VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Development and Assessment of New Post-
Processing Methodologies in 3D Contrast
Enhanced MRI

David Brennan BSc, MSc
This thesis is submitted for the degree of PhD to
Glasgow University

Faculty of Medicine

March 2004



ProQuest Numler: 10320660

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10390660

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346



Acknowledgements

Out of all the pages in this PhD this was the hardest to write. My words will never do
justice to the help and support I have received over the years. However, the risk of
failure has never stopped me trying! I would like to thank all the [ollowing pcople that
I have known and have helped me during this thesis.

Dr Jim Patterson and Prof Dave Wyper [or their guidance and support and general
cajoling. Anmna, Miffy and Jen for putting up with my girumpiness and general
despondency about everything ‘PhD’, and for reminding me every so often that I can
do it. Lveryone in clinical physics for making my work an enjoyablc and fon place.

An extra big thanks go to Dr Barrie Condon for supetrvising me. Hopefully, 1 didn’t
stress you too much and 1 look forward to a pint (or three) at the end of this!

Prof Donald Hadley and Dr Joe Bhattacharya for their expert help in objectively
assessing the venography data in chapter 2 (section 2.5.1.3) and thanks also to Donald
for letting mc print this thesis on his nice new printer! Also a big thank-you to
everyone in Neuroradiology, especially the radiographers who were very
accommodating, even when I barged in the way of their work! Thank you also to the
radiographers for scanning the patients for this thesis (chapters 2, 3, 4, 5, 6 & 8).

For the supply of free software, Martin Connell (3dMRI and conv_analyze) and Prof J
Hajnal and his group (MATCH).

I would also like to thank my many friends who have kept me sane during this
marathon. Jerome and Lawrence (the Irish contingent), Chris Jarvis, Jens, Natalie and
wee Marc (and the one that’s on the way!). Rhona and Nick, Paul and Tanya, Big
Greorge and all at Glasgow University Judo Club. You all kept me laughing cven
when you injured me!!?!? Thanks also to Caroline and Ruth for keeping Philippa
amused when I was working!

My mum and Jacqueline. Without your help, support and guidance I would never be
anywhere near where I am today. Hopefully my dad would have been proud.

Also thanks to Bill for looking after my mum and being a good family friend.

And finally Philippa. Ever since you've known me you’ve had to deal with the
baggage that a PhD brings with it. Your days as taxi driver are at an end (well
almost!). You’ve always had faith in me and kept me smiling when I was feeling low.

I'm looking forward to secing you in the evening and at weekends (I hope you are
too!). Thank-youl!!

i



Contents

List of Figures, Tables and Graphs vii
Publications and Presentations xiii
Abbreviations xiiii
Summary 1
1 Introduction 5
1.1 Historical Introduction 6
1.1.1 MRI 6
1.1.2  Contrast Imaging 8
1.2 Theory of Contrast Enhancement 10
1.2.1 Why do we need contrast agents? 10
1.2.2 Signal in MRI — Macroscopic Magnetisation in a B field 11
1.2.3 Signal in MRI — Macroscopic Magnetisation in Presence
of a B, field 16
1.2.4 Signal in MRI - Relaxation Processes 18
1.2.5 Signal in MRI - Bloch Equations 20
1.2.6 Signal in MRI — Signal development 22
1.2.7 Signal in MRI - Pulse Sequences (2D) 22
1.2.8 3D Pulse Sequences 26
1.3 Chapter Conclusions 27
2 Improvement of Current Subtraction Venography Using Registration 29
2.1 Introduction 30
2.1.1 Overview 30
2.1.2 Historical Context 31
2.2 Currently Applied MRA Methods 33
2.2.1 The Time of Flight '{'echnicue 33
2.2.2 The Phase Contrast Technigue 36
2.2.3 Other MR Angiography Techniques 39
2.3 3D MP RAGE Pulse Sequence 40
24 MP RAGE Subtraction Venography 44
2.4.1 Introduction 44
2.4.2 MATCH Registration Software 46
2.4.3 Study Aim of This Chapter 48
2.5 Comparison of Registered and Non-Registered Subtraction
Venograms 49
2.5.1 Methods 49
2.5.1.1 Imaging Protocol 49
2,5.1.2 Tmage Processing Procedure 51

2.5.1.3 Quantitative and Qualitative Assessment Protocol
2.5.2 Results
2.5.2.1 General Results

54
55
55

1ii



L#>]

2.5.2.2 Quantitative Results
2.5.2.3 Qualitative Results
2.5.3 Discussion

Tumour Velume Measurements in the Clinical Study of a Modified
Herpes Simplex Virus in the Treatment of Glioma: The Effect of
Registration on Volume Measurement
3.1 Introduction
3.1.1 Overview
3.1.2 Contrast-Enhanced Tumour Imaging
3.1.3 @Glicblastoma Treatment Measures
3.1.4 Measurement of Scanner Drift
3.2 Methods
3.2.1 Testing the Effects of Realighment on Tumour
Yolume Measurcments
3.2.2 Determining the CNR Drift
3.3 Results
3.3.1 'Tumour Volume Mcasurements
3.3.2 CNR Variations
3.4 Discussion
3.5 Conclusions

Segmentation Accuracy —Introduction Chapter
4.1 Introduction
4,1.1 Overview
4.1.2 Background
4.1.3 Segmentation
4.1.3.1 Introduction
4.1.3.2 Manual Segmentation
4.1.3.3 Semi-Automatic Segmentation
4.1.3.4 Automatic Segmentation
4.1.3.5 Segmenting Post-Contrast Data
4.2 Construction of Pre and Post-Contrast Phantom
42,1 Methods
4.2.2 Results
4.2.3 Discussion
4.2.3.1 Discussion of Potential Errors and Limitations
of the Phantom Data Set
4.3 Conclusions

Realignment of Phantom Pre and Post Contrast Data: The Effect of
Segmentation Accuracy on Realignment
5.1 latroduciion
5.2 Methods
5.2.1 With and Without Rigid Body rotations and Translations
5.2.2 Production of the 100% Segmentation Volume
5.2.3 Production of the Variable Segmentation Velumes
5.2.4 Quantitative Asscssment of Realignment
5.2.5 Application of the Match Algorithm to Non-Transformed
Data

56
57
39

63
66
66
67
70
73
74

74
76
81
81
83
87
9

96

97

97

9%

102
102
103
104
105
106
108
108
111
114

115
119

120
121
123
123
123
126
129

135

iv




5.2.6 Application of the Match Algorithm to Transformed Data
5.3 Results

5.3.1 Non-Transformed Phantom Data Results

5.3.2 ‘I'ransformed Phantom Data Results
5.4 Discussion

5.4.1 Overview of Chapter Aims

54.2 Realignment of the Non-Transformed Data

5.4.3 Realignment of the Transformed Data

544 Overall Conclusions

Assessing the Effects of Segmentation Accuracy on Paticnt Data Sets
6.1 Introduction
6.1.1 Overview
0.1.2 Potential Diffcrences Between Patient and Phantom Data
6.2 Paiient Study Methods
6.2.1 Data Collection
6.2.2 Image Analysis
6.3 Patient Study Results
6.3.1 Patient 1
6.3.2 DPatient 2
6.4 Discussion
6.5 Segmentation Accuracy Conclusions
6.6 Implications on Designing and Automatic Segmentation Algorithm

Devclopment of Automatic Segmentation Realignment and
Subtraction Algorithm
7.1 Introduction
7.1.1 Overview
7.1.2 Rational for New Algorithm
7.2 Methods- Analyze Protocol
7.2.1 Introduction
7.2.2 Devising the Paradigm Protocol
7.2.3 Inhomogeneity Correction and Histogram Operations
7.2.4 Morphological Operations — Separating the Brain
7.2.5 Morphological Operators — Producing the Final Brain
Mask
7.2.6 Production of MIP Visualisation Mask
7.3 Description of Algorithm Code
7.4 Testing the Algorithm

Assessment of the Algorithm with 20 Patient Data Sets
8.1 Introduction
8.2 Methods
8.3 Results
8.4 Conclusions and Further Work
8.4.1 Rational for Designing the Algorithm
8.4.2 Algorithm Conclusions — Brain Segmentation
8.4.3 Algorithm Conclusions — Visualistion Mask

136
138
138
142
150
150
151
155
156

158
159
159
160
165
165
167
168
168
177
182
190
196

197
198
198
199
203
203
203
205
212

217
219
224
230

231
232
233
236
244
244
246
249



9 Final Couclusions 252

References 258
Appendix 1 — Binary Morphological Operators 271
Appendix 2 — Initial Venogram Protecol from Analyze Study 274
Appendix 3 - IDL. Automatic Yenography Program 277

Vi




List of Figures, Tables and Graphs

Figures

Figure 1.1:

Figare 1.2:

Figure 1.3:

Figure 1.4

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 1.8:

Figuare 1.9:

Figure 1.10:

Figuye 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Two pre (a & ¢} and post (b & d) contrast enhanced sagittal slices from a
3D Tl-weighted study: these slices show contrast enhancement ol'a high
grade cerebral tumour (Glioblastoma)

Orientation of the spin % nucleus (proton) in a B magnctic ficld along the
z-direction

Precession of an ensemble of protons in a magnetic field B, producing a
net magnetisation M, in the z-direction

Rotation of the RF magnetic field (8,) just as the RI? pulse is turned on
(1=0)

As a result ot the 8; component of the RF pulse the magnetisation M is
flipped towards the x'y' plane

T2 relaxation by dephasing for a sample that has cxperienced a 90° RF
pulse

Pulse sequence diagram for a simple spin echo sequence

(RF represents the RF pulses, SS represents the slice-select gradients, PE
represents the phase-encode gradients and FE represents the frequency-
encoding gradients)

Pulse sequence diagram for a simple gradient echo sequence. 8 is the flip
angle of the RF pulse and is typically less than 60°

Pulse sequence diagram for a simpte inversion recover sequence. TT is the
time from the initial 180" inversion pulse to the imaging RF pulse

Pulse sequence for a simple FLASH 3D sequence

Blood flow resulting in inflow of longitudinally saturated spins into an
imaging slice

A bipolar gradient with a positive gradient followed by a negative
gradient (positive bipolar gradient)

Pulse diagram of lhe MP RAGE sequence. The in plane loop consists of
the 180° pulse followed by an inversion time (TI), the depth encoding
loop, and magnetisation recovery time. The depth encoding loop is a
FLASH sequence

MP RAGE longitudinal magnetisation changes during the sequence.
Tissue conlrast does not remain constant during the depth encoding steps,
thus the overall contrast is the result of complex averaging over all of the
depth encoding steps

The head coil fixation system used for the data collected in this thesis.
The two pads can be moved in and locked in the tightest position the
palient can reasonably bear

Page

12

16

17

18

19

23

24

27

33

37

41

42

50

vil



Figures

Figure 2.6:

Figure 2.7:

Figurc 2.8:

Figure 2.9:

Figure 3.1:

Figure 3.2:

Figure 3.3:

An example of the regions drawn for the purposes of the final _
visualisation mask. Note that the regions extend slightty beyond the brain
and cerebral vessels

Lateral MIPs from subject 8. (a) nnmatched (b) matched. In the
unmatched MIP there are several artefacts due to miss-registration such
as unsubtracted arteries. The shape of the corpus callosum can also he
scen. The matched data has better vessel resolution and less artefacts.
Here the corpus collosum has been correctly subtracted out. ‘The arrow in
{(a) indicates an cdge mis-registration artefact

An example of the venous data overlayed onto MRI 3D cerebral data,
The cerebral data was extracted from the pre-contrast data and displayed
using Analyze (Mayo Foundation, Rochester, MN}

Inferior-superior MIP’s from patient 11. (a) unmatched {b) matched. The
long arrows show the area of thrombosis. The co-registered data
delineates the thrombosis more clearty. The shorl acrows in (a) show
arterial contamination of the unmatched data. This does not appear in the
matched data

An example of a transverse, T1-weighted, MR slice in a glioblastoma
patient following contrast injection. The enhancement pattcin is typically
ring-like (thick black arrow) suggesting active tumour surrounding a
central area mainly consisting of necrotic tissue (long white arrow).
There is often an area of edema closely asseciated with the tumour (thick
white arcow)

Example post-contrast image with a white matter, CSF and backgroutd
noise region defined

An example slice [ram a post-contrast data set. The patient was unable to
keep stifl during the scan, This reduced the contrast between the grey and
white matter making it difficult to define the grey and white matter
borders

Figure 3.4(a & b): (a) Poorly aligned pre and post-conirast dala sclg result in subtraction _

data that displays unwanted anatomical structure compared to (b)
realigned data from the same subjectThe two arrows indicate an arca
within the tumour that appeats to contrast-enhance on the unaligned data
but does not appear contrast-enhanced on the realigned data

Figure 4.1 {a-d): Both ot the 3D slices on the left (a & c} are from the pseudo pre-contrast

Figure 4.2:

Figure 4.3:

data set. The iimnages on the right (b & d) are the equivalent posi-contrast
slices from which the pseudo data set was created. The thin arrows
highlight atteries that do not increasc in signal and the thick arrows
highlight veins that do increase in signal

LBxample slices firom the subtraction data where pseudo pre-contrast data
has been subtracted from the post-contrast data. Slice (a) contains some
arlefactual enhancement from outside the head (arrow)

Example slices from lie sublraction between the real and the pseudo pre-
contrast data sets.(Black voxels are negative and white voxels are
positive) The thick arrow in (a) shows an homogeneous grey area
suggesting good subtraction (contrast-enhanced area). The thin arrows In
(b) show areas affected by pulsatile artefacts resulting from a carotid
artery. The back arrow shows a cortical cdge enbancement

Pagc

56

61

62

69

78

79

88

111

112

113

viii




Figuxcs

Figure 5.1:
Figure 5.2:

Figure 5.3:

Figure 5.4;

Figure 3.5:

Figure 5.6

Figure 5.7:

Figure 5.8:

Figure 6.1:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4

Figure 7.5:

Figure 7.6;

Figure 8.1:

24 slices from the 100% segmented post-conttast data set
An example slices from some of the segmented volumes

The refationship between the rotational and translational parameters
output by the Match algorithm and the 3D data

The ROI (red) used for the noise calculations overlaid on subtraction data
produced using the 135% segmentation volume in realignment
calculations. (Upon close inspection background subtraction noise is
visible in this subtraction)

The ROT (red) used for the signal calculations overiaid on subtraction
data produced using the 135% segmentation volume in realignment
calculations

Two slices from the subtraction of the translated and rotated phantom
pre-contrast from the post-contrast data. The misalignment results in
increased noise in the subtraction. The outline of the misafigned cortical
folds can alse be seen

Two stices showing voxel diflerences betwecn the 100% segmentation
volume and the 97% volume (Indicated by voxels on the post-contrast
dula)

Two slices showing voxel differences between the 103% segmentation
volume and the 100% volume (Indicated by voxels on the post-contrast
data)

Four example slices from patient 2°s post-contrast data. The white
arrows indicate the location of the large enhancing lesion

Four example slices from the threshold mask. The vast majority of the
brain parenchyma is included in the mask with the exception of some
white matter ( thin red arrows, corpus callosum). The mask excluded
contrast enhancement (thick red arrows)

An example of some slices showing the two largest objects selected
using the 31 connect operation, The brain (white) is the larger if the two
objects. The second object is a mixture of tissues inferior to the brain
{yellow)

Example of fifteen slices from a binary mask produced by single erode
and 3 dilates (the brain has been separated

Fifteen example slices from a CSF mask. It should be noted that the mask
contains other highlighted structures such as the sinuses. bone and the
eyes

Flow diagram of segmentation protacol determined using Analyze

A flow chart visualising the decision process used by aute_veno to
determine the number of morphological erodes required

Two examples of lateral MIPs produced automatically and compared to
the equivalenl manually produced MIPs. (a &c) are the MIPs produced
from the automaticaily produced data and (b & d} are produced from the
manuaily segmented data

Page

125
129

3¢

132

134

152

153

166

211

213

217

220

222

226

237

ix




Figures

Figure 8.2:

Figure 8.3:

Kigure 8.4:

Graphs
Graph 3.1:

Graph 3.2;

Graph 3.3

Graphs 5.1(a-f):

Graph 5.2:

Graph 5.3(a-~f).

Graphs 5.4(a-t}:

Graphs 5.5(a-c):

Page

Example slices from one of the post-contrast data sets that could not be 238
automatically segmented due to poor signal to noise

A comparison of iwo venograms for patient 11 (a) the manually produced 242
venograms, (b) the automatically produced venograms. Tho long white

arrows indicates where a vessel was correctly visualised in the manual

data but was parlially excluded from the automatic data. 1t should be

noted that the signal to noise in the automatic data is lower duc to

unnecessary lissue being included in the visualisation mask

A comparison of the default venograms produced using 12 dilations (a) 250
and the automatically produced venograms produced using 20 dilations

(b) for patient 11. The long white arrows indicate where a vessef was

co:vectly visualised in the 20 dilations data but was partially excluded

from the 12 dilation data. There is, however a finther decrease in signal

to noise with the use of 20 dilations

Comparison of CNR before and after surgery 84

Comparison of pre and post-contrast CNR values at both study time 85
points

Comparison of the CNR differences before and after surgery 86

The realignment parameters determined by the MATCI software when 139
attempting to realign the non rotated and translated data

Signal to noise changes in the modulus of the subtraction image for the 141
no movemeant data

The realigmment parameters {errors) determined by the MATCH sofiware 143
when attempting to realign the rotated and transiated data (compared to
the non-rotated and translated data)

Moved data franslation and rotation parameters subtracied from the non- 145
moved rotation and translation parameters

Relationships between segmentation/algorithm errors and the errors 146
introduced by movement of the phantom pre-contrast data sct

Graph 5.6 (a & b): The calculated overall rotation and translations are compared for the 148

Graph 5.7.

Graphs 6.1(a-f):

non-transformed and transformed data (the values for translation and
rotation relate to the errors when compared to the known rotations and
translations)

Signal to noisce changes in the modulus of the subtraction image for the 149
movement data

Rigid body rotation and franslation parameters for alignment of the 169
psendo pre-contrast data with the post-contrast data (Patient 1)

Graphs 6.2(a & b): The calculated overall rotation and translations for the patient 1 data 171

set



Graphs

Graphs 6.3(a & b): The refationship between patient [’s averall rotation and franslation
with the non-transformed phantoms rotation and transiation(The triangies
represent data from segmentation volumes >100%. The blue squares
represent data from <100% and the red square is the 100% data point)

Graphs 6.4(a & b): The rclationship between patient [°s overal! rotation and translation
with the transformed phantoms rotation and translation(The triangles
represent dala from segmentation volumes >100%. The blue squares represent
data from <100% and the red square Is the 100% data point)

Graph 6.5: Signal to noise variations with respect to the segmentation volume
applied during the registration process (Patient 1)

Graphs 6.6(a-f): Rigid body rotation and translation parameters for alignment of the
pseudo pre-contrast data with the post-contrast data (Patient 2)

Graphs 6.7(a & b): The calculated overall rotation and translations for the patient 1 data
set

Graph 6.8: Signal to noise variations with respect to the segmentation volume
applied during the registration process (Patient 2)

Graphs 6.9(a,h): Patient 1 variations from the average rotational valuc for segimentation
volumes below 100%

Graphs 6.9(c,d): Phantom (moved)} translational variations from the average rotational
value for seginentation volumes below 100%

Graphs 6.1(a-f): Relationship between patient and rotated phantom data realignment
parameters for segmentation volurnes above 100%

Graph 7.1; Example histogram for a post-contrast data set. (Siemens Magnetom MP
RAGE). The minima and maxima of interest have been labelled and the
calculated thresholds have been labelled with arrows

Graph 7.2: Comparison post-contrast histogram for a General Electric acquired 3D
volume (IR-FSPGR)
Graph 8.1: The post-contrast histogram from patient 9 and 16. Speciai ailention

should be paid to the voxel count of the first minima which is 32570 for
pattent 9 and 36738 for patient 16, In other post-contrast histograms this
is typically 25000 and below

Tables

Table 1: Spin states in a selectiow of nuclei iiportant to NMR

Table 2.1: Comparison of matched and unmatched signal to noise resulis

‘Table 2.2 : The qualitative results for matched and unmatched comparison. The
eniries [or cach observer correspond to the venogram that they deemed to
be of higher guality (M = maiched MIP, NM = unmatched MII', ND = no
noticeable difference)

Table 3.1: The imaging protocol used for the HSV ftrial. The 5 minute wait at step 7

was 10 ensure good contrast uptake in the tumour

173

174

176

178

179

181

183

184

187

207

209

240

12

57

74

Page

xi




Tahles

Table 3.2:
Table 3.3:

Table 5.1:

Table 6.1:

Table 6.2;

Table 6.3:

Table 7.1:

Table 8.1:

Table 8.2:

Tumour volume results trom aligned and non-aligned data
CNR resulis of pre and post-contrast data before and after surgery

The relative volumes (as a percentage of the 100% binary volume) of the
artificially produced over and under-segmentation masks

Imaging pratocols for study patients

Pearson correlalion cocfficients and statistical significance when
comparing segmentation votumes > 100% segmentation volume

Pearscn correlation coefficients and statistical significance when
comparing seginentation volumes =< 100% segmentation volume

Examples of similar magnetisation prepared GRE sequences from
differsnt manufacturers

Results comparing the IDL scgmentation to the lower quality manual
segmentations from chapter 2

A comparison of the manually produced venograms and the
automatically produced venograms. This table lists [he veins excluded
from the automatically praduced MiPs

Page
81
83

128

204

239

241

xit




Publications and Presentations

Chapter 2
Brennan D, Condon B, Hadley 1). ‘The application of subvoxel coregistration
in subiraction venography: a comparison with non-registered data.

Proceedings of ISMRM (Philadelphia) 1999: 2177.

Chapter 3

Brennan 12, Hadley D, Patterson J, Condon B. Comparison of MRI and
SPECT volume mcasurement following minimally invasive surgery
for a phase 1 trial ol a genetically moditied viral therapy. Proccedings

of ISMRM 2001: 1397.

Brennan D, Hadley 1), Patterson J, Condon B. Compatison of MR and
SPECT tumour volume measurement following minimally invasive

surgery. 6 British ISMRM Meeting (Liverpool) 2000,

Chapter 4
Brennan D, Condon B, Hadley D. Determining the effects of segmentation
accuracy on the registration of pre- and post-gadolinium MR images.

Proceedings of the ISMRM (Glasgow) 2002: 2479.

xiii




Abbreviations

AVM
BBB
BOLD
CNR
CSF
CT
CVT
FLASH
fMRI
FOV
GE
GRASS
Hsv
HUM
IDL

IR FSPGR
MIP
MNI
MP RAGE
MRA
MRI
MSV
NMR
PC

RF
ROI
SNR
SPECT
SPGR
TE

TI
TOF
TR

ki)

2D

Arterio-Venous Malformation

Blood Brain Barrier

Blood Oxygenation Level Dependant
Contrast to Noise Ratio

Cerbro Spinal Fluid

Computcd Tomography

Cerebral Venous Thrombosis

Fast Low-Angle Shot

Functional Magnetic Resonance Imaging
Field of View

Gradienl Echo

Gradient Acquisition in Steady State
Herpes Simplex Virus

Homomorphic Unsharp Masking
Interactive Display Language

Inversion Recovery Fast Spoiled Gradient
Maximum Intensity Projection

Montreal Neurological Institute
Magnctization Prepared Rapid Gradient Echo
Magnetic Resonance Angiography
Magnetic Resonance Imaging

MP RAGE Subtraction Venography
Nuclear Magnetic Resonance

Phase Contrast

Radio Frequency

Region of Interest

Signal to Noise Ratio

Single Photon Emission Computed Tomography
Spoiled Gradient

Echo 1ime

Inversion Time

Time of Flight

Repetition Time

Three Dimensional

Two Dimensional

Xiv




Summary

This thesis aims to investigate some of the methods currently used in contrast
MR imaging. It specifically focuses on methods that require subtraction of non-
contrast enhanced (pre) 3D imaging data sets from contrast-enhanced (post) data,
collected within a single imaging session. Current methods assume that there is little
or no intra-scan patient motion and thus do not attempt to correct for this. This thesis
aims to determine if such motion does exist and if s what mecthods are best suited to
correct it.

The thesis begins by describing some of the relevant MR physics and history
of contrast enhancement in chapter 1, and expands on this in chapter 2 by focusing
on angiographic, and conirast-enhanced iechniques. Chapter 2 continues by
investigating an MP RAGE subtraction technique for producing venograms, which
requires pre and post-contrast data subtraction. Data is collected for 20 patients and
the effects of motion correction on the resulting venograms are investigated. The use
of a realignment algorithm, MATCH, is shown to improve venous visualisation
demonstrating that intra-scan patient motion does indeed affect this type of study.

Chapter 3 investigates a different type of pre and post-contrast enhanced
study where it is used for tumour volume measurement. Examining the effects on
tumour volumes measured with and without the realignment correction provides
quantitative evidence that realighment is a requirement in this and similar types of
study.

It is a requirement of realignment algorithms in general that segmentation of
brain parenchyma is provided to enswre that the realignment is as accurate as
possible. It has previously been suggested that including structures in segmented data

that change in signal or morphology between two data sets results in realignment

P




errors. However, accurate segmentation of the brain parenchyma requires cither
manual segmeniation, which needs a skilled operator to achieve and is very time
consuming, or a computer algorithm to do the segmentation automatically or semi-
automatically. There is, however, no algorithm yet available that is designed to
segment post-confrast data sets, therefore, it is important to determine the effects of
segmentation accuracy on the accuracy of realignment of pre and post-contrast data
set.

It segmentation is indeed required it is important to determine the effects that
such inaccuracies in segmentation have on realignment. This knowledge would allow
computational techniques to be developed. Therefore, to enable the significance of
segmentation accuracy on realignment to be tested a phantom pre and post-contrast
data set is developed in chapter 4.

Chapter 5 uses this data set to test the cffects of differing segmentation
accuracies, with respect to the accurately segmented phantom data, on realignment
accuracy where the pre and post-contrast data differ by known rotations and
translations. This provides information on the effecis of contrast-enhancement on
realignment accuracy, as well as providing information on the required brain
segmentalion accuracy required to accurately realign these data sets.

Chapter 6 expands on this work by testing segmentation accuracy effects on
two real paticnt data scts. The first paticnt data set differs from the phantom daia in
terms ol its noise characteristics and the second has a space occupying lesion similar
to those regularly encountered in the clinical setting.

The results from chapters 5 and 6 suggest that all contrast-enhancement must
be removed from post-contrast data to ensure that the resulting realignment is

accurate, However, it is also found that the brain parenchyma can be over-segmented




by approximately 20% without seriously compromising realignment accuracy, This
finding has important implications for the design of segmentation algorithms to be
used with these data sets. Duc to the varying nature of the contrast-enhancement
from patient to patient, especially in the clinical setting, it is difficult to consistently
segmeni post-contrast data sets to a high degree of accuracy. Therefore, knowing that
significant over-segmentation is acceptable enables a simple yet robust method of
segmentation to be developed.

Using the information from the previous chapters, chapter 7 aims to develop
an automatic technique for segmenting, realigning and visualising venographic data
using the venography technique described in chapter 2. It uses a histogram and
morphological operations to ensure that all of the contrast-enhanced data is removed
from the data, whilst attempting to segment the brain to an acceplable accuracy.
Although this algorithm is specifically designed for venograms visualisalion, it
would require only a small umount of adjustment enabling it to be applied to the
tumour volume measurement technique described in chapter 3.

Chapter 8 tests this algorithm using the data collected in chapter 2 and
measures its performance in producing satisfactory brain segmentations, which is
required for accurate realignmeni. This would also be required for accurate
realignment in tumour volume measurement studies. Chapter 8§ also measures the
algorithms capabilities in correctly producing visualisation data sets for the purposes
of venography.

The algorithm has limiled success in both brain segmentation and venous
visnalisation, nevertheless this is cncouraging as a first attempt as the algorithm is
being applied to real patient data sets reflecting a range of pathological conditions

and not only to selected normal data sets. Chapter 8 suggests some modifications that




could be applied to the algorithm that might improve its future success. This includes

modifying it to become a semi-automated tcchoigue.




Chapter 1

Introduction




1.1 Historical Introduction

1.1.1 MRI

Magnctic resonance imaging, often referred to as MR, has a history of
development which began in 1936 when the Dutch physicist C.J. Gorter developed a
technique for measuring the nuclear magnetic moment, although he was unsuccessful
in detecting the effect. Rabi was finally successful in detecting the cffect in 1938
(Rabi et gl 1938). However, it was Bloch and Purcell who first demonstrated the
NMR techuique in 1946 with Bloch demonstrating NMR in water and Purcell
demonstrating the technique in solid paralfin (Bloch ez a/ 1946 and Purcell et al
1946). At the time these results were only of intcrest to those in the field of nuclear
physics, however the technique was soon adopted in the field of chemisiry with the
development of NMR spectroscopy (Waugh 1993).

The first suggested use of magnetic resonance in the field of medicine was by
Damadian in the carly 1970’s (Damadian 1971). He suggested that the technique of
nuclear magnetic resonance could be used (o differentiate tumour tissue from normal
tissue using an NMR tissue parameter T1. His technique could however only be used
in vitro and was not confirmed by other workers.

It was not uniil 1973, however, when Lauterbur first introduced the concept
of using magmetic ficld gradicnts to encode position-dependant imaging information,
that there was any suggestion of using the NMR technique for producing spatial
NMR information (Lauterbur 1973). In this short paper Lauterbur described a
technique using weak gradient fields in conjunction with a stronger main magnetic
field that was able to spatially distinguish between two test tubes of water. This new
technique, which Lauterbur described as zeugmatography later became known as

Magnetic Resonance Imaging or MRL




A few years passed before any major attempts were made to improve this
technique. However in the late 1970°s a number of groups began developing MRI
systems including Nottingham (Mansfield & Maudsley 1977), Aberdeen (Mallard ef
al 1979) and EMI. During this time the imaging techniques were refined with the
development of several new imaging techniques including the revolutionary
development of spin warp imaging in 1980 (Edelstein ef o/ 1980) following on from
the two dimensional Fourier transform method developed by Kumar ef o/ (Kumar ef
al 1975). 'T'he spin-warp technique proved to be the imaging technique utilised in
most commercial MRI scanners to follow (Chen and Hoult 1989).

In the late 70’s and early 80’s a number of companies became involved in
MR scanner construction. These included eight companies who by 1983 had
completed prototypes. These were: Bruker Instruments, Diagnostic Inc, FONAR,
Philips Medical Systems, Picker International, Siemens Medical Systems, Technicare
Corp, and Elscint Ltd (Stanford Research Institute (SRI) International web site,
accessed August 2003). Other companies involved at this time were General Electric,
M&D Technology, and Toshiba. With increased industrial input into scanner design
and development and as a result of insurance companies beginning to provide
renumeration for MRI scans in 1985, MRI scanners use began to grow and by 1988
approximately 1300 units had been sold worldwide.

Since then MRI has developed from its relatively modcst roots into one of the
most powerful diagnostic imaging aids of the 21% century, along with CT. According
to Guerbet, who supply contrast agents for MRI, there are estimated to be
approximately 13,000 MRI1 scanners currently worldwide (Guerbet website strategy

document, March 2003) with many millions of examinations conducted each year.




'I'he MRI1 hardware. along with the sequences and techniques used, has
progressed at a great pace with a number of major advances taking place including:
the introduction of gradient echo sequences (van der Meulen et of 1985) the
introduction of contrast enhanced procedures (Carr ef a/ 1984), development of eche
planar imaging (EPI) (Mansfield and Morris 1982, Perkins and Wehrli 1986).
Imaging gradients and main field strengths are also increasing espccially in
neurological imaging, with typical By fields beginning to increase from a standard
1.5 Tesla field to 3 Tesla. These advances have led to new areas of research and new
clinical techniques such as perfusion and diffusion imaging, fMRI and multi-voxel

spectroscopy.

1.1.2 Contrast Imaging

Despite the improvements in image hardware and techniques, many of the
sequences and principles have remained the same during the development and
maturation of MRI.

For example Schering developed the first contrast agent in 1981 with a patent
application for Gd-DTPA dimeglumine (Magnevist German Patent 1981). This was
first used in hurnan MRI in 1984 where the contrast agent was intravenously injected
into 20 patients at a dosc of 0.1 mmol/kg (Carr et af 1984). The injecled contrast
improved the delineation of cerebral and hepatic tumours, allowing tumour to be
distinguished from peritumoural edema. The effect of this contrast agent on different
sequences was theoretically assessed one year later (Gadian e af 1985). This method
of using contrast enhancement can be described as static contrast ephanced MRI.
Magnevist, as Scherings contrast agent later became known, soon became

commereially available and to this day is still one of the contrast agents of choice,




especially in investigations of high-grade cerebral tumours where tumour progression
is being assessed using the static contrast enhanced method.

Despite significant advances being made in the use of contrast agents with the
development of new techniques such as timed contrast enhanced MRI and perfusion
contrast enhanced MRI (Roberts ef al 2000), in many MRI departments the vast
majority of contrast use continues to be for static contrast enhanced MRI. The
injection technique and dose have remained the same since the first set of
investigations in 1984 (Carr et al 1984), although there are suggestions that the
required dose is reduced at 3T. Figure 1.1 shows some typical slices from a contrast

enhanced image set.

Figure 1.1: Two pre (a & ¢) and post (b & d) contrast enhanced sagittal slices from a 3D T1-
weighted study: these slices show contrast enhancement of a high grade cerebral tumour
(Glioblastoma)



1.2  Theory of Contrast Enhancement

12,1 Why do we need contrast agents?

Magnetic resonance imaging offers a variety of sensitivitics to physiological
parameters of tissue, allowing tissues and pathologies to be delincated on the basis of
differences in the local physical and chemical microenvironment. By appropriate
choice of pulse sequence parameters it is possible to produce imaging sequences with
contrast dependant on one or mote of a number of these physiological parametets.

For example sequences can be optiniised to enhance the T; or T, characteristics
or o display contrast weighted towards the proton density of the tissue, to enhance
local blood or CSF flow, to determine the perfusion or diffusion of a tissue and so
on. However, even with the large amount of physiological parameters available to
measure in MRI there are still clinical situations and pathologies where the use of
contrast increases the available information, such as in flow and perfusion studies
(Merbach and Toth 2001). Therefore, as described in section 1.1.2, contrast media
were introduced early in the development of MRI with the aim of cnhancing the
contrast between normal and diseased tissue, highlighting areas of blood brain barrier
breakdown or to indicate organ function or blood flow.

However, to understand the theory behind using contrast agents in MRI we must

first understand the basic principles underlying signal and contrast in MR1,




1.2.2 Signal in MRI ~ Macroscopic Magnetisation in a B, field

As has been described earlier MRI is fundamentally based on the principles
of NMR, where NMR describes the interaction of spinning atomic nuclei and
magnetic fields.

The spin of a nucleus is composed of the individual spins of the protons and
ncutrons contained within the nucleus. Nuclear spin (1) is a quantum mechanical
quantity. It is represented by a vector which is orientated parallel to its axis of
rotation, with a magnitudc given by the following:

LESNITTES) (1.1)

and,

h:%ﬂ, (12)

where 7 is the Planck constant and 7 is the spin quantum number. This overall spin
depends on the number of unpaired protons and ncutrons within the nuclcar shells
with each unpaired proton or neutron having a spin of either %2 or —%. Therefore
different isotopes of the same element can have different nuclear spins. Nuclei with
no overall spin cannot be investigated using NMR techniques, however, there are a
significant number of nuclei with spin. Table 1 describes the spin state of some of the

more important NMR nuclei.
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Nuclei Unpaired | Unpaired | Net Spin ! ¥
o Protons Neuirons (MHz/T)
'H 1 0 P 42.58
| ’H 1 1 1 6.53
P 1 0 Y 17.25
“Na 1 2 % 11.27
TN 1 1 1 B EXE
B¢ 0 1 1 1071
PR 1 [ 40.08

" Table 1: Spin states in a selection of nuclei important to NMR

When a nucleus with a non zero spin is placed within an external magnetic

field it acts in a similar fashion to a compass needle, i.e. it aligns itself with the main

magnetic field. However, due to the rules of quantum mechanics, the nuelei can only

align with the magnetic field in discrete directions which correspond to the energy

levels of the nucleus. It can be shown that when a nucleus with a spin number 7 is

placed within a magnetic field By that the magnetic quantum #; number can take one

of 21+1 values. So for example in a Bq field a 'H nucleus can have one of two

possible orientations with either m;= +% or --% (see figure 1.2).

B A

=l VA

m,=-!/z

E=-%yh B,
I AE=yh B,

PO “"V:}’h Bg

Figure 1.2: Orientation of the spin % nuclens (proton) in a B, magnetic field along the z-direction
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The nuclear spin angular magnetic moment, which can be assumed classieally
to represent a ring current with negligible dimension, results in a dipolar magnetic
moment ¢ which is a vector quantity aligned parallel to nuclear spin Z. [ts magnitude
can be defined by the following relationship:

“=nA (1.3)
where yis the gyromagnetic ratio, which is specific for dillerent nuclei and isotopes.
Due to the rclationship between the nuclear spin and the magnetic moment in the
direction of the main field (the z direction by convention) z; is restricted to related
values:

10, = ym.h (14
with
my =—L,—I+1,.,1 (1.5)
When a magnetic moment is placed in a magnetic field By it represents a magnetic
energy E such that:
E=-u-B, (1.6)
therefore, the cnergy states of the nucleus are given by the following equation:
E = —yhm B, (1.7
Figure 1.2 shows the resulting energy diagram for a hydrogen nucleus with /= .

Transitions between states can take place only if the quantum mechanical
selection rule which states that m; must change by £1 is obeyced. Therefore, a change
from one level to the next either requires energy input to go to a higher level, or
requires cmission of energy if it is to drop an energy level, equivalent to:

AL = 7B, (1.8)
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The change in energy is supplied by, or emitted as, electromagnetic radiation

where:
AE = hv, (1.9)

where v is the frequency of the electromagnetic radiation. Thus, with the angular
[requency ap=27vp it is possible to relate this to the field:
w, =B, (1.10)

As was described previously the magnetic moment and the nuclear spin are
coupled together, therefore the magnetic moment will always be at an angle to the
main magnetic field. Therefore, the nuclear spin will precess around the main By
field with a frequency equivalent to the angular frequency ol the magnetic moment:

o, = o, (1.11)
where @y, is called the Larmor frequency.

Despite the large number of naturally occurring nuclei with appropriate spin
values the vast majority of MRI techniques investigate the 'H nucleus (i.e. a single
proton). This is a result of the high natural abundance of this nuclei in the human
body, which is madc up of approximately 80% water and because of its favourable
magnetic moment compared to other naturally occurring elements, The large number
of nuclei allow for sufficient signal to be detected despite the small amount of signal
per nucleus and the (act that only a small number of nuclei contribute to the final
signal due to thermal motion effects.

In the steady state slightly more than half of the hydrogen nuclet are in the
parallel low energy state, i.e. aligned with the field rather than against it. For
example in a large population of hydrogen nuclei, which is common in a normal

biological NMR sample (=1 0*%/em®) with a spin quantum number of / and thus 27+1
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energy states the distribution of the spins in each statc is, in thermal equilibrivm,
governed by the Boltzmann law:

O .12

Z EXp(— Em /(kBT))

tre=at

N

m

where NV, is the number of spins in the state m, Ny is the total number of spins in the
sample, E,, is the energy of the state m, T is the absolute temperature and &z s the
Boltzmann constant. Thus with increasing energy the number of spins in each energy
state decreases with increasing energy (temperature).

In a large sample there will be a macroscopic magnetisation associated with

the sum of all the individual microscopic magnetisations:

M=> u (1.13)
However, in an unexcited sample there will be no overall x or y component to the
overall magnetisation duc to the random phase distribution of the individual
precessing magnetic moments.

Despite this incoherence in the x-y plane there will be coherence in the z
direction due to the fact that there is a restricted number of diserete values for each
individual magnetic moment. In "H there are only two possible states. Using
Boltzimann’s law it is possiblc to determine the relative concentration of these two

encrgy states:

%wp@m [k, T)) (1.14)

For example in a typical MRI magnetic field strength of 1.57T, at a room

temperature of 295K the ratio of N for a 'H nucleus is 1.000010401. This

NY

represents a very small number of excess spins parallel to the By field, which results
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in the macroscopic magnetisation M parallel to the applied field. Although n this
situation M only has a z component M,, it is useful to consider the magnetisation
rotating in the x-y plane at the Larmor frequency @y. This becomes more apparent

when the magnetisation is tipped into the x-y plane.

s

Fignre 1.3: Precession of an ensemble ¢f protons in a magnetic lield B, producing a net
magnelisation My in the z-direction

1.2.3 Signal in MRI — Macroscopic Magnetisation in Presence of a B, field

In section 1.2.2 the sample was at equilibrium. It is therefore possible to
deseribe the time variation of M using:

%; — M x B, (1.15)
in this case all of the macroscopic magnetisation is in M. It is only possible to detect
a time varying signal in the sample when a proportion of the magnetisation is in My

or M. Therefore, before signal can be produced within the sample the magnetisation

must be perturbed from its steady state. This is achieved by introducing a time

varying B; magnetic field oscillating at radiofrequencies, referred to as the RF pulse.

16




The magnetic field vector of the RF pulse can be pictured as rotuting in the xy plane

perpendicular to By, (See figure 1.4).

ot ;
/

Figure 1.4: Rotation of the RF magnetic field (B;) just as the RT pulse is turned on (t=0)

Thus it is possible to determine the components of total field in the presence of the
RT pulse with reference to the fixed laboratory frame of reference:

B, = B, cos at, B, =-Bsinw, B =B, (1.16)

Remembering equation (1.15) it is possible using matrix notation to

determine the cross product of the magnetisation and field vectors:

M, B, i
MxB=M, B, | =B ~MB)+(MB,~MB)j+(MB,~MBYk (117
M, B k

It is therefore possible from the above three equations to determine the time

dependence for the components of M:
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%f;‘_ = }'(114},30 + ﬂdzB! Si[la)f),
dadM

dt
dM

dt

Y = y(M B, coswt— M B,), (1.18)

= =—y(M B sinwl + M B cosart)
We can now assume that we have a rotating frame of reference x' y' 7/,

rotating at @y, to simplify the analysis. Therefore, if a B; field is twned on during a

time #,, M will rotate an angle £, = @¢, from its original position down towards the

x'y" plane. (see figure 1.5). The angle 3 is usually called the flip angle of the pulse.

Bo T B M

B

Figure 1.5; As a resull of the B, component of the RF pulse the magnetisation M is flipped
towards the X'y’ planc

1.2.4 Signal in MRI — Relaxation Processes

After the RE field is turned off, M will have a component in the x'y" plane.
Viewed in the non-rotating laboratory {rame this component will rotate around By at
the |.armor frequency, inducing detectable current in any receiver coil within range
of the signal.

However, the above equations are incomplete as they do not take into account

the two relaxation processes present in these sysiems, namely T1 and T2. T1

18
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relaxation is known as the spin lattice relaxation. This relaxation process involves the
exchange of energy between the spin system (i.e. each individual proton in a large
ensemble of similar protons) and the lattice in which they are embedded (i.e., the
molecular framework). More precisely in quan(um mechanical terms the majority of
spins in the high energy state can only make the transition to the lower energy state
by the process of stimulated emission, That is, to undergo a transition, the spin needs
to be stimulated by a fluctuating magnetic field at the Larmor frequency. The random
motion of the surrounding nuclei within the medium form these fluctuating magnetic
fields. It is the rate of motion of the surrounding molecules that determines the time
constant T1. T1 is often referred (0 as a longitudinal relaxation process.

T2 relaxation is known as spin-spin relaxation. In T2 relaxation no energy is
transferred from the nuclei to the lattice, instead energy is redistributed between the
spins. The simplest way to describe T2 relaxation is to introducc a 90° flip of the

magnetisation M into the transverse (x'y’-plane). (See figure 1.6).

3‘1 M
¢ ,/__’_ Lowecr Ficld
M
= Higher Field

@) (b) (©

Figure 1.6: T2 rclaxation by dephasing 1Lur u sample that has experienced a 90° RF pulse

Immediately following a 90° RF pulse all of the magnetisation that was
aligned along the z-axis is tipped inio the transverse plane (figure 1.6(b)). In an ideal

sample (assuming there are no field inhomogeneities) all of the nuclei will
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expericnee the same applied magnetic field. Thus, the multitude of individual
magnetic moments will remain coherent, rotating at the Larmor frequency until T1
relaxation occurs. However in a real sample random tumbling of the neighbouring
nuclei affect this coherence via low {requency random (luctuations in the local field.
LCach nucleus therefore experiences slightly different local magnetic fields, with
some slightly larger and some slightly smaller than Bj. This spread in local fields
results in a related spread in rotational frequency, resulting in dephasing of the
magnetic moments over time (see figure 1.6(c)) with the resulting decrease in
transverse magnetisation. After a long enough time the phases will be completely

dephased resulting in complete loss of measurable transverse magnetisation.

1.2.5 Signal in MRI — Bloch Equations

In section 1.2.3 the time dependence of M was described in terms of By and
B (equations 1.18). However, these equations did not take into account the T1 and
T2 relaxation processes. Remembering that the T1 relaxation relates to the
longitudinal relaxation in the z-direction and that T2 relatcs to the transverse
relaxation in the xy plane it is possible to derive the following:

Moo, Cor e, T Ml (1.19)
dt 727 gt 27 T1 ’

Superimposing the relaxation effects into equations described by 1.18 produces the
Bloch equations, which relate to rate of change of magnetisation in the laboratory

relerence frame:
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_ . A
am, y(M By + M B, sinof) ~ TIE s

dt
dM _ M,

= =y(M, B cosax — M By) T (1.20)
M, =—y(M B, sinat + M B cosar) ~ WM, - My)

dat 7
These equations can also be derived in the rotating frame, resulting in the

following equation:

amM

=M% By ~ RO - M) (1.21)
where, using matrix notation:
Loy ol
71 | 0
R=|0 71 0 |and M, =] 0 (1.22)
M,
0 o s 0
L 72 ]

and B,y is the cffective ficld given by B, = B, + B, -+ 2/y (where £21s a vector

pointing in the opposite direction to By with the value of the Larmor frequency)

These equations describe the transverse and longitudinal magnetisation. From
these equations it is possible to develop pulse sequences that produce parlicular
contrasts for different tissues, assuming that the T1 and T2 values for the tissues in

question are known.
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1.2.6 Signal in MRI — Signal development

If we assume a rotating reference frame (which simplifies the analysis),
immediately {ollowing an RF pulse equation 1.21 can be solved as follows:

M, ()= M,(1- exp(—%n)) +M_ (4 )exp(‘%q),

(1.23)
My (8) = M, (1 )exp(™ V)

where M. (1) and M,(to) are the longitudinal and transverse magnetisations just
following the cessation of the RF pulse.

If a conductive coil is now placed close to the excited sample in an
orthogonal orientation the relaxation and rotation of M., will induce an electric
signal within the coil. This rotating magnctisation produces a sinusoidal signal within
the coil. However, as has previously been discussed, relaxation occuis reducing the

amplitude of the signal over time:

Vitnoes °© Miyy GOS0 (1.24)

induce:
where Vinauceq 18 the voltage induced in the coil and M E}? is the initial magnetisation in.

the xy plane following an RF pulse that flips the magnetisation into the xy plane (a
90" pulse). The signal induced and its decay is known as the free induction decay

(FID) signal.

1.2.7 Signal in MRI - Pulse Sequences (2D)

Signal development is more complex when pulse sequences arc rum Lo
generate MR images. The simplest imaging technique available is the spin echo (SE)
sequence. In a basic SE scquence (see figure 1.7), signal from different tissues can be

derived {rom the following equation:
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Sy, o M05L1- Zexp—-_—-g-—w+exp(— TRITY) |oxp(ZE/72) (1.25)

where TR is the interval between two successive 90 degree pulses and TE is twice
the time from the RF pulse to the 180 degree pulse, where the 180 degree pulse

refocuses the signal at time TE as a spin echo.

90° m 180°
R w

=
=1
LN \

- — il Ld
TE2 TE/2

Figurc 1.7: Pulse sequence diagram for a simple spin echo sequence

(RF represents the RF pulses, SS represents the slice~select gradients, PE represents the phase-encode

gradients and FE represents the frequency-encoding gradients)

If it is assumed that TE is small compared to TR, which is often the case,
equation (1.25) can be simplilied to:

Sg o M|l - exp(—TR/T 1) |exp(L£{12) (1.26)
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To obtain good signal strength from SE sequences magnetisation needs to
recover fully before the next RF pulse, Therefore, optimal SE sequences require long
scan times. If TR is shortened the spin system become saturated resulting in weaker
signal. One method of regaining signal is to reduce the flip angle from 90" to a
smaller flip, thus reducing the time required for thc magnetisation to recover.
However, in SE the 180° refocusing pulse would invert the longitudinal
magnetisation. As TR was shortened this would eventually drive the longitudinal
magnetisation to zero. Thus to solve this problem a new type of pulse sequence was
developed where the 1 80° RF pulse is replaced by a rephasing gradicnt in the

frequency direction (see figure 1.8).

RF

88

PE

FE

Signai

Figure 1.8: Pulse sequence diagram for a simple gradient echo sequence. 0 is the flip angle of the RF
pulse und is typically less than 90°.

There are a large number of gradient echo (GE) sequences available with

different characteristics. One simiple GE sequence is the gradient-recalled acquisition
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in the steady state (GRASS). In this sequence signal can be shown to vary as follows
(Wehtli W 1988):

(1 cxp(—TR/T1))sin @
| = cxp(— TR{T1) exp(~ TR/ T2) - cosG(cxp(—~ TR/ T1) — exp(— TR/T2)

exp(—~TE[72%) (1.27)

Sonass € Mg

where T2* is the effective transverse relaxation which includes field inhomogeneity
dephasing effects, and 8 is the flip angle. If TR>>T2*, which is a reasonable
assumption the equation can be simplified to:

(1 exp(—TR/T1)sing

Soss ~TE/T2* 1.28
auss Mo =00 pexporyTDy P TETZ) (128)

It can be seen from equation (1.28) that in GE sequences there is a strong T2%
modulating effect on image contrast, thus gradient echo sequences are inherently T2*
weighted imaging sequences.

However, there are a number of methods for reducing the T2* weighting to
produce, for example sequences that are more T1 contrast weighted. For example the
application of an inversion recovery pulse prior to a gradient echo sequence can
introduce T1-weighting. These scquences typically employ a 180° magnetisation
inversion pulse. This pulse reverses the equilibrium magnetisation, so that instead of
being parallel to the main field it is anti-parallel. The inverted spins subsequently
return to their equilibrium magnetisation during the subsequent delay between the
inverting pulse and the low flip angle pulse (TI) at a rate depending upon their T1
value. The equation for this process is:

M, = M(1l-2exp(—TI/T1)) (1.29)

Tissue with a shorter T1 will recover faster towards its equilibrium than
tissuc with a fonger T1. Therefore, if the TI delay, before the normal gradient ccho
sequence begins, 1s set 10 speeific values it is possible to null the signal from certain

tissues, as well as providing T1 weighting if using moderate values of TI. An
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example of a simple inversion recovery sequence is shown in figure 1.9. Inversion

recovery sequences will be discussed in more detail later,

. TI
T
T
ss
PE
TE
Signal

Tigure 1.9: Pulse sequence diagram for a simple inversion recover sequence. T is the time from the
injtial 180" inversion pulse to the imaging RF pulse.

1.2.8 3D Pulse Sequences

So [ar the sequences discussed have been 2D sequences, i.e., the data is
collected in a slice by slice basis with each slice experiencing temporally scparate R
pulses. However, in 31 pulse sequences every RT pulse excites the entire volume of
tissue. The advantages of 3D imaging are the thinner contiguous slices (often
referred to as partitions of a 3D data set) that can be produced due to the increased
signal to noise avatlable.
To enable slices (o be separated in the slice select direction, phase encoding is

applicd in this direction as well as in the phase encode direction. If NV slices are
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required N, phase encoding steps are acquired in the slice select dircetion, Each slice
encoded gradient is applied for each of the phase encoding steps, before the next
slice encode step is applied. Figure 1.10 shows a pulse sequence for a simple FLASH

(Fast Low Angle SHot) 3D sequence.

i

Fe

PE

FE]

Signa

A 5

Figure 1.10: Pulse sequence tor a simple FLASH 3D sequence.

It is possible to introduce T1 weighting to 3D sequences using the inversion
recovery method described in 1.2.7. Onc such technique (MP-RAGE) will be

described in more detail in the next chapter.

1.3 Chapter conclusions

Now that the basics of MR with specitic reference to signal generation and
pulse sequences have been introduced, the next chapter will introduce the concepts of

angiography and venography with reference to previous and current methods. This
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will include the use of contrast enhanced techniques in MR angiography. Focus will :
be placed on one particular venographic technique which utilises an inversion
recovery 3D technique. The chapter will discuss whether there is a way of improving

the technique and makes suggestions as to how this can be achieved.
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Chapter 2

Improvement of Current Subtraction Venography
Using Registration




2.1 Introduction

2.1.1 Overview

This chapter begins by introducing the technique of angiography and
deseribes techniques currently used in MR angiography (MRA). Time of flight
(TOT") and phase contrast (PC) MRA are described, paying particular altention to the
advantages and disadvantages of each technique.

Two MRA techniques specifically designed to investigate the cerebral venous
system are also described: a blood oxygenation level dependant (BOLLD) venous
contrast technique and an MP RAGE (Magnetization-Prepared RApid Gradient
Echo) subtraction venography (MSV) technique. The MSV technique is described in
detail and it is suggested that this technique is susceptible to inter-scan patient
motion, as it requires two data sets to be collected serially: one pre-contrast injection
and one post-contrast injection. If patient motion is a problem this would reduce the
techniques capability of resolving small venous vessels, and would introduce
artefacts into the resulting visualisation data.

To test if the technique was susceptible to such patient motion 20 patient data
scts were collected and analysed using the MSV protocol, with and without inter-
scan motion correction where the motion correction was achieved using a sub-voxel
realignment algorithm (MATCH, Hammersmith Hospital, London). Analysis of
motion over such short time scales using this technique is novel.

Following analysis of the results conclusions arc reached on the requirements
of inter-scan realignment in such studies. More general conclusions are also drawn

on the requirements for realignment of pre and post-contrast data that arc not
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colleeted specifically for venous visualisation, and further work is snggested to test
this hypothesis

All work deseribed in this chapter has been conducted by the author, with the
exception of the qualitative assessments conducted by the two trained observers,
described in section 2.5.1.3 and the acquisitions which were performed by
radiographic staff. Preliminary results from this chapter formed the basis for a
presentalion at the Internationat Society of Magnetic Resonance in Medicine
meeting in 1999 (Brennan et af 1999). The final data and results form the basis of a

paper in preparation for journal submission.

2.1.2 Historical Context

It was shortly after the discovery of x-rays by Roentgen that the first
angiograms were produced using cadavers in 1896, (Haschek and Lindenthal 1896)
Live animal studies were not conducted until the 1900°s (Franck and Alweas 1910).
A mixture of Bismuth and oil was used as the contrast agent and was given via
intravenous injection to observe blood flow in the heart.

The first arteriograms and venograms in humans were produced in 1923
using a contrast of 20% solution of strontium. bromide (Berberich and Hirsch 1923).
One year later iodine was first successfully used as a contrast agent by Brooks
(Brooks 1924).

Since then iodine arteriograms have become the gold standard in x-ray based
angiography (Setton et al 1996) offering high resolution (1024x1024 and greater)
and good vessel contrast. It is also possible to acquire images in real time, allowing

fluoroscopy to show the dynamic nature of the contrast flow.
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There are however disadvantages with conventional angiographic techniques
(Earnest et al 1984). Firstly, it is an invasive technique due to the requirement of
intravenous injection. This can cause complications where the patient has vascular
disease with associated thrombus. If there is thrombus at the injection site this can
dislodge the thrombus which can cause stroke if it becomes lodged in the arteries of
the brain. Cerebral angiography has been associated with a 1% transient deficit and
0.5% persistent neurological deficit in patients (Heiserman cf al 1994).

The technique also involves the use of ionising radiation in the form of x-rays
with associated dose risks. For example the typical dose received from a cercbral
angiographic procedure has been quoted as 7.4mSv (McParland 1998) which
translates to a fatal cancer risk of 3.7 per 10,000 procedures (ICRP Publication 60).
Thete is also the risk of allergic reaction to the contrast medium which varies
depending on the type of contrast medium used (0.2% - 0.7 %, (Cochran et af 2001)).
As a resull of the disadvantages in using conventional angiographic techniques there
has been considerable interest in developing safer MR alternatives.

Before MRI was itsell developed the effects of fluid and blood flow on
nuclear magnetic resonance measurements had already been investigated (Surjan
1951, Singer 1959). Therefore, it was known during the early development of MR1
that blood Mlow would have an etfect on signal.

Early attempts to produce MRA scquences used spin echo pulse sequences
which provided flow enhancement when unexcited spins entered the imaging slice.
However, thesc techniques suffered from signal loss at higher velocities due to
excited spins [eaving the slice before the 180 degree refocusing pulse (Bradley &

Waluch 1985).




22 Currently Applied MRA Mcthods

A number of methods have been developed to allow visualisation of the

cerebral vessels using MRI. The two main methods currently used are time of flight

(TOF) and phase contrast (PC).

2.2.1 The Time of Flight Technique

The TOF effect occurs in norimal imaging sequences and generally results in
flow related enhancement. In a typical sequence slices are excited repeatedly
resulting in an equilibrium longitudinal magnetisation. Howcever, if during the time
between excitation and signal detection fresh blood flows into an excited slice this
blood will not have reached this longitudinal equilibrium. If it has travelled from an
unexeited region it will have full longitudinal magnetisation resulting in flow related

enhancement. This is the TOF eflect (see figure 2.1).

) . Excited spins with
Spins with full / reduced longitudinal
longitudinal magnetisation
magnetisation

T Ylow

Vessel \

Excited spins
displaced by
blood flow

Figure 2.1: Blood flow resulting in inflow of longitudinally saturated spins into an imaging slice
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‘The resulting signal strength is dependant on the fraction of saturated spins
within the slice profile when the signal is sampled, the flip angle and the repetition
time. It is possible to model this for any particular sequence. For example Gao ef a!
(Gao ef al 1998) modelled the flow induced signal changes in a spoiled FLASH
scquence. This sequence differs from a normal FLASH sequence due to the presence
of a spailer gradient in the slice select axis, which destroys any remaining fransverse
magnetisation after signal readout. Gao initially assumed that {low within a vessel
had a plug profile, i.e. all flow within the vesscl had the same velocity. Ile also
assumed that;

VTR 1. .1
where ¥y is the flow velocity, TR is the repetition time and L is the shice
thickness. Thus the total signal from voxels within the vessel could be calculated;

S = M, sinOexp(—TE/T2)m’ L. (2.2)
where My was the initial magnetisation , a was the radius of the vessel, und € was
the angle ot the vessel in rclation to the imaging slice.

More advanced modelling where more realistic assumptions are made, i.e.
parabolic flow profiles (Gao et af 1988) are also possible. Using the TOF effect it is
possible to measure flow velocities, however for the production of MR angiograms
this is not required.

TOF angiography techniques are designed to use the TOF cffect to increase
signal from flowing spins whilst keeping the signal from stationary spins to a
minimum, A number of 2D and 3D techniques have been developed utilising this
effect for the production of MR angiograms. For example inversion spin labelling

Nishimmura et af 1987) uses an 180° selective pulse to invert the magnetisation in a
p g
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slab of interest, After an inversion time (TI) uninverted blood flows into the slab
before the normal spin echo sequence is run, The sequence is then repeated with a
non-selective 180° pulse which inverts all of the spins. The complex data from both
these sequences is then subtracted resulting in data that only contains signal from
flowing spins.

Another method utilises pre-saturation pulses for spin labelling (Dumoulin ez
al 1989(a)). Here a 3D velocity compensated gradient echo sequence is used without
any pre-saturation pulses. The velocity compensation results in high signal for the
flowing spins. A second sequence is then run with a pre-saturation pulse placed
down stream, effectively removing the signal from spins experiencing these pulses.
Subtraction of the two image sets results in angiographic data. In this case they were
displayed using maximum intensity projections (MIP).

Currently used methods of TOF angiography are designed to suppress the
signal from stationary tissue by saturation of the longitudinal magnetisation. This can
be achieved in both 21> and 3D techniques (Keller et af 1989, Ruggeri er af 1989).
Short echo times are used with velocity compensation and partial flip angles. These
parameters maximise the vascular signal whilst minimising the stationary tissue
signal. Further techniques such as magnetisation transfer (Edelman ef al 1992, Pike
et al 1992), fat saturation (Lin ef a/ 1993) and magnetisation preparation (Edelman ef
al 1991, Li et ol 1994) can be used to reduce the signal from the stationary tissue.

21D TOF technigues are particularly good at providing high contrast between
flowing spins and stationary tissue (Graves 1997), and are sensitive to slow flow.
[Towever, due to the use of relatively thin 2D slices signal to noise can be poor, and
in-plane flow sensitivity can be low. The requirement for relativcly long TE’s results

in intravoxel phase dispersion. This is a particular problem in areas of complex flow.
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3D TOF techniques have higher signal to noise, due to the larger excitation
volume and can provide thinner slices than 2D methods. TE’s can also be shorter
reducing intravoxel phase dispersion. However, due to the thickness of the slabs used
areas of slow tlow can suffer from saturation, leading to reductions in signal.
Background suppression is also not as good as in 2D TOF. Both the 2D and 3D TOF
techniques can also be sensitive to tissues with short T17s such as Fat.

For the purposes of cerebral venous visualisation it has been suggcested that
3D TOF is unsuitable, due to in-plane saturation effects. However, 2D TOF can still
suffer from in-flow saturation problems relating to the choice of imaging plane. To
avoid this problem 2D TOT can be acquired in three perpendicular plancs, however,

this requires significant increase in imaging time.

2.2.2 The Phase Contrast Technique

PC is another common technique used in the production of MR angiograms.
Magnetic field gradients uscd during the image acquisition dephase the transverse
magnetisation for stationary spins. To corrcet for this gradients are usually applied in
equal and opposite pairs in order to restore the initial phase at TE. However, this is
not applicable with moving spins. When such a bipolar gradient (see figure 2.2) is

applied to a spin it acquires the following change in phase;
) t
#() = 7 {G(Ox(r)dz +y |G(D)x(z)dT (2.3)
f f
where G is the applied gradient at time T, ¥ is the gyromagnetic ratio and x is the

position of the spin, with respect to the gradient at time 1.
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Figure 2.2: A bipolar gradient with a positive gradient followed by a negative gradient (positive
bipolar gradient)

When a positive bipolar gradient (see figure 2.2) is applied to stationary spins
the first and second term exactly cancel out in equation (2.3). However, if the spin is
changing its position, the two terms will be different and an overall phase shift will
occur. Thetefore, the change in phase can be related to a velocity if the time of the
phase change is known. For example for a bipolar gradient with cach lobe having an
area (in terms of its gradient and timc) of A and the centre of the lobes being
separated by time T, the induced phase shift relates to velocity by:

d(VY=wTA (2.4)

It is possible to introduce bipolar gradients into conventional sequences and
by producing phase maps from the raw complex data it is possible to determine flow
velocities. However, a single bipolar gradient onty imparts phase change on the
moving spins which does not affect the magnitude images produced after the
complex data has been Fourier transformed. 1o produce an angiogram we require a
second sequence to be run with a negative bipolar gradient. Then after subtracting
the complex data of the second sequence {rom the first sequence, signal from the
stationary data will subtract out but will add for flowing spins. Taking the magnitude

of the complex data results in an image of the flowing spins. Here the maximum
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velocity spins would resull in maximwm signal, but only if the fastest flowing blood
acquires a total phase shift of 180, Therefore, these sequences must be specifically
tailored for particular flow velocities

Tf only one positive and negative bipolar data set is collected, then the
sequence would only be sensitive to flow in the direction of the bipolar gradients.
Therefore, PC angiography originally required this procedure to be repeated 3 times
for 3D flow sensitivity (Dumoulin ez ol 1989(b)) resulting in 6 data sets. However,
the scanning time can be reduced by collecting only 4 data sets where only the first
set had no velocity sensitivity and the following three have sensitivities in the three
orthogonal directions (Pelc er g/ 1991, Hausmann e of 1991). Subtraction of each
velocity sensitive image from the reference image yields angiographic information
for flows in that direction. The use of only one reference image, however, reduces
signal to noise and more efficient subtraction schemes arc often used (Pelc et af
1991, Dumoulin et a/ 1991).

2D phase contrast techniques have short acquisition times, good background
suppression and are not particularly sensitive to saturation effects (Graves 1997).
ITowever 2D phase contrast angiography has been found to suffer from intravoxel
dephasing within the relatively large voxels, and this suggests that it should not be
used for venous visualisation (Liauw ef af 2000). It also suffers from vessel overlap
and requires good system stability.

3D PC techniques have thinner slices and good background suppression.
However, acquisition limes can be long and it is difficult to provide a sequence with

full velocity compensation.
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2.2.3 Otiher MR Angiography Techniques

There are a number of other less commonly used methods available for
producing MR angiograms and more specifically of venous vessels. The BOLD
method for visualising cerebral veins was introduced in 1998 (Reichenbach, ef a/
1997,1998) and is the newest method available. This technique uses the blood
oxygenation level dependant (BOLD) effect (Ogawa ef af 1992) to visualise and
highlight venous structures. A strongly T2*-weighted FLASH 3D sequence is used
in conjunction with phase mask filters, which are specifically designed to increase
the phase induced signal reduction that occurs in voxels with both venous blood and
brain tissue. This technique produces dark veins within a light background, therefore,
minimum intensity projections are used to visualise the data instead of the normal
maximum intensity projections.

The original technique suffered two major disadvantages. Firstly, the
acquisition times were quite long (typically 10 minutes per acquisition) especially for
the resofutions that they were recommending of 1024x1024. Thus thete would be
problems with patient motion artefacts. Secondly, mainly due to the long TH’s
required, the technique was sensitive to susceptibility artefacts especially at air tissue
interfaccs. In Essig et a7 1999 the technique was being used to determine nidus size
of arleriovenous malformations (AVMs). In 4 of 17 patients within the study nidus
size was underestimated due to image as a result of the lesion being in close
proximity to an air/tissue inteface, or being near a bony structure.

Lin et af 1999 investigated a solution to these problems. A T1 reducing agent,
Omniscan, was injected to allow shorter TE’s 10 be used. This would reduce image

acquisition time and susceptibility artefacts. However, when this technique was used
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in a study (Tan et af 2000), investigating the relationship of intracranial veins and
multiple sclerosis (MS) lesions, it was found that there were still major problems
with susceptibility artefects. Although this technique has further been expanded to
3T systems (Riechenbach ef a/ 2000) and very fine detail has been displayed, as it
currently stands it cannot display the whole intracranial venous system. Therefore, if
a ¢linician requires such an overall picture with high resolution vessels a different
technique is required.

Stevenson ef af 1995 described another technique called MPP RAGE
subtraction venography (MSV). This technique uses the MP RAGE pulse sequence
(Mugler and Brookeman 1991, Brant-Zawadzki e o/ 1992), which is a Tl-weighted,
small flip angle, 3D sequence with an 180° inversion recovery preparation pulse.
Before this angiographic technique is described it is important to have an

understanding of the MP RAGE sequence.

2.3 3D MP RACGE Pulse Sequence

In 1990 (Mugler and Brookeman 1990) developed the 3D MP RAGE
sequence which followed on from work done by Haase ¢f af (Haase el ol 1989). At
the core of this sequence is a FLASH sequence, similar to the one delailed in section
1.2.8 (figure 1.10). This sequence when modified by the addition of an 180°
inversion pulse to intraduce T1 weighting is called Turbo or snapshot FLASH
(Atkinson et af 1990, Haase 1990). Similarly, it was possible to introduce T1
weighting to 3D imaging with the development of the MP RAGE sequence.

The MP RAGE sequence consists of an initial 180" inversion pulse (see

figure 2.3) followed by a pause in the sequence, called the inversion time (TT), where
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the inverted longitudinal magnetisation is allowed to recover (see figure 2.4). After
TI the F1.LASH sequence runs through all of the depth encoding steps for one
particular plane encoding gradient. There is then a further recovery time allowing
longitudinal magnctisation recovery, before the next inversion pulse and FLASH

loop is run with a slightly different plane encoding gradient.
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Figure 2.3: Pulse diagram of the MP RAGE sequence. The in plane loop consists of the 180° pulse
followed by an inversion time (T7), the depth encoding loop, and magnetisation recovery time. The
depth encoding loop is a FLASH sequence.
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Figure 2.4: MP RAGE longitudinal magnetisation changes during the sequence. Tissue contrast does
not remain constant during the depth encoding steps, thus the overall contrast is the result of complex
averaging over all of the depth encoding steps.

Each depth encoding step within the FLASH sequence experiences a slightly
different T'1-weighting due to the variation in the longitudinal magnetisation over
time (sce figure 2.4). Therefore, the final tissue signal is a complex average of the
depth encoding lines over each depth encoding period. Signal contributions from the
in-plane encoding reach equilibrium within less than three depth encoding steps
(Brant-Zawadzki ef al 1992).

As applied in this thesis the depth encoding occurs sequentially. This results
in an effective TI which is the average of the depth encoding period plus the
inversion period. Therefore, when optimising the sequence for tissuc contrast it is

important to take into account the duration of the depth encoding period.
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In a simzlar fashion to the other sequences described in chapter 1 it is possible
to derive equations detailing the signal and magnetisation characteristics of this
sequence. The average signal intensity achieved with an MP RAGE sequence is:

Sy =M, exp(—~TE/T2*)sinc (2.5)
where Sy is the signal intensity for a sequence with N phase-encoding steps, M)y is
the magnetisation and ¢ is the depth encoding RF pulsc angle. The longitudinal

magnetisation can be defined by:

Nj2-2
My = My (1 —expi=TRI7'1)) S(cosam‘p(— TRITTY + Mo (1= exp(=TI/TH)A M, exp(TI{T1)coscrexp(~TRIT)*" (2.6}

=
where TR is the repetition time between readout pulses, 77 is the inversion time and
M. 1s the equilibrium magnetisation reached within a few Fourier loops. This is
defined by:

M, = 1
Y 1-Xexp(—Trec/T1)

My(1 ~exp(— Trec/T1)) 2.7

where Trece is the magnetisation recovery period as illustrated in figure 2.3, X is the
fraction of magnetisation remaining from previous excitation loops due to the small
angle excitation.

It is the 180° inversion pulses that are responsible for the T1-weighting of this
sequence. As was described in chapter 1 (section 1.27) this T1-weighting is a result
of the inverted spins returning to their magnetisation cquilibrium at a rate determined

by their T1 relaxation.
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2.4 MP RAGE Subtraction Venography

2.4.1 [Introduction

This particular venographic method requires the MP RAGE sequence to be
run twice in quick succession with the second sequence shortly following injection of
gadolinium (Gd). Due 1o the T1-reducing effect of Gd and the effect of flow on the
MP-RAGE sequence, if the post-injection data set is subtracted from the pre-
injection data sct the venous system is highlighted in the output, due 10 the increased
intensity of the veins in the post-injection sequence.

Due to the very short TE gradient-echo component the MP-RAGE sequence
depicts normally flowing unsaturated arterial blood as bright. However, because of
saturation effects venous biood flow is dark, due to its slow flow velocities.
‘Therefore, alter the T1 reducing agent has been injected the signal from veins
increase but the signal from artcries does not. Therefore, the cerebral arleries are
subtracted out in the final data.

However, it is not only the venous vessels that show contrast enhancement
after Gd injection. Other structures within the normal human head also show some
uptake on the MP-RAGE sequence, including the skin, nasal cavities and meninges,
because they do not have the equivalent of a blood brain barier. After subtraction
these structures are highlighted as well as the venous vessels.

There are several advantages to the MP RAGE subtraction technique, Firstly,
it does not rely exclusively on time-of-flight effects to depict flow. Where TOF will
only depict flow within a specific range of tlow velocities dependant on the sequence
parameters, the MSV technique only requires that the blood within the veins remains
within the imaging region long enough o become saturated. This also has the
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advantage of allowing small cortical veins to be depicted, as the tlow within these
vessels will be slowest. Therefore, it is theorised that the only limitations on small
cortical vein visibility in the final subtraction data would be scan resolution, signal to
noise (S/N) and the sufficient delivery of contrast medium.

Another advantage of this technique is that due to the short TE used in this
technique there is very little artefact from susceptibility dephasing. As was
previously discussed this can be a problem with the BOLD and PC techniques. Thus
there are no areas of the brain that cannot be examined by this technique.

As with all the previous techniques there are disadvantages. 'The protocol
requires Gd injection and is thus invasive. However, this is a minimally invasive
technique only requiring intravenous injection, which can be delivered via long line.
There are also problems with injecting Gd compounds such as Magnevist but these
are very rare. In a survey-based study covering 687,255 gadopentetate dimeghtmine
injections 314 non-allergic reactions, 107 mild, 28 moderate and S severe allergic
reactions werc reported (Murphy et af 1999). Although these rates are low with only
0.001% of reactions being classed as severe, emergency medical treatment must
always be close at hand.

Scan times for this protocol can be up to 6 minutes 30 seconds for each scan
therefore patient motion is a problem. These motion problems can be reduced to a
minimum by seeking patient co-opcration and using head restraints to Jimit motion. It
is also common procedure to insert an intravenous line before the study is started to
negate the need for needle insertion half way through the procedure. However, none
of these methods can guarantee the patient will remain still during the procedure, In
fact, because there is a break in the imaging sequence, to allow the contrast agent to

be delivered by long line, the patients often use this time to reposition themselves if
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they feel discomfort (Brennan ef al 1999). This motion results in misregistration of
the pre and post-injection data, possibly reducing both the S/N and vcssel resolution.
It can also result in artefocts appearing in the data either masking vessels of interest
or masquerading as such vessels.

Various studics have been performed to examine motion correction during
scanning. These include physiclogical gating (Runge ef al 1984), reordered phase
schemes (Bailes ef of 1985) and the usc of navigator pulses (Ehman ef af 1989).
However, in the MSV protocol, there is a pausc during the scans were motion can
occur and none of the correction algorithms can account for motion inter-scan. The
gap between the two scans is the occasion during the protocol that motion is most
likely to occur. Therefore it is important to determine if this motion does commeonly
occur and if so does correction improve the final subtraction data.

It is possible to correct for inter-scan motion using registration software to
compare the pre and post-contrast datu. Such sofiware is designed to determine the
best positional correction to account for the intervening motion. One such software
package is MATCH which was designed and written by a group at Hammersmith

Tlospital, London (I{ajnal ef af 1995).

2.42 MATCH Registration Software

MATCH is a command line based program designed specifically to realign
3D Ti-weighted serial data sets based on a chi-squared minimisation between the

iwo data sets (Press ef af 1992), where chi-square is calculated using;

7= Upg—14) @.8)

voxels N voxeis
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where I and I3 are the infensities of corresponding voxels in the images A and B that
are being positionally matched and Nygyess i the nuimber of voxels used in the
calculation. 7 is reduced by calculating new valucs for I as image B is moved
relative to A using rigid body rotations and translations. The software applies 3 rigid
body translations (x,y,z) and 3 rigid body rotations (Pitch, Roll, Yaw) to one of the
data sets and for each set of rigid body parameters calculates a new y°. The software
aims 10 produce a set of translation and rotation parameters that result in a minimum
value for 7. Calculation time is reduced by only taking voxels into account when
they are above a certain threshold in image A and where there are corresponding
pixels in image B.

During eptimisation of the alignment subvoxel shifts are required to enable
high alignment accuracy. 'I'o minimise errors in 7° caleulation, and thus improve the
alignment accuracy, good quality intcrpolation is required.

To cnable fractional pixel shifts in MRI data it is necessary to use an
interpolation fimetion appropriate to the nature of the data (Hajnal et ol 1995). MRI
data is collected using Fourier techniques with the data collected over a bounded
region of k-space. Due to the existence of these boundaries the frequency of the data
is strictly band limited. Thus for an MR image which has been Fourier transformed
the equivalent point spread function would be a sine function (Jain 1989). This is
particularly true for 3D data sets that are collected with phase-encoding in two
directions. These data sets are band limited in all directions. Thercfore, theorctically
it is possible to interpolate 3D MR images using sinc interpolation without
introducing errots.

Sinc interpolation is, however, a computationally intensive technigue, which

if employed fully to large 3D data sets would result in prohibitively long
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interpolation times. Therefore, a windowed sinc technique is employed with a
Hanning window function, which is a compromise between accuracy and
computational time (Hajnal ef af 1995).

Hajnal er al also suggest that to ensure good registration accuracy, that
structures that change between the two scans should be removed from the
registration computations as local changes can introduce global errors in registration
(Hajnal ef af 1993). In the data presented here the main difference between the two
data sets is the presence of the contrast enhancement. Cettain structure’s signal
intensity significantly changes after contrast injection within the head, including
venous vessels, skin and nasal tissues. Therefore these structures must be segmented
out before the registration algorithm is applied. For the algorithm to ignore these
tissues in the calculation they must be segmented from the post-contrast data, as it is
nol obvious from the pre-contrast data where thesc structures are.

It is also possible that if the patient moves their head that the brain can
change position within the cranial vault, as it is not rigidly fixed in place. Therefore,
the relationship between the brain and its attached structures can change with respect
to the skull, muscle and other extracerebral structures. Therefore, as well as
removing the enhancing structures from the calculation the remaining cxtracraniat

structures must also be segmented out.

2.4.3 Study Aim of This chapter

This study aims to determine the effects of using the MATCH registration
software on the venograms produced using the MP RAGE subtraction technique. By

subjectively and quantitatively assessing subiraction data quality it will determine if
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the use of registration techniques improves the quality of the clinical information

available to the radiologist.

2.5  Comparison of Registered and Non-Registered Subtraction Venograms

2.5.1 Methods

2.5.1.1 Imaging Protocol

Pre and post-contrast data were collected on 20 patients using a 31D MP
RAGE sequence, after obtaining ethical approval. The imaging parameters varied
during the study, reflecting the differing clinical imaging protocols required for the
differing pathologies under investigation. The examinations included; & patients with
meningiomas, 5 for suspected venous thrombosis, 3 with gliomas, 3 with adenomas,
1 with a cyst, 1 with a malignant neoplasm and 1 patient with normal imaging. The

imaging parameters varied within the following constraints; 1R=10 ms, TE=4 ms,

256x%256, FOV = 250 mm. Slices were sagittal in orientation. The maximum
acquisition time for each MP RAGE acquisition was 6 mins 46 seconds.

The imaging was conducted on a 1.5T imaging unit (Siemens Magnetom
63SP). Patients werc asked to stay as still as possible throughout the imaging
procedure with their head held in place with padding (see figure 2.5). The pads were
sceurcd at maximum pressure consistent with comfort, by twe locking bars. A long
IV line was inserted in the patient before the imaging protocol had begun. After
initial scanning, including pilot scans, the first MP RAGE sequence was run before
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contrast medium injection. The contrast medium (Magnevist) was administered as
soon as the pre-contrast MP RAGE sequence had finished in the form of a 20 second
bolus, via the IV line. This required a radiologist to enter and leave the room. The
long line was used avoid having to slide the patient out of the magnet for the
injection and then to slide them back in. Had this been required significant patient
motion would be likely as well as introducing alignment errors. The post-contrast
MP RAGE sequence was started as soon as the bolus delivery was complete and the
radiologist had left the room. The data was transferred to a Sun Ultra 1 170MHz
workstation where software (conv_analyze, written by Martin Connell, Department
of Clinical Physics, Edinburgh University) was used to convert the ACR/NEMA

(American College of Radiology- National Electrical Manufacturers Association)

data format (Wang et al 1988) data to Analyze format.

Figure 2.5: The head coil fixation system used for the data collected in this thesis. The two pads can
be moved in and locked in the tightest position the patient can reasonably bear
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2.5.1.2 Image Processing Procedure

Before using the MATCH software the post-contrast data was segmented in
two stages. In stage one the extracerebral tissue was removed by manual
segmentation, leaving only the brain parenchyma, including the brain stem down to
the foramen magnum, the enhanced venous structures and the arteries. This
segmentation was approximate and in all cases included some non-enhancing extra-

parenchymal material (see figure 2.6)

Figure 2.6: An example of the regions drawn for the purposes of the final visualisation mask. Note
that the regions extend slightly beyond the brain and cerebral vessels.
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This segmented data was used as a mask to define the data to be included in
the final MIP visualisation. By restricting the data used for the MIP calculation to
only the brain and the cerebral vessels this segmentation was achieved using
software written by Martin Connell (3dMRI). On each sagittal slice regions were
traced that contained the data to be retained. All data outside these regions was later
removed. The regions were drawn on every slice until the brain and vessels to be
retained had been fully enclosed within the rcgions. The regions required
approximately 2 hours of operator time per subject to draw and were drawn by the
author (see figure 2.6).

In the second stage the data was further segmented removing contrast-
enhanced (high signal) data providing the MATCH software with a map of voxels to
use in the realignment calculations (realignment mask). This was achieved using a
seed growing technique. Initially large vesscls were selected as a seed point and
thresholds were set around the value of this pixel, by operator judgement, that would
allow the seed point to grow into voxels containing high signal vessels. The
thresholds were limited so that brain parenchyma was not included. All data
connected to the initial seed point and within the determined thresholds were
removed.

As all of the vessels within the brain do not appear connected in MR images,
this did not remove all of the vessel data. Therelore, [urther seeds were used and
grown in the same manner until the operator was satisfied that all enhancing vessel
structures had been removed.

It should be noted that this technique also removed the high signal arteries.
These vessels do not change in signal between the pre and post-contrast data sets,

and therefore, these could be kept in the realignment mask. However, selectively
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segmenting the venous vessels would have added considerably to the time required
for the brain segmentation.

This fully segmented data had all the main structures that change between the
two scans removed. Therefore the chi-squared minimisation algorithm applied by
the MATCH software used this data to determine the best realignment of the brain
parcnchyma. The pre-contrast data was realigned to the post-contrast data using the
MATCH algorithm,

Once the MATCH algorithm had calculated the 6 rigid body realignment
parameters it used these parameters to realign the pre-contrast data to the post-
contrast data. Therefore, if this data was subtracted from the post-contrast data it
would produce a data set highlighting areas of contrast enhancement. However, this
study is only interested in the contrast-enhancement within the brain vessels.
Therefore, the extra-cranial enhancement had to be removed. This was achieved by
producing a binary mask from the first segmented data which contained the
enhancing vessels. In this hinary mask any voxel that had not been segmented out
was set to one with remaining voxels set to zero. This mask was multiplied with the
pre and post-contrast data sets, before subtraction,

After subtraction a MIP algorithm was then applied to the subtracted data to
produce MIP venograms. These venograms could be produced in any oricntation,
using the 3DMRI software.

To allow these realigned venograms to be compared to venograms that were
produced without realignment, 4 second subtraction data set was produced. I'he pre
contrast data set was subtracted from the post-contrast data without using the
MATCH algorithm to realign them. The same mask used to segment the final

subtractions in the realigned data was again used to allow the production of the non-




aligned subtraction venograms. These two sets of venograms could now be directly
compared allowing the effects of the realignment software o be examined, From
here in this chapter the data sets will be referred to as the matched and unmatched
subtraction data.

All of the image processing in this chapter was conducted on a Sun

Ultra 1 170 MHz worksiation by the author.

2.5.1.3 Quantitative and Qualitative Assessment Protocol

The matched and unmatched subtraction data were compared in two ways.
Firstly, for each set of data signal Lo noise (S/N) values were calculated (see
equation 2.9). Three regions of interest (ROI’s) were drawn in the matched
subtraction data where there were no discernible veins present. The average pixel
value within these three regions was representative of the noise within the matched
data. The same three regions were used to produce noise data for the unmatched

data sets.

y

SNR = Os (2.9

[ ]
snb

where S, is the signal measured from the sagitial sinus and Ny, is the noise from the
subtraction background.

ROI’s were then drawn on, and contained within, a section of the sagittal
sinus in the matched subtraction data. The mean pixel value within this RO]
represents a value for the signal within the matched subtraction. Care was taken to
avoid the superior aspect of the sagittal sinus. This was because in some patients the

signal decreased close to the end of the coil and within the region of maximum
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inhomogeneily. The same signal regions were used for the unmatched data. Student
paired T-test statistics were then calculated compating S/N values for matched and
unrmatched data with each patient acting as their own control. This resulted in
quantitative comparison of the two data sets.

A second qualitative comparison was also conducted. For this
comparison lateral MIP’s were produced for each data set. The window levels were
equalised for both the matched and unmatched data, allowing direct comparison of
the images. Each paticnt’s matched and unmatched MIP’s were randomised and the
images were presented to two experienced neuro-radiologists. They were asked to
examine, in a blinded manner, the randomised matched and unmatched MIP data to
determinc which image was of the best quality. They were asked to take into account
signal o noise, vessel resolution and the existence or non-existence of artefacts. This

data was then comparcd to the signal to noise data.

2.5.2 Results

2.5.2.1 General Results

The time required to perform MATCH co-registration was on average 22
hours. The majority of this time was spent reslicing the data using sinc interpolation.
The manual segmentation took on average a furthet 2 howrs for 128 slices. An

example of a non-maiched and matched subtraction are shown in figure 2.7.
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Figure 2.7: Lateral MIPs from subject 8. (a) unmatched (b) matched. In the unmatched MIP there are
several artefacts due to miss-registration such as unsubtracted arteries. The shape of the corpus
callosum can also be seen. The matched data has better vessel resolution and less artefacts. Here the
corpus collosum has been correctly subtracted out. The arrow in (a) indicates an edge mis-registration
artefact.

2.5.2.2 Quantitative Results

The S/N ratios are summarised in table 2.1. In 3 patients it was not possible to
produce S/N data as the sagittal sinus was either occluded or was very close to the
end of the imaging coil and thus non-uniform. The overall average S/N is higher for
the matched data than for the non-matched data. This difference is statistically

significant with p=0.003 and with a difference 95% confidence interval of 0.1354 -

0.5481.

N
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Patient Matched S/N Matched S/N Unmatched S/N Unmatched S/N
Nuniber Standard Dev Standard Dev

1 2.72 1.21 247 0.96
2 2.83 1.39 2.83 1.36
3 2.24 0.98 225 0.99
4 2.05 0.88 £.93 0.81
5 3.25 1.36 2.94 1.39
6 Poor Sag Sinus Poor Sag Sinus

7 3.61 1.44 206 0.76
8 3.55 1.61 2.85 1.17
9 2.96 1.17 2.83 1.05
10 277 1.15 2.57 1.01
11 328 1.60 292 1.22
12 Poor Sag Sinus Poor Sag Sinus

13 2.67 1.29 2.60 1.23
14 2.86 1.33 2.10 0.82
15 3.24 1.47 3.09 1.35
16 291 1.53 2.82 1.38
17 Poor Sag Sinus Poor Sag Sinus

18 2.81 1.24 2.30 1.25
19 3.11 1.42 2.45 1.05
20 2.02 0.90 2.06 0.84

Average 2.88 2.53

2.5.2.3 Qualitalive Results

Table 2.1: Comparison of matched and unmatched signal to noise resulis

A summary of the result of the qualitative image assessments are shown in

table 2.2, Observer 1 rated the matched data of better quality in 80% (16/20) of

patients. In 15% (3/20) observer 1 could not observe any difference and in 5% (1/20)

of cases observer 1 rated the unmatched data better. Observer 2 rated the matched

data ol better quality in 85% (17/20) of patients. In 15% (3/20) observer 2 could not

observe any difference. In no cascs did observer 2 consider the unmatched data was

better. Both observers agreed in 75% of cases. Kappa statistics were not used to

comparc the inter-observer agreement. This was due to the high proportion of

agreement between the observers when the matched data was better, 70% (14/20).




This high prevalence within one category can lead to misleading kappa values
(Altman 1991), It is, however clear from the agreement data that the matched data

were judged to be of higher quality.

Patient No. Observer 1 Observer 2
1 M M
2 M ND
3 M ND
4 NM M
5 M M
6 ND M
7 M M
8 M M
9 M M
10 M M
11 M M
12 ND ND
13 M M
14 M M
15 M M
16 ND M
17 M M
18 M M
19 M M
20 M M

Table 2.2 : The qualitative resnits for matched and unmatched comparison
The entrics for each observer correspond to the venogram that they deemed to be of higher quality
(M = matched MIP, NM = unmatched MIP, ND = no noticeable differ¢nce)
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2.5.3 Discussion

It is often assumed when doing subtractions between two data sets within the
same study, that there is little or no movement between the data sets. As far the
author is aware no publication exists that cxamines the effects of such movement
over such short periods of time in the MR scanner. Therefore, this study set oul to
investigate whether movement was a problem within inter-study data sets using a
registration program to allow comparison between matched and unmatched data.
This study also set out to investigate if by correcting any inter~-scan motion that does
occur, it was possible to improve the data quality when producing contrast enhanced
subtraction venograms. If this was the case then it would be worth further
investigating the methodology used to realign the data sets to optimise the technique
for future use.

Two separate methods were uscd to determine the differences between data
that had been realigned with data that had not. Quanititative measurement of S/N
allowed rigorous asscssment of any differences in the final subtraction data. This also
allowed determination of the significance of any differences detected. It was
expected that any difference in S/N would translate into detectable changes in the
final MIP which might affect clinical diagnosis, therefore following the S/N results
two observers were asked to compare side to side MIP outputs from both of the duta
sets for all of the subjects. To avoid any observer bias neither obscrver knew which
images came from the matched and unmatched data sets, and neither observer had
any information on the other’s results. Both observers, however, had experience of

looking at MIP venograms previously produced within the department.

59



The data from this study suggests that using registration software on pre and
post-contrast data sets can improve the visualisation of the cercbral venous system.
S/N did significantly improve after the data had been realigned using the MATCH
algorithm. Also in the majority of cases the (wo trained observers determined the
matched data sets of being of higher quality than the unmatched data sets. Therefore,
it can be concluded that image realignment does indeed improve the data output from
contrast-cinthanced subtraction venograms. 'I'his also confirms that in many clinical
imaging protocols of this nature that inter-scan motion is a problem that can
significantly reduce the quality of subtraction data produced from it. For this study
this is especially important clinically when the small cortical veins are involved in
the disease process. It would also be important if higher resolution were used with
smaller voxels or thinner partitions. Co-registering this higher resolution data would
increase the visibility of very small vessels. This would allow determination of small
vessel thrombosis as well as thrombosis of the larger vessels.

On only one occasion did an observer decide that the unmatched data was of
better qualify. On this occasion the observer stated that there were more vessels
visible in the unmatched data. Howevet, it is likely that these vessels were in fact
artetacts due to the mis-regisiration of the data. The false veins could be created
when an artery has been mis-registered and thus is not fully subtracted out or when a
bright structure’s edge is mis-registered and overlays a dark area when it has not
been matched. This phenomenon is most common around the inferior surface of the
frontal lobe where the brain interfaces CSF and bone (figure 2.6(a)). Motion artefacts
are common here and are likely to occur due to the patient raising their head to look
out of the magnet bore, towards their fect between the imaging sequences. This is

despite express instructions to try and keep still throughout the procedure.
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There are several possible uses for high quality MR venograms. Experience
in this and other centres have demonstrated their usefulness in operative planning
where the surgeon needs to know the relative position of the venous system with
respect to the cortical structures and underlying pathology (Kikinis ef a/ 1996). Such
venous visualisations have been used in this department and an example of one is

shown in figure 2.8.

Figure 2.8: An example of the venous data overlayed onto MRI 3D cerebral data. The cerebral data
was extracted from the pre-contrast data and displayed using Analyze (Mayo Foundation, Rochester,
MN)

[t is also important for visualising and delineating the extent of cerebral
venous thrombosis. In this study patient 11 had previously been diagnosed with a
cerebral venous thrombosis (CVT) using CT. This was present in the left transverse
sinus. The MRV unmatched data also depicted the existence of the CVT, however, in
the matched data the extent of the CVT is better defined (see figure 2.8). Being able

to accurately depict the extent of CVT is important especially if serial studies are
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examining the effects of thrombolysis or anticoagulant treatment. Co-registration

should be used when examining such acute conditions.

Figure 2.9: Inferior-superior MIP’s from patient 11. (a) unmatched (b) matched. The long arrows
show the area of thrombosis. The co-registered data delineates the thrombosis more clearly. The short
arrows in (a) show arterial contamination of the unmatched data. This does not appear in the matched

data.

Fig 2.9 also illustrates the possibility of arterial contamination if the data is
not co-registered. The unmatched data contains what appear to be veins emerging
from the posterior part of the cavernous sinus and travelling medially. However,
these vessels are not visible on the matched data. After investigation of the
subtraction and pre-contrast data, it emerged that the vessels were arterial
contamination from the right and left internal carotid, as it entered the skull base at
the foramen lacerum. Thus by using co-registration arterial contamination in the

subtraction data can be kept to a minimum.



Currently, the co-registration processing time is lengthy at about 2 % hours.
However, with increasing computing power this time will reduce. After this study
was completed a new computer system was installed (Sun Ultra 10 440MHz). This
was found to reduce the co-registration time to about ! % hr.

Another way of reducing processing time is to use a less rigorous reslicing
algorithm. Linear interpolation is often used as it is quicker to run and easy to
implement (Woods et af 1992). However, as was discussed in section 2.4.2, sinc
interpolation is the best suited method for reslicing MR images (Jain 1989, Hajnal ef
al 1995).

The manual segmentation in this protocel was also time consuming and
required a trained operator throughout. ‘Uhere are several groups developing
automatic segmentation algorithms for extraction of brain parenchyma. However,
these algorithms have not yet been designed to provide correct scgmentation of
contrast-enhanced images which is required for this protocol (Lemieux et ol 1999
and 2003 ,Saced et @/ 1997, Lerski ef af 1993,Cline et af 1987, Thacker & Jackson
2001). However, it may be possible to reduce segmentation time requirements by
developing a new segmentation algorithm.

This chapter has focused on using pre and post-contrast subtraction
data to visualise the cerebral vesscls. This enabled subjective quality and signal to
noise measurement to be made with respect to the effects of inter-scan patient motion
on the subtraction data. Flowever, there are other uses of contrast-enhanced 3D data
sets that also depend on this type of subtraction technique. Therefore, the finding that
alignment correction is necessary in one application may have more widespread
implications. Chapter 3 will investigate the cffects of inter-scan motion on a tumour

volume measurement technique. This will enable the effects of inter-scan patient
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motion to be quantified by examining the effects of alignment correction on the

tumour volume measured.
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Chapter 3

Tumour Volume Measurements in the Clinical Study
of a Modified Herpes Simplex Virus in the Treatment
of Glioma: The Effect of Registration on Volume
Measurement




3.1 Introduction

3.1.1 Overview

This chapter investigates the effects of pre and post-contrast realignment on
contrast-enhanced tumour volume measurements, using the subtraction data. T'umour
volume measurements were previously measured using this technique in data sets that
had been aligned visually using a manual technique (the author of this thesis made the
tumour volume measurements in Rampling et af 2000). At the time of publication no
technique existed that could automatically realign the pre and post-contrast data sets
quickly and accurately. Thereforce, (o avoid the requirement for large amounts of
manual segmentation the data sets were visually rexligned. In the Rampling study this
method was deemed sufficient as the main aim of the study was to determine toxicity
of the agent, and not to determine treatment efficacy and tumour volume changes.

The results from chapter 2 suggest that accurate realignmen( using an
algorithm such as MATCH may be required to ensure that tumour volume
measurements are consistently accurate, in serial studies where changes in tumour
volume are of specific interest. This chapter, therefore, investigates the hypothesis
that tumour volume measurement from pre and post-contrast subtraction is most
accurate when sub-voxel realignment is applied. Tumour volumes are compared for
three different pre-processing protocols: no realignment, manual (visual) realignment
{Rampling et of 2000), and sub-voxel (MATCH) realignment. As far as the author is
aware this has not been previously investigated

The resuits from this study along with the results from chapter 2 snggest that

inter-scan patient motion is a significant problem in scanning protocols of this nature.
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All of the work in this chapter was conducted by the author with the exceplion
of the data acquisitions which were performed by radiographic staff, This work
resulted in two presentations at international conferences (Brennan ef af 2000, 2001).
The final data and results form the basis of a paper in preparation for journal

submission.

3.1.2 Contrast-Enhanced Tumour Imaging

As was described in chapter 2 subtraction pre and post-contrast 312 Il -
weighted imaging is a useful clinical tool for visualising the cerebral venous system in
three dimensions. However, the Magnevist (gadopentetate dimeglumine) contrast
agent used for this study is more often administered in cerebral imaging to allow
visualisation and grading of intracranial tumours (Runge ef o/ 1989, Runge ef ¢/ 2001)

Magnevist is ideal for cerebral lesion imaging for two main reasons. Firstly, its
paramagnetic properties significantly reduce T1 relaxation times in any tissue where
the contrast agent is present. When T1-weighted sequences are acquired the presence
of the Magnevist conlrast agent within a tissue results in increased signal due to the
T1 shortening. Secondly, due to the hydrophilic naturc of the contrast agent it is
unable to cross a fully intact blood brain barrier (BBB). Therefore, any area of
contrast enhancement within the brain parenchyma, excluding vessels, indicates the
presence of a local break down in the BBB, suggesting disease or injury {Ménsson
and Bjernerud 2001).

A large number of studies have used this contrast agent (and similar agents)
for investigations in to cerebral lesions and more specifically have used it to
determine changes in lesion size and extent in serial MR studies (Markert et o/ (2000),

Haney ef af (2001), Schellinger et o/ (1999), Rampling et al (2000)).
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BBB breakdown can occur in a number of clinical condittons, including MS
(Powell 1983, Cotton 2003 ) and traumatic brain injury (Lenzlinger 2001), howevet, it
is for tumour imaging that Magnevist is most commonly used in cerebral MRI.

BBB breakdown in tumours is most often a direct consequence of
angiogenesis where the new tumour microvessels characteristically lose their blood
brain barrier properties and leak fluid into the brain (Seitz & Wechsler 1987,
Groothuis er ol 1991). Investigations of the ultrastructwre of human gliomas has
revealed opening of the intermicrovessel endothelial cell tight junctions (Loug 1970,
Barr-Sella er al 1979, Nir et al 1986, Shibata 1989). These ‘leaky” junctions result in
increased permeability in the tumour region and hence an overall breakdown of the
blood brain barrier.

Not all tumours, and not all grades of tumours results in ‘leaky’
microvasculature. A recent publication by the World Health Organisation (WHO
2000) describes the histological and radiological findings for tumours of the central
nervous system and describes a number of cerebral tumours that do not result in
signilicant BBB breakdown. However, BBB breakdown almost always occurs in
glioblastoma multiforme (glioblastoma) which is a malignant form of glioma
(astrocytoma grade 1V) (Taveras 1996) and is the most common intracranial ncoplasm
in adults {Collins 1998, Salcman 1985).

Astrocytomas, and more specifically glioblastomas, are poorly circumscribed
tumours and cven if distinct borders are seen microscopically, close scrutiny may
show that tumour cells extend beyond the apparent borders that represent the
neoplasm (DeAngelis 2001). Tumour cells can be found several centimetres away

from the tumour and in some cases can extend throughout the entire hemisphere or
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large portions of the brain in a condition known as gliomosis cerebri (Jennings et al

1995, Kelly et al 1987).

Figure 3.1: An example of a transverse, T1-weighted, MR slice in a glioblastoma patient following
contrast injection. The enhancement pattern is typically ring-like (thick black arrow) suggesting active
tumour surrounding a central area mainly consisting of necrotic tissue (long white arrow). There is
often an area of edema closely associated with the tumour (thick white arrow)

Malignant astrocytomas, which include glioblastoma multiforme, have a
typical appearance in MR images (See figure 3.1). Following contrast injection T1
weighted images typically display irregular contrast enhancement, which is often ring
like. The lesion is also surrounded by edema, and mass effect can be severe enough to
cause herniation. The tumour typically involves white matter and can spread across
the corpus callosum (DeAngelis 2001). It is possible to use the changes in the volume
of contrast enhancement to determine changes in tumour extent.

Glioblastoma remains a formidable problem in CNS cancer medicine

(Rampling ef al 2000). Following conventional therapy with surgery, radiotherapy

69




and chemotherapy the median survival, following diagnosis, is approximately 1 year
(Scott et al 1999). Progression following primaty therapy is associated with short-
term survival (average 5 months) (Rajan ¢f al 1994), Therefore, there are various
ongoing studies attempting to develop more advanced treatments for this condition
{Rampling et af 2000, Markert ef of (2000), Hassenbusch er a/ (2003), Gariboldi et al

(2003)).

3.1.3 Glioblastoma Treatment Mecasures

With the development of any new treatment agent, it is important to determine
its treatment efficacy. In glioblastoma this will include determining various
parameters at different time points within the treatment including immunological
markers, histological matkers, tumour perfusion, and tumour volume. Imaging,
including MR imaging, can play a vital role in determining treatment efficacy and
safety (Rampling et af 2000, Markert 2000), with tumour volume mecasurement
playing a vital role in determining the effects of different treatments.

In Rampling et al (2000) tumour volume measurements were conducted as
part of a phase 1 toxicity trial for a novel mutated herpes simplex virus treatment for
glioblastoma. This replication competent virus is injected directly into the
glioblastoma and has been specifically mutated (o replicate in actively dividing but
not terminally differentiated cells (Brown ef af 1994). The aim of this study was to
determine the safety of the virus when injecting it directly into the tumour. The virus
was specifically designed to replicate in fast dividing tumour cells leaving brain cells

unaffected. Therefore, the study observed the normal brain tissue surrounding the
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injection site closely for any signs of infection or inflamamation resulting directly from
the virus agent.

As an integral part of this study tumour volumes were measured using both
MRI and SPECT to help determine the effects of the virus agent. For the MRI tumour
volume measurements the following protocol was applied.

The MRI data sets were acquired on a 1.5 T Siemens Magnetom MR scanner.
Tumour enhancement volumes were measured using a threshold method applied to
realigned pre and post-contrast MP RAGE 3D T1-weighted data sets. The data
collection methods were the same as those described in chapter 2. The pre-contrast
data was subtracted from the realigned post-contrast data resulting in a data set
highlighting areas of enhancement such as veins, areas of BBB breakdown (tumour
related), skin etc. To avoid the necessity of segmenting the brain tissue in these data
sets, allowing automatic registration, the pre-contrast data was manually rotated and
translated until a good visual registration was achieved

Before tumour related enhancement volumes could be measured other
enhancing structures where excluded from the data. To achieve this an experienced
neuro-radiologist (Prof Donald Hadley) drew regions of intercst around the tumour
related enhancement with the aim of excluding these structures. The regions were
drawn using Analyze (version 3.5, Mayo Foundution, Rochester, MN) image
processing software, Volume measurements were restricted to these regions of
interest.

Background noise in the subtraction images was determined by drawing
regions of interest in slices from the opposite hemisphere to the main body of the
neoplasm (sagittal plane). These regions were drawn in areas where no contrast

enhancement or subtracted structure counld be visualised. A threshold for enhanced




% NN

tumour tissue was set to 2.5 standard deviations above the average noise level and this

threshold was applied to the data within the tumour region of interest. The number of

voxels within this threshold was counted and multiplied with the data voxel

dimensions providing a measurcment for the tumour related enhancing volume. These
volumes were measured at the three time points reguired by the study, allowing
comparison of volumes over time.

This method of tumour volume measurementt is easier and quicker than full
manual segmentation, which requires accurate regions of interest to be drawn. The
regions of interest required for this method need only contain the data of interest and
exclude unwanted enhancing data, Therefore, the regions can be drawn quickly
reducing the requirement for skilled operator time. Also by registering the data sets
manually, removing the requirement of segmenting the brain parenchyma, further
time was saved in the analysis procedures

However, the threshold method of tumour volume measurement is likely to be
affected by the accuracy ol the registralion between the pre and post-contrast data
sets. Any structure visible in the background subtraction would affect the threshold
level set to determine the tumour volume measurements. Poorly aligned data might
also introduce artefacts into the tumour related enhancement resulting in incorrect
volume measurements. Thercfore, this chapter investigates the effects of using the
MATCH realignment softwarc on the resulting tumour volume measurcments. [t
compares the volumes produced with and without realignment and concludes on the
requirements for realignment in these data sets. It also compares (he results with those

determined by registering the data sets manually,
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3.1.4 Measurement of Scanner Drift

When using this technique to determine changes in tumour volume over
extended time-scales it must be assumed that the subtraction background
characteristics remain invariant over these time scales. On the scanner used for this
study, for each imaging sequence hardware gain scttings are determined from initial
tuning pulses before each sequence starts. Therelore, gain setlings will be different
aller the injection of the contrast agent, due to the overall increased signal intensity
within the patients head. This will result in different contrast characteristics for the pre
and post-contrast data sets.

Differing contrast characteristics are not, however, a problem if the differences
between the two data sets are similar at different imaging session. As has already been
discussed measurements of contrast enhanced regions in MR1 are not direct
measurements of tumour volume. However, changes in contrast-enhanced volume
over time are a good indication of tumour progression or regression (Nelson ef o/
1999). Therefore, the measurement of interest in these studies is not the absolute
contrast-enhanced volume, but the change in contrast-enhanced volume over time.
Thus, if the contrast differences, for individual patients, between the pre and post-
contrast data sets are invariant over the long periods of time that encompass these
studies then this method would provide a good method for measuring the extent of
tumour progression,

To test the hypothesis that the differences do not vary over time, for each of
the subjects detailed in this chapter the contrast to noise (CNR) of the original pre-
surgical scans alrcady analyzed were compared to the CNR post-surgical scans. As
well as comparing the CNRs directly the changes in CNR from pre to post-contrast

data were also compared,
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3.2 Methods

3.2.1 Testing the Effects of Realignment on Tumour Volume Measurentents

Nine palients following the phase 1 trial HSV protocol were scanned using the
protocol displayed in table 3.1 This protocol contained pre and post-contrast 3D MP-
RAGE data collected using a similar protocol to that described in chapter 2 (section
2.2.1.1). The main difference in the protocol occurs at step 7 whete there is a five
minute pause firom the end of the injection to the start of the pos-contrast MP RAGE
scquence. This was to allow Tor better tumour uptake of the contrast agent. The pre
and post contrast data sets were realigned using the MATCH algorithm after the brain

parenchyma had been manually segmented, ensuring no enhancement remained in the

realignment mask.

Step in Protocol

Description of Scan/ Procedure

Transverse localised

Coronal Localiser

Sagittal Localiser

'| T2 Transverse sequence, 20 slices tilted to AC/PC line

Pre-contrast MP RAGE sagittal

Give contrast via long line

Wait 5 minutcs from the cnd of the injection

ool~alen itk lwiro|—

Post-contrast MP RAGE sagittal

Table 3.1: The imagiﬁé protocol used for the HSV trial. The 5 minute wait at step 7 was to ensure

Following realignment the realigned pre contrast data was subtracted from the
post contrast data, producing a realigned subtraction data set. For comparison a

second subtraction data set was produced by subtracting the non-aligned pre-contrast

good contrast uptake in (he tumour

data from the post-contrast data.




To allow tumour volumes to be measured for each of the subjects, the aligned
subtraction data was loaded into the Analyze software package and an ROI was drawn
around the tumour enhancement by the neuro-radiologist to ensure that contrast
enhancement from within the ROI was from tumnour only. Each subject’s ROI was
stored for use with both the non-aligned and aligned subtraction data sets. 'I'he ROCs
for the mannually realigned data sets had previously been drawn and used to calculatc
enhancement volumes. These regions werc not available for use in this study as they
had not been digitally stored. Therefore, there will be differences in the ROIs used for
these measurements.

To enable thresholds to be set to determine the volume of tumour
cnhancement, ROIs were drawn on the aligned subtraction data set, in areas where
little or no contrast enhancement was present. Care was taken to ensure that these
areas were contained within the brain parenchyma. These regions would provide the
mean and standard deviation of the background noise in the subtractions. The same
regions were used to determine the mean and standard deviations of the noise in the
non-aligned data sets,

Using the method described in the previous section, volumes were calculated
for both the MATCH aligned and non-aligned data sets, using the corresponding noise
resulis. This would determine the effect of misalignment on measuring tumour
volumes using this method. Any differences between the aligned and non-aligned
results would be a combination of two effects. Firstly, any differences in background
noise will result in different thresholds being set for the corresponding data sets. This
is likely Lo bave a significant effect on the volumes measured. Secondly, due to poor
alignment there will also be subtraction errors in the tumour data, possibly increasing

or decreasing the apparent volume.




To investigate the tumour subtraction error separately the threshold vatue

determined in the aligned data set was also used to threshold the non-aligned data in

the repeat measurement. It is likely that any method using this subtraction technique

for tumour volume measurement will be affected by the threshold and realignment

CI1oxs.

3.2.2 Determining the CNR Drift

Conirast between two tissues A and B can be defined as:

Cup =5, 55
where S, and Sz are signal values from tissucs A and B.
Theretore, contrast to noise ratio can be defined as:

CAH - Sy SE

Ty Ty

CNR,, =

G.h

(3:2)

where g, is the background noise in the image. In this thesis o, was measured as the

mean of magnitude data on a specified background region of interest.

As part of the HSV treaument protocol MRI scans were acquired at three time

points during the study. The first scans werc collecied before the YISV agent was

delivered to the tumour. Typically these scans occurred between 0 and 3 days before

agent delivery. ‘The HSV agent was then delivered to the tumour region using a

sterotactic injection, which is a minimally invasive surgical technique.

The second set of MRI scans were collected between days 4 and 6 after the

agent delivery, It has previously been shown by the author, in work closcly related to

this thesis (Brennan ef a7 2001), that post-surgical inflammation can result in

increased uptake of Gd tracer in regions affected by operation, even after using such a
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minimally invasive technique. Therefore, these scans were excluded from this study,
due to possible changes in CNR as a result of surgical effects.

The third time-point where MRI scans were collected was between 27 and 66
days. At this time post surgical ellects will be minimal with relation to Gd tracer
uptake. Therefore, it is possible to determine changes in CNR over time differences
varying between, 27 and 66 days. More importantly it is possible to determine if the
differences in CNR between the pre and post-contrast data sets change significantly
between sessions.

The data collection methods have been described previously (section 3.2.1)
and were the same at all time points. Data was collected for the 9 patients in the study,
however, for two patient’s data the MPRAGE data at the later time point were
erroneously collected in coronal slices instead of the normal protocol sagittal slices.
These two patients were excluded from this study due to possible variability in
contrast introduced by acquiring the slices in a different plane.

Four different sets of data required CNR measurements; the pre and post
contrast data sets hefore surgery and the pre and post-contrast data sets after surgery.
The pre contrast data used in both the before and after surgery measurements was the
MATCH realigned pre-contrast data. Using the aligned data allowcd the same regions
of interest to be drawn for the pre and post-contrast data at the same time points.

Three sets of regions were required to determine CNR using the previously
defined signal A, signal B and oy (see equation 3.2) For this study signal A was
defined as white matter signal, signal B was defined as CSF signal and op was dcfined

as a background region outside the patients head (sce figure 3.2).
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Figure 3.2: Example post-contrast image with a white matter, CSF and background noise region
defined

White matter was a good tissue to use for measurement purposes in this study
as normal brain white matter is not significantly enhanced by Magnavist injection.
Therefore, signal differences detected before and after contrast injection, within white
matter, should almost exclusively be due to differences in scanner signal gain with a
random noise component. There are also large areas of white matter available for
signal measurement which are homogenous and continuous. Thus white matter tissue
is a good candidate for SNR and CNR measurements.

CSF signal was chosen as the second signal source for a number of reasons. In
this study the realigned data sets are being used for the measurements, allowing the
same ROI’s to be used in the pre and post-contrast data sets. These data sets were
aligned using only the brain parenchyma for the registration calculations. Therefore, it
was not possible to guarantee that non-parenchymal structures outside the brain were

correctly aligned. If signal B was measured from one of the non-parenchymal tissues
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such as muscle, ROI's drawn on the pre-contrast data would not necessarily overly the
same voxels or structures in the post-contrast data. Therefore the signal B
measurements needed to be taken from somewhere within the brain itself.

The most obvious structure to measure in this instance would be the grey
matter. However, the vast majority of the grey matter lies between white matter and
CSF in thin, convoluted strips of tissue, leading to two problems. The first is partial
volume effect. Due to the small thickness of the majority of the cortical grey matter
(of the order of millimetres) if grey matter regions were drawn a significant number of
voxels would be in volumes affected by white and CSF partial voluming unless care
was taken to ensure such voxels were excluded. A more significant problem occurs

where the patient has been unable to keep still during the scan.

Figure 3.3: An example slice from a post-contrast data set. The patient was unable to keep still during
the scan. This reduced the contrast between the grey and white matter making it difficult to define the
grey and white matter borders.

As figure 3.3 illustrates patient movement results in difficulty in separating the
grey matter from the adjacent white matter, due to blurring and signal contamination.

As the motion is occurring during the scanning as well as between the scans, this
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limits the accuracy of the alignment. Therefore, this would result in difficulty when
drawing regions for both the pre and post-contrast data sets.

To avoid these problems CST signal from the cerebral ventricles was
measured and compared to the white matter signal. Although the ventricles
themselves are not brain parenchyma, they were included in the realignment data sets
for this study, as the location of these structures arc physically linked to the location
ol the brain itsell. The larger dirnensions of the CSF within ihe ven(ricles, when
compared to the grey matter enable the regions to be drawn with greater confidence,
avoiding the boundaries with brain matter where signal blurring may occur.

The noise regions were drawn in the superior/anterior corner on slices where
CSF and whitc matter regions were drawn. Placing the regions in these locations
avoided contamination from the vast majority of motion artefacts (phase direction was
in the anterior/posterior direction).

All regions were produced using Analyze software’s trace tool within the ROIL
module. The corresponding pre and post-contrast data from betore surgery were
loaded into the same ROI module allowing the regions to be drawn with respect to
both data sets. The post surgery data sets were then loaded into a separate ROI
module with the aim of reproducing the same ROI’s by hand, so that the regions were
in the same areas before and after surgery. This would allow compatison of the CNR
figures at both time points. The statistics tool was then used to sample the data within
each region supplying the mean voxel values for the corresponding regions. Using
this information from cach data set, it was possiblc to calculate the appropriate CNR.
results. CNR was compared at both time points. The eftect of contrast injection on

CNR was also imvestigated.
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33 Results

3.3.1 Tumour Volume Measurements

Table 3.2 displays the tumour volume measurement results from the MATCH

aligned and un-aligned and the manually aligned data sets.

Non-Aligned Manually
Aligned Non-Aligned (Aligned Thresh) Aligned
Patient | Volume (em®) | Volume (cm®) Volume (cm’) Volume (cm®)
1 60.16 51.02 61.89 60.13
2 142.10 115.52 144.18 129.02
3 19.48 15.52 20.68 19.47
4 12.10 11.36 12.84 11.38
5 46.55 46.74 46.74 39.27
6 | 6232 52.77 63.87 53.67
7 23.65 27.72 25.21 24.50
8 9.07 4.10 9.3 8.56
9 32.39 28.68 33.19 31.43

Table 3.2: Tumour volume results from aligned and non-aligned data

When the aligned and non-aligned tumour volumes are compared using a two
tailed paired T statistical test which assumes normality of the data, p = 0.074, which is
a non-significant result. If it is assumed that overall there is a reduction in fumour
volume measured, as would be expected due to the increase in throshold values used,
and a 1 tailed test was used, p=0.037 which indicates a significant difference between
the groups. In all but two patients (patient 5 and 7) the tumours volumes measured
with the non-aligned data are smaller than the aligned data measurements.

1f the MATCH aligned is compared to the manually aligned data again using a
paired T test, p=0.076 in a two tailed test. Once again the significance is significant if
using a one tailed test (p=0.038), which again can be accepted as manual alignment

was not expected to be of as good quality as the MATCH alignment, once again
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resulling in increased thresholds and smaller volume measurements. When the
manually aligned data is compared to the non-alighed data there is no significant
difference detectable (p=0.23, two-lail). However, the overall average volume for the
manually aligned data is marginally larger (41.94cm’ compared to 39.27cm’)
suggesting a slight improvement in measurement accuracy if we assume the trend
towards the MATCH volumes is increasing accuracy,

When the aligned and the non-aligned data arc compared, when the same
threshold values are used with both data sets, the two (ailed paired t-test significance
is p = 0.001. Here there is no requirement to assume the overall direction of change in
tumour volume between the two sets of data and as there was no a priori information
to suggest the direction of the difference in this statistic is not relevant. However,
from viewing the data in table 3.2 it is clear that in all cases the tumour volume
measured is greater when the non-aligned data is used with the aligned data threshold.

It should be noted that although 1he data here were assumed to be normal this
may not be the case, For any fulure work where larger data sets are collected

normality should be tested and appropriate statistical tests used.
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3.3.2 CNR Variations

Table 3.3 displays the CNR results from all of the patients data sets at both

time points.

Before Surgery After Surgery
Patient Pre CNR | Post CNR [ Difference | Pre CNR | Past CNR | Difference

1 8.18 7.81 0.37 9,78 9.20 0.58
2 No Calculation No Calculation

3 12.92 12.48 0.44 12.81 11.056 1.76
4 740 5.68 1.72 7.49 5.08 2.41
5 11.51 7.28 4.24 11.85 9.26 2.58
8 11.06 10.47 0.59 10.11 B.23 1.88
7 7.92 7.61 0.32 10.75 9.75 1.00
8 No Calculation No Caiculatian

9 3.51 5.93 2.58 7.53 5.66 1.87

‘Fable 3.3: CNR results of pre and post-contrast data before and after surgery

To determine if there was any detectable scanner drift over time, the pre
surgical pre and post-contrast data sets were compared with the corresponding post-
surgical data sets. The data sets are paired, therefore to determine if there was any
significant ditference a paired sample T-tcst was used. No significant difference was
detected (p(two-tailed)=0.52). However, there is a lincar relationship between CNR
before and after surgery (see graph 3.1). This relationship has a Pearson correlation of

0.783 (p=0.001).
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Graph 3.1: Comparison of CNR before and after surgery

It should be noted that the before and after surgery scans were conducted at
different times for different patients, Graph 3.1 has a gradient of below 1 and crosses
the after surgery axis significantly above zero. This may suggest that CNR does
change over time. However, due to the large amount of variability in CNR from
patient to paticnt, it is difficult to provide any firm conclusions from this result.
Tumowr volume also increases for all but two patients over the course of this study
(Rampling et af 2000), therefore this may have an effect on the CNR and CNR
differences. Larger areas of enhancement would most likely lead to a decrease in the

CNR measured here.




To further understand the effects of contrast injection on CNR pre-contrast
CNR values were compared to post-contrast CNR values. Here there was a significant
difference with an expected drop in CNR (p(one-tailed)<0.001), The drop in CNR

was consistent for all measurements as can be demonstrated in graph 3.2.
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Graph 3.2: Compurison of pre and post-contrast CNR values at both study time points

‘The graph has a gradient very close to 1 suggesting a onc to one correlation
between pre and post-contrast CNR, The intersection of the graph is at —1.22, This
would appear to confirm the prediction that post contrast injection, the scanner

compensates for the increased signal within the brain by reducing the signal gain.




However, once again there was a significant amount of variation in the data from
patient to patient.

There was found to be no significant difference in the CNR differences (pre
minus post) before and after surgery. However, due to the variable nature of the CNR
results there was a significant amount of variation in the differences calculated with a
before surgery mean of 1.47 +1.49 and an after surgery mean of 1.73 £0.72. The large
standard deviations would reduce the likelihood of detecting significant differences
(this was also a result of the small sample). There may be a linear correlation between
the before and after surgery differences (see graph 3.3) , however once again the

sample is too small to assume such a relationship exists.
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Graph 3.3: Comparison of the CNR_difterences before and after surgery
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Despite the small numbers and lack of significance it should be noted that

there are large differences in CNR for paired data sets.

3.4 Discussion

The main aim of this chapter was to determine the effects of realignment on
pre and post-contrast data sets when the subtracted data is used to determine tumour
volume. As with any method of determining tumour volume there arc advantages and
disadvantages in using particular techniques. The threshold technique used in this
study does have several disadvantages.

As this study has shown the requirement for thresholding introduces errors
into the volume measurement due to the uncertainty in setting the value of the
threshold. By determining the threshold from the background subtraction noisc the
tumour volume measured cartries some dependence on any changes in the background
subtraction data. It has been shown that this background variation can be minimised
by ensuring the pre and the post-contrast data sets are correctly aligned resulting in an
accurate subtraction and therefore an accurate measurement of the subtraction
background noise. Data sets that are not fully realigned often have structure visible in
the subtraction data. Figure 3.4(a & b) illustrates this, showing the same slice from a
nov-aligned and MATCIT aligned data set. The presence of unwanted structure within
the subtraction data would result in incorrect background noise measurements

resulting in incorrect tumour volume measurements,
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Figure 3.4(a & b): (a) Poorly aligned pre and post-contrast data sets result in subtraction data that
displays unwanted anatomical structure compared to (b) realigned data from the same subject
The two arrows indicate an area within the tumour that appears to contrast-enhance on the unaligned
data but does not appear contrast-enhanced on the realigned data.

Following alignment of the pre and post-contrast data, there are still problems
using the threshold technique. When using this technique to determine changes in
tumour volume over extended time-scales it must be assumed that the subtraction
background characteristics remain invariant over these time scales. On the scanner
used for this study, for each imaging sequence hardware gain settings are determined
from initial tuning pulses before each sequence starts. Therefore, gain settings will be
different after the injection of the contrast agent, due to the overall increased signal
intensity within the patient’s head. This will result in different contrast characteristics
for the pre and post-contrast data sets.

Differing contrast characteristics are not, however, a problem if the differences
between the two data sets are similar at different imaging session. As has already been
discussed measurements of contrast enhanced regions in MRI are not direct

measurements of tumour volume. However, changes in contrast-enhanced volume
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over time are a good indication of tumour progression or regression (Nelson ef a/
1999). Therefore, the measurement of interest in these studies is not the absolute
contrast-enhanced volume, but the change in contrast-cnhanced volume over time.
Thus, if the contrast differences between the pre and post-contrast data sets are
invariant over the long periods of time that encompass these studies then this method
would provide a good indication of tumour progression.

To test the hypothesis that the CNR differences do not vary over time, for each
of the subjects detailed in this chapter the CNR of the original pre-surgical scans
already analyzed were compared to the CNR post-surgical scans. As well as
comparing the CNRs directly the changes in CNR from pre to post-contrast data were
also compared. From this work it was found that following contrast injection CNR did
change in a predictable way. However, it remains unclear if CNR and the difference
in CNR between pre and post-contrast CNR remains invariant over time,

It was difficult to reach conclusions regarding CNR changes using the
available data. The data for each patient was collected at different times during an
approximately one year period. Therefore, this analysis would only detect if there was
a trend that remained consistent over this time period and that the change was large
enough to be measured between the before and after surgery scans. It is possible that
there could be drifts that do not follow this linear patiern. For example the gain
eleclronics could be susceptible to weather conditions, such as temperature, pressure
and humidity, although variations in temperature at least should be moderated by air
conditioning, If this were the case then there would be variations in the gain
characteristics either with a period of 1 year relating to seasonal weather variations or

with periods of a day relating to variations in temperature over the course of a day.
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It is also possible that the variations in CNR between patients would be greater
than the effect being measured. Therefore, it is suggested when using the pre and
post-contrast tumour measurement technique (such as in chapter 3) that some [orm of
test of the scanner gain characteristics should be devised. Results from these
measurements could be used to improve the reliability of the tumour measurements
using the pre and post-contrast technique.

Despite these problems it would appear that CNR at two scparate time points
is linearly related (see graph 3.1). This suggest that scanner gain, although not
predictable from a previous gain result, is strongly associated with the patients
anatomy (i.e. size of head, amount of grey/white matter etc). Although there is not a
direct one to onc equivalence of the CNR values before and after surgery this may be
a reflection of the general increase in lumour volumes at the second time point
(Rampling et al 2000) and not a result of scanner drift. As a result of the linear
relationship it may be possible for future studies to develop a protocol using the initial
scan information for a patient to set subsequent gain setting on the scanner for
subsequent scanning scssions.

Despite these problems the region drawing threshold technique can be quickly
applied to studies with a large amount of data sets, such as was required by a gene
therapy agent trial (Rampling er af 2000). For example, as a direct consequence of this
work the corrected MRI tumour volume measurcments were compared to the SPECT
tumour volume measurements at the three time-points in the Rampling study
(Brennan ef af 2000, 2001). It was found that post-surgical enhancement effects
resulted in artefactually large tumour volume measurements in scans collected shortly

after minimally invasive surgery. Therefore, it was suggested that for future studies
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where serial tumour volume measurement are required shortly after surgery, that
SPECT should be used for tumour volume measurement.

It might be possible in the future to automate the tumour volume measurement
procedure by amending algorithms such as those developed by Haney (Haney ef af
2001) to work with the subtraction data sets. Naot only would this speed up the
measurement process, it might also improve overall accuracy and reproducibility.

Despite the errors inberent in the technique described here, the errors are
likely to be small compared to the effect that is being investigated. When measuring
tumour volume changes in treatment studies, it is necessary 1o determine criteria
under which tumour progression or regression can be measured. The most recent
guidelines for tumour response criteria were published by Therasse ef o/ (Therasse e/
al 2000) who developed the RECIST (Response Evaluation Criteria in Solid
‘Tumours) and was based on work by James et a/ (James ef al 1999). The suggested
definition for tumour volume progression using these RECIST criteria is an increase
in the sum of the longest diameters of the tumour of 20%, which according to
Therasse would suggest a volume increase of 73%. A partial response to treatraent is
defined as a 30% decrease in the sum of the diameters suggesting a decrease in
volume of 65%. These figures suggest that accuracy of this technique developed
within this chapter is well within the required accuracy to detect these changes
reproducibly.

The report by Therasse and others betore it (WHO 1979, Miller ef a/ 1981) are
currently the only published guidelines for determining tumour response to treatment.
However, the guidclines are based on solid tumours with well defined edges. As has
been discussed previously (section 3.1.2) glioblastoma type tumours have pootly

defined edges and are far from solid. Despite these differences the response guidelines




are often used in clinical practice. However as tumour size measurement improves it
is likely that new guidelines will be devised with particular reference to new 3D
tumour volume measurement techniques.

The comparison between aligned and non-aligned data sets using the same
threshold value indicated that the errors in not aligning these data sets are not
confined to the threshold values calculated. The different volumes calculated for the
fumour enhancement suggest that the accuracy of the tumour subtraction itself is
sensitive to patient movement between data collection of the pre and post-contrast
data. In general when the thresholds are set to the same value the use of the non-
aligned data results in a larger contrast volume. Therefore, poor alignment results in
subtraction data that appears to have contrast enhancement where in reality there is
none. An example of this is shown on figure 3.4. However, it is also likely that
misaligned data will also result in voxels that have lower subtraction signal, and will
therefore fall below the contrast-subtraction threshold. The overall increase in volume
in the realigned data sets suggests thal more voxels increase in value and move into
the threshold value range, than fall below the threshold value range. This is a
consistenl finding for all of the patients in this study and is a statistically significant
result.

The increase in contrast volume Tor non-aligned data can be explained by
assuining that for contrast to be present there must be an underlying structure for the
contrast material to be present in. If this assumption is correct, and when the data is
correctly aligned, where there is contrast enhancement in the post-contrast data there
will be some corresponding tissue signal in the pre-contrast data. Contrast
enhancement is not uniform in all tissues and likewise in the pre-contrast data scts,

different tissues have varving voxel signals. Therefore, there will be voxels with
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intermcdiate pre-contrast signal and intermediate amounts of contrast enhancement.
Subtraction of the dala sets would result in a number of such voxels falling below the
threshold levels set and below levels of operator perception. In this sitvuation these
voxels would not be included in the volume measurements.

However, if the pre and post-contrast data were not correctly aligned and the
voxels deseribed above are close to non-enhancing structures where the signal was
low in the pre-contrast data set, it is possible that the realignment might result in
enhancing post-contrast voxels overlying voxels with little or no pre-contrast signal.
These voxels are likely to occur at the edges of the tumour enhancement, particularly
where the edges are close to regions of low signal. Some increase in the volume of the
contrast edges is visible in figure 3.4. In resulting subtraction data these voxels would
have valucs greater than the threshold value and would be included in the final
volume measurement.

This suggests that the non-aligned data sels might subtract to produce a more
accurate measurement of the true tumour enhancement volume as moderately
enhancing voxels are also being included in the final measurements where they were
not before. However, as has been shown previously pre and post-contrast alignment is
an uncontrollable variable, and would thus lead to uncontrollable variations in the
amount of ‘extra’ voxels included in the final analysis. This extra error would
decrease the ability to legitimately compare volume results collected in different
sessions. Also as illustrated by figure 3.4 if gross motion occurs between the pre and
post-contrast data artefactual enhancement can occur away froro the edges of the
tumour suggesting that this signal is due to the incorrcct alignment of tissue

boundaries. Therefore, for the purposes of measurement repeatability in tumour
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studies using the subtracted pre and post-contrast data a good method of registration

should be employed.

3.5 Conclusions

Any technique of measurement that requires subtraction of pre and post-
contrast data sets must ensure that the data sets are aligned as well as possible before
subtraction takes place. This study has shown that if this step is not taken erroneous
results for tumour volume are derived from the data measurements. Manual methods
of determining tumour volumes from these subtracted images are also likely to be

affected by alignment crrots.

As has been discussed in the previous chapter good registration of these pre
and post-contrast data sets requires segmentation of the brain parcnchyma from the
surrounding tissue, especially enhancing structures. This would be of particular
importance in this study due to the presence of large enhancing tumours, which would
likely introduce realignment errors if they were not removed from the data analysed
by the MATCH sofltware.

Most segmentation algorithms are designed to accurately segment brain tissuc
sometimes separating them into finer components such as grey matter, while maiter
and cerebro spinal fluid (Thacker & Jackson 2001, Lemieux et ¢/ 2003). This
segmentation is often used to determing ratios of different brain components or to
detcrmine changes in volumes over time. This requires that the segmentation. is as
accurate and repeatable as possible to enable trends to be determincd. However, it is
not certain how accurate the segmentation needs to be to enable accurate registration

of the pre and post-contrast data sets.
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It is likely that the removal of structures that change between successive scans
is important. It is also likely that the existence of contrast enhancing veins that exist
on one scan but not the other will introduce errors in the comparison algorithm.
Therefore, it is reasonable to assume that such structures should be removed.
However, how important is it that all the remaining brain is correctly segmen(ed. For
example if 5% of the brain is removed will this noticeably affect registration? Or will
crrors only occur when 15% of the brain is missing from the segmentation.

Having justified the requirement for realignment with subtraction of pre-and post-
contrast data sets, it is now important to determine the best method of preparing the
data for rcalignment, Thercfore, chapter 4 will investigate the effects of segmentation
accuracy on the realigniment of pre and post-conirast data. Having this information
will later allow design and implementation of automated or semi-automated
procedures for segmenting such data sets, reducing the amount of skilled operator

time required.
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Chapter 4

Segmentation Accuracy : Review and Phantom Data
Set Construction




4.1 Introduction

4.1.1 Overview

Chapter 2 described the need for realignment of pre and post-contrast data
when producing subtraction venograms from 3D MP RAGE MR data sets. Chapter 3
went farther and quantified the etfect of applying alighment correction on tumour
volume measurements using a similar technique. Both chapters achieved the
realignment following manual segmentation of the post-contrast data set. However,
manual segmentation is a process that requires large amounts of skilled operator time
to accomplish. Therefore, it is preferable to implement an automatic or semi-
automatic segmentation algorithm that would both simplity and speed up this
process.

As described in chapter 2 (section 2.5.3) there are currently no segmentation
algorithms available that are designed to scgment contrast enhanced 3D data sets.
However, there are a number of segmentation algorithms available that coutd
segment the pre-contrast data. Therefore there are two possible protocols that could
be followed to accurately realign the pre and post-contrast data without the
requircment for manual segmentation.

Firstly it might be possible to segment the pre-contrast data, for which there
are algorithms available (hat could accurately segment the brain, However, in pre-
contrast data it is not always obvious what structures will enhance post-contrast. For
examplc, in a patient with a tumour that enhances post-contrast, the corresponding
pre-contrast data can be iso-intense with the surrounding normal brain tissue. This

would make it very hard for segmentation algorithms to be certain of removing ail
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contrast-enhancement. Nevertheless, if realignment is not adversely affected by the
presence of contrast-enhancement it may be acceptable to segment the pre-contrast
data.

If, however, contrast-enhanced data does affect realignment adversely then
the only way of ensuring that contrast-enhanced data is not contained in the
realignment process is to segment the post-contrast data. Thus a new segmentation
algorithm would be required.

Within the cranium, the largest enhancing structure following contrast
injection, in a normal subject, is the venous system. The cerebral venous system can
vary significantly from person o person (Curé ef al 1994, Meder e/ al 1994, Morris
and Choi 1996). Thus, even when there is no contrast-enhancing abnormal pathology
present accurate modelling of the contrast-cnhancement would be difficult to
achieve.

Therefore, it is important to determine what aceuracy of scgmentation is
required to produce good quality registration. If the post-contrast data set must be
segmented and if good registration is possible without the requirement for high
accuracy segmentation then a more simple and robust method of segmentation could
be used. By keeping the segmentation algorithm as simple as possible it should be
easier to transfer the methodology to other data sets [rom different scanning protocols
wherc contrast between tissues may be different from those achieved using the MP
RAGE technique.

However, before any measurements can bc made a new data set is required
where the pre and the post-contrast data differ from each other by known amounts of

spatial transformation and tissue contrast. Therefore, before the next two chapters
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investigate the effects of segmentation accuracy on segmentation accuracy, a
phantom data set must be produced to fulfil the above criteria.

As far as the author is aware there have been no previous attempts to produce
such a pre and post-contrast phantom, therefore, a novel method of producing one
was devised by the author. This chapter as well as introducing the concept of
segmentation, describes the production of the novel phantom data.

The work in this chapter (and chapter 5) led to an international conference
presentation (Brennan 2002). All of the work described in this chapter was conducted
by the author, with the exceplion of the data acquisition which was performed by

radiographic staff.

4.1.2 Background

Serial investigations in MRI have been conducted since the introduction of
the technigue. For example Maruyama ef of (1984) investigated the effects of neutron
brachytherapy on cerebral malignant gliomas, with specific refcrence to the
dimensional extent of the tumours. Kovanen et ! (1985) looked at cerebral atrophy
rates in patients with Creutzfeldt-Jakob discase and compared them to clinical
deterioration. Single patient serial studies were also performed, one example being
the study by Pomeranz ez al (1985), where the brain of a lung cancer patient was
serially scanned to detect metastatic growth. In (his study MR detected the metastasis
before CT. Such serial studies allowed the morphological changes over time to be
assessed which could be associated with disease progression and treatment and could
be compared to other modalities such as CT. Serial studies remain in prevalent use

cspecially in MR research into disease progression (Takeoka e al 2003, Schott ef af
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2003, Giovannoni 2001) and treatmcnt outcome studies (Rao er af 2002, Kwon et al
2001, Rampling et af 2000)

As was discussed in chapters 2 and 3 registration is not only required when
serial studies are carried out over days, weeks or months, but it is also required when
the patient remains within the scanner between the serial scans. This is especially true
when there is some form of intervention occurring during the inter-scan interval,

Chapter 2 (section 2.4.2) also discussed the importance of conducting image
segmentation to ensure the most accurate registration between the serially acquired
data sets. Ideally, for the purposes of image registration, the human body would be a
rigid structure in which the 3D positional relationships of every structure would
remain constant over time, Thus, if one structure within an MR image was correctly
registered with a previously acquired image then all other structures within the area
of inLerest would also be correctly registered. However this is far from the case, with
the human body consisting 1o a large extent of deformable soft tissue and movable
joints, Thus, the spatial relationships of the various structures within the body change
over time and so it does not follow that if you realign one structurc then all other
structures will also be cotrectly aligned even when the structures are spatially close.

When conducting studies over the course of weeks and months it is also
possible for body shape to change due to increased or decreased fat or muscle,
however, this is not a problem over the course of a normal scanming session and thus
would not impact on pre and post contrast injection studies.

Further problems exist when attempting to realign structures containcd within
the head. The brain is not firmly fixed within the skull cavity and floats scmi-freely
in a cerebro spinal fluid (CSF) (Martini 2001), therefore, if a patient moves their

head slightly it is possible for the brain to shift within the cranial cavity in relation to
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all of the other cranial structures. Thus, for a study investigating changes in brain
volume only the brain should be used for realignment purposes as the inclusion of
other structures such as skin, muscle etc would introduce realignment errors.
Consequently, if the brain is segmented from the other structures within the head it
can then be used to register subsequent images of the brain as accurately as possible
without introducing errors from its movement in relation to the rest of the head.
However, in this current study it is not the brain itself that is of interest, it is
the cerebral veins or other contrast enhancing structures. It might seem obvious that
these structures should be segmented and aligned for the serial data sets, However,

there are several problems with this approach., Firstly this study acquires one 31 data

set followed by a second, which includes signal from contrast enhancement. The
reason the subtraction technique works is because of the changing signal from the
venous system {ollowing this contrast enhancement. The MATCH algorithm that was

used in the previous chapter attempts to minimise differences in the segmented data

in the serial data sets, however, if the contrast-enhanced structures were used as the
segmented volume errors in registration would result. It is likely that an ideal
structure for registration should not change significantly in signal or shape.
Therefore, another structure that is ixed in 3D space relative to the contrast-

enhanced structures is required. In the case of enhancing cerebral tumours and veins

the best structurc to use is the brain itself.
The vast majority of the cercbral veins are either contained in or on the
surface of the brain parenchyma, so it should be tcasonable to assume that the

cerebral veins are rigidly connected to the brain parenchyma, and any change in

position of the cerebral veins is mirrored by a similar change in the position of the
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brain parenchyma. This is atso likely to be true of many cerebral tumours, especially

those whose origin is from the brain itself.

As was discussed in chapter 3 (section 3.1.2) Magnavist does not cross the
intact BBB. Therefore, in an intact brain there should be little or no contrast
enhancement of the brain parenchyma. Due to this lack of contrast cnhancement, the
brain parenchyma does not significantly change between the pre and post-contrast

data sets allowing it to be used as the scgmented volume.

4.1.3 Segmentation

4.1.3.1 Introduction

3D segmentation involves the grouping of similar voxels itlo coherent
volumetric structures either for visualisation or for volumetric or structural analysis.
There are a number of clinical and research applications that require the brain to be
segmented. For example it is possible to use a segmented brain for quantitative
analysis of anatomical and functional structures (Kohn er al 1991, Kikinis ef al 1992,
Dale ef al 1999, Joshi er al 1999), for surgical planning (Xu ef a/ 1999, Roux ef al
2001), and for providing an anatomical reference in fMRI studies (Ogawa ef ai 1992,
Logothetis ef af 2001).

There are a large number of brain segmentation techniques which can be
broadly summarised as being manual, semi-automated or fully automated methods.

Of these methods manual segmentation is the computationally simplest.
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4.1.3.2 Manual Segmentation

Manual segmentation requires a skilled operator using image processing
software (o define the region containing brain tissue by tracing around the brain with
a drawing tool (Suetens 1993, Smith 2002). The accuracy and reproducibility of this
technique very heavily depends on the skills of the operator, requiring a high level of
expertise in ncuroanatomy. However, even under ideal conditions and with a very
skilled practitioner applying segmentation the technique is subjective and therefore
not reproducible resulting in significant inter and intra-observer variability.

Yack et al (Jack et al 1990) investigated accuracy and variability nsing manual
segmentation on phantom and patient data. Phantom data sets were scgmented with
an average error of 3%, despite using a simple phantom consisting of contrasting
classes in an homogenous background. Intra and inter-variability when segmenting
the anterior temporal lobe was found to be 3% and 6% respectively.

Another concern with the manual segmentation method is the time required.
Within this department, for example, it was found that a typical MP RAGE data set
(256%256 matrix with 128 slices in the sagittal orientation) could take more than 2%
hours of skilled operator time to complete. The time required varies depending on the
operator’s skill and experience, the integrity of the data and the required
scgmentation accuracy required for a particular siudy. Thus a number of techniques

have been developed to cither semi or fully automate the process.

103




4.1.3.3 Scmi-Automatic Segmentation

One of the first recorded attempts at producing a semi-automatic
segmentation algorithm can be attributed to Cline et af (Cline ef al 1987). They wrote
an algorithm designed to detect the external surface of the brain allowing il to be
displayed in 3D, using a seed growing technique. This technique requircd an operator
to select seed points within the brain parenchyma. By then varying threshold values
pixels around the seed were examined and included within the regions if they were
within the threshold. Each added pixel then became a new seed whosc neighbours
were then inspected using the same method and if they too were within the threshold
they would also be included within the growing region. They found that the best type
of data to collect for brain extraction was T1 data due to the good contrast between
the brain tissue and CSF. Later work found that seed growing techniques were still
dependant on operator settings (Clarke ef af 1995).

Around the same time another technique was being developed hased on
multispectral analysis (Vannier ef al 1985). Multispectral analysis involves the
collection of two or more data sets during a single scanning session. Each data set is
collected with different imaging paramcters and/or pulse sequences varying the
contrast from the tissue of interest. Pixel intensity values from the different data scts
can then be plotted against one another in feature space and if the correct sequences
havc been run different tissues can be separated by assigning particular areas of
feature spuce Lo particular tissue types. Vannier papers (Vannier ef al 1985 & 1998)
described the maximum likelihood method which assumes multivariate Gaussian
distributions. This particular method was not fully automatic and required user

intervention in the form of user supplied training sets. Several later papers further
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developed this technigue and developed different statistical methods for analysing the
training sets (Just & Thelen 1988, Peck et al 1992, Fleicher et af 1993, Kao et al
1994), however, the requirement for user intervention and the variability in the
resulis due to intcr and intra-operaior variability limited its use (Gerig ef af 1992,

Clarke et al 1993).

4.1.3.4 Automatic Segmentation

Automatic or unsupervised multispectral segmentation methods have been
developed to counter the problems associated with user intervention. Thesc
unsupervised methods attempt to find structure within the data with the aim of
producing clusters within the feature space. This has been achieved using a variety of
mathematical methods such as k-means and fuzzy c-means (Taxt e a/ 1992,
Ardekani e al 1994, Brandt er af 1994, Phillips et al 1995). More recently new
variations have been developed such as the Adaptive Fuzzy C-Method (AFCM)
(Pham & Prince 1999) and the Orthogonal Subspace Projection technique (OSP)
(Wang et af 2001).

These methods continue to be used today with several studies using
multispeciral segmentation {0 demonstrate changes over time in different clinical
conditions, such as HIV (Patel ef «f 2002), and brain tumours (Moonis et af 2002).

The main disadvantage of multispectral methods is the requirement to collect
more than one data set per imaging session with particular sequence parameters
determined by the requirements of the algorithms used and the tissue requiring

segmentation, It is thercfore impossible to apply these segmentalion techniques to
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routine high resolution T1 weighted 3D data sets, such as those used in the chapter 2
for examination of contrast enhancement.

There are a number of automatic methods that have been applied to T1-
weighted 3D data sets. Some of the more recent methods described in the literature
include morphological methods (Stokking er af 2000, Shan ef af 2002), methods that
use prior knowledge of likely brain structures (Lemieux et af 1999, 2003),
deformable model techniques (MacDonald et o/ 2000, Smith 2002), and probabilistic
tissue clustering methods (Barra & Boire 2000, Fischl er al 2002). As these
techniques are all fully automatic they do not suffer from inter or intra-observer
variability. One recent study suggested that the reduction in variability may be offset
by an overall reduction in accuracy (Lee ef af 2003), however this study was limited
to only lwo freely available fully automated segmentation algorithms, and did not
examine some of the more recent algorithms that are claiming good segmentation
accuracy. For example Lemieux et al claim that automatic segmentation algorithm
can segment brain volumes, when compared to the Montreal Neurological Institute
(MNI) digital phantom scan, to an accuracy of 98% (Lemieux et af 2003, Collins et
al 1998) and Stokking et af achieved an average similarity index rating (Zijdenbos ef
al 1994) of 0.98 when compared to a supervised method (Stokking ef ol 2000). These
studies suggest that it is possible to develop antomatic segmentation techniques that

can reliably and accurately segment 31) T1-weighted data sets.

4,1.3.5 Segmenting Post-Contrast Data

Despite the availability of good quality segmentation techniques there are

currently no algorithms available that have been designed to segment contrast
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enhanced 3D T1-weighted data sets. As has been described in chapter 2,
scgmentation of the post-contrast data sets is required in two stages. Firstly, voxels
that do not contain brain parenchyma need to be removed. This segmented data set
would then be used to rcalign the prc and post-contrast data sets vsing the MATCH
software, The second segmentation would provide a mask for the final visualisation
of the data. This would include the enhancing structures of interest, such as the
enhancing veins, but exclude other cnhancing structures that would interfere with
final 31 visualisations.

As there is no technique available to achieve this, a new segmentation
algorithm is required. However, due to the variability of the enhancing cerebral
venous system, and the possible presence of enhancing lesions it may be difficult to
accurately segment the brain parenchyma reliably and accurately. Therefore, before
an algorithm is designed it is important to determine the effects of segmentation
accuracy on registration accuracy.

Before segmentation accuracy can be determined a phantom data set is
required upon which the different segmentation accuracies can be simulated and the
resulting elfects on registration determined. This phantom would consist of pre and
post-contrast data that when subtracted would produce a perfect subtraction with no
alignment errors. 'I'his data set could be rotated and translated by known amounts so
that for different scgmentation accuracies the accuracy of the MATCH realigniment
could be assessed. Noise could also be added to the phantom to simulate realistic
data sets.

Several segmentation studies have used phantom data sets to test the
accuracy of their scgmentation algorithms (Stokking et al 2000, Shan ¢f af 2002, Lee

et al 2003, Lemieux et af 2003) all use the MNI digital head phantom (Collins ef of
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1998). However, there are no reports in the literature of the use of a contrast
enhanced brain phantom. Therefore, before it was possible to test the effects of
segmentation on registration accuracy in the pre and post-contrast data sets a pre and
post-contrast phantom was developed.

The phantom data was produced using real pre and post-contrast 3D MP
RAGE data. The following sections describe in detail the production of the phantom

data.

4.2 Construction of Pre and Post-Contrast Phantom

4.2.1 Methods

One patient data set was collected using a pre and post contrast protocel. The
patient had a long IV line inserted prior to the imaging protocol allowing the contrast
agent to be administered with the minimum disturbance to the patient. The patient’s
head was held in position with pads secured at the maximum pressure consistent with
comfort and they were asked to keep as still as possible during the procedure (see
figure 2.5 in chapter 2). The Magnevist contrast agent was administered via the long
line by a radiologist within the room. Jt was administered in a 20 second bolus and
the post-contrast sequence was started within 20 seconds of finishing the contrast
injection. The imaging parameters for the 3D MPRAGE sequences were TR=10
msec, TE=4 msec, TI= 300 msec, flip angle=10 equivalent slice thickness= 1.4 mm,
FOV=250 mm with a matrix size of 256x256.

An artificial pre-contrast data set was produced using the original real pre and

post-contrast data collected. The artificial pre-contrast data set was based on the post-
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contrast data set from which contrast-enhanced characteristics were removed. The
original pre-contrast data sct was used to identity the areas of contrast-enhancement
on the post-contrast data.

‘The new artificial pre-contrast data set differed from the original pre-
contrast data by being perfectly aligned to the post-contrast data set. The only
difference between the phantom pre-contrast data and the post-contrast data was the
presence of contrast.

It took the author several steps to produce the phantorn data. The first step in
the process was to accurately segment the post-contrast data set using the manual
method described in chapter 2 (see section 2.5.1.2), removing all the voxels not
conlaining any brain parenchyma, All of the enhancing structures were removed as a
resull of this process. This segmented data was used to register the real pre-contrast
data to the real post-contrast data using the MATCH algorithm (Hajnal er a/ 1995).
Pollowing realignment the realigned pre-contrast data was subtracted from the post-
contrast data, producing a subtracted data set for the patient. Contrast-enhancing
structures were highlighted in this data set,

For the ncxt stage of analysis all of the voxels within the subtraction data that
were not considered to he contrast-enhancing were removed from the data. This was
achieved using a manual threshold technique. The threshold level was determined
using the Analyze soliware package (Mayo Foundation, Rochester, MN). Using the
morphology tool a threshold was subjectively determined such that all of the
enbancing structures were within the determined threshold. This threshold was
further set such that whilst it containcd the maximum amount of contrast-enhanced
voxels, it also contained the minimum amount of background subtraction noise. Once

the threshold had been set to fulfil these requirements the threshold was applied,




resulting in a binary map (mask), where data voxels within the threshold werc set to a
value of one and all other data voxels were set to zero,

The mask represented data within the post-contrast data set that significantly
changed between the pre and post-conirast scans. Therefore, by modifying all of the
voxels in the post-contrast data that coincided with the mask voxels of value one, and
keeping the remaining data from the post-contrast data unchanged, it was possible to
create a phantom pre-contrast data set.

‘Yo select the voxels requiring modification the post-contrast data set was
multipltied with the mask. The resulting data only contained voxel values above zero
for the contrast-enhancing voxels. This new data was subtracted from the post-
contrast data, In effect this reduced the signal in the contrast-enhanced structures
without affecting the data within non-enhancing structares, such as the brain
parenchyma, resulting in phantom pre-contrast data that was perfectly aligned to the
post-contrast data.

Once the pseudo pre-contrast data set had been produced it was subtracted
from the post-contrast data set using the Analyze algebraic module. The data was
then visually inspecled to ensure that the methodology had correctly produced the

required phantom.
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4.2.2 Results

Examples of the pseudo pre-contrast and post-contrast data sets are shown in

figure 4.1.

Figure 4.1 (a-d): Both of the 3D slices on the left (a & c) are from the pseudo pre-contrast data set.
The images on the right (b & d) are the equivalent post-contrast slices from which the pseudo data set
was created. The thin arrows highlight arteries that do not increase in signal and the thick arrows
highlight veins that do increase in signal.

[t is clear from figure 4.1 that the signal from the venous vessels in the pseudo

data set had been removed reducing the signal to pre-contrast values. The arterial
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enhancement inherent in this pulse sequence remained and was evident in both slices
displayed in figure 4.1.

Other enhancing structures such as the skin and muscles also demonstrated
reduced signal intensity in the pseudo pre-contrast data set as was expected. To

demonstrate this figure 4.2 displays the subtraction data from these two slices.

Figure 4.2: Example slices from the subtraction data where pseudo pre-contrast data has been
subtracted from the post-contrast data. Slice (a) contains some artefactual enhancement from outside
the head (arrow)

There was no background noise in the subtraction images, only signal from
the enhancing structures. There were, however, some erroneously enhancing pixels
outside the head. These were produced in areas where the original data was affected
by ghosting or phase wrap by different amounts in the pre and post-contrast data sets.
The resulting subtraction data for these voxels had values within the threshold range.
resulting in their inclusion in the mask.

For comparison it is possible to compare the new pseudo pre-contrast data set
with the real pre-contrast data set that had been realigned to the post-contrast data set.

The simplest and most informative way of comparing the data was to subtract the real




from the pseudo data. This subtraction highlighted the differences between the

phantom, and real-realigned data. Two example slices are displayed in figure 4.3.

Figure 4.3: Example slices from the subtraction between the real and the pseudo pre-contrast data
sets.(Black voxels are negative and white voxels are positive) The thick arrow in (a) shows an
homogeneous grey area suggesting good subtraction (contrast-enhanced area). The thin arrows in (b)
show areas affected by pulsatile artefacts resulting from a carotid artery. The back arrow shows a
cortical edge enhancement.

There were a number of significant features visible in the subtraction data.
The effects of ghosting were apparent in the phase encoding direction
(anterior/posterior direction), especially in figure 4.3(b). These artefacts were a result
of pulsatile blood flow, especially within the carotid arteries and eye movement
during the scanning. The existence of these artefacts on the subtraction, suggests
that the position and the signal from these ghosts varied between the pre and the post-
contrast scans. It should be noted that the ghosting artefacts will be the same in the

pseudo pre and post-contrast data, although this is not the case in real data sets.
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Areas of enhancement show up as homogeneous grey areas on the subtraction
(i.e. in the subtraction they have a value of zero). This confirms that these rcgions in
the pre and phantom pre-contrast data have the samc values and position.

The edges of some of the cortical structures could be visualised in the
subtraction data. This is especially obvious in figure 4.3(b). This was a result of the
imperfect realignment of the real pre and post-contrast data sets.

The final difference to note between the data sets is the differences that occur
between the enhancing siructures not contained within the brain parenchyma and the
enhancing venous structure, Structure such as the skin and muscles are visible in the
subtraction of the phantom pre and real pre-contrast data. The differences in signal
prec and post-contrast in these structures is smaller than that found in the cortical
veins. Therefore, when the threshold was applied these structures were not inciuded

within the resulting mask.

4.2.3 Discussion

This chapter has followed on from the previous chapter by describing the
need for an automatic segmentation and registration protocol for pre and post-
contrast data, where subtraction data sets are required. However, before this can be
achieved a new method of segmenting post-contrast data is required to both allow
accurate registration of the data and to allow maximum intensity projection (MIPs) to
be produced from the cerebral enhancement without being obscured by other
overlying enhancing structures.

Segmentation of these data sets is complicated by the fact that the enhaucing

venous systcm varies markedly from person to person (Curé ef af 1994, Meder ¢ al
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1994, Morris and Choi 1996), thus, it would be difficult to achieve high accuracy in
scgmenting these structures. ‘therefore, this chapter introduces the concept of
scgmentation accuracy, where a truly accurate segmentation would include all of the
brain parenchyma and no other tissue. Using this segmentation volume as a rcference
the following chapters investigate the effects of varying the segmented volume on the
realigmment. Using the information gained from these experiments it should be
possible to determine the segmentation accuracy required to ensure good realignment
of the data.

Before the effccts of segmentation accuracy and it cffects on realignment
could be investigated a pre and post-contrast data set was required where there was a
known spatial alignment between the pre and posi-contrast data. Therefore, using real
patient data a phantom pre-contrast data set was produced where the contrast-
enhanced data was derived from the pre-contrast data and the remainder of the
phantom pre-contrast data was derived from the post-contrast data.

The phantom pre-contrast data when subtracted from the post-contrast data
resulted in a subtraction data set that contained only the contrast-enhanced difference

between the two data sets, with no other differences, such as notsc or artefacts.

4.2.3.1 Discussion of Potential Errors and Limitations of the Phantom Data Set

The phantom pre-contrast data does not represent a perfect pre-contrast
phantom as a number of assumptions were made in its production. It was assumed
that the real pre and post-contrast data sets were perfectly aligned when they were
used to produce the phantom data. This was not the case as illustrated by tigure 4.3,

when the phantom and real pre-contrast data were compared. As some edge structure

115




of the cortical folds are visible, this suggests that alignment was not perfect, although
the alignment does not appear to be grossly incorrect.

if there had been gross misalignment between the real data sets this would
have resulted in errors in the thresholded mask. For example misaligned structures
could produce false high intensity signals in the subtraction data that would be
included in the threshold mask. Due to their erroneous inclusion within the mask
these voxels would then be derived from the pre-contrast data when they should have
been derived from the post-contrast data.

It was however, unlikely that these threshold errors if present were
significant. Aithough there was an apparent etror in realignment, it was not gross and
so errors are likely to be small (see figure 3.3). More significantly, however, these
errors are most likely to occur at tissue boundaries, where the differcnces could be
large enough to include these voxels in the threshold. However, in the mask data no
boundary structures were found suggesting that little or no voxels had been
erroneously included in the threshold mask due to misalignment of non-enhancing
structures.

At the edge of contrast-enhanced structures these errors would be
undetectable by visualising the data, as these voxels would appear to be part of the
larger area of contrast-cnhancement. However, it was unlikely that this effect was
significant when compared with errors introduced by the threshold technique itself.
Thresholding the data was a compromise between including all of the contrast-
enhancement within the threshold and not including unwanted noise data within the
threshold. The optimum threshold value selected for this study will have inevitably
resulted in some of the contrast data not being included within the mask. It will also

have resulted in some of the subtraction noise data being included within the mask.
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Therefore, in this situation it was reasonable to assume that errors due to
misalignment of the real pre and post-conlrasi data sets were negligible with respect
to the thresholding crrors,

The thresholding errors could have been removed by manually segmenting
the contrast enhancing structurcs. However, this would be time consuming but more
importantly would introduce the normal manual segmentation operator errors. For
example for every voxel the operator would have made a subjeclive deciston for its
inclusion in the mask. It is very unlikely that these decisions could have been applied
consistently throughout the procedure.

The most significant result of the misalignment and threshold errors on the
phantom itself will be the inclusion of small amounts of contrast-enbanced dala in
the phantom pre-contrast data set. When the MATCH software is used to compare
the phantom pre and post-contrast these enhancing voxels, when present within a
particular segmentation, would improve the realignment accuracy due to the
similarity of the voxels in the two data sets. It is, however, unlikely that this effect
will be significant, as the number of voxels involved will be small when compared to
the total number of voxels in the segmented volume, For example if there were
significant areas of contrast-enhancement in the phantom pre-contrast data, when the
real pre-contrast data was subtracted from it the contrast-enhanced voxels would be
visible. Little, if any, are visible in ligure 4.3.

A further assumption that this technique made was that the receiver gain in
the scanncr did not change significantly between the acquisition of the pte and post-
contrast data. It is likely that the gain (which was not accessible to the scan operator)
was reduced whilst collecting the post-contrast data compared to the pre-contrast

gain, This would result in a reduced range of values for the post-contrast data.




Therefore, using post-contrast data in the real pre-contrast data would result in a
phantom that had a reduced data range compared 1o a real data set. This was tested by
carefully segmeniing the brain on the pre-contrast data to produce a brain mask using
the Analyze software. The phantom data set was subtracted from the post-contrast
data set and the mean value for the subtraction should, if there was no difference in
gain, equal zero, The mean of the subtraction was found to be 0.2 with a standard
deviation of 5.91. T'his value, although not zero, was well within the range of noise,
therefore, it was reasonable (o assume that there was little or no effect due to receiver
gain.

One final problem with the phantom data was the inclusion of ghosting
arlefacts in the data. Ghosting artefacls vary from scan to scan as they depend upon
the physiological motion present, which varies over time (Wood and Ehman 1992),
however, the phantom pre-contrast data has the same ghosting artefacts as the post-
conirast data. It is feasible that these ghosts are consistently different in post-contrast
scans compared to pre-contrast scans. For instance atter the injection of contrast
agent it is possible that there are consistent changes in pulse rate, which would atfect
the carotid ghosting artefacts. However, for the studies that follow, where it is the
registration algorithm’s ability to realign prc and post-contrast data sets with varying
degrees of segmentation accuracy, it is desirable to remove errors introduced due to
physiological variability. Therefore, although the artefact is present it is desirable that
it remains consistent between the phantom pre and post-contrast data.

Despite these problems the phantom is the first of its kind. The cortical
structures on the phantom pre-contrast data set are identical to those on the post-
contrast data set. Therefore, using this phantom it is possible to compare the effects

of segmentation on a post-contrast data set on regisiration to a pre-contrast data set,
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knowing the exact spatial relationship of the two data sets. The phantom can also be
used to determine the cffect of including contrast-enhancing structures in the
alignment calculations, knowing that all other structures remain the same. This will
have consequences for any segmentation algorithm that is later designed to scgment

these data sets.

4.3 Conclusions

This chapter has discussed the segmentation methods that have been
previously developed, including a number of techniques that have been designed to
segment the brain on 3D T1-weighted data sets. However, there were no algorithms
available for segmenting 3D T1-weighted contrast enhanced data sets. Therefore, a
new algorithm is required.

However, due (o the variable nature of contrast enhancement it is likely that it
will be difficult to accurately segment these data sets using automatic techniques.
Therefore, to test the effects of segmentation accuracy on registration accuracy a
phantom was required. This chapter described the production of such a phantom and

discussed the advantages and disadvantages of the techniques used to produce it.
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Chapter 5

Realignment of Phantom Pre and Post Contrast
Data: The Effect of Segmentation Accuracy on
Realignment




51 Introduction

As was described in chapter 3 this chapter investigates accuracy of
realignment of the phantom pre-contrast data set with the post-contrast data. In this
chapter no further changes were made to the phantom except for the addition of
rotations and franslations to the phantom pre-contrast data, There was no attempt to
add noise to the data sets to simulate the differences that would be present in normal
imaging situations. Thetefore, the only difference between the phantom pre and post-
contrast data remains the addition of contrast enhancement.

Duc to the similarity between the data sets it should be possible, when the
data has been segmented correctly, to perfectly realign the pre and post data.
However, the MATCH software is not expected to produce such results, The main
reason for this is the iterative nature of the algorithm and the requirement to
terminate the iterations in a finite and reasonable time (Hajnal et o/ 1995). The longer
that the algorithm attempts to correctly realign the data sets the more accurate the
realignment will be. This iterative process would not, however, tend towards the
correct parameters in 4 linear fashion. It is more likely to do so in an approximately
exponential trend, which would require a large amount of time to arrive at the desired
result. Therefore, when designing the algorithm the program writers introduced a
termination condition. This is where the differences between iterations become small
enough such that there is little gain in rcalignment quality for further calculations.
Due to this termination there will always be a realignment error despite the lack of
noise differcnees or movement betweoen the phantom pre and post-contrast data set.

Before attempting to realign a rotated and translated phantom pre-contrast

data set it was important to determine the effects of the algorithm’s iterative
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procedure on (he realignment process. To do this the perfectly aligned data sets were
input into the algorithm vsing the various segmentation volumes as the realignment
masks. Even though the data was perfecily aligned to begin with the algorithm would
initially introduce rotations and translations in its attempt to determine the correct
alignment. The process would then continue to iteratively test different alignments
tending towards the correct alighment. However, it would never reach the correct
values because of the termination protocol used. This is unlikely to be critical
because the data was originally aligned perfeetly so the resulting realignment error
will be the minimal error that could be computed for this data set. It would then be
possible to compare these baseline realignment parameters with the parameters for
the artificially translated and rotated data. This would in turn allow an estimate of the
error infroduccd by the segmentation volumes and a comparison of these errors with
the errors inherent in the realignment algorithm.

As far as the author is aware no one has previously attempted to determine
the effects of segmentation accuracy on realignment accuracy. Therefore, despite this
work focusing on pre and post-contrast data, some of the results will provide more
general conclusions. The work in this chapter (and chapter 4) led to a presentation at
an international contference (Brennan ef g/ 2002), The final data and results form the
basis of a paper in preparation for journal submission.

All work in this chapter has been conducted by the author with the exception

of the data acquisition which was performed by radiographic staff.
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5.2 Mecthods

5.2.1 With and Without Rigid Body Rotations and Tramslations

This study was conducted in two parts. Part one of the study investigated the
effcets of segmentation accuracy of the post-contrast data on realignment of the
phantom data where no rotations or translations were applied to it. Thus the phantom
pre and post-contrast data were perfectly aligned when input into the MATCH
algorithm. The second part of this study investigated the effects of segmentation
accuracy of the post-contrast data on realignment of the phantom data when a
relative rotation and translation had been applied to the phantom pre-contrast data.

However, before the effects of segmentation accuracy could be determined
(in chapter 6), a gold standard segmentation ol the brain parenchyma was required,
aliowing a set of relative segmentations of varying accuracies compared to the
standard to be produced. This gold standard segmentation is referred to as the 100%

segmentation volume from bere on in this thesis.

5.2.2 Production of the 106% Segmentation Volume

The post-contrast data set was loaded into Analyze AVW 3.0 image analysis
software, where the image edit module was used to edit the data series. Contrast
settings were set to ensure that good grey and white matter contrast was obtained and
to ensure that brain matter was distinguishable from other structures.

An approximate 31D region outlining the brain parenchyma was drawn
separately on each slice of the data in the sagittal plane using the frechand region

drawing facility. The data was then zoomed 1o three times its normal viewing size,
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with interpolation switched off. At this level of zoom it was possible to easily
visualise separate voxels within each slice. The region was adjusted one slice at a
time using the region edit tool to accurately outline the brain surface. This resulted in
a 3D region outlining the brain surface with a high level of accuracy.

On each slice new regions were drawn around structures that were to be
excluded from the final brain region, suich as the ventricles, veins, arteries, and any
other enhancing structures. Any voxels contained within these regions were excluded
from the (inal brain region.

To further improve the accuracy of the 3D brain region cach data slice was
checked twice to ensure that all the brain voxels were contained within the main
region and all other voxels were either outside this region or contained within
scpatate non-brain regions. The aim of iterating the process in this way was to
achieve the greatest accuracy possible for the brain region,

The regions were then saved and converted to a 3D binary map, where voxels
within the brain region were sct to one and all other voxels, including those within
the other regions, were set to zero. This binary map was multiplied with the post-
contrast data resulting in segmented data that within the errors of manual
segmentation contained only the brain structures within the post-contrast data. (Sce
figure 5.1). This segmented volume will be referred to as the 100% segmentation
volume. However, it should be noted that this designation does not imply 100%
accuracy in the segmentation process. The 100% segmentation volume was created
by a manual segmentation method, which despite the care taken to produce it is still
likely to contain segmentation errors. The segmented data along with the binary

mask were saved to disk.
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5.2.3 Production of the Variable Segmentation Volumes

To test the alignmenl capabilities of the MATCH algorithm a variety of
segmented volumes were required which contained either more or less of the original
post-contrast data in the segmented data. These volumes would simulate the effects of
both over-segmentation and under scgmentation. Over-segmentation would occur
wherc an algotithm removes too much data, i.e. it would erroneously classify voxels
within the brain as non-brain voxels, Under-scgmentation would occur where an
algorithm erroneously classifies non-brain voxels as brain voxels resulting in a larger
volume than required. Under segmented voxels could also include contrast-enhanced
data.

It is very likely that any applied segmentation algorithm would over and
under-segment at the same time, 1.¢. some arcas of the volume would contain non-
brain data and in other arcas of the volume would exclude brain data. However for
simplicity this study will investigate these phenomenon separately. Also by separating
over and under-segmentation, it will be possible to better determine the required
capabilities of any segmentation algorithm developed for this and similar data sets.

To produce the varying segmentation volumes the 100% segmentation volume
binary mask was loaded into the morphological module within Analyze. Three binary
morphological operators were used to produce the various segmeniation data sets:
erode, dilate, and conditional dilate.

Morphological operators are image processing algorithms that work at pixel
level on binary data sets (although this is not exclusively so). A detailed description of
these morphological operators is provided in appendix 1. The crode and dilate

operators as utilised by the Analyze software package use N x N x N convolution
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matrices as defined by the user. Erode is used to remove binary voxels that are not
fully surrounded by other similar binary voxels in the surrounding N x N x N space.
In binary image analysis operations this generally reduccs the size of a binary volume.
Dilate, which is the morphological dual to erosion, generally expands a binary
volume. A new voxel is included within a binary mask if within the surrounding N x
N x N space there are voxels already included in the binary mask.

The conditional dilate operator as used by the Analyze software package
allows the definition of a conditional mask into which the dilation of the binary mask
is allowed. It does not allow dilation of the binary mask where it does not coincide
with the conditional mask. This operation allows a large number of dilate operations
to be applied whilst limiting the expansion of the binary volume.

Using the erode, dilate and conditional dilate operators it was possible to
produce larger and smaller segmentation volumes with the minimum of observer bias
in their production.

The over-segmented data sets were produced by using both the erode and
conditional dilate operators with a 3 x 3 x 3 convolution kernel. By the variable
application of crode and conditional dilation operations, where the condition was the
100% binary mask, ensuring that no under-segmented vaxcls were included in the
masks, a set of over secgmented binary masks were produced. 1o increase the number
of data scts produced this proccdure was repeated using a mixture of 3 x 3 x 3 kernels
and 5 x 5 x 5 kernels. After these masks were produced they were multiplied with the
original post-contrast data resulting in the various over-segmented data sets.

The under-segmented data sets were produced by dilating the accurately
segmented data set by varying amounts and with different kernels. However, a

threshold was set so that no voxels were be added that were below the noise, user




determined threshold of the image. These voxels were excluded on the assumption
that any method of brain segmentation would at the very least remove background ’
noise from the image, as these have very different voxel values from that of brain
parenchyma,

To label these data sets the number of voxels within each mask were compared
to the number of voxels within the original 100% binary mask. The resulting volume
labels are shown in table 5.1 and figure 5.2 shows an equivalent slice from several of

the segmentation volumes.

. Over-Scgmentation Under-Segmentation
97% T
92% 117%
88% 126%
80% 135%
73% 145% ]
0% | 153%
65% 169%
50%
56%

Table 5.5: The relative volumes (as a percentage of the 100% binary volume) of the artificially
produced over and under-segmentation masks
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Figure 5.2: An example slices from some of the segmented volumes.

5.2.4 Quantitative Assessment of Realignment

For the following studies a direct and an indirect measure of realignment
quality were assessed. Each time the MATCH algorithm was applied to a pre and
post-contrast data set it produced a text file containing the realignment parameters.
These parameters were calculated by comparing the segmented post-contrast data
volume to the phantom pre-contrast data. The parameters were the translations p,q.
and r which were stored as half pixel values, and the rotational parameters pitch, roll
and yaw, which were stored as radians (although they were later translated into
degrees for easier interpretation). Figure 5.3 shows how these rigid body translations

and rotations related to the 3D MRI data.
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Figure 5.3; The relationship between the rotational and translational parameters output by the MATCH
algorithm and the 3D data.

From thesc text file outputs it was possible to record and plot the effects of
segmentation volume on the various registration parameters using software such as
Excel (Microsoft). In both the following studies the spatial transformations required to
correctly align the phantom pre and post-contrast data are known, therefore the
variation in actual realignment parameters calculated using the different segmentation
volumes could be compared to actual parameters required. The known rotations and
{ranslations were subtracted from the MA'I'CH results, producing values that
represented the errors in the realigniment.

As well as individually comparing the six rigid body parameters it was
possible to determine a single measure of overall translation and of overall rotation.
Onge again, by subiracting the known rotations and translations these overali
measures of rotation and translation represented the overall realignment errors. To

calculate the magnitude of the translational error the following equation was used:

Tor = \/(rp ~mp)2 +(r, —mq)2 +(r - n, ) (5.1)
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where ¥, 74, 7 are the magnitude of the known P, Q and R translations required to
correctly align the data sets, and m,, my, m, are the magpitude of the P, Q, and R
translations caleulated using the MATCII algorithm,

‘T'a calculate the magnitude of the rotational error, the yaw pitch and roll
rotations, which arc equivalent to Euler (Ojeda et al 2002) angles can be converted to
an axis-angle. An axis-angle is another method of defining a 3D rotation, which is
delined as a rotation of © degrees around a unit vector. For the purposes of this study
it is the magnitude of the rotation that is of interest. It is possible to convert the Euler

rotations to this magnitude using the following equation (Baker 1998):

0,y = 20087 (€, C 0, +5,8,5, (5.2)

errtr wp

where,

¢, =cos(yaw/2}, ¢, = cos(pitch(2), ¢, = cos(rollf2)

and

fl

s, =sin(yaw/2), s, = sin(pitch(2), s, = sin(rolif2)

T orvor ad Goppry were compared for the non-transformed and transformed data sets.

As an indirect measurement of the qualily of the rcalignment signal to noise
(S/N) measurement were made on the subtraction data produced for each
segmentation volume. To produce these S/N values regions of interest were required
for both the signal and noise measurements. These regions were used for the signal
and noise measurements on all of the subtracted data sets, allowing direct comparison
of the S/N results.

The region used to determine the noise was defined as the arca of brain
segmented in the 100% volume data set. The 100% binary mask was loaded into the
Analyze software and converted to a region of interest for this purpose. An example

of this region overlaid on one of the subtraction data sets is shown in figure 5.4.
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Figure 5.4: The ROI (red) used for the noise calculations overlaid on subtraction data produced using
the 135% segmentation volume in realignment calculations. (Upon close inspection background
subtraction noise is visible in this subtraction)



The region used to determine the signal was defined as all significantly
enhancing voxels within or on the surface of the brain. In the phantom the majority of
these voxels would relate to enhancing venous structures. To produce the correct
region the post-contrast brain was manually scgmented approximately, such that it
contained only structures within the brain parenchyma and the surface veins. This
region was then converted to a binary mask using the Analyze morphology module.
This mask was multiplied with the 100% subtraction data rcsulting in a scgmented
subtraction data set only containing information within the masked regions. A
threshold was applied at the same level used in chapter 4 (section 4.2.1) resulting in a
mask for the enhancing cercbral structures. This mask was saved and converted to a
region of interest file to enable it to be used to determine signal strength, An example

of this region overlaid on one of the subtraction data sets is shown in figure 5.5.
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Figure 5.5: The ROI (red) used for the signal calculations overlaid on subtraction data produced using
the 135% segmentation volume in realignment calculations.



5.2.5 Application of the MATCII Algorithm to Non-Transformed Data

The aim of this study was to measure the effects of segmentation accuracy on
the realignment parameters caleulated using the MATCH realignment algorithm,
However, the phantom pre-contrast data produced in chapter 2 was already perfectly
realigned to the post-contrast data and the post-contrast segmented volumes.
Therefore, before assessing the realignment capabilities on the spatially translated and
rotated phantom pre-contrast data, the MATCH algorithm was applied to the phantom
pre and post-contrast data set that were perfectly aligned.

For the over-segmented data sets the MA'I'CH algorithm would be comparing
voxels that exactly matched between the phantom pre and post-contrast data.
Therefore, if the MATCH algorithm was functioning correctly it was expected that the
transformations applied should all be close to zero within the cxperimental error for
the algorithm. Therelore, these results would provide information on the overall
accuracy of the algorithm,

For the under-segmented data sets the MATCH algorithm would be comparing
data that contained a majority of exactly matching voxels. However, the segmented
post-contrast data would also contain enhancing voxels that would contain equivalent
non-contrast enhancing voxels in the phantom pre-contrast data. It was expected that
the resulting effect of these differences on the chi-square algorithin used by MATCH
would result in larger realignment errors, confirming the assumption that for contrast
enhanced data sets segmenting out these structures was vital for accurate alignment.

The MATCH algorithm was run on the phantom data set once for each
segmentation volume created. Upon completion the MATCH software produced a

new pre-contrast data set that had been resliced using the realignment parameters
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determined by the algorithm. This new data set was subtracted [rom the post-contrast

data resulting in a new subtraction data set relating to each segmentation volume.

5.2.6 Application of the MATCH Algorithm to Transformed Data

The same tests as those described in scetion 5.2.5 were also applied to the
phantom pre and post-contrast data after the phantom pre data had been transformed
to simulate intcr-scan motion. The transformation consisted of a translation and
rotation of known amounts, which could be subtracted from the realignment
parameters calculated by the MA'TCH algorithm. The effects of segmentation volume
on these transformation error measurcments were examined. It was also possible to
compare these results for the transformed and non-transformed data.

To apply the rigid body translation and rotation, the phantom pre-contrast data
was loaded into the Analyze software package within the 3D fusion module. Within
this module it was possible to define rotations and translations and apply them to the
data. The artificial pre-contrast data set was rotated 1 degree (YAW direction,
backward head tilt) and moved 1 pixel in the posterior direction (P). Only one
translation and rotation was applied. Therefore, it was expected that no correction
would be necessary in the other rotations and transtations. Therefore, any corrections
applicd in these directions could be attributed to realignment exror. A YAW rotation
of 1 degree and P translation of 1 pixel were applied as this represented a possible
movement of the head where the patient had lifted their head to look down the bore

and rested it back down.
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After applying the rotation and translation the data required to be resliced and the
voxels interpolated. There are several methods of interpolation available within the
software, however, the most appropriate was the sinc interpolation method. As was
previously described in chapter 2 (section 2.4.2) sinc interpolation is the most robust
method for resampling and interpolating 3D MRI data and introduces the minimum of
sampling errors.

Figure 5.6 demonstrates the resulting misalignment between the transformed

phantom pre and post-contrast data by displaying some slices from a subtraction. The

misalignment results in an increase in the background noise in the subtraction.

Figure 5.6: Two slices from the subtraction of the translated and rotated phantom pre-contrast from the
post-contrast data. The misalignment results in increased noise in the subtraction. The outline of the
misaligned cortical folds can also be seen.

The results of the MATCH realignment using the transformed data were

analysed using the same protocol as in section 5.2.5.



5.3 Results

5.3.1 Nono-Transformed Phantom Data Results

Graph 5.1(a-f) displays the realignment parameters produced when the
perfectly aligned phantom pre-contrast data set was realigned to the post-contrast data
set using the MATCH software. The resulting rotations and translations are a result of
the iterative processes used to delermine the parameters and the effect of
segmentation volume on this process. Error bars have been included using the
parameter error estimates derived by the MATCH software.

‘I'he most apparent effect on realignment accuracy is whether the segmentation
voluimne is above or below approximately the 100% value. For the three rotation
parameters there should have been no rotation applied, and likewise for the translation
parameters there should have been no translations applied. All of the parameters vary
around or close to these optimum values for segmentation volumes of less than and
equal to approximately 100%.

For segmentation volumes not containing contrast (<100%) the largest
rotational deviation from zero degrees occurs at the 100% segmentation volume with
the YAW rotation parameter with a rotation applied of 0.0121 degrees. The largest
translational deviation from zero half pixels occurs at the 97% segmentation volume
for rotational parameter Q with a value of 0.0212 half pixels. In all of the rotational
and translational parameters below and inclusive of the 100% segmentation volume

there is no observable trend towards or away [rom the optimum values.
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Graphs 5.1¢a~1): The rcalignment parameters determined by the MATCH software when allempting to
realign the non rotated and transtated data

Above the 100% segmentation volume, where contrast enhanced data is

included in the segmentation mask, there are much larger deviations from the

optimum values in both the rotational and translational parameters. Both PITCH and
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ROLL follow linear increasing trends away from the optimum value with R* equal to
0.974 and 0.855 respectively. YAW also follows a linear trend (R*=0.755) however,
in this case it tends away from the optimum valyc in the opposite direction.

P can be described by a linear trend, although with a poorer linear fit. Overall
there is an increasing trend over the range with R?=0.6582. Q@ and R also both follow
linear trends away from the optimum value, in opposite directions, both with strong
cotrelations (R*=0.969, 0.912 respectively).

For all parameters except R the largest deviations from the optimum valucs
occur at the largest segmentation volume of 169%. The largest deviation in R occurs
al 153%. Overall the largest deviation in rotation occurs for the PITCH parameter and
has a value of 0.0858 degrees. The largest deviation in translation occurs for Q and
has a value of 0.138 haif pixels.

These results suggest that increasing the volume of contrast enhancing
structures within the registration mask increases the algorithm’s crror in realigning
data sets, i.e. when segmenting a contrast enhanced brain for realignment to a non-
contrast enhanced brain all contrast enhancement should be removed from the
registration mask. The data also suggest there is little increasing error in realignment
with increasing over-segmentation.

Graph 5.2 displays the signal to noise (S/N) characteristics for the subtraction
data produecd when the realigned phantom pre-contrast data was subtracted from the

post-contrast data.
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Graph 5.2: Signal to noise changes in the modulus of the subtraction image for the rno movement data

Signal to noise does not vary significantly for segmentation volumes below
100% and remains at its highest value of 188.8. This is consistent with the data
displayed in graphs 5.1(a-f) where the realignment parameters remain close to the
optimum value. For segmentation volumes above 100% there is a rapid drop in signal
to noise with the minimum value found at segmentation volume of 175% with a value
of 52.7. Once again this is consistent with the realignment parameters in graphs 3.1(a-
f), where they tend away from the optimum values at higher segmentation volumes.

It was also noted that the signal to noise was lower for the 100% segmentation
volume than [or all of the smaller segmentations volumes. At the 100% segmentation

volume the signal to noisc is 180.2.
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5.3.2 Transformcd Phantom Data Results

Displayed in graphs 5.3(a-f) are the realignment results for the rotated and
translated data. This data has been plotted along with the previous non~
rotated/translated results so that comparisons can easily be made. To allow direct
comparison of the YAW and P data (which contained the rotation and translation), 1
degree was subtracted from the moved YAW data and 1 pixel from the P data. These
graphs represent the realignment etrors for both the transformed and non-transformed

data.
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Graph 5.3(a-f): The realignment parameters (errors) determined by the MATCH software when
attempting to realign the rotated and translated data (compared to the non-rotated and translated data)

Graphs 5.3(a-f) clearly show that the overall trends in the realignment
parameters remain similar for all parameters after the phantom pre-contrast data set

has been moved. Once again the most accurate realignments occur for segmentation

143



volumes below the 100% value, i.e. when there is no contrast-enhanced data
contained within the registration mask. However, there are detectable differences in
the realignment parameters between the transformed and non-transformed data sets.
To demonstrate these differences more clearly the moved results, with the translation
and rotation corrected P and YAW parameters were subtracted from the non-moved
results. The subtracted results are displayed in graphs 5.4(a-f). These subtractions
display the differences in the realignment parameters produced purely due to the
presence of transformation between the phantom pre and post-contrast data sets.

The movement induced errors displayed in graphs 5.4(a-f) appear to follow
similar trends to those in graphs 5.1(a-~f). This suggests that where there is increasing
error due to a poor registration mask nsed for the MATCH realignment, the error in
correcting for movement also increases. 1o examine this a further a set of graphs were
produced displaying the relationships between the realignment parameters produced
when there was no introduced movement (segmentation and algorithin etrors), and the

errors introduced by introducing movement (see graphs 5.5(a-)).
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Graphs 5.5(a-e): Relationships between segmentation/algorithm errors and the errors introduced by
movement of the phantom pre-contrast data set

All of the comparison of error graphs can be described by linear trends with

four having a very good linear correlation of R* > 0.9 (PITCH, ROLL, YAW and Q).

These 4 graphs also display very similar linear gradients varying between 0.2333 and
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0.2631. P and R also follow linear trends, however, the linear fit is not as accurate
(% 0.6482 and 0.8614 rcspectively).

These linear lrends suggest that there is a relationship between the inherent
errors for the algorithm for each segmentation volume and its ability to correct for
rotations and translations. Therefore, where the segmentation velumes contain
enhancing structures large inherent errors will also lead to large realigninent errors.

For this data sct it should be noted that the inherent algorithm errors are Jarger
than the movement errors by a factor of about 4 overall, i.e., the average linear
gradient for the realignment graphs in graphs 5.5(a-f) is 0.252 with a mean deviation
of Xop= 0.0614. The majority of the variation in this figure results from the two

graphs where the linear fits were not as highly correlated.
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Graph 5.6 (a & b): The calculated overall rotation and translations are compared for the non-
transformed and transformed data (the values for translation and rotation relate to the errors when
compared to the known rotations and translations)

As described in section 5.2.4 it was possible to generalise the comparison for
the translations and rotation see graphs 5.6 (a & b). Looking at graph 5.6(a) it was
apparent that there were no significant differences in the rotations applied for the non-
transformed and transformed data at segmentation volumes below 100%. However,
for all segmentation volumes above 100% there were larger rotation alignment errors
in the non-transformed data than there were in the transformed data, for all data

points. This would suggest that the transformed data realigned better than the non-
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transformed data. It was also found that the correlation between the transformed and
non-transformed rotation data was excellent with r=0.999 and p<0.01.

When translation was examined (see figure 5.6(b)) the transformed data
contained larger errors for data below the 100% segmentation volume, with the errors
becoming more comparable in value for the larger segmentations above 100%. These
results suggested the opposite of the rotation results. Here the correlation was also
excellent with r=0.968 and p<0.01.

It was unclear from these results whether the transformed or non-transformed
data realigned more accurately. However, it appeared that the non-transformed data
realigned more accurately, for all segmentation volumes when the signal to noise

results were examined and compared (see graph 5.2 and 5.7).
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Graph 5.7: Signal to noise changes in the modulus of the subtraction image for the movement data
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The transformed data signal to noise graph was very similar to graph 5.2 in
shape and trends. The main differences were the much lower starting signal to noise,
due to larger crrors in the realignment parameters (see graphs 5.3(a-f)) and the smaller
percentage drop in signal to noise over the segmentation volume range (72% for graph
5.5, and 22% for graph 5.6). For all segmentation volumes the non-transformed data
had higher signal to noise results, however, the difference reduces for the larger

segmentation volumes.

5.4 Discussion

5.4.1 Overview of Chapter Aims

This chapter set out to investigate the registration capabilities of the MATCH
algorithm, which is a sub-voxel since based alignment technique, on a phantom pre and
post-contrast data set. Two separated studics were conducted. The first study
examined the effect of the algorithm on a perfectly aligned phantom pre and post
contrast data set. The only difference between the two data sets was the contrast
enhancement in the post-contrast data set. Under ideal conditions the algorithm would
introduce no translations and rotations when attempting to register the data sets. The
algorithm was run with varying volumes of a realignment mask to dectermine the
effects that segmentation would have upon the realignment results and on the signal to
noise of the final subtraction data.

The second study investigated the same data seis but with a rotation and
translation introduced into the phantom pre-contrast data set. The ability of the

algorithm to correct for these rigid body motions was investigated by comparing the
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algorithms realignment parameters with the known rotation and translation, These
results provided an indication of the registration limits of this algorithmn where the
data had exactly the same noise structure for both data sets and only diftered in areas
that contain contrast enhancement.

The aim of thesc two studics was to determine the effects of segmentation
volume on ideal data, and to determine the source of the realignment errors that would
result, It was also an aim to determine how the realignment errors would aflect signal
to noise on the subtraction data output. This would provide underlying knowledge of
the realignment principles that could be applied to more realistic phantom and patient

data sets.

5.4.2 Realignment of the Non-Transformed Data

Realignment of the non-rotated and translated data was expected to provide a
measure of the underlying errors inherent with the realignment algorithm with respect
the pre and post-contrast data and the segmentation volumes used. Il was expectled
that minimal errors should be introduced for segmentation volumes where the volume
contained no data differences between the two sets. This was indced found to be the
case (see graphs 5.1(a-f)).

Segmentations of 100% and below contained voxels of exactly the same
values in both the phantom pre and post-contrast data sets. For these segmentation
volumes all of the realignment parameters remained very close to the expected values
of zero degrees rotation and 7zero pixels translation. There was some variation,

however, this remained within or close to the rigid body errors determined by the
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algorithm itself. Therefore, for these data sets the algorithm introduced no significant
errors.

The related signal to noise data is displayed in graph 5.2. Segmentation
volumes below 100% displayed the maximal signal to noise value of 188.8. The
100% segmentation volume had a slightly lower signal to noise of 180.2. This
suggests that the 100% segmentation volume might have contained a small number of
incorrectly assigned voxels, i.e., CSF, enhanced vessels etc. In producing a 97%
volume it is possible that the majority of these voxels were removed resulting in more
accurate alignment of the data sets. This would suggest a classification error of about
3% or less which agrees with expected manual segmentation errors from the literature

(Jack er al 1990). Figure 5.7 highlights some of the voxels that were removed from in

the 100% segmentation volume to produce the 97% segmentation volume.

Figure 5.7: Two slices showing voxel differences between the 100% segmentation volume and the
97% volume (Indicated by voxels on the post-contrast data)

The highlighted voxels displayed in figure 5.7 almost exclusively belong to
data from brain parenchyma boundaries, and would thus be prone to operator

segmentation error. It is therefore possible that the 97% segmentation volume



represented a more accurate segmentation of the brain parenchyma. This would
account for the reduction in signal to noise when the 100% segmentation volume was
used for realignment purposes.

More significant realignment errors occurred for segmentation volumes above
100% (See graphs 5.1(a-f)). For these volumes contrast-enhanced data was contained
within the segmentation volumes as well as brain parenchyma and other non brain
structures (in general the CSF is excluded due to noise level thresholding). For
segmentation volumes just above 100% a significant proportion of the voxels added to

the segmentation volume were from contrast enhancing structures, including the veins

(see figure 5.8).

Figure 5.8: Two slices showing voxel differences between the 103% segmentation volume and the
100% volume (Indicated by voxels on the post-contrast data)

Figure 5.8 suggests that any errors introduced into the realignment and signal
to noise parameters for this segmentation volume were mainly due to contrast
enhanced structures being included in the volume. However, it should be noted that

there were also voxels in this and larger segmentation volumes that were not contrast

ot
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enhancing. For the volumes close to 100% the additional voxels mainly belonged to
structures close or contained within the brain parenchyma, including the arterial
vessels. For the larger segmentation volumes other structures such as muscle,
connective tissue, and skin were also included.

In ncarly all of the realignment parameters in graphs 5.1(a-f) there is a large
step away from the optimum values for the 103% segmentation. This suggests that a
large part of the realignment errors above 100% were due to the inclusion of the
contrast-enhanced data in the segmentation volumes. A large reduction in signal to
noise is also seen at the 103% segmentation volumc in graph 5.2. Therefore, it was
cvident that a large proportion of the error in registration above 100% was due to the
presence of the contrast-enhanced structures. With increasing segmentation volumes
and increasing amounts of enhanced data, the errors in realigninent increased.

This first study only investigated realignment of alrcady perfectly realigned
data sets with exactly matching signal to noise characteristics. Restricting the study in
this way allowed the effects of confrast-cnhanced inclusion within the segmentation
volumes to be estimated separately. The inclusions of such voxels introduced
significant errors to all of the realignment parameters resulting in reduced signal to
noise in the final output subtraction. This leads to the conclusion that any new
segmentation algorithm, designed for the realignment of similar data sets, must
remove all contrast-enhanced data from the realignment volume. However, the
phantom data used for this test was perfectly aligned. Therefore, it was important to
extend the work to include data that was not perfectly realigned, as would be the case

in a real scanning session.
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5.43 Realignment of the Transtformed Data

When the rotation and translation errors for the transformed data are compared
to the non-transformed results, it is clear that segmentation accuracy affects these data
sets in very similar ways. All of the parameters follow very similar irends with
increasing segmentation volume. From these parameters it is very diflicull to assess if
the transformed data has been aligned to a similar accuracy as the non-transformed
data. However, signal to noise is significantly reduced in the transformed case,
suggesting that overall alignment is less accurate.

There were two possible sources of the additional errors in the realignment
parameters and of the overall reduction in signal to noise. The first was a result of the
realigmment errors within the algorithm itself, i.e. its inherent ability to correctly
determine the realignment parameters for data where there is a significant
misalignment. If the algorithm were unable to {ully correet for rotations and
translations then this would result in the overall reduction in signal to noise. Although
from the realignment data there was no overall trend for the realignment parameters to
contain larger errors in the transformed data, it was likely that a combination of
incorrect rotations and translations, although individually small, resulted in the
reduced signal to noise detected.

The second possible source of error would be from the interpolation used and
the requirement for re-slicing. For this study re-slicing and realignment occurred on
two separate occasions. Firstly, the data was re-sliced to add the offset rotation of 1
degree and translation of 1 pixel. The interpolation in this sitnation was windowed
sinc (Analyze). The second re-slice will have occurred within the MATCIH algorithm,

where the phantom pre-contrast data was realigned with the post-confrast data set.
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Once again this used windowed sinc interpolation. Therefore, to investigate if this
would introduce noise to the data the phantom pre-contrast data set that was already
offset was realigned, with the known correct parameters of 1 degree YAW and 1 pixel
P using the MATCH re-slice algorithm. If any difference in signal to noise was then
evident in the resulting subtraction data then this could be attributed purely to the re-
slicing and interpolation used.

It was found that the signal to noise of this subtracted data set was 51.20. This
value was very similar to the best signal (o noise achieved for the transformed data of
51.89. It can therefore be concluded that the majority, if not all, of the reduction in
signal to noise for the more accurately aligned data sets (segmentation volume
<100%), is due to the reslicing and interpolation used. It is also likely that the
variation in the realignment errors are due to reduced signal to noise in the realigned
phantom pre-contrast data set which the realignment algorithm then tries to corrcel
for. This is highlighied by the fact that the data that has been analysed by the MATCH
algorithm has a slightly higher signal to noise, indicating that the algorithm has

moved the data set to try and compensate for the decreased signal to noise.

5.4.4 Overall Conclusions

Therefore, in conclusion it appears that when realigning the phantom pre and
post-contrast data any segmentation volumes used for realignment purposes should
not include contrast-cnhanced voxels. The inclusions of even a small amount of
contrast-enhancement results in detectable realignment errors. It can also be

concluded that for the phantom data the MATCH algorithm corrects the artificially
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induced rotation and translation with excellent accuracy, despite the ervors introduced
by the two stages of sinc interpolation.

However, this study was conducted on idealised data, where there were no
differences in the noise structure of the pre and post-contrast data. Therefore, the next
chapter extends this sludy (o determine the effects of additional image noise on the
realignment of the phantom data using the various segmentation volumes. Extending
the work in this way should allow firm conclusions to be drawn on the effects of

segmentation accuracy on real pre and post-contrast data sets.
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Chapter 6

Assessing the Effects of Segmentation Accuracy on
Patient Data Sets




6.1 Introduction

6.1.1 Overview

Chapter 3 investigated the effects of segmentation accuracy on a phantom
data sct. Using the phantom data set allowed the MATCH algorithm’s realighment
capabilities to be assessed on data with known differences in alignment, and known
differences in contrast. It discussed the effects of segmentation accuracy on the
realignment parameters determined by the MATCII software and on the resulting
signal to noise in the final subtraction data. However, due to the artificial nature of
the phantom it was uncertain exactly what additional errors would relate to the
application of the MATCH algorithm on real paticnt pre and post contrast data sets.

As discusscd in chapter 5 real patient data sets would differ from the phantom
data in a number of ways. The most significant difference being the variation in noise
and artelacts between the pre and the post-contrast data, which is difficult to model
artificially. Therefore, this chapter investigates the elfects of segmentation accuracy
on realignment parameters calculated by the MATCH algorithm on two real paticnt
dalta sets. Both data seis are segmented to a high level of accuracy and, using similar
methods to chapter 5, the effect of differing segmentation accuracy on realignment
are investigated. The results collected [or each patient data set are similar to those
collected in chapter 5. The only difference in the results is that no prior rotation and
translation information is available for the MA'I'CH alignment parameters to be
compared with.

The two patient data sets used in this chapter are chosen because they have

differing contrast-enhanced properties. The patient 1 data used in this chapter
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corresponds to the same patient data used to develop the phantom data in the

previous chapter. This aliows direct comparison between the results here and in J»
chapter 5. This paticnt has normal contrast-enhanced anatomy. The second patient

has a large contrast-cnhanced space occupying lesion, which could have a large effect

on the relationship between realignment and segmentation accuracy.

These results in conjunction with the results from chapter 5 enable firm
conclusions to be drawn on the segmentation accuracy requited in realigning pre and
post-contrast data accurately, allowing an automatic segmentation algorithm to be
developed later in this thesis.

Al of the work in this chapter is original and is currently being prepared for
paper submission and all work was conducted by the author, with the exception of

the data acquisition which was performed by radiographic staff,

6.1.2 Potential Differences Between Patient and Phantom Data

Real patient data sets will differ from the phantom data in a number of ways.
n a real pre and post-contrast data set there will be noise differences within the data.
Noise in MRI is produced by a mumber of connected and unconnected sources. Therc
are, however, two main types of noise present: inherent and non-inherent neisc.
Inherent noise comes from various sources such as thermal vibrations within the
body, quantisation noise in the analogue to digital conversion hardware,
preamplification electronic noise and thermal noise in the RF coil. It may be possible
to limit the hardware noise by careful design and construction of the components,

however, it is impossible to completely eliminate this noise. The thermal noise within
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the patient’s body is obviously impossible to reduce or eliminate (Redpath 1998).
The overall signal to noise resulting from the inherent noise for an MRI data set can
be shown to be proportional to the following variables:

SNR oc “i”"z =m VT, (6.1)

where, my is proportional {o the number of hydrogen nuclei , By and magnetic
susceptibility (1), ¥ is the voxel volume, and 7y is the total time that the MRI
systems analogue to digital converter is sampling.

Using the relationship described by equation (6.1) it is possible to increase the
signal to noise in MR imaging. For example we know that increasing By increases #1y
resulting in increased signal and thus signal to noisc. Another way of increasing the
signal to noise would be to increase the sampling time, reducing the noise.

However, thetc arc sources of noise in MRI that cannot be described in such a
simple manner. These sources are know as non-inherent noise sources. For example
patient motion, external interference, blood and organ pulsation can all affect the
overall image signal to noise. Moreover, these noise sources can vary from patient to
patient and from session to session and do not necessarily affect all of the data to the
same extent. It is possible, though, to limit the effects from these sources under
certain circumstances.

Head fixation could correct for the majority of head motion during the scans
in co-operative patients, however, motion artefacts would still be present in the data
especially in Iess co-operative paticnts and in patients who due te illness would find
it difficult to keep still.

Pulsation artefacts (ghosting) which can significantly degrade data quality

(Wood and Henkelman 1985, Ehman ef af 1986) can be reduced by the application of
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k-~space ordered acquisition or scan gating or by utilising specific imaging schemes
(Mitchell ef af 1994, Haacke and Lenz 1987, Hinks ef a/ 1993, Kruger ef al 1997)
however, none of these techniques are applied in MP RAGE sequences. Therefore,
pulsation artefacts, especially as a result of pulsatile blood flow within the internal
carotid arteries, would be present in these data sets. To minimise the contribution of
these effects the phase encode direction was sct Lo anterior/posterior so the majority
of the pulsation artcfacts would remain outside the brain parenchyma.

Non-inhcrent noise can also result from external noise sources. External
interference should not result in significant image noise due to the Faraday shielding
surrounding modemn scanners and the restrictions concerning their operation.
However, if electrical cquipment, which is not propetly shielded, is brought into the
room, interference artefacts can affect the overall signal to noise of the data. However
for this study no significant external interference was detected in any of the data
collected.

Differences between the pre and post-contrast data will also result from
changes in transinitter and receiver gain. The phantom data sets used in the previous
chapter assumed that transmitter and receiver gains remained the same. In an ideal
situation this would be the case, however, transmitter and receiver tuning occurs at
the beginning of each sequence and would be affected by the presence of the contrast
medium (See chapter 3). This could result in differing contrast characteristics
between the two data sets. Tt is possible to override the automatic receiver gain
sctting, however, this could lead to voxel overload in the conlrast scans,

Patient motion during the scanning scquences could also introduce further
differences between the data sets. The post-contrast data set is serially acquired

following the pre-contrast data set and the contrast injection. It is possible due to the
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injection or prolonged time within the scanner that the patient might become more
agitated during the acquisition of the post-contrast data set. This might lead to the
patient moving more during the post-conirast data set, resulting in image blurring and
ghosting artefacts. Conversely, it is also possible that with time the patient becomes
more accustomed to the MR environment and that the pre-contrast data is more
affected by motion than the post-contrast data set.

The realignment software is designed to correct for rigid body rotation and
translation between the two scans, however it is unable to correct for partial volume
effects. Voxels in MR imaging have a finite and well defined size that is usually
measured in cubic millimetres. Due to the finite size of the voxels it is possible for a
single voxel to contain signal from two or more structures with differing MR contrast
properties. This results in an overall voxel signal that is an average of the different
signals contained within it. These voxel intensities would change if the patient moves
between the scans, and would be especially significant in the slice direction due to
the slightly thicker slices collected in this direction using the MP RAGE technique.
In chapter 5 the phantom data set was rotated and translated using sinc interpolation,
which would not correctly model difference in the partial volume effect if the subject
had in reality moved before the scan. Sinc interpolation would also introduce
interpolation errors of its own (see section 5.4.3). Therefore, due Lo the requirement
for interpolation in this technique the data will differ slightly from real data.

Furthermore there could be physiological changes occurring in the patient
between the pre and post contrast data collection. For example changes in the patient
blood pressure during the two data collection periods might result in mare or less
vessel pulsation within the brain resulting in more or less pulsation and ghost

artefacts. Changes such as thesc arc possible due to the injection of the contrast agent
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betore the second scan. Although Magnevist’s physiological effects are limited or
non-existent in the majority of patients, it can induce significant physiological
perturbations in a small minority of patients. In extreme cuses Magnavist can induce
anaphylactic reactions, however this is a rare side effect (Murphy ef a/ 1999).

Due 1o all of these contributing factors it is important to determine if data
from real data sets display the same sensitivity to segmentation accuracy as data
produced artificially. If similar patterns of realignment accuracy and signal to noise
occur then it could be concluded that the phantom data results were a good reflection
of results from real data sets, with the phantom data set’s advantage being the ability
to intreduce known rotations and translations. If it transpires that the phantom data
sets do represent real pre and post-contrast data sets well then it would be possible in
future to use similar data sets for assessment of realignment accuracy of different
registration algorithms.

To test these ideas real patient data sets will be investigated using the same

procedures as in chapter 5. Twao patient data sets will be investigated in detail.
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6.2  Patient Study Methods

6.2.1 Data Collection

Two patient data sets were analyscd as part of this study. The data sets were
collected utilising normal departmental imaging protocols. A description of the
imaging protocols used for both patients is described in table 6.1.

Patient 1°s data was the same data used to produce the phbantom pre-contrast
data in the previous chapters. However, in this study the real pre-contrast data set was
used rather than the phantom data used previously. Using this same dala as before
would allow direct comparison of the results from the phantom data and the actual
patient data. This patient had normal venous anatomy with no abnormal enhancing
structures as determined by a neuroradiologist.

For comparison a second patient data set was examined (patient 2). To test
the effects of segmentation accuracy on an abnormal patient data set, patient 2 was
selected due to the presence of a large enhaneing intra-orbital menigioma (see figure
6.1). It was expecied that for scgmentation volumes above 100% the presence of a
large enhancing volume would affect the realignment and signal to noise parameters

to a greater degree than data without such an cnhancing fumour,
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igure 6.1: Four example slices from patient 2’s post-contrast data. The white arrows indicate the
location of the large enhancing lesion

The patients had a long IV line inserted prior to the imaging protocol
allowing the contrast agent to be administered with the minimum disturbance to the
patient. The patient’s head was held in position with pads and they were asked to
keep as still as possible during the procedure. The Magnevist contrast agent was
administered via the long line in a 20 second bolus and the post-contrast sequence
was started within 20 seconds of finishing the contrast injection. The imaging
parameters for the 3D MP RAGE sequences were TR=10 msec, TE=4 msec, TI=300

msec, flip angle=10 degrees, equivalent slice thickness= 1.4 mm, FOV=250 mm,
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with & matrix size of 256x256. Scanning time for each 3D MP RAGFE sequence was

6 minutes 46 seconds.

Patient 1 Patient 2
3-Plane Localiser Sagittal Localiser
2D T1/T2 Multi-echo SE sequence Pre-Contrast 3D MPRAGE scquence
Prc-Contrast 3D MPRAGE sequence Magnevist injection (13mis)
Magnevist injection (8mls) Post-Contrast 3D MPRAGE sequence
Post-Contrast 3D MPRAGE sequence

Table 6.1: Iinaging protocols for study patients

After scanning was completed the data sets were archived and transferred to a
sun Ultra 10 workstation. Here they were converted from ACR/NEMA 2.0 format to
Analyze format using a conversion tool {conv_analyze , courtesy of Mariin Connell)

to allow the data to be loaded and processed in a commercial software package.

6.2.2 Image Analysis

Paticnt 1°s post-contrast data was already accurately segmented for the work
carried oul in chapter 4. However, patient 2°s post-contrast data set required accurate
segmentation of the brain parenchyma using the methods described in chapter 4.
Extra care was required when segmenting the data from patient 2 due to the space
occupying lesion which affected the shape of the patients brain (see figure 6.1).

For patient 1 it was also possible to reuse the segmentation volumes created
in chapter 5. This allowed direct comparison of the results from the two studies.

Similar segmentation volume data sets were produced for patient 2.
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The image analysis methods were the same as those used in chapter 5, where
both the transformation and signal to noise parameters were examined. However, for
these two data sets the rotational and translational parameters required to correctly
align the pre and post-contrast data were not known. Therefore, the trends in the
transformation and signal to noise parameters were examined and compared to those

determined for the phantom data.

6.3  Patient Study Results

6.3.1 Patient 1

Graphs 6.1(a-f) display the alignment parameters produced when registering
patient [’s pre and post-contrast data sets. These graphs include both under and over-

segmentations.
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araphs 6. l(a-l') ngld body rotation and transiation parameters for alignment of the pseudo pre-
contrast data with the post-contrast data (Patient 1),

The rotations and translations estimated by the MATCH algorithm attempt to

correct for the unknown rotations and translations that occurred with the patients’

head during the inter-scan period. It is not possible to relate these to true values as

they were unknown, however, it is still instructive to note any features of the graphs

produced. It should also be noted that the overall trends in graphs 6.1(a-f) are very

similar to those found in the phantom graphs 5.1(a-f).

The graphs of PITCIT and ROLL are of similar shapes and dimensions. At

100% segmentation PITCH has a rotation of 0.303 degrees and ROLL hus a rotation
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0£0.218 degrees. PITCH has a maximum rotation of 0.33 degrees (73%) and a
minimum of 0.16 degrees (169%). ROLL has a maximum rotation of 0.223 degrecs
(97%) and a minimum of 0.08 degrees (59%).

YAW displays a decreasing trend with increasing segmentation volume. All
rotations are smaller than for PITCH and ROLL with a rotation of 0.007 degrees at :
100% segmentation volume, and a maximum rotation of 0.009 degrees (56%) and a
minimum rotation of 0.005degrees (169%).

Translation P shows no overall trend with segmentation volume. The 100%
segmentation volume has a translation of 0.104 pixels with the maximum and
minimum being 0.126 (92%) and 0.039 respectively. Translation Q varies to a greater
exient with segmentation volumes above 100% in what appears to be a linear trend.
Below 100% the rotations are more stable. The 100% Q translation is 0.256 pixels
with the maximum and minimum being 0.290 pixels (103%%) and 0.184 pixcls
(169%) respectively.

R displays the greatest range of translations over the segmentation volume ;
range. The 100% R translation is 0.178 pixels with the maximum and minimum
being 0.401 pixels and 0.119 pixels respectively. The variations in translation are ,
larger below 100% segmentation volume with an overall trend for decreasing
translation for larger segmentation volumes.

As was discussed in chapter 5 it is difficult to comprehend the overall effect
of the segmentation accuracy upon visual inspection of the individual rotations and
translations. Therefore, using the methods described in section 5.2.4 the overall

rotations and translations were calculated.
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Graphs 6.2(a & b): The calculated overall rotation and translations for the patient 1 data set. '

Graphs 6.2(a & b) display the results for both rotation and translation. Graph

6.2(a) shows the overall rotations applied to patient 1°s data for different

segmentation volumes. For segmentation volumes of 100% and below, the overali

rotation varied betwcen 0.534 degrees at the 100% segmentation volume, and 0.585

degrees at the 65% segmentation volume. The largest variation within this region

represented a difference of 9.5% with respect to the 100% segmentation volume.

Above the 100% segmentation volume there was a trend for decreasing rotation with

the maximum rotation being 0.441 at the 103% segmentation volume and the
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minimum being 0.347 at the 169% segmentation volume. The smallest variation
from respect to the 100% segmentation volume was 17.4%. Therefore, the greatest
variation in overall rotation oceurred for segmentation volumes greater than 100%.
‘This concurs with the conclusions of chapter 5.

In contrast the overall {ranslation (graph 6.2(b)) is more variable for
segmentation volumes of 100% and below than for segmentation volumes above
100%. For segmentation votumes of 100% and below the overall translation varied
between 0.649 half pixels at the 97% segmentation volume and 0,934 half pixels at
the 59% segmentation volume. The largest variation from the 100% segmentation
volume translation (0.656) represents a difference of 42% with respect to the 100%
segmentation volume.

As described in section 6.2.2 these overall rotations and transtations could bhe
directly compared to the rotations and translations in the phantom data from chapter
5. Comparing these results would provide information on the effects of noise
differences between the real pre and post-contrast data (graphs 5.6(a & b) and 6.2 (a
& b).

On inspection of the results it was obvious that patient 1 did move a
significant amount between the pre and the post-contrast scans. Ideally, therefore the
patient data would be compared to the phantom transformed data. However, as was
discussed in section 5.4.3 the overall signal to noise in the transformed phantom data
was reduced by the extra SINC transformation required to produce this data,
therefore, the data was of reduced quality. This suggests that the patient data should
be compared to the non-transformed phantom data. Conversely, it could be assumed
that the extra interpolation introduced noise into the phantom data, and thus the

transformed data results would be more closely related to the results for the patient
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data, which contain significant noise differences between the pre and post-contrast
data. "I'hereforc, for completeness the overall rotations and translations were
compatcd for both the transformed and non-transformed data scts.

Graphs 6.3(a & b) display the relationship between patient 1’s overall rotation
and translation parameters with the non-transformed phantom data. Graphs 6.3(a &

b) display the relationship with the transformed data,
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Graphs 6.3(a & b): The relationship between patient 1°s overall rotation and translation with the non-
transformed phantoms rotation and translation
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Graphs 6.3(a & b) and 6.4(a & b} suggest that for segmentation volumes
larger than 100% that the overall rotational and translational parameters follow the
same trends for the phantom data as for the paticnt data. This can be quantified by ;

calculating the correlation coefficients for this data (see table 6.2)
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Data comparison Pearson Statistical ;
Correlation Significance
Patient 1 v’s Non-transformed (Rotation) -0.997 <(.001
Patient 1 v’s Non-transformed (Translation) -0.858 0.013
Patient 1 v's Transformed (Rotation) -(.994 <0.001
Patient 1 v’s Transformed (T'ranslation) -(0.962 0.001

Tablc 6.2: Pearson correlation coefficients and statistical significance when comparing ssgrentation
volumes > {00% segmentation volume

All correlations are significant at the p<0.05 level with only the transformed

rotation comparison not significant at the p<0.01 level. These results suggest that for

segmentation volumes above 100%, where the volume contains contrast-enhanced

data, that the overall trends in rotational and translational correction are very similar

for both the phantom data and for the patient data. Therefore, because the chapter 5

results suggest that contrast-enhanced data inclusion within the segmentation mask is

undesirable, then it appears that these results confirm this conclusion.

Data comparison Pearson Statistical
Correlation Significance
Patient 1 v’s Non-transformed (Rotation) -0.541 0107
| Patient 1 v's Non-transformed (Translation) -0.443 0.200
Paticnt 1 v's Transformed (Rotation) -0.519 0.124
Patient 1 v’s Transformed (Translation) 0.706 0.022

Table 6.3 Pearson cotrelation coefficients and statistical significance when comparing segmentation
volumes =< 100% segmentation volume

For segmentation volumes of 100% and below this is not the case as is

illustrated by table 6.3. Only translation is significantly correlated and only then with

the transformed data.

The differences in correlation and in the shape of the graphs above and below

the 100% segmentation suggest that the noise differences present in the patient daia

affect the realignments to a greater extent at segmentation volumes below 100%.,
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Signal to noise in Subtraction Image (Patient 1}
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Graph 6.5: Signal to noise variations with respect to the segmentation volume applied during the
registration process (Patient 1)

Signal to Noise

The signal to noise data for this patient is displayed in graph 6.5. The highest
signal to noise occurs at two segmentation volumes, 100% and 97%. Segmentation
volumes between 88% and 126% all have signal to noise values within 1.5% of this
value. Below 100% segmentation volume signal to noisc levels off at 8.88 between
80~59% before dropping of considerably to 8.78% at segmentation volume 55%.
Signal to noise drops in a more linear fashion abovc the 100% scgmentation volume.
If we compare this graph to the equivalent graphs in chapter 5 (5.2 and 5.7) it would
appear that the increased variability of the translational parameters at different
segmentation accuracies below 100% result in reductions in the signal to noisc.

These results will be discussed in more detail later.
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6.3.2 Patient 2

Graphs 6.6(a-f) display the alignment parameters produced when registering
patient 2’s pre and post-contrast data sets. These graphs include both under and over
scgmentations.

Only two of the graphs can be described by a linear trend over the whole
range investigated, PITCH (R’= 0.9391) and ROLL (R’= 0.9832). Both of these
parameters tend toward smaller required rotations with increasing segmentation
volume. The 100% segmentation volume has a value of 0.45¢ degrees for PITCII and
0.428 degrees for ROLL. PITCH has a maximum rotation of 0.481 (70%) and a
minimumn rotation of 0.363 degrees (155%). ROLL. has a maximum rotation of 0.465
(59%) and a minimum rotation of 0.351 (155%).

Overall the whole range YAW displays no overall rotation trend, although
there is more vartability in this parameter al segmentation velumes above 100% than
below 100%. The 100% segmentation volume has a value of 0.477 degrees. The
maximum rotation occurs at a segmentation volume of 124% with a value of 0.544
degrees. The minimum rotation occurs at a segmentation volume of 0.474% with a
value of 97%.

Translation parameter P shows no overall trend over the whole range of
scgmentation volume valucs, although there is more variability above 100%. The
100% scgmentation volume has a valuc of 0.1825 pixels. The maximum translation

of 0.196 pixels oceurs at 118% with the minimum of 0.171 occutring at 155%.
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Graphs 6.6(a-1); Rigid body rotation and transiation parateters for alignment of the pseudo pre-
contrast data with the post-contrast data (Patient 2).

Translation parameter Q appears to display a trend to reducing transiation
below 100% and an increasing trend above 100%. Once again the values above 100%
tend to be further away from the 100% value of 0.362 pixels. The maximum
translation of 0.489 pixels occurs at 155% with the minimum translation occurring at
97% with a value of 0.358.

Translation parameter R displays no overall trend over the whole range of

segmentation volumes. Variability appears to be similar above and below the 100%
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segmentation volume. The 100% segmentation velume translation value is 0.050

pixels. The maximum translation of 0.070 occurs at a segmentation volume of 155%

and a minimum translation of (049 at a segmentation volume ot 116%.

Once again to simplify the analysis the individual rotations and translations

were converted (o overall rotations and translations (see section 5.2.4) and are

displayed in graphs 6.7 (a & b).
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Graphs 6.7(a & b): The calculated overall rotation and translations for the patieat 1 data set.
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In the 100% segmentation volume and below range the overall rotation
parameter (graph 6.7(a)) varied between 0.715 degrees at the 100% segmentation
volume to 0.753 degrees at the 59% segmentation volume. This represented an
overall variation of 5.3% with respect to the 100% segmentation volume rotation.
Above 100% the overall rotation varicd between 0.728 degrees at the 107%
segmentation volume to 0.659 at the 155% segmentation volume. This represented a
largest variation of 7.8% with respect to the 100% volume rotation. However, it
should be noted that for segmentation volumes between 83% and 139% the rotations
remain within 2% of the 100% volume rotation.

Graph 6.7(b) shows the overall translation applied to patient 1°s data for
different segmentation volumes. For the segmentation volumes of 100% and below
the overall rotation varied between 0.809 half pixels at the 97% segmentation volume
and 0.837 at the 55% segmentation volume. With respect to the 100% segmentation
volume (0.816 half pixels) this represents a largest variation of 2.6%. Above 100%
the overall translation varied between 0.8106 half pixels at the 107% segmentation
volume and 1.045 half pixcls at the 155% segmentation volume. This represents a
largest variation of 28.1%.

Graph 6.7(b) in particular supports the hypothesis that there is smaller amount
of variation on the realignment with differing segmentation volumes when there is no
contrast enhancement present in the realignment segmentation volume. It follows a
very similar trend to the phantom data translation results in chapter 5 (graph 5.6(b}).
This, however, is not the case for the rotation parameters (see graphs 6.7(a) and
5.6(a)). For larger segmentation volumes the graph does indeed tend away from the

100% segmentation value, however, for segmentation volumes closer to the 100%
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volume the variability appears to be smaller for segmentation volumes above the
100% volume.
To appreciate the effects of these rotations and translations on the resulting

alignment <lata it is important to inspect the signal to noise results {see graph 6.8)

Signal to Noise in Subtraction Image (Patient 2)

Signal to Noise
O
>

90.15

9.14 -

9.13 ; , . , ;
85 70 85 100 115 130 145 160
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Graph 6.8 Signal to noise variations with respect to the scpmentation volume applied during the
registration process (Paticut 2)

Graph 6.8 displays the signal to noise ratio for the subtraction data for this
patient. Below the 100% segmentation volume signal to noise changed very little. It
remains ¢lose to 9.180 which is higher than the signal to noise measurements for
paticnt 1 (sce graph 6.5). Above 100% however, there is more variation in signal to
noise with an overall decrease in signal to noise with increasing segmentation
volume. The drop is signal to noise is most significant for segmentation volumes

above 139.3% where the signal to noise falls to 9.136.
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The signal to noise results suggest that despite the variability of the overall
rotation below the 100% segmentation volume (see graph 6.7(a)) thal segmentations
below 100% produce better overall alignment resulis than for segmentation volumes
abovc 100%, It was for these over 100% segmentation volumes, where there was
increased variation in the overall translation, that signal to noise falls significantly.
Therefore, for patient 2 it would appear that the realignment is of better quality when
using segmentation volumes of 100% and below. These results therefore support the

conclusions of chapter 5 despite the presence of the large enhancing lesion.

6.4 Discussion

The patient 1 data is the same data from which the phantom was derived in
chapter 3. Therefore, by determining the differences between the two data sets it was
possible to determine the effects that real noise differences have on realignment
accuracies for ditferent segmentation volumes. The realignment parameters for
patient 1 have similar graph characteristics and trends to those determined for the
transformed and non-transformed phantom data in chapter 5 (comparing graphs
5.1(a-f) and 6.1(a-1)).

"T’he most noticeable difference between the iwo data sets is the inereased
variability for all of the realignment parameters, compared to the moved phantom
data, for segmentation volumes below 100%. It is possible to illustrate this by
displaying the variation of these parameters around their average value (below 100%)

for both data sets whilst keeping the graph scales the same (compare graphs 6.9(a,b)
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and (c,d)). It is obvious from these graphs that the variations are greater for the

patient data set.
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Graphs 6.9(a,b): Patient 1 variations from the average rotational value for segimentation volumes
below 100%
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Transiational Parameter Variation for Phantom (Moved) Data {Under 100%
Segmentation Volumes
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Graphs 6,9(c,d): Phantomn (moved) translational variations from the average rotationat value for
segmentation volumes below 100%

These results can be explained due to the presence of noise differences in the
pre- and post-contrast data scts that was not present in the original phantom study in
chapter 3. The noise introduces random variations in the realignment parameters

when compared to data with no such noise differences. The variations are larger for
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the smaller segmentation volumes (below 65%). This suggests that the noise
differences have a greater effect when the volumes are simaller, however, the noise
differences do not appear to be linearly related to segmentation volume. It is likely
that local noisc charactcristics within the data sets will contribute to the overall
variations. Local variations might occur for example if there is arterial ghosting
affecting part of the images.

When the data equal to and above the 100% segmentation volume is
compared it is found that corresponding parameters from the phantom and patient
data set vary linearly with respect to one another (see graphs 6.10 (a~f)). All of the
translation and rotation parameters have linear least squares fits (R%) of greater than
0.7 with four (PITCH, ROLL, YAW and Q) producing linear fits of greater than 0.9.
For all of the parameters the rotations and translations required are larger for the
patient data set than for the phantom data set, due to the real patient motion present.
More significantly the best-fit line gradients are all larger than 1. This suggests that
there are larger errors in the realignment parameters for the patient data set than for
the phantom data set, {.¢. cach incrcase in scgmentation volume over 100% increases
the crror in the patient data by a larger amount. Therefore, despite the preservation of
a linear relationship between the phantom and patient data set for these segmentation
volumes it remains the case that the segmentation volumes containing contrast-
enhanced data introduce significant errors into the realignment.

The comparisons of overall rotation and translation for the phantom and
patient data strengthen these conclusions (see graphs 6.3(a & b) and 6.4(a & b)). For
segmentation volumes above 100% the phantom and patient 1 data correlate
significantly (table 6.2) but correlate poorly for segmentation volumes below 100%

(table 6.3).
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The signal to noise graphs for patient 1 and the phantom data sets also display
similar differcnces. For example for the phantom data set with rotation and
translation added, signal to noise does not vary for segmentation volumes below
100% (See graph 5.7). However, for the same segmentation volumes the patient 1
signal to noise does vary to a larger degree, and remains below the optimum signal to
noise measured at the segmentation volume of 100% (see graph 6.5). There is a more
significant fall at segmentation volume 56%. The reductions in signal to noise will
result from the variable nature of the realignment parameters, which themselves ate a
result of the noise differences between the pre and post-contrast data sets. The larger
variations in the realignment parameters would also explain the large drop in signal

Lo noise at the 56% segmentation volume,
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Graphs 6.10(a-[): Relationship between paticnt and rotated phantom daia realignment parameters for
segmentation volumes above 100%

Above 100% the shape of phantom graph is similar to the shape of the graph
for patient 1. The signal to noise falls with increasing segmentation volume. This fall
is a result of the realignment errors produced due to the presence of the contrast
enhancement in the segmentation volumes.

From comparing the phantom data set with the patient data set it is possible to

determine the effect that real noise differences have on realigning pre and post-
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contrast data sets. From the above analysis it can be concluded that noise differences
play an important role when realigning data with sub optimal segmentation volumes
by increasing the overall crror in the realignment parameters by a random amount.
The error appears to remain random although larger errors are introduced for the
smaller segmentation volumes.

Despite the extra realignment error introduced for segmentation volumes
<100%, the realignments for this range of segmentation volumes arc still more
accurate than the realignments calculated for volumes greater than 100%. Thercfore,
it can still be concluded that when segmenting pre and post-contrast data sets, that
care must be taken to ensure that contrast enhanced data is not contained within the
segmented volume.

The inclusion of a second patient data set in this study allowed segmentation
accuracy to be investigated on a sub-optimal data set. Patient 2 had a large
enhancing, space occupying lesion, which would be expected to affect the
realignment accuracy in a different way to the previous data sets. However, to be able
to make general conclusions about segmentation accuracy for pre and post contrast
data sets, all of the conclusions previously reached should remain consistent with the
realignment results for this sub-optimal data set.

For two of the parameters (YAW and Q) distinct changes in the realignment
parameters occurs at the 100% segmentation volume similar to those described in
patient 1, with YAW displaying a large discontinuity and Q displaying a reversal of
the line gradient. (See graphs ¢ and ¢). Graphs P and R are more generally variable
over the whole range, however, this is similar to I in patient 1 (graph 5.1(c)). The
two parameters that display unusual characteristics for patient 2 in comparison to

patient 1 and the phantom data are the PTTCH and ROLL parameters. Both of these
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parameters display linear trends over the whole range of segmentation volumes. (See
graphs 5.6 (a and b). Linear trends such as these were not produced for any ol the
other data sets,

In (rying to describe the processes that produced these linear trends note
should be made of the overall rotations and translations calculated and the signal to
noise changes in the final subtraction image (See graphs 6.7(a and b) and 6.8).

The linear trends in these rotational parameters did not translate to a linear
trend in rotation. As was described in section 6.3.2 the overall rotation appears to
remain closer to the 100% segmentation rotation value for segmentation volumes
above the 100% scgmentation volume than those below it, at least until segmentation
volume 139%. This suggests that under-segmented volumes were aligning more
accurately. However, the overall translation parameter suggests the opposite. Thus,
the accuracy of the realignments werc not obvious from the realignment parameters,
Theretore, it was important to examine the signal to noise results.

The overall shape of the signal to noise graph is very similar to those
produced in chapter 5 (see graphs 5.2 and 5.7), with very little variation in signal to
noise for segmentation volumes below 100% but with falling signal to noise above
100%. The lack of variation in the signal to noise below 100% suggests the changes
in the realignment parameters within this range of segmentation volumes do not
allect the subtraction image to any significant degree. The fall in signal to noise
above 100% suggests that the inclusion of contrast-enhanced data within the
realignment volume reduced the rcalignment accuracy. The more significant fall in
signal to noisc above 139% is likcly to be due to increasing inclusion of the

enhancing tumour within the realignment vohume.
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Therefore, despite the lack of cohesive conclusions from the translation data
for patient 2, when the signal to noise data is included in the analysis, this patients
results appear to conlirm the previous conclusions on the realignment accuracy in

relation to the segmentation accuracy of the post-contrast data sets.

6.5  Segmentation Accuracy Conclusions

One of the main aims for this chapter and for chapter 5 was to determine the
effect of segmentation accuracy on realignment accuracy. More speceifically it was
intended to use this data to determine the segmentation accuracy required to
accurately correct for patient head motion between pre and post-contrast 3D
scarnmning. Chaptler 5 investigated this by producing an idealised phantom data set
which could be rotated and translated by known amounts allowing the accuracy of
the realignments to be compared to a gold standard, This chapter continued these
investigations but on real pre and posi-contrast data, which despite the data sets
differing by unknown rotations and translations, allowed real world ettects on
realignment accuracy to be examined.

The first overall conclusion that could be drawn {rom these two studies was
that varying scgmentation volume and thus segmentution accuracy did indeed have a
mcasurable effect on the resulting realipnment parameters. In some cases, as has been
displayed in the resulting graphs, small changes in scgmentation volume resulted in
large changes in realignment parameters. This is especially true for the patient data

where noisc appears to introduce random etrors into the realignments. ‘The exact
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nature of the noise effects is likely to vary from patient to patient and from study to
study, due to the varying nature of noise in MR1L

The results from chapter S indicated that the realignment accuracy reduced for
data sets that were under-segmented (>100%), suggesting that the presence of
contrast-enhanced data in the segmented realignment volume was contraindicated for
optimal alignment of pre and post-contrast data. Therefore, any scgmentation
algorithm applied to these data scts will be required to remove as much of the
contrast-enhancement as possible.

Ensuring the segmentation volume does not contain contrast-enhanced
structures is non-trivial. The pre-contrast data set is a simpler data set to segment due
to the lack of confounding contrast enhancing structures. Chapter 4 (section 4.1.3.4)
described some of the algorithms capable of scgmenting such data sets. The
scgmentation algorithms typically have scgmentation errors of about 2% (Lemieux ef
al 2003, Stokking er gf 2000). Due to the close proximity of the veins to the brain
parenchyma, and the similarity of the venous signal to grey matter signal in the pre-
contrast data, a significant amount of these segmentation errors are likely to result in
venous inclusion within the segmented data. It is impossible to use the post-contrast
data set to determine the venous voxels as it is not correctly aligned to the pre-
contrast data. Therefore to ensure that the volume used for the realignment does not
contain any regions of contrast enhancement the post-contrast data set must be used.

Currently there are no segmentation algorithms designed to segment brain
parenchyma from contrast-enhanced 3D data sets. It is therefore important for any
segmentation algorithm that is to be developed for, and applied to the posi-contrast

data, to ensure that it fully rcmoves the contrast enhanced data. Ensuring that all
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contrast-enhanced voxels are removed is likely 1o result in over-segmentation of the
post-cantrast data.

The level of accuracy required would affect the method of automatic
segmentation used to produce the realignment volumes. For example if a high level
of segmentation accuracy was required, i.e. within 2 or 3% of trained observer
estimates, this would require very accurate modelling of the data using complicated
segmentation algorithms. Such methods were described in chapter 3 (section 4.1.3.4).
However, with increasing accuracy there would also tend to be a higher segmentation
failure rate due to any large variations from the expected brain model. For example if
there was a large enhancing tumour (such as in patient 2), which is a space occupying
lesion, this may confound the model resulting in poorly segmented data.

If segmentation accuracy was not required to be as accurate as 2-3% then it
might be possible to devise a scgmentation algorithm that would cope beiter with
unusual data sets. The ability to process a wider range of data sets would be
advantageous, renoving the requirement to assess image data sets for suitability prior
to attempting the segmentation and realignment protocol. This improved applicability
would likely be offset against poorer registration accuracy, however, if accuracy was
only slightly affected then the benefits would outweigh the cost,

Examining the signal to noise parameters first, for the phantom data and for
the two patient data sets, signal to noise is at its highest value at 1030% except for
graph 5.2. This confirms that the observer based segmentations are at or very close
to the optimum segmentation volume for realigning the data sets. Signal to noise
below 100% remains steady for both patient 2 and for both the transformed and non-

transformed phantom data scts with only a very slight drop in signal to noise for
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patient 2 for the smaller segmentation volumes. There are more significunt falls in
signal 1o noise for patient 1 especially ai the very smallest volumec uscd.

Due to the same post-contrast data set being used for patient 1 and the
phantom data it is possible to assign the drop in signal to noise detected for the lower
segmentation volumes to noise differences between the pre and post-contrast data.
These noise differcneces have a strong local effect that dominates at the lower
segmentation volumes. Therefore, it can be concluded that very small realignment
volumes should not be used due to the increased influence of data noisc differences.
This conclusion is also sirengthened when the realignment paramcters are examined
in the patient data sets, especially those demonstrated in graphs 6.9(a & b), where
larger variations are detected at the smaller segmentation volumes.

However, for segmentation volumes of more than §0%, in all cases the signal
1o noise remained within 0.5% of the maximum signal to noise value. From the
signal to noise data alone it would appear that segmentation volumes that contain no
contrast enhancement and contain not tess than 80% of the brain parenchyma would K
produce sufficiently accurate final subtraction data sets. This suggests that good
quality realignments can be achieved when segmentations of 80% to 100% accuracy
are used in conjunction with the MATCH algorithm

The phantom data realignment parameters are consistent with this conclusion,
however, it is not obvious from viewing the patieni data realignment parameters on
their own that this is the case. For both patient 1 and 2 there were more significant
variation in the rcalighment parameters for segmentation volumes of 100% and less
(see graphs 6.2 (a & b) and 6.7 (a & b).

However, by comparing the phantom and patient 1 results it was shown that

the variations were almost exclusively due to the noise differences between the pre
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and post-contrast data sets. As has been previously discussed these noise differences
cannot be simply modelied and corrected for. The differences will also vary from
subject to subject and from scan session to scan session. It is therefore likely that for
the majority of patient data sets that the underlying trend of rcalignment accuracy is
similar to the phantom data results with further modulation of the realignment
parameters as a result of the noise differences between the pre and post-contrast data.
It was likely, therefore, that the patient 2 data was modulated by the noise diffcrences
in the same manner. Despite this the overall translation parameter (graph 5.7(b)) did
follow the expected trend with translation varying little for segmentation volumes
below 100%.

It should be further noted that the scanner used in this thesis was installed in
1993, Signal to noise from this scanner is significantly lower than for the newest
generation of scanner. For example a typical signal to noise (white matter to
background noise) value for a good MP-RAGE scan from the scanner used for this
study was 17. This compares poorly for an equivalent sequence from a newer scanner
within the department using a similar type of sequence (IR FSPGR) which has a
typical signal to noise around 44. Therefore, due to the improvements in signal to
noise in modern scanncrs it is likcly that the modulation of the realignment at
segmentation volumes below 100% will not be as significant as it was in this study.
Tlowever, some noise sources cannot be reduced by improved technology alone, and
will continue to modulate the data.

The results discussed here are specific to cerebral imaging and to one
particular contrast agent. lHowever, these results and conclusions have implications in
any situation where data sets, which are collected within the same imaging session,

are used to compute an overall result data sct. Such realignment corrections are
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common in areas such as fMRI where a large number of data sets are collected and
realigned using simple and fast realignment algorithms (Jenkinson et al 2002,
Ashburner & Friston 1997). These algorithms do not attempt to segment the brain
parcnchyma for realignment purposes due to processing time constraints. Also
despite the changing signal from brain parenchyma itself in the T2* sequences used
to detect the BOLD signal, the algorithms do not altempt to remove realignment
accuracy modulation due to these fluctuating signals. It has been shown in this thesis
that where signal varies significantly between data sets significant errots in
realignment can result. FMRI techniques are constantly being improved and it is
likely that over time signal to noise will increase, resulling in more significant
contrast differences between the scans requiring realignment. Significant errors in
realignment may result.

Currently the simple realignment algorithms are acceptable due to the
typically low resolution of these data sets and the small size of the BOLD signal
changes. Voxel dimensions are of the order of 3mm cubcd and the data is commonly
smoothed by Gaussian filters of about 6mm. Therefore, small errors in realignment
are unlikely to be significant. However, as fMRI resolution increases with advances

in technology and technique these issues will need to be addressed.
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6.6 Implications in Designing an Automatic Segmentation Algorithm

The next chapter aims to design an automatic segmentation algorithm that
enables pre and post-contrast data to be accurately aligned whilst remaining robust
enough to work with real clinical data sets that will vary significantly in their nature.

This algorithm must completely remove contrast enhanced data and should
also remove extra-parenchymal data to keep the errors in the realignment to a
minimun. The segmentation of the brain should be as accurate as possible, although
it is acceptable to over-segment to ensure that all of the contrast-enhancement is
removed. Therefore, the next chapter aims to design a segmentation algorithm taking

into account the findings of this chapter.
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Chapter 7

Development of Automatic Segmentation
Realignment and Subtraction Algorithm




7.1 Introduction

7.1.1 Overview

Previous chapters have investigated the segmentation requirements for the
accurate realignment of pre and posi-contrast 3D data sets. The aim of this chapter is
1o use this information to develop an automated scgmentation algorithm for these
data sets. This chapter also aims 1o produce a fully automated algorithm that can
produce subtraction venogram data when supplied with the raw pre and post-contrast
data sets. Following production of these data sets it would be possible to view the
cerebral venous structures using maximum intensity projection (MIP) software in 3
dimcnsions.

To determine the effectiveness of this algorithm in producing correctly
aligned and segmented data sets, in chapter 8 the outpuls from the automatic
algorithm will be comparcd to subtraction data sets produced using manual
scgmentation. This will determine the effectiveness of the algorithi using clinically
relevant data sets.

Therefore, a method will be developed that is specifically designed for these
contrast enhancing data scts but based on the morphological techniques described by
Hohne & Hanson 1992,

As well as requiring a segmentation volume for realignment purposes, a
second volume is required to define the subtraction data that should be used for the
final MIP visualisation. The production of this secondary volume will also be

addressed.
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The algorithm in this chapter has been written by the author and is being used
to segment post-contrast data which is a novel application. The automatic production
venograms using this technique is also, as far as the author is aware novel, The data

acquisition was performed by radiographic staff.

7.1.2 Rational For a New Algorithm

As has been described previously (see section 4.1.3) there are a number of
possible methods of segmenting the brain from surrounding tissue. However, a
number of these are likely to fail where there is significant enhancing pathology or
significant variation in normal anatomical enhancement. For example probabilistic
clustering methods (Barra & Boire 2000, Fischl ef af 2002} require the brain to be
normal or ¢lose to normal in its morphology. With contrast enhancing lesions present
these techniques are unlikely to be able to take account of such variations. Methods
that depend on modelling of the brain (Lemieux et al 1999, 2003) are also likely to
fail where the anatomy is grossly affceled by enhancing lesions.

However, morphological techniques such as those based on the work of
Hohne & Hanson (1992) have enough flexibility to enable them to be developed for
the purposes of this study. Recently these techniques have been extended to produce
an automatic segmentation technique (Stokking 1998). Both techniques use a seed
point and threshold followed by motphological operations to scparate the linkages of
the brain from the surrounding tissue. Stokking devised a method of determining the
seed point and thresholds automatically (CACTUS). The seed point was detected by

first exarnining the data histogram to find a reasonable signal value for grey matter
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and thresholding all data above this value. This was then eroded twice and using a
spherical search from the middle of the data set the first encountered point within the
geed volume is set as the seed point. Following this Siokking devised an algorithm to
detect the lower and upper bounds of the threshold to apply the morphological
operators on,

Although the CACTUS technique works well on typical 31D 'I'1 data, the
technique would run into problems when used on post-contrast data. For example, it
is the aim of this study to producc a segmentation procedure that can segment data
sets that have enhancing abnormalitics as well as those that have normal enhancing
anatomy, Large enhancing tumours could, depending on their size and position,
confound the algorithm resulting in poorly defined threshold values. It also likely this
techuique would result in contrast-enhanced data remaining within the segmented
volume. Therefore a new protocol was required.

Before a protocol could be devised it was important to determine what was
requited from it. Therefore, an overview was devised detailing the requirements for
the final automatic procedure. The protocol was divided up into a nunber of
sections:

1) Load the pre and post-contrast data sets

2) Segment the posi-contrast data set to a good accuracy ensuring that no
enhancing structurcs arc contained within the final segmentation mask

3) Produce a second mask containing all structure of interest (e.g. brain and
cnhancing vessels) but excluding unwanted structures (e.g. skin and muscle)
to enable good quality MIP visualistion after final subtraction.

4y Use the segmented volume within the MATCH algorithm to determine the

realignment parameters to best align the pre and post-contrast data sets.
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5) Apply the realigniment parameters to the pre-contrast data set and reslice
using SINC interpolation

6) Subtract the pre and post-contrast daia contained within the mask produced in
section 3.

7) Use generic MIP visualisation software to allow the cercbral venous system to

be visualised i 3D.

The aim of this chapier is to devise a step by step protocol following the above
overview sieps using Analyze (Mayo Clinic) software. Having achieved this, this
study then attempts to devise a fully automated algorithm using the IDL ( Interactive
Display Language, Research Systems, CO, USA) image processing language,

The two most important sections within this plan, with regard to this study, are
sections 2 and 3. Section 2 aims to segment the post-contrast data set to a standard
described in the previous chapter. This segmented data set will allow the realignment
to be made with respect to structures that do no change between the pre and post-
contrast data sets.

Section 3 aims to produce second mask. This mask is required to enable good
quality visualisation of the venous structures. This is achieved by producing a mask
that contains all of the required venous structures within it. If this mask was not
produced this would result in reduced signal to noise in the final MIP visualisations.

As has been previously described contrast enhancement occurs in structures
other than those of interest within the bead. These include skin and bone marrow.
The realigned pre-contrast data set contains all of the structures within the head that
were present in the original pre-contrast data set. Thus, if this were subtracted from

the post-contrast data set (which also contains all of these structures, along with any
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enhancement) and is viewed using a MIP, the overlying structures, such as the skin
would obscure the structures of interest. In this respect this exlracranial enhancement
introduces noise into the MIPs,

Further problems would arise from venous vessels contained within the head,
but not contained within the brain parenchyma. When investigating cerebral venous
disease these vessels are often of little or no interest for clinical diagnosis. However,
if no mask were used to determine the MIPs area of interest these vessels would be
included in the final MIPs. Due to the varying nature of the venous system it is
possible that these structure could be misinterpreted as cerebral vessels, especially
when single view MIPs were used. With aceess to 3D rotateable MIPs overlying
vessels become more distinguishable from cerebral vessels, however, it is still
possible that these vessels would obscure areas of interest and would introduce
unnecessary difficulty into the reporting process.

Therefore, it was important to produce a second mask that would only contain
cercbral parenchyma and cerebral vessels serving the cerebral parenchyma, thus
simplifying the reporting procedure and improving the quality of the final MIP data,

The following sections describe the design of an algorithm that fulfils the

requirements for automatically producing MPRAGE subtraction venograms.
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7.2 Methods - Analyze Protocol

7.2.1 Introduction

Before the 1121, algorithm could be developed a protocol was devised using
the Analyze softwarc package. This software package provided a user friendly
graphical interface that contained a number of image analysis modules, including
filtering and morphology. It was possible using this software package to devise and
develep the techniques required for correctly segmenting the post-contrast data for
realignment purposes and also to creale the mask used to produce the final
subtraction image. The following sections describe the procedures used to determine
the best protocol for achieving the automatic produetion of good quality subtraction
venograms. Testing and designing the algorithm protocol with a software package
such as Analyze enabled faster evolution of the design at the macro programming
level without the initial requirement for tfime consuming programming and

debugging,

7.2.2 Devising the Paradigm Protocol

As described earlier in this chapter the most important aspect of the new
algorithm is its ability to segment the brain parenchyma and to produce the final
subtraction mask. Often segmentation algorithms are devised with very specifie MRI
data sets in mind. Some algorithis are also specific to particular scanner

charactleristics (see section 4.1.3). However, it is the intention of this study to
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produce a segmentation algorithm that can be easily adapted for use on other
scanners with different methods for producing 3D T1 data.

Despite the differences in scanner characieristics and pulse sequences
available, there are always a core set of sequences that are common to all scanners.
These include T1-weighted spin echo , T2-weighted spin ccho, gradient recalled and
more recently echo planar sequences. All currently available neurological MR
scanncts also have access to T1-weighted 3D sequences which are often the sequence
of choice for high resolution 3D structural imaging. For example the scanner used in
this study is a Seimens 1.5T scanner which uses the MP-RAGE (Brant-Zawadzki ef
al 1992) pulse sequence. GE scanners use a diflerent sequence called IR Fast- SPGR.
This sequence i very similar to the MP-RAGE sequence in its use of an inversion
recovery pulse to produce the T1 weighting. However, duc to the different core
sequences used (FLASH v’s SPGR) there are differences in overall contrast
characteristics and signal to noise. These sequences also require different inversion
recovery times to produce similar grey and white matter contrast

There are similar sequences available for other makes of scanner and these

are displayed in table 7.1.

Manufacturer Magnetisation Prepared GRE
Generic snapshot FLASH

Elscint V-SHORT/ Turbo-SHORT
GE IR-SPRG/ IR-FSPRG
Hitachi RS (Rapid Scan)

Philips Turbo (DFE

Picker RAM-FAST

Shimadzu SMASIH

Siemens Turbo-FLASH/ MP RAGE

Table 7.1; Examples of similar inagnetisation prepared GRE sequences from different manufacturers
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Despite the differences between the sequences there are a number of
consistent properties of these sequences that can be exploited to accomplish good
quality segmentation for all of them.

The following protocol and algorithm were devised using five pre and post-
contrast data sets that were selected at random from a list of available data sets thut

did not contain significant motion artefacts.

7.2.3 Inhomogeneity Correction and Histogram Opcrations

Before any post processing analysis is conducted on the data it is important to
remove inhomogeneities from the MR images. Signal inhomogeneities are likely to
resull in poor tissue segmentation (Zhou ef af 2001). Inhomogeneities can be cansed
by radio frequency (RF) pulse attenuation in tissue, non-uniform RF coil
transmission and scensitivity, non-uniformity in the MR scanner’s main magnetic
field, gradient-induced eddy currents, RF standing waves, magnetic susceptibility of
tissue and interslice cross talk (Condon et af 1987, Simmons et al 1994).

There are a number of post-processing approaches to cortecting for such
inhomogeneities (Studholme ef af 2004). However, these are often complex or model
based techniques and it remains uncertain as to how these methods would be atfected
by the presence of contrast enhancement. As far as the author is aware there is no
published data on the applicability of inkomogencity correction in post-contrast data.

Homomorphic unsharp masking (HUM) is a technique that functions to a first
approximation as a band notch filter, where a ccriain spatial frequency range in the
data is removed, and was first proposed by Axel ef af (1987). This method assumes

that the majority of RF inhomogeneity within the data results in low frequency signal
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variation, Thus by convolving the data with an appropriately sized mean kernel, it is
possible to remove the low frequency RF variation. It is a simple method to apply
and if used with the correct filter size (Brinkmann et af 1998) produces good results
with a variety of sequences.

Brinkmann showed that so long as the mean in a local window matches the
global mean of the overall image that the HUM technique results in good
inhomogeneity correction, This was found to be approximately true for large kernel
sizes which would enclose a representative sample of tissues, where different tissues
were found to intertwine in close proximity. This is true for pre-contrast data and is
also true of post-contrast data where the enhancing vessels or lesions are contained
within or closc to the brain parenchyma. It has also been shown that using this
technique results in mean histogram values for each tissue component that are not
significantly altered following correction.

Therefore, the first post-processing step applied to the data was an
inhomogeneity correction based on the technicues described by Brinkmann. For all of
the following work the kernel size was set to 65 x 65 and was applied before any i
histogram operations.

One of the most important consistent properties between the sequences
described in section 7.2.2 is the overall shape of the data’s histogram of voxel
intensity values. If it is assumed that all histograms have the same shape
characteristics, and from these characteristics it is possible to determine parameters
that describe the voxel values of the various features of the histograms, it should be r
possible to determing initial segmentation thresholds that will allow further

segmentation procedures to be utilised.

206




There are a number of features that are present in T1-weighted post-contrast
histograms that will allow the initial stage of segmentation processing to occur
automatically. Graph 7.1 demonstrates a typical histogram from the Siemens
Magnetom tunning a post-contrast MP RAGE sequence for a patient with normal

contrast-enhanced MR anatomy.

Histogram for Post-Contrast Data Set
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Graph 7.1; Example histogram for a posi-contrast data set. (Siemens Magnetom MP RAGE). The
minima and maxima of interest have been labeiled and the calculated ¢hresholds have been labelied
with arrows,

The first feature of this histogram is the high pixel count for low voxel
values. This area of the histogram almost exclusively originates from voxels outside
the patients head, i.e. from the surrounding air. There are no materials here to
produce any contrast with the MP RAGE sequence and so this patt of the histogram

relates purely to scanner noise.
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The second feature is the drop from the large number of voxels to a much
smaller number for higher voxel values. This produces a minimum (A) in the
histogram data. This region contains a much smaller contribution from pure noise
voxels and will consist mainly of voxels within the CS) and other low signal
structures such as bone.

With increasing voxel signal values the number of voxels increases to the fitst
maxima (B). The vast majority of voxel data here will originate from structures with
low to intermediate signal. These structures will include muscle and other connective
tissues, skin, non-enhancing veins, and parenchymal grey matter. With increasing
signal values the voxel count decreases until there is second minimum (C). This
minimum oceurs at the overlap between grey and white matter voxel values. Voxel
values contained within the second peak {I2) mainly represent the parenchymal white
matter with some contribution from skin, muscle, and connective tissue.

At higher values (above voxel value of 70 for this exanple) there is a tail to
the histogram (E). This tail result from voxels containing high flow vessels (arteries),
fat and the contrast-enhanced vessels.

The exact range and separation of these features will vary from system to
system and from subject to subject. There will also be slight variations in the flow
characteristics of the sequences depending on the pulse sequence parameters,
however, the overall shape of the histogram will remain the same. Therefore, it
should be possible to use these features to determine threshold parameters, allowing
an initial stage of image segmentation to be conducted on the post-contrast data sets.
Graph 7.2 shows equivalent histogram result from a General Electric IR-FSPGR
sequence. The General Electric histograms do show some different characteristics,

such as higher signal values for the grey and white matter. However, it is very likely
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that these changes form a particular signature depending on the sequence and type of
scanner used. Therefore, histograms operations applicd to the MP RAGE data sets in

this thesis will require some tuning for each system and sequence used.

Comparitive Post-Contrast Histogram from GE NV/i
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Graph 7,2: Comparison post-conirast histogram for a General Llectric acquired 3D volume
(IR-FSPGR)

For each of the training data sets appropriate thresholds were determined to
correctly threshold the grey and white matter in the brain, whilst avoiding the
inclusion of contrast-enhanced vessels. However, in all cases a compromises was
required due to the overlap in signal intensities of the white matter and enhancing
vessels. Due to the requircment to remove contrast-enhancement the thresholds were
sct such that little or no such vessels were included. This inevitably resulted in some
loss of white matter,

Having determined the optimal threshold levels for these data sets their

histograms, following inhomogeneity correction, were examined to defermine if' the
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thresholds set could be related to histogram features, thus providing a means for
calculating the thresholds automatically.

After examining all of the data sets, it was determined that acceptable
threshold levels (max and min) could be set for the brain parenchyma using the
following algorithms:

T,

tnin

ml's*]/:nin (71)

P ooy

max Smint

+V

e (7.2)
where Ty, and 7,y are the minimum and maximum thresholds respectively, i, is
the first minimum in graph 7.1 (A) and Ve is the first maximum in graph 7.1 (B).

For four of the data sets used for training purposes equations 7.1 and 7.2
resulted in good brain parenchyma thresholds. However, for onc data sct significant
numbers of white matter voxels would have values beyond the threshold maximum
calculated in this way. To account for this the protocol was adjusted.

‘The data set used to produce the histogram in graph 7.1 required this revision.
Tn this data set equations 7.1 and 7.2 would provide thresholds of T, = 30 and Tur
= 62. T, Wwas increased until the related voxel count was below the voxel count at

point (A) providing the new threshold at point E (T}, = 67). Figure 7.1 shows som¢

example slices from the related threshold mask.
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Figure 7.1: Four example slices from the threshold mask. The vast majority of the brain parenchyma

is included in the mask with the exception of some white matter ( thin red arrows, corpus callosum).
The mask excluded contrast enhancement (thick red arrows)

~ -
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Therefore, the final protocol would first apply equations 7.1 and 7.2, it would
then compare the voxel count at point A with the voxel count at 7,,,, and if point A
had a lower voxel count, 7). would be increased until its voxel count fell below the
voxel count at A. In all cases this produced a good threshold that excluded contrast

enhancement.



7.2.4 Morphological Operations — Separating the Brain

Threshold segmentation is very poor at separating brain parenchyma from
other structures when used on its own. Therefore, the binary mask produced was used
as an initial approximation upon which further processing could occur,

After the data had been thresholded it was ncocssary to separate the
grey/white matter structures from the remaining data that was included within the
threshold segmentation. A simple, yet robust method for achieving this is by using
morphological operators (Hohne & Hanson 1992).

In attempting to separate large connected binary structures there are a number
of fundamental morphological operators that are required. These are ERODE,
DILATE and CONNECT. The effect of these operators on binary data scts arc
described in Hohne & Hanson.

The first step in separating structures is to apply a 3D ERODE operator to the
data set. This operator works by erasing voxels that have few surrounding voxels in
any of the three dimensions. Thercfore, if two structures are connected only by a thin
3D bridge of voxels, using the erode command would remove this bridge, separating
the structures. When the data has been thresholded, connections will remain between
the brain parenchyma and other tissues. So long as the conneclions have fewer
connected voxels than the brain parenchyma then the connections would be eroded
more efficiently than the brain voxels thus disconnecting the brain from the
surrgunding fissue,

To further improve the likelihood of separating the brain and other structures
it is possible to apply a LOW PASS FILTER using a 3x3x3 kernel, This filter

removes voxels within areas where the rate of change of voxel values is larger than a
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predeterimined value. In the case of binary data it determines the number of
surrounding voxels with value 1 and if the number of these voxels is above a
particular threshold the central voxel is set (0 1. This operatton first involves
convolving the binary data with a 3x3x3 kernal of voxels with each element having a
value of 1, and thresholding the resulting data sct. For a 3x3x3 kernal the threshold
would lie between 0 and 27.

Setting the threshold to a low value, for example 3 would set the central value
to 1 when more than 3 of the voxels of the thresholded binary map {from the previous
section, had values of 1. Otherwise the central voxel would be set to zcro, Such a
value would remove only very thin connections and would increase the overall size
of the output binary mask. Likewise setting the kernel threshold to a large value close
to 27 would result in a significant amount of the original binary mask being set to
zero. Therefore, a more central value (for example 15) would result in little change in
overall size of the binary mask but connections, where voxels have less than 15
surrounding voxels with the value of 1, would be set to zero thus removing such
connecting structures.

Despite the efficiency of the two operators at removing connections some
thicker connections will remain in certain data sets. To remove these thicker
connections it is possible to apply a second ERODE operation to the data to ensure
disconnection,

One major problem with using ERODE is that it does not leave the connected
objects unchanged. Due to the nature of the ERODE operator the objects themselves
will shrink in size and any large holes within the eroded object increase in size.
Therefore, further operations nced to be applicd to regain the original shape and size

of the object alter the objects have been successfully separated. The FILTER
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operation also has an effect on the size of the connected objects, however, if the
FILTER threshold is selected carefully then this effect is minimal.

Before the reshaping operations are applied the CONNECT operator can he
used to give the objects that have been disconnected different voxel values, allowing
the objects to be described separately. For example one object would be given a value
of 1, another 2 and so on resulting in an object map. By producing this object map it
is possible to compare the sizes of the various objects produced and to make
decisions based on the outcome of these measurements.

1t was desctribed previously that thresholded head data sets contain structures
other than the brain parenchyma which is of interest. After thresholding the T1
weighted 3D data sets, the brain parenchyma almost inevitably remains connected to
other structures such as muscle, orbits etc. due to the similarity in signal from these
structures when using such a T1 weighted sequence, and the close proximity to the
brain parenchyma. Thus as described previously the ERODE operator must be
applied until the brain has been separated from the remaining tissue. However, due to
its effects on the shape and size of (he binary object, it is preferablc to apply ERODE
a minimum number of times and indeed only once, where possible. Thercfore, a
method of determining the number of FRODI:s necessary to separate the structures is
required.

Due to the nature of T1-weighted 3D imaging there are two large areas of
similar signal characteristics; the brain parenchyma and inferior to this a large area of
muscle, tongue, and skin within the region of the neck. Following erosion to separate
the brain from other structures this second region ofien remains as a slightly smaller

connected object.
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[nitially following the thresholding of the data, one ERODE/FILTER
operation is applied. A CONNECT operation is then applied to the data giving each
separate object different voxel values. The two largest objects are selected and the
relative size of these objects is compared. If the ERODE/FILTER operation has
separated the brain correctly the two objects should be of similar volume, with the

larger being the brain parenchyma and the smaller object consisting of muscle etc

from the subjects neck (see figure 7.2).

Figure 7.2: An example of some slices showing the two largest objects selected using the 3D connect
operation. The brain (white) is the larger if the two objects. The second object is a mixture of tissues
inferior to the brain (yellow)

If the difference in size between the largest and second largest object is large
this suggests that the first ERODE/FILTER was not sufficient to separate the brain
from the remainder of the head tissue. The smaller object in this case would be an
unspecified area of extracranial tissue that was only slightly connected to the
remaining extracranial tissue. Thus, a second ERODE is applied to the data set and

the same procedure of checking is reapplied.
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n the vast majority of cascs this procedure would allow the brain parenchyma
to be separated and correctly identified. Ilowever, the assumption that the brain
object will always be larger than the extra-cranial object does not always hold true. In
genera! Lhis assumption is correct due to the less contiguous nature of the thresholded
data outside the brain parenchyma. When an erode is applied to such data with a
large number of holes the volume of the output is greatly reduccd due to the
increasing size of the holes. The brain parcnchyma, on the other hand has a more
uniform signal intensity and thus after thresholding does not contain as large a
number of holes.

Due to the conservative thresholds used in this protocol some white matter
holes will exist and therefore it cannot be guaranteed that this assumption is always
true which was indeed discovered when applying early versions of this protocol to
test data sets. In certain data sets there was an object comprising of neck muscle,
tongue, skin and bone marrow, inferior to the real brain object that was larger than
the brain object itself. If object sclection was purely based on object size then the
neck object would on occasion be sclccted instead of the brain object. Therefore, it
was important to account for this possibility and correct for it.

The correct selection of the brain objcct can be achicved by analysing the
overall voxel positions within the two largest objects. The brain object would have an
average pixel position superior to the neck object. Therefore, when designing the
algorithm it would be possible to test for this. Using Analvzc it was possible to
accomplish this visually, however, in the final IDL algorithm this test could be fully

coded and so automated.
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7.2.5 Morphological Operators — Producing the Final Brain Mask

After the brain object has successfully been separated from the rest of the
thresholded data, the object must be ‘reshaped’ back to the original shape of the brain
parenchyma. The morphological operator used to achieve this is the DILATE
operator. It has been previously been determined, through experience (Stokking
1998) that when using DILATE operators following EROSION that one extra
DILATE operations should be used when compared to the number of ERODES.
However, for this study due to the stringent application of histogram thresholds it
was found from testing that two additional DILATES were required. An example of a

shape that has been eroded and dilated the required amount of times is displayed in

figure 7.3.

Figure 7.3: Example of fifteen slices from a binary mask produced by single erode and 3 dilates (the
brain has been separated).




Figure 7.3 illustrates that although the overall volume associated with the
object is restored the outline is poorly reproduced. This is due to information loss
during the ERODE operations. 1'o compensate for this the DILATE operator can be
adjusted to take account of the original threshold mask. This CONDITIONAL
DILATE docs a normal DILATE on the data and then multiplies the result with the
thresholded output. Therefore, any data that was not originally thresholded but was
contained within the DILATED data result is removed. This ensures that the final
DIT.ATED data reflects the overall outline of the brain parenchyma in the thresholded
data. It also ensures that none of the enhancing voxels are included in the realignment
mask which is important to ensure accurate realignment.

One problem with this approach is that it is possible to DILATE into data that
is not part of the brain parenchyma, but is within the threshold mask. This occurs at
points where the brain parenchyma is connected to the other objects in the threshold
data (the data bridges). However, if the number of DILATES are kept low (which can
be achicved by keeping it limited to two plus the number of erodes) then the amount
of extra parenchymal tissue included would be minimal.

Once the data has been CONDIFTONAILILY DILATED the required number
of times the resulting mask is a representation of the brain parenchyma. This mask is
saved and is called the realignment mask as it can now be used to define the area that
the MATCH software uses for its realignment.

This mask would then be multiplied with the post contrast data set producing
the segmented brain required in the MATCH soflware to determine the volume used
for calculating the realignment. As has been described previously this protocol would
not produce a 100% accurate segmentation of the brain parenchyma, but importantly

it should contain little or no contrast enhanced data, and should be of high enough
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quality that a good quality realignment would occur. This quality of the realignment

will be investigated in chapter 8.

7.2.6 Production of MIP Visualisation Mask

As was described in section 7,1.2 a second mask is required to allow the final
MIP to be produced. This mask should ideally contain brain parenchyma and its
associated veins and arteries only. Therefore the second mask will be larger than the
first mask, although care must be taken to ensure that as little exiracranial tissue as
possibie is included within it to keep the final signal to noise of the resulting MIPs as
large as possible.

The first step to producing this mask is to construct a data set that maps the
distribution of the CSF within the head. This is achieved in a number of steps. Firstly
the original data is re-thresholded. 'The minimum threshold is set to 1 and the
maximum threshold is set to twice the minimum threshold previously calculated.
This thresholded data set will contain data from noise outside the head, from CSF,
and from other low signal structures within the head such as bone, the sinuses and the
eyes. Importantly the data directly surrounding the brain parenchyma is almost
exclusively CSF. The thresholded data is complimented, that is any voxel with the
value 1 becomes zero and vice versa. This is then morphologically filled so that all
voxels contained within the mapped region are set to a value of 1 and all those
outside are set to zero. This data is then multiplied with the thresholded CSF/noise
data to produce a map of CSF and other structures (see figure 7.4). For simplicity this

mask is called the CSF mask.
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Figure 7.4; Fifteen example shices from a ©SF mask. It should be noted that the mask contains other
highlighted structures such as the sinuses, bone and the eyes,

o
ok

The segmentation mask produced earliex is then dilated using the CSE mask
as a condition 12 times (this value was derived empirically using the 5 training data
sets). This allows the dilation to spread to the surrounding CSF but not significantly
to other structures such as the bone and sinuses. To finish the mask it is once again
morphologicatly FILLED so that all the voxels contained within the brain
parcnchyma and the surrounding CSF are included in the final mask. This will also
include the venous vessels on the surface of the brain and any vessels within the
brain parcnchyma itself, Using this method also ensures that any venous vessels not
in direct contact with the brain are included within the mask. This was imporiant as
the superior sagittal sinus was found in some subjects Lo not always be adjacent to
brain tissuc. This technique also ensures that no data beyond the CSF that contains
contrast enhancement is contained within the final subtraction data set.

Once the MATCH software has realigned the data using the brain segmented

volume, the visualisation mask can now be multiplied with the realigned pre and
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post-contrast data. The mask prevents the inclusion of extracranial enhancement from
being included in the final subtraction data thus improving the resulting signal to
noise and removing structures that might otherwise obscure the structures of interest.

Following subtraction the data can be viewed using any 3D software package
with the ability to display maximum intensity projections (MIP’s). Due to the 3D
nature of the data sets it is possible to use software to rotate these MIP’s in real time
to allow the data to be viewed from a number of angles.

The individual Analyze based steps of the constructed protocol are listed in
Appendix 2. Figurc 7.5 displays a flow diagram highlighting the main features of the
protocol.

Having devised these steps it was now possible to start developing a program
to conduct these step and prove the concept that it was possible to achieve the
segmentation of these data scts in an automatic manor, There are a number of
programming languages available which could be used to write the appropriate
segmentation algorithm. One very common language used to produce similar
algorithms is C or C++. It is possible with the use of optimised compilers to produce
executable code for a number of computing platforms. This language is very good at
producing tast and reliable codc. However, programming in C can be cumbersome

with a large amount of programming required even for relatively simple tasks.
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Figure 7.5: Flow diagram of segmentation protocol determined using Anaiyze
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More recently new programming languages have been developed with image
processing in mind, these include Matlab (with the Image Processing module
installed) and IDL (Interactive Display Language, Research Systems, CO, USA).
Both of these languages contain commands that simplify programming for image
pracessing tasks, with special routines developed for processing large image arrays.
These specialist commands and routines simplify the programming requircments
producing less cumbersome code, However, with the improved code efficiency
comes a reduction in algorithm speed. IDL code will not run as fast as code produced
in C which has been compiled with optimised compilers.

This study, however, has the aim of preving the concept of automatic
scgmentation of pre and post-contrast data sets. It is beyond the scope of this work to
develop algorithms designed with optimal computational speed in mind. Therefore,
to develop the algorithm for this study [DL was used. The software version used was
IDL 5.1.

Based on the devised protocol an algorithm was written using IDL by the
author. The code for this software is displayed in appendix 3. The basic structure of
the software remains faithful to the original protocol, however, in developing the
softwatce a number changes were required and a number of problems arose. The
following section describes the code in detail and describes the changes and

problems.




7.3  Description of Algorithm Code

The code was written with one main maodulc and two separately programmed
functions. The two functions were separated from the main program to reduce the
number of code lines, i.e. both functions are used more than once in the code, and by
separating them the overall code length is shorter. The functions are ‘auto fill®,
which is written to fill in holes in a binary data set, and ‘postcont_max_min’ which
calculates the histogram ot the post contrast data set and determines where the
maximum and minimum values occur within the histogram. These functions are
called from the main code ‘auto_veno’.

The first section of the auto_veno code allows the user (o inform the
algorithm of the location of the pre and post-contrast files and it utilises a UNIX
command ‘readspacing’ to determine the data dimensions for both data sets. To allow
the analysis to continue both data sets should have the same matrix dimensions. The
operator is also asked to determine a filc name for the final output data set.

The next section opens the post-contrast data set, on which much of the image
processing occurs. Care is taken to ensure that the data is loaded correctly, i.e. it
determines if the data is stored in 8 bit or 16 bit format.

The next section attempts to correct for inhomogeneities using the method
described in section 7.2.3 (Brinkmann ef al 1996, 1998). This method of
inhomogeneity correction requires a minimum threshold to be set, where data below
this threshold is excluded from the calculations. A minimum threshold is required to
exclude crrors being introduced by the noise from outside the patient’s head. The

data is therefore passed 1o the “postcont max_min’ function, which can provide this
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minimum value from the data histogram. The minimum is calculated within the
module along with the maximum (the voxel valuc of the grey matter peak) by
examining the data histogram, The search for the minimum within this algorithm is
confined to values above the background noise, but below the grey maiter peak, The
inhomogeneity section takes the minimum valtuc calculated and calculates the
inhomogencity correction for all data above this valuc.

The inhomogeneity corrected data is now passed back to the
‘postcont_min_max function’. This is to allow caleulation of the initial threshold
values for the corrected data set. ‘The thresholds are set using the method described in
the previous section. The morphological segmentation can now begin.

Two parameters require to be set for the first section of the morphology,
where the data is eroded and filtered. Firstly, an erode kernel is required to determine
the extent of the crode calenlations. The erode kernel is a 3-dimensional matrix with
matrix values of 1 defining the extent. This kernel can be varied to suit the data being
segmented, however for the data used in this study a kernel matrix of dimensions
3x3x3 suffices. The kernel size will mainly depend on the resolution of the data,
therefore the kernel size might need to be increased for higher resolution data. The
sccond paramcter required relates to the low pass filtering. The low pass filtering is
achieved using the technique described in section 7.2.4.

The code now uses the label_region command to scparate out the two largest
rcgions, This is achieved by counting the number of pixels in all of the regions
detected by the label_regions algorithm and keeping only the two largest. The
progranm now compares the sizes of the two regions to determine the required number

of erodcs. Figure 7.6 illustrates the decisions made by the program.




Two largest objccts after first
erode/filter
YES l
FNo further erodes} Is ratio of small ohject to large
required [ object greater than 0.1?

NO l
O

Data too noisy. Daoes the large object have
End Program [*—] more than 500000 voxels?
Print error
message YES l
Conduct one further erode on
the data

Figure 7.6: A flow chart visualising the decision process usced by gufo_veno to determine the number
of morphological erodes required

This section miakes a numbcer of assumptions about the size of the brain object
and the non-brain object. The brain object is expected to contain at least 500,000
voxels after the erode and filter have been applicd. If voxel sizes are assumed (o be
approximately 1mm?® this would relate to a volume of approximately 500cm’. It is
known from previous studies that the average brain volume is 1200cm? (Martini
2001) and normaily varies between 1000-1500cm’, Thercfore even after two erodes
and low-pass filters the remaining object should have a volumc greater than S00cm’
which would represent a drop in volume of between 50-66% for a normal brain.
However, this figure is conservatively low because this program will not always be

scgmenting a normal brain.
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For example venography may be required in a patient with a space occupying
tumour. It is possible in such patients that the overall brain volume is reduced below
that of the normal range. Therefore, by having a low volume requirement following
erosion and filtering thesc data sets can still be segmented.

There will be occasions where after erosion and filtering that the brain object
will not contain more than 300,000 pixels. The main cause of this is expected to be
poor signal to noise in the data set. For example if the patient is unable to keep still
during the MR exam the resulting data set is blurred and would likely contain a
number of phase ghost artefacts. These artefacts would results in a poor signal to
noise which when thresholded using the previous techniques described would result
in a poorly defined brain mask with a large number of holes within the brain
parenchyma. After erosion and filtering the holes would grow in size and reduce the
number of voxels within the brain considerably resulting in the final number of pixels
decereasing and thus falling below 500,000 voxels.

In data sets with very poor signal to noise there are likely to be a number of
motion artefacts that might tuke on the appearance of venous vesscls. It is also
possible that due to the motion blurring vessels are not visualiscd despitc their
existence, Therefore, it is desirable that the software highlights these data sets and
does not attempt to segment and realign them, as spurious output may resuli.

The second assumption in this section is that further erosion is required if the
second largest object is less than 10% of the size of the first object. Thisis a
reasonable assumption to make due to the nature of the signal in T1 imaging from the
brain and its surrounding tissue. The signal amplitude in T1 imaging of muscle and
skin is similar o that of grey matier. Therefore, when the data is initially thresholded

the large area of muscle and tongue inferior to the brain is included in the data. After
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onc erosion, if the brain has been successfully separated from the thresholded neck
tissue, the two largest objects should consist of the brain and a second object
consisting of the inferior muscle. In this situation the second object is never less than
10% of the size of the first.

If an erosion is applied and the brain and neck lissue are not separated another
region of mask will however be separated, specifically an area of bone marrow and
skin from the skull region, which will hecome the second largest object. However,
this region will always be much smaller than the largest objcct (which in this
situation would contain both brain and neck tissue). Therefore, it is sale 1o assume
that a further erode is required. The 10% threshold is a reasonable threshold as the
combined volume of the brain and neck tissue is likely to exceed the volume of the
average human brain (i.e. greater than 1200cm®). In this situation the second object
would need to have a volume of greater than 120em®, which is unlikely to oceur due
to the lack of any other large structures within the threshold mask.

Using these two assumptions it is possible to determine the number of crodes
required and the overall suitability of the data for segmentation and realignment. In
the majority of cases it is also now possible to determine which object is the brain
parenchyma as the brain object is often the largest. However, as was described
previously this is not always the case. Therefore, the next section of the code
determines the average voxel location within cach object and defines the brain object
as having the most superior location.

Following sclection of the brain object the dilation process can begin with the
number of dilations being related to the number of erosions required. This dilation is

conditional, using the original threshold data as the condition. The realignment mask
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is now multiplied with the post-contrast data to produce a duta set that MATCH can
use to base its realignment calculations on.

Before running the MATCH algorithm the program produces the visualisation
mask required to produce the final subtraction data. The venogram mask is produced
in much the same way as was previously described in section 7.2.6, however, ane
variable needs to be set for this section.

After the CSF mask has been produced the segmentation mask is
conditionally dilated using the CSF mask as its condition. ITowever, it is not certain
how many conditional dilates are required to ensure all of the vessels ate contained
within the final mask without extending the mask too far and decreasing the overall
signal to noise of the final subtracted data. For the data from this particular scanner
12 dilations was found to be a good compromise, ensuring that all of the required
vessecls were contained in the final output data, when applied to the training data sets.
However, for diflerent scanners with different signal to noise and contrast
characteristics the ideal value for this parameter may be different.

With both the masks completed, the pre and post-contrast data sets, along
with the segmentation mask are passed to the MATCII software algorithm for
registration. This part of the procedure is significantly longer than the post processing
required Lo produce the mask, with the MATCH software requiring approximately
2hours 30 minutes to complete and the post processing requiring approximately 10-
15 minutes.

Apart from some disk tidying the only remaining section within the program
is the final multiplication of the registered pre and post-contrast data sets with the
final mask and the subtraction of the resulting data. This data set is then saved and is

ready to be displayed as a MIP using image analysis or image display software.
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7.4 Testing the Algorithm

Having developed an automatic sofiware algorithm it was necessary to test
this on rcal patient data. Chaptet 2 described 20 clinical data sets that had been
previously collected with the required 3D pre and post-contrast images, This sel of
patients represented a wide cross-section of the clinical conditions with distinet
contrast-enhanced characteristics The clinical range of this data set therefore
constituted a stringent test of the algorithm.

The following chapter describes this process and concludes on its

effectiveness.

230




Chapter 8

Assessment of the Algorithm with 20 Patient Data
Sets




8.1 Introduction

Having previously devised an automatic algorithm for the production of
realigned pre and post-contrast subtraction data this chapter aims to test the
algorithins capabilities by running it on the patient data set described in chapter 2.

Several performance parameters will be examined. The segmentation
accuracy of the brain parenchyma will be compared to both the accurately segmented
data from patients 1 and 2 (see chapters 5 and 6) and the less rigorously segmented
data in chapter 2 which were prepared by the author of this thesis. As has been
previously discussed, reasonable quality segmentation is required if the data are to be
rcaligned with good accuracy,

The final subtraction data will be analysed in the MIP format, as would be the
case in the clinical setting. Most importantly the MIPs will be compared to those
produced in chapter 2 to ensure that all of the vessels visualised in the manually
segmented data are present in the autamatically produced data.

As a final check, the signal to noise of the MIPs will be compared to those
measured in chapter 2. The signal to noise will be affected by the accuracy of the
visualisation mask. The inclusion of too much extraneous tissue could result in a
significant reduction in signal to noise.

The algorithm being tested is novel and is applied to pre and post-contrast
with the aim of automatically producing subtraction venograms.

All of the work contained in this chapter was conducted by the author with

the exception of the data acquisition, which was performed by radiographic staff.
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8.2 Methods

To test the ability of the algarithm to automatically produce good quality
subtraction venograms 20 patient data sets were collected, having been scanned on
the Siemens Magnetom SP scanncr using a pre and post-contrast 31) MP-RAGE
protocol. These were the same patients that have been processed manually in chapter
2. The patients were scanned using the contrast-enfianced protocol for differing
pathologies under investigation. The examinations inchuled: 6 patients with
meningiomas, 5 for suspected venous thrombosis, 3 with gliomas, 3 with adenomas,
1 with a cyst, 1 with a malignant neoplasm and 1 normal patient. Dug to the wide
variety of conditions being included in this study this patient group was cxpected to
be a good indicator of the different conditions that the algorithm would have to deal
with in real clinical circumstances.

The imaging parameters varied within the following constraints; TR=10 ms,
TE= 4 ms, TI= 20-300 ms, flip angle = 10-15, equivalent slice thickness = 1.3-1.4
mm, matrix = 256x256, FOV = 250 mm. Slices were sagittal in orientation. The
maximum acquisition time for each MP RAGE acquisition was 6 mins 46 seconds.
The imaging was conducted on a 1.5T imaging unit (Siemens Magnetom 1.5 T).
Patients wcre asked to stay as still as possible throughout the imaging procedure
with their heads held in place with padding (see scetion 2.5.1.1, figure 2.5). A fong
IV line was inserted in the paticnt before the imaging protocol had begun. After
initial scanning, including pilot scans, the first MP RAGE sequence was run before
contrast medium injection. The contrast medium (Magnevist) was administercd as
soon as the pre-contrast MP RAGE sequence had finished as a 20 second boelus, via

the IV line. This required a radiologist to enter and leave the room. The long line
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was used to reduce the patient motion due to the injection. The post-contrast MP
RAGE sequence was started as soon as the bolus delivery was complete and the
radiologist had left the room. The data was transferred to an Sun Ultra 1 170MHz
workstation where in-house software (conv_analyze, courtesy of Martin Connell)
wus used to convert the ACR/NEMA 2 data to Analyze format.

The algorithm was run on the pre and post-contrast data. When the algorithm
was successful it produced the realigned- subtracted data sets. These output data sets
were loaded into Analyze and MIPs were produced.

Segmentation accuracy was determined for the autornatic algorithm by
comparing the brain segmentation volumes praduced with manually produced brain
segnientation volumes from earlier in this thesis. In chapters 5 and 6 two patient data
sets had accurate manual segmentations produced, Both of these patients were
included in the 20 patient assessed in this study. Thercfore, for these subjects it was
possible to accurately determine the brain parenchyma segmentation accuracy of this
algorithm with respect to this standard. The two subjects were paticnt 1, who had
normal enhancing anatomy and patient 2 who had a space occupying enhancing
lesion.

In chapter 2 all 20 subjects in this study had a lower quality manual
segmentation applied to them (these data sets were in general under-segmented).
Therefore, by comparing these low quality and the high quality manual
segmentations with those derived from the software, it should be possible to assess if
the algorithm is segmenting the data to an acceptable quality.

To assess the quality of the MIPs produced they were compared to the
manually produced MIP’s from chapter 2. These MIPs were produced [rom post-

contrast data that had been manually segmented for the purposes of realignment and

234




for final MIP display. The manual segmentation procedures have been described in
detail in chapter 2.

The first method of MIP assessiment was to determine the integrity of the
MIPs produced using the algorithm when compared to the manuaily produced MIPs
from chapter 2. Assuming that the manually segmented MIDPs represenied the gold
standard, then the automatically produced MIPs should not exclude any vessels that
were included in the manually segmented data set. Exclusions of veins, especially
within the cortex could lead to misdiagnosis or poor interpretation. Therefore, the
automatically produced MIPs were visually compared with the manually produced
MIPs by the author to determine if any vessels had been excluded.

As well as totally excluding particular vessels it was possible that the
automatic algorithm would exclude particular sections of individual veins. This
ntight lead to misdiagnosis of cerebral venous thrombosis where Lhe continuity of the
vessels is investigated. Therefore, it was important for the observer to look for these
features as well.

Signal to noise was measured for lateral projections for corresponding
manually and automatically produced MIPs. To determine the signal to noise founr
regions were drawn on the manually prepared data set, with three areas countaining no
discernable vessels (noise) and one drawn on an enhauncing area of the Superior
Sagittal Sinus, These regions were drawn using the Analyze region of inierest
module using the freehand drawing tool. Average pixel values were determined and
used to calculate the signal to noise. These same regions werc uscd to determine the
signal to noise on the automatically produced MIP. Therefore it was possible to
directly determine the effects on the signal to noise of the automatic algorithm

relative to the manually produced data.
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8.3 Resulis

The algorithm was successful in producing venograms in 18 of the 20
paticnts when compared to manually produced venograms. Figurc 8.1 displays some
comparisons of the MIPs produced.

Both data sets that failed contained gross patient motion artefacts, which
resulted in reduced signal to noise in the original data. Example slices from the post-
contrast data for these patients are displayed in figure 8.2. The algorithm stopped at
the section where it compared the object sives atter the first erode. Therefore, the
algorithm correctly delermined that these data sets were of poor diagnostic quality.

Manually produced venograms from these patients were of little clinical value.
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Figure 8.2: Example slices from one of the post-contrast data sets that could not be automatically
segmented due to poor signal to noise

When the brain parenchyma segmentation volumes produced by the IDL
algorithm were compared to the accurate manual segmentation volumes, patient 1°s
IDL segmentation contained 91% of the manual segmentation voxels. Patient 2’s
IDL segmentation contained 83% of the manual segmentation voxels. As was
discussed in chapter 6 segmentation volumes of 80% and above are deemed
acceptable for the purposes of realignment.

For these patients when the IDL segmentation was compared to the under-
segmented volumes used in chapter 2 (section 2.5.1.2), the percentages were 73%

and 63% respectively. It would therefore appear that using the lower quality



segmentations from chapter 2 would require setting an acceptablc scgmentation

threshold of about 60%. Using this threshold results in the results table 8.1.

Patient Number | IDL Segmentation Compared to Acceptable?
o ~Low Quality Segmentation
t 73% YES K
» 2 63% YES K
3 2% YES :
4 71% YES
5 68% YES ;
6 78% YES
7 POOR DATA
8 POOR DATA
9 50% NO
L 10 68% YES
11 . 5T% NO
12 58% NO
13 2% YES
14 64% YES
16 19% NO
17 61% YES
18 82% YES
19 L 76% YES
20 64% YES

Table 8.1: Results comparing the 1DL segmentation to the lower 'quality manual segmentations from
chapter 2 (section 2.5.1.2)

Acceptable segmentation was achieved in 14 of the 18 (78%) of the analyscd
data sets. Paticnts 11 and 12 were close to the acceptable threshold and it is likely
that they would have benefited from a further conditional dilatc in the production of
the realignment mask. Patients 9 and 16 were significantly below the acceptable
threshold, suggesting the algorithm faced more significant problems in segmenting
these data sets. On closer inspection of the threshold values calculated it was
discovered that the maximum value of the threshold in both cases was
inappropriately low, with the threshold masks containing little white matter material
in both cases. The poor segmentations could be attributed to the algorithm method

used to determine the maximum threshold.
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As was described in section 7.2.3 an empirical equation had been derived for
the calculation of the maximum threshold (equation 7.2). It was also discussed that
on certain occasions this calculation was not sufficient to determine the maximum
threshold and a further step was applied in these cases based on the level of the first
minima (grey matter). From experience the second step ensured that an acceptable
maximum threshold was set. However, for the two patient data sets in question, the
histogram minimums used for this calculation had significantly more voxels than for

the majority of the other data sets examined (see graph 8.1)

Post-Contrast Histograms for Patient 9 and 16

80000
70000 1 —e— Patient 9
w 60000 - —@— Patient 16

Number of Voxels
:

0 25 50 75 100 125 150 175 200
Voxel Value

Graph 8.1: The post-contrast histogram from patient 9 and 16. Special attention should be paid to the
voxel count of the first minima which is 32570 for patient 9 and 36738 for patient 16. In other post-
contrast histograms this is typically 25000 and below

The data that contributes to the voxel count close to and at the minimum in
these data sets will mainly consist of CSF voxels. Therefore, higher voxel counts in
this part of the histogram will be a result of a larger volume of CSF. Therefore, due
to variations in CSF volume from patient to patient, the threshold correction will

occasionally encounter data sets, such as those described here, that have significantly
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morc CSF. Thus the algorithm as it stands will not work for all patient data sets.
Either a new automatic method of determining the threshold or a manual threshold
stage is required. These issues will be discussed in more detail in the conclusions.
Of the 18 MIP venograms produced, 12 upon visualisation were found to
contain all of the vessels visualised in the manually segmentcd subtraction MIPs
produced in chapter 2. There were 6 automatically segmented data sets that either
fully excluded a vein that was present in the manually segmented data or contained
discontinuities in the veins that were not present in the manually segmented data.
Table 8.2 list the data sets that differed and the veins that were not correctly
visualised and figure 8.3 displays an example of manually and automatically

produced MIPs from the same patient.

Patient Number All Veins Diflercences
Visualised?
1 YES
2 YES
3 YES -
4 1 “NO Cavernous Situs
5 YES
6 NO Spheno Parictal Sinus
7 N/A
8 N/A
9 YES e .
10 NO Tumour draining veing
11 NO Superior Petrosal Sinus
12 YES
13 NO o Superior Petrosal Sinus
1 YES
15 YES
16 YES
17 YES
18 NO Spheno Parietal Sinus,Cavernous
Sinus, Cortical Veins
19 YES
— g VES

Table 8.2: A comparison of the manually produced venograms and the automatically produced
venograms. This table lists the veins excluded from the automatically produced MiPs.
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Figure 8.3: A comparison of two venograms for patient 11 (a) the manually produced
venograms, (b) the automatically produced venograms. The long white arrows indicates where a
vessel was correctly visualised in the manual data but was partially excluded from the automatic data.
It should be noted that the signal to noise in the automatic data is lower due to unnecessary tissue
being included in the visualisation mask.

Further differences were detected when there was a large enhancing lesion in
the data set. The lesions were not always fully contained within the automatically

segmented data. Therefore, any veins close to this lesion were excluded as in patient
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10. However, in thesc patients it is uniikely that lesion visualisation is required using
MIPs. Viewing a lesion on a MIP results in the loss of internal detail, due to
overlapping structures, therefore these structures are best viewed in multislice mode.

In general veins were excluded as a direct resulf of the limited number of
dilations used to produce the final data visualisation mask. This is confirmed by the
location of the pootly visualised veins (table 8.2). All of these veins are located at
brain CSF boundaries (with the exception of the tumour draining veins).

However, if the number of dilations was increased this would result in
reduced signal to noise in the final visualised data. Therefore, the optimal number of
dilations would depend on the data set being examined and on the acceptable signal
10 noise. The optimal number of dilations would also depend on the clinical area of
interest. For example if visualisation of the superior petrosal sinus, the cavernous
sinus, the cortical veins and veins close to large enhancing tumours were required
then a larger number of ditations would probably be required. This will be further
discussed in the conclusions section.

When the signal to noise was calculated for the manually produced and the
automatically produced MIPs and compared and analysed statistically (paired T-test)
it was found that there was a statistically lower signal to noise {(p<:0.05) in the
automatically produced data. As has already been discussed this is most likely due to
the extra data included in the automatically produced mask compared io the
manually produced mask and is a direct result of the number of dilations used.

These results suggest that the algorithim was only partially successful in
producing accurately aligned pre and post-contrast data and producing masked data
for MIP visualisation. However, it should be noted that these data sets were real

clinical data and were not a specifically collected normal data sct. Though the initial
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application of this tcchnique has had limited success further investigation of this
technique may provide improved results. This will be discussed (urther in the

conclusion seciion.

8.4 Conclusions and Further Work

This chapter aimed to devclop an automatic segmentation algorithm for
application to pre and post-contrast data sets where realignment and MIP
visualisation of the resulting subtraction data was required. The algorithm was

designed taking into account the findings of the previous chapters in this study.

8.4.1 Rational for Designing the Algorithm

Chapters 2 and 3 discovered that realignment was required when the pre and
post-contrast data were to be subtracted, even when the patient had not been removed
from the magnet between scans. Only by accurately realigning the data sets could
inter-scan motion artefacts be excluded from the final results. Misalignment between
the pre and post-contrast data would be especially problematic if the resulting data
scts were to be used for quantification purposes such as those described in chapter 3

Chapters 4 and 5 investigated segmentation accuracy on phantorn data,
relating this to realignment accuracy. The results suggested that it was most
important to exclude contrast-enhanced data in the post-contrast data use for

realignment purposes. The results also suggested that very accurate segmentation of
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the brain parenchyma was not essential for good quality realignment of the pre and
post-conirast data. It was suggested that inter-scan motion could be satisfactorily
corrected when segmentation accuracy was of lower quality. However, these
conclusions were based on a patient based phantom data set, therefore further
investigation was required if firm conclusions in segmentation accuracy were to be
applied to real patient data sets.

Chapter 6 applied the same procedures to Lwo patient data sets. The data scts
were chosen to represent a normal and abnormal data sct. The first patient’s data
coniained normal contrast-enhanced anatomy and represented an ideal data set for
segmentation and realignment purposes. The second patient’s data contained a large
cnhancing, space occupying lesion, which would test the effects of segmentation
accuracy on a data set with completely different contrast-enhancing properties. More
significantly the data in this chapter contained real noise differences between the pre
and post-conlrast data.

It was found that noise did iniroduce a significant effcct on realignment with
tespect to segmentation accuracy. However, it would appear to be very difficult to
model the elfects that noise has on the realignment accuracy due to the random
nature of the effects that the noise introduces, Therefore, this chapter reached similar
conclusions to chapter 5 with respect to the requirements for segmentation accuracy.
It concluded that a significant amount of over-segmentation was acceptable when
realigning the type of pre and post-contrast data described in this thesis.

Based on the principles investigated in this thesis an algorithm was devised

using a morphelogical approach.
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8.4.2 Algorithm Conclusions - Brain Segmentation

It was reported in section 8.3 that the algorithm had a limited amount of
success in both producing the segmentation required for realignment and for
producing the mask for the final visualisation of the subtraction data using a MIP
algorithm, However, despite the limited success some firm conclusions can be drawn
with regards to this technique and to techniques that could be subsequently derived
from it.

The brain segmentation algorithm failed in two specific parts of the protocol.
Two data sets failed to reach the required segmentation accuracy duc to the
requirement of at feast one further conditional dilate. In both cases this additional
step would have produced acceptable segmentation accuracy, with respect to the
manual segmentations applied in chapter 2. This situation could simply be rectified
by applying one further erode to all of the data set.

The initial decision to apply two additional dilations when compared to the
number of erosions was based on previously published experience (Stokking 1998)
where one extra dilation was used, and the knowledge that the histogram thresholds
were stringently set to exclude contrast-enhanced voxels suggesting one further
dilation would be required. In testing this appeared to produce satisfactory results. It
was alsa found that if three additional dilations were applied to all of the data sets
that on some occasions non-enhancing extra~cranial tissue would be included in the
segmented volume. Although the effects of this non-enhancing tissue inclusion on
realignment accuracy were not explicitly tested in this thesis, it is expected that

inclusion of such tissue is undesirable. Therefore, it would appear that in some cases

246




two dilations would be optimal and in some cases three would be required. It may be -
possible to include a test within the algorithm to determine the number of dilations .
required.

The second arca the algorithm failed in was the threshold determination from
the data histograms. As described in section 8.3 this was due to poor determination
of the maximum threshold and was a direct result of the mcthods used to determine
it. In both cases the threshold was set too low and therelore, a large quantity of white
matter was excluded from the threshold mask.

The failure of the threshold determination for certain data sets suggests that
this part of the algorithm should be changed to take account of these findings. It is
likely that a totally different method of determining the thresholds is required. For
example the Gaussian distributions of voxel values associated with the different
tissue types could be modelled using technigues similar to Lemieux (Lemieux ef ¢/
2003 and Shan et al 2002). However, although this technique was applied 1o a patient
data set (epilepsy patients by Lemieux) it remains uncertain if the technique would
work with the diverse morphology and resulting variable histograms found in
contrast-enhanced data sets. However, future work to improve the algorithm should
include a detailed investigation of these techniques.

Despite the failings of the algorithin to segment the brain tissue to the

required accuracy for all the patients in this study, it should be remembered that the

PR S

data uscd here was a true representation of the wide variety in terms of pathology,
imaged in a clinical scanning environment. Additionally, as was proviously
described, the scanner used in this study has now been superseded by scanners that
have superior signal to noise characteristics. Therefore, it is likely that on newer

scanners that this algorithm, or a version of it optimised for that particular scanner,
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would have a significantly higher success rate in accurately segmenting the brain
structures. Therefore, futurc work should be conducted to test this hypothesis.

H is also possible that the algorithm could be aliered to provide a semi-
automatic method of segmentation that would not suffer from the problems
highlighted here. For example, if the operator was given control of the thresholding it
is likely that this would improve the overall segmentation success ratc. Conirol over
the number of tinal conditional dilates could also be operator controlled ensuring that
sufficient brain is available for realignment purposes. Allowing operator intervention
at this stage would introduce variability in the segmentation due to observer bias and
error, however, for realignment purposes small variations in histogram definition are
likely o result in aecccplable variations in segmentation accuracy in the hands of an
experienced operator,

The requirement for experienced operator intervention is contrary to the aims
of this study. The aim was to fully automate the procedure and exclude the
requirement for cxperienced operator time. Changing the algorithm to become semi-
automated is acceptable however, due to the still considerable time saving afforded
by removing full manual segmentation. It is cxpected that thresholding would
involve only minutes of the operator’s time. This time requirement would still be
significantly less than the hours typically required for manual segmentation.

With computing power increasing all the time it is likely that such semi-
automated segmentation sofiware could be designed to be fully interactive. For
example it should be possible to instantly see the effects of varying the histogram
thresholds on a visualisation of the resulting brain segmentation. Therefore, future
work should also include the investigation of such a semi-automated software

package for segmentation of the brain in post-contrast data.




8.4.3 Algorithm Conclusions — Visualistion Mask

The production of the visualisation mask was also of limited success.
However, this is a result of the number of dilations used at this stage. Part of the aim
of this study was to produce a visualisation mask that would contain the relevant data
required for the MIP visualisation, whilst including a minimal amount of unwanted
data. It was especially important to remove contrast-enhancing structures that were
not of clinical value. Te limit the inclusion of unwanted data the segmented brain
mask was conditionally dilated using a mask derived from the CSF data. This was
used to cnsurc that structures beyond the CSF were not included in the visualisation
mask.

Using this mask, however, it was found that the overall signal to noise would
still decrease with increasing use of dilations at this stage. Therefore, in this instance
the dilations were limited to 12, although as was discussed in section 8.3 for some
data sets some surface vessels were not fully included within this dilated mask. Also
despite limiting the number of dilations, signal to noise was still signiticantly
reduced.

It was possible Lo eliminate the poor inclusion of vessels by increasing the
number of dilations, For example tigure 8.4 shows the automatically produced
subtraction data using a MIP where 8.4(a) is the result produced with the default 12
dilations and 8.4(b) is the equivalent result using 20 dilations (a large part of the CSF

mask)
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Figure 8.4: A comparison of the default venograms produced using 12 dilations (a) and the
automatically produced venograms produced using 20 dilations (b) for patient 11.
The long white arrows indicate where a vessel was correctly visualised in the 20 dilations data but was
partially excluded from the 12 dilation data. There is, however a further decrease in signal to noise
with the use of 20 dilations.

Assuming that all of the venous vessels are contained within the CSF (which
from the experience of this study was found to be the case) then with the correct

number of dilations it should be possible to ensure that no cerebral venous vessels



are excluded from the final visualistion. ITowever, by applying this to every data set
might result in poorer than necessary signal to noise in a large number of cases.

By adopting a similar approach (o that described in section 8.4.2 it may be
possible lo compromise if this section of the algorithm was modified to become
semi-automatic. Here the user controlled variable would be the number of
conditional dilates required to produce the visualistion mask. Therefore, where
possible the number of dilations could be kept minimal resulting in improved signal
to noise in the visualisation.

The main disadvantage in using a semi-aytomated technique is the
requirement for user intervention as discussed in section 8.4.3. It is possible that an
inexpetienced operator would define a number of dilations that would exclude
vessels of interest without the operator noticing the exclusion. This could be
countered, however, by starting the intervention with all of the data tfrom within the
CSF and allowing the number of dilations into the CSF to be reduced. The loss of an

important vessel would be more obvious by applying the technigue in this way.
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Chapter 9

Final Conclusions




The overall aim of this thesis was to investigate some of the methods used in
contrast MR imaging. Iis specific aim was to investigate methods used for the
comparison of 3D pre and post-contrast data collected within a single imaging
session which can be used for determining tumour progression or visualisation of the
cerebral venous system. It was found in chapter 2 that realignment of the pre and
post-contrast data was required when using the technique for venous visualisation.
Chapter 3 went on to demonstrate that realignment is also a requirement when this
technique is used for tumour volume measurement. Failure to correct for intra-scan
patient motion would result in incorrect tumour volume measurement.

To ensure that the realignment was accurate in these data scts, brain
segmentation is required. Chapters 4, 5 and 6 investigated the effects of segmentation
accuracy on the realignment of pre and post-contrast data. These chapters concluded
that very accurate segmentation was not an absoluie requirement for accurate
realignment of these data sets. However, care was required to ensure that contrast
cnhanced data was not included in volumes used for the purposes of realignment.

The results of chapters 4-6 were important considering the likely data that
would require segmentation in clinical situations. Clinically acquired data
morphology can vary to a large extent due to enhancing pathology, reducing the
likelihood of designing an automatic algorithm that could accurately segment all the
data sets it was provided with. There{ore, chapter 7 set out to design an algorithm
that could produce adequate segmentations of the brain from these data sets allowing
accurate realignment resulting in good quality subtraction data sets.

Despite using morphology which is well suvited to segmenting variable data

sets, chapter 8 discovered that although the algorithm worked well for some data




scts, others were poorly segmented and visualistion could be compromised by
exclusion of data. However, the data examinced were of the variable nature expecied
to be encountered in the clinical setting, therefore, as a fixst attempt the results were
promising. Chapter 8 suggested that modifications to the technique could provide
significant improvements suggesting that future follow up work is worthwhile,

For simplicity this study investigated registration and the effects of
segmentation on registration using only one registration algorithm. It was chosen due
to its capability of registering to sub-voxel accuracy. However, there are a number of
other registration techniques available that are likely to be of comparable accuracy. It
was not an aim of this thesis to compare different registration techniques. However,
it is likcly that the general conclusions of this thesis will apply to these registration
algorithms, although, difterent algorithms are likely to have different sensitivities to
segmentation accuracy. As vet there has been no study on the effects of segmentation
accuracy on diffcrent algorithms, there(ore, this could be investigated in future work.

With the trend in MR imaging for resolving smaller and smaller structures,
single-session inter-scan motion correction will become an increasing requirement
for any protocol that requires inter-scan comparisons or calculations. This work

provides a template for assessing the cfficacy of these protocols.

254




References




Allroggen H, Abbot R.J. Cereral venous thrombosis. Journal of Postgraduate
Medicine, 2000; 76: 12-15.

Altman DG. Practical Statistics for Medical Research. Chapman & Hall/CRC 1991.

Ardekani BA, Brain M, Kanno I, Hufton BF. Automatic detection of intradural
spaces in MR images. Journal of Computer Assisted Tomography 1994; 18:
963-969.

Ashburner J, Friston KJ. The role of registration and spatial normalization in
detecting activations in functional imaging. Clinical MR/Developments in MR
1997, 7: 26-28.

Atkinson DJ, Burstein 1D, Edeiman RB. First-pass cardiac perfusion: evaluation with
ultrafast MR Imaging. Radiology 1990; 174: 757-762.

Axel L, Constantini J, Listerud J. Intensity correction in surface coil MR imaging.
American Journal of Roentgenology 1987; 148: 418-420.

Bailes DR, Gilderdale DJ, Bydder GM, Collins AG. Respiratory ordcred phase
encoding (ROPE): a method for reducing respiratory motion artifacts in MR
imaging. Journal of Computer Assisted Tomography 1985; 9: 835-838.

Baker M. Maths- Conversion Euler to axis-angle, Available
http://www.euclideanspace.com/maths/geometry/rotations/conversions/EulerT

oAngle/index.htm. Published 1998. Accessed June 2004.

Barra V, Boire JY. Tissue segmentation on MR images of the brain by possibilistic
clustering on a 3D wavelet representation. Journal of Magnetic Resonance
Imaging 2000; 11: 267-278.

Barr-Sella P, Front 1D, Hardoff R, et af.. Ultrastructure basis for different
pertechnetate uptake patterns by various human brain tumours. Journal of
Neurology, Neurosurgery and Psychiatry 1979; 42: 924-930.

Berberich T, Hirsch S. Die rontgenographische Darslellung der arterien und venen am
lebenden. Munchen Klin Wochenschr 1923; 49: 2226,

Bloch F, Hansen WW, Packard M. Nuclear induction. Physical Review 1946; 69:
127.

Bradley WG, Waluch V. Blood flow: magnetic resonance imaging. Radiology 1985;
154: 443-450.

Brandt ME, Bohan TP, Kramer LA, Fletcher JM. Estimation of CST', white and gray
matter volumes in hydrocephalic children using fuzzy clustering of MR

images. Computerized Medical Imaging and Graphics 1994; 18: 25-34,

256



http://www.euclideanspace.com/maths/geometrv/rotations/conversions/EulerT

Brant-Zawadzki M, Gillan GD, Nitz WR. MP RAGE: A three dimensional, T1-
weighted gradient-echo sequence — Initial experience in the brain. Radiology
1992; 182: 769-775.

Brennan D, Condon B, Hadley D, Dcetermining the effects of segmentation accuracy
on the registration of pre- and post-gadolinium MR images. Proceeding of the
ISMRM (Glasgow) 2002: 2479.

Brennan D, Hadley D, Patterson J, Condon B, Comparison of MRI and SPECT
volume measurcment following minimally invasive surgery for a phase 1 trial
of a genetically modified viral therapy. Proceedings of ISMRM 2001: 1397

Brennan D, Hadley D, Patterson J, Condon B. Comparison of MRI and SPECT
tumour volume measurement following minimally invasive surgery. 6" British
ISMRM Meeting (Liverpool) 2000.

Brennan D, Condon B, Hadley D. 'The application of subvoxel coregistration in
subtraction venography: a comparison with non-registered data. Proceedings of
ISMRM (Philadelphia) 1999: 2177.

Brinkmann BH, Manduca A, Robb RA. Optimized homomorphic unsharp masking
for greyscale inhomogeneity correction. IEEE Transactions on Medical
Imaging 1998; 17: 161-171.

Brinkmann BH, Manduca A, Robb RA. Quantitative analysis of statistical methods
for greyscale inhomogeneity correction in MR images. SPIE Proceedings 1996;
2710: 542-552.

Brooks B. Intraarterial injection of sodium iodide. JAMA 1924, 82: 1016

Brown SM, Harland J, MacLean AR, ef al.. Cell type and cell state determine
differential in vitro growth of non-neurovirulent ICP34.5-negative herpes
simplex virus types 1 and 2. The Journal of General Virology 1994; 75: 2367~
23717.

Cartr DH, Brown J, Bydder GM, et al. Intravenous chelated gadolinium as a contrast
agent in NMR imaging of cerebral tumours. Lancet 1984; 1: 484-486.

Chen C-N, Hoult DI. Biomedical Magnetic Resonance Technology. New York:
Adam Hilger 1989.

Clarke LP, Velthuizen RP, Camacho MA, ef al. MRI Segmentation: Methods and
Applications. Magnetic Resonance Imaging 1995; 13: 343-368.

Clarke LP, Velthuizen RP, Phuphanich S er af. Stability of three supervised
segmentation techniques. Magnetic Resonance Imaging 1993; 11: 95-106.

257




Cline HE, Dumoulin CL, Hart HR Jr, et al. 3D reconstruction of the brain from
magnetic resonance images using a connectivity algorithm. Magnetic
Resonance Imaging 1987; 5: 345-352.

Cochran ST, Bomyea K, Sayre JW. Trends in adverse events after IV administration
of contrast media. Amcrican Journal of Roentgenology 2001; 176: 1385-1388.

Collins DL, Zidjenbos AP, Kollokian V, er al. Design and construction of a realistic
digital brain phantom. IEEE Transcripts in Medical Imaging 1998, 17: 463-
468.

Collins VP. Gliomas. Cancer Surveys 1998; 32: 37-51.

Condon BR, Patterson I, Wyper D, ef al. Image nonuniformity in magnetic
resonance imaging: Its magnitude and methods for its correction, British
Journal of Radiology 1987; 60: 83-87.

Cotton F, Weiner 1L, Jolesz FA, Guttmann CR. MRI conlrast uptake in new lesions
in relapsing-remitting MS followed at weekly intervals. Neurclogy 2003; 60:
640-646.

Curé JK, Van Tassel P, Smith MT. Normal variant anatomy of the dural venous
sinuses. Seminars in Ultrasound CT and MR 1994; 15: 499-519.

Damadian R. Tumour detection by nuclear magnetic resonance. Science 1971; 19;
1151-1153,

Dale AM, Fischl B, Sereno MI. Cortical surface based analysis. 1. Segmentation and
surface reconstruction. Neuroimage 1999; 9: 179-194.

DeAngelis LM. Medical Progress: Brain Tumors. The New England Journal of
Medicine 2001; 344: 114-123.

Dumoulin CL, Cline HE, Souza SP ef al. Threc-dimensional time-of-flight magnetic
resonance angiography using spin saturation. Magnetic Resonance in Medicine
1989(a); 11: 35-46,

Dumoulin CL, Souza SP, Darrow RD er a/. Simultaneous acquisitions of phase-
contrast angiograms and stationary-tissue images with Hadamard encoding of
flow-induced phase shifts. Journal of Magnetic Resonance Imaging 1991; 1:
399-404.

Dumeoulin CL, Souza SP, Walker M), Wagel W. Three-dimensional phase contrast
angiography. Magnetic Resonance in Medicine 1989(b); 9: 139-149.




Earnest F, Forbes G Sandok BA ef a/ Complications of cercbral angiography:
Prospective assessment of risk. American Journal of Roentgenology 1984,
142: 247-253.
Edelman RR, Ahn SS, Chien D, ef al. Improved time-of-flight MR angiography of
the brain with magnetization {ransfer contrast. Radiology 1992; 184: 395-399,
Edelman RR, Chien D, Atkinson DI, Sandstrom J. Fast time-of-flight MR
angiography with improved background suppression. Radiology 1991, 179:
867-870.
Ldelstein WA, Hutchison JMS, Johnson G, Redpath TW. Spin warp NMR imaging
and applications to the human whole body imaging. Physics in Medicine and
Biology 1980; 25: 751-766.
Ehman RL, Felmlee JP. Adaptive technique for high definition MR imaging of
moving structures. Radiology 1989; 173: 225-263.
Ehman RL, McNamara MT, Brasch RC ef al. Influence of physiologic motion on the
appearance of tissue in MR images. Radiology 1986; 159; 777-782.
Essig M, Reichenbach JR, Schad LR, ef a/. High-resolution MR venogtaphy of
cerebral arteriovenous malformations. Magnetic Resonance Imaging 1999; 17:
1417-1425
Fischl B, Salat DH, Busa E, ef «/. Whole brain segmentation: automated labelling of ‘
neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355. :
Fletcher LM, Barsotli JB, Hornak JP. A multispcctral analysis of brain tissues.
Magnetic Resonance in Medicine 1993; 29: 623-630.
Franck O and Alwens W. Kreislanfstudien am ronigenschirm. Munchen
Medizinische Wochenscrift 1910; 51: 1950-1953.
Gadian DG, Payne JA, Bryant DJ, et a/. Gadoliniom-DTPA as a contrast agent in
MR imaging - theoretical projections and practical observations. Journal of
Computer Assisted Tomograpy 1985; 9: 242-251.
Gao JH, Holland SK, Gore JC. Nuclear imagnetic resonance signal from flowing 3
nuclei in rapid imaging using gradient echoes. Medical Physics 1988; 15: 809- \
814,
(ariboldi MB, Ravizza R, Pettcrino C, et al. Study of in vitro and in vivo effects of
piperdine nitroxide Tempol — a potential new therapeutic agent for gliomas.
European Journal of Cancer 2003; 39: 829-837.

Gerig G, Martin J, Kikinis R, ef af. Unsupervised tissue type segmentation of 3D

259




dual-echo MR head data, Image and Vision Computing 1992; 10: 349-360.

Giovannoni G, Miller DH, Losseff NA, ef ¢/, Scrum inflammatory markers and
clinical/MRI markers of disease progression in multiple sclerosis. Journal of
Neurolgy 2001; 248; 487-495.

Gorter CJ, Broer LIF. Negative result of an attempt to observe nuclear magnetic
resonance in solids. Physica (The Hague) 1942; 9: 591.

Graves MJ. Magnetic resonance angiography. British Journal of Radiology 1997; 70:
6-28.

Groothuis DR, Vriesendorp FJ, Kupfer B, et al. Quantitative measurements of
capillary transport on human brain tumors by computed tomography. Annals of
Neurology 1991; 30: 581-588.

tuerbert Web site. 2003 Financial Strategy Document. Available:
http://fwww.guerbet.com/_pdf swifstrategy 03_04.ppt. Published March 2004.
Accessed: Junc 2004,

Haacke EM, Lenz GW. Improving MR image quality in the presence of motion by
using rephasing gradients. American Journal of Roentgenclogy 1987; 148:
1251-1258.

Haase A, Matthaei D, Bartkowski R, ef al. Inversion recovery snapshot FLASH MR
imaging. Journal of Computer Assissted Tomography 1989; 13: 1036-1040

Haase A. Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift
imaging. Magnetic Resonance In Medicine 1990; 13: 77-89.

Hajnal JV, Saeed N, Oatridge A, er al. Detection of subtle brain changes using
subvoxel registration and subtraction of serial MR images. Journal of
Computer Assisted Tomography 1995; 19: 677-691.

Haney SM, Thompson PM, Cloughesy TF, ef al. Tracking tamor growth rates in
patients with malignant gliomas: a test of two algorithms. American Journal of
Neuroradiology 2001: 22; 73-82.

Haschek E, Lindenthal OT. A contribution to the practical use of the photography
according to Rontgen. Wein Klin Wochenschr 1896; 9: 63

Hassenbusch SJ, Nardone EM, Levin VA, er al. Stereotactic injection of DTI-015
into recurrent malignant gliomas: phase /Il trial. Neoplasia 2003; 5: 9-16.

Hausmamn R, Lewin J§, Laub G. Phase-contrast MR angiography with reduced
acquisition time: new concepts in sequence design, Jownal of Magnetic
Resonance Imaging 1991; 1: 514-522.

260

i



http://www.euerbet.com/

Heiserman JE, Dean BL, Hodak JA et al. Neurologic complications of cerebral
angiography. American Journal of Neuroradiology 1994; 15: 1401-1407,

Hesselink JR, Press GA. MR contrast enhancement of intracranial lesions with Gd
DTPA. Radiological Clinics of North America 1988; 26: 873-887.

Hinks RS, Xiang QS, Henkelman RM. Ghost phase cancellation with phase-
encoding gradient modulation. Journal of Magnetic Resonance imaging 1993,
3. 777-785.

Hohne KH, Hanson WA. Interactive 3D segmentation of MRI and CT volumes using
morphological operations, Journal of Computer Assisted Tomography 1992;
16: 285-294.

ICRP. 1990 Recommendations of the International Commission on Radiclogical
Protection. 1% edition. International Commission on Radiological Protcetion;
ICRP publication 60; 1991, Oxford, New York: Pergamon Press.

Jack CR, Bentley MD, Twomey CK, Zinsmeister AR. MR imaging-bascd volume
measurements of the hippocampal formalion and anterior temporal lobe:
validation studies. Radiology 1990; 176: 205-209.

Jain AK. Fundamentals of digital image processing. Englewood Cliffs: Prentice Hall
1989,

James K, Eisenhauer E, Christian M, ef al. Measuring response in solid tumors:
unidimensional versus bidimensional measurement. Journal of the National
Cancer Institute 1999; 91: 523-528.

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust
and accurate linear registration and motion correction of brain images.
Necuroimage 2002; 17: 825-841.

Jennings MT, Frenchman M, Shehab T, ef al. Gliomatosis cerebri presenting as
intractable epilepsy during early childhood, Journal Child Neurology 1995: 1¢:
37-45.

Joshi M, Cui J, Doolitile K, et a/. Brain segmentation and the generation of cortical
surfaces. Ncuroimage 1999; 9: 461-467.

Just M, Thelen M. Tissue characterization with T1, T2, and proton densily values:
Results in 160 patients with brain tumours. Radiology 1988; 169: 779-785.

Kao YH, Sorenson JA, Bahn MM, Winkler SS. Dual-echo MRI segmentation using
vector decomposition and probability techniques: a two-tissue model. Magnetic
Resonance in Medicine 1994; 32: 342-357.

261




Keller PJ, Drayer BP, Fram EK, ef al. MR angiography with two-dimensional
acquisition and three dimensional display: work in progress. Radiology 1989;
171: 801-806.

Kelly '], Daumas-Duport C, Scheithauer BW, ef al. Stereotactic histologic
correlations of computed tomography and magnetic resonance imaging-defined
abnormualities in patients with glial neoplasms. Mayo Clinic Procedings 1987,
62: 450-459.

Kikinis R, Gleason PL, Moriarty TM, er al. Computer-assisted interactive three-
dimensional planning for neurosurgical procedures. Neurosurgery 1996; 38:
640-649,

Kikinis R, Shenton ME, Gerig (i, et al. Routine quantitative analysis of brain and
cerebrospinal fluid spaces with MR imaging. Journal of Magnetic Resonance
Imaging 1992; 2: 619-629.

Kischell TR, Kehtarnavaz N, Hillman GR, et af Classification of brain
compartments and head injury by neural networks applied to MRI. Diagnostic
Neuroradiology 1995; 37: 535-541.

Kobhn MI, Tanna NK, Hernman GT ef al. Analysis of brain and cerebrospinal fluid
volumes with MR imaging; part 1. Methods, reliability and validation.
Radiology 1991; 178: 115-122.

Kovanen J, Erkinjuntti T, fivanaineh M, ef al. Cerebral MR and CT imaging in
Creutzfeldt-Jakob disease. Journal of Computer Assisted Tomography 1985;
9: 125-128.

Kruger DG, Slavin GS, Muthupillai R, ef af. An orthogonal correlation algarithm for
ghost reduction in MRI. Magnctic Resonance in Medicine 1997: 38; 678-686.

Kumar A, Welli D, Ernst RR. NMR-Fourier-Zeugmatography. Journal of Magnetic
Resonance 1975: 18; 69-83.

Kwon SU, Kim JC, Kim, JS. Scquential magnetic resonance imaging (indings in
hypereosinophilia-induced encephalopathy. Journal of Neurology 2001; 248:
279-284.

Lauterbur PC. Image formation by induced local interactions: examples employing
nuclear magnetic resonance. Nature 1973; 242: 190-191.

Lee JM, Yoon U, Nam SH et /. Evaluation of automated and semi-automated skull
stripping algorithms using similarity index and segmentation error. Computers
in Biology and Medicine 2003; 33: 495-507.




Lemieux [, Hagemanmn G, Krakow K, Woermann FG. Fast, accurate, and
reproducible automatic segmentation of the brain in Ti-weighted volume MRI
data. Magnetic Resonance in Medicine 1999; 42: 127-135.

Lemieux L, Hammers A, MacKinnon T, Liu RSN, Automatic segmentation of the
brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of
the head, and its application to serial cerebral and intracranial volumetry.
Magnetic Resonance in Medicine 2003; 49: 872-884.

Lenzlinger PM, Morganti-Kossmann KC, Laurer HL, McIntosh TK. The duality of
the inflammatory response to traumatic brain injury. Molecular Neurobiology
2001; 24: 169181,

Lerski RA, Straughan K, Schad LR, ef al. MR image texture analysis: an approach
to tissue characterization. Magnetic Resopance Imaging 1993; 11: 873-887.

Li D, Haacke EM, Mugler JP e al. Three dimensional time-of-flight MR
angiography using selective inversion recovery RAGE with fat saturation and
ECG-triggering: application to renal arteries. Magnetic Resonance in Medicine
1994; 31: 414-422,

Liauw L, van Buchem MA, Spilt A, ef /. MR angiography of the intracranial venous
system. Radiology 2000; 214: 678-682

Lin W, Mukherjee P, Hongyu A, et al. Improving high-resolution MR BOLD
venographic imaging using a T1 reducing contrast agent. Journal of Magnetic
Resonance Imaging 1999; 10: 118-123

I.in W, Tkach JA, Haacke EM, Masaryk TI. Intracranial MR angiography:
application of magnetisation transfer contrast and fat saturation to short
gradient-echo velocity-compensated sequences. Radiology 1993; 186: 753-761.

Logothetis NK, Pauls J, Augath M, Trinath |, Qeltermann. Neurophysiological
investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157.

Long DM. Capillary ultrastucture in human metastatic brain tumors. Journal of
Neurosurgery 1970; 32: 127-144.

|.oubeytre P, De Jaegere 'I', Tran-Minh VA. Three-dimensional phase contrast MR
cerebral venography with zero filling interpolation in the slice encoding
direction. Magnetic Resonance Imaging 1999; 17: 1227-1233.

MacDonald D, Kabani N, Avis D, Evans AC. Automated 3-D extraction of inner and
outer surfaces of cerebral cortex from MRIL Neuroimage 2000; 12: 340-365.

Magnevist German Patent. No: 3129906

263




Mallard J, Hutchinson JM, Edelstein W, ef «l. Imaging by nuclear magnetic
resonance and its bio-medical implications. Journal of Biomedical Engineering
1979; 1: 153-160.

Mansfield P, Maudsiey AA. Medical imaging by NMR. British Journal of Radiology
1977; 50: 188-194.

Mansfield P, Morris PG. NMR Imaging in Biomedicine: Supplement 2 — Advances
in Magnetic Resonance. London: Academic Press 1982.

Ménsson S, Bjernerud A. Plysical principles of medical imaging by nuclear
medicine. In: Merbach AE, Téth E, ed. The chemistry of contrast agents in
medical magnetic resonance imaging. Chichester: John Wiley & Sons 2001: 1-
43.

Markert JM, Medlock MD, Rabkin SD, et a/. Conditionally replicating herpes
simplex virus mutant G207 for the treatment of malignant glioma: results of a
phase 1 trial. Gene Therapy 2000; 7: 867-874.

Martini FH. Fundamentals of anatomy & physiology 5™ Edition. New Jerscy:
Prenticc-Hall 2001.

Maruyama Y, Chin HW, Young AB, ef al. Implantation of brain tumors with C£-252,
Use of computed tomography and magnetic resonance imaging to guide
insertion and evaluate response, Radiology 1984; 152: 177-181.

Mattle T, Wentz K, Edelman R, et al. Cerebral venography with MR, Radiclogy
1991; 178: 453-458.

McParland. A study of patient radiation doses in interventional radiological
procedures. British Journal of Radioloy 1998; 71: 175-185.

Meder JF, Chiras J, Roland J, ef al Venous territories of the brain. Journal of
Neurpradiology 1994; 21: 118-135.

Merbach Ak, Toth T. Preface. In; Merbach AE, Téih E, ed. The chemistry of
contrast agents in medical magnetic resonance imaging. Chichester: John
Wiley & Sons 2001 xi-xii.

Miller AB, Hogestraeten B, Staquet M, Winkler A. Reporting results of cancer
ireatment. Cancer 1981; 47; 207-214.

Mitchell DG, Tasciyan I, Ortega HV, et al. Pulsation artifact in short TR MR
imaging and angiography: Exacerbation with signal averaging, Journal of
Magnetic Resonance Imaging 1994; 4: 709-718.

Moonis G, Liu J, Udupa JK, Hackney DB. Estimation of tumor volume with fuzzy-

264




connectedness segmentation of MR images. American Journal of
Neuroradiology 2002; 23: 356-363.

Motris PP, Chot IS, Cerebral vascular anatomy. Neuroimaging Clinics of North
America 1996; 3 541-560.

Mugler J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-

echo imaging (3D MP RAGE). Magnetic Resonance in Medicine 1990; 15: 152-157.

Mugler J, Brookeman . Rapid three-dimensional T1-weighted MR imaging with the
MP-RAGE sequence. Journal of Magnetic Resonance Imaging 1991; 1: 561-
567.

Murphy KP, Szopinski KT Cohan RH, ef ¢f. Qccurrence of adverse reactions to
gadolinium-based contrast material and management of patients at increased
risk: a survey of the American Society of Neuroradiology Fellowship
Directors. Academic Radiology 1999; 6: 656-664.

Nelson SJ, Vigneron DB, Dillon WP. Scrial evaluation of paticnts with brain
tumours using volume MRI and 3D 1H MRSL NMR in Biomedicine 1999; 12:
123-138.

Nir I, Kohn S, Doron Y, ez al. Quantitative analysis of tight junctions and the uptake
of 99mTc¢ in human gliomas. Cancer Investigations 1986; 4: 519-524.

Nishimura DG, Macovski A, Pauly JM, Conolly SM. MR angiography by selective
inversion recovery. Magnetic Resonance in Medicine 1987; 4: 193-202.

Nishimura DG. Time of Flight MR Angiography. Magnetic Resonance in Medicine
1990; 14: 194-201.

Ogawa S, Tank DW, Menon R, et a/. Intrinsic signal changes accompanying sensory
stimulation: Tunctional brain mapping with magnetic resonance imaging.
Proceedings of the National Academy of Sciences of the United States of
America 1992; 89: 5951-5955.

Ojeda L, Borenstein J. FLEXnav: Fuzzy logic expert rule-based position estimation
for mobile robots on rugged terrain. Proceedings of IEEE International
Conference on Robotics and Automation (Washington DC) 2002: 317-322.

Pate] SII, Kolson DI., Glosser G, et al. Correlation between percentage of brain
parenchymal volume and neurocognitive perfomance in HIV-infected patients.
Amcrican Journal of Neuroradiology 2002; 23; 543-549.

Peck DJ., Windham JP, Soliunian-Zadeh H, Raebuck JR. A fast and accurate
algorithm for volume determination in MRIL Medical Physics 1992; 19: 599-

265




605.

Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategics for three-
direction phase-contrast MR imaging of flow. Journal of Magnetic Resonance
Imaging 1991; 1. 405-413.

Perkins TG, Wehrli FW. CSF signal enhancement in short gradient-echo images.
Magnetic Resonance Imaging 1986; 4: 465-467.

Pham DL, Prince JL. Adaptive fuzzy segmentation of magnetic resonance images.
IEEE Transactions on Mecdical Imaging 1999: 18; 737-752.

Phillips WE 2™, Velthuizen RP, Phuphanich S, et al. Application of fuzzy c-means
segmentation technique for (issue differentiation in MR images of a
hemorrhagic glioblastoma multiforme. Magnetic Resonance Imaging 1995; 13:
277-290.

Pike GB, Hu BS, Glover GH, Enzmann DR, Magnetisation transfer {ime-of-flight
magnetic resonance angiography. Magnetic Resonance in Medicine 1992; 25:
372-379.

Pomeranz SJ, Soila K, Tobias I, ef al. Sensitivity of MRI in metastatic neoplasia: a
case report. Magnetic Resonance Imaging 1985; 3: 291-293.

Powcll HC, Lampert PW. Pathology of multiple sclerosis. Neurological Clinics
1983; 1: 631-644.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2™
edition. Cambridge University Press 1992; 683.

Purcell E, Torrey L1, Pound R. Resonance absorption by nuclear magnetic moments
in a solid. Physical Revicw 1946; 69: 37-38.

Rabi TI, Zacharias JR, Millman S, Kusch P. A new method of measuring nuclear
magnetic moment. Physical Review 1938; 53: 318,

Rajan B, Ross G, Lim CC, et al. Survival in patients with recurrent glioma as a
measure of treatment eflicacy: prognostic factors following vitrosourea
chemotherapy. European Journal of Cancer 1994; 30A: 1809-1815.

Rampling R, Cruickshank G, Papanastassiou V, ef /. Toxicity evaluation of
replication competent herpes simplex virus (ICP 34.5 null mutant 1716) in
patients with recurrent malignani glioma. Gene Therapy 2000; 7: 859-866.

Rao AB, Richert N, Howard ‘I' ¢f ul. Methylprednisolene effeet on brain volume and
enhancing lesions in MS before and during IFNbeta-1b. Neurology 2002; 59:
688-694.

266




Redpath TW. Signal-to-noise ratio in MRI British Journal of Radiology 1998; 71:
704-707.

Reichenbach JR, Barth M, I1aacke EM, et ol High-resolution MR venography at 3.0
tesla. Journal of Computer Assisted Tomography 2000; 24: 949-0657.

Reichenbach JR, Essig M, laacke EM ef g/, High-resolution venography of the brain
using magnetic resonance imaging. Magnetic Resonance Materials in Physics,
Biology and Medicine 1998; 6: 62-69

Reichenbach JR, Venkatesan R, Schillinger DJ ef al. Small Vessels in the Human
Brain: MR Venography with Deoxyhemoglobin as an Intrinsic Contrast Agent.
Radiology 1997; 204: 272-277

Roberts TPL, Chuang N, Roberts HC, Newroimaging: do we really need new contrast
agents for MRI? Europcan Journal of Radiology 2000; 34: 166-178.

Roux FE, Ibarrola D, Tremoulet M, ef al. Methodological and technical issues for
integrating functional magnetic resonance imaging data in a neuranavigational
system. Neurosurgery 2001; 49: 1145-1157.

Ruggeri PM, Laub GA, Masaryk TJ, Modic MT. Intracranial circulation: pulse-
sequence considerations in three-dimensional (volume) MR angiography.
Radiology 1989; 171: 785-791.

Runge VM, Carollo BR, Wolf CR, e¢f al. Gd DTPA.: a review of clinical indications
in the central nervous system magnetic resonance imaging. Radiographics
1989; 9: 929-958.

Runge VM, Clanton JA, Partain CL., James AK. Jr. Respiratory gating in magnetic
resonance imaging at 0.5T. Radiology 1984; 151; 521-523.

Runge VM, Muroff LR, Jinkins JR. Central nervous system: review of clinical use of
contrast media. Topics in Magnetic Resonance Imaging 2001; 12; 231-263.

Saced N, Hajnal JV, Oatridge A. Automated brain segmentation from single slice,
multislice, or whole-volume MR scans using prior knowledge. Journal of
Computer Assisted Tomography 1997; 21: 192-201.

Salecman M. The morbidity and mortality of brain tumours. A perspective on recent
advances in therapy. Neurological Clinics 1985; 3: 229-257.

Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to
CC1 in patients with brain metastases. Journal of Neurooncology 1999; 44;
275-281.

267




Schott IM, Fox NC, Frost C, er al. Assessing the onset of structoral change in
familial Alzheimer’s disease. Annals of Neurology 2003; 53: 181188,

Scott JN, Rewcastle NB, Brasher PM ef a/. Which glioblastoma multifome patient
willl become a long-term survivor? A population-based study. Annals of
Neurology 1999; 46: 183-188.

Seitz RJ, Wechsler W. Immunohistochemical demanstration of serum proteins in
human cerebral gliomas. Acta Neuropathologica 1987; 73: 145-152.

Setton A, Davis Al, Bose A, Nelson PK, Berenstein A. Angiography of cerebral
aneurysms. Neuroimaging Clinics of North America 1996; 6: 705-738.

Shan ZY, Yue GH, Liu JZ, Automated histogram-based brain segmentation in T1
weighted three dimensional magnetic resonance head images. Neuroimage
2002; 17: 1587-1598.

Shibata T. Ultrastucturc of capillary walls in human brain tumours. Acta
Neuropathologica 1989; 73: 145-152.

Simmons A, Armidge SR, Barker GIJ, Williams SC. Sources of inlensity
nonuniformity in spin echo images at 1.5T. Magnetic Resonance in Medicine
1994; 32: 121-128.

Singer JR. Blood flow rates by nuclear magnetic resonance measurements. Science
1959; 130: 1652.

Smith SM. Fast robust automated brain exiraction. Human Brain Mapping 2002; 17:
143-155,

SRI International Web Site. Magnetic resonance imaging: An MRI chronology.
Available: http://www.sri.com/policy/stp/techin/mri2. html. Published Feb 1997
Accessed August 2003. :

Stcvenson J, Knopp EA, Litt AW. MP-RAGE Subiraction Venography: A New

Technique. Journal of Magnetic Resonance Imaging 1995; 5: 239-241.
Stokking R, Vincken KI., Viergever MA. Automatic morphology-based brain
segmentation (MBRASE) from MRI-T1 Data. Neuroimage 2000; 12; 726-738.
Stokking R. Integrated visualization of functional and anatomical brain images.
Thesis (PhD). University of Utrecht 1998,

Studholme C, Cardenas V, Song E, ef al. Accurate template-based correction of brain
MRI intensity distortion with application to dementia and aging. IEEE
Transactions on Medical Imaging 2004, 23: 99-110.

268



http://www.sri.com/policy/stp/techin/mri2.html

Suetens P, Bellon E, Vandermeulen I, ¢f wl Image segmentation: methods and
applications in diagnostic radiology and nuclear medicine. European Journal of
Radiology 1993; 17: 14-21.

Surjan G. Nuclear resonance in flowing liquids. Proceedings Indian Academy of
Science 1951; A33: 107.

Takeoka M, Kim F, Caviness VS, et al. MRl volumetric analysis in Raymussen
encephalitis: a longitudinal study. Epilepsia 2003; 44; 247-251.

Tan IL, van Schijndel RA, Pouwels PIW, ¢f al. MR venography of multiple
sclerosis. American Journal of Neuroradiology 2000; 21: 1039-1042

Taveras IM. Neuroradiology. Baltimore: Williams & Wilkins 1996.

Taxt T, Lundervold A, Fuglaas B, ez a/. Multispectral analysis of uterine corpus
tumours in magnetic resonance imaging. Magnetic Resonance in Medicine
1992; 23: 55-76,

Thacker NA, Jackson A. Mathematical segmentation of grey matter, white matter
and cerebral spinal fluid froom MR image pairs. British Journal of Radiology
2001; 74: 234-242.

Therasse P, Arbuck SG, Eisenhauer EA, ef al. New guidclines in evaluating the
response to treatment in solid tumours. Journal of the National Cancer Institute
2000; 92: 205-216.

Udupa JK, Samarasekera S. Fuzzy connectedness and object definition: theory,
algorithms and applications in image segmentation. Graphical Models and
Image Processing 1996; 58: 246-261.

Van der Meulen I, Groen JP, Cuppen IJ. Very fast MR imaging by field echoes and
small angle excilation. Magnetic Resonance Imaging 1985; 3: 297-299.

Vannier MW, Butterfield RL, Jordan D, et ol Multispectral analysis of magneiic
resonance images. Radiology 1985; 154: 221-224.

Vamnier MW, Speidel CM, Rickman DL. Magnetic resonance imaging multispectral
tissue classification. News in Physiological Sciences 1998; 3: 148-154.

Wang CM, Yang SC, Chung PC, ef al. Orthogonal subspace projection-based
approaches to classification of MR image sequences. Computerized Medical
Imaging and Graphics 2001; 25: 465-476.

Wang Y, DBest DE, Hoffman JG er al. ACR-NEMA digital imaging and
communications standards: minimum requirements. Radiology 1998; 166: 529-
532.

269




Waugh JS. NMR Spectroscopy in solids: A historical perspective. Analytical
Chemistry 1993; 65: 725A-729A.

Wehrli FW. Principles of Magnetic Resonance. In Magnetic Resonance Imaging. Ed:
Stark DD, Bradley WG, Missouri: C.V. Mosby 1988.

WIHO. WHO Classitication of tumours of the nervous system.. In: Kleihues P and
Cavenee WK (Eds). Pathology and Tumours of the nervous system. Lyon:
International Agency for research on Cancer (IARC) Press 2000.

WHO. WHO handbook for reporting results of cancer treatment. Geneva
(Switzerland). World Health Organisation Offset Publication No. 48; 1979.

Wood ML, Ehman RL. Effects of motion in MR imaging. In: Magnetic Resonance
Imaging. Ed: Stark DD, Bradley WG. St Louis: Mosby- Yecar Book 1992: 145-
164.

Wood ML, Henkelman RM. MR image artifacts from periodic motion. Medical
Physics 1985; 12: 143-151.

Woods RP, Cherry SR Mazziotta JC. Rapid automated algorithm for aligning and
reslicing PET images. Journal of Computer Assisted Tomography 1992; 16:
620-633.

Xu C, Pham DL, Rettmann ME, ef a/. Reconstruction of the human cerebral cortex
from magnetic resonance images. IEEE Transcripts in Medical imaging 1999;
18: 467-480.

Zhou 1.Q, 7Zhu YM, Bergot C ef /. A method of radio-frequency inhomogeneity
correction for brain tissue segmentation in MRI Compuierized Medical
Imaging and Graphics 2001; 25: 379-389.

Zijdenbos A, Dawant BM, Margolin RA, Palmer AC. Morphometric analysis of
white matter lesions in MR images. JEEL Transcripts in Medical Tmaging
1994; 13: 716-724.

270




Appendix 1

Binary Morphelogical Operators




Al.1 General Definitions
The morphelogical operators can be described using mathematical sets, where the

following definitions apply:

A is the image

AVUB is the union of the images 4 and B
ANEB is the intersection of the images A and B
Al.2 Dilation

It is possible to define dilation as

A®B=JB, (AL1.1)

oA
Here we take copies of B and translate them by movement vectors defined by cach
voxel in A. This can be interpreted as putting a copy of B at each voxcl in A.
Therefore, if we take the union all of the B copies with 4 we get 4 © B. In this way,
dilation works as a convolution, wherc the B kernel slides to each position in the
image where it is applied (union). Dilation ¢nlarges a volume and removes holes and

indentations that are smaller than or equal to the applied kerncl.
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Al1.3 Erosion

Frosion can be defined as

1eB8=B, (ALS)

ieB
Here we take copies of 4 and translatc them by movement vectors defined by each
voxel in B, however, this time the translation is in the opposite direction and intersect
the two copies. The intersect of B is applied at each voxel in 4.
Erosion diminishes a volume and removes sub-volumes that cannot fill out the

structuring element.




Appendix 2

Initial Venogram Protocol from Analyze Study




p—

. Load postcont data
2. Produce histogram of postcont data
3. Do analyze equivalent inhomogeneity correction on data with minimum

threshold set (o the minimum on the histogram data

S

. Determine greyscale value of minimum on histogram ol corrected data
5. Determine greyscale value of maximum on histogram of corrected data
6. Set threshold levels on corrected data to 1.5*min to max-+min

7. If the number of pixels at the higher threshold is greater than the number

of pixels at min then increase higher threshold until reverse is tiue

co

. Threshold corrected data and save binary map (thres bin) and corrected data
{(postcont _cort)
9. Frode binary map once and then low pass filter using kernal (3x3x3)
10. Run a connect algorithm on the data o display the two largest structures
11.  (a) Test the two struciures for size and relative size to each other, to check
that segmentation will work. If it will not work stop here.
(b) If largest structure is very large and the smallest very small a further
erode is require.
(c) Go back to data produced from 9 and erode 2, filter and connect.
(d) One extra dilate must be carried out at the time of conditional dilate
12. Calculate the average inferior/posterior position for the two sets of data.
13. The more superior set of data in retained and the other is deleted
14. Conditionally dilate the data using the threshold data from 8 threc times
(four if extra erode was used in 11)

15, Multiply resulting binary with postcont data to produce postcont fA
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16. Threshold corrected data from 3 from voxel value 1 to twice the minimum

calculated in 4.

17. This data is complimented and then filled and then multiplied with the data
from 16 to produce the CS¥K mask.

18. Conditionally dilate the binary data from 14 using csf mask as the condition
and fill.

19. Connect this data to keep the largest object’ i.e. removing noise

20. Multiply this data with postcont and precontrs! and subtract the results

21. Resultant data should be saved and can be viewed using Analyze as a maximum

inlensity projection (MIP).
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Appendix 3

IDL Automatic Venography Program




A3.1 Main Program

pro auto veno

; This section finds out the name and location cf the files and doocs
;some data checxks

prini, 'Please enter the name of the pre conlrast file’
filerame pre=dialog_pickfile(filter="*,ing',vitle="'PlLease enter ths
name of the pre conltrast file'}

; Use unix command ’readspacing' to determine image dimcnsions and
; voxel sizes for prz data

name_len = strlen(filcname_pre)

short_len = name len-4

filename_pre short = strmid(filename_pre,Q,shcert len)
spawn_command = 'readspacing ' + filename pre short
spawn, spawn_command, header irfo
sizemal.x_pre=floal (header info(0))

silzematy pre=float (header_info{l))

slicemat pre=fleoat (header info{2))
scalex_pre=float (header info{3))

saaley pre=float (headexr_info(4)})
scalez_pre-float(hcader info(5})

print, 'Please enizsr the name of the post contrast file °*
tilename post = dialog pickfile(filter="*.img’',title='Please enter
he name of the post contrasL [ile')

; Use unix cormand 'readspacing' to determine image dimensions and
; voxel sizes for
; post data

name_len = strler{filename_post)

short len = name len—4

filename post short = strmid(filcname post, 0, short len)
spawn_cormand = 'readspacing ' + filename post_short
spawn, spawn_command, header info

sizemalx post=float (headex_info(0}}

sizematy post=float (header info(l))}

slicemat post-float (header info(2))

scaiex post=fleat (header info(3))

scaley post=float (hcader_info(4}}

scalez post=float (header info(5))

; Compare image attributes for pre and post. Should ke the same

if (sizematx pre NE sizematx post) OR (sizematy pre NE
sidematy pcst) OR (slicemat_prc NE slicemat post) then begin
print, 'The matrix sizes do not match'
stop
cndiz
if (scalex prc NE scalcx post) CR (scaley pre NE sceley post] OR
{(scalez pro NE scalez_post) then begin
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orint, 'The voxcl dimensions do match’
stop
endif

; Selacl name for final data Lo be saved as

print, 'Please enler Lhe name of the output final file'
Tilename cut = dialog pickfile(filter-"#.img',title='2lease enter
the name cf the output final file')

;Op=n post contrast file and set variable pcstcont_data to data
openr, iun post, filename post,/get_lun

; Determine file attributes ie what is the file size and thus the
; byles ver nixel then initiale variable

poststatus=fstat (lun post)
postbytes=
poststatus.size/ (sizematx posl*sizematy post*slicemat post)
if (postbylLes eq 1) ther begin
postcont_data =
bytarr{sizemat® posi,sizenaly post,slicemat gost)
filtpost=bylLarr{sizematx post,sizematy post,slicema:_vost)
endif
if (postkytes ec 2]} then begin
posltcont data =
intarr(sizematx_post,sizematy_post,slilcemat_post)
tiltpest=intarr {sizematx post,sizenaty posl,slicecmat_post)
endif
readu, lun_post, postcont_data
free lun, lun post

This section praduces a histogram of the post contrast data and
; finds the minimum value below the gray and white matter peak.

; This seclicn tests te find maximum value position so that range to
; find minimum can be determined
postcont_max_min,poslcont datsz, temp max,post_minimum
prirnt, post minimun

; Wow filter post contrast data using posL_minimum as the minimum

; threshold lor the filter. This filter is a INEOMOGENLITY FILTER

; based on the one used by analyze

; First threshold the data to only include pixels above the variable
; minhisto
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; Now filter thresbpest using fiilter of size 65

; calculate glchal mean!!!!!! ADD THIS SECTION!:i1ttll

gleobal thresh — postcont_data ge post_minimur
wh global = where(global thresh, cnt)
global mean=mezu {postcont datal[wh globall])

for £ilt loop=0,slicemat post-1l do begin
print, filt loop
l=postcont_datal¥,*, filt loop:
m = 1 ge post minimum
] =
l*global_mean* (smcoth{floal (m), 65, fedge) / (smooi:h {1*m, 65, /fedge)+]l.,e-
3003
filtpost[*,*, filt loopl=]
endfor
filtzero = filtpost LE 0O
whzerc = where(filtzero,ont)
filtvost[whzero]=postcont datal{whzero)

Jiiiiisviiisi i+ HISTOGRAM OF FILTERED DATA TO SET THRESHOLDS;:z::i::
‘

This section takes the now fi.tered data and using histogram
; decides on the thresholds for the segmentation seclion

H
postcont max _min, filtpost, £i1t max, £21t min,histc ritt

thresh min = cell(floac{filt min)*0.5)+ £ilt min
“hresh max — filt mex+fill min
rhisto filt size=sizel(histo filz)

; Check that no. of »ixels in higher threshold is less than the
; number of pixels in Lhe lower threshold. This improves
; segmentatica.

if {(histo filT[filt min] lt histo Filt[thresh_max]) then 2egin
true = 0
while (Yrue EQ 0) do begin
thrash max= thresh max+l
breoak
endwhile
endif

print, thresh min, thrcosh max

‘

.

This section takes the caiculatec thresholds and apolies them to
; the filtered data producing binary thresholded data. This data is
; then segmented using morphology. Thils data is also used as the

; conditional mask for the condiliconal dilations within the
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binary thresh map = (filtpost ges thresh min) AND {filtpost le
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This

includes ercde, low pass filter conditional dilate and connact.

The aim is to produce a sepsrated brain for use in MATCH

TFirst erode the binary map once

erode kernali=replicate(1,3,3,3)
eroded_seg = eroda(binary_thresh map,erode_ karnal}

S

Now need wo do low pass filter on data. First do convol and then
threshold this. If all pixels arc 1l's a pixel would be given a
value of 27. Therefore set threshold to slightly above half this

value, Z.e. 15 to low pass.

eroded seg temp = convol{eroded_seg,ercde kernal, /edge_truncate)

groded_seq = erodcd seg_temp gt 15

"
f

Now use label region command to do connections. Need to use
; histogram to determine Lhe two largest connecled regions

connected_seqg = label region{eroded seg)
histo_connected = histogram({connected segy)

histo connected[J]=0

large_blob no  max(histo_connected, large blob_lecvel)
histo_connected|[large blob level]=0

small blob no = max(histo connected, small_blob_level}
large_blob= connected seg EQ large blob lavel
large_blok temp = wiere{large_blob,large_bklob pixels)
large blob_pizels=ficat (large_blob pixels)

snall klob= connected seg EC small_bklcbh level

small blob_Lkemp = where(small_blob,small_blob pixe.s)
small_blch pizxels=float (swmall_blob_pixels)

~r e e e Na N

-

.........................

............................

Now check thal regions are of the corzect size and ration cf
sizes. This checks that the segmentation has occurred correcily.
If one selt of data has & small amounlt of pixels say less than

10000 and small blob/large klob is less than 15% and
large blok is less than 00000

Fy

.
I3

pixels then the data is toc noisy

and canrot be segmented. If small blok is less than 10000 anc
small_blob/large_blob is less than 5% and large_blob is greater

than 300400 pixels ther a further exode is required.

.
4
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¥
<
“

:




blok ratio = small blob pixels/large_olob_pizxsls
print,olob ratic
cond_di’ate number=3
if (blob_ratio 1t 0.10) then begin
if (large_blob_no ¢t 500000} then beqin
print, 'Ccnducting extra =rode on data’
cond_dilate number=é
eroded seqg = erode{eroded seg,erode xernal)
connccted seg = label reglonleroded seq)
histo connected = histogram{connected_sey)
histo connected’0]-0
large blob no = max{hislo_connected, lazrge_blob_ level)
histc connecled[large bloo_levei]l=D
small olob no = max{histo_conneclted,small_blob level)
large_plob:: connected _seg kQ large blok level
small_blob= connected_sag EQ small_blokh level
endif else begin
print, "The data is too ncigy for segmentation!'
stop
andelss
cndif

; Wow need to test the average infcrior/superior positions cf the
; two blobs. The mcocre superior blob will be the brain, with the
; infericr blok being extracranizl tissue.

large average=Q

small average=0

for siicenum;ﬂ,slicemat_postml do begin
large_wh -

fix((where(large_blob{*,*,slicenum],large_cnt)]/sizematx_post)
small wh =

fix ((where(small blok[*,*,slicenum],smali_cnt}))/sizematx_ post)
if {(total({large wh) NE 0} then large_average —

(total {large wh))/large cnt + large_avarage
if (total(smail_wh}) NE J} chen small_ average =

(total (small wh})/small cnt + small average

endfor

; The expression below is less than becausc data loads in upside
; down!!

if (large_average lt small average) then begin
brain_erode binary — large_blob

endif slse begin
brain_srode binary = smal. dlcb

endelge

; The data must now be conditionally dilated 3 times if only one

; eroce was done and 4 times if two were done. The conditional mask

; used here is binary thresh _map

Zinal_match=brain_erocde binary
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Lor cond dilate = J,cond dilate number do begin
final match = dilate{final_match, ercde_kernal)
final match final matech*binary thresh map

endfor

Ml

postconl. fA=final match * postconit_data

’
; This section now produces the wvenogram masik using the filtered
; postcont data 'filtpost'. IL uses morphclogy to produce the mask

vein thresh = filt min*2
vein_thresh dalta=Eillpost ge vein_thresh
csf thresh data = filtpost iz vein thresh

; This section fills the thresholded data so that after
; multiplication witn the csf thresh dalta a mask of the csf will be
; procuced. This section uses the procedure AUTO FTLL

filled data = bytarr(sizematx veost,sizematy post,slicemat_post)
auto fill,vein thrssh data, filled_head, sizematx_posl,sizematy_post,s
licemat_pos=z

csf maslk = filled head*csf thresh data

; Now use LABEL_ REGICHN to remove unconnected data Lleaving only
; rzguired csf mask

csf mask = label region(csf_mask, /ulong)
histo_csf=histogram(csf_mask)
histc_ecsff0]=0

csf temp=mex{histc_csf,csf _blob_value)

csf mask=asf maskx EQ csf_blob_value

; Now need to conditionally dilate the segmented data 10 times using
; Lhe us[ _mask as the condition. This data is then filled and this

is the Zinal mask data that is used to produce the final
; sukbtraction data

~

for cond dilate = 1,12 do begin
final match = dilate(final match,erode_kernal)
final match final match*ecsf_mask

endfor

It
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; Filling section

final mask=bylarr(sizematx post,sizcmaty post,slicemat_post)
auto fill, firal match, filled mask,sizematx post,sizematy_post,slicem
at post

;Do a final connect in sagittal 2D slices to get rid of noise around
; brain and vessels

final_mask=filled mask
histo_final=histogram(csf_mask)
histo_final[J]}=0

firal ~emp=max(histo_final, fina:_value)

fira:l mask=final mask EQ final_valuc

mask out=fixz{final mask)

openw, Lun out, "mask.ing’, /get_lun
writeu, lun_out,mask_out

free lun,lun_out

..........
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; This section now saves thc scgmented data, postconl fA and runs
; the MATCE software. It works out the file names that nead to be
; used. The program waits for MATCH to finish.

:

postcort fA name=filerame_ post short +" f£A.img"
openw,]uH_fA,postcontqu_name,/get_lun

writev, lnn_fA,postcont_fA

free lun,lun_ fA

haader orig=filerame_post short +".hdz"

header copy=filename post short +"_fA.hdr"
cqwoﬁhmﬂ#hp" ~header crig ¢ " " +header_ ccpy
spawn, copycommar.d

matchcommand="match " +filename post +" " ifilename_pre
orint

orint, "RUNNING THE MATCH SOFTWARE"

prinz, 'This may take some tine!!’!

print, natchcocommand

spawn, matchconmand

Priiiiiii i OBELETION OF UNECESSARY FILES FROM MATCH; :iiiiiiiiiiiivii

’

~

This section saves on disk space by deleting unecessary files
; produced by the match program

284




filel=filename_post_short +"_21.*7
file?=f: ename vost_short +"t.*"
file3=fi ename pre short +"rslt.*"

spawr, "/bin/rm " + filel 4+ " " + file2 1+ " " + file3

; Now need to muliiply mask with postcont and precontrsl data and do
; subtraction. Firslt need to load the preceontrsl data

filenane prersl=Iilename pre_short + "rsl.img"
openr,lun pre, filenamre prersl,/get lun

; Determire file attributes ie what is the file size and thus the
; bytes per pixel then initiate variable

praestatus=fstat {lun_pre)
prebytes= prestatus.size/(sizeratx pre*sizematy pre*slicemat_pre)
LT (prebytes ag 1} then begin

precont data = bytarr(sizematx_pre,sizematy pre,slicemat pre}

erdiZ
1f (prebytes =g 2) then begin

precont_data = intarr(sizematx_pre,sizematy pre,slicemat pre!
crdif

readu, lun_pre,preccnit_data
fres lun, lun_pre

;Now Lhat data is loaded multiply mask with pre and post data

postcont_masked = postcont_data*final mask
pracony masked = precont_data*final mask

final=postcont masked - precont_masked

; The data should now be savad to disk to allow it to ke vicwed
; using a MIF algorilhm

openw, lun_out, filenane cuaz, /get _lun
writew, lun out, finel
free Tun, lun oul

end




A3.2 Function 1: postcont_max_min

pro postcont_max min, postcont_data,max_val,post_minimum, histo_post

histo_peost = histogram(postceont_data,min=0)
histe_post max = histo_post
histo_post min=histo_ post
histo_size = size(histo post)
first=1
test = 0
while (test WE i) do begin
maxim = max(hislo post max,max_vadl}
if (max val GT 5} AND (first EQ 1) then begin
print, ' Problem with histogram data’
st op
endif
if {(first EQ 1) then begin
1f (max_wval GT 0} then begin
histo posl _max[0:max _val-1}=0
histo post min[0:maz val-1lj=maxim
endif
first =0
endif else begin
submax = max_val-old max
iZ (submax NE 1) AND (max val GT 10) then begin
histo post max[old max+1]1=0
max_temp = max(histo post max,max_val)
mir temp =
min(histo_post min[0:max_val),post_minimum)
break
endii
endelse

histo post_max [max val]=0
old_max-max _val
endwhile

print,post minimum,max val

ond
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A3.3 Function 2: auto_{ill

pro auto fill,data in,filled, sizematx, sizemaly,slicemat
print, ‘Starting Analyze equivalent £ill*

tilled = bytarri{sizematx, sizemaly, slicemat)

print, *Stage 1°

y =oytarr(sizematx,sizematy)

for slicez = 0,slicemat-1 do begin
yi*,*)=1

; The following lines are added te ensurs that searchZd works
; even when the head extends beyond the imaging volume. If

; this occurs unwanted areas can be filled. By setting ihe

; edges to zero this is avoided

x = data in(*, ¥, slicez)
x{0,*)=0

x(*,01=C

% (slzematx-1,%)=
®(*,sizematy-1})=0

; Bearch assumes that point 0,0 in sach image nas value of
; zZero

region = search2d(x,0,0,0,0)}

y{region)=0_

filled(*, *, slicez)=y

endLor

print, 'Stage 2°'

y = bytarr{sizematy, slicemat}

for pixelx = 0,sizamatx-1 do begin
Y(*I*)=l
x = zcform{filled(pixelx,*,*),sizemnaty, slicemat)
x{0,*)=0
x{*,0)=D
x{sizematy-1,+*)=0
2{*,glicemat~1)=0
regiorn=secrch2d(x,0,0,0,0)
y (region}=0
filled({pixelx,*, *)=y

endfor

print, 'Stage 3°

y = bytarr(=sizematx, slicemat)

for pizxeiy = 0,sizenmaty-l <o begin
y{*,*)=1
x = refcrm{filled(*, pixely,*),sizenatxz, slicemat}
% (2, *)=0
x(*,01=0
% {sizematx~1, *)=0
®x(*, slicemalt—-1)=0
region=ssarch?2d({x,0,0,0,C)
y(regicn})=0
filled (*,pixely, *)=y

endfor
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Print, 'Tinal stage’
v =hytarz({sizematx,sizcmaty)
for slicez — 0,slicemat-1 do begin
Ry r=1
x = filled{*,*,slicez)
x (0, *)=0
2 (*,0)=0
X (sizematx-~1, *)=0
% (*, sizematy-1)=0
region — searcn2d{x,0,C,0,0}
y (region) =0
filled(*,*,slicez}=y

endfor
and
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