
http://theses.gla.ac.uk/6701/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
Metabolomic approaches for the identification of metabolic pathways in *Trypanosoma brucei*

Katharina Louise Johnston, Dipl.-Biol. Univ. MRes

Submitted in fulfilment of the requirements for the degree of a Doctor in Philosophy

School of Life Science
College of Medical, Veterinary and Life Science
University of Glasgow

March 2015
Abstract

Trypanosoma brucei is a parasitic protozoan that can cause human African trypanosomiasis (HAT) and Nagana in cattle. Human African trypanosomiasis is deadly when left untreated, and thus there is an urgent need to develop new drugs against this disease. As trypanosomes are early diverged eukaryotes, it is anticipated that studying their metabolism can identify novel drug targets. The main drug currently in use against the late encephalitic stage, Eflornithine, was shown to inhibit an essential pathway in trypanosomes (Yarlett and Bacchi, 1989).

In this Thesis three approaches were used to apply metabolomic and proteomic techniques for protein function identification and to investigate metabolic pathways. The genome of T. brucei has been published (Berriman et al., 2005) and data is available via databases, such as TriTrypDB, a database dedicated to the trypanosomatids (Aslett et al., 2009). An estimated 40% of the identified genes in this organism are annotated with an unknown or putative function. In 2006, Saito et al. developed a systematic method to ascertain enzyme function based on an in vitro assay, in combination with metabolite profiling. This approach was successfully applied in several other studies. Here, I investigate the use of this method for its application in a high throughput approach for unknown enzyme identification in trypanosomes. Seven putative identified enzymes were randomly selected from TriTrypDB, cloned and expressed in E. coli and a function could be attributed to at least one of the enzymes. Furthermore, the amino acid metabolism in trypanosomes was investigated; using stable isotope labelling combined with metabolomics. The flux of labelled compounds could be traced through the organism showing the active metabolic pathways of L-methionine, L-proline and L-arginine in T. brucei.

Two T. b. brucei strains used in this study, GVR35 and 427, cause different forms of infections in their mammalian host. GVR35 causes a chronic infection and invades the central nervous system (CNS) with varying parasitemia in mice, whereas infection with strain 427 presents an acute form with high parasitaemia, causing high mortality, without invading the CNS. What causes this difference in the progression of infection? Secreted or excreted proteins from the parasites, referred to as the secretome, have been described as being important factor for virulence and avoiding the host immune response (Geiger et al., 2010) and Garzon et al. (2006) showed that excreted/secreted proteins can inhibit the maturation of dendritic cells and stop them from inducing a lymphocytic allogenic
response. Significant differences in proteins secreted from these two strains are discussed; although the results are preliminary.
Table of Contents

Abstrat .. I

List of Tables .. IX

List of Figures ... XI

Acknowledgement .. XV

Author’s Declaration ... XVI

Abbreviations .. XVII

Chapter 1 .. 1

1. Introduction .. 1

1.1. Human African trypanosomiasis ... 1

1.2. Trypanosomes ... 4

1.2.1. *Trypanosoma brucei* ... 4

1.2.2. Life cycle ... 5

1.2.3. *Trypanosoma brucei* strains (used in research) 6

1.3. Biology of trypanosomes .. 7

1.3.1. Genome of trypanosomes .. 8

1.3.2. Evading the immune system ... 8

1.3.4. Organelles .. 9

1.3.5. Metabolism ..10

1.4. Metabolomics ... 12

1.4.1. Nuclear magnetic resonance spectroscopy (NMR spectroscopy) 13

1.4.2. Mass spectrometry (MS) .. 14

1.4.2.1. Chromatography .. 14

1.4.2.2. Ionisation ... 15

1.4.2.3. Mass analysers ... 15

1.5. Applications for metabolomics ... 16

1.6. Metabolomics and enzyme function identification 18
1.6.1. Enzyme function identification by *in vitro* assay with recombinant protein .. 19
1.6.2. Metabolite profiling by disrupting enzyme activity .. 20
1.6.3. Stable isotope labelling for pathway identification .. 20
1.7. Trypanosome metabolomics ... 20
1.8. Secretome and Host Pathogen Interaction .. 22
 1.8.1. Secretory pathway in trypanosomes .. 22
 1.8.2. Secretome .. 22
 1.8.4. Host pathogen interaction ... 23
 1.8.5. Trypanosome secretome .. 24
1.9. Aims .. 25

Chapter 2 .. 26

Methods .. 26
 2.1. Cell culture .. 26
 2.1.1. Cell culture of *T. b. brucei* .. 26
 2.2. Molecular Methods ... 27
 2.2.1. DNA isolation .. 27
 2.2.2. RNA isolation .. 27
 2.2.3. Polymerase chain reaction ... 27
 2.2.4. Reverse transcription ... 28
 2.2.5. Real-time PCR .. 29
 2.2.6. Plasmid generation .. 30
 2.2.6.1. Plasmids for recombinant overexpression ... 30
 2.2.6.2. RNA interference constructs .. 31
 2.2.7. Plasmid Purification ... 31
 2.2.8. Transformation ... 32
 2.2.8.1. Competent cells ... 32
 2.2.8.2. Bacterial transformation .. 32
 2.1.4. Glycerol stocks .. 33
2.2.8.3. Transfection of parasites ... 33

2.3. Protein methods .. 33

2.3.1. Overexpression .. 33

2.3.2. Protein purification .. 34

2.3.3. SDS-PAGE ... 34

2.3.4. Western blotting ... 34

2.3.5. Bradford assay .. 35

2.3.6. Sample preparation for proteomics ... 35

2.3.7. Protein precipitation ... 35

2.3.8. DiGE .. 36

2.3.9. Gel imaging and image analysis .. 36

2.3.10. Filter aided sample preparation for trypsin digest (FASP) 37

2.3.11. Dimethyl-labelling for proteomics .. 38

2.4. Metabolite profiling ... 38

2.4.1. In vitro investigation of unknown enzymes sample setup 38

2.4.2. Intracellular metabolite extraction from parasites 39

2.4.3. 13C – labelled tracking ... 39

2.4.4. Standards .. 40

2.4.5. Liquid chromatography-mass spectrometry 40

2.4.6. Data analysis .. 41

2.5. Enzyme assays .. 41

2.5.1. Hexokinase .. 41

2.5.2. Glucose dehydrogenase ... 42

2.5.3. NAD$^+$ synthase .. 42

Chapter 3 .. 44

3.1. Introduction .. 44

3.1.1. In vitro assay combined with metabolite profiling 45

3.1.2. RNA interference .. 46
3.2. Results .. 47
 3.2.1. Validation of in vitro method ... 47
 3.2.1.1. In vitro investigation of glucose dehydrogenase by metabolite profiling ... 47
 3.2.1.2. In vitro investigation of hexokinase by metabolite profiling .. 48
 3.2.2. Cofactor stability ... 50
 3.2.3. Results putative enzymes ... 53
 3.2.3.1. S-adenosylmethionine synthetase, putative (G191)... 56
 3.2.3.2. Citrate synthase, putative (G194).. 59
 3.2.3.3. Deoxyhypusine synthase, putative (G158) .. 62
 3.2.3.4. Deoxyribose-phosphate aldolase, putative (G159) ... 64
 3.2.3.5. NAD\(^+\) synthase, putative (G162)... 66
 3.2.3.6. Aldo/keto reductase, putative (G196) ... 71
 3.2.3.7. Aspartate carbamoyltransferase, putative (G197) ... 73
 3.2.3.8. Arginase / Agamtinase-like protein, putative (G131) .. 77
 3.3. Discussion .. 83

Chapter 4 .. 85
 4.1 Introduction ... 85
 4.1.1. L-methionine ... 86
 4.1.1.1. Protein synthesis ... 87
 4.1.1.2. Methylation processes and methionine cycle ... 87
 4.1.1.3. Biosynthesis of polyamines .. 89
 4.1.1.5. Methiolthioadenosine or Yang cycle ... 92
 4.1.2. L-arginine metabolism ... 93
 4.1.2.1. Urea cycle and polyamine synthesis from L-arginine... 93
 4.1.2.2. Phosphagens from L-arginine .. 95
 4.1.3. L-proline .. 95
 4.2. Results ... 97
 4.2.1. Global L-methionine metabolism ... 97
Chapter 4

4.2.1. Methionine cycle and L-cysteine biosynthesis .. 98
4.2.1.2. Polyamine biosynthesis .. 101
4.2.1.3. Recycling of methionine .. 103
4.2.1.4. Methylated metabolites ... 105
4.2.2. U-13C - L-arginine metabolite tracking ... 107
 4.2.2.1. Urea cycle – Biosynthesis of L-ornithine .. 107
 4.2.2.2. Energy storage in T. brucei ... 110
 4.2.2.3. Other metabolites labelled from L-arginine .. 110
4.2.3. U-13C - L-proline metabolite tracking ... 112
4.3. Discussion ... 114
 4.3.1. L-methionine .. 114
 4.3.2. L-arginine .. 115
 4.3.3. L-proline .. 116

Chapter 5 .. 117
 5.1. Introduction ... 117
 5.2. Results ... 117
 5.2.1. Sample preparation for DiGE .. 118
 5.5.2. DiGE analysis .. 118
 5.2.2. T. b. brucei strain GVR35 secretome ... 124
 5.2.3. FACS and cell survival ... 127
 5.2.4. Dimethyl-labelling strain 427 and strain GVR35 129
 5.3. Discussion ... 131
 5.3.1. Secretome production ... 131
 5.3.2. Comparison of T. b. brucei strains 427/GVR35 ... 133
 5.3.3. T. b. brucei strain GVR 35 secretome ... 133

Chapter 6 .. 136
 Discussion .. 136
 6.1. Enzyme assay / Enzyme ID ... 137
6.2. Stable Isotope Labelling / Pathway ID ... 139
6.3. Secretome ... 141

List of References .. 143

Appendix A .. 158
Appendix B ... 160
Appendix C ... 162
Appendix D ... 163
Appendix E ... 169
List of Tables

Table 2.1: Real-time PCR primers and their efficiency for the use in determining the knockdown effect of induced RNAi lines.

Table 2.2 (a): Plasmids created for recombinant protein over expression.

Table 2.2 (b): Plasmids created for recombinant protein over expression.

Table 2.3: RF1 and RF2 buffers for chemically competent cells

Table 2.4: Protocol #9 for IEF

Table 2.5: The two sets of cofactors mixtures used for *in vitro* assay for enzyme function identification at a working concentration of 1 mM (see S1 for abbreviations).

Table 2.6: Sample preparation for *in vitro* investigation.

Table 3.1: Identification of putative identified enzymes used in high throughput approach

Table 3.2: Detected mass and retention time from each cofactor during a timecourse of four weeks.

Table 3.3: Monoisotopic molecular weight of the cofactors used in this study, taken from metacyc.org

Table 3.4: Isomers of detected compound showing significant increase in treatment samples.

Table 3.5: Significant changes detected in amino acid metabolism in MI sample set.

Table 5.1: Identified proteins from *T. b. brucei* strain 427 as extracted from gel (Figure 5.1. (a)).

Table 5.2: Identified proteins from *T. b. brucei* strain GVR as extracted from gel (Figure 5.1. (b)).

Table 5.3: Identified and quantified proteins from sample dimethyl-labelling.

Table A1: Modified HMI-9 (adapted from Paul Voorheis).

Table A2: Creek’s minimal media (CMM) (Creel et al., 2013).

Table B1: Oligonucleotides used in this study for protein over expression.
Table B2: Oligonucleotides used in this study for creation of RNAi lines

Table D1: Authentic standard mixes run with every metabolomics experiment

Table E1: Secreted proteins from *T. b. brucei* strain GVR35 (obtained with FASP, 5.2.2.).
List of Figures

Figure 1.1: Population at risk from infection of HAT

Figure 1.2: Representation of the two host life cycle of Trypanosoma brucei in the tsetse fly and human host.

Figure 1.3: Schematic diagram of bloodstream form T. brucei illustrating major organelles.

Figure 1.4: Medline trend created for publications using the term “Metabolomics” or ”Metabonomis”.

Figure 2.1: Coupled enzyme assay for hexokinase.

Figure 2.2: Reaction catalysed by glucose dehydrogenase.

Figure 2.3: Coupled enzyme assays for NAD+ synthase.

Figure 3.1: Significant changes in the metabolomics dataset of glucose dehydrogenase assay.

Figure 3.2: Significant changes in the metabolomics dataset of hexokinase assay.

Figure 3.3: Decreasing levels of detected cofactors from cofactor mix 1 (a) and 2 (b) over a time course of four weeks.

Figure 3.4: Peak intensities of ATP, 10mM and 1mM at day 1 of the time course.

Figure 3.5: Whole cell extract of Rosetta (DE3) pLysS pre (-) and post (+) induction with IPTG (1mM final).

Figure 3.6: First step in the methionine cycle, adapted from Metacyc

Figure 3.7: Purification of recombinant putative S-adenosylmethionine synthetase (SAM synthetase).

Figure 3.8: Heatmap and principal component analysis (PCA) of metabolomics dataset from SAM synthetase assay.

Figure 3.9: Peak intensity of S-adenosylmethionine and L-methionine.

Figure 3.10: Reaction catalysed by Citrate synthase.

Figure 3.11: Heatmap and principal component analysis (PCA) of metabolomics dataset from citrate synthase assay.
Figure 3.12: Peak intensities of metabolites predicted to change in the dataset according to putative annotation of enzyme.

Figure 3.12 c: Peak intensity of significantly increased metabolite in G194 dataset putatively annotated as 2S-amino-tridecanoic acid.

Figure 3.13: Spermidine peak intensities and heatmap of metabolomics dataset from deoxyhypusine synthase assay.

Figure 3.14: Heatmap and principal component analysis (PCA) of metabolomics dataset from deoxyribose-phosphate aldolase assay.

Figure 3.15: Growth curve of G159RNAi cell line (a) and relative RNA abundance in G159RNAi cell line, as determined by rt RT-PCR (b)

Figure 3.16: Reaction of L-glutamine dependent NAD$^+$ synthase, adapted from metacyc.org.

Figure 3.17.: Reaction of ammonium dependent NAD$^+$ synthase, adapted from metacyc.org.

Figure 3.18: Purification of recombinant putative NAD$^+$ synthase.

Figure 3.19: Heatmap and principal component analysis (PCA) of metabolomics dataset from NAD$^+$ synthase assay.

Figure 3.20: Average peak intensities of L-glutamine, L-glutamate and Deamido NAD$^+$ in metabolomics dataset.

Figure 3.21: Results of NAD$^+$-synthase assay on spectrophotometer.

Figure 3.22: Heatmap and principal component analysis (PCA) of metabolomics dataset from aldo/keto reductase assay.

Figure 3.23: Relative RNA abundance in G196RNAi cell line, as determined by rt RT-PCR

Figure 3.24: Reaction of aspartate carbamoyltransferase. Adapted from metacyc.org

Figure 3.25: Purification of recombinant putative aspartate carbamoyltransferase.

Figure 3.26: Heatmap and principal component analysis (PCA) of metabolomics dataset from aspartate carbamoyltransferase assay.

Figure 3.27.: Growth curve of G197RNAi cell line (a) and relative RNA abundance in G197RNAi cell line, as determined by rt RT-PCR (b)
Figure 3.28: Pyrimidine biosynthesis pathway, adapted from metacyc.org.

Figure 3.29: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase assay.

Figure 3.30: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase assay with metal-ions added.

Figure 3.31: Significant changes in metal-ion ‘arginase’ dataset. (a) L-histidine and (b) L-histidinal.

Figure 3.32: Significant changes in metal-ion ‘arginase’ dataset. (a) 2-oxoglutarate, (b) L-hsitidine, (c) imidazole-pyruvate and (d) L-glutamate.

Figure 3.33: Average peak intensities of metabolites (S)-1-Pyrroline-5-carboxylate (a) and L-glutamate (b).

Figure 3.34: Detected basepeak S-methyl-1-thiol-glycerate (a) with the two potential fragments, detected as imidazole-pyruvate (b) and (c) (s)-1-pyrroline-5-carboxylate.

Figure 3.35: In vitro assay with 13C-labelled L-methionine.

Figure 4.1: Methionine cycle as adapted from metacyc.org.

Figure 4.2: Methionine entering the biosynthesis of polyamines.

Figure 4.3: dSAM and putrescine get converted to spermidine and S-methyl-5’-adenosine by Spermidine synthase (EC 2.5.1.16)

Figure 4.4: Formation of glutathionylspermidine from spermidine and glutathione, as adapted from metacyc.org.

Figure 4.5: Last step in biosynthesis of trypanothione.

Figure 4.6: methylthioadenosine (MTA) or Yang cycle as adapted from metacyc.org.

Figure 4.7: Predicted metabolites involved in the biosynthesis and degradation of L-ornithine.

Figure 4.8: Overview of metabolites labelled from 13C L-methionine in bloodstream form trypanosomes.

Figure 4.9: Labelling trend of the first three metabolites of the methionine cycle.

Figure 4.10: Methionine cycle and L-cysteine biosynthesis in trypanosomes as seen from labelling data.
Figure 4.11: Spermidine from authentic standard mix on ZIC-pHILIC column.

Figure 4.12: Polyamine biosynthesis from L-methionine.

Figure 4.13: Spent media analysis (performed by D. H. Kim and F. Achcar), shows increasing levels of methylthioribose secreted from the cells, starting after 48h.

Figure 4.14: Methionine salvage pathway via 5′Methylthioadenosine and 5′Methylthioribose.

Figure 4.15: 1,2-Dihydroxy-5-(methylthio) pent-1-en-3-one.

Figure 4.16: Methylated metabolites detected in trypanosome cell extract, incubated with (L) or without (U) 13-C L-methionine.

Figure 4.17: N-acetyl-L-glutamate 5-semialdehyde

Figure 4.18: Predicted metabolites to be involved in L-ornithine biosynthesis and degradation (Urea cycle and polyamine biosynthesis included).

Figure 4.19: Detected peak of L-arginine phosphate, with a mass of 254.07 and retention time of: 11.08 min.

Figure 4.20: Labelling pattern and origin of carbons in reaction leading to (a) N5-(L1-Carboxyethyl)-L-ornithine and (b) D-ocyopine.

Figure 4.21: Distribution of labelled carbons (C13) from L-proline.

Figure 5.1.: Image (DiGE) for T. b. brucei strain 427 (a) and GVR35 (b).

Figure 5.2.: Pie chart of classes of secreted proteins from T.b.brucex strain GVR35.

Figure 5.3.: Western blot after secretome preparation.

Figure 5.4.: FACs analysis on T. b. brucei strain 427wt and strain GVR35 during incubation in serum free CMM.

Figure 5.5: Real-time PI assay showing the increase of dead trypanosomes (427) during incubation in serum free CMM.
Acknowledgement

First and foremost, I would like to thank my supervisors, Prof. Mike Barrett, Dr. Richard Burchmore and Dr. Karl Burgess for their help and support throughout my PhD. You introduced me to the field of metabolomics and proteomics and I am very grateful for the opportunity to experience this. Especially Mike, who showed me, that even as an expert you can still get excited about the endless possibilities this research holds.

Fiona Achcar has been a great teacher since moving into the GBRC and without her patience and helpfulness, the last two years would have been a lot less enjoyable. A special thanks to Fiona also for our discussions and her superb efforts proofreading my thesis.

I would also like to acknowledge the Doctoral Training Centre and the funding bodies BBSRC and EPSRC for the opportunity to do this PhD.

Hyun Kim, you have been a great friend and were always reliable running my samples on the mass spec – through good columns and through bad columns.

Alan Scott for all your help with my protein work, you went out of your way to help me and proteomics and protein purification would have not been possible without you!

Snezhana, you also have been a great support during my PhD, helping me with my proteomic experiments. But more importantly you have become a wonderful friend.

Dave Wildridge and Lesley Morrison, thank you for your help and support with the molecular side of my project. You have been a great support over the last three and a bit years, not only when advice was needed, but you also kept me calm when things were not going the way I wanted them to.

To all the members of the Barrett group, past and present. Alan, Fede, Gordon, Isabel, Jane, Julie, Kevin, Pieter and Roy. Thank you for all your help and advice over the last years.

The Level 5 students who I shared an office with: Alan, Suleman, Shafquat, Becca, Taylor, Daniel, Lola, Joanne and Harshal, you will be greatly missed.

My parents, my sister and her husband Peter, thank you for your encouragements and support, even from a distance! Not to forget the daily, early phone calls to get me out of bed during the write up period, just a reminder, Germany is one hour ahead of Scotland!

Last, but not least, a big thank you to my husband Dave for sticking with me during these challenging times.
Author’s Declaration

I declare that, except where explicit reference is made to the contribution of others, this dissertation is the result of my own work and has not been submitted for any other degree at The University of Glasgow or any other institution.

Katharina Johnston
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>ammonium bicarbonate</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>acetyl - coenzyme A</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BBB</td>
<td>blood brain barrier</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BSF</td>
<td>bloodstream form</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CE</td>
<td>capillary electrophoresis</td>
</tr>
<tr>
<td>CHAPS</td>
<td>(3-[(3-Cholamidopropyl)-dimethylammonio]-propane-sulfonate)</td>
</tr>
<tr>
<td>CMM</td>
<td>Creek’s minimal medium</td>
</tr>
<tr>
<td>CMW</td>
<td>Chloroform/Methanol/Water</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A</td>
</tr>
<tr>
<td>2DE</td>
<td>two dimensional gel electrophoresis</td>
</tr>
<tr>
<td>DFMO</td>
<td>difluoromethylornithine</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DiGE</td>
<td>Differential Gel Electrophoresis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dSAM</td>
<td>decarboxylated S-adenosylmethionine</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>enzyme commission</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra acetic acid</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FT-MS</td>
<td>Fourier Transform Mass Spectrometry</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HAT</td>
<td>human African trypanosomiasis</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>HILIC</td>
<td>hydrophilic interaction chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HMI-9</td>
<td>Hirumi medium 9</td>
</tr>
<tr>
<td>IDEOM</td>
<td>identification of metabolites</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focussing</td>
</tr>
<tr>
<td>IMAC</td>
<td>immobilised metal ion affinity chromatography</td>
</tr>
<tr>
<td>IPG</td>
<td>Immobilized pH gradient</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>kDNA</td>
<td>kinetoplast DNA</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani medium</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid Chromatography</td>
</tr>
<tr>
<td>LC-MS</td>
<td>liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-Morpholino)propanesulfonic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MTA</td>
<td>Methylthioadenosine</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>MTA</td>
<td>methylthioadenosine</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate (reduced form)</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NTDs</td>
<td>neglected tropical diseases</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ODC</td>
<td>ornithine decarboxylase</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PAGE</td>
<td>poly-acrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCA</td>
<td>principle components analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PP</td>
<td>pyridoxal phosphate</td>
</tr>
<tr>
<td>PPP</td>
<td>pentose phosphate pathway</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosylmethionine</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecylsulphate</td>
</tr>
<tr>
<td>TbAK</td>
<td>Trypanosoma brucei arginine kinase</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>Tet</td>
<td>tetracycline</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TIC</td>
<td>total ion current</td>
</tr>
<tr>
<td>TPP</td>
<td>thiamine pyrophosphate</td>
</tr>
<tr>
<td>UDP</td>
<td>uracil diphosphate</td>
</tr>
<tr>
<td>UMP</td>
<td>uracil monophosphate</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>VSG</td>
<td>variable surface glycoprotein</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
<tr>
<td>ZIC-HILIC</td>
<td>zwitterionic hydrophilic interaction chromatography</td>
</tr>
</tbody>
</table>
Chapter 1

1. Introduction

1.1. Human African trypanosomiasis

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic disease endemic to sub-Saharan Africa. The disease is fatal when untreated and it affects mainly rural populations.

HAT belongs to the neglected tropical diseases (NTDs), a group of 17 diseases affecting mainly the world’s poorest population in 149 countries. Included in those are infections caused by protozoan parasites, leishmania, Chagas disease and HAT, as well as others caused by bacteria (like leprosy), viruses (including dengue and rabies) and helminths (e.g. onchoceriasis and schistosomiasis). The World Health Organisation (WHO) estimates that about 1.4 billion people are affected by at least one of those diseases (http://www.who.int/neglected_diseases/diseases/en/). As those NTDs only affect populations in underdeveloped countries, little resources are spent to develop drugs or vaccines.

In the case of HAT, the WHO estimated that about 70 million people are at risk of acquiring this disease in sub-Saharan Africa. While the risk for the population varies depending on the location, five million people live in high risk areas for HAT (Figure 1.1) (Franco et al., 2014). Several major HAT outbreaks have been reported since the late 19th century and, although HAT was thought to be under control in the mid-20th century, HAT re-emerged in the 1990s due to political instabilities in the affected regions (Barrett, 2006; Brun et al., 2010). Recent figures show the numbers of reported cases of HAT dropping below 10,000 since 2009 after being as high as over 30,000 in the late 1990s (Franco et al., 2014).

HAT is caused by an infection with subspecies of the protozoan parasite Trypanosoma brucei. The parasite is transmitted to the human host by the bite of the tsetse fly (Genus Glossina). As it is a vector borne disease, the occurrence of HAT is limited to the distribution area of the tsetse fly.
The occurrence of HAT in Africa can be divided in two areas: Central-west Africa, where *Trypanosoma b. gambiense* causes a chronic form of HAT and east Africa for *Trypanosoma b. rhodesiense* causes an acute form of HAT. Only in Uganda are both subspecies present. After the parasites get transmitted by the tsetse fly they proliferate at the site of infection, causing an inflammatory nodule. This trypanosomal chancre rarely occurs in infections caused by *T. b. gambiense*, but in 50% of infections with *T.b. rhodesiense* (Barrett et al., 2003).
The disease manifests itself in two stages: Stage 1, also early haemolymphatic stage, starts when the parasites spread from the trypanosomal chancre to the lymph nodes and enter the bloodstream. Multiple organs might also be infected (Barrett et al., 2003; Kennedy, 2004). Early symptoms of HAT are non-specific, including episodes of fever, malaise and headaches. A typical symptom for HAT is lymphadenopathy, which develops in T. b. gambiense infections after several weeks. Slave traders in the 18th century used neck swellings as signs for this infection, as described by Thomas Masterman Winterbottom (Barrett et al., 2003). Stage 2, also called late encephalitic stage, starts when the parasites invade the central nervous system (CNS). In infections caused by T. b. rhodesiense this happens within a few weeks, while it could occur between several months and years when infected with T. b. gambiense. Symptoms during second stage of HAT include disturbances to sleeping patterns, which gives the disease its name of ‘sleeping sickness’. Other symptoms can include mental and psychiatric disturbances (Rodgers, 2009). Untreated HAT will lead to coma and eventually death. Although treatment of early stage HAT is relatively effective (Rodgers, 2009), HAT becomes more symptomatic during the second stage.

There are currently four licensed drugs for the treatment of HAT, which can be administered depending on sub-species and stage of the disease. The drugs for the treatment of stage 1 HAT are suramin and pentamidine. Suramin was first used against HAT in 1922 (Miézan et al., 1994) and can be used against both sub-species. Pentamidine, a drug from the early 1940s, is only effective against T. b. gambiense. Both drugs are easy to administer and are also relatively safe compared to their counterparts for stage 2 treatment (Barrett et al., 2007). However, due to HAT becoming more symptomatic during the second stage of the disease safer drugs are urgently needed.

Once the parasites invade the CNS the drugs available are melarsoprol and eflornithine. Melarsoprol was first synthesised in 1949 and acts against both T. b. gambiense and T. b. rhodesiense. However, it has severe side effects that can result in the death of about 5% of the patients (Blum and Burri, 2002). Eflornithine, a drug developed as a potential antineoplastic agent in the 1970s, is recommended by the WHO for the treatment of HAT caused by T. b. gambiense. Recently a combination therapy of eflornithine and nifurtimox (a drug used for the treatment of Chagas disease) has been developed and has been shown to cure 98% during clinical trials (Priotto et al., 2007).
Of all the drugs available for HAT treatment, only eflornithine has a known mode of action (Poulin et al., 1992; Vincent et al., 2012)

1.2. Trypanosomes

Trypanosomatida is a group of kinetoplastid protozoa that are exclusively parasitic and are mainly found in insects. However, a few do have a two host life cycle and can infect a wide range of hosts, from vertebrates to invertebrates and plants. Species of this order known to infect humans are members of the genus *Leishmania*, with approximately 12 million people in South America, Middle East and India infected (Singh et al., 2012). *Trypanosoma cruzi*, causing Chagas disease in South America, affecting an estimated 10 million people (Barfield et al., 2011) and *Trypanosoma brucei*, causative agent of sleeping sickness in Africa (Barrett et al., 2003). Trypanosomes are ubiquitous parasites that can cause disease not only in humans but also in animals. They occur mainly in Africa; however, species are also known to cause human disease in South America and other animal disease outside Africa (Gibson, 2007).

The species *Trypanosoma equiperdum*, which causes dourine in equines, is thought to be closely related to *T. evansi*, (causative agent of surra in equines). Both *T. equiperdum* and *T. evansi* have a wider distribution than other trypanosome species, being reported in Africa, most of Asia, Russia, parts of the Middle East, South America and southeastern Europe ((Gibson, 2007); Animal Health Information Database). *T. equiperdum* is thought to be the only member of the trypanosome family to be exclusively sexually transmitted. *Trypanosoma cruzi*, as mentioned above, is only found in South America and causes Chagas disease in humans.

1.2.1. Trypanosoma brucei

There are three subspecies of *T. brucei*, two of which are infectious to humans and are associated with the disease HAT.

T. b. gambiense, responsible for 98% of all cases, causes a chronic form of HAT in Central and West sub-Saharan Africa.

T. b. rhodesiense, accounts for 2% of HAT, causing an acute infection in East sub-Saharan Africa.
T. b. brucei causes nagana in cattle and other wild and domestic animals; however it fails to infect humans due to its sensitivity to an innate immune complex found in human serum. There are two trypanolytic factors (TLF) found in human serum, TLF1 and TLF2, causing lysis of trypanosome parasites. TLF1 is a component of high density lipoprotein (Hajduk et al., 1994) and TFL2 is an apolipoprotein-A1/IgM complex (Tomlinson et al., 1995). The lytic component in both is Apolipoprotein L-1 (APOL1) (Vanhamme et al., 2003). Lysis of the parasites occurs after uptake of the TLFs into the parasite when APOL1 is taken up into endosomal and lysosomal membranes, causing osmotic swelling and lysis by forming cation selective pores in membranes (TLF1) (Molina-Portela et al., 2005). The human infective subspecies *T. b. gambiense* and *T. b. rhodesiense* show resistance against lysis by human TLFs. In *T. b. gambiense* reduced TLF binding or uptake was described due to reduced expression of HpHbR (Kieft et al., 2010). In *T. b. rhodesiense* resistance of APOL1 is achieved by expression of a serum resistance-associated protein (SRA).

1.2.2. Life cycle

Trypanosoma brucei has a two host life cycle; an insect host (tsetse fly) and a mammalian host (see Figure 1.2). The two subspecies infectious to humans, *T. b. gambiense* and *T. b. rhodesiense*, can also infect wild animals. Although they do not fall ill, animals can serve as a reservoir for these parasites. This is particularly true for *T. b. rhodesiense* (Enyaru et al., 2006); while *T. b. gambiense* is more reliant on human to human transmission via the tsetse fly (Brun et al., 2010).

Trypanosomes get transmitted during the blood meal of the tsetse fly. Transmission to the mammalian host is in form of metacyclic trypomastigotes present in the saliva of the tsetse fly. In the mammalian (or human) host, metacyclic trypomastigotes differentiate into bloodstream trypomastigotes (long, slender form) and proliferate at the site of infection for a few days, forming a trypanosomal chancre. From there, the fast dividing bloodstream form trypomastigotes spread to the lymph nodes and the bloodstream where they can also infect multiple organs. The long slender bloodstream form rapidly multiplies and the parasitemia in the blood increases. The parasites then differentiate into non-dividing short stumpy trypomastigotes which can be taken up by the tsetse fly during a blood meal. In the midgut of the tsetse fly the parasites differentiate into procyclic trypomastigotes and proliferate. Epimastigotes leave the midgut and differentiate into metacyclic trypomastigotes,
migrating to the salivary gland where they can be transferred to the mammalian host when the tsetse fly takes another blood meal.

![Figure 1.2: Representation of the two host life cycle of *Trypanosoma brucei* in the tsetse fly and human host (Blum et al., 2008). Permission to reproduce this image has been granted by Elsevier.](image)

1.2.3. *Trypanosoma brucei* strains (used in research)

From the three subspecies of *Trypanosoma brucei* only two cause the human disease sleeping sickness. However, the human infectious strains *T. b. gambiense* and *T. b. rhodesiense* share >99% genome sequence identity with *T. b. brucei* (Jackson et al., 2010) making the non-infectious form a safe model organisms to use in research.

Trypanosoma brucei brucei strains commonly used in the laboratory environment:
- ‘TREU 927’ originated in Kiboko, Kenya, is a pleomorphic strain that was used for the whole genome sequencing program (Berriman et al., 2005) Although the strain 427 is more commonly used in laboratories the ability of TREU 927 to complete the whole two host life cycle made it a better candidate for the sequencing project (Peacock et al., 2008).
• ‘427’ or ‘Lister 427’ is a monomorphic strain, which lost its ability to differentiate into short stumpy forms reportedly due to frequent passage in the lab (Peacock et al., 2008). There are mixed information in the literature regarding the origin of the ‘commonly used 427’ strain. ‘Lister 427’, a T.b.brucei strain, was isolated from cattle in former Tanganyika (now Tanzania) in 1956. ‘s427’, is thought to be T.b.rhodesiense, isolated from sheep in 1960 (South East Uganda).
(http://tryps.rockefeller.edu/trysru2_pedigrees.html)
• GVR35, originally isolated from wildebeest in the Serengeti (1966), causes a chronical infection in mice and when infected mice are left untreated the parasite manifest itself in the CNS within 21 days. This makes it a good model organism for studying trypanocidal drugs for the late encephalitic stage of this disease (Frevert et al., 2012; Jennings et al., 2002)

1.3. Biology of trypanosomes

Trypanosomes are considered to be very early diverged eukaryotes and make very good model organisms for studying biological processes. But what makes trypanosomes good model organisms? First, reliable culture methods exist for both life cycle stages. Host-pathogen interaction can also be studied in suitable animal models - tsetse fly for the insect stage and rodents, mice or rat, for the bloodstream form. There is a wide range of molecular techniques available for trypanosomes; gene knockout by homologous recombination can be performed, as well as RNA interference for gene knockdown (Alsford and Horn, 2008). Trypanosomes also have some very distinctive features and organelles, making them an interesting model to study and compare biological processes in eukaryotes (Smith and Bütkofer, 2010). A few biological processes initially described in trypanosomes are antigenetic variation for evading the immune system (Cross, 1975), glycosylphosphatidylinositol (GPI) anchoring for VSGs (Ferguson and Williams, 1988), trans-splicing (Sutton and Boothroyd, 1986) and RNA editing (Benne et al., 1986). Their unique method of evading the human immune system through antigenetic variation has been extensively studied and uncovered several other aspects about this parasite, such as mechanisms of exocytosis. The genome, sequenced in 2005, is organised differently from other eukaryotes and they have a streamlined metabolism, consistent to their parasitic lifestyle.
1.3.1. Genome of trypanosomes

The nuclear genome of *T. brucei* is composed of three classes of chromosomes, which are distinguished by size. It contains 11 pairs of diploid megabase chromosomes, which have been sequenced and published (Berriman et al., 2005), a variable number of intermediate chromosomes (IC) and between 50-100 mini-chromosomes (MC) (Melville et al., 1998). The megabase chromosomes contain housekeeping genes as well as telomeric VSG expression sites (Melville et al., 2000). Approximately 9,000 genes were discovered, with around 900 pseudogenes. Around 1,700 genes are thought to be *T. brucei* specific genes (Berriman et al., 2005). In most *T. brucei* strains the copy number of ICs are 1-7 and the size varies between 200-700 kb, while the MCs are more numerous and between 30-150 kb (Wickstead et al., 2004). Both ICs and MCs play a major role in the recombination of bloodstream form VSGs and therefore the parasites ability to avoid the human immune system. While the ICs contain VSG expression sites, MCs contain non-transcribed basic copies of VSG genes (Melville et al., 1998).

The results of whole genome sequencing project has been made available from several sources, the most commonly used is the trypanosomatidae specific database TriTrypDB, which grants easy access to genome annotations (Aslett et al., 2010). Recently ‘-omics’ datasets have been added to this database.

1.3.2. Evading the immune system

The bloodstream form *T. brucei* is a solely extracellular parasite, exposing them to the mammalian immune system. Therefore trypanosomes need to have a mechanism in place to avoid destruction. Variant Surface Glycoproteins (VSG) are expressed by the parasites, during their life cycle in the mammalian host, which form a dense surface coat covering the cell (Englund et al., 1982). Each trypanosome expresses only one VSG gene at any given time from a telomeric expression site (Horn and McCulloch, 2010). Those VSGs can be detected by the host’s immune system and antibodies are produced against those. However, trypanosomes use antigenic variation of their surface coat to change the composition of those VSGs, which allows some parasites to evade the immune system (Horn, 2004).
1.3.4. Organelles

Trypanosomes are single celled flagellates, with an elongated cell shape which is defined by their microtubule cytoskeleton (Sherwin and Gull, 1989). Their organelles differ in some aspects to most eukaryotic cells (Figure 1.3). Morphological features of this parasite include two areas of DNA, one the nucleus and the other the kinetoplast, giving the group kinetoplastidae (which trypanosomes belong to) their name. The kinetoplast is a DNA containing region at the posterior end of a single elongated mitochondrion which is another striking morphological feature of trypanosomes (Kilgour, 1980).

Figure 1.3: Schematic diagram of bloodstream form *T. brucei* illustrating major organelles. This picture originally appeared in ILRAD Reports, Vol7 (1), January 1989 and is available online http://www.ilri.org/InfoServ/Webpub/fulldocs/Ilrad90/Trypano.htm

The kinetoplast accounts for 10-20% of the cell’s DNA and is arranged in mini and maxi circles (Stuart and Gelvin, 1982). The maxi circles (~30-50 copies/cell) contain genes encoding for some mitochondrial proteins, whereas the mini circles (~10,000 – 50,000 copies/cell) encode for short guide RNAs which are used as templates for the post-transcriptional editing of maxi circle transcripts (Simpson and Shaw, 1989). The single mitochondrion stretches from the posterior to the anterior end of the cell. The form and function of the mitochondrion differs between the different life stages of trypanosomes. In bloodstream form the mitochondrion lacks cristae, folds of the inner membrane, reflecting the absence of mitochondrial respiration (Matthews, 2005).
At the posterior end of the trypanosome lies the flagellar pocket, the only site for endo- and exocytosis in trypanosomes (Overath and Engstler, 2004). Also, the flagellar pocket is the exit point for the flagellum, which is an essential organelle for the viability of trypanosomes (Kohl et al., 2003). The flagellum is not only the sole means of motility, but also plays an important factor in development, transmission and pathogenesis (Langousis and Hill, 2014).

A unique feature to trypanosomatidae is the glycosome, an organelle where part of the glycolysis takes place.

1.3.5. Metabolism

Due to their complex life cycle (switch between mammalian and insect host), trypanosomes must have the ability to adapt quickly to their changing environment. This is not only important for the developmental cell biology (Matthews, 2005) but also applies to the changes in metabolism between procyclic and bloodstream form cells. Also, trypanosomes show a reduced metabolism coinciding with their parasitic life style (Nerima et al., 2010). They lack pathways for purine biosynthesis and until recently it was thought that they rely solely on the host for components such as fatty acids and sterols as well (Fairlamb, 1989). However, it was shown that trypanosomes are capable of de novo synthesis of fatty acids (Smith and Bütikofer, 2010).

Lipids make between 11-18% of the dry weight of *T. brucei*, with a distribution similar to the range of lipids found in other eukaryotes, namely phospholipids, neutral lipids, fatty acids, isoprenoids and sterols (Smith and Bütikofer, 2010). After discovering that the fatty acid molecules of the glycosylphosphatidylinositol (GPI) anchors of the VSGs are exclusively myristate (Ferguson and Cross, 1984), it was speculated that bloodstream form trypanosomes could indeed synthesize myristate as there would be a higher demand on myristate from the parasite than provided in the blood (Lee et al., 2007). Trypanosomes mainly synthesise fatty acids through an endoplasmic reticulum (ER) based elongase (ELOs) pathway instead of type I or type II fatty acid synthesis (Stephens et al., 2007). Type II fatty acid synthesis pathway does exist in the mitochondrion, but is not the main source of myristate (Lee et al., 2006). In bloodstream form trypanosomes myristate is the endpoint of fatty acid synthesis (Smith and Bütikofer, 2010), while procyclics produce stearate (Stephens et al., 2007).
Energy metabolism in trypanosomes has been well studied in both life cycle stages. It differs from its host’s, due to localisation of glycolytic enzymes in organelles called glycosomes (Opperdoes and Borst, 1977), reduced metabolic pathways and the regulation of glycolytic enzymes (Nwagwu and Opperdoes, 1982). Energy metabolism also differs between the two life stages of the parasite. Some of the features are described below.

The most unusual aspect of the trypanosome energy metabolism is the compartmentalisation of the first nine glycolytic enzymes in the glycosomes. In bloodstream form 90% of the proteins found in the glycosomes are glycolytic enzymes (Aman et al., 1985). Although the glycosomes were named after presence of glycolytic enzymes, other metabolic pathways are also localised within those organelles. Pathways (other than glycolysis) described to be localised within the glycosomes include the pentose phosphate pathway (PPP), β-oxidation of fatty acids, purine salvage and biosynthetic pathways for pyrimidines, ether-lipids and squalenes, although activity varies between trypanosomatids (Michels et al., 2006).

In bloodstream form trypanosomes, glycolysis is the only source of ATP production and pyruvate the endproduct of glycolysis (van Hellemond et al., 2005). In contrast, procyclic trypanosomes can use L-proline as energy source, which is more readily available in the midgut of the tsetse fly than glucose (Bursell, 1963) and, to a lesser extent, L-threonine (Bringaud et al., 2006); however, they do prefer D-glucose when available (Lamour et al., 2005). But even when glucose is used in procyclics, the energy metabolism differs as is seen by the end products, which are succinate, acetate and alanine (Cazzulo, 1992). It has been shown in cultured trypanosomes that they are able to adapt very quickly to changes in nutrition offered and they can switch between L-proline metabolism and D-glucose metabolism within one hour (Coustou et al., 2008).

The redox metabolism also differs from their mammalian host as trypanosomes rely on the thiol trypanothione, a metabolite unique to trypanosomes. Trypanothione is produced via the conjugation of two glutathione molecules with one spermidine (Fairlamb et al., 1985). The metabolites playing a role in the synthesis of trypanothione are putrescine, the precursor to spermidine, from L-ornithine and the formation of spermidine from decarboxylated S-adenosylmethionine. Enzymes involved in polyamine and trypanothione biosynthesis are essential for parasite growth in T. brucei (Willert and Phillips, 2012) and the identification of pathways involved have gained a lot of research interest due to their potential in drug discovery. The drug eflornithine for example, which is currently in use
against stage 2 HAT, is a suicide inhibitor of the enzyme ornithine decarboxylase, blocking the formation of putrescine from L-ornithine leading to the death of the parasites. Formation of decarboxylated S-adenoslymethionine from S-adenoslymethionine is regulated by the enzyme S-adenoslymethionine decarboxylase. The human S-adenosylmethionine decarboxylase is stimulated by putrescine. However the trypanosome enzyme is allosterically activated by the formation with a catalytical dead paralogue, termed prozyme, and is not affected by putrecine (Willert et al., 2007). The appearance of inactive enzyme homologues (prozymes) has been observed in a variety of enzyme families during a genome search of metazoan species (Pils and Schultz, 2004). In trypanosomes so far three enzymes have been found where prozymes increase the function of enzymes, namely hexokinase (Chambers et al., 2008; Morris et al., 2006), deoxyhypusine syntethase (Nguyen et al., 2013) and the above mentioned S-adenosylmethionine decarboxylase.

1.4. Metabolomics

Metabolomics is an emerging field of postgenomic biology that aims to identify and quantify small cellular metabolites (Mr < 1200) within a given biological sample. The ‘-omics’ technologies comprises genomics for identification of the genome, transcriptomics for studying gene expression, proteomics for the analysis of all proteins present in the cell and metabolomics. Transcriptomics, proteomics and metabolomics are considered more dynamic fields than genomics as they can vary in response to environmental conditions (van der Werf et al., 2005), with metabolomics being described as the closest representation to the phenotype. Originated as recently as the early 1990s, Metabolomics is considered the latest contribution to the ‘-omics’ technologies. The rising interest in metabolomics in recent years can be seen in the rise in the number of publications in the area. In 1999 three publications with the keyword metabonomic/metabolomic could be found, but this number reached 203 in 2004 (Dettmer et al., 2007). In a similar search using the medline trend website (Web resource at URL:http://dan.corlan.net/medline-trend.html) with the terms “Metabolomics” or “Metabonomics” a similar rise in publications could be found from the years 2000 to 2013 (see Fig 1.4).
Figure 1.4: Medline trend created for publications using the term “Metabolomics” or "Metabonomis". Publication number was normalised against the total number of publications in that year. Trend was obtained from: Alexandru Dan Corlan. Medline trend: automated yearly statistics of PubMed results for any query, 2004.

However, the rising number of publications can also be explained as a ‘knock on effect’, as more technology and method development in the field of metabolomics are being made available, the more it becomes applicable to a wider range of research areas. Metabolomics is increasingly applied to investigate microbial, plant, environmental and mammalian systems (Brown et al., 2011). However, the wide range of chemical diversity and range of concentrations (dynamic range) of different metabolite classes makes it difficult to produce a single analytical platform. Metabolites represent a more diverse set of chemical diversity when compared to proteins (constituted by the 20 amino acids) and the nucleic acids and therefore provides wide variations in chemical and physical properties (Dunn and Ellis, 2005). Consequently, it is necessary to use a variety of techniques for complete coverage of all cellular metabolites (Castle et al., 2006).

1.4.1. Nuclear magnetic resonance spectroscopy (NMR spectroscopy)

NMR was one of the first techniques to be used for a broad untargeted metabolite profiling since the 1970s (Beckonert et al., 2007). Many NMR-based applications for metabolomics have been published but NMR has been commonly utilized for biomarker discovery by investigating numerous diseases and toxic processes studying body fluids (Nicholson et al.,
The main benefits for using NMR include highly reproducible quantitation even across different instruments and simple sample preparation without the need for derivatization (Creek et al., 2012a). Limitation of NMR includes the relatively poor sensitivity compared to mass spectrometry (Creek et al., 2012a).

1.4.2. Mass spectrometry (MS)

MS is a well established analytical technique that measures the mass to charge ratio of charged particles and has been established as one of the most essential tools for metabolomic research (Baran et al., 2009). The principle of mass spectrometry consists of ionizing chemical compounds to create charged molecules (or fragments). These charged molecules can then be detected by analysing the mass to charge ratio. A MS instrument can be divided into three different parts; an ion source, a mass analyser, and a detector. As the “-omics” approaches require the analysis of complex mixtures, novel analytical methods / techniques had to be introduced. A variety of mass spectrometry based approaches are commonly used, such as mass spectrometry coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and capillary electrophoresis (CE-MS) with different types of mass spectrometers (Barrett et al., 2010).

1.4.2.1. Chromatography

Direct injection of samples into the mass spectrometer (MS) has the advantage that no metabolites are lost during sample preparation. However, in complex samples and samples with high salt content ion suppression can occur, as well as adduct formation during the electrospray process (Dettmer et al., 2007). Combining chromatography with mass spectrometry can reduce ion suppression as complex samples are separated before entering the MS. Which chromatography system to use depends on the kind of molecules studied, the two most popular systems are Gas chromatography-MS (GC-MS) and Liquid chromatography-MS (LC-MS).

Gas chromatography-MS is often described as the gold standard for metabolomics (Garcia and Barbas, 2011). Ion suppression of co-eluting compounds rarely occurs, compared to LC-MS (Koek et al., 2011). Other benefits of using GC-MS are the capacity for high quantitative accuracy and reproducibility of samples, as well as the use of ‘libraries’ to identify compounds by their mass spectra (Schauer et al., 2005). As samples have to travel through the column in gas form with temperatures around 350°C, compounds suitable for...
the GC-MS platform are low molecular weight (<350Da), volatile and thermally stable metabolites (Dunn, 2008). However, compounds can be made volatile and thermally stable by chemical derivatisation, and here lies the drawback of GC-MS. Sample preparation can be complex and lead to multiple derivatisation products. Furthermore, sample stability is not guaranteed (Dunn and Ellis, 2005).

Liquid chromatography-MS is the more prominent technology due to ability for greater coverage of the metabolome (Garcia et al., 2008) and is becoming increasingly popular for the use in metabolomics. Sample preparation is less complex than GC-MS as samples do not need to be derivatised. Samples go through the column in liquid phase and are separated according to their polarity. Reversed-phase LC-MS is well established in metabolomics. However, many polar or charged metabolites are not retained. Therefore, another form of LC, hydrophilic interaction liquid chromatography (HILIC) with the introduction of robust and reproducible stationary phases has recently gained popularity in metabolomics studies (Cubbon et al., 2010). More recently approaches to combine reversed phase columns with HILIC in a single run has been successfully performed and it was shown, with the example of beer samples, that a greater coverage of metabolites was achieved (Haggarty et al., 2015).

1.4.2.2. Ionisation

Soft ionisation techniques have been the milestone in applying mass spectrometry to biological studies, such as metabolomics and proteomics. Electron impact (EI) ionisation is mainly applied to GC-MS studies. The spectra obtained contain many fragments which can be used for compound identification as fragmentation patterns are very reproducible (Watson, 2010). Electrospray ionisation (ESI) is commonly coupled to LC-MS. Ions are formed by transferring the solvents through a capillary, which is held at high voltage. Ions enter the mass analyser after exiting the capillary and transferred from liquid into gas state. ESI can be performed in both positive and negative mode, which gives a wider coverage of the metabolome (Dettmer et al., 2007).

1.4.2.3. Mass analysers

The mass analyzer is used to sort the ions by their masses by applying electromagnetic fields. A detector measures the mass to charge ratio (m/z) of the ions and provides data for calculating the abundances of each ion present.
For the analysis of biomolecular samples, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and the Orbitrap are currently able to achieve high resolution and mass accuracy in the 1 ppm range (Breitling et al., 2006a). In FT-ICR-MS, trapping of ions is achieved by a strong magnetic field which confines the charged particles to a circular path. The Orbitrap, which was exclusively used in this study, is a powerful mass spectrometer that can examine a variety of types of chemical systems which makes it an appropriate analysing platform for studies such as proteomics and metabolomics. The Orbitrap was invented by Alexander Makarov as a new type of mass spectrometer and patented in 1999. It uses dynamic trapping of ions in an electrostatic field (Makarov, 2000), more specific orbital trapping based on the Kingdon trap (Kingdon, 1923). The trap consists of an outer barrel like electrode and a central spindle like electrode along the axis. Ions are injected tangentially into the electric field between the electrodes and trapped. The electrostatic attraction to the inner electrode is balanced by centrifugal forces which makes the ions cycle around the central electrode in rings. Additionally, the ions also move back and forth along the z-axis of the central electrode. The main distinction of the Orbitrap is that the mass to charge ratio is derived from the frequency of the ion oscillations along the axis of the field which can then be determined using image current detection and fast FT algorithms (Makarov, 2000). The image current is detected on split outer electrodes and then amplified by a differential amplifier. Orbitraps have a high mass accuracy (1–2 ppm), a high resolving power (up to 200,000) and a high dynamic range (around 5000) (Hu et al., 2005; Makarov et al., 2006).

1.5. Applications for metabolomics

The term metabolomics can be identified as the identification and quantification of all small molecules within a biological system (Dettmer et al., 2007). However, to date there is not a single analytical platform that can achieve this. The metabolome (which is identified as the complete set of all metabolites within an organism) represents a broad variety of compound classes and analytical platforms can be biased against one or more of them. Therefore, different approaches are in use to make the most of metabolomics technologies and depending on the research question asked. Below are the most common strategies used (Dettmer et al., 2007; Dunn, 2008; Dunn and Ellis, 2005).
Metabolite footprinting, also described as the exometabolome, is the analysis of the uptake of extracellular metabolites and the secretion of intracellular metabolites. The samples can be taken non-invasively.

Metabolite fingerprinting, also defined as intracellular metabolome, provides a snapshot of the global metabolism. Aims to sort samples from different biological origin or status intro groups rather than get a good identification and quantification of metabolites.

Metabolite profiling, aims for an untargeted analysis of the metabolome within a biological sample. To obtain a wide coverage of the metabolome multiple analytical platforms (or extraction methods) can be used.

Metabonomics, aims to show quantitative changes to the metabolome in response to pathophysiological stimuli or genetic perturbations.

Metabolome is the definition of the complete set of all metabolites present in an organism.

Stable isotope labelling, combined with metabolomics has gained an enormous research interest over the last few years. With the use of 13C labelled compounds in metabolomics it is possible to track the carbon flux through a cell and get a much better inside of the metabolic pathways than with metabolomics alone.

The distribution of labelled carbons gives an indication of what metabolic pathways are active, new metabolites (or pathways) can be discovered.

The simplest way is to divide studies into two different approaches: targeted or untargeted. The targeted approach already requires knowledge about the metabolite(s) of interest and this approach is useful to gain knowledge of metabolite quantification or information about specific metabolic pathways. The untargeted approach is described as hypothesis generating (Creek et al., 2011).

Although terminology of metabolomics techniques used varies between different research groups, metabolomics is increasingly applied to the study of microbial, plant, environmental and mammalian systems (Brown et al., 2011). Applications include biomarker discovery, studies of gene function and the effects of drug therapy and toxicity (Nicholson et al., 2002).
1.6. Metabolomics and enzyme function identification

The full functional annotation of all genes (or gene products) within an organism displays a great challenge in the post-genomic era. Although the number of whole genome sequences available is rising, even in a well described organism like *E. coli* 40% of the genes have no confirmed function (Keseler et al., 2009). In other organisms the number is even higher. In the tritryps (*T. brucei, T. cruzi* and *Leishmania major*) this number reaches up to 70% combining the unknowns in all three species, although their genome sequences were published nearly 10 years ago (Choi and El-Sayed, 2012). With the data available from the whole genome sequencing projects, the potential function of a hypothetical protein can be determined by bioinformatics approaches, such as BLAST or Pfam domain searches. An alternative approach is the prediction of a protein’s function based on the structure. This method is well described by (Whisstock and Lesk, 2003) which gives an overview of automated structure-based function prediction. However, it has been shown in the past that these annotations can be incorrect. In a study, Barrett et al. found that the trypanosome enzyme Tb927.8.2020, which had been putatively annotated as an arginase, did not show classic arginase activity (Hai et al., 2015; Vincent et al., 2012).

One of the tasks in functional genomics is to search for novel enzymes but also to provide functions for genes where bioinformatics can only give putative function. Metabolites can be used to assign or validate the function of enzyme activities as these are often the final downstream products or substrates of gene expression (Baran et al., 2009). Enzymatic reactions play an important role, not only in the regulation of all processes of life but also as biocatalysts in industrial processes or as targets in the discovery of new drugs (Liesener and Karst, 2005).

Traditional approaches to establish enzyme activity include enzyme assays, but the main drawback to this technique is that the enzyme function has to be known (Liesener and Karst, 2005). Integrated ‘omics’ approaches can be used to facilitate the identification of unknown enzymes (Fridman and Pichersky, 2005), however, prior biochemical knowledge was still essential. Mass spectrometry based analysis of small molecular metabolites has become a valuable method for the discovery and validation of functional assignments for enzymes (Baran et al., 2009).
1.6.1. Enzyme function identification by *in vitro* assay with recombinant protein

A systematic method to discover novel enzymes based on an *in vitro* assay in combination with metabolite profiling was introduced by Saito *et al.* (2006). Proteins of interest were purified and used for an *in vitro* reaction with a complex metabolite mixture. Bacto yeast extract, Bacto malt extract and Nutrition Broth were tested as a suitable metabolite source for their ease of preparation and low cost while still containing a large variety of compounds. The advantages of using natural and complex metabolite mixtures also include the possibility for screening of unknown type of reactions and an environment closer to the physiological conditions than standard *in vitro* essays (Saito *et al.*, 2006). After the reaction the mixture was purified and analysed by CE-MS. The metabolite profiles of the reaction mixture incubated in the presence and absence of the protein of interest were compared. The idea is that the compound whose level decreases following incubation with the protein can be considered a likely substrate for the enzyme, and a compound with increasing levels after incubation a likely product. The identification of those compounds can therefore directly report on the enzyme’s activity. This procedure should be effective for discovering novel activities of enzymes as well as identifying unknown enzymes in an unbiased manner. The results demonstrated that it was possible to monitor several known enzymatic reactions by observing the changes in substrates/products levels in a complex mixture of metabolites. This method was further applied to identify the unknown *E. coli* protein YihU as a novel hydroxybutyrate dehydrogenase, involved in an alternative succinic semialdehyde metabolism (Saito *et al.*, 2009). In a similar approach, termed ‘activity based metabolomic profiling’, using LC-MS, the protein Rv1248 from *Mycobacterium tuberculosis* was identified as a 2-hydroxy-3-oxoadipate synthase (de Carvalho *et al.*, 2010). The same group later identified the gene product of Rv1692 from *M. tuberculosis*. Originally annotated as a nucleotide phosphatase, applying the activity based metabolomic profiling method, it was shown that the enzyme is in fact a D,L-glycerol 3-phosphate phosphatase (Larrouy-Maumus *et al.*, 2013). That this approach is also applicable outside the research of microorganisms was shown by the identification of a methyltransferase in the plant Madagascar periwinkle (*Catharanthus roseus*). The identified S-adenosylmethionine dependent N-methyltransferase plays a role in the biosynthesis of the anti cancer drug vindoline (Liscombe *et al.*, 2010).
1.6.2. Metabolite profiling by disrupting enzyme activity

Metabolite profiling on mutants, with a gene of interest either knocked out or knocked down by RNA interference (RNAi), can also determine the function of that gene when compared to wild-type (Saghatelian et al., 2004). The most ideal case shows one metabolite increasing (the substrate of that reaction) and one metabolite decreasing (the product of that reaction). However, unless the gene of interest is essential for that organism, visible changes to the dataset can be numerous or nonexistent. Organisms could have the ability to bypass the blocked reaction and changes in the dataset can be non-conclusive. In the case of RNA interference, a complete knock-down of the gene might not be achieved and therefore not show changes in substrate and product. Compared to the in vitro assay (1.6.1) results from genetic mutant assays can not only give information about the gene of interest and its function, but also if that gene is essential and if loss of function causes changes to the phenotype.

1.6.3. Stable isotope labelling for pathway identification

The use of stable isotope labelling combined with untargeted metabolomics has shown to improve the interpretation of data regarding pathway identification. Normally, untargeted metabolomics lacks the information that is needed to assign detected metabolites to pathways, as metabolites can participate in multiple pathways (Fan et al., 2012). The use of labelled compounds makes it possible to follow the fate of a single metabolite within the cell. For example, by adding uniformly labelled 13C glucose (U-13C glucose) to the culture medium, the carbon contribution from glucose into other metabolites can be traced and its flux can also be determined (Winder et al., 2011). The uses of stable isotope labelling for novel metabolite or pathway discovery has the advantage of being independent from genetic modifications or studies with recombinant protein, therefore making it a faster approach for pathway identification (Prosser et al., 2014).

1.7. Trypanosome metabolomics

Many applications for metabolomics analysis of trypanosomes have been developed in recent years. Early trypanosome metabolomics experiments were performed with NMR, for example the assessment of the end products of anaerobic glycolysis using U-13C labelled glucose (Mackenzie et al., 1983) and the tracing of polyphosphates in *T. brucei*, *T.*
cruzi and *L. major* (Moreno et al., 2000). The identification of the enzyme Acetyl:succinate CoA transferase and its role in carbohydrate metabolism in procycllics was performed using gene knock down and NMR (Rivière et al., 2004).

Earlier studies on trypanosome metabolomics was performed using direct infusion and approximately 1,000 peaks were detected, with a high percentage of peaks associated to lipid compounds (Breitling et al., 2006b). The use of LC-MS with HILIC columns optimised the identification of polar compounds in trypanosome extracts (Kamleh et al., 2008). Recently, LC-MS, using HILIC (or pHILIC) columns has emerged as the main analytical platform for trypanosome metabolomics used (in Glasgow) (Barrett et al., 2010).

Development of a minimal media (CMM) for trypanosome growth has further advanced the metabolomics platform in Glasgow, as CMM reduces background noise on the LC-MS platform used while not affecting the ability of *T. brucei*’s growth (Creek et al., 2013).

For the analysis of the metabolome it is crucial to quench the parasites metabolism as rapidly as possible before extracting metabolites. The first method to achieve this was to add boiling ethanol to trypanosomes (Kamleh et al., 2008). A drawback of this method was that trypanosomes were still in media at that point, making it necessary to distinguish between intracellular and extracellular metabolites. The development of new extraction methods has greatly improved the number of metabolites discovered and metabolite extraction for metabolomics is now achieved by rapidly chilling the cells in culture to 0°C by suspending them in a dry ice/ethanol bath. The medium can be removed by gently spinning the culture and washing steps before extracting the trypanosome metabolites from a cell pellet by adding a mix of chloroform:methanol:water (t’ Kindt et al., 2010; Robinson et al., 2007).

Metabolomics studies lead to a better understanding of the metabolism of trypanosomes, the earlier understanding of the fatty acid synthesis metabolism could be revised and with metabolomic approaches it was shown that trypanosomes are indeed capable of fatty acid synthesis and that they use a unique mechanism to do so (Smith and Bütikofer, 2010; Stephens et al., 2007). Also, metabolomics approaches have been employed to investigate the energy metabolism in procyclic and bloodstream form trypanosomes (Coustou et al., 2008; Ebikeme et al., 2010; Mazet et al., 2013; Rivière et al., 2004). Recently it was shown that intermediates from glucose enter many branches of the metabolism, by combining stable isotope labelling with metabolite profiling (Creek et al., 2015).
Another application for the uses of metabolomics in trypanosomes are mode of action (MOA) studies for drug discovery. The recent example of Eflornithine (an inhibitor of the enzyme ornithine decarboxylase), showed that by adding Eflornithine to cultured cells and comparing treated and non treated samples, L-ornithine increased significantly in drug treated cells, while levels of putrescine decreased significantly (Vincent et al., 2012).

1.8. Secretome and Host Pathogen Interaction

1.8.1. Secretory pathway in trypanosomes

Despite trypanosomes being early divergent eukaryotes the classical secretory pathway in trypanosomes is similar to that of other eukaryotes and has been well studied for the endo- and exocytosis of VSGs. The organelles involved in the classical secretory pathway are typical eukaryotic organelles, including endoplasmic reticulum (ER), Golgi, endosomes and lysosome which are located nearby the posterior flagellar pocket (Silverman and Bangs, 2012). That trypanosomes use this secretion pathway was demonstrated for VSGs using immunogold labelling. VSGs could be traced in ER, golgi cisternae, trans-golgi network, transport vesicles, flagellar pocket and, ultimately, on the cell surface (Duszenko et al., 1988). The secretion of VSGs is linked to the modification of VSGs with the GPI-anchor within the ER, as deletion of the GPI anchor leads to mis-sorting into lysosomes (Triggs and Bangs, 2003).

Endocytosis is up regulated in bloodstream form trypanosomes (compared to procyclicals) and important for recycling of VSGs and clearance of VSG recognising immunoglobulins (Engstler et al., 2007; Field and Carrington, 2004)(Field and Carrington, 2004). Endocytosis and exocytosis where thought to be restricted to the flagellar pocket, however, a recent study indicates that exocytosis might be possible through microvesicles (Geiger et al., 2010), a mechanism already described in T. cruzi (da Silveira et al., 1979).

1.8.2. Secretome

The term secretome describes a subset of the proteome, including all proteins actively secreted from the cell and the components of the cellular machinery used for protein secretion. The term (and this definition) was first used in a study that tried to predict all secreted proteins from Bacillus subtilis using computational methods (Tjalsma et al.,
Verifying these results with proteomic approaches showed that 50% of the secreted proteins were correctly identified (Antelmann et al., 2001).

The secretome has been the focus on many studies of human pathogens to better understand the host-pathogen interaction (Ranganathan and Garg, 2009), as well as a research tool for biomarker discovery in cancer (Grønborg et al., 2006). The use of proteomic techniques for the identification of excreted/secreted proteins (ESPs) started in the 1990s and became more popular from 2004, with the first paper regarding the trypanosome excreted/secreted proteins (ESPs) or secretome published in 2008 (Holzmuller et al., 2008).

1.8.4. Host pathogen interaction

Shedding of extracellular vesicles (EVs) was demonstrated for infective trypomastigotes of *Trypanosoma cruzi*. It was further shown that shedding occurred independent from proteins present in the culture medium, but in a time and temperature dependent process (Gonçalves et al., 1991). One major component of those EVs was Tc85, a trans-sialidase/gp85 glycoprotein, which is involved in host cell adhesion and invasion (Alves and Colli, 2008). As *T. cruzi*, in contrast to *T. brucei*, has intracellular location in the mammalian host interaction with the host cell is necessary for infection.

During second stage HAT *T. brucei* crosses the blood brain barrier (BBB) in a mechanism not yet fully understood. However, secreted proteases from the bloodstream form trypanosomes, in particular cysteine proteases Cathepsin B and Cathepsin L (‘Brucipain’), play a vital role in the pathogenesis of *T. brucei*. RNAi cell lines targeting those proteases have successfully stopped the lethal infection in mice (Abdulla et al., 2008). The proteases are important for the parasites to invade the mammalian tissue after infection (Huet et al., 1992).

Secreted/excreted proteins from the parasites have been described as being important factor for virulence and to avoid the host immune response (Geiger et al., 2010). Garzon *et al.* (2006) showed that excreted/secreted proteins can inhibit the maturation of dendritic cells and stop them from inducing a lymphocytic allogenic response.
1.8.5. Trypanosome secretome

ESPs from pathogens can have a variety of functions, from protecting the cell from the host immune system, advancing the pathogenesis and to provide nutrients for cell survival. In the case of the protozoan parasite *T. brucei* the primary secretory cargo are glycosylphosphatidyl inositol anchored variable surface proteins (VSGs) which are essential for the parasite to evade the immune system (Bangs et al., 1996; Engstler et al., 2004). Several metabolic enzymes have been described as being secreted from bloodstream form trypanosomes, such as enzymes belonging to the nucleic acid metabolism, in particular IAG nucleoside hydrolase, which has been detected in bloodstream form trypanosomes (Parkin, 1996).

Bioinformatic approaches to identify ESPs exist, but are not always reliable. Proteins must have a transit peptide sequence to be secreted via the classical secretory pathway, therefore it is essential to know the secretory pathways used in a particular organism. A study on different strains of trypanosomes showed less than 20% of experimentally identified secreted proteins were predicted using bioinformatic approaches (Geiger et al., 2010). Endocytosis and exocytosis in trypanosomes occur through the flagellar pocket, but evidence has been found that trypanosomes possibly also use exocytosis of microvesicles to release proteins from cells (Geiger et al., 2010).

Proteomic approaches have been shown to give good results for the analysis of secreted proteins in leishmania and trypanosomes. Gel based proteomic analysis, like difference gel electrophoreses (DiGE), is a two-dimensional gel electrophoresis (2-DE) approach that allows for good separation of complex protein mixtures (O’Farrell, 1975). Proteins are first separated according to their charge (isoelectric focusing), followed by their size on a polyacrylamide gel. Proteins of interest can be selected from the gel, digested with trypsin and analysed using peptide mass fingerprinting. This approach, combined with fluorescent dyes is a useful tool for comparing two different sets of proteomes. A gel free approach also exists, where complex protein mixtures are digested into peptides and analysed with LC-MS/MS.
1.9. Aims

Human African trypanosomiasis is a neglected tropical disease that affects mainly the poorest regions in Africa. The disease is fatal when left untreated and drugs currently in use are old and some have undesirable side effects.

The causative agent of HAT is the parasitic protozoan *T. brucei*. The genome of this parasite has been sequenced and published. However, an estimated 40% of the genes still have no assigned function.

This project focuses on metabolomic and proteomic approaches to determine the function of unknown metabolic enzymes and pathways in trypanosomes with three approaches being investigated:

- High throughput approach for enzyme function identification in an untargeted approach. Putatively identified metabolic enzymes from *T. brucei* strain 427, as identified from the trypanosome database TritrypDB, were used in this study. After the recent success stories of an unbiased, untargeted enzyme assay (Saito et al., 2009; DeCavalho et al., 2010) this approach was tested for its uses of a high throughput approach applicable to trypanosome genes.

- The use of stable isotope labelling combined with metabolomic techniques for the study of amino acid metabolism in trypanosomes, specifically the pathways involving L-methionine, L-proline and L-arginine in bloodstream form trypanosomes.

- Identification of secreted/excreted proteins from two different *T. brucei* strains, namely 427 and GVR 35, using proteomic approaches.
Chapter 2

Methods

2.1. Cell culture

2.1.1. Cell culture of *T. b. brucei*

T. b. brucei bloodstream form (strain 427) were cultured in HMI-9 medium (Gibco) (Hirumi and Hirumi, 1989) supplemented with 10% FBS Gold (PAA) or tetracycline-free FBS (Gibco), unless stated otherwise. Trypanosomes strain GVR35 were originally cultured in modified HMI-9 (from P. Voorheis; Appendix A, Table A1) supplemented with 20% FBS Gold or tetracycline-free FBS and 20% Serum plus (SAFC bioscience). For metabolomic and proteomic analyses, parasites were cultured in Creek’s ‘Minimal’ Media, CMM ((Creek et al., 2013); Appendix A, Table A2) with 10% FBS Gold. The 2T1 cell line (Alsford and Horn, 2008) was cultured in HMI-9 medium with 10% tetracycline-free FBS and maintained in 2 µg ml⁻¹ puromycin and 2.5 µg ml⁻¹ phleomycin selection until transfection, when antibiotic selection was changed to 5 µg ml⁻¹ hygromycin and 2.5 µg ml⁻¹ phleomycin after 24 h to select for successfully transfected parasites.

For continuous growth, cell densities were kept between 5 x 10⁴ and 2 x 10⁶ cells ml⁻¹. The cell density was checked every 48 hours using an improved Neubauer haemocytometer. For growth curves, cells were counted every 24 hours and cell counts performed in triplicate.

Stabilates of bloodstream form trypanosomes were routinely prepared by mixing cells in mid-log phase 1:1 (v/v) with a freezing mix containing 80% culture medium and 20% glycerol. Samples were stored overnight at -80°C, before being transferred to liquid nitrogen for long term storage.
2.2. Molecular Methods

2.2.1. DNA isolation

Genomic DNA (gDNA) was extracted using the DNeasy Blood & Tissue Kit (Qiagen). Bloodstream form trypanosomes (strain 427) were grown to mid-log phase. 5 x 10^6 cells were harvested by centrifugation for 5 min at 1,800 rpm. The resulting cell pellet was resuspended in 200 µl of 1 x PBS, and DNA was extracted following manufacturer’s instruction.

2.2.2. RNA isolation

RNA was extracted from bloodstream form trypanosomes using the RNeasy Mini Kit (Qiagen). Mid-log phase parasites (5 x 10^7 cells) were harvested by centrifugation for 10 min at 1,300g. The pellet was resuspended in 1 ml Trizol (Invitrogen) and samples stored at -80°C until RNA isolation.

For RNA isolation, to 1 ml of cells in Trizol 200 µl of chloroform was added and mixed thoroughly. After centrifuging at 12,000g for 15 min (4°C), the mixture separated into a lower red phenol – chloroform phase, an interphase, and an upper colourless aqueous phase. The upper colourless aqueous phase was removed and the RNeasy Mini Kit was used from this step, according to manufacturer’s instruction. After RNA extraction, samples were treated with DNase (Finnzymes). RNA concentration was measured using a Nanodrop 1000 spectrophotometer (Thermo Scientific), NanoDrop 1000 software (version 3.7.0) and the method RNA-40.

2.2.3. Polymerase chain reaction

DNA amplification by polymerase chain reaction (PCR) was used to produce desired regions of DNA for molecular cloning, using appropriately designed primers, or to screen for successful transformations using vector specific primers. All oligonucleotides used where obtained from Eurofins MWG Operon (Ebersberg, Germany), and are listed in Appendix B, Table B1.
The standard PCR reaction used for colony screening was performed in 10 µl volume reactions using GoTaq DNA polymerase (Promega) and vector specific primers (T7 promoter (forward) and HIS tag (reverse)).

Cycling conditions:
1 – Polymerase activation 94°C for 5 min
2 – Denaturation 94°C for 30 s
3 – Annealing 42°C for 30 s
4 – Extension 68°C for 1 min
5 – Repeat step 2-4 30 cycles
6 – Final extension 68°C for 5 min

PCR reactions for cloning were performed in 50 µl volume using either KOD HotStart proofreading polymerase (Novagen/Merck) or Phusion HiFi proofreading polymerase (NEB). Conditions were applied as by manufacturers' instruction.

Cycling conditions (KOD HotStart proofreading polymerase):
1 – Polymerase activation 95°C for 2 min
2 – Denaturation 95°C for 20 s
3 – Annealing 54.2°C for 10 s
4 – Extension 68°C for 30 s (<1,500bp), 50 s (>1,500bp)
5 – Repeat step 2-4 30 cycles
6 – Final extension 70°C for 20 s

Cycling conditions (Phusion)
1 – Polymerase activation 98°C for 3 min
2 – Denaturation 98°C for 30 s
3 – Annealing 75°C for 30 s
4 – Extension 72°C for 30 s
5 – Repeat step 2-4 35 cycles
6 – Final extension 72°C for 10 min

2.2.4. Reverse transcription

To determine the knockdown efficiency of tetracycline induced RNAi lines, reverse transcription coupled to real-time PCR (2.2.5) was applied. For reverse transcription
reaction, 1 µg of RNA sample was mixed with 250 ng random primers (Invitrogen), 1 µl of dNTPs (10 mM) and dH₂O to a final volume of 14 µl. To remove secondary structures, the sample mix was heated to 65°C for 5 min and immediately placed on ice. To synthesise cDNA 6 µl RT-mix (containing 5x First-Strand Buffer, 0.1 M DTT and SuperScript III reverse transcriptase (Invitrogen)) was added to the sample and incubated for 25 min at 25°C, and then for a further 60 min at 50°C. The transcriptase was inactivated for 15 min at 70°C. Finally, complementary RNA was removed by adding *E. coli* RNaseH (2U) for 20 min at 37°C. Samples were prepared in duplicate, with one sample set containing dH₂O instead of SuperScript III RT as negative control.

2.2.5. Real-time PCR

Complementary DNA (cDNA) obtained from reverse transcription reaction (2.2.4) of tetracycline induced and uninduced RNAi lines were used as template DNA. SYBR® Green PCR Mastermix (Applied Bioscience) and 96-well plates were used for relative quantitative PCR. Sample setup included three replicates of each sample (+/- reverse transcription reaction) for the transcript of interest. The constitutively expressed GPI-8 transcript was chosen for comparison (Lillico et al., 2003) and water controls were used to check for contamination. Amplification of cDNA (see 2.2.4) was performed using Applied Biosystems Prism 7500 Real Time PCR system, following the ‘ddCT’ program for absolute quantification and marker set to SYBR. Raw data was analysed using Applied Biosystems 7500 SDS Real-Time PCR systems software.

Specific real-time PCR primers for target genes were designed using primer express software from Applied Biosystems. Primers should amplify a region of the gene in the range of 50 to 150 bp. Primer efficiency was tested and an ideal primer should have an efficiency of > 90% (Table 2.1)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Primer efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb927.7.5680</td>
<td>GTGTGCCTGATCGCGAAA</td>
<td>TGTGCAATGCGTGATACG</td>
<td>98.62%</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>TGGTTGGAGCCGCTATTCGA</td>
<td>TCCACGAGAATGAAAAGCTCAAG</td>
<td>96.06%</td>
</tr>
<tr>
<td>Tb427.05.3820</td>
<td>GCCACTGCACTGAAGGAGAAG</td>
<td>TGGCACCTCAAGAAGAAAACGT</td>
<td>115.08%</td>
</tr>
</tbody>
</table>

Table 2.1: Real-time PCR primers and their efficiency for the use in determining the knockdown effect of induced RNAi lines.
Data was obtained using Applied Biosystems 7500 Real-Time system software and relative abundance of RNA was calculated against control transcript GPI-8.

2.2.6. Plasmid generation

2.2.6.1. Plasmids for recombinant overexpression

A ligation independent cloning kit (pET 30 Xa/LIC, Novagen) was used to obtain the expression vectors for all recombinant proteins used in this study, unless stated otherwise. Constructs used are listed in Table 2.2 (a) and 2.2 (b). Primers were specifically designed for ligation independent cloning (see Appendix, Table B1) as the cloned DNA needs a vector specific overhang which can be created by treating the obtained PCR product with T4 DNA polymerase, following the manufacturer’s instructions.

The annealing reaction typically contained 1 µl of Xa/LIC vector and 2 µl (0.02 pmol) of insert DNA. The reaction volume was 4 µl and included 1 µl of 25 mM EDTA.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name</th>
<th>Plasmid ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb427.01.1130</td>
<td>Glycerol-3-phosphate dehydrogenase (FAD-dependant)</td>
<td>pMB-G190</td>
</tr>
<tr>
<td>Tb427.06.4920</td>
<td>S-adenosylmethionine synthetase (putative)</td>
<td>pMB-G191</td>
</tr>
<tr>
<td>Tb427.08.3800</td>
<td>Nucleoside phosphatise (putative)</td>
<td>pMB-G192</td>
</tr>
<tr>
<td>Tb427.10.13130</td>
<td>UTP-glucose-1-phosphate uridylyltransferase 2 (putative)</td>
<td>pMB-G193</td>
</tr>
<tr>
<td>Tb427.10.13430</td>
<td>Citrate synthase (putative)</td>
<td>pMB-G194</td>
</tr>
<tr>
<td>Tb427tmp.02.0530</td>
<td>Phosphoribosylpyrophosphate synthase (putative)</td>
<td>pMB-G195</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>Aldo/keto reductase</td>
<td>pMB-G196</td>
</tr>
<tr>
<td>Tb427.05.3820</td>
<td>Aspartate carbamoyltransferase (putative)</td>
<td>pMB-G197</td>
</tr>
<tr>
<td>Tb427.10.2010</td>
<td>Hexokinase I</td>
<td>pMB-G198</td>
</tr>
</tbody>
</table>

Table 2.2 (a): Plasmids created for recombinant protein overexpression. Proteins were used for the high throughput enzyme identification approach.
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name</th>
<th>Plasmid ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb09.160.0810</td>
<td>Kynureninase (putative)</td>
<td>pMB-G157</td>
</tr>
<tr>
<td>Tb927.10.2750</td>
<td>Deoxyhypusine synthase (putative)</td>
<td>pMB-G158</td>
</tr>
<tr>
<td>Tb927.7.5680</td>
<td>Deoxyribose-phosphate aldolase (putative)</td>
<td>pMB-G159</td>
</tr>
<tr>
<td>Tb927.5.287b</td>
<td>Galactokinase, Pseudogene</td>
<td>pMB-G160</td>
</tr>
<tr>
<td>Tb927.2.3080</td>
<td>Fatty acid desaturase (putative)</td>
<td>pMB-G161</td>
</tr>
<tr>
<td>Tb11.01.6500</td>
<td>NAD+ synthase (putative)</td>
<td>pMB-G162</td>
</tr>
<tr>
<td>Tb927.8.2020</td>
<td>Arginase/agmatinase-like protein</td>
<td>pMB-G131</td>
</tr>
</tbody>
</table>

Table 2.2 (b): Plasmids created for recombinant protein over expression. Proteins were used in this study either for the high throughput enzyme identification approach or targeted investigation. Plasmids were created by B. Nijgal, with the exception of pMB-G131, which was created by E. Kerkhoven. Tb927.5.287b was annotated as Galactokinase, pseudogene. The gene sequence shows several stop codons, however, protein is produced by *E. coli* when overexpressed.

2.2.6.2. RNA interference constructs

Target sequences and oligonucleotides for cloning were designed using the program TrypanoFAN RNAit (Redmond et al., 2003) and oligonucleotides are listed in Appendix B, Table B2. Target sequence was amplified from *T. b. brucei* strain 427 gDNA using Phusion high fidelity polymerase and cloned into plasmid pGL2084 (Jones et al., 2014) in a BP recombinase (Invitrogen) reaction following manufacturer’s instructions. Resulting plasmids were transformed using DH5α max efficiency cells (Invitrogen), purified and digested withAscI (NEB) prior to transfection.

2.2.7. Plasmid Purification

The pET30 Xa/LIC was transformed into NovaBlue GigaSingles competent cells (Novagen) and grown on LB (Luria Broth, Sigma) agar plates supplemented with 30 µg/ml kanamycin (KAN). Up to five colonies were selected and screened by PCR for presence of the insert. A 5 ml overnight culture from a single colony, that tested positively for presence of the insert, was set up (LB medium + 30 µg/ml KAN) and the plasmid isolated using QIAprep Miniprep Kit (Qiagen GmbH, Hilden, Germany). The yield of plasmid was
assessed using Nanodrop 1000 Spectrophotometer (Thermo Scientific), using the NanoDrop 1000 software, version 3.7.0 and the method DNA-50.

2.2.8. Transformation

2.2.8.1. Competent cells

Competent cell lines were produced chemically. *E. coli* cells were streaked out on LB agar plate containing appropriate antibiotic (chloramphenicol for pLysS lines) and incubated overnight at 37°C. A single colony was inoculated in 5 ml LB broth (with appropriate antibiotic if required) and incubated overnight at 37°C. Overnight cultures were diluted 1:1000 in LB broth to a final volume of 200 ml and grown at 37°C to OD$_{600}$ 0.6. The culture was divided into 50 ml falcon tubes, incubated on ice for 15 min, and centrifuged for 15 min, 2,000 rpm, at 4°C. The resulting cell pellets were resuspended in 16 ml RF1 buffer (Table 2.3), incubated on ice for 15 min, and centrifuged for 15 min at 1800 rpm, at 4°C. The cell pellets were pooled by resuspending in 4 ml of RF2 buffer (Table 2.3), incubated for 1 h on ice, and divided into 200 µl aliquots on dry ice. Aliquots were then stored at -80°C.

<table>
<thead>
<tr>
<th>RF1 buffer</th>
<th>RF2 buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mM rubidium chloride</td>
<td>10 mM MOPS pH 6.8</td>
</tr>
<tr>
<td>50 mM MnCl$_2$.4H$_2$O</td>
<td>10 mM rubidium chloride</td>
</tr>
<tr>
<td>30 mM potassium acetate</td>
<td>75 mM calcium chloride</td>
</tr>
<tr>
<td>10 mM calcium chloride</td>
<td>15% glycerol</td>
</tr>
<tr>
<td>15% glycerol</td>
<td>pH 5.8</td>
</tr>
<tr>
<td>pH 6.8</td>
<td>pH 6.8</td>
</tr>
</tbody>
</table>

Table 2.3: RF1 and RF2 buffers for chemically competent cells

2.2.8.2. Bacterial transformation

NovaBlue Giga Singles competent cells (Merck Bioscience, UK) were used for cloning. For over-expression, several *E.coli* strains were used, depending on the protein (see 2.3.1). *E. coli* BL21 (DE3) (Merck Bioscience, UK) and Rosetta (DE3) pLysS were used for the majority of proteins.
For bacterial transformations 1-10 ng of plasmid DNA was used to transform 20 μl of competent cells. The mixture was incubated on ice for 5 min. The cells were heat shocked for 30 s at 42°C, and then chilled on ice for 2 min. A 250 μl aliquot of pre-warmed SOC medium was added to the mixture, and the cells were incubated for 60 min at 37°C with shaking. Typically, 150 μl of transformed bacteria were spread evenly over the surface of an LB agar plate containing the appropriate antibiotic, and incubated at 37°C overnight to select for transformed cells.

2.1.4. Glycerol stocks

Transformed E. coli stocks were prepared by adding glycerol 1:1 (v/v) to the E. coli culture at OD$_{600}$ 0.6 -1.2. Glycerol stocks were stored at -80°C.

2.2.8.3. Transfection of parasites

T. brucei strain 2T1 was used for transfection (Burkard et al., 2007). Briefly, 4 x 107 cells from a mid-log culture were resuspended in 100 μl transfection buffer (90 mM sodium phosphate, 5 mM potassium chloride, 0.15 mM calcium chloride and 50 mM HEPES, pH 7.3 (Schumann Burkard et al., 2011)) and 10 μg linearised DNA (in sterile dH$_2$O) were added. Cells were electroporated in 2 mm gap cuvettes (Biorad) using the Amaxa Nucleofector II (Lonza, Germany) and the program X-001. Cells were diluted 1:20 or 1:40 in HMI-9, and seeded in 24-well plates. Appropriate antibiotics were added 12 hours post-transfection. To obtain stable clones a serial dilution on a 96-well plate was performed and clones selected and tested for the correct selection markers (Alsford and Horn, 2008).

2.3. Protein methods

2.3.1. Overexpression

For protein overexpression different strains of *E.coli* (all derived from BL21 (DE3)) were used. In general *E.coli* BL21 (DE3) and Rosetta (DE3) pLysS were used for most proteins. However, if protein overexpression failed, *E. coli* C41 (DE3) pLysS or C43 (DE3) cells were used, due to their reported ability to overexpress toxic or membrane bound proteins (Dumon-Seignovert et al., 2004). The Rosetta (DE3) pLysS, C41 (DE3) pLysS and C43 (DE3) were kindly provided by Nathaniel Jones, from the University of Glasgow. Cells were grown in LB medium at 37°C, unless stated otherwise.
Large scale overexpression was performed by inoculating 1 litre of LB (plus appropriate antibiotic) with an overnight culture, at 37°C in an orbital shaker, until an OD\textsubscript{600} between 0.6 and 1.2 was reached. To induce overexpression, IPTG was added to a final concentration of 1 mM and cultures were incubated overnight at 18°C. Cells were harvested by centrifugation and the pellet was stored at -20°C if not used immediately. For small scale overexpression 70 ml of LB (plus appropriate antibiotic) were used and treated as above.

2.3.2. Protein purification

For small scale purifications, Ni-NTA Spin Columns (Qiagen GmbH, Hilden, Germany) were used, and manufacturer's instructions were followed. Large scale purifications were performed with immobilised metal affinity chromatography (IMAC) using a Poros MC20 column, stripped with 50 mM EDTA and 1 M NaCl (pH 8.0) and recharged with 0.1 M nickel sulfate prior to every run. Cells were lysed using a bacterial protein extraction solvent (B-Per, Thermo Scientific) and purified under native conditions with SB buffer (20 mM phosphate buffer plus 500 mM NaCl, pH 7.5) and increasing concentrations of imidazole (50 mM for the washing step to remove non-specific binding and 500 mM to elute the his-tagged protein of interest).

2.3.3. SDS-PAGE

Samples for SDS-PAGE were boiled in SDS buffer (50 mM Tris-HCl, pH 6.8; 2% SDS; 10% glycerol; 1% β-mercaptoethanol; 12.5 mM EDTA and 0.02% bromophenol blue) for 10 min at 95°C. Up to 20 µl protein solution was separated on NuPAGE 4-12% Bis-Tris Gel (Novex) in 1x NuPAGE MES SDS running buffer (Novex) at 125V.

2.3.4. Western blotting

Samples were run on SDS-PAGE (section 2.3.3) and transferred to a nitrocellulose membrane (Hybond-ECL) at 100 mA, for 1-2 h, at 4°C. Membranes were blocked using phosphate buffered saline/0.1% tween (PBS/tween) plus 5% milk powder for 1 h at room temperature, and probed with primary antibody RAD51 (1:1,000) for 1 h. Membranes were washed with PBS/tween (0.1%) three times for 10 min, incubated with secondary antibody anti-Rabbit (1:5,000) for 1 h, and washed as described. 1 ml of Piece ECL Western blotting substrate (Thermo Scientific) was added and left for 5 min before the blot was analysed.
2.3.5. Bradford assay

Protein concentrations were determined by Bradford assay using the Bio-Rad protein assay (Bio-Rad Laboratories). 50 µl of sample were mixed with 1 ml of Bradford reagent (in 1:5 dilution with dH₂O) in a 1 ml disposable cuvette. A standard curve was prepared with bovine serum albumin (BSA, Sigma-Aldrich), where 50 µl of BSA standards were also mixed with 1 ml Bradford reagent, with concentrations from 0.5 mg/ml – 0.1 mg/ml, and dH₂O as blank. The solutions were incubated for 5 min at room temperature to allow for the colour of the dye, responding to the concentration of the protein, to change. The absorbance (OD₅⁹₅) was then determined using an Eppendorf spectrophotometer (Eppendorf, Germany). Experimental OD₅⁹₅ were plotted against concentrations of standards using an Excel spreadsheet template kindly provided by Alan Scott (Glasgow Polyomics).

2.3.6. Sample preparation for proteomics

The secretome was prepared using the method described by Holzmuller et al. (2008) and Grébaut et al. (2009). Trypanosomes were incubated at 2x10⁸ parasites/ml for 2 hours at 37°C in serum free modified HMI-9 (Voorheis, Table A1). The supernatant was separated from trypanosomes by centrifugation (1,000g, 10 min, 4°C) and filtered using a 0.22 µm low-binding protein filter. A mixture of protease inhibitors (Protease inhibitors complete Mini (Roche)) were added to the samples prior to storage at -80°C. Protein concentrations were measured using the Bradford assay and proteins were precipitated to concentrate the protein solutions for DiGE analysis, but also to remove protease inhibitors added to the sample sets after secretome preparation.

2.3.7. Protein precipitation

Protein precipitations for secretome sample analysis were performed by mixing the cell-free spent media with 100% acetone (1:4 v/v) and incubating overnight at -20°C, followed by 2 washes with 80% acetone at 4°C and 13,000 rpm for 10 min. Pellet was resuspended in DiGE lysis buffer (Appendix C) and stored at -80°C.
2.3.8. DiGE

Protein samples for DiGE analysis were labelled with cyanine dyes at an alkaline pH. *T. b. brucei* strain 427 was labelled with Cy5 and strain GVR 35 with Cy3. 50 μg of protein sample in 83.3 μl (GVR35) or 71.4 μl (427) DiGE lysis buffer were mixed with 400 pmol CyDye and incubated in the dark for 30 min on ice. The labelling reaction was quenched by adding 1 μl of 10 mM lysine and by incubating it for an additional 10 min. Samples were mixed, adjusted to 460 μl with DiGE rehydration buffer (Appendix C), applied to an immobilised pH gradient iso-electric focusing strip, IEF, (pH 4.0-7.0, linear range, 24cm) and run overnight according to protocol #9 (see Table 2.4).

<table>
<thead>
<tr>
<th>Step</th>
<th>Voltage</th>
<th>Condition</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30V</td>
<td>step ‘n’ hold</td>
<td>10h</td>
</tr>
<tr>
<td>2</td>
<td>300V</td>
<td>step ‘n’ hold</td>
<td>2h</td>
</tr>
<tr>
<td>3</td>
<td>600V</td>
<td>gradient</td>
<td>2h</td>
</tr>
<tr>
<td>4</td>
<td>1000V</td>
<td>gradient</td>
<td>2h</td>
</tr>
<tr>
<td>5</td>
<td>8000V</td>
<td>gradient</td>
<td>2h</td>
</tr>
<tr>
<td>6</td>
<td>8000V</td>
<td>step ‘n’ hold</td>
<td>9h</td>
</tr>
<tr>
<td>7</td>
<td>1000V</td>
<td>step ‘n’ hold</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4: Protocol #9 for IEF

Following IEF, Strips were dipped into 0.1% SDS solution and incubated in 10 ml strip equilibration buffer (SEB) + DTT (10 mg/ml) for 15 mins, and for a further 15 mins in 10 ml SEB + iodoacetamide (25 mg/ml). The equilibrated IEF strips were placed on top of a 12% SDS-polyacrylamide gel and sealed with 0.5% agarose NA in 1x running buffer (Table S5) containing a trace of bromophenol blue to act as a dye front. Gels were run at 1W per gel overnight in an Ettan DALT II system for 2-D gel electrophoresis (Amersham Bioscience). This was done with the help of Alan Scott (Glasgow Polyomics).

2.3.9. Gel imaging and image analysis

The 2-D DiGE gel was scanned using a Typhoon 9400, following manufacturer’s instructions. Wavelength was set to 532 nm (Cy3) and 633 nm (Cy5) for two sequential scans and the scanner was set to high resolution scan (100 μm pixel).

Spot detection was performed using DeCyder 2D software, set for 1,000 spots recognition. Protein spots with a minimum of 2-fold difference between strain GVR 35 and strain 427
were picked for analysis. The preparatory gels were stained with Colloidal Coomassie, and images were matched with DiGE image. Protein spots of interest were manually excised from the preparatory gel in a laminar flow hood. Gel pieces were washed, first with 250 µl 100 mM ammonium bicarbonate (ABC) (twice for 30 min), followed by washes with 200 µl 50% acetonitrile (ACN) / 100 mM ABC for 45 min (wash was repeated until gel pieces were destained). 50 µl of ACN was added to gel pieces and left for 10 min before samples were dried in speed vac. Dried gel pieces were re-hydrated with 10 µl trypsin (0.02µg/µl in 25 mM ABC) and 20 µl 25 mM ABC was used to cover the gel pieces for overnight incubation. Digested proteins were dried and analysed by LC-MS/MS. Separation was achieved using an UltiMate 3000 Rapid Separation LC system (Dionex, Thermo Scientific) coupled to electrospray ionization tandem mass spectrometry (AmaZon ETD ion trap mass spectrometer; Bruker Daltonics). Raw MS/MS data were submitted to Mascot server and searched against Trypanosoma brucei database TriTrypDB (version 5.0).

2.3.10. Filter aided sample preparation for trypsin digest (FASP)

To analyse the whole secretome from T. b. brucei strain GVR 35 and strain 427, samples were prepared with FASP (Filter Aided Sample Preparation method) using an Ultracel YM-10 filter (Millipore).

20 µl of strain 427 sample (14 µg protein) and 25 µl of strain GVR 35 (15 µg protein) were used for trypsin digest. Sample volume was made up to 30 µl by adding SDT buffer (4% SDS, 100 mM Tris-HCl pH 7.6 and 0.1 M DTT). Samples were mixed with 200 µl of UA solution (8 M urea in 0.1 M Tris-HCl buffer pH 8.5), loaded into the filtration device and centrifuged for 40 min at 13,000 rpm. An additional 200 µl UA solution was added to the filter and centrifugation repeated. 100 µl of 50 mM iodoacetamide in UA solution was added to the filter and incubated at room temperature for 5 min, before being centrifuged for 30 min at 13,000 rpm. 120 µl of a solution of ammonium bicarbonate containing 0.02 µg/ml of trypsin were added to the filter and samples were incubated overnight at room temperature. Following digestion, peptides were collected by centrifugation of the filter unit for 40 min at 13,000 rpm. Samples were acidified using trifluoroacetic acid (FA), desalted and dried down for analysis in Concentrator 5301 by LC-MS/MS (UltiMate 300 Rapid Separation LC System coupled to AmazOn ETD ion trap mass spectrometer). Raw MS/MS data were submitted to Mascot server and searched against T. brucei database TriTrypDB (version 5.0).
2.3.11. Dimethyl-labelling for proteomics

Protein samples were treated as previously stated (2.3.10) and resulting peptides were resuspended in 100 mM triethyl ammonium bicarbonate (TEAB, Sigma-Aldrich). The GVR 35 strain sample was light-labelled with 4% formaldehyde (Sigma-Aldrich) and 600 mM sodium cyanoborohydride (Sigma-Aldrich), whereas strain 427 sample was heavy-labelled with 4% deuterated formaldehyde (Cambridge Isotope) and 600 mM sodium cyanoborohydride (Sigma-Aldrich). Samples were incubated for 1 h at room temperature after which the reaction was stopped using 1% ammonium hydroxide (Sigma-Aldrich). Labelled samples were acidified with 5% FA, dried in Concentrator 5301 and analysed by LC-MS/MS (2.3.10). The raw data was analysed with Mascot Distiller (Version 2.5.1.0). The Mascot search engine set against T. brucei protein database from TritrypDB. The settings were: Fixed modification was set to Carbamidomethyl (C), while Oxidation (M) was set as a variable modification. For protein identification, peptide and fragment mass tolerances were set to ± 0.3 Da allowing for two missed cleavages.

2.4. Metabolite profiling

2.4.1. In vitro investigation of unknown enzymes sample setup

Commercial yeast extract powder (Foremedium Ltd., Hunstanton, England, UK) was used as metabolite source. 1-2 mg of yeast extract per sample was used, and metabolites were extracted using Chloroform/Methanol/Water (ratio1:3:1 v/v/v) containing 1 µM internal standards (theophylline, 5-fluorouridine, Cl-phenyl cAMP, N-methyl glutamine, canavanine and piperazine). Samples were dried using a speed-vac and dried extracted metabolites were resuspended in 100 µl 10 mM MOPS buffer plus 5 mM MgCl₂ and pooled to provide an even metabolite source for control / treatment. Enzyme cofactors obtained from Sigma are listed in Table 2.5. The final concentration for each cofactor was 0.1 mM. Two sets of cofactor mixes were prepared fresh as supplements to the metabolite mix.

<table>
<thead>
<tr>
<th>Cofactor 1</th>
<th>NAD+</th>
<th>NADP+</th>
<th>ADP</th>
<th>GDP</th>
<th>CoA</th>
<th>FMN</th>
<th>FAD+</th>
<th>PP</th>
<th>TPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cofactor 2</td>
<td>NADH</td>
<td>NADPH</td>
<td>ATP</td>
<td>GTP</td>
<td>Acetyl CoA</td>
<td>FMN</td>
<td>FAD+</td>
<td>PP</td>
<td>TPP</td>
</tr>
</tbody>
</table>

Table 2.5: The two sets of cofactors mixtures used for in vitro assay for enzyme function identification at a working concentration of 1 mM (see S1 for abbreviations).
Reactions were performed in 10 mM MOPS buffer plus 5 mM MgCl₂ and included the metabolite mix, cofactors for the control sample and additionally purified enzyme in the treatment sample. The mix was incubated at 37°C for 30 min and the reaction was quenched with 400 µl acetonitrile. A blank sample (10 mM MOPS buffer plus 5 mM MgCl₂) was similarly processed in parallel each time. Each sample included: the metabolite mix, the cofactor 1 (or 2) mix and the enzyme. Samples without the enzyme and blank samples were also prepared (Table 2.6).

<table>
<thead>
<tr>
<th>Sample 1 -E</th>
<th>Metabolite mix</th>
<th>Cofactor mix 1</th>
<th>Cofactor mix 2</th>
<th>Enzyme</th>
<th>ACN</th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>86 µl</td>
<td>10 µl</td>
<td>4 µl</td>
<td>400 µl</td>
<td>4 µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1 - C</td>
<td>86 µl</td>
<td>10 µl</td>
<td>400 µl</td>
<td>4 µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2 -E</td>
<td>86 µl</td>
<td>10 µl</td>
<td>400 µl</td>
<td>4 µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2 - C</td>
<td>86 µl</td>
<td>10 µl</td>
<td>400 µl</td>
<td>4 µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank - Mops</td>
<td>400 µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: Sample preparation for in vitro investigation.

2.4.2. Intracellular metabolite extraction from parasites

Trypanosomes were grown to mid-log phase and a sample volume equivalent to 5 x 10⁷ cells was rapidly cooled to 4°C by submerging the 50 ml falcon tube into a dry ice/ethanol bath. Samples were kept on ice (or 4°C) from this step onwards. Samples were centrifuged at 1,250g for 10 min, and most supernatant, except 1 ml, was removed. The pellet was resuspended in the remaining 1 ml of medium. This was transferred to an Eppendorf tube and briefly centrifuged to completely remove the supernatant. The cell pellet was washed in cold 1xPBS and metabolites extracted by resuspending in 100 µl chloroform:methanol:water (ratio1:3:1 v/v/v) with internal standards (2.4.1) and by vigorously shaking for 1 h at 4°C. Samples were centrifuged at 16,000g for 10 min and the supernatant collected and stored at -80°C under argon.

2.4.3. ¹³C – labelled tracking

T. b. brucei strain 427 was grown in CMM + 10% FBS Gold (PAA, Piscataway, NJ) for U-¹³C-labelled tracking. For L-methionine studies, 50% of U-¹³C L-methionine (50 µM L-methionine and 50 µM U-¹³C L-methionine) was added to the parasite culture medium (starting density of 2 x 10⁴ cells ml⁻¹). For L-proline and L-arginine, 100% labelled
compound was used at a concentration of 200 µM. Cells were incubated at 37°C for 48 h, and metabolites extracted as previously described (2.4.2). Samples were prepared in triplicate and for every labelled setup a control with the equal concentration of unlabelled compound was set up, also in triplicate. Fresh medium and spent medium controls were also collected and 5 µl were added to 100 µl extraction solvent (CMW 1:3:1) prior to analysis.

Labelled compounds were obtained from Cambridge Isotope Laboratory, Inc.:
L-methionine, 13C5, enrichment 99%, cat: CLM-893-H-0.1
L-proline, 13C5, enrichment 99%, cat: CLM-2260-H
L-arginine, 13C6, enrichment 99%, cat: CLM-2265-H-0.1

2.4.4. Standards

Internal standards were added to the extraction solvent as previously described (2.4.1): during the analysis the stability of the samples can be tracked by comparing the total ion current (TIC) profile of samples and internal standard. With each experiment a set of authentic standards was run prior to the sample set (Appendix D, Table D1). The authentic standards are used for metabolite identification and retention time prediction in IDEOM as described by Creek et al. (2011).

2.4.5. Liquid chromatography-mass spectrometry

The sample platform chosen for this project was liquid chromatography coupled with mass spectrometry. All samples were separated with high performance liquid chromatography (HPLC) on either ZIC-HILIC (Hydrophilic Interaction Liquid Chromatography column, Merck) or ZIC-pHILIC (polymer based - Hydrophilic Interaction Liquid Chromatography column, Merck) prior to mass detection on an Exactive Orbitrap mass spectrometer (Thermo Fisher). Analysis was performed in positive and negative mode, using 10 µl injection volume and a flow rate of 100 µl/min. For HPLC gradient, ZIC-HILIC solvent A was 0.1% formic acid in water and solvent B was 0.08% formic acid in acetonitrile. ZIC-pHILIC solvent A was 20 mM ammonium carbonate in H$_2$O, and solvent B was 100% acetonitrile.
2.4.6. Data analysis

The analysis was performed using IDEOM software (Creek et al., 2012b). IDEOM uses the software MZmatch (Scheltema et al., 2011) and the statistical platform R to analyse the raw data. First, the raw data is converted to mzXML files using the software msconvert. The program XCMS can use the mzXML files to identify peaks and convert the data into peakML files. MZmatch uses peakML files to group peaks across replicate samples, filter peaks by removing groups with high variability in peak intensity, and annotate related peaks. Those MZmatch files will be used by IDEOM to run an automated identification procedure based on exact mass and retention time. Furthermore, IDEOM assigns confidence levels to the identifications, relying on authentic standards run within each experiment.

mzXML files can also be used for analysis of metabolite tracking with uniformly 13C-labelled compounds. The open source software mzMatchISO (Chokkathukalam et al., 2013) works within MZmatch.R. The labelled compounds have the same retention time as their unlabelled counterparts, but differ in the mass of the heavy/light carbons when labelling occurs. To assign the detected mass shift, it requires a tab-delimited text input file containing the compounds of interest to be matched against the dataset, to search for the labelled compounds and their labelling pattern. The output file is in pdf format, showing the detected labelling pattern and peak shapes.

2.5. Enzyme assays

2.5.1. Hexokinase

Hexokinase (Sigma) activity was assayed in a coupled reaction with glucose-6-phosphate dehydrogenase (Figure 2.1). The reaction mix included 50 mM Tris-HCl, pH 8.0, 13.3 mM magnesium chloride, 670 mM glucose, 16.5 mM ATP, 6.8 mM NADP$^+$ and 1 IU glucose-6-phosphate dehydrogenase. The reaction mix was run at 25°C for 6 min on a UV-VIS spectrophotometer (UV-2550, Shimadzu) before hexokinase was added and changes in absorbance (A$_{340}$) measured over time.
2.5.2. Glucose dehydrogenase

Glucose dehydrogenase (Figure 2.2) was ordered from Sigma and made up to 1 U/mg with 10 mM Tris-HCl buffer (pH 7.2). Activity was tested using a UV-VIS spectrophotometer (UV-2550, Shimadzu) the reaction mix included: 100 mM Tris-HCl buffer, 1 M glucose and 20 mM NAD$^+$. Reaction mix was run on the spectrophotometer at 25°C for 5 min before glucose dehydrogenase was added. Changes in absorbance (A_{340}) were measured over time.

2.5.3. NAD$^+$ synthase

NAD$^+$ synthase activity was assayed in a coupled reaction assay (Figure 2.3). In the first reaction NAD$^+$ was synthesised by either (1) reaction mix containing 2 mM ATP, 5 mM magnesium chloride, 50 mM Tris-HCl, 56 mM potassium chloride, 1 mM deamido-NAD$^+$, 20 mM L-glutamine and 0.2 mg/ml BSA, pH 8.0 (Wojcik et al., 2006), or (2) reaction mix including 2 mM ATP, 2 mM ammonium chloride, 20 mM magnesium chloride, 2 mM potassium chloride, 1 mM deamido-NAD$^+$ and 0.2 mg/ml BSA (Ozment et al., 1999). In both cases the reaction volume was 100 µl.
Reaction mix was incubated for 1 h at 37°C with recombinant protein and the reaction stopped by boiling the mix for 3 min and immediately cooling it down on ice. Reactions were spun down for 10 min at 12,000 rpm (4°C) and 90 µl were used for further analyses.

To determine if the putative NAD⁺ synthase had produced NAD⁺, 90 µl of reaction mix obtained from the first assay were used instead of NAD⁺ in a glucose dehydrogenase assay (2.5.2).

![Diagram](image)

Figure 2.3: Coupled enzyme assays for NAD⁺ synthase. (1) Glutamine dependend NAD⁺ synthase assay (Wojcik et al., 2006) and (2) Ammonia dependend NAD⁺ synthase assay (Ozment et al., 1999). In both assays the formation of NADH from NAD⁺ was measured at 340nm.
Chapter 3

3.1. Introduction

In this chapter the use of metabolomics for enzyme function identification will be explored and discussed. Although bioinformatics studies can help to identify the function of a protein, using tools such as BLAST alignments and domain searches, having experimental proof is required and important when studying the metabolism of any organism.

Enzymes used for this study were chosen randomly from a list of putative enzyme that was obtained from the trypanosome database TritrypDB. The only objective for the chosen ‘enzymes’ was that they should have a predicted metabolic function, relatively small size, so the cloning and over-expression would not cause too many difficulties, and that their function had not been determined before using recombinant or purified protein. The goal was to set up a workflow that would allow a high throughput approach to screen putative trypanosome proteins for enzymatic reactions. Certain compromises had to be made to make this approach fast with relatively low costs. The choice for a good over expression system was one of the compromises. *E. coli* is a well established organism to over express proteins; however, the lack of post translational modifications could cause problems for the functionality of the enzymes. Other over expression systems, for example trypanosomatid expression systems (Tetaud et al., 2002), would therefore be more suitable. However, high cost of culture media and lower levels of over expression was seen as too big a disadvantage compared to *E. coli*. Several *E. coli* strains were tested in this study. Originally, BL21 (DE3) were used (E. Kerkhoven, thesis), but Rosetta (DE3) cells showed higher yield and allowed for a higher number of expressed proteins and from 21 proteins originally selected for the screen, seven could be analysed.

The metabolite basis of this assay was a commercially available yeast extract. Trypanosome extract would have been preferred, but as with the expression system, the cost of media and the low density of cells in culture (compared to yeast or *E. coli*) made other metabolite sources better suited. *E. coli* extract, marmite and several stock cubes were also tested for their use, but the commercial yeast extract seemed the better choice for this screening method.

(1) Yeast extract was commercially obtained at a high quantity, meaning the standard condition was highly controlled for all experiments.
Yeast extract was treated to remove all proteins; therefore it was certain that the only protein added to that mix was the intended purified enzyme.

Yeast extract provided a high number of detected metabolites on both ZIC-HILIC and ZIC-pHILIC while being fast and easily prepared (compared to *E. coli* extract).

3.1.1. In vitro assay combined with metabolite profiling

Using the screening method developed by Saito *et al.* (2006), seven (out of 21) putative identified enzymes from *T.b. brucei* (see Table 3.1) were tested for their function using metabolite profiling by Liquid Chromatography – Mass Spectrometry (LC-MS). The enzymatic activity is determined by monitoring the changes in metabolite levels between control (no enzyme) and treatment (incubated with enzyme) samples.

Yeast extract was used as the metabolite source and to ensure that possible essential cofactors needed for enzymatic reactions were present, mixes of most common cofactors (as listed in method 2.4.1) were added to every reaction mix. As described, two cofactor mixes were prepared and samples were set up in two batches each containing a different cofactor mix.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name</th>
<th>Plasmid ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb927.10.2750</td>
<td>Deoxhypusine synthase, putative</td>
<td>pMB-G158</td>
</tr>
<tr>
<td>Tb927.7.5680</td>
<td>Deoxyribose-phosphate aldolase, putative</td>
<td>pMB-G159</td>
</tr>
<tr>
<td>Tb11.01.6500</td>
<td>NAD synthase, putative</td>
<td>pMB-G162</td>
</tr>
<tr>
<td>Tb427.06.4920</td>
<td>S-adenosylmethionine synthetase, putative (METK1)</td>
<td>pMB-G191</td>
</tr>
<tr>
<td>Tb427.10.13430</td>
<td>citrate synthase, putative</td>
<td>pMB-G194</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>aldo/keto reductase, putative</td>
<td>pMB-G196</td>
</tr>
<tr>
<td>Tb427.05.3820</td>
<td>aspartate carbamoyltransferase, putative</td>
<td>pMB-G197</td>
</tr>
</tbody>
</table>

Table 3.1: Identification of putative identified enzymes used in high throughput approach

Ideally, decreasing level of a specific metabolite indicates the substrate of an enzymatic reaction, while an increasing level indicates the product of that reaction. However, due to the ability of mass spectrometry to simultaneously identify a large number of metabolites (the LC-MS approach of this study routinely detects around one thousand metabolites per experiment), changes in several, unrelated, metabolites will be detected. This is due to sample variation between either a set of controls or even between conditions. To keep those changes to a minimum, samples were run in triplicate.
To validate the enzyme assay two commercially available enzymes were tested using this approach. The enzymes chosen were glucose dehydrogenase and hexokinase (both Sigma).

3.1.2. RNA interference

To further assess potential function of the proteins, when the *in vitro* assay approached failed, and to establish if the protein is essential to bloodstream form trypanosomes, RNA interference (RNAi) lines were created. *T. brucei* strain 2T1 were transfected with plasmid pGL2084 (Jones et al., 2014) containing a fraction of the gene of interest in a stem loop construct (Alsford and Horn, 2008) and RNAi was induced with either 1 µg ml\(^{-1}\) or 5 µg ml\(^{-1}\) tetracycline. To determine whether protein was essential or not, growth curves were made by counting uninduced and induced cells every 24 h. To establish a possible function of the protein, metabolite profiling on extracted metabolites from induced cultures were compared to the metabolite set of uninduced cultures.

RNAi lines were created for four putative identified enzymes: deoxyribose-phosphate aldolase, NAD\(^+\) synthase, also alpha/keto reductase and aspartate carbamoyltransferase. With the exception of NAD\(^+\) synthase, which did not obtain puromycin sensitivity and was therefore not further analysed, all cell lines showed the correct selection markers and knock down effect was assessed using reverse transcription RT-PCR.

Using metabolite profiling on RNAi lines, ideally, a decreasing metabolite (comparing induced cell line to uninduced cell line) should indicate the product of an enzymatic reaction, while an increasing metabolite should indicate the substrate of that reaction. However, as the whole cell metabolome is analysed, blocking one enzyme in the system could have a knock on effect on other reactions, therefore making it difficult to see the primary reaction.
3.2. Results

3.2.1. Validation of *in vitro* method

3.2.1.1. *In vitro* investigation of glucose dehydrogenase by metabolite profiling

Glucose dehydrogenase is an enzyme belonging to the family of oxidoreductases and acts on the CH-OH group of the donor molecule. It catalyses the following reaction:

Glucose + acceptor \rightarrow D-Glucono-1,5- lactone + reduced acceptor

The acceptor can be FAD, NAD(P) or pyrroloquinoline quinine (PQQ) and depending on the cofactor use the enzyme is categorized into EC group 1.1.1, 1.1.99 or 1.1.5 respectively (Ferri *et al.*, 2011). Glucose dehydrogenase used here was obtained from Sigma and was isolated from *Pseudomonas sp.* with the EC 1.1.1.47, suggesting NAD$^+$ and NADP$^+$ the cofactors used by this enzyme according to BRENDA.

Data analysed using IDEOM showed five metabolites significantly increased (Figure 2.1, a) in both sample sets. This would suggest either that NAD(P)$^+$ was already present in the yeast extract or the use of a different cofactor present in both sampleset (for example FAD). From the putatatively identified metabolites, only D-glucono-1,5-lactone was a basepeak. The related peak function from mzMatch assigned the putatatively identified metabolites 2,5-Dioxopentanoate, Vicianose and 2-O-alpha-L-Rhamnopyranosyl-D-glucopyranose to the D-glucono-1,5-lactone basepeak. The very similar retention times and of all four metabolites makes it likely that the changes are related or even that the peaks resemble the same metabolite, with differences in mass caused by fragmentation or complex formation. 2,5-Dioxopentanoate seems to be a fragment of D-glucono-1,5-lactone as the peak intensity pattern of every individual replicate is identical. Furthermore, the two metabolites 2-Dehydro-3-deoxy-D-gluconate and citraconate show the same pattern. Interestingly, 2-Dehydro-3-deoxy-D-gluconate has the same mass as D-glucono-1,5-lactone, as have citraconate and 2,5-Dioxopentanoate. However, the retention times are different. A possible explanation for this is that D-glucono-1,5-lactone comes of the column at two different times, as sometimes seen with D-glucose. However, as D-glucono-1,5-lactone is not in the authentic standard list, there is no proof for this. Only one metabolite was decreased significantly in this dataset. It was putatatively identified as 2-C-Methyl-D-erythritol 4-phosphate. However, closer investigation revealed that this is most likely an adduct of D-glucose, as the retention time of 14.65 min matches the authentic standard.
As this assay was performed with a known enzyme, the decrease in glucose levels (Figure 3.1, b) and the increase of D-glucono-1,5-lactone (Figure 3.1., c) can be seen as confirmation for the validation of this assay. However, it also highlights the problematic of using complex datasets, such as metabolomics, to identify enzyme functions.

Figure 3.1: Significant changes in the metabolomics dataset of glucose dehydrogenase assay. Assay was set up as described in 2.4.1. and analysed with IDEOM. (a) Screenshot of IDEOM spreadsheet showing the most significantly increased metabolites in the dataset (highlighted in red) compared to a no enzyme control. (b) peak intensity of the substrate and (c) peak intensity of the product of glucose dehydrogenase. Abbreviations: Cf1_C: Cofactor 1, Control (no enzyme); Cf1_E: Cofactor 1, Treatment (with enzyme); Cf2_C: Cofactor 2, Control and Cf2_E: Cofactor 2, Treatment.

3.2.1.2. *In vitro* investigation of hexokinase by metabolite profiling

Hexokinase is the starting enzyme of the glycolysis and catalyses the following reaction:

\[
\text{Glucose} + \text{ATP} \rightleftharpoons \text{Glucose 6-phosphate} + \text{ADP}
\]

Previous datasets on commercial enzymes (data not shown) showed many changes, specifically many metabolites decreasing in the treatment samples (most of them peptides), making an analysis difficult. The enzymes used for those assays had been already in use in our lab for a while, so enzymes were ordered fresh and assays were repeated. However, due to the changes mentioned above observed only in enzyme treated samples, a second extraction step was added to the workflow to test if those changes might disappear. For the hexokinase assay results shown here, four replicates for each condition were prepared and...
two of the replicates were vortexted in the cold room (4°C) for 30 min after the enzymatic reaction was quenched with acetonitrile (ACN). Data analysis comparing those two conditions showed overall fewer ‘missing’ metabolites in both conditions. However, peak intensities were increased in samples with the added extraction step.

Unlike the results of glucose dehydrogenase, as shown above, this dataset did not show the distinction in changes between the product and the substrate, which could be attributed to the high levels glucose in the sample mix and the fact that ATP was not detected. As ATP was added to the sample set 2, the explanation for no peak being detected in IDEOM might be that due to low intensity that peak was filtered out by IDEOM. However the product of the reaction, glucose 6-phosphate is only detected in enzyme treated cofactor mix 2 (Figure 3.2 (b) and (d)). Also important, the enzyme treated cofactor 2 sample shows high levels of ADP, which is not present in cofactor 2 control sample (Figure 3.2 (a) and (c)). These results conclude that the added enzyme is indeed a hexokinase, as both products can be detected in the dataset.

![Graphs](attachment:image.png)

Figure 3.2: Significant changes in the metabolomics dataset of hexokinase assay. Assay was set up as described in 2.4.1. and analysed with IDEOM. Most significant changes in the hexokinase dataset were ADP and glucose-6-phosphate (G6P) increased in the sample set 2. Sample set 2 had ATP added, which is required for hexokinase activity. Metabolite levels shown on the right (ADP or G6P) are the peak intensities from the control sample without ATP. (a) and (b) shows peak intensities of compounds without second extraction step, while (c) and (d) were incubated for 30 min at 4°C after enzymatic reaction was quenched.
3.2.2. Cofactor stability

As cofactors were not consistently detected using IDEOM for data analysis and cofactors present in the authentic standard mixes reliably failed to be detected, a study was done to investigate the stability of the cofactor stock solutions (stored at -20°C). The two cofactor mixes were made fresh and an aliquot was taken for metabolite extraction and immediate analysis by LC-MS. The remaining samples were stored at -20°C and reanalysed every week for 4 weeks.

![Figure 3.3](image)

Figure 3.3: Decreasing levels of detected cofactors from cofactor mix 1 (a) and 2 (b) over a time course of four weeks. Samples were tested fresh at Day 1 and re-tested after 8, 15, 23 and 29 days. Analysis was performed by normalising the identified metabolite against an internal standard (N-methyl glutamine) using IDEOM.

Figure 3.3 shows the detected levels of the cofactors decreasing dramatically from day 1 to day 8. If the cofactor mixtures degrade at -20°C or if the freeze/thaw cycles have an impact on the compounds being detected is not clear. However, this clearly indicates that cofactor mixes must be freshly prepared for the use in the *in vitro* enzyme assay. The stability test shows that the cofactors used can be detected (except for PP and TPP) on the LC-MS platform using ZIC-pHILIC columns. However, why are they not as easily detected in the IDEOM spreadsheets for the *in vitro* assays?

One possible explanation is that the cofactor mixes used only contain 1mM of each cofactor, while the cofactor stability used the stock solution of 10mM. At the end of each enzyme assay incubation the sample was further diluted which would make the cofactor concentration in the analysed sample even lower. Figure 3.4 shows the differences in peak intensities of ATP, when run at 10mM and 1mM. It also seems plausible that in complex mixtures IDEOM filters the cofactor peaks out as they might appear under the threshold limit.
Figure 3.4: Peak intensities of ATP, 10mM and 1mM at day 1 of the time course.

The cofactors, as listed in Methods section (or Table 3.2), are present in the standard mixes that are analysed with every MS run. However, in complex mixtures they are only rarely detected and it would be beneficial to have an idea of the retention time and also how reliable the detection of these compounds is. Table 3.2 shows the mass and retention time detected for each cofactor over a time course of four weeks. As this experiment was targeted (only one cofactor per sample) and as mentioned above cofactors in the standards are only rarely detected the confidence of the peak identification was judged by detected mass, retention time similar to the expected one and peak intensities. ATP and ADP were consistently detected over 4 weeks, but also traces of ADP and AMP were detected in the ATP sample, and ATP and AMP in the ADP sample. Although these findings are not necessarily surprising it is important to keep in mind when using different cofactor mixes for enzyme assays. GDP, GTP, NAD and NADH were consistently detected, except for the last time point where GTP and NAD were not. NADP could not be detected in an early time point in the IDEOM spreadsheet (Day 7), which was surprising as the following time points showed clear levels of NADP in the sample. Coenzyme A, acetyl-coenzyme A, FAD and FMN were consistent in mass and retention time. Only PP and TPP were inconsistently detected and those compounds might be not suitable for pHILIC separation.
Table 3.2: Detected mass and retention time from each cofactor during a timecourse of four weeks.
Timepoint 1: Day 1 (when cofactor stocks were prepared), Timepoint 2: Day 8, Timepoint 3: Day 15, Timepoint 4: Day 23, Timepoint 5: Day 29.

<table>
<thead>
<tr>
<th></th>
<th>Mass</th>
<th>RT</th>
<th>Mass</th>
<th>RT</th>
<th>Mass</th>
<th>RT</th>
<th>Mass</th>
<th>RT</th>
<th>Mass</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>427.01</td>
<td>17.388</td>
<td>427.03</td>
<td>17.394</td>
<td>427.03</td>
<td>17.34</td>
<td>427.03</td>
<td>17.787</td>
<td>427.03</td>
<td>18.065</td>
</tr>
<tr>
<td>GDP</td>
<td>443.024</td>
<td>20.205</td>
<td>443.024</td>
<td>20.269</td>
<td>443.024</td>
<td>20.188</td>
<td>443.024</td>
<td>20.531</td>
<td>443.024</td>
<td>20.78</td>
</tr>
<tr>
<td>NADH</td>
<td>665.125</td>
<td>15.316</td>
<td>665.125</td>
<td>15.263</td>
<td>665.125</td>
<td>15.169</td>
<td>665.125</td>
<td>15.24</td>
<td>665.125</td>
<td>15.43</td>
</tr>
<tr>
<td>NADP</td>
<td>743.075</td>
<td>18.772</td>
<td></td>
<td></td>
<td>743.075</td>
<td>18.673</td>
<td>743.075</td>
<td>18.748</td>
<td>743.075</td>
<td>18.914</td>
</tr>
<tr>
<td>CoA</td>
<td>767.115</td>
<td>15.544</td>
<td>383.558</td>
<td>15.595</td>
<td>767.115</td>
<td>15.357</td>
<td>767.115</td>
<td>15.482</td>
<td>767.115</td>
<td>15.778</td>
</tr>
<tr>
<td>TPP</td>
<td></td>
<td></td>
<td>424.037</td>
<td>17.102</td>
<td>424.037</td>
<td>17.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: Monoisotopic molecular weight of the cofactors used in this study, taken from metacyc.org

<table>
<thead>
<tr>
<th></th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl-CoA</td>
<td>809.126</td>
</tr>
<tr>
<td>ADP</td>
<td>427.029</td>
</tr>
<tr>
<td>ATP</td>
<td>506.996</td>
</tr>
<tr>
<td>CoA</td>
<td>767.115</td>
</tr>
<tr>
<td>FAD</td>
<td>785.157</td>
</tr>
<tr>
<td>FMN</td>
<td>456.105</td>
</tr>
<tr>
<td>GDP</td>
<td>443.024</td>
</tr>
<tr>
<td>GTP</td>
<td>522.991</td>
</tr>
<tr>
<td>NAD</td>
<td>664.117</td>
</tr>
<tr>
<td>NADH</td>
<td>665.125</td>
</tr>
<tr>
<td>NADP</td>
<td>744.083</td>
</tr>
<tr>
<td>NADPH</td>
<td>745.091</td>
</tr>
<tr>
<td>PP</td>
<td>247.025</td>
</tr>
<tr>
<td>TPP</td>
<td>425.045</td>
</tr>
</tbody>
</table>
3.2.3. Results putative enzymes

From 21 genes originally selected from TritrypDB, 16 were successfully amplified using PCR. Those PCR products were treated with T4 DNA polymerase and annealed into pET 30 Xa/LIC over expression vector, except for gene Tb927.8.2020, which was cloned into pET28 vector (Kerkhoven, PhD thesis, 2012). Five PCR products did not get the DNA amount needed for T4 DNA polymerase treatment and these were not included in further experiments (for all gene ID, see Table 3.4).

Plasmid DNA of the cloned constructs were transformed into E. coli BL21(DE3) for overexpression, followed by small scale protein purification using nickel affinity columns (Ni-NTA Spin Columns (Qiagen)) for initial over-expression screen.

Clones pMB-G161, pMB-G192, pMB-pMB-G195 did not over-express in BL21(DE3) or Rosetta (DE3) pLysS.

Over-expression of clones pMB-G157, pMB-G190, pMB-G193 and pMB-G198 was achieved in Rosetta (DE3) pLysS, however, protein was not detected in soluble fraction and therefore those proteins were not used for further analyses.

Clone pMB-G160 is unannotated as a pseudo-gene in TriTrypDB, meaning that additional stop codons were found. Protein over-expression showed a much smaller protein than originally expected and this was not analysed further. For the nine proteins remaining, higher yield was achieved in E. coli Rosetta pLysS and were therefore used for the in vitro assay (Figure 3.5).

![Figure 3.5: Whole cell extract of Rosetta (DE3) pLysS pre (-) and post (+) induction with IPTG (1mM final). Expected recombinant protein sizes were G157: 53kDa, G158: 55kDa, G159: 35kDa, G160: 55kDa (Pseudogene), G162: 38kDa, G190: 71kDa, G191: 49kDa, G193: 59kDa, G194: 59kDa, G196: 40kDa, G197: 41kDa and overexpressed proteins are indicated with an arrow.](image)

Originally, over expressed proteins were purified using Ni-NTA Spin Columns (Qiagen). However, the resulting eluates showed high contamination with other proteins. Proteomic analysis of one set of purified proteins contained from the spin columns even showed enzymes from E. coli and changes to the metabolomics dataset could be traced to one of them. Therefore, protein purification was changed to use HPLC with a Poros MC20 column (2.3.2).
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name (putative)</th>
<th>Plasmid ID</th>
<th>PCR for cloning</th>
<th>Protein over expression</th>
<th>Metabolomics assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb927.8.2020</td>
<td>Arginase/agmatinase-like protein</td>
<td>pMB-G131</td>
<td>E. Kerkhoven, PhD thesis, 2012</td>
<td>High levels overexpression</td>
<td>see 3.2.3.8</td>
</tr>
<tr>
<td>Tb09.160.0810</td>
<td>Kynureninase</td>
<td>pMB-G157</td>
<td>performed by B. Nijgal</td>
<td>Not soluble</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb927.10.2750</td>
<td>Deoxyhypusine synthase</td>
<td>pMB-G158</td>
<td>performed by B. Nijgal</td>
<td>High levels overexpression</td>
<td>see 3.2.3.3</td>
</tr>
<tr>
<td>Tb927.7.5680</td>
<td>Deoxyribose-phosphate aldolase</td>
<td>pMB-G159</td>
<td>performed by B. Nijgal</td>
<td>High levels overexpression</td>
<td>see 3.2.3.4</td>
</tr>
<tr>
<td>Tb927.5.287b</td>
<td>Galactokinase, Pseudogene</td>
<td>pMB-G160</td>
<td>performed by B. Nijgal</td>
<td>smaller size than expected</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb927.2.3080</td>
<td>Fatty acid desaturase</td>
<td>pMB-G161</td>
<td>performed by B. Nijgal</td>
<td>No over expression</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb11.01.6500</td>
<td>NAD⁺ synthase</td>
<td>pMB-G162</td>
<td>performed by B. Nijgal</td>
<td>High levels overexpression</td>
<td>see 3.2.3.5</td>
</tr>
<tr>
<td>Tb427.01.1130</td>
<td>Glycerol-3-phosphate dehydrogenase</td>
<td>pMB-G190</td>
<td>0.2 pmol</td>
<td>No over expression</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.06.4920</td>
<td>S-adenosylmethionine synthetase</td>
<td>pMB-G191</td>
<td>0.2 pmol</td>
<td>High levels overexpression</td>
<td>see 3.2.3.1</td>
</tr>
<tr>
<td>Tb427.07.4390</td>
<td>Threonine synthase</td>
<td>n.a.</td>
<td>No positive PCR</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.08.3800</td>
<td>Nucleoside phosphatase</td>
<td>pMB-G192</td>
<td>0.2 pmol</td>
<td>No over expression</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.10.12980</td>
<td>Methyltransferase</td>
<td>n.a.</td>
<td>No positive PCR</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.10.13130</td>
<td>UTP-glucose-1-phosphate uridylyltransferase</td>
<td>pMB-G193</td>
<td>0.2 pmol</td>
<td>Not soluble</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.10.12430</td>
<td>Citrate synthase</td>
<td>pMB-G194</td>
<td>0.2 pmol</td>
<td>High levels overexpression</td>
<td>see 3.2.3.2</td>
</tr>
<tr>
<td>Tb427tmp.01.3640</td>
<td>Acyl-CoA dehydrogenase</td>
<td>n.a.</td>
<td>No positive PCR</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427tmp.02.0530</td>
<td>phosphoribosylpyrophosphate synthetase</td>
<td>pMB-G195</td>
<td>0.2 pmol</td>
<td>Not soluble</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>Aldo/keto reductase</td>
<td>pMB-G196</td>
<td>0.2 pmol</td>
<td>High levels overexpression</td>
<td>see 3.2.3.6</td>
</tr>
<tr>
<td>Tb427.10.2490</td>
<td>Glucose-6-phosphate 1-dehydrogenase</td>
<td>n.a.</td>
<td>No positive PCR</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.05.3820</td>
<td>Aspartate carbamoyltransferase</td>
<td>pMB-G197</td>
<td>0.2 pmol</td>
<td>High levels overexpression</td>
<td>see 3.2.3.7</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene name (putative)</td>
<td>Plasmid ID</td>
<td>PCR for cloning</td>
<td>Protein over expression</td>
<td>Metabolomics assay</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Tb427.10.2010</td>
<td>Hexokinase</td>
<td>pMB-G198</td>
<td>0.2 pmol</td>
<td>Not soluable</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tb427.05.4560</td>
<td>Guanine deaminase</td>
<td>n.a.</td>
<td>No positive PCR</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table 3.4: Trypanosome genes selected for *in vitro* enzyme identification assay. Gene ID represents the identification number given by TritrypDB. All genes chosen represented putative identified enzymes, except for glycerol-3-phosphate dehydrogenase, glucose-6-phosphate 1-dehydrogenase and hexokinase which were already descript to be present in trypanosomes, but were chosen as positive controls. Plasmid ID shows the identification number in our lab, when applicable. For Plasmid ID n.a. (not applicable) no plasmid was created due to failed PCR. PCR for cloning shows the concentration (in pmol) of DNA used for T4 DNA polymerase treatment, when performed during this project. When already created plasmids were used for protein over expression the person who created the original plasmid is named. Protein over expression indicates if the over expression was successful and Metabolomics assay refers to the appropriate chapter in this thesis.
3.2.3.1. S-adenosylmethionine synthetase, putative (G191)

The enzyme S-adenosylmethionine synthetase catalyses the formation of S-adenosylmethionine (AdoMet) from methionine and ATP, and is the starting enzyme in the methionine cycle (Figure 3.6).

![Figure 3.6: First step in the methionine cycle, adapted from Metacyc (http://metacyc.org).](image)

S-adenosylmethionine synthetase (EC 2.5.1.6) catalyses the first step from L-methionine to S-adenosyl-L-methionine, using ATP as the adenosyl-group donor, leaving diphosphate and phosphate. Trypanosome genome shows nine genes coding for S-adenosylmethionine synthase.

S-adenosylmethionine is the key branch point in cell metabolism. Most of the intracellular methionine is converted into S-adenosylmethionine (Nozaki et al., 2005) and there are three known downstream reactions for AdoMet:

1. AdoMet acts as the methyl group donor for most cellular methyltransferase reactions, in fact all biological methylation reactions with the exception of the methylation of homocysteine (Stipanuk, 2004).
2. AdoMet can also be used for the formation of polyamines via decarboxylated AdoMet. It serves, in trypanosomes, as the aminopropyl group donor in the synthesis of polyamines, including Spermidine (Reguera et al., 2007).
3. AdoMet can be recycled back to Methionine, via S-adenosyl homocysteine and homocysteine, a process known as the methionine cycle.
Activity of the reaction has been measured in cell extract of *T. brucei* and two isoforms of the enzyme are present in the bloodstream form (Bacchi and Yarlett, 1993). TritrypDB shows nine copies of a putatively annotated gene in *T. brucei* (Tb427.06.4840 / 4850 / 4860 / 4870 / 4880 / 4890/4900/ 4910/ 4920), but no experimental data with recombinant protein exists to confirm the correct annotation.

A gene encoding for S-adenosylmethionine synthetase was cloned from *T. b. brucei* strain 427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically designed to create an overhang compatible with this system. Primers `GGTATTGAGGGTCGCATGTCCGTGCGCCAG` (MB0729, fwd) and `AGAGGAGAGTTAGAGCCCTACTGCACGTCACCTACTCACTAAGACC` (MB0730, rev) were designed to produce the desired insert (introduced overhang is underlined).

The activity of recombinant S-adenosylmethionine synthetase was investigated using an *in vitro* assay combined with metabolite profiling. The recombinant protein was purified using an Immobilised Metal ion Affinity Chromatography (IMAC) protocol (Figure 3.7).

![Image](a)

Figure 3.7: Purification of recombinant putative S-adenosylmethionine synthetase (SAM synthetase). SAM synthetase was heterologously expressed and purified using immobilised metal affinity chromatography (IMAC). (a) Purification profile using IMAC, with the protein of interest being eluted with 500mM imidazole. (b) Protein verification by SDS-PAGE.

The raw data was analysed using IDEOM (2.4.6). A heatmap was created in IDEOM using all identified basepeaks (Figure 3.8 (a)) and shows a minority of metabolites changing between the sample sets. Principal component analysis (PCA) of the dataset shows a less defined separation between control and treatment samples (Figure 3.8 (b)). The dataset showed a significant increase in S-adenosylmethionine in the sample set containing ATP (Figure 3.9 (a)). A low increase was also detected in the enzyme treated sample set.
containing ADP (Figure 3.9 (a)). Whether that is because the commercially available ADP from Sigma was contaminated with ATP or because low levels of S-adenosylmethionine were present in the yeast extract is unknown.

Figure 3.8: Heatmap and principal component analysis (PCA) of metabolomics dataset from SAM synthetase assay. (a) Heatmap created with the statistical software R in IDEOM from all identified metabolites with a confidence level between 5 and 10. The total number of detected metabolites was 1324. (b) PCA analysis of the same dataset. Abbreviations: Co1_C control sample of cofactor 1 metabolite mix, Co1_E enzyme treated sample of cofactor 1 metabolite mix, Co2_C / Co2_E cofactor 2 metabolite mix control (C) and enzyme treated (E) sample. In the heatmap the last digits representing the replicate number (1-3). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).

Figure 3.9: Peak intensity of S-adenosylmethionine and L-methionine. Assay was set up as described in 2.4.1. and analysed with IDEOM. (a) S-adenosylmethionine (the product of s-adenosylmethionine synthetase) and (b) L-methionine (the substrate of the reaction). Comparing the intensities of those two metabolites, it shows that L-methionine is highly abundant in the yeast extract which probably explains why the levels of L-methionine do not decrease in this experiment.
Unfortunately, no decrease in L-methionine levels was detected, however, as seen in Figure 3.9 (b), L-methionine was highly abundant in the yeast extract and it seems that the high levels of that compound masked the decreasing levels in the enzyme treated sample set containing ATP.

3.2.3.2. Citrate synthase, putative (G194)

Gene Tb427.10.13430 has been putatively identified as citrate synthase, which is the first enzyme in the citric acid cycle and synthesizes citrate from acetyl-CoA and oxaloacetate (Figure 3.10).

![Reaction catalysed by Citrate synthase](image)

Figure 3.10: Reaction catalysed by Citrate synthase. Citrate and Coenzyme A are being produced from acetyl-CoA, oxaloacetate and water. Adapted from Metacyc.org.

Gene Tb427.10.13430 was cloned from *T. brucei* strain 427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically designed to create an overhang compatible with this system.

Primers GGTATTGAGGGTGCATGTCATGCGCTGCTCG (MB0739, fwd) and AGAGGAGAGTTAGAGCCCTACGCTATGTGTACTTTGTG (MB0740, rev) were designed to produce the desired insert (introduced overhang is underlined). Protein was heterologously expressed in *E. coli* Rosetta (DE3) pLysS and purified using IMAC protocol described in method section (Chapter 2.3.2).
The *in vitro* assay combined with metabolite profiling showed very few changes in the metabolite mix between control and treatment samples. Heatmap and PCA analysis (Figure 3.11) show no pattern that would show sample separation from treatment vs control; however, a few changes indicated that there might be a reaction in the cofactor 2 treatment samples. The citrate synthase reaction, as shown in Figure 3.9., was not evident in this dataset. Due to the large sample variation (Figure 3.12 (b)), it is difficult to detect any possible changes in levels of citrate, but also the levels of acetyl CoA do not seem to change significantly between control and treatment samples (Figure 3.12 (a)).

Figure 3.11: Heatmap and principal component analysis (PCA) of metabolomics dataset from citrate synthase assay. (a) Heatmap created with the statistical software R in IDEOM from all identified metabolites with a confidence level between 5 and 10. The total number of detected metabolites was 1310. Abbreviations: Co1 cofactor 1 metabolite mix, Co2 cofactor 2 metabolite mix with control (C) and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). (b) PCA analysis created by the statistical software R using IDEOM, shows no clustering of sample sets (treatment vs control). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).
Figure 3.12: Peak intensities of metabolites predicted to change in the dataset according to putative annotation of enzyme. However, as seen in (a) levels of Acetyl-CoA (in samples containing cofactor 2 mix) do not seem to change significantly when sample mix is treated with enzyme compared to control sample and citrate levels are similar between control and treatment samples (b).

Figure 3.12 c: Peak intensity of significantly increased metabolite in G194 dataset putatively annotated as 2S-amino-tridecanoic acid. Changes in yeast extract with cofactor 1 mix, untreated (Control), treated (Treatment) with enzyme are represented on the left and changes in yeast extract with cofactor 2 mix, untreated, treated, are shown on the right. Structure of this compound is shown next to the changes.

The most significant change in this dataset was a compound with the mass of 229.20 and a retention time of 4.31 min, which has been putatively identified as 2S-Amino-tridecanoic acid (basepeak) with a confidence of 7 (Figure 3.12 (c)). However, 5 isomers are assigned to this compound (Table 3.5); with 2S-Amino-tridecanoic acid showing a retention time
(rt) closest to the predicted rt. This metabolite was only detected in the enzyme treated samples, with higher change detected in the cofactor 2 treated sample set (Figure 3.12 (c)).

<table>
<thead>
<tr>
<th>Isomers</th>
<th>ppm error</th>
<th>predicted RT error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2S-Amino-tridecanoic acid</td>
<td>0.72</td>
<td>-7.70%</td>
</tr>
<tr>
<td>[FA amino(13:0)] 13-amino-tridecanoic acid</td>
<td>0.72</td>
<td>-28.10%</td>
</tr>
<tr>
<td>[FA amino(13:0)] 2R-aminotridecanoic acid</td>
<td>0.72</td>
<td>-7.90%</td>
</tr>
<tr>
<td>[FA amino(13:0)] 2-amino-tridecanoic acid</td>
<td>0.72</td>
<td>-7.90%</td>
</tr>
<tr>
<td>Capryloylcholine</td>
<td>0.72</td>
<td>-49.40%</td>
</tr>
</tbody>
</table>

Table 3.5: Isomers of detected compound showing significant increase in treatment samples. Putative identification was 2S-Amino-tridecanoic acid, which showed the lowest retention time error to the predicted retention time.

2S-Amino-tridaconic acid is an amino fatty acid belonging to the 13C-carbon saturated fatty acids. Searches in metacyc.org, KEGG and PubMed have not indicated the possible existence of a pathway containing this metabolite in trypanosomes. Therefore, it is possible to give a possible function for this protein on this one significant increase found in the dataset.

3.2.3.3. Deoxyhypusine synthase, putative (G158)

Tb927.10.2750 is putatively identified as a deoxyhypusine synthase, which catalyses the spermidine-dependent modification of hypusine in a lysine residue for the essential translation factor elF5A. This reaction is performed in two steps, the first step deoxyhypusine synthase transfers the butylamine moiety from spermidine to a specific lysine residue of the of the elF5A precursor protein with NAD+ as a cofactor (Joe et al., 1995). However, if the elF5A precursor protein is absent, the reaction releases 1-pyrroline. Decreasing levels in Spermidine with corresponding increasing levels in 1-pyrroline could, in theory, be detected using the LC-MS platform used in this study. Gene Tb927.10.2750 was cloned from T. brucei strain 427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically designed to create an overhang compatible with this system.

Primers GGTATTGAGGGTGCATGGCTGAGTTGGCCAAGAG (MB0639, fwd) and AGAGGAGAGTTAGAGCCTCAGAGCCGGATATTCTCCT (MB0640, rev) were designed to produce the desired insert (introduced overhang is underlined) and cloning was successful and confirmed by sequencing.
As described above the changes I would have expected to see during this experiment, if this protein is indeed a deoxyhypusine synthase, are decreasing levels of Spermidine and NAD+ and increasing levels of 1-pyrroline. However, only a minimal change in spermidine levels was observed during the *in vitro* metabolite profiling (Figure 3.12. (a)). The sample set containing yeast metabolites and Cofactor mix 1 (which includes NAD+), treated with enzyme showed a slight decrease in levels of spermidine. However, 1-pyrroline and NAD+ were not detected. These results are not conclusive enough to identify the gene Tb927.10.2750 as an deoxyhypusine synthase coding gene.

After this experiment was performed it was shown that this protein is indeed a deoxyhypusine synthase but also that this enzyme’s activity is increased 3000-fold by forming a heterotetramer with a catalytically dead paralog (Nguyen et al., 2013). This would explain why the results were inconclusive using the metabolite profiling approach.

Figure 3.13: Spermidine peak intensities and heatmap of metabolomics dataset from deoxyhypusine synthase assay. (a) Average peak height of spermidine from three sample replicates with standard deviation and (b) Heatmap of untargeted metabolite profiling approach with yeast extract and two cofactor mixes (3 replicates) of Deoxhypusine synthase. No significant changes in metabolite levels between control and treatment samples were detected in this dataset. Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 for cofactor 2 / metabolite mix with control (C) and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).

As shown in the heatmap of this experiment (Figure 3.13) there seem to be some changes in the data set. However, after analysis it became clear that those changes demonstrate the variance between samples more than sample groups (control/treatment). This was evident from replicates not showing similar intensities. As IDEOM uses the average peak intensity
to compare control to treatment, a metabolite not detected in one replicate could indicate a change when indeed it is just sample variation.

3.2.3.4. Deoxyribose-phosphate aldolase, putative (G159)

The gene Tb927.7.5680 codes for a protein that is putatively annotated as deoxyribose-phosphate aldolase, an enzyme which catalyses the following reaction:

\[2\text{-deoxy-D-ribose 5-phosphate} \rightarrow \text{D-glyceraldehyde 3-phosphate} + \text{acetaldehyde} \]

To investigate the function of this protein, the gene Tb927.7.5680 was cloned from *T. b. brucei* strain 427 using target gene specific primers and a ligase independent cloning system (as described in the methods section), using primers GGTATTGAGGGTCGCATGACCGACCTTCACATGAG (MPB0641, fwd) and AGAGGAGAGTTAGAGCCTTAGTATTTACTGCAGGC (MPB0642, rev), to create vector specific overhang (Introduced overhang is underlined). The untargeted metabolomics approach showed no significant changes regarding any potential enzyme activity. The substrate and product have not been detected, although previous data sets have shown those metabolites to be present in the yeast extract. Although the PCA analysis (Figure 3.14 (b)) shows a grouping of samples treatment vs control, the dataset showed no significant changes in individual metabolite levels between those groups (Figure 3.14 (a)).

![Figure 3.14: Heatmap and principal component analysis (PCA) of metabolomics dataset from deoxyribose-phosphate aldolase assay.](image)

(a) Heatmap of untargeted metabolite profiling approach with yeast extract and two cofactor mixes (3 replicates) of deoxyribose-phosphate aldolase. (b) PCA analysis of same data set shows clustering of treatment vs control samples (treatment samples in red and dark blue). Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 for cofactor 2 / metabolite mix with control (C) and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).
To establish if this protein is essential for bloodstream form trypanosomes, a deoxyribose-phosphate aldolaseRNAi cell line (G159RNAi) was created and the transcription of the gene knocked down by RNA interference.

Induction of knock down with 1 µg ml\(^{-1}\) and 5 µg ml\(^{-1}\) tetracycline showed no change in growth phenotype (see Figure 3.15 (a)). Reverse transcription with RT-PCR showed only a knockdown effect of about 10% (Figure 3.15 (b)). Therefore it could not be determined whether this protein is essential for cell survival.

![Growth curve](image)

Figure 3.15: Growth curve of G159RNAi cell line (a) and relative RNA abundance in G159RNAi cell line, as determined by rt RT-PCR (b).

(a) Culture of G159RNAi, induced every 24 h with 1 µg ml\(^{-1}\) tet (+) and without tet (-), was monitored for six days for differences in growth rate. As seen, no differences in growth could be detected. Cell flasks were set up in triplicate.

(b) Two cultures of G159RNAi were set up, one was induced with 5 µg ml\(^{-1}\) tetracycline (+tet) every 24 hours. Samples were taken (5 x 10\(^7\) cells) at timepoint 48h, 72h and 96h and RNA extracted and relative RNA abundance of transcript of interest was assessed by rt RT-PCR (in triplicate). Timepoints were combined for graph as there were no changes in RNA abundance between different timepoints. Protein GPI-8 was used as standard.
3.2.3.5. NAD⁺ synthase, putative (G162)

NAD⁺ synthase catalyses the last step in the NAD⁺ biosynthesis pathway and the reaction involves either the transfer of an amino group from glutamine or ammonia to form NAD⁺ from nicotinic acid adenine dinucleotide (NaAD or Deamido-NAD⁺) (Ozment et al., 1999). The reactions are shown in Figure 3.16 (glutamine dependent NAD⁺ synthase) and Figure 3.17 (ammonium dependent NAD⁺ synthase).

![Reaction of L-glutamine dependent NAD⁺ synthase, adapted from metacyc.org. In this reaction an amino-group is transferred from L-glutamine to deamido-NAD⁺ to form L-glutamate and NAD⁺.]
E. coli favours the ammonia dependent reaction (Spencer and Preis, 1966), while eukaryotic NAD\(^+\) synthase seems to be glutamine dependant (Wojcik et al., 2006). In trypanosomes, gene number Tb11.01.6500 is putatively annotated as an NAD\(^+\) synthase and was investigated for its biological function using in vitro metabolite profiling and targeted enzyme assays. To study the function of the encoded protein from gene Tb11.01.6500, it was cloned from T. brucei strain 427 using target gene specific primers and a ligase independent cloning system (as described in the methods section), using primers GGTATTGAGGTCGCATGCCGAAGGAGCCCATTTCT (MPB0647, fwd) and AGAGGAGAGTTAGAGCCTACAGGTTCAATACCCT (MPB0648, rev), to create vector specific overhang (Introduced overhang is underlined). Over-expression was
achieved using 1 litre cultures of transformed *E. coli* Rosetta pLysS cells as well as *E. coli* BL21 (DE3). The over-expression of the putative NAD\(^+\) synthase showed consistently high amounts of protein produced, but purification, using IMAC, showed contamination in the eluate (see Figure 3.18).

![Purification profile of recombinant protein G162 over-expressed in *E. coli* Rosetta pLysS, using IMAC, washed with 50 mM imidazole and eluted with 500 mM imidazole and (b) protein verification by SDS-PAGE, m=Marker, L=Lysis, FT= Flowthrough and MC=pool of eluate.](image)

Figure 3.18: Purification of recombinant putative NAD\(^+\) synthase. NAD\(^+\) synthase was heterologously expressed and purified using immobilised metal affinity chromatography (IMAC). (a) Purification profile of recombinant protein G162 over-expressed in *E. coli* Rosetta pLysS, using IMAC, washed with 50 mM imidazole and eluted with 500 mM imidazole and (b) protein verification by SDS-PAGE, m=Marker, L=Lysis, FT= Flowthrough and MC=pool of eluate.

Heatmap and PCA are shown in Figure 3.19 and show little variance between the samples, except for the QC samples. However, the pattern of decreasing metabolites throughout the run indicates that the volume of QC sample was too low and sample could not be picked up.

![Heatmap and principal component analysis (PCA) of metabolomics dataset from NAD\(^+\) synthase assay.](image)

Figure 3.19: Heatmap and principal component analysis (PCA) of metabolomics dataset from NAD\(^+\) synthase assay. (a) Heatmap of untargeted metabolite profiling approach with yeast extract and cofactor mix 2 (3 replicates). The visible changes occur in the quality control (QC) samples, which are run at the beginning, in the middle and at the end of the run, with decreasing detected metabolites from QC1 to QC 3. Those changes are most likely due to sample degradation. (b) Correlation between sample groups (control/treatment) was analysed by PCA. No clear separation is apparent between the two groups. Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).
Metabolic profiling by mass spectrometry did show decreasing levels of deamido-NAD$^+$ or L-glutamine, however those changes do not seem to be significant (Figure 3.20). ATP and NAD$^+$ were not detected in the IDEOM spreadsheet.

Figure 3.20: Average peak intensities of L-glutamine, L-glutamate and Deamido-NAD$^+$ in metabolomics dataset. Detected average intensities of metabolites, assumed to be involved in reaction, of cofactor 2 treatment (Co2_E) and control (Co2_C) samples (three replicates). Although it appears that L-glutamine levels go slightly down in treatment samples (a), those changes are not significant. L-glutamate levels show no corresponding increase (b). Deamido-NAD$^+$ (c) also shows no significant decrease in intensity, however, when one control sample, showing significantly lower peak intensity than the other samples, was removed, decrease of Deamido-NAD$^+$ seems to be significant (d). 3 replicates were used in this study.

As the detected changes in the metabolomics dataset would not immediately point to this enzyme being a NAD$^+$ synthase, a spectrophotometric enzyme assay was performed to determine the activity of the purified protein using an adapted coupled enzyme assay from Wojcik et al (2006). Instead of alcohol dehydrogenase (suggested enzyme for coupled reaction), glucose dehydrogenase was used. Protein purified from Rosetta pLysS seemed to produce NAD$^+$, while protein produced in BL21 did not.
Figure 3.21: Results of NAD$^+$-synthase assay on spectrophotometer. A glutamine-dependent enzyme assay was performed, as described by Wojcip et al (2006). Positive control with 20 mM NAD$^+$ was plotted against left y-axis and is marked in black. Negative control, enzyme assay reaction mix 1 (as described in method section) without enzyme is shown in dark blue. Coupled enzyme assay, reaction mix 1 and glucose dehydrogenase assay is shown in triplicate (light blue, light purple and pink) and plotted against the right y-axis. Glucose dehydrogenase was added to all samples at 120 seconds.

As shown in Figure 3.21, the increase of absorbance was minimal in the NAD$^+$ synthase treated samples. However, although minimal changes in absorbance indicate that gene Tb11.01.6500 is indeed an NAD$^+$ synthase, it is not clear if the enzyme is an ammonium dependent or glutamine hydrolysing NAD$^+$ synthase. A spectrophotometric enzyme assay for ammonium dependent NAD$^+$ synthase showed no activity when performed with protein purified from E. coli BL 21 (DE3). It is likely though, that the trypanosome NAD$^+$ synthase is ammonium dependent, but that L-glutamine can still act as an amino group donor, albeit not as efficiently (Spencer and Preiss, 1967). If so, it would explain the minimal changes in the glutamine dependent enzyme assay. A bioinformatics search on the predicted protein sequence (EFICAz2.5) suggested that the gene Tb11.01.6500 codes for the ammonium dependent enzyme. A further Pfam (http://pfam.xfam.org/) search for active domains revealed that the gene Tb11.01.6500 only contains one domain associated for NAD$^+$ synthase activity. This result is consistent with E. coli NAD$^+$ synthase. Human NAD$^+$ synthase on the other hand shows two domains. The ‘CN hydrolase’ domain appears to be necessary for the glutamine dependant activity. This domain is missing from trypanosomes NAD$^+$ synthase, however, it is found in trypanosome gene Tb927.9.1960, which is putatively annotated as a nitrilase.
3.2.3.6. Aldo/keto reductase, putative (G196)

The aldo/keto reductase superfamily includes NADPH dependant oxidoreductases (Bohren et al., 1989). Gene Tb427tmp.02.3040 was cloned from *T. b. brucei* strain 427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically designed to create an overhang compatible with this system. Primers GGTATTGAGGGTCGCATGGACCCTATATTTTG (MB0745, fwd) and AGAGGAGAGTTAGAGCC TTAATCTATCGTGCTATG (MB0746, rev) were designed to produce the desired insert (introduced overhang is underlined).

Protein was heterologously expressed in *E. coli* Rosetta (DE3) pLysS and purified using IMAC protocol described in method section (2.3.2). The recombinant *T. brucei* enzyme did not show any significant changes in the dataset that could lead to function of this enzyme. Heatmap and PCA analysis (Figure 3.22) showed no difference in control vs treatment samples. NADPH dependent changes should have been seen in cofactor mix 2, however, NADPH or NADP were not detected.

![Figure 3.22](image)

Figure 3.22: Heatmap and principal component analysis (PCA) of metabolomics dataset from aldo/keto reductase assay. (a) Heatmap created from dataset using R. Changes in metabolite levels show the variance between samples as levels vary within the replicates more than between the sample groups. (b) PCA analysis shows separation between the individual samples, indicating random changes between the samples. Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 for cofactor 2 / metabolite mix with control (C) and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).

To establish if this protein is essential for bloodstream form trypanosomes an Aldo/keto reductase^{RNAi} cell line (G196^{RNAi}) was created and the transcription of the gene knocked down by RNA interference. Induction of knock down with 1 µg ml⁻¹ or 5 µg ml⁻¹ tetracycline showed no change in growth phenotype. Reverse transcription with RT-PCR showed a knockdown effect of about 40% (Figure 3.23).
No further studies were performed, as it was concluded that 40% knock down is not enough to establish if the protein is essential and therefore further metabolomics studies seemed uninformative.

![Figure 3.23: Relative RNA abundance in G196^{RNAi} cell line, as determined by rt RT-PCR](image)

Two cultures of G196^{RNAi} were set up, one was induced with 5 µg ml⁻¹ tetracycline (+tet) every 24 hours. Samples were taken (5 x 10⁷ cells) at timepoint 48h, 72h and 96h, RNA extracted and relative RNA abundance of transcript of interest was assessed by rt (reverse transcription)RT-PCR (in triplicate). Timepoints were combined for graph as there was no change in RNA abundance between different timepoints. Protein GPI-8 was used as standard.
3.2.3.7. Aspartate carbamoyltransferase, putative (G197)

Aspartate carbamoyltransferase catalyses the first step in the pyrimidine biosynthetic pathway. It belongs to the enzyme class of transferases and the reaction fuses L-aspartate with a carbamoyl-group to form N-carbamoyl-L-aspartate (Figure 3.24). In bloodstream form trypanosomes, pyrimidine biosynthesis from glucose has been observed when 50 % U-13C-labelled glucose was added to the growth medium (Creek et al., 2015).

![Figure 3.24: Reaction of aspartate carbamoyltransferase. Adapted from metacyc.org](image)

Gene Tb427.05.3820 was cloned from *T. brucei* strain 427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically designed to create an overhang compatible with this system. Primers **GGTATTGAGGGTCGC**ATGGCGGAGCTGCAACCTG (MB0749, fwd) and **AGAGGAGAGTTAGAGCGCTTAGGCGAGAACACTATAAAG** (MB0750, rev) were designed to produce the desired insert (introduced overhang is underlined).

Protein over-expression was achieved consistently with high yield in both *E. coli* Bl21 (DE3) and Rosetta (DE3) pLysS. However, Rosetta (DE3) pLysS cells were used for this study and 1 litre culture was induced with 1mM IPTG overnight at 18°C and protein purified using IMAC (Figure 3.25).

![Figure 3.25: Purification of recombinant putative aspartate carbamoyltransferase.](image)
In vitro assay combined with metabolite profiling showed no differences between the control and treatment samples as shown in the heatmap and PCA (Figure 3.26). One Control sample (Co1_C_1) showed irregularity to the rest (see Figure 3.26 (a)). However, when this sample was excluded from analysis, no significant changes were seen.

![Heatmap and PCA analysis](image)

Figure 3.26: Heatmap and principal component analysis (PCA) of metabolomics dataset from aspartate carbamoyltransferase assay. (a) Heatmap created from dataset using R. (b) PCA analysis created from dataset using R. Samples were analysed in triplicates. Co1_C = Control samples cofactor mix 1, Co1_E = Treatment samples cofactor mix 1, Co2_C = Control samples cofactor mix 2, Co2_E = Treatment samples cofactor mix 2 and QC = pooled samples. Heatmap shows that one Cofactor 1 control sample seemed not to have been picked up proper as the majority of the metabolites seemed decreased compared to the other samples. This sample should be discarded for analysis. No clear separation is apparent between the two groups. Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased), green (decreased, not significant), yellow (unchanged) and red (significantly increased).

To establish if this protein is essential for bloodstream form trypanosomes an aspartate carbamoyltransferase RNAi cell line (G197RNAi) was created and the transcription of the gene knocked down by RNA interference. Induction of knock down with 1 µg ml⁻¹ tetracycline showed no change in growth phenotype, but induction with and 5 µg ml⁻¹ tetracycline did (see Figure 27 (a)). Reverse transcription with RT-PCR showed a knockdown effect of about 70% (Figure 3.27 (b)).
Figure 3.27.: Growth curve of G197RNAi cell line (a) and relative RNA abundance in G197RNAi cell line, as determined by rt RT-PCR (b).

(a) Culture of G197RNAi, induced every 24 h with 5 µg ml-1 tet (+) and without tet (-), was monitored for five days for differences in growth rate. Cell flasks were set up in triplicates.

(b) Two cultures of G197RNAi were set up, one was induced with 5 µg ml-1 tetracycline (+tet) every 24 hours. Samples were taken (5 x 107 cells) at timepoint 48h, 72h and 96h and RNA extracted and relative RNA abundance of transcript of interest was assessed by rt RT-PCR (in triplicate). Timepoints were combined for graph as there was no change in RNA abundance between different timepoints. Protein GPI-8 was used as standard.

To establish the function of this protein knockdown was induced in G197RNAi and after 72 hours metabolites were extracted from uninduced and induced cells and analysed on LC-MS. The most significant changes in this dataset were L-glutamate (increasing levels in RNAi line) and UDP and uracil (decreasing levels in RNAi line). The pathway involving aspartate carbamoyltransferase and metabolite levels are shown in Figure 3.28. This pathway has been shown to be active in bloodstream form trypanosomes and a recently performed study with U-13C D-glucose showed labelling of L-aspartate from D-glucose and the downstream metabolites of the pyrimidine biosynthesis (Creek et al., 2015).
Figure 3.28: Pyrimidine biosynthesis pathway, adapted from metacyc.org. Red cross indicates reaction catalysed by aspartate carbamoyltransferase. Metabolites changing significantly in knockdown line are shown. L-glutamate increases in knockdown line, while uracil and UDP decrease. Abbreviations: PPP: Pentose phosphate pathway, PRPP: Phosphoribosyl pyrophosphate, UDP: Uridine diphosphate, UMP: Uridine monophosphate.
3.2.3.8. Arginase / Agamtinase-like protein, putative (G131)

Vincent et al. (2012) discovered that the gene Tb927.8.2020, putatively annotated as ‘arginase’ in TritrypDB, has no arginase activity. The annotation was later changed to agmatinase-like protein, however, several untargeted metabolite profiling approaches have failed to show this (Figure 3.29).

![Figure 3.29](image-url)

Figure 3.29: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase assay. (a) Heatmap of untargeted metabolite profiling approach with yeast extract and two cofactor mixes (3 replicates). The visible changes occur in the quality control (QC) samples, which are run at the beginning, in the middle and at the end of the run, with decreasing detected metabolites from QC1 to QC 4. Those changes are most likely due to sample degradation. (b) PCA analysis of dataset. Except for QC samples, no clear differences between the sample groups. Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).

To investigate the possibility of metal-ion dependency of Tb927.8.2020, heterologously expressed protein from *E. coli* Rosetta (DE3) pLysS was purified and incubated with yeast extract and three additional metal-ions (10 μM: manganese (Mn$^{2+}$), cobalt (Co$^{2+}$) and zinc (Zn$^{2+}$)). Although the availability of Mn$^{2+}$ and Co$^{2+}$ is very low in trypanosomes, it has been shown in the case of phosphoglycerate mutase that replacement of a native metal by an alternative can increase the activity of a metalloenzyme (Fuad et al., 2011). A heatmap of the created dataset of ‘arginase’ with added metal-ions (Figure 3.30) clearly shows changes between control and treatment samples. In total, about 20% of metabolites detected showed changes in levels between control and treatment samples.
Figure 3.30: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase assay with metal-ions added. (a) Heatmap of untargeted metabolite profiling approach with yeast extract and a mix of three metal ions (3 replicates). Metal-ions used were Co2+, Mn2+ and Zn2+. Changes detected in the quality control (QC) samples are probably due to sample degradation. However, Samples treated with enzymes show decreased levels in metabolites, mainly in amino acid metabolism. (b) PCA analysis of dataset shows a clear separation between control, treatment and QC. Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).

According to putative metabolite annotation, a high proportion of changes taking place in the amino acid metabolism and a few biochemical reactions could be plausible:

- L-histidine + NADH \rightarrow L-histidinal + NAD, catalysed by histidinal dehydrogenase (Figure 3.31).

![Figure 3.31: Significant changes in metal-ion ‘arginase’ dataset. (a) L-histidine and (b) L-histidinal.](image)

However, L-histidinal seems to be a fragment of the dipeptide N-glycyl L-leucine and has been annotated as a possible fragment in IDEOM.

- Imidazole-5-pyruvate

Imidazole-5-pyruvate is a metabolite within the L-histidine and imidazole-lactate degradation pathway.

Reaction involving this metabolite (as taken from metacyc.org):

(1) L-histidine + 2-oxoglutarate \leftrightarrow L-glutamate + imidazole-5-pyruvate
(2) imidazole-lactate + NAD(P)^+ ↔ imidazole-5-pyruvate + NAD(P)H

(3) L-histidine + pyruvate ↔ imidazole-5-pyruvate + L-alanine

Figure 3.32: Significant changes in metal-ion ‘arginase’ dataset. (a) 2-oxoglutarate, (b) L-histidine, (c) imidazole-pyruvate and (d) L-glutamate.

A peak annotated as imidazole-5-pyruvate shows increasing peak intensity in the enzyme treated sample. But imidazole-5-pyruvate elutes within the basepeak of S-methyl-1-thiol-D-glycerate and has therefore been annotated as a fragment of that metabolite (Figure 3.32). Furthermore, the reaction involving imidazole-5-pyruvate does not appear to happen in this dataset. Imidazole-lactate was not detected, but listed as an isomer of 4-Imidazolone-5-propanoate, but again this metabolite seems to be a fragment of Adenosine. Also, levels of imidazole-lactate increases in enzyme treated sample set. Pyruvate had 2 isomers, one increasing slightly, the other one decreasing slightly, both possible fragments of another metabolite. L-alanine was not detected.

- (S)-1-Pyrroline-5-carboxylate

(S)-1-Pyrroline-5-carboxylate could be produced from L-glutamate in an NADH or NADPH dependent reaction. No cofactors were added to this sample set, however, it is possible that NADH or NADPH was present in the yeast extract. But, similar to imidazole-5-pyruvate, it elutes within the basepeak of S-methyl-1-thiol-D-glycerate (Figure 3.33 and 3.34).
Figure 3.33: Average peak intensities of metabolites (S)-1-Pyrroline-5-carboxylate (a) and L-glutamate (b).

Figure 3.34: Detected basepeak S-methyl-1-thiol-glycerate (a) with the two potential fragments, detected as imidazole-pyruvate (b) and (c) (S)-1-pyrroline-5-carboxylate.

Although the function of the enzyme could not be determined from this experiment, the protein annotated as ‘arginase’ appears to decrease the levels of several amino acids. This could have been an indication of the enzyme being a non-specific deaminase. However, the corresponding keto acids were not detected or showed no differences in control and treatment samples. In the next step to determine the function of this enzyme, the ‘arginase’ was incubated in yeast extract, spiked with uniformly labelled 13C-L-methionine and in a reaction mix with metal-ions and u^{13}C-labelled L-methionine on its own. L-methionine was chosen as it was one amino acid decreasing the most in the previous dataset. The results are shown in Figure 3.35, but as previous results it only shows the decreasing level of the amino acids (in this case L-methionine), but no labelled product was detected. There could be several explanations for this, (1) ZIC-pHILIC is not a suitable column for this compound. (2) the levels of product are too low to be detected as a peak. As seen in Figure 3.31. (b) the detected labelled 13C L-methionine was quite low due to the high levels of unlabelled L-methionine in the yeast extract. (3) product does not ionise well and was therefore not detected. All metabolites significantly changed in the metal-ion ‘Arginase’ dataset are listed in Table 3.6.
<table>
<thead>
<tr>
<th>Mass</th>
<th>RT (in mins)</th>
<th>Formula</th>
<th>Isomers</th>
<th>Putative metabolite identification</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.085</td>
<td>7.433</td>
<td>C6H12N2O3</td>
<td>4</td>
<td>D-Alanyl-D-alanine</td>
<td>9.44</td>
<td>1.00</td>
</tr>
<tr>
<td>139.075</td>
<td>7.361</td>
<td>C6H9N3O</td>
<td>3</td>
<td>L-Histidinal</td>
<td>3.63</td>
<td>1.00</td>
</tr>
<tr>
<td>195.053</td>
<td>7.601</td>
<td>C9H9NO4</td>
<td>9</td>
<td>Dopaquinone</td>
<td>3.32</td>
<td>1.00</td>
</tr>
<tr>
<td>154.038</td>
<td>7.690</td>
<td>C6H6N2O3</td>
<td>2</td>
<td>Imidazol-5-yl-pyruvate</td>
<td>3.28</td>
<td>1.00</td>
</tr>
<tr>
<td>113.048</td>
<td>7.703</td>
<td>C5H7NO2</td>
<td>6</td>
<td>(S)-1-Pyrroline-5-carboxylate</td>
<td>2.71</td>
<td>1.00</td>
</tr>
<tr>
<td>145.074</td>
<td>7.667</td>
<td>C6H11NO3</td>
<td>9</td>
<td>6-Amino-2-oxohexanoate</td>
<td>2.28</td>
<td>1.00</td>
</tr>
<tr>
<td>72.021</td>
<td>7.857</td>
<td>C3H4O2</td>
<td>4</td>
<td>Methylglyoxal</td>
<td>1.27</td>
<td>1.00</td>
</tr>
<tr>
<td>117.079</td>
<td>8.948</td>
<td>C5H11NO2</td>
<td>16</td>
<td>Betaine</td>
<td>1.19</td>
<td>1.00</td>
</tr>
<tr>
<td>193.074</td>
<td>4.919</td>
<td>C10H11NO3</td>
<td>10</td>
<td>Phenylacetylglycine</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>179.058</td>
<td>6.883</td>
<td>C9H9NO3</td>
<td>6</td>
<td>Hippurate</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>169.085</td>
<td>9.440</td>
<td>C7H11N3O2</td>
<td>5</td>
<td>N(pi)-Methyl-L-histidine</td>
<td>0.76</td>
<td>1.00</td>
</tr>
<tr>
<td>188.116</td>
<td>6.734</td>
<td>C8H16N2O3</td>
<td>7</td>
<td>N6-Acetyl-L-lysine</td>
<td>0.73</td>
<td>1.00</td>
</tr>
<tr>
<td>131.058</td>
<td>10.391</td>
<td>C5H9NO3</td>
<td>14</td>
<td>trans-4-Hydroxy-L-proline</td>
<td>0.73</td>
<td>1.00</td>
</tr>
<tr>
<td>103.063</td>
<td>10.800</td>
<td>C4H9NO2</td>
<td>14</td>
<td>4-Aminobutanoate</td>
<td>0.72</td>
<td>1.00</td>
</tr>
<tr>
<td>165.079</td>
<td>8.362</td>
<td>C9H11NO2</td>
<td>7</td>
<td>L-Phenylalanine</td>
<td>0.71</td>
<td>1.00</td>
</tr>
<tr>
<td>220.085</td>
<td>8.672</td>
<td>C11H12N2O3</td>
<td>3</td>
<td>5-Hydroxy-L-tryptophan</td>
<td>0.70</td>
<td>1.00</td>
</tr>
<tr>
<td>142.074</td>
<td>9.817</td>
<td>C6H10N2O2</td>
<td>1</td>
<td>Ectoine</td>
<td>0.69</td>
<td>1.00</td>
</tr>
<tr>
<td>160.048</td>
<td>8.965</td>
<td>C5H8N2O4</td>
<td>2</td>
<td>N-Formimino-L-aspartate</td>
<td>0.69</td>
<td>1.00</td>
</tr>
<tr>
<td>116.047</td>
<td>4.629</td>
<td>C5H8O3</td>
<td>9</td>
<td>3-Oxopentanoate</td>
<td>0.66</td>
<td>1.00</td>
</tr>
<tr>
<td>216.111</td>
<td>8.096</td>
<td>C9H16N2O4</td>
<td>3</td>
<td>γ-Glutamyl-γ-aminobutyraldehyde</td>
<td>0.65</td>
<td>1.00</td>
</tr>
<tr>
<td>227.079</td>
<td>8.357</td>
<td>C10H13NO5</td>
<td>1</td>
<td>L-Arogenate</td>
<td>0.65</td>
<td>1.00</td>
</tr>
<tr>
<td>218.127</td>
<td>6.826</td>
<td>C9H18N2O4</td>
<td>5</td>
<td>N2-(D-1-Carboxyethyl)-L-lysine</td>
<td>0.64</td>
<td>1.00</td>
</tr>
<tr>
<td>145.085</td>
<td>10.887</td>
<td>C5H11N3O2</td>
<td>3</td>
<td>4-Guanidinobutanoate</td>
<td>0.62</td>
<td>1.00</td>
</tr>
<tr>
<td>133.037</td>
<td>10.072</td>
<td>C4H7NO4</td>
<td>4</td>
<td>L-Aspartate</td>
<td>0.59</td>
<td>1.00</td>
</tr>
<tr>
<td>130.063</td>
<td>4.274</td>
<td>C6H10O3</td>
<td>17</td>
<td>4-Methyl-2-oxopentanoate</td>
<td>0.58</td>
<td>1.00</td>
</tr>
<tr>
<td>204.111</td>
<td>7.497</td>
<td>C8H16N2O4</td>
<td>5</td>
<td>N6-Acetyl-N6-hydroxy-L-lysine</td>
<td>0.56</td>
<td>1.00</td>
</tr>
<tr>
<td>147.053</td>
<td>9.914</td>
<td>C5H9N04</td>
<td>14</td>
<td>L-Glutamate</td>
<td>0.54</td>
<td>1.00</td>
</tr>
<tr>
<td>200.977</td>
<td>11.135</td>
<td>C3H7NO5S2</td>
<td>1</td>
<td>S-Sulfo-L-cysteine</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>226.107</td>
<td>8.227</td>
<td>C9H14N03</td>
<td>3</td>
<td>Carnosine</td>
<td>0.49</td>
<td>1.00</td>
</tr>
<tr>
<td>181.074</td>
<td>9.880</td>
<td>C9H11NO3</td>
<td>11</td>
<td>L-Tyrosine</td>
<td>0.46</td>
<td>1.00</td>
</tr>
<tr>
<td>119.058</td>
<td>10.344</td>
<td>C4H9N03</td>
<td>11</td>
<td>L-Threonine</td>
<td>0.46</td>
<td>1.00</td>
</tr>
<tr>
<td>165.046</td>
<td>9.620</td>
<td>C5H11N03S</td>
<td>4</td>
<td>L-Methionine S-oxide</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>129.043</td>
<td>10.173</td>
<td>C5H7NO3</td>
<td>6</td>
<td>1-Pyrroline-4-hydroxy-2-carboxylate</td>
<td>0.44</td>
<td>1.00</td>
</tr>
<tr>
<td>75.032</td>
<td>10.980</td>
<td>C2H5NO2</td>
<td>3</td>
<td>Glycine</td>
<td>0.44</td>
<td>1.00</td>
</tr>
<tr>
<td>175.048</td>
<td>9.676</td>
<td>C6H9N05</td>
<td>4</td>
<td>N-Acetyl-L-aspartate</td>
<td>0.42</td>
<td>1.00</td>
</tr>
<tr>
<td>146.069</td>
<td>10.575</td>
<td>C5H10N2O3</td>
<td>6</td>
<td>L-Glutamine</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>164.047</td>
<td>4.251</td>
<td>C9H8O3</td>
<td>13</td>
<td>Phenylpyruvate</td>
<td>0.36</td>
<td>1.00</td>
</tr>
<tr>
<td>131.095</td>
<td>8.742</td>
<td>C6H13NO2</td>
<td>12</td>
<td>L-Leucine</td>
<td>0.36</td>
<td>1.00</td>
</tr>
<tr>
<td>155.069</td>
<td>10.478</td>
<td>C6H9N3O2</td>
<td>5</td>
<td>L-Histidine</td>
<td>0.34</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 3.6: Significant changes detected in amino acid metabolism in MI sample set. Control samples had purified recombinant enzyme added after reaction was quenched, while the treatment had the enzyme added for 30min incubation. Metabolites identified with confidence 10 (matching authentic standard) are highlighted in grey.

<table>
<thead>
<tr>
<th>Mass</th>
<th>PPM</th>
<th>Formula</th>
<th>Metabolite</th>
<th>Value</th>
<th>Std.R</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.053</td>
<td>10.669</td>
<td>C4H8N2O3</td>
<td>L-Asparagine</td>
<td>0.32</td>
<td>1.00</td>
</tr>
<tr>
<td>105.043</td>
<td>10.983</td>
<td>C3H7NO3</td>
<td>L-Serine</td>
<td>0.31</td>
<td>1.00</td>
</tr>
<tr>
<td>87.032</td>
<td>10.535</td>
<td>C3H5NO2</td>
<td>2-Aminoacrylate</td>
<td>0.31</td>
<td>1.00</td>
</tr>
<tr>
<td>149.051</td>
<td>9.102</td>
<td>C5H11NO2S</td>
<td>L-Methionine</td>
<td>0.28</td>
<td>1.00</td>
</tr>
<tr>
<td>174.112</td>
<td>18.361</td>
<td>C6H14N4O2</td>
<td>L-Arginine</td>
<td>0.27</td>
<td>1.00</td>
</tr>
<tr>
<td>175.096</td>
<td>10.983</td>
<td>C6H13N3O3</td>
<td>L-Citrulline</td>
<td>0.26</td>
<td>1.00</td>
</tr>
<tr>
<td>246.133</td>
<td>10.931</td>
<td>C9H18N4O4</td>
<td>N2-(D-1-Carboxyethyl)-L-arginine</td>
<td>0.23</td>
<td>1.00</td>
</tr>
<tr>
<td>132.090</td>
<td>10.962</td>
<td>C5H12N2O2</td>
<td>(2R,4S)-2,4-Diaminopentanoate</td>
<td>0.17</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 3.35: In vitro assay with 13C-labelled L-methionine. (a) Uniformly 13C-Methionine in 10 mM MOPS buffer + MI was incubated at 37°C for 30 min without (left) and with (right) 'Arginase'. (b) Yeast extract in 10 mM MOPS + MI was spiked with U-13C-Methionine and incubated at 37°C for 30 minutes without (left) or with (right) ‘Arginase’. (c) shows the trend plot of labelled L-methionine between the different sample sets.

Crystallography studies first suggested that the arginase-like protein is indeed a metalloenzyme and it was indicated that it binds significant quantities of Fe(II) ions, at least to a 1:1 ratio. The hypothesis is that Fe(II) could be liganded by a Try-His-Asp triad in the active site of the enzyme (Dr. David Christianson, University of Pennsylvania, personal correspondence). However, although changes in the dataset are evident using additional metal-ions as cofactors, it has recently been shown that the *T. brucei* ‘arginase’ does not bind metal-ions as previously thought (Hai et al., 2015). The observed binding of Fe(II) to the enzyme turned out to be weak binding to the HIS-tag of that protein. Why the changes, specifically to the amino acids, occur in the metabolomics dataset is unclear.
3.3. Discussion

The use of metabolomics for enzyme function identification is well documented, with this application used in multiple studies (de Carvalho et al., 2010; Larrouy-Maumus et al., 2013; Liscombe et al., 2010; Saito et al., 2006, 2009). However, in this project, I tried to apply this method to a variety of putative enzymes to investigate its use in a high throughput approach for genome wide annotations and to establish a workflow to do so. The focus was put on protein over expression, purification and assay optimisation. For cloning a ligase independent cloning system was used to cut down on time spent. Although, the use of Xa/LIC cloning system seemed initially more expensive, the time saved and the benefit of not having to use restriction enzymes made this approach more suitable. Protein over expression was performed in *E. coli* Rosetta (DE3) or Rosetta (DE3) pLysS, due to the speed and low cost of this system. As a lot of proteins could not be over expressed, for future work the use of trypanosomatids over expression systems is worth to be considered for proteins that cannot be obtained using *E. coli*. Protein purification was optimised by changing from Ni-NTA Spin Columns (Qiagen) to Poros MC20 column HPLC system. The quality of purified proteins was increased, which has to be considered as a vital part of this workflow. A few changes were also made to the assay as it was originally used in our lab (E. Kerhoven, thesis). The concentration of MOPS buffer was lowered from 40mM to 10mM, as MOPS was seen to block the ZIC-pHILIC column used (K. Burgess, Glasgow Polyomics). The change of concentration did not seem to affect the enzyme assays, although it was not directly tested, the results obtained from S-adenosylmethionine synthetase were performed in 10mM MOPS. A second extraction step was included, which increased the quality of the obtained dataset slightly. Data analysis was solely performed using IDEOM, as the obtained datasets were very complex, normally with around 1,000 putatively identified metabolites. The use of IDEOM showed to make those datasets manageable and easy to screen for changes in the dataset. The identified enzyme functions in this study, two commercial enzymes and a putative S-adenosylmethionine synthetase, showed the most significant changes in the metabolomics dataset straight away, although data still needed investigation, as the changes did not always immediately show the ‘correct’ metabolite identification.

Besides the S-adenosylmethionine synthetase, were the function could be shown, six additional enzymes were investigated. Four of them showed no significant changes in the datasets. For deoxyhypusine synthase it was recently shown that this enzyme’s activity is
regulated by a catalytically dead paralogue (Ngyuen et al., 2013), which might explain why no changes were seen.

Deoxyribose-phosphate aldolase and aldo/keto reductase also showed no significant changes in the dataset. RNAi lines were created to further investigate their function, but the knock down achieved was only 10% and 40% respectively, so no metabolomics experiments were performed. The putative aspartate carbamoyltransferase showed no significant changes in the sample set with the *in vitro* assay approach. However, the RNAi line created showed growth defect by 70% knock down. Metabolomics analysis showed decreasing levels in UDP and uracil and increasing levels in L-glutamate (Figure 3.27) indicating that the enzyme is involved in the biosynthesis of pyrimidines.

The putative NAD synthase and citrate synthase need further investigation. Changes were seen in the obtained metabolomic datasets. However, a definite function could not be assigned to them.

The created workflow in this project took 7 days to complete for one protein, starting with PCR for cloning and finishing with samples for LC-MS analysis. Although two proteins could be prepared at the same time, the need for the Poros MC20 column HPLC system slows protein purification down as proteins cannot be purified at the same time (as was possible with the Ni-NTA Spin Columns). As purified proteins were used immediately after preparation two *in vitro* assays could be performed per week.
Chapter 4

4.1 Introduction

Metabolomics has proven to be an excellent tool for quantitative and qualitative analysis of low molecular weight metabolites and their interaction within a living cell (Dunn et al., 2011). Areas of research which have benefited from this approach include drug development, biomarker discovery and the exploration of new metabolic pathways. Whilst many metabolites can be easily identified, suggesting which pathways may be active, direct proof of this is missing. One possible method to circumvent this problem has been to combine an untargeted metabolomic approach with stable isotope labelling. This method has successfully been employed to study metabolic pathways in trypanosomes (Creek et al., 2012c); providing not only a snapshot of cellular metabolism, but also of direct pathway identifications by tracing labelled compounds.

Trypanosomes have different life stages and can adapt quickly to changes in their environment. Procyclic trypanosomes utilise L-proline instead of D–glucose as an energy source, as their environment in the mid-gut of the tsetse fly provides amino acids more readily (Bursell, 1963). The glucose metabolism has been very well studied in bloodstream form and procyclic trypanosomes and Creek et al (2015) have recently provided an extended form of glucose metabolism in bloodstream form trypanosomes by combining stable isotope labelling with metabolomics. It was shown that glucose enters many branches of metabolic pathways, including for example polyamine biosynthesis (via glucose labelled ATP, which enters the methionine cycle), succinate fermentation pathway (forming malate, fumarate and succinate) and nucleotide synthesis (via ribose phosphate).

In this chapter the metabolic pathways of L-methionine, L-proline and L-arginine are investigated using stable isotope labelling combined with metabolomics to investigate their distribution within trypanosomes.

L-methionine was thought to be salvaged from methylthioadenosine (MTA) via the MTA cycle in trypanosomes (Berger et al., 1996); however, the absence of labelled L-methionine from glucose (Creek et al., 2015) indicates the lack of an active MTA cycle. Data obtained from U-^{13}C glucose showed 3-C labelled succinate and malate, which is consistent with their production via the succinate fermentation pathway. However, a significant amount of
malate and succinate were not labelled from glucose. Further experiments using U-13C L-glutamine showed the labelling of malate and succinate from L-glutamine, contributing to the intracellular presence of those metabolites. L-proline could also contribute to the production of malate and succinate, but so far the use of L-proline for metabolic purposes was only shown for procyclic trypanosomes.

Another well studied pathway is the biosynthesis of polyamines in trypanosome. L-ornithine and putrescine are important precursors leading to the production of trypanothione, the main thiol in trypanosomas (Fairlamb et al., 1985). In fact, inhibition of the enzymes ornithine decarboxylase, which catalyses the conversion of L-ornithine to putrescine, by the drug eflornithine, leads to cell death (Fairlamb et al., 1989; Vincent et al., 2012). The classical route for biosynthesis of L-ornithine is via L-arginine and is catalysed by the enzyme arginase. Previous work has shown that arginase activity is absent in bloodstream form trypanosomes (Hai et al., 2014), but also indicated that L-ornithine can still be produced from L-arginine (I. Vincent, thesis). To investigate the L-arginine metabolism in bloodstream form trypanosomes U-13C L-arginine was used.

4.1.1. L-methionine

The sulfur containing amino acids L-methionine and L-cysteine play an important role in protein synthesis, methylation processes in the cell (L-methionine only) and biosynthesis of polyamines and glutathione. The importance and role of these two compounds has been widely discussed in several reviews for trypanosomes and other organisms (Nozaki et al., 2005; Stipanuk, 2004; Walker and Barrett, 1997; Willert and Phillips, 2012). Not only does L-methionine play a vital role in cell survival, but the polyamine pathway has also been in research focus, due to the unique features it possesses in trypanosomes that can be useful for drug development against trypanosomiasis. Eflornithine, one of the drugs currently in use against this deadly disease, is known to inhibit the biosynthesis of polyamine pathway and causes cell death of the parasites (Yarlett and Bacchi, 1988; Vincent et al., 2012). In this chapter, I explore the metabolism of L-methionine in *T. brucei*, using U-13C L-methionine and metabolomics.
4.1.1.1. Protein synthesis

L-methionine is the starting amino acid in protein synthesis. It also plays a vital role in the active site of proteins as, due to its sulphur atom, it is easily oxidised (L-methionine to methionine sulfoxide), but does not seem to have the same importance to structure and stability as L-cysteine, whose highly reactive thiol-group has a big impact on structure and stability of proteins (Nozaki et al, 2005).

4.1.1.2. Methylation processes and methionine cycle

The L-methionine intermediate S-adenosylmethionine is an important methyl donor in many methylation processes of the cell. Binding of an adenosyl-group from ATP to the sulphur in L-methionine puts a positive charge to the sulphur and activates the methyl-group to be reactive with other compounds. It is estimated that about 95% of the acquired S-adenosylmethionine pool gets used for methylation processes in the cells, at least in mammals (Walker and Barrett, 1997). For trypanosomes the estimated figure is 90% (Bacchi and Yarlett, 1993). The resulting S-adenosylhomocysteine is toxic to cells, so is quickly being converted to L-homocysteine (see Figure 4.1, reaction 3). L-homocysteine can be converted back to L-methionine (see Figure 4.1, reaction 4) and therefore concluding the methionine cycle. An alternative route for L-homocysteine is the transulfuration pathway, where it is being converted to cystathionine and further to L-cysteine (Figure 4.1, reaction 5 and 8).
Figure 4.1: Methionine cycle as adapted from metacyc.org. This represents the parasitic protozoan pathway as described by Walker and Barrett (1997) Key to enzymes: 1- S-adenosylmethionine synthetase; 2- various methyltransferase; 3- S-adenosylhomocysteine hydrolase; 4- 5'-Methyltetrahydrofolate:homocysteine methyltransferase (methionine synthase). For reaction 4 a different enzyme is indicated for mammalian host (Betaine:homocysteine methyltransferase, EC 2.1.1.5). Reaction involves L-homocysteine and betaine to form L-methionine and dimethylglycine. This enzyme is supposedly absent in trypanosomes. 5- Cystathione β-synthase (EC 4.2.1.22), 6/8-γ-Cystathionase (EC 4.4.1.1), 7- spontaneous reaction

In T. brucei strain 927, a gene annotated as encoding for S-adenosylmethionine synthase exists in multiple copies. S-adenosylmethionine synthase activity has been shown to be
present in trypanosome extracts (Bacchi and Yarlett, 1993) and results from an in vitro assay using metabolite profiling on a recombinant S-adenosylmethionine synthase expressed from *E. coli* confirms the presence of this enzyme in trypanosomes (see chapter 3.2.3.1). When S-adenosylmethionine gets converted to S-adenosylhomocysteine various methyltransferases play a role in this reaction. A search in the trypanosome database TritrypDP (version 8.1) reveals 41 genes annotated as methyltransferases, some of them putative. S-adenosylhomocysteine to L-homocysteine is being catalysed by S-adenosylhomocysteine hydrolase (or adenosylhomocysteinase (EC 3.3.1.1)). The trypanosome genome contains one gene that has been putatively identified as S-adenosylhomocysteine hydrolase (Tb927.11.9590). This is the second branchpoint in the methionine cycle, as L-homocysteine can be converted back to L-methionine or into L-cystathionine. To convert L-homocysteine back to L-methionine, two genes have been putatively identified in *T. brucei* strain 927 to catalyse this reaction.

(1) Homocysteine S-methyltransferase (EC 2.1.1.10, Tb927.1.1270). This enzyme transfers a methyl-group from S-adenosylmethionine to L-homocysteine.

(2) 5'-Methyltetra-hydrofolate:homocysteine methyltransferase (EC 2.1.1.14, Tb927.8.2610), as shown in Figure 4.1.) transfers a methyl-group from 5’-methyltetrahydropteroyl tri-L-glutamate to form L-methionine from L-homocysteine. L-homocysteine can be converted to cystathione by cystathionine β-synthase. This pathway belongs to the biosynthesis of L-cysteine, where L-cysteine can be produced from L-cystathione by γ-cystathionase.

4.1.1.3. Biosynthesis of polyamines

S-adenosylmethionine can be converted into S-adenosyl-5'-deoxy-3’,5’-methylthio-adenosine (decarboxylated S-adenosylmethionine, dSAM) by S-adenosylmethionine decarboxylase (AdoMet decarboxylase) (Figure 4.2). This is where L-methionine enters the biosynthesis of polyamines. In comparison to the mammalian AdoMet decarboxylase, the trypanosome enzyme is only weakly activated by putrescine (Bitonti et al., 1986), but it is activated by dimerization with an inactive paralogue (Prozyme) of the active AdoMet decarboxylase (Pegg, 2009; Willert and Phillips, 2012). Decarboxylated S-adenosylmethionine gets converted to 5-methylthio-adenosine and spermidine by spermidine synthase (Figure 4.3)
Figure 4.2: Methionine entering the biosynthesis of polyamines. S-adenosylmethionine gets converted to decarboxylated S-adenosylmethionine by SAM decarboxylase (1).

Figure 4.3: dSAM and putrescine get converted to spermidine and S-methyl-5’-adenosine by Spermidine synthase (EC 2.5.1.16) (1). Spermidine is being utilised further in the synthesis of polyamines, while S-methyl-5’-adenosine is entering the L-methionine salvage pathway (MTA or Yang cycle).

Spermidine is being further metabolised to the trypanosomatid specific trypanothione (Fairlamb, 1989), which is essential to those parasites by protecting them from oxidative stress. As seen in Figure 4.4, spermidine and glutathione form glutathionylspermidine, this reaction is catalysed by glutathionylspermidine synthase (EC 6.3.1.8).
Figure 4.4: Formation of glutathionylspermidine from spermidine and glutathione, as adapted from metacyc.org. 1- Glutathionylspermidine synthetase (EC 6.3.1.8)

Trypanothione is formed by adding an additional glutathione to glutathionylspermidine, catalysed by trypanothione synthase (EC 6.3.1.9) as seen in Figure 4.5. Both trypanothione synthase and glutathionylspermidine synthase require ATP.

Figure 4.5: Last step in biosynthesis of trypanothione. Glutathionylspermidine and glutathione form trypanothione, reaction adapted from metacyc.org. 1- Trypanothione synthase (EC 6.3.1.9).
4.1.1.5. Methiolthioadenosine or Yang cycle

The methylthioadenosine (MTA) or Yang cycle is an L-methionine salvage pathway. Over seven steps the cell toxic product methylthioadenosine can be converted back to L-methionine (see Figure 4.6). Aspartate aminotransferase has been identified as the amino group donor of the final step in this pathway (2-oxo-4-methylthiobutyrate to L-methionine) for trypanosomes (Berger et al., 2001).

Figure 4.6: methylthioadenosine (MTA) or Yang cycle as adapted from metacyc.org. Enzyme key: 1- S-adenosylmethionine synthetase, 2- SAM decarboxylase, 3- spermidine synthase, 4- methylthioadenosine nucleosidase, 5- methylthioribose kinase, 6- methylthioadenosine phosphorylase, 7- 5-methylthioribose-1-phosphate isomerase, 8- 5-methylthioribulose-1-phosphate dehydratase, 9- 2,3-diketo-5-methylthio-1-phosphopentane enolase, 10- 2-hydroxy-3-keto-5-methylthio-phosphopentene phosphatase, 11- acireductone dioxygenase, 12- methionine o xo-acid transaminase (metacyc). Expected carbon contribution from L-methionine throughout this cycle is indicated by a red dot.
4.1.2. L-arginine metabolism

L-arginine is reportedly involved in several metabolic pathways in trypanosomatids (Pereira, 2014).

- Urea cycle
 L-arginine gives an amidino group to form urea. Catalysed by the enzyme arginase, L-arginine is converted to L-ornithine and urea. Arginase is present in two isoforms in most mammals. Arginase I is primarily located in the liver and takes part in the urea cycle, while Arginase II is located in the mitochondria and regulates L-arginine and L-ornithine concentration within the cell (Morris, 2002). Arginase is known to be present in Leishmania parasites, but does not seem to be present in T. brucei.

- Polyamine biosynthesis
 L-ornithine is converted to putrescine which is the starting diamine in the biosynthesis of the polyamines spermidine and trypanothione (Fairlamb et al., 1985; Tabor and Tabor, 1984).

- Alternative pathway for L-proline biosynthesis
 L-proline can be synthesised via L-ornithine and L-glutamate 5-semialdehyde (Hird et al., 1983)

- Phosphagen synthesis
 L-arginine transfers an amidino group to an amino acceptor, forming guanidine derivates (Hird, 1986). Those phosphagens can be used for energy storage. Studies on T. cruzi and T. brucei have shown that arginine phosphates are important for energy storage and at least in the case of T. cruzi can protect the parasite against oxidative stress (Pereira, 2014)

- Nitric oxide synthesis
 L-arginine is the precursor for the production of nitric oxide by nitric oxide synthase (NOS). NOS and arginase compete for L-arginine pools.

4.1.2.1. Urea cycle and polyamine synthesis from L-arginine

Previous studies from I. Vincent (University of Glasgow, thesis) have shown that arginase, the classical enzyme to produce L-ornithine from L-arginine, seems to be absent from T. brucei. Metabolomic studies using recombinant ‘arginase’ from T. brucei (Chapter 3) and an arginase knockout line (Hai et al., 2014) has shown no arginase activity.
Although it was evident that L-ornithine could be produced from L-arginine, it is unlikely that L-ornithine biosynthesis happens via arginase as no urea could be detected in bloodstream form trypanosomes cell extract using a commercial arginase detection kit (Vincent, thesis). That would lead to the conclusion that Ornithine is produced via a different pathway than the arginase route, but speculation that the urea cycle could be operative in bloodstream form trypanosomes in reverse direction (Arginine – Citrulline – Ornithine) could not be proven.

Figure 4.7: Predicted metabolites involved in the biosynthesis and degradation of L-ornithine. Carbons transferred between metabolites, originating from L-arginine, are highlighted in red. Enzymes involved in those reactions are shown in italic. *Two enzymatic steps are shown in Figure 4.4 and 4.5.
4.1.2.2. Phosphagens from L-arginine

Phosphoarginine has been shown to be an important phosphagen in many organisms and has been studied in *T. cruzi* where it has shown to protect the cells from oxidative stress (Miranda et al., 2006). *T. brucei* genome encodes for three arginine kinases, TbAK1-3, each of the isoforms is found in a specific subcellular compartment. TbAK1 is only present in the flagellum, while TbAK2 and TbAK3 in the glycosome and cytosol respectively (Voncken et al., 2013). When oxidative stress is induced in *T. cruzi*, levels of phosphoarginine increase (Pereira, 2014). However, when a similar experiment was performed in *T. brucei*, this was not confirmed and arginine kinase knock out lines showed that they are not essential in *T. brucei* (D H Kim, unpublished data).

4.1.3. L-proline

In procyclic trypanosomes L-proline can be utilised as main carbon source for the energy metabolism when glucose supply is limited in the insect host (Bursell, 1963). It has been shown that procyclics can switch their energy metabolism regarding ATP production very quickly between substrate phosphorylation (D-glucose) and oxidative phosphorylation (L-proline) and reverse when nutrition supply is changed (Coustou et al., 2008). However, in bloodstream form trypanosomes L-proline has not been indicated for the use in energy metabolism, as parasites in the bloodstream depend on the uptake of D-glucose and glycolysis for ATP production (Bringaud et al., 2006). The classical TCA cycle does not seem to be functional in trypanosomes, but part of this cycle seem to be operative nonetheless (van Weelden et al., 2005). L-Proline enters the TCA cycle in proline degradation (van Hellemond et al., 2005), with succinate and acetate being the endproducts (Van Weelden et al., 2005). Tracking 13C labelled glucose in bloodstream form trypanosomes also revealed malate, succinate and fumarate being labelled (Creek et al, 2015). Malate, succinate and fumarate were also labelled from L-glutamine (DH Kim and F Achcar, unpublished), however, glucose and L-glutamine combined still did not account for the three compounds labelled. But could L-proline in bloodstream form trypanosomes also contribute to the production of succinate, fumarate and malate as in procyclics?

L-proline enters the cell and gets converted to (S) 1-pyrroline-5-carboxylate by proline dehydrogenase. (S) 1-pyrroline-5-carboxylate forms L-glutamate-5-semialdehyde in a spontaneous reaction and gets further converted to L-glutamate by L-proline-5-
carboxylase. L-glutamate enters the TCA cycle by being converted to 2-ketoglutarate, a reaction catalysed by glutamate dehydrogenase. 2-ketoglutarate is transformed to succinyl-CoA and further to succinate, fumarate and malate.

L-glutamate can also be involved in the biosynthesis of L-arginine, via N-acetyl-L-glutamate, N-acetyl-L-ornithine, L-ornithine, Citrulline, L-arginino-succinate and lastly L-arginine. However, the above mentioned dataset from trypanosome cultures incubated with 13C-glutamate did not show any labelled L-arginine from L-glutamate. Vincent (thesis) also showed no labelling of L-arginine or L-ornithine occurring from L-proline when cells were incubated with 15N-Proline. This concludes that L-proline does not seem to play a part in L-arginine or L-ornithine biosynthesis. To fully investigate if bloodstream form trypanosomes utilise L-proline for metabolic purposes, cells were cultured and incubated for 48h with 13C-labelled L-proline.
4.2. Results

Metabolomics with uniformly 13C-labelled compounds was used to study the metabolic pathways of L-methionine, L-arginine and L-proline in the bloodstream form *T. brucei*. Experimental design, as described in methods 2.4.2. and 2.4.3., involved adding 50 % U-13C L-methionine (50µM final concentration) and 100% U-13C L-arginine or L-proline (at a final concentration of 200 µM) to the culture medium (CMM + 10% FBS gold). Cultured *T. brucei* strain 427 were incubated for 48 hours in the presence of the labelled compounds, with a starting concentration of 2×10^4 cells ml$^{-1}$. After 48 hours, cells were cooled down rapidly to 0°C by placing the falcon tube in dry ice / ethanol bath and cells were collected by slow centrifugation (to avoid cell lysis). Cell pellets were resuspended in extraction solvent (Chloroform Methanol Water, 1:3:1) and metabolites analysed by LC-MS (ZIC-pHILIC). Data analysis was achieved using mzMatch and mzMatch.ISO, using authentic standards and KEGG database for metabolite identification.

4.2.1. Global L-methionine metabolism

In total 17 labelled metabolites were detected in this dataset, belonging to the methionine cycle, L-cysteine and polyamine biosynthesis and the MTA or Yang cycle. Six metabolites seem to be a product of methylating processes from S-adenosyl-L-methionine and are shown in 4.2.6, the other metabolites were mapped into global metabolite map (Figure 4.8). Some intermediate metabolites belonging to the pathways were not detected, but were mapped nonetheless to give a better understanding of the L-methionine metabolism in the bloodstream form trypanosomes.
Figure 4.8: Overview of metabolites labelled from 13C L-methionine in bloodstream form trypanosomes. This basic metabolic network shows the metabolites mapped into their pathway (according to metacyc). Yellow nodes indicate 5 carbon labelling, orange nodes: 4 carbon labelling, green nodes: 3 carbon labelling, blue nodes one carbon labelling and none carbon labeling is presented in grey nodes. Metabolites expected to be there but not detected are marked by white nodes. Met: L-methionine, SAM: S-adenosyl-L-methionine, SAH: S-adenosyl-L-homocysteine, HCys: L-homocysteine, Cysta: Cystathionine, amb: (2Z)-2aminobut-2-enolate, Cys: L-cysteine, dSAM: decarboxylated S-adenosyl-L-methionine, SPMD: Spermidine, Glu-thio-SPMD: glutathionyl-spermidine, MTA:5’-methylthioadenosine, MTR: 5’-methylthioribose, MTR-P: 5’-methylthioribose-1-phosphate, MTRRibu-P: 5’-methylthioribulose-1-phosphate, P-diketo-mt-pen: 1-Phospho-2,3-diketo-5’-methylthiopentane, H-mt-oxopent-P: 2-hydroxy-5-(methylthio)-3-oxopent-1-enyl phosphate, dih-mt-pent-1-en-3-one: 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one, MTOB: 2-oxo-4-methylthiobutyrate.

4.2.1.1. Methionine cycle and L-cysteine biosynthesis

L-methionine was added to cultured BSF trypanosomes in a 50% mixture of 12C and U-13C-L-methionine for 48 h. The intracellular L-methionine content was approximately 35%. In fresh CMM this amount was about 30%. Although, the added L-methionine to the media was 50% labelled/unlabelled, the added FBS gold seems to dilute the L-methionine concentration in the fresh media. From the four metabolites that make the methionine cycle only three were detected in this dataset (Figure 4.9).
Figure 4.9: Labelling trend of the first three metabolites of the methionine cycle. (a) L-methionine, 5-C labelled in fresh media with 50% added U-\(^{13}\)C L-methionine, trypanosome cell extract and spent media; (b) S-adenosylmethionine, detected in cell extract, 5-C labelled in cell extract from 50% U-\(^{13}\)C L-methionine culture; (c) S-adenosylhomocysteine, 4-C labelled in trypanosome extract incubated in CMM with 50% U-\(^{13}\)C L-methionine. CMM: Fresh medium sample, Extract: Trypanosome cell extract and Spent: Spent medium analysis. Numbers indicate samples with and without \(^{13}\)C compound (1 with \(^{13}\)C compound, 2 without). Orange equals 5-C labelled, brown 4-C labelled and blue 1-C labelled carbons. As natural abundance of \(^{13}\)C occurs, when 1-C is detected it needs to be compared to the unlabelled control.

As shown in Figure 4.10 formation of S-adenosylmethionine could be detected from L-methionine, with the labelling pattern as expected (5-C). S-adenosylmethionine to S-adenosylhomocysteine showed a resulting labelling pattern of 4-C for S-adenosylhomocysteine. Methylated compounds were also detected and are shown in 4.2.1.4. Conversion of S-adenosylhomocysteine to homocysteine would show a labelling of 4-C, however L-homocysteine was not detected (the authentic standard was also not detected). The formation of L-methionine from L-homocysteine could not be detected. Although 4-C labelled L-methionine was detected in the cellular metabolome, it was only shown in small amounts with a very similar percentage of 4-C labelled methionine in the fresh culture medium. Therefore, it seems that the 4-C labelled L-methionine originates from a small fraction of 4-\(^{13}\)C present in the supplied U-\(^{13}\)C L-methionine. Therefore it seems unlikely that the full methionine cycle is active in cultured bloodstream form trypanosomes or just with a very low flux, when large quantities of methionine are presented to the cell. Cysteine biosynthesis can occur from L-homocysteine, which has been produced from L-methionine via the methionine cycle. L-homocysteine and L-serine form L-cystathionine (catalysed by cystathionine β-synthase), which can be transformed to L-cysteine and (2Z)-2-aminobuty-2-enolate by cystathionine γ-lyase. L-homocysteine would be expected to show a 4-C labelling pattern. L-cystathionine did show a 4-C labelling pattern expected when labelling occurs from L-homocysteine. As L-cysteine only gets the sulphur-group from L-cystathionine, I cannot say for certain if L-cysteine is being
produced from L-methionine. However, a peak was detected and putatively annotated as 2-aminobut-2-enoate which shows the expected labelling pattern from this reaction. It was shown by (Bacchi et al., 1995) that when 35S-methionine was added to culture medium the 35S-label shows up in L-cysteine, confirming that this pathway is active in T. brucei.

Figure 4.10: Methionine cycle and L-cysteine biosynthesis in trypanosomes as seen from labelling data. Expected labelled carbons are shown in red and when compound was detected in the dataset, labelling pattern is shown next to the structure. Orange equals 5-C labelled, brown 4-C labelled and blue 1-C labelled carbons. As natural abundance of 13C occurs, when 1-C is detected it needs to be compared to the unlabelled control. Key to enzymes: 1- S-adenosylmethionine synthetase; 2- various methyltransferase; 3- S-adenosylhomocysteine hydrolase; 4- 5’-Methyltetrahydrofolate:homocysteine methyltransferase (methionine synthase). 5- Cystathione β-synthase (EC 4.2.1.22), 6/8- γ-Cystathionase (EC 4.4.1.1), 7- spontaneous reaction.
4.2.1.2. Polyamine biosynthesis

The conversion of S-adenosylmethionine to decarboxylated S-adeosylmethionine (dSAM) is the first step in the synthesis of polyamines from L-methionine. dSAM was not detected in this dataset. dSAM and putrescine get converted to spermidine. However, spermidine does not retain well on ZIC-pHILIC columns. As seen with the authentic standard of spermidine (see Figure 4.11) no defined peak is detectable, but many over the time period of about 7 to 20 min. Therefore, no identification of the compound spermidine can be made for analysis.

![Figure 4.11: Spermidine from authentic standard mix on ZIC-pHILIC column.](image)

The only metabolite detected in this pathway was trypanothione disulfide, which was 3-C labelled from methionine. As seen in Figure 4.12, the detected labelling pattern for trypanothione is shown to be 1-C, 3-C and 4-C labelled. The detected 4-C labelled is most likely an artefact from the 3-C originating from L-methionine and the natural occurring 1-13C.
Figure 4.12: Polyamine biosynthesis from L-methionine. dSAM and putrescine are converted to spermidine and S-methyl-5'-adenosine by 1- Spermidine synthase (EC 2.5.1.16). Spermidine is utilised further in the synthesis of polyamines, while S-methyl-5'-adenosine enters the L-methionine salvage pathway (Yang cycle). Formation of glutathionylspermidine from spermidine and glutathione is catalysed by 2- Glutathionylspermidine synthetase (EC 6.3.1.8). Glutathionylspermidine and glutathione form trypanothione, catalysed by 3- Trypanothione synthase (EC 6.3.1.9). Expected labelled carbons are shown in red and when compound was detected in the dataset, labelling pattern is shown next to the structure. Brown equals 4-C labelled, green 3-C labelled and blue 1-C labelled carbons.
4.2.1.3. Recycling of methionine

It has been previously described in trypanosomes that methionine can be salvaged via the methylthioadenosine (MTA) pathway (Berger et al., 1996; Nozaki et al., 2005). S-methyl-5-thioadenosine (1-C labelled from L-methionine) being converted back to L-methionine, going through a seven step pathway including 5’-methylthioribose-phosphate, 5’-methylthioribulose-1-phosphate, 1-phospho-2,3-diketo 5’-methylthiopentane and 2-oxo-4-methylthiobutyrate (see Figure 4.14.). However, in this labelling data only the intermediates S-methyl-5-thioadenosine and methylthioribose are being labelled. L-methionine was detected in 1-C labelled form. However, that seems to be attributed to the normal natural abundance detection. Figure 4.9 (a) shows the detected L-methionine plus labelling pattern and there is no increase in 1-C labelled L-methionine between cells incubated in media with and without 13-C labelled L-methionine.

Analysis of spent media from bloodstream form trypanosomes have shown, that methylthioribose seems to be secreted from the cells after 48 hours (D. H. Kim and F. Achcar, unpublished data). Methylthioribose was also detected in spent media during this experiment, however, only one replicate of spent media was analysed and the peak was ill-defined. Nonetheless, together with the spent media analysis (Figure 4.13) data from Kim and Achcar it seems plausible that 5’-methylthioribose gets secreted from bloodstream form trypanosomes when L-methionine is highly abundant in the culture medium.

Figure 4.13: Spent media analysis (performed by D. H. Kim and F. Achcar), shows increasing levels of methylthioribose secreted from the cells, starting after 48h. Trypanosomes were grown in HMI-9 and CMM. Figure kindly provided by F. Achcar.
Creek et al. (2015) showed that when bloodstream form trypanosomes were incubated with 13C-labelled Glucose, S-adenosylmethionine got labelled from ATP and those labelled carbons were transferred to MTA. However, from that point onwards no labelled carbons were detected.

Figure 4.14: Methionine salvage pathway via 5’-Methylthioadenosine and 5’-Methylthioribose. Enzyme key: 1-S-adenosylmethionine synthetase, 2-SAM decarboxylase, 3-spermidine synthase, 4-methylthioadenosine nucleosidase, 5-methylthioadenosine phosphorylase, 6-5-methylthioribose-1-phosphate isomerase, 7- 5-methylthioribulose-1-phosphate dehydratase, 8- 2,3-diketo-5-methylthio-1-phosphopentane enolase, 9-2-hydroxy-3-keto-5-methylthio-phosphophenate phosphatase, 10- transaminase. Expected labelled carbons are shown in red and when compound was detected in the dataset, labelling pattern is shown next to the structure. Red equals 6-C labelled, orange 5-C labelled and blue 1-C labelled carbons.
Berger et al (1996) reported that the last step in methionine production via methylthioadenosine takes place, converting 2-oxo-4-methylthiobutyrate into L-methionine. However, this is inconsistent with the conclusion of this experiment. A compound putatively annotated as 4-methylthio-2-oxobutanoate with 5-C labelling was detected in the 13C 1-methionine dataset in cell extract and spent media samples. So it seems more likely that 2-oxo-4-methylthiobutyrate is being produced from L-methionine and secreted from the cell, rather than the MTA cycle being active and salvaging L-methionine from methylthioadenosine. However, 5’-methylthioadenosine phosphorylase activity was measured in *T.b. brucei* crude extract (Ghoda et al., 1988) highlighting the presence of the methylthioadenosine pathway. A compound putatively identified as 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one was found 1-C labelled. This compound is described as an intermediate of the Yang cycle for L-methionine salvage and can either be a precursor to 4-methylthio-2-oxobutanoate or 3-(methylthio)propanoate (Figure 4.15 (b)). This reaction has been described to happen in bacteria, and is thought to provide a mechanism for L-methionine regulation *in vivo* (Dai et al., 2001).

![Diagram](image)

Figure 4.15: 1,2-Dihydroxy-5-(methylthio) pent-1-en-3-one (1) Detected peak for 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one. Although the peak is ill-defined, the 1-C labelling appears clear in cell extract grown in 50% U-13C L-methionine for 48 hours (a) and not in the cell extract lacking the U-13C L-methionine (b). (2) Possible fate of 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one in bloodstreamform trypanosomes. 3-(methylthio)-propanoate was not detected. enzyme key: 1- acireductone dioxygenase.

4.2.1.4. Methylated metabolites

Six methylated compounds with 13C labelling were detected in this dataset. Labelled methylated amino acids with 1-C, 2-C and 3-C labelled and 1-C labelled methylguanine.
Various methyltransferases use S-adenosylmethionine as a methyl donor and their targets include tRNA, proteins, DNA and lipids. However, those compounds are too big to be analysed on this platform. 41 genes are annotated as putative methyltransferases in the published *T. brucei* genome and about 90% of the SAM produced in trypanosomes is thought to be used for methylation processes. However, as for this study the methylated products were seen as by-products of the metabolic pathways associated with L-methionine, it was not further investigated. The six compounds were: N6,N6, dimethyl-L-arginine, N6 methyl L-arginine, N6 methyl L-lysine, N6, N6, N6 trimethyl L-lysine, N-methylhistidine and 7-methylguanine (see Figure 4.16)

Figure 4.16: Methylated metabolites detected in trypanosome cell extract, incubated with (L) or without (U) 13C L-methionine.
4.2.2. U-13C - L-arginine metabolite tracking

Trypanosomes can take up L-ornithine and L-arginine, but potentially the L-ornithine uptake could be sufficient enough for trypanothione synthesis (I. Vincent, PhD thesis, 2011), which could explain the absence of an arginase in trypanosomes. However, as it was shown that L-arginine can be converted to L-ornithine, when L-ornithine was absent from the incubation medium (I Vincent, thesis) an alternative route for L-ornithine production from L-arginine could be present. To further probe the L-arginine metabolism in trypanosomes, U-13C-L-arginine was used in an untargeted metabolomic approach. 13 labelled compounds were detected in U-13C labelled L-arginine dataset, six of which were related to the metabolites shown and mapped in Figure 4.7.

4.2.2.1. Urea cycle – Biosynthesis of L-ornithine

L-arginine was found 6-C labelled in fresh CMM (with 200µM U-13C L-arginine added), labelled cell extract, spent labelled CMM, but also in small amounts in unlabelled cell extracts. The most reasonable explanation for finding labelled L-arginine in unlabelled cell extract is sample contamination, either during sample preparation or sample carry-over on the LC-MS platform. After checking the sample running order on the LC-MS platform it was shown that unlabelled cell extract samples (three replicates) were run directly after samples containing labelled L-arginine. As the L-arginine peaks are the only peaks showing contamination it is likely that the relatively high concentration of L-arginine caused minimal contamination to show up in the dataset, while possible other contaminations were too low to show. L-ornithine was detected 5-C labelled from L-arginine. It is unclear whether the reaction happened within the cells or in the medium. Spent media showed equally high amounts of L-ornithine 5-C labelled as cell extract, while fresh media only showed traces of 5-C labelled L-ornithine. However, since other metabolites labelled inside the cell do not show outside and the concentration of labelled L-ornithine was similar in cell extracts and in spent medium, it seems L-arginine converts to L-ornithine outside the cell by an arginase found in the added serum. A low percentage of 6-C labelled L-citrulline was detected in the labelled cell extract. This labelling pattern could only occur directly from L-arginine, as L-ornithine was 5-C labelled. The intermediate metabolite L-arginino-succinate was not detected in this dataset. N-acetyl-L-ornithine and N-acetyl-L-glutamate 5-semialdehyde were detected as 5-C labelled from L-arginine. They are pathway intermediates in the biosynthesis of L-ornithine from L-
glutamate. L-glutamate was not labelled in this dataset so the pathway does not occur to be fully functional. The enzyme Acetylornithine deacetylase, which converts L-ornithine to N-acetyl-L-ornithine, has been putatively identified in the trypanosome genome. The labelling pattern for N-acetyl-L-glutamate 5-semialdehyde was ill-defined (see Figure 4.17.). Furthermore, the enzyme Acetylornithine transaminase has not been reported to be present in *T. brucei*, so it is unclear if the detected labelling is indeed from N-acetyl-L-glutamate 5-semialdehyde. Also, traces of labelled N-acetyl-L-glutamate 5-semialdehyde were detected in the cell extract from cultures without added 13C L-arginine.

![Figure 4.17: N-acetyl-L-glutamate 5-semialdehyde](image)

Figure 4.17: N-acetyl-L-glutamate 5-semialdehyde (a) Trend plot of 5-C labelled N-acetyl-L-glutamate 5-semialdehyde in fresh and spent media (with added 13C L-arginine) and labelled and unlabelled cell extract. Orange equals 5-C labelled and blue 1-C labelled carbons. As natural abundance of 13C occurs, when 1-C is detected it needs to be compared to the unlabelled control. (b) Detected peaks from those samples.

From L-ornithine, the production of trypanothione (4-C labelled) could be detected, although the intermediates putrescine, spermidine and glutathionylspermidine were not. However, putrescine, spermidine and glutathionylspermidine do not retain well on zic-phILIC columns. All the metabolites described here with their expected and actual labelling pattern are shown in Figure 4.18.
Figure 4.18: Predicted metabolites to be involved in L-ornithine biosynthesis and degradation (Urea cycle and polyamine biosynthesis included). Carbons labelled from L-arginine are highlighted in red and enzyme names are in italic. * Two enzymatic steps are shown in Figure 4.4 and 4.5.
4.2.2.2. Energy storage in T. brucei

L-arginine phosphate (or phosphoarginine) is important for trypanosomes for energy storage. In this experiment phosphoarginine was found to be labelled from L-arginine at 38% (see Figure 4.19), when about 45% labelled L-arginine was detected in fresh media and 40% labelled L-arginine within the cell.

![Graph showing L-arginine phosphate](image)

Figure 4.19: Detected peak of L-arginine phosphate, with a mass of 254.07 and retention time of: 11.08 min.

4.2.2.3. Other metabolites labelled from L-arginine

- Methylarginine and dimethylarginine, both 6-C labelled from L-arginine, could have their origin from methylated proteins.

 A recent study highlights the importance of arginine methylated proteins. Five putative arginine methyltransferases in *T. brucei* genome have been described and proteomic analysis showed 167 arginine methylproteins which have a wide range of function, including metabolism, chaperoning, RNA processing, DNA replication, translation and function in transport. Some of those methylations are trypanosome specific, while others are conserved modifications (Fisk et al., 2013)

- Ketoarginine, which has also been identified as 6-C labelled from L-arginine, could be a precursor for 3-methylarginine synthesis or L-arginine degradation.

- N5-(L1-Carboxyethyl)-L-ornithine formed from L-ornithine and pyruvate. This compound was seen to be increased after cells were treated with Eflornithine
(Vincent et al., 2012). Additionally, N5-(L1-Carboxyethyl)-L-ornithine was also detected in U-13C labelled Glucose data (Creek et al., 2015). Although this is a metabolite known from bacteria, its function in trypanosomes is unknown (reaction, see Figure 4.20 (a)).

- A metabolite with the mass of 173.069 and a retention time of 9.7 min, putatively identified as L-N2-(Carboxyethyl)-L-arginine (D-octopine). D-octopine plays a role in NAD/NADH regulation and is formed by D-octopine synthase using pyruvate and L-arginine (Figure 4.20 (b)).

\[\text{Pyruvate} \quad + \quad \text{L-ornithine} \quad + \quad \text{NADH} + \text{H}^+ \quad \rightarrow \quad \text{N5-(L1-Carboxyethyl)L-ornithine} \]

\[\text{Pyruvate} \quad + \quad \text{L-arginine} \quad + \quad \text{NADH} + \text{H}^+ \quad \rightarrow \quad \text{D-octopine} \]

\[\text{Blue dots indicate carbon originated from D-glucose (Creek et al., 2015) and red dots indicate carbons labelled from L-arginine.}\]

Figure 4.20: Labelling pattern and origin of carbons in reaction leading to (a) N5-(L1-Carboxyethyl)-L-ornithine and (b) D-octopine. (a) Enzyme catalysing the reaction from pyruvate and L-ornithine to N5-(L-1-Carboxyethyl-) L-ornithine is N5-(carboxyethyl)ornithine synthase (EC1.5.1.24). (b) Synthesis of D-octopine by octopine dehydrogenase (EC1.5.1.11) from pyruvate nd L-arginine. Blue dots indicate carbon originated from D-glucose (Creek et al., 2015) and red dots indicate carbons labelled from L-arginine.
4.2.3. U-\(^{13}\)C - L-proline metabolite tracking

Although L-proline seems to be taken up by bloodstream form trypanosomes, the intracellular concentration of labelled L-proline was very low using 50% of labelled L-proline (50 µM final concentration U-\(^{13}\)C L-proline) in growth medium for 48 hours. Under those conditions downstream metabolites from L-proline were not labelled to a high enough percentage for analysis and therefore the experiment was repeated with 100% added labelled L-proline (200 µM U-\(^{13}\)C L-proline). Recycling of L-proline from protein/peptide breakdown seems a plausible explanation for the dilution of labelled L-proline within the cell and would also explain why the first experiment was not successful.

Seven labelled compounds were detected in U-\(^{13}\)C labelled L-proline dataset, all with relatively low percentage of labelling (except for L-proline). Figure 4.7 shows the detected metabolites including the percentage of labelling.

The results of this experiment conclude that except for protein synthesis, L-proline seems to be playing a minor role in the metabolism of bloodstream form trypanosomes. Trypanothione was detected to be 5-C labelled from L-proline, but only 1.2%. The pathway for this is shown in Figure 4.21 and the intermediates are (S)-1-pyrroline-5-carboxylate and L-glutamate-5-semialdehyde (not detected), L-glutamate (0.5% labelled,

![Figure 4.21: Distribution of labelled carbons (C13) from L-proline (Fiona Achcar).](image)

Colours representing the number of carbons contributed from L-proline. Red: 5-C, green: 4-C, blue: 3-C and pink: 2C. Not detected compounds are (S)-1-pyrroline-5-carboxylate, L-glutamate-5-semialdehyde, 2-oxoglutarate and Succinyl-CoA.)
5-C) and Glutathione (0.2% labelled, 5-C). The detected labelling of trypanothione therefore results from L-glutamate and glutathione, rather than L-ornithine and putrescine. Other metabolites labelled were hydroxyglutarate (0.8%) and succinate and malate (0.8% 4-C labelled both and 0.06% (succinate) and 0.09% (malate) 3-C labelled).
4.3. Discussion

4.3.1. L-methionine

Here, the sulphur containing amino acid L-methionine and its metabolism in *T. brucei* was investigated, with the focus on the methionine cycle, polyamine biosynthesis and the MTA cycle.

The methionine cycle shows three out of the four metabolites present. Although L-homocysteine was not detected, due to downstream metabolites being present (cystathionine) it only seems plausible that it would be 4-C labelled. Interestingly, the methionine cycle does not seem to be a cycle at all as the lack of 4C-labelled methionine indicates that L-homocysteine is not being converted back to L-methionine. This contradicts previous published material that L-homocysteine can be converted back to L-methionine (Walker and Barrett, 1997). It seems more likely that L-homocysteine gets converted to L-cysteine, over cystathionine (which showed 4-C labelling), in agreement with Bacchi et al (1995), who could show, with 35S-labelled L-methionine, the reverse transulfation pathway being present in trypanosomes. The trypanosome specific polyamine thiol conjugate trypanothione was detected as being 3-C labelled from L-methionine. Unfortunately, no intermediate metabolite in this pathway was detected (dSAM, spermidine, glutathionylspermidine). However, methylthioadenosine (a byproduct of spermidine synthesis from dSAM and putrescine and starting point of the MTA cycle) was detected 1-C labelled. The production of methylthioribose was also detected in bloodstream form trypanosomes when incubated with 13C glucose (Creek et al, 2015) and here it was 5-C labelled from S-adenosylomethionine (via ribose and the resulted labelling of ATP), which confirms the finding in the methionine labelled dataset. However, the full functionality of the MAT cycle could not be confirmed in either dataset. The production of methylthioribose from methylthioadenosine was detected, with both compounds 1-C labelled from L-methionine. But, it looks like methylthioribose gets secreted from the cell and not converted to methylthioribose 1-phosphate. Although the intermediates in the MTA pathway, from 5’methylthioribose-5-phosphate to 2-hydroxy-5-(methylthio)-3-oxopent-1-enyl phosphate, were not detected, the second last metabolite (1,2-dihydroxy-5-(methylthio)pent-1-en-3-one) was. The 1-C labelling suggests that the pathway is active, but after that point is unclear what happens. 2-oxo-4-methylthiobutanoate is not 1-C labelled as would be expected. Instead 2-oxo-4-methylthiobutanoate is 5-C labelled from...
L-methionine and seems to be secreted from the cell. As it is the corresponding keto-acid and it has been shown that trypanosomes are capable of doing this reaction (Creek et al., 2013). These results conflict with research from Berger et al (1996) and Bacchi et al (1991), who showed that T. brucei is capable of producing L-methionine from 2-oxo-4-methylthiobutanoate, preferably from the transamination of aromatic amino acids (Berger et al., 1996; Berger et al., 2001). However, as shown in the presented dataset, under the conditions used, L-methionine does not seem to be recycled by either methionine cycle or MTA cycle, which is consistent with findings from U-13C glucose labelling (Creek et al., 2015).

4.3.2. L-arginine

L-ornithine is an important precursor for the synthesis of the diamine putrescine in T. brucei. Putrescine is involved in the synthesis of spermidine, which can be synthesised, with glutathione, to the trypanosome specific thiol trypanothione (Fairlamb and Cerami, 1992). Vincent et al (2011) also found the metabolite N-acetyl-L-ornithine being increased after bloodstream form trypanosomes were treated with Efornithine. N-acetyl-L-ornithine is the precursor of L-ornithine in the biosynthesis of L-ornithine from L-glutamate. Tracking metabolites using stable isotope labelling has been successfully applied before, most recently with 13C-labelled glucose in bloodstream form trypanosomes, resulting in a much better understanding of the glucose metabolism (Creek et al., 2015). It has been reported that bloodstream form trypanosomes can convert L-arginine into L-ornithine, however without the production of urea (Vincent, thesis). Using 13C L-arginine for metabolite tracking could lead to the identification of a different pathway for L-ornithine biosynthesis is active in bloodstream T. brucei that excludes the most direct route via ‘arginase’.

L-ornithine was detected as 5-C labelled from Arginine in this experiment (see 4.2.2.1). However, it seems that this conversion happens in the media. Possible bovine arginase activity in the media could explain the 5-C-labelled L-ornithine. Labelled L-ornithine was detected in spent media in similar high concentration (about 10%) as within the cell (about 12%). Fresh media with added U-13C L-arginine only showed traces of 5-C Ornithine, however, this sample was prepared immediately after production and therefore the bovine arginase activity was stopped very quickly. As bloodstream form trypanosomes can take L-ornithine up this seems the most reasonable explanation for the presence of 5-C-Ornithine within the cell.
Incubating U-\(^{13}\)C L-arginine in cell free media with 10% FBS also showed 5-C labelled L-ornithine after 48 hours (F. Giordani, data not shown), concluding it is most likely that L-arginine gets converted to L-ornithine in the media by arginase activity from serum. However, L-citrulline has been detected as 6-C labelled, albeit at small levels. L-citrulline is part of the urea cycle, a precursor in L-arginine production from L-ornithine. It is possible that in bloodstream form trypanosomes the urea cycle is operative in the reverse direction; leading from L-arginine via L-citrulline to L-ornithine and this data could support this hypothesis. L-citrulline was 6-C labelled, which could only occur from L-arginine, not L-ornithine. The intermediate L-arginino-succinate was not detected in the dataset.

L-arginine phosphate has been described to be of use in energy storage in trypanosomes, with three arginine kinases being described in the *T. brucei* genome.

The main phosphagen for energy storage in vertebrates is creatine, but trypanosomes do not seem to encode a creatine kinase and use arginine phosphate instead (Canepa et al., 2011).

4.3.3. L-proline

The percentage and labelling pattern from L-proline suggests that L-proline is only minimally involved in the synthesis of polyamines. The data shows that L-proline is not involved in the synthesis of L-ornithine, but rather transfers carbons via L-glutamate and glutathione to trypanothione. However, the low percentage of labelled compounds detected in labelled cells, imply that the main purpose for L-proline in bloodstream form trypanosomes is for protein synthesis.
Chapter 5

5.1. Introduction

The two described causative subspecies of HAT are *T. b. rhodesiense* (acute form) and *T. b. gambiense* (chronic form), with both forms present in the Central Nervous System (CNS) in the late stage of the disease. For *T. b. brucei* infections in mice, it has been shown that different strains of trypanosomes can manifest themselves as acute and chronic diseases as well. In this project, the *T. b. brucei* strains GVR35 (Jennings et al., 2002) and 427 (Melville et al., 2000) were used, as GVR35 causes a chronic infection in mice and invades the CNS with varying parasitemia while 427 shows an acute infection with high parasitemia causing high mortality within days without invading the CNS (see 1.2.3). What causes this difference in the progression of infection? Secreted/excreted proteins from the parasites (secretome) have been described as being important factor for virulence and to avoid the host immune response (Geiger et al., 2010). Garzon et al. showed that excreted/secreted proteins can inhibit the maturation of dendritic cells and stop them from inducing a lymphocytic allogenic response (Garzón et al., 2013). Furthermore, secreted cysteine peptidases are thought to be an important factor in the crossing of the blood brain barrier (BBB). Analysing and comparing the secretome from both strains may therefore give an inside of what causes the difference in virulence between 427 and GVR35.

Two approaches were used to determine the secretome of the two different *T. b. brucei* strains: (1) differential secreted proteins between the two strains were investigated by DiGE and (2) the whole set of secreted proteins for each strain using Filter Aided Sample Preparation (FASP) with in solution trypsin digest.

5.2. Results

Two strains of bloodstream form trypanosomes were grown up from stabilates. To keep the conditions for both strains the same, different media (HMI-9, CMM and modified HMI-9, see 2.1.1.) were tested for cell culture. Strain GVR35 was directly grown in modified HMI-9 medium, while strain 427 was passaged once in HMI-9 before changed to modified medium or both strains were adapted to CMM + 10% FBS gold. However, strain GVR35 did not grow in HMI-9 + 10% FBS gold. Adaption to the modified media took several
passages for strain 427 or strain GVR35 to adapt to CMM. To reach the desired cell count of 2×10^8 (as described by Holzmueller et al., 2008) cell culture volumes were between 120 - 150 ml for strain 427 and 150 - 170 ml for strain GVR35. Cell viability was checked using microscopic examination during incubation in serum-free modified medium every 30 min for two hours. Cell morphology looked normal in strain 427 and cells had good motility. Strain GVR35 showed cell clumps forming after 60 min, which suggests that cells were starting to die. After secretome sample preparation an aliquot of the sample was run on SDS-PAGE to ensure a detectable amount of protein was present.

5.2.1. Sample preparation for DiGE

For quantification purposes and to determine the strain specific differences in secreted proteins a gel-based proteomic approach was tested. 2D-DiGE is an excellent tool to compare different strains of pathogens. Samples are run on one gel, which minimises the chances of seeing dissimilarities in proteins detected due to differences in gel running conditions. A drawback of this method is that a large amount of protein is needed to run the 2D-DiGE with two prep-gels. 550 µg protein is required per sample set to obtain optimal results. The amount of protein obtained from the secretome preparation for strain GVR35 was determined by Bradford assay and was 461.15 µg ml$^{-1}$, while 427 was 451.97 µg ml$^{-1}$ with a sample volume of 1 ml. To obtain a high enough protein concentration samples were precipitated with acetone and resuspended in 200µl DiGE lysis buffer. Final protein concentration was 600 µg ml$^{-1}$ for strain GVR35 and 700 µg ml$^{-1}$ for strain 427. Therefore, even after acetone precipitation a high sample volume had to be used to reach desired amount of protein (50 µg for DiGE gel). For the prep gels a lesser amount of sample had to be used; instead of 500 µg protein, only around 90 µg was loaded onto the prep gels. That resulted in a loss of protein spots showing in the prep gels as compared to the DiGE gel. Therefore not all protein spots showing differences could be analysed.

5.5.2. DiGE analysis

Protein spots with a minimum of twofold difference between strain GVR35 and strain 427 were picked for analysis. 35 protein spots were picked from the prep gel of strain GVR35 and 21 were picked from the strain 427 gel (Figure 5.1.). From the 35 spots picked from the GVR35 prep gel 28 proteins could be identified, while for strain 427, 17 of the 21 showed protein identification (Table 5.1. (427) and Table 5.2. (GVR35)).
Figure 5.1.: Image (DiGE) for *T. b. brucei* strain 427 (a) and GVR35 (b). 2-D separation was obtained using two step separation with an IEF strip pH 4-7 followed by SDS-Page size separation. Images were scanned and compared using DeCycler 2D software. Protein spots identified to show at least a twofold difference between the two strains were extracted from the prep gel, digested with trypsin and analysed by LC-MS. Protein spots extracted are marked in the images by a circle and the spot identification number for those were an identification could be made. The protein identifications can be seen in Table 5.1. for 427 and Table 5.2. for GVR35.
<table>
<thead>
<tr>
<th>Spot No.</th>
<th>ID</th>
<th>Accession no.</th>
<th>Volume Ratio</th>
<th>Matches</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>heat shock protein 83</td>
<td>Tb10.26.1080</td>
<td>-2.39</td>
<td>2(1)</td>
<td>37</td>
</tr>
<tr>
<td>54</td>
<td>69 kDa paraflagellar rod protein</td>
<td>Tb927.8.4970</td>
<td>-4.65</td>
<td>24(7)</td>
<td>186</td>
</tr>
<tr>
<td>374</td>
<td>hypothetical protein, conserved</td>
<td>Tb10.70.1130</td>
<td>-7.2</td>
<td>21(11)</td>
<td>313</td>
</tr>
<tr>
<td>502</td>
<td>protein phosphatase 2C, putative</td>
<td>Tb11.03.0390</td>
<td>-2.43</td>
<td>1(1)</td>
<td>38</td>
</tr>
<tr>
<td>539</td>
<td>arginine kinase</td>
<td>Tb09.160.4560</td>
<td>-2.37</td>
<td>2(1)</td>
<td>40</td>
</tr>
<tr>
<td>544</td>
<td>adenosine kinase, putative</td>
<td>Tb927.6.2360</td>
<td>-2.23</td>
<td>9(5)</td>
<td>119</td>
</tr>
<tr>
<td>549</td>
<td>arginine kinase</td>
<td>Tb09.160.4590</td>
<td>-9.33</td>
<td>46(17)</td>
<td>467</td>
</tr>
<tr>
<td>560</td>
<td>beta tubulin</td>
<td>Tb927.1.2330</td>
<td>-5.93</td>
<td>6(2)</td>
<td>71</td>
</tr>
<tr>
<td>571</td>
<td>asparagine synthetase a, putative</td>
<td>Tb927.7.1110</td>
<td>-5.66</td>
<td>4(0)</td>
<td>23</td>
</tr>
<tr>
<td>649</td>
<td>guanine nucleotide-binding protein beta subunit- like protein</td>
<td>Tb11.01.3170</td>
<td>-4.09</td>
<td>4(0)</td>
<td>28</td>
</tr>
<tr>
<td>677</td>
<td>nascent polypeptide associated complex subunit, putative</td>
<td>Tb09.211.0120</td>
<td>-2.37</td>
<td>4(1)</td>
<td>50</td>
</tr>
<tr>
<td>759</td>
<td>translation elongation factor 1-beta, putative</td>
<td>Tb927.4.3570</td>
<td>-7.27</td>
<td>27(13)</td>
<td>328</td>
</tr>
<tr>
<td>765</td>
<td>translation elongation factor 1-beta, putative</td>
<td>Tb10.70.1100</td>
<td>-7.24</td>
<td>26(12)</td>
<td>305</td>
</tr>
<tr>
<td>804</td>
<td>hypoxanthine-guanine phosphoribosyltransferase</td>
<td>Tb10.70.6540</td>
<td>-3.33</td>
<td>4(2)</td>
<td>66</td>
</tr>
<tr>
<td>888</td>
<td>profilin</td>
<td>Tb11.01.5350</td>
<td>-2.95</td>
<td>10(3)</td>
<td>139</td>
</tr>
<tr>
<td>891</td>
<td>60S acidic ribosomal protein, putative</td>
<td>Tb09.160.4200</td>
<td>-2.14</td>
<td>13(5)</td>
<td>164</td>
</tr>
</tbody>
</table>

Table 5.1.: Identified proteins from *T. b. brucei* strain 427 as extracted from gel (Figure 5.1. (a)). Spot no. can be matched to the location of the gel in Figure 5.1.(a). Identifications and accession no. were matched from mascot to TritrypDB. The volume ratio shows decreased/increased protein spot intensity and matches are the peptides matched against the protein sequence with the number in brackets hits indicating homology or identity. Score > 28 indicates homology or identity with p > 0.05.
<table>
<thead>
<tr>
<th>Spot No.</th>
<th>ID</th>
<th>Accession no</th>
<th>Volume Ratio</th>
<th>Matches</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>2,3-bisphosphoglycerate-independent phosphoglycerate mutase</td>
<td>Tb10.6k15.2620</td>
<td>5.59</td>
<td>13(6)</td>
<td>192</td>
</tr>
<tr>
<td>111</td>
<td>2,3-bisphosphoglycerate-independent phosphoglycerate mutase</td>
<td>Tb10.6k15.2620</td>
<td>4.74</td>
<td>16(5)</td>
<td>144</td>
</tr>
<tr>
<td>112</td>
<td>73 kDa paraflagellar rod protein</td>
<td>Tb927.3.4290</td>
<td>4.11</td>
<td>16(7)</td>
<td>199</td>
</tr>
<tr>
<td>176</td>
<td>S-adenosylhomocysteine hydrolase, putative</td>
<td>Tb11.01.1350</td>
<td>17.29</td>
<td>19(8)</td>
<td>198</td>
</tr>
<tr>
<td>199</td>
<td>RuvB-like DNA helicase, putative</td>
<td>Tb927.4.2000</td>
<td>8.69</td>
<td>4(1)</td>
<td>48</td>
</tr>
<tr>
<td>213</td>
<td>hypothetical protein, conserved</td>
<td>Tb927.7.3090</td>
<td>27.52</td>
<td>2(1)</td>
<td>40</td>
</tr>
<tr>
<td>246</td>
<td>malic enzyme, putative</td>
<td>Tb11.02.3130</td>
<td>7.14</td>
<td>2(1)</td>
<td>38</td>
</tr>
<tr>
<td>279</td>
<td>hypothetical protein, conserved</td>
<td>Tb927.7.3090</td>
<td>17.21</td>
<td>1(1)</td>
<td>41</td>
</tr>
<tr>
<td>286</td>
<td>variant surface glycoprotein (VSG, atypical), putative</td>
<td>Tb927.5.4950</td>
<td>9.76</td>
<td>1(1)</td>
<td>34</td>
</tr>
<tr>
<td>358</td>
<td>variant surface glycoprotein (VSG, pseudogene), putative</td>
<td>Tb927.6.5230</td>
<td>12.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>enolase</td>
<td>Tb10.70.4740</td>
<td>3.05</td>
<td>29(17)</td>
<td>445</td>
</tr>
<tr>
<td>372</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>11.24</td>
<td>1(1)</td>
<td>33</td>
</tr>
<tr>
<td>417</td>
<td>heat shock protein 70</td>
<td>Tb11.01.3110</td>
<td>4.57</td>
<td>2(1)</td>
<td>54</td>
</tr>
<tr>
<td>498</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>17.61</td>
<td>1(1)</td>
<td>68</td>
</tr>
<tr>
<td>519</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>2.71</td>
<td>37(14)</td>
<td>406</td>
</tr>
<tr>
<td>527</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>21.49</td>
<td>2(1)</td>
<td>57</td>
</tr>
<tr>
<td>547</td>
<td>arginine kinase</td>
<td>Tb09.160.4560</td>
<td>8.19</td>
<td>6(2)</td>
<td>55</td>
</tr>
<tr>
<td>678</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>3.1</td>
<td>14(7)</td>
<td>218</td>
</tr>
<tr>
<td>694</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>32.44</td>
<td>1(1)</td>
<td>31</td>
</tr>
<tr>
<td>695</td>
<td>alpha tubulin</td>
<td>Tb927.1.2340</td>
<td>5.19</td>
<td>23(13)</td>
<td>434</td>
</tr>
<tr>
<td>701</td>
<td>beta tubulin</td>
<td>Tb927.1.2330</td>
<td>7.52</td>
<td>12(6)</td>
<td>193</td>
</tr>
<tr>
<td>Spot No.</td>
<td>ID</td>
<td>Accession no</td>
<td>Volume Ratio</td>
<td>Matches</td>
<td>Score</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>802</td>
<td>elongation factor 1 gamma, putative</td>
<td>Tb11.01.4660</td>
<td>4.25</td>
<td>6(1)</td>
<td>32</td>
</tr>
<tr>
<td>818</td>
<td>ADP-ribosylation factor-like protein 3A,</td>
<td>Tb927.3.3450</td>
<td>2.59</td>
<td>18(10)</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>putative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>862</td>
<td>translation elongation factor 1-beta,</td>
<td>Tb10.70.1100</td>
<td>7.27</td>
<td>8(3)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>putative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>hypothetical protein, conserved</td>
<td>Tb10.26.0680</td>
<td>34.16</td>
<td>10(1)</td>
<td>62</td>
</tr>
</tbody>
</table>

Table 5.2.: Identified proteins from *T. b. brucei* strain GVR35 as extracted from gel (Figure 5.1 (b)). Spot no. can be matched to the location of the gel in Figure 5.1 (b). Identifications and accession no. were matched from mascot to TritrypDB. The volume ratio shows decreased/increased protein spot intensity and matches are the peptides matched against the protein sequence with the number in brackets hits indicating homology or identity. Score > 28 indicates homology or identity with p > 0.05.

The proteins identified in both strains included one hypothetical protein in 427 and two hypothetical proteins in GVR35.

Four proteins were identified in both datasets; however, comparing the ‘protein spot’ location in the gel (Figure 5.1) strongly indicates a difference between the two strains. Two isoforms of arginine kinase (AK) were extracted from 427 and one AK in GVR35. 427 contained AK1 and AK2, which are located in the flagellum and cytosol respectively, while in GVR35 only AK1 was detected. Heat shock protein 83, beta tubulin and translation elongation factor 1-beta (putative) were also detected in both datasets.

A first analysis of the detected proteins showed that most proteins were highly abundant in trypanosomes (M. Barrett, personal communication) and raised the question if the secretome samples might have been contaminated with proteins from lysed trypanosome cells. Although contamination from lysed cells cannot be excluded, a visual comparison between a trypanosome lysate 2-D gel and the two secretome 2-D gels showed differences in protein spot patterns and spot abundance. The secretome gel showed fewer spots and was biased towards low molecular weight proteins compared to a lysate gel (Dr R. Burchmore, personal communication).

To further investigate whether the contained proteins could be seen as a secretome sets, the obtained data were compared to already published trypanosome secretome sets.
Except for a small number of proteins in the two sets (profilin (427), RuvB-like DNA helicase, translation elongation factor 1-beta and malic enzyme (GVR35)), most proteins identified here have been described as being secreted from different strains of trypanosome before.

The role of profilin, identified in strain 427 dataset, in trypanosomes is unclear. It might be involved in the phosphoinositide signal transduction pathway in trypanosomes (Wilson and Seebeck, 1997). If the finding of the proteins RuvB-like DNA helicase, translation elongation factor 1-beta and malic enzyme in strain GVR35 are strain specific markers or just the result of contamination from dead cells still needs to be determined. Microscopical examination of the cells during incubation in serum free medium showed that GVR 35 was less tolerant to the conditions than 427.

RuvB-like DNA helicase, in complex with hsp 90, might be involved in cell proliferation, as suggested for leishmania and plasmodium (Ahmad et al., 2013) but the reason for this protein being potentially secreted is unclear.

To get a better overview of the whole set of secreted proteins in the sample set used, remaining sample was prepared for a gel free proteomics approach, using FASP (2.3.10). The minimum amount of protein that can be analysed with this method is 5µg. For strain 427 14µg protein was used and for strain GVR35 14µg. Analysis of the secretome prepared by FASP showed only a small number of proteins detected for strain 427 and those samples were not further analysed. As very similar amounts of proteins were used and the samples were on the same LC-MS/MS run, a possible explanation for this is an experimental error using the FASP method. The most likely reason is that the proteins were not completely removed from the filter, but an error during LC-MS/MS run (for example sample not picked up properly) cannot be excluded.
5.2.2. *T. b. brucei* strain GVR35 secretome

After sample preparation and trypsin digest (as described in 2.3.10.), 109 proteins were significantly identified using MASCOT (p-value <0.05), with the identifications obtained from TritrypDB.

23 proteins were identified as hypothetical proteins and two unspecified products. The remaining 84 proteins had putative identifications belonging to different classes of proteins and were compared to published datasets (*T. congolense* (Grébaut et al., 2009) and *T. gambiense* (Geiger et al., 2010)). Proteins, detected in all three datasets (*T. brucei*, GVR35; *T. congolense* and *T. gambiense*) were divided into 10 groups (as seen in Figure 5.2.), namely Binding, Cytoskeleton organisation and flagellar proteins, Defence, Metabolism, Movement, Protein degradation, Protein folding, Protein synthesis, Signalling and Trafficking.

![Figure 5.2.: Pie chart of classes of secreted proteins from *T.b.brucei* strain GVR35.](image)

69 proteins were included in this analysis, as those proteins were also found in published secretome sets. Proteins were divided into classes, in accordance to published data. 23% of the secreted proteins found in GVR 35 belonged to metabolism, representing the biggest group of secreted proteins. 20% of secreted proteins are involved in protein synthesis, the second biggest group. 13% each belonging to Binding and Protein folding. Proteins belonging to the group Defence, Protein degradation and Cytoskeleton organisation and flagellar proteins were making 10%, 7% and 6% respectively. The rest (6% in total) are Signalling, Binding and Trafficking.
The largest group was represented by proteins involved in metabolism. This group can be divided into the following subgroups: Carbohydrate metabolism (9), amino acid metabolism (3), glutathione metabolism (2) and nucleic acid metabolism (2).

The presence of enzymes related to carbohydrate metabolism, also represent the largest protein group that the datasets had in common (6 out of 22 proteins).

Most enzymes of the glycolysis in trypanosomes are located in organelles called glycosomes, however, three glycolytic enzymes are described to be outside the glycosome (Enolase, phosphoglycerate mutase and pyruvate kinase; (Albert et al., 2005)) and those three enzymes were detected in all three compared datasets. A comparison between the GVR35 secretome and a published proteome of the glycosome (Colasante et al., 2006) showed 12 proteins in common (approximately 11% similarity between the two sets). The two sets shared five glycolytic enzymes namely fructose-bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase.

Enzymes belonging to the nucleic acid metabolism, in particular IAG nucleoside hydrolase, are important for bloodstream form trypanosomes, as they depend on the salvage pathway for purines (Parkin, 1996). Two were found in the GVR35 dataset (IAG nucleoside hydrolase and nucleoside diphosphate kinase), while in T.b.gambiense secretome the nucleotide metabolism proteins made up to 14% of the secreted proteins (Geiger et al., 2010).

The protein synthesis group is the second largest group. It is composed of ribosomal proteins and elongation factors. The role of these proteins in the secretome is unknown.

Proteins involved in protein folding and degradation have been previously described to have an effect on the immune system of the host, for example cyclophilin A and hsp (heat shock protein) (Calderwood et al., 2007; Kim et al., 2005), both being present in GVR35 secretome. Furthermore, it has been shown that cysteine peptidases play an important role in the pathogenesis of trypanosomes and it is suspected that it also helps the parasite to cross the blood brain barrier. However, T.b.bruci has been said to be less efficient than T.b.gambiense (Nikolskaia et al., 2006). The GVR35 dataset contained a calpain-like cysteine peptidase (Tb.927.7.4060) and metacaspase 4 (Tb10.70.5250). Metacaspase 4
(MCA4) belongs to the cysteine peptidases, but lacks peptidase activity (Proto et al., 2011). However, MCA4 knockout lines showed a reduced virulence in mice (Proto et al., 2011). Other proteins that reportedly have an impact on pathogenesis were calreticulin (Ferreira et al., 2004) which was not present in the GVR35 dataset and α/β-tubulin, who have shown to be T-cell stimulating antigens in leishmania infections (Probst et al., 2001). Both were detected in GVR35. Oligopeptidase B, an important virulence factor has been shown not to be secreted from cultured trypanosomes (Morty et al., 2001) and was also not detected in GVR35. A full list of all detected proteins can be found in Appendix E, Table E1.

Although the majority of proteins present in the GVR35 secretome set have also been described as being secreted from other trypanosome species, the high occurrence of glycolytic enzymes in the GVR35 secretome data was surprising and again raised the question if the presented dataset could be contaminated by proteins from lysed cells.

A western blot, using RAD51 (a cytosolic protein) as a control, showed minimal contamination in the secretome samples after 2 hours incubation (Figure 5.3). As cell viability during incubation in serum free medium was only checked using microscopic examination and strain GVR 35 showed cell clumps (sign for cell death) at the end of the incubation period, it cannot be ruled out that the secretome got contaminated with intracellular proteins.

![Western blot](image)

Figure 5.3: Western blot after secretome preparation, using cell pellet as control and Rad51 antibodies to check for contamination with dead cells.
5.2.3. FACS and cell survival

The original prepared and analysed secretome sets (by DiGE and FASP) indicated possible sample contamination from lysed parasites, due to the high number of glycolytic enzymes and highly abundant proteins present. To determine how many cells died during incubation in serum-free medium two different methods were tested: Fluorescent-activated cell sorting (FACS) using a MASCQuant and a propidium iodide (PI) assay based on (Gould et al., 2008).

FACS analysis was kindly done by S. Sabir (University of Glasgow), with propidium iodide used as a live/dead stain. The data showed that during incubation in serum free CMM about 5% of T. brucei strain 427 cells were measured as dead with the last measurement showing up to 8% dead cells. Strain GVR35 revealed about 18% cells as dead (Figure 5.4).

![Figure 5.4: FACS analysis on T. b. brucei strain 427wt and strain GVR35 during incubation in serum free CMM. Samples were taken every 30mins from beginning of incubation period. FACS analysis was kindly done by S. Sabir (University of Glasgow).](image)

The propidium iodide assay was based on a method developed by Gould et al., who used it to monitor drug action in kinetoplastidae in real-time. For my purposes, cells of a known concentration were added to a 96 well plate and incubated with propidium iodide with measurements taken every 3 min. To determine the number of dead cells control samples of varying cell concentration were incubated with digitonin and propidium iodide. A standard curve with the fluorescent measurements taken from the dead cells was created, so the number of dead cells could be calculated (Figure 5.5).
Figure 5.5: Real-time PI assay showing the increase of dead trypanosomes (427) during incubation in serum free CMM. Live/dead stain was achieved with propidium iodide and cells were incubated at a concentration of 5×10^7. Four sample sets were used.

Cell death started to increase rapidly after 100 min. However, cell counts performed during cell incubation showed that cells kept on dividing even after being washed and kept in serum-free media. The analysis for the PI assay was performed for a static number of cells and as cell counts cannot be performed once the 96 well plate is set up for measurement this method does not seem accurate enough to determine the most accurate percentage of dead cells in the secretome. However, it did show the tolerance of the cells to serum free media, as shown by the rapid cell death after 100 minutes. As a consequence to this cell incubation time was reduced to 100 mins, however, results shown in 5.2.1 and 5.2.2 originated from sample incubated for 2 hours.
5.2.4. Dimethyl-labelling strain 427 and strain GVR35

As one aim was to compare the secretome of the strains 427 and GVR35, I made several attempts to repeat the DiGE secretome experiment. However, a protein concentration high enough to repeat the 2D-DiGE has not been achieved.

Dimethyl-labelling (Hsu et al., 2003) is a useful approach to get quantitative proteomics data with a smaller starting quantity of protein. Differentiation between two samples is achieved by labelling of the α- and ε-amino group of lysine residues via reductive amination. 11 µg of protein from each 427 and GVR35 were used, with 427 being heavy labelled and GVR35 light labelled.

<table>
<thead>
<tr>
<th>Hit</th>
<th>Accession</th>
<th>Score</th>
<th>L/H</th>
<th>SD(geo)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Tb09.211.3550</td>
<td>31</td>
<td>10.53</td>
<td>3.521</td>
<td>glycerol kinase, glycosomal</td>
</tr>
<tr>
<td>14</td>
<td>Tb09.211.3540</td>
<td>31</td>
<td>10.53</td>
<td>3.521</td>
<td>glycerol kinase, glycosomal</td>
</tr>
<tr>
<td>11</td>
<td>Tb11.01.3110</td>
<td>37</td>
<td>8.596</td>
<td>8.831</td>
<td>heat shock protein 70</td>
</tr>
<tr>
<td>17</td>
<td>Tb11.01.3080</td>
<td>26</td>
<td>8.596</td>
<td>8.831</td>
<td>heat shock protein 70, putative</td>
</tr>
<tr>
<td>28</td>
<td>Tb09.160.4560</td>
<td>16</td>
<td>6.108</td>
<td>1.593</td>
<td>arginine kinase</td>
</tr>
<tr>
<td>18</td>
<td>Tb11.03.0250</td>
<td>25</td>
<td>5.746</td>
<td>4.287</td>
<td>CYPA cyclophilin a; cyclophilin type peptidyl-prolyl cis-trans isomerase</td>
</tr>
<tr>
<td>2</td>
<td>Tb10.v4.0053</td>
<td>116</td>
<td>4.562</td>
<td>1.051</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>22</td>
<td>Tb10.70.5650</td>
<td>24</td>
<td>4.013</td>
<td>2.92</td>
<td>elongation factor 1-alpha</td>
</tr>
<tr>
<td>3</td>
<td>Tb10.70.4740</td>
<td>97</td>
<td>3.552</td>
<td>1.346</td>
<td>enolase</td>
</tr>
<tr>
<td>5</td>
<td>Tb10.70.5250</td>
<td>89</td>
<td>3.442</td>
<td>3.252</td>
<td>MCA4 metacaspase</td>
</tr>
<tr>
<td>10</td>
<td>Tb10.70.1370</td>
<td>54</td>
<td>3.304</td>
<td>1.611</td>
<td>fructose-bisphosphate aldolase, glycosomal, putative</td>
</tr>
<tr>
<td>1</td>
<td>Tb927.1.2330</td>
<td>124</td>
<td>2.793</td>
<td>1.432</td>
<td>beta tubulin</td>
</tr>
</tbody>
</table>

Table 5.3 Identified and quantified proteins from sample dimethyl-labelling. Proteins in bold have changed significantly between the two datasets. T. b. brucei strain GVR35 was light labelled and 427 was heavy labelled, significant changes in proteins are down in strain 427.
LC-MS/MS data analysed with Mascot distiller identified 30 proteins, 12 proteins with quantification of which 4 were significantly changed between datasets (Table 5.3).

The hypothetical protein Tb10.v4.0053 is listed as an unspecified product in TritrypDB for strain 427. For strain 927 and other trypanosome species and leishmania orthologs are identified as microtubule-associated protein. However, it needs to be taken as unidentified as not enough information exists to make a better annotation.

The enzyme enolase has been identified before in the 427 and GVR35 datasets. The DiGE approach showed enolase being increased in the GVR35 data and dimethyl-labelling confirmed this finding. Enolase, a glycolytic enzyme, catalyses the reversible conversion of D-2-phosphoglycerate and phosphoenolpyruvate. In trypanosomes, the enzyme is located outside the glycosomes and for leishmania can also been found bound to the cell surface where it displays no ‘enolase’ activity (Quiñones et al., 2007). However, enolase is also present on the cell surface of several mammalian cells and prokaryotic and eukaryotic pathogenic organisms (Avilán et al., 2011). It was found that enolase can act as a plasminogen-binding protein. The leishmania enolase seems to bind about 60% of plasminogen to the cell surface (Vanegas et al., 2007). Plasminogen, a zymogen of serine protease plasmin, is part of the fibrinolytic system and it has been shown that pathogens can use this protease after binding it to their surface and activating it (Avilán et al., 2011).

Fructose-bisphosphate aldolase was detected in the GVR35 secretome data (5.2.2) and also in a T. b. gambiense secretome set (Geiger et al., 2010). However, a possible moonlighting function for this enzyme (similar to enolase) has not been described for trypanosomes.

Beta tubulin has a known association with the exosomes of various cell types (Olver and Vidal, 2007) and has also been identified in trypanosome secretome data.
5.3. Discussion

Proteomic approaches were used to identify proteins secreted from two different strains of *T. b. brucei* (namely strain 427 and strain GVR35) with the aim to establish (1) differences in secreted proteins between the two strains and (2) to obtain a profile of secreted proteins. Strain 427 and GVR35 show different pathogenesis in mice. While strain 427 causes an acute infection with high mortality within a few days, GVR35 establishes a chronic form of the disease with invasion of the CNS. Excreted/secreted proteins could be the key for a better understanding of the pathogenic process of those parasites, specifically in regards to invasion of the central nervous system.

This chapter introduced three different approaches to investigate the secretome of 427 and GVR35. However, the data is preliminary and does only indicate the possible set of secreted proteins. The rising cost of proteomic samples put a stop to this experiment before enough data was obtained to get comprehensive results.

5.3.1. Secretome production

Secretomes were produced by incubating the cells in serum free modified medium for two hours at a density of 2×10^8 cells ml$^{-1}$ as described by Holzmueller et al. (2008). Cell viability was checked by microscopic examination throughout the incubation period. During the initial experiment (results 5.2.1 and 5.2.2) 427 cells showed good motility and minimal ‘clumping’. However, GVR35 showed less tolerance for these conditions and cell ‘clumping’ was observed during the end of the incubation period.

FACS analysis and a propidium iodide real-time assay on a repeat dataset confirmed that cells start to die after 100 min of incubation and a western blot analysis of secretome and cell lysate, using RAD51 as control, showed minimal contamination. FACS analysis showed about 18% dead cells in the GVR35 incubation culture compared to 5% in 427. That could explain the detected glycolytic enzymes in the analysed secretome sets from GVR35.

The propidium iodide assay indicated that cells were dying rapidly after 100 min. However, as cells kept on dividing in the serum free media (confirmed by cell counts) and
cell death was calculated assuming a static population this assay showed not to be accurate enough for the purpose of this experiment.

As a general observation, strain GVR35 seemed to cope less well with high density incubation than strain 427 and continuous cell cultures had to be kept between 1.5 and 2×10^6 cells ml$^{-1}$ to avoid GVR35 parasite death (E. Myburgh, correspondence and personal experience). To resolve the issue of cell death during incubation several ‘secretome productions’ were performed at a lower density than the suggested 2×10^8 cells ml$^{-1}$, density tested were 1×10^8 and 5×10^7. Although the total number of cells was kept close to 2×10^8 used for the experiments, the protein amount gained was on average less than 100µg. However, lower cell density during incubation lowered cell death. A quantitative study on secreted proteins of *T. congolense* and *T.evansi* showed that not all species secrete proteins at the same level. *T. congolense* secreted five times less proteins than *T. evansi* under the same conditions (Holzmuller et al., 2008).

Secretome production has proven difficult to achieve in this study, but the reasons for this are unclear. It is possible, that the two strains used secrete lower level of proteins. Another possibility is the use of cultured cells. Published secretome compared to my own data had been isolated from rats and the interaction between host immune system and pathogen could trigger a higher amount of proteins being secreted. However, the classes of proteins detected in all sets were quite similar which suggest that trypanosomes do secrete proteins despite the lack of environmental pressure in culture. That leaves the amount of cells used for this study. Strain 427 and GVR35 grow well in cultures and 427 has been successfully grown in culture for decades. But the amount of culture that would be needed to achieve a high enough cell count to get a high enough amount of secreted protein would get unmanageable quite quickly. For strain GVR35, 150 to 170 ml of culture is needed to achieve 2×10^8 cells in total as cells start dying at densities over 2×10^6 (for continuous culture). From that amount on average 100µg of protein could be obtained. That means for DiGE analysis close to 1 litre of culture would be needed to get enough protein for one gel. Include three replicates and about three litres of culture becomes necessary. From a practical point of view alone this becomes unfeasible. For future experiments the use of trypanosomes isolated from mice might be a better approach to avoid the complications of cultured cells.
5.3.2. Comparison of *T. b. brucei* strains 427/GVR35

A comprehensive comparison between the strains 427 and GVR35 was not achieved due to the difficulties obtaining a high enough protein concentration for analysis with DiGE. Although some differences in protein presence was shown, the relatively small concentration of proteins in the secretome made it impossible to obtain enough protein to run the prep gels according to protocol and therefore made it difficult to analyse the data and pick spots from the prep gel. For the DiGE analysis protein spots showing an at least two-fold difference in ratio were extracted from the gel, digested with trypsin and analysed on a LC-MS/MS platform. Some proteins (for example alpha tubulin, GVR35 sample) were detected (or picked from the gel) several times as the two dimensional separation of the gel showed the protein in different positions (differences in charge and mass). However, this has been described for tubulins before (Bridges et al., 2008). Geiger et al showed modifications of proteins between different strains. This was evident from the DiGE approach between 427 and GVR35 as well, as four proteins were picked in both strains, but showed up as different spots on the DiGE gel.

A dimethyl-labelling approach identified 30 proteins but quantification was only possible for 12 proteins, with four proteins showing significant changes.

Both DiGE and dimethyl-labeling did show significant differences between the two strains. However, as experiments could not be repeated a comprehensive list of differential secreted proteins could not be obtained and further experiments are needed to support our hypothesis that secreted proteins are involved in the difference of virulence between the *T. b. brucei* strains 427 and GVR35.

5.3.3. *T. b. brucei* strain GVR 35 secretome

Although secretory processes in African trypanosomes have been studied and reviewed (Bangs, 1998; Clayton et al., 1995) certain aspects of the process still remains unclear. In trypanosomes, endocytosis and exocytosis occur through the flagellar pocket and require clathrin, actin and GTPase Rab proteins (Geiger et al., 2010). Clathrin heavy chain has been identified in the strain GVR35 dataset. Proteins associated with the exosome secretion pathway were identified and from the 22 proteins described (Olver and Vidal, 2007) 10 of them were present in this dataset, namely glyceraldehyde-3-phosphate
dehydrogenase, 14-3-3-like protein, alpha and beta tubulin, clathrin heavy chain, cyclophilin A, enolase, HSP70, pyruvate kinase and ubiquitin-conjugating enzyme.

A comparison between the strain GVR35 and other published secretome data has shown that from the 109 proteins identified 69 proteins were also found in other datasets. Secretome analysis from three different strains of *T. b. gambiense* revealed 50% of secreted proteins belonging to the categories protein folding and degradation, nucleotide metabolism and unassigned function (Geiger et al., 2010). In comparison, in the two *T.b.bruceti* strains tested here about 21% of the proteins were hypothetical and proteins belonging to the category protein folding and degradation made up 20% of the analysed proteins in this dataset (see Figure 6.3). Only two enzymes belonging to the nucleic acid metabolism were detected, making it a significantly smaller proportion compared to the published datasets.

The proteins identified are connected to various molecular functions. Including, enzymes from carbohydrate metabolism, amino acid metabolism and nucleic acid metabolism, as well as chaperone proteins, proteins involved in protein and nucleotide binding, protein synthesis and cellular communication/signal transduction, which are categories known to be present in the secretome of trypanosomes.

Although some proteins are well described as being secreted by trypanosomes, others are not and finding evidence of them being secreted can lead to interesting new hypotheses about pathogenic role of secreted proteins. Geiger et al published in 2010 that three glycolysis related enzymes phosphoglycerate mutase, enolase, pyruvate kinase are found to be secreted (The strain GVR35 dataset contains all three). They suggest that those enzymes could have functions unrelated to glycolysis.

Comparison between the strain GVR35 and published secretome datasets showed a high number of enzymes from the carbohydrate metabolism, but if glycolysis related proteins in particular, are in fact secreted by trypanosomes or if their appearance is due to contamination of the secretome by cell death during incubation is unclear. However, glycolysis enzymes have been found in all published datasets for blood stream and procyclic (Atyame Nten et al., 2010) form of trypanosomes.
In conclusion, the comparison between my dataset and published datasets has shown that *T. b. brucei* strain GVR35 and to an extent strain 427, secrete similar proteins than other species of trypanosomes.
Chapter 6

Discussion

Whole genome sequencing has nowadays become more readily available with the cost dropping rapidly and data being made available for a variety of organisms, from bacteria to plants and trypanosomatids. The genome of several trypanosome species and subspecies has been published (Berriman et al., 2005; El-Sayed et al., 2005; Jackson et al., 2010) and data are available via databases, such as TritrypDB, a database dedicated to the trypanosomatids (Aslett et al., 2010). Gene annotation using bioinformatic approaches can give an indication of the possible function of a gene, but it is not guaranteed that the detected homology between two (or more) sequences actually means the proteins have functional identities. The most popular bioinformatics approaches being used are BLAST or Pfam. BLAST (Basic Local Alignment Search Tool) compares either nucleotide or protein sequences to sequences in databases. Pfam is used for protein annotation by searching a protein sequence for known protein domains (Punta et al., 2012). Although bioinformatics approaches for homology based functional assignments of genes has shown to be a fast approach to obtain putative gene annotations, often these annotations are incorrect or only based on low sequence homology (Baran et al., 2009). Identifying functions of hypothetical proteins or even identifying wrongly annotated genes remains a major challenge in the post-genomic era.

However, the field of metabolomics has created applications to overcome this challenge, which are (1) genes with no identified function and (2) metabolic pathways present but no encoded enzyme in the genome identified that could catalyse the reaction. However, metabolomics is the study of low molecular weight metabolites within the cell and metabolites are often the substrate or downstream product of enzymatic reactions, so seeing a reaction occur means there must be a gene present.

The first approach of directly identifying protein functions can be done by using recombinant protein or gene knock out / knock down. Analysing the changes in metabolic datasets can indicate the function of the protein of interest. Although this is the most direct approach, it is also time consuming.
A different approach is to look at the pathways directly. By combining stable isotope labelling with metabolomics, the flux of labelled compounds can be traced through the organism.

The metabolomic and proteomic approaches used in this study have shown to be highly applicable to study the system biology of trypanosomes. Metabolomics and proteomics approaches have been applied to the parasitic protozoa *T. brucei* to (1) test a high throughput approach for enzyme function identification using metabolomics techniques, (2) identify metabolic pathways with stable isotope labelling coupled to metabolomics and (3) applying proteomic techniques for identification of novel secreted proteins from cultured parasites.

6.1. Enzyme assay / Enzyme ID

In this project, I investigated the potential of an untargeted enzyme assay using metabolomics techniques for a high throughput. This method has been deployed to identify the function of novel enzymes for *E. coli* (Saito et al., 2009) and *Mycobacterium tuberculosis* (De Cavallho et al., 2009; Larrouy-Maumus et al., 2013). Furthermore, three trypanosome enzymes have been investigated in our group (E. Kerkhoven, thesis).

In this project enzymes were chosen at random from a list of putative enzyme obtained from TritrypDB, as the aim was to determine whether this assay was applicable for a high throughput approach. The only criteria for the chosen ‘enzymes’ was that they should have a predicted metabolic function, relatively small size, so the cloning and over-expression would not cause too many difficulties, and that their function had not been determined before using recombinant or purified protein. The assay was designed to be fast and relatively cheap. The workflow developed took seven days to complete, from the initial PCR for cloning to purifying the protein for the assay. A way this was achieved was to use a ligase independent cloning system to standardise primer design and cut down on cloning time. When the system was applicable using *E. coli* over expression systems allowed easy and fast protein production. However, more than half of the proteins were either not over expressed or could not be purified (inclusion body formation), therefore alternative over expression systems should be considered for future work when over expression from *E. coli* is not possible. During this thesis, changes were made to optimise the workflow. Different *E. coli* over expression strains were tested to achieve high protein amounts. *E. coli* Rosetta (DE3) cells improved protein expression in number of proteins that could be
over expressed and their yield compared to BL21 (DE3) strains. A second extraction step was also added to the protocol to increase the quality of the metabolomics datasets (as was shown with the example of Hexokinase, Chapter 3). The concentration of the MOPS buffer used in the enzyme assay was lowered to 10 mM from originally 40 mM, to reduce the possibility of ion suppression and also because MOPS was seen to block the columns.

For an initial screening approach, this method seems applicable as shown for the enzyme S-adenosylmethionine synthetase. Using the in vitro assay the function of this enzyme was directly linked to a purified protein. The presence of this reaction was previously achieved using trypanosome cell extract (Yarlett et al., 1993), but the function was not linked directly to a gene.

But not all proteins showed changes indicating its function, highlighting the limitations of this method.

Currently there is no MS platform fitting for all classes of metabolites, which causes a problem when the substrate/products fall outwith the parameters suitable for analysis on the LC-MS platform used in this project. For putative enzymes in this study it is hard to tell if that is the case, however, the commercial hexokinase, used for validation purposes shows that detection of sugars is not ideal on LC-MS, as the separation is not good enough to differential between glucose and fructose (for example). Most sugars and sugar phosphates are being identified with 57 isomers on the IDEOM spreadsheet.

Yeast extract has shown to be a broad, reproducible source for metabolites, which has the benefit, in the high throughput approach, to limit the external variance factor. The drawback is that trypanosome specific enzymes might not be identified as specific metabolites, like trypanothione, might be missing. Also, highly abundant metabolites could mask changes, as was shown for S-adenosylmethionine synthetase, where levels of L-methionine were unchanged between the treatment and control samples and for the commercial hexokinase assay, which showed no changes in D-glucose levels.

One of the proteins investigated, putatively annotated as deoxypusine synthase, was since shown to form a heterotetramer with a catalytically dead paralog to enhance its activity by 3000-fold (Nguyen et al., 2013). This form of regulation, termed prozyme, has been described for other trypanosome enzymes as well, namely hexokinase (Morris et al., 2006)
and S-adenosylmethionine decarboxylase (Velez et al., 2013). The use of the untargeted enzyme assay with recombinant proteins will miss those enzymes as well.

When the function of a potential enzyme cannot be determined using the in vitro assay approach, the production of knock-out lines or knock-down lines can be of use to further investigate the function (Saghatellian et al., 2004). However, this process can be very time consuming compared to the production of recombinant protein in a well established over expression system such as E. coli. The benefit of this approach, next to determine the function of the targeted gene, is to also provide further information about the target protein, such as how essential this protein is for cell survival.

Metabolomics analysis of knock out or knock down lines does not always allow identification of the function. For example, the function of the trypanosome ‘arginase’ has eluded our group for years now. This protein has been investigated in three PhD studies and all we can say about it is that it does not have ‘arginase’ activity although BLAST and Pfam show significant homologies to other arginases. An ‘arginase’ knock-out mutant was produced and using an untargeted metabolomics approach comparing knock-out to wildtype gave no indication of arginase or ureohydrolase activity (Hai et al., 2014).

6.2. Stable Isotope Labelling / Pathway ID

Metabolomics combined with stable isotope labelling can provide an indirect approach for the detection of enzymatic activity (Dalluge et al., 2005). However, this approach is mainly used as a tool for pathway identifications, as by adding a labelled metabolite to the cell culture, downstream metabolites labelled from the added compound can be detected and lead to the identification of novel pathways. Extensive work has been done on the energy metabolism of procyclic and bloodstream form trypanosome. Recent work from Creek et al (2015) used U-\(^{13}\)C D-glucose to label cultured bloodstream form trypanosomes, showing that glucose can enter many branches of the trypanosome metabolism.

ATP, labelled from U-\(^{13}\)C glucose, was shown to be incorporated in S-adenosylmethionine. Trypanosomes were thought to be capable of recycling L-methionine via the methylthioadenosine cycle (MTA cycle or Yang cycle). However, L-methionine was not detected to be labelled from glucose, ruling out the use of L-methionine salvage via the
MTA cycle. To further investigate those findings, U13C-L-methionine was used in an untargeted metabolomic approach.

The main findings are:

- The MTA (or Yang) cycle also does not seem to be involved in methionine salvage. Instead MTR gets secreted from the cells, shown by rising levels of 1-C labelled MTR in spent medium. Also, the precursor metabolite to L-methionine (4-methylthio-2-oxobutanoate) is 513C labelled from L-methionine, confirming the findings of Creek et al., 2015.

- 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one from the MTA cycle is labelled 113C, but no further information about what pathway this metabolite goes into was obtained.

- The Methionine cycle, recycling S-adenosylmethionine to L-homocysteine back to L-methionine doesn’t seem to take place (lack of 1-C label in L-methionine)

Future works, could include the detection of enzymes of the MTA cycle present in trypanosomes and further investigate the fate of 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one in bloodstream form trypanosomes.

Another finding of the U13C glucose study (Creek et al., 2015) was a significant level of aspartate, succinate and malate not made from glucose, suggesting alternative carbon source than glucose for their production. Data obtained from U13C L-glutamine labelling in cultured trypanosomes (DH Kim and F Achcar, unpublished data) showed labelled carbon incorporation from L-glutamine. However, approximately 20\% of aspartate, succinate and malate were still unaccounted for. As L-proline can be the main carbon source in procyclic trypanosomes, U13C L-proline was used to investigate its possible involvement in bloodstream form trypanosomes. However, minimal labelling of compounds in the dataset suggests L-proline is not used as carbon source in bloodstream form trypanosomes. No carbon incorporation into those compounds was detected from L-methionine and L-arginine. Further testing of other amino acids is required to answer for the unaccounted amounts of aspartate, succinate and malate. Enzymes for the oxidation of aromatic amino acids are absent from trypanosomes (Berriman et al., 2005) making their involvement unlikely. L-aspartate is not taken up by trypanosomes (Hasne, thesis) and work done by D Kim with 13C- L-cysteine (unpublished data) showed no labelling.
Previous work from I. Vincent on the L-ornithine biosynthesis showed that trypanosomes take up L-ornithine from the media. However, when cells were incubated in CBSS (Carter’s balanced saline solution) in the absence of L-ornithine and with added 14N-L-arginine, labelling of L-ornithine occurred. The most direct route from L-arginine to L-ornithine is via the enzyme arginase. T. b. brucei’s genome encodes for a gene annotated as arginase (or agmatinase-like protein), however, this enzymes has no arginase activity (Hai et al., 2014). To investigate an alternative route for L-ornithine production, but also to further probe the L-arginine metabolism in trypanosomes, U-13C-L-arginine was used in an untargeted metabolomic approach.

The main findings are:

- Although L-ornithine was 5C labelled from L-arginine, equally high concentrations were seen intra- and extracellular (spent medium analysis). Therefore, it was assumed that the formation of L-ornithine happened outside the cell and labelled L-ornithine was taken up by the trypanosomes. This was later verified by Dr. F. Giordani by incubating medium with added U-13C L-arginine without cells.

- Arginine-phosphate is labelled from L-arginine. This has been described to be of use in energy storage in trypanosomes (Canepa et al., 2011), with three arginine kinases being encoded in the T. brucei genome.

6.3. Secretome

Proteomic techniques were used to identify secreted proteins from two different trypanosome strains, which differ in the course of disease, 427 causes an acute infection in mice while GVR35 remains as a more chronic form within the CNS of the mice. In this thesis, I showed significant differences in proteins secreted from strain 427 and GVR35, although the results are just preliminary. However, the preliminary data did show a high consensus between the possible secreted proteins from strain 427 and GVR35 to other published secretome datasets, including one from human infecting trypanosomes (Geiger et al., 2010).

Although published trypanosome secretome datasets included ‘proof’ of minimal contamination of proteins from lysed cells by FACS and western blot analysis, the
occurrence of highly abundant proteins and glycolytic enzymes raises the questions if those proteins are actively secreted or not.

Further work is needed to address this problem and for the strains used in this study alternative methods for secretome production are needed.
List of References

Appendix A

Growth media for *T. b. brucei*

(1) Modified HMI-9

For 500 ml modified HMI-9:

- Iscoves modified Dulbecco’s medium + glutamax (Gibco) 365 ml
- Methyl cellulose (Sigma) 0.55g

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (mM) Stocksolution</th>
<th>Concentration final in modified HMI-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathocuproinedisulfonic acid</td>
<td>5</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>L-cysteine</td>
<td>100</td>
<td>1 mM</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>200</td>
<td>2 M</td>
</tr>
<tr>
<td>Thymidine</td>
<td>16</td>
<td>160 µM</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td></td>
<td>2 mM</td>
</tr>
<tr>
<td>D-glucose</td>
<td></td>
<td>5.5 mM</td>
</tr>
<tr>
<td>Adenosine</td>
<td></td>
<td>0.5 mM</td>
</tr>
<tr>
<td>Guanosine</td>
<td></td>
<td>0.5 mM</td>
</tr>
<tr>
<td>Mercaptoethanol</td>
<td></td>
<td>3 µM</td>
</tr>
<tr>
<td>Pen/Strep</td>
<td></td>
<td>5000 Units</td>
</tr>
<tr>
<td>FBS Gold (PAA)</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Serum plus</td>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

Table A1: Modified HMI-9 (adapted from Paul Voorheis).
(2) Creek’s minimal medium (CMM)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathocuproine disulfonic acid</td>
<td>52</td>
</tr>
<tr>
<td>Phenolsulfonphthalein</td>
<td>42</td>
</tr>
<tr>
<td>HEPES</td>
<td>10,000</td>
</tr>
<tr>
<td>NaCl</td>
<td>77,590</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>1,490</td>
</tr>
<tr>
<td>KCl</td>
<td>4,400</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>814</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>35,950</td>
</tr>
<tr>
<td>D-glucose</td>
<td>10,000</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>1,000</td>
</tr>
<tr>
<td>L-cysteine</td>
<td>1,000</td>
</tr>
<tr>
<td>Mercaptoethanol</td>
<td>192</td>
</tr>
<tr>
<td>FBS Gold (PAA)</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table A2: Creek’s minimal media (CMM) (Creel et al., 2013). If a different brand FBS does not support growth in this medium, L-arginine, L-tyrosine, L-methionine, L-leucine, L-phenylalanine and L-tryptophan should be added (100µM).
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name</th>
<th>Description</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb427.01.1130</td>
<td>glycerol-3-phosphate dehydrogenase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACGCACCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.06.4920</td>
<td>S-adenosylmethionine synthetase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.07.4390</td>
<td>threonine synthase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.08.3800</td>
<td>nucleoside phosphatase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.10.12980</td>
<td>methyltransferase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.10.13130</td>
<td>UTP-glucose-1-phosphate uridylyltransfer</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.10.13430</td>
<td>citrate synthase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427tmp.01.3640</td>
<td>acyl-CoA dehydrogenase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427tmp.02.0530</td>
<td>phosphoribosylpyrophosphate synthetase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>aldo/keto reductase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Tb427.10.2490</td>
<td>glucose-6-phosphate 1-dehydrogenase</td>
<td>Recombinat expression, fwd</td>
<td>GGTATTGAGGGTTCGCAATGGGTCGCTATACCGAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinat Expression, rev</td>
<td>AGAGGAAGATAGGCTGCTTACCTAACCTAAAGCC</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene name</td>
<td>Description</td>
<td>Sequence</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tb427.05.3820</td>
<td>aspartate carbamoyltransferase</td>
<td>Recombinant expression, fwd</td>
<td>GGTATTGAGGGTCGCATGGCGAGCTGCAACCTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinant expression, rev</td>
<td>AGAGGAGAGTTAGAGCCCTTAGGGAGAAACACTATAAAAG</td>
</tr>
<tr>
<td>Tb427.10.2010</td>
<td>Hexokinase I</td>
<td>Recombinant expression, fwd</td>
<td>GGTATTGAGGGTCGCATGTCTAGACGCCTAAAACAATAATCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinant expression, rev</td>
<td>AGAGGAGAGTTAGAGCCCTTACTTTGTGTTCAACCACCATTTGCG</td>
</tr>
<tr>
<td>Tb427.05.4560</td>
<td>guanine deaminase</td>
<td>Recombinant expression, fwd</td>
<td>GGTATTGAGGGTCGCATGNAACCGGCCTGTGCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinant expression, rev</td>
<td>AGAGGAGAGTTAGAGCCCTAAAGTTCTACCCTCCGTGGACC</td>
</tr>
</tbody>
</table>

Table B1: Oligonucleotides used in this study for protein overexpression. The inserted overhang necessary for ligase independent cloning is underlined.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene name</th>
<th>Description</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb427.05.3820</td>
<td>aspartate carbamoyltransferase</td>
<td>G197RNAi, fwd</td>
<td>GGGGACAAGTTTTGTACAAAAAGCAGGCTGAGCTACTTGTGCTGCGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G197RNAi, rev</td>
<td>GGGGACCATTTTTGACAAAGAAAGCTGGTTAATGACGATATCCGCTTCTG</td>
</tr>
<tr>
<td>Tb427tmp.02.3040</td>
<td>aldo/keto reductase</td>
<td>G196RNAi, fwd</td>
<td>GGGGACAAGTTTTGTACAAAAAGCAGGCTCATTGATCTGCGGATTGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G196RNAi, rev</td>
<td>GGGGACCATTTTTGACAAAGAAAGCTGGTTAATGACGATATCCGCTTCTG</td>
</tr>
<tr>
<td>Tb11.01.6500</td>
<td>NAD+ synthase</td>
<td>G162RNAi, fwd</td>
<td>GGGGACAAGTTTTGTACAAAAAGCAGGCTGAGCTACTTGTGCTGCGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G162RNAi, rev</td>
<td>GGGGACCATTTTTGACAAAGAAAGCTGGTTAATGACGATATCCGCTTCTG</td>
</tr>
<tr>
<td>Tb927.7.5680</td>
<td>deoxyribose-phosphate aldolase</td>
<td>G15gRNAi, fwd</td>
<td>GGGGACAAGTTTTGTACAAAAAGCAGGCTCTAAAACCTGAGGCAACCCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G15gRNAi, rev</td>
<td>GGGGACCATTTTTGACAAAGAAAGCTGGTTAATGACGATATCCGCTTCTG</td>
</tr>
</tbody>
</table>

Table B2: Oligonucleotides used in this study for creation of RNAi lines
Appendix C

General buffers and solutions

0.1% coomassie blue stain (200 mL)
Coomassie blue 0.2 g
Methanol 80 mL
Acetic acid 20 mL
dH$_2$O 100 mL

Destaining solution for protein gels (500 mL)
Methanol 100 mL
Acetic acid 50 mL
dH$_2$O 350 mL

LB medium (Luria Bertani broth, pH 7)
 LB powder (Sigma-Aldrich) 25 g
dH$_2$O 1 L

LB agar
Luria Agar (Sigma-Aldrich) 35 g
dH$_2$O 1 L

DiGE lysis buffer:
Urea 6 M
Thiourea 2 M
CHAPS 4%
Tris base 25mM

Rehydration buffer:
Urea 6 M
Thiourea 2 M
CHAPS 4%
IPG buffer 0.5%
DTT 65 mM
Trace of bromophenol blue
Appendix D

Table of the three authentic standard mixes run with every metabolomics experiment.

Shown are the metabolite name and formula. The polarity mode (positive or negative) the metabolite was best detected in and the expected retention time.

<table>
<thead>
<tr>
<th>Mix</th>
<th>Compound Name</th>
<th>Formula</th>
<th>Polarity</th>
<th>Expected RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-Naphthylacetic acid</td>
<td>C12H10O2</td>
<td>+</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>Serotonin</td>
<td>C10H12N2O</td>
<td>+</td>
<td>4.28</td>
</tr>
<tr>
<td></td>
<td>Melatonin</td>
<td>C13H16N2O2</td>
<td>+</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>Phenylhydrazine</td>
<td>C6H8N2</td>
<td>+</td>
<td>5.08</td>
</tr>
<tr>
<td></td>
<td>Nicotinate</td>
<td>C6H5NO2</td>
<td>+</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td>Pyridoxine</td>
<td>C8H11NO3</td>
<td>+</td>
<td>7.45</td>
</tr>
<tr>
<td></td>
<td>riboflavin</td>
<td>C17H20N4O6</td>
<td>+</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>Glycerol</td>
<td>C3H8O3</td>
<td>+</td>
<td>8.12</td>
</tr>
<tr>
<td></td>
<td>Adenine</td>
<td>C5H5N5</td>
<td>+</td>
<td>8.34</td>
</tr>
<tr>
<td></td>
<td>Creatinine</td>
<td>C4H7N3O</td>
<td>+</td>
<td>8.42</td>
</tr>
<tr>
<td></td>
<td>L-Phenylalanine</td>
<td>C9H11NO2</td>
<td>+</td>
<td>8.34</td>
</tr>
<tr>
<td></td>
<td>L-Leucine</td>
<td>C6H13N2O2</td>
<td>+</td>
<td>8.74</td>
</tr>
<tr>
<td></td>
<td>4-Aminobenzoate</td>
<td>C7H7NO2</td>
<td>+</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td>Inosine</td>
<td>C10H12N4O5</td>
<td>+</td>
<td>9.86</td>
</tr>
<tr>
<td></td>
<td>2-Phenylglycine</td>
<td>C8H9NO2</td>
<td>+</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>Selenomethionine</td>
<td>C5H11NO2Se</td>
<td>+</td>
<td>9.03</td>
</tr>
<tr>
<td></td>
<td>L-Methionine</td>
<td>C5H11NO2S</td>
<td>+</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>Imidazole-4-acetate</td>
<td>C5H6N2O2</td>
<td>+</td>
<td>9.03</td>
</tr>
<tr>
<td></td>
<td>L-Tryptophan</td>
<td>C11H12N2O2</td>
<td>+</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td>N-Acetyl-D-glucosamine</td>
<td>C8H15NO6</td>
<td>+</td>
<td>9.33</td>
</tr>
<tr>
<td></td>
<td>Cytidine</td>
<td>C9H13N3O5</td>
<td>+</td>
<td>9.53</td>
</tr>
<tr>
<td></td>
<td>Guanine</td>
<td>C5H5N5O</td>
<td>+</td>
<td>9.98</td>
</tr>
<tr>
<td></td>
<td>L-Valine</td>
<td>C5H11NO2</td>
<td>+</td>
<td>9.59</td>
</tr>
<tr>
<td></td>
<td>L-Proline</td>
<td>C5H9NO2</td>
<td>+</td>
<td>9.75</td>
</tr>
<tr>
<td></td>
<td>sn-glycero-3-Phosphocholine</td>
<td>C8H20N06P</td>
<td>+</td>
<td>10.23</td>
</tr>
<tr>
<td></td>
<td>L-Threonine</td>
<td>C4H9NO3</td>
<td>+</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>trans-4-Hydroxy-L-proline</td>
<td>C5H9NO3</td>
<td>+</td>
<td>10.52</td>
</tr>
<tr>
<td></td>
<td>L-Histidine</td>
<td>C6H9N3O2</td>
<td>+</td>
<td>10.48</td>
</tr>
<tr>
<td></td>
<td>N2-Acetyl-L-lysine</td>
<td>C8H16N2O3</td>
<td>+</td>
<td>10.57</td>
</tr>
<tr>
<td></td>
<td>D-Glucosamine</td>
<td>C6H13N05</td>
<td>+</td>
<td>10.72</td>
</tr>
<tr>
<td></td>
<td>L-Glutamine</td>
<td>C5H10N2O3</td>
<td>+</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>Taurine</td>
<td>C2H7N03S</td>
<td>+</td>
<td>10.94</td>
</tr>
<tr>
<td></td>
<td>L-Aspartate</td>
<td>C4H7NO4</td>
<td>+</td>
<td>10.52</td>
</tr>
<tr>
<td></td>
<td>L-Asparagine</td>
<td>C4H8N2O3</td>
<td>+</td>
<td>10.76</td>
</tr>
<tr>
<td></td>
<td>beta-Alanine</td>
<td>C3H7NO2</td>
<td>+</td>
<td>10.94</td>
</tr>
<tr>
<td></td>
<td>Glycine</td>
<td>C2H5NO2</td>
<td>+</td>
<td>11.13</td>
</tr>
<tr>
<td></td>
<td>dGMP</td>
<td>C10H14N5O7P</td>
<td>+</td>
<td>10.52</td>
</tr>
<tr>
<td></td>
<td>L-Serine</td>
<td>C3H7NO3</td>
<td>+</td>
<td>11.09</td>
</tr>
<tr>
<td></td>
<td>Ethanolamine phosphate</td>
<td>C2H8NO4P</td>
<td>+</td>
<td>10.72</td>
</tr>
<tr>
<td>Mix</td>
<td>Compound Name</td>
<td>Formula</td>
<td>Polarity</td>
<td>Expected RT</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>L-Citrulline</td>
<td>C6H13N3O3</td>
<td>+</td>
<td>11.04</td>
</tr>
<tr>
<td></td>
<td>L-Cystine</td>
<td>C6H12N2O4S2</td>
<td>+</td>
<td>10.87</td>
</tr>
<tr>
<td></td>
<td>meso-2,6-Diaminoheptanedioate</td>
<td>C7H14N2O4</td>
<td>+</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>Putrescine</td>
<td>C4H12N2</td>
<td>+</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>L-2,4-Diaminobutanoate</td>
<td>C4H10N2O2</td>
<td>+</td>
<td>12.27</td>
</tr>
<tr>
<td></td>
<td>Thiamin</td>
<td>C12H16N4O5</td>
<td>+</td>
<td>16.71</td>
</tr>
<tr>
<td></td>
<td>L-Lysine</td>
<td>C6H14N2O2</td>
<td>+</td>
<td>15.38</td>
</tr>
<tr>
<td></td>
<td>L-Arginine</td>
<td>C6H14N4O2</td>
<td>+</td>
<td>16.42</td>
</tr>
<tr>
<td></td>
<td>S-Adenosyl-L-methionine</td>
<td>C15H22N6O5S</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phenolsulfonphthalein</td>
<td>C19H14O5S</td>
<td>-</td>
<td>5.11</td>
</tr>
<tr>
<td></td>
<td>Thymidine</td>
<td>C10H14N2O5</td>
<td>-</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>MOPS</td>
<td>C7H15NO4S</td>
<td>-</td>
<td>6.73</td>
</tr>
<tr>
<td></td>
<td>Pyruvate</td>
<td>C3H4O3</td>
<td>-</td>
<td>7.41</td>
</tr>
<tr>
<td></td>
<td>Deoxyuridine</td>
<td>C9H12N2O5</td>
<td>-</td>
<td>7.52</td>
</tr>
<tr>
<td></td>
<td>4-Coumarate</td>
<td>C9H8O3</td>
<td>-</td>
<td>7.39</td>
</tr>
<tr>
<td></td>
<td>pyrazinoate</td>
<td>C5H4N2O2</td>
<td>-</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>(R)-3-Hydroxybutanoate</td>
<td>C4H8O3</td>
<td>-</td>
<td>7.87</td>
</tr>
<tr>
<td></td>
<td>3'5'Cyclic AMP</td>
<td>C10H12N5O6P</td>
<td>-</td>
<td>7.93</td>
</tr>
<tr>
<td></td>
<td>Uridine</td>
<td>C9H12N2O6</td>
<td>-</td>
<td>8.47</td>
</tr>
<tr>
<td></td>
<td>D-glucose</td>
<td>C6H12O6</td>
<td>-</td>
<td>10.77</td>
</tr>
<tr>
<td></td>
<td>Orotate</td>
<td>C5H4N2O4</td>
<td>-</td>
<td>8.58</td>
</tr>
<tr>
<td></td>
<td>L-Rhamnose</td>
<td>C6H12O5</td>
<td>-</td>
<td>9.16</td>
</tr>
<tr>
<td></td>
<td>Xanthine</td>
<td>C5H4N4O2</td>
<td>-</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>3,4-Dihydroxyphenylacetate</td>
<td>C8H8O4</td>
<td>-</td>
<td>10.15</td>
</tr>
<tr>
<td></td>
<td>Pyridoxal phosphate</td>
<td>C8H10N06P</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phthalate</td>
<td>C8H6O4</td>
<td>-</td>
<td>10.24</td>
</tr>
<tr>
<td></td>
<td>D-Gluconic acid</td>
<td>C6H12O7</td>
<td>-</td>
<td>10.17</td>
</tr>
<tr>
<td></td>
<td>UMP</td>
<td>C9H13N2O9P</td>
<td>-</td>
<td>9.93</td>
</tr>
<tr>
<td></td>
<td>Thiamin diphosphate</td>
<td>C12H18N4O7P2S</td>
<td>-</td>
<td>9.86</td>
</tr>
<tr>
<td></td>
<td>L-Glutamate</td>
<td>C5H9NO4</td>
<td>-</td>
<td>10.34</td>
</tr>
<tr>
<td></td>
<td>IMP</td>
<td>C10H13N4O8P</td>
<td>-</td>
<td>10.15</td>
</tr>
<tr>
<td></td>
<td>Methylmalonate</td>
<td>C4H6O4</td>
<td>-</td>
<td>10.54</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>C9H14N3O8P</td>
<td>-</td>
<td>10.43</td>
</tr>
<tr>
<td></td>
<td>(R)-2-Hydroxyglutarate</td>
<td>C5H8O5</td>
<td>-</td>
<td>10.62</td>
</tr>
<tr>
<td></td>
<td>L-Cysteate</td>
<td>C3H7NO5S</td>
<td>-</td>
<td>11.08</td>
</tr>
<tr>
<td></td>
<td>D-ribose 5-phosphate</td>
<td>C5H11O8P</td>
<td>-</td>
<td>10.66</td>
</tr>
<tr>
<td></td>
<td>Malonate</td>
<td>C3H4O4</td>
<td>-</td>
<td>10.95</td>
</tr>
<tr>
<td></td>
<td>D-Galacturonate</td>
<td>C6H10O7</td>
<td>-</td>
<td>11.28</td>
</tr>
<tr>
<td></td>
<td>Fumarate</td>
<td>C4H4O4</td>
<td>-</td>
<td>9.89</td>
</tr>
<tr>
<td></td>
<td>D-glucose 6-phosphate</td>
<td>C6H13O9P</td>
<td>-</td>
<td>11.12</td>
</tr>
<tr>
<td></td>
<td>D-Galactarate</td>
<td>C6H10O8</td>
<td>-</td>
<td>11.48</td>
</tr>
<tr>
<td></td>
<td>Phosphoenolpyruvate</td>
<td>C3H5O6P</td>
<td>-</td>
<td>11.52</td>
</tr>
<tr>
<td></td>
<td>6-Phospho-D-gluconate</td>
<td>C6H13O10P</td>
<td>-</td>
<td>11.39</td>
</tr>
<tr>
<td></td>
<td>cis-Aconitate</td>
<td>C6H6O6</td>
<td>-</td>
<td>11.77</td>
</tr>
<tr>
<td></td>
<td>Gallate</td>
<td>C7H6O5</td>
<td>-</td>
<td>13.11</td>
</tr>
<tr>
<td></td>
<td>D-Erythrose</td>
<td>C4H8O4</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Maltose</td>
<td>C12H22O11</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Mix</td>
<td>Compound Name</td>
<td>Formula</td>
<td>Polarity</td>
<td>Expected RT</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>2-oxobutanoate</td>
<td>C4H6O3</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>2-Methylcitrate</td>
<td>C7H10O7</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Glyoxylate</td>
<td>C2H2O3</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>glycolate</td>
<td>C2H4O3</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>methylglyoxal</td>
<td>C3H4O2</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IDP</td>
<td>C10H14N4O11P2</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ADP</td>
<td>C10H15N5O10P2</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D-Fructose 1_6-bisphosphate</td>
<td>C6H14O12P2</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CoA</td>
<td>C21H36N7O16P</td>
<td>3S</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2_3-Bisphospho-D-glycerate</td>
<td>C3H8O10P2</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3-Hydroxyphenylacetate</td>
<td>C8H8O3</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>C27H46O</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1-Butanol</td>
<td>C4H10O</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oxaloacetate</td>
<td>C4H4O5</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Imidazole</td>
<td>C3H4N2</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>glyceraldehyde</td>
<td>C3H6O3</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Menadione</td>
<td>C11H8O2</td>
<td>+</td>
<td>15.65</td>
</tr>
<tr>
<td>Dopamine</td>
<td>C8H11N2O2</td>
<td>+</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>Thiopurine S-methylether</td>
<td>C6H6N4S</td>
<td>+</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>5’-Methylthioadenosine</td>
<td>C11H15N5O3S</td>
<td>+</td>
<td>6.52</td>
<td></td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>C6H6N2O</td>
<td>+</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>4-(beta-Acetylaminooethyl)imidazole</td>
<td>C7H11N3O</td>
<td>+</td>
<td>6.92</td>
<td></td>
</tr>
<tr>
<td>Pyridoxal</td>
<td>C8H9N3O</td>
<td>+</td>
<td>7.74</td>
<td></td>
</tr>
<tr>
<td>6-Methylaminopurine</td>
<td>C6H7N5</td>
<td>+</td>
<td>7.36</td>
<td></td>
</tr>
<tr>
<td>Deoxyadenosine</td>
<td>C10H13N5O3</td>
<td>+</td>
<td>7.46</td>
<td></td>
</tr>
<tr>
<td>Pantothenate</td>
<td>C9H17N5O4</td>
<td>+</td>
<td>7.46</td>
<td></td>
</tr>
<tr>
<td>Uracil</td>
<td>C4H4N2O2</td>
<td>+</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>Picolinic acid</td>
<td>C6H5N2O</td>
<td>+</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>thymine</td>
<td>C5H6N2O2</td>
<td>+</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>Adenosine</td>
<td>C10H13N5O4</td>
<td>+</td>
<td>7.94</td>
<td></td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>C5H4N4O</td>
<td>+</td>
<td>8.75</td>
<td></td>
</tr>
<tr>
<td>5-Oxoproline</td>
<td>C5H7N3O</td>
<td>+</td>
<td>8.36</td>
<td></td>
</tr>
<tr>
<td>HEPES</td>
<td>C8H18N2O4S</td>
<td>+</td>
<td>8.36</td>
<td></td>
</tr>
<tr>
<td>L-Kynurenine</td>
<td>C10H12N2O3</td>
<td>+</td>
<td>8.81</td>
<td></td>
</tr>
<tr>
<td>Betaine</td>
<td>C5H11N02</td>
<td>+</td>
<td>9.03</td>
<td></td>
</tr>
<tr>
<td>cytosine</td>
<td>C4H5N3O</td>
<td>+</td>
<td>9.39</td>
<td></td>
</tr>
<tr>
<td>FAD</td>
<td>C27H33N9O15P2</td>
<td>+</td>
<td>8.47</td>
<td></td>
</tr>
<tr>
<td>L-isoleucine</td>
<td>C6H13N02</td>
<td>+</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Methylcysteine</td>
<td>C4H9NO2S</td>
<td>+</td>
<td>9.18</td>
<td></td>
</tr>
<tr>
<td>Ala-Gly</td>
<td>C5H10N2O3</td>
<td>+</td>
<td>9.14</td>
<td></td>
</tr>
<tr>
<td>Guanosine</td>
<td>C10H13N5O5</td>
<td>+</td>
<td>9.98</td>
<td></td>
</tr>
<tr>
<td>dAMP</td>
<td>C10H14N5O6P</td>
<td>+</td>
<td>9.14</td>
<td></td>
</tr>
<tr>
<td>1-Aminocyclopropane-l-carboxylate</td>
<td>C4H7N02</td>
<td>+</td>
<td>9.59</td>
<td></td>
</tr>
<tr>
<td>N(pi)-Methyl-L-histidine</td>
<td>C7H11N3O2</td>
<td>+</td>
<td>9.47</td>
<td></td>
</tr>
<tr>
<td>L-Carnitine</td>
<td>C7H15N03</td>
<td>+</td>
<td>9.89</td>
<td></td>
</tr>
<tr>
<td>Efllornithine</td>
<td>C6H12F2N2O2</td>
<td>+</td>
<td>9.98</td>
<td></td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>C9H11N03</td>
<td>+</td>
<td>9.98</td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>Compound Name</td>
<td>Formula</td>
<td>Polarity</td>
<td>Expected RT</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>4-Trimethylammoniobutanoate</td>
<td>C7H15NO2</td>
<td>+</td>
<td>9.77</td>
</tr>
<tr>
<td></td>
<td>S-Adenosyl-L-homocysteine</td>
<td>C14H20N6O5S</td>
<td>+</td>
<td>9.68</td>
</tr>
<tr>
<td></td>
<td>AMP</td>
<td>C10H14N5O7P</td>
<td>+</td>
<td>9.59</td>
</tr>
<tr>
<td></td>
<td>NAD+</td>
<td>C21H27N7O14P2</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Glycylglycine</td>
<td>C4H8N2O3</td>
<td>+</td>
<td>9.98</td>
</tr>
<tr>
<td></td>
<td>Phenol</td>
<td>C6H6O</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D-Glucosamine-6-phosphate</td>
<td>C6H14NO8P</td>
<td>+</td>
<td>10.79</td>
</tr>
<tr>
<td></td>
<td>L-Alanine</td>
<td>C3H7NO2</td>
<td>+</td>
<td>10.73</td>
</tr>
<tr>
<td></td>
<td>Choline phosphate</td>
<td>C5H14NO4P</td>
<td>+</td>
<td>10.21</td>
</tr>
<tr>
<td></td>
<td>dCMP</td>
<td>C9H14N3O7P</td>
<td>+</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>L-2-Aminoadipate</td>
<td>C6H11NO4</td>
<td>+</td>
<td>10.38</td>
</tr>
<tr>
<td></td>
<td>L-homoserine</td>
<td>C4H9NO3</td>
<td>+</td>
<td>10.75</td>
</tr>
<tr>
<td></td>
<td>N-Acetylornithine</td>
<td>C7H14N2O3</td>
<td>+</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>4-Aminobutanolate</td>
<td>C4H9NO2</td>
<td>+</td>
<td>10.94</td>
</tr>
<tr>
<td></td>
<td>L-Cystathionine</td>
<td>C7H14N2O4S</td>
<td>+</td>
<td>11.22</td>
</tr>
<tr>
<td></td>
<td>agmatine</td>
<td>C5H14N4</td>
<td>+</td>
<td>11.15</td>
</tr>
<tr>
<td></td>
<td>Spermine</td>
<td>C10H26N4</td>
<td>+</td>
<td>12.23</td>
</tr>
<tr>
<td></td>
<td>Trypanothione disulfide</td>
<td>C27H47N9O10S2</td>
<td>+</td>
<td>12.17</td>
</tr>
<tr>
<td></td>
<td>Choline</td>
<td>C5H13NO</td>
<td>+</td>
<td>15.65</td>
</tr>
<tr>
<td></td>
<td>l-Aminopropan-2-ol</td>
<td>C3H9NO</td>
<td>+</td>
<td>15.65</td>
</tr>
<tr>
<td></td>
<td>L-Ornithine</td>
<td>C5H12N2O2</td>
<td>+</td>
<td>14.24</td>
</tr>
<tr>
<td></td>
<td>5-Methoxytryptamine</td>
<td>C11H14N2O</td>
<td>+</td>
<td>4.59</td>
</tr>
<tr>
<td></td>
<td>Methylguanidin</td>
<td>C2H7N3</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biotin</td>
<td>C10H16N2O3S</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L-2,3-Diaminopropanoate</td>
<td>C3H8N2O2</td>
<td>+</td>
<td>11.31</td>
</tr>
<tr>
<td></td>
<td>l-3-Diaminopropanoate</td>
<td>C3H10N2</td>
<td>+</td>
<td>14.04</td>
</tr>
<tr>
<td></td>
<td>Taurocholate</td>
<td>C26H45NO7S</td>
<td>-</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td>Lipoate</td>
<td>C8H14O2S</td>
<td>-</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td>Phenylacetylglcine</td>
<td>C10H11NO3</td>
<td>-</td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td>Phenylpyruvate</td>
<td>C9H8O3</td>
<td>-</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>D-Threose</td>
<td>C4H8O4</td>
<td>-</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>succinate semialdehyde</td>
<td>C4H6O3</td>
<td>-</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>N-Acetylglutamine</td>
<td>C7H12N2O4</td>
<td>-</td>
<td>8.46</td>
</tr>
<tr>
<td></td>
<td>3-(4-Hydroxyphenyl)pyruvate</td>
<td>C9H8O4</td>
<td>-</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>D-Ribose</td>
<td>C5H10O5</td>
<td>-</td>
<td>8.91</td>
</tr>
<tr>
<td></td>
<td>FMN</td>
<td>C17H21N4O9P</td>
<td>-</td>
<td>8.52</td>
</tr>
<tr>
<td></td>
<td>L-Gulono-1_4-lactone</td>
<td>C6H10O6</td>
<td>-</td>
<td>9.31</td>
</tr>
<tr>
<td></td>
<td>Orotidine</td>
<td>C10H12N2O8</td>
<td>-</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>N-Acetylneuraminate</td>
<td>C11H19NO9</td>
<td>-</td>
<td>9.74</td>
</tr>
<tr>
<td></td>
<td>dUMP</td>
<td>C9H13N2O8P</td>
<td>-</td>
<td>9.72</td>
</tr>
<tr>
<td></td>
<td>allantoin</td>
<td>C4H6N4O3</td>
<td>-</td>
<td>11.02</td>
</tr>
<tr>
<td></td>
<td>dIMP</td>
<td>C10H13N4O7P</td>
<td>-</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>sn-Glycerol 3-phosphate</td>
<td>C3H9O6P</td>
<td>-</td>
<td>10.32</td>
</tr>
<tr>
<td></td>
<td>sucrose</td>
<td>C12H22O11</td>
<td>-</td>
<td>10.78</td>
</tr>
<tr>
<td></td>
<td>D-Erythrose 4-phosphate</td>
<td>C4H9O7P</td>
<td>-</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td>Succinate</td>
<td>C4H6O4</td>
<td>-</td>
<td>10.61</td>
</tr>
<tr>
<td></td>
<td>D-Glucuronolactone</td>
<td>C6H8O6</td>
<td>-</td>
<td>10.85</td>
</tr>
<tr>
<td>Mix</td>
<td>Compound Name</td>
<td>Formula</td>
<td>Polarity</td>
<td>Expected RT</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>Mesaconate</td>
<td>C5H6O4</td>
<td>-</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>2-Oxoglutarate</td>
<td>C5H6O5</td>
<td>-</td>
<td>10.91</td>
</tr>
<tr>
<td></td>
<td>GMP</td>
<td>C10H14N5O8P</td>
<td>-</td>
<td>10.67</td>
</tr>
<tr>
<td></td>
<td>(S)-Malate</td>
<td>C4H6O5</td>
<td>-</td>
<td>11.04</td>
</tr>
<tr>
<td></td>
<td>UDP-glucose</td>
<td>C15H24N2O17P2</td>
<td>-</td>
<td>10.95</td>
</tr>
<tr>
<td></td>
<td>Folate</td>
<td>C19H19N7O6</td>
<td>-</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>DL-Glyceraldehyde 3-phosphate</td>
<td>C3H7O6P</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NADP+</td>
<td>C21H28N7O17P3</td>
<td>-</td>
<td>10.78</td>
</tr>
<tr>
<td></td>
<td>ATP</td>
<td>C10H16N5O13P3</td>
<td>-</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td>3-Phospho-D-glycerate</td>
<td>C3H7O7P</td>
<td>-</td>
<td>11.19</td>
</tr>
<tr>
<td></td>
<td>Oxalate</td>
<td>C2H2O4</td>
<td>-</td>
<td>12.02</td>
</tr>
<tr>
<td></td>
<td>GDP</td>
<td>C10H15N5O11P2</td>
<td>-</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>citrate</td>
<td>C6H8O7</td>
<td>-</td>
<td>11.85</td>
</tr>
<tr>
<td></td>
<td>CTP</td>
<td>C9H16N3O14P3</td>
<td>-</td>
<td>11.67</td>
</tr>
<tr>
<td></td>
<td>GTP</td>
<td>C10H16N5O14P3</td>
<td>-</td>
<td>12.11</td>
</tr>
<tr>
<td></td>
<td>2-Deoxy-D-glucose</td>
<td>C6H12O5</td>
<td>-</td>
<td>8.65</td>
</tr>
<tr>
<td></td>
<td>(R)-Lactate</td>
<td>C3H6O3</td>
<td>-</td>
<td>5.37</td>
</tr>
<tr>
<td></td>
<td>Acetyl-CoA</td>
<td>C23H38N7O17P3S</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Dihydrolipoamide</td>
<td>C8H17NOS2</td>
<td>+</td>
<td>8.11</td>
</tr>
<tr>
<td></td>
<td>lipoamide</td>
<td>C8H15NOS2</td>
<td>+</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>2-Aminobutan-4-olide</td>
<td>C4H7NO2</td>
<td>+</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>2-hydroxyethyl disulfide</td>
<td>C4H10O2S2</td>
<td>+</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Isonicotinic acid</td>
<td>C6H5NO2</td>
<td>+</td>
<td>7.01</td>
</tr>
<tr>
<td></td>
<td>L-cysteine</td>
<td>C3H7NO2S</td>
<td>+</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td>L-Noradrenaline</td>
<td>C8H11N03</td>
<td>+</td>
<td>7.42</td>
</tr>
<tr>
<td></td>
<td>Bioppterin</td>
<td>C9H11N5O3</td>
<td>+</td>
<td>7.86</td>
</tr>
<tr>
<td></td>
<td>O-Acetylcarnitine</td>
<td>C9H17NO4</td>
<td>+</td>
<td>8.74</td>
</tr>
<tr>
<td></td>
<td>O-Acetyl-L-serine</td>
<td>C5H9NO4</td>
<td>+</td>
<td>8.55</td>
</tr>
<tr>
<td></td>
<td>L-Homocysteine</td>
<td>C4H9NO2S</td>
<td>+</td>
<td>9.94</td>
</tr>
<tr>
<td></td>
<td>5-Aminolevulinate</td>
<td>C5H9NO3</td>
<td>+</td>
<td>9.77</td>
</tr>
<tr>
<td></td>
<td>gamma-L-Glutamyl-L-cysteine</td>
<td>C8H14N2O5S</td>
<td>+</td>
<td>10.05</td>
</tr>
<tr>
<td></td>
<td>glutathione</td>
<td>C10H17N3O6S</td>
<td>+</td>
<td>10.05</td>
</tr>
<tr>
<td></td>
<td>Acetylcholine</td>
<td>C7H15NO2</td>
<td>+</td>
<td>12.79</td>
</tr>
<tr>
<td></td>
<td>L-Cystine</td>
<td>C6H12N2O4S2</td>
<td>+</td>
<td>10.84</td>
</tr>
<tr>
<td></td>
<td>Homocystine</td>
<td>C8H16N2O4S2</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S-glutathionyl-L-cysteine</td>
<td>C13H22N4O8S2</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mercaptoethanol</td>
<td>C2H6O5S</td>
<td>+</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>trypanothione</td>
<td>C27H49N9O10S2</td>
<td>+</td>
<td>10.46</td>
</tr>
<tr>
<td></td>
<td>Glutathione disulfide</td>
<td>C20H32N6O12S2</td>
<td>+</td>
<td>11.05</td>
</tr>
<tr>
<td></td>
<td>Bis-gamma-glutamylcystine</td>
<td>C16H26N4O10S2</td>
<td>+</td>
<td>11.32</td>
</tr>
<tr>
<td></td>
<td>Benzoate</td>
<td>C7H6O2</td>
<td>-</td>
<td>6.41</td>
</tr>
<tr>
<td></td>
<td>acetylcysteine</td>
<td>CH5H9NO3S</td>
<td>-</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>D-Glucono-1,4-lactone</td>
<td>C6H10O6</td>
<td>-</td>
<td>9.26</td>
</tr>
<tr>
<td></td>
<td>Acetoacetate</td>
<td>C4H6O3</td>
<td>-</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>Maleic acid</td>
<td>C4H4O4</td>
<td>-</td>
<td>9.86</td>
</tr>
<tr>
<td></td>
<td>D-Arabinose</td>
<td>C5H10O5</td>
<td>-</td>
<td>10.42</td>
</tr>
<tr>
<td></td>
<td>D-Fructose</td>
<td>C6H12O6</td>
<td>-</td>
<td>10.34</td>
</tr>
<tr>
<td>Mix</td>
<td>Compound Name</td>
<td>Formula</td>
<td>Polarity</td>
<td>Expected RT</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>Orthophosphate</td>
<td>H₃O₄P</td>
<td>-</td>
<td>10.64</td>
</tr>
<tr>
<td>118</td>
<td>NADH</td>
<td>C₂₁H₂₉N₇O₁₄P₂</td>
<td>-</td>
<td>9.44</td>
</tr>
<tr>
<td></td>
<td>L-Dehydroascorbate</td>
<td>C₆H₆O₆</td>
<td>-</td>
<td>11.81</td>
</tr>
<tr>
<td></td>
<td>N-acetyl-L-glutamate</td>
<td>C₇H₁₁NO₅</td>
<td>-</td>
<td>9.99</td>
</tr>
<tr>
<td></td>
<td>ascorbate</td>
<td>C₆H₈O₆</td>
<td>-</td>
<td>10.64</td>
</tr>
<tr>
<td></td>
<td>itaconate</td>
<td>C₅H₆O₄</td>
<td>-</td>
<td>10.64</td>
</tr>
<tr>
<td></td>
<td>D-Fructose 6-phosphate</td>
<td>C₆H₁₃O₉P</td>
<td>-</td>
<td>10.74</td>
</tr>
<tr>
<td></td>
<td>Adenosine 2',5'-bisphosphate</td>
<td>C₁₀H₁₅N₅O₁₀P₂</td>
<td>-</td>
<td>10.68</td>
</tr>
<tr>
<td></td>
<td>2-phospho-D-glycerate</td>
<td>C₃H₇O₇P</td>
<td>-</td>
<td>11.11</td>
</tr>
<tr>
<td></td>
<td>pyrophosphate</td>
<td>H₄O₇P₂</td>
<td>-</td>
<td>11.49</td>
</tr>
<tr>
<td></td>
<td>NADPH</td>
<td>C₂₁H₃₀N₇O₁₇P₃</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table D1: Authentic standard mixes run with every metabolomics experiment
Appendix E

Chapter 5.2.2.: Table of secreted proteins from *T. b. brucei* GVR35, with 109 proteins significantly identified using MASCOT (p-value <0.05).

<table>
<thead>
<tr>
<th>Accession no. (TritypDB)</th>
<th>ID</th>
<th>Matches</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb11.01.1290</td>
<td>14-3-3-like protein, putative (^a)(^b)</td>
<td>10(6)</td>
<td>104</td>
</tr>
<tr>
<td>Tb11.02.4700</td>
<td>14-3-3-like protein, putative (^a)(^b)</td>
<td>9(2)</td>
<td>44</td>
</tr>
<tr>
<td>Tb11.01.3020</td>
<td>40S ribosomal protein L14, putative</td>
<td>2(1)</td>
<td>32</td>
</tr>
<tr>
<td>Tb10.6k15.3340</td>
<td>40S ribosomal protein S24E, putative</td>
<td>2(0)</td>
<td>17</td>
</tr>
<tr>
<td>Tb10.70.3360</td>
<td>40S ribosomal protein S3a, putative (^b)</td>
<td>5(2)</td>
<td>57</td>
</tr>
<tr>
<td>Tb11.02.1085</td>
<td>40S ribosomal protein S4, putative (^a)</td>
<td>3(1)</td>
<td>33</td>
</tr>
<tr>
<td>Tb09.211.0110</td>
<td>60S ribosomal protein L10, putative</td>
<td>3(1)</td>
<td>42</td>
</tr>
<tr>
<td>Tb09.211.4550</td>
<td>60S ribosomal protein L12, putative</td>
<td>6(2)</td>
<td>44</td>
</tr>
<tr>
<td>Tb927.7.5170</td>
<td>60S ribosomal protein L23a</td>
<td>1(0)</td>
<td>24</td>
</tr>
<tr>
<td>Tb11.02.1120</td>
<td>adenylsuccinate synthetase, putative (^b)</td>
<td>9(2)</td>
<td>57</td>
</tr>
<tr>
<td>Tb927.3.3450</td>
<td>ADP-ribosylation factor, putative (^a)</td>
<td>4(0)</td>
<td>26</td>
</tr>
<tr>
<td>Tb927.1.2340</td>
<td>ADP-ribosylation factor-like protein 3A, putative (^a)</td>
<td>1(0)</td>
<td>17</td>
</tr>
<tr>
<td>Tb927.7.4060</td>
<td>alpha tubulin (^a)(^b)</td>
<td>108(84)</td>
<td>2274</td>
</tr>
<tr>
<td>Tb09.160.4590</td>
<td>arginine kinase (^a)(^b)</td>
<td>20(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.70.3710</td>
<td>aspartate aminotransferase (^a)(^b)</td>
<td>10(1)</td>
<td>37</td>
</tr>
<tr>
<td>Tb927.1.2330</td>
<td>beta tubulin (^a)</td>
<td>48(16)</td>
<td>524</td>
</tr>
<tr>
<td>Tb927.7.4060</td>
<td>calpain-like cysteine peptidase, putative (^a)</td>
<td>20(2)</td>
<td>48</td>
</tr>
<tr>
<td>Tb10.70.0830</td>
<td>clathrin heavy chain (^a)</td>
<td>36(5)</td>
<td>132</td>
</tr>
<tr>
<td>Tb927.2.1560</td>
<td>cyclophilin type peptidyl-prolyl cis-trans isomerase precursor, putative</td>
<td>3(0)</td>
<td>14</td>
</tr>
<tr>
<td>Tb11.03.0250</td>
<td>cyclophilin (^a)</td>
<td>12(6)</td>
<td>226</td>
</tr>
<tr>
<td>Tb11.01.8470</td>
<td>dihydrolipoyl dehydrogenase (^a)</td>
<td>2(0)</td>
<td>27</td>
</tr>
<tr>
<td>Tb10.70.5650</td>
<td>elongation factor 1-alpha (^a)(^b)</td>
<td>37(4)</td>
<td>116</td>
</tr>
<tr>
<td>Tb11.01.4660</td>
<td>elongation factor 1 gamma, putative (^a)</td>
<td>8(1)</td>
<td>28</td>
</tr>
<tr>
<td>Tb10.70.2650</td>
<td>elongation factor 2 (^a)(^b)</td>
<td>58(33)</td>
<td>942</td>
</tr>
<tr>
<td>Tb10.70.4740</td>
<td>enolase (^a)(^b)</td>
<td>135(59)</td>
<td>1528</td>
</tr>
<tr>
<td>Tb09.160.3270</td>
<td>eukaryotic initiation factor 4a, putative (^a)(^b)</td>
<td>4(3)</td>
<td>91</td>
</tr>
<tr>
<td>Tb10.70.1370</td>
<td>fructose-bisphosphate aldolase, glycosomal (^a)</td>
<td>7(4)</td>
<td>153</td>
</tr>
<tr>
<td>Tb11.02.5450</td>
<td>glucose-regulated protein 78, putative (^a)</td>
<td>4(2)</td>
<td>53</td>
</tr>
<tr>
<td>Tb10.6k15.3850</td>
<td>glyceraldehyde 3-phosphate dehydrogenase, cytosolic (^a)(^b)</td>
<td>4(1)</td>
<td>58</td>
</tr>
<tr>
<td>Tb09.211.3540</td>
<td>glycerol kinase, glycosomal (^a)</td>
<td>13(4)</td>
<td>168</td>
</tr>
<tr>
<td>Tb927.8.3530</td>
<td>glycerol-3-phosphate dehydrogenase [NAD+], glycosomal (^a)(^b)</td>
<td>7(0)</td>
<td>44</td>
</tr>
<tr>
<td>Tb11.01.3170</td>
<td>guanine nucleotide-binding protein beta subunit-like protein (^a)</td>
<td>3(0)</td>
<td>25</td>
</tr>
<tr>
<td>Tb11.01.0120</td>
<td>haloacid dehalogenase-like hydrolase, putative (^a)</td>
<td>5(2)</td>
<td>56</td>
</tr>
<tr>
<td>Tb11.01.3110</td>
<td>heat shock protein 70 (^a)(^b)</td>
<td>113(41)</td>
<td>914</td>
</tr>
<tr>
<td>Tb11.01.3080</td>
<td>heat shock protein 70 (^a)(^b)</td>
<td>19(7)</td>
<td>237</td>
</tr>
<tr>
<td>Tb927.7.710</td>
<td>heat shock 70 kDa protein</td>
<td>6(4)</td>
<td>145</td>
</tr>
<tr>
<td>Tb10.26.1080</td>
<td>heat shock protein 83 (^a)(^b)</td>
<td>38(15)</td>
<td>371</td>
</tr>
<tr>
<td>Accession no. (TritrypDB)</td>
<td>ID</td>
<td>Matches</td>
<td>Score</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Tb10.389.0880</td>
<td>heat shock protein, putative</td>
<td>14(3)</td>
<td>114</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Tb927.3.5340</td>
<td>Hsc70-interacting protein (Hip), putative</td>
<td>5(2)</td>
<td>42</td>
</tr>
<tr>
<td>Tb927.7.1320</td>
<td>HSP10 10 kDa heat shock protein, putative</td>
<td>5(2)</td>
<td>77</td>
</tr>
<tr>
<td>Tb10.70.0280</td>
<td>HSP60 chaperonin Hsp60, mitochondrial precursor</td>
<td>7(5)</td>
<td>116</td>
</tr>
<tr>
<td>Tb10.v4.0053</td>
<td>hypothetical protein</td>
<td>29(13)</td>
<td>280</td>
</tr>
<tr>
<td>Tb10.70.1130</td>
<td>hypothetical protein</td>
<td>7(4)</td>
<td>150</td>
</tr>
<tr>
<td>Accession no.</td>
<td>ID</td>
<td>Matches</td>
<td>Score</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Tb10.70.0850</td>
<td>proteasome alpha 1 subunit, putative a</td>
<td>2(0)</td>
<td>20</td>
</tr>
<tr>
<td>Tb10.100.0120</td>
<td>proteasome alpha 5 subunit, putative</td>
<td>2(0)</td>
<td>20</td>
</tr>
<tr>
<td>Tb11.02.4040</td>
<td>protein transport protein Sec31, putative</td>
<td>2(0)</td>
<td>15</td>
</tr>
<tr>
<td>Tb10.61.2680</td>
<td>pyruvate kinase 1a</td>
<td>8(5)</td>
<td>166</td>
</tr>
<tr>
<td>Tb11.01.1350</td>
<td>S-adenosylhomocysteine hydrolase a,b</td>
<td>11(6)</td>
<td>159</td>
</tr>
<tr>
<td>Tb10.70.7050</td>
<td>TCP-1-delta t-complex protein 1, putative</td>
<td>2(1)</td>
<td>32</td>
</tr>
<tr>
<td>Tb09.211.2570</td>
<td>TCP-1-eta t-complex protein 1, putative</td>
<td>3(0)</td>
<td>14</td>
</tr>
<tr>
<td>Tb927.8.3150</td>
<td>TCP-1-gamma t-complex protein 1, putative</td>
<td>5(0)</td>
<td>29</td>
</tr>
<tr>
<td>Tb10.6k15.2330</td>
<td>TCP-1-theta t-complex protein 1, putative</td>
<td>3(0)</td>
<td>26</td>
</tr>
<tr>
<td>Tb10.6k15.2330</td>
<td>TCP-1-zeta t-complex protein 1, putative</td>
<td>4(0)</td>
<td>18</td>
</tr>
<tr>
<td>Tb11.03.0670</td>
<td>transcription factor, putative</td>
<td>7(1)</td>
<td>29</td>
</tr>
<tr>
<td>Tb11.02.3210</td>
<td>triosephosphate isomerase a,b</td>
<td>6(2)</td>
<td>73</td>
</tr>
<tr>
<td>Tb927.3.3760</td>
<td>trypanexidin a,b</td>
<td>22(3)</td>
<td>79</td>
</tr>
<tr>
<td>Tb09.160.4250</td>
<td>trypanexidin peroxidase a,b</td>
<td>23(0)</td>
<td>32</td>
</tr>
<tr>
<td>Tb927.7.1120</td>
<td>peroxidase 1, cytosolic</td>
<td>5(1)</td>
<td>55</td>
</tr>
<tr>
<td>Tb10.406.0520</td>
<td>trypanexidine reductase a,b</td>
<td>7(1)</td>
<td>41</td>
</tr>
<tr>
<td>Tb09.211.3610</td>
<td>ubiquitin-activating enzyme E1, putative a</td>
<td>6(0)</td>
<td>30</td>
</tr>
<tr>
<td>Tb11.02.0815</td>
<td>ubiquitin-conjugating enzyme a,b</td>
<td>12(8)</td>
<td>229</td>
</tr>
<tr>
<td>Tb927.5.4950</td>
<td>variant surface glycoprotein (VSG, atypical), putative</td>
<td>14(1)</td>
<td>31</td>
</tr>
<tr>
<td>Tb11.21.0005</td>
<td>variant surface glycoprotein (VSG, pseudogene), putative</td>
<td>2(0)</td>
<td>20</td>
</tr>
<tr>
<td>Tb10.v4.0136</td>
<td>variant surface glycoprotein (VSG, pseudogene), putative</td>
<td>7(0)</td>
<td>14</td>
</tr>
<tr>
<td>Tb10.v4.0124</td>
<td>variant surface glycoprotein (VSG, pseudogene), putative</td>
<td>9(0)</td>
<td>13</td>
</tr>
<tr>
<td>Tb927.6.5630</td>
<td>variant surface glycoprotein (VSG, pseudogene), putative</td>
<td>7(0)</td>
<td>13</td>
</tr>
</tbody>
</table>

Table E1: Secreted proteins from \textit{T. b. brucei} strain GVR35 (obtained with FASP, 5.2.2.). Identifications and accession no. were matched by mascot to TritrypDB. Matches indicated the number of peptides matched against the protein sequence with the number in brackets showing significant hits, indicating homology or identity. Score > 29 indicates homology or identity to compared protein sequences with p > 0.05.

a protein identified in \textit{T. gambiense} (Geiger et al., 2010)

b protein identified in \textit{T. congolense} (Grébaut et al., 2009)