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Abstract 

p53 is a transcription factor with tumour suppressive attributes which is known 

to be mutated in over half of human cancers.  As well as compromising the 

ability of p53 to function as a transcription factor, mutations in p53 often result 

in a gain-of-function phenotype which is characterised by increased ability of 

cancer cells to migrate and invade.  This is mediated by the ability of mutant 

p53 to increase recycling of α5β1 integrin and receptor tyrosine kinases (RTK) 

from endosomes to the plasma membrane;  a process which is dependent on the 

Rab11 effector, Rab Coupling Protein (RCP) and the phosphatidic acid generating 

enzyme, diacylglycerol kinase-α (DGKα).  Despite accumulating evidence linking 

RCP/DGKα-dependent receptor recycling to invasive migration, the mechanisms 

by which mutant p53 controls endosomal trafficking were still unclear when the 

current study was instigated.   

Initial experiments indicated that the mutant p53 gain-of-function phenotype 

was not cell autonomous, and could be passed to p53 null cells by incubating 

them with conditioned medium from mutant p53 (R273H)-expressing cells.  

Furthermore, fractionation approaches indicated that the mutant p53 phenotype 

was transmitted between cells by a microvesicle vector.  Upon treatment with 

microvesicles collected from mutant p53 expressing cells, p53 null cells 

displayed increased α5β1 integrin and RTK recycling and the consequent 

invasive/migratory behaviour that was dependent on these RCP and DGKα-

regulated trafficking events.    

Despite a requirement for RCP in the response of p53 null cells to microvesicles, 

this Rab11 effector was not required for the production of pro-invasive 

microvesicles.  Rather, mutant p53-expressing cells relied on Rab35 (but not 

Rab27a or Rab27b) for the production and/or release of microvesicles that were 

capable of transferring mutant p53’s gain-of-function phenotype.   

An in-depth RNA sequencing analysis indicated that microvesicles from mutant 

p53 cells influenced the endocytic trafficking and migratory characteristics of 

p53 null cells without detectably altering mRNA expression in these recipient 

cells.  This indicated the possibility that microvesicles from mutant p53-

expressing cells may act directly on the endomembrane system of recipient 
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cells.  Immunoprecipitation experiments indicated that there was a physical 

interaction between Rab35 and podocalyxin (PODXL), a highly-charged 

sialomucin which is known to directly influence membrane organisation.     

Additionally, PODXL was detectable in microvesicular preparations by mass 

spectrometry.  Microvesicles purified from mutant p53-expressing cells in which 

PODXL had been knocked down using siRNA, had significantly reduced capacity 

to promote integrin/RTK recycling and mutant p53-like migratory behaviour in 

p53 null cells, indicating that PODXL, as well as Rab35, is a key factor 

responsible for transmitting mutant p53’s gain-of-function phenotype between 

cells.  In addition to being incapable of influencing the migration of other cells, 

Rab35 knockdown cells themselves migrated with the characteristics of p53 null 

cells.  Interestingly, microvesicles from mutant p53-expressing cells restored 

mutant p53-like migratory behaviour in these Rab35 knockdown cells.  These 

data indicate that Rab35 and PODXL-dependent production of phenotype altering 

microvesicles not only influences the migration of neighbouring cells in a 

paracrine fashion, but may constitute an autocrine link between mutant p53 and 

integrin trafficking in the mutant p53 cells themselves.  Finally, I have found 

that p53 null cells may be educated by microvesicles from mutant p53-

expressing cells to themselves release cell migration-altering microvesicles, 

providing further evidence supporting the existence of microvesicle-based 

autocrine/paracrine mechanisms that may act to propagate mutant p53’s 

invasive gain-of-function within both homogeneous and heterogeneous 

populations of tumour cells. 
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RPM Revolutions per minute 
RTK Receptor tyrosine kinase 
SDS Sodium dodecyl sulfate 
SEM Standard error of the mean 
SILAC Stable isotope labelling by amino acids in culture 
siRNA Small interfering RNA 
SV40 Simian virus 40 
TBS Tris buffered saline 
TBST Tris buffered saline and tween 20 
TCTP Translationally controlled tumour protein 
TGFβ Transforming growth factor beta 
TNF Tumour necrosis factor 
TOP1 Topoisomerase 1 
TSAP6 Tumour suppressor actuated pathway 6 
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1 Introduction 

1.1 Cancer 

1.1.1 Hallmarks of cancer 

Cancer is a multifaceted disease characterised by growth of a primary tumour 

which progresses to invade, extravasate and metastasise to secondary visceral 

sites.  The growth of chemotherapy-resistant secondary tumours at metastatic 

sites is responsible for most cancer-related deaths (Talmadge and Fidler, 2010, 

Hanahan and Weinberg, 2011).  For this reason it is important to develop novel 

treatment strategies to prevent metastasis.  To do this, characteristics of cancer 

growth and metastasis need to be thoroughly understood and the topic is 

extensively reviewed by Hanahan and Weinberg (2011).  There are ten main 

hallmarks of cancer pathology that are displayed by most cancer types and 

collectively contribute to the progress of the disease.  Primarily, cancer cells 

gain the ability to sustain proliferative signalling and acquire replicative 

immortality.  In order for cancer cells to not only proliferate but also to survive, 

they need to be able to evade growth-suppressors and resist cell death.  To 

sustain solid tumour growth and survival as the tumour mass increases, 

promotion of angiogenesis is essential to allow the necessary nutrient delivery to 

the cancer cells.  Finally to progress to end-stages of the disease, the cells of 

solid tumours need to acquire an invasive migratory phenotype which allows 

cancer cells to extravasate and metastasise to secondary sites.  More recently 

recognised hallmarks of cancer that are essential for tumour maintenance and 

survival include changes in energy metabolism, evasion of the immune response, 

genomic instability and promotion of an inflammatory environment.  

Tumours are very complex tissues (as diagrammatically exemplified in figure 1-1) 

in which several stromal cell types are present in addition to the cancer cells, 

and these include endothelial cells, cancer-associated fibroblasts, immune 

inflammatory cells, cancer stem cells and bone marrow-derived progenitor cells.  

All these cell types co-operate to provide a microenvironment which sustains 

tumour growth and supports metastasis (Hanahan and Weinberg, 2011). 
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Figure 1-1: Schematic diagram of the tumour microenvironment. 
A tumour is a complex environment in which the communication between several different cell 
types and the extracellular matrix (ECM) is essential to enable efficient tumour growth and 
metastasis.  Cancer-associated fibroblasts (CAFs) enhance cancer progression and contribute to 
the production of cancer-associated ECM.  Inflammatory immune cells including macrophages, 
neutrophils and lymphocytes support tumour progression by providing inflammatory signals, and by 
secreting factors that contribute to the degradation of the ECM allowing invasive cell migration to 
occur.  Endothelial cells allow tumours to grow in size by providing vascularisation and, thereby, 
delivery of nutrients to tumour cells.  Upon injection into mice, cancer stem cells are able to initiate 
the growth of new tumours and are extremely resilient to chemotherapy.  Cancer stem cells are 
therefore thought to be one of the reasons for the high rates of cancer relapse after treatment.  The 
presence of bone marrow progenitor cells in tumours is becoming increasingly recognised.  In 
tumours, bone marrow progenitor cells are known to differentiate into various stromal cells that 
support tumour growth (Hanahan and Weinberg, 2011).  

1.1.2 Metastasis 

Tumour metastasis is a complex and multistep process which is reviewed in 

depth by Talmadge and Fidler (2010) and diagrammatically represented in figure 

1-2.  Briefly, once cells have undergone transformation, tumour growth is 

supported by angiogenesis which provides the necessary nutrients, and several 

different stromal cells, as discussed in the previous section (1.1.1).  A small 
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number of cancer cells may acquire an invasive phenotype and migrate to a 

lymphatic vessel or blood vessel.  Here, invasive cancer cells intravasate into the 

lumen of the lymphatic/blood vessel with the aid of tumour stromal cells.  

Subsequently tumour cells circulate within the lymph/blood until they adhere to 

the walls of the lymphatic or blood vessels.  Once escaped tumour cells adhere 

to the vessel wall they can begin to extravasate from the vessel into the milieu 

of the secondary visceral site (for example the lung).  The cancer cells then 

interact with the extracellular environment of the secondary organ and, if 

suitable proliferation occurs, followed by angiogenesis, and evasion of the 

immune response, a metastatic colony/secondary tumour can begin to grow in 

the secondary organ (Talmadge and Fidler, 2010). 
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Figure 1-2: Overview of the metastatic cascade. 
A small number of transformed cancer cells gain an invasive phenotype.  Invasive cancer cells 
intravasate into lymphatic or blood vessels.  Here they circulate until they adhere to a vessel wall 
and extravasate into a secondary organ (such as the lung) where proliferation and angiogenesis 
takes place allowing metastatic colony formation and growth of a secondary tumour (Talmadge and 
Fidler, 2010). 

1.1.3 Cell migration and invasion in cancer metastasis 

For transformed cancer cells to metastasise they need to acquire an invasive 

migratory phenotype.  The exit of metastatic cells from primary tumours is 

thought to be a relatively rare event.  Indeed, intra-vital imaging studies suggest   

that over the course of one hour, less than 0.01% of the cells in a tumour display 

a motile phenotype (Sahai, 2005).  To acquire an invasive phenotype, cancer 

cells most probably acquire mutations and/or alterations to gene expression.  A 

study that investigated gene expression of motile cells escaping from tumours 

found a distinct gene expression pattern which included changes in epidermal 

growth factor receptor (EGFR) and β1 integrin expression (Wang et al., 2004). 

In addition to acquisition of an invasive migratory phenotype, communication 

between cancer cells, stromal cells and the extracellular environment is 

necessary for invasion and metastasis to occur.  For example, mesenchymal stem 
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cells secrete chemokine (C-C ligand) motif (CCL5) which simulates breast cancer 

cell invasion and metastasis through signalling of breast cancer cell chemokine 

receptor (CCR5) (Karnoub et al., 2007).  Alternatively, tumour-associated 

macrophages of pancreatic tumours are activated by interleukin-4 to release the 

extracellular protease cathepsin which promotes cancer cell growth, 

angiogenesis and invasion (Gocheva et al., 2010).  Additionally, fibroblasts and 

macrophages have been shown to secrete matrix metalloproteinases to degrade 

the extracellular matrix to aid cancer cell motility and invasion (Sameni et al., 

2003, Grimshaw et al., 2004).  As a final example, breast cancer-associated 

macrophages release epidermal growth factor (EGF) which stimulates carcinoma 

cells to express colony-stimulating factor-1 (CSF-1) which subsequently drives 

EGF expression in macrophages.  This paracrine loop between macrophages and 

carcinoma cells has positive feedback characteristics and promotes both 

macrophage and carcinoma cells to become invasive (Goswami et al., 2005). 

1.1.3.1 Collective cell migration and invasion 

There are several modes of cancer cell migration that have been documented 

and these are illustrated in figure 1-3.  A cluster of cells can become detached 

from the tumour and begin to migrate and invade collectively.  This mode of 

migration is characterised by the maintenance of cell-cell adhesions between 

cells which can migrate in narrow linear strands with one leading cell, or 

alternatively as a broad sheet with several leading cells.  This is quite a slow 

mechanism of invasion with cell migration speeds which range between 0.01 and 

0.1 µm/minute.  (Clark and Vignjevic, 2015, Khalil and Friedl, 2010). 

A different form of collective migration has been described called multicellular 

streaming. In this type of migration, a collection of cells which are loosely linked 

to one another, migrate in long straight paths at a slightly faster speed (1-2 

µm/minute) than is observed during collective migration (Clark and Vignjevic, 

2015, Friedl and Alexander, 2011). 

1.1.3.2 Single cell migration and invasion 

Some metastatic cells (10 – 40 %) display the hallmarks of epithelial 

mesenchymal transition (EMT).  Cells that have undergone EMT have low E-

cadherin expression, spindle morphology and increased motility.  They also resist 
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apoptosis and express matrix-degrading enzymes that facilitate invasion 

(Klymkowsky and Savagner, 2009, Sahai, 2005).  The expression of the 

transcription factor Slug promotes EMT initiation.  For example upon Slug 

expression, E-cadherin expression and its localisation at cell-cell junctions is 

decreased (Bolos et al., 2003).  Consequently, decreased E-cadherin expression 

results in weaker cell-cell junction strength and increased ability of tumour cells 

to migrate individually and metastasise (Derksen et al., 2006). 

After undergoing EMT, cells display a mesenchymal mode of migration.  

Mesenchymal cell migration occurs on relatively stiff 2D substrates and so can be 

easily studied in vitro.  During mesenchymal-type migration, cells are elongated, 

polarised, and their translocation through 3D microenvironments depends upon 

ECM degradation by secreted proteases (Sahai, 2005).  Activation of receptor 

tyrosine kinases such as cMET leads to increased Rac signalling which is 

important for a mesenchymal-like mode of cell motility (De Wever et al., 2004, 

Sahai and Marshall, 2003, Vial et al., 2003).  Increased Rac activity at the 

leading edge promotes activation of the Scar/WAVE complex and Arp-2/3.  Arp-

2/3 serves to increase actin nucleation allowing formation of lamellipodia, 

pseudopods and filopodia at the cell front.  These protrusions then promote 

migration by attaching to the ECM through focal contacts.  This attachment, in 

combination with cell rear contraction allows the cell body to move forward and 

thus the cell migrates through the ECM (Sahai, 2005, Pollard and Borisy, 2003). 

Alternatively cells can migrate in an amoeboid fashion where they assume a 

rounded morphology.  This mode of migration can be mediated by Rho-ROCK 

mediated cell blebbing (Lorentzen et al., 2011).  Cells exhibiting amoeboid 

migration have weak cell-ECM adhesions (Friedl and Alexander, 2011) and 

migrate independently of matrix degradation (Wolf et al., 2003).  This is because 

rounded amoeboid cells can squeeze through gaps of the ECM matrix. 
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Figure 1-3: Cell migration modes. 
Cancer cells migrate and invade through the extracellular matrix (ECM) during metastasis using 
several different modes of migration.  Primarily, cells can migrate collectively either with one 
leading cell or with several leading cells (collective cell migration).  In this case collective migrating 
cells maintain their cell-cell contacts.  Alternatively cells migrate together with weak cell-cell 
contacts in a multicellular streaming migration mode.  Cells also migrate singularly in an amoeboid 
fashion in which membrane blebbing propels cell migration through ECM gaps.  Finally cells 
migrate with a mesenchymal phenotype which is dependent upon matrix metalloproteinase (MMP) 
degradation of the ECM. 

1.1.4 Integrin trafficking in cancer cell migration 

It is very important to thoroughly understand the mechanisms of cancer cell 

migration in order to be able to target the cells therapeutically to prevent 

invasion and metastasis.  Our lab is interested in the role that integrins play in 

cell migration.  This section therefore discusses integrins, their endocytosis, 

trafficking and the importance of these processes in cancer cell migration. 

1.1.4.1 Integrins 

As reviewed by (Hynes, 2002) integrins are heterodimer transmembrane 

receptors composed of an alpha subunit (of which there are 18) and a beta 

subunit (of which there are 8).  Integrins localise in focal adhesions (alongside 

hundreds of other proteins) and serve to link the cell cytoskeleton with the ECM 

by association with extracellular ligands such as collagen, laminin, vitronectin 

and fibronectin (figure 1-4) (Humphries et al., 2006).  Integrins that are bound 

to an extracellular ligand assume an extended (open) conformation, whereas the 

bent (closed) state of integrins has a low affinity for extracellular ligands.  The 

activation state of integrins can contribute to the role they play in bi-directional 
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signalling.  Extracellular ligand occupancy mediates intracellular cell signalling 

(outside-in) whereas binding of intracellular proteins such as talin and kindlin to 

the intracellular C-terminus of integrins regulates integrin activation state 

(inside-out signalling) (Legate et al., 2009).  Integrin activation and signalling 

have several physiological consequences that can be exerted both immediately 

and also in the longer term through changes in gene expression (Legate et al., 

2009).  Integrin signalling controls many different cellular processes; the main 

one of interest here is the role of integrins in controlling cell migration and 

invasion.  How integrin receptors control migration and invasion is dependent 

upon their localisation within the cell – whether they are available and 

functional at the plasma membrane to link the ECM with the actin cytoskeleton, 

or present inside internal vesicles during their transportation and trafficking 

(Bridgewater et al., 2012, Hynes, 2002). 

 

Figure 1-4: Integrin families. 
Integrin α and β subunits form 24 different heterodimers that specifically bind to extracellular 
ligands.  There are integrin families that are collagen-binding, RGD-binding (fibronectin and 
vitronectin), laminin-binding and finally there are integrins expressed specifically by leukocytes that 
bind ligands such as E-cadherin, adapted from (Margadant et al., 2011). 
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1.1.4.2 Integrin endocytosis 

Integrins are endocytosed from the plasma membrane via both clathrin-

dependent and clathrin-independent mechanisms (Bridgewater et al., 2012).  

Clathrin-dependent endocytosis is mediated by recruitment of AP-2, cargo-

specific adaptor proteins, clathrin and dynamin to the plasma membrane 

(McMahon and Boucrot, 2011).  Adaptor proteins specifically involved in 

mediating clathrin-dependent endocytosis of integrins include DAB2, ARH and 

NUMB which bind to the NPxY motif on the integrin tail of the β-subunit 

(Teckchandani et al., 2012, Nishimura and Kaibuchi, 2007, Calderwood et al., 

2003, Ezratty et al., 2009).  Upon clathrin assembly a vesicle can be formed and 

dynamin polymerisation initiates the vesicle neck scission allowing formation of 

an endosome (McMahon and Boucrot, 2011).  Alternatively integrins can be 

internalised by clathrin-independent endocytosis which can be mediated through 

caveolae association with α2β1 integrin (Upla et al., 2004), by macropinocytosis 

after dorsal ruffle formation (Mayor and Pagano, 2007), or via a distinct set of 

endosomes termed clathrin-independent carriers (CLICs) (Howes et al., 2010, 

Lakshminarayan et al., 2014). 

1.1.4.3 Rab-GTPases 

After internalisation, integrins are located within the endosomal system where 

their fate is determined.  Integrins can either be recycled back to the plasma 

membrane or targeted for degradation.  These processes will be discussed in 

further detail next in section (1.1.4.4), however here I will introduce the Rab 

GTPases which are key mediators of vesicular trafficking and are known to 

contribute to endosomal trafficking of integrins in a way that influences integrin 

function. 

Rab-GTPases are master regulators of intracellular vesicle trafficking.  Shortly 

after synthesis Rab-GTPases bind to Rab escort proteins (REPs) which present the 

Rab to geranylgeranyl transferase for lipid modification (prenylation) which 

allows subsequent association of Rab proteins to membranes.   Once they have 

been lipid-modified, Rab proteins can undergo activation from the GDP to the 

GTP bound state; a process which is catalysed by guanine nucleotide exchange 

factors (GEFs).  In the GTP-bound state, Rab-GTP proteins are recognised and 
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bound by Rab effector proteins enabling the Rab protein to carry out its 

functions in vesicular transport.  GTPase activating proteins (GAPs) then 

promote the hydrolysis of Rab-associated GTP to GDP.  Geranylgeranylated Rab-

GDPs interact with GDP dissociation inhibitors (GDIs) which stabilises the 

proteins in its inactive soluble form and maintain their solubility in the cytosol.  

The Rab-GDI complex may be targeted to specific membrane compartments by 

association with membrane bound GDI displacement factors (GDF).  Once 

returned to their original membrane and dissociated from GDIs, Rab-GDP 

proteins can again then be activated.  This process is summarised in figure 1-5.  

Rab-GTPase proteins contribute to the control of the exocytic, endocytic and 

transcytic transport in a cell.  Rab proteins are characterised by their 

localisation within vesicular compartments of the cell and contribute to many 

cellular processes including cell motility, proliferation and differentiation (Bhuin 

and Roy, 2014, Stenmark, 2009).   

 

Figure 1-5: Diagram representing the cyclical activation and deactivation of Rab-GTPases. 
Inactive Rab-GDP is activated by guanine nucleotide exchange factors (GEFs) to yield the active 
GTP-loaded Rab.  Effectors can interact with Rab-GTP in its active state, enabling Rab-GTP to 
carry out its biological functions in vesicular transport.  GTPase activating proteins (GAPs) then 
deactivate Rab-GTP to the Rab-GDP inactive state again. 

1.1.4.4 Integrin trafficking routes 

After internalisation from the plasma membrane into early endosomes there are 

several routes which the integrin can take.  αvβ3 integrins can be recycled back 

to the plasma membrane from Rab4-positive early endosomes via a route that 

has been termed the ‘short loop’ pathway (Roberts et al., 2001).  The short-loop 

is subject to tight control by growth factor-activated kinases.  In the presence of 
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growth factors (such as PDGF), Protein Kinase D1 (PKD1) is autophosphorylated 

promoting its interaction with the C-terminus of β3 integrin.  PKD1 then 

phosphorylates Rabaptin-5 (dual Rab4/Rab5 effector) at serine 407 which 

favours its association with Rab4 over Rab5 and this drives αvβ3 integrin 

recycling through the Rab4 positive compartment promoting persistent fibroblast 

and endothelial cell migration (di Blasio et al., 2010, White et al., 2007, 

Christoforides et al., 2012). 

α5β1 integrins, on the other hand, do not follow the short-loop back to the 

plasma membrane, but are trafficked from early endosomes to recycling 

endosomes in the perinuclear region of the cell and then returned to the plasma 

membrane by the ‘long loop’ Rab11-positive pathway.  After internalisation, 

Rab21 is displaced from the cytoplasmic tail of α5 integrin by p120RasGAP, this 

in turn promotes α5β1 delivery to recycling endosomes and recycling to the 

plasma membrane via the Rab11 dependent long loop (Mai et al., 2011).  Other 

regulators of the long loop pathway of integrin recycling include PKB/AKT 

(Roberts et al., 2004) and ARF6 (Powelka et al., 2004).  Activation of PKB/AKT 

leads to phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3) 

which consequently drives α5β1 and αvβ3 recycling to the plasma membrane 

from the Rab11 compartment and regulates cell spreading (Roberts et al., 2004).  

Furthermore, Arf6 is also known to contribute to Rab11-dependent recycling of 

α5β1 following growth factor stimulation.  This mechanism of integrin trafficking 

contributes to cancer cell motility (Powelka et al., 2004).  The short loop and 

long loop of integrin recycling dictate the way that a cell can migrate.  For 

example, short loop recycling of αvβ3 promotes directional cell migration, 

whereas inhibition of αvβ3 recycling promotes α5β1 recycling to the plasma 

membrane and drives cells to migrate with a decreased persistence (White et 

al., 2007).   

Finally α5β1 integrins can arrive in the late endosomal compartment where they 

can either be degraded in lysosomes, or in Rab25 expressing cells integrins can 

be recycled back to the plasma membrane from late endosomes/lysosomes in a 

CLIC3-dependent manner (Dozynkiewicz et al., 2012, Caswell et al., 2007).  The 

main routes of integrin trafficking are diagrammatically reviewed in figure 1-6. 
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Figure 1-6: Diagram depicting the main mechanisms of integrin trafficking in the cell. 
After internalisation integrins are directed through the cells endocytic compartment.  They can 
quickly be recycled back to the plasma membrane from early endosomes via the short loop in a 
Rab4 positive compartment.  Alternatively the Rab11 dependent long loop, returns integrins from 
recycling endosomes to the plasma membrane.  Finally in Rab25 expressing cells integrins in late 
endosomes can be targeted for degradation or recycled back to the plasma membrane in a CLIC3 
dependent manner.  EE – early endosome.  RE – recycling endosome.  PNR – perinuclear region. 
Lys – lysosome. 

1.1.4.5 Integrin trafficking and cancer cell migration 

In cancer biology integrin trafficking has been found to have an important role in 

determining the invasive nature of migration that cancers cell exhibit.  For 

example, hypoxia increases invasion of breast cancer cells via α6β4 recycling 

which is dependent upon the Rab11 long loop recycling pathway (Yoon et al., 

2005).  Additionally αvβ6 interaction with HS1-associated protein X-1 (HAX1) 

promotes clathrin-dependent endocytosis and integrin trafficking driving an 

invasive mode of migration in oral squamous cell carcinoma cells (Ramsay et al., 

2007).  The role of Rab25-mediated α5β1 integrin trafficking has an important 

role in cancer cell migration.  Rab25 has been found to be overexpressed in 

aggressive forms of ovarian cancer (Cheng et al., 2004) and has been shown to 

promote spatially-restricted α5β1 integrin recycling at the tips of invasive 

pseudopods to promote pseudopod extension and cell invasion (Caswell et al., 
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2007).  Subsequently it was shown that Rab25 promotes α5β1 integrin 

localisation into late endosomes, from whence it is recycled back to the plasma 

membrane at the rear of the cell in a CLIC3-dependent manner.  This allows the 

retraction of the cell rear and promotes forward cell migration and invasion of 

ovarian cancer cells (Dozynkiewicz et al., 2012). 

Expression of the oncogene mutant p53 or inhibition of αvβ3 recycling using 

cilengitide both increase the recycling rate of α5β1 integrin to the plasma 

membrane in an RCP (a Rab11 effector)-dependent manner leading to less 

persistent and more invasive cancer cell migration (Muller et al., 2009, Caswell 

et al., 2008).  Additionally localisation of RCP at the invasive pseudopod tip is 

dependent upon phosphatidic acid generation by DGKα which consequently 

promotes α5β1 integrin recycling to the pseudopod plasma membrane (Rainero 

et al., 2012).  Receptor tyrosine kinases (RTKs) such as epidermal growth factor 

receptor (EGFR) and cMET are recycled to the plasma membrane alongside α5β1 

integrins.  The activation of RTKs at the cell surface results in increased AKT 

signalling which promotes the cell migration and invasive phenotype that can 

support metastasis  (Muller et al., 2013, Muller et al., 2009, Caswell et al., 

2008). 

1.2 p53 

As discussed previously, mutant p53 has an important role in promoting invasive 

cell motility by driving α5β1 integrin and RTK recycling.  It is therefore essential 

to understand mutant p53 in the context of cancer cell migratory behaviour in 

order to develop an anti-metastatic therapeutic strategy that could potentially 

target 50 % of cancer cases.  Here we discuss wild-type p53, mutant p53 and the 

role that mutant p53 plays in cancer cell migration and invasion. 

1.2.1 Historical perspective 

p53 is part of a family of transcription factors which also includes p63 and p73.   

All members of this family have important tumour suppressor functions through 

their control of gene expression (Freed-Pastor and Prives, 2012).  The p53 

protein was first discovered in 1979 in simian virus 40 (SV40) transformed cells, 

when it co-immunoprecipitated with the SV40 encoded T-antigen (Lane and 
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Crawford, 1979, Linzer and Levine, 1979).  There was initial confusion regarding 

the role of p53, it appeared that there were high expression levels of p53 in 

transformed cancer cells which led to speculation that it was functioning as an 

oncoprotein (Rotter, 1983, DeLeo et al., 1979).  It was finally realised that 

mutant forms of p53 were being investigated rather than wild-type p53 - which 

is usually expressed at low levels in healthy cells.  After initial experiments 

showing that overexpression of wild-type p53 inhibited cell transformation, it 

became firmly established that wild-type p53 functions as a tumour suppressor, 

and that mutant forms of p53 contribute to tumorigenesis (Levine and Oren, 

2009, Hinds et al., 1989, Hinds et al., 1990, Eliyahu et al., 1989).  The tumour-

suppressing activity of wild-type p53 has been demonstrated by mouse models in 

which removal of p53 expression promotes spontaneous tumour development 

(Donehower et al., 1992). 

1.2.2 Wild-type p53 

1.2.2.1 Structure 

As reviewed in figure 1-7 and by Meek and colleagues (2015), the p53 protein 

consists of two transactivation domains at the N-terminus, followed by a proline 

rich region important for both p53 response to ionising radiation, and p53-driven 

apoptosis of tumour cells (Campbell et al., 2013, Baptiste et al., 2002).  The 

core DNA-binding domain is essential for the ability of p53 to bind DNA and 

control the transcription of tumour suppressive genes.  Finally the C-terminus of 

the protein contains many functionally important domains:- a nuclear 

localisation signal, a tetramerisation domain, and a regulatory region which can 

be modified post-translationally and controls the turnover of the p53 protein 

(Meek, 2015). 

 

Figure 1-7: Structure of p53 protein 
Adapted from (Meek, 2015). 
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1.2.2.2 Activation and regulation 

The role of p53 in tumour suppression becomes particularly evident upon its 

activation by cell stressors such as DNA damage, hypoxia and oncogene 

activation (Vousden and Lu, 2002).  Upon activation, p53 tetramers bind to 

response elements on DNA and either promote or repress gene transcription 

(Laptenko and Prives, 2006).  This transcriptional control has an impact on 

several cellular processes such as cell cycle arrest, senescence, apoptosis and 

metabolism - specific examples of which are discussed in the next section 

(Vousden and Ryan, 2009, Freed-Pastor and Prives, 2012, Vousden and Lu, 2002).  

This stringent regulation of cellular activity by p53 that occurs upon exposure to 

stressful stimuli provides a mechanism by which healthy non-transformed cell 

populations are maintained. 

In the absence of cellular stresses, p53 is maintained at low levels by a negative 

feedback loop.  p53 stimulates transcription of the E3 ubiquitin ligase MDM2, 

subsequently MDM2 promotes ubiquitination and degradation of p53 (Barak et 

al., 1993, Marine and Lozano, 2010).  Upon activation of p53 by cell stress, 

MDM2 is inhibited and this leads to alleviation of p53 inhibition.  This allows high 

levels of p53 to be sustained and permits the execution of p53-dependent cell 

stress responses (Levine and Oren, 2009). 

There are several mechanisms by which MDM2 maintains low levels of p53 in 

normal low stress conditions.  Primarily, as already discussed, an interaction 

between the N-terminus of both MDM2 and p53, leads to p53 ubiquitination and 

proteasomal degradation (Kussie et al., 1996, Marine and Lozano, 2010).  MDM2 

also has an interactor called MDM4, which further exacerbates/activates MDM2 

mediated polyubiquitination and degradation of p53 (Wang et al., 2011).  

Additionally MDM2 can promote degradation of the ribosomal protein, L26 which 

is responsible for translation of transcripts encoding p53 (Ofir-Rosenfeld et al., 

2008).  Finally MDM2 can bind to the core domain of the p53 protein and 

decrease its ability to bind DNA and regulate transcription (Cross et al., 2011).   

Upon cell stress, p53 is activated and becomes stably expressed at high levels 

within the cell.  The processes through which this occurs have been extensively 

reviewed (Hu et al., 2012).  For example, upon genotoxic stress MDM2 is 
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phosphorylated by ATM kinase, inhibiting the association between p53 and 

MDM2.  This allows p53 levels to increase in the cell (Maya et al., 2001).  

Alternatively upon oncogene activation, p19ARF transcription is increased, which 

promotes p19ARF binding to MDM2 and sequesters it in the nucleolous, inhibiting 

its capacity to ubiquitinate p53 for degradation (Weber et al., 1999).  MDM2 

regulation of p53 levels is diagrammatically reviewed in figure 1-8. 

 

Figure 1-8: MDM2 regulation of p53 protein stability. 
In conditions of low cellular stress, MDM2 maintains low levels of p53 by binding to and promoting 
ubiquitination and degradation of p53 with or without the aid of MDM4.  MDM2 drives the 
degradation of ribosomal L26 which leads to a decreased rate of p53 translation.  This keeps p53 
at low levels.  Alternatively MDM2 can bind p53 in the DNA binding region, inhibiting its ability to 
bind to DNA and exert its tumour-supressing effects.  Following stressful stimuli, phosphorylation of 
MDM2 decreases its association with and ubiquitination of p53, allowing the levels of functional p53 
protein to increase.  Alternatively, oncogene activation increases p19ARF transcription which binds 
and sequesters MDM2, decreasing the degradation of p53 and allowing it to become stably 
expressed in the cell. 

1.2.2.3 Physiological effects of p53 activation 

Wild-type p53 performs physiological functions to maintain homeostasis at its 

non-stimulated basal/physiological level.  For example it supresses inflammatory 

immune responses through NF-kB antagonism (Komarova et al., 2005), maintains 

a healthy population of non-transformed stem cells (Aloni-Grinstein et al., 
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2014), and it can control fertility and implantation by regulating leukaemia 

inhibitory factor (LIF) transcription (Levine et al., 2011). 

Upon activation by stressful stimuli, p53 is present at higher levels which allow it 

to perform its tumour suppressor function.  There is some evidence that p53 can 

perform tumour suppressive functions independently of transcriptional 

regulation.  For example p53 is thought to have a pro-apoptotic function through 

BCL2 protein interactions (Vousden and Lane, 2007).  More often however, 

tumour suppression is exerted through p53 transcriptional regulation to initiate 

apoptosis, cell cycle arrest, senescence, DNA repair, alteration of cell 

metabolism or to decrease angiogenesis (figure 1-9). 

 

Figure 1-9: Overview of stimuli that activate p53 and the subsequent responses that enable 
the maintenance of a healthy population of cells. 
 

p53 has been found to promote transient cell cycle arrest in response to stressful 

stimuli which enable cells to survive until the stress stimulus has been removed, 

or until the damage has been repaired.  For example, p53-inducible genes are 

involved in decreasing the quantity of reactive oxygen species, thus protecting 
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the cell from DNA damage, genome instability and even decreasing the tendency 

of the cell to undergo apoptosis (Bensaad et al., 2006).  Similarly, to inhibit 

fibroblast proliferation upon DNA damage, p53 increases transcription of the 

cyclin dependent kinase inhibitor p21, to initiate G1 cell cycle arrest (Dulic et 

al., 1994).  Additionally p53 can initiate cellular DNA repair, so that once DNA 

damage has been rectified, the repaired cells can re-join the population of 

healthy cells (Gatz and Wiesmuller, 2006).  This transient arrest/DNA repair 

process is a risky strategy because in the event of inaccurate DNA repair this 

may promote malignant transformation.  In these cases, activation of 

irreversible cell cycle arrest is preferable – a process called senescence - which 

can be activated by p21 in a p53-dependent manner (Van Nguyen et al., 2007).  

Interestingly, if wild-type p53 is reintroduced into p53 null tumours, the 

senescence programme is activated leading to tumour regression and clearance 

(Xue et al., 2007, Ventura et al., 2007).  Alternatively, p53 can trigger cell 

apoptosis.  One well-defined mechanism of p53-driven apoptosis is through the 

upregulation of p53-upregulated modulator of apoptosis (PUMA) transcription.  

PUMA interacts with apoptosis regulatory Bcl-2 proteins, and initiates cell 

apoptosis via induction of mitochondrial dysfunction in vitro and in vivo (Yu et 

al., 2003).   

According to Vousden and Prives (2009) whether p53 dictates either transient 

cell cycle inhibition to allow the damage to be resolved and the cell to survive, 

or whether p53 evokes permanent cell cycle arrest (senescence) or cell death by 

apoptosis, depends on the type of cell stress that the cell experiences.  Low 

levels of transient stress normally promote repair and survival, whereas high 

stress levels trigger apoptosis and senescence (Vousden and Prives, 2009). 

Finally wild-type p53 also exerts tumour suppression through control of cell 

metabolism.  For example the mTOR complex responds to cell stressors, such as 

nutrient deprivation to control protein synthesis and cell growth.  Upon 

genotoxic stress the p53 products, sestrin1 and sestrin2, activate AMP-activated 

protein kinase (AMPK) which leads to inhibition of mTOR activity and consequent 

inhibition of cell growth (Budanov and Karin, 2008).  This suggests that one of 

p53’s tumour supressing mechanisms is via inhibition of the mTOR activity.  

Additionally p53 can promote energy production to sustain cellular function 

through mitochondrial respiration (Ma et al., 2007) and limit the amount of 
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energy contributed by cellular glycolysis (Kawauchi et al., 2008, Bensaad et al., 

2006).  Such metabolic regulation is thought to prevent cells reverting to 

anaerobic glycolysis, a process which normally supports cancer cell metabolism. 

1.2.2.4 p53 loss and cell migration 

Upon loss of p53 expression from a cell, an important regulator of tumour 

suppression is absent.  p53 loss promotes epithelial mesenchymal transition 

(EMT) which is discussed in more detail in section (1.1.3.2).  EMT is 

characterised by decreased apoptosis and senescence, and changes the 

migratory phenotype of cells, all with the aim of promoting tumour formation.  

Wild-type p53 supresses expression of the EMT-associated transcription factor 

Twist (Shiota et al., 2008), and enhances MDM2-mediated degradation of the 

EMT-associated transcription factor Slug (Wang et al., 2009b).  Therefore loss of 

p53 expression allows both Twist and Slug levels to increase.  Increased Slug 

expression drives a decrease in E-cadherin transcription.  Loss of E-cadherin at 

cell-cell junctions is a marker of EMT (Bolos et al., 2003, Shih et al., 2005).  

Indeed, loss of E-cadherin from cancer cells is known to increase the rate of 

metastasis in vivo (Shih et al., 2005, Derksen et al., 2006).  Additionally in the 

absence of p53, cells that undergo EMT acquire a more motile phenotype.  Upon 

loss of p53, Ras-driven cell migration is exacerbated (Xia and Land, 2007).  

Additionally RhoA and ROCK signalling (which is normally supressed by p53) 

promotes an amoeboid mode of cell migration (Gadea et al., 2007).  Overall loss 

of p53 expression causes loss of tumour suppression and allows EMT cell 

phenotypes to be displayed that can contribute to tumorigenesis. 

1.2.3 Mutant p53 

p53 is mutated in over half of all cancers (Vogelstein et al., 2000).  Many 

mutations are missense amino acid substitutions and occur in the hotspot DNA 

binding region of p53.  p53 mutations are sub-categorised into structural 

mutations that occur in the DNA binding domain, such as the R273H substitution, 

resulting in an inability of p53 to bind DNA.  Alternatively, mutations may occur 

outwith the DNA binding region, such as R175H substitution, and these inhibit 

the ability of p53 to bind DNA by affecting protein conformation (Olivier et al., 

2003, Cho et al., 1994, Petitjean et al., 2007).  Mutations in p53 that result in 
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reduced DNA-binding, lead to loss of the transcriptional regulation that is 

important for tumour suppression (Cho et al., 1994, O'Farrell et al., 2004).  

Moreover, expression of a single allele of mutant p53 has been shown to exert a 

dominant negative effect over the remaining wild-type p53 allele.  There is 

debate as to how this occurs; one hypothesis is that wild-type p53 is forced into 

a mutant p53 conformation within a heterotetramer that can consequently no 

longer bind DNA (Milner and Medcalf, 1991, Brosh and Rotter, 2009).  

Alternatively, low levels of wild-type p53 remaining in the cell can aggregate 

with mutant p53 thus silencing its tumour suppressing function (Silva et al., 

2013, Ano Bom et al., 2012). 

Despite the fact that mutant p53s are, in principle, susceptible to MDM2-

dependent and independent degradation, these oncogenic mutants are more 

commonly found at very high levels within the cell (Haupt et al., 1997, 

Lukashchuk and Vousden, 2007).  Subjecting wild-type p53-expressing cells to 

stresses such as ionising radiation, stabilises p53 so it can complete its tumour 

suppressive functions.  These same cell stressors (many of which will be present 

in the environment in which cancer cells reside) also stabilise mutant p53 

through similar pathways.  The stable nature of mutant p53 is essential for the 

gain-of-function metastatic phenotype (discussed in 1.2.3.2) to be exhibited and 

this is likely to be reliant on suppression of the p53 degradation system.  

Supporting this, mice in which MDM2 is silenced exhibit stable expression of 

mutant p53 which consequently promotes early onset of tumour development 

(Terzian et al., 2008).  

1.2.3.1 Mutant p53: transcriptional regulation 

O’Farrell et al (2004) via microarray analysis, found that mutant p53-expressing 

cells retain only 5 % of the transcriptional regulatory activities that wild-type 

p53 can perform.  This study also shows that cells expressing mutant p53 

(R175H) may increase the mRNA expression of some novel genes not normally 

regulated by wild-type p53.  This demonstrates that mutant p53 not only loses 

wild-type functions but may also acquire functions of its own that lead to 

changes in mRNA expression (O'Farrell et al., 2004).  For example Weisz et al 

(2004), via microarray analysis, found that mutant p53 (R175H) expression 

increases mRNA expression of the transcription factor, early growth response-1 
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(EGR1) which is involved in cell cycle regulation, by physically interacting with 

the EGR1 promoter.  Upregulation of EGR1 expression results in transformation 

and resistance to apoptosis of mutant p53-expressing cells.  This demonstrates a 

role of mutant p53 in transcriptional control of the gain-of-function phenotype 

(Weisz et al., 2004).   

1.2.3.2 Gain-of-function mechanisms 

Here we discuss how mutations in p53 not only oppose the function of wild-type 

p53, but also contribute to new gain-of-function mechanisms and the phenotypes 

that arise from this.  First of all we will discuss the mechanisms by which mutant 

p53 exerts these gain-of-function phenotypes.  Firstly mutant p53 has a 

decreased ability to bind DNA at response elements that binds wild-type p53 to 

control transcription (Ludwig et al., 1996).  However mutant p53 is able to bind 

to DNA at matrix attachment regions (MARs).  MARs are 200 base pair long 

regions of DNA that bind the nuclear matrix forming chromatin loops and are 

sites of replication, transcription and repair (Wang et al., 2010).  Proteins (such 

as mutant p53) have been found to interact with MARs and may perhaps regulate 

gene transcription.  This could be one explanation as to how mutant p53 can 

exert gain-of-function transcriptional effects within a cell, and it may also be 

another reason as to why mutant p53 is so stable within a cell (Will et al., 1998, 

Gohler et al., 2005).  Additionally mutant p53 can influence gene expression by 

binding to other transcription factors and altering their activity.  For example, 

after DNA damage, mutant p53 forms a complex at the NF-Y promotor with the 

transcription factor NF-Y and transcriptional co-factor p300.  This drives 

transcription of NF-Y genes that are involved in regulation of the cell cycle.  The 

changed gene expression profile causes disruption to the cell cycle, allowing 

mutant p53-expressing cells to gain a more malignant and proliferative 

phenotype (Di Agostino et al., 2006).  Mutant p53 also upregulates transcription 

of genes involved in the mevalonate pathway by binding the transcription factor 

SREBP.  This results in increased expression of sterol genes which consequently 

alter the morphology of breast cancer acini (Freed-Pastor et al., 2012). 

Mutant p53 can bind the tumour supressing transcription factors p63 and p73 and 

inhibit their DNA binding capacity and function (Strano et al., 2002, Gaiddon et 

al., 2001).  Inhibition of p63/p73 can contribute to the mutant p53 gain-of-
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function phenotype.  One mechanism by which this occurs is via TGFβ-stimulated 

association of mutant p53 with p63 and SMAD.  Formation of this complex 

decreases the ability of p63 to control transcriptional regulation and 

consequently allows increased cell invasion and metastasis to occur (Adorno et 

al., 2009).  Additionally, the mutant p53-driven increased rate of integrin and 

RTK recycling and the resulting migration and invasion can be both dependent 

and independent of mutant p53 mediated suppression the p63 axis (Muller et al., 

2014, Muller et al., 2009).   

Finally mutant p53 can carry out its gain-of-function by binding to other proteins 

and causing a change in the protein function.  For example, conformational 

mutants of p53 associate with the cell cycle regulator B-cell translocation gene-2 

(BTG2).  This association inhibits BTG2’s ability to deactivate HRAS, allowing 

HRAS-driven cancer promoting genes to be expressed (Solomon et al., 2012).  

Additionally upon mutant p53 expression, the balance between the activation 

and repression of DNA repair is lost through mutant p53 association with 

topoisomerase-1 (TOP1).  The resulting hyper-recombination of DNA causes 

genome instability - a tumour promoting hallmark of mutant p53 (Restle et al., 

2008).  The mechanisms by which mutant p53 exerts its gain-of-function 

phenotype are diagrammatically reviewed in figure 1-10. 
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Figure 1-10: Mutant p53 gain-of-function mechanisms. 
(A) Mutant p53 (mp53) can bind to matrix attachment regions to increase its stability and acquire 
gain-of-function transcriptional control.  (B) Mutant p53 associates with the transcription factor NF-
Y and transcriptional co-regulator p300 upon DNA damage to initiate gene transcription that 
disrupts the cell cycle.  (C) Mutant p53 and transcription factor SERBP association drives 
transcription of sterol-related genes increasing cancer like morphology of breast cancer.  (D) TGFβ-
stimulated formation of the SMAD, p53 and p63 complex, inhibits tumour-supressing transcription 
by p63, increasing the migratory and invasive phenotype of cancer cells.  (D) Mutant p53 
association with p63 enhances integrin and receptor tyrosine kinase receptor recycling contributing 
to migratory and invasive phenotype (this can also be independent of p63).  (F) Mutant p53 binding 
to BTG2 means that BTG2 cannot deactivate HRAS.  Constitutively active HRAS leads to 
increased expression of cancer promoting genes.  (G)  Mutant p53 association with TOP1 leads to 
exacerbated DNA repair and genome instability. 
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1.2.3.3 Gain-of-function phenotypes 

Initial experiments identified a mutant p53 gain-of-function by showing that 

mutant p53 expression alone is sufficient to transform p53 null cells to display 

enhanced growth in soft agar (anchorage-independent conditions) and as 

xenografts in mice (Dittmer et al., 1993).  One key gain-of-function hallmark 

exhibited by mutant p53-expressing cells is genomic instability.  Indeed, mutant 

p53’s disruption of spindle checkpoint control leads to the generation of cells 

with polyploid genomes in vitro (Gualberto et al., 1998).  Additionally, in vivo 

expression of mutant p53 promotes aneuploidy in tumours (Caulin et al., 2007).  

Another hallmark of mutant p53 gain-of-function is suppression of apoptosis.  

Initial findings indicated that cMyc driven apoptosis is supressed by mutant p53 

expression (Lotem and Sachs, 1995).  Additionally, upon growth factor 

deprivation or exposure of cells to chemotherapeutic agents, expression of 

mutant p53 was able to supress apoptosis (Peled et al., 1996, Li et al., 1998). 

A number of in vivo studies have provided key evidence to support mutant p53’s 

role in cancer cell invasion and metastasis.  The mouse model of Li-Fraumeni 

syndrome, in which a mutant form of p53 (p53R175H) is knocked-in to the 

appropriate endogenous locus, displays many characteristics of the human 

disease.  Moreover, the spectrum of tumours contracted by these animals 

generally assumes a more invasive phenotype than the malignancies which are 

found in p53 null mice – an observation which is consistent with a pro-invasive 

gain-of-function for mutant p53 (Olive et al., 2004, Lang et al., 2004).  More 

recently, comparison of the invasive phenotypes of p53 loss and p53 mutation in 

a mouse model of pancreatic cancer has reinforced this view.  The 

Hingorani/Tuveson model of pancreatic cancer comprises a transgenic animal co-

expressing mutant alleles of KRAS (LSL-KRASG12D) and p53 (LSL-p53R172H) under 

control of a pancreatic-specific Cre recombinase (Pdx-Cre).  These animals 

develop a form of pancreatic cancer which is highly invasive, and which 

metastasises to the liver in the majority of animals (Hingorani et al., 2005).  

However, transgenic mice which express mutant KRAS in combination with a 

floxed allele of p53 under control of Pdx-Cre (which implements p53 loss in the 

pancreas) develop pancreatic adenocarcinoma with high penetrance, but these 

tumours are less invasive than those from Hingorani/Tuveson animals and never 

form metastases.  Moreover, when studied ex vivo cells derived from these 
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tumours display invasive characteristics that are dictated by their mutant p53 

status, thus confirming the ability of mutant p53 to drive an invasive and 

metastatic gain-of-function phenotype in vivo (Morton et al., 2010).  

Finally, several studies have identified the mechanisms by which mutant p53 

exerts its gain-of-function invasive migratory phenotype.  Mutant p53 expression 

increases TGFβ-dependent migration, invasion and metastasis in vitro and in 

vivo (Adorno et al., 2009).  Furthermore mutant p53 expression inhibits the wild-

type p53 transcriptional suppression of LASP1 expression.  The consequent 

increased expression of actin binding protein LIM and SH3 domain protein-1 

(LASP1) promotes migration and invasion of hepatocellular carcinoma cells 

(Wang et al., 2009a).  Additionally, studies from our lab have identified a 

mutant p53 gain-of-function invasive and migratory phenotype which is achieved 

via the ability of mutant p53 to increase rates of α5β1 integrin, epidermal 

growth factor receptor (EGFR) and cMET recycling and signalling (Muller et al., 

2009, Rainero et al., 2012).  This increase in receptor recycling is dependent 

upon the Rab11 effector, Rab coupling protein (RCP) and the phosphatidic acid 

producing enzyme, diacylglycerol kinase alpha (DGKα).  Furthermore, the 

mechanism linking increased RCP/DGKα-dependent recycling to the cellular 

machinery responsible for driving invasion have been elucidated by Jacquemet 

(2013).  Indeed, when mutant p53 drives RCP/DGKα-dependent recycling of α5β1 

and RTKs, this leads to activation of the Akt signalling axis, in particular Akt2.  

Akt2 then promotes phosphorylation of RacGAP1 at threonine-249, which recruits 

it to the front of the cells.  RacGAP1 phosphorylation then leads to inhibition of 

Rac-GTPase which, in turn, activates RhoA at the cell front.  This spatially-

restricted pool of activated RhoA then drives extension of invasive pseudopod 

protrusion and invasive migration of mutant p53-expressing cells through the 

ECM (Jacquemet et al., 2013).   

These findings are strongly supported in a study by Timpson et al (2011) which 

carried out intra-vital imaging of pancreatic ductal adenocarcinoma (PDAC) 

tumours that were either expressing mutant p53R172H or were p53 null.  Imaging 

of these tumours identified an increased RhoA activity at the leading edge and 

rear of mutant p53-expressing invasive PDAC cells, this was absent from p53 null 

(non-invasive) cells.  Furthermore treatment of mutant p53 expressing tumours 

with anti-invasive drug Dasatanib inhibited the spatial distribution of RhoA in 
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mutant p53 expressing cells indicating that it is the spatial distribution of RhoA 

is important for the invasive potential of cells (Timpson et al., 2011). 

An additional component to mutant p53’s gain-of-function migratory phenotype 

is mediated via down-regulation of transcription of the endoribonuclease, DICER.  

Suppression of DICER promotes increased RCP-dependent integrin, EGFR and 

cMET trafficking rates as well as resulting in decreased processing of some 

miRNAs (Muller et al., 2014).  These comprehensive mechanisms of mutant p53 

driven invasive migration are shown in figure 1-11. 

 

Figure 1-11: Effect of mutant p53 on integrin and RTK trafficking. 
Mutant p53 expression increases integrin and receptor tyrosine kinase (RTK) recycling to the 
plasma membrane (this can be both dependent and independent of p63 suppression).  This 
increased recycling rate is dependent upon DGKα activity allowing phosphatidic acid (PA) 
generation from diacylglycerol (DAG), which promotes tethering of RCP to invasive pseudopod tips 
driving increased integrin and RTK recycling.  Additionally decreased DICER expression mediated 
by mutant p53 suppression of p63 transcriptional activity drives increased RTK and integrin 
recycling.  Integrin and RTK presence and activation at the plasma membrane leads to increased 
AKT signalling, which phosphorylates RacGAP1, decreasing Rac and increasing RhoA activity.  
RhoA activity at the leading edge of a migrating cell allows invasive cell migration supporting a pro-
tumorigenic phenotype.  EE – early endosome.  RE- recycling endosome.  Lys – lysosome. 
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1.2.3.4 Targeting mutant p53 therapeutically 

Due to the fact that p53 is mutated in so many cancers, there have been many 

investigations into how mutant p53 could be targeted therapeutically to prevent 

cancer progression.  One strategy that has been investigated is the re-activation 

of wild-type p53 function.  The drug PRIMA1 was found to restore the mutant 

p53 protein conformation back to the DNA binding conformation allowing wild-

type p53 function to be restored (Bykov et al., 2002).  This is a particularly 

attractive prospect due to the fact that re-activation of wild-type p53 in 

tumours has been shown to cause tumour regression (Xue et al., 2007).  

Strategies to de-stabilise mutant p53 have also been considered, for example by 

rescuing MDM2-mediated ability to degrade mutant p53 (Li et al., 2011) or by 

disrupting mutant p53 interactions with transcription factors (Kravchenko et al., 

2008).  A drug called RETRA has been identified to be useful in disrupting p53-

p73 interaction to restore some of p73’s tumour suppressive activity (Kravchenko 

et al., 2008).  Additionally, peptides targeted to the C-terminus of p53 have 

been shown to impart apoptosis-promoting capabilities to mutant p53’s 

(Selivanova et al., 1997).  However targeting p53 therapeutically is not without 

its problems.  For instance, wild-type p53-stabilising therapies have been shown 

to also stabilise mutant p53 in mice resulting in a very poor outcome (Suh et al., 

2011).  Therefore p53-targeted therapies should be considered and tested 

carefully before being translated into the clinic. 

1.2.3.5 Concluding remarks 

Overall, here we have reviewed the importance of the role that mutant p53 has 

in cancer cell invasion and metastasis – the mechanisms of which are becoming 

well established.  Directly targeting mutant p53 therapeutically is difficult and 

sometimes not a desirable option.  Therefore, further understanding of the 

mechanisms through which mutant p53 drives invasion is necessary, and 

investigation of the role of mutant p53 in novel fields of research should be 

encouraged.   Microvesicle biology is currently attracting a huge amount of 

attention in the field of cancer research due to the role that microvesicles have 

in cell-cell communication and the transfer of oncogenic phenotypes between 

cells.  Surprisingly, even though mutant p53 is recognised as an oncogene, it has 

not yet been investigated in the context of microvesicle biology.  Next we 
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review the field of microvesicles and the important role that they have in 

normal physiology as well as in diseases such as cancer. 

1.3 Microvesicles 

1.3.1 Historical perspective 

The presence of membrane-enclosed vesicles in the extracellular environment 

has been recognised since the 1970s when they were isolated from fluids such as 

blood (platelet-derived microparticles) and semen (prostasomes) (Crawford, 

1971, Stegmayr and Ronquist, 1982).  The analysis of the constituents of 

platelet-derived microparticles suggested that they were membrane-derived and 

showed that they displayed ATPase activity.  Additionally the isolated 

prostasomes also displayed ATPase activity and had the functional capacity to 

aid the motility of sperm.  It was later identified that microvesicles can be shed 

from the plasma membrane of cancer cells and display functional 5’ 

nucleotidase and pro-coagulant activities (Trams et al., 1981, Dvorak et al., 

1981).   

Release of microvesicles derived from the endosomal system was identified in 

the 1980s.  During maturation of reticulocytes into erythrocytes, membrane 

proteins such as the transferrin receptor are lost.  Electron microscopy studies 

have shown that the transferrin receptor is exported from cells during 

reticulocyte maturation via the release of small vesicles (Harding et al., 1983, 

Pan and Johnstone, 1983, Pan et al., 1985).  Subsequently the trafficking of the 

endocytosed transferrin receptor through the cell was followed, and it was 

shown to travel through the endosomal system to arrive in intraluminal vesicles 

(ILVs) which form via inward budding of the multivesicular body (MVB) limiting 

membrane.  The transferrin-positive ILVs were subsequently released into the 

extracellular environment via an exocytic mechanism.  MVB-derived exosomes 

that are released from reticulocytes had some of the functional properties that 

are related to reticulocyte function.  Therefore the process whereby proteins 

are lost from the reticulocyte plasma membrane via MVB-derived exosomes, was 

hypothesised to allow the removal of proteins important in reticulocyte function 

to allow maturation into erythrocytes (Johnstone et al., 1987, Pan et al., 1985).   



Chapter 1  46 
 

1.3.2 Biogenesis and subtypes 

There are two main routes by which microvesicles can be released into the 

extracellular environment.  MVB-derived exosome is the name given to vesicles 

formed within the endosomal system and they are typically under 100 nm in 

size.  Alternatively microvesicles can be shed directly from the plasma 

membrane by a budding process.  These are referred to as plasma membrane-

shed microvesicles and these are generally greater than 100 nm in size (Colombo 

et al., 2014).  Accordingly, throughout this thesis I will refer to MVB-derived 

exosomes, plasma membrane-shed microvesicles, and a mixture of both types 

will collectively be referred to as microvesicles.  Furthermore, in reviewing 

studies that have not conclusively determined whether they are dealing 

specifically with either MVB-derived or plasma membrane-shed structures, I will 

also use the generic term, ‘microvesicles’.   

1.3.2.1 MVB-derived exosomes 

The endosomal compartment is a complex system which is essential for the 

intracellular transport of proteins.  After endocytosis from the plasma 

membrane, most protein cargoes are delivered to early endosomes.  Early 

endosomes can then mature into late endosomes.  Inward budding of the late 

endosomal limiting membrane then occurs to result in the formation of MVBs 

which contain a number of ILVs (Stoorvogel et al., 1991).  The contents of MVBs 

can either be degraded by fusion with lysosomes, or they may be released as 

exosomes into the extracellular environment by exocytic fusion of the MVB with 

the plasma membrane (Johnstone et al., 1987, Piper and Katzmann, 2007).  This 

process is diagrammatically summarised in figure 1-12. 

Inward budding of the late endosomal membrane - which leads to the formation 

of ILVs - may be catalysed by endosomal sorting complex (ESCRT)-dependent, or 

ESCRT-independent mechanisms as comprehensively reviewed by Hanson and 

Cashikar (Hanson and Cashikar, 2012).  The ESCRT complex is a large family of 

proteins sub-divided into groups 0, I, II and III.  Each group of the family 

assembles into a complex to direct inward budding from the endosomal limiting 

membrane.  During ILV formation, ESCRT 0, I and II have the role of targeting 

and clustering ubiquitinated protein cargo in the late endosomal membrane.  
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This ‘cluster model’ leads to the inward deformation of the endosomal 

membrane forming a vesicle connected to the endosome limiting membrane by a 

neck.  Subsequently, upon stimulation and recruitment to the endosomal 

membrane, monomeric ESCRT III components are polymerised into filamentous 

structures, a process that is most commonly described as being driven by 

vaculolar protein sorting 4 (VPS4).  These ESCRT III filaments then drive the final 

stages of vesicle formation promoting the scission of the neck; however it is not 

yet known how membrane scission is achieved.   

Other processes have been implicated in MVB and ILV biogenesis which are 

independent of the ESCRT machinery. One of these involves sphingomyelinase-

induced ceramide synthesis which triggers cargo sorting and membrane 

curvature to promote ILV formation (Trajkovic et al., 2008).   Conversely 

tetraspanins have been shown to be participate in MVB/ILV biogenesis by 

contributing to sorting of correct cargo into ILVs before they are released into 

the extracellular environment.  Persistent Epstein Barr virus infection is 

maintained by constitutive activation of NF-ĸB by latent membrane protein-1 

(LMP1).  LMP1 avoids degradation and maintains its constitutive activity both 

inside and outside infected cells by CD63-dependent trafficking to ILVs and 

subsequent release into the extracellular environment in MVB-derived exosomes 

(Verweij et al., 2011).   The tetraspanins CD82 and CD9 supress tumour 

metastasis by decreasing Wnt signalling.  The tetraspanins do this by promoting 

the export of β-catenin out of the cell via MVB-derived exosome release 

(Chairoungdua et al., 2010).  Finally a mass spectrometric analysis of MVB-

derived exosomes released from CD81 silenced cells and an in vivo screen of 

CD81 knockout mice, showed that CD81 has an important role in sorting cargo 

into exosomes without having any effect upon the number of MVB-derived 

exosomes released (Perez-Hernandez et al., 2013). 

1.3.2.2 Rab-GTPases  

Rab-GTPases are essential participants in mediating the transport of MVBs to the 

plasma membrane for docking and exocytic fusion, thus allowing the release of 

ILVs as MVB-derived exosomes into the extracellular environment.  MVB-derived 

exosome release requires transport of MVBs to the plasma membrane using the 

cytoskeleton, molecular motors, Rab-GTPases and exocytic fusion machinery, 



Chapter 1  48 
 

such as SNARE proteins (Cai et al., 2007).  The Rab GTPases that have been most 

investigated in regard of MVB-derived exosome release are Rab27a and Rab27b.  

Silencing of both Rab27a and Rab27b results in decreased MVB-derived exosome 

release from HeLa cells.  It is believed that Rab27a and Rab27b collaborate to 

promote MVB docking to the plasma membrane by allowing fusion with the 

plasma membrane and release of their contents into the extracellular 

environment (Ostrowski et al., 2010).  Rab27-dependent MVB-derived exosome 

release may have an important role in mammary carcinogenesis in vivo.  Rab27 

knockdown in xenografted mammary carcinoma cells leads to decreased tumour 

growth and reduced metastatic dissemination to the lung, indicating the 

possibility that Rab27a driven exosome release is involved in these aspects of 

tumour progression (Bobrie et al., 2012).  Rab9 has been shown to participate in 

the release of tumour necrosis factor from melanoma cells via an exosome-

mediated route (Soderberg et al., 2007).   Furthermore, other Rabs such as Rabs 

5 and 2 have been identified by siRNA screens to potentially have an impact 

upon microvesicle release, however this has so far not been intensively 

investigated (Ostrowski et al., 2010). 

Rab11 has been found to be involved in MVB-derived exosome release.  As 

previously discussed, the process of membrane protein-shedding is integral to 

reticulocyte maturation.  They do this by MVB formation of ILVs that are 

subsequently released as MVB-derived exosomes (Johnstone et al., 1987).  Rab11 

overexpression has been found to increase MVB-derived exosome release from 

haematopoietic leukaemia cells and, consistently, expression of dominant 

negative Rab11 decreases MVB-derived exosome release from these cells (Savina 

et al., 2002).  Other studies looking at the role of exosomes in Wnt signalling in 

Drosophila S2 cells have reaffirmed the role of Rab11 in ‘exosome like’ 

microvesicle release (Beckett et al., 2013, Koles et al., 2012). 

Hsu and colleagues overexpressed different Rab-GAPs to identify Rabs whose 

activity is important in MVB-derived exosome release.  These workers found that 

the catalytic activity of the Rab-GAP TBC1D1OA-C, was essential for MVB-derived 

exosome release from oligodendrocytes.  TBC1D1OA-C is an effector of Rab35, 

and, consistently this study found that suppression of Rab35 increased endosome 

accumulation within the cell and decreased MVB-derived exosome release.  The 

presence of vesicles at Rab35-expressing domains at the plasma membrane 
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suggests that Rab35 may have a role in vesicle tethering/docking (Hsu et al., 

2010).  This observation is supported by another study showing that the 

glutamate neurotransmitter stimulates MVB-derived exosome release from 

oligodendrocytes in a Rab35-dependent manner.  These MVB-derived exosomes 

are taken up into neurons by endocytosis and the transfer of MVB-derived 

exosome protein/mRNA content increases neurone viability following stressful 

stimuli (Fruhbeis et al., 2013a). 

1.3.2.3 SNARE proteins 

Once MVBs have been transported to the cell periphery they need to dock and 

fuse with the plasma membrane in order for ILVs to be released as exosomes.  

SNARE proteins on the endosomal vesicle form a complex with target SNAREs on 

the target membrane with which the vesicle is destined to dock and fuse 

(Zylbersztejn and Galli, 2011).  Vamp7 has been identified as having a role in 

directing the fusion of MVBs with the plasma membrane in K562 leukaemia cells.  

This allows the release of acetylcholinesterase-containing MVB-derived exosomes 

into the extracellular space (Fader et al., 2009).  Studies in Drosophila have 

identified two other SNARE proteins, Ykt6 and syntaxin1A, as being responsible 

for the release of exosomes (Koles et al., 2012, Gross et al., 2012).  The 

processes involved in MVB/ILV biogenesis, MVB transport to and fusion with the 

plasma membrane, and release of ILVs into the extracellular environment as 

MVB-derived exosomes are diagrammatically summarised in figure 1-12. 
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Figure 1-12: MVB-derived exosome biogenesis and release. 
Brief outline of how early endosomes (EE) mature into multivesicular bodies (MVB) upon ESCRT, 
ceramide or tetraspanin dependent intraluminal vesicle (ILV) formation.  MVB’s are then 
transported to the plasma membrane via Rab-GTPase proteins where they dock and fuse via 
interactions between vesicular SNARE proteins and target membrane SNARE proteins.  This 
membrane fusion allows ILV release into the extracellular environment as MVB-derived exosomes. 

1.3.2.4 Plasma membrane-shed microvesicles 

The way that plasma membrane-shed microvesicles are formed and released into 

the extracellular environment has been extensively studied.  Similar to MVB-

derived exosome biogenesis, the ESCRT complex has also been shown to be 

involved in plasma membrane-shed microvesicle biogenesis.  The HIV retrovirus 

promotes plasma membrane budding events that are catalysed by recruitment of 

the HIV Gag protein.  The HIV Gag protein is recruited to domains on the plasma 

membrane that are rich in endosomal proteins including members of the ESCRT 

complex such as Class E VPS proteins and TSG101.  These ESCRT components are 

functionally important in the vesicle budding process within the endosomal 
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system, and their presence at plasma membrane domains at which Gag-

mediated budding occurs, suggests that ESCRT may also be functionally 

important in plasma membrane-derived microvesicle release (Booth et al., 

2006).  Additionally, regulation of actin dynamics by Arf6 expression results in 

plasma membrane-derived microvesicle release (Muralidharan-Chari et al., 

2009).  Arf6-GTP activates phospholipase-D which recruits ERK to the plasma 

membrane.  Here, ERK phosphorylates myosin light chain kinase which, in turn, 

phosphorylates myosin light chain allowing acto-myosin contraction of the 

microvesicle necks.  This allows release of integrin and protease-rich 

microvesicles from the plasma membrane.  Furthermore, decreased expression 

of the actin nucleating protein, diaphanous related formin 3, promotes plasma 

membrane-derived microvesicle budding from prostate cancer cells (Di Vizio et 

al., 2009).   

Calcium signalling activates the phospholipid pumps - floppase and scramblase -  

which causes membrane phospholipid re-distribution and plasma membrane-

derived microvesicle shedding (Hugel et al., 2005).  Additionally, calcium influx 

and signalling in platelets activates the protease calpain, which is important in 

platelet microvesicle shedding (Pasquet et al., 1996).   

As in MVB-derived exosome biogenesis, lipids have an important role in the 

biogenesis and release of plasma membrane-shed microvesicles.  Activation of 

purinergic P2X7 receptor in glial cells initiates phosphorylation of p38 which, in 

turn, activates acid sphingomyelinase.  Acid sphingomyelinase activity in the 

plasma membrane results in conversion of sphingomyelin to ceramide which has 

a role in plasma membrane-derived microvesicle release as well as MVB-derived 

exosome biogenesis (although MVB-derived exosome biogenesis relies upon a 

neutral sphingomyelinase rather than acid sphingomyelinase for ceramide 

synthesis) (Trajkovic et al., 2008, Bianco et al., 2009).  Finally hypoxia-induced 

increase in Rab22a expression results in an increased release of plasma 

membrane-derived microvesicles from breast cancer cells.  In this study Rab22a 

was seen to localise to the sites of plasma membrane budding, therefore the 

authors hypothesised that Rab22a may have a role in hypoxia-driven microvesicle 

biogenesis (Wang et al., 2014).  Although it is not known how Rab22a 

mechanistically contributes to microvesicle biogenesis, it is known that the 

resulting microvesicles can promote breast cancer invasion and metastasis.  The 
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processes involved in plasma membrane-shed microvesicle biogenesis are 

reviewed in figure 1-13.  

 

Figure 1-13: Illustration of plasma membrane-shed microvesicle biogenesis and release 
During viral budding the plasma membrane-shed microvesicles are released possibly with the aid 
of ESCRT machinery.  Budding from the plasma membrane is also regulated by the actin 
cytoskeleton in ARF6 and Diaphanous related formin 3 dependent mechanisms.  Calcium can 
stimulate microvesicle budding from the plasma membrane, this is dependent upon calcium 
signalling activation of calpain or phospholipid re-distribution.  Hypoxia promotes Rab22A 
dependent microvesicle release from the plasma membrane and finally P2X7 receptor activation 
activates acid sphingomyelinase which alters membrane dynamics resulting in the budding of 
microvesicles. 

1.3.2.5 Stimuli leading to microvesicle release  

Plasma membrane-shed microvesicle and MVB-derived exosome release can be 

enhanced by environmental factors.   Early studies indicated that exposure of 

cells to serum increased shedding of microvesicles that display 

metalloproteinase activities from the plasma membrane of breast carcinoma 

cells (8701-BD and MCF7) (Dolo et al., 1994).  Depolarisation of neurons can also 

stimulate the release of microvesicles from primary cortical neurones (Faure et 

al., 2006). Finally DNA damage by irradiation stimulates MVB-derived exosome 

release via p53-dependent transcription of tumour suppressor-activated pathway 

6 (TSAP6) which is involved in the regulation of protein trafficking and secretory 

pathways (Lespagnol et al., 2008).  

1.3.2.6 Alteration of microvesicle contents 

As discussed above certain stimuli can alter the quantity of microvesicles 

released from cells, but in addition to this there are a number of factors that 

can more selectively influence the constitution of microvesicles.  For example, 
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several reports have shown that the microvesicle proteome is changed by 

expression of oncogenes, such as KRAS and EGFRvIII (Demory Beckler et al., 

2013, Al-Nedawi et al., 2008).  Inflammatory mediators, such as TNF-α or INF-γ 

also alter the miRNA and protein content of microvesicles released from 

endothelial cells and mesenchymal stromal cells respectively (de Jong et al., 

2012, Kilpinen et al., 2013).  Additionally, acidity (Parolini et al., 2009) and 

hypoxia (Kucharzewska et al., 2013), which are conditions often associated with 

the tumour microenvironment, change microvesicle release and composition.  

For example, acidity increases microvesicle release from melanoma cells, 

changes their lipid content as well as increasing the ability of microvesicles to 

deliver clathrin to recipient cells (Parolini et al., 2009).  Secondly glioma cells 

exposed to hypoxic conditions release microvesicles that are enriched in 

hypoxia-stimulated protein and mRNA constituents (for example matrix 

metalloproteinases and caveolin-1) (Kucharzewska et al., 2013). 

1.3.3 Microvesicle constituents 

Microvesicles contain lipids, proteins and nucleic acids, but are generally devoid 

of cellular organelles.  Many studies of microvesicle constituents are now 

accessible on two public databases; exocarta (www.exocarta.org) and 

vesiclepedia (www.microvesicles.org).  Here, published microvesicle lipid, 

protein and nucleic content from a variety of cell types/clinical samples are 

accessible (Mathivanan et al., 2012, Simpson et al., 2012). 

1.3.3.1 Proteins 

Proteins present in microvesicle samples were originally identified by Western 

blotting and immuno-gold electron microscopy techniques.  Then, in 1999, a 

more advanced screening was performed on exosomes collected from dendritic 

cells, which were analysed by trypsin digestion and protein mapping (Thery et 

al., 1999, Thery et al., 2001).  It is now commonplace for microvesicles to be 

analysed using mass spectrometry-based proteomics to allow identification of 

proteins within the sample and to confirm the absence of contaminants (Lotvall 

et al., 2014).  Microvesicle characterisation and classification by protein 

composition is discussed in detail in chapter 3.  Briefly, the protein constituents 

of microvesicles commonly include endosomal, cytoplasmic and plasma 
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membrane-derived proteins.  It is less common to find endoplasmic reticulum, 

Golgi, nuclear or mitochondrial proteins in microvesicles (Colombo et al., 2014).  

The proteins that are present in microvesicles vary depending upon the cell type 

from which they are derived (Mathivanan et al., 2010b).  For example 

Mathivanan and colleagues found that there were markers (such as members of 

the ESCRT complex and tetraspanins) that were common to microvesicles 

collected from mouse mast cells, colorectal cancer derived cells and human 

urine, while some proteins were specific to the microvesicles released from 

colorectal cancer cells such as A33, cadherin-17 and EpCAM (Mathivanan et al., 

2010b).  Analysis of microvesicle contents from 19 different studies has been 

used to identify ubiquitous microvesicle protein markers including certain Rabs, 

Annexins, and tetraspanins (CD63, CD81, CD9), members of the ESCRT complex 

(ALIX, TSG101) and heatshock proteins (HSP70) (Mathivanan et al., 2010a).   

Colombo and colleagues found that microvesicle contents can be influenced by 

whether they arise from MVBs or whether they are produced by shedding from 

the plasma membrane.  For example upon Rab27a silencing (which has a well-

defined role in MVB-derived exosome release), the release of CD63 positive MVB-

derived exosomes is decreased, whereas the microvesicular CD9 content is not 

changed.  This indicates that CD63 is enriched in exosomes generated in MVBs 

whereas CD9 may be more abundant in plasma membrane-shed microvesicles 

(Bobrie et al., 2012).  However, as most microvesicle marker proteins are 

present in both MVB-derived exosomes and plasma membrane-derived 

microvesicles, these observations are more likely indicative of a heterogeneous 

population of microvesicles being released by different cell types, rather than 

indicating the cellular provenance of released microvesicles.  Therefore, there 

are still no distinctive markers that can unambiguously discriminate between 

MVB-derived exosomes and plasma membrane-shed microvesicles; however 

several groups of proteins can be used as an indicator of microvesicle purity.  

1.3.3.2 Lipids 

Several studies have compared enrichment of lipid constituents in microvesicles 

from various cell types.  Cholesterol, sphingomyelin, phosphatidylserine and 

ceramide are consistently reported to be enriched in MVB-derived exosomes 

(Llorente et al., 2013, Trajkovic et al., 2008, Wubbolts et al., 2003, Laulagnier 
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et al., 2005).  Furthermore a study analysing ‘exosome like’ microvesicles from 

prostate cells (prostasomes) showed enrichment of sphingomyelin, cholesterol 

and glycosphingolipids (Brouwers et al., 2013).  The fact that lipid raft 

components such as cholesterol and sphingolipids are sometimes enriched in 

microvesicles, may indicate the existence of a relationship between lipid rafts 

and microvesicle biogenesis.  Lipid rafts are structures in the plasma membrane 

that are rich in cholesterol, sphingolipids and signalling proteins, such as Src 

family kinases.  Lipid rafts are important mediators of protein-protein and 

protein-lipid interactions.  Through these interactions lipid rafts mediate protein 

sorting and vesicle formation for endocytosis driving efficient intracellular 

transport of proteins (Ikonen, 2001).  Therefore there is some speculation 

around the involvement of lipid raft domains in microvesicle biogenesis and the 

sorting of cargo proteins into microvesicles.  The presence of lipid raft-

associated GPI-anchored proteins in detergent resistant microvesicles supports 

this observation (Rabesandratana et al., 1998, Wubbolts et al., 2003).  Indeed, 

there is evidence that exosomes from mesenchymal stem cells derive from lipid 

raft domains endocytosed from the plasma membrane (Tan et al., 2013). 

1.3.3.3 Nucleic acids 

RNA species such as mRNA and miRNAs are present in microvesicles (Ratajczak et 

al., 2006, Valadi et al., 2007).  Experiments with RNases indicated that RNA is 

present both inside (resistant to RNase) and on the outside (sensitive to RNase) 

of microvesicles (Valadi et al., 2007, Deregibus et al., 2007).  Interestingly RNAs 

present in microvesicles appear to be functional, and it is clear that they can be 

transferred to and alter gene expression in recipient cells and consequently 

change the recipient cell phenotype.  Several studies have shown successful 

suppression of gene expression in recipient cells by miRNA transferred via 

microvesicles (Pegtel et al., 2010, Montecalvo et al., 2012, Ismail et al., 2013).  

Additionally, mRNA transferred via microvesicles has been shown to be 

translated into functional protein in recipient cells (Valadi et al., 2007).  It 

appears that some RNA species are enriched in microvesicles compared to the 

donor cell, suggesting that there is an RNA sorting mechanism that takes place.  

Indeed, there is some speculation as to the involvement of a putative RNA 

sorting sequence that targets RNA for extracellular transport (Batagov et al., 

2011),  however this postulate is yet to be tested. 
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As well as RNA, genomic DNA has been identified in microvesicles.  DNA 

fragments from which mutant forms of KRAS and p53 have been identified on 

circulating microvesicles from pancreatic cancer patients and medium 

conditioned by pancreatic cancer cell lines (Kahlert et al., 2014).  The presence 

of genomic DNA on circulating microvesicles is a promising avenue for diagnostic 

blood tests for a spectrum of diseases.  A schematic diagram showing a generic 

overview of the constituents of microvesicles (MVB-derived exosomes and plasma 

membrane-shed microvesicles) is shown in figure 1-14. 
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Figure 1-14: Diagram of microvesicle constituents. 
Microvesicles contain proteins, lipids and nucleic acids.  Proteins involved in adhesion, lipid raft 
domains, membrane trafficking, ILV biogenesis and antigen presentation are commonly found.  
Additionally shown in red are common proteins found in all microvesicles and can be referred to as 
microvesicle markers.  Microvesicles are often enriched in cholesterol, sphingomyelin, ceramides 
and phosphatidylserine compared to the plasma membrane from the cells that they are released 
from.  Microvesicles have also been shown to contain mRNA, miRNA and DNA nucleic acid 
species. 

1.3.4 Microvesicle uptake by recipient cells 

There is evidence indicating that microvesicles can be targeted to the surface of 

recipient cells via ligand-receptor interactions.  For example, galectin-5 on rat 

reticulocyte MVB-derived exosomes targets their uptake into macrophages 

(Barres et al., 2010).  Microvesicle capture by dendritic cells has been 
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hypothesised to be dependent on the interaction of ICAM1 ligand (on the 

microvesicle) with lymphocyte function-associated antigen (LFA-1) (on the 

surface of many immune cells including dendritic cells and T-cells) (Segura et 

al., 2005).  Additionally blocking antibodies against αv integrin, β3 integrin, CD9 

and CD81 decrease bone marrow dendritic cell microvesicle capture and uptake 

by recipient dendritic cells (Morelli et al., 2004).  Finally, the capture of B-cell 

derived microvesicles bearing α2,3-sialic acid by macrophages is dependent on 

expression of the lectin adhesion molecule sialoadhesin in the macrophages 

(Saunderson et al., 2014). 

In some instances ligand-receptor mediated association of microvesicles with the 

surface of recipient cells is sufficient for microvesicle to influence recipient cell 

function.  Indeed, microvesicles from dendritic cells can effectively present 

antigens to T cells without being internalised (Segura et al., 2007).  However, in 

most cases it is thought to be necessary for the microvesicle and its contents to 

enter the cell for the microvesicle to be able to exert any functional effects.  It 

is possible that microvesicles may be able to fuse with the plasma membrane of 

the recipient cell; however it is more likely that endocytic mechanisms mediate 

the delivery of microvesicular cargoes into recipient cells.  There are several 

reported mechanisms through which microvesicles can be taken into a cell and 

these include phagocytosis (Feng et al., 2010), dynamin-dependent 

macropinocytosis (Fitzner et al., 2011), receptor-mediated endocytosis (Morelli 

et al., 2004), clathrin-dependent endocytosis (Fruhbeis et al., 2013a), lipid raft-

dependent endocytosis (Svensson et al., 2013) and caveolae-dependent 

endocytosis (Nanbo et al., 2013).  

Once the microvesicle has been taken up into the cell by endocytosis, it is 

thought that fusion of the microvesicle with an endosomal membrane must occur 

if its cargo is to reach the cytosol of the recipient cell.  The nanometre size of 

microvesicles and limitations of the resolution of current microscopy have 

precluded direct visualisation of microvesicle-endosome fusion events.  However 

global fusion events can be indirectly visualised using lipid dyes which alter their 

fluorescence yield following dilution by fusion with another membrane 

(Montecalvo et al., 2012). 
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Additionally microvesicles may exert their effects through interactions with the 

extracellular matrix.  For example,  MMP-loaded  microvesicles from tumour 

cells have been shown to enhance cell migration by binding to and degrading the 

extracellular matrix (Muralidharan-Chari et al., 2009). 

1.3.5 Microvesicle function 

1.3.5.1 Modulation of immune responses 

Many of the key functions of microvesicles are related to regulation of the 

immune system.  Antigen presenting cells release MVB-derived exosomes that 

contain MHC class II antigen peptide complexes that can then present these 

peptides to T-cells, triggering an immune response (Raposo et al., 1996).  

Furthermore, it is thought that MVB-derived exosomes containing MHC II peptide 

complexes are released by dendritic cells, and these need to be  internalised  by 

other dendritic cells in order for them to acquire the functional capacity to 

initiate T cell activation and induce an immune response (Thery et al., 2002).  

Microvesicles are also thought to be relevant to tumour immunology.  

Microvesicles released by cancer cells contain tumour-derived antigens.  In the 

presence of dendritic cells, these microvesicle-associated tumour antigens can 

be transferred to dendritic cells to be incorporated into the MHC class II complex 

which then stimulates T-cell activation and initiates an anti-tumour immune 

response (Wolfers et al., 2001, Andre et al., 2002). 

Antigens and MHC complexes are not the only means by which microvesicles can 

modulate the immune system.  Microvesicles that are positive for Fas ligand 

(FasL) have been shown to be released by tumour cells and immune cells and 

these  can initiate immune suppression by promoting T-cell apoptosis (Monleon 

et al., 2001, Andreola et al., 2002).  Alternatively, pathogen infected 

macrophages can release microvesicles that, when taken up by recipient 

macrophages, initiate the secretion of pro-inflammatory cytokines to initiate an 

immune response (Bhatnagar and Schorey, 2007).   

1.3.5.2 Modulation of immune function in cancer 

It has been observed that increased levels of microvesicles are commonly 

detected in the blood of cancer patients, this indicates the possibility that 
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microvesicles are released at an increased rate by cancer cells (Taylor and 

Gercel-Taylor, 2008).  This has triggered a wealth of important work identifying 

roles for microvesicles in cancer pathology.  The shedding of microvesicles from 

the plasma membrane in cancer cells was originally documented many years ago 

(Poutsiaka et al., 1985), but it is only recently that progress is being made in 

characterising microvesicle release by cancer cells, and understanding the 

physiological roles of cancer cell-derived microvesicles.  The first role ascribed 

to tumour-derived microvesicles was suppression of the immune response which 

enhanced tumour cell survival (Poutsiaka et al., 1985, Taylor and Gercel-Taylor, 

2005).  Microvesicles which are shed from the plasma membrane of melanoma 

cells have the ability to decrease expression of 1a antigen in macrophages, 

which is potentially the reason for their role in suppression of an immune 

response (Poutsiaka et al., 1985).  Additionally microvesicles from tumour cells 

can promote T-cell apoptosis, which may decrease the immune response against 

the tumour (Taylor and Gercel-Taylor, 2005).  Finally, MVB-derived exosomes 

from cancer cells can have a role in promoting immune cell infiltration to 

promote tumorigenesis (Bobrie et al., 2012).   

MVB-derived exosomes released by tumours are also able to promote an immune 

response directed against the tumour.  MVB-derived exosomes released by 

tumour cells have been found to act as a vector for tumour antigen peptide 

presentation to dendritic cells which consequently enhances the anti-tumour 

immune response (Wolfers et al., 2001).  Additionally EGFRvIII-positive 

microvesicles isolated from glioblastoma cells also have the ability to induce 

anti-tumour responses (Graner et al., 2009).  There is still much discrepancy as 

to how tumour-derived microvesicles impact on the immune system in vivo.  

However the potential role of microvesicles in enhancing immune responses 

against tumours has attracted the attention of immunologists in investigating the 

possibility of using microvesicles as an immunotherapy treatment of cancer. 

1.3.5.3 Microvesicles in cancer immunotherapy 

There have been numerous reports discussing an important role of microvesicles 

in promoting or inhibiting tumour progression in vivo.  Interestingly MVB-derived 

exosomes collected from dendritic cells that have been pulsed with tumour 

antigens are able to initiate a T-lymphocyte anti-tumour immune response in 
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vivo resulting in tumour clearance (Zitvogel et al., 1998).  Phase 1 clinical trials 

so far have been performed in lung cancer (Morse et al., 2005) and melanoma 

(Escudier et al., 2005) patients.  These trials showed that injection of 

microvesicles from dendritic cells pulsed with tumour antigens were safe and 

well-tolerated in patients.  The treatment even led to regression/stabilisation of 

some tumours.  This is a promising start to identifying possible therapeutic uses 

of microvesicles in the clinic. 

1.3.5.4 Microvesicles in cancer cell communication 

As well as the impact that tumour-derived microvesicles have on the immune 

system, they have more recently been identified as having a role in tumour cell 

invasion in vitro and metastasis in vivo.  Cancer cell-derived microvesicles have 

been shown to be capable of transferring oncogene products and their 

associated proteins from cancer cells to other cells.  Subsequently, the recipient 

cells gain a pro-tumorigenic phenotype that supports cancer progression (Al-

Nedawi et al., 2008, Demory Beckler et al., 2013).  Microvesicles shed from the 

plasma membrane of tumour cells are known to be loaded with matrix 

metalloproteinases and are able to interact with and degrade the extracellular 

matrix to enhance migration and invasion of tumour cells (Muralidharan-Chari et 

al., 2009).  Furthermore microvesicles released from cancer-associated 

fibroblasts  can help to drive breast cancer cell invasive capacity in vitro and 

metastasis in vivo through the autocrine maintenance of the wnt-planar cell 

polarity signalling pathway in breast cancer cells (Luga et al., 2012).   

Finally, tumour-derived microvesicles have been shown to have an important 

role in co-ordinating and directing metastasis.  Microvesicles released by 

melanoma cells have the ability to prime lymph nodes for melanoma cell 

metastasis by enhancing angiogenesis and extracellular-matrix deposition in the 

lymph node, as well as increasing the recruitment of melanoma cells to the 

metastatic site (Hood et al., 2011).  Exciting studies from David Lydon’s lab 

(exemplified schematically in figure 1-15), demonstrated a novel and very 

important role for microvesicles in mediating metastasis by priming the 

secondary visceral site to support the metastatic growth.  cMET-containing MVB-

derived exosomes from melanoma cancer cells irreversibly educate bone marrow 

progenitor cells when injected into mice.  Melanoma MVB-derived exosomes 



Chapter 1  62 
 

promote bone marrow progenitor cell mobilisation to the metastatic site, the 

lung, where they promote a pro-angiogenic environment allowing secondary 

metastatic colony formation (Peinado et al., 2012).  It was later found that 

pancreatic ductal adeno carcinoma (PDAC) cells release MVB-derived exosomes 

that contain migration inhibitory factor (MIF).  These MVB-derived exosomes 

educate kupffer cells at the liver metastatic site.  This education results in TGFβ 

signalling and increased fibronectin deposition which recruits bone marrow 

derived macrophages to take part in forming a fibrotic environment to support 

PDAC secondary tumour metastatic growth in the liver (Costa-Silva et al., 2015).  

These exciting studies show that microvesicles released by cancer cells have a 

very important role in directing metastasis in vivo and are, therefore, a 

potentially very important anti-metastatic therapeutic target. 
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Figure 1-15: MVB-derived exosomes from cancer cells educate stromal cells to prime 
metastatic niches. 
(A) shows how melanoma cells release MVB-derived exosomes that contain cMET, which educate 
bone marrow progenitor cells to mobilise to and prime, the metastatic organ to be pro-angiogenic 
and thus supportive of secondary tumour growth (Peinado et al., 2012).  (B) shows that pancreatic 
ductal adenocarcinoma (PDAC) MVB-derived exosomes which contain migratory inhibitory factor 
(MIF), educate visceral cells at the metastatic site to promote a fibrotic pro-metastatic environment 
(Costa-Silva et al., 2015). 

1.3.5.5 Other microvesicle functions 

Cell types other than cancer cells and those of a haematopoietic lineage have 

been identified as being capable of releasing microvesicles.  For example, 

cultured neurons release microvesicles upon depolarisation (Faure et al., 2006).  

Additionally plasma membrane-shed microvesicles and MVB-derived exosomes 

that are released by glial cells are of emerging importance in neuron-glial cell 

communication and act to control neuron viability (Mao et al., 2015, Fruhbeis et 
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al., 2013b, Fruhbeis et al., 2013a).   Finally epithelial cells from the intestine 

release microvesicles that contain MHC class II peptides and may potentially be 

involved in antigen presentation (van Niel et al., 2001).  

1.4 Final concluding remarks 

As we have discussed, cancer cell migration and invasion away from the primary 

tumour is necessary for metastasis to secondary sites, and it is this metastasis 

and secondary tumour growth that causes the majority of deaths from cancer.  It 

is well established that p53 is mutated in over half of all cancer cases, and it is 

therefore a very important protein to understand in cancer progression.  Studies 

from our lab and several others have elucidated an important role for the 

oncogene mutant p53 in integrin and RTK receptor recycling and consequent 

promotion of cancer cell invasion.  Additionally it is evident that oncogene 

expression has an impact upon microvesicle biology, and can alter the content of 

microvesicles to such an extent that microvesicles from oncogene expressing 

cells can transfer oncogenic phenotypes to other cells.  The oncogenic mutant 

p53 has not yet been investigated in the context of microvesicle biology and, as 

will be discussed in chapter four, p53 has important non-cell-autonomous 

functions.  Therefore this study investigates the role that mutant p53 expression 

has upon cancer cell microvesicle release, content and function within the 

extracellular environment. 
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2 Methods 

2.1 Cells and tissue culture 

2.1.1 Cell line generation 

The following cells were all purchased from ATCC: H1299 (null for p53), MCF7 

(express wild-type p53) and A2780 (express wild-type p53).  H1299 and MCF7 

cells were then genetically modified to express mutant p53 as described below. 

The p53 status of each of the cell lines and the genetically modified cell lines 

used in this study are reviewed in table 2-1. 

Cell line p53 status Genetic modifications 

H1299 Null p53R273H/R175H 

MCF7 Wild-type p53-/- and p53R273H 

A2780 Wild-type none 

Table 2-1: p53 status of cell lines used in the study and their genetic modifications. 
 

2.1.1.1 H1299 p53-/- and p53R273H /R175H 

H1299 non-small cell lung carcinoma cells null for p53-/- or stably expressing 

mutant p53R273H/R175H were generated as previously described (Noske et al., 

2009).  Briefly empty plasmid pCB6 or pCB6 plasmid containing p53R273H/R175H 

were transfected into H1299 cells using Effectene (Qiagen) according to 

manufacturer’s instructions.  Successfully transfected cells were selected using 

DMEM containing 600 µg/ml of G418 (Life Technologies) until stable polyclonal 

cell lines expressing pCB6-(empty) or pCB6-p53R273H/R175H were produced.   

Site directed mutagenesis was performed to mutate p53 in pCB6 p53 containing 

constructs.  The following oligos were used for mutagenesis: p53R175H forward 

AGC GAG GTT GTG AGG CAC TGC CCC CAC CAT GAG CGC TGC CCC CAC CAT GAG 

CGC TGC T and reverse AGC AGC GCT CAT GGT GGG GGC AGT GCC TCA CAA CCT 

CCG T; p53R273H forward GGA ACA GCT TTG AGG TGC ATG TTT GTG CCT GTC CTG 

G and reverse CCA GGA CAG GCA CAA ACA TGC ACC TCA AAG CTG TTC C. 
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2.1.1.2 H1299 p53-/- GFP and p53R273H m-cherry  

H1299 cells stably expressing both p53-/- and GFP or p53R273H and m-cherry, were 

generated as previously described (Muller et al., 2014).  A GFP expressing 

plasmid (Clontech) was co-transfected with pCB6 empty plasmid, whilst an m-

cherry expressing plasmid (Clontech) was co-transfected with a pCB6-p53R273H 

expressing plasmid using Genejuice Transfection Reagent (Millipore).  Colonies 

were picked and cells maintained under selection by growing in medium 

containing 600 µg/ml G418. 

2.1.1.2 MCF7 p53-/-, p53R273H and p53WT  

MCF7, breast adenocarcinoma cells (ATCC) which express wild-type p53 were 

genetically engineered to be null for p53 using a CRISPER-Cas9 nickase system 

according to manufacturer’s instructions (Addgene) (Ran et al., 2013).  The 

CRISPER plasmid (expressing Cas9-D10A nuclease along with the p53 guide RNA), 

was transfected into MCF7 cells using Lipofectamine (Life Technologies).  A 

double nick was introduced into p53 exon 4, which after non-homologous end 

joining resulted in a frameshift/deletion/stop codon in the endogenous p53 gene 

to inhibit wild-type p53 translation.  CRISPER oligo’s for p53 guide RNA:  gRNA-

1:ACCAGCAGCTCCTACACCGG.  gRNA-2:GGCATTCTGGGAGCTTCATC.  Clones 

null for p53 were selected for by growing them in medium containing in 5 µm 

Nutlin.  Nutlin causes cell cycle arrest and apoptosis in cells expressing wild-type 

p53, therefore only cells null for p53 should grow in its presence. 

Mutant p53R273H was introduced into the MCF7 p53-/- cells using a Phoenix cell 

retroviral transduction protocol.  Briefly Phoenix cells (ATCC) were transfected 

with plasmid pWZL-blast-p53R273H using Genejuice Transfection Reagent.  

Conditioned medium containing virus particles with the packaged p53R273H 

construct was collected 48 hours post-transfection and was subject to a 45 µm 

filtration.  MCF7 p53-/- cells were transfected with ecotropic receptor using 

Lipofectamine to enable viral infection, 24 hours later they were treated with 

the collected virus particles allowing retroviral infection.  Infected cells were 

grown under selection with medium containing 2 µg/ml blasticidin (Millipore) to 

kill all non-transfected cells, resulting in MCF7 cell lines stably expressing 



Chapter 2  67 
 

mutant p53 (cells made by Flore Kruiswijk.  The Beatson Institute for Cancer 

Research). 

2.1.2 Tissue culture 

2.1.2.1 H1299 and MCF7 

H1299 (p53-/- and p53R273H /R175H) and MCF7 cells were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM, Life Technologies) supplemented with 10 % FBS 

(Gibco), 1 mM L-glutamine, 100 µg/ml  streptomycin and 100 U/ml penicillin.  

Cells were maintained at 37 °C in 10 % CO2.  All tissue culture products were 

purchased from Life Technologies.  Cells were routinely passaged by washing 

with PBS (137 mmol/L NaCl, 2.7 nm/L KCl, 10 mmol/L Na2HPO4, 1.8 mmol/L 

KH2PO4 - fisher scientific) followed by 3 minute incubation in 0.25 % trypsin (Life 

Technologies) to detach cells from plates.  The trypsin was quenched using 10 % 

FBS containing DMEM.  H1299 cells were split at a ratio of 1:10 whereas MCF7 

cells were split at a ratio of 1:3 every three days. 

2.1.2.2 A2780 

A2780 cells were cultured in RPMI (Life Technologies) supplemented with 10 % 

FBS, 1 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin.  Cells 

were maintained in 10 % CO2 at 37 °C.  Cells were routinely passaged as 

previously described (2.1.2.1) at a ratio of 1:5 every five days. 

2.1.2.3 Co-culture 

H1299 p53-/- cells stably expressing GFP or p53R273H cells expressing m-cherry 

proliferated at the same rate as one another.  Therefore they were co-cultured 

by plating each cell type at a density of 1x106 cells in a 15 cm plate to grow to 

confluence together over 72 hours.  Cells were maintained in DMEM containing 

600 mg/ml G418 for continuous selection. 

2.1.2.4 Transfections and siRNA oligos 

H1299 cells were transfected using AMAXA transfection kit V according to 

manufacturer’s instructions.  Briefly, each siRNA transfection required 

approximately 6x106 cells, the equivalent to an 80% confluent 15cm dish. Cells 
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were washed with PBS and trypsinised.  Trypsin was quenched and cells re-

suspended in DMEM containing 10 % FBS.  Cells were pelleted by centrifugation 

at 1000 rpm for 5 minutes.  The cell pellet was washed with PBS and re-pelleted 

before being re-suspended in 100 µl solution V plus siRNA for each transfection 

(18 µl supplement solution, 82 µl solution-V and 10 – 15 µl 20 µm siRNA).  Cells 

were electroporated by AMAXA using the X-001 programme.  Transfected cells 

were re-suspended in DMEM before being re-plated at an appropriate density for 

further experimentation. 

For 24 hour knockdowns, 10 µl of a 20 µM stock siRNA was used.  For 72 hour 

knockdowns 15 µl from the 20 µM stock siRNA was used (except for the Rab27a 

and Rab27b simultaneous knockdown which used 10 µl of each siRNA oligo). 

For p53 the siRNA oligo used was– GACUCCAGUGGUAAUCUACUU, whereas for   

RCP, DGKα, PODXL, Rab35, Rab27a, Rab27b SMARTpool siRNAs were used 

(Dharmacon). 

2.2 Conditioned medium and microvesicle collection 

2.2.1 Conditioned medium collection 

H1299 p53-/- and p53R273H cells were grown to 90 % confluence over a 72 hour 

period (1x106 cells were plated per 15 cm plate).  The conditioned medium was 

then collected and subjected to differential centrifugation at 300 g for 10 

minutes, 2000 g for 10 minutes and 10,000 g for 30 minutes to remove live cells, 

dead cells and cell debris respectively; this is hereby referred to as conditioned 

medium.  At this point conditioned medium was ready to use in experiments or 

could be stored at 4 °C for 24 hours. 

2.2.2 Microvesicle collection 

2.2.2.1 Differential centrifugation 

For microvesicle collection a previously published protocol was followed and 

adapted (Thery et al., 2006a).  For each collection, nine 15 cm dishes of H1299 

p53-/- and p53R273H cells were grown to 90 % confluence over a period of 72 hours 

(the initial seeding density was 1x106 cells per 15 cm plate for H1299 cells and 
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2x106 for MCF7 cells).  Cells were re-fed 24 hours after plating with 15 ml 5 % 

FBS microvesicle depleted DMEM.  The 5 % FBS DMEM was depleted of serum 

microvesicles by an overnight ultra-centrifugation at 100,000 g in SW32 rotor 

using 36 ml polyallomer centrifuge tubes (Beckman).   

Conditioned medium from the confluent cells was collected 48 hours after re-

feeding.  To collect microvesicles, conditioned medium was subject to 

differentia centrifugation as previously described (2.2.1).  This was followed by 

further ultra-centrifugation steps.  Conditioned medium was centrifuged at 

100,000 g for 70 minutes to pellet microvesicles.  The supernatant was removed 

and the microvesicle pellet was washed in PBS and re-pelleted by centrifugation 

at 100,000 g for 70 minutes.  The supernatant was removed and the microvesicle 

pellet re-suspended in 200 µl PBS.  For all centrifugation steps 36 ml polyallomer 

tubes and a SW32 rotor were used to ensure optimal yield during microvesicle 

collection and to prevent lipid bound microvesicles adsorbing onto the tube.  

The collected pellet comprised of a heterogeneous population of microvesicles.  

The microvesicle pellet could be used immediately for further experimentation 

or purified further by sucrose density gradient.  Alternatively the microvesicle 

pellet could be stored for 24 hours at 4 °C.  Generally pellets were not stored at 

-20 °C unless specified. 

2.2.2.2 Sucrose density gradient 

For further purification and characterisation, the microvesicle pellet was subject 

to a sucrose density gradient.  The microvesicle pellet was re-suspended in 1 ml 

of 2.5 M sucrose (2.5 M sucrose (Thermo Scientific), 20 nM HEPES (Sigma), pH 

7.4) and transferred to the bottom of a 12 ml polyallomer centrifuge tube 

(Beckman).  Serial dilutions of sucrose from 2 M – 0.4 M were prepared in 20 nM 

HEPES solution (pH 7.4), from a starting concentration of 2.5 M.  Each sucrose 

fraction was carefully applied one at a time, on top of the microvesicle layer, 

with the lowest sucrose concentration at the top and the highest concentration 

at the bottom.  The sucrose gradient was ultra-centrifuged at 200,000 g for 16 

hours in a SW40 rotor.  Different microvesicle populations were separated 

according to their specific densities.  Each microvesicle population was collected 

by separating the gradient fractions.  Each fraction was diluted in 11 ml of PBS 

and centrifuged at 100,000 g for 70 minutes in an SW40 rotor.  Pelleted 
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microvesicle fractions were then re-suspended in a small volume of PBS (50 – 200 

µl) and used for further experimentation. 

2.2.3 Conditioned medium or microvesicle pre-treatment of cells 

2.2.3.1 Conditioned medium pre-treatment 

Conditioned medium was collected from p53-/- and p53R273H cells as previously 

described (section 2.2.1) and supplemented with DMEM (1:1).  1x106 cells were 

seeded into 15 cm plates and cultured in the collected conditioned medium for 

72 hours until they reached 90 % confluence.  Pre-treated cells were then re-

plated into DMEM, for further experimentation. 

2.2.3.2 Microvesicle pre-treatment 

For microvesicle pre-treatment, 1x106 cells were seeded into 15 cm plates 

containing complete DMEM supplemented with freshly collected microvesicles.  

The volume of microvesicles used for treatment, was three times more than 

would be collected from the total treatment volume, to account for any 

material lost during centrifugation.  For example if the treatment volume was  

20 ml of DMEM, microvesicles collected from 60 ml conditioned medium were 

used to supplement the DMEM.  Cells were grown to confluence in microvesicle 

supplemented DMEM for 72 hours before being plated into fresh DMEM for 

subsequent experiments.  Alternatively for shorter term experiments cells were 

treated with microvesicle supplemented medium overnight. 

2.3 Microvesicle characterisation strategies 

2.3.1 Protein content 

The protein content of microvesicles was analysed using Qubit protein assay (Life 

Technologies) according to the manufacturer’s instructions.  Briefly, the 

collected microvesicle pellet was re-suspended in 200 µl of PBS.  To quantify 

protein concentration, 10 µl of the re-suspended pellet was used in the assay. To 

normalise for the presence of PBS, 10 µl of PBS was added to each of the protein 

standards.  The protein content of microvesicles released by 1x106 cells was 

subsequently calculated. 
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2.3.2 Electron microscopy 

Microvesicles collected from nine 15 cm dishes of H1299 cells were re-suspended 

and fixed in 100 µl of 2 % paraformaldehyde (Thermo Scientific Pierce).  

Subsequently 5 µl of fixed microvesicles were adsorbed onto Formvar carbon 

coated EM grids overnight at 4 °C.  Grids were washed with 100 µl PBS and 

treated with 1 % glutaraldehyde (Sigma) solution for 5 minutes.  This was 

followed by eight washes with distilled water.  Microvesicles were visualised by 

negative staining, grids were incubated with uranyl oxalate (Polysciences) for 5 

minutes and subsequently methyl cellulose-UA (Sigma) for 10 minutes at 4 °C.  

Air dried grids were imaged on the transmission electron microscope FEI Tecnai 

T20 running at 200 kV using Olympus Soft Imaging System software.   

Alternatively if immuno-gold staining was required, adsorbed microvesicles were 

subject to four blocking washes with PBS/50 mM glycine (Sigma) after initial 

adsorption onto grids.  A second blocking step was then carried out using PBS/   

5 % BSA (Sigma) for 10 minutes.  Microvesicles were then exposed to CD63 

primary antibody (Pelicluster, 1:200) or mouse IgG1 isotype control antibody 

(Pierce, 1:200) diluted in PBS/1 % BSA for 30 minutes.  Grids were washed in 

PBS/0.1 % BSA six times for 5 minutes each.  Grids were then incubated with 

anti-mouse 10 nm protein A-gold conjugate secondary antibodies (Cell 

Microscopy Centre) for 30 minutes before eight PBS washes.  From this point 

onwards the fixation and negative staining protocol was performed as described 

above.  (Preparation of microvesicles for electron microscopy and image 

acquisition was performed by Margaret Mullin, the University of Glasgow). 

Acquired Images were analysed using ImageJ (National Institutes of Health) to 

determine the microvesicle size. 

2.3.3 Nanoparticle tracking analysis 

Nanoparticle tracking analysis was carried out using the NanoSight LM10 

instrument according to manufacturer’s instructions.  Prepared microvesicles in 

200 µl of PBS were diluted 1:30 in filtered PBS before being introduced into the 

instrument for measurement.  Three fields of view per sample were imaged and 
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tracked (over 1000 tracks were analysed per condition/per experiment to enable 

reliable analysis).  

Nanoparticle tracking analysis uses information acquired from light scattering 

and Brownian motion to calculate particle size and concentration.  Briefly a 

laser beam was passed through the sample chamber.  Particles within the 

sample scattered light to a level that could be detected by a 20 times 

microscope objective.  The camera took images at a rate of 30 frames per 

second and the software tracked and analysed the Brownian movement of each 

of the detected particles.  A Stokes-Einstein equation was then used by the 

software to calculate particle size and concentration. 

2.4 Cell phenotype assays 

2.4.1 Proliferation 

Cells were plated at a low density of 5000 cells/well in 24 well plates. 

Proliferation assays were performed over 4 days.  Each day cells were trypsinised 

and counted using a CASYcounter.  The medium was refreshed every second day 

so nutrients would always be available for cells to grow.  Each experimental 

condition was counted in triplicate. 

2.4.2 Wound healing migration assay 

For wound healing assays, 6x105 H1299/A2780 cells were plated in 6 well plates 

and grown into a confluent monolayer over 24 hours.  A wound was created using 

a p200 pipette tip, wounded cells were washed twice using warm DMEM.  Once 

the plate had acclimatised to the microscope stage and temperatures, time-

lapse microscopy acquired images of cells closing the wound every 10 minutes 

for 16 hours at 5 % CO2 and 37 °C.  Images were captured using a Nikon time-

lapse Z6011, CoolSNAP HQ camera (photometrics) and metamorph software 

(molecular devices).   

Data was then tracked and quantified using ImageJ to analyse single cell forward 

migration index which represents the ability of cells to migrate in a forward 

direction when closing the wound.  Data sets were handled in Excel and analysed 

statistically using Prism.  
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2.4.3 Golgi-nucleus orientation Immunofluorescence 

H1299 cells were treated with conditioned medium for 72 hours before 5x105 

cells were plated onto glass bottomed MatTeck dishes.  A wound was formed in 

the cell monolayer 24 hours later and cells were washed and medium refreshed 

using warm DMEM.  Cells were left to recover and migrate for 2 hours before 

being fixed in 4 % paraformaldehyde in PBS for 10 minutes and permeabilised 

with 0.2 % triton-X100 (Sigma) in PBS for 10 minutes.  Cells were washed twice 

with PBS and blocked using 1 % BSA in PBS.  

The primary antibody GM130 (1:100, BD transduction lab) which labels the golgi 

was applied to cells in 1 % BSA/PBS for 1 hour.  After 3 washes in PBS, the 

secondary goat anti mouse FITC antibody (1:100, Southern Biotech) and 

phalloidin (1:200 Life Technologies) was applied for 30 minutes in 1 % BSA/PBS.  

After 3 washes with PBS, soft set Vectashield with DAPI was used to mount 

samples.  

Samples were then visualised by confocal microscopy using Olympus Fluoview 

FV1000.  Ten images per condition were analysed for golgi orientation.  Every 

cell in each of the images was scored according to whether the golgi was 

oriented in front, behind or to the side of the nucleus. 

2.4.4 Inverted invasion assay 

Invasion assays were carried out as previously described but with a few 

alterations (Hennigan et al., 1994, Caswell et al., 2008).  Geltrex (reduced 

growth factor basement membrane matrix - Life Technologies) was diluted 1:1 in 

ice cold PBS and supplemented with 25 µg/ml fibronectin (Sigma) and left to 

polymerise in a transwell chamber for 1 hour at 37 °C.  The chambers were 

inverted and 4x104 cells were plated onto the bottom of the transwell 

membrane and left to attach for 3 hours.  After two washes, the transwell 

chamber was placed in 1ml of serum free medium, whilst 100 µl of 10 % FCS 

DMEM supplemented with 10 ng/ml HGF (Sigma) was added to the top of the 

Geltrex plug. 

Cells were allowed to invade along the chemotactic gradient for 72 hours before 

being stained with 4 µg/ml calcein-AM (Life Technologies) for 1 hour.  The 
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percentage of invading cells was then analysed by acquiring confocal images of 

the cells at 15 µm intervals through the plug starting from the transwell 

membrane.  Images were acquired using the Olympus Fluoview FV1000 at 20 

times magnification.  ImageJ was used to quantify percentage of cells invading > 

30 µm through the Geltrex plug by analysing total fluorescence intensity. 

2.4.5 Recycling assay 

2.4.5.1 Cell preparation 

Before starting the recycling assay, H1299 p53-/- cells were pre-treated with 

microvesicles from p53-/- or p53R273H cells for 72 hours and re-plated for a further 

72 hours in DMEM until 80 % confluence was reached.  Alternatively microvesicles 

were collected from p53R273H siRNA treated cells, and used to pre-treat p53-/- 

cells for 24 hours before the assay took place.  For recycling assays investigating 

the effects of siRNA silencing of a protein, p53R273H cells were transfected with 

the appropriate siRNA and allowed to grow for 24 hours to 80 % confluence 

before starting the assay.  Internalisation of α5β1 integrin, c-met and EGFR was 

investigated using recycling ELISA assays previously described (Caswell et al., 

2008, Roberts et al., 2001).  

2.4.5.2 Internalisation 

Medium was aspirated from plates and the plates were immediately transferred 

to ice.  Cells were washed twice in ice cold PBS before incubating with           

0.2 mg/ml NHS-SS-Biotin (Thermo Fisher Scientific) in PBS for 1 hour at 4 °C to 

label surface proteins.  Labelled cells were washed in ice cold PBS and then 

incubated in DMEM for 30 minutes at 37 °C to enable internalisation of labelled 

proteins.  Medium was aspirated and dishes were put back on ice and washed 

twice with ice cold PBS.  Biotin was removed from remaining surface labelled 

proteins by incubating with 20 mM MesNa (20 mM sodium 2-

mercaptoethanesulphonate (Sigma), 50 nM Tris (Melford), 100 nM NaCl (Fisher 

Scientific), pH 8.6.) for 15 minutes at 4°C.  Cells were then incubated with      

20 nm iodoacetamide for 10 minutes, (Sigma) to quench the remaining MesNa. 
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2.4.5.3 Recycling 

After the remaining biotin was removed from the cell surface and MesNa was 

quenched, internalised biotinylated receptor recycling back to the plasma 

membrane was chased by incubating cells at 37 °C for various time points up to 

30 minutes.  At each time point medium was removed and cells were put on ice, 

washed twice with ice cold PBS and biotin was removed from recycled 

biotinylated proteins at the cell surface using MesNa.  Cells from each time point 

were then lysed using non-denaturing lysis buffer (Lysis buffer: 200 nM NaCL, 75 

nM Tris, 15 mM NaF (Sigma), 1.5 mM Na2VO4 (Fisher Scientific), 7.5 mM EDTA 

(Sigma), 7.5 mM EGTA (Sigma), 1.5 % Triton X-100, 0.75 % NP40 (Sigma), 50 

µg/ml leupeptin (Melford), 50 µg/ml aprotinin (Sigma), 1 mM 4-(2-

aminoethyl)benzynesulphonyl fluoride - AESBF (Melford)).  Lysates were 

homogenised using a 25-gauge needle and debris pelleted by centrifugation at 

10,000 rpm for 10 minutes at 4 °C.  The quantity of remaining biotinylated 

protein was then analysed by ELISA (enzyme-linked immunosorbent assay) 

capture of collected cell lysates. 

2.4.5.4 ELISA 

96 well plates (Maxisorp Life Technologies) were coated with antibody of 

interest by adding 50 µl 0.05 M Na2CO3 (Fisher Scientific), pH 9.6 plus 5 µg/ml 

antibody to each well and incubating overnight at 4 °C with constant rocking.  

Antibodies used included integrin α5, EGFR and cMET as detailed in Table 2-2.  

One hour before starting the assay each well was blocked with 50 µl 5 % BSA in 

PBS-T (PBS plus 0.05 % Tween 20 - Sigma) at 4 °C.  After washing twice with PBS-

T and removing as much liquid as possible, 50 µl of each cell lysate sample was 

added to the plate in triplicate to allow protein capture.  The plate was 

incubated at 4 °C with constant rocking, overnight.   

The next day the plate was washed 4 times with PBS-T to remove 

excess/unbound protein.  Each well was incubated with 50 µl of the appropriate 

species of HRP secondary antibody conjugated with streptavidin (GE healthcare) 

in 1 % BSA PBS-T for 1 hour at 4 °C, with constant rocking.  Four PBS-T washes 

followed and residual liquid was removed.  Each well was then exposed to ortho-

phenylenediamine (0.56 mg/ml ortho-phenylenediamine (Sigma), 25.4 mM 
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Na2HPO4 (Fisher Ccientific), 12.3 mM citric acid (Sigma), pH 5.4 with 0.003% H2O2 

(Sigma)) for 10 minutes at room temperature before the absorbance of each well 

was quantified using a plate reader at wave length 490 nm.  Recycling assays 

done by Jim Norman, the Beatson Institute for Cancer Research. 

2.5 Screens 

2.5.1 SILAC mass spectrometry of microvesicles 

H1299 cells were cultured in SILAC (Single Isotope Labelling by Amino acids in 

Culture) medium (Life Technologies) with 10 % 10 kDa cut off dialysed FBS (Life 

Technologies), 1 mM L-glutamine, 100 µg/ml  streptomycin, 100 U/ml penicillin 

and 1:1000 amino acid isotopes (heavy: lysine8, argenine10 or medium: lysine4, 

argenine6 – Cambridge Isotope Labs).  The following experiments were set up, 

the forward experiment consisted of p53-/- cells labelled with medium amino 

acid isotopes and p53R273H cells labelled with heavy amino acid isotopes and the 

reverse experiment consisted of p53-/- cells labelled with heavy amino acid 

isotopes and p53R273H cells labelled with medium amino acid isotopes.  Once 

amino acid isotopes were fully incorporated, p53-/- and p53R273H cells (both heavy 

and light) were plated for microvesicle isolation.  Conditioned medium from 

each condition of the forward and the reverse experiment was collected and 

mixed together (eg p53-/- medium and p53R273H heavy) at the very beginning of 

microvesicle collection protocol to minimise any variation between the 

conditions during collection.  Microvesicles were prepared as previously 

described (section 2.2.2.1) and the final pellet was re-suspended in 6M urea for 

mass spectrometry analysis.  During mass spectrometry analysis, proteins 

detected in microvesicles from p53-/- cells and p53R273H expressing cells could be 

distinguished from one another in the sample due to the different amino acid 

isotope labelling. 

In preparation for mass spectrometry, microvesicle proteins were reduced (10 

mM dithiothreitol), alkylated (55 mM iodoacetamide) and digested (Lys C and 

trypsin).  Peptides were cleaned using stage tips and re-dissolved in 5 % 

acetonitrile/0.25 % formic acid.  Protein samples were then used directly on the 

Orbitrap Elite (LC-MS).  Data was searched and quantified against Swissprot 

(Human) database using MaxQuant software.  All mass spectrometry experiments 
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were performed in collaboration with David Sumpton, The Beatson Institute for 

Cancer Research. 

2.5.2 Lipidomic analysis of microvesicles 

Microvesicles were collected from p53-/- and p53R273H cells, re-suspended in    

100 µl PBS and then frozen before undergoing lipidomic analysis. All lipodomic 

analyses were performed in the lab of Phil Whitfield, University of Highlands and 

Islands, using their standard protocols below. 

2.5.2.1 Lipid extraction 

Microvesicles were suspended in 100µL PBS.  The lipids were then extracted 

according to the Folch method (Folch et al., 1957).  Briefly microvesicles were 

mixed with 3 mL chloroform/methanol (2/1, v/v).  The mixture was incubated at 

room temperature for 1 h.  The samples were partitioned by the addition of 670 

µL of 0.1 M KCl and the mixture centrifuged to facilitate phase separation.  The 

lower chloroform layer was evaporated to dryness under nitrogen gas and 

reconstituted in 160 µL methanol containing 5 mM ammonium formate.  (All 

solvents were of HPLC grade and were purchased from Thermo-Fisher Scientific). 

2.5.2.2 Liquid-chromatography-mass spectrometry  

The lipids were analysed by liquid chromatography-mass spectrometry (LC-MS). 

All analyses were performed using a Thermo Exactive Orbitrap mass 

spectrometer (Thermo Scientific).  All samples were analysed in both positive 

and negative ion mode.  

2.5.2.3 Data processing and multivariate statistical analysis 

The raw LC-MS data were processed with Progenesis CoMet software (Non-linear 

Dynamics) and searched against LIPID MAPS (www.lipidmaps.org) for 

identification. The processed data were Pareto scaled and subjected to principal 

component analysis (PCA) using SIMCA-P v13.0 (Umetrics).  
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2.5.3 Next generation sequencing 

Cells null for p53 were treated with microvesicles collected from p53-/- and 

p53R273H expressing cells for 72 hours.  Pre-treated cells were then re-plated in 

DMEM to grow to confluence in a 6 well plate.   

2.5.3.1 RNA harvesting 

RNA was harvested using RNAeasy kit (Qiagen) according to manufacturer’s 

instructions.  Collected RNA was re-suspended in 30 µl RNase free water and 

quantified using the nanodrop.  The RNA was checked for quality and 

degradation using the nano Agilent chip bioanalysis, according to manufacturer’s 

instructions.   

2.5.3.2 cDNA library generation 

RNA (4 µg) was used to create cDNA libraries using the TruSeq RNA sample Prep 

Kit, v.0 (Illumina) by Billy Clarke, Beatson Institute for Cancer Research.  This 

protocol was previously described (Fisher et al., 2011).  Briefly RNA was purified 

and fragmented to allow first strand cDNA synthesis to take place using random 

primers and reverse transcriptase.  The second strand synthesis replaced 

remaining RNA strand with a cDNA strand creating double stranded DNA.  The 

overhangs from fragmentation process were repaired before the 3’ end was 

adenylated to prevent ligation of fragments.  Adaptors for hybridisation onto the 

sequencing flow cell were ligated to the ends of each fragment before PCR 

amplification was used to amplify each fragment with their adaptors.  The 

Library was finally validated by Agilent DNA 1000 before being normalised and 

pooled ready for cluster generation and sequencing. 

2.5.3.3 Sequencing 

The library cDNA fragments were loaded into a flow cell and captured by oligos 

complimentary to the adaptors ligated to cDNA fragments.  Cluster generation of 

library samples took place on the C-bot, generating around 1000 identical copies 

of each cDNA fragment by bridge amplification.  After annealing of the 

sequencing primers to the DNA, the sequencing protocol then took place using 

the Genome Analyser 11x.  Sequencing reagents and fluorescent nucleotides 
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began the addition of nucleotides to each DNA molecule, and after each 

nucleotide addition the flow cell was imaged so the base added could be 

identified.  The sequencing settings used were 2x36 cycles, single index, paired 

end and this was done by Billy Clarke, Beatson Institute for Cancer Research.  

Real time analysis of sequencing was done by the machine software before the 

data was then used for bioinformatics analysis. 

2.5.3.4 Data analysis 

Quality control of the raw RNASeq data files was performed by fastqc and reads 

were aligned to the human genome (GRCh37) using TopHat2.  Resulting bam files 

were processed with easyRNASeq package in R.  The final counts were 

normalised and analysed with DESeq.  Statistically significant differences in gene 

expression were determined with a false discovery rate of 5% or 10%.  This was 

carried out in collaboration with Gabriela Kalna, Beatson Institute for Cancer 

Research. 

2.6 Quantitative PCR 

Rab27b knockdown was analysed using quantitative PCR due to the lack of an 

effective antibody for Western blotting.   

2.6.1 RNA isolation 

RNA was isolated from a confluent 6 well plate at 24, 48 and 72 hours after 

transfection with si-Rab27b or control si-nt.  Cells were washed twice with PBS 

and put on ice before commencing RNA extraction using RNAeasy spin columns 

according to manufacturer’s instructions.  The concentration of RNA collected 

was quantified using 2 μl on the nanodrop machine. 

2.6.2 cDNA synthesis 

1 µg RNA was used to synthesise cDNA using the Promega Reverse Transcription 

system following manufacturer’s instructions.  Briefly 1 µg RNA was mixed with 

0.5 µg oligo-DT and made up to a total volume of 10 µl with water.  Samples 

were heated to 70 °C for 5 minutes before being chilled to 4 °C.  At which point 

10 µl of a master mix containing (1 µl ImPromII reverse transcriptase, 5 times 
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reaction buffer, 20 U RNasin, 0.5 mM each dNTP, 25 mM MgCl) was added to 

each tube and samples were subjected to a reverse transcription cycle of: 

annealing 25 °C for 5 minutes, extension 42 °C for 60 minutes and inactivation 

70 °C for 5 minutes.  The resultant cDNA was stored at – 20 °c or used 

immediately in further experimentation. 

2.6.3 Quantitative PCR 

1 µl of synthesised cDNA in 7 µl H20 was then used in a quantitative PCR (qPCR) 

reaction with 10 µl PerfeCTa SYBR green master mix (Quanta bioscience) and     

2 µl QuantiTect primers (Qiagen) for Rab27b or GAPDH (housekeeping gene), 

according to manufacturer’s instructions.  Samples were loaded into a Biorad 96 

well plate in triplicate.  Quantitative PCR was run on the Biorad C1000 thermal 

cycler.  DNA was denatured at 95 °C for 5 minutes.  Then the cycle of 

denaturation at 95 °C for 30 seconds, annealing at 60 °C for 30 seconds and 

extension at 72 °C for 30 seconds was repeated 40 times before the final 

extension time of 5 minutes at 72 °C.  

Data was analysed using Biorad software using CT cycle values.  Rab27b levels 

were normalised to GAPDH levels and the fold change of Rab27b cycle number in    

si-nt (control) versus si-Rab27b conditions was calculated. 

2.7 Western blotting and antibodies 

2.7.1 Cell lysis 

Medium was aspirated from plates and cells were put on ice.  Cells were washed 

twice with ice cold PBS before being exposed to 50 mM tris/1 % SDS lysis buffer.  

Cells were scraped and homogenised using Qia-shredder columns (Qiagen).  Cell 

lysate was then mixed with 4 times loading SDS buffer (NuPage, Life 

Technologies) and boiled for 5 minutes at 95 °C.  Samples were centrifuged at 

10,000 rpm for one minute and loaded onto gel. 

2.7.2 Microvesicle preparation 

Microvesicles in PBS were mixed with 4 times SDS loading buffer and boiled for 5 

minutes at 95 °C.  After a final centrifugation samples were ready to load. 
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2.7.3 Western blotting 

To resolve proteins by size, NuPage pre-cast SDS (sodium dodecyl sulphate-

polyacrylamide) gels were used (Life Technologies).  Samples were loaded onto 

NuPage pre-cast gradient gels (4 – 12 %) (Life Technologies) alongside a protein 

standard (Biorad).  Gels were ran using NuPage MOPS running buffer and under 

non-reducing conditions (essential for some antibodies used in this study) at   

100 V for 2 hours. 

Proteins were transferred from the gel onto methanol activated PVDF membrane 

(Millipore) in NuPage transfer buffer (Life Technologies) at 30 V for 90 minutes.  

The membrane was blocked in 5 % Milk (Marvel) or 3 % BSA in TBS-T (10 mM Tris-

HCl (pH7.4), 150 mM NaCl, 0.1 % Tween-20) for one hour at room temperature 

under agitation.  The antibody of interest (see Table 2-2 for details) was then 

applied to the membrane in 1 % milk/BSA in TBS-T overnight at 4 °C.  

Membranes were washed with TBS-T three times (10 minutes each) before 

secondary Licor infra-red fluorescent antibodies of the appropriate species 

(1:10000) were applied for 30 minutes, at room temperature (antibodies 

detailed in table 2-2).  Three more TBS-T washes were carried out followed by a 

distilled water wash before the Licor Odyssey system was used to expose the 

blots and visualise protein bands. 

2.8 Immunoprecipitation 

H1299 cells were lysed in non-denaturing lysis buffer (recipe in section 2.4.5.3).   

The H1299 lysates were passed through a 27-gauge needle three times before 

being clarified by centrifugation at 10,000 x g for 10 minutes at 4 °C.  Magnetic 

beads conjugated to sheep anti-mouse IgG (Dynabeads, Life Technologies) were 

bound to anti-GFP antibody (Abcam).  GFP-Antibody coated beads were then 

incubated with lysates for 2 hours at 4 °C whilst being subjected to constant 

rotation.  Washing of the beads in lysis buffer removed any unbound proteins, so 

that specifically associated proteins could be eluted from the beads by boiling 

for 10 minutes in sample buffer (Sigma).  Proteins were resolved by SDS-PAGE 

and analysed by Western blotting. The immunoprecipitation (IP) method was 

adapted from (Rainero et al., 2012).  Antibodies that were used in the 
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immunoprecipitation (mouse anti-GFP) and used for Western blotting (rabbit 

anti-GFP and anti-Podocalyxin) are shown in table 2-2. 

2.8.1 Antibodies 

Antibody (species) Company Dilution (use) 

CD63 (mouse) Pelicluster 1:1000 (WB) 

p53 (mouse) *DO-1 antibody 1:10,000 (WB) 

TSG101 (rabbit) GeneTex 1:1000 (WB) 

HSPA8 (rabbit) Cell Signalling 1:1000 (WB) 

Integrin β1 (mouse) BD Pharmingen  1:2000 (WB) 

Rab35 (rabbit) Cell Signalling 1:100 (WB) 

Rab27a (mouse) Abcam 1:1000 (WB) 

DGKα Rabbit) Proteintech 1:500 (WB) 

RCP (rabbit) In house antibody RCP379-649  1:1000 (WB) 

Podocalyxin (rabbit) Abcam 1:1000 (WB) 

cMET (goat) R+D systems 1:100/5 µg/ml (WB/ELISA) 

β-actin (mouse) Sigma  1:10,000 (WB) 

EGFR (rabbit) BD Pharmingen 5 µg/ml (ELISA) 

Integrin a5 (mouse) BD Pharmingen  5 µg/ml (ELISA) 

GFP (mouse) Abcam  1:1000 (IP) 

GFP (mouse) Abcam  1:10,000 (WB) 

IR Dye 680 (anti mouse) Licor 1:10,000 (WB) 

IR Dye 680 (anti rabbit) Licor 1:10,000 (WB) 

IR Dye 680 (anti goat) Licor 1:10,000 (WB) 

IR Dye 800 (anti mouse) Licor 1:10,000 (WB) 

IR Dye 800 (anti rabbit) Licor 1:10,000 (WB) 

IR Dye 800 (anti goat) Licor 1:10,000 (WB) 

 

Table 2-2: Antibodies used in Western blotting, ELISA and IP. 
*The p53 antibody has been described previously (Vojtesek et al., 1992). 

2.9 Statistics 

All statistical analyses were performed using Prism.  I did not test if the data 

was normally distributed therefore the following statistical tests were used.  The 

non-parametric Mann-Whitney test was used to analyse data sets of two 

conditions.  For data sets with multiple conditions the non-parametric Kruskal 

Wallis test was used to compare all conditions with one another.  Finally for data 

sets with two conditions but multiple time points, a two-way ANOVA statistical 

test was used.
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3 Microvesicle characterisation 

3.1 Introduction 

3.1.1 Microvesicles 

Microvesicles are lipid enclosed vesicles that contain many cellular components 

including protein, lipid, DNA, mRNA and miRNA.  They are released from the cell 

into the extracellular environment in two main ways; either by budding off the 

plasma membrane (plasma membrane-shed microvesicles), or by being released 

from the cell following their prior formation in multivesicular bodies (MVB) 

within the endosomal system (MVB-derived exosomes) (Raposo and Stoorvogel, 

2013, Colombo et al., 2014).   

Plasma membrane-shed microvesicles (typically >100 nm in diameter) bud 

directly from the plasma membrane, a process that is dependent upon 

cytoskeleton regulation, lipid signalling, Rab-GTPase proteins or ESCRT 

machinery (Booth et al., 2006, Muralidharan-Chari et al., 2009, Trajkovic et al., 

2008, Wang et al., 2014, Bianco et al., 2009).  Alternatively, MVB-derived 

exosomes are formed in late endosomes which mature into multivesicular bodies 

(MVB) by inward budding of the endosome’s limiting membrane to form intra-

luminal vesicles (ILVs) (Futter et al., 2001).  This is often an ESCRT and/or 

ceramide-dependent process (Trajkovic et al., 2008, Colombo et al., 2014).  

MVBs are then transported to and dock with the plasma membrane, a process 

which is dependent upon Rab-GTPase proteins such as Rab27a, Rab27b, Rab35 

and Rab11, and SNARE proteins such as VAMP7 (Hsu et al., 2010, Savina et al., 

2002, Ostrowski et al., 2010, Fader et al., 2009).  Fusion of MVBs with the 

plasma membrane allows the release of ILVs into the extracellular environment 

as MVB-derived exosomes (<100 nm in diameter).  These processes are discussed 

in greater detail in chapter 1.  The characteristics of MVB-derived exosomes and 

plasma membrane-shed microvesicles are summarised in table 3-1 and 

diagrammatically reviewed in figure 3-1.  We will subsequently, collectively 

refer to MVB-derived exosomes and plasma membrane-shed microvesicles as 

microvesicles, unless stated otherwise.   
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  MVB-derived  

exosomes 
Plasma membrane-
shed microvesicles 

     

Site of origin and 
release                        

MVB exocytosis Plasma membrane 
budding 

     

Composition Protein, lipid and 
nucleic acids 

Protein, lipid and 
nucleic acids 

     

Size <100 nm >100 nm 

     

Mechanism of 
biogenesis 

ESCRT, ceramide, 
tetraspanin 

Cytoskeletal 
regulation, lipid 
signalling, Rab-
GTPase, ESCRT 

     

Mechanism of release Rab-GTPase, SNARE   

Table 3-1: Summary of MVB-derived exosome and plasma membrane-shed microvesicle 
characteristics. 
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Figure 3-1: Diagram of microvesicle formation and release. 
EE – early endosome.  MVB – multivesicular body.  ILVs – intra luminal vesicles.  PM – plasma 
membrane.  Early endosomes mature into MVBs upon ESCRT/ceremide mediated inward budding 
of the endosome limiting membrane forming ILVs.  MVBs are then transported to the plasma 
membrane in a Rab-GTPase dependent manner where fusion allows ILVs to be released into the 
extracellular environment as MVB-derived exosomes.  Alternatively plasma membrane-shed 
microvesicles bud directly from the plasma membrane.  This process can be driven by ESCRT 
components, cytoskeletal regulation, lipid signalling and Rab-GTPases. 

3.1.2 Characterisation of microvesicles 

When investigating microvesicles, it is very important to perform thorough and 

comprehensive characterisation of their physical characteristics.  A report 

published from the International Society for Extracellular Vesicles described the 

steps an investigator should take to characterise microvesicles (Lotvall et al., 

2014).  Briefly, microvesicle protein components should be characterised by 

Western blot and mass spectrometry to identify the presence of microvesicle 

markers (table 3-2).  Additionally, isolated microvesicles should be characterised 

by both electron microscopy and nanoparticle tracking analysis (or other related 
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methods, such as atomic force microscopy, dynamic light scattering and resistive 

pulse sensing) to identify that a pure preparation of microvesicles is being 

collected and so their size can be quantified.  Finally experiments should be 

well-controlled to eliminate any potential consequences of the isolation of 

serum microvesicles. 

  Transmembrane 
and lipid bound 
proteins 

Cytosolic 
proteins 

Intracellular 
proteins 

Extracellular 
proteins 

What 
protein 

presence 
indicates 

Membrane 
present 

Proteins with 
membrane or 
receptor 
binding 
capacity 

Proteins from 
other cell 
compartments 

Proteins bind to 
microvesicle 
membrane and 
co-isolate 
during 
centrifugation 

Status Present in MVB-
derived 

exosomes and 
plasma 

membrane-shed 
microvesicles 

Present in MVB-
derived 
exosomes and 
plasma 
membrane-
shed 
microvesicles 

Lower 
presence in 
MVB-derived 
exosomes.  
More likely to 
be found in 
plasma 
membrane-
shed 
microvesicles 

Variable 

Examples Tetraspanin, 
integrin, growth 
factor receptor 

Endosomal 
proteins, 
membrane 
binding 
proteins 
(ESCRT/Rabs) 

ER, Golgi, 
mitochondria 
and nucleus 
associated 
proteins 

Albumin, 
growth factors, 
ECM 
components, 
MMPs 

Table 3-2: Protein categories expected to be present in MVB-derived exosomes and plasma 
membrane-shed microvesicles. 
Adapted from (Lotvall et al., 2014). 

These characterisation strategies are useful for determining that microvesicle 

preparations are free from larger membrane fragments, blebs and cell debris.  

However, it is not possible to determine the origin of microvesicles (i.e. whether 

they are generated by plasma membrane-shedding or via intraluminal budding 

within MVBs) by measuring their size.  Indeed, although plasma membrane-shed 

microvesicles are generally accepted to be bigger than MVB-derived exosomes, 

the involvement of the ESCRT complex in plasma membrane-shedding indicates 

the possibility that these latter structures may be somewhat smaller than       

100 nm (Booth et al., 2006).   Moreover, although analysing protein constituents 

commonly found in microvesicles may give more confidence in the purity of the 
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microvesicle isolation, the cell compartment of origin still cannot be 

extrapolated from the these data as most microvesicle markers are common to 

more than one microvesicle type.  Therefore, one must conclude that, although 

a stringent microvesicle characterisation regimen will provide information as to 

the complexity and purity of the preparations used for experimentation (and 

thus lend transparency to the published work), these procedures will not inform 

meaningfully as to the provenance of the microvesicles in question, nor the 

cellular processes that lead to their generation.  Therefore, the main purpose of 

the microvesicle characterisation that is carried out in this study is to ensure 

that our preparations are largely free from contaminants such as cell debris and 

apoptotic blebs, and to determine whether mutant p53 has the ability to 

influence the size distribution and constitution of released microvesicles. 

3.2 Aims 

As discussed in chapter 1 the field of microvesicle biology is an up-and-coming 

area of cancer research due to the important role of microvesicles in cell 

communication, and their utility in diagnostic biomarker discovery.  Studies have 

identified that oncogene-expressing cancer cells release microvesicles that 

transfer certain oncoproteins (KRAS/EGFRvIII) and their interactors to 

neighbouring cells.  These cancer cell-derived microvesicles can change the 

phenotype of the recipient cells to promote cancer progression (Al-Nedawi et 

al., 2008, Demory Beckler et al., 2013).  Our research focuses on the oncogene 

mutant p53 control of integrin and receptor tyrosine kinase trafficking, and the 

consequent regulation of invasive cell migration.  The role of mutant p53 in 

microvesicle biology has not yet been investigated despite the important role 

the oncogene has in over 50 % of cancer cases (Vogelstein et al., 2000).  

Therefore our interest became focused around mutant p53 and any potential 

role it has in microvesicle release, content and function. 

Microvesicle collection from non-small cell lung carcinoma H1299 cells either 

null for p53-/- or expressing mutant p53R273H was optimised.  The effect of 

p53R273H expression on microvesicle quantity, size (using electron microscopy and 

nanoparticle tracking analysis) and content (using proteomics and lipidomics), 

enabled both analysis of the microvesicle preparation purity, and observation of 

any effect mutant p53 expression may have upon microvesicle content. 
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3.3 Results 

3.3.1 Microvesicle isolation optimisation 

Initially we optimised the collection of microvesicles from H1299 cells, a human 

non-small cell lung carcinoma cell line, which are null for p53-/- or that have 

been engineered to express mutant p53R273H.  A previously-published method was 

used to collect microvesicles by differential centrifugation and to purify them 

further using a sucrose density gradient as described in chapter 2 (section 2.2.2) 

and diagrammatically reviewed in figure 3-2 (Thery et al., 2006a). 

 

Figure 3-2: Diagram depicting the protocol used for the isolation of microvesicles by 
differential centrifugation and further purification by a sucrose density gradient.   
H1299 cells null for p53-/- or expressing mutant p53R273H were grown to confluence over 48 hours in 
microvesicle depleted DMEM.  Conditioned medium was collected and subjected to centrifugation 
to remove live cells (300 g), dead cells (2000 g) and finally to remove cell debris and larger lipid 
membrane fragments (10,000 g).  Microvesicles were then pelleted using a 100,000 g 
centrifugation in a SW32 rotor.  The pellet was washed in PBS before a final pelleting centrifugation 
at 100,000 g, after which microvesicles were re-suspended in a small volume of PBS.  
Microvesicles were mixed with 1 ml of a 2.5 M solution of sucrose at the bottom of a 12 ml 
centrifugation tube.  Eleven layers of sucrose deceasing in concentration were added to the top of 
the microvesicle layer (from 2 M to 0.4 M sucrose using 20 nm HEPES as the diluent).  The 
gradient was spun at 200,000 g overnight using an SW40 rotor.  Microvesicles floated to a specific 
density within the gradient dependent upon microvesicle density.  Microvesicles were collected 
from each gradient fraction by a final centrifugation in PBS at 100,000 g. 
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3.3.1.1 Differential centrifugation 

Medium conditioned over 48 hours by H1299 p53-/- and p53R273H cells was 

collected and depleted of dead cells and cell debris by a series of centrifugation 

steps conducted at 300 g, 2000 g and 10,000 g.  Following this, microvesicles 

were pelleted by centrifugation at 100,000 g.  The expression of p53R273H did not 

affect the protein content of the microvesicle pellet collected form H1299 cells 

(figure 3-3). 

p53-/- p53R273H

0.00

0.05

0.10

0.15

g
/p

ro
te

in
/1

06
 c

el
ls

 

Figure 3-3: The protein content of microvesicles collected by differential centrifugation from 
H1299-p53-/- or H1299-p53R273H cells is not different.   
Microvesicles were pelleted from approximately 7x107 H1299 p53-/- and p53R273H cells by 
differential centrifugation and re-suspended in 200 µl PBS.  Subsequently the protein content of the 
microvesicle pellet was analysed using a Qubit protein assay (Life Technologies) according to 
manufacturer’s instructions.  The protein concentration of microvesicles released per 1x106 cells 
was calculated.  n=6.  Values are mean ± SEM. 

To determine whether p53R273H expression affects the microvesicle constitution, 

the abundance of several microvesicle markers was determined by Western 

blotting.  Figure 3-4 (A) shows that microvesicle markers CD63, HSPA8 and 

TSG101 were present in equal quantities in microvesicles released from H1299-

p53-/- and H1299-p53R273H cells.  We tried to identify other markers such as CD9 

and CD81 within the microvesicle pellet; however they were not present in 

sufficient quantities to be detectable (data not shown).  Importantly, there were 

no microvesicle markers present in the medium-only control condition.  This 

suggested that the differential centrifugation approach yielded a preparation of 

H1299 microvesicles that was effectively free of serum microvesicle 

contaminants. 
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It was next essential to investigate whether mutant p53 or any of its effectors 

such as RCP, DGKα, cMET and β1 integrin were detectable in microvesicles 

released by H1299-p53R273H cells (Rainero et al., 2012, Muller et al., 2013, Muller 

et al., 2009).  Integrin β1 was present in equal quantities in microvesicles 

collected from p53-/- or p53R273H cells.  However p53R273H, RCP, cMET and DGKα 

were not detectable in microvesicles from either H1299-p53-/- or p53R273H-

expressing H1299 cells (figure 3-4 A + B).  Finally as part of the preliminary study 

of microvesicle constituents, the presence of Rab27a and Rab35 (mediators of 

microvesicle release) in the microvesicle pellet was determined (Hsu et al., 

2010, Ostrowski et al., 2010).  Even though Rab27a and Rab35 were equally 

expressed in H1299-p53-/- and H1299-p53R273H cells, neither of these proteins 

were detected in microvesicles released from these cells (figure 3-4 B). 
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Figure 3-4: Western blot characterisation shows that there are no distinct differences in 
microvesicle marker or mutant p53 content in microvesicles derived from H1299 p53-/- and 
H1299-p53R273H cells.   
Cell lysates and microvesicles were collected from H1299 p53-/- and p53R273H expressing cells and 
prepared for Western blot analysis.  Cell lysates were harvested in 1 % SDS/50 mM Tris lysis 
buffer and microvesicles in PBS.  Both cell lysates and microvesicles were further lysed in 4x SDS 
loading buffer before being boiled at 95 °C for 5 minutes.  Samples were loaded and ran on pre-
cast 4 – 12 % gradient gels under non-reducing conditions (essential for detection of CD63 with 
this antibody).  Blots were probed for microvesicle markers (A) and proteins involved in the mutant 
p53 gain-of-function invasive phenotype (B).  n=3. 

3.3.1.2 Sucrose density gradient purification 

As protein aggregates and other membrane fragments can co-sediment with 

microvesicles during a 100,000 g centrifugation, we further purified the   

100,000 g differential centrifugation microvesicle pellet using sucrose density 

gradient flotation.  Microvesicles float in the gradient in a way that is dictated 

by their density, whereas protein aggregates sediment through sucrose (Colombo 

et al., 2014, Raposo et al., 1996).  Analysis of CD63-positive microvesicle 
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distribution across a sucrose gradient enabled investigation of whether there 

were specific sub-populations of microvesicles being released by H1299-p53R273H 

cells that were distinguishable from those released from H1299-p53-/- cells 

(figure 3-5).     

Sucrose density gradient centrifugation indicated that there was no reproducible 

difference in the density distribution of the CD63 positive microvesicle 

populations isolated from H1299-p53-/- cells and H1299-p53R273H-expressing cells.  

Finally it became apparent that the sucrose density gradient method, lead to a 

significant loss of material making further experimentation difficult.  Therefore 

we used differential centrifugation microvesicle pellets for future 

characterisation and experimentation.  

 

Figure 3-5: The distribution of CD63-positive microvesicles from H1299-p53-/- and H1299-
p53R273H-expressing cells on a sucrose gradient.   
Microvesicles were collected from H1299-p53-/- and p53R273H-expressing cells by differential 
centrifugation.  The microvesicle pellet was re-suspended in 1ml of 2.5 M sucrose.  This was put 
into the bottom of a 12 ml Beckman polyallomer centrifuge tube and 11 layers of sucrose 
decreasing in concentration to 0.4 M (diluent = 20 nM Tris) was carefully added onto the top of the 
microvesicle layer.  The gradient was subject to a 200,000 g centrifugation for 16 hours before 
gradient fractions were collected, diluted in PBS and pelleted by a final 100,000 g centrifugation.  
Each fraction was re-suspended in a small volume of PBS before being ran on a gel for Western 
blot analysis under non-reducing conditions, probing for CD63.  n=5. 

3.3.1.3 Electron microscopy 

To determine the purity and the size distribution of microvesicles collected from 

p53-/- and p53R273H-expressing H1299 cells, conditioned medium from each cell 

type was subjected to differential centrifugation and the resulting microvesicle 

pellet was then analysed using transmission electron microscopy.  Figure 3-6 

shows representative images of microvesicles that were fixed and subjected to 

negative staining (A) as well as immuno-gold staining for CD63 (D).  Upon 

visualisation cup-shaped microvesicles were present, and preparations were free 

of larger membrane fragments.  CD63 was also present on microvesicles, further 

supporting successful isolation. 
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As shown in figure 3-6 (A and B) there was a large variation in the size 

distribution of microvesicles (30-500 nm) which suggested that the differential 

centrifugation pellet was a mixture of plasma membrane-shed microvesicles 

(>100 nm) and MVB-derived exosomes (<100 nm).  Despite this variation, the 

average size of microvesicles released from p53-/- and p53R273H-expressing cells 

was 253 nm and 218 nm respectively, indicating that p53R273H-expressing H1299 

cells release microvesicles of a significantly smaller size than H1299-p53-/- cells.  

Indeed, size distribution analysis indicated that expression of p53R273H selectively 

promoted release of a population of microvesicles that were less than 50 nm in 

diameter (figure 3-6 C). 
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Figure 3-6: Transmission electron microscopy analysis of microvesicles.   
(A) Microvesicles were collected from H1299-p53-/- and H1299-p53R273H-expressing cells by 
differential centrifugation.  The microvesicle pellet was fixed in 2 % paraformaldehyde, adsorbed 
onto formvar electron microscopy grids and subsequently negatively stained with uranyl oxalate 
and methyl cellulose.  Transmission electron microscope FEI Tecnai T20 was used to acquire 
images running at 200 Kv.  Scale bars 200 nm.   (B & C) ImageJ was used to measure the 
diameter of each microvesicle in acquired images.  Data was used to plot the size distribution of 
measured microvesicles.  n=3.  Values are mean ± SEM.  Mann-Whitney.  ***p<0.0001.  (D) After 
microvesicle fixation and adsorption onto the grid, microvesicles were incubated with anti-CD63 
antibody or IgG isotype control followed by a 10 nm gold particle secondary, before the negative 
staining protocol was carried out.  Scale bars 200 nm.  n=3.  Data was acquired in collaboration 
with Margaret Mullin, electron microscopy department, University of Glasgow. 
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3.3.1.4 Nanoparticle tracking 

The NanoSight LM10 was used to carry out Nanoparticle tracking analysis of 

microvesicles released from p53-/- or p53R273H-expressing H1299 cells.  

Nanoparticle tracking analysis is described in detail in the chapter 2.  Briefly the 

technology uses light scattering (from a laser passing through an optical prism 

into the microvesicle sample) and the Brownian motion of particles, to measure 

the concentration and size of microvesicles within a fluidic sample.  Figure 3-7 

(A) shows a representative image of the particles detected in the microvesicle 

pellet by this technique.  Upon analysis on the NanoSight we found that 

microvesicles from H1299-p53-/- and H1299-p53R273H-expressing cells did not 

differ in their size distribution (B), average size (C) and particle concentration 

(D).  A PBS (microvesicle diluent) only control indicated that the background 

particle concentration was very low. 

Nanoparticle tracking analysis indicated that the average size of microvesicles 

from H1299-p53-/- cells was 161 nm, and from p53R273H-expressing H1299 cells 

this was 158 nm.  This is noticeably smaller than the diameters of 253 nm and 

218nm measured by electron microscopy for microvesicles released from p53-/- 

and p53R273H-expressing H1299 cells respectively.  Additionally the size 

distribution of microvesicles analysed using the NanoSight, suggests that very 

few structures in the microvesicle pellets are less than 50 nm in size, indicating 

a discrepancy between results from electron microscopy and nanoparticle 

tracking. 
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Figure 3-7: Nanoparticle tracking analysis of microvesicles released from p53-/- and p53R273H-
expressing H1299 cells.   
Microvesicles from H1299 p53-/- and H1299-p53R273H cells were collected by normal protocol and 
diluted 1:30 in PBS before applying to the NanoSight instrument (the use of which is described in 
chapter 2).  Over 1000 particles per condition, per experiment, were tracked to achieve quantitative 
results.  (A) A representative image of microvesicle particles from H1299-p53-/- cells as detected by 
the NanoSight instrument is shown.  The data acquired from particle tracking was used to 
determine the average size (B), particle concentration (C) and the size distribution (D) of 
microvesicles released by both p53-/- and p53R273H-expressing H1299 cells alongside a PBS only 
control.  n=3.  Values are mean ± SEM. 
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3.3.2 Characterisation of microvesicle constitution 

3.3.2.1 Lipidomic screen 

Several reports have identified an important role of p53 in lipid metabolism as 

well as a role of lipids in microvesicle biogenesis (Goldstein and Rotter, 2012, 

Trajkovic et al., 2008).  Therefore it seemed important to investigate the lipid 

constituents of microvesicles collected from p53-/- and p53R273H-expressing H1299 

cells. 

Liquid chromatography mass spectrometry (LCMS) lipidomic analysis of 

microvesicles collected from p53-/- and p53R273H-expressing H1299 cells indicated 

that they both had similar lipid content with no significant differences found 

between the two.  Figure 3-8 (A) shows the chromatograms from the negative 

and the positive ion LCMS modes.  The chromatograms represent very similar 

lipid detection signatures of microvesicles from p53-/- and p53R273H-expressing 

H1299 cells.  Principal component analysis (B) revealed that microvesicles from 

H1299-p53-/- and H1299-p53R273H cells did not group into specific clusters 

indicating they both have similar lipid composition and complexity.  

Additionally, the lack of clustering within a condition in the principal component 

analysis, suggests that there was some variation between technical replicates. 

The data set was subject to further in-depth analysis of specific species from 

lipid families in which we had a particular interest.  Any discreet differences 

between lipid species that could not be detected globally may be identified this 

way.  In particular, we were interested in closer analysis of diacylglycerol and 

phosphatidylinositol species due to their importance in the mutant p53 gain-of-

function invasive phenotype (Rainero et al., 2012).  Additionally ceramides and 

sphingomyelins were analysed as they have been found to be important in MVB-

derived exosome biogenesis (Trajkovic et al., 2008).  Despite some variation in 

the proportion of certain lipid species found in microvesicles from p53-/- and 

p53R273H-expressing H1299 cells, this in-depth analysis indicated that there were 

no significant differences in the categories of lipids that we had considered 

likely to contribute to mutant p53 function and/or microvesicle biogenesis (table 

3-3). 



Chapter 3  98 
 

 

Figure 3-8: Lipidomic screen of microvesicles released by p53-/- and p53R273H-expressing 
H1299 cells revealed that there is no significant difference in the microvesicle lipid 
composition.   
Microvesicles from H1299-p53-/- and H1299-p53R273H-expressing cells were isolated by differential 
centrifugation and subject to lipidomic analysis by Phil Whitfield and team in the University of 
Highlands and Islands.  We present here the positive and negative ion LMSC chromatography 
results (A) alongside the principle component analysis (PCA) (B).  n=5.  
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DAG Identification m/z Anova (P) 

Positive ion DG(36:0) 647.6 0.109 

DG(P-32:1) 551.5 0.125 

DG(36:5) 653.5 0.148 

DG(40:7) 689.5 0.170 

DG(36:1) 640.6 0.178 

Negative ion DG(44:11) 759.5 0.276 

DG(42:6) 677.6 0.593 

DG(36:4) 661.5 0.906 

DG(32:3) 543.4 0.944 

DG(42:7) 675.5 0.996 

Ceramide       

Positive ion LacCer(d32:1) 856.6 0.070 

GlCCer(d40:2) 836.6 0.074 

Cer(d40:1) 638.6 0.145 

Cer(d40:1) 638.6 0.147 

GalCer(d40:1) 806.6 0.156 

Negative ion Cer(d44:2) 674.6 0.128 

Cer(d44:1) 676.7 0.202 

Cer(t42:0) 664.6 0.321 

LacCer(d36:0) 912.6 0.341 

PE-Cer(d37:2) 715.5 0.346 

PI       

Positive ion PI(36:5) 879.5 0.095 

PI-Cer(t-36:0) 859.6 0.100 

PI(34:1) 854.6 0.155 

PI-Cer(t-36:0) 859.6 0.183 

PI(30:0) 800.5 0.250 

Negative ion PI(O-40:4) 921.6 0.067 

PI(36:8) 831.4 0.201 

PI(P-38:6) 887.5 0.246 

PI-Cer(d40:0) 910.6 0.300 

PI(O-34:4) 837.5 0.339 

SM       

Positive ion SM(d36:2) 751.6 0.187 

SM(d32:0) 699.5 0.317 

SM(d32:0) 699.5 0.361 

SM(d32:0) 699.5 0.369 

SM(d36:1) 731.6 0.377 

Negative ion SM(d40:3) 763.6 0.253 

SM(d42:3) 855.7 0.514 

SM(d38:1) 803.6 0.585 

SM(d36:1) 775.6 0.594 

SM(d40:3) 763.6 0.697 

Table 3-3:  In-depth analysis of lipid species detected in lipidomic screen.   
The data from the lipidomic analysis of microvesicles released by p53-/- and p53R273H-expressing 
cells was further analysed for specific lipid species within the diacylglycerol kinase (DAG), 
ceramide, phosphatidylinositol (PI) and sphingomyelin (SM) lipid families.  None of the species 
were significantly changed between p53-/- and p53R273H-expressing cells according to their ANOVA 
p-value.  n=5. 
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3.3.2.2 SILAC mass spectrometry screen 

We used mass spectrometry approaches to investigate the protein constituents 

of microvesicles from H1299-p53-/- and H1299-p53R273H-expressing cells.  A single 

isotope labelling by amino acids in culture (SILAC) mass spectrometry screen was 

carried out; this is described in more detail in chapter 2.  Microvesicles were 

collected from H1299 p53-/- and H1299-p53R273H-expressing cells that had been 

labelled with either heavy amino acid or medium amino acid isotopes.  Proteins 

present in microvesicles collected from these cells were SILAC-labelled and any 

unlabelled serum contaminants from the culture serum were able to be excluded 

from the analysis (experimental design is shown in figure 3-9).  Using SILAC 

labelled cells enabled the conditioned media from H1299-p53-/- and H1299-

p53R273H-expressing cells to be combined at an early stage during the 

microvesicle collection protocol, decreasing the amount of variability between 

the two conditions.  Finally, SILAC also provided a quantitative way of analysing 

the protein constituents of the microvesicles.   
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Figure 3-9: Experimental design of the microvesicle SILAC mass spectrometry analysis.  
H1299 p53-/- and H1299-p53R273H-expressing cells were cultured in SILAC medium containing 
heavy or medium amino acid isotopes.  Once cells had fully incorporated the amino acid isotopes, 
microvesicles were collected from them by differential centrifugation.  For the forward experiment, 
conditioned medium from H1299-p53-/- cells SILAC labelled with medium amino acids, and H1299-
p53R273H cells SILAC labelled with heavy amino acids, was mixed together and microvesicles were 
collected.  The relative abundance of protein constituents was quantitatively analysed by mass 
spectrometry.  The same protocol was carried out for the reverse experiment except H1299-p53-/- 
cells were SILAC labelled with heavy amino acids, and H1299-p53R273H cells were SILAC labelled 
with medium amino acids, to ensure that different isotope labelling did not alter the functions and 
physiology of the cells.  Forward and reverse microvesicle pellets were re-suspended in 6 M urea 
before they were reduced, alkylated and digested in preparation for mass spectrometry analysis.  
Samples were run directly on the Orbitrap Velos (LC-MS).  Swissprot and MaxQuant were used to 
analyse and quantify data. 

Having determined that the medium or heavy amino acid isotopes had been fully 

incorporated into cellular protein, microvesicles were collected and subjected to 

one-shot mass spectrometry.  Table 3-4 shows a list of proteins determined to be 

the most abundant from our screen: the most abundant proteins present were 

often membrane-associated proteins or microvesicle-associated proteins.    

Additionally table 3-5 shows a more comprehensive list of proteins detected in 

the screen (irrespective of their abundance).  There were numerous proteins 

present in the microvesicle preparations that are plasma membrane-associated, 

involved in membrane transport and additionally several microvesicle markers 

were detected.  These data of microvesicle protein constituents, support the 

fact that our preparations were microvesicular in nature and largely free of any 

contaminants (Colombo et al., 2014). 
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Protein log10 Intensity Protein log10 Intensity 

ITGA3 9.38868721 YWHAZ 8.739129122 

ITGB1 9.347369051 YWHAE 8.733165153 

ATP1A1 9.166666883 CYR61 8.712994644 

ENO1 9.09635376 CPNE8 8.696810544 

HSPA8 9.095587747 CD9 8.684908168 

MFGE8 9.09509958 HSPA6;HSPA7 8.641424531 

GAPDH 9.088455045 NT5E 8.63905796 

UBB 9.081239261 GNG12 8.627150705 

VIM 9.080590414 PFN1 8.620614869 

CD59 9.049838001 ANXA1 8.583765368 

EEF1A1;EEF1A1P5 9.047586357 SLC1A5 8.581858673 

MSN 9.024526714 EZR 8.575072326 

HIST1H4A 8.849585237 EPHA2 8.564050279 

CD44 8.843014641 UTRN 8.552558716 

PDCD6IP 8.841891062 PKM;PKM2 8.542078146 

HSP90AA1 8.816108671 ALDOA 8.54052968 

CD151 8.806078174 MYH9 8.533517862 

EEF2 8.784674339 STOM 8.531478917 

CFL1 8.769916167 TSPAN4 8.521778588 

CALM1;CALM2;CALM3 8.755569981 GNB1 8.504185317 

Table 3-4: The most abundant proteins in microvesicles detected by mass spectrometry. 
Microvesicles from p53-/- and p53R273H expressing cells were subject to mass spectrometry, the 
most abundant proteins as determined by their log10 intensity are listed.  Proteins highlighted in 
purple are known to be either transmembrane proteins, membrane-associated proteins or 
microvesicle related proteins. 
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Protein Group Protein Protein Group Protein 

Transmembrane ITGA6 Membrane transport ANXA6 

proteins involved ITGA4 ANXA1 

in adhesion ITGA3 ANXA5 

ITGB1 ANXA4 

ITGAV ANXA7 

ITGA6 ANXA2;ANXA2P2 

ITGA5 ANXA11 

ITGB5 FLOT2 

ITGB6 FLOT1 

ITGA2 ARF3;ARF1 

TSPAN6 ARF4 

TSPAN4 ARF6 

TSPAN14 ARF5 

TSPAN9 RAB23 

TSPAN5 RAB35 

TSPAN15 RAB10 

Other transmembrane LAMP1 RAB12 

proteins TFRC RAB5C 

EGFR RAB7A 

Antigen presentation MICA;MICB RAB11B;RAB11A 

Microvesicle markers CD63 RAB1A 

TSG101 RAB14 

HSPA8 RAB34 

CD9 RAB6A 

CD81 RAB8A 

Cytosolic protein HIST2H3A RAB13 

examples H2AFZ RAB22A 

RBBP7 RAB5B 

HIST2H2AA3 RAB18 

H2AFX RAB2A;RAB2B 

RRBP1 RAB3A 

  RAB3B 

  RAB32; 

  RAB8B 

  RAB1B 

  RAB21 

  CLTC 

  CLTA 

      CLTB 

Table 3-5: Proteins present in microvesicles released by H1299 cells. 
This table shows proteins, often enriched in microvesicles, that were found in the SILAC mass 
spectrometry screen of microvesicles from H1299 p53-/- and H1299-p53R273H-expressing cells 
(Colombo et al., 2014).  
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From the proteins identified in the mass spectrometry screen, gene enrichment 

analysis was carried out.  Figure 3-10 (A) shows the cellular compartment from 

which the microvesicle proteins were derived.  Over half of the identified 

proteins were classed as being membrane-derived, a positive indicator that the 

microvesicles are derived from membrane compartments.  Additionally there 

was particular enrichment in protein groups present in microvesicles from H1299 

cells that are involved in several pathways in which we are interested; including 

endocytosis, regulation of the actin cytoskeleton and focal adhesion dynamics 

(figure 3-10 B). 

 

Figure 3-10: Gene enrichment analysis of protein constituents of microvesicles from H1299 
p53-/- and H1299-p53R273H-expressing cells. 
(A) Genes associated with proteins identified in the mass spectrometry analysis were categorised 
from which cellular compartment they were known to reside (WebGestalt).  (B) The same data was 
used to complete KEGG pathway analysis.  The pathways in which proteins from the screen of 
microvesicles are enriched within are noted.  Highlighted in red are the protein groups in our 
microvesicles involved in pathways that may be in our interest.   
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The proteomic screen indicated that microvesicles from H1299-p53-/- and H1299-

p53R273H-expressing cells were very similar to one another in terms of their 

overall protein constituents (Table 3-6).  Although some proteins present in 

microvesicles collected from H1299-p53-/- and H1299-p53R273H-expressing cells 

were at apparently different levels, the changes were not reproducible between 

the forward and reverse experiments.  

Gene 
name 

Mol. 
weight 
[kDa] 

Ratio H/M 
normalized 
FWD 

1/[Ratio 
H/M 
normalized 
REV] 

FWD A 
significant 

REV A 
significant 

ANXA2 38.604 5.72 NaN + 

PODXL 58.635 -1.31 -0.70 + 

MLLT4 206.8 -0.09 0.96 + 

HSPG2 468.83 0.02 0.76 + 

CPM 50.513 NaN 0.64 + 

MME 85.513 -1.50 0.32 

COL12A1 333.14 -1.25 NaN 

MATN2 106.84 -1.24 -0.43 

CPNE3 60.13 -1.21 0.08 

FAM129A 103.13 -1.17 0.05 

SLC1A4 55.722 -1.13 -0.25 

PSEN1 52.667 -1.07 NaN 

MFGE8 43.122 -1.05 -0.03 

ITGA6 126.63 -1.03 NaN 

RFTN1 63.145 -0.99 0.00 

ADAM10 84.141 -0.99 0.03 

DSG2 122.29 -0.97 0.13 

KIF4A 139.88 -0.95 0.20 

CACNA2D1 124.57 -0.94 0.28 

FAS 37.732 -0.92 0.02     

Table 3-6: Microvesicle SILAC mass spectrometry data. 
This table depicts the top 20 most changed proteins in microvesicles from H1299 p53-/- vs H1299-
p53R273H cells.  Forward experiment = H1299-p53-/- cells labelled with medium amino acids and 
H1299-p53R273H cells with heavy amino acids.  Reverse experiment (an experimental replicate) = 
H1299-p53-/- cells labelled with heavy amino acids and H1299-p53R273H-expressing cells with 
medium amino acids.  The ratios are expressed in a log2 scale.  The inverse ratio is calculated for 
the reverse experiment prior to logging, for ease of interpretation.  Therefore if the ratio is a 
negative value in both the forward and reverse experiment, the protein is present at an increased 
level in microvesicles from H1299-p53-/- cells.  However none of these proteins were reproducibly 
or significantly different within microvesicles isolated from p53-/- or p53R273H-expressing H1299 
cells. 
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3.4 Discussion 

3.4.1 The impact of mutant p53 expression on microvesicle 
release 

Although other studies have investigated the effect of expression of several 

oncogenes on microvesicle release, this is the first study to investigate the role 

of mutant p53 expression on microvesicle release and content.  We chose to 

characterise and compare microvesicles released by H1299 cells null for p53-/- or 

those expressing mutant p53R273H. 

Analysis of the concentration, size and microvesicle marker content determined 

that similar microvesicle populations are released by each cell type regardless of 

mutant p53 expression.  Microvesicle markers TSG101, HSPA8 and CD63 

identified the presence of microvesicles in the 100,000 g pellet.  None of the 

markers are capable of discriminating between MVB-derived exosomes or those 

shed from the plasma membrane, although the majority of microvesicles are 

present at a density of 1.1 – 1.16 g/ml.  This is the density at which MVB-derived 

exosomes (which are <100 nm in diameter) are commonly found (Colombo et al., 

2014, Raposo et al., 1996).  However, transmission electron microscopy and 

nanoparticle tracking analysis data suggested that we are isolating microvesicles 

of such heterogeneity in terms of their size (from 30 nm to 500 nm) that it is 

likely that our microvesicle preparations contain both MVB-derived exosomes 

and plasma membrane-shed microvesicles.  Thus, it is possible that MVB-derived 

exosomes and plasma membrane-shed microvesicles released by H1299 cells are 

of similar densities to one another even though they are very different sizes.  

This would render it impossible to separate the two microvesicle populations 

from one another using sucrose density gradients.  Perhaps successful isolation 

of MVB-derived exosomes (<100 nm in size) by sucrose density gradients is 

dependent upon cell type, and relies upon cells that do not release large 

quantities of plasma membrane-shed microvesicles into the extracellular 

environment. 

Electron microscopy suggested that p53R273H-expressing H1299 cells release a 

population of microvesicles that have a smaller average size than those released 

by H1299-p53-/- cells.  Additionally a distinct population of microvesicles that 
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were less than 50 nm in diameter (which would most likely correspond to 

exosomes generated in MVBs) are released by p53R273H-expressing H1299 cells.  

However nanoparticle tracking analysis was unable to support this result and this 

may be due to detection limitations of this technique.  A previous study showed 

that nanoparticle tracking analysis can reliably detect and track microvesicles 

over 70 nm in size, our study agrees with this, as the NanoSight detects very few 

microvesicles that are less than 50 nm in our microvesicle preparations (Soo et 

al., 2012).  Therefore we conclude that, for the population of microvesicles we 

are interested in, nanoparticle tracking analysis is unlikely to be useful in 

supporting the electron microscopy analysis.  Additionally it is also important to 

remember that analysis of microvesicle characteristics by transmission electron 

microscopy has been reported to be complicated by artefacts that occur during 

sample preparation.  These artefacts are thought to introduce distortions into 

the microvesicle structure.  Indeed, because cryo-electron microscopy (which 

has a different sample work-up from transmission electron microscopy) yields 

microvesicle structures that appear to be spherical, it is thought that the cup-

shape ascribed to microvesicles using transmission electron microscopy may be 

erroneous (Raposo et al., 1996, Conde-Vancells et al., 2008, Raposo and 

Stoorvogel, 2013).  

Taken together, these data indicate that H1299-p53-/- and p53R273H-expressing 

H1299 cells release a heterogeneous population of microvesicles whose size 

distribution corresponds to a mixture of both MVB-derived exosomes and plasma 

membrane-shed microvesicles.  Electron microscopy analysis of microvesicle size 

suggests that a small population of microvesicles less than 50 nm in diameter are 

being specifically released, by p53R273H–expressing H1299 cells.  Although this is 

not conclusive and needs to be further supported by a different technique, I 

think that there is sufficient evidence to suggest that mutant p53 expression 

promotes the release of a specific sub-population of microvesicles.  

3.4.2 Impact of mutant p53 expression on microvesicle content 

3.4.2.1 Protein constituents 

Expression of mutant KRAS is thought to considerably alter the proteome of 

microvesicles.  Mutant KRAS itself is packaged into microvesicles alongside other 
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factors, and transferred from colon cancer cells to neighbouring non-

transformed cells which leads to increased invasive capacity of these 

neighbouring cells (Demory Beckler et al., 2013).  Additionally lipid raft-

associated microvesicles can transfer the EGFRvIII oncoprotein between glioma 

cells.  These EGFRvIII-rich microvesicles initiate oncogenic activity in recipient 

cells via activation of signalling pathways such as the ERK/MAPK and PI3K/AKT 

axes to allow morphological transformation and growth (Al-Nedawi et al., 2008).  

These studies set a precedent for the packaging of oncogene products and 

proteins with oncogenic properties into microvesicles.  However, despite the 

fact that p53R273H certainly qualifies as an oncogene product, we have been 

consistently unable to detect its presence in any of the microvesicle 

preparations used in this study.  Additionally, proteins such as α5β1, RCP, DGKα, 

and cMET, whose functions are associated with mutant p53’s gain-of-function, 

were either absent from microvesicles, or were present in equal quantities in 

microvesicles from p53-/- and p53R273H-expressing cells.  

The mutant p53 gain-of-function phenotype has been found to be dependent 

upon many other proteins.  Therefore, the next step was to carry out a 

comprehensive analysis of the microvesicle protein constituents.  However SILAC 

mass spectrometry showed no significant reproducible differences in the protein 

constituents present in microvesicles collected from p53-/- and p53R273H-

expressing cells. 

3.4.2.2 Lipid constituents 

There are reports indicating that wild-type p53 has a role in inhibiting lipid 

anabolism and promoting the catabolism of lipids (Goldstein and Rotter, 2012).  

Interestingly there is evidence that mutant p53 enhances lipid anabolism which 

contributes to breast cancer aggressiveness.  Mutant p53 promotes flux through 

the mevalonate pathway which is involved in cholesterol production, and 

upregulates the expression of genes involved in fatty acid synthesis (Freed-

Pastor et al., 2012).  However the lipidomic screen carried out on microvesicles 

released by p53-/- and p53R273H–expressing cells, showed that mutant p53 

expression had no significant impact upon their lipid composition.   
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Mutant p53 expression increases integrin recycling to promote an invasive 

phenotype in a DGKα-dependent manner.  DGKα exerts its effect via specific 

regulation of the 38:4 DAG species, but not total DAG levels (Rainero et al., 

2012).  We were interested to determine whether DAG levels were increased in 

microvesicles released from p53R273H–expressing cells which could account for 

any pro-migratory/functional effects that they may elicit in recipient p53-/- 

cells.  However upon closer analysis of the lipidomic data for specific lipid 

species, there was no 38:4 DAG species detectable in the microvesicles and 

overall DAG levels were similar in microvesicles from both p53-/- and p53R273H–

expressing cells. 

3.4.2.3 Screen limitations 

The global analysis of protein and lipid constituents of the microvesicles 

surprisingly revealed that mutant p53 expression has no detectable effect upon 

lipid composition and minimal effect on their protein constituents.  However, 

lack of clustering of technical repeats as demonstrated by the principal 

component analyses, suggested a degree of variation that would prevent 

detection of small differences in lipid or protein content.  This may be owing to 

losses incurred during the multi-step process of microvesicle isolation.  It may 

also be owing to there being insufficient quantity of relevant material obtained 

from the microvesicle preparations to attain the detection limits of the assays.  

Therefore experiments on a larger scale might be informative.  Finally, as it is 

possible that changes in the constitution of a minority subpopulation of 

microvesicles may be masked by more abundant microvesicle populations, it 

would be necessary to physically separate MVB-derived exosomes from plasma 

membrane-shed microvesicles in order to identify any effect that mutant p53 

may have on microvesicle constitution. 

Separation of microvesicle populations into MVB-derived exosomes and plasma 

membrane-shed microvesicles has been shown to be achieved using sucrose 

density gradients (Thery et al., 2006a, Raposo et al., 1996).  However, we have 

found that a microvesicle population with a very broad size distribution is 

present within a narrow band of density (1.1 g/ml – 1.16 g/ml) collected from 

the sucrose density gradient (data not shown).  This indicates that, in our hands, 

this technique is not capable of resolving MVB-derived exosomes from plasma 



Chapter 3  110 
 

membrane-derived microvesicles.  Microvesicle populations can alternatively be 

separated using immuno-affinity capture deploying antibodies for specific 

microvesicle markers or microvesicle proteins of interest (Tauro et al., 2012).  

This technique allows the enrichment and separation of a specific population of 

microvesicles from the overall population so that their composition can be 

analysed with greater sensitivity.     

3.4.2.4 Other microvesicle constituents 

Past studies have shown microvesicles to be rich in nucleic acids including DNA, 

mRNA and miRNA (Colombo et al., 2014).  Double stranded DNA encoding the 

mutants of KRAS and p53 has been identified on microvesicles isolated from 

pancreatic cancer cell lines and in serum from pancreatic cancer patients 

(Kahlert et al., 2014).  Therefore it would be interesting to check whether DNA 

encoding mutant p53 is present in microvesicles collected from p53R273H-

expressing cells.  RNA-containing microvesicles can transfer functional RNA to 

neighbouring cells where it alters the gene expression and phenotype (Valadi et 

al., 2007, Skog et al., 2008).  For example mRNA encoding the luciferase protein 

has been shown to be delivered to recipient cells via a microvesicle vector.  The 

transferred mRNA is then translated by the recipient cell to generate a 

functionally active product (Skog et al., 2008).  Additionally the transfer of 

mouse mRNA to human cells via microvesicles results in the translation of 

functional mouse proteins in the recipient human cells (Valadi et al., 2007). 

Finally the transfer of miRNA to recipient cells has been shown to supress gene 

expression in recipient cells (Montecalvo et al., 2012).  Preliminary data (not 

shown) indicated the presence of small RNAs in microvesicles from H1299 cells.  

As mutant p53 has a well-characterised role in reducing DICER expression and 

supressing mature miRNA processing, it would be interesting to identify whether 

mutant p53 expression causes differential sorting of small RNAs into 

microvesicles (Muller et al., 2014). 

3.4.3 Concluding remarks 

After initial characterisation of microvesicles from p53-/- and p53R273H–expressing 

cells we can confirm that we can isolate microvesicle preparations which are 

positive for several microvesicle markers and free of large membrane fragments 
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or debris contaminants.  The microvesicles collected from both p53-/- and 

p53R273H–expressing cells are released in similar concentrations.  Furthermore, 

the microvesicles are heterogeneous in size indicating that they are a mixture of 

MVB-derived exosomes and plasma membrane-shed microvesicles.  Although not 

supported by nanoparticle tracking analysis (due to detection threshold 

limitations), transmission electron microscopy indicated that mutant p53 

expression promotes the release of a specific sub-population of small 

microvesicles (<50 nm).  However extensive screening revealed that mutant p53 

expression has no global effect upon the microvesicle protein or lipid 

constituents.  Finally we have not been able to separate microvesicle 

populations of different size using sucrose density gradient flotation.  Other 

techniques such as immuno-affinity capture will need to be trialled in the future 

to enable further experimentation on separate microvesicle populations. 

There are technical limitations to the global analysis we have conducted on 

microvesicles from p53-/- and p53R273H-expressing cells, and the microvesicles 

have yet to be screened for their nucleic acid content.  However transmission 

electron microscopy indicates that mutant p53-expressing cells release a 

population of small (< 50 nm) microvesicles that is not detectable in medium 

conditioned by p53 null cells.  Therefore going forward, the next step was to 

ascertain whether microvesicles from cells with various p53 statuses have 

different functional effects in recipient cells.  In particular, we wanted to 

investigate whether microvesicles released by mutant p53-expressing cells are 

capable of influencing the behaviour of p53-/- cells.  Mass spectrometry indicated 

that the microvesicles contained protein groups related to actin dynamics, focal 

adhesions and endocytosis.  These processes are known to be altered by mutant 

p53-expression and contribute to enhanced integrin and receptor tyrosine kinase 

recycling and signalling resulting in an invasive migratory phenotype.  Therefore, 

we investigated the ability of microvesicles from mutant p53-expressing cells to 

evoke these phenotypic parameters in p53-/- recipient cells, and these findings 

are described in the following chapter.  
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4 Influence of microvesicles from mutant p53-
expressing cells on cell migration and invasion  

4.1 Introduction 

In chapter 3 we identified that expression of mutant p53 in H1299 cells has no 

detectable effect on the protein or lipid constituents of microvesicles.  Despite 

this, transmission electron microscopy indicated that mutant p53 expression 

promotes release of a sub-population of MVB-derived exosomes that are smaller 

than 50 nm in diameter.  The fact that these small microvesicles represent a 

minority of the total microvesicle population, would render it difficult to 

determine their constitution using the purification protocols and analytical 

approaches described in the previous chapter.  We hypothesise that this small 

microvesicle population may have distinct biological properties; we therefore 

wished to investigate whether microvesicles collected from mutant p53-

expressing cells are capable of transferring the mutant p53 gain-of-function 

phenotype to other cells. 

4.1.1 Non-cell-autonomous roles of p53 

The mechanisms by which p53 acts as a tumour suppressor in a cell-autonomous 

way are well established and already described in chapter 1.  There is also 

evidence indicating that p53 can promote tumour suppression through non-cell-

autonomous mechanisms, primarily by modifying transcription of genes for 

secreted proteins.  Additionally there are limited, although convincing, studies 

regarding p53’s involvement in MVB-derived exosome release.  However, there is 

only limited evidence for any non-cell-autonomous functions of mutant p53. 

4.1.1.1 Protein secretion 

One of the first studies reporting a non-cell-autonomous role of wild-type p53 

showed that p53 promotes thrombospondin-1 gene transcription, and the 

consequent secretion of its protein product, which leads to inhibition of 

angiogenesis in the extracellular environment (Dameron et al., 1994).  

Additionally, irradiation of cells activates p53 and increases p53-dependent 

transcription of genes for secreted proteins that are involved in cell cycle 

regulation.  Consequently, conditioned medium collected from p53-activated 
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cells has the ability to deliver growth suppressive stimuli to neighbouring cells, 

and this demonstrates a second non-cell-autonomous role of p53 in maintaining a 

tumour suppressive environment (Komarova et al., 1998).  Furthermore p53 

exerts non-cell-autonomous tumour suppression between different cell types.  

Exemplifying this, stromal fibroblasts that express p53 suppress cancer cell 

growth in vivo.  MCF7 breast cancer cells co-injected with p53-deficient 

fibroblasts into immunocompromised mice results in the growth of tumours that 

are larger and more aggressive by comparison with co-injection of MCF7 cells 

with fibroblasts expressing wild type p53 (Kiaris et al., 2005).   

Finally, non-cell-autonomous tumour suppressive roles of p53 are closely 

associated with cell senescence.  Hepatocellular carcinoma tumours regress 

upon re-activation of p53 expression.  This is attributed to p53-dependent 

activation of a cellular senescence programme.  In vitro, p53-mediated 

activation of cellular senescence leads to differentiation and the suppression of 

proliferation.  In vivo, activation of senescence is additionally characterised by 

the secretion of pro-inflammatory cytokines which recruit immune cells to the 

tumour site and initiate cancer cell clearance (Xue et al., 2007).  Furthermore, 

in a mouse model of liver damage, inhibition of the p53-induced senescence 

programme in hepatic stellate cells increases the rate of liver fibrosis and 

hepatocellular carcinoma formation (Lujambio et al., 2013).  This study by 

Lujambio and colleagues showed that wild-type p53 maintains a tumour 

suppressive environment through non-cell-autonomous control of macrophage 

polarisation.  Wild-type p53-expressing senescent liver stellate cells secrete 

factors into the extracellular environment that promote macrophage-mediated 

destruction of senescent cells, maintaining a tumour-suppressive environment.  

Upon removal of p53 expression, the stellate cells proliferate and secrete 

factors that polarise macrophages to a state which can promote proliferation of 

pre-malignant cells to support tumour formation (Lujambio et al., 2013).   

4.1.1.2 MVB-derived exosome release 

Wild-type p53 promotes release of MVB-derived exosomes into the extracellular 

environment.  The release of translationally-controlled tumour protein (TCTP) 

into the extracellular environment via MVB-derived exosomes is enhanced by 

tumour suppressor activated pathway 6 (TSAP6) expression, the transcription of 
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which is under the control of p53 (Amzallag et al., 2004).  Later studies 

confirmed that DNA damage-induced p53 activation, increases MVB-derived 

exosome release, and that this increase is dependent upon p53 activation of 

TSAP6 transcription (Yu et al., 2006).  TSAP6 null mice display abnormal 

reticulocyte maturation - a process in which MVB-derived exosome release is 

essential (Johnstone et al., 1991).  Additionally, the increased rate of MVB-

derived exosome release upon DNA damage is abrogated in TSAP6 null mice 

(Lespagnol et al., 2008). 

A recent study has identified that treatment of lung cancer cells with β-elemene 

(a naturally-occurring compound that is currently under investigation as a 

potential cancer therapy) inhibits cancer cell growth and increases cancer cell 

apoptosis.  After β-elemene treatment, cancer cells upregulate p53 expression 

which enhances anti-proliferative MVB-derived exosome release.  The treatment 

of other cancer cells with these MVB-derived exosomes supresses their 

proliferation (Li et al., 2014).  These studies identify a potentially important 

role that p53 may have in MVB-derived exosome release and function.   

4.1.2 Non-cell autonomous role of mutant p53 

One study so far has indicated a non-cell-autonomous role for mutant p53.  This 

study found that conditioned medium from H1299 cells stably expressing a 

ponasterone-A inducible mutant of p53 (p53R248Q) was able to promote 

invasiveness of p53 null H1299 and ZR751 cells (Neilsen et al., 2011).  Although 

this study identifies many mutant p53-activated genes that are, in principle, 

capable of influencing cell migration, the pro-invasive components of the 

‘mutant p53 secretome’ are yet to be identified.   

4.1.3 Aims 

This chapter aims to explore the non-cell-autonomous nature of the mutant p53 

gain-of-function phenotype.  We have investigated the impact of conditioned 

medium from mutant p53-expressing cells on the migratory and invasive 

characteristics (this includes directional cell migration, cell polarity, 

invasiveness and integrin trafficking) of p53 null cells, and the role that 

microvesicles play in these processes. 
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4.2 Results 

4.2.1 Mutant p53 expression in H1299 cells drives a gain-of-
function migratory and invasive phenotype 

Expression of mutant p53 in H1299 cells drives a gain-of-function migratory and 

invasive phenotype (Noske et al., 2009).  Figure 4-1 (A) shows that cells 

expressing p53R273H migrate with a lower forward migration index (FMI) in wound 

healing migration assays and that they have a higher invasive capacity as 

determined by inverted invasion assays (Figure 4-1 B) than do p53-/- cells, 

effectively reproducing previously published results.  The migration speed of 

H1299 cells expressing p53R273H was also increased compared to cells null for  

p53-/- (data not shown).  Once the protocols used to analyse cell migration and 

invasion were in place and working effectively, we wanted to investigate 

whether the gain-of-function migratory phenotype is truly cell-autonomous or if 

it can be transferred from cell to cell in a non-cell-autonomous fashion.  
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Figure 4-1: Mutant p53 expressing cells migrate with a lower forward migration index and 
display higher invasive capacity than cells null for p53.   
(A) H1299 p53-/- and p53R273H-expressing cells were plated onto plastic plates.  Once a confluent 
monolayer was formed, a wound was made using a pipette tip.  Time-lapse microscopy was used 
to image the migration of cells into the wound, with frames being captured every 10 minutes over 
16 hours at 10x magnification.  The movement of individual cells was tracked and the resulting data 
were used to measure the forward migration index using ImageJ (protocol further described in 
materials and methods).  Over 60 cells per condition were tracked in 3 independent experiments 
(unless otherwise stated).  This protocol was used for all subsequent wound-healing analyses.  
n=3.  Values are mean ± SEM.  Mann-Whitney.  ***p=<0.0001.  Representative track-plots (with 
the starting position of each cell aligned to the origin) are displayed to illustrate the migratory 
characteristics of p53-/- and p53R273H-expressing cells.  Scale bar = 100 µm.  (B) H1299 p53-/- and 
p53R273H-expressing cells were plated onto a transwell membrane and allowed to invade through a 
plug of Geltrex (a Matrigel substitute) supplemented with 25 µg/ml fibronectin towards a 
chemotactic gradient of serum supplemented with 10 ng/ml HGF.  72 hours later cells were 
visualised with 4 µg/ml Calcein-AM and confocal images were captured using an Olympus 
Fluoview FV1000 microscope at 20x magnification.  Optical sections were captured at 15 µm 
intervals, and are presented as a sequence in which the individual optical sections are placed 
alongside one another with increasing depth from left to right as indicated.  Invasiveness was 
quantitated by measuring the fluorescence intensity (as a percentage of total cell fluorescence) of 
cells penetrating the Geltrex to depths of 30 µm and greater using ImageJ.  Data is expressed as a 
fold change in invasion over 30 µm.  n=3.  Values are mean ± SEM.  Mann-Whitney.  
***p=<0.0001. 

4.2.2 Mutant p53 gain-of-function migratory phenotype is non-
cell-autonomous 

The non-cell-autonomous nature of the mutant p53 migratory phenotype was 

investigated using a co-culture experimental design.  H1299-p53-/- cells stably 

expressing GFP were cultured individually or together with H1299-p53R273H cells 

stably expressing mCherry (Muller et al., 2013).  After 72 hours of co-culture, 

cells were plated for wound healing analysis – the stable expression of GFP and 

mCherry in p53-/- and p53R273H-expressing cells respectively, allowed each cell 
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type to be individually tracked in co-culture experiments.  When cultured 

independently, the mCherry-expressing H1299-p53R273H cells displayed the 

mutant p53 gain-of-function migratory phenotype.  They migrated with 

significantly lower forward migration index (FMI) than the GFP-expressing p53-/- 

cells, indicating that expression of these fluorescent proteins did not alter the 

migratory behaviour of H1299 cells.  However, when p53-/- cells were mixed with 

mutant p53-expressing cells, the p53-/- cells migrated with a significantly 

reduced FMI, thus displaying a mutant p53 migratory phenotype (figure 4-2).  

This indicated that the mutant p53 migratory phenotype is not cell-autonomous 

and can be transferred to neighbouring cells. 
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Figure 4-2: Co-culture with p53R273H-expressing cells reduces the forward migration index of 
H1299-p53-/- cells.   
H1299-p53-/- cells stably expressing GFP and H1299-p53R273H cells stably expressing mCherry 
were cultured individually or were co-cultured for 72 hours as represented by fluorescent images, 
(scale bar=20 µm).  Cells were plated onto plastic surfaces and 24 hours later the confluent 
monolayer was wounded using a pipette tip.  The closure of the wound was imaged by time-lapse 
microscopy capturing bright-field, GFP and m-cherry fluorescent images every 15 minutes for 16 
hours.  Each cell type was identified by their GFP or mCherry expression and tracked using 
ImageJ.  Data were used to determine the forward migration index of cell migration.  Track plots 
representing the cell migration characteristics in each condition are shown (scale bar = 100 µm).  
n=3.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001. 

The ability of p53R273H-expressing cells to influence the FMI of p53-/- cells may 

require direct cell-cell contact, or may be transmitted via the release of 

secreted factor(s).  To distinguish between these two possibilities, we compared 

the ability of conditioned medium from p53-/- and p53R273H-expressing cells to 

influence the migratory behaviour of p53-/- cells (figure 4-3). 
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Figure 4-3: Schematic representation of conditioned medium experimental design.   
DMEM conditioned by donor H1299 p53R273H-expressing cells and p53-/- cells was collected and 
depleted of cell debris by differential centrifugation (300 g, 2000 g, and 10,000 g).  The conditioned 
medium was then used 1:1 with DMEM to treat recipient p53-/- cells for 72 hours.  Alternatively 
conditioned medium was subject to an extra centrifugation spin at 100,000 g to deplete the 
conditioned medium of any released microvesicles (microvesicle depleted conditioned medium - 
MVDCM) before using to pre-treat p53-/- cells.   After a 72 hour pre-treatment with conditioned 
medium, p53-/- cells were re-plated for further experimentation.   

Pre-treatment of p53-/- H1299 cells with medium conditioned by p53R273H-

expressing cells decreased their FMI to that normally displayed by mutant p53-

expressing cells, whereas conditioned medium from p53-/- cells was ineffective 

in this regard (figure 4-4 A).  Depletion of mutant p53 expression using siRNA 

(but not non-targeting siRNAs) yielded conditioned medium that did not alter the 

FMI of p53-/-  cells, indicating that it is mutant p53-expression (and not an 

unrelated characteristic of the H1299-p53R273H cell line) that is responsible for 

generating conditioned medium capable of altering the migratory behaviour of 

recipient cells (Figure 4-4 B).  It is well-established that the Golgi complex is 

orientated towards a cell’s leading edge (Thery et al., 2006b).  Previously 

published work has indicated that H1299 cells are able to effectively orientate 

their Golgi complex as they prepare to migrate into scratch-wounds, and that 

expression of mutant p53 significantly disturbs this indicator of cell polarity 

(Noske et al., 2009).  We confirmed this observation, and also found that pre-

treatment of p53-/- cells with medium conditioned by p53R273H-expressing cells 

was sufficient to significantly reduce the ability of p53-/- cells to orientate their 

Golgi towards scratch-wounds (Figure 4-4 C).  Thus, in regard of two key 

quantitative read-outs of cell migratory behaviour - FMI and Golgi orientation - 

the mutant p53-migratory phenotype may be communicated between cells via 

factor(s) that are released into the medium.   

Wild–type p53 has a role in MVB-derived exosome release (Yu et al., 2006, 

Lespagnol et al., 2008).  To test whether microvesicles might be responsible for 
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transfer of mutant p53’s gain-of-function migratory phenotype, p53-/- H1299 

cells were pre-treated with medium conditioned by either p53-/- or p53R273H-

expressing cells which had been depleted of microvesicles by differential 

centrifugation (figure 4-4 D).  Depletion of microvesicles significantly reduced 

the ability of conditioned medium collected from p53R273H cells to reduce the FMI 

of p53-/- H1299 cells, indicating the likelihood that the released factor(s) 

responsible for transfer of mutant p53’s migratory gain-of-function is/are 

associated with microvesicles. 
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Figure 4-4: Conditioned medium from p53R273H-expressing cells transfers the mutant p53 
gain-of-function migratory phenotype to p53-/- cells.   
(A) Conditioned medium was collected from donor p53-/- and p53R273H-expressing cells and used to 
treat p53-/- recipient cells for 72 hours.  Cells were then re-plated and allowed to grow to confluence 
overnight.  Confluent monolayers were wounded and migration of cells into the wound was 
followed by time-lapse microscopy as described in figure 4-1.  n=4.  Values are mean ± SEM.  
Kruskal Wallis.  ***p=<0.0001.  (B) p53R273H cells were subject to AMAXA transfection in the 
absence of siRNA (si-mock), with non-targeting siRNA (si-nt) or siRNAs targeting p53 (si-p53).  
These donor cells were then allowed to condition medium for 72 hours.  Conditioned medium 
(mixed 1:1 with DMEM) was used to treat recipient p53-/- cells for 72 hours before they were plated 
on plastic.  The confluent monolayer was wounded 24 hours later and migration of cells closing the 
wound was imaged by time-lapse microscopy as in figure 4-1.  n=3.  Values are mean ± SEM.  
Kruskal Wallis.  ***p=<0.0001.  The ability of siRNAs targeting p53 to reduce levels of mutant p53 
in H1299 cells was confirmed using Western blotting.  (C) Conditioned medium (CM) collected from 
p53-/- and p53R273H-expressing cells were used to treat p53-/- cells for 72 hours.  Cells were re-
plated and the confluent monolayer was wounded 24 hours later.  Cells were allowed to migrate for 
2 hours before fixing using 4 % PFA, permeabilising with 0.5 % TritonX-100 and staining for F-actin 
(phalloidin), Golgi (GM130) and the nucleus (DAPI).  Images were acquired by confocal 
microscopy at 60x magnification and the Golgi orientation with respect to the nucleus was scored.  
n=3.  Values are mean ± SEM.  Scale bar =  20 µm.  (D) p53-/- cells were treated with conditioned 
medium depleted of microvesicles collected from p53-/- and p53R273H-expressing cells, for 72 hours.  
The pre-treated cells were plated on plastic and a confluent monolayer was wounded 24 hours 
later.  The migration of cells closing the wound was imaged by time-lapse microscopy as in figure 
4-1.  n=3.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001.  



Chapter 4  122 
 

4.2.3 Microvesicles released by p53R273H-expressing cells transfer 
the mutant p53 migratory phenotype to p53-/- cells 

Having determined that microvesicles must be present within conditioned 

medium in order for mutant p53’s migratory phenotype to be transferred to p53 

null cells, we next wanted to establish whether the microvesicles isolated from 

p53R273H expressing cells can function independently of other secreted factors 

within the conditioned medium.  Therefore we isolated microvesicles from p53-/- 

and p53R273H-expressing cells and compared their ability to alter the migratory 

behaviour of p53-/- cells.  The experimental design is shown in figure 4-5. 

 

Figure 4-5: Diagram depicting the experimental design of microvesicle pre-treatment 
experiments.  
Microvesicles were collected from p53-/- and p53R273H cells by differential centrifugation.  
Subsequently microvesicles were added to p53-/- cells for 72 hours before cells were re-plated for 
further experimentation. 

Pre-treatment of p53-/- H1299 cells with microvesicles from p53R273H-expressing 

cells reduced their FMI such that their movement was indistinguishable from that 

of mutant p53-expressing cells, whereas microvesicles from p53 null cells were 

ineffective in this regard (figure 4-6 A + B).  Another characteristic of mutant 

p53 expressing cell migration is that they migrate with increased speed.  As well 

as decreasing the FMI of cell migration, treatment of p53-/- cells with 

microvesicles collected from p53R273H-expressing cells also increases the cell 

migration speed of p53-/- cells (data not shown).  However, because the ability 

of conditioned medium from mutant p53-expressing cells to influence the 

migration speed of p53 null cells was not reproducibly demonstrable, I have 

elected not to present data pertaining to migration speed and have focussed on 

the consistently reproducible changes that I have observed in the FMI of 

conditioned medium and microvesicle-treated cells.     

To determine whether the effect we observed was restricted to one particular 

p53 mutation (in this case R273H within the DNA binding region of p53), we 
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purified microvesicles from a H1299 cell line expressing the R175H p53 mutant, 

which is a conformational mutation that lies outside the DNA binding region 

(Freed-Pastor and Prives, 2012), and tested their ability to influence the 

migration of p53-/- cells.  Figure 4-6 (C) shows that microvesicles collected from 

H1299 cells expressing p53R175H were as effective as those released by p53R273H-

expressing cells in reducing the FMI of p53-/- cells.  Furthermore, we wished to 

determine whether microvesicles from mutant p53-expressing cells were able 

influence the migratory behaviour of cells other than H1299s. Treatment of 

A2780 ovarian cancer cells (which express wild-type p53) with microvesicles 

from H1299-p53R273H-expressing cells significantly reduced the FMI of A2780 cells 

during migration into scratch-wounds, whereas microvesicles from H1299-p53-/- 

cells were ineffective in this regard (Figure 4-6 D).   

We wished to determine whether cell types other than the H1299 cell line were 

able to produce migration-altering microvesicles upon manipulation of their p53 

status.  To address this, we used MCF7 breast cancer cells which express wild-

type p53 to generate an MCF7 cell line in which endogenous p53 expression was 

disrupted using CRISPR gene editing.  We then used a retroviral expression 

system to express the R273H mutant of p53 in these MCF7-p53 null cells.  

Western blotting confirmed the CRISPR-mediated deletion of p53 in MCF7 cells, 

and showed the expression levels of both wild-type and mutant p53 in the MCF7 

cells (Figure 4-6 F).  We then collected microvesicles from the parental MCF7 

cells and our engineered MCF7-p53-/- and MCF7-p53R273H cells and measured the 

influence of these on migration of H1299-p53-/- cells into scratch-wounds.  Pre-

treatment with microvesicles from mutant p53-expressing MCF7 cells 

significantly reduced the FMI of H1299-p53-/- cells migrating into scratch-wounds 

to much the same extent as did microvesicles from H1299-p53R273H cells, whereas 

microvesicles from parental MCF7 cells or MCF-p53-/- cells were ineffective in 

this regard (Figure 4-6 E).  Taken together, these data indicate that mutant p53 

is able to promote the generation of microvesicles through which a bona fide 

gain-of-function effect may be transmitted to other cells.  Conversely, deletion 

of wild-type p53 does not significantly influence the ability of a cell to generate 

microvesicles that influence the FMI of other cells.   
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Figure 4-6: Microvesicles collected from p53R273H and p53R175H expressing cells can transfer 
the mutant p53 migratory phenotype to p53-/- cells.   
(A + B) Microvesicles were collected from p53-/- and p53R273H H1299 cells and used to pre-treat 
p53-/- H1299 cells for 72 hours.  Pre-treated cells were re-plated on plastic and their migration 
closing a wound analysed as in figure 4-1. Track-plots represent the migratory phenotypes of each 
condition (scale bar = 100 µm).   n=4.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001.  
(C) Microvesicles were collected from p53-/- and p53R175H expressing H1299 cells and protocol 
followed as in A & B.  n=2.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001.  (D) A2780 
cells were treated with microvesicles collected from H1299 cells null for p53-/- or H1299 cells 
expressing mutant p53R273H.  H1299 cells were plated on plastic and the confluent monolayer 
wounded 24 hours later.  Migration of cells closing the wound was analysed as in figure 4-1.  n=3.  
Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001.  (E) H1299 p53-/- cells were pre-treated 
with microvesicles collected from parental MCF7 (p53wt) cells, MCF7 cells with p53 deleted using 
CRISPR gene editing (p53-/-) and MCF7-p53-/- cells with retrovirally expressed mutant p53 
(p53R273H).  Again the migration of H1299 cells closing the wound was analysed as in figure 4-1, 
track-plots are shown to represent the migration of H1299 p53-/- cells in each condition.  Scale bar 
= 100 µm.  n=4.  Values are mean ± SEM.  Kruskal Wallis.  *p=0.01.  **p=0.001.  ***p=<0.0001. (F)  
The p53 status of parental and genetically engineered MCF7 cells is shown by Western blotting.  
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The FMI of cells migrating into scratch-wounds can be measured relatively 

quickly and easily, and the ability of mutant p53 to alter this metric of migratory 

behaviour greatly facilitated our identification of microvesicles as a potential 

vector for mutant p53’s pro-invasive gain-of-function.  However, in order to fully 

test the postulate that microvesicles can transfer mutant p53’s pro-invasive 

gain-of-function we needed to perform a more comprehensive analysis of the 

cellular functions known to be influenced by mutant p53.  Expression of p53R273H 

has previously been shown to increase the rate at which internalised α5β1 

integrin, EGFR and cMET are returned (or recycled) to the plasma membrane and 

this is thought, in turn, to drive increased invasiveness in 3D microenvironments  

(Noske et al., 2009, Muller et al., 2013).  We therefore pre-treated H1299-p53-/- 

cells with microvesicles from either p53-/- or p53R273H-expressing cells.  Following 

this, receptors were labelled at the plasma membrane and allowed to internalise 

into endosomes for 30 minutes.  We then measured the rate at which these 

internalised receptors returned to the cell surface.  In H1299 p53-/- cells pre-

treated with microvesicles collected from p53R273H-expressing cells, α5β1, EGFR1 

and cMET returned to the plasma membrane significantly more rapidly than in 

p53-/- cells pre-treated with p53-/- microvesicles (Figure 4-7 A).  To determine 

whether this marked alteration to receptor trafficking was accompanied by 

increased invasion, we measured the ability of microvesicle pre-treated cells to 

penetrate Geltrex (a Matrigel substitute).  Indeed, H1299 p53-/- cells pre-treated 

with microvesicles from p53R273H-expressing cells invaded significantly further 

into Geltrex plugs than did the same cells pre-treated with microvesicles from 

p53-/- cells (Figure 4-7 B).  

It is thought that estimates of invasiveness using assays such as the inverted 

invasion assay may be influenced by the proliferation rate of the cells plated 

into the assay.  We, therefore, determined whether microvesicle pre-treatment 

altered growth of H1299 cells.  However, H1299 cells proliferated at identical 

rates irrespective of their mutant p53 status and whether or not they had been 

pre-treated with microvesicular preparations from p53-/- or p53R273H-expressing 

cells (Figure 4-7 C). 

Taken together, these data indicate that microvesicles can transfer mutant 

p53’s pro-invasive and migratory gain-of-function behaviour between cells 

(without affecting their proliferative capacity), and that this is likely mediated 
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via the ability of microvesicles from mutant p53-expressing cells to increase 

recycling of integrins and RTKs in recipient cells. 

 

Figure 4-7: Microvesicles from p53R273H expressing cells increase the receptor recycling rate 
and invasive capacity of p53-/- cells.   
(A)  p53-/- H1299 cells were treated with microvesicles collected from p53R273H-expressing or p53-/- 
H1299 cells for 72 hours.  Cells were then re-plated onto 10cm plastic dishes and allowed to grow 
to 80 % confluence for 72 hours.  Surface proteins were biotinylated using NHS-SS-biotin at 4 °C 
and allowed to internalise for 30 minutes at 37 °C.  Biotin remaining at the cell surface was 
removed by cell surface reduction at 4°C, and internalised receptors were allowed to recycle to the 
plasma membrane for the indicated times.  A second reduction step was used to remove biotin 
from receptors that had returned to the cell surface and the amount of biotinylated receptors (α5β1, 
EGFR1, and cMET) remaining within the cells was determined by capture-ELISA.  n=3.  Values are 
mean ± SEM.  Two way ANOVA.  **p=<0.01.  ***p=<0.001.  (B) p53-/- H1299 cells were pre-treated 
with microvesicles collected from p53-/- and p53R273H expressing H1299 cells before being plated on 
a transwell membrane for an inverted invasion assay as described in figure 4-1.  Briefly cells were 
allowed to invade through a Geltrex plug supplemented with 25 µg/ml fibronectin for 72 hours.  
Cells were visualised and imaged using a 4 µg/ml Calcein-AM treatment and confocal microscopy 
acquiring images every 15 µm starting from the transwell membrane.  Olympus Fluoview FV1000 
microscope was used at 20x magnification.  n=4.  Values are mean + SEM.  Mann-Whitney.  
*=p<0.0249.  (C) p53-/- cells were treated with microvesicles collected from either p53-/- or p53R273H-
expressing cells and plated at a low density to assess proliferation.  Cells were counted every day 
for 4 days until cells reached confluence.  n=2.  Values are mean ± SEM.     
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4.2.3.1 Effect of microvesicles from p53R273H-expressing cells on mRNA 
expression 

After firmly establishing that microvesicles released by p53R273H expressing cells 

have the ability to transfer the mutant p53 gain-of-function invasive migratory 

phenotype to cells null for p53, it was subsequently necessary to examine the 

mechanism by which microvesicles from p53R273H cells exert their effects.  

Expression of p53R273H can alter the gene expression of cells due to its decreased 

capacity to bind DNA and to act as a transcription factor (O'Farrell et al., 2004, 

Cho et al., 1994).  Some of the transcriptional changes exerted by mutant p53 

expression contribute to gain-of-function phenotypes (Di Agostino et al., 2006).  

The mechanism through which this occurs is discussed in detail in chapter one 

but, as an example, our lab has found that mutant p53 expression can exert its 

gain-of-function invasive phenotype by inhibiting the transcriptional activity of 

tumour suppressor p63 (Muller et al., 2009).  Therefore we investigated whether 

microvesicles from p53R273H-expressing cells are able to potentially alter the 

gene expression profile of p53-/- cells.  An in-depth RNASeq analysis showed that 

p53-/- and p53R273H cells have very different patterns of mRNA expression from 

one another.  However, in spite of marked alterations to their receptor 

trafficking and cell migratory and invasive characteristics, H1299 cells treated 

with microvesicles from p53R273H-expressing cells displayed a mRNA expression 

profile that was indistinguishable from cells treated with microvesicles from  

p53-/- cells.  This suggested that the transferred mutant p53 gain-of-function 

migratory phenotype was not attributable to any overt changes in gene 

transcription (figure 4-8). 
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Figure 4-8: Microvesicles from mutant p53-expressing cells are not able to detectably alter 
the mRNA expression profile of H1299 cells. 
H1299 cells null for p53-/- were treated with microvesicles from p53-/- or p53R273H- expressing H1299 
cells for 72 hours.  Cells were then re-plated and RNA was collected 24 hr later.  RNA 
concentration was determined by Qubit assay and its quality by Agilent bioanalysis.  4 µg RNA was 
used to create cDNA libraries for next generation RNA sequencing using the Genome Analyser 
11x.  Shown is a heatmap of the mRNA transcripts that are the most significantly changed between 
p53-/- and p53R273H-expressing H1299 cells.  n=4.  RNA sequencing and bioinformatic analysis was 
performed in collaboration with Billy Clark and Gabriela Kalna at the Beatson Institute for Cancer 
Research. 
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4.2.3.2 RCP and DGKα are required for the response of H1299 cells to 
microvesicles from mutant p53-expressing cells, but not for 
generation of migration-altering microvesicles.     

Many aspects of the mutant p53 migratory phenotype, including increased 

integrin and RTK recycling, reduced FMI, and increased invasiveness, are 

dependent upon RCP.  Moreover, we have shown that the function of RCP relies 

on DGKα to generate a source of PA which associates with RCP’s C2 domain to 

allow docking of recycling vesicles with the plasma membrane.  Thus it is 

possible that RCP and DGKα contribute to the generation of microvesicles which 

are capable of transferring mp53’s gain-of-function migratory phenotype.   To 

investigate this, we used siRNA to knock down RCP or DGKα in H1299-p53R273H 

cells and tested the ability of conditioned medium collected from these donor 

cells to influence migration of recipient H1299-p53-/- cells.  This indicated that 

knockdown of either RCP or DGKα did not affect the ability of mutant p53-

expressing cells to release microvesicles with the capacity to reduce the FMI of 

p53-/- cells (figure 4-9 A + B).  In view of this we proposed that RCP and DGKα 

may be required for recipient cells to mount a migratory response to 

microvesicles from mutant p53-expressing cells.  To investigate this, we used 

siRNA to silence RCP expression, or a pan DGK inhibitor (R59022) to inhibit DGK 

activity in recipient H1299 cells, and tested their ability to respond to 

microvesicles from mutant p53-expressing cells.   This indicated that siRNA of 

RCP or pharmacological inhibition of DGKα ablated the ability of p53-/- recipient 

cells to reduce their FMI in response to microvesicles from mutant p53-

expressing cells, whereas non-targeting siRNAs or a vehicle control (DMSO) were 

ineffective in this regard (Figure 4-9 C + D).  Taken together these data indicate 

that DGKα and RCP are not required in p53R273H-expressing cells for the 

production of microvesicles with the capacity to evoke the mutant p53 gain-of-

function phenotype.  However, H1299-p53-/- cells do need to express RCP and 

DGKα in order to alter their cell migration in response to microvesicles from 

mutant p53-expressing cells.  
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Figure 4-9: RCP and the activity of DGKα are required for response of H1299 cells to 
microvesicles from mutant p53-expressing cells.   
(A + B) p53R273H expressing H1299 cells were transfected with siRNAs targeting RCP (si-RCP), 
DGKα (si-DGKα) and a non-targeting control (si-nt).  Conditioned medium collected from these 
cells was used to treat p53-/- H1299 cells for 72 hours.  The pre-treated cells were then plated onto 
plastic, allowed to grow to confluence and then scratch-wounded.   Cell migration during wound 
closure was analysed as described in figure 4-1.  Representative Western blot images are shown 
to demonstrate RCP and DGKα knockdown at 24, 48 and 72 hours after transfection of donor 
p53R273H-expressing cells with siRNAs targeting RCP or DGKα or a non-targeting control (si-nt).  
n=3.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001.  (C) p53-/- H1299 cells were treated 
with microvesicles from p53R273H-expressing H1299 cells for 72 hours.  Cells were then transfected 
with si-RNAs targeting RCP (si-RCP) or a non-targeting control (si-nt) before being plated onto 
plastic.  The confluent monolayer was then wounded and migration of cells analysed as in figure 4-
1.  n=3.  Values are mean ± SEM. Kruskal Wallis.  ***p=<0.0001.  (D) p53-/- cells were treated with 
microvesicles from p53-/- or p53R273H-expressing cells for 72 hours.  Cells were plated on plastic 
and the confluent monolayer was wounded and treated with 10 µM of a DGK inhibitor (R59022) or 
vehicle control (DMSO).  The migration of cells closing the wound was tracked as in figure 4-1.  
n=4.  Values are mean ± SEM.  Kruskal Wallis.  ***p=<0.0001. 
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4.2.3.3 Rab35 (but not Rab27) is required for production of migration-
altering microvesicles  

Both Rab27a and Rab27b have important roles in the release of MVB-derived 

exosomes (Ostrowski et al., 2010).  We, therefore, determined whether 

expression of Rab27a and Rab27b are required for donor p53R273H-expressing cells 

to produce conditioned medium that is capable of influencing the migration of 

H1299 recipient cells.  Combined knockdown of Rab27a (verified by Western 

blotting) and Rab27b (verified using qPCR) did not affect the ability of mutant 

p53-expressing cells to produce conditioned medium that was capable of 

suppressing the FMI of p53-/- H1299 cells (figure 4-10 A - C).  We, therefore, 

investigated other Rab subfamily GTPases that have been shown to influence 

microvesicle production.  Although less well-characterised than the Rab27s, 

Rab35 is known to influence cell migration and invasion (Zhu et al., 2013, Allaire 

et al., 2013) and one report indicates that Rab35 contributes to MVB-derived 

exosome production (Hsu et al., 2010).  We knocked down Rab35 in mutant p53-

expressing donor cells for 72 hours (Figure 4-10 F) and found that this 

significantly reduced the ability of conditioned medium (Figure 4-10 D) and 

microvesicles (Figure 4-10 E) collected from these cells to suppress the FMI of 

recipient H1299 cells.  Taken together, these data indicate that Rab35 is 

involved in production of microvesicles that contribute to the transfer of mutant 

p53’s migratory gain-of-function between cells.  By contrast, Rab27s, which are 

the Rab-GTPases with the most well-characterised role in microvesicle 

generation and release, do not contribute to this process. 
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Figure 4-10: Rab35 (but not Rab27) is required for release of migration-altering 
microvesicles from mutant p53-expressing cells.   
Conditioned medium (A & D) or microvesicles (E) were collected from p53R273H-expressing H1299 
cells which had been AMAXA transfected with siRNAs targeting Rab27a and Rab27b (si-
Rab27a/b), Rab35 (si-Rab35) or a non-targeting control (si-nt).  Conditioned medium or 
microvesicles from these cells were used to treat p53-/- H1299 cells for 72 hours before re-plating 
on plastic to analyse the migration of cells closing the wound as in figure 4-1.  n=3.  Values are 
mean ± SEM. Kruskal Wallis. **p=<0.001.  ***p=<0.0001.   (B) Representative Western blot of si-
Rab27a silencing in p53R273H-expressing cells over 72 hours.  (C) Representative mRNA 
knockdown of Rab27b in p53R273H-expressing cells as determined by quantitative PCR (q-PCR).  
Briefly RNA was collected at 24, 48 and 72 hours after siRNA transfection.  RNA was quantified 
and 1 µg was used to synthesise cDNA. 1 µl of cDNA was used for q-PCR with quantitect GAPDH 
control primers or Rab27b primers and Syber Green master mix.  (F) Representative Western blot 
showing Rab35 silencing at 24, 48 and 72 hours after siRNA transfection of p53R273H-expressing 
cells. 
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Despite our observations that they are functionally distinct, microvesicles 

released from Rab35 silenced p53R273H-expressing cells, were physically 

indistinguishable from microvesicles collected from cells that express Rab35.  

Indeed, as shown in figure 4-11, knockdown of Rab35 did not alter the protein 

content (Qubit assay) (A), size (B + C) and particle concentration (D) (as 

determined by nanoparticle tracking analysis) of microvesicles purified by 

differential centrifugation.  It is possible that any differences in the release of a 

minority sub-population of microvesicles, is not detectable using these 

approaches (as discussed in chapter 3).  Alternatively Rab35 may have a role in 

sorting a specific functional cargo into the microvesicles rather than changing 

the quantity or size distribution of microvesicles released by p53R273H-expressing 

cells. 

 

Figure 4-11:  Rab35 silencing has no detectable influence on the number or size of 
microvesicles released from mutant p53-expressing cells.   
Microvesicles were isolated from p53R273H-expressing cells transfected with siRNAs targeting 
Rab35 (si-Rab35) or a non-targeting control (si-nt).  Microvesicle protein content was determined 
using Qubit assay (A).   NanoSight nanoparticle tracking analysis was used to determine the mean 
microvesicle size (B), size distribution (C) and particle concentration (C).  n=2.  Values are mean ± 
SEM. 
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4.2.3.4 Podocalyxin is required for production of microvesicles that 
influence receptor trafficking and migration in recipient cells  

Our RNA sequencing analysis indicated that microvesicles from mutant p53-

expressing cells influenced the endocytic trafficking and migratory 

characteristics of p53 null cells without detectably altering gene expression in 

these recipient cells.  This indicated the possibility that microvesicles from 

mutant p53-expressing cells may act directly on the endomembrane system of 

recipient cells.  Mass spectrometry indicated that podocalyxin (PODXL), a highly-

charged sialomucin which is known to directly influence membrane organisation, 

was detectable in microvesicles isolated using differential centrifugation 

(Chapter 3).  Furthermore, we reasoned that if PODXL was involved in functional 

microvesicle biogenesis, or if it were to be a candidate cargo protein that is 

packaged into microvesicles in a Rab35-dependent manner then it might, at 

least at some point in its progress through the endocytic pathway, associate 

physically with Rab35.  To test for physical association between Rab35 and 

PODXL, we expressed GFP-tagged Rab35 in H1299 cells, immunoprecipitated this 

fusion protein using an antibody recognising GFP, and looked for the presence of 

PODXL in these immunoprecipitates using Western blotting.  This analysis clearly 

indicated that PODXL co-immunoprecipitated with GFP-Rab35, but was not 

present in control immunoprecipitates in which cells were not transfected with 

GFP-Rab35 (Figure 4-12). 

   

Figure 4-12: Podocalyxin co-immunoprecipitates with GFP-Rab35. 
H1299 cells were transfected with GFP-Rab35 or GFP control.  24 hours following transfection, 
cells were lysed in a buffer containing 0.15% Tween-20.  GFP was immunoprecipitated (IP) from 
lysates using magnetic beads conjugated to an antibody recognising GFP.  Immunoprecipitated 
proteins were separated by SDS-PAGE, GFP-Rab35 and podocalyxin were detected by Western 
blotting (WB).  n=2.  
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This potential physical association between Rab35 and PODXL lead us to 

investigate whether PODXL contributed to the ability of p53R273H-expressing cells 

to generate microvesicles with the capacity to influence integrin receptor 

trafficking and cell migration.  Microvesicles were purified from mutant p53-

expressing cells in which PODXL had been knocked down using siRNA (Figure 4-13 

C).  Microvesicles from PODXL knockdown H1299-p53R273H cells had a significantly 

reduced capacity to promote integrin recycling and to reduce the FMI of p53-/- 

cells, indicating that PODXL is a key factor responsible for transmitting mutant 

p53’s gain-of-function phenotype between cells (Figure 4-13 A + B). 

In addition to looking at microvesicle-mediated transfer of receptor trafficking 

and migratory characteristics to other cells, we also investigated the 

consequences of PODXL knockdown on the behaviour of the mutant p53-

expressing cells themselves.  Interestingly, knockdown of PODXL strongly 

suppressed integrin recycling in H1299-p53R273H cells to levels that were similar 

to those found in p53 null cells (Figure 4-13 E).  Moreover, siRNA of PODXL 

significantly increased the FMI of p53R273H-expressing H1299 cells, whereas 

control siRNA was ineffective this regard (Figure 4-13 D). 

These data indicate that, not only is PODXL required to transfer aspects of 

mutant p53’s gain-of-function phenotype to other cells, but that it is required 

for maintenance of the receptor trafficking and migratory phenotypes of the 

mutant p53-expressing cells themselves.  This observation raises the possibility 

that an autocrine mechanism (in which mutant p53-expressing cells are 

influenced by microvesicles that they themselves have produced) may form an 

essential link between mutant p53 expression and the receptor trafficking and 

migratory machinery.   
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Figure 4-13: Podocalyxin is necessary for mutant p53 gain-of-function phenotype, and for 
transfer of the mutant p53 phenotype to p53-/- cells via a microvesicle vector.   
(A + B) p53R273H cells were transfected with siRNA targeting PODXL (si-PODXL) or a non-targeting 
control (si-nt)  Microvesicles were collected from these cells and used to treat p53-/- cells.  24 hours 
later cells were wounded and their migration closing the wound was analysed by time-lapse 
microscopy as detailed in figure 4-1, maintaining the presence of microvesicles.  n=3.  Values are 
mean ± SEM.  Kruskal Wallis.  ***=p<0.0001 (A).  Alternatively cells were plated onto plastic for a 
recycling assay as detailed in figure 4-7.  n=3. Values are mean ± SEM.  Two way ANOVA.  
**p=<0.01.  ***p=<0.001 (B).  (C) Representative Western blot of PODXL knockdown in 
microvesicle donor p53R273H-expressing cells at 24, 48 and 72 hours after AMAXA si-PODXL 
transfection.  (D + E) p53R273H cells were transfected with siRNA targeting PODXL (si-PODXL) or a 
non-targeting control (si-nt).  24 hours following this, the FMI of cell migration into scratch-wounds 
was analysed as described in figure 4-1 and the integrin recycling rates were analysed as 
described in figure 4-7.  (D) n=3.  Values are mean ± SEM.  Mann-Whitney.  ***p=<0.0001.  (E) 
n=2.  Values are mean ± SEM.  Two way ANOVA.  ***p=<0.001.  Recycling assays done by Jim 
Norman, the Beatson Institute for Cancer Research. 
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4.2.3.5 Rab35 maintains the mutant p53 gain-of-function phenotype via an 
autocrine mechanism 

The observations made in the previous sections indicate the possibility that 

microvesicle-mediated autocrine and paracrine mechanisms may contribute to 

the manifestation of mutant p53’s gain-of-function phenotype.  We therefore 

investigated the possibility that microvesicles from p53R273H-expressing cells may 

be able to influence microvesicle production in other cells.  Figure 4-14 (A) 

shows that a significant reduction in FMI is detectable even when microvesicles 

from mutant p53-expressing cells were added to recipient p53-/- cells at the 

point of introducing the scratch-wound.  This microvesicle-induced alteration to 

the FMI was then subsequently detectable for up to 96 hours following a 72 hour 

microvesicle pre-treatment even though cells were returned to normal tissue 

culture medium (Figure 4-14 B).  We had previously found that microvesicles 

from p53R273H-expressing cells did not change gene expression in recipient p53-/- 

cells.  Additionally PODXL is necessary for both the mutant p53 gain-of-function 

phenotype, as well as the mutant p53 non-cell-autonomous phenotype transfer 

to other cells.  We therefore hypothesised that such a long-term change in cell 

migration could be maintained by an autocrine feed-forward mechanism.  

To test this hypothesis, conditioned medium was collected from p53-/- cells that 

had been previously pre-treated with microvesicles from p53-/- or p53R273H-

expressing cells.  The conditioned medium collected from these cells were then 

used to pre-treat other p53-/- cells whose migratory behaviour we then 

examined.  Conditioned medium from p53-/- cells pre-treated with conditioned 

medium from p53R273H-expressing cells, was able to decrease the FMI (i.e. 

transmit the mutant p53 gain-of-function phenotype) to p53-/- cells (Figure 4-14 

C).  This suggested that p53-/- cells may be educated by microvesicles from 

p53R273H-expressing cells to themselves produce phenotype-altering 

microvesicles.  A mechanism such as this may allow long-term maintenance of 

the mutant p53 phenotype within a population of cells which do not all express 

mutant p53 in an autocrine/paracrine fashion. 

As already described in previous figures, the release of functional microvesicles 

from p53R273H-expressing cells was found to be dependent on Rab35 and PODXL.  

Interestingly, siRNA of Rab35 opposed the mutant p53-driven reduction in FMI, 
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indicating that the generation of the mutant p53’s phenotype in the mutant p53-

expressing cells themselves was dependent upon expression of Rab35 as well as 

PODXL.  The silencing of Rab35 in p53R273H expressing cells resulted in an 

increase in the persistence of migration, reminiscent to the p53-/- cells’ 

migratory phenotype (Figure 4-14 D).  Interestingly, the loss of mutant p53 

migratory phenotype upon Rab35 silencing was partially restored by addition of 

p53R273H microvesicles.  Overall these data indicate that maintenance of the 

mutant p53 phenotype was reliant upon Rab35 and PODXL dependent release of 

microvesicles which initiate an autocrine positive feedback loop upon recipient 

cells driving increased integrin recycling and consequent migration and invasion 

(D). 
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Figure 4-14: The mutant p53 gain-of-function migratory phenotype is maintained in p53R273H-
expressing cells and in microvesicle-educated p53-/- cells in an autocrine/paracrine fashion. 
(A) p53-/- cells were plated for wound healing, 24 hours later at the point of wounding, p53-/- or 
p53R273H microvesicles were spiked into the medium.  Cells were then subject to time-lapse 
analysis of wound closure as in figure 4-1.  n=3.  Values are mean ± SEM.  Kruskal Wallis.  
***p=<0.0001.  (B) p53-/- cells were pre-treated for 72 hours with p53-/- or p53R273H microvesicles.  
After microvesicle pre-treatment cells were returned back to a normal tissue culture regimen.  Each 
day after pre-treatment the cells were plated for wound healing analysis as in figure 4-1 until the 
effect on migration was no longer apparent.  n=2.  Values are mean ± SEM.  Kruskal Wallis.  
*=p<0.01.  **=p<0.001.  ***p=<0.0001.  (C) Conditioned medium was collected from p53-/- cells that 
had been pre-treated for 72 hours with p53-/- or p53R273H conditioned medium.  Collected 
conditioned medium was used to treat p53-/- cells for 72 hours, cells were then plated onto plastic.  
Cells were then wounded and their migration closing the wound tracked as described in figure 4-1.  
n=2.  Values are mean ± SEM.  Kruskal Wallis.  *p=<0.01.  ***p=<0.0001.  (D) p53R273H-expressing 
cells were transfected with si-Rab35 or control si-nt.  Concomitantly Rab35 silenced cells were 
treated with microvesicles from p53R273H-expressing or p53-/- cells.  24 hours later cells were 
wounded and migration during wound closure was analysed as in figure 4-1.  n=3.  Values are 
mean ± SEM.  Kruskal Wallis. ***p=<0.0001.  (E) Representative Western blot showing silencing of 
Rab35 24 hours after siRNA AMAXA transfection targeting si-Rab35 or control si-nt. 
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4.3 Discussion 

4.3.1 Mutant p53 microvesicles 

Here we show that the mutant p53 gain-of-function migratory and invasive 

phenotype is non-cell-autonomous and can be transferred to cells that are null 

for  p53-/- via a microvesicle vector.  This expands the findings of  Neilsen and 

colleagues, who found that conditioned medium collected from mutant p53 

expressing cells increases the invasive capacity of cells null for p53 (Neilsen et 

al., 2011).  Although cancer cells expressing oncogenes other than mutant p53 

can release microvesicles that have the ability to alter the phenotype of 

neighbouring cells, this is the first time that mutant p53 has been shown to have 

such a role (Al-Nedawi et al., 2008, Skog et al., 2008, Demory Beckler et al., 

2013).   

 

4.3.1.1 Mutant p53 microvesicle release 

Past studies indicate that wild-type p53 (but not mutant p53) promotes MVB-

derived exosome release by regulating TSAP6 expression (Lespagnol et al., 2008, 

Yu et al., 2006).  To exclude any involvement of TSAP6 in microvesicle release 

from mutant p53 cells, we confirmed that TSAP6 is not under mutant p53 

transcriptional control.  The TSAP6 mRNA transcript and protein levels do not 

differ between p53-/- and p53R273H expressing cells (data not shown). 

To identify the mechanism through which microvesicles were released we tested 

a variety of Rab-GTPase proteins that are involved in MVB-derived exosome 

release (previously described In chapter 1) – namely Rab27a, Rab27b and Rab35 

(Hsu et al., 2010, Savina et al., 2002, Ostrowski et al., 2010).  We identified that 

Rab35 expression is essential for the release of functional microvesicles from 

p53R273H expressing cells.  This finding is in agreement with previous reports 

which find Rab35 to have a role in MVB-derived exosome release in 

oligodendrocytes, and has added to the literature a new role of Rab35 in the 

release of functional microvesicles from cancer cells (Hsu et al., 2010, Fruhbeis 

et al., 2013a). 
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4.3.1.2 Provenance of microvesicles from mutant p53 expressing cells  

As Rab35 has previously been shown to be involved in the release of MVB-derived 

exosomes, one may speculate that the functional microvesicles released by 

mutant p53-expressing cells may be of endosomal origin (Hsu et al., 2010, 

Fruhbeis et al., 2013a).  Furthermore, data from transmission electron 

microscopy suggested that p53R273H-expressing cells release a specific sub-

population of microvesicles which are less than 50 nm in diameter (chapter 3), 

indicating the possibility that the functional phenotype-altering microvesicles 

released from p53R273H cells may be MVB-derived exosomes.  However due to the 

lack of specific MVB-derived exosome markers, further analysis will be necessary 

to determine the lineage of the phenotype-altering microvesicles released by 

mutant p53-expressing cells.   Separating different microvesicle populations by 

size using immuno-affinity capture (as discussed in chapter 3) may allow 

identification of specific phenotype-altering microvesicle populations and aid 

the analysis/speculation of whether functionally active microvesicles are MVB-

derived exosomes or plasma membrane-shed microvesicles.  To further support 

this, analysis of the dynamics of Rab35-positive endosomes in mutant p53-

expressing cells may help to identify any role Rab35 may have in the transport 

and docking of MVB endosomes to the plasma membrane (Hsu et al., 2010). 

 

4.3.1.3 Microvesicles from p53 null cells 

It is interesting to consider what effect microvesicles released by p53-/- cells 

may have upon neighbouring cells.  Preliminary data suggests that when p53R273H 

expressing cells are treated with microvesicles from p53-/-cells, they start to 

migrate with a higher forward migration index (i.e. more like a cell null for p53).  

This warrants further investigation.  If cancer cells null for p53 can release 

microvesicles that can reverse the malignant migratory phenotype of mutant 

p53-expressing cells, then perhaps it will be interesting to further investigate 

the tumour supressing attributes of microvesicles from non-cancerous cells or 

from non-cancerous cells that have p53 activation.  If non-cancerous 

cells/activation of tumour suppressors can indeed promote the release of 

microvesicles that can reverse malignant phenotypes of cancer cells, this could 

be an exciting avenue for the development of novel therapeutic strategies.                     
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4.3.2 How are mutant p53 microvesicles exerting their effects? 

4.3.2.1 Transcriptional regulation 

Previous reports have shown that mutant p53 expression dramatically changes 

the gene expression profile of cells (O'Farrell et al., 2004).  Some changes in 

gene expression have been directly linked to the mutant p53 gain-of-function 

phenotype, and this is discussed in detail in chapter 1 (Di Agostino et al., 2006, 

Weisz et al., 2004).  The results from our in-depth RNASeq screen agrees with 

past literature as we also find that p53R273H cells have a very different mRNA 

expression profile than p53-/- cells.  However, we found that p53-/- cells treated 

with p53R273H microvesicles did not have detectably altered mRNA expression, 

even though these cells had acquired the mutant p53 gain-of-function migratory 

phenotype.  This disagrees with past literature as it indicates that certain cell 

migratory and invasive characteristics that constitute the mutant p53 gain-of-

function phenotype do not rely upon gene expression changes in the cell.   

4.3.2.2 Podocalyxin  

Rab35 is necessary for release of functional microvesicles from p53R273H-

expressing cells.  Our immunoprecipitation and siRNA experiments indicate that 

there is physical and functional interaction between Rab35 and PODXL.  We 

found this interesting as it is possible to envisage how a negatively charged 

sialomucin such as PODXL could have an important role in microvesicle 

biogenesis, or alternatively microvesicles rich in PODXL could have an important 

functional effect in the extracellular environment (discussed in detail next).  We 

identified from RNA sequencing and by Western blot analysis that PODXL mRNA 

and protein levels are similar in p53-/- and p53R273H-expressing cells (data not 

shown).  PODXL could be detected in microvesicles from both p53-/- and p53R273H-

expressing cells by mass spectrometry, however due to detection limitations, we 

have so far not been able to detect PODXL in microvesicles by Western blot.  

Upon silencing of PODXL in p53R273H expressing cells, functional phenotype-

altering microvesicles are no longer released into the extracellular environment, 

and therefore cannot alter the receptor trafficking rate and migration of p53-/- 

cells.  Furthermore, PODXL expression is essential for maintenance of the 

mutant p53 gain-of-function phenotype itself. 
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PODXL is a highly glycosylated transmembrane sialomucin which has a 

functionally important negative charge associated with it.  PODXL has a well-

defined role in kidney podocyte development and function, where it acts as an 

anti-adhesive molecule (Nielsen and McNagny, 2009).  PODXL expression in 

podocytes is essential for the efficient filtration of urine via a charge-selective-

barrier.  Its expression is also important for cell morphogenesis and the 

structural integrity and spacing of the podocyte membrane structure (Doyonnas 

et al., 2001, Nielsen and McNagny, 2009).  Conversely PODXL has a pro-adhesive 

role in vasculature endothelium where it promotes tethering of lymphocytes to 

the vasculature via their ligand L-selectin, maintaining normal immune 

surveillance and response (Sassetti et al., 1998, Baumheter et al., 1993).   

 

4.3.2.3 Podocalyxin and cancer 

It is well characterised that PODXL is aberrantly expressed in several cancer 

types, most commonly very aggressive types of breast cancer, prostate cancer 

and leukaemia (Somasiri et al., 2004, Kelley et al., 2005, Casey et al., 2006).  

PODXL has been identified as being secreted into the extracellular space by 

cleavage, or released in microvesicles from Chinese hamster ovary cells (CHO) 

and human tetra-1 tumour cells.  However this report did not demonstrate a 

function of either secreted PODXL fragments or released PODXL containing 

microvesicles (Fernandez et al., 2011). 

 

4.3.2.4 Podocalyxin hypothesis   

So what role does PODXL have in mutant p53 phenotype altering microvesicles?  

Primarily, sialic acid molecules have been shown to have an impact on 

membrane curvature, therefore the highly sialylated PODXL could potentially 

contribute to microvesicle biogenesis (Schmid-Schonbein et al., 1986b).  

Supporting this hypothesis, membrane curvature manipulation involving 

ceremide and sphingomyelinase activity has been implicated as having a role in 

MVB-derived exosome biogenesis (Trajkovic et al., 2008).  

 

Alternatively it is interesting to consider the role of the microvesicle glycocalyx 

in p53R273H microvesicle biogenesis.  Microvesicles have been identified as having 

a conserved glycocalyx signature; they are enriched in high mannose, sialic acid 
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and N-linked glycans (Batista et al., 2011).  The work by Batista and colleagues, 

speculated that the microvesicle glycocalyx signature is indicative of a new 

microvesicle biogenesis pathway which originates from a specific membrane 

domain where glycosylation has a role in protein sorting into microvesicles.  

PODXL is a highly glycosylated sialomucin and its presence could contribute to 

the glycocalyx of microvesicles.  However, detection of differences in the 

glycocalyx of microvesicles is something that would be difficult to detect by 

mass spectrometry.  Additionally, the functional effect of PODXL in microvesicle 

biogenesis may be dependent upon its glycosylation rather than its concentration 

in the microvesicles.  This could account for the observation that equal 

quantities of PODXL was detected in p53-/- and p53R273H microvesicles by mass 

spectrometry.  In the future it would be interesting to investigate the glycocalyx 

of microvesicles released by p53R273H cells versus p53-/- cells, and to determine 

the role PODXL (and its glycosylation state) may have in the biogenesis and 

content of functional microvesicles released from mutant p53-expressing cells.   

 

Due to the negative charge associated with PODXL, its presence in microvesicles 

may have a functional impact upon microvesicle uptake into recipient cells.  

This is supported by a study which found that removal of negatively charged 

sialic acid from the surface of microvesicles can slightly increase (although not 

significantly) the uptake of microvesicles into recipient cells (Escrevente et al., 

2011).  We do not yet know the mechanism by which microvesicles are taken up 

into H1299 p53-/- cells, although preliminary data suggests that microvesicles 

released by p53R273H-expressing cells are taken up into the cell at an increased 

rate compared to those from p53-/- cells.  It should also be considered that if 

negatively charged microvesicles are taken up into cells by endocytosis, they 

could alter the physiology of the endosomal compartment.  If endosomes 

become filled with negatively charged microvesicles, the sorting and recycling of 

their cargoes could be altered.  To investigate this, the localisation and 

dynamics of PODXL positive microvesicles within the endosomal compartment 

would need to be closely investigated. 

 

Finally it is important to consider the role of PODXL in epithelial cell polarity of 

MDCK cells.  Upon initiation of integrin signalling at the ECM interface, PKCβ11 

phosphorylates the PODXL/Ezrin/NHERF1 complex initiating its translocation to 
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the apical membrane promoting epithelial polarity in lumen formation.  Loss of 

PODXL disrupts this process and the polarised lumen formation of epithelial 

structures, and instead promotes front-rear polarity and motility (Bryant et al., 

2014).  Therefore it is important to consider that fusion of podocalyxin-

containing microvesicles with the plasma membrane of recipient p53-/- cells, or 

their fusion with the endosome limiting membrane after endocytosis, could 

initiate the association of PODXL with other transmembrane receptors initiating 

intracellular signalling cascades and changing the recipient cell behaviour.  

 

4.3.3 Mutant p53 microvesicles: Role in cell education and 
autocrine signalling 

4.3.3.1 Microvesicles and education of neighbouring cells 

As well as transferring the mutant p53 phenotype to neighbouring cells, 

microvesicles released from p53R273H cells also play a role in educating the 

recipient p53-/- cells.  Recipient p53-/- cells are educated by p53R273H 

microvesicles in a paracrine fashion, to display the mutant p53 gain-of-function 

migratory phenotype quickly after initial exposure to the microvesicles.  

Importantly, p53-/- cells form a memory of the phenotype, enabling the mutant 

p53-like migration to be maintained in the long term even with no exposure to 

the original microvesicles.  This memory is maintained because the educated 

p53-/- cells release similar phenotype-altering microvesicles into the 

extracellular environment as do p53R273H cells.  The education of cells by 

microvesicles has previously been shown in various systems.  For example, 

melanoma MVB-derived exosomes have been shown to be able to irreversibly 

educate bone marrow progenitor cells and promote their mobilisation to a 

metastatic site to initiate the metastatic niche formation (Peinado et al., 2012).   

The educating ability of microvesicles released by mutant p53 expressing cells is 

potentially an important concept in a cancer setting.  Education of neighbouring 

cells null for p53 by microvesicles released from mutant p53 expressing cells 

could support tumour growth, or even facilitate metastasis to a distant site.  A 

small number of cells forming a micro-metastasis in a distant organ could 

educate its surrounding cells to support the metastatic tumour growth.  This 
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idea will be the next important thing to investigate in vivo and is discussed in 

chapter 5. 

4.3.3.2 Microvesicles and their autocrine role 

Microvesicles that are released from mutant p53-expressing cells in a Rab35-

dependent manner are also essential for maintenance of the intrinsic mutant 

p53 migratory phenotype via an autocrine positive feedback mechanism.  A 

similar concept of microvesicle-mediated autocrine signalling was recently 

discussed in a study which found that polarised and persistent cell migration was 

maintained in vivo by an autocrine Rab27a dependent MVB-derived exosome 

release (Sung et al., 2015).  Additionally glioblastoma microvesicles have been 

identified as having a self-promoting role by stimulating the proliferation of 

neighbouring glioblastoma cells (Skog et al., 2008).  Furthermore displaying an 

even more complex autocrine role of microvesicles in a tumour environment, 

breast cancer cells secrete Wnt11 in an autocrine fashion, however the Wnt11 

only becomes useful upon tethering of Wnt11 to fibroblast released MVB-derived 

exosomes.  These fibroblast MBV-derived exosomes are subsequently taken up 

again by breast cancer cells and the tethered Wnt11 stimulates the planar cell 

polarity signalling pathway enhancing the invasive breast cancer cell phenotype 

(Luga et al., 2012).  These studies taken together with ours, demonstrate a new 

emerging role of microvesicle release and consequent autocrine feedback upon 

recipient cells, in maintaining specific cell behaviours and responses within a 

complex microenvironment.   

4.4 Conclusion 

Figure 4-15 shows a schematic representation of the new mutant p53 gain-of-

function model we have identified.  Mutant p53 drives the release of functional 

microvesicles which is dependent upon the expression of both Rab35 and PODXL 

(A).  These microvesicles can transfer the mutant p53 gain-of-function migratory 

and invasive phenotype it to p53-/- cells in a paracrine signalling fashion (B).  The 

microvesicles drive RCP and DGK dependent integrin and receptor tyrosine 

kinase trafficking, and these recipient cells consequently exhibit less persistent 

cell migration and increased invasion.  Microvesicles from p53R273H–expressing 

cells educate p53-/- cells to release similar phenotype-altering microvesicles 
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maintaining the mutant p53 gain-of-function phenotype within the cell 

population.  Importantly, we found that both PODXL and Rab35 are essential for 

the mutant p53 phenotype to be maintained in a microvesicle mediated 

autocrine positive feedback mechanism (C).   

 

Figure 4-15: Diagram illustrating mutant p53 non-cell-autonomous gain-of-function invasive 
phenotype model. 
Mutant p53 drives the release of microvesicles in a Rab35 and PODXL dependent manner.  The 
microvesicles are necessary to feedback in an autocrine fashion onto mutant p53 expressing cells 
and maintain their high rate of RCP/DGKα-dependent integrin recycling to enable their invasive 
and migratory phenotype to be maintained.  Additionally, microvesicles released from mutant p53-
expressing cells have a dual role as they can also transmit mutant p53’s gain-of-function invasive 
phenotype to neighbouring cells that are null for p53 in a paracrine fashion.  Microvesicles from 
p53R273H-expressing cells educate p53-/- cells to release the same phenotype altering microvesicles 
into the extracellular environment allowing the phenotype to be sustained in an autocrine fashion.
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5 Final discussion 

We have identified a novel role of microvesicles released by mutant p53 

expressing cells, in educating neighbouring cells null for p53 to display a mutant 

p53 migratory and invasive phenotype.  This mutant p53-driven cell 

communication may have an important role in vivo; it could facilitate the 

maintenance of the mutant p53 gain-of-function phenotype within a population 

of heterogeneous cancer cells.  We have also identified a novel aspect to the 

cell-intrinsic mechanism of the mutant p53 gain-of-function phenotype.  Mutant 

p53 gain-of-function is not dependent on the mRNA expression changes that 

mutant p53 exerts, rather it appears to be maintained by an autocrine positive 

feedback loop mediated by microvesicles.  This autocrine loop drives RCP and 

DGKα-dependent integrin and receptor tyrosine kinase recycling to promote a 

pro-invasive phenotype.  This final chapter will review these main findings and 

discuss how they have contributed to, and fit within, the fields of microvesicle 

cell communication in cell migration and the mutant p53 gain-of-function 

phenotype. 

5.1 Microvesicles from mutant p53-expressing cells and 
their role in cell migration 

5.1.1 Microvesicles and cell migration 

We have added more evidence to the literature supporting the involvement of 

oncogene-driven microvesicle release, in transferring oncogenic properties to 

other cells.  Microvesicles have important roles in the regulation of cell 

migration, either by altering recipient cell behaviour or by exerting their effects 

within the extracellular environment (reviewed in figure 5-1).  For example, the 

Rab27a-dependent release of MVB-derived exosomes from cancer cells co-

ordinates focal adhesion assembly and directional cell migration in vivo (Sung et 

al., 2015).  Furthermore MVB-derived exosomes released by fibroblasts 

contribute to cancer cell migration by driving autocrine planar cell polarity wnt 

signalling in breast cancer cells (Luga et al., 2012).  Finally metalloproteinase 

and integrin loaded tumour-shed microvesicles are effective in enhancing 

invasive cell migration by binding to, and degrading the extracellular matrix 

(Muralidharan-Chari et al., 2009).   
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5.1.1.1 Microvesicles from mutant p53-expresing cells and cell migration: 
Integrins 

We show that microvesicles released by mutant p53-expressing cells impact upon 

cell migration by increasing integrin and receptor tyrosine kinase recycling to 

the plasma membrane.  This is a function of cancer cell-derived microvesicles 

that has not been previously identified.  Nevertheless, macrophage-derived MVB-

derived exosomes promote the internalisation of endothelial integrin β1 to the 

lysosomal compartment for degradation, inhibiting cell migration (Lee et al., 

2014).  Although this study is conflicting with ours, it is not related to cancer 

cell migration.  It does however support our study in identifying a potential role 

of microvesicles in altering recipient cell integrin and receptor tyrosine kinase 

trafficking.  

The mode of migration that microvesicles released by mutant p53-expressing 

cells foster in recipient cells is highly integrin-dependent.  Sung and colleagues 

recently showed that microvesicle release coincides with focal adhesion 

assembly and directional migration (Sung et al., 2015).  Therefore it would be 

interesting to identify the impact that microvesicles from mutant p53 expressing 

cells have upon focal adhesion assembly and disassembly.  Microvesicle-

mediated alteration of focal adhesion dynamics could consequently have an 

impact on the rate of integrin recycling to the plasma membrane to support an 

invasive mode of migration.   

Finally β1 integrin has been hypothesised to have an important role in directing 

microvesicles to degrade the extracellular matrix (Dolo et al., 1998, 

Muralidharan-Chari et al., 2009).  Microvesicles released by mutant p53 

expressing cells are rich in β1 integrin as well as several other integrins 

(although it is not known whether the integrins are active or not).  Therefore 

there is a possibility that these microvesicles exert their functional effects in the 

extracellular environment by binding to the extracellular matrix.  However 

preliminary data does suggest the mutant p53-expressing cell derived 

microvesicles are taken up into the cell to exert their effects (data not shown).  

Additionally the effects of microvesicles from mutant p53 expressing cells are 

apparent when cells migrate both on plastic as well as on 3D matrices (data not 
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shown), therefore it is likely that their phenotype-altering capacity is not 

dependent on microvesicle interaction with the extracellular matrix. 

 

Figure 5-1: Diagram of potential mechanisms through which microvesicles influence cell 
migration. 
When microvesicles are released into the extracellular environment they can affect recipient cell 
migration in several different ways.  Microvesicles can interact with and degrade the extracellular 
matrix to facilitate cell migration (A).  Microvesicles may fuse with the plasma 
membrane/endosome limiting membrane after uptake into the cell, enabling their contents to be 
released and consequently initiate a signalling cascade or a change the cells’ protein/mRNA/gene 
expression profile (B).  Alternatively they may be endocytosed and reside within the endosomal 
system where they have a positive impact on integrin recycling (C).  Finally they may hypothetically 
interact via a ligand-receptor interaction on the plasma membrane of the recipient cell to trigger a 
signalling cascade altering cell migration (D). 

5.1.2 Microvesicles and cell migration and metastasis in-vivo: 
future aims 

The non-cell-autonomous nature of the mutant p53 invasive phenotype is a new 

area of study, and with that come several ideas that would be important to 

investigate in the near future.  Primarily the impact of microvesicles released by 

mutant p53 expressing cells on the immune system needs to be investigated.  It 

was recently shown that pancreatic cancer cell-derived, miRNA rich, 
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microvesicles have the ability to transform fibroblasts into cancer-associated 

fibroblasts that promote cancer progression (Pang et al., 2015).  In initial studies 

aimed at determining whether immortalised fibroblasts may be activated by 

microvesicles from mutant p53–expressing cells, we were unable to detect any 

apparent alteration in smooth muscle actin expression after a mutant p53 

microvesicle pre-treatment (data not shown), indicating that these microvesicles 

do not promote conversion to a myofibroblast-like phenotype.  However, as 

immortalised cells are thought to be partially-activated, these experiments 

should be repeated with primary cultured fibroblasts.  It would also be 

worthwhile investigating if microvesicles from mutant p53–expressing cells have 

any impact on immune cell tumour infiltration in vivo by increasing the 

migratory capacity/recruitment of neutrophils to support tumour growth (Bobrie 

et al., 2012). 

Investigation of the role mutant p53 microvesicles play in cell migration and 

metastasis in vivo is an equally important strategy.  One way to do this is 

elegantly demonstrated by a recent study by Zomer and colleagues which 

showed the transfer of malignant cancer cell-derived microvesicles to recipient 

benign cancer cells in vivo using the Cre-loxP system.  Cre-recombinase 

expressing metastatic cancer cells released microvesicles that contain the Cre 

recombinase protein product, which when taken up by benign cancer cells that 

can express GFP under Cre-recombinase control, results in GFP expression in the 

benign cancer cells.  Therefore cancer cells that have taken up metastatic cell-

derived microvesicles could be detected by their GFP expression and any 

changes in their phenotype could then be analysed.  The non-metastatic tumour 

cells after uptake of metastatic cell-derived microvesicles displayed more 

metastatic migratory behaviour (Zomer et al., 2015).  This strategy would be 

useful to identify mutant p53 microvesicle uptake and functional effects in vivo.  

A second informative strategy to analyse the role of mutant p53 microvesicles in 

vivo would be to carry out experiments similar to those published by David 

Lydon’s lab.  These in vivo experiments used cancer cell-derived exosomes to 

‘educate’ the mouse bone marrow/stromal cells prior to introduction of cancer 

cells as syngeneic xenografts (Peinado et al., 2012, Costa-Silva et al., 2015).  

Education of bone marrow/stromal cells initiated pre-metastatic niche formation 

which enhanced the homing of the xenografted cancer cells to the primed organ.  
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This type of experiment would enable identification of whether mutant p53 

microvesicles are able to promote metastasis by educating cells at distant sites 

within the organism, and priming organs for metastasis.  In vivo experiments in 

which microvesicles are introduced by supraorbital or tail vein injection whilst 

tumours are growing would also be informative, and could enable analysis of the 

pro-tumorigenic and metastasis-promoting capacity of systemic circulating 

microvesicles.  As we know that microvesicles from mutant p53-expressing MCF7 

breast cancer cells have a substantial effect upon H1299 cell migration, it would 

perhaps be beneficial to use the MMTV-polyoma middle T breast cancer mouse 

model that is already established in the lab to analyse the effects of regular tail 

vein injections of microvesicles from mutant p53-expressing cells on breast 

tumour growth and metastases.  For shorter term experiments, cancer cell 

xenografts with or without microvesicle treatment could also be attempted. 

If microvesicles from mutant p53–expressing cells are important in the 

metastasis process, these could represent a new potential anti-metastatic 

therapeutic target.  Microvesicle removal from the blood to prevent further cell 

education and tumour progression/metastasis could be an option.  Indeed, this is 

a hypothetical cancer therapy which has been discussed in detail by Marleau and 

colleagues (Marleau et al., 2012). 

5.1.3 Microvesicles as diagnostic biomarkers 

Microvesicle biomarkers are an emerging field of cancer research.  It is widely 

accepted that lung and ovarian cancer patients display increased levels of 

microvesicles in circulating blood (Caby et al., 2005, Rabinowits et al., 2009).  

Not only does this indicate a potentially important role of microvesicle release in 

cancer pathology, but also reveals the potential for using microvesicles from 

patient blood as diagnostic biomarkers.  For example microvesicles isolated from 

the blood of pancreatic cancer patients contain mutant p53 and mutant KRAS 

genomic DNA which may eventually serve as an effective diagnostic biomarker 

(Kahlert et al., 2014), and more recently measurement of circulating glypican-1-

rich exosomes has been shown to assist detection of early pancreatic cancer 

(Melo et al., 2015).  Other promising studies for diagnostic biomarkers show that 

prostate cancer-derived exosomes isolated from urine have an interesting pro-

cancerous protein signature (Nilsson et al., 2009), and microvesicles from the 
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blood of ovarian cancer patients contain a specific/unique miRNA signature 

(Manterola et al., 2014).   

Microvesicles released by mutant p53 cells may be important for cell 

communication in many different cancer types.  Preliminary indications suggest 

this may be true as we have found that lung, ovarian and breast cancer cell lines 

are involved in either release of phenotype altering microvesicles from mutant 

p53-expressing cells, or can respond to microvesicles released by mutant p53-

expressing cells and display a mutant p53 gain-of-function phenotype.  Therefore 

microvesicles from mutant p53-expressing cancer cells may be present in the 

circulation of many patients and this may be useful as a diagnostic tool.  Despite 

the fact that we have been unable to identify differences in the protein and 

lipid constituents of microvesicle preparations from p53 null and mutant p53-

expressing cells, with more sophisticated vesicle fractionation approaches it may 

be possible to isolate the functional microvesicles from mutant p53-expressing 

cells and determine whether they have a distinguishing protein signature.  Other 

promising diagnostic signatures may arise from analysing the miRNA content of 

microvesicles derived from mutant p53-expressing cells.  We think that 

microvesicular miRNA is not participating in the mutant p53 phenotype transfer, 

because the mRNA expression profile of p53 null cells does not detectably alter 

following treatment with microvesicles from mutant p53-expressing cells.  

Nevertheless, because mutant p53 down regulates DICER expression and mature 

miRNA processing, there is a possibility that mutant p53 microvesicles  have a 

very distinct miRNA profile/signature which could be used as a diagnostic marker 

enabling early diagnosis of mutant p53 expressing cancers from patient blood 

(Muller et al., 2014). 

5.2 Mutant p53 gain-of-function mechanism 

5.2.1 p63 and the mutant p53 gain-of-function  

The transcription factor p63 is a tumour suppressor whose expression is often 

lost in cancer (Urist et al., 2002).  Indeed, tumours spontaneously form in p63 

knockout mice (Flores et al., 2005).  Mutant p53’s gain-of-function invasive 

phenotype in part arises from its inhibition of p63 tumour supressing activity 
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(Noske et al., 2009, Muller et al., 2014).  This is thought to be due to direct 

interaction of mutant p53 with p63 (Gaiddon et al., 2001, Strano et al., 2002).   

Past studies have shown that mutant p53-driven integrin and receptor tyrosine 

kinase recycling, and the enhanced migration and invasion that is a consequence 

of this, can be both dependent and independent of inhibition of p63 via mutant 

p53 (Muller et al., 2009, Muller et al., 2013, Muller et al., 2014, Adorno et al., 

2009).  So far p63 has not been linked to microvesicle biology, however the 

possibility that p63 is involved in the generation of functionally active 

microvesicles by mutant p53-expressing cells, or is necessary for recipient cells 

to alter their migratory phenotype in response to microvesicles from mutant 

p53-expressing cells needs to be investigated. 

5.2.2 Achieving mutant p53 gain-of-function without alterations to 
mRNA expression 

The mutant p53 gain-of-function migratory phenotype has long thought to be 

due to the transcriptional changes that occur upon p53 mutation.  Not only does 

p53 lose its wild-type tumour supressing transcriptional properties, but it may 

gain some new transcriptional properties (O'Farrell et al., 2004).  There has been 

several studies already discussed in chapter 1 associating mutant p53’s 

transcriptional properties with the gain-of-function migratory phenotype (Di 

Agostino et al., 2006). 

Our data agree with past studies showing mutant p53 expression causes a huge 

change in global mRNA expression, and it is possible that the generation of 

phenotype-altering microvesicles involves some of these mRNA expression 

changes.  However, an interesting aspect to our study is that, using a highly 

sensitive RNA sequencing approach, we are unable to detect any mRNA 

expression changes that are associated with the response of recipient cells to 

prolonged (72 hr) exposures to microvesicles from mutant p53-expressing cells.  

This indicates that the changes to the receptor trafficking and migratory 

machinery that are necessary to implement mutant p53’s phenotype may not 

require, nor be mediated by, any alterations to mRNA expression.  This is 

somewhat puzzling – particularly as one considers that altered receptor tyrosine 

kinase trafficking and signalling might be expected to alter expression of genes 
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downstream of signalling modules such as the PI3K-Akt axis.  Of course, one 

needs to consider the possibility that some miRNAs that are transferred via 

microvesicles may alter mRNA translation without detectably changing transcript 

level.  However, the rapidity with which mutant p53’s migratory phenotype is 

apparent following microvesicle addition tends to argue against this.  Indeed, we 

observe suppression of the FMI very quickly following addition of microvesicles 

from mutant p53-expressing cells, and this allows very little time for miRNA 

delivery and alteration to translation to influence cell migration.  Rather, our 

data are more consistent with a mechanism through which the influence of 

microvesicles on cell migration is mediated via relatively direct effects on the 

cell’s receptor trafficking machinery.   

Another intriguing aspect of our findings is that recipient cells appear to be 

educated by microvesicles from mutant p53 expressing cells to produce 

phenotype-altering microvesicles even in the absence of detectable alterations 

to mRNA expression.  Thus it appears that not only the migratory response of 

cells to microvesicles, but also some of the cell’s capacity to produce phenotype 

altering microvesicles is regulated in a way that doesn’t seem to involve altered 

mRNA expression.  This indicates the possibility that many (if not all) of the 

mutant p53-driven gene expression changes that have previously been identified 

using microarray and RNA sequencing approaches may not be relevant to the 

implementation of the invasive phenotype. 

5.2.3 The roles of Rab35 and PODXL in microvesicle production 
and function 

We have established that Rab35 and PODXL are key to the release of phenotype-

altering microvesicles from mutant p53-expressing cells.  Active Rab35 levels in 

p53-/- and p53R273H-expressing cells were analysed by immunoprecipitation using 

an antibody specific to the active Rab35-GTPase form.  Preliminary data from 

these experiments (not shown) suggests that there is no difference in the 

quantity of active Rab35 present in p53-/- and p53R273H cells.  Additionally Rab35 

and PODXL have been shown to directly associate with one another in H1299 

cells by immunoprecipitation of Rab35-GFP.  It will be interesting to determine 

the influence of mutant p53 expression upon Rab35 interaction with PODXL, and 

to identify the overall interactome of Rab35.  Perhaps PODXL will be identified 
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as having an altered interaction with Rab35 when mutant p53 is expressed.  The 

interaction between, and co-ordination of PODXL and Rab35 functions may be 

important for the release of functional microvesicles. 

As to how the Rab35-PODXL dependent functional microvesicles actually drive 

integrin recycling in p53R273H and p53-/- cells is not yet known.  Several 

hypotheses are discussed in chapter 4.  To reiterate, Rab35 is thought to drive 

the release of MVB-derived exosomes from a cell by aiding the transport/docking 

of MVBs to the plasma membrane (Hsu et al., 2010).  Work into the localisation 

of Rab35 within the endosomal compartment is necessary to further investigate 

the hypothesis.  The highly glycosylated protein PODXL could have a role in 

microvesicle biogenesis by promoting membrane curvature (Schmid-Schonbein et 

al., 1986a).  Alternatively PODXL could have a role in sorting of specific cargo 

into the microvesicles dependent upon its glycosylation state and localisation in 

the cell as hypothesised by (Batista et al., 2011).  Additionally the negative 

charge that PODXL-would be expected to impart to microvesicles may influence 

their uptake into recipient cells (Escrevente et al., 2011).  Alternatively, 

endocytosis of PODXL-containing microvesicles could introduce negative charge 

into the lumen of the endosomal system.  This negative charge may influence 

endosome dynamics via effects on membrane curvature, membrane spacing and 

protein interactions.  Such phenomena could influence the sorting of endosomal 

cargoes and/or shuttling of endosomes to the plasma membrane altering integrin 

and receptor tyrosine kinase trafficking rates.  The importance of PODXL’s acidic 

nature may be investigated by removal of these negatively charged sialic acid 

carbohydrate chains from the microvesicle surface - this could be achieved using 

enzymes such as neuraminidases - and then testing the capacity of these de-

sialylated microvesicles to influence receptor trafficking and cell migration 

(Escrevente et al., 2011). 

5.2.4 Autocrine and paracrine maintenance of the mutant p53 
phenotype 

This study, along with others already discussed, has shed light on the 

maintenance of a cell’s invasive phenotype by microvesicle release and 

autocrine positive feedback signalling (Sung et al., 2015).  We have also 

identified that microvesicles from mutant p53 expressing cells play a role in 
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paracrine education of other cells so that they themselves form a memory and 

are able to maintain the mutant p53 phenotype in the same autocrine fashion as 

mutant p53 cells themselves.  The next challenge is to determine whether this 

autocrine/paracrine cell communication by mutant p53 microvesicles occurs in 

vivo. 

5.2.4.1 Autocrine maintenance and paracrine transfer of the mutant p53 
phenotype in vivo: future aims  

Elucidation of the mechanism for autocrine maintenance and paracrine transfer 

of the mutant p53 phenotype in vivo is an exciting prospect.  One experiment 

that has already been attempted, and will be tried again, is to inject PDAC p53-/- 

cells into one flank of a mouse and PDAC p53R172H cells into the opposite flank.  

Tumour growth will be monitored to determine whether presence of a mutant 

p53 expressing tumour in one flank has any impact upon the invasive growth of 

the p53-/- expressing tumour in the opposite flank.  If the microvesicles released 

by the mutant p53 cells are able to provide autocrine and paracrine 

maintenance of the mutant p53 phenotype, you would expect p53-/- tumours to 

develop a more invasive phenotype.   

To determine whether microvesicles from mutant p53-expressing cells are 

relevant in a clinical setting, it would be useful to collect microvesicles from the 

blood of patients with mutant p53-expressing cancers and compare the 

properties of those with those from patients with cancer that do not have p53 

mutations and from healthy individuals.  The microvesicles collected from 

patient blood could then be used to determine whether they can influence the 

migratory and invasive behaviour of p53-/- cells ex vivo.  If so, this would provide 

further evidence that mutant p53 tumour derived microvesicles have an 

autocrine/paracrine role in supporting cancer progression. 

If the autocrine/paracrine role of mutant p53 could be demonstrated in vivo and 

had clinical relevance, it would next be desirable to develop strategies to 

oppose the autocrine ability of mutant p53 expressing tumours to maintain their 

own phenotype and paracrine ability to educate neighbouring cells in vivo.  

Inhibition or disruption of this autocrine loop would theoretically allow the 

tumour and neighbouring cells to revert to a less invasive phenotype, as we have 
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shown can occur in vitro after Rab35 or PODXL silencing.  This strategy could 

potentially decrease tumour growth and inhibit metastasis.  To test this, Rab35 

could be stably removed from mutant p53 expressing cells using CRISPR gene 

deletion.  This would enable analysis of mutant p53 tumour growth with or 

without Rab35 expression in vivo using xenografts.  If Rab35 expression depletion 

results in smaller tumours and fewer metastases because of a microvesicle 

release defect, then co-injection of mutant p53 cell derived microvesicles into 

the Rab35 deficient mouse tumours should rescue tumour growth, demonstrating 

the necessity of the microvesicle autocrine maintenance of the mutant p53 gain-

of-function phenotype and how useful disruption of the microvesicle autocrine 

loop would be. 

Overall (as summarised in figure 5-2) this project has shed light on the role 

played by mutant p53 mediated microvesicle release and function in cell 

migration, as well as adding new knowledge regarding the mutant p53 gain-of-

function phenotype.  It is a novel and exciting area of research that is worthy of 

more investigation and could lead to the discovery of new biomarkers for 

diagnosis of cancer or even new targets for anti-metastasis cancer therapies. 
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Figure 5-2: A proposed mechanism for p53 gain-of-function. 
The diagram depicts various published, as well as newly-discovered, mechanistic aspects of the 
mutant p53 gain-of-function phenotype.  It is already known that altered transcription following 
mutant p53 expression can contribute to the mutant p53 gain-of-function phenotype (O'Farrell et 
al., 2004).  Additionally mutant p53 drives RCP and DGKα-dependent integrin and receptor 
tyrosine kinase trafficking and signalling to enhance migration, invasion and metastasis in a p63-
dependent and independent fashion (Noske et al., 2009, Muller et al., 2014).  We identify a new 
mechanism of mutant p53 gain-of-function invasive phenotype, whereby the Rab35 and PODXL-
dependent release of microvesicles drives integrin trafficking in an RCP and DGKα-dependent 
manner in an autocrine positive feedback signalling pathway.  Additionally these extracellular 
microvesicles have the ability to transfer this phenotype to neighbouring cells null for p53.  We find 
that the response of recipient cells to microvesicles from mutant p53-expressing cells is not 
associated with detectable changes in mRNA expression.  The mutant p53 expressing cell-derived 
microvesicles educate cells null for p53 to release the same phenotype altering microvesicles into 
the extracellular environment allowing long term maintenance of the invasive gain-of-function 
phenotype in an autocrine fashion.  There is potential to identify whether it would be useful to inhibit 
the release of these microvesicles, remove them from circulation or block their activity to constitute 
a new therapy to treat mutant p53-expressing cancers.  Additionally microvesicles released from 
mutant p53 expressing cancer cells could be collected from patient blood samples and used as 
biomarkers for cancer diagnosis.
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