heterogeneities were
taken into account based on autocorrelated random fields. Four different autocorrela-
tion lengths were investigated la = 0.5, 1, 2, 4 mm and the coefficient of variation was
set equal to cv = 0.2 for all analyses. The other model parameters were chosen so that
the overall macroscopic properties resulted in Young’s modulus E = 30 GPa, Poisson’s
ratio ν = 0.2, tensile strength ft = 4.6 MPa and fracture energy GF = 160 J/m2. For
each parameter set, the average response was evaluated from 100 analyses.

Initially, the results of an individual meso-scale analysis for la = 1 mm are discussed.
The average stress-strain curve for a single meso-scale analysis is shown in Figure 5.3
and the crack patterns for the three marked loading stages are presented in Figure 5.4.
In this figure, the gray lines correspond to the Voronoi cross-sections of damaged lattice
elements, whose dissipation does not increase in the current step whereas the red lines
correspond to the ones whose dissipation increases. Before reaching peak average stress,
dissipated energy is distributed over the entire specimen, whereas just after peak, many
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Figure 5.3: (a) Stress-strain curve for a single meso-scale analysis with three stages
marked for which the fracture patterns are shown in Figure 5.4.

(a) (b) (c)

Figure 5.4: Crack patterns for three stages of loading marked in Fig 5.3(a). Dark gray
(red in colour) lines indicate cross-sections of elements which dissipate energy at this
stage of analysis. Light gray lines indicate cross-sections of elements which dissipated
energy at previous steps but not at the current.

of the elements start to unload and failure is limited to a localised crack, in which
fracture energy is dissipated for the remaining part of the analysis. The final crack
was assumed to be formed by cross-sections of the elements which dissipate energy
during the last step of the analysis (Figure 5.4(c)). In this analysis, the majority of the
energy is dissipated in the final localised crack. Furthermore, the average response
of the set of meso-scale simulations for la = 1 mm was investigated to demonstrate
that the described failure process was representative of the average failure response of
meso-scale analyses. The average stress-strain curve and the average energy density
profiles in the direction of loading were constructed as described in Section 3.3. The
mean amount of energy dissipated by the localised crack corresponds to approximately
79.5% of the mean total dissipated energy. Furthermore, the average energy increment
profiles in the direction of loading are shown in Figure 5.6 for the three steps marked
in Figure 5.5. Before peak, the energy is almost uniformly distributed, whereas in the
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Figure 5.5: (a) Average stress-strain curve for 100 meso-scale analyses.

post-peak regime the energy profile localises with its width remaining almost constant
during the fracture process. Thus, the first assumption of the calibration approach is
confirmed because the majority of energy is dissipated in the final crack.

The second assumption of the calibration approach is that the standard deviation of
the roughness distribution can be determined from the geometry of the final crack by
ignoring the dissipation of individual crack segments. The validity of this assumption is
assessed by applying two approaches to evaluate the average dissipated energy density
profile for the set of analyses corresponding to la = 1 mm. In the first one, each facet
of the final localised crack was assigned a uniform energy dissipation, determined from
the total dissipated energy divided by the total fracture surface. According to the
second approach, the actual energy dissipation obtained from the meso-sale analyses
was used. These two energy profiles are presented in Figure 5.7. The width and shape
of the profiles of the two approaches are almost identical. Hence, the second assumption
of the calibration approach is validated.

In the present study heterogeneities are modelled by autocorrelated random fields and
the heterogeneity size is implicitly determined by the autocorrelation length la, as
described in Section 3.2. The influence of la on the width of the FPZ is investigated
by evaluating the standard deviation ∆h, defined in (5.3), for all four autocorrelation
lengths. The standard deviations ∆h of the individual analyses are averaged and the
results are shown in Figure 5.8. For increasing autocorrelation length la, the value of
∆h increases leading to a wider fracture zone. Examples of the final crack patterns
from arbitrarily chosen analyses with la = 0.5, 1, 2 and 4 mm are shown in Figure 5.9.
For individual analyses, the correlation between la and the crack standard deviation is
not always obvious. For instance, the value of ∆h of the crack patterns for la = 2 mm
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(c) Load step c

Figure 5.6: Profiles of the increment of dissipated energy across the FPZ at the load
steps marked in 5.5.
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Figure 5.7: Comparison of the reconstructed and the original dissipated energy density
profiles for the auto-correlation length la = 1 mm.
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Figure 5.8: Influence of the auto-correlation length la on the mean of the standard
deviation ∆h obtained from 100 meso-scale analyses.
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(a) (b)

(c) (d)

Figure 5.9: Final crack patterns for autocorrelation lengths (a) la = 0.5, (b) 1, (c) 2
and (d) 4 mm.

appears to be smaller than for for la = 1 mm. However, the relationship between la and
the average ∆h shown in Figure 5.8 is evident in the average response of 100 analyses.

The overall response of the analyses with the three different autocorrelation lengths
is very similar to those with la = 1 mm. Again, the majority of energy is dissipated
in a single localised crack. The ratio of localised energy dissipated in the final crack
versus the total energy dissipated is not influenced by la. For all three sets of analyses,
approximately 80% of the energy is dissipated in the localised crack.
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Figure 5.10: Geometry and loading setup of the three-point bending test for roughness
measurements and nonlocal analysis. The out of plane thickness is 50 mm.

5.3 Application

In this section, an application of the calibration procedure, introduced in Section 5.1,
is described. Firstly, the author scanned the experimental fracture surfaces of a beam
subjected to three-point bending, which was originally tested in Grégoire et al. (2015).
The standard deviation ∆hexp was calculated according to the procedure described in
Section 5.1. Then, the nonlocal isotropic damage model B, presented in Section 3.1.1,
was combined with distance-based averaging, described in (4.1) and (4.9), and was
calibrated. The interaction radius was specified so that the standard deviation of the
dissipated energy density profile from the analysis the 1D specimen subjected to tension
matched the experimental one. The calibrated material model was applied to model
in 2D the three-point bending test used to obtain the roughness distribution. The aim
was to check if the FPZ calculated from the 2D analysis is in agreement with the one
used for the calibration.

The notched beam used in the calibration was the HN200 specimen that was originally
tested as part of study comparing the results of lattice modelling of fracture with
acoustic emission measurements reported in Grégoire et al. (2015) and its geometry
is shown in Figure 5.10. The mechanical concrete properties are: Young’s modulus
E = 37 GPa, tensile strength ft = 3.9 MPa and Poisson’s ratio ν = 0.2. The concrete
used in this test had a maximum aggregate size of 10 mm. For the fracture energy,
a value of GF = 80 J/m2 was assumed in the present study. A focused area of the
fracture surface away from the notch and the upper boundary of the specimen was
scanned with an non-contact optical profiler Conoprobe 1000 with a lens with focal
length 75 mm (Figure 5.11). The scans were performed in the Institut de Mécanique
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Figure 5.11: Geometry of the scanned region.

et d’Ingénierie of the University of Bordeaux. The scanned surface was statistically
corrected, as discussed in Section 5.1, and the geometry of the roughness distribution
with respect to the mean crack plane is shown in Figure 5.12. The standard deviation
of the roughness distribution was calculated as ∆hexp = 1.23 mm.

The nonlocal interaction radius R was calibrated on a 1D tensile specimen so that the
standard deviation of the dissipation density distribution ∆hnum matches the experi-
mental one, ∆hexp. The analysis setup was described in Section 3.8 but truss elements
are used instead of 2D plane stress elements. The response is considered independent of
boundaries by setting γ = 1 in the weight function α0(x, ξ) in (4.9) for all points along
the 1D specimen. The purpose of the 1D nonlocal analysis is to specify the interaction
radius R that will be used in 2D analyses and the nonlocal averaging is modified to
account for two-dimensional interactions. This is achieved by formulating the nonlocal
equivalent strain for the 1D analyses according to (3.35). The input parameters for the
nonlocal model related to stiffness and strength were chosen as E = 37 GPa, ν = 0.2,
ε0 = ft/E = 0.000105, based on the reported experimental values. The remaining two
parameters, i.e. the interaction radius R and the softening parameter εf , are calibrated
simultaneously so that the numerical standard deviation matches the experimental
one (∆hnum = ∆hexp) and the energy dissipated per unit area of fracture surface is
equal to the total numerical fracture energy per cross-sectional area. The values of
the model parameters, specified from the calibration procedure, were εf = 0.0062 and
R = 0.48 mm for GF = 80 N/m2. It is noted that the calibrated value of the inter-
action radius is significantly smaller than the value used in Chapter 4. This may be
attributed to the very weak aggregates used the experiments under consideration that
failed during fracture leading to low values of the experimental standard deviation of
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Figure 5.12: Surface plot of measured roughness after correction.

the crack surface from the mean crack plane. The stress-strain curve and the energy
density profile is shown for the optimal set of parameters is shown in Figure 5.13.

In this application it was assumed that ∆hexp can be used to calibrate the input param-
eters of a nonlocal model used for 1D uniaxial direct tension analyses. To demonstrate
the validity of this assumption, the calibrated nonlocal damage model was applied to
analyse the notched beam used for the determination of the FPZ. The beam in Fig-
ure 5.10 is modelled by 2D triangular plane stress constant strain finite elements. The
mesh in the middle region of the beam was refined to obtain a detailed representation
of the dissipation density within the FPZ. In this analysis, the distance-based nonlocal
averaging approach with parameters β = 0.3 and t = 1 was used in order to elimi-
nate boundary effects (see Section 4.1). The analytical and experimental load-CMOD
curves are shown in Figure 5.15(a). Furthermore, the profile of the average dissipated
energy across the ligament of the beam for the focused region in Figure 5.11 is shown
in Figure 5.15(b). The two dissipation density profiles in Figure 5.15 are very simi-
lar. However, the dissipation density in the 2D profile is slightly overestimated in the
centre of the profile. The standard deviation computed from the dissipation profile is
1.35 mm, which is comparable to the experimental value of ∆hexp = 1.23 mm.
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Figure 5.13: Average stress-strain curve of the 1D specimen subjected to direct tension
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Figure 5.14: Dissipated energy density profile at the final loading stage in the centre
of the 1D specimen subject to direct tension.
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Figure 5.15: Comparison of the analytical and the experimental load-CMOD curves.
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Figure 5.16: Comparison of the dissipation density profile of the 2D notched beam
across the ligament and the profile from the 1D specimen subjected to direct tension.
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5.4 Discussion

A new calibration strategy for integral-type nonlocal models was proposed. The funda-
mental assumption of the calibration process is that the majority of the fracture energy
is dissipated in the main localised final crack, which was validated based on lattice
analyses results of a periodic specimen subjected to direct tension. It was illustrated
that approximately 80% of the total fracture energy is dissipated in the final localised
crack, which is in agreement with the results presented in other studies, for example
Cedolin et al. (1987). The local dissipation of each crack segment may be ignored in
the calculation of the standard deviation of the roughness distribution without having
a significant influence on the calculated value. The lattice analyses indicated that the
width of the FPZ increases on average with increasing size of the heterogeneities, that
were modelled by the autocorrelation length la of the random fields for strength and
fracture energy. In the literature investigations on the size of the FPZ showed a similar
trend between the dmax and the FPZ width (Mihashi et al., 1991; Otsuka and Date,
2000). The calculated FPZ width in the form of dissipated energy increment profiles
does not become zero during the final loading steps. This illustrates that there is no
direct link between the interaction radius and the damage levels as it was stated for
example in (Pijaudier-Cabot and Dufour, 2010). The calibration strategy was applied
and a nonlocal model was calibrated based on the experimental results of a beam sub-
jected to three-point bending. It was concluded that the FPZ width observed in the
1D model, used for the calibration, is comparable to the one calculated from the 2D
beam analysis results. Hence, the simplistic 1D model provides a good approximation
of the FPZ away from the boundaries in the center of the beam and can be used in the
calibration process.
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Chapter 6

Modelling failure of reinforced concrete
members with nonlocal and crack-band
approaches

The last topic addressed in the present thesis is the capability of nonlocal and crack-
band models to describe failure in reinforced concrete structures mesh-independently.
The damage-plasticity model CDPM2, originally presented in Grassl et al. (2014), is
extended according to the nonlocal approach. Permanent deformations observed in
confined compression are represented in CDPM2 by plastic deformations. Multi-axial
stress states are included in the formulation of the yield surface, which is characterised
by parabolic meridians and by a variable shape on the deviatoric plane, ranging from
triangular to almost circular for increasing confinement. The shape and the size of
the yield surface and the plastic potential evolve during failure depending on the value
of the hardening variable. Stiffness degradation is described by the damage part,
in which two damage variables are applied to account for crack closing during non-
proportional loading. The nonlocal and the crack-band models are applied for the
analysis of a reinforced concrete beam (Leonhardt and Walther, 1962) and a column
(Němeček et al., 2005) for which experimental results were reported in the literature.
These tests were selected because the specimens exhibit both localised and distributed
failure and the material points are subjected to various stress states. The material
parameters were determined by a calibration procedure, which is based on the analysis
of a one-dimensional bar subjected to direct tension, presented in Section 5.3. The
results of the two approaches are compared in the form of load-displacement curves as
well as contour plots of principal strains and damage variables.
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Figure 6.1: Evolution of the (a) deviatoric section of the yield surface for a constant
volumetric stress of σ̄v = −fc/3 and of (b) the meridional sections for θ̄ = 0 and
θ̄ = π/3 during hardening. Cyan, red and green sections correspond to values of κp

that refer to stress states in the pre-peak domain, at peak stress and in the post-peak
domain.

6.1 Local concrete damage-plasticity model CDPM2

The concrete damage-plasticity model CDPM2 is based on a combination of damage
mechanics and effective stress-based plasticity. The effective stress σ̄ is calculated from
the plasticity part

σ̄ = De (ε− εp) (6.1)

The evaluation of the stress-strain law relies on the split of the effective stress σ̄ in a
tensile σ̄t and a compressive σ̄c part, which is achieved in several steps. Firstly, the
principal effective stress σ̄P is decomposed in a positive σ̄Pt =< σ̄P >+ and a negative
σ̄Pc =< σ̄P >− part based on the sign of the principal components. Here, < . >+ and
< . >− denote the positive and negative part operators. Then, σ̄Pt and σ̄Pc are rotated
back to the original coordinate system in order to form σ̄t and σ̄c. The constitutive
relationship is formulated as

σ = (1− ωt) σ̄t + (1− ωc) σ̄c (6.2)

where ωt and ωc are the two scalar damage parameters, ranging from 0 (undamaged)
to 1 (fully damaged).

In the plasticity part, the domain of admissible effective stress states is described by
the yield function fp(σ̄v, ρ̄, θ̄, κp) formulated in the principal effective stress (Haigh-
Westergaard) space using the volumetric stress σ̄v, the deviatoric effective stress ρ̄ and
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Figure 6.2: The two hardening laws qh1 (solid line) and qh2 (dashed line).

the Lode angle θ̄ as coordinates (Figure 6.1). The yield surface has the form

fp(σ̄V, ρ̄, θ̄;κp) =

{
[1− qh1(κp)]

(
ρ̄√
6fc

+
σ̄V

fc

)2

+

√
3

2

ρ̄

fc

}2

+m0q
2
h1(κp)qh2(κp)

[
ρ̄√
6fc

r(cos θ̄) +
σ̄V

fc

]
− q2

h1(κp)q2
h2(κp)

(6.3)

Here, qh1, qh2 are the hardening functions of the hardening variable κp (Figure 6.2).
The parameters fc and ft are the compressive and tensile strength of concrete. The
meridians of the yield surface fp = 0 are parabolic, and the deviatoric sections vary
from triangular at low confinement to almost circular, according to the values of the
function r(cos θ̄) (Willam and Warnke, 1974), as given in

r(cos θ̄) =
4(1− e2) cos2 θ̄ + (2e− 1)2

2(1− e2) cos θ̄ + (2e− 1)
√

4(1− e2) cos2 θ̄ + 5e2 − 4e
(6.4)

The eccentricity parameter e in (6.4), is calculated according to the formula specified
in Jirásek and Bažant (2002), p. 365:

e =
1 + ε

2− ε
, where ε =

ft

fbc

f 2
bc − f 2

c

f 2
c − f 2

t

(6.5)

where fbc is the strength in equibiaxial compression. The friction parameter m0 is
calculated as

m0 =
3 (f 2

c − f 2
t )

fcft

e

e+ 1
(6.6)

The flow rule provides the direction of the plastic flow and is defined as

ε̇p = λ̇
∂gp

∂σ̄
(σ̄v, ρ̄, κp) (6.7)
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Here ε̇p is the rate of the plastic strains, λ̇ is the rate of the plastic multiplier and
gp(σ̄v, ρ̄, κp) is the plastic potential function. The flow rule is non-associated, i.e. the
yield function fp and the plastic potential gp do not coincide, which results in a better
description of the volumetric expansion during confined compression (Grassl, 2004).
The plastic potential is

gp(σ̄V, ρ̄;κp) =

{
[1− qh1(κp)]

(
ρ̄√
6fc

+
σ̄V

fc

)2

+

√
3

2

ρ̄

fc

}2

+ q2
h1(κp)

(
m0ρ̄√

6fc

+
mg(σ̄V, κp)

fc

) (6.8)

where
mg(σ̄V, κp) = Ag (κp)Bg (κp) fc exp

σ̄V − qh2(κp)ft/3

Bg (κp) fc

(6.9)

is a variable controlling the ratio of volumetric and deviatoric plastic flow. The func-
tions Ag (κp) and Bg (κp) depend on the value of qh2(κp) and are derived from as-
sumptions on the plastic flow in uniaxial tension and compression in the post-peak
regime.

The calibration of Ag (κp) and Bg (κp) is illustrated in the next two paragraphs. Here,

the notation m ≡ ∂gp

∂σ
is adopted. In the principal stress space, the plastic flow tensor

m has three components, m1, m2 and m3 associated with the three principal stress
components. The flow rule (6.7) is split into a volumetric and a deviatoric part and
the gradient of the plastic potential is decomposed in

m =
∂g

∂σ̄
=

∂g

∂σ̄V

∂σ̄V

∂σ̄
+
∂g

∂ρ̄

∂ρ̄

∂σ̄
(6.10)

Taking into account that ∂σ̄V/∂σ̄ = δ/3 and ∂ρ̄/∂σ̄ = s̄/ρ̄, restricting attention to
the post-peak regime (in which qh1 = 1) and differentiating the plastic potential (6.8),
we rewrite equation (6.10) as

m =
∂g

∂σ̄
=
∂mg

∂σ̄V

δ

3fc

+

(
3

fc

+
m0√

6ρ̄

)
s̄

fc

(6.11)

Experimental results for concrete loaded in uniaxial tension indicate that the strains
perpendicular to the loading direction are elastic in the softening regime. Thus, the
plastic strain rate in these directions should be equal to zero (m2 = m3 = 0). Under
uniaxial tension, the effective stress state in the post-peak regime is characterised
by σ̄1 = ftqh2, σ̄2 = σ̄3 = 0, σ̄V = ftqh2/3, s̄1 = 2ftqh2/3, s̄2 = s̄3 = −ftqh2/3 and
ρ̄ =

√
2/3ftqh2. Substituting this into (6.11) and enforcing the conditionm2 = m3 = 0,

we obtain
∂mg

∂σ̄V

∣∣
σ̄V=ftqh2/3 =

3ftqh2

fc

+
m0

2
(6.12)
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In uniaxial compression experiments, a volumetric expansion is observed in the soft-
ening regime. Thus, the inelastic lateral strains are positive while the inelastic axial
strain is negative. In the present approach, a constant ratio Df = −m2/m1 = −m3/m1

between lateral and axial plastic strain rates in the softening regime is assumed. The
effective stress state at the end of hardening under uniaxial compression is characterised
by σ̄1 = −fcqh2, σ̄2 = σ̄3 = 0, σ̄V = −fcqh2/3, s̄1 = −2fcqh2/3, s̄2 = s̄3 = fcqh2/3 and
ρ̄ =

√
2/3fcqh2. Substituting this into (6.11) and enforcing the condition m2 = m3 =

−Dfm1, we get
∂mg

∂σ̄V

∣∣
σ̄V=−fcqh2/3 =

2Df − 1

Df + 1

(
3qh2 +

m0

2

)
(6.13)

Substituting the specific expression for ∂mg/∂σ̄V constructed by differentiation of (6.9)
into (6.12) and (6.13), we obtain two equations from which parameters

Ag =
3ftqh2

fc

+
m0

2
(6.14)

Bg =
(qh2/3) (1 + ft/fc)

lnAg − ln (2Df − 1)− ln (3qh2 +m0/2) + ln (Df + 1)
(6.15)

can be computed. The gradient of the dilation variable mg in (6.9) decreases with
increasing confinement. The limit σ̄V → −∞ corresponds to purely deviatoric flow.
Similarly to the previous version of the constitutive law, CDPM1 (Grassl and Jirásek,
2006b), the plastic potential does not depend on the third Haigh-Westergaard coordi-
nate (Lode angle θ̄).

The dimensionless hardening functions qh1 and qh2, introduced in (6.3) and (6.8), de-
pend on the value of the hardening variable κp and control the size and the shape of
the yield surface and the plastic potential. The first hardening law is

qh1(κp) =

{
qh0 + (1− qh0)

(
κ3

p − 3κ2
p + 3κp

)
−Hp

(
κ3

p − 3κ2
p + 2κp

)
if κp < 1

1 if κp ≥ 1

(6.16)
The second hardening law qh2 is given by

qh2(κp) =

{
1 if κp < 1

1 +Hp(κp − 1) if κp ≥ 1
(6.17)

The initial inclination of the hardening curve qh1 at κp = 0 is positive and finite, and
the inclinations of qh1 on the left of κp = 1 and qh2 on the right of κp = 1 are equal
to Hp, as depicted in Figure 6.2. For Hp = 0, the hardening law reduces to the one
proposed in Grassl and Jirásek (2006b). The hardening variable κp is defined in rate
form

κ̇p =
‖ε̇p‖
xh (σ̄V)

(
2 cos θ̄

)2
=

λ̇‖m‖
xh (σ̄V)

(
2 cos θ̄

)2 (6.18)
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Here, the rate of the hardening variable is equal to the norm of the plastic strain rate
scaled by a hardening ductility measure

xh (σ̄V) =


Ah − (Ah −Bh) exp (−Rh(σ̄V)/Ch) if Rh(σ̄V) ≥ 0

Eh exp(Rh(σ̄V)/Fh) +Dh if Rh(σ̄V) < 0

(6.19)

For pure volumetric stress states, θ̄ is not uniquely defined and it is set in 6.19 to π/3.
The dependence of the scaling factor xh on the volumetric stress σ̄V is constructed
such that the model response is more ductile under compression than in tension. The
variable

Rh(σ̄V) = − σ̄V

fc

− 1

3
(6.20)

is a linear function of the volumetric effective stress. Model parameters Ah, Bh, Ch

and Dh are calibrated from the values of strain at peak stress under uniaxial tension,
uniaxial compression and triaxial compression, whereas the parameters Eh and Fh

are determined from the conditions of a smooth transition between the two parts of
equation (6.19) at Rh = 0:

Eh = Bh −Dh

Fh =
(Bh −Dh)Ch

Ah −Bh

(6.21)

This definition of the hardening variable is identical to the one in CDPM1 described in
Grassl and Jirásek (2006b), where the calibration procedure for this part of the model
is described.

The loading-unloading conditions are

fp ≤ 0, λ̇ ≥ 0, λ̇ fp = 0 (6.22)

In the damage part, the evolution of ωt and ωc is controlled for tension and compression
by variables εt

eq and εc
eq, which are functions of the equivalent strain εeq. Damage is

initiated when the maximum equivalent strain reaches the threshold ε0 = ft/E. For
uniaxial tension only, the equivalent strain could be chosen as εeq = σ̄t/E, where
σ̄t is the effective uniaxial tensile stress and damage initiation would be linked to
the axial elastic strain. However, for general triaxial stress states a more advanced
equivalent strain expression is required, which predicts damage initiation when the
strength envelope is reached. This expression is determined by solving a quadratic
equation, that is defined by setting the yield surface (fp = 0) equal to 0. In this
equation the hardening functions are set to qh1 = 1 and qh2 = εeq/ε0. The equivalent
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strain εeq is then determined as the solution of the quadratic equation as

εeq =
ε0m0

2

(
ρ̄√
6fc

r (cos θ) +
σ̄V

fc

)
+

√
ε2

0m
2
0

4

(
ρ̄√
6fc

r (cos θ) +
σ̄V

fc

)2

+
3ε2

0ρ̄
2

2f 2
c

(6.23)

For uniaxial tension, the effective stress state is defined as σ̄1 = σ̄t, σ̄2 = σ̄3 = 0,
σ̄V = σ̄t/3, s̄1 = 2σ̄t/3, s̄2 = s̄3 = −σ̄t/3, ρ̄ =

√
2/3σ̄t and r(cos θ) = 1/e. Setting this

into (6.23) and using the definition of m0 in (6.6) gives

εeq = ε0
σ̄t

ft

= σ̄t/E (6.24)

which is the axial tensile strain. For uniaxial compression, the effective stress state
is defined as σ̄1 = −σ̄c, σ̄2 = σ̄3 = 0, σ̄V = −σ̄c/3, s̄1 = −2/3σ̄c, s̄2 = s̄3 = 1/3σ̄c,
ρ̄ =

√
2/3σ̄c, and r(cos θ) = 1. Here, σ̄c is the magnitude of the effective compressive

stress. Setting this into (6.23), the equivalent strain is

εeq =
σ̄cε0

fc

=
σ̄cft

Efc

(6.25)

If σ̄c = (fc/ft)σ̄t, the equivalent strain is again equal to the axial elastic strain compo-
nent σt/E in uniaxial tension. Consequently, the equivalent strain definition in (6.23)
is suitable for both tension and compression, which is very convenient for relating the
damage variables in tension and compression to stress-inelastic strain curves.

Furthermore, variables εt
eq and εc

eq are defined in rate form as ε̇t
eq = ε̇eq and ε̇c

eq = αcε̇eq.
Variable αc is introduced to quantify the contribution of compression in the effective
stress state and is calculated as

αc =
3∑
i=1

σ̄Pci (σ̄Pti + σ̄Pci)

‖σ̄P‖2
(6.26)

where σ̄Pti and σ̄Pci are the components of the compressive and tensile part of the
principal effective stresses, respectively, which were previously used for the general
stress strain law in (6.2). The variable αc varies from 0 for pure tension to 1 for pure
compression.

The history variables form two groups of three variables, which are related to the tensile
and the compressive part, respectively. They are formulated as

κdt = max
τ≤t

εt
eq κ̇dt1 =

‖ε̇p‖
xs(σ̄v, ρ̄)

κ̇dt2 =
κ̇dt

xs(σ̄v, ρ̄)

κdc = max
τ≤t

εc
eq κ̇dc1 =

αc βc ‖ε̇p‖
xs(σ̄v, ρ̄)

κ̇dc2 =
κ̇dc

xs(σ̄v, ρ̄)

(6.27)

Here, the softening ductility measure xs(σ̄v, ρ̄) is a function of σ̄v and ρ̄, which takes into
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account the influence of multi-axial stress states on damage evolution. It is formulated
as

xs = 1 + (As − 1)Rs (6.28)

where Rs is

Rs =

 −
√

6σ̄V

ρ̄
if σ̄V ≤ 0

0 if σ̄V > 0

(6.29)

In this function, As is a model parameter. For uniaxial tension σ̄v/ρ̄ = −1/
√

6, Rs = 1

and xs = As. In (6.27) factor βc provides a smooth transition from pure damage to
damage-plasticity softening processes during cyclic loading. It is given by

βc =
ftqh2

√
2/3

ρ̄
√

1 + 2D2
f

(6.30)

An exponential stress-strain damage law was selected for both the tensile and the com-
pressive part. Damage is initiated when either the tensile or the compressive equivalent
strain reaches ε0 = ft/E. The dissipated energy is controlled by softening parameters
εft and εfc for tension and compression, which determine the initial slope of the soft-
ening curve (Figure 6.3). The history variables are used in the damage law to provide
the value of the damage variable by calculating the inelastic strains in the equivalent
1D problem. The inelastic strain is defined for tensile damage as

εt
in = κdt1 + ωtκdt2 (6.31)

Furthermore, in this problem the stress-strain relationship is replaced by

σ = (1− ωt)Eκdt (6.32)

An exponential stress-strain law is assumed

σ = ft exp

(
−ε

t
in

εft

)
if εt

in > 0 (6.33)

The damage parameter ωt is calculated by iteratively solving for ωt the equation con-
structed by substituting (6.31) into (6.33) and setting it equal to (6.32). The compres-
sive damage parameter is evaluated by replacing in (6.31) - (6.33) the tensile history
variables and equivalent strain with their compressive counterparts.

To sum up, the 13 parameter damage-plasticity model was described. The plasticity
part is defined by nine parameters, from which the main ones are the compressive
strength fc, tensile strength ft and parameter Hp of the hardening functions. The
latter controls the amount of the plastic strains. The smaller the value of Hp is the
closer is the response of the model to a pure plasticity constitutive law. The roundness
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Figure 6.3: Exponential softening damage law

of the deviatoric sections is determined from parameter e which is calculated according
to (6.5). Parameter Df controls the ratio between lateral and axial plastic strains as
described in (6.15). Initial hardening depends on the value of qh0, used in (6.16), and
the hardening ductility measure xh(σ̄v) consists of four parameters Ah, Bh, Ch, Dh, as
shown in (6.19). Furthermore, the damage part is defined by four parameters, namely
the strain ε0 at which damage initiates, the strains εft and εfc used in the damage laws
for tension and compression and As of the ductility measure xs in (6.28).

6.1.1 Implementation of CDPM2

The damage-plasticity model CDPM2 was implemented in the framework of nonlinear
finite element method. The material response is evaluated at each Gauss point. For a
new strain increment a trial elastic loading step is initially assumed. The trial stress
state is initially corrected by the plasticity and then by the damage algorithm, as it
was described in Grassl and Jirásek (2006b).

In the plasticity algorithm, stress states are treated differently depending on their po-
sition in the principal effective stress space with respect to the vertices of the yield
surface, which lie at the intersections of the meridians with the hydrostatic axis (Fig-
ure 6.1). At these points, gp is not differentiable and the direction of plastic flow m

is not uniquely defined. Initially, it is checked whether the stress state lies within a
region, that might require a vertex return, i.e. the stress state should be returned to
the closest vertex on the hydrostatic axis. On the vertex, the yield condition is written
as a function of the only unknown σ̄v because on the hydrostatic axis ρ̄ = 0, θ̄ is set by
default to π/3 and κp becomes a function of the trial stress state and σv. The bisection
method is applied to find the vertex volumetric stress within the interval [0, σ̄trial

v ] or
[σ̄trial

v , 0] for tensile or compressive trial stress states, respectively. The solution is ac-
cepted if the vector connecting the trial and the vertex stress states is within the region
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bounded by a cone including all vectors perpendicular to gp on the vertex mapped in
the effective stress space. Mapping from the strain to effective stress space is performed
by multiplying their deviatoric and volumetric components with the shear modulus G
and the bulk modulus K (Simo and Hughes, 2000). If a vertex return is unsuccessful,
the regular return algorithm is applied to calculate the closest stress state on the yield
surface from the trial stress state by applying a Closest Point Projection algorithm
(Simo and Hughes, 2000). The problem can be reduced to the calculation of four un-
knowns including σ̄v, ρ̄, λ̇ and κp because the derivative of gp with respect to θ̄ is zero so
that θ̄ remains constant during regular return (Etse and Willam, 1996). For very large
strain increments the plasticity algorithm cannot converge within a reasonable number
of iterations or for very low tolerances. The robustness of the model is enhanced by
applying a subincrementation scheme that relies in splitting large strain increments
in subincrements, sequentially added to the strain vector. The intermediate effective
stress states are then calculated after each addition by the plasticity algorithm.

The effective stress state evaluated from the plasticity part is corrected by the damage
algorithm to provide the final stress. During the transition from tensile to compressive
stress states in cyclic loading, εc

eq, κdc and κdc2 depend on the value of αc at the
current load step. In a correct evaluation of εc

eq only the part of ε̇eq corresponding to
material reloading should be multiplied with the current αc. This is not the case when
unloading from tension and reloading in compression occur within a single load step.
The miscalculation of εc and κdc2 for Hp = 0, where elastic strains have low values and
stay constant in the post-peak, results in an underprediction of the εc

in so that ωc is not
initiated properly and “lags behind” the effective stress. This problem is treated in the
damage algorithm by initially detecting if unloading and reloading occurs in a single
step. The value of εeq is calculated at two intermediate stress states that correspond
to 1% and 99% of the total strain increment. Unloading and reloading within a single
load step are assumed to occur, if the value of εeq decreases from the initial stress state
to the first intermediate stress state and increases from the second intermediate stress
state to the current stress state. In this case, the total strain increment is split in 100
subincrements which are sequentially added to the strain vector and the εeq is evaluated
until its minimum value is reached. Then, the total increment of ε̇c

eq is formulated as
the sum of two increments between the three points, which correspond to the initial
stress state, the point of minimum εeq and the final stress state. The values of αc at
the initial and the current stress state are used for the calculation of the first and the
second increment, respectively.
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6.2 Nonlocal approach

In the nonlocal approach, the equivalent strains and the rates of the history variables
at a point x are calculated as weighted averages of the local ones, at each point ξ in
the vicinity of x. In the general case, the nonlocal average f̄(x) of a local function
f(x) is calculated as

f̄(x) =

∫
V

α(x, ξ)f(ξ)dξ (6.34)

Here, α(x, ξ) is the weight function that describes the interactions between points
x and ξ in the actual Euclidean space V , described in (3.10) and (3.11). The only
parameter of this function is the interaction radius R, which is linked to the width of
the final failure zones in tensile failure.

The main objective of the structural analyses is to investigate the mesh-dependence of
the material models and not to accurately describe material failure close to boundaries.
Moreover, the modified averaging schemes, presented in Section 4.1, aim at describing
tensile failure but their performance in describing compressive failure, which is exhib-
ited by the analysed specimens, has not been evaluated yet. The modified approaches
would also increase the computational load and the number of the model parameters
without influencing the mesh-dependence of the final solution compared to standard
nonlocal averaging. Hence, the standard averaging approach, introduced in (3.10), is
applied.

Nonlocal averaging was applied in both the tensile and the compressive damage part.
The damage laws are based on stress-inelastic strain laws and the local history variables
and equivalent strains used in (6.31) - (6.33) are replaced by their nonlocal counterparts,
ε̄eq, κ̄dt1, κ̄dt2, ε̄c

eq, κ̄dc1, κ̄dc2, which are calculated according to (6.34).

6.3 Crack-band approach

The tensile part of the damage algorithm is formulated according to the crack-band
approach and fracture is modelled as a nonlinear band, that deforms inelastically.
The inelastic behaviour is described by a stress-crack opening law and the exponential
stress-inelastic strain law is replaced by a stress-inelastic displacement relationship
calculated by multiplying inelastic strain in (6.31) with the width h of the crack-band.
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The stress-inelastic displacement law for tension is then formulated as

σt = ft exp

(
−ε

t
inh

wft

)
if εt

in > 0 (6.35)

In the present study, the width of the crack-band is set equal to the maximum dimension
of the element along the direction of the first principal strain at the onset of damage
(Jirásek and Bauer, 2012).

6.4 Analyses

6.4.1 Calibration based on 1D direct tension test

The material models were calibrated based on the recommendations of FIB Model
Code 2010 (FIB, 2012). The compressive strength fcm was set equal to the value of the
cylinder compressive strength, reported in the experiments (Leonhardt and Walther,
1962; Němeček et al., 2005). The Young’s modulus E, the Poisson’s ratio ν, the
mean tensile strength fctm and the fracture energy GF were determined based on the
equations provided by CEB-FIB Model Code 2010 (FIB, 2012). The parameters of the
material were calibrated by fitting the calculated material properties by analysing a 1D
bar with length 0.25 m subjected to tension, which has been presented in Section 5.3.
During the calibration procedure, the optimal values, proposed in Grassl et al. (2013),
were used for the material parameter qh0 = 0.3, Ah = 0.08, Bh = 0.0033, Ch = 2.0,
Dh = 10−6, Hp = 0.01, εfc = 3 10−5 and Df = 0.85. In the analyses with the crack-
band approach, failure localises in a single element and the model’s tensile softening
parameter wft is directly related to the fracture energy as Gf = ftwft. However, the
nonlocal model is leading to a multi-element dissipation zone, whose width depends on
the value of the interaction radius R.

In the present study, R was set equal to 0.01 m, which is much larger than the value
provided for the interaction radius by the proposed calibration strategy in Section 5.3.
Smaller values of R would require smaller mesh sizes to ensure that there are enough
material points within the interaction domain for the calculation of the nonlocal aver-
ages, which would increase computational load. In addition, a value of R comparable
to the one provided in Section 5.3 would lead to failure zones that are smaller than the
experimental ones because no fractured aggregates were reported in these experiments
(Leonhardt and Walther, 1962; Němeček et al., 2005). In the three-point bending
test used for the calibration, the aggregates were characterised by low tensile strength
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leading to smoother final fracture surfaces and lower standard deviation of the exper-
imental roughness distribution. Therefore, the selected value of the interaction radius
was considered to provide reasonably sized failure zones without the need of extremely
fine meshes.

The calibrated models were applied to the nonlinear analysis of a reinforced concrete
beam and a column in the two- and three-dimensional domain, respectively. Nonlocal
interactions in 2D and 3D were taken into account in the calibration by applying the
modified nonlocal weight functions, introduced in (3.36) and (3.37).

The parameter set, that will be used for the analysis of the reinforced concrete beam
in Section 6.4.2, was applied to a mesh study to investigate the dependence of the two
material models on the selected element size. A coarse, a medium and a fine mesh
with 25, 51 and 101 elements of the 1D specimen with length 0.25 m were analysed
with the calibrated crack-band and the nonlocal models. In the nonlocal models the
modified weight function, introduced in (3.36), was used. Both approaches provide
a mesh-independent description of the average stress-strain curves (Figures 6.4 and
6.5). The average stress is defined as the applied force divided by the cross-sectional
area and the average strain is calculated as the applied displacement divided by the
specimen length. The dissipated energy density profiles at the final loading step are
illustrated in Figures 6.6 and 6.7. In the analyses with the crack-band approach, it is
observed that for smaller mesh sizes the width of the localisation zone decreases and
the value of the local dissipated energy density increases. On the contrary, the nonlocal
approach results in mesh-insensitive representations of the dissipated energy density
profile. In Figure 6.8, it is shown, that the plastic strain profiles are mesh-independent
for Hp > 0 in the nonlocal approach, which was illustrated previously for a simple
damage-plasticity model in Grassl and Jirásek (2004).
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Figure 6.4: Comparison of the average stress-strain curves for the analysis with the
crack-band model of the 1D direct tension test for three different meshes.
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Figure 6.5: Comparison of the average stress-strain curves for the analysis with the
nonlocal model of the 1D direct tension test for three different meshes.
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Figure 6.6: Comparison of the dissipated energy density profiles for the analysis with
the crack-band model of the 1D direct tension test for three different meshes.
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Figure 6.7: Comparison of the dissipated energy density profiles for the analysis with
the nonlocal model of the 1D direct tension test for three different meshes.
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Figure 6.8: Comparison of the plastic strain profiles for the analysis with the nonlocal
model of the 1D direct tension test for three different meshes.

6.4.2 Reinforced concrete beam

The first analysed structural member was the reinforced concrete beam no. 5 from
the series of experiments, reported in Leonhardt and Walther (1962). The beam was
subjected to four-point loading and exhibited shear failure in absence of shear rein-
forcement (Figure 6.9). Due to symmetry, only half of the specimen was analysed by
constraining the horizontal displacements of all nodes lying on the symmetry plane.
Direct displacement control was applied for the vertical displacement of the lowest
point of the midspan of the beam. Concrete was modelled by 2D plane strain triangu-
lar elements because they result in a decreased computational load compared to a 3D
analysis and because CDPM2 was formulated in 2D only for plane strain conditions.

Figure 6.9: Geometry and setup of the reinforced concrete beam (Leonhardt and
Walther, 1962).
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The elastic solution in the 3D domain is closer to the plane stress solution but during
fracture the response of the beam is a combination of the plane stress and the plane
strain solutions (Bažant and Kazemi, 1991). Furthermore, the plasticity algorithm was
formulated in 2D for plane strain. A coarse, a medium and a fine mesh were analysed
with element sizes h = 0.02, 0.01 and 0.005 m.

The procedure, described in Section 6.4.1, was applied to calibrate the two material
models. The calibrated material parameters are: E = 30.5 GPa, ν = 0.2, fc =

28.5 MPa, ft = 2.247 MPa. The tensile softening parameters are wft = 0.0594 mm
and εft = 0.00099 for the crack-band and the nonlocal approach, which fit the fracture
energy Gf = 133 N/m for the experimental compressive strength fc. The remaining
model parameters are set to their default values specified in Section 6.4.1. Symmetry
was taken into account in the material models by modifying the material properties of
the points lying close to the symmetry line. In the crack-band approach the fracture
energy was assumed to be half of the calibrated value, as proposed by Jirásek and
Bauer (2012), whereas in the nonlocal approach symmetric local state variable fields
were assumed on the other side of the symmetry line. Steel plates were modelled to
be linear elastic with Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3.
The same constitutive law was applied to describe the response of the longitudinal
reinforcement, which was modelled explicitly by truss elements. Perfect bond was
assumed between steel and concrete.

The load-displacement curves for the nonlocal and the crack-band approach are pre-
sented in Figures 6.10 and 6.11. The initial stiffness is overestimated by both ap-
proaches, which may be attributed to the assumed plain strain conditions. Another
reason could be the difference between the actual value of the Young’s modulus and
the one calculated based on the experimental compressive strength according to the
equations provided in CEB-FIB Model Code 2010 (FIB, 2012). The experimental re-
sults cannot be compared with the analytical ones in the post-peak regime because
load-control was applied in these experiments. The contour plots of the maximum
tensile principal strain ε1 for the medium mesh shown in Figure 6.12 correspond to
the marked loading steps in Figures 6.10 and 6.11. Vertical failure zones appear in
the region of high moment during early loading stages that correspond to the exper-
imentally observed bending cracks. At about 75% of the peak load, diagonal failure
zones develop close to the reinforcement and propagate towards the support and the
load application point. For large midspan displacements, a diagonal failure zone is vis-
ible which is in accordance with the shear band observed in the original experiments.
Hence, the analytical model is capable of capturing the shear failure analysed in the
present mesh study.
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Both approaches are not influenced by the mesh-size for low load levels (Figures 6.10
and 6.11). However, the use of the crack-band approach results in mesh-dependent peak
loads and post-peak responses. This effect is also illustrated in Figures 6.13, where the
contours of ε1 at the loading stage 3, marked in Figure 6.11, are shown. The smaller the
mesh-size is, the larger is the number of the final failure zones and the smaller is their
width. An almost mesh-independent response is shown in the analyses of the medium
and fine meshes with the nonlocal approach (Figure 6.10). In the contour plots of ε1,
failure zones from the analyses with the nonlocal model for the fine and the medium
mesh include multiple finite elements over their width (Figure 6.13). In the analysis
of the coarse mesh with the nonlocal model, the selected mesh-size in the coarse mesh
is very large and there are not enough material points within the nonlocal interaction
zone to calculate the nonlocal averages accurately. Therefore, failure localises in a
single element and the load-displacement curve differs from the ones for the fine and
the medium mesh.

All nonlocal analyses underestimate the peak load, which may be attributed to the
selected interaction radius R. The influence of R was evaluated by calibrating the
nonlocal model for a smaller R = 0.005 m and applying it to analyse the fine mesh.
The material properties were the same as for the set of parameters used for R = 0.01 m
except for εft = 0.00179, which results in fracture energy equal to GF = 133 N/m. The
predicted peak load for this parameter set is in better agreement with the experimental
one (Figure 6.14). The contour plot of ε1 is illustrated in Figure 6.15 for loading stage
3 marked in Figure 6.14. More and narrower failure zones are observed in the analyses
with R = 0.005 compared to the ones with R = 0.01 m. The interaction radius R
in the nonlocal approach has a similar influence to the value of the mesh size in the
crack-band approach. The main difference between the two approaches is that R is
independent of the mesh size.
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Figure 6.10: Load P -deflection curve for the reinforced concrete beam (Leonhardt
and Walther, 1962) analysed for three different meshes with the nonlocal approach.
Deflection is measured at the lowest point at the midspan of the beam.
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Figure 6.11: Load P -deflection curve for the reinforced concrete beam (Leonhardt
and Walther, 1962) analysed for three different meshes with the crack-band approach.
Deflection is measured at the lowest point at the midspan of the beam.
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(a) Stage 1

(b) Stage 2

(c) Stage 3

(d)Stage 4
nonlocal approach crack-band approach

Figure 6.12: Evolution of the contour plot of the maximum tensile principal strain ε1

of the shear beam (Leonhardt and Walther, 1962) for the medium mesh at the three
loading stages marked in Figure 6.14 and 6.11. Light gray colour corresponds to values
of ε1 < 0 whereas black colour corresponds to values of ε1 > 10−3.
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(a) coarse mesh

(b) medium mesh

(c) fine mesh
nonlocal approach crack-band approach

Figure 6.13: Contour plots of the maximum tensile principal strain ε1 of the shear
beam (Leonhardt and Walther, 1962) for all mesh sizes at loading stage 3, marked in
Figure 6.14 and 6.11. Light gray colour corresponds to values of ε1 < 0 whereas black
colour corresponds to values of ε1 > 10−3.
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Figure 6.14: Load P -deflection curve of the reinforced concrete beam (Leonhardt and
Walther, 1962), analysed for the fine mesh with the two nonlocal models. Deflection is
measured at the lowest point of the midspan of the beam.
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R = 0.005 m R = 0.01 m

Figure 6.15: Contour plots of the maximum tensile principal strain ε1 of the shear
beam (Leonhardt and Walther, 1962) at loading stage 3, marked in Figure 6.14, for
the fine mesh analysed with the nonlocal approach for R = 0.005 m and R = 0.01 m.
Light gray colour corresponds to values of ε1 < 0 whereas black colour corresponds to
values of ε1 > 10−3.

6.4.3 Reinforced concrete column

A reinforced concrete column subjected to eccentric loading was analysed in the 3D
domain. This specimen was selected because it exhibits distributed failure in the
form of diffuse cracking and crushing in its tensile and compressive side, respectively
(Němeček et al., 2005). Direct displacement control of the midheight lateral deflection
was applied. The column is modelled by tetrahedral constant strain elements. A
finer mesh with h = 0.005 m was not analysed for this model since it resulted in
increased computational time. This was because more source points need to be taken
into account during nonlocal averaging for the calculation of the nonlocal equivalent
strain at the same receiver point. Hence, only a coarse and a medium mesh with
h = 0.02 m and 0.01 m were analysed.

The column is divided in three zones with different material properties (Figure 6.16).
The steel blocks at the top and the bottom zones, were modelled as linear elastic
with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.2. Concrete zones
A, reported to remain undamaged during the experiments, were modelled as linear
elastic with E = 31 GPa and ν = 0.2. The nonlocal and the crack-band models
were applied to analyse the constitutive response concrete zone B and were calibrated
following the procedure described in Section 6.4.1 for the material properties calculated
based on the compressive strength according to the equations provided in CEB-FIB
Model Code 2010 (FIB, 2012). The calibrated material parameters were E = 31 GPa,
ν = 0.2, fc = 30 MPa, ft = 2.355 MPa. The tensile softening parameters are set
to wft = 0.0572 mm and εft = 0.00099 for the crack-band and the nonlocal approach
to fit the calculated fracture energy GF = 163 N/m. The stirrups were analysed
by truss elements as elastic-perfectly plastic with E = 210 GPa, ν = 0.3 and yield
strength fy = 314 MPa. Co-rotational beam elements were used for the longitudinal
reinforcement that was subjected to the large displacements and buckled during the
experiment. The constitutive response was modelled as elastic-perfectly plastic with
E = 210 GPa, ν = 0.3 and fy = 561 MPa. A perfect bond was assumed between the
steel reinforcement and concrete.
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Figure 6.16: Geometry and setup of the reinforced concrete column (Němeček et al.,
2005).
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Figure 6.17: Load P -lateral deflection for the eccentric column (Němeček et al., 2005)
analysed for two different meshes with the crack-band approach. Lateral deflection w
is measured at the midpoint of the tensile side.
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Figure 6.18: Load P -lateral deflection for the eccentric column (Němeček et al., 2005)
analysed for two different meshes with the nonlocal approach. Lateral deflection w is
measured at the midpoint of the tensile side.

In Figures 6.17 and 6.18, the load-lateral deflection curves are shown for the crack-
band and the nonlocal approach. The initial stiffness for all analyses is close to the
experimental one but the peak load is overpredicted, which may be attributed to the
difference between the actual and the calculated material properties based on the rec-
ommendations of CEB-FIB Model Code 2010 (FIB, 2012). Another reason could be
the simple calibration procedure that was followed instead of other more advanced
techniques proposed, for example in Iacono et al. (2006). Both approaches lead to a
mesh-independent description of the pre-peak and the late post-peak response. For
the same mesh size, the load-lateral deflection curves for the nonlocal and the crack-
band model are very similar to each other (Figures 6.17 and 6.18). The contour plots
of ε1 are shown for all analyses in Figure 6.19 for the marked loading step in Fig-
ures 6.17 and 6.18. Highly strained zones exist in both the tensile and the compressive
side of the specimen, which is in agreement with the regions of cracking and crushing
observed in the experiments. Both approaches resulted in similar ε1 fields that were
mesh-independent. However, in the contour plots of the damage variables a different
failure mechanism is observed for each model (Figure 6.20). In the contour plots of ωt

for the crack-band approach, high values are limited on the tensile side of the specimen
and around the longitudinal reinforcement. In the nonlocal approach the fields of ωt

are distributed over a larger area including both the compressive and the tensile sides
of the specimen. On the contrary, in the contour plot for ωc for the nonlocal approach
large values of damage appear only at the compressive side of the specimen whereas in
crack-band approach large values of ωc are found on both sides of the specimen.
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coarse mesh

medium mesh
Nonlocal approach Crack-band approach

Figure 6.19: Contour plot of the maximum tensile strain ε1 of the eccentrically loaded
column (Němeček et al., 2005) at the loading stage, marked in Figures 6.17 and 6.18,
for the two different mesh sizes analysed with the crack-band and the nonlocal model.
Light gray colour corresponds to ε1 < 0 whereas black colour corresponds to ε1 >
3 · 10−3. The boundaries of concrete zone B are marked by the dashed red lines.
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Damage parameter ωt

Damage parameter ωc

Nonlocal approach Crack-band approach

Figure 6.20: Contour plots of the damage variables ωt and ωc of the eccentrically
loaded column (Němeček et al., 2005) at the loading stage, marked in Figures 6.17 and
6.18, for the two different mesh sizes analysed with the crack-band and the nonlocal
approach. Light gray colour corresponds to values of the damage variable smaller than
0.3, whereas black colour corresponds to values equal to 1. The boundaries of concrete
zone B are marked by the dashed red lines.
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6.5 Discussion

The present study focuses on the mesh-dependence of damage-plasticity material mod-
els formulated according to the crack-band and the nonlocal approach. The advanced
damage-plasticity constitutive law CDPM2, originally formulated based on the crack-
band approach in Grassl et al. (2013), was extended according to the nonlocal approach.

The nonlocal and the crack-band model were applied to model a one-dimensional bar
subjected to direct tension, which is similar to the one presented in Section 3.3. Both
material models resulted in mesh-independent average stress-strain curves. For Hp > 0

the nonlocal models provided mesh-independent plastic strain profiles, which is in
agreement with the results reported in Grassl and Jirásek (2004). The width of the zone
in which energy is dissipated decreases in the analyses with the crack-band approach
for decreasing mesh size and the local dissipated energy density increases.

Furthermore, the two approaches were applied to model a reinforced concrete beam
in 2D that was experimentally investigated in Leonhardt and Walther (1962). The
analysed model is considered capable of describing shear failure, because the evolu-
tion of the failure patterns was in accordance with the observations reported for this
failure mode in similar experimental campaigns (Bažant and Kazemi, 1991; Vecchio
and Shim, 2004). In the crack band approach, both the crack patterns and the load-
displacement curves depended on the selected element size. Nonlocal models lead to
mesh-independent results as long as the mesh size was small enough to ensure that
there were enough material points contributing to the calculated nonlocal equivalent
strain. The main advantage of nonlocal models is that the selection of the value of R
has a similar influence on the final failure patterns with the mesh size but its value is
not related to the analysed mesh.

The two material models were also used in the analysis of a reinforced concrete column
subjected to eccentric compression (Němeček et al., 2005). Both approaches resulted
in mesh-independent descriptions of failure and provided similar load-lateral deflection
curves. However, different failure mechanisms are observed in the form of contour plots
of the damage variables fields.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The main subject of the present thesis was the development and application of integral-
type nonlocal models. The author evaluated different methodologies to take into ac-
count the influence of boundaries in nonlocal averaging procedures. A calibration
methodology for the interaction radius of nonlocal models based on the final fracture
surface was proposed. Furthermore, a damage-plasticity constitutive law was formu-
lated according to the nonlocal theory and was applied to analyse reinforced concrete
members. The main conclusions of the research reported in this thesis are summarised
in what follows.

The application of the standard scaling approach leads to spurious energy dissipation
close to boundaries and to an overestimation of the peak load in notched specimens
subjected to three-point bending, which is not in agreement with meso-scale analyses
results. The main reason for this overestimation are the nonlocal contributions from
undamaged source points that are away from the notch and are characterised by lower
equivalent strains. The local complement, the stress-based and the distance-based ap-
proaches lead to a reduction of the local dissipation near the boundaries. For the un-
notched specimens, the dissipated energy is reasonably distributed for all approaches,
but is underpredicted in the analyses with the local complement method. Two ad-
ditional input parameters are introduced in the distance-based approach, compared
to standard scaling, whereas the stress-based approach requires only one additional
parameter. The local complement formulation does not include any additional param-
eters. The nonlocal damage-plasticity approach also does not require any additional
parameters, but leads to an overestimation of the dissipated energy close to the notch,
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in the over-nonlocal formulation. In the case of standard averaging with m = 1, the
damage-plasticity model provides results, that are in better agreement with the meso-
scale analyses. However, the width of the fracture process zone depends on the selected
finite element size.

A methodology to calibrate the interaction radius in nonlocal models based on ex-
perimental crack patterns was proposed. Meso-scale investigations were performed to
validate the assumptions of this calibration procedure. According to the results of the
meso-scale analyses, the majority of the fracture energy is dissipated in a rough crack.
The width of the fracture process zone, determined from the energy dissipated in the
localised crack, increases for increasing size of the heterogeneities modelled, which is
controlled by the autocorrelation length of the random field.

A mesh study was conducted by analysing two reinforced concrete members with the
nonlocal and the crack-band formulation of the damage-plasticity constitutive law
CDPM2. The analyses with the nonlocal model are insensitive to the element size
as long as the it is small enough to ensure that there are always enough material points
contributing to the calculated nonlocal equivalent strain. The crack-band models lead
to mesh dependent crack patterns and load-displacement curves in the first specimen,
which was a beam failing in shear. Furthermore, the distributed compressive failure
observed in the concrete column is analysed mesh-independently for both constitu-
tive laws. However, the compressive and tensile damage fields are different in the two
approaches.

7.2 Future work

Further research is required in order to extend the findings of the present thesis to
different applications. Proposals for the investigation of different aspects of the topics
addressed in the present thesis are discussed as follows.

Quasi-static loading conditions have been assumed throughout this thesis and dynamic
phenomena were not included. Experimental investigations and meso-scale studies on
the size of the FPZ for different strain rates is a potential direction of future research.
The results could be applied to extend the described boundary approaches and cali-
bration strategies to dynamic fracture.

125



There is no consensus on how to define the nonlocal domain during compressive fail-
ure. In the present thesis, the author investigated the modelling of boundaries and
the calibration procedure of nonlocal models by analysing specimens where tensile fail-
ure dominates. The proposed techniques need to be extended to compressive failure.
Moreover, nonlocal averaging close to the interface of two materials such as steel and
concrete should be further investigated.

Size-effect is another important aspect. The performance of the boundary approaches
was evaluated based on the analyses results of beams with the same ligament length
subjected to three point bending. These methodologies should be applied in analysing
geometrically similar specimens for the same set of parameters in order to evaluate
their ability to describe the observed size effect in both material strength and fracture
energy.

Finally, decreasing the computational cost needed for the solution of problems with
many degrees of freedom would be another direction for further research. A more
efficient and optimised data structure to store the weights used in nonlocal averaging
is important to reduce the memory requirements of these problems. The calculation
of the nonlocal averages can also be accelerated by parallel processing techniques that
would dramatically reduce the computation time of those analyses.
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