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Abstract

Sample size calculations should be an important part of the design of a trial,

but are researchers choosing sensible trial sizes? This thesis looks at ways

of determining appropriate sample sizes for Normal, binary and ordinal data.

The inadequacies of existing sample size and power calculation software and

methods are considered, and new software is offered that will be of more use

to researchers planning randomised clinical trials. The software includes the

capability to assess the power and required sample size for incomplete block

crossover trial designs for Normal data.

Following from on from these, the difference between calculated power for

published trials and the actual results are investigated. As a result, the

appropriateness of the standard equations to determine a sample size is

questioned- in particular the effect of using a variance estimate based on a

sample variance from a pilot study is considered.

Taking into account the distribution of this statistic, alternative approaches

beyond power are considered that take into account the uncertainty in sample

variance. Software is also presented that will allow these new types of

sample size and Expected Power calculations to be carried out.
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Chapter 1

1.1 Introduction

The purpose of this thesis is to look at the theories behind sample size

calculations in a range of types of clinical trials, and to develop computer

software that will be of practical use in dealing with some of the problems that

a statistician may encounter. In particular, I intend to try and develop tools

that will help calculate meaningful sample sizes and powers in situations with

uncertain endpoint variances or unorthodox trial designs. In the first chapter I

will give some background into the role of power and sample size calculation,

and then show how these may be performed on a range of data types. In the

next two chapters I intend to demonstrate that some new sample size

calculation programs are needed, and that the resultant programs produce

output consistent with currently used methods while being more user-friendly.

Chapter 4 has a look at the assumption that the sample variance is a good

estimator of the true variance for the purposes of sample size estimation, and

when flaws are found then I try to describe some ways to deal with the

situation. Similar uncertainty about pA for binary data studies is dealt with,

and again methods are suggested to cope. Finally, software that can

implement the remedies of Chapter 4 shall be created, and described in

Chapters 5 and 6.

This chapter will look at power and sample size, and some of the factors that

they depend on. It will look at several different types of clinical trial where

sample size calculations would be useful, and examine methods of

determining power.
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1.2 Clinical trials and the importance of sample size

Clinical trials are the formal research studies to evaluate new medical

treatments. Before a possible new therapy is commercially available it usually

must be shown to be acceptably safe, and the effectiveness of the therapy

must be proven to the drugs company and regulatory bodies. The trials are

vital to the process of bring through new drugs and finding new uses for

existing drugs.

Clinical trials are a very expensive undertaking, consuming a great deal of

time and resources. To compare the efficacy of different drugs, dosages,

surgeries or combinations of these treatments can cost over $500 million and

take many years, so it is of great importance that the design of the clinical trial

gives a good chance of successfully demonstrating a treatment effect. There

are different ideas on how that chance should be calculated and interpreted,

but in general the larger the number of participants in the trial the more

chance there is of identifying a significantly different treatment effect. The

more people tested, the more sure you can be that any observations of

difference between therapies is due to a true underlying treatment effect and

not just random fluctuations in the outcome variable.

However, there are factors that may lead us to limit the numbers on a trial. In

the US alone there are over 40,000 clinical trials currently seeking participants

and each of these may need up to thousands of subjects. With so many trials
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seeking subjects, researchers are paying large bounties for potential recruits

on top of what can be already expensive running costs. There is a financial

concern to balance the desire to give a trial a high probability of identifying a

treatment effect with the increasing cost of recruiting more test subjects. If a

new treatment is for a condition which is already has a drug that improves the

quality of life substantially for sufferers then it could be ethically unsound to

place more patients on the new alternative than is necessary, as the trial

participants may receive inferior treatment. The sample size of the trial must

balance the clinical, financial and ethical needs of the sponsor, trial

participants and potential future treatment receipitants.

1.3 Power

In statistics, the power of a test is the probability that it will reject a false null

hypothesis. The power of a trial design or contrast between treatment effects

in this thesis is the conditional probability of a resulting statistical analysis

identifying a significant superiority of one treatment’s effect on outcome over

another’s if a superiority of a stated magnitude truly existed.

To better understand the concept of power, consider the world as idealised in

hypothesis testing.

A testable null hypothesis H0 and an alternative H1 are stated, they are logical

opposites, one is completely true and the completely false. Data regarding
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the hypotheses are statistically analysed. The null hypothesis is either

accepted or rejected- rejection of H0 results in H1 being accepted.

There are four possible states of the world:

H0 is actually true, and is correctly not rejected.

H0 is actually true, and is wrongly rejected in favour of H1, a Type I error.

H0 is actually false, and is wrongly not rejected, a Type II error.

H0 is actually false, and is correctly rejected in favour of H1.

Table 1.1

H0 not rejected H0 rejected

H0 is true Correct to not reject

Occurs with probability 1-α

Type I error

Occurs with probability α

H0 is false Type II error

Occurs with probability β

Correct to reject

Occurs with probability 1-β

α is the probability of a type I error: The probability of saying there is a

relationship or difference when in fact there is not. In other words, it is the

probability of confirming our theory incorrectly.

β is the probability of making a type II error: The probability of saying there is

no relationship or difference when actually there is one. It is the probability of

not confirming a theory when it’s true.
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1- β is power: The probability of saying that there is a relationship or

difference when there is one. It is the probability of confirming our theory

correctly, so a trial designer would generally want this to be as large as

possible in order to be confident in detecting a hypothesised difference in

treatment effects.

1.4 The types of trial of interest

Superiority trials, Equivalence Trials, and Non-inferiority trials

Superiority trials are trials that one treatment is better than another. Non-

inferiority trials are intended to show that the effect of a new treatment is not

worse than that of an active control by more than a specified margin [Snapinn,

2000]. Equivalence trials are attempts to establish if compared treatments

differ by less a specified margin [Chi, 2002]. Non-inferiority trials do not truly

attempt to show “non-inferiority”, because that is actually what superiority

trials do. Instead, non-inferiority trials try to demonstrate a new treatment is at

worst only inferior to a comparison by a (clinically) insignificant amount.

The hypotheses that the investigator would like to establish for each type of

trial are

H1 (superiority) Effect A < Effect B

H1 (equivalence) Effect A-δ < Effect B < Effect A+δ

H1 (non-inferiority) Effect A-δ < Effect B
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where δ is a clinically significant amount, and treatment B is a new treatment

that is compared to existing treatment A.

In general, superiority trials are used when new advances in treatment

therapy, or effect of active control is small, while non-inferiority trials are used

when the new treatment has technical similarities with the existing, or if the

active control has moderate to significant effect, or specific safety problems. It

is always at least as difficult to show superiority rather than non-inferiority, so

superiority trials will need more subjects.

Different regulatory authorities have different regulations as to when non-

inferiority trials will be acceptable over superiority trials, and this has led to

certain drugs being approved drugs in different territories [French JA 2004].

In this thesis the focus will be on superiority trials, and all formulae, trial

designs, p values etc are for superiority.

Parallel and Cross-over

The thesis is about ways of determining the correct sample size to achieve

power in randomised controlled parallel and crossover superiority trials with

one outcome variable.

In parallel group trials subjects are randomised to receive one of the

treatments to be compared each. They stay on the one treatment they are

allocated to.
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Senn (2002) defines a crossover trial as “one in which subjects are given

sequences of treatments with the object of studying differences between

individual treatments (or sub-sequences of treatments)”.

The terms ‘crossover’, ‘cross-over’, ‘cross over’, ‘change-over’, ‘changeover’

and ‘change over’ are all terms for this type of trial design, and all have been

used in recently published articles. I will stick with ‘crossover’ for the duration

of this thesis, simply because it is the most popular.

The simplest crossover design is the AB/BA design. According to this design

two treatments are applied to subjects over two periods. The trial participants

should receive either treatment A or treatment B in the first period, and then

be given the other treatment in the second period. Often in literature when

the author uses the expression ‘crossover’ with no further elaboration they

mean this AB/BA design. The hope in a crossover trial is that between-

subject variation is cancelled out because each subject acts as their own

control, so treatment effect should be a bigger part of any difference in

observed results. This means fewer subjects might be needed than in a

parallel trial to be sure if a difference in treatment effect exists.

The AB/BA design is not the only type of crossover. It is possible to design

trials with more treatments or more periods. The most efficient from a

statistical point of view is a trial where each subject receives all the treatments

being compared, this would mean an equal number of treatments and
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periods. An incomplete blocks crossover trial is a type of crossover trial in

which each subject gets some but not all of the treatments. For a extreme

example of this type see Vollmar et al (1997), wherein the process of deciding

upon a 7 treatment, 5 period, 21 sequence design for comparing asthma

remedies is described.

There are many possible reasons one might try an incomplete blocks design

rather than a complete block. If the sponsor wants to compare several

treatments with each other but ethical or financial concerns mean a long trial

is not acceptable then an incomplete blocks design may be more attractive;

incomplete blocks have fewer periods than a comparable complete blocks

design, and should take less time to run. The fact that a subject does not

receive all treatments means that only some of the uncertainty caused by

between patient variation is removed, so it only has some of the benefits of a

complete crossover design.

1.5 Sample size and power calculations for Normal data

The power of the trial is dependant on not only the trial design but also the

intended method of statistical analysis. Crossover trials can be tested by OLS

or by treating subject as a random effect, which can give differing results for

incomplete block designs.
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It is assumed that any observed difference in outcomes is a combination of

treatment effect, ‘period effect’, pre-existing differences between subjects and

random variation of the outcome variable.

Before the required sample size of a trial can be calculated the intended type

of analysis must be decided, and values of α, β and δ (size of relevant

difference) chosen. Values for the variance of the outcome variable must

used, and if the nature of this variance can be is split into variance due to a

within-subject and between-subject type a better estimate may be made for

crossover type designs. In parallel designs it is not relevant how this is split

because there is no within-patient analysis, as each patient has only one

result. For complete blocks designs only within-subject variation should be

affecting the results, so identifying the proportion of variance that is of a

‘within’ nature will lower variance estimation used in calculation and give a

higher power estimate. In incomplete blocks separating the sources of

variance will allow to the statistician to try and recover between subject

information and allow a more powerful random effects analysis [Cox DR and

Reid N.2000; Senn 2002]. Note, in this thesis fixed effects analysis should be

understood as analysis treating subject as a fixed effect, while random effect

analysis means analysis where the subject term is treated as a random effect.

When S is the test statistic, then the relationship between δ and S will be

[Julious SA. 2005]



15

This is then basic equation from which all the sample size and power

equations in this chapter are derived from, for binary and ordinal data as well

as Normal data. Indeed, because of the centrality of this equation to sample

size estimation Machin calls a slight rearrangement of this “the Fundamental

Equation” [Machin 1997]. Because Var(S) for all these types of data can also

be defined by a relationship between sample size and other parameters, an

equation linking sample size to power can be derived dependent on the trial

type. For normal data S is the difference between means. In the case of a

parallel trial with two treatments, for example, variance of S can is defined as

where nA is number of subjects randomised to treatment A, and σ is the

population variance- it is usual to assume that the population variance is

equal for each of the treatment groups when analysing the results [Julious SA.

2005]. With these results, a link between sample size and power can be

established.

The formulae for power for crossover and parallel, complete and incomplete

blocks, fixed effects analysis and random effects analysis can be unified in a

generalised form of equation.



16

The power of a trial to detect a treatment contrast can be calculated from a

cumulative normal distribution in the form

1-β ≈ Φ(∆ - t1-α,df) (1.2)

where ∆ is the ratio of the treatment difference (usually δ) to the root of the

covariance of the compared treatment effects, and df is the degrees of

freedom used in analysis. The ∆ depends on the trial design, number of

sequence repetitions, and the between (and within) subject variance.

But because any analysis would use the observed variance s2 not the true

variance σ2, the power is more accurately calculated from a cumulative non-

central t distribution in the form

1-β = 1-pt(t1-α,df,df, ∆) (1.3)

where ∆ is used as the non-centrality parameter [Senn 2002, Julious 2005].

Example 1.1

An investigator intends to run an AB/BA crossover trial to see if new drug B is

superior to drug A. The clinical relevant difference is 1, the within subject and

between subject standard deviations are both 1. They want to know the

power of this trial to detect this difference if he gets 20 subjects enrolled, with
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10 assigned to each sequence. What is the power when the one-sided alpha

is 0.025?

The degrees of freedom used in the analysis of the power of a contrast from a

crossover design is (R*S*P)-(R*S)-P-T+2, where S is the number of subjects

needed to complete each block, R is the number of block repetitions, P is the

number of periods and T is the number of treatments. In this example R=10,

S=2, P=2 and T=2, so df = 18.

By (1.3) 1-β = 1-pt(t1-α,df,df, ∆)

1-β = 1-pt(t0.975, 18, 18, ∆)

1-β = 1-pt(2.101,18, 3.162)

1-β = 1-(0.15156)

The power by equation 1.3, our preferred method, is 0.84844. By formula 1.2

a slightly higher power, 0.85574, would have been calculated. Formula 1.3

gives the correct result, and that formula 1.2 gives results that are close.

So, formula 1.3 is the one preferred for use where possible in this thesis for

power and sample size calculations for normally distributed data, but formula

1.2 has the advantage of being easier to manipulate- which becomes useful

when we take into account uncertainties in standard deviation estimate in

chapter 4 onwards.
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1.6 Sample size and power calculations for binary data

In the analysis of binary type data the hypothesis H0 and the alternative H1 are

not so obviously formulated for binary data as for Normal data. There are

several possible ways of summarising the difference between treatments

[Julious SA. 2005], but here we will be interested in just two: Odds Ratio and

Absolute Risk Reduction. The incidence of a binary outcome of interest under

the effects of treatment A and treatment B are labelled pA and pB respectively.

They are probabilities, and have a value between 0 and 1 inclusive. With

Odds Ratio (OR) the two treatment effects are described together in a ratio,

defined as

OR = pA(1-pB) / pB(1-pA)

In Odds Ratio

the H0 would be Log(OR) = 0

H1 would be Log(OR) = d

While in absolute risk

H0: πA - πB = 0

H1: πA - πB = d

The different hypothesis types have slightly different claims about the world

and they would be statistically analysed differently. There are also arguments

about how to analyse the data after deciding how to frame the hypothesis.
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The power, no matter the hypothesis, will depend upon sample size, trial type,

pA, and the clinically relevant pB or OR. For parallel trials there are two types

of power calculation in the used later in the thesis, proportional difference

(appropriate for testing an absolute risk type H0) and an Odds Ratio method.

In general, the variance of the measure effect must satisfy

The variance of the log-odds ratio can be approximated as [Julious SA. 2005]

From these the power for a proportional difference trial can be approximated

as

and the odds ratio power approximated as

These two methods give similar results, the odds ratio method usually

calculating the power a little higher than the alternative, and subsequently

gives slightly lower sample size estimates.
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For crossover trials there are more possible power calculation suggestions,

including an approximate OR method. One may consider the expected

results of a crossover trial with binary outcomes in terms of the proportions of

the four possible combinations of outcomes for the two treatments.

Table 1.1: Expected proportions of combined treatment binary outcomes

Response to treatment B

0 1

0 λ00 λ01Reponse to

treatment A 1 λ10 λ11

The trialist will expect that a certain proportion of the subjects will either

succeed on both treatments (λ11) or fail on both treatments (λ00), but it is in

the proportion of subjects that have discordant outcomes (λ01 and λ10) that

they shall find any evidence of a difference in treatment effect. The common

way to analyse binary data is the McNemar test, for which the test statistic is

only based upon the numbers of discordant pairs, n01 and n10. It is possible to

frame a sample size calculation in terms of the discordant sample size, that is

the number of discordant results required. Approximating the conditional OR

can allow a discordant sample size to be calculated

One way of calculating the relationship between discordant (nd) and total

crossover sample size (NC) is to divide the discordant sample size by the

proportion expected to be discordant (using the notation of table 1.1)
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to get an estimate of total sample size

Conner [Conner, R.J. 1987] and Miettinen [Miettinen, OS 1968] both suggest

similar ways to this approximate OR method to calculate sample size, but they

allow fewer assumptions about the relation of the discordant to the total

sample size, and consequently suggest higher sample sizes are required.

Juliuos [Julious SA. 2005] suggests another option, to base power and

sample size calculations on the OR method for parallel trials by assuming that

a crossover trial with n subjects will have about the same power as a parallel

trial with 2n subjects. This highlights an issue about the relative merits of

crossover trials between binary and continous data- or at least about the

analysis methods of binary crossover trials. With continous data one would

expect that a crossover trial would deliver the same power as parallel trial with

somewhat less than half as many subjects, but Julious shows (backed up with

mathematic derivation and also empirical evidence) that for the case of binary

that approximately the same number of ‘patient sessions’ are required

irrespective of the choice between parallel and crossover. There are still clear

advantages to a crossover trial with binary outcomes, though. If a trialist

intends to analyse the results of a binary crossover trial by the McNemar test,

the efficiency gained over a parallel trial of equal power will be in and reducing

patient numbers, but not patient sessions. Additionally the trialist can be

assured that the treatment groups will not have differences in prognostic
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factors, and can be more confident that any observed difference is due to

treatment effect alone.

The four crossover methods give fairly similar results, but the Conner and

Miettenen give slightly lower power estimates than the other two.

1.7 Sample size and power calculations for ordinal data

The situation with ordinal data is similar to that for binary data, and indeed

binary could be thought of as a special case of ordinal. Like binary data, there

are several ways to frame the hypotheses, but if we make a few reasonable

assumptions about the treatment effect across levels and the analysis then an

OR based method will be the easiest way to get power and sample sizes

[Machin, 1997]. For ordinal, if the pA and pB are split into n levels, then we

will assume proportional odds ratio, that is OR1=OR2=…=ORn-1. This is the

assumption that the Mann-Whitney U test for ordered categorical data with

allowance for ties uses, and the Mann-Whitney U test is the usual type of

analysis for this type of data [Conover WJ. 1980]. This would not be an

appropriate assumption (and Mann-Whitney U would be an inappropriate test)

if we believed that a new treatment had some non-constant effect compared

to a comparator, for example pushing more people into extreme categories.

It is easier to state the hypothesis and to estimate the variance of the outcome

statistic that all the sample size and power calculations depend upon for OR

than for some absolute risk reduction based calculation.
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For parallel trials a power based on an OR method can be used. Using the

same arguments as for binary parallel trials the power can be calculated as

[Julious SA. 2005] When k=2 then this equation is identical to the Odds Ratio

equation for binary trials. Binary trials are ordinal trials with two levels, and

the binary OR equation is a specific case of the general ordinal formula.

For crossover trials there are two methods. Like for binary trials, one could

assume crossover trial with n subjects will have about the same power as a

parallel trial with 2n subjects. Alternatively a power can be estimated as

where
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The var(log(OR)) method gives lower power estimates than the parallel OR

method usually, and gives higher sample size estimates.
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Chapter 2 – SAS Programs for Calculating Sample

Size

Computing approach to sample size calculation

As the calculations for sample size and power can be quite complex, it would

be useful to be able to use computer software to solve the equations. It was

decided that SAS and R would be appropriate platforms for these types of

program. It was also decided that the programs should be able to deal with

incomplete block crossover trials, as there is no commonly used package that

can deal with this type of design.

SAS, originally known as Statistical Analysis System, is a dedicated statistical

software package that is commonly used in the pharmaceutical industry for

dealing with clinical trial data. SAS claims to be used in 40,000 sites

worldwide, including 96 of the top 100 companies on the FORTUNE Global

500. SAS is the standard software used in much of the pharmaceutical

industry for the analysis of trial results, but often when sample size

calculations are needed the statistician will put SAS aside and use a

dedicated package for the job. It would be handier if there were programs for

SAS that allowed the sample size calculations, so the user wouldn’t have to

switch between platforms.
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SAS has a modular design, and SAS/IML is the SAS component that deals

with data matrices. SAS/IML was used for the SAS programs because its

matrix language has the capacity to multiply and invert matrices, which is

necessary to complete some of the power and sample size calculations.

R also has a large user base, mainly in the academic world. This flexible

software is improved constantly by users who write programs that add to the

functionality. A particularly interesting add-on for R is the Rpanel package,

which gives programmers the ability to create a graphical user interface for

the activation of R functions. This will allow the creation of software that is

easy for the user to dynamically change parameters of interest, making for a

more enjoyable and useful experience. The R panel programs are designed

to be more user-friendly to operate, and to have an accessible interface, and

to provide more graphical output where appropriate.

The intention is to write a set of programs that will deal with many types of trial

design for normal, binary and ordinal type data. The SAS programs are to be

uncomplicated and quick to run, the R Panels are to be more accessible and

take advantage of the superior graphical interface.

This chapter contains examples of SAS programs for calculating sample sizes

and power for different types of superiority trial, and instructions for the

programs’ use.
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The first four programs deal with Normally distributed outcome variables, and

there are also programs to tackle problems with binary and ordinal outcomes.

Program 2.1. SAS program for Normal Data

First, a program to calculate power for a contrast between two treatments with

Normal data for crossover or parallel trials. This program is based around

formula 1.3.

The program needs the user to enter data representing a block of treatment

sequences and enter a sample size and a required power size, and give

information on parameters to use in calculation, as well as identifying which of

the treatments to compare.

The program will calculate the covariance between the two treatment effects

for both fixed effects and random effects, and from the inputted sigma and

delta calculate the ∆, initially for R=1. At this point the df is calculated by

analysing the entered design to extract the S, P and T. All the variables to

calculate 1-pt(t1-α,df,df, ∆) are now in the memory, and it is possible to

calculate the power for the sample size when R=1.

If the power calculated at R=1 is not at least as big as the power required then

the ∆ and df when R=2 are computed and used in power calculations, and so

on, until the minimum size R that gives an adequate power is found.
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Figure 2.1.1: Output from Program 2.1

A: Displays whether design is balanced or not

B: The treatments to be compared. This is necessary because where

there are more than two treatments the power of testing a specific

contrast may, depending on design, be different from contrast to

contrast.

C: The parameters that were used in the calculations

D: Power calculated for Fixed and Random Effects

E: The required sample size to achieve the requested power
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Example 2.1.1: AB/BA Crossover trial

An investigator intends to run a crossover trial to see if new drug B is superior

to drug A. The clinical relevant difference is 1, the within subject and between

subject standard deviations are both 1. He wants to know the power of this

trial to detect this difference if he gets 20 subjects enrolled, with 10 assigned

to each sequence. With a one-sided alpha set at 2.5%, what is the power?

Using program 2.1, he should set seq to {1 2, 2 1} for this design, and let

delta, sig and lam all equal 1. R should be 10.

Running the program, he would find the design has a power of 0.84844 for

both random effects and fixed effects.

Example 2.1.2 Parallel trial

The investigator in Example 2.1.1 decides to change the trial to a parallel trial

with equal numbers assigned to each treatment A and B. He wants to know

how this would change the power if he kept the same sample size (20),and

how large a sample size he would need to get at least as much power from

this trial as from the crossover trial (0.84844)
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Using Program 2.1 he should set seq to {1, 2} and beta to (1-0.84844). With

this design the random effects power drops to 0.32175, and there is no fixed

effects model possible. To get at least the same power as the previous trial

the sample size must increase from 20 to 74 subjects, 37 per arm.

Example 2.1.3

The investigator changes his mind, and would now like to run a trial with a

more adventurous incomplete blocks design that will have 5 different

treatment types (Table 2.1.2). What is the power to detect the clinically

relevant difference between treatment A and E if sample size remains at 20,

and how big should it be to achieve 90% power?

Table 2.1.2

Period 1 Period 2
Treat A Treat E
Treat B Treat A
Treat C Treat B
Treat D Treat C
Treat E Treat D

Figure 2.1.2 shows how to code the sequence into Program 2.1. Beta should

be set to 0.1.

Figure 2.1.2

seq={
1 5,
2 1,
3 2,
4 3,
5 4};
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The power for the fixed effects is calculated as 0.316, while the power by

random effects is greater at 0.384. 90 subjects would be required to have a

power of 90% if analysis was by using fixed effects, whereas only 70 subjects

are required if the analysis deals with between-subject variance by modelling

subject as a random effect.

Program 2.2: SAS Program for Normal Data 2

The previous program works well, but the scope of trials it can deal with is

limited. A program that could calculate the power of a contrast between a pair

of treatments for crossover or parallel trials for normal data, but allowing the

user to enter a more complex treatment sequence would be handy. This

program would be useful for occasions where subjects are not randomised in

equal numbers to treatment sequences either by accident or design.

The statistics used in this program are similar to the previous, power

calculations again being from 1-pt(t1-α,df,df, ∆). However, the df and ∆ are

calculated in different ways to cope with the different way the sequence is

entered.



32

Figure 2.2.1: Output from Program 2.2

A: Displays whether design is balanced or not

B: The treatments to be compared

C: The sequences, and number of subjects assigned to each sequence

D: The parameters that were used in the calculations

E: Power calculated for Fixed and Random Effects
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Example 2.2.1

As in Example 2.1.1, an investigator intends to run an AB/BA crossover trial to

see if new drug B is superior to drug A. The clinical relevant difference is 1,

the within subject and between subject standard deviations are both 1. He

wants to know the power of this trial to detect this difference if he gets 20

subjects enrolled, but due to clerical error 13 subjects were enrolled to one

sequence and 7 to the other. What is the power?

Using program 2.2, he should set seq to {1 2, 2 1} for this design, and seqreps

to {13,7}.

The power has dropped slightly from the optimal 0.848 to 0.814 for both

random effects and fixed effects.

(NB: The output describes the design as ‘balanced’. In these programs,

‘balanced’ should be understood as meaning ‘the power of the contrasts is

equal between all different treatments’. Any design with only two treatments

will be balanced because there is only one contrast, 1 vs. 2)

Program 2.3 SAS Program for Normal Data 3

This program calculates power and required sample sizes for all possible

contrasts of treatments used in a crossover or parallel trial, for Normally
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distributed data. This program would be useful if the user wanted to see the

power of all contrasts at once.

Figure 2.3.1: Output from Program 2.3

A: Displays whether design is balanced or not

B: The power of contrasts between all pairs for Fixed Effects

C: The power of contrasts between all pairs for Random Effects

D: The number of repetitions required to achieve power between each of

the pairs for Fixed Effects

E: The number of repetitions required to achieve power between each of

the pairs for Random Effects
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Example 2.3.1

The investigator from Example 2.1.3 who was running a 2 period, 5 treatment

trial (Table 2.1.2) would like to know the power of contrasts between all the

treatments, and what sample size is required for each to reach 90%.

Figure 2.3.2: Output from Example 2.3.1

Unbalanced Design

(Fixed Effects) Power between pairs with 2 repetitions.

Fixed Effects Power

Treatment1 Treatment2 Treatment3 Treatment4 Treatment5

Treatment1 0 0.1384528 0.1066142 0.1066142 0.1384528

Treatment2 0.1384528 0 0.1384528 0.1066142 0.1066142

Treatment3 0.1066142 0.1384528 0 0.1384528 0.1066142

Treatment4 0.1066142 0.1066142 0.1384528 0 0.1384528

Treatment5 0.1384528 0.1066142 0.1066142 0.1384528 0

(Random Effects) Power between pairs with 2 repetitions.

Random Effects Power

Treatment1 Treatment2 Treatment3 Treatment4 Treatment5

Treatment1 0 0.1634582 0.139711 0.139711 0.1634582

Treatment2 0.1634582 0 0.1634582 0.139711 0.139711

Treatment3 0.139711 0.1634582 0 0.1634582 0.139711

Treatment4 0.139711 0.139711 0.1634582 0 0.1634582

Treatment5 0.1634582 0.139711 0.139711 0.1634582 0

(Fixed Effects) Required number of complete Replications to attain 0.9 power by pair

Fixed Effects Repetitions Required

Treatment1 Treatment2 Treatment3 Treatment4 Treatment5

Treatment1 0 18 26 26 18

Treatment2 18 0 18 26 26

Treatment3 26 18 0 18 26

Treatment4 26 26 18 0 18

Treatment5 18 26 26 18 0

(Random Effects) Required number of complete Replications to attain 0.9 power by pair

Random Effects Repetitions Required

Treatment1 Treatment2 Treatment3 Treatment4 Treatment5

Treatment1 0 14 18 18 14

Treatment2 14 0 14 18 18

Treatment3 18 14 0 14 18

Treatment4 18 18 14 0 14

Treatment5 14 18 18 14 0
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The output from program 2.3 shows the design is unbalanced. Power

between each pair is either 0.107 or 0.138 for fixed effects and 0.140 or 0.163

for random effects. The random effects approach is more powerful, and leads

to lower numbers required for 90% Power, between 14 and 18 reps (70 or 90

subjects). Fixed effects required sample size is 18 or 26 reps (90 or 130

subjects).

Program 2.4 SAS Program for Normal Data 4

This program for crossover or parallel trials with normally distributed data

gives power and required sample size for all pairs simultaneously, and allows

the user to input an irregular treatment sequence.

Figure 2.4.1: Output from Program 2.4
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A: Displays whether design is balanced or not

B: List of the sequences and the number of subjects assigned to each

C: The power of contrasts between all pairs for Fixed Effects. Here, fixed

effects analysis is not possible, so a message explaining this is

displayed instead

D: The power of contrasts between all pairs for Random Effects

Program 2.5: SAS Program for binary Data

This is a program to calculate powers and sample sizes for trials with binary

outcomes, for AB/BA crossover designs or parallel trials with two treatments.

Like the Normal programs, it requires the parameters of the trial be entered

and it will calculate power and sample size according to the four different

binary methods mentioned in the previous chapter.
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Figure 2.5.1: Output from Program 2.5

A: The parameters used in the calculation

B: The power of the design, calculated by different methods, and the

number of subjects required by each of the methods to achieve the

requested power

Example 2.5.1

The incidence of a condition for subjects on treatment A is 0.4. A trial is set

up to see if new drug B is would lower the incidence. With a two-sided alpha

of 5%, what is the required sample size of an AB/BA crossover to achieve

90% power of detecting a clinically significant OR of 2?
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Output from such a query is shown on fig 2.5.1. Between 200 and 206

subjects would be required, depending on method of calculation.

Program 2.6: SAS Program for ordinal data

This is a program to calculate powers and sample sizes for trials with ordinal

outcomes, for AB/BA crossover designs or parallel trials with two treatments.

Figure 2.6.1: Output from Program 2.6

A: The level and cumulative probabilities each level assumed for both

treatments

B: The OR, two-sided alpha and the beta used in calculations

C: The power of the design as calculated by the different methods and the

minimum sample size required to achieve desired power
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Chapter 3 – R Programs for calculating sample size

This chapter is about R programs that could be used to calculate powers and

sample sizes for a variety of trial designs with a variety of types of response

variable. A justification for the use of R was given at the start of Chapter 2.

These programs will make use of the Rpanels [Bowman, 2006] software add-

on to R.

As for the SAS programs in the previous chapter, here there are programs to

deal with Normal, binary and ordinal data.

Program 3.1: R panel program for Normal data

This program can be used to calculate required sample sizes and power of

contrasts for crossover or parallel designs. The statistical steps taken are

similar to those taken for program 2.1.
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Figure 3.1.1: Interface for Program 3.1

A: Location of the txt file containing the information on the treatment

sequences for the design. Press return after entering the location for

the program to recognise the new instruction. Notice that for R the

directory structure of a file location uses the “/” forward slash separator,

not the “\” backslash.
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B: The treatments, identified by number, whose contrasts are to be

analysed. Press the “-” and “+” buttons to change the treatments

compared.

C: Number of repetitions of the treatment sequences to be used in trial.

Click on the “-” and “+” buttons to change the number of repetitions.

D: The δ of the design, the size of a difference to be detected. Press

return after entering the new delta for the program to recognise the

new instruction.

E: The σwithin, the within-patient standard deviation. Click on the “-” and

“+” buttons to decrease or increase the value.

F: The β of the trial, the size of the type II error. Click and drag the slider

to change the β, and thus 1- β, the desired power of the trial.

G: λ, the ratio of σ2
between to σ2

within. Click on the “-” and “+” buttons to

decrease or increase the value.

H: The one-sided α, the size of the type I error. Click on the “-” and “+”

buttons to decrease or increase the value.

I: Button to display information on the selected treatment sequence.

Information is outputted to the R log.

J: Radio button to change between Fixed and Random effects plots and

analysis.
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Figure 3.1.2: Entering sequence information

Fig 3.1.2 shows how the 5-period, 7-treatment, 21 patient incomplete block

crossover design [Vollmar J, and Hothorn LA 1997] would be entered into a

.txt file. Each row represents a different subject’s regimen, and lines should

be separated by a single carriage return (press of the return key). Each

number represents a different treatment type, and one space should be left to

separate the treatments assigned to each period.
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Figure 3.1.3: Output from Program 3.1

Figure 3.1.3 shows the graphical output from program 3.1 for an AB/BA

crossover trial with 14 subjects analysed by random effects. A histogram

shows the relation between sample size and power, for either fixed effects or

random effects. The sample sizes are plotted from zero up to the number

required to exceed the stated power, or up to size determined from 3.1.1C,

whichever is greater. The bars are green except for the bar for the stated
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reps. If Fixed Effects is selected in 3.1.1J, then the bar will be red. Random

effects would be plotted in blue. The required power is shown by a dashed

line. No matter which of Fixed or Random effects are to be analysed, the

power of the sample size is displayed above the plot for both methods. Fixed

effects is in red and Random is in blue, just like in the histogram proper. The

selected model’s results are shown in a larger font. In this example with a

complete blocks crossover the power calculated is the same for each method,

72.1%. Also displayed are the treatments to compared, the sample size, the

total number of treatments and the number of sequences. Below that the

calculated sample size to achieve the power is displayed for the selected

model using the same colour scheme to identify model type. Here 24 people

are needed to achieve a power of 90%.

Figure 3.1.4: Output from Program 3.1
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Figure 3.1.4 shows the output in the log for an AB/BA crossover trial,

generated when button 3.1.1I is clicked. First, it displays the sequence that is

being analysed, in the same format as it was entered (See the analysis for

figure 3.1.2, above, for more details.). On the next line it is revealed if the

design is balanced or not, and below that is a summary of the type of design.

In this example the design is correctly assessed as a balanced complete

blocks design.

Program 3.2: R panel program for binary data

This program allows the user to calculate sample sizes for trials with binary

outcome response variables. It uses the sample size calculation methods

mentioned in chapter 1.
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Figure 3.2.1: Interface for Program 3.2

A: pA, the response anticipated on treatment A.

B: Radio button to select between inputting Odds Ratio or pB, the

response anticipated on treatment B.

C: Text entry box to enter either Odds Ratio or pB.

D: The two-sided α, the size of the type I error. Click on the “-” and “+”

buttons to decrease or increase the value.

E: The β of the trial, the size of the type II error. Click and drag the slider

to change the β, and thus 1- β, the desired power of the trial.
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F: Text entry box to enter n, the prospective size of the trial. For parallel

trials n will be size per arm, and for crossover trials n will be the total

size of the trial.

G: Radio button to choose between parallel trial and crossover trial.

Parallel trials are trials with two different treatments or treatment levels

with equal allocation to each arm. Crossover trials are AB/BA designs

with equal allocations to each sequence.

H: Button to show results in log.

Figure 3.2.2: Output from Program 3.2
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The output, as shown in figure 3.2.2, is to the log. First, it reminds the user of

the variables used (A). The pA, pB, and OR are all shown- the pB, or the OR

if not entered, is calculated.

Next, (B), the power of the contrast between treatments A and B are

displayed for the trial type and sample size. Here, there is a crossover trial

with 100 subjects. For crossover type design there are four methods of power

calculation used, and usually they give similar results; in this example they

give powers of between 61.2% and 63.1%. Conner’s method gives the lowest

score, which is also typical. If a parallel trial type was selected there are two

methods of power calculation used.

The required sample sizes to achieve the required power are shown for each

of the power calculation methods. Like the power calculations, these are also

typically similar for the different methods, but Conner is usually the highest. In

this example the required sample size to get a power of at least 80% is

estimated between 150 and 156.

Program 3.3: R panel program for ordinal Data

Program 3.3 can be used to calculate sample sizes and power of trial designs

for treatments with an ordinal type response variable for up to 45 levels of

response.
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Figure 3.3.1: Interface of Program 3.3
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A: The two-sided α, the size of the type I error. Click on the “-” and “+”

buttons to decrease or increase the value.

B: The β of the trial, the size of the type II error. Click and drag the slider

to change the β, and thus 1- β, the desired power of the trial.

C: Text box to enter the Odds Ratio between the two treatments.

D: Text entry box to enter n, the prospective size of the trial. For parallel

trials n will be size per arm, and for crossover trials n will be the total

size of the trial.

E: Radio button to choose between parallel trial and crossover trial.

Parallel trials for this program are trials with two different treatments or

treatment levels with equal allocation to each arm. Crossover trials are

AB/BA designs with equal allocations to each sequence.

F: A set of 45 text boxes, to enter the anticipated responses on treatment

A at each level. The levels are ordered. There are a few different

formats that the anticipated response can be entered, and the

preferred format can be selected with dial G. For trials with fewer than

45 levels, simply set the probability of unused levels to zero.

G: Radio button to choose format of treatment effect in text boxes F. You

can choose between Level Count, Level Probability, Cumulative Count

and Cumulative Probability.

H: Button to activate the calculations. Information summarizing the

calculations will be output to the R log.
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The ability the program gives to plan a trial with over 40 levels of ordinal data

shouldn’t be taken as a recommendation that data with the number of levels

be analysed as ordinal data. Some [Glass et al, 1972] recommend that

ordinal data with as few as 7 levels be analysed as if it were continuous,

others are less keen [Blair, 1981]. The number of levels available was

deliberately chosen to be excessively high to allow any conceivable ordinal

based trial to be planned for, while still maintaining a usable interface.

Program 3.3’s design philosophy was “Better to have options available you

never need, than an option you need that is not available”, and the user is still

able to plan for far fewer levels. For those who would never need anywhere

close to 45 levels in their planning there is a similar program (Program 3.3.15)

with a more-reasonable 15 level maximum included in the appendix.

Figure 3.3.2: Output from Program 3.3
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The output from this program will be similar to that shown in Figure 3.3.2. The

alpha, beta and OR for the calculation is displayed first (A).

From the pA level proportions or counts and the OR the cumulative and level

proportions expected from treatments A and B are computed. They are

displayed (B), and they can be surveyed to check for errors in data entry.

Attempts are made in computation to find logical inconsistencies, and warning

messages will be displayed if problems are found. The output here can be

useful but, unfortunately, untidy.

The sample size required to achieve the required power is displayed next (C).

In this example a parallel trial is calculated to need 376 subjects to get the

desired 90% power. Crossover sample sizes can also be calculated, there

are two methods used.

The power from a stated sample size is also shown. Here, (D), a power of

65.8% results from a stated sample size of 200.

Some Comparisons with other software and standard tables,

with Discussion
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We shall now compare the results from the programs in the past two chapters

with software and tables currently used for sample size by researchers today.

It is necessary to be sure of the results

nQuery Advisor, by Statistical Solutions Ltd., is the probably most popular

dedicated sample size and power software used for trial design. User friendly

and flexible, it can deal with a variety of trial designs and is used by trial

designers around the world, but it cannot deal with the more complicated multi

period or incomplete block designs discussed in this thesis. Machin (1997)

gives a set of tables to help with trial size calculation, but again, they are not

so useful for complex trials. We can only compare programs 2.1 & 3.1 with

these sources, and only for parallel trials or AB/BA type crossover.

1. Parallel Trial sample size, Normal Data

Here is an example from Sample Size Tables for Clinical Studies, 2nd Edition

[Machin D et al, 1997]: “(Example 3.12) An investigator compares the change

in blood pressure due to placebo with that due to a drug. If the investigator is

looking for a difference between groups of 5 mmHg, then, with a between-

subject SD as 10 mmHg, how many patients should he recruit? How is the

calculation affected if the anticipated effect is 10 mmHg?”

The authors calculate the required sample size to detect 5 mmHg to be 172,

and 44 for 10 mmHg.
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The answers calculated by program 2.1 would also be 172 for 5 mmHg, but it

calculates a larger sample of 46 should be used for 10 mmHg. Using nQuery

also gets answers of 172 and 46.

Fig 3.4: Machin’s sample size formula

The difference is due to Machin et al using a corrected-Normal approximation

of the cumulative non-central t distribution to calculate sizes. Machin’s

formula is a based on a version of the general equation 1.2 with a for the

special case of a parallel trial with a equal number of subjects in each arm,

but with a correction applied to better approximate equation 1.3. This

correction means Machin’s calculations are better than with raw 1.2 equations

and still easy to calculate with pen and paper, but the slight underestimation

of the required sample size for Normal data would be a fairly regular

occurrence with this method.

Another example from Sample Size Tables for Clinical Studies, [Machin D et

al, 1997], describing a trial carried out by Wollard and Couper (1981) for

comparing moducren with propranolol as initial therapies in essential

hypertension. “They proposed to compare the change in blood pressure due

to the two drugs. Given that they can recruit only about 50 patients for each

drug, and that they are looking for a ‘medium’ effect size of about ∆ = 0.5 what

is the power of the test, given a two-sided significance level of alpha=0.05?”
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Using standard tables Machin et al get an answer of ‘about 0.70’. By program

2.1, taking advantage of the fact that the effect of a two-sided alpha of 0.05 is

virtually the same as a one-sided 0.025, we can calculate a power of 0.697, a

result consistent with Machin’s answer. This shows, for simple designs, that

sets of sample size tables like Machin’s are usually adequate. Researchers

may also find it more convenient to flick through a tables book rather than

boot up a computer and load a software package, and wonder if they have

entered the correct data to get the desired result.

2. Crossover trial, Normal Data

Julious (2005) has a list of sample sizes for different ∆ for 90% power for

AB/BA crossover trials. These match results from Program 2.1 and 3.1. For

example, for ∆ of 0.1 Julious gives a required sample size of 2104. Programs

2.1 and 3.1 also give that result. Again, a set of sample size tables is

sufficient for this simple type of crossover trial, as long as the ∆ and type I and

type II error rates are conventional.

3. Parallel Trial sample size, binary Data

Again from Machin et al, in their example 3.1 they ask: With a two-sided alpha

=0.10, π1= 0.25 and π2=0.65, how many subjects are needed for a parallel

trial with equal numbers in each arm to achieve a power of 0.9? Their answer

is 25 in each arm, 50 in total.

From 2.5, by Proportional Difference method 23 each arm, totalling 46. By

Odds Ratio, 24 are needed each arm, making 48 overall. These results are

both fairly similar.
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Machin goes on to ask how changing two-sided alpha to 0.05 effects sample

size, before giving 62 as the answer. By 2.5 we get 56 by prop diff, and 58 by

OR.

4. Crossover Trial, Binary data

From Julious (2005): “An investigator wishes to design a study where the

marginal response anticipated on the control therapy is 40%. The effect if

interest is 2.0 in favour of the control therapy and the investigator wishes to

design the study with Type I and II errors fixed at 5% and10% respectively.”

Julious gets a result of “approximately 200”. With pA = 0.4, Type I error = 5%

and OR=2, both programs get results of between 200 and 206 for all the

methods. This matches Julious.

5. Parallel Trial, Ordinal data

Machin gives an example (3.10) with control levels pA1= 0.14, pA2=0.24,

pA3=0.24 and pA4= 0.38. With an alpha of 5%, what sample size is required

to have 80% power to detect an OR of 3? Machin’s answer is “approximately

90”. Using program 3.3, we would calculate a sample size of 92 subjects to

achieve that power by the OR method. This is very close to Machin’s result,

which is reassuring.

6. Crossover Trial, Ordinal data

Julious gives an example, with pA1 = 0.08, pA2 = 0.191, pA3 = 0.473 and pA4

= 0.256. What sample size required, when alpha = 0.05, to detect an OR of

0.56 with 90% power? He gives answer of 213 or 229, depending on method.
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By this thesis’ programs almost identical results are achieved, 214 or 230

depending on preferred method.

7. Incomplete Block Design, Normal data.

Because no other program or table could be found that can help calculate

power for this type of design, another method was found to validate the

programs.

With a sample size of 39, with 13 subjects on each possible sequence, what

is the power of a 2-period, 3 treatment balanced incomplete blocks trial when

delta = 1, sigma =1, lambda =1, and a 1-sided alpha of 0.025, and subject is

treated as a fixed effect?

This trial set-up was simulated 100,000 times, with the proportion of trials that

detect superiority approximately equal to the power. On 85,923 occasions a

significant difference was found, suggesting a power of around 85.9%. Using

program 3.1 or 2.1, one would calculate a power of 86.0%, which is very

close. We can now be confident that the program gives sensible results for

incomplete block crossover trials.

8. Discussion of comparisons.

The comparisons between the thesis’s programs with nQuery software and

the sample size tables show a very strong agreement. They may disagree

slightly, but not so much as is likely to have a significant impact on trial
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design. This shows the validity of the previous 2 chapter’s programs. The

inability of nQuery and Machin’s tables to provide a comparison with more

complicated trial design meant a simulation based comparison had to be used

to check the validity of the sample size for an Incomplete Block design. That

showed the limitations of those methods compared with this thesis’s

programs.
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Chapter 4

4.1 The use of sample size calculations

It has been shown that sample size calculations are of great use to the

designer of a trial, potentially saving resources by making sure a non-

excessive number of subjects are randomised, and stopping unrealistic trials

from taking place. It has also been established, for simpler designs anyway,

that tables and software to make these calculations possible are available.

Despite this, sample size calculations are not universally utilized. In a recent

survey of surgical trials [Maggard et al, 2003] only 38% of studies reported

using any kind of sample size calculation before the trial. This leads to silly

situations like many such trials running at one-tenth the size needed for a

reasonable chance of detecting even a moderate treatment effect. Again, this

is very poor from both a scientific and ethical viewpoint.

Perhaps almost as worrying, even when sample size calculations are known

to have taken place they are often inaccurate [Freiman et al, 1978][Vickers,

2003]. This chapter will look at the conventions and problems with parameter

selection and estimation for sample size calculations. It will consider the

imperfect nature of estimates for variance, and make suggestions on how

best to deal with this uncertainty with alternative sample size calculation

methods.

4.2 Alpha, beta and the treatment difference
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Acceptable levels of type I and type II error must be factored into sample size

calculations. The convention is that it is much preferred that a type II error

(failing to reject a false null hypothesis) is made than a type I error (rejecting a

true null hypothesis), so α will be smaller than β.

For sample size calculations for superiority trials a 1-sided α of 0.025 is

normally used. The β is more flexible, with values used in trials ranging

between 0.4 and 0.1, meaning desired power of between 60% and 90%.

There are regulatory and financial obligations to make sure clinical trials have

a reasonable chance to achieve useful results, a trial with too low a power is

judged unethical in some situations.

A clinical expert would determine how to quantify δ or OR, the clinically

significant difference. The smaller the magnitude of δ or log(OR), the larger

the sample size required. The pB can be calculated from pA and OR if the

absolute difference between pA and pB is of primary interest rather than the

OR.

4.3 Sample standard deviation as an estimator of population

standard deviation

Power and sample size calculations for Normally distributed data require that

a value for population standard deviation be entered into an equation.

Equation 1.3 treats the true population standard deviation as being known, but

this is not realistic. To know the true population variance for some endpoint
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one would have to measure the attribute in every member of the population in

question. For equations like 1.3 a point estimate must be made for sigma.

s given sigma

Before judging how good an estimate of standard deviation is, consider the

relationship between the true standard deviation (σ) and the sample (s). The

ratio of m*s2/σ2 (where s2 is the sample variance and m is n-1, n being the

number of subjects used in the variance calculation) follows a chi-squared

distribution with m degrees of freedom. s2/σ2 follows a chi-squared

distribution divided by m, s/σ follows the square root of that distribution.
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Figure 4.1

Figure 4.1 shows the pdf of distribution of s, sample standard deviation from a

sample size 5. The red dotted line marks the true value of population

standard deviation σ, the blue dotted lines show the 95% PI for s, the solid

green line is the expected value of s, and the dot-dash blue line is the median

s. The distribution looks almost normally distributed, but it is skewed slightly

to the left with a long right tail. The 95% interval is wide but balanced around

the true σ.

While s2 is an unbiased estimator for σ2, s is only an asymptotically unbiased

estimator for σ. For any real sample it would be expected to underestimate σ,

with a sample size of 5 the expected value of s is 94% of σ. At 4 degrees of

freedom s will also be an underestimate approximately 59.4% of the time, so

power calculations using s for σ will be overestimated 59.4% of the time. (The
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sample s from a pilot study of size 5 will be less than that observed in a finite-

sized trial a little less frequently, for example approximately 56.8% of the time

for a trial of size 20).

Using the observed s from a sample size of 5 as an estimate of σ is

undesirable, the prediction interval is very wide so there is no reassurance

that s is close to σ.

Figure 4.2

Figure 4.2 shows the distribution of s from a sample with 10 degrees of

freedom. The expected value of s is 97.5% of σ, better than before, but the

prediction interval is wide, a 95% chance s will be between 56.98% and

143.12% of σ. This large interval means s is still an unreliable estimator of σ.
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Figure 4.3

When sample size increases to 26, the expected value of s is still under sigma

but within 1%. The 95% interval for s is (72.4%, 127.5%), still fairly wide. It is

clear that as sample size increases, the more reliable and less biased an

estimate s is of sigma. The prediction intervals become very symmetric

around the true value of sigma. When there are 50 degrees of freedom the

expected value of s is 99.5% of sigma, and the prediction interval is about

19.5% either side of sigma. By 100 degrees of freedom the prediction interval

is about +/- 13.8%. A sample size of about 2134 is needed to be 95%

confident that observed s is within 3% of the true value. At this size s is

hardly biased at all, its expected value is around 0.9999σ.

The required sample size n to be (1-β)*100% confident that s is within x% of

sigma can be approximated
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n = 1/2(Z1-β
2 / (x/100)2)

From this formula, one can see that to double accuracy one must quadruple

sample size.

Sigma given s

It is the probability characteristics of sigma given an observed s that are more

important, as any estimate we make will be for sigma based on observed s.

Figure 4.4

Figure 4.4 shows the pdf of sigma given observed s of 1 from a population of

5. Comparing with fig 4.1, which shows s given sigma, it can be seen that

sigma distribution is far more skewed. The 95% confidence interval for (σ|s)
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for 4 degrees of freedom is much wider and asymmetrical than the 95%

prediction interval for (s/σ|σ) but they are related- if the 95% PI for (s/σ |σ) is

(a,b) then the 95% CI for (σ/s|s) is (1/b,1/a).

There is no such reciprocal relationship between E(s|σ) and E(σ|s); the

expected value for sigma is 1.2518 times greater than s, while the expected

value for s is much closer to σ. Overall, a sample of this size is not good

enough to make accurate assumptions about σ. There is a 95% chance σ is

between 60% and 287% of the value of s, a very large margin.

Figure 4.5



68

Figure 4.5 shows that the relationship between σ and s changes if s was 10

instead of 1 for the same sample size as before. The changes are all

proportionate; CIs and Expected values just get multiplied by 10.

Figure 4.6

If the sample size were 11, the confidence intervals tighten and are a little

more symmetric (0.698717 , 1.754934), and the expected value of sigma

drops to 1.0837.
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Figure 4.7

By 25 degree of freedom the distribution is looking less skewed and the CI is

more symmetric. The expected value of sigma is only 3% greater than s.

As the sample sizes increase the trends with skewness and confidence

intervals continue. The distributions for (s|σ) and (σ|s) get very similar as m

increases.



70

Figure 4.8

So, small sample sizes give unreliable estimates. It is possible to increase

the accuracy of estimated σ by increasing the pilot study, but it takes a

quadrupling of the sample size to double accuracy. A sample size of about

19,000 is needed to be confident of s being within 1% of σ (fig 4.8), so

attempting to be this accurate with point estimates for σ will likely devour the

resources of the trial designer.

4.4 Methods of incorporating uncertainty over variance of

Normal data into sample size calculations

It has been shown that s is not an ideal estimator for σ, because it tends to be

an underestimate. An analysis [Vickers AJ 2003] of the power of trials
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published in major journals found that sample size estimates turned out to be

too low about 80% of the time, and placed some of the blame on this

inadequacy of s.

The most obvious way to combat this is to multiply s by some amount based

on how confident we are. If the size of the pilot study is known, we can

calculate multiplication factors to be sure of a particular chance of choosing

an estimate that is at least σ, or calculate E(σ/s|s,m) to make an unbiased

estimate for σ. Table 4.1 shows the multiplicative factors for a range of

sample sizes.

Table 4.1

Size of pilot

sample

50th percentile

of (σ/s|s,m)

95th percentile

of (σ/s|s,m)

E(σ/s|s,m)

3 1.20112 4.4154 1.6062

5 1.09163 2.3724 1.2518

7 1.05919 1.9154 1.1512

10 1.03864 1.6452 1.0942

15 1.02447 1.4597 1.0579

20 1.01790 1.3704 1.0418

25 1.01411 1.3165 1.0327

30 1.01165 1.2797 1.0268

50 1.00686 1.2017 1.0156

75 1.00453 1.1579 1.0103

100 1.00338 1.1336 1.0077



72

The choice of multiplicative factor should be made with the how much of risk

of the trial being underpowered the sponsor is willing to take. The choice of

being 95% confident of using at least σ will mean trial sizes that likely turn out

to be much larger than was necessary, an expensive reassurance.

An alternative approach is to use calculation methods for sample size and

power that calculate the expected power instead of using a point estimate that

is not reliable. Taking into account the distribution of (σ|s) in calculations can

produce estimates of the expected power.

Recall equations 1.2 and 1.3, the equations for when the population standard

distribution is known.

1-β ≈ Φ(τ - t1-α,df) (1.2)

This is the normal approximation of the cumulative non-central t distribution

correct form 1.3

1-β = 1-pt(t1-α,df,df, τ) (1.3)

Using the same terminology, it can be shown [Julious SA, 2005] that where

the true variance is unknown but estimated from data with m degrees of

freedom that

Expected (1-β) ≈ pt(τ,m, t1-α,df) (4.1)

pt(τ,m, t1-α,df) approaches Φ(τ - t1-α,df) as m approaches infinity, so equation 4.1

can be considered the equivalent of equation 1.2 for unknown variance.
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There is not an equally concise equation that gives the exact expected power,

but arithmetic methods can be used to arrive at a more accurate estimate.

An arithmetic method could involve creating a pdf for the distribution of sigma

given s and m, by determining the appropriate inverse square-root chi-

squared distribution. A large number (Q) of equally spaced (by probability)

quantiles of this distribution are marked, and the values of sigma at each

quantile are each used to make power calculations by equation 1.3. Q power

estimates are made, and as Q approaches infinity the mean of the power

estimates approaches the expected power. The arithmetic method used in

the programs in later chapters is of this type, with a Q of 999. This Q is a

compromise, as the higher the Q the more accurate the estimation but the

longer computation must take. 999 is high enough for a good accuracy while

also allowing for speedy calculation on a modern computer.

The method with a Q of 999 is referred to as Arithmetic Method 4.2 for the

remainder of the thesis.

It would be useful to compare the results gained from equation 4.1 and

arithmetic method 4.2 to see how they differ.
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Table 4.2

Reps Equation

4.1

Df=10

Arithmetic

method 4.2

Df=10

Equation

4.1

Df=100000

Arithmetic

method 4.2

Df=100000

Equation

1.3

1 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.00269 0.13537 0.00194 0.13678 0.13678

3 0.15496 0.26351 0.14815 0.26658 0.26658

4 0.32418 0.38164 0.32747 0.39095 0.39095

5 0.45401 0.48336 0.47212 0.50245 0.50245

6 0.55485 0.56891 0.58759 0.59914 0.59914

7 0.63398 0.64003 0.67972 0.68093 0.68093

8 0.69723 0.69881 0.75289 0.74874 0.74874

9 0.74807 0.74728 0.81059 0.80402 0.80402

10 0.78923 0.78724 0.85573 0.84844 0.84845

11 0.82275 0.82024 0.89077 0.88370 0.88371

12 0.85019 0.84754 0.91776 0.91139 0.91139

13 0.87278 0.87020 0.93841 0.93292 0.93292

14 0.89138 0.88906 0.95411 0.94952 0.94952

15 0.90702 0.90483 0.96596 0.96222 0.96222

Table 4.2 shows different power estimations by the different power calculation

methods for an AB/BA crossover trial with the setup from example 1.1, but

with the variance estimate calculated with differing levels of certainty. The

used observed variance from a pilot trial is in each case 1, and the power

calculated in the cases where it is estimated from 10 and 100,000 degrees of
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freedom for sample sizes from 2 to 30. The result by equation 1.3 is also

shown.

The general trend is for 4.1 to give a somewhat lower estimate when 4.2 gives

a power of about 40%, gives slightly lower but very close estimates where

power is between 40% and 70%, and slightly higher when power is over 70%.

The bigger disparity under 40% is a worry, but as it is unlikely a trial with such

a low power would be designed it can be said that the two methods give very

similar results for any realistic trial design. For a very high df it can be seen

that 4.2 approaches the value by equation 1.3, but 4.1 approaches equation

1.2 and may exceed 1.3. It is not logical, from the distribution of sigma given

s, for the expected power to be higher than the power, but the exceedance is

very small.

Next, it is investigated if the difference in power estimation by the two

methods actually affects calculated sample size for different effect sizes,

defined as ∆ = δ/σ. The required sample sizes calculated by the different

equations for a range of ∆ for a selection of m are shown below.
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Table 4.3: Sample Sizes calculated for 90% power with 2.5% one-sided alpha

Beta=0.1 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

1368 343 56 15Eq 4.1

Am 4.2

10

1366 343 56 15

1167 293 48 13Eq 4.1

Am 4.2

25

1166 293 48 13

1079 271 44 12Eq 4.1

Am 4.2

100

1079 271 45 12

1052 264 43 12Eq 4.1

Am 4.2

1,000,000

1052 264 44 12

Eq 1.3 infinite 1052 264 44 12

Table 4.4: Sample Sizes required for 80% power with 2.5% one-sided alpha

Beta=0.2 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

Eq 4.1 933 234 39 11

Am 4.2

10

933 234 39 11

Eq 4.1 841 211 35 10

Am 4.2

25

841 211 35 10

Eq 4.1 800 201 33 9

Am 4.2

100

800 201 33 10

Eq 4.1 786 198 33 9

Am 4.2

1,000,000

786 198 33 9

Eq 1.3 infinite 786 198 33 9
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Table 4.5: Sample Sizes required for 70% power with 2.5% one-sided alpha

Beta=0.3 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

696 175 29 9Eq 4.1

Am 4.2

10

696 175 29 9

648 163 27 8Eq 4.1

Am 4.2

25

648 163 27 8

626 158 26 8Eq 4.1

Am 4.2

100

626 158 26 8

619 156 26 8Eq 4.1

Am 4.2

1,000,000

619 156 26 8

Eq 1.3 infinite 619 156 26 8

Table 4.6: Sample Sizes required for 60% power with 2.5% one-sided alpha

Beta=0.4 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

533 134 23 7Eq 4.1

Am 4.2

10

533 134 23 7

507 128 22 7Eq 4.1

Am 4.2

25

507 128 22 7

495 125 21 7Eq 4.1

Am 4.2

100

495 125 21 7

491 124 21 7Eq 4.1

Am 4.2

1,000,000

491 124 21 7

Eq 1.3 infinite 491 124 21 7
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Table 4.7: Sample Sizes required for 50% power with 2.5% one-sided alpha

Beta=0.5 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

407 103 18 6Eq 4.1

Am 4.2

10

406 103 18 6

394 100 17 6Eq 4.1

Am 4.2

25

394 99 17 6

388 98 17 6Eq 4.1

Am 4.2

100

388 98 17 5

386 98 17 6Eq 4.1

Am 4.2

1,000,000

386 98 17 5

Eq 1.3 infinite 386 98 17 5

Table 4.8: Sample Sizes required for 40% power with 2.5% one-sided alpha

Beta=0.6 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

302 77 14 5Eq 4.1

Am 4.2

10

302 77 14 5

297 76 14 5Eq 4.1

Am 4.2

25

296 75 13 5

294 75 14 5Eq 4.1

Am 4.2

100

294 74 13 5

293 75 14 5Eq 4.1

Am 4.2

1,000,000

293 74 13 5

Eq 1.3 infinite 293 74 13 5
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Table 4.9: Sample Sizes required for 30% power with 2.5% one-sided alpha

Beta=0.7 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

211 54 11 4Eq 4.1

Am 4.2

10

211 54 10 4

209 54 10 4Eq 4.1

Am 4.2

25

209 53 10 4

208 54 10 4Eq 4.1

Am 4.2

100

208 53 10 4

208 54 10 4Eq 4.1

Am 4.2

1,000,000

208 53 10 4

Eq 1.3 infinite 208 53 10 4

Table 4.10: Sample Sizes required for 20% power with 2.5% one-sided alpha

Beta=0.8 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

128 34 8 4Eq 4.1

Am 4.2

10

127 33 7 3

128 34 8 4Eq 4.1

Am 4.2

25

127 33 7 3

128 34 8 4Eq 4.1

Am 4.2

100

127 33 7 3

128 34 8 4Eq 4.1

Am 4.2

1,000,000

127 33 7 3

Eq 1.3 infinite 127 33 7 3
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Table 4.11: Sample Sizes required for 10% power with 2.5% one-sided alpha

Beta=0.9 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

50 15 5 3Eq 4.1

Am 4.2

10

48 13 4 2

50 15 5 3Eq 4.1

Am 4.2

25

48 13 4 2

50 15 5 3Eq 4.1

Am 4.2

100

48 13 3 2

50 15 5 3Eq 4.1

Am 4.2

1,000,000

47 13 3 2

Eq 1.3 infinite 47 13 3 2

Table 4.12: Sample Sizes required for 2% power with 2.5% one-sided alpha

Beta=0.98 m ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

6 4 3 3Eq 4.1

Am 4.2

10

2 2 2 2

6 4 3 3Eq 4.1

Am 4.2

25

2 2 2 2

6 4 3 3Eq 4.1

Am 4.2

100

2 2 2 2

6 4 3 3Eq 4.1

Am 4.2

1,000,000

2 2 2 2

Eq 1.3 infinite 2 2 2 2
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Tables 4.3 to 4.12 show the differing required sample sizes (in the form of

reps, or pairs of subjects) calculated for an AB/BA crossover trial for a range

of different beta values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.98) and

a range of different deltas (0.1, 0.2, 0.5 and 1). It is remarkable how similar

the sample sizes calculated by the rival methods. It may have been guessed

that the differences observed in the power in table 4.1 would translate into

very different sample size calculations, but the two methods give almost

identical results for all β under 0.9, and respectably close results at 0.9. The

sample sizes only diverge significantly at a β of 0.98, where 4.1 gives much

higher estimates. As it is unlikely that any trial will be designed with a desired

power of 2% or under, we can be very confident that equation 4.1 will deliver

sample size estimates that are practically the same as Arithmetic method 4.2

for any trial that would have a chance of taking place.

Expected Power compared to Power calculations using point

estimates

The expected power methods and the ‘s-adjustment’ methods for sample size

calculation do not presume to calculate the same thing, and the method used

should depend on the objective of the power/sample size calculations. If it is

more important to know how likely a trial is to be powerful enough then a point

estimate based on the percentile of the distribution of (σ|s,m) should be used,

and if it is important that the best possible estimate of power taking into

account all the information available then the expected power should be used.

The use of a point estimate of E(σ) falls in between the two objectives.
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Using E(σ|s,m) as an estimate for σ does not result in power calculations of

E(1-β), in fact there is no multiplicative factor for s that will calculate expected

power using the traditional methods of power calculation.

However, the multiplicative factor to s needed to achieve any particular

expected power is only dependant on m. A statistician could make use of this

to make sample size estimates for a particular expected power when using a

calculator or computer package that don’t use the cumulative non-central t

distributions that equation 4.1 and Arithmetic method 4.2 require. If they wish

to make a sample size calculation for an expected power of 80% using a

traditional, Normal distribution based sample size equation like equation 1.2

as a rule-of-thumb they should adjust the observed s by multiplying it by about

For example, the required sample size for 80% expected power for AB/BA

trial with s=1, m=13, delta=0.2, by AM 4.2 is 450, and the sample size for 80%

power by equation 1.3 when σ=(2.285+(0.5/13))**(1/13) is also 450. Table

4.13 shows other rough adjustments that might be used for some other

expected powers.

Table 4.13

90%

80%

70%
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These are all just rule-of-thumb guidelines, and should only be used for rough

estimates. These equations were derived using an iterative mathematical

approach to approximate a solution in terms of m and power, rather than a

precise calcuation.

4.5 Selecting pA

Like the estimate for sigma used for Normal data, the pA is used in binary

data type sample size calculations must be estimated from a pilot study or

previous data. Unlike normal data, there are several competing ideas of how

best to estimate or describe the distribution of the true pA given an observed

incidence, especially with small sample sizes.

Different ways to calculate confidence intervals include the Wilson Score

[Wilson, E. B. 1927], Wald and the Exact method [Clopper, C. J., and

Pearson, E. 1934]. For very large samples they give very similar results, but

for smaller sample sizes the declared x% confidence intervals are only

nominal [Sauro J and Lewis JR 2005]. The Exact method is conservative, a

confidence interval created has actually at least the nominal chance of

containing pA. The Normal-distribution based Wald method is often

objectively less powerful than it claims to be, but is easy to calculate. An

adjusted version of Wald method does give some of the best results for vary

small sample sizes [Agresti, A., and Coull, B 1998].
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If a point estimate for pA is calculated from a sample, then a sample size of n

when

n = 1/4(Z1-β
2 / (x/100)2)

will mean there is at least a (1-β) chance that the observed pA will be within x

percentage points of the true pA.

The larger the sample size the more confident we can be that the observed

incidence is a good point estimate for pA. Cautious trial designers might use

the upper bounds of a confidence interval to estimate pA if they are doubtful

about the observed rate.

As for normally distributed data, it could be wiser to not place to much trust on

a sample pA and instead make power and sample size calculations that take

into account assumed conditional distributions of (pA|observed pA).

4.6 Methods of incorporating uncertainty over pA into sample

size calculations

There isn’t an equivalent to equation 4.1 for binary type output, but the

confidence interval style of describing uncertainty of pA is perfect for

recovering quantiles of to plug into similar a similar arithmetic method to AM

4.2.
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Confidence interval calculations with different levels of confidence can be

carried out and the boundaries compared to find the quantiles of a pdf for the

true pA given observed pA. Each quantile is then used in a power calculation

to gain information on the distribution of power given the distribution of pA. At

this point the decision on whether the null hypothesis is a statement about

log(OR) or pB has a large impact the calculated estimate of expected power.

If OR is important, it should be held constant in power calculations, and if pB

is the important one it instead should be held constant. If OR is important

then the quantiles of a pdf of pB can be calculated from the pdf of pA and the

constant OR. Each quantile of pA is compared with the equivalent quantile of

pB, and because the quantiles of pA are equally spaced by probability then

the mean of the power calculations is an approximation of the expected

power. Results where OR are constant are more stable than where pB is

selected as constant, because in the former case some quantiles of pA can

have values very close or equal to pB. This results in the pdf of power being

extremely skewed.

Like AM 4.2, the method applied in my SAS and R programs uses 999

quantiles.

4.7 Simulation-based power estimation

Sometimes with very unusual trial designs it can be difficult or impractical to

frame the relationship between sample size and power. With modern

computing power it can be simpler to run an extremely large number of
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simulations of a proposed trial and look at the proportion that meet some

desired criteria. To show how this simulation based approach can give good

results re-look at Example 1.1. The question was: “An investigator intends to

run an AB/BA crossover trial to see if new drug B is superior to drug A. The

clinical relevant difference is 1, the within subject and between subject

standard deviations are both 1. They want to know the power of this trial to

detect this difference if he gets 20 subjects enrolled, with 10 assigned to each

sequence. What is the power when the one-sided alpha is 0.025?”, and the

answer given using equation 1.3 was 0.84844.

Using R, the simulated results of 450,000 clinical trials with the same

variances and sizes as Example 1.1 with the true treatment effect of B 1 unit

greater than A. Each of the simulated trials was analysed by ordinary least

squares to see if a significant difference between treatment effects was

detected (Table 4.14). The results also apply to the random effects model

because the t-values and p-values of treatment effect calculated by each

method are identical with a complete block crossover design.

Table 4.14

Treatment effect B >

Treatment effect A

381,694 84.82%

No significant

difference

68,306 15.18%

Treatment effect A >

Treatment effect B

0 0.00%

Total 450,000 100.00%
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If the true power of each individual trial was indeed 0.84844 it would be

expected that approximately 0.84844 * 450,000 (= 381,798) of the trials would

show a significant difference in treatment effect. As can be seen in Table

4.14 above, a significant (p<0.05) difference was detected 381,694 times,

very close. Assuming X~Bi (n,θ) distribution, where X is the number of trials

that have a significant difference in treatment effect and θ is the true power,

we can calculate the 95% [Clopper/Pearson] CI for θ based on the observed

results. The CI is (0.84724, 0.84917), which contains 0.84844.

The power of the trial has been estimated very precisely from the ‘observed

power’ of this simulation, and more accurately than by the use of equation 1.2

(0.85574). The use of simulation to estimate power could be especially useful

for non-Normally distributed data where formula-based approaches rely on

some inherently inaccurate approximation of the variance of the test statistic.

By brute force, you can get a better power estimate from simulation than from

an imperfect formula. On the other hand, you may by chance get a very poor

estimate with the simulation, the results will not be exactly repeatable, and

regulatory authorities may frown upon the non-standardness of the approach.

I would recommend that the trial designer should stick to regular calculation

methods unless they have good reason to doubt the applicability of their

sample size formula to the particular details of the trial. If the designer
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Chapter 5

This chapter deals with programs for SAS that can be used to calculate

expected powers, and required sample sizes for expected power, for parallel

and crossover trials taking into account uncertainty about the distribution of

the outcome variable for Normally and binary data. It has been established

that uncertainty about the variance or pA means that the standard power-

based equations are possibly not always appropriate, and these programs

allow calculation about Expected power to be performed.

Program 5.1: SAS Program for Normal data taking into

account uncertainty in observed standard deviation

Program 5.1 is used to calculate expected powers for a contrast between

treatments, and required sample sizes for expected power, for parallel and

crossover trials with a response that is known to be normally distributed but

with uncertain variance. The program uses equation 4.2.

Figure 5.1.1: Output from program 5.1
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Figure 5.1.1 shows output from program 5.1. The output shows whether or

not the design is balanced (A), and displays the values of the variables

entered into the calculation (B). In this example a fixed effects analysis is not

possible (it is a parallel design), so no calculations for fixed effects are shown.

In their place (C) is a note that that analysis is not applicable. Random effects

analysis is possible, and the expected power for the stated sample size (D) is

next. The minimum required sample size to achieve the required expected

power is also shown (E).

Program 5.2: SAS Program for Normal data with uncertainty 2

Program 5.2 allows the user to calculate the power of a contrast between a

pair of treatments for crossover or parallel trials with an irregular sequence of

treatments for normal distributed outcomes with uncertain variability. The

program has a similar function to program 2.2 while allowing for uncertainty in

estimate of variance. It uses equation 4.1, and can be found in Appendix A.
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Figure 5.2.1: Output from Program 5.2

The design is checked to see if it is balanced or not. In the example shown in

figure 5.2.1 the design is unbalanced (A). The treatments compared are at

(B). The irregular sequence is displayed next (C).

The sample size is calculated from the sequence and displayed with some of

the other important variables like alpha, delta, observed within sigma and the

associated degrees of freedom. (D)

The expected power for fixed effects (if applicable) and random effects

models are calculated. (E & F)
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Program 5.3: SAS Program for Normal data with uncertainty 3

This program calculates power and required sample sizes for all possible

contrasts of treatments used in a crossover or parallel trial, for data that is

known to be normally distributed with uncertain variance. This is like program

2.3 but taking into account uncertainty. It uses equation 4.1, and can be

found in Appendix A.

Figure 5.3.1: Output from Program 5.3

Output from program 5.3 is shown in fig 5.3.1. The output shows whether or

not the design is balanced (A), in this example a fixed effects analysis is not

possible (it is a parallel design), so no calculations for fixed effects are shown.

In their place (B) is a note that that analysis is not applicable. A matrix of

powers between the pairs is shown next (C), and finally a matrix for minimum

required sample size to achieve the required expected power for each

contrast (D).
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Program 5.4: SAS Program for Normal data with uncertainty 4

This program allows the user to check the expected power of all contrasts for

a design with unusual sequence repetitions. It is similar to program 2.4, but

calculates expected power.

Figure 5.4.1: Output from program 5.4

The trial design is analysed to see if it balanced, and the result displayed (A).

The inputted sequences and numbers assigned to each is shown next (B),

usually followed by a matrix of fixed effects expected powers (C). Finally, the

matrix of random-effects expected powers between the pairs of treatments

(D).
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Program 5.5: SAS program for binary data that takes into
account uncertainty about true value of pA

Using the method described in chapter 4, it is possible to make calculations

for power that take into account uncertainty about pA for binary data. This

program calculates expected power of parallel and AB/BA crossover trials for

this type of data.

Figure 5.5.1: Output from program 5.5

The parameters entered into the program are displayed first (A), then

confidence intervals for the uncertain variables are calculated (B). The

expected power is shown for the sample size and trial type selected by the

different methods (C), along with confidence intervals for the power of this
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design (D). Finally (E), a 95% confidence interval is shown for required

sample size.
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Chapter 6

Like the previous chapter, this one deals with programs that can be used to

calculate expected powers, and required sample sizes for expected power, for

parallel and crossover trials taking into account uncertainty about the

distribution of the outcome variable for Normally and binary data, but uses R

panel.

Program 6.1: R program for Normal data taking into account

uncertainty

This program is for calculating the expected power of contrasts where the true

value of standard deviation is uncertain but is estimated from a pilot study.

The program uses arithmetic method 4.1, and has several graphical options.
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Figure 6.1.1: Interface of Program 6.1

A: Location of the txt file containing the information on the treatment

sequences for the design. Press return after entering the location for

the program to recognise the new instruction. Notice that for R the

directory structure of a file location uses the “/” forward slash separator,

not the “\” backslash.

B, C: The treatments, identified by number, whose contrasts are to be

analysed. Press the “-” and “+” buttons to change the treatments

compared.
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D: The δ of the design, the size of a difference to be detected. Press

return after entering the new delta for the program to recognise the

new instruction.

E: The δ of the design, the size of a difference to be detected. Press

return after entering the new delta for the program to recognise the

new instruction.

F: The swithin, the sample within-patient standard deviation observed in a

pilot study or previous data. Click on the “-” and “+” buttons to

decrease or increase the value.

G: The degrees of freedom of used in the calculation for swithin.

H: The β of the trial, the size of the type II error. Click and drag the slider

to change the β, and thus 1- β, the desired power (or Expected power)

of the trial.

I: λ, the ratio of σ2
between to σ2

within. Click on the “-” and “+” buttons to

decrease or increase the value.

J: The one-sided α, the size of the type I error. Click on the “-” and “+”

buttons to decrease or increase the value.

K: Button to display information on the selected treatment sequence.

Information is outputted to the R log.

L: Radio button to change between Fixed and Random effects plots and

analysis.

M: List Box to select the type of plot.

N: Button to output to log. Information summarizing the calculations will

be output to the R log.
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Figure 6.1.2: Output from Program 6.1

Figure 6.1.2 shows the summary or the design, outputted to log when button

6.1.1K is pressed. In this example the MTA/02 trial is analysed. The 21-

sequence, 5 period design is displayed (A) according to the format first

encountered in chapter 3. The design is calculated to be balanced, and this is

displayed also (B). Finally, the design is correctly assessed to be an

incomplete blocks crossover (C).
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Figure 6.1.3: Output from Program 6.1

Figure 6.1.3 shows the output from program 6.1 when ‘Cdf of Power’ is

selected in listbox 6.1.1M. The 95% CI for the true power for this example is

0.329 to 0.968. This interval is displayed in the title, and plotted with solid red

lines on the graph. The expected power was calculated as 0.707.
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Figure 6.1.4: Output from Program 6.1

Figure 6.1.4 show an example output for when ‘Sigma vs. Power’ is selected

in listbox 6.1.1M. While sigma could conceivably be any non-negative value,

the values of sigma that constitute a 99.9% CI are plotted against the

resultant power. The bounds of the 95% CI of sigma are drawn with blue

dashed, the 95% confidence bound of power are red dashes. The expected

power is shown by a purple dotted line.



101

Figure 6.1.5: Output from Program 6.1

Choosing ‘Hist of Number Required’ in listbox 6.1.1M will produce an output

like figure 6.1.5. For each of the 999 values possible values of sigma a

resulting minimum sample size is calculated to satisfy the requirement of

power, in this case 80%. The histogram is of the 999 required sample sizes

calculated. A 95% CI for sample size to achieve 80% power is displayed in

the title, as well as the sample size in the case that sigma is known to be s.
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Figure 6.1.6: Output from Program 6.1

Figure 6.1.6 shows an output when ‘Sigma vs Required’ is chosen. This

stepped graph shows the relationship between variance and required sample

size. This graph can be used to get an idea of how sensitive the sample size

is to variance estimates. A 95% CI for sigma is marked by vertical blue

dashed lines, and a 95% CI for required sample size is demarcated by
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horizontal red dashes. A purple dotted horizontal line shows the expected

required sample size.

Figure 6.1.7: Output from Program 6.1

Selecting ‘CDF of sigma’ will give the user a graph like the one shown in

figure 6.1.7. It shows the cumulative probability density curve for the value of

sigma, given s and m. The user can be 95% confident that the true value of

sigma lies between the values marked by the solid red vertical lines.



104

Figure 6.1.8: Output from Program 6.1

This final graphical output (Figure 6.1.8) was produced by selecting ‘Expected

Power vs Reps’, where “Reps” is an abbreviation of “Complete Sequence

Repetitions”. It is a histogram that shows the relationship between sample

size (in the format of sequence repetitions) and expected power. The solid

green vertical lines indicate the expected power at each increasing number of

complete repetitions of the treatment sequences, up until a number that

satisfies the minimum expected power required. The minimum expected
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power required is marked by a dotted purple horizontal line.
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Figure 6.1.9: Output from Program 6.1

The final output type from program 6.1 is shown in fig 6.1.9. In the first part of

this output (A) the treatments being compared are noted. Next (B), the other

parameter values are listed. The 95% CI for the standard deviation is below

that (C). Part (D) shows the expected power with this set-up, and gives a

confidence interval for what the true power might be. It also gives the power if

s was known to be σ, this is never less than the expected power. Part (E)

gives the required sample size to achieve the desired expected power, and

also the sample size required to get the power of a same value if s was known

to be σ. Finally (F), a 95% CI for sample size required to get the wanted

power. The mean required size is also shown, which gives a clue as to

sensitivity of the required sample size.
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Program 6.2: R panel Program for binary outcomes taking into
account uncertainty in pA.

This program uses an arithmetic method to approximate the expected power

for parallel and crossover trials while taking into account uncertainty about the

true value of pA.

Figure 6.2.1: Interface of Program 6.2
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A: pA, the response anticipated on treatment A, as extrapolated from a

pilot study.

B: Size of pilot study that decided pA.

C: The choice of whether to input the OR or pB. This is more important

than with the previous program, because the value of the select

variable will be held and the other will change with pA.

D: Text box to enter desired OR or pB.

E: The two-sided α, the size of the type I error. Click on the “-” and “+”

buttons to decrease or increase the value.

F: The β of the trial, the size of the type II error. Click and drag the slider

to change the β, and thus 1- β, the desired power (or Expected power)

of the trial.

G: Text entry box to enter n, the prospective size of the trial. For parallel

trials n will be size per arm, and for crossover trials n will be the total

size of the trial.

H: Radio button to choose between parallel trial and crossover trial.

Parallel trials for this program are trials with two different treatments or

treatment levels with equal allocation to each arm. Crossover trials are

AB/BA designs with equal allocations to each sequence.

I: Button to show results in log.

J: List Box to select how the distribution of (pA | observed pA, df) is

calculated. Possible selections include methods based on the Wilson

score, the normal approximation, and Exact (Clopper-Pearson)

confidence intervals.
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Figure 6.2.2: Output from Program 6.2

Figure 6.2.2 shows example output from program 6.2. In this example, the

Wilson Score method has been chosen to model the estimation of the true

value of pA where the observed pA, in a pilot with 20 subjects, was 0.4.

Section (A) of the output shows this and other inputted variable values. 95%

confidence intervals are given for pA, and in this case pB also. There is no

confidence interval given for OR, showing that it has been held constant. If

pB had instead been held constant, then a 95% CI for OR would be displayed.

The next part (B) shows the calculated expected power for a given sample

size, in this case 100 subjects. A crossover design is being analysed, so the

expected powers by the four different calculation methods are displayed. The

results are quite close to each other, all within 2% points, with the Conner

method giving the lowest power. Section (C) gives 95% confidence intervals
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for power by the four different methods, the widths of each interval are similar

in size. The final section (D) lists 95% confidence intervals of the required

size of the trial type to achieve a desired power. The confidence intervals in

this case are, again, all quite similar. To achieve 90% power it is likely

between about 180 and 320 subjects would be required.

Program 6.3

Program 6.3 is also for calculating expected power for parallel and crossover

trials with normally distributed endpoints where variance used in power

calculations is unknown but estimated from a pilot study, but uses formula 4.1

instead of an arithmetic method. This means the calculations are quicker, but

are less accurate. Program 6.2 can be a little slow, so this program can be

less frustrating to use and gives close estimates to the true expected power

and very similar sample size calculations. This program has a very similar

interface to program 3.1. The program is contained in appendix A.
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Figure 6.3.1

The output (as shown in figure 6.3.1) is of the same format as for program

3.1, but the expected power is calculated instead. The instructions for

program 3.1 should be read to understand how to operate this program.

Some Comparisons with other software and standard tables,

and Discussion

As previously discussed, there is no existing software that can make these

types of calculation. The only source that has calculated sample sizes taking
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into account the variance of a sample is Julious, 2005, and even then only for

the simplest parallel and crossover trial design. We will compare examples.

1. Parallel trial, Normal Data

Julious gives an example:”…[T]he clinical effect of interest is a reduction in

blood pressure compared to control of 8mmHg (d) with an observed standard

deviation from a pilot study 40mmgHg (s) estimated with 10 degrees of

freedom. Thus, the standardised difference equates to d = d /s = 10 / 40 =

0.20. For the Type I and Type II errors fixed at 5% and 10% respectively ...

[the use of Julious’s table of multiplication factors] … gives a multiplication

factor 1.301 for 10 degrees of freedom.

Previously the sample size, assuming the variance in the calculations to be a

population variance, … [was estimated as] … 527 patients in each arm of the

trial. To account for the imprecision in the sample variance therefore one

needs to increase the sample size estimated earlier by 30% to 745 patients

per arm. An inversion of this argument would be to say that by assuming that

the standard deviation was a population estimate the sample size could be

considered to be underestimated by 30%. This underestimation of the sample

size would result in a reduction in the anticipated power by 6% to 84%.”

There is a slight error here, 1.301 * 527 = 685.6. We will consider that to be

the sample size Julious calculates.

Using program 6.1 gives this output:
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***********************************************************

95% CI for sigma:( 0.698717 , 1.754934 )

95% CI for power:( 0.03749447 , 0.06555857 )

For 90 % Expected Power 1368 subjects required ( 684 Reps)

(If sigma was known to be s: 1054 subjects required ( 527 Reps) for 90 %

Power)

***********************************************************

So, we get very similar results. Julious gets a slightly higher result (c.686 per

arm) than by 6.1 (684 per arm). There are two reasons for this. First, he uses

a version of equation 4.1 to calculate the result which is slightly less accurate,

and secondly, he uses a table entry to multiply which leads to rounding errors.

2. Crossover trial, Normal Data

Julious has a table of sample sizes for a range of ∆, m is 20. These results

were manually compared with both 5.1 and 6.1. The results matched 5.1

100% of the time, and matched 6.1 almost all the time. When there was a

disparity between Julious and 6.1, it was only by 1 subject. These results

were as expected, as Julious uses a method based on the same assumptions

behind program 5.1. For example, Julious gives as sample size of 30 being

required when ∆ =1, m = 10 to achieve 90% power in a crossover trial. 5.1

and 6.1 both give this same result.
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3. Parallel trial, Binary data

If the observed pA was 0.4 in a pilot study of 50, with a two-sided alpha of

0.05, what is the expected power to detect an OR of 2 with 100 subjects on

each arm?

Entering this into program 6.2, and selecting the Adjusted Wald method of

distributing pA, then the expected power will be almost 63% for both

calculations.

4. Parallel trial, Binary data

If the above trial was ran as an AB/BA crossover, keeping 200 subjects, what

would the expected power be?

Again selecting the Adjusted Wald method of distributing pA, then the

expected power is around 89% for all four calculations types.
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Chapter 7: Conclusion: Summary, and Discussion

7.1 Summary

Chapter 1

In chapter 1 we established the importance of sample size and power

calculations in clinical trials, and showed that there are moral, legal and

financial reasons for an investigator to carry out these calculations. We

looked at the basic equations behind the standard sample size and power

calculations, and showed that they can be extended to the particular cases of

Normal data, binary data, and ordinal data.

Chapters 2 & 3

In these chapters we showed desirability for new sample size and power

software for SAS and R, and saw a necessity for incomplete block designs to

be handled. New software was developed, and the results obtained from

them compared with the results from established software and sample size

tables currently used by experiment designers. We saw that the new

software’s results more-or-less matched existing methods and explained

those slight differences. For incomplete-block crossover trials, with no

previous method to compare with, we developed a simulation based method

of validation that showed that our programs gave sensible results.

Chapter 4

We investigated one of the assumptions behind the standard power

calculation, the idea that the sample standard deviation could be used as an

estimator for the true standard deviation without problems. It was shown that
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miscalculations result from that assumption, and an arithmetic method as well

as an approximation based on a non-central t distribution were suggested as

replacements. The same arguments were applied to the estimation of pA for

binary data, and a solution offered for this case too. Sample size calculations

based on Expected Power are seen as the solution.

Chapter 5 & 6

After the revelation that the standard equations were inadequate, software is

offered that allows the alternative calculations based on Expected Power.

These are shown to match results with examples published elsewhere.

7.2 Discussion, and Further Work

Power calculations and sample size estimates are very important in the

pharmaceutical industry, and computing methods can be used to make good

estimates for a range of data types and trial designs. Uncertainty about

important variables used in the calculations means that traditional sample size

methods are unreliable, but this can be partly dealt with by either taking some

conservative estimate for σ, or using all of the information available to

calculate an Expected Power. The standard equations, the ones seen in the

first three chapters, aren’t wrong, exactly. The calculations that result from

them are correct on their own terms, and the programs that result from them

should help the trial planner, especially the facility to assess incomplete block

crossover trials. So should the trial designer use the programs from chapters

5&6 to plan their trial? I would say they should. Ultimately, the statistician’s

role planning process should be to help the decision making process, and the
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expected power based analysis will give a more appropriate result for decision

making.

But we are now moving away from the traditional sample size

calculations. At the start, in Chapter 1, we looked at what Machin called the

Fundamental Equation of sample sizes, which depended on Z values, s and

δ. In chapter 1we have shown that Z values should be replaced by quantiles

from non-central t distributions, and in chapter 4 that s is not adequate without

the addition of m to qualify it. The development of Assurance [O’Hagan,

2005] is a way around the ill-defined concept of clinically-relevant difference,

by using a Bayesian approach to assessing the likelihood of outcomes of

differing desirability. So δ is being written out of the equation, too. Even the

planned trial is being eroded, with a growing trend of clinical trials being the

use of adaptive designs. A more flexible approach to trial design, using

information as it becomes available to better direct resources, or to investigate

endpoints that become interesting during the trial are of much interest to trial

planners today. [ Lehmacher and Wassmer 1999]. In general, it seems that

the design and execution of trial is becoming less rigid, [Willan AR, Pinto EM,

2005] and an approach that integrates all information available decisions is

preferred. If these developments grow in popularity then the traditional

sample size calculations may soon be obsolete for cutting edge trials. This

thesis has offered a way of dealing with at least some of the uncertainties, but

new software that can deal with these less rigid designs and more nuanced

end results will need to be developed to aid trial design in the future.
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Appendix A

Appendix A is contains all the sample size calculation software referred to in

chapters 2, 3, 5 and 6 of this thesis. This appendix can be found on an

attached disc, or for more up-to-date versions email michael@stats.gla.ac.uk.

I intend to use and update these programs as part of my work, so

improvements will be made to the presentation and functionality of the

programs.

Prog_2_1.sas

Prog_2_2.sas

Prog_2_3.sas

Prog_2_4.sas

Prog_2_5.sas

Prog_2_6.sas

Prog_3_1.R

Prog_3_2.R

Prog_3_3.R

Prog_3_3_15.R

Prog_5_1.sas

Prog_5_2.sas

Prog_5_3.sas

Prog_5_4.sas

Prog_5_5.sas

Prog_6_1.R

mailto:michael@stats.gla.ac.uk
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Prog_6_2.R

Prog_6_3.R


