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ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium found ubiquitously in soil and 

water. It is an opportunistic pathogen that is capable of causing disease in susceptible 

humans, for example patients suffering from cystic fibrosis, burns or the 

immunocompromised. P. aeruginosa produces a large number of virulence factors that 

enable it to colonise and infect a wide range of tissue types. Among these virulence 

factors are the toxins secreted by the type III secretion (TTS) system. TTS systems are 

found exclusively in Gram-negative bacteria and they consist of a needle like structure 

that injects toxins from the bacteria directly into the cytoplasm of a eukaryotic target 

cell. P. aeruginosa encodes a TTS system that translocates four known toxins into 

eukaryotic cells; Exoenzyme (Exo) S, ExoT, ExoU and ExoY. ExoS and ExoT contain 

two catalytic domains, an N-terminal GTPase activating protein (GAP) domain and a C- 

terminal ADP-ribosyltransferase (ADPRT) domain. ExoU exhibits phospholipase 

activity and ExoY is an adenylate cyclase. All the TTS toxins from P. aeruginosa 

require a eukaryotic cofactor for activation. The ADPRT domains of ExoS and ExoT 

require a member of the 14-3-3 protein family, while the eukaryotic cofactors for ExoU 

and ExoY remain unknown.

In this study we sought to further elucidate the mechanisms of action of the 

pseudomonal TTS toxins ExoS, ExoU and ExoY. Initially we used Saccharomyces 

cerevisiae as a model in which to study ExoS. We demonstrated that ExoS is so toxic 

to S. cerevisiae that the galactose-inducible GALl promoter system produced enough 

ExoS under glucose-repressing conditions to prevent transformation of an ExoS 

expressing construct. We therefore utilised a tetracycline-regulated activator-repressor 

dual system to provide tight control of ExoS expression and demonstrated that ExoS 

was indeed highly toxic to yeast. Both the GAP and ADPRT domains of ExoS were 

cytotoxic to S. cerevisiae but the ADPRT domain was responsible for the extreme 

potency of this toxin. We demonstrated that the ADPRT domain of ExoS disrupted the 

actin cytoskeleton by causing large aggregates of densely stained cortical actin patches, 

thick disorganised actin cables and a general loss in actin polarity. The actin disruption 

phenotype was similar to that of a yeast mutant that expresses mutant actin that is 

unable to disassociate and therefore forms very stable actin fibres. Thus, the ADPRT 

domain of ExoS may act by stabilising filamentous actin in S, cerevisiae. ExoS also



caused an increase in the number of mating projections formed after treatment with the 

a-factor mating pheromone and inhibited normal bud formation after release from ex- 

factor induced cell cycle arrest. Finally, using the S. cerevisiae system we showed that 

the ExoS ADPRT domain inhibits DNA synthesis following release from pheremone- 

induced growth arrest.

After establishing that yeast were sensitive to the toxic effects of ExoS, ExoU and 

ExoY we used a S. cerevisiae deletion library to screen for mutants able to grow in the 

presence of these TTS toxins. Most of the deletion mutants initially identified as being 

resistant to ExoS, ExoU or ExoY turned out to be false positives and probably arose due 

to a mutation in the toxin gene. Our screen did identify a number of yeast mutants that 

were unable to transcribe the toxin genes, for example deletion of either GAL3 or GAIA 

rendered S. cerevisiae resistant to the exoU and exoYcontaining plasmids, as these yeast 

mutants were unable to utilise galactose to induce expression from the GALI promoter. 

We also identified a yeast mutant with a deletion in the YGR064W/SPT4 locus that was 

able to grow under inducing conditions for ExoS, ExoU and ExoY expression. We 

determined by complementation analysis that deletion of the SPT4 gene enabled S. 

cerevisiae to grow. Spt4 is an RNA polymerase II transcription elongation factor 

required for transcription of long or GC-rich DNA sequences. Thus, we hypothesise 

that the SPT4 yeast deletion mutant is resistant to the exoS, exoU and exoY constructs as 

it is unable to transcribe these GC-rich genes. Our failure to identify any S. cerevisiae 

deletion mutants that were capable of producing the pseudomonal TTS toxins but 

resistant to their effects suggests that no single, non-essential, non-redundant gene is 

required for their cytotoxic activity. Thus, the unknown eukaryotic cofactors for ExoU 

and ExoY cannot be non-essential, non-redundant proteins.

In the final part of this study we used a mammalian epithelial cell line to examine the 

modification, localisation and toxicity of ExoU. We discovered that ExoU was 

diubiquitinated at lysine residue 178 through a lysine 63 ubiquitin linkage. We 

demonstrated that a region at the C-terminus of ExoU between amino acids 679 and 683 

was required for this modification and that the tryptophan residue at position 681 was 

required for wild type levels of diubiquitination. We demonstrated that ExoU localises 

to the plasma membrane of eukaryotic cells and that the same C-terminal region 

required for diubiquitination was also required for plasma membrane localisation. The



diubiquitinated form of ExoU was found exclusively in the membrane-enriched 

particulate cellular fraction and mutation of the diubiquitinated lysine residue 178 did 

not abolish plasma membrane localisation, suggesting that diubiquitination was a 

consequence not a cause of plasma membrane localisation. We also demonstrated that 

the C-terminal region between amino acids 679 and 683 was required for toxicity and 

phospholipase activity of ExoU. The tryptophan 681 residue was required for wild type 

levels of phospholipase activity but its mutation did not alter the toxicity of ExoU 

towards eukaryotic cells. We demonstrated that ubiquitination does not alter the 

toxicity or phospholipase activity of ExoU but does result in a small increase in 

degradation of the toxin. We also showed that the eukaryotic co-factor required for 

ExoU phospholipase activity fractionates with the membrane-enriched particulate 

cellular fraction. Our results suggest that the C-terminus of ExoU is required to target 

the toxin to the plasma membrane where its eukaryotic cofactor resides. Once at the 

membrane, ExoU can act as a phospholipase and is diubiquitinated. The consequences 

of diubiquitination are unclear but they may target the modified toxin to the endocytic 

pathway.
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CHAPTER 1: GENERAL INTRODUCTION

1.1. Introduction

Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is able to cause 

life-threatening diseases in compromised individuals. This opportunistic pathogen 

produces a wide-range of virulence factors that enables it to infect, grow and cause 

disease within susceptible hosts. One of the main virulence determinants of P. 

aeruginosa is its type III secretion (TTS) system that allows the injection of bacterial 

toxins directly into the cytoplasm of eukaryotic host cells. P. aeruginosa translocates at 

least four toxins through its TTS system: Exoenzyme (Exo) S, ExoT, ExoU and ExoY.

The work presented in this thesis explores the molecular mechanism of action of the P. 

aeruginosa  TTS toxins, specifically ExoS and ExoU. This chapter provides an 

overview of the diseases caused by P. aeruginosa and the virulence factors it produces. 

Particular attention is paid to the TTS system and the toxins secreted by this system 

both in general and in P. aeruginosa. The aim of this chapter is to emphasise the key 

role TTS toxins play in pseudomonal infection and thus place into context the 

importance of my investigation into their action. Also, by reviewing what is currently 

known about the exotoxins o f P. aeruginosa, the contribution of my results into 

understanding their mechanism of action can be assessed.

1.2. Pseudomonas aeruginosa

P. aeruginosa is the major pathogenic bacterium belonging to the family 

Pseudomonadaceae. The name aeruginosa arises from the green-blue colony colour of 

many clinical isolates. This colour is caused by the production of a blue pigment, 

pyocyanin, and a yellow-brown pigment, pyoverdin. P. aeruginosa is a Gram-negative 

rod-shaped bacterium with a length of 1-3 mm and a width of 0.5-1 mm (Fig. 1.1). It is 

highly motile due to the presence of a single polar flagellum (Fig. 1.1, A) and it also 

possesses many surface pili (Fig. 1.1, B). P. aeruginosa grows best in aerobic 

conditions but is also able to grow anaerobically if there is nitrate present to act as a 

terminal electron acceptor. This organism is able to metabolise a wide range of carbon 

sources and can survive in environments with minimal nutritional components. The

21



B

Fig. 1.1. Electron micrographs of P. aeruginosa.

Electron micrographs of P. aeruginosa showing (A) the single polar flagellum (F) and 

(B) the many polar pili (P). Taken from 11 ].
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metabolic versatility of P, aeruginosa, combined with its tolerance to temperatures of 

up to 50°C, enables this bacterium to survive in many different niches. P. aeruginosa is 

found ubiquitously in soil and water and is able to colonise plants, animals and humans. 

It has been reported that up to 7% of healthy humans carry P. aeruginosa in the throat, 

nasal mucosa, or on the skin and up to 24% of stool samples contain this organism [2]. 

The prevalence of P. aeruginosa in the environment places this organism in an ideal 

position to infect susceptible humans when the opportunity arises.

1.3. Pseudomonas aeruginosa infections

Healthy individuals are usually highly resistant to P. aeruginosa infections and this 

opportunistic pathogen requires a compromise in the host’s health status to establish an 

infection. P. aeruginosa can exploit breaches in the host defence, such as damaged skin 

or mucosal surfaces, to establish infection at virtually any site within the human body. 

Individuals most at risk from P. aeruginosa infections are burns victims, cystic fibrosis 

patients and the immunocompromised. P. aeruginosa is also a major cause of 

nosocomial infections and can cause ulcerative keratitis in contact-lens wearers. In this 

section of my introduction I will describe the conditions that predispose to pseudomonal 

infections and consider why these conditions lead to disease susceptibility.

1.3.1. Burns

Skin and mucosal surfaces act as anatomical barriers to infection and provide the first 

innate immune component encountered by a pathogen. When skin is badly burned, this 

barrier is destroyed and P. aeruginosa is able to infect the moist underlying tissue. P. 

aeruginosa grows rapidly in the dead or poorly perfused tissue and can reach numbers 

exceeding 10  ̂ organisms per gram of tissue [3]. In addition to destroying the 

surrounding tissue, P. aeruginosa can seed the blood at levels that overwhelm the host’s 

innate immunity and cause sepsis. Evidence of the susceptibility of burned skin to P. 

aeruginosa infection is provided by the burned mouse model of infection. Whereas, 

10^-10  ̂ colony forming units (CPU) of P. aeruginosa were required to cause systemic 

dissemination and lethality in healthy mice, as few as 10 organisms were required for a 

comparable effect in mice with burned skin [4].
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1.3.2. Cystic fibrosis

Cystic fibrosis results from a mutation of the gene encoding the cystic fibrosis 

transmembrane conductance regulator (CFTR) protein. CFTR is a cyclic adenosine 

monophosphate (cAMP)-regulated chloride channel and patients homozygous for 

mutant cftr have severe defects in cAMP-mediated chloride permeability of epithelial 

cells. This defect in chloride permeability results in an imbalance in the fluid and 

electrolyte composition of epithelial cell secretions, which leads to accumulation of 

sticky dehydrated mucus in lung airways, pancreatic ducts and in the male sex ducts [5]. 

Over 90% of cystic fibrosis patients die as a result of pulmonary disease and P . 

aeruginosa is often the major pathogen contributing to this [6J. By adolescence, up to 

85% of cystic fibrosis patients are infected by this organism and the aggressive 

inflammatory response it elicits is strongly implicated in progressive lung damage and 

subsequent death.

There are a number of hypotheses that seek to explain why cystic fibrosis patients are 

hypersensitive to P. aeruginosa infections (Fig. 1.2) [7]. The low volume hypothesis 

(Fig. 1.2, 1) [8] postulates that mutant CFTR leads to hyperabsorption of sodium and 

water by epithelial cells in the airways. The resultant decrease in volume of the airway 

surface liquid prevents the cilia beating efficiently and impairs mechanical mucociliary 

clearance. P. aeruginosa is therefore not cleared from the lungs and can cause 

infection. The high-salt theory (Fig. 1.2, 2) [9] speculates that mutant CFTR leads to 

increased levels of chloride and sodium in the airway surface liquid. The high salt 

levels inhibit the salt-sensitive antibacterial defence proteins, p-defensins, lysozyme and 

lactoferrin, and therefore prevent destruction of P. aeruginosa. Another hypothesis 

(Fig. 1.2, 3) [10] is based on the observation that epithelial cells in the lungs of cystic 

fibrosis patients express higher levels of asialo GMl. Asialo GMl is reported to be a 

receptor for P. aeruginosa, therefore allowing the pathogen to bind to cells and 

withstand host clearance. A further theory (Fig, 1.2, 4) [11] proposes that in contrast to 

normal CFTR, mutant CFTR is unable to bind to lipopolysaccharide (LPS) on the 

surface of P. aeruginosa and promote bacterial internalisation. Epithelial cells that 

internalise bacteria can desquamate into the lumen and be cleared. Therefore inhibition 

of bacterial internalisation in cystic fibrosis lungs may lead to an inhibition of bacterial 

clearance. P. aeruginosa binding to CFTR also leads to the nuclear factor (NF)-kB-
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(2) High salt hypothesis:
Impaired function of antimicrobial peptides

(1) Low volume hypothesis: 
Impaired MCC Î N a C I

(3) Increased aGM1 
receptors(5) NO

Glutathione

(4) Reduced ingestion

Fig. 1.2. Possible causes of the hypersensitivity of cystic fibrosis patients to P. 

aeruginosa infections.

A number of hypotheses have been proposed to explain the hypersensitivity of cystic 

fibrosis patients to P. aeruginosa infections, these include: (1) the low volume 

hypothesis, where a decrease in airway surface liquid volume results in impaired 

mechanical mucociliary clearance (MCC), (2) the high salt hypothesis, where an 

increase in sodium and chloride levels in the airway surface liquid leads to the impaired 

function of antimicrobial peptides, (3) an increase in asialo GMl (aGMl) receptors on 

cystic fibrosis epithelial cells, resulting in increased P. aeruginosa binding and 

decreased clearance (4) the reduced bacterial ingestion due to mutant CFTR, leading to 

reduced clearance and (5) a decrease in the defence molecules, nitric oxide (NO) and 

glutathione, due to a mutant CFTR. Taken from |7|.
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mediated transcriptional activation of genes involved in neutrophil recruitment [ 1 2 ]. 

Thus individuals with mutant CFTR may lack the ability to recruit neutrophils, which 

are major cellular mediators of resistance to P. aeruginosa infections. A final 

hypothesis (Fig. 1.2, 5) suggests that mutant CFTR leads to low levels of the defence 

molecules nitric oxide (NO) and glutathione in the lungs of cystic fibrosis patients. 

There is evidence that CFTR regulates the levels of inducible NO synthase [13]. 

Therefore mutant CFTR may result in decreased levels of NO. Also glutathione is 

normally secreted via normal CFTR so its levels are decreased in the cystic fibrosis 

airway [14].

1.3.3. O ther causes of Pseudomonas aeruginosa infection

Immunocompromised patients are particularly at risk from pseudomonal infections. 

Neutrophils are the primary cellular mediators of resistance against P. aeruginosa 

infections, therefore neutropenia is a major risk factor for infection [15]. Acquired 

immune deficiency syndrome (AIDS) patients and the immunosuppressed are also 

susceptible to nosocomial or community acquired P. aeruginosa infections [16].

P. aeruginosa is a major cause of hospital-acquired infections with data from the 

National Nosocomial Infections Surveillance System between 1992 and 1997 showing 

that this organism causes about 3% of blood-stream infections; 21% of pneumonias (the 

most frequent nosocomial pathogen isolated from the lungs); 13% of eye, ear, nose and 

throat infections (third most common); and 5% of cardiovascular infections [17]. 

Nosocomial infections are often associated with indwelling devices such as intravenous 

or urinary catheters and endotracheal tubes. Pseudomonal infections caused by 

intravenous catheters and surgical wound can lead to septicemia, indwelling urinary 

catheters can result in urinary tract infections and endotracheal tubes can cause 

ventilator-associated pneumonia.

Trauma or surface injury to the cornea provides P. aeruginosa with the opportunity to 

cause eye infections such as ulcerative keratitis. Keratitis can lead to rapid 

opacification and sometimes perforation of the cornea and result in sight loss. 

Extended-wear contact lens wearers are particularly at risk from developing
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pseudomonal eye infections [18]. The improper use of contact lenses can lead to small 

scratches on the cornea and P. aeruginosa can grow in the contact lens solutions.

1.4. Virulence factors

As previously discussed, P. aeruginosa is able to infect a number of different tissues 

and cause a variety of diseases in compromised hosts. This versatility is achieved by 

the wide range of virulence factors produced by this organism. The virulence factors 

enable P. aeruginosa to adhere to host tissue, avoid the host immune system and 

multiply. In this section of my introduction, I will describe the virulence factors 

produced by P. aeruginosa and discuss their contribution to pathogenesis. I will also 

consider the ability of this bacterium to control the expression of these factors in a 

spatial and temporal manner. One of the major virulence determinants of P. aeruginosa 

is the TTS system and the toxins it secretes. As this is the major focus of my research, I 

will discuss this in detail in a later section.

1.4.1. Pili

P. aeruginosa produces pili that are located at the poles of the bacterium (Fig. 1.1, B). 

The pili of P. aeruginosa are homopolymers formed from thousands of copies of the 15 

kDa pilin monomer encoded by the pilA gene [19]. In addition to the pUA gene there 

are about 40 genetic loci that control pilin synthesis and pili production [20]. The 

transcription of pilA is regulated by the alternative ribonucleic acid (RNA) polymerase 

factor, cy ,̂ and by a two-component regulator system comprising the PilS and PilR 

proteins [2 1 ].

The role of pili as a pseudomonal virulence factor has been demonstrated in a number 

of animal models of infection where mutants unable to produce pili are less virulent 

than their isogenic pili-expressing counterparts. For example, pili were shown to be 

important in virulence in a mouse model of acute pulmonary infection [2 2 ] and burn 

wound infection [23]. However, in other settings, such as the corneal scratch-injury eye 

model, pili were not required for virulence [24].
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The contribution of pili to virulence may be the result of their ability to act as adhesins 

and mediate binding to host cells. Although the ability of pili to bind host tissue in vivo 

has never been demonstrated, there is strong evidence for pili enhancing adherence to 

mammalian cells in vitro [25-28]. It has been proposed that the pili receptors on target 

host tissue are the glycolipids GM l and asialo GMl [29-32] and that binding is 

mediated through a disuphide loop in the C-terminal of the pilin monomer [33-35]. 

Surprisingly, x-ray crystallographic studies have revealed that the proposed receptor- 

binding disulphide loop is not exposed at the pilus tip but buried within the pilus [36, 

37], thus bringing into doubt the ability of this domain to mediate cell adhesion. These 

conflicting results may be reconciled by speculating that contact between the host cell 

and the bacterium causes a structural change in the pilus leading to exposure of the 

disulphide loop.

In addition to mediating adherence to host tissue, the twitching ability of pili may also 

contribute to their role in virulence. Pili are able to retract and extend [38], allowing the 

bacteria to “walk” over infected surfaces [39]. This twitching mobility is important in 

the formation of in vitro biofilms on abiotic surfaces [40] and may also be important in 

the avoidance of host phagocytes. The proteins encoded by the pilT  and pilU  genes 

provide energy for type IV pilus retraction [41], therefore mutants in these genes can be 

used to study the affect of abrogating pilus twitching motility on virulence. Twitching 

mutants exhibit reduced cytotoxicity towards various types of epithelial cells in vitro 

[42] and show reduced virulence in mouse models of acute pneumonia [42] and corneal 

disease [43].

Pili may also contribute to virulence by helping P, aeruginosa survive in vivo due to 

their role in natural DNA uptake, autoaggregation of cells and the development of 

microbial communities.

1.4.2. Flagella

In addition to pili, P. aeruginosa also produce a single polar flagellum extending from 

their cell surface (Fig. l . I ,  A). Flagella are complex structures with over 50 genes 

involved in their synthesis and function [44]. The key structural components of the 

flagella are FliC, the flagellin subunit protein, and FliD, a protein that caps the flagella.
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In P. aeruginosa there are two major types of flagella, the a and b type, produced by 

allelic variants in the fliC  and fUD  genes that are coinherited [45], Pseudomonal 

flagella are produced by most environmental and nosocomial isolates but bacteria 

isolated from chronically infected cystic fibrosis patients have usually lost the ability to 

produce this structure [46],

P, aeruginosa lacking flagella are almost avirulent in animal models of infection [47, 

48] thus proving a role for this structure in bacterial virulence. It has also been 

demonstrated that antibodies and a vaccine raised against flagella are effective at 

protecting animals from infection [49-51].

Flagella, like pili, are thought to contribute to virulence in part by their ability to bind to 

host tissue. It has been demonstrated that although flagella bind to asialo GM l, GMl 

and GDI a on epithelial cells, this is a rare event [48] and the binding of the FliD cap 

protein to a variety of neutral and acidic oligosaccharides in mucin is thought to be 

much more important [52, 53]. In some situations binding to mucin would promote the 

removal of bacteria from host tissue, for example by mechanical mucociliary clearance 

in the respiratory tract. However, if mechanical mucociliary clearance was reduced in 

the lungs during pulmonary infection or mucus was trapped under a contact lens, mucin 

binding may enhance infection.

The importance of flagella motility in virulence has been illustrated in a burned-mouse 

model of infection [54] where non-motile flagella mutants had reduced virulence 

compared to the wild type bacteria [54]. The flagella of P. aeruginosa are glycosylated 

[55, 56] and this posttranslational modification is also an important determinant of 

flagellar-mediated virulence [54]. It has been shown that flagella are highly 

immunogenic [48, 57] and although this property may stimulate the host defence, 

perhaps explaining why flagella appear to be selected against in chronic cystic fibrosis 

infection, it may also contribute to disease severity.

1.4.3. Lipopolysaccharide

LPS is a major component of the outer membrane of Gram-negative bacteria. There are 

two isoforms of LPS in P. aeruginosa, the smooth form found on most environmental
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and nosocomial isolates and the rough form found on most isolates from chronically 

infected cystic fibrosis patients. Both forms consist of a hydrophobic lipid A 

component that anchors the molecule to the membrane, and a core oligosaccharide. 

Smooth LPS also contains a long polysaccharide O-chain composed of tri- or 

tetrasaccharide repeating units. The O-chains found on smooth LPS isolates vary in 

length from 5 -  100 kDa and only 20 -  30 % of the LPS molecules on each cell contain 

O-chains [58].

It has been reported that LPS acts as an adhesin by binding to GMl and the galectin-3 

protein on epithelial cell surfaces [31, 59]. The outer-core oligosaccharide of LPS also 

binds to CFTR leading to internalisation of the bacteria [60]. As discussed above, in the 

lungs of individuals with normal CFTR, this would result in clearing of the bacteria by 

infected epithelial cells on the airway surface desquamating into the lumen. However, 

in the setting of a damaged cornea, binding to normal CFTR enhances virulence as 

infected cells are not lost and may provide a protected environment for the bacteria [61].

The O-side-chains of smooth LPS play a role in resisting host defences, for example by 

preventing lysis by complement, and this appears to be important in acute pseudomonal 

infections [62]. P. aeruginosa from cystic fibrosis patients, however, are often serum 

sensitive and LPS rough suggesting that LPS-mediated serum resistance is not crucial 

for the organisms survival in the cystic fibrosis lung [63]. Also the loss of O-side- 

chains in chronically infected individuals may be advantageous as they can evade the 

strong host response against 0 -side-chain antigens.

1.4.4. Iron acquisition

P. aeruginosa, like all living organisms, requires iron for growth and survival. Iron is 

not freely available in aerobic environments because it exists in the oxidised, ferric form 

(Fe^^), which at pH 7 is extremely insoluble (10*’̂  M). In addition, in mammalian hosts 

iron is sequestered in hamoglobin, transferrin and other iron binding proteins. Thus, 

bacteria have developed specific mechanisms for iron acquisition including the 

synthesis of ultra-high affinity compounds named siderophores that physically capture 

the iron from host proteins by virtue of their superior binding affinity.
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p. aeruginosa produces two siderophores to acquire iron, pyoverdin and pyochelin. 

Pyoverdin and pyochelin are secreted from P. aeruginosa when iron concentrations are 

low and chelate iron from mammalian host proteins. The ferripyoverdin and 

ferripyochelin then bind to the FpvA and FptA membrane receptors respectively and are 

transported back into the microbe via a specific uptake carrier system [64, 65]. When 

the ferrisiderophore reaches the cytoplasm, the iron is reduced, the soluble ferrous iron 

(Fe^^) is transferred to molecules where it is required, and the siderophore is 

recirculated. When iron concentrations are high, the master regulator Fur represses the 

transcription of proteins required for iron acquisition [6 6 ].

In addition to the siderophores produced by P. aeruginiosa, there is also evidence that 

this organism can utilise siderophores produced by other organisms to acquire iron [67]. 

The variety of mechanisms for iron acquisition means that an essential role in virulence 

for either pyoverdin or pyochelin has not been demonstrated. However the absolute 

requirement for iron renders these systems important in virulence.

In addition to its role in iron acquisition, ferripyochelin is also responsible for damaging 

cells. Ferripyochelin can catalyse hydroxyl radical formation that enhances oxidant- 

mediated injury to pulmonary artery endothelial cells and respiratory epithelial cells 

[6 8 ]. The superoxide and hydrogen peroxide generated by neutrophils can also be used 

by ferripyochelin to enhance endothelial cell damage [69].

1.4.5. Proteases

A number of proteases are produced by P. aeruginosa including LasA protease, 

elastase, alkaline protease and protease IV. These proteases have wide substrate 

specificities and are thought to promote pseudomonal infection and dissemination by 

destroying physical barriers and compromising host immune effectors. It has been 

shown that elastase degrades collagen and non-collagen proteins and disrupts the 

integrity of the host basement membrane. LasA and elastase appear to act 

synergistically to degrade elastin with LasA nicking elastin making it more sensitive to 

subsequent degradation by elastase [70]. Elastase inhibits monocyte chemotaxis, 

therefore inhibiting clearance of the bacteria from the site of infection and preventing 

subsequent presentation of bacterial antigens to the host immune system [71 j. Also
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LasA may protect P. aeruginosa from host defences by causing the shedding of the 

ectodomain of syndecan-1 , which may interfere with the ingestion or killing capability 

of phagocytes or render antimicrobial peptides inactive [72, 73].

A number of other potential proteases have been identified by activity assays and 

homology searches. However, due to the presence of a wide range of proteases that 

possess overlapping functions, it is difficult to dissect their role in pathogenesis. For 

example elastase deficient P. aeruginosa are less virulent in some models of infection 

but not in others [74].

1.4.6. Exotoxin A

Most clinical isolates of P. aeruginosa produce exotoxin A. This 6 6  kDa protein is an 

adenosine diphosphate (ADP)-ribosyltransferase (ADPRT) toxin that transfers the 

ADP-ribose moiety from nicotinamide adenine dinucleotide (NAD^) to the modified 

histidine residue, dipthamide, located at position 715 of elongation factor-2 (EF-2) [75, 

76]. EF-2 is involved in moving the nascent growing peptides produced on ribosomes, 

and its ADP-ribosylation and subsequent inactivation by exotoxin A inhibits protein 

synthesis and results in cell death. Exotoxin A has three structural and functional 

domains that are successively involved in the intoxication process [77, 78]. Domain I 

binds to the a 2 -macroglobulin/low density lipoprotein receptor-related protein enabling 

internalisation of the toxin via receptor-mediated endocytosis [79]. Domain II then 

mediates translocation of the toxin across the endosomal membrane into the cytosol 

[80] where the catalytic domain III can act to ADP-ribosylate EF-2 .

Protein synthesis inhibition by toxins is not sufficient to mediate target cell lysis and 

decreasing the ADPRT activity of exotoxin A does not abolish the toxicity of this 

protein [81, 82]. Therefore in addition to ADP-ribosylating EF-2, additional 

mechanisms may be involved in exotoxin A-induced cytotoxicity. It has been proposed 

that exotoxin A also induces apoptotic cell death in some cell lines, for example in 

human mast cells, by a caspase- 8  and caspase-3 dependent mechanism [83].

32



Exotoxin A synthesis is regulated by iron [66]. When iron levels are low, Fur relieves 

its repression on the transcriptional activator RegA, which is then free to activate 

expression of the exotoxin A gene, toxA.

The contribution of exotoxin A to pathogenesis was initially assessed by adding the 

purified toxin to corneas, which resulted in rapid (< 24 h) destruction of the corneal 

epithelial cells, chemotaxis of polymorphonuclear leucocytes to the site and corneal 

ulceration [84]. In some animal infection models, P. aeruginosa mutants deficient in 

exotoxin A production exhibit reduced virulence, but this is not always the case. 

Exotoxin A may contribute to virulence by causing tissue damage and diminishing the 

activity of phagocytes, but when deleted other toxins may complement for its 

destructive actions.

1.4.7. Pore-forming cytotoxin

A few species of P. aeruginosa produce a toxin from the genome of a temperate phage 

integrated into the bacterial chromosome. The toxin is translated as a 31.7 kDa 

procytotoxin that is processed by removal of the C-terminus during bacterial autolysis 

to an active 29 kDa cytotoxin [85]. The mature, water soluble, acidic toxin is able to 

induce cell death by forming pores in the plasma membranes of a wide variety of 

eukaryotic cells. This pseudomonal pore-forming toxin contains a high percentage of 13- 

sheets, is very amphiphilic in nature and oligomerises into a functional pen tamer [8 6 ].

1.4.8. Phospholipase C

P. aeruginosa produces two forms of phospholipase C (Pic): one is haemolytic, PlcHR, 

and the other, PlcN, is not [87]. PlcHR hydrolyses phosphatidylcholine and 

sphingomyelin and PlcN hydrolyses phoaphatidylcholine and phosphatidylserine [8 8 ].

PlcHR has been implicated in virulence in several animal models but no role for PlcN 

has yet been demonstrated [89-91]. There is evidence that PlcHR degrades pulmonary 

surfactant and suppresses neutrophil respiratory burst activity, therefore facilitating 

chronic persistent infection by P. aeruginosa [8 8 ]. PlcHR also acts as a potent 

inflammatory agent, which may result in increased tissue destruction. Both Pics
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recognise phospholipids found predominantly in eukaryotic (e.g. phosphatidylcholine 

and sphingomyelin) not prokaryotic membranes, thus potentially providing specificity 

for damage to host tissues [8 8 ].

1.4.9. Rhamnolipid

In addition to PlcHR, P. aeruginosa also secretes another hemolysin, the heat-stabile 

glycolipid, rhamnolipid. A role for rhamnolipid in virulence has been suggested by 

studies in Dictostelium discoideum  [92], Rhamnolipid has been implicated in the 

degradation of lipids and the disruption of cell membranes in addition to inhibiting 

mucociliary transport and disturbing airway epithelial ion transport [93-96]. It has been 

suggested that rhamnolipid acts to solubilise lung surfactant, thus making it more 

susceptible to degradation by other virulence factors, for example Pic [97]. 

Rhamnolipid synthesis is controlled by quorum sensing and has been shown to be 

important in biofilms [98].

1.4.10. Pyocyanin

Pyocyanin is a blue redox-active secondary metabolite that is produced by P. 

aeruginosa. Numerous in vivo studies have indicated a role for this compound in 

virulence [99]. In addition, the presence of detectable levels of pyocyanin in sputum 

from cystic fibrosis patients and ear secretions from those suffering from P. aeruginosa- 

mediated chronic otitis indicates production during infection [1 0 0 ].

In vitro studies illustrate that pyocyanin disrupts cell respiration, ciliary function, 

epidermal cell growth, prostacyclin release, calcium homeostasis and induces apoptosis 

in neutrophils [99]. Pyocyanin also contributes to the imbalance of protease- 

antiprotease activity, which is detected in the airways of patients with cystic fibrosis, by 

inhibiting the a  1-protease inhibitor [101]. Pyocyanin produces reactive oxygen species 

such as hydrogen peroxide and superoxide, which damage cells, and pyocyanin also 

inhibits the activity of catalase produced by the host in an attempt to counteract the 

damaging reactive oxygen species [102, 103].
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The importance of pyocyanin in virulence has been demonstrated in a number of non­

mammalian and mammalian models. P. aeruginosa strains deficient in pyocyanin 

exhibit reduced virulence in Caenorhabditis elegans, plants, Drosophila melanogaster 

as well as in the burnt-mouse models and mouse models of acute and chronic lung 

infection [99].

1.4.11. Alginate

Almost all strains of P. aeruginosa carry the genes required for the synthesis of the 

extracellular polysaccharide alginate. Alginate is a negatively charged, linear 

copolymer of partially O-acetylated p-l,4-linked D-mannuronic acid and its C5 epimer, 

a-L-guluronic acid [104]. Isolates of P. aeruginosa from cystic fibrosis patients 

produce large quantities of alginate and are said to have a mucoid phenotype [105]. 

Most environmental and nosocomial strains do not produce significant amounts of 

alginate and are therefore considered nonmucoid. The nonmucoid strains usually 

contain the genes required for alginate synthesis and can express the polysaccharide at 

low levels when grown in vitro [106, 107].

Clinical evidence suggests that individuals suffering from cystic fibrosis are infected 

with a nonmucoid strain of P. aeruginosa that switches to alginate production during 

chronic infection [108]. It is thought that alginate is the major virulence factor relevant 

to pathogenesis in the cystic fibrosis lung setting due to its ability to protect the bacteria 

from the host defence systems. Alginate appears to scavenge free radicals and thus may 

protect P. aeruginiosa from the reactive oxygen species released by inflammatory cells 

recruited to the site of infection [109]. It is thought that the physical and chemical 

barrier afforded to the bacteria by alginate protects them from phagocytic clearance and 

defensins [110]. The O-acetyl components of alginate are crucial for this protection 

from phagocytic cells [111]. Alginate also prevents neutrophil chemotaxis and 

complement activation but appears to enhance neutrophil oxidative burst [1 1 2 ]. 

Although high concentrations of antibodies against alginate are found in the sera of 

chronically infected cystic fibrosis patients they appear to be deficient in mediating 

opsonic killing and thus do not protect the host [113].
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The importance of alginate as a virulence factor during infection is difficult to ascertain 

due to its requirement in chronic not acute infection. However, the transgenic cystic 

fibrosis mouse model demonstrated that alginate is required for establishing P . 

aeruginosa oropharyngeal colonisation 1114].

1.4.12. Biofilms

Another phenotype exhibited by P. aeruginosa that is believed to be important in 

disease is its ability to form biofilms. Biofilms are communities of baeteria organised 

in an extracellular polymeric substance matrix attached to a surface. Biofilm formation 

involves a number of steps. Initially free-swimming or planktonic bacteria attach to a 

surface, microcolonies form, which then develop into mature biofilms. The release of 

planktonic organisms from the mature biofilm allows seeding of a new biofilm.

It is thought that P. aeruginosa forms biofilms in the lungs of cystic fibrosis patients 

and on implanted medical devices such as intravenous and urinary catheters [115, 116]. 

Microcolonies of aggregates of P. aeruginosa in cystic fibrosis lungs have been 

observed. In addition to bacteria, these microcolonies contain an exopolymeric 

substance that may consist of alginate, or a mannose- or glucose-rich expolysaccharide 

encoded by the psl or pel loci respectively [117, 118]. A significant amount of nucleic 

acid also occurs in pseudomonal biofilms [119]. P. aeruginosa biofilm formation 

requires the infecting bacteria to be motile. Thus, mutants in pili and flagella were 

unable to establish biofilms [40]. During chronic infection in cystic fibrosis lungs, the 

P. aeruginosa switch to a mucoid (alginate producing) phenotype and lose their 

motility.

Biofilms probably contribute to the survival of P. aeruginosa because they render the 

bacteria more resistant to host defense systems. Biofilms are also more resistant to 

antibiotics, making these infections very difficult to treat [1 2 0 ].

1.4.13, Quorum Sensing

Quorum sensing controls the production of many of the virulence factors produced by 

P. aeruginosa and is believed to be involved in biofilm maturation. This mechanism
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ensures that virulence genes are only induced when the bacterial population has reached 

a critical threshold or “quorum.” Many virulence factors are not effective when 

produced at low levels, therefore quorum sensing acts to prevent the metabolically 

expensive manufacture of virulence factors until an unified attack can be mounted 

simultaneously by a large number of bacteria.

P. aeruginosa has two main quorum sensing systems, las and rhl (reviewed in [121]) 

(Fig. 1.3). The las system consists of LasI and LasR. LasI directs the synthesis of the 

N-acyl homoserine lactone (AHL), N-3-oxododecanoyl-homoserine lactone (S-oxo-Ci^- 

HSL), which is transported out of the cell via the MexAB-OprM multidrug efflux 

pump. As the density of P. aeruginosa increases, the concentration of 3 -oxo-Cj2-HSL 

in the surrounding environment increases until a critical threshold is reached. The 

transcriptional activator LasR binds 3 -oxo-Cj2-HSL and induces the transcription a 

number of genes. The rhl system is similar to the las system but utilises Rhll, which 

directs the synthesis of N-butanoyl-homoserine lactone (Q -H SL), and the 

transcriptional activator RhlR. P. aeruginosa cells are freely permeable to C4-HSL. 

Thus, unlike 3 -oxo-Cj2-HSL, a specific method of secretion is not required. Both 

systems involve a positive feedback loop in which LasR bound to 3 -oxo-Cj2-HSL and 

LasI bound to C4-HSL induce the expression of LasI/LasR and Rhll/RhlR respectively. 

LasR bound to 3 -oxo-Ci2-HSL also activates the transcription of rhlR and rhll, therefore 

linking these systems in a hierarchical manner.

There are a number of other positive and negative regulators of las and rhl systems 

which fine tune the quorum sensing response of P. aeruginosa [121]. One of these 

additional levels of regulation involves a third quorum sensing molecule, the P. 

aeruginosa quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone (Fig. 1.3). PQS 

induces RhlR and Rhll expression and is itself under the positive regulation of the las 

system and the negative regulation of the rhl system. The production of PQS is 

therefore dependent on the ratio of 3 -oxo-Ci2-HSL and C4-HSL, suggesting a delicate 

balance between the las and rhl quorum sensing systems.

Many genes have been identified as being regulated by quorum sensing in P. 

aeruginosa. These include genes that encode membrane proteins, secreted enzymes, 

transcription factors, two-component regulators, and proteins involved in energy
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Fig. 1.3. Quorum sensing in P. aeruginosa

A simplified model of the hierarchical las and rhl quorum sensing systems in P. 

aeruginosa including the role of the P. aeruginosa quinolone signal (PQS). Red arrows 

indicate positive regulation and blue lines represent negative regulation. In the las 

system, LasI synthesises 3 -oxo-C,2 -HSL that is pumped out of the cell by the multidrug 

efflux pump. Once the amount of 3 -oxo-Cj2 -HSL reaches a critical threshold, LasR 

bound to 3-oxo-C,2-HSL induces the expression of a number of genes including lasR, 

lasi, rhlR, rhll, pqsA-E and various virulence genes. In the rhl system, Rhll synthesises 

Q  HSL, which passively diffuses out of the cell. Once the amount of C4 -HSL reaches a 

critical threshold, RhlR bound to C4 -HSL induces the expression of a number of genes 

including rhlR, rhl! and various virulence genes. RhlR bound to C4 -HSL also represses 

expression of pqsA-E. PQS acts to increase expression of the rhl system.
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metabolism and the transport of molecules in and out of the cell. Table 1.1, lists the 

virulence factors identified as being regulated by quorum sensing in P. aeruginosa.

Table 1.1. Virulence factors controlled by the quorum  sensing in P. aeruginosa.

las controlled rhl controlled PQS controlled
PQS synthesis PQS synthesis rhl system
rhl system Rhamnolipids Rhamnolipids
Biofilm formation Biofilm formation
Alkaline protease Alkaline protease
Elastase Elastase Elastase

Pyocyanin Pyocyanin
Lipase Lipase

Lectins A and B Lectins A and B
Hydrogen cyanide Hydrogen cyanide
Xcp secretion Xcp secretion

Chitinase
RpoS

Exotoxin A
Neuraminidase
Pvds-reg. endoprotease
Catalase
Superoxide dismutase
Aminopeptidase
Swimming

Exoenzyme S
Swarming Swarming
Twitching Twitching

The importance of quorum sensing in pseudomonal virulence has been demonstrated in 

a number of mammalian and non-mammalian models. Strains containing mutations in 

quorum sensing genes induced less tissue destruction, pneumonia, dissemination and 

mortality compared with wild type P. aeruginosa in the burnt-mouse model and mouse 

models of acute and chronic lung infection [122-124], Quorum sensing mutants also 

showed reduced virulence in the C, elegans, D. discoideum and Arabldopsis thaliana 

non-mammalian infection models. [92, 125, 126]

In addition to the reduced pathogenicity of quorum sensing mutants in a number of 

infection models, the direct involvement of quorum sensing during infection has also 

been investigated by studying sputum samples from cystic fibrosis patients colonised 

with P. aeruginosa. The sputum samples from these individuals contain AHLs and a 

correlation between the amount of messenger RNA (mRNA) transcripts for quorum
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sensing genes and quorum sensing-regulated genes has been observed [127, 128]. In 

mouse models, the production of AHLs during infection has also been confirmed by co- 

infecting the mice with P. aeruginosa and an E. coli AHL reporter strain [129].

Quorum sensing is important in P. aeruginosa pathogenesis not only because it is 

involved in the regulation of virulence factors but also because the AHLs induce 

inflammation in the host. Injection of mice with 3 -oxo-Ci2-HSL stimulates the 

production of proinflammatory cytokines and arachidonic acid metabolites [130]. Also 

3 -o x o -C ,2 -H S L  stimulates the production of interleukin 8, cyclooxygenase-2 and 

prostoglandin E2, and has immunomodulatory activity on cells in vitro [131].

1,5. Type III secretion systems

In addition to the virulence factors described above, P. aeruginosa produces four toxins 

that are secreted by the TTS system. For proteins to be successfully secreted by Gram- 

negative bacteria, they must be exported across the bacterial inner membrane through 

the peptidoglycan layer and across the outer membrane. Toxins that are subsequently 

targeted to the cytoplasm of host cells must also penetrate the plasma membrane of the 

eukaryotic cell, and in the case of plant cells, the plant cell wall. The TTS system 

enables Gram-negative bacteria to achieve this transport in a single step and deliver 

toxins from the bacteria directly into the cytoplasm of eukaryotic cells.

Bacteria that encode TTS systems include animal pathogens from the genera Yersinia, 

Salmonella, Shigella, Bordetella, Chlamydia, and E. coli and P. aeruginosa and plant 

pathogens belonging to the Erwinia, Xanthomonas and Pseudomonas genera. Some 

bacteria encode more than one TTS system as exemplified by Salmonella enterica 

serovar Typhimurium [132]. Although primarily required for virulence some 

endosymbiotic bacteria also utilise TTS systems, for example the insect endosymbiont 

Sodalis glossinidus [133].

In this section of my introduction I will describe the components of the TTS apparatus, 

paying particular attention to the TTS apparatus of Yersinia. The Yersinia TTS 

apparatus is the most extensively studied system and is homologous to the P. 

aeruginosa  TTS apparatus. I will also consider research into the TTS systems of
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Salmonella  and Shigella  when it contributes to a fuller understanding of the TTS 

systems of Gram-negative bacteria. I will discuss the signals that target toxins to the 

TTS apparatus and examine the role of chaperone proteins in TTS. I will then discuss 

regulation of expression and secretion via the TTS system. Finally, I will examine the 

effects of some of the TTS toxins on their eukaryotic targets. This broad overview of 

TTS will provide a framework on which the specific research on the TTS system of P. 

aeruginosa can be based.

1.5.1. Components of the type III secretion apparatus

The TTS toxins secreted by different Gram-negative pathogens vary widely in their 

structure and function. However, many of the components of the TTS apparatus are 

conserved. Of the 20 -  25 different proteins required for construction of the TTS 

apparatus, roughly half are conserved among the TTS systems of different bacteria. 

This conservation is evident both at the level of sequence homology and functional 

complementation. Evidence that some components of the TTS systems from different 

bacteria are functionally interchangeable is supplied by the Yersinia YopE protein that 

can be secreted into the extracellular medium and HeLa cells by S. enterica serovar 

Typhimurium [134]. Also the TTS inner membrane protein InvA of S. enterica serovar 

Typhimurium is complemented by the Shigella flexneri homolog MxiA [135]. Some 

components of the TTS apparatus, in addition to showing homology among different 

bacteria, also exhibit sequence similarity to the proteins that make up the basal body of 

the bacterial flagellum [136]. The relatedness between these two structures is further 

strengthened by the observation that flagella can secrete (but not translocate into a 

eukaryotic cell) some TTS toxins under specific circumstances [137, 138].

The basic TTS apparatus consists of a needle-like structure that projects from the 

bacterial surface and an inner and outer membrane ring (Fig. 1.4). There are also a 

number of additional proteins involved in translocation of toxins, many of which are 

predicted to be inner membrane proteins. Among the additional proteins required for 

TTS are translocator proteins that are predicted to facilitate the entry of toxins into the 

host cells.
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Fig. 1.4. The type III secretion apparatus of Yersinia.

(A) Schematic representation of the Yersinia TTS apparatus spanning the outer

membrane (OM), the peptidoglycan layer (PG) and the inner membrane (IM) of the 

bacterium. YscF is the main constituent of the needle and YscP regulates its length.

The inner membrane ring is predicted to comprise YscJ and YscD. The outer

membrane ring is formed from the secretin, YscC, and YscW is involved in localisation 

of the ring. YscR, YscS, YscT, YscU and YscV are predicted inner membrane proteins 

that may make up the basal body of the TTS apparatus. YscN, YscL, YscQ and YscK 

are cytoplasmic proteins and YscN is an adenosine triphosphatase (ATPase) that 

supplies the energy for TTS. The translocators YopB, YopD and LcrV are secreted 

through the TTS apparatus and form proteinaceous pores in the host cell membrane.

(B) An electron micrograph of TTS needles protruding from Y. enterocolitica E40. 

Taken from 1139).

42



1.5.1.1, Needle-like structures

Proteins that are translocated from the bacterium to the host by the TTS system are 

believed to pass through a needle-like structure that extends from the bacterial surface 

(Fig. 1.4). Although there is no direct evidence that proteins are transported through the 

centre of these needles, secretion requires needle assembly [140] and egress of toxins 

from the distal end of the needle-like structures, Hrp pili, in bacterial phytopathogens 

has been observed [141, 142].

Extensive studies on the TTS needle of Yersinia have revealed a number of features that 

appear to be conserved among the other bacteria examined, for example Salmonella and 

Shigella. Electron microscopy of the Yersinia TTS needle suggests that these structures 

are straight, apparently rigid and hollow [143, 144]. The needles are homopolymers of 

the 9 kDa YscF protein [144] and are approximately 58.0 ± 10 nm in length [145]. 

YscP regulates needle length and it is believed to act by having one end tethered to the 

base of the TTS apparatus and the other end attached to the growing tip of the needle. 

Needle extension is then halted when YscP is fully extended [145]. In Yersinia, the 

number of needles per bacterium is dependent on the growth medium and varies 

between 50 and 100 needles that appear uniformly distributed over the surface of the 

bacterial cell [144]. Electron micrographie reconstruction of negatively stained Y. 

enterocolitica  needles reveal an inner diameter of only 20 Â [143]. This narrow 

conduit, combined with the fact that the folded domains of TTS toxins often have 

diameters of 20 -  30 Â, suggests that the toxins may require partial or full unfolding in 

order to pass through the needle.

1.5.1.2. Inner and outer m em brane rings

The needle-like structures of the TTS apparatus appear to be anchored to a protein ring 

embedded in the bacterial outer membrane that is itself attached to a larger protein ring 

in the inner membrane (Fig. 1.4). The inner and outer membrane rings probably form a 

single structure through which proteins can pass from the bacterial cytosol into the 

needle of the TTS apparatus.
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In Shigella  and the SPI-1 TTS system of Salmonella the components of the inner 

membrane ring have been partially purified and identified as PrgK/PrgH and 

MxiJ/MxiG respectively [140, 143, 146, 147]. PrgK, MixJ and their Yersin ia  

homologue YscJ, are predicted to have a N-terminal cysteine that is lipid acylated, a 

periplasmic domain of about 200 residues followed by a C-terminal transmembrane 

region. PrgH, MxiG and their Yersinia homologue YscD, are predicted to contain a 

small N-terminal cytoplasmic domain, a single transmembrane region, and a large 

periplasmic domain.

The outer membrane ring is formed from an oligomer of a single protein related to 

members of the secretin protein family [148]. In Yersinia, the outer membrane ring 

structure is formed from YscC and exhibits 13-fold symmetry [149, 150]. In 

Salmonella, the ring is composed of the secretin InvG [151 j. Yersinia and Salmonella 

encode YscW and InvH respectively that are involved in the localisation of the secretin 

rings to the outer membrane [151, 152]. YscW and InvH are not homologs of each 

other and are not widely conserved across TTS systems. It has also been demonstrated 

that InvH is not required for TTS.

1.5.1.3. O ther components of the type III secretion apparatus

There are a number of other proteins that are predicted to form part of the TTS 

apparatus and are involved in the secretion of toxins. Although to date none of these 

proteins have been successfully copurified with the needle assembly, their homologues 

in the flagella system have been shown by biochemical means to associate with the 

flagellar apparatus [153-155]. A number of these proteins are predicted to be inner 

membrane proteins, for example the Yersinia proteins YscR, YscS, YscT, YscU and 

YscV. These predicted inner membrane proteins have the potential to interact with TTS 

proteins during transit and may act as receptors for the signal sequences on secreted 

proteins. In addition to the predicted inner membrane proteins there are a number of 

cytoplasmsic proteins involved in TTS including YscN, YscL, YscQ and YscK in 

Yersinia. One of these cytoplasmic proteins, YscN, is an ATPase that is involved in 

supplying the energy to drive protein transport through the TTS system [156].
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1.5.1.4 Translocator proteins

Toxins that are successfully transported through the needle complex then need to gain 

entry into the eukaryotic cell through the cell membrane. It is believed that specific 

TTS proteins, termed translocators, facilitate this by forming proteinaceous pores in the 

host cell membrane. The translocators of Yersinia, YopB, YopD and LcrV, are required 

for translocation of toxins into host cells [157-160J. YopB is a 41.8 kDa protein that 

contains two central hydrophobic domains, YopD is a 33.3 kDa protein containing a 

single hydrophobic domain and LcrV is a 37 kDa protein that contains no clear 

hydrophobic domain. YopB and YopD together can form ion channels in lipid bilayers 

[161] and LcrV alone has been reported to form channels [162]. It has been postulated 

that LcrV may insert into the eukaryotic cell membrane in order to initiate the formation 

of a pore by the subsequent insertion of YopB and YopD [162]. In addition to its role 

in pore-formation, LcrV also regulates expression of certain components of the TTS 

system in Yersinia [163-166] and has an immuno-modulatory role in the host [167-171].

1.5.2. Type III secretion signals

For a protein to be translocated into the eukaryotic cell by the TTS system, it must first 

be targeted to this system. For most studied toxins, the TTS signal is located in the first 

~ 15 mRNA codons or amino acids, although no consensus signal sequence at the 

nucleic acid or amino acid level has been identified. The ability of the first 15 codons 

to direct TTS has been demonstrated for a number of toxins by fusing this region to a 

reporter protein and observing secretion. For example, when the first 15 codons of 

YopE were fused to the N-terminus of Cya or neomycin phosphotransferase II, they 

were sufficient to drive secretion through the TTS system [172-174]. It is important to 

note that this sequence, although sufficient for secretion into the extracellular medium 

upon induction, was not sufficient for translocation of the fusion proteins into the 

eukaryotic cell [174, 175]. Although the location of the TTS signal is clear, its 

molecular composition remains controversial. Some evidence indicates that the signal 

is mRNA based, while other data suggests a protein signal.
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1.5.2.1. Nucleic acid secretion signals

Support for an mRNA signal comes from two observations. Firstly, it is possible to 

introduce various frameshift mutations in the N-terminus of a number of TTS toxins, for 

example YopE, that do not affect the ability of these proteins to be targeted to the TTS 

system [172, 176, 177]. Frameshift mutations result in only a minor change in the 

mRNA sequence but drastically alter the protein sequence, therefore suggesting that the 

TTS signal is in the mRNA. Secondly, when a base in codon 3 of YopQ was mutated to 

another base that did not alter the protein sequence, a synonymous base change, this 

protein lost its ability to be secreted by the TTS system [178].

1.5.2.2. Protein secretion signals

Support for a protein-based signal sequence comes from experiments in which the 

signal sequence still targets the toxin to the TTS system despite dramatic changes in the 

mRNA sequence. For example, when 17 of 27 nucleotides in codons 2 to 10 of YopE 

are mutated to bases that leave the protein sequence intact, the secretion signal is still 

functional [179]. If the TTS signal is protein-based it appears to be highly degenerative 

as residues 2 to 8  of YopE (K-I-S-S-F-I-S) can be replaced by alternating serines and 

isoleucines (S-I-S-I-S-I-S) and still be functional [179]. Further evidence supporting a 

protein-based signal was obtained using this synthetic serine/isoleucine secretion signal. 

Altering the amphipathic nature of the synthetic secretion signal by substituting single 

amino acids abolished protein secretion despite there being very little change in the 

mRNA sequence [180]. Even if the TTS signal proves to be protein based, there is no 

clear consensus sequence at the amino acid level or at the structural level. However, the 

ability of some toxins to be secreted by the TTS apparatus of different bacteria suggests 

that, at least in some cases, there is some sort of conserved secretion signal.

1.5.3. Type III secretion system chaperones

Many TTS toxins require low molecular weight (<15 kDa), usually acidic (pl<5), 

cytosolic chaperones for their efficient secretion and the gene encoding the chaperone is 

normally located adjacent to the gene encoding its cognate toxin [181, 182]. Although 

chaperones are considered a hallmark of TTS, there are some TTS toxins that appear to
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be translocated in a chaperone-independent manner, for example the YopM, YopO and 

YopP proteins of Yersinia [183]. The majority of chaperones are highly specific and 

bind to only a single toxin or two toxins with similar protein sequences. However, there 

are some promiscuous toxin chaperones that bind a number of different proteins that 

exhibit no obvious sequence relationship, for example the S. flexneri chaperone Spal5 

that binds to IpaA, IpgBl and OspC3 [184]. In addition to the chaperones responsible 

for translocation of toxins, there are also chaperones that promote the secretion of 

translocator proteins. For example SycD is the chaperone for the translocators YopB 

and YopD in Yersinia [185].

1.5.3.1. Chaperone structure

Although there is low sequence similarity between different TTS system toxin 

chaperones. X-ray crystallography of a number of chaperones has revealed a high 

degree of structural similarity [186-189]. Structural analysis has identified a unique, 

structurally conserved a(3a sandwich fold and has revealed that these chaperones exist 

as homodimers. TTS system chaperones have four hydrophobic surface patches that act 

as toxin-binding sites and the residues that contribute to these patches are broadly 

conserved among chaperones. The translocator chaperones differ markedly in structure 

from the toxin chaperones as they lack the a^ct sandwich fold and are predicted to have 

a tetratricopeptide-like repeat fold [190, 191].

1.5.3.2. Chaperone-toxin binding

The chaperones are physically associated with their cognate toxins in the bacterial 

cytoplasm and then dissociate and remain in the cytoplasm while the toxins are 

translocated through the TTS apparatus [192-194]. It has been demonstrated that the 

binding between the YopE toxin and its chaperone SycE [192] is very tight and this 

strong interaction is probably afforded by hydrophobic contacts between the 

hydrophobic surface patches of the chaperone and the toxin [189]. It has been 

postulated that the TTS system ATPase is involved in supplying the energy to break the 

strong interaction between chaperone and toxin to allow translocation of the toxin 

through the TTS apparatus [195]. Evidence to support this hypothesis has recently been 

gained from the study of InvC, an TTS system associated protein of Salmonella enterica
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[196]. InvC belongs to the AAA ATPase class of enzymes and binds to the chaperone 

SicP^ complexed with its cognate toxin, SptP. InvC hydrolyses adenosine triphosphate 

(ATP) and provides the energy for the dissociation of SptP from SicP^. SptP is liberated 

in its unfolded state and is able to pass through the TTS needle.

Studies of the chaperone-binding region of YopE reveal that this region lies between the 

N-terminal secretion signal and the guanosine triphosphatase (GTPase) activating 

protein (GAP) catalytic domain and is distinct from both domains [189]. The 

chaperone-binding domain of YopE binds to SycE in a highly extended conformation 

[189]. The same highly extended conformation is observed when the Salmonella toxin 

SptP binds to its cognate chaperone SicP [188] although there is no sequence similarity 

between the YopE and SptP chaperone-binding regions and the SycE and SicP 

chaperones only possess about 10% sequence identity. There is no conformational 

change between free and complexed SycE suggesting that chaperones act as static 

binding platforms [186, 189]. The presence of a large number of hydrogen bonds 

between the chaperone and toxin may account for the specificity of binding between 

these two proteins. The chaperone residues that contribute to these hydrogen bonds are 

not conserved among chaperones so could be involved in determining which toxins are 

able to bind.

I.5.3.3. Models of chaperone action

A number of hypotheses have been put forward to explain the requirement of 

chaperones for translocation of toxins through the TTS system. It has been proposed 

that chaperones act as anti-aggregation and stabilising factors, signals for secretion or 

antifolding factors. There is also evidence that TTS chaperones act as regulators of 

expression of some components of the TTS system as described later. There is 

probably not one single reason explaining the requirement for all chaperones, rather it is 

likely that different chaperones have evolved to fulfil different roles.

1.5.3.3.1, Chaperones as anti-aggregation and stabilisation factors

Some proteins are stored in the bacterial cytoplasm prior to being secreted and this may 

lead to the requirement of chaperones to prevent premature aggregation or degradation.
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An example of a chaperone preventing premature aggregation is provided by the 

Shigella translocators IpaB and IpaC and their chaperone IpgC [197]. When 

translocated through the TTS apparatus, IpaB and IpaC associate to form a pore in the 

eukaryotic membrane to allow TTS toxins access to the eukaryotic cell cytosol. In the 

bacterial cell the chaperone IpgC binds to both IpcB and IpcC to prevent premature 

aggregation. When IpgC is absent, IpcB binds IpcC and they are both degraded.

The stability of a number of TTS toxins has also been shown to be dependent on their 

cognate chaperones. For example, the half-lives of the toxins YopE, SptP and IpgD are 

all reduced in the absence of their respective chaperones SycE, SicP and IpgE [193, 

198, 199]. It has been suggested that the chaperone-binding domain of YopE promotes 

aggregation and subsequent degradation and SycE is required to mask this region [175, 

200]. However it is unclear what role the chaperone-binding domain of YopE has as it 

is not required for catalytic activity [2 0 1 ] and its only function appears to be for binding 

to the chaperone.

I.5.3.3.2. Chaperones as secretion signals

An alternative model for the role of chaperones is that they act as signals that target 

toxins for translocation via the TTS system. Although secretion is often dependent on 

the extreme N-terminal residues of toxins, it has been shown in some instances that 

chaperone binding is sufficient for secretion. For example, the chaperone-binding 

domain of YopE is sufficient for secretion of a number of fusion proteins when SycE is 

present [202]. However the conclusion that chaperone binding to YopE is sufficient for 

targeting the toxin for secretion is brought into question by the observation that the 

deletion of the N-terminal secretion signal of YopE drastically reduces or abolishes 

secretion even in the presence of SycE [179, 202].

Further evidence for the ability of chaperones to target their cognate toxins to the TTS 

system is supplied by the Salmonella toxins SptP and SopE. When the chaperone- 

binding domains of SptP or SopE are deleted, the toxins are still secreted but not 

translocated into eukaryotic cells. It is however apparent that the secretion of SptP and 

SopE lacking their chaperone-binding domains occurs through the flagellum. Thus, in
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this case, chaperone binding appears to be required for targeting the toxins specifically 

to the TTS system instead of the flagellum [138].

It is not clear how chaperones could function to target their cognate toxins to the TTS 

system but it is possible that a three-dimensional motif could act as a TTS signal. 

Although lacking sequence homology the three-dimensional structures of the N- 

terminal region of YopE complexed with SycE and the N-terminal region of SptP 

complexed with SicP are very similar and thus may be involved in targeting.

A possible consequence of chaperones acting as targeting signals is the ability of 

bacteria to translocate toxins in a hierarchical manner. It has been suggested that 

chaperone bound toxins are preferentially targeted to the TTS system and thus secreted 

before toxins that lack chaperones and only rely on their N-terminal secretion signals 

for targeting [175]. Although only speculative, support for the hierarchy of secretion 

theory is supplied by comparing the translocation of hybrid proteins containing the N- 

terminal of YopE fused to adenylate cyclase (Cya) in a wild type and multi-TTS 

substrate mutant background [175]. When the N-terminal 15 amino acids of YopE were 

fused to Cya, translocation was low in a wild type background but high when injected 

by a Yersinia strain lacking the majority of the TTS substrates, suggesting competition 

between Yops for translocation. However, when the region of YopE containing both 

the N-terminal secretion signal and the chaperone-binding site was fused to Cya, 

translocation was high in both the wild type and multi mutant strain. This suggests that 

chaperone binding confers a quantitative privilege in secretion in the presence of toxins 

that lack a chaperone. This hierarchy of secretion may be important in Yersinia to 

enable the toxins with chaperones (YopE, YopH and YopT) to be translocated 

immediately and the toxins that probably lack chaperones (YopM, YopP and YopO) to 

be translocated later. YopE, YopH and YopT are antiphagocytic Yops and therefore 

need to be translocated quickly upon activation to prevent phagocytosis. The other 

Yops may modulate longer-term responses such as inhibition of the host inflammatory 

response by YopP.
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I.5.3.3.3. Chaperones as antifolding factors

Electron microscopy images of TTS needles indicate that they have an inner diameter of 

only about 20 Â [143], Thus it has been predicted that larger proteins would need to 

partially or fully unfold in order to pass through this conduit. The extended 

conformation of the SptP or YopE chaperone-binding domains observed when these 

proteins were bound to their cognate chaperones suggests that chaperones may be 

involved in this unfolding [188, 189, 200].

Evidence that toxins need to be unfolded for TTS and that chaperones play a role in this 

event has been supplied by studying the secretion of a number of YopE-dihydrofolate 

reductase (DHFR) fusion constructs [200]. When the N-terminal secretion signal 

(residues 1 to 16) of YopE is fused to wild type DHFR, no secretion of the complex is 

evident. However, when the YopE N-terminal secretion signal is fused to a DHFR 

mutant with lowered stability, secretion occurs. In contrast, when the N-terminal region 

of YopE containing the secretion signal and the chaperone-binding site is fused to wild 

type DHFR, secretion occurs in the presence of the YopE chaperone SycE. These 

experiments suggest that DHFR needs to unfold in order to be secreted by the TTS 

system and that this is either achieved by decreasing the stability of DHFR by mutation 

or by SycE binding to the YopE chaperone-binding domain.

Various observations have brought into question the ability of chaperones to function in 

the unfolding of TTS toxins. Although chaperones may maintain the chaperone-binding 

domain of their cognate toxins in an extended conformation they do not appear to 

globally effect the folding of the toxin as illustrated by their inability to destroy the 

catalytic activity of the toxin. For example the Salmonella toxin SigD bound to its 

chaperone SigE has the same level of inositol phospholipase activity as unbound SigD 

[187]. Also binding of the Yersinia toxin YopE to its chaperone SycE does not alter the 

GAP activity of YopE [189].

1.5.4. Regulation of expression of type III secretion systems

TTS system genes are tightly regulated at the transcriptional and posttranscriptional 

level to ensure that they are only produced when and where required. This tight
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regulation has probably evolved to prevent the inappropriate energy consumption 

required for expression of the 20 or more proteins required for TTS. Bacteria use a 

wide variety of different regulatory mechanisms to induce TTS genes, which reflects 

the wide variety of niches occupied by these pathogens. There are however some 

common regulators of TTS systems found in some or all the bacteria including the AraC 

family of transcriptional activators, phosphorelay two-component regulatory systems, 

quorum sensing systems, RNA binding proteins and alternative sigma factors.

It has been demonstrated that TTS genes are induced by a variety of different 

environmental stimuli that probably reflect the host environment encountered by the 

bacteria during infection. Environmental cues known to be involved in the regulation of 

expression of the TTS system include temperature, concentration of divalent cations, 

pH, cell density and host signals. In addition, TTS chaperones play a role in regulating 

expression of TTS genes.

1.5.4.1. Regulation of the type III secretion system by tem perature

Expression of TTS systems in mammalian pathogens is usually optimal at 37°C as this 

correlates with body temperature [203, 204]. The TTS systems of plant pathogens are 

generally induced at much lower temperatures, for example 20°C, to accommodate the 

lower temperatures encountered by these pathogens in their hosts [205].

The ability of temperature to regulate TTS gene expression has been explored in a 

number of bacteria including Shigella. In Shigella, when the temperature is increased to 

37°C, the AraC-like transcriptional activator, VirP, activates transcription of VirB that 

in turn induces expression of the TTS apparatus and toxins [204]. Expression of VirF is 

repressed in a temperature-dependent manner by the nucleoid protein, H-NS, which is 

encoded by the virR gene [206, 207]. At temperatures below 32°C, H-NS is able to bind 

to the virF promoter and repress VirF expression. When the temperature is increased, 

the DNA structure of the virF promoter is altered and H-NS is no longer capable of 

repressing VirF expression. A second nucleoid-associated protein, factor inversion 

stimulation, is involved in this regulation as it antagonises the repressive function of H- 

NS bound to the VirF regulator in a temperature dependent manner [208].
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1.5.4.2. Regulation of the type III secretion system by divalent cation 

concentrations

In a number of bacteria, expression of the components of the TTS system is controlled 

by the concentration of divalent cations, for example Ca^  ̂ or This method of

regulation is illustrated by S. enterica serovar Typhimurium that senses Mĝ "̂  

concentration and Yersinia that senses Ca^  ̂concentration.

S. enterica serovar Typhimurium is a facultative intracellular pathogen that uses the 

TTS system encoded by Salmonella pathogenicity island (SPI) -1  to invade host cells 

and the TTS system encoded by SPI-2 to survive and multiply in the vacuoles of these 

cells. S. enterica serovar Typhimurium uses the fact that Mĝ "̂  concentrations outside 

the cell are high and Mĝ "̂  concentrations inside the vacuole are low to reciprocally 

regulate these two TTS systems [209-211]. Low Mg^^ concentrations repress 

expression of SPI-1 genes and this downregulation is dependent on the PhoP/PhoQ two- 

component system. In contrast, the expression of several SPI-2 genes are induced by 

low Mĝ '*' concentrations [2 1 2 ], although the mediators of this regulation are unknown 

[213].

Low Câ "" concentrations induce the expression of the Yersinia TTS toxins, the Yop 

proteins [213-215]. This is achieved indirectly by a negative-feedback control 

mechanism that results in yop gene expression only when the TTS is functional and 

active [216]. Low levels of Ca^  ̂ trigger secretion of LcrQ via the TTS system, the 

repression of yop expression by LcrQ (either directly of indirectly) is released and these 

toxins can be synthesised and secreted [217].

1.5.4.3. Regulation of the type III secretion system by pH

Acidity levels can be an important regulator of TTS expression as exemplified by the 

intestinal pathogen enteropathogenic E. coli (EPEC). This pathogen needs to traverse 

the acidic environment of the stomach before it reaches the intestine where it secretes 

toxins via the TTS system encoded by the locus of enterocyte effacement (LEE) [2181. 

It has been shown that the AraC-like transcription factor, GadX, is important in the 

control of TTS expression in response to pH levels [219]. The expression of TTS genes
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from LEE is induced by a cascade in which GadX induces expression of the per locus 

[219], the transcriptional activator encoded by the per locus [2 2 0 ] activates transcription 

of Ler (LEE-encoded regulator) [221], and Ler induces expression of the TTS genes. 

When pH is low, for example in the stomach, GadX is unable to induce expression of 

the per locus and as a result no TTS genes are induced. When the pH rises, for example 

in the intestine, GadX induces transcription of the per locus, therefore Ler is produced 

and the TTS genes in LEE are induced [219]. GadX also regulates the expression of the 

gadAB locus that encodes the glutamate decarboxylase system that enables survival of 

EPEC in the stomach [219]. As expected, the gadAB and per locus are reciprocally 

regulated, with expression from gadAB being induced by GadX under acidic conditions.

Another TTS system that utilises a change in pH to control expression and secretion of 

TTS toxins is the SPI-2 system in S. enterica serovar Typhimurium. Once Salmonella 

has induced its own uptake using the SPI-1 TTS system, it needs to establish a 

replicative niche within the vacuole it resides in. Salmonella achieves this by secreting 

toxins via the SPI-2 TTS system that act to alter the S’a/mone/Za-containing vacuole to 

prevent bacterial degradation and allow bacterial replication [222]. Within 20 minutes 

of formation of the Salmonella-oonidimmg vacuole inside infected host cells, the pH of 

this organelle drops below 5.5 [223] and Salmonella senses this change to activate SPI- 

2 gene expression and TTS [224-227]. Therefore the SPI-2 toxins are only produced 

and secreted when and where required to form a mature Salmonella-coiMFimng vacuole.

15.4.4. Regulation of the type III secretion system by quorum  sensing

Quorum sensing describes the ability of bacteria to induce gene expression in response 

to cell density. There are a number of examples of TTS genes being controlled by 

quorum sensing including the regulation of the enterohemorrhagic E. coli (EHEC) TTS 

system [228]. In EHEC, LuxS makes autoinducer (AI)-2 and AI-3 that are secreted and 

provide a measure of cell density [229, 230]. Once the concentration of AI-3 (but not 

AI-2) has reached a certain threshold, TTS genes are induced [230].
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I.5.4.5. Regulation of the type III secretion system by host cell factors

Expression of TTS toxins is induced in many bacteria by contact with eukaryotic cells 

and it is likely that the signals for cell contact are non-diffusible macromolecules 

located on the surface of eukaryotic cells. In most cases, for example in Yersinia, 

Shigella and P. aeruginosa, induction of TTS gene expression by cell contact requires 

an intact and functional TTS system. The TTS system may be involved in sensing and 

transmitting the signal directly or by allowing secretion of a negative regulator of TTS 

gene expression. In Yersinia, Yop production is induced by eukaryotic cell contact 

because this contact stimulates the secretion of the negative regulator of Yop genes, 

LcrQ [217].

In contrast to Yersinia, the TTS system of the plant pathogen R. solanacearum  is 

induced and assembled upon cell contact independently of a functional TTS system

[231]. This induction is achieved by a signal transduction pathway that consists of at 

least six genes: prhA, prhR, prhl, prhJ, hrpG, hrpB. It has been hypothesised that the 

outer membrane protein PrhA interacts with a non-diffusible plant cell wall component

[232] and a signal is then transduced across the periplasm and inner membrane by PrhR 

and Prhl to the cytoplasmic regulator PrhJ [233]. PrhJ activates HrpG expression, 

which in turn activates HrpB expression [234, 235]. The AraC regulator, HrpB is then 

able to induce expression of the TTS system genes [235].

In addition to the ability of bacteria to induce TTS system genes in response to host cell 

contact, a number of other host signals have been identified that regulate this system. 

The SPI-2 TTS system in S. enterica serovar Typhimurium is induced by the natural 

resistance-associated macrophage protein-1 (Nrampl) [236]. During infection the host- 

defence protein, Nrampl probably acts by transporting divalent cations including iron 

across the membrane of the Salmonella  containing vacuole and thus starving the 

bacteria of essential nutrients [237-239]. Therefore S. enterica serovar Typhimurium 

appears to produce a virulence system, the SPI-2 TTS system, to counteract a host 

defence mechanism. Another example of the ability of bacteria to express their TTS 

system in response to a host signal is provided by EHEC. The hormone epinephrine 

activates the expression of the TTS system in EHEC probably by binding to the receptor 

for the quorum sensing autoinducer, AI-3 [230, 240].
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1.5.4.6, Regulation of the type III secretion system by chaperones

In addition to their role in ensuring sufficient secretion of toxins or translocators, some 

chaperone proteins are also involved in feedback gene regulation of components of the 

TTS system. Induction of TTS, for example by cell-contact, results in an increase in 

concentration of unbound chaperones in the bacterial cytosol as the chaperones release 

their cognate toxins or translocators. The chaperones are then free to activate the 

expression of more TTS toxins for secretion. Chaperones that are capable of inducing 

expression of TTS systems are generally those that bind to translocators not toxins. The 

use of translocator chaperones in this regulatory context may be to establish a secretion 

and expression hierarchy so that translocators are secreted first to form pores in the 

eukaryotic membrane and then toxins are maximally expressed and secreted through 

these pores.

An example of this chaperone-mediated feedback gene regulation is supplied by the 

Salmonella SicA chaperone. SicA is a chaperone for the translocators SipB and SipC 

[240, 241]. Once secretion is initiated and SipB and SipC are secreted via the TTS 

system, the levels of free SicA in the bacteria rise. SicA is then free to act as a cofactor 

for the AraC-like transcriptional activator InvF that initiates transcription of a subset of 

TTS system-associated genes in Salmonella SPI-1 [242, 243].

As mentioned above, host cell contact or low Ca^  ̂ levels result in secretion of LcrQ 

from Yersinia and subsequent upregulation of yop  gene expression [217]. This 

regulation by LcrQ appears to be indirect and a number of experiments have implicated 

the LcrQ chaperone SycH and the translocator YopD and its chaperone SycD in the 

process. There is evidence that LcrQ and SycH inhibit the secretion of some Yops 

therefore imposing a hierarchy of secretion so that certain toxins can only be secreted 

when LcrQ has already been secreted [244]. One of these proteins secreted after LcrQ 

may be a negative regulator of Yop expression that acts at either the transcriptional or 

posttranscriptional level. It is postulated that this negative regulator is YopD bound to 

its cognate chaperone SycD as these proteins are required for LcrQ function [245, 246]. 

It has been demonstrated that YopD-SycD binds to the 5’ untranslated region of yopQ 

and yopE  mRNA and that LcrQ exerts its negative effect at the 5 ’ UTR of yop genes 

[247, 248]. Thus, it is postulated that YopD-SycD either inhibits translation or leads to 

degradation of yop mRNAs and this inhibition is released when YopD is secreted. Free

56



SycD may also act directly by activating Yop gene expression in an analogous manner 

to its distant homologue, SicA.

1.5.5. Regulation of secretion via the type III secretion systems

As alluded to above, the TTS systems can be regulated at the level of secretion as well 

as at the level of expression. In fact, in Yersinia, it is the initial activation of secretion 

either by cell contact or low Câ  ̂ levels that lead to induction of yop genes. In contrast 

to the corregulation of secretion and expression in Yersinia, the TTS toxins of S. 

flexneri accumulate in the bacterial cytoplasm and are then secreted upon cell contact 

[249]. A second difference between TTS in Yersinia and S. flexneri is the polarity of 

secretion. Whereas upon induction by host cell contact. Yersinia only secrete TTS 

effectors in a polarised manner into eukaryotic cells [194, 250], S. flexneri secretes 

effectors in a non-polarised manner into the surrounding media [249].

The ability of Yersinia to secrete Yops in a polarised manner upon cell contact is 

mediated by the surface-exposed, TTS protein YopN. Yersinia mutants lacking a 

functional yopN  gene secrete YopE and YopH into the surrounding media upon cell 

contact [194, 250]. These yopN  mutants also secrete large amounts of Yops under high 

Ca^  ̂ repressing conditions and thus YopN may function as a plug that blocks the TTS 

channel [251, 252]. It has been postulated that YopN is a surface exposed sensor that 

responds to a signal on the host cell surface and as a result allows localised opening of 

the secretion channels at the sites of cell contact.

Two models have been proposed to explain the secretion of accumulated Ipa proteins 

from the cytosol of S. flexneri upon cell contact. In the first model, the TTS channel is 

blocked by a complex between IpaB and IpaD. Upon cell contact, IpaB and IpaD 

dissociate and allow TTS of the accumulated Ipa proteins [249]. In the second model, 

IpaB, IpaC and IpaD are localised on the bacterial surface prior to cell contact and upon 

cell contact they are rapidly released. The other Ipa proteins are then slowly released 

via TTS from the intracellular stores [253]. There are data supporting both of these 

models and the differences may be the result of different secretion signals from different 

cell types being sensed.
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1.5.6. Toxins secreted by type III secretion systems

Although many of the components of the TTS systems are widely conserved among 

Gram-negative bacteria, the toxins secreted by these systems exhibit a broad range of 

biochemical activities and interfere with a wide range of cellular processes. Most TTS 

toxins display sequence, structural or functional homology to eukaryotic proteins and 

are therefore able to subvert normal host cell processes to enhance survival of the 

pathogen. In many cases, the activity of the toxins is restricted to eukaryotic cells, 

either by acting on exclusively eukaryotic targets or due to the requirement of 

eukaryotic cofactors.

Despite the considerable variation between TTS toxins produced by different bacteria, 

there are a number of common pathways that they affect including disrupting the actin 

cytoskeleton and modulating inflammation.

1.5.6.1. Type III secreted toxins that disrupt the actin cytoskeleton

The function of many TTS toxins is to disrupt the actin cytoskeleton of eukaryotic cells. 

Some bacteria, for example Shigella  and Salmonella, produce toxins that alter the 

cytoskeleton of nonphagocytic cells in order to promote their uptake by 

macropinocytosis. In contrast, other bacteria such as Yersinia produce toxins that block 

phagocytosis by disrupting the cytoskeleton of phagocytic cells. TTS toxins interfere 

with the eukaryotic cytoskeleton either directly by interacting with the components of 

this structure, or indirectly by modulating the activity of Rho GTPase proteins that 

control the cytoskeleton,

Rho GTPases are a family of small guanoisine triphosphate (GTP)-binding proteins that 

are master regulators of cytoskeleton dynamics and are exemplified by Cdc42, R ad  

and RhoA [254]. In common with other small GTP-binding proteins, Rho GTPases 

cycle between their inactive guanosine diphosphate (GDP)-bound state and their active 

GTP-bound state (Fig. 1.5). The exchange of GDP by GTP, and thus the activation of 

the small GTP-binding proteins, is catalysed by guanine nucleotide exchange factors 

(GEFs). The subsequent inactivation of the small GTP-binding proteins by hydrolysis 

of GTP to GDP occurs as a result of the intrinsic GTPase activity of these proteins and
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Fig. 1.5. Action of type III secreted toxins on Rho GTPases.

The Rho GTPases (Rho), Rho, Rac and Cdc42, are inactive in the GDP-bound state and 

active in the GTP- and membrane-bound state. The interaction of active Rho GTPases 

with their effectors results in various effects including actin polymerisation and nuclear 

responses. Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by 

catalysing the exchange of GDP by GTP. GTPase activating proteins (GAPs) inactivate 

Rho GTPases by enhancing the hydrolysis of GTP. Some TTS toxins act as GEFs, for 

example the Salmonella toxins SopE and SopE2. Some TTS toxins function as GAPs, 

for example the Salmonella toxin SptP, the Yersinia toxin YopE and the P. aeruginosa 

toxins ExoS and ExoT. The Yersinia TTS toxin YopT inactivates RhoA by cleaving the 

isoprenylated RhoA near its carboxyl termini and abolishing its membrane binding. 

Adapted from [2551.
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is enhanced by GTPase activating proteins (GAPs). In addition to binding GTP, small 

GTP-binding proteins need to be membrane bound to be active and this binding is 

mediated by the post-translation modification of their carboxyl termini with a prenyl 

group.

Many TTS toxins act by modulating the activity of Rho GTPases either by functioning 

as GEFs, by exhibiting GAP activity or by abolishing membrane binding of the Rho 

GTPase. For example, the Salmonella SopE protein binds and functions as a GEE for 

Cdc42 and R a d  [256]. The activation of Cdc42 and R a d  by SopE results in 

cytoskeletal rearrangements and the subsequent uptake of Salm onella  by non­

phagocytic cells. Salmonella produces a second GEF, SopEj, which is closely related to 

and exhibits similar properties to SopE [257]. In addition to SopE and SopE?, 

Salmonella also secretes the TTS toxin SptP that exhibits GAP activity towards Cdc42 

and R ad  [258]. The ability of SptP to reverse the action of SopE promotes restoration 

of the host cell cytoskeleton after Salmonella invasion. Although both SopE and SptP 

are injected into the cytoplasm of the host cell at the same time, SptP is able to act after 

SopE as SopE is rapidly degraded by ubiquitin-mediated proteolysis [259].

Like Salmonella, Shigella also produces a TTS toxin, IpaC, which promotes entry into 

non-phagocytic cells by activating Rho GTPases. IpaC, in addition to its role as a 

translocator, is capable of activating Cdc42 that in turn activates R a d  and consequently 

leads to actin polymerisation and bacterial uptake [260]. IpaC however is not a GEF 

and it is unclear how it activates Cdc42 and subsequently R ad .

In contrast to Salmonella  and Shigella, Yersinia produces a TTS toxin that blocks 

phagocytosis. The YopE protein of Yersinia exhibits GAP activity towards RhoA, R ad  

and Cdc42 [261]. The inactivation of these Rho GTPases leads to disruption of the 

actin cytoskeletion and subsequent inhibition of macrophage phagocytosis of the 

bacteria [262]. Yersinia also exploits the membrane-binding requirement of Rho 

GTPases to resist macrophage phagocytosis. The Yersinia  TTS toxin YopT is a 

cysteine protease that cleaves isoprenylated RhoA near its carboxyl termini [263]. The 

non-membrane bound RhoA is inactive and the resulting depolymerisation of actin in 

the macrophage prevents phagocytosis of the pathogen [264, 265].
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In contrast to interfering with the Rho GTPases, a number of TTS toxins are able to 

disrupt the eukaryotic cytoskeleton by binding directly to actin. For example, the actin- 

binding proteins (ABPs) of Salmonella, SipA and SipC, promote entry of Salmonella 

into non-phagocytic cells by disrupting the actin cytoskeleton [266]. It has been 

demonstrated that purified SipC nucleates actin polymerisation and bundles F-actin into 

cables in vitro [267]. SipA is also able to bind F-actin and acts to stimulate actin 

polymerisation and prevent actin disassembly by a number of direct and indirect 

mechanisms [268-271].

The ability of EPEC and EHEC to induce pedestal formation in epithelial cells is 

another example of the modulation of the actin cytoskeleton by TTS toxins (Fig. 1.6). 

EPEC and EHEC both secrete Tir (translocated inti mi n receptor) via their TTS systems. 

Til is inserted into the plasma membrane of host cells and facilitates attachment of the 

bacteria by binding to the bacterial outer membrane protein intimin [272, 273]. The 

interaction between intimin and Tir triggers a signalling cascade that alters the normal 

regulation of the host cytoskeleton and leads to the formation of the pedestal-like 

structures. In both EHEC and EPEC, actin assembly is induced by the actin-related 

protein 2/3 (Arp 2/3) complex, which is activated by the neuronal Wiskott-Aldrich 

syndrome protein (N-WASP) [274]. In EPEC, N-WASP recruitment is dependent on 

tyrosine phosphorylation of the injected Tir and recruitment of the mammalian adaptor 

proteins Nckl and Nck2 [274, 275]. However in EHEC, the TTS toxin EspFu/TccP 

recruits N-WASP to Tir in tyrosine phosphorylation and Nck-independent manner [273, 

276, 277].

A number of the TTS toxins target the actin cytoskeleton of eukaryotic cells by 

phosphorylating or dephosphorylating components of the signal transduction pathways 

involved in the control of the cytoskeleton. For example, the TTS toxin YopH is a 

protein tyrosine phosphatase (PTPase) that contributes to the ability of Yersinia to resist 

macrophage phagocytosis [278]. It has been demonstrated that YopH dephosphorylates 

a number of proteins involved in the formation of focal adhesions in macrophages and it 

is likely that these actions contribute to the antiphagocytic action of this TTS toxin 

[279-282]. The autophosphorylating serine-threonine kinase, YpkA, is also able to 

contribute to the virulence of Yersinia [283]. YpkA induces morphological changes and 

disrupts the cytoskeleton in cultured cells [284], although the targets of YpkA and its
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Fig. 1.6. Scanning electron micrograph of the pedestals induced by EPEC.

The rod-shaped EPEC bacteria are coloured in purple and the epithelial cell surface 

extruding two pedestals is coloured in orange. Taken from |285|.
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mode of action remain unclear. Salmonella produces an inositol phosphatase SopB that 

causes rearrangement of the actin cytoskeleton and stimulates bacterial cell entry [286]. 

SopB mediates the conversion of inositol 1,3,4,5,6-pentakisphosphate to inositol 

1,4,5,6-tetrakisphosphate which appears to activate Cdc42 and result in actin 

reorganisation [286]. SopB is also required for the maturation of the Salmonella- 

containing vacuole [287] and this may be due to its ability to promote membrane fission 

by eliminating phosphatidylinositol-4,5-bisphosphate [288], The Shigella toxin IpgD is 

another inositol phosphatase responsible for dramatic morphological changes in the host 

cell that are believed to promote bacterial entry [289]. IpgD transforms 

phosphatidylinositol-4,5-bisphosphate into phosphatidylinositol-5-phosphate and this 

conversion is somehow responsible for the induction of the morphological changes.

Two other Shigella toxins that modify the host cell cytoskeleton and enable efficient 

bacterial entry into epithelial cells are VirA and IpaA. VirA binds to tubulin and 

promotes microtubule destabilisation [290] and IpaA binds vinculin and induces F-actin 

depolymerisation [291].

15.6.2. Type III secreted toxins that modulate inflammation

A second common mechanism of action for TTS toxins is to modulate inflammation by 

interfering with mitogen-activated protein kinase (MAPK) and NF-kB signalling 

pathways. MAPK and NF-kB signalling pathways are phosphorylation cascades that 

result in the transcription of a number of genes including pro-inflammatory cytokines 

and anti-apoptotic genes. Some TTS toxins act to promote the production of pro- 

inflammatory cytokines, while others act to down regulate cytokine production.

The inositol phopshatase SopB and the GEF SopE, in addition to their roles in 

promoting Salmonella uptake by modulating the eukaryotic cytoskeleton, are also able 

to induce inflammation. Both SopB and SopE promote the production of pro- 

inflammatory cytokines by inducing activation of the MAPK, c-Jun NHj-terminal 

kinase (JNK) [256, 286].

As described above, the GAP domain of SptP reverses the cytoskeletal changes induced 

by Salmonella. Similarly, SptP also appears to downregulate the Salmonella-mAwood
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activation of the MAPKs, JNK and ERK [258, 292]. SptP is a bifunctional protein that 

possesses a carboxyl-terminal PTPase domain in addition to its GAP domain and it 

appears to be the tyrosine phosphatase activity of SptP that is responsible for inhibiting 

ERK activation [292]. The only potential target identified so far for the PTPase domain 

of SptP is the intermediate filament protein vimentin [292]. It is unclear how 

phosphorylation of vimentin could reverse the Salmonella-iwéucQà cellular responses 

and therefore other target(s) of SptP may need to be identified.

A number of the TTS toxins produced by Yersinia are involved in the downregulation 

of the inflammatory response induced by infection, for example the PTPase YopH and 

the GAP YopE [293-295]. The Yersinia toxin YopJ (YopP in Y. enterocolitica) is also 

capable of counteracting the pro-inflammatory response in various cell culture systems 

[296, 297]. YopJ/P achieves this anti-inflammatory response by inhibiting MAPK and 

NF-kB signalling pathways [298]. YopJ/P binds to MAPK kinases (MKKs) and 

inhibits their activation by blocking their phosphorylation. YopJ/P also binds to the 

inhibitor-kappa B kinase ^ (IKKP) and this interaction probably prevents the 

phosphorylation and subsequent activation of IKKp. YopJ/P belongs to the CE clan of 

cysteine proteases and there is some evidence that it may act as an ubiquitin or SUMO 

(small ubiquitin-related modifier) protease [299, 300]. However, it is unclear how this 

de-ubiquitinylating or de-SUMOylating activity could contribute to the ability of 

YopJ/P to disrupt MAPK and NF-KB signalling. YopJ/P also induces apoptosis in 

macrophages [301] and this may be the result of the inactivation of NF-kB signalling 

that leads to the inhibition of host cell survival factors [302]. Alternatively the protease 

activity of YopJ/P may act directly to promote apoptosis [303].

1.5.6 3. O ther functions of type III secreted toxins

In addition to the modulation of the cytoskeleton and inflammation signalling, TTS 

toxins have many other roles in altering the eukaryotic cell to facilitate their own 

survival. Other classes of TTS toxins include the caspase-1-binding proteins and a 

family of toxins containing leucine-rich repeats. Although a vast amount of work has 

been done to elucidate the biological activity and targets of the TTS toxins, the action of 

many is still unknown.
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The TTS toxins IpaB and SipB, from Shigella and Salmonella respectively, induce 

apoptosis of macrophages by a caspase-1 dependent mechanism [304, 305], In addition 

to their role as translocators, IpaB and SipB are delivered into the cytosol of infected 

cells where they interact with and presumably activate caspase-1 [306, 307].

Another class of TTS toxins are those that possess a leucine-rich repeat. Members of 

this family include YopM from Yersinia, SspHs and SlrP from Salmonella and IpaHs 

from Shigella. The most extensively studied of this group of toxins is YopM, which has 

been shown to interact with and stimulate protein kinase C-like 2 and ribosomal S6  

protein kinase 1 [308]. There is also evidence that YopM causes a depletion of natural 

killer cells in vivo, probably by affecting the expression of interleukin (IL)-15 receptor 

a  and IL-15 [309].

1.6. The type III secretion system of Pseudomonas aeruginosa

Having reviewed the TTS systems of Gram-negative bacteria, I will now focus on what 

is known about the TTS system in P. aeruginosa. I will describe the components of the 

TTS apparatus in P. aeruginosa and discuss how this system is regulated. I will then 

discuss each of the toxins secreted by the TTS system of P. aeruginosa in turn and 

consider what is known about their enzymatic activity and role in infection,

1.6.1. The type III secretion machinery in Pseudomonas aeruginosa

The genes encoding the pseudomonal TTS system are located in the 55 min region of 

the P. aeruginosa PAOl bacterial chromosome [310]. The genes are clustered in 5 

opérons: pscN O P Q R STU , p o p N p crl2 3 4 D R , pcrG V H popB D , exsC E B A , and 

exsDpscBCDEFGHIJKL. Most of the components have homologues in the Yersinia 

TTS system and are predicted to fulfil the same functions (Fig. 1.7). The psc and per 

genes encode components of the TTS apparatus and regulatory proteins, the exs genes 

encode regulators of TTS and the pop gene products are secreted proteins.

The pseudomonal TTS needle is mainly composed of PscF and this protein is able to 

form robust needle-like structures when expressed on its own [311], PscF forms a 1:1:1 

stable, soluble complex with PscE and PscG in the cytoplasm of P. aeruginosa and this
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complex is required to prevent premature polymerisation of PscF in the bacterial 

cytoplasm and to maintain PscF in a secretion-prone conformation [311]. The length of 

pseudomonal PscF needles appears to be controlled, because although TTS needles 

from P. aeruginosa are about 80 nm in length, PscF can generate needles of over 1 |im 

when expressed in E. coli [311]. It has been proposed that the needle length is 

controlled by the YscP homologue in P. aeruginosa, PscP [313],

In addition to the four toxins secreted by the TTS system of P. aeruginosa, PcrV, PopB, 

PopD and PopN are also secreted via this system [314]. PopB and PopD are 

translocators that form pores in the host cell membrane [315, 316] and the chaperone 

PcrH is required for their presecretory stabilisation and efficient secretion [317], PcrV 

is also required for the functional assembly of the membrane-inserted PopB/PopD 

translocon complex, although it does not form part of the pore [318]. It has been 

demonstrated that PcrV in concert with PopN and PcrG is involved in establishing 

efficient polarised translocation of toxins and negatively regulating toxin expression 

[319].

1,6.2. Regulation of expression of the type III secretion system in Pseudom onas 

aeruginosa

In P. aeruginosa, expression of the TTS system is induced by low calcium 

concentrations, the presence of serum or host cell contact [310, 320]. Expression of the 

TTS system is highly regulated by a number of pathways that converge on the AraC- 

like transcriptional activator, ExsA [321]. ExsA binds to the consensus sequence, T-X- 

A-A-A-A-X-A, about 50 bp upstream of the transcription start site of the TTS system 

genes to induce their expression [322].

Induction of the TTS system occurs only in the presence of a functional TTS system, 

thus suggesting a direct link between secretion and transcription [323, 324]. It is 

apparent that when the secretion channel is closed in the presence of high calcium, 

transcription of the TTS system is repressed, but when the secretion channel is opened 

by low calcium levels, the TTS system is expressed [323]. This suggests the presence 

of a negative regulator of the TTS system that is secreted when the secretion channel is 

open in a manner reminisant of LcrQ/YopD secretion by Yersinia. It has been recently
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demonstrated that the secreted negative regulator of TTS gene expression in P. 

aeruginosa is ExsE [325, 326] (Fig. 1.8), ExsE is a small, highly charged protein that 

binds to ExsC in the bacterial cytoplasm. ExsC is a chaperone-like protein required for 

the efficient secretion and stability of ExsE [325, 326] and also acts as an anti-anti­

activator of TTS expression. ExsC induces TTS gene expression by binding to an anti­

activator of TTS expression, ExsD [327], ExsD represses TTS gene expression by 

directly binding to ExsA and inhibiting the activity of this transcriptional activator 

[323]. Thus it has been proposed that under high calcium conditions (Fig. 1.8, A), the 

secretion channel is closed and ExsE is not secreted and therefore binds to its 

chaperone, ExsC. ExsD is free to bind to ExsA and repress TTS gene expression. 

When the channel is open, for example due to low calcium levels (Fig. 1.8, B), ExsE is 

secreted via the TTS apparatus and ExsC is able to bind ExsD, The binding of ExsC to 

ExsD releases ExsA, which is then free to activate transcription of the TTS system [325, 

326].

In addition to the ExsECDA signalling cascade that controls TTS gene expression in P. 

aeruginosa, an increasing number of positive and negative regulatory components have 

been identified. For example, positive regulators of the TTS system include the 

membrane-associated adenylate cyclase CyaB and the cAMP dependent transcription 

factor Vfr that are required for expression of the TTS system in response to calcium 

depletion and act upstream of or in parallel to ExsA [328]. The recently identified 

FimL protein also appears to regulate TTS gene expression by intersecting with the Vfr- 

modulated pathway [329]. Another protein required for TTS gene expression is the 

predicted inner membrane protein RtsM that may act as a two-component signalling 

protein that links environmental sensing with activation of TTS [330]. The 

pseudouridinase enzyme TruA is also required for expression of TTS genes, possibly 

because pseudouridination of tRNAs is critical for the translation of TTS genes or their 

regulators [331]. Finally, the periplasmic thiol/disulphide oxidoreductase DsbA affects 

multiple virulence factors and is required for TTS gene expression probably because the 

absence of this enzyme results in abnormal protein folding due to the lack of disulphide 

bonds [332].

Negative regulators of the TTS system include PtrA, which specifically suppresses TTS 

gene expression by directly binding to ExsA [333], The expression of ptrA is highly
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OM

IM

OM

M
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Fig. 1.8. A model for the regulation of the type III secretion regulon in P. 

aeruginosa.

The TTS apparatus is indicated in blue spanning the inner membrane (IM) and outer 

membrane (OM) of the bacterial cell. At high Ca^  ̂ concentrations, the secretion 

channel is closed and ExsE (E) is bound to ExsC. ExsD is therefore free to bind ExsA 

and repress transcription of the TTS system regulon. Under low Câ "̂  conditions, the 

secretion channel is open and ExsE is secreted. ExsC binds ExsD, and ExsA is free to 

induce expression of the TTS system regulon. Adapted from |326|.
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and specifically induced by high copper levels through the CopR-CopS two-component 

regulatory system, suggesting that the TTS system is repressed under conditions of 

copper stress [333]. TTS gene expression is also negatively regulated by the Rhl 

quorum sensing system and the stationary phase sigma factor RpoS, which likely 

contributes to the observed repression of ExoS in pseudomonal biofilms [334, 335]. 

The TTS system is reciprocally regulated compared to alginate synthesis, with a 

mutation in the mucA  gene suppressing expression of the TTS system and this 

suppression being dependent on AlgU and AlgR [336].

There is also evidence that the metabolic status of the bacterial cell effects expression of 

TTS genes in P. aeruginosa. For example, the aceAB genes, which encode the subunits 

of pyruvate dehydrogenase, are required for TTS gene expression in response to low 

calcium [337]. Also a mutation that results in overexpression of histidine utilization 

genes abolishes cytotoxicity mediated by the TTS system [338]. This cytotoxicity 

defect can be partially suppressed by an insertion mutation in cbrA, which encodes the 

sensor kinase in a two-component system implicated in sensing and responding to 

carbon-nitrogen imbalance [338].

1.6.3. The type III secreted toxins of Pseudomonas aeruginosa

There are four known toxins secreted by the TTS system of P. aeruginosa-. ExoS, ExoT, 

ExoU and ExoY. ExoS and ExoT are bifunctional proteins containing an N-terminal 

GAP domain and a C-terminal ADPRT domain. ExoU is a phospholipase and ExoY is 

an adenylate cyclase. Not all strains of P. aeruginosa encode all the TTS toxins. A 

study of over 1 0 0  clinical and environmental strains revealed that they all contained 

exoT, 89% contained exoY, 72% contained exoS and 28% contained exoU [339]. An 

inverse correlation between the presence of the exoS and exoU  genes was observed 

where all but two isolates contained either exoS or exoU but not both [339].

i.6.3,1. Exoenzyme S

ExoS was first identified in 1978 as an ADPRT secreted by P. aeruginosa strain 388 

[340]. It was known at that time that P. aeruginosa produced and secreted another 

ADPRT named Exotoxin A, which inactivated protein synthesis by ADP-ribosylating
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EF-2. ExoS however did not target EF-2 but instead ADP-ribosylated a number of 

proteins in crude extracts of wheat germ or rabbit reticulocytes [340].

The ADPRT activity of ExoS co-purified with two proteins with a molecular weight of 

49 kDa and 53 kDa [341]. These two proteins were immunologically cross-reactive

[342] and shared similar N-terminal amino acid and proteolytic peptide sequences

[343]. The 53 kDa protein appeared inactive in comparison to the 49 kDa protein that 

exhibited potent ADPRT activity [342, 343]. It was therefore proposed that the 53 kDa 

protein was a precursor of the 49 kDa form and that ExoS required proteolytic cleavage 

to become active. The exoS gene was subsequently cloned [344] and a P. aeruginosa 

mutant was generated that lacked exoS [345]. This exoS deletion mutant did not secrete 

the 49 kDa protein and exhibited no ADPRT activity but still expressed and secreted the 

53 kDa form [345]. This suggested that different genes encoded the 49 kDa and 53 kDa 

proteins, a fact that was later proved by the identification of the gene encoding the 53 

kDa protein, exoT [346].

ExoS does not contain a typical N-terminal signal peptide and it is secreted without N- 

terminal processing [344, 346]. It was therefore apparent that ExoS was not secreted by 

the general secretory pathway and it was suggested that it might be secreted by a TTS 

system, typified at that time by the TTS system that exports Yops in Yersinia [347]. 

Identification of P. aeruginosa mutants that were unable to secrete ExoS and contained 

a transposon insertion in an operon that contained homologues of the Yop TTS 

apparatus, confirmed that ExoS was indeed secreted by the TTS system [324],

I.6 .3 .I.I. The consequences of exoenzyme S expression

Initial studies using purified ExoS showed that this protein was not toxic when added 

directly to cell culture or animal model systems [343, 348]. This apparent lack of 

toxicity is the result of the requirement for a functional TTS system to transport ExoS 

from the cytoplasm of P. aeruginosa into the cytoplasm of eukaryotic cells [324]. 

Therefore, the consequences of ExoS expression on eukaryotic cells were examined 

either by comparing the effects of co-culturing cells with an ExoS-producing P. 

aeruginosa strain and an isogenic non-ExoS-producing mutant or by introducing ExoS 

into eukaryotic cells through the TTS system of Y, pseudotuberculosis. ExoS
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production correlated with a decrease in DNA synthesis and cell viability, disruption of 

the actin cytoskeleton that led to cell rounding, loss of cell adhesion and microvillus 

effacement [349-352], ExoS also had an anti-phagocytic effect on macrophages and 

inhibited pseudomonal invasion of corneal epithelial cells [352, 353]. A number of 

studies have suggested a role for ExoS in triggering apoptosis [354, 355]. ExoS appears 

to activate a pro-apoptotic pathway through JNK-mediated cytochrome c release and 

inhibit anti-apoptotic pathway(s) controlled by ERK 1/2 and maybe p38 [356].

Early studies examining the effects of ExoS in mammalian models of P. aeruginosa 

infection suggested that ExoS contributed to bacterial dissemination in a burned mouse 

model and to pathology in a rat model of chronic lung infection [342, 357-359]. 

However, the mutant strain used in these experiments contained a transposon in an 

operon encoding a portion of the TTS apparatus [324]. Thus, the observed effects were 

the result of inhibition of secretion of all the TTS toxins in the strain not just ExoS. A 

more recent study that examined the effect of a targeted disruption of the exoS gene 

failed to detect any contribution of ExoS to virulence in a burned mouse model [360]. 

However, ExoS has been shown to contribute to virulence in a mouse model of acute 

pneumonia [361, 362]. ExoS facilitated both bacterial persistence and dissemination to 

extrapulmonary sites such as the liver [361, 362].

1.6.3.1.2, The domain structure of exoeuzyme S

ExoS is a 453 amino acid protein, which exhibits ADPRT activity. In addition to its 

ADPRT activity, ExoS is also able to act as a GAP. These two enzymatic activities are 

located in separate functional domains of ExoS, with the N-terminus containing the 

GAP domain and the C-terminus containing the ADPRT domain (Fig. 1.9). In addition 

to these two catalytic domains, ExoS also possesses sequences required for secretion, 

chaperone binding and membrane localisation, N-terminal to the GAP domain 

(reviewed in [363]).

1.6.3.1.3. The secretiou domaiu of exoeuzyme S

As previously discussed, toxins that are transported via the TTS system require 

targeting to this system by a TTS signal located in the first '-15  mRNA codons or
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Fig. 1.9. The domain structure of ExoS and ExoT.

ExoS and ExoT are bifunctionai toxins containing an N terminal Rho GTPase activating 

protein (Rho GAP) domain and a C-terminal ADP-ribosy(transferase domain. N- 

terminal to the GAP domain is a secretion domain (Sec), a chaperone binding domain 

(Chap) and a membrane localisation domain (MLD). The GAP active site arginines 

(R146 and R149) and the A DP-ribosy transferase active site glutamic acids (E379/E381 

and E383/E385) are indicated. Taken from [3631.
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amino acids of the toxin. It has been demonstrated that the N-terminal 9 amino acids of 

ExoS are required for export [324], thus suggesting that the signal for secretion by the 

TTS system of P. aeruginosa is also located at the extreme N-terminus of ExoS.

1.6.3.1.4. The chaperone-binding domain of exoenzyme S

Analysis of the region upstream of exoS revealed a locus that was co-regulated with 

exoS [364]. This locus included three open reading frames (ORFs), one of which, ORE 

1, showed significant similarity to the gene encoding the YopE chaperone, sycE. SycE 

is required for the efficient secretion of YopE and, as previously discussed, acts by 

preventing the aggregation and subsequent degradation of YopE [175, 193, 200, 365]. 

The hypothesis that OFR 1 is a chaperone for ExoS is supported by the observation that 

when ExoS was expressed in Y. pseudotuberculosis, ORF 1 was required for its efficient 

secretion [352]. The lack of accumulation of ExoS in the Yersinia strain expressing 

ExoS but not ORF 1 also suggests that ExoS is less stable in the absence of ORF 1 

[352]. When purified, ExoS occurs as a high-molecular-weight aggregate and a region 

within the N-terminal 99 amino acids is responsible for this phenotype [366]. 

Therefore, ORF 1 may act in the same way as SycE, to mask the aggregation prone 

chaperone-binding site of its cognate toxin and prevent its degredation.

1.6.3.1.5. The mem brane localisation domain of exoenzyme S

A number of studies using non-toxic ExoS mutants, that either lack the entire ADPRT 

domain or that have an inactive ADPRT domain, have revealed that ExoS localises to 

the perinuclear region of eukaryotic cells in a punctate pattern [26]. ExoS fractionates 

with the particulate fraction of eukaryotic cells suggesting that it is targeted to a 

membranous region around the nucleus [367]. Studying the localisation of various 

ExoS deletion mutants has defined the region responsible for this intracellular targeting 

as lying between amino acids 51 and 72 [368]. This region has been called the 

membrane localisation domain (MLD) and is necessary and sufficient for membrane 

localisation as illustrated by its ability to direct a green fluorescent protein (GFP) fusion 

protein to the perinuclear membrane domain [368]. Deletion of the MLD did not alter 

the TTS of ExoS from P. aeruginosa but did result in a protein that is localised to the 

cytosol of eukaryotic cells [368]. Therefore, this region is distinct from the secretion
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and chaperone binding domains described above. The MLD does not appear to be 

essential for ExoS action as its deletion does not alter the ability of ExoS to elicit 

cytotoxicity or morphological changes [367, 368]. Abolishing the MLD may however 

alter the targets of ExoS, as ExoSAMLD is unable to ADP-ribosylate Ras (one of the 

targets of the ADPRT domain) [368].

1.6.3,1,6. The ADP-ribosyltransferase domain of exoenzyme S

The ExoS ADPRT domain acts by catalysing the cleavage of NAD^ at the glycosidic 

bond and covalently attaching the ADP-ribose moiety to a number of eukaryotic target 

proteins. ExoS is a poly-substrate specific ADPRT that has been shown to modify a 

wide range of proteins. A number of small GTPases are ADP-ribosylated by ExoS 

including the Ras and Ras-Iike proteins Ras, Rapl, Rap2, and RalA, the Rab proteins 

Rab3, Rab4, Rab5, Rab8  and Rab 11 and the Rho proteins Rho, Rac and Cdc42 [369- 

373]. Other targets of the ExoS ADPRT domain include the intermediate filament 

protein vimentin [374], the extracellular proteins IgG and apolipoprotein A1 [375] and 

the actin-binding proteins ezrin, radixin and moesin [376]. Not all the proteins 

identified as in vitro targets of ExoS are ADP-ribosylated in vivo. For example Rab4 

and Rho are modified in vitro but not in eukaryotic cells [372, 373]. There also appear 

to be cell-specific differences in the range of proteins ADP-ribosylated by ExoS, For 

example, a larger number of small GTPases were ADP-ribosylated in human epithelial 

cells compared to human macrophages or rodent cell lines [377, 378]. In addition to the 

ADP-ribosylation of eukaryotic proteins, ExoS is also auto-ADP-ribosylated both in 

vitro and in Chinese hamster ovary (CHO) cells [379]. The ADPRT domain ADP- 

ribosylates the catalytic arginine residue 146 of the GAP domain and reduces the 

activity of the GAP domain in vitro [379]. Thus there may be intramolecular regulation 

of the two functional domains of ExoS in intact cells.

The ADPRT domain of ExoS resides within the C-terminal 222 amino acids of the toxin 

(Fig. 1.9) [366]. ExoS is a biglutamic acid ADPRT and the glutamic acid residues 379 

and 381 are important for its enzymatic action [380, 381]. Mutation of the glutamic 

acid at position 381 inhibits both NAD glycohydrase and ADPRT activity whereas 

mutation of the glutamic acid residue 379 inhibits just ADPRT activity [381]. 

Therefore the glutamic acid at position 381 is the catalytic residue and the glutamic acid
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at position 379 facilitates the transfer of the ADP-ribose to the target protein. ExoS 

ADP-ribosylates specific arginine residues in the target proteins and may modify one or 

more residues [369, 382]. For example, K-Ras and N-Ras are modified once whereas 

H-Ras can be modified up to three times [382]. The preferred site for H-Ras ADP- 

ribosylation is arginine 41, with the second site being arginine 128 and an alternative 

site being arginine 135 [383, 384].

ExoS absolutely requires a eukaryotic cofactor for its ADPRT activity [385], thus 

preventing the action of the ExoS ADPRT domain in P. aeruginosa. This protein was 

initially named FAS (factor activating ExoS) and has since been identified as a 14-3-3 

protein [386]. Of the seven mammalian 14-3-3 isoforms, all of those studied {(5 ^ r] a  

and t) activate ExoS with similar efficiency [387]. The 14-3-3 proteins are a group of 

highly conserved helical, intracellular proteins ubiquitously expressed in all eukaryotes 

from fungi to humans to plants, 14-3-3 proteins can interact with over 200 target 

proteins and are involved in controlling many cellular processes including cell cycle, 

cell growth, differentiation, survival, apoptosis, migration and spreading [388]. 14-3-3 

proteins exist as dimers with each monomer containing an amp hi path ic groove that 

mediates binding. Although many binding partners of 14-3-3 proteins contain a 

phosphoserine motif [389, 390], 14-3-3 is also able to interact with nonphosphorylated 

substrates [391]. ExoS is one such nonphosphorylated substrate that requires the basic 

residues lining the amphipathic groove for binding [387]. It has been demonstrated that 

amino acid 420-^29 of ExoS are important for its interaction with 14-3-3 and that the 

D-A-L-D-L motif (amino acids 424-428) is essential for binding [392]. In addition to 

abrogating 14-3-3 binding in vitro, mutation of the D-A-L-D-L motif prevents Ras 

ADP-ribosylation in vivo [392]. The 14-3-3 binding domain is also required for ExoS 

to elicit cytotoxicity and morphology changes in eukaryotic cells [392, 393].

In order to dissect which of the consequences of ExoS expression can be attributed to 

the ADPRT domain, a number of groups have studied the effect of ExoS with a deleted 

or mutated GAP domain [378, 394, 395]. Phenotypes linked to the ADPRT domain of 

ExoS include cytotoxicity, decreased DNA synthesis, cell morphology changes, loss of 

adherence and apoptosis [355, 378, 394, 395]. The ADPRT domain has also been 

linked to the virulence caused by ExoS in the mouse model of acute pneumonia [361]. 

It is not clear how the ADPRT domain of ExoS acts to cause this array of phenotypes
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but a number of hypothesis have been proposed. The Ras family of small GTPases are 

involved in controlling critical cellular processes including proliferation, differentiation 

and apoptosis. Therefore inhibition of these proteins by ADP-ribosylation may account 

for the decreased DNA synthesis and cell death caused by ExoS. The Rho GTPases are 

involved in the control and reorganisation of the cytoskeleton, and the actin binding 

proteins ezrin, radixin and moesin contribute to cytoskeleton dynamics [396]. Thus the 

ADP-ribosylation of any of these may be responsible for the morphological 

consequences of the ExoS ADPRT domain.

An example of the ability of the ADPRT domain of ExoS to alter the function of one of 

its targets is provided by Ras. Bacterially translocated ExoS ADP-ribosylates Ras 

preferentially at arginine residue 41 and this modification blocks the interaction of Ras 

with its GEE, Cdc25 [383, 397]. As Cdc25 is unable to catalyse the exchange of GDP 

for GTP on ADP-ribosylated Ras, the amount of endogenous GDP-bound Ras 

accumulates [398]. GDP-bound Ras is inactive and unable to interact with its 

downstream partners such as Raf. Thus ADP-ribsoylation of Ras inhibits its ability to 

interact with Raf and prevents downstream signalling [398]. ADP-ribosylation of 

arginine residue 41 of Rap lb  by ExoS also inhibits the ability of its GEF, C3G to 

stimulate guanine nucleotide exchange [399].

Although ADP-ribosylation of Ras does inhibit Ras-mediated signal transduction 

pathways, it has been demonstrated that this is not the cause of the cytotoxic phenotype 

of ExoS. As described above, deletion of the MLD of ExoS abrogates the ability of 

ExoS to ADP-ribosylate Ras [368]. However deletion of the MLD does not decrease 

ExoS induced cytotoxicity in infected cells [368]. Therefore ADP-ribosylation of Ras is 

uncoupled from the cytotoxic phenotype elicited by ExoS.

1.6.3.1.7. The GTPase activating protein domain of exoenzyme S

The presence of a second catalytic domain in ExoS was suggested by the ability of an 

ADPRT mutant to cause morphological changes [352]. ExoS with a mutation of the 

catalytic glutamic acid residue 381 possessed only 0.02% of the ADPRT activity of 

wild type ExoS but was still able to elicit actin cytoskeleton disruption and inhibit 

phagocytosis in epithelial cells and macrophages respectively [346, 352]. It was
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subsequently shown that the N-terminal 234 amino acids of ExoS were able to disrupt 

the actin cytoskeleton and cause cell rounding without causing cytotoxicity when 

transfected into CHO cells [400],

An indication of the function of the N-terminal domain was provided by the observation 

that cytotoxic necrotizing factor 1, which activates Rho GTPases, reversed the 

cytoskeletal rearrangements caused by the N-terminal 234 amino acids of ExoS [400]. 

This suggested that ExoS might disrupt signal elements upstream of Rho GTPases or 

directly disrupt Rho GTPase function. It was then demonstrated that ExoS acted 

directly on Rho GTPases as a GAP, stimulating the GTP hydrolysis by Rho, Rac and 

Cdc42 in vitro [401]. The arginine residue 146 of ExoS was shown to be essential for 

this GAP activity and three-dimensional structural analysis revealed that this residue 

functions as an arginine finger that stabilises the transition state of the Rac-GTPase 

reaction [401, 402].

The RhoGTPases, Rho, Rac and Cdc42 are molecular switches involved in the 

regulation of actin cytoskeletal rearrangements and a large number of signalling 

processes. Rho regulates focal adhesion formation, the assembly of actin filaments into 

stress cables and contributes to cell contractility [403, 404]. Rac regulates the formation 

of lamellipodia (membrane ruffles) and contributes to cell motility [403]. Cdc42 

regulates filopodium formation and contributes to cell polarity [403]. The ability of 

ExoS to act as a GAP for these proteins in vivo was investigated by examining the effect 

of co-expressing dominant active RhoGTPases and the ExoS GAP domain [405]. Co­

expression of dominant active Racl and Cdc42 inhibited the reorganisation of the actin 

cytoskeleton by the ExoS GAP domain and expression of dominant active Rho 

stimulated the formation of stress cables in the presence of ExoS [405]. Therefore, the 

GAP domain of ExoS is active in vivo and acts to stimulate the reorganisation of the 

actin cytoskeleton by inhibition of Rac and Cdc42 and inhibit actin stress cable 

formation by inhibition of Rho.

As discussed above, the ADPRT domain of ExoS is also able to elicit morphological 

changes in eukaryotic cells in the absence of a functional GAP domain. Thus the 

relative contribution of each domain to the phenotype of ExoS remains unclear. In 

some cell lines, for example the HT-29 epithelial cell line, the GAP domain has
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minimal effects on cell morphology [395]. However in other cell lines, such as J774A.1 

macrophages, the GAP domain is responsible for the antiphagocytic phenotype [378]. 

The relative contributions of each domain may be influenced by the cellular 

environment, for example the localisation and accessibility of target proteins [406]. A 

further complication is the apparent intramolecular regulation of the GAP and ADPRT 

domains. As stated above, the ADPRT domain of ExoS ADP-ribosylates the catalytic 

arginine residue 146 of the GAP domain and reduces the activity of the GAP domain in 

vitro [379]. Also there is evidence that the GAP domain down-regulates the action of 

the ADPRT domain in vivo [395].

I.6.3.2. Exoenzyme T

As previously described, ExoT was identified by virtue of its similarity to ExoS. ExoT 

and ExoS are 75% identical at the amino acid level and exhibit the same domain 

structure (Fig. 1.9) with an N-terminal GAP domain and a C-terminal ADPRT domain 

[346, 363]. Although not explicitly studied for ExoT, the high degree of identity 

between the C-terminal 72 amino acids of ExoS and ExoT suggests that the same 

regions within these two proteins are required for secretion, chaperone binding and 

membrane localisation. With regards to chaperone binding, the absence of a chaperone­

like gene in the vicinity of exoT  in addition to the homology between the chaperone 

binding domain of ExoS and the same region in ExoT, indicates that ExoT may utilise 

the same chaperone as ExoS, ORF 1 [346]. For intracellular localisation, it has been 

proposed that both ExoS and ExoT experience a common intracellular trafficking 

pathway and localise to the same region within eukaryotic cells. ExoT has a similar 

intracellular fractionation pattern as ExoS and it has the same targets for its GAP 

domain [405, 407]. Also if the ADPRT domains of ExoS and ExoT are switched, the in 

vivo targets of ADP-ribosylation remain dependent on the specific ADPRT domain and 

not on the identity of the rest of the protein, indicating that their targeting is not altered 

[408].

I.6.3.2.I. The consequences of exoenzyme T expression

In common with ExoS, ExoT is able to elicit actin reorganisation, cell rounding and 

detachment of a number of cell lines [349, 407, 409]. ExoT is also able to inhibit the
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internalisation of P. aeruginosa by macrophages and epithelial cells and inhibit wound 

healing [353, 407, 410, 411]. However unlike ExoS, ExoT is not cytotoxic to 

mammalian cells [412].

Unlike the other TTS toxins of P. aeruginosa, ExoT is not a variable trait with all 

strains containing the gene [339]. The retention of this gene in all strains suggests 

that it plays an important role in some aspect of bacterial survival. However, ExoT 

appears to contribute very little to P, aeruginosa virulence in a mouse model of acute 

pneumonia or burns [360-362]. The only effect that has been attributed to ExoT in an 

mammalian model is to facilitate bacterial dissemination to the liver [361, 410].

1.6.3.2.2. The GTPase activating protein domain of exoenzyme T

The GAP domain of ExoT is very similar in structure and function to that of ExoS. 

Residues 78-237 of ExoT exhibit GAP activity towards Rho A, Racl and Cdc42 both in 

vitro and in vivo [407, 409]. Also the arginine at position 149 (analogous to the 

arginine at residue 146 in ExoS) is required for this activity [407, 412]. It is evident that 

the GAP domain of ExoT contributes to the cytoskeleton disruption and anti­

internalisation properties of this toxin. When P. aeruginosa secretes ExoT with the 

arginine at position 149 mutated, more bacteria are internalised compared to P. 

aeruginosa that secretes wild type ExoT [410]. However, ExoT lacking a functional 

GAP domain is still able to cause morphological changes in eukaryotic cells and cause a 

reduced but significant inhibition of internalisation [410, 412, 413]. This suggests that 

the ADPRT domain is also involved in the cytoskeletal disruption and anti-phagocytic 

phenotypes of ExoT.

1.6.3.2.3. The ADP-ribosyltransferase domain of exoenzyme T

When ExoT was first identified it was thought to have little ADPRT activity. Using the 

soyabean trypsin inhibitor as an artificial substrate, recombinant ExoT only exhibited 

0.2% of the ADPRT activity of ExoS [346]. In addition, the ADPRT activity of ExoT 

on Ras was only 1-3% compared to that of ExoS in vitro and no Ras ADP-ribosylation 

by ExoT was detected in vivo [412, 414]. This lack of Ras ADP-ribosylation correlated 

with the inability of ExoT to inhibit receptor-mediated Ras activation and signalling to
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Raf [412]. In common with ExoS, the small amount of ExoT ADPRT activity detected 

was absolutely dependent on the presence of a 14-3-3 protein and required the glutamic 

acid residues 383 and 385 (analogous to the glutamic acid residues 379 and 381 in 

ExoS) [346, 414, 415].

Although the ADPRT domain of ExoT did not appear very active, the observation that 

the ExoT GAP mutant caused morphological changes and inhibited internalisation and 

wound healing suggested that the ADPRT domain was indeed functional but targeted 

host proteins distinct from Ras [410, 412, 413]. It was subsequently shown that ExoT 

was able to effectively ADP-ribosylate two eukaryotic proteins, Crk (CTIO regulator of 

kinase)-! and Crk-II both in vitro and in vivo [415]. ExoT was capable of ADP- 

ribosylating Crk-1 at a rate similar to the rate at which ExoS ADP-ribosylates the 

soyabean trypsin inhibitor and ExoS was unable to ADP-ribosylate Crk-I [415]. Like 

ExoS, ExoT is also capable of auto-ADP-ribosylation, although what effects this has on 

the activity of the toxin is unknown [415].

The ability of ExoT to ADP-ribosylate Crk-I and Crk-II provided a link between the 

enzymatic activity of the ADPRT domain and its ability to inhibit phagocytosis (Fig. 

1.10). Crk-I and Crk-II are alternatively spliced products of the human CRK gene that 

contain Src homology (SH) 2 and SH3 domains [416]. They are adaptor proteins that 

play a central role in integrin-mediated phagocytosis, focal adhesion and cell migration 

[417-419]. Upon ligand binding, the a -  and (5-subunits of the integrin transmembrane 

receptors dimerise and recruit focal adhesion complex proteins. These proteins include 

focal adhesion kinase (FAR) and Src family kinases and the scaffolding proteins 

Paxillin and pl30Cas. Paxillin and pl30Cas are tyrosine phosphorylated by FAR or Src 

and are then able to bind to the SH2 domain of the Crk proteins, which recognises 

phosphorylated tyrosines in the motif pY-X-X-P [420-424]. The SH3 domain of Crk 

binds the downstream factor DOCR180 that, in conjunction with ELMO, activates Racl 

by virtue of its GEF activity [425, 426]. Activated Racl can then stimulate actin 

reorganisation that eventually leads to cell migration and phagocytosis.

It was recently demonstrated that ExoT inhibits integrin-mediated phagocytosis by 

ADP-ribosylating arginine 20 of Crk [427] (Fig. 1.10). Arginine 20 is found in the SH2 

domain of Crk and when it is ADP-ribosylated by ExoT, Crk is no longer able to
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Fig. 1.10. The action of the ADP-ribosyltransferase domain of ExoT.

Ligand binding to integrin leads to the recruitment of focal adhesion complex proteins 

including FAK, Src, Paxillin and pl30Cas. Paxillinn and pl30Cas are phopshorylated 

(P) by FAK or Src and are able to bind to the SH2 domain or the Crk proteins. The SH3 

domain of Crk then binds to DOCK 180, which in conjunction with ELMO, activates 

Racl by exchanging GDP for GTP. Activated Racl stimulates phagocytosis. ExoT 

inhibits this process by ADP-ribosylating arginine 20 of Crk, thus inhibiting the 

interaction between Paxillin or pl30Cas and the SH2 domain of Crk (red line). Adapted 

from [3631.
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associate with Paxillin or pl30Cas [427]. Therefore the integrin receptor activated 

pl30Cas-Crk-DOCK180 pathway that would lead to Racl-mediated phagocytosis is 

severed. The observation that overexpression of Crk-I or expression of dominant-active 

Racl reduced cell rounding by ExoT supports this model of ExoT action [427].

I.6.3.3. Exoenzyme U

ExoU was the third TTS toxin to be discovered in P. aeruginosa as the factor 

responsible for the cytotoxic phenotype of the clinical lung isolate PA 103. It was 

observed that a PA 103 mutant strain with an inactivated exsA allele was attenuated in 

virulence in a rabbit model of lung infection [428]. ExsA was known to activate the 

expression of ExoS and ExoT [321], therefore it was predicted that one of these TTS 

toxins was responsible for the virulence phenotype of PA 103. However, PA 103 lacks 

exoS [429] and a PA 103 strain with a transposon mutation in the exoT  gene was still 

eytotoxic in vitro and caused lung epithelial injury in an acute lung infection mouse 

model [430]. The observation that neither ExoS nor ExoT accounted for the 

cytotoxicity of PA 103 and the requirement for ExsA suggested that another TTS toxin 

was responsible for this phenotype. Two independent groups demonstrated that this 

additional TTS toxin was a secreted protein of about 74 kDa, ExoU [430] (or PepA as it 

was originally called by one group [431]). Mutation of the exoU gene abrogated the in 

vitro cytoxicity and in vivo virulence properties of PA 103 and complementation of this 

exoU  mutant strain with a plasmid encoding ExoU restored these phenotypes [430, 

431].

A number of observations suggested that ExoU was secreted by the TTS system and 

was co-ordinately regulated with the other TTS toxins of P. aeruginosa. In common 

with ExoS and ExoT, ExoU secretion occurred without cleavage of a signal peptide and 

was induced by low calcium conditions [431]. ExoU also failed to be secreted by 

isogenic mutants defective in the TTS pathway. For example a PA 103 strain with a 

mutation in the gene encoding the TTS apparatus component PscJ was not capable of 

secreting ExoU [431]. The requirement of ExsA for ExoU secretion and the presence of 

the ExsA consensus element (T-X-A-A-A-A-X-A) 84 bp 5’ of the translation start 

codon of exoU suggested that, like ExoS and ExoT, ExoU expression was activated by 

ExsA [430, 431]. It was also observed that the first 5 amino acids of ExoU were
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identical to those of ExoS and ExoT, indicating that there might be a common N- 

terminal motif required for pseudomonal toxins to be recognised by the TTS apparatus 

[430,431].

I.6.3.3.I. The consequences of exoenzyme U expression

ExoU has been associated with the death of many different cell types including 

fibroblasts, epithelial cells, neutrophils, macrophages and the yeast, Saccharomyces 

cerevisiae. By comparing the cytotoxicity of isogenic P. aeruginosa mutants that either 

secrete ExoU or do not secrete ExoU, a number of studies have indicated the role of this 

toxin in eliciting cell death [349, 430-434]. It has also been demonstrated that 

transformation of a non-toxic, exoU  minus strain with a plasmid encoding ExoU 

rendered this strain toxic to cultured epithelial cells [435]. In addition to cell death 

resulting from infection with an ExoU-secreting strain, transfection of various cell lines 

with an ExoU-expressing plasmid [436-439] or syringe loading of CHO cells with 

recombinant ExoU [440] also results in cell death.

Before the catalytic activity of ExoU was known it was noted that ExoU cytotoxicity 

occurred rapidly and was characteristic of necrosis as opposed to apoptosis [434, 441, 

442]. Fully toxic ExoU has never been detected in infected or transfected cells by 

Western blot analysis, fluorescence microscopy or flow cytometry analysis indicating 

that only a small amount of ExoU is required for activity [436, 437, 439]. In fact it has 

been demonstrated that half-maximal cytotoxicity appears to require only -300-600 

ExoU molecules per cell [440].

In addition to being cytotoxic to cells, ExoU is required for the in vivo virulence of a 

number of P. aeruginosa strains. Murine models of acute lung infection have been used 

to demonstrate the role that ExoU plays in bacterial persistence, dissemination and 

mortality [361, 430, 431, 435]. Deletion of exoV  reduces the virulence of pseudomonal 

strains and adding exoU  to non-toxic strains confers a virulent phenotype on these 

bacteria. A role for ExoU in inducing systemic inflammation and septic shock has also 

been suggested using a rabbit model of lung infection [443]. In addition to the role that 

ExoU plays in lung infections, it has also been shown to contribute to bacterial survival 

and disease severity in a murine scarification model of corneal infection [444].
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The presence of ExoU appears to correlate with more severe disease in humans. For 

example, patients with hospital-acquired pneumonia who were infected with ExoU 

secreting P. aeruginosa had a poorer prognosis than patients who were infected with 

isolates that did not secrete TTS toxins [445].

I.6.3.3.2. Exoenzyme U possesses phospholipase activity

When ExoU was first identified and analysed using BLAST, no genes or proteins with 

significant similarity were found [430, 431]. The lack of similar proteins and the rapid 

and potent cytotoxicity of ExoU made it difficult to determine the enzymatic action of 

this toxin. However, the development of the S, cerevisiae transfection model provided a 

suitable system in which tostudy ExoU as the presence of a thick cell wall prevented 

immediate cell lysis and allowed observation of internal changes within the yeast [439]. 

ExoU caused a number of internal changes in S. cerevisiae including the accumulation 

of numerous vesicles that appeared as dimples or pockmarks by Nomarski differential 

interference contrast microscopy and alterations in immunofluorecent staining with 

several organelle markers [439]. Staining with markers for the yeast vacuole and 

vacuolar membrane revealed a vacuolar fragmentation phenotype upon ExoU induction 

and ExoU also caused an increase in the immunofluorescent signal intensities for 

several organelle markers including the vacuole, mitochondria, late Golgi and 

endosome. These results indicated that yeast vacuoles were a major target of ExoU 

action and that this toxin might also cause exposure of a number of epitopes present on 

yeast organelles.

Two mechanisms were suggested to account for the effects that ExoU had on vacuoles, 

either ExoU interfered with vacuolar biogenesis or ExoU disrupted membranes [439]. 

In order to distinguish between these two possible activities, a number of inhibitors 

were examined to determine whether they abolished ExoU toxicity including chemicals 

that affected the function of vacuolar ATPases, chloride channels, serine and cysteine 

proteases and phospholipases. It was noted that inhibitors of human cytosolic 

phospholipase A^ (cPLA^) and Ca^^-independent phospholipase Aj (iPLA^) but not 

secreted phospholipase Ag (sPLA^) eliminated or greatly reduced ExoU toxicity [439, 

440]. Therefore, ExoU either possesses lipase activity or activates cellular lipases. The
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inability of specific inhibitors of endogenous cPLAj or 1PLA2 to protect against ExoU- 

mediated cytotoxicity and the observation that pre-treatment of ExoU with methyl 

arachidonyl fluorophosphonate, an irreversible inhibitor of cPLA^, was partially 

protective, suggests that ExoU was itself acting as a phospholipase [440].

Further evidence supporting the action of ExoU as a phospholipase was supplied by the 

homology displayed between amino acids 107-357 of ExoU and plant patatins (which 

posses phospholipase activity), mammalian cPLA^ and iPLAj (Fig. 1.11) [439, 440]. 

Three highly conserved regions were observed between these phospholipases: 1) a 

glycine-rich nucleotide-binding motif, G-X-G-X-X-G, at position 111-116 of ExoU, 2) 

a serine hydrolase motif, G-X-S-X-G at position 140-144 of ExoU and 3) an active site 

aspartate residue in the conserved motif D-X-G/A at position 344-346 of ExoU. In 

CPLA2 , the serine-aspartate catalytic dyad is required to hydrolyse the sn-2 ester bond of 

phospholipids and release free fatty acids and lysophospholipids. The glycine-rich 

nucleotide-binding motif is responsible for polarising the sn-2 ester and stabilising the 

negative charge that develops upon nucleophilic attack by the catalytic serine during 

substrate cleavage [446]. As expected if ExoU acts as a phospholipase, mutation of 

either the predicted catalytic serine residue 142 or the catalytic aspartate residue 344 

abolished the cytotoxic activity of ExoU in both infection and transfection studies [439, 

440].

ExoU appears to be a broad substrate specific lipase that is able to hydrolyse neutral 

lipids and phospholipids [439]. Phospholipids with saturated fatty acids and/or acid 

head groups however, seem less suitable substrates for this lipase [447]. ExoU may 

also exhibit lysophospholipase A activity therefore removing the second fatty acid from 

a phospholipids that has already had its first fatty acid removed [448].

In addition to the homology shown to patatin and mammalian CPLA2 and iPLAj, ExoU 

also shows significant homology to a number of other bacterial proteins that contain the 

conserved catalytic dyad of CPLA2 [449]. For example, the ORFs RP534 of Rickettsia 

prowazekii and BA0745, BA 1992 and BA4137 of Bacillus anthracis all contain the 

glycine rich motif and the active site serine and aspartate domains. In addition the 

Yersinia entercolitica YplA protein secreted by the flagellar TTS system and the B-
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Fig. 1.11. Alignment of ExoU with patatins and patatin-Iike phospholipase 

domains

Alignment of the primary sequences of P.aeruginosa ExoU (amino acids 107-154 and 

316-352), and patatin-like phospholipase domains of human iPLAj (A and B), 

human cPLAj ( a ,  p and y) and plant patatins using the NCBl Conserved Domain 

Database. A color index for conserved amino acid residues among listed proteins was 

based on the PAM250 substitution score matrix. The conserved glycine-rich 

nucleotide-binding motif (G-X-G-X-X-G), the serine hydrolase motif (G-X-S-X-G) and 

the active site aspartate residue motif (D-X-G/A) are indicated. Taken from [4391.
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chain of ricin produced by Ricinus communis also contain the serine-aspartate catalytic 

dyad and are known to posses phospholipase activity [450-452].

1.6.3.3.3. Exoenzyme U requires a eukaryotic cofactor for activation

When recombinant ExoU (rExoU) was added to ‘"’C-labelled liposomes, no fatty acid 

release was observed by thin-layer chromatography [439, 440]. The purified rExoU 

was only active if pre-incubated with yeast or mammalian cell extract, which suggests 

that ExoU requires a eukaryotic cofactor or modification to be catalytically active [439, 

447, 448]. ExoU is able to act on the phospholipids found in bacterial membranes but 

bacterial soluble extract is unable to activate lExoU [447]. Thus, it is apparent the 

requirement for a eukaryotic activating factor prevents ExoU from being toxic to the P. 

aeruginosa that manufactures it.

Although attempts to identify the eukaryotic activating factor of ExoU have so far failed 

[439], a number of experiments have been carried out to identify its characteristics. 

Activation of human cPLAg requires calcium ions, but cations such as Ca^ ,̂ Mĝ "̂  or 

were unable to activate rExoU suggesting a different mechanism of activation 

[447]. When rExoU is pre-incubated with cell extract and then purified it is unable to 

act as a lipase because the activator must be present during substrate hydrolysis [447]. 

This suggests that the activator is a cofactor not a modifier of ExoU. The identity of the 

eukaryotic cofactor as a protein is indicated by the reduced ability of cell extract heated 

to high temperatures or treated with chymotrypsin to activate rExoU [447]. Finally, size 

exclusion filtration with a spin column suggests that the activating factor is over 100 

kDa in size [447] implying that the cofactor is either a large protein or protein complex.

1.6.3.3.4. The requirement of the C-terminus of exoenzyme U for activity

When ExoU was first identified, in addition to a non-toxic transposon mutant that failed 

to secrete ExoU due to a transposon insertion near the beginning of the exoU gene, a 

non-toxic mutant that secreted a truncated form of ExoU was also identified [431]. In 

this mutant, deletion of the last 88 bp of exoU  was sufficient to render the strain non­

toxic. Therefore the C-terminus of ExoU appears to be required for its cytotoxic 

activity. Further experiments on the domains required for ExoU action in mammalian
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and yeast cells revealed that the C-terminus was indeed required as were domains in the 

N-terminus and domains in the middle of the protein [436-439J. When the catalytic 

activity of ExoU was determined, the requirement for the N-terminal and middle 

domains became apparent as these regions occurred within the PLA^ homology domain 

[439]. The C-terminal domain required for ExoU activity however resides outside the 

PLAj homology domain and is therefore not believed to contribute directly to catalytic 

phospholipase activity (Fig. 1,12). It has been postulated that the C-terminus of ExoU 

may be required for cofactor binding or modification or to enable the toxin to interact 

with its phospholipid substrates, but there is currently no evidence to support these 

hypotheses [449].

I.6.3.3.5. Exoenzyme U requires a chaperone for efficient secretion

It was observed that a sequence downstream of exoU  was required for the efficient 

secretion but not for the synthesis of ExoU [453]. Analysis of this genomic region 

identified three ORFs, one of which was predicted to encode a protein with the typical 

characteristics of a TTS chaperone. This ORF was named spcU (specific Pseudomonas 

chaperone for ExoU) and encoded a 137 amino acid protein with a predicted molecular 

weight of 14.9 kDa and a predicted acidic pi of 4.4 [453]. The C-terminal region of 

SpcU aligns with a common leucine-rich motif found within the chaperone family 

providing further proof of its role as a chaperone [453]. It is evident that the ExoU 

locus is organised as an operon encoding both exoU  and spcU. The ExoU mRNA is 

about 400 bp larger than expected and the start codon of spcV  overlaps the stop codon 

of exoU [453]. There is also a putative ribosome-binding site 5 bp upstream of the spcU 

start codon within the exoU coding sequence [453].

When ExoU and SpcU were co-expressed in E. coli, they appeared to associate in a 

non-covalent complex with amino acids 3 to 123 of ExoU being required for this 

interaction [453] (Fig. 1.12). As previously discussed, chaperones may act in a number 

of different ways: as anti-aggregation and stabilisation factors, as secretion signals, as 

antifolding factors and as regulators of expression of the TTS system. In the case of 

SpcU, there is evidence that it acts to prevent ExoU aggregation because histidine- 

tagged ExoU appears to form fibular structures in the absence of SpcU [453].
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Fig. 1.12. Domain structure and action of ExoU

ExoU exhibits phospholipase A; (PLAj) activity and is homologous to Patatin and 

Patatin-Iike PLA2  enzymes between amino acids 123 and 357. The glycine-rich motif, 

active site serine (S I42) and aspartate (D344) residues are indicated. The first five 

amino acids of ExoU might be involved in targeting the toxin to the TTS apparatus. 

Amino acids 3 to 107 include the region responsible for binding of the ExoU chaperone, 

SpcU. The C-terminus of ExoU is required for activity and may be involved in binding 

the essential eukaryotic cofactor. ExoU causes host membrane destruction and 

eicosanoid-mediated inflammation due to its PLA^ activity. Adapted from |449|.

90



I.6.3.3.6. Exoenzyme U is encoded on a pathogenicity island

As previously noted, ExoU is a variable trait in clinical isolates [339] and therefore may 

be acquired by these strains by horizontal transfer. exoU  appears to occur within a 

pathogenicity island as there is a putative insertion element homologous to IS407 94 bp 

5 ’ of the exoU  transcriptional start site [430, 431]. The GC content of the putative 

insertion element, exoU  and spcU  (60%, 59% and 56% respectively) is also markedly 

lower than that of the P. aeruginosa genome (67.2%) suggesting its acquisition from 

another source [430, 431, 453]. A specialised cloning vector, designed to capture 

chromosomal regions that may serve as sites for amino acid deletions or insertions by 

virtue of their high degree of polymorphisms, identified an 80 kb island of P. 

aeruginosa genomic DNA that includes exoU [454].

The presence of exoU and exoS in P. aeruginosa isolates is almost completely mutually 

exclusive [339, 445, 454-458]. Clinical and environmental isolates generally contain 

either exoU or exoS and only a very few strains have been identified that contain genes 

for both exoenzymes [339, 361]. It is not clear how P, aeuriginosa ensures that it 

encodes only ExoU or ExoS. It has however been observed that strains containing exoU 

also contain the exoS chaperone whereas strains encoding exoS do not encode the exoU 

chaperone, spcU. This suggests that horizontal transfer of the pathogenicity island 

containing exoU and spcU  into a strain containing exoS is followed by excision of the 

exoS  gene. The mutually exclusive expression of either ExoU or ExoS by P. 

aeruginosa implies that in specific environments it is advantageous to produce either 

one or other of the toxins but it is disadvantageous to produce both.

1.6.3.3 7. Possible secondary roles of exoenzyme U during infection

The ability of ExoU to act as a lipase enables it to trigger membrane disruption that 

results in cell death. In addition to its direct cytotoxic effect, ExoU may play additional 

roles in pseudomonal pathogenesis. For example, the ability of ExoU to induce 

systemic inflammation and rapid septic shock in a rabbit lung infection models may be 

caused by the release of cytokines from the damaged alveolar epithelial cells [443]. 

Also the lipolytic activity of ExoU may enable it to act on the major lipid lung 

surfactant, dipalmitoyl phosphatidylcholine. The lysophospholipids released from the

91



hydrolysis of lipids in lung surfactant can cause damage to cell membranes [459], Thus 

ExoU may contribute to the systemic spread of P. aeruginosa by indirectly damaging 

cell membranes through its action on lipid lung surfactant. Another way that ExoU may 

contribute to pathogenesis is through the release of arachidonic acid. Some mammalian 

phospholipids contain arachidonic acid as one of their fatty acids and once released by 

the action of phospholipases, this molecule can be metabolised to eicosanoids. 

Eicosanoids, including prostaglandins and leukotrienes, are capable of mediating signal 

transduction pathways that activate inflammatory responses [460, 461]. Therefore, 

ExoU may contribute to inflammation in mammals by catalysing the release of 

arachadonic acid from phospholipids (Fig. 1.12). Evidence to support this hypothesis 

was provided by microarray analysis of genes regulated by ExoU, which showed that a 

number of genes involved in cellular transcription and signal regulation are induced by 

ExoU [462]. Although the generation of secondary messengers by ExoU may 

contribute to the pathogenesis of P. aeruginosa in mammals, the absence of arachadonic 

acid phospholipids and eicosanoid-mediated signal transduction pathways in yeast and 

plant cells [463, 464] suggests that the toxicity in these systems is dependent on direct 

disruption of lipid membranes.

I.6.3.4. Exoenzyme Y

A comparison of the extracellular protein profiles of wild type and a TTS mutant P, 

aeruginosa strain identified a fourth toxin secreted by the TTS system, ExoY [314, 324, 

465]. ExoY is a 378 bp, 42 kDa protein that is only secreted from bacteria expressing a 

functional TTS apparatus [465]. Analysis of the chromosomal region encoding ExoY 

revealed that there is an ExsA binding site located upstream of exoY, indicating that 

expression of this toxin is co-ordinately regulated with the other TTS toxins of P. 

aeruginosa [465].

I.6.3.4.I. Exoenzyme Y is an adenylate cyclase

ExoY shows significant similarity to two adenylate cyclase toxins produced by 

pathogenic bacteria, CyaA from Bordetella pertussis and EF (edema factor) from 

Bacillus anthracis [465]. The homology is mainly confined to two regions known to be 

required for the catalytic activity of CyaA and EF (conserved regions I and II).
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Conserved region I extends from residues 41-107 of ExoY and contains an ATP/GTP- 

binding site A motif that is thought to participate in contacting the a-phosphate of the 

bound nucleotide in CyaA [466]. The conserved region II occurs between amino acids 

209-221 of ExoY and is predicted to be involved in interacting with the (3- and y- 

phosphates of bound nucleotides [466]. CyaA and EF also have a third short stretch of 

homology (conserved region III) and a calmodulin-binding domain that are not found in 

ExoY.

In agreement with the function predicted from sequence analysis, it was demonstrated 

that recombinant ExoY possessed adenylate cyclase activity and catalysed the formation 

of 3’5’-cAMP from ATP [465]. A number of amino acids are known to be required for 

the adenylate cyclase activity of CyaA including lysine residues 81 and 88 and aspartate 

residues 212 and 214 (residues numbered relative to position in ExoY) [467-470]. The 

lysines are found within conserved domain I and the aspartate residues occur within 

conserved domain II. All four residues are conserved between CyaA, EF and ExoY and 

are believed to be involved in contacting the bound nucleotide. The individual mutation 

of any one of these four residues within ExoY rendered the protein inactive because it 

was no longer able to act as an adenylate cyclase [465]. Thus, lysine 81 and 88 and 

aspartate 212 and 214 are essential for the adenylate cyclase activity of ExoY as well as 

that of CyaA.

I.6.3.4.2. ExoY requires a eukaryotic cofactor for activation

It was noted that addition of CHO cell extract stimulated the adenylate cyclase activity 

of ExoY by at least 500 fold and that heating the extract to 100°C destroyed its effect 

[465]. This suggests that, in common with the other TTS exoenzymes of P. aeruginosa, 

ExoY requires a proteinaceous eukaryotic cofactor for activity. Both CyaA and EF 

utilise the eukaryotic protein calmodulin for their activity. Calmodulin is absolutely 

required for the adenylate cyclase activity of EF [471] and stimulates CyaA by 500 -  

1000 fold [472]. Addition of calmodulin however does not affect the activity of ExoY, 

which correlates with the lack of a calmodulin binding site in this protein [465]. The 

eukaryotic cofactor of ExoY remains unknown.
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I.6.3.4.3. The consequences of ExoY expression

Injection of ExoY into CHO ceils results in elevated intracellular cAMP levels and a 

rounded morphology but no cytotoxicity [349, 362, 465]. When the critical lysine 

residue 81 is mutated, ExoY is no longer capable of eliciting cell rounding [349], which 

correlates the morphological changes observed in the eukaryotic cells to the adenylate 

cyclase activity of ExoY. A recent study [473] has linked actin disruption by ExoY 

with inhibition of bacterial invasion but this only seems to occur at early time points, for 

example 2 h post-infection. At a later time point, 4 h post-infection, actin is still 

disrupted but the phagocytic properties of the mammalian cell are unaffected. This 

study also shows that the adenylate cyclase inactive lysine 81 mutant of ExoY causes 

actin disruption that is associated with inhibition of bacterial invasion, albeit at a lower 

level than wild type ExoY [473]. This suggests that ExoY, like ExoS and ExoT, might 

have more than one catalytic domain. Alternatively, the ExoY lysine 81 mutant may 

not be completely inactive with regards to its adenylate cyclase activity.

ExoY is widespread among both clinical and environmental isolates of P. aeruginosa 

with about 90% of tested strains containing the exoY gene [339]. Despite its prevalence, 

the contribution of ExoY to pathogenesis is unclear. A couple of studies that compared 

the pathogenesis of P. aeruginosa strains expressing all possible combinations of the 

TTS toxins, ExoS, ExoT and ExoY, suggest that ExoY plays only a very minor part in 

colonisation and dissemination in an acute pneumonia infection model [362, 474]. 

However a role in dissemination is suggested by an in vitro study that illustrated that 

ExoY induces pulmonary microvascular endoethelial gap formation and increases 

permeability in the isolated perfused lung [475]. Both CyaA of B. pertussis and EF of 

B. anthracis contribute to pathogenesis by disrupting the bactericidal functions of the 

immune effector cells thus disabling the host defence mechanisms (reviewed in [476]). 

It is however unclear if ExoY also acts in this way although its ability to inhibit 

phagocytosis suggests it might.

1.7. Aims

The central aim of this study was to determine the detailed mechanisms of action of the 

pseudomonal TTS toxins ExoS and ExoU using the yeast Saccharomyces cerevisiae and
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a human epithelial cell line. Chapter 2 details our development of the S. cerevisiae 

model to investigate the consequences of ExoS expression. Our use of the S. cerevisiae 

model to discover host genes required for the action of the pseudomonal TTS toxins 

ExoS, ExoU and ExoY is described in Chapter 3. Chapter 4 explains how we used a 

human epithelial cell line to examine ExoU intracellular localisation, modification and 

toxicity and to identify the regions of the toxin required for these activities.
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CHAPTER 2: STUDYING THE MECHANISM OF ACTION OF 

EXOENZYME S IN SACCHAROMYCES CEREVISIAE,

2.1. INTRODUCTION

As previously discussed in Chapter 1, ExoS is a bifunctional toxin with an N-terminal 

GAP domain and a C-terminal ADPRT domain. The GAP domain enhances the GTP 

hydrolysis of the Rho GTPases: Rho, Rac and Cdc42 [401, 405] and the ADPRT 

domain ADP-ribosylates many targets including small GTPases of the Ras, Rab and 

Rho family [370-373]. A variety of phenotypes have been attributed to ExoS 

expression in mammalian cells, including a decrease in DNA synthesis and cell 

viability, apoptotic death, disruption of the actin cytoskeleton that leads to cell 

rounding, inhibition of phagocytosis, loss of cell adhesion and microvillus effacement 

[349-352, 354, 355].

What remains unclear about ExoS action, however, is how modification of the known 

targets results in the observed consequences of ExoS expression and what contribution 

each domain makes to ExoS action. Although, ExoS ADP-ribosylates Ras in vivo and 

disrupts Ras-mediated signalling through Raf [397, 398], it has been demonstrated that 

this is not the cause of the cytotoxic phenotype of ExoS [368]. Therefore, the major 

target(s) of ExoS and its precise mechanism of action remain unknown. Also, the 

contribution of the GAP and ADPRT domain of ExoS to the observed phenotypes is 

uncertain. Although the ADPRT domain is definitely responsible for cytotoxicity [394], 

the relative roles of the GAP and ADPRT domains in causing cytoskeletal disruption is 

ambiguous [378, 395]. The apparent intramolecular modulation of the activity of each 

domain by the opposing domain confuses the picture further [379, 395].

Many models have been used to elucidate the function of the TTS toxins in P. 

aeruginosa, TTS toxin function can be studied in two ways, either by examining the 

effect of knocking out the toxin gene on bacterial pathogenicity in a eukaryotic infection 

model or by studying the consequences of expressing the toxin in eukaryotic cells. A 

number of mammalian models have been used to examine the relevance of various P. 

aeruginosa TTS toxins during infection. These include the burned mouse model, the 

mouse model of acute pneumonia and the corneal scratch-injury eye model [360, 361,

96



444, 474]. The effect of the TTS toxins on cells has also been assessed by introducing 

individual toxins into mammalian cell lines. The toxins have been introduced into 

mammalian cells by a variety of procedures including transient transfection, 

microinjection, and infection with P, aeruginosa or Y, pseudotuberculosis secreting just 

one TTS toxin [350, 352, 436, 440]. Although these models are useful for observing the 

effects of the toxin and determining whieh regions of the toxin are required for the 

observed phenotypes, they have limited use in studying the effects of mutations in host 

genes on the progression of disease. Generating a transgenic knockout mouse or a 

stable mutant mammalian cell line is time consuming and not amenable to high 

throughput screening of host proteins required for toxin action. Thus, it is difficult to 

study the mammalian side of bacterial invasion in these traditional models.

To circumvent the problems of using genetically unwieldy models for P. aeruginosa 

infection, for example mice or mammalian culture cells, genetically tractable model 

systems have been developed. These include the worm Caenorhabditis elegans, the 

social amoeba Dictostelium discoideum, the fruit fly Drosophila melanogaster and the 

plant Arabidopsis thaliana [92, 477-479]. Certain strains of P. aeruginosa are able to 

infect and cause disease in all these organisms and many of the pseudomonal virulence 

factors that are important in mouse models of infection are also required for infection of 

these model organisms. For example, P, aeruginosa virulence factors shown to be 

important in infection of D. discoideum include the las and rhl quorum sensing systems, 

rhamnolipids, the TTS system and the TTS toxin ExoU [92, 480]. The susceptibility of 

these “ simple” organisms to pseudomonal infection and the requirement for many of 

the same virulence factors to establish infection, suggests that the toxins are targeting 

conserved eukaryotic processes. These models are fast growing and cheap and can 

therefore be used for rapid screening for novel virulence factors. Their susceptibility to 

genetic manipulation also enables these organisms to be used to study mammalian 

genes that are involved in infection [481].

Probably the simplest eukaryotic organism that had been used to study the effects of 

bacterial toxins is the yeast Saccharomyces cerevisiae [482]. In contrast to the other 

model systems, P. aeruginosa is unable to infect S. cerevisiae although it has been 

shown to infect the yeast Candida albicans [483]. However, the effects of individual 

virulence factors can be studied by expressing these toxins in S. cerevisiae. The validity
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of using yeast as a model to study toxin action is provided by the conservation from 

yeast to mammals of many of the molecular mechanisms regulating cellular processes 

that are affected during bacterial infection. For example, the molecular components of 

DNA metabolism, programmed cell death, cell cycle control, cytoskeletal dynamics and 

membrane trafficking show a high degree of conservation between yeast and mammals 

[482]. Table 2.1. highlights this conservation of the molecular components that regulate 

the cytoskeleton and membrane traffic in mammals and yeast and lists the bacterial 

pathogens that exploit these cellular processes.

There are many advantages of using S. cerevisiae as a model in which to study bacterial 

virulence factors. This simple eukaryote is easy to transform with DNA, can grow as a 

haploid or a diploid, is fully sequenced and is straightforward to genetically manipulate. 

A great deal is known about the cellular processes in yeast, for example how the cell 

cycle is regulated and how the cytoskeleton is controlled. These processes can also be 

readily manipulated either by using specific mutant strains or chemicals. For example, 

there are chemicals that arrest S. cerevisiae at specific points in the cell cycle that can be 

used to synchronise a population of yeast cells. Also there are overexpression and 

deletion libraries available that can be used for rapid genetic screening for mutants with 

altered susceptibility to bacterial toxins (see Chapter 3).

A number of studies over the past five years have utilised S. cerevisiae to study the 

action of TTS toxins. The Yersinia  toxins YopE, YopM, YopJ and YpkA, the 

Salmonella toxins SptP, SopE2 and SipA, the P. aeruginosa toxins ExoT and ExoU, 

and the P. syringae toxins AvrPtoB and HopPtoE-G have all been examined in yeast 

(reviewed in [482]). The results from these studies have confirmed that these bacterial 

toxins are toxic to yeast cells and that they inhibit similar pathways in both yeast and 

mammalian cells. For example YopE, which functions as a Rho GAP protein that 

disrupts the actin cytoskeleton in mammalian cells, is highly toxic to S. cerevisiae and 

interferes with its actin cytoskeleton [484]. It appears that in yeast, YopE cytotoxicity 

results from inhibition of the Rholp-regulated pathway [261]. Overexpression of an 

activator of Rho Ip (its GEF, Rom2p) or overexpression of a downstream effector of 

Rholp-dependent signalling (Bcklp) suppressed the cytopathic effect of YopE 

expression. Also overexpression of the mammalian homologue of Rho Ip, RhoA, or
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activated forms of mammalian R ad  or Cdc42 suppressed the cytotoxic effects of YopE 

in yeast.

Table 2.1. Conservation among eukaryotic processes relevant in bacterial 

pathogenesis.

Cellular process
Molecular components in: 

M ammals Yeast

Associated

pathogen(s)

Cytoskeleton
Actin Rho proteins Rho proteins Salmonella,
dynamics RhoGAP and GEF Cdc24p, Roml-3p, Bern Yersinia,

Arp2/3 complex Arp2/3 complex Pseudomonas,
Type 1 myosins Myo3p, Myo5p EPEC, and
Fimbrin Sac6 p Listeria spp.
AAK, BIK Ark Ip, Prkl
WASP Lasl7p

Microtubule CDC42 Rho/Cdc42p Campylobacter,
dynamics Dynein Dynl-3p Chlamydia, and

Dynactin NiplOOp Shigella spp.
MDia Bnilp
APC (?) Kar9p
EBl Bimlp

Membrane traffic
ER transport Coatamer COPI Legionella and

COPII COPII Brucella spp
hSarl Sarlp
ARFl A iflp
ARF GAP and GEF ARF GAP and GEF
Rabs Rablp

Endosomal Hrs, TSGlOl ESCRT 1 to III Salmonella,
transport PIKFYVE Fab 1 p Mycobacteria,

HVps34 Vps34p Legionella, and
Clathrin Clathrin Chlamydia spp.
A P-1 and AP-3 AP I and APG
Rabs Ypt6 p, Ypt31-32p
Syntaxins Pepl2p,T lglp, Tlg2p

Endocytosis Clathrin Clathrin Salmonella,
AP-2, A P I80 AP-2, AP180A Shigella, and
Hipl Sal2p Listeria spp.
Epsin Entl-2p
Synaptojanin Inp51-53p
Amphiphysisn Rsv

Autophagy Tor pathway Tor kinases Legionella and
Beclin 1 Apg6 p Salmonella spp.
pl50 A pgl4
U lk l Apglp
MAP1LC3 ApgSp
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In addition to studying toxins that interfere with cytoskeletal function, S, cerevisiae has 

been used to study TTS toxins that inhibit MAPK signalling [485], toxins that inhibit 

membrane structure and function [439], and to study the intracellular trafficking of 

toxins [486]. Indeed the utility of this system is highlighted by its contribution to 

determining the mechanism of action of the P. aeruginosa TTS toxin ExoU, as 

discussed in Chapter I [439].

As mentioned above, one of the advantages of using S. cerevisiae as a model in which 

to study bacterial virulence factors is the wealth of knowledge on the control of the actin 

cytoskeleton in this organism. If expression of a bacterial toxin perturbed the normal 

actin structures within yeast, it may be possible to determine what component of the 

cytoskeletal regulatory mechanism was being targeted. Comparing a toxin-induced 

actin phenotype with known S. cerevisiae mutant phenotypes may provide a clue as to 

the mechanism of action of the toxin. Also, as illustrated with YopE [261], 

overexpression (or deletion) of suspected toxin targets or components in a toxin- 

targeted pathway might abrogate toxin cytotoxicity, therefore providing proof of a 

biologically relevant target.

The actin cytoskeleton of S, cerevisiae comprises primarily of two structural 

components, cortical patches and actin cables. Cortical patches are punctate F-actin- 

rich bodies, while cables are bundles of F-actin filaments. Cortical patches and actin 

cables lie at the cell cortex and their localisation patterns change in a cell cycle- 

dependent manner. The cell cycle of S. cerevisiae, like all eukaryotes, is divided into 

four stages (Fig. 2.1). The G, (Gapl) phase allows time for growth, DNA is replicated 

during S phase, the G  ̂(Gap2) phase provides a second period of growth, and nuclear 

division (mitosis) and cell fission (cytokinesis) occur during M phase. The actin 

cytoskeleton is responsible for guiding secretory vesicles to the cell surface, where they 

accumulate and fuse, thus polarising growth in the direction of the polarised cortical 

patches and actin cables [487, 488]. As a yeast cell commits to a new cell cycle in G  ̂at 

START, a bud site is selected and cortical patches cluster and actin cables polarise at 

this site (Fig. 2.1, a). During G ,̂ the cortical patches cluster at the bud tip and the actin 

cables pass from the mother cell into the bud causing apical bud growth (Fig. 2.1, b). 

The cortical patches cables then randomly redistribute throughout the bud during M 

phase allowing isotropic growth, while cables in the mother cell still extend to the cell

100



o
I

e
Fig. 2.1. Actin distribution throughout the cell cycle of S. cerevisiae.

Cell polarity in budding yeast is established by the localized plasma membrane 

recruitment of the Rho GTPase Cdc42p (blue) and proteins related to its function. These 

proteins orient the actin cytoskeleton, which consists of actin cables (red) and cortical 

patches (brown). In turn, the actin cytoskeleton guides secretory vesicles to the cell 

surface, where they accumulate (also blue) and fuse, thus polarizing growth (arrows), 

(a) The cell cycle begins in G, with establishment of a nascent bud site, (b) Clustering 

of Cdc42p directs early bud growth toward the tip. (c) Redistribution of Cdc42p over 

the bud surface during G2 -M redirects bud growth isotropically, and results in an 

ellipsoidal shaped bud. (d) With the completion of bud growth, cables and patches 

disorganize, and a cytokinetic ring forms, then contracts and disassembles after mitosis, 

(e) Cdc42p reorients actin and growth between the two new cells to generate new cell 

walls. The mother cell resumes budding immediately, (f) The new daughter undergoes a 

period of undirected growth, (g) Under certain growth conditions, some strains of S. 

cerevisiae differentiate into a filamentous state that forgoes the transition in Gj-M from 

tip-directed to isotropic growth. The resulting cells are highly elongated, (h) Mating 

pheromones arrest haploid yeast in G, and polarize Cdc42p toward potential mating 

partners to generate a mating projection. Taken from [4881.
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neck (Fig. 2.1, c). At the end of bud growth the cortical patches and actin cables in the 

mother cell also randomly redistribute and a cytokinetic F-actin ring assembles at the 

bud neck (Fig. 2.1, d). The cytokinetic ring contracts and disassembles after mitosis 

separating the contents of the mother and daughter cell. The cortical patches and actin 

cables in the mother and daughter cell repolarise to the former bud neck after 

cytokinesis to facilitate synthesis of the cell walls between the two new cells (Fig. 2.1, 

e). The cortical patches and actin cables in the mother and daughter cell randomly 

redistribute again in G, and undirected growth of the daughter cell occurs (Fig. 2.1, f).

The Rho GTPase Cdc42 is central to polarising the actin cytoskeleton in yeast at all 

stages of the cell cycle. Cdc42 is recruited to growth sites on the plasma membrane and 

activates effectors that signal to the actin cytoskeleton [489]. Fig 2.1. illustrates the 

distribution of Cdc42 throughout the cell cycle and clearly demonstrates that the areas 

of Cdc42 localisation are the areas of growth. The distribution of Cdc42 is regulated by 

a number of proteins including the cyclin-dependent protein kinase, Ras, and 

heterotrimeric G proteins [488].

In addition to this cycle of vegetative growth, there are two other types of yeast growth.

The first, filamentous growth is induced in some S. cerevisiae strains by a variety of 

conditions including nitrogen starvation [490]. During filamentous growth, apical 

extension of the bud is prolonged to form highly elongated cells (Fig. 2.1, g). The 

second type of alternative growth is induced during mating [491]. Haploid yeast can 

exist as either mating type a or a  (genotypes MATa and MATa, respectively), and yeast 

of opposite mating types can fuse to form a MATalMATa  diploid. Haploid yeast can 

sense a potential mating partner and prepare for fusion by responding to a pheromone 

produced by the yeast of the opposite mating type. MATa cells secrete an a-Factor 

pheromone that M A Ta  yeast respond to, and M A T a  cells secrete an cc-Factor 

pheromone that MATa yeast respond to. When a yeast cell is stimulated by the 

pheromone of its opposite mating type, it undergoes a series of physiological changes in 

preparation for mating including expression of about 200 genes, arrest in G,, orientated 

growth towards the mating partner and finally fusion with the mating partner. The 

growth stimulated by the pheromone of the opposite mating type results in formation of 

a mating projection polarised in the direction of the pheromone gradient (Fig. 2.1, h). In 

common with vegetative growth, Cdc42 localisation polarises the cortical patches and
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actin cables to the area of growth in both filamentous growth and mating projection 

formation (Fig. 2 .1 ) [488].

The ability of the yeast mating pheromones to arrest cells of the opposite mating type in 

Gj provides another exploitable phenotype of S. cerevisiae useful for studying the 

actions of bacterial toxins. The yeast cell cycle can be arrested by treatment with 

purified mating pheromone and then released from this arrest as a synchronised 

population of cells [492]. Therefore, if toxins act to inhibit growth at a particular point 

in the cell cycle, this can be easily monitored in the synchronised yeast. The ability of 

toxins to prevent DNA synthesis can also be assessed by using mating factor arrest. 

Cells arrested in Gi will all have a single copy of their DNA and if the toxin effects 

DNA synthesis, the cells will be unable to replicate their DNA. Analysing the DNA 

content of a synchronised population of cells released from mating pheromone arrest 

over a period of time will therefore indicate whether DNA replication has been targeted. 

When experiments are carried out using mating factor arrest, the a-Factor pheromone is 

generally used to arrest growth of M A Ta  yeast. This is because a-Factor is a 

farnesylated 12-residue peptide (sequence Y-I-I-K-G-V-F-W-D-P-A-C) that is difficult 

to purify or synthesise, whereas a-Factor is a 13-residue unmodified peptide (sequence 

W-H-W-L-Q-L-K-P-G-Q-P-M-Y) that is straightforward to manufacture.

The work described in this chapter explains how we developed the S. cerevisiae model 

to study the effects of the P. aeruginosa TTS toxin, ExoS. It details how we used this 

model to assess the effects of ExoS on cell growth, the actin cytoskeleton and DNA 

synthesis. The relative contribution of the GAP and ADPRT domains to the observed 

actions of ExoS was also determined. Our results reveal that ExoS was extremely 

cytotoxic to S. cerevisiae. Both domains were toxic to yeast but the ADPRT domain 

was much more cytotoxic. ExoS was shown to disrupt the actin cytoskeleton and 

inhibit DNA synthesis and in both cases the ADPRT domain was responsible. ExoS 

also increased mating projection formation after treatment with a-Factor and inhibited 

normal bud formation after release from a-Factor arrest.
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2.2. METHODS

2.2.1. M aterials

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and Griener Bio- 

One (Kremsmuenster, Austria) supplied the plastic ware unless otherwise stated. The 

primers were synthesized by Operon Biotechnologies (Huntsville, AL, USA) and DNA 

sequencing was performed by the Dundee University Sequencing Service (Dundee, 

UK).

2.2.2. S. cerevisiae strains

The three strains of S. cerevisiae used in this study were the diploid strain INVScl 

(Invitrogen, Carlsbad, CA, USA) and the haploid strains BY4741 (Euroscarf, Frankfurt, 

Germany) and BMA64-1A (Euroscaif). The genotypes of these strains are:

• INVScl: his3AlIhis3Al; Ieu2!leu2; trpl-289/trp1-289; ura3-52/ura3-52

• BY4741: MATa; his3AI; leu2A0; metlSAO; ura3A0

• BMA64-1A: MATa; ura3-52; trpIA2; Ieu2-3_II2; h is3 -ll; ade2-l; canI-100

2.2.3. M aintenance and growth of S. cerevisiae

Yeast strains were grown in Yeast Peptone Dextrose (YPD) broth containing 1% Yeast 

Extract (Oxoid, Basingstoke, UK), 2% Peptone (Oxoid) and 2% Dextrose. Transformed 

yeast were grown in synthetic dropout (SD) media to maintain the selective pressure on 

the plasmid. Glucose containing Minimal SD Base (BD Biosciences, Palo Alto, CA, 

USA) and galactose/raffinose containing Minimal SD Base GAL/RAF (BD 

Biosciences) were supplemented with the appropriate Dropout Supplement (BD 

Biosciences). For plates, 4% agar (Oxoid) was added to the YPD and SD media. All 

yeast incubations were carried out at 30°C, with shaking at 250 revolutions per minute 

(rpm) for liquid cultures. Working stock plates of yeast were kept for up to two months 

at 4°C and for long-term storage, yeast strains were stored in 25% glycerol at -80'’C.
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2.2,4. Construction of plasmids

This study utilised three yeast expression vectors to examine the effect of ExoS and the 

GAP and ADPRT domains of ExoS on S. cerevisiae. These three vectors were 

pYES2/NT (Invitrogen), pYC2/NT (Invitrogen) and pCM252 (Euroscarf). pYES2/NT 

and pYC2/NT contain the URA3 gene and pCM252 contains the TRPl gene, therefore 

S. cerevisiae transformed with these plasmids were selected for on SD media lacking 

uracil and tryptophan respectively. Wild type ExoS, ExoS with the GAP domain 

mutated, ExoS with the ADPRT domain mutated and ExoS with both the GAP and 

ADPRT domains mutated were expressed from all three vectors. Table 2.2 list the 

primers used in the construction of the plasmids and Table 2.3. summarises how each 

construct was made.

Table 2,2. Prim ers

PRIM ER SEQUENCE (5^3’)
ExoS-Fw GCGGTACCTCAAGCATATGCATATTCAATCGCTTCAGCAG
ExoS-Rev CTCTCGAGGGATCCGCTGCCGAGCCAAGAATC
R146A-FW CGGAGATGGGGCGCTAGCTTCGCTGAGCACCG
R146A-Rev CGGTGCTCAGCGAAGCTAGCGCCCCATCTCCG
E379A-
E381A-FW

CGAACTACAAGAATGCAAAAGCGATTCTCTATAACAAAG

E379A-
E381A-Rev

CTTTGTTATAGAGAATCGCTTTTGCATTCTTGTAGTTCG

T7prom GTAATACGACTCACTATAGGGC
CYCIR GCGTGAATGTAAGCGTGAC
ExoS-Int CGTGTTCAAGCAGATGGTG
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Table 2.3. Plasmid construction

PLASMID CONSTRUCTION
pYES2/NT-ExoS The exoS gene was amplified^ from PAOl genomic 

DNA using the ExoS-Fw and ExoS-Rev primers and 
cloned into the Kpnl and Xhol sites of pYES2/NTA.

pYES2/NT-ExoS_GAPM The R146A mutation was introduced into the GAP 
domain of ExoS by site-directed mutagenesis^ using 
the R146A-FW and R146A-Rev primers.

pYES2/NT-
ExoS_ADPRTM

The E379A and E381A mutations were introduced 
into the ADPRT domain of ExoS by site-directed 
mutagenesis*’ using the E379A-E381A-Fw and E379A- 
E381A-Rev primers.

pYES2/NT-
ExoS„GAPM_ADPRTM

The Sacll/Xhol fragment from p Y ES 2/NT- 
ExoS_ADPRTM was sub-cloned into the SacWXhol 
sites of pYES2/NT-ExoS_GAPM.

pYC2/NT-ExoS exoS was sub-cloned from pYES2/NT-ExoS into the 
Kpnl and Xhol sites of pYC2/NTA.

pYC2/NT-ExoS_GAPM exo5'_GAPM was sub-cloned from pYES2/NT- 
ExoS_GAPM into the Kpnl and Xhol sites of 
pYC2/NTA.

pYC2/NT-ExoS_ADPRTM exo5'„ADPRTM was sub-cloned from pYES2/NT- 
ExoS_ADPRTM into the Kpnl and Xhol sites of 
PYC2/NTA.

pYC2/NT-
ExoS^GAPM_ADPRTM

exo5'_GAPM_ADPRTM was sub-cloned from 
pYES2/NT-ExoS„GAPM_ADPRTM into the Kpnl 
and Xhol sites of pYC2/NTA.

pUC19-ExoS exoS was sub-cloned from pYES2/NT-ExoS into the 
Kpnl and Xbal sites of pUC19.

pUC19-ExoS_GAPM gxoS_GAPM was sub-cloned from pYES2/NT- 
ExoS__GAPM into the Kpnl and Xbal sites of pUC19.

pUC 19-ExoS_ADPRTM ^x:o5 '„ADPRTM was sub-cloned from pYES2/NT- 
ExoS_ADPRTM into the Kpnl and Xbal sites of 
PÜC19.

pUC19-
ExoS_GAPM_ADPRTM

exo5„GAPM_ADPRTM was sub-cloned from 
pYES2/NT-ExoS_GAPM„ADPRTM into the Kpnl 
and Xbal sites of pUC19,

pCM252-ExoS exoS was sub-cloned from pUCP19-ExoS (blunt Kpnl 
and Pstl) into the blunt Stul and Pstl sites of pCM252,

pCM252-ExoS„GAPM exoS_GAPM was sub-cloned from pUCP19- 
ExoS„GAPM (blunt Kpnl and Pstl) into the blunt Stul 
and Pstl sites of pCM252.

pCM252-ExoS_ADPRTM exoS_ADPRTM  was sub-cloned from pUCP19- 
ExoS„ADPRTM (blunt Kpnl and Pstl) into the blunt 
Stul and Pstl sites of pCM252.

pCM252-
ExoS_GAPM_ADPRTM

exo5'_GAPM_ADPRTM was sub-cloned from 
pUCP19-ExoS_GAPM„ADPRTM (blunt Kpnl and 
Pstl) into the blunt Stul and Pstl sites of pCM252.

Explained in 2.2.5 

Explained in 2.2.6
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2.2.5. AmpliDcation of exoS

2.5 U of PfuTurbo®  Hotstart DNA polymerase (Stratagene, La Jolla, CA. USA) was 

used to polymerase chain reaction (PCR) amplify exoS from PAOl genomic DNA in a 

reaction mixture containing 1 x cloned Pfu DNA polymerase reaction buffer 

(Stratagene), 25 mM of each deoynucleotide triphosphate (dNTP), 1 pmole/pil ExoS-Fw 

and 1 pmole/pl ExoS-Rev primers (Table 2.2) and 5% dimethyl sulfoxide (DMSO) in a 

total volume of 100 |li1. The mixture was subjected to one denaturing cycle of 5 min at 

94°C and then 30 cycles using the following conditions; a 45 s denaturing step at 94°C, 

followed by a 45 s annealing step at 52°C and a 1 min extension step at 72°C, and 

completed by a final extension cycle of 10 min at 72°C. After cloning into the Kpnl and 

Xhol sites of pYES2/NTA, the sequence of exoS was confirmed by sequencing with the 

T7prom, CYCIR and ExoS-Int primers (Table 2.2).

2.2.6. Site-directed mutagenesis

The QuikChange® Site-Directed Mutagenesis Kit (Stratagene) was used to incorporate 

the R146A and E379A-E381A mutations into ExoS in pYES2/NT-ExoS. For each site- 

directed mutagenesis reaction, two complementary primers were designed (Table 2.2) 

with nucleotide mutations that would result in the desired amino acid substitutions and 

would also introduce a new restriction site into pYES2/NT-ExoS. 125 ng of each high 

performance liquid chromatography (HPLC) purified primer was added to 5 ng of 

pYES2/NT-ExoS, 1 p.1 dNTP mix, 1 x reaction buffer and 2.5 U of PfuTurbo DNA 

polymerase in a final volume of 50 pi. This reaction mixture was subjected to one 30 s 

denaturing cycle at 95°C followed by 18 cycles of a 30 s denaturing step at 95°C, a 1 

min annealing step at 55°C and a 15 min extension step at 6 8 °C. PfuTurbo DNA 

polymerase replicated both plasmid strands with high fidelity and without displacing the 

mutant primers and thus synthesised mutated plasmids containing staggered nicks. 

After amplification, the non-mutated parental DNA template was digested with 10 U of 

Dpn I for 1 h at 37°C. The Dpn I endonuclease (target sequence 5’-Gm‘̂ ATC~3’) is 

specific for methylated and hemimethylated DNA and as the pYES2/NT-ExoS was 

isolated from a dam+ E. coli strain, it was sensitive to digestion by Dpn I. A Ipl aliquot 

of the Dpn 1-treated DNA was transformed into XLl-Blue supercompetent cells and the 

nicks in the mutated plasmids were repaired in these cells. Plasmid DNA was prepared
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from the transformed E. coli using the QIAprep® Spin Miniprep Kit (Qiagen, Hilden, 

Germany) and the success of the mutagenesis was assessed. Site-directed mutagenesis 

of ExoS with the R146A primers introduced an Nhel site and site-directed mutagenesis 

with the E379A-E381A primers introduced a Bsml site. Therefore it was possible to 

ascertain whether the site-directed mutagenesis had worked by using these restriction 

enzymes in diagnostic digests. Mutations were subsequently confirmed by sequencing 

the constructs with the T7 prom, CYCIR and ExoS-Int primers (Table 2.2).

2.2.7. Yeast transform ation

S, cerevisiae cells were transformed with plasmids using the Frozen-EZ Y east 

Transformation II™ Kit (Zymo Research, Orange, CA, USA) according to the 

manufacturers instructions. Briefly, competent cells were prepared by centrifuging 10 

ml of mid-log phase yeast at 500 x g for 4 min then washing the pellet in 10 ml EZ 1 

solution and resuspending in 1 ml EZ 2 solution. For transformation, 0.2-1 pg of 

plasmid DNA was mixed with 50 pi of competent cells and 500 pi EZ3 solution. The 

transformation reaction was incubated at 30°C for 45 min and subjected to vigorous 

mixing 3 times during incubation. 100 pi of the transformation mixture was plated out 

onto appropriate SD agar and allowed to grow at 30°C for 2-4 days.

2.2.8. Integration of pCM242 into the leu2 locus of the 5. cerevisiae genome

The pCM242 plasmid was integrated into the genome of INVScl and BMA64-1A by 

homologous recombination between the functional LEU2 gene in pCM242 and the 

mutated leu2 locus in the yeast chromosomes. The pCM242 plasmid was digested with 

EcoRV  and purified using the QIAquick PCR Purification Kit (Qiagen) according to 

manufacturers instructions. The EcoRAJ linearised pCM242 was transformed into 

INVScl or BMA64-1A (see section 2.2.7) and the yeast that had successfully integrated 

the plasmid were selected on SD-leucine+glucose agar plates.

2.2.9. Recovery of plasmid DNA from yeast

The Zymoprep™ Yeast Plasmid Miniprep Kit (Zymo Research) was used to prepare 

plasmid DNA from S. cerevisiae. A 1 ml aliquot of an overnight culture was
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centrifuged at 600 x g for 2 min and 150 pi of Solution 1 and 2 pi of Zymolase were 

added to the pellet. The pellet was resuspended and incubated at 37°C for 30 min 

before being mixed with 150 pi of Solution 2 and then 150 pi of Solution 3. The 

mixture was centrifuged at maximum speed for 2  min and the resulting supernatant was 

mixed with 400 pi of isopropanol. After centrifugation at maximum speed for 8  min all 

the supernatant was removed and the plasmid pellet was resuspended in 35 pi Tris- 

ethylenediaminetetraacetic acid (EDTA) (TE) buffer (10 mM Tris.Cl pH 8.0, 1 mM 

EDTA).

Plasmid DNA prepared from S. cerevisiae is not very pure and therefore not suitable for 

sequencing. To prepare DNA for sequencing, 5 pi of the yeast plasmid preparation was 

used to transform TransforMax™ EClOO™ Electrocompetent E. coli (Epicentre 

Biotechnologies, Madison, WI, USA). Electroporation was carried out in a 0.2 cm 

electroporation cuvette (Invitrogen) using the GenePulser Xcell™ (Bio-Rad 

Laboratories, Hercules, CA) set to the following parameters: 25 pFD, 200 Q and 2.5 

kV. Plasmid DNA was isolated from 3 ml of an overnight culture of the transformed E. 

coli using the QIAprep® Spin Miniprep kit (Qiagen) according to the manufacturers 

instructions.

2.2.10. Growth assays

For the plate growth assays, overnight cultures of yeast grown in the appropriate SD 

media supplemented with glucose were diluted in phosphate-buffered saline (PBS, 10 

mM Na^HPO^, 137 mM NaCl, 2.7 mM KCl, 1.47 mM KH^PO^) to OD̂ oo = L These 

cultures were serially 10-fold diluted 4 times in PBS and 5 pi of each dilution was 

spotted onto appropriate agar plates. The plates were incubated at 30°C for 4 days 

before being photographed using a Kodak DX4530 digital camera. For the galactose 

inducible system, INVScl or BY4741 containing either the pY ES 2/NT- or the 

pYC2/NT-based vectors were grown overnight in SD-uracil+glucose media and spotted 

onto SD-uracil-hglucose and SD-uracil+galactose/raffinose agar plates. For the 

tetracycline inducible system, INVScl or BMA64-1A containing the integrated 

pCM242 plasmid and a pCM252-based plasmid were grown overnight in SD-Ieucine- 

tryptophan+glucose media and spotted onto agar plates of the same media 

supplemented with 0, 0.1, 0.5, 1 and 2 pg/ml doxycycline.
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For the liquid growth assay, cultures of ÏNVScl+pCM242 transformed with either 

pCM252 or pCM252-ExoS were grown overnight in SD-leucine-tryptophan+glucose 

media. These cultures were diluted in fresh media to OD^oo = 0 3. After 4 hours of 

growth, doxycyline was added at a final concentration of 2  pg/ml, ODgoo readings were 

taken every hour to assess the growth of the cultures.

2.2.11. Immunofluorescence

Cultures of INVScl+pCM242 containing a pCM252-based plasmid were grown and 

induced as described for the liquid growth assay. Four hours after addition of 

doxycycline the S. cerevisiae were fixed by adding 5% formaldehyde to 5 ml of culture 

and incubating for 30 min at room temperature with occasional inversion. The cells 

were centrifuged at 1500 x g for 5 min and the pellets were washed three times in PBS. 

The pellets were resuspended in 200 — 800 pi of PBS (to roughly normalise cell density) 

and 150 pi aliquots were washed in 1 ml of Solution B (100 mM K2HPO4 , lOOmM 

KH2PO4 and 1,2 M sorbitol). Each pellet was incubated in 1 ml Solution B containing 

0.2% 2 -mercaptoethanoI and 2 pg/ml lyticase at 37°C for 30 min to permeabilise the 

yeast. After permeabi 1 isation, the cells were centrifuged at 500 x g and washed once in 

1 ml Solution B. To stain for actin, the fixed and permeabilised S. cerevisiae were 

incubated in 50 pi Solution B containing 0.4 U of AlexaFluor 488 Phalloidin 

(Invitrogen) at 37°C overnight in the dark. The cells were washed three times in I x 

PBS before being spread onto a Poly-Prep Slides (Sigma-Aldrich) and allowed to diy 

for 10 min. A drop of vector shield (Vector Laboratories, Burlingame, CA, USA) was 

used to mount the yeast under a coverslip. The slides were viewed using a Nikon 

Eclipse E600 microscope with a Nikon p/an Fluor lOOx lens and captured using an 

Optronics digital camera and MagnaFire software (Meyor Instruments, Houston, TX,

USA).

2.2.12. Synchronisation of S. cerevisiae

The haploid MATsl strain BMA64-1A containing the integrated pCM242 plasmid and a 

pCM252-based plasmid were grown to mid-log phase in SD-leucine-tryptophan+ 

glucose media. The cultures were diluted to ODgQQ=0.2 and ariested in Gj with 20
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pg/ml a-factor (Zymo Research). Two hours after addition of the a-factor, ExoS or 

mutant ExoS was induced by adding 2 pg/ml doxycycline. The yeast were released 

from a-factor arrest an hour after the doxycycline was added by centrifuging the cells at 

1500 X g for 5 min then washing twice in pre-warmed SD-leucine-tryptophan+glucose 

media containing 2 pg/ml doxycycline. The cells were resuspended in pre-warmed SD- 

leucine-tryptophan+glucose containing 2  pg/ml doxycycline and cells were fixed for 

immunofluorescence (see section 2 .2 . 1 1 .) or flow cytometry analysis (see section

2.2.13.) every 30 min.

2.2.13. Flow cytometry analysis

Synchronised BM A64-lA+pCM 242 containing a pCM252-based plasmid were 

prepared for flow cytometry analysis. The cells from 1 ml of culture were harvested by 

centrifugation at 500 x g for 5 min and the pellet was resuspended in 1.5 ml double 

distilled water (DDW). The yeast were fixed by adding 3.5 ml of 95% ethanol and 

incubating overnight at 4°C. The cells were centrifuged at 500 x g for 5 min and 

washed in 1 ml DDW. The RNA was degraded by incubating the yeast with 0,5 ml 2 

mg/ml RNase A in 50 mM Tris.Cl, pH 8.0 for 1- 2 hours at 37°C. The cells were 

centrifuged at 500 x g for 5 min and the pellet was resuspended in 200 pi of 5 mg/ml 

pepsin and 0.45% concentrated HCl and incubated for 30 - 60 min at 37°C to degrade 

the proteins. The yeast were harvested by centrifugation at 500 x g for 5 min and the 

pellet was resuspended in 0.5 ml 1 x propidium iodide solution (180 mM NaCl, 70 mM 

MgCli, 75 pM propidium iodide, 100 mM Tris.Cl, pH 7.5). The yeast were incubated 

in the 1 x propidium iodide solution overnight at 4°C to stain the DNA. A 50 pi aliquot 

of cells was diluted in 0.1 x propidium iodide solution diluted in 50 mM Tris.Cl, pH 7.5 

for flow cytometry analysis. Samples were analysed on a FACscan flow cytometer 

using CELL QUEST software to obtain and analyze the data (BDIS, San Jose, CA, 

USA).
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2,3. RESULTS

2.3,1. Use of galactose inducible expression systems to assess the toxicity of ExoS in 

S. cerevisiae

In order to utilise S. cerevisiae as model system in which to elucidate the molecular 

mechanism of action of ExoS, we first needed to establish whether S. cerevisiae was 

sensitive to the cytotoxic effects of ExoS. To control the expression of ExoS in S. 

cerevisiae  we began our studies using the yeast expression vector pYES2/NT, 

pYES2/NT is a high copy number vector that allows expression of a gene of interest to 

be controlled by altering the carbon source on which the yeast is grown. Cloning the 

gene downstream of the GALI promoter enables the gene to be induced to high levels in 

the presence of galactose, repressed in the presence of glucose and neither induced nor 

repressed when grown on raffinose. Therefore, we planned to ligate exoS  into 

pYES2/NT, transform the construct into S. cerevisiae and induce expression of ExoS by 

switching the carbon source from glucose to galactose.

The exoS gene was amplified from P. aeruginosa strain PAOl and ligated in-frame into 

pYES2/NT. Sequence analysis of the construct revealed that exoS had five nucleotide 

polymorphisms compared to the database sequence of exoS from PAOl (X99471). Four 

of these nucleotide changes (169 T-C, 174, T-C, 222 G-A, 1161 G-A) were silent and 

did not alter the amino acid sequence of ExoS. The fifth nucleotide polymorphism was 

a substitution of an adenine at position 184 with a guanine, which led to an amino acid 

change at residue 62 from a methionine to a valine. All of these allelic changes have 

been previously identified in the exoS sequence of P. aeruginosa strain 388 (L27629), 

which also has a number of additional changes [493].

To determine the contribution of the GAP and ADPRT domains to the toxicity of ExoS 

in S. cerevisiae, the active site residues of each domain in pYES2/NT-ExoS were 

mutated. Arginine 146 was mutated to an alanine to abolish activity of the GAP domain 

(pYES2/NT-ExoS_GAPM) and the glutamic acids at residues 379 and 381 were 

mutated to alanines to render the ADPRT domain inactive (pYES2/NT- 

ExoS_ADPRTM). A double mutant was also generated that lacked both an active GAP 

and ADPRT domain (pYES2/NT-ExoS_GAPM+ADPRTM)
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When we attempted to transform the S. cerevisiae strains INVScl and BY4741 with the 

constructs we had made, we experienced some difficulties. Although, we were able to 

transform INVScl and BY4741 with the empty pYES2/NT vector, pYES2/NT- 

ExoS_ADPRTM  and pYES2/N T-ExoS_G A PM +A D PRTM  (efficiency of 

transformation > 10^), we were unable to transform the yeast with pY ES 2/NT-ExoS or 

pYES2/NT-ExoS_GAPM. These results suggested that the ADPRT domain of ExoS 

was so toxic to S, cerevisiae that even when grown on glucose, which should repress 

expression, enough toxin was manufactured as a result of leaky transcription from the 

GALI promoter to kill the transformed yeast.

Although leaky expression from the G A L I  promoter in pYES2/NT made it an 

unsuitable vector for assessing the toxicity of the ADPRT domain of ExoS, it was still 

useful for examining the toxicity of the GAP domain. As expected both the diploid 

yeast INVScl and the haploid yeast BY4741 transformed with the empty pYES2/NT 

vector were able to grow equally well on glucose or galactose and raffinose (Fig. 2.2, 

pYES2/NT). Expression of ExoS with both the GAP and ADPRT domains mutated did 

not affect yeast cell viability. This was illustrated by the yeast strains INVScl and 

BY4741 transformed with pYES2/NT-ExoS_GAPM+ADPRTM growing as well as the 

strains containing the empty vector control under all conditions (Fig. 2.2, G A PM + 

ADPRTM). When INVScl or BY4741 containing pYES2/NT-ExoS_ADPRTM were 

grown on glucose, they grew as well as the strains containing the empty vector. 

However, when these strains were grown on galactose and raffinose their growth was 

much inhibited compared to the empty vector control (Fig. 2.2, ADPRTM). Therefore, 

the GAP domain of ExoS was toxic to S. cerevisiae when induced by growth on 

galactose.

In an attempt to overcome the problem of leaky expression from the GALI promoter in 

pYES2/NT, we sub-cloned exoS and the mutant exoS genes into the low copy number 

yeast expression vector pYC2/NT. pYC2/NT and pYES2/NT are identical apart from 

the sequences used for maintenance and replication in yeast. pYES2/NT contains the 

2IX origin that allows the plasmid to be episomally maintained and replicated at high 

copy numbers (generally 10-40 copies per cell). In contrast, pYC2/NT contains the
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CEN6/ARSH4 sequence that allows non-integrative centromeric maintenance and low 

copy number replication of the plasmid (generally 1 - 2  copies per cell).

Transformation of INVScl and BY4741 with pYC2/NT-ExoS or pYC2/NT- 

ExoS„GAPM failed. Therefore, even when ExoS expression was repressed by glucose 

and there were only about 1 or 2 copies of the gene per cell, enough of the ADPRT 

domain was produced to kill the yeast. After repeated attempts at transforming INVScl 

and BY4741 with either pYC2/NT-ExoS or pYC2/NT-ExoS_GAPM, a small number of 

transformants were obtained. However when the plasmids were recovered from these 

transformants and the exoS gene sequenced, they were shown to contain mutations. For 

example, a pYC2/NT-ExoS plasmid recovered from INVScl contained a mutation of 

nucleotide 793 from a guanine to a thymidine; this resulted in a substitution of the 

glutamine residue at 265 to a stop codon. Truncating ExoS at residue 265 would 

remove the ADPRT domain, therefore enabling the construct to be transformed into 

yeast. Also, a pYC2/NT-ExoS plasmid recovered from BY4741 contained a thymidine 

to cytosine substitution of nucleotide 1148; this caused the leucine residue at position 

383 to be substituted with a proline. Proline has a cyclic structure and can dramatically 

influence protein structure, therefore the introduction of this residue two amino acids 

away from the active site glutamic acid residue 381 probably rendered the ADPRT 

domain inactive.
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ADPRTM 
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ADPRTM 

GAPM+ADPRTM

Fig. 2.2. Toxicity of the GAP domain of ExoS in S. cerevisiae.

A diploid and haploid strain of S. cerevisiae (INVScl and BY47471 respectively) were 

transformed with the empty pYES2/NT vector (pYES2/NT), this vector encoding ExoS 

with the ADPRT domain mutated (ADPRTM) or pYES2/NT encoding ExoS with both 

the GAP and ADPRT domains mutated (GAPM+ADPRTM). The growth of the 

transformants was assessed by spotting ten-fold serial dilutions of each culture onto 

repressing (Glu) agar or inducing (Gal/Raf) agar plates.
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2.3.2. Use of tetracycline inducible expression systems to assess the toxicity of ExoS 

in S. cerevisme

The ADPRT domain of ExoS was so cytotoxic that the tiny amount of protein 

expression that resulted from leaky expression of the GALI promoter under glucose 

repressing conditions was sufficient to cause yeast cell death. Even the use of a low 

copy number vector did not reduce the expression of ExoS to levels compatible with 

yeast transformation. A system that allowed tighter control of ExoS expression was 

therefore required. One such yeast expression system is the tetracycline-regulated 

activator-repressor dual system [494]. There are two variations of this system, one of 

which enables the gene of interest to be induced by the removal of tetracycline and one 

of which allows the gene to be induced by the addition of tetracycline. We decided to 

utilise the latter system because exoS  can be induced simply by the addition of 

tetracycline without the requirement for a change of medium.

The tetracycline inducible system requires two plasmids (Fig. 2.3, A). One plasmid 

(pCM252) encodes a tetR '-NR\6  transactivator and contains a hybrid of seven repeats 

of the bacterial TnlO transposon-derived tetracycline-responsive tetO promoter fused to 

the S. cerevisiae CYCl TATA region upstream of a multiple cloning site. The tetR'- 

VP16 transactivator is a fusion protein consisting of the mutant tetR" DNA binding 

domain from TnlO, that recognises tetO only in the presence of tetracycline, fused to 

the VP16 activator moiety from herpes simplex virus. The second plasmid (pCM242) 

encodes a fusion protein of the wild type tetR moiety, which recognises tetO only in the 

absence of tetracycline, fused to Ssn6 , a component of a general repressor complex in 

yeast. The pCM252 plasmid is maintained episomally while the pCM242 plasmid 

requires integration into the mutant leu2 locus of S. cerevisiae by homologous 

recombination.

When yeast containing pCM252 and pCM242 are grown without tetracycline (Fig. 2.3, 

B), the tetR-Ssn6 repressor binds to tetO^ and represses transcription of the gene of 

interest. When tetracycline is added to the system (Fig. 2.3, C), tetracycline binds to 

tetR altering its conformation and making it unable to bind to tetO^. Tetracycline also 

binds to the mutant te tR ’ moiety and the resulting conformation change enables the
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te tR ’-WF\6 transactivator to bind to tetO? and induce expression of the gene 

downstream of the hybrid tetOy-CYCJ promoter.

To assess the usefulness of this tetracycline-inducible activator-repressor system, we 

integrated pCM242 into the leu2 locus of INVScl and transformed the resulting strain 

with pCM252 containing exoS  or m utated exoS. The transform ations of 

INVScl+pCM242 with pCM252, pCM252-ExoS, pCM252-ExoS_GAPM, pCM252- 

ExoS_ADPRTM or pCM252-ExoS„GAPM+ADPRTM were all successful. This 

suggested that the tetracycline-inducible activator-repressor system was tightly 

regulated to ensure that there was no leaky expression of ExoS when the yeast were 

grown in the absence of tetracycline. It is interesting to note that when we attempted to 

transform INVScl that did not contain pCM242 with pCM252-ExoS or pCM252- 

ExoS„GAPM, no transformants were obtained. Therefore, the use of this system in 

studying ExoS is dependent on the strong tetR-Ssn6 repressor.

When serial dilutions of INVScl+pCM242 transformed with pCM252 were spotted 

onto agar containing varying concentrations of doxycycline (a tetracycline derivative), 

as expected there was no difference in yeast growth (Fig. 2,4, pCM252). When ExoS 

expression in INVScl+pCM242+pCM252-ExoS was repressed by growth on media 

lacking doxycycline, the growth of the yeast equalled that observed in yeast not 

expressing ExoS. However, when ExoS was induced by increasing concentrations of 

doxycycline, the S. cerevisiae were no longer viable (Fig. 2.4, ExoS). Induction of 

ExoS by as little as 0.1 pg/ml doxycycline resulted in maximal cell death. When ExoS 

with a mutated GAP domain was expressed in INVScl+pCM242, the pattern of cell 

death matched that observed when the wild type ExoS was expressed (Fig. 2.4, GAPM). 

When the ADPRT domain of ExoS was mutated and only an active GAP domain was 

expressed in INVScl+pCM242, yeast cell death was induced but only at higher 

concentrations of doxycycline (Fig. 2.4, ADPRTM). The cytotoxicity of the GAP 

domain was only evident when induced by at least 0.5 pg/ml doxycycline and even 

when induced by 2  pg/ml doxycycline, yeast cell death did not match that caused by 

ExoS induced by 0.1 pg/ml doxycycline. Mutation of both the GAP and ADPRT 

domains rendered ExoS as non-toxic as the empty pCM252 vector (Fig. 2.4, 

GAPM+ADPRTM). Thus, ExoS is cytotoxic to S. cerevisiae and its expression can be 

adequately controlled by the tetracycline-inducible activator-repressor system. Both the
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GAP and ADPRT domains exhibit cytotoxicity, but the ADPRT domain has a more 

potent toxic effect on yeast than the GAP domain.

The toxicity of ExoS in S. cerevisiae was also demonstrated in liquid culture. 

Overnight cultures of INVScl+pCM242 containing either pCM252 or pCM252-ExoS 

were diluted to an GD̂ oo of approximately 0.3. After four hours of growth, 2 pg/ml 

doxycycline was added to each culture and the growth assessed by taking ODgoo reading 

every hour (Fig. 2.5). Even before the addition of doxycycline, the growth rate of 

INVScl+pCM242+pCM252-ExoS appeared slower than that of INVScl+pCM242+ 

pCM252. After the addition of doxycycline, the growth of INVScl expressing ExoS 

was much reduced compared to the yeast not expressing ExoS. The apparent growth 

inhibition observed before the addition of doxycycline may be explained by a small 

amount of leaky expression of ExoS even from the tightly controlled tetracycline- 

inducible activator-repressor system.
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Fig. 2.3. The tetracycline-inducible activator-repressor expression system.

(A) A diagram of the pCM252 and pCM242 plasmids utilised in the tetracycline- 

inducible activator-repressor system to control of expression of ExoS in S. cerevisiae.

(B) ExoS is repressed in the absence of tetracycline by the tetR-Ssi\6 repressor and (C) 

induced in the presence of tetracycline (red triangles) by the te tR '-W \6  transactivator. 

Details of the system are described in the text.
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Fig. 2.4. Toxicity of ExoS and the GAP and ADPRT domains of ExoS in S. 

cerevisiae.

INVScl with pCM242 integrated into its LEU2 locus was transformed with the empty 

vector pCM252 or this vector encoding ExoS, the ExoS GAP mutant (GAPM), the 

ExoS ADPRT mutant (ADPRTM) or the ExoS GAP and ADPRT mutant 

(GAPM+ADPRTM). Toxicity of each construct to S. cerevisiae was assessed by 

spotting ten-fold serial dilutions of culture onto agar containing varying concentrations 

of doxycycline and assessing growth after three days.
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Fig. 2.5. Toxicity of ExoS in liquid culture.

Growth curves of INVScl with pCM242 integrated into the LEU2 containing either the 

empty pCM252 vector or pCM252-ExoS. O/N cultures were diluted to an OD^oo of 

approximately 0.3 and after 4 hours of growth ExoS expression was induced by the 

addition of 2 pg/ml doxycycline. The experiment was performed in triplicate. Error 

bars represent standard deviation of the mean.
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2.3.3. ExoS alters the actin cytoskeleton of S. cerevisiae and the ADPRT domain is

responsible

ExoS is known to affect the actin cytoskeleton in mammalian cells but there is some 

confusion over which domain of ExoS is responsible for this phenotype. In order to 

determine whether ExoS also disrupts the actin cytoskeleton of S. cerevisiae and to try 

to dissect the domain responsible, we induced ExoS and its mutants in INVScl and 

stained the yeast with phalloidin, to detect filamentous actin.

When the actin cytoskeleton of INVScl+pCM242+pCM252 was examined, all the 

normal actin distributions were observed (Fig. 2.6.A and Fig. 2.6.B, pCM252). During 

G|, the S. cerevisiae showed a random distribution of cortical patches and actin cables 

(Fig. 2.6.A, a). As a yeast cell committed to a new cell cycle, a bud site was selected 

where cortical patches accumulated and actin cables converged (Fig. 2.6.A, b). As the 

bud emerged, cortical patches clustered at its tip and actin cables extend from the 

mother cell into the bud (Fig. 2.6.A, c). The cortical patches were then randomly 

redistributed in the bud, while actin cables in the mother still extended to the bud neck 

(fig. 2.6.A, d). When bud growth was completed, the cortical patches and actin cables 

redistributed randomly in the mother and bud while a cytokinetic F-actin ring assembled 

at the bud neck (Fig. 2.6.A, e). During cytokinesis, the F-actin ring contracted and 

disassembled and the cortical patches and actin cables repolarised to the former bud 

neck (Fig. 2.6.A, f).

When ExoS was induced in INVScl+pCM242+pCM252-ExoS by the addition of 

doxycycline, the actin cytoskeleton was dramatically disrupted (Fig. 2.6.B, ExoS). 

Although budding cells were still observed, the organised actin structures were absent. 

Many of the cortical patches appeared large and brightly stained and seemed to 

aggregate in a number of areas in the cell. Thick, disorganised actin cables were also 

observed which is unusual because actin cables are usually only visible when they are 

polarised. Cells were observed that had recently budded but still contained cortical 

patches in the mother cell and the actin cables were not polarised and travelling between 

the mother cell and the bud. The actin cytoskeleton of S. cerevisiae was so disrupted by 

ExoS that the only recognisable actin polarisation was the accumulation of cortical
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patches in the bud. However, even though cortical patches did accumulate in the bud, 

they were not excluded from the mother cell as normally observed in budding cells.

Studying the actin cytoskeleton of yeast expressing the individual domain mutants of 

ExoS provided insight into which domain was responsible for the disruption of the actin 

cytoskeleton. The ExoS GAP mutant resulted in the same pattern of actin disruption as 

that caused by ExoS (Fig. 2.6.B, GAPM). The ADPRT mutant of ExoS, however, 

retained normal actin distributions (Fig. 2.6.B, ADPRTM). As expected, expression of 

ExoS with both the GAP and ADPRT domains mutated also did not cause any 

disruption to the actin cytoskeleton (Fig. 2.6.B, GAPM+ADPRTM). Therefore, the 

disruption of the actin cytoskeleton by ExoS was a consequence of its ADPRT activity.
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Fig. 2.6. Effect of ExoS on the actin cytoskeleton of S. cerevisiae.

(A) Polarisation of the S. cerevisiae actin cytoskeleton throughout the cell cycle with 

cortical patches (Brown), actin cables (Red) and the cytokinetic ring (Pink) indicated. 

Examples of the different stages are illustrated by INVScl transformed with pCM242 

and the empty pCM252 vector. (B) Immunofluorescent staining of the actin 

cytoskeleton with phalloidin in INVScl containing pCM242 and either (A) the empty 

pCM252 vector or this vector encoding (B+C) ExoS, (D) the GAP domain mutant, (E) 

the ADPRT domain mutant or (F) the GAP and ADPRT mutant of ExoS. Image C 

illustrates an enlargement of the image in the white box in image B. The arrow points 

to a disorganised, thick actin cable.
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2.3.4. ExoS prevents DNA replication in S. cerevisiae and the ADPRT domain is

responsible

It has been demonstrated that ExoS inhibits DNA synthesis in mammalian cells, so we 

set out to determine whether ExoS also inhibited DNA synthesis in yeast. We used a -  

factor arrest to assess the effect of ExoS and the GAP and ADPRT domains on DNA 

replication in S. cerevisiae.

In order to utilise the a-factor mating pheromone for synchronisation of S. cerevisiae 

we needed to use a mating-type a haploid strain. To use the tetracycline-inducible 

activator-repressor system this strain must also have pCM242 integrated into its 

chromosome. The haploid strain BMA64-1A was used instead of BY4741 (used in the 

galactose system above) because integration of pCM242 required an intact but mutated 

LEU2 locus and the LEU2 locus of BY4741 is completely deleted. To ensure that ExoS 

was toxic to BMA64-1A, growth of BMA64-lA+pCM242+pCM252-ExoS on agar 

containing varying concentrations of doxycycline was assessed (Fig. 2.7). As observed 

in the diploid INVScl strain, ExoS was highly toxic to BMA64-1A. Maximal cell 

death resulted from activation of ExoS by as little as 0.5 pg/ml of doxycycline.

B M A 64-1 A-kpCM242 cells containing pCM252, pCM 252-ExoS, pCM252- 

ExoS_GAPM, pCM252-ExoS_ADPRTM or pCM252-ExoS^G+AM were synchronised 

with a-factor and then ExoS expression was induced by the addition of doxycycline. 

The cells were released from a-factor arrest and their DNA content assessed by staining 

with propidium iodide at various time points and subjecting to flow cytometry analysis. 

When BMA64-lA+pCM242+pCM252 yeast cells were released from a-factor arrest, as 

anticipated they had a IN complement of DNA straight after release (Fig. 2.8, 

pCM252), which correlates with an arrest in G,. 120 minutes after release from a-factor 

arrest, the majority of cells had replicated their DNA and had a DNA complement of 

2N. After 180 minutes, most cells had undergone cell division and had a IN 

complement of DNA. In contrast, when BMA64-lA+pCM242-t- pCM252-ExoS was 

released from a-factor arrest, most cells failed to replicate their DNA and reach a 2N 

DNA complement even after 180 minutes (Fig. 2.8, ExoS). Expression of the GAP 

mutant of ExoS caused the same inhibition of DNA synthesis as the wild type ExoS 

(Fig. 2.8, GAPM). When ExoS with a mutated ADPRT domain in either the presence
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of absence of a mutated GAP domain was expressed in BMA64-lA+pCM242 (Fig. 2.8, 

ADPRTM and G+AM), DNA replication proceeded as normal. Therefore, ExoS 

inhibited DNA replication during S phase in S. cerevisiae and the ADPRT domain was 

responsible for this phenotype.
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Fig. 2.7. Toxicity of ExoS in BMA64-1A.

BMA64-1A with pCM242 integrated into its leu2 locus was transformed with the empty 

vector pCM252 or this vector encoding ExoS. Toxicity of each construct to BMA64- 

1A was assessed by spotting ten-fold serial dilutions of culture onto agar containing 

varying concentrations of doxycycline and assessing growth after three days.
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Fig. 2.8. Effect of ExoS on DNA synthesis in S. cerevisiae.

BMA64-1A containing pCM242 and either the pCM252 empty vector (pCM252) or 

pCM252 encoding ExoS (exoS), the GAP mutant of ExoS (GAPM), the ADPRT mutant 

of ExoS (ADPRTM) or the GAP and ADPRT mutant of ExoS (G+AM) were arrested at 

Gy with a-factor, induced with doxycycline and released from a-factor arrest. At 

various time points the cells were fixed and stained with propidium iodide and subjected 

to flow cytometry analysis. IN and 2N indicate the DNA complement of the cells.
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2.3.5. ExoS increases the number of mating projections formed by a-factor arrest 

and prevents normal bud growth after release from a-factor arrest.

As we have previously demonstrated, ExoS disrupts the actin cytoskeleton of S. 

cerevisiae and the ADPRT domain is responsible for this phenotype. In order to gain a 

better understanding as to how ExoS disrupts the actin cytoskeleton of yeast, we 

examined the effect of ExoS following release of cells from growth arrest with a-factor.

BMA64-lA+pCM 242+pCM252 and BMA64-lA+pCM252+pCM252-ExoS were 

arrested in G, using a-factor and ExoS expression was induced by the addition of 

doxycycline. The cells were released from a-factor arrest and their actin cytoskeleton 

was observed at various time points by immunofluorescent staining with phalloidin 

(Fig. 2.9.). Immediately after release from a-factor arrest, mating projections were 

visible in S. cerevisiae both expressing and not expressing ExoS (Fig. 2.9, 0). However, 

the number of cells with multiple mating projections appeared higher when ExoS was 

expressed in the yeast. In order to quantify this observation, we counted the number of 

BMA64-lA+pCM242+pCM252 and BMA64-lA+pCM252+pCM252-ExoS cells with 

0, 1, 2 or 3 mating projections (no cell had more than three mating projections visible) 

immediately after release from a-factor arrest (Fig. 2.10). Values are the average 

percentage of cells with 0, 1, 2 or 3 mating projections from 3 random field of view. 

Only mating projections extending in the plane of focus could be counted confidently, 

therefore the number of mating projections per cell is probably an under-estimate. 

However, the values provide a reliable relative measure of mating projection number. 

The results indicate that S. cerevisiae expressing ExoS do have more mating projections 

than yeast that do not express the toxin. There were far fewer cells with no visible 

mating projections when ExoS was expressed in S. cerevisiae compared to yeast not 

expressing the toxin (21.16+4.24% v. 60.07+3.23%, Fig. 2.10, 0). Similar numbers of 

cells possessed one mating projection in yeast expressing and not expressing ExoS 

(49.42+8.01% V.  39.05±3.21%, Fig. 2.10, 1). Many more cells expressing ExoS had 

two mating projections compared to yeast not expressing the toxin (27.35±5.50% v. 

0.88+0.89%, Fig. 2.10, 2). There were no S. cerevisiae cells not expressing ExoS with 

three mating projections, whereas a small number of cells expressing ExoS had three 

mating projections (2.07±0.39%, Fig. 2.10, 3). A chi-squared test comparing the
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number of mating projections produced by yeast expressing or not expressing ExoS 

revealed that the values were significantly different (p<0 .0 0 1 ).

In addition to enhancing the number of mating projections per cell during a-factor 

arrest, ExoS also disrupted the actin cytoskeleton and bud formation in released cells. 

Upon release from a-factor arrest, the actin cytoskeleton did polarise in yeast 

expressing ExoS and if anything, this polarisation was more pronounced than in S. 

cerevisiae not expressing the toxin (Fig. 2.9, 30). However, bud formation did not 

proceed as normal. Yeast cells that did not express ExoS exhibited small round buds 

containing cortical patches attached to large mother cells with actin fibres travelling 

between the mother and bud (Fig. 2.9, pCM252 60-120). In contrast, S. cerevisiae 

expressing ExoS, exhibited a strange bud morphology (Fig. 2.9, pCM252-ExoS 60- 

120). After the very marked immediate polarisation, buds appeared to form at the end 

of elongated projections. These buds did not appear to be able to detach from the 

mother cell and as a consequence large buds attached to the mother cells by elongated 

necks were observed.
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Fig. 2.9. Effect of ExoS on the actin cytoskeleton of S. cerevisiae after a-factor 

arrest.

BMA64-1A containing pCM242 and either the pCM252 empty vector or pCM252 

encoding ExoS were arrested at G, with a-factor, induced with doxycycline and 

released from a-factor arrest. At various time points the cells were fixed and 

immunofluorescent staining of the actin cytoskeleton with phalloidin was carried out.
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Fig. 2.10. Effect of ExoS on the number of mating projections.

A graph showing the percentage of BMA64-1 A+pCM242 containing pCM252 or 

pCM252-ExoS cells with 0, 1, 2 or 3 mating projections after 3 h a-factor arrest and 1 h 

ExoS induction. Values are the average of three fields of view and each field of view 

contained at least 50 cells. The error bars represent standard deviation of the mean.
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2.4. DISCUSSION

In this chapter, we have developed a S, cerevisiae model in which to study the 

pseudomonal TTS toxin, ExoS. We have used this model to show that ExoS is very 

toxic to yeast and that although both the GAP and ADPRT domains are toxic, the 

ADPRT domain accounts for the extreme toxicity of ExoS. We have demonstrated that 

ExoS disrupts the actin cytoskeleton and inhibits DNA synthesis in yeast and that the 

ADPRT domain is responsible for these phenotypes. We have also shown that ExoS 

increases the number of mating projections formed when S. cerevisiae is arrested with 

a-factor and that ExoS interferes with the normal bud development after release from 

a-factor.

In developing the yeast model to study ExoS, we began by controlling ExoS expression 

using the GALl promoter system. Other groups have successfully used this system to 

study the effects of TTS toxins on S. cerevisiae. For example, the P. aeruginosa TTS 

toxin genes exoT  and exoU  have been successfully cloned downstream of the G ALl 

promoter and expressed upon galactose induction in yeast ([413, 437, 439] and Chapter 

3). However, in our case the galactose inducible system was inadequate because of the 

extreme cytotoxicity of the ADPRT domain of ExoS. Constructs expressing ExoS with 

a mutated ADPRT domain were successfully transformed into yeast. However, when 

we tried to transform S. cerevisiae with a plasmid expressing ExoS with an active 

ADPRT domain we obtained no transformants. It is evident that the ADPRT domain of 

ExoS was so cytotoxic to S. cerevisiae that even when its expression was repressed by 

glucose, enough leaky expression from the G ALl promoter resulted to prevent the 

transformation of yeast with this plasmid. We tried to overcome this problem by 

cloning exoS into a low copy number plasmid (pYC2/NT), but again we were unable to 

transform S. cerevisiae with this construct under glucose repressing conditions. The 

only transformants we generated contained mutations of the exoS  gene that either 

truncated the protein or mutated the ADPRT domain in such a way that probably 

resulted in the abrogation of its enzymatic activity.

In an attempt to overcome this problem of leaky expression from the GALl promoter in 

glucose repressing conditions, we investigated the use of another inducible expression 

system, the tetracycline-regulated activator-repressor dual system [494]. This system
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(described in section 2.3.2 and Fig. 2.3.) uses a strong repressor of the tetOj promoter to 

ensure that there is a complete switching-off of the regulated genes in the absence of 

tetracycline. It has been demonstrated that the tetR-Ss\\6 repressor decreases expression 

of a lacZ control gene under the control of the tetOy promoter to virtually undetectable 

levels (^0.10 Miller units of p-galactosidase activity) [494]. This is compared to the 

GALl promoter system, which only represses (3-galactosidase activity to 2 Miller units 

when repressed by growth on glucose [494]. In addition to its tight repression, the 

tetracycline-regulated activator-repressor dual system is also capable of inducing 

expression of regulated genes to high levels. For example, maximal lacZ expression 

levels from this system are 1 0 -fold higher than with the METJ-based promoter system 

(a system that is induced by the removal of methionine) and 70% of that achieved by 

the GAT7-based promoter system [494, 495]. Controlling gene expression by the 

addition (or removal) of tetracycline has another advantage over the GAT-based and 

MFTG-based systems. The GAL- and METJ-based systems require a nutrient change to 

confer regulation, either a switch from glucose to galactose or the removal of 

methionine, and these are likely to have pleiotrophic effects on the yeasts metabolism. 

Thus, it is hard to confirm which phenotypes are due to the regulated gene and which 

are the consequence of the nutrient change. In contrast, doxycycline has no effect on 

the growth rate, cell morphology or global gene expression of S. cerevisiae [496], so 

any phenotypic change will be the result of the regulated gene. We decided to use the 

tetracycline-inducible version of the tetracycline-regulated activator-repressor dual 

system as this enables rapid gene induction without the requirement for a media change. 

It has been demonstrated that this system can induce detectable levels of protein 

expression by 30 min after antibiotic addition [494].

Using the tetracycline-inducible activator-repressor dual system we were able to 

successfully transform S, cerevisiae with constructs containing exoS and the GAP and 

ADPRT mutants of exoS. Using this system we confirmed the implication from the 

GAE7-promoter system, that ExoS is very toxic to yeast and that the ADPRT domain is 

responsible for this extreme toxicity. We also confirmed that, as shown with the GALl- 

promoter system, the GAP domain is toxic to S. cerevisiae but not as toxic as the 

ADPRT domain. That the ADPRT domain is more toxic than the GAP domain of 

ExoS is in agreement with what has been shown using mammalian tissue culture cells. 

The ADPRT domain causes death of mammalian epithelial cells and macrophages
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whereas the GAP domain is not toxic when expressed or injected into these cells [378, 

394, 395].

The ability of the GAP domain to elicit cytotoxicity in S. cerevisiae, but not mammalian 

cells, is reminiscent of the effects of other TTS GAP toxins on these cells. The Yersinia 

TTS GAP toxin, YopE, and the GAP domain of the P. aeruginosa toxin, ExoT, are also 

cytotoxic to yeast but not mammalian cells [261, 413, 484]. This difference is probably 

due to the different types of assays used to measure cytotoxicity in mammalian and 

yeast cells. In the mammalian cell systems, toxicity has been measured as a decrease in 

reporter gene expression, an increase in trypan blue uptake or an increase in release of 

the cytoplasmic protein lactate dehydrogenase [378, 394], whereas cytotoxicity in yeast 

is measured as an inhibition of growth. Thus, although unable to directly destroy a cell, 

the GAP domains of ExoS, ExoT and YopE may cause cytotoxicity by inhibiting cell 

growth. It has been proposed that the high susceptibility of yeast cells to YopE 

expression is the result of disruption of the actin cytoskeleton triggering a morphogeneis 

checkpoint in the cell-cycle that leads to an arrest in nuclear division [484]. Although 

we observed no disruption of the actin cytoskeleton by the GAP domain of ExoS (see 

below), its ability to inhibit growth suggests that it does affect the yeast in some way 

and therefore may also trigger a cell cycle arrest checkpoint.

The extreme toxicity of the ADPRT domain to yeast that we observed, combined with 

the ability of this domain to destroy mammalian cells suggests that ADPRT cytotoxicity 

is direct and not a result of growth inhibition. It is unclear what the mechanism of 

action of ADPRT cytotoxicity is. Although many potential in vivo targets of the ExoS 

ADPRT domain are known, it is not known which of these are biologically relevant and 

how their ADP-ribosylation results in cell death. Our results suggest however that the 

protein(s) whose ADP-ribosylation results in cell death is likely to be conserved from 

yeast to mammals. It is also unclear why the ADPRT domain of ExoS should be so 

cytotoxic to yeast. It is evident that the pseudomonal TTS phospholipase ExoU, which 

is a more potent cytotoxin to mammalian cells, is not as toxic to S. cerevisiae as ExoS. 

Whereas we were unable to transform yeast with exoS under the control of the GALl 

promoter, exoU can be transformed into yeast using this system ([437, 439] and Chapter 

3). Therefore, the small amount of leaky expression of ExoU from the GALl promoter 

under glucose repressing conditions is not sufficient to kill the yeast, whereas the same
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amount of ExoS is. It is also clear that the ADPRT domain of ExoT is not as toxic to S. 

cerevisiae as the ADPRT domain of ExoS. The ADPRT domain of ExoT is cytotoxic 

to yeast but exoT  under the control of the G ALl promoter can be transformed into S. 

cerevisiae [413]. This difference in yeast susceptibility to the ADPRT domains of ExoS 

and ExoT correlates with what is observed in mammalian cells where ExoS is toxic and 

ExoT is not [352, 412]. It was originally thought that the ADPRT domain of ExoT 

possessed only about 0.2% of the activity of the ADPRT domain of ExoS and that this 

difference accounted for the difference in cytotoxicity [346]. However it has since been 

shown that ExoT is able to efficiently ADP-ribosylate Crk-I and Crk-II both in vitro and 

in vivo [415]. As discussed in Chapter 1, the ability of ExoT to ADP-ribosylate Crk-I 

and Crk-II provides a possible reason for the actin cytoskeleton disruption phenotype 

caused by this domain. Yeast however does not contain a Crk homologue and other 

targets of the ExoT ADPRT domain must therefore account for the toxicity of this 

protein to S. cerevisiae. It is possible that like the GAP domain of YopE, the ADPRT 

domain of ExoT is cytotoxic to yeast because it inhibits growth by disrupting actin, 

which triggers a morphogenesis checkpoint.

When we expressed wild type ExoS in S. cerevisiae, it severely disrupted the actin 

cytoskeleton leading to the formation of large aggregates of densely stained cortical 

patches and thick disorganised actin cables. Although budding cells were still present, 

these did not have a polarised actin cytoskeleton as cortical patches were still present in 

the mother cell and actin cables did not run between the mother cell and bud. Analysis 

of the GAP and ADPRT mutants revealed that the ADPRT domain was responsible for 

this dramatic phenotype and the GAP domain had no visible effect on the actin 

structures in S. cerevisiae.

The ability of the ADPRT domain of ExoS to disrupt the actin cytoskeleton in S. 

cerevisiae parallels what is observed in mammalian cell culture systems where the 

ADPRT domain has been shown to cause cell morphology changes in both epithelial 

and macrophage cell lines [378, 395]. Although it is unclear what the targets of the 

ADPRT domain are that result in this cytoskeletal disruption, a number of hypothesis 

have been proposed. The ability of ExoS to ADP-ribosylate the Rho GTPases Rac and 

Cdc42 in vivo [372, 373] may provide a direct link between ExoS expression and actin 

disruption because these proteins play a direct role in the regulation of actin cytoskeletal
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rearrangements. Also ExoS ADP-iibosylates the Ezrin/Radixin/Moesin (ERM) family 

of proteins in vivo [376]. The ERM family of proteins contribute to actin dynamics and 

therefore may explain the disruption of the actin cytoskeleton by the ADPRT domain of 

ExoS. Finally the ADP-ribosylation of Ras and RalA by ExoS may be responsible for 

the cytoskeletal changes as these proteins are known to indirectly affect the morphology 

of eukaryotic cells [497].

Although it is not clear how the ADPRT domain of ExoS leads to the observed 

disruption of the actin structures in S. cerevisiae, a clue to its possible mechanism of 

action comes from the yeast V159N actin mutant [498]. When actin with a valine 159 

to asparagine mutation is expressed in S. cerevisiae as the sole source of actin the 

resulting phenotype is very similar to that which we observed after expression of the 

ADPRT domain of ExoS. Belmont and Drubin [498] described the yeast expressing 

V159A actin as having “ a dramatically altered actin cytoskeleton...the cortical patches 

are much brighter and many cells appear to have more pronounced cables.” They also 

observe cells with “ additional patches in both the mother and bud,” “ depolarised actin 

or actin structures that are not clearly identifiable as cortical patches or cables” and “ 

excess cables and these are not properly organised. These cables frequently extend at 

right angles to the mother-bud axis, rather than running along the mother-bud axis as 

they do in wild type strains.” The V159N actin mutation results in these phenotypes 

because it forms actin filaments that are exceptionally stable due to their slow 

depolymerisation. ATP-bound actin monomers polymerise to form filamentous actin, 

the ATP is then hydrolysed and the release of inorganic phosphate leads to a 

conformational change that destabilises the actin filament and promotes disassembly 

[499]. The V159N mutation results in actin that depolymerises slowly because the 

filamentous actin fails to undergo a conformation change after inorganic phosphate 

release [500]. The similarity of the V159N actin and ExoS ADPRT domain induced 

actin disruption suggests that the ADPRT domain of ExoS may also stabilise 

filamentous actin in some way.

Expression of the Salmonella  TTS SipA protein in S. cerevisiae also results in a 

phenotype that is reminiscent of the V159N actin mutation phenotype and our ExoS 

ADPRT domain induced actin disruption [484]. SipA is able to inhibit actin 

depolymerisation both in vitro and in S. cerevisiae and it is thought to do this directly by
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binding to the actin [268, 484]. ExoS does not bind actin, therefore if it does stabilise 

filamentous actin it must do so indirectly. One possible mechanism for actin 

stabilisation by ExoS is through the ADP-ribosylation and activation of Rho. In 

mammalian cells, Rho is able to activate the proteins mDia and ROCK [497]. Activated 

mDia binds and activates profilin that enhances actin polymerisation. Activated ROCK 

phosphorylates LIM kinase that in turn phosphorylates cofilin. Cofilin acts to 

depolymerise actin but when it is phosphorylated by LIM kinase, its actin- 

depolymerising activity is inhibited. Therefore, activated Rho can both enhance actin 

polymerisation and inhibit actin depolymerisation, which in mammalian cells results in 

stress fibre formation [497]. Yeast also contains profilin and cofilin that accelerate 

actin polymerisation and increase the rate of actin filament depolymerisation 

respectively. If the V159N actin mutant is expressed in a profilin or cofilin mutant 

background, the resulting S. cerevisiae mutant is not viable indicating that actin 

turnover is required for yeast survival [498]. Thus, if ExoS was able to ADP-ribosylate 

and activate Rho in S, cerevisiae, the resulting activation of profilin and inactivation of 

cofilin may lead in the observed actin disruption phenotype and cell death. ExoS is able 

to ADP-ribosylate the Rho GTPases Rho Rac and Cdc42 in vitro and Rac and Cdc42 in 

mammalian cells [372, 373]. Although there is little evidence that ExoS ADP- 

ribosylates Rho in mammalian cells, this may be different in S. cerevisiae. Although in 

the majority of instances ADP-ribosylation by ExoS results in inactivation of the target 

protein, it has been demonstrated that ADP-ribosylation of R a d  by ExoS leads to its 

activation [373, 406]. ExoS preferentially ADP-ribosylates either arginine 6 6  or 6 8  in 

the Switch II domain of R a d  and this appears to interfere with the GAP-mediated 

inactivation of R ad  [406]. Therefore, if ExoS ADP-ribosylation of Rho occurs in S. 

cerevisiae  and this leads to its activation, the resulting activation of profilin and 

inactivation of cofilin might account for the ability of the ExoS ADPRT domain to 

disrupt the actin cytoskeleton in yeast.

In our experiment, the GAP domain of ExoS did not disrupt the actin cytoskeleton of S. 

cerevisiae. The role of the ExoS GAP domain in mammalian cells in actin disruption is 

controversial. In the epithelial cell line HT-29, the GAP domain of ExoS does not 

appear to have any effect on cell morphology whereas in the macrophage cell line 

J774A.1, the GAP domain was found to exert an antiphagocytic function [378, 395]. 

This difference in activity of the GAP domain in different cell lines may be due to
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differential localisation of the Rho GTPases. For example in the epithelial cell line HT- 

29, Racl resides primarily within the cytosol and appears to be ADP-ribosylated and 

activated at this location [406], In contrast, Racl in the J774A.1 macrophage is more 

localised to the plasma membrane and at this location it appears to be inactivated by the 

GAP domain of ExoS [406]. The Yersinia TTS GAP toxin, YopE, does disrupt the 

actin cytoskeleton of S, cerevisiae and this is believed to trigger a morphogenesis 

checkpoint that results in cell-cycle inhibition and account for the toxicity of this protein 

towards yeast [484]. The observation that ExoS did not lead to actin disruption in our 

experiment suggests that the GAP activities of ExoS and YopE are not functionally 

interchangeable. Although the in vitro GAP activity of ExoS and YopE are 

biochemically indistinguishable they may be a difference in their in vivo targets. It has 

been demonstrated that the GAP domain of ExoS targets Rho A, Racl and Cdc42 in vivo 

but YopE appears to only act as a GAP for RhoA and Racl in vivo [262, 405, 501]. 

This difference in in vivo targets may be caused by differential localisation of the two 

toxins or differences in their catalytic domains. ExoS and YopE localise to the same 

perinuclear region in mammalian cells and their membrane localisation domains are 

functional interchangeable suggesting that a difference in the catalytic domain of ExoS 

and YopE dictates their in vivo substrate specificity [502]. Although we did not observe 

any change in the actin cytoskeleton of S. cerevisiae upon induction of ExoS GAP 

expression, the ability of the GAP domain to inhibit yeast growth suggests that the GAP 

domain is active in yeast. It is possible that the GAP domain of ExoS disrupted the 

actin cytoskeleton in yeast in a way that was too subtle to be detected by our assay or 

that it acts in a different way to inhibit growth. In addition to being involved in 

regulating the actin cytoskeleton, the Rho GTPases also have a role in modulating gene 

transcription and it may be this activity that explains the cytotoxic action of the GAP 

domain of ExoS [497].

Our results also showed that ExoS expression led to the formation of more mating 

projections after a-factor treatment and the disruption of normal bud formation after a - 

factor release. Although we did not test which domain of ExoS caused these 

phenotypes, the ability of the ADPRT to disrupt the actin cytoskeleton in vegetatively 

growing yeast suggests that this domain is responsible. As described in the introduction 

to this chapter, Cdc42 is the central player in polarising growth in S, cerevisiae and if 

ExoS was able to ADP-ribosylate and activate this Rho GTPase, this may account for
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the phenotypes we observed after a-factor treatment. When MATa yeast are treated 

with a high concentration of the a-factor pheromone they initiate and terminate growth 

of mating projections with regular periodicity [503]. It has been demonstrated that the 

regulators of Cdc42 activity control the initiation of mating projection formation [504]. 

Mutation of Cdc24, the GEF for Cdc42, results in a longer mating projection initiation 

period and mutation of Bem3, which is a GAP for Cdc42, leads to a shorter mating 

projection period [504]. Therefore, it is apparent that Cdc42 activation by its GEF, 

Cdc24, initiates mating projection formation and this initiation is inhibited by the 

inactivation of Cdc42 by its GAP, Bem3, As detailed above, ExoS has been shown to 

ADP-ribosylate Racl and Cdc42 in vivo and ADP-ribosylation of Racl by ExoS 

activates this Rho GTPase. One could therefore speculate that ExoS ADP-ribosylates 

and activates Cdc42 in S. cerevisiae leading to an increase in the initiation of a-factor 

induced mating projection formation.

If ExoS was able to activate Cdc42 by ADP-ribosylation, this may also provide an 

explanation for the strange bud growth observed after a-factor release in yeast 

expressing ExoS. ExoS expression resulted in many S. cerevisiae cells with large buds 

and elongated necks. Although we have been unable to discover in the literature any 

yeast mutants that have a similar phenotype, it is slightly reminiscent of the filamentous 

growth that results during cell stress [488]. During filamentous growth, Cdc42 does not 

redistribute over the bud surface during G^-M but remains localised at the tip of the bud 

and directs further apical growth. Also constitutive activation of Cdc42 or loss of its 

GAPs, Bem3 and Rgal, locks Cdc42 into a polarised distribution and hyperpolarises 

growth [505, 506]. Therefore if ExoS activated Cdc42 by ADP-ribosylation this may 

lead to the strange bud growth phenotypes we observed. There is however, no evidence 

that ADP-ribosylation activates Cdc42 and the ability of the ADPRT domain of ExoS to 

interfere with fliopodium formation (a Cdc42 controlled process) in macrophages, 

suggests that ADP-ribosylation actually inactivates Cdc42 [378]. Thus, how the 

ADPRT domain of ExoS causes more mating projections and disrupts bud formation 

remains unclear.

When we released S. cerevisiae from a-factor arrest, yeast not expressing an active 

ADPRT domain of ExoS were able to exit G, and proceed with DNA synthesis in S 

phase. However, when ExoS with an active ADPRT domain was expressed in yeast, no
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DNA synthesis was observed. This finding is consistent with what has been observed in 

mammalian cells where ExoS inhibits DNA synthesis and the ADPRT domain was 

shown to be responsible for this phenotype [351, 395]. It is not clear which target(s) of 

the ExoS ADPRT domain is responsible for this inhibition of DNA synthesis. Ras is 

integral to signal transduction pathways that affect DNA synthesis so may be the target 

[497]. GTP bound Ras binds and activates its effector, Raf. Raf is a protein kinase that 

induces gene expression through the MAPK cascade and this drives the cell cycle. 

Therefore, inhibition of Ras by ADP-ribosylation may result in the observed inhibition 

of DNA synthesis. It has been demonstrated that ADP-ribosylation of Ras by ExoS is 

not required for the cytotoxicity of this protein [368]. Therefore, if inhibition of DNA 

synthesis is the trigger for ExoS induced cell death, another protein that is involved in 

inducing DNA synthesis must be inactivated by ExoS ADP-ribosylation. It is known 

that Ral is involved in signalling processes that affect cell proliferation, Rapl can 

induce DNA synthesis and that Rho/Rac/Cdc42 proteins are required for G, cell cycle 

progression [497]. As Rapl, Rap2, RalA, Rac and Cdc42 have all been shown to be in 

vivo targets of the ADPRT domain of ExoS [372, 373], inhibition of any of these 

proteins by ADP-ribosylation may also lead to the observed inhibition of DNA 

synthesis.

To summarise, in this chapter we have demonstrated that S. cerevisiae is a useful model 

in which to study the effects of ExoS as the effects of this toxin on cell viability, the 

actin cytoskeleton and DNA synthesis mirrors that observed in mammalian cells. The 

extreme toxicity of the ADPRT domain of ExoS towards yeast led us to use the 

tetracycline-inducible activator-repressor dual system to study the effects of this toxin, 

the first time this system has been used to study toxin expression in S. cerevisiae. In 

addition to the stronger repression of transcription afforded by this system, we believe 

that it offers further advantages as it does not require a nutrient change for regulation, it 

is rapidly induced and expression levels can be regulated by doxycycline 

concentrations. It remains unclear how the ExoS ADPRT domain acts to kill cells, 

disrupt the actin cytoskeleton and inhibit DNA synthesis but S. cerevisiae may provide 

a useful system in which to examine these questions due to the ease at which this simple 

eukaryote can be manipulated. The striking actin disruption phenotype and the 

similarity of this to the V159N actin mutant phenotype is particularly interesting and 

might provide further insight into the molecular mechanism of action of ExoS.
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CHAPTER 3: SCREENING THE SACCHAROMYCES CEREVISIAE  

DELETION LIBRARY FOR MUTANTS RESISTANT TO 

EXOENZYME S, Y OR U.

3.1. INTRODUCTION

In the introduction to Chapter 2 the advantages of using Saccharomyces cerevisiae as a 

model in which to study bacterial toxins were highlighted. Our results concerning the 

ability of ExoS to elicit cytotoxicity towards yeast and the parallels between the effect 

of this toxin in both S. cerevisiae and mammalian cells, confirms the use of this simple 

eukaryote in studying the TTS toxins of Pseudomonas aeruginosa. In this chapter we 

aimed to develop the S. cerevisiae model to screen for eukaryotic genes required for 

action of the P, aeruginosa TTS toxins: ExoS, ExoY and ExoU.

As previously discussed, although many potential eukaryotic targets of ExoS have been 

identified, its precise mechanism of action remains unknown. Likewise, a great deal 

remains to be discovered about the other TTS toxins of P. aeruginosa. ExoY is known 

to exhibit adenylate cyclase activity that results in increased intracellular cAMP levels 

and causes actin disruption and cell rounding in target cells [465, 473]. However, it is 

unclear how high cAMP levels leads to actin disruption and whether there are any other 

consequences of the ExoY-induced increase in cAMP concentrations. For ExoU, it has 

been demonstrated that its cytotoxic nature is due to its phospholipase activity [439]. It 

is believed that ExoU kills cells by destroying the plasma membrane of target cells 

although it remains possible that the phospholipase activity of ExoU results in cell death 

by a different mechanism.

In addition to the uncertainties of the precise mechanisms of action of the pseudomonal 

TTS toxins, the identities of some of their eukaryotic cofactors are still unknown. As 

discussed in Chapter 1, all the TTS toxins of P. aeruginosa require a eukaryotic 

cofactor to limit their catalytic activities to their eukaryotic host. In vitro the ADPRT 

activity of ExoS and ExoT, the adenylate cyclase activity of ExoY and the 

phospholipase activity of ExoU are all dependent on factors that can be supplied by 

mammalian or yeast cell supernatants [385, 439, 465]. It has been demonstrated that 

members of the 14-3-3 protein family are absolutely required for the ADPRT activity of
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ExoS and ExoT [386, 415]. However, the factors required for stimulation of the 

adenylate cyclase activity of ExoY by 500-fold or absolutely required for the 

phospholipase activity of ExoU remain unknown.

As briefly mentioned in the introduction of Chapter 2, one of the advantages of using S. 

cerevisiae as a model to study bacterial toxins is the availability of a yeast deletion 

library [507]. By screening such a library for deletion mutants that are resistant to the 

cytotoxic effects of the pseudomonal TTS toxins, one might gain further insight into the 

molecular sights of action of the toxins within eukaryotic cells. This library screen 

might also be useful in identifying the eukaryotic cofactors required for the activity of 

ExoY and ExoU. If the eukaryotic cofactor for ExoY or ExoU is a non-redundant, non- 

essential protein, its deletion will make the yeast resistant to the action of ExoY or 

ExoU.

The S. cerevisiae deletion library is commercially available and the result of the 

Saccharomyces Genome Deletion Project consortium. Sequencing of the S. cerevisiae 

genome revealed the presence of approximately 6200 ORFs and the aim of the 

consortium was to generate as complete a set as possible of yeast deletion strains. Four 

different mutant collections were generated; haploids of both mating types, homozygous 

diploids for non-essential genes, and heterozygous diploids, which contain deletions in 

the essential and non-essential ORFs. To date, the Saccharomyces Genome Deletion 

Project consortium has succeeded in disrupting 96% of the ORFs [507].

The method used in the construction of the deletion library was a PCR-based gene 

deletion strategy that generated a start- to stop- codon deletion of each ORF. Each ORE 

was disrupted by a deletion cassette containing a KanMX4 module and two unique tag 

sequences that allow identification of the deleted ORF (Fig. 3.1, A). The deletion 

cassettes were constructed by amplifying the KanMX4 gene from pFA6-kanMX4 with 

unique 74 bp UPTAG and 74 bp DOWNTAG primers (Fig. 3.1, A, Round 1 PCR). The 

unique 74 bp UPTAG primer consists of (5’ to 3’): 18 bp of genomic sequence that 

flanks the 5 ’ end of the targeted ORF directly proximal to the start codon, 18 bp of 

sequence common to all gene deletions (U l), a 20 bp unique sequence tag (TAGl) and 

18 bp of sequence homologous to the 5 ’ end of the KanMX4 cassette (U2). The unique 

DOWNTAG primer consists of (5’ to 3”): 18 bp of genomic sequence that flanks the 3’
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74mer UPTAG primer

.ATG U1 TAG 1 Ü2

UP_45 primer

74mer DOWNTAG primer

02 TAG 2 D1 TA A..

I
!

Round 1 PCR DOWN_45 primer

Round 2 PCR

ATG Yeast ORF TAA..J1

Chromosomal integration tiy homologous recombination

B
U1 primer

----- ►

D1 primer

Amplification of KanMX4 cassette with 
common U1 and D1 primers

KanC primer

KanB primer

Sequencing of unique tags with KanB and 
KanC primers to identify deleted ORF

Fig. 3.1. Construction and identification of S, cerevisiae deletion mutants

(A) Schematic diagram detailing the generation of the S. cerevisiae deletion mutants 

using a PCR-based gene deletion strategy that generated a start- to stop- codon deletion 

of each ORF. (B) Schematic representation of the strategy used to identify the S. 

cerevisiae deletion mutant. Details of the approach are described in the text.
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end of the targeted ORF directly distal to the stop codon, 17 bp of sequence common to 

all gene deletions (D l), a 20 bp unique sequence tag (TAG2) and 19 bp of sequence 

homologous to the 3 ’ end of the KanM X4  cassette (D2). A second round of PCR 

amplification was then carried out using UP„45 and DOWN_45 primers (Fig. 3.1, A, 

Round 2 PCR). These primers were designed to be complementary to the 45 bp directly 

upstream and downstream of the targeted ORF including the start and stop codon 

respectively. The gene disruption cassette was transformed into the diploid yeast cells, 

BY4743, and colonies were selected on G418 containing agar plates. Thus, only 

colonies that had successfully integrated the KanMX4 cassette into the chromosome by 

homologous recombination were able to grow. The resulting transformants were 

sporulated and haploids of both mating types, MATa and MATa, were recovered from 

the tetrads. If the dissection of a tetrad resulted in two viable and two dead colonies, the 

deleted gene was deemed “essential.” The success of the replacement of the ORF with 

the gene deletion cassette was confirmed by a number of PCR amplification reactions. 

The homozygous diploid deletion strain was then constructed by mating of the 

confirmed haploid deletion strains.

The presence of the unique sequence tags in the gene deletion cassette allows 

identification of mutants with a particular phenotype, for example resistance to a 

bacterial toxin. The deletion cassette is amplified from the selected strains using the 

common Ul and Dl primers and the unique tags (TAGl and TAG2) are sequenced 

using the KanB and KanC primers (Fig. 3.1, B). The tag sequences are then run 

through a programme maintained by the Saccharomyces Genome Deletion Project to 

identify the deleted ORF thttp://www-sequence.stanford.edu/group/yeast deletion 

project/deletions3.htmll.

There are a number of advantages of using this S. cerevisiae deletion library over 

classical random mutagenesis for large-scale screens. The first is that each mutant 

phenotype reflects a complete loss of function of the gene. Secondly, the deleted gene 

responsible for the mutant phenotype can be rapidly identified because it has been “ bar- 

coded” during the construction of the deletion strain. Finally, as all of the ORFs have 

been systematically deleted, one can ensure genome saturation in contrast to random 

mutagenesis where some genes elude deletion. To date, the S. cerevisiae library has 

been used for a number of genome wide screens. During the construction of the S.
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cerevisiae  deletion library, all the essential genes for this simple eukaryote were 

identified [507]. Out of the 5916 genes deleted, 1105 (18.7%) were demonstrated to be 

essential for growth on rich medium. The deletion library has since been used to show 

which genes are necessary for optimal growth under a variety conditions including: rich 

medium, high salt, sorbitol, galactose, pH 8 , minimal medium and nystatin treatment 

[507]. The library has also been used to identify genes required for mitochondrial 

function, sporulation and meiosis [508, 509]. A heterozygous diploid library of strains 

that contains a deletion in one copy of its essential and non-essential ORFs has been 

used to test for drug targets [510]. If a drug targets a specific protein it follows that if 

the amount of this protein is decreased, due to the presence of just one gene encoding 

for it, the yeast may be more sensitive to the toxic effects of the drug. The S. cerevisiae 

deletion library has also recently been used to identify potential targets of the P. 

aeruginosa toxin pyocyanin [511]. Yeast is sensitive to the oxidative stress caused by 

the increased levels of H2O2 and O2 triggered by pyocyanin and the yeast deletion 

library was screened for mutants that were either more sensitive or more resistant to this 

toxin. 50 genes were identified that exhibited altered sensitivity to pyocyanin including 

multiple V-ATPase mutants that showed increased susceptibility to pyocyanin. It was 

subsequently shown that pyocyanin inactivates human V-ATPases in lung epithelial 

cells, confirming that these pyocyanin targets are conserved from yeast to humans.

The work described in this chapter describes how we used the S, cerevisiae 

homozygous diploid deletion library to screen for eukaryotic genes required for the 

action of the P. aeruginosa TTS toxins ExoS, ExoY and ExoU. Before embarking on 

the screen we established the sensitivity of S. cerevisiae to the pseudomonal TTS toxins. 

We had already shown in Chapter 2 that ExoS was toxic to S. cerevisiae, so we 

confirmed that ExoU was toxic and illustrated for the first time that yeast are also 

susceptible to ExoY. After an initial whole library screen, the deletion mutants isolated 

as being resistant to the toxins were re-tested. Most of the identified deletion mutants 

were shown to be false positives and were probably initially isolated due to a mutation 

in the pseudomonal toxin gene. Yeast mutants that did confer resistance to the TTS 

toxins were strains with either the GAL3 or GAL4 genes deleted or strains lacking the 

gene encoding the transcription elongation factor, Spt4.
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3.2. METHODS

3.2.1. Materials

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and Griener Bio- 

One (Kremsmuenster, Austria) supplied the plastic ware unless otherwise stated. The 

primers were synthesized by Operon Biotechnologies (Huntsville, AL, USA) and DNA 

sequencing was performed by the Dundee University Sequencing Service (Dundee, 

UK).

3.2.2. S. cerevisiae strains

In addition to the INVScl and BY4741 strains used previously (Section 2.2,2), yeast 

deletion clones generated by the Saccharomyces Genome Deletion Project were used. 

The Yeast Deletion Homozygous Diploid Pool (Invitrogen, Carlsbad, CA, USA) 

contains deletion mutants in the BY4743 background (MATa/MATa; his3Al/ his3Al; 

leu2A0f leu2A0; metlSAOf metlSAO; ura3A0! ura3A0) and the individual deletion 

mutants used (Euroscarf, Frankfurt, Germany) were in the BY4741 background.

3.2.3. Maintenance and growth of S, cerevisiae

Maintenance and growth of S. cerevisiae was identical to that described previously 

(Section 2.2.3) but in addition the yeast deletion clones were grown in the presence of 

200 M-g/ml Geneticin® (G418) to maintain selection on the KanMX4 deletion cassettes.

3.2.4. Genomic DNA extraction from S. cerevisiae

Genomic DNA was extracted from 1.5 ml of overnight culture of S. cerevisiae using the 

YeaStar Genomic DNA Kit™ (Zymo Research, Orange, CA, USA) according to 

Protocol I of the manufacturers instructions. In summary, the cells were centrifuged at 

500 X g for 2 min and the supernatant was removed. The pellet was resuspended in 120 

p,l YD Digestion Buffer and 5 [a1 RNaseA-ZymoIyase™ and incubated at 37°C for 60 

min. 120 |uil YD Lysis Buffer was added and the mixture was vortexed hard for 15 s. 

The lysed yeast were mixed for 1 min with 250 p-1 chloroform before being centrifuged
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at 16100 X g for 2 min. The supernatant was loaded onto a Zymo-spin III column and 

centrifuged at 16100 x g for 1 min. The column was washed twice with 300 \x\ DNA 

Wash Buffer and the DNA was eluted by adding 60 p.1 DDW to the column membrane, 

incubating for 1 min then centrifuging at 16100 x g for 1 0  s.

3.2.5. Construction of plasmids

This study utilised the galactose-inducible expression vector pY ES 2/NT (Invitrogen) 

and the constitutive expression vector pAD4M (kindly supplied by Dr. K. Haynes, 

Imperial College, London). pYES2/NT contains the URA3 gene and pAD4M contains 

the LEU2 gene, therefore S, cerevisiae transformed with these plasmids were selected 

for on SD media lacking uracil and leucine respectively.

The pYES2/NT"ExoS plasmid generated previously (Chapter 2) was used and 

pYES2/NT-ExoY and pYES2/NT-ExoU were made. The exoY  gene was amplified 

from PAOl genomic DNA using the same PCR reaction mixture and conditions as 

described for the amplification of exoS (Section 2.2.5) with the following changes: the 

primers ExoY-Fw and ExoY-Rev (see Table 3.1) were used and the PCR amplification 

cycle involved 35 cycles with an annealing temperature of 62°C and an extension time 

of 1.5 min. The amplified exoY  gene was then cloned into the EcoRl and Not\ sites of 

pYES2/NTC. The exoU gene was amplified from PA 103 genomic DNA using the same 

PCR reaction mixture and conditions as described for the amplification of exoS (Section 

2.2.5) with the following changes: the primers ExoU-Fw and ExoU-Rev (see Table 3.1) 

were used and the PCR amplification cycle involved 35 cycles with an annealing 

temperature of 62°C and an extension time of 2 min. The amplified exoU  gene was 

then cloned into the BamHl and Notl sites of pYES2/NTC. The sequence of the exoY 

gene was confirmed by sequencing with the TTprom and CYCIR (Table 2.2) primers 

and the sequence of the exoU gene was confirmed by sequencing with the T7prom and 

CYCIR primers in addition to ExoU-Intl-4 primers (Table 3.1).

The SPT4 gene and the YGR064W ORF were amplified from 1 p,l INVScl genomic 

DNA (prepared as described in section 3.2.4) using 2.5 U of PfuTurbo® Hotstart DNA 

polymerase (Stratagene, La Jolla, CA. USA), 1 x cloned Pfu DNA polymerase reaction 

buffer (Stratagene), 25 mM of each dNTP, 1 pmole/p,l Spt4-Fw and 1 pmole/p.1 Spt4-

148



Rev primers or 1 pmole/|Lil YGR064W-Fw and 1 pmole/pl YGR064W-Rev primers 

(Table 3.1) in a total volume of 100 p.1, A touchdown PCR amplification programme 

was employed to decrease non-specific priming and comprised of: an initial denaturing 

cycle of 94°C for 5 min, 31 cycles of a denaturing step of 94°C for 30 s, an annealing 

step for 30 s and an extension step at 72°C for 30 s. In the first 6  cycles the annealing 

temperature was 60°C, over the next 9 cycles the annealing temperature dropped 1°C a 

cycle to 51°C and the final 16 cycles had an annealing temperature of 50°C. The 

amplification reaction was then completed with a final extension cycle of 72°C for 10 

min. After cloning SPT4 and YGR064W into the Sail and S a d  sites of pAD4M, their 

sequences were confirmed by sequencing with the ADHlprom primer (Table 3.1).

Table 3.1. Primers

PRIMER SEQUENCE (5’-3’)
ExoY “Fw CGGAATTCATGCGTATCGACGGTCATCGT
ExoY -Rev TCGCGGCCGCTCAGACCTTACGTTGGAAAAAGTC
ExoU-Fw CGGGATCCATGCATATCCAATCGTTGGGG
ExoU-Rev TCGCGGCCGCTCATGTGAACTCCTTATTCCGCCA
ExoU-Intl GCGTTTCAGCAGTCCCCAAGG
ExoU-Int2 GGCGTTCAAGACCCTTTC
ExoU-Int3 CGGTTGAGTGCTTACATTCC
ExoU-Int4 GCGAGCAAACCGTTGTGG
Spt4-Fw GCAGTCGACCGAACGAGGTACAGTGTAAGAGATGTC
Spt4-Rev TAGAGCTCCGGAAGGTTTTACTCAACTTGACTGC
YGR064W-FW GCAGTCGACCAGCTATACTATGATCTACGCTCAGCC
YGR064W Rev TAGAGCTCGGTCCTCGTAGTCCAATTTACGTG
ADHlprom CCTTCATTCACGCACACTACTC
U1 GATGTCCACGAGGTCTCT
D1 CGGTGTCGGTCTCGTAG
KanB CTGCAGCGAGGAGCCGTAAT
KanC3 CCTCGACATCATCTGCCCAGAT

3.2.6. Growth assay

INVScl and BY4741 were transformed with pYES2/NT-ExoY and pYES2/NT-ExoU 

using the Frozen-EZ Yeast Transformation II™ Kit (Zymo Research) as described in 

section 2.2.7. The effect of ExoY and ExoU on the growth of S. cerevisiae was then 

assessed on SD-uracil+glucose and SD-uracil+galactose/raffinose agar plates as 

described in section 2 .2 .1 0 .
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The effect of the ExoS GAP domain, ExoY or ExoU on S. cerevisiae deletion mutants 

identified in the Saccharom yces  deletion mutant library screen (see below) was 

determined by transforming the individual deletion mutants with the relevant 

p Y ES 2/NT plasmid and assessing their growth on SD~uracil+glucose+G418 and SD- 

uracil+galactose/raffinose+G418 agar plates as described in section 2.2.10.

To determine whether deletion of the SPT4 gene or the YGR064W ORF accounted for 

the resistance of the YGR064W S. cerevisiae deletion strain to the exoenzymes, this 

strain was transformed sequentially with pYES2/NT-ExoS and pAD4M-Spt4 or 

pAD4M-YGR064W using the Frozen-EZ Yeast Transformation II™ Kit (Zymo 

Research) as described in section 2.2.7. Growth was then assessed on SD-uracil- 

leucine+gIucose+G418 and SD-uracil-leucine+galactose/raffinose+G418 agar plates as 

described in section 2 .2 .1 0 .

3.2.7. S. cerevisiae deletion library screen

The Yeast Deletion Homozygous Diploid Pool (Invitrogen) was transformed with 

pYES2/NT-ExoS, -ExoY, or -ExoU using a scaled up protocol for the Frozen-EZ Yeast 

Transformation II™ Kit (Zymo Research). A 0.5 ml aliquot of the S, cerevisiae deletion 

library was defrosted and mixed with 4.5 ml YPD media containing 200 juig/ml G418 

and grown with shaking at 30°C for 4 h. The yeast were pelleted at 500 x g for 4 min at 

room temperature, washed in 5 ml EZl solution and resuspended in 0.5 ml EZ2 

solution. 50 \j l \ of the pYES2/NT~ExoS, -ExoY or ExoU plasmid and 5 ml EZ-3 

solution was mixed with the cells and the reaction was incubated for 2 h at 30°C with 

occasional mixing. A 100 p.1 aliquot of the transformation reaction was plated on a 20 

ml SD-uracil+glucose+G418 agar plate and the remaining yeast suspension was split 

between three 100 ml SD-uracil+galactose/raffinose+G418 agar plates. The plates were 

incubated at 30°C for up to 14 days.

3.2.8. Identification of S. cerevisiae deletion mutants

S. cerevisiae deletion mutants able to grow in the presence of ExoS, ExoY, or ExoU 

were re-streaked on SD-uracil+galactose/raffinose+G418 agar plates and grown at 30°C 

for 2 days. The genomic DNA from these mutants was purified from an overnight
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culture as described in section 3.2.4. The gene deletion cassette was amplified from 2 

fxl genomic DNA using 5 U Taq DNA polymerase, 1 x PCR buffer, 25 mM of each 

dNTP, 1 \xM U1 and 1 |uiM D1 primers (Table 3.1) in a total volume of 100 \x\. The 

mixture was subjected to one denaturing cycle of 5 min at 94°C and then 35 cycles 

using the following conditions: a 30 s denaturing step at 94°C, followed by a 45 s 

annealing step at 56°C and a 2 min extension step at 72°C, and completed by a final 

extension cycle of 10 min at 72°C. The amplified gene deletion cassette was purified 

by precipitating with polyethylene glycol (PEG) to remove the primers. The 100 p.1 

PCR amplification reaction was mixed with 100 pi 26% PEG 8000, 6.5 mM MgClg, 0.6 

M NaAc, pH 6.5 and incubated at room temperature for 10 min. The mixture was 

centrifuged at 16100 x g for 1 0  min and the pellet was washed twice in 1 0 0 % ethanol. 

The pellet was then air dried for 15 min and resuspended in 20 pi DDW. The unique 

sequence tags in the gene deletion cassette were sequenced using the KanB and KanC3 

primers (Table 3.1) and the identity of the mutant determined by searching the 

Saccharomyces Genome Deletion Project database for the unique sequence tags.
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3.3 RESULTS

3.3.1. Use of a galactose inducible expression system to assess the toxicity of ExoY 

and ExoU in S. cerevisiae

In order to utilise the S. cerevisiae deletion library to identify deletion mutants able to 

grow in the presence of ExoS, ExoY or ExoU, we needed to express the toxins using the 

galactose inducible expression plasmid pYES2/NT. We were unable to use the 

tetracycline inducible expression plasmid pCM252 because the selection for this 

plasmid is the ability it confers on yeast to be able to grow in the absence of tryptophan. 

The S. cerevisiae deletion library was constructed in the diploid strain BY4743 and this 

strain is not a tryptophan auxotroph, thus pCM252 transformants cannot be selected. 

Even though ExoS is highly toxic to yeast and the pYES2/NT-ExoS plasmid cannot be 

transformed into wild type yeast even under glucose repressing conditions (see Chapter 

2), this construct could be utilised in the library screen because S. cerevisiae mutants 

able to grow in the presence of ExoS were being screened for.

The exoY  gene was amplified from PAOl genomic DNA and ligated in-frame into 

pYES2/NTC. Sequence analysis revealed that there were four nucleotide changes 

between our exoY  gene and the database sequence. These changes occurred in exoY 

from a number of separate amplification reactions confirming that they were the result 

of allelic differences and not errors during amplification. Two of the nucleotide 

changes were silent (531 A-G and 1080 C-T). The other two nucleotide changes (472 

G-C and 958 G-C) resulted in substitution of a valine with a leucine at amino acid 

residues 158 and 320 respectively.

The exoU  gene was amplified from PA 103 and ligated in frame into pYES2/NTC. 

Sequence analysis of amplified exoU revealed that, compared to the database sequence, 

the cysteine at position 1340 is substituted with a thymidine. This substitution resulted 

in a change of the amino acid residue 447 from a proline to a leucine. The occurrence 

of this nucleotide change in exoU  from a number of different amplification reactions 

confirmed that it was an allelic change.
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A pre-requisite for the S. cerevisiae deletion screen was that the toxins ExoS, ExoY and 

ExoU exhibited toxicity to wild type yeast. We had already established that ExoS is 

extremely cytotoxic to S. cerevisiae (see Chapter 2) but we needed to determine 

whether ExoY and ExoU were also toxic to yeast.

When ExoY expression was induced in INVScl or BY4741 by growing the yeast 

transformed with pYES2/NT-ExoY on agar containing galactose and raffinose, yeast 

cell death occurred (Fig. 3.2, ExoY Gal/Raf). Growth of the yeast strains containing 

pYES2/NT-ExoY on glucose was also slightly inhibited compared to the yeast 

transformed with the empty pYES2/NT vector (Fig. 3.2, ExoY Glu). These results 

established that ExoY was cytotoxic to S. cerevisiae and that the small amount of leaky 

expression from the GALl promoter under glucose repressing conditions is sufficient to 

cause a small amount of cell death. The ability to transform yeast with the pYES2/NT- 

ExoY construct indicated that ExoY was not as toxic to S. cerevisiae as ExoS.

When INVScl or BY4741 containing pYES2/NT-ExoU were spotted onto solid media 

supplemented with galactose and raffinose they were unable to grow (Fig. 3.2, ExoU 

Gal/Raf). Growth of these strains containing pYES2/NT-ExoU was also inhibited to a 

lesser degree on glucose containing solid media (Fig. 3.2, ExoU Glu). Therefore, ExoU 

was toxic to S. cerevisiae although not as toxic as ExoS.
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Fig. 3.2. Toxicity of ExoY and ExoU in S. cerevisiae.

A diploid and haploid strain of S. cerevisiae (INVScl and BY47471 respectively) were 

transformed with the empty pYES2/NT vector (pYES2/NT), this vector encoding ExoY 

and this vector encoding ExoU. Growth of the transformants was assessed by spotting 

ten-fold serial dilutions of each culture onto repressing (Glu) agar or inducing (Gal/Raf) 

agar plates.
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3.3.2. Use of the S. cerevisiae deletion library to screen for ExoS resistant mutants

In order to identify any yeast deletion mutants able to grow in the presence of ExoS, the 

S. cerevisiae deletion library was transformed with pYES2/NT-ExoS and the 

transformants were plated onto galactose containing agar. Any colonies that appeared 

were selected and their genomic DNA isolated. Amplification of the KanMX cassette 

and sequencing of the unique tags was carried out to reveal the identity of the mutants 

(Fig. 3.1, B). At each stage in the identification process some of the mutants failed to 

be identified; for example, amplification of the KanMX cassette or sequencing of the 

unique tag did not always work. Table 3.2 summarises the information on the colonies 

that grew after transformation with pYES2/NT-ExoS. Information on the number of 

days after which the colony appeared, the success of subsequent growth of the colony 

and the success of the amplification of the KanMX  cassette and sequencing of the 

unique tag is listed. For deletion mutants that were successfully identified, the deleted 

ORF and the gene, if known, is recorded.

The S. cerevisiae deletion library screen for mutants able to grow in the presence of 

ExoS identified 18 possible candidate mutants. To test whether these deletion mutants 

were really resistant to the cytotoxic effects of ExoS, the individual deletion mutants 

were transformed with pYES2/NT-ExoS to assess their growth. The only deletion 

mutant strain that we were able to transform with pYES2/NT-ExoS was the strain with 

the YGR064W ORF deleted (see section 3.3.5 and Fig. 3.6). All the other deletion 

mutants failed to be transformed with pYES2/NT-ExoS, suggesting that they were not 

resistant to the effects of the ADPRT domain of ExoS even when its expression was 

repressed by glucose. To determine whether these deletion mutants were resistant to the 

GAP activity of ExoS, we transformed them with pYES2/NT-ExoS_ADPRTM and 

grew them on galactose containing media. All the deletion mutants, except the mutant 

with YGR064W deleted (see section 3.3,5), exhibited the same sensitivity to 

pYES2/NT-ExoS_ADPRTM when induced by galactose as the wild type BY4741 strain 

did (Fig. 3.3, representative results).

The library coverage for a screen such as this can be calculated by counting the number 

of colonies from a proportion of the transformation reaction that grow on non-inducing, 

glucose containing media. We previously demonstrated that ExoS is so cytotoxic to
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yeast that it is impossible to grow S. cerevisiae containing exoS under the control of the 

GALl promoter on glucose. Therefore it was not possible to calculate the coverage of 

the library for this screen.

Table 3.2. S, cerevisiae m utants identified in ExoS screen.

Day Growth Amplification Sequencing ORF Gene
1 3 Y Y Y YNL285W UNKNOWN
2 3 Y Y Y YML131W UNKNOWN
3 3 Y N
4 3 Y N
5 3 Y N
6 3 Y Y N
7 3 Y Y Y YMR224C M R E ll
8 3 Y Y Y YKR078W UNKNOWN
9 3 Y N

1 0 3 Y N
1 1 3 Y Y N
1 2 3 Y Y Y YDL206W UNKNOWN
13 3 Y Y Y YOL058W ARGl
14 3 Y N
15 3 Y N
16 3 Y Y Y YGR057C LST7
17 3 Y Y Y YOR123C LEOI
18 3 Y Y N
19 3 Y Y Y YJL058C BIT!
2 0 3 Y Y Y YGL049C TIF4632
2 1 3 Y Y Y YGR064W UNKNOWN
2 2 5 Y Y Y YPL145C KESl
23 5 Y Y Y YKL106W AATl
24 5 Y Y Y Y N L lllC CYB5
25 5 Y N
26 5 Y Y Y YHR126C UNKNOWN
27 5 Y N
28 5 Y Y Y YLR363C NMD4
29 1 0 Y Y Y YGR210C UNKNOWN
30 1 0 Y Y Y YOL124C TR M ll
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Fig. 3.3. Toxicity of the GAP domain of ExoS in a num ber of S. cerevisiae deletion 

mutants.

Wild type BY4741 and BY47441 with the YKR078W, YDL206W, YPL145C (KESI),  

or YNLl 1 iC (CYB5) ORFs deleted were transformed with the empty p Y ES 2/NT vector 

(pYES2/NT) and this vector encoding the ADPRT mutant of ExoS. Growth of the 

transformants was assessed by spotting ten-fold serial dilutions of each culture onto 

repressing (Glu) agar or inducing (Gal/Raf) agar plates.
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3.3,3. Use of the S. cerevisiae deletion library to screen for ExoY resistant mutants

The S. cerevisiae deletion library screen for mutants resistant to ExoY was carried out 

in an identical way to the ExoS screen. The results for this screen are summarised in 

Table 3.3. From the initial 30 colonies that grew, the identity of 21 of them was 

determined. Mutants with deletions in the GAL3 or GAL4 genes accounted for 7 of the 

identified mutants. It is likely that these mutants that have a non-functional galactose 

system were able to grow because they were not capable of using the galactose to 

induce expression of ExoY. The mutant with YGR064W deleted, which was also 

identified in the ExoS library screen, appeared 4 times in this screen. YGR064W 

overlaps a gene on the opposite DNA strand called SPT4 and the mutant with this gene 

deleted was also identified twice in this screen. The final 8  deletion mutants identified 

were unique.

Individual strains of the 8  unique deletion mutants and the YGR064W deletion mutant 

were transformed with pYES2/NT-ExoY and their growth assessed when ExoY was 

induced by galactose. Again, it was only the YGR064W deletion mutant that was 

resistant to the effects of ExoY (see section 3.3.5 and Fig. 3.6) and the other deletion 

mutants were as sensitive to ExoY as wild type S. cerevisiae (Fig. 3.4).

An aliquot of 100 \i\ (out of a total of 5550 pi) of the transformation reaction of the S. 

cerevisiae deletion library transformed with pYES2/NT-ExoY was plated onto glucose 

containing agar. After 4 days (which is when the last colony from the library screen 

was picked) there were 234 colonies growing on the non-inducing plate. This 

corresponds to 12753 colonies being plated onto the library screen plates. There were 

4741 individual clones in the S. cerevisiae deletion library. Therefore, this screen 

achieved a 2.69x coverage of the library. The recovery of a number of mutants (e.g. 

GAL3, GAL4, YGR064W and SPT4) more than once in this screen also confirms a good 

coverage.
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Table 3.3. S. cerevisiae mutants identified in ExoY screen.

Day Growth Amplification Sequencing ORF Gene
1 3 Y Y Y YGL096W TOS8
2 3 Y Y N
3 3 Y Y Y YEL020C UNKNOWN
4 3 Y Y Y YCROlOC ADY2/AT01
5 3 Y Y N
6 3 Y Y Y YNL323W BRE3/LEM3/

R0S3
7 3 Y Y Y YKL162C UNKNOWN
8 3 Y N
9 4 Y Y N

1 0 4 Y Y N
1 1 4 Y Y Y YPL248C GAL4
1 2 4 Y Y Y YHR127W UNKNOWN
13 4 Y Y Y YGR064W UNKNOWN
14 4 Y Y N
15 4 Y Y Y YDR009W GAL3
16 4 Y Y Y YDR009W GAL3
17 4 Y Y Y YPL248C GALA
18 4 Y Y Y YDR004W RAD57
19 4 Y Y N
2 0 4 Y Y Y YGR063C SPT4
2 1 4 N
2 2 4 Y Y Y YGR063C SPT4
23 4 Y Y Y YKLOOIC MET14
24 4 Y Y Y YGR064W UNKNOWN
25 4 Y Y Y YDR009W GAL3
26 4 Y Y Y YDR009W GAL3
27 4 N
28 4 Y Y Y YGR064W UNKNOWN
29 4 Y Y Y YDR009W GAL3
30 4 Y Y Y YGR064W UNKNOWN
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Fig. 3.4. Toxicity of the ExoY in a num ber of S. cerevisiae deletion mutants.

Wild type BY4741 and BY47441 with the YGL096W {TOS8), YEL020C, YKLOOIC 

(MET/4), YDR004W {RAD57\ YHR127W, YKL162C, YCROlOC {ADY2IAT01) or 

YNL323W (BRE3ILEM3IROS3) ORFs deleted were transformed with the empty 

pYES2/NT vector (pYES2/NT) and this vector encoding ExoY. Growth of the 

transformants was assessed by spotting ten-fold serial dilutions of each culture onto 

repressing (Glu) agar or inducing (Gal/Raf) agar plates.
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3.3.4. Use of the S, cerevisiae deletion library to screen for ExoU resistant mutants

Transform ing the S, cerevisiae deletion library with pYES2/NT-ExoU yielded 10 

colonies that were able to grow on the initial galactose plate. Of these 10 colonies, 8  

were identified (Table 3.4, 1-10). Two of the mutants had the GAL3 gene deleted and 

the other 6  represent unique deletion mutants. The library coverage for this screen was 

not very high. Only 65 colonies grew on the non-inducing glucose plate from 100 pi of 

transformation reaction, which correlates with a coverage of only 0.75x. In an attempt 

to increase the coverage, we repeated the library screen and achieved a coverage of 

1.03x. This second library screen identified a further 5 colonies able to grow on 

galactose, of which 3 were identified (Table 3.4, A-E). Two of the mutants had a 

deletion in the GAL3 gene and one had a novel deletion.

The 7 deletion mutants identified, that did not have the GAL3 gene deleted, were 

examined individually to determine whether they were resistant to the cytotoxic effects 

of ExoU. When ExoU was induced in the deletion mutants by growth on media 

containing galactose, the cell death observed was the same level as that seen in the wild 

type S. cerevisiae (Fig. 3.5). Therefore none of the mutants identified in the screen are 

resistant to ExoU except for the GAL3 mutant that is unable to synthesise ExoU.

Table 3.4. 5. cerevisiae m utants identified in ExoU screen.

Day Growth Amplification Sequencing ORF Gene
1 4 Y Y Y YOR088W YVCl
2 4 Y Y Y YPR062W FCYl
3 4 Y Y Y YGL096W T0S8
4 7 Y Y Y YJL051W UNKNOWN
5 7 Y Y Y YGR182C UNKNOWN
6 8 Y Y Y YDR009W GAL3
7 8 Y Y Y YDR009W GAL3
8 8 Y Y Y YLR461W PAU4
9 1 1 N

1 0 1 1 N
A 7 Y Y N
B 7 Y Y Y YBR162W-A YSY6
C 14 Y Y Y YDR009W GAL3
D 14 Y N
E 14 Y Y Y YDR009W GAL3
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Fig. 3.5. Toxicity of the ExoU in a number of 5. cerevisiae deletion mutants.

Wild type BY4741 and BY47441 with the YGL096W (TOS8), YLR461W (PAU4), 

YJL051W, YOR088W (Y V Cl), YPR062W (FCYl), YGR182C or YBR162W-A 

(YSY6) ORFs deleted were transformed with the empty pYES2/NT vector (pYES2/NT) 

and this vector encoding ExoU. Growth of the transformants was assessed by spotting 

ten-fold serial dilutions of each culture onto repressing (Glu) agar or inducing (Gal/Raf) 

agar plates.
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3.3.5. The S. cerevisiae SPT4  deletion m utan t is resistant to the effects of ExoS, 

ExoY and ExoU

The S. cerevisiae deletion library screens for mutants able to grow in the presence of 

ExoS and ExoY both identified a strain with a deletion in the YGR064W ORF. The 

SPT4 deletion mutant was also identified in the ExoY screen. YGR064W is a putative 

ORF that completely overlaps SPT4 on the opposite DNA strand therefore deleting 

YGR064W would also cause SPT4 to be deleted.

The screens suggested that deletion of the YGR064W/5'F74 locus rendered S. cerevisiae 

resistant to the toxic affects of ExoS and ExoY. This was confirmed by transforming 

the YGR064W deletion mutant with pYES2/NT-ExoS or pYES2/NT-ExoY and 

growing the transformants on media containing galactose. The YGR064W mutant 

containing pYES2/NT-ExoS or pYES2/NT-ExoY grew equally well on glucose or 

galactose and raffinose containing agar and as well as the strain containing the empty 

pYES2/NT vector (Fig. 3.6, ExoS and ExoY).

The ExoU library screen did not identify the YGR064W/SF74 locus as being important 

in resisting the cytotoxicity of ExoU but the low library coverage of this screen may 

have caused it to be missed. We therefore examined the consequence of ExoU 

expression in the YGR064W deletion mutant. The YGR064W mutant was transformed 

with pYES2/NT-ExoU and varying dilutions were spotted on agar containing either 

glucose or galactose and raffinose. The YGR064W mutant containing pYES2/NT- 

ExoU grew equally well on glucose or galactose and raffinose and as well as the strain 

containing the empty pYES2/NT vector (Fig. 3.6, ExoU). Thus, deletion of the 

YGR064W/5'PT4 locus also renders S. cerevisiae resistant to ExoU.

In order to determine whether the deletion of the YGR064W putative ORF or SPT4 was 

responsible for conferring resistance to ExoS, ExoY and ExoU, we attempted to 

complement the YGR064W deletion strain with constitutively expressed YGR064W or 

Spt4 to see which restored the ExoS sensitive phenotype to the strain. The YGR064W 

deletion mutant was transformed with pYES2/NT-ExoS and either the empty pAD4M 

vector or this vector expressing YGR064W or Spt4 constitutively from the AD H I 

promoter. Growth was then assessed on agar containing galactose. Complementing the
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strain with YGR064W had no effect on yeast cell viability because the cells were still 

able to grow as well on galactose as yeast just containing pYES2/NT-ExoS (Fig. 3.7). 

However, when the YGR064W deletion mutant containing pYES2/NT-ExoS was 

complemented with constitutively expressed Spt4, some cell death did result during 

growth on galactose (Fig. 3.7). The ExoS sensitivity of S, cerevisiae was not fully 

restored to the YGR064W deletion mutant by Spt4 expression, but it was significantly 

more sensitive than the strain transformed with just the pYES2/NT-ExoS plasmid.
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Fig. 3.6. Toxicity of ExoS, ExoU and ExoY in the YGR064W S. cerevisiae deletion 

mutant.

BY4741 with the YGR064W ORF deleted was transformed with the empty pYES2/NT 

vector (pYES2/NT) and this vector encoding ExoS, ExoU or ExoY. Growth of the 

transformants was assessed by spotting ten-fold serial dilutions of each culture onto 

repressing (Glu) agar or inducing (Gal/Raf) agar plates.
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Fig. 3.7. Complementation of the toxin resistant phenotype in the YGR064W 

deletion mutant with Spt4 and YGR064W.

BY4741 with the YGR064W ORF deleted was transformed with only pYES2/NT-ExoS 

or pYES2/NT-ExoS and pAD4M-Spt4 or pAD4M-YGR064W. Growth of the 

transformants was assessed by spotting ten-fold serial dilutions of each culture onto 

repressing (Glu) agar or inducing (Gal/Raf) agar plates.
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3.4. DISCUSSION

In this chapter we have demonstrated for the first time that ExoY is toxic to S. 

cerevisiae and confirmed the results of others that yeast is also sensitive to ExoU. We 

carried out a S. cerevisiae deletion library screen for mutants that were resistant to the 

toxic effects of ExoS, ExoY or ExoU and isolated a number of candidates. 

Unfortunately re-testing the possible resistant mutants revealed that only yeast with 

deletions in genes required for toxin expression from the GAL] promoter, gal3, gal4, 

spt4 and YGR064W  deletion mutants (see below), were truly resistant. The other 

mutants that we identified in our initial screen probably arose by mutation of the toxin 

gene itself and therefore were not resistant when individually re-transformed with the 

toxin expressing plasmid.

Previous research has revealed that S, cerevisiae is sensitive to the pseudomonal TTS 

toxins ExoT and ExoU and we showed in Chapter 2 that ExoS is also extremely toxic to 

yeast [413, 437, 439]. We now demonstrate that the fourth P. aeruginosa TTS toxin, 

ExoY, is also toxic to S. cerevisiae. Like ExoU, induction of ExoY expression from the 

GALl promoter by galactose leads to an inhibition in yeast cell growth. The ability of 

ExoY to be transformed and expressed in S. cerevisiae from the galactose inducible 

promoter system indicates that ExoY is not as toxic to yeast as ExoS. ExoY is an 

adenylate cyclase that is known to disrupt the actin cytoskeleton and cause 

morphological changes in mammalian cells [465, 473]. Thus, as suggested for YopE 

[484], ExoY may disrupt the actin cytoskeleton in yeast and arrest cell growth by 

triggering a morphogenesis checkpoint.

Our S. cerevisiae screen for mutants resistant to the toxic effects of ExoY and ExoU 

identified the gal3 and gal4 deletion mutants. Gal4 is a transcriptional activator of the 

GALl promoter and in the absence of galactose Gal4 is bound and repressed by GalBO 

[512]. In the presence of galactose, Gal3 binds to GalSO, thus freeing Gal4 to initiate 

transcription from the GALl promoter [512]. Therefore, deletion of either the GAL3 or 

GAL4 genes would abolish the ability of galactose to induce expression of ExoY or 

ExoU from the GALl promoter. Neither gal3 or gal4 deletion mutants were identified 

in the ExoS deletion library screen, which strengthens our observation that ExoS is so
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cytotoxic that galactose induction is not required for enough of the toxin to be expressed 

to elicit cytotoxicity.

In addition to the S. cerevisiae mutants with GAL3 or GAL4 deleted, yeast strains that 

had the SPT4 gene deleted were also resistant to the toxic effects of ExoS, ExoY and 

ExoU. The SPT4 locus was deleted in both the spt4 and YGR064W mutant strains as 

YGR064W overlaps SPT4 on the opposite DNA strand. We confirmed that it was the 

loss of the SPT4 gene and not the YGR064W dubious ORF that was responsible for the 

toxin resistance by complementation analysis. Spt4 forms a complex with Spt5, which 

functions with Spt6  to mediate both activation and inhibition of transcription elongation 

by RNA polymerase II [513]. Spt4, Spt5 and Spt6  are thought to modulate transcription 

elongation by altering chromatin assembly or stability. The Spt4/Spt5 complex has also 

been shown to play a role in pre-mRNA processing, homologous DNA recombination, 

transcription-coupled DNA repair, kinetochore function and gene silencing [514-516]. 

The resistance of a yeast strain with a deletion in a RNA polymerase II transcription 

elongation factor gene to the toxic effects of ExoS, ExoY, and ExoU, suggests that these 

toxins might not be transcribed in this mutant. Indeed, it has been demonstrated that 

Spt4 is required for proper transcription of long or GC-rich DNA sequences [517]. For 

example, the bacterial lacZ  ORF (length: 3 kb, GC content: 56%), the S. cerevisiae 

LYS2 gene (length: 3.5 kb, GC content: 40%) and the S. cerevisiae Y ATI gene (length; 2 

kb, GC content: 58%) cannot be transcribed in a spt4 S. cerevisiae mutant when driven 

from the GALl promoter. In contrast, a shorter gene with an average S. cerevisiae GC 

content, the PH 05  gene (length: 1.5 kb, GC content: 40%), can be transcribed in a spt4 

S. cerevisiae mutant when driven from the GALl promoter. Although the exoS, exoY  

and exoU genes are not long genes, 1.4 kb, 1,1 kb and 2.1 kb respectively, they are GC 

rich. The average GC content of a S. cerevisiae gene is 40%, whereas that of exoS, 

exoY  and exoJJ is 64.1%, 59.0% and 62.8% respectively. Therefore, the resistance of 

the spî4  and YGR064W mutant strains to ExoS, ExoY and ExoU is probably a 

consequence of the lack of expression of the toxins in these yeast. It is interesting to 

note that in the spt4 mutant strain, transcription of these pseudomonal toxins must be 

completely abrogated as we have previously demonstrated how toxic ExoS is even 

when expressed at very low levels. Spt5 and Spt6  act with Spt4 to promote 

transcription elongation but both SPT5 and SPT6 are essential genes and therefore were 

not present in our library screen.
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Apart from yeast strains with deletions in genes required for toxin expression from the 

G ALl promoter, all the other mutants that we identified in our initial screens were 

shown not to be resistant to ExoS, ExoY or ExoU when re-tested. We propose that the 

toxin gene was mutated in these initial isolates and is therefore non-toxic. Yeast 

transformation is known to be a slightly mutagenic process and this combined with the 

strong selection pressure on inactive toxin mutants would result in the false positives. 

There may be a number of reasons why our screen failed to identify any biologically 

relevant proteins that were required for pseudomonal TTS toxin cytotoxicity. With 

respect to identifying the eukaryotic cofactors for ExoY and ExoU, this screen would 

only be effective if the cofactor was a protein that was non-essential and non-redundant. 

If the cofactors were non-proteineceous, they would not be identified in this screen 

unless the formation of the non-proteineceous component required a specific, non- 

essential protein for its manufacture. Although the ExoY and ExoU cofactors are 

thought to be proteins or contain a protein component [447, 465], this may not be the 

case. The S. cerevisiae library that we screened only has strains containing deletions in 

non-essential genes, because by definition a homozygous diploid knockout of an 

essential gene would be non-viable. Therefore, if the eukaryotic cofactors for ExoY or 

ExoU were an essential gene, they would not be identified in our screen. Also, if more 

than one protein could act as a cofactor for ExoY or ExoU, they would not be identified, 

as each strain in the library only has a single gene deleted. This point is illustrated by 

the eukaryotic cofactor required for the ADPRT activity of ExoS. The ADPRT domain 

of ExoS requires a 14-3-3 protein for activity and in humans it has been demonstrated 

that at least 5 out of the 7 isoforms of the 14-3-3 proteins can activate ExoS [386, 387]. 

There are two genes in S. cerevisiae that encode 14-3-3 proteins, BM Hl and BMH2 and 

deletion of either of these genes is not lethal, although deletion of both genes is [518]. 

Therefore, if either BM Hl or BMH2 were deleted, the other gene would still be able to 

produce a 14-3-3 protein to activate the ADPRT activity of ExoS.

The screen that we carried out was unlikely to identify an enzymatic target of any of the 

pseudomonal TTS toxins because if the toxin caused yeast cell death by inhibiting the 

activity of its target, this target is likely to be an essential protein. However, proteins 

required for the activity of the toxin might have been identified. For example, if the 

toxin needed to be localised in order to exert its cytotoxic action, deletion of a yeast 

gene that was required for toxin localisation would render the deletion strain resistant to
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the toxin. It has been shown that although ExoS is specifically localised to a 

perinuclear membrane location, this targeting is not required for its cytotoxic action 

[368]. Thus, if yeast proteins are involved in ExoS targeting they would not be 

identified in our screen. Almost nothing is known about the localisation of ExoY and 

ExoU and it is not known whether they require specific targeting or if eukaryotic 

proteins are required for this. However, the failure of our screen to identify any proteins 

required for ExoY or ExoU action suggests that if they do require specific localisation 

to exert their cytotoxic effect, a non-essential, non-redundant yeast gene is not required 

for this. The screen for mutants resistant to the effects of ExoS-induced toxicity is 

further complicated by the presence of the two catalytic domains in this toxin. As we 

previously demonstrated in Chapter 2, both the GAP domain and ADPRT domains of 

ExoS are toxic to S. cerevisiae. Therefore, for a yeast mutant to be resistant to ExoS 

cytotoxicity it must have a protein deleted that is required for both the action of the 

GAP and ADPRT domain. It has been shown that ExoY is able to cause morphological 

changes even when its adenylate cyclase activity has been abolished [473], thus it might 

also have more than one enzymatic domain, which would complicate our screen.

To summarise, in this chapter we have screened a S. cerevisiae homozygous diploid 

deletion library for strains resistant to the cytotoxic effects of ExoS, ExoY and ExoU. 

The only yeast deletion mutants we identified were resistant to galactose-induced 

expression because they lacked genes required for transcription of the toxin genes from 

the G A Ll promoter. Although we did not identify any toxin targets or accessory 

factors, the identification of the Spt4 mutant strain validates this screen for identifying 

deletion mutants able to resist the cytotoxic effects of pseudomonal TTS toxins. It 

remains a possibility that we may have missed some deletion mutants due to incomplete 

coverage, but our inability to identify any deletion strains able to resist the cytotoxic 

effects of these pseudomonal TTS toxins suggests that a non-essential, non-redundant 

eukaryotic protein is not required for their activity.
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CHAPTER 4: STUDYING THE MODIFICATION, LOCALISATION 

AND TOXICITY OF EXOENZYME U IN A MAMMALIAN CELL 

MODEL.

4.1. INTRODUCTION

As discussed in the general introduction, the Pseudomonas aeruginosa TTS toxin ExoU 

shows homology to the phospholipase A family of enzymes and is able to hydrolyse a 

broad range of substrates including neutral lipids, phospholipids and lysophospholipids 

[4 3 9 , 440, 447, 448]. ExoU is cytotoxic to a variety of cell lines and is associated with 

increased virulence in both mammalian infection models and humans [430, 431, 435, 

4 3 7 , 519]. The cytotoxic action of ExoU is dependent on its lipase activity, although it 

is unclear exactly how the ability of ExoU to hydrolyse lipids leads to cell death. 

Human PLA^s play a role in both oncotic and apoptotic cell death [460] and it appears 

that ExoU-induced cell death exhibits features of necrosis (or oncosis) as opposed to 

apoptosis [434, 441]. It may be that ExoU causes cell death simply by punching holes 

in the plasma membrane of host cells. Alternatively, ExoU may target intracellulai 

membranes leading to cell death as a consequence of the destruction of intracellular 

organelles. The release of free fatty acids by ExoU phospholipase activity may also 

trigger cell death.

In an attempt to further define how ExoU induces eukaryotic cell death it would be 

useful to know the sub-cellular localisation of this toxin. ExoU is injected into the 

cytosol of the host cell by the TTS needle and for it to hydrolyse phospholipids it must 

first be targeted to them. There are no regions within ExoU that are homologous to 

known membrane interacting domains, so it is unclear how this targeting occurs. 

Human cPLA^ is targeted to membranes in a calcium-dependent manner via its N- 

terminal C2 domain [520, 521]. When the C2 Ca'^-dependent lipid-binding domain is 

deleted, cPLAj is no longer able to associate with membranes and hydrolyse liposomal 

substrates. However, cPLA^ lacking its C2 domain is still able to hydrolyse monomeric 

phospholipids. This demonstrates that the membrane targeting and catalytic domains of 

cPLAa are separate but that membrane targeting is required for phospholipase activity 

within the cell [520]. Patatin lacks a C2 membrane-binding domain but may be targeted 

to membranes via a hydrophobic region of 50 amino acid lesidues at its N-tei minus
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[449], ExoU contains neither a C2 Ca^^-dependent lipid-binding domain nor an obvious 

hydrophobic motif, suggesting that it is targeted to membranes by a different 

mechanism to cPLAjOr patatin.

In addition to the lack of knowledge regarding where and how ExoU is targeted, it is 

also unclear how ExoU is activated. In an attempt to predict how ExoU is activated, it 

may be useful to consider how other lipases are activated. Human cPLAj requires three 

levels of activation; phosphorylation, calcium ions and interfacial activation. MAPK 

phosphorylates serine 505 of cPLA^, which may be involved in maintaining the C2  and 

catalytic domains in the optimal orientation for catalysis [522]. Calcium ions are then 

required for targeting cPLAg to the membrane via the C2 domain as described above 

[520]. Finally, interfacial activation is required to induce a conformational change of a 

flexible lid domain that allows the catalytic sites of cPLAg to access the phospholipid 

substrates [446]. In addition to cPLA^, calcium ions are also cofactors for sPLA^ and 

ATP is known to increase iPLA2 activity [523]. The mechanism of patatin activation is 

unknown but involves translocation of the enzyme from storage vacuoles to the cytosol. 

Patatin lacks both the C2 domain and flexible lid domain of cPLAg and as a 

consequence does not require calcium ions or interfacial activation [524]. No 

proteinaceous cofactors have been reported for mammalian phospholipases, but the 

pancreatic triglyceride lipase (PTL) requires a small protein cofactor, colipase, for 

efficient hydrolysis [525, 526]. Colipase binds to the C-terminal colipase-binding site 

of PTL and allows a lid domain to open, such that lipid substrates are accessible to the 

N-terminal catalytic domain containing the serine-aspartate-histidine catalytic triad. In 

contrast to cPLAg and iPLA^, ExoU is not activated by calcium but like PTL, does 

require a eukaryotic cofactor for activity [439]. As discussed in the general 

introduction, the ExoU eukaryotic cofactor is unknown but is thought to be a large 

protein or protein complex that is required during hydrolysis [447]. The requirement 

for the cofactor during hydrolysis suggests that it is not required for modification or pre­

activation of ExoU, unlike the phosphorylation of cPLA^ by MAPK, but is required as a 

catalytic cofactor. This however does not preclude additional modifications, such as 

phosphorylation, being required for ExoU activation. Also, although ExoU lacks a 

domain homologous to the flexible lid domain of cPLA^, it is possible that inteifacia! 

activation is also required for ExoU activity.
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Another unknown regarding ExoU is the requirement for the C-terminus of this toxin 

for phospholipase activity, ExoU is a 687 amino acid protein with the phospholipase 

homology domain residing in the N-terminal half between amino acid residues 107 and 

357 [439], A number of studies have demonstrated that regions that lie C-terminal to 

the phospholipase homology domain are also required for ExoU toxicity in mammalian 

and yeast cells [431, 436, 438-440], For example, deletion of just the final 20 amino 

acids is sufficient to abrogate ExoU toxicity in CHO cells [440], Also, insertion of 

random five amino acid stretches into ExoU between residues 601 and 620 results in the 

loss of ExoU-induced cytotoxicity in S, cerevisiae [438], These studies show that C- 

terminal regions that reside a long way away from the phospholipase homology domain 

are essential for ExoU cytotoxicty, but the reason for their requirement is unknown. It 

has been postulated that the C-terminus of ExoU might be required for targeting the 

toxin to its phospholipid substrates or for binding to the eukaryotic cofactor [449], but 

as yet there is no evidence supporting these hypotheses.

The work described in this chapter explains how we studied the targeting of ExoU in a 

mammalian cell line and determined the regions of the toxin required for its 

localisation. This chapter also describes how we attempted to determine how ExoU was 

activated and the role that the C-terminus plays in this. In Chapter 3, we tried to 

identify the ExoU eukaryotic cofactor by screening a S. cerevisiae deletion library for 

yeast mutants able to grow in the presence of ExoU. Unfortunately this approach failed, 

so this work details another approach we used to try and identify the cofactor of ExoU, 

We found that ExoU is localised to the plasma membrane and undergoes modification 

at this site by the addition of two ubiquitin molecules, A region of 5 amino acids at 

position 679-683 near the C-terminus of the ExoU protein is required for both 

membrane localisation and ubiquitinylation. Site-directed mutagenesis identified a 

tryptophan at position 681 as crucial for this modification. We found that the same 

region between residues 679-683 was also required for ExoU cell toxicity as well as in- 

vitro phospholipase activity. Our attempts at identifying the eukaryotic cofactor were 

again unsuccessful but we did discover that the activating factor separates with the 

membrane-enriched particulate fraction of mammalian cells. Finally, we showed that 

ExoU binds specifically to particular phospholipids but the C-terminal residues shown 

to be required for membrane localisation did not determine this binding specificity.
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4.2. METHODS

4.2.1. Materials

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and Griener Bio- 

One (Kremsmuenster, Austria) supplied the plasticware unless otherwise stated. The 

tissue culture medium and supplements were obtained from Invitrogen (Carlsbad, CA, 

USA). The primers were synthesized by Operon Biotechnologies (Huntsville, AL, 

USA) and DNA sequencing was performed by the Dundee University Sequencing 

Service (Dundee, UK).

4.2.2. HeLa cells

The Human Negroid cervix epitheloid carcinoma cells (European Collection of Cell 

Cultures), referred to hereafter as HeLa cells, were grown in Dulbecco’s Modified 

Eagle’s Medium supplemented with 10% Foetal Bovine Serum, 2 mM L-Glutamine, 10 

U/ml Penicillin and 10 p,g/ml Streptomycin. Cells were incubated at 37°C with 5% COj 

in a humid atmosphere and all manipulations were carried out in a sterile laminar flow 

hood.

4.2.3. HeLa cell passage

The HeLa cells were routinely grown in 75-cm^ sterile tissue culture flasks and split 

1:10 once they had reached 70-80% confluency. When the HeLa cells were ready to 

split, they were washed in 10 ml Hanks’ Balanced Salt Solution lacking MgCl2 and 

CaClg before being detached from the surface of the flask with 1 ml pre-warmed 

Trypsin-EDTA for approximately 1 min at 37°C. Detachment was assisted by tapping 

the flask and confirmed by phase-contrast microscopy. Pre-warmed HeLa medium was 

added to the cells to terminate the action of the trypsin and a tenth of the trypsinised 

cells were transferred to a new 75-cm^ tissue culture flask containing pre-warmed HeLa 

medium.
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4.2.4. HeLa cell cryopreservation

For long-term storage of HeLa cells, a 90% confluent 75-cm^ tissue culture flask of 

cells were trypsinised (as described in section 4.2.3) and the cells were scraped up and 

centrifuged at 200 x g for 5 min at 4°C. The cell pellet was resuspended in 1 ml Foetal 

Bovine Serum supplemented with 10% DMSO and transferred to a 1.5 ml cryovial 

(Starstedt, Numbrecht, Germany), The cells were cooled at approximately 1°C a 

minute in a freezing container (Nalgene Nunc, Abingdon, UK) containing isopropanol 

to a final temperature of -80°C. The HeLa cells were kept at -80°C for 24 hours before 

being transferred to liquid nitrogen for long-term storage.

4.2.5. HeLa cell thawing and replating

HeLa cells stored in liquid nitrogen were partially thawed at 37°C then allowed to fully 

thaw on ice. The cells were added to 7 ml pre-warmed HeLa media in a 25-cm^ tissue 

culture flask. Once the cells in the 25-cm^ tissue culture flask had reached 90% 

confluency, they were trypsined and all transferred to a 75-cm^ tissue culture flask.

4.2.6. Pseudomonas aeruginosa

The P. aeruginosa strain used in this study was PAl03AexoUhexoT::Tc, referred to 

hereafter as PA 103 AT AU (kindly supplied by Prof. D. Frank, Medical College of 

Wisconsin, USA). PA 103 is a cytotoxic lung isolate that produces significant amounts 

of ExoT and ExoU but fails to express ExoY and does not possess exoS. The 

PA 103 AT AU strain therefore does not express any known TTS exoenzymes.

4.2.7. Electroporation of P. aeruginosa

PA 103 AT AU was electroporated with the pUCP19-based vectors using a procedure 

adapted from the work of Diver et. al. [527]. To prepare the electrocompetent cells, 5 

ml of Luria Bertani broth (LB; Invitrogen) was inoculated with either 30 (il glycerol 

stock of PA 103 AT AU or a colony from a fresh plate and grown overnight at 37°C with 

shaking at 250 rpm. 0.2 ml of the overnight culture was used to inoculate 20 ml of fresh 

LB broth and was incubated at 37°C with shaking at 250 rpm until the ODgoo = 0.6-0.8.
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The bacteria were centrifuged at 10000 x g for 10 min at 4°C and the pellet was washed 

twice with 10 ml ice-cold SMH buffer (300 mM sucrose, 1 mM MgCl^, 1 mM 4-(2- 

hydroxyethyl)-1 -piperazineethanesulfonic acid (HEPES), pH 7.0). The bacterial pellet 

was resuspended in 1 ml ice-cold SMH buffer and the electrocompetent PA 103 AT AU 

were frozen at -80'^C in 100 pi aliquots.

For transformation, the electrocompetent PA103ATAU were thawed on ice and mixed 

with approximately 0.5 pg of plasmid DNA. The mixture was incubated on ice for 1 

min before being transferred to a 0.2 cm electroporation cuvette (Invitrogen). 

Electroporation was carried out using the GenePulser Xcell™ (Bio-Rad Laboratories, 

Hercules, CA) set to the following parameters: 800 Q, 25 pF and 1.6 kV. Immediately 

after electroporation, 900 pi of ice-cold SOC medium (Invitrogen) was added to the 

bacteria. The cells were incubated on ice for 30 min and then at 37°C for 30 min. 200 

pi of transformants were plated out onto LB agar containing 300 pg/ml carbenicillin.

4.2.8. Construction of plasmids

The mammalian expression vector pCMV-Tag2 (Stratagene, La Jolla, CA, USA) was 

used to constitutively express N-terminally FLAG-tagged ExoU and mutant ExoU 

proteins in transfected HeLa cells. The Escherichia-Pseudomonas shuttle vector 

pUCP19 was used to constitutively express ExoU or mutant ExoU and the ExoU 

chaperone, SpcU in PA 103 AT AU. The mammalian expression vector pEGFP-C was 

used to constitutively express a C-terminally enhanced green fluorescent protein 

(EGFP)-tagged ExoU fragment in transfected HeLa cells. The pET-100/D plasmid 

(Invitrogen) was used to express His-tagged ExoU and mutant ExoU in E. coli upon 

induction with isopropyl-beta-D-thiogalactopyranoside (IPTG).

The plasmids were constructed as described in Table 4,1. Site-directed mutagenesis 

was performed as described in Section 2.2.6. with the extension time in the 

amplification reaction calculated at 1 min per kb of plasmid. Table 4.2. lists the primers 

used in the site-directed mutagenesis reactions and the restriction sites introduced by the 

mutagenesis. Possible successful site-directed mutants were selected by testing for the 

insertion of the restriction site as this suggested that the desired mutation was also
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present. The exoU  gene and exoU  N-terminal deletion mutants were amplified using 

the same conditions as described in Section 3.2.5. using the primers listed in Table 4.3.

Table 4.1. Plasmid construction

PLASMID CONSTRUCTION
pCMV-Tag2-ExoU exoV  was sub-cloned from pYES-ExoU into 

the BamHI and Apal sites of pCMV-Tag2B.
pCMV-Tag2-ExoU_S 142A The S142A mutation was introduced into 

ExoU in pCMV-Tag2-ExoU by site-directed 
mutagenesis using the S142A-Fw and S142A- 
Rev primers.

pCMV-Tag2-ExoU_S 142A_K 178R The K178R mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S 142A by site- 
directed mutagenesis using the K178R-Fw 
and K178R-Rev primers.

pCMV-Tag2-ExoU_S 142A_K428R The K428R mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S 142A by site- 
directed mutagenesis using the K428R-Fw 
and K428R-Rev primers.

pCMV-Tag2-ExoU_S 142A_K679A The K679A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S142A by site- 
directed mutagenesis using the K679A-Fw 
and K679A-Rev primers.

pCMV-Tag2-ExoU„S 142A_W681A The W681A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S142A by site- 
directed mutagenesis using the W681A-Fw 
and W681A-Rev primers.

pCMV-Tag2-ExoU_S 142A_R682A The R682A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S142A by site- 
directed mutagenesis using the R682A-Fw 
and R682A-Rev primers.

pCMV-Tag2-ExoU_S 142A_N683A The N683A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU„S142A by site- 
directed mutagenesis using the N683A-Fw 
and N683A-Rev primers.

pCMV-Tag2-ExoU_S 142A_K684A The K684A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S 142A by site- 
directed mutagenesis using the K684A-Fw 
and K684A-Rev primers.

pCMV-Tag2-ExoU_S 142A_E685A The E685A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S 142A by site- 
directed mutagenesis using the E685A-Fw 
and E685A-Rev primers.

pCMV-Tag2-ExoU_S 142A_F686A The F6 8 6 A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU_S142A by site- 
directed mutagenesis using the F6 8 6 A-Fw 
and F6 8 6 A-Rev primers.
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PLASMID CONSTRUCTION
pCMV-Tag2-ExoU_S 142A_T687A The T687A mutation was introduced into 

ExoU in pCMV-Tag2-ExoU_S142A by site- 
directed mutagenesis using the T687A-Fw 
and T687A-Rev primers.

pCMV-Tag2-ExoU_ S142A_N1 
(Al-9)

exoU lacking the N-terminal 9 amino acids 
was amplified from pCMV-Tag2B- 
exoU_S142A using Nl-Fw and N-Rev and 
cloned into the EcoRl and BarnRl of pCMV- 
Tag2B-ExoU_S142A.

pCMV-Tag2-ExoU_ S142A_N2 
(Al-17)

exoU lacking the N-terminal 17 amino acids 
was amplified from pCMV-Tag2B- 
exoU_S142A using N2-Fw and N-Rev and 
cloned into the EcoRI and BamHI of pCMV- 
Tag2B-ExoU_S142A.

pCMV-Tag2-ExoU_ S142A_N3 
(A 1-25)

gxof/lacking the N-terminal 25 amino acids 
was amplified from pCMV-Tag2B- 
exoU_S142A using N3-Fw and N-Rev and 
cloned into the EcoRl and BamUl of pCMV- 
Tag2B-ExoU_S 142A.

pCMV-Tag2-ExoU„ S142A_N4 
(A 1-40)

exoU lacking the N-terminal 40 amino acids 
was amplified from pCMV-Tag2B- 
exoU_S142A using N4-Fw and N-Rev and 
cloned into the EcoRI and BamHl of pCMV- 
Tag2B-ExoU_S142A.

pCMV-Tag2-ExoU_ S142A„N5 
(Al-56)

exoU lacking the N-terminal 56 amino acids 
was amplified from pCMV-Tag2B~ 
exoU_S142A using N5-Fw and N-Rev and 
cloned into the EcoRI and BamHl of pCMV- 
Tag2B-ExoU_S142A.

pCMV-Tag2-ExoU_ S142A_N6 
(Al-64)

exoU lacking the N-terminal 64 amino acids 
was amplified from pCMV-Tag2B- 
exoU_S142A using N6 -Fw and N-Rev and 
cloned into the EcoRl and BamHl of pCMY- 
Tag2B-ExoU_S142A.

pCMV-Tag2-ExoU_ S142A_N7 
(A 1-82)

A 5'acII(blunt)MpaI fragment of exoU 
lacking the N-terminal 82 amino acids was 
sub-cloned from pY ES-ExoU into the EcoRV 
and Apal sites of pCMV-Tag2C, The S142A 
mutation was then introduced into ExoU by 
site-directed mutagenesis using the S142A- 
Fw and S142A-Rev primers.

pCMV-Tag2-ExoU_ S142A_N8 
(Al-122)

The N-terminal 122 amino acids of ExoU 
were deleted by digesting pCMV-Tag2- 
ExoU_S142A with Smal and re-ligating the 
plasmid backbone.

pCMV-Tag2-BxoU_ S142A_C1 
(A654-687)

The C-terminal 34 amino acids of ExoU were 
deleted by digesting pCMV-Tag2- 
ExoU_S142A with EcoKV and Apal, blunt 
ending and re-ligating the plasmid backbone.
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PLASMID CONSTRUCTION
pCMV-Tag2-ExoU_ S142A_C2 
(A413-687)

The C-terminal 275 amino acids of ExoU 
were deleted by digesting pCMV-Tag2- 
ExoU_S142A with Xhol and Apal, blunt 
ending and re-ligating the plasmid backbone.

pCMV-Tag2-ExoU„ S142A_C3 
(A343-687)

The C-terminal 345 amino acids of ExoU 
were deleted by digesting pCMV-Tag2- 
ExoU_S142A with EcoRl and Apal, blunt 
ending and re-ligating the plasmid backbone.

pCMV-Tag2-ExoU„ S142A_C4 
(A663-687)

A stop codon at amino acid 663 was 
introduced into ExoU in pCMV-Tag2- 
ExoU_S142A by site-directed mutagenesis 
using the C4-Fw and C4-Rev primers.

pCMV-Tag2~ExoU_ S142A_C5 
(A671-687)

A stop codon at amino acid 671 was 
introduced into ExoU in pCMV-Tag2- 
ExoU_S142A by site-directed mutagenesis 
using the C5-Fw and C6 -Rev primers.

pCMV-Tag2-ExoU_ S142A_C6 
(A679-687)

A stop codon at amino acid 679 was 
introduced into ExoU in pCMV-Tag2- 
ExoU_S142A by site-directed mutagenesis 
using the C6 -Fw and C6 -Rev primers.

pCMV-Tag2-ExoU_ S142A„C7 
(A684-687)

A stop codon at amino acid 684 was 
introduced into ExoU in pCMV-Tag2- 
ExoU_S142A by site-directed mutagenesis 
using the C7-Fw and C7-Rev primers.

pCMV-Tag2-ExoU_K178R The K178R mutation was introduced into 
ExoU in pCMV-Tag2-ExoU by site-directed 
mutagenesis using the K178R-Fw and 
K178R-Rev primers.

pCMV-Tag2-ExoU„K428R The K428R mutation was introduced into 
ExoU in pCMV-Tag2-ExoU by site-directed 
mutagenesis using the K428R-Fw and 
K428R-Rev primers.

pCMV-Tag2-ExoU__K679A The K679A mutation was sub-cloned from 
pCMV-Tag2-ExoU_S142A_K679A into the 
Mlul and EcoRl sites of pCMV-Tag2-ExoU.

pCMV-Tag2-ExoU_W681A The W681A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU by site-directed 
mutagenesis using the W681A-Fw and 
W681A-Rev primers.

pCMV-Tag2-ExoU„ R682A The R682A mutation was sub-cloned from 
pCMV-Tag2-ExoU_S142A_R682A into the 
Mlul and EcoRl sites of pCMV-Tag2-ExoU.

pCMV-Tag2-ExoU„ N683A The N683A mutation was introduced into 
ExoU in pCMV-Tag2-ExoU by site-directed 
mutagenesis using the N683A-Fw and 
N683A-Rev primers.

pCMV-Tag2-ExoU„ C4 
(A663-687)

A stop codon at amino acid 663 was 
introduced into ExoU in pCMV-Tag2-ExoU 
by site-directed mutagenesis using the C4-Fw 

1 and C4-Rev primers.
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PLASMID CONSTRUCTION
pCMV-Tag2-ExoU„ C5 
(A671-687)

A stop codon at amino acid 671 was 
introduced into ExoU in pCMV-Tag2-ExoU 
by site-directed mutagenesis using the C5-Fw 
and C6 -Rev primers.

pCMV-Tag2-ExoU__ C6  

(A679-687)
A stop codon at amino acid 679 was 
introduced into ExoU in pCMV-Tag2-ExoU 
by site-directed mutagenesis using the C6 -Fw 
and C6 -Rev primers.

pCMV-Tag2-ExoU_ C l 
(A684-687)

A stop codon at amino acid 684 was 
introduced into ExoU in pCMV-Tag2-ExoU 
by site-directed mutagenesis using the C7-Fw 
and C7-Rev primers.

pEGFP-ExoU653-687 A fusion construct of EGFP and the C- 
terminal 33 amino acids of ExoU was 
constructed by sub-cloning the EcoRNIApal 
fragment from pCMV-Tag2-ExoU into the 
Kpn\{h\\mt)IApa\ sites of pEGFP-C3.

pUCP19-ExoU-SpcU Kind gift from Prof. D. Frank
pUCP19-ExoU„S 142A-SpcU The SI42A mutation was sub-cloned from 

pCMV-Tag2B-ExoU__S 142A into the SacU 
and EcoRV sites of pUCP19-ExoU-SpcU.

pUCP19-ExoU_K178R-SpcU The K178R mutation was sub-cloned from 
pCMV-Tag2B-ExoU_K178R into the SacW 
and EcoRN sites of pUCP19-ExoU-SpcU.

pUCP 19-ExoU_W681A-S pcU A fragment of exoU-spcU was sub-cloned 
from pUCP19-ExoU-SpcU into the Smal and 
Hindlll sites of pUC19. The W681A 
mutation was introduced into ExoU by site- 
directed mutagenesis using the W681A-Fw 
and W681A-Rev primers. A fragment of 
ExoU_W681A -SpcU was then sub-cloned 
into the EcoRM and BamHl sites if pUCP19- 
ExoU-SpcU.

pUCP19-ExoU„ C6(A679-687)-SpcU A fragment of exoU-spcU was sub-cloned 
from pUCP19-ExoU-SpcU into the Smal and 
Hindlll sites of pUC19. A stop codon at 
amino acid 679 was introduced into ExoU by 
site-directed mutagenesis using the C6 -Fw 
and C6 -Rev primers. A fragment of 
exoU_C6 -spcU was then sub-cloned into the 
EcoRN and BamHl sites if pUCP19-ExoU- 
SpcU.
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PLASMID CONSTRUCTION
pUCP19-ExoU_ C7(A684-687)-SpcU A fragment of exoU-spcU was sub-cloned 

from pUCP19-ExoU-SpcU into the Smal and 
Hindlll sites of pUC19. A stop codon at 
amino acid 684 was introduced into ExoU by 
site-directed mutagenesis using the C7-Fw 
and C7-Rev primers. A fragment of 
exoU_C7-spcU was then sub-cloned into the 
EcoRV  and BamHl sites if pUCP19-ExoU- 
SpcU.

pUCP19-ExoU_S142A_K178R-SpcU A fragment of exoU containing the S I42A 
and K178R mutations was-sub-cloned from 
pCMV-Tag2-ExoU_S142A„K178R into the 
SacII and EcoRV sites if pUCP19-ExoU- 
SpcU.

pUCP19-ExoU„S142A„W681A-SpcU A fragment of exoU-spcU was sub-cloned 
from pUCP19-ExoU-SpcU into the Smal and 
Hindlll sites of pUC19. The W681A 
mutation was introduced into ExoU by site- 
directed mutagenesis using the W681A-Fw 
and W681A-Rev primers. A fragment of 
exoU_W681 A-spcU was then sub-cloned into 
the EcoRV and BamHl sites if pUCP19- 
ExoU„S142A-SpcU.

pUCP19-ExoU„S142A_ C6(A679- 
687)-SpcU

A fragment of exoU-spcU was sub-cloned 
from pUCP19-ExoU-SpcU into the Smal and 
HindRl sites of pUC19. A stop codon at 
amino acid 679 was introduced into ExoU by 
site-directed mutagenesis using the C6 -Fw 
and C6 -Rev primers. A fragment of 
exoU„C6 -spcU was then sub-cloned into the 
EcoRV and BamHl sites if pUCP19- 
ExoU_S 142A-SpcU.

pUCP19-ExoU„S142A„ C7(A684- 
687)-SpcU

A fragment of exoU-spcU was sub-cloned 
from pUCP19-ExoU~SpcU into the Smal and 
Hindlll sites of pUC19, A stop codon at 
amino acid 684 was introduced into ExoU by 
site-directed mutagenesis using the C7-Fw 
and C7-Rev primers. A fragment of 
exoU_C7-spcU was then sub-cloned into the 
EcoRV and BamHl sites if pUCP19- 
ExoU_S 142A-SpcU.

pUCP19-ExoU_S 142A-EGFP-SpcU EGFP was amplified and cloned into the Nsil 
sites of pUCP19-ExoU_S142A-SpcU.

pET-lOO/D-ExoU The exoU gene was amplified from PA4 
genomic DNA using the lExoU-Fw and 
rExoU-Rev primers and cloned into the pET- 
lOO/D-TOPO directional cloning vector.
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PLASMID CONSTRUCTION
pET- 100/D-ExoU„S 142A The S I42A mutation was introduced into 

ExoU in pET-100/D-ExoU by site-directed 
mutagenesis using the S142A-Fw and S142A- 
Rev primers.

pET-100/D-ExoU_K 17 8 R The K178R mutation was introduced into 
ExoU in pET-lOO/D-ExoU by site-directed 
mutagenesis using the K178R-Fw and 
K178R-Rev primers.

pET- 100/D-ExoU_W681A The W681A mutation was sub-cloned as a 
Notl{b\unt)/Xhol fragment from pCMV- 
Tag2B-ExoU_W681A into the 
Sacl(b\unt)/Xhol sites of pET-100/D-ExoU.

pET-100/D-ExoU„C6(A679-687) A stop codon at amino acid 679 was 
introduced into ExoU in pET-100/D-ExoU by 
site-directed mutagenesis using the C6 -Fw 
and C6 -Rev primers.

pET-100/D-ExoU_ C7(A684-687) The stop codon at amino acid 684 was sub­
cloned as a Notl{b\unt)IXhol fragment from 
pCMV-Tag2B-ExoU_C7(A684-687) into the 
Sacl(b\unt)/Xhol sites of pET-100/D-ExoU.

Table 4.2. Site-directed mutagenesis primers

PRIMER SEQUENCE (5’-3 )̂ R.S.
S142A-FW GTCCGGTTCGGCCGCTGGCGGCA Eagl
S142A~Rev TGCCGCCAGCGGCCGAACCGGAC Eagl
K178R-FW CTCGATAGCTCGAACAGGAAGCTTAAGCTGTTCCAA

CACA
HindlU

K178R-Rev TGTGTTGGAACAGCTTAAGCTTCCTGTTCGAGCTATC
GAG

HindlU

K428R-FW ACCGTTGTGGTGCCGTTACGTAGCGAGCGCGGTGAT
TTC

SnaBl

K428R-Rev GAAATCACCGCGCTCGCTACGTAACGGCACCACAAC
GGT

SnaBl

K679A-FW CTACCGTTGAGATGGCTGCAGCTTGGCGGAATAAGG
AGTT

Pstl

K679A-Rev AACTCCTTATTCCGCCAAGCTGCAGCCATCTCAACGG
TAG

Pstl

W681A-FW CCGTTGAGATGGCCAAGGCTGCGCGGAATAAGGAGT
TC

Mscl

W681A-
Rev

GAACTCCTTATTCCGCGCAGCCTTGGCCATCTCAACG
G

Mscl

W681K-FW CTACCGTTGAGATGGCCAAGGCTAAGCGGAATAAGG
AGTTC

Mscl

W681K-
Rev

GAACTCCTTATTCCGCTTAGCCTTGGCCATCTCAACG
GTAG

Mscl

W681E-FW CTACCGTTGAGATGGCCAAGGCTGAGCGGAATAAGG
AGTTC

Mscl
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PRIM ER SEQUENCE R.S.
W681E-Rev GAACTCCTTATTCCGCTCAGCCTTGGCCATCTCAACG

GTAG
Msc\

R682A-FW TTGAGATGGCTAAGGCCTGGGCGAATAAGGAGTTCA
CATGAG

Stu\

R682A-Rev CTCATGTGAACTCCTTATTCGCCCAGGCCTTAGCCAT
CTCAA

Stul

N683A-FW ATGGCTAAGGCTTGGCGCGCTAAGGAGTTCACATGA
GC

BssHll

N683A-Rev GCTCATGTGAACTCCTTAGCGCGCCAAGCCTTAGCC
AT

BssHU

K684A-FW CTAAGGCTTGGCGGAATGCGGAATTCACATGAGCGG
CC

EcoRI

K684A“Rev GGCCGCTCATGTGAATTCCGCATTCCGCCAAGCCTTA
G

EcoRI

E685A-FW GCTTGGCGGAATAAGGCCTTCACATGAGCGGC Stul
E685A-Rev GCCGCTCATGTGAAGGCCTTATTCCGCCAAGC Stul
F6 8 6 A-Fw GCTTGGCGGAATAAGGAGGCTACGTAAGCGGCCGCT

CGAGTC
SnaBl

F6 8 6 A-Rev GACTCGAGCGGCCGCTTACGTAGCCTCCTTATTCCGC
CAAGC

SnaBl

T687A-FW GGCGGAATAAGGAATTCGCATGAGCGGCCGCT EcoRl
T687A-Rev AGCGGCCGCTCATGCGAATTCCTTATTCCGCC EcoRl
C4-Fw ACAACTACTCGGCACGAGGTTAACTGCGTTTCGGCA

AACC
Hpal

C4-Rev GGTTTGCCGAAACGCAGTTAACCTCGTGCCGAGTAG
TTGT

Hpal

C5-FW CTTCCTGCGTTTCGGCAAACCCCTTTAAAGCACTACC
GTTGAGATGGCTA

Dral

C5-Rev TAGCCATCTCAACGGTAGTGCTTTAAAGGGGTTTGCC
GAAACGCAGGAAG

Dral

C6 -Fw CTACCGTTGAGATGGCTTAAGCTTGGCGGAATAAGG
AGTT

Hindlll

C6 “Rev AACTCCTTATTCCGCCAAGCTTAAGCCATCTCAACGG
TAG

Hindlll

C7-FW ATGGCTAAGGCTTGGCGGAATTGAATTCTCACATGA
GCGGCCGCTC

EcoRl

C7-RGV GAGCGGCCGCTCATGTGAGAATTCAATTCCGCCAAG
CCTTAGCCAT

EcoRl
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Table 4.3. PCR amplification primers

PRIMER SEQUENCE (5'-3')
Nl-Fw TCGGATCCGCCTCCTCGCTGAATCAGG
N2-Fw TCGGATCCGTCGAAACCCCGTCGCAG
N3-Fw TCGGATCCCATAAGTCCGCCAGCTTGC
N4-Fw TCGGATCCGGGGTTGCCCTAAAGAGC
N5-Fw TCGGATCCGAAAGCGTTAGTGACGTGCG
N6 -Fw TCGGATCCAGCAGTCCCCAAGGGCAAG
N-Rev TCTTGTCGATCATCTCAGGGACC
rExoU-Fw CACCATGCATATCCAATCGTTGGGG
RExoU-Rev TCATGTGAACTCCTTATTCCGCCA

The plasmids were sequenced to confirm they were correct. In addition to sequencing 

with the internal ExoU primers, ExoU-Intl-5 (Table 3.1.), genes in pCMV-Tag2 were 

sequenced with the T7 prom and T3 prom primers, genes in pUCP19 were sequenced 

with the M13F and M13R primers, genes in pEGFP-C were sequenced with the 

EGFPseq primer and genes in pET-100/D were sequenced with the T7 prom and T7 

term primers (Table 3.1. and Table 4.4.).

Table 4.4. Sequencing primers

PRIMER SEQUENCE (5’-3’)
T3 prom AATTAACCCTCACTAAAGGG
T7 term TATGCTAGTTATTGCTCAG
M 13F 1 GTAAAACGACGGCCAGTG
M 13R GGAAACAGCTATGACCATG
EGFP-Cseq CATGGTCCTGCTGGAGTTCGTG

4.2,9. Transfection of HeLa cells

HeLa cells were transfected with plasmid DNA using Lipofectamine™ 2000 

(Invitrogen) according to the m anufacturers instructions. The DNA and 

Lipofectamine™ 2000 were diluted separately in OptiMEM® I GlutaMAX™ I using 

the volumes listed in Table 4.5, mixed gently and incubated at room temperature for 5 

minutes. The diluted DNA and Lipofectamine™ 2000 were then mixed and incubated 

at room temperature for 20 minutes before being added to 90-95% confluent HeLa cells 

in the appropriate volume of HeLa media as shown in Table 4.5. HeLa cells were 

incubated with the transfection reagents at 37°C with 5% COj for at least 12 hours.
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Table 4.5, Volumes for HeLa cell transfection

Culture
vessel

Vol. of HeLa 
media

DNA (p,g) in media 
vol. i]l\)

Lipofectamine^'^ 2000  
(pi) in media vol. (pi)

T75 flask 12.5 ml 30 pg in 1.75 ml 56.25 pi in 1.75 ml
6 -well plate 2  ml 4.0 pg in 250 pi 7.5 pi in 250 pi
24-well plate 1 ml 1 . 6  pg in 1 0 0  pi 3 pi in 100 pi
2 -well slide 1 ml 1 . 6  pg in 1 0 0  pi 3 pi in 100 pi

4.2.10. Infection of HeLa cells with P. aeruginosa

PA 103 AT AU were prepared for infecting HeLa cells by inoculating 10 ml LB medium 

with 30 |Lil glycerol stock of the bacteria. The LB medium was supplemented with 300 

pg/ml carbenicillin when PA 103 AT AU contained a pUCP19-based plasmid to maintain 

selection on the plasmid. The culture was incubated at 37°C with shaking at 225 rpm 

overnight. 12 ml of fresh LB medium (supplemented with 300 pg/ml carbenicillin if a 

pUCP19-based plasmid was present) was inoculated with 1 ml of the overnight culture 

and grown at 37°C with shaking at 225 rpm until OD^qo = 0.4. The culture was 

centrifuged at 3200 x g for 10 min and the bacterial pellet was washed twice in sterile 

PBS. The bacteria were resuspended in sterile PBS to obtain a suspension containing 

approximately 5 x 10  ̂CFU/pl (volume of PBS added = (ODGoo/0.4) x 3.6).

The infection of HeLa cells required the cells to have reached approximately 90% 

confluency and to be in HeLa media lacking penicillin and streptomycin. 2.5 x 10® 

CFU of P. aeruginosa were used to infect HeLa cells in a 2-well slide or a 24-well plate 

and 5 x 10® CFU of P. aeruginosa were used to infect HeLa cells in a 6 -well plate. The 

HeLa cells inoculated with PA103ATAU were incubated at 37°C with 5% COj for 3 - 4 

hours and then washed three times in ice-cold PBS to remove the extracellular bacteria.

4.2.11. Immunoblotting

To detect proteins in transfected HeLa cells, cells from a 6 -well plate were lysed 

directly into 2 x sodium dodecyl sulfate (SDS) gel-loading buffer (100 mM Tris.Cl pH 

6 .8 , 200 mM dithiothreitol, 4% SDS, 0.2% bromophenol blue, 20% glycerol). Samples 

prepared by immunoprécipitation, membrane-cytosol fractionation or protein 

purification (see below) were diluted 1:1 in 2 x SDS gel-loading buffer. The samples 

were heated to 95°C for 5 min before the proteins were separated on 4-12% SDS-
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polyacrylamide gel electrophoresis (PAGE) gels (Invitrogen) and electrophoretically 

transferred to Hybond™-? polyvinylidene difluoride transfer membranes (Amersham 

Biosciences, Little Chalfont, UK), Either the biotinylated Magic Mark XP Standard 

(Invitrogen) or the See Blue Plus 2 Pre-stained Standard (Invitrogen) were used as size 

markers. Non-specific binding to membranes was blocked by immersing the 

membranes in 5% Marvel dried skimmed milk (Premier International Foods, Spalding, 

UK) in PBS and incubating for 1 h at room temperature or overnight at 4°C. The 

membranes were incubated at room temperature for 1 h with the primary antibody in 

PBS containing 5% Marvel dried skimmed milk according to the dilutions in Table 4.6.

Table 4.6, Primary antibodies used in immunoblotting and immunofluorescence

Antigen Type Animal Dilution for 
Immuno­
blotting

Dilution for
immuno-
fluoresence

Supplier

FLAG tag Monoclonal Mouse 1 / 1 0 0 0 1 / 1 0 0 0 Sigma-Aldrich
ExoU Polyclonal Rabbit 1/500 1/500
Ubiquitin Monoclonal Mouse 1 / 1 0 0 0 Sigma-Aldrich
GAPDH Polyclonal Rabbit 1 / 1 0 0 0 Abcam“
Calnexin Polyclonal Rabbit 1 / 2 0 0 0 Stressgen

Bioreagents®
52kDa
Ro/SSA

Monoclonal Mouse 1 / 1 0 0 S anta  C ruz 
Biotechnology^

CD98 Polyclonal Goat 1 / 2 0 0 S anta  C ruz 
Biotechnology

6 x His tag Polyclonal Rabbit 1 / 1 0 0 0 Abeam
“Cambridge, UK 

® Victoria, BC, Canada 

“Santa Cruz, CA, USA

The primary antibody was washed off the membranes by two rinses, a 15 min wash and 

two 5 min washes in Tris-buffered saline (TBS; 10 mM Tris.Cl pH 7.6, 150 mM NaCl) 

+ 0.1% Tween® 20. The membranes were then incubated at room temperature for 1 h 

with 1.5 pg/ml of the appropriate biotinylated antibody (Vector Laboratories, 

Burlingame, CA, USA) in PBS containing 5% Marvel dried skimmed milk before being 

washed as above. The membranes were then incubated at room temperature for 1 h 

with a 1/3000 dilution of horseradish peroxidase (HRP)-conjugated streptavidin 

(Biosorce, Camarillo, CA, USA) in PBS containing 5% Marvel dried skimmed milk. 

The HRP-conjugated streptavidin was washed off the membranes by two rinses, a 10 

min wash and four 5 min washes in TBS + 0.1% Tween 20. All blocking, antibody
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incubation and washing steps were carried out on an orbital shaker to ensure uniform 

coverage of the membrane. The ECL Plus Western Blotting Detection Reagents 

(Amersham Biosciences) were used according to the manufacturers instructions to 

detect immunoreactive protein bands. The chemifluorescent signal was detected on 

Hypeifilm ECL film (Amersham Biosciences).

After use, membranes were stored wet wrapped in Saran Film (Dow Chemical 

Company, Edegen, Belgium) at 4“C and could be stripped of bound antibodies and 

reprobed with different antibodies. The membranes were stripped by submerging in 

stripping buffer (100 mM 2-Mercaptoethanol, 2% SDS, 62,5 mM Tris-HCl pH 6.7) and 

incubating at 50°C for 30 min with gentle agitation. The membranes were then washed 

twice for 10 min in large volumes of PBS containing 0.1% Tween® 20 at room 

temperature. After blocking the membranes in 5% Marvel dried skimmed milk in PBS 

for 1 h at room temperature, they were ready to be reprobed.

4.2.12. Immunofluorescence staining

HeLa cells in 2-well slides transfected with a pCMV-Tag2-based plasmids or infected 

with PA 103 AT AU containing a pUCP19-based plasmids were immunostained with an 

anti-FLAG or anti-ExoU antibody respectively. HeLa cells were first rinsed with PBS 

then fixed with 0.5 ml 1% paraformaldehyde in PBS for 30 min at room temperature. 

The fixed cells were rinsed with PBS and permeabilised with 0.2% Triton-X 100 for 20 

min at room temperature. The permeabilised cells were rinsed in PBS and blocked in 

10% Normal Goat Serum (NGS) in PBS for 1 h at room temperature or overnight at 

4“C. HeLa cells were then incubated for 1 h at room temperature with the anti-FLAG 

antibody or anti-ExoU serum in 10% NGS in PBS at the concentrations indicated in 

Table 4.6. Unbound primary antibody was removed by washing the cells with PBS for 

5 min, three times. The cells were then incubated with 2 p,g/ml AlexaFluor® 488 goat 

anti-mouse or goat-anti-rabbit IgG (Invitrogen) in 10% NGS in PBS for 1 h at room 

temperature. The unbound secondary antibody was washed off as described above and 

the nucleus of the cells were stained with 0.33 pg/ml 4 ’,6-diamidino-2-phenylindole 

(DAPI) in PBS for 10 min at room temperature. After a final round of washing, the 

cells were mounted in Vectashield (Vector Laboratories) and viewed using a Zeiss 

Axiovert SlOO microscope with a Zeiss Plan-NEOFLUAR 63x lens (Carl Zeiss Ltd.,
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Welwyn Garden City, UK). For each view, 5 images were taken at 0.5 micron intervals 

and Openlab software (Improvision) was used to deconvolve the images.

4.2.13. Preparation of ExoU and possible ExoU binding proteins for mass 

spectroscopy analysis

To analyse the composition of ExoU and modified ExoU, a 75-cm^ flask of HeLa cells 

was transfected with pCMV-Tag2-ExoU_S142A and 20 h after transfection the HeLa 

cell lysate was immunoprecipitated with Anti-FLAG M2 Affinity Gel as described in 

section 4.2.14. The proteins were then separated by 4-12% SDS-PAGE and the proteins 

were fixed and stained by incubating the gel with 0.25% Comassie Brilliant Blue R250 

in 30% methanol and 10% acetic acid for 15 min at room temperature on an orbital 

shaker. Excess stain was removed by rinsing the gel twice in destain (30% methanol 

and 10% acetic acid) and then washing in destain for 1 h on an orbital shaker. The 

ExoU and modified ExoU bands were cut out of the gel and analysed by mass 

spectrometry as described in section 4.2.15.

To determine the molecular weights of the complete ExoU and modified ExoU proteins, 

a 75-cm^ flask of HeLa cells was transfected with pCMV-Tag2-ExoU_S 142A and 20 h 

after transfection the HeLa cell lysate was immunoprecipitated with Anti-FLAG M2 

Affinity Gel as described in section 4.2.14. The protein mixture was then analysed by 

mass spectrometry as described in section 4.2.15.

In order to identify any proteins that coimmunoprecipitate with ExoU, 4 x 75-cm^ flasks 

of HeLa cells were transfected with pCMV-Tag2 or pCMV-Tag2-ExoU„S142A. 

ExoU was immunoprecipitated from the HeLa cell lysates as described in section

4.2.14. and the protein profiles of the two eluted samples were compared by 4-12% 

SDS-PAGE and commassie blue staining as described above. Any protein bands 

present in the sample immunoprecipitated from HeLa cells transfected with pCMV- 

Tag2-ExoU_S 142A that were not present in the sample immunoprecipitated from HeLa 

cells transfected with pCMV-Tag2 (except for the ExoU and modified ExoU protein 

bands) were cut out and analysed by mass spectroscopy as described in section 5.2.15.
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4.2.14. Immunoprécipitation of ExoU

The HeLa cells were washed twice with ice-cold PBS and lysed by incubating with lysis 

buffer (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 

containing 10 pi protease inhibitor cocktail per ml) on ice with agitation for 30 mins. 

The cells were then scraped up using a cell scraper, transferred to a 1.5 ml test tube and 

centrifuged at 16100 x g for 10 minutes at 4“C. The post-nuclear supernatant was 

stored at -80°C unless used immediately.

The Anti-FLAG M2 Affinity Gel was prepared by pelleting the gel suspension at 16100 

X g for 1 min at 4“C and washing the packed gel twice in ice-cold TBS. 

Immunoprécipitation of FLAG-tagged ExoU was achieved by incubating the HeLa cell 

lysate with the packed gel for 3 hours at 4®C with rotation. The gel was then washed 

three times with ice-cold TBS to remove unbound proteins.

Proteins were eluted from the Anti-FLAG M2 Affinity Gel either directly into 2 x SDS 

gel loading buffer or by using a 3x FLAG peptide solution. To elute with 2 x SDS gel 

loading buffer, this was added to the agarose and heated to lOO^C for 5 mins. The 

sample was centrifuged at 5000 x g for 30 sec and the supernatant was transferred to a 

fresh tube. In addition to containing the FLAG-tagged proteins and any additional 

protein that bound to the FLAG-tagged protein, the sample generated from this elutuion 

method also contained the light and heavy chains of the FLAG M2 antibody. To 

prevent elution of the FLAG M2 antibody, a 3x FLAG peptide solution was used to 

elute just the FLAG-tagged protein and any bound proteins. A 3x FLAG peptide stock 

solution was made (5 pg/p-l 3x FLAG peptide in 100 mM Tris HCl, pH 7.5, 200 mM 

NaCl). For elution, 1.5 pi of the 3x FLAG peptide stock solution was added to 50 pi 

TBS (150 ng/pl final concentration) and this was incubated with the packed gel for 30 

min at 4“C with rotation. The gel was then pelleted by centrifugation at 16100 x g for 1 

min at 4°C and the supernatant was transferred to a fresh tube. The supernatants were 

stored at -2 0 °C unless used immediately.
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4.2.15. Mass Spectrometry

Prof. D. Oxley (Babraham Institute, Cambridge, UK) carried out the mass spectrometry 

analysis. To analyse the composition of ExoU and the modified ExoU protein and the 

potential ExoU binding protein bands, the coomassie-stained bands were destained, 

reduced, carbamidomethylated and digested overnight with 1 0  ng/pl modified trypsin 

(Promega, Madison, WI, USA) in 25 mM ammonium bicarbonate at 30°C. The 

resulting peptide mixtures were separated by reverse-phase liquid chromatography 

(column; 0.1 x 100 mm, Vydac C18, 5 pm particle size), with an acetonitrile gradient (0 

-  30% over 30 min) containing 0.1% formic acid, at a flow rate of 500 nL/min. The 

column was coupled to a nanospray ion source (Protana Engineering, Denmark) fitted to 

a quadrupoIe-TOF mass spectrometer (Qstar Pulsar I; Applied Biosystems/MDS Sciex, 

Canada). The instrument was operated in information dependent acquisition mode, with 

an acquisition cycle consisting of a 0.5 sec TOF scan over the m/z range 350 -  1500 

followed by 2 sec MS/MS scans (triggered by 2+ or 3+ ions), recorded over the m/z 

range 100-1700. Proteins were identified by database searching of the mass spectral 

data using Mascot software (Matrix Science, London, UK). Mascot was also used to 

determine ubiquitinylation sites using the Lysine GlyGly “variable modification” 

parameter. All identified ubiquitnylation sites were verified by manual interpretation of 

the corresponding MS/MS spectra. All the unassigned MS/MS spectra of significant 

intensity were also manually interpreted.

The molecular weights of the complete ExoU and modified ExoU proteins were also 

measured using mass spectrometry. The solution containing ExoU and modified ExoU 

was desalted and the FLAG tags were removed from the proteins before being analysed 

by mass spectrometry. The mass-to-charge ratio of the parental ExoU and modified 

ExoU ions provided the molecular mass of the two entities and the difference in mass 

between them.

4.2.16. Stability of ExoU and ubiquitinylated ExoU

HeLa cells in a 6 -welI plate were transfected with pCMV-Tag2-ExoU_S142A (see 

section 4 .2 .9 ). 1 2  hours after transfection, protein synthesis was inhibited by incubating 

the HeLa cells with 25 pg/ml cyclohexamide at 37°C with 5% CO^. At 0, 4, 8 , 12 and
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24 hours after addition of cyclohexamide, the HeLa cells were washed twice in PBS and 

lysed in 200 pi 2 x SDS gel-loading buffer. The samples were subjected to 

immunoblotting with the anti-FLAG antibody (see section 4.2.14). The resulting 

photographic film was scanned and densitometric analysis was performed using the 

NÏH 1.61 analysis program (National Institute of Health, Betheseda, MD, USA).

4.2.17. M embrane/cytosol fractionation

HeLa cells in a single well of a 6-well plate were transfected with pCMV-Tag2- 

ExoU„S142A (see section 4.2.9). After 16 hours of transfection, the cells were washed 

in ice-cold PBS and lysed in 0.5 ml ice-cold lysis buffer (20 mM Tris.Cl, 10 mM 

EDTA) supplemented with 5 pi/ml protease inhibitor cocktail. The cells were scraped 

up with a cell scraper and sonicated twice for 10 sec on ice. The sonicated cells were 

centrifuged at 1500 x g for 5 min at 4°C to remove the nuclei and large cellular debris. 

The supernatant were transferred to pre-chilled 13 x 51 mm polyallomer centrifuge tube 

(Beckman Instruments, Palo Alto, CA, USA) and centrifuged at 100000 x g for 1 h in a 

pre-chilled 4°C 55Ti rotor in a XL-90 ultracentrifuge (Beckman Instruments). The 

supernatant, which contains the cytosolic fraction, was mixed with an equal volume of 

SDS gel-loading buffer and stored at -20°C until required. The pellet was washed by 

resuspending in 500 pi lysis buffer and centrifuging at 100000 x g for 1 h. The 

supernatant was discarded and the pellet was resuspended in 50 pi SDS gel-loading 

buffer by vigorous vortexing and heating at 95°C for 5 min. The resuspended pellet 

was stored at -20°C until required.

The cytosolic and membrane-enriched samples were heated to 95°C for 5 min and 

subjected to SDS-PAGE. The proteins were transferred to a membrane that was 

immunoblotted with anti-FLAG, anti-Calnexin, and anti-GAPDH antibodies as 

described in section 4.2.11.

4.2.18. Luciferase assay

HeLa cells in a 24-well plate were transfected with the pGL2-control plasmid 

(Promega), which constitutively expresses the firefly (Photinus pyralis) luciferase in 

mammalian cells, and a pCMV-Tag2-ExoU or mutant ExoU plasmid. 24 hours after
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transfection, the HeLa cell media was replaced with fresh media and the cells were 

incubated for a further 24 hours. The Luciferase Assay Kit (Stratagene) was used 

according to manufacturers instructions to measure the amount of luciferase produced in 

the cells transfected with different ExoU and ExoU mutant constructs. Luciferase 

catalyzes the following chemiluminescent oxidation-reduction reaction:

Luciferase

Luciferin + ATP + ^  Oxyluciferin + light (560 nm) + AMP + PPi + CO2

Therefore the amount of light produced is a measure of the amount of luciferase present, 

which correlates with the number of viable cells. To perform the assay, the HeLa cells 

were washed twice in PBS and the cells in each well were lysed with 75 pi 1 x Cell 

Lysis Buffer (25 mM Tris-phosphate pH 7,8, 2 mM DTT, 2 mM 1,2- 

diaminocyclohexane-N,N,N’,N’-tetraacetic acid, 10% glycerol, 1% Triton X-100) for 

15 min with occasional swirling. The cells were scraped and transferred to a 

microcentrifuge tube on ice. The cells were vortexed for 15 s and centrifuged at 16100 

X g for 2 min at 4°C. The supernatant was transferred to a fresh microcentrifuge tube 

and allowed to reach room temperature. A 20 pi aliquot of the HeLa cell supernatant 

was added to 100 pi of room temperature Luciferase Substrate -  Assay Buffer Mixture 

in a 5 ml polystyrene round bottom tube. Immediately after addition of the HeLa cell 

supernatant, the light produced from the reaction was measured over a 10 s period in a 

Lumat LB 9507 luminometer (Berthold Technologies).

4.2.19. Lactate dehydrogenase assay

HeLa cells were grown to 90% confluency in a 24-well plate. Two hours before 

infection, the normal HeLa media was replaced with Dulbecco’s Modified Eagle’s 

Medium minus phenol red supplemented with 1% Foetal Bovine Serum and 2 mM L- 

Glutamine to reduce background absorbance and remove the antibiotic selective 

pressure. The HeLa cells were infected with P. aeruginosa as described in section

4.2.10. After 4 h of infection, the HeLa cells in the 24-well plates were centrifuged at 

250 X g for 4 min. The HeLa cell culture supernatant were diluted 1 in 10 in Dulbecco’s 

Modified Eagle’s Medium minus phenol red supplemented with 1% Foetal Bovine 

Serum and 2 mM L-Glutamine and 50 pi aliquots were transferred to a 96 well plate.
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The amount of lactate dehydrogenase (LDH) released by HeLa cell lysis after P. 

aerug inosa  infection was measured using the CytoTox 96® Non-Radioactive 

Cytotoxicity Assay (Promega) according to the manufacturers instructions. This assay 

works by coupling the amount of LDH in the supernatant to the enzymatic conversion 

of a tétrazolium salt (INT) into a red formazan product:

LDH

NAD"’ + lactate pyruvate + NADH 

Diaphorase 

NADH + INT NAD^ + formazan (red)

Briefly, 50 pi of the reconstituted Substrate Mix was added to the HeLa cell culture 

supernatant and incubated for 30 min at room temperature in the dark. 50 pi of Stop 

Solution (1 M acetic acid) was added to stop the reaction and the absorbance was read 

at 490 nm. The amount of LDH released by unifected cells and the amount of LDH 

released by cells completely lysed by the addition of 100 pi of lOX Lysis Solution (9% 

(v/v) Triton X-100), was determined. The % of cell death caused by each pseudomonal 

strain was then calculated as follows:

% Cell Death = 100 x (LDH release -  LDH release by uninfected cells) / (1.1 x LDH 

released by lysed cells - LDH release by uninfected cells).

4.2.20. Purification of recom binant ExoU and m utant ExoU

BL21 Star (DE3) One Shot Chemically Competent Cells (Invitrogen) were transformed 

with 1 pi pET-lOO/D-ExoU or ExoU mutant according to the manufacturers 

instructions. The entire transformation mix was added to 10 ml of LB broth 

supplemented with 100 pg/ml ampicillin and grown overnight at 37°C with shaking at 

250 rpm. 5 ml of the overnight culture was used to inoculate 500 ml of LB broth 

supplemented with 100 pg/ml ampicillin and the culture was incubated at 30°C with 

shaking at 250 rpm until the OD^oo = 0.5-0.8. His-tagged ExoU or mutant ExoU 

expression was induced by adding IPTG (Invitrogen) to a final concentration of 1 mM 

and incubating for a further 2 h at 30°C with shaking at 250 rpm. The culture was 

centrifuged at 9950 x g for 10 min at 4°C to pellet the bacteria and this bacterial pellet 

was stored at -20°C until required. To prepare cleared bacterial lysate, the bacterial
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pellet was thawed on ice for 15 min and resuspended in 5 ml 1 x Ni-NTA Bind Buffer 

(Novagen) by vigorous vortexing. Lysozyme was added to the resuspended bacteria at 

a final concentration of 0.5 mg/ml and the mixture was incubated at 30°C for 10 min. 

The viscosity of the lysate was reduced by sonicating at 80% power for 1 min in 10 s 

bursts on ice. The bacterial lysates were then centrifuged at 9950 x g for 20 min at 4°C 

and the supernatants were removed and stored on ice. Ni-NTA His*Bind® Resin 

(Novagen) was used to purify the His-tagged proteins with all the steps being carried 

out at 4°C. The resin was prepared by mixing 1 ml of the 50% slurry of Ni-NTA 

His'Bind® Resin with 4 ml of 1 x Bind Buffer, allowing the resin to settle by gravity 

and removing the supernatant. The cleared bacterial lysate was then added to the resin 

and mixed on a rotating wheel for 1 h. The slurry was poured into a small column and 

the resin was allowed to settle while the lysate ran through it. The resin was washed 

twice with 4 ml 1 x Ni-NTA Wash Buffer (Novagen) and the His-tagged ExoU or 

mutant ExoU was eluted with 4 x 0.5 ml aliquots of Ni-NTA Elution Buffer (Novagen). 

The eluted fractions were analysed for purity by SDS-PAGE and the amount of protein 

was quantified using the Bio-Rad Protein Assay (Bio-Rad) according to the 

manufacturers instructions. The eluted fractions were stored at 4°C.

4.2.21. Phospholipase activity assay

The CPLA2 Assay Kit (Cayman Chemical Company, Ann Arbor, MI, USA) was used to 

determine the phospholipase activity of the ExoU and mutant ExoU proteins prepared 

as described in 4.2.20. This assay works by incubating ExoU with the synthetic 

substrate, arachidonoyl thio-PC and measuring the release of free thiol by hydrolysis of 

the arachidonyl thioester bond at the sn-2 position as a result of PLAg activity. The free 

thiol then reacts with 5,5’-dithio-Z?/.y-(2-Nitrobenzoic Acid) (DNTB) to produce the 

coloured compound 5-Thio-2-Nitrobenzoic Acid.

HeLa cell lysate was prepared by adding 0.5 ml ice-cold lysis buffer (50 mM HEPES 

pH 7.4, 1 mM EDTA) to a confluent 75-cm^ flask of HeLa cells and scraping the cells 

into a microcentrifuge tube. The cells were sonicated and centrifuged at 1000 x g for 15 

min at 4°C and the supernatant was kept on ice or at -80°C for long-term storage.
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The assay was performed by mixing 5 pg ExoU or mutant ExoU with 9 pi HeLa lysate, 

5 pi Assay Buffer and 200 pi arachidonoyl thio-PC Substrate Solution and incubating 

the reaction for 1 h at room temperature. 10 pi DTNB/EGTA was added to develop the 

reaction and the absorbance at 405 nm was read after 30 min. A non-enzymatic control 

(blank) was carried out where 15 pi Assay Buffer was incubated with the Substrate 

Solution. The PLAg activity of HeLa extract without ExoU and ExoU without HeLa 

extract were also determined.

The PLAg activity of ExoU and mutant ExoU was calculated as follows:

AÂ og/min = A405(sample)-A405(blank)

90 minutes^

PLAg Activity =1000 x AA^o^/min x 0.225 ml = nmoles/min/g

10.0 mM '® X 0.005 g

“The change in A^o îs calculated over 90 min because ExoU activity is not dependent on 

the presence of Câ "̂ , therefore the addition of EGTA does not stop the reaction and the 

hydrolysis of the arachidonyl thioester bond continues during the DTNB incubation. 

®The extinction coefficient for DTNB at 405 nm adjusted for the pathlength of the 

solution in the well (0.784 cm) is 10.0 mM '.

The ability of various phospholipids to activate ExoU was examined by replacing the 

HeLa extract in the above PLAg assay with 10 pM of the following phospholipids:

• 1,2-Diacyl-sn-glycero-3-phospho-L-serine

• D-myc-Phospatidylinositol D (+)-OT-l,2-di-G-octanoylglyceryl, 3-G-phospho 

linked (Echelon Biosciences Incorporated, Bryce Canyon, UT, USA)

• D-mya-Phospatidylinositol 3-phosphate D (+)-m-1,2-di-O-octanoy I glyceryl, 3- 

O-phospho linked (Echelon Biosciences Incorporated)

• D-mya-Phospatidylinositol 4-phosphate D (+)-i’n-l,2-di-G-octanoylglyceryl, 3- 

G-phospho linked (Echelon Biosciences Incorporated)

• D-mya-Phospatidylinositol 5-phosphate D (+)-.s'/7-l,2-di-0-octanoylglyceryl, 3-

O-phospho linked (Echelon Biosciences Incorporated)

• D-mya-Phospatidylinositol 3,4,5-trisphosphate D (+)-m -l,2-di-0- 

octanoylglyceryl, 3-G-phospho linked (Echelon Biosciences Incorporated).
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4.2.22. Piilï-down of ExoU by phosphoinositide-coated agarose beads

HeLa cell lysate was prepared from HeLa cells transfected with pCMV-Tag2- 

ExoU„S142A in a 6-well plate. The cells were washed twice with ice-cold PBS and 

incubated with 200 pi ice-cold lysis buffer (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 

0.5% Triton X-100 containing 10 pi protease inhibitor cocktail per ml) for 30 min on 

ice on an orbital shaker. The cells were scraped, transferred to a microcentrifuge tube 

and centrifuged at 16100 x g for 10 min at 4°C. The supernatant was then kept on ice or 

stored at -80°C until required.

The phosphoinositide-coated agarose beads (Echelon Bioscience Incorporated) were 

prepared by centrifuging 50 pi of a 50% slurry of each type of beads at 100 x g for 1 

min at 4°C and removing the supernatant. The beads were incubated with the HeLa cell 

extract for 3 h with rotation at 4°C. The beads were then washed three times with lOx 

excess of ice-cold lysis buffer (minus the protease inhibitor cocktail). Proteins were 

eluted from the beads by adding 25 pi of 2 x SDS gel-loading sample buffer and heating 

to 95°C for 5 min. The beads were centrifuged at 16100 x g for 1 min and the 

supernatant was subjected to SDS-PAGE and immunoblotting with the anti-FLAG 

antibody as described in section 4.2.11.

4.2.23. Binding of ExoU to PIP strips

The ability of ExoU and mutant ExoU to bind to phospholipids immobilised on a 

nitrocellulose membrane was assessed using PIP S t r ip s ( E c h e lo n  Biosciences 

Incorporated). The membranes were blocked by incubating in TBS-T (10 mM Tris, 150 

mM NaCI, 0.1% (v/v) Tween-20) + 3% fatty acid free bovine serum albumin (BSA) and 

gently agitating for 1 h at room temperature. The membranes were then incubated for 3 

h at room temperature with TBS-T + 3% BSA containing approximately 2.5 pg/ml 

ExoU or mutant ExoU prepared as described in section 4.2.20. Unbound ExoU or 

mutant ExoU was washed from the membrane by three 10 min incubations in TBS-T + 

3% BSA. Bound ExoU was then detected by immunoblotting with an anti-6x His tag 

antibody as described in section 5.2.11 but with all incubation and washing steps carried 

out in TBS-T + 3% BSA.
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4.3. RESULTS

4.3.1. ExoU is modified to a higher molecular weight form in HeLa cells

In order to study the expression and localisation of ExoU within mammalian cells, 

HeLa cells were transfected with a construct encoding wild type FLAG-tagged ExoU 

(pCMV-Tag2-ExoU). ExoU was not detected by immunoblotting at any time point 

between 12 and 36 hours following transfection (Fig. 4.1 A). This observation is 

consistent with the findings of other investigators who have also failed to detect active 

ExoU expression in a number of different eukaryotic cell lines by immunoblotting or 

immunofluorescence. It has been shown that ExoU is so cytotoxic to eukaryotic cells, 

that as few as 300-600 toxin molecules are required to kill a cell. This potent 

cytotoxicity would explain the absence of detectable ExoU, because any cell expressing 

the toxin at an appreciable level will be killed.

Mutation of the active site serine residue at position 142 of ExoU renders the protein 

non-toxic as it is no longer able to act as a phospholipase. When HeLa cells were 

transfected with a construct encoding the FLAG-tagged ExoU S I42A mutant (pCMV- 

Tag2-ExoU_S142A), a protein was observed migrating at the expected molecular 

weight of about 85 kDa (Fig. 4.1 A, ExoU). Interestingly, there was an additional 

FLAG-tagged protein band migrating at about 20 kDa higher than the native ExoU band 

(Fig. 4.1 A, ExoU*). The amount of this higher molecular weight band increased over 

time between 12 and 36 hours. This protein band must represent a covalently modified 

form of ExoU because any non-covalent modification would be destroyed by the 

denaturing conditions of the experiment.

During pseudomonal infection, the TTS toxins are secreted fully formed into the 

cytoplasm of the eukaryotic cell. In the transfection study described above, ExoU was 

transcribed and translated within the eukaryotic cell so it was important to establish that 

the observed modification was not an artefact of this non-physiological expression of 

ExoU.

When HeLa cells were infected with a strain of P. aeruginosa lacking all known TTS 

exoenzymes (PA 103 AT AU), and the lysate immunoblotted with ExoU anti-serum, as
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expected there was no ExoU detected (Fig. 4 .IB). When this strain was complemented 

with a plasmid (pUCP19-exoU_S142A-spcU) expressing the ExoU S I42A mutant and 

the cognate chaperone of ExoU, SpcU, both ExoU and modified ExoU proteins were 

observed (Fig, 4 .IB, ExoU and ExoU*).
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Fig. 4.1. Expression of ExoU in HeLa ceils after transfection and infection.

A) HeLa cells were transfected with constructs encoding FLAG-tagged ExoU 

(p C M V _ T a g 2 -E x o U ) and F L A G -tag g ed  l ip a s e - in a c t iv e  ExoU  

(pCMV_Tag2_ExoU_S142A). 12, 18, 24, and 36 hours post-transfection, HeLa cell 

lysates were prepared and immunoblotted with an anti-FLAG antibody. B) HeLa cells 

were infected with a Pseudomonal strain lacking all TTS toxins (PA103ATAU) and this 

strain complemented with a construct encoding lipase-inative ExoU and its cognate 

chaperone, SpcU (PA103ATAU + pUCP19-exoU_S142A-spcU). Three hours after 

infection, Hela lysates were prepared and immunoblotted with ExoU anti-serum. 

Native ExoU (ExoU) and modified ExoU (ExoU*) protein bands are indicated.
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4.3,2. The C-terminus is required for ExoU modification

In order to determine whether the N-terminus of ExoU is required for this observed 

modification, a number of FLAG-tagged N-terminal deletion mutants of ExoU S I42A 

were generated in the pCMV-Tag2 vector (Fig. 4,2A). Immunoblot analysis of lysates 

from HeLa cells transfected with the N-terminal deletion mutants revealed that deletion 

of up to the N-terminal 82 amino acids of ExoU did not abolish ExoU modification 

(Fig. 4.2B, N1-N7). When the N-terminal 122 amino acids of ExoU were deleted it was 

difficult to determine whether ExoU had been modified or not (Fig. 4.2B, N8). The 

larger the N-terminal deletion, the closer the modified and unmodified ExoU proteins 

migrated during SDS-PAGE; therefore, the modified ExoU band in the N8 deletion 

mutant may be obscured by the unmodified ExoU band.

To assess the importance of the C-terminus in ExoU modification, a number of C- 

terminal deletion mutants of FLAG-tagged ExoU S I42A were constructed (Fig. 4.3A). 

The ability of these C-terminal deletion mutants to be modified was then assessed by 

Western blot analysis. The C-terminal deletion mutants C l -  C6 were not modified 

when transfected into HeLa cells as shown by the absence of higher molecular weight 

protein bands in these samples (Fig. 4.3B, C l -  C6). The C-terminal deletion mutant 

C6 lacked only the last 9 amino acids of ExoU and yet was not capable of being 

modified to a higher molecular weight form. This indicates that the last 9 amino acids 

of ExoU, residues 679 to 687, are essential for ExoU modification. The C7 deletion 

mutant has a stop codon at residue 684 and this mutant was modified when transfected 

into HeLa cells (Fig. 4.3B, C l). This narrows down the region important for ExoU 

modification to the 5 amino acids between positions 679 and 683.

The C-terminal 9 amino acids of ExoU S I42A (Fig. 4.4A) were individually mutated to 

alanine residues (apart from the alanine residue at position 680). All the alanine 

mutants retained their ability to be modified to a higher molecular weight form when 

transfected into HeLa cells apart from the W681A mutant (Fig. 4.4B). When the 

tryptophan residue at position 681 was substituted with an alanine, the level of modified 

ExoU observed was greatly reduced. Although this Western blot does not show a band 

for modified ExoU in the W681A mutant sample (Fig. 4.4B, W681A), when the blot 

was exposed to photographic film for a lot longer, a faint band was detectable.
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Fig. 4.2. Modification of N-terminal deletion m utants of ExoU.

A) A number of ExoU N-terminal deletion mutants (N 1 - N 8 ) were generated in 

pCMV-Tag2-ExoU_S142A. The size of the truncations (not to scale) are indicated in 

relation to the important catalytic residues of ExoU; these are shown as GXGXXG 

(111-116), S142 amd D344. The FLAG tag is shown in red. B) He La cells were 

transfected with pCMV-Tag2-ExoU_S142A (WT) and the N-terminal deletion mutants 

(N 1 -  N8 ) and the lysates were immunoblotted with an anti-FLAG antibody.
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Fig. 4.3. Modification of C-terminal deletion mutants of ExoU.

A) A number of ExoU C-terminal deletion mutants (C1-C7) were generated in pCMV- 

Tag2-ExoU_S142A. The size of the truncations (not to scale) are indicated in relation 

to the important catalytic residues of ExoU; these are shown as GXGXXG (111-116), 

S142 amd D344. The FLAG tag is shown in red. B) HeLa cells were transfected with 

pCMV-Tag2-ExoU_S 142A (WT) and the C-terminal deletion mutants and the lysates 

were immunoblotted with an anti-FLAG antibody.
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Fig. 4.4. Modification of C-terminal alanine substitution mutants of ExoU.

A) The final 9 amino acids of ExoU in pCMV-Tag2-ExoU_S142A, shown to the right 

of the FLAG-tagged ExoU molecule, were individually mutated to alanine. B) He La 

cells were transfected with pCMV-Tag2-ExoU_S142A (WT) and the C-terminal alanine 

substitution mutants and the lysates were immunoblotted with an anti-FLAG antibody. 

Native ExoU (ExoU) and modified ExoU (ExoU*) protein bands are indicated.
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4.3.3, ExoU is diubiquitinated at lysine residue 178

We have demonstrated that ExoU is modified to a higher molecular weight form after 

transfection and infection of HeLa cells. This modification is dependent on the C- 

terminal region between amino acids 679 and 683, with the tryptophan at residue 681 

being particularly important. It is unlikely that this tryptophan is the modified residue 

because a small amount of modification does occur in the W681A mutant. To 

determine what this modification was, the modified ExoU protein was analysed by mass 

spectrometry.

The modified ExoU protein was prepared by immunoprecipitating the lysate of HeLa 

cells transfected with pCMV-Tag2-ExoU_S142A with anti-FLAG M2 affinity gel and 

subjecting the 2 x SDS gel loading buffer eluted material to SDS-PAGE (Fig. 4.5A). 

The gel was stained with commassie blue and the modified ExoU band (Fig. 4.5A, 

ExoU*) was cut out of the gel. The gel band was destained, reduced and alkylated and 

then the protein was digested with trypsin. The trypsin-digested peptides were purified 

by reverse phase liquid chromatography before being analysed by tandem mass 

spectrometry. Analysis of the peptide mass spectral data using a bacterial database 

confirmed the protein to be ExoU from P. aeruginosa. Using a human protein database, 

numerous peptides from ubiquitin were also identified (Fig. 4.5B, red amino acids). 

Ubiquitin is a 76 amino acid protein whose C-terminal glycine carboxy group can form 

an isopeptide bond with the e-amino group of a lysine residue in a target protein. 

Further analysis of the peptide mass spectral data from the modified ExoU protein 

revealed that ubiquitin was conjugated to lysine residue 178 of ExoU. Similar analysis 

of the unmodified ExoU protein showed that it was not modified by ubiquitin. Mass 

spectrometry also revealed that serine residue 30 is probably phosphorylated in both the 

unmodified and ubiquitinated toxins to a small degree.

The molecular weights of the complete unmodified and modified forms of 

immunoprecipitated ExoU were then determined by mass spectrometry. The molecular 

weight of the unmodified ExoU was measured at 75,493.0 Da, compared to a theoretical 

value of 75,489.0 Da. The theoretical value takes into account both the S I42A mutation 

and the P447L variant (section 3.3.1), as well as N-terminal acétylation (the ExoU N- 

terminal peptide with an acetyl group was observed during the mass spectrometry
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analysis). The consistent 4 Da discrepancy between the measured and theoretical 

molecular weights for unmodified ExoU is slightly higher than the estimated error of ±

1-2 Da. This difference in molecular weights may be accounted for by multiple 

deaminations, amino acid substitutions or residual salt in the sample. The measured 

molecular weight of the modified ExoU was 17,094.4 Da higher than that of the 

unmodified ExoU, which could only be accounted for by the addition of two ubiquitin 

residues per molecule of ExoU (theoretical increase 17.093.6 Da).

Ubiquitin itself can be ubiquitinated at any one of its 7 lysine residues resulting in a 

polyubiquitin chain. The presence of one ubiquitination site in ExoU and the 

observation that the increase in molecular weight is accounted for by the addition of two 

ubiquitin moieties per ExoU molecule, suggests that ExoU is diubiquitinated at lysine 

residue 178. Further analysis of the mass spectral data obtained from the tryptic digest 

of modified ExoU showed that two different ubiquitin linkages could be identified, 

involving lysines at positions 48 and 63. However, the lysine 63 linked form was 

present at much higher abundance than the lysine 48 linked form.

To confirm that the modified ExoU band represents ExoU diubiquitinated at lysine 

residue 178, we examined whether mutation of this lysine to an arginine abolished 

ExoU modification. HeLa cells transfected with the empty pCMV-Tag2 vector and 

immunoprecipitated with anti-FLAG affinity gel, as expected did not have any protein 

bands when immunoblotted with anti-ubiquitin or anti-FLAG antibodies (Fig. 4.6, 

pCMV-Tag2). Western blot analysis of immunoprecipitaed HeLa cell lysates from cells 

transfected with pCMV-Tag2-ExoU„S142A revealed that the modified band of ExoU 

contained ubiquitin (Fig. 4.6, ExoU_S142A). When HeLa cells were transfected with 

the K178R mutant of ExoU S I42A and the lysate was immunoprecipitated with anti- 

FLAG agarose beads, immunoblotting with an anti-ubiquitin antibody revealed no 

bands and when the sample was immunoblotted with an anti-FLAG antibody there was 

no higher molecular weight form of ExoU (Fig. 4.6, ExoU_S142A_K178R). These 

results confirm that the presence of the higher molecular weight band when HeLa cells 

are transfected or infected with ExoU is a consequence of ubiquitination of lysine 

residue 178 of ExoU.
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Fig. 4.5. Immunprecipitation and mass spectrometry analysis of modified ExoU.

A) HeLa cells were transfected with pCMV-Tag2B-ExoU_S142A and the lysate was 

immunoprecipitated with anti-FLAG agarose beads. A size marker (M), total lysate of 

HeLa cells transfected with pCMV-Tag2B-ExoU_S142A (L) and the proteins 

immunoprecipitated from the lysate with anti-FLAG agarose beads (a-FLAG IP) were 

subjected to SDS-PAGE and the gel was coomassie stained. ExoU, modified ExoU 

(ExoU*) and the a-FLAG IgG, heavy chain protein bands are identified. The dashed 

boxes indicate the portions of gel excised and subjected to mass spectroscopy analysis.

B) Tandem mass spectrometry analysis revealed that the modified ExoU band contained 

ExoU and ubiquitin. The ubiquitin peptides identified by mass spectrometry are 

indicated in red.
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Fig. 4.6. Ubiquitination of lysine residue 178 in ExoU.

HeLa cells were transfected with an empty vector control (pCMV-Tag2), this vector 

encoding lipase-inactive ExoU (ExoU_S142A) or pCMV-Tag2 encoding lipase-inactive 

ExoU containing the K178R substitution mutation (ExoU_S142A_K178R). Lysates 

were immunopreciptated with a-FLAG agarose beads and eluted proteins were 

immunoblotted with a-ubiquitin then a-FLAG antibodies. ExoU and ubiquitinated 

ExoU (ExoU-Ub) protein bands are indicated.
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4.3.4. Co-immunoprecipitation and mass spectrometry analysis failed to identify 

the eukaryotic cofactor for ExoU.

The immunoprécipitation reaction we carried out in order to purify the unmodified and 

modified ExoU protein bands (section 4.3.3) could also be utilised to identify potential 

cofactors of ExoU. Any protein that bound to ExoU would co-immunoprecipitate with 

FLAG-tagged ExoU and potentially be visible on an SDS polyacrylamide gel. When 

we carried out the initial immunoprécipitation, there were a few faint protein bands on 

the SDS polyacrylamide gel in addition to the ExoU, diubiquitinated ExoU and FLAG 

antibody IgG; heavy chain bands (Fig. 4.5A). We therefore scaled up our transfection 

and immunoprécipitation reaction 4-fold in an attempt to increase the abundance of any 

potential ExoU binding proteins. We also eluted using the 3 x FLAG peptide to avoid 

complication of our analysis by the IgG; heavy and light chains of the FLAG antibody. 

Proteins immunoprecipitated from He La cells transfected with pCMV-Tag2 or pCMV- 

Tag2-ExoU_S142A were subjected to SDS-PAGE and the gel was stained with 

commassie blue. The negative control immunoprecitation reaction, in which HeLa cells 

were transfected with the empty pCMV-Tag2 vector, yielded only one faint band on the 

SDS polyacrylamide gel at about 60 kDa that probably corresponds to the FLAG 

antibody IgG, heavy chain (Fig. 4.7). The immunoprecipitated sample from HeLa cells 

transfected with pCMV-Tag2-ExoU_S142A exhibited a number of bands. In addition 

to the ExoU, diubiquitinated ExoU and FLAG antibody IgG, heavy chain protein bands, 

we observed a number of faint bands (Fig. 4.7, 1 - 7 )  that could represent interacting 

proteins. Bands 1 - 7  were excised from the gel and analysed by mass spectrometry. In 

addition to ExoU, ubiquitin and keratins (a common contaminant in mass spectrometry 

analysis) four minor proteins were identified. The CD98 cell-surface antigen heavy 

chain was identified in bands 1 and 2. A mitochondrial 60 kDa heat shock protein was 

found in band 5. Analysis of band 6 identified the 52 kDa Ro/SSA protein and alpha 

enolase. Of these proteins, the 52 kDa Ro/SSA protein was the most abundant.

We decided to investigate whether CD98 and 52 kDa Ro/SSA do co-immunoprecipitate 

with ExoU. As a positive control for CD98, HeLa cell lysate was immunoblotted with 

an anti-CD98 antibody and CD98 was detected (Fig. 4.8A, HeLa lysate). When anti- 

FLAG M2 affinity gel was used for immunoprécipitation of HeLa cell lysates 

transfected with pCMV-Tag2 or pCMV-Tag2-ExoU_S142A, the 2 x SDS gel loading
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buffer eluted samples did not contain CD98 (Fig. 4.8A, a-FLAG IP). This indicates 

that the CD98 cell-surface antigen heavy chain did not interact with ExoU and its 

identification in the initial co-immunoprecipitation was spurious.

Western blot analysis of HeLa cell lysate with an anti-52 kDa Ro/SSA antibody 

identified the 52 kDa Ro/SSA protein (Fig. 4.8B, HeLa lysate). When HeLa cell lysates 

of cells transfected with pCMV-Tag2 or pCM V-Tag2-ExoU_SI42A were 

immunoprecipitated with anti-FLAG affinity gel and eluted with 2 x SDS gel loading 

buffer, two protein bands of just over 50 kDa were visible in both samples after 

immunoblotting with an anti-52 kDa Ro/SSA antibody (Fig. 4.8B, a-FLAG IP). The 

slower migrating protein band corresponds to the heavy chain of the FLAG IgG; 

antibody (Fig. 4.8B, a-FLAG IgG, heavy chain) and was detected because both the 

anti-52 kDa Ro/SSA and anti-FLAG antibodies were raised in mice. The faster 

migrating band in the immunoprecipitated samples was the 52 kDa Ro/SSA protein 

band as it co-mi grated with the protein detected in the HeLa lysate (Fig. 4.8B, 52kDa 

Ro/SSA). The presence of the 52 kDa Ro/SSA protein in both the pCMV-Tag2 and 

pCMV_Tag2-ExoU_S142A immunoprecipitated samples suggests that the 52 kDa 

Ro/SSA protein did not bind specifically to ExoU but interacted directly with the anti- 

FLAG agarose.

It is apparent that the identification of CD98 and the 52 kDa Ro/SSA proteins in the 

anti-FLAG ExoU immunoprecipitated sample was spurious as we have demonstrated 

that these proteins do not interact with ExoU. Further analysis of bands 1-7 from our 

immunoprécipitation reaction revealed that bands 1-3 appear to be variously 

ubiquitinated ExoU and bands 4-7 are mainly ExoU fragments, Bands 1-3 may 

represent ExoU modified with 4, 3, and 1 ubiquitin moieties respectively. In addition to 

the lysine residue 178 of ExoU being ubiquitinated, there is also some ubiquitination of 

lysine residue 428 observed in bands 1 and 2. In band 1, lysine 428 is 30-40% occupied 

and in band 2 there is a low level of lysine 428 ubiquitination. In contrast, lysine 178 of 

ExoU is almost fully occupied in both these bands.
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Fig. 4.7. Attempted identification of the eukaryotic cofactor of ExoU by co- 

immunoprecipitation.

HeLa cells were transfected with the empty pCMV-Tag2 vector or pCMV-Tag2- 

ExoU_S142A and immunoprecipitated with anti-FLAG affinity gel. Eluted proteins 

were subjected to SDS-PAGE and the resulting gel was coomassie stained. ExoU and 

ubiquitinated ExoU protein bands are indicated (ExoU and ExoU-Ub) in addition to 7 

minor protein bands (1-7) that were unique to the ExoU_S142A sample.
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Fig. 4.8. Testing the co-immunoprecipitation of CD98 and 52kDa Ro/SSA with 

ExoU.

HeLa cells transfected with the empty pCMV-Tag2 vector or pCMV-Tag2- 

ExoU_S142A were immunoprecipitated with anti-FLAG affinity gel. Eluted proteins 

were immunoblotted with an anti-CD98 antibody (A) or an anti-52kDa Ro/SSA 

antibody (B). As a positive control, immunoblotting of HeLa lysate with anti CD98 and 

anti-52kDa Ro/SSA was also carried out. The anti-FLAG IgG, heavy chain and 52kDa 

Ro/SSA protein bands are indicated in the anti-52kDa Ro/SSA immunoblot.
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4.3.5. Effect of ubiquitination on turnover of ExoU

The most studied consequence of ubiquitination of a protein is to target that protein for 

destruction by the proteosome. For a protein to be targeted for proteolysis it requires a 

polyubiquitin chain of at least four ubiquitin molecules. We have demonstrated that 

ExoU is mainly diubiquitinated, therefore rendering it unlikely to be targeted for 

proteasomal degradation. Protein ubiquitination, however, is involved in a number of 

other processes, for example protein localisation, transcriptional activation, chromatin 

structure, kinase activation, DNA repair and ribosome function. Ubiquitination can also 

result in protein degradation by the lysosome. To determine whether diubiquitination of 

ExoU leads to its degradation, we compared the kinetics of ubiqutinated ExoU 

degradation to that of unmodified ExoU.

FleLa cells transfected with pCM V-Tag2-ExoU„S142A were treated with 

cyclohexamide to prevent further protein synthesis. At a number of time points after 

cycloheaxamide treatment, lysates were prepared and immunoblotted with anti-FLAG 

(Fig. 4.9A). The amount of protein in each band was measured as a percentage of that 

observed at 0 hours (Fig. 4.9B). It is evident that the amount of ExoU exceeded that of 

ubiquitinated ExoU at all time points (Fig. 4.9A) and that both forms of the protein 

decreased over time after treatment with cyclohexamide (Fig. 4.9B). Although the 

initial decrease in the amount of ExoU and modified ExoU was similar, after 12 hours 

there was significantly more degradation of ubiquitinated ExoU compared to non- 

ubiquitinated ExoU. Unmodified ExoU decayed with a half-life of between 7-8 hours 

in contrast to ubiquitinylated ExoU which consistently turned over rather faster, with a 

half-life between 5-6 hours (Fig. 4.9B). By 24 hours, there was no detectable 

ubiquitinated ExoU but still about 13% of unmodified ExoU compared to that observed 

in the zero hour sample. Thus, diubiquitination of ExoU appeared to lead to a small but 

significant increase in degradation compared to the non-ubiquitinated form.
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Fig. 4.9. Half-life of ExoU and ubiquitinated-ExoU in HeLa cells.

A) HeLa cells were transfected with pCMV-Tag2-ExoU_S142A and treated with 

cyclohexamide 12 hours after transfection. Lysates prepared 0, 4, 8 , 12 and 24 hours 

after cyclohexamide treatment were immunoblotted with an anti-FLAG antibody. B) 

The intensity of each ExoU (ExoU) and ubiquitinated ExoU (ExoU-Ub) band was 

measured and expressed as a percentage of the total protein in the ExoU and 

ubiquitinated ExoU bands at the 0 time point. The experiment was carried out in 

triplicate and the average values were plotted with standard deviation bars.
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4.3.6. ExoTJ is localised to the plasma membrane after transfection

In agreement with our immunoblot analysis, ExoU was not detected by 

immunofiourescence when HeLa cells were transfected with a construct encoding 

FLAG-tagged ExoU (Fig. 4.10A, ExoU). However, when pCMY“Tag2-ExoU_S142A 

was transfected into HeLa cells, the phospholipase inactive FLAG-tagged ExoU was 

visible by immunofluorescent staining (Fig. 4.10A, S142A). Immunofluorescence of 

HeLa cells transfected with ExoU S I42A revealed that ExoU localised specifically to 

the plasma membrane (Fig. 4.10A, S142A). The distribution of ExoU at the plasma 

membrane appeared punctate in nature, with ExoU seeming to cluster in small dot-like 

regions around the cell. Some ExoU staining was also observed in the cytoplasm of the 

HeLa cells.

To confirm the sub-cellular localisation of ExoU S142A, the lysate of HeLa cells 

transfected with pCMV-Tag2-ExoU„S142A was fractionated into a particulate 

membrane-enriched fraction and a cytosolic fraction by ultracentrifugation. 

Immunoblotting these two fractions with an anti-FLAG antibody showed that the 

majority of ExoU separated with the particulate membrane-enriched fraction while a 

smaller amount of ExoU was found in the cytosolic fraction (Fig. 4.10B, top panel). It 

was also evident that diubiquitinated ExoU was localised exclusively in the particulate 

fraction of HeLa cells (Fig, 4.10B, ExoU*)- To assess the success of the fractionation 

technique the same membrane was stripped and reprobed with an anti-calnexin antibody 

and an anti-GAPDH antibody. The integral membrane protein calnexin was detected 

exclusively in the particulate membrane-enriched fraction (Fig. 4.10B, middle panel) 

while the cytosolic protein GAPDH separated predominantly with the cytosolic fraction 

(Fig. 4.10B, bottom panel). There was a small amount of GAPDH detected in the 

particulate fraction (Fig. 4.10B, bottom panel) that was probably the consequence of the 

incomplete removal of the supernatant from the pellet during the fractionation protocol.

When HeLa cells were transfected with FLAG-tagged ExoU S I42A and stained using 

an anti-FLAG antibody without prior permeabilisation of the cells, no ExoU was 

detected (results not shown). This suggests that ExoU was not localised to the outside 

of the cell, but remained localised at the inner plasma membrane.
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Fig. 4.10. Localisation of ExoU in HeLa cells after transfection.

A) HeLa cells were transfected with pCMV-Tag2-ExoS (ExoS) or pCMV-Tag2- 

ExoS_S142A (SI42A) and stained for ExoU (green) after 16 h. Deconvolved images 

are shown; nuclei are counterstained with DA PI. Scale bar = 10 pm. B) HeLa cells 

transfected with pCMV-Tag2-ExoU_S142A were fractionated into cytoplasm and 

particulate membrane-enriched fragments and analysed for ExoU by immunoblotting 

with an anti-FLAG antibody. The blot was stripped and reprobed with antibodies for 

calnexin (membrane protein) and GAPDH (cytoplasmic protein) to guage purity of 

fractions.
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4.3.7, The C-terminus is essential but not sufficient for ExoU localisation

To determine which regions of ExoU were required for localisation to the plasma 

membrane, we assessed the localisation of the N-terminal deletion mutants N7 and N8 

(Fig. 4.2A) and the C-terminal deletion mutants Cl -  C7 (Fig. 4.3A) of ExoU S I42A in 

transfected HeLa cells. Immunofluorescent analysis showed that the N-terminal 122 

amino acids were not required for localisation of ExoU S I42A to the plasma membrane 

as both N7 and N8 retained the wild type plasma membrane localisation phenotype 

(Fig. 4.11, N7 and N8). The C-terminal deletion mutants Cl - C6 did not localise to the 

plasma membrane but were situated uniformly throughout the cytoplasm (Fig. 4.11, Cl 

-  C6). In contrast, the C7 C-terminal deletion mutant of ExoU S142A, which is 

truncated four amino acids before the end of the protein, did localise to the plasma 

membrane (Fig. 4.11, C7). These results indicate that the region between amino acids 

679 and 683 that is required for diubiquitination of ExoU is also required for 

localisation to the plasma membrane.

Plasma membrane localisation of the C-terminal alanine substitution mutants (Fig. 

4.4A) also correlated with diubiquitination of ExoU. Mutation of only the tryptophan 

residue at position 681 altered localisation of ExoU S142A. When any of the other 

residues in the C-terminal 9 amino acids of ExoU were substituted with alanine, they all 

retained their plasma membrane localisation (Fig. 4.12). In contrast, the W681A mutant 

was mainly found in the cytosol of HeLa cells with only a small amount being 

associated with the plasma membrane (Fig. 4.12, W681A).

These results indicate that the C-terminal region between amino acids 679 and 683, and 

particularly the tryptophan at position 681, are required for plasma membrane 

localisation. To determine whether the C-terminal region is sufficient for plasma 

membrane localisation, a construct containing the C-terminal 33 amino acids of ExoU 

fused to EGFP was transfected into HeLa cells and the localisation of EGFP assessed. 

Both EGFP and EGFP fused to the C-terminal 33 amino acids of ExoU showed uniform 

staining throughout the cytoplasm (Fig. 4.13). This demonstrated that the C-terminal 33 

amino acids of ExoU were not sufficient for plasma membrane localisation.
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Fig. 4.11. Localisation of N- and C-terminal deletion mutants of ExoU.

HeLa cells were transfected with pCMV-Tag2-ExoS_S142A (WT) or various N- or C 

terminal deletion mutants of pCMV-Tag2-ExoS_S142A and stained for ExoU (green) 

after 16 h. Deconvolved images are shown; nuclei are counterstained with DA PI. Scale 

bar = 1 0  pm.
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Fig. 4.12. Localisation of the C-terminal amino acid mutants of ExoS.

HeLa cells were transfected with pCMV-Tag2-ExoS_S142A (WT) or various C- 

terminal amino acid substitution mutants of pCMV-Tag2-ExoS_S142A and stained for 

ExoU (green) after 16 h. Deconvolved images are shown; nuclei are counterstained 

with DA PI. Scale bar = 10 pm.
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Fig. 4.13. Localisation of an EGFP-ExoU C-terminal fusion protein.

Representative fields showing fluorescence of cells transfected with constructs encoding 

EGFP or a fusion protein of EGFP with the C-terminal 33 amino acids of ExoU (EGFP- 

ExoU653-687). Scale bar = 10 pm.

219



4.3.8. Ubiquitination is not required for plasma membrane localisation

The experiments above demonstrated that the C-terminal deletion mutants of ExoU 

S I42A that were not diubiquitinated were also not localised to the plasma membrane 

and the W681A mutant that showed only a very small amount of modification also 

showed a greatly reduced plasma membrane localisation. This correlation between the 

residues required for the two phenotypes and the observation that the diubiquitinated 

form of ExoU is found exclusively in the particulate membrane-enriched fraction of 

HeLa cell lysates, suggests that diubiquitination is either the cause or consequence of 

plasma membrane localisation.

To distinguish between the possibilities that diubiquitination results in plasma 

membrane localisation or plasma membrane localisation results in diubiquitination, we 

examined the localisation of the K178R mutant of ExoU S142A. When HeLa cells 

were transfected with a construct encoding ExoU S I42A K178R, immunofluorescent 

staining showed that this mutant retained the wild type membrane localisation 

phenotype (Fig. 4.14, K178R). Thus, abolishing the ability of ExoU to be 

diubiquitinated did not prevent plasma membrane localisation. Diubiquitination must 

therefore only occur after prior localisation of ExoU to the plasma membrane and the 

requirement for the C-terminus in diubiquitination is probably a consequence of its role 

in plasma membrane localisation.

The mass spectroscopy results indicated that there was also a small amount of 

ubiquitination of lysine residue 428 in ExoU (section 4.3.4). To establish whether 

ubiquitination at this site effected ExoU localisation, we assessed the localisation of the 

K428R mutant of ExoU S142A, The K428R mutant localised to the plasma membrane 

of HeLa cells (Fig. 4.14, K428R) showing that modification of this residue had no role 

in plasma membrane localisation.
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Fig. 4.14. Localisation of ubiquitination mutants of ExoU.

HeLa cells were transfected with pCMV-Tag2-ExoS_S142A (WT) or the lysine K178R 

or K428R mutants of pCMV-Tag2-ExoS_S142A and stained for ExoU (green) after 16 

h. Deconvolved images are shown; nuclei are counterstained with DA PI. Scale bar = 

10 pm.
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4.3.9, Localisation after infection mirrors that observed after transfection

When HeLa cells were transfected with constructs encoding ExoU, the toxin was 

expressed using the eukaryotic transcription and translation machinery located at the 

rough endoplasmic reticulum. Thus, trafficking of the toxin to the plasma membrane 

must occur from this site. During infection of mammalian cells with P, aeruginosa the 

ExoU toxin would be secreted fully formed into the cytoplasm of the cell. As a 

consequence, any trafficking and subsequent localisation must start from the cytosol at 

the point of ExoU injection. We therefore decided to establish whether ExoU was 

localised to the plasma membrane after infection of HeLa cells and if the regions of 

ExoU essential for localisation after transfection were also required for localisation after 

infection.

HeLa cells that were infected with the pseudomonal strain PA 103 lacking all knonw 

TTS toxins showed only background staining when immunostained with ExoU anti- 

serum (Fig. 4.15, PA 103 AT AU). When HeLa cells were infected with PA 103 AT AU 

complemented with the pseudomonal expression plasmid pUCP19 containing exoU  

S I42A and spcJJ, staining revealed that ExoU was injected into the cytoplasm of 

eukaryotic cells by the TTS system localised to the plasma membrane of these cells 

(Fig. 4.15, S142A). Examining the localisation of various ExoU mutants in HeLa cells 

after secretion by P. aeruginosa also generally mirrored the results obtained from our 

transfection studies. The mutation of the diubiquitinated lysine residue 178 did not 

prevent plasma membrane localisation (Fig. 4.15, K178R) confirming that 

diubiquitination is not required for plasma membrane localisation. The importance of 

the C-terminus in plasma membrane localisation was strengthened by the observation 

that deletion of the last 9 amino acids of ExoU abolished plasma membrane localisation 

after infection (Fig. 4.15, C6) but deletion of the last 4 amino acids did not (Fig. 4.15, 

Cl). However, when the W681A mutant of ExoU S I42A was injected into HeLa cells 

by the TTS system, localisation of this mutant to the plasma membrane was observed 

(Fig. 4.15, W681A).

In order to examine how ExoU was trafficked from the cytoplasm of eukaryotic cells 

after injection by the TTS system, we generated a construct that encoded EGFP fused to 

the C-terminus of ExoU in the pUCP19-exoU_S142A-spcU vector. Although fusion of
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EGFP to the C-terminus of ExoU, which I have previously shown to be important in 

localisation, may alter the distribution of ExoU, fusion to the N-terminus would have 

interfered with secretion of the toxin into the eukaryotic cell. When HeLa cells where 

infected with PA 103 AT AU either lacking or containing the plasmid encoding the ExoU 

S I42A EGFP fusion protein no EGFP fluorescence was observed (data not shown), 

which is in agreement with other studies that show that the TTS system cannot 

translocate GFP. No conclusions could therefore be drawn as to how ExoU gets from 

the cytoplasm of eukaryotic cells to their plasma membranes.
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Fig. 4.15. Localisation of ExoU and ExoU mutants after infection.

Representative fields showing anti-ExoU immunoflourescent staining of HeLa cells 

infected with PA 103 with the known TTS toxins deleted (PA103ATAU) and this strain 

complemented with a number of ExoU mutants in the pUCP19-exoU-spcU expression 

vector. HeLa cells were injected with ExoU_S142A (WT), ExoU_S142A_K178R, 

ExoU_S142A_W681A, ExoU_S142A_C6 (A679-687) and ExoU_S142A_C7 (A684- 

687) via the TTSS. Scale bar = 10 pm.
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4.3.10. The C-terminus of ExoU is required for toxicity after transfection

Previous studies have shown that the C-terminus of ExoU is required for toxicity in 

CHO cells and in S. cerevisiae. In order to define further the C-terminal region 

required for ExoU cytotoxicity and to determine whether the region we identified as 

being essential for plasma membrane localisation and diubiquitination of ExoU 

correlates with the ability of ExoU to kill cells, we carried out a luciferase assay to 

assess the cytoxicity of a number of ExoU mutants after transfection.

HeLa cells were co-transfected with the constitutive luciferase expressing plasmid 

pGL2-control and a number of pCMV-Tag2 constructs expressing ExoU or ExoU 

mutants. As only metabolically active cells are able to express luciferase from the 

pGL2-control plasmid, luciferase production was used as a measure of cell viability. 

When HeLa cells were transfected with pCMV-Tag2-ExoU there was over a 100-fold 

reduction in luciferase production compared to cells transfected with the empty pCMV- 

Tag2 vector (Fig. 4.16, pCMV and ExoU). When the active serine residue 142 was 

mutated to an alanine, luciferase production was as high as that observed with the empty 

pCMV-Tag2 vector (Fig. 4.16, S142A) confirming that the S I42A mutant renders 

ExoU non-toxic. When we transfected HeLa cells with a construct expressing ExoU 

with the C-terminal residues 663 -  687 deleted (Fig. 4.16, C4) luciferase production 

was as high as that observed by HeLa cells transfected with either the empty pCMV- 

Tag2 vector or the inactive ExoU S I42A mutant. Therefore a region within the C- 

terminal 25 amino acids is essential for ExoU toxicity in HeLa cells. HeLa cells 

transfected with ExoU truncated at either residue 671 or 679 (Fig. 4.16, C5 and C6) 

produced much more luciferase than cells transfected with wild type ExoU but 

significantly less luciferase than HeLa cells transfected with the inactive ExoU SI42A 

mutant. This result suggested that a region between amino acids 663 and 670 was 

required for full toxicity of ExoU but that deletion of the final 9 residues was sufficient 

to substantially reduce the activity of ExoU. When the last 4 amino acids of ExoU were 

deleted (Fig. 4.16, C7), ExoU retained its wild type toxicity phenotype. Therefore the 

same C-terminal region, amino acids 679 - 683, required for diubiquitination and 

plasma membrane localisation of ExoU was also required for full toxicity of ExoU in 

HeLa cells.
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The contribution of the single amino acids in the C-terminal 679 -  684 region to ExoU 

cytoxicity was investigated by measuring the luciferase production from HeLa ceils co­

transfected with pGL2-control and one of the single alanine substitution mutants (Fig. 

4.16, K679A, W681A, R682A, N683A). Mutation of no single amino acid to alanine in 

this region altered the toxicity of ExoU including mutating the tryptophan residue that 

we have shown to be important to ExoU localisation and modification.

In order to assess the contribution of ubiquitination to ExoU toxicity, we tested the 

action of the lysine mutants K178R and K428R in HeLa cells. Mutation of either lysine 

residue to arginine, did not affect the toxicity of ExoU (Fig. 4.16, K178R and K428R) 

as HeLa cells transfected with either construct produced approximately the same 

amount of luciferase as cells transfected with wild type ExoU.

Further indication of the importance of the ExoU C-terminus in cytotoxicity and the 

differential toxicity of the C-terminal deletion mutants was provided by imunoblotting 

lysates of HeLa cells transfected with various C-terminal deletion mutants. As noted 

before, wild type ExoU cannot be observed by Western blot analysis of transfected cells 

(Fig. 4.17, ExoU) and the toxin had to be rendered non-toxic, for example by mutation 

of the active site serine 142, in order for it to be visualised (Fig. 4.17, S142A). When 

HeLa cells were transfected with a construct encoding ExoU truncated 25 amino acids 

before the end (Fig. 4.17, C4), a similar amount of protein was observed on the 

immunoblot as that seen for the ExoU S I42A mutant. When the C-terminal 17 or 9 

residues of ExoU were deleted and transfected into HeLa cells, ExoU was detectable by 

immunoblotting (Fig. 4.17, C5 and C6) although there was substantially less protein 

present compared to the S I42A or C4 ExoU mutants. When the final 4 amino acids of 

ExoU were deleted, no protein was visualised in the lysate of transfected HeLa cells on 

a Western blot (Fig. 4.17, Cl). Although this was an uncontrolled experiment, with no 

measure of the transfection efficiency and no loading control, the ability to observe the 

C5 and C6 ExoU mutants by Western blot analysis indicates that they are not as toxic as 

wild type ExoU. However the apparent decrease in signal compared to HeLa cells 

transfected with the non-toxic ExoU S I42A mutant after the same amount of DNA has 

been transfected, suggests that the C5 and C6 ExoU mutants still retain some toxicity as 

shown in the luciferase toxicity assay.
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Fig. 4.16. Toxicity of ExoU and ExoU mutants after transfection.

HeLa cells were co-transfected with the luciferase expressing plasmid pGL2-control 

and either empty pCMV-Tag2 vector or the pCMV-Tag2 vector containing exoU  or 

exoV  mutants. 48 hours after transfection, luciferase production was measured as the 

relative light units (RLU) produced from the cell lysates over a 10 second period. The 

average results of three separate transfections are shown and error bars represent 

standard deviation of the mean.
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Fig. 4.17. Expression of C-terminal deletion mutants of ExoU after transfection.

HeLa cells were transfected with pCMV-Tag2 encoding active ExoU, lipase-inactive 

ExoU_S142A or a number of C-terminal deletion mutants of WT ExoU. 16 hours after 

transfection the HeLa cell lysates were analysed by immunoblotting with an anti-FLAG 

antibody. ExoU and ubiquitinated ExoU (ExoU-Ub) protein bands are indicated.
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4.3.11. The C-terminus of ExoU is required for toxicity after infection

To confirm the cytoxicity results gained from the transfection studies in an infection 

setting, we used an LDH assay to assess cell death resulting from infection of HeLa 

cells with P. aeuriginosa expressing ExoU and various ExoU mutants. The stable 

cytosolic enzyme LDH is released upon cell lysis and provides a good measure of cell 

death, with 100% cell death corresponding to the amount of LDH released when all the 

cells are lysed.

When HeLa cells were infected with PA 103 AT AU very few cells were lysed 3 hours 

after infection (Fig. 4.18, PA103ATAU). When this pseudomonal strain was 

complemented with wild type exoU and spcU in the pUCP19 expression vector, about 

65% of cells were lysed after 3 hours (Fig. 4.18, pUCP19-exoU-spcU). Mutating the 

active site serine 142 to an alanine in pUCP19-exoU-spcU rendered ExoU non-toxic as 

shown by the lack of cell death after infection with PA 103 AT AU secreting ExoU SI 42 A 

(Fig. 4.18, S142A). Mutating either the diubiquitinated lysine residue 178 to an 

arginine or the tryptophan residue 681 to an alanine did not alter ExoU toxicity, with at 

least 65% of cells being lysed after infection (Fig. 4.18, K178R and W681A). When 

ExoU lacking the final 9 amino acids was secreted into HeLa cells by the TTSS, very 

few cells were killed (Fig. 4.18, C6). However, when the last 4 amino acids of ExoU 

were deleted and this mutant was injected into HeLa cells, it resulted in ExoU wild type 

levels of cell death (Fig. 4.18, C7). Therefore amino acids 679 -  683 are required for 

ExoU toxicity both after transfection and infection but the diubiquitinated lysine residue 

178 and the tryptophan residue 681 are not essential for the observed cytoxicity.
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Fig. 4.18. Toxicity of ExoU and ExoU mutants after infection.

HeLa cells were infected with a pseudomonal strain lacking all known TTS toxins 

(PA103ATAU) or this strain complemented with a construct encoding ExoU and its 

cognate chaperone, SpcU (pUCP19-exoU-spcU) or this strain complemented with 

ExoU mutants and SpcU. Cell death was calculated by measuring LDH release from 

infected cells 4 hours after infection and is expressed as a percentage of LDH release 

from complete cell lysis. The average results of three separate infections are shown and 

error bars represent standard deviation of the mean.
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4.3.12. The C-terminus of ExoU is required for phospholipase activity

We have demonstrated that the C-terminus of ExoU is essential for localisation of the 

toxin to the plasma membrane, diubiquitination of lysine residue 178 and toxicity. In 

order to examine the requirement of the C-terminus of ExoU on the catalytic activity of 

this enzyme we measured the phospholipase activity of recombinant ExoU and a 

number of recombinant ExoU mutants.

It has been previously demonstrated that ExoU needs an, as yet unknown, eukaryotic 

cofactor for activation. Therefore, when the phospholipase activity of recombinant 

ExoU alone was measured, no activity was detected (Fig. 4.19, rExoU). When we 

added HeLa cell lysate to recombinant ExoU, it had an activity of about 57 

nmoles/min/g (Fig. 4.19, rExoU + lysate). Although HeLa cell lysate exhibits a small 

amount of phospholipase activity (Fig. 4.19, Lysate) the majority of that observed was 

the result of the recombinant ExoU action. As previously demonstrated, mutation of the 

active site serine abolished phospholipase activity, with activity reduced to background 

lysate levels (Fig, 4.19, S I42A + Lysate). Truncation of ExoU at residue 679 also 

resulted in a loss of phospholipase activity (Fig. 4.19, C6 + Lysate). Deletion of the last 

4 amino acids of ExoU did not affect the phospholipase activity of the protein (Fig.

4.19, C l  + Lysate). Also mutation of the diubiquitinated lysine residue 178 did not alter 

activity of ExoU (Fig. 4.19, K178R + Lysate). Mutation of the tryptophan residue 681 

did not alter the cytotoxicity of ExoU in either the transfection or infection toxicity 

assays described above but in the phospholipase assay, the W681A mutant showed a 

much reduced phospholipase activity compared to wild type recombinant ExoU 

although it exhibited significantly more phospholipase activity than the lysate 

background control (Fig. 4.19, W681A + Lysate).
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Fig. 4.19. Phospholipase activity of recombinant ExoU and ExoU mutants.

The PLAj activity of recombinant ExoU and a number of recombinant ExoU mutants 

was measured as the nmoles of free thiol released from hydrolysis of the arachidonoyl 

thioester bond at the sn-2 position in aracidonyl thio-PC in 1 minute by 1 gram of 

recombinant protein. The intrinsic PLAj activity of HeLa cell lysate and recombinant 

ExoU in the absence of HeLa cell lysate is indicated. Each assay was performed in 

triplicate. Error bars represent standard deviation of the mean.
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4.3.13. The eukaryotic cofactor for ExoU is localised in the particulate, membrane- 

enriched fraction of HeLa cells

The requirement of the same ExoU C-terminal residues for toxicity and plasma 

membrane localisation may be accounted for by the presence of the ExoU eukaryotic 

cofactor at the plasma membrane. In order to assess whether the eukaryotic cofactor for 

ExoU phopsholipase activity was membrane localised, we fractionated HeLa cell 

extracts into cytoplasmic and particulate membrane-enriched fractions and determined 

the ability of each fraction to activate recombinant ExoU in the in vitro phospholipase 

assay.

Our results demonstrate that as expected, neither the recombinant ExoU, the total HeLa 

cell extract, the cytoplasmic HeLa cell fraction or the particulate membrane-enriched 

HeLa cell fraction were able to hydrolyse phospholipids effectively on their own (Fig.

5.20, rExoU, Lysate, Lysate C, Lysate M). As illustrated previously (section 5.3.12), 

when ExoU was incubated with total HeLa cell extract it was shown to be active (Fig.

5.20, rExoU + lysate). Recombinant ExoU incubated with the cytoplasmic HeLa cell 

fraction exhibited very little phopsholipase activity (Fig. 5.20, rExoU + lysate C), 

whereas recombinant ExoU incubated with the particulate membrane-enriched HeLa 

cell fraction was very active (Fig. 5.20, rExoU + lysate M). Therefore, the eukaryotic 

cofactor required for the phopsholipase activity of recombinant ExoU fractionates with 

the particulate membrane-enriched HeLa cell fraction.
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Fig. 4.20. Co-factor for ExoU resides in a particulate HeLa cell fraction

Phospholipase activity of recombinant ExoU was determined alone or in the presence of 

unfractionated HeLa cell extract (lysate) or the HeLa cell lysate fractionated into a 

particulate (lysate M) or cytoplasmic (lysate C) fraction.
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4.3.14. ExoU binds specifically to certain phospholipids

The C-terminus of ExoU is required for directing the toxin to the plasma membrane of 

eukaryotic cells. The C-terminus may be essential for binding to a protein that anchors 

ExoU to the plasma membrane or it may interact directly with the plasma membrane. 

Although there are no obvious plasma membrane localisation signals within the C- 

terminus of ExoU it may anchor the rest of the protein in place by interacting with 

specific phospholipids in the membrane. In order to test this hypothesis, 

phosphoinositide coated beads were used to pull down ExoU from the lysate of HeLa 

cells transfected with pCMV-Tag2-ExoU_S142A. Proteins eluted off the 

phosphoinositide coated beads were then analysed by Western blotting with the anti- 

FLAG antibody (Fig. 4.21A). ExoU appears to interact specifically with 

phosphatidylinositol-3-phosphate (PI(3)P), phosphatidylinositol-4-phosphate (PI(4)P) 

and phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)?3) and ubiquitinated ExoU seems 

to interact with PI(3)P and PI(4)P. There did not appear to be any binding to 

phosphatidylinositol (Ptdlns, PI) phosphatidylinositol-5-phosphate (PI(5)P). 

phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2), p h o sp h atid y lin o sito l-3 ,5- 

bisphosphate (PI(3,5)P2) or phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2. 

Unfortunately, this method produced highly variable results when repeated.

In an attempt to use a more consistent method to assess the binding of ExoU to 

phospholipids we measured the binding of recombinant ExoU to phospholipids 

immobilised on a nitrocellulose membrane. The membrane was incubated with 

recombinant ExoU S142A, washed and then immunoblotted with an anti-His antibody. 

Recom binant ExoU SI 42 A reproducibly interacted strongly with the 

phosphatidylinositol m onophosphates, with interm ediate strength to the 

phosphatidylinositol bisphosphates and phosphatidic acid and more weakly to 

phosphatidylinositol triphosphate, phosphatidylserine and lysophosphatidic acid (Fig. 

4.21B, S142A).

To determine if the region we identified as being important for localisation of ExoU to 

the plasma membrane was also required for the observed binding to the phospholipids, 

we assessed the binding of a number of recombinant ExoU mutants. Mutation of the 

lysine residue 178 or the tryptophan residue at 681 did not alter the binding affinity of
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ExoU for the phospholipids (Fig. 4.21B, K178R and W681A). Truncation of ExoU at 

amino acid 679 or 684 also did not affect the binding of ExoU to phospholipids (Fig. 

4.21B, C6 and C7). These results indicate that the plasma membrane localisation of 

ExoU cannot be explained by the binding of the toxin to particular phospholipids.
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Fig. 4.21. Interaction between ExoU and phospholipids.

A) Phosphoinositide coated agarose beads were used to pull down proteins from the 

lysate of HeLa cells transfected with pCMV-Tag2-ExoU_S142A. The presence of 

ExoU in the proteins pulled down by the phosphoinositide coated beads was assessed by 

immunoblotting with an anti-FLAG antibody. B) The binding of recombinant ExoU 

mutants to various phospholipids was assessed by incubating membranes with the 

phospholipids spotted onto them with the recombinant ExoU mutants and 

immunoblotting with an anti-His antibody.
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4.3.15. Phospholipids do not activate ExoU phospholipase activity

The requirement of a eukaryotic cofactor to activate ExoU that we have been unable to 

identify by co-immunoprecipitation combined with the specific binding of ExoU to 

particular phospholipids, led us to speculate that a phospholipid may be the activating 

factor. To test this theory, we investigated whether any of the phosphatidylinositol 

mono- or bisphosphates or phosphatidylserine were able to activate the PLA^ activity of 

ExoU. The phospholipase assay showed that none of the tested phospholipids were able 

to substitute for HeLa lysate in providing the activating cofactor for ExoU activity (Fig. 

4.22).
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Fig. 4.22. Contribution of phospholipids to the phospholipase activity of 

recombinant ExoU.

The PLAj activity of recombinant ExoU in the presence of HeLa cell lysate or a number 

of different phospholipids was measured as the nmoles of free thiol released from 

hydrolysis of the arachidonoyl thioester bond at the sn-2 position in aracidonyl thio-PC 

in 1 minute by 1 gram of recombinant protein. The intrinsic PLA2  activity of HeLa cell 

lysate and recombinant ExoU in the absence of HeLa cell lysate is indicated. Each 

assay was performed in triplicate. Error bars represent standard deviation of the mean.
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4.4. DISCUSSION

In this chapter we studied what happened to ExoU after it had been transfected or 

injected into cells by the TTS system in order to provide an insight into how this toxin 

is activated. Initially we observed that ExoU was modified to a higher molecular 

weight form in eukaryotic cells and mass spectrometry analysis revealed that this was 

the result of diubiquitination of lysine residue 178. The majority of the ubiquitin- 

ubiquitin linkages were through lysine residue 63, but lysine 48 ubiquitin linkages were 

also observed. Mass spectrometry analysis also revealed that some ExoU was modified 

by 1, 3, or 4 ubiquitin moieties and that, in addition to ubiquitination of lysine residue 

178 in ExoU, there was also a small amount of ubiquitination of lysine residue 428. 

Other modifications of ExoU indicated by mass spectrometry analysis included N- 

terminal acétylation and the probable phosphorylation of serine residue 30 in a small 

proportion of the molecules analysed. Analysis of the regions required for 

diubiquitination of lysine residue 178 revealed that the C-terminus of ExoU was 

essential for this modification. Deletion of just the last nine amino acids abolished 

diubiquitination of ExoU, whereas deletion of the last four amino acids did not, 

indicating that the region between residues 679 and 683 was important for this 

modification. Analysis of the contribution of the individual amino acids within this C- 

terminal region demonstrated that the tiyptophan residue at position 681 was important, 

with just a very small amount of diubiquitination occurring when this tryptophan was 

mutated to an alanine. We demonstrated that although diubiquitination of ExoU did not 

have a dramatic effect on the turnover of the toxin in eukaryotic cells, it did lead to a 

small but significant increase in degradation.

In addition to studying the modification of ExoU, we also determined the localisation of 

this toxin and studied how the two phenomena were related. Immunofluorescent 

staining of HeLa cells transfected or injected with ExoU via the TTS needle 

demonstrated that ExoU was localised to the inner plasma membrane of eukaryotic cells 

in a punctate fashion. Immunoblotting of cellular fractions of HeLa cells expressing 

ExoU also showed that ExoU was mainly found in the particulate membrane-enriched 

fraction with the diubiquitinated toxin exclusively separating with this fraction. 

Analysis of the localisation of the lysine 178 mutant (which is unable to be 

diubiquitinated) revealed that this ExoU mutant retained its plasma membrane
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distribution, indicating that ubiquitination was a consequence not a cause of plasma 

membrane localisation. The same C-terminal region that was shown to be important for 

diubiquitination of ExoU was also shown to be important for localisation. Deletion of 

the last 9 amino acids of ExoU abolished plasma membrane localisation whereas 

deletion of the last 4 amino acids did not. The tryptophan residue 681 required for wild 

type levels of diubiquitination was also implicated in localisation, with this mutant 

showing a diminished level of plasma membrane localisation at least in transfected 

cells. Although essential, we demonstrated that the C-terminal 33 amino acids of ExoU 

were not sufficient for localisation, indicating that other regions of ExoU are also 

required for plasma membrane targeting. Unfortunately, our attempts to study the 

trafficking of an ExoU-EGFP fusion protein from the bacterium to the eukaryotic 

plasma membrane failed. This was probably due to the inability of the stable GFP 

protein to unfold and thus pass through the TTS needle [196]. With regards to 

membrane localisation, we also assessed the binding specificity of ExoU to various 

phospholipids immobilised on either beads or nitrocellulose membranes. The 

phosphoinositide coated bead pull-down assay produced highly variable results 

probably due to the inconsistent loss of beads during the washing steps. The overlay 

assay of recombinant ExoU on nitrocellulose membranes spotted with immobilised 

phospholipids produced highly reproducible results and indicated that ExoU binds 

strongly to phosphatidlyinositol monophosphates, with intermediate strength to 

phosphatidlyinositol bisphosphates and phosphatidic acid and more weakly to 

phosphatidlyinositol triphosphates, phospatidylserine and lysophatidic acid. These 

binding properties, however, did not require the C-terminus of ExoU and thus cannot 

explain the observed plasma membrane localisation of this toxin.

In an attempt to determine the functional implications of ExoU diubiquitination and 

plasma membrane localisation we analysed the toxicity and phospholipase activity of a 

number of ExoU mutants. We showed that the same C-terminal region between amino 

acids 679 and 683 that was required for diubiquitination and plasma membrane 

localisation was also required for wild type levels of ExoU toxicity and phospholipase 

activity. Studying the toxicity of a number of ExoU C-terminal mutants also implicated 

regions N-terminal to this small 679-683 region in ExoU toxicity. For example, 

deletion of the C-terminal 25 amino acids led to a complete abolition of ExoU toxicity, 

whereas deletion of the C-terminal 17 or 9 amino acids lead to a reduction but not a
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complete elimination of toxicity. We showed that although the same C-terminal region 

was responsible for toxicity and ubiquitination, diubiquitination of lysine residue 178 

was not required for toxicity or phospholipase activity. We also demonstrated that the 

tryptophan 681 residue was not required for ExoU toxicity although it was required for 

wild type levels of phospholipase activity. This discrepancy is probably due to the 

differences in sensitivity of the assay systems. Whereas the phospholipase assay was 

able to demonstrate that the ExoU tryptophan 681 mutant had only about 20% of the 

activity of wild type ExoU, this activity was probably sufficient to cause death in 

eukaryotic cells. Therefore, any cell that was successfully transfected or injected with 

the 20% active ExoU tryptophan 681 mutant would die and thus the cell death rate 

would be the same as that for cells transfected or injected with fully toxic ExoU.

In this study we also tried to isolate the eukaryotic cofactor required for ExoU activity 

by co-immunoprecipitation of ExoU interacting proteins. This method generated a few 

possible ExoU binding proteins but further testing of the most promising candidates 

revealed that they were false positives. Although we were unable to isolate the 

cofactor, we did localise it to the particulate membrane-enriched fraction of HeLa cells 

as demonstrated by the capacity of this fraction to activate the phospholipase activity of 

recombinant ExoU and the inability of the cytosolic fraction to do so. None of the 

phospholipids we assayed were able to activate recombinant ExoU, providing further 

support for a proteinaceous eukaryotic cofactor.

In an attempt to explain our results, we have developed two alternative models for 

ExoU activation (Fig. 4.23). We have demonstrated that the C-terminus of ExoU is 

required for plasma membrane localisation, diubiquitination and phospholipase activity 

that leads to cell death. We have also shown that the eukaryotic cofactor required for 

phospholipase activity fractionates with the particulate membrane-enriched fraction of 

HeLa cells. Therefore, the cofactor may be localised at the site of ExoU action, the 

plasma membrane. In the first model, the C-terminus of ExoU is requiied foi plasma 

membrane localisation by virtue of its ability to bind to the membrane-bound eukaryotic 

cofactor. Once at its site of action in the presence of its cofactor, ExoU is able to act as 

a phospholipase and destroy the plasma membrane resulting in cell death. ExoU is also 

diubiquitinated at the plasma membrane, possibly as a result of its interaction with the 

membrane-bound co-factor, although the consequences of this modification are
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Fig. 4.23. Model of ExoU interaction with the plasma membrane.

The C-terminus (C-term) of ExoU is involved in localising the toxin to the plasma 

membrane either by (A) binding to a membrane-bound eukaryotic cofactor (CF) of by 

(B) binding directly to the phospholipid bilayer where it is then able to bind the 

cofactor. Membrane localisation of ExoU allows this phopsholipase to exert its 

catalytic activity (PLAj Activity). Membrane localisation also leads to the addition of 

two ubiquitin molecules (Ub) to lysine 178 of ExoU possibly through the action of the 

cofactor. The consequence of ExoU diubiquitination is unknown.
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unclear. The second model is similar in most respects to the first but in this case the C- 

terminus is responsible for plasma membrane localisation due to its ability to directly 

interact with the phospholipid bilayer. Once ExoU is membrane bound, the eukaryotic 

cofactor is able to bind and ExoU can act as a phospholipase and is diubiquitinated. 

Both these models suggest that the C-terminus is primarily responsible for plasma 

membrane localisation and its importance in diubiquitination and toxicity is a 

consequence of this localisation. The importance of membrane localisation for ExoU 

toxicity is similar to that observed for CPLA2 . Human cPLA^ is targeted to membranes 

via its Ca^^-dependent lipid-binding C2 domain, where it is then able to hydrolyse 

phospholipids [520]. When the C2 domain is deleted, cPLA^ is no longer able to 

hydrolyse liposomal or micellar substrates although it can still hydrolyse a monomeric 

lysophospholipid [520]. Thus the lipid-binding domain and catalytic domain of cPLAg 

are functionally distinct but are both required for hydrolysis when the substrate is an 

aggregated phospholipid. In the same way, although abolition of the C-terminus of 

ExoU renders the protein non-toxic to eukaryotic cells and inactive against an 

aggregated phospholipid substrate (our phospholipase assay utilised a micelle 

comprised of the synthetic substrate aracidonoyl thio-PC), C-terminally truncated ExoU 

may retain its activity against monomeric phospholipids.

It is intuitive that ExoU requires targeting to its phospholipid substrates in order to act 

as a phospholipase and cause cell death. We have implicated the C-terminus in this 

targeting but are unclear as to whether this targeting results from interaction with a 

membrane-bound protein or directly with the phospholipids bilayer. Human cPLAj is 

targeted to the membrane by its calcium dependent C2 domain and patatin contains a 

hydrophobic region of 50 amino acids at the N-terminus that may be involved in 

membrane binding [449, 520]. ExoU lacks homology to either of these domains and 

also does not exhibit homology to any known lipid interacting domains, thus if the C- 

terminus binds directly to the lipid bilayer it is via a novel domain. We have 

demonstrated that the tryptophan residue 681 is important for membrane localisation 

after transfection, diubiquitination and phospholipase activity. It is unclear why there is 

a discrepancy between localisation of the ExoU tryptophan mutant after transfection and 

injection by the TTS needle but it may be the result of different trafficking mechanisms. 

It is probable that the diminished membrane localisation of the tryptophan mutant 

results in the low levels of diubiquitination and the decreased phospholipase activity.
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Thus the tryptophan residue 681 may be important in the binding of ExoU to either the 

membrane-bound cofactor or the lipid bilayer. Support for the latter model, in which 

tryptophan is involved in direct membrane binding, is supplied by the observation that 

tryptophan is a key residue in supporting lipid-protein interactions [528]. For example, 

tryptophan residues are often found at the membrane-water interface of membrane 

proteins and tryptophan residues have been implicated in the interfacial binding of 

human secreted phospholipases to zwitterionic phospholipid bilayers [529, 530]. The 

side chain of tryptophan is an indole ring joined to a methylene group and it has been 

shown that this polar-aromatic amino acid has a special affinity for a region near the 

lipid carbonyls at the membrane-water interface [528].

As discussed in the introduction to this chapter, a number of lipases require 

modification or cofactor binding for the formation of an active conformation. Human 

cPLAg requires phosphorylation and interfacial activation and pancreatic triglyceride 

lipase requires colipase to open a flexible lid domain that allows the lipid substrates 

access to the catalytic site of the lipase [446, 522, 525, 526]. ExoU exhibits no obvious 

homology to the flexible lid domains of either of these lipases, but it is possible that the 

C-terminus is required for lipid binding or cofactor binding that induces a conformation 

change which allows ExoU to be active. Thus, in addition to targeting ExoU to its 

substrates, the C-terminus may also be required for inducing a phospholipase active 

conformation by virtue of its potential binding properties.

Mass spectrometry analysis revealed that ExoU was modified in a number of ways in 

eukaryotic cells, which theoretically might be involved in the activation of this toxin. 

ExoU is diubiquitinated at lysine residue 178, N-terminally acetylated and possibly 

phosphorylated at serine residue 30. We clearly demonstrated that diubiquitination of 

lysine residue 178, or the lesser ubiquitination of lysine residue 428, was not required 

for the phospholipase activity of ExoU. Also, phosphorylation of serine 30 does not 

appear important in ExoU activation as it is clear from previous studies that deletion of 

the first 52 amino acids of ExoU does not diminish the toxicity of this protein [436]. In 

the same way, N-terminal acétylation can be disregarded as an activating modification 

because deletion of the N-terminal methionine of ExoU does not abolish toxicity [436]. 

The absence of a modification that is solely responsible for ExoU activation is 

consistent with the recent findings of Sato et. al. whose results suggest that a eukaryotic
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cofactor is required at the time of phospholipid hydrolysis [447], Obviously, neither 

their results nor ours rule out the possibility of other modifications, in addition to the 

presence of the eukaryotic cofactor, being required for ExoU activation. Also, although 

phosphorylation of serine 30 is not required for ExoU activation, it remains a possibility 

that phosphorylation of another residue that was not identified in the mass spectrometry 

analysis is required.

Our discovery that ExoU is diubiquitinated at lysine residue 178 was unexpected and 

we remain uncertain as to the functional significance of this modification. To date two 

other TTS toxins have been demonstrated to be ubiquitinated in eukaryotic cells, SopE 

and SopB in Salmonella [259, 531]. SopE is a GEF for the Rho-family GTPases Cdc42 

and R ad  [256]. It is injected into eukaryotic cells by the TTS system of Salmonella 

along with a number of other toxins including SptP, a GAP for Cdc42 and R ad  [258]. 

SopE induces profuse membrane ruffling, actin cytoskeleton rearrangements and 

subsequent bacterial uptake [256]. SopE is then rapidly degraded by ubiquitin-mediated 

proteasomal degradation and the longer-lived SptP is able to reverse the cellular 

changes induced by SopE by inactivating Cdc42 and R a d  [259]. SopB is also 

translocated into eukaryotic cells by the TTS apparatus of Salmonella and acts as an 

inositol phosphatase that specifically dephosphorylates inositol (I,3,4,5,6) -  

pentakisphosphate producing Ins (1,4,5,6)P4, which is an indirect activator of Cdc42 

[286]. SopB has also been shown to be ubiquitinated in eukaryotic cells but in contrast 

to SopE, this ubiquitination does not lead to rapid degradation by the proteasome [531]. 

It is unclear what the consequences of SopB ubiquitination are but it has been suggested 

that ubiquitination of this membrane bound toxin may lead to its targeting to and 

degradation by the lysosome [531].

Ubiquitination is a multi-step process that results in the formation of an isopeptide bond 

between the C-terminal glycine residue of ubiquitin and a lysine residue in the target 

protein. This covalent attachment of the 76-residue ubiquitin protein to the target 

protein usually requires the concerted action of three separate enzymes [532]. The 

ubiquitin-activating enzyme, E l, forms a high-energy thiol ester with the carboxyl 

group of the C-terminal glycine residue of ubiquitin, thus activating this region for 

nuclephilic attack. A ubiquitin-conjugating enzyme, E2, then transiently carries the 

activated ubiquitin molecule as a thiol ester. A ubiquitin ligase, E3, then transfers the
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activated ubiquitin from E2 to the substrate lysine residue. In most organisms including 

humans, there is a single El enzyme, a significant number of E2 enzymes and many 

more E3 enzymes. For example, the human genome project revealed more than 40 E2s 

and over 500 E3s [533]. Ubiquitination is a reversible process and ubiquitin removal is 

carried out by group of enzyme called deubiquitins (dubs) of which there are over 80 in 

humans [533].

Ubiquitin itself contains 7 lysine residues that have the potential to be targeted by 

ubiquitination, thereby leading to the formation of a polyubiquitin chain. A yeast screen 

revealed that all 7 lysine residues, lysine 6, 11, 27, 33, 48 and 63, are ubiquitinated in 

vivo although some linkages are more common than others [534]. The most common 

ubiquitin [inkage is through lysine residue 48 followed by linkages through lysine 

residues 63 or 11 and then through lysine residues 33, 27 or 6 [534]. Most 

polyubiquitin chains contain the same ubiquitin linkage throughout the chain, although 

there are some examples of branched chains, for example a yeast protein was identified 

that was simultaneously modified at lysine residue 29 and 33 [534], The ability of 

ubiquitin to modify a diverse range of proteins on either one or more lysine residue 

within the target protein, and to itself be ubiquitinated at a number lysine residues 

provides a vast array of potential modifications. A protein may be monoubiquitinated, 

m ulti-m onoubiquitinated, polyubiquitinated, m ulti-polyubiquitinated and the 

polyubiquitination may proceed through any one of 7 lysine linkages. This diversity in 

modification also results in a diversity of function for ubiquitination. The most 

common consequence of ubiquitination is to target proteins for degradation, but this 

modification can also functionally modulate a protein and alter its membrane trafficking 

[535].

The most well studied consequence of ubiquitination is to target the ubiquitinated 

protein for proteolysis by the 26s proteasome [536]. Ubiquitin-mediated proteasomal 

degradation is used both to rid cells of misfolded or truncated polypeptides and to 

degrade fully functional proteins as a means of regulation. For example, the turnover of 

mitotic cyclins is ubiquitin dependent and enables regulated cell cycle progression 

[537]. Degradation by the proteasome requires the target protein to be 

polyubiquitinated with at least four ubiquitin moieties linked through lysine 48 [538]. 

The ubiquitinated protein is recruited to the 26s proteasome complex were it is unfolded

247



and then translocated into an interior chamber where the substrate is hydrolysed by a 

nucleophilic mechanism to produce small peptides. Ubiquitin is not degraded by the 

proteasome as it is released from the targeted protein by dubs.

Recently a number of additional functions have been assigned to ubiquitination that 

result either from monoubiquitination or polyubiquitination through lysine linkages 

other than lysine 48 [535, 539, 540]. For example, monoubiquitination has been 

implicated in protein trafficking, endocytosis and gene expression and silencing. Lysine 

63-linked polyubiquitin chains have also been shown to signal in four pathways: DNA 

damage tolerance, the inflammatory response, protein trafficking, and ribosomal protein 

synthesis. The ability of ubiquitin to alter protein stability, protein function, protein 

trafficking and protein-protein interactions enable it to play a role in these diverse 

systems.

Our results show that ExoU was mainly diubiquitinated through lysine residue 178 with 

the two ubiquitins being linked through lysine 63. A small amount of lysine 48-linked 

ubiquitin was also present in the diubiquitinated ExoU protein band and this result, 

combined with the small amount of tri- and tetraubiquitiiiated ExoU observed, suggests 

that a small proportion of the toxin may be polyubiquitinated through lysine 48 and 

targeted for proteasomal degradation. However, as the main modification of ExoU was 

lysine 63-linked diubiquitination of lysine residue 178, I shall focus my discussion on 

the possible consequences of this modification.

In a number of cases, lysine 63-linked polyubiquitin chains are capable of altering the 

activity of a protein. One way the lysine 63-linked polyubiquitin chain can achieve this 

is by providing a platform to which downstream proteins with ubiquitin-interacting 

domains can bind. For example, when TRAF6 is polyubiquitinated with a lysine 63- 

linked chain it is able to interact with a novel-zinc binding domain in TAB2 [540]. The 

TAB2-associated TAKl kinase is then activated and phosphorylates and activates IKK. 

IKK mediates phosphorylation of iK B a that leads to the lysine 48-linked 

polyubiquitination and proteolysis of iK B a. N F -k B, which is normally bound by Ik B ,  

is then free to enter the nucleus and activate expression of many target genes. Thus, in 

this inflammatory signalling pathway ubiquitination is involved in both the activation of 

IKK and the degradation of Ik B u , and lysine 63-linked polyubiquitination of TRAF6
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mediates the activation step [540]. For ExoU we have shown that 63-linked 

diubiquitination of lysine 178 does not alter the toxicity or phospholipase activity of this 

protein, proving that this modification is not required for either ExoU activation or 

inactivation.

Another role that lysine 63-linked polyubiquitination plays is in endocytosis of 

membrane-bound proteins. Ubiquitin acts as an internalisation signal at the plasma 

membrane and is involved in the regulated endocytosis of many signal-transducing 

receptors, transporters and channels [541J. Although in most cases monoubiquitination 

is sufficient for the rapid internalisation of membrane-bound proteins, a number of yeast 

proteins require conjugation with lysine 63-linked ubiquitin chains for maximal 

internalisation. For example, the yeast nutrient permeases Fur4p and Gapl can be 

internalised when monoubiquitinated but are only efficiently endocytosed when 

polyubiquitinated with a lysine 63-linked chain [542-544]. In addition to the initial 

internalisation of plasma membrane bound proteins, ubiquitin also functions as a signal 

at a later stage in the endocytic pathway, in the sorting of proteins into the internal 

vesicles of multivesicular body (MVB) [541]. The endosomal system comprises of 

three main components, the early endosomes, the late endosomes or MVBs and the 

lysosomes. When proteins are initially internalised they are located in the early 

endosomes, these compartments then mature into late endosomes that accumulate many 

intracellular vesicles by internal budding of the outer limiting membrane, hence the 

alternative name MVBs. Fusion of the MVBs to lysosomes results in the degradation of 

the contents of the MVBs. Thus the proteins that are sorted into the vesicles of the 

MVBs are targeted for degradation, whereas those that remain on the limiting 

membrane of the MVB are recycled back to the plasma membrane. The accurate 

sorting of proteins into the invaginated vesicles is therefore an important step in 

determining which proteins are degraded and which are recycled, and ubiquitin plays a 

central role in this sorting. Proteins that are ubiquitinated are concentrated to the site on 

the limiting membrane of the MVB where vesicle invagination is to occur, these 

proteins are then internalised into the vesicles [541]. During the invagination step, 

ubiquitin is removed from the protein by a Dub, therefore only the targeted protein is 

degraded.
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T h e role that ubiquitination p lays in both the initial internalisation o f  plasm a m em brane  

proteins and the subsequent sorting in to  internal v e s ic le s  in the M V B  su g g ests  a num ber  

o f  potential co n seq u en ces o f  d iubiqu itination  o f  E xoU . W e have sh ow n  that E x o U  is 

m em brane lo ca lised  and is d iubiquitinated at this location  so  it is p o ssib le  that this tox in  

is internalised into early en d osom es. A lth ou gh  polyubiqu itination  through ly sin e  63  has 

n ot b een  im p lica ted  in sortin g  o f  proteins in to  the internal v e s ic le s  o f  M V B s it is 

co n ce iv a b le  that, like en d o cy to sis , a ly sin e  63 -lin k ed  polyub iqu itin  chain m ay enhance  

th is p rocess. T hus, d iub iqu itinated  E x o U  m ay be targeted to the internal v e s ic le s  o f  

M V B s. If this targeting occurred, it cou ld  exp la in  the sligh t d ecrease in the h a lf-life  o f  

d iubiqu itinated  E x o U  that w e ob served , as the m od ified  tox in  m ay be targeted to and 

d egrad ed  by the ly so so m e . L y so so m a l d egrad ation  o f  E x o U  w o u ld  be a u se fu l 

eu karyotic  d e fen ce  m ech an ism  to try to o v erco m e the cy to to x ic  e ffec ts  o f  th is potent 

p h o sp h o lip a se . In contrast, d iu b iq u itin ation  o f  E x o U  m ay be ad van tageou s for the 

p o ten cy  o f  th is  to x in  for  ex a m p le  by in crea sin g  its m em brane targets. W hen  the  

en zy m a tic  a c tiv ity  o f  E x o U  w as first e lu cid a ted , it w as o b served  that ex p ressio n  o f  

E x o U  is S. c e re v is ia e  led  to the destruction  o f  yeast vacu o les [439 ]. T hus in addition to  

hyd rolysin g  plasm a m em brane lip ids, E x o U  m ust be able to target vacuolar m em branes  

in yeast. V a c u o le s  are the y ea st fu n ctio n a l eq u iv a len t o f  ly so so m e s . T h erefore , i f  

diubiquitination o f  E xoU  targets the toxin  to intracellular organ elles such as en d osom es  

or ly so so m es th is m ay increase its poten cy  by increasing its targets.

A n o th e r  p o s s ib le  c o n se q u e n c e  o f  E x o U  d iu b iq u itin a tio n  m ay  be to fa c ilita te  

in terce llu la r  spread  o f  th e to x in . In ad d ition  to b e in g  targeted  fo r  ly so so m a l  

degradation, the internal v e s ic le s  o f  M V B s can a lso  be released extracellu larly [545]. It 

has b een  o b serv ed  in m any c e ll ty p es, in c lu d in g  ep ith e lia l c e lls ,  that the lim itin g  

m em brane o f  M V B s can fu se  to the p lasm a m em brane and release  their con ten ts in to  

the extracellu lar m ilieu  [5 4 6 ], W hen  the M V B  internal v e s ic le s  are secreted  in this 

fa sh io n  they are ca lled  e x o so m e s . E x o so m e s  have been  im p lica ted  in a num ber o f  

p rocesses in clu d in g  intercellu lar com m u n ication  during the im m une response by virtue  

o f  carrying pep tid e-load ed  m ajor h istocom p atib ility  co m p lex  (M H C ) m o lecu les  [545]. 

E x o so m es are a lso  e x ce llen t candidates to transfer m em brane proteins from  ce ll to ce ll 

w ithout the need for direct ce ll contact as it has been su g g ested  that ex o so m es can bind  

to target c e lls  and be en d o cy to sed . A  recent report has im p lica ted  e x o so m e s  in the 

tr a n sm iss io n  o f  in fe c t io u s  g ly c o s y lp h o s p h a t id y l in o s ito l- l in k e d  prion  p a r tic le s ,
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b yp a ssin g  the need  for ce ll to ce ll con tact in the d issem in ation  o f  prions [5 4 7 ]. In a 

sim ilar w ay , if  d iubiquitnation  targeted E x o U  to the intracellular v e s ic le s  o f  M V B s, the  

tox in  m ay be able to spread b etw een  c e lls  v ia  e x o so m es  and thus increase its cy to to x ic  

effect.

In addition to our lack o f  k n o w led g e  as to  the co n seq u en ce  o f  E x o U  d iubiquitination , it 

is  a lso  u n clear w hat targets E x o U  fo r  u b iq u itin ation . A s p rev io u sly  stated , an E3 

ubiquitin  lig a se  is required to  transfer the activated  ubiquitin  from  E 2 to the target 

protein , therefore E x o U  m u st bind to an E3 lig a se . It is p o ss ib le  that the eu karyotic  

c o fa c to r  required  fo r  E x o U  a c tiv a tio n  and the E3 lig a se  r e sp o n s ib le  fo r  E x o U  

ubiquitination  reside w ith in  the sam e protein or protein co m p lex . T h is m ay provide a 

c lu e  as to w hat the eukaryotic co factor  for  E xoU  is, a lthough the id en tifica tion  o f  over  

5 0 0  E3 lig a ses  in hum ans m eans the fie ld  o f  potential candidates is w id e. A ll E3 lig a ses  

contain  either a H E C T  or R IN G  fin g er  dom ain  [532]. T hus, it is p ossib le  that the E xoU  

eukaryotic cofactor a lso  conta ins on e o f  th ese  dom ains. In addition  for the requirem ent 

o f  an interacting E3 lig a se , E x o U  a lso  m ust contain  a sp ec if ic  signal that targets it for  

u b iq u itin a tio n . T h ere  are a num ber o f  d ifferen t s ig n a ls  that target p ro te in s fo r  

ubiquitin ation  in c lu d in g  p h osp h ory la tion , h yd roxy la tion , g ly c o sy la tio n , d eacety la tion , 

am in oacylation , ox idation  and inappropriately exp osed  hydrophobic reg ions [536 ]. It is 

unclear w hat targets E x o U  fo r  u b iq u itin ation  but it is not the p h osp h ory la tion  o f  the  

ser in e  3 0  resid u e, as the N -term in a l m utant w ith  88 am in o  a c id s d e le ted  is still 

diubiquitinated .

T o  su m m arise , in th is chapter w e  h ave dem onstrated  that E x o U  is lo c a lise d  to the 

plasm a m em brane w h ere it is then able to act as a p h osp h o lip ase  and destroy the ce ll. 

M em brane lo ca lisa tio n  o f  E x o U  a lso  resu lts in d iubiqu itination  o f  ly sin e  residue 178  

through a ly s in e  6 3 -lin k e d  ch a in . It is u n clear  w h at th e c o n se q u e n c e  o f  E x o U  

diub iqu itination  is , as it d oes not alter the activ ity  o f  E x o U  and o n ly  leads to a s lig h t  

in crease  in degradation . W e h ave su g g ested  that d iu b iq u itin ation  m ay be a ce llu lar  

d efen ce  m ech an ism  to target th is potent pseudom onal tox in  for  ly so so m a l degradation. 

A ltern a tiv e ly  d iu b iq u itin ation  m ay be a bacterial strategy to in crease  the targets o f  

E x o U  or to aid its in terce llu la r  spread. T h e  p lasm a m em b ran e lo c a lisa tio n  and  

con seq u en t p h osp h olip ase activ ity  and diubiquitination  o f  E xoU  is dependent on a sm all 

d om ain  at the C -term in u s o f  th is tox in  w ith  the tryptophan resid u e 681 p la y in g  an
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im portant role. W e do not know  how  this C -term inal dom ain targets E xoU  to the plasm a  

m em brane but su g g est that it either b inds to a m em brane-bound cofactor or d irectly  to  

the p h o p sh o lip id  b ilayer. A s  in chapter 3, our attem pts to id en tify  the eu k aryotic  

cofactor  fa iled , but w e  su c c e ss fu lly  lo ca lised  it to  the particulate m em brane-enriched  

ce llu lar  fraction , w h ich  sh ou ld  h e lp  in further p u rification  o f  th is e lu s iv e  factor. In 

co n c lu sio n , our results su g g est a reason for the im portance o f  the C -term inus in E x o U  

to x ic ity  reported p rev iou sly  by m any groups. W e a lso  provide further in sigh t into the  

targeting and p rocessin g  o f  this pseu d om on al tox in  o n ce  it has been  injected  into the  

eukaryotic cell by the T T S system .
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CHAPTER 5: CONCLUDING REMARKS AND FUTURE 

DIRECTIONS

5.1. SUMMARY OF RESULTS

T h e  aim  o f  th is  stu d y  w a s  to  further d e fin e  the m ech a n ism s o f  a ctio n  o f  the  

P se u d o m o n a s  a e ru g in o sa  T T S  tox in s in eukaryotic ce lls . T o  a ch iev e  th is w e  u tilised  a 

S a c c h a ro m y c e s  c e re v is ia e  m od el to study the e ffec ts  o f  E xoS  ex p ression  and to screen  

fo r  host m utants resistant to  the cy to to x ic  e ffe c ts  o f  E x o S , E x o U  and E x o Y . W e a lso  

used a hum an ep ithelia l ce ll line to exam in e  the m od ifica tion , loca lisa tion  and to x ic ity  

o f  E x o U  and determ ine w h ich  reg io n s o f  the tox in  w ere required for th ese  activ ities. 

Our studies resulted in a num ber o f  n ovel fin d in gs that I w ill sum m arise below .

U sin g  the S, c e re v is ia e  m od el, w e  have sh ow n  for the first tim e that E xoY  and the G A P  

and A D P R T  dom ains o f  E xoS  are cy to to x ic  to yeast. W e have a lso  dem onstrated  the 

utility o f  the tetracyclin e-in d u cib le  activator-repressor system  for exam in in g  the tox ic ity  

o f  bacterial tox in s in S. c e re v is ia e . U sin g  the tetracyclin e-in d u cib le  system  w e sh ow ed  

that the A D P R T  dom ain o f  E xoS  disrupted the actin cy tosk e le ton  o f  y ea st resulting in a 

p h en otyp e sim ilar to  that ob served  in a stab ilised  actin m utant. W e a lso  revealed  that 

the A D P R T  dom ain o f  E xoS  inhibits D N A  syn th esis in yeast. In addition, analysing  the 

e ffe c t  o f  E x o S  exp ression  on a -fa c to r  syn ch ron ised  yeast sh o w ed  that E xoS  results in 

an increase in m ating projection form ation  and aberrant bud d evelop m en t. W e used the

S. c e r e v is ia e  h ap lo id  d e le tio n  library to screen  for  m utants resistant to the cy to to x ic  

e ffec ts  o f  E x o S , E xoY  or E xoU . T he on ly  y ea st m utants id en tified  in our screen w ere  

un ab le to transcribe the T T S  to x in  g en es  and thus resistan t to  g a la c to se -in d u ced  

ex p ressio n . Our fa ilu re  to id en tify  any y ea st m utants cap ab le  o f  transcrib ing E x o S , 

E x o Y  or E x o U  but resistan t to  their e ffe c ts  su g g ests  that no non-redundant, non -  

essentia l protein is required for their activ ity .

B y  a n a ly s in g  the tra ffick in g  o f  E x o U  in H eL a c e lls  w e  d isc o v e r e d  that E x o U  is  

lo ca lised  to the p lasm a m em brane w hen exp ressed  w ithin  the host ce ll or injected fu lly  

form ed  by the T T S sy stem  o f  P . a e ru g in o sa . W e dem onstrated  that this su b -cellu lar  

loca lisa tio n  requires the C -term inus o f  E x o U  and the sm all reg ion  b etw een  am ino acids  

6 7 9  and 683  is essentia l for this loca lisa tion . Our results sh ow ed  that targeting o f  E xoU
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to  the p lasm a m em brane resulted  in d iub iqu itination  o f  ly s in e  residue 178 through a 

ly s in e  6 3 -lin k ed  ubiquitin  chain . T h is  lo ca lisa tio n  w as a lso  required for to x ic ity  as 

d eletion  o f  the C -term inal region o f  E x o U  that abrogated p lasm a m em brane localisation  

a lso  resulted  in a p h osp h olip ase  in active , n o n -to x ic  protein. D iub iqu itin ation  o f  E xoU  

did not alter the en zym atic  activ ity  o f  th is tox in  but resulted  in a sm all in crease in its 

degradation . W e a lso  d em onstrated  that the eu karyotic  co fa cto r  required for E x o U  

tox ic ity  separated w ith the m em brane-enriched  particulate cellu lar fraction,

5.2. BIOLOGICAL IMPLICATIONS AND DIRECTIONS FOR FUTURE WORK

B acteria l v iru len ce  factors en ab le  p a th ogen ic  bacteria to in fec t and cau se  d isea se  in 

su sc e p tib le  h o sts . T h e se  v ir u le n c e  fa c to rs  m u st act in co n c e r t to  fa c ilita te  the  

co lo n isa tion , survival and replication o f  the bacteria in the h ostile  host environm ent. P. 

a e r u g in o s a  produces m any v iru len ce  factors that enab le it to in fect a w id e  range o f  

h o sts  and s ite s  w ith in  th ese  h osts. A lth o u g h  the en zy m a tic  action  o f  m any o f  the  

p seu d om on al v iru len ce  factors is  k n ow n , in m ost ca ses  their p recise  m ech an ism s o f  

action  rem ains to be elucidated . For ex a m p le , the cata lytic  a c tiv itie s  o f  the four T T S  

tox in s o f  P . a e ru g in o sa  are kn ow n , m any o f  their targets have been  id en tified  and the  

co n seq u en ces o f  their exp ression  have been  detailed . H ow ever , in m any cases the link  

b etw een  the T T S tox in s cata lytic targets and their cellu lar e ffec ts  rem ains unclear. T he  

activation  o f  the pseudom onal T T S tox in s is another area that requires further research, 

particularly regarding the identity  o f  the eukaryotic cofactors for E x o U  and E xoY  and 

a lso  the loca lisa tion  o f  these tox in s. Our w ork sou gh t to in vestigate  these questions and 

I w ill con sid er  the im p lication s o f  our results to the understanding o f  the activation  and 

action  o f  the p seu d om on al T T S  tox in s and a lso  d iscu ss the future w ork  su g g ested  by 

our results.

Our resu lts regarding the e ffe c ts  o f  E x o S  on S. c e r e v is ia e  parallel m any o f  th o se  

ob served  w ith in  m am m alian ce lls . It has been p rev iou sly  dem onstrated  in m am m alian  

ce ll culture system s that E xoS  is cy to to x ic , disrupts the actin cy to sk ele to n  and inhibits 

D N A  sy n th es is  [3 5 0 , 3 5 1 ]. W e h ave a lso  dem onstrated  th ese  p h en o ty p es in yeast, 

w h ich  su ggests that E xoS  targets h igh ly  con served  eukaryotic pathw ays and ju stifie s  the  

u se o f  this sim p le  eu karyotic  m od el in studying  E xoS  action . T h e literature deta ilin g  

the con trib u tion  o f  G A P  and A D P R T  d om ain  to the E x o S  in d u ced  p h en o ty p es is
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unclear, w ith  som e reports su g g estin g  a role for the G A P  dom ain  in ce ll m orp h ology  

ch an ges and other experim ents ind icating  that the A D P R T  dom ain is resp on sib le  for  all 

the o b serv ed  p h en o ty p es  [3 7 8 , 3 9 5 ] . Our resu lts c lea r ly  d em on stra te  that in S . 

c e r e v i s ia e  the A D P R T  d om ain  is r e sp o n sib le  fo r  the ex trem e c y to to x ic ity , actin  

disruption and inhib ition  o f  D N A  syn th esis  observed . H ow ever, w e  a lso  sh ow  that the 

G A P  dom ain  is a ctive  in y ea st as it ca u ses  grow th in h ib ition . T h e  actin p h en otyp e  

ob served  w hen the A D P R T  dom ain  o f  E xoS  w as exp ressed  in y ea st provides further  

in s ig h t in to  h ow  th is d om ain  lea d s to  th e ce ll m o rp h o lo g y  ch a n g es  ob serv ed  in 

m am m alian ce lls . It has been  proposed  that the changes in ce ll m orp h ology  result from  

the ab ility  o f  E x o S  to A D P -r ib o sy la te  the R ho fa m ily  o f  sm all G T P ases or the actin- 

binding proteins ezrin, radixin and m oesin  [372 , 3 76 ]. It is, h ow ever, unclear w hich  o f  

these potential targets is m od ified  in natural in fection  and how  this m od ification  leads to 

the observed  cell m orp h ology  phenotype. Our results in yeast su g g est that w hatever the 

target, its A D P -r ib o sy la tio n  resu lts in an actin  p h en otyp e sim ilar  to that o f  a yeast  

m utant ex p ressin g  stab le , d ep o lym erisa tion  resistant actin  [498 ]. In order to confirm  

that the A D P R T  dom ain  o f  E xoS  sta b ilise s  actin , on e cou ld  d eterm ine w h eth er  the  

A D P R T  dom ain m ade actin resistant to the drug, Latrunculin A . Lactrunculin  A  binds  

to  and sequesters actin m onom ers, thus preventing the form ation o f  new  actin polym ers. 

T h e h igh ly  d yn am ic nature o f  the actin cy to sk e le to n  m eans that after 5 -1 0  m inutes o f  

exp osu re to L actrunculin  A , the entire yeast actin cy tosk eleton  is co m p lete ly  disrupted. 

If the A D P R T  dom ain  o f  E x o U  did stab ilise  actin , it w ou ld  protect the actin structures 

w e ob served  from  d ep o lym erisa tion  after treatm ent w ith  L actrunculin  A  in the sam e  

w a y  that the V I 5 9 A  d ep o ly m er isa tio n  resistant actin  m utant is p rotected  from  the  

e ffec ts  o f  th is drug [498].

Our S. c e r e v is ia e  d e letion  library screen  did not id en tify  any strains that w ere able to  

ex p ress  E x o S , E x o U  or E x o Y  but w ere  resistan t to their c y to to x ic  e ffe c ts . T h is  

ind icates that there are no n on -essen tia l, non-redundant proteins required for the action  

o f  these tox ins. In the case  o f  E xoS , this m ay not be surprising as the A D P R T  dom ain  

g en era lly  acts to  in h ib it its targets, thus k n o ck in g  out a target w o u ld  have sim ilar  

co n se q u e n c e s . A ls o , the targets o f  the A D P R T  d om ain  o f  E x o S  are lik e ly  to be  

essen tia l proteins as their in h ib ition  resu lts in ce ll death. For E x o U , its ab ility  to  

h yd ro lyse  p h osp h olip id s m ay d irectly  result in ce ll death due to m em brane destruction. 

T herefore , k n ock in g  out a protein  w ou ld  not inh ib it th is m eth od  o f  ce ll destruction .
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E xoY  in creases the concentration  o f  cA M P  in sid e  the target ce ll and th is is lik e ly  to  

have m ultip le con seq u en ces. T hus, u n less E xoY  inhib ition  o f  ce ll grow th results from  

the cA M P  activation  o f  a sin g le  n on -essen tia l pathw ay, no yeast d eletion  m utant w ould  

be identified . A lth ou gh  our S. c e re v is ia e  haploid  deletion  screen  fa iled  to id en tify  any  

in teresting tox in  targets, there are a num ber o f  other yeast library screen strategies that 

cou ld  be used. T he sam e haploid  yeast deletion  library cou ld  be screened  for m utants 

that w ere m ore sen sitiv e  to the to x in s by id en tify in g  d eletion  strains that grew  slo w er  

than w ild  typ e y ea st ex p ressin g  the tox in s. T h is m ethod w as used by one group to  

id en tify  yeast m utants w ith  altered sen sitiv itie s  to the P . a e ru g in o sa  p yocyan in  toxin  

[5 1 1 ]. T h ey  a ssessed  the grow th  o f  each  m utant in d iv id u a lly  w h en  treated w ith  the  

to x in  and com pared  their grow th  to  w ild  typ e y ea st treated w ith  p yocyan in . T h is  

m eth od  w o u ld  be u n su itab le  fo r  stu d y in g  E x o S  due to the ex trem e to x ic ity  o f  th is  

protein and a lso  w ou ld  not id en tify  any essen tia l proteins. A n oth er screen that w ou ld  

en ab le  essen tia l proteins to be a ssessed  re lies on the prin cip le  o f  h a p lo in su ffic ien cy . 

H a p lo in su ffic ien cy  occu rs w h en  the lo ss  o f  fu n ction  o f  on e g en e  cop y  resu lts in an 

abnorm al p h en otyp e, in th is ca se  in creased  sen sitiv ity  to a T T S  toxin . T h is  screen  

w ou ld  use the h eterozygou s d eletion  library that con sists  o f  m utants w ith a d eletion  in 

o n e co p y  o f  each gen e. I f  the tox in  acted  on  a sp ec if ic  protein target, it fo llo w s  that 

d ecreasin g  the d osage o f  this protein m ay sen sitise  the h eterozygou s yeast strain to the 

tox in . T h is approach has been  used to  exam in e  p o ssib le  targets o f  a num ber o f  drugs 

[5 1 0 ]. T o  en ab le  h igh  throughput screen in g , the y ea st h e tero zy g o u s strains w ere  

poo led , treated w ith the drug and the relative grow th o f  each strain w as assessed  at set 

tim e poin ts [5 1 0 ]. T h is  strategy w ou ld  a lso  be unsu itab le  for stu d yin g  E xoS  as the 

h etero zy g o u s library strain can n ot be transform ed w ith  e x o S  under the control o f  the 

G A L l  prom oter so  it w ou ld  be im p o ss ib le  to id en tify  strains m ore se n s it iv e  to the 

e ffec ts  o f  this toxin . A  third p o ssib le  m ethod to exam in e host proteins in vo lved  in T T S  

tox in  action  w ou ld  be to screen  a y ea st ov erex p ressio n  library in w h ich  every  yeast  

m utant o v erex p resses  a d ifferen t protein. I f  the T T S tox in  targeted  and inactivated  a 

protein , ov erex p ressio n  o f  th is protein m igh t render the y ea st resistant to  the toxin . 

S uch  a screen  cou ld  be d on e in a y ea st strain that en ab les the u se  o f  the tetracyclin e- 

inducib le  exp ression  system  and w ou ld  therefore be suitable for E xoS .

A ll the T T S tox in s secreted  by P . a e ru g in o sa  require a eukaryotic co factor for  activ ity  

to restrict their action to the target ce ll and the identities o f  the cofactors for E x o U  and
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E xoY  rem ain unknow n. Our attem pts to identify  the cofactors o f  E xoU  and E xoY  using  

the S. c e r e v is ia e  d e le tio n  library screen  fa iled , w h ich  su g g ests  that no n o n -essen tia l, 

non-redundant protein  fu lf i ls  th is role. W e w ere  a lso  un ab le to purify  the E x o U  

co fa c to r  by co im m u n o p rec ip ita tio n  in d ica tin g  that the in teraction  m ay be w ea k , 

transient or require additional con d ition s that are lo st during coim m unoprecip itation , for  

ex a m p le  lip id  b in d in g . W e w ere h o w ev er  ab le to lo c a lise  the E x o U  co factor  to the  

m em b ran e-en rich ed  p articu late  fra g m en t d em on stra tin g  for  the fir st tim e that the  

co fa cto r  is lo c a lise d  at the site  o f  action  o f  E x o U . T h is  lo ca lisa tio n  o f  the E x o U  

cofactor m ay a ssist in its identification  as it narrows dow n the p o ssib le  candidates. O ne  

cou ld  fractionate the particulate fragm ent proteins w ith regards to s ize  and charge, and 

use the s im p le  p h o sp h o lip a se  a ssay  used  in th is study to determ in e w h ich  fraction  

a ctiva ted  rE xoU . O n ce the num ber o f  proteins in an a ctiv a tin g  fraction  had been  

reduced  su ffic ien tly , they  cou ld  be id en tified  by m ass spectrom etry  and in d iv id u a lly  

tested  in the p h osp h olip ase assay . Our observation  that E xoU  is ubiquitinated m ay help  

in the id en tifica tion  o f  the cofactor. T h e E x o U  co factor  m ay a lso  fu n ction  as an E3 

ubiquitin lig a se  and as such w ould  contain  a H E C T  or R IN G  fin ger  dom ain [532 ]. T he  

h a p lo in su ffic ien cy  library screen  m ay a lso  be u sefu l in id en tify in g  the co factors for  

E x o U  and E xoY . If the d osage  o f  the cofactor w as reduced by h a lf this m ay render the 

h eterozygou s d eletion  strain m ore resistant to the to x ic  e ffec ts  o f  E x o U  or E xoY . T his  

approach  w ou ld  en a b le  e ssen tia l g e n e s  to be screen ed  but w o u ld  n ot id en tify  the  

co factors i f  they w ere  en co d ed  by non-redundant g en es as is the ca se  for the 14 -3-3  

cofactor o f  E xoS .

For so m e bacterial to x in s  to act they  require loca lisa tio n  to their site  o f  action . For 

e x a m p le , the m em b ran e lo c a lisa t io n  d om ain  o f  E x o S  is required fo r  R as A D P -  

rib osy la tion , although d e le tion  o f  th is dom ain  d oes not ab o lish  E xoS  induced to x ic ity  

[3 6 8 ]. In the ca se  o f  E x o U  w e  h ave d em onstrated  that to x ic ity  is d ep en d en t on  

lo ca lisa tion , w ith  the C -term inus d irecting E x o U  to the p lasm a m em brane w here it can  

then act in concert w ith  its m em b ran e-localised  cofactor as a p h osp h olip ase  and destroy  

the c e ll. T h is  in v o lv e m e n t  o f  the C -term in u s in targ etin g  E x o U  to the p lasm a  

m em brane exp la in s the requirem ent o f  this dom ain for tox ic ity  observed  by a num ber o f  

groups. It rem ains unclear h ow  the C -term inus anchors E x o U  at the plasm a m em brane, 

w hether it is through d irect lip id  b in d in g  or b in d in g  to a m em brane bound cofactor, 

alth ou gh  w e  have illu strated  that the tryptophan at p o sitio n  681  is im portant in the
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interaction. It is a lso  unclear how  E x o U  is trafficked from  its site o f  in jection  by the 

T T S  n eed le  in the cy to so l o f  the eukaryotic ce ll to the p lasm a m em brane. Our initial 

attem pts to fo llo w  the tra ffick ing  even ts by u sin g  G F P -tagged  E x o U  fa iled , as G FP is 

too  stab le to unfold  and pass through the T T S need le  [196]. In order to ov erco m e this  

problem  on e cou ld  use a n ew ly  d ev e lo p ed  approach that in v o lv e s  la b e llin g  the tox in  

w ith  a te tra cy ste in e  tag and treatin g  th e  l iv e  bacteria  w ith  F lA sH . F lA sH  is a 

m em brane-perm ean t flu o resce in -b a sed  b iarsen ica l d ye that is n o n -flu o rescen t w h en  

unboun d but em its  a bright green  f lu o r e sc e n t  lig h t w h en  it fo rm s a h igh  a ffin ity  

co m p lex  w ith  the tetracystein e tag [548]. T h e tetracysteine m o tif con sists  o f  a 6  am ino  

acid  core (C y s-C y s-X -X -C y s-C y s)  o ften  flan k ed  by o p tim ised  linker stretches o f  6  

am ino acids. T herefore, on ly  about 18 am ino acids need to be inserted into the toxin  o f  

in terest and on e m ust aim  to  insert th is m o tif into a region  that w ill not destroy  the  

secretion , lo ca lisa tio n  or activ ity  o f  the toxin . T h e F lA sH  bound tetracystein e-tagged  

to x in  can be fo llo w e d  from  the bacteria in to  the eukaryotic c e ll, as th ese  co m p lex es  

rem ain  in tact during secretio n  through the T T S  n eed le  [5 4 9 ]. T h is  tech n iq u e  has 

recen tly  been  u sed  to a sse ss  the secretio n  o f  IpaB and IpaC from  S h ig e lla  f le x n e r i  

through the T T S  n eed le  in to  eu k aryotic  c e lls  [5 4 9 ]. A  m o d ifica tio n  o f  th is m ethod  

w h ere  the target eu k a ry o tic  c e ll is  treated  w ith  F lA sH  so  that the tran sloca ted  

tetracystein e-tagged  tox in  b eco m es flu o rescen t upon entry into the target ce ll has a lso  

been used to study the loca lisa tion  o f  the Y ersin ia  e n te rc o litic a  T T S tox in s Y s c M l and 

Y sc M 2  [5 5 0 ]. T h is tech n iq u e en ab les the traffick ing  o f  proteins in liv in g  c e lls  to be 

co n v en ien tly  m onitored  by f lu o r e sc e n c e  and a lso  a llo w s for  d eta iled  ultrastructural 

in form ation  to be gain ed  from  electron  m icroscop ica l snapshots o f  the in fected  c e lls  

[551].

O ne o f  the m ost u n exp ected  results from  this study into the activation  and activ ity  o f  

pseudom onal T T S tox in s w as the d iubiquitination o f  E xoU . A lth ou gh  this m odification  

is not required for E xoU  p h osp h olip ase activ ity , it is lik ely  to confer som e b enefit to  the 

bacteria or p o ssib ly  to the host ce ll. D iu b iq u itin ation  through ly s in e  residue 63 o f  

ubiquitin su g g ests  that m od ified  E x o U  w ill be targeted to the en d osom al pathw ay. T h is  

m igh t lead to an in crease  in m em brane targets, a m ean s o f  in tercellu lar  spread by  

e x o so m e s  or degradation  by the ly so so m e . D egradation  by the ly so so m e  m ay be a 

eukaryotic  d efen ce  m ech an ism  or ad vantageous to the bacteria to a llow  the contro lled  

rem oval o f  the tox in  as is the case  for the S a lm on ella  T T S toxin  S op E  [258]. In order to
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further study the co n seq u en ces  o f  E x o U  d iu b iq u itin ation , it w o u ld  be in terestin g  to  

study the traffick ing o f  this m od ified  toxin  in iso la tion  from  the u n m odified  form . O ne  

w a y  in w h ich  th is  co u ld  be a ch ie v e d  is through u b iq u itin -m ed ia ted  f lu o r e sc e n c e  

com p lem en tation , w h ich  is a m ethod recently  d evelop ed  to sh ow  that ubiquitinated Jun 

is targeted to ly sosom al v e s ic le s  for degradation [552]. T h is m ethod relies on the ability  

o f  flu orescen t proteins, such as enhanced  y e llo w  flu orescen t protein and enhanced cyan  

f lu o r e sc e n t  p rotein , to  be separated  in to  tw o  com p lem en ta ry  fragm en ts that o n ly  

flu o r e sc e  w h en  brought together. T h u s, o n e  fragm en t is fu sed  to ubiquitin  and the  

com plem entary  fragm ent is fu sed  to  the target protein, in our ca se  E xoU . W hen E xoU  

is u b iq u itin ated , the tw o  flu o r e sc e n t fragm en ts w ou ld  be brought togeth er  and the  

resu lting flu o rescen ce  w ou ld  a llow  diubiquitinated  E xoU  traffick ing  to be fo llo w ed . In 

order to test the hyp oth esis that E x o U  diubiquitination  results in intracellular spread by 

e x o so m e s , on e co u ld  m easure the p resen ce  o f  ex tracellu lar E x o U  after in fec tio n  o f  

eukaryotic ce lls  w ith  P . a eru g in o sa  exp ressin g  E xoU .

Our w ork  has answ ered  a num ber o f  q u estion s regarding the activation  and activ ity  o f  

the T T S tox in s o f  P. a e ru g in o sa  and in the process has p osed  m any m ore questions. A  

great deal m ore w ork  n eed s  to  be carried  ou t in order to  unravel th e c o m p le x  

in teraction s b etw een  the p seu d om on al p ath ogen  and hum an h o st as the greater our 

understanding o f  this interaction , the greater our ab ility  to  in flu en ce  th ings in favour o f  

the host.
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