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Abstract 

In this dissertation we propose a method to obtain formal high-level specifications of mod­
elling techniques based on graphical notations, such as Dataflow Diagrams (DFD), State 
Transition Diagrams (STD) or Entity Relationship (ER) diagrams, and from them auto­
matically generate supporting design tools. The generated tools support the visual repre­
sentation, the semantics and usage of the specified modelling technique. 

A formalism, designated as Visual Concepts, defines a model comprising a physical com­
ponent (which includes a visual representation); a semantic component, expressed as con­
straints; and a usage component, which is related to the checking of the constraints. 

The Visual Concepts formalism was used to derive a formal specification language - VC-t. 
The language has been developed on top of a predicate logic and is aimed at expressing 
the semantics of modelling techniques. Because it is a formal language, the semantic spec­
ifications produced are unambiguous. Complete VC-t specifications have been produced 
for the modelling techniques DFD, STD and ER. 

The usage of the modelling technique may also be expressed in a specification. For exam­
ple, in a DFD every process must have, at least, one input dataflow and one output data­
flow. During the editing of a diagram, it may be useful to allow this constraint to be 
violated. To express such usage aspects, a novel theory of semantic constraints has been 
formulated. This theory is used to produce refinements of initial VC-t specifications. In 
this process, the constraints are labelled following a classification which includes hard, 
soft, hardened and deferred. 

From a specification, a design tool is automatically generated by a compiler. The result is 
an interactive design tool supporting the semantics of the underlying modelling technique. 
The generated tool can be customised in accordance with the user's level of expertise. 

A generic visual language for diagram editing has been created which may be instantiated 
for a particular modelling technique. The instantiated visual language is used within the 
generated design tool. It provides non-obtrusive guidance observing the semantics of the 
underlying modelling technique. The tool user is allowed to produce intermediate incon­
sistent states to facilitate diagram editing. 

A prototype, comprising a compiler for the specification language, a mUlti-purpose graph 
tool and a configurable design tool was implemented to prove the feasibility of the com­
plete approach. 

The prototype compiler generates executable code. The target of the compiler is the per­
sistent programming language Napier88. The architecture of the compiler has been 
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designed as two separate components: a front-end (the parser), and a back-end (the code 
generator). This approach gives independence from the target language. 

The code generator comprises a number of translation rules to produce Napier88 from a 
VC-t specification. The prototype compiler only incorporates some of the translation rules 
to demonstrate that executable Napier88 can be generated automatically. The remainder of 
the translation rules have been applied manually to produce Napier88, to demonstrate that 
the rules are correct. 

The multi-purpose graph tool, designated as Graph Tool, can be used with the class of 
applications using graphs as their main data structures. It provides support for visual and 
interactive representations of an application. The application acts as a client of the Graph­
Tool. A protocol has been defined to connect the client application to the GraphTool. Any 
number of visual representations can be associated with the application. Maps are used for 
this purpose: to change the representation it is only necessary to change the map. The 
GraphTool includes a constraint manager used to associate constraints with the representa­
tions objects and check these at run-time. 

The configurable design tool has been developed as a client for the GraphTool. It includes 
generic components for diagram editing and a drawing canvas. The functionality of the 
canvas is fully provided by the GraphTool. 

Three possible directions for further research are suggested. Thefirst relates to the visuali­
zation of semantic constraints. Constraints could be specified interactively by means of a 
visual representation. The visual representation could then be used by the system to show 
the constraints to a user (possibly using animation). The second direction proposes a new 
approach for code generation that bridges the semantic mismatch existent between the 
specification and the implementation. This is noticed, for example, in the problem of 
change propagation from the implementation back to the specification (retro-propagation). 
This new approach proposes solution to this and other problems. The third direction sees 
visual concepts as components. They become small, reusable units of specification. Fol­
lowing similar principles to those used for reusable code components, specification com­
ponents would be created. These units of specification could then be stored and reused 
across a range of applications. 

We believe that this dissertation contributes to, and opens new directions in the field (still 
in need of research effort) of providing frameworks and systems for the specification of 
modelling techniques and the automatic generation of design tools supporting them. 
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Introduction and Motivation 

1. Introduction and Motivation 

The main objective of the research reported in this dissertation is to automatically generate 
tools to support software design using conceptual Modelling Techniques (MTs). We focus 
on those techniques which are based on graphical notations, such as: Dataflow Diagrams 
(DFD), State Transition Diagrams (STD) or Entity Relationship (ER) diagrams. We 
explore the formal description of these MTs, the automatic generation of diagram editing 
tools and the ways in which constraints can be applied to guide the user of such tools dur­
ing the design process. 

It is possible to define a meta-method that is able to capture the semantics associated with 
diagram based MTs. The meta-method is supported by a formalism - the Visual Concepts, 
from which a number of conceptual frameworks have been conceived in order to capture 
the following components of a MT: its notation (the representation component); its con­
cepts structure (the semantics component); its dynamics during user interaction (the usage 
component). Using this meta-method, a MT designer can produce specifications of a given 
MT. From those specifications it is possible to automatically generate a dedicated design 
tool to support the MT. The tool's user interface conforms to the specified notation 
described in the representation component of the specification. A visual language is also 
generated as part of the design tool which, by the use of constraints, follows the semantics 
of the MT. A new theory of constraint definition and management makes it possible to 
determine the process of usage of the MT. 

Examples are provided in the meta-modelling literature (as discussed in Chapter 3 'Litera­
ture Survey', Section 3.4 on page 25) proving that it is possible to define the static aspects 
(representation and concepts) of a MT. However, few reports are available on the defini­
tion of the dynamic aspects. In our context, the dynamic aspects are the implications of the 
concepts' semantics in the usage of the MT, e.g. which user actions are allowed for a given 
diagram configuration or how should the design tool guide the user through the editing 
task. 

The dissertation proposes a new approach for the specification of MTs based on diagram­
matic representations, such as: State Transition Diagrams (STD), Data Flow Diagrams 
(DFD), Petri Nets or Entity Relationship (ER). These specifications are to be used in the 
automatic generation of supportive interactive design tools. A specific-purpose formal lan­
guage - the VC-t ('VC' stands for Visual Concepts, the formalism in which the language is 
based and 't' stands for textual) is used to produce the MT specifications. The VC-t lan­
guage is able to express the semantics of the MTs by the use of constraints (semantic rules 
based on a form of predicate logic). These specifications are parsed and executable code is 
automatically generated. The generated code implements dedicated design tools support­
ing the given MTs. A new visual language in addition to a novel constraint specification 
and management theory defines the usage of the MTs at diagram design time. The gener-
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ated design tools may be tailored in the way they enforce the MTs semantics to take into 
account the level of expertise of the user. 

Another way of using this approach is the definition of MTs for specific application 
domains; we call these Application Specific Modelling Techniques (ASMTs). Several 
studies [Marttiin95; Wynekoop93] show that some companies find it more profitable to 
tailor standard MTs to suit their own application domain than to use general purpose com­
mercial products. 

This results from the fact that current commercial CASE-Tools are not completely satis­
factory. A CASE tool is normally designed to support various MTs integrated in a com­
plete design methodology [Brinkkemper93]. However, diagram editing facilities provided 
by CASE tools do not provide all the answers to our problems. The design tools are hard­
wired, hence if a MT has to be tailored to accommodate the needs of a particular domain 
of application, the CASE tool will not support the changes. Similarly CASE tools cannot 
be extended to support new MTs, the diagram editors provided by the CASE tools do not 
have an abstract model of interaction that can be applied across different MTs, they are 
normally designed to be oriented and exclusively dedicated to a specific modelling tech­
nique. 

In most cases, developing from scratch a design tool to support an ASMT would not prove 
cost-effective for the company. This is when an approach such as the one we propose 
becomes valuable. The approach supports the production of simple, safe, formal, special­
ized conceptual MTs provided with a graphical representation to obtain diagrammatic 
models of applications. 

To satisfy the requirements expressed above, the new MT should be: 

• easy to use and understand (simplicity); 

• solid and idiot proof; possible misuses, mistakes and inconsistencies must be read­
ily detected and explained in the form of feedback to the user (safety); 

• sound and complete to its purpose; semantics of constructs must be well-defined 
(formally defined); 

• restricted to the specific domain; superfluous constructs must be eliminated (spe­
cialized). 

There can be, potentially, a new MT for each new application domain. We need, therefore, 
to investigate the fast, simple and effortless generation of design tools to support MTs. 

The goal of the work described in this dissertation is to provide a solution to the problems 
identified above. The definition of a MT is based on a specifically designed formal lan­
guage (VC-t) which can be parsed to automatically generate supportive interactive design 
tools from specifications. The automatic generation process is grounded on a new theory 
of semantic constraints which constitutes an approach to the definition of MT usage. This 
dissertation is the result of the research work dedicated to pursue that goal. 
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1.1 Structure of the Dissertation 

The dissertation is structured in four parts together with some appendixes. The first part, 
the 'Introduction', includes Chapter 1 (the present one) and Chapter 2 'Overview and 
Architecture' which gives the overall conceptual architecture of the system and a sum­
mary of each of its components. Chapter 3 is a literature survey of the areas related to this 
dissertation which focuses on other research work that provided the bases and the inspira­
tion for our approach. 

Chapter 4 'The Visual Concepts Formalism' starts the second part of the dissertation - the 
'Theoretical Foundations'. Chapter 4 describes the formalism from which the three con­
ceptual frameworks that support the whole dissertation were derived; the three following 
chapters each describe a different conceptual framework. Chapter 5 'Specifying the 
Semantics of Modelling Techniques' explains the VC-t specification language; it includes 
a tutorial for the language and a description of its formal aspects. Chapter 6 'The Generic 
Visual Language for MT Editors' concerns the way diagrams are interactively built and 
how the modelling task is supported by a design tool. Chapter 7 'Specifying Usage by 
Semantic Constraints' describes a new theory for the classification and specification of 
constraints and how they are used to guide the user through the editing process in accord­
ance with the semantics of the underlying MT. 

The third part of the dissertation is dedicated to 'System Design and Implementations', it 
begins with Chapter 8 'Compilation of Specifications and Automatic Code Generation'. A 
compiler was implemented for the VC-t language, it features two individual parts: a front­
end, that includes a lexical analyser, a parser (syntactical analyser) and a semantics ana­
lyser for type checking and scope rules; and a back-end, which consists of a code genera­
tor. The compiler and all the automatic code generation process is presented in Chapter 8. 
A generic tool to support interactive graph based applications is presented in Chapter 9 
'The GraphTool'. The generated design tools use the facilities provided by the GraphTool. 
The third part of the dissertation ends with Chapter 10 'A Prototype' which includes a sec­
tion on the technology used, with: the Napier88 persistent language and its programming 
environment; the UIMS (User Interface Management System) supporting the prototype's 
interactive features - TkWin; the Lex and YACC Unix tools. Next in the chapter is the cur­
rent status of implementation and finally an example of a design session, from the VC-t 
specification of a MT to the generation of a supporting design tool. 

The 'Conclusion', the fourth part of the dissertation, includes Chapter 11 where the contri­
butions given by this dissertation are outlined, the limitations of the approach are stated, 
some improvements are suggested and exciting future research directions are identified. 

The following appendixes are included. Appendix A 'Guide to the VC-t Syntax' gives a 
simple description of the VC-t syntax. Appendix B 'Complete VC-t Specifications of 
Modelling Techniques' where specifications for DFD, STD, ER and OMT's Objects Dia­
gram are included. Appendix C 'Types For The Representation Level - A Generic Lexicon 
For Interactive Graph Based Systems' presents a generic collection of type declarations, 
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which are used by the system's representation level but may also be used by any interac­
tive graph based system. Appendix D 'The Compiler's Front-End: a Parser for the VC-t 
Specification Language' consists of the lexical and syntax specifications (for Lex and 
YACC, respectively). Appendix E shows the code generated for a VC-t specification of 
STN. 

1.2 A Note on Styles 

The following styles are used in the dissertation: 

• italic - used to introduce or refer to a concept; 

• italic is also used to emphasize a part of the text; 

• bold - definitions; 

• 'single quotes' - denote a term, as in: we will use the term 'designer' to refer to the 
person who writes VC specifications; 

• 'single quotes' is also used to include part of a text (citation) or specification, as in: 
the constraint 'entities must be named' must now be enforced; 

• 'single quotes in the font used for code' - executable code; 

• "double quotes" - a string, as in: the label on the icon is "Person". 

• [brackets] - a bibliographic reference, as in: [Welland90] 
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Overview and Architecture 5 

2. Overview and Architecture 

The overview includes three sections: writing of a formal specification for a Modelling 
Technique (MT), which includes describing its semantics and tailoring its usage, i.e. how a 
user can produce diagrams with the MT; the generation of a design tool to support the 
specified MT; and finally the run-time operation of the generated system and the way the 
final user interacts with it. . 

The three sections correspond to the stages that a method designer must go through to 
obtain a working design tool from a formal specification of a given MT (see Figure 1). 

The first stage consists, firstly, in using the VC-t formal specification language to describe 
the semantics of the particular MT. Next, the designer may choose to tailor the usage of 
the specified MT by classifying the semantic constraints in terms of their checking and 
enforcement. This subject is covered by a novel theory of semantic constraints which 
allows the designer to refine the VC-t specifications. This means that the designer may 
determine how a diagram is drawn by a MT user. For example, the designer can determine 
that the objects of a particular VC type must be created before the objects of another VC 
type; or that a property (e.g. 'name') of some VC type must be given a value when an 
object of that type is created. The second stage consists of the compilation of the VC-t 
specification produced in the first stage. The output of the compiler is a Napier88 program 
that implements a design tool supporting the underlying MT. In the third stage the 
designer will test the generated design tool. The tool is analysed to certify that it correctly 
supports the semantics of the MT. 

The production of a design tool is an iterative process. The designer may change the spec­
ification by returning to the first stage. A new compilation takes place and a design tool is 
generated which is then tested. 

Figure 1 shows the architecture from a generation-time perspective (aspects regarding run­
time operation are omitted). Each component of the architecture is described in a section 
of this chapter. A brief explanation of how the system works at run-time is given in 
Section 2.3 on page 15. 

2.1 Producing Specifications for Modelling Techniques' Semantics and 
Tailoring Their Usage 

A new formalism to express diagram based MTs - the Visual Concepts - is presented. A 
generic visual language to be used in the tools supporting MTs and a specification lan­
guage to express the semantics of MTs, have been defined based on that formalism. A first 

J. Artur Vale Serrano June 1997 



Overview and Architecture 

MT Description in 
Natural Language 

interprets 

MT Designer T. 
Caption 

data flow 
(generation time) 

part of 
(component) 

.... generates (autom.) 

-I> generates (by hand) 

o 
o 

provided by the 
system 
generated (by 
hand or 
automatically) 

<D conceptual framework 

--t> concept flow 

Constraints 

Constraints 
Repository 

~~::::::::::::::., 
,,' ...... :' 

I~' Visual C<?ncepts)' 
~, Formalism • I 
':::: ............. :::" 

" ....... . 

MT Specification 

MT Refined Spec. 

VC-t Compiler 

( VC-t parser) 

Napier88 Code 
Generator 

Napier88 Program 

Constraint * 
Usage 

(hardening/deferring) 

Napier88 Templates 

Configuration 
of 

MT Design 
Tool 

Configurable 

MT Design 
Tool 

*only generated for the MT Refined Specification 

6 

FIGURE 1. The overall conceptual architecture at generation-time. 
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specification for a MT can obtained with the specification language, however it does not 
include information regarding the way of using the MT - only the default usage is implicit 
in the specification. To allow the MT designer to tailor the usage, a theory of semantic 
constraints has been developed for the refinement of a MT specification. The production of 
a MT specification is an iterative process in which each new specification obtained can be 
parsed and, from it, a prototype can be generated. 

2.1.1 The Visual Concepts Formalism 

The new formalism, Visual Concepts, is able to describe MTs such as the Entity-Relation­
ship (ER) technique, State Transition Diagrams (STD), Dataflow Diagrams (DFD) as well 
as propriety techniques developed for a specific purpose. It is based on Visual Concepts 
(VCs), which are typed units of specification encapsulating information on the physical, 
semantic and usage components. 

The VC model is based on the use of constraints to express its semantics. They are called 
semantic constraints and are rules, on the VCs' properties or the whole diagram, that can 
be checked for validity and, optionally, enforced. An implementation of the VC formalism, 
called Visual Objects, to be used in the system's prototype, has been produced. Detailed 
presentation in Section 4.4 on page 42. 

2.1.2 A Generic Visual Language to Draw MT Diagrams 

We must define how the final user can produce diagrams with the design tool. For this pur­
pose, a visual language is needed. The drawing process will be directed by the semantics 
of the underlying MT. As MTs have different semantics, there will be as many visual lan­
guages as there are MTs. However, there are commonalities amongst the various visual 
languages for they are all based on the same diagrammatic layout and all of them are 
implemented by semantic constraints. It is then possible to define a generic visual lan­
guage which can be instantiated for each particular MT. 

It is then possible to produce a visual language for a given MT by instantiating the generic 
visual language with the set of semantic constraints defined for that MT. However, CUITent 
diagram editing tools based on constraints always display a trade-off: on one side the con­
straints are enforced to maintain the consistency of the diagram; on the other side the con­
straints force the user to follow a given path on the design process, limiting his/her 
freedom. If all the constraints are enforced at design time the user is unable to introduce 
any inconsistency in the diagram. In a normal editing process, the user deliberately intro­
duces some temporary inconsistencies, e.g. delaying the specification of the attributes in 
an ER diagram until several entities have been drawn. If this is not allowed by the system, 
the user will have the sensation of wearing a straitjacket. However, if no constraints are 
enforced it may provoke the user to feel lost in the design task, without any semantic guid­
ance. A decision on the number of constraints to be enforced at design time is then made 
to achieve a balance between the two extreme situations; as a result, a number of con-
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straints are relaxed (deferred until explicit user request for a total diagram check). We 
believe this approach is inadequate and we present a revolutionary solution to that prob­
lem. 

The proposed generic visual language is based on the VC formalism and, more specifi­
cally, on the Visual Objects implementation of it. It is able to embed the full semantics of a 
MT. Yet, it does not limit the user freedom during the editing task. Detailed presentation in 
Chapter 6 'The Generic Visual Language for MT Editors'. 

2.1.3 A Formal Specification Language for Visual Concepts Semantics 

In order to build specifications of MTs, a language for the Visual Concepts formalism has 
been designed and its syntax formally specified - the VC-t Specification Language. Speci­
fications obtained with this language can be parsed, and MTs' dedicated design tools auto­
matically generated from these specifications. A number of requirements for this language 
have been identified and are summarized in what follows. 

The language must have a scope wide enough to cover a meaningful range of MTs. By a 
'meaningful range of MTs' we mean a selection of widely used MTs which cover both 
static/architectural and dynamic aspects of application domains, using different paradigms 
(e.g. Semantic Data Modelling and Object Orientation) and applied in a broad variety of 
contexts (e.g. database applications, process modelling, hardware design). It must be 
expressive enough to capture the semantics of the MT; this is done by the use of con­
straints. The specifications obtained with it should be readable. It has to be more than a 
theoretical exercise - it must be practicable and simple to use. 

A specification of a MT, obtained with the VC-t language, includes two main sections: the 
'Preamble', where all the declarations are made (this includes the VCs and their proper­
ties); and the 'Semantic Constraints', where each constraint is specified by a statement in a 
form of predicate logic with equality. 

In the specification, a natural language description is associated with each constraint; its 
main purpose is to give semantic feedback to the user of the design tools which are gener­
ated at the end. They also add legibility to the specification. 

The Lex and Yacc Unix tools were used in the construction of a compiler for the VC-t lan­
guage. To produce the compiler we obtained a formal description of the language in BNF. 
The complete Lex specification and Yacc specification (the BNF description) are included 
in Appendix D. 

Specifications obtained with the VC-t language are, at the same time, formal descriptions 
of MTs and high-level descriptions of the computational system that is generated to sup­
p0l1 the MT. These descriptions have advantages when compared to natural language 
ones: they are formal, therefore they have a well defined meaning and consequently they 
are unambiguous; the VC-t language has explicitly been developed to express MTs, thus, 
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being specific, it is expected that the specifications are more concise and have a more con­
sistent structure and terminology than a specification obtained with a highly general-pur­
pose language like the natural one. These advantages are important when producing 
specifications to be used as input to a computational system; still, from the user point of 
view, they can be totally negated by a single disadvantage - lack of readability. It is impor­
tant that the specifications may be understood and used as a means of sharing information 
within a team. This will also allow for them to become an insight to the generated tools. In 
the design of the language this has also been taken into account. 

Formality must be employed only as a mathematical tool to guide the design of the lan­
guage, never as an end in itself. The main goal is to obtain a language that may be used by 
someone who is already able to specify a MT using natural language; the use of a special 
purpose language should not make the task of specifying a MT more complex. 

The readability, the easy understanding and easy production of specifications were tested 
by using the language to specify a number of established and well known MTs. VC-t spec­
ifications were produced for the following MTs: DFD and STD (both techniques are used 
to express dynamic aspects of a universe of discourse); and ER (a Semantic Data Model­
ling technique). The complete specifications are included in Appendix B on page 159. 
Detailed presentation in Chapter 5 'Specifying the Semantics of Modelling Techniques'. 

2.1.4 Tailoring the Usage of a MT 

The simple enumeration of the semantic constraints on a MT specification obtained with 
the VC-t language, as presented in the previous section, is not enough to express the usage 
of that MT. For example, if the MT designer decides to specify that, for a STD, the 'initial 
state' must be the first state to be created in a diagram, or that writing the names of states 
can be delayed until several states have been drawn, then a more expressive constraint 
based specification must be used. The initial VC-t specification determines a default 
usage; but for a more elaborated definition of the way a user may draw a diagram, a con­
figurable constraint checking mechanism becomes necessary. 

A novel theory of semantic constraints has been elaborated to allow the designer to 
express the usage of a MT. The designer specifies how the constraints are enforced to 
define the possible drawing paths a user may follow when producing a diagram. Drawing 
paths are sequences of user actions and they are determined by the constraints that are 
enforced for each diagram configuration. 

Refined MT Specifications 

As mentioned above, the initial VC-t specification determines a default MT usage. This 
means that a design tool can be produced from it which provides a default usage, yet it will 
only be suitable for debugging purposes. A description of the MT usage must be given by 
the designer, so that a truly useful design tool can be produced. 
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The new theory provides a mechanism for the refinement of VC-t specifications. The con­
straints may be labelled as 'hard', 'soft', 'hardened' and 'deferred'. The VC-t language 
has been extended to support these constraint classes. The refined specifications can also 
be parsed but now design tools which incorporate the tailored usage of the MT are gener­
ated. 

This theory gives the possibility of tailoring the usage of a MT. Moreover, it allows con­
straint checking to be configured at editing-time in accordance to the expertise of the user 
by providing a mechanism to enforce, or defer the enforcement, of constraints. Detailed 
presentation in Chapter 7 'Specifying Usage by Semantic Constraints'. 

2.1.5 The Iterative MT Design Process 

Once the description in natural language of the MT has been interpreted and translated 

MT Description in 
Natural Language 
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MT Designer X 
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MT Specification 

MT Refined Spec. 

VC-t Compiler 
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FIGURE 2. The iterative design process. 

into a formal specification by the designer, a first prototype can be generated from it. The 
designer may then evaluate the prototype and, if necessary, change the specification and 
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generate a new prototype. This process can be repeated any number of times until a suita­
ble prototype is generated. This iterative process is represented in Figure 2 by the cycle 
marked 'A'. 

The interaction with prototypes generated in the cycle 'A' conforms to a default usage of 
the underlying MT. After a satisfactory prototype with a default usage has been obtained 
within cycle 'A', the designer might want to tailor the usage of the MT. This is done by 
refining the specification produced in cycle 'A'. Information concerning constraint check­
ing and enforcement is included in the specification - the designer has entered cycle 'B'. 
Within cycle 'B' the same iterative process explained above for cycle 'A', can be per­
formed by the designer. The design process stops when a satisfactory system is obtained. 

It is important to notice that all the changes within the iterative cycles for prototype 
improvement are carried out at the design level, not at the generated code level. The sys­
tem obtained by this iterative process may satisfy all the requirements, but it might happen 
that it still needs further improvements or some extra features. In this situation it is neces­
sary to change by hand the code generated automatically. Our approach does not provide 
mechanisms to automatically propagate changes made to the code (at the implementation 
level), up to the specification (at the design level). A possible direction to the solution of 
this nasty problem is pointed out in Chapter 11. 

2.2 Generating Design Tools for Modelling Techniques 

Once the MT designer obtains an initial or refined version of a specification, it can be used 
as input to the automatic generation process. The MT specification is compiled and 
Napier88 code is generated. Not all the code necessary to implement the design tool is 
generated; part of it is provided as templates and part is provided as configurable tools. 
The aspects related to the compilation process, constraint management and configurable 
tools are outlined below. 

2.2.1 The VC-t Compiler 

One of the basic guidelines of this thesis is to provide widely applicable theoretical and 
practical frameworks, rather than closed architectures and systems. The design of the com­
piler follows that guideline in that it can be applied to different technologies and program­
ming languages. 

The compiler is composed of a front-end and a back-end. The front-end is a parser for MT 
specifications; the back-end is a Napier88 code generator. The front-end is completely 
independent from the back-end and, therefore, from the particular programming language 
generated. If instead of Napier88, another output language is to be used, only the back-end 
has to be replaced. For output programming languages which offer similar constructs, the 
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back-end will be based on similar sets of translation rules (discussed below), thus facilitat­
ing its replacement. Detailed presentation in Chapter 8 'Compilation of Specifications and 
Automatic Code Generation'. Chapter 8 discusses the compilation process and the princi­
ples of code generation. 

Parsing MT Specifications 

A parser for the VC-t language has been implemented based on the BNF description of its 
grammar. The Unix tools Lex and YACC have been used. Correctness checks are done at 
the lexical, syntactical and semantics levels. The semantics level refers here to those 
aspects related with type checking and variables' scope. 

Generating Napier88 Code 

A goal we have tried to achieve is that the generated code must be human-readable. By 
readable code we mean that it not only has a nice layout, but also that it may be easily 
understood by a Napier88 programmer. 

The generated Napier88 coded is guaranteed to be correct, but it is far from being optimal. 
At this stage we want primarily to provide a prototype that works correctly and demon­
strates the ideas stated in the thesis without trying to achieve any performance goals. 

Not all the necessary Napier88 code is automatically generated, part of it is hard-wired in 
the system to be used in the automatic generation process. This includes templates, struc­
tures with chunks of pre-written code and place-holders to be filled with the automatically 
generated code; and configurable modelling tools tailored by the code generator with MT 
specific code. 

Because the generated tools use persistent technology, both the data implementing the MT 
constructs (metadata), namely Icons and Connections and associated constraints; and the 
data produced with the generated design tools, can be made persistent. Therefore, the 
metadata-dictionary and data-dictionary found in traditional modelling systems, are 
replaced by repositories constituted by the data structures from which metadata and data 
are instantiated. 

The code generation is guided by a set of translation rules that map syntactical constructs 
of the VC-t specification language to Napier88. A set of rules have been defined, for 
instance there is a rule which applies to the VC-t production rule naturaiExpression natu­
ralComparisonnaturalExpression defined for the non-terminal simpieBooieanExpressioll. 
A description of the complete set of rules and their application in the generation of the 
code for a design tool is given in Section 8.3.3 on page 99. 

We have identified some general principles in the translation rules and interesting prob­
lems in the code generation process. The correctness and simplicity of the translation were 
our main concerns; the efficiency of the generated code was left for future stages of devel­
opment. 
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2.2.2 Checking Semantic Constraints 

A diagram operation is a transformation of the presentation (the visual component of the 
design tool's User Interface (UO) resulting from a user command. A diagram has an 
underlying graph structure, thus the following classification of operations available to the 
user: graph preserving operations and graph altering operations. In graph preserving 
operations only the layout of the graph is changed; for instance moving an icon or chang­
ing the font of a label. In graph altering operations both the layout and the structure of the 
graph are changed; for instance, deleting or creating a connection. 

Constraints are checked after any graph altering operation on a diagram object; so their 
satisfaction can be seen as a post-condition on the operation. Constraints can be classified 
according to the kind of diagram objects they apply to: icons, connections or labels 
belonging to either icons or connections. 

Two problems must be solved in constraint management: determining which constraints 
must be checked for each diagram operation, and determining which constraints must be 
referred to by each VC type. 

The complexity of these problems can be largely reduced when a number of diagram 
drawing assumptions are considered. E.g. 'the operation icon deletion provokes the dele­
tion of all connections glued to the deleted icon'. This assumption allows us to reduce the 
number of constraints referred to by the icon that would otherwise be checked both for the 
deletion of the icon and the deletion of the connection. A detailed and formal study of 
these problems is presented in Section 8.4. 

2.2.3 The GraphTool 

The GraphTool aims at supporting the development of applications based on diagrams 
which are visual representations of graph structures. The tool provides generic facilities to 
manipulate graphs and their visual representations. It includes a library with standard 
graph operations, a repository for Visual Objects (the classes of diagram constructs, which 
can be Icons or Connections), a configurable representation manager, a repository for con­
straints and a constraint manager to express Visual Objects semantics. 

The architecture of a GraphTool based application comprises three levels: the application 
level, consisting of the application specific code; the representation level, where visual 
representations for graph structures with user interaction mechanisms are defined; the 
abstract graph level, holding the graph data structures. 

Several representations can be associated with the same graph. The connection between 
graph and representations is supported by map structures, one map for each representa­
tion. Changing the current map will change the representation. 
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The procedures to manipulate the graph structures and their representations are parameter­
ized with application defined types, for this reason they cannot be provided as a library. To 
solve this problem, a number of generators (procedures that generate other procedures) 
have been included in the GraphTool. These generators provide a default functionality. 
They define for instance the creation of an icon or a connection, or the way a Visual Object 
can be moved by the user. Any generator may, however, be replaced by a user defined one; 
this way the GraphTool is fully configurable by the user. 

In order to connect the GraphTool to the application in hand, a three element protocol has 
been defined; it includes: an interactive drawing canvas; a number of procedures defined in 
the structureGraphToolFunctionality which act as functionality connectors; and a callback 
mechanism allowing the GraphTool to execute procedures provided by the application. 

The Visual Objects, i.e. the components of the diagram displayed on the canvas, besides 
their appearance, also have semantics; this is implemented as a set of constraints which are 
stored in a constraint repository. A constraint manager is included in the GraphTool to 
check, validate and enforce the constraints over the Visual Objects at editing-time. 

As the GraphTool was implemented on top of a persistent system [Monison94], it offers 
support for diagram persistence. Diagrams are inserted in a store, incrementally, during 
the drawing process. Note that when a repository is mentioned, such as the constraint 
repository, it means a sub-section in the global hierarchical structure of the persistent sta­
ble store (in Napier88 these sub-sections are called environments). 

Although the GraphTool had been developed as part of the prototype implemented to dem­
onstrate the ideas on this thesis, it can be used in a large variety of contexts. We believe 
that reusability and genericity should always be a concern in software design. Detailed 
presentation in Chapter 9 'The GraphTool'. 

2.2.4 The Configurable MT Design Tool 

A Configurable MT Design Tool is provided by the system. It can be configured to support 
any MT whose specification is used as input to the generation process. 

The tool includes an interactive drawing canvas for diagram editing, a palette of icons and 
connections with an import mechanism to load new Visual Objects representations, a text 
display window for feedback on constraint violations, and a menu-bar with standard edit­
ing commands. 

The tool does not provide the functionality for diagram editing; instead it acts as a front­
end to the GraphTool by establishing links to its functionality connectors. The configura­
tion is done at two levels: appearance, by importing the appropriate set of Visual Objects 
representations to the palette; functionality, by establishing the links to the appropriate 
GraphTool functionality connectors. This tool was obtained from the project described in 
[Fun96]. 
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2.3 How the System Operates at Run-Time 

When a VC-t specification of a MT, provided by the MT designer, is successfully parsed, a 
working system is generated. In Figure 3 is represented the architecture of a working sys­
tem. 
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FIGURE 3. The system at run-time (editing a MT diagram). 

The working system comprises: 

• a Constraints Repository where the generated constraints are stored, a Constraint 
Manager to determine which constraints are to be checked for each diagram edit­
ing situation (both are part of the GraphTool); 

• an instantiation of the Generic Visual Language, called the Specialized Visual La1l­
guage; 

• a Dedicated MT Design Tool where diagrams can be interactively edited. 

2.3.1 Obtaining and Testing the Working System 

The MT designer must test the obtained system to ensure that the constraints reflect the 
semantics of the MT being specified. Testing is done by experimenting with the design 
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tool. Because the VC-t is based on predicate logic it would be possible to use a system to 
prove the correctness of a specification. However, this is out of the scope of our work. 

After each iteration in the design cycle a working system is obtained. It is important to 
notice that the generated system is not a prototype in the sense that it only implements part 
of the functionality of the system to be obtained as a final product. In fact, the final product 
is just another refinement (the last one) of the system produced iteratively during the 
design process. Once a system is generated that upon testing appears to meet the require­
ments, i.e. it completely and correctly reflects the semantics of the specified MT, then it is 
called 'the final product'. 

2.3.2 Interfacing With the User 

The GraphTool implements the graphical appearance and the lower level of the VI (the 
dialogue) of the Dedicated MT Design Tool, which consists of commands for visual graph 
manipulation, such as create icon or delete connection. 

The higher level of the VI (the functionality according to the MT semantics), is imple­
mented by the constraint manager. The functionality defines, for instance, when and under 
which circumstances the creation of a 'transition' in a STD may occur. 

2.3.3 A Dedicated MT Design Tool 

The Dedicated MT Design Tool is obtained from the Configurable MT Design Tool pre­
sented in Section 2.2.4. The design tool conforms to the input specification, written by the 
designer, for the underlying MT. This design tool includes the icons and connections 
depicting the MT concepts and also incorporates a specialized visual language which is 
specific to the MT semantics. 

The generated design tool can be used to edit a diagram corresponding to the specified 
MT. When a constraint is violated, the user will always be given some kind of feedback. If 
a soft constraint is violated a visual feedback is given by the design tool by highlighting 
the Visual Object(s) involved; if the violated constraint is hard then a message is issued by 
the system showing the constraint description in natural language (which is given by the 
designer in the VC-t specification). 

A detailed presentation of the implemented prototype is given in Chapter 10. 
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2.4 Evaluation 

As with its overview, the evaluation of the approach must also be carried out in three lev­
els: 

• obtaining specifications: expressiveness and scope of VC-t language; human-read­
ability of the specifications - this was proved by producing concrete examples, 
such as specifications for DFD, STD and ER. 

• automatic code generation: correctness of code and consistency with specification 
- proved by compiling and executing generated code for the specifications above 
and by, afterwards, testing the generated design tools for correctness and consist­
ency with the specification. 

• design tools: correctness of appearance and fulfilment of usability requirements -
proved by observation of related work and analysis of the reported problems. By 
proving that the generated design tools solve those problems we are able to state 
that they meet the desired requirements. 

It is important to stress that we are not interested in producing a system with an excellent 
VI including eye catching and elaborated interaction features, such as rubber-banding, 
snap-into-grid or 3D feel. These features can improve the usability of the system but they 
are not relevant to the research topics covered in this thesis. Moreover, they can always be 
added later to the system, with a small impact to it. We are, in fact, interested in producing 
a system that conforms to the semantics of the underlying MT, and which functionality 
mirrors that semantics in a non intrusive way, by providing a new visual language based 
on semantic constraints. In addition, the system includes a user-configurable constraint 
setting and gives the user adequate semantic feedback. 
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3. Literature Survey 

3.1 Introduction 

One of the hard problems about doing a literature survey in the area of software engineer­
ing, specifically when it covers several disciplines such as conceptual modelling, graph­
grammars and constraint based systems, is coping with the diversity of terms and concepts 
used by the different research communities and even inside the same community. As an 
effort to be as consistent as we can when writing about related research, we will try to pre­
serve the terminology used in the surveyed literature, but also mention the term adopted in 
this dissertation whenever we find this necessary. In what follows we include some text 
extracted from the literature; this text is delimited by single quotes. All the claims and 
statements are based on the publications cited; whenever this is not the case it will be 
explicitly mentioned. 

3.2 Evolution From the ECLIPSE Design Editing System 

The design editing system we will examine in this section was developed as part of the 
ECLIPSE system [Bott89]. ECLIPSE is a result of the Alvey Software Engineering Pro­
gramme; it consists of an Integrated Project Support Environment (IPSE). One of the main 
characteristics of an IPSE is the presence of a central database (repository) which holds all 
information concerning any given project and through which all the tools communicate 
data. 

Being an IPSE, the ECLIPSE Design Editing System [Welland88; Beer88], which will be 
designated ECLIPSE-DE from now on, was developed subject to a main requirement: the 
produced design diagrams should be stored and manipulated in the ECLIPSE database. 

Further requirements were the ability to support multiple methods and the provision of 
diagram checking during the design task. It is here that the ECLIPSE-DE can be compared 
with our approach. We too intend to achieve a generic approach which is applicable across 
a range of methods (or modelling techniques) and that supports the designer during the 
modelling task. 

In what follows, a brief analysis of those aspects that can be related between the two 
approaches is given. The objective of this section is not to provide a description of the 
ECLIPSE-DE but rather to identify some research directions that might not have been 
fully developed in that system and how we think the VC approach can provide a possible 
solution. 
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3.2.1 The Description Language 

The language used in the ECLIPSE-DE to describe a design methods is called GDL 
(Graph Description Language). In the same way as our VC-t language, GDL is used to 
describe those methods which exhibit a node&link graph structure. Both nodes and links 
are typed; they are distinguished by their visual representation. GDL includes the feature 
of allowing new types to be derived from pre-defined ones; thus giving rise to a type hier­
archy. 

One of the requirements that guided the design of the VC-t language was 'simplicity'. An 
immediate advantage is the ease of use of the language. It is also easier to reason about a 
simple, clear and non-ambiguous specification. Non ambiguity is a direct result of apply­
ing formality to the language design. 

GDL is a very expressive language, but we believe 'expressiveness' should not compro­
mise 'simplicity' in a context where the goal is to facilitate the development of design 
tools - not make it more difficult. The specifications obtained with GDL seem far more 
complex than the those obtained with VC-t. Two possible reasons for this to happen can be 
pointed-out. The first one is that VC-t is supported by a very simple formal mathematical 
basis, namely elementary set theory is used to describe VC types and a form of predicate 
logic with equality is used for the semantic constraints. An explicit formalization of GDL 
is not given in the literature. The second reason is that the main purpose of VC-t is to be 
able to express the semantics of a modelling technique, whereas GDL indiscriminately 
expresses semantic aspects, layout information, e.g. aspects related to how labels are 
placed in a diagram (inside a box, below it, etc.), rules to ensure the production of good 
quality designs (this is related to metrics provided by some design methods), and also 
project specific rules such as the maximum number of characters allowed in a label. 

The existence of a formalism (the VC Formalism) in our approach from where all the 
frameworks are derived, constitutes a conceptual backbone for all the development proc­
ess, from writing a specification to the generation of a modelling tool. Such a formalism, if 
applied to the ECLIPSE-DE, would probably simplify its concepts (which seem somewhat 
diffuse) by placing them in an overall structure. 

3.2.2 The Assertions/Constraints 

In GDL, constraints are called assertions. A check of an assertion produces one of three 
results: true, false or non-applicable. The following classification of checks on assertions 
is proposed. There are four types of checks: connectivity, layout, semantic and complete­
ness. However it is not clear how the type of check is determined and for certain cases it 
seems that a check can belong to more than one type. 

In our approach a comprehensive and detailed theory of semantic constraints has been 
developed. Based on that theory we elaborated a process of hardening and deferring con­
straints as a means of expressing the usage of a modelling technique. 
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GDL also describes checks according to timing; they may be: implicit, immediate and 
user-instantiated. Only the two first classes have been implemented. The approach does 
not provide a policy to determine which assertions are suitable to be user-instantiated. It 
should be noted that the use of user-instantiated checks requires the inclusion of an 
explicit validation phase of the diagram, as opposed to a validation occurring simultane­
ously with the editing task. In our approach all constraints are checked at editing time _ 
there is not a distinct validation phase. In the dissertation we give the rationale for having 
taken that option and present a visual language based on that principle. 

In [Beer88], as a conclusion, the following statement is made: 'to provide a meta-system 
capable of generating syntax-directed interfaces for many different methods would require 
such an enormous amount of specification concerning the behaviour and mode of opera­
tion of each editor as to defeat the purpose of having a tailorable system at all'. In this dis­
sertation we show that this not only is possible but also extremely desirable. 

In the ECLIPSE-DE it is assumed that 'the designer knows best' and therefore slhe is 
granted maximum freedom during the design task. Excessive freedom may result in dia­
gram configurations with high levels of inconsistency obtained during the editing session. 
Such situations should be avoided and we address that problem by proposing a way of 
configuring the modelling tools to control the amount of freedom given to the designer. 

3.2.3 Compilation of GDL Descriptions and Code Generation 

The output of the compilation phase of a GDL description consists of a number of tables 
stored in files. Four tables are generated: a nodes table, a links table, a labels table and an 
assertions table. These tables are used to drive the generic design editor at execution time. 
The GDL compiler does not generate an intermediate representation (such as a syntax 
tree). 

The assertions table is obtained by translating the method assertions in the GDL descrip­
tion into strings in Reverse Polish, a notation that describes expressions in postfix form. 
Reverse Polish was chosen due to its aptitude to be used in the evaluation of expressions. 
An interpreter executes the translated assertions at editing time. This approach provides no 
independence from the underlying implementation platform; the output tables are directly 
used to drive the generic design editor. 

In the VC approach, the syntax tree generated by the compiler constitutes the intermediate 
representation from which executable code is generated. If the underlying platform 
changes, it is only necessary to update or replace the code generator (the back-end of the 
compiler) which will be using the same intermediate representation to generate the code in 
the new target language, for instance C++ or Java. 
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3.2.4 Storage 

Although the initial idea had been to integrate the ECLIPSE-DE prototype in the 
ECLIPSE system through its central database, this was not achieved because the database 
was not available at the time. The prototype interfaces to the UNIX file system rather than 
to a project database [Beer88]. 

A canonical representation (ADI) [SommerviIIe86] was used to achieve independence 
from the tool to the underlying storage mechanism. This approach minimizes the effort 
required to port the ECLIPSE-DE to a new storage system - only the ADI interface would 
have to be changed. 

3.2.5 Conclusion 

In conclusion, it seems that the main directions for evolution for the ECLIPSE-DE project 
are the provision of a well-defined and consistent conceptual framework for constraint 
classification and checking, and also the inclusion of a code generator providing independ­
ence from the design tools implementation language (target system). We believe that the 
VC system achieved considerable progress in both those directions. 

3.3 Hekmatpour, Inee and Woodman's Work 

3.3.1 Formal Specifications for Software Systems Prototyping 

In his PhD dissertation [Hekmatpour87a] Hekmatpour describes a system for rapid soft­
ware prototyping named EPROS as opposed to the conventional 'life cycle' model of soft­
ware development. 

The following aspects of software prototyping are covered by EPROS: functionality, 
which expresses what the software system must do and is based on execution of specifica­
tions written in META-IV, the formal specification notation of VDM; human-computer 
interface, based on a textual representation of State Transition Diagrams. 

The system uses an executable formal specification language, EPROL, which combines 
the two notations mentioned above, i.e. functionality and dialogue notations; and also the 
design notation, to be used in the refinement and modularisation of the software system 
under construction, which includes features such as abstract data types, functions and a 
formalism called 'cluster', addressed below; and the implementation notation which is 
based on a hybrid of C and Pascal and is strongly typed. The integration of these notations 
aims to compensate for each other's shortcomings. 
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The language also includes a formalism called 'cluster' which is a form of modularisation 
based upon the generalization of procedural abstraction. It is used when functions and pro­
cedures are inadequate. Using the 'cluster' mechanism, the programmer can extend the 
already existent facilities provided by the EPROS system. A goal of the use of 'clusters' is 
software reuse. 

The EPROS architecture features both an EPROL interpreter and a compiler which gener­
ates LISP code. Using the interpreter it is possible to browse both dialogue and functional 
specifications. The final products, implemented in LISP, are then executed by a module 
called 'executor'. Only the executor communicates with the window manager and the 110 
subsystem which collectively support the dialogue mechanism of EPROL. 

The systems development is performed in a top-down fashion (from abstract to concrete) 
and iterative or cyclic. The result of each cycle is an executable EPROL specification of 
the system which can be converted into a working prototype. 

When the user is fully satisfied with the exhibited behaviour of the system the dialogue 
specification and the functional specification can be integrated and the final prototype is 
obtained. 

Relation to Our Work 

It is not clear to what extent intermediate prototypes can be tested by the user. According 
to the paper: 'the executor has the role of executing finished products'. Also, only finished 
products in LISP may access the window manager and the 110 subsystem through the 
'executer' module. So, apparently, with intermediate prototypes it is not possible to gener­
ate output or interact with the system. In our approach there is no concept of refinement of 
specifications. However, they can be written incrementally and for each obtained specifi­
cation a working prototype can be readily and automatically generated using the full set of 
graphical and interactive features provided by the development environment. 

The domain of application of EPROL is not restricted. For the specification formalism to 
be able to describe any possible application, it has to be very generic and include a vast 
and rich set of concepts. The result is a necessarily complex specification language. More­
over, in order to be generic it must be able to support any software mechanism. The 'clus­
ter' formalism can be used to program these mechanisms, but this is a time consuming 
task. 

When the domain of a specification formalism is restricted to a given kind of application it 
is possible to provide a shorter set of constructs and also high-level software mechanisms. 
Our approach is geared towards this context. For instance, it seems to us a very difficult 
enterprise to build a design editor based on diagrammatic notations, such as the ones gen­
erated by our approach, with the prototyping system described. 

There is only one case study presented which includes both functional and dialogue speci­
fications, and it does not include a detailed discussion on the User Interface (UI) of the 
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generated prototypes or of the final system. Only a screen dump shows an aspect of the VI, 
which is form based and hierarchical. 

The work described is more concerned with the formal aspects of the approach then the 
usability of the produced systems. For us the important focus of research is not as much 
the formalisation in itself but more the way it can be used to achieve concise, consistent 
and unambiguous specifications which can also be read by a parser. The automatic genera­
tion of useful design editors from these specifications is also a vital component of our 
approach. 

3.3.2 Formal Specifications of Modelling Techniques and Diagram Editing 

The paper presented at the European Software Engineering Conference (ESEC) 
[Hekmatpour87b] describes a language for the specification of Modelling Techniques 
(MTs) called PSN (Picture Specification Notation). PSN is to be used within a prototype 
of a software tool building system. A graphic editor which is driven by PSN specifications 
of MTs in a way that guarantees syntactic correctness is included in that system. 

Mathematical Based Formalisms Versus Grammars 

We claim in Section 4.3.2.1 on page 41 that grammars are not the best approach to specify 
modelling techniques; their work backs our claim. After some experimentation with gram­
mars, they encountered a number of difficulties. It is difficult to elaborate a suitable gram­
mar for that purpose and even more difficult to build a parser for it. A grammar notation is 
also hard to understand, use and verify. The notion of production rules is not enough to 
express all concepts of MTs. Also, a grammar cannot ensure total syntactic correctness, as 
an example the authors claim that it cannot prevent circularity of processes in a DFD. A 
grammar based formalism is not appropriate for handling incomplete diagrams. 

Changing into a mathematically-oriented formalism, PSN, made it possible to overcome 
those difficulties. Another advantage is that being supported by a sound mathematical 
basis it lends itself well to verification. The same reasoning can be followed in regards to 
the VC formalism and the specification language derived from it, the VC-t. 

Separation Between Components of a Graphical Notation 

In the PSN based approach the graphical notation 'G' of a MT is seen as having three 
components: lexical, which denotes the symbols used in G; syntactic, the rules governing 
the combination of symbols in the production of a diagram; and semantic, 'which denotes 
the meaning attributed to each syntactically valid picture in G' (extracted from the paper). 
The paper does not explain how the semantic information is used in the system. 

This definition differs from the one used in our approach in which the syntactic level dic­
tates the valid geometrical relationships between any graphical objects, e.g. 'a shape can 
only be connected to a line style from its perimeter, not from its centre', or 'shapes cannot 
overlap'. These syntactic rules are independent of the type of the shapes, i.e. 'processes' in 
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DFD or 'entities' in ER, or the type of the line styles, i.e. 'dataflows' in DFD or 'relation­
ships' in ER. The semantic level corresponds to the MT rules on its concepts, e.g. 'a DFD 
must have at least one external entity which provides input to the system'. 

We believe this is a neater structure in what it provides a clear separation from the geomet­
rical relationships, which are valid for all notations, and the semantic aspects, which are 
characteristic of each notation. 

PSN specifies the rules of a notation, i.e. the syntax according to their definition. The 
alphabet (symbols) is defined separately using an interactive editor. VC uses a similar 
approach: the symbols (shapes and line styles) are defined using a graphical objects editor 
while the rules (constraints) are specified in VC-t language. 

MT Usage, Visual Language and Diagram Validation 

A major advantage of our approach is that it supports the generation of design editors 
which include a well defined visual language. The formal specification in VC-t is used to 
derive the usage aspects of a MT, i.e. the way a diagram of that MT is drawn. These usage 
aspects are provided to the user by the visual language. 

In the work by Hekmatpour and Woodman no reference to the usage aspects of an MT is 
made. The paper does not include any discussion on this topic or on the interaction of the 
user with the graphic editors. We do not recognize the use of any form of visual language 
or structured dialogue. 

Although the syntactic correctness of the MT diagrams obtained with the PSN driven edi­
tors is guaranteed, there is no concept of inconsistent states: the diagram is either correct 
or incorrect. The specifications obtained with PSN do not have distinct and identifiable 
assertions or constraints; i.e. there is a single parameterized predicate which includes all 
the rules of the MT. It is therefore impossible to perform continuous or incremental valida­
tion of the diagram being edited. 

In the editors obtained with our system, in order to give more freedom to the user, incon­
sistent diagram states are allowed during the editing process. The visual language supports 
the editing task by giving semantic feedback to the user on the current state of the dia­
gram. This is based on semantic constraints which are continuously being checked during 
the diagram editing. The diagram is therefore incrementally checked for validity. 

Expressing Object Refinement 

An important aspect of PSN is its ability to express refinement. An object can be refined 
into a diagram and a logical connection is always maintained between the two. This is pos­
sible even when the diagram is expressed in a different notation of that used for the object. 
Our formalism does not include such a feature at the moment. We do intend to extend the 
formalism to make it able to capture this kind of object refinement. 
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Code Generation 

In our approach, executable code is automatically generated from VC-t specifications of 
MTs. 

PSN specifications are translated into an intermediate format which can be interpreted. It 
cannot be translated or compiled into a widely used programming language, therefore it is 
not portable across implementation platforms. PSN is a very expressive formal language, 
but due to its expressiveness it is also too complex for automatic code generation, i.e. the 
designer is able to write specifications from which the generation of code would be virtu­
ally impossible. For example, the 'functions' section in a PSN specification allows the 
designer to specify in an algorithmic form the computations that must be used in the rules. 
This seems very difficult to be supported by a code generator. 

The implementation of the system using PSN was still under way at the time the paper was 
written. 

Conclusion 

In spite of being a very expressive language, PSN was not designed for the purpose of 
code generation. In our approach we require an expressive formal specification language 
but one which can also be used in the automatic generation of executable code. Moreover, 
the generated diagram editors must include a visual language satisfying usability require­
ments such as the intentional introduction of diagram inconsistencies between valid con­
figurations. This motivated a profound research into semantic constraints, their 
specification and management. The generation of usable interactive design editors that 
truly support the editing task using the semantics of the underlying technique is a main 
goal in our approach. This was not pursued in Hekmatpour and Woodman's work. 

3.4 The Metamodelling Community 

The work done by Cooper on Configurable Datamodelling Systems [Cooper90], although 
following an approach that is more system oriented - the system uses a toolkit of high level 
modelling primitives - rather than metamodel based, provided the motivation for the 
development of our formalism to describe MTs. The toolkit includes a set of data model­
ling primitives and a set of user interface primitives. Specific data models can be com­
posed, by a user, out of these primitives. For any data model, a user interface can also be 
built. The system also allows for the specification of constraints which are part of the data 
model definition. 

A good overview of concepts and systems for metamodelling is presented in 
[Alderson91]. The paper stresses the necessity of providing computer support to the proc­
ess of tailoring methods to specific users' needs. It then explains how meta-CASE technol­
ogies tackle this challenge. Blaha also addresses metamodelling in an introductory way 
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[Blaha92]. The OMT object model notation is used to obtain a number ofrestricted meta­
models of some widely known MTs. 

Alderson defines a method as a number of inter-related techniques and notations for con­
structing a complex self-consistent information product. Our work is mainly focused on 
the process of specifying MTs (which encompasses both concepts of 'techniques' and 
'notations' as used by Alderson) in a simple, quick but also formal way and how to auto­
matically obtain supporting tools from the specifications. This approach allows the user of 
the system (the MT designer) to tailor existing MTs by changing their presentation or 
semantics. 

A large amount of research is currently being done on method specification. However, its 
scope is related more to method integration rather than to tool generation. The relevance to 
our work is on the way methods are specified. A study on CASE tool integration per­
formed over a number of large organisations in the United States is presented in 
[Rader93]. The study revealed that the majority of organizations either use particular 
CASE tools as and when necessary with no tool integration, or use clusters of CASE tools 
integrated to support a part of the process. More developed integration technology, such as 
framework-based integration or multiple integrated CASE tool clusters are not common. 
The use of complete integrated CASE environments is still just a target for the current 
research work. A language for the definition of a variety of MTs called MDL (Model Def­
inition Language) is proposed in [Atzeni93]. The goal of this metamodelling approach is 
the translation of schemes from different models which were previously defined in MDL. 
One of the interesting points is the possibility of the automatic generation of a Schema 
Definition Language (SDL) from the corresponding MDL definition (unfortunately not 
presented in detail in the paper). In [Brinkkemper93] the integration of the diagrams 
resulting from the various editors provided by a CASE tool, e.g. entity relationship, data­
flow diagrams or structure charts, is discussed. A framework, using a new construct named 
ViewPoints, for the development of systems requiring the use of multiple methods (which 
include notations and development strategies) in given in [Nuseibeh92]. 

Two research groups have been producing work which includes aspects that are particu­
larly related to this PhD dissertation. Some of this work is briefly described below. 

3.4.1 The Dutch Work 

A formal language able to express constraints is presented in [Hofstede93]. The language 
is called LISA-D (Language for Information Structure and Access Descriptions) which is 
a formal extension of RIDL (Reference and IDea Language). LISA-D is based on the con­
ceptual modelling technique PSM (Predicate Set Model), an extension of PM (Predicate 
Model) which in turn is a formalization of NIAM. The paper claims that 'a conceptual 
data modelling technique should not only be capable of representing complex structures 
but also rules (constraints) that must hold for these structures'. It is said that LISA-D is (in 
principle) also applicable to other object-role modelling techniques such as ER or FDM. 
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The feasibility of a completely flexible CASE shell is discussed in [Hofstede96]. A CASE 
shell is defined in the paper as a method independent CASE tool, which may be instanti­
ated with a specific method to become a CASE tool supporting that method. The term 
'flexibility' is used to refer to the extent to which users are able to adapt a tool to their 
working style. This definition differs from the one we use in this dissertation, in that we 
make a distinction between the user of the tool, and the user of the metamodelling system 
(MT designer). Flexibility is then defined at two different levels: the metamodelling level, 
where it designates the extent to which a method or individual MTs can be specified, and 
the modelling level, where it means how well the modelling system derived from the met­
amodel can support different ways of producing model diagrams. The paper states that 
although a number of CASE shells have already been produced and even commercialised 
they do not support the modelling process. 

Three orthogonal dimensions are identified in a CASE shell repository: method level ver­
sus application level; process versus product (also referred to as 'way of working versus 
way of modelling' [Wijers90]); conceptual versus graphical knowledge. 

The first dimension, also referred to as 'types versus instances', is not considered to create 
a hard problem. The 'process' part of the second dimension relates to the tasks to be per­
formed during the modelling work. Tasks are classified according to their size: large tasks, 
for instance 'perform the Business Area Analysis' within the Information Engineering 
method; and minor tasks, e.g 'add an external entity to a diagram' in the DFD modelling 
technique. It is claimed by the authors that most state-of-the-art meta-modelling tech­
niques do not address the way of working. In our approach we tackle the problem of sup­
porting minor tasks. The MT usage can be specified by classifying semantic constraints as 
soft, hard, hardened or deferred. A flexible visual language can then be generated to sup­
port the modelling process. 

The 'product' part shows the structure and relationships between the information model­
ling products. Obtained models must generally satisfy complex rules imposed by the MTs. 
To capture such rules a powerful constraint modelling technique is required. For that pur­
pose the approach uses both graphical representation of constraints in PSM, e.g. total role 
or uniqueness constraints, and the constraint modelling language LISA-D for constraints 
that cannot be expressed graphically (which are in fact the majority, as they declare). 

'A way of working and a way of modelling are closely related'. The metamodelling must 
be able to express the existing relationships. The constraints used in our approach to spec­
ify the 'way of modelling', i.e. the structural prut, are then applied in the specification of 
the 'way of working' or 'MT usage' as explained above. 

The third dimension relates conceptual to graphical knowledge. As stated by the authors, 
this is 'particularly important for CASE shells'. This specifies 'how models appear on the 
screen and how actions can be performed on these represented models' [Hofstede96]. 
However, also in the same paper it is said that 'an area that has never been addressed, to 
our knowledge, is the dynamic side of the representation of graphical knowledge'. This 
PhD dissertation presents a detailed study on the graphical representation's dynamics 
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including constraint checking procedures as a result of diagram operations which are sup­
ported by an underlying graph library. 

3.4.2 The Finnish Work 

The work of the team led by Lyytinen is done in the context of the development of a CASE 
shell called MetaEdit. A CASE shell is defined as a tool that can be customised by users to 
support their own preferred methodologies [Smolander91]. 

In [Marttiin95], as a motivation to this work, the weak support given by CASE tools to the 
users' native methods and methodologies is mentioned. 

Although taking a different approach, MetaEdit has a common goal with our work in that 
they both support high-level specification of methods, or modelling techniques, using an 
easy to use specification language. 

MetaEdit is a metamodelling editor based on the OPRR (Object Property Role Relation­
ship) data model [Smolander91] (it is in fact a meta-metamodel for it is used to obtain 
metamodels of methods or modelling techniques). OPRR offers a graphical notation with 
which methodology models can be constructed. MetaEdit can be used either as a CASE 
shell [Tolvanen93] or alternatively as an interface to other CASE shells by generating their 
input configuration files in a (semi)automatic way [Smolander91]. In the latter situation 
the output generator of MetaEdit translates methodology specifications to formats needed 
in CASE shells. 

The process of method adaptation is described in [Tolvanen93]. During this process a for­
mal model of the method is derived. Note that this is also the approach we take in this dis­
sertation, it can then be considered as a metamodelling approach. 

A tri-dimensional metamodelling framework is proposed (equivalent to the one used later 
in [Hofstede96]). The three dimensions are: type/instance, conceptual/representational and 
statics/dynamics. However the third dimension is not explored in the paper. This dimen­
sion states how a method should be followed, i.e. how and in what order of tasks, the 
method produces its products (representations). This is one of the topics of our work; the 
user (method designer) may express usage information through the classification of 
semantic constraints. 

A new version of the MetaEdit tool, called MetaEdit+, has now been released [Kelly96]. 
The tool is now multi-user and multi-platform. It uses the conceptual meta-metamodel 
GOPRR, described in [Tolvanen93] and also [Marttiin95], which is an evolutionary exten­
sion of OPRR. It allows multiple representations of the same conceptual object (for 
instance, graphical, matrix or text) and even different graphical representations of the 
same object in any given representation paradigm. The letter 'G' added to the name stands 
for Graph, a concept to express an aggregation of a certain set of objects and their relation­
ships. An extension of OPRR that is particularly related to our work, is the possibility of 
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attaching integrity checking rules to properties, in addition to normal type rules. Although 
it is possible to express some integrity rules (or constraints as we call them) when model­
ling a given MT, they must be very simple ones. The following rule for DFD is given as an 
example in [Kelly96] 'a string property must be a dotted sequence of numbers'. This rule 
forbids combinations such as 'Fred' or '2.'. More complex integrity rules cannot be 
expressed, such as 'there cannot exist two dataflows with the same name and in the same 
direction which share the same origin and destination'. 

The literature indicates that a desired direction for the work in MetaEdit+ is 'to increase 
the capabilities to describe integrity constraints within and between method specifica­
tions'. We believe our work has provided a positive contribution to this topic. 

3.5 Graph-Grammar Based Approaches 

3.5.1 Introduction 

There are not many common points between the Graph-Grammars (GGs) approach and 
the one followed in our work. There are however common objectives and therefore an 
analysis of the advantages and drawbacks presented by each approach should be carried 
out. We should explain why GGs were not included in our research work. 

The generic term 'graph-grammars' refers to a variety of methods for specifying (possibly 
infinite) sets of graphs or sets of maps [Ehrig86]. This involves defining their structure and 
a number of graph transformation rules [Rekers94]. The term 'graph rewriting' is pre­
ferred by the author of [Sleep90]; he considers 'graph grammars' to be a narrower term. 

GGs are being applied to software engineering in a number of topics which are relevant to 
our work; these include software specification and development, incremental compilers, 
etc. [Ehrig86]. 

The following paragraph, taken from [NagI90], summarises the role of GGs in software 
engineering applications: 'GGs are used for internal, high-level programming. This means 
that the effects of concrete tools (such as those of a software development environment) or 
abstract tools (such as formal specifications of semantics) on internal data structures are 
operationally specified by a language for manipulating attributed node and edge labelled 
graphs, one essential of which is rewriting by rules. From these specifications the software 
architecture and the implementation of tools can be derived'. 

Initially, it seemed that GGs could constitute the ideal supporting conceptual tool for our 
work. For this reason, in the beginning of this research work, the possibility of pursuing a 
GG approach was taken into account. However, after a survey of the field, we felt that the 
implementation of a software system following a GG approach is still a complex task. In 
what follows we give support to this statement. 
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Why Could GGs Have Been Useful to Us? 

'Graphs combine the advantage of intuitive understanding with mathematical feasibility. 
Rule-basedness is considered to be a powerful and manageable method for specifying the 
dynamic and behaviour of systems. Putting graphs and rules together yields graph gram­
mars' [Kreowski90]. 

The importance of combining graph-like structures and rule-based systems is also asserted 
in [Schurr95]. It is said 'nevertheless, their symbiosis in the form of graph rewriting sys­
tems or graph-grammars are not yet popular among software engineers. This is a conse­
quence of the fact that graph-grammar tools were not available until recently and the lack 
of knowledge about how to use graph-grammars for software engineering purposes'. 

We couldn't agree more with the importance of rule-basedness and the use of graphs 
stated by Kreowski and Schurr - we use both in our system. However, for the reasons that 
will be given below, instead of a GG formalism we have created our own logic-based for­
malism - the Visual Concepts - which, for the way it was designed, we knew it could be 
implemented by us. 

Nagl defends that 'GGs are better for modelling; they offer mechanisms to specify com­
plex operations that cannot be found in the data modelling discussion' [NagI90]. 

As stated in [Kaplan90], 'designing a visual language based around graph rewriting and 
building an associated environment seems an excellent potential application of graph 
grammar technology'. According to Kaplan, the area of visual languages is an application 
domain where GGs could be directly accessible and manipulated by the user. It seemed 
that our generic visual language for diagram editing could be based on this technology. 

Why Have We Not Used GGs? 

Our goal when selecting a formalism was to be able to use it as a tool in our research, not 
focusing our research on the formalism itself. What has been said in favour of GG 
approaches is very much supported by theoretical reasoning rather than concrete systems 
or implementations. 

Nagl says: 'a basic software layer suitable for GG implementations has to be developed in 
order to be used at different sites. Furthermore, integrated GG specification environments 
and, finally, transformation tools for getting an implementation from a GG specification 
(compilers, generator tools) have to be developed' [NagI90]. According to Nagl, 'there 
must be some help for the complex translation from a graph grammar specification to an 
efficient implementation in one of the conventional programming languages'. At the 
moment there was no efficient automatic translation for a GG specification; it would have 
to be carried out by hand. A GG was seen only as a 'conceptual tool to be used in paper 
and pencil mode'. He also declares the necessity of some basic tools, for instance a gen­
eral purpose graph storage. 

The RWTH group in Aachen, Germany, has been working with GGs for more than 15 
years. Their experience in the area of software engineering stems from two projects: 
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IPSEN [NagI86] and PROGRES [Schurr95]. The latest developments of the PROGRES 
based system [Schurr95] seem to indicate that GGs are moving in the right direction. A 
specification obtained with the PROGRES language can be executed by an interpreter 
which shows the effects of the graph rewriting operations. The specification is checked for 
consistency and a stand-alone prototype can be automatically generated from it. This pro­
totype is built on top of the nonstandard database system GRAS and has a Tclffk based 
interface. The PROGRES compiler is able to produce 'easy-to-read' C or Modula-2 code 
from which a final implementation can be derived. 'The language PROGRES, its tools and 
the GG engineering methodology are a first step [ ... ] to establish graph rewriting as a new 
specification and programming paradigm'. At the end of the paper it is declared that 'we 
have to admit that currently available tools and techniques are far from being as mature as 
(for instance) logic-oriented or functional centred tools and techniques'. 

'Will the future bring the breakthrough? In my opinion, there is a fair chance.' 
[Kreowski90]. We believe more evidence is still needed. 

3.6 Visual Interaction and Diagram Drawing Support Systems 

The principles of visual programming and a proposed taxonomy are given in [Shu88]. 
According to the book, 'visual programming languages allow users to program with vis­
ual expressions. [ ... ] used to accomplish what would otherwise have to be written in a tra- . 
ditional one-dimensional programming language'. We subscribe to this view in this 
dissertation. A diagram is obtained instead of a textual representation. The visual expres­
sions are the representations of the MT constructs; they are called Visual Objects. They 
include a semantic component which is expressed by constraints. This is based on Chang's 
theory of generalized icons, presented in [Chang90], in whIch icons are composed of a 
logical part (the meaning) and a physical part (the image). 

Tinkertoy [EdeI88] is one of the early attempts to produce a visual programming environ­
ment. Lisp programs are built interactively with icons and flexible interconnections. Tink­
ertoy converts textual Lisp expressions into iconic expressions and vice versa, i.e. textual 
and iconic editing are interchangeable. The way the Tinkertoy prototype evaluates iconic 
expressions is by first converting them to Lisp code which is then executed. The environ­
ment does not offer any possibility of customisation and there is no flexibility in the edit­
ing process. 

EcrinsDesign [Adreit91] is a graphical tool for the drawing of diagrams of a semantic data 
model based on ER. This is a single MT system, in contrast to our case. Its most interest­
ing feature is the support of the dynamic aspects of the design. The objects' type may 
evolve with the user's actions in conformity to a set of constraints defined at the tool level. 
The objects' evolution is specified in a fixed way by a state transition automaton. In our 
opinion this manner of defining the dynamics of the design task is not scalable, the 
number of states in the state transition automaton would grow very rapidly if more com-
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plex MTs were used instead of the ER based one. Moreover, it is not suitable for our 
approach; we require a generic mechanism that can support any description of dynamics. 

Once a diagram has been obtained it is then analysed and translated into a DOL (Data Def­
inition Language) representation. Again in this system, full diagram validation is carried 
out in a separate stage and is performed only when the user explicitly requests it. During 
the design process only a subset of constraints are enforced to give some assistance to the 
user; the remaining are relaxed to increase the flexibility during the editing of a diagram. 
The visual language we propose in this dissertation represents a considerable progress 
when compared to the constraint relaxing technique. 

A functional visual language, denominated VisaVis, is proposed in [Poswig92]. When 
editing a visual program, the user is informed by the system about the possible connec­
tions between graphical components in order to avoid syntactical errors. Visual feedback 
is also given by the editors generated in our approach: the user is always kept informed of 
the status of each visual object so that all diagram inconsistencies are visually noticeable. 

A formalism for the specification of graphical languages is presented in [Rekers94]. The 
proposed formalism is a graph-grammar specialized towards the definition of graphical 
syntax. The specification formalism for the graphical languages is graphical itself. The 
syntax rules are formulated in terms of typed graphical objects and spatial relations. 

In Rekers' approach the editing phase is separated from the analysis phase. This does not 
happen in our approach: the diagram is checked at design time. The analysis is further split 
into two phases: graphical scanning, when the graphical objects are identified and their 
spatial relationships are determined; and graphical parsing, when the spatial relationships 
graph resulting from the first phase is used to derive constructs in terms of the graphical 
language 'L' under consideration. The result of the second phase is an abstract syntax 
graph according to L. 

The paper mainly deals with the graphical scanning phase for which a high level syntax 
specification formalism was developed which is able to express the majority of existing 
graphical languages. A tool (not implemented at the time) can then generate graphical 
parsers according to such a specification. 

The main advantage of this work is the readability of the specifications of graphical lan­
guages, because they are graphical themselves, i.e. in a specification, the syntax rules of a 
graphical language are expressed graphically. 

The approach does not support partial validation, i.e. the validation of a diagram in an 
inconsistent state would fail. In our approach the validation is continuously perfom1cd and 
the inconsistencies are shown to the user by means of visual feedback. This can be done 
because not all constraints are enforced during validation. In Rekers approach all syntax 
rules are enforced during graphical parsing. 

A generator for diagram editors, DiaGen, is presented in [Viehstacdt95] and [Minas95]. 
The system is meant to overcome some limitations presented by state-of-the-art systcms. 
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For instance, with Garnet [Myers90; Myers92] the structure of valid diagrams has to be 
maintained by the programmer using the system. From a specification, DiaGen will gener­
ate a diagram editor for some class of diagrams. The examples given in the paper are 
Nassi-Shneiderman diagrams (NSD) and State Transition diagrams (STD); it is not clear if 
more complex diagrams could be expressed. 

It is stated that the generator should be based on a formal model: hypergraph grammars 
are used, which '(unlike context-free grammars) are able to describe multidimensional 
relationships between diagram elements'. In a hypergraph the edges are hyperedges, i.e. 
they can be connected to any (fixed) number of nodes. It is said the edge visits these nodes. 
A familiar directed graph can be seen as a hypergraph in which all (hyper)edges visit 
exactly two nodes. The layout of the diagrams is defined on a high level by constraints 
which are defined over attributes assigned to the nodes and edges of the hypergraph. How­
ever, with this approach, a diagram edited by the user is always in a consistent state (a 
hypergraph in the formal model); as already mentioned, we regard this as a disadvantage. 

A useful paper for anyone researching the area of supporting tools for MTs is the one by 
Thomas Green on 'Cognitive Dimensions of Notations' [Green89]. It proposes a number 
of dimensions which characterise notations and can be used to guide the design of tools to 
support them. Some examples of these dimensions are: premature commitment, one exam­
ple being a constraint based notation which requires the user to indicate firstly the total 
number of constraints to appear in the specification; viscosityljluidity, a viscous notation is 
one that resists to local changes which occurs when the information structure constituents 
contain many interdependencies; role-expressiveness, a notation that displays its plan 
structure clearly is called 'role-expressive'. 

The cognitive dimensions can be used at the specification level for the VC-t language and 
its compiler; they may also be applied to the generic visual language and the generated 
design tools. ' 

3.7 Other Software Design and Development Frameworks and Systems 

[Budgen92] describes the transformation of models obtained with diagram based tech­
niques (MASCOT and STD) into a more formal specification (CSP/me too) which can be 
executed. An experimental CASE tool, termed Experimental Design Workbench (EDW), 
has been built to support the whole design and transformation process. 

The paper does not generalise the approach to several MTs, it is restricted to the use of 
MASCOT and STDs. As a future development it is suggested that this work could be gen­
eralised and employed within the GOOSE project. It is this project that will be briefly dis­
cussed below. 
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In [Reeves95] a system (GOOSE) to support software design in a complete way is pre­
sented. It extends what a CASE tool normally provides, in the following ways: 

• It captures all the views of a system. It uses a viewpoints framework, which 
includes functional, behavioural, structural and data modelling viewpoints. 
Because GOOSE is more dedicated to real-time systems than to data intensive 
applications, the initial implementation did not include a data model viewpoint. 

• It provides eight tools, including the following which are particularly relevant to 
our work: a consistency tool, which gives the user information on the violation of 
the consistency rules amongst viewpoints and within a viewpoint; and an execution 
tool to animate 'behavioural' and 'structural' viewpoints. 

• It describes the evolution of the design using a D-matrix (Design matrix), which 
keeps information regarding all the elements of a design stage in the design proc­
ess. 

D-matrices are used to support any forms of design behaviour including those which are 
opportunistic. According to what is mentioned in the 'Conclusions' section, the support 
for opportunistic design does not seem to have been fully accomplished. Constraints gov­
erning the design process have only been slightly addressed. Formality is regarded as 
important and is appointed as a direction for future development. We consider that our sys­
tem contributes towards the previous points since it proposes a solution to the problem of 
providing help during the design task without limiting the user's freedom, this is done 
using formal specifications of semantic constraints. 

3.8 Constraint Based Systems 

A constraint describes relations that must be maintained [Borning87]. For our approach 
we need a formalism able to express complex constraints and a supp0I1ing system to store 
and evaluate the constraints at execution time. 

We explored the possibility of using a constraint based system such as ThingLab 
[Borning81; Borning87] or Garnet [Myers90; Myers92]. However, we concluded that 
these systems were not suitable to support our approach. The reasons for this claim are 
presented below. 

Most constraint based systems are geared towards the specification and management of 
geometrical constraints in graphical applications. Amongst the applications of constraint­
based languages and systems, the following are named in [Borning87]: geometric layout, 
physical simulations, user interface design, document formatting, algorithm animation, 
design and analysis of electrical circuits. The number of constraints can amount to hun­
dreds or even thousands. 
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Constraints are defined as rules on values; these rules are expressed as equations. The fol­
lowing example is given in [Zanden91]: 'A designer might write the following equation to 
position a circle 10 pixels to the right of a rectangle: left = my _rect.right + 10' . 

Constraints express relations between the graphical objects in a design in terms of their 
intrinsic properties, such as position, length or colour. The constraints are defined at the 
presentation level of the graphical interface (the lexical level) and determine the behaviour 
of the graphical objects (the syntactic level) as a result of the maintenance of spatial rela­
tions between those objects. 

Constraints in our approach are quite different in nature. They also express relations 
between objects, but now the properties are extrinsic, in the sense that they are independ­
ent of the particular presentation of the objects. Only the meaning of the objects is now 
relevant. In a design there will be ER 'entities' instead of 'rectangles' and 'attributes' 
instead of 'circles'. An arrow in the STD modelling technique means a 'transition' and its 
relevant properties are, for instance, the type of the 'states' connected at its origin and des­
tination. The rules are on types instead of being on values. For example, the following 
constraint is defined for the STD modelling technique: 'The same pair of states cannot be 
connected by transitions with the same direction and the same transition condition'. 
Which is specified as: 

'FORALL tl, t2 : Transition. tl, t2 BELONGING Transitions(std) IMPLIES 
(( origin(tl) = origin(t2) AND 
destination(tl) = destination(t2) AND 
transitionCondition(tl) = transitionCondition(t2)) IMPLIES 

tl=t2)' 

Constraints are defined at the semantic level, which relates to the meaning of the objects in 
the application domain, rather than at the lexical level. There will be some consequences 
at the syntactic level resulting from the enforcement of the constraints, namely in the form 
of visual feedback regarding state changes in the objects (e.g., an object might be high­
lighted in some way). These consequences result from constraints on the semantic of the 
objects (the level of abstraction above) and not from constraints on their presentation (the 

level of abstraction below). 

This fundamental difference between the two types of constraints is reflected in the inter­
action with the user at design time. While in a constraint based system the spatial relations 
specified by the constraints are automatically maintained [Myers90], in our system the 
evaluation of constraints will only decide on the semantic validity of the user actions. That 
is, the constraints assert that a user action conforms, or not, to the semantic of the objects. 
Based on the result of the evaluation, the action may be accepted or rejected; in both cases, 
the system may give feedback to the user. However, the evaluation of constraints do not 
imply the automatic repositioning of objects as in the case of constraint based systems. 

We decided to develop a specification language and build its supporting system from 
scratch. The language is based on a form of predicate logic and the constraints are 
expressed as propositions about the properties of objects. 
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One advantage of predicate logic is its expressiveness. We have lost in efficiency: a power­
ful constraint solver is always included in constraint based systems. For instance, Garnet is 
able to 're-evaluate 3500 constraints per second on the IBM RT PC implementation' 
[Myers90]. However, in our domain of application the number of constraints to be evalu­
ated after a user action is normally around ten! As a result, even with a very inefficient 
constraint solver (when compared to Gamet's one), as the one featured on our current 
implementation, the system's response times are adequate. 

In conclusion, the constraints in our approach are fundamentally different from those used 
in the cited constraint based systems. This difference is also reflected in the way con­
straints are evaluated at design time. For these reasons we opted for developing our own 
constraints specification language and supporting system. Although we have not used a 
constraint based system, we believe that, since this study had to be done, it should be 
included in the literature survey. 

3.9 Graph Editors 

We require a specialised tool to support the user interaction with visual graphs. Visual rep­
resentations of graphs have been extensively used in computing science applications. The 
elements represented by the nodes range from the most concrete, such as gates in a digital 
circuit diagram, to the most abstract, such as classes in a conceptual schema; while 'the 
edges have been used to represent almost any conceivable kind of relation, including ones 
of temporal, causal, functional, or epistemological nature' [HareI88]. 

As noted by David Harel, the relevant information - and this is true also for our work - is 
'nonquantitative, but rather of a structural, set-theoretical and relational nature'. This 
means that locations, distances and sizes are not relevant, only spatial relationships are 
significant, for example object connectedness, as in 'node Na is connected to node Nb by 
edge Ea'. Therefore, the diagrammatic paradigms we are interested in are topological, 

rather than geometrical; they are termed by Harel 'topovisual formalisms'. 

Because the tool we have mentioned above is to be used in our research work as an under­
lying layer to support editors for MTs, it must satisfy a number of specific requirements, 
including: 

• providing support for multiple and interchangeable visual representations of the 
same graph structure; 

• including a repository of constraints which are associated with diagram objects; 

• offering a fully configurable functionality; 

• allowing the Vser Interface (VI) to be provided by the application using the tool 
(client application), the tool must only specify the communication protocols, 
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meaning that it must be able to support any graph-based application with any VI as 
long as the latter conforms to the established communication protocols. 

Most of the work reported in the literature is concerned more with graph visualization 
methods rather than to support for interactive visual graph editing. This means that current 
research is dedicated mostly to graph drawing algorithms or efficient visualization tech­
niques (e.g. 'fisheye views' [Sarkar92]) and not as much to generic architectures to sup­
port interactive graph based applications. Amongst the more relevant work in this field is 
the one produced in the scope of 'Diagram Server' (DS), a tool with several facilities for 
managing diagrams. The architecture of DS is discussed in [Battista90]. An extensive 
description of the tool within the context of parametric graph drawing can be found in 
[Bertolazzi92]. 

Although DS is mainly dedicated to the automatic layout of diagrams, it also includes 
advanced diagram editing facilities that are relevant to our work. Some of these facilities 
are: 

• independence from the system (the client application) that uses DS, the client does 
not need to change its internal structure in order to use DS; 

• ability to associate callbacks with diagram objects; 

• allowing for multiple representations of the same object within a diagram and also 
multiple diagrams representing the same underlying graph. 

There are however some limiting aspects that make DS inadequate to support our 
approach. For example, in DS the VI is pre-defined. We need a tool that does not impose a 
particular VI. For enhanced flexibility, the VI must be provided by the client application. 
Also, DS has a non-customizable functionality; we would like a tool in which the way 
operations are performed by the user over the diagram may be defined by the client appli­
cation. 

A tool that satisfies the requirements discussed above has been designed and made. We 
called it GraphTool and present it in this dissertation in a dedicated Chapter. 
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4. The Visual Concepts Formalism 

4.1 Visual Concepts - a Formalism for the Specification of l\lodelling 
Techniques 

concept n. Philos. an idea or mental picture of a class of objectsformed by combin­
ing all their aspects. 

In The Concise Oxford Dictionary of Current English [Allen91] 
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We propose a formalism, called Visual Concepts, to be used in the specification of Mod­
elling Techniques (MTs) based on diagramming notations, such as the Entity-Relationship 
(ER) technique, State Transition Diagrams (STD), Dataflow Diagrams (DFD) and propri­
ety techniques developed for a specific purpose. Visual Concepts (VCs) are typed units of 
specification. Each VC encapsulates information on the physical, semantics and usage 
components of a MT construct, e.g. an ER Entity or a STD Transition. In the context of 
this PhD, the Visual Concepts formalism supports three frameworks: a F0171Wl MT Speci­
fication Language, the Generic Visual Language and ways of Tailoring MT Usage. Using 
those frameworks, specifications may be produced for MTs and, from them, dedicated 
design tools can be automatically generated. 

VCs cover more aspects of a construct or object than what is proposed by the Object-Ori­
ented (00) approach [King89; Stroustrup88]. Besides the ~O's attributes and methods, 
VCs are able to capture the visual representation, meaning and behaviour of a MT con­
struct. They still provide encapsulation but no inheritance mechanisms are supported, both 
for simplicity of implementation and because we did not find it necessary to have inherit­
ance in our approach. 

4.2 Key points of Visual Concepts 

• The Visual Concepts formalism captures both the semantics and the graphical 
notation of a MT. This conforms to the ideas presented in [Shu88]. 

• Visual Concepts are aimed at the automatic generation of design tools from formal 
specifications of MTs. 

• A single Visual Concept is obtained for each construct in the MT. This maintains 
the semantic information encapsulated in the Visual Concepts, preventing its dis­
persion throughout the specification. As a consequence, code generation and con-
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straint management are facilitated, in that it is easier to establish the references to 
the constraints at generation time and to determine which constraints to check at 
editing time. Moreover, it makes it easier for the generated design tools supporting 
the MT to provide semantic feedback to the user. 

4.3 Components of a Visual Concept 

A Visual Concept has the following components: 

• Identification - unique name; 

• Physical - including properties and visual representation; 

• Semantics - a set of constraints; 

• Usage - dynamics at design-time (when drawing diagrams or models). 

The physical, semantics and usage components are discussed in more detail in the follow­
ing sections. 

4.3.1 The Physical component 

label <8> ~ 
Entity Relationship Attribute 

FIGURE 4. ER Modelling Technique constructs. 

The physical component includes visual representation and properties. 

The visual representation is a reference to one or more graphical objects, for example an 
ER Entity is depicted by a rectangle (see Figure 4) and a STD Transition by an arrow. A 
VC visual representation may refer to several visual objects; this happens, for instance, 
when different views are defined, e.g. a full view and an simplified view. Consider the 
notation used in the Object Model view of the OMT methodology [Rumbaugh91], shown 
in Figure 5. Two visual objects may be used: a complete view, including the class name, 
attributes and operations; and a simplified one featuring only the class name. 
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Class Name 

attribute 
attribute: data_type 
attribute: data_type = iniCvalue Class Name ... 

operation 
operation (ar9_list) : return_type 
... 

FIGURE 5. Summary of OMT's Object Model notations for classes. 

The properties are the static characteristics of VCs. Some properties are reflected in the 
visual representation as a way to display information from the application being modelled. 
This can be done by labels, for instance the name displayed in a label of an ER Entity, dis­
plays information about that Entity on the application's Universe of Discourse (UoD), e.g. 
"Person"; or by any other modifiable characteristic of the visual representation, for 
instance its colour. For example, the property 'name' of the ER Entity would be specified 
as: 'name: Entity -> String'. Multiple labels can also be defined for a VC, for instance, as we 
have seen, in Rumbaugh's OMT, the Object Model allows multiple labels in the attribute 
section. Other properties of a VC may give information on which other VCs are attached 
to it; or may allow the comparison of the VC with other VC instances of the same type, for 
instance the 'equality' property on ER Attributes may be expressed as: 'equal: Attribute x 
Attribute -> Boolean'. 

4.3.2 The Semantics Component 

The semantics component consists of a set of semantic constraints, expressed in a form 
of predicate logic with equality. 

A semantic constraint is an assertion either on the whole diagram or on the properties of 
a VC type; the latter may affect the VC itself and/or its relationship with other VCs. For 
example, the following simple constraint is included in the semantics component of the 
VC 'Entity' defined for the ER technique: 

'Each Entity must have a unique name' 

which can be formally expressed as: 

''Vel, e2:Entity • el, e2 E Entities(er) ~ 
(name(el) = name(e2) ~ el = e2)' 
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Where 'er' is an ER diagram. 

The constraint can be read as: 'for all el and e2 which are entities of an ER diarrram if the l:> , 

name of el is the same as the name of e2, then el and e2 must be the same entity'. 

The semantics component of a Visual Concept expresses the semantics of the correspond­
ing MT construct. The semantics of MT constructs are normally described using natural 
language (e.g. English), whereas the semantics component of Visual Concepts is a formal 
specification and therefore unambiguous which makes it easier to reason about. 

4.3.2.1 Specifying Semantics by Grammars or Semantic Constraints? 

Instead of constraints we could have used a grammar to specify the semantics component 
of VCs. Why have we chosen constraints? There are good reasons for this which we will 
now discuss. 

Preserving semantic information 

The problem of using grammars (both constraint-grammars or graph-grammars 1) to spec­
ify the semantics resides in the fact that the information expressed by the grammar, is no 
longer tractable once the code is generated. As a result of this, the generated editor is una­
ble to give back to the user any meaningful information - semantic feedback - at editing 
time. 

Our approach of semantic constraints encapsulates all the relevant constraints of a given 
Visual Concept inside it. Moreover, the objects' identification is kept throughout the soft­
ware development cycle. This way the semantic information is preserved from the specifi­
cation to the final code across the generation process. 

Encapsulation can also be found in the paradigm of object-orientation. However, the most 
common object models (for instance, Eifel, Smalltalk or C++) do not provide support for 
the specification of semantics [Paredes93] or the visual aspects of objects [Levialdi93]. 
Semantics are normally embedded in the code of the object's operations; the visual aspect 
is usually provided by graphical libraries such as Motif, Interviews, GoPath, Athena or Tk. 
The advantage of our formalism is that both semantics and visual representation are built­
into the Visual Concept model. This idea is related to the field of Component Progranl­
mingo In this paradigm, interactive components have a user interface and a specific behav­
ior or functionality. As Visual Concepts they provide encapsulation but they do not provide 
inheritance. However, Visual Concepts offer a powerful support to semantic definition 
through the use of constraints which cannot be found on Component Programming based 
approaches [Jazayeri95; UdeIl94]. 

1. Graph-grammars are implemented by a graph-parser. Constraint-grammars are implemented hy a parser 
plus low-level constraints. 
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Inspecting specifications 

The main advantage of grammar specifications, over constraint based ones, is that they are 
easier to validate and to check for their completeness. However, producing a grammar 
specification can become a very tedious task and its complexity makes it accessible only to 
experts. Conversely, the concept of semantic constraint is easy to grasp and it provides a 
more intuitive way of producing specifications. 

A specification solely based on constraints is typically difficult to inspect. A possible solu­
tion to this problem is to provide a demonstration mechanism for the VCs. This could be 
done using an animation based technique. Such a technique would allow for the visual 
inspection of VCs semantics (see Section Section 11.3, "Future Research Directions," on 
page 148). 

4.3.3 The Usage Component 

The Physical and the Semantics components described above are used as the foundations 
of the VC-t Specification Language (Chapter 5). A Visual Language framework is then 
described in Chapter 6 using an implementation of VCs, the Visual Objects (Vas - which 
are the topic of the next section). A notion of state is also introduced in Chapter 6, and 
associated with vas and diagrams to express their dynamics. The way a va evolves 
through changes on its state is fully developed in Chapter 7, where the usage component is 
presented. 

In the usage component, VC constraints specified in the Semantics component, are 
divided into the classes: hard, soft, hardened and deferred. This process determines the 
dynamic aspects of the vas in a diagram during the design task. The purpose of specify­
ing the usage component is improving the usability of the generated design tools and tai­
loring their use to suit a particular user or class of users. 

We will not detail the presentation of the usage component here as it is covered in 
Chapter 7. To make it possible to define the usage component of VCs it was necessary to 
develop a new theory of semantic constraints, which is described in detail in that Chapter. 

4.4 Visual Objects· An Implementation of the Visual Concepts 
Formalism 

This section describes Visual Objects (Vas), which will be used as the components of the 
Generic Visual Language (described in Chapter 6). 

Each different interactive graphical system has its own terminology for the classes of 
objects it uses. We tried to classify our Visual Objects in a generic way. so that this same 
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classification may be used in the development of other systems. The concepts and struc­
ture presented may constitute a generic lexicon for interactive graphical systems. 

A VO is a VC that can be displayed on the computer screen and that reacts to user gener­
ated events. A VO is, therefore, an implementation of a VC. 

A diagram is a set of VOs connected to each other in accordance with their semantics. It 
must be noticed that some semantic constraints cannot be associated with a particular VO, 
for example 'a STD must have an Initial State'; this constraint cannot be associated with the 
VO 'Initial State' because it must be checked before its creation. Another example is a 
connectivity constraint, such as 'all the states in a SID must be connected'. These constraints 
are classified as Diagram Constraints and are associated with the diagram itself. 

VOs are described by a hierarchical structure of objects. From the bottom to the top of the 
hierarchy we have the following kinds of objects: Graphical Objects, Visual Object Defi­
nitions and Visual Objects. The section below presents an example of this hierarchical 
structure showing how it can be instantiated for the ER modelling technique. 

4.4.1 An Example: The ER Modelling Technique 

The hierarchical structure ofVOs presented above when applied to the ER modelling tech­
nique is shown in Figure 6. For simplicity, only the VOicons are presented, a similar 
instantiation could be done for the VOconnections. 

At the top we have the instances of the Visual Objects (VOs) appearing on the screen. For 
example, 'Person'. Each VO has a reference to an instance of a Visual Object Definition 
(VOD), in this case the VOD of 'Person' is the ERentity. The VOD includes a reference to 
a Graphical Object, which for the 'ERentity' is a LabelledRectangle. The Graphical 
Object defines the appearance, its shape and label (font and position), and the operations 
available on this kind of object. 

4.4.2 The VOs Hierarchical Structure in Detail 

At the bottom of the hierarchy are the Graphical Objects, which can be Shapes, complex 
geometrical figures which may include labels, for instance the OMT class notations shown 
in Figure 5; or Line Styles, complex lines which may include labels, e.g. single labelled 
arrowed line, or double labelled line as used in ER cardinality connections. The Shape 
type includes an image and a structure to describe label slots which are to be filled for each 
particular shape instance. For this purpose, procedures are defined to deal with the labels. 
It makes sense to define label operations at the Graphical Object level because it is here 
that the labels are known (their number and position). However these are just operation 
definitions and no implementations are provided at this stage. 
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Visual Objects 

Visual Objects Definitions 

label ~~ 
ERentity ERrelat. ERattrib. 

Graphical Objects 

label ~ 
Labe"edRectangle Labe"edDiamond 

~ 
Labe"edE"ipse 

person = VoIcon("Person", er_entity, 
canvas_objecUd) 

er_entity = Icon("ERentity", labelled_rectangle, 
entity_semantics) 

labelled_rectangle = Shape("LabelledRectan­
gle", rectangle_img, labels, lbl_rect_operations) 

44 

FIGURE 6. VOs Hierarchical Structure for the ER Modelling Technique (extract) 

Note that we could consider other layers further down in the hierarchy. Below the Graphi­
cal objects there would be the Generic Geometric Objects. These include: unlabelled poly­
gons, such as rectangles, squares, circles, ellipses; unlabelled lines, such as dashed line, 
dotted line, single and double arrowed line; and text labels. This layer could be supported 
by another layer, even lower: the Polylines. These consist of arrays or lists of line seg­
ments. Poly lines are themselves composed by sequences of points (pixels in the screen). 
Our approach defines the layers above the Graphical Objects (inclusive), as they were 
described; the GraphTool (see Chapter 9) supports those layers, while a UIMS (User Inter­
face Management System) supports the layers below. 

No implementation is given for any operation and graphical appearance associated with 
the Graphical Objects and Visual Objects Definitions. Only at the top of the hierarchy - the 
Visual Objects - the appearance, operations and interaction capabilities (events and call-
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backs) are implemented, typically by a UIMS. This design option promotes the GraphTool 
to be independent from the system's platform or architecture being used. 

Further up in the hierarchy we have the Visual Object Definitions, which are composed of 
a Graphical Object (the physical component) and semantics (the logical component). Vis­
ual Object Definitions can be Icons or Connections. Both Icons and Connections have 
their semantics expressed by constraints. The Graphical Objects included in Icons (their 
physical component) are Shapes, whereas the ones included in Connections are Line 
Styles. At this level are defined the constructs (concepts) of MTs; for instance, 'ER entity', 
'ER relationship' or 'DFD dataflow'. In Figure 6 only the Icons are represented. 

Finally, at the top of the hierarchy are the Visual Objects (VOs), which are either VOicolls 
or VOconnections (also referred to simply as Icons or Connections, if it is clear from the 
context that we are not mentioning Visual Object Definitions). Each VO corresponds to a 
Visual Object Definition with two added characteristics: it can be displayed on the screen 
and it has user interaction capabilities. 

The VO structure includes a name, a VO Definition, a structure to hold the values given to 
the labels, and elements for screen representation and user interaction. The last component 
is implemented by a UIMS; we have used a persistent version of the Tk toolkit (see 
Section 10.1.2 on page 138). In our implementation the screen representation and interac­
tion capabilities are given by TkWin, a Graphical User Interface Management System 
(GUIMS) provided in the Napier88 system. Diagrams are drawn in a canvas (a widget 
included in TkWin's toolkit). Canvas Objects are used to implement the interactive com­
ponent of VOicons and VOconnections. For VOconnections, drawing procedures (which 
are now part of the Napier88 graphical library) are also needed to produce the line style 
associated with the VO - these implement the procedure definitions included in the Line­
Style type (data types are shown in Appendix C). 

The Visual Objects can be combined, by joining a pair of VOicons with one or more 
VOconnections, to form diagrams. A diagram is supported by a graph data structure which 
provides the necessary information on how the Visual Objects are linked. 
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5. Specifying the Semantics of Modelling Techniques 

5.1 VC-t - A Formal Language for the Specification of l\fodelling 
Techniques'Semantics 

5.1.1 Introduction 

VC-t is a formal specification language to express the semantics of Modelling Techniques 
(MTs). It is an implementation of the Visual Concepts formalism in which the MTs' con­
structs are specified as sets. The main purpose of the language is to express the semantic 
component of the MT and for that it uses a form of predicate logic with equality. 

The language is not intended to be a general purpose one. We believe that a simpler lan­
guage, which produces clearer and more readable specifications can be obtained if its 
scope is well delimited. We have established the following language requirements which 
were used as a guide to its design: 

• its scope must be large enough to cover widely used MTs such as STD, DFD or 
ER; 

• it must be expressive enough to capture the semantics of the MTs; 

• the specifications produced with the language must be parse able (computer-reada­
ble); 

• the specifications should also be human-readable - this promotes and facilitates the 
creation of clear and easy to understand specifications; 

• code generation (for the target language) must be possible from any legal specifi­
cation; 

• the language has to be more than a theoretical exercise - it must be practicable and 
easy to use. 

The specification language should also be able to capture the variations of any of the more 
established MTs in general use or application specific MTs (ASMTs) (usually being com­
pany defined). 

Both the well known MTs and the ASMTs, cover a variety of application domains, such as 
office databases or industrial process modelling, each focusing on a given view of the 
domain: static, dynamic or architectural. The VC-t language must be able to capture the 
semantics of any of those MTs. In the case of the ASMTs, the specification task may have 
an additional benefit: uncovering eventual faults or inconsistencies in the semantics of the 
MT. 
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The semantics of the MT being modelled are expressed through constraints, constituting 
the semantic component of the VCs which model the MT constructs. 

Because it has been intentionally designed to express the semantics of MTs as described 
above, the VC-t language provides the necessary expressive power and, simultaneously, it 
has the potential to lead to more readable and clear specifications than a general purpose 
language. 

A number of specifications of some well known MTs have been produced which prove the 
expressive power of the language, e.g. Data Flow Diagrams (DFD), State Transition Dia­
grams (STD) and Entity Relationship (ER) diagrams. The readability of those specifica­
tions can be confirmed by the reader looking in Appendix B. 

A compiler has been designed and implemented for the VC-t language so specifications 
can be parsed and their correctness checked at the lexical, syntactical and semantic levels. 
This is carried out by the front-end of the compiler and is independent of the software sys­
tem used to support the design tools (target language). The tools are automatically gener­
ated by the back-end of the compiler which produces code for the chosen target language. 
If the software system is changed, only the back-end of the compiler has to be replaced. 
The lexical and syntactical specifications for the VC-t language are presented in 
Appendix D. The syntax is expressed by a BNF description. 

The language is aimed at the automatic generation of tools. We concluded that the use of 
constraints is the right approach to build specifications intended to be used for the auto­
matic generation of design tools (which themselves are also constraint-based). In 
Section 4.3.2.1 on page 41 we gave support to this claim. 

The last language requirement on the bulleted list refers to its ease of use. We want the 
user to be able to easily and quickly obtain a specification. That is only achievable if the 
language has a steep and short learning curve. We must have in mind that the language 
users will be modelling technique designers (or at least have a fair knowledge of software 
modelling) but will not necessarily have any expertise in logics or constraints/semantic 
rules definition. 

5.1.2 The Structure of a Formal Specification 

Having a description in natural language of a MT, the VC-t specification language is then 
used to formally express the MT. In this way, a specification is obtained which includes 
the following aspects of the MT: 

• its concepts and their properties; 

• the semantics, expressed as constraints. 

These two aspects are described in two main sections: the 'Preamble' and the 'Semantic 
Constraints'. The 'Preamble' contains declarations of all the VCs, which include their 
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graphical representation and properties. Any necessary auxiliary sets must also be 
declared. In the section 'Semantic Constraints' each constraint is specified by both a 
description in natural language and a corresponding sentence in a foml of predicate logic 
with equality. The natural language description adds legibility to the specification and is 
used to give meaningful messages to the final user during the editing process (semantic 
feedback). A formal specification is also needed, as a non-ambiguous description of the 
constraint, for the automatic generation of executable code. 

Consider for example the STD modelling technique. Its specification includes the con­
cepts: 'S tartS tate' , 'IntermediateState', 'FinalState' and 'Transition'; a property of any 
State is the 'name' and properties of Transition are the 'transition condition', 'origin' and 
'destination'. Semantic constraints determine which concept configurations are allowed 
when drawing a diagram. As mentioned above, a constraint has both a description in natu­
ral language, for instance, "on a STD, a FinalState cannot have out-transitions or loop­
transitions", and a formal specification. The formal aspects of the VC-t language will be 
presented later, but just to give a flavour of a constraint specification, for the above con­
straint we would have: 

FORALL f : FinalState • f BELONGING Finals(std) IMPLIES 
NOT EXISTS t : Transition • t BELONGING Transitions(std) AND 

(origin(t) = f) 

The constraint can be read as: for each FinalState 'f' in a STD diagram there cannot exist 
a Transition 't' which has 'f' as its origin. This includes both the case of a loop-transition, 
in which the destination of the Transition 't' is also the FinalState 'f', and the case of an 
out-transition, in which the destination of the Transition 't' is not the FinalState 'f'. 

We have obtained several complete specifications, included in Appendix B, which consti­
tute a meaningful representation of the MTs' state-of-the-ru1, and therefore assert the 
expressiveness of the VC-t specification language. Below we introduce a simple example 
of how to use the VC-t language to express the semantics of a non-standard MT. This 
example constitutes a tutorial for the VC-t language: the way the example specification is 
built is presented step-by-step with explanatory annotations. This is meant to be just a 
'getting started' approach to the language, formal aspects being discussed later. 

5.1.3 A Simple Specification 

A very simple Modelling Technique (MT) was invented for which a detailed non-fomlal 
description in natural language (English) will be presented. Afterwards, an explanation of 
how to obtain a formal VC-t specification from this natural language description will be 
given. 
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5.1.3.1 The SimpleMT 

This is a very simple MT, created just for exemplification purposes, which has only three 
constructs, the 'State', the 'StartState' and the 'Event'. The graphical representations of 
the constructs are shown in Figure 7. 

EJ 
State StartState Event 

label 

FIGURE 7. The SimpleMT graphical representation. 

The State is depicted by a rectangle and the StartState by an inverted triangle, both have a 
label with a name, which is unique amongst their instances; the Event is depicted by an 
arrow. 

A SimpleMT diagram is, structurally, a connected graph in which the nodes and edges are 
graphically represented, respectively, by icons and connections. In the SimpleMT the icon 
types are the StartS tate and the State; the only connection type is the Event. 

In a diagram there must be one and only one StartState (instance of the StartState Icon 
type); the other nodes (one or more) are States (instances of the State Icon type). The 
StartS tate can only be connected to States by outgoing Events. Any pair of States is con­
nected at most by two Events, one in each direction. Loop Events, i.e. Events that connect 
a State to itself, are not allowed. The minimum diagram is composed by a StartState con­
nected to a State by an outgoing Event. 

5.1.3.2 The VC-t Specification 

The VC-t specifications can be used as input to a compiler. Because that compiler is not 
able to parse mathematical symbols, such as ''V. or '~', an alternative notation based in 
English lexemes must be used. The correspondence between the mathematical notation 
and the English based one, for the symbols used in this section, is presented in Table 1. 
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Mathematical English Based 
Notation Notation 

..., NOT 

3 EXISTS 

'V FORALL 

=> IMPLIES 

¢:::> DOUBLEIMPLICATION 

E BELONGING 

IP P 

/\ AND 

v OR 

# CARDINALITY 

TABLE 1. Correspondence between the mathematical and English based notations. 

The Lexical Analyser of the VC-t compiler accepts, for most lexemes, multiple alterna­
tives. For instance, 'FORALL' may also be written 'UNIVERSAL', 'P' may be written 
'POWERSET', 'BELONGING' may be 'MEMBERSHIP', 'IN' or 'E'. 

In this section the English based notation is used, so that the obtained VC-t specification 
may be compiled. In subsequent sections the English based notation is used in situations 
relating to a VC-t specification which is meant be used as input to the compiler, in all other 
situations the mathematical notation is used. 

The first aspect of the SimpleMT we must specify is its concept structure - the constructs 
and their properties. For this purpose we will write the 'Preamble' section. 

We must declare the MT as 
a cartesian product of the 
power sets of its constructs. 
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"SimpleMT" SEMANTICS_SPECIFICATION 

PREAMBLE 

BEGIN 

simpleMT = P StartState x P State x P Event 

END 
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Now, we divide the power 
sets into the ones that are 
represented by icons from 
the ones that are repre­
sented by connections and 
also declare extractors to 
isolate each one of them 
from the MT. In section B 1 
we declare the extractors 
for the power sets repre­
sented by icons. 

In section B 2 we've 
declared the extractor for 
the only power set repre­
sented by connections. 

Here we can declare auxil­
iary sets and extractors as 
expressions composed by 
those declared in section B. 
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Bl.ICONS 

BEGIN 

StartStates : simpleMT -> P StartState 
States: sirnpleMT -> P State 

END 

B2.CONNECTIONS 

BEGIN 

Events: simpleMT -> P Event 

END 

BEGIN 

AnyState == StartState U State 
AnyStates == StartStates(simpleMT) U 

States(sirnpleMT) 

END 

51 
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In this section the proper­
ties of the MT sets are 
expressed. It is important to 
notice that all sets repre­
sented by connections 
must have a property that 
returns the icon connected 
at its start, and another 
returning the icon con­
nected at its end. The equal­
ity property is expressed to 
allow for comparisons dur­
ing diagram traversal. 

Now, we must express the 
semantics already 
described informally above, 
using constraints formally 
written in a logic-based 
style. For this purpose we 
will write the 'Semantic 
Constraints' section. The 
fir s t con s t r a i n t ( C 1 ) 
expresses the statement: 
'both [StartState and State] 
have a label with a name, 

D.SET]ROPERTIES 

BEGIN 

StartState HAS_PROPERTIES 

name: StartState -> String 
equal: StartState x StartState -> Boolean 

name: State -> String 
equal: State x State -> Boolean 

origin: Event -> AnyState 
destination: Event -> AnyState 
equal: Event x Event -> Boolean 

END 

BEGIN 

C1: "Names are unique amongst States and 
StartState" 

FORALL s1, s2 : AnyState • s1, s2 BELONGING 
AnyStates(simpleMT) 
IMPLIES 
(name(s1) = name(s2) IMPLIES s1 = s2) 

52 

which is unique amongst their instances'. The constraint numbering must be 'C$:' where 
'$' takes a sequential integer value starting at '1'. 'FORALL' is the Universal Quantifier; it 
binds the variables s 1 and s2 ranging over the elements of the VC type AnyState, which 
is the union of StartS tate and State; sl and s2 belong to the SimpleMT set extracted by 
the function AnyStates.We are then saying that for all possible pairs of states in the dia­
gram, for instance (s 1, s2), if the name of s 1 is equal to the name of s2, then s 1 and s2 
must be the same. 
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Constraint C2 is an instanti-
ated Predicate Logic (PL) C2: "There is exactly one StartState" 
statement. Constraints are 
d iv ide din tot w 0 m a i n CARDINALITY StartStates(simpleMT) = 1 

groups: the quantified PL 
statements and the instanti-
ated PL statements. C2 
belongs to the second group and it is, more specifically, a cardinality constraint. It 
expresses that 'In a diagram there must be one and only one StartState'. 

This constraint is an exam-
ple of a quantified PL state­
ment with nested 
quantifications. There may 
be any number of nesting 
levels and each level can 
either be an universal quan­
tification or an existential 
one. C3 expresses: 'the 
StartState can only be con­
nected to States by outgo-
ing Events'. Note that the 

C3: "The StartState does not have incoming Events" 

FORALL s : StartState • s BELONGING 
StartSta tes(simp leMT) 
IMPLIES 
NOT EXISTS e : Event • e BELONGING 

Events(simpleMT) 
AND 
(destination(e) = s) 

PL statement in the constraint also expresses that no loop Events are allowed in the 
StartS tate (for the special case of a loop Event we have 'destination(e) = sAND origin(e) = 
s'), which is also expressed below in CS. But the fact that we have overlapping con­
straints does not constitute an error in the specification. It would be an error only if they 
were conflicting constraints (over specification). 
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This constraint reflects the 
statement' any pair of 
States is connected at most 
by two Events, one in each 
direction'. In spite of not 
being defined in the infor­
mal specification whether 
the StartS tate is included in 
this constraint, we 
assumed that it is. Note that 
constraint C3 forbids 
incoming Events onto the 
StartS tate. However, C3 
and C4 are not conflicting; 

C4: "There is at most one Event in each direction 
connecting two States or the StartState with a State" 

FORALL 51,52 : AnyState • 51,52 BELONGING 
AnyStates(simpleMT) 
IMPLIES 
NOT EXISTS e1, e2 : Event. e1, e2 BELONGING 

Events(simpleMT) 
AND 
«origin(e1) = 51 AND destination(e1) = 52) 

AND 
(origin(e2) = 51 AND destination(e2) = 52» 

54 

C4 does not impose the existence of incoming Events, it just says that there is at most 
one incoming Event starting from a particular State. The StartS tate is conditioned by the 
two constraints. 

C5 expresses: 'loop Events, 
i.e. Events that connect a 
State to itself, are not 
allowed' . 
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C5: "Each Event must connect a pair of different States 
or the StartState to a State -loop Events are not 
allowed" 

FORALL e : Event • e BELONGING 
Events(simpleMT) 
IMPLIES 
(NOT (origin(e) = destination(e))) 
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Every specification must 
define, either implicitly in 
sever al cons train ts or 
explicitly in one single con­
straint, what is the mini­
mum diagram that can be 
obtained and still makes 
sense. In our example this 
is expressed by C6; it 
relates to the statement: 
'the minimum diagram is 
composed by a StartS tate 
connected to a State by an 
outgoing Event'. 

The specification ends 
with a dot in the beginning 
of a line after the 'END' of 
the Constraints Section. 

C6: liThe minimum diagram is composed by a 
StartState connected to a State by an outgoing Event" 

EXISTS S : StartState • s BELONGING 
StartSta tes( simp leMT) 
AND 
EXISTS t : State. t BELONGING 

States(simpleMT) 

END 

AND 
EXISTS e : Event • e BELONGING 

Events(simpleMT) 
AND 
(origin(e) = sAND destination(e) = t) 

55 

5.2 The Formal Aspects ofVC-t Specifications 

It is vital that the specifications have a formal basis to make them unambiguous. The for­
mal aspects are presented using the mathematical symbolism proposed by [Woodcock88]. 

A VC-t specification has two main sections: the Preamble where the Modelling Tech­
nique (MT) and its VCs are specified; and the Semantic Constraints which consists of a 
sequence of predicate logic sentences. The formal and mathematical details of each sec­
tion are presented in what follows. 

A specification of a MT starts with an identifier (its name) followed by the reserved word 
'SEMANTICS_SPECIFICATION'. The complete set of reserved words to be used in a specifi­
cation can be seen in Appendix D; for simplicity they will be omitted in the remaining sec­
tions. 

5.2.1 The Preamble Section 

The Preamble expresses the MT in terms of its VC types and declares all the sets that will 
be used in the specification. It comprises four sub-sections: the MT model, set extractors 
declarations, sets definitions and set properties. 
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To specify a MT and its ve types we have employed elementary set theory. The l\IT 
model is the cartesian product of the power sets of all its ve types. A generic MT is 
expressed as: 

'mtx = IP VCto x IP vCtI x .. x IP VCtn' 

where: mtx is an identifier, called the name of the MT; VCto to VCtn are the VC types 
defined for the MT. 

As an example, the SimpleMT described in Section 5.1.3.1 has its model specified as: 

'simpleMT = P StartState x P State x P Event' 

In the set extractors sub-section, power sets are divided into the ones that are represented 
by icons and the ones that are represented by connections. This is not a closed classifica­
tion; at the moment our diagrams only contain icons and connections, yet, in the future, 
other diagram constructs may be added, e.g. object inclusion. It is necessary to specify 
which power sets are represented by icons and which are represented by connections, so 
that the code generator can establish the mapping from each diagram component (the 
icons and connections) to the correct underlying abstract graph components (nodes and 
edges). 

For each power set, an extractor is defined. An extractor is a triple <mtd, ext, VCr>, these 
being: mtd the MT for which the extractor is declared, called the domain MT; ext an iden­
tifier, called the name of the extractor; VCr a power set, called the range Vc. 

So, for the MT named 'mtx' we have: 

'exti : mtx ~ IP VCti, i E {O •• n), 

For the StartS tate power set, included in the model of the SimpleMT, which elements are 
represented by icons, the following extractor has been defined under 'Bl.ICONS': 

'StartStates : simpleMT -+ P StartState' 

A ve is a maximal set in the sense that its values may belong to just that ve type. No sub­
typing is allowed amongst yes. However, it is possible to specify auxiliary sets in the sets 
definitions SUb-section, as a union ofVe sets. For instance, for the SimpJeMT the follow­
ing set was defined: 

'AnyState == StartState v State' 

Auxiliary sets can also be specified in extension, which is useful e.g. in the specification of 
pre-defined label strings. For instance cardinality labels for the ER technique could be 
specified as: 
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'Cardinality == ("I, I", "l,n", "n, m")' 

Auxiliary sets aim at simplifying the constraints in the Semantic Constraints section. See 
the example of Figures 8 and 10. With other constraints more meaningful simplifications 
may be obtained. 

Properties are declared for each VC in the set properties sub-section. Properties are the 
constrainable components ofVCs. They are used in predicate logic statements of the con­
straints expressed in the Semantic Constraints Section. For instance, the following state­
ment has been used in constraint C5 of the SimpleMT specification: 

'~(origin(e) = destination(e))' 

where: 'e' is an instance of 'Event'; 'origin' and 'destination' are properties of 'Event' 
declared in the set properties sub-section. 

Set properties are defined as triples <VCd, prop, tr>, where: VCd is a set or a power set, called 
the domain; prop is an identifier, called the property name; tr can be a VC type, a pre­
defined type (String, Natural or Boolean) or an auxiliary set, called the range. For exam­
ple, the equality property used in the predicate logic statement above, has been defined for 
the SimpleMT 'StartState' as: 

'equal: StartS tate x startState -+ Boolean' 

5.2.2 The Semantic Constraints Section 

A semantic constraint is a rule expressed as a sentence in a form of predicate logic with 
equality. 

The constraints can be divided into two groups: the instantiated predicate logic statements 
and the quantified predicate logic statements. 

An instantiated predicate logic statement is simply a constraint where the propositions 
have no variables, i.e. the propositions are not quantified. 

The following is a valid constraint of the kind 'instantiated predicate logic statement', it 
has been defined for the SimpleMT: 

'# startstates(simpleMT) = l' 

A quantified predicate logic statement is a constraint where the propositions are 
obtained by quantification. This means that all the variables in the statement must be 
bound by quantifications. Quantifications can be existential or universal. Nested quantifi­
cations are allowed with any number of levels. 

An existential quantification is specified as: 
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'3 x: T • XES /\ P(X)' 

where: X is a variable bound by the existential quantification; T and S are sets such that S is 
a subset of T, expressed as S S;;;; T; P(x) denotes any boolean expression with one or more 
predicates on the variable x. 

Likewise, a universal quantification is specified as: 

'\;f x: T. XES ~ P(x)' 

N-ary predicates, denoted by P(xI' x2, ., xn) with the variables Xl, X2 •.. Xn ranging over the 
same or different sets, are also allowed. As for unary predicates, all the variables must be 
bound by quantifications. E.g. \;f x: T • XES ~ 3 Y : Q • x E R /\ P(x, y) 

Below is a constraint of the kind 'quantified predicate logic statement', also defined for the 
SimpleMT: 

'\;f s : StartState • s E StartStates(simpleMT) ~ 
""'3 e : Event. e E Events(simpleMT) /\ 

(destination(e) = s)' 

Please refer to Section 5.1.3.2 for an explanation of this constraint and the one from the 
previous example. 

The variables in the constraints, bound by the quantifications, may range over one VC type 
or a union of several VC types. 

A predicate logic statement is a boolean expression including the usual boolean opera­
tors. i.e. 'negation' (""'), 'implication' (~), 'double implication' (~), 'and' (/\), 'or' (v). A 
boolean expression can include one or more natural expressions combined by the follow­
ing natural comparison operators: 'greater' (», 'less' «), 'at least' (~), at most' (s). 

'equality' (=) is allowed over sets and the pre-defined types String and Natural. 

The language proved to be able to capture most of the constraints defined by the semantics 
of several standard modelling techniques covering static aspects of software (data model­
ling) and dynamic aspects (process modelling). However, we do not claim that the lan­
guage is able to express all the semantics. For example, a constraint asserting that a 
diagram must be connected, cannot be expressed in VC-t. In order to achieve that expres­
siveness, one of the main advantages of the VC-t language, its simplicity, would have to be 
compromised. 

Alternatively, we have provided the possibility of including function calls in the specifica­
tions. These functions constitute a library that extends and completes the VC-t language. 
For the code generation process, implementations of the library functions must be pro­
vided in the target language. Two of these functions have already been defined: 'Con-
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nect(i)', where 'i' is an icon, and 'uniqueName(extractor)'. The former is applied to the 
whole diagram, given an icon it returns a set of icons that are connected between them and 
which include that icon. The latter is a boolean function, also applied to the whole dia­
gram, in the sense that it performs its complete traversal, but it checks only the VCs deter­
mined by the extractor given as a parameter; it returns 'true' if all the names are different. 
While the first function adds expressiveness to the language, as it captures a class of con­
straints that the VC-t language in unable to capture, the 'uniqueName' function only sim­
plifies the specifications. The uniqueness of names given to VOs in a diagram (for 
instance, ER entities) can be expressed in the VC-t language, see for example constraint 
Cl in the SimpleMT specification (Section 5.1.3), but this constraint is so common that a 
function replacing the full specification in VC-t becomes very useful. 

We have tried to reduce the complexity of the formal aspects of the language to the neces­
sary minimum. The language is aimed at users that do not necessarily have expertise in 
formal methods or a solid mathematical background. 

5.3 Type Checking in the VC-t Language 

At one stage of implementing the VC-t language, we realised that in some situations, the 
code generated from correct VC-t specifications would fail the type checking in the target 
system (Napier88). This results from the fact that type checking is stronger in Napier88 
than in VC-t. This problem is further explained in the following and a possible solution is 
presented. 

Type checking a VC-t specification is essential to assert its correctness. The language sup­
ports the following types: the built-in types - Natural, String and Boolean, and the user 
defined types - the VCs. 

The Semantic Constraints section is type checked against the information provided in the 
Preamble. For instance, in the constraint extract: 

'FORALL f : FinalState • f BELONGING Finals(std) , 

the compiler must check if the extractor 'Finals(std)' has been defined for the VC 'Final­
State' . 

The example above is fairly straightforward, but the complexity of type checking 'predi­
cate logic statements', which include VC properties, is far greater. Consider the constraint 
shown in Figure 8 which is included in the SimpleMT specification. 

In this example the auxiliary set 'AnyState', defined in the Preamble section is being used. 
Auxiliary sets defined as unions of VC types can also be included in a specification (for 
instance 'Any State' , which has been defined as the union between 'Stm1State' and 
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C4: "There is at most one Event in each direction connecting two States or the 
StartState with a State" 

FORALL sl, s2 : AnyState • sl, 52 BELONGING AnyStates(simpleMT) 
IMPLIES 
NOT EXISTS e1, e2 : Event • el, e2 BELONGING Events(simpleMT) 

AND ( 
(origin(e1) = sl AND destination(e1) = s2) 
AND 
(origin(e2) = 51 AND destination(e2) = s2) 

where AnyState is defined as: 
AnyState == StartState U State 

FIGURE 8. A semantic constraint defined for the SimpleMT. 
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'State'). They have been introduced in the VC-t language definition as a way to simplify 
constraints specification. 

In order to type check the constraint in Figure 8, we must type check both the quantifica­
tion expressions as explained above, and the predicate logic statement: 

'(origin(e1) = 51 AND destination(e1) = s2) AND (origin(e2) = 51 AND destination(e2) = 52}' 

Type checking the statement above implies checking each of its four components, e.g. 'ori­
gin(e1) = sl'. The properties 'origin' and 'destination' have been declared in the Preamble 
section of the specification; for the former we have: 

'origin: Event -> AnyState' 

In generic terms, a property declaration has the format: 

'propX: A-> S' 

where 'propX' is the property name; 'N is a VC type or a power set of VC types (in this 
section we will only analyse the case of unary properties, when 'A' is a single VC type; 
however, the conclusions can easily be generalised for n-ary properties), and 'B' is a type 
or an auxiliary set. 'A' is called the domain of 'propX' and 'B' is its range. 

In the Semantic Constraints section this property may then be used in a generic expression 
with the format: 

'propX(a) = b' 
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where 'a' is an element of 'A' and 'b' an element of 'B' (for a correctly typed expre ion). 

The process of type checking the above expression involves two actions: 

• Al - type check the argument of the propelty . 

• A2 - type check the values on both sides of the comparison, i.e. doe 'b' b long to 
the range of 'propX'? 

The expression 'origin(el) = 51' in the example above is correctly typed becau e it conform 
to the property declaration: 

'origin: Event -> AnyState' 

In fact, argument 'el' is an Event and the result is being compared with the value 1 an 
element of AnyState. 

The possible situations can be seen in Table 2. 

DECLARATION / Domain Domain Range 
CALL VC Aux VC 

Argument· VC OK IMP IRY 

Argument. Aux PI IMP IRV 

Compared Value· VC IRY fRV OK 

Compared Value· Aux IRV IRV W 

TABLE 2. Type checking ituations. 

Caption: 
IMP: Impossible 
IRY: Irrelevant 
W: Wrong specification 
PI, P2: type checking Problems 

Range 
Aux 

IRY 

fRV 

P2 

OK 

The columns of Table 2 represent the domain and range of a property declaration; ach 
can either be a single VC type or an auxiliary set. These correspond to' 'and B , re p c­
tively, in the generic property declaration above. 

The rows represent the argument and the value that is compared with the alu r turn d; 
respectively 'a' and 'b', in the example above. 

The darkened cells (marked 'IRV'), are not relevant becau e when typ checking a prop­
erty, we are only interested in matching it argument with the domain in the prop rty dec­
laration and the compared value with the range. The e two ituation are expr d b the 
white cells. 
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Action A 1 consists of the situations represented by the four top left table cells. Denoting 
by (1, c) the cell in line '1' and column 'c', we have: 

(1,1) if both domain and argument are VC types, it is only necessary to check if 
they are the same type; 

(1,2), (2,2) the domain cannot be an auxiliary set; 

(2,1) in this situation we have a type checking problem - the domain is a VC type 
but the argument is an auxiliary set, a union of VC types. 

Action A2 consists of the situations represented by the four bottom right table cells: 

(3,3), (4,4) if range and compared value are both VC types or both auxiliary sets, it 
is only necessary to check if they are the same; 

(4,3) if the range is a VC, the compared value must also be a VC, otherwise it is a 
specification error; 

(3,4) in this situation we have a type checking problem - the range is an auxiliary 
set but the compared value is a VC. 

There are three possible solutions for the above problems: 

• the simplest one is to allow the problems to happen in the specification and defer 
the type checking to the compilation phase of the generated code - the problems 
would only be detected by the type checker of the target language (Napier88 in our 
implementation); 

• another simple solution would be to eliminate auxiliary sets from the VC-t lan­
guage; 

• a more complex solution is to provide some mechanism at the specification level, 
to solve the type conflicts. 

The first solution has the disadvantage of producing target code that may not compile or 
behave correctly; for this to happen it is only necessary for the type checking mechanism 
in the target language to be stronger than the one in VC-t (which is the case in Napier88). 
This would provoke error messages produced by the target system to be presented to the 
designer. These messages would make no sense in the context of the specification written 
by himlher and therefore would be potentially confusing. These situations are common in 
multi-language systems; we have chosen to avoid them by deliberately not allowing incor­
rect target code to be produced. The first solution is, therefore, not satisfactory. 

The second solution increases the complexity of specifications which use auxiliary sets. If, 
for example, we eliminate the auxiliary sets used in the constraint of Figure 8, the specifi­
cation would become the one shown in Figure 9. 

Notice that two VC-t constraints are now necessary to express one semantic constraint and 
in other cases the expansion may be greater. In addition to the obvious loss of simplicity, 
there is a problem that makes the writing of a specification more complex: the enlargement 
of the semantic mismatch between the description of the constraint in natural language 
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C4: "There i5 at m05t one Event in each direction connecting two States or the 
StartState with a State" 

FORALL 51, s2 : State • 51, 52 BELONGING State5(5impleMT) 
IMPLIES 
NOT EXISTS e1, e2: Event· e1, e2 BELONGING Events(5impleMT) 

AND ( 
(origin(e1) = 51 AND de5tination(e1) = 52) 
AND 
(origin(e2) = sl AND de5tination(e2) = s2) 

FORALL 51 : StartState • sl BELONGING StartState5(5impleMT) 
IMPLIES 
NOT EXISTS 52 : State • 52 BELONGING State5(5impleMT) 

AND 
EXISTS e1, e2 : Event • e1, e2 BELONGING Event5(5impleMT) 

AND ( 
(origin(e1) = 51 AND de5tination(e1) = 52) 
AND 
(origin(e2) = sl AND destination(e2) = 52) 

FIGURE 9. Specification of the semantic constraint of Figure 8 without 
auxiliary sets. 
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and the formal VC-t specification. For these two reasons we have decided to abandon the 
second solution. 

The third solution demands some further research. The obtained results are presented 
below. 

5.3.1 Type Checking Safety Mechanisms 

5.3.1.1 The Requirements 

The mechanisms to be introduced in the specifications must conform to the following 
requirements. 

Requirement 1 

The VC types in the specification must match the MT constructs identified by the designer. 

As an example, consider the 'SimpleMT' description: the designer has identified the con­
structs in the sentence: [the SimpleMT] has only three constructs the 'State', the 'Start­
State' and the 'Event'. If he/she would be then forced to produce several VC types to 
specify one construct, the specification would not match what had been expressed. As an 
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example consider the situation of the 'Event' construct being specified by two VC types: 
'StateToStateEvent' and 'StartStateToStateEvent'. 

In conclusion, the mechanisms introduced must not provoke the creation of unreal or arti­
ficial VC types. 

Requirement 2 

The generated code must be correct, i.e. it must be in conformance with the target lan­
guage syntax and semantics. 

This means that a complete type check should be done at specification level by the VC-t 
compiler. 

Requirement 3 

The semantic mismatch, that is already present between constraints descriptions in natural 
language and their specification in VC-t, should not be enlarged. 

The language supports a one to one matching from natural language descriptions of MT 
constraints to VC-t semantic constraints (we are making this claim based on the specifica­
tions of MTs already written) - this expressiveness feature should not be compromised. 

Requirement 4 

The property overloading feature, provided by the VC-t language, must be maintained. 

The VC-t language allows for property overloading; for example, in Figure 10 the 'name' 

C 12: "All elements of the diagram must be named" 

FORALL a : DFDelements • 
a BELONGING DFDelementsExtractors IMPLIES 

(NOT (name(a) = ""» 
where DFDelements is defined as: 

DFDnodes == Process U Datastore U ExternalEntity U Dataflow 

FIGURE 10. A semantic constraint defined for DFD. 

property has been defined for each one of the VC types 'Process', 'Datastore', 'External­
Entity' and 'Dataflow'. 

The 'name' property will have a different implementation in the target language for each 
VC type, however this fact is transparent to the designer. The property overloading feature 
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is implemented by generating in the target language, a unique function name for each 
property. The generated function name is produced in the following way: the property 
name is prefixed by the construct name and by a letter (lor C) specifying if it applies to an 
Icon or a Connection, respectively. For the example given in Figure 10, four function 
names would be generated: 

'process_Cname( ... )', 'datastore_Cname( ... )', 'externaIEntity_Cname( ... )' and 
'dataflow_C_name( ... ), 

for each value of the variable 'a', the implementation corresponding to its type would be 
used. Again, we believe that this feature allows us to produce specifications closer to the 
natural language description of the constraints. 

5.3.1.2 The Solutions 

Solutions for the problems identified before must be provided; they must conform to the 
requirements above and, as far as possible, respect the following guidelines: 

• The VC-t language syntax should be maintained. 

• The specifications should remain simple and readable. 

A Solution for the 'Domain/Argument' Problem 

As described above (,PI' in Table 2), the following type checking problem may occur: 

the domain of a property is a VC type but the argument is an auxiliary set, i.e. a 
union of VC types. 

The semantic constraint in Figure 11, which has been defined for the SimpleMT, would 

C1: "Names are unique amongst States and 
StartState" 

FORALL 51, 52 : AnyState • 51,52 BELONGING 
AnyStates(simpleMT) 
IMPLIES 
(name(sl) = name(s2) IMPLIES 51 = 52) 

where AnyState is defined as: 
AnyState == StartState U State 

FIGURE 11. A domain/argument type unsafe semantic constraint. 

fail a type check in a strongly typed system. This would happen because 'name'. being a 
property, must have as the argument a value belonging to a single VC type, but it is being 
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applied to an element of an auxiliary set, i.e. the variables 'sl' and 's2' belong to 'AnyS­
tates' when they should belong to either 'StartStates' or 'States'. 

The proposed solution is to relax the type information in the VC-t specification. For this 
purpose a generalisation mechanism has been provided, through a meta property, i.e. a 
property that applies to any VC types or their unions. This meta property has been named 
'generalise' and included in a VC-t library. 

For a property PropX: A ~ B, the signature of 'generalise' is: 

generalise(propertyName: String; extractorName: String; vcVariable: Set ~ B) 

The semantics of 'generalise' are: 

'Generalise propX(a) defined for Ai(mt) with 1 < i < n, a E Al(mt) u A2(mt) u .. u An(mt), n E Nat­
ural' 

where 'mt' is a modelling technique and 'Ai(mt)' is an extractor declared for that tech­
nique. 

The use of the 'generalise' meta property allows a property, that has been overloaded in a 
number of VC types, to be used without specifying to which of those types it will be 
applied. Semantically, the difference between this mechanism and property overloading is 
that, in a specification, the semantics of the generalised properties are expected to be 
equivalent. We will come back to this point after the presentation of an example. 

In this example, 'generalise' is applied to the specification shown in Figure 11. Using the 

Cl: "Names are unique amongst States and 
StartState" 

FORALL sl, s2 : AnyState • sl, s2 BELONGING 
AnyStates(simpleMT) 
IMPLIES 
(generalise("name", "Any States", sl) = generalise("name", "AnyStates", s2) 

IMPLIES sl = s2) 

where AnyState is defined as: 
AnyState == StartState U State 

FIGURE 12. The type safe version of the semantic constraint in Figure 11. 

meta property, the specification becomes the one in Figure 12. This means that the 'name' 
property may now be used for values of any of the VC types included in the definition of 
the auxiliary set 'AnyState'. The constraint is now correctly typed: the variables's l' and 
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's2' belong to the auxiliary set 'AnyState', which corresponds to their type when used as 
arguments of 'generalise'. 

Generalising a property named "propX" is only possible if in each VC type within the aux­
iliary set, used as the argument of 'generalise', a property has been defined with that name. 
Moreover, all those properties must have the same range. 

A constraint that includes the meta property 'generalise', in spite of being correct from a 
type checking perspective, may have its semantics completely wrong. From the fact that 
two properties, defined for two VC types, have the same name and the same range, one 
cannot infer that they have the same semantics. It is the responsibility of the specifier to 
ensure that this is indeed the case, or, in other words, that the semantics of the generalisa­
tion is correct, i.e. that it makes sense. 

A Solution for the 'Range/Compared-Value' Problem 

The second problem (,P2' in Table 2) that may occur is: 

the range of a property is an auxiliary set but the compared value is a VC type. 

In the example of Figure 13 the 'destination' property has been declared for the 'Event'VC 
type as: 

'destination: Event -> AnyState' . 

C3: "The StartState does not have incoming Events" 

FORALL s : StartState • s BELONGING 
StartStates(simpleMT) 
IMPLIES 
NOT EXISTS e : Event • e BELONGING 

Events(simpleMT) 
AND 
(destination(e) = s) 

FIGURE 13. A range/compared value type unsafe semantic constraint. 

So, the expression: 'destination(e) = s' does not type check correctly under strong typing 
rules, 's' is a StartState when it should be an AnyState. 

The solution is to increase the type information in the VC-t specification. For this pur­
pose, another meta property with the following signature, has been included in the VC-t 
library: 

vcTypeOf(vcVariable: VCtype ~ String) 
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The meta property 'vcTypeOf' can be applied to an instance of any VC type, returnincr a 
string with its type name. I:> 

Using the 'vcTypeOf' meta property, the specification of Figure 13 becomes the one in 
Figure 14. 

C3: liThe StartState does not have incoming Events" 

FORALL s : AnyState • s BELONGING 
AnyStates(simpleMT) 
IMPLIES 
NOT EXISTS e : Event • e BELONGING 

Events(simpleMT) 
AND 
«destination(e) = s) AND (vcTypeOf(s) = "StartState")) 

where AnyState is defined as: 
AnyState == StartState U State 

FIGURE 14. The type safe version of the semantic constraint in Figure 13. 

5.3.1.3 Conclusions 

The VC-t language is deliberately weakly typed to reduce the semantic mismatch between 
natural language constraints descriptions and formal constraints specifications. This fea­
ture, however, may raise some problems in the code generation, namely when the target 
language provides stronger typing mechanisms. As a result, the generated code may face 
problems in the target system. The eventual problems will usually produce error feedback 
to the user (the specifier, in this case), for instance as error messages, which would be 
meaningless in relation to the specification environment. 

To avoid these problems, two meta properties were introduced, as pm1 of a VC-t library. 
The meta properties, 'vcTypeOf' and 'generalise', may be used to produce type safe spec­
ifications; these are guaranteed to be type correct in a strongly typed system. 

It is important to notice that a specification using the meta properties could be automati­
cally obtained by transformations applied to a standard VC-t specification. Note that these 
transformations are done exclusively at the specification level and also that the resulting 
specification will still conform to the unchanged VC-t syntax. 
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6. The Generic Visual Language for MT Editors 

consistent adj. compatible or in harmony 

In The Concise Oxford Dictionary of Current English [Allen91] 

consistent state: compatible or in harmony with the semantics (our definition). 

6.1 Introduction 

Current software design tools supporting diagram based modelling techniques (MTs) are 
not satisfactory. Editors for MTs such as State Transition Diagrams, Dataflow Diagrams or 
Petri Nets, are always confronted with a problem: how much guidance should be given to 
the user throughout the editing task? Not enough guidance allows the diagram to evolve to 
non plausible configurations and may provoke the user to feel lost in the editing process. 
At the other extreme, if too much guidance is provided, the user feels like being shep­
herded through the diagram drawing; this results in an obtrusive and unfriendly system. 
Current tools normally offer a trade-off solution based on the introduction of some seman­
tic constraints in the diagram editor to forbid a number of operations. To assert the correct­
ness of the diagram, the user must explicitly request it to be checked. We believe this 
solution is not satisfactory. All the semantic constraints should be embedded in the editor 
in order to allow automatic diagram validation. The challenge is: how to do this without 
limiting the user's freedom during the editing task? I propose an approach that provides a 
solution to this problem (this work was introduced in [Serran094] and further develope­
ments were reported in [Serran095]). 

A large number of software design tools have been developed to support MTs. Such tools 
must provide a visual editor to draw the diagram and some way of evaluating the produced 
diagrams according to the semantics of the underlying notation. In this chapter we will 
show how current tools supporting MTs can be improved by introducing a new approach 
to diagram editing and evaluation. 

Depending on how the semantics of the MT are used in the tool, two different ways of per­
forming diagram evaluation can be considered: 

• the semantics are not included in the diagram editor - the evaluation is done by an 
explicit user request; 

• the editor uses the semantics at design time - the evaluation is carried out as the 
diagram is drawn by the user. 
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The first approach demands a separate validation phase. Normally the diagram is trans­
lated into a textual representation which will then be parsed. The problem with this 
approach is that the editor, having no knowledge about the diagram semantics, is unable to 
offer guidance to the user during the diagram editing task. 

The second approach addresses this problem by including the semantic constraints in the 
diagram editor, which are then enforced at editing time. As a result, any inconsistency in 
the diagram will violate semantic constraints and is therefore forbidden. So, with this 
approach another problem arises: the user is shepherded through the editing process. 

Our challenge can, therefore, be expressed as: how to embed the semantics of the MT in 
the diagram editor without obtrusively limiting the user's freedom? Some systems try to 
answer to this question by relaxing a set of semantic constraints at design time. This pro­
vides some freedom to the user by enabling him/her to produce temporarily inconsistent 
diagram states. The full set of constraints is only applied when a diagram validation is 
requested. This approach only partially solves the problem: the user still does not know 
which operations he/she is allowed to perform on the diagram; there is not a clearly 
defined method to isolate the set of constraints to be relaxed; a separate validation phase is 
still required. 

We present a solution to the problem, i.e. an approach by which all the semantic con­
straints are embedded in the diagram editor and that still guarantees the user freedom dur­
ing the editing task. 

Constraints are used to represent the MT semantics. The system refers to these constraints 
in order to continuously monitor the diagram being edited. Every time the system recog­
nises a valid configuration, the diagram is automatically stored in the repository. The user 
can still edit the diagram until another valid configuration is obtained. At this point, new 
additions or differences to the previous valid configuration will be stored. This means that 
diagram validation is performed incrementally. 

The way this is done will be explained in the next section. We will also show how the sys­
tem manages inconsistent states between two valid diagram configurations and why this 
inconsistency management is a key point of the approach and a major advantage to the 
user. 

6.2 The approach 

6.2.1 Overview of Visual Objects 

In this section we describe an approach for the definition of diagram editors for MTs. As 
an example a systems designer may want to develop a diagram editor to SUppOIt the 
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Entity-Relationship (ER) notation [Chen76] (see Appendix for a short description of ER). 

With such an editor the userl will be assisted during the ER diagram editing task. 

In our approach a diagram is composed of Visual Objects (VOs) (see Section 4.4 on 
page 42). VOs include a logical part (the semantics) and a physical part (the properties and 
visual representation). VOs can either be icons [Chang90] or connections. Both icons and 
connections have their semantics expressed by constraints, as we will describe below, but 
the physical part is expressed differently. The physical part of an icon is a shape (e.g. a 
labelled square or a circle) while the physical part of a connection is a line style (e.g. an 
arrowed line or a dotted line). 

6.2.2 Visual Objects' Semantics and Constraints 

VOs' semantics is expressed by constraints. Each VO has associated with it a set of con­
straints. Constraints are increasingly being used to specify the graphical layout and behav­
iour of an application [Zanden91; Borning81]. In this context, a constraint is a rule on the 
properties of VOs that can be checked for validity. 

Constraints are used to determine the behaviour of a VO at design time, i.e. how it acts 
individually and how it interacts with other VOs. This way, a VO is more than just a visual 
representation; it has a specific behaviour encompassing two aspects: 

• individual - when it is isolated from other VOs; 

• community - when it interacts with other VOs. 

VO behaviour is always triggered by a user command. The VO reaction to a user com­
mand can either be a: 

• direct reaction if the command is issued over the VO; 

• indirect reaction if the command is issued over another VO to which it is semanti­
cally connected. 

The semantics of a VO is the specification of its behaviour during the editing task by the 
use of constraints. 

6.2.3 Visual Objects States 

Three different states are defined for a VO's life cycle: 

• Complete: the VO is completely specified. 

I. James Odell says: "there is not such a thing as an end-user". In this context the term 'user' refers to the 
person using the diagram editor. 
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• Accepted: the VO specification is not complete but it is already associated with the 
diagram. 

• Disconnected: the VO is incomplete and dissociated from the diagram . 

When the user interacts with the diagram the behaviour of the VOs involved will depend 
on their state. For each VO affected, its constraints will be checked. 

6.2.4 Diagram States 

Depending on the VOs' states, the diagram may also reach one of three different states: 

• Valid: all the VOs are in the complete state. 

• Inconsistent: this is a non valid state but the valid state can be reached solely by 
adding new VOs or rearranging the existing ones without separation of already 
associated VOs. 

• Wrong: the only possibility of reaching the valid state is by removing or dissociat­
ingVOs. 

Only the third state is forbidden. This is because whenever the user issues a command 
causing the diagram to enter the third state, it makes no sense to proceed with the current 
task. In this situation, the user would get feedback from the system indicating an error. 

At the beginning of this chapter we defined 'consistent state' as a state that is compatible 
or in harmony with the semantics, and in our case, of a MT. An inconsistent state is tempo­
rarily out of harmony: it is a transition between two consistent states. A 'wrong' state can 
not be considered a transition to another consistent state because the current flow of inter­
action must be interrupted. 

This way, inconsistent intermediate states are allowed, promoting the user freedom during 
the design process. In Figure 15, three situations are shown, each one corresponding to 
one of the three different states. For this example the ER technique was used. 

The concept introduced above of 'relaxing constraints' does not apply to this approach. It 
is only necessary to identify the constraints that, when violated, lead to diagram configu­
rations corresponding to wrong states. This is exemplified in the next section. 

Diagram validation is performed automatically at design time by constraint checking. 
With this approach there is no separation between the editing phase and the validation 
phase; the two are merged together. For each user action the diagram is incrementally 
parsed. Each time a valid state is reached the diagram is automatically stored. 

The next section shows how the approach can be used to produce a diagram editor for the 
ER technique. 
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FIGURE 15. Diagram states. 
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6.3 Using the Approach to Produce an Entity-Relationship Diagram 
Editor 
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The editor to be produced supports the ER subset presented below. In the specification we 
will use natural language to express the constraints. 

6.3.1 A Small Subset of the Entity-Relationship Technique 

This section gives a short description of the Entity-Relationship (ER) method. Only a sub­
set of the method is presented, concepts like multi-valued attributes, recursive relation­
ships or weak entities are not addressed. A more detailed explanation of the method can be 
found in [Chen76] or [Sanders95]. 

The Entity-Relationship (ER) technique is a popular semantic data model that was first 
published by Peter Chen in 1976. ER is a high-level approach to database design used to 
understand and simplify data relationships in the real world. 
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Course Student 

FIGURE 16. An ER diagram. 

An ER diagram uses three basic graphic symbols (see Figure 16): 

• entities (depicted by rectangles), which are conceptual data units corresponding 
to objects in the real world; 

• attributes (depicted by ellipses), they describe the characteristics or properties of 
entities; 

• relationships (depicted by diamonds), which represent the structural association 
that exists between entities. 

An entity instance results of assigning values to one or more attributes of an entity. It is a 
data object such as the student "Charles Brown". 

The cardinality of a relationship is a numerical mapping between entity instances. It 
denotes the maximum number of instances of an entity that may be associated to a single 
instance of another entity. E.g. in Figure 16 students and courses are associated by a N:M 
relationship, meaning that each student may be enrolled in one or more courses and each 
course can have one or more students enrolled in it. A relationship may also have cardinal­
ity 1: 1 or l:N. 

6.3.2 Designing the Editor 

The design of the editor is carried out in four steps: 

1 - Identify the VOs 

There are three icons: 

• entity; 
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• relationship; 

• attribute; 
and two connections: 

• attribute-entity; 

• relationship-entity. 

Figure 17 shows the visual representation of the identified VOs. 

2 • Express VOs semantics in terms of constraints 

Entities 

1. Entities must have a name 
2. Entities can only be connected to attributes and relationships 

Relationships 

3. Relationships must have a name 
4. Relationships can only be connected to entities 
5. Relationships always connect two entities (as only binary relationships are permitted) 
6. Relationships must connect different entities (as recursive relationships are not 
allowed in this simplified example) 

Attributes 

7. Attributes must have a name 
8. Attributes can only be connected to entities 
9. Attributes are always connected to one entity 
10. Attributes can only be connected to an entity that is fully specified, i.e. to which a 
name has already been given . 

EntitylRelationship Connections 

11. Relationship-entity connections must have a label expressing the cardinality. 
12. Cardinality labels on relationship-entity connections are chosen from the following 
set: {I, M, N} 
13. If one of the relationship-entity connections is labelled with M, then the other one 
must be labelled with N (1:M and M:M cardinality labels are forbidden) 
14. If one of the relationship-entity connections is labelled with N, then the other one must 
not be labelled with N 
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FIGURE 17. VOs for the ER method. 

3 • Identify the constraints that when violated lead to wrong states 
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We are interested in isolating the constraints that prevent the editing task from reaching a 
point from which it makes no sense to proceed. Those situations must be avoided and 
therefore the constraints that prevent them are always enforced. The remaining constraints, 
when violated, only provoke temporary diagram inconsistency but, as explained before, 
inconsistent states are allowed in order to promote flexibility during the editing task. As 
we have shown, the violation of a constraint of this group affects VOs by incurring them to 
enter the incomplete or disconnected states. 

The following constraints, when violated, cause the diagram to enter the wrong state: 

2,4,6,8, 10, 12, 13 and 14. 

4 • Define the compound commands (if any) 

A compound command is simply a sequence of atomic (pre-defined) commands. 

It seems sensible to define a compound command for attribute creation in a way that 
attributes cannot exist in isolation, not associated with an entity. This command will over­
ride the attribute creation command provided by default. 
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The command 'Attribute Creation' is the sequence of the commands: atomic creation of 
the attribute; atomic creation of the connection attribute/entity. 

We could define another compound command: the creation of a relationship. This com­
pound command would enforce the indication of the connected entities by including the 
creation of both relationship-entity connections in the atomic command sequence. But we 
believe that not defining this command helps to promote editing flexibility. 

While the definition of constraints is imposed by the underlying diagramming technique 
semantics, the definition of compound commands consists, essentially, in design options 
driven by usability concerns. 

6.3.3 A note on constraints 

Due to the simplicity of the example, the number of constraints is quite low. But for MTs 
leading to the definition of a larger number of vas, the increase in the number of con­
straints is faster than linear. However, a combinatorial explosion does not normally occur. 
This affirmation is based on the observation that a large number of connectivity combina­
tions between vas are forbidden in typical MTs. This means that the connectivity matrix 
is normally very sparse which reduces the risk of combinatorial explosion. 

6.3.4 Producing the diagram editor 

Based on the specification above, it is possible to undertake the implementation phase of 
the editor. The natural language constraints specification must first be translated into a VC­
-t formal specification which will then be used as input to the compiler. Upon successful 
parsing of the specification, performed by the compiler's front-end, the executable code is 
generated. 

6.4 Conclusions 

We have presented a new approach to the design of diagram editors for MTs. A visual lan­
guage, part of the editor, is obtained with basis on the semantic constraints identified for 
the MT. This approach solves the fundamental problems found in current diagram editors. 
The diagram being edited is incrementally validated according to the semantic constraints 
determined by the underlying MT. This means that a separate validation phase is no longer 
necessary. The main advantage of this approach is that it provides non-obtrusive orienta­
tion to the user. Allowing himlher to deliberately produce inconsistent diagram states pro­
motes flexibility during the editing task. 
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The approach can be applied to VC-t specifications, it is however independent from the 
language used to produce the specifications. This means that this approach can be used 
with any specification language as long as it is based on semantic constraints. We have 
chosen to use natural language to express the constraints because it makes the example 
simpler to explain. 

Note, however, that natural language is not normally used for software design and code 
generation due to its inherent ambiguity and complex grammar, characteristics that are not 
welcome when precise specifications and simple compilers are required. For this reason, 
natural language is normally only used to produce an initial specification which is then 
translated into a formal specification that will support the subsequent development cycle. 

The visual language obtained with the approach defines solely the basic usage of a MT. 
This default visual language can be developed to produce a version that better implements 
the usage defined for the underlying MT and with improved usability. This advanced ver­
sion can also be tailored to specific types of users. The theory behind that process is pre­
sented in Chapter 7 'Specifying Usage by Semantic Constraints'. 
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7. Specifying Usage by Semantic Constraints 

In this chapter a new theory of semantic constraints to express the usage of a MT will be 
presented. 

7.1 Some Notes on Terminology 

Semantic constraints are defined both for a VC, which can be an Icon or a Connection, and 
for the whole diagram. Constraints are checked when they 'become in scope', that is, 
when a semantics check on the diagram is required for the editing task to proceed. There 
are four editing situations in which constraints become in scope: 

• diagram creation - only for global diagram constraints; 

• VC creation; 

• VC deletion; 

• label update (labels are defined both in icons and connections). 

The expression 'constraint becoming in scope' will be used in the following. As in this 
approach constraints are always 'checked' when they 'become in scope', the two expres­
sions can, and will, be used interchangeably. 

Note that 'checking' has a different meaning from 'enforcing' a constraint. Checking a 
constraint determines whether the constraint is satisfied or violated. Enforcing a con­
straint guarantees its satisfaction. A constraint can be checked with, or without, being 
enforced. 

If a check fails, meaning that the constraint was violated, and it is enforced then the user 
interaction is either coerced to the constraint satisfaction, or stopped and rolled back until 
the constraint is satisfied. 

In the following, the given examples will be based on STO; refer to Appendix B for the 
complete VC specification of this MT. 
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7.2 Classification of Semantic Constraints 

The semantic constraints included in a VC-t specification will now be labelled according 
to different classes. The visual language is extended with a new state - the 'unstable' state. 
It was not included in the default visual language (presented in Chapter 6) as it results 
from the new specification of usage. 

In this approach, constraints are classified according to the following characteristics: 

• Enforcement: a constraint may be enforced when checked; may never be 
enforced; enforced within a transaction; or only by a user request. Depending on 
the situation of its enforcement, a constraint violation leads the diagram to one of 
the following states: 'complete', 'inconsistent', 'wrong' or 'unstable'. 

• Scope: it is a local constraint when it is defined for the VOs in the diagram, for 
example the following constraint specified for STD: 'A final state cannot have out­
transitions or loop-transitions'; it is a global diagram constraint when defined for 
the diagram itself, for instance, the existence constraint 'A STD must have at least 
one initial state'. 

• Involvement: which kind of diagram objects does it apply to (icons, connections, 
icon labels, connection labels). For instance, this is a connection label constraint 
specified for STD: 'Every transition must have a transition condition'. This charac­
teristic will be further discussed in Section 8.4. 

The scope and involvement of a constraint define its domain. 

It is important to note that the instant in which the constraint is checked is not taken into 
account for the classification of constraints. Some authors, e.g. [Adreit91], classify con­
straints into immediate checking and deferred checking. In immediate checking con­
straints are checked when they become in scope; in deferred checking they are ignored 
when they become in scope and are only checked by an explicit user request. In our 
approach, all constraints are of the kind immediate checking. This feature is the vital point 
to allow for the exclusion of the validation phase in the design editors (detailed discussion 
in Chapter 6). 

7.2.1 The Enforcement 

According to their enforcement, constraints are classified into: 

• Hard constraints. They are enforced by the time they are checked. When a viola­
tion occurs the diagram would go into the wrong state. In this situation the editing 
task cannot proceed; an error message stating the violated constraint is given to the 
user and the user action is rolled-back. The editing task is resumed at the situation 
immediately before the constraint violation happened. 
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• 

• 

• 

Soft constraints. As with all other constraints, they are checked as soon as they 
become in scope but are never enforced. This means that the system gives visual 
feedback to the user about the constraint violation but no action is required from 
the user to satisfy the constraint. 

Hardened constraints. Their enforcement is carried out within a constraint trans­
action. As soon as the constraints become in scope a constraint transaction is initi­
ated. The diagram enters the unstable state and remains in it for the duration of the 
transaction. Any user action not leading to the completion of the transaction is for­
bidden. 

Deferred constraints. The only difference between these and hardened constraints 
is that their enforcement (and therefore the beginning of the transaction) only hap­
pens by explicit user request. 

7.2.2 The Scope 

In some situations it is not possible to associate a constraint to the VOs. An example is an 
existence constraint. For instance, the constraint given above 'an STD must have at least 
one initial state' can not be defined on the 'initial state' itself, because the constraint must 
be checked even before an initial state is created. Constraints defined for the whole dia­
gram are called global diagram constraints. Conversely, constraints associated with the 
VOs are called local constraints'. 

Note that only the enforcement classification is used explicitly by the user in the VC spec­
ification. The classification according to scope and involvement is automatically done by 
the system. 

7.3 Hardening Constraints 

In some situations, it might be interesting to enforce soft constraints. This feature has 
advantages when producing design tools for novice users. Not allowing the violation of 
selected soft constraints reduces the level of inconsistency (LoI) of the diagram in particu­
lar configurations. As an example, during the editing of a STD one might want to ensure 
that every intermediate state has, at least, one input transition, but output transitions may 
be left unspecified. This means that the constraint that guarantees an input transition for an 
intermediate state must never be violated. A possible advantage is the reduction of the 
number of unconnected states - all intermediate states would be connected to another state. 
The way to do this and its implications are described below. 

The level of inconsistency of a diagram configuration is defined as the ratio between the 
number of different constraints which are violated and the total number of constraints in 
the specification, i.e.: 
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level of inconsistency (LoI) = #Violated30nstraints / #all_constraints * 100% 

The maximum level of inconsistency is defined as the ratio between the maximum 
number of different constraints which may be violated in a particular instant or diagram 
configuration (Max(#Violated30nstraints» and the total number of constraints in the 
specification, i.e.: 

LoIM = Max(#violated_constraints) / #all_constraints * 100% 

Hardened constraints are soft constraints that are enforced at the time they are checked. 

As an example, the constraint 'Every state must have a name' could be hardened. As a 
consequence the user would have to give a name for each state at the time of its creation. 

The difference between a 'hard constraint' and a 'hardened constraint', is that the viola­
tion of the first one always leads the diagram to a wrong state whereas the violation of lat­
ter leads it to an inconsistent state (never to a wrong one). 

Inconsistent states are necessary as transitions between consistent ones. In order to allow 
for the occurrence of those states and also to enforce the hardened constraints it becomes 
necessary to include the satisfaction of these constraints in a transaction. This way the 
hardened constraints are enforced - and must be satisfied, or otherwise the transaction will 
not commit. The inconsistent states are allowed within the transaction. 

A constraint transaction is the mechanism of satisfying all hardened constraints defined 
for a given VC or for the diagram. 

A constraint transaction occurs when the hardened constraints defined for a VC, or for the 
diagram, are enforced. See Figure 18 for an extract of a natural language specification 
expressing the semantics of the 'state' icon. In Figure 19 an example of two constraint 
transactions involving constraints defined for the 'state' icon in the STD specification is 
given. 

Figure 19 shows the violated constraints: C2 and C4 are hardened constraints (represented 
in underlined style); C3 is a soft constraint. In this example, a constraint transaction corre­
sponds to the satisfaction of C2 and C4. The two possible constraint transactions are 
shown. The bounding-box with double border enclosing the circle representing a state, 
indicates that a constraint transaction is taking place 

7.3.1 Nested Constraint Transactions 

To satisfy the hardened constraints defined in a VC it is sometimes necessary to satisfy 
constraints defined in other VCs. If those constraints are also hardened, then we have a 
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Natural Language Specification 

Constraint 1: 
Names must be unique amongst initialState, states and finalStates. 
>Type: hard 

Constraint 2: 
Every state must have a name 
> Type: hardened 

Constraint 3: 
A state must have at least one out-transition. 
> Type: soft 

Constraint 4: 
A state must have at least one in-transition. 
> Type: hardened 

83 

FIGURE 18. Extract of the semantics specification for the 'state' icon in STD. 
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FIGURE 19. The two constraint transactions for the 'state' icon. 

nested transaction, as the satisfaction of hardened constraints is always performed within a 
dedicated constraint transaction. 

The example presented in Figure 19 can involve a nested transaction. In fact, to satisfy 
constraint 4, it is necessary to create a new 'transition'. This will provoke the constraints 

J. Artur Vale Serrano June 1997 



Specifying Usage by Semantic Constraints 84 

defined in 'transition' to be checked. If one or more hardened constraints were defined in 
'transition', for instance the constraint 'the transition Condition is mandatory' can be made 
hardened with possible advantages, then the enforcement of these constraints would strut a 
new constraint transaction. As this new transaction occurs before the completion of the 
transaction initiated upon the creation of 'state', they become nested transactions. 

7.3.2 Automatic Constraint Satisfaction 

This design feature is aimed at facilitating the use of the editor in a hardened constraints 
validation scenario. There are hardened constraints for which it is important to provide an 
option in the editor to automatically create a diagram element (or editable construct) that 
satisfies the constraint. For example, if this option was activated for the global diagram 
constraint 'every STD must have an initial state', the editor would automatically create an 
unnamed initial state in each new diagram. Another example is to automatically display a 
name for each newly created state. 

This is called defaulCconstrainCsatisfaction. When this option is activated for a hard­
ened constraint, the editor automatically produces an editable construct that satisfies the 
constraint being enforced. Constraints with the defaulCconstraincsatisfaction option are 
completely transparent to the MT user. 

7.3.3 Deferring Hardened Constraints 

Definition: in the scope of this approach, to defer a constraint is to delay its enforcement 
until a request for global (over the whole diagram) constraint enforcement is made. The 
request can be explicitly issued by the user or suggested by the system, for instance when 
the user closes the diagram. 

It is important to notice that deferred constraints, as well as all the others, are always 
checked immediately after they become in scope. A constraint becomes in scope by: 

• the creation of a new diagram (only for global diagram constraints); 

• the creation of a VC for which it has been defined; 

• the deletion of a VC for which it has been defined; 

• updating a label of a VC for which it has been defined. 

The MT designer may mark a constraint as deferred or may only define it as user-deferra­
ble. If a constraint is user-deferrable, the MT user decides (at editor execution time) 
whether s/he wants it deferred or always enforced. This mechanism is provided to the MT 
designer to allow the specification of custornisable editors for novice and expert users. 
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Only 'hardened constraints' can be deferred. 'Hard constraints' cannot be deferred 
because wrong states are never allowed in a diagram; and 'soft constraints' are never 
enforced, therefore deferring does not apply. 

The difference between 'soft constraints' and 'deferred constraints' is then: the former are 
never enforced while the latter may be enforced by user request. The advantage of this is 
that the user may decide when to enforce the constraints which has the consequence of 
reducing the level of inconsistency (LoI) of the diagram. 

Who decides which constraints are to be deferred? 

Identifying the deferred constraints can be done by: 

• The MT designer. Some constraints are marked as deferred at MT editor design 
time. In this case a number of deferred constraints are included in the editor as a 
feature. These constraints are called designer-deferred or simply deferred. 

• The MT user. The option to defer some of the constraints included in the editor can 
be given to the user. These constraints are called user-deferrable. This allows the 
editor customisation in accordance with the user's level of expertise, i.e. a naive 
user might need all the hardened constraints in the default mode (immediate satis­
faction) whereas a more experienced user might benefit from a less constrained 
environment; this increase of semantic freedom can be achieved by deferring a few 
of the allowed hardened constraints. 

Why are hardened constraints deferred? 

The process of hardening constraints although very useful reduces the semantic freedom. 
The advantage of deferring a hardened constraint is to recover the semantic freedom to the 
same value it was before the hardening process. 

7.4 Semantic Freedom 

Semantic Freedom is the percentage of unenforced semantics in a semantics specifica­
tion. 

Semantic Freedom (SF) = unenforced_semantics I all_semantics * 100% 

or 
SF = #sofcconstraints I (#sofcconstraints + #hard_constraints) * 100% ~ 
SF = #sofcconstraints I #all_constraints * 100% 

After the process of hardening and deferring constraints (detailed below), the formula 
becomes: 
SF = (#sofcconstraints + #deferred30nstraints) I (#sofCconstraints + #hard_constraints 
+ #hardened_constraints + #deferred_constraints) * 100% ~ 
SF = (#soft30nstraints + #deferred30nstraints) I #a1l30nstraints * 100% 

J. Artur Vale Serrano June 1997 



Specifying Usage by Semantic Constraints 86 

The 'Semantic Freedom' (SF) concept only applies to editors for which the full semantics 
of the underlying MT has been expressed in terms of constraints according to the frame­
work described in this report. A special case is a specification with no semantics (e.g. a 
specification for a drawing package such as MacDraw); as in this case there would be no 
constraints in the specification, SF would be undefined. 

The value of SF is determined by the number of constraints of each enforcement class: 
soft, hard, hardened and deferred. However, the number of hard constraints is a constant 
for any given editor; as a result the value of SF cannot be 100% unless no hard constraints 
were defined. The maximum value of SF for a given editor will therefore be determined by 
the number of hard constraints (a constant value) and the number of soft constraints before 
the process of hardening and deferring (written #sofcconstraintsinitial): 

SFM = #sofcconstraintsinitial' (#sofcconstraintsinitial + #hard_constraints) * 100% 

This value is shown in Figure 20 left. The minimum value of SF is always zero and it is 
obtained by hardening all the soft constraints (see Figure 20 right). 

The mechanism of hardening constraints gives a full range of possibilities, from a specifi­
cation where no constraints have been hardened, i.e. the maximum allowed constraints are 
soft (SF = SFM) to one in which all soft constraints have been hardened, i.e. the constraints 
are all hard or hardened (SF = 0). From the former specification a loose or freehand editor 
is produced, whereas a confining and restrictive one is obtained from the latter. In practice, 
the MT designer will locate the editor somewhere in the middle with, possibly, some flex­
ibility to customise the editor for novice and expert users. Editor customisation will be 
explained in the following section. 

I • I 

SF (%) ~ 
I 

SF (%) 0 SFM 100 100 

FIGURE 20. Extreme SF values. Left: SF maximum - no hardened constraints; 
Right: SF minimum (always zero) all soft constraints have been hardened. 
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7.5 Building a Semantic Specification 

A specification of the semantics of a MT is built in five phases: define all constraints; iden­
tify the hard constraints; decide which constraints will be hardened; select from the hard­
ened constraints the ones to be deferred; from these isolate the user-deferrable ones. The 
changes in the SF during these five phases are represented in Figure 21. The arrows show 
the variations on the value of SF from a phase to the next. The range of customisation is 
given by the dashed double arrow which will be explained below. 

SF (%) 0 

Novice 
User 

Customisation 
Range 

100 

FIGURE 21. SF for different phases of the semantic specification. 

First phase: define all constraints 

From a description of the semantics of the MT in natural language all constraints are 
derived. SF cannot yet be determined. 

Second phase: identify the hard constraints 

After the identification of the hard constraints (the ones that when violated cause the dia­
gram to enter the wrong state), a maximum value for the SF is obtained. The SF is given 
by: 

SFM = #sofCconstr. / #aIl30nstr. * 100% 
= (#aICconstr. - #hard_constr.) / #all_constr. * 100% 

The hard constraints identified for a given MT are a characteristic of the semantics of that 
MT and therefore it is not a matter of designer's choice. 

Third phase: decide the hardened constraints 

In this phase the designer transforms some of the soft constraints into hardened con­
straints. This way the amount of constrained semantics increases and the SF is therefore 
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reduced. This will provoke generating an editor that gives more guidance to the user. The 
SF is given by: 

SFhn = #sofcconstr. / #aICconstr. * 100% 

= (#all_constr. - #hard_constr. - #hardened_constr.) / #all_constr. * 100% 

Fourth phase: select constraints to be deferred 

The designer introduces some deferred constraints to counterbalance the effects of harden­
ing. This way, the SF is increased which allows the MT user to introduce more inconsist­
encies in the diagram being edited. The consequence in the value of SF is given by: 

SFd = (#sofCconstr. + #deferred_constr.) / #aICconstr. * 100% 

Through the selection of hardened and deferred constraints, the designer can control the 
amount of guidance that the editor will provide to the user. In the two extreme situations 
we have: 

• all soft constraints are made hardened, all the MT semantics will be constrained -
SF becomes zero (SFhn = 0) - and maximum guidance is given to the user. 

• no hardened constraints are defined or have been deferred, the MT semantics is 
only constrained by the hard constraints - in this situation the value of SF is maxi­
mum (SF = SFM ) - and the maximum level of inconsistency is allowed. 

Expert users will usually introduce inconsistencies in the diagram during an editing ses­
sion. This allows for more flexibility in the editing process. Novice users, conversely, may 
appreciate being given more guidance by the editor. Hardening and deferring constraints 
allows the MT designer to specify an editor in accordance to the level of expertise of the 
future users. However, it might be useful to obtain an editor that allows for customisation, 
i.e. an editor in which some constraints could be hardened or deferred at execution time. 
This would allow users with different levels of expertise to use the same editor and also, as 
users become more acquainted with the editor, they could themselves defer some con­
straints. This is the purpose of the user-deferrable constraints (see Section 7.3.3). This 
process occurs in the fifth phase explained in what follows. 

Fifth phase: select user-deferrable constraints from the deferred ones 

User-deferrable constraints are hardened constraints that can be deferred by the user at 
editor execution time; i.e. they can interactively be hardened or deferred. 

The designer selects a number of constraints, from the deferred ones, to become user­
deferrable. The chosen constraints will be in the hardened state by default. The value of SF 
will be given by: 

SFud = (#sofCconstr. + #deferred_constr. - #user-deferrable30nstr.) / #all_constr. * 100% 
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The user-deferrable constraints define a window or range of customisation over the SF val­
ues, as depicted in Figure 21, with the minimum in SFud (all user-deferrable constraints in 
the hardened state) and maximum in SFd (all user-deferrable constraints in the deferred 

state). 

The maximum allowed customisation range is obtained when the designer transforms all 
soft constraints into user-deferrable. This situation is depicted in Figure 22. 

Customisation 
Range 

~----------------. 

SF (%) 0 
SF

hn 
= SF

ud 

FIGURE 22. Maximum customisation range. 

100 

The user can now customise the editor from a situation where all constraints are hardened 
(SFhn = 0) to another where all constraints are deferred (SFd = SFM) apart from the hard 
constraints. These two extreme situations are therefore accessible to the user at editor exe­
cution time. 

In the example below SF values are calculated for all the phases of a semantics specifica­
tion. 

7.5.1 Obtaining SF values for a semantics specification 

Phase 1 

Total number of constraints: 32 

Phase 2 

Identified as hard: 6 

SFM = (32 - 6) 132 * 100 = 26/32 * 100 = 81.25% 
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Phase 3 

Hardened: 11 

SFhn = (32 - 6 - 11) / 32 * 100 = 15/32 * 100 = 46.875% 

Phase 4 

Deferred: 8 

SFd = (15 + 8) / 32 * 100 = 23 /32 * 100 = 71.875% 

Phase 5 

User-deferrable: 8 

SFud = (15 + 8 - 8) / 32 * 100 = 15/32 * 100 = 46.875% 

90 

Note that because all deferred constraints (from Phase 4) have been specified as user­
deferrable, we have: SFud = SFhn· These values are plotted in Figure 23. 

SF (%) 0 

Customisation 

SFhn = SFud 
46.875 

• 
SFd = SFM= 
71.875 81.25 

100 

FIGURE 23. SF values for a particular semantics specification. 

7.5.2 Example: creation of an initial state in a STD 

The problem: one of the global diagram constraints for STD is: 'every STD must have an 
initial state'. This is a not a hard constraint because even if it is violated the diagram does 
not enter a wrong state, i.e. the user can proceed with the editing process even if an initial 
state has not been created. However, only if the initial state is present can a valid diagram 
be obtained. 

The solution is to make that global diagram constraint hardened. The consequence of this 
is: when the diagram is created the initial state is compulsorily required. A way to improve 
the usability in these situations is to provide a defaulCconstrainCsatisfaction option for 
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the constraint. In this case the initial state (without the name) would be automatically cre­
ated by the editor. 

It must be noted that depending on the specification, the user may be forced to create the 
initial state during the editing process. For instance, if the following constraint defined for 
an intermediate state - 'a state must have at least one in-transition' - is specified as hard­
ened, the user will be forced to create the initial state before any other state. Confronted 
with this situation, the user may not associate the violation of the above constraint, which 
is defined for 'state' with the necessity of having the initial state in the diagram. Again, 
hardening the global diagram constraint will solve this problem. 

7.6 Potential Problems 

In the process of hardening constraints, the MT designer may cause the specification to 
become too restrictive. A design tool generated from that specification will forbid the user 
to produce some particular valid diagram configurations. 

Because the VC-t specification language is based on a formal logic, it should be possible 
to develop an automatic theorem prover to detect these situations. However, this subject is 
outside the scope of our work. 

In our approach, the detection of such situations is done by the MT designer during the 
test phase of the generated design tool. Testing is performed by using the tool in a design 
session that covers the complete semantics of the underlying MT. 

The MT designer should be aware that these situations may happen when hardening con­
straints so that s/he may try to prevent them. 

7.7 Constraint Enforcement Sequences 

Depending on the hardening and deferring of constraints, there are some constraint 
enforcement sequences that are allowed whereas other are forbidden. However it is not up 
to the MT designer to decide which are which. The determination of allowed and forbid­
den sequences is a result of the validation process at editing time and cannot be done 
explicitly. The MT designer can specify that for a given VC the constraint Cx is hardened 
while constraint Cy is deferred. In this situation it will be impossible to have Cy enforced 
before Cx. A concrete example is given by Figure 19. Because C3 is a soft constraint - 'a 
state must have at least one out-transition' - it is the last to be checked in the two possible 
constraint enforcement sequences. 
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It is important to note that the specification of constraint enforcement sequences is not 
done explicitly, i.e. the designer doesn't specify the sequences of constraint enforcement, 
only classifies the constraints in the VC specification. This approach implicitly defines the 
allowed sequences. 

The explicit specification of constraint enforcement sequences makes it more complex to 
write a specification. The allowed sequences of constraint enforcement must be identified. 
Also, this distracts the designer from what should be herlhis main concern: expressing the 
MT semantics. 

7.8 Status 

The theory presented in this chapter has not been included in the prototype because we 
had to restrict its implementation to what is fundamental to support the main claim of this 
dissertation, i.e. that it is possible to generate design tools from high-level semantics spec­
ifications of MTs. However, the theoretical foundations have been laid and the concepts 
introduced, explained and exemplified. An implementation will hopefully be obtained in 
the near future. 
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8. Compilation of Specifications and Automatic Code 
Generation 

8.1 Introduction 

93 

A VC-t compiler was built with the aid of the software construction tools Lex and YACC 
[Ah086; Schreiner85]. The implementation ('host') language used by these tools is 'c' 
[Kernighan88]. The languages used in the compiler are, therefore: 'VC-t' - the source lan­
guage, 'c' - the implementation language and 'Napier88' - the target language (see 
Figure 24). 

Implemented in C 

/'termedia~ 
Source Program ~ ~ront-End ~ Representation --1 Back-End I ~ Target Program 

(VC-t specification) . . (Parse tree). !(Napier88 code) 

FIGURE 24. The architecture of the VC-t compiler. 

The VC-t compiler's model is constituted by a front-end and a back-end. The front-end is 
composed of the lexical analyser and the parser; it performs the analysis phase of the com­
pilation process, i.e. it translates the source program (VC-t specification) into an interme­
diate representation. The parser also performs semantics analysis consisting in type 
checking and enforcing scope rules. 

The back-end is the code generator; it performs the synthesis phase of the compilation, 
i.e. the target code is generated from the intermediate representation. In this model any 
component of the compiler related to the target language, which in the implemented proto­
type is Napier88, is restricted to the back-end. 

The main advantage of this model, apart from facilitating testing and maintenance of the 
compiler, is to produce a retargetable compiler. In fact, to transform the compiler to gener­
ate a different target language, e.g. Java or C++, it is only required to change the back-end. 
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8.2 The Compiler's Front-End 

The VC-t compiler's construction was performed with well accepted technology; the Lex 
and YACC software tools were used. For this reason we will focus on the aspects that are 
particular to this compiler. 

The front-end includes a number of data structures which are instantiated by the parser to 
produce an intermediate representation of the VC specification. This intermediate repre­
sentation (or parse tree) includes references to the entries on the symbol tables which are 
discussed below. 

8.2.1 Symbol Tables 

A compiler uses symbol tables to keep track of binding and scope information about 
names in the source program. A symbol table can be implemented with a number of data 
structures including linear lists, trees and hash tables. For their efficiency, the hash tables 
were used in the VC-t compiler. 

The lexical analyser creates a new symbol table entry each time it sees a new name in the 
input. For each name stored in a symbol table a number of attributes must be given values, 
for instance its type. Additional infOImation discovered about a name, is stored as attribute 
values in the entry corresponding to that name. Some attributes can be given values by the 
lexical analyser when the entry is created, the remainder are filled by the syntactical ana­
lyser (called parser from now on) when the role played by the name is discovered. 

The VC-t compiler uses two symbol tables, one for the 'Preamble' section and another for 
the 'Semantic Constraints'. The 'Preamble' symbol table is filled during the parsing of 
that section; the information collected is then used when the 'Semantic Constraints' sec­
tion is parsed. The 'Semantic Constraints' symbol table is used to keep track of variables 
used within each constraint. The symbol table interface is composed by the following 
operations: 

• 'make_hashtable' creates a new hash table; 

• 'lookup' given a name and a hash table, returns the entry containing that name; 

• 'insert' given a name and a hash table, if name does not exist in the hash table cre­
ates an entry and returns a pointer to it, otherwise returns a pointer to the existent 
entry; 

• 'empty' removes the contents of the hash table. 
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8.2.2 The Value Stack 

YACC maintains a value stack to store both the terminal symbols (called tokens from now 
on) and non-terminal symbols detected during parsing of the input specification. By 
default, the value stack elements are integers but in the VC-t compiler an alternative type 
has been provided. The type of the value stack elements (named YYSTYPE) has been 
redefined as a union, the structure of which is described below. 

The value stack structure is a union with three members: 

• 'symbol' corresponds to tokens such as 'equal', 'greater', 'and'. Its value is the 
integer identifying the token. 

• 'lexitem' corresponds to those tokens that are names in the specification, for 
instance 'string' or 'natural'. 

• 'bucket' which constitute the symbol table entries. 

'Symbol' and 'lexitem' instances are created by the lexical analyser and passed on to the 
parser through the 'yylval' variable defined by YACC. 

'Bucket' instances are created by the lexical analyser for each new token seen in the input 
and inserted in a symbol table. 'Buckets' are then used by the parser which adds extra 
information, e.g. the type of a variable, and creates references to them during the construc­
tion of the parse tree. The parser also passes these references in the productions as the 
result of reduce operations after acceptance of a non-terminal symbol. For this purpose the 
variable 'yyval' defined by YACC is used. 

8.2.3 Error Handling and Diagnostics 

Two types of errors are detected by the compiler: syntax errors and semantic errors. 

Syntax errors are the ones detected by the parser built by YACC as a result of grammar 
violations. A message indicating the nature of the error and its location, token and line 
number, in the source file is issued to the user. Syntax errors in the constraints section are 
recovered by the compiler: parsing of the current constraint is interrupted; it is resumed in 
the beginning of the next constraint. 

Semantic errors result of incorrect typing or of violation of scope rules. They are detected 
within the actions supplied with the productions. As YACC does not give any support to 
the semantic analysis, this component had to be completely hand built. Functions imple­
menting the actions for the productions detect the semantic errors. As with syntax errors a 
message is issued to the user with the token and the line number, but stating that it is a 
semantic error and including a short explanation of why it is an error. 
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Every error provokes the code generator to stop. This is to prevent erroneous code to be 
generated, as one of the requirements of the compiler is to always generate correct target 
code. 

8.3 Code Generation - the Compiler's Back-End 

The back-end generates the target code (Napier88 in our prototype) from the intermediate 
representation produced by the front-end. This division of the compiler in two parts makes 
it easier to port it to a new target system. All the aspects of the compiler that are dependent 
of the target system are only in the back-end. If the target system changes the front-end 
can be preserved and only the back-end is modified. 

Using traditional technology, the following code would be generated: a constraint base for 
the semantics, a data dictionary and the necessary code to configure the drawing tool and 
its user interface. As we are using persistent technology the data dictionary is replaced by 
persistent data structures from which the data is instantiated at editor execution time. This 
data will also be persistent. 

8.3.1 Template Technology 

A template is a framework describing the structure of a generated program in the target 
language. It is implemented as a sequence of components which can be static or dynamic. 
The static components correspond to those constant parts of the generated program that 
are always present independently of the MT being modelled; they are implemented as 
arrays of strings. The dynamic components are dependent on the pruticular VC specifica­
tion; because they do not have a fixed size they are implemented as lists of strings. 

Figure 25 shows an extract of a static template component used in the generation of one of 
the Napier88 output programs. Note that the code in the template looks exactly as it will 
appear in the generated program; this adds legibility to the template, making this technol­
ogy very easy to be used. 

Dynamic components correspond to blank slots that must be filled to obtain a compilabJe 
Napier88 program. The filling of the slots is performed by the code generator. The 
dynamic components are generated at VC-t compilation time by special purpose functions 
included in the code generator. 
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'static stc PREAMBLE_S = ( 
"!-- Preamble \n", 
"\n", 
"use theStoreO with GlasgowLibraries, DesignTools: env in \n", 
"\nfl, 
"use GlasgowLibraries with BulkTypes: env in \n", 
" use BulkTypes with Maps: env in \n", 
" use Maps with \n", 
" m_find: proc[X, Y]( Map[X, Y], X -> Y ) in \n", 
"\n", 
"use DesignTools with Useful, STDapplication: env in \n', 
"use Useful with \n", 
" message: proc{ string) in \n", 
"\n", 
"use STDapplication with \n", 
" STDiconProperties, STDconnectionProperties, \n", 
" IconSemanticConstraints, ConnectionSemanticConstraints: env in \n", 
[ ... ] 
}' 

where 'stc' stands for static template component. 

FIGURE 25. Extract of a static template component. 

8.3.2 Generic Principles and Problems in Code Generation 
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Generating executable constraints in Napier88 is the main problem in the code generation 
process. Each semantic constraint in the VC-t specification must be translated into execut­
able N apier88 code. The output of the translation process must consist of a set of N apier88 
constraints (executable code), each one corresponding to a VC-t specification constraint. 
This translation process is based on a number of rules which cover every aspect of a VC-t 
specification and produce logically equivalent code. 

All the translation rules have been tested by hand, i.e. by applying them to a specification 
and writing the corresponding Napier88 code. A collection of rules have also been incor­
porated in the code generator of the prototype (see Section 10.2 on page 140). 

Our main goal is to conceive correct and unambiguous translation rules that produce read­
able, simple and efficient Napier88 code. In a first stage we have decided to favour the 
former two features of the generated code by sacrificing the latter. By not being too con­
cerned about the efficiency of the generated code we also profit by obtaining simpler trans­
lation rules, making it easier to reason about them. Simpler rules implies easier reasoning 
and, ultimately, a better understanding of the code generation process. 
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Below we introduce some of the generic principles in the code generation process. We 
give forward references to the translation rules (which will be presented in the following 
section) to provide the reader with a global view of the set of rules. 

All the specifications of semantic constraints generate code that traverses the diagram (as 
stated by Rule 3); this is done by generating calls to the special purpose procedure 
'traverse' (or 'traverseC' if connections must also be traversed). 'traverse' calls a 'process' 
procedure for each volcon in the diagram (or for each voConnection). 'traverse' will return 
either 'OK' or 'FAIL' depending on the value of the boolean variables 'success' and 'vio­
lated' which are set by 'process'. The code for the 'process' procedure is automatically gen­
erated (this will be explained in detail in the discussion on quantified predicate logic 
statements presented below). If 'traverse' returns 'FAIL', this means that the constraint was 
violated and an error message is issued to the user. The message can be generated because 
its contents will be given by the semantic constraint description expressed in the specifica­
tion (Rule 1). 

VC semantic constraints are the basic specification constructs that must be dealt with by 
the translation process. They are classified into instantiated predicate logic statements and 
quantified predicate logic statements; the latter being either existentially quantified or uni­
versally quantified predicate logic statements. We have tried to deal with the three con­
structs in a consistent way. This is reflected in the similarity of the resulting rules. In what 
follows we abstract from the individual rules aiming to give an overview of their particu­
larities and of the characteristics of the code. As mentioned above, the code generated for 
all the constructs will include diagram traversal (Rule 3). This is done differently for each 
of the constructs: 

• in the code generated for instantiated predicate logic statements, the 'process' 
procedure is executed for all the matching icons or connections in the diagram. See 
Rule 3 and Rule 4. 

• in the code generated for existentially quantified predicate logic statements, the 
'process' procedure sets the boolean variable 'success'. When 'success' becomes 
true, the diagram traversal stops and the 'traverse' procedure returns 'OK'. This 
means that diagram traversal is performed until one matching VO (icon or connec­
tion) satisfies the predicate. The predicate must be true for at least one matching 
VO; if this is not the case then 'traverse' returns 'FAIL'. Apropos are Rule 3, Rule 5, 
Rule 7, Rule 9 and Rule 11. 

• in the code for universally quantified predicate logic statements, the 'process' 
procedure sets the boolean variable 'violated'. When 'violated' becomes true, the 
diagram traversal stops and 'traverse' returns 'FAIL'. This means that diagram 
traversal is performed until one matching VO (icon or connection) violates the 
predicate. The predicate must be true for all matching VO's; in this case 'traverse' 
returns 'OK'. Code generation for universal quantification is given by Rule 3, Rule 
6, Rule 8 and Rule 10. 
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An interesting problem consists in determining if a VC semantic constraint is local to an 
icon or connection, or on the contrary, concerns the whole diagram. The latter kind gener­
ates a global constraint in Napier88. This happens in the cases covered by Rule 4 and Rule 
11. It is still unclear whether these rules cover all possible situations. 

A special treatment must be given to cardinality constraints (expressed by Rule 12). In 
fact, an addition to the diagram traversal algorithm explained above must be done. The 
predicate is no longer evaluated each time the 'process' procedure is called, but instead it is 
evaluated incrementally. This means that its evaluation is partially performed for each new 
volcon (or voConnection) visited. The final evaluation of the predicate is done after com­
pletion of diagram traversal inside a 'post-condition' procedure. 'traverse' and 'traverseC' 
execute a 'post-condition' (a boolean procedure) after completion of diagram traversal. 
'traverse' returns either 'OK' or 'FAIL', depending on the result of the evaluation of 'post­
condition'. By default 'post-condition' tests 'success' and 'violated' which are boolean varia­
bles set by 'process' (this is the situation described above); the 'post-condition' returns 
'TRUE' if 'success' is 'TRUE' or 'violated' is 'FALSE', and it returns 'FALSE' otherwise. 

8.3.3 Translation Rules for Code Generation 

Below is presented the set of rules used to translate VC-t specifications into executable 
Napier88 code. Short examples are also included. 

These rules are the ones we consider more interesting for the code generation process. We 
did not include rules at such a small level of granularity that become almost straight for­
ward mappings from VC-t constructs to Napier88 constructs. 

As we said before, a major goal is to generate code that is readable; but there is a compro­
mise involved in achieving this goal: nicer looking code implies more complex translation 
rules. In some situations we have sacrificed slightly the readability for rule simplicity. Pro­
cedure and variable names could be less complex; however, they are easily generated and 
because there are no repeated names, we simplify the treatment of scope. Another advan­
tage of unique names regards the automatic code inspection, and versioning. This might be 
useful in future work on automatic change management. 

For all the rules which refer to YO's we assumed that the variable in the specification is an 
icon. The rules can be applied in the same way to specification with connection variables. 
There are only two differences in the code generated for connection variables: the diagram 
traverse procedure 'traverse' becomes 'traverseC', which is a traverse procedure that also 
visits all connections; and the code fragment 'voIcon( vilcon )( iNarne )' becomes 'voConnec­
tion( vcConnection )( cNarne )'. This can be understood by looking at the GraphTool 
datatypes presented in Appendix C. 

Rule 1: 
Applies to string token included in production rule for non-terminal constraintDesc. 
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The string token in the production rule constraintnum string, defined for the non-terminal 
constraintDesc, generates an error message (which will be issued as a result of a constraint 
violation). This rule is valid for all constraints. 

For example the string in: 

'C3: "Each datastore has a unique name'" 

generates the procedure call: 

'constraintFeedback( "Each datastore has a unique name" ) 

Rule 2: 
Applies to sets in non-terminals quantifiedPLstatement and instantiatedPLstatement. 

Each set in the specification generates a name (Napier88 string). 

Example: 

'd: Process' 
where 'Process' is an icon set in the specification 

generates: 

'voIcon( viIcon )( iName ) = "Process'" 

Rule 3: 
Applies to non-terminals quantifiedPLstatement and instantiatedPLstatement. 

Non-terminals quantifiedPLstatement and instantiatedPLstatement generate code that 
includes a call to a diagram traversal procedure ('traverse' or 'traverseC'). 

Note 3.1 1: diagram traversal is performed by executing the 'traverse' procedure (or 'traver­
seC' if the non-terminal refers to connections), which itself calls a 'process' procedure for 
each voIcon in the diagram (and also for each voConnection in the case of 'traverseC'). 

Rule 4: 
Applies to instantiatedPLstatement defined for the non-terminal constraint. 

I. Notes numbering includes the number of the rule for which they are defined. e.g. in Rule 3 the note is 
numbered 3.1 and in Rule 7 notes are numbered 7.1 and 7.2. 
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An instantiatedPLstatement does not have bound variables, therefore it always generates a 
global constraint in Napier88. 

To a generic piece of specification: 

'PREDICATE pred( xs(mt) )' 
where 'PREDICATE' is a keyword indicating that what comes next is a predicate; 'pred' 
is the predicate name; and 'xs(mt)' is a set extractor for 'mt' , where 'mt' is a modelling 
technique 

will correspond the following pseudo-code: 

'let processInstantiated 
begin 

/* evaluate predicate" I 
H( Cpred( "xs"» /* 'Cpred' is an implementation of 'pred' and must be pre-defined as a 

library function "I 
do success = TRUE 

end 

if( traverse( processInstantiated) = FAIL) 
do constraintFeedback ... /*apply Rule 1"1' 

Rule 5: 
Applies to non-terminal existentialQuantijication followed by plStatement. 

To a generic piece of specification: 

'EXISTS x:X • x BELONGING xs( mt ) AND predicate( x )' 
where X is a set and xs(mt) is a set extractor for 'mt', where 'mt' is a modelling 
technique. 

will correspond the following pseudo-code: 

'let processExist 
begin 

if( voIcon( vilcon )( iName ) = "X" /\ predicate( x » 
do success = TRUE 

end 

if( traverse( processExist ) = FAIL) 
do constraintFeedback ... /*apply Rule 1"1' 

Note 5.1: when 'success' becomes true, the diagram traversal stops and the 'traverse' pro­
cedure returns 'OK'. This means that the diagram traversal is perfornled until one match­
ing VO (icon or connection) satisfies the predicate (compare Rule 6). The predicate must 
be true for at least one matching VO; if this is not the case then the 'traverse' procedure 
returns 'FAIL'. 
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Rule 6: 
Applies to non-terminal universal Quantification followed by plStatemellt. 

To a generic piece of specification: 

'FORALL x:X • x BELONGING xs( rnt ) IMPLIES predicate( x )' 

will correspond the following pseudo-code: 

'let processUniversal 
begin 

end 

if( voIcon( vilcon )( iNarne ) = "X" ) 
do if ( - predicate( x» 

do violated = TRUE 

if( traverse( process Universal ) = FAIL) 
do constraintFeedback ... j*apply Rule 1*1' 
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Note 6.1: when 'violated' becomes true, the diagram traversal stops and 'traverse' returns 
'FAIL'. This means that the diagram traversal is performed until one matching VO (icon or 
connection) violates the predicate (compare Rule 5). The predicate must be true for all 
matching VO's; in this case the 'traverse' procedure returns 'OK'. 

Rule 7: 
Generalization of Rule 5 for multiple bound variables. 

For the generic piece of specification: 

'EXISTS xl, x2, ... xN:X • xl, x2, .. , xN BELONGING xs( rnt ) AND predicate( x )' 

the following pseudo-code fragments will be generated: 

Fragment 1: 
'let processExistentialS1j*Sl refers to the first variable in the sequence of bound variables* I 
begin 

end 

if( voIconS1( vilcon )( iNarne ) = "X" ) 
do if( traverse( processExistentialS2 ) = OK) 

do success = TRUE 

if( traverse( processExistentialS1 ) = FAIL) 
do constraintFeedback '" j*apply Rule 1*1' 

Fragment 2: 
'let processExistentialS2 
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begin 
if( voIconS2( vilcon )( iNarne ) = "X") 
do if( traverse( processExistentialS3 ) = OK ) 

do sucess = TRUE 
end' 

[ ... ] 

FragmentN: 
'let processExistentialSN 
begin 

if( voIconSN( vilcon )( iNarne ) = "X" /\ 
predicate( volconS 1, volconS2, ... volconSN )) I*see Rule 5*1 

do success = TRUE 
end' 
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Produce final code by merging the generated code fragments in a reverse order sequence 
(see Note 7.1). 

Note 7.1: the sequence of the generated code fragments presented above will not compile. 
To obtain a larger single code fragment that compiles successfully, the individual code 
fragments must be reordered. To do this, they are stored in separated strings. The final 
code will result from the concatenation of the strings in the reverse order of generation. 

Note 7.2: the stopping condition ('success = TRUE') is firstly triggered by the innermost 
traverse procedure; i.e. it stops as soon as the predicate is satisfied for the set of matching 
VO's. This triggers the stopping conditions of the outer traverse procedure until it is prop­
agated to the outermost one. 

Rule 8: 
Generalization of Rule 6 for multiple bound variables. 

For the generic piece of specification: 

'FORALL xl, x2, ... xN:X • xl, x2, ... xN BELONGING xs( rnt ) IMPLIES predicate( x )' 

the following pseudo-code fragments will be generated: 

Fragment 1: 
'let process UniversalS 1 
begin 

end 

if( voIconSI( vilcon )( iNarne ) = "X" ) 
do if( traverse( processUiversalS2 ) = FAIL) 

do violated = TRUE 

if( traverse( processUniversalSI ) = FAIL) 
do constraintFeedback ... /*apply Rule 1"/' 
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Fragment 2: 
'let proeessUniversalS2 
begin 

if( voIconS2( vile on )( iNarne ) = "X" ) 
do if( traverse( proeessUniversalS3 ) = FAIL) 

do violated = TRUE 
end' 

[ ... ] 

FragmentN: 
'let proeessUniversalSN 
begin 

if( voIconSN( vileon )( iNarne ) = "X" ) 
do if( -predicate( volconSl, volconS2, ... volconSN» I*see Rule 6*1 

do violated = TRUE 
end' 
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Produce final code by merging the generated code fragments in a reverse order sequence 
(see Note 7.1). 

Note 8.1: the stopping condition ('violated = TRUE') is firstly triggered by the innermost 
traverse procedure; i.e. it stops as soon as a violation occurs. This triggers the stopping 
conditions of the outer traverse procedure until it is propagated to the outermost one, 
which provokes the execution of 'eonstraintFeedbaek'. 

Rule 9: 
This rule and the next one apply to non-terminal quantificationList. They are, respectively, 
generalizations of Rule 5 and Rule 6 for nested quantifications. 

Note 9.1: in this situation there are three possible locations for the quantification: it can be 
the outermost one; the innermost; or in between those two. Moreover, the quantification 
can be either universal or existential. Therefore, we have a total of eight possible combina­
tions. Instead of writing eight different rules we opted for a simpler solution where only 
two rules are presented: the first rule considers the following combination of quantifica­
tions, existential (outermost), universal (in between), existential (innermost); the second 
rule expresses the inverse combination, universal (outermost), existential (in between), 
universal (innermost). This way, the two given rules document all locations for both exis­
tential and universal quantifications. This simplification is possible because the correlation 
between the generated code for each one of the quantifications in the three different loca­
tions is very weak and easily deduced for the missing combinations. 

For the generic piece of specification: 

'EXISTS x:X • x BELONGING xs( rnt ) AND 
FORALL y:Y • y BELONGING ys( rnt ) IMPLIES 
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EXISTS w:W • w BELONGING ws( rnt) AND predicate( x, y, ... w )' 

the following pseudo-code fragments will be generated: 

Fragment 1 - outermost quantification level: 
'let processExistentialLl 
begin 

end 

if( voIconLl( vilcon )( iNarne ) = "X" j*see Rule 5*1 
1\ traverse( processUniversalL2 ) = OK ) 

do success = TRUE 

if( traverse( processExistentialLl ) = FAIL) 
do constraintFeedback ... j*apply Rule 1*1' 

Fragment 2 - middle quantification level: 
'let processUniversalU 
begin 

if( voIconL2( vilcon )( iNarne ) = "Y") j*see Rule 6*1 

end' 

[ ... J 

do if( -traverse( processWhateverL3 ) = OK ) j*processWhateverL3 can be either 
processExistentialL3 or processUniversalL3* I 

do violated = TRUE 

Fragment N - innermost quantification level: 
'let processExistentialLN 
begin 

if( voIconLN( viIcon)( iNarne ) = "w" /*see Rule 5*/ 
1\ predicate( voIconL 1, voIconL2, ... voIconLN » 

do success = TRUE 
end' 
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Produce final code by merging the generated code fragments in a reverse order sequence 
(see Note 7.1). 

Rule 10: 
See introduction of Rule 9. 

For the generic piece of specification: 

'FORALL x:X • x BELONGING xs( rnt ) IMPLIES 
EXISTS y:Y • y BELONGING ys( rnt ) AND 

FORALL w:W • w BELONGING ws( rnt) IMPLIES predicate( x, y, ... w )' 
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the following pseudo-code fragments will be generated: 

Fragment 1 - outermost quantification level: 
'let processUniversalL1 
begin 

i£( voIconLl( viIcon )( iNarne ) = "X") /*see Rule 6*/ 
do i£( -traverse( processExistentialU ) = OK ) 

do violated = TRUE 
end' 

i£( traverse( processUniversalLl ) = FAIL) 
do constraintFeedback ... /*apply Rule 1*/' 

Fragment 2 - middle quantification level: 
'let processExistentialL2 
begin 

if( voIconL2( viIcon )( iNarne ) = "Y" /*see Rule 5* / 
1\ traverse( processWhateverL3 ) = OK) /*processWhateverL3 can be either 

processExistentialL3 or processUniversalL3* / 
do success = TRUE 

end' 

[ ... J 

Fragment N - innermost quantification level: 
'let processUniversalLN 
begin 

i£( voIconLN( viIcon )( iNarne ) = "W" ) /*see Rule 6* / 

end' 

do if( -predicate( voIconLl, voIconL2, ... voIconLN» 
do violated = TRUE 
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Produce final code by merging the generated code fragments in a reverse order sequence 
(see Note 7.1). 

See examples at the end of this section. 

Rule 11: 
Applies to the production rule existentialQuantijication defined for the non-terminal quan­
tijicationList. 

A semantic constraint beginning with an existentialQuantijicatioll always generates a glo­
bal constraint in Napier88. 

Note 11.1: this rule does not affect the way the generated code looks. Its purpose is solely 
to mark the generated Napier88 constraint as a 'global' one. Global constraints must be 
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identified and differentiated from local constraints so that constraint management may be 
optimized. 

Note 11.2: an intuitive way of understanding this rule is realizing that a semantic con­
straint starting with an existential quantification is always referring to the diagram: "there 
exists in the diagram ... ". For example, the semantic constraint "There must be at least one 
external entity (in the diagram) which provides input to the system" is specified by: 

EXISTS e : ExternalEntity • e BELONGING Extemals(dfd) AND 
EXISTS f: Dataflow • f BELONGING Dataflows(dfd) AND 

( source(f) = e ) 

Rule 12: 
Applies to the production rule naturalExpression natural Comparison naturalExpression 
defined for the non-terminal simpleBooleanExpression. 

Evaluate left naturalExpression and right naturalExpression inside the 'process' proce­
dure; test naturalComparison (Napier88 provides all comparisons defined for VC-t speci­
fications) after execution of the 'traverse' procedure. 

In the example below, the left expression is given by a CARDINALITY set production rule 
(see Rule 13) and the right expression is a Natural number. 

To a generic piece of specification: 

'CARDINALITY xs( mt) ATLEAST n' 
where 'n' is a Natural number. 

will correspond the following pseudo-code fragments: 

'let post-condition /*this procedure is called inside traverse (Rule 4)*/ 
begin 

H( xs). n) /*perform final evaluation of predicate logic statement* / 
do return TRUE 

end' 

'let processCardinality 
begin 

H( voIcon( vilcon )( iName ) = "X" ) 
do xs = xs + 1 /*xs has been previously declared as stated in Rule 13*/ 

end 

H( traverse( processCardinality) = FAIL) 
do constraintFeedback ... /*apply Rule 1*/' 

Note 12.1: 'post-condition' is called inside 'traverse' after completion of the diagram 
traversal; if it returns 'TRUE', 'traverse' returns 'OK', otherwise 'traverse' returns 'FAIL'. 
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Note 12.2: the code generator must find out that the range of the set extractor 'xs' is 'p x' 
and then generate the string "X" according to Rule 2. 

Rule 13: 
Applies to the CARDINALITY set production rule defined for the non-terminal natura/Ex­
pression 

To a generic piece of specification: 

'CARDINALITY xs( rnt)' 

will correspond the following pseudo-code: 

'int xs = 0' 

8.3.4 Examples on Using the Translation Rules 

In this section some concrete examples of code generated from pieces ofVC-t specifica­
tion obtained with the translation rules presented above, are given.The specifications 
referred to in this section are given in full in Appendix B. 

Example 1: generating code for the constraint C5 defined in the VC-t specification of 
State Transition Diagrams. 

'C5: "A final state cannot have out-transitions or loop-transitions" 

FORALL f : FinalState • f BELONGING FinaIStates(std) IMPLIES 
NOT EXISTS t : Transition • t BELONGING Transitions(std) AND 

( origin(t) = f)' 

The Napier88 code to be generated is shown below. The translation rules used in the gen­
eration process are indicated as comments in the code. 

, /* Fragment 1*/ 
/*First level- universal quantification* / /* Rule 10 * / 

let processUniversalLl /* Rule 6 * / 
begin 

end 

i£( voIconLl( viIcon )( iNarne ) = "FinaIState") /* Rule 2 * / 
do i£( -traverse( processExistentialU ) = OK) /* Rule 3 * / 

do violated = TRUE 

i£( traverse( processUniversalLl ) = FAIL) 1* Rule 3 * / 
do constraintFeedback( 
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II A final state cannot have out-transitions or loop-transitions") /* Rule 1"1' 

, /* Fragment 2" I 
/*Second level- existential quantification" I /* Rule 9 "I 

let processExistentialL2 r Rule 5 .. I 
begin 

if( -( voConnectionL2( vcConnection)( cName) = IITransition" and r Rule 2 .. lorigin( 
voConnectionL2 ) = voIconLl » 

do success = TRUE 
end' 

109 

To obtain the final code, the fragments must be sequenced in reverse order (see note 7.1 
on page 103). 

Note: the negation inside the if statement ( in 'processExistentiaIL2' ) results from having 
a negation in the existential Quantification in the specification. 

Example 2: generating code for the constraint C4 defined in the VC-t specification of 
Data Flow Diagrams. 

'C4: IIEach datastore must have at least one input dataflow and one output dataflow 
each of which must be connected to a process" 

FORALL d : Datastore • d BELONGING Datastores(dfd) IMPLIES 
EXISTS fl, f2 : Dataflow • fl, f2 BELONGING Dataflows(dfd) AND 

EXISTS pI, p2: Process • pI, p2 BELONGING Processes(dfd} AND 
( 

)' 

(destination(fl) = sAND source(fl) = pI) AND 
( source(f2) = sAND destination(f2) = p2 ) 

The Napier88 code to be generated is shown below. As for the previous example, the trans­
lation rules used in the generation process are indicated as comments in the code. 

, I" Fragment 1"1 
/*First level- universal quantification" I r Rule 10 *1 

let processUniversalLl r Rule 6 *1 
begin 

end 

if( voIconLl( viIcon )( iName ) = IIDatastore") r Rule 2 *1 
do if( -traverseC( processExistentialL2S1 ) = OK) /* Rule 3 *1 

do violated = TRUE 

if( traverse( processUniversalLl ) = FAIL) /* Rule 3 *1 

do constraintFeedback( IIEach datastore must have at least one input dataflow and one output 
dataflow each of which must be connected to a process") r Rule 1* /' 

, /* Fragment 2* I 
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/*Second level - existential quantification; first bound variable in the sequence" / /*Rule 7 and 
Rule 9"/ 

let processExistentialL2S1 r Rule 5 .. / 
begin 

if( voConnectionL2S1( vcConnection)( cNarne ) = "Dataflow") r Rule 2 .. / 
do H( traverseC( processExistentialL2S2 ) = OK) r Rule 3 .. / 

do success = TRUE 
end' 

, /* Fragment 3"/ 
/*Second level; second bound variable in the sequence'" / 

let processExistentialL2S2 r Rule 5 .. / 
begin 

if( voConnectionL2S2( vcConnection )( cNarne ) = "Dataflow" and r Rule 2 .. / 
traverse( processExistentialL3S1 ) = OK) r Rule 3 .. / 

do success = TRUE 
end' 

, /* Fragment 4"'/ 
/*Third level- existential quantification; first bound variable in the sequence'" / 
let processExistentialL3S1 
begin 

if( voIconL3S1( viIcon)( iNarne) = "Process") r Rule 2"/ 
doif( traverseC( processExistentialL3S2 ) = OK) r Rule 3 .. / 

do success = TRUE 
end' 

, /* Fragment 5" / 
/*Third level; second bound variable" / 
let processExistentialL3S2 
begin 

H« voIconL3S2( viIcon)( iNarne) = "Process" and r Rule 2 .. / ( 
( destination( voConnectionL2S1 ) = voIconLl and 
source( voConnectionL2S1 ) =voIconL3S1 ) and 
( source( voConnectionL2S2 ) = voIconLl and 
destination( voConnectionL2S2 ) = voIconL3S2 ))) 

do success = TRUE 
end' 

To obtain the final code, the fragments must be sequenced in reverse order (see Note 7.1). 

8.3.5 Visual Objects Generation 

In a MT specification there may exist any number of VC types, which are grouped into 
icons or connections. When the Napier88 code is generated, the VC types belonging to the 
icons group and the connections group, will be implemented as the VOicon type and the 
VOconnection type, respectively (see Appendix C). There is therefore a correspondence of 
several VC types to just two Napier88 types. For example, in the STD specification there 
are three VC types belonging to the icons group: 'InitiaIState', 'State' and 'FinaIState'. 
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These will all be VOicons in Napier88. There must then exist a mechanism to differentiate 
the various VOs (Napier88 types) according to the different VC types in the specification. 

Within the VOicon and VOconnection types, the various VC specification types are differ­
entiated by name (a string). This simplifies the code generator as it does not need to gener­
ate a new type for each VC type included in the specification. 

For example, in the code below 'voa' is an instance of 'VOicon': 

'[ ... J if (voa(volcon)(iName) = "Process") do [ ... ]' 

Note that the correctness of the generation process is not affected by this simplification 
because the code that is generated is already correct. The method of guaranteeing the cor­
rectness of the generated code is based on the following principles: 

• the type checker in the VC-t compiler guarantees correctly and strongly typed 
specifications; 

• the generation process is transactional, i.e. for each constraint, the generating func­
tions are executed within a transaction, if an error occurs, the parsing of that con­
straint is rolled-back and no code is written to the output. 

8.4 Constraint Management 

8.4.1 Introduction - Constraint Checking and Referral 

In this section a study of constraint checking for diagram operations is presented. Diagram 
operations are performed over the following diagram objects: icons, connections and 
labels. The term 'icon' means an instance of an Icon type, we use it to designate an 
instance of an Icon type mapped onto the diagram. That is in fact a 'volcon', but we use 
the two terms interchangeably. The same argument applies to 'connection' and 'voCon­
nection'. 

Every diagram obtained with a MT editor has an underlying graph structure. A graph is an 
abstract data structure composed of nodes connected by edges. Both nodes and edges hold 
data objects. 

A diagram operation is a transformation of the presentation (the visual component of the 
user interface) resulting from a user command. There are two kinds of diagram operations 
available to the user: graph preserving operations and graph altering operations. In 
graph preserving operations only the layout of the graph is changed; for instance to move 
an icon or change the font of a label. In graph altering operations both the layout and the 
structure of the graph are changed; for instance, to delete or create a connection. 
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We have considered the following diagram operations: 

Graph preserving operations: 

• 

• 

move - can be applied to icons and connection ; 

change label font; 

11 2 

• change representation - applies to icons and connection when the underl ing MT 
offers multiple representations for the VCs, i.e. more than one i ual repre enta­
tion for the same concept. 

Graph altering operations: 

• 

• 

• 

create - applies to the diagram, icons, connections and label 

delete - same as create except for labels; 

update label; 

A possible addition to the list of graph altering operation i change type, which con i t 

in replacing the Icon or Connection type of an icon or connection re pecti Iy in a dia­
gram. For example, a connection with type 'partial participation in an ER diagram can be 
changed to a 'total participation'. This operation is done without deleting the diagram 

object. 

Icon 
Jeon Icon Jeon 

Constraint Classes Co nne 
& 

Icon onn. Label & Lbl & 
(Involvement and Icon ction Label Label & 

Conn. 
onn. onn. 

Scope)/ onn. Label Lbl 
Diagram Operations 

L 0 L D L D L D L 0 L D L D L D 

Icon Creation " ..J ..J " ..J ..; " " ..J \' ..J .y 

Icon Deletion ..J ..J " ..J " " 
I " " 

Connection Creation " ...J " " " V " 
I " " " ~ ...J " " " " '" " 

I ~ --;y 
Connection Deletion 

Icon Label Creation " " " 
f " \' 

" " " 
-I ···iT -

Icon Label Deletion 

Icon Label Updating " " " " " " 
Conn. Label Creation " " " " " ..J 

" V 
.~ 

I iT ;-
Conn. Label Deletion 

" " " 
r - T -1 

Conn. Label Updating 

TABLE 3. Constraint checked for operation perform d n diagram bj cL. 

Caption: 
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L - Local constraints; D - diagram constraints 
...J - constraints of the classes on column are checked for the operation on row. 

Constraints are checked after any graph altering operation on a diagram object; so their 
satisfaction can be seen as a post-condition on the operation. If the checked constraints 
(one or more) are satisfied, meaning that the post-condition was met, then the operation is 
accepted; otherwise, if any constraint is violated, the post-condition fails, and in this case 
the operation is undone (rolled-back) and a message referring to the violated constraint(s) 
IS given. 

As we have seen in Section 7.2 on page 80, constraints can be classified according to the 
kind of diagram objects they apply to (involvement classes): 

• 

• 

• 

Icon constraints apply to icons; for instance, 'a State Transition Diagram must 
have an initial state'; 

Icon&Connection constraints apply to both icons and connections; for instance, 
'on a State Transition Diagram a final state cannot have out-going transitions'; 

Icon Labels&Connections apply both to the labels on icons and to connections; as 
in, 'on an Entity-Relationship Diagram, attributes linked to the same entity must 
have different names'; 

and so on. 

Consider for example the following constraint defined for State Transition Diagrams 
(STDs): 'a final state cannot have out-transitions' (meaning that a final state cannot have 
transitions whose origin is that state). The constraint concerns both an Icon - the Final 
State - and a Connection - the Transition; therefore the constraint belongs to the 
Icon&Connection class. There are two questions we want to obtain an answer for: when to 
check that constraint and where should it be referred to - in Final State or in Transition? 

So, there are two problems we must solve: 

• When a diagram operation is performed which constraints must be checked? 

• Where should constraints be referred to - in icons or connections? 

Table 3 shows the constraint domain on its columns, which is defined by the involvement 
and scope classes, and graph altering operations on its rows. The Table indicates which 
constraint classes are to be checked for each diagram operation. For each involvement 
class there are two columns corresponding to the classification of the constraint according 
to scope: one for local constraints, meaning that they apply to icons or connections; 
another for diagram constraints, which apply to the diagram itself. If we want to maintain 
updated information on the diagram state, diagram constraints must be checked for opera­
tions marked ''';'. Otherwise they only have to be checked by an explicit diagram check 
operation. 

To answer the first question we must look at the table inforn1ation by rows. This is dis­
cussed in Section 8.4.2 and Section 8.4.3. To answer the second question we must look at 
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the information by columns. Knowing which diagram operation induc the checking of 
each constraint class, we may be able to determine whether icon or connection hould 
refer to that constraint. This is presented in Section 8.4.4. 

8.4.2 Simplifying Constraint Checking 

The information displayed by Table 3 is very comprehen ive; however a we will ee in 
this section, not all the constraints checks shown in the table are nece ary. We will pre ent 
a study based on assumptions about the drawing method which introduce implification 
in constraint checking. 

Diagram D.·awing Method Assumptions 

When a user edits a diagram, there are some a umption which determine the way draw­
ing operations are performed. For instance, a connection between two icon i cr ated by 
first selecting the origin icon and then the destination icon; which mean that the u er can­
not create a connection before the origin and de tination icon ha eben created. uch 
assumptions will be used to make several reductions on the con t:raint check identified on 
Table 3. 

Assumption 1: the operation Connection Creation i performed by clicking fir t on a 
volcon, which will become the origin of the newly created voConnection followed b 
clicking on a second volcon (which may be the same), which will b come the oConne­
tion's destination. 

Assumption 2: the operation Icon Deletion provoke the deletion of all oConnection 
glued to the deleted volcon. 

Table 4 shows the simplification obtained through these a umption . To make th tabl 
less cluttered we didn ' t include label constraints and operation on them. 

Constraint Classes Icon Connection 
Icon& 

(Involvement and onnection 
Scope)/ 

L D L D L D Diagram Operations 

Icon Creation " V 0Al (i)Al 
-- ----

Icon Deletion 
-J 0 2 0A2 

-J -J " I 
Connection Creation 

-J -J 
-,-

Connection Deletion 

TABLE 4. Considering a umption on Table . 

Caption: 
..J - constraints of the clas e on column are checked for the p ration n r w. 
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0An - constraints of the classes on column would normally be checked for the operation 
on row; however, due to Assumption n, constraints are not checked. 

Empty cell means that constraints of the classes on column are not checked for the oper­
ation on row. 

In Table 3 we can see that both for icon and connection operations, Icon&Connection con­
straints must be checked. Similar cases can be observed for operations on labels. In 
Table 4 constraint checking has been simplified in that Icon&Connection constraints no 
longer have to be checked for icon operations. 

In what follows further simplifications on Table 3 will be done by extending the assump­
tions to labels and by the introduction of a law on the composition of diagram operations. 
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8.4.3 Simplifying Constraint Checking - a Formal Approach 

Constraint Icon 
Classes Connec Icon & Icon Conn. 

Icon Icon& 
Lbl & 

(Involve-
Icon tion Conn. Labels Labels Labels onn. 

onn. 
ment and 

& on. Label 
Lbl 

Scope)/ 
Diagram L D L D L D L D L D L D L D L D 
Operations 

"" 
Icon v v 0 0 *v *v *0 *0 0 0 *0 "'0 

Creation 
Al Al Al Al Al Al Al AI 

!ill' ' -
..J 0 0 0 "' ..J *0 0 0 0 *0 : 0 

Icon A2 A2 A4 A4 A2 A2 A:! A4 A2 
Deletion J 

A2 A2 

Connection ..J ..J ..J -.J *..J "'v ..J ..: *..J *i *..J ~\'. 

Creation 

..J ..J ..J *0 "'..J ..J \' *..J 
, ;J 1··--;-

Connection 
'J '~..J 

A4 
Deletion 

Icon Label 
0* 0* 0* C1* 0* (.)* 

Creation 

Icon Label 0* 0* 0* 0* 0* 0 " 

Deletion 

Icon Label 
..J .J ..J \1 ..J I 

Updating 

Con. Label 
0* 0 * 0* 0 0* o· 

Creation 

Con. Label 
0* 0 * 0* 0 · 0* W 

Deletion 
..J ..J ..J ..J 

, 
Con. Label 
Updating 

TABLE 5. Formal approach to Table 3, 

Caption: 
" - constraints of the cia ses on column are checked for the operation on row. 
0An - constraints of the clas e on column would normally be hecked f r th op ration 

on row; however, due to A umption n ( ee below), con u'aint ar not ch k d, 
0 * - constraints of the classes on olumn would normally be he k d f r th p ration 

on row; however, due to Law 1 consu'aints are delegated to anoth r cell in lh am 

column. *" _ constraints have been delegated to thi cell by Law I appl i d el e\ h r in th am 
column. 
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*0An - constraints have been delegated to this cell by Law 1 applied elsewhere in the 
same column, but due to Assumption n (see below), these constraints (and also the 
ones originally in this cell) are not checked. 

Empty cell mean that constraints of the classes on column are not checked for the opera­
tion on row. 

Table 5 presents a formal approach to constraint checking based on an extension of the 
diagram operation assumptions given above. A law on diagram operations is also intro­
duced. 

Diagram Drawing Method Assumptions 

Assumptions for VOs 

Assumption 1: the operation Connection Creation is performed by clicking first on a 
voIcon, which will become the origin of the newly created voConnection, followed by 
clicking on a second voIcon (which may be the same), which will become the voConnec­
tion's destination. 

Assumption 2: the operation Jeon Deletion provokes the deletion of all voConnections 
glued to the deleted voIcon. 

Assumptions for Labels 

Assumption 3: the operation Label Creation is performed within the /con or Connection 
Creation operation; Icon or Connection Creation includes creation of all the labels defined 
for the Icon or Connection. 

Assumption 4: the Label Deletion operation is performed within the /con or Connection 
Deletion operation; Icon or Connection Deletion includes deletion of all the labels defined 
for the Icon or Connection. 

The Assumption 4 is more than obvious; Assumption 3 says that the creation of a VO in 
the diagram will automatically prompt the user to initialise the labels defined for that VO, 
we will come back to this in the paragraph below. The only label operation that exists in 
isolation is to update the label value. 

As we have said, creation or deletion of a label cannot be performed in isolation, instead 
they are performed in the operation for the icon or connection to which they belong. We 
say that label operations (creation and deletion) are bundled with the corresponding icon 
or connection operations. As a result, constraints which apply to labels are now checked 
only once, for the operation on the icon or connection. Looking at Table 3 we see that, 
e.g., Icon Label constraints were checked both for Icon Creation and Icon Label Creation 
operations. 

As we have seen before (see Section 7.1 on page 79) checking a constraint does not imply 
enforcing it; that only happens if the constraint is hard or has been hardened. So, Icon 
Label constraints are simply checked when the icon is created; if a constraint (for example 
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'a STD state must have a name') is hard or hardened then it is also enforced; otherwise, if 
it is soft or deferred then it is only checked and not enforced. For the example given, if it is 
hard then the user must give a valid name to the state when the icon is created, but if it is 
soft then the user may leave the label blank. 

Law 1: for any diagram operations opA and opB, if opB is performed within opA and opB 
is only performed within opA, then constraints checked for opB can be checked for opA 
instead. 

By Assumptions 3 to 5 we can apply Law 1 to operations on VOs and labels. For example, 
if opA is Icon Creation and opB is Icon Label Creation, then by Law 1 we can state that 
the constraints checked for Icon Label Creation can now be checked for Icon Creation 
instead. 

8.4.4 Referring to Constraints 

When a diagram operation is performed, the subset of constraints to be checked are the 
ones defined in the icon or connection involved in the operation. The semantics compo­
nent of a VO (icon or connection) consists of a list of references to constraints. The Con­
straint Manager uses those references to check the necessary constraints. So, to define 
which constraints are checked, we must determine where to refer to them. 

Consider the following constraint defined for State Transition Diagrams (STDs): 'a final 
state cannot have out-transitions'. As it belongs to the class Icon&Connection, and accord­
ing to Table 3, it must be checked for both icon and connection operations. As a result, a 
reference to the constraint would have to be defined both in Icon Final State and in Con­
nection Transition. However, by analysis of Table 5, and looking at the rows concerning 
Icon operations, we notice that constraints of class Icon&Connection no longer have to be 
checked for icon operations. Therefore the constraint above, and any constraint of the 
class Icon&Connection, no longer has to be referred to by icons. 

Similar reasoning allows us to deduce a number of rules, included below, which determine 
where constraints must be referenced. These rules were applied in the design of the Con­
straint Manager. 

To simplify the analysis process, we obtained Table 6 from Table 5. Cells without con­
straint checks have been cleared and empty rows have been deleted. 
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Icon Icon Icon Icon 
Constraint Classes Conne Icon Conn. Label & Lbls& Icon & (Involvement and ction 

Conn. Labels Label & Conn. onn. 
Scope)/ Conn. Label Lbl 
Diagram Operations 

L D L D L D L D L D L D L D L D 

Icon Creation 
...j ...j " " 

Icon Deletion " i " 

Connection Creation " " " ..J " " " " " ..J " I 

Connection Deletion " " " ..J " v ..J .y " ..J 

Icon Label Updating " " " ..J ..J V 

Conn. Label Updating ..J ..J " ..J " " 
TABLE 6. Final version of Table 3 after as umption have been u ed. 

Caption: 
" - constraints of the classes on column are checked for the operation on row. 
Empty cell mean that constraints of the clas es on column are not checked for the opera­

tion on row. 

Deducing Rules From Table 6 

From the information on Table 6 we have deduced a number of rule that detenrun where 
to refer constraints. 

The first three rules apply only to local constraint (L). 

From rows 1 and 2 we see that for aU icon operations, only Icon and Icon Label can traint 
are checked. Hence, we have the rule below. 

Rule 1: 
Only Icon and Icon Label constraints must be referred to by icon 

From rows 3 and 4 we see that for all connection operation ,anI Icon and I on Lab I 
constraints are not checked. The following rule i deduced. 

Rule 2: 
All constraints apart from Icon and Icon Label ones, have to be re~ rred t by onnection 

1. After creation of the icon not aJl constrajnts concerning the icon emallli ar guarant d to have been 
checked, in fact if the icon is mentioned by any Icon&Connection con traint then they wiJl only b 
checked when a connection to that icon i created ( ee Rule 2). Until then the icon \ ill be in the discon· 
nected state. 
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Constraints which are to be checked for label updating operations are the ones defined in 
the icon or connection to which the label belongs, and within these only the ones that refer 
to labels. 

From row 5 we see that for Icon Label Updating, Icon Label constraints are checked, 
which are referred to by icons according to Rule I, but Icon Label&Connection and Icon 
Label&Connection Label are also checked, which are referred to by connections accord­
ing to Rule 2. So, we deduce the rule below. 

Rule 3: 
Icon Label&Connection and Icon Label&Connection Label constraints must be referred 
to by connections as stated by Rule 2 and must also be referred to by icons. 

Row 6, concerning Connection Label Updating, confirms Rule 2 in that for this operation 
only constraints relating to connection labels are to be checked. As stated in Rule 2 these 
constraints must be referred to by connections. 

Diagram constraints must be checked even when the objects they concern have not yet 
been created; for instance, the constraint 'a STD must have an initial state' must be 
checked even before the diagram has an initial state. This reasoning adds an extra rule for 
Diagram constraints. 

Rule 4: 
Diagram constraints must be referred to by the diagram itself. 

8.4.5 Conclusion 

First we determined which constraints are checked for each diagram operation. This was 
displayed in the form of a table relating diagram operations with constraint classes 
(Table 3). The diagram operations are performed by the user according to a pre-defined 
diagram drawing method, which is based on a number of assumptions on diagram opera­
tions. After analysing these assumptions it was possible to produce a number of simplifica­
tions on constraint checking. Some of the simplifications were shown in Table 4. 

We then formalised the study by extending the set of assumptions to cover label operations 
and we gave a law on diagram operations and related constraints; from this we produced 
Table 5. We then obtained a simplified version of Table 5. The information conveyed by 
this new table (Table 6) allowed the deduction of a number of rules to determine which 
VOs should refer to which constraints. 

The results obtained from this study simplify the constraint management problem. 
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The GraphTool 

9. The GraphTool 

9.1 Introduction 

Applications making use of visual representations of graphs are becoming increasingly 
popular. The development effort for such applications can be substantially reduced if a 
tool incorporating generic facilities to manage graphs and their visual representations is 

provided to the userl (see Figure 26). 

The tool described herein, designated by GraphTool, i~c1udes a standard graph library, a 
configurable graph representation manager, a constramt manager and repositories for 

object representations and constraints. 

Graph 
Data 

Structures 

Graph 
Representation 

FIGURE 26. The GraphTool. 

Application 
User Interface 

As an example of a GraphTool application we could have a diagram editor for the ER data 
modelling technique. A simple version of this edito~ cou~d have the following compo­
nents: a drawing area (canvas) where the ER schema IS bUIlt; a me~u bar with options to 
create a new schema, check the correctness of the schema, save, pnnt, etc.; and a palette 
allowing the selection of the visual objects, components of a schema, such as entity, 

attribute, relationship, etc .. 

1. In the following the term 'user' refers to the application designer. 
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The GraphTool supports the common facilities that are characteristic of such graph-based 
applications. It includes support for persistence, direct manipulation of diagrams and a 
number of standard graph operations. 

9.2 The Architecture 

Herein, the architecture of the GraphTool is described. The tool provides to an application 
a customisable environment to support graph structures which can be persistent, have a 
visual presentation and incorporate semantics. The GraphTool also defines a protocol for 
the communication with the application. 

The architecture is shown in Figure 27. In the architecture we can identify three levels: the 
abstract graph level, the representation level and the application level. 

The abstract graph level describes standard graph structures which can hold data both on 
nodes and edges. It also includes the usual graph operations such as insert a node, insert an 
edge, delete a node, update the data element of an edge, graph traversal algorithms, etc. 

The representation level holds visual representations for nodes and edges; it includes 
generic visual operations, such as draw, erase or move. One or more representations may 
be associated with the same graph. The representation level defines: a mapping with the 
abstract graph level and a protocol to communicate with the application. 

The application level corresponds to the client of the GraphTool. The communication 
with the representation level is determined by a well defined protocol. 

The GraphTool covers the abstract graph level and the representation level. The abstract 
graph level consists of a Graphs Library and a repository for Abstract Graphs which are 
parameterized with the application types. The representation level is implemented by a 
Graphs Representation Manager, responsible for the functionality of the GraphTool, the 
connection to the abstract graph level and the communication with the application; a Vis­
ual Objects Manager, which communicates with an User Interface Management System 
(UIMS); and a Constraint Manager, for the checking, validation and enforcement of the 
constraints on the Visual Objects. The two later components each have an associated 
repository. A mapping mechanism is used to attach a representation to the abstract graph; 
this mechanism will be explained below. 
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FIGURE 27. Architecture (detailed view). 
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Considering the ER editor example given above, the application level would include, 
amongst others, the following types: Entity, a structure composed by a name, attributes 
and a key; Relationship, a structure including a label and cardinality. The application level 
would also define procedures to manipulate these types, e.g. instantiate a type or print its 
values. The representation level would include the Entitylcon type, a structure composed 
by an image (a rectangle), a label (for the name) and a list of constraints (the semantics); 
the RelationshipIcon type, the same structure in which the image is a diamond, instead of 
one there would be three labels (the name and the two cardinality values) and with other 
constraints. The abstract graph level would include nodes and edges parameterised with 
the application types. 

Mappings are used to attach the representation to the abstract graph; for each attachment 
between a representation and an abstract graph two mappings are instantiated: one for the 
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icons and one for the connections. In the example there is only one representation for the 
abstract graph, but we could have for instance another representation in which, not only 
the name, but also attributes of entities were shown. In this case a second pair of mappings 
would be used. A single abstract graph structure can be attached to several representations; 
a connections mapping and an icons mapping are defined for each attachment. 

The abstract graph level is supported by a standard graph library. The implementation of 
this library was simply done by resorting to the established literature [Stubs89] and 
[Kruse87]. The graphs supported by the abstract graph level only differ from the standard 
ones in that it is possible to store data on the edges. This design option was taken based on 
the fact that a large number of applications do use data directly related to graph edges as 
well as data related to graph nodes. 

The main contribution of our work is the design and implementation of the representation 
level and the interface with both the graph library and the application. It offers mecha­
nisms allowing applications to manage persistent graph data structures through one or 
more visual representations. 

The GraphTool also includes a Visual Objects repository. These Visual Objects are 
accessed by the application at run-time through the representation level, as described 
below. The abstract graph level and the representation level are presented below; the dis­
cussion will be focused on the latter because this is the innovative aspect of the architec­
ture. 

9.3 Abstract Graph Level 

A graph is a generalisation of a hierarchical data structure. It has nodes containing some 
information and edges connecting the nodes. At this level any node can be connected to 
any other node (although the representation level will normally enforce some constraints 
on the types of nodes that can be connected by which types of edges, we will come back to 
this in a later section). 

A graph is used to provide a structure for other data types in the same way as a list, for 
instance we can have lists of integers, strings, trains or rabbits. The nodes in a graph also 
held objects of different data types, the node elements. It is called an abstract graph 
because it abstracts the common concepts of different graphs, hiding the unnecessary 
details. In order to implement abstract graphs it is necessary to parameterise them with the 
data types of the objects held by the graph nodes. 

This conforms with the standard definition of a graph [Stubs89] and [Kruse8?]. But in a 
large number of application domains it is very useful to have at hand information stored in 
the edges. For instance, the distance between two cities or the throughput of a connection 
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in a computer network. This is expressed by edge data types. So, in our graphs, both edges 
and nodes will be parameterised. 

In conclusion, in the context of this work, a graph is a double parametric data structure. 

The graph library supports any kind of graph, namely: connected!not connected, directed! 

undirected, weighted!unweighted, cyclic/acyclic l . It also provides standard graph oper­
ations, such as: insert a node, insert an edge, delete a node, update the element of a node, 
retrieve the element of an edge, graph traversal and shortest paths algorithms. 

Gla. Inv. 

Per. Inv. Per. Gla. 

Ayr Gla. 

Edi. Per. Edi. Gla. 

FIGURE 28. Adjacency list representation. 

An adjacency list was chosen to represent a graph. This representation is specially suitable 
for not very dense graphs, which is normally the case of those associated with diagrams ob­
tained with modelling techniques. In the future, an alternative adjacency matrix represen­
tation will be implemented, in order to support a wider range of application domains. An 
adjacency list can be viewed as a list of lists. The basic list contains one entry for each node 
and is called the node list. For each node in the node list there are two lists (depicted by 

1. At this moment it is not possible to dctemline if a graph is planar. 
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different arrow tips), call them edge lists, of the neighbours of that node. In the first of 
these, the node's key value is the first of the pair of values. In the second, the node's key 
value is the second of the pair of values. In the example of Figure 28 a graph has been used 
to represent road connections between Scottish cities. 

9.4 The Representation Level 

The representation level provides a visual and interactive interface between the application 
and the graph data structures. The Representation Manager provides a default interface 
style; however, it can be configured and different interface styles can be obtained. 

The Representation level includes: 

• visual objects which can be of type Icon or Connection; it also provides semantics 
and interaction capabilities; 

• a number of procedure generators which provide a default functionality (these can 
be overridden by the application); 

• connection to the abstract graph level: a mapping mechanism to connect the repre­
sentation level to the abstract graph level; 

• connection to the application level: a run-time communications protocol to bind 
the GraphTool to the application; 

• a visual objects manager and an associated repository; 

• a constraint manager and repository to implement the visual objects semantics. 

These topics are discussed below. 

9.4.1 The Visual Objects 

As Visual Objects (VOs) have already been discussed in Section 4.4 on page 42, we redi­
rect the reader to that section. 

9.4.2 The Graph Representation Manager 

The Generators and Default Functionality 

When the GraphTool is in use by a client application, a number of procedures implement­
ing operations to manipulate visual graphs are available, allowing for instance to drag a 
node or create a new edge. These procedures are parameterised with nodes types and 
edges types which are provided by the application in hand. 
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The procedures are obtained by activating the corresponding procedure generators pro­
vided by the GraphTool. The procedures must be generated, rather than provided in a 
library, because they are parametric and therefore can only be generated once the applica­
tion types are known. The generators can be modified in order to customise the default 
functionality. Hence, as the functionality of the GraphTool is dictated by the generators 
used, different functionalities can be obtained if different generators are used. 

!************************************.** •••••••••••• ** ••••••••••••••••••••••••• 
!** Data structure to bind the application to the kernel at compile time 

type GraphTooIFunctionality[N, E] is structure( 
drawNodeProcGen: proc[N, E]( 

CallData[N, E], CurrentGraph[N, E], CurrentIcon, 
WindowManager, callbackList[N, E] 
-> proc( Event »; 

drawEdgeProcGen: proc[N, E]( 
CallData[N, E], CurrentGraph[N, E], 
CurrentIcon, Window Manager, callbackList[N, E] 
-> procO); 

chooseIconSetProcGen: proc( 
IconSet, CurrentIcon -> proc( string »; 

drawGraphProcGen: proc[N, E]( 
CurrentGraphWrapper[N, E], proc[N, E]O -> proc()) 

FIGURE 29. Some default generators. 

A default set of generators is provided by the tool. It's the application designer's responsi­
bility to choose which generators to use. He/she can use only the default ones but will 
probably want to define some specific functionality. If this is the case, then he/she must 
provide one or more customised generators. For instance, if the application needs a cus­
tomised way of drawing a node, then a generator for the drawNode procedure must be pro­
vided. This can be done using the default generator as a template. In conclusion, the tool 
provides a default functionality but this can be customised by the application designer. 

The complete set of default generators produce the following procedures: selectNode; 
selectEdge; showNode; showEdge; hideNode; hideEdge; drawNode; drawEdge; eraseN­
ode; eraseEdge; dragNode; printNode; printEdge; chooseleon; chooseConnection; choos­
eleonSet; chooseConnectionSet; drawGraph; printGraph. 

Some procedures only affect the representation, such as dragNode; others affect also the 
underlying graph, for instance eraseNode. The former are called graph preserving opera­
tions and the latter are called graph altering operations (see Section 8.4 on page 111). Hav­
ing several representations for the same graph raises consistency and data protection 
problems when a graph changing operation is performed. For instance, if a node is deleted 
from a graph then all representations of that graph must reflect the change, otherwise they 
will become inconsistent. As an example of data protection, for a given graph some appli-
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cation may have permission to perform delete operations whereas others don't. The Graph­
Tool does not provide any automatic mechanisms to enforce consistency or data protection 
policies. The applications are responsible for the definition of those mechanisms. 

Connection to the abstract graph level 

A number of different representations can be produced for a graph stored in the repository 
(see Figure 30). New representations can be associated to an already existent graph. 

FIGURE 30. Multiple representations. 

Each application must be associated with one Graph Representation Manager (GRM) for 
each graph displaying window (see Figure 31). The GRM executes the operations pro­
vided by the Graph Library. There is a repository associated with each GRM and just one 
associated with the Graph Library. The first stores the representations of graphs and the 
second stores the graph structures. Each GRM repository is attached to the graph reposi­
tory by means of map structures [Atkinson90]. 

For each GRM two maps are defined: an icons map and a connections map. The icons map 
associates each volcon (called icon from now on) in the diagram to a node in the underly­
ing graph structure; the connections map associates each voConnection (called connection 
from now on) to an edge in the graph. 

There are however auxiliary nodes and edges in the graph that do not have a direct corre­
spondence to VOs in the diagram. Here is the reason why. The standard graph library 
included in the GraphTool only allows for a single edge between two nodes. However, 
some applications require multiple connections for a pair of icons. For instance in the STO 
technique, several transitions can be drawn between the same two states. Even in the 
example of Figure 28 we could have several road connections between a pair of cities. To 
cover these situations, without changing the standard graph library, a mechanism was 
devised: for each edge associated with a connection by the connections map, there will 
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also be an auxiliary node and an auxiliary edge. These auxiliary components are not 
included in the maps. So, to each connection in the diagram there will be a corresponding 
sequence 'auxiliary edge, auxiliary node, edge'. 

In the example shown in Figure 32, the STD extract represents the text editor 'vi' of the 
Unix operating system, the transition between the 'command mode' state to the 'insert 
mode' state can happen by either pressing the 'a' key or the 'i' key. The corresponding 
graph structure is composed by node 'N 1', which is associated with the icon 'command 
mode'; node 'N2', associated with icon 'insert mode'; and the sequences 'Eal, Nat, Et' 
for connection 'press key <a>', 'Ea2, Na2, E2' for connection 'press key <i>'. 

9.4.3 Visual Objects Management 

The application must choose the VOs it will use; it selects the relevant VOs from a reposi­
tory. In order to permit user interaction with the diagram, VOs hold interaction capabili-
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Representation Level 

Abstract Graph Level 

FIGURE 32. Attaching the Abstract Graph Level to the Representation Level. 

ties: they include a selectable area and are able to handle user events. These features are 
supported by an UIMS. 

9.4.4 Constraint Management 

The GraphTool includes a constraint manager and a constraint repository in the represen­
tation level. This allows the semantics of diagram based techniques (e.g the ER data mod­
elling technique) to be supported by the GraphTooi. Each diagram based technique defines 
a number of rules on their concepts or constructs as a result of their semantics; these rules 
can be implemented as constraints inside the GraphTool repository, which are then applied 
to the visual objects and checked during the diagram drawing process. Constraint manage­
ment is presented in Section 8.4 on page 111. 

9.5 Connecting an Application to the GraphTool 

It is necessary to provide the means to connect the application level to the GraphTool; for 
that purpose a communication protocol was defined. 
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9.5.1 Interfacing between the GraphTool and the application 

The communication protocol establishes: 

• how the application accesses the functionality of the tool; 

• how the tool can display the visual graph on a canvas window; 

• how the tool can access information provided by the application (for this a callback 
mechanism is used). 

This three element protocol is depicted in Figure 33. 

Application 

callbacks binding 
structure 

FIGURE 33. The communication protocol. 

The protocol regulates the run-time bi-directional communication between the application 
layer and the GraphTooi. We will first discuss the direction from the application level to 
the GraphTool, i.e. the way the application layer can access the GraphTool. 

9.5.2 Accessing the GraphTool functionality 

An application is bound to the GraphTool through the GraphToolFunctionality structure 
as described above (see Figure 29). This structure holds the set of generators chosen by the 
application. Upon compilation, the GraphToolFunctionality generators produce a number 
of procedures to manipulate the visual graphs which implement the functionality. The 
application uses those procedures as connectors to the GraphTooi. 

9.5.3 The Canvas Window 

In order to display a graph, the application must provide a window to the GraphTool. This 
window is called the canvas, it receives user events and displays visual objects depicting 
the underlying graph. 
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The application sketched in Figure 34 presents a canvas window displaying a graph struc­
ture. 

o 
D 

II 

9.5.4 Callback mechanism 

Application 

II II 

FIGURE 34. The canvas window. 

Canvas 
I 

I __ J 

!************************ •• **** •• ** •••••• **** ••••••••••• ***.*** ••••••••••••••••••••• 
! .... Data structure to get data from the application to the kernel at design 
! .... time 

type CallbackList[N, E) is structure( 
drawNodeCallback: proc( -> N); 
drawEdgeCallback: proc( -> E ); 

selectNodeCallback: proc( Node[N, E)); 
eraseEdgeCallback: procO; 
printNodeCallback: proc( N ); 

FIGURE 35. Callbacks. 

As we mentioned above, the communications protocol must also establish the way the 
GraphTool can access the application at design-time. The necessity for this arises, for 
instance, in the following situation: a hypothetical application provides a user command to 
display the information stored in a node. In this case, the application asks the tool to dis­
play that information. However, this operation depends on the type of the data stored in the 
node, so the application must tell the tool how to do it. This is done by a callback mecha-
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n!sm. Hence, the callback mechanism is used to allow the tool to execute application spe­
cIfic operations. 

A callback is a procedure in the application code. It is executed by the GraphTool at dia­
gram drawing-time to perform some application specific operation. The GraphTool defines 
a number of callbacks in the type CallbackList (see Figure 35). For each representation 
operation specified in the structure GraphToolFunctionality there is a correspondina call­
back. Callbacks are linked to representation operations by means of post-conditions. There 
is a post-condition for each representation operation. The callback procedures, provided 
by the application, are then associated with the corresponding post-condition. Each time 
an operation is executed over a visual graph the corresponding post-condition can be fired 
and the corresponding callback executed. 

For instance, if a showNode operation is to be executed the application may use the post­
condition defined for that operation to display the information stored in the node. The 
application must provide a cal1back procedure to print the data held by a node; for this 
purpose the application associates that procedure to the printNodeCalIback specified in the 
type CallbackList. At run-time the application invokes a printNode operation in the tool; 
this will fire the operation post-condition; the corresponding callback procedure defined 
by the application is executed; this will print the node data and finally the tool passes the 
control back to the application level. 

A complete example on how to use VOs in an application based on visual graphs is pre­
sented in the next section. It will also be explained how to develop a complete application 
using the GraphTool. 

9.6 Building an Application 

In this example the application must define ~he menu bar, the palette and also provide the 
GraphTool with a canvas window and a wmdow manager for the canvas window. The 
GraphTool will then generate a number of procedures to edit and manipulate a graph in the 
canvas window. 

The GraphTool is parameterised with the node type and edge. type. These types will typi­
caUy be variants (unions) of a number of types, each of which corresponds to one icon 
type or connection type used by the application. The application must provide the opera­
tions to manipulate those types in the form of callback procedures. 

The procedure generateGraphRepresentationManager must be executed. It is given the 
following parameters: 

• The canvas window, the window where the graphs will be displayed. 

• A callback list, a structure with the callback procedures supplied by the applica­

tion. 
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• A structure describing the functionality provided by the Graph Representation 
Manager, consisting of a number of generators which implement the functionality. 
If the application requires specific functionality, it may customise the correspond­
ent generator(s). 

• The set of icons and the set of connections to be used in the graph representation. 

The procedure generateGraphRepresentationManager generates a structure with the pro­
cedures to bind the tool to the application at run-time, e.g. create a node, create an edge, 
drag a node, etc .. 

Using the GraphTool Step-by-step 

1. Create the canvas window and an associated window manager. 

2. Provide the callback procedures. 

3. Create a structure with the functionality generators. 

4. Define the node types and, if necessary, the edge types; any required procedures to 
deal with these types must also be provided. 

5. Select the set of icons and the set of connections to be used. 

6. Call the procedure generateGraphRepresentationManager with the parameters speci­
fied above. Name the return value by assigning it to a variable (e.g. GraphToolBind-

ings). 

7. Use GraphToolBindings to execute the representation operations. For instance, if the 
user issues an application command to show a node, then the GraphTool procedure 
pointed to by 'GraphToolBindings(showNode)' is executed. 

9.7 Conclusions 

The GraphTool simplifies the development of visual and interactive applications based on 
graph structures which may be persistent and have intrinsic semantics. 

The GraphTool has the following features: 

• the graphs are double-parameterised by node types and edge types; this allows data 
to be stored both in nodes and edges; 

• provides support for multiple visual representations of the same graph structure; 

• implements most of the common operations amongst graph-based applications; 
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• its functionality is completely configurable; the provided default functionality can 
be customised by the application; 

• a callback mechanism is used to allow the execution of application specific opera­
tions; 

• icons and connections can be chosen dynamically from a repository; 

• searches both at the representation level and at the data level can be easily imple­
mented using the provided traversal routines; 

• support for the use of constraints to express the semantics of Visual Objects (topic 
covered in Chapter 6) is also provided; 

• because it has been implemented on top of a persistent system [Atkinson95], 
namely the Napier88 system [Morrison94], graphs and their representations can be 
made persistent; 

• supported by a consistent architecture; clear separation between graph and repre­
sentation. 

From the use of the GraphTool in concrete practical situations, such as on the implementa­
tion of the prototype for this thesis, we are able to state that: an application based on visual 
representations of graph data structures can be implemented in a much easier way when a 
tool with the above features is provided. The GraphTool has been implemented on the 
Napier88 system and is, therefore, non-portable to other architectures. However, its princi­
ples and design can be used in implementations using different systems which offer some 
kind of support for persistence, e.g. Fibbonaci [Alban095], Tycoon [Matthes94] or 02 

[B ancilhon92]. 
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10. A Prototype 

10.1 A Brief Summary of the Technology Used 

10.1.1 Using the Napier88 System 

Napier88 is a persistent programming language, meaning that it is aimed at building sys­
tems supporting long-lived data, which may include procedures for they are higher-order 
citizens in the language. These systems are termed Persistent Application Systems (PAS), 
e.g. in [Ku095] a geographical information system implemented in Napier88 is described. 

The Napier88 system has been developed at the University of St. Andrews, and consists of 
the language and its persistent environment. A description of the language can be found in 
[Morrison94]. A persistent programming environment [Waite95a] and several libraries 
[Waite95b] for the Napier88 system have been produced at the University of Glasgow. 

We will not present the Napier88 system or discuss the principles of orthogonal persist­
ence. The research on this field is extensively described by a large number of publications. 
A definitive review on orthogonally persistent object systems is given in [Atkinson95]. 
Instead, we will focus on how the system was used to build the prototype and in what way 
its characteristics influenced the design, implementation and execution of the latter. 

Napier88 is the target system of the prototype. This means that the VC compiler generates 
Napier88 code which implements the design tools for the modelling techniques (MT). In 
addition, the following components were programmed by hand in Napier88: 

• the templates, used in the code generation process; 

• the GraphTool; 

• the Configurable MT Design Tool; 

• the Visual Objects for the generic visual language; 

• the constraint manager; 

• all storage mechanisms. 

Below we list the characteristics of Napier88 we have found most important to our work: 

• strong typing; 

• parametric polymorphism; 

• higher-order procedures; 

• orthogonal persistence; 
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• support for dynamic binding. 

How these characteristics were reflected in the prototype is shown in what follows. 

The user of our prototype uses the VC-t language to write specifications from which 
Napier88 code is automatically generated. So, type checking is seen by the user only at the 
VC-t level, not at the Napier88 level. However, we found that the implementation of the 
prototype itself was made much easier by the strongly-typed progranuning environment. 

Parametric polymorphism has been used in the implementation of the GraphTool. The 
graph objects (nodes and edges) and procedures can be parameterized with application 
specific types. This provides genericity to the tool. The GraphTool does not provide a fixed 
functionality; in fact, the functionality is provided as a set of procedure generators (i.e. 
procedures that return other procedures) which are defined by the client application 
(although a default set of generators is provided by the tool). The implementation of this 
mechanism was possible because procedures are higher-order data objects. 

The kind of persistence supported by the Napier88 system is orthogonal to the model of 
the data. This feature aided in the modelling and implementation of the components of the 
generic visual language. The visual representation layer was organised into different 
object classes. These objects have different life spans. The Graphical Objects Definitions 
(shapes and line styles) have the greatest longevity; in effect, they are created before any 
MT design tool is built. Shapes and line styles are defined in advance. For example, to cre­
ate a visual representation of the 'process' construct defined for Dataflow Diagrams 
(DFD), it is necessary to have previously defined its corresponding shape, i.e. a circle. The 
Visual Objects Definitions become alive when the code for a particular MT is generated. 
These are icons and connections (which include constraints). For example, the DFD con­
struct 'process' mentioned above is defined as an icon. Finally, we have the Visual 
Objects, which are the components of the diagrams. Consider for instance a DFD repre­
senting a bank autoteller machine; in this example, a process could be 'request PIN'. The 
life of Visual Objects is conditioned by the diagram in which they have been created. If the 
diagram is deleted they are also destroyed. To implement the storage we have simply 
placed objects having the same longevity in a separate environment. Without an orthogo­
nally persistent system we would have created different databases to store information on 
the objects grouped according to their longevity. The objects would also have to be trans­
lated into the model used by the database. This would have certainly increased the com­
plexity of the system. 

The benefits of persistence to software engineering are already well demonstrated 
[Cooper94; Morrison94]. The main purpose of the Napier88 system is to provide mecha­
nisms to prove the feasibility of theoretical principles. Performance and usability have 
often been compromised to make it simpler to achieve that goal. The P-Java [Atkinson96] 
project is currently under way at the University of Glasgow; it is more geared towards 
industry applications and aims at a larger community of users than Napier88. All aspects 
of performance will now be a priority. 
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10.1.2 The TkWin Graphical User Interface Management System 

TkWin is a graphical User Interface Management System (UIMS) for the Napier88 sys­
tem. It was developed as an MSc project [Larsson96], with the goal of connecting non per­
sistent graphical user interface technology to a persistent application system. This project 
replaced the previous UIMS, called WIN [Cutts89; Kirby94]. 

WIN was almost entirely implemented inside the persistent environment. For that fact it 
acquired all the advantages of a persistent system, some of which we already described in 
Section 10.1.1, but it had two major drawbacks. First, if any new functionality was to be 
given to the window system it had to be implemented inside the persistent environment. 
Therefore, it was not possible to exploit new developments in state-of-the-art non persist­
ent window systems. Second, the implementation of WIN inside the persistent environ­
ment represented a heavy load to the system both on space and computational power. 

The non persistent user interface technology chosen was Tclffk [Ousterhout94]. It com­
prises two software packages, called Tcl and Tk. Tcl is a simple scripting language for 
controlling and extending applications. Tk is a toolkit for the X Window System imple­
mented as an extension of Tel. 

Two main requirements for TkWin were: 

• the programming interface must hide Tclffk and use only the Napier88 language, 
i.e. all code for a TkWin application must be written solely in Napier88; 

• TkWin applications must be given persistent behaviour. 

A library of Napier88 procedures to create and manipulate Tk widgets has been imple­
mented; the first requirement is thus satisfied. To implement persistence, the second 
requirement, the state of all widgets in a TkWin application is kept on the server side. The 
complete TkWin application is made persistent by bringing to the Napier88 client the 
information about all widgets' state. This information is then saved in the persistent stable 
store. 

TkWin is implemented as two separate processes, a Tclffk server and a Napier88 client, 
communicating via a socket connection (see Figure 36). The server accepts commands 
from the client and executes them in an integrated Tcl interpreter. 'The Tcl interpreter 
deals with the low level connection to the X-server and provides (via Tk) a set of functions 
for creation and manipulation of Motif-like widgets. The Tclffk server also provides a 
mechanism for registering X events to be redirected to the Napier88 client. This allows for 
callback functions written in Napier88 to be executed as the result of events occurring in 
Tk widgets' [Larsson96]. 

Due to clear advantages of TkWin and also because of our involvement in the project, 
which gave us an insight to the system, we decided to adopt it in favour of WIN. The pro­
totype had already been started to be developed using WIN, so it had to be changed to 
accommodate the new UIMS. The following components were affected: the Visual 
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FIGURE 36. The TkWin architecture. 

Objects structure, the representation level of the GraphTool and the configurable design 
tool. The changes in the representation level of the GraphTool consisted in the develop­
ment of a new drawing canvas. The configurable design tool was completely redesigned 
and new features added. This work was carried out in the scope of another two MSc 
projects which are presented, respectively, in [Meng96] and [Fun96]. 

However, the current version of TkWin presents some tough problems. The widget set pro­
vided is very limited. If new widgets are needed they must be imported from the Tk widget 
set to the persistent environment. At the moment this is done by hand and is a time con­
suming, non creative and repetitive task. Tool support to automatically port widgets can be 
accomplished, but it is not provided in the current version. Widget hierarchies inside the 
canvas widget (which implements the drawing area of the design tools) cannot be made 
persistent; as a consequence it is not possible to make persistent the diagrams edited. 

In spite ofthose problems, we believe TkWin is a step in the right direction. The look-and­
feel of the prototype's graphical user interface was greatly improved which contributed for 
the overall usability of the prototype. 

10.1.3 The Lex and YACC Tools for Compiler Construction 

'It is much easier to produce a correct parser using a grammatical description of the lan­
guage and a parser generator, than implementing a parser directly by hand' [Ah086]. 

The compiler's front-end was built with the aid of the Lex and YACC tools [Ah086; 
Schreiner85]. Lex and YACC are program generators that produce programs in a host lan­
guage. The C programming language was used as the host language. 

Lex generates a program which recognizes regular expressions. The regular expressions 
are specified by the user in the source specifications given to Lex. The generated program 
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reads an input stream, copies it to an output stream, and partitions the input into strings 
(tokens) that match the given regular expressions. 

The Lex program generator was used with the YACC parser generator. A parser is a pro­
gram that imposes a structure to tokens according to grammar rules. The grammar rules 
describe the syntax of the source language. The syntax specification is provided to YACC 
by the user. For specifying the syntax the BNF (Backus-Naur Form) notation is used. Lex 
recognises the input tokens which are passed on to YACC which in tum organises them 
into grammatical phrases. These phrases are described by an intermediate representation 
called a parse tree which is then used by the compiler during the code generation phase. 

10.2 Current Status of Implementation 

In this section we specify what has been achieved in the implementation at the time of sub­
mission of the thesis. 

The compiler's front-end, which includes the lexical analyser and the parser, have been 
built. An intermediate representation, which is semantically checked for scope rules and 
type information, is generated by the parser. The compiler's front-end can therefore be 
used to test the formal correctness of specifications, in accordance to the VC-t language. 

The compiler's design and implementation was done with the forethought of maintaining 
its front-end independent from its back-end. This allows for the front-end to be used, as it 
is, with different target languages and systems. 

The compiler's back-end is a Napier88 code generator which is able to produce a visual 
and interactive design tool supporting the semantics of an underlying MT. 

As part of the back-end an automatic translator of semantic constraints (VC-t to Napier88) 
has been built. Although some translation rules have not yet been automated (used in the 
automatic process of translation), amongst these are some of the generalization rules, all 
of them have been hand-tested (hand translated constraints) which allowed us to assert the 
correctness of the produced code. 

The constraint manager is working. The checking and enforcement of constraints is cor­
rectly done from a semantic point of view. Some optimizations could still be done to min­
imise the number of constraints checked. However, for the tested MTs, the system's 
response times are adequate. We therefore consider that future enhancements on the con­
straint manager are not critical for demonstrational purposes. 

The configurable GraphTool, which architecture, principles and design are presented in 
Chapter 9 has been completely implemented. Its data structures are based on VOs (Visual 
Objects - a realization of the VC formalism). It may be configured in both the graphical 
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objects used as icons and connections representations, and its functionality. A default 
functionality is provided but it may be overridden by application specific code. 

Although the GraphTool is being used within the prototype of our system, it has been 
developed as a generic tool, in the sense that it can be used by any interactive application 
based on graphs with visual representations of the type 'icon and connection' diagrams. 

The GraphTool has already been used in two MSc projects. In one of the projects, 
described in [Meng96], the UIMS provided by the Napier88 system, called WIN, which 
was used in the implementation of the GraphTool's User Interface on version 2.0, was 
replaced by TkWin, a TcllTk based UIMS [Larsson96]. In the other project afront-end for 
the GraphTool was produced; this consists in a tailorable diagram editor that can be used 
by an application to produce a dedicated diagram editor. From a straightforward adapta­
tion of this project (only paths and labels were changed) we produced the ConfigurabJe 
MT Design Tool used in our prototype. The project is reported in [Fun96]. 

The aspects related to the generic visual language and the refinement of specifications to 
configure the MT usage were not fully implemented due to time limitations. The fact that 
the UIMS supporting the visual language has been developed as part of a MSc project, 
which was described in Section 10.1.2 on page 138, and that this happened simultaneously 
with the implementation of the prototype, caused the coding phase to take longer than 
expected. In order to produce a complete implementation some further developments in 
the UIMS, namely the implementation of a more advanced widget to support the drawing 
of graphical objects ('canvas') would be necessary. What has been implemented is how­
ever sufficient to demonstrate the approach. 

10.3 Using The Complete System for Dataflow Diagrams - An Example 
of a Design Session 

The method of using the implemented prototype, which includes the components 
described above, starting from writing a VC-t specification to the automatic generation of 
a supporting design tool, is presented below. 

We will demonstrate how to use the complete system to obtain a design tool for Dataflow 
Diagrams (DFD). 

It is necessary to produce a VC-t specification for the DFD modelling technique, we call it 
'DFD.spec'. The obtained specification can then be compiled using the VC-t compiler. For 
this the following Unix command line is used: 

'vc DFD.spec'. 
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A possible specification for DFDs is included in Appendix B. In this particular case the 
specification is already correct with respect to the VC-t syntax and semantics. But if the 
specification was being developed from scratch some errors would be expected to arise 
during the process of writing it, which could be corrected with the help of the error mes­
sages issued by the compiler. The result of the compilation phase is a Napier88 program, 
composed of a number of files, and a compilation script. 

In the following step the output script must be compiled by the Napier88 system. This is 
performed writing the command: 

'npcDFD.N'. 

This compiles the Napier88 files and generates a file called 'DFD.out' which can be exe­
cuted, to start the design tool, with the command: 

'npr DFD.out' 
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The phases making use of the Napier system are known in advance to be successful, for 
the code generator only produces correct code. 

In Figure 37 a screen shot of the design tool generated by the system for the DFD specifi­
cation included in Appendix B is shown. 

At this stage the designer can experiment with the tool. As a result slhe may decide to 
change the specification and generate a new design tool. This iterative development proc­
ess continues until a suitable tool is produced. 

10.4 Conclusion 

The achieved implementation demonstrates the feasibility of the approach, namely that it 
is possible to automatically generate a constraint-based design tool for a specific Model­
ling Technique (MT) from a high level specification of that MT's semantics. 
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11. Conclusions 

11.1 Contributions 

The overall contribution of this thesis was to provide a complete path from the high-level 
formal specification of Modelling Techniques (MTs) to the generation of design tools. 
However, along this path we can identify a number of important topics of research where 
local contributions were made. The following text summarises these contributions. 

The Visual Concepts Formalism 

This new formalism has been created specifically to express MTs. We didn't find any 
existing formalism suitable for this task: some are able to express the semantics of MTs 
but not their visual representation; others, for instance those based on the Object-Oriented 
paradigm, are unable to capture the semantics of a MT. The Visual Concepts formalism 
includes mechanisms to capture the physical component of a MT, including the visual rep­
resentation, the semantic component, by the use of constraints, and its usage. 

The VC-t Language and Compiler 

A formal language for the specification of MTs, named VC-t, has been designed based on 
the Visual Concepts formalism. The language is formal, and therefore unambiguous, but 
also simple to use and from it easily readable specifications can be obtained. Formality 
was employed only as a tool; the main goal was to obtain a language that could be used by 
someone who does not have to be knowledgeable on formal notations. 

The production of a MT specification is an iterative process in which each new specifica­
tion obtained can be compiled into a working prototype. The high-level specifications 
obtained with the language can be translated into executable code by means of a specially 
built compiler. 

To produce the compiler we obtained a formal description of the language in BNE The 
parser, the front-end of the compiler, is separated from the back-end, the code generator. 
This way, the parser is fully portable to other target platforms. The current implementation 
uses the Napier88 persistent programming system as the target platform. If a new lan­
guage was to be used, e.g. Java or C++, only the back-end of the compiler would have to 
be replaced. 

The Generic Visual Language 

We propose a generic visual language that can be instantiated for a particular MT. It is 
based on direct manipulation of Visual Objects (VOs), which correspond to the conceptual 
constructs of the underlying MT. From a VC-t specification of a MT, the generic visual 
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language is instantiated and a design tool is generated to support that MT. The instantiated 
visual language is then used within the design tool. 

Although the visual language supports the semantics of the underlying MT, it is still flexi­
ble in that it permits the user to draw inconsistencies in the diagram being edited. By 
assigning a state to each va in a diagram and to the diagram itself, it is possible to per­
form the continuous validation of the diagram during the editing process. 

Because we are using semantic constraints both in the specification and in the visual lan­
guage, it is possible to give semantic feedback to the user during the editing task. The 
semantic information is not lost during the automatic generation process. 

Usage Specification 

A first specification for a MT can be obtained with VC-t, however it does not include 
information regarding the way of using the MT - only a default usage is implicit in this 
specification. To allow the designer to specify the usage of a MT, a novel theory of seman­
tic constraints has been developed for the refinement of a MT specification. This gives 
control to the designer to establish the possible levels of inconsistency of the diagrams 
produced by a given MT during an editing session. 

The refined specification defines the possible patterns of user interaction when editing a 
diagram. The constraints are classified according to their enforcement as hard, hardened, 
soft and deferred. Using the mechanism of constraint classification on a specification the 
designer can set the value of the 'semantic freedom', which will be reflected in the level of 
flexibility of the produced design tools. This way, the design tools may be tailored to 
match the users' level of expertise. 

Constraint Management 

Diagram operations are the result of user actions which cause a transformation at the pres­
entation level. If the underlying graph is also changed the operation is called 'graph alter­
ing', otherwise it is called 'graph preserving'. Graph altering operations cause constraints 
to be checked. Each va in the diagram refers to a subset of constraints so that the con­
straint manager may check them by knowing which vas were changed. A problem in con­
straint management concerns determining the constraints that each va must refer to. 

We undertook a formal study on this subject. The problem was substantially reduced by 
taking into account a number of assumptions about the diagram drawing method. It was 
possible to deduce a number of rules determining which vas should refer to which con­
straints. Constraint management was simplified with the outcome of this study. 

Automatic Generation of MT Design Tools 

The VC-t specification of a MT constitutes the input for the automatic code generation 
process. The current prototype generates code in the persistent language Napier88. The 
generated code is human-readable. i.e. it can be easily understood by a Napier88 program­
mer. To aid the generation process two mechanisms are used: templates, structures that are 
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filled with the generated code, and generic design time tools, which are discussed below. 
The whole code generation process is done in a fully automatic way. 

The generation of code follows a set of translation rules from VC-t into Napier88. The 
rules implement generic principles of translating a VC-t specification into executable 
code. These principles can therefore be used to produce rules for any other programming 
language if the prototype is to be ported to a different implementation platform. 

Generic Design Time Tools 

Two generic tools have been built. Although intentionally made for this approach, they 
were designed to be generic, i.e. they can be used in other application domains. 

The GraphTool is a generic tool to be used with visual and interactive applications which 
are based on graphs. It is used as a kernel providing the necessary capabilities. These 
include a standard graph library with the usual operations, a mapping mechanism to sup­
port multiple visual representations, and user interaction facilities for diagram editing. 

It also allows the specification of constraints which will be checked during the process of 
drawing a diagram. The tool is linked to the application by a pre-defined communications 
protocol. 

A generic graphical User Interface (UI) for diagram drawing is the second tool provided 
by our system. It can act as a front-end to the GraphTool. The tool is composed of: an 
interactive drawing canvas, a generic palette for Visual Objects (VOs), a messages window 
for textual feedback and a menu bar. The palette has an import mechanism with which a 
list of VOs can be loaded. The VOs can be organised into several pages. A modular 
approach was adopted for the design of its structure: any of its components can be used in 
isolation. 

This tool is used in our system as a Configurable MT Design Tool. The palette displays the 
visual representations of the constructs of the MT in hand; the canvas hosts the visual lan­
guage described above (which is itself supported by the GraphTool); and the message 
window shows messages to the user regarding violated semantic constraints. However, 
this tool can be used as the VI of any application based on interactive diagram editing. 

Because of their genericity, these tools contribute to fill the gap existing in the area of pro­
viding generic support to applications where diagrams are interactively edited. 
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11.2 Limitations and Improvements 

Extend the VC Formalism 

The current version of the VC Formalism is expressive enough to capture most of the 
widely used MTs. We have obtained specifications for a number of MTs that fall into that 
category. 

However the formalism is unable to capture the following concepts: inclusion, abstraction 
and specialization. The visual representations of these concepts are, respectively: compo­
nent relation, i.e. a VO is represented inside another VO; iconification, when a group of 
VOs are reduced to a single icon; explosion, a given VO corresponds to another full dia­
gram. 

Implement MT Usage 

The specification of MT usage as described in this thesis has not been implemented in the 
prototype. In the syntax of the VC-t specification language one new production rule 
regarding the classification of constraints would have to be written. The main amount of 
work would be done with the code generator for it would then have to generate the code to 
implement the various constraint classes. 

Optimization 

'The First Rule of Program Optimization: 
Don't do it. 

The Second Rule of Program Optimization (for experts only!): 
Don't do it yet.' 

-- Michael Jackson (quote seen on Unix's 'fortune', based on [Jackson75]) 

The code generated by the prototype is not optimized. We were concerned more with dem­
onstrating the feasibility of the approach than with obtaining a high-performance proto­
type. However, in our tests the response times of the system during interaction with the 
design tools were good enough (always less than one second). There are several possible 
optimizations. For instance, in the current version, for every constraint, full diagram 
traversal is always executed. After optimization only the necessary iconslconnections will 
be checked, not all the diagram. For example, 'in a STO transitions with the same origin 
and destination cannot have the same transition condition', to check this constraint only 
those connections which have the same origin and destination icons as the connection for 
which the constraint is being checked, have to be visited. 

Also the constraint manager could be optimized. For instance, when checking constraints 
in a sequence of implied operations, i.e. when deleting an icon with several connections 
attached, only check the constraints after the transaction is completed (delete icon, delete 
connection I, delete connection 2, ... ) and not after each one of the operations. 
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Final Note 

Within the time allowed for a PhD, we have demonstrated with the implemented prototype 
that it is possible to automatically generate constraint-based design tools from high level 
specifications of MT's semantics. It was nevertheless impossible to achieve everything we 
would like to. Unfortunately, the effort required to implement the full theory presented in 
this thesis amounts to at least an extra one man-year. We believe that the implementation 
already obtained is enough to demonstrate the feasibility of the ideas proposed in the the­
sis. It would be, however, very interesting to produce a complete working system which 
fully implements the approach with its whole theoretical body. This will have to be left for 
further work, hopefully in the near future. 

11.3 Future Research Directions 

11.3.1 Visualizing Semantic Constraints 

Visual Specification of Semantics 

Constraints are used in a VC specification to express the semantics of the underlying MT. 
At the moment we use a textual representation to specify the constraints: the VC-t specifi­
cation language. Some kind of computational support should be provided to the designer 
for the interactive specification of semantic constraints. 

It would be interesting to conceive a system for the visual and interactive definition ofVCs 
semantics using visual constraint specification. For this purpose the Programming By 
Demonstration (PBD) paradigm [Cypher93] could be used. In such a paradigm, the 
designer shows the system examples of applying the semantics of the VCs in a diagram; 
from these examples the system is able to deduce the semantic constraints. As a result, the 
semantic constraints are automatically generated by the system in a logic based textual 
notation. 

The interactive definition of spatial relationship constraints in a visual way has been done 
in the Rockit system [Karsenty92]. An inference mechanism has been used. However, this 
system does not support the kinds of constraints we are interested in, i.e. semantic con­
straints such as the ones exemplified by the VC-t specifications of MTs we have discussed. 
Still, this paper can contribute with some interesting ideas for future research on this sub­
ject. 

Animated Semantics - Visualizing Constraints \Vith Animation 

When the design tools are generated, for each VC at the specification level there will be a 
corresponding VO at the implementation level. VOs are then used in the generated design 
tools as the components of the diagrams being edited. The semantics of a VC will deter­
mine the behaviour of the corresponding YO, i.e. the semantics of a VC are specified with 
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constraints, which will then determine the possible behaviour of a VO when a diagram is 
being edited. 

As we have mentioned before, a problem with constraint based specifications resides in 
the difficulty of their inspection. A possible solution to this problem is to provide the 
designer with a mechanism for the demonstration of VCs. Because the behaviour of a VO 
is determined by the semantics of its corresponding VC, it should then be possible to 
inspect semantics by visualizing the VO's behaviour. A technique for the animation of 
VOs could be used for this purpose. In a way, this technique is the inverse of the one used 
to specify constraints we described above. Instead of using a Programming By Demon­
stration based technique to specify constraints, we now use an Inspecting By Demonstra­
tion based technique to analyse the previously specified constraints. This time it is the 
system that demonstrates the constraints to the user. Both the MT designer and the final 
user (the user of the produced design tools) could benefit with such an animation based 
facility: a VC browser could be built to be used by the designer and oil-line help could sup­
port the user in the design task. In fact, it would be possible to build two generic tools for 
this purpose which would then be automatically configured for any given MT. 

11.3.2 A New Approach to Code Generation 

The LEe Approach 

The VC specification is submitted to a parsing process from which code is automatically 
generated. The generated code is divided into code blocks, designated by Linked Encapsu­
lated Code (LEC) blocks. The blocks are made of several fragments linked to each other 
(this is done by a linking structure superimposed to the code). Each of these blocks is seen 
as an unequivocally identified object, i.e. the code is encapsulated. 

The linked fragments in a LEC block may be implemented in different programming para­
digms, for instance persistent programming to implement data structures to store the sche­
mata produced with the editor and logic programming to implement the constraint base 
corresponding to the constraints included in the specification. 

There will be a LEC block corresponding to each VC in the specification. There is a refer­
encing mechanism between the two abstraction levels (specification-implementation) that 
links each VC in the specification to each of the LEC blocks and vice-versa, i.e. the speci­
fication-implementation links are bidirectional. The code generator automatically creates 
the links. 

This approach constitutes an automatic symmetric bridging of the semantic mismatch 
existing between the specification and the implementation levels. When the formalisms 
used for the specification and for the implementation are not the same, there is a semantic 
mismatch between the two levels. If the structure of the specification is to be preserved 
across the generation process, or if changes in the specification are to be automatically 
propagated to the implementation code, then this semantic mismatch must be bridged. The 
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proposed approach is a way of doing it. A reflection on a number of important goals in 
automatic code generation is given below. 

Goals That Can Be Achieved With the LEC Approach 

Using the LEC approach to automatic code generation is a way of achieving the following 
goals: 

• The specification structure defined by the designer is preserved across the auto­
matic code generation. The well defined specification-implementation linking 
maps the structure defined by the designer at the specification level to the imple­
mentation level. 

• Semantic feedback can be provided to the user. Semantic feedback given to the 
user of a generated application must be meaningful in the particular interaction 
context. Meaningful in the sense that it conforms with the semantics of the applica­
tion (expressed in the specification). Semantic feedback may be implemented, for 
instance, as a message in the screen (English text provided in the specification of a 
VC which will then be shown as a message in a dialogue window), but also graph­
ically or sonic ally. Because semantic information is related to the VCs, to imple­
ment semantic feedback, the code generator must know which part of the 
automatically generated code implements each VC in the specification. This is vir­
tually impossible if the relevant code is scattered. With the LEC approach, imple­
menting semantic feedback is simplified: the code is structured into blocks 
(linked); the code corresponding to a VC is unequivocally identified, i.e. the iden­
tity of the VC is preserved (encapsulation principle). 

• Program code can be provided along with the specification as a way to enhance the 
expressive power of the specification formalism. Some parts of the specification 
may be implemented by hand with code that will be directly used at the implemen­
tation level. The code generator links the automatically generated code with the 
provided hand written code. 

• Direct and reverse automatic change propagation. Changes in the specification can 
be mapped down incrementally and automatically to the implementation code and, 
conversely, changes in the code can be mapped up to the specification. For this, the 
links corresponding to the changes are followed in one or the other direction in 
order to undertake the necessary repairs. While the automatic and incremental 
changes in the code as a result of changes in the specification seems feasible, the 
reverse direction - changes in the implementation code being retro-propagated to 
the specification - is probably more complex. However, in a first stage, it is not as 
difficult to follow the links starting from the changed LEC blocks in order to tag 
the corresponding specification fragments as inconsistent. The tagged fragments 
are treated by the code generator as provided code (as explained above). 
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11.3.3 Visual Concepts as Components 

Visual Concepts can become small, reusable units of specification that will be used to 
compose specifications of MTs. 

In [Jazayeri95] component programming is defined as 'a software development paradigm 
based strictly on the use of standard software components'. The paper presents an 
approach for the development of applications using components which are organised in 
catalogues. The components in each catalogue must support a related set of concepts. The 
author states that components development must be completely separated from application 
development. 

The reuse of components seems to be more promising than the traditional Object-Oriented 
(00) vision. Commercial systems supporting languages based on the traditional 00. 
approach have not been successful in promoting reuse [UdeIl94]. As pointed out in the 
paper 'an alphabet soup of standards, including [ ... ] COM, DSOM, CORBA, will provide 
the mechanisms for component exchange that pure 00 Programming has failed to 
deliver' . One of the reasons for the failure of reuse in the 00 approaches was that the tech­
niques used for component development were the same used for application development 
and the two could be performed simultaneously. This contradicts what is stated by Jazay-
eri. 

Catalogues ofVCs and Reuse 

In our view, components are used at the specification level; they are used to compose spec­
ifications rather than applications. A specification language is provided to the components 
designer. By adding extra constraints to a VC, it is possible to extend its semantics. This 
opens a good perspective for the reuse ofVCs. 

There are advantages in defining the components at the specification level rather than at 
the implementation level. If a simple specification formalism is used, it is typically easier 
to understand what a component does by looking at its specification than by looking at its 
implementation code (a parallel reasoning can be made with digital component catalogues 
and their implementation in hardware using transistors). It is also much easier to change or 
extend a specification than the correspondent program code. 

Existing catalogues for various MTs could be easily used to produce specifications for 
other MTs. For instance, a catalogue of VCs produced for Entity Relationship diagrams 
(ER) could be used to specify the VCs for a new extension of ER. 

11.3.4 Conclusion 

The three research directions presented above are not isolated, and if pursued simultane­
ously they act in a synergetic way. For instance, the production of reusable VCs can be 
aided by visual techniques, and browsers based on animated semantics can be made for 
the inspection of catalogues ofVCs. The goal is to push forward the whole research work, 
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starting at the higher abstraction level of the specifications based on the VC formalism and 
ending at the generated design tools. 

The future will see definite improvements in application modelling supported by advanced 
diagrammatic design tools. With diagram based MTs being competently supported by 
design tools, the necessity to use text will weaken. Text based programming languages 
will be preferably used in local optimization strategies. The work will progressively be 
done at the specification level rather than at the implementation level. The programming 
tasks will become lighter as conceptual modelling supported by advanced frameworks and 
tools, allows users to build programs at higher abstraction levels. 

As the demand for conceptual modelling increases, software providers will need to effec­
tively and efficiently design new MTs, or adapt existent ones, and produce suitable sup­
porting tools. We have opened up and illuminated several synergic research directions, 
giving clear contributions for that aim. 
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Appendix A - Guide to the VC-t Syntax 

A.I Introduction 

The syntax description given herein is meant to help understanding and writing VC-t spec­
ifications. For a complete BNF specification please refer to Appendix D. 

The following conventions have been used in the syntax description: 

• reserved words are in bold upper case, e.g. EXISTS. A number of keywords have 
several alternatives. A list of all keywords and available alternatives is shown in 
Section A.4; 

• reserved characters are enclosed, e.g. "->" 

• non-terminal symbols are in lower case, e.g. properties; 

• terminal symbols which are not keywords have the first letter capitalised, 

e.g. Natural (see Section A.2); 

• a non-terminal symbol that matches the empty string (empty rule) is indicated as 
the comment 1* empty *1. 

A.2 Terminal Symbols Which Are Not Keywords 

The following terminal symbols are used in the syntax description: 

Natural - a natural number. 
String - a sequence of letters and digits enclosed in single or double quotes. 
Lowercase_identifier - a sequence of letters and digits. The first character must be a 

lower case letter. 
Uppercase_identifier - a sequence of letters and digits. The first character must be an 

upper case letter. 
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A.3 Syntax Description 

A.3.t Overall Structure 

vcSemanticsSpecification ::= String SEMANTICS_SPECIFICATION preamble 
semanticConstraints n. n 

A.3.2 Preamble 

preamble ::= PREAMBLE mtModel setExtractors setDefinitions setProperties 
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mtModel ::= A.MT_MODEL _BEGIN variableName n=" powerSetCartesianProduct 
END 

Extractors 

setExtractors ::= B.SET_EXTRACTORS_DECLARATIONS iconPowersets 
connPowersets 

iconPowersets ::= Bl.ICONS _BEGIN iconExtractorList END 

iconExtractorList ::= extractor 
I iconExtractorList extractor 

connPowersets ::= B2.CONNECTIONS _BEGIN connExtractorList END 

connExtractorList ::= extractor 
I connExtractorList extractor 

extractor ::= setName n:n variableName n_>" powerSetCartesianProduct 

Auxiliary Sets and Extractors 

setDefinitions ::= C.SETS_DEFINITIONS _BEGIN setDefinitionList END 

setDefinitionList ::= 1* empty *1 
I setDefinition 
I setDefinitionList setDefinition 

setDefinition ::= setName n==n setSpecification 

setSpecification ::= set 
I n {n elementList n} n 

elementList ::= stringList 
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I naturalList 

Set Properties 

setProperties ::= D.SET_PROPERTIES _BEGIN propertiesList END 

propertiesList ::= 1* empty *1 
I properties 
I propertiesList properties 

properties ::= setName HAS_PROPERTIES propertyList 

propertyList ::= property 
I property List property 

property ::= variableName ":" setCartesianProduct "->" range 

setCartesianProduct ::= setName 
I setCartesianProduct "x" setName 

range ::= set 1* the following types are allowed: Boolean, Natural, String *1 

powerSetCartesianProduct ::= powerSet 
I powerSetCartesianProduct "x" powerSet 

powerSet ::= "P" setName 

A.3.3 Semantic Constraints 

semanticConstraints ::= SEMANTIC_CONSTRAINTS _BEGIN constraintList 
END 

constraintList ::= 1* empty *1 
I constraintList constraint 

constraint ::= constraintDesc quantifiedPLstatement 
I constraintDesc instantiatedPLstatement 

constraintDesc ::= "C" Natural ":" 1* natural values must be in a sequential order *1 
I "C" Natural ":" String 

Predicate Logic Statements 

quantifiedPLstatement ::= quantificationList "(" pI Statement ")" 

quantificationList ::= universal Quantification 
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I existential Quantification 
I quantificationList universal Quantification 
I quantificationList existential Quantification 

universalQuantification ::= NOT universal Quantification 
I FORALL variableList ":" set "." variableList BELONGING set 

IMPLIES 

existential Quantification ::= NOT existentialQuantification 
I EXISTS variableList ":" set "." variableList BELONGING set AND 

instantiatedPLstatement ::= plStatement 

plStatement ::= NOT plStatement 
I "(" plStatement ")" 
I plStatement pI Connective plStatement 
I equality 
I simpleBooleanExpression 

plConnective ::= DOUBLEIMPLICATION 
I IMPLIES 
lAND 
lOR 
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equality ::= set "=" set 1* An infix inequality operator is not provided. Instead, the 
symbol 'NOT' should be used at the beginning of the expression, as 
in 'NOT( i = j )' .. / 

I otherObject "=" otherObject 

simpleBooleanExpression ::= naturalExpression naturalComparison 
naturalExpression 

I predicate 
I TRUE 
I FALSE 

set ::= setName 
I setApplication 
I set setOperation setName 
I set setOperation setAppIication 

setOperation ::= INTERSECTION 
I UNION 
I SETDIFFERENCE 

natural Comparison ::= ">" 1* note: equality is covered by the rule '''('' otherObject 
"=" otherObject ")'" expressed above *1 

1"<" 
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1 ">=" 
1"<=" 

predicate ::= PREDICATE variabIeName "(" setAppIication ")" 

setApplication ::= setName "(" ")" 
1 setName "(" argList ")" 

I" , bI N "(" ")" app IcatlOn ::= vana e arne 
1 variabIeName "(" argList ")" 

argList ::= variabIeList 
1 setList 
1 stringList 
1 argList "," setList 
1 argList "," variableList 
1 argList "," stringList 

setList ::= setName 
1 setList "," setName 

variableList ::= variableName 
1 variableList "," variableName 

otherObject ::= String 
1 naturalExpression 

naturalExpression ::= CARDINALITY set 
. 1 application 
1 variableName 
1 Natural 

stringList ::= String 
1 stringList "," String 

naturalList ::= Natural 
1 naturalList "," naturalList 

variableName ::= Lowercase_identifier 

setName ::= Uppercase_identifier 1* the convention that set names begin with a 
capital letter is recommended by [Woodcock88] *1 

J, Artur Vale Serrano June 1997 
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A.4 Keywords and Alternatives 

SEMANTICS_SPECIFICATION 
A.MT_MODEL 
B.SET_EXTRACTORS_DECLARATIONS 
Bl.ICON_POWER_SETS 
B2.CONNECTION_POWER_SETS 
C.SETS_DEFINITIONS 
D.SET _PROPERTIES 
SEMANTIC_CONSTRAINTS 
HAS_PROPERTIES 
BEGIN 
END 
PREAMBLE 
NOTI"-" 
UNIVERSAL I FORALL 
EXISTENTIAL I EXISTS 
ANDI"&" 
ORI"V" 
IMPLICATION I IMPLIES 
DOUBLEIMPLICATION 
PREDICATE 
TRUE 
FALSE 
CARTESIANPRODUCT I "x" 
POWERSET I "P" 
DEFINEDAS I "==" 
MEMBERSHIP I BELONGING I IN I "E" 
UNIONI"U" 
INTERSECTION 
SETDIFFERENCE I "\\" 
MAPSTO I "->" 
EQUAL I "=" 
GREATER I ">" 
LESS 1"<" 
ATLEAST I GREATEROREQUAL I ">=" 
ATMOST I LESSOREQUAL I "<=" 
CARDINALITY I "#" 

Valid characters with no verbose alternatives provided 

"." ":" "(" ")" 
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Appendix B - Complete VC-t Specifications of Modelling 
Techniques 

The modelling techniques (MTs) specified below were chosen for the following reasons: 

• they are widely known; 

• they model different views (static and dynamic) of the universe of discourse; 

• their semantics is well defined; 

• their graphical representation is based on icons and connections. 

For each MT the following is shown: 

• the graphical representation; 

• the semantics definition in natural language; 

• an example; 

• the semantics specification in VC-t. 

B.1 Dataflow Diagrams 

0 B ---------- ... 

Process External Entity Datastore Dataflow 

label 

FIGURE 38. DFD graphical representation. 

J. Artur Vale Serrano 
June 1991 



Complete VC-t Specifications of Modelling Techniques 160 

B.I.I Semantics Definition in Natural Language 

A dataflow diagram (DFD) includes four distinct elements: process (or transform), 
datastore, external entity and dataflow. The first three are icons and the last is a connection. 

Each process has a unique name and must have at least one input dataflow and one output 
dataflow which are different. 

Each datastore has a unique name and must have at least one input dataflow and one out­
put dataflow; all dataflows connected to a datastore at one end must be connected to a 
process at the other. 

Each external entity has a unique name and must have at least one dataflow, either input or 
output; all dataflows connected to an external entity at one end must be connected to a 
process at the other 

A dataflow is named, not necessarily uniquely, and connects two different icons of the dia­
gram, no self-loops are allowed. If two icons are connected by two or more dataflows in 
the same direction then these dataflows must have distinct names. 

All elements on a DFD must be named; no anonymous elements are allowed. 

A legal DFD must include at least one process. Every DFD must include at least one exter­
nal entity which provides input to the system and at least one external entity to which out­
put is directed; these external entities need not be distinct. A DFD must be connected; i.e. 
there should be no isolated icons or disconnected partitions of the diagram. 

Assumptions 

The following simplifications to the notation have been made: 

• diagrams are assumed to be single level without any expansion of processes; 

• the identifier of a process is a single string; usually it is split into a serial number 
and a description; 

• the convention that allows duplicate copies of either external entities or datastores 
to be drawn for topological reasons, has not been considered. 

For a complete definition see [Budgen94]. 
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Department 

Rejected 
Order 

Internal 
Order 

Supplier 

Checked 

Invoice 

-c: 
Q) 

E 
Q) 

ii1 
U5 

FIGURE 39. DFD example. 

B.t.2 Semantics Specification in VC-t 

"Dataflow Diagrams" SEMANTICS_SPECIFICATION 

PREAMBLE 

BEGIN 

J. Artur Vale Serrano 
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dfd = P Process x P Datastore x P ExternalEntity x P Dataflow 

END 

B.SET_EXTRACTORS_DECLARATIONS 

Bl.ICONS 

BEGIN 

Processes: dfd -> P Process 
Datastores : dfd -> P Datastore 
Externals: dfd -> P ExternalEntity 

END 

B2.CONNECTIONS 

BEGIN 

Dataflows : dfd -> P Dataflow 

END 

C.SETS_DEFINITIONS 

BEGIN 

DFDelement == Process U Datastore U ExternalEntity U Dataflow 
DFDelements == 

Processes(dfd) U Datastores(dfd) U ExternaIs(dfd) U Dataflows(dfd) 
DFDicon == Process U Datastore U ExternalEntity 
DFDicons == Processes(dfd) U Datastores(dfd) U ExternaIs(dfd) 

END 

D.SET _PROPERTIES 

BEGIN 

Process HAS_PROPERTIES 

name: Process -> String 

J. Artur Vale Serrano 
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equal: Process x Process -> Boolean 

Datastore HAS_PROPERTIES 

name: Datastore -> String 
equal: Datastore x Datastore -> Boolean 

ExternalEntity HAS_PROPERTIES 

name: ExternalEntity -> String 
equal: ExternalEntity x ExternalEntity -> Boolean 

Dataflow HAS_PROPERTIES 

name: Dataflow -> String 
source: Dataflow -> DFDicon 
destination: Dataflow -> DFDicon 
equal: Dataflow x Dataflow -> Boolean 

END 

SEMANTIC_CONSTRAINTS 

BEGIN 

C I: "Each process has a unique name" 

FORALL pI, p2 : Process • pI, p2 BELONGING Processes(dfd) IMPLIES 
(name(pl) = name(p2) IMPLIES pI = p2) 

(* This constraint is so common in MTs that we have defined a predicate to 
simplify it: uniqueName( extractor ). This predicate will be used from now on. 
Hence, alternatively, the following constraint specification could have been used: 
'PREDICATE uniqueName( Processes(dfd»' *) 

C2: "Each process must have at least one input dataflow and one output dataflow 
which are different" 

FORALL p: Process· p BELONGING Processes(dfd) IMPLIES 
EXISTS fl, f2 : Dataflow· fl, f2 BELONGING Dataflows(dfd) AND 

( destination(fl) = p AND 
source(f2) = p AND 
NOT ( fl = f2 » (*different flows*) 
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C3: "Each datastore has a unique name" 

PREDICATE uniqueName( Datastores(dfd» 

C4: "Each datastore must have at least one input dataflow and one output dataflow 
each of which must be connected to a process" 

FORALL d : Datastore • d BELONGING Datastores(dfd) IMPLIES 
EXISTS fl, f2: Dataflow· fl, f2 BELONGING Dataflows(dfd) AND 

EXISTS pI, p2: Process· pI, p2 BELONGING Processes(dfd) AND 
( 

) 

( destination(fl) = d AND source(fl) = pI ) AND 
( source(f2) = d AND destination(f2) = p2 ) 

C5: "Each external entity has a unique name" 

PREDICATE uniqueName( ExternalEntities(dfd) ) 

C6: "Each external entity must have at least one dataflow, either input or output, 
which is connected to a process" 

FORALL e: ExternalEntity· e BELONGING Externals(dfd) IMPLIES 
EXISTS f: Dataflow • f BELONGING Dataflows(dfd) AND 

EXISTS p: Process· p BELONGING Processes(dfd) AND 
( 

) 

(destination(f) = e AND source(f) = p ) OR 
( source(f) = e AND destination(f) = p ) 

C7: "Each dataflow must connect two different icons (no self-loops)" 

FORALL f: Dataflow • f BELONGING Dataflows( dfd) IMPLIES 
( NOT ( source(f) = destination(f) » 

(* the 3 following constraints determine the minimum dfd *) 

C8: "There must be at least one external entity which provides input to the system" 

EXISTS e: ExternalEntity • e BELONGING Externals(dfd) AND 
EXISTS f: Dataflow • f BELONGING Dataflows( dfd) AND 

( source(f) = e ) 
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C9: "There must be at least one external entity which takes output from the system" 

EXISTS e : ExternalEntity • e BELONGING Externals(dfd) AND 
EXISTS f: Dataflow· fBELONGING Dataflows(dfd) AND 

( destination(f) = e ) 

C 1 0: "There must be at least one process" 

CARDINALITY Processes(dfd) >= I 

CII: "All icons in a DFD must be connected" 

EXISTS p: Process· p BELONGING Processes(dfd) AND 
( Connect(p) = DFDicons( dfd) ) 

(* 'Connect' is a pre-defined function that given a DFDicon returns a set of 
DFDicons that are connected between them and which include that DFDicon. 
The algorithmic definition of this function is given in B.4. *) 

C12: "All elements of the diagram must be named" 

FORALL a : DFDelement • 
a BELONGING DFDelements(dfd) IMPLIES 

( NOT ( name (a) = "" » 

Cl3: "The same pair of icons in a DFD cannot be connected by two or more dataftows 
with the same direction and the same name" 

FORALL fl, f2: Dataflow· fl, f2 BELONGING Dataflows(dfd) IMPLIES 
(( source(fl) = source(f2) AND 
destination(fl) = destination(f2) AND 
name(fl) = name(f2» IMPLIES 

f1=f2) 

END 
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B.2 State Transition Diagrams 

start arc 

BOO 
Initial State Intermediate State Final State 

label 

transition 

the label holds the 
transition condition 

166 

FIGURE 40. STD graphical representation. 

B.2.1 Semantics Definition in Natural Language 

A state represents an externally observable mode of behaviour. Every state is identified by 
a name that describes its behaviour. Names must be unique. 

The initial state is the state entered by the system when it is started. Any STD must have 
exactly one initial state. The initial state must have at least one out-transition (out-transi­
tion defined below). 

The final state is a state that the system cannot leave. Therefore, a final state cannot have 
out-transitions or loop-transitions (loop-transition defined below). A final state must have 
at least one in-transition (in-transition defined below). Any STD must have at least one 
final state. 

The intermediate state is any state which is neither an initial or a final state. An intermedi­
ate state must have at least one in-transition and one out-transition. 

A transition is a legal change of state. A transition condition is associated with every tran­
sition; when it evaluates to true the transition occurs. A transition always connects two 
states together. Any number of transitions can exist between any pair of states. But only 
one transition with the same transition condition and same direction can exist between a 
given pair of states. Transitions attached to a state are classified into three types: in-transi­
tion, which has its destination attached to the state; out-transition, which has its origin 
attached to the state; loop-transition, which has both its destination and origin attached to 
the state. 
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All states must be reachable from the initial state. This means that starting at the initial 
state and following transitions in the correct direction it must be possible to reach any 
other state. Note that we assume that any state is reachable from itself; this will be impor­
tant when writing the specification of the constraint. 

Note: the start arc shown in Figure 40 is part of the initial state symbol and has no seman­
tics of its own. 

Figure 41 depicts a State Transition Diagram for a fragment of the text editor 'vi' of the 
U nix operating system. 

For additional information see [Budgen94]. 

Delete Word 

Append 

Escape 

FIGURE 41. STD of a fragment of the 'vi' editor. 

B.2.2 Semantics Specification in VC-t 

"State Transition Diagrams" SEMANTICS_SPECIFICATION 

PREAMBLE 

BEGIN 

std = P InitialState x P InterState x P FinalState x P Transition 
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END 

B.SET_EXTRACTORS_DECLARATIONS 

Bl.ICONS 

BEGIN 

InitialStates : std -> P InitialState 
InterStates: std -> P InterState 
FinalStates : std -> P FinalState 

END 

B2.CONNECTIONS 

BEGIN 

Transitions: std -> P Transition 

END 

C.SETS_DEFINITIONS 

BEGIN 

AnyState == InitialState U InterState U FinalState 
AnyStates == InitialStates(std) U InterStates(std) U FinaIStates(std) 

END 

BEGIN 

InitialState HAS_PROPERTIES 

name: InitialState -> String 
equal: InitialState x InitialState -> Boolean 

InterState HAS_PROPERTIES 

name: InterState -> String 
equal: InterState x InterState -> Boolean 
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FinalState HAS_PROPERTIES 

name: FinalState -> String 
equal: FinalState x FinalState -> Boolean 

Transition HAS_PROPERTIES 

transition Condition : Transition -> String 
origin: Transition -> AnyState 
destination: Transition -> AnyState 
equal: Transition x Transition -> Boolean 

END 

SEMANTIC_CONSTRAINTS 

BEGIN 

Cl: "Names must be unique amongst the initial state, intermediate states and final 
states" 

PREDICATE uniqueName( AnyStates(std) ) 

C2: "A STD must have at least one initial state" 

EXISTS i : InitialState • i BELONGING InitiaiStates(std) AND TRUE 

C3: "A STD has at most one initial state" 

CARDINALITY InitialStates(std) <= 1 

C4: "The initial state must have at least one out-transition" 

FORALL i : InitiaiState • i BELONGING InitiaIStates(std) IMPLIES 
EXISTS t : Transition • t BELONGING Transitions(std) AND 

( origin(t) = i AND 
NOT ( destination(t) = i » 

C5: "A final state cannot have out-transitions or loop-transitions" 
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FORALL f: FinalState • f BELONGING FinaIStates(std) IMPLIES 
NOT EXISTS t : Transition • t BELONGING Transitions(std) AND 

( origin(t) = f) 

C6: "A final state must have at least one in-transition" 

(* note that a loop-transition does not count as an in-transition *) 

FORALL f: FinalState • f BELONGING FinaIStates(std) IMPLIES 
EXISTS t : Transition • t BELONGING Transitions(std) AND 

( destination(t) = f AND 
NOT ( origin(t) = f) 

C7: "A STD must have at least one final state" 

EXISTS f: FinalState • f BELONGING FinaIStates(std) AND TRUE 

C8: "An intermediate state must have at least one in-transition" 

FORALL s : InterState • s BELONGING InterStates(std) IMPLIES 
EXISTS t : Transition • t BELONGING Transitions(std) AND 

( destination(t) = sAND 
NOT ( origin(t) = s » 

C9: "An intermediate state must have at least one out-transition" 

FORALL s : InterState • s BELONGING InterStates(std) IMPLIES 
EXISTS t : Transition • t BELONGING Transitions(std) AND 

( origin(t) = sAND 
NOT ( destination(t) = s » 

ClO: "The same pair of states cannot be connected by transitions with 
the same direction and the same transition condition" 

FORALL t1, t2 : Transition· tl, t2 BELONGING Transitions(std) IMPLIES 
(( origin(tl) = origin(t2) AND 
destination(tl) = destination(t2) AND 
transitionCondition(tl) = transitionCondition(t2) ) IMPLIES 

t1 = t2) 

h " C 11: "Every state must ave a name 
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FORALL s : AnyState • s BELONGING AnyStates(std) IMPLIES 
(NOT (name(s) = ''''» 

C12: "Every transition must have a transition condition" 

FORALL t : Transition • t BELONGING Transitions(std) IMPLIES 
( NOT ( transitionCondition(t) = "" » 

Cl3: "Every state in a STD must be reachable from the initial state" 

FORALL i: InitialState • i BELONGING InitiaIStates(std) IMPLIES 
( Reach(i) = AnyStates(std) ) 

(* 'Reach' is a pre-defined function that given a state returns all the states 
reachable from it, including the given state. The algorithmic definition of this 
function is given in the next section *) 

END 

B.3 Entity.Relationship (ER) Diagrams 

El 
Entity 

label 

J. Artur Vale Serrano 

~ C1~C2 
~-V-

Attribute Relationship 

C1 c2 cardinality labels 

Total Participation 

Partial Participation 
and Attribute Link 

FIGURE 42. ER graphical representation. 
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B.3.1 Semantics Definition in Natural Language 

The definition given below is of a simplified version of the ER modelling technique_ For 
instance, multi-valued attributes and weak entities were not considered. The definition 
could be extended to cover the whole ER. The complete version can be found in [Chen76] 
or [Sanders95]. 

There are three icon types: entity, relationship and attribute. There are three connection 
types: total participation, partial participation and attribute link. The first two connect enti­
ties to relationships, while an attribute link connects an attribute to an entity, to a relation­
ship, or to another attribute (allowing compound attribute structures, see 'Name' of 
'Employee' in Figure 43). 

Entities must be uniquely named. 

Relationships must be uniquely named. A relationship must be annotated with its cardinal­
ity. We will assume a binary ER model, therefore the cardinality of a relationship is repre­
sented by a pair of values. Allowed cardinalities are: one to one, one to many and many to 
many. Again, because we are assuming a binary model, a relationship has exactly two 
links to entities. 

Attributes are not necessarily uniquely named but within the context of a single entity or 
relationship the attribute names must be unique. 

All icons must be named; no anonymous icons are allowed. 

Total participation connects an entity to a relationship. 

Partial participation connects an entity to a relationship. 

If the two participation connections (total or partial) of a relationship are joined to the 
same entity, then these connections must be given role names to distinguish them. 

An attribute link connects an attribute to any other icon type. If an attribute is refined into 
other (sub-)attributes then there ought to be at least two sub-attributes. 

The whole ER diagram should be connected; there can be no isolated icons or distinct par­
titions of the diagram. 

The minimal ER diagram is consists of one entity with one attribute. 
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Supervisor 1 

Supervisee 
N 

N 

Project 

FIGURE 43. ER example. 

B.3.2 Semantics Specification in VC-t 

"Entity-Relationship Diagrams" SEMANTICS_SPECIFICATION 
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PREAMBLE 

BEGIN 

erd = P Entity x P Relationship x P Attribute x P TotalPar x P Partial Par x P AttribLink 

END 

B.SET_EXTRACTORS_DECLARATIONS 

Bl.ICONS 

BEGIN 

Entities: erd -> P Entity 
Relationships: erd -> P Relationship 
Attributes: erd -> P Attribute 

END 

B2.CONNECTIONS 

BEGIN 

TotalPars : erd -> P TotalPar 
Partial Pars : erd -> P PartialPar 
AttribLinks : erd -> P AttribLink 

END 

C.SETS_DEFINITIONS 

BEGIN 

Cardinality == {"l, 1", "1,n", lin, m"} 
ERicon == Entity U Relationship U Attribute 
ERicons == Entities(erd) U Relationships(erd) U Attributes(erd) 
Part == TotalPar U Partial Par 
Parts == TotaIPars(erd) U PartiaIPars(erd) 

END 
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BEGIN 

Entity HAS_PROPERTIES 

name: Entity -> String 
equal: Entity x Entity -> Boolean 

Relationship HAS_PROPERTIES 

name: Relationship -> String 
cardinality: Relationship -> Cardinality 
equal: Relationship x Relationship -> Boolean 

Attribute HAS_PROPERTIES 

name: Attribute -> String 
equal: Attribute x Attribute -> Boolean 

TotalPars HAS_PROPERTIES 

roleName : TotalPars -> String 
oneEnd : TotalPars -> Entity 
otherEnd : TotalPars -> Relationship 
equal: TotalPars x TotalPars -> Boolean 

PartialPars HAS_PROPERTIES 

roleName: Partial Pars -> String 
oneEnd : Partial Pars -> Entity 
otherEnd : Partial Pars -> Relationship 
equal: Partial Pars x Partial Pars -> Boolean 

AttribLink HAS_PROPERTIES 

oneEnd : AttribLink -> Attribute 
otherEnd : AttribLink -> ERic on 
equal: AttribLink x AttribLink -> Boolean 

END 

SEMANTIC_CONSTRAINTS 

BEGIN 
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C I: "All icons in an ER diagram must be named" 

FORALL i: ERic on • i BELONGING ERicons(erd) IMPLIES 
(NOT (name(i) = "") 

C2: "Each entity has a unique name" 

PREDICATE uniqueName( Entities(erd) ) 

C3: "Each relationship has a unique name" 

PREDICATE uniqueName( Relationships(erd) ) 

C4: "All attibute links to the same icon must be uniquely named" 

FORALL aI, a2 : Attribute· aI, a2 BELONGING Attributes(erd) IMPLIES 
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NOT EXISTS all, al2 : AttribLink· all, al2 BELONGING AttribLinks(erd) AND 
( oneEnd( all) = a I AND 
oneEnd(aI2) = a2 AND 
otherEnd(all) = otherEnd(aI2) AND 
name(al) = name(a2» 

C5: "If the two participation connections of a relationship are joined to the same entity, 
then these connections must be given role names" 

FORALL pI, p2: Part· pI, p2 BELONGING Parts(erd) IMPLIES 
« oneEnd(pl) = oneEnd(p2) AND 
otherEnd(pl) = otherEnd(p2» IMPLIES 
(NOT (roleName(pl) = .... ) AND NOT (roleName(p2) = ''''))) 

C6: "A relationship can only have two participation connections (total or partial)" 

FORALL pI, p2, p3: Part· pI, p2, p3 BELONGING Pm1s(erd) IMPLIES 
« otherEnd(pl) = otherEnd(p2) AND 
otherEnd(pl) = otherEnd(p3) AND 
NOT (pI = p2» IMPLIES 
p2 = p3) 

C7: "All icons in an ER diagram must be connected" 

EXISTS e : Entity • e BELONGING Entities(erd) AND 
( Connect(e) = ERicons(erd) ) 
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(* 'Connect' is a pre-defined function that given a ERicon returns a set of 
ERicons that are connected between them and which include that ERicon. 
The algorithmic definition of this function is given in B.4. *) 

C8: "The minimal ER diagram consists of one entity with one attribute" 

CARDINALITY Entities(erd) >= 1 AND 
CARDINALITY Attributes(erd) >= 1 

END 

B.4 Algorithmic Function Definitions 

B.4.1 Function 'Connect' defined for DFD 

Connect: DFDicon ~ IP DFDicon 

Connect(io) == 
{io} U {Connect(i) 1 3 f: Dataflow • f E Dataflows( dfd) A 

« source(f) = io A destination(f) = i) v 

( source(f) = i A destination(f) = io» } 

B.4.2 Function 'Reach' defined for STD 

Reach: AnyState => IP AnyState 

Reach(so) == 
{so} U {Reach(s) 13 t: Transition • t E Transitions(std) A 

( origin(t) = So A destination(t) = s ) } 
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B.4.3 Function 'Connect' defined for ER Diagrams 

Connect: ERic on ~ IP ERic on 

Connect(io) == 
{io} u {Connect(i) 13 p: Part • P E Parts(erd) A 

« oneEnd(p) = io A otherEnd(p) = i) v 

( oneEnd(p) = i A destination(p) = io » } 

B.4.4 Notes 

178 

Algorithmic function definitions are not included in the semantic specification. The VC-t 
specification language is not intended to express those definitions. They must be imple­
mented manually and stored in a repository. The code generator will then use the imple­
mented code. 

A library of generic functions could be built to avoid having to write the code. For that 
purpose, the functions above can easily be made parametric (notice the similarity between 
the functions given in Sections B.4.1 and B.4.3) so that they may be used with any model­
ling technique. 

J. Artur Vale Serrano June 1997 



Types For The Representation Level - A Generic Lexicon For Interactive Graph Ba~ed Systems 

Appendix C - Types For The Representation Level - A 
Generic Lexicon For Interactive Graph Based 
Systems 
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Although the data structures below have been defined for the work described on this the­
sis, we believe that they constitute a generic lexicon that can be used in other interactive 
graph based systems. 

!-------- Types for Graphical Objects Definitions (Shape and LineStyle) --­

!-------- Type LabelSlots ----

type LabelSlots is structure( 
labelID: inti ! to identify the label in the 
numSlots: inti ! how many labels does the shape/lineStyle have 
posSlots: "Pos ! where are the labels positioned 
) 

!---------- Type Shape -------

type Shape is structure( 
sName: string; ! a name for the shape. E.g. "rectangle" 

! graphical definition 
sImage: image; 
labelSlots: LabelSlots; 

! operations 
draw: proc(Pos); 
delete: procO; 
move: proc(Pos); 
insertLabels: proc(int, "string); ! the first argument is the label ID 
delete Labels: proc(int, "string) 
) 

!--------- Type LineStyle ----

type LineStyle is structure( 
lName: string; ! a name for the line style. E.g. "dashedLine" 
labelSlots: LabelSlots; 

! operations 
draw: proc(Pos, Pos); ! a procedure to draw a line 
delete: procO; 
move: proc(Pos, Pos); 
insertLabels: proc(int, "string); ! the first argument is the label ID 
deleteLabels: proc(int, "string) 
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!----------- Types for Visual Objects Definitions (Icon and Connection) -­

!--------- Type Semantics ------

type Semantics is Constraint_L ! Constraint_L is a list of constraints (rules) 

!--------- Type Icon_ ------

type Icon_ is structure( 
iName: string; ! a name for the icon (given when it is stored in the icon 

! repository). E.g. "ERentity" 
iPhysical: Shape; 
iLogical: Semantics 
) 

!---------- Type Connection -----------

type Connection is structure( 
cName: string; ! a name for the connection (given when it is stored in the 

! connection repository). E.g. "OOAgenSpec" 
cPhysical: LineStyle; 
cLogical: Semantics 
) 

!--------- Types for Visual Objects (VOicon and VOconnection) ---­

!--------- Type HotArea for VOconnection -----

type Circular is structure( 
button: ButtonPack; ! reference to Win button - active area (Win is the Napier88 UIMS) 
position: Pos 
) 

type AllLength is structure( 
startPos: Pos; 
endPos: Pos; 
treshold: int 
) 

type HotArea is variant( 
circular: Circular; 
allLength: AllLength 
) 

!--------- Type VOicon ------

type LabelsInfo is structure( ! label values are provided by the application. 
numLabels: int; 
labels: "string 
) 

type VOicon is structure( 
viName: string ! a name for the VO. A VO is an object to be displayed 

! on the computer screen. E.g. "Woman" 
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viIcon: Icon~ 
viLabels: LabelsInfo; ! If there is only one label, it may be the same as 

! the viName. E.g. "Woman". Labels are displayed by the shape 
! associated with the viIcon. 

! Screen representation 
viButton: ButtonPack ! a Win button 
) 

!--------- Type VOconnection -------

type VOconnection is structure( 
vcName: string; ! a name for the VO. A VO is an object to be displayed 

! on the computer screen. 
vcConnection: Connection; 
vcLabels: LabelsInfo; ! If there is only one label, it may be the same as 

! the vcName. As icons, also connections can have more than 
! one label, e.g. the cardinality in ER: ["1", "m" ]. Labels are displayed by the 
! line style associated with the vcConnection. 

! Screen representation 
vcHotArea: HotArea; ! selectable (or active) area on the connection 
vcOrigin: Pos; ! the position of the VOicon origin 
vcDest: Pos ! the position of the VOicon destination 
) 
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Appendix D - The Compiler's Front-End: a Parser for 
the VC-t Specification Language 

D.I Lexical Specification 

%{ 

#ifdef DEBUG 

mainO 
{ 

char *p; 

while( p = (char*)yylexO) 
printf( "%-15.14s is \"%s\"\n", p, yytext); 

#define token(x) (int)"x" 

#else 

#include "vcStruct.h" 
#include "valueStackUnion.h" 
#include "y.tab.h" 

#define token(x) (int)x 

extern YYSTYPE yylval; 

#endif 

%} 
%A4000 
%06000 
%p 3000 

SEMSPE 
MTMOD 
EXTDEC 
ICONPOWERSETS 
CONNPOWERSETS 

"SEMANTICS_SPECIFICATION" 
"A.MT_MODEL" 
"B.SET _EXTRACTORS_DECLARATIONS" 
"B I.1CON_POWER_SETS" 
"B2.CONNECTION_POWER_SETS" 
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SETDEF "C.SETS_DEFINITIONS" 
SETPRO "D. SET_PROPERTIES " 
SEMCON "SEMANTIC_CONSTRAINTS" 
HAS PRO "HAS_PROPERTIES" 
CONSTRAINTNUM "C" {NATURAL} ":" 
COMMENT ("(*""("*(["*)]1["*]")"1"*"[")])*"*"*"*)") 
UPPERCASELETTER [A-Z] 
LOWERCASELETTER [a-z] 
DIGIT [0-9] 
NATURAL [l-9]{DIGIT}* 
LOWERCASEIDENT {LOWERCASELETTER} [A-Za-zO-9]* 
UPPERCASEIDENT {UPPERCASELETTER} [A-Za-zO-9] * 

1* strings cannot contain newlines - also in C and Modula-2 *1 
STRING (\'["'\n]*\')I(\"[""\n]*\") 
SPACE [ \t\n]+ 
OTHERWISE 

%% 
BEGIN 
END 
PREAMBLE 
NOT 
11_" 

UNIVERSAL 
FORALL 
EXISTENTIAL 
EXISTS 
AND 
U&" 
OR 
"V" 
IMPLICATION 
IMPLIES 
DOUBLEIMPLICATION 
PREDICATE 
TRUE 
FALSE 
CARTESIANPRODUCT 
"x" 
POWERSET 
"P" 
DEFINEDAS 
"==" 
MEMBERSHIP 
BELONGING 
IN 
"E" 

J. Artur Vale Serrano 

return tokenLBEGIN); 
return token(END); 
return token(PREAMBLE); 
1 
return token(NOT); 
1 
return token(UNIVERSAL); 
1 
return token(EXISTENTIAL); 
1 
return token(AND); 
1 
return token(OR); 
1 

return token(IMPLICATION); 
return token(DOUBLEIMPLICATION); 
return token(PREDICATE); 
return tokenLTRUE); 
return tokenLFALSE); 
1 
return token(CARTESIANPRODUCT); 
1 
return token(POWERSET); 
1 
return token(DEFINEDAS); 
1 
1 

1 
return token(MEMBERSHIP); 
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UNION 
"U" 
INTERSECTION 
SETDIFFERENCE 
"\\" 
MAPS TO 
"_>" 
EQUAL 
"_If 
GREATER 
">" 
LESS 
"<" 
ATLEAST 
GREATEROREQUAL 
">=" 
ATMOST 
LESSOREQUAL 
"<=" 
CARDINALITY 
n#" 

{SEMSPE} 
{MTMOD} 
{EXTDEC} 
{ICONPOWERSETS} 
{CONNPOWERSETS} 
{SETDEF} 
{SETPRO} 
{SEMCON} 
{HASPRO} 
{NATURAL} 
{CONSTRAINTNUM} 
{LOWERCASEIDENT} 
{ UPPERCASEIDENT} 
{STRING} 

{COMMENT} 
{SPACE} 
{OTHERWISE} 

%% 

1* 

return token(UNION); 
return token(INTERSECTION); 
I 
return token(SETDIFFERENCE); 
I 
return token(MAPSTO); 
I 
return token(EQUAL); 
I 
return token(GREATER); 
I 
return token(LESS); 
I 
I 
return token(ATLEAST); 
I 
I 
return token(ATMOST); 
I 
return token(CARDINALITY); 
return token(SEMSPE); 
return token(MTMOD); 
return token(EXTDEC); 
return token(ICONPOWERSETS); 
return token(CONNPOWERSETS); 
return token(SETDEF); 
return token(SETPRO); 
return token(SEMCON); 
return token(HASPRO); 
return token(NATURAL); 
return token(CONSTRAINTNUM); 
return token(LOWERCASEIDENT); 
return token(UPPERCASEIDENT); 
return token(STRING); 

return yytext[O]; 

Valid characters not used in the grammar (the verbose alternatives 
provided are used in the grammar specification - file vcSemantics_y) 

"_It n&" "V" "x" tip" n==" "E" "U" "\It n#ft "=" "<tI u>" 
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Valid characters used in the grammar (no verbose alternatives provided) 

"." u:" n(It ")" 
*1 

D.2 Syntax Specification 

1* 
* syntactic analyser for the vcSemantics formal language 
*1 

%{ 

1* 
* EXTERNAL DECLARATIONS 
*1 

#include <stdio.h> 
#include <string.h> 
#include "userTypes.h" 
#include "vcStruct.h" 
#include "valueStackUnion.h" 

extern BUCKET *make_bucketO; 

1* global variables *1 

1* 

P _DOC *lasCp_doc = NULL; 
P _STACK *lascp_stk = NULL; 
P _STACK *currenCp_stk = NULL; 1* so' e' usado qd e' 

diferente de lascp_stk *1 
int *neigb_array = NULL; 
boolean IN_LEVEL_O = TRUE; 

* END EXTERNAL DECLARATIONS 
*1 

%} 
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* terminal symbols (tokens) 
***********************************************************************1 

1* 
* section labels (reserved words) 
*1 

%token VCSPEC PREAMBLE MTMOD EXTDEC ICONPOWERSETS 
CONNPOWERSETS SETDEF SETPRO SEMCON _BEGIN END 

1* 
* negation 
*1 

% token NOT 

1* 
* quantification 
*1 

%token UNIVERSAL EXISTENTIAL 

1* 
* predicate logic 
*1 

%token AND OR IMPLICATION DOUBLEIMPLICATION PREDICATE _TRUE 
_FALSE 

1* 
* sets 
*1 

%token CARTESIANPRODUCT POWERSET DEFINEDAS MEMBERSHIP UNION 
INTERSECTION SETDIFFERENCE 

%token HASPRO 

1* 
* functions 
*1 

%token MAPS TO 

1* 
* equality 
*1 
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%token EQUAL 

/* 
* natural expressions 
*/ 

%token GREATER LESS ATLEAST ATMOST CARDINALITY 
%token <vcString> NATURAL 

/* 
* identifiers 
*/ 

%token <vcString> LOWERCASEIDENT 
%token <vcString> UPPERCASEIDENT 

/* 
* other tokens 
*/ 

%token <vcString> CONSTRAINTNUM 
%token COMMENT SPACE 
%token <vcString> STRING 

/********************************************************************** 
* nonterminal symbol values 
**********************************************************************/ 

%type <bkt> constraintDesc 
%type <bkt> setName 
%type <bkt> constraintnum 
%type <bkt> string 
%type <bkt> natural 
%type <bkt> variableName 

%start vcSemanticsSpecification 

%% 

/* 
* productions of the grammar 
*/ 

vcSemanticsSpecification 
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: string SEMSPE PREAMBLE rntModel setExtractors setDefinitions 
setProperties sernanticConstraints "." 

rntModel 
: MTMOD _BEGIN variableNarne EQUAL powerSetCartesianProduct END 

setExtractors 
: EXTDEC ICONPOWERSETS _BEGIN iconExtractorList END 

CONNPOWERSETS _BEGIN connExtractorList END 

iconExtractorList 
: extractor 
I iconExtractorList extractor 

connExtractorList 
: extractor 
I connExtractorList extractor 

extractor 
: setN arne ":" variableN arne MAPS TO powerSetCartesianProduct 

setDefinitions 
: SETDEF _BEGIN setDefinitionList END 

setDefinitionList 

I setDefinition 
I setDefinitionList setDefinition 

setDefinition 
: setNarne DEFINEDAS setSpecification 

setSpecification 
: set 
I "{" elernentList "}" 

elernentList 
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: stringList 
I naturalList 

setProperties 
: SETPRO _BEGIN propertiesList END 

propertiesList 

I properties 
I propertiesList properties 

properties 
: setName HAS PRO propertyList 

propertyList 
: property 
I property List property 

property 
: variableName ":" setCartesianProduct MAPS TO range 

setCartesianProduct 
: setName 
I setCartesianProduct CARTESIANPRODUCT setName 

range 
: set 1* the folowing types are allowed: Boolean, Natural, String *1 

powerSetCartesianProduct 
: powerSet 
I powerSetCartesianProduct CARTESIANPRODUCT powerSet 

powerSet 
: POWERSET setName 

semanticConstraints 
: SEMCON _BEGIN constraintList END 
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constraintList 

I constraintList constraint 
I constraintList error 

constraint 
: constraintDesc quantifiedPLstatement 
I constraintDesc instantiatedPLstatement 

constraintDesc 
: constraintnum 
I constraintnum string 

quantifiedPLstatement 
: quantificationList "(" pI Statement ")" 

quantificationList 
: universal Quantification 
I existential Quantification 
I quantificationList universal Quantification 
I quantificationList existential Quantification 

universal Quantification 
: NOT universal Quantification 
I UNIVERSAL variableList ":" set "," variableList MEMBERSHIP 

set IMPLICATION 

existential Quantification 
: NOT existentialQuantification 
I EXISTENTIAL variableList ":" set "," variableList MEMBERSHIP 

set AND 

instantiatedPLstatement 
: plStatement 

plStatement 
: NOT pI Statement 
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I "(" plStatement ")" 
I plStatement pI Connective plStatement 
I equality 
I simpleBooleanExpression 

plConnective 
: DOUBLEIMPLICATION 
I IMPLICATION 
lAND 
lOR 

equality 
: set EQUAL set 
I otherObject EQUAL otherObject 

simpleBooleanExpression 

set 

: naturalExpression naturalComparison naturalExpression 
I predicate 
I_TRUE 
I_FALSE 

: setName 
I setApplication 
I set setOperation setName 
I set set Operation setApplication 

setOperation 
: INTERSECTION 
I UNION 
I SETDIFFERENCE 

natural Comparison 
/* note: equality is covered by the rule [ "(" otherObject EQUAL 

otherObject ")" ] expressed above */ 
: GREATER 
I LESS 
IATLEAST 
IATMOST 
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predicate 
: PREDICATE variableName "C" setApplication ")" 

setApplication 
: setName "(" ")" 
I setName "(" argList ")" 

application 
: variableName "(" ")" 
I variableName "(" argList ")" 

argList 
: variableList 
I setList 
I stringList 
I argList ", II setList 
I argList ", II variableList 
I argList ", II stringList 

setList 
: setName 
I setList "," setName 

variableList 
: variableName 
I variableList "," variableName 

otherObject 
: string 
I naturalExpression 

naturalExpression 
: CARDINALITY set, 
I application 
I variableName 
I natural 

stringList 
: string 
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I stringList "," string 

naturalList 
: natural 
I naturalList "," naturalList 

variableName 
: LOWERCASEIDENT 

setName 
: UPPERCASEIDENT /* the convention that set names begin with a capital 

letter is recomended by [Woodcock88] page74 */ 

natural 
: NATURAL 

string 
: STRING 

constraintnum 
: CONSTRAINTNUM 

%% 
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Appendix E - The Code Generated for State Transition 
Diagrams 

194 

Excerpts of Napier88 code, generated from VC-t specifications of constraints, are given 
below to exemplify the use of the translation rules (see Section 8.3.3 on page 99). The 
constraints are extracted from the specification of STD presented in Appendix B.2. The 
first five constraints provide examples of all the rules except of Rule 7 and Rule 8; these 
two rules correspond to multiple bound variables. A example of that case is given by con­
straint C 1 O. Therefore, to make the presentation more concise we restrict it to the con­
straints C 1 to C5 and C 10, rather than using the full specification. The translation rules 
used in the generation process are indicated as comments in the code. 

Constraint 1 

VC-t specification 

'C1: "Names must be unique amongst initialState, states and finalStates" 

PREDICATE uniqueName( AnyStates(std) )' 

Napier88 

'let processInstantiated 1* Rule 4 * I 
begin 

end 

1* evaluate predicate* I 
H( CuniqueName( "AnyStates") 1* library function *1 ) 
do success = TRUE 

if( traverse( processInstantiated ) = FAIL) 1* Rule 3 *1 
do constraintFeedback( 

"Names must be unique amongst initialState, states and finalStates") 1* Rule 1*1' 

Constraint 2 

VC-t specification 

'C2: "A STD must have at least one initial state" 

EXISTS i : InitialState • i BELONGING InitialStates(std) AND TRUE' 

Napier88 

'let processExistential 1* Rule 11 and Rule 5 *1 
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begin 
if( voIcon( viIcon )( iName ) = "InitiaIState") 1* Rule 2 • / 
do success = TRUE 

end 

if( traverse( processExistential ) = FAIL) /* Rule 3 .. / 
do constraintFeedback( "A SID must have an InitiaIState") 1* Rule 1*/' 

Constraint 3 

VC-t specification 

'C3: "A SID has at most one initial state" 

CARDINALITY InitialStates( dfd) <= l' 

Napier88 

'let pos-condition 1* Rule 12 .. / 
begin 

if( InitialStates" 1) /*perform final evaluation of predicate logic statement· / 
do return TRUE 

end' 

'int InitialStates = 0 /* Rule 13 .. / 

let processCardinality 
begin 

end 

if( volcon( vilcon )( iNarne ) = "InitiaIState") /* Rule 2 • / 
do InitialStates = InitialStates + 1 /*Rule 12*/ 

if( traverse( processCardinality ) = FAIL) /* Rule 3· / 
do constraintFeedback( "A SID has at most one initial state") /* Rule 1·/' 

Constraint 4 

VC-t specification 

'C4: "The initial state must have at least one out-transition" 

FORALL i : InitialState • f BELONGING InitiaIStates(std) IMPLIES 
( EXISTS t : Transition. t BELONGING Transitions(std) AND 

( origin(t) = i AND -( destination(t) = i )))' 

Napier88 

'1* Fragment 1*/ 
/*First level- universal quantification· / /* Rule 10 • / 

let processUniversalL1 /* Rule 6 • / 
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begin 
if( voIconLl( viIcon )( iNarne ) = "InitialState") /* Rule 2 ""I 

do if( -traverse( processExistentialL2 ) = OK) /* Rule 3 ""/ 
do violated = TRUE 

end 

if( traverse( processUniversalLl ) = FAIL) 1* Rule 3 ""/ 
do constraintFeedback( "The initial state must have at least one out-transition" ) 
/* Rule 1""/' 

, /* Fragment 2""/ 
I*Second level- existential quantification""/ 1* Rule 9 ""I 

let processExistentialL2 /* Rule 5 ""/ 
begin 

if( voConnectionL2( vcConnection )( cNarne ) = "Transition" and 1* Rule 2 ""I 
( origin( voConnectionL2 ) = voIconLl and 
destination( voConnectionL2) -= voIconLl)) 

do success = TRUE 
end' 

To obtain the final code, the fragments must be sequenced in reverse order I*see 
note 7.1 on page 103*1. 

Constraint 5 

VC-t specification 

'C5: "A final state cannot have out-transitions or loop-transitions" 

FORALL f : FinalState • f BELONGING FinalStates(std) IMPLIES 
-( EXISTS t : Transition. t BELONGING Transitions(std) AND 

origin(t) = f)' 

Napier88 

, /* Fragment 1""/ 
/*First level- universal quantification""/ /* Rule 10 ""/ 

let processUniversalLl 1* Rule 6 ""/ 
begin 

end 

if( volconLl( viIcon)( iNarne ) = "FinalState") 1* Rule 2 ""/ 
do if( -traverse( processExistentialL2 ) = OK) 1* Rule 3 ""/ 

do violated = TRUE 

if( traverse( processUniversalLl ) = FAIL) 1* Rule 3 ""/ 
do constraintFeedback( 

"A final state cannot have out-transitions or loop-transitions") 1* Rule 1""/' 

, 1* Fragment 2"" I 
I"Second level- existential quantification"" I 1* Rule 9 ""/ 
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let processExistentialL2 1* Rule 5 * / 
begin 

if( -( voConnectionL2( vcConnection )( cName ) = "Transition" and /* Rule 2 .. / 
origin( voConnectionU ) = voIconLl )) 

do success = TRUE 
end' 

To obtain the final code, the fragments must be sequenced in reverse order I*see 
note 7.1 on page 103*1. 

Note: the negation inside the if statement ( in 'processExistentiaIL2' ) results of 
having a negation in the existential Quantification in the specification. 

Constraint 10 

VC-t specification 

'ClO: "The same pair of states cannot be connected by transitions with 
the same direction and the same transition condition" 

FORALL tl, t2 : Transition. £1, f2 BELONGING Transitions(std) IMPLIES 
« origin(tl) = origin(t2) AND 

destination(tl) = destination(t2) AND 
transitionCondition(tl) = transitionCondition(t2» IMPLIES 

tl=t2)' 

Napier88 

, 1* Fragment 1*/ 1* Rule 8 * / 

let processUniversalSl 1* Rule 6 * / 
begin 

end 

if( voIconSl( viIcon )( iName ) = "Transition") 1* Rule 2 * / 
do if( traverse( processUiversalS2) = FAIL) 1* Rule 3 * / 

do violated = TRUE 

if( traverse( processUniversalSl ) = FAIL) 1* Rule 3 * / 
do constraintFeedback( "The same pair of states cannot be connected by transitions 

with the same direction and the same transition condition'" 

, 1* Fragment 2*/ 
let processUniversalS2 1* Rule 6 * / 
begin 

if( voIconS2( viIcon )( iName ) = "Transition") 1* Rule 2 * / 
do if( -( -( origin( voIconSl ) = origin( voIconS2 ) and 

destination( voIconSl ) = destination( voIconS2 ) and 
transitionCondition( voIconSl) = transitionCondition( voIconS2) ) or 
( volconSl = voIconS2 })} 

do violated = TRUE 
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end' 

To obtain the final code, the fragments must be sequenced in reverse order (see 
note 7.1 on page 103). 

198 

J. Artur Vale Serrano June 1997 



199 

Bibliography 

[Adreit91] Adreit, Frangoise and Bonjour, Michel, "EcrinsDesign: a Graphical Editor for 
Semantic Structures", presented at Advanced Information Systems Engineering 3rd 
International Conference CAiSE'91, Trondheim, Norway, 1991. 

[Ah086] Aho, Alfred v.; Sethi, Ravi and Ullman, Jeffrey D., "Compilers Principles, 
Techniques and Tools", Addison-Wesley Publishing Company, 1986. 

[Alban095] Albano, A.; Ghelli, G. and Orsini, R., "An Introduction to Fibonacci: A 
Programming Language for Object Databases", Technical Report Series FIDF195! 
120, 1995. 

[Alderson91] Alderson, Albert, "Meta-CASE Technology", presented at European 
Symposium on Software Development Environments and CASE Technology, 
Konigswinter, Germany, 1991. 

[Allen91] Allen, R. E., "The Concise Oxford Dictionary", BCA, 1991. 

[Atkinson90] Atkinson, M.P., Richard, P., and Trinder, P.W., "Bulk Types for Large Scale 
Programming", presented at First International EastlWest Database Workshop, 
1990. 

[Atkinson95] Atkinson, Malcolm and Morrison, Ronald, "Orthogonally Persistent Object 
Systems", in journal VLDB, vol. 4, pp. 319-401,1995. 

[Atkinson96] Atkinson, M. P.; Daynes, L.; Jordan, M. 1.; et al., "An Orthogonally 
Persistent Java", in journal ACM Sigmod Record, vol. 25,1996. 

[Atzeni93] Atzeni, Paolo and Torlone, Riccardo, "A Metamodel Approach for the 
Management of Multiple Models and the Translation of Schemes", in journal 
Information Systems, vol. 18, pp. 349-362, 1993. 

[Bancilhon92] Bancilhon, E; Delobel, C. and Kanellakis, P., "The Story of 02: Building 
an Object-Oriented Database System", Morgan Kaufmann, 1992. 

[Battista90] Battista, G. Di; Giammarco, A.; Santucci, G.; et al., "The Architecture of 
Diagram Server", presented at IEEE Workshop on Visual Languages, Skokie, 
Illinois, 1990. 

J. Artur Vale Serrano June 1997 



200 

[Beer88] Beer, Stephen John, "Supporting Checking in a Generic, Graphical, Software 
Design Environment", University of Strathc1yde, Glasgow, PhD, 1988. 

[Bertolazzi92] Bertolazzi, P.; Battista, G. Di and Liotta, G., "Parametric Graph Drawincr" I:> , 

CNR, Roma, Italia, Technical Report 6/67, 199217 1992. 

[Blaha92] Blaha, Michael, "Models of Models", in journal JOOP, pp. 13-18, 1992. 

[Borning81] Borning, Alan, "The Programming Language Aspects of ThingLab, a 
Constraint-Oriented Simulation Laboratory", in journal ACM Transactions on 
Programming Languages and Systems, vol. 3, 1981/10, pp. 353-387, 1981. 

[Borning87] Borning, A; Duisberg, R.; Freeman-Benson, B.; et aI., "Constraint 
Hierarchies", presented at OOPSlA, 1987. 

[Bott89] Bott, Frank, "ECLIPSE An Integrated Project Support Environment", in lEE 
Computing Series, vol. 14, Peter Peregrinus Ltd., London, United Kingdom, 1989. 

[Brinkkemper93] Brinkkemper, S., "Integrating Diagrams in CASE Tools through 
Modelling Tranparency", in journal Information and Software Technology, vol. 35, 
pp. WI-lOS, 1993. 

[Budgen92] Budgen, David, "Augmenting the Design Process: Transformations from 
Abstract Design Representations", presented at Advanced Information Systems 
Engineering 4th International Conference CAiSE'92, Manchester, United Kingdom, 
1992. 

[Budgen94] Budgen, David, "Software Design", Addison-Wesley, 1994. 

[Chang90] Chang, Shi-Kuo, "Principles of Visual Programming Systems", Prentice-Hall 
International, Inc., 1990. 

[Chen76] Chen, P., "The Entity Relationship Model- Toward a Unified View of Data", in 
journal ACM Transactions on Database Systems, 1976. 

[Cooper90] Cooper, Richard, "Configurable Data Modelling Systems", presented at 9th 
Entity Relationship, Lausanne, 1990. 

[Cooper94] Cooper, Richard and WeIland, Ray, "The Contribution of the Persistent 
Approach to Software Engineering", presented at Workshop on the Intersection 
Between Databases and Software Engineering, Sorrento, Italy, 1994. 

[Cutts89] Cutts, Q. I.; Dearie, A; Kirby, G. N. C.; et aI., "WIN: a Persistent Window 

J. Artur Vale Serrano June 1991 



201 

Management System.", Universities of St Andrews and Glasgow, Persistent 
Programming Research Report 73,1989. 

[Cypher93] Cypher, Allen, "Watch What I Do - Programming by Demonstration", The 
MIT Press, 1993. 

[Ede188] Edel, Mark, "The Tinkertoy Graphical Programming Environment", in journal 
IEEE Transactions on Software Engineering, pp. 1110-1115, 1988. 

[Ehrig86] Ehrig, H.; Nagl, M.; Rozemberg, G.; et a!., "Graph-Grammars and Their 
Application to Computer Science. 3rd International Workshop, Warrenton, Virginia, 
USA", in Lecture Notes in Computer Science, vol. 291, Goos, G. and Hartmanis, J., 
Eds.: Springer-Verlag, 1986. 

[Fun96] Fun, Choy Lai, "Development of a Graphical User Interface in TkWin for the 
GraphTool", University of Glasgow, MSc 1996. 

[Green89] Green, T. R. G., "Cognitive Dimensions of Notations", presented at HCl'89 
Conference on People and Computers V, 1989. 

[HareI88] Harel, David, "On Visual Formalisms", in journal Communications of ACM, pp. 
514-530, 1988. 

[Hekmatpour87a] Hekmatpour, Shahram, "Formal Specification Based Prototyping", 
Open University, PhD, 1987. 

[Hekmatpour87b] Hekmatpour, Sharam and Woodman, Mark, "Formal Specification of 
Graphical Notations and Graphical Software Tools", presented at 1st European 
Software Engineering Conference, Strasbourg, France, 1987. 

[Hofstede93] Hofstede, A H. M. ter; Proper, H. A. and Weide, Th. P. van der, "Forn1al 
Definition of a Conceptual Language for the Description and Manipulation of 
Information Models", in journal Information Systems, pp. 489-523, 1993. 

[Hofstede96] Hofstede, A H. M. ter and Verhoef, T. E, "Meta-CASE. Is the Game Worth 
the Candle?", in journal Information Systems, pp. 41-68, 1996. 

[Jackson75] Jackson, M. A, "Principles of Program Design", vol. 12, Academic Press, 
1975. 

[Jazayeri95] Jazayeri, Mehdi, "Component Programming", presented at Software 
Engineering - ESEC'95 5th European Software Engineering Conference, Sitges, 
Spain, 1995. 

J. Artur Vale Serrano June 1997 



202 

[Kaplan90] Kaplan, Simon M., ''Applying Graph Grammars to Software Engineering", 
presented at Graph-Grammars and Their Application to Computer Science. 4th 
International Workshop, Bremen, Germany, 1990. 

[Karsenty92] Karsenty, SoIange and Landay, James A. and Weikart, Chris, "Inferring 
Graphical Constraints with Rockit", presented at HCl, York, United Kingdom, 
1992. 

[Kelly96] Kelly, Steven; Lyytinen, Kalle and Rossi, Matti, "MetaEdit+ A FuIIy 
Configurable Multi-User and Muti-Tool CASE and CAME Environment", 
presented at Advanced Information Systems Engineering 8th lmemational 
Conference, CAiSE'96, Heraklion, Crete, Greece, 1996. 

[Kernighan88] Kernighan, Brian W. and Ritchie, Dennis M., "The C Programming 
Language", 2 ed, Prentice-Hall, 1988. 

[King89] King, Roger, "My Cat is Object-Oriented", in "Object-Oriented Concepts, 
Databases, and Applications", Kim, Won and Lochovsky, Frederick H., Eds. 
Reading, Mass., Addison-Wesley Publishing Co., 1989, pp. 23-30. 

[Kirby94] Kirby, G. N. c.; Brown, A. L.; Connor, R. C. H.; et al., "The Napier88 Standard 
Library Reference Manual (Version 2.2)", Department of Computational Science, 
University of St Andrews, Research Report CS194n, 1994. 

[Kreowski90] Kreowski, Hans-Jorg, "Applied Graph Transformation", presented at 
Graph-Grammars and Their Application to Computer Science. 4th lntematiollal 
Workshop, Bremen, Germany, 1990. 

[Kruse87] Kruse, R.L., "Data Structures and Program Design", PrenticelHall International 
Inc., 1987. 

[Ku095] Kuo, Ying Jean, "The Design and Implementation of a Truly Integrated GIS 
Using the Persistent Programming Language Napier88", University of Glasgow, 
Technical Report Series FIDEl951131, PhD, 1995. 

[Larsson96] Larsson, Peter, "TkWin a Modem GUI for Napier88", University of Glasgow, 
MSc 1996. 

[Levialdi93] Levialdi, Stefano; Mussio, Piero; Protti, Marco; et al., "Reflections on 
Icons", presented at VL'93, 1993. 

[Marttiin95] Marttiin, Pentti; Lyytinen, Kalle; Rossi, Matti; et al., "Modeling 
Requirements for Future CASE: Modeling Issues and Architectural 

J. Artur Vale Serrano 
June 1997 



203 

Considerations", in journal Information Resources Management Journal, pp. 15-25, 
1995. 

[Matthes94] Matthes, Florian; MiiBig, Sven and Schmidt, J. W., "Persistent Polymorphic 
Programming in Tycoon: An Introduction", FIDE Project Coordinator, Department 
of Computing Sciences, University of Glasgow, Glasgow G 128QQ, FIDE Technical 
Report Series FIDE/94/106, 1994/8 1994. 

[Meng96] Meng, Alvin Lam Fai, "Development of a Drawing Canvas in TkWin for the 
GraphTool", University of Glasgow, MSc 1996. 

[Minas95] Minas, Mark and Viehstaedt, Gerhard, "A Generator for Diagram Editors 
Providing Direct Manipulation and Execution of Diagrams", presented at lIth 
International IEEE Symposium on Visual Languages, VL'95, Darmstadt, Germany, 
1995. 

[Morrison94] Morrison, Ron; Brown, Fred; Connor, Richard; et al., "The Napier88 
Reference Manual Release 2.0", University of StAndrews, Research Report CS/94/ 
8, 1994. 

[Myers90] Myers, Brad A.; Giuse, Dario A.; Dannenberg, Roger B.; et al., "Gamet: 
Comprehensive Support for Graphical, Highly Interactive User Interfaces", in 
journal Computer, vol. 23, pp. 71-85, 1990. 

[Myers92] Myers, Brad A. and Zanden, Brad Vander, "Environment for Rapidly Creating 
Interactive Design Tools", in journal The Visual Computer, pp. 94-116, 1992. 

[NagI86] Nagl, Manfred, "A Software Development Environment Based on Graph 
Technology", presented at Graph-Grammars and Their Application to Computer 
Science. 3rd International Workshop, Warrenton, Virginia, USA, 1986. 

[NagI90] Nagl, Manfred, "Graph Grammars which are Suitable for Applications", 
presented at Graph-Grammars and Their Application to Computer Science. 4th 
International Workshop, Bremen, Germany, 1990. 

[Nuseibeh92] Nuseibeh, Bashar and Finkelstein, Anthony, "ViewPoints: A Vehicle for 
Method and Tool Integration", presented at International Workshop 011 CASE 
(CASE92), Montreal, Canada, 1992. 

[Ousterhout94] Ousterhout, J. K., " Tel and the Tk Toolkit", 4 ed. Reading Massachusetts, 
Addison Wesley, 1994. 

[Paredes93] Paredes, Carlos; Fiadeiro, Jose Luis and Costa, Jose Felix, "Object 

1. Artur Vale Serrano June 1997 



204 

Specifications: Modeling Behavior through Rules", presented at OOPSLA '93 
Workshop on Specification of Behavioral Semantics in Object-Oriented 
Information Modeling, Washington, DC, USA, 1993. 

[Poswig92] Poswig, Jorg; Teves, Klaus; Vrankar, Guido; et al., "VisaVis - Contributions to 
Practice and Theory of Highly Interactive Visual Languages", presented at IEEE 
Workshop on Visual Languages, Seattle, Washington, 1992. 

[Rader93] Rader, Jock; Morris, Ed J. and Brown, Alan W., "An Investigation into the 
State-of-the-Practice of CASE Tool Integration", presented at Software Engineering 
Environments, Reading, United Kingdom, 1993. 

[Reeves95] Reeves, Andrew; Marashi, Mustafa and Budgen, David, "A Software Design 
Framework or How to Support Real Designers", in journal Software Engineering 
Journal, pp. 141-155, 1995. 

[Rekers94] Rekers, Jan, "On the Use of Graph Grammars for Defining the Syntax of 
Graphical Languages", Leiden University, Department of Computer Science, 
Technical Report 94-11, 1994/11 1994. 

[Rumbaugh91] Rumbaugh, James; Blaha, Michael; Premerlani, William; et al., "Object­
Oriented Modeling and Design", Prentice-Hall, Englewood Cliffs, New Jersey, 
1991. 

[Sanders95] Sanders, G. Lawrence, "Data Modeling", boyd & fraser publishing company, 
1995. 

[Sarkar92] Sarkar, Manojit and Brown, Marc H., "Graphical Fisheye Views of Graphs", 
presented at CHI'92, 1992. 

[Schreiner85] Schreiner, Axel T. and Friedman, H. George, Jr., "Introduction to Compiler 
Construction with UNIX", Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1985. 

[Schurr95] Schurr, Andy; Winter, Andreas J. and Zundorf, Albert, "Graph Grammar 
Engineering with PROGRES", presented at Software Engineering - ESEC'95 5th 
European Software Engineering Conference, Sitges, Spain, 1995. 

[Serran094] Serrano, J. Artur and Cooper, Richard, "On the Semantics of Visual Objects", 
presented at HCI'94 People and Computers, Glasgow, Scotland, United Kingdom, 
1994. 

[Serran095] Serrano, J. Artur, "The Use of Semantic Constraints on Diagram Editors", 
presented at llth International IEEE Symposium on Visual Languages, VL'95, 

J. Artur Vale Serrano 
June 1997 



205 

Darmstadt, Germany, 1995. 

[Shu88] Shu, Nan c., "Visual Programming", Van Nostrand Reinhold Company, N.Y., 
1988. 

[Sleep90] Sleep, M. R., "Applications of Graph Grammars and Directions for Research", 
presented at Graph-Grammars and Their Application to Computer Science. 4th 
International Workshop, Bremen, Germany, 1990. 

[Smolander91] Smolander, Kari; Lyytinen, Kalle; Tahavanainen, Veli-Pekka; et aI., 
"MetaEdit - A flexible Graphical Environment for Methodology Modelling", 
presented at Advanced Information Systems Engineering 3rd International 
Conference CAiSE'91, Trondheim, Norway, 1991. 

[Sommerville86] Sommerville, Ian, "Software Engineering Environments". London, Peter 
Peregrinus Ltd., 1986. 

[Stroustrup88] Stroustrup, Bjarne, "What is Object-Oriented Programming?", in journal 
IEEE Software, vol. 5, pp. 10-20, 1988. 

[Stubbs89] Stubbs, D.E and Webre, N.W., "Data Structures With Abstract Data Types and 
Pascal", second edition, Thompson Information, 1989. 

[Tolvanen93] Tolvanen, Juha-Pekka and Lyytinen, Kalle, "Flexible Method Adaptation in 
CASE - the Metamodeling Approach", in journal Scandinavian Journal of 
Information Systems, vol. 5, pp. 51-77, 1993. 

[UdeIl94] Udell, Jon, "Componentware", in journal Byte, pp. 46-56, 1994. 

[Viehstaedt95] Viehstaedt, Gerhard and Minas, Mark, "Generating Editors for Direct 
Manipulation of Diagrams", presented at Human-Computer Interaction 5th 
International Conference EWHcr95, Moscow, Russia, 1995. 

[Waite95a] Waite, Cathy; Philbrow, Paul; Atkinson, Malcolm; et al., "The Glasgow 
Persistent Workshop: Principles and User Guide", University of Glasgow, Technical 
Report Series FIDEl95/125, 1995/8/22 1995. 

[Waite95b] Waite, Cathy; Welland, Ray; Printezis, Tony; et aI., "Glasgow Libraries for 
Orthogonally Persistent Systems - Principles, Organization and Contents", 
University of Glasgow, Technical Report Series FIDE/95/132, 1995. 

[Welland88] Welland, Ray, "A Toolbuilders Guide to the ECLIPSE Design Editing 
System", University of Strathclyde, Glasgow, Research Report CS/ST/1I88, 1988. 

1. Artur Vale Serrano June 1997 



206 

[Welland90] WeIland, Ray; Beer, Stephen and Sommerville, Ian, "Method Rule Checking 
in a Generic Design Editing System", in journal Software Engineering Journal, pp. 
105-115, 1990. 

[Wijers90] Wijers, G. M. and Heijes, H., "Automated Support of the Modelling Process: A 
View Based on Experiments with Expert Information Engineers", presented at 
CAiSE'90, 1990. 

[Woodcock88] Woodcock, Jim and Loomes, Martin, "Software Engineering 
Mathematics", Pitman, 1988. 

[Wynekoop93] Wynekoop, Judy L. and Russo, Nancy L, "System Development 
Methodologies: Unanswered Questions and the Research-Practice Gap", presented 
at Fourteenth International Conference on Information Systems, Orlando, Florida, 
1993. 

[Zanden91] Zanden, Brad Vanden; Myers, Brad A.; Giuse, Dario and Szekely, Pedro, "The 
Importance of Pointer Variables in Constraint Models", presented at UIST, 1991. 

J. Artur Vale Serrano June 1997 


