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Summary

This thesis aims to investigate some of the methods currently used in contrast 

MR imaging. It specifically focuses on methods that require subtraction of non­

contrast enhanced (pre) 3D imaging data sets from contrast-enhanced (post) data, 

collected within a single imaging session. Current methods assume that there is little 

or no intra-scan patient motion and thus do not attempt to correct for this. This thesis 

aims to determine if such motion does exist and if so what methods are best suited to 

correct it.

The thesis begins by describing some of the relevant MR physics and history 

of contrast enhancement in chapter 1, and expands on this in chapter 2 by focusing 

on angiographic, and contrast-enhanced techniques. Chapter 2 continues by 

investigating an MP RAGE subtraction technique for producing venograms, which 

requires pre and post-contrast data subtraction. Data is collected for 20 patients and 

the effects of motion correction on the resulting venograms are investigated. The use 

of a realignment algorithm, MATCH, is shown to improve venous visualisation 

demonstrating that intra-scan patient motion does indeed affect this type of study.

Chapter 3 investigates a different type of pre and post-contrast enhanced 

study where it is used for tumour volume measurement. Examining the effects on 

tumour volumes measured with and without the realignment correction provides 

quantitative evidence that realignment is a requirement in this and similar types of 

study.

It is a requirement of realignment algorithms in general that segmentation of 

brain pai’enchyma is provided to ensure that the realignment is as accurate as 

possible. It has previously been suggested that including structures in segmented data 

that change in signal or morphology between two data sets results in realignment

1



en ors. However, accurate segmentation of the brain parenchyma requires either 

manual segmentation, which needs a skilled operator to achieve and is very time 

consuming, or a computer algorithm to do the segmentation automatically or semi- 

automatically. There is, however, no algorithm yet available that is designed to 

segment post-contrast data sets, therefore, it is important to determine the effects of 

segmentation accuracy on the accuracy of realignment of pre and post-contrast data 

set.

If segmentation is indeed required it is important to determine the effects that 

such inaccuracies in segmentation have on realignment. This knowledge would allow 

computational techniques to be developed. Therefore, to enable the significance of 

segmentation accuracy on realignment to be tested a phantom pre and post-contrast 

data set is developed in chapter 4.

Chapter 5 uses this data set to test the effects of differing segmentation 

accuracies, with respect to the accurately segmented phantom data, on realignment 

accuracy where the pre and post-contrast data differ by known rotations and

.

Î

translations. This provides information on the effects of contrast-enhancement on 

realignment accuracy, as well as providing information on the required brain 

segmentation accuracy required to accurately realign these data sets.

Chapter 6 expands on this work by testing segmentation accuracy effects on 

two real patient data sets. The first patient data set differs fi'om the phantom data in 

terms of its noise characteristics and the second has a space occupying lesion similar 

to those regularly encountered in the clinical setting

The results fi'om chapters 5 and 6 suggest that all contrast-enhancement must 

be removed from post-contrast data to ensure that the resulting realignment is 

accurate. However, it is also found that the brain parenchyma can be over-segmented

!
' " '' -  ...



by approximately 20% without seriously compromising realignment accuracy. This 

finding has important implications for the design of segmentation algorithms to be 

used with these data sets. Due to the varying nature of the contrast-enhancement 

from patient to patient, especially in the clinical setting, it is difficult to consistently 

segment post-contrast data sets to a high degree of accuracy. Therefore, knowing that 

significant over-segmentation is acceptable enables a simple yet robust method of 

segmentation to be developed.

Using the information from the previous chapters, chapter 7 aims to develop 

an automatic technique for segmenting, realigning and visualising venographic data 

using the venography technique described in chapter 2. It uses a histogram and 

morphological operations to ensure that all of the contrast-enhanced data is removed 

from the data, whilst attempting to segment the brain to an acceptable accuracy. 

Although this algorithm is specifically designed for venograms visualisation, it 

would require only a small amount of adjustment enabling it to be applied to the 

tumour volume measurement technique described in chapter 3.

Chapter 8 tests this algorithm using the data collected in chapter 2 and 

measures its performance in producing satisfactory brain segmentations, which is 

required for accurate realignment. This would also be required for accurate 

realignment in tumour volume measurement studies. Chapter 8 also measures the 

algorithms capabilities in correctly producing visualisation data sets for the purposes 

of venography.

The algorithm has limited success in both brain segmentation and venous 

visualisation, nevertheless this is encouraging as a first attempt as the algorithm is 

being applied to real patient data sets reflecting a range of pathological conditions 

and not only to selected normal data sets. Chapter 8 suggests some modifications that
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could be applied to the algorithm that might improve its future success. This includes 

modifying it to become a semi-automated technique.
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Chapter 1 

Introduction
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1.1 Historical Introduction

1.1.1 MRI

Magnetic resonance imaging, often referred to as MRI, has a history of 

development which began in 1936 when the Dutch physicist C J . Gorter developed a 

technique for measuring the nuclear magnetic moment, although he was unsuccessful 

in detecting the effect. Rabi was finally successful in detecting the effect in 1938 

(Rabi et al 1938). However, it was Bloch and Purcell who first demonstrated the 

NMR technique in 1946 with Bloch demonstrating NMR in water and Purcell

.1

demonstrating the technique in solid paiaflin (Bloch et al 1946 and Purcell et al 

1946). At the time these results were only of interest to those in the field of nuclear 

physics, however the technique was soon adopted in the field of chemistry with the 

development of NMR spectroscopy (Waugh 1993).

The first suggested use of magnetic resonance in the field of medicine was by 

Damadian in the early 1970’s (Damadian 1971). He suggested that the technique of 

nuclear magnetic resonance could be used to differentiate tumour tissue from normal 

tissue using an NMR tissue parameter TI. His teclinique could however only be used 

in vitro and was not confirmed by other workers.

It was not until 1973, however, when Lauterbur first introduced the concept 

of using magnetic field gradients to encode position-dependaiit imaging information, 

that there was any suggestion of using the NMR technique for producing spatial 

NMR information (Lauterbur 1973). In this short paper Lauterbur described a 

technique using weak gradient fields in conjunction with a stronger main magnetic 

field that was able to spatially distinguish between two test tubes of water. This new 

technique, which Lauterbur described as zeugmatography later became known as 

Magnetic Resonance Imaging or MRI.
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A few years passed before any major attempts were made to improve this 

technique. However in the late 1970’s a number of groups began developing MRI 

systems including Nottingham (Mansfield & Maudsley 1977), Aberdeen (Mallard et 

al 1979) and EMI. During this time the imaging techniques were refined with the 

development of several new imaging techniques including the revolutionary 

development of spin warp imaging in 1980 (Edelstein et al 1980) following on fiom 

the two dimensional Fourier transform method developed by Kumar et al (Kumai* et 

a/ 1975). The spin-warp technique proved to be the imaging technique utilised in 

most commercial MRI scanners to follow (Chen and Hoult 1989).

In the late 70’s and early 80’s a number of companies became involved in 

MRI scanner construction. These included eight companies who by 1983 had 

completed prototypes. These were: Bruker Instruments, Diagnostic Inc, FONAR, 

Philips Medical Systems, Picker International, Siemens Medical Systems, Technicare 

Corp, and Elscint Ltd (Stanford Research Institute (SRI) International web site, 

accessed August 2003). Other companies involved at this time were General Electric, 

M&D Technology, and Toshiba. With increased industrial input into scanner design 

and development and as a result of insurance companies beginning to provide 

renumeration for MRI scans in 1985, MRI scanners use began to grow and by 1988 

approximately 1300 units had been sold worldwide.

Since then MRI has developed from its relatively modest roots into one of the 

most powerful diagnostic imaging aids of the 21®̂ century, along with CT. According 

to Guerbet, who supply contrast agents for MRI, there are estimated to he 

approximately 13,000 MRI scanners currently worldwide (Guerbet website strategy 

document, March 2003) with many millions of examinations conducted each year.



The MRI hardware, along with the sequences and techniques used, has 

progressed at a great pace with a number of major advances taking place including: 

the introduction of gradient echo sequences (van der Meulen et al 1985) the 

introduction of contrast enhanced procedures (Car r et al 1984), development of echo 

planar imaging (EPI) (Mansfield and Morris 1982, Perkins and Wehrli 1986). 

Imaging gradients and main field strengths are also increasing especially in 

neurological imaging, with typical Bq fields beginning to increase from a standard

1.5 Tesla field to 3 Tesla. These advances have led to new areas of research and new 

clinical techniques such as perfusion and diffusion imaging, fMRI and multi-voxel 

spectroscopy.

1.1.2 Contrast Imaging

Despite the improvements in image hardware and techniques, many of the 

sequences and principles have remained the same during the development and 

maturation of MRI.

For example Schering developed the first contrast agent in 1981 with a patent 

application for Gd-DTPA dimeglumine (Magnevist German Patent 1981). This was 

first used in human MRI in 1984 where the contrast agent was intravenously injected 

into 20 patients at a dose of 0.1 mmol/kg (Carr et al 1984). The injected contrast 

improved the delineation of cerebral and hepatic tumoui’s, allowing tumour to be 

distinguished from peritumoural edema. The effect of this contrast agent on different 

sequences was theoretically assessed one year later (Gadian et al 1985). This method 

of using contrast enhancement can be described as static contrast enhanced MRI. 

Magnevist, as Scherings contrast agent later became known, soon became 

commercially available and to this day is still one of the contrast agents of choice,
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especially in investigations of high-grade cerebral tumours where tumour progression 

is being assessed using the static contrast enhanced method.

Despite significant advances being made in the use of contrast agents with the 

development of new techniques such as timed contrast enhanced MRI and perfusion 

contrast enhanced MRI (Roberts et al 2000), in many MRI departments the vast 

majority of contrast use continues to be for static contrast enhanced MRI. The 

injection technique and dose have remained the same since the first set of 

investigations in 1984 (Carr et al 1984), although there are suggestions that the 

required dose is reduced at 3T. Figure 1.1 shows some typical slices from a contrast 

enhanced image set.

Figure 1.1: Two pre (a & c) and post (b & d) contrast enhanced sagittal slices from a 3D T l- 
weighted study: these slices show contrast enhancement of a high grade cerebral tumour

(Glioblastoma)



1.2 Theory of Contrast Enhancement

1.2.1 Why do we need contrast agents?

Magnetic resonance imaging offers a variety of sensitivities to physiological 

pai’ameters of tissue, allowing tissues and pathologies to be delineated on the basis of 

differences in the local physical and chemical microenvironment. By appropriate 

choice of pulse sequence parameters it is possible to produce imaging sequences with 

contrast dependant on one or more of a number of these physiological parameters.

For example sequences can be optimised to enhance the Ti or T% characteristics 

or to display contrast weighted towards the proton density of the tissue, to enhance 

local blood or CSF flow, to determine the perfusion or diffusion of a tissue and so 

on. However, even with the large amount of physiological parameters available to 

measure in MRI there are still clinical situations and pathologies where the use of 

contrast increases the available information, such as in flow and perfusion studies 

(Merbach and Toth 2001). Therefore, as described in section 1.1.2, contrast media 

were introduced early in the development of MRI with the aim of enhancing the 

contrast between normal and diseased tissue, highlighting areas of blood brain barrier 

breakdown or to indicate organ function or blood flow.

However, to understand the theory behind using contrast agents in MRI we must 

first understand the basic principles underlying signal and contrast in MRI.
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1.2.2 Signal in MRI -  Macroscopic Magnetisation in a field

As has been described earlier MRI is fundamentally based on the principles 

of NMR, where NMR describes the interaction of spinning atomic nuclei and 

magnetic fields.

The spin of a nucleus is composed of the individual spins of the protons and 

neutrons contained within the nucleus. Nuclear spin (I) is a quantum mechanical 

quantity. It is represented by a vector which is orientated parallel to its axis of 

rotation, with a magnitude given by the following:

\i\=tui 1(1+1) (1.1)

and,

"  = (12)

where h is the Planck constant and I  is the spin quantum number. This overall spin 

depends on the number of unpaired protons and neutrons within the nuclear shells 

with each unpaired proton or neutron having a spin of either 14 or -14. Therefore 

different isotopes of the same element can have different nuclear spins. Nuclei with 

no overall spin cannot be investigated using NMR techniques, however, there are a 

significant number of nuclei with spin. Table 1 describes the spin state of some of the 

more important NMR nuclei.
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Nuclei Unpaired
Protons

Unpaired
Neutrons

Net Spin Y
(M H z /T )

IR 1 0 K 42.58
1 1 1 6.53

^Ip 1 0 K 17.25

""Na 1 2 % 11.27
1 1 1 3.08
0 1 K 10.71

................ 1 0 K 40.08
Table 1; Spin states in a selection of nuclei important to NMR

When a nucleus with a non zero spin is placed within an external magnetic 

field it acts in a similar fashion to a compass needle, i.e. it aligns itself with the main 

magnetic field. However, due to the mles of quantum mechanics, the nuclei can only 

align with the magnetic field in discrete directions which correspond to the energy 

levels of the nucleus. It can be shown that when a nucleus with a spin number I  is 

placed within a magnetic field B q that the magnetic quantum mi number can take one 

of 27+7 values. So for example in a B q field a nucleus can have one of two 

possible orientations with either m i^  +% or (see figure 1.2).

AE=̂  yh  Bo

a

I
i"'j

s

1.

%
-:

Figure 1.2: Orientation of the spin % nucleus (proton) in a Bq magnetic field along the z-direction
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The nuclear spin angular magnetic moment, which can be assumed classically 

to represent a ring current with negligible dimension, results in a dipolar magnetic 

moment // which is a vector quantity aligned parallel to nuclear spin /. Its magnitude 

can be defined by the following relationship:

(1.3)

where y is the gyromagnetic ratio, which is specific for different nuclei and isotopes. 

Due to the relationship between the nuclear spin and the magnetic moment in the 

direction of the main field (the z direction by convention) /4  is restricted to related 

values:

ju^=ymjh (1.4)

with

jfij = —/ ,—/  +1,..., /  (1.5)

When a magnetic moment is placed in a magnetic field Bo it represents a magnetic 

energy E  such that:

E = —jj. (1.6)

therefore, the energy states of the nucleus are given by the following equation:

E--')4lm jB^  (1.7)

Figure 1.2 shows the resulting energy diagram for a hydrogen nucleus with I  =

Transitions between states can take place only if the quantum mechanical 

selection rule which states that mj must change by ±1 is obeyed. Therefore, a change 

from one level to the next either requires energy input to go to a higher level, or 

requires emission of energy if it is to drop an energy level, equivalent to:

AE = ]éBç, (1.8)
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The change in energy is supplied by, or emitted as, electromagnetic radiation

where:

AE = Ai/Q (1.9)

where Vo is the frequency of the electromagnetic radiation. Thus, with the angular 

frequency ûjo=2^vo it is possible to relate this to the field:

Wo =f2;o (1.10)

As was described previously the magnetic moment and the nuclear spin are 

coupled together, therefore the magnetic moment will always be at an angle to the 

main magnetic field. Therefore, the nuclear spin will precess around the main Bo 

field with a frequency equivalent to the angular frequency of the magnetic moment:

Wl = Wq (1.11)

where cot is called the Larmor frequency.

Despite the large number of naturally occurring nuclei with appropriate spin 

values the vast majority of MRI techniques investigate the nucleus (i.e. a single 

proton). This is a result o f the high natural abundance of this nuclei in the human 

body, which is made up of approximately 80% water and because of its favourable

magnetic moment compared to other naturally occurring elements. The large number

of nuclei allow for sufficient signal to be detected despite the small amount of signal 

per nucleus and the fact that only a small number of nuclei contribute to the final 

signal due to thermal motion effects.

In the steady state slightly more than half of the hydrogen nuclei are in the 

parallel low energy state, i.e. aligned with the field rather than against it. For 

example in a large population of hydrogen nuclei, which is common in a normal 

biological NMR sample (%10^^/cm^) with a spin quantum number of I  and thus 2/+1
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energy states the distribution of the spins in each state is, in thermal equilibrium, 

governed by the Boltzmann law:

V . = A'o (1.12)

n = - l

where Nm is the number of spins in the state m. No is the total number of spins in the 

sample, E,n is the energy of the state m, T is the absolute temperature and kg is the 

Boltzmann constant. Thus with increasing energy the number of spins in each energy 

state decreases with increasing energy (temperature).

In a large sample there will be a macroscopic magnetisation associated with 

the sum of all the individual microscopic magnetisations:

(1.13)

However, in an unexcited sample there will be no overall % or y component to the 

overall magnetisation due to the random phase distribution of the individual 

processing magnetic moments.

Despite this incoherence in the x-y plane there will be coherence in the z 

direction due to the fact that there is a restricted number of discrete values for each 

individual magnetic moment. In ^H there are only two possible states. Using 

Boltzmann’s law it is possible to determine the relative concentration of these two 

energy states:

^  = axp(#a«/(t,r)) (1.14)

For example in a typical MRI magnetic field strength of 1.5T, at a room

N  T
temperature of 295K the ratio of for a ^H nucleus is 1.000010401. This 

represents a very small number of excess spins parallel to the Bo field, which results
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in the macroscopic magnetisation M parallel to the applied field. Although in this 

situation M only has a z component M%, it is useful to consider the magnetisation 

rotating in the x-y plane at the Larmor frequency This becomes more apparent 

when the magnetisation is tipped into the x-y plane.

Figure 1.3: Precession of an ensemble of protons in a magnetic field Bq producing a net 
magnetisation Mo in the z-direction

1.2.3 Signal in MRI -  Macroscopic Magnetisation in Presence of a Bi field

In section 1.2.2 the sample was at equilibrium. It is therefore possible to 

describe the time variation o f Musing:

dM
àt

= yM  X Bg (1.15)

In this case all of the macroscopic magnetisation is in M%. It is only possible to detect 

a time varying signal in the sample when a proportion of the magnetisation is in Mx 

or My. Therefore, before signal can be produced within the sample the magnetisation 

must be perturbed from its steady state. This is achieved by introducing a time 

varying B i magnetic field oscillating at radiofrequencies, referred to as the RF pulse.

16
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The magnetic field vector o f the RF pulse can be pictured as rotating in the xy plane 

perpendicular to B q. (See figure 1.4).

MB q

Figure 1.4: Rotation o f the RF magnetic field {Bi) just as the RF pulse is turned on (t=0)

Thus it is possible to determine the components of total field in the presence of the 

RF pulse with reference to the fixed laboratory frame of reference:

B^ = Bj cos cot. By = -B j  sin cot, ^ z ~ ^ o  (11

Remembering equation (1.15) it is possible using matrix notation to 

determine the cross product of the magnetisation and field vectors:

M x B
K  i
M , 8 , i 
M. 8 k

It is therefore possible from the above three equations to determine the time 

dependence for the components of M\
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dM
dt

dM
dt

dM
dt

Y^MyB^ + sin cot\

-  = y{M^B^ cos cot -  M^Bq),

-  -y{M^B^ sin cot + M  B̂  cos cot)

( 1 . 1 8 )

We can now assume that we have a rotating frame of reference x' y' z \  

rotating at col, to simplify the analysis. Therefore, if a field is turned on during a 

time tp, M  will rotate an angle = cô tp horn its original position down towards the 

x'y' plane, (see figure 1.5). The angle fii is usually called the flip angle of the pulse.

Figure 1.5: As a result of the Bi component of the RF pulse the magnetisation M  is flipped
towards the x'y' plane

1.2.4 Signal in MRI -  Relaxation Processes

After the RF field is turned off, M  will have a component in the x'y' plane. 

Viewed in the non-rotating laboratory frame this component will rotate around B q at 

the Larmor frequency, inducing detectable current in any receiver coil within range 

of the signal.

However, the above equations are incomplete as they do not take into accoimt 

the two relaxation processes present in these systems, namely T l and T2. T l
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relaxation is known as the spin lattice relaxation. This relaxation process involves the 

exchange of energy between the spin system (i.e. each individual proton in a large 

ensemble of similar protons) and the lattice in which they are embedded (i.e., the 

molecular framework). More precisely in quantum mechanical terms the majority of 

spins in the high energy state can only make the transition to the lower energy state 

by the process of stimulated emission. That is, to undergo a transition, the spin needs 

to be stimulated by a fluctuating magnetic field at the Larmor frequency. The random 

motion of the suirounding nuclei within the medium form these fluctuating magnetic 

fields. It is the rate of motion of the surrounding molecules that determines the time 

constant T l. Tl is often referred to as a longitudinal relaxation process.

T2 relaxation is known as spin-spin relaxation. In T2 relaxation no energy is 

transfened from the nuclei to the lattice, instead energy is redistributed between the 

spins. The simplest way to describe T2 relaxation is to introduce a 90® flip of the 

magnetisation M  into the transverse (x'y'-plane). (See figure 1.6).

M

Lower Field

Higher Field

Figure 1.6: T2 relaxation by dephasing for a sample that has experienced a 90 RF pulse

Immediately following a 90® RF pulse all of the magnetisation that was 

aligned along the z-axis is tipped into the transverse plane (figure 1.6(b)). In an ideal 

sample (assuming there are no field inhomogeneities) all of the nuclei will

s
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experience the same applied magnetic field. Thus, the multitude of individual 

magnetic moments will remain coherent, rotating at the Larmor frequency until Tl 

relaxation occurs. However in a real sample random tumbling of the neighbouring 

nuclei affect this coherence via low frequency random fluctuations in the local field. 

Each nucleus therefore experiences slightly different local magnetic fields, with 

some slightly larger and some slightly smaller than B q . This spread in local fields 

results in a related spread in rotational frequency, resulting in dephasing of the 

magnetic moments over time (see figure 1.6(c)) with the resulting decrease in 

transverse magnetisation. After a long enough time the phases will be completely 

dephased resulting in complete loss of measurable transverse magnetisation.

1.2.5 Signal in MRI -  Bloch Equations

In section 1.2.3 the time dependence of M  was described in terms of Bo and 

B i (equations 1.18). However, these equations did not take into account the Tl and 

T2 relaxation processes. Remembering that the Tl relaxation relates to the 

longitudinal relaxation in the z-direction and that T2 relates to the transverse 

relaxation in the xy plane it is possible to derive the following: 

dM^ dMy My dM^ _ M , - M q (1.19)
dt T2 " dt T l "  dt T\

Superimposing the relaxation effects into equations described by 1.18 produces the 

Bloch equations, which relate to rate of change of magnetisation in the laboratory 

reference frame:
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sin cof) ^

dt
dM.

y{M^By cos cot -  M^Bq )

T l

T l
(1.20)

= -yiM^By sintyr + M coscot) (M ,-M o )
^   ̂ ' Tl

These equations can also be derived in the rotating frame, resulting in the 

following equation:

dM
dt

(1.21)

where, using matrix notation:

R = and Mn
0
0

Mn
(1.22)

and Be^is the effective field given by ~Bg+Bj +12/y (where O issi vector 

pointing in the opposite direction to Bo with the value of the Larmor frequency)

These equations deseribe the transverse and longitudinal magnetisation. From 

these equations it is possible to develop pulse sequences that produce particular 

contrasts for different tissues, assuming that the T l and T2 values for the tissues in 

question are known.
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1.2.6 Signal in MRI -  Signal development

If we assume a rotating reference frame (which simplifies the analysis), 

immediately following an RF pulse equation 1.21 can be solved as follows:

M^(/) = Mq(1 —exp( y ^ p ) + (/q )6xp( ^^j), (123)

^xy  (0  ~ ^xy  (̂ 0 ) ®Xp( y^'^)

where Mz(to) and Mxy(to) are the longitudinal and transverse magnetisations just 

following the cessation of the RF pulse.

If a conductive coil is now placed close to the excited sample in an 

orthogonal orientation the relaxation and rotation of Mxy will induce an electric 

signal within the coil. This rotating magnetisation produces a sinusoidal signal within 

the coil. However, as has previously been discussed, relaxation occurs reducing the 

amplitude of the signal over time:

K,duced ^  ^ ly  COSmt (1.24)

where Vinduced is the voltage induced in the coil andM ^ is the initial magnetisation in

the xy plane following an RF pulse that flips the magnetisation into the xy plane (a 

90® pulse). The signal induced and its decay is known as the free induction decay 

(FID) signal.

1.2.7 Signal in MRI -  Pulse Sequences (2D)

Signal development is more complex when pulse sequences are run to 

generate MR images. The simplest imaging technique available is the spin echo (SE) 

sequence. In a basic SE sequence (see figure 1.7), signal from different tissues can be 

derived from the following equation:
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s  SI? °c M q l~2exp - ( T R - T E I 2 }
n

+ Qxp{- TR/TV) exp(TE/r2) (1.25)

where TR is the interval between two successive 90 degree pulses and TE is twice 

the time from the RF pulse to the 180 degree pulse, where the 180 degree pulse 

refocuses the signal at time TE as a spin echo.

RF

SS

PE

FE

Signal

90"

\  L

TE/2

180"

L \

TE/2
Figure 1.7: Pulse sequence diagram for a simple spin echo sequence 

(RP represents the RP pulses, SS represents the slice-select gradients, PE represents the phase-encode 
gradients and PE represents the frequency-encoding gradients)

If it is assumed that TE is small compared to TR, which is often the case, 

equation (1.25) can be simplified to:

SsE oc Mo [l -  exp(- TR/Tl)]exp(Tg/T2) (1.26)
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To obtain good signal strength from SE sequences magnetisation needs to 

recover fully before the next RF pulse. Therefore, optimal SE sequences require long 

scan times. If TR is shortened the spin system become saturated resulting in weaker 

signal. One method of regaining signal is to reduce the flip angle from 90® to a 

smaller flip, thus reducing the time required for the magnetisation to recover. 

However, in SE the 180® refocusing pulse would invert the longitudinal 

magnetisation. As TR was shortened this would eventually drive the longitudinal 

magnetisation to zero. Thus to solve this problem a new type of pulse sequence was 

developed where the 180® RF pulse is replaced by a rephasing gradient in the 

frequency direction (see figure 1.8).

RF

SS

PE

FE

Signal

Figure 1.8: Pulse sequence diagram for a simple gradient echo sequence. 0 is the flip angle of the RF
pulse and is typically less than 90°.

There are a large number of gradient echo (GE) sequences available with 

different characteristics. One simple GE sequence is the gradient-recalled acquisition #
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in the steady state (GRASS). In this sequence signal can be shown to vary as follows 

(Wehi'li FW 1988):

Sorm s ^  ^ 0 ----------------- 1    ■ • e x p (-TE/T2*)  ( 1 .27)
1 -  exp(- 77?/n) exp(- TR/T2)  -  cos^(exp(~ TR/T\)  -  exp(- TR/T2)

where T2* is the effective transverse relaxation which includes field inhomogeneity 

dephasing effects, and 0 is the flip angle. If T R »T 2*, which is a reasonable 

assumption the equation can be simplified to:

It can be seen from equation (1.28) that in GE sequences there is a strong T2* 

modulating effect on image contrast, thus gradient echo sequences are inherently T2^‘ 

weighted imaging sequences.

However, there are a number of methods for reducing the T2* weighting to 

produce, for example sequences that are more Tl contrast weighted. For example the 

application of an inversion recovery pulse prior to a gradient echo sequence can 

introduce Tl-weighting. These sequences typically employ a 180® magnetisation 

inversion pulse. This pulse reverses the equilibrium magnetisation, so that instead of 

being parallel to the main field it is anti-parallel. The inverted spins subsequently 

return to their equilibrium magnetisation during the subsequent delay between the 

inverting pulse and the low flip angle pulse (TI) at a rate depending upon their Tl 

value. The equation for this process is:

=M o(l-2exp(-77/ri)) (1.29)

Tissue with a shorter Tl will recover faster towards its equilibrium than 

tissue with a longer Tl. Therefore, if  the TI delay, before the normal gradient echo 

sequence begins, is set to specific values it is possible to null the signal from certain 

tissues, as well as providing Tl weighting if using moderate values of TI. An



example of a simple inversion recovery sequence is shown in figure 1.9. Inversion 

recovery sequences will be discussed in more detail later.

TI

180"

RF

SS

PE

FE

Signal

Figure 1.9: Pulse sequence diagram for a simple inversion recover sequence. TI is the time from the 
initial 180° inversion pulse to the imaging RF pulse.

1.2.8 3D Pulse Sequences

So far the sequences discussed have been 2D sequences, i.e., the data is 

collected in a slice by slice basis with each slice experiencing temporally separate RF 

pulses. However, in 3D pulse sequences every RF pulse excites the entire volume of 

tissue. The advantages of 3D imaging are the thinner contiguous slices (often 

refeiTed to as partitions of a 3D data set) that can be produced due to the increased 

signal to noise available.

To enable slices to be separated in the slice select direction, phase encoding is 

applied in this direction as well as in the phase encode direction. If Ns slices are
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required Ns phase encoding steps are acquired in the slice select direction. Each slice 

encoded gradient is applied for each of the phase encoding steps, before the next 

slice encode step is applied. Figure 1.10 shows a pulse sequence for a simple FLASH 

(Fast Low Angle SHot) 3D sequence.

RF

SS

PE

FE

Signal

Flgui-e 1,10: Pulse sequence for a simple FLASH 3D sequence.

It is possible to introduce T l weighting to 3D sequences using the inversion 

recovery method described in 1.2.7. One such technique (MP-RAGE) will be 

described in more detail in the next chapter.

1.3 Chapter conclusions

Now that the basics of MR with specific reference to signal generation and 

pulse sequences have been introduced, the next chapter will introduce the concepts of 

angiography and venography with reference to previous and current methods. This
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will include the use of contrast enhanced techniques in MR angiography. Focus will 

be placed on one particular venographic technique which utilises an inversion 

recovery 3D technique. The chapter will discuss whether there is a way of improving 

the technique and makes suggestions as to how this can be achieved.
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Chapter 2

Improvement of Current Subtraction Venography
Using Registration



2.1 Introduction

2.1.1 Overview

This chapter begins by introducing the technique of angiography and 

describes techniques currently used in MR angiography (MRA). Time of flight 

(TOP) and phase contrast (PC) MRA are described, paying particular attention to the 

advantages and disadvantages of each technique.

Two MRA techniques specifically designed to investigate the cerebral venous 

system are also described: a blood oxygenation level dependant (BOLD) venous 

contrast technique and an MP RAGE (Magnetization-Prepared RApid Gradient 

Echo) subtraction venography (MSV) technique. The MSV technique is described in 

detail and it is suggested that this technique is susceptible to inter-scan patient 

motion, as it requires two data sets to be collected serially: one pre-contrast injection 

and one post-contrast injection. If patient motion is a problem this would reduce the 

techniques capability of resolving small venous vessels, and would introduce 

artefacts into the resulting visualisation data.

To test if the technique was susceptible to such patient motion 20 patient data 

sets were collected and analysed using the MSV protocol, with and without Inter­

Scan motion correction where the motion correction was achieved using a sub-voxel 

realignment algorithm (MATCH, Hammersmith Hospital, London). Analysis of 

motion over such short time scales using this technique is novel.

Following analysis of the results conclusions are reached on the requirements 

of inter-scan realignment in such studies. More general conclusions are also drawn 

on the requirements for realignment of pre and post-contrast data that are not
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2.1.2 Historical Context

collected specifically for venous visualisation, and further work is suggested to test 

this hypothesis

All work described in this chapter has been conducted by the author, with the 

exception of the qualitative assessments conducted by the two trained observers, 

described in section 2.5.1.3 and the acquisitions which were performed by 

radiographic staff. Preliminary results from this chapter formed the basis for a 

presentation at the International Society of Magnetic Resonance in Medicine 

meeting in 1999 (Brennan et al 1999). The final data and results form the basis of a 

paper in preparation for journal submission.

I

It was shortly after the discovery of x-rays by Roentgen that the first 

angiograms were produced using cadavers in 1896. (Haschek and Lindenthal 1896)

Live animal studies were not conducted until the 1900’s (Franck and Alwens 1910). 

A mixtur e of Bismuth and oil was used as the contrast agent and was given via

intravenous injection to obseiwe blood flow in the heart.

The first arteriograms and venograms in humans were produced in 1923 

using a contrast of 20% solution of strontium bromide (Berberich and Hirsch 1923). 

One year later iodine was first successfully used as a contrast agent by Brooks 

(Brooks 1924).

Since then iodine arteriograms have become the gold standard in x-ray based 

angiography (Setton et al 1996) offering high resolution (1024x1024 and greater) 

and good vessel contrast. It is also possible to acquire images in real time, allowing 

fluoroscopy to show the dynamic nature of the contrast flow.
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There are however disadvantages with conventional angiographic techniques 

(Earnest et al 1984). Firstly, it is an invasive technique due to the requirement of 

intravenous injection. This can cause complications where the patient has vascular 

disease with associated thrombus. If there is thrombus at the injection site this can 

dislodge the thrombus which can cause stroke if it becomes lodged in the arteries of 

the brain. Cerebral angiography has been associated with a 1% transient deficit and 

0.5% persistent neurological deficit in patients (Heiserman et al 1994).

The technique also involves the use of ionising radiation in the form of x-rays 

with associated dose risks. For example the typical dose received from a cerebral 

angiographic procedure has been quoted as 7.4mSv (McFarland 1998) which 

translates to a fatal cancer risk of 3.7 per 10,000 procedures (ICRP Publication 60). 

There is also the risk of allergic reaction to the contrast medium which varies 

depending on the type of contrast medium used (0.2% - 0.7 %, (Cochran et al 2001)). 

As a result of the disadvantages in using conventional angiographic techniques there 

has been considerable interest in developing safer MR alternatives.

Before MRI was itself developed the effects of fluid and blood flow on 

nucleai' magnetic resonance measurements had already been investigated (Surjan 

1951, Singer 1959). Therefore, it was known during the early development of MRI 

that blood flow would have an effect on signal.

Early attempts to produce MRA sequences used spin echo pulse sequences 

which provided flow enhancement when unexcited spins entered the imaging slice. 

However, these techniques suffered from signal loss at higher veloeities due to 

excited spins leaving the slice before the 180 degree refocusing pulse (Bradley & 

Waluch 1985).
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2.2 Currently Applied MRA Methods

A number of methods have been developed to allow visualisation of the 

cerebral vessels using MRI. The two main methods currently used are time of flight 

(TOP) and phase contrast (PC).

A
.3

:

2.2.1 The Time of Flight Technique

The TOP effect occurs in normal imaging sequences and generally results in 

flow related enhancement. In a typical sequence slices are excited repeatedly 

resulting in an equilibrium longitudinal magnetisation. However, if during the time 

between excitation and signal detection if esh blood flows into an excited slice this 

blood will not have reached this longitudinal equilibrium. If it has travelled from an 

unexcited region it will have full longitudinal magnetisation resulting in flow related 

enhancement. This is the TOP effect (see figure 2.1).

Excited spins with 
reduced longitudinal 
magnetisation

Spins with full
longitudinal
magnetisation

Flow

Vessel

Excited spins 
displaced by 
blood flow
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a
s
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Figure 2.1: Blood flow resulting in inflow of longitudinally saturated spins into an imaging slice
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The resulting signal strength is dependant on the fraction of saturated spins 

within the slice profile when the signal is sampled, the flip angle and the repetition 

time. It is possible to model this for any particular sequence. For example Gao et al 

(Gao et al 1998) modelled the flow induced signal changes in a spoiled FLASH 

sequence. This sequence differs from a normal FLASH sequence due to the presence 

of a spoiler gradient in the slice select axis, which destroys any remaining transverse 

magnetisation after signal readout. Gao initially assumed that flow within a vessel 

had a plug profile, i.e. all flow within the vessel had the same velocity. He also

assumed that;

S = M„ sin 9 exp(- TEIT2)mi^L (2.2)

V J R ^ L  (2.1)
::

where Vo is the flow velocity, TR is the repetition time and L is the slice

thickness. Thus the total signal from voxels within the vessel could be calculated;

where Mq was the initial magnetisation, a was the radius of the vessel, and 0  was

the angle of the vessel in relation to the imaging slice.

More advanced modelling where more realistic assumptions are made, i.e 

parabolic flow profiles (Gao et al 1988) are also possible. Using the TOF effect it is 

possible to measure flow velocities, however for the production of MR angiograms 

this is not required.

TOF angiography techniques are designed to use the TOF effect to increase 

signal from flowing spins whilst keeping the signal from stationary spins to a 

minimum. A number of 2D and 3D techniques have been developed utilising this 

effect for the production of MR angiograms. For example inversion spin labelling 

(Nishimura et al 1987) uses an 180° selective pulse to invert the magnetisation in a
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slab of interest. After an inversion time (TI) nninverted blood flows into the slab 

before the normal spin echo sequence is run. The sequence is then repeated with a 

non-selective 180^ pulse which inverts all of the spins. The complex data from both 

these sequences is then subtracted resulting in data that only contains signal from 

flowing spins.

Another method utilises pre-saturation pulses for spin labelling (Dumoulin et 

al 1989(a)). Here a 3D velocity compensated gradient echo sequence is used without 

any pre-saturation pulses. The velocity compensation results in high signal for the 

flowing spins. A second sequence is then run with a pre-saturation pulse placed 

down stream, effectively removing the signal from spins experiencing these pulses. 

Subtraction of the two image sets results in angiographic data. In this case they were 

displayed using maximum intensity projections (MIP).

Currently used methods of TOP angiography are designed to suppress the 

signal from stationary tissue by saturation of the longitudinal magnetisation. This can 

be achieved in both 2D and 3D techniques (Keller et al 1989,Ruggeri et al 1989). 

Short echo times aie used with velocity compensation and partial flip angles. These 

parameters maximise the vascular signal whilst minimising the stationary tissue 

signal. Further techniques such as magnetisation transfer (Edelman et al 1992, Pike 

et al 1992), fat saturation (Lin et al 1993) and magnetisation preparation (Edelman et 

a/ 1991, Li et al 1994) can be used to reduce the signal from the stationary tissue.

2D TOP techniques are particularly good at providing high contrast between 

flowing spins and stationary tissue (Graves 1997), and are sensitive to slow flow. 

However, due to the use of relatively thin 2D slices signal to noise can be poor, and 

in-plane flow sensitivity can be low. The requirement for relatively long TE’s results 

in intravoxel phase dispersion. This is a particular problem in areas of complex flow.
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3D TOP techniques have higher signal to noise, due to the larger excitation 

volume and can provide thinner slices than 2D methods. TE’s can also be shorter 

reducing intravoxel phase dispersion. However, due to the thickness of the slabs used 

areas of slow flow can suffer from saturation, leading to reductions in signal. 

Background suppression is also not as good as in 2D TOP. Both the 2D and 3D TOP 

techniques can also be sensitive to tissues with short T l’s such as fat.

For the purposes of cerebral venous visualisation it has been suggested that 

3D TOP is unsuitable, due to in-plane saturation effects. However, 2D TOP can still 

suffer fi’om in-flow saturation problems relating to the choice of imaging plane. To 

avoid this problem 2D TOP can be acquired in three perpendicular planes, however, 

this requires significant increase in imaging time.

2.2.2 The Phase Contrast Technique

PC is another common technique used in the production of MR angiograms.

Magnetic field gradients used during the image acquisition dephase the transverse

.magnetisation for stationary spins. To correct for this gradients are usually applied in 

equal and opposite pairs in order to restore the initial phase at TE. However, this is 

not applicable with moving spins. When such a bipolar gradient (see figure 2.2) is 

applied to a spin it acquires the following change in phase;

^{t) = /  jG(r)x(r)<7r + /  jG(r)x(r)<7r (2.3)
h h

where G is the applied gradient at time x, /  is the gyromagnetic ratio and x is the 

position of the spin, with respect to the gradient at time x.
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Figure 2.2: A bipolar gradient with a positive gradient followed by a negative gradient (positive
bipolar gradient)

When a positive bipolar gradient (see figure 2.2) is applied to stationary spins 

the first and second term exactly cancel out in equation (2.3). However, if the spin is 

changing its position, the two terms will be different and an overall phase shift will 

occur. Therefore, the change in phase can be related to a velocity if the time of the 

phase change is known. For example for a bipolar gradient with each lobe having an 

area (in terms of its gradient and time) of A and the centre of the lobes being 

separated by time T, the induced phase shift relates to velocity by:

^(v) = yvTA (2.4)

It is possible to introduce bipolar gradients into conventional sequences and 

by producing phase maps from the raw complex data it is possible to determine flow 

velocities. However, a single bipolar gradient only imparts phase change on the 

moving spins which does not affect the magnitude images produced after the 

complex data has been Fourier transformed. To produce an angiogram we require a 

second sequence to be run with a negative bipolar gradient. Then after subtracting 

the complex data of the second sequence from the first sequence, signal from the 

stationary data will subtract out but will add for flowing spins. Taking the magnitude 

o f the complex data results in an image of the flowing spins. Here the maximum
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velocity spins would result in maximum signal, but only if the fastest flowing blood 

acquires a total phase shift of 180®. Therefore, these sequences must be specifically 

tailored for particular flow velocities

If only one positive and negative bipolar data set is collected, then the 

sequence would only be sensitive to flow in the direction of the bipolar gradients. 

Therefore, PC angiography originally required this procedure to be repeated 3 times 

for 3D flow sensitivity (Dumoulin et al 1989(b)) resulting in 6 data sets. However, 

the scanning time can be reduced by collecting only 4 data sets where only the first 

set had no velocity sensitivity and the following three have sensitivities in the three 

orthogonal directions (Pelc et a l \9 9 \,  Hausmann et al 1991). Subtraction of each 

velocity sensitive image from the reference image yields angiographic information 

for flows in that direction. The use of only one reference image, however, reduces 

signal to noise and more efficient subtraction schemes are often used (Pelc et al 

1991, Dumoulin et al \99\).

2D phase contrast techniques have short acquisition times, good background 

suppression and are not particularly sensitive to saturation effects (Graves 1997). 

However 2D phase contrast angiography has been found to suffer from intravoxel 

dephasing within the relatively large voxels, and this suggests that it should not be 

used for venous visualisation (Liauw et al 2000). It also suffers from vessel overlap 

and requires good system stability.

3D PC techniques have thinner slices and good background suppression. 

However, acquisition times can be long and it is difficult to provide a sequence with 

full velocity compensation.
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2.2.3 Other MR Angiography Techniques

There are a number of other less commonly used methods available for 

producing MR angiograms and more specifically of venous vessels. The BOLD 

method for visualising cerebral veins was introduced in 1998 (Reichenbach, et al 

1997,1998) and is the newest method available. This technique uses the blood 

oxygenation level dependant (BOLD) effect (Ogawa et al 1992) to visualise and 

highlight venous structures. A strongly T2*-weighted FLASH 3D sequence is used 

in conjunction with phase mask filters, which are specifically designed to increase 

the phase induced signal reduction that occurs in voxels with both venous blood and 

brain tissue. This technique produces dark veins within a light background, therefore, 

minimum intensity projections are used to visualise the data instead of the normal 

maximum intensity projections.

The original technique suffered two major disadvantages. Firstly, the 

acquisition times were quite long (typically 10 minutes per acquisition) especially for 

the resolutions that they were recommending of 1024x1024. Thus there would be 

problems with patient motion artefacts. Secondly, mainly due to the long TE’s 

required, the technique was sensitive to susceptibility artefacts especially at air tissue 

interfaces. In Essig et al 1999 the technique was being used to determine nidus size 

of arteriovenous malformations (AVMs). In 4 of 17 patients within the study nidus 

size was underestimated due to image as a result of the lesion being in close 

proximity to an air/tissue inteface, or being near a bony structure.

Lin et al 1999 investigated a solution to these problems. A Tl reducing agent, 

Omniscan, was injected to allow shorter TE’s to be used. This would reduce image 

acquisition time and susceptibility artefacts. However, when this technique was used
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in a study (Tan et al 2000), investigating the relationship of intracranial veins and 

multiple sclerosis (MS) lesions, it was found that there were still major problems 

with susceptibility artefects. Although this technique has further been expanded to 

3T systems (Riechenbach et al 2000) and very fine detail has been displayed, as it 

currently stands it cannot display the whole intracranial venous system. Therefore, if 

a clinician requires such an overall picture with high resolution vessels a different 

technique is required.

Stevenson et al 1995 described another technique called MP RAGE 

subtraction venography (MSV). This technique uses the MP RAGE pulse sequence 

(Mugler and Brookeman 1991, Brant-Zawadzki et al 1992), which is a Tl-weighted, 

small flip angle, 3D sequence with an 180® inversion recovery preparation pulse. 

Before this angiographic technique is described it is important to have an 

understanding of the MP RAGE sequence.

2.3 3D MP RAGE Pulse Sequence

In 1990 (Mugler and Brookeman 1990) developed the 3D MP RAGE 

sequence which followed on from work done by Haase et al (Haase et al 1989). At 

the core of this sequence is a FLASH sequence, similar to the one detailed in section

1.2.8 (figure 1.10). This sequence when modified by the addition of an 180® 

inversion pulse to introduce Tl weighting is called Turbo or snapshot FLASH 

(Atkinson et al 1990, Haase 1990). Similarly, it was possible to introduce Tl 

weighting to 3D imaging with the development of the MP RAGE sequence.

The MP RAGE sequence consists of an initial 180® inversion pulse (see 

figure 2.3) followed by a pause in the sequence, called the inversion time (TI), where
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the inverted longitudinal magnetisation is allowed to recover (see figure 2.4). After 

TI the FLASH sequence runs through all of the depth encoding steps for one 

particular plane encoding gradient. There is then a further recovery time allowing 

longitudinal magnetisation recovery, before the next inversion pulse and FLASH 

loop is run with a slightly different plane encoding gradient.

RF

SS

PE

FE

180°

L L \

Signal

Inversion Time (TI)

Magnétisai ion Recovery

Depth Encoding X -

In Plane Encoding

Figure 2.3: Pulse diagram of the MP RAGE sequence. The in plane loop consists o f the 180° pulse 
followed by an inversion time (TI), the depth encoding loop, and magnetisation recovery time. The

depth encoding loop is a FLASH sequence.
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Figure 2.4: MP RAGE longitudinal magnetisation changes during the sequence. Tissue contrast does 
not remain constant during the depth encoding steps, thus the overall contrast is the result of complex 

averaging over all o f the depth encoding steps.

Each depth encoding step within the FLASH sequence experiences a slightly 

different Tl-weighting due to the variation in the longitudinal magnetisation over 

time (see figure 2.4). Therefore, the final tissue signal is a complex average of the 

depth encoding lines over each depth encoding period. Signal contributions from the 

in-plane encoding reach equilibrium within less than three depth encoding steps 

(Brant-Zawadzki et al 1992).

As applied in this thesis the depth encoding occui’s sequentially. This results 

in an effective TI which is the average of the depth encoding period plus the 

inversion period. Therefore, when optimising the sequence for tissue contrast it is 

important to take into account the duration of the depth encoding period.
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In a similar fasliion to the other sequences described in chapter 1 it is possible 

to derive equations detailing the signal and magnetisation characteristics of this 

sequence. The average signal intensity achieved with an MP RAGE sequence is:

Sj  ̂ = QXp{-TE/T2'^)sma (2.5)

where Sn is the signal intensity for a sequence with N  phase-encoding steps, Mat is 

the magnetisation and a  is the depth encoding RF pulse angle. The longitudinal 

magnetisation can be defined by:

A '/2 -2

= Aro(l-exp(-77î/ri)) ]̂ (cosaexp(-TR/ri)' +Mo(l-exp(-77/71))+ exp(7//n)(cosaexp(-7/?/n))"'/'-‘ (2.6)

where TR is the repetition time between readout pulses, TI is the inversion time and 

Meg is the equilibrium magnetisation reached within a few Fourier loops. This is 

defined by:

where Tree is the magnetisation recovery period as illustrated in figure 2.3. X is the 

fraction of magnetisation remaining from previous excitation loops due to the small 

angle excitation.

It is the 180^ inversion pulses that are responsible for the Tl-weighting of this 

sequence. As was described in chapter 1 (section 1.27) this Tl-weighting is a result 

of the inverted spins returning to their magnetisation equilibrium at a rate determined 

by their T l relaxation.

43



2,4 MP RAGE Subtraction Venography

2.4.1 Introduction

This particulai’ venographic method requires the MP RAGE sequence to be 

run twice in quick succession with the second sequence shortly following injection of 

gadolinium (Gd). Due to the Tl-reducing effect of Gd and the effect of flow on the 

MP-RAGE sequence, if the post-injection data set is subtracted from the pre­

injection data set the venous system is highlighted in the output, due to the increased 

intensity of the veins in the post-injection sequence.

Due to the very short TE gradient-echo component the MP-RAGE sequence 

depicts normally flowing unsaturated arterial blood as bright. However, because of 

saturation effects venous blood flow is dark, due to its slow flow velocities.

Therefore, after the T l reducing agent has been injected the signal from veins 

increase but the signal from arteries does not. Therefore, the cerebral arteries are 

subtracted out in the final data.

However, it is not only the venous vessels that show contrast enhancement 

after Gd injection. Other structures within the normal human head also show some 

uptake on the MP-RAGE sequence, including the skin, nasal cavities and meninges, 

because they do not have the equivalent of a blood brain barier. After subtraction 

these structures are highlighted as well as the venous vessels.

There are several advantages to the MP RAGE subtraction technique. Firstly, 

it does not rely exclusively on time-of-flight effects to depict flow. Where TOF will 

only depict flow within a specific range of flow velocities dependant on the sequence 

parameters, the MSV technique only requires that the blood within the veins remains 

within the imaging region long enough to become saturated. This also has the
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advantage of allowing small cortical veins to be depicted, as the flow within these 

vessels will be slowest. Therefore, it is theorised that the only limitations on small 

cortical vein visibility in the final subtraction data would be scan resolution, signal to 

noise (S/N) and the sufficient delivery of contrast medium.

Another advantage of this technique is that due to the short TE used in this 

technique there is very little artefact from susceptibility dephasing. As was 

previously discussed this can be a problem with the BOLD and PC techniques. Thus 

there are no areas of the brain that cannot be examined by this technique.

As with all the previous techniques there are disadvantages. The protocol 

requires Gd injection and is thus invasive. However, this is a minimally invasive 

technique only requiring intravenous injection, which can be delivered via long line. 

There aie also problems with injecting Gd compounds such as Magnevist but these 

are very rare. In a survey-based study covering 687,255 gadopentetate dimeglumine 

injections 314 non-allergic reactions, 107 mild, 28 moderate and 5 severe allergic 

reactions were reported (Murphy et al 1999). Although these rates are low with only 

0.001% of reactions being classed as severe, emergency medical treatment must 

always be close at hand.

Scan times for this protocol can be up to 6 minutes 30 seconds for each scan 

therefore patient motion is a problem. These motion problems can be reduced to a 

minimum by seeking patient co-operation and using head restraints to limit motion. It 

is also common procedure to insert an intravenous line before the study is started to 

negate the need for needle insertion half way through the procedure. However, none 

of these methods can guarantee the patient will remain still during the procedure. In 

fact, because there is a break in the imaging sequence, to allow the contrast agent to 

be delivered by long line, the patients often use this time to reposition themselves if
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they feel discomfort (Brennan et al 1999). This motion results in misregistration of 

the pre and post-injection data, possibly reducing both the S/N and vessel resolution. 

It can also result in artefects appearing in the data either masking vessels of interest 

or masquerading as such vessels.

Various studies have been performed to examine motion correction during 

scanning. These include physiological gating (Runge et al 1984), reordered phase 

schemes (Bailes et al 1985) and the use of navigator pulses (Ehman et al 1989). 

However, in the MSV protocol, there is a pause during the scans were motion can 

occur and none of the correction algorithms can account for motion inter-scan. The 

gap between the two scans is the occasion during the protocol that motion is most 

likely to occur. Therefore it is important to determine if this motion does commonly 

occur and if so does correction improve the final subtraction data.

It is possible to correct for inter-scan motion using registration software to 

compare the pre and post-contrast data. Such software is designed to determine the 

best positional correction to account for the intervening motion. One such software 

package is MATCH which was designed and written by a group at Hammersmith 

Hospital, London (Hajnal et al 1995).

2.4.2 MATCH Registration Software

MATCH is a command line based program designed specifically to realign 

3D Tl-weighted serial data sets based on a chi-squared minimisation between the 

two data sets (Press et al 1992), where chi-square is calculated using;

/  = Z  (2-8)Tv.,voxels  ' '  voxels
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where Ia and Ib are the intensities of corresponding voxels in the images A and B that 

are being positionally matched and N̂ oxeis is the number of voxels used in the 

calculation. ^  is reduced by calculating new values for h  as image B is moved 

relative to A using rigid body rotations and translations. The software applies 3 rigid 

body translations (x,y,z) and 3 rigid body rotations (Pitch, Roll, Yaw) to one of the 

data sets and for each set of rigid body parameters calculates a new The software 

aims to produce a set of translation and rotation parameters that result in a minimum 

value for Calculation time is reduced by only taking voxels into account when 

they ai’e above a certain threshold in image A and where there are corresponding 

pixels in image B.

During optimisation of the alignment subvoxel shifts are required to enable 

high alignment accuracy. To minimise errors in ^  calculation, and thus improve the 

alignment accuracy, good quality interpolation is required.

To enable fractional pixel shifts in MRI data it is necessary to use an 

interpolation function appropriate to the nature of the data (Hajnal et al 1995). MRI 

data is collected using Fourier techniques with the data collected over a bounded 

region of k-space. Due to the existence of these boundaries the frequency of the data 

is strictly band limited. Thus for an MR image which has been Fourier transformed 

the equivalent point spread function would be a sine function (Jain 1989). This is 

particularly true for 3D data sets that ar e collected with phase-encoding in two 

directions. These data sets are band limited in all directions. Therefore, theoretically 

it is possible to interpolate 3D MR images using sine interpolation without 

introducing errors.

Sine interpolation is, however, a computationally intensive technique, which 

if employed fully to large 3D data sets would result in prohibitively long
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interpolation times. Therefore, a windowed sine technique is employed with a 

Hanning window function, which is a compromise between accuracy and 

computational time (Hajnal et al 1995).

Hajnal et al also suggest that to ensure good registration accuracy, that 

structures that change between the two scans should be removed from the 

registration computations as local changes can introduce global errors in registration 

(Hajnal et al 1995). In the data presented here the main difference between the two 

data sets is the presence of the contrast enhancement. Certain structure’s signal 

intensity significantly changes after contrast injection within the head, including 

venous vessels, skin and nasal tissues. Therefore these structures must be segmented 

out before the registration algorithm is applied. For the algorithm to ignore these 

tissues in the calculation they must be segmented from the post-contrast data, as it is 

not obvious from the pre-contrast data where these structures are.

It is also possible that if the patient moves their head that the brain can 

change position within the cranial vault, as it is not rigidly fixed in place. Therefore, 

the relationship between the brain and its attached structures can change with respect 

to the skull, muscle and other extracerebral structures. Therefore, as well as 

removing the enhancing structures from the calculation the remaining extracranial 

structures must also be segmented out.

2.4.3 Study Aim of This chapter

This study aims to determine the effects of using the MATCH registration 

software on the venograms produced using the MP RAGE subtraction technique. By 

subjectively and quantitatively assessing subtraction data quality it will determine if
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the use of registration techniques improves the quality of the clinical information 

available to the radiologist.

2.5 Comparison of Registered and Non-Registered Subtraction Venograms

2.5.1 Methods

2.5.1.1 Imaging Protocol

Pre and post-contrast data were collected on 20 patients using a 3D MP 

RAGE sequence, after obtaining ethical approval. The imaging parameters varied 

during the study, reflecting the differing clinical imaging protocols required for the 

differing pathologies under investigation. The examinations included; 6 patients with 

meningiomas, 5 for suspected venous thrombosis, 3 with gliomas, 3 with adenomas,

1 with a cyst, 1 with a malignant neoplasm and 1 patient with normal imaging. The 

imaging parameters varied within the following constraints; TR=10 ms, TE= 4 ms, 

TI= 20-300 ms, flip angle =10-15, equivalent slice thickness = 1.2-1.4 mm, matrix = 

256x256, TOY = 250 mm. Slices were sagittal in orientation. The maximum 

acquisition time for each MP RAGE acquisition was 6 mins 46 seconds.

The imaging was conducted on a 1.5 T imaging unit (Siemens Magnetom 

63 SP). Patients were asked to stay as still as possible throughout the imaging 

procedure with their head held in place with padding (see figure 2.5). The pads were 

secured at maximum pressure consistent with comfort, by two locking bars. A long 

IV line was inserted in the patient before the imaging protocol had begun. After 

initial scanning, including pilot scans, the first MP RAGE sequence was run before
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contrast medium injection. The contrast medium (Magnevist) was administered as 

soon as the pre-contrast MP RAGE sequence had finished in the form of a 20 second 

bolus, via the IV line. This required a radiologist to enter and leave the room. The 

long line was used avoid having to slide the patient out of the magnet for the 

injection and then to slide them back in. Had this been required significant patient 

motion would be likely as well as introducing alignment errors. The post-contrast 

MP RAGE sequence was started as soon as the bolus delivery was complete and the 

radiologist had left the room. The data was transferred to a Sun Ultra 1 170MHz 

workstation where software (conv analyze, written by Martin Connell, Department 

of Clinical Physics, Edinburgh University) was used to convert the ACR/NEMA 

(American College of Radiology- National Electrical Manufacturers Association) 

data format (Wang et al 1988) data to Analyze format.

Figure 2.5: The head coil fixation system used for the data collected in this thesis. The two pads can 
be moved in and locked in the tightest position the patient can reasonably bear
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2.5.1.2 Image Processing Procedure

Before using the MATCH software the post-contrast data was segmented in 

two stages. In stage one the extracerebral tissue was removed by manual 

segmentation, leaving only the brain parenchyma, including the brain stem down to 

the foramen magnum, the enhanced venous structures and the arteries. This 

segmentation was approximate and in all cases included some non-enhancing extra- 

parenchymal material (see figure 2.6)

Figure 2.6: An example o f  the regions drawn for the purposes o f  the final visualisation mask. Note 
that the regions extend slightly beyond the brain and cerebral vessels.
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This segmented data was used as a mask to define the data to be included in 

the final MIP visualisation. By restricting the data used for the MIP calculation to 

only the brain and the cerebral vessels this segmentation was achieved using 

software written by Martin Connell (3dMRI). On each sagittal slice regions were 

traced that contained the data to be retained. All data outside these regions was later 

removed. The regions were drawn on every slice until the brain and vessels to be 

retained had been fully enclosed within the regions. The regions required 

approximately 2 hours of operator time per subject to draw and were drawn by the 

author (see figure 2.6).

In the second stage the data was further segmented removing contrast- 

enhanced (high signal) data providing the MATCH software with a map of voxels to 

use in the realignment calculations (realignment mask). This was achieved using a 

seed growing technique. Initially large vessels were selected as a seed point and 

thresholds were set around the value of this pixel, by operator judgement, that would 

allow the seed point to grow into voxels containing high signal vessels. The 

thresholds were limited so that brain parenchyma was not included. All data 

connected to the initial seed point and within the determined thresholds were 

removed.

As all of the vessels within the brain do not appear connected in MR images, 

this did not remove all of the vessel data. Therefore, further seeds were used and 

grown in the same maimer until the operator was satisfied that all enhancing vessel 

structures had been removed.

It should be noted that this technique also removed the high signal arteries. 

These vessels do not change in signal between the pre and post-contrast data sets, 

and therefore, these could be kept in the realignment mask. However, selectively
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segmenting the venous vessels Avould have added considerably to the time required 

for the brain segmentation.

This fully segmented data had all the main structures that change between the 

two scans removed. Therefore the chi-squared minimisation algorithm applied by 

the MATCH software used this data to determine the best realignment of the brain 

parenchyma. The pre-contrast data was realigned to the post-contrast data using the 

MATCH algorithm.

Once the MATCH algorithm had calculated the 6 rigid body realignment 

parameters it used these parameters to realign the pre-contrast data to the post­

contrast data. Therefore, if this data was subtracted from the post-contrast data it 

would produce a data set highlighting areas of contrast enhancement. However, this 

study is only interested in the contrast-enhancement within the brain vessels. 

Therefore, the extra-cranial enhancement had to be removed. This was achieved by 

producing a binary mask from the first segmented data which contained the 

enhancing vessels. In this binary mask any voxel that had not been segmented out 

was set to one with remaining voxels set to zero. This mask was multiplied with the 

pre and post-contrast data sets, before subtraction.

After subtraction a MIP algorithm was then applied to the subtracted data to 

produce MIP venograms. These venograms could be produced in any orientation, 

using the 3DMRI software.

To allow these realigned venograms to be compared to venograms that were 

produced without realignment, a second subtraction data set was produced. The pre 

contrast data set was subtracted from the post-contrast data without using the 

MATCH algorithm to realign them. The same mask used to segment the final 

subtractions in the realigned data was again used to allow the production of the non­
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aligned subtraction venograms. These two sets of venograms could now be directly 

compared allowing the effects of the realignment software to be examined. From 

here in this chapter the data sets will be referred to as the matched and unmatched 

subtraction data.

All of the image processing in this chapter was conducted on a Sun 

Ultra 1 170 MHz workstation by the author.

2.5.1.3 Quantitative and Qualitative Assessment Protocol

data sets.

where Sss is the signal measured from the sagittal sinus and Nsub is the noise from the 

subtraction background.

ROFs were then drawn on, and contained within, a section of the sagittal

The matched and unmatehed subtraction data were compared in two ways. 

Firstly, for each set of data signal to noise (S/N) values were calculated (see 

equation 2.9). Three regions of interest (ROFs) were drawn in the matched 

subtraction data where there were no discernible veins present. The average pixel

value within these three regions was representative of the noise within the matched 

data. The same three regions were used to produce noise data for the unmatched

«
:

sinus in the matched subtraction data. The mean pixel value within this ROÏ 

represents a value for the signal within the matched subtraction. Care was taken to 

avoid the superior aspect of the sagittal sinus. This was because in some patients the 

signal decreased close to the end of the coil and within the region of maximum
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inliomogeneity. The same signal regions were used for the unmatched data. Student 

paired T-test statistics were then calculated comparing S/N values for matched and 

unmatched data with each patient acting as their own control. This resulted in 

quantitative comparison of the two data sets.

A second qualitative comparison was also conducted. For this 

comparison lateral MIP’s were produced for each data set. The window levels were 

equalised for both the matched and unmatched data, allowing direct comparison of 

the images. Each patient’s matched and unmatched MIP’s were randomised and the 

images were presented to two experienced neuro-radiologists. They were asked to 

examine, in a blinded manner, the randomised matched and unmatched MIP data to 

determine which image was of the best quality. They were asked to take into account 

signal to noise, vessel resolution and the existence or non-existence of artefacts. This 

data was then compared to the signal to noise data.

2.5.2 Results

2.5.2.1 General Results

The time required to perform MATCH co-registration was on average 2% 

hours. The majority of this time was spent reslicing the data using sine interpolation. 

The manual segmentation took on average a further 2 hours for 128 slices. An 

example of a non-matched and matched subtraction are shown in figure 2.7.
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Figure 2.7: Lateral MIPs from subject 8. (a) unmatched (b) matched. In the unmatched MIP there are 
several artefacts due to miss-registration such as unsubtracted arteries. The shape o f  the corpus 

callosum can also be seen. The matched data has better vessel resolution and less artefacts. Here the 
corpus collosum has been correctly subtracted out. The arrow in (a) indicates an edge mis-registration

artefact.

2.S.2.2 Quantitative Results

The S/N ratios are summarised in table 2.1. In 3 patients it was not possible to 

produce S/N data as the sagittal sinus was either occluded or was very close to the 

end of the imaging coil and thus non-uniform. The overall average S/N is higher for 

the matched data than for the non-matched data. This difference is statistically 

significant with p=0.003 and with a difference 95% confidence interval of 0.1354 - 

0.5481.
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Patient
Number

M atched S/N M atched S/N  
Standard Dev

Unmatched S/N Unmatched S/N 
Standard Dev

1 2.72 1.21 2.47 0.96
2 2.83 1.39 2.83 1.36
3 2.24 0.98 2.25 0.99
4 2.05 0.88 1.93 0.81
5 3.25 1.36 2.94 1.39
6 Poor Sag Sinus Poor Sag Sinus
7 3.61 1.44 2.06 0.76
8 3.55 1.61 2.85 1.17
9 2.96 1.17 2.83 1.05
10 2.77 1.15 2.57 1.01
11 3.28 1.60 2.92 1.22
12 Poor Sag Sinus Poor Sag Sinus
13 2.67 1.29 2.60 1.23
14 2.86 1.33 2.10 0.82
15 3.24 1.47 3.09 1.35
16 2.91 1.53 2.82 1.38
17 Poor Sag Sinus Poor Sag Sinus
18 2.81 1.24 2.30 1.25
19 3.11 1.42 2.45 1.05
20 2.02 0.90 2.06 0.84

Average 2.88 2.53

Table 2.1: Comparison of matched and unmatched signal to noise results

2.S.2.3 Qualitative Results

A summary of the result of the qualitative image assessments are shown in 

table 2.2. Observer 1 rated the matched data of better quality in 80% (16/20) of 

patients. In 15% (3/20) observer 1 could not observe any difference and in 5% (1/20) 

of cases observer 1 rated the unmatched data better. Observer 2 rated the matched 

data of better quality in 85% (17/20) of patients. In 15% (3/20) observer 2 could not 

observe any difference. In no cases did observer 2 consider the unmatched data was 

better. Both observers agreed in 75% of cases. Kappa statistics were not used to 

compare the inter-observer agreement. This was due to the high proportion of 

agreement between the observers when the matched data was better, 70% (14/20).
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This high prevalence within one category can lead to misleading kappa values 

(Altman 1991). It is, however clear from the agreement data that the matched data 

were judged to be of higher quality.

Patient N o. Observer 1 Observer 2
1 M M
2 M ND
3 M ND
4 NM M
5 M M
6 ND M
7 M M
8 M M
9 M M
10 M M
11 M M
12 ND ND
13 M M
14 M M
15 M M
16 ND M
17 M M
18 M M
19 M M
20 M M

Table 2.2 : The qualitative results for matched and unmatched comparison 
The entries for each observer correspond to the venogram that they deemed to be of higher quality 

(M = matched MIP, NM = unmatched MIP, ND = no noticeable difference)
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2.5.3 Discussion

It is often assumed when doing subtractions between two data sets within the 

same study, that there is little or no movement between the data sets. As far the 

author is aware no publication exists that examines the effects of such movement 

over such short periods of time in the MR scanner. Therefore, this study set out to 

investigate whether movement was a problem within inter-study data sets using a 

registration program to allow comparison between matched and unmatched data.

This study also set out to investigate if  by correcting any inter-scan motion that does 

occur, it was possible to improve the data quality when producing contrast enhanced 

subtraction venograms. If this was the case then it would be worth further 

investigating the methodology used to realign the data sets to optimise the technique 

for future use.

Two separate methods were used to determine the differences between data 

that had been realigned with data that had not. Quanititative measurement of S/N 

allowed rigorous assessment of any differences in the final subtraction data. This also 

allowed determination of the significance of any differences detected. It was 

expected that any difference in S/N would translate into detectable changes in the 

final MIP which might affect clinical diagnosis, therefore following the S/N results 

two observers were asked to compare side to side MIP outputs from both of the data 

sets for all of the subjects. To avoid any observer bias neither observer knew which 

images came from the matched and unmatched data sets, and neither observer had 

any information on the other’s results. Both observers, however, had experience of 

looking at MIP venograms previously produced within the department.
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The data from this study suggests that using registration software on pre and 

post-contrast data sets can improve the visualisation of the cerebral venous system. 

S/N did significantly improve after the data had been realigned using the MATCH 

algorithm. Also in the majority of cases the two trained observers determined the 

matched data sets of being of higher quality than the unmatched data sets. Therefore, 

it can be concluded that image realigmnent does indeed improve the data output from 

contrast-enhanced subtraction venograms. This also confirms that in many clinical 

imaging protocols of this nature that inter-scan motion is a problem that can 

significantly reduce the quality of subtraction data produced from it. For this study 

this is especially important clinically when the small cortical veins are involved in 

the disease process. It would also be important if higher resolution were used with 

smaller voxels or thinner partitions. Co-registering this higher resolution data would 

increase the visibility of very small vessels. This would allow determination of small 

vessel thrombosis as well as thrombosis of the larger vessels.

On only one occasion did an observer decide that the unmatched data was of 

better quality. On this occasion the observer stated that there were more vessels 

visible in the unmatched data. However, it is likely that these vessels were in fact 

artefacts due to the mis-registration of the data. The false veins could be created 

when an artery has been mis-registered and thus is not fully subtracted out or when a 

bright stmcture’s edge is mis-registered and overlays a dark area when it has not 

been matched. This phenomenon is most common around the inferior surface of the 

frontal lobe where the brain interfaces CSF and bone (figure 2.6(a)). Motion artefacts 

are common here and are likely to occur due to the patient raising their head to look 

out of the magnet bore, towards their feet between the imaging sequences. This is 

despite express instructions to try and keep still throughout the procedure.
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There are several possible uses for high quality MR venograms. Experience 

in this and other centres have demonstrated their usefulness in operative planning 

where the surgeon needs to know the relative position of the venous system with 

respect to the cortical structures and underlying pathology (Kikinis et al 1996). Such 

venous visualisations have been used in this department and an example of one is 

shown in figure 2.8.

Figure 2.8: An example o f the venous data overlayed onto MRI 3D cerebral data. The cerebral data 
was extracted from the pre-contrast data and displayed using Analyze (Mayo Foundation, Rochester,

MN)

It is also important for visualising and delineating the extent of cerebral 

venous thrombosis. In this study patient 11 had previously been diagnosed with a 

cerebral venous thrombosis (CVT) using CT. This was present in the left transverse 

sinus. The MRV unmatched data also depicted the existence of the CVT, however, in 

the matched data the extent of the CVT is better defined (see figure 2.8). Being able 

to accurately depict the extent of CVT is important especially if serial studies are
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examining the effects of thrombolysis or anticoagulant treatment. Co-registration 

should be used when examining such acute conditions.

Figure 2.9: Inferior-superior MIP’s from patient 11. (a) unmatched (b) matched. The long arrows 
show the area o f thrombosis. The co-registered data delineates the thrombosis more clearly. The short 
arrows in (a) show arterial contamination o f  the unmatched data. This does not appear in the matched

data.

Fig 2.9 also illustrates the possibility of arterial contamination if the data is 

not co-registered. The unmatched data contains what appear to be veins emerging 

from the posterior part of the cavernous sinus and travelling medially. However, 

these vessels are not visible on the matched data. After investigation of the 

subtraction and pre-contrast data, it emerged that the vessels were arterial 

contamination from the right and left internal carotid, as it entered the skull base at 

the foramen lacerum. Thus by using co-registration arterial contamination in the 

subtraction data can be kept to a minimum.
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Currently, the co-registration processing time is lengthy at about 2 14 hours. 

However, with increasing computing power this time will reduce. After this study 

was completed a new computer system was installed (Sun Ultra 10 440MHz). This 

was found to reduce the co-registration time to about 1 14 hr.

Another way of reducing processing time is to use a less rigorous reslicing 

algorithm. Linear interpolation is often used as it is quicker to run and easy to 

implement (Woods et al 1992). However, as was discussed in section 2.4.2, sine 

interpolation is the best suited method for reslicing MR images (Jain 1989, Hajnal et 

al 1995).

The manual segmentation in this protocol was also time consuming and 

required a trained operator throughout. There are several groups developing 

automatic segmentation algorithms for extraction of brain parenchyma. However, 

these algoritlims have not yet been designed to provide correct segmentation of 

contrast-enhanced images which is required for this protocol (Lemieux et al 1999 

and 2003 ,Saeed et al 1997,Lerski et al 1993,Cline et al 1987, Thacker & Jackson 

2001). However, it may be possible to reduce segmentation time requirements by 

developing a new segmentation algorithm.

This chapter has focused on using pre and post-contrast subtraction 

data to visualise the cerebral vessels. This enabled subjective quality and signal to 

noise measurement to be made with respect to the effects of inter-scan patient motion 

on the subtraction data. However, there are other uses of contrast-enhanced 3D data 

sets that also depend on this type of subtraction technique. Therefore, the finding that 

alignment correction is necessary in one application may have more widespread 

implications. Chapter 3 will investigate the effects of inter-scan motion on a tumour 

volume measurement technique. This will enable the effects of inter-scan patient



motion to be quantified by examining the effects of alignment correction on the 

tumour volume measured.
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Chapter 3

Tumour Volume Measurements in the Clinical Study 
of a Modified Herpes Simplex Virus in the Treatment 

of Glioma: The Effect of Registration on Volume
Measurement
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3.1 Introduction

3.1.1 Overview

This chapter investigates the effects of pre and post-contrast realignment on 

contrast-enhanced tumour volume measurements, using the subtraction data. Tumour 

volume measurements were previously measured using this technique in data sets that 

had been aligned visually using a manual technique (the author of this thesis made the 

tumour volume measurements in Rampling et al 2000). At the time of publication no 

technique existed that could automatically realign the pre and post-contrast data sets 

quickly and accurately. Therefore, to avoid the requirement for large amounts of 

manual segmentation the data sets were visually realigned. In the Rampling study this 

method was deemed sufficient as the main aim of the study was to determine toxicity 

of the agent, and not to determine treatment efficacy and tumour volume changes.

The results from chapter 2 suggest that accurate realignment using an 

algorithm such as MATCH may be required to ensure that tumour volume 

measurements are consistently accurate, in serial studies where changes in tumour 

volume are of specific interest. This chapter, therefore, investigates the hypothesis 

that tumour volume measurement from pre and post-contrast subtraction is most 

accurate when sub-voxel realignment is applied. Tumour volumes are compared for 

three different pre-processing protocols: no realignment, manual (visual) realignment 

(Rampling et al 2000), and sub-voxel (MATCH) realignment. As far as the author is 

aware this has not been previously investigated

The results from this study along with the results from chapter 2 suggest that 

inter-scan patient motion is a significant problem in scanning protocols of this nature.
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All of the work in this chapter was conducted by the author with the exception 

of the data acquisitions which were performed by radiographic staff. This work 

resulted in two presentations at international conferences (Brennan et al 2000, 2001). 

The final data and results form the basis of a paper in preparation for journal 

submission.

3.1.2 Contrast-Enhanced Tumour Imaging

As was described in chapter 2 subtraction pre and post-contrast 3D Tl- 

weighted imaging is a useful clinical tool for visualising the cerebral venous system in 

three dimensions. However, the Magnevist (gadopentetate dimeglumine) contrast 

agent used for this study is more often administered in cerebral imaging to allow 

visualisation and grading of intracranial tumours (Runge et al 1989, Runge et al 2001)

Magnevist is ideal for cerebral lesion imaging for two main reasons. Firstly, its 

paramagnetic properties significantly reduce T1 relaxation times in any tissue where 

the contrast agent is present. When T1-weighted sequences are acquired the presence 

of the Magnevist contrast agent within a tissue results in increased signal due to the 

T1 shortening. Secondly, due to the hydrophilic nature of the contrast agent it is 

unable to cross a fully intact blood brain barrier (BBB). Therefore, any area of 

contrast enhancement within the brain parenchyma, excluding vessels, indicates the 

presence of a local break down in the BBB, suggesting disease or injury (Mansson 

and Bjomerud 2001).

A large number of studies have used this contrast agent (and similar agents) 

for investigations in to cerebral lesions and more specifically have used it to 

determine changes in lesion size and extent in serial MR studies (Markert et al (2000), 

Haney et al (2001), Schellinger et al (1999), Rampling et al (2000)).

67



BBB breakdown can occur in a number of clinical conditions, including MS 

(Powell 1983, Cotton 2003 ) and traumatic brain injury (Lenzlinger 2001), however, it 

is for tumour imaging that Magnevist is most commonly used in cerebral MRI.

BBB breakdown in tumours is most often a direct consequence of 

angiogenesis where the new tumour microvessels characteristically lose their blood 

brain barrier properties and leak fluid into the brain (Seitz & Wechsler 1987, 

Groothuis et al 1991). Investigations of the ultrastructure of human gliomas has 

revealed opening of the intermicrovessel endothelial cell tight junctions (Long 1970, 

Barr-Sella et al 1979, Nir et al 1986, Shibata 1989). These Teaky’ junctions result in 

increased permeability in the tumour region and hence an overall breakdown of the 

blood brain barrier.

Not all tumours, and not all grades of tumours results in Teaky’ 

micro vasculature. A recent publication by the World Health Organisation (WHO 

2000) describes the histological and radiological findings for tumours of the central 

nervous system and describes a number of cerebral tumours that do not result in 

significant BBB breakdown. However, BBB breakdown almost always occurs in 

glioblastoma multiforme (glioblastoma) which is a malignant form of glioma 

(astrocytoma grade IV) (Taveras 1996) and is the most common intracranial neoplasm 

in adults (Collins 1998, Salcman 1985).

Astrocytomas, and more specifically glioblastomas, are poorly circumscribed 

tumours and even if distinct borders are seen microscopically, close scrutiny may 

show that tumour cells extend beyond the apparent borders that represent the 

neoplasm (DeAngelis 2001). Tumour cells can be found several centimetres away 

from the tumour and in some cases can extend throughout the entire hemisphere or
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large portions of the brain in a condition known as gliomosis cerebri (Jennings et al 

1995, Kelly et al 1987).

Figure 3.1: An example o f a transverse, T1-weighted, MR slice in a glioblastoma patient following 
contrast injection. The enhancement pattern is typically ring-like (thick black arrow) suggesting active 

tumour surrounding a central area mainly consisting o f  necrotic tissue (long white arrow). There is 
often an area o f edema closely associated with the tumour (thick white arrow)

Malignant astrocytomas, which include glioblastoma multiforme, have a 

typical appearance in MR images (See figure 3.1). Following contrast injection T1 

weighted images typically display irregular contrast enhancement, which is often ring 

like. The lesion is also surrounded by edema, and mass effect can be severe enough to 

cause herniation. The tumour typically involves white matter and can spread across 

the corpus callosum (DeAngelis 2001). It is possible to use the changes in the volume 

of contrast enhancement to determine changes in tumour extent.

Glioblastoma remains a formidable problem in CNS cancer medicine 

(Rampling et al 2000). Following conventional therapy with surgery, radiotherapy
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and chemotherapy the median survival, following diagnosis, is approximately 1 year 

(Scott et al 1999). Progression following primary therapy is associated with short­

term survival (average 5 months) (Rajan et al 1994). Therefore, there are various 

ongoing studies attempting to develop more advanced treatments for this condition 

(Rampling et al 2000, Markert et al (2000), Hassenbusch et al (2003), Gariboldi et al 

(2003)).

3.1.3 Glioblastoma Treatment Measures

With the development of any new treatment agent, it is important to determine 

its treatment efficacy. In glioblastoma this will include determining various 

parameters at different time points within the treatment including immunological 

markers, histological markers, tumour perfusion, and tumour volume. Imaging, 

including MR imaging, can play a vital role in determining treatment efficacy and 

safety (Rampling et al 2000, Markert 2000), with tumour volume measurement 

playing a vital role in determining the effects of different treatments.

In Rampling et al (2000) tumour volume measurements were conducted as 

part of a phase 1 toxicity trial for a novel mutated herpes simplex virus treatment for 

glioblastoma. This replication competent virus is injected directly into the 

glioblastoma and has been specifically mutated to replicate in actively dividing but 

not terminally differentiated cells (Brown et al 1994), The aim of this study was to 

determine the safety of the virus when injeeting it directly into the tumour. The virus 

was specifically designed to replicate in fast dividing tumour cells leaving brain cells 

unaffected. Therefore, the study obseiwed the normal brain tissue surrounding the
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injection site closely for any signs of infection or inflammation resulting directly from 

the virus agent.

As an integral part of this study tumour volumes were measured using both 

MRI and SPECT to help determine the effects of the virus agent. For the MRI tumour 

volume measurements the following protocol was applied.

The MRI data sets were acquired on a 1.5 T Siemens Magnetom MR scanner. 

Tumour enliancement volumes were measured using a threshold method applied to 

realigned pre and post-contrast MP RAGE 3D T1-weighted data sets. The data 

collection methods were the same as those described in chapter 2. The pre-contrast 

data was subtracted from the realigned post-contrast data resulting in a data set 

highlighting areas of enhancement sueh as veins, areas of BBB breakdown (tumour 

related), skin etc. To avoid the necessity of segmenting the brain tissue in these data 

sets, allowing automatic registration, the pre-contrast data was manually rotated and 

translated until a good visual registration was achieved

Before tumour related enhancement volumes could be measured other 

enhancing structures where excluded from the data. To achieve this an experienced 

neuro-radiologist (Prof Donald Hadley) drew regions of interest around the tumour 

related enhancement with the aim of excluding these structures. The regions were 

drawn using Analyze (version 3.5, Mayo Foundation, Rochester, MN) image 

processing software. Volume measurements were restricted to these regions of 

interest.

Background noise in the subtraction images was determined by drawing 

regions of interest in sliees from the opposite hemisphere to the main body of the 

neoplasm (sagittal plane). These regions were drawn in areas where no contrast 

enhancement or subtracted strueture could be visualised. A threshold for enhanced
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tumour tissue was set to 2,5 standard deviations above the average noise level and this 

threshold was applied to the data within the tumour region of interest. The number of 

voxels within this threshold was eounted and multiplied with the data voxel 

dimensions providing a measurement for the tumour related enhancing volume. These 

volumes were measured at the three time points required by the study, allowing 

comparison of volumes over time.

This method of tumour volume measurement is easier and quicker than full 

manual segmentation, which requires accurate regions of interest to be drawn. The 

regions of interest required for this method need only contain the data of interest and 

exclude unwanted enhancing data. Therefore, the regions can be drawn quickly 

reducing the requirement for skilled operator time. Also by registering the data sets 

manually, removing the requirement of segmenting the brain parenchyma, further 

time was saved in the analysis procedures

However, the threshold method of tumour volume measurement is likely to be 

affected by the accuracy of the registration between the pre and post-contrast data 

sets. Any str ucture visible in the background subtraction would affect the threshold 

level set to determine the tumour volume measurements. Poorly aligned data might 

also introduce artefacts into the tumour related enhancement resulting in incorrect 

volume measurements. Therefore, this chapter investigates the effects of using the 

MATCH realignment software on the resulting tumour volume measurements. It 

compares the volumes produced with and without realignment and concludes on the 

requirements for realignment in these data sets. It also compares the results with those 

determined by registering the data sets manually.
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3.1.4 Measurement of Scanner Drift

When using this technique to determine changes in tumour volume over 

extended time-scales it must be assumed that the subtraction background 

characteristics remain invariant over these time scales. On the scanner used for this 

study, for each imaging sequence hardware gain settings are determined from initial 

tuning pulses before each sequence starts. Therefore, gain settings will be different 

after the injection of the contrast agent, due to the overall increased signal intensity 

within the patients head. This will result in different contrast characteristics for the pre 

and post-contrast data sets.

Differing contrast characteristics are not, however, a problem if the differences 

between the two data sets are similar at different imaging session. As has already been 

discussed measurements of contrast enhanced regions in MRI are not direct 

measurements of tumour volume. However, changes in contrast-enhanced volume 

over time are a good indication of tumour progression or regression (Nelson et al 

1999). Therefore, the measurement of interest in these studies is not the absolute 

contrast-enhanced volume, but the change in contrast-enhanced volume over time. 

Thus, if  the contrast differences, for individual patients, between the pre and post­

contrast data sets are invariant over the long periods of time that encompass these 

studies then this method would provide a good method for measuring the extent of 

tumour progression.

To test the hypothesis that the differences do not vary over time, for each of 

the subjects detailed in this chapter the contrast to noise (CNR) of the original pre- 

surgical scans already analyzed were compared to the CNR post-surgical scans. As 

well as comparing the CNRs directly the changes in CNR from pre to post-contrast 

data were also compared.

73



3.2 Methods

3.2.1 Testing the Effects of Realignment on Tumour Volume Measurements

Nine patients following the phase 1 trial HSV protocol were scanned using the 

protocol displayed in table 3.1 This protocol contained pre and post-contrast 3D MP- 

RAGE data collected using a similar protocol to that described in chapter 2 (section 

2.2.1.1). The main difference in the protocol occurs at step 7 where there is a five 

minute pause from the end of the injection to the start of the pos-contrast MP RAGE 

sequence. This was to allow for better tumour uptake of the contrast agent. The pre 

and post contrast data sets were realigned using the MATCH algorithm after the brain 

parenchyma had been manually segmented, ensuring no enhancement remained in the 

realignment mask.

Step in Protocol Description of Scan/ Procedure
1 Transverse localised
2 Coronal Localiser
3 Sagittal Localiser
4 T2 Transverse sequence, 20 slices tilted to AC/PC line
5 Pre-contrast MP RAGE sagittal
6 Give contrast via long line
7 Wait 5 minutes from the end of the infection
8 Post-contrast MP RAGE sagittal

Table 3.1: The imaging protocol used for the HSV trial. The 5 minute wait at step 7 was to ensuie
good contrast uptake in the tumour

Following realignment the realigned pre contrast data was subtracted from the 

post contrast data, producing a realigned subtraction data set. For comparison a 

second subtraction data set was produced by subtracting the non-aligned pre-contrast 

data from the post-contrast data.
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To allow tumour volumes to be measured for each of the subjects, the aligned 

subtraction data was loaded into the Analyze software package and an ROT was drawn 

around the tumour enhancement by the neuro-radiologist to ensure that contrast 

enhancement from within the ROI was from tumour only. Each subject’s ROI was 

stored for use with both the non-aligned and aligned subtraction data sets. The ROTs 

for the manually realigned data sets had previously been drawn and used to calculate 

enhancement volumes. These regions were not available for use in this study as they 

had not been digitally stored. Therefore, there will be differences in the ROIs used for 

these measurements.

To enable thresholds to be set to determine the volume of tumour 

enhancement, ROIs were drawn on the aligned subtraction data set, in areas where 

little or no contrast enhancement was present. Care was taken to ensure that these 

areas were contained within the brain parenchyma. These regions would provide the 

mean and standard deviation of the background noise in the subtractions. The same 

regions were used to determine the mean and standard deviations of the noise in the 

non-aligned data sets.

Using the method described in the previous section, volumes were calculated 

for both the MATCH aligned and non-aligned data sets, using the corresponding noise 

results. This would determine the effect of misalignment on measuring tumour 

volumes using this method. Any differences between the aligned and non-aligned 

results would be a combination of two effects. Firstly, any differences in background 

noise will result in different thresholds being set for the corresponding data sets. This 

is likely to have a significant effect on the volumes measured. Secondly, due to poor 

alignment there will also be subtraction errors in the tumour data, possibly increasing 

or decreasing the apparent volume.
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To investigate the tumour subtraction error separately the threshold value 

determined in the aligned data set was also used to threshold the non-aligned data in 

the repeat measurement. It is likely that any method using this subtraction technique 

for tumour volume measurement will be affected by the threshold and realignment 

errors.

3.2.2 Determining the CNR Drift

Contrast between two tissues A and B can be defined as:

(3-1)

where Sa and Sb are signal values from tissues A and B.

Therefore, contrast to noise ratio can be defined as:

__ C  AI} Sy, — Sr.
MsCMR.^ = ^  = ^  (3.2)

CTfi CTri

where cTq is the background noise in the image. In this thesis cXq was measured as the

mean of magnitude data on a specified background region of interest.

As part of the HSV treatment protocol MRI scans were acquired at three time 

points during the study. The first scans were collected before the HSV agent was 

delivered to the tumour. Typically these scans occurred between 0 and 3 days before 

agent deliveiy. The HSV agent was then delivered to the tumour region using a 

sterotactic injection, which is a minimally invasive surgical technique.

The second set of MRI scans were collected between days 4 and 6 after the 

agent delivery. It has previously been shown by the author, in work closely related to 

this thesis (Brennan et al 2001), that post-surgical inflammation can result in 

increased uptake of Gd tracer in regions affected by operation, even after using such a
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minimally invasive teclinique. Therefore, these scans were excluded from this study, 

due to possible changes in CNR as a result of surgical effects.

The third time-point where MRI scans were collected was between 27 and 66 

days. At this time post surgical effects will be minimal with relation to Gd tracer 

uptake. Therefore, it is possible to determine changes in CNR over time differences 

varying between, 27 and 66 days. More importantly it is possible to determine if the 

differences in CNR between the pre and post-contrast data sets change significantly 

between sessions.

The data collection methods have been described previously (section 3.2.1) 

and were the same at all time points. Data was collected for the 9 patients in the study, 

however, for two patient’s data the MPRAGE data at the later time point were 

erroneously collected in coronal slices instead of the normal protocol sagittal slices. 

These two patients were excluded from this study due to possible variability in 

contrast introduced by acquiring the slices in a different plane.

Four different sets of data required CNR measurements; the pre and post 

contrast data sets before surgery and the pre and post-contrast data sets after surgery. 

The pre contrast data used in both the before and after surgery measurements was the 

MATCH realigned pre-contrast data. Using the aligned data allowed the same regions 

of interest to be drawn for the pre and post-contrast data at the same time points.

Three sets of regions were required to determine CNR using the previously 

defined signal A, signal B and cjq (see equation 3.2) For this study signal A was 

defined as white matter signal, signal B was defined as CSF signal and ao was defined 

as a background region outside the patients head (see figure 3.2).
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Figure 3.2: Example post-contrast image with a white matter, CSF and background noise region
defined

White matter was a good tissue to use for measurement purposes in this study 

as normal brain white matter is not significantly enhanced by Magnavist injection. 

Therefore, signal differences detected before and after contrast injection, within white 

matter, should almost exclusively be due to differences in scanner signal gain with a 

random noise component. There are also large areas of white matter available for 

signal measurement which are homogenous and continuous. Thus white matter tissue 

is a good candidate for SNR and CNR measurements.

CSF signal was chosen as the second signal source for a number of reasons. In 

this study the realigned data sets are being used for the measurements, allowing the 

same ROTs to be used in the pre and post-contrast data sets. These data sets were 

aligned using only the brain parenchyma for the registration calculations. Therefore, it 

was not possible to guarantee that non-parenchymal structures outside the brain were 

correctly aligned. If signal B was measured from one of the non-parenchymal tissues
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such as muscle, ROI’s drawn on the pre-contrast data would not necessarily overly the 

same voxels or structures in the post-contrast data. Therefore the signal B 

measurements needed to be taken from somewhere within the brain itself.

The most obvious structure to measure in this instance would be the grey 

matter. However, the vast majority of the grey matter lies between white matter and 

CSF in thin, convoluted strips of tissue, leading to two problems. The first is partial 

volume effect. Due to the small thickness of the majority of the cortical grey matter 

(of the order of millimetres) if grey matter regions were drawn a significant number of 

voxels would be in volumes affected by white and CSF partial voluming unless care 

was taken to ensure such voxels were excluded. A more significant problem occurs 

where the patient has been unable to keep still during the scan.

V
Figure 3.3: An example slice from a post-contrast data set. The patient was unable to keep still during 
the scan. This reduced the contrast between the grey and white matter making it difficult to define the

grey and white matter borders.

As figure 3.3 illustrates patient movement results in difficulty in separating the 

grey matter from the adjacent white matter, due to blurring and signal contamination. 

As the motion is occurring during the scanning as well as between the scans, this
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limits the accuracy of the alignment. Therefore, this would result in difficulty when 

drawing regions for both the pre and post-contrast data sets.

To avoid these problems CSF signal from the cerebral ventricles was 

measured and compared to the white matter signal. Although the ventricles 

themselves are not brain parenchyma, they were included in the realignment data sets 

for this study, as the location of these structures are physically linked to the location 

of the brain itself. The larger dimensions of the CSF within the ventricles, when 

compared to the grey matter enable the regions to be drawn with greater confidence, 

avoiding the boundaries with brain matter where signal blurring may occur.

The noise regions were drawn in the superior/anterior corner on slices where |

CSF and white matter regions were drawn. Placing the regions in these locations

80

avoided contamination from the vast majority of motion artefacts (phase direction was 

in the anterior/posterior direction).

All regions were produced using Analyze software’s trace tool within the ROI
I

module. The corresponding pre and post-contrast data from before surgery were 4
. ■■ A

loaded into the same ROI module allowing the regions to be drawn with respect to 

both data sets. The post surgery data sets were then loaded into a separate ROI 

module with the aim of reproducing the same ROTs by hand, so that the regions were
■J

in the same areas before and after surgery. This would allow comparison of the CNR 

figures at both time points. The statistics tool was then used to sample the data within 

each region supplying the mean voxel values for the corresponding regions. Using
,1

this information from each data set, it was possible to calculate the appropriate CNR
I

results. CNR was compared at both time points. The effect of contrast iryection on 

CNR was also investigated.
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3.3 Results

3.3.1 Tumour Volume Measurements

Table 3.2 displays the tumour volume measurement results from the MATCH 

aligned and un-aligned and the manually aligned data sets.

Patient
Aligned 

Volume (cm^)
Non-Aligned 
Volume (cm^)

Non-Aligned 
(Aligned Thi'esh) 

Volume (cm^)

Manually 
Aligned 

Volume (cm^)
1 60.16 51.02 61.89 60.13
2 142.10 115.52 144.18 129.02
3 19.48 15.52 20.68 19.47
4 12.10 11.36 12.84 11.38
5 46.55 46.74 46.74 39.27
6 62.32 52.77 63.87 53.67
7 23.65 27.72 25.21 24.50
8 9.07 4.10 9.3 8.56
9 32.39 28.68 33.19 31.43

Table 3.2: Tumour volume results from aligned and non-aligned data

When the aligned and non-aligned tumour volumes are compared using a two 

tailed paired T statistical test which assumes normality of the data, p = 0.074, which is 

a non-significant result. If it is assumed that overall there is a reduction in tumour 

volume measui'ed, as would be expected due to the increase in threshold values used, 

and a 1 tailed test was used, p=0.037 which indicates a significant difference between 

the groups. In all but two patients (patient 5 and 7) the tumours volumes measured 

with the non-aligned data are smaller than the aligned data measurements.

If the MATCH aligned is compared to the manually aligned data again using a 

paired T test, p=0.076 in a two tailed test. Once again the significance is significant if 

using a one tailed test (p=0.038), which again can be accepted as manual alignment 

was not expected to be of as good quality as the MATCH alignment, once again
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resulting in increased thresholds and smaller volume measurements. When the 

manually aligned data is compared to the non-aligned data there is no significant 

difference detectable (p==0.23, two-tail). However, the overall average volume for the 

manually aligned data is marginally larger (41.94cm^ compared to 39.27cm^) 

suggesting a slight improvement in measurement accuracy if we assume the trend 

towards the MATCH volumes is increasing accuracy.

When the aligned and the non-aligned data are compared, when the same 

threshold values are used with both data sets, the two tailed paired t-test significance 

is p = 0.001. Here there is no requirement to assume the overall direction of change in 

tumour volume between the two sets of data and as there was no a priori information 

to suggest the direction of the difference in this statistic is not relevant. However, 

from viewing the data in table 3.2 it is clear that in all cases the tumour volume 

measured is greater when the non-aligned data is used with the aligned data threshold.

It should be noted that although the data here were assumed to be normal this 

may not be the case. For any future work where larger data sets are collected 

normality should be tested and appropriate statistical tests used.
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3.3.2 CNR Variations

Table 3.3 displays the CNR results from all of the patients data sets at both 

time points.

Before Surgery After Surgeni
Patient Pre CNR Post CNR Difference Pre CNR Post CNR Difference

1 8.18 7.81 0.37 9.78 9.20 0.58
2 No Calculation No Calculation

3 12.92 12.48 0.44 12.81 11.05 1.76
4 7.40 5.68 1.72 7.49 5.08 2.41
5 11.51 7.28 4.24 11.85 9.26 2.58
6 11.06 10.47 0.59 10.11 8.23 1.88
7 7.92 7.61 0.32 10.75 9.75 1.00
8 No Calculation No Calculation

9 8.51 5.93 2.58 7.53 5.66 1.87
Table 3.3: CNR results of pre and post-contrast data before and after surgery

To determine if there was any detectable scanner drift over time, the pre 

surgical pre and post-contrast data sets were compared with the corresponding post- 

surgical data sets. The data sets are paired, therefore to determine if there was any 

significant difference a paired sample T-test was used. No significant difference was 

detected (p(two-tailed)=0.52). However, there is a linear relationship between CNR 

before and after surgery (see graph 3.1). This relationship has a Pearson correlation of 

0.783 (p=0.001).
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Comparison of CNR Results Before V s  After Surgery
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Graph 3.1: Comparison of CNR before and after surgery

It should be noted that the before and after surgery scans were conducted at 

different times for different patients. Graph 3.1 has a gradient of below 1 and crosses 

the after surgery axis significantly above zero. This may suggest that CNR does 

change over time. However, due to the large amount of variability in CNR from 

patient to patient, it is difficult to provide any firm conclusions from this result. 

Tumour volume also increases for all but two patients over the course of this study 

(Rampling et al 2000), therefore this may have an effect on the CNR and CNR 

differences. Larger areas of enhancement would most likely lead to a decrease in the 

CNR measured here.

I
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To further understand the effects of contrast injection on CNR pre-contrast 

CNR values were compared to post-contrast CNR values. Here there was a significant 

difference with an expected drop in CNR (p(one-tailed)<0.001). The drop in CNR 

was consistent for all measurements as can be demonstrated in graph 3.2.

Comparison of Pre and Post-Contrast CNR Values
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Graph 3.2: Comparison of pre and post-contrast CNR values at both study time points

The graph has a gradient very close to 1 suggesting a one to one correlation 

between pre and post-contrast CNR. The intersection of the graph is at -1.22. This 

would appear to confirm the prediction that post contrast injection, the scanner 

compensates for the increased signal within the brain by reducing the signal gain.
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However, once again there was a significant amount of variation in the data from 

patient to patient.

There was found to be no significant difference in the CNR differences (pre 

minus post) before and after surgery. However, due to the variable nature of the CNR 

results there was a significant amount of variation in the differences calculated with a 

before surgery mean of 1.47 ±1.49 and an after surgery mean of 1.73 ±0.72. The large 

standar d deviations would reduce the likelihood of detecting significant differences 

(this was also a result of the small sample). There may be a linear correlation between 

the before and after surgery differences (see graph 3.3), however once again the 

sample is too small to assume such a relationship exists.

Comparison of CNR Differences Before and After
Surgery
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Graph 3.3; Comparison of the CNR differences before and after surgery
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Despite the small numbers and lack of significance it should be noted that 

there are large differences in CNR for paired data sets.

3.4 Discussion

The main aim of this chapter was to determine the effects of realignment on 

pre and post-contrast data sets when the subtracted data is used to determine tumour 

volume. As with any method of determining tumour volume there are advantages and 

disadvantages in using particular* techniques. The threshold technique used in this 

study does have several disadvantages.

As this study has shown the requirement for thresholding introduces errors 

into the volume measurement due to the uncertainty in setting the value of the 

threshold. By determining the threshold from the background subtraction noise the 

tumour volume measured carries some dependence on any changes in the background 

subtraction data. It has been shown that this background variation can be minimised 

by ensuring the pre and the post-contrast data sets are correctly aligned resulting in an 

accurate subtraction and therefore an accurate measurement of the subtraction 

background noise. Data sets that are not fully realigned often have structure visible in 

the subtraction data. Figure 3.4(a & b) illustrates this, showing the same slice from a 

non-aligned and MATCH aligned data set. The presence of unwanted structure within 

the subtraction data would result in incorrect background noise measurements 

resulting in incorrect tumour volume measurements.
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Figure 3.4(a & b): (a) Poorly aligned pre and post-contrast data sets result in subtraction data that 
displays unwanted anatomical structure compared to (b) realigned data from the same subject 

The two arrows indicate an area within the tumour that appears to contrast-enhance on the unaligned 
data but does not appear contrast-enhanced on the realigned data.

Following alignment of the pre and post-contrast data, there are still problems 

using the threshold technique. When using this technique to determine changes in 

tumour volume over extended time-scales it must be assumed that the subtraction 

background characteristics remain invariant over these time scales. On the scanner 

used for this study, for each imaging sequence hardware gain settings are determined 

from initial tuning pulses before each sequence starts. Therefore, gain settings will be 

different after the injection of the contrast agent, due to the overall increased signal 

intensity within the patient’s head. This will result in different contrast characteristics 

for the pre and post-contrast data sets.

Differing contrast characteristics are not, however, a problem if the differences 

between the two data sets are similar at different imaging session. As has already been 

discussed measurements of contrast enhanced regions in MRI are not direct 

measurements of tumour volume. However, changes in contrast-enhanced volume
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over time are a good indication of tumour progression or regression (Nelson et al 

1999). Therefore, the measurement of interest in these studies is not the absolute 

contrast-enhanced volume, but the change in contrast-enhanced volume over time. 

Thus, if the contrast differences between the pre and post-contrast data sets are 

invariant over the long periods of time that encompass these studies then this method 

would provide a good indication of tumour progression.

To test the hypothesis that the CNR differences do not vary over time, for each 

of the subjects detailed in this chapter the CNR of the original pre-surgical scans 

already analyzed were compared to the CNR post-surgical scans. As well as 

comparing the CNRs directly the changes in CNR from pre to post-contrast data were 

also compared. From this work it was found that following contrast injection CNR did 

change in a predictable way. However, it remains unclear if CNR and the difference 

in CNR between pre and post-contrast CNR remains invariant over time.

It was difficult to reach conclusions regarding CNR changes using the 

available data. The data for each patient was collected at different times during an 

approximately one year period. Therefore, this analysis would only detect if there was 

a trend that remained consistent over this time period and that the change was large 

enough to be measured between the before and after surgery scans. It is possible that 

there could be drifts that do not follow this linear pattern. For example the gain 

electronics could be susceptible to weather conditions, such as temperature, pressure 

and humidity, although variations in temperature at least should be moderated by air 

conditioning. If this were the case then there would be variations in the gain 

characteristics either with a period of 1 year relating to seasonal weather variations or 

with periods of a day relating to variations in temperature over the course of a day.
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It is also possible that the variations in CNR between patients would be greater 

than the effect being measured. Therefore, it is suggested when using the pre and 

post-contrast tumour measurement technique (such as in chapter 3) that some form of 

test of the scanner gain characteristics should be devised. Results from these 

measurements could be used to improve the reliability of the tumour measurements 

using the pre and post-contrast technique.

Despite these problems it would appear that CNR at two separate time points 

is linearly related (see graph 3.1). This suggest that scanner gain, although not 

predictable from a previous gain result, is strongly associated with the patients 

anatomy (i.e. size of head, amount of grey/white matter etc). Although there is not a 

direct one to one equivalence of the CNR values before and after surgery this may be 

a reflection of the general increase in tumour volumes at the second time point 

(Rampling et al 2000) and not a result o f scanner drift. As a result of the linear 

relationship it may be possible for future studies to develop a protocol using the initial 

scan information for a patient to set subsequent gain setting on the scanner for 

subsequent scanning sessions.

Despite these problems the region drawing threshold technique can be quickly 

applied to studies with a large amount of data sets, such as was required by a gene 

therapy agent trial (Rampling et al 2000). For example, as a direct consequence of this 

work the corrected MRI tumour volume measurements were compared to the SPECT 

tumour volume measurements at the three time-points in the Rampling study 

(Brennan et al 2000, 2001). It was found that post-surgical enhancement effects 

resulted in artefactually large tumour volume measurements in scans collected shortly 

after minimally invasive surgery. Therefore, it was suggested that for future studies
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where serial tumour volume measurement are required shortly after surgery, that 

SPECT should be used for tumour volume measurement.

It might be possible in the future to automate the tumour volume measurement 

procedure by amending algorithms such as those developed by Haney (Haney et al 

2001) to work with the subtraction data sets. Not only would this speed up the 

measurement process, it might also improve overall accuracy and reproducibility.

Despite the errors inherent in the technique described here, the errors are 

likely to be small compared to the effect that is being investigated. When measuring 

tumour volume changes in treatment studies, it is necessary to determine criteria 

under which tumour progression or regression can be measured. The most recent 

guidelines for tumour response criteria were published by Therasse et al (Therasse et 

al 2000) who developed the RECIST (Response Evaluation Criteria in Solid 

Tumours) and was based on work by James et al (James et al 1999). The suggested 

definition for tumour volume progression using these RECIST criteria is an increase 

in the sum of the longest diameters of the tumour of 20%, which according to 

Therasse would suggest a volume increase of 73%. A partial response to treatment is 

defined as a 30% decrease in the sum of the diameters suggesting a decrease in 

volume of 65%. These figures suggest that accuracy of this technique developed 

within this chapter is well within the required accuracy to detect these changes 

reproducibly.

The report by Therasse and others before it (WHO 1979, Miller et al\9% \) are 

currently the only published guidelines for determining tumour response to treatment. 

However, the guidelines are based on solid tumours with well defined edges. As has 

been discussed previously (section 3.1.2) glioblastoma type tumours have poorly 

defined edges and are far from solid. Despite these differences the response guidelines
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ai’e often used in clinical practice. However as tumour size measurement improves it 

is likely that new guidelines will be devised with particular reference to new 3D 

tumour volume measurement techniques.

The comparison between aligned and non-aligned data sets using the same 

threshold value indicated that the errors in not aligning these data sets are not 

confined to the threshold values calculated. The different volumes calculated for the 

tumour enhancement suggest that the accuracy of the tumour subtraction itself is 

sensitive to patient movement between data collection of the pre and post-contrast 

data. In general when the thresholds are set to the same value the use of the non- 

aligned data results in a larger contrast volume. Therefore, poor alignment results in 

subtraction data that appears to have contrast enhancement where in reality there is 

none. An example of this is shown on figure 3.4. However, it is also likely that 

misaligned data will also result in voxels that have lower subtraction signal, and will 

therefore fall below the contrast-subtraction threshold. The overall increase in volume 

in the realigned data sets suggests that more voxels increase in value and move into 

the threshold value range, than fall below the threshold value range. This is a 

consistent finding for all of the patients in this study and is a statistically significant 

result.

The increase in contrast volume for non-aligned data can be explained by 

assuming that for contrast to be present there must be an underlying structure for the 

contrast material to be present in. If this assumption is correct, and when the data is 

correctly aligned, where there is contrast enhancement in the post-contrast data there 

will be some corresponding tissue signal in the pre-contrast data. Contrast 

enhancement is not uniform in all tissues and likewise in the pre-contrast data sets, 

different tissues have varying voxel signals. Therefore, there will be voxels with
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intermediate pre-contrast signal and intermediate amounts of contrast enhancement.

Subtraction of the data sets would result in a number of such voxels falling below the 

threshold levels set and below levels of operator perception. In this situation these 

voxels would not be included in the volume measurements.

However, if the pre and post-contrast data were not correctly aligned and the 

voxels described above are close to non-enliancing structures where the signal was 

low in the pre-contrast data set, it is possible that the realignment might result in 

enhancing post-contrast voxels overlying voxels with little or no pre-contrast signal.

These voxels are likely to occur at the edges of the tumour enhancement, particularly 

where the edges are close to regions of low signal. Some increase in the volume of the 

contrast edges is visible in figure 3.4. In resulting subtraction data these voxels would 

have values greater than the threshold value and would be included in the final 

volume measurement.

This suggests that the non-aligned data sets might subtract to produce a more 

accumte measurement of the true tumour enhancement volume as moderately

enhancing voxels are also being included in the final measurements where they were

i!not before. However, as has been shown previously pre and post-contrast alignment is 

an uncontrollable variable, and would thus lead to uncontrollable variations in the 

amount of ‘extra’ voxels included in the final analysis. This extra error would 

decrease the ability to legitimately compare volume results collected in different 

sessions. Also as illustrated by figure 3.4 if gross motion occurs between the pre and 

post-contrast data artefactual enhancement can occur away from the edges of the 

tumour suggesting that this signal is due to the incorrect alignment of tissue 

boundaries. Therefore, for the purposes of measurement repeatability in tumom*

93



studies using the subtracted pre and post-contrast data a good method of registration 

should be employed.

3.5 Conclusions

Any technique of measurement that requires subtraction of pre and post­

contrast data sets must ensure that the data sets are aligned as well as possible before 

subtraction takes place. This study has shown that if this step is not taken erroneous 

results for tumour volume are derived from the data measurements. Manual methods 

of determining tumour volumes from these subtracted images are also likely to be 

affected by alignment errors.

As has been discussed in the previous chapter good registration of these pre 

and post-contrast data sets requires segmentation of the brain parenchyma from the 

suiTounding tissue, especially enhancing structures. This would be of particular 

importance in this study due to the presence of large enhancing tumours, which would 

likely introduce realigmnent errors if  they were not removed from the data analysed 

by the MATCH software.

Most segmentation algorithms are designed to accurately segment brain tissue 

sometimes separating them into finer components such as grey matter, white matter 

and cerebro spinal fluid (Thacker & Jackson 2001, Lemieux et al 2003). This 

segmentation is often used to determine ratios of different brain components or to 

determine changes in volumes over time. This requires that the segmentation is as 

accurate and repeatable as possible to enable trends to be determined. However, it is 

not certain how accurate the segmentation needs to be to enable accurate registration 

of the pre and post-contrast data sets.
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It is likely that the removal of structures that change between successive scans 

is important. It is also likely that the existence of contrast enhancing veins that exist 

on one scan but not the other will introduce errors in the comparison algorithm. 

Therefore, it is reasonable to assume that such structures should be removed. 

However, how important is it that all the remaining brain is correctly segmented. For 

example if 5% of the brain is removed will this noticeably affect registration? Or will 

errors only occm* when 15% of the brain is missing from the segmentation.

Having justified the requirement for realignment with subtraction of pre-and post­

contrast data sets, it is now important to determine the best method of preparing the 

data for realignment. Therefore, chapter 4 will investigate the effects of segmentation 

acciuacy on the realignment o f pre and post-contrast data. Having this information 

will later allow design and implementation of automated or semi-automated 

procedures for segmenting such data sets, reducing the amount of skilled operator 

time required.
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Chapter 4

Segmentation Accuracy : Review and Phantom Data
Set Construction



4.1 Introduction

4.1.1 Overview

Chapter 2 described the need for realignment of pre and post-contrast data 

when producing subtraction venograms from 3D MP RAGE MR data sets. Chapter 3 

went further and quantified the effect of applying alignment correction on tumour 

volume measurements using a similar technique. Both chapters achieved the 

realignment following manual segmentation of the post-contrast data set. However, 

manual segmentation is a process that requires large amounts of skilled operator time 

to accomplish. Therefore, it is preferable to implement an automatic or semi­

automatic segmentation algorithm that would both simplify and speed up this 

process.

As described in chapter 2 (section 2.5.3) there are currently no segmentation 

algorithms available that are designed to segment contrast enhanced 3D data sets. 

However, there are a number of segmentation algorithms available that could 

segment the pre-contrast data. Therefore there are two possible protocols that could 

be followed to accurately realign the pre and post-contrast data without the 

requirement for manual segmentation.

Firstly it might be possible to segment the pre-contrast data, for which there 

are algorithms available that could accurately segment the brain. However, in pre­

contrast data it is not always obvious what structures will enhance post-contrast. For 

example, in a patient with a tumour that enhances post-contrast, the corresponding 

pre-contrast data can be iso-intense with the surrounding normal brain tissue. This 

would make it very har d for segmentation algorithms to be certain of removing all
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contrast-enhancement. Nevertheless, if  realignment is not adversely affected by the 

presence of contrast-enhancement it may be acceptable to segment the pre-contrast 

data.

If, however, contrast-enhanced data does affect realignment adversely then 

the only way of ensuring that contrast-enhanced data is not contained in the 

realignment process is to segment the post-contrast data. Thus a new segmentation 

algorithm would be required.

Within the cranium, the largest enhancing structure following contrast 

injection, in a normal subject, is the venous system. The cerebral venous system can 

vary significantly from person to person (Curé et al 1994, Meder et al 1994, Morris 

and Choi 1996). Thus, even when there is no contrast-enhancing abnormal pathology 

present accurate modelling of the contrast-enhancement would be difficult to 

achieve.

Therefore, it is important to determine what accuracy of segmentation is 

required to produce good quality registration. If the post-contrast data set must be 

segmented and if good registration is possible without the requirement for high 

accuracy segmentation then a more simple and robust method of segmentation could 

be used. By keeping the segmentation algorithm as simple as possible it should be 

easier to transfer the methodology to other data sets from different scanning protocols 

where contrast between tissues may be different from those achieved using the MP 

RAGE technique.

However, before any measurements can be made a new data set is required 

where the pre and the post-contrast data differ from each other by known amounts of 

spatial transformation and tissue contrast. Therefore, before the next two chapters
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4.1.2 Background
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investigate the effects of segmentation accuracy on segmentation accuracy, a 

phantom data set must be produced to fulfil the above criteria.

As far as the author is aware there have been no previous attempts to produce 

such a pre and post-contrast phantom, therefore, a novel method of producing one 

was devised by the author. This chapter as well as introducing the concept of 

segmentation, describes the production of the novel phantom data.

The work in this chapter (and chapter 5) led to an international conference 

presentation (Brennan 2002). All of the work described in this chapter was conducted 

by the author, with the exception of the data acquisition which was performed by 

radiographic staff.

Serial investigations in MRI have been conducted since the introduction of 

the technique. For example Maruyama et al (1984) investigated the effects of neutron 

brachytherapy on cerebral malignant gliomas, with specific reference to the 

dimensional extent of the tumours. Kovanen et al (1985) looked at cerebral atrophy 

rates in patients with Creutzfeldt-Jakob disease and compared them to clinical 

deterioration. Single patient serial studies were also performed, one example being 

the study by Pomeranz et al (1985), where the brain of a lung cancer patient was 

serially scanned to detect metastatic growth. In this study MR detected the metastasis 

before CT. Such serial studies allowed the morphological changes over time to be 

assessed which could be associated with disease progression and treatment and could 

be compared to other modalities such as CT. Serial studies remain in prevalent use 

especially in MR research into disease progression (Takeoka et al 2003, Schott et al
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2003, GiovaixQoni 2001) and treatment outcome studies (Rao et al 2002, Kwon et al 

2001, Rampling et al 2000)

As was discussed in chapters 2 and 3 registration is not only required when 

serial studies are carried out over days, weeks or months, but it is also required when 

the patient remains within the scanner between the serial scans. This is especially true 

when there is some form of intervention occurring during the inter-scan interval.

Chapter 2 (section 2.4.2) also discussed the importance of conducting image 

segmentation to ensure the most accurate registration between the serially acquired 

data sets. Ideally, for the purposes of image registration, the human body would be a 

rigid structure in which the 3D positional relationships of every structure would 

remain constant over time. Thus, if  one structure within an MR image was correctly 

registered with a previously acquired image then all other structures within the area

»

of interest would also be correctly registered. However this is far from the case, with 

the human body consisting to a large extent of deformable soft tissue and movable 

joints. Thus, the spatial relationships of the various structures within the body change 

over time and so it does not follow that if you realign one structure then all other 

structures will also be correctly aligned even when the structures are spatially close.

When conducting studies over the course of weeks and months it is also 

possible for body shape to change due to increased or decreased fat or muscle, 

however, this is not a problem over the course of a normal scanning session and thus 

would not impact on pre and post contrast injection studies.

Further problems exist when attempting to realign structures contained within 

the head. The brain is not firmly fixed within the skull cavity and floats semi-freely 

in a cerebro spinal fluid (CSF) (Martini 2001), therefore, if a patient moves their 

head slightly it is possible for the brain to shift within the cranial cavity in relation to



all of the other cranial structures. Thus, for a study investigating changes in brain 

volume only the brain should be used for realignment purposes as the inclusion of 

other structures such as skin, muscle etc would introduce realignment errors. 

Consequently, if  the brain is segmented from the other structures within the head it 

can then be used to register subsequent images of the brain as accurately as possible 

without introducing errors from its movement in relation to the rest of the head.

However, in this current study it is not the brain itself that is of interest, it is 

the cerebral veins or other contrast enhancing structures. It might seem obvious that 

these stmctures should be segmented and aligned for the serial data sets. However, 

there are several problems with this approach. Firstly this study acquires one 3D data 

set followed by a second, which includes signal from contrast enhancement. The 

reason the subtraction technique works is because of the changing signal from the 

venous system following this contrast enhancement. The MATCH algorithm that was 

used in the previous chapter attempts to minimise differences in the segmented data 

in the serial data sets, however, if the contrast-enhanced structures were used as the 

segmented volume errors in registration would result. It is likely that an ideal 

structure for registration should not change significantly in signal or shape.

Therefore, another structure that is fixed in 3D space relative to the contrast- 

enhanced structures is required. In the case of enhancing cerebral tumours and veins 

the best structure to use is the brain itself.

The vast majority of the cerebral veins are either contained in or on the 

surface of the brain parenchyma, so it should be reasonable to assume that the 

cerebral veins are rigidly connected to the brain parenchyma, and any change in 

position of the cerebral veins is mirrored by a similar change in the position of the
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brain parenchyma. This is also likely to be true of many cerebral tumours, especially 

those whose origin is from the brain itself.

As was discussed in chapter 3 (section 3.1.2) Magnavist does not cross the 

intact BBB. Therefore, in an intact brain there should be little or no contrast 

enhancement of the brain parenchyma. Due to this lack of contrast enhancement, the 

brain parenchyma does not significantly change between the pre and post-contrast 

data sets allowing it to be used as the segmented volume.

4.1.3 Segmentation

4.1.3.1 Introduction
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3D segmentation involves the grouping of similar voxels into coherent 

volumetric structures either for visualisation or for volumetric or structural analysis. 

There ar e a number of clinical and research applications that require the brain to be 

segmented. For example it is possible to use a segmented brain for quantitative

analysis of anatomical and functional structures (Kohn et al 1991, Kikinis et al 1992, 

Dale et al 1999, Joshi et al 1999), for surgical planning (Xu et al 1999, Roux et al 

2001), and for providing an anatomical reference in fMRI studies (Ogawa et al 1992, 

Logothetis et al 2001).

There are a large number of brain segmentation techniques which can be 

broadly summarised as being manual, semi-automated or fully automated methods. 

Of these methods manual segmentation is the computationally simplest.
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4.1.3.2 Manual Segmentation

Manual segmentation requires a skilled operator using image processing 

software to define the region containing brain tissue by tracing around the brain with 

a drawing tool (Suetens 1993, Smith 2002). The accuracy and reproducibility of this 

technique very heavily depends on the skills of the operator, requiring a high level of 

expertise in neuroanatomy. However, even under ideal conditions and with a veiy 

skilled practitioner applying segmentation the technique is subjective and therefore 

not reproducible resulting in significant inter and intra-observer variability.

Jack et al (Jack et al 1990) investigated accuracy and variability using manual 

segmentation on phantom and patient data. Phantom data sets were segmented with 

an average error of 3%, despite using a simple phantom consisting of contrasting 

classes in an homogenous background. Intra and inter-variability when segmenting 

the anterior temporal lobe was found to be 3% and 6% respectively.

Another concern with the manual segmentation method is the time required. 

Within this department, for example, it was found that a typical MP RAGE data set 

(256x256 matrix with 128 slices in the sagittal orientation) could take more than 214 

hours of skilled operator time to complete. The time required varies depending on the 

operator’s skill and experience, the integrity of the data and the required 

segmentation accuracy required for a particular study. Thus a number of techniques 

have been developed to either semi or fully automate the process.
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4.1.3.3 Semi-Automatic Segmentation

One of the first recorded attempts at producing a semi-automatic 

segmentation algorithm can be attributed to Cline et al (Cline et al 1987). They wrote 

an algorithm designed to detect the external surface of the brain allowing it to be

displayed in 3D, using a seed growing technique. This technique required an operator

to select seed points within the brain parenchyma. By then varying threshold values

pixels around the seed were examined and included within the regions if they were

within the threshold. Each added pixel then became a new seed whose neighbours

were then inspected using the same method and if they too were within the threshold

they would also be included within the growing region. They found that the best type

of data to collect for brain extraction was T1 data due to the good contrast between
.

the brain tissue and CSF. Later work found that seed growing techniques were still 

dependant on operator settings (Clarke et al 1995).
,,

Around the same time another technique was being developed based on 

multispectral analysis (Vannier et al 1985). Multispectral analysis involves the 

collection of two or more data sets during a single scanning session. Each data set is 

collected with different imaging parameters and/or pulse sequences varying the 

contrast fi-om the tissue of interest. Pixel intensity values Jfrom the different data sets 

can then be plotted against one another in feature space and if the correct sequences 

have been run different tissues can be separated by assigning particular areas of 

feature space to particular tissue types. Vannier papers (Vannier et al 1985 & 1998) 

described the maximum likelihood method which assumes multivariate Gaussian 

distributions. This particular method was not fully automatic and required user 

intervention in the form of user supplied training sets. Several later papers further
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4.1.3.4 Automatic Segmentation

segmentation. It is therefore impossible to apply these segmentation techniques to
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developed this technique and developed different statistical methods for analysing the

.training sets (Just & Thelen 1988, Peck et al 1992, Fletcher et al 1993, Kao et al 

1994), however, the requirement for user intervention and the variability in the 

results due to inter and intra-operator variability limited its use (Gerig et al 1992, 

Clarke et al 1993).

I
Automatic or unsupervised multispectral segmentation methods have been 

developed to counter the problems associated with user intervention. These 

unsupervised methods attempt to find structure within the data with the aim of 

producing clusters within the feature space. This has been achieved using a variety of 

mathematical methods such as k-means and fuzzy c-means (Taxt et al 1992,

Ardekani et al 1994, Brandt et al 1994, Phillips et al 1995). More recently new 

variations have been developed such as the Adaptive Fuzzy C-Method (AFCM)

(Pham & Prince 1999) and the Orthogonal Subspace Projection technique (OSP)

(Wang et al 2001).

These methods continue to be used today with several studies using 

multispectral segmentation to demonstrate changes over time in different clinical 

conditions, such as HIV (Patel et al 2002), and brain tumours (Moonis et al 2002).

The main disadvantage of multispectral methods is the requirement to collect 

more than one data set per imaging session with particular sequence parameters

determined by the requirements of the algorithms used and the tissue requiring
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routine high resolution T1 weighted 3D data sets, such as those used in the chapter 2 

for examination of contrast enhancement.

There are a number of automatic methods that have been applied to Tl- 

weighted 3D data sets. Some of the more recent methods described in the literature 

include morphological methods (Stokking et al 2000, Shan et al 2002), methods that 

use prior knowledge of likely brain structures (Lemieux et al 1999, 2003), 

deformable model techniques (MacDonald et al 2000, Smith 2002), and probabilistic 

tissue clustering methods (Barra & Boire 2000, Fischl et al 2002). As these 

techniques are all fully automatic they do not suffer from inter or intra-observer 

variability. One recent study suggested that the reduction in variability may be offset 

by an overall reduction in accuracy (Lee et al 2003), however this study was limited 

to only two freely available fully automated segmentation algorithms, and did not 

examine some of the more recent algorithms that are claiming good segmentation 

accuracy. For example Lemieux et al claim that automatic segmentation algorithm 

can segment brain volumes, when compared to the Montreal Neurological Institute 

(MNl) digital phantom scan, to an accuracy of 98% (Lemieux et al 2003, Collins et 

al 1998) and Stokking et al achieved an average similarity index rating (Zijdenbos et 

al 1994) of 0.98 when compared to a supervised method (Stokking et al 2000). These 

studies suggest that it is possible to develop automatic segmentation techniques that 

can reliably and accurately segment 3D T1-weighted data sets.

4.1.3.5 Segmenting Post-Contrast Data

Despite the availability of good quality segmentation techniques there are 

currently no algorithms available that have been designed to segment contrast
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eiilianced 3D T1-weighted data sets. As has been described in chapter 2, 

segmentation of the post-contrast data sets is required in two stages. Firstly, voxels 

that do not contain brain parenchyma need to be removed. This segmented data set 

would then be used to realign the pre and post-contrast data sets using the MATCH 

software. The second segmentation would provide a mask for the final visualisation 

of the data. This would include the enhancing structures of interest, such as the 

enhancing veins, but exclude other enhancing structures that would interfere with 

final 3D visualisations.

As there is no technique available to achieve this, a new segmentation 

algorithm is required. However, due to the variability of the enhancing cerebral 

venous system, and the possible presence of enhancing lesions it may be difficult to 

accurately segment the brain parenchyma reliably and accurately. Therefore, before 

an algorithm is designed it is important to detennine the effects of segmentation 

accuracy on registration accuracy.

Before segmentation accuracy can be determined a phantom data set is 

required upon which the different segmentation accuracies can be simulated and the 

resulting effects on registration determined. This phantom would consist of pre and 

post-contrast data that when subtracted would produce a perfect subtraction with no 

alignment errors. This data set could be rotated and translated by known amounts so 

that for different segmentation accuracies the accuracy of the MATCH realignment 

could be assessed. Noise could also be added to the phantom to simulate realistic 

data sets.

Several segmentation studies have used phantom data sets to test the 

accuracy of their segmentation algorithms (Stokking et al 2000, Shan et al 2002, Lee 

et al 2003, Lemieux et al 2003) all use the MNl digital head phantom (Collins et al
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1998). However, there are no reports in the literature of the use of a contrast 

enhanced brain phantom. Therefore, before it was possible to test the effects of 

segmentation on registration accuracy in the pre and post-contrast data sets a pre and 

post-contrast phantom was developed.

The phantom data was produced using real pre and post-contrast 3D MP 

RAGE data. The following sections describe in detail the production of the phantom 

data.

4.2 Construction of Pre and Post-Contrast Phantom

4.2.1 Methods

One patient data set was collected using a pre and post contrast protocol. The 

patient had a long IV line inserted prior to the imaging protocol allowing the contrast 

agent to be administered with the minimum disturbance to the patient. The patient’s 

head was held in position with pads secured at the maximum pressure consistent with 

comfort and they were asked to keep as still as possible during the procedure (see 

figure 2.5 in chapter 2). The Magnevist contrast agent was administered via the long 

line by a radiologist within the room. It was administered in a 20 second bolus and 

the post-contrast sequence was started within 20 seconds of finishing the contrast 

injection. The imaging parameters for the 3D MPRAGE sequences were TR=10 

msec, TE=4 msec, Tl= 300 msec, flip angle=10 equivalent slice thickness= 1.4 mm, 

FOV=250 mm with a matrix size of 256x256.

An artificial pre-contrast data set was produced using the original real pre and 

post-contrast data collected. The artificial pre-contrast data set was based on the post-
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contrast data set from which contrast-enhanced characteristics were removed. The 

original pre-contrast data set was used to identify the areas of contrast-enhancement 

on the post-contrast data.

The new artificial pre-contrast data set differed from the original pre­

contrast data by being perfectly aligned to the post-contrast data set. The only 

difference between the phantom pre-contrast data and the post-contrast data was the 

presence of contrast.

It took the author several steps to produce the phantom data. The first step in 

the process was to accurately segment the post-contrast data set using the manual 

method described in chapter 2 (see section 2.5.1.2), removing all the voxels not 

containing any brain parenchyma. All of the enhancing structures were removed as a 

result of this process. This segmented data was used to register the real pre-contrast 

data to the real post-contrast data using the MATCH algorithm (Hajnal et al 1995).

Following realignment the realigned pre-contrast data was subtracted from the post­

contrast data, producing a subtracted data set for the patient. Contrast-enhancing 

structures were highlighted in this data set.

For the next stage of analysis all of the voxels within the subtraction data that 

were not considered to be contrast-enhancing were removed from the data. This was 

achieved using a manual threshold technique. The threshold level was determined 

using the Analyze software package (Mayo Foundation, Rochester, MN). Using the 

morphology tool a threshold was subjectively determined such that all of the 

enhancing structures were within the determined threshold. This threshold was 

further set such that whilst it contained the maximum amount of contrast-enhanced 

voxels, it also contained the minimum amount of background subtraction noise. Once 

the threshold had been set to fulfil these requirements the threshold was applied,
■
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resulting in a binary map (mask), where data voxels within the threshold were set to a 

value of one and all other data voxels were set to zero.

The mask represented data within the post-contrast data set that significantly 

changed between the pre and post-contrast scans. Therefore, by modifying all of the 

voxels in the post-contrast data that coincided with the mask voxels of value one, and 

keeping the remaining data from the post-contrast data unchanged, it was possible to 

create a phantom pre-contrast data set.

To select the voxels requiring modification the post-contrast data set was 

multiplied with the mask. The resulting data only contained voxel values above zero 

for the contrast-enhancing voxels. This new data was subtracted from the post­

contrast data. In effect this reduced the signal in the contrast-enhanced structures 

without affecting the data within non-enhancing structures, such as the brain 

parenchyma, resulting in phantom pre-contrast data that was perfectly aligned to the 

post-contrast data.

Once the pseudo pre-contrast data set had been produced it was subtracted 

from the post-contrast data set using the Analyze algebraic module. The data was 

then visually inspected to ensure that the methodology had correctly produced the 

required phantom.
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4.2.2 Results

Examples of the pseudo pre-contrast and post-contrast data sets are shown in 

figure 4.1.

Figure 4.1 (a-d): Both o f the 3D slices on the left (a & c) are from the pseudo pre-contrast data set. 
The images on the right (b & d) are the equivalent post-contrast slices from which the pseudo data set 

was created. The thin arrows highlight arteries that do not increase in signal and the thick arrows 
highlight veins that do increase in signal.

It is clear from figure 4.1 that the signal from the venous vessels in the pseudo 

data set had been removed reducing the signal to pre-contrast values. The arterial
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enhancement inherent in this pulse sequence remained and was evident in both slices 

displayed in figure 4.1.

Other enhancing structures such as the skin and muscles also demonstrated 

reduced signal intensity in the pseudo pre-contrast data set as was expected. To 

demonstrate this figure 4.2 displays the subtraction data from these two slices.

w. \
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Figure 4.2: Example slices from the subtraction data where pseudo pre-contrast data has been 
subtracted from the post-contrast data. Slice (a) contains some artefactual enhancement from outside

the head (arrow)

There was no background noise in the subtraction images, only signal from 

the enhancing structures. There were, however, some erroneously enhancing pixels 

outside the head. These were produced in areas where the original data was affected 

by ghosting or phase wrap by different amounts in the pre and post-contrast data sets. 

The resulting subtraction data for these voxels had values within the threshold range, 

resulting in their inclusion in the mask.

For comparison it is possible to compare the new pseudo pre-contrast data set 

with the real pre-contrast data set that had been realigned to the post-contrast data set. 

The simplest and most informative way of comparing the data was to subtract the real
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from the pseudo data. This subtraction highlighted the differences between the 

phantom, and real-realigned data. Two example slices are displayed in figure 4.3.

Figure 4.3: Example slices from the subtraction between the real and the pseudo pre-contrast data 
sets.(Black voxels are negative and white voxels are positive) The thick arrow in (a) shows an 

homogeneous grey area suggesting good subtraction (contrast-enhanced area). The thin arrows in (b) 
show areas affected by pulsatile artefacts resulting from a carotid artery. The back arrow shows a

cortical edge enhancement.

There were a number of significant features visible in the subtraction data.

The effects of ghosting were apparent in the phase encoding direction 

(anterior/posterior direction), especially in figure 4.3(b). These artefacts were a result 

of pulsatile blood flow, especially within the carotid arteries and eye movement 

during the scanning. The existence of these artefacts on the subtraction, suggests 

that the position and the signal from these ghosts varied between the pre and the post­

contrast scans. It should be noted that the ghosting artefacts will be the same in the 

pseudo pre and post-contrast data, although this is not the case in real data sets.
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Areas of enhancement show up as homogeneous grey areas on the subtraction 

(i.e. in the subtraction they have a value of zero). This confirms that these regions in 

the pre and phantom pre-contrast data have the same values and position.

The edges of some of the cortical structures could be visualised in the 

subtraction data. This is especially obvious in figure 4.3(b). This was a result of the 

imperfect realignment of the real pre and post-contrast data sets.

The final difference to note between the data sets is the differences that occur 

between the enliancing structures not contained within the brain parenchyma and the 

enhancing venous structure. Structure such as the skin and muscles are visible in the 

subtraction of the phantom pre and real pre-contrast data. The differences in signal 

pre and post-contrast in these structures is smaller than that found in the cortical 

veins. Therefore, when the threshold was applied these structures were not included 

within the resulting mask.

4.2.3 Discussion

This chapter has followed on from the previous chapter by describing the 

need for an automatic segmentation and registration protocol for pre and post­

contrast data, where subtraction data sets are required. However, before this can be 

achieved a new method of segmenting post-contrast data is required to both allow 

accurate registration of the data and to allow maximum intensity projection (MIPs) to 

be produced from the cerebral enhancement without being obscured by other 

overlying enhancing structures.

Segmentation of these data sets is complicated by the fact that the enhancing 

venous system varies markedly from person to person (Curé et al 1994, Meder et al
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Before the effects of segmentation accuracy and it effects on realignment 

could be investigated a pre and post-contrast data set was required where there was a 

known spatial alignment between the pre and post-contrast data. Therefore, using real 

patient data a phantom pre-contrast data set was produced where the contrast- 

enhanced data was derived from the pre-contrast data and the remainder of the 

phantom pre-contrast data was derived from the post-contrast data.

The phantom pre-contrast data does not represent a perfect pre-contrast

1994, Morris and Choi 1996), thus, it would be difficult to achieve high accuracy in 

segmenting these structures. Therefore, this chapter introduces the concept of 

segmentation accuracy, where a truly accurate segmentation would include all of the 

brain parenchyma and no other tissue. Using this segmentation volume as a reference 

the following chapters investigate the effects of varying the segmented volume on the 

realignment. Using the information gained from these experiments it should be 

possible to determine the segmentation accuracy required to ensure good realignment

of the data.
;:'v
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The phantom pre-contrast data when subtracted from the post-contrast data 

resulted in a subtraction data set that contained only the contrast-enhanced difference 

between the two data sets, with no other differences, such as noise or artefacts.

4.2.3.1 Discussion of Potential Errors and Limitations of the Phantom Data Set

phantom as a number of assumptions were made in its production. It was assumed 

that the real pre and post-contrast data sets were perfectly aligned when they were 

used to produce the phantom data. This was not the case as illustrated by figure 4.3, 

when the phantom and real pre-contrast data were compared. As some edge structure
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of the cortical folds are visible, this suggests that alignment was not perfect, although 

the alignment does not appear to be grossly incorrect.

If there had been gross misalignment between the real data sets this would 

have resulted in errors in the thresholded mask. For example misaligned structures 

could produce false high intensity signals in the subtraction data that would be

116

included in the threshold mask. Due to their erroneous inclusion within the mask 

these voxels would then be derived from the pre-contrast data when they should have 

been derived from the post-contrast data.

It was however, unlikely that these threshold errors if  present were 

significant. Although there was an apparent error in realignment, it was not gross and 

so errors are likely to be small (see figure 3.3). More significantly, however, these 

errors are most likely to occur at tissue boundaries, where the differences could be 

large enough to include these voxels in the threshold. However, in the mask data no 

boundaiy structures were found suggesting that little or no voxels had been 

erroneously included in the threshold mask due to misalignment of non-enhancing 

structures.

At the edge of contrast-enhanced structures these errors would be 

undetectable by visualising the data, as these voxels would appear to be part of the 

larger area of contrast-enhancement. However, it was unlikely that this effect was 

significant when compared with errors introduced by the threshold technique itself.

Thresholding the data was a compromise between including all of the contrast- 

enhancement within the threshold and not including unwanted noise data within the 

threshold. The optimum threshold value selected for this study will have inevitably 

resulted in some of the conti ast data not being included within the mask. It will also
_

have resulted in some of the subtraction noise data being included within the mask.
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Therefore, in this situation it was reasonable to assume that errors due to 

misalignment of the real pre and post-contrast data sets were negligible with respect 

to the thresholding errors.

The thresholding errors could have been removed by manually segmenting 

the contrast enhancing structures. However, this would be time consuming but more 

importantly would introduce the normal manual segmentation operator errors. For 

example for every voxel the operator would have made a subjective decision for its 

inclusion in the mask. It is very unlikely that these decisions could have been applied 

consistently throughout the procedure.

The most significant result of the misalignment and threshold errors on the 

phantom itself will be the inclusion of small amounts of contrast-enhanced data in 

the phantom pre-contrast data set. When the MATCH software is used to compare 

the phantom pre and post-contrast these enhancing voxels, when present within a 

particular segmentation, would improve the realignment accuracy due to the 

similarity of the voxels in the two data sets. It is, however, unlikely that this effect 

will be significant, as the number of voxels involved will be small when compared to 

the total number of voxels in the segmented volume. For example if there were 

significant areas of contrast-enhancement in the phantom pre-contrast data, when the 

real pre-contrast data was subtracted from it the contrast-enhanced voxels would be 

visible. Little, if any, are visible in figure 4.3.

A further assumption that this technique made was that the receiver gain in 

the scanner did not change significantly between the acquisition of the pre and post­

contrast data. It is likely that the gain (which was not accessible to the scan operator) 

was reduced whilst collecting the post-contrast data compared to the pre-contrast 

gain. This would result in a reduced range of values for the post-contrast data.
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Therefore, using post-contrast data in the real pre-contrast data would result in a 

phantom that had a reduced data range compared to a real data set. This was tested by 

carefully segmenting the brain on the pre-contrast data to produce a brain mask using 

the Analyze software. The phantom data set was subtracted from the post-contrast 

data set and the mean value for the subtraction should, if there was no difference in 

gain, equal zero. The mean of the subtraction was found to be 0.2 with a standard 

deviation of 5.91. This value, although not zero, was well within the range of noise, 

therefore, it was reasonable to assume that there was little or no effect due to receiver 

gain.

One final problem with the phantom data was the inclusion of ghosting 

artefacts in the data. Ghosting artefacts vary from scan to scan as they depend upon 

the physiological motion present, which varies over time (Wood and Ehman 1992), 

however, the phantom pre-contrast data has the same ghosting artefacts as the post­

contrast data. It is feasible that these ghosts are consistently different in post-contrast 

scans compared to pre-contrast scans. For instance after the injection of contrast 

agent it is possible that there are consistent changes in pulse rate, which would affect 

the carotid ghosting artefacts. However, for the studies that follow, where it is the 

registration algorithm’s ability to realign pre and post-contrast data sets with varying 

degrees of segmentation accuracy, it is desirable to remove errors introduced due to 

physiological variability. Therefore, although the artefact is present it is desirable that 

it remains consistent between the phantom pre and post-contrast data.

Despite these problems the phantom is the first of its kind. The cortical 

structures on the phantom pre-contrast data set are identical to those on the post­

contrast data set. Therefore, using this phantom it is possible to compare the effects 

of segmentation on a post-contrast data set on registration to a pre-contrast data set,
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knowing the exact spatial relationship of the two data sets. The phantom can also be 

used to determine the effect of including contrast-enhancing structures in the 

alignment calculations, knowing that all other structures remain the same. This will 

have consequences for any segmentation algorithm that is later designed to segment 

these data sets.

4.3 Conclusions

This chapter has discussed the segmentation methods that have been 

previously developed, including a number of techniques that have been designed to 

segment the brain on 3D T1-weighted data sets. However, there were no algorithms 

available for segmenting 3D T1-weighted contrast enhanced data sets. Therefore, a 

new algorithm is required.

However, due to the variable nature of contrast enhancement it is likely that it 

will be difficult to accurately segment these data sets using automatic techniques. 

Therefore, to test the effects of segmentation accuracy on registration accuracy a 

phantom was required. This chapter described the production of such a phantom and 

discussed the advantages and disadvantages of the techniques used to produce it.
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Chapter 5

Realignment of Phantom Pre and Post Contrast 
Data: The Effect of Segmentation Accuracy on

Realignment
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5.1 Introduction

As was described in chapter 3 this chapter investigates accuracy of 

realignment of the phantom pre-contrast data set with the post-contrast data. In this 

chapter no further changes were made to the phantom except for the addition of 

rotations and translations to the phantom pre-contrast data. There was no attempt to 

add noise to the data sets to simulate the differences that would be present in normal 

imaging situations. Therefore, the only difference between the phantom pre and post­

contrast data remains the addition of contrast enhancement.

Due to the similarity between the data sets it should be possible, when the 

data has been segmented correctly, to perfectly realign the pre and post data.

However, the MATCH software is not expected to produce such results. The main 

reason for this is the iterative nature of the algorithm and the requirement to 

terminate the iterations in a finite and reasonable time (Hajnal et al 1995). The longer 

that the algorithm attempts to correctly realign the data sets the more accurate the |

realignment will be. This iterative process would not, however, tend towards the 

correct parameters in a linear fashion. It is more likely to do so in an approximately 

exponential trend, which would require a large amount of time to arrive at the desired 

result. Therefore, when designing the algorithm the program writers introduced a 

termination condition. This is where the differences between iterations become small 

enough such that there is little gain in realignment quality for further calculations.

Due to this termination there will always be a realignment error despite the lack of 

noise differences or movement between the phantom pre and post-contrast data set.

Before attempting to realign a rotated and translated phantom pre-contrast 

data set it was important to determine the effects of the algorithm’s iterative

s
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procedure on the realigmnent process. To do this the perfectly aligned data sets were 

input into the algorithm using the various segmentation volumes as the realignment 

masks. Even though the data was perfectly aligned to begin with the algorithm would 

initially introduce rotations and translations in its attempt to determine the conect 

alignment. The process would then continue to iteratively test different alignments 

tending towards the correct alignment. However, it would never reach the correct 

values because of the termination protocol used. This is unlikely to be critical 

because the data was originally aligned perfectly so the resulting realignment error 

will be the minimal error that could be computed for this data set. It would then be 

possible to compare these baseline realignment parameters with the parameters for 

the artificially translated and rotated data. This would in turn allow an estimate of the 

error introduced by the segmentation volumes and a comparison of these errors with 

the errors inherent in the realignment algorithm.

As far as the author is aware no one has previously attempted to determine 

the effects of segmentation accuracy on realignment accuracy. Therefore, despite this 

work focusing on pre and post-contrast data, some of the results will provide more 

general conclusions. The work in this chapter (and chapter 4) led to a presentation at 

an international conference (Bremian et al 2002). The final data and results form the 

basis of a paper in preparation for journal submission.

All work in this chapter has been conducted by the author with the exception 

of the data acquisition which was performed by radiographic staff.
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5.2 Methods

5.2.1 With and Without Rigid Body Rotations and Translations

5.2.2 Production of the 100% Segmentation Volume

This study was conducted in two parts. Part one of the study investigated the 

effects of segmentation accuracy of the post-contrast data on realignment of the 

phantom data where no rotations or translations were applied to it. Thus the phantom 

pre and post-contrast data were perfectly aligned when input into the MATCH 

algorithm. The second part of this study investigated the effects of segmentation 

accuracy of the post-contrast data on realignment of the phantom data when a 

relative rotation and translation had been applied to the phantom pre-contrast data.

However, before the effects of segmentation accuracy could be determined 

(in chapter 6), a gold standard segmentation of the brain parenchyma was required, 

allowing a set of relative segmentations of varying accuracies compared to the 

standard to be produced. This gold standard segmentation is referred to as the 100% 

segmentation volume from here on in this thesis.

The post-contrast data set was loaded into Analyze AVW 3.0 image analysis 

software, where the image edit module was used to edit the data series. Contrast 

settings were set to ensure that good grey and white matter contrast was obtained and 

to ensure that brain matter was distinguishable from other structures.

An approximate 3D region outlining the brain parenchyma was drawn 

separately on each slice of the data in the sagittal plane using the freehand region 

drawing facility. The data was then zoomed to three times its normal viewing size,
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with interpolation switched off. At this level of zoom it was possible to easily 

visualise separate voxels within each slice. The region was adjusted one slice at a 

time using the region edit tool to accurately outline the brain surface. This resulted in 

a 3D region outlining the brain surface with a high level of accuracy.

On each slice new regions were drawn around structures that were to be 

excluded from the final brain region, such as the ventricles, veins, arteries, and any 

other enhancing structures. Any voxels contained within these regions were excluded 

from the final brain region.

To further improve the accuracy of the 3D brain region each data slice was 

checked twice to ensure that all the brain voxels were contained within the main 

region and all other voxels were either outside this region or contained within 

separate non-brain regions. The aim of iterating the process in this way was to 

achieve the greatest accuracy possible for the brain region.

The regions were then saved and converted to a 3D binary map, where voxels 

within the brain region were set to one and all other voxels, including those within 

the other regions, were set to zero. This binary map was multiplied with the post­

contrast data resulting in segmented data that within the errors of manual 

segmentation contained only the brain structures within the post-contrast data. (See 

figure 5.1). This segmented volume will be referred to as the 100% segmentation 

volume. However, it should be noted that this designation does not imply 100% 

accuracy in the segmentation process. The 100% segmentation volume was created 

by a manual segmentation method, which despite the care taken to produce it is still 

likely to contain segmentation errors. The segmented data along with the binary 

mask were saved to disk.
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5.2.3 Production of the Variable Segmentation Volumes

To test the alignment capabilities of the MATCH algorithm a variety of 

segmented volumes were required which contained either more or less of the original 

post-contrast data in the segmented data. These volumes would simulate the effects of 

both over-segmentation and under segmentation. Over-segmentation would occur 

where an algorithm removes too much data, i.e. it would erroneously classify voxels 

within the brain as non-brain voxels. Under-segmentation would occur where an 

algorithm erroneously classifies non-brain voxels as brain voxels resulting in a larger 

volume than required. Under segmented voxels could also include contrast-enhanced 

data.

It is very likely that any applied segmentation algorithm would over and 

under-segment at the same time, i.e. some areas of the volume would contain non­

brain data and in other areas of the volume would exclude brain data. However for 

simplicity this study will investigate these phenomenon separately. Also by separating 

over and under-segmentation, it will be possible to better determine the required 

capabilities of any segmentation algorithm developed for this and similar data sets.

To produce the varying segmentation volumes the 100% segmentation volume 

binary mask was loaded into the morphological module within Analyze. Three binary 

morphological operators were used to produce the various segmentation data sets: 

erode, dilate, and conditional dilate.

Morphological operators are image processing algoritlims that work at pixel 

level on binary data sets (although this is not exclusively so). A detailed description of 

these morphological operators is provided in appendix 1. The erode and dilate 

operators as utilised by the Analyze software package use N x N x N convolution
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matrices as defined by the user. Erode is used to remove binary voxels that are not 

fully suiTounded by other similar binary voxels in the surrounding N x N x N space.

In binaiy image analysis operations this generally reduces the size of a binary volume. 

Dilate, which is the morphological dual to erosion, generally expands a binary 

volume. A new voxel is included within a binary mask if within the surrounding N x 

N X N space there ai*e voxels already included in the binary mask.

The conditional dilate operator as used by the Analyze software package 

allows the definition of a conditional mask into which the dilation of the binary mask 

is allowed. It does not allow dilation of the binary mask where it does not coincide 

with the conditional mask. This operation allows a large number of dilate operations 

to be applied whilst limiting the expansion of the binary volume.

Using the erode, dilate and conditional dilate operators it was possible to 

produce larger and smaller segmentation volumes with the minimum of observer bias 

in their production.

The over-segmented data sets were produced by using both the erode and 

conditional dilate operators with a 3 x 3 x 3 convolution kernel. By the variable 

application of erode and conditional dilation operations, where the condition was the 

100% binary mask, ensuring that no under-segmented voxels were included in the 

masks, a set of over segmented binary masks were produced. To increase the number 

of data sets produced this procedure was repeated using a mixture of 3 x 3 x 3 kernels 

and 5 x 5 x 5  kernels. After these masks were produced they were multiplied with the 

original post-contrast data resulting in the various over-segmented data sets.

The under-segmented data sets were produced by dilating the accurately 

segmented data set by varying amounts and with different kernels. However, a 

threshold was set so that no voxels were be added that were below the noise, user
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deteimined thi'eshold of the image. These voxels were excluded on the assumption 

that any method of brain segmentation would at the very least remove background 

noise from the image, as these have very different voxel values from that of brain 

parenchyma.

To label these data sets the number of voxels within each mask were compared 

to the number of voxels within the original 100% binary mask. The resulting volume 

labels ai'e shown in table 5.1 and figure 5.2 shows an equivalent slice from several of 

the segmentation volumes.

Over-Segmentation Under- S egmentation

97% 103%

92% 117%

88% 126%

80% 135%

73% 145%

70% 153%

65% 169%

59%

56%

Table 5.1: The relative volumes (as a percentage of the 100% binary volume) of the artificially 
produced over and under-segmentation masks
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Figure 5.2: An example slices from some o f the segmented volumes.

5.2.4 Quantitative Assessment of Realignment

For the following studies a direct and an indirect measure of realignment 

quality were assessed. Each time the MATCH algorithm was applied to a pre and 

post-contrast data set it produced a text file containing the realignment parameters. 

These parameters were calculated by comparing the segmented post-contrast data 

volume to the phantom pre-contrast data. The parameters were the translations p,q, 

and r which were stored as half pixel values, and the rotational parameters pitch, roll 

and yaw, which were stored as radians (although they were later translated into 

degrees for easier interpretation). Figure 5.3 shows how these rigid body translations 

and rotations related to the 3D MRI data.
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Figure 5.3: The relationship between the rotational and translational parameters output by the MATCH
algoritlun and the 3D data.

From these text file outputs it was possible to record and plot the effects of 

segmentation volume on the various registration parameters using software such as 

Excel (Microsoft). In both the following studies the spatial transformations required to 

correctly align the phantom pre and post-contrast data are known, therefore the 

variation in actual realignment parameters calculated using the different segmentation 

volumes could be compared to actual parameters required. The known rotations and 

translations were subtracted from the MATCH results, producing values that 

represented the errors in the realignment.

As well as individually comparing the six rigid body parameters it was 

possible to determine a single measure of overall translation and of overall rotation. 

Once again, by subtracting the known rotations and translations these overall 

measures of rotation and translation represented the overall realignment errors. To 

calculate the magnitude of the translational error the following equation was used:

(5.1)
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where Vp, r,- are the magnitude of the known P, Q and R translations required to 

eorrectly align the data sets, and rrip, rriq, nir are the magnitude of the P, Q, and R 

translations calculated using the MATCH algorithm.

To calculate the magnitude of the rotational error, the yaw pitch and roll 

rotations, which are equivalent to Euler (Ojeda et al 2002) angles can be converted to 

an axis-angle. An axis-angle is another method of defining a 3D rotation, which is 

defined as a rotation of 9 degrees around a unit vector. For the purposes of this study 

it is the magnitude of the rotation that is of interest. It is possible to convert the Euler 

rotations to this magnitude using the following equation (Baker 1998):

terror == (c yC + SyS^S,.) (5.2)

where,

Cy = cos(ym r/2), = cos{pitchj2), c,. ~cos(ro///2)

and

= sin(yaw /2), =ûn{pitchl2), s,. =sin(ro///2)

Terror uud Oerror wcrc Compared for the non-transformed and transformed data sets.

As an indirect measurement of the quality of the realignment signal to noise 

(S/N) measurement were made on the subtraction data produced for each 

segmentation volume. To produce these S/N values regions of interest were required 

for both the signal and noise measurements. These regions were used for the signal 

and noise measurements on all of the subtracted data sets, allowing direct comparison 

of the S/N results.

The region used to determine the noise was defined as the area of brain 

segmented in the 100% volume data set. The 100% binary mask was loaded into the 

Analyze software and converted to a region of interest for this purpose. An example 

of this region overlaid on one of the subtraction data sets is shown in figure 5.4.
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Figure 5.4: The ROI (red) used for the noise calculations overlaid on subtraction data produced using 
the 135% segmentation volume in realignment calculations. (Upon close inspection background 

subtraction noise is visible in this subtraction)
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The region used to determine the signal was defined as all significantly 

enhancing voxels within or on the surface of the brain. In the phantom the majority of 

these voxels would relate to enhancing venous structures. To produce the correct 

region the post-contrast brain was manually segmented approximately, such that it 

contained only structures within the brain parenchyma and the surface veins. This 

region was then converted to a binary mask using the Analyze morphology module. 

This mask was multiplied with the 100% subtraction data resulting in a segmented 

subtraction data set only containing information within the masked regions. A 

threshold was applied at the same level used in chapter 4 (section 4.2.1) resulting in a 

mask for the enhancing cerebral structures. This mask was saved and converted to a 

region o f interest file to enable it to be used to determine signal strength. An example 

of this region overlaid on one of the subtraction data sets is shown in figure 5.5.
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Figure 5.5: The ROI (red) used for the signal calculations overlaid on subtraction data produced using 
the 135% segmentation volume in realignment calculations.
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5.2.5 Application of the MATCH Algorithm to Non-Transformed Data

The aim of this study was to measure the effects of segmentation accuracy on 

the realignment parameters calculated using the MATCH realignment algorithm. 

However, the phantom pre-contrast data produced in chapter 2 was already perfectly 

realigned to the post-contrast data and the post-contrast segmented volumes.

Therefore, before assessing the realignment capabilities on the spatially translated and 

rotated phantom pre-contrast data, the MATCH algorithm was applied to the phantom 

pre and post-contrast data set that were perfectly aligned.

For the over-segmented data sets the MATCH algorithm would be comparing 

voxels that exactly matched between the phantom pre and post-contrast data. 

Therefore, if the MATCH algorithm was functioning correctly it was expected that the 

transformations applied should all be close to zero within the experimental error for 

the algorithm. Therefore, these results would provide information on the overall 

accuracy of the algorithm.

For the under-segmented data sets the MATCH algorithm would be comparing 

data that contained a majority of exactly matching voxels. However, the segmented 

post-contrast data would also contain enhancing voxels that would contain equivalent 

non-contrast enhancing voxels in the phantom pre-contrast data. It was expected that 

the resulting effect o f these differences on the chi-square algorithm used by MATCH 

would result in larger realignment errors, confirming the assumption that for contrast 

enhanced data sets segmenting out these structures was vital for accurate alignment.

The MATCH algorithm was run on the phantom data set once for each 

segmentation volume created. Upon completion the MATCH software produced a 

new pre-contrast data set that had been resliced using the realignment parameters
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determined by the algorithm. This new data set was subtracted from the post-contrast 

data resulting in a new subtraction data set relating to each segmentation volume.

5.2.6 Application of the MATCH Algorithm to Transformed Data

The same tests as those described in section 5.2.5 were also applied to the 

phantom pre and post-contrast data after the phantom pre data had been transformed 

to simulate inter-scan motion. The transformation consisted of a translation and 

rotation of known amounts, which could be subtracted from the realignment 

parameters calculated by the MATCH algorithm. The effects of segmentation volume 

on these transformation error measurements were examined. It was also possible to 

compare these results for the transformed and non-transformed data.

To apply the rigid body translation and rotation, the phantom pre-contrast data 

was loaded into the Analyze software package within the 3D fusion module. Within 

this module it was possible to define rotations and translations and apply them to the 

data. The ailificial pre-contrast data set was rotated 1 degree (YAW direction, 

backward head tilt) and moved 1 pixel in the posterior direction (P). Only one 

translation and rotation was applied. Therefore, it was expected that no correction 

would be necessary in the other rotations and translations. Therefore, any corrections 

applied in these directions could be attributed to realignment error. A YAW rotation 

of 1 degree and P translation of 1 pixel were applied as this represented a possible 

movement of the head where the patient had lifted their head to look down the bore 

and rested it back down.
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After applying the rotation and translation the data required to be resliced and the 

voxels interpolated. There are several methods of interpolation available within the 

software, however, the most appropriate was the sine interpolation method. As was 

previously described in chapter 2 (section 2.4.2) sine interpolation is the most robust 

method for resampling and interpolating 3D MRI data and introduces the minimum of 

sampling errors.

Figure 5.6 demonstrates the resulting misalignment between the transformed 

phantom pre and post-contrast data by displaying some slices from a subtraction. The 

misalignment results in an increase in the background noise in the subtraction.

Figure 5.6: Two slices from the subtraction o f  the translated and rotated phantom pre-contrast from the 
post-contrast data. The misalignment results in increased noise in the subtraction. The outline o f  the

misaligned cortical folds can also be seen.

The results of the MATCH realignment using the transformed data were 

analysed using the same protocol as in section 5.2.5.
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5.3 Results

5.3.1 Non-Transformed Phantom Data Results

Graph 5.1(a-f) displays the realignment parameters produced when the 

perfectly aligned phantom pre-contrast data set was realigned to the post-contrast data 

set using the MATCH software. The resulting rotations and translations are a result o f 

the iterative processes used to determine the parameters and the effect of 

segmentation volume on this process. Error bars have been included using the 

parameter eiTor estimates derived by the MATCH software.

The most apparent effect on realignment accuracy is whether the segmentation 

volume is above or below approximately the 100% value. For the three rotation 

parameters there should have been no rotation applied, and likewise for the translation 

parameters there should have been no translations applied. All of the parameters vary 

around or close to these optimum values for segmentation volumes of less than and 

equal to approximately 100%.

For segmentation volumes not containing contrast (<100%) the largest 

rotational deviation from zero degrees occurs at the 100% segmentation volume with 

the YAW rotation paiameter with a rotation applied of 0.0121 degrees. The largest 

translational deviation from zero half pixels occurs at the 97% segmentation volume 

for rotational parameter Q with a value of 0.0212 half pixels. In all o f the rotational 

and translational parameters below and inclusive of the 100% segmentation volume 

there is no observable trend towards or away from the optimum values.
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Graphs 5.1(a-f): The realignment parameters determined by the MATCH software when attempting to
realign the non rotated and translated data

Above the 100% segmentation volume, where contrast enhanced data is 

included in the segmentation mask, there are much larger deviations from the 

optimum values in both the rotational and translational parameters. Both PITCH and
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ROLL follow linear increasing trends away fi-om the optimum value with R equal to 

0.974 and 0.855 respectively. YAW also follows a linear trend (R^=0.755) however, 

in this case it tends away from the optimum value in the opposite direction.

P can be described by a linear trend, although with a poorer linear fit. Overall 

there is an increasing trend over the range with R^=0.6582. Q and R also both follow 

lineal' trends away from the optimum value, in opposite directions, both with strong 

correlations (R^=0.969, 0.912 respectively).

For all parameters except R the largest deviations from the optimum values 

occur at the largest segmentation volume of 169%. The largest deviation in R occurs 

at 153%. Overall the largest deviation in rotation occurs for the PITCH parameter and 

has a value of 0.0858 degrees. The largest deviation in translation occurs for Q and 

has a value o f 0.138 half pixels.

These results suggest that increasing the volume of contrast enhancing 

structm-es within the registration mask increases the algorithm’s error in realigning 

data sets, i.e. when segmenting a contrast enhanced brain for realignment to a non­

contrast enhanced brain all contrast enhancement should be removed from the 

registration mask. The data also suggest there is little increasing error in realignment 

with increasing over-segmentation.

Graph 5.2 displays the signal to noise (S/N) characteristics for the subtraction 

data produced when the realigned phantom pre-contrast data was subtracted from the 

post-contrast data.
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Graph 5.2: Signal to noise changes in the modulus o f the subtraction image for the no movement data

Signal to noise does not vary significantly for segmentation volumes below 

100% and remains at its highest value o f 188.8. This is consistent with the data 

displayed in graphs 5. l(a-l) where the realignment parameters remain close to the 

optimum value. For segmentation volumes above 100% there is a rapid drop in signal 

to noise with the minimum value found at segmentation volume of 175% with a value 

of 52.7. Once again this is consistent with the realignment parameters in graphs 5.1(a- 

f), where they tend away from the optimum values at higher segmentation volumes.

It was also noted that the signal to noise was lower for the 100% segmentation 

volume than for all o f the smaller segmentations volumes. At the 100% segmentation 

volume the signal to noise is 180.2.
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5.3.2 Transformed Phantom Data Results
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Displayed in graphs 5.3(a-f) are the realignment results for the rotated and 

translated data. This data has been plotted along with the previous non­

rotated/translated results so that comparisons can easily be made. To allow direct i?

comparison of the YAW and P data (which contained the rotation and translation), 1 

degree was subtracted from the moved YAW data and 1 pixel from the P data. These 

graphs represent the realignment errors for both the transformed and non-transfbrmed
v;i

data.
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Graph S.3(a-f): The realignment parameters (errors) determined by the MATCH software when 
attempting to realign the rotated and translated data (compared to the non-rotated and translated data)

Graphs 5.3(a-f) clearly show that the overall trends in the realignment 

parameters remain similar for all parameters after the phantom pre-contrast data set 

has been moved. Once again the most accurate realignments occur for segmentation
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volumes below the 100% value, i.e. when there is no contrast-enhanced data 

contained within the registration mask. However, there are detectable differences in 

the realignment parameters between the transformed and non-transformed data sets.

To demonstrate these differences more clearly the moved results, with the translation 

and rotation corrected P and YAW parameters were subtracted from the non-moved 

results. The subtracted results are displayed in graphs 5.4(a-f). These subtractions 

display the differences in the realigmnent parameters produced purely due to the 

presence of transformation between the phantom pre and post-contrast data sets.

The movement induced errors displayed in graphs 5.4(a-f) appear to follow 

similar trends to those in graphs 5.1(a-f). This suggests that where there is increasing 

error due to a poor registration mask used for the MATCH realignment, the error in 

correcting for movement also increases. To examine this a further a set o f graphs were 

produced displaying the relationships between the realignment parameters produced 

when there was no introduced movement (segmentation and algorithm errors), and the 

errors introduced by introducing movement (see graphs 5.5(a-f)).
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Graphs 5.4(a-f): Moved data translation and rotation parameters subtracted from the non-moved
rotation and translation parameters.
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Graphs 5.5(a-e): Relationships between segmentation/algorithm errors and the errors introduced by 
movement o f  the phantom pre-contrast data set

All of the comparison of error graphs can be described by linear trends with 

four having a very good linear correlation of > 0.9 (PITCH, ROLL, YAW and Q). 

These 4 graphs also display very similar linear gradients varying between 0.2333 and
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0.2631. P and R also follow linear trends, however, the linear fit is not as accurate 

(R̂ == 0.6482 and 0.8614 respectively).

These linear trends suggest that there is a relationship between the inherent 

errors for the algorithm for each segmentation volume and its ability to correct for 

rotations and translations. Therefore, where the segmentation volumes contain 

enhancing structures large inherent errors will also lead to large realignment errors.

For this data set it should be noted that the inherent algorithm errors are larger 

than the movement errors by a factor of about 4 overall, i.e., the average linear 

gradient for the realignment graphs in graphs 5.5(a-f) is 0.252 with a mean deviation 

of Xctii-i= 0.0614. The majority of the variation in this figure results from the two 

graphs where the linear fits were not as highly correlated.
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Graph 5.6 (a & b): The calculated overall rotation and translations are compared for the non- 
transformed and transformed data (the values for translation and rotation relate to the errors when 

compared to the known rotations and translations)

As described in section 5.2.4 it was possible to generalise the comparison for 

the translations and rotation see graphs 5.6 (a & b). Looking at graph 5.6(a) it was 

apparent that there were no significant differences in the rotations applied for the non- 

transformed and transformed data at segmentation volumes below 100%. However, 

for all segmentation volumes above 100% there were larger rotation alignment errors 

in the non-transformed data than there were in the transformed data, for all data 

points. This would suggest that the transformed data realigned better than the non-
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transformed data. It was also found that the correlation between the transformed and 

non-transformed rotation data was excellent with r=0.999 and p<0.01.

When translation was examined (see figure 5.6(b)) the transformed data 

contained larger errors for data below the 100% segmentation volume, with the errors 

becoming more comparable in value for the larger segmentations above 100%. These 

results suggested the opposite of the rotation results. Here the correlation was also 

excellent with r=0.968 and p<0.01.

It was unclear from these results whether the transformed or non-transformed 

data realigned more accurately. However, it appeared that the non-transformed data 

realigned more accurately, for all segmentation volumes when the signal to noise 

results were examined and compared (see graph 5.2 and 5.7).

Signal to Noise in Registered Subtraction (Rotated)

3
■5 '•6 c
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Graph 5.7: Signal to noise changes in the modulus o f the subtraction image for the movement data
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The transformed data signal to noise graph was very similar to graph 5.2 in 

shape and trends. The main differences were the much lower starting signal to noise, 

due to larger errors in the realignment parameters (see graphs 5.3(a-f)) and the smaller 

percentage drop in signal to noise over the segmentation volume range (72% for graph 

5.5, and 22% for graph 5.6). For all segmentation volumes the non-transformed data 

had higher signal to noise results, however, the difference reduces for the larger 

segmentation volumes.

5.4 Discussion

5.4.1 Overview of Chapter Aims

This chapter set out to investigate the registration capabilities of the MATCH 

algorithm, which is a sub-voxel sine based alignment technique, on a phantom pre and 

post-contrast data set. Two separated studies were conducted. The first study 

examined the effect of the algorithm on a perfectly aligned phantom pre and post 

contrast data set. The only difference between the two data sets was the contrast 

enhancement in the post-contrast data set. Under ideal conditions the algorithm would 

introduce no translations and rotations when attempting to register the data sets. The 

algorithm was run with varying volumes of a realignment mask to determine the 

effects that segmentation would have upon the realignment results and on the signal to 

noise o f the final subtraction data.

The second study investigated the same data sets but with a rotation and 

translation introduced into the phantom pre-contrast data set. The ability of the 

algoritlim to correct for these rigid body motions was investigated by comparing the

150



5.4.2 Realignment of the Non-Transformed Data

algorithms realignment parameters with the known rotation and translation. These 

results provided an indication of the registration limits of this algorithm where the 

data had exactly the same noise structure for both data sets and only differed in areas 

that contain contrast enliancement.

The aim of these two studies was to determine the effects of segmentation 

volume on ideal data, and to determine the source of the realignment errors that would 

result. It was also an aim to determine how the realignment errors would affect signal 

to noise on the subtraction data output. This would provide underlying knowledge of 

the realignment principles that could be applied to more realistic phantom and patient 

data sets.

•I

Realignment of the non-rotated and translated data was expected to provide a 

measure of the underlying errors inherent with the realignment algorithm with respect 

the pre and post-contrast data and the segmentation volumes used. It was expected 

that minimal errors should be introduced for segmentation volumes where the volume 

contained no data differences between the two sets. This was indeed found to be the 

case (see graphs 5.1(a-f)).

Segmentations of 100% and below contained voxels of exactly the same 

values in both the phantom pre and post-contrast data sets. For these segmentation 

volumes all of the realigmnent parameters remained very close to the expected values 

o f zero degrees rotation and zero pixels translation. There was some variation, 

however, this remained within or close to the rigid body errors determined by the
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algorithm itself. Therefore, for these data sets the algorithm introduced no significant 

errors.

The related signal to noise data is displayed in graph 5.2. Segmentation 

volumes below 100% displayed the maximal signal to noise value of 188.8. The 

100% segmentation volume had a slightly lower signal to noise of 180.2. This 

suggests that the 100% segmentation volume might have contained a small number of 

incorrectly assigned voxels, i.e., CSF, enhanced vessels etc. In producing a 97% 

volume it is possible that the majority of these voxels were removed resulting in more 

accurate alignment of the data sets. This would suggest a classification error of about 

3% or less which agrees with expected manual segmentation errors from the literature 

(Jack et al 1990). Figure 5.7 highlights some of the voxels that were removed from in 

the 100% segmentation volume to produce the 97% segmentation volume.

Figure 5.7: Two slices showing voxel differences between the 100% segmentation volume and the 
97% volume (Indicated by voxels on the post-contrast data)

The highlighted voxels displayed in figure 5.7 almost exclusively belong to 

data from brain parenchyma boundaries, and would thus be prone to operator 

segmentation error. It is therefore possible that the 97% segmentation volume
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represented a more accurate segmentation of the brain parenchyma. This would 

account for the reduction in signal to noise when the 100% segmentation volume was 

used for realignment purposes.

More significant realignment errors occurred for segmentation volumes above 

100% (See graphs 5.1(a-f)). For these volumes contrast-enhanced data was contained 

within the segmentation volumes as well as brain parenchyma and other non brain 

structures (in general the CSF is excluded due to noise level thresholding). For 

segmentation volumes just above 100% a significant proportion of the voxels added to 

the segmentation volume were from contrast enhancing structures, including the veins 

(see figure 5.8).

Figure 5.8: Two slices showing voxel differences between the 103% segmentation volume and the 
100% volume (Indicated by voxels on the post-contrast data)

Figure 5.8 suggests that any errors introduced into the realignment and signal 

to noise parameters for this segmentation volume were mainly due to contrast 

enhanced structures being included in the volume. However, it should be noted that 

there were also voxels in this and larger segmentation volumes that were not contrast
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enhancing. For the volumes close to 100% the additional voxels mainly belonged to 

structures close or contained within the brain parenchyma, including the arterial 

vessels. For the larger segmentation volumes other structures such as muscle, 

connective tissue, and skin were also included.

In nearly all of the realignment parameters in graphs 5.1(a-f) there is a large 

step away from the optimum values for the 103% segmentation. This suggests that a 

large part of the realignment errors above 100% were due to the inclusion of the 

contrast-enhanced data in the segmentation volumes. A large reduction in signal to 

noise is also seen at the 103% segmentation volume in graph 5.2. Therefore, it was 

evident that a large proportion of the error in registration above 100% was due to the 

presence of the contrast-enhanced structures. With increasing segmentation volumes 

and increasing amounts of enhanced data, the errors in realignment increased.

This first study only investigated realignment of already perfectly realigned 

data sets with exactly matching signal to noise characteristics. Restricting the study in 

this way allowed the effects of contrast-enhanced inclusion within the segmentation 

volumes to be estimated separately. The inclusions of such voxels introduced 

significant errors to all o f the realignment parameters resulting in reduced signal to 

noise in the final output subtraction. This leads to the conclusion that any new 

segmentation algorithm, designed for the realignment of similar data sets, must 

remove all contrast-enhanced data from the realignment volume. However, the 

phantom data used for this test was perfectly aligned. Therefore, it was important to 

extend the work to include data that was not perfectly realigned, as would be the case 

in a real scanning session.
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5.4.3 Realignment of the Transformed Data

When the rotation and translation errors for the transformed data are compared 

to the non-transfonned results, it is clear that segmentation accuracy affects these data 

sets in very similar ways. All o f the parameters follow very similar trends with 

increasing segmentation volume. From these parameters it is very difficult to assess if  

the transformed data has been aligned to a similar accuracy as the non-transformed 

data. However, signal to noise is significantly reduced in the transformed case, 

suggesting that overall alignment is less accurate.

There were two possible sources of the additional errors in the realignment 

parameters and of the overall reduction in signal to noise. The first was a result of the 

realignment errors within the algorithm itself, i.e. its inherent ability to correctly 

determine the realignment parameters for data where there is a significant 

misalignment. If the algorithm were unable to fully correct for rotations and 

translations then this would result in the overall reduction in signal to noise. Although 

from the realignment data there was no overall trend for the realignment parameters to 

contain larger errors in the transformed data, it was likely that a combination of 

incorrect rotations and translations, although individually small, resulted in the 

reduced signal to noise detected.

The second possible source of error would be from the interpolation used and 

the requirement for re-slicing. For this study re-slicing and realignment occurred on 

two separate occasions. Firstly, the data was re-sliced to add the offset rotation of 1 

degree and translation of 1 pixel. The interpolation in this situation was windowed 

sine (Analyze). The second re-slice will have occurred within the MATCH algorithm, 

where the phantom pre-contrast data was realigned with the post-contrast data set.
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Once again this used windowed sine interpolation. Therefore, to investigate if  this 

would introduce noise to the data the phantom pre-contrast data set that was already 

offset was realigned, with the known correct parameters of 1 degree YAW and 1 pixel 

P using the MATCH re-slice algorithm. If any difference in signal to noise was then 

evident in the resulting subtraction data then this could be attributed purely to the re­

slicing and interpolation used.

It was found that the signal to noise of this subtracted data set was 51.20. This 

value was very similar to the best signal to noise achieved for the transformed data of 

51.89. It can therefore be concluded that the majority, if  not all, o f the reduction in 

signal to noise for the more accurately aligned data sets (segmentation volume 

<100%), is due to the reslicing and interpolation used. It is also likely that the 

variation in the realignment errors are due to reduced signal to noise in the realigned 

phantom pre-contrast data set which the realignment algorithm then tries to correct 

for. This is highlighted by the fact that the data that has been analysed by the MATCH 

algorithm has a slightly higher signal to noise, indicating that the algorithm has 

moved the data set to try and compensate for the decreased signal to noise.

5.4.4 Overall Conclusions

Therefore, in conclusion it appears that when realigning the phantom pre and 

post-contrast data any segmentation volumes used for realignment purposes should 

not include contrast-enhanced voxels. The inclusions of even a small amount of 

contrast-enhancement results in detectable realignment errors. It can also be 

concluded that for the phantom data the MATCH algorithm corrects the artificially

156



induced rotation and translation with excellent accuracy, despite the errors introduced 

by the two stages of sine interpolation.

However, this study was conducted on idealised data, where there were no 

differences in the noise structure of the pre and post-contrast data. Therefore, the next 

chapter extends this study to determine the effects of additional image noise on the 

realignment of the phantom data using the various segmentation volumes. Extending 

the work in this way should allow firm conclusions to be drawn on the effects of 

segmentation accuracy on real pre and post-contrast data sets.
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Chapter 6

Assessing the Effects of Segmentation Accuracy on
Patient Data Sets



6.1 Introduction

6.1.1 Overview

Chapter 5 investigated the effects of segmentation accuracy on a phantom 

data set. Using the phantom data set allowed the MATCH algorithm’s realignment 

capabilities to be assessed on data with known differences in alignment, and known 

differences in contrast. It discussed the effects of segmentation accuracy on the 

realignment parameters determined by the MATCH software and on the resulting 

signal to noise in the final subtraction data. However, due to the artificial nature of 

the phantom it was uncertain exactly what additional errors would relate to the 

application of the MATCH algorithm on real patient pre and post contrast data sets.

As discussed in chapter 5 real patient data sets would differ from the phantom 

data in a number o f ways. The most significant difference being the variation in noise 

and artefacts between the pre and the post-contrast data, which is difficult to model 

ar tificially. Therefore, this chapter investigates the effects of segmentation accuracy 

on realignment parameters calculated by the MATCH algorithm on two real patient 

data sets. Both data sets are segmented to a high level of accuracy and, using similar 

methods to chapter 5, the effect of differing segmentation accuracy on realignment 

are investigated. The results collected for each patient data set are similar to those 

collected in chapter 5. The only difference in the results is that no prior rotation and 

translation information is available for the MATCH alignment parameters to he 

compared with.

The two patient data sets used in this chapter are chosen because they have 

differing contrast-enhanced properties. The patient 1 data used in this chapter
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corresponds to the same patient data used to develop the phantom data in the 

previous chapter. This allows direct comparison between the results here and in 

chapter 5. This patient has normal contrast-enhanced anatomy. The second patient 

has a large contrast-enhanced space occupying lesion, which could have a large effect 

on the relationship between realigmnent and segmentation accuracy.

These results in conjunction with the results from chapter 5 enable firm 

conclusions to be drawn on the segmentation accuracy required in realigning pre and 

post-contrast data accurately, allowing an automatic segmentation algorithm to be 

developed later in this thesis.

All of the work in this chapter is original and is currently being prepared for 

paper submission and all work was conducted by the author, with the exception of 

the data acquisition which was performed by radiographic staff.

6.1.2 Potential Differences Between Patient and Phantom Data

Real patient data sets will differ from the phantom data in a number of ways. 

In a real pre and post-contiast data set there will be noise differences within the data. 

Noise in MRI is produced by a number of connected and unconnected sources. There 

are, however, two main types of noise present: inherent and non-inherent noise. 

Inherent noise comes from various sources such as thermal vibrations within the 

body, quantisation noise in the analogue to digital conversion hardware, 

preamplification electronic noise and thermal noise in the RF coil. It may be possible 

to limit the hardware noise by careful design and construction of the components, 

however, it is impossible to completely eliminate this noise. The thermal noise within
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the patient’s body is obviously impossible to reduce or eliminate (Redpath 1998),

The overall signal to noise resulting firom the inherent noise for an MRI data set can 

be shown to be proportional to the following variables:

=  (6.1)
O',,

where, mo is proportional to the number of hydrogen nuclei, Bo and magnetic 

susceptibility (A,), V is the voxel volume, and Ta/d is the total time that the MRI 

systems analogue to digital converter is sampling.

Using the relationship described by equation (6.1) it is possible to increase the 

signal to noise in MR imaging. For example we know that increasing Bq increases mo 

resulting in increased signal and thus signal to noise. Another way of increasing the 

signal to noise would be to increase the sampling time, reducing the noise.

However, there are sources of noise in MRI that cannot be described in such a 

simple manner. These sources are know as non-inherent noise sources. For example 

patient motion, external interference, blood and organ pulsation can all affect the 

overall image signal to noise. Moreover, these noise sources can vary from patient to 

patient and from session to session and do not necessarily affect all of the data to the 

same extent. It is possible, though, to limit the effects from these sources under 

certain circumstances.

Head fixation could correct for the majority of head motion during the scans 

in co-operative patients, however, motion artefacts would still be present in the data 

especially in less co-operative patients and in patients who due to illness would find 

it difficult to keep still.

Pulsation artefacts (ghosting) which can significantly degrade data quality 

(Wood and Henkelman 1985, Ehman et al 1986) can be reduced by the application of
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k-space ordered acquisition or scan gating or by utilising specific imaging schemes 

(Mitchell et al 1994, Haacke and Lenz 1987, Hinks et al 1993, Kruger et al 1997) 

however, none of these techniques are applied in MP RAGE sequences. Therefore, 

pulsation artefacts, especially as a result o f pulsatile blood flow within the internal 

carotid arteries, would be present in these data sets. To minimise the contribution of 

these effects the phase encode direction was set to anterior/posterior so the majority 

of the pulsation artefacts would remain outside the brain parenchyma.

Non-inherent noise can also result from external noise sources. External
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interference should not result in significant image noise due to the Faraday shielding

surrounding modern scanners and the restrictions concerning their operation. 

However, if electrical equipment, which is not properly shielded, is brought into the 

room, interference artefacts can affect the overall signal to noise of the data. However I
for this study no significant external interference was detected in any of the data 

collected.

Differences between the pre and post-contrast data will also result from 

changes in transmitter and receiver gain. The phantom data sets used in the previous 

chapter assumed that transmitter and receiver gains remained the same. In an ideal 

situation this would be the case, however, transmitter and receiver tuning occurs at ■■A'

the beginning of each sequence and would be affected by the presence of the contrast

medium (See chapter 3). This could result in differing contrast characteristics

between the two data sets. It is possible to override the automatic receiver gain

setting, however, this could lead to voxel overload in the contrast scans.

Patient motion during the scanning sequences could also introduce further

.differences between the data sets. The post-contrast data set is serially acquired 

following the pre-contrast data set and the contrast injection. It is possible due to the



injection or prolonged time within the scanner that the patient might become more 

agitated during the acquisition of the post-contrast data set. This might lead to the 

patient moving more during the post-contrast data set, resulting in image blurring and 

ghosting artefacts. Conversely, it is also possible that with time the patient becomes 

more accustomed to the MR enviromnent and that the pre-contrast data is more 

affected by motion than the post-contrast data set.

The realignment software is designed to correct for rigid body rotation and 

translation between the two scans, however it is unable to correct for partial volume 

effects. Voxels in MR imaging have a finite and well defined size that is usually 

measured in cubic millimetres. Due to the finite size of the voxels it is possible for a 

single voxel to contain signal from two or more structures with differing MR contrast 

properties. This results in an overall voxel signal that is an average of the different
!

signals contained within it. These voxel intensities would change if the patient moves
.

between the scans, and would be especially significant in the slice direction due to 

the slightly thicker slices collected in this direction using the MP RAGE technique.
:î

In chapter 5 the phantom data set was rotated and translated using sine inteipolation, 

which would not correctly model difference in the partial volume effect if  the subject 

had in reality moved before the scan. Sine interpolation would also introduce 

interpolation errors of its own (see section 5.4.3). Therefore, due to the requirement 

for interpolation in this technique the data will differ slightly from real data.

Furthermore there could be physiological changes occurring in the patient 

between the pre and post contrast data collection. For example changes in the patient 

blood pressure during the two data collection periods might result in more or less 

vessel pulsation within the brain resulting in more or less pulsation and ghost 

artefacts. Changes such as these are possible due to the injection of the contrast agent
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before the second scan. Although Magnevist’s physiological effects are limited or 

non-existent in the majority of patients, it can induce significant physiological 

perturbations in a small minority o f patients. In extreme cases Magnavist can induce 

anaphylactic reactions, however this is a rare side effect (Muiphy et al 1999).

Due to all of these contributing factors it is important to determine if  data 

from real data sets display the same sensitivity to segmentation accuracy as data 

produced artificially. If similar patterns of realignment accuracy and signal to noise
:

occur then it could be concluded that the phantom data results were a good reflection 

o f results from real data sets, with the phantom data set’s advantage being the ability 

to introduce known rotations and translations. If it transpires that the phantom data 

sets do represent real pre and post-contrast data sets well then it would be possible in 

future to use similar data sets for assessment of realignment accuracy of different 

registration algorithms.

To test these ideas real patient data sets will be investigated using the same 

procedures as in chapter 5. Two patient data sets will be investigated in detail.

164



6.2 Patient Study Methods

6,2.1 Data Collection

ITwo patient data sets were analysed as part of this study. The data sets were 

collected utilising normal departmental imaging protocols. A description of the 

imaging protocols used for both patients is described in table 6.1.

Patient I ’s data was the same data used to produce the phantom pre-contrast
;

data in the previous chapters. However, in this study the real pre-contrast data set was

used rather than the phantom data used previously. Using this same data as before

would allow direct comparison of the results from the phantom data and the actual

patient data. This patient had normal venous anatomy with no abnormal enhancing

structures as determined by a neuroradiologist.

For comparison a second patient data set was examined (patient 2). To test

the effects of segmentation accuracy on an abnormal patient data set, patient 2 was

selected due to the presence of a large enhancing intra-orbital menigioma (see figure

6.1). It was expected that for segmentation volumes above 100% the presence of a
.

large enhancing volume would affect the realignment and signal to noise parameters 

to a greater degi'ee than data without such an enhancing tumour.

y
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Figure 6.1: Four example slices from patient 2 ’s post-contrast data. The white arrows indicate the
location o f  the large enhancing lesion

The patients had a long IV line inserted prior to the imaging protocol 

allowing the contrast agent to be administered with the minimum disturbance to the 

patient. The patient’s head was held in position with pads and they were asked to 

keep as still as possible during the procedure. The Magnevist contrast agent was 

administered via the long line in a 20 second bolus and the post-contrast sequence 

was started within 20 seconds of finishing the contrast injection. The imaging 

parameters for the 3D MP RAGE sequences were TR=10 msec, TE=4 msec, TI=300 

msec, flip angle=10 degrees, equivalent slice thickness= 1.4 mm, FOV=250 mm.
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with a matrix size of 256x256. Scanning time for each 3D MP RAGE sequence was 

6 minutes 46 seconds.

Patient 1 Patient 2

3 "Plane Localiser Sagittal Localiser
2D T1/T2 Multi-echo SE sequence Pre-Contrast 3D MPRAGE sequence
Pre-Contrast 3D MPRAGE sequence Magnevist injection (13mls)
Magnevist injection (8mls) Post-Contrast 3D MPRAGE sequence
Post-Contrast 3D MPRAGE sequence

Table 6.1: Imaging protocols for study patients

After scanning was completed the data sets were archived and transferred to a 

sun Ultra 10 workstation. Here they were converted from ACR/NEMA 2.0 format to 

Analyze format using a conversion tool (conv analyze , courtesy of Martin Connell) 

to allow the data to be loaded and processed in a commercial software package.

6.2.2 Image Analysis

Patient Us post-eontrast data was already accurately segmented for the work 

carried out in chapter 4. However, patient 2’s post-contrast data set required accurate 

segmentation of the brain parenchyma using the methods described in chapter 4. 

Extra care was required when segmenting the data from patient 2 due to the space 

occupying lesion which affected the shape of the patients brain (see figure 6.1).

For patient 1 it was also possible to reuse the segmentation volumes created 

in chapter 5. This allowed direct comparison of the results from the two studies. 

Similar segmentation volume data sets were produced for patient 2.
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The image analysis methods were the same as those used in chapter 5, where 

both the transformation and signal to noise parameters were examined. However, for 

these two data sets the rotational and translational parameters required to correctly 

align the pre and post-contrast data were not known. Therefore, the trends in the
:

transfonnation and signal to noise parameters were examined and compared to those 

determined for the phantom data.

6.3 Patient Study Results

6.3.1 Patient 1

Graphs 6.1 (a-f) display the alignment parameters produced when registering 

patient I ’s pre and post-contrast data sets. These graphs include both under and over­

segmentations.
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Graphs 6.1(a-f): Rigid body rotation and translation parameters for alignment o f the pseudo pre­
contrast data with the post-contrast data (Patient 1).

The rotations and translations estimated by the MATCH algorithm attempt to 

coiTect for the unknown rotations and translations that occurred with the patients’ 

head during the inter-scan period. It is not possible to relate these to true values as 

they were unknown, however, it is still instructive to note any features o f the graphs 

produced. It should also be noted that the overall trends in graphs 6.1 (a-f) are very 

similar to those found in the phantom graphs 5.1 (a-f).

The graphs of PITCH and ROLL are of similar shapes and dimensions. At 

100% segmentation PITCH has a rotation o f 0.303 degrees and ROLL has a rotation
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of 0.218 degrees. PITCH has a maximum rotation of 0.33 degrees (73%) and a 

minimum of 0.16 degrees (169%). ROLL has a maximum rotation of 0.223 degrees 

(97%) and a minimum of 0.08 degrees (59%).

YAW displays a decreasing trend with increasing segmentation volume. All 

rotations are smaller than for PITCH and ROLL with a rotation of 0,007 degrees at 

100% segmentation volume, and a maximum rotation of 0.009 degrees (56%) and a 

minimum rotation of 0.005degrees (169%).

Translation P shows no overall trend with segmentation volume. The 100% 

segmentation volume has a translation of 0.104 pixels with the maximum and 

minimum being 0.126 (92%) and 0.039 respectively. Translation Q varies to a greater 

extent with segmentation volumes above 100% in what appears to be a linear trend. 

Below 100% the rotations are more stable. The 100% Q translation is 0.256 pixels 

with the maximum and minimum being 0.290 pixels (103%) and 0.184 pixels 

(169%) respectively.

R displays the greatest range of translations over the segmentation volume 

range. The 100% R translation is 0.178 pixels with the maximum and minimum 

being 0.401 pixels and 0.119 pixels respectively. The variations in translation are 

larger below 100% segmentation volume with an overall trend for decreasing 

translation for larger segmentation volumes.

As was discussed in chapter 5 it is difficult to comprehend the overall effect 

of the segmentation accuracy upon visual inspection of the individual rotations and 

translations. Therefore, using the methods described in section 5.2.4 the overall 

rotations and translations were calculated.
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Graphs 6.2(a & b): The calculated overall rotation and translations for the patient 1 data set.
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Graphs 6.2(a & b) display the results for both rotation and translation. Graph 

6.2(a) shows the overall rotations applied to patient I ’s data for different 

segmentation volumes. For segmentation volumes of 100% and below, the overall 

rotation varied between 0.534 degrees at the 100% segmentation volume, and 0.585 

degrees at the 65% segmentation volume. The largest variation within this region 

represented a difference of 9.5% with respect to the 100% segmentation volume. 

Above the 100% segmentation volume there was a trend for decreasing rotation with 

the maximum rotation being 0.441 at the 103% segmentation volume and the
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minimum being 0.347 at the 169% segmentation volume. The smallest variation 

from respect to the 100% segmentation volume was 17.4%. Therefore, the greatest 

variation in overall rotation occurred for segmentation volumes greater than 100%. 

This concurs with the conclusions of chapter 5.

In contrast the overall translation (graph 6.2(b)) is more variable for 

segmentation volumes of 100% and below than for segmentation volumes above 

100%. For segmentation volumes of 100% and below the overall translation varied 

between 0.649 half pixels at the 97% segmentation volume and 0.934 half pixels at 

the 59% segmentation volume. The largest variation from the 100% segmentation 

volume translation (0.656) represents a difference of 42% with respect to the 100% 

segmentation volume.

As described in section 6.2.2 these overall rotations and translations could be 

directly compared to the rotations and translations in the phantom data from chapter 

5. Comparing these results would provide information on the effects of noise 

differences between the real pre and post-contrast data (graphs 5.6(a & b) and 6.2 (a 

& b).

On inspection of the results it was obvious that patient 1 did move a 

significant amount between the pre and the post-contrast scans. Ideally, therefore the 

patient data would be compared to the phantom transformed data. However, as was 

discussed in section 5.4.3 the overall signal to noise in the transformed phantom data 

was reduced by the extra SINC transformation required to produce this data, 

therefore, the data was of reduced quality. This suggests that the patient data should 

be compared to the non-transformed phantom data. Conversely, it could be assumed 

that the extra interpolation introduced noise into the phantom data, and thus the 

transformed data results would be more closely related to the results for the patient
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data, which contain significant noise differences between the pre and post-contrast 

data. Therefore, for completeness the overall rotations and translations were 

compared for both the transformed and non-transformed data sets.

Graphs 6.3(a & b) display the relationship between patient I ’s overall rotation 

and translation parameters with the non-transformed phantom data. Graphs 6.3(a & 

b) display the relationship with the transformed data.

Patient 1 v’s  Phantom Non-Transformed (Rotation)

0.12

cn 0.10

â
c  0.08

0.06 -

I 0.04 -

I
0.  0.02 -

0.00
0.35 0,400.30 0.45 0.50 0.55 0.60

Patient 1 Rotation (Degrees)

Patient 1 v's Phantom Non-Transform ed (Translation)

0.16

I
I  0.12

I  0.10

i  0.08

t  0.06
E
S  0.04

I 0.02

0.00
0.45 0.55 0.65 0.75 0.85

Patient 1 Translation (Half Pixels)
0.95 1.05

Graphs 6.3(a & b): The relationship between patient Ts overall rotation and translation with the non-
transformed phantoms rotation and translation 

(The triangles represent data from segmentation volumes >100%. The blue squares represent data from <100%
and the red square is the 100% data point)
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and the red square is the 100% data point)

■f

■I

Graphs 6.3(a & b) and 6.4(a & b) suggest that for segmentation volumes 

larger than 100% that the overall rotational and translational parameters follow the 

same trends for the phantom data as for the patient data. This can be quantified by 

calculating the correlation coefficients for this data (see table 6.2)
4
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Data comparison Pearson
Correlation

Statistical
Significance

Patient 1 v 's Non-transformed (Rotation) -0.997 <0.001
Patient 1 v’s Non-transformed (Translation) -0.858 0.013
Patient 1 v’s Transformed (Rotation) -0.994 <0.001
Patient 1 v’s Transformed (Translation) -0.962 0.001
Table 6.2: Pearson correlation coefficients and statistical significance when comparing segmentation

volumes > 100% segmentation volume

All correlations are significant at the p<0.05 level with only the transformed 

rotation comparison not significant at the p<0.01 level. These results suggest that for 

segmentation volumes above 100%, where the volume contains contrast-enhanced 

data, that the overall trends in rotational and translational correction are very similar 

for both the phantom data and for the patient data. Therefore, because the chapter 5 

results suggest that contrast-enhanced data inclusion within the segmentation mask is 

undesirable, then it appears that these results confirm this conclusion.

Data comparison Pearson
Correlation

Statistical
Significance

Patient 1 v’s Non-transformed (Rotation) -0.541 0.107
Patient 1 v’s Non-transformed (Translation) -0.443 0.200
Patient 1 v’s Transformed (Rotation) -0.519 0.124
Patient 1 v’s Transformed (Translation) 0.706 0.022
Table 6.3: Pearson correlation coefficients and statistical significance when comparing segmentation

volumes =< 100% segmentation volume

For segmentation volumes of 100% and below this is not the case as is 

illustrated by table 6.3. Only translation is significantly correlated and only then with 

the transformed data.

The differences in correlation and in the shape of the graphs above and below 

the 100% segmentation suggest that the noise differences present in the patient data 

affect the realignments to a greater extent at segmentation volumes below 100%.
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Graph 6.5: Signal to noise variations with respect to the segmentation volume applied during the
registration process (Patient 1)

The signal to noise data for this patient is displayed in graph 6.5. The highest 

signal to noise occurs at two segmentation volumes, 100% and 97%. Segmentation 

volumes between 88% and 126% all have signal to noise values within 1.5% of this 

value. Below 100% segmentation volume signal to noise levels off at 8.88 between 

80-59% before dropping of considerably to 8.78% at segmentation volume 55%. 

Signal to noise drops in a more linear fashion above the 100% segmentation volume. 

If we compare this graph to the equivalent graphs in chapter 5 (5.2 and 5.7) it would 

appear that the increased variability of the translational parameters at different 

segmentation accuracies below 100% result in reductions in the signal to noise. 

These results will be discussed in more detail later.
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6.3.2 Patient 2
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Graphs 6.6(a-l) display the alignment parameters produced when registering |

patient 2’s pre and post-contrast data sets. These graphs include both under and over 

segmentations.

Only two of the graphs can be described by a linear trend over the whole 

range investigated, PITCH (R^~ 0.9391) and ROLL (R^= 0.9832). Both of these 

parameters tend toward smaller required rotations with increasing segmentation 

volume. The 100% segmentation volume has a value of 0.450 degrees for PITCH and 

0.428 degrees for ROLL. PITCH has a maximum rotation of 0.481 (70%) and a 

minimum rotation of 0.363 degrees (155%). ROLL has a maximum rotation o f 0.465 

(59%) and a minimum rotation of 0.351 (155%).

Overall the whole range YAW displays no overall rotation trend, although 

there is more variability in this parameter at segmentation volumes above 100% than 

below 100%. The 100% segmentation volume has a value of 0.477 degrees. The 

maximum rotation occurs at a segmentation volume of 124% with a value of 0.544 

degrees. The minimum rotation occurs at a segmentation volume of 0.474% with a

value of 97%.

Translation parameter P shows no overall trend over the whole range of 

segmentation volume values, although there is more variability above 100%. The 

100% segmentation volume has a value of 0.1825 pixels. The maximum translation
■I

of 0.196 pixels occurs at 118% with the minimum of 0.171 occurring at 155%. i
j
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Graphs 6.6(a-f): Rigid body rotation and translation parameters for alignment o f the pseudo pre- 
conti'ast data with the post-contrast data (Patient 2).

Translation parameter Q appears to display a trend to reducing translation 

below 100% and an increasing trend above 100%. Once again the values above 100% 

tend to be further away from the 100% value of 0.362 pixels. The maximum 

translation of 0.489 pixels occurs at 155% with the minimum translation occurring at 

97% with a value of 0.358.

Translation parameter R displays no overall trend over the whole range of 

segmentation volumes. Variability appears to be similar above and below the 100%
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segmentation volume. The 100% segmentation volume translation value is 0.050 

pixels. The maximum translation of 0.070 occurs at a segmentation volume of 155% 

and a minimum translation of 0.049 at a segmentation volume of 116%.

Once again to simplify the analysis the individual rotations and translations 

were converted to overall rotations and translations (see section 5.2.4) and are 

displayed in graphs 6.7 (a & b).

O v e r a l l  R o t a t i o n s  f o r  P a t i e n t  2

7 . 6 0 E - 0 1

7 . 4 0 E - 0 1

7 . 2 0 E - 0 1

7 . 0 0 E - 0 1

6 , 8 0 E - 0 1

6 . 6 0 E - 0 1

6 . 4 0 E - 0 1
5 5 1 3 0 1 4 57 0 8 5 100 1 1 5 1 6 0

%  S e g

O v e r a l l  T r a n s l a t i o n s  f o r  P a t i e n t  2

1 . 1 0 E + 0 0  7

1 . 0 5 E + 0 0  -

g  1 . 0 0 E + 0 0  - 
â
«  9 . 5 0 E - 0 1  

-  9 . 0 0 E - 0 1%
I .5 0 E - 0 1

I.O O E -01

7 . 5 0 E - 0 1
6 5 7 0 86 100 1 1 5 1 3 0 1 4 5 1 6 0

%  S e g

Graphs 6.7(a & b): The calculated overall rotation and translations for the patient 1 data set.
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In the 100% segmentation volume and below range the overall rotation 

parameter (graph 6.7(a)) varied between 0.715 degrees at the 100% segmentation 

volume to 0.753 degrees at the 59% segmentation volume. This represented an 

overall variation of 5.3% with respect to the 100% segmentation volume rotation. 

Above 100% the overall rotation varied between 0.728 degrees at the 107% 

segmentation volume to 0.659 at the 155% segmentation volume. This represented a 

largest variation of 7.8% with respect to the 100% volume rotation. However, it 

should be noted that for segmentation volumes between 83% and 139% the rotations 

remain within 2% of the 100% volume rotation.

Graph 6.7(b) shows the overall translation applied to patient I ’s data for 

different segmentation volumes. For the segmentation volumes of 100% and below 

the overall rotation varied between 0.809 half pixels at the 97% segmentation volume 

and 0.837 at the 55% segmentation volume. With respect to the 100% segmentation 

volume (0.816 half pixels) this represents a largest variation of 2.6%. Above 100% 

the overall translation varied between 0.816 half pixels at the 107% segmentation 

volume and 1.045 half pixels at the 155% segmentation volume. This represents a 

largest variation of 28.1%.

Graph 6.7(b) in particular supports the hypothesis that there is smaller amount 

o f variation on the realignment with differing segmentation volumes when there is no 

contrast enhancement present in the realignment segmentation volume. It follows a 

very similar trend to the phantom data translation results in chapter 5 (graph 5.6(b)). 

This, however, is not the case for the rotation parameters (see graphs 6.7(a) and 

5.6(a)). For larger segmentation volumes the graph does indeed tend away from the 

100% segmentation value, however, for segmentation volumes closer to the 100%



volume the variability appears to be smaller for segmentation volumes above the 

100% volume.

To appreciate the effects of these rotations and translations on the resulting 

alignment data it is important to inspect the signal to noise results (see graph 6.8)
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Graph 6.8; Signal to noise variations with respect to the segmentation volume applied during the
registration process (Patient 2)

Graph 6.8 displays the signal to noise ratio for the subtraction data for this 

patient. Below the 100% segmentation volume signal to noise changed very little. It 

remains close to 9.180 which is higher than the signal to noise measurements for 

patient 1 (see graph 6.5). Above 100% however, there is more variation in signal to 

noise with an overall decrease in signal to noise with increasing segmentation 

volume. The drop is signal to noise is most significant for segmentation volumes 

above 139.3% where the signal to noise falls to 9.136.
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6.4 Discussion

1 8 2

The signal to noise results suggest that despite the variability of the overall 

rotation below the 100% segmentation volume (see graph 6.7(a)) that segmentations 

below 100% produce better overall alignment results than for segmentation volumes 

above 100%, It was for these over 100% segmentation volumes, where there was
#

increased variation in the overall translation, that signal to noise falls significantly. « I

Therefore, for patient 2 it would appear that the realignment is of better quality when 

using segmentation volumes of 100% and below. These results therefore support the 

conclusions of chapter 5 despite the presence of the large enhancing lesion.

The patient 1 data is the same data from which the phantom was derived in

chapter 3. Therefore, by determining the differences between the two data sets it was i
'̂1

possible to determine the effects that real noise differences have on realignment 

accuracies for different segmentation volumes. The realignment parameters for 

patient 1 have similar graph characteristics and trends to those determined for the 

transformed and non-transformed phantom data in chapter 5 (comparing graphs

I

S.l(a-f) and 6.1 (a-f)).

The most noticeable difference between the two data sets is the increased ;

variability for all of the realignment parameters, compared to the moved phantom

data, for segmentation volumes below 100%. It is possible to illustrate this by |-

displaying the variation of these parameters around their average value (below 100%) 

for both data sets whilst keeping the graph scales the same (compare graphs 6.9(a,b)



and (c,d)). It is obvious from these graphs that the variations are greater for the 

patient data set.
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Translational Parameter Variation for Phantom (Moved) Data (Under 100% 
Segmentation Volumes
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Graphs 6.9(c,d); Phantom (moved) translational variations from the average rotational value for
segmentation volumes below 100%

These results can be explained due to the presence of noise differences in the 

pre- and post-contrast data sets that was not present in the original phantom study in 

chapter 5. The noise introduces random variations in the realignment parameters 

when compared to data with no such noise differences. The variations are larger for
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i
àthe smaller segmentation volumes (below 65%). This suggests that the noise 

differences have a greater effect when the volumes are smaller, however, the noise 

differences do not appear to be linearly related to segmentation volume. It is likely 

that local noise characteristics within the data sets will contribute to the overall
I

variations. Local variations might occur for example if there is arterial ghosting 

affecting part of the images.

When the data equal to and above the 100% segmentation volume is 

compared it is found that corresponding parameters from the phantom and patient 

data set vary linearly with respect to one another (see graphs 6.10 (a-f)). All o f the 

translation and rotation parameters have linear least squares fits (R^) of greater than 

0.7 with four (PITCH, ROLL, YAW and Q) producing linear fits of greater than 0.9.

For all of the parameters the rotations and translations required are larger for the 

patient data set than for the phantom data set, due to the real patient motion present.

More significantly the best-fit line gradients are all larger than 1. This suggests that 

there are larger errors in the realignment parameters for the patient data set than for 

the phantom data set, i.e. each increase in segmentation volume over 100% increases
:

the error in the patient data by a larger amount. Therefore, despite the preservation of

'Ia linear relationship between the phantom and patient data set for these segmentation 

volumes it remains the case that the segmentation volumes containing contrast- 

enhanced data introduce significant errors into the realignment.

The comparisons of overall rotation and translation for the phantom and 

patient data strengthen these conclusions (see graphs 6.3(a & b) and 6.4(a & b)). For 

segmentation volumes above 100% the phantom and patient 1 data correlate 

significantly (table 6.2) but correlate poorly for segmentation volumes below 100%

(table 6.3).
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The signal to noise graphs for patient 1 and the phantom data sets also display 

similar differences. For example for the phantom data set with rotation and 

translation added, signal to noise does not vary for segmentation volumes below 

100% (See graph 5.7). However, for the same segmentation volumes the patient 1 

signal to noise does vary to a larger degree, and remains below the optimum signal to 

noise measured at the segmentation volume of 100% (see graph 6.5). There is a more 

significant fall at segmentation volume 56%. The reductions in signal to noise will 

result from the variable nature of the realignment parameters, which themselves are a 

result of the noise differences between the pre and post-contrast data sets. The larger 

variations in the realignment parameters would also explain the large drop in signal 

to noise at the 56% segmentation volume.
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Graphs 6.10(a-f): Relationship between patient and rotated phantom data realignment parameters
segmentation volumes above 100%

for

Above 100% the shape of phantom graph is similar to the shape of the graph 

for patient 1. The signal to noise falls with increasing segmentation volume. This fall 

is a result of the realignment errors produced due to the presence o f the contrast 

enhancement in the segmentation volumes.

From comparing the phantom data set with the patient data set it is possible to 

determine the effect that real noise differences have on realigning pre and post-

i

I

a
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contrast data sets. From the above analysis it can be concluded that noise differences 

play an important role when realigning data with sub optimal segmentation volumes 

by increasing the overall error in the realignment parameters by a random amount.

The error appears to remain random although larger errors are introduced for the 

smaller segmentation volumes.

Despite the extra realignment error introduced for segmentation volumes 

<100%, the realigmnents for this range of segmentation volumes are still more 

accurate than the realignments calculated for volumes greater than 100%. Therefore, 

it can still be concluded that when segmenting pre and post-contrast data sets, that 

care must be taken to ensure that contrast enhanced data is not contained within the 

segmented volume.

The inclusion of a second patient data set in this study allowed segmentation 

accuracy to be investigated on a sub-optimal data set. Patient 2 had a large 

enhancing, space occupying lesion, which would be expected to affect the 

realignment accuracy in a different way to the previous data sets. However, to be able 

to make general conclusions about segmentation accuracy for pre and post contrast 

data sets, all o f the conclusions previously reached should remain consistent with the 

realignment results for this sub-optimal data set.

For two of the parameters (YAW and Q) distinct changes in the realignment 

parameters occurs at the 100% segmentation volume similar to those described in 

patient 1, with YAW displaying a large discontinuity and Q displaying a reversal of 

the line gradient. (See graphs c and e). Graphs P and R are more generally variable 

over the whole range, however, this is similar to P in patient 1 (graph 5.1(e)). The 

two parameters that display unusual characteristics for patient 2 in comparison to 

patient 1 and the phantom data are the PITCH and ROLL parameters. Both of these

188



parameters display linear trends over the whole range of segmentation volumes. (See 

graphs 5.6 (a and b). Linear trends such as these were not produced for any of the 

other data sets.

In trying to describe the processes that produced these linear trends note 

should be made of the overall rotations and translations calculated and the signal to 

noise changes in the final subtraction image (See graphs 6.7(a and b) and 6.8).

The lineal' trends in these rotational parameters did not translate to a linear 

trend in rotation. As was described in section 6.3.2 the overall rotation appears to 

remain closer to the 100% segmentation rotation value for segmentation volumes 

above the 100% segmentation volume than those below it, at least until segmentation 

volume 139%. This suggests that under-segmented volumes were aligning more 

accurately. However, the overall translation parameter suggests the opposite. Thus, 

the accuracy of the realignments were not obvious from the realignment parameters. 

Therefore, it was important to examine the signal to noise results.

The overall shape of the signal to noise graph is very similar to those 

produced in chapter 5 (see graphs 5.2 and 5.7), with very little variation in signal to 

noise for segmentation volumes below 100% but witli falling signal to noise above 

100%. The lack of variation in the signal to noise below 100% suggests the changes 

in the realignment parameters within this range of segmentation volumes do not 

affect the subtraction image to any significant degree. The fall in signal to noise 

above 100% suggests that the inclusion of contrast-enhanced data within the 

realignment volume reduced the realignment accuracy. The more significant fall in 

signal to noise above 139% is likely to be due to increasing inclusion of the 

enhancing tumour within the realignment volume.
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Therefore, despite the lack of cohesive conclusions from the translation data 

for patient 2, when the signal to noise data is included in the analysis, this patients 

results appear to confirm the previous conclusions on the realignment accuracy in 

relation to the segmentation accuracy of the post-contrast data sets.

6.5 Segmentation Accuracy Conclusions

One of the main aims for this chapter and for chapter 5 was to determine the 

effect of segmentation accuracy on realignment accuracy. More specifically it was 

intended to use this data to determine the segmentation accuracy required to 

accurately correct for patient head motion between pre and post-contrast 3D 

scanning. Chapter 5 investigated this by producing an idealised phantom data set 

which could be rotated and translated by known amounts allowing the accuracy of 

the realignments to be compared to a gold standard. This chapter continued these 

investigations but on real pre and post-contrast data, which despite the data sets 

differing by unknown rotations and translations, allowed real world effects on 

realigmnent accuracy to be examined.

The first overall conclusion that could be drawn from these two studies was 

that varying segmentation volume and thus segmentation accuracy did indeed have a 

measurable effect on the resulting realignment parameters. In some cases, as has been 

displayed in the resulting graphs, small changes in segmentation volume resulted in 

large changes in realignment parameters. This is especially true for the patient data 

where noise appears to introduce random errors into the realignments. The exact
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nature of the noise effects is likely to vary from patient to patient and from study to 

study, due to the varying nature of noise in MRÏ.

The results fr om chapter 5 indicated that the realignment accuracy reduced for 

data sets that were under-segmented (>100%), suggesting that the presence of 

contrast-enhanced data in the segmented realignment volume was contraindicated for 

optimal alignment of pre and post-contrast data. Therefore, any segmentation 

algorithm applied to these data sets will be required to remove as much o f the 

contrast-enhancement as possible.

Ensuring the segmentation volume does not contain contrast-enhanced 

structures is non-trivial. The pre-contrast data set is a simpler data set to segment due 

to the lack of confounding contrast enhancing structures. Chapter 4 (section 4.1.3.4) 

described some of the algorithms capable of segmenting such data sets. The 

segmentation algorithms typically have segmentation errors of about 2% (Lemieux et 

al 2003, Stokking et al 2000). Due to the close proximity of the veins to the brain 

parenchyma, and the similarity of the venous signal to grey matter signal in the pre­

contrast data, a significant amount o f these segmentation errors are likely to result in 

venous inclusion within the segmented data. It is impossible to use the post-contrast 

data set to determine the venous voxels as it is not correctly aligned to the pre­

contrast data. Therefore to ensure that the volume used for the realignment does not

contain any regions of contrast enhancement the post-contrast data set must be used.
.

CuiTcntly there are no segmentation algorithms designed to segment brain 

parenchyma from contrast-enhanced 3D data sets. It is therefore important for any 

segmentation algorithm that is to be developed for, and applied to the post-contrast 

data, to ensure that it fully removes the contrast enhanced data. Ensuring that all

V
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contrast-enhanced voxels are removed is likely to result in over-segmentation of the 

post-contrast data.

The level of accuracy required would affect the method of automatic 

segmentation used to produce the realignment volumes. For example if a high level 

of segmentation accuracy was required, i.e. within 2 or 3% of trained observer 

estimates, this would require very accurate modelling of the data using complicated 

segmentation algorithms. Such methods were described in chapter 3 (section 4.1.3.4). 

However, with increasing accuracy there would also tend to be a higher segmentation 

failure rate due to any large variations from the expected brain model. For example if 

there was a large enhancing tumour (such as in patient 2), which is a space occupying 

lesion, this may confound the model resulting in poorly segmented data.

If segmentation accuracy was not required to be as accurate as 2-3% then it 

might be possible to devise a segmentation algorithm that would cope better with 

unusual data sets. The ability to process a wider range o f data sets would be 

advantageous, removing the requirement to assess image data sets for suitability prior 

to attempting the segmentation and realignment protocol. This improved applicability 

would likely be offset against poorer registration accuracy, however, if  accuracy was 

only slightly affected then the benefits would outweigh the cost.

Examining the signal to noise parameters first, for the phantom data and for 

the two patient data sets, signal to noise is at its highest value at 100% except for 

graph 5.2. This confirms that the observer based segmentations are at or very close 

to the optimum segmentation volume for realigning the data sets. Signal to noise 

below 100% remains steady for both patient 2 and for both the transformed and non­

transformed phantom data sets with only a very slight drop in signal to noise for
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patient 2 for the smaller segmentation volumes. There are more significant falls in 

signal to noise for patient 1 especially at the very smallest volume used.

Due to the same post-contrast data set being used for patient 1 and the 

phantom data it is possible to assign the drop in signal to noise detected for the lower 

segmentation volumes to noise differences between the pre and post-contrast data.

These noise differences have a strong local effect that dominates at the lower 

segmentation volumes. Therefore, it can be concluded that very small realignment 

volumes should not be used due to the increased influence of data noise differences.

This conclusion is also strengthened when the realignment parameters are examined 

in the patient data sets, especially those demonstrated in graphs 6.9(a & b), where 

larger variations are detected at the smaller segmentation volumes.

However, for segmentation volumes of more than 80%, in all cases the signal 

to noise remained within 0.5% of the maximum signal to noise value. From the 

signal to noise data alone it would appear that segmentation volumes that contain no 

contrast enhancement and contain not less than 80% of the brain parenchyma would
. .'j,

produce sufficiently accurate final subtraction data sets. This suggests that good 

quality realignments can be achieved when segmentations of 80% to 100% accuracy 

are used in conjunction with the MATCH algorithm

The phantom data realignment parameters are consistent with this conclusion 

however, it is not obvious from viewing the patient data realignment parameters on 

their own that this is the case. For both patient 1 and 2 there were more significant 

variation in the realignment parameters for segmentation volumes of 100% and less 

(see graphs 6.2 (a & b) and 6.7 (a & b).

However, by comparing the phantom and patient 1 results it was shown that 

the variations were almost exclusively due to the noise differences between the pre
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and post-contrast data sets. As has been previously discussed these noise differences 

cannot be simply modelled and corrected for. The differences will also vary from 

subject to subject and from scan session to scan session. It is therefore likely that for 

the majority of patient data sets that the underlying trend of realignment accuracy is 

similar to the phantom data results with further modulation of the realignment 

parameters as a result o f the noise differences between the pre and post-contrast data. 

It was likely, therefore, that the patient 2 data was modulated by the noise differences 

in the same manner. Despite this the overall translation parameter (graph 5.7(b)) did 

follow the expected trend with translation varying little for segmentation volumes 

below 100%.

It should be further noted that the scanner used in this thesis was installed in 

1993. Signal to noise from this scanner is significantly lower than for the newest 

generation of scanner. For example a typical signal to noise (white matter to 

background noise) value for a good MP-RAGE scan from the scanner used for this 

study was 17. This compaies poorly for an equivalent sequence from a newer scanner 

within the department using a similar type of sequence (IR FSPGR) which has a 

typical signal to noise around 44. Therefore, due to the improvements in signal to 

noise in modern scanners it is likely that the modulation of the realignment at 

segmentation volumes below 100% will not be as significant as it was in this study. 

However, some noise sources cannot be reduced by improved technology alone, and 

will continue to modulate the data.

The results discussed here are specific to cerebral imaging and to one 

particular contrast agent. However, these results and conclusions have implications in 

any situation where data sets, which are collected within the same imaging session, 

are used to compute an overall result data set. Such realignment corrections are
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common in areas such as fMRI where a large number of data sets are collected and 

realigned using simple and fast realignment algorithms (Jenkinson et al 2002, 

Ashburner & Friston 1997). These algorithms do not attempt to segment the brain 

parenchyma for realignment purposes due to processing time constraints. Also 

despite the changing signal from brain parenchyma itself in the T2* sequences used 

to detect the BOLD signal, the algorithms do not attempt to remove realigmnent 

accuracy modulation due to these fluctuating signals. It has been shown in this thesis 

that where signal varies significantly between data sets significant errors in 

realignment can result. FMRI techniques are constantly being improved and it is
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likely that over time signal to noise will increase, resulting in more significant 

contrast differences between the scans requiring realignment. Significant errors in 

realignment may result.

Currently the simple realignment algorithms are acceptable due to the 

typically low resolution of these data sets and the small size of the BOLD signal 

changes. Voxel dimensions are of the order of 3mm cubed and the data is commonly 

smoothed by Gaussian filters of about 6mm. Therefore, small errors in realignment 

are imlikely to be significant. However, as fMRI resolution increases with advances 

in teclmology and technique these issues will need to be addressed.



6.6 Implications in Designing an Automatic Segmentation Algorithm

The next chapter aims to design an automatic segmentation algorithm that 

enables pre and post-contrast data to be accurately aligned whilst remaining robust
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enough to work with real clinical data sets that will vary significantly in their nature.

This algorithm must completely remove contrast enhanced data and should 

also remove extra-parenchymal data to keep the errors in the realignment to a 

minimum. The segmentation of the brain should be as accurate as possible, although 

it is acceptable to over-segment to ensure that all of the contrast-enhancement is 

removed. Therefore, the next chapter aims to design a segmentation algorithm taking 

into account the findings o f this chapter.
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Chapter 7

Development of Automatic Segmentation 
Realignment and Subtraction Algorithm



7.1 Introduction

7.1.1 Overview

Previous chapters have investigated the segmentation requirements for the 

accui'ate realignment of pre and post-contrast 3D data sets. The aim of this chapter is 

to use this information to develop an automated segmentation algorithm for these 

data sets. This chapter also aims to produce a fully automated algorithm that can 

produce subtraction venogram data when supplied with the raw pre and post-contrast

data sets. Following production of these data sets it would be possible to view the 

cerebral venous structures using maximum intensity projection (MIP) software in 3 

dimensions.

To deteimine the effectiveness of this algorithm in producing correctly 

aligned and segmented data sets, in chapter 8 the outputs from the automatic 

algorithm will be compared to subtraction data sets produced using manual 

segmentation. This will determine the effectiveness of the algorithm using clinically 

relevant data sets.

Therefore, a method will be developed that is specifically designed for these
.

contrast enhancing data sets but based on the morphological techniques described by 

Hohne & Hanson 1992.
I

As well as requiring a segmentation volume for realignment purposes, a 

second volume is required to define the subtraction data that should be used for the 

final MIP visualisation. The production of this secondary volume will also be 

addressed.
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The algorithm in this chapter has been written by the author and is being used 

to segment post-contrast data which is a novel application. The automatic production 

venograms using this technique is also, as far as the author is aware novel. The data 

acquisition was performed by radiographic staff.

7.1.2 Rational For a New Algorithm

As has been described previously (see section 4.1.3) there are a number of 

possible methods of segmenting the brain from surrounding tissue. However, a 

number of these are likely to fail where there is significant enhancing pathology or 

significant variation in normal anatomical enhancement. For example probabilistic 

clustering methods (Barra & Boire 2000, Fischl et al 2002) require the brain to be 

normal or close to normal in its morphology. With contrast enhancing lesions present 

these techniques are unlikely to be able to take account of such variations. Methods 

that depend on modelling of the brain (Lemieux et al 1999, 2003) are also likely to 

fail where the anatomy is grossly affected by enhancing lesions.

However, morphological techniques such as those based on the work of 

Hohne & Hanson (1992) have enough flexibility to enable them to be developed for 

the purposes of this study. Recently these techniques have been extended to produce 

an automatic segmentation technique (Stokking 1998). Both techniques use a seed 

point and threshold followed by morphological operations to separate the linkages of 

the brain from the surrounding tissue. Stokking devised a method of determining the 

seed point and thresholds automatically (CACTUS). The seed point was detected by 

first examining the data histogram to find a reasonable signal value for grey matter
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and thresholding all data above this value. This was then eroded twice and using a 

spherical search from the middle o f the data set the first encountered point within the 

seed volume is set as the seed point. Following this Stokking devised an algorithm to 

detect the lower and upper bounds of the threshold to apply the morphological 

operators on.

Although the CACTUS technique works well on typical 3D T1 data, the 

technique would run into problems when used on post-contrast data. For example, it 

is the aim of this study to produce a segmentation procedure that can segment data 

sets that have enhancing abnormalities as well as those that have normal enhancing 

anatomy. Large enhancing tumours could, depending on their size and position, 

confound the algorithm resulting in poorly defined threshold values. It also likely this 

technique would result in contrast-enhanced data remaining within the segmented 

volume. Therefore a new protocol was required.

Before a protocol could be devised it was important to determine what was 

required from it. Therefore, an overview was devised detailing the requirements for 

the final automatic procedure. The protocol was divided up into a number of 

sections:

1) Load the pre and post-contrast data sets

2) Segment the post-contrast data set to a good accuracy ensuring that no 

enhancing structures are contained within the final segmentation mask

3) Produce a second mask containing all structure o f interest (e.g. brain and 

enhancing vessels) but excluding unwanted structures (e.g. skin and muscle) 

to enable good quality MIP visualistion after final subtraction.

4) Use the segmented volume within the MATCH algorithm to determine the 

realignment parameters to best align the pre and post-contrast data sets.



5) Apply the realignment parameters to the pre-contrast data set and reslice 

using SINC interpolation

6) Subtract the pre and post-contrast data contained within the mask produced in 

section 3.

7) Use generic MIP visualisation software to allow the cerebral venous system to 

be visualised in 3D.

The aim of this chapter is to devise a step by step protocol following the above 

overview steps using Analyze (Mayo Clinic) software. Having achieved this, this 

study then attempts to devise a fully automated algorithm using the IDL ( Interactive 

Display Language, Research Systems, CO, USA) image processing language.

The two most important sections within this plan, with regard to this study, are 

sections 2 and 3. Section 2 aims to segment the post-contrast data set to a standard 

described in the previous chapter. This segmented data set will allow the realignment 

to be made with respect to structures that do no change between the pre and post­

contrast data sets.

Section 3 aims to produce second mask. This mask is required to enable good 

quality visualisation of the venous structures. This is achieved by producing a mask 

that contains all o f the required venous structures within it. If this mask was not 

produced this would result in reduced signal to noise in the final MIP visualisations.

As has been previously described contrast enhancement occurs in structures 

other than those of interest within the head. These include skin and bone marrow.

The realigned pre-contrast data set contains all of the structures within the head that 

were present in the original pre-contrast data set. Thus, if  this were subtracted from 

the post-contrast data set (which also contains all o f these structures, along with any
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enhancement) and is viewed using a MIP, the overlying structures, such as the skin 

would obscui e the structures of interest. In this respect this extracranial enhancement 

introduces noise into the MIPs.

Further problems would arise from venous vessels contained within the head, 

but not contained within the brain parenchyma. When investigating cerebral venous 

disease these vessels are often of little or no interest for clinical diagnosis. However, 

if no mask were used to determine the MIPs area of interest these vessels would be 

included in the final MIPs. Due to the varying nature of the venous system it is 

possible that these structure could be misinterpreted as cerebral vessels, especially 

when single view MIPs were used. With access to 3D rotateable MIPs overlying 

vessels become more distinguishable from cerebral vessels, however, it is still 

possible that these vessels would obscure areas of interest and would introduce 

unnecessary difficulty into the reporting process.

Therefore, it was important to produce a second mask that would only contain 

cerebral parenchyma and cerebral vessels serving the cerebral parenchyma, thus 

simplifying the reporting procedure and improving the quality of the final MIP data.

The following sections describe the design of an algorithm that fulfils the 

requirements for automatically producing MPRAGE subtraction venograms.
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7.2 Methods - Analyze Protocol

7.2.1 Introduction

Before the IDL algorithm could be developed a protocol was devised using 

the Analyze software package. This software package provided a user friendly 

graphical interface that contained a number of image analysis modules, including 

filtering and morphology. It was possible using this software package to devise and 

develop the techniques required for correctly segmenting the post-contrast data for 

realignment purposes and also to create the mask used to produce the final 

subtraction image. The following sections describe the procedures used to determine 

the best protocol for achieving the automatic production of good quality subtraction 

venograms. Testing and designing the algorithm protocol with a software package 

such as Analyze enabled faster evolution of the design at the macro programming 

level without the initial requirement for time consuming programming and 

debugging.

7.2.2 Devising the Paradigm Protocol

As described earlier in this chapter the most important aspect o f the new 

algorithm is its ability to segment the brain parenchyma and to produce the final 

subtraction mask. Often segmentation algorithms are devised with very specific MRI 

data sets in mind. Some algorithms are also specific to particular scanner 

characteristics (see section 4.1.3). However, it is the intention of this study to
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produce a segmentation algorithm that can be easily adapted for use on other 

scanners with different methods for producing 3D T1 data.

Despite the differences in scanner characteristics and pulse sequences 

available, there are always a core set of sequences that are common to all scanners. 

These include T1-weighted spin echo , T2-weighted spin echo, gradient recalled and 

more recently echo planar sequences. All currently available neurological MR 

scanners also have access to T1-weighted 3D sequences which are often the sequence 

of choice for high resolution 3D structural imaging. For example the scanner used in 

this study is a Seimens 1.5T scanner which uses the MP-RAGE (Brant-Zawadzki et 

al 1992) pulse sequence. GE scanners use a different sequence called IR Fast- SPGR. 

This sequence is very similar to the MP-RAGE sequence in its use of an inversion 

recovery pulse to produce the T1 weighting. However, due to the different core 

sequences used (FLASH v ’s SPGR) there are differences in overall contrast 

characteristics and signal to noise. These sequences also require different inversion 

recovery times to produce similar grey and white matter contrast

There are similar sequences available for other makes of scanner and these 

are displayed in table 7.1.

Manufacturer Magnetisation Prepared GRE

Generic snapshot FLASH
Elscint V-SHORT/ Turbo-SHORT
GE IR-SPRG/ IR-FSPRG
Hitachi RS (Rapid Scan)
Philips Turbo (T)FE
Picker RAM-FAST
Shimadzu SMASH
Siemens Turbo-FLASH/ MP RAGE

Table 7.1: Examples of similar magnetisation prepared GRE sequences from different manufacturers
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Despite the differences between the sequences there are a number of 

consistent properties o f these sequences that can be exploited to accomplish good 

quality segmentation for all o f them.

The following protocol and algorithm were devised using five pre and post­

contrast data sets that were selected at random from a list o f available data sets that 

did not contain significant motion artefacts.

7.2.3 Inhomogeneity Correction and Histogram Operations

Before any post processing analysis is conducted on the data it is important to 

remove inhomogeneities from the MR images. Signal inhomogeneities are likely to 

result in poor tissue segmentation (Zhou et al 2001). Inhomogeneities can be caused 

by radio frequency (RF) pulse attenuation in tissue, non-uniform RF coil 

transmission and sensitivity, non-uniformity in the MR scanner’s main magnetic 

field, gradient-induced eddy currents, RF standing waves, magnetic susceptibility of 

tissue and interslice cross talk (Condon et al 1987, Simmons et al 1994).

There are a number of post-processing approaches to correcting for such 

inhomogeneities (Studholme et al 2004). However, these are often complex or model 

based techniques and it remains uncertain as to how these methods would be affected 

by the presence of contrast enhancement. As far as the author is aware there is no 

published data on the applicability of inhomogeneity correction in post-contrast data.

Homomorphic unsharp masking (HUM) is a technique that functions to a first 

approximation as a band notch filter, where a certain spatial frequency range in the 

data is removed, and was first proposed by Axel et (1987). This method assumes 

that the majority of RF inhomogeneity within the data results in low frequency signal
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variation. Thus by convolving the data with an appropriately sized mean kernel, it is 

possible to remove the low frequency RF variation. It is a simple method to apply 

and if used with the correct filter size (Brinkmami et al 1998) produces good results 

with a variety of sequences.

Brinkmann showed that so long as the mean in a local window matches the 

global mean of the overall image that the HUM technique results in good 

inhomogeneity correction. This was found to be approximately true for large kernel 

sizes which would enclose a representative sample of tissues, where different tissues 

were found to intertwine in close proximity. This is true for pre-contrast data and is 

also true o f post-contrast data where the enhancing vessels or lesions are contained 

within or close to the brain parenchyma. It has also been shown that using this 

technique results in mean histogram values for each tissue component that are not 

significantly altered following correction.

Therefore, the first post-processing step applied to the data was an 

inhomogeneity correction based on the techniques described by Brinkmann. For all of 

the following work the kernel size was set to 65 x 65 and was applied before any 

histogram operations.

One of the most important consistent properties between the sequences 

described in section 7.2.2 is the overall shape of the data’s histogram o f voxel 

intensity values. If it is assumed that all histograms have the same shape 

characteristics, and from these characteristics it is possible to determine parameters 

that describe the voxel values of the various features of the histograms, it should be 

possible to determine initial segmentation thresholds that will allow further 

segmentation procedures to be utilised.
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There are a number of features that are present in XI-weighted post-contrast 

histograms that will allow the initial stage of segmentation processing to occur 

automatically. Graph 7.1 demonstrates a typical histogram from the Siemens 

Magnetom running a post-contrast MP RAGE sequence for a patient with normal 

contrast-enhanced MR anatomy.

Histogram for Post-Contrast Data Set
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Graph 7,1: Example histogram for a post-contrast data set. (Siemens Magnetom MP RAGE). The 
minima and maxima of interest have been labelled and the calculated thresholds have been labelled

with arrows.

The first featur e o f this histogram is the high pixel count for low voxel 

values. This area o f the histogram almost exclusively originates from voxels outside 

the patients head, i.e. from the surrounding air. There are no materials here to 

produce any contrast with the MP RAGE sequence and so this part of the histogram 

relates purely to scanner noise.
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The second feature is the drop from the large number of voxels to a much 

smaller number for higher voxel values. This produces a minimum (A) in the 

histogram data. This region contains a much smaller contribution from pure noise 

voxels and will consist mainly of voxels within the CSF and other low signal 

structures such as bone.

With increasing voxel signal values the number of voxels increases to the first 

maxima (B). The vast majority of voxel data here will originate from structures with
...

low to intermediate signal. These structures will include muscle and other connective 

tissues, skin, non-enhancing veins, and parenchymal grey matter. With increasing 

signal values the voxel count decreases until there is second minimum (C). This 

minimum occurs at the overlap between grey and white matter voxel values. Voxel 

values contained within the second peak (D) mainly represent the parenchymal white 

matter with some contribution from skin, muscle, and connective tissue.

At higher values (above voxel value of 70 for this example) there is a tail to 

the histogram (E). This tail result from voxels containing high flow vessels (arteries), 

fat and the contrast-enhanced vessels.

The exact range and separation o f these features will vary from system to

.system and from subject to subject. There will also be slight variations in the flow 

characteristics of the sequences depending on the pulse sequence parameters, 

however, the overall shape o f the histogram will remain the same. Therefore, it 

should be possible to use these features to determine threshold parameters, allowing 

an initial stage of image segmentation to be conducted on the post-contrast data sets. 

Graph 7.2 shows equivalent histogram result from a General Electric IR-FSPGR 

sequence. The General Electric histograms do show some different characteristics,

such as higher signal values for the grey and white matter. However, it is very likely
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that these changes form a particular signature depending on the sequence and type of 

scanner used. Therefore, histograms operations applied to the MP RAGE data sets in 

this thesis will require some tuning for each system and sequence used.

Comparitive Post-Contrast Histogram from GE NV/i
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Graph 7.2: Comparison post-contrast histogram for a General Electric acquired 3D volume
(IR-FSPGR)

For each of the training data sets appropriate thresholds were determined to 

correctly threshold the grey and white matter in the brain, whilst avoiding the 

inclusion of contrast-enhanced vessels. However, in all cases a compromises was 

required due to the overlap in signal intensities of the white matter and enhancing 

vessels. Due to the requirement to remove contrast-enhancement the thresholds were 

set such that little or no such vessels were included. This inevitably resulted in some 

loss of white matter.

Having determined the optimal threshold levels for these data sets their 

histograms, following inhomogeneity correction, were examined to determine if the
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thresholds set could be related to histogram features, thus providing a means for 

calculating the thresholds automatically.

After examining all of the data sets, it was determined that acceptable 

threshold levels (max and min) could be set for the brain parenchyma using the 

following algorithms:

2;,i, (7.1)

where T,nm and T^ax are the minimum and maximum thresholds respectively, Vfmi„ is 

the first minimum in graph 7.1 (A) and V/mox is the first maximum in graph 7.1 (B).

For four of the data sets used for training purposes equations 7.1 and 7.2 

resulted in good brain parenchyma thresholds. However, for one data set significant 

numbers of white matter voxels would have values beyond the threshold maximum 

calculated in this way. To account for this the protocol was adjusted.

The data set used to produce the histogram in graph 7.1 required this revision. 

In this data set equations 7.1 and 7.2 would provide thresholds of T,„in =^30 and T,nax 

= 62. T„,ax was increased until the related voxel count was below the voxel count at 

point (A) providing the new threshold at point E {T^ax ~ 67). Figure 7.1 shows some 

example slices from the related threshold mask.
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Figure 7.1: Four example slices from the threshold mask. The vast majority o f  the brain parenchyma 
is included in the mask with the exception o f  some white matter ( thin red arrows, corpus callosum). 

The mask excluded contrast enhancement (thick red arrows)

Therefore, the final protocol would first apply equations 7.1 and 7.2, it would 

then compare the voxel count at point A with the voxel count at Tmax and if point A 

had a lower voxel count, Tmax would be increased until its voxel count fell below the 

voxel count at A. In all cases this produced a good threshold that excluded contrast 

enhancement.
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7.2.4 Morphological Operations -  Separating the Brain

Threshold segmentation is very poor at separating brain parenchyma from

other structures when used on its own. Therefore, the binary mask produced was used

as an initial approximation upon which further processing could occur.

After the data had been thresholded it was necessary to separate the

grey/white matter structures from the remaining data that was included within the

threshold segmentation. A simple, yet robust method for achieving this is by using

morphological operators (Hohne & Hanson 1992).

In attempting to separate large cormected binary structures there are a number

of fundamental morphological operators that are required. These are ERODE,

DILATE and CONNECT. The effect of these operators on binary data sets are

described in Hohne & Hanson.

The first step in separating structures is to apply a 3D ERODE operator to the

data set. This operator works by erasing voxels that have few surrounding voxels in

any of the thr ee dimensions. Therefore, if  two structures are cormected only by a thin

3D bridge of voxels, using the erode command would remove this bridge, separating

.the structures. When the data has been thresholded, cormections will remain between 

the brain parenchyma and other tissues. So long as the connections have fewer 

cormected voxels than the brain parenchyma then the comiections would be eroded 

more efficiently than the brain voxels thus discormecting the brain from the 

surrounding tissue.

To further improve the likelihood of separating the brain and other structures 

it is possible to apply a LOW PASS FILTER using a 3x3x3 kernel. This filter
g-

removes voxels within areas where the rate of change of voxel values is larger than a
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predetermined value. In the case of binary data it determines the number of 

surrounding voxels with value 1 and if  the number of these voxels is above a 

particular threshold the central voxel is set to 1. This operation first involves 

convolving the binary data with a 3x3x3 kernal of voxels with each element having a 

value of 1, and thresholding the resulting data set. For a 3x3x3 kemal the threshold 

would lie between 0 and 27.

Setting the threshold to a low value, for example 3 would set the central value
'

to 1 when more than 3 of the voxels of the thresholded binary map from the previous 

section, had values of 1. Otherwise the central voxel would be set to zero. Such a 

value would remove only very thin connections and would increase the overall size
:

of the output binary mask. Likewise setting the kernel threshold to a large value close 

to 27 would result in a significant amount of the original binary mask being set to 

zero. Therefore, a more central value (for example 15) would result in little change in
g

overall size of the binary mask but cormections, where voxels have less than 15

cormecting structures.

surrounding voxels with the value of 1, would be set to zero thus removing such

Despite the efficiency of the two operators at removing cormections some 

thicker connections will remain in certain data sets. To remove these thicker 

cormections it is possible to apply a second ERODE operation to the data to ensure

discormection.

One major problem with using ERODE is that it does not leave the cormected 

objects unchanged. Due to the natur e of the ERODE operator the objects themselves 

will slirink in size and any large holes within the eroded object increase in size. 

Therefore, further operations need to be applied to regain the original shape and size 

o f the object after the objects have been successfully separated. The FILTER
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the objects to be described separately. For example one object would be given a value 

of 1, another 2 and so on resulting in an object map. By producing this object map it

operation also has an effect on the size of the connected objects, however, if the 

FILTER threshold is selected carefully then this effect is minimal.

Before the reshaping operations are applied the CONNECT operator can be 

used to give the objects that have been disconnected different voxel values, allowing

t

is possible to compare the sizes of the various objects produced and to make 

decisions based on the outcome of these measurements.

It was described previously that thresholded head data sets contain structures 

other than the brain parenchyma which is of interest. After thresholding the T1 

weighted 3D data sets, the brain parenchyma almost inevitably remains connected to 

other structur es such as muscle, orbits etc, due to the similarity in signal from these 

structures when using such a T1 weighted sequence, and the close proximity to the 

brain parenchyma. Thus as described previously the ERODE operator must be 

applied until the brain has been separated from the remaining tissue. However, due to 

its effects on the shape and size of the binary object, it is preferable to apply ERODE 

a minimum number of times and indeed only once, where possible. Therefore, a 

method of determining the number of ERODEs necessary to separate the structures is 

required.

Due to the nature of T1-weighted 3D imaging there are two large areas of
.

similar' signal characteristics; the brain parenchyma and inferior to this a large area of 

muscle, tongue, and skin within the region of the neck. Following erosion to separate 

the brain from other structures this second region often remains as a slightly smaller 

connected object.

..g'
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Initially following the thresholding of the data, one ERODE/FILTER 

operation is applied. A CONNECT operation is then applied to the data giving each 

separate object different voxel values. The two largest objects are selected and the 

relative size of these objects is compared. If the ERODE/FILTER operation has 

separated the brain correctly the two objects should be of similar volume, with the 

larger being the brain parenchyma and the smaller object consisting of muscle etc 

from the subjects neck (see figure 7.2).

A#
. /

m p '

Figure 7.2: An example o f  some slices showing the two largest objects selected using the 3D connect 
operation. The brain (white) is the larger if  the two objects. The second object is a mixture o f  tissues

inferior to the brain (yellow)

If the difference in size between the largest and second largest object is large 

this suggests that the first ERODE/FILTER was not sufficient to separate the brain 

from the remainder of the head tissue. The smaller object in this case would be an 

unspecified area of extracranial tissue that was only slightly connected to the 

remaining extracranial tissue. Thus, a second ERODE is applied to the data set and 

the same procedure of checking is reapplied.

215



In the vast majority of cases this procedure would allow the brain parenchyma 

to be separated and correctly identified. However, the assumption that the brain 

object will always be larger than the extra-cranial object does not always hold true. In 

general this assumption is correct due to the less contiguous nature of the thresholded 

data outside the brain parenchyma. When an erode is applied to such data with a 

large number of holes the volume of the output is greatly reduced due to the 

increasing size of the holes. The brain parenchyma, on the other hand has a more 

uniform signal intensity and thus after thresholding does not contain as large a 

number of holes.

Due to the conservative thresholds used in this protocol some white matter 

holes will exist and therefore it eannot be guaranteed that this assumption is always 

true which was indeed discovered when applying early versions of this protocol to 

test data sets. In certain data sets there was an object comprising o f neck muscle, 

tongue, skin and bone marrow, inferior to the real brain object that was larger than 

the brain object itself. If object selection was purely based on object size then the 

neck object would on occasion be selected instead of the brain object. Therefore, it 

was important to account for this possibility and correct for it.

The correct selection of the brain object can be achieved by analysing the 

overall voxel positions within the two largest objects. The brain object would have an 

average pixel position superior to the neck object. Therefore, when designing the 

algorithm it would be possible to test for this. Using Analyze it was possible to 

accomplish this visually, however, in the final IDL algorithm this test could be fully 

coded and so automated.
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7.2.5 Morphological Operators -  Producing the Final Brain Mask

After the brain object has successfully been separated from the rest of the 

thresholded data, the object must be ‘reshaped’ back to the original shape of the brain 

parenchyma. The morphological operator used to achieve this is the DILATE 

operator. It has been previously been determined, through experience (Stokking 

1998) that when using DILATE operators following EROSION that one extra 

DILATE operations should be used when compared to the number of ERODES. 

However, for this study due to the stringent application of histogram thresholds it 

was found from testing that two additional DILATES were required. An example of a 

shape that has been eroded and dilated the required amount of times is displayed in 

figure 7.3.

Figure 7.3: Example o f  fifteen slices from a binary mask produced by single erode and 3 dilates (the
brain has been separated).
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Figure 7.3 illustrates that although the overall volume associated with the 

object is restored the outline is poorly reproduced. This is due to information loss 

during the ERODE operations. To compensate for this the DILATE operator can be 

adjusted to take account of the original threshold mask. This CONDITIONAL 

DILATE does a normal DILATE on the data and then multiplies the result with the 

thresholded output. Therefore, any data that was not originally thresholded but was 

contained within the DILATED data result is removed. This ensures that the final 

DILATED data reflects the overall outline of the brain parenchyma in the thresholded 

data. It also ensures that none of the enhancing voxels are included in the realignment 

mask which is important to ensure accurate realignment.

One problem with this approach is that it is possible to DILATE into data that 

is not part o f the brain parenchyma, but is within the threshold mask. This occurs at 

points where the brain parenchyma is connected to the other objects in the threshold
■f.

data (the data bridges). However, if the number o f DILATES are kept low (which can 

be achieved by keeping it limited to two plus the number of erodes) then the amount 

o f extra parenchymal tissue included would be minimal.

Once the data has been CONDITIONALLY DILATED the required number 

o f times the resulting mask is a representation of the brain parenchyma. This mask is 

saved and is called the realignment mask as it can now be used to define the area that 

the MATCH software uses for its realignment.

This mask would then be multiplied with the post contrast data set producing 

the segmented brain required in the MATCH software to determine the volume used 

for calculating the realignment. As has been described previously this protocol would 

not produce a 100% accurate segmentation of the brain parenchyma, but importantly 

it should contain little or no contrast enhanced data, and should be o f high enough
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quality that a good quality realignment would occur. This quality o f the realignment 

will be investigated in chapter 8.
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7.2.6 Production of MIP Visualisation Mask

As was described in section 7.1.2 a second mask is required to allow the final 

MIP to be produced. This mask should ideally contain brain parenchyma and its 

associated veins and arteries only. Therefore the second mask will be larger than the 

first mask, although care must be taken to ensure that as little extracranial tissue as 

possible is included within it to keep the final signal to noise of the resulting MIPs as 

large as possible.

The first step to producing this mask is to construct a data set that maps the 

distribution o f the CSF within the head. This is achieved in a number of steps. Firstly 

the original data is re-thresholded. The minimum threshold is set to 1 and the 

maximum threshold is set to twice the minimum threshold previously calculated.

This thresholded data set will contain data jfiom noise outside the head, from CSF, 

and from other low signal structures within the head such as bone, the sinuses and the 

eyes. Importantly the data directly surrounding the brain parenchyma is almost 

exclusively CSF. The thresholded data is complimented, that is any voxel with the 

value 1 becomes zero and vice versa. This is then morphologically filled so that all 

voxels contained within the mapped region are set to a value of 1 and all those 

outside are set to zero. This data is then multiplied with the thresholded CSF/noise 

data to produce a map of CSF and other structures (see figure 7.4). For simplicity this 

mask is called the CSF mask.
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Figure 7.4: Fifteen example slices from a GSF mask. It should be noted that the mask contains other 

highlighted structures such as the sinuses, bone and the eyes.

The segmentation mask produced earlier is then dilated using the CSF mask 

as a condition 12 times (this value was derived empirically using the 5 training data 

sets). This allows the dilation to spread to the surrounding CSF but not significantly 

to other structures such as the bone and sinuses. To finish the mask it is once again 

morphologically FILLED so that all the voxels contained within the brain 

parenchyma and the surrounding CSF are included in the final mask. This will also 

include the venous vessels on the surface of the brain and any vessels within the 

brain parenchyma itself. Using this method also ensures that any venous vessels not 

in direct contact with the brain are included within the mask. This was important as 

the superior sagittal sinus was found in some subjects to not always be adjacent to 

brain tissue. This technique also ensures that no data beyond the CSF that contains 

contrast enhancement is contained within the final subtraction data set.

Once the MATCH software has realigned the data using the brain segmented 

volume, the visualisation mask can now be multiplied with the realigned pre and
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post-contrast data. The mask prevents the inclusion o f extracranial enhancement from I
being included in the final subtraction data thus improving the resulting signal to

'

noise and removing structures that might otherwise obscure the structures o f interest.

Following subtraction the data can be viewed using any 3D software package

*with the ability to display maximum intensity projections (MIP’s). Due to the 3D

nature of the data sets it is possible to use software to rotate these MIP’s in real time 

to allow the data to be viewed from a number of angles.

The individual Analyze based steps of the constructed protocol are listed in 

Appendix 2. Figure 7.5 displays a flow diagram highlighting the main features of the 

protocol.

Having devised these steps it was now possible to start developing a program 

to conduct these step and prove the eoncept that it was possible to achieve the 

segmentation of these data sets in an automatic manor. There are a number of 

programming languages available which could be used to write the appropriate 

segmentation algorithm. One very common language used to produce similar 

algorithms is C or C++. It is possible with the use of optimised eompilers to produce 

executable code for a number o f computing platforms. This language is very good at 

producing fast and reliable code. However, programming in C can be cumbersome 

with a large amount o f programming required even for relatively simple tasks.

y

I
■‘.'S

221

I
;S-,



LOAD DATA

Produce Histogram

Inhomogeneity Correction

Determine thresholds from 
corrected histogram 

and produce binary threshold 
map

DILATE=DILATE+1
Set DILATE=3

Erode and filter map

Connect and determine two 
largest structures

Is largest structure above a 
threshold size?

Require further 
processing

NO
Y E S ¥

NO STOP. Unable to 
segment data. 

Print Error Message

Are structures of comparable 
size?

YES V

Multiply resulting map 
with postcont data to 

produce segmented data

Run MATCH to 
realign pre and 
postcont data

Determine brain structure by 
determining most superior object

Use threshold map as condition 
and dilate brain object 

DILATE times

Re-threshold data 
(CSF and noise)

Compliment and Fill the data

Multiply with CSF/Noise mask 
producing CSF mask

Dilate Brain mask using CSF mask as 
condition

Connect and keep largest object

Multiply resulting mask with 
realigned data sets and MIP 

results

Figure 7.5: Flow diagram o f segmentation protocol determined using Analyze
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More recently new programming languages have been developed with image 

processing in mind, these include Matlab (with the Image Processing module 

installed) and IDL (Interactive Display Language, Research Systems, CO, USA). 

Both of these languages contain commands that simplify programming for image 

processing tasks, with special routines developed for processing large image arrays. 

These specialist commands and routines simplify the programming requirements 

producing less cumbersome code. However, with the improved code efficiency 

comes a reduction in algorithm speed. IDL code will not run as fast as code produced 

in C which has been compiled with optimised compilers.

This study, however, has the aim of proving the concept of automatic 

segmentation of pre and post-contrast data sets. It is beyond the scope of this work to 

develop algorithms designed with optimal computational speed in mind. Therefore, 

to develop the algorithm for this study IDL was used. The software version used was 

IDL 5.1.

Based on the devised protocol an algorithm was written using IDL by the
a

author. The code for this software is displayed in appendix 3. The basic structure of

the software remains faithful to the original protocol, however, in developing the 

software a number changes were required and a number of problems arose. The 

following section describes the code in detail and describes the changes and 

problems.



7.3 Description of Algorithm Code

The code was written with one main module and two separately programmed 

functions. The two functions were separated from the main program to reduce the 

number of code lines, i.e. both functions are used more than once in the code, and by 

separating them the overall code length is shorter. The functions are ‘auto filT, 

which is written to fill in holes in a binary data set, and ‘postcont_max_min’ which 

calculates the histogram of the post contrast data set and determines where the 

maximum and minimum values occur within the histogram. These functions are 

called from the main code ‘auto__veno’.

The first section of the auto veno code allows the user to inform the 

algorithm of the location of the pre and post-contrast files and it utilises a UNIX 

command ‘readspacing’ to determine the data dimensions for both data sets. To allow 

the analysis to continue both data sets should have the same matrix dimensions. The 

operator is also asked to determine a file name for the final output data set.

The next section opens the post-contrast data set, on which much of the image 

processing occurs. Care is taken to ensure that the data is loaded correctly, i.e. it 

determines if the data is stored in 8 bit or 16 bit format.

The next section attempts to correct for inhomogeneities using the method 

described in section 7.2.3 (Brinkmann et al 1996, 1998). This method of 

inhomogeneity correction requires a minimum threshold to be set, where data below 

this threshold is excluded from the calculations. A minimum threshold is required to 

exclude enors being introduced by the noise from outside the patient’s head. The 

data is therefore passed to the ‘postcont_max_min’ function, which can provide this
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minimum value from the data histogram. The minimum is calculated within the 

module along with the maximum (the voxel value of the grey matter peak) by 

examining the data histogram. The search for the minimum within this algorithm is 

confined to values above the background noise, but below the grey matter peak. The

of erodes. Figure 7.6 illustrates the decisions made by the program.

inhomogeneity section takes the minimum value calculated and calculates the 

inhomogeneity correction for all data above this value.

The inhomogeneity corrected data is now passed back to the 

‘ postcon tm inm ax  function’. This is to allow calculation of the initial threshold 

values for the corrected data set. The thresholds are set using the method described in 

the previous section. The morphological segmentation can now begin.

Two parameters require to be set for the first section of the morphology, 

where the data is eroded and filtered. Firstly, an erode kernel is required to determine 

the extent of the erode calculations. The erode kernel is a 3-dimensional matrix with 

matrix values of 1 defining the extent. This kernel can be varied to suit the data being 

segmented, however for the data used in this study a kernel matrix of dimensions 

3x3x3 suffices. The kernel size will mainly depend on the resolution of the data, 

therefore the kernel size might need to be increased for higher resolution data. The 

second parameter required relates to the low pass filtering. The low pass filtering is 

achieved using the technique described in section 7.2.4.

The code now uses the label region command to separate out the two largest 

regions. This is achieved by counting the number of pixels in all of the regions 

detected by the label regions algorithm and keeping only the two largest. The 

program now compares the sizes o f the two regions to determine the required number
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Two largest objects after first 
erode/filter

No further erodes
YES 1

Is ratio of smal
r
I object to large

required ODject greater man u.i ;

Data too noisy. 
End Program 

Print error 
message

NO

Does the large object have 
more than 500000 voxels?

YES
 1__________
Conduct one further erode on 

the data

Figure 7.6: A flow chart visualising the decision process used by autojyeno to determine the number
of morphological erodes required

This section makes a number of assumptions about the size of the brain object 

and the non-brain object. The brain object is expected to contain at least 500,000 

voxels after the erode and filter have been applied. If voxel sizes are assumed to be 

approximately Imm^ this would relate to a volume of approximately 500cm^. It is 

known from previous studies that the average brain volume is 1200cm^ (Martini 

2001) and normally varies between 1000-1500cm^. Therefore even after two erodes 

and low-pass filters the remaining object should have a volume greater than 500cm^ 

which would represent a drop in volume of between 50-66% for a normal brain. 

However, this figure is conservatively low because this program will not always be 

segmenting a normal brain.
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For example venography may be required in a patient with a space occupying 

tumour. It is possible in such patients that the overall brain volume is reduced below 

that of the normal range. Therefore, by having a low volume requirement following 

erosion and filtering these data sets can still be segmented.

There will be occasions where after erosion and filtering that the brain object 

will not contain more than 500,000 pixels. The main cause of this is expected to be 

poor signal to noise in the data set. For example if the patient is unable to keep still 

during the MR exam the resulting data set is blurred and would likely contain a 

number of phase ghost artefacts. These artefacts would results in a poor signal to 

noise which when thresholded using the previous techniques described would result 

in a poorly defined brain mask with a large number of holes within the brain 

parenchyma. After erosion and filtering the holes would grow in size and reduce the 

number of voxels within the brain considerably resulting in the final number of pixels 

decreasing and thus falling below 500,000 voxels.

In data sets with very poor signal to noise there are likely to be a number of 

motion artefacts that might take on the appearance of venous vessels. It is also 

possible that due to the motion blurring vessels are not visualised despite their 

existence. Therefore, it is desirable that the software highlights these data sets and 

does not attempt to segment and realign them, as spurious output may result.

The second assumption in this section is that further erosion is required if the 

second largest object is less than 10% of the size of the first object. This is a 

reasonable assumption to make due to the nature of the signal in T1 imaging firom the 

brain and its surrounding tissue. The signal amplitude in T1 imaging of muscle and 

skin is similar to that of grey matter. Therefore, when the data is initially thresholded
'

the large area of muscle and tongue inferior to the brain is included in the data. After
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one erosion, if the brain has been successfully separated from the thresholded neck 

tissue, the two largest objects should consist of the brain and a second object 

consisting of the inferior muscle. In this situation the second object is never less than 

10% of the size of the first.

If an erosion is applied and the brain and neck tissue are not separated another 

region of mask will however be separated, specifically an area of bone marrow and 

skin from the skull region, which will become the second largest object. However, 

this region will always be much smaller than the largest object (which in this 

situation would contain both brain and neck tissue). Therefore, it is safe to assume 

that a further erode is required. The 10% threshold is a reasonable threshold as the 

combined volume of the brain and neck tissue is likely to exceed the volume of the 

average human brain (i.e. greater than 1200cm^). In this situation the second object 

would need to have a volume of greater than 120cm^, which is unlikely to occur due 

to the lack of any other large structures within the threshold mask.

Using these two assumptions it is possible to determine the number of erodes 

required and the overall suitability of the data for segmentation and realignment. In 

the majority of cases it is also now possible to determine which object is the brain 

parenchyma as the brain object is often the largest. However, as was described 

previously this is not always the case. Therefore, the next section of the code 

determines the average voxel location within each object and defines the brain object 

as having the most superior location.

Following selection of the brain object the dilation process can begin with the 

number of dilations being related to the number of erosions required. This dilation is 

conditional, using the original threshold data as the condition. The realignment mask
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is now multiplied with the post-contrast data to produce a data set that MATCH can 

use to base its realignment calculations on.

Before running the MATCH algorithm the program produces the visualisation 

mask required to produce the final subtraction data. The venogram mask is produced 

in much the same way as was previously described in section 7.2.6, however, one 

variable needs to be set for this section.

After the CSF mask has been produced the segmentation mask is 

conditionally dilated using the CSF mask as its condition. However, it is not certain 

how many conditional dilates are required to ensure all of the vessels are contained 

within the final mask without extending the mask too far and decreasing the overall 

signal to noise of the final subtracted data. For the data from this particular scanner 

12 dilations was found to be a good compromise, ensuring that all of the required 

vessels were contained in the final output data, when applied to the training data sets. 

However, for different scanners with different signal to noise and contrast 

characteristics the ideal value for this parameter may be different.

With both the masks completed, the pre and post-contrast data sets, along 

with the segmentation mask are passed to the MATCH software algorithm for 

registration. This part of the procedure is significantly longer than the post processing 

required to produce the mask, with the MATCH software requiring approximately 

2hours 30 minutes to complete and the post processing requiring approximately 10- 

15 minutes.

Apart from some disk tidying the only remaining section within the program 

is the final multiplication of the registered pre and post-contrast data sets with the 

final mask and the subtraction of the resulting data. This data set is then saved and is 

ready to be displayed as a MIP using image analysis or image display software.



7.4 Testing the Algorithm

Having developed an automatic software algorithm it was necessary to test 

this on real patient data. Chapter 2 described 20 clinical data sets that had been 

previously collected with the required 3D pre and post-contrast images. This set of 

patients represented a wide cross-section of the clinical conditions with distinct 

contrast-enhanced characteristics The clinical range of this data set therefore 

constituted a stringent test of the algorithm.

The following chapter describes this process and concludes on its

effectiveness.
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Assessment of the Algorithm with 20 Patient Data
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8.1 Introduction

Having previously devised an automatic algorithm for the production of 

realigned pre and post-contrast subtraction data this chapter aims to test the 

algorithms capabilities by running it on the patient data set described in chapter 2.

Several performance parameters will be examined. The segmentation 

accuracy of the brain parenchyma will be compared to both the accurately segmented 

data from patients 1 and 2 (see chapters 5 and 6) and the less rigorously segmented 

data in chapter 2 which were prepared by the author of this thesis. As has been 

previously discussed, reasonable quality segmentation is required if the data are to be 

realigned with good accuracy.

The final subtraction data will be analysed in the MIP format, as would be the 

case in the clinical setting. Most importantly the MIPs will be compared to those 

produced in chapter 2 to ensure that all o f the vessels visualised in the manually 

segmented data are present in the automatically produced data.

As a final check, the signal to noise of the MIPs will be compared to those 

measured in chapter 2. The signal to noise will be affected by the accuracy of the 

visualisation mask. The inclusion of too much extraneous tissue could result in a 

significant reduction in signal to noise.

The algoritlim being tested is novel and is applied to pre and post-contrast 

with the aim of automatically producing subtraction venograms.

All of the work contained in this chapter was conducted by the author with 

the exception of the data acquisition, which was performed by radiographic staff.
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8.2 Methods

To test the ability of the algorithm to automatically produce good quality 

subtraction venograms 20 patient data sets were collected, having been scanned on 

the Siemens Magnetom SP scanner using a pre and post-contrast 3D MP-RAGE 

protocol. These were the same patients that have been processed manually in chapter 

2. The patients were scanned using the contrast-enhanced protocol for differing 

pathologies under investigation. The examinations included: 6 patients with 

meningiomas, 5 for suspected venous thrombosis, 3 with gliomas, 3 with adenomas,

1 with a cyst, 1 with a malignant neoplasm and 1 normal patient. Due to the wide
■

variety of conditions being included in this study this patient group was expected to 

be a good indicator of the different conditions that the algorithm would have to deal 

with in real clinical circumstances.

The imaging parameters varied within the following constraints; TR=10 ms,

TE= 4 ms, TI= 20-300 ms, flip angle = 10-15, equivalent slice thickness -  1.3-1.4 

mm, matrix -  256x256, FOV = 250 mm. Slices were sagittal in orientation. The
Î

maximum acquisition time for each MP RAGE acquisition was 6 mins 46 seconds.

The imaging was conducted on a 1.5T imaging unit (Siemens Magnetom 1.5 T).

Patients were asked to stay as still as possible throughout the imaging procedure 

with their heads held in place with padding (see section 2.5.1.1, figure 2.5). A long 

IV line was inserted in the patient before the imaging protocol had begun. After 

initial scanning, including pilot scans, the first MP RAGE sequence was run before 

contrast medium injection. The contrast medium (Magnevist) was administered as 

soon as the pre-contrast MP RAGE sequence had finished as a 20 second bolus, via 

the rv  line. This required a radiologist to enter and leave the room. The long line

3i
233

Ai



A

was used to reduce the patient motion due to the injection. The post-contrast MP 

RAGE sequence was started as soon as the bolus delivery was complete and the 

radiologist had left the room. The data was transferred to an Sun Ultra 1 170MHz 

workstation where in-house software (conv analyze, courtesy of Martin Connell) 

was used to convert the ACR/NEMA 2 data to Analyze format.

The algorithm was run on the pre and post-contrast data. When the algorithm 

was successful it produced the realigned- subtracted data sets. These output data sets 

were loaded into Analyze and MIPs were produced.

Segmentation accuracy was determined for the automatic algorithm by 

comparing the brain segmentation volumes produced with manually produced brain 

segmentation volumes from earlier in this thesis. In chapters 5 and 6 two patient data 

sets had accurate manual segmentations produced. Both of these patients were 

included in the 20 patient assessed in this study. Therefore, for these subjects it was 

possible to accurately determine the brain parenchyma segmentation accuracy of this 

algorithm with respect to this standard. The two subjects were patient 1, who had 

normal enhancing anatomy and patient 2 who had a space occupying enhancing 

lesion.

In chapter 2 all 20 subjects in this study had a lower quality manual 

segmentation applied to them (these data sets were in general under-segmented).
;

Therefore, by comparing these low quality and the high quality manual 

segmentations with those derived from the software, it should be possible to assess if  

the algorithm is segmenting the data to an acceptable quality.

To assess the quality of the MIPs produced they were compared to the 

manually produced MIP’s from chapter 2. These MIPs were produced from post­

contrast data that had been manually segmented for the purposes of realignment and

234



for final MIP display. The manual segmentation procedures have been described in 

detail in chapter 2.

The first method of MIP assessment was to determine the integrity of the 

MIPs produced using the algorithm when compared to the manually produced MIPs 

from chapter 2. Assuming that the manually segmented MIPs represented the gold 

standard, then the automatically produced MIPs should not exclude any vessels that 

were included in the manually segmented data set. Exclusions of veins, especially 

within the cortex could lead to misdiagnosis or poor interpretation. Therefore, the 

automatically produced MIPs were visually compared with the manually produced 

MIPs by the author to determine if any vessels had been excluded.

As well as totally excluding particular vessels it was possible that the 

automatic algoritlim would exclude particular sections of individual veins. This 

might lead to misdiagnosis of cerebral venous thrombosis where the continuity of the 

vessels is investigated. Therefore, it was important for the observer to look for these 

features as well.

Signal to noise was measured for lateral projections for corresponding 

manually and automatically produced MIPs. To determine the signal to noise four 

regions were drawn on the manually prepared data set, with three areas containing no 

discernable vessels (noise) and one drawn on an enhancing area of the Superior 

Sagittal Sinus. These regions were drawn using the Analyze region of interest 

module using the freehand drawing tool. Average pixel values were determined and 

used to calculate the signal to noise. These same regions were used to determine the 

signal to noise on the automatically produced MIP. Therefore it was possible to 

directly determine the effects on the signal to noise of the automatic algorithm 

relative to the manually produced data.
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8.3 Results

The algorithm was successful in producing venograms in 18 of the 20 

patients when compared to manually produced venograms. Figure 8.1 displays some 

comparisons of the MIPs produced.

Both data sets that failed contained gross patient motion artefacts, which 

resulted in reduced signal to noise in the original data. Example slices from the post­

contrast data for these patients are displayed in figure 8.2. The algorithm stopped at 

the section where it compared the object sizes after the first erode. Therefore, the 

algorithm correctly determined that these data sets were of poor diagnostic quality. 

Manually produced venograms from these patients were of little clinical value.
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F igure 8.2: Example slices from one o f  the post-contrast data sets that could not be automatically
segmented due to poor signal to noise

When the brain parenchyma segmentation volumes produced by the IDL 

algorithm were compared to the accurate manual segmentation volumes, patient 1 ’s 

IDL segmentation contained 91% of the manual segmentation voxels. Patient 2’s 

IDL segmentation contained 83% of the manual segmentation voxels. As was 

discussed in chapter 6 segmentation volumes of 80% and above are deemed 

acceptable for the purposes of realignment.

For these patients when the IDL segmentation was compared to the under- 

segmented volumes used in chapter 2 (section 2.5.1.2), the percentages were 73% 

and 63% respectively. It would therefore appear that using the lower quality
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segmentations from chapter 2 would require setting an acceptable segmentation 

threshold of about 60%. Using this threshold results in the results table 8.1.

Patient Number IDL Segmentation Compared to 
Low Quality Segmentation

Acceptable?

1 73% YES
2 63% YES
3 72% YES
4 71% YES
5 68% YES
6 78% YES
7 POOR DATA
8 POOR DATA
9 50% NO
10 68% YES
11 57% NO
12 58% NO
13 72% YES
14 64% YES
15 79% YES
16 49% NO
17 61% YES
18 82% YES
19 76% YES
20 64% YES

Table 8.1: Resuits comparing the IDL segmentation to the lower quality manual segmentations
chapter 2 (section 2.5.1.2)

from

Acceptable segmentation was achieved in 14 of the 18 (78%) of the analysed 

data sets. Patients 11 and 12 were close to the acceptable threshold and it is likely 

that they would have benefited from a further conditional dilate in the production of 

the realignment mask. Patients 9 and 16 were significantly below the acceptable 

threshold, suggesting the algorithm faced more significant problems in segmenting 

these data sets. On closer inspection of the threshold values calculated it was 

discovered that the maximum value of the threshold in both cases was 

inappropriately low, with the threshold masks containing little white matter material 

in both cases. The poor segmentations could be attributed to the algorithm method 

used to determine the maximum threshold.
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As was described in section 7.2.3 an empirical equation had been derived for 

the calculation of the maximum threshold (equation 7.2). It was also discussed that 

on certain occasions this calculation was not sufficient to determine the maximum 

threshold and a further step was applied in these cases based on the level of the first 

minima (grey matter). From experience the second step ensured that an acceptable 

maximum threshold was set. However, for the two patient data sets in question, the 

histogram minimums used for this calculation had significantly more voxels than for 

the majority of the other data sets examined (see graph 8.1)

Post-Contrast Histograms for Patient 9 and 16
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« — Patient 1660000
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Voxel Value

Graph 8.1: The post-contrast histogram from patient 9 and 16. Special attention should be paid to the 
voxel count o f  the first minima which is 32570 for patient 9 and 36738 for patient 16. In other post­

contrast histograms this is typically 25000 and below

The data that contributes to the voxel count close to and at the minimum in 

these data sets will mainly consist of CSF voxels. Therefore, higher voxel counts in 

this part of the histogram will be a result of a larger volume of CSF. Therefore, due 

to variations in CSF volume from patient to patient, the threshold correction will 

occasionally encounter data sets, such as those described here, that have significantly
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more CSF. Thus the algorithm as it stands will not work for all patient data sets. 

Either a new automatic method of determining the threshold or a manual threshold 

stage is required. These issues will be discussed in more detail in the conclusions.

Of the 18 MIP venograms produced, 12 upon visualisation were found to 

contain all of the vessels visualised in the manually segmented subtraction MIPs 

produced in chapter 2. There were 6 automatically segmented data sets that either 

fully excluded a vein that was present in the manually segmented data or contained 

discontinuities in the veins that were not present in the manually segmented data. 

Table 8.2 list the data sets that differed and the veins that were not correctly 

visualised and figure 8.3 displays an example of manually and automatically 

produced MIPs from the same patient.

Patient Number All Veins 
Visualised?

Differences

1 YES
2 YES
3 YES
4 NO Cavernous Sinus
5 YES
6 NO Spheno Parietal Sinus
7 N/A
8 N/A
9 YES
10 NO Tumour draining veins
11 NO Superior Petrosal Sinus
12 YES
13 NO Superior Petrosal Sinus
14 YES
15 YES
16 YES
17 YES
18 NO Spheno Parietal Sinus,Cavernous 

Sinus, Cortical Veins
19 YES
20 YES

Table 8.2: A comparison o f the manually produced venograms and the automatically produced 
venograms. This table lists the veins excluded from the automatically produced MIPs.
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Figure 8.3: A comparison o f  two venograms for patient 11 (a) the manually produced 
venograms, (b) the automatically produced venograms. The long white arrows indicates where a 

vessel was correctly visualised in the manual data but was partially excluded from the automatic data. 
It should be noted that the signal to noise in the automatic data is lower due to unnecessary tissue

being included in the visualisation mask.

Further differences were detected when there was a large enhancing lesion in 

the data set. The lesions were not always fully contained within the automatically 

segmented data. Therefore, any veins close to this lesion were excluded as in patient
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10. However, in these patients it is unlikely that lesion visualisation is required using 

MIPs. Viewing a lesion on a MIP results in the loss of internal detail, due to
;■

overlapping structures, therefore these structures are best viewed in multislice mode.

In general veins were excluded as a direct result of the limited number of 

dilations used to produce the final data visualisation mask. This is confirmed by the 

location of the poorly visualised veins (table 8.2). All of these veins are located at 

brain CSF boundaries (with the exception o f the tumour draining veins).

However, if the number of dilations was increased this would result in 

reduced signal to noise in the final visualised data. Therefore, the optimal number of 

dilations would depend on the data set being examined and on the acceptable signal 

to noise. The optimal number of dilations would also depend on the clinical area of 

interest. For example if visualisation of the superior petrosal sinus, the cavernous 

sinus, the cortical veins and veins close to large enhancing tumours were required 

then a larger number of dilations would probably be required. This will be further 

discussed in the conclusions section.

When the signal to noise was calculated for the manually produced and the 

automatically produced MIPs and compared and analysed statistically (paired T-test) 

it was found that there was a statistically lower signal to noise (p<0.05) in the 

automatically produced data. As has already been discussed this is most likely due to 

the extra data included in the automatically produced mask compared to the 

manually produced mask and is a direct result of the number o f dilations used.

These results suggest that the algorithm was only partially successful in 

producing accui*ately aligned pre and post-contrast data and producing masked data 

for MIP visualisation. However, it should be noted that these data sets were real 

clinical data and were not a specifically collected normal data set. Though the initial
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8.4 Conclusions and Further Work

8.4.1 Rational for Designing the Algorithm

application of this technique has had limited success further investigation of this 

technique may provide improved results. This will be discussed further in the 

conclusion section.

This chapter aimed to develop an automatic segmentation algorithm for 

application to pre and post-contrast data sets where realignment and MIP 

visualisation o f the resulting subtraction data was required. The algorithm was 

designed taking into account the findings of the previous chapters in this study.

I

Chapters 2 and 3 discovered that realignment was required when the pre and 

post-contrast data were to be subtracted, even when the patient had not been removed 

fi'om the magnet between scans. Only by accurately realigning the data sets could 

inter-scan motion artefacts be excluded from the final results. Misalignment between 

the pre and post-contrast data would be especially problematic if  the resulting data 

sets were to be used for quantification purposes such as those described in chapter 3 

Chapters 4 and 5 investigated segmentation accuracy on phantom data, 

relating this to realignment accuracy. The results suggested that it was most 

important to exclude contrast-enhanced data in the post-contrast data use for 

realignment purposes. The results also suggested that very accurate segmentation of
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the brain parenchyma was not essential for good quality realignment of the pre and 

post-contrast data. It was suggested that inter-scan motion could be satisfactorily 

corrected when segmentation accuracy was of lower quality. However, these 

conclusions were based on a patient based phantom data set, therefore further 

investigation was required if firm conclusions in segmentation accuracy were to be 

applied to real patient data sets.

Chapter 6 applied the same procedures to two patient data sets. The data sets 

were chosen to represent a normal and abnormal data set. The first patient’s data 

contained normal contrast-enhanced anatomy and represented an ideal data set for 

segmentation and realignment purposes. The second patient’s data contained a large 

enhancing, space occupying lesion, which would test the effects of segmentation 

accuracy on a data set with completely different contrast-enhancing properties. More 

significantly the data in this chapter contained real noise differences between the pre 

and post-contrast data.

It was found that noise did introduce a significant effect on realignment with
.

respect to segmentation accuracy. However, it would appear to be very difficult to 

model the effects that noise has on the realignment accuracy due to the random 

nature of the effects that the noise introduces. Therefore, this chapter reached similar 

conclusions to chapter 5 with respect to the requirements for segmentation accuracy. 

It concluded that a significant amount of over-segmentation was acceptable when 

realigning the type of pre and post-contrast data described in this thesis.

Based on the principles investigated in this thesis an algorithm was devised 

using a morphological approach.



8.4.2 Algorithm Conclusions -  Brain Segmentation

It was reported in section 8.3 that the algorithm had a limited amount of 

success in both producing the segmentation required for realignment and for 

producing the mask for the final visualisation of the subtraction data using a MIP 

algorithm. However, despite the limited success some firm conclusions can be drawn 

with regards to this technique and to techniques that could be subsequently derived 

from it.

The brain segmentation algorithm failed in two specific parts of the protocol. 

Two data sets failed to reach the required segmentation accuracy due to the 

requirement of at least one further conditional dilate. In both cases this additional 

step would have produced acceptable segmentation accuracy, with respect to the 

manual segmentations applied in chapter 2. This situation could simply be rectified 

by applying one further erode to all of the data set.

The initial decision to apply two additional dilations when compared to the 

number of erosions was based on previously published experience (Stokking 1998) 

where one extra dilation was used, and the knowledge that the histogram thresholds 

were stringently set to exclude contrast-enhanced voxels suggesting one further 

dilation would be required. In testing this appeared to produce satisfactory results. It 

was also found that if three additional dilations were applied to all of the data sets 

that on some occasions non-enhancing extra-cranial tissue would be included in the 

segmented volume. Although the effects o f this non-enhancing tissue inclusion on 

realignment accuracy were not explicitly tested in this thesis, it is expected that 

inclusion of such tissue is undesirable. Therefore, it would appear that in some cases
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two dilations would be optimal and in some cases three would be required. It may be 

possible to include a test within the algorithm to determine the number of dilations 

required.

The second area the algorithm failed in was the threshold determination from 

the data histograms. As described in section 8.3 this was due to poor determination 

of the maximum threshold and was a direct result of the methods used to determine 

it. In both cases the threshold was set too low and therefore, a large quantity of white 

matter was excluded from the threshold mask.

The failure of the threshold determination for certain data sets suggests that 

this part of the algorithm should be changed to take account o f these findings. It is 

likely that a totally different method of determining the thresholds is required. For 

example the Gaussian distributions of voxel values associated with the different 

tissue types could be modelled using techniques similar to Lemieux (Lemieux et al 

2003 and Shan et al 2002). However, although this technique was applied to a patient 

data set (epilepsy patients by Lemieux) it remains uncertain if the technique would 

work with the diverse morphology and resulting variable histograms found in 

contrast-enhanced data sets. However, future work to improve the algorithm should 

include a detailed investigation of these techniques.

Despite the failings of the algorithm to segment the brain tissue to the 

required accuracy for all the patients in this study, it should be remembered that the 

data used here was a true representation of the wide variety in terms of pathology, 

imaged in a clinical scanning environment. Additionally, as was previously 

described, the scanner used in this study has now been superseded by scanners that 

have superior signal to noise characteristics. Therefore, it is likely that on newer 

scanners that this algorithm, or a version of it optimised for that particular scanner.
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would have a significantly higher success rate in accurately segmenting the brain 

structures. Therefore, future work should be conducted to test this hypothesis.

It is also possible that the algorithm could be altered to provide a semi-

i l

automatic method of segmentation that would not suffer from the problems 

highlighted here. For example, if  the operator was given control of the thresholding it 

is likely that this would improve the overall segmentation success rate. Control over 

the number o f final conditional dilates could also be operator controlled ensuring that 

sufficient brain is available for realignment purposes. Allowing operator intervention 

at this stage would introduce variability in the segmentation due to observer bias and 

error, however, for realignment purposes small variations in histogram definition are 

likely to result in acceptable variations in segmentation accuracy in the hands of an 

experienced operator.

The requirement for experienced operator intervention is contrary to the aims 

of this study. The aim was to hilly automate the procedure and exclude the 

requirement for experienced operator time. Changing the algorithm to become semi­

automated is acceptable however, due to the still considerable time saving afforded 

by removing full manual segmentation. It is expected that thresholding would
■

involve only minutes of the operator’s time. This time requirement would still be
'

significantly less than the hours typically required for manual segmentation.

With computing power increasing all the time it is likely that such semi-

.automated segmentation sohware could be designed to be fully interactive. For 

example it should be possible to instantly see the effects of varying the histogram 

thresholds on a visualisation o f the resulting brain segmentation. Therefore, future 

work should also include the investigation of such a semi-automated software 

package for segmentation of the brain in post-contrast data.

248

 .;.ii



249

8.4.3 Algorithm Conclusions -  Visualistion Mask

The production of the visualisation mask was also of limited success.

- : SHowever, this is a result of the number o f dilations used at this stage. Part of the aim 

of this study was to produce a visualisation mask that would contain the relevant data 

required for the MIP visualisation, whilst including a minimal amount of unwanted 

data. It was especially important to remove contrast-enhancing structures that were 

not of clinical value. To limit the inclusion of unwanted data the segmented brain 

mask was conditionally dilated using a mask derived from the CSF data. This was 

used to ensure that structures beyond the CSF were not included in the visualisation 

mask.

Using this mask, however, it was found that the overall signal to noise would

.still decrease with increasing use of dilations at this stage. Therefore, in this instance 

the dilations were limited to 12, although as was discussed in section 8.3 for some 

data sets some surface vessels were not fully included within this dilated mask. Also 

despite limiting the number of dilations, signal to noise was still significantly 

reduced.

It was possible to eliminate the poor inclusion of vessels by increasing the 

number of dilations. For example figure 8.4 shows the automatically produced 

subtraction data using a MIP where 8.4(a) is the result produced with the default 12 

dilations and 8.4(b) is the equivalent result using 20 dilations (a large part of the CSF 

mask)



Figure 8.4: A comparison o f  the default venograms produced using 12 dilations (a) and the 
automatically produced venograms produced using 20 dilations (b) for patient 11.

The long white arrows indicate where a vessel was correctly visualised in the 20 dilations data but was 
partially excluded from the 12 dilation data. There is, however a further decrease in signal to noise

with the use o f  20 dilations.

Assuming that all of the venous vessels are contained within the CSF (which 

from the experience of this study was found to be the case) then with the correct 

number of dilations it should be possible to ensure that no cerebral venous vessels
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are excluded from the final visualistion. However, by applying this to every data set 

might result in poorer than necessary signal to noise in a large number of cases.

By adopting a similar approach to that described in section 8.4.2 it may be 

possible to compromise if this section of the algorithm was modified to become 

semi-automatic. Here the user controlled variable would be the number of 

conditional dilates required to produce the visualistion mask. Therefore, where 

possible the number of dilations could be kept minimal resulting in improved signal 

to noise in the visualisation.

The main disadvantage in using a semi-automated technique is the 

requirement for user intervention as discussed in section 8.4.3. It is possible that an 

inexperienced operator would define a  number of dilations that would exclude 

vessels of interest without the operator noticing the exclusion. This could be 

countered, however, by starting the intervention with all of the data from within the 

CSF and allowing the number of dilations into the CSF to be reduced. The loss of an 

important vessel would be more obvious by applying the technique in this way.
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Chapter 9 

Final Conclusions



The overall aim o f this thesis was to investigate some of the methods used in 

contrast MR imaging. Its specific aim was to investigate methods used for the 

comparison of 3D pre and post-contrast data collected within a single imaging 

session which can be used for determining tumour progression or visualisation of the 

cerebral venous system. It was found in chapter 2 that realignment of the pre and 

post-contrast data was required when using the technique for venous visualisation. 

Chapter 3 went on to demonstrate that realignment is also a requirement when this 

technique is used for tumour volume measurement. Failure to correct for intra-scan 

patient motion would result in incorrect tumour volume measurement.

To ensure that the realignment was accurate in these data sets, brain 

segmentation is required. Chapters 4, 5 and 6 investigated the effects o f segmentation 

accuracy on the realignment of pre and post-contrast data. These chapters concluded 

that very accurate segmentation was not an absolute requirement for accurate 

realigmnent o f these data sets. However, care was required to ensure that contrast 

enhanced data was not included in volumes used for the purposes of realignment.

The results of chapters 4-6 were important considering the likely data that 

would require segmentation in clinical situations. Clinically acquired data 

morphology can vary to a large extent due to enhancing pathology, reducing the 

likelihood of designing an automatic algorithm that could accurately segment all the 

data sets it was provided with. Therefore, chapter 7 set out to design an algorithm 

that could produce adequate segmentations of the brain from these data sets allowing 

accmate realignment resulting in good quality subtraction data sets.

Despite using morphology which is well suited to segmenting variable data 

sets, chapter 8 discovered that although the algorithm worked well for some data
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sets, others were poorly segmented and visualistion could be compromised by 

exclusion of data. However, the data examined were of the variable nature expected 

to be encountered in the clinical setting, therefore, as a first attempt the results were 

promising. Chapter 8 suggested that modifications to the technique could provide 

significant improvements suggesting that future follow up work is worthwhile.

For simplicity this study investigated registration and the effects of 

segmentation on registration using only one registration algorithm. It was chosen due 

to its capability o f registering to sub-voxel accuracy. However, there aie a number of 

other registration techniques available that are likely to be of comparable accuracy. It 

was not an aim of this thesis to compare different registration techniques. However, 

it is likely that the general conclusions of this thesis will apply to these registration 

algorithms, although, different algorithms are likely to have different sensitivities to 

segmentation accuracy. As yet there has been no study on the effects of segmentation 

accuracy on different algorithms, therefore, this could be investigated in future work.

With the trend in MR imaging for resolving smaller and smaller structures, 

single-session inter-scan motion correction will become an increasing requirement 

for any protocol that requires inter-scan comparisons or calculations. This work 

provides a template for assessing the efficacy of these protocols.
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Appendix 1 

Binary Morphological Operators



s

A l.l  General Definitions

The morphological operators can he described using mathematical sets, where the 

following definitions apply:

A is the

A u B is the

A n B is the

A1.2 Dilation

It is possible to define dilation as

= I J a ,  (Al.l)
( eA

:

1
A

Here we take copies of B and translate them by movement vectors defined by each 

voxel in A. This can be interpreted as putting a copy of B at each voxel in A. 

Therefore, if we take the union all of the B copies with A we get .T 0  R. In this way, 

dilation works as a convolution, where the B  kernel slides to each position in the 

image where it is applied (union). Dilation enlarges a volume and removes holes and 

indentations that are smaller than or equal to the applied kernel.

t
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A1.3 Erosion

Erosion can be defined as

t s B

i

Here we take copies of A and translate them by movement vectors defined by each 

voxel in B, however, this time the translation is in the opposite direction and intersect 

the two copies. The intersect o f B  is applied at each voxel in A.

Erosion diminishes a volume and removes snb-volnmes that cannot fill out the 

structuring element.

I
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Appendix 2

Initial Venogram Protocol from Analyze Study
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1. Load postcont data

2. Produce histogram of postcont data

3. Do analyze equivalent inhomogeneity correction on data with minimum 

threshold set to the minimum on the histogram data

4. Deteimine greyscale value of minimum on histogram of corrected data

5. Determine greyscale value of maximum on histogram of corrected data

6. Set threshold levels on corrected data to 1.5*min to max+min

7. If  the number of pixels at the higher tlireshold is greater than the number 

of pixels at min then increase higher threshold until reverse is true

8. Threshold corrected data and save binary map (thres bin) and corrected data 

(postcontcon')

9. Erode binary map once and then low pass filter using kernal (3x3x3)

10. Run a connect algorithm on the data to display the two largest structures

11. (a) Test the two structures for size and relative size to each other, to check

that segmentation will work. If it will not work stop here.

(b) If largest structure is very large and the smallest very small a further 

erode is require.

(c) Go back to data produced from 9 and erode 2, filter and connect.

(d) One extra dilate must be carried out at the time of conditional dilate

12. Calculate the average inferior/posterior position for the two sets of data.

13. The more superior set of data in retained and the other is deleted

14. Conditionally dilate the data using the threshold data from 8 three times 

(four' if  extra erode was used in 11)

15. Multiply resulting binary with postcont data to produce postcont fA
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16. Threshold corrected data from 3 from voxel value 1 to twice the minimum

calculated in 4.

17. This data is complimented and then filled and then multiplied with the data 

from 16 to produce the CSF mask.

18. Conditionally dilate the binary data from 14 using csf mask as the condition 

and fill.

19. Connect this data to keep the largest object' i.e. removing noise

20. Multiply this data with postcont and precontrsl and subtract the results

21. Resultant data should be saved and can be viewed using Analyze as a maximum 

intensity projection (MIP).



Appendix 3 

IDL Automatic Venography Program



print,'Please enter the name of the post contrast file 
filename_post = dialog_pickfile{f11 
the name of the post contrast file'

A3.1 Main Program

pro auto_veno

; This section finds out the name and location of the files and does 
; some data checks

printPlease enter the name of the pre contrast file' 
filename_pre=dialog_pickfile(filter='*.img',title-'Please enter the 
name of the pre contrast file')

; Use unix command 'readspacing’ to determine image dimensions and 
; voxel sizes for pre data

name_len = strlen(filename_pre) 
short_len = name_len-4
filename__pre_short = strmid (filename__pre, 0, short_len) 
spawn_command = 'readspacing ' + filename_pre_short 
spawn, spawn_command, header__inf o 
sizematx_pre=float(header_info(0)) 
sizematy_pre=float(header_info{1)) 
slicemat_pre=float(header_info(2)) 
scalex_pre=float(header_info(3)) 
scaley_pre=float(header_info(4)) 
scalez pre-float(header info(5))

s
filename post = dialog pickfile{f i l t e r = i m g ',title='Please enter

; Use unix command 'readspacing' to determine image dimensions and 
; voxel sizes for 
; post data

name_len = strlen(filename_post) 
short_len = name_len~4
filename_post_short = strmid(filename_post,0,short_len) 
spawn_command = 'readspacing ' + filename_post_short 
spawn, spawn__command, header__info 
sizematx_post=float(header_info(0)} 
sizematy_post=float(header_info(1)) 
slicemat_post=float(header_info(2)) 
scalex__post=float (header^info (3) ) 
scaley post=float(header_info(4))
scalez_post=float(header_info(5))

; Compare image attributes for pre and post. Should be the same

if (sizematx_pre NE sizematx_post) OR (sizematy_pre NE 
sizematy_post) OR {slicemat__pre NE slicemat__post) then begin 

print, 'The matrix sizes do not match' 
stop 

endif
if (scalex_pre NE scalex_post) OR {scaley_pre NE scaley_post) OR 
(scalez__pre NE scalez_post) then begin
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print, 'The voxel dimensions do match' 
stop

endif

Select name for final data to be saved as

print,'Please enter the name of the output final file' 
filename_out = dialog_pickfile{f i l t e r = i m g ',title='Please enter 
the name of the output final file')

; Open post contrast file and set variable postcont_data to data 

openr,lun post,filename_post,/get_lun

; Determine file attributes ie what is the file size and thus the 
; bytes per pixel then initiate variable
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poststatus=fstat(lun_post) 
postbytes=
poststatus.size/(sizematx_post*sizematy_post*slicemat_post) 
if (postbytes eq 1) then begin 

postcont_data = 
bytarr(sizematx_post,sizematy_post,slicemat_post)

filtpost=bytarr(sizematx_post,sizematy post,slicemat__post)
endif
if (postbytes eq 2) then begin 

postcont data = 
intarr(sizematx_post,sizematy__post,sliceraat_post)

filtpost=intarr(sizematxpost,sizematy_post,slicemat_post)
endif
readu,lun_post,postcont_data 
free_lun, lun__post

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; histogram and f i l t e r;; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

This section produces a histogram of the post contrast data and
finds the minimum value below the gray and white matter peak.

; This section tests to find maximum value position so that range to
; find minimum can be determined

postcont_max_min,postcontdata,temp_max,post__minimum

print,post_minimum

Now filter post contrast data using post_minimum as the minimum 
threshold for the filter. This filter is a INHOMOGENEITY FILTER 
based on the one used by analyze i

; First threshold the data to only include pixels above the variable :l
; minhisto

:



HISTOGRAM OF FILTERED DATA TO SET THRESHOLDS;

if (histo_filt[filt_min] It histo_filt[threshjmax]) then begin 
true = 0
while(true EQ 0) do begin

thresh_max== thresh_max+l
if (histo__filt [filt_iuin] gt histo_filt [thresh_max] ) then

break
endwhile

endif
print, thresh_min,thresh_max

;;THRESHOLD THE FILTERED DATA WITH THE NEW THRESHOLDS
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; Now filter threshpost using filter of size 65 

; calculate global mean! I ! ! ! I ADD THIS SECTION! !!!!!!

global__thresh = postcont_data ge post_minimum 
wh_global = where(globaI_thresh,ont) 
global_mean=mean{postcont_data[wh_global])

for filt_loop=0,slicemat_post-I do begin 
print,filt_loop 
l=postcont_data[*,*,filt_loop] 
m = 1 ge post_minimum 
1 =

l*global_mean*(smooth(float(m),65,/edge)/ (smooth(l*m,65,/edge)+1.e- 
30) )

filtpost[*,*,filt_loop]=1
endfor
filtzero = filtpost LE 0 
whzero = where(filtzero,ont) 
filtpost[whzero]=postcont__data[whzero]

This section takes the now filtered data and using histogram
decides on the thresholds for the segmentation section M

postcont_max__min,filtpost,filt_max,filt_min,histo_filt

thresh__min = ceil(float(filt_min)*0.5)+ filt_min 
thresh_max = filt_max+filt_rain 
;histo_filt_size=size(histo_filt)

Check that no. of pixels in higher threshold is less than the
number of pixels in the lower threshold. This improves b
segmentation.

3

i

This section takes the calculated thresholds and applies them to 
the filtered data producing binary thresholded data. This data is 
then segmented using morphology. This data is also used as the 
conditional mask for the conditional dilations within the

:



; segmentation section

binary_thresh_map = (filtpost ge thresh_min) AND (filtpost le 
thresh max)

: MORPHOLOGY SECTION;

This section contains the segmentation morphology routines. This 
includes erode, low pass filter conditional dilate and connect. 
The aim is to produce a separated brain for use in MATCH

; First erode the binary map once 
erode_kernal=replicate(1,3,3,3)
eroded_seg = erode(binary_thresh_map,erode__kernal)

Now need to do low pass filter on data. First do convoi and then 
threshold this. If all pixels are I’s a pixel would be given a 
value of 27, Therefore set threshold to slightly above half this 
value, i.e. 15 to low pass.

eroded_seg_terap = convoi(eroded_seg,erode_kernal,/edge_truncate] 
eroded seg = eroded seg_temp gt 15

Now use label_region command to do connections. Need to use 
histogram to determine the two largest connected regions

connected_seg = label_region(eroded_seg) 
histo_connected = histogram(connected_seg) 
histo_Gonnected[0]=0
large__blob_no = max (histo__connected, large_blob_level ) 
histo_connected[large__blob_level]=0
small_blob_no = max(histo_connected,small_blob_level) 
large_blob= connected_seg EQ large_blob_level 
large_blob_temp = where(large_blob,large_blob_pixels) 
large_blob_pixels=float(large_blob_pixels) 
small_blob= connected_seg EQ smalI_blob_level 
small_blob__temp = where(small_blob,small_blob_pixels) 
small blob pixels=float(small_blob_pixeIs)

Now check that regions are of the correct size and ration of 
sizes. This checks that the segmentation has occurred correctly. 
If one set of data has a small amount of pixels say less than 
10000 and small_blob/large_blob is less than 15% and ;
large blob is less than 500000 pixels then the data is too noisy 
and cannot be segmented. If small__blob is less than 10000 and 
small__blob/large_blob is less than 5% and large_blob is greater 
than 300000 pixels then a further erode is required. ;
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blob_ratio = small_blob_pixels/large_blob_pixels 
print,blob_ratio 
cond_dilate_number=3 
if (blob_ratio It 0.10) then begin

if (large_blob_no gt 500000) then begin
printConducting extra erode on data' 
cond_dilate_number=4
eroded seg = erode(eroded_seg,erode_kernal) 
connected_seg = label_region(eroded_seg) 
histo_connected = histogram(connected__seg) 
histo_connected[0]=0
large_blob_no = max(histo_connected,large_blob_level) 
histo_connected[large_blob_level]=0
small_b1obno = max(histo_connected,small_blob_level) 
large_blob= connected__seg EQ large_blob_level 
small__blob= connected__seg EQ small_blob_level 

endif else begin
print,'The data is too noisy for segmentation!' 
stop 

endelse
endif

; Now need to test the average inferior/superior positions of the 
; two blobs. The more superior blob will be the brain, with the 
; inferior blob being extracranial tissue.

Iarge_average=0 
small__average=0
for slicenum=0, slicemat__post~l do begin 

large__wh =
fix((where(large_blob[*,*,slicenum],large_cnt))/sizematx_post) 

small__wh =
fix((where(smali_blob[*,*,slicenum],small_cnt))/sizematx post) 

if (total (large^wh) NE 0) then large__average =
(total(large_wh))/large_cnt + large__average

if (total(small_wh) NE 0) then small_average =
(total(small_wh))/small_cnt + small_average 
endfor

; The expression below is less than because data loads in upside 
; down!!

if (large_average It small_average) then begin 
brain_erode__binary = large_blob 

endif else begin
brain___erode_binary = small_blob 

endelse

; The data must now be conditionally dilated 3 times if only one 
; erode was done and 4 times if two were done. The conditional mask 
; used here is binary_thresh_map

final match=brain_erode_binary i
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This section now produces the venogram mask using the filtered 
postcont data 'filtpost'. It uses morphology to produce the mask
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s ; ; ;

for cond_dilate = 1,cond_dilate_number do begin
final__match = dilate(final_raatch,erode_kernal) 
final_match = final_match*binary_thresh_map

endfor

postcont_fA=final_match * postcont data

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; P R O D U C E  v e n o g r a m  m a s k ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

vein_thresh = filt_min*2
vein_thresh_data=filtpost ge vein_thresh 
csf___thresh_data = filtpost It vein_thresh

This section fills the thresholded data so that after 
multiplication with the csf__thresh data a mask of the csf will be 
produced. This section uses the procedure AUTO_FILL

filled_data = bytarr(sizematx_post,sizematy_post,slicemat_post) 
auto_fill,vein_thresh_data,filled__head,sizematx_post,sizematy_post,s 
licemat_post

csf_mask = filled_head*csf__thresh__data

; Now use LABEL__REGION to remove unconnected data leaving only 
; required csf_mask

csf_mask = label^region(csf_mask,/ulong) 
histo_csf=histogram(csf_mask) 
histo_csf[0]=0

csf_temp=max(histo_csf,csf_blob_value) 

csf mask=csf mask EQ csf blob value

INow need to conditionally dilate the segmented data 10 times using 
the Gsf__mask as the condition. This data is then filled and this 
is the final mask data that is used to produce the final 
subtraction data

for cond dilate = 1,12 do begin
final_match = dilate(final_match,erode_kernal ; 
final_match = final_match*csf__mask

endfor



; Filling section

final_mask=bytarr(sizematx_post,sizematy_post,slicemat_post) 
auto_fill,final_match,filled_mask,sizematx_post,sizematy_post,slicein 
at_post

; Do a final connect in sagittal 2D slices to get rid of noise around 
; brain and vessels

final__mask==filled_mask 
histo_final=histogram(csf_mask) 
histo_final[0]=0

final_temp=max(histo_final, final_value) 

final mask=final mask EQ final value

mask__out=fix (final_mask) 
openw,lun_out,'mask.img',/get_lun 
writeu,lun out,mask_out 
free lun,lun out

RUNNING MATCH SOFTWARE,

This section now saves the segmented data, postcont_fA and runs 
the MATCH software. It works out the file names that need to be 
used. The program waits for MATCH to finish.

postcont_fA_name=filename_post_short +"_fA.img" 
openw,lun_fA,postcont_fA_name,/get_lun 
writeu,lun_fA,postcont_fA 
free__lun, lun_fA

header_orig=filename_post_short +".hdr" 
header_copy==filename_post_short +"_fA.hdr" 
copycommand="cp " +header_orig + " " +header_copy 
spawn,copycommand

matchcommand="match " +filename_post +" " +filename_pre 
print
print,"RUNNING THE MATCH SOFTWARE" 
print,'This may take some time!!'

print,matchcommand 
spawn,matchcommand

DELETION OF UNECESSARY FILES FROM MATCH;

This section saves on disk space by deleting unecessary files 
produced by the match program
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filel=filename_post_short +"_2l.*" 
file2=filename_post_short +"t. 
file3==filename__pre_short +"rslt.

spawnf"/bin/rm " + filel + " " + file2 + " " + fileS

; Now need to multiply mask with postcont and precontrsl data and do 
; subtraction. First need to load the precontrsl data

filename_prersl=filename_pre_short + "rsl.img" 
openr,lun_pre,filename_prersl,/get_lun

; Determine file attributes ie what is the file size and thus the 
; bytes per pixel then initiate variable

prestatus=fstat(lun_pre)
prebytes= prestatus.size/(sizematx_pre*sizematy_pre*slicemat_pre) 
if (prebytes eg 1) then begin

precont_data == bytarr (sizematx_pre, sizematy__pre, slicemat_pre)
endif
if (prebytes eq 2) then begin

precont_data = intarr (sizematx__pre, sizematy__pre, slicemat_pre)
endif
readu,lun_pre,precont_data 
free_lun,lun_pre

;Now that data is loaded multiply mask with pre and post data

postcont_masked = postcont_data*final_mask 
precont_masked = precont_data*final_mask

final=postcont masked - precont_masked

; The data should now be saved to disk to allow it to be viewed 
; using a MIP algorithm

openw,lun_out,filename_out,/get_lun 
writeu,lun_out,final 
free lun,lun out

end
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A3.2 Function 1: postcont__max_min

pro postcont_max__niin, postcont_data,max_val,post_minimum,histo_post

histo__post = histogram (postcont_data,niin=0) 
histo_post_max = histo_post 
hist o_po s t_min=hi s to_po st 
histo_size = size(histo_post) 
first=l 
test = 0 
while (test NE 1) do begin

maxim = max (histo_post__max,max__val) 
if (max_val GT 5) AND (first EQ 1) then begin 

print,' Problem with histogram data' 
stop

endif
if (first EQ 1) then begin

if (max_val GT 0) then begin
histo post_max[0:max_val-l]=0 
histo_post_min[0:max_val-l]=maxim 

endif 
first =0 

endif else begin
submax = max_val-old_max
if (submax NE 1) AND (max_val GT 10) then begin 

hist o_po s t_max[o1d_max+1]=0 
max_temp = max(histo_post_max,max_val) 
min_temp =

min(histo_post_min[0:max_val],post_minimum) 
break

endif 
endelse

histo_post_max[max_val]=0 
o 1 d_jnax=ma x_va l 

endwhile

print, post__minimum,max_val 

end



A3.3 Function 2: auto fill

pro auto_fill,data_in,filled,sizematx,sizematy,slicemat

printStarting Analyze equivalent fill'

filled = bytarr(sizematx,sizematy,slicemat) 
print,'Stage 1' 
y =bytarr(sizematx,sizematy) 
for slicez = 0,slicemat~l do begin

y (*,*)=!

; The following lines are added to ensure that search2d works 
; even when the head extends beyond the imaging volume. If 
; this occurs unwanted areas can be filled. By setting the 
; edges to zero this is avoided

X = data in(*,*,slicez) 
x ( 0 , * ) = 0
X (*,0 ) =0
X (sizematx-1,*)=0 
x ( * , sizematy-1)=0

; Search assumes that point 0,0 in each image has value of 
; zero

region = search2d(x,0,0,0,0) 
y (region)=0 
filled(*,*,slicez)=y

endfor

print,'Stage 2' 
y = bytarr(sizematy,slicemat) 
for pixelx = 0,sizematx-l do begin 

y(* ,*)=l
X = reform(filled(pixelx,*,*),sizematy,slicemat) 
x ( 0 , * ) = 0  
x ( * , 0 ) = 0
X(sizematy-1,*)=0 
X (*,slicemat-1)=0 
region=search2d(x,0,0,0,0) 
y (region)=0
filled(pixelx,*,*)=y

endfor

x (*,slicemat-1)=0 
region=search2d(x 
y (region)=0 
filled(*, pixely,*)=y

endfor
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print,'Stage 3' 
y = bytarr(sizematx,slicemat) 
for pixely = 0,sizematy-1 do begin 

y (*, *)=1
X = reform(filled(*,pixely,*),sizematx,slicemat) 
x(0,*)=0 
x ( * , 0 ) = 0  
x (sizematx-1,*)=0

region=search2d(x,0,0,0,0) 
y (region)=0

I
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Print,'Final stage'
y =bytarr(sizematx,sizematy)
for slicez = 0,slicemat-1 do begin

y (*,*)=!
X = filled{*,*,slicez) 
x ( 0 , * ) = 0
X (*, 0)=0
X (sizematx-1, *) =0
X (*,sizematy-1)=0
region = search2d(x,0,0,0,0)
y (region)=0
filled( * , slicez)=y

endfor
end

:'V
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