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Abstract

In this thesis we will investigate CP violation within the Next-to-
Minimal Supersymmetric Standard Model (NMSSM).

The study of the violation of the CP symmetry is relevaut [or several
reasons. The origin of CP symmetry violation observed experimentally
in the kaon system and nowhere else, is still uncertain and under ac-
tive investigation. Also, and perhaps more intriguing, CP violation is a,
necessary ingredient of explanations ol baryogenesis: supcrsymmetric
theories allow for several sources of CP violation, whether explicit or
not, thercfore guaranteeing the necessary amount of CP violation. In
fact, there are potentially so many CP violating phases, that it is an
issue whether supersymmetry is compatible with the tight experimen-
tal constraints on the electron and neutron electric dipole moments.
In particular we will concentrate on the study of Spontanecus CP Viola-
tion (SCI’V), where the vacuumn is CP non conserving, In the Standard
Model, although the Electroweak symmetry is spontanecusly broken,
SCPV cannot ocecur, as ab least two Higgs doublets are needed. Also,
within the simplest extension of the Standard Model, the Minimal Su-
persymmetric Standard Model, SCPV, althonugh possible in principle,
is ruled out experimentally.

Here we will show a detailed analysis of possible SCI’V under general
assumptions within the NMSSM. The implications of this are also ad-
dressed both for experiments at high energy colliders and also at low
energy for the neutron and electron electric dipole moments when the
CP violating phases are large. We have considered these phases as ar-
bitrary parameters, and have studied the consequences as a [unction of
the amount of CP viclation present. s

In chapter 1 and 2 we briefly review the MSSM and the NMSSM.
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In chapter 3 we review the literature on SCPYV, in both models, as a
comparison. We also discuss the assumptions and formalism which will
be used extensively in the {ollowing analysis.

In chapter 4 we discuss weak SCPV ! and its possible experimental
consequences. The study of this scenario will effectively constitute the
main aim of this work.

In chapter 5 we present a thorough numerical analysis of SCPV both
weak and not, over a vast arca of the parameter space. 'The chapter
also includes a discussion of the ITiggs scetor when CP is not viclated,
and when it is violated explicitly.

In chapter 6 we address the issue of whether SCPV within the NMSSM
iy experimentally testable with emphasis on the wealk SCPV case.

In chapter 7 we then discuss the constraints coming from the neuntron
and electron electric dipole moments, which are relevant when SCPV
is nol weak.

We then summarise our averall conclusions.

D'Weak’ means 'with small CP violating phases’. Except in chapter 5, we are
constdering only CP viclation in the Higgs sector, not in strong interactions.
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Chapter 1

Minimal Supersymmetric

extension of the Standard
Model

This first chapter is devoted to an introduction of the Minimal Super-
symmetric extension of the Standard Model (MSSM) and the formalism
involved.

We will not discuss the theoretical background involved in supersym-
metry and refer to [1] [2] [3] [4] [5] for a thorough discussion of the
subyject.

1.1 MSSM

The MSSM is the simplest supersymmetric extension of the Standard
Model (SM).

The first difference from the SM is that we need not less than two
chiral supertields H,, H» to give mass to the down and up generations of
quarks, meaning in turn that two Higgs doublets have to be considered,
whereas in the SM one Higgs doublet is enough.

The superpotential of the MSSM is

%% = HEij H; H’z"+Wp (ll}

1




2 CHAPTER 1. MSSM

where H, and H; are the two Higgs doublets,

_(HE Y (B ;
Hl_(_ﬂl_) Hz_( i (12)

€19 = —€91 = 1, €13 = €2 = 0, and W contains the Yukawa terms
We = e (fHIL R+ [LHIQ D + fHQU) (1.3)

where f; are the Yukawa coupling constants.

As it is, supersymmetry forbids the appearance of H{ and H3; on the
other hand gauge invariance forbids the appearance of couplings like
Hy, QU where () is the quark doublet and U is the quark singlet. Con-
sequently no up-quark mass can be generated if Hy is not present. It
is clear that a charged Higgs boson will be present in the theory too.
It should be noted that many other terms can in theory be present
in the superpotential, which, however, violate explicitly the baryon or
lepton numbers; these terms arc phenomenologically hard to handle,
so that it is customary to omit them on the basis of a so called R-
symmetry invariance, according to which particles have R-charge cqual
to +1, whereas s-particles have a R-charge equal to -1. This in turn
means that a lightest stable s-particle has to be present, with possible
consequences for the amount of dark matter in the Universe.
Supersymmetry has to be broken as otherwise particles and s-particles
would have the same mass, which is clearly against the experimental
evidence. Supersymmmetry is assumed to be broken spontaneously at &
certain scale Mg, although the details of how this happens are still a
matter of discussion. It is for this reason that we iutroduce extra terms
which explicitly break supersymmetry without impinging on the renor-
malizability of the resulting lagrangian. This means that the couplings
of these terms have to be soft, that is to say of positive dimension lower
than fonr as all the dirmension four terms have to respect, supersymme-
try.

The resulting expression for the cffective potential, which also includes
the SUSY soft-breaking terms, is then the following

2
V= % (4 |H; Hyf? — 2 (H} Hy) (Hj Hy)-- (1.4)
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+(H Hy)? + (Hf Hy)?) +

!2
+% (FIS Hy — HF HD

+p? (HyHY + HEH) + Vs

where Vg, containing all the possible the soft-breaking terms, is
Vi = mi (H Hy) + mj (Hy Hy) — (m}, e HUH + hec.)

where my, mg, My have dimensions of mass.

It should be noted that we are implicitly ignoring the contribution of
Wr to the effective potential an the basis that we assume the s-quark
and s-lepton fields not to acquire a vacuum expectation value (vev), so
that the colour and lepton numbers remain unbroken. This assumption
will be held throughout the whole of this work.

We have spontaneous breaking of the electro-weak symmelry (SBEWS)
once the neubral Higgs bosons lields acquire vevs

< H »= ( o ) < Hy »>= ( 1?? ) (1.5)

with v, v2 > 0 so that we define tang = 2 with 0 < 3 < n/2. The
ficlds ¢, and ¢F are assumed not to take a vev as otherwise eleclric
charge number violation would occur.

Note that the vevs arc taken to be real; this, as we will sce in the forth-
coming chapters, means that no spontaneons CP violation is assumed.
A problem of naturalness arises as, for the SBEWS to occur, u is re-
quired to be < 1 'leV while at the same time there is no reason why
it should not be of the order of the unification scale (~ 10'°® GeV);
this is part of the so called g puzzle, which we will discuss more exten-
sively in conneckion with the Nexl-to-Minimal Supersymmelric Model
(NMSSM).

The u-term can always be reabsorbed in the redefinition of the soft
terms mi and m2; these on the other hand can be traded for v; and vs
through the minimising conditions imposed on the effective potential,
to insure that at (v, ) the effective potential has a stationary point;
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this will of course need to be a minimum ! for the SBEWS to occur.
We have the resulting spectrum of three neutral and one charged Higgs
bosons 2

mie = Mas — MY, (1.6)

TILH0 po = 5 (?Tlio +m?% 4 \/(mjn +m%) — 4mZ mi 60522ﬁ) (1.7)

where A is the pseudoscalar, A%, H® are scalars (H° being the heavier
of the two), M%. is the mass of the charged Iliggs boson, and «, the
mixing angle, is given by the relations

2 2

mie — m ..

cos2q == 08283 -—-Eim%) (1.8)
WI"H'U - 'n’Lh’()

2 2
, . Mo + My .
sin2a = --sin2F (H) : {1.9)
Mo — M
HO Y

We see that Muyzx > Mw, mge 2> myg, Mar > mpo and mype <
mleos20 < My with m = min{Mz,mao), that is to say at the tree
level the charged Higgs boson has to be heavier than My whereas the
lightest neutral Higgs boson has to be lighter than Mz; on the other
hand the other neutral Higgs bosons can be quite heavy.

It is important to note that the picture now outlined holds only at the
tree level, and is substantially changed once radiative corrections are
added. either using Renormalization Group equations (RGE) or adding
corvesponding loop corrections to the effective potential, so that the
MSSM is not yet ruled out by the data {see {7]). We will discuss more
extensively the issue of radiative corrections in the next chapters.

1 the MSSM a minimum will automatically be also absolute; this is not the
casce for the NMSSM, as we will see in the forthcoming pages.

2For a discussion of the expansion of the neutral Higgs fields in term of the
physical fields we refer to the Appendix C.




Chapter 2

The Next-to-Minimal
Supersymmetric Standard
Model (NMSSM)

2.1 Introduction

The NMSSM is an extension of the MSSM, where a singlet field under
the gange group SU(3) x SU(2) X U(1)enr is added to the superpoten-
ttal. The motivations for so extending the MSSM are several:

1) A possible solution for the so called y-puzzle.

2) The upper bound on the lightest Higgs boson in the MSSM makes
it reachable in the near future by LHC, so that if no evidence is found
an alternalive model will be needed.

3} NMSSM allows for Spontaneous CP Violation (SCPV), as we will
discuss in the forthcoming pages, this in turn having possible far reach-
ing consequences for CP violation as observed in the Kaon system, and
for baryogenesis.

In the MSSM the superpotential contains the teym 5 Ho. As already
mentioned in the first chapter, the parameter g can be in principle
of the order Mpuner although a value of the order of the soft masses,
responsible for the supersymmetry breaking, is required for the electro-
weak symmetry breaking to occur al the right energy scale of around

0




6 CHAPTER 2. NMSSM

200 GeV, so that a hierarchy problem arises.

In the NMSSM u can be traded for the coupling of the singlet scalar
field to A, and H,, the two Higgs doublets, so that a term such as
AN H,H; is present in the superpotential instead[10]: the soft break-
ing terms can then induce a vev for the field N of the right order of
magnitude. A sell coupling term of the form & N*®/3 has to be present
in the model in order to break the unwanted Peccel-Quinn syminetry

N — f\reiﬁ,Hl Hz — Hlﬂg\‘:','_m

which is spontaneously broken once the Higgs fields take their vacuum
expectation valucs, hence giving rise to an unwanted axion.

2.2 NMSSM

'I'he most general form of the superpotential, with no terms violating
the baryou and lepton numbers, is[8]

o o 11 .
W = Aey I I N + pe I = rN 4 SMN® 4 SkN* - W (2.1)

where
Wi = ey (FHIU R+ fLHIQ D = fHEQ'U) (2.2)
is the term giving rise to the Yukawsa interactions, f, fi and fz are
the corresponding Yukawa coupling constants and €3 = —€g; = 1,
€11 == €99 = U; HI, HS are the components of the Higgs doublets
[ H™ (H ,

N is the singlet field, /. () and @ (D) are respectively the 51J(2) weal
doublet (singlet) lepton and quark superfields, and &, A, p, v, M are
parameters (A and k in particular are dimensionless) which we assume
for the moment to be real'. Making a shift in the N ficld, the param-
eter M in the superpotential can be put equal to zero without loss of

1This simply means that we do not introduce as yet any explicitly CP violating
phases.
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generality.

The dimensionful terms in p and r give rise to a hierarchy problem. We
will not discuss in this work the p-puzzle and so will keep the g term
because if explicitly violates the Zy symmetry, with important conse-
quences for SCPV, as we will discuss later. We are in fact interested in
the Higgs spectrum and the differences related to the presence of p.
The scalar potential is a Hermitian function given by [§]

1 :
V=3 (D"Da + (D)) + FYF, (2.4)
where -

F= — 2.5
= 5A (2.5)

] +* a
, 1 -
ngg y{A;Ai—Ff (2.)

with A; indicating all the scalar fields of the theory and y; their weak
hypercharges: H; with ¢y = —1, Hy with ¢ = 1 and N with y3 = 0.
We assume that the parameter £ is equal to zero.

We now once again introduce extra terms which explicitly break su-
persymmetry without affecting the renormalizability of the resulting
lagrangian (sec the first chapter) and the number of which will be big-
gor than in the MSSM. The resulting effective potential, which also
includes the susy soft-breaking terms, is then the following

2 .
V= % (11H; Ho* — 2 (Hy Hy) (Hj Ha)+ (2.8)

(Y HL)? = (H Ha)?) +

4-% (FIX Hy — HEHD? + (Aey HE BE N2 4 hee)+
AN + hocY(H Hy + Hy Hy) + i (HYH + HYHL) +

+|AHY Hieyj — v+ k N*[P 4 X° (B Hi + Hj Hy) N* N + Vs
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where Vg, containing all the possible the soft-breaking terms, is
Vep = m} (Hr Hy) +m3 (Hy Ha) — (miy ey FLHL + he )+ (29)

+mZ N* N + (mg N? + h..r:.) + (m4 €55 HY HIN + (1/3) mg N + h.c.) .

However, if the susy breaking scale does not coincide with the electro-
weak symmetry breaking one, then the quartic couplings in the effective
potential may be determined using the RGE 2.

The resulting effective potential is then

1 g 1
V = Yi(H B+ 5 Ya(HY Ha)' (2.10)

(Vs + YO EH H)(H Hy) - Yy |[H H +
+(Vs HF Hy + Yo HY H)N*N + (Yo e; HE H) N*2 | h.c)+
+Yg(N*N)? + Ma(N + hoc.) (B Hy = Hf Hp) + p* (HIH] | HIHL) +
"}"IVSB

where Y;, i=1,8 arc rclated to the parameters of the superpotential, A
and &, and the gange couplings; for exact supersymmetry they are:

QJ. = ‘g’ s 92 = g (2.]])
1 1 . 1 .
Y=Y =7 +9"), h=10" ), i=¥ -3¢

Vo = Yo = A2, Yo = 2k, Y5 = &% .

The RGE for the ¥; coefficients will in general include quark as well as
squark contributions. However, the squarks will not contribute if their
masses are bigger than the SUSY breaking scale as in this case they
decouple. Furthermore, if a small value of tanf (i.e. =~ 1) is taken,
then the contribution of the bottom quark and squark can be safely
ignored compared to the corresponding top and stop ones.

Another way of including radiative corrections is ta consider the one
loop corrections to the effective potential, taking the values of ¥; equal

*We have used in particular the RGE of the two doublets model, as we will see
in wmore detail in the next chapter,
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to those af the scale where exact supersymmetry holds. This method
is particularly suitable if many particles with different mass scales are
considered.

In the supergravity inspired models a simple form of SUSY breaking
potential is assumed at the SUSY breaking scale, and then the soft
masses are also fixed through the RGE [11]. The soft masses are run
down to low energies starling {rom the common values mg and Ay at
the unification scale. In this way once we fix mp we also fix all the
soft masses at low energy. The same can be done both for the soft
masses in the Higgs sector and squarks sectors; in the latter case there
is a constraint on the value of the tri-lincar coupling at the unification
scale (Ap) [12][13] coming from the requirement that the minimum of
the effective potential be such as not to break the charge and colour
charge symmetries. This can be simply imposed to be the case if one
assumes that the squark and charged Higgs fields have always vacnum
expectation values equal to zero; we rely throughout this work on this
assumption.

The RGE of the soft masses are mixed with those of the gauge coupling,
Yukawa coupling constants, A and & parameters. The gaugino masses
and 1 are not coupled to the soft masses but only to the gauge coupling
constants,

In this work we assume a more conservative approach: we take all the
soft masses as independent and {ree 1o take any value, positive or nega-
tive, at the electro-weak scale, as the form of the solt masses is assumed
not to change, unlike the parameters ¥;. This in a way makes predic-
tions more difficult as they will be dependent on more parameters.
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Chapter 3

SCPV in the NMSSM

3.1 Introduction

SCPV arises when the lagrangian before the electro-weak symmetry
breaking is CP invariant whereas the vacunm is not, so that CP violat-
ing phases will emerge once the Higgs Lelds and/or any ol the singlet
fields take their vacuum expectation values [15].

If the effective potential were to be invariant under such discrete sym-
metry transformations before the spontaneous breaking of the electro-
weak symmetry, then afterwards the discrete symmetry would be spon-
taneously broken too, so that there would be regions of the universe
with different vacuum states. Among these regions domain walls would
form whose energy density becomes bigger than the energy density of
matter as the Universe expands, in contrast with what we observe to-
day. This is the well known domain walls problem and is unavoidably
present when any discrete symimetry is spontaneously broken and so
also when the CP symmetry is spontaneously broken [16], under the
assurnption thal symmetry restoration does occur at high temperature.
A possible way to lift the vacua degeneracy, so that no domain walls
arise, has been shown in [17]; another possibility is that an explicit CP
violating phase is also present.

It 18 well known that SCPV cannot occur in the SM as any phase on
the vev can be removed by a rotation of the Higgs field. This then led
to the analysis of SCPV within the two Higgs doublets model, where

11




12 CHAPTER 3. SCPV

indeed SCPV is feasible. However, iu this maodel problems arise related
to flavour changing nentral currents as well as electric charge number
violation, which occurs when after SSB the U(1) sywmetry of electro-
dynamics is broken (see [7', [14]).

Within the MSSM SUSY guarantees the abscence of favour changing
neutral currents as well as that the vacuum does not violate the electric
charge number. However, at the tree level SCPV cannot occur due to
the regidual influence of SUSY itsclf, which hinders the presence of

2

xo | (HIH)" + (#im)]

(the effective potential in the two Higgs doublets maodel instead does
contain the above term), this in turn constraining the phase associated
to one of the vevs of the two neutral Higgs fields to be equal to either
zero or fultiples of % (just one phase can be present, as the other one
can always be rotated away).

This is only true at the tree level though as when radiative corrections
are added on a d); can be generated, so that SCPV is then possible
in the MSSM too [14]. However, it was pointed out in |{18] that SCPV
in the MSSM leads Lo the presence of a too light psendoscalar neutral
Higgs boson, in agreement with the Georgi-Pais theorem [19], so that
experimentally the scenario is ruled out (we will discuss this theorem
and its extension in 4.2).

3.2 SCPV within NMSSM

In this section we discuss SCPV in the NMSSM.

If we take the vacuum expectation values (v.e.v.) of HY (i — 1,2) and
N to be dependent on a phase then SCPV may oceur.

Indeed it has been shown by [9] that this is the case cven for exact
SUSY and at the tree level if Zs symmetry violating lermns are present
in the effective potential. A general Z,, discrete transformation, with n
an integer numher, transforms a generic field ¢ in the effective potential
such that

¢5_> ei%r,a'nﬁb_
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If on the other hand a Z3 symmetry is imposed on the effective poten-
tial then SCPV is not possible, as shown in [21].

In the feld dependent ellfective poteutial those terms in v and Ap are
#s symmetry violating together with the ferms in ms and 5. There
are no other possible %, symmetries except for a possible Z; symmetry
which is violated by the terms in Ay, mg and ms.

The papers reviewed give a wide idea about the phenomenoclogical im-
plications of the scenaria, keeping an eve to our analysis, which we
describe in the next chapters. In all the papers no Z; symmetry vio-
lating terms are considered (and so p=0}, contrary to what we do, so
that the analysis we will present in the nexl chaplers is more general.
The main conclusion which can be drawn is that the scenario is feasible
and of strong interest, especially in view of the LHC advent.

In the NMSSM with the 73 symmetry imposed SCPV can still be trig-
gered by radiative coirections both at zero and finite temperature[22]
[23][24]{25], although at zcro temperature the problem of a small mass
for the lightest neutral Higgs boson reappears, as in the MSSM.

In {25] the stops and top contributions to the one-loop part of the ef-
fective potential are taken into account and the induced changes {o
the Higgs bosons mass matrices considered. The masses ol the stops
are taken to be degenerate. For the scenario to be feasible very heavy
stops are required, with a mass of the order of 3 TeV and so beyond the
reach of LEHC, in order to have the lightest neutral Higgs boson being
as heavy as possible. Furthermore, strong constraints on the value of
tand, A and A,/A, are required, where Ay, A, are soft scalar masses
(the corresponding terms in Vi,p ave A Ay Hy Ha N and 5“—’;"1 N?), The
charged Higgs boson mass is

Mpe = M + (3r — 1) Mg (3.1)

where in this formula r = A,/A;. From the requirements for the sub-
determinants of the neutral Higgs mass matrix to be positive together
with the condition for the minimum of the potential to break the CP
symmetry the following constraint is obtained

0<(dr—1) M < (VI+A-1) (3.2)

1 M3
9 2
b
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where A comes from the radiative corrections.

An upper bound on the charged Higgs mass of about 110 GeV results
which, although not ruled out directly [26], [27], is far below the lower
limit obtained indirectly by [28].

However, the same analysis has been cartied out in {29] withont as-
suming the squarks to be degenerate, and the conclusions found there
are quite different from [23]. The off-diagonal elements of the squark
mass matrices contribute this time to the A term in [25). It is found
that the off-diagonal elements increase with v3 so that Mg+ can take
much bigger values, namely around 700 GeV, for squark masses around
3 TeV. and so far beyond any present experimental upper bound.

In [30] a Z; conserving NMSSM superpotential is considered and the
RG equalions of the iwo Higes doublels model for the parameters Y;
used, together with the constraints on the A and k parameters coming
[rom the requirements that perturbation theory holds up to the unifi-
cation scale|31]. The SUSY scale is taken to be 1 TeV and 10 TeV. The
resulting radiative corrections to the tree level quartic terms allow the
Higgs bosons mass matrix to be positive definite so that real masses
for the neutral Higgs bosons can arise, unlike the case when the SUSY
breaking scale is equal to 100 GeV. The corresponding bound on the
lightest. and second lightest Higgs bosons masses have been obtained as
a function of tanf and it is found that the mass of the lightest Higgs
boson my,, is such that my. < 20 GeV for a SUSY breaking scale equal
to ecither 1 '[oV or 10 TeV. In particular they find in both cases that
myp, gets smaller as tanf increases, so that the highest value of my,, is
found when tanf is small. The bounds are clearly well below the cur-
rent experimental limits shown in [27], although the singlel component
in the lightest neutral 1figgs field can be dominant.

Also, M+ is found to be smaller than 110 GeV for a SUSY breaking
scale of 10 TeV, and 95 GeV for a SUSY breaking scale of 1 TeV re-
spectively. For tanf equal to 2-3 My« has an upper bound equal to
about 90 CeV for both the cases. These bounds arc in disagrecment
with the indirect experimental bounds established by [28], although not
vet ruled out directly [26].

In [39] the same authors present an analogous analysis where the one-
loop corrections to the parameters Y; are added, the superpatential
being just the same as in [30]. For the one-loop corrections only t
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and b quarks and squarks arc considered, all the other contributions
being negligible. High values of tanS can now be considered and it
is found that certain intervals of tang are experimentally excluded.
This can be assessed thanks to the assumption of my, being 90 per-
cent singlet and 95 percent respectively. As in [30] the danger of too
a low bound on Mg+ avises again, although this iime is less severe.
This is bevanse adding the one-loop corrections changes signilicantly
the resulting charged Higgs boson mass, namely Mgy: < 115 GeV for
SUSY breaking scale of 1 TeV without one- loop corrections againsi
Mpg+ < 140 GeV with the one-loop corrections whereas for the light-
est Higgs boson mass we have my,, < 90 GeV withoul the one-loop
corrections and still the same once the one-loop corrections are added
as these have no significant cffeet on the ncutral Higgs bosons mass
madtrix. 'T'his is to be compared with what happens when one naively
adds up to the tree level cffective potential the one-loop corrections
coming from top and stops: in this case in fact the mass bound on my,
is shifted upwards[29] .

In the next section the NMSSM model and the relevant notation used
are introduced.

3.3 SCPV: a model

We will study in the following pages SCPV in the NMSSM at the tree
level including those terms which violate the Z3 and Z; symmetry.
We do so because the p-term and other soft terms can influence the
resulting mass spectrum and allow more possibilities for SCPV.

After the electro-weak symmelry breaking the scalar potential is the
following real function

V = 5(}"1 ’Uil +Y 'U.j—,l) + (}/3 =+ Y4) 'U-f’b‘é + (Yja 'Uf + Y ’Ué) ’Ui“}‘ (55}

+2 Y5 vy vo 2 cos(fy + By — 203) + Yavi+

1Tt is not always to be expected that quantwn corrections should increase the
masses at the tree level; in fact it is found in the MSSM (and no SCPV) that the
second-loop corrections tend to decrease the mass bound rather than increase it
[43:, [44].
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4 (vf + u%) + 22 (v? -+ 02) vy cos(B3) |
+m$ v} +mg vy +mj v +2ms vy Uy vy €030 +Ga+83) + 37 vs cos(36;)—

22, vy vy cos(By -1 0g) -1 2mi vl cos(26;)

We are for the moment assuming a generic SUSY breaking seale, as
discussed in the first section.

At the minimum we must have v¥ + v = (174 GeV)? in order fo get
the correct values for the masses of the W* and Z vector bosons. As
it. is, the potential allows for a redefinition of the phases such that
without loss of generality we can take f; = 0. SCPV will occur if at
the minimum #; and/or 03 # nx.

Besides the soll-breaking rnasses, we then have the [ollowing variables:
tanf? = %, v3, A1, O3, 4, A and k. The Y; coeflicients are defermined
through the RGE, which are the subject of the next subsection.

3.4 RG equations and the A and & param-
eters

Tn this work we used the one loop RGE of the two doublets model,
which are the following:

aY; : ,
:I'G"'T2_aT@:fi:T'=1}”' !8 (34]
where { = In (Wﬂ%ﬁ) where @ is the renormalization point and the

fit=1, -+, 8 coefficients are given in the appendix A.
The RGE for the gange coupling congtants and the top Yukawa coupling
constant are respectively, at the one loop order

a .
16 2 55-;1 = —¢ g (3.5)

where go = ¢, g1 = g,

G==—7, ¢cg=3, ca=7 (36)
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and
Dby 9 , 17, 9, 1 3
., 0h 9., 1 5 4 9

The bottom gquark coutribution can be ignored for small values of tang.
The relationship among the Y; (¢ = 1.-- 8} coeflicients and the gauge
coupling constants, A and & parameters of the superpotential for exact
supersymmetry are, as we have already seen, the following:

- 1 .
(,f}%"f—!}g), %:Z(gg—g%}a }/4:)‘2 -

Ve = Yo = A%, Vo= 2k Yy = k.

Vi, =V, = g (3.9)

1
2

I

The values of the coupling constants at the electro-weak scale are
g1 = 0.358, g, =0.601, gy =1.218 . (3.10)

It has been shown by {31] that if perturbation theory is to be valid up
to the unification scale then the A and %k parametfers have to have valies
in the following ranges

k| < 0.63, |A[ < 087 (3.11)

with roughly
A2k <, (3.12)

This i3 still true when SCPV is considered as the RG equations for A
and & do not change?.

The procedure is then the following: once the SUSY breaking scale @
is fixed, the gauge coupling coustants are run from the known values at
the clectro-weak scale up to Q; the Y; coefficients at the scale @ are then
determined and the RGE are run down Lo obtain the ¥; coellicients at
the electro-weak scale.

Before ending this subscction some remarks are required.

We are allowed to use the two doublets RGE between the elecfro-weak

2Tor a further discussion of the A and & parameters see [34] and [37].
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scale and the SUSY breaking scale as long as stops are heavier than the
SUSY breaking scale itself, otherwise their contribution would not be
negligible. However squarks cannot be too heavy as otherwise the Higgs
bosons would get too large contributions from loop diagrams involving
squarks so that for a SUSY breaking scale higher than 1 TeV the full
RGE should be taken in order to allow stops with a mass around one
TeV or less.

In principle we should include the b quark contribution too, although
this will he certainly smaller that the t quark contribution.

3.5 Mass spectrum

The mass matrix for the neutral Higgs bosons can be easily calculated
from the field dependent potential as

oV \
MY = FADA (4,7 = 1,6) (3.13)
where A; are this time the real and imaginary parts of the neutral fields,
namely HY, H) and N. The resulting symmetric mass matrix will be
field dependent.
At the minimum of the potential its cigenvalues will then be the squared
masses of the neutral Higgs bosons.
For the SCPV case there is mixing between the scalar 3x3 mass matrix
S and the pseudo scalar 3x3 one PS, that is to say the mixing malrix
MX will not be equal to the zero matrix:

S MX
M? = ( MX  PS ) (3.14)

We are here taking the imaginary part of H) and HY as independent
fields, which is the reason why the mass matrix squared is 6x6, whereas
in the unitary gauge, taking the imaginary parts to be respectively
cosd A and sinF A, with A a neutral scalax field the mass matrix squared
is 5x5 with no Goldstone boson (see Appendix C). In general M? has
to be diagonalised numerically. The resulting spectrum consists of one
Goldstone boson and five massive neutral Higgs bosons, the Goldstone
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boson being purely in the pseudo-scalar part when CP is conserved.
The charged Higgs mass matrix squared can be diagonalised analyti-
cally because it is a 4x4 matrix which is in turn equivalent to two 2x2
equal matrices. The spectrum consists of a Goldstone boson and a
massive charged one with mass Mz given by the expression.

Mz = =Yy u2 4 (=Yy 12 cos(f, — 203) +m?, cos(8,)— (3.18)

1

—1M5 U3 cos(ﬁ'l -+ 53)) m

This relation is only valid at the tree level.

An important point is that requiring /3. > 0 is a necessary condition
for the minima of the effective potential to conserve electric charge.
The neutralino mass matrix is a 5x5 one (see Appendix B) so that this
too has to be diagonalised numerically. In general all the five eigen-
states will be massive.

To obtain the neutralino masses the absolute value squared of the mass
matrix has to be calculated, that is to say M, M = |M,|* we then
diagonalise numerically the hermitian matrix so obtained and take the
square root of the eigenvahies.

'I'he chargino mass matrix is a 2x2 one (see Appendix B), and again
the two cigenstates are in general massive.

The chargino masses can be obtained in the same way as described for
the neutralino with the difference that the diagonalisation procedure
can be carried out analytically.

The neutral Higgs bosons, neutralino and chargino mass matrices al
the tree level are shown in the appendix I3 under the assumption of the
most general superpotential, a generic SUSY scale and independent soft
masses.

Once the mass matrices have been diagonalised the resulting masses
have to be checked against the current experimental lower limits as
there is yet no evidence of any supersymmetric parsicle.
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3.6 Search of the parameter space

The large number of parameters in the NMSSM renders at first sight
any numerical analysis problematic. It is clear that to vary indepen-
dently all the soft-masses as well as vanf, vy, #1, ths, 2, A and & would
result in an extremely lengthy analysis. Things do not look so bad
though if one notices that we are not interested in all the parameter
space but only in those regions where the scalar potential has a min-
immm, which we will then check to see whether it is an absolute one
or not. For a point in the five-dimensional space vy, vy, v, &1, 84 to
be a minimum the necessary but not sufficient condition is thai the
following equations be satisfied

Lf
gf) - = 2wz myg sinf) - 03) — (2m, sin(8))— (3.16)
1
-2 Y, 2 sin(f — 203) = 0
oV .
5.~ 4m?2 v? sin(26s) 4 2 my v sin(363) - (3.17)
3

—4Yq uy vl vy sin(f; — 263)+
+2 g v ve vy sin(fh + 03) + 2 U&,Lt vaksin(f;) =0

v
— =0, =1,2 3.
Ovi 0, 2,9

Imposing the first two equations we fix ms and my, whereas the last
three equations fix mf?, mf and mj respectively. We can then make sure
that these equations are always satisfied by simply fixing five of the soft-
masses through the {ive minimising equations themselves. Farthermore
we can trade m?%, for Mg+ once we impose the equation (3.15), so that

oy | smBeos@ o sin(30s)
s = (M o+ Yaod)ain0y +05) e —Vik S

(3.18)
As we do not know the value of the charged Higps mass Mg= this has
to be varied too, but it can be done within a range above the current
experimental upper limit [26], [28;, so that we are in this way able to
optinise the procedure. Furthermore, we implicitly look for clectric
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charge symmetry congerving minima as we always require ﬂlfﬁri > (),
We choose starting values for mg, Mg+, g, A, £ Once this is done the
Y;{(i = 1,---7) can be determined through the RGE once the super-
symmelry breaking scale is fixed. We also choose stariing values for
tanf, vz, #y, 03, namely the values at which we want our potential to
have o minimum. As the chosen point might be a point of maximum
or inflection an iterative mumerical search is required. A mininoum is
signaled by the fact that the eigenvalues of the mass matrix squared of
the neutral Higgs bosons are all positive at the point.

Numerical scarches in other parts of the parameter space are necessary
to cusure that the preseribed vevs correspond te a global minimum.
We will discuss in chapter 4 an analytical as well as numerical study of
the neutral Higgs boson mass matrix.
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Chapter 4

Weak SCPV within the
NMSSM

4.1 Introduction

In this chapter we discuss SCPV when the CP violating phases are
small. The issue of how small these phases have to be for the results
shown in the forthcoming pages to hold will be discussed in the next
chapter, where a numerical analysis is shown.

In the second section we present a general result which has the status
of a theorem and which can be compared with the Georgi-Pais theorem
[19].

In the third section we explicitly refer to the NMSSM and discuss the
theorem of section two within the context of the model.

4.2 A general result

In this section we present a general result [20] for those models where
SCPV can occur at the tree level.

Our result is a variant of the Georgi-Pals theoremn [19], which discussces
the conditions under which radiative corrections can break a discrete
symmetry, which is apparently conserved at the tree level. A massless
scalar field is required to be present in the CI’ conserving theory, which

23
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acquires a small mass once radiative corrections are added and the CP
symmetry spontaneously broken.

The argument relies on the smallness of the radiative corrections, which
in turn allows a Taylor expansion around the CP violating minimum.
The key step in the proof is the egquation

PV
Xk: a¢j8¢Lt

(USA)e — 6Ap) =0 (1.1)

where V' (@) is the field dependent scalar potential, ¢; are spinless meson
ficlds, the veetor A is the value of ¢ at which the minimum of the scalar
potential oceurs, U is the CP symmetry operator and JA is the change
due to radiative corrections. UA = A if there is no spontanecus sym-
metry breaking, and from the above expression it is immediately clear
that if the mass matrix 8-;.‘33-28‘(;5;9 is not singular the relation UéA = A
holds and no SCPV occurs. On the other hand if a massless particle is
present in the unbroken theory then the mass matrix is singular and we
can have SCPV due to the radiative corrections. The massless mode
will gain a small mass as a result of the radiative corrections. It is this
ruechanism which produces the light scalar when SCPV is induced in
the MSSM or NMSSM with Zs.

This theorem still holds if Goldstone bosons are present in the model,
as the transformation ¢\ can be chosen orthogonal to the Goldstone-
bosen subspace.

Ag gtated in the paper the key assumption for the theorem to work is
that the spontaneous symmetry breaking is perturbative.

We will now show'20] with a similar argument that if SCPV is weak,
that is to say the CP violating phases attached to the vevs are small,
then there is in the model a quasi massless scalar particle. The small-
ness of the CP violating phases is this time the key assumption, as the
smallness of the quancumn corrections to the tree level effective potential
was in [19].

Refering to the scalar potential in the NMSSM, for small CI? violating
phases the potential has two nearby minima at the points

£1 = ('U], Ua, V3, 1’1101111303) (42)

€ = (v, v, va, —v16y, —v30s).
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If we then perform a Taylor expansion

3V

(6 — e, 2V v
=2 V790,06,

LV oV
& O¢

. 59, =00 (4.3)

5]

so that the mass matrix squared of the Higgs bosons is singular and
a massless particle results as a consequence. This is clearly only an
approximation although at the limit for the CP violating phases going
to zero this will he exactly true. In the limit of the CP violating phases
going to zero the mass matrix is block diagonal and (e, — ¢;) is an
eigenvector of the pseudo-scalar block.

This result is general and so the issue arises of whether this scenario is
in apreement with the experimental bounds on the lightest Higgs boson
mass. We will discuss this extensively in chapter 6.

4.3 Weak SCPV within the NMSSM

We have seen in the previous section that a light eigenmode arises when
SCPV is weak, and that this eigenmode is to be found in the CI” odd
sector, which almost decouples from the CP even sector as the phases
get smaller and smaller. We show here an analysis of the CP odd mass
matrix and its corresponding eigenvalues and eigenvectors. ‘the CP
odd part of the 6x6 matrix can in fact be assumed to be decoupled
to first approximation if the CP phases are small enough, as the off-
diagonal block elements of the mass matrix squared are proportional
to sind; 4 = 1,3. Considering the CP odd 3x3 malrix (see appendix
B), if we add to the elements of the first column those of the second
one mulbiplied by wo/v; we obtain a zero columu, corresponding to a
Goldstone boson, so that the matrix is rediced to a 2x2 one, which can
be wrillen as

—4 5 2B
sinitcoss 3

(4.9)
wpB C

where A ig the (5,4) element of the whole 6x6 mass matrix, B is equal
to (6, 4)%:, and C is equal to the {6,6) element.

. ‘) < .
The expressions for m?, m3, m%, mZ, obtained from 3.6, and my and
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mi,, given in 3.16, 3.17 respectively, have then Lo be substituted into
the matrix elements. For this 2x2 matrix we just have to consider mj,
my and ms,.

As we are inferested in the eigenvalues of the mass matrix al the mini-
mum, the u;, i=1,3 and #, f3 in the matrix and those in the minimising
equations fixing the soft, masses above and in the expression of m?, are
the same.

Becanse we are explicitly interested in the case with small CF violating
angles, we can take Taylor expansions of the trigonometric functions in
the expressions of myg, m and m3,. We consider three regimes, namely
when #; is negligible compared to @5, when the opposite is true, and
when the two phases are of the same order.

In general, if 0; << 03 the eigenvector

(§2 — gl)_?- 3 (U, U, 0, U, U, 2’1)393) (45)

is in the pscudoscalar singlet part of the mags matrix, i.e. the lightest
neutral [Tiggs boson is singlet. Likewise, if ¢ >> 03 the lightest neutral
Higgs boson is doublet.

In particular, the cquations for m%,, m3 and mg are once again just the
equations (3.18), (3.16), (3.17); they will be, for the three regimes, the
following:

Case(a) 8 << 0y

m?, = (M%s + Yy v3) sinff cos3 + 3 Y7 v} (4.8)
ms = 2}""?’1)3 (47)
mj = — (6mev§ 63+ 8Y; vy vi v b5t (4.8)

+2mg vy Uova b + 2 pvivg k 6’3) /(8 v} 63)
Case(b) #3 << 6

2 Y 2 0,
m?, — (Mys + Yy ul) sing CO:ﬁ— 3V; vl (4.9)

03
My = M3, fvz — Youu (4.10)
me = — (=4 Yo u 0] v 0y + 21ns vy vpwa 01 ) /(8 5 03) 4.11

4 3 3
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and
Case(c) 0y ~ O3

m2, = (Mgs +Yyvd) (k+ 1) sinB cosff + 3 Y72 (4.12)
ms =mi k /(vs(k+1)) — Yeuy (k—2)/(k+ 1) (4.13)
mi = — (2 mgv§ O3 — 4 Y70y v3 vp (k — 2)03)+ (4.14)

-2 My i Vg Vg (& -+ 1)(’)3 42 H ‘Ug Us ke:;) ;'(8 ’U% 5'3)

These equations arc exactly the ones required so that the 2x2 matrix,
remnant of the CP odd 3x3 mass matrix, has a zero eigenvalue, Taking
the whole 6x6 mass matrix, this will be a small eigenvalue, rather than
a zero ong, as the elements coupling the CP even to the CP odd sectors
are very small but non zero.

The first three equations imply that the elements C' and B are zero,
but A # 0, so that the light particic will be almost completely in the
N sector; the second set will imply that A and B are zero, but € # 0
so that the massless particle will be almost exclusively in the A H,
gector, whereas for the third set

AC ue
- —ng =0

sinBcosf v}

and the particle will be a mixture of Higgs fields and the singlet field.
Furthermore, in the case 83 << ¢, the equation for my; and the equa-
tion for mg and my can be comhined to give an upper bound on the
mass of the charged Higgs boson A g+

My = —Yiud =M% — N? < M2, . (4.15)

So for the case where the lightest Fliggs boson is almost completely in
the 71, F7, sector, that is to say for 03 negligible compared to 81, Mg
can be at most equal to My,. [lowever. the value of My= can increase
significantly if the stop quark contribution in the one-loop corrections
to the mass martrix is considered.

This result should be compared to the MSSM case, where at the tree
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level M%y == ME + M2, and Mg+ = My when the lightest pscu-
doscalar is massless. In the NMSSM, in the CP conserving case and no
mixing in the pscudoscalar sector, we instead have

Migs = My — Nvg + M (4.16)

where Mfio is the mass of the lighlest pseudoscalar. For weak SCPV
and the #; >> 0 case, the lightest pseudoscalar is singlet, and 3%,
in eq.(4.16) is now the mass of the second lightest pseudoscalar, which
is in the Hy Hy sector. We will see more explicitly in the next section
how big the mass of the lightest Higgs boson as a function of the CP
violating phases really is.

4.3.1 N field importance

Using the transformation outlined in the Appendix C it is possible to
get rid of the Goldstone boson within the mass matrix so that the
physical eigenvectors of Lhe five neutral Higgs fields can be obtained.
We can then, assuming weak SCPV such that the even and odd parts
of the mass malrix decouple, obtain the N field content in the lightest
nentral Higgs boson eigenstate analytically due to the fact that this is
going to be a pscudoscalar. In particular the N field percentage in the
lightest pseudoscalar eigenvector is

100 1;%_9%

v sin2 3 cos?@ 6% + vi 03

(4.17)
Note that this foruwla does not depend on the choice of £, = 0 and
can be obtained easily from the 2x2 psuedoscalar mass matrix.
We see that N% can be made small either assnming #3 << 64, as we
have already seen in the previous pages, or taking small values of vg.
For high valucs of 23 such that vy can be neglected, the N field per-
centage will be independent of f3 and vy and equal to 100 (i.e. 100%
decoupling) whereas for small values of v3 this will not be the case.
Even for moderate vevs the N% tends to be high, e.g. tanf=1, v3 = vy,
91 = 93)

N% va6* 4

100 v262/44 262 5
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or land=2, vz = 2vg, 0 - Os,

N% 40} 25

100~ w24/25+dvi 26

This feature of the model is crucial as far as a possible experimental
detection of the pscudoscalar is concerned. We will discuss this issue

in more detail in chapter 6.
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Chapter 5

Neutral Higgs bosons

spectrum within the
NMSSM

5.1 Introduction

We study in this chapter the neuntral Figgs bosons mass spectrum nu-
merically, focusing on the SCPV case.

As far as SCPYV is concerned, several issues will be addressed: we will
first discuss the mass of the lightest neutral Higgs boson as well as the
role played by the various paramecters within the model.

We will show how the parameter space is populated when the CP vio-
lating phases are small, particularly in connection with the study of the
minima of the effective potential and the likely occurrence of metastable
solutions for the SBEWS (spontaneous breaking of the electro-weak
symmetry), which is typical of the NMSSM.

We discuss the mass of the second lightest neutral Higgs boson and the
close relation between the lightest and second lightest neutral Higgs
boson masses.

For comnparison, we discuss the mass spectrum in the cases of CP con-
servation and also of explicit CP violation. Finally we summarise our
resulits.

31
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5.2 Lightest neutral Higgs boson with SCPV

In this section we discuss the behaviour of the neutral Higgs bosons
when the CP violating phases are varied. Because of the many param-
eters, this requires a numerical analysis.

We have geen in the previous chapter that if the CP viclating phases
are small, there must be a light Higgs boson. We show here that the
upper bound on the lightest Higgs boson mass decreases proportionally
to the angles. Very roughly mp, = 5006, GeV where 6, < 0.1 rad.
In particular we fix §; to a starting value and then vary 83 from zero
to twice the value of 8y, so that now a plot of the mass of the lightest
neutral Higgs mass as a function of 03 can be made.

It must be emphasized that the chosen interval over which 83 is varied
is such that the #, << fi3 regime is not covered. We will postpoue its
diseussion until section 5.3.1 as in this regire the values of A and &
play a crucial role.

For each value of @ 10° random configurations are generated for the in-
dependent variables which are left in the potential, that is to say tang,
v3, Mg, i, Mg, The parameters A and & are given fixed values.

The neutral Higgs boson mass matrix is then diagonalised for each set
so generated, and those 100 sets which give the highest values for mp,
stored. The procedure is repeated for each value of 83 in the range.
The parameters are randomly varied within the limits shown in Table
5.1.

The chosen values for h; and the range of tanf are such as to accouns
for the top quark mass, which is around 174 GeV (see [10] for a discus-
sion of the relevant top quark mass). Two ranges for the charged Higgs
boson mass have been chosen; the 55-200 GeV interval is rather wider
than the most recent experimental lower bound coming from LEP [26]
according to which Mg+ > 69 GeV; however, it is inferesting to see
what the resulting neutral ITiggs bosons spectrum is for such a light
My, , given that in the small CP viclating phases regime, 05 << th
implies Mp+ < Mypy; note also that this range evades the cxperimen-
tal lower bound of arounf 250 GeV, coming from the process b - s,
which applies in a general two Higgs doublets model [28], but can be
avolded in supersymmetric models by cancellation between diagrams
with particles and s-particles in the loops.
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Table 5.1: Ranges within which the parameters are randomly varied.

tan Uy g ng}
2-3 10-510 GeV | -500-500 GeV | 53-200 GeV , 200-800 GeV
iz A k hy
~H00-500 GeV 0.5 0.5 1.0%

The second inlerval, 200-800 GeV is a conservative one and shows the
dependence of my, on Mg+, or effectively v;, when vy > 2y that is to
say v (see eq. (3.15)).

We diagonalize the neutral Higgs boson mass matrix squared numeri-
cally: its cigenvalues arc required to be positive in order for the effective
potential to have 2 minimum at the chosen point in the (v, vs, vs, 01, 03)
space. The minima so found are in general local, and so metastable.
This is an important point, which we will discugs in more detail in 5.4
Note that, unless explicitly stated, the same randomly generated cou-
plings in the effective potential are taken; the consequence is that in
the small phases regime the same sets which give the upper bound
for a certain value of &; will do so when &, is ten times bigger, until
eventually the phases are big enough that the light pscudoscalar theo-
rem does not hold anymore. We found that the lightest neutral [liggs
boson mass is directly proportional to #4 in the small phases regime.
This procedure does not affect the mass bounds as long as saturation
is achieved, i.e. the mass bounds do not increase any more with the
number of iterations, and indeed for the sake of studying the behaviour
of my, as a function of the phases it is perfectly acceptable. However,
different seeds for generating the random numbers bave to be taken
when absolute minima are looked for, as we will see in 5.4.

We show in Fig. 5.1, 5.2, 5.3, 5.4 plots so obtained for 6,=1, 0.1, 0.01,
0.001 rad respectively. The SUSY scale is in all the graphs assumed to
he 1 TeV.

Fig. 5.1 shows the maximum value which the lightest neutral Higgs bo-
son mass can take in this case, i.e. & 120 GeV for the M+ = 200 &00
GeV and below 100 GeV for Mg+ = 55 — 200 GeV; these limits change
slightly when the A and & parameters arve varied. The ¢; = 1 rad case
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evades the theorem of 4.2 as the CP violating phases arve big, so that
the lightest neutral Higgs boson will be CP even as well as CP odd.
The other figures show the corresponding upper limits when we reduce
the CP viclating phases.

It is clear that my, gets smaller and smaller when 8, is rednced (85

being reduced accordingly too), in agreement with the analysis of 4.2.
For 83 negligible compared to 1, Mgz < My at tree level, as we have
discussed in the previous section {eq. (4.15). This is true whether or
not @) is small, so that in all the graphs of Fig. 5.1,5.2, 5.3, 5.4 [or the
case Mg+ = 200 - 800 GeV we see an abrupt interruption of the curve.
my,y falls down as 83 approaches smaller and smaller values compared
to the value of #; because the fewer parameter sets give real eigenval-
ues for the neutral Higgs bosons mass matrix: the values of Mg= are
in fact required to be close to 200 GeV, which is the lowest limit al-
lowed for the range in which the mass of the charged Higgs boson is
randomly varied. Fventually values of Mg+ smaller than 200 GeV will
be required, and then it is nat longer possible to get real eigenvalues
for the neutral Iiggs boson mass matrix, so the curve stops abruptly.
The same fall takes place for the interval Mg+ = 55 — 200 GeV, be-
cause for smaller values of 83 a smaller region of the parameter space
is available, although the curve does not stop abruptly, as the charged
Higgs boson mass is allowed to take valucs below My,
We can see this explicitly in the Fig. 5.5, 5.6, 5.7, 5.8 where the lightest
neutral Higgs boson mass is this time plotted as a function of My,
and 81, 83 are given [ixed values, with f3 always equal to 0.016;, so that
we are in the regime (b) of 4.3. For My > Mw GeV, the eigenvalues
of the neutral Higgs boson mass matrix are in general complex. For
small values of 85 it is in principle necessary to consider the one-loop
correction to the mass masrix of the charged Higgs boson, as the cor-
rection is siguificant [29]. However, in this region the lightest neutral
Higgs boson is almost completely in the Hy Hy sector, as in the MSSM,
so that for 6; < 0.1 rad il is ruled out by experiment {26].

Two important points should be stressed.

For the case with My = 55 — 200 GeV the number of sets which give
real eigenvalues for the mass matrix is in general smaller than for the
case Myzx = 200 — 800 GeV. This is due to the [act that taking small
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GeV (dotted line).
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values of My+ implies having small values of 3 and in this region of
the parameter space the number of sets giving real eigenvalues for the
mass matrix is suppressed: Lhis is 10 be expected because in the limit
of a zero vz and no Zz symmetry violating terms in the eflective poten-
tial, we reobtain the MSSM , wicthin which SCPV cannot occur at the
tree level. This is also the reason why when radiative corrections are
included a bigger number of sets is in general available.

Also, in the small phases regiie increasing 83 means in general lowering
the number of sels available, whatever the range within which Mz is
varied. We will discuss this in rmore detail when we will discuss the
search for absolute minima.

In our approximate mathematical analysis we have not said how small
the CP violating phases have to be for the theorem of 4.2 to hold; the
only condition is that the phases be small enough for the mixing ele-
ments in the neutral Higgs boson mass matrix squared to be negligible
compared to the elements of both the 3x3 scalar and the 2x2 pseu-
dosecalar blocks respectively. Therefore for fixed phases some regions of
the parameters space will satisfy the theorem conditions whereas some
others will not, rendering a numerical analysis necessary.

‘T'he picture does not change if we vary the SUSY breaking scale,
as can be scen in the Fig, 5.9, 5.10, 5.11, 3.12 in which the SUSY
breaking scale is taken equal to 174 GeV, while otherwise being the
same analysis with the same ranges and values for A and & as in Fig.
5.1, 5.2, 5.3, 5.4. Also shown are similar curves but where the number
of randomly generated sets for each value of 63 (taking ten values of it,
rather than one hundred as before) is taken to be equal to 1 million and
for each value of #3 a different seed for the randomly generated sets is
taken. Saturation is not completely achieved and a bigger number of
iterations is required; this is specially true for the case of IFig. 5.9 where
the depletion for f3 ~ 1 raed in the case My+ = 55 — 200 GeV is clearly
due to the reduced number of sets which give positive eigenvalues for
the neutral Higgs boson inass matrix.

Comparing Fig. 5.9 with Fig. 5.1 we see that the mass bound is approx-
imately 10% higher in the 1 TeV SUSY breaking case, which includes
raciative corrections using 1-loop RG equations. These increase the
bound on the scalar component of my,. In the Zy CP conserving case,
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the lightest neutral Higgs boson is in the scalar sector, and its mass at

the one loop order is (i7] where m,0 is the lightest nentral Higgs hoson
mass)

2 \? cos’ by

Mipo < M (003223 G

gin? 2,{3) (5.1)

so that bigger values of A give a higher upper bound on mpe. Also, the
RGE increase the MZcos?2(3 contribution, which is the reason why for
&y = lrad the upper bounds on my,, arc higher for a SUSY scale equal
to 1 TeV, than thosc for a SUSY scale equal to 174 GeV.

However, A and k are constrained to be such that A%+ %2 < 1 (see 3.4)
and the RGL depend on A and k in a way that too small values of &,
corresponding to bigger values of A, upset the minima of the effective
patential, so that no real cigenvalues can he found, as we will discuss in
5.6 for the case of no SCPV. This is also the reason why in general our
upper bounds for big CP violating phases are lower than those which
can be found in the literature, where one-loop terms are added to the
effective potential, so that A can be maximised. Moreover, we do not
include stop countributions, which also contribute in raising the upper
bounds. A comparison of the various upper bounds for My+=55-200
GeV and Mp+=200-800 GeV clearly shows that for the latter interval
much higher bounds are obtained (the & = 1 rad case is an exception
as we are not in the small CP violating phases regime). As we will
see in section 5.4, this is due to the fact that higher values of Mg
mean higher values of v and consequently higher values of iy, as for
small CP violating phases the lightest nentral Higgs boson is (almost
completely) CT* odd and mostly N field, so that ils mass increases with
3.

It should be noted that for M. = 55— 200 GeV and values of 3 ~ 4
small the number of parameters giving real eigenvalues of the neutral
Higgs boson mass matrix is much reduced due to the requirement that
Mipge > My however, oven if the number of iterations is increased,
the lightest neutral Higgs boson mass does not change significantly, as
safuration is indeed achieved.
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Figure 5.9: #,=1 rad, SUSY
breaking scale=174 GeV. Up-
per bound ou the lightest neu-
tral Higgs mass. Mpyx=200-
800 GeV (continuous line)
and My+=>55-200 GeV (dotted
line) for 10° iterations, and for
10% iterations (squares and di-
amonds) and ten values of ;.
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Figure 3.14: 8, = 1 rad, SUSY
breaking scale=174 GeV. Up-
per bound on the lightest neu-
tral Higgs boson mass for & =
0.1 and A = 0.85; m; = 0 (dot-
ted line) and varied randomly
(continuous line). Mg+ ==200-

800 GeV. 800 GeV.

5.3 X and k& influence

So far we have always taken A and k& fixed to starting values at the SUSY
breaking scale, within the ranges allowed by the requirement that per-
turbation theory still holds up to the unification scale (A% + %2 < 1, eq.
(3.11)).
We now show in Fig. 5.13, 5.14 the same graphs as in Fig. 5.9, but
this time with starting values for A and & respectively equal fo 0.1, 0.65
and vice versa. The parameters arc once again randomly varied within
the ranges shown in Tab. 1 (continuous linc) and with mg fixed equal
to zero (dotted line}.

We see that when mg, the N? term coefficient, is fixed to zero different
values of A and %k do not cause a great difference in the final graphs,
whereas when myg is allowed to be different from zero the case when
k is small shows a jagged curve which is almost always beneath the
corresponding one for mg = 0. We understand this as being due to the
fact that when & is small and my is different from zero, the potential is
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more likely to be unstable with respect to the variable vy so that many
more sets are rejected because of the occurrence of complex eigenval-
ues, and the upper bound on the lightest neutral Higgs boson mass is
correspondingly lower than for mg = 0. This also explains why the
curve is jagged. On the other hand for & = 0.65 the curve for mg = 0
is always beneath the one where mg is taken to be different from zero,
as it should be because now the potential is safe from instabilities with
respect 1o va.

The conclusion is that for the diagrams with & = 0.1 the saluralion has
not been achieved and many more iterations arc required, because of
the smaller number of good sets available. In Fig. 5.16, 5.15 we show
the same graphs as in Fig. 5.14, 5.13 but for a SUSY scale equal to 1
TeV; once again the picture does not change. However, we notice that
the radiative corrections for the case with & = 0.1 imply a lower bound
on m, than for the same case for a SUSY scale equal to 174 GeV: this
is understood by the fact that the RGE make the effective potential
unstable.

In Fig. 5.17 we show the same graph as in Fig. 5.16 but this time
allowing [or a number of random iterations equal to one million, so ten
times higger than in the other diagrams. It can be seen that this time
saturation is achieved.

5.3.1 The 6; << 83 regime analysis

As we already said, we have so far not considered numerically the 3 >>
#; regime. We did so because for this case the A and & parameters play
an important role, as we will see.

Setting 67 == 0 and taking the values A .- k == 0.5, we found no real
eigenvalues for any values of ¢3. The reason for this has to do with
the chosgen values of A and &, We show in Fig. 5.18, 5.19, 5.20, 5.21
my, as a function of A for #) = 0 and f;5 cqual respectively to 1, 0.1,
0.01, 0.001 rad. The value of k is chosen so that A2 + k% = 1 and the
SUSY breaking scale is taken equal to 174 GeV. In any case for small
values of 8; (namely 0; ~ 0.1, 0.01, 0.001 rad) the RGIZ do not change
significancly the resulting bounds. It is clear that in all the cases a
value of A smaller than the corresponcding value of £ is required in order
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breaking scale=1 TeV. Upper
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for the eigenvalues of the neutral Higgs bosons mass matrix to be real.
We explain this as due to the requirement of having the singlet field N
decoupled from the H; H, sector, as otherwise the pseudoscalar could
not be completely singlet. In fact, A and my arc the parameter which
determines the size of the interaction between the two Higgs doublets
sector and the singlef, field N.

5.4 The parameter space and absolute min-
ima

In this section we analyse the parameter space in more detail as an in-
troduction to the issue of how likely it is that weak SCPV local minima
are also absolute ones. We will in particular show the interplay between
the various parameters in the effective potential and the CP violating
phases. Such a numerical study is requirved, as in general within the
NMSSM deeper minima can be present than thosc which brecak the
electro-weak symmetry and so also when SCPV is considered. For cach
minimum a numerical analysis is therefore required to establish whether
the effective potential has deeper minima, L.

5.4.1 The parameter space

5o far we have just studied numerically the neutral Higgs bosons masses.
The condition that the mass squared are positive implies Lhat the effec-
tive potential has a minimum, in general local, at the point so found in
the space (v, vy, va, &, 03). However, the elfective potential may have
deeper minima elsewhere. Unfortunately, producing upper bounds on
the masses while at the same time ensuring that the minima found are
absolute ones requires expensive numerical minimization of the effec-
tive potential. Some care is then required in choosing the region of the
parameler space for this analysis. In particular the eflective potential
{eq.(3.3)) in the case of positive mg often has deeper minima for large
values of vs and 83 = %, because of the term Zmsvicos(30;) in the effec-

3
tive potential. Consequently, those minima found for mg > 0 are likely

I'We are of course assuming that the present electro-weak vacuum is stable.
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to be only local. Incidentally we found that for mg varied between -500
and 500 2, my, 15 in fact higher for positive values of msg.

The important parameters when searching for absolute minima are
found to be u and mg; it is therefore important to understand in what
part of the space u-my the sets giving real eigenvalues of the neutral
Higgs boson mass matrix really are,

So far we have been discussing only mass upper bounds, and only those
parameters which gave the highest value of my,, for each value of 84 and
f; were selected for numerical minimization of the effective potential.
However, this means that the resulting sets may turn out to be be
predominantly in a certain region of the space p~mg. This i3 indeed
the case, as we can see in Fig. 5.22, 5.23 (to save time, unless stated
otherwise, @5 is given just 10 values rather 100} where mg is plotted
against u for the case Mpy==200-800 GeV, SUSY scale equal to 174
GeV and ¢ = 0.001 rad (all the other parameters being as in Tab,
5.1): in particular, in Fig. 5.22 only the sets giving the upper bounds
are considered whereas in Fig. 5.23 all the sets giving the highest, value
of my for each value of the N field fraction |as|?, where a5 is the imag-
inary part component of the N field in the normalised eigenvector * of
my, are considered (this is done for each value of 4 and 8s).

In this way we make sure to have sets corresponding to high as well as
low content of the N field.

The squares and crosses refer to the points respectively for the first
half of values of 3 and for the second one, going from the lowest to the
highest one.

It i1s clear that in both the figures the sets giving the mass upper bounds
are localised preferably in the region where mg > 05 in fact, for higher
values of My= (which means higher values of v3) decoupling is stronger,
which in turn favours positive values of mg, for which the potential is
more likely to have a minimum with respect to vs, as can be seen from

2Tt should be rememhered that mg is a dimensionful quantity with dimension
[GeV]. The minus sign is allowed within the effective potential as well as the positive
sign.

SNote that the eigenvectors are normalised Lo one. Nole also that when the
theorem of 4.2 does not hold anymore, the N field fraction will be given by jas)® +
|(I-5 |2.
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%?E{ > 0*. By decoupling we mean the lightest neutral Higgs boson be-
ing completely a singlet, which requires either the N field and two Higgs
doublet sectors being not connected, or vs much bigger than vy = 174
GeV, so that the siuglet field predominates. The latter condition can
be effectively relaxed as even for small values of vg (of the same order
of vp) the N field can predominate, as can be inferred by the formula
(4.17). T'his will be discussed furthermore in the next chapter, when
the singlet ficld percentage in the eigenvector of the lightest neutral
Higgs boson is shown.

Tt i3 worth emphasizing further the fact that high values of Mg+ imply
high values of vg. In our analysis, once M+ and vy are given, then m?,
is given too; however, a high value for My+ together with a small value
for vy will most likely result in a value for mys such that the potential
does not have a minimum anymore,

Another feature visible from the graphs is that i takes preferably neg-
ative values and that in the case of decoupling mes negalive means thal
(@ is negative too ® (this turns out to be true in general, allhough the
opposite is certainly false).

On the other hand, taking the range Mg+ = 55 — 200 GeV decoupling
is not enhanced anymore and consequently one has sets with positive
as well as negative values of mg, as can be seen in Fig, 5.24 which is
to he compared to Fig. 5.23. However, one alse notices that negative
values of mg predominate for ¢ > @) and vice versa for positive val-
ues of mg; this also explains why the range with —500 < mg < 500
gives more scts than the range with —500 < mg < 0 for the first half
of the 63 interval whereas for the second half the number of sets for
the two cases is almost the same (only those sets with mg < 0 being
allowed), as can be seen in Fig. 5.25 ¢ (the parameters are as in Tab.

1That it is not just the sets giving the highest values of my, to have positive
values of mg can be inferred looking at Fig. 5.30, where —500 < g < 0, and 5.27,
which gives the total number of sets with real mp,.

SThis is only true when small CP violating phases are considered; for big phases,
i can be posilive togelther with wis being negalive; it seerus thal this happens
preferentially for 83 > 8,.

8The number of sets which give real my,, is bigger than the number of sets plotted
in Fig. 5.24 where just those sets which give the highest values of my,, are plotted.
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5.1 with My = 55 — 200 GeV and SUSY breaking scale equal to 174
GeV) where the crosses are for —300 < mg < 500 and the diamonds
are for —500 < mg < 0 7(similar graphs are obtained for the cases with
6, = 0.01, 0.1 rad respectively).

The way to understand the behaviour outlined vequires the following
observation:

the soft term m?, is in general positive for f3 > @;; this threatens to
destabilize the potential, so that a reduction of v is required, the net
effect being that the upper bound on Mp= can still be saturated. For
3 < fh, m?, can be either positive or negative, depending on the al-
lowed values of Mys and v3; for high values of w3 (which means bigger
values of m;,) negative values of m?, will result.

We then have that for 65 < 8,, vy will be preferably high (compatibly
with the range within which My« 15 varied) whereas for 85 > 01, v3 will
be smaller. The parameter p has the opposite behaviour to m?,.

We can understand what we have seen so far in the following way:
a) High values of Mg= (decoupling)

Bigper values of v3 (greater than ug) at the potential minimum = the
N field fraction is high and almost independent of €3 and v3 = mg > 0
preferred and bigger values of my, result; for 83 < 61, m?, can be both
positive and negative; for 63 > 61, m?, becomes positive and increases
with vs; this then requires ws (o decrease slightly, in order (o suppress
the effect of mi, on the effective potential. M= is seen to take all pos-
sible values allowed, no matter what the values of f; are; high values
of Mg+ are preferred as higher values of n1, are obtained. mg takes
preferably positive values, no matter what &5 is, as vy is always quite
big (see case b for comparison).

b) Low values of My+ (incomplete decoupling)

It is worth mentioning that if saturation were achieved than for A3 > &1 the
crosses and ihe diamonds should coincide; nontheless, the mass upper bounds
change insignificantly.
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Very low values of v3 required for the potential to have a minimum
= Lhe N ficld fraction is low and increases with ¢ and vs .

For 6 > 0; m?, becomes positive and increases with ws; this then
requires vy to decrease in order to suppress the effect of mfy on the
effective potential, the values falling down quite sharply due to the low
values of Myg:. Mpgs is seen to take all possible values allowed, no
matter what the values of 03 are; high values of Mg+ are preferred
as higher values of my are obtained. The resuliing N flield percentage
for mass upper bound is independent of 83, as we will see in the next
chapter.

When w3 sharply decreases, so do m? and m2, which go from posi-
tive values to negative oncs; on the other hand m?, m? and my remain
positive and increase, so that for the potential to have a minimum with
respect to #y, mg has fo take negative values.

So we have that high values of vy (i.e. 03 < 1) imply mg¢ > 0 whereas
low values of vy (i.e. 63 > 8)) imply mg < 0.

Fig. 5.25 tells us that the number of scts for —500 < mg < 500 is
bigger than for the case —300 < mg < 0 because in the former case
my can be either positive or negative, the number of sets with mg > 0
being much higher. Also shown is the case for —500 < mg < 500, with
A = 0.1 and k = 0.G5, where decoupling is much enhanced (because of
the smallness of A) and the number of sets can then increase with 8.
The case ¢, = 1 rad, where the theorem certainly does not hold
anymore, is shown in Fig. 5.26; the increase in the number of sets after
&y = 1 rad is explained by the fact that the sum of the CP violating
phases exceeds w/2: in fact, after #3 = /2 the number of sets declines
and the picture for small values of 85 is reproduced.
Analogous graphs are shown in Fig. 5.27, 5.28 {or the case Mys =
200 — 800 GeV for ¢#; = 0.001 rad and 6; = 1 rad respecsively. De-
coupling is this time enhanced, so that for 0 < ms < 500 we expect
fewer cases than for —300 < mg < 500 because only those sets with g
close Lo zero will give real my,. "This is confirmed by the correspond-
ing graphs of [ig. 5.29, 5.30, 5.31 and 5.32 where again myg is plotted

8See the formula (4,17).
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500. mg plotted against g
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Figure 5.24: SUSY breaking
scale=174 GeV. M;u=55-200
GeV and —500 < mg < 500.
mg plotted against p for the
case #;=0.001 rad and 6y =
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to the sets which give the high-
est values of my, for each value
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Figure 5.23: SUSY breaking
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500. g plotted against p for
the case 01 —0.001 rad and 05 =
(0 —26,. The points correspond
to the sets which give the high-
est values of my, for each value
of |as|? (see the Text); squares
are for #3 = 0 — #; and crosses
are for 93 = 91 - 291.

10° ¢

ET I
'3‘5‘/ 3
F X 1

X

Nz
c
)

XK

10% |- X —
E <o o ¢ o

X GﬁﬁixXx

Y ISP WP I A SO

0.0000 0005 0.901C 00015 0.0020 Q.0C
3

Figure 5.25: SUSY breaking
scale=171 GeV., My2=55-200
GeV. Number of sets (Ns) with
real my, plotted against 03 for
the case #,=0.001 rad. Crosses
are for —H00 < my < BOO
and diamonds are for —500 <
mg < 0. The case for —500 <
my < 500 and N = 0.1 and
k = 0.65 is also shown (con-
tinuous line).
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Figure 5.26: SUSY breaking
scale=174 GeV. M. =b55-200
5eV. Number of sets (Ns) with
real my, plotted against ¢5 for
the case #;=1 rad. Crosses are
for —B00 < mg < 500 and dia-
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Figure 5.28: SUSY breaking
gcale=174 GeV. My-=200-
800 GeV. Number of scts
(Ns) with real my, plotted
against 83 for the case 6,=1
rad. Crosscs arc for 500 <
ms < 500 and diamonds are
[or —500 < myg < 0.
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Figure 5.27: SUSY breaking
scale=174 GeV. Mpy+=200-
800 GeV. Number of sets (Ng)
with real my, plotted against
#; for the case #,=0.001 rad.
Crosses are for —b00 < my <
500 and diamonds are for
=500 < g < 0.
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Figure 5.29: SUSY breaking
scale=174 GeV. Mg+=200-
800 GeV and —500 < mg < 0.
e plotted against u for the
case £,=0.001 rad and #; =
0 — 26,. The points corre-
spond to the sets which give
the final mass upper bounds
(see the Text); squares are for
i3 = 0 — @, and crosses are for
93 == 91 """ 291
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[Figure 5.30: SUSY breaking
scale=174 GeV. Mg+=200-
800 GeV and —500 < my < 0.
mg plotted against p for the
cage ¢;=0.001 vad and 63 =
(0 —20,. The points correspond
to the sets which give the high-
ast values of my, for each value
of |as}? (see the Text); squares
are for 8y = 0 — & and crosses
are for 84 = 8, — 20,.
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Tigure 5.32: SUSY hreaking
scale=174 GeV. My+=55-200
GeV and —500 < mg < 0. mg
plotted against u for the case

The points correspond to the
sets which give the highest val-
ues of my, for each valuce of |as|*
(see the Text); squares arc for
03 = 0 — #; and crosses are for
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Figure 5.31: SUSY breaking
scale=174 GeV. M g1-=55-200
GeV and =500 < mg < 0. mg
plotted against g for the case
,=0.001 rad and 85 = 0 —26,.
The points correspond to the
sets which give the final mass
upper bounds (see the Text);
squares are for 05 = 0 — 0y and
crosses are for 03 = 0, — 26,.
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against .
Finally it should be noticed that increasing the SUSY breaking scale
to 1 TeV does not change the picture we have outlined.

5.4.2 Absolute minima

The mass bounds shown in the previous sections correspond to local
minima of the eflective potential. We now check that some points can
be found which correspond to absolute minima and give rather similar
curves, though computer time limitations make these bounds statisti-
cally weaker.

What we have seen in 3.4.1 is important as far as the search for abso-
lute rainima is concerned; in fact, as we have meutioned before, positive
high values of mjg are likely to give rise to local minima only, so that
we do not expect to find any absolute minima in this region.

Coming now to the method we used in the search for absolute minima,
we repeated the same analysis we performed when looking for the mass
upper bounds on my,, but this time storing for each value of 5 those
100 sets which gave the 100 highest valucs for my,,,; we then minimised
the effective potential in the hope that for each value of f3 a set could
be found among the 100 stored whose corresponding minimum of the
effective potential happened to be an absclute ouc, starting with the
sets with highest corresponding values of ny,, and going downward.
This methad has the advantage of being very [ast, assuming that some
sets which give absolutc minima are ta he found. However, the curves
so obtained are no longer mass upper bounds, unless very close to the
real upper bounds (where the minima are in general local), This is
because the absolute minima have been found for only a subset of the
parameter space. Other sets could give absclute minima with higher
masses, but these would of course be below the local minima bounds.
It should be noticed that if a set is found to give rise to a local minimum
ouly, this means that there are values of the vevs and the phases differ-
ent from the ones chosen for which the potential has a deeper minimum.
This is equivalent to saying that the absolute minimum occurs for the
same set of soft terms but a different values of tanf, vs, #, and f5, as-
suming that the absolute minimum so found is CP violating. However,
one should then check the resulting mass spectrum: although this can
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in principle be done the procedure is not suitable for an understanding
of the mass bounds themselves.

We have found that the search was unsuccessiul for Mp+ = 200 — 800
GeV, as expected, due to the fact that all the sets (namely those one
hundred sets which give the highest valies of my, for each value of 8;)
have high positive values of myg and vz, no matter what the SUSY scale
is. However, solutions with Mg+ = 200 — 800 GeV were found taking
me = 0, and with Mg+ = 55 — 200 GeV and any mg.

In Fig. 5.33, 5.34, 5.35, 5.36 the continuous lines show the lightest
neutral Higgs boson mass as a Mnction of #3 (#z is varied 100 times)
for 8,=1, 0.1, 0.01, 0.001 rad respectively, for a SUSY scale cqual to
1 TeV and for mg set equal to zero; the dotted lines show instead the
same bounds where the minima have been checked to be absolute ones.
Analogous graphs with —500 < mg < 0 can be casily obtained.

It is important to assess in which area of the parameter space ab-
solute minima are more likely to be found. Thig of course requires a
big number of absolute minima in the first place. We have repeatedly
performed the analysis described in the previous pages for hoth SUSY
scales of 1 TeV and 174 GeV and for both the ranges of My~ of Tab.
5.1. We assume that for #,=0.001, 0.0L rad all the parameter space
we have considered is certainly within the small CP violating phases
regime {we have in fact verified that in all the numerical analysis for
these values of 8; the lightest neutral Higgs boson eigenvector was to
a very good degree pscudoscalar), so that we will just consider those
absolute minima found for thesc value of #,, with #3 being varied as
usual hetween 0 and 2¢;.

We show in Fig. 5.37 mg against p for those sets whose correspond-
ing minimum was an absolute one for 6,=0.001, 0.01 rad; in partic-
ular the sets correspond to mgz = 0, =500 < mg < 0 as well as
—500 < mg < BOD, the latter one for small values of Mg+ only. Note
that the points with #3 < @, correspond to high values of v3 and vice
Versa.

We have also looked for absolute minima for small CP violating phases
in the case where p is set equal to zero: no absolute minima could be
found among the 100 scts stored for cach valuc of &;; a more detailed
analysis, choosing fixed values for #3 and increasing the number of sets
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Figure 5.33: #y=1 rad, SUSY
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Figure 5.36: Same as in Fig.
5.33, but with 6,=0.001 rad.
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Figure 5.39: SUSY breaking
scale=174 GeV. Mgye=55-200
GeV and —500 < mg < 500
and u = (1. my plotted against
vy for the case @;=0.001 rad
and 3 = 0 — 28¢. The poiuts
correspond to the sets which
give the highest values of my
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fraction; squares are for &; =
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Figure 5.38: SUSY hreaking
scale=174 GeV. My+=35-200
GeV and =500 < mg < 500.
mg plotted against vs for the
case #;=0.001 rad and 6, =
{0 --26,. The points correspond
to the sets which give the high-
est values of my, for each value
of the N field fraction; squares
are for 83 = 0 — 8, and crosses
are for @4 = &, — 26,.
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from 100 o 10000 gave also no positive results. We also tried setting
mg = 0, but once again ne absolute minima could be found. Further-
more, the absolute minima eventually [ound were all CP conserving.
As an example of the difference setting u equal to zero makes as far as
populating the parameter space is concerned, we show in Fig. 5.38 and
5.39 the case where Mys = 55— 200 GeV and the SUSY breaking scale
is 174 GeV, with u set equal to zero in the latter one: mg is plotted
against v for all the sets giving the highest my, for jag| between 0 and
1 (100 values were taken}. We see that this time, although decoupling
is disfavoured, mg does not take ncgative values when 63 > #; as vg
does nol decrease with f3: this is due to the fact that |12} can now be
bigger without destabilizing the effective potential.

We also notice that very few cases are to be found for #3 > @ and that
the number of sets is generally higher for small values of Myx.
However, this alone does not explain the unsuccessful search for abso-
lute minima.

5.5 Second lightest neutral Higgs boson

So far we have discussed the lightest neutral liggs bosons in the case of
SCPV. However, we have not said anything about the resulting masses
of the other neutral Iliggs bosons. This is quite important as far as the
experimental detection of any such particles is concerned, as we will see
in more detail in the next chapter.

We show in I'ig. 5.40, 5.41, 5.42 the second lightest neutral Higgs
boson and the second lightest psendoscalar as a function of Mg+ for
8, = 63=0.1, 0.01, 0.001 rad respectively. The unfixed parameters are
varied randomly within the ranges given in Tab. 5.1.

Those sets which give the heaviest possible lightest neutral Higgs boson
are kept, and the resulting cigenvalucs and eigenvectors of the neutral
Higes boson mass matrix stored. It is clear from the graphs that the
second lightest pscudoscalar is much heavier than the second lightest
neutral Higgs boson, which is then in the CP even sector.

We once again are allowed to speak of the CP odd and even sectors as
if separate because we are in the small CP violating phases regime.
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In Fig. 5.43, 5.44, 5.45 the same graphs are shown but this time as a
function of v3, with Mg+ randomly varicd between 200 and 800 GeV.
We sce that the second pscudoscalar is much heavier than the second
hightest neutral Higgs boson; furthermore, its mass rises with vz due
to the high percentage of the N field in the eigenvector (sec chapter 4)
nntil eventually it stops rising due to the fact that Mg+ has reached
the upper edge of the interval within which it is randomly varied. In
fact, from the expression for charged Higgs boson mass (3.15) we see
that Mg+ rises together with 24 for fixed #, and &;.

On the other hand, the second lightest neutral Higgs boson mass seems
not to depend either on vz or on Mg+, This is due to the fact that the
corresponding eigenvector is to he found predominantly in the Hy, Hs
sector for values of vy (Mpy=) comparable or bigger than wg.

So we have found that for big values of w3 or My+ one of the
eigenvectors of the 3x3 CP even part of the neutral Higgs boson mass
matrix will decouple and become predominantly singlet, whereas the
other two eigenvectors will be predominantly in the Hy, H, sector,
therefore reproducing the picture we have in the MSSM ?,

This of course refers to those sets giving the upper bound on the lightest
neutral Higgs boson only. However, bigger values of vy correspond (o
bigger values of my, so that in this case the second lightest neutral
Higgs boson will be predominantly doublet in general.

However, as far as the experimental testing of the model is concerned,
it is also important to see how big the sum of the lightest and sccond
lightest neutral Higgs bosons, i.e. m4 4 miy,, can be, rather than single
neutral Higgs bosons masses themselves (we will discuss the issue of
the experimental testability of the model in chapter six). The relevant
graphs are shown in Fig. 5.46, 5.47, 5.48, 5.49 for the range Mg+ ==
5o — 200 GeV, and in Fig. 5.50, 5.51, 5.52, 5.53 for the range M+ =
200 - 800 GeV.

We note that for small phases m 4 -+ m,, has a hound of the order of 100
GeV, but can be much greater for large phases.

The other scalar neutral Lliggs bosons can in general be guite heavy,

YWe observe that this is not true if we take for example Mg+ hetween 55 and
200 GeV; in this cage in fact the second lightest neutral Higgs boson eigenvector
will contain a non negligible content of the N field.



58 CHAPTER 5.

10000 prr—r - g
1060 b= p—
] e ]
b - T
B oa0[= e e s e
= Eoeesd 0 e
”/_-—'— g
-
g~ 7 -
E 7 f1=83=0.1
7
o
; ]
B S TN T DU T

Q ?00 400 660 600 10(
ME+

Figure 5.40: 6, = #;=0.1
rad, SUSY breaking scale=174
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Figure 5.42: Same as in Fig.
5.40, but with 8. = 03=0.001
rad.
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5.40, but with 6,=0.01 rad.
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function of v, for #; = 6;=0.1
rad.
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like the second pseudoscalar.

5.6 Higgs spectrum when CP is conserved

We show in this section the upper bound on the lightest neutral Higgs
bosont and the corresponding scecond lightest one for the case when
ne SCPV is assumed, as a comparison with the results shown in the
previous section. In this case the angles 8, f3 are exactly zero and no
ligh{ pseudoscalar is needed, as in the case when the angles are non
zero and small.

Once again the parameters are randomly varied and the values of X
and k fixed as in table 1; my and m?, are also varied randomly, as they
cannot be fixed through the equations (3.13) and (3.14) anymore, as
they are satisfied identically when &, = 64 = 0, ms can still be traded
for M.

The lightest and second lightest neutral Higgs bosons can be CP odd or
CP even, according to whether big or small values for M+ are taken;
in the latter case the two pseudoscalars will be the heaviest of the five
neutral Higgs bosons. However, it should be noted that as far as the
lightest neutral Higgs boson mass is concerned, the upper bound on it
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is basically independent of Mg+, contrary to when SCPV is considered.
In Fig. 5.54, 5.55 the lightest and second lightest neutral Higgs boson
masses are plotted as a function of M and tang is restricted to the
interval 2-3, so that the b quark contribution to the RGE can be safely
ignored.

In Fig. 5.56, 5.57 we show the lightest neutral Iliggs boson mass as a
funetion of tang with the b quark contribution to the RGE taken into
account (see Appendix A) for the case when A = % = 0.5. In particular
the restriction on the value of hy so that perturbation theory still holds
up to the unification scale is such that for the SUSY breaking scale
equal either to EWSBS or to 1 TeV, |/ < 1.0.

In Fig. 5.58 and 5.59 X and £ are varied to give as high as possible a
value for my, assuming that perturbation theory still holds up to the
unification scale [37), and taking a value of k at the energy scale of My
equal to 0.3.

The resulting graph of A as a function of tan/3 is shown in Fig. 5.60.
The upper bounds show in this case a clcar maximum for small values
of tang, as it should be expected from eq. (5.1) and in agreement with
[37]. However, we are using the RGE approach rather than the one loop
potential one, so that {or too small values of & (required to achicve as
big as possible values for A\) the RGE are such that the Y3 (see 3.4)
quartie terin can become negative, thus making the potential unscable
and rendering local minima more unlikely, as can be seen by the graph
of Fig.5.61 where my0 is plotted as a function of tang for & = 0, a SUSY
breaking scale equal to 1 TeV {continuous line) and Mg+ = 200 — 800
GeV (the range in which My is varied is not so important). [t appears
that the upper bound does not show a maximum anymore, and in fact
the curve ig for small values of tang lower than the corresponding one
for a SUSY breaking scale equal to 174 GeV (dotted line) when the RGE
are not important, and always lower than the corresponding curve for
a SUSY breaking scale equal to 1 TeV and £ = 0.3, contrary to what
should normally be the case.
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5.7 Explicit CP violation

5.7.1 Introduction

So far we have discussed SCPV within the NMSSM as the only source
of CI” vialation. However, CI* violation can also be explicit.

There are two possible ways to break the CP symmetry explicitly,
namely we can take complex Yukawa coupling constants (see [29]), so
that the CP violation will not be in the Higgs sector, and/or we can
take some of the parameters in the field dependent effective potential
to be complex, so that new CP violating phases are introduced in the
Higgs sector (in general some of these phases can be rotated away).
We will in particular analyse in this chapter the second possibility only.
It must be emphasized that the vacuum is required to be CP violating
as otherwise the potential is unstable (see {29]), so that the analysis of
the previous chapter still holds. However, unlike the SCPV case, weak
explicit CP violation does 1ot require a light neutral pseudoscalar.
The analvsis of explicit CP violation is motivated by the fact that it
may represent a possible solution to the domain walls problem; an ex-
plicit CP violating phase can in fact lift the degeneracy of the vacua.
We will see in the next section what explicit CP violating phases we
have in the NMSSM, and what the neutral Higgs mass spectrum looks
like in the presence of these new phases.

5.7.2 NMSSM and explicit CP violation

Within the NMSSM, there are several parameters which can be in prin-
ciple complex, therefore inducing explicit CP violation. We can in fact
have complex ¢, A, k and r which are the parameters in the super-
potential, as well as the soft-breaking masses corresponding Lo {hese
parameters, namely m?,, m4, ms. In particular m;3 can be taken to
be real without loss of generality[8]. So far we treated ms and my as
real independent parameters; however, these soft mass terms are often
writien as A A\V H Hy and k& A, N3 where Ay and A, have dimen-
sions of mass. In this notation A, k and A; can all be complex, which
corresponds to taking my and mg complex too. Nonetheless, these soft-
masses can be taken as real without loss of generality as we can rotate
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away their phases redefining the fields N and H, H,.
We are then left with three terms only, namely, for a SUSY scale equal
to the EWSB scale

A HHy N + he (5.2)
becanse of A and k being complex, together with the terms
(u* AN + h.c) (Hy Hy + H) Hy) (5.3)
and
PN+ e, . (5.4)

We then have three explicitly CP violating phases, namely Ocqp1, Jonpe
and .3 associated to the the three terms above

AKX = | A k| g7 erat (5.5)
PN = | N e leme (5.6)
P AN = | | g7 fears, (5.7)

For a generic SUSY scale the product A % is ¥7, so that this will have a
phase attached to it. The RGE are not changed by the introduction of
this new phase, ag they simply fix the coefficients of the gauge sector
of the effective potential, which cannot bul be real.
The charged Higgs boson mass can still be taken as an independent
parameter; however, the corresponding expression for Mg+ is now dif-
ferent

M = (mlg sin(fy) — Y7 vi sin(30s + Hexpl)) / (5.8)

(sin(fh + ;) sinf cosB3) — Yyvi.

Let us for the moment consider just one explicitly CP violating phase,
i.e. Ouppi. We want o see what changes the introduction of #,,,1 brings
to the picture we discussed in the previous chapter. Now in fact the
degeneracy of the two CP odd vacua is lifted, so that Georgi-Pais like
theorem does not hold anymore.

We show in the Kig. 5.62, 5.63 the upper bound on the lightest neu-
tral Higgs boson mass as a function of #,,, for fixed values of 8, = 65
cqual to respectively 0.001, 0.01 rad, and 8,y varied between -0.0001
and -0.01 rad. The sign difference is necessary because otherwise no
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solutions are to be found for 8., comparable to 8, 5. Unless other-
wise specified, all the parameters are varied randomly within the same
ranges as in Tab, 1.

We see that upper bound on M), is larger in Fig. 5.62 as compared to
5.63: this is because in the former case the explicit phase in compara-
ble to the phases attached to the vevs whereas in the latter case the
explicit phase is much smaller and therefore the small phases regime
still holds to some extent.

In I'ig. 5.64, 5.65 we show the same graphs but this time for 8; = 8y
equal to respectively 0.1 and 1 rad. From the Fig. 5.62, 5.63 we see
that as feup goes to zero, the weak SCPV scenario we discussed before
is resumed, and the mass of the lightest neutral Higgs boson, which is
in the CP odd sector, falls down. In the last two figures instead, the
behaviour is different as 8, == €5 is quite big, cspecially in the fourth
one. Here for fe,p; going to zero my, does not fall down, as this time we
are not in the small phases vegime, as confirmed also by the fact the
lightest neutral Higgs boson is not this time mainly pscudoscalar.

Let us now consider the case where all the possible explicitly CP vio-
lating phases are considered. We show in Fig. 5.66, 5.67, 5.68, 5.69 the
same graphs as in I'ig. 5.62, 5.63, 5.64, 5.65 but this time with Oggp;.
Oeupz and Oeyps varied randomly between —n /2 and 7/2. The saturation
of the graphs hag this time requived 1 million random iterations.
Because we are plotting an upper bound on the mass of the lightest neu-
tral Higgs hoson, big explicitly CP violating phases will be preferred
when ¢ and @3 are small, as in this way the degeneracy between the
CP comnected vacua is lifted and a big value for my, is allowed.,

5.7.3 Summary

We have briefly addressed the issue of explicit CP violation within
the NMSSM, for the case where small SCPV phases are concerned.
This has important implications as far as baryogenesis and the domain
wall problem are concerned. We have shown that explicit CI? violating
phases do alter the picture we outlined in the previous chapters, as
expecled. Experimentally i{ is going to be quite difficult to differenti-
ate belween explicit and spontaneous CP violation; even if the lightest
neutral Higgs boson is quite heavy, therefore excluding the weak SCPV
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scenario, one may still argue about the possibility of explicit CFP vio-
lating phases being present.

However, any CP violating phase in the model will contribute to the
electric and neutron dipole moments, and so possibly be in contra-
diction with the experimental bounds. We will address this issue in
chapter 7.

5.8 Summary of the chapter

We have seen that weak SCI’V implies the presence of a light pseu-
doscalar, and have studied in detail the corresponding mass spectrum
for the three scenarios outlined in chapter 4.

We have discussed the role of A and & and their importance for the
mass bounds on m 4 for the case 63 >> ;.

The parameter space has also been studied in detail together with the
discussion of the absolute miuima of the effective potential, and the
relevant parameters for the mass bounds shown. We have found in
particular that for weak SCPV, all the solutions for p = 0 were local,
the absolule ones being C1? conserving.

For weak SCI’V the second lightest neuntral Higgs boson is scalar, and
predominantly doublet if Mg+ is large.

When CP is conserved, the lightest neutral Higgs boson is scalar, and
A and k£ play an important, role in the case of radiative corrections to
the tree level bounds on my being considered.

Finally, we have also considered the explicit CI? violation case, and seen
that this time when the phases attached to the vevs are small no light
pseudoscalar i3 present, because the degeneracy of the vacua is lifted,
as should he expected.



Chapter 6

Search for the SUSY
spectrum

6.1 General review

It is important to establish whether any of the neutral Higgs bosons
[or ihe case of SCPV with small CP violating phases, can be observed
experimentally in the future. At present, it SM and MSSM only, lower
bounds for neutral Higgs boson for the former one and for the lighfest
scalar and pseudoscalar in the MSSM for the laller one, exist. In
particular, within the SM the neulral Higgs boson is heavier than 107.9
GeV with 85% confidence level, whereas for the MSSM the current, limit
is 88.3 GeV for the neutral scalar Higgs boson, and 88.4 GeV for the
neutral pseudoscalar Higgs boson, with 95% confidence level [26]. For
the MSSM the picture is more complicated as there are three neutral
Higgs bosons which may be detected. This is obviously also true for
the NMSSM, with the further complication of a fourth and fifth neutral
Higgs boson, and the continuous presence of the singlet field, which
does not couple to gauge bosous, quarks and leptons and thus renders
detection more difficult than in the MSSM.

The hadron colliders and the e* e~ colliders exploit diflerent channels
as suitable for the detection of Higgs bosons so that a specific analysis
for each is required|7].

If CI? is conserved, scalar and pseudoscalar neutral Higgs bosons wiil

71



72 CHAPTER 6. EXPERIMENTAL SEARCH

not mix and according to the range of masses allowed they will decay
into different channels.

T.et us observe first that within the electro-weak theory pseudoscalars
do not couple to a pair of vector bosons, so that the process

75— Z+ A (6.1)

does not oceur. This is clearly true only when CP is an exact symmetry.
However, the same process involviug scalars is possible

Z5 = Z+8 (6.2)

(see Fig.6.1) and is the main search channel at LEP. Iu facl Z-S can ide-
ally be produced up Lo /s = 190 GeV centre of mass energy. The scalar
50 produced will then decay into the heaviest fermion anti-fermion pair
kinematically allowed. For the case of the scalar decaying into a pair
of bottom anti-bottom quarks the observation of the process requires
b-tagging.

We can also have the production of a scalar as the result of the decay
of a real Z (see Fig.6.2)

Zo> Sl 2y Sb VDT (6.3)

if the process is kinematically allowed. The resulting branching ratio
mist be lower than the experimental upper hound on the corresponding
process in the SM, namely

Z = W+ (6.4)
As far as the pseudoscalars are concerned, processes like
Z = 8+ A (6.5)

can take place, if kinematically allowed.
Even if not kinematically allowed for a real Z, this process is stlill pos-
sible via a virtual Z

7= S+ A (6.6)

As already said, within the MSSM a lower bound of 88.4 GeV on the
mass of the lightest pseudoscalar exists[26]. This limit does not apply
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to the NMSSM because of the presence of the singlet field. In fact,
within the MSSM at the tree level my, is fixed when my and tang are
given, and the couplings obey the sum rule

N
725+ O%sa = (Qézs) (6.7)

so that the two processes of eq.(6.2), (6.5) are complementary; this is
the way employed to determine experimental lower bounds on 74 and
my, within the MSSM. Tlowever, within the NMSSM my, and m, are
independent, so that the fwa processes cannot be compared with the
corresponding ones of the MSSM.

As far as a hadron collider is concerned, a scalar or pscudoscalar neutral
Higgs boson can be produced through gg, WW/ZZ fusion {Fig. 6.4,
where the case of gluon fision to give a pseudoscalar is shown)

99 —+ 4§ A(S) (6.8)

where q can be either a b quark or t gnark, or through the Yukawa
process of Fig. 6.5.

As far as the vector-veclor {usion production is concerned, the coupling
with the scalar in the MSSM will only be a fraction of the SM one, as
the coupling is shared by the two scalars h?, H°. Neutral Higgs bosons
can also be produced via Yukawa type diagrams similar to Fig. 6.5,
where this time a virtnal Z couples to a pair of fermions, i.e. bb (Lthe top
quark is too heavy to be produced at LEP2}, with subsequent radiation
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of a Higgs boson, which can then decay to a pair of db. This process
is important for high values of tanff only, when h; is not negligible;
through this process a ncutral Higgs boson as heavy as 180 GeV is
kinematically accessible at LEP2. We will not, include this contribution
in the forthcoming numerical analysis as we will restrict to small values
of tang.

6.2 The N field role in the weak SCPV
regime

The above discussion applies only when in the Higgs sector the CP
symmetry is exactly conserved. However, the experimental analysis is
very close to the one delineated above.

Unfortunately, the content of the singlet field in the eigenvectors of
the five neutral Higgs bosons of the NMSSM reduces all the couplings
when compared to the MSSM ones. This in turn means that, because
of the absence at the tree level of VV coupling for the pseudoscalar,
this particle will be extremely difficult to observe. On the other hand,
things are not so bad if one looks for scalar neutral Higgs bosons rather
than pseudoscalars, as in this case the production through vector boson
fusion is possible.

For small values of vg (or Mg+ ) such that no decoupling in the CP even
sector oceurs, the cigenvectors will contain a certain amount of the N
field, so that any production will be reduced *. We will now discuss
in detail how diflicult it is to detect the pseudoscalar Higgs boson, i.e.
how much weaker the coupling really is.

More precisely, we already know from the formula (4.17) (true agsuming
weak SCPV so that decoupling of the scalar and pseudoscalar sectors
occurs) that, contrary to what could have been thought naively, the
light pseudoscalar Higgs boson is predominantly singlet in most of the
parameter space, so that indeed its coupling will be very much affected.
We can see this explicitly by plotting the N field components of the

INotice that; the mass of the lightest neutral Higgs boson (which is CP odd) takes
its maximum for a value of vy such that the decoupling occurs, so that rcjecting
such cases means having an even lighter mass for the pseudoscalar.
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lightest and sccond lightest neutral Higgs bosons for the cases of Fig.
5.2, 5.3, 5.4 (a similar picture is ohtained for a SUSY scale equal to
174 GeV) as a function of @3, for the two ranges Mg+=>55-200 GeV
and Mz+=200-800 GeV, as shown in IFig. 6.11, 6.9, 6.7 for the former
range, and 6.10, 6.8, 6.6 for the latter one (ten values of #3 have been
taken.

We show in Fig. 6.13, 6.15, 6.17 and 6.12, 6.14, 6,18 the corresponding
graphs when the SUSY breaking scale is equal to 174 GeV. In the
range Mp+=200-800 GeV the seceond lightest neutral Higgs boson is in
the Hy, f,y sector, as in the MSSM, whereas for the range Mp==55-
200 GeV this is not true anymore, as the decoupling does not occur
due to the constrained values of Mg+, which in turn imposes an upper
constraint on the allowed values of ..

Again we stress that the upper bounds on my, we have discussed in
chapter 5 correspond to a high content of the N field in the eigenvector
of the lightest neutral Higgs boson itself; this is to be expected as ac-
cording to the formula (4.17) the eigenvector of the pseudoscalar Higgs
hoson tends to be mostly N field, and this is confirmed numerically in
the region of the parameter space discussed.

6.3 Numerical analysis

6.3.1 Experimental constraints

We have repeated the same numerical analysis as in the previous chap-
ter, where we obtained the mass bounds on my, for small CP violating
phases as a function of &5 for fixed values of ¢;, but this time imposing
experimental cuts on the randomly generaled samples of sets of param-
eters.

The imposed experimental constraints are those coming from LEP1 on
the on-shell Z boson decays and [rom LEP2 on the processes of eq.
(6.1), (6.2), (6.6).

The constraint on the charged Higgs sector is explicitly imposed by our
choice of Mpy+ ag an independent parameter. Mgz in turn has to be
heavier than 69 GeV, according to [26] where a direct lower limit is
cited. As explained in 3.5, we also have prediction [or chargino and
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neutralino masses. In particular, we required the lightest chargino to
have a mass greater than 91 GeV [42]. As far as the experimental con-
straint on the lightest neutralino mass is concerned, no experimental
limit coming from the MSSM can be applied to the NMSSM, due to
uncertain singlet admixture.

LEPI results imply that the Z boson width should not be affected
by the process of eq. (6.3). The corresponding decay width is [32]

Mg 1
L (2 = b ko) = 32 g, A (1 51, 22) (6.9)

where
Mz, y,2) =2 + 12 + 22 — 22y — 2yz — 22z

z; = mij, /M7, and
92 iy = g2 (c080(012023 — G22613) ~ stnf(aiae — agei3))  (6.10)

where a1; and ay; (J=1,5) are the eigenvectors of hy and hy respectively,
in the unitary gauge (see Appendix C), with j=1,5 indicating Re (II7),
Re (HY), I (H?) (=Re (H?)), Re(N) and Im (N) respectively.
The experimental constraint is that BR(Z — hihy) < 1077 [33].
Also, the decay width for the process of eq. (6.3) should such that that
32)

0(Z = byl 17) < T (6.11)

where T'? ig the experimental upper bound for the corvesponding pro-
cess in the SM, equivalent to BE(Z — hlt17) < 1.30 x 1077 [33] at
my, = 60 GeV 2, and

T{z gt =1 sziﬁg?ﬂ““ 2L 0s2
(Z = hsit17) = TR e (Icy? +|Crl?) (6.12)

/mp’/z) 14+ 52— 2
X
p (

2 /2,
Y T Ly A

2The value of mny, is clearly smaller the the existing lowor bound coming from
LEP2, as the Z boson is on shell.
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where p = my, /Mz, © = En Mz, 9z1+i- = 2¢/sin(20w),
Cr, = —% + sin?(fy ), Cr = sin*(6y ), and

9728 = 2—&%@; Mz cosf {ay + apm tans) . (6.13)

We use h; rather than S; to differentiate between the SCPV case and
the non SCPV one.

As far as the constraints coming from LEP2 are concerned, we fol-
low the qualitative analysis of [34]. We calculate the total number of
events, using the cross section formulae at the centre ol mass energy
for a given total luminosity. We assume, somewhat arbitrarily, an ex-
perimental lower bound of approximately 20 (the discovery limit), that
is to say at least 20 Higgs bosons need to be produced at LEP2 for
certain discovery. Agsuming then the maximum center of mass cnergy
and total luminosity (given by the sum of the luminosities accumulated
by the four experiments at LEP2 for that particular center of mass
energy), it is possible to obtain upper limits on the couplings Zh;h;
and ZZh;, against which the ones coming from the numerical analysis
discussed in the previous chapter can be checked.

In principle one should use a Montecarlo simulation describing the de-
cay of the produced Higgs bosons into chanuvels like bb or 77. However,
as discussed in [34], Lhe above criterion does give results in good agree-
ment with the more sophisticated LEP2 Montecarlo simulation, as long
as the mass of the produced Higgs boson is not too close to Mz; this
is going to be certainly the case for ry and small CP violating phases,
although not necessarily so for the second lightest neutral Higgs boson
mass. We will nontheless stick to this assumption as an easy way to
study qualitatively the impact the experimental constraints can have
on the numerical analysis we discussed in the previous chapter,

The cross sections for the two processes of eq. (6.1) and (6.2) are re-
spectively

o (e'* e — hZ) = R2 X ogy (e+ e = h Z) (6.14)

and
olete” = AZ) =R, xoqy (e = AZ) (6.15)
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where ;35)
1/2 1o M7 . 5 ATTe
oy (,\Zh v 12—:&} (1+ (1 — 4 5in20W)?)
192 s sinfy cos*Ow (1 — MZ/5)2

is the corresponding SM cross section Jor a Higgs boson of mass equal
to my, (m4) respectively, and

M} + MEN? AME M
Az = |1 ———-—7%

5

TSy = (616)

g 1

s is the center of mass energy squared, and Ry, (R4) is the ZZh (ZZA)
coupling in units of the SM ZZh coupling.

The cross section for the process of eq. 6.6 is instead the [ollowing

2

b & 9% 1 . .

. e 3 h A = L C 2 C 2 6.17

7 (e ‘ j) 24 s sin*Ow cos?Ow (l e +1Cx| ) (6.17)
)\3}(2(] ylayi)

(1= ) + ¥

where y; = mj, /s and yz = Mz /s, Mz,y,2) = 2% +y* |- 2% - 20y --
2yz — 2zz.

The cross sections are calculated for each set of NMSSM parameters
which gives real eigenvalues. All the neutral Iliggs bosons arc consid-
ered as being a mixture of the CP odd and even sectors; the processes
Z* -y hihjand Z* -» Z hy are then considered {when the masses are
such that the processes can be accessed at LEP2) and the correspond-
ing cross-sections calculated.

The resulting number of events can be then obtained from the relation
J £ xo = N where ¢ is the cross section and N is the number of events.
If the resulting number of events for a particular set of parameters and
for a particular process is bigger than ® 20 then the set is rejected on the

*In [34] a number of events equal to 50 is assumed as the discovery limit. How-
ever, this number includes all possible Iliggs boson available, namely thrce for the
coupling ZZh; as with no CP violation there is no mixing between the even and
odd Higgs sectors; this means that there is no vector-vector-boson coupling with a
pseudoscalar Higgs boson and that the only Higgs bosons available are the scalar
ones, which are three.

As we congider each channel independently, we assume a discovery limit. of iwenty
evenis for each particular Higgs boson, nat just the whole of them.
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basis that the corresponding mass specirum would have been observed
at LEP2.

We have assumed in the numerical analysis outlined in the next section
V5 =189 GeV and [ £=175 % 4 pb~1, the four factor being the number
of the experiments at LEP2,

In {34] the NMSSM was discussed without SCPV, with the result that a
lower experimental bound has been established on the {4,4) matrix ele-
ment of the 5 x 5 neutral Higgs boson mass matrix, namely {4,4) > 69
GeV under the assumption that the lightest neutral Higgs boson is
heavier than 12 GeV, so that the decay into bb is available [36]. This
added experimental constraint is clearly not valid when SCPV is consid-
cred; however, far small CP violating phases such that the CP odd and
CP cven scetors can be considered as deconpled, then one should also
implement this constraint. Unfortunately, when é; = 0.001, 0.01 rad
the lightest nentral Higgs boson is below 12 GeV so this consiraint
does not play any role; for #; = 0.1 rad the parameter space is not
always within the small CP violating phases regime, that is to say the
mixing between the CP odd and CP even part is not negligible (pat-
ticularly for high values of v3).

1t should be noted that we have neglected Yukawa type diagrams con-
tributions where the virtual Z couples to a pair of fermions, i.e. bb
(the top quark is too heavy to be produced at LEP2), with subsequent
radiation of a Higgs boson, which can then decay to a pair of b0. This
process s important for high values of tan/3 only, when A, is not neg-
ligible; through this process a second lightest neutral Higgs boson as
heavy ag 180 GeV is kinematically accessible at LEP2, whereas we have
found that an upper bound close to 120 GeV exists 4.

As far as the experimental constraint on the lightest chargino is con-
cerned, the current lower bound on its mass is 91 GeV [42].

6.3.2 Numerical results

We show in Fig. 6.18, 6.20, 6.22 the lightest neutral Higgs baoson mass
as a function of 8y, varied between zero and twice & (for a total of 10

“Note however that this upper bound is increased by the inclusion of stop quarks
contributions o the radiative corrections.
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points), for fixed values of 8, equal to 0.001, 0.01 and 0.1 rad respec-
tively. My= is randomly varied between 69 (although we have shown
graphs for Mg+=35 GeV, for the experimental constraint we adopt the
latest bound of 69 GeV) and 200 GeV, mg = —500 — 0, the SUSY
breaking scale is taken equal to 1 Te¢V (continuous line) and 174 GeV
(dotted line) and A = &k = 0.5.
Furthermore, in all the graphs, for each of the ten values of &3 one hun-
dred thousand random samples of the unfixed parametlers of Tab.3.1
were performed.
The squares (SUSY=1 TeV) and diamonds {SUSY=174 GeV) show
the corresponding upper bounds obtained when the experimental con-
straints we discussed above are also imposed (when not present in the
graphs, it just means that all the sets arc cxperimentally ruled ont),
with the corresponding minima of the effective potential being in gen-
eral local. The y axis is taken to be logarithmic in order ta be able to
distinguish the curves for different SUSY scales, as they are quite close,
A similar scenario is shown in Fig. 6.19, 6.21, 6.23 where this time
M s varied between 200 and 800 GeV.
The strongest experimental consiraint for a SUSY scale equal to 174
GeV and Myz = 69 — 200 GeV Lurned out to be the onc coming from
LEP1. The sum of the masses of the lightest and second lightest neutral
Higps bosous is for example always below Mz when the SUSY scale is
equal to 174 GeV and £, = 0.001 rad; however, when the SUSY scale
is equal to 1 TeV, the LEP] constrainfs can be kinematically avoided,
as can be seen in the graph of Fig. 6.18, where some experimental
points are present for #; < 8, (squares). It should noted that when 63
is increased, the number of sets giving real eigenvalues drops down, so
that fewer cases can be tested against the experimental constraints (see
chapter 5, section 3.4.)
On the other hand, for the range Mg+ = 200 — 800 GeV we do get sets
which pass all the experimental constraiuts, as this time the number of
sets which give real eigenvalues in the first place is bigger, and the up-
per bound on the sum of the masses of the lightest and second lighlest
neutral Higgs hoson avoids the LEP1 constraint.
We have restricted ourselves to the regime where f4 1s smaller or of the
same order than f;; the case when #; << f3 has not been studied as
decoupling occurs and the pseudoscalar is almost completely singlet,
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as discussed in 6.2, However, decoupling can be desirable because in
this case the second lightest neutral Higgs boson is almost completely
in the [7; I{, sector and thercfore detectable without any suppression
coming from the N field content in the corresponding cigenvector.
Furthermore, we have not considered the case where ) is taken to be
small. Although this allows a much bigger number of sets to have real
eigenvalues, it constrains the mass of the second lightest neutral Higgs
boson to lower values, implying a stronger suppression coming from the
LEP1 constraint.
We have seen that because of the N ficld presence, the small SCPV
scenario cannot be ruled out experimentally; however, we need to as-
sess how much N field does need to be present in the eigenvector of
the lightest neufral Higgs boson for this to be the case. This can be
seen easily enough taking for example fixed values of ¢, and @,, and
plotting my,, as a function of the N field percentage in the eigenvec-
tor. We show in Fig. 6.24, 6.26, 6.25 and 6.27 the cases #;=0.001,
0.01 rad, mg = 500 - 0 GeV, the SUSY scale equal to 174 GeV, and
Myx = 69 — 200 GeV and Mg+ = 200 — 800 GeV:; diamonds are {he
corresponding points with the experimental constraints satisfled; when
no diamond is shown, it just means that all the sets were ruled out.
We draw Lhe obvious conclusion that for the experimental constraints
to be satisfied, a high content of the N ficld in the eigenvector is re-
quired, i.e. > 90%, which turns out to be natural. Also, LEFP1 con-
straints play an important role, especially for low values of Mg+ and
exact SUSY.
However, note the number of sets upon which the experimental con-
straints are inposed must be large, and for Myz+=69-200 GeV and a
SUSY scale of 174 GeV, turns out to be instead quite small (less than
few hundreds per one hundred thousand random parameter sets).

6.3.3 Conclusions

We have discussed in this chapter the issue of whether the weak SCPV
gcenario within the NMSSM can in any way be fegted experimentally
by LEP2. The typical processes wherc a virtual Z couples to onc or a
pair of neutral Higgs bosons were considered; in particular, we included
all the five neutral Higgs bosons in the analysis, if their masses turned
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oul Lo be accessible at LEP2.

The discussion presented was qualitative as no realistic montecarlo
analysis was considered, but ralher the single eross seetions were taken,
and from them the number of events obtained; the criterion was that if
20 neutral Higgs bosons of the same mass can be produced in the first
place, then they would certainly be observed. The analysis is certainly
simplistic, but nontheless gives some insight into the possible testing of
the model experimentally.

At first sight a light pseudoscalar neutral Higgs boson should be easily
accessible at LEP, and indeed within the MSSM a lower bound of about,
70 GeV on its wass is reported. However, we have shown {hat for weak
SCPV within the NMSSM, in a vast region of the parameter space the
pseudoscalar is to a large extent mainly singlel, so that its coupling is
much reducecd. The main consequence is that both its production and
its decay are much reduced, so that it can casily escapc detection. The
second lightest neutral Higgs bosen in the scenario is a scalar, and in
certain arcas of the paramcter space, where the light pseudoscalar is
almost completely singlet, is mainly in the H, H, scctor; furthermore,
its mass has an nupper bound which at the tree level is within the reach
of LEP2. Although in general LED2 cannot rule out the existence of
such a particle, and so the scenario as a whole, future colliders like LHC
should be able to. Even if onc thinks of fine tuning the paramcters in
such a way that detection of the light pscudoscalar and lightest scalar
are hard, LHC should in any case be able to access the other neutral
[Tiggs bosons. The N field presence in itself is extremely important par-
ticularly for the pseudoscalar, and in general, to a certain degree, for
all the other neutral Higgs bosons as well, but it will not prevent the
overall testability of the whole scenario by LHC as, if one particular
coupling is suppressed, there will be another one which is enhanced,
similarly to what happens within the MSSM with the lightest neutral
and pseudoscalar Higgs bosons.

Yukawa type diagrams have been neglected because we have considered
stnall values of tand, for which these diagrams are negligible at LEP2.
In the analysis we have also included the constraints coming from LEP1
and imposed the lower bounds on the charginos masses.

However, for simplicity we have not inciuded counstraints coming from
hadron colliders.
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The result, based on the limit coming from LEPZ2, is that weak SCPV
it the NMSSM cannot be ruled out yet, and calls attention to the pos-
sibility that a light psendoscalar neutral Higgs boson can have escaped
detection so far.

The result is qualitative, as the space of unknown parameters in the
model is large, and on the experimental side it does not take sufficient
account of the complexities of decay modes and detector efficiencies.
Note also that a light neutral Higgs hoson can actually very well es-
cape detection in other models, such as the two Higgs doublet madel
43] [44], so emphasising the need for future experiments to search for
light neutral Higgs bosons.



Chapter 7

Neutron and electron dipole
moiments

7.1 Introduction

In this chapter we study the neutron and electron dipole mwoments
(nEDM and eEDM), as a possible probe of the feasibility of the spon-
taneous CP violation scenario for the NMSSM, when the CP violaling
phases are not small, This is necessary in order to cstablish whether
big CP violating phases can be taken, as the small CP violating phases
regime might be ruled out by future collider experiments like LHC.

In particular the cancellation mechanism will be investigated.

Large CP violating phases are compatible with LIEP but give rise ncces-
sarily to a big contribution to the neutron and electron dipole moments.
The experimental upper bounds have been decrcasing in recent years,
and are curreutly, for the neutron nEDM < 6 x 1072 ¢ om [45] and for
the electron eEDM < 4.3 X 10 7 e em (see [46]).

It should be noted that within the SM the nEDM is predicted to be
of the order of O(10734) e, whereas the eEDM is predicted to be
<< 107 ecm (see [47] and references therein). Within the SM CP-
violation can arise from weak interaction as well as strong interaction
(we will not discuss the latter case in this work). In the former case the
CP violating phases are those of the Kobayashi-Maskawa, (IXM) matrix
for the quarks, and there are analogous CP violating phases in the lep-

39
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tonic sector if at least two neutrinos are massive (otherwise the electron
EDM would be zero, as the CP violating phases cau be rotated away).
[Towever, the CP violating phases cancel al the one loop level and the
resulting EDMs are zero. At the two loop level it is found that the sum
of all the contributions is exactly equal io zero, boih for the electron
and neutron, so that one has to go at least to the three loop level to find
non zero EDMs. This in tuwrn explains the smallness of the resulting
EDMs, which are well below any possible experimental investigation.
Within SUSY theories, limiting ourselves to the KM CP violating
phases, we still find that the one loop contributions arc cqual to zero,
and that the sum of the two loop contributions vanishes, as within
the SM. Ilowever, many other CP violating phases can be present in
the model, so that in general one loop contributions will be dilferent
from zero. In fact, it is known that in SUSY EDMs are in general big-
ger than the experimental bounds, unless the CP violating phases are
< 0.01 rad.

A study of the neutron and electron EDMs can then provide insight
into the physics beyond the standard model.

Our aim is to study numerically the various contributions to the neu-
tron and clectron EDM within the NMSSM for the SCPV scenario and
see under which conditions there is agreement with the experimental
consbraints.

In the second section of this chapter we review some of the many papers
which bave appeared in the last ten years or so ahout this subject.

In the third section we present the explicit formulas for all the relevant
contributions to the electron and neutron EDMs.

In the fourth section we discuss a numerical analysis of the neutron and

electron EDMs.

7.2 NDM and EDM: a general review

There are more CP violation sources in supersymmetric theories than in
the SM. Although this is an upside as far as baryogenesis is concerned,
a possible inconsistency with the neutron and the electron dipole mo-
menls experimental upper bounds can arise.
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The electric dipole interaction of a spin 1/2 particle f with an eleciro-
magnetic field can be described by an effective lagrangian

» ¢ F oo 1 -
L= ~§d,‘fa“ Vs [ £y (7.1)

where dy is the EDM of the particle, f is the spin 1/2 field, Fj, is
the clectromagnetic field, and o = £ [+, 4] where * are the gamma
matrices.

It should be noticed that a torm like in eq. (7.1) cannot be present at
the tree level in a quantum field theory, because it is not renormalizable.
However, such a term can occur at the one loop level, if CP violating
interactions are present in the theorv.

We generalise the idea, so that we can write an effective lagrangian

L= G(@) Q) (72)

where C;(Q)) are Wilson coefficients evaluated at a scale @), and O;(Q)
ave CP violating operators. The coefficients C;((Q) are effectively the
contributions to the EDM at the scale Q, as dy was in eq. (7.1).

The dimension of O; has to be bigger than four, as all the operators
of dimension smaller than five arc automatically CP conserving. The
scale dependence of C{(Q) has to be such that the product C;(Q) O;(Q)
is independent of Q.

We have effectively three operators, namely

i :
0, = _Ef Tpw Vs ff‘pw (73)
i
Og = —5 j Ty 15 T f GZV (7.4)
Os = 7 fun G, G G5, €. (7.5)

The first two are dimension five operators whereas the third one, first
discussed by {49], has dimension six.

We can ignorc operators of higher dimension ou the ground that their
contribution will be negligible compared to the ones given by lower
dimension operators. This assumption may turn out to be wrong for
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big values of tand and if the squarks of the third generation are sig-
nificantly lighter than those of the first two generations, so that the
one-loop contributions are suppressed [51].

Higher-loop coniributions like those of [50] are found to be one order
ol magnitude smaller the the one-loop contributions, and so they can
be important in the case when the latter are suppressed, i.e. for large
squark masses; or in the case of cauncellation.

We will nontheless ignore these contributions on the basis that if can-
cellation is possible, than it can occur also when these new diagrams
are included, although these two-loop contributions have the same sign
as the one-loop ones.

However, the two-loop six dimension purely gluonic operator O can-
not be ignored compared to the five dimension operators, as there are
no mass insercions reqnired, which tend to somehow suppress O and
s, so that its coutribution can be quite big, although smaller than the
former two.

Once again an cffective lagrangian like the one in eq. (7.2) cannot be
present at the tree level because it is not renormalizable. However,
these terms are generated at the one loop tevel (C4 and Cb) and two
loop level (C3). The corresponding Feynman diagrams are shown in
Fig. 7.37, 7.38, 7.40, 7.41 at the end of the chapter.

Note that for the chargino there are just two diagrams, i.e. one in
which the couplings af the vertices are due to gange and Yukawa
interaction respectively (gaugino-higgsino diagram), and another one
where the couplings at the vertices are both due to Yukawa interac-
tions (higgsino-higgsino diagram). For neutralinos there is also the
possibility of the couplings at the vertices being both due to the gauge
interaction (gaugino-gaugino diagram).

It should be siressed that the operators &, and O3 do not contribute
to the electron EDM. As far as the neutron EDM is concerned, all the
operators O;, i=1,2,3 contribute and have to be calculated at the rele-
vant scale @@ where all QCD contributions are comparable, namely ¢ ~
EWS. They have then to be run down using the RGE approach to the
scale relevant for the neutron, namely Agep & 237 McV, in order to
be able to compare the theoretical prediction with the experimentally
measured value. This has been done in [52] [58] considering the b and ¢
quark thresholds, which tend to enhance the magnitude of the neutron
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EDM, as well as the chiral symmetry breaking scale A, ~ 1.18 GeV
threshold, which instead tends to suppress the final value of EDM.

In the region between A, and Agep, QCD is not perturbalive, so that
dimensional analysis is used instead [48]. The final result is

Ci(Ay) = CH(Q) (7.6)

where 9, & 1.53 and e = 73 = 3.4.
The dimensional analysis then gives for the EDM d; of a quark f

e/\x

01 (). (7.7

dr = C{(A) + - C(ay)
To obtain the neutron EDM from the EDMs of the single quarks, a
model of the neutron has to be assumed. It is customary to assume for
the neutron the non relativistic quark model, so that

d, = %d‘, _ %du (7.8)

where dy, is the nentron EDM, and dy, d, are the d and n quark EDMs
respectively. This assumption is known to work very well for the baryon
magnetic dipole moments [19].
However, it should be born in mind that onc could think of assuming
instead the relativistic quark-parton model [55] [56] and in that case
the overall normalisation and even sign of the various contributions are
different; furthermore, in the latter model we also have a contribution
from the s quark, which is completely absenf in the non relativistic
quark model (see also {57]). However, as long as cancellation cccurs
mainly within the dominant term which contributes to the nEEDM, i.e.
the d quark contribution (the u quark contribution is suppressed due
to the smaller mass when compared with the d quark), then both the
models should give the same qualitative answer.
'T'he six dimension purely gluonic operator was originally found to give
by far the biggest contribution of all [54]; however, a subscquent analy-
sis found that this is not the case [58|, and that the one loop contribu-
tions are bigger, the biggest being those of Fig. 7.37, 7.38. An analysis
of this contribution and of the others Lo the neutron EDM within the
contexl of SUSY Lheories can be found in {52; and [53].
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In particular, in [52], the QCD correction factors to the various Wil-
son operators contributing to the nEDM are studied, and the order
of magnitude for the resulting nEDM within the supergravity inspired
MSSM has been assessed. For a generic CP violating phase ¢, the re-
sult is that dZP =~ 9.7 x 107 Bsingecm, d5P = 2.1 x 10~ Psingecm
and d:;j ~ 4.6 x 10™%gin¢ e crn where d2? is the quark electric dipole
moment confribution, dS” is the quark colour dipale moment contribu-
tion and d¢ is the six dimension purely gluonic operator contribution.
In [53] it is shown that in the limit where supersymmetry is exact, all the
contributions to the neutron and electron EDMs have to vanish because
they are not supersymmetric. An analysis of the various contributions
within the context of the supergravity inspired MSSM, with the CP
violation coming from an explicit CP violating phase attached to the
gluino mass, has given the following results: {d¥| ~ 3.2x 10~%sing e om,
|d$t| & 2.1 x 107 *sing e cm, |d52| & 3.4 X 107%4sing e cm where df is
the quark EDM contribution associated to the Feynman diagrams in
Fig. 7.37, 7.38, d5* and d5* are the quark colour dipole moment contri-
butions and ¢ is the CP violating phase. There are twa colour dipole
moment operators as the quark masses are not on shell, so that the
quarks in the neutron are not taken to be free: this is done for the sake
of generality as otherwise the second operator reduces to the first one.
For the six dimension purely gluonic operator the result is that its con-
tribution to the nEDM is approximately equal to 4.6 x 10™*sing e cm.
The single contributions are all bigger than the current experimental
upper bound on the NDM, so that cither sing is small or the squark
masses are very large (the possibility of cancellation will be discussed
later).

The latter idea is further discussed in [59] within the framework of
the supergravity inspired MSSM, where the one loop order terms con-
tributing to the ncutron EDM and clectron EDM arc studied. No chro-
moelectric or two loop order terms are considered, as supposed to be
smaller than the one loop terms, and the non relativistic quark model
for the neutron is assumed (see eq. (7.8)). The CP violation is taken
to come from explicit CI’ violating phases attached to mz and Ay, the
first one being the (2,2) term of the chargino mass matrix, and the sec-
ond onc being the tri-linear term which enters the squark mass matrix
(the f refers to the flavour). This is just an assumption as more phases
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can be present in the model.

The result obtained is that when squarks are heavier than few TeV, the
one loop contributions are under control. In fact, the single contribu-
tions actually get smaller and smaller for heavier squark masses; even
when the soft masses are taken to be independent, heavy squarks still
imply a smaller neutron EDM.

It was also found thal there are regions in the parameter space where
the electron KDM is bigger than the neutron EDM, therefore represent-
ing a stronger constraint.

However, squark masses bigger than 1 TeV means that the hierarchy
problem reappears, so that a possible aliernative solution is wanted.
In [60] an analogous study is pursued, this time employing the RGE,
and in particular the two loop order gauge and Yukawa coupling con-
stants RGH. The p and B parameters of the MSSM are determined by
minimising the full one loop potential. No CP violation other than the
one coming with the Yukawa coupling constants is assumed; however,
because the tri-linear terms A4; depend on the Yukawa coupling con-
stants, CP violating phases are induced al low energy, so that the one
loop diagram amplitndes are not equal Lo zero.

The value of Ay, which is the common value of the tri-linear terms at
the unification scale, is constrained so that no colour breaking minima
occur. It is found numerically that the neutron EDM lies in the range
10=%, 10=% ¢ em, therefore far below the experimental lower bound.
Thig study does not assume any unnatural constraint on the magni-
tude of the phases. However, more phases can be present in the model,
therefore raising the magnitude of the neutron and electron EDMs.

In [61] a possible cancellation mechanistu is proposed among all the
possible terms contributing fo the final expression of neutron and ¢lec-
tron KEDMs. The model considered is the MSSM within the framework
of supergravity theories, with the one loop correction to the tree level
potential including contributions from wop, stop, bottom and sbottom
squarks. The RGE are used to fix the sofi-terms, starting from the
value at the unification scale for Ay and my, these being the common
values of the tri-linear and soft-breaking masses respectively. Both the
one and two loop order diagrams contributing to the EDMs are consid-
ered and the non relativistic quark model for the neutron is assumed
{see eq.(7.8)).
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The CP violating phases are attached to up and 4p at the unification
scale. The RGE then make all the A; (é = ¢, b, 7, u, d, €) at low energy
complex; the phase of u instead does not run.

The conclusion is that cancellation occurs significantly among the dif-
terent contributions for a SUSY spectrum in the limit of O(1) TeV, so
that even for big phases (of the order of O(1 — 1071)) there can still
be agreement with the experimental bounds. The destructive interfer-
ence among the different contributions can be such that the upper limit
on electron EDM can be a more stringent constraint than the neutron
EDa.

However, any significant cancellation needs the two phascs to have op-
posite sign.

In [62] a similar analysis is pursued, considering this time all the possi-
ble phases in the model, namely the phase attached to the p parameter
in the superpotential, two phases attached to two of the the gaugino
mass terms, and the four phases aftached to the four tri-linear soft
terms A,, Aq, A; and A.. Any other phase can be rotated away (SCPV
is not comsidered because the model is the MSSM).

A namerical analysis is then discussed for hoth the electron and neu-
tron EDMs.

As far as the electron EDM is concerned, cancellation seems to occur
between the chargino contribution and the gaugino-higgsino mixing di-
agrams (we mean by this that in the relevant loop diagram, one vertex
will be given by a gauge coupling and the other one by a Yukawa coiu-
pling) of the neutralino contribution quite naturally, due to the opposite
sign of the phase atlached to the px parameter entering the contribu-
tions, as long as the chargino amd neutralino contribution are of the
same magnitude. In general neuiralino coutributions are smaller than
chargino’s, because of the smaller values of the function B(x) compared
to A(x) (see the next section) due to the fact that the pholon in the
chargino one-loop diagram is emitted by a fermion field, whereas in
the neutralino diagram it is emitted by a scalar field; also, in the neu-
tralino sector there are two gaugino states, compared to only one for
the chargino, and therefore the imaginary part of the matrices diago-
nalizing the neutraline mass matrix will be smaller than chargino ones
(ie. Uand V, see D).

Taking big values of ;. has the effect of suppressing the chargino-higgsino
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contribution and increasing the gaugino-gaugino one.

On the other hand cancellation between gaugino-gaugino and chargino
contributions occurs if certain relations among the various phases are
satisfied; it is found nontheless that this is indeed the case in a large
part of the parameter space, bigger values of p being preferred as in
this way the size of the gaugino-gaugino and chargino contributions is
comparable (in general neutralino contributions are smaller than any
other contribution) and cancellation is easier to achieve. As far as the
neutron EDM is concerned, cancellation is easier to obtain than in the
electron EDM case, as there are more diagrams contributing. Chro-
moelectric contributions coming from charginos and neutralinos can be
safely neglected, together with the neutralino contribution associated
to the diagram of Fig. 7.37. The six dimension purely gluonic operator
on the other hand is not suppressed, and has then to be included.
The overall conclusion of the numerical analysis is that indeed cancel-
lation is a general feature and occurs quite naturally due to certain
approximate relations among the mass parameters and phases. These
relations among the mass parameters are claimed to be natural, and
not, a kind of fine tuning,

7.3 Electron and neutron EDMs

We present in this section the explicit formulas for the single contribu-
tions to the neutron and electron [ZDMs at the one and two loop level.
Let us start with those diagrams where a photon is emitfed, namely
those of Fig. 7.37, 7.38.

The gluino contribution is (see Fig. 7.37)

7 _2&'3
dé‘—giu‘éﬂoz €= ??n!’} Qf} _{?H(P;J) (79)

X o e I p— g
(M (fl (ﬂff :1 M qég M'qz—z

. 2 . .
where I“'j;“ = Dyope D;m, o = fj;, m; is the gluino mass and

B(z) = (Q(x —~ 1]2)—1 (1 +x4+2xin ('z:(l — :;;)_l)) .
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The D matrices are unitary matrices which diagonalise the squark mass
matrix squared, and are shown in detail in the appendix [ together with
the squark mass matrices squared, whose eigenvalues are M‘% and ﬂ%.
The index ¢ in the formula refers to the quark whose EDM is calculated,
so that for the neutron the d and w quarks have to be considered. The
final EDM will be given by eq. {7.8). Gluinos do not couple to leptons
so that no contribution of this kind arises for the electron.

For the chargino we have the diagram ol Fig. 7.37 as well as the one of
Iig. 7.38 contributing. For the u quark EDM [61]

2 M, + M2,
dE . o= .. OBM m (Do) —5 [ Q5 B [ -
u.—ch.a-rg“mr)/c 4 S?L?’E(GI'V)Z Z z I (P -‘-ﬁr"-) ﬂ’{ék Qd B ﬂ’{f%k +

k=1 =)
(7.10)
ﬁri
+(Q1;,—QEE)A ‘))
Mfk
where A(r) = 2(1~r)2(3 -7 | 2ln((1 -+)~1)) and
Twie = ku Vi3 Date (U3 Digg — ka Uj D) (7.11)
and
b T k i (7.12)

 Vomysing ¢ V2my cosf

where m,,,, i=1,2 are the chargino mass matrix eigenvalues., The U and
V matrices (shown in detail in the appendix D) are the two unitary
matrices required to diagonalise the chargino mass matrix; they are
different, contrary to the squark case, as the chargino mass maltrix is
complex and not symmetric. The electron EDM contribution is then
given by

L ORM g k- ‘ 7Ly
de—c?mrga‘nofe = Mg, Z T}I'ijm’ (l t’-i‘i) A iy (713)
i=1

dar sen2 0y z

where T'y; = k, Uy V7 = |ke| U, UL
Note that in the case of no mixing in the squark sector, i.e. when the
ofl-diagonal elements of the squark mass matrices are neglected, and
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when terms in k2 and A2 are neglected, it can be shown {59] that the
chargino contribution is proportional to

EET (7.14})

RN

For the neutraline we have just the diagram in Fig. 7.37, as for the
gluino; the contribution is given by

m

2 4 2
OCE‘M‘ ,l?
df neutrah?lo/ ZZ -!T-m' rffaﬁ) 12 Qj (ﬂ/f}; ) (715)
i

A7 sin?Oy 20w =1

where

Nik = (GJUXMD}m + b X Dy, + r’ibeeD’;zk) (coX1: Do — ks XpiDp1z)
(7.16)

and 77 2, =15 are the neutralino mass matrix cigenvalues.

The D matrix is the one which diagonalises the neutralino mass ma-

trix, and X are the corresponding eigeuvectors. The electron EDM

contribution will be similar to the d quark EDM contribution, but with

the relevant physical quantitics of the d quark replaced by those of the

electron.

We then have the chromoelectric operator contributions, induced by

the dimension five operator

7 -~ .
Ly= —§a‘3 o ys T g GH° (7.17)
and whose corresponding Feynman diagrams are shown in Fig. 7.39,

7.40. The resulting gluino, neutralino and chargino dipole moment d.
contributions are, respectively

s ga&é 1y T m2 _
Ay gruino = Z Im(T3F). wi C (-ﬁ,—;) (7.18)

k=1 i=1

— 2 2 M [T
g, : _
0o chargins = Torz 2 2o I 375 Mﬂ —XB (M’,; ) (7.19)
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f? t}i 2 4 Thi”
d —neutraline — 1p-g ° ZZ Im(?? zk:) ( = (720)
” k=1i=l ! ﬂffi ﬂlfr“fa-.
where | 2ein(z)  18in(s)
TN nir
= (10 -2 - ,
¢ 6(1-:{:)2(0x 6+ 1 — 2 1— =z ) (7.21)
and 1 2 )
Tin\x
Bz (14z _
TR pw- (7.22)

Finally, we have the CP violating dimension six purely gluonic operator

1 o Al NAO
Ly=—¢ 0% fagy Gape Gy Gprce™™ (7.23)
where fog, are the Gell-Mann coefficients, ¢/ is the totally antisym-
metric tensor with €”?* = +1, and G,,,, is the gluon field strength. The
relevant diagram is shown in Fig. 7.41 and the associated contribution
is given by

3
d® = —3a, (4??;1") (m;(zi - zg) Im (1“.?2) H (zi, zg,zf) + (7.24)

g

+my (22 — D) Im (I‘jz) H (zi’, 2, zb))

where
, M ? My ’
= DDy, = (M) o= (2) (g
and
Nr Ny
H{zy,22,23) = 2] alcf du,f dy, z( U1 (7.26)
with

Ni=u(l —2) +z2(1 —2}(L —u) — 2uz(zy + (1 —y) (7.27)

Ny = (1= (1 = )+ — 221 — w)? (7.28)

D=u{l —xz)+ zz(l —2){1 —u) +uc(ny+ 2201 -y). (7.29)
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Note that the formulas above are for the MSSM. The corresponding
ones for the NMSSM are just the same, but of course the squarks,
charginos and neutralinos mass matrices will be different. Also, the
number of neutralines in the NMSSM is five instead of four, as in the
MSSM.

Ag far as the CP violating phases are concerned. we just consider SCPV,
in which we have only two phases, whercas a general MSSM has seven.
'These phases will enter the off~diagonal elements of all the mass ma-
trices, as well as the (2,2) element of the chargino mass matrix. Also,
we will consider small values of tang, so that the b quark contribution
can be safely ignored.

As far as the determination of the relevant physical quantities at the
Mz scale is concerned, we will use the Standard Model RGE for the
quark masses from the GeV scale up to the My scale, whereas the
two Higgs doublet model RGE are used to obtain the top quark mass,
starting from the pole mass value of 174 GeV [52] [63]. All the cou-
pling constants are also given at the Mgz scale. However, the electron
electric dipole moment should be calculated at the zero scale, where
G — 1/137035

Notice also that the assumed values of the current quark masses at low
energy scale play an important role. However, we have verified that the
overall conclusions coming from the numerical analysis presented in the
next section, do not change when m, and m, are two times bigger than
the currently reported values [27].

7.4 Numerical analysis

In the first chapters we have discussed SCPV within the NMSSM, com-
paring the results with the relevant limits set experimentally by LEP1
and LEP2.

We now want to assess what the resulting electron and neutron EDMs
are, as a result of the presence of the CP violating phases coming from
SCPV. We will not discuss the most general case where explicit phases
are also considered.

The analysis of the electric dipole moments is largely independent of
our analysis of the Higgs sector, as the only quantities which enter the
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expressions of the nEDM and eEDM are A, k, tang, vy, 61, 03 and u,
whereas all the other soft parameters introduced in the previous chap-
ters enter only the Iiggs sector. We can then confine our attention to
these seven quantities, as the other parameters can be chosen to give a
snitable Higgs specttum compatible with the experimental constraints
already discussed, as well as make sure that the resulting minima of the
effective potential are absolute ones {this in particular implies taking
different from zcro for small CP violating phases, see chapter 5, section
5.4).

The parameters vz and p are varied randomly, within the same ranges

all the analysis discussed in this sectioxn.
The other parameters are the squark soft-terms, whose correspond-
ing terms, which appear in the lagrangian, are {only one gencration is
shown)

Lozt D~ MEQ*Q —~ M2 U — M3 D* D— (7.30)

(Au b QH, U 4+ Aghg HLO D + h.‘c.)

where Mg is the left-handed doublet soft-term, M, and My are the
corresponding right-handed ones, A, and A; are the tri-linear cou-
plings, Q = ( E’«E ) is the doublet field, I = up and D= cfj‘z are the
corresponding right-handed fields, Hy and H, are the Higgs doublet
fields, and A, and h, are the Yukawa coupling constants. Similar terms
can be written for the s-leptons, with the difference that there are no
right-handed neutrinos and s-neutrinos. The squark and slepton mass
matrices will also contain terms depending on p, Avg and kvs, because
corresponding terms appear in the F term of the effective potential (see
Appendix D).

As far as the CP violating phases are concerned though, it makes a
difference whether we take these phases with positive or negative signs,
whereas the Higgs spectrum analysis does not change. So we will al-
low @, and @3 to be either positive or negative; in particular we take
the values of ¢4, analogously with what we did for the Higgs spectrum,
equal to 0.001, 0.01, 0.1, 1 rad and -0.001, -0.01, -0.1, -1 rad for a total
of eight cases, with 83 varied for each case between zero and 20, and
between --26; and zero. Note that the cases with 8, negative are ex-
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pected to be equivalent to the ones with & positive, as the soft terms
are themselves allowed to take positive as well as negative values. We
will refer to this as case (A).

However, we will also consider case (B), where all the soft terms are
fixed to given values, and case (C) where the soft terms m; are taken
equal to g, A; are taken equal to A4y and the gaugino masses are taken
to be

(6*/92) M, = My, = (39%/5¢" ) M.

The parameters myg, A9 and M; are then varied randomly.

Cases (B) and (C) are considered for comparison with the Supergravity
analysis, where all the soft-terms are fixed through the RGI; in prin-
ciple then the corresponding Higgs sector should be cansidered toa. In
our case, we just make assumptions on the squark scctor, so that the
Higgs sector once again is unchanged. We of course expect cancellation
to occur preferably for case (A), as compared to cases (B) and (C),
because of the bigger number of parameters varied.

7.4.1 Case (A)

Let us start considering case (A), where, as well as u and w3, eleven
soft terms in the squark mass matrices, the gliino mass term and the
gauginos arc picked at random, within rauges chosen such that squarks,
gluinos and gauginos arc not much heavicr than 1 TeV, with preference
to masses below 1 TeV. More precisely, two different ranges were con-
sidered, as can be scen in Tab. 7.1, the first one with bigger top squark
and gauginos masses than the second one.

The soft terms of Tab. 7.1 are chosen at random for each value of
f}a. The number of sets considered for ecach value of €z was 100. This
number, although small, was chosen to speed up the numerical compu-
tations, as a double integral within the expression of the six dimension
purely gluonic aperator is to be computed every tixe,

We plot the number of sets as a [unction of the corresponding logip|[nEDM|
where the x axis is divided in bins, we have Fig. 7.1, 7.2 for the first
set of Tab. 7.1, and Tig. 7.3, 7.4 for the second set: the squares, di-
amonds, bursts and crosses correspond to |#;{=0.001, 0.01, 0.1, 1 rad
respectively.
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Table 7.1: Case (A). Ranges within which the parameters are randomly

varied.

CHAPTER 7.

| light ¢

heavy 4 |

[ Mo, | 100-600 GeV

500-1000 GeV |

M,, | 100-600 GeV

500-1000 GeV

My, | 100-600 GeV | 500-1000 GeV

Mg, | BUD-1000 Ge¥ | 1000-1500 GeV

M, ] 500-1000 GeV | 1000-1500 GeV

M, | 174674 GeV

Mg | 100-600 GeV | 500-1000 GeV
M. | 100-600 GeV | 500-1000 GeV |
Ay | -500-500 GeV | -1000-1000 GeV
Ay ] -500-500 GeV | -1000-1000 GeV
| 4¢ 1-100-100 GeV [ -100-100 GeV
[ 4. | -500-500 GeV | -1000-1000 GeV
I

1000-1500 GeV |

M, | 174-674 GeV

1000-1500 GeV

M, | 174-674 GeV | 1000-1500 GeV

NDM AND EDM
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The curves in general show a peak around a certain value of the nEDM.
We can clearly see that even for 6, = 1 rad (f; is nol small either) cases
can be found for which the resulting neutron EDM is far below the ex-
perimental limit, suggesting that cancellation is occurring. However,
the number of sets for which Ghis is Lrue 1s always sinall, coulirming our
expectations that for large phases the cancellation mechanism as a way
to avoid the experimental constraints, is not nalural.

Notice also that for the first set of parameters squarks are lighter
(=~ 500C/eV) than for second omne (=~ O(1TeV)), so that the corre-
sponding values of the nEDM are consequently bigger, as it should
be expected.

[t is of interest to assess what are the important conlributions between
which cancellation oceurs. For this purpose, we have studied a specific
example (see Tab. 7.2), and considered all the single different contri-
butions to the final values of the nEDM and ¢cEDM. We have chosen
the values for the various parameters in a way to have a value of the
nEDM and ¢EDM in agreement with the experimental constraint, for
the light § (7). In general, we have found that the relevant parameters
for cancellation are My, Mq,, My, and M,. M; in fact just enters the
neutralino mass malbrix, which gives a smaller contribution when comn-
pared to the chargino and gluino ones, and the neutron EDM varies
weakly with M, and A; for i=u, d.

The stop soft terms enter only in the gluonic operator contributiown,
which is found to be always negligible compared to the other contribu-
tions. In Fig. 7.5, 7.6, 7.7 and 7.8 we can see the nEDM as a function of
the relevant parameters for cancellation, i.e. we have varied one single
parameter each time and kept fixed the others, for the set 7.2.

To better understand what confributions are more relevant, and
whether cancellation really takes place, we need to plot the single con-
tributions as a function of one of the above four parameters, which are
the ones to which cancellation is more sensitive. The graphs in Fig,
7.9, 7.10, 7.11 and 7.12 show the ratio of the contributions normalised
to the experimental upper bound on nEDM, and plotted as a function
of My. The dotted lines show ==d, where d is lhe experimental bound
on the magnitude.

The hehaviour of the chargino contribution is explained referring to
7.14; it is clear that there are regions of the paramefer space, when
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Figure 7.1: Tab. 7.1, light
squark casc. Number of sets vs
logro{|nEDM]|) for 6;=0.001
rad (squares), 0.01 rad (dia-
monds), 0.1 rad (bursts) and 1
rad (crosses). The experimen-
tal constraint is also shown.
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Figure 7.3: Tah. 7.1, hcavy
squark case. Number of sets vs
logio(|nEDMY) for 6,=0.001
rad (squares), 0.01 rad (dia-
monds), 0.1 rad (bursts} and 1
rad {(crosses). The experimen-
tal constraint is also shown.
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Figure 7.2: Tab. 7.1, light
squark case. Number of sets vs
logrw(inEDM]) for ¢,=-0.001
rad (squares), -0.01 rad (dia-
monds), -0.1 rad (bursts) and

-1 rad (crosses). The cx-
perimental constraint is also
shown.
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Figure 7.4: Tab. 7.1, heavy
squark case. Number of sets vs
logie(InEDM|) for 6,=-0.001
rad (squares), -0.01 rad (dia-
monds), -0.1 rad (bursts) and
-1 rad (crosses). The ex-
perimental constraint is also
shown.
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Table 7.2: Case (A). A particular case with cancellation.

i | 88.758 Gev |
Mg, | 563.570 GeV |
My, | 252357 GeV
My, | 128.123 GeV
Mg, | 727.720 GeV
M, | 996.014 GeV
Mz | 330.501 GeV
M, | 426,348 GeV
A, | 16.880 GeV
Aq_ | -462.039 CeV |
A, | 24.548 Gev
4. | 355501 GeV
M, | 203.128 GeV
My | 475.500 GeV
M, | 370.373 GeV

107
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Figure 7.9: Tab.7.1. Chargino
u quark contribution
(duch) (coutinuous line), neu-
tralinos u quark contribution
(dun) (dotted line), gluino u
quark contribution (dug) (dot-
dashed line) and n quark one
loop ~-chromoeleciric contri-
bution (diamonds), normalised
with the experimental upper
bound, as a function of Mj.
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contribution {(cru) (continuous
line), u guark chromoelectric
neutralino contribntion (crun)
(dotted line), u quark chro-
moeelectric ghiuine contribution
(crug) (dot-dashed line) and
u guark total chromoelectric
coutribution (diamonds), nor-
malised with the experimental
upper bound, as a function of
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Figure 7.10; Same as in Fig.
7.9, but for the d quark contri-
bution.
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Figure 7.12: Same as in Fig.
7.11, but lor the d quark con-
tribution.
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M, is O(100 GeV), where the u and d quark chargine contribution will
have a peak, when there is a high degeneracy between the two chargino
eigenvalues. We have seen that this does not oceur for high values
of Ma, as it should be expected. Also, the d quark contribution can
be smaller than the u quark conéribution, despite the fact that the d
quark is twice as heavy than the u quark, due o the various terms
which enter the final expression of df-—-chargino and df_cha,.gmo. This in
turn explains the fact that for the specific example shown cancella-
tion occurs between the d and u quark contributions. For this to be
possible, the d quark contribution must be suppressed in order to be
comparable to the smaller u quark contribution, and also because the
former one contributes 4 times more than the latter one. The d quark
contribution is reduced dne to the cancellation between the one-loop
electrowagnetic contribution and the chromoelectric one, especially as
far as the charginos diagrams are concerned.

The gluonic operator, on the other hand, is always small. In fact, a
region of the parameler space can always be chosen so that this is true,
as the stops soft terms do not enter the other contributions.

Those sets which minimize the neutron EDM do not necessarily do
s0 for the electron EDM and vice versa. However, sets can be found
for which both nEDM and eEDM are below the experimental lower
bounds, as for the case of Tab. 7.2. The number of sets for which this
is possible is always very small compared to the overall number of sets
{< 100 out of 2000}, hinting to the need for a high fine tuning.

As already said, the p paramecer i varied randomly together with
vs; it is of some interest to see which values of these two parameters are
preferred for cancellation to occur. We show in Fig. 7.13, 7.14, 7.15,
7.16 the values of p against @3 for case (A) and the two sets of Tab.
7.1; we will just consider @;=1, -1 rad respectively, and those sets such
that the nEDM is below the experimental upper limit; the diamonds
and squares refer to values of »g smaller and bigger than 250 GeV re-
spectively.

The graphs for #;=-1 rad and & =1 rad are one the reversal of the
other, with respect to the f3=~0 axis, as expected. Also, v3 does not
seem to be of any importance, as diamonds and squares are equally
present. However, there are preferred regions of u values. This again
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Figure 7.13: Light § () case.
Values of z vs 83 for 6,=1 rad
and nEDM<exp.upper limit.
Squares are for vs >250 GeV,
and diamonds are for vs <250

GeV.
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Figure 7.13: heavy ¢ (1) case.
Values of p vs #3 for 0;=1 rad
and nEDM<exp.upper limit.
Squares are for vz >250 GeV,
and diamonds are for v3 <250
GeV.
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Figure 7.14: Same as in Fig.
7.13, but for #;—=-1 rad.
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Figure 7.16: Same as in Fig.
7.15, but for #,=-1 rad.
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Table 7.3: Case (B)

Mg, | Mgn | Mp, | Mg n
340 360 195 225

AO__ I N[ﬂ ! -Mfl M:a
9507|280 . 75 | 85

is duc to the fact the chargino contribution, for which g is a crucial
paramcter, is bigger than the others.

Similar graphs are given for the eDDM in Fig. 7.17, 7.18, 7.19, 7.20.
Notice that the light § (/) case gives fewer sets in agreement with the
experimental upper bound on nEDM (eEDM) than for the heavy & (I)
case, as expected.

7.4.2 Case (B)

S0 far we have just varied randomly all the parameters entering the
mass matrices. Let us now consider the case (B), where all the soft
terms are fixed to the values of Tab. 7.3, taken from [62], where
for the left-handed squarks soft terms, Mg, = My,, for the right-
handed squarks soft terms M, = Mg,, and analogously for the slep-
tons, Mg, = My, and M., = Myg; also, for all the trilinear couplings,
A; = Ay, We obviously expect a smaller degree of cancellation, as the
only parametcrs varied arc vy and p; however, these parameters are
quite important as far as the chargino contribution is concerned, and
so we still expect cancelation to be possible. This does accur, but in
only about one tenth as many cases as case (A).

We once again plot the number of sets as a function of the correspond-
ing nEDM, as in the previous analysis, in Fig. 7.21, 7.22, and the oncs
for eEDM in Fig. 7.23, 7.24. We show in Fig. 7.23, 7.26, 7.27 and 7.28
the values of ;2 which give cancellation, for the nEEDM, as given before,
and found that, as in casc (A), nogative values of g are preferred.

7.4.3 Case (C)

Let us now consider case (C)}. The parameters mqg, A and my are var-
ied within the ranges 200-800 GeV, -100-100 GeV and 200-800 GeV
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Figure 7.17: Light sguark case.
Values of u vs 83 for ;=1 rad
and sEDM<exp.upper limit.
Squares are for v3 >250 GeV,
and diamonds are for v3 <250
GeV.

Figure 7.19: Heavy squark
case. Values of y vs 83 for #,=1
rad and eEDM<exp.upper
limit. Squares arc for vy >250
GeV, and diamonds are for
vy <250 GeV.
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Figure 7.18: Same as in Fig.
7.17, but for §,=-1 rad.

Figure 7.20: Same as in IMig.
7.15, but for #;=-1 rad.
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Figure 7.21: Case (B). Num-
ber of sets vs lngio{|nEDM]|)
for ¢;=1 rad.
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Figure 7.23: Case (B). Num-
ber of sets vs logig(|eED M|}
for 01=1 rad.
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Figure 7.22: Case (B). Num-
ber of sets vs logo(inEDM;)
for (=1 rad.
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Figure 7.24: Case (B). Num-
ber of scts vs log(leEDM|)
for §,=-1 rad.
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Squares are for vy >250 GeV,
and diamonds are for vy <250
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Figure 7.27: Case (B). Val-

ues of u vs f3 for 6,=1 rad
and cEDM<exp.upper limit.
Squares are for v >230 GeV,
and diamonds are for vz <250
GeV.
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Figure 7.26: Same as in Fig.
7.25, but for #,=-1 rad.
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7.25, but for #,=-1 rad.
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Figure 7.29: Case (C). Num- Figure 7.30: Case (C). Num-
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for #,==1 rad. for ,=-1 rad.

respectively. Ag is restricted to such a small range in order to avoid the
stop masses squared from becoming negative, which would correspond
to a colour breaking solution.

The results are shown in Fig. 7.29 and 7.30 for the nEDM, and 7.31,
7.32 for the eEDM. There are about {ive times as many acceptable cases
as in case (B).

Again, we show in Fig. 7.33, 7.34, 7.35, 7.36, the values of x which
give cancellation, for the nEDM and eEDM, as given before. We notice
that this time we were able to find more cases which gave an eEDM
below the experimental upper constraint, because of the bigger number
of parameters being varied randomly, as compared with case (B).

The conclusion is again that, even for large phases, #=0(1), it is possi-
ble to obtain cancellation such that the resulting values of nEDM and
eEDM are smaller than the current upper limits. However, this is in
general not easy to achieve (few tens of cases out of two thousand), and
requires extreme fine tuning of the parameter space.

The aim of the analysis presented in this chapter was to study whether
big CP violating phases are acceptable or not. This case must be stud-
ied asg the weak SCPV scenario may be riled out, by fitfure experiments,
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Figure 7.31: Case (C). Num- Figure 7.32; Case (C). Num-
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for ;=1 rad. for 8,=-1 rad.

placing constraints on the smallness of ¢y and ;.

The conclusion of the whole analysis is that SCPV within the NMSSM,
with the assumptions we have discussed, requires, unless the sparticle
masses are very large, CP viclating phases to be of the order of Q{1071)
or smaller, in order to have the nEDM and eEDM smalier than the ex-
perimental upper [imits, over a wide area of the parameter space. This
in turn requires the lightest neutral Higgs boson to have a mass smaller
than 1WZ-




118

400 ™ ™
)
200 |~ %D i3
A
g
nH?' DB a o
T W, 8 g ¢ o
4 o
—anof . O‘OOQE -
')
Bag. 200G
—4n0, 880 —
(m] <&
[ oo ED ]
gop s e Do L]
-2 -1 0 1 3

Figure 7.33: Case (C). Val-
ues of p vs 8 for 6,=1 rad
and nEDM<exp.upper limit.
Squares are for vy >250 GeV,
and diamonds are for vy <250
GeV.

Figure 7.35: Case (C). Val-
ues of 4 vs @3 for =1 rad
and eEDM<exp.upper limit.
Squares are for vz >250 GeV,

and diamonds are for v3 <250
GeV.
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Figure 7.34: Same as in Fig.
7.33, but for #;=-1 rad.

Figure 7.36: Same as in Fig.
7.35, but for ,=-1 rad.
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Figure 7.38: « is the photon, gy ({;} are quarks (leptons)
and ¢, (I} are squarks (sleptons).
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Figure 7.39: g are gluons and g are gluinos.
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Figure 7.41: ¢ }}; 1 arc right-handed and left-handed stops.
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Chapter 8

Conclusions

In this thesis we have discussed Spontancous CP Violation wifhin the
Next-to-Minimal Supersymmetric Standard Model. We have consid-
ered the most general superpotential, with no assumptions on the val-
ues the sofl-terms present in the corresponding effective potential. This
results in a model with many independent parameters.

We have conducted a systematic analysis of the parameter space, and
studied the resulting Higgs spectrum. We have discovered a behaviour
similar to the one predicted by the Georgi-Pais theorem, i.e. for weak
SCPV a light Higgs pseudoscalar is present. However, unlike what
happens in the MSSM, this light psendoscalar can be naturally highly
singlet, and so invisible at the present colliders, as we have scen with
regard to LEP2.

We have also studied the constraints coming from the upper limits on
the neutron and electron electric dipole moments, in connection with
the case where the CP viclaling phases are large. We have found that
the resulting nEDM and eEDM can be quite small, due to cancellation
among the various terms contributing, but that this is not a natural oc-
currence, suggesting that fine tuning of the parameter space is required.
In view of this result, the SCPV scenario we outlined stands only [or
small or relatively small phases (8, f3 <0.1 racd) with the consequence
of a Higgs boson lighter than Mz, which, as already noted, would be
a pseudoscalar and predominantly singlet in a wide region of the pa-
rameter space. The predicted Higgs spectrum is likely to be tested by
future colliders such as LHC, thanks to the much higher luminosity and
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centre of mass energy.




Appendix A

Coefficients in the RG
equations

The f; coefficients which appear in the right-band side of the two dou-
blets RG equations are, including also the b quark conftribution, the
following:

A=12Y7 Y1 (95 +39]) +2Y7 ~4YP +4Y3 Y, + 277+
+}l(9 gz + 69391 +3g1) ~ 12V 1
fo=12Y Y2 (995+3g8)+2 Y212 (Yo h2—h)+4 Y244 Yo V42V +
-%[993 +695 97 +397)
f3=2(Yi+Yo) (3Ya+Ya)=Y3 (9 ga+3 ¢7)+6 Vo AIH+A Y242V Ye+2 Y+
+2(00} ~ 630t +3g) — 12024}

Jo=2Y, (Vi +Y2+2Y, +4Y3) +4Y7 — Ye (995 +397) + 395 g1+
+6 Yy hy + 120 by

F=2Y;(3Y --2Ys 1 4YR) +2Ys (2Ya +Y,) + 8Y2—
1 _ o

—5 (0% +30) Vs +6Y5 b

fo=2Ya(BYs+2Ys+4Ye) +2V5(2Vy +Yy) +8VA—
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1
_EVG (992 +3¢gY) +6Yyh?

. | 1 . .
Fr=2Y (% 2(Ya+Ya+ Yo+ Vo)) = 5 V7 (995 +397) + 37 (B + 1)

fo= 2V 42V 44V 420V

where ¢1, g2, g3 are the gauge coupling constants,




Appendix B

Mass matrices

We assume a generic SUSY breaking scale, take the most general super-
potential as well as take all the soft masses as indcpendent parameters.
We take the the basis

(Re(fy), Im{H1), Re(ILy), Im{H,), Re(N), Im(N)).

The neutral Higgs bosons mass matrix at the tree level is then the
following

M*(1,1) =4 Y v cos(6y)? + 2 V102 +2(Yy + Y)) vs + 2502 + 2%+

+4 s ks cos(f3) + 2m3
M*(1,2) = 4Y, 9] sin{6:) cos(6.)

MP(1,3) = 4 (Vs + Y3) vy vacos(01) + 2 Yy vZ cos(263) — 2m2,+

+2 Mg Uy COS (03)

M?*(1,4) = 4 (Y + Ya) vy vac0s8(0)) — 2msvs sin(Bs) + 2 Yy v sin(20:)

129
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M?(1,5) = 4 Y7 w3 vy cos(—83)+4 Yy vy vs cos()) cos(6s)+2 my vat+4du k vy cos{0)

M*(1,6) = 4 Ysv3 v, sin(fs) cos(6,) 4 4 Yy vy 13 sin(—63)

M*(2,2) = 4Y1 0l sin?(6;) 4 2Y, vF -+ 2 (Vs + Ya) w2 + 2V w? + 207+
44p kv cos(ls) + 2m?3

M?(2,3) = —4 (Y3 + Yy) v v sin(0)) — 2 Y72 5in(203) + 2 ms vy sin(6s)

M?(2,4) = —4 (Y3 + Y3) v1 v + 2 Y7 0] cos(203) — 2m3, + 2 ms v cos(8;)

M?(2,5) = 4 Yy vy vy 3in(—0) —4 Yy vz v, cos(f3) sin(6) —4p k visin(6,)

M‘2(2, 6) = —4 Yy vz vy cos(—0;) — 4 Yg vz sin(fy) vy sin(0)) -+ 2 ms ve

M%(3,3) =4Youi +2Yovs +2 (Y Yy) vf 4 2V 02 = 207+
+apk v cos(f3) + 2 m3

M2(3,4) =0

Mf2(3, 5) =4Y: v, 4 COS(HI — 03) 4 Ysup i 605(93) + 4,& kwvg-I-




131

-+2mg vy cos(fy)

M*(4,4) =2V v +2 (Ya+Yy) vi+2 Yy v +2p” + dp kvs cos(f) +2m3
M?(4,5) = ~4 Yy uy vy sin(f — 03) + —2mp vy sin(6))
M?(4,6) = 4 Yy vy vz cos(8) — 8;) — 2ms vy cos(f)

M*(3,5) = 4 Y vy vacos(6h) -+ 2 Vg (402 cos(B3)? = 203)+

+2 (Yo vl + Yeu3) + 2mi +4m3 + 4me v3 cos(f3)
M?2(5,8) = 4 Yy ny g sin(6y) -+ 8 Yz v3 sin(f3) cos{(8s) - 4mg vs sin(f3)

M?(6,6) = —4 Yz v vy cos(8;) |- 8 Yy vl sin®(8y) + 4 Ya vi-t
+2 (Yavf + Yo uld) + 2m3 — 4mi — dmg vz cos(fs).
For the neutralinos, in the basis
(_7;)‘27 _?:)\17 71!)2{1 ’ 4,[’?:[2)

where A; and Ay are the SU(2) and U(1) gaugino fields, o}, and ¢,
are the Higgsino fields, aud )y is the sfield correspending to the N
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field, the mass matrix is
Mn(1,1} = M, Mn(1,2) =0
Mn(1,3) = —% e /2 Mn(l,4) = %vg/\/f
Mn(1,5) =0 Mn(2,2) — M,
Mn(2,3) = &, A e /2 Mn(2,4) = — &y e /2
Mn(2,5) =0 Mn(3,3) =0 |
Mn(3,4) =kvie®™ + 1 Mn(3,8) = kv,
Mn(4,4) = Mn(4, 5) = kv ¥
Mn(5,5) = =2\ vy el

where M is the SU{2) gaugino mass and M) is the U(1) gaugino mass.
For the charginos, in the basis

(—-i)\i,f,:’;f'&)
where A\E are the winos, and qb}l}l are the higgsinos', the mass matrix is
Mc(1,1) =My Mc(2,2) = ~p — Avge

Me(1,2) = Bvp Mc(2,1) = % tle

Note that v, = {vg,)"
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Neutral Higgs boson mass
matrix in the unitary gauge

In a general gauge the lwo neutral Higgs boson fields and the N ficld
are defined as

HY = Re(HY) + i Im(HY) (C.1)
H) = Re(Hy) + i Im(H3) (C.2)
N = Re(N) + i Im(N) (C.3)

In the unitary gauge the two neutral Higgs boson fields are instead
defined
HY = et + et (S — i (G cosf — Asinf)) (C.4)
HY = v + 5 +i(G sinB + Acosf) (C.5)
where 53, Ss and A are the two scalar fields and the pseudoscalar one
respectively, and G is the Goldstone boson field. The N field does nol
play any role in this transformation, as the Goldstone boson is in the
H; H, sector.
We can then reexpress the imaginary and real parts of HY and HY in
terms of Sy, 99, G and A through the orthogonal transformation whose

matrix is
A B
o
B C
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where
P(1,1) = costy P(1,2) = —sinfsingy, P(1,3)=10
A= P(1,2) P(2,2) = sinfcostty  P(2,3)=0
P(1,3) P(2,3) r(3,3)=1
P(l,4) =0 P(1,5)=0 P(1,6) = cosB3sinb,
B=| P(2,4) =0 P(2,5) =0 P(2,6) = —cosficosth
P(3,4)=0 P(3,5) =0 P(3,6)=0
and
P(4,4)=0 P(4,5)=0 P(4,6) = sing
C=| P(4,5) P(5,8)=1 P(56)=0
P(4,86) P(5,86) P(6,6)=0

in the basis
(Re(Ily), Im{Il)), Re(Hy), Im(H;), Re(N), Im(N)).

The matrix P transforms the original 6x6 neutral Higgs boson mass
matrix squared, M2, into a 6x6 with the sixth colum and row made of
noughts, Mg, i.e.

Pt MEP = ME.

This transformation is necessary when the real couplings among neutral
Higgs bosons (for example the ZhA coupling), given by the products
of the corresponding physical eigenvectors, are required, so that the
Goldstone boson component is rotated away.
Alternatively, one might work out the neutral Higgs boson mass matrix
squared directly in the unitary gauge.



Appendix D

Diagonalization of squarks,
sleptons and chargino mass
matrices

The general squark mass matrix is

ME  ME,
iMle ﬂ/fgz
where the matrix elements are in our case, for the up squarks

M(1,1) = md, +mi + Ay, M(2,2)* =mj, +m2 + Az

M(1,2)* = H,(Aywa €% + oy €9 + Aoy 040 - M(2,1)? = MY,

where
Dy = (T3 — Q% 80% 0w )cos23 M2
and
M(1,1) = m, +mi + Ay, M(2,2)? = mj +mi+ Dy

M(1,2)* = Hy(Ag; & + pug e + Awy 02408 0 11(2,1)% = My,
for the down squarks, where
Ay = (T8 — QLarsinOy cos23 ME.
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This matrices are diagonilized by the unitary transformation

DIM?D, = diag(Ay, As)

with ) o
D cos;} —singe e
= R 3 N 9, .
e .smfzie“b“ cos;
‘'he phase 0, is given by tand, = —2¥al whereas ¢, 1s such that
phase Uy IS § y q ME, ML, L q

Mg, = | M3, e

For the sleptons we have analogous formulas, with corresponding soft-
terms. However, there are not right-handed neuirinos and s-neutrinos.

The chargino mass matrix is not hermitian, not symmetric and not
real, so that two unitary matrices are required to diagonilize it, i.e.

UMV = My

with Mp diagonal but not real. The matrices I and V satisly the
relation

V(MEMAOV™=Y = Mp M}, = U™ (M ML) (U™
and can be taken to be

U = cos%} ----s'm%ke_w’“
T sinSe cos%L

and .
V= (:osfé-Z *si-ﬂ,%‘i g2
T\ sinZe'® cos%‘i )

Writing 8; = MiMe and Sy = MoM], the phases 0y, fa, $1 and .
arc given by

2¢/51(21) 87 (21)

53 (11) — 51(22)

an(0y) = 2/ S95(21) S3(21)

S,(11) — 5,(22)

tan(f) =
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and Iim(S:(12))
tanldr) = s 12)

| _ Im(S,(21))
tan(ds) = Real(5,{21)

We can redefine the matrix U’ so that the eigenvalues of Mo are also
real; this is done multipling U” by the matrix H, so that we have now

U=HxU

with .
émn
w (%)

where 7y, and =, are the phases of the diagonal elements in Mp.
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