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Abstract

Interest in the flavonol content of food products continues to be fuelled by reports of 

wide ranging health benefits, many dependent on the ability of flavonols to act as 

powerful antioxidants (Rice-Evans et al, 1997). Recent work has identified tomato 

fruits as a rich source of flavonols (Hertog et al, 1992, Crozier et ah, 1997).

In this study the flavonol content of tomato fruits was investigated in relation 

to variety, size, season and country of origin. The flavonol content of ten commonly 

consumed tomato based food products was also assessed.

Free and conjugated flavonols were identified and quantified using reversed 

phase HPLC with sensitive detection by UV and fluorescence detection.

The total flavonol content of tomato varieties analysed in this study varied 

from 0.9-22.2 qg/g fresh weight. Smaller cherry tomato fruits grown in warm sunny 

climates such as Spain and Israel were found to contain far higher concentrations of 

flavonols than British fruits. The adoption of ‘high flavonol’ tomato varieties and 

production methods allowing greater sun exposure of developing tomato fruits may 

allow for an increase in the flavonol content of British produce. Tomato flavonols 

were able to survive industrial processing methods and could be detected in a wide 

range of tomato-based food products. Tomato juice and tomato piuee were found to 

be particularly rich in flavonols, 14-16 mg/L and 70 qg/gfwt respectively. This study 

has enabled the identification of tomato fruits and processed products rich in 

flavonols.

Identification of flavonol rich foods is clearly important with respect to their 

potential nutritional value. However, it is also necessary to determine whether these 

flavonols are absorbed by the human body during digestion. Following consumption
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of Spanish cheiTy tomatoes or tomato juice, conjugated quercetin was detected 

unchanged in plasma and urine. This suggests that tomato flavonols are absorbable 

and bioavailable.

Flavonol synthesis in plants involves complex environmental regulation, the 

principal components of which include light, nutrition, disease and temperature. 

Previous studies indicated a link between plant nutrition and flavonoid accumulation 

but were unable to identify individual flavonoid compounds. In addition, although 

tomato was frequently used as a test system for the study of nutrient stress on 

flavonoid accumulation, the effects of nutrition on tomato fruit tissues were not 

assessed.

The effect of reduced nitrogen and phosphorus nutrition on the flavonol 

content of plant tissues was initially tested on seedlings of Arabidopsis thaliana and 

tomato. Conjugated quercetin, kaempferol and isorhamnetin were detected in both 

Arabidopsis and tomato seedling tissues. Exposure to nitrogen or phosphate stress 

demonstrated a clear inverse relationship between nitrogen and phosphate nutrition 

and flavonol content. On the basis of this observation, a trial was established under 

commercial conditions to determine the effect of nutrient stress on the flavonol 

content of tomato leaf and fruit tissue. In line with previous work (Carpena et al., 

1982; Bongue-Baitelsman & Phillips, 1995) reduced nitrogen availability caused an 

increase in the flavonol content in the leaves of tomato plants, reduced phosphorus 

nutrition did not elicit this response. Low nitrogen or phosphate availability caused an 

increase in the flavonol content of tomato fruit skins early in the ripening process. 

Any effect of nutrient stress on the flavonol content of tomato fruit tissues was lost as 

ripening progressed. This study provides clear evidence that the flavonol content of 

plant tissues is influences by their nutritional status.
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The effect of light quality and low temperature on flavonoid biosynthesis was 

investigated by studying chalcone synthase (CHS) promoter activity and transcript 

accumulation in Arabidopsis thaliana. CHS gene transcription is Imown to be 

regulated in Arabidopsis by UVB and UV A/blue light via separate but interacting 

phototransduction pathways (Fuglevand et al., 1996; Cluistie & Jenkins, 1996). In 

addition, CHS transcription is reported to increase in response to low temperature in 

the presence of light (Leyva et al, 1995).

The effect of combining blue, UVA or UVB light with low temperature on 

CHS promoter activity was assessed using the transgenic Arabidopsis line NM4 

containing the Sinapis alba chalcone synthase promoter linked to a p-glucuronidase 

(GUS) reporter gene. Combining blue/UVA light with low temperature (10 °C) 

induced a synergistic increase in CHS-GUS expression and CHS transcript 

accumulation. This response indicates that cold and blue/UVA light regulate CHS 

expression via separate but interacting signal transduction pathways. Exposing plants 

to UVB light and low temperature did not elicit this response.

The Arabidopsis hy4 blue/UVA photoreceptor mutant (Cashmore, 1997) was 

employed to determine whether the synergistic interaction between low temperature 

and blue/UVA light involves a signal transduction mechanism originating from the 

CRYl photoreceptor. hy4 seedlings were exposed to blue/UVA light at 10 or 20 °C. 

The synergistic induction of CHS transcription obsei^ed in wild type Arabidopsis 

seedlings was not observed in the hy4 mutant. It is therefore proposed that the signal 

transduction mechanism originating from cold perception is interacting with the 

blue/UVA phototransduction pathway originating from the CRYl photoreceptor.
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Chapter 1 Flavonoid Occurrence, Regulation in Plant Tissues and 

Dietary Contribution to Health

1.1 Introduction

Recent work has shown that a wide range of fruit and vegetables contain 

potentially beneficial non-nutritive compounds, flavonoids (Hertog et aL, 1992). The 

production of these compounds in plant tissues is influenced by a wide range of 

enviromnental factors including light, nutrition, disease and low temperatuie (Landry ei 

aL, 1995, Bongue-Bartelsman & Phillips, 1995, Dixon & Paiva, 1995, Christie et a i,

1994). Due to the effects of environmental regulation on flavonoid production, fruits and 

vegetables from different sources may vary significantly in flavonoid content (Hertog et 

aL, 1992, Crozier et aL, 1997).

The flavonoids are a diverse family of low molecular weight polyphenolic 

compounds found ubiquitously in plant tissues. These compounds are usually found 

conjugated to sugar molecules and are commonly found in the upper epidermal tissues of 

the plant.
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Flavonoids are based on a thiee-ring structure (Figure 1.1), with two benzene rings (A & 

B) linked through a heterocyclic pyran ring (ring C).

Flavonoids can be separated into six main groups according to their chemical 

structure, flavones, isoflavones, flavonols, flavanones, flavan-3-ols and anthocyanins.

Antliocyanins- anthocyanins are responsible for the red/purple pigmentation of flowers, 

roots, stems and leaves. The vivid colours produced by anthocyanins are based on three 

structures, cyanidin (Magenta), peonidin (pink) and delphinidin (mauve, violet) (see 

Figure 1.2).

OCH

Cyanidin Peonidin Delphinidin

Figure 1.2 Basic Anthocyanin Structures Responsible for Plant Colour

These colours can be varied by co-pigmentation with other flavonoids and phenolics to 

produce a wide range of colours (Brouillard & Dangles, 1996). The anthocyanins play an 

important role in the attraction of pollinating insects and animals and in seed dispersal. 

Anthocyanin production can be induced by a variety of environmental factors including 

light (Li et ah, 1993, Brandt et al., 1995), low temperature (Shvarts et ah, 1997, Cliristie 

et ah, 1994), pathogen attack (Dixon & Paiva., 1995) or nutritional stress (Bongue- 

Bartelsman & Phillips, 1995). The role of the anthocyanins in each of these situations is



not entirely clear, although evidence suggests that anthocyanins may filter out harmful 

wavelengths of light (Burger & Edwards, 1996) and may also protect plants against 

pathogen attack.

Isoflavonoids- The isoflavonoids ai'e found almost exclusively in the family 

Leguminosae. More than 850 isoflavonoid aglycones have been reported of which the 

largest single group are the isoflavones which comprises more than 350 compounds. A 

range of fimctions have been proposed for the isoflavonoids. Some members of this 

family have been identified as phytoalexins with bactericidal and fungicidal activity, e.g 

the isoflavone glyceollin (Strack, 1997). Isoflavonoids with toxic activities against insect 

predators have been identified. The isoflavonoid licoisoflavone B is known to deter 

insects of the genera Coleoptera from feeding on Lupiniis augustifolius of the 

Leguminosae (Harboume & Grayer., 1996). Isoflavonoids are believed to act as signal 

molecules between the nitrogen-fixing bacteria Rhizobium and members of the 

Leguminosae in conditions of reduced nitrogen availability (Kosslak et aL, 1987).

Flavonols- Flavonols contribute to the white, cream or yellow colours of flower petals, 

with an important role in attracting pollinating insects (Harbourne & Grayer., 1996). 

Flavonols are induced by high light levels and in particular exposure to UV-B radiation. 

The fiavonol structure absorbs radiation in the region 280-320 nm and therefore has the 

potential to protect against the penetration of damaging UV-B radiation (Sheahan, 1996). 

Some flavonols can act as feeding attractants for insects while other flavonols deter insect 

feeding. It was hypothesised by Harbourne & Grayer (1996) that at one time all flavonols



may have been inliibitory towards insects but that this inhibition has been overcome by 

some species of insect and henceforth these compounds function as attractants. Flavonols 

are induced by various environmental pressures such as pathogen attack (Dixon & Paiva., 

1995), nutrient stress (Bongue-Bartelsman & Phillips., 1995) and low temperature (Leyva 

et al., 1995). Enviromnental regulation of fiavonol production will be discussed in more 

detail in section 1.3.

Flavan-3-ols- Flavan-3-ols (catechins) as with other flavonoids are induced by stresses 

such as pathogen and insect attack. Flavan-3-ols are believed to act as feeding deterrents 

due to their astringent taste and inhibition of digestion. (+)-Catechin is known to be 

inhibitory towards predatory insects such as Heliothus zea (Lepidoptera) and 

Macrosiphum rosae (Homoptera). Conversely the catechin 7-0-xyloside attracts feeding 

insects of the order Coleoptera (Harbourne & Grayer, 1996). The polyphenolic structure 

of catechins may afford protection against damaging wavelengths of light. In addition, 

catechins form the structural elements of condensed tannins. Tannins cause the 

precipitation and cross linking of proteins; combination with these proteins produces 

complexes which play a structural role in plants and are used as physical barriers against 

pathogen attack (Haslam, 1998).

Flavones- Flavones in common with other members of the flavonoid family, are induced 

by many enviromnental stresses, including light and pathogen attack (Dixon & Paiva.,

1995). Flavones such as luteolin contribute to the pigmentation of white flowers 

attracting pollinators by visual appearance and by absorption of UV radiation to which



many species of insect ai'e sensitive (Harboume & Grayer., 1996). In addition a variety of 

flavones are known to be inhibitory towaids feeding insects, luteolin and apigenin are 

inhibitory towards the growth of Heliothus zea larvae (Lepidoptera).

Flavanone- Flavanones such as naringenin ai’e precursors of all other flavonoid family 

members and as such are induced by a wide range of environmental factors. Flavonones 

themselves are likely to attenuate the absorption of UV-B, in addition there is some 

evidence that flavonones may protect against insect attack. Isolonocarpin was found to be 

inhibitoi’y towards the larvae of army worms, Spodoptera exempta, Lepidoptera, 

(Harbourne & Grayer., 1996).

It is clear that the flavonoids have wide ranging functions enabling plants to 

respond to their environment. Some of these responses are better understood than others. 

The examples given above are likely to represent only a fraction of the possible functions 

of this complex family. Within each group significant structural variation is possible due 

to the large number of substitution patterns available. Such substitutions include 

hydrogenation, hydroxylation, méthylation, sulphation and glycosylation. This variance 

may account for the large number of flavonoid structures presently characterised, over 

4000 and this number is still increasing, (Cook & Samman., 1996).
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1.2 Flavonoid Biosynthesis

Biosynthesis of flavonoids begins with phenylpropanoid units derived from the shikimate 

pathway (Figure 1.4). This pathway, found only in microorganisms and plants, is 

associated with the production of the aromatic amino-acids phenylalanine, tyrosine and 

tryptophan. Phenylalanine serves as a precursor for secondary metabolism (Herrmann,

1995).

General phenylpropanoid metabolism involves the deamination of phenylalanine 

by phenylalanine ammonia lyase (PAL), producing cimiamate. This is then acted upon by 

chmamate-4-hydroxylase (C4H), in an NADPH and oxygen dependent reaction leading 

to the formation of 4-coumarate (Heller & Forkmann, 1994). The enzyme 4-coumarate: 

CoA ligase (4C1) produces CoA esters from 4-coumarate and other cinnamic acids in a 

reaction requiring ATP, Mĝ "̂  and CoASH. This enzyme is thought to control the flux of 

ciimamic acid esters into each of the specific pathways of phenylpropanoid biosynthesis.

All flavonoids are derived from a chalcone intermediate. The formation of the 

chalcone is specific to flavonoid biosynthesis and is catalysed by the enzyme chalcone 

synthase (CHS). Chalcone synthase catalyses three successive condensation reactions 

with three acetate units derived from malonyl-CoA, producing the intermediate 2'4'6'-4- 

tetrahydroxychalcone (Heller & Forkman, 1994). Chalcones produced by CHS serve as a 

substrate for chalcone isomerase (CHI), involving cyclisation with the production of the 

flavonoid naringenin. From naringenin the pathway branches to form isoflavones, 

flavones, anthocyanins, flavan-3-ols and flavonols (Figure 1.4). In addition to the



substitution of methyl and hydroxyl groups, introduction of sugar moieties is common, 

forming conjugated flavonoids with increased solubility.

Table 1.1 Enzymes Involved in Flavonoid Biosynthesis

General metabolism

PAL Phenylalanine-ammonia lyase
ACC Acetyl-coA Carboxylase

General Flavonoid Metabolism

C4-H Cimiamate 4-hydroxylase
4CL 4-Coumarate : coA Ligase
CHS Chalcone Synthase
CHI Chalcone isomerase

Isoflavone Svnthesis

IFS 2-hydroxyisoflavanone synthase
IFD 2-hydroxyisoflavonone dehydratase

Flavone Synthesis

FNS Flavone synthase
F3'H Flavone 3' hydroxylase

Fiavonol Svnthesis

FHT Flavonone 3' hydroxylase
FLS Fiavonol synthase
FL3'H Fiavonol 3' hydroxylase
FL3'M Fiavonol 3' methylase
FL5'H Fiavonol 5' hydroxylase

Anthocyanin Svnthesis

DFR Dihydroflavonol reductase

Catechin Synthesis

LAR Leucoanthocyanidin 4-reductase
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1.3 Environmental Regulation of Flavonoid Synthesis in Plant Tissues

1.3.1 Effect of Light on Flavonoid Synthesis

One of the putative functions of flavonoids in plants is the absorption and safe dispersal 

of harmful frequencies of radiation (Landry et aL, 1995). The synthesis of flavonoids is 

up-regulated in response to light stress, particularly UV-B (Fuglevand et aL, 1996). In 

addition the location of flavonoids in the upper epidermis of leaves and stems could 

reduce photo-induced damage to the photo synthetic mesophyll.

Light is constructed of a range of wavelengths from ultraviolet to infrared, 

photosynthetically active radiation lies in the region 400-700 nm, violet to red. In order to 

protect themselves against shorter wavelength, potentially damaging radiation, plants 

must be able to detect a wide range of light qualities. Known photoreceptors include 

phytochi'omes (red/far-red), cryptochiomes (blue/UV-A), phototropism and a putative 

UV-B photoreceptor. Such receptors cannot work in isolation. Complex interactions in 

the transduction of information from the various photoreceptors must occur in order to 

construct a complete pictui'e of the light environment (Fuglevand et aL, 1996). Such 

interactions are only now being elucidated.

1.3.1.1 Phytochrome

Phytoclu'ome was the first photoreceptor to be isolated and characterised. It consists of a 

116-127 kDa polypeptide chain attached to a tetrapyrole chromophore named 

phytochromobilin. Phytochromes occur in two photo-interconvei'tible forms, the red light
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absorbing Pr (max 666 nm) and physiologically active Pfr absorbing far-red radiation 

(max 730 nm).

Two operationally distinct classes of phytoclnomes have been identified, type I 

and type II. Type I, light labile phytoclirome, predominates in etiolated tissue. On 

exposure to red light type I phytochrome is rapidly converted into the Pfr form initiating 

inliibition of hypocotyl elongation and cotyledon expansion. Type I Pfr is then rapidly 

degraded and type II, light stable, phytochi'ome becomes the major phytocluome 

photoreceptor in green tissue.

Phytochrome responses can be categorised as low fluence responses (LFR’s), 

very low fluence responses (VLFR’s), and high irradiance responses (HIR’s). Low 

fluence responses are induced at fluence 1-1000 pmol/m^ of red light. Such responses 

show classical red/ far red reversion, with induction at 650-670 nm and reversion at 720- 

740 nm. Induction produces Pfr stimulating germination, photomoiphogenesis and floral 

initiation. VLFR’s do not show R/FR reversibility. Fluence rates of 10'" -̂10'  ̂ pmol/m^/s 

red light can induce phytoclrrome responses. Low fluence of any light can induce this 

response, including FR, as Pr absorbs FR radiation sufficiently to induce a response. 

FIIR’s require prolonged irradiation in order to elevate Pfr levels over several hours.

Phytochrome genes commonly occur in small families. Five phytochrome genes 

have been cloned from Arabidopsis thaliana, PHYA-E encoding phytocluome 

apoproteins (Sharrock & Quail, 1989). PHYA encodes type I phytochrome. Phytochrome 

A (PhyA) predominates in etiolated tissue and is down regulated in light. phyA mutants 

have been isolated and may help determine the functions of PhyA. Arabidopsis long 

hypocotyl mutants, hyl, hy2 and hy6 are believed to contain a lesion within the
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chromophore biosynthesis pathway leading to a PhyA deficiency and loss of R/FR 

reversibility. However these mutants are likely to be deficient in all phytochi'omes (Chory 

et a l, 1989). hy8 is selectively deficient in PhyA; other species of phytoclirome appear 

unaffected. When grown in continuous white, red or end-of-day FR light, hy8 plants 

display no obvious mutant phenotype. In constant FR however, hy8 plants continue 

hypocotyl elongation and retain an etiolated appearance as if grown in darkness, (Parks & 

Quail, 1993). These mutants are characterised by a failure to perceive continuous far-red 

radiation, leading to an etiolated phenotype, i.e. increased hypocotyl length, reduced leaf 

and chloroplast development and reduced expression of photosynthetic genes, e.g. 

encoding chlorophyll a/b binding protein (CAE). A  PhyA deficient mutant isolated from 

tomato (aurea mutant) showed a similai' etiolated phenotype (Adamse et ah, 1988). PhyA 

over-expression in transgenic plants produces a phenotype opposite to that of the hy 

mutants. Over-expression of oat PhyA in transgenic Arabidopsis led to inhibition of 

hypocotyl elongation in light with a strong R/FR reversible response (Boylan et al 

.,1991). PhyA appears to mediate a FR-HIR. The role of such a response in seedling 

development may allow etiolated seedlings under a canopy to respond to continuous far- 

red radiation to allow photomorphogenesis to an auxotrophic growth habit. Subsequent 

light induced reduction in PhyA would allow phytocluome B (PhyB) mediated shade- 

avoidance strategies to take over. This would induce hypocotyl elongation allowing the 

seedling to penetrate the canopy in a photosynthetically competent state.

PHYB encodes a type II light stable photoreceptor. PhyB deficient mutants have 

been isolated, hyS (Arabidopsis) and Ih (cucumber). hy3 contains normal levels of PhyA 

and PhyC however PhyB content is reduced to -2.5 % of wild type with reduced levels of
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both PhyB mRNA and protein. The PhyB deficient phenotype in Arabidopsis was 

characterised by an elongated hypocotyl in the presence of light and a reduced shade 

avoidance response (Somers et a l, 1991). hy3 was also found to be unresponsive to end- 

of-day far-red treatment (Nagatani et a l,  1991). The Ih mutant was found to contain less 

than 1 % of wild type levels of PhyB, PhyA levels were unchanged but alterations in 

content of other phytochromes could not be excluded. The Ih mutant also showed 

increased hypocotyl elongation in light and loss of shade avoidance strategy (Lopez-Juez 

et a l, 1992). Over-expression of PhyB in transgenic Arabidopsis using a constitutive 

cauliflower mosaic virus 35a promoter led to a short hypocotyl phenotype in response to 

light, (Wagner et a l, 1991).

It appears that both PhyA and PhyB are involved in regulation of hypocotyl 

elongation. A full hypocotyl inhibition response to light may involve additional plant 

photoreceptors such as blue light receptors. PhyB also appears to play a role in the end- 

of-day far-red response and shade avoidance strategy affecting stem elongation, apical 

dominance and time of flower set and senescence.

PhyD shows -  80 % amino acid identity to PhyB and is believed to be involved in 

sensing R/FR ratio influencing shade avoidance. PhyD is produced mainly in cotyledons 

and leaves although both PhyD and PhyE are detected in the hook and hypocotyl of 

etiolated seedlings suggesting a role in de-etiolation, (Goosey et a l,  1997). PhyC shows 

greater similarity to PhyB and PhyD than to PhyA and PhyE.
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1.3.1.2 Phytochrome Signal Transduction

Tliree signal transduction pathways mediating phytoclirome responses have been 

identified. All pathways appear to originate from the activation of heterotrimeric G- 

proteins. These G-proteins consist of thi’ee sub-units, a,p and y. Activation occurs when 

the a-moiety binds GTP and dissociates from the p and y sub-units to bind a target 

enzyme affecting its activity. Hydrolysis of GTP to GDP deactivates the a-subunit which 

reassociates with the p and y units, (Roux., 1994).

Injection of oat PhyA protein into cells of the phytoclirome deficient tomato aurea 

mutant (au) restored phytochi'ome-mediated responses, e.g. anthocyanin accumulation, 

chloroplast development and photosynthetic gene transcription. When PhyA was injected 

along with an inhibitor of G-protein activation (GDPpS) phytoclirome responses were not 

restored. In addition, injection of an inhibitor of heterotrimeric G-proteins (A-subunit of 

pertussis toxin) also prevented restoration of phytoclirome responses. As all phytoclirome 

responses were prevented by inliibition of heterotrimeric G-proteins it was concluded that 

these activated proteins must play an early role in phytochrome signal transduction 

(Neuhaus et a l, 1993).

Injection of calcium or activated calmodulin into tomato au cells stimulated 

transcription of some photosynthesis-related genes resulting in chlorophyll containing 

plastids. Photosystem I or cytoclironie b6f complexes were not formed preventing the 

formation of fully mature chloroplasts via the Ca/Calmodulin pathway. Phytochi’ome 

induction of the flavonoid biosynthetic pathway characterised by increased CHS 

transcription and anthocyanin accumulation was found to require cGMP. A cGMP 

analogue given to plant cells in darkness was found to be able to induce CHS
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transcription. It has been hypothesised that in response to light cGMP levels could be 

elevated by increased guanylyl cyclase (GC) activity imposing regulatory activity on 

genes o f the flavonoid biosynthetic pathway (Bowler et al., 1994). The third 

phytochrome signal transduction pathway leads to the production o f PSl components and 

cytochrome b6f complexes and has a requirement for both cGMP and Ca/Calmodulin.

Pfr

i
G-Protein

cGMP

PSl
Cyt b6f

Ca/CaM

CHS CAB
Anthocyanin \  cGMP / Mature Plastids

Ca/CaM J

Figure 1.5 Phytochrome Signal Transduction. Modified from Jenkins (1999).

Increased activity o f the cGMP pathway causes down regulation of both the 

Ca/Calmodulin and cGMP-Ca/Calmodulin pathways. It has been suggested that initial 

activation of the cGMP pathway would allow accumulation of photoprotectants before 

photosynthetic apparatus sensitive to the damaging components o f sunlight is 

synthesised. Priority is then transferred to the other two pathways. A rise in Câ  

negatively regulates the cGMP pathway but not the cGMP-Ca/Calmodulin pathway 

allowing attainment o f photo synthetic capacity (Bowler et a l, 1994).
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1.3.1.3 Cryptochrome

Recent advances in molecular genetic techniques have enabled the identification of a blue 

light photoreceptor. Due to the elusive nature of this photoreceptor, it was named 

cryptoclu'ome (CRYl). CRYl is known to act in both seedlings and mature plants 

influencing developmental processes such as stem elongation, leaf expansion and gene 

expression (Jackson & Jenkins, 1995).

An important step in the discovery of cryptoclrrome was the identification of the 

hy4 mutant of Arabidopsis thaliana. This mutant displayed a long hypocotyl phenotype 

under blue light conditions but showed a normal phytochi’ome response (Koornneef et a l , 

1980).

The hy4 gene product was found to show significant homology to microbial DNA 

photolyases, such a structure would allow blue light dependent electron transfer to occur. 

Cryl protein is known to bind FAD non-covalently. Blue light absorption characteristics 

may require a further chromophore as was detected in a Cryl fusion protein containing a 

pterin group with peak absorption chai*acteristics in the blue region of the spectrum 

(Malhotra et a l ,  1994). The pterin chromophore may facilitate primary light harvesting, 

contributing to the known action spectra of Cryl. This energy may then be transferred to 

the flavin moiety bound at the C-terminus. A redox mechanism of Cryl activity at the 

plasma membrane has been postulated (Spalding & Cosgrove, 1989, Long & Jenkins,

1998).

Control of gene expression concerning CHS, CHI, and DFR is known to be 

impaired in the hy4 mutant resulting in e.g. reduced anthocyanin accumulation (Jackson 

& Jenkins, 1995).
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HY4 is known to belong to a small multigene family; other members of this family may 

encode further UV A/B lue photoreceptors. Blue light mutants were also isolated by 

Liscum and Hangarter, 1991, {blu mutants). These mutants also showed increased 

hypocotyl extension in response to blue light. The blu mutants represent alleles of hy4. 

Blue light intermediate {bli) mutants were also isolated; these may represent novel or 

weak alleles of hy4.

Screening for further blue light receptors on the basis of homology to CRYl 

revealed only one related sequence in the Arabidopsis genome {CRY2). Cry2 was found 

to have high sequence homology to Cryl in the amino/photo lyase domain (58 % 

homology) with only 15 % homology to the C-terminal region (Ahmad & Cashmore.,

1996). Arabidopsis plants with a mutation in the CRY2 gene displayed a long hypocotyl 

phenotype mider low intensity blue light. Those plants overexpressing CRY2 showed 

heightened sensitivity to blue light producing very short hypocotyls (Lin et a l, 1998). 

cry2 Arabidopsis mutants displayed delayed flowering in long day conditions as 

compared to wild type. Therefore, in addition to the regulation of hypocotyl elongation, 

CRY2 is believed to be involved in the regulation of floral induction according to 

daylength (Guo et al., 1999).

Cry2 protein is known to be located in the nucleus. This localisation is achieved 

by a nuclear localisation signal contained within the carboxyl terminus (Kleiner et al.,

1999). Protein localisation is not regulated by light quality. However, exposure to blue 

light for 30 min or longer causes a decrease in protein levels believed to be mediated by 

protein degradation.
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Sequences with homology to CRYl have been identified in pea, tomato and rice 

(Ahmad & Cashmore, 1996). In addition a photolyase/cryptochi'ome sequence lacking the 

identifying chaiucteristics of either CRYl or CRY2 has been identified in mustard 

{Sinapis alba). This may represent a distinct photolyase/cryptochrome gene. 

Alternatively errors in cloning may have caused the misidentification of a CRY1/CRY2 

homologue (Cashmore, 1997).

Two further blue light photoreceptors mirelated to CRYl have been identified. 

NPHl (non-phototropic-hypocotyl) is believed to encode the apoprotein of a blue light 

receptor involved in phototropism. This protein is known to be associated with the 

piasma-membrane and becomes rapidly phosphorylated in response to blue light. Four 

NPH  mutant loci have been identified in Arabidopsis all impaired in phototropic 

responses (Briggs & Liscum., 1997).

The Arabidopsis mutant npql, deficient in xeaxanthin , was found to be unable to 

induce stomata! opening in response to blue light. It is postulated that xeaxanthin may 

serve as the clnomophore for a blue light receptor involved in regulation of stomatal 

movements (Zeiger & Zhu., 1998).

1.3.1.4 Cryptochrome/Phytochrome Interactions

Phytochrome deficient long hypocotyl mutants are known to retain hypocotyl 

responsivity to blue light. It was therefore concluded that the photoreceptors involved in 

these reactions act independently. However a study of severely phytoclirome deficient 

Arabidopsis thaliana mutants hylphyl and phyAphyB (Ahmad & Cashmore, 1997)
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revealed that both mutants displayed a large reduction in hypocotyl inliibition in blue 

light. It was concluded that either phyA or phyB fulfils the requirement for co-action 

between cryptoclnome and phytochrome. Phytochrome deficient mutants hylphyB  and 

phyAphyB also showed reduced anthocyanin accumulation in blue light. This indicates a 

requirement for phytochrome/cryptochrome co-action in CRYJ induced anthocyanin 

accumulation. A study by Casal & Boccalandro (1995) demonstrated that hypocotyl 

inhibition and cotyledon expansion was greater when etiolated wild type Arabidopsis 

thaliana seedlings received a pulse of red light directly after a blue light treatment. Using 

photomorphogenic mutants, phyB, phyA and hy4, functional dependence of CRYl on 

phytochrome was again demonstrated. More recently it was demonstrated that the 

functional dépendance of CRYl on phytochrome relates only to conditions of limited 

light. Where blue light was supplied for a short period (3h/d) or active levels of phyB 

were reduced using a high imput of far-red light, synergism between CRYl and 

phytochrome was observed (Casal & Mazzella, 1998).

1.3.1,5 UV-B Photoreceptor

Studies into UV-B protection of plants have become more pertinent in recent years due to 

the depletion of the stratospheric ozone layer, which absorbs radiation in the UV-B band 

(280-320 nm). This depletion is expected to cause an increase in UV-B exposure at 

ground level. Exposure to UV radiation can have various damaging effects on plants. 

DNA has an absorption maximum at 260 mn and can therefore be damaged directly by
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absorption of UV-B. In addition UV-B exposure can induce the formation of reactive 

oxygen species (ROS) causing oxidative stress.

DNA damage leads principally to the formation of toxic and mutagenic 

compounds such as cyclobutane pyrimidine dimers (CPD’s) and pyrimidine (6-4) 

pyrimidone photoproducts. Absorption of UV-B can also lead to DNA and cliromosome 

breakage.

Plants have evolved a variety of mechanisms to protect themselves from the 

damaging effects of sunlight. These mechanisms involve screening out UV-B by the 

production of UV absorbing photoprotectants, increasing UV transmission or increasing 

leaf mesophyll thickness to prevent damage (Li et al, 1993, Day et al, 1995) or repairing 

damaged DNA. Plants have been shown to induce synthesis of phenolic compounds such 

as flavonoids and hydroxycimiamates in response to UV-B exposure (Chappel & 

Hahlbrock, 1984). Flavonoid synthesis occurs locally only in plant tissues directly 

exposed to UV-B, also induction of these photoprotective compounds is dependent on the 

developmental state of the tissue. Yoimg leaves contain higher levels of photoprotectants 

and these compounds are preferentially increased in early stages of development during 

UV-B stress as compared to older leaves (Lois et a l, 1994). These phenolic compounds 

are present in the upper epidermal tissues and are believed to reduce penetmtion of UV-B 

in to the photosynthetic mesophyll. Flavonoids in methanol yield two absorbance peaks, 

the first at 240-285 mn results from the benzoyl ring of the flavonoid structure, the 

second at 300-400 mn from the cinnamoyl ring (Sheahan, 1996). Such compounds would 

therefore be expected to give protection against UV-B.
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The study of Arabidopsis mutants deficient in aspects of flavonoid synthesis may 

illustrate the importance of flavonoids in UV-B attenuation. 11 transparent testa mutants 

{tt) deficient in aspects of flavonoid biosynthesis or regulation of transcription have been 

identified, (Shirley et a l,  1995). The flavonoid genes CHS, CHI and DFR have been 

cloned from Arabidopsis con'esponding to tt4, tt5 and tt3 respectively.

tt4 contains a mutation in the CHS structural gene and consequently accumulates 

fewer leaf flavonoids, particularly kaempferol derivatives. tt5 is severely deficient not 

only in flavonoids but also sinapate esters. These mutants were found to be 

hypersensitive to UV-B compared to wild type Arabidopsis, with tt5 showing greatest 

sensitivity. This demonstrates the importance of synthesis of flavonoids and 

hydroxycimiamates in UV-B protection (Li et al., 1993). Further studies by Landry et al, 

(1995) compared tt5 with Arabidopsis ferulic acid hydroxylase mutant (fahl) deficient 

in sinapate esters, fa h l  was fomid to have greater sensitivity to UVB than tt5, with 

increased protein and lipid damage indicating penetration of UV-B. Sheahan (1996) 

compared UV-B attenuation by flavonoids and sinapate esters using tt4 and fa h l  mutants. 

Analysis of tt4 indicated a UV-B screening function and protection of the photosynthetic 

apparatus against oxidative damage by flavonoids. However fluorescence analysis of 

UV-B attenuation suggested that sinapate esters may absorb UV-B more effectively than 

flavonoids.

It is clear that induction of so called ‘sunscreen’ compounds such as flavonoids 

and hydroxycinnamates in Arabidopsis are vital for protection against the damaging 

effects of UV-B in sunlight.
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1.3.1.6 UV-B Perception

Little is known about UV-B perception via a putative photoreceptor. In practice such a 

receptor may be expected to involve a protein with a flavin and/or pterin cliromophore 

which would be expected to absorb radiation in the UV-B range. Direct absorption of 

UV-B by DNA or UV-B generated reactive oxygen species may generate a response to 

UV-B directly (Jenkins, 1997). Absorption of UV-B at high fluence rates induces 

defensive responses and causes damage. However, at low fluence rates there is evidence 

that UV-B reception may play a role in photomorphogenesis influencing inliibition of 

hypocotyl elongation and cotyledon expansion. In addition, interactions between a UV-B 

photoreceptor and phytoclirome may be required for UV-induced photoniorpliogenesis 

(Kim et al., 1998).

Identification of a UV-B perception mutant may aid the search for a specific UV- 

B photoreceptor and understanding of signal transduction mechanisms.

1.3.1.7 Blue, UVA and UVB Interactions

Interactions between signal transduction pathways mediating light perception have been 

studied by examining CHS promoter function and gene transcription. Additive effects on 

CHS promoter activity are observed when plants receive blue and UVA radiation 

simultaneously, however both blue and UVA radiation produce synergistic increases in 

CHS promoter activity when combined with UVB treatment (Fuglevand et al., 1996). 

Furthermore, pathways mediating blue and UVB, or UVA and UVB synergism were
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foiind to be distinct, thus illustrating the complexity of the mechanisms mediating signal 

transduction. The hy4 blue light receptor mutant was found to retain synergistic responses 

between blue/UVA and UVB but demonstrated a limited response to blue and UVA 

radiation (Fuglevand et al., 1996).

UV A/Blue

Blue Blue
O y l

Stable

CHSUV-B

Transient

Figure 1.6 UV/Blue Phototransduction

UVA Pathways Regulating CHS Expression in

Arabidopsis thaliana
Taken from Fuglevand et al, 1996

1.3.1.8 UVA/Blue and UV-B Signal Transduction

Pharmacological studies using inhibitors and antagonists of known signal transduction 

mechanisms have begun to unravel the events of UV A/blue and UV-B signal 

transduction (Christie & Jenkins, 1996, Long & Jenkins, 1998).
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Using a photomixotropliic Arabidopsis cell culture, signal transduction was 

assessed by analysing the effect of a variety of inliibitors on CHS gene transcription. 

Using calcium channel blockers it was determined that an increase in cytosolic calcium 

was necessary but not sufficient for induction of CHS transcription in both UV A/blue and 

UV-B induction. This calcium is believed to be released from an internal store. A 

requirement for protein phosphatase and kinase activity and cytosolic protein synthesis 

was also demonstrated. Activity of calmodulin was found to be necessary for UV-B but 

not UVA/blue signal transduction. Such studies show that both UV A/blue and UV-B 

pathways are distinct from phytoclri'ome signal transduction.

1,3.2 Low Temperature

Due to the sedentary nature of plants, the ability to adapt to stresses such as low 

temperature is necessary for survival. The effects of low temperature on plants are many- 

fold affecting many aspects of plant development and metabolism. Cold stress is known 

to cause an upregulation of the phenylpropanoid pathway usually observed as increased 

deposition of anthocyanins on leaves and stems (Gilmoui’ & Hajela, 1988, Leyva et al.,

1995).

Cold perception by plant cells begins with an influx of mostly extracellular 

calcium, with some calcium believed to be released by the vacuole. This creates a 

transient calcium peak within the cytosol (Knight et a l, 1996). In plants with the ability 

to acclimate to low temperature, this calcium transient will be linked to a protein 

phosphorylation cascade either direcly via calcium dependent protein kinases or
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indirectly via calmodulin. This signal transduction event ultimately leads to changes in 

gene transcription. A transient increase in cytosolic calcium is required for activation of 

cold acclimation specific (CAS) and cold-induced (KIN) gene transcription (Monroy & 

Dhindsa, 1995, Knight et a l, 1996). Cold acclimated Arabidopsis thaliana are known to 

have an altered calcium signature in conditions of low temperature, which may indicate 

that the system is ‘primed’ to respond to the next period of cold, (Knight et a l, 1996).

Many plant responses are designed to prevent or reduce tissue damage due to 

cold. Membrane lipid composition can be altered to maintain membrane fluidity and 

absisic acid accumulates, which is believed to prevent ion-leakage (Graham & Patterson, 

1982).

Studies of phenylpropanoid gene regulation in wheat transferred from 25 °C to 10 

°C revealed little change in PAL or CHS transcription over the first twelve hours 

followed by a profound increase in transcription over the following twelve houis, 8 and 

50 fold increases in transcription respectively (Christie et a l, 1994). Slight increases in 

transcription were also observed for 4Cl and CHI. To determine the functional 

significance of this response, anthocyanin levels were monitored. At 5 °C transcript and 

anthocyanin levels remained unchanged, at 10 °C transcript levels were increased but 

anthocyanin levels showed little change until plants were returned to a 25 °C 

environment. At 15 °C transcript and anthocyanin accumulation was observed. In wheat, 

temperatures below 15 °C appeared to inhibit post-transcriptional processes required for 

anthocyanin biosynthesis (Christie et a l, 1994).

Increased transcription of PAL, CHS and accumulation of flavonoids during cold 

stress is reported to occur only in the presence of light, which may indicate a
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photoprotective role (Leyva et al, 1995). Simultaneous exposure to low temperatuies and 

moderate-high PFD can cause severe inliibition of photosynthesis e.g. cucumber, a 

chilling sensitive plant, shows a 60 % inliibition of photosynthesis after 2.5 h at 4 °C in 

moderate light conditions (Hodgson & Raison, 1989). Reduced efficiency of the 

photosynthetic apparatus at low temperatures due to factors such as membrane disruption 

and reduced enzyme activity can rapidly lead to a build up of highly oxidative 

photosynthetic by-products in the presence of light. Oxidative products of photosynthesis 

would normally be eliminated by superoxide dismutase (SOD) and catalase, but at low 

temperatures the activity of these enzymes is inliibited (Graham & Patterson, 1982). 

Products of the phenylpropanoid pathway such as flavonols and anthocyanins may act as 

photoprotectants and possibly as free radical scavengers.

A gradual reduction in temperature would increase production of anthocyanins 

and other photoprotective pigments such as flavonols, filtering out harmful levels of light 

thereby affording protection against some of the deleterious effects of cold on 

photosynthesis. Although this process may occur during cold acclimation, it is not 

required for acclimation. Arabidopsis mutants, ttg and tt4, defective in anthocyanin 

accumulation retain the ability to acclimate to low temperatures (Graham & Patterson, 

1982).

1.3.3 Nutritional Status

A vaiiety of nutrient deficiencies aie characterised in plants by an accumulation of 

flavonoids, notably the red/purple pigments identified as anthocyanins (Ulrychova &
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Sosnova, 1970). Indeed, early studies attempted to assess leaf flavonoid content as an 

indication of altered plant metabolism due to nutritional deficiency using tomato as a 

model system (Carpena et a l,  1982, Zornoza & Esteban, 1984). A study of the flavonoid 

content of roots and fruits of tomato plants grown in normal versus P, Mn or B deficient 

media was undertaken (Zornoza & Esteban, 1984). Levels of flavonoids were found to be 

very low in roots as compared to fruits. No flavonoids were detected in roots where 

nutrients were limited. Conversely, total flavonoid content increased in fruits in response 

to P, Mn or B deficiency. No attempt was made in this study to identify individual 

compounds, instead flavonols, flavones and flavonones were quantified from crude 

extracts using UV absorption.

HPLC analysis of tomato leaf extracts from control and N-starved plants showed 

an increase in anthocyanin content, particularly petunidin and an increase in the flavonol 

glucoside quercetin-3-O-glucoside (Bongue-Bartelsman & Phillips, 1995). In addition it 

was found that nitrogen deprivation greatly increased the levels of CHS and DFR mRNA. 

An earlier study (Tan, 1980) demonstrated increased accumulation of PAL protein in 

apples following reduced availability of nitrogen and potassium.

One explanation for increased flavonoid synthesis under nitrogen stress suggests 

that enlianced PAL activity will release ammonia for amino-acid metabolism whilst 

carbon products released are shunted into the flavonoid biosynthetic pathway (Margna, 

1977). Alternatively, nitrogen limitation will affect photosynthesis for example by 

decreasing available chlorophyll and disrupting photosynthetic membranes due to stai'ch 

accumulation. This may lead to increased sensitivity to high light levels. Production of

2 7



photoprotective pigments such as anthocyanins and flavonols may afford protection 

against light induced oxidative damage (Guidi et al, 1998).

1.4 Flavonoids as Antioxidants

Free radicals can be defined as molecules or molecular fragments with an unpaired 

electron in the outer orbit producing high chemical reactivity (Stohs, 1995).

Such radicals can be produced by exposure to ionising radiation, disease, toxins or 

a variety of other stresses. Some of the most reactive compounds are Imown as reactive 

oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anion (O2 '), 

hydroxyl radical (OH') and singlet oxygen radical (O'). Production of such compounds is 

tolerated due to effective scavenging mechanisms of enzymes such as superoxide 

dismutase, catalase and glutathione peroxidase (Halliwell et a l, 1992). In addition, 

dietary antioxidants such as ascorbate (vitamin C), tocopherols (vitamin E) or carotenoids 

play a role in biological systems to prevent oxidative damage by radicals.

Recent studies have identified flavonoids as potentially important dietary 

antioxidants (Robak & Gryglewski, 1988, Salah et a l,  1995, Rice-Evans et a l, 1997). 

Daily flavonoid intake is estimated at 23 mg/day with major sources identified as tea, 

onions and apples (Hertog et a l, 1993). The antioxidant capacity of flavonoids depends 

on their ability to donate hydrogen forming a flavonoid radical, which can stabilise and 

délocalisé the unpaired electron. The presence of transition metals promotes the 

generation of free radicals by reacting with hydrogen peroxide.
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Mn+ + H 2O2 ------------► M + OH + OH'

Fe (II) + H2O2 ------------► OH + OH" -4- Fe (III) -Fenton Reaction

Some flavonoids can chelate metal ions making them unavailable for reaction (Halliwell,

1995).

Flavonoid structure is closely related to antioxidant activity, (Rice-Evans et a l,

1996). Structural requirements for antioxidant activity of flavonoids include the 3-OH on 

unsaturated ring C, 2-3 double bond on ring C and the dihydroxy structure on the B ring, 

e.g. quercetin. The dihydroxy substitutions of ring B appear to have the greatest effect on 

antioxidant activity. In the presence of this structure, activity can be increased further by 

the addition of 3-OFI and 2-3 double bond. Blocking the 3 site on the C ring e.g. by 

conjugation with a sugar moiety prevents the involvement of the -O H  group in electron 

delocalisation reducing the antioxidant potential (see Figure 1.7).
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Figure 1.7 Structure-Antioxidant 
Activity Relationships of Flavonoids Dihydroxy
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1.5 Free Radicals and Disease

1.5.1 Atherosclerosis

Endothelial cells o f the coronary arteries can be damaged directly by oxidative stress. 

Alternatively free radical damage to polyunsaturated fatty acids o f low-density 

lipoprotein (LDL) can initiate lipid peroxidation chain reactions (see Figure 1.8).
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Figure 1.8 Lipid Peroxide Continuation of
Chain Chain Reaction
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Abstraction of a hydrogen atom from LDL fatty acids creates a lipid radical which reacts 

with molecular oxygen to form a lipid peroxyl radical. This lipid peroxyl radical can then 

remove a hydrogen atom from another polyunsaturated fatty acid in LDL or cell 

membranes thus perpetuating the chain reaction. In addition to the production of further 

lipid radicals, lipid hydroperoxide is formed, this contributes to LDL modification 

encouraging endocytosis by macrophages. LDL commonly transports cholesterol around 

the body, internalisation o f LDL causes cholesterol accumulation within arterial 

macrophages converting them into ‘foam-cells’. Macrophage foam cells associate with T- 

Lymphocytes and free radical producing smooth muscle cells forming an atherosclerotic 

plaque, resulting in narrowing of the arteries. In addition, bleeding within the plaque can 

allow the release o f blood clots into the arteries, which if large enough, can cause 

blockage and myocardial infarction, see Figure 1.9. (Cook & Samman, 1996, Leake, 

1995).

Macrophage Figure 1.9 Role of Free Radicals 
in Development of 

Atherosclerosis
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Free 
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Modification of LDL by free radicals occurs after a lag period during which 

endogenous lipophilic antioxidants such as a  and p-tocopherols are preferentially 

oxidised. It has been demonstrated that the presence of flavonol aglycones inhibits LDL 

peroxidation by macrophages and transition metals in-vitro (DeWhalley et a l, 1990).

The mechanism for this protective effect is not yet known although possibilities 

include preferential oxidation of flavonols conserving LDL antioxidants. Alternatively 

flavonols may prevent free radical release from macrophages, regenerate a-tocopherol by 

donating a hydrogen atom or bind transition metals (DeWhalley et a l, 1990). Ratty & 

Das (1988) also demonstrated the protective effect of flavonoids against LDL 

modification in vitro. The addition of a variety of flavonoids was found to inhibit 

oxidation of rat brain mitochondrial lipids by ascorbic acid or ferrous sulphate. Flavonoid 

aglycones were found to be more potent than conjugates, with quercetin, myricitrin, 

morin and fisetin found to be pailicularly active. Structure-activity relationships were 

found to be in-keeping with those determined by Rice-Evans et a l, (1996).

Flavonoids such as quercetin, epicatechin and epigallocatechin gallate have been 

shown to bind LDL in vitro and therefore would be available to protect against oxidation 

(Vinson et a l, 1995).

Flavonoids have been identified as antioxidants with sufficient activity and 

proximity to prevent LDL modification, a crucial step in the pathogenesis of 

atherosclerosis.
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1.5.2 Coronary Heart Disease and Flavonoids

Indications of a protective effect of dietary flavonoids against development of free radical 

derived damage to endothelial cells of the coronary arteries and development of 

atherosclerosis have led to epidemiological studies of the relation between dietary 

flavonol intake and incidence of coronary heart disease (CHD).

The seven countries study was a cross-cultm'al analysis of dietary flavonoid intake 

and mortality rates from chronic diseases, in particular CHD and cancer (Hertog et a l,

1995). This study involved 16 cohorts in seven countries encompassing Europe, United 

States of America and Asia. Flavonoid intake was found to be inversely associated with 

incidence of CHD although intake of saturated fat was found to be the major determinant.

The Dutch contribution to the seven countries study was extended to determine 

the contribution of flavonoids in the Netherlands diet to the incidence of chronic disease 

in elderly men. This study, based in Zutphen, eastern Netherlands, found a significant 

negative relationship between flavonoid intake and mortality from CHD. A weaker 

negative association was determined for the incidence of fatal or non-fatal myocardial 

infarction (Hertog et a l, 1993).

A cohort study on coronary heart disease incidence and dietary flavonoid 

consumption based in Finland (Knekt et a l, 1996) also determined an effect of flavonoid 

intake in line with the Zutphen study. Flavonoid intake was found to be lower in the 

Finnish diet with primary dietary sources identified as apples and onions.
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Contrasting results on prevention of CHD by dietary flavonoids were found in a 

study of male health professionals based in the United States. This study did not support a 

protective effect of high flavonoid intake on total incidence of CHD but could not rule 

out any protective effect on men with established coronary heart disease (Rimm et ah,

1996).

Such studies appear to indicate a protective effect of increased flavonoid 

consumption against coronary heart disease. However such studies cannot distinguish 

between total flavonoid intake froru flavonoid absorption into the body.

1.5.2.1The French Paradox

Despite high intake of saturated fats and a high percentage of smokers in the population, 

France has a paradoxically low incidence of heart disease (Renaud & DeLorgeril, 1992). 

This contrasts with statistics for the U.K. where heart disease is far higher than expected. 

In France, death from coronary heart disease per 100,000 people is 101 for men and 32 

for women. Corresponding figures for the U.K. are 448 (men) and 167 (women) (Leake., 

1995). Higher intake of red wine is believed to account for the lower incidence of CHD 

in France with active components identified as phenolics (Franlcel et a l, 1993).

Heart disease in general is lower in the Mediterranean where greater quantities of 

fresh fruit and vegetables are consumed and where fat intake is from mono-unsaturated 

fatty acids mostly in the form of olive oil. Such a diet would also be expected to be rich 

in flavonoids amongst other antioxidants.
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1.5.3 Cancer Incidence

High dietary intake of fruits and vegetables is known to reduce the incidence of some 

cancers. The factors present within fruits and vegetables responsible for this protection 

have yet to be identified. Non-nutritive compounds such as flavonoids may contribute to 

the overall chemoprotective effect of fruit and vegetables.

Recent in vitro studies have shown a protective role of flavonoids against the 

growth o f human tumor cells, with flavonoid potency affected by the number of hydroxyl 

groups and the type of sugar moiety attached (Kamei et a l, 1996). Animal studies, in 

which tumor production is artificially induced, have demonstrated reduced tumor growth 

with dietary supplementation of flavonoids. However in such studies flavonoids are 

commonly supplied in concentrations far higher than those found physiologically (Kuo.,

1997).

Recent publication of the flavonoid content of a wide range of fruits vegetables 

and beverages in the Netherlands diet (Hertog., 1992) have enabled analysis of dietary 

flavonoid intake and cancer incidence.

The Zutphen epidemiological study analysed cancer incidence in relation to 

flavonoid intake. No correlation was found between flavonoid intake and lung, colorectal 

or all-cause cancer (Hertog et al., 1995). Data from a cohort study of diet and disease 

carried out in Finland from 1966- 1972 was re-analysed by Knekt et al (1997) from the 

perspective of flavonoid intake and lung cancer incidence. A clear inverse association 

between flavonoid intake and incidence of lung cancer was observed. This association 

was most noticeable in the younger participants of the study. Further studies on flavonoid
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intake and lung cancer incidence have been carried out in Spain where lung cancer is the 

primary cause of cancer death in men. No protective effect was determined for intake of 

quercetin, luteolin or total flavonoid intake and a non-significant negative relationship 

was determined for kaempferol intake. However, dietary questionnaires used in this study 

to evaluate flavonoid intake failed to include important flavonoid soui'ces such as onions 

and red wine (Garcia-Closas et ah, 1998). A case control study on flavonoid intake and 

incidence of gastric cancer was carried out in Spain from 1987-1989 involving patients 

with gastric adenocarcinoma (Garcia-Closas et al., 1999). In this study a protective effect 

of quercetin, kaempferol and total flavonoid intake was determined.

Results on the potency of flavonoids as anticarcinogens are at present equivocal, 

further studies are required before any conclusions can be drawn.

1.6 Flavonoid Absorption

Early studies on flavonoid absorption focused on the absorption of the aglycone form of 

the flavonoid. Conjugated flavonoids commonly contain p-glycosidic bonds. No 

intestinal enzymes with the ability to brealc these bonds have been identified. 

Consequently it was believed that the release of free flavonoids from their sugar moiety 

would require the activity o f colonic bacteria. Such bacterial breakdown was known to 

cause further damage to the flavonoid ring system (Kulmau,1976).

Animal studies indicated that the flavonol quercetin was readily absorbable and 

could be detected in mine and bile following quercetin supplementation with - 2 0  % 

absorption (Ueno et a l, 1983, Das et a l, 1971, Manach et al., 1997).
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It was found that oral or intravenous supplementation of quercetin aglycone to human 

subjects did not lead to substantial accumulation in plasma or urine (Gugler et al., 1975). 

Recent studies indicate that absorption of flavonoids may occur in the small intestine, 

thus avoiding degradation by colonic micro flora. In addition, flavonoid sugar conjugates 

may be more effectively absorbed than aglycones.

Studies by Hollman et al (1995) investigated flavonoid absorption in healthy 

ileostomy patients, allowing analysis of absorption by the small intestine. Subjects 

followed a quercetin free diet for the dui ation of the study with the exception of quercetin 

rich food supplements supplied on days 4, 8  and 12. The extent of absorption was 

calculated from analysis of urine and illeostomy effluent. Absorption of quercetin was 

found to be 52 % (onion), 17 % (rutin) and 24 % (aglycone), Quercetin from onion is 

mainly present in the form of flavonol glucosides, results therefore indicate increased 

absorption of glucose conjugates as compared to the free flavonol. Intervention studies 

with onion feeds to human volunteers have demonstrated rapid absorption of quercetin 

glucosides (Hollman et a l., 1996, Janssen et al, 1998, McAnlis et a l, 1999).

Aziz et al. (1998) demonstrated the accumulation of flavonol glycosides in human 

plasma and urine following consumption of onions.

OCHs

HO OH

HO,

OH HO

OH

OH

OH

lsorhamnetin-4"-glucoside Quercetin-4'-glucoside

Figure 1.10 Structures of Primary 
Glucosides Present in Onion
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Furthermore, isorhamnetin-4'"glucoside (I-4'-G) was found to accumulate in greater 

concentrations in plasma and mine than quercetin-4'-glucoside (Q-4'G) or other quercetin 

conjugates. Further studies are required to determine whether this indicates more 

effective absorption of 1-4'-G, increased turnover of other quercetin conjugates or 

méthylation of Q-4'-G to form I-4'-G (see Figure 1.10).

Following consumption of onions, flavonols rapidly accimiulate in plasma with 

peak levels reached at 1-2 h. This implies ahsoiption of flavonol conjugates from the 

small intestine. This study further implies that flavonol glucosides are absorbable and 

indicates that the sugar group present may influence uptake.

Many intervention studies have supplied flavonol supplements in quantities far 

exceeding dietary levels. Yoimg et al (1999) investigated flavonol accumulation in 

human plasma and urine following a low daily dose of quercetin supplied by fruit juices. 

The concentration of quercetin in urine was found to increase with time reaching a steady 

level at 3-4 days. No significant increase in the quercetin content of plasma was 

observed.

Little information is available on metabolism of flavonoids following absorption 

in humans. Animal studies show that flavonoids can be metabolised in the liver to form 

glucuronide and sulphate conjugates. Flavonoid conjugates can then be excreted into 

urine or into bile allowing fmther modification and absorption in the large intestine, 

(Kuhnau, 1976).
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1.7 Project Aims

Flavonoids have heen identified as potentially important dietary antioxidants (Rice-Evans 

et a l, 1997). Within the flavonoid family, flavonol levels have been analysed and 

quantified in a variety of fruits, vegetables and beverages. Such studies indicated vast 

differences in flavonol content between different produce. One of the aims of this project 

was to identify factors determining the flavonol content of fruit of commercially grown 

tomatoes (Lycopersicon esculentum). Flavonol levels were studied in relation to variety, 

season and country of origin. In addition, the flavonol content of commonly consumed 

processed tomato products was assessed. It was hoped that this study would identify 

varieties or conditions of cultivation that promote the accumulation of high levels of 

flavonols within the fruits.

Although studies of the flavonol content of tomato fr'uits and processed products 

are pertinent to determination of their nutritional value, it is necessary to identify the 

extent of flavonol absorption into the human body during digestion. A small intervention 

study was carried out to establish the bioavailability of flavonols from tomato fruits and 

tomato juice.

Flavonoids are only synthesised by micro-organisms and plants (Hermann, 1995). 

Flavonol synthesis involves complex environmental regulation, the principal components 

of which include light, nutrition, disease and temperature. Arabidopsis thaliana was 

employed as a model system in which to study the effects of nutritional status, nitrogen or 

phosphorus availability, on flavonol content. Information from this study was used to 

establish a larger study of the effects of nitrogen and phosphorus nutrition on the flavonol
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content of leaves and fruits of matine tomato plants grown in a commercial situation. The 

aim of this study was to determine whether nutritional deficiency could be employed to 

induce flavonol accumulation in tomato fruits.

Arabidopsis thaliana was again used as a model system in which to study the 

effects of light quality and low temperature on flavonoid biosynthesis. The action of the 

enzyme chalcone synthase (CHS) is the first committed step in the biosynthesis of 

flavonoids (Heller & Forkmann, 1994). The activity of the CHS promoter was studied via 

a p-glucuronidase (GUS) reporter gene system and also by determination of CHS 

transcript levels following exposuie to various light qualities either alone or in 

combination with low temperature. This study had two main aims. The first was to 

determine the effect of light quality and low temperature on CHS transcript accumulation. 

The second aim was the determination of the effects of cold on the UV A/blue 

phototransduction pathway.

Summary of Aims

1. Identification of tomato fruit varieties or methods of cultivation leading to high 

flavonol fruits.

2. Study of the bioavailability of the flavonols in tomato fruits.

3. Study of how nutritional status may be manipulated to influence the flavonol content 

of plant tissues.

4. Study of the effect of light quality and low temperature on the regulation of a gene 

involved in flavonol biosynthesis.
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Chapter 2 Materials and Methods

2.1 Materials

2.1.1 Chemicals

The chemicals used in this study were obtained from Sigma-Aldrich Co. (Poole, Dorset) 

unless otherwise stated.

2.1.2 Radiochemicals

[a-^^F] dCTP was supplied by Amersham International (U.K.).

2.1.3 DNA Modifying Enzymes

Restriction enzymes were obtained from Life Technologies, Paisley, Strathclyde together 

with their reaction buffers, which were provided at a 1 Ox concentration.

2.1.4 Soil

The soil and sand used to grow plants were purchased from William Sinclair Horticulture 

Ltd. (Lincoln, U.K.). 1 part Silvaperl sand was mixed with 4 parts soil and autoclaved for 

1 hour.
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2.2 Genera! Laboratory Procedures 

2.2.1 pH Measurement

The pH of solutions was measured using a Jenway pH meter 3310 and combination 

electrode.

2.2.2 Autoclaving

Equipment and solutions were sterilised at 15 psi for 20 minutes in a Laboratory Thermal 

Equipment Autoclave 225E.

2.2.3 Solutions and Equipment for RNA Work

Solutions used in RNA work were treated with 0.1 % (v/v) diethylpyrocarbonate (DEPC, 

Sigma) overnight and then autoclaved. Glassware was sterilised by baking in an oven at 

180 °C for four hours.
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2.3 Analysis of the Flavonol Content of Plant Products

2.3.1 Tomato Suppliers

Scottish tomatoes were provided by Scotland’s Tomatoes pic, (Clyde Valley, 

Lanarkshire, UK) while English tomatoes were obtained from English Village Salads pic 

(Banks, Southport, Lancs, UK). Seeds of tomato fruits with various skin colours were 

obtained from the C.M. Rick Stock Centre (University of California, Los Angeles, CA, 

USA) with the exception of Noire Charboimeuse, which was purchased from Simpson’s 

Seeds (Surrey, UK). Spanish tomato fruits cv Bodar, Bond, Royesta and Havanera were 

kindly donated by Dr Jesus Chammaio, Institute of Celluology, CSIC, Valencia, Spain. 

All other tomato fruits were purchased from Safeway Stores pic (Byres Rd, Glasgow, 

UK).

2.3.2 Sample Preparation

Tomato fruits and processed products excluding tomato juice and tomato soup, 

were snap frozen in liquid nitrogen, lyophilised and ground to a fine powder prior to acid 

hydrolysis. Samples of tomato juice and tomato soup were hydrolysed fresh.
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2.3.3 Extraction and Hydrolysis Conditions

Optimisation of acidic conditions for the hydrolysis of flavonol conjugates has 

been described by Hertog et al (1992) following an earlier study by Harbourne (1965) on 

the release of free flavonols by acidic and enzymatic hydrolyses. Preliminary screening 

was carried out to ascertain the most effective acid hydrolysis conditions for the tissues 

involved in this study. Samples of tomato fruit and processed products, (20 mg 

lyophilised tissue), tomato juice and tomato soup, (450 pi) were all hydrolysed at 90 °C 

for 2 h in a 3 ml glass V-vial containing 2 ml 1.2 M HCl in 50 % aqueous methanol and 

20 mM sodiumdiethyldithiocarbamate as an antioxidant. A Teflon coated magnetic stiiTer 

was placed in the vial, which was sealed tightly with a PTFE-faced septum prior to 

heating in a Reacti-Therm Heating/Stirring Module (Pierce, Rockford, IE, USA). Extract 

aliquots of 100 pi, taken both before and after acid hydrolysis, were made up to 250 pi 

with distilled water adjusted to pH 2.5 with trifluoroacetic acid and filtered through a 0.2 

pm Anopore filter (Whatman, Maidstone, Kent, UK), prior to the analysis of 100 pi 

volumes (1/50^'’ aliquot of total sample) by gradient elution reversed phase HPLC. All 

samples were analysed in triplicate.
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2.4 Analysis of the Flavonol Content of Plasma and Urine

2.4.1 Study Design

Tliree healthy subjects, 1 man and two women (aged 23-27) paiticipated in the 

study, all gave their written consent. Two flavonol rich sources were investigated, tomato 

fruits and tomato juice. Tomato fruits selected were Spanish cherry tomato variety 

Paloma, tomato juice was Del Monte, both were purchased from Safeway, Byres Rd, 

Glasgow. Three subjects undertook the tomato fruit dosing experiment, one subject 

participated in the tomato juice study.

In all cases the volunteers followed a low flavonol diet for three days prior to each 

experiment and fasted overnight. Venous blood samples were collected prior to 

consumption of the flavonol source and then at 0.5, 1.0, 1.5, 2, 3, 4, 5 and 24 h. Blood 

samples were colleeted into heparinised tubes, which were immediately centrifuged at 

3000 g at 0 °C for 10 min. Plasma was separated and stored at -80 °C prior to analysis. 

Urine was collected for 24 h in three aliquots, 0-6 h, 6-12 h and 12-24 h. Urine was 

stored in plastic bottles and kept at - 20° C prior to analysis. This study protocol was 

approved by the University of Glasgow Human Ethics Committee for Non-Clinical 

Research.
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2.4.2 Extraction and Hydrolysis Conditions

Samples were hydrolysed as previously described (2.3.3) with the exception of 

plasma samples, which were hydrolysed for 3 h. Due to the presence of precipitated 

proteins the plasma samples were centrifuged at 5000 g for 10 min prior to HPLC 

analysis.

2.5 Flavonol Analysis by High Performance Liquid Chromatography

2.5.1 High Performance Liquid Chromatography and Post-Column Derivatization

Samples were analysed using a Shimadzu (Kyoto, Japan) LC-lOA series 

automated liquid clii'omatograph comprising a SCL-lOA system controller, two LC-lOA 

pumps, a SIL-lOA autoinjector with sample cooler, a CTO-lOA column oven, and a 

SPD-lOA UV-vis detector linked to a Reeve Analytical (Glasgow, UK.) 2700 data 

handling system. Reversed phase separations were carried out at 40 °C using a 150 x 3.0 

mm i.d., 4 qm Genesis C l 8  cartridge column fitted with a 10 x 4.0 mm i.d., 4qm C l 8  

Genesis guard column in an integrated holder (Jones Chromatography, Mid-Glamorgan, 

UK.). The mobile phase was a 20 min, 20-40 % gradient of acetonitrile in distilled water 

adjusted to pH 2.5 with trifluoroacetic acid, eluted at a flow rate of 0.5 ml/min. Column 

eluent was first directed to the SPD-lOA absorbance monitor operating at 365 nm, after 

which post-column derivatization was achieved by the addition of 0.1 M methanolic 

aluminium nitrate containing 7.5 % (v/v) glacial acetic acid (Hollman and Trijp, 1996)
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pumped at a flow rate of 0.5 ml/min by a pulse free Model 9802 precision mixer/splitter 

(Reeve Analytical). The mixture was passed through 1.9 m x 30/1000" i.d. loop of peek 

tubing in the column oven before being directed to a RF-lOA fluorimeter and fluorescent 

flavonol complexes detected at excitation 425 nm and emission 480 nm. The limit of 

detection at A 355 was < 5 ng and linear 5-250 ng calibration curves were obtained for 

morin, rutin, quercetin, kaempferol and isorhamnetin. The fluorescent intensity of the 

individual flavonoid derivatives varied, however 0 .1 - 1 0 0  ng linear calibration curves 

were obtained for myricetin, morin, quercetin, kaempferol and isorhamnetin.

2.5.2 Liquid Chromatography-Mass Spectrometry

Samples were analysed using a Shimadzu LC-lOA vp series automated liquid 

chromatograph comprising a SCL-lOA vp system controller, two LC-lOA vp pumps, a 

SIL-IOAD vp autoinjector with sample cooler, a CTO-10AC vp column oven and a SPD- 

lOA vp UV-vis detector. Reverse phase separations were carried out at 40 °C using a 150 

X 3.0 mm i.d. 5 qm Nemesis C 18 column. The mobile phase was a 20-min gradient of 12- 

35 % acetonitrile containing 1 % formic acid, maintained for a further five minutes at 35 

%. Flow rate: 0.8 ml/min and cohmm eluent was first passed through the SPD-lOA vp 

absorbance.monitor operating at 371 mn, before being directed to a Shimadzu LCQ 8000 

quadrupole mass spectrometer with atmospheric pressure chemical ionisation (APCI) and 

a nebulising gas flow of 2.5 L/min. Full scan 250-650 m/z negative ion spectra were 

obtained every 4s. Data obtained were analysed using Shimadzu LCMS QP 8000 

software.
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2.5.3 Estimates of Free and Conjugated Flavonol Levels

Free flavonols were detected in the unhydrolysed sample while the hydrolysed 

samples contained both free and conjugated flavonols. Thus conjugated flavonol levels 

were estimated by subtracting the amount found in the unhydrolysed samples from that 

detected after acid hydrolysis.

2.5.4 Reference Compounds

Morin, myricetin, quercetin, rutin and kaempferol were purchased from Sigma 

chemicals (Poole, Dorset, UK.). Isorhamnetin was obtained from Apin chemicals 

(Abingdon, Oxford, UK.).

2.6 Growth of Plants on Sterile Media

2.6.1 Preparation of Murashige and Skoog (MS) Media

Macronutrients- MS media is prepared containing the following macronutrients; 1.25 

mM potassium phosphate ( K H 2 P O 4 ) ,  2.26 mM calcium chloride (CaCl2.2H20), 0.73 mM 

magnesium sulphate (MgSÜ4 . 7 H2O). In addition, all media contained 20 mM sodium- 

iron EDTA, 100 mM sucrose and 8 g/1 agar. Media was adjusted to pH 5.7 with 0.1 M 

potassium hydroxide and immediately autoclaved.
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Micronutrients- In order to provide the required micronutrients to support plant 

growth, the following compounds were added to MS media; 0.1 mM boric acid (H3BO3), 

0.1 pM cobalt chloride (C0 CI2 . 6 H2 O), 0.1 pM copper sulphate (CUSO4 . 5 H2O), 0.1 mM 

manganese sulphate (M11SO4 . H2 O), 1.0 pM molybdic acid (Na2Mo0 4 . 2 H2O), 5.0 pM 

potassium iodide (KI), 0.03 mM zinc sulphate (ZnS0 4 .7 H2Û). A 200x concentrated 

solution was prepaied and 5 ml was added to I litre of media.

Altering nitrogen content o f  media- Standard nitrogen concentration in the media was 60 

mM. Media containing five different nitrogen concentrations were prepared, 0, 0.1, 0.6,

6.0 and 60.0 mM. Nitrogen was added to the media in the ratio of 1 mole ammonia: 2 

moles nitrate supplied in the form of ammonium nitrate and potassium nitrate. All media 

contained 1.25 mM potassium phosphate and 100 mM sucrose.

Altering phosphate concentration o f  media- Media was prepai'cd containing, 0, 0.3, 0.6,

2.5 and 6.3 mM potassium phosphate (KPO3 monobasic). 1 mM MES buffer was added 

to the media to enable adjustment of the pH to 5.7. All media contained 60 mM nitrogen 

and 100 mM sucrose.

2.6.2 Plating Growth Media

Media was heated in a microwave oven to melt and placed in a 55 °C water bath 

prior to pouring. Plating of media was carried out in a laminar flow hood under sterile 

conditions. Media to support growth of Arahidopsis thaliana was plated onto Petri dishes, 

media intended for Lycopersicon esculentum was poured into sterile magenta vessels.
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2.6.3 Surface Sterilisation of Ambidopsis thaliana Seed

Sterilisation of seeds was carried out in a laminai’ flow hood. Seeds contained 

within filter paper packets were placed within a magenta vessel. They were then 

immersed for two minutes in 70 % (v/v) ethanol followed by ten minutes in 10 % (v/v) 

sodium hypochlorite with occasional agitation. Seeds were finally rinsed five times in 

sterile water and left overnight in the laminar flow hood to dry.

2.6.4 Surface Sterilisation of Lycopersicon esculentum Seed

Prior to surface sterilisation, tomato seeds were imbibed for two hours under a 

flow of constantly running tap water. The container holding the seeds was then covered 

over with two layers of muslin. Seeds were submerged for two minutes in 70 % (v/v) 

ethanol, the solution was swirled continuously. Ethanol was poured off and replaced by a 

2 % (v/v) hypochlorite solution containing four drops of Tween 20 per 100 ml. Seeds 

were shaken gently in this solution for ten minutes and then rinsed four times in sterile 

water. Seeds were then immediately placed onto growth media in a laminar flow hood.

2.6.5 Growth Conditions of Plants on Sterile Media

Arahidopsis seed were sown onto MS media in Petri dishes under sterile 

conditions. Plates were covered and placed at 4 °C in darkness for three days. Plates were
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then transferred to conditions of 24 h white light (100 pEi/m^/s) provided by warm white 

fluorescent tubes, at 2 0  °C for a further ten days.

Lycopersicon esculentum seed were sown onto MS media in magenta vessels 

allowing the height required for growth of tomato seedlings. Magenta vessels were sealed 

and transferred to 24 h white light as described above at 20 °C. Plants were grown for 

either 1 0  or 2 1  days before tissue was harvested.

2.6.6 Harvesting of Tissue from Sterile Media

Tissue was harvested on ice and frozen directly in liquid nitrogen. Tissue for 

flavonol analysis was stored at -20  °C, tissue for RNA analysis was stored at -80 °C.

2.7 Growth of Lycopersicon esculentum in Hydroponic Conditions

2.7.1 Study Design

Tomato plants were grown in a commercial environment under glass at Garrion 

Fruit Farm, Clyde Valley, Lanarkshire. Hydroponic nutrient regimes were designed to 

control nitrogen and phosphorus availability whilst still allowing plant growth and fruit 

set. This allowed determination of the effect of nitrogen and phosphorus fertilisers on the 

flavonol content of tomato fruit and mature vegetative tissue. Tissue sampling was 

carried out on two occasions one month apart (May-June, 1998). Red, green and breaker
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fruits and leaf tissue were collected on each occasion. Tissue was stored at -20  °C prior 

to determination of flavonol content.

2.7.2 Design of Fertiliser Stoek Solutions

Stock solution recipes were based on the use of a 40 gallon (182 1) stock tanlc, this 

is the standard stock tank size used by commercial growers. All solutions were diluted 

1:100 for application to plants in the trial. Fertilisers for stock solutions were purchased 

from Clydeside Trading Society, Kirkmuirhill, UK.

2.7.3 Phosphorus Manipulation

A control phosphate regime was designed to produce a nutrient feed with a 

phosphate content of 30 ppm following dilution. This regime required two stock tanks A 

and B. Tank A contained calcium nitrate (10.67 kg/182 1), tanlc B contained potassium 

nitrate (14.3 kg/182 1), mono-ammonium phosphate (1.97 kg/182 1), ammonium nitrate 

(1.14 kg/182 1), magnesium sulphate (9.08 kg/182 1) and Solufeed TEC (0.55 kg/182 1). 

Following 1:100 dilution this regime provides a nutrient content of 100 ppm calcium, 184 

ppm nitrogen (nitrate), 24 ppm nitrogen (ammonia), 300 ppm potassium, 50 ppm 

magnesium, 30 ppm phosphorus and trace elements boron, copper, iron, manganese, 

molybdenum and zinc supplied by the Solufeed TEC (Clydeside Trading Society).

The low phosphate regime was designed to produce a phosphorus concentration of 5 

ppm. This regime matched the control situation as closely as possible differing only in
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the concentration of mono-ammonium phosphate (0.33 kg/182 1) and ammonium nitrate 

(2.27 kg/182 1). This allowed a phosphorus concentration of 5 ppm, 24 ppm nitrogen 

(ammonia), and 195 ppm nitrogen (nitrate).

The high phosphate regime contained 100 ppm phosphorus. This was achieved by 

increasing the concentration of mono-ammonium phosphate to 6.56 kg/182 1 and omitting 

ammonium nitrate. Nitrogen levels were thereby reduced to 173 ppm nitrate-N and 45 

ppm ammonia-N.

2.7.4 Nitrogen Manipulation

The control nitrogen regime supplied 193 ppm of nitrogen. Stock tank A 

contained calcium nitrate (10.67 kg/182 1), stock tank B contained potassium nitrate (14.3 

kg/182 1), mono-ammonium phosphate (2.95 kg/182 1), magnesium sulphate (9.08 kg/182 

1) and Solufeed TEC (0.55 kg/182 1). This produced a nutrient content of 100 ppm 

calcium, 173 ppm nitrogen (nitrate), 20 ppm nitrogen (ammonia), 300 ppm potassium, 45 

ppm phosphorus and 50 ppm magnesium.

The low nitrogen regime contained 79 ppm of nitrogen. To achieve this the concentration 

of calcium nitrate was decreased to 5.33 kg/182 1, potassium nitrate was decreased to 

4.30 kg/182 1 and mono -ammonium phosphate was decreased to 1.97 kg/182 1. In 

addition magnesium sulphate levels were decreased to 5.45 kg/182 1. This regime gave a 

final nutrient content following 1:100 dilution of, 50 ppm calcium, 6 6  ppm nitrogen 

(nitrate), 13 ppm nitrogen (ammonia), 90 ppm potassium, 30 ppm phosphorus and 30 

ppm magnesium.
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Nitrogen levels in the ‘high ' regime were increased to 405 ppm. This involved increasing 

levels of calcium nitrate to 21.34 kg/182 1, potassium nitrate to 27.91 kg/182 1 and adding 

ammonium nitrate at 2.27 kg/183 1. Mono-ammonium phosphate and magnesium 

sulphate were retained at control levels. Final nutrient concentrations were, 200 ppm 

calcium, 363 ppm nitrogen (nitrate), 42 ppm nitrogen (ammonia), 585 ppm potassium, 45 

ppm phosphorus and 50 ppm magnesium.

2.7.5 Hydroponic Plant Growth Conditions

Scotland’s Tomatoes, Lanarkshire, supplied tomato plants of variety Chaser at age 

3-4 months. These plants were installed (Feb-Mar 1998) in a commercial glass house 

receiving nutrients thi'ough a controlled drip system. Light levels and temperatui'e would 

have varied according to outdoor weather conditions. Sampling occurred from May-June 

1998, at this time plants would receive 12-14 hours of light per day. Light levels 

measured on-site at midday during sampling were 800-1000 qEi/m^/s at the top of the 

plants and 150 p.Ei/m^/s at truss level. Daytime temperatures varied from 20-25 °C.

2.8 Growth of Soil Grown Plants

2.8.1 Growth of Soil Grown Arahidopsis thaliana

Soil was first autoclaved and then treated with 0.1 g/1 Intercept (Levington, 

Ipswich, UK.), a water soluble systemic insecticide containing 70 % (w/w) imidacloprid,
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giving protection against aphid damage. Arahidopsis seeds were sown on treated soil, 

pots were covered in cling-film and placed in darkness in a cold cabinet at 4 °C for 2 days 

allowing vernalisation to occin. Plants were then transferred to conditions of 15 fxEi/m^/s 

white light at 20 °C for three weeks prior to treatment.

2,8.2 Growth of Soil Grown Lycopersicon esculentum

Seeds were obtained from the C.M. Rick Centre (California), Simpson’s Seeds 

(Surrey, England) or collected from the fruits of Spanish cherry tomato (variety Paloma) 

pui'chased from Safeway, Byres Rd, Glasgow.

Seeds were planted beneath 1 cm of sterile soil and moistened with distilled water. Plant 

pots were covered with cling film and placed in a growth cabinet with controlled 

conditions of white light (80-100 qEi/m^/s) at 20 °C. Daylength was fixed at 16 h of light 

and 8  h of darkness. Plants were grown for tluee weeks prior to light treatments on 

seedlings and grown for 4-5 months prior to light treatment of fruits on the vine or 

analysis of flavonol content of tomato fruits. Following production of the first fruiting 

truss, plants were fed at alternate waterings with Tomorite liquid tomato fertiliser 

(Levington, Ipswich, UK).

2.9 Illumination of Plant Material

Illumination of both Arahidopsis thaliana and Lycopersicon esculentum was 

carried out under controlled enviromnental conditions at 20 °C or 10 °C. White light was
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provided by warm white fluorescent tubes (Osram, Munich, Germany), UV-A radiation 

was obtained from Sylvania F35W/B1-2B Black-light Blue fluorescent tubes. UV-B 

radiation was provided by UVB-313 ultraviolet fluorescent tubes (Q-Panel Co. USA), 

which were eovered with cellulose acetate (Diacel 120 microns FLM 400110, Film Sales) 

to filter out UV-C radiation. This UV-C filter was replaced every 24 h. Blue light was 

provided by Sylvania 40W T12 blue fluorescent tubes (GTE, Sylvania, Shipley, UK.). 

Blue light tubes were covered by a “Moonlight-Blue” filter (No. 183, Lee Filters, 

England) to screen out UV-A and other wavelengths below 390 imi. Red light was 

obtained by covering high output white fluorescent tubes with (Phillips, PL-L 

55W/83/4P) with 'Deep Golden Amber’ filter (No. 135, Lee Filters).

Required fluence rates were achieved by varying the number of fluorescent tubes 

and the proximity of test plants to the light source.

2.9.1 Fluence Rate Measurement

Fluence rate from white light sources was determined using a hand held Li-Cor 

quantum sensor. Model L1-185B. Fluence rate from all other radiation sources was 

measured using a spectroradiometer (Macam SR9910).
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2.10 RNA Isolation

2.10.1 Flow gen Purescript RNA Isolation

RNA was extracted using the Flowgen Purescript RNA isolation kit (Flowgen, 

Staffordshire, UK). Frozen plant tissue, 0.03-0.5 g, was ground to a fine powder in liquid 

nitrogen in a pestle and mortar. This tissue was quickly transferred to a frozen, sterile 

Eppendorf tube. Flowgen Cell Lysis solution, 300 ql, was then added (containing citric 

acid, EDTA and SDS). Samples were briefly vortexed to mix and 100 pi of Flowgen 

Protein-DNA precipitation solution (containing citric acid and NaCl) was added. The 

solution was inverted several times and placed on ice for 5 min. Samples were then 

centrifuged for 3 min in a microfrige at 14,000 rpm. The supernatant was removed into 

500 pi chloroform, inverted to mix and centrifuged for 20 min at 14,000 rpm in a 

microcentrifuge. The upper aqueous layer was then transferred to an Eppendorf 

containing 300 pi isopropanol, the solution was mixed by inversion and the RNA was 

pelleted by centrifuging for 3 min at 14,000 rpm. The isopropanol was discarded leaving 

a small white pellet which was rinsed with 200 pi of 70 % (v/v) ethanol (made with 

DEPC treated distilled water). The solution was inverted to mix and the RNA was 

pelleted by 1 min centrifugation. Ethanol was poured off and RNA pellets were allowed 

to air-dry on the bench for ~ 1 h. RNA was resuspended in 12-25 pi DEPC treated water. 

Samples were stored on ice for ~ 1 h to allow resuspension and then stored at -  20 or -80 

°C.
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2.10.2 Determination of RNA Concentration

RNA concentration was determined spectrophotometrically by measuring the 

optical density of each sample at 260 and 280 nm. It was assumed that an RNA 

concentration of 40 pg/ml gives an O.D. of 1.

2.10.3 RNA Gel Electrophoresis

Agarose, 1.3 g, was added to 72 ml of distilled water and heated in a microwave 

to allow the agarose to dissolve. Once the agarose solution had cooled to 60 °C, 10 ml of 

lOx MOPS (0.2 M MOPS, 50 mM NaOAc, 10 mM EDTA, pH 7.0) and 18 ml of 

formaldehyde (37 % v/v, Sigma) was added. The gel was mixed gently to avoid the 

formation of air bubbles and poured into gel casting apparatus. The gel was allowed a 

minimum of 30 min to set and was then transferred to a gel tank. Sufficient running 

buffer (Ix  MOPS) was then added to submerge the gel.

RNA, 5-10 pg, was aliquoted and made up to 10 pi with DEPC treated water. RNA 

denaturing buffer, 14.5 pi, was then added (1 pi lOx MOPS, 3.5 pi formaldehyde, 10 pi 

formamide, 0.1 pi ethidium bromide (10 mg/ml)). Samples were briefly centrifuged at

14,000 rpm in a microfuge and then incubated in a 65 °C water bath for 5 min. Samples 

were again briefly centrifuged and 4 pi RNA loading buffer (50 % (v/v) glycerol, 1 mM 

EDTA, 0.25 % Bromophenol Blue, 0.25 % Xylene cyanol FF) was added.

Samples were loaded onto the gel and run at constant 90 volts for ~ 3 h or until the lower 

dye front reached tlnee quarters of the length of the gel.
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2.10.4 Northern Blotting

Blotting apparatus included a reservoir of 20x SSC (3 M NaCl, 0.3 mM tri

sodium citrate) above which a layer of 3 MM filter paper (Whatman) soalced in 20x SSC 

and in contact with the reservoir was suspended over a glass support. The agarose gel was 

removed from the gel tank, triimned to produce smooth edges and carefully laid ‘well’ 

side down on the 3MM filter paper avoiding air bubbles. A piece of nylon membrane 

(Hybond N, Amersham, UK) was laid over the gel. Several pieces of 3 MM filter paper 

were placed over the nylon membrane. Layers of nescofilm (Bando Chemical Ind.Ltd, 

Japan) were placed around the agarose gel to prevent ‘short-circuiting’. Many layers of 

dry absorbent tissues were placed on top of the blot and finally a glass plate supporting a 

500 g weight was placed on top.

The blot was left overnight to allow transfer of the RNA from the agarose gel 

onto the nylon membrane. The blot was then disassembled and the filter rinsed in sterile 

distilled water before fixing the RNA to the nylon membrane using a UV crosslinker 

(UVP, CL-1000, Ultraviolet crosslinker, 12,000 Joules/m^/s).

2.11 Amplification and Preparation of Plasmid DNA

2.11.1 Small Scale Preparation of Plasmid DNA

Competent E.coli cells were prepared and transformed as described (Sambrook et 

al, 1989). E xoli from glycerol stocks were streaked across LB agar plates and incubated
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overnight at 37 °C. One colony was then selected from each plate and transferred to 5 ml 

L-broth (containing 50 pg/ml ampicillin) in sterile falcon tubes. Falcon tubes were then 

incubated overnight in a shaker at 37 °C. Plasmid DNA was isolated from bacterial 

cultures using the Wizard Minipreps DNA purification system (Promega). Bacterial 

culture, 5-10 ml, was centrifuged at 10,000 g for 10 min to pellet the cells. Supernatant 

was then removed and cells were resuspended in 400 pi of Cell Resuspension Solution 

(50 mM Tris (pH 7.5), 10 mM EDTA, 100 pg/ml RNase A). Neutralisation solution, 400 

pi, (1.32 M potassium acetate) was then added and the solution was mixed well by 

inversion. Lysate was centrifuged at 14,000 rpm for 5 min in a microfuge and the 

supernatant removed into a 2.0 ml Eppendorf.

One Minicolumn/Syringe Barrel assembly was prepared for each E.coli culture 

and attached to a vacuum manifold (Promega). Resuspended DNA Purification Resin, 1 

ml, was added to the barrel of the assembly. Cleared lysate was then added into tlie 

minicolumn/syringe assembly containing the resin. Vacuum was then applied to pull the 

resin/ DNA mixture tlnough the minicolumn. Vacuum was then broken and 2 ml of 

Column Wash Solution (80 mM potassium acetate, 8.3 mM Tris-HCl, pH 7.5, 40 pM 

EDTA, 55 % (v/v) ethanol) was added, vacuum was restored to draw the wash solution 

through the minicolumn. Vacuum was sustained for an additional 30 seconds after the 

solution had passed through the column to dry the resin, the minicolumn was then 

transferred to a 1.5 ml Eppendorf. This Eppendorf was centrifuged at 14,000 rpm in a 

microfuge for 2 min to remove residual Column Wash Solution. The minicolumn was 

transferred to a fiosh Eppendorf and 50 pi of dH20 was added. The Eppendorf was then
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centrifuged at 14,000 rpm for 20 seconds to elute the DNA. The minicolumn was 

discarded and plasmid DNA was stored at -20  °C.

2.11.2 Plasmid Digestion and DNA Isolation

Plasmid DNA, 2 pi, was added to 1 pi of the appropriate buffer (Promega), 0.5 pi 

of restriction enzyme(s), 4 pi DNA loading buffer (20 % (v/v) glycerol, 0.025 M NaOH, 

0.25 % (w/v) bromophenol blue, 0.25 % (w/v) xylene cyanol FF) and made up to 10 pi 

total volume with sterile distilled water. Reactions were incubated for 1 h at 37 °C. 

Digestions were run out on a TBE gel (0.4 g agaiose, 50 ml tris-boric acid EDTA (0.09 

M tris-borate, 2 mM EDTA) 1 pi 10 mg/ml ethidium bromide) alongside marker DNA (1 

kb ladder. Life Technologies). The gel was then installed in a gel tank with 1 x TBE 

running buffer and electrophoresis was carried out as described 2.10.3. The gel was 

visualised using a UV-transilluminator (Spectroline ™ transilluminator, Model TC- 

312A). Bands of interest were then excised from the gel and stored in an Eppendorf.

2.11.3 Purification of DNA Fragments from Agarose Gels

Agarose gel slices containing DNA were isolated as described (2.11.2). DNA was 

purified using a QIAquick Gel Extraction Kit (Qiagen). Gel slices were weighed and 300 

pi of buffer QG (aqueous solution of guanidine thiocyanate and pH indicator) was added 

for every 100 mg of gel. Samples were incubated in a water bath at 50 ”C for 10 min, and
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vortexed at regular intervals during incubation to allow the gel to completely dissolve in 

the buffer. 1 0 0  pi of isopropanol was added for every 1 0 0  mg of agarose gel.

The QIAquick spin column was placed within the 2 ml collection tube provided 

and the agarose gel sample added onto the column. Tubes were centrifuged at 14,000 rpm 

in a microfuge for 1 min, flow through was discarded and the column was returned to the 

collection tube. Buffer PE, 750 pi, (aqueous solution of Tris(hydroxymethyl)- 

aminomethane/hydrochloric acid) was added to the column, tubes were again centrifuged 

for 1 min. Flow tlnough was discarded and the column was centrifuged for an additional 

1 min to remove any residual ethanol. To elute the DNA from the column 50 pi of buffer 

EB (10 mM Tris (hydroxymethyl)-aminomethane/hydrogen chloride, pFI 8.5) was added 

directly to the membrane of the column, the column was placed in a fresh 1 ,5 -ml 

Eppendorf and centrifuged for 1 min. The column was discarded and DNA stored at -20 

T .

2.11.4 Determining the Concentration of DNA Inserts Isolated

DNA insert, 4 pi, isolated from plasmid DNA (see 2.11.3), was added to 2 pi 

DNA loading buffer (20 % (v/v) glycerol, 0.025 M NaOH, 0.25 % (w/v) bromophenol 

blue, 0.25 % (w/v) xylene cyanol FF) and 4 pi sterile water. DNA samples were then run 

out on a TBE gel (2.11.2). Lambda Hind III DNA (Rediprime) of known concentrations, 

was run alongside DNA samples and a 1 kb ladder (Life Teclniologies).
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The brightness of DNA bands was examined using a UV-transilluminator 

(Spectroline ™ transilluminator Model TC-312A) to determine the concentration of DNA 

inserts.

2.11.5 Radiolabelling of dsDNA

Radio labelled DNA inserts were produced using the Rediprime II DNA 

labelling kit (Amersham International). DNA was transferred to a screw top Eppendorf 

and diluted in sterile distilled water to produce a solution of 25 ng DNA in total volume 

of 45 pi. DNA was denatured by heating to 95-100 °C for 5 min in a boiling water bath. 

Samples were then briefly spun down in a microcentrifuge. Denatured DNA was added to 

the Rediprime reaction tube (containing dATP, dGTP, dTTP, exonuclease free Klenow 

enzyme and random primers) and vortexed to mix. Samples were centrifuged briefly to 

bring the contents to the bottom of the tube before adding 50 pCi (3,000 Ci mmol'^) of 

[a-^^P] dCTP. Samples were then incubated in a water bath at 37 °C for 10 min. The 

labelling reaction was stopped by the addition of 5 pi of 0.2 M EDTA. For use in 

hybridisation reactions, DNA was denatured by heating to 95-100 for 5 min and then 

snap cooled on ice for 5 min. DNA was denatured following the removal of 

unincorporated radionucleotides.
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2.11.6 Removal of Unincorporated Radionucleotides from Radiolabelled DNA

Unincorporated radionucleotides were separated out using a sephadex mini- 

column. A hole was pierced in the base of a sterile 1.5 ml Eppendorf using a 12 gauge 

needle. A 0.5 ml sterile Eppendorf with a hole in the base pierced using a 25 gauge 

needle was suspended within the larger tube. Sterile glass beads, 5-10 pi, (Jencons 

Ballotini N o .11, Jencons (Scientific) Ltd, Leighton, Buzzard, UK) in distilled water were 

transferred to the 0.5 ml Eppendorf to cover the hole. The Eppendorf was filled with 

Sephadex TE (sterile Sephadex G50 (Pharmacia, Milton-Keynes, UK) in a 20 fold 

volume of TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The two Eppendorfs were then 

suspended at the top of a 10 ml test tube and centrifuged at 1,000 g for 4 min. The 0.5 ml 

Eppendorf was refilled with Sephadex TE avoiding the production of air bubbles and 

recentrifuged. The now complete Sephadex minicolumn was removed from the 0.5 ml 

Eppendorf into a screw top Eppendorf before the addition of the solution containing 

labelled DNA and unincorporated nucleotides. The minicolumn was then spun at 2,000 

rpm for 4 min. Unincorporated radionucleotides were retained within the minicolumn, 

which was discarded, and the labelled DNA was collected in the Eppendorf where it was 

stored at 4 °C until use.
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2.12 Hybridisation of Radiolabelled DNA to Northern Blots.

2.12.1 Hybridisation of Nylon Filters

Nylon filters were moistened with sterile distilled water and placed within Teclme 

hybridisations flasks (Techne, Cambridge, UK). Pre-hybridisation solution, 20 ml, (0.5 M 

phosphate buffer pH 7.2, 7 % (w/v) SDS, 10 mg/ml BSA) was added using a sterile 

pipette. Flasks were incubated at 55 °C in Techne hybridisation ovens for at least 2 h. 

The denatured radiolabelled DNA probe was then added and hybridisation was left to 

proceed overnight.

2.12.2 Washing Northern Blots

Following hybridisation, filters were washed twice in an appropriate volume of 2 

X SSC, 1 % (w/v) SDS at 55 °C in a Techne hybridisation oven for 10 min. Filters were 

then washed at increasing stringency as required depending on the amount of 

radioactivity bound to the nylon membrane.

2.12.3 Autoradiography

Filters to be autoradiographed were sealed in heat sealable plastic and exposed to 

Fuji X-ray film (type RX) in a film cassette with intensifying screens at -80  °C for an 

appropriate length of time.
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2.12.4 Stripping Filters of Bound Radiolabelled Probes

Following autoradiography, a boiling solution of 0.1 % (w/v) SDS was poured 

over the filter. The solution was allowed to cool to room temperature. Washes were 

repeated thiee times or until no further radioactivity could be detected by the Geiger 

counter. Nylon filters were sealed in plastic and autoradio graphed overnight to verify that 

the radiolabelled probe had been completely removed.

2.12.5 Re-use of Radiolabelled DNA

Following hybridisation, probes were stored in falcon tubes at 4 °C. To re-use, the 

DNA/hybridisation solution was denatui’ed by heating at 95-100 °C for 10 min and 

allowed to cool to 55 °C before addition to prehybridised filters. Hybridisation was left to 

proceed overnight before filters were washed as described in 2 .1 2 .2 .

2.13 Measurement of CHS Activity Using the GUS Reporter Gene

2.13.1 Plant Material

Transgenic Arahidopsis line NM4, Non-Mutant 4, (Jackson & Jenkins, 1995) was 

grown as described in 2.8.1. This transgenic line contains the uidA (GUS) coding 

sequence fused to the Sinapis alba SA-CHl gene promoter sequences from positions -  

907 to +26. NM4 is diploid and homozygous for the transgene at a single heritable locus.
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2.13.2 Measurement of GUS Activity

Plant tissue was harvested onto ice and homogenised in 50 jiil GUS extraction 

buffer (50 mM Na2P0 4  pH 7.0, 10 mM (3-mercaptoethanol, 10 mM EDTA, 0.1 % (w/v) 

triton X-100, 0.1 % (w/v) sarcosyl). Fluorometric MUG (4-methyi-umbeliiferyl- 

glucuronide) assay buffer, 450 pi, (2 mM MUG dissolved in GUS extraction buffer) was 

then added. Samples were incubated in a 37 °C water bath. Sample aliquots of 100 pi were 

removed after 15 and 60 min. The reaction was stopped in these aliquots by the addition of 

900 pi 0.2 M NaiCOg. The remaining 300 pi sample was removed from the water bath at 

60 min and stored at -20  °C prior to determination of protein concentration.

Samples were mixed well and the concentration of 4-methyl-umbelliferone (4-MU) 

produced was quantified using a spectrofluorimeter (Perkin Elmer LS50) at excitation 365 

mn and emission 455 nm. GUS activity was calculated by calibrating the fluorimeter with 

solutions of 4-MU (Sigma). A standard curve of fluorescence against 4-MU concentration 

(iiM) was produced. GUS activity was then calculated as pmole 4-MU produced per minute 

per mg of protein (see 2.13.3).

2.13.3 Measurement of Protein

Protein concentration was measured using the Bradford assay (1976). 

Concentrated Bradford reagent was prepared by the addition of 100 ml 85 % (w/v) 

orthophosphoric acid (Sigma) and 50 ml 95 % (v/v) ethanol to 100 mg of coomassie 

brilliant blue G250. This reagent was stored at 4 °C until required. Before use, concentrated
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reagent was made up to 1 litre with distilled water and filtered through Whatman filter 

paper. Protein samples of 50 pi were added to 950 pi of dilute Bradford reagent. Reactions 

were mixed by inversion and incubated for 15-20 min at room temperature. The absorbance 

was then determined at 595 nm in a spectrophotometer.

BSA (Sigma) protein standard (1 mg/ml) was diluted in distilled water to provide protein 

concentrations, 0, 1, 3, 5, 8 , 12, 18, 23, 29 and 35 pg/ml. Standards were incubated with 

950 pi of dilute Bradford reagent as previously described and their absorbance at 595 nm 

was used to construct a standard curve of absorbance against amount of protein (pg). This 

was used to determine the amount of protein in each sample.
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Chapter 3 The Occurrence of Flavonols in Tomato Fruits 

and Tomato Based Products

3.1 Introduction

In order to investigate both environmental regulation of flavonol production in plant 

tissues and human absorption of tomato flavonols, it is first necessary to identify those 

flavonols present in tomato fluits. This chapter describes an HPLC based approach to the 

identification of tomato flavonols and their distribution within the fruit. The flavonol 

content o f tomato fruits was studied in relation to variety, season and countiy of origin. In 

addition flavonols found in commonly consumed processed tomato products were also 

assessed. The aim of this study was to identify tomato varieties or processed tomato 

products with a high flavonol content or conditions of cultivation that promote the 

accumulation of high levels of flavonols within tomato fruits.

3.2 Flavonol Identification by HPLC

Separation of flavonols from crude extracts of tomato tissue taken before and after acid 

hydrolysis was achieved by reversed phase liquid chi'omatography. Flavonol detection 

and identification was by UV and fluorescence detection. UV detection (365 nm) allowed 

analysis of rutin, quercetin-3 -glucoside, quercitrin, myricetin, morin, quercetin, apigenin, 

kaempferol and isorhamnetin with limits of detection < 5 ng. Chelation of flavonols with 

methanolic aluminium nitrate followed by fluorescence detection (excitation 425 nm.
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emission 480 nm) allowed detection of fewer flavonols (morin, myricetin, quercetin, 

kaempferol and isorhamnetin) however fluorescence detection provided greater 

sensitivity and selectivity with limits of detection -0 .1  ng. Using reversed-phase HPLC 

with absorbance and fluorescence detection two flavonols, quercetin and kaempferol, 

were detected in tomato fruit tissues from Spanish cherry tomatoes. Trace amounts of 

quercetin and kaempferol were detected in samples prior to acid hydrolysis. However, 

much larger quantities were detected after acid hydrolysis (Figure 3.1) indicating that the 

endogenous flavonols are present in tomato tissues primarily as conjugated structures.

3.3 Flavonol Identification by Liquid Chromatography-Mass Spectrometry

To verify the identification of flavonols present within tomato fruits, extracts from the 

skin of Spanish tomato variety Paloma taken before and after acid hydrolysis, were 

analysed using an HPLC system linked to a UV/vis monitor (371 nm) and mass 

spectrometer. This method provided not only UV absorbance chromatographs of 

flavonols, distinguishable by their retention time but also mass spectra for each peak 

detected. Analysis of tomato skin extracts by LCMS prior to acid hydrolysis 

demonstrated that the predominant quercetin conjugate was rutin, quercetin-3-rutinoside, 

m/z 609 amu (Figure 3.2). No kaempferol conjugates or additional quercetin conjugates 

were identified. LC-MS analysis (total ion current) of acid hydrolysed samples confirmed 

the presence of quercetin (m/z 301 amu) and kaempferol (m/z 285 amu) concluded to 

originate from conjugated forms as the aglycones were not present in extracts analysed 

prior to hydrolysis (Figure 3.3). Total ion current, LCMS analysis of acid hydrolysed

7 1



Figure 3.1 Detection of Flavonols in Tomato Fruits Before and After Acid 

Hydrolysis by HPLC

Gradient reverse phase HPLC analysis of flavonols. Column: 150 x 3.0 mm i.d. 4-qm 

Genesis Cis column with a 10 x 4.0 mm 4-pm Genesis Cis guard cartridge. Mobile 

phase 20 min gradient of 20-40 % acetonitrile in water containing 0.1 % 

trifluoroacetic acid. Flow rate: 0.5 ml min'L Detection by fluorescence (excitation 420 

and emission 485 nm) following post-column derivatization with methanolic 

aluminium nitrate. Samples: (A) 100 ng of (1) myricetin, (2) morin, (3) quercetin, (4) 

kaempferol, (5) isorhamnetin; (B) 1 mg sample of lyophilised tomato tissue, cv. 

Paloma. (C) as B but after acid hydrolysis. Numbers indicate peaks that co

chromatograph with standards listed for sample A. Morin was added to samples B 

and C as an Internal standard.
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Figure 3.2 Analysis of Flavonols in Tomato Fruits Prior to Acid Hydrolysis Using 

LCMS

Gradient reversed phase HPLC analysis of flavonols. Column 150 x 3.0 mm i.d. 5-jam 

Nemesis Cig column. Mobile phase; 20 min gradient of 12-35 % acetonitrile 

containing 1 % formic acid maintained at 35 % for a further 5 mins. Flow rate: 0.8 mi 

m in '\ Detector: absorbance monitor operating at 371 mn, after passing through the 

flow cell of the absorbance monitor the column eiuate was directed to a Shimadzu 

LCQ 8000 quadrupole mass spectrometer with atmospheric pressure chemical 

ionisation in negative ion mode operating in full scan mode from 250-650 amu. 

Spectra obtained were analysed using Shimadzu LCMS QP 8000 software. Samples 

(A) 1 mg sample of lyophilised tomato fruit skin prior to acid hydrolysis analysed 

using UY detection at 371 nm. (B) full scan LCMS spectra, m/z 250-650, of rutin 

standard. (C) full scan spectra of pre-hydrolysed tomato skin sample, peak 1.
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Figure 3.3 Analysis of Flavonols in Acid Hydrolysed Tomato Fruit Extracts 

Using LCMS

Gradient reversed phase HPLC analysis of flavonols. Column 150 x 3.0 mm i.d. 5-pm 

Nemesis Cis column. Mobile phase: 20 min gradient of 12-35 % acetonitrile 

containing 1 % formic acid maintained at 35 % for a further 5 mins. Flow rate: 0.8 ml 

m in '\ Detector: absorbance monitor operating at 371 nm, after passing through the 

flow cell of the absorbance monitor the column eiuate was directed to a Shimadzu 

LCQ 8000 quadrupole mass spectrometer with atmospheric pressure chemical 

ionisation in negative ion mode operating in full scan mode from 250-650 amu. 

Spectra obtained were analysed using Shimadzu LCMS QP 8000 software. Samples 

(A) acid hydrolysed 1 mg sample of lyophilised tomato fruit skin analysed using UV 

detection at 371 nm. (B) frill scan LCMS spectra, m/z 250-650, of quercetin standard. 

(C) LCMS spectra of kaempferol standard. (D) ftill scan spectra of hydrolysed tomato 

skin sample peak 1. (E) as D but with spectra of peak 2.
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samples allowed clear identification of the flavonol quercetin in the tomato fruit skin. 

Kaempferol was foimd to be present in lower concentrations thereby reducing the 

definition between the kaempferol peak and background interference in the UV 

chromatograph and also in the mass spectra (285 amu), LC-MS with selected ion 

monitoring was used to reduce background interference in acid hydrolysed tomato 

samples. Monitoring for quercetin at m/z 303 amu and kaempferol at m/z 285 amu 

allowed a reduction in the scale of the quercetin response whilst allowing a clearer and 

more sensitive response to kaempferol (Figure 3.4). In each case identification was 

achieved by comparison of mass spectra with spectra of authentic flavonol standards and 

by peak retention time. Flavonols in tomato samples were not quantified using this 

method.

3.4 Distribution of Flavonols within Tomato Fruits

When different parts of Spanish cherry tomatoes were examined, 98 % of the main 

flavonol, conjugated quercetin, was found in the skin compared to ca. 1 % in the seeds 

and flesh (Table 3.1). Quercetin contributes ca. 96 % (138.5 + 5.6 jug/gfwt) of the skin- 

derived flavonols with the remainder consisting of kaempferol (4 . 8  + 0 . 3  jiig/gfwt).
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Figure 3.4 Analysis of Flavonols in Acid Hydrolysed Tomato Fruit Skin Using 

LCMS-Selected Ion Monitoring

Gradient reversed phase HPLC analysis of flavonoids. Column: 150 x 3.0 mm i.d. 5 

pm Nemesis Cl 8  column. Mobile phase: 20 min gradient of 12-35 % acetonitrile 

containing 1 % formic acid maintained at 35 % for a further 5 mins. Flow rate: 0.8 

ml/min. Detector; absorbance monitor operating at 371 nm, after passing through the 

flow cell of the absorbance monitor the column eiuate was directed to a Shimadzu 

LCQ 8000 quadrupole mass spectrometer with atmospheric pressure chemical 

ionisation (APCI) in negative ion mode operating in selected ion monitoring (SIM) 

mode at m/z 303 and 285. Spectra obtained were analysed using Shimadzu LCMS QP 

8000 software. Samples (A) 20 pg of (1) rutin, (2) quercetin-3-glucoside, (3) morin, 

(4) quercetin analysed using SIM at m/z 301. (B) acid hydrolysed 1 mg sample of 

lyophilised tomato tissue analysed using SIM at m/z 303. (C) 10 pg of kaempferol 

analysed using SIM at m/z 285. (D) acid hydrolysed 1 mg sample of lyophilised 

tomato tissue analysed using SIM at m/z 285. Numbers indicate peaks that co

chromatograph with standards listed for samples A and C.
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Table 3.1 Distribution of Flavonols in Spanish Cherry Tomatoes 

{Lycopersicon esculentum Mill) c.v. Paloma.

Free Conjugated Free Conjugated Total

Tomato Quercetin Quercetin Kaempferol Kaempferol Flavonol

Whole 0 . 2  ± 0 . 0 23.4 ± 1.2 0.5 ±0.1 1 .2 ± 0 . 1 25.3 ±1.3

Skin 0.7 ±0 .0 137.8 ±5.6 0.4 ±0.0 4.4 ±0.3 143.3 ±5.8

Flesh n.d 0.9 ±0.0 0 . 1  ± 0 . 0 0 . 2  ± 0 . 1 1 .2 ± 0 . 1

Seed 0 . 1  ± 0 . 0 1 .0 ± 0 . 1 0 . 2  ± 0 . 0 0 . 2  ± 0 . 0 1.5±0.1

Tomatoes purchased from Safeway Stores pic. Data expressed as pg/g (fresh weight) + standard error 
(n=3).
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3.5 Effect of Season on Flavonol Content of Tomato Fruits

The flavonol content of Spanish grown cherry tomato, Paloma, was assessed over a 

period of 13 months. The levels fluctuated but not markedly with total flavonols ranging 

from 10.2-36.4 pg/g (Table 3.2). Growing conditions in Spain therefore appear to induce 

the accumulation of flavonols in tomato fruits throughout the growing season.

3.6 Screening Varieties of Tomato Fruit for Flavonol Content

Screening of tomato fruit varieties for flavonol content was focused mainly on British 

fruits due to ease of collection. English Village Nurseries (EVN), Southport, supplied the 

majority of tomato fruits. The large scale of production at this site with varieties grown 

for sale and field trials allowed a laige selection of varieties to be harvested for analysis. 

Samples were also supplied by Scotland’s Tomatoes based in Lanarkshire. Collecting 

tomato fruits directly from the growers allowed the identification of fruit vaiieties, plant 

suppliers and also an insight into methods of cultivation and environmental conditions 

on-site. Spanish tomato fruits ev Bodar, Bond, Royesta and Havanera were kindly 

donated by Dr Jesus Chammaro, Institute of Celluology, CSIC, Valencia, Spain. Other 

tomatoes from Spain as well as Israel and S.Africa, were supplied by Mr. B. Sparkes 

(English Village Salads pic). Tomatoes from the south of France were obtained in a local 

market in Toulouse by Sophie Bozonnet. All other fruits were purchased from Safeway, 

Byres Rd, Glasgow.
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Screening of tomato varieties from within a single nursery was intended to determine the 

effect of fruit variety on the flavonol content of fruits grown in very similar conditions. 

Fruits from different countries were analysed for flavonol content to broadly determine 

the effect of different environmental conditions and methods of cultivation.

3.7 Analysis of Tomato Fruits from English Village Nurseries

The total flavonol content of tomato fruits grown at EVN in the 1996 season varied from 

0.9- 5.2 f.Lg/gfwt. Approximately 90 % of the flavonols identified in English fruits were 

present in the form of conjugated quercetin with the remaining 1 0  % composed of both 

free and conjugated kaempferol (Table 3.3). Kaempferol was present in low levels (0.1- 

0 . 6  qg/gfwt) with detection only possible with fluorescence detection following post

column derivatization.

In similar environmental conditions and with similar cultivation methods fruit size 

appeared to be an important variable influencing flavonol content. Cherry tomato 

varieties contained higher concentrations of quercetin than other varieties (Table 3.3). 

Due to the low levels of kaempferol present in tomato fruits, varietal differences were 

difficult to establish, however the smaller tomato varieties appeared more abundant in 

kaempferol.
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3.8 Flavonol Analysis of Tomato Fruits from Scotland’s Tomatoes

Tomato varieties grown by Scotland’s Tomatoes in the 1997 season were analysed for 

flavonol content (Table 3.4). The total flavonol content of the fruits varied from 1.1 -12.0 

qg/gfwt. Quercetin was mainly present in a conjugated form with low levels of free 

quercetin detected in samples 72/47, E27681 and Vanessa Beefsteak. On average 

quercetin contributed 83.1 % of the total flavonol content of Scottish tomato fruits with 

the remainder present in the form of kaempferol. Cherry tomato varieties, E27681 and 

Favorita were found to contain the highest levels of flavonols, 12.0 and 6 . 6  pg/gfwt 

respectively. Beefsteak tomato varieties Vanessa 2000 and Vanessa Beefsteak contained 

similar flavonol levels to normal sized Scottish fruits (1.8 and 2.3 pg/gfwt respectively).

3.9 Flavonol Analysis of Tomato Fruits Grown in Different Countries

Fruits from different countries were analysed for flavonol content to broadly determine 

the effect of different environmental conditions and methods of cultivation, (Table 3.5). 

As observed for British fruits quercetin was the major flavonol detected, contributing ~ 

92 % of the total flavonol content. Quercetin was present mainly in a conjugated form 

with low levels of free quercetin ( 1 - 2  % of total) detected in some samples.

Analysis of the red cherry tomato Favorita obtained not only from England but 

also Spain, S.Africa, and Scotland showed that fruits from Spain and S.Africa contained 

4-5 fold more quercetin than British fruits. The smaller cherry varieties contained higher
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Table 3.4 Free and Conjugated Quercetin and Kaempferol Content of Tomato 

Fruits Produced by Scotland’s Tomatoes'*

Fruit Free Conjugated Free Conjugated Total

Variety Quercetin Quercetin Kaempferol Kaempferol Flavonol

Capita n.d 1.1 ± 0 . 0 n.d n.d 1.1 ± 0 . 0

E27681C 0 . 1  ± 0 . 0 10.9 ±0.0 0 . 2  ± 0 . 0 0.7 ±0.0 1 2 .0 ± 0 .1

Favoritai" n.d 5.4 ±0.1 0 . 2  ± 0 . 0 1 .0 ± 0 . 1 6 . 6  ± 0 . 1

Liberto n.d 1.3 ±0.2 0 . 2  ± 0 . 0 0.3 ±0.0 1 .8  ± 0 . 2

Lovatt n.d 2.1 ±0.5 0 . 2  ± 0 . 0 1.2 ±0.3 3,5 ± 0.6

Spectra n.d 1 .8  ± 0 . 2 0 . 1  ± 0 . 0 0.3 ±0.0 2 . 2  ± 0 . 2

Vanessa 0 . 2  ± 0 .1 1 .8 ± 0 .1 0 .1  ± 0 . 0 0 . 2  ± 0 . 0 2.3 ±0.1

Beefsteak®

Vanessa n.d 1 .6  ± 0 . 2 0 . 1  ± 0 . 0 0 . 1  ± 0 . 0 1 .8  ± 0 . 2

2 0 0 0 ®

72/47 0 . 2  ± 0 .1 3.0 ±0.0 0 . 2  ± 0 . 0 0.3 ±0.0 3.7±0.1

^Results represent pg/g (fresh weight) ± S.E where n=3. Flavonol content of cherry tomato varieties is 
denoted by and beefsteak varieties by n.d= none detected. Tomatoes were harvested from Scotland’s 
Tomatoes in .Tune of 1997.
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levels of flavonols as compared to fruits of regular size (Table 3.5). The Spanish tomato 

fruit with the lowest quercetin concentration was the large beefsteak fruit. Within the 

Spanish group the effect of variety on flavonol levels can be observed. Bond and 

Havanera are both normal sized, field grown Spanish tomatoes obtained from plants 

cultivated alongside each other on the same plot near Valencia (July 1997), none-the-less 

the total flavonol content of Bond fruit was 10.9 ± 0.5 pg/g compared to 6 . 6  ±1.0 pg/g in 

Havanera.

3.10 Flavonol Analysis of Tomato Fruits with Different Skin Colours

The concentration of flavonols in tomato fruits with deep red and purple skins was 

investigated. It was hypothesised that the skins of such varieties may contain substantial 

amounts of anthocyanins, and as flavonols originate from the same branch of the 

phenylpropanoid pathway as anthocyanins (Holton & Cornish, 1995; Duthie &Crozier, 

2000) the skins might also contain elevated levels of flavonols. Plants were grown in a 

growth room in conditions of constant high white light (80-100 pmol/m^/s) at 20°C. 

Fruits were hai’vested at ripeness and the flavonol content o f their skins analysed. The 

darkly pigmented skin of Noire Charbonneuse had a total flavonol content of 440 pg/g 

(Table 3.6 & Figure 3.5). The flavonol content of Anthocyanin Gainer, a deep red fruit 

with yellow ‘freckles’ was also found to be high (Figure 3.6). However not all of the 

darkly pigmented fruits were high in flavonols; skin from Aubergine, a variety 

characterised by purple striations contained only 108 pg flavonol/g (Figure 3.7). In 

contrast, skin from Anthocyanin Free and Dark Green, which were not heavily pigmented

8 5
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Figure 3.5

Tomato fruit of variety Noire Charbonneuse. Fruit depicted during ripening, the lower 

part of the fruit ripened to become a dark red/purple colour, the upper part of the fruit 

retained its dark striations. This pattern was also observed in the flesh of the fruit.



Figure 3.5 Tomato Fruit of Variety Noire Charbonneuse
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Figure 3.6

Tomato fruit of Anthocyanin Gainer. (A) immature tomato fruits during ripening. (B) 

a ripe fruit of variety Anthocyanin Gainer, deep red in colour with yellow ‘freckles’.



Figure 3.6 Tomato Fruit of Anthocyanin Gainer
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Figure 3.7

Tomato fruit of variety Aubergine. (A) fruit at the mature green stage of 

development, purple striations are observed on the upper part of the fruit. (B) ripe 

fruit of tomato variety Aubergine. Fruits ripen to become red/purple in colour with 

purple striations remaining on the upper part of the fruit.



Figure 3.7 Tomato Fruit of Variety Aubergine

B
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Figure 3.8

Tomato fruit of variety Anthocyanin Free. (A) fruit at the mature green stage of 

development, black ‘freckles’ are observed on the upper part of the fruit. (B) ripe fruit 

of tomato variety Anthocyanin free, black ‘freckles’ are no longer observed with 

fruits ripening to become red.



Figure 3.8 Tomato Fruit of Variety Anthocyanin Free
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Figure 3.9

Tomato fruit of variety Dark Green. (A) tomato fruit at the mature green stage of 

development, fruits were very dark green with yellow striations. (B) ripe fruit of 

tomato variety Dark Green, contrary to its name this variety ripens to become 

red/yellow in colour.



Figure 3.9 Tomato Fruit of Variety Dark Green

B

91



contained 224 and 189 |ig/g, respectively (Figures 3.8 & 3.9). Although leaves from these 

plants were not analysed in this study many also showed increased pigmentation (Figure 

3.10).

3.11 Effect of Different Light Regimes on the Flavonol Content of Detached 

Tomatoes

Data obtained in this study (section 3.9) indicate that those tomato fruits grown in warm 

sunny climates contain high levels of flavonols. The accumulation of flavonols in these 

fruits may be enlianced by their exposure to high levels of sunlight. High levels of white 

light and in particular UVB, UVA and blue light are known to induce the biosynthesis of 

flavonoids (Fuglevand et a l ,  1996).

The effect of light quality on the flavonol content of tomato fruits was 

investigated by exposing detached fruits to high or low white light, red, blue, UVA or 

UVB light. Tomato fruits of variety Spectra, obtained from Scotland’s Tomatoes, were 

picked at the fully grown green stage of maturation, transfened to a growth room and 

allowed to ripen over 12 days at 20 °C under one of the chosen light qualities. Fruits were 

removed after 3 , 6 , 9  and 12 days for flavonol analysis (Table 3.7). All fruits had ripened 

normally after 12 days exposure.

The flavonol content of all the tomatoes declined slightly under all six light 

regimes indicating that the detached fruit are relatively insensitive to alterations in light 

quality.
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Figure 3.10

Leaf pigmentation of tomato plants grown to produce tomato fruits with different skin 

colours. A typical leaf was removed from each plant after 4 weeks of growth in 

conditions of white light (80-100 pmol/m^/s). Increased pigmentation was observed 

on the leaves of Anthocyanin Gainer, Intense Pigment and Aubergine. Some 

pigmentation was observed on the veins of Dark Green and the tips of the leaflets of 

Anthocyanin Free. Plant variety Intense Pigment was very small compared to the 

other varieties employed in this study and was unable to set fruit.



Figure 3.10 Leaf Pigmentation of Tomato Plants Grown to Produce Tomato 

Fruits with Different Skin Colours
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3.12 Flavonol Content of Various Tomato Based Foods

A range of processed tomato products were analysed and the data obtained are 

summarised in Table 3.8. Tomato juice was found to be a rich source of flavonols with a 

total flavonol content 14-16 pg/ml, comparable with that of red wine which can vary 

from 4.6-41.6 pg/ml (McDonald et aL, 1998). The flavonols detected in tomato juice 

comprised 95 % quercetin, 4 % kaempferol and 1 % isorhamnetin, trace levels of morin 

were also detected. In contrast to tomato fruit, which contains almost exclusively 

conjugated quercetin, up to 30 % of the quercetin in processed produce was in the free 

form. Hydrolysis of flavonol conjugates during cooking of tomatoes was not observed in 

an earlier study (Crozier et aL, 1997) so the accumulation of quercetin in juices, puree 

and paste may be a consequence of enzymatic hydrolysis of rutin and other quercetin 

conjugates during pasteurisation and processing procedures. The concentration of 

flavonols in tomato juice is likely to depend on the extraction of flavonols from the skin 

into the juice during initial processing, which often involves heating, and also on the 

amount of skin remaining in the tomato juice following filtration. Safeway brand tomato 

puree was also identified as being particularly rich in flavonols, containing 70 pg/g of 

which 98 % was quercetin and -  2 % kaempferol. Analysis of tinned tomatoes revealed 

that tinned cherry tomatoes contained five times more quercetin than tinned peeled plum 

tomatoes (Napolina), 1.7 and 0.3 pg/gfwt respectively. This may indicate the contribution 

of the tomato skin to the flavonol content of the food product and may also indicate that 

the cherry tomato varieties were higher in flavonol content than the plum tomatoes. 

However both tiimed tomato products contained flavonols in very low levels indeed
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compared to most varieties of fresh fruit. This could be due to boiling of the fruit prior to 

camiing as cooking in this manner results in up to an 80 % loss of flavonols (Crozier et 

aL, 1997), presumably by leaching from the skins.

3.13 Discussion

Screening of the flavonol content of fruits and vegetables by Hertog et al. (1992), 

included the quantification of flavonols in Dutch tomatoes at four time points over a 

twelve month period. The amounts detected were between 4.6 and 8.2 pg quercetin/g 

(fresh weight) and <2 pg kaempferol/g. The samples were analysed only after acid 

hydrolysis and therefore provided no information on the relative proportion of free and 

conjugated flavonols. More recently work by Crozier et al. (1997) on the flavonol content 

of Spanish, Scottish and Dutch tomatoes showed that quercetin is present almost 

exclusively as conjugates, an observation confirmed by the present study. Mass 

spectrometric analysis of the flavonol content of tomato extracts, enabled the 

identification of quercetin and rutin (Justesen et aL, 1998; Mauri et aL, 1999).

With the addition of fluorescence detection following post-column derivatization 

with aluminium nitrate, free quercetin and kaempferol although present at low levels 

could be detected in most tomato samples prior to hydrolysis. After acid hydrolysis, 

quercetin was identified as the major flavonol with lower levels of kaempferol also 

detected. Analysis of tomato extracts prior to hydrolysis allowed identification of the 

quercetin conjugate rutin (UV detection, 365 nm).
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The production of flavonols in plant tissues is influenced by environmental 

factors. In many plant species the accumulation of flavonols is enlianced in response to 

elevated light levels, in particular to increased UV-B radiation (Lois & Buchanan, 1994; 

Brandt et aL, 1995). There is evidence that quercetin is present in much higher 

concentrations in the skin of Pinot Noir grapes grown in the open rather than shaded 

clusters (Price et aL, 1995). Exposure to high levels of sunlight may therefore result in 

the accumulation of increased amounts of protective compounds, including flavonols in 

the skin of tomato fruit. Commercial tomato growing in Scotland and England usually 

involves the use of greenhouses with plants tightly packed together and fruits shaded by 

the foliage of surrounding plants (Figure 3.11). Fruit grown in greenhouses is effectively 

grown in conditions of relatively low light (~35 pEi/m^/s) with UV-B from sunlight 

filtered first tliroiigh glass and then tlirough surrounding leaf tissue. This may limit the 

induction and reduce the accumulation of flavonols in the skin of the tomatoes. In 

contrast, fruit from warmer sumiier countries such as Spain are usually field grown and if 

necessary they are shielded &om the elements using plastic rather than glass. The 

developing fruits would receive more sunlight and would be exposed to UV-B radiation. 

Cherry tomato E27 681, obtained from Scotland's Tomatoes was found to contain higher 

levels of flavonols (11.9 pg quercetin/g fresh weight) than the other Scottish grown 

cherry tomatoes. However, E27 681 was grown in a small experimental greenhouse with 

plants well spaced out with little shading of fruit.

No effect of high light intensity was observed on the flavonol content of fruits 

detached from the parent plant. It is possible that when detached from the parent plant, 

tomato fruits do not have the reserves required to synthesise increased quantities of



Figure 3.11

Typical commercial conditions for the production of tomato fruits in Scotland 

Due to the expense of maintaining glasshouses with tightly controlled systems for 

maintaining optimum conditions of temperature and nutrition, tomatoes are produced 

in row upon row of tightly packed plants to maximise yields. Tomato fruits are 

concentrated towards the lower part of the plant and are therefore shaded by the 

foliage of suiTounding plants. This photograph was taken at Garrion Fruit Farm, 

Lanarkshire and is typical of commercial tomato fruit growing in Scotland.



Figure 3.11 Typical Commercial Conditions for the Production of 

Tomato Fruits in Scotland
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flavonols. Alternatively, young fruits may respond to potentially damaging levels of light 

by accumulating protective pigments such as flavonols in order to protect the 

development of seeds within the fruit. As ripening is a process of dying during which the 

seeds reach maturity, the induction of protective compounds may no longer be necessary.

It is difficult to draw conclusions on the effects of enviromnental influences on 

the flavonol content of tomato fruits. No environmental data could be obtained for sites 

abroad and even within the UK, conditions would vary greatly within a single growing 

season. However fruits grown in warm sunny countries appeared to contain higher levels 

of flavonols.

Factors influencing the flavonol content of tomato fruits include variety and fruit 

size, such factors may be of greater importance in warmer sunnier climates such as Spain. 

Flavonol levels in British fruits may be restricted to a greater extent by a lack of light 

induction rather than the capacity o f the type of tomato fruit being grown to synthesise 

flavonols. It is clear from the analysis of Spanish fruits that the highest flavonol 

concentrations are found in cherry tomatoes, with lower levels in normal sized and 

beefsteak tomato fruit varieties. The total flavonol content of Spanish Favorita, a red 

cherry tomato, was 21.5 pg/g, compai'ed to the normal sized fruit variety. Bond, which 

contained 10.9 pg/g (Table 3.5). Compared with an earlier study that included 

commercial English and Spanish cherry tomatoes (Crozier et aL, 1997), the flavonol 

contents of the English grown cherry varieties, Favorita and Cherry Belle were very low 

indeed, with the levels no different from those detected in normal sized fruits from the 

same source (Table 3.3). One factor which may explain the elevated levels of flavonols in 

cherry tomatoes compared to normal varieties reported by Crozier et aL, (1997) is the
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higher skin: volume ratio of small tomatoes compared to larger varieties. There is 

evidence that red wines derived from small thick skinned grapes, such as Cabernet 

Sauvignon, contain much higher levels of flavonols than wines made from large thin 

skinned berries such as Grenache and Cinsault (McDonald et aL, 1998).

Flavonols within tomato fruits were able to survive industrial processing methods 

and could be detected in a range of tomato based food products such as pasta sauce, 

ketchup and soup. Tomato puree was a particularly rich source of flavonols, which may 

be due to the concentrated natui'e of this product. Previous studies (Hertog et a l ,  1993) 

on the flavonol content of beverages, identified quercetin (1.3 mg/1) and low levels of 

myricetin (< 0.5 mg/1) in tomato juice. Results presented (Table 3.8) identified much 

higher concentrations of quercetin (14-16 mg/1) with kaempferol, isorhamnetin and trace 

levels of morin also detected. Myricetin was not identified in tomato juice despite the 

increased sensitivity of fluorescence detection. The concentration of flavonols in tomato 

juice is likely to depend on the extraction of flavonols from the skin into the juice during 

initial processing, which often involves heating, and on the proportion of skin remaining 

in the juice following filtration. The concentration of flavonols found in tomato products 

may depend upon tomato variety used, propoidion of skin remaining in final product or 

extraction of flavonols from fruit skin during processing.
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3.14 Conclusions

Tomatoes and tomato-based products are a rich source of conjugated quercetin 

and kaempferol. Flavonol contents were found to vary according to fruit variety, size and 

country of origin, with cherry tomatoes originating from warm, sunny climates such as 

Spain containing the highest concentrations. Tomato flavonols were able to withstand 

industrial processing methods allowing their detection in a variety of tomato based 

products. Tomato juice (16.6 pg/ml), and tomato puree (72.2 pg/g fresh weight), were 

found to be particularly rich in flavonols. Because of the addition of tomato sauce to 

many foods, and the widespread use of concentrated tomato pastes in dishes such as pizza 

and lasagne, tomatoes may directly and indirectly make a more sizeable contribution to 

daily flavonol intake than was previously realised.
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Chapter 4 Absorption and Excretion of Flavonols from Tomato Fruits

and Tomato Juice

4.1 Introduction

Although studies of the flavonol content of fruits are clearly important with respect to 

potential nutritional value, a key factor is whether flavonols are absorbed during 

digestion. Early studies on the ability of flavonoids to be absorbed by the human body 

produced widely conflicting results, (Gugler et a l ,  1975, Kuhnau, 1976). The situation 

has been clarified by recent work focusing on the absorption of flavonoids from food. 

Hollman (1995) employed ileostomy patients thereby eliminating any colonic 

degradation that could lead to an overestimation of the amount of flavonoids absorbed. 

Results showed that onion conjugates were better absorbed than the corresponding 

aglycone. A similar study with healthy subjects demonstrated the variable absorption and 

excretion of onion-derived quercetin and isorhamnetin glucosides (Aziz et al., 1998).

The work presented in this chapter aimed to establish the bioavailability of 

flavonols from flavonol rich cherry tomato fruits and tomato juice. This was achieved by 

determining the levels of flavonol accumulation in plasma and excretion in urine using 

sensitive HPLC procedures.
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4.2 Flavonol Intake from Tomato Fruits and Tomato Juice Consumed in this Study

All foods and beverages employed in this study were well accepted by volunteers and 

caused no adverse reaction. They were easily available and commonly consumed brands 

found to contain consistently high levels of flavonols. The amount of each product 

ingested was not designed to provide each subject with a similar dose, instead these 

simply represent the maximum that could be consumed within the time available (Table 

4.1).

4.3 Flavonol Content of Tomato Fruits and Tomato Juice

Tomatoes were found to contain quercetin and kaempferol, with total flavonol content 

11.7 and 13.7 pg/g fresh weight in samples one and two respectively. Tomato juice was 

found to contain low levels of the additional flavonol isorhamnetin and had a total 

flavonol content of 16.3 pg/ml. Isorhamnetin is present mainly in the green tissue of the 

tomato, although low levels of isorhamnetin are detected in tomato fruit skin. The 

presence of isorhamnetin in tomato juice may represent contamination of the juice with 

vegetative tissue during processing. In general tomato based products were found to 

contain low levels of free flavonols with most of the quercetin locked up as conjugates, 

principally as quercetin-3-rutinoside, (rutin), (Table 4.2).
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4.4 Accumulation of Flavonols in Plasma

Absorption profiles clearly demonstrate the accumulation of flavonols in plasma 

following consumption of tomato fruits (Figure 4.1) and tomato juice (Figure 4.2). In 

each case two major peaks in accumulation of conjugated quercetin were observed with 

subsequent decline. These observations are in keeping with previous work on the 

absorption of flavonols from onions into human plasma (Aziz et aL, 1998). Subjects 

consuming Spanish cheriy tomatoes displayed peak accumulation of quercetin conjugates 

between 1.0-1.5 h and then again at 3.0-4.0 h. A similar absorption profile was observed 

following the consumption of tomato juice, pealc flavonol accumulation was observed at 

0.5 and 3.0 h. The main quercetin conjugate present is believed to be rutin, however 

HPLC teclmiques were not sufficiently sensitive to detect rutin in plasma samples.

Free quercetin was detected in plasma between 1.0 and 2.0 h after consumption of 

tomatoes (Figure 4.1). This may reflect either the absorption of free quercetin or the 

absorption and subsequent metabolism of conjugated quercetin. Subjects A and C 

absorbed only quercetin whereas plasma from subject B was found to contain low levels 

of conjugated kaempferol.
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Figure 4.1

Detection of free and conjugated quercetin in human plasma from three volunteers 

following consumption of Safeway Spanish cherry tomatoes. Data expressed as 

percentage of the intake based on the flavonol content of Spanish cherry tomatoes ± S.E 

(n=3) and calculated on the basis of 3000 ml of plasma per person.



"il:'

0
1a0 
H

1
i

o

■i
fi0 

U
bX)

1k
cb

I
i
I
.S
I
i

a
H3

I
?o
U
T3
§
g

4M0 
§

1
o

I

sa

1 1

o  w

tn

î

tu ü 

tu

:  s

uondjosqv louoAsy a6e}uaoj9d
3 S S 5 g

uondjosqv louoAEU sBeiusojad

S

Ij—

108



Figure 4.2

Flavonol absorption into human plasma following consumption of tomato juice (Del 

Monte). Data expressed as percentage of intake based on the flavonol content of product 

consumed and calculated on the basis of 3000 ml of plasma per person.



Figure 4.2 Flavonol Absorption into Human Plasma Following Consumption of

Tomato Juice
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4.5 Excretion of Flavonols in Urine

Flavonols are detected unchanged in urine following feeds with tomatoes and tomato 

juice verifying that they are indeed absorbed. Flavonol levels were found to be high 

thi'oughout the course of urine collection (Table 4.3).

4.6 Discussion

Plasma flavonols detected in this study consisted mostly of conjugated quercetin believed 

to be derived from rutin, with kaempferol appearing not to be absorbed or absorbed at 

very low levels (Figure 4.3). Following the consumption of both tomato fruits and tomato 

juice two absorption maxima in plasma were observed. Plasma profiles obtained from 

healthy volunteers following consumption of capsules containing 220 mg of rutin showed 

peak quercetin accumulation at 9 hrs with slow subsequent decline (Hollman, 1997). The 

slow absorption kinetics of rutin led to the conclusion that bacteria in the colon are 

required to break p-giycosidic bonds before the quercetin liberated could be absorbed by 

the body. Rutin is believed to be the primary quercetin conjugate present in tomatoes, 

quercetin accumulation in plasma following consumption of tomato fruits may also be 

expected to show late peak maxima. Two peak maxima were determined 1.0-1.5 h and 

3.0-4.0 h. The first peak appears to indicate absorption in the small intestine, the second 

peak is possibly due to absorption fiulher down the digestive tract however hydrolysis by 

colonic bacteria is unlikely to play a major role as quercetin detected at this later stage 

was still present in a conjugated form.
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Table 4.3 Percentage Flavonol Excretion®

Time Tomato Tomato Tomato Tomato

Period hrs Juice Subject A Subject B Subject C

0-6 0.13 ±0.04 0.69 ± 0.02 0.06 ±0.01 0.10± 0.01

6-12 0.05 ±0.01 0.23 ±0.00 0.03 ± 0.00 0.00

12-24 0.24 ±0.01 0.53 ± 0.03 0.11± 0.01 0.00

‘‘Results expressed as flavonols excreted in urine as a percentage of flavonols consumed. Errors represent 

standard errors where n=3.
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Figure 4.3 Detection of Quercetin in Human Plasma Following Consumption of 

Tomato Fruits or Tomato Juice Using HPLC

Gradient reverse phase HPLC analysis of flavonols. Column: 150 x 3.0 mm i.d, 4-pm 

Genesis C l8 column with a 10 x 4.0 mm 4-pm Genesis C l8 guard cartridge. Mobile 

phase 20 min gradient of 20-40 % acetonitrile in water containing 0.1 % trifluoroacetic 

acid. Flow rate: 0.5 ml/min. Detector: absorbance monitor operating at 365 nm and, 

following post-column derivatization with methanolic aluminium nitrate, a fluorimeter 

operating at excitation 420 and emission 485 nm. Samples (A) 100 ng of (1) morin, (2) 

quercetin, (3) kaempferol and (4) isorhamnetin with fluorescence detection following 

post-column derivatization. (B) acid hydrolysed 12 pi aliquot of plasma collected 1.5 h 

following consumption of 860 ml of tomato juice. (C) as B but with plasma collected 2.0 

h following consumption of 367 g of Spanish cherry tomatoes. Numbers indicate peaks 

that co-chromatograph with standards listed for sample A.
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The presence of low levels of free quercetin in plasma may reflect either the 

absorption of free quercetin or the absorption and subsequent metabolism of conjugated 

quercetin.

Variation between the results of the tluee subjects who consumed tomatoes may 

be due to subject-subject variability or incomplete collection. Alternatively this may 

represent differences in fluid intake between subjects during the course of this study. 

Excretion patterns should not necessarily be expected to resemble the time course for 

accumulation in plasma as a significant portion of the flavonols absorbed may be 

sequestered by the body or radically metabolised to facilitate excretion.

The results indicate that flavonol conjugates contained within tomato fruits and tomato 

juice ai'e absorbable and bioavailable.

4.7 Conclusions

Following consumption of tomato fruits and tomato juice, conjugated quercetin was 

detected in plasma. Flavonols were also detected unchanged in urine. Results indicate 

that the flavonols present in tomato fruits are absorbable and bioavailable.
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Chapter 5 The Effect of Nutrient Deficiency on Flavonol Accumulation

in Plant Tissues

5.1 Introduction

Previous studies have identified a link between nutrient deficiency and flavonoid 

accumulation in plant tissues, primarily the deposition of highly coloured anthocyanins 

on leaves and stems. Information on the exact nature of these flavonoids is lacking, most 

studies have identified only flavonoid groups such as flavonols, flavones and flavonones 

(Carpena et a l, 1982, Zornoza & Esteban, 1984). In addition, although tomato has 

commonly been used as a model system in which to study the effects of nutrient 

deprivation, there is little information on the effect of nutrient stress on tomato fruits.

The aim of this study was to determine whether nutritional deficiency could be 

employed to increase flavonol accumulation in plant tissues. The effects of nitrogen and 

phosphorus deficiency were determined initially using seedlings of Arabidopsis thaliana 

as a model system due to its rapid life cycle and relatively high flavonol content. Studies 

were then transferred to tomato seedlings and leaves and fruits of mature tomato plants 

grown in a commercial situation.
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5.2 Effect of Nitrogen and Phosphorus Deficiency on Seedlings of Arabidopsis 

thaliana

Initial experiments to determine any effect of reduced nitrogen or phosphate availability 

on the flavonol content of plant tissues were carried out using seedlings of Arabidopsis 

thaliana (Columbia). Sterile seeds were plated onto MS media containing either 0-60 

mM nitrogen or 0-6.3 mM phosphate. All media contained 100 mM sucrose. Seedlings 

were then harvested after 11 days in conditions of white light (100 pEi/m^/s) at 20 °C for 

flavonol analysis. Those seedlings grown on phosphorus deficient media appeared 

normal in size but were darker green in colom’ than those grown in standard conditions of

2.5 mM phosphorus. At the highest phosphoms concentrations, seedlings were pale 

yellow in colour. Seedlings grown on nitrogen deficient media appeared to be greatly 

reduced in size and purple in colour, indicating increased anthocyanin content. As the 

nitrogen concentration of the media was increased, seedlings became light green and then 

of normal colour and size from 6.0 mM nitrogen onwards.

Acid hydrolysed Arabidopsis tissue samples were analysed by HPLC with UV 

detection (365 nm) and fluorescence detection (excitation 425 nm, emission 480 nm) 

following post column derivatisation with methanolic aluminium nitrate. Identification of 

flavonols in Arabidopsis was by HPLC retention time and co-chromatography with 

authentic flavonol standards. The flavonol aglycones quercetin, kaempferol and 

isorhamnetin were identified in whole seedling tissue from Arabidopsis. Although no 

attempt was made in this study to analyse the effects of nutrient deficiency on individual 

flavonol conjugates, analysis of Arabidopsis samples taken before and after acid
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hydrolysis gave an indication of the proportion of flavonols present in free and 

conjugated forms. Quercetin and kaempferol were detected almost exclusively as 

conjugates (~ 99 %), while isorhamnetin was found in a conjugated form.

Effect of Nitrogen Defieiency- The standard nitrogen concentration found in MS media 

is 60 mM, Arabidopsis seedlings grown in these conditions were found to contain a total 

flavonol content of 109 pg/g fresh weight (Table 5.1). Seedlings grown in conditions of 

zero nitrogen had a total flavonol content of 394 pg/g fresh weight. Clearly, limiting 

nitrogen availability induced higher concentrations of quercetin, kaempferol and 

isorhamnetin in Arabidopsis seedlings. The lowest flavonol content (44.6 ± 12.0) was 

observed in seedlings grown on 6.0 mM nitrogen, perhaps indicating that the 60 mM 

regime imposed a stress on the plants due to elevated nitrogen availability.

Effect of Phosphorus Deficiency- Those Arabidopsis seedlings grown on media with 

zero phosphate showed a clear increase in total flavonol content compared to plants 

grown on 6.3 mM phosphate (105.1 and 27.5 pg/g fresh weight respectively). Limiting 

phosphate availability produced a clear increase in quercetin, kaempferol and 

isorhamnetin (Table 5.2). The flavonol content of Arabidopsis seedlings in the nitrogen 

trial was generally higher than those from the phosphate trial. The altered phosphate 

media contained 60 mM nitrogen, whilst the altered nitrogen media contained 1.25 mM 

phosphate. Those plants growing in levels of high phosphate with 60 mM nitrogen would 

receive the least nutrient stress and were found to contain the lowest concentration of 

flavonols (27.5 pg/g fresh weight). Conversely, plants grown in conditions of zero N and 

1.25 mM phosphate may be considered to be under the greatest stress and indeed these 

plants show the highest flavonol content (394 pg/g fresh weight). Nitrogen limitation
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appears to provide greater induction of flavonols than a reduced supply of phosphate. 

However, in conditions of high nitrogen a reduction of phosphate facilitates flavonol 

induction.

This study provided clear evidence that the flavonol content of plant tissues is 

influenced by their nutritional status.

5.3 Effect of Nitrogen and Phosphorus Deficiency on Seedlings of Lycopersicon 

esculentum

Flavonols present in tomato seedlings were identified by HPLC with UV and 

fluorescence detection. Identification was by retention time and co-chromatography with 

flavonol standards. The flavonols quercetin, kaempferol and isorhamnetin were detected, 

however these compounds were present in tomato seedlings in much lower 

concentrations than in Arabidopsis. These flavonols were present almost exclusively in 

the form of conjugates with only very low levels of free quercetin detected. As found in 

tomato fruits, the only flavonol conjugate detected was a quercetin conjugate, quercetin- 

3-rutinoside (rutin). Tomato seedlings were grown on nitrogen and phosphate deficient 

media for 21 days prior to harvest of whole seedlings for flavonol analysis (Figure 5.1). 

Effect of Nitrogen Deficiency- Due to the increased duration of the experiments and 

larger containers required for growth of tomato seedlings over three weeks it was not 

possible to perform experiments with the five concentrations of nitrogen previously used. 

Instead thi'ee concentrations were selected, zero, 6.0 and 60.0 mM nitrogen MS media. 

Due to poor germination of tomato seedlings on 60.0 mM MS media it was only possible
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Figure 5.1

Tomato seedlings grown on MS media with varying nitrogen or phosphorus 

availability. (A) Tomato seedlings grown for three weeks on MS media containing 0, 

6.0 or 60.0 mM nitrogen. (B) Tomato seedlings grown for three weeks on MS media 

containing 0, 2.5 or 6.3 mM phosphorus. Seedlings were grown at 20 DC under white 

light (80-100 pmol/m^/s).



Figure 5.1 Tomato Seedlings Grown on MS Media with Varying 

Nitrogen or Phosphorus Availability
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to harvest tissue from zero and 6.0 mM nitrogen treatment regimes. Decreasing the 

nitrogen concentration of the MS media from 6.0 to zero caused a four-fold increase in 

the flavonol content of tomato seedlings (Table 5.3).

Effect of Phosphorus Deficiency- Tlu-ee concentrations of phosphate MS media, zero,

2.5 and 6.3 mM were selected to determine any effect of phosphate deficiency on tluee 

week old tomato seedlings. Flavonol contents overall were lower in seedlings grown on 

reduced phosphate media than on reduced nitrogen media. However flavonol levels 

showed ~ 2 fold increase in conditions of zero phosphate as compared to 2.5 and 6.3 mM 

phosphate [6.2, 3.7 and 3.0 pg flavonol/g fresh weight respectively], (Table 5.4). The 

results indicate that the flavonol response of tomato seedlings in conditions of nutrient 

stress is very similar to that of Arabidopsis. Both species contain the flavonols quercetin, 

kaempferol and isorhamnetin, the concentration of which is increased in response to either 

nitrogen or phosphate stress.

5.4 The Effect of Nitrogen and Phosphate Deficiency on the Flavonol Content of 

Mature Vegetative and Fruit Tissue of Lycopersicon esculentum

A trial was established at Garrion Fruit Farm, Lanarkshire, to determine any effects of 

decreased nitrogen and phosphate availability on leaf and fruit tissues of tomato plants 

grown in a commercial situation (Figure 5.2). Plants were grown alongside commercial 

tomato plants in a glass-house. Nutrients were supplied by a hydroponic system (Figure 

5.3). Nutrient regimes were designed to represent high, control and low nitrogen and

121



I
73

I
&

Î
I
I
u

I

Io
S

i
I
I
I
Î
I
I
n
IT)

Î
I
"O
S

I
cm

Ia
o

V
a

1
¥
CJ

I!

I
¥
U

s>
§

Itl4

i
a

i
I

CD

I

i
Sh0

1 
I

(N
O
44
C3V
X

(N
O
41
X
X

o
o
44
cn
o

o
44
X
CN

X
d

o
<d
44
IN
O

X
o
44
X
o

o
o
44
CN
O

X
d

o
44
X
CN

X
d

o
X

1
I

I
X
d

I
CJ
cd
41

;ü
I

I
W)

I
122



«îa
■ICJ

!
î
H
0

10 
V

1
-e0
dS

1 

}

ig
0

1
S’
u
73
S

I
V)
Xi«
H

Ê

I
t
I
"O

I
%

i
U
.9

I

j

p-<

I
¥
CJ

I

1
¥
O

I

I

î

!

I

1

X o X
o c d c d
-H 44 44
(N N o
vd X X

o o
o c d c d
-H “H 44
X X X
o o c d

X X X
d d d

X o
cd CD CD
44 44 44
o q CD X

c d c d

X X X
d d d

X CN X
CD CD o
44 44 44
N- X o
X CN CN

o O O
c d CD c d
44 44 44
r —-t r— 1 T—X

c d CD c d

o
X
(N

X
vd

î
I
X
d

I
W
c d
+1

â
%

I
I

»

I
123



Figure 5.2

Tomato variety Chaser growing under commercial conditions, Garrion Fruit Farm. 

Photograph shows tomato plants of variety Chaser used to determine the effect of 

nitrogen and phosphorus deficiency on the flavonol content of tomato leaves and 

fruits. Plants were grown using the same methods of cultivation as commercial tomato 

plants.



Figure 5.2 Tomato Variety Chaser Growing under Commercial Conditions,

Garrion Fruit Farm
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Figure 5.3

Drip-feeding system supplying nutrients to tomato plants of variety Chaser, Garrion 

Fruit Farm. (A) drip-feeding system with lines running from the nutrient tank to the 

root bulk of the tomato plants. (B) large stock tank in which individual fertilisers were 

mixed to produce the required nutrient feed.
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phosphate concentrations. Phosphate concentrations selected were; high 100 ppm, control 

30 ppm and low 5 ppm. Nitrogen concentrations selected were: high 405 ppm, control 

193 ppm and low 79 ppm. These concentrations were selected to provide the highest and 

lowest nitrogen and phosphate levels with which it is possible to support plant growth 

and fruit set. Such conditions would not be expected to support long term cultivation. Full 

nutrient, conductivity and pH analyses were carried out on all hydroponic solutions to 

ensure that the desired nitrogen and phosphate levels were achieved (Table 5.5). Nitrogen 

levels were found to adhere closely to values expected from feed recipes, phosphorus 

levels were generally lower than anticipated but were deemed to be satisfactory for this 

study. The actual phosphate levels were found to be, high 64.8 ppm, control 6.13 ppm 

and low 1.04 ppm. The reason for the lower phosphate concentrations may be due to 

inaccurate weighing out of the various fertilisers required on-site. Phosphate levels 

employed for commercial use in the Clyde Valley are generally - 5 0  ppm, with nitrogen 

levels -  300 ppm. Both would approximate most closely with the high treatment regimes. 

Three tomato plants cv. Chaser were grown for each treatment level. Tissue sampling 

was carried out on two separate occasions one month apart (May & June 1998). On each 

occasion red, green and breaker tomato fruits were removed randomly from the plants in 

each nutrient regime. Leaf samples were also removed from the top of the plants. Red, 

breaker and green fruits were also harvested from tomato variety Chaser grown in 

standard commercial conditions for flavonol analysis (June 1998).
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5.4.1 Effect of Nitrogen and Phosphate Availability on the Flavonol Content of 

Tomato Leaf Tissue

The flavonol content of matnie tomato leaves harvested from the tops of tomato plants 

involved in the nitrogen and phosphate nutrient trial was assessed using HPLC analysis. 

As found in tomato seedlings, leaf tissue contains conjugated quercetin, kaempferol and 

isorhamnetin. The predominant flavonol was quercetin (80-90 %) followed by 

kaempferol (8-9 %) with relatively low levels of isorhamnetin present.

Effect of Nitrogen deficiency- It is clear that the total flavonol content of tomato leaves 

was increased in response to reduced nitrogen availability. In trial 1 the total flavonol 

content varied from 51.3 in the high N regime to 117.1 pg/g fresh weight in the low N 

regime, in trial 2 the flavonol content increased from 113.8 to 175.7 pg/g fresh weight 

(Table 5.6). Leaves harvested in trial 2 were found to contain higher flavonol 

concentrations than those collected in trial 1.

Effect of Phosphate Deficiency-The flavonol content of tomato leaves collected from 

plants grown in conditions of reduced phosphate did not show a clear trend from high to 

low phosphate regimes. Samples collected in May of 1998 showed a decreasing flavonol 

content as phosphate availability was reduced (105.2 to 54,5 pg/g fresh weight). Those 

samples collected in June of 1998 showed an increase in flavonol content from high to 

low phosphate regimes (133.0 to 188.0 pg/g fresh weight). In the conditions of our study, 

high and control phosphate levels (64.8 and 6.13 ppm respectively) appear to be the most 

inductive phosphate concentrations for vegetative tomato tissue (Table 5.7). Again
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samples collected in June generally contained a higher flavonol content than samples 

collected in May.

5.4.2 Effect of Nitrogen and Phosphate Deficiency on the Flavonol Content of 

Tomato Fruit Skin

Tomato fruits at thiee stages of ripening, green, breaker and red, were harvested 

randomly from plants in each nutrient regime in May and June 1998 (trial 1 and 2 

respectively). Despite the altered nutritional status of the plants in the trial, fruiting was 

abundant and the tomato fruits appeared normal (Figine 5.4). Fruit skins were removed 

for flavonol analysis. Skins were found to contain primarily conjugated quercetin with 

lower levels of conjugated kaempferol. Very low levels of free quercetin and kaempferol 

were also detected.

Nitrogen Deficiency- Skins from mature green fruits showed a small increase in total 

flavonol content in the low nitrogen regime as compared to the control and high 

regimes (Table 5.8). Altering nitrogen availability had no obvious effect on the flavonol 

content of tomato fruits at the breaker and red stage of ripening. The flavonol content of 

green tomato finit skins was found to be higher in fruits from the second trial (June) than 

those sampled in May. This may indicate increasing nitrogen stress on the plants over the 

duration of this experiment and increasing light levels. This effect was no longer observed 

as plants reached the breaker and red stage of ripening.

Phosphate Deficiency- reduced phosphate availability caused an increase in flavonol 

accumulation in fruit skins early in fruit development (mature green stage). The flavonol
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Figure 5.4

Tomato variety Chaser grown under commercial conditions, Garrion Fruit Farm. (A) 

truss of developing green fruits from plants grown in the high phosphate nutrient 

regime. (B) ripening fruits of plants grown in the control phosphate regime.
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content in the high regime compared to the low nitrogen regime was found to increase 

from 19.5 to 24.2 pg/g fwt (trial 1) and 25.2 to 42.5 pg/g fwt (trial 2). Reduced phosphate 

availability caused flavonol induction at the breaker stage of fruit development but to a 

lesser extent than that observed at the green stage, 17.2 to 20.3 pg in trial 1 and 23.0 to

31.6 pg/g in trial 2. There was no evidence for flavonol induction due to phosphate 

nutrition at the red stage of ripening (Table 5.9). The flavonol content of fruit skins from 

tomato variety Chaser grown in standard commercial nutrient conditions under glass in 

the Clyde Valley was assessed in samples harvested in June of 1998. Total flavonol 

content was found to vary from 27.3 to 30.1 pg/g fwt according to developmental stage 

(Table 5.10). The flavonol content of these commercial fruits is compai-able with flavonol 

contents determined for fruits harvested from plants employed in nutrient studies. 

Nitrogen deprivation appeared to produce little effect on the flavonol content of fruit 

skin. Phosphate deprivation affected the flavonol content of tomato fruit skin at the 

mature green and breaker stage of development. Comparing the commercial samples with 

the fruits collected from the phosphate trial, the flavonol contents equated most closely 

with the high or control situations.
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5.5 Discussion

Initial experiments using seedlings o f Arabidopsis thaliana and Lycopersicon esculentum 

allowed a rapid screening of the effect of nitrogen and phosphorus deficiency on the 

flavonol content of plant tissues to be earned out. Seedling tissue from Arabidopsis and 

tomato was found to contain the flavonols quercetin, kaempferol and isorhamnetin. These 

compounds were foimd almost exclusively in the form of conjugates. The flavonol 

content of Arabidopsis seedlings was far higher than that of tomato, ~ 25 fold higher in 

conditions of zero nitrogen and - 1 6  fold higher in conditions of zero phosphate. 

Arabidopsis was therefore an excellent system in which to quickly determine the flavonol 

response of plant tissues to nutrient stress. Results clearly demonstrated an inverse 

relationship between nitrogen and phosphorus nutrition and flavonol content. The 

flavonol content of Arabidopsis seedlings grown for eleven days on nitrogen deficient 

media was found to be -  9 fold higher than that of seedlings grown on media containing

6.0 mM nitrogen. In addition the flavonol content of Arabidopsis seedlings grown on 

phosphorus deficient media was found to be -  4 fold higher than that of seedlings grown 

on media containing 6.3 niM phosphorus. In each case nutrient stress caused induction of 

quercetin, kaempferol and isorhamnetin. Although this study was concerned with the 

flavonol content of plant tissues, the purple colouration of seedlings grown on media 

deficient in nitrogen indicates the induction of anthocyanins in response to nutrient stress.

When tomato seedlings were exposed to nitrogen and phosphorus 

deficient media over eleven days, no flavonol induction was observed. It was only when 

tomato seedlings were exposed to the nutrient deficient media for 21 days that flavonol 

levels were found to vary according to the imposed nutrient regime. Total flavonol
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content was found to be ~ 4 fold higher in the zero nitrogen treatment as compared to the

6.0 mM nitrogen regime. Flavonol content was -  2 fold higher in seedlings grown on 

zero phosphate media as compared to 6.3 niM phosphate media. It is possible that the 

extended growth period required for tomato seedlings to induce flavonols in response to 

nutrient stress as compaied to Arabidopsis may indicate an effect of the longer life cycle 

of tomato plants. Three weeks may be the length of time required for seed reserves to be 

exhausted and for the treatment to cause a noticeable effect.

In order to determine any effect of nutrient stress on the flavonol content 

of mature leaf tissue and tomato fruit tissue at various stages of ripening, a trial was 

established under commercial conditions. The aim of this trial was to determine the effect 

of nitrogen and phosphorus deficiency on a commercially grown tomato cultivar adhering 

as closely as possible to commercial growing conditions. Mature tomato leaf tissue was 

found to contain the flavonols quercetin, kaempferol and isorhamnetin. These flavonols 

were mainly present as conjugates with only very low levels of free flavonols detected. 

Nitrogen deficiency was found to cause 1.5-2 fold induction in flavonol content as 

compared to the high nitrogen regime. In addition leaf samples, harvested in trial 2 (June 

1998) contained a higher flavonol content than those harvested in trial 1 (May 1998). 

This increase may be due to increasing nitrogen stress over the additional month that 

plants had been growing in conditions of reduced nitrogen. In addition light levels may 

have been increasing throughout May-June, those samples collected in June may have 

shown greater light induction of flavonols. Phosphorus deficiency did not produce a clear* 

induction of flavonols. Instead the high and control phosphate regimes appeared to 

induce the highest flavonol concentrations in tomato leaves. A study by Carpena et al
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(1982) included analysis of the effect of phosphate deficiency on mature leaves of tomato 

plants. Levels of total flavonol were determined by measurement of the UV absorption of 

methanolic leaf extracts at 290, 330 and 360 nm. No attempt was made to identify 

individual flavonols. Leaves were harvested after 11, 13, 16 and 19 weeks of plant 

exposure to nutrient deficient media. Samples collected at 19 weeks contained a higher 

putative flavonol content than those previously collected, however the flavonol content at 

all stages was lower than that of leaves from plants grown in control conditions of 

phosphate. There was therefore no evidence in their study for the induction of flavonols 

in tomato leaves due to phosphate deficiency. A more recent study by Bongue- 

Bartelsman & Phillips (1995) determined the effect of nitrogen deficiency on the 

anthocyanin and flavonol content of tomato leaves using an HPLC based approach. They 

reported that anthocyanin content increased 3.4 fold in response to nitrogen stress. The 

only flavonol identified was a flavonol glucoside, quercetin-3-glucoside (Q3G) which 

was foimd to double in response to nitrogen stress.

It was not within the scope of this study to identify the flavonol conjugates 

present in tomato leaves. Instead samples were analysed before and after acid hydrolysis 

to allow determination of the proportion of flavonols present in free and conjugated 

forms. Q3G was therefore not identified in tomato leaves in this study however the 

resulting flavonol aglycone, quercetin, was identified along with the flavonols 

kaempferol and isorhamnetin. All tluee flavonols were found to increase in response to 

nitrogen deficiency.

The effect of nitrogen and phosphorus deprivation on the flavonol content 

of tomato fruits was also assessed. To the best of the author’s Imowledge, this is the first
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study to assess the effect of nutrient stress on the individual flavonols of tomato fruits in a 

commercial setting. The skins of red, breaker and mature green fruits were analysed for 

flavonol content. Exposure to the low nitrogen regime and low phosphate regime was 

found to cause an increase in the flavonol content of tomato fruit skins early in the 

ripening process (mature green stage). Any effect of nutrient stress on the flavonol 

content of fruits appeared to be lost as ripening progressed. It is possible that green fruits 

may have to compete with other plant sinks for available nutrients and may therefore 

suffer from a lack of available nutrients. Dining ripening the sinic strength of the fruit is 

likely to increase such that the nutrient deficiency no longer has any effect on flavonol 

induction. Alternatively, induction of flavonols in the skins of green fruits may be 

important to protect the fruit tissues and developing seeds from penetration by potentially 

damaging radiation. As ripening is a process of senescence during which the tomato 

seeds within the fruit reach maturity, the induction of such protective compounds may 

carry no further advantage.

A study by Zornoza & Esteban (1984) analysed the effect of phosphate 

deficiency on the flavonol content of tomato fruits. In conditions of zero phosphate the 

flavonol content of tomato fruits was found to increase from 9.4 mg/g to 11.0 mg/g dry 

weight. In their study, total flavonol content was calculated on the basis of UV absorption 

at 290, 330 and 360nm. No attempt was made to identify individual flavonol compounds. 

The results obtained by this method produced surprisingly high flavonol concentrations 

e.g 11 mg/g dwt, which may be expected to represent a concentration of 1.1 mg/g fwt. 

The highest total flavonol content of a whole tomato h'uit sample determined in the 

screening described in chapter 3 was 22.2 pg/g fresh weight. The methodology employed
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by Zornoza & Esteban (1984) is likely to have overestimated the flavonol content of 

tomato fruits. UV absorbance determined at 280 and 330 nm would detect not only 

flavonols but also a wide range of phenolics. Absorbances determined at 360 nm would 

pick up the second absorbance maxima of flavonols but would also detect flavones and 

related compounds.

Two theories to explain the increase in flavonoid synthesis in response to 

nitrogen deficiency have been proposed. It has been suggested that enhanced PAL 

activity would release ammonia for amino-acid metabolism with the resulting carbon 

products shunted into the flavonoid biosynthetic pathway (Margna, 1977). Alternatively, 

it has been suggested that nitrogen stress would reduce rates of photosynthesis for 

example by decreasing available chlorophyll and disrupting photosynthetic membranes 

due to starch accumulation. This may lead to increased sensitivity to high light levels. 

Production of pigments such as anthocyanins and flavonols may afford protection against 

light induced oxidative damage (Guidi et al., 1998). No theories have been proposed in 

the literature to explain the increase in flavonoid accumulation in response to phosphorus 

deficiency. It is possible that as phosphate plays an integral part in membrane stability, 

reduced phosphate levels may lead to a weakening of cell membranes, cell leakage and 

possibly an increased chance of pathogen attack. Increasing flavonoid production may 

allow the accumulation of compoimds important for defence against pathogen attack.
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5.6 Conclusions

The present study provides clear evidence that the flavonol content of plant tissues is 

influenced by their nutritional status. Nitrogen and phosphorus deprivation caused a clear 

increase in flavonols in seedlings of Arabidopsis thaliana and Lycopersicon esculentum. 

Nitrogen deprivation was also able to increase flavonol accumulation in mature 

vegetative tissue of tomato plants. Phosphorus deficiency could not elicit this response. 

Nutrient deficiency appeared to produce an increase in flavonols in tomato fruit tissues 

only in the early stages of fruit development, as ripening progressed no increase was 

observed.

Nutrient stress can be employed to manipulate the flavonol content of 

vegetative plant tissues. Further studies may be required to determine the longevity of the 

flavonol increase in response to a period of nutrient stress and investigate factors such as 

reduction in yield.

Increased dietary intake of flavonols is believed to be linked to potential 

health benefits. An understanding of the factors influencing the production of such 

compounds in plant tissues may allow the production of vegetables rich in flavonols.
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Chapter 6 An Investigation into the Effect of Light Quality and Low 

Temperature on Chalcone Synthase Promoter Activity in Arabidopsis 

thaliana.

6.1 Introduction

The action of the enzyme chalcone synthase is the first committed step in the biosynthesis 

of flavonoids (Heller & Forkman, 1994). Monitoring the activity of the chalcone synthase 

gene promoter provides a rapid method of analysing plant responses to changing 

environmental conditions. Previous studies (Fuglevand et al., 1996) determined that blue, 

UVA and UVB light given separately could induce CHS promoter activity. When these 

light treatments were combined, interactions between phototransduction pathways 

produced additive or synergistic increases in CHS promoter activity. In addition, 

increased expression of PAL and CHS genes following exposure to low temperature has 

been reported, although this increase required the presence of light (Leyva et al.,1995). 

The work presented in this chapter is an investigation into the effects on CHS promoter 

activity of combining various light qualities with low temperature. Arabidopsis thaliana 

was used as a model system as it contains a single CHS gene. In addition, the Arabidopsis 

hy4 mutant was employed to determine any effect of low temperature on the CRYl- 

mediated UV A/blue photo transduction pathway. Effects on CHS promoter activity were 

determined using the transgenic Arabidopsis line NM4 (Non-mutant 4) containing the
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Sinapis alba chalcone synthase promoter linked to the GUS reporter gene (Jackson et a l, 

1995). This gene fusion allows rapid biochemical determination of the activity of the 

CHS promoter. In addition, molecular biological methods were employed to determine 

whether patterns of CHS~GUS transgene expression were representative of CHS 

transcript accumulation.

6.2 CHS-GUS Promoter Activity in Response to Blue, UVA or BIue/UVA Light

Previous studies by Fuglevand et al (1996) investigated the effect of blue, UVA or UVB 

light on CHS-GUS promoter activity and CHS transcript accumulation. When given 

separately each of these light treatments was found to stimulate CHS transcription. When 

blue and UVA light treatments were combined the subsequent increase in CHS-GUS 

promoter activity was found to be additive. However, when UVB treatment was 

combined with either UVA or blue light the resulting increase in CHS-GUS promoter 

activity was found to be synergistic. When these light treatments were applied to the 

Arabidopsis hy4 mutant it was found that although this mutant is impaired in its inductive 

response to blue and UVA radiation, it retained the synergistic response to blue or UVA 

radiation combined with UVB. These results indicate that there are at least four distinct 

phototransduction pathways mediating perception of blue, UVA and UVB radiation. The 

first involves blue/UVA signal transduction via the CRYl photoreceptor. The second 

pathway involves UVB perception and interacts synergistically with two further
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pathways mediating blue or UVA signal transduction pathways not involving CRYl 

(Figure 1.6).

An initial study was carried out to verify that blue, UVA and UVB treatment does 

indeed switch on CHS transcription in Arabidopsis thaliana and that combination of blue 

and UVA light treatments provides an additive increase in CHS-GUS promoter activity.

Arabidopsis NM4 seedlings, grown for tlnee weeks in non-inductive conditions of 

white light (20 pmol/m^/s), were exposed to blue, UVA or blue/UVA light at 20 °C. 

Samples were removed at time zero and after 24 and 48 hours of exposure, GUS 

activities were then determined (Table 6.1).

Blue- Exposure to blue light (50 pmol/m^/s) caused a 2.3 fold increase in CHS-GUS 

promoter activity after 24 hours at 20 °C (63.9 ± 12.0 pmol 4-MU/mg/min). Similar 

levels of GUS activity were detected after 48 hours of exposure.

UVA- Following exposure to UVA light (20 pmol/m^/s) at 20 °C CHS-GUS promoter 

activity was observed to increase 3.5 fold after 24 hours and 4.9 fold after 48 hours 

reaching 97.5 ± 23.5 and 134.0 ± 44.0 pmol 4-MU/mg/min respectively.

Blue/UVA- Exposing seedlings to blue and UVA light together (50/20 qmol/m^/s) 

caused an increase in GUS activity of 4.6 fold after 24 hours reaching 10.6 fold after 48 

hours (128.0 ± 16.6 and 292.0 ± 29.1 pmol/4-MU/mg/min respectively). As expected 

from previous studies (Fuglevand et a l, 1996) exposing plants to blue and UVA radiation 

simultaneously produced stimulation of CiTS-promoter activity in an approximately 

additive manner.

1
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6.3 Synergistic Interaction between Light and Low Temperature on CHS-GUS 

Induction

Arabidopsis NM4 seedlings were exposed to a combination of blue and UVA light (50/20 

pmol/m^/s) at 20 °C. Samples were removed at time zero, 24 h and 48 h and GUS 

activities were determined (Figure 6.1). As described in Section 6,2, exposure of plants to 

blue/UVA radiation at 20 °C led to a 10.5 fold increase in CHS-GUS promoter activity 

after 48 houis. Exposing plants to blue/UVA radiation at low temperature (10 ”C) 

stimulated an 83 fold increase in CHS-GUS promoter activity after 24 hours rising to 148 

fold induction after 48 hours of exposure (2295 ± 430 and 4088 ± 810 pmol 4- 

MU/mg/min respectively). When plants were exposed to blue/UVA radiation at low 

temperature the magnitude of the CHS-GUS response was far greater than that observed 

when plants were exposed to blue/UVA or cold separately. Furthermore, levels of CHS- 

GUS expression were greater than the effects of blue/UVA and cold added together. 

Thus, exposure of plants to blue/UVA radiation at low temperature produced a strong 

synergistic response indicating that blue/UVA light and low temperature regulate CHS 

expression tluough separate but interacting signal transduction mechanisms.
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Figure 6.1

Synergistic interaction between B/UVA light and low temperature on CHS-GUS 

induction. Arabidopsis NM4 seedlings grown in white light (20 pmol/m^/s) at 20 °C 

for tliree weeks were transferred for 24 or 48 hours to white light (20 qmol/m^/s) or 

blue/UVA light (50/20 gmol/m^/s) at 20 or 10 °C. GUS activity was determined and 

is expressed as pmol 4-MU/mg/min. Bars indicate standard errors where n=10.
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6.4 Effect of Red light and Low Temperature on CHS-GUS Promoter Activity

It was important to determine whether the synergistic interaction between light and cold 

was restricted to B/UVA radiation. Arabidopsis seedlings were exposed to red light (85 

pmol/m^/s) over 24 hours at 20 °C or 10 °C. Samples were removed after 24 hours and 

GUS activities determined (Figui'e 6.2). After 24 houis exposure at 20 °C GUS activity 

was found to be 22.0 ± 5.0 pmol 4-MU/mg/min, following treatment at 10 °C activity was 

found to be 91.6 ± 34.6 pmol 4-MU/mg/min. CHS gene transcription shows very little 

induction in response to red light (Jackson et a l,  1995). Therefore the ~4 fold increase 

observed may have been induced by the cold treatment alone. Seedlings exposed to non- 

inductive white light (20 pmol/m^/s) for 24 hours at 10 °C were observed to increase CHS 

promoter activity from 19.8± 3.8 to 59.1 ± 18.9 pmol/mg/min, so cold can stimulate CHS 

expression to a small extent even in non-inductive light treatments. The GUS activities 

observed under these conditions are much lower than those observed following 

blue/UVA/cold treatments.
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Figure 6.2

Effect of red light and low temperature on CHS-GUS promoter activity. Arabidopsis 

NM4 plants were grown in conditions of non-inductive white light (20 pmol/m^/s) for 3 

weeks at 20 °C before being transferred for 24 hours to conditions of red light (85 

pm olW /s) at 10 or 20 °C or white light (20 pmol/m^/s) at 10 or 20 °C. GUS activity was 

determined and is expressed as pmol 4-MU/mg/min. Bars indicate standard errors where 

n==10.



Figure 6.2 Effect of Red Light and Low Temperature on CHS-GUS

Promoter Activity
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6.5 Effect of UVB Illumination at Low Temperature on CHS-GUS Promoter 

Activity

UVB illumination was combined with low temperature (10 °C) to determine any effect 

on CHS-GUS promoter activity. Arabidopsis NM4 seedlings were exposed to UVB 

radiation (3,5 pmol/m^/s) at 20 °C or 10 °C. Samples were removed after 24 and 48 hours 

and GUS activities were determined (Table 6.2).

Plants treated with UVB radiation at 20 °C increased CHS-GUS promoter activity 

within the first 24 hours, however by 48 hours these plants were very obviously wilted 

and dying and CHS promoter activity was found to decline. Plants exposed to UVB 

radiation at 10 °C continued to increase CHS-GUS promoter activity up to 48 hours and 

although obviously in distress these plants were not yet dying. Beyond 48 hours of 

exposure to UVB radiation at low temperature these seedlings had deteriorated to such an 

extent that it was impossible to remove an intact seedling for analysis. The values of GUS 

activity observed in plants given UV-B and low temperature were again much lower than 

in plants exposed to blue/UVA and low temperature. Thus, no comparable interaction 

was observed in this study between UVB phototransduction and cold perception.
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Table 6.2 Effect of UVB Illumination at Low Temperature on CHS-GUS Promoter

Activity**

Temperature Duration of Treatment (hr) GUS Activity

20 °C 0 33.9 ± 7.2

24 118.4 ±67.0

48 45.9 ±25.3

10 °C 0 33.9 ± 7.2

24 164.6 ± 54.9

48 178.7 ±47.9

■’’Results represent GUS activity (pmol 4-MU/mg/min) following exposure o f Arabidopsis NM4 seedlings 
to UVB radiation (3.5 pmol/mVs). Errors represent standard errors where n= 10.
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6.6 Determination of the Optimum Temperature for BIue/UVA Induction of CHS- 

GUS Promoter Activity

Having observed a synergistic increase in CHS-GUS promoter activity in the presence of 

blue/UVA radiation when given in combination with low temperature, further studies 

were carried out to determine the optimum temperature for this effect. Seedlings were 

exposed to blue/UVA radiation (50/20 pmol/m^/s) for 24 hours at 5, 10, 15 or 20 °C 

before seedlings were harvested for determination of GUS activity (Figure 6.3). The fold 

induction of CHS-GUS promoter activity was foimd to increase between 5 and 10 with 

a subsequent decline as the temperature was increased fmther. Peak activity was 

observed following blue/UVA illumination at 10 °C (2311.0 ± 604.0 pmol/mg/min).

6.7 Determiuatiou of the Optimum Flueuce Rate of Blue Radiation for Blue/UVA 

Induction of CHS-GUS Promoter Activity at 10 "C

The optimum fluence rate of blue radiation was determined by exposing seedlings to 

B/UVA radiation over 24 hours at 10 °C. UVA fluence rate was kept constant throughout 

this experiment (20 pmol/m^/s). The fluence rate of blue radiation was tested at 30, 50, 

60, 70, 90, 100 and 150 pmol/m^/s (Figui'e 6.4). CHS-GUS promoter activity was 

observed to increase between 30 and 50 pmol/m^/s (98.2 ± 32.2 and 365.9 ± 113.0 

pmol/mg/min respectively). Between 50 and 90 pmol/m^/s induction of CHS-GUS
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Figure 6.3 Optimum Temperature for Blue/UVA induction of CHS-GUS Promoter
Activity in NM4 Arabidopsis Seedlings^

120

g
T3

[O
o

5 10 15

T em perature °C

Exposure Time 

(Hrs)

Temperature GUS Activity

0 5 54.1 ± 14.0

24 1571.0 ±402.0

0 10 27.0 ± 3.9

24 2311.0 ±604.0

0 15 106.0 ± 36.0

24 809.6 ± 187.0

0 20 104.0 ± 37.8

24 429.0 ± 166.0

‘Results represent pmol 4-methyl-umbelliferone (4-MU) produced per mg/min following exposure to blue 
radiation (50 pmol/m^/min) and UVA radiation (6.4 gmol/m^/min) at 5,10,15 or 20 °C. Errors represent 
standard errors where n=10.
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Figure 6.4 Optimum Blue Fluence Rate for Blue/UVA Induction of CHS-GUS
Promoter Activity in NM4 Arabidopsis Seedlings at 10"C‘̂

20

10 Jiiiil
3 0  5 0  6 0  7 0  0 0  1 0 0  1 5 0

B l u e  F l u e n c e  R a t e  ( u m o l / m ^ / s )

Exposure time (Hrs) Blue Fluence Rate GUS Activity

0 30 19.5 ± 6.2

24 98.2 ± 32.2

0 50 12.7 ± 2.5

24 365.9± 113.0

0 60 16.4 ± 4.0

24 368.1 ± 178.0

0 70 22.2 ±  5.9

24 505.7 ± 194.6

0 90 8.9 ± 2.9

24 293.5 ± 117.7

0 100 15.2 ± 2.8

24 283.7 ± 85.1

0 150 27.8 ± 4.8

24 455.4 ± 94.2

‘'Results represent pmol 4-MU/mg/min produced following exposure to UVA radiation (20 pmol/m^/min) 
and blue radiation (30, 50, 60, 70, 90, 100 or 150 pmol/m^/min) for 24 hours at 10°C. Errors represent 
standard errors where n=10.
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promoter activity remained relatively stable fluctuating between -22  fold and -32  fold 

induction. Induction of CHS-GUS promoter activity began to decline as the fluence rate 

of blue radiation was increased further. As there was no great increase in promoter 

activity beyond 50 pmol/nf/s, this fluence rate was chosen for all further blue/UVA 

experiments as it required fewer light sources.

6.8 Determination of the Optimum UVA Fluence Rate for Blue/UVA Induction of 

CHS-GUS Promoter Activity at 10 °C

In order to determine the optimum fluence rate of UVA required to obtain maximum 

induction of GUS activity using blue/UVA irradiation at low temperature, seedlings were 

exposed to blue/UVA treatment at 10 °C over 24 hours. The fluence rate of blue radiation 

was kept constant (50 pmol/m^/s) whilst the fluence rate of UVA radiation was tested at 

0.1, 10, 20, 30, 40 and 50 pmol/m^/s (Figure 6.5). At fluence rates of 10 pmol/m^/s and 

above GUS activities remained fairly stable with induction ranging from -16 fold to 29 

fold. In this study the greatest CHS-GUS induction was observed at 20 pniol/m^/s (29 

fold induction). This fluence rate was therefore selected for future blue/UVA studies.

By increasing blue or UVA fluence rates a dose response curve is observed which 

becomes saturated presumably as the CRYl photoreceptor response becomes saturated.
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Figure 6.5 Optimum UVA Fluence Rate for Blue/UVA Induction of CHS-GUS
Promoter Activity in NM4 Arabidopsis Seedlings at

; 3 0

0 . 1  1 0  2 0  3 0  4 0  5 0

U V A  F l u e n c e  R a t e  { u m o i / m ^ / s )

Exposure Time (Hrs) UVA Fluence Rate GUS Activity

0 0.1 33.8 ± 6.0

24 69.4 ± 50.7

0 10 16.4 ± 8.7

24 421.0 ± 95.0

0 20 12.7 ± 2.5

24 365.9 ± 113.0

0 30 32.2 ± 5.7

24 528.5 ± 103.0

0 40 16.3 ± 2.9

24 448.1 ± 140.0

0 50 11.5± 2.3

24 278.0 ± 87.0

Results represent pmol 4-MU/mg/min following exposure to blue radiation (50 pmol/ra^/min) and UVA 
radiation (0.1,10,20,30,40 or 50 pmoI/mVmin) for 24 hours at 10°C. Errors represent standard errors where 
11=3.
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A fluence rate of blue (50 pmol/m^/s) and UVA (20 pmol/m^/s) giving a total fluence 

rate of 70 pmol/mVs appears sufficient to produce the maximum CHS-GUS response to 

blue/UVA light at low temperature.

6.9 Effect on CHS-GUS Promoter Activity of a 20 "C Pre-treatment with B/UVA 

Radiation Prior to the Addition of a 10 ®C Cold Treatment

Previous studies on the synergistic interaction between blue or UVA phototransduction 

and UVB phototransduction identified an effect of the order of illmnination on CHS-GUS 

expression (Fuglevand et al., 1996). The level of GUS activity was found to be greater 

when the blue light treatment preceded the UVB treatment rather than vice-versa. It was 

concluded that the blue light treatment produces a signal capable of enhancing the 

subsequent response to UVB treatment. UVA treatments had to he given simultaneously 

with the UVB treatment in order to obtain a synergistic increase in CHS-GUS expression.

It was conceivable that exposui'e of NM4 seedlings to blue/UVA radiation prior to 

the addition of cold may prime the signal transduction mechanism so as to entrance the 

subsequent response to cold stress. To test this possihility, seedlings were exposed to 

blue/UVA radiation at 20 for 8 hours before being transferred to blue/UVA radiation 

at 10 °C for a further 16 or 24 hours. Samples were removed after 8, 24 and 32 hours of 

treatment and GUS activities were determined (Table 6.3). As a control, seedlings were 

also exposed to 24 hours of blue/UVA radiation at 10 °C.
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6.10 Effect on CHS-GUS Promoter Activity of Blue or UVA 20 “C Pre-treatment 

Prior to Exposure to B/UVA Radiation at 10 °C

Samples at time zero, grown under 20 pmol/mVs of white light, were found to have an

average GUS activity of 19.8 ±3.8 pmol 4-MU/mg/min.

Applying the 20 °C blue/UVA pre-treatment to seedlings produced CHS-GUS 

promoter activities of 554.9 ± 143.7 and 698.9 ± 319.3 pmol 4-MU/mg/min after 16 and 

24 hours of blue/UVA/cold treatment respectively. This can be compared to the CHS- 

GUS promoter activity determined in seedlings exposed to 24 hours (2295.0 ± 430.3 

pmol/mg/min) of blue/UVA radiation at 10 °C. It appears that prior exposure to 

blue/UVA light at 20 °C limits the extent of the subsequent response to low temperature.

As described in Section 6.9, previous studies by Fuglevand et al (1996) identified an 

effect of the order of illumination on CHS-GUS expression. It was conceivable that 

exposure of NM4 seedlings to blue or UVA light may produce a signal that entrances the 

subsequent response to B/UVA and cold stress. Exposure to blue/UVA light at low 

temperatuie produces a synergistic increase in CHS-GUS promoter activity. Therefore 

plants were pre-treated with blue or UVA radiation prior to exposure to blue/UV A/cold 

treatment to determine any effect on GUS activity.
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NM4 seedlings were transferred from conditions of non-inductive white light (20 

jLimol/m /̂s) to blue (50 gmol/m^/s) or UVA (20 gm olW /s) light for 8 hours at 20 °C. 

Seedlings were then exposed to a fuidher 16 or 24 hours of blue/UVA light at 10 °C. 

Samples were removed after the 8 hour pre-treatment and after 16 or 24 hours of 

blue/UV A/cold treatment, GUS activities were then determined (Table 6.4).

Blue pre-treatment- Exposure to blue radiation at 20 °C produced little induction of 

CHS-GUS expression. Subsequent exposure to blue/UVA radiation at low temperature 

induced an increase in GUS activity reaching peak levels after 24 hours of blue/UVA 

exposure (551.5 ± 93.3 pmol 4-MU/mg/min).

UVA-pre-treatment- CHS-GUS expression following UVA treatment at 20 "C and 

blue/UVA treatment at 10 °C reached peak levels of GUS activity after 16 hours of 

blue/UVA radiation at 10 (463.0 ± 156.0 pmol 4-MU/mg/min).

No pre-treatment- GUS activities in control plants exposed to blue/UVA radiation at 10 

with no pre-treatment were found to greatly exceed those of plants receiving the 20 

pre-treatment. 24 hours of exposure to blue/UVA radiation at 10 °C induced a GUS 

activity of 2295.0 ± 430.3 pmol 4-MU/mg/min, this is ~ 4-5 times higher than the peak 

activity detected in plants that received blue/UVA radiation at 10 °C after the blue or 

UVA 20 pre-treatment.
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Thus, blue or UVA pre-treatment at 20 “C did not produce any further induction of CHS- 

GUS promoter activity than blue/UVA radiation with cold treatment alone. Indeed pre

treatment appeared to impair the subsequent response to blue/UVA light and low 

temperature.

6.11 Synergistic Interaction between Light and Low Temperature on CHS 

Transcript Levels

It was previously demonstrated that blue/UV A/cold treatment produced a strong 

synergistic increase in CHS-GUS promoter activity (Section 6.3). It was therefore of 

interest to determine the effect of this treatment at the transcript level.

Exposure of Arabidopsis seedlings, grown in non-inductive white light (20 

pmol/m^/s), to 8 hours of blue light at 20 ”C produced an increase in CHS transcript 

accumulation as compai'ed to low white light. The effect of UVA light was barely 

detectable at this exposure of the autoradiograph.

Exposure of plants to blue/UVA light at 10 °C and 20 clearly demonstrated the 

strong inductive effect of blue/UVA/cold treatment on CHS transcript accumulation 

(Figure 6.6).
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Figure 6.6

CHS transcript levels following blue, UVA or B/UVA pre-treatment at 20 °C prior to 

the addition of low temperature. Wild type Arabidopsis seedlings were grown in 

conditions of non-inductive white light (20 pmol/m^/s) at 20 °C for three weeks 

before being transferred to LW 20 °C (lane 1), 8 hours of UVA (20 pmol/m^/s) 20 °C 

(lane 2), blue (50 pmol/nf/s) 20 °C (lane 3), Blue/UVA (50/20 pmol/m^/s) at 20 °C 

(lane 4) or Blue/UVA (50/20 pmol/m^/s) at 10 °C (lane 5), 8 hr light treatment at 20 

“C followed by 16 hours of light treatment at 10 with UVA light (lane 6), Blue 

light (lane 7), Blue/UVA (lane 8), 8 hoius of light treatment at 20 followed by 24 

hours of light treatment at 10 °C with UVA (lane 9), blue (lane 10) or Blue/UVA (lane 

11). (A) CHS transcript levels in total leaf RNA (5 pg per lane) were measured by 

hybridisation of a CHS probe to RNA gel blots. Arabidopsis thaliana derived CHS 

probe was isolated from pUC 19 plasmid described by Trezzini et al., 1993. (B) total 

rRNA detected by UV fluorescence following reaction with ethidium bromide.



< 2> 33
m 0k. Q .
0 E

< 0
> 1 -
3

0
3

0_j
CÛ 0
O) cc 0

)5
_o

■D
0 <u_ 00)s:
0>
s i
_l 0
Q ."C

"C
0.

0 Ü(0 0c
2

0
CM

1- ■4->
(g 0

c
0 0
(D è<d 0
0 2k_
3 •t
o> 2iZ Q_

o
CM

00 CD

ZJÜ)o
Q .

UJ

00

i
0)
3
GO

$
3

(D3
00

3

O
o
O

o

I
is
0 y
m R

1 °

CO

164



6.12 Effect on CHS Transcript Levels of a 20 °C Pre-treatment with Blue, UVA or

Blue/UVA Radiation Prior to the Addition of a 10 °C Cold Treatment

The effect of exposing plants to blue, UVA or blue/UVA light prior to the addition of 

cold on CHS transcript accumulation was determined. It was conceivable that exposure to 

light prior to cold may affect the subsequent response to low temperature.

Wild type Arabidopsis seedlings, grown in non-inductive white light (20 pmol/m^/s), 

were exposed to blue (50 pmol/m^/s), UVA (20 pmol/m^/s) or blue/UVA (70 pmol/m^/s) 

radiation for 8 hours at 20 ^C. Light conditions were then kept constant whilst 

temperatures were reduced to 10 °C. Samples were removed after the 8 hour pre

treatment and following 16 and 24 hours of the light/cold treatment and CHS transcript 

levels were determined. As a control, plants were exposed to 8 hours of blue/UVA light 

at 10 °C.

Blue/UVA light treatment at 10 °C for 8 hours appeared sufficient for induction of 

CHS transcript accumulation. Prior exposure to blue, UVA or blue/UVA light at 20 '’C 

did not stimulate transcript accumulation further (Figure 6.6).
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6.13 CHS Transcript Levels Following Blue or UVA 20 °C Pre-treatment Prior to

Blue/UVA Radiation at Low Temperature

The effect, on CHS transcript accumulation, of exposing seedlings to blue or UVA light 

prior to blue/UV A/cold treatment was assessed. As described by Fuglevand et al (1996) 

providing blue light prior to UVB light enhanced the subsequent CHS response to UVB. 

It was possible that exposure of plants to UVA or blue light prior to the highly inductive 

blue/UV A/cold treatment may prime the signal transduction mechanism so as to enhance 

the response to light and cold stress. Although no effect was seen on CHS-GUS promoter 

activity, it was important to establish whether any effects could be observed at the 

transcript level.

Wild type Arabidopsis seedlings were taken from non-inductive conditions of 

white light (20 pmol/m^/s) at 20 °C and exposed to either blue (50 pmol/m^/s) or UVA 

(20 pmol/m^/s) light at 20 °C for 8 hours. Plants were then transferred to conditions of 

blue/UVA light (70 pmol/m^/s) at 10 °C for 16 or 24 hours. Samples were removed after 

the 8 hour pre-treatment and following 16 or 24 hours of blue/UV A/cold treatment. CHS 

transcript levels were determined. As a control Arabidopsis seedlings were exposed to 8 

hours of blue/UVA light at 20 ”C followed by 24 hours of blue/UVA light at 10 °C.

Exposure of seedlings to 8 hours of blue or UVA light at 20 °C produced little
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induction of CHS transcript accumulation during the exposure time of the autoradiograph 

(Figures 6.7 & 6.8).

Exposure of seedlings to blue or UVA light at 20 °C prior to blue/UV A/cold 

treatment produced a strong induction of CHS transcript accumulation. Induction 

appeared to be greater than that determined in seedlings exposed to 8 hours of blue/UVA 

light at 20 °C followed by 24 horns of blue/UVA light at 10 °C.

Thus, order of illumination appears to affect CHS transcript accumulation with a 

blue or UVA light treatment at 20 °C entrancing the subsequent response to 

blue/UV A/cold treatment.

6.14 CHS Transcript Accumulation in Response to Red Light

Exposure of NM4 seedlings to red light and low temperature had little effect on GUS 

activity (Section 6.4). This experiment was repeated using WT Arabidopsis seedlings to 

determine any effect on CHS transcript levels.

Wild-type Arabidopsis seedlings were taken from conditions of non-inductive white 

light (20 pmol/m^/s) at 20 °C and exposed to red light (85 pmol/m^/s) for 24 hours at 20 

or 10 °C. At low temperatui'e in the presence of red light, CHS transcript accumulation
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Figure 6.7

CHS transcript levels following blue 20 °C pre-treatment prior to B/UVA radiation at 

low temperature. Wild type Arabidopsis seedlings were grown in conditions of non- 

inductive white light (20 pmol/m^/s) at 20 °C for 3 weeks before being transferred to 

white light (20 pmol/m^/s) at 20 °C (lane 1), 8 hours blue light (50 p,mol/m^/s) at 20 

°C (lane 2), 8 hours of blue light 20 °C followed by 16 hours of Blue/UVA light 

(50/20 pmol/m^/s) at 10 °C (lane 3), 8 hours of blue light at 20 °C followed by 24 

hours of Blue/UVA light at 10 (lane 4). As a control, plants were exposed to 8 

hours of Blue/UVA light (50/20 pmol/m^/s) at 20 °C followed by 24 hours of 

Blue/UVA treatment at 10 °C (lane 5). (A) CHS transcript levels in total leaf RNA (5 

pg per lane) were measured by hybridisation of a CHS probe to RNA gel blots. (B) 

total rRNA detected by UV fluorescence following reaction with ethidium bromide.



Figure 6.7 CHS Transcript Levels Following Blue 20 °C 
Pre-Treatment Prior to B/UVA Radiation at 

Low Temperature

B
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Figure 6.8

CHS transcript levels following UVA 20 °C pre-treatment prior to exposure to 

B/UVA radiation at 10 °C m Arabidopsis thaliana. Wild typQ Arabidopsis seedlings 

were grown in non-inductive conditions of white light (20 pmol/m^/s) at 20 °C for 3 

weeks before being transferred to white light (20 pmol/m^/s) at 20 °C (lane 1), 8 hours 

of UVA light (20 pmol/m^/s) at 20 ”C (lane 2), 8 hours of UVA light treatment at 20 

°C followed by 16 hours of Blue/UVA light (50/20 pmol/m^/s) at 10 “C (lane 3), 8 

hours of UVA light at 20 °C followed by 24 hours of Blue/UVA light at 10 °C (lane 

4). As a control, plants were exposed to 8 hours of Blue/UVA light (50/20 pmol/m^/s) 

at 20 °C followed by 24 hours of Blue/UVA light at 10 °C (lane 5). (A) C/ZS transcript 

levels in total leaf RNA (5 pg per lane) were measured by hybridisation of a CHS 

probe to RNA gel blots. (B) total rRNA detected by UV fluorescence following 

reaction with ethidium bromide.



Figure 6.8 CHS Transcript Levels Following UVA 20 °C  
Pre-Treatment Prior to Exposure to B/UVA Radiation at 

10 °C in Arabidopsis thaliana

A

B
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appeared greater than that induced by red light at 20 °C (Figure 6.9A). This induction of 

CHS transcripts is likely to result from exposure to low temperature alone. Exposure of 

seedlings to low temperature in white light (20 pmol/m^/s) induced a similar level of 

CHS transcripts (Figure 6.9 C). The level of CHS transcripts stimulated by exposure to 

low temperature alone or red light and low temperature is much lower than CHS 

induction following B/UVA/cold treatment.

6.15 CHS Transcript Accumulation in the Arabidopsis hy4 Mutant Following 

Exposure to UVA, Blue or Blue/UVA Radiation at Low Temperature

The Arabidopsis hy4 mutant lacks the CRYl photoreceptor resulting in an impaired 

response to blue and UVA light (Caslimore, 1997). This mutant shows a much reduced 

induction of CHS transcripts in these light qualities (Jackson & Jenkins, 1995; Fuglevand 

et al., 1996). However, hy4 retains the synergistic interactions between UVA and blue 

light with UVB (Fuglevand et al, 1996). The hy4 mutant was employed in this study in 

order to determine whether the synergistic interaction between low temperature and 

blue/UVA involves a signal transduction mechanism originating from the CRYl 

photoreceptor. hy4-2.23N, a hy4 null mutant (Lin et al, 1998) was used in this study.
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Figure 6.9

CHS transcript accumulation in response to red light and cold in Arabidopsis thaliana. 

Wild type Arabidopsis seedlings were grown in conditions of non-inductive white 

light (20 pmol/m^/s) for three weeks at 20 °C before being transferred for 24 hours to

(A) white light (20 pmol/m^/s) at 20 °C (lane 1), red light (85 pmolAs) at 20 °C (lane 

2), red light (85 pmol/m^/s) at 10 °C (lane 3), blue/UVA light (50/20 pmol/m^/s) at 10 

°C (lane 4).

(B) total rRNA corresponding to lanes shown in (A) detected by UV fluorescence 

following reaction with ethidium bromide

(C) white light (20pmol/m^/s) (lane 1), LW at 20 °C (lane 2), LW 10 °C (lane 3) or 

blue/UVA light (50/20 pmol/mVs) at 10 °C (lane 4).

(D) total rRNA corresponding to lanes shown in (C) detected as described in (B). 

CHS transcript levels in total leaf RNA (5 pg per lane) were measured by 

hybridisation of a CHS probe to RNA gel blots (A and C).



Figure 6.9 CHS Transcript Accumulation In Response to Red 
Light and Cold In Arabidopsis thaliana

Red 24 h

B

LW 20 °C 10 °C
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Arabidopsis hy4 seedlings were exposed to UVA or blue radiation for 24 hours at 10 °C. 

In addition seedlings were exposed to blue/UVA radiation for 24 hours at 10 or 20 

Exposure of hy4 seedlings to blue radiation produced the greatest induction of CHS 

transcripts (Figure 6.10). This level of induction was not observed with blue/UVA light 

perhaps indicating some form of communication between a blue light receptor and 

CRY 1. However, induction of CHS transcripts in the hy4 mutant following exposure to 

blue radiation was significantly lower than the response of wild type Arabidopsis 

seedlings to blue/UVA light at low temperature. Synergistic induction of CHS transcripts 

by blue/UVA radiation combined with low temperature was not observed. Therefore, this 

response is mediated by the CRYl photoreceptor.

6.16 Induction of CHS-GUS Promoter Activity Following Exposure to Combinations 

of Blue, UVA and UVB Radiation at 10 "C

Light treatments known to induce CHS-GUS activity were combined to determine 

whether the synergistic increase in activity stimulated hy blue/UV A/cold could be further 

increased by the addition of UVB radiation. It was previously shown that UVB is 

synergistic with UVA and blue light (Fuglevand et al., 1996) and it was therefore 

interesting to see whether this synergism, when combined with UV A/blue/co Id synergism
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Figure 6.10

CHS transcript levels in the Arabidopsis hy4 mutant following exposure to UVA, blue 

or B/UVA light at low temperature. hy4 Arabidopsis seedlings were grown in non- 

inductive conditions of white light (20 pmol/m^/s) at 20 °C for 3 weeks before being 

transferred for 24 hours to white light (20 pmol/m^/s) at 10 °C (lane 1), UVA light (20 

pmol/m^/s) at 10 °C (lane 2), blue light (50 pmol/m^/s) at 10 °C (lane 3), blue/UVA 

light (50/20 pmol/m^/s) at 10 °C (lane 4), blue/UVA light at 20 °C (lane 5). As a 

control, WT Arabidopsis seedlings grown in non-inductive white light at 20 °C for 3 

weeks were exposed to blue/UVA light (50/20 pmol/m^/s) at 10 °C for 24 hours (lane 

6). (A) CHS transcript levels in total leaf RNA (5 pg per lane) were measured by 

hybridisation of a CHS probe to RNA gel blots. (B) total rRNA detected by UV 

fluorescence following reaction with ethidium bromide.



Figure 6.10 CHS Transcript Levels in the Arabidopsis hy4 
Mutant Following Exposure to UVA, Blue or B/UVA Light 

at Low Temperature

hy4

10 °c 20 °C

WT
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would stimulate a further increase in CHS promoter activity.

Arabidopsis seedlings were exposed to 24 hours of hlue, UVA, UVB, B/UVA or 

B/UVA/UVB radiation at 10 °C (Figure 6.11). GUS activity of seedlings prior to light 

treatments was 38.9 ± 13.6. This was observed to increase to 63.9 ± 12.0, 97.5 ± 23.5 and 

164.6 ± 54.9 pmol 4-MU/mg/min following exposure to blue, UVA and UVB radiation 

respectively. More substantial increases were observed following exposure to B/UVA 

radiation, a GUS activity of 2295.0 ± 430.0 pmol/mg/min after 24 hours. However 

B/UVA/UVB irradiation produced GUS activity -2 .6  fold higher than blue/UVA alone, 

reaching 5996.0 ± 1545.8 pmol/mg/min. Combining the synergistic induction of CHS- 

GUS promoter activity by blue/UVA radiation in the presence of cold with B/UVA/UVB 

synergism caused a large increase in CHS promoter activity.
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Figure 6.11

Induction of CHS-GUS promoter activity following exposure to combinations of blue, 

UVA and UVB light at 10 °C. Arabidopsis NM4 plants were grown in conditions of non- 

inductive white light (20 pmol/m^/s) at 20 °C for 3 weeks before being transferred for 24 

hours to blue light (50 pmol/nf/s), UVA light (20 pmol/m^/s), UVB radiation (3.5 

(imol/m^/s), blue/UVA (50/20 junol/m^/s) or blue/UVA/UVB (50/20/3.5 nmol/m^/s) at 

10 °C. GUS activity was determined and is expressed as pmol 4-MU/mg/min. Bars 

indicate standard errors where n=10.



Figure 6.11 Induction of CHS-GUS Promoter Activity Following Exposure to

Combinations of Blue, UVA and UVB Light at 10 ”C
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6.17 Discussion

In mature leaves of Arabidopsis thaliana, CHS gene transcription is regulated by UV and 

blue light (Jackson & Jenkins, 1995; Fuglevand et al, 1996). Regulation by UVB and 

UV A/blue light is believed to occur via separate but interacting signal transduction 

mechanisms (Fuglevand et a l,  1996). Pharmacological studies using inhibitors and 

antagonists of laiown signal transduction mechanisms provide further evidence for the 

presence of distinct UV A/blue and UVB signalling pathways. There is a requirement for 

calmodulin in UVB signal transduction but not for blue/UVA signal transduction 

(Christie & Jenkins, 1996).

Studies by Fuglevand et al (1996) demonstrated that both blue and UVA light, 

when given separately induce CHS-GUS expression and CHS transcript accumulation in 

Arabidopsis. When blue and UVA radiation are given together the effects on CHS-GUS 

expression are additive. However, UVA and blue light produce synergistic responses 

when given together with UVB.

In the present study, exposure of Arabidopsis NM4 seedlings to blue or UVA 

light clearly induced CHS-GUS expression and CF/5'transcript accumulation. This is less 

apparent in some of the autoradiographs because of the exposure time employed. As 

expected, combining blue and UVA light produced an approximately additive increase in
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CHS-GUS expression. Exposing NM4 seedlings to blue or UVA radiation at low 

temperature (10 °C) produced a small increase in CHS-GUS expression. However, 

combining blue/UVA light with low temperature induced a synergistic increase in CHS- 

GUS expression and CHS transcript accumulation. Levels of CHS-GUS expression were 

found to be more than 10 fold higher than the activity expected if effects of UV A/blue 

and cold were additive. Combining blue/UVA light with low temperature produced a 

strong synergistic response. No such response has been reported previously.

The response of the CHS promoter to low temperature and light appears to be 

specific for UV A/blue light. UVB irradiation produced only a slight increase in CHS- 

GUS promoter activity in plants simultaneously exposed to low temperature. In addition, 

exposure of plants to red light at low temperature did not increase CHS-GUS expression 

significantly more than non-inductive white light at low temperature.

Previous studies found that combining UVB induction of CHS with either UVA 

or blue radiation produced a synergistic increase in CHS-GUS expression. In addition, 

maximum CHS-GUS expression was observed when blue light was given before 

UVB/UVA radiation. It was hypothesised that the blue light treatment may activate a 

signal transduction mechanism that enhances the subsequent response to UVB 

(Fuglevand et a l, 1996). It was therefore conceivable that exposure of NM4 seedlings to 

blue/UVA light prior to the addition of cold may prime the signal transduction 

mechanism so as to enhance the subsequent response to cold stress. In contrast, exposure
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of seedlings to blue/UVA light prior to the addition of cold greatly reduced the 

subsequent response to low temperature. The highest GUS activities were detected when 

blue/UVA treatments were given simultaneously with cold treatments.

Under the same rationale, it was conceivable that pre-treating plants with blue or 

UVA light at 20 °C may enhance the subsequent response to blue/UVA/cold treatment. 

However, blue or UVA pre-treatment did not produce any further induction of CHS-GUS 

promoter activity than blue/UV A/cold treatment alone. Indeed, pre-treatment appeared to 

impair the subsequent response to blue/UVA light and low temperature.

CHS transcript levels were analysed in plants exposed to blue, UVA or blue/UVA 

light prior to the addition of low temperature. Prior exposure to UVA, blue or blue/UVA 

light did not stimulate CHS transcript accumulation further than exposure to blue/UVA 

light for 8 hours at 10

The effect of exposing seedlings to blue or UVA light prior to blue/UV A/cold 

treatment on CHS transcript accumulation was assessed. As previously discussed, it was 

conceivable that exposure of plants to UVA or blue light prior to the highly inductive 

blue/UVA/cold treatment may enliance the CHS response to light and cold stress. 

Transcript accumulation was found to be greater following blue or UVA pre-treatment 

than blue/UVA pre-treatment at 20 °C. This result differs from that suggested by CHS- 

GUS expression. Although blue or UVA pre-treatment induced higher levels of CHS 

transcripts this pattern is not represented in product accumulation (GUS). This may
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indicate post-transcriptional regulation and possibly effects of low temperature on 

synthesis of the GUS product. In addition, differences between CHS-GUS expression 

data and CHS transcript accumulation may indicate developmental differences between 

the samples collected for each analysis. All leaves were harvested for RNA analysis 

whereas the expanding pair of true leaves were harvested for CHS-GUS analyses. It is 

also possible that there may be regulatory differences between the Sinapis alba CHS 

promoter transformed into NM4 and the endogenous Arabidopsis thaliana CHS promoter 

in wild type seedlings employed for RNA analyses.

Combining blue/UVA and UVB treatments at low temperature induced 

the greatest CHS-GUS activity measured in this study. Induction was found to be almost 

three fold higher than that of seedlings exposed to blue/UVA and cold treatment. It is 

likely that the UVB/blue/UVA synergistic response can combine with the blue/UV A/cold 

synergism to greatly increase CHS-GUS expression. Clearly the level of accumulation 

was much greater than would be expected from an additive effect of blue/UV A/cold and 

UVB induction.

Previous studies with the Arabidopsis hy4 mutant have indicated a reduced 

induction of genes relating to flavonoid biosynthesis including DFR, CHI and CHS in 

response to white and blue light (Jackson & Jenkins, 1995). It was later observed that 

CHS transcription in hy4 is reduced as compared to wild type plants in response to blue 

and UVA radiation. Responses to UVB, including the synergistic response to blue and
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UVA with UVB are retained in the hy4 mutant (Fuglevand et a l, 1996).

In this study the response of the hy4 mutant was assessed in conditions of blue, 

UVA and blue/UVA light at 20 °C and 10 °C. Although hy4 is a blue light response 

mutant, some induction of CHS transcript accumulation was observed following exposure 

to blue light. This result was also observed by Jackson & Jenkins (1995) and Fuglevand 

et al (1996). It is possible that the phytochiome photoreceptor may be responsible for this 

response to blue light. Alternatively a separate blue light photoreceptor, such as CRY2, 

may be involved (Fuglevand et al., 1996).

As expected, the hy4 mutant showed a very limited response to UVA or 

blue/UVA light. In addition, the synergistic interaction of blue/UVA radiation at low 

temperature was not observed. The response of the hy4 mutant to blue, UVA or 

blue/UVA treatment was significantly less than that of wild type Arabidopsis plants to 

blue/UVA treatment at 10 °C. Therefore CRYl is required for the interaction between 

UV A/blue light and low temperature.

The information gained in this study can be used to build upon the 

phototransduction model proposed by Fuglevand et al (1996), see Figure 6.12. Cold 

interacts in a synergistic manner with blue/UVA light but not with UVB radiation. It is 

therefore likely that the signal transduction mechanism originating from cold perception 

is interacting with the blue/UVA phototransduction pathway originating from the CRYl 

photoreceptor.
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Figure 6.12 Model of UVA/Blue/UVB/Cold Regulation
of CHS Expression in Arabidopsis thaliana

B lu e /U V A C old

B lu e

C R Y l

Stable

U V B C H S

Transient

U V A B lu e

Figure 6.12

Model of UVA/Blue/UVB regulation of CHS expression m Arabidopsis thaliana, 
adapted from Fuglevand et al (1996). UVB when combined with blue light induces a 
synergistic increase in CHS expression; induction can be increased by exposing 
plants to blue light prior to UVB. It was hypothesised that exposure to blue light 
produced a signal capable of enhancing any subsequent response to UVB. This effect 
was observed even when the blue and UVB treatments were separated by several 
hours of darkness. Combining UVB with UVA light also produced a synergistic 
increase in CHS expression. However this effect was only observed when UVA and 
UVB light treatments were given simultaneously, any signal generated by prior UVA 
treatment was deemed to be transient (Fuglevand et al, 1996). Cold interacts in a 
synergistic manner with blue/UVA light but not with UVB radiation. It is therefore 
proposed that the signal transduction mechanism originating from cold perception is 
interacting with the blue/UVA phototransduction pathway originating from the 
CRYl photoreceptor
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6.18 Conclusion

Combining cold treatment with blue/UVA light produces a synergistic increase in CHS- 

promoter activity in wild-type seedlings of Arabidopsis thaliana. No equivalent response 

is observed with red or UVB light, The hy4 blue light response mutant of Arabidopsis did 

not display this light/cold synergism suggesting that the inductive effects of low 

temperature on CHS act in concert with the CRYl UV A/blue phototransduction pathway. 

The blue/UV A/cold synergistic response appears to combine with the blue/UVA/UVB 

synergistic response to further stimulate CHS expression.
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Chapter 7 Final Discussion

7.1 Introduction

A wide range of commonly consumed fruits and vegetables have been shown to contain 

flavonols (Hertog et a l, 1992, Crozier et a l,  1997). Flavonols are believed to exert an 

antioxidative effect within the human body, which may protect against coronary heart 

disease (Hertog et a l, 1993) and some cancers (Knekt et a l, 1997). It is therefore 

important to understand how these potentially important compounds are regulated within 

plant tissues.

The work presented in this study demonstrates that the flavonol content of fruits 

and vegetative plant tissue depends on plant variety and method of cultivation. In 

addition the flavonol content of plant tissues is regulated by the environmental factors 

light, nutrient availability and low temperatui*e.

Ï
Î;

7.2 Identification of High Flavonol’ Tomato Fruit Varieties

Different fruits and vegetables have been shown to contain vastly different 

concentrations of flavonols. Within a single species different varieties have also been 

shown to contain very different flavonol concentrations. For example, in a study by 

Crozier et a l  (1997) the red leafed Lollo Rosso lettuce was foimd to contain 911 pg 

quercetin/g compared to only 11 pg quercetin/g in the round lettuce variety Cortina. It is
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therefore of interest to identify those crops or particular varieties that are especially high 

in flavonols and may have increased nutritional value. In this study tomato fruit varieties 

from six different countries were analysed for flavonol content. Fruit variety was 

identified as an important factor influencing the flavonol content of tomatoes. Varieties 

Bond and Havanera were both normal sized, field grown Spanish tomatoes obtained from 

plants cultivated along-side each other on the same plot near Valencia (Spain). None-the- 

less the total flavonol content of Bond fruit was 10.9 pg as compared to 6.6 pg in 

Havanera (Table 3.5). The flavonol content of tomato fruits with deep red or purple skins 

was investigated. It was hypothesised that the skins of such varieties appeal* to contain 

substantial amounts of anthocyanins, and as flavonols originate from the same branch of 

the phenylpropanoid pathway as anthocyanins (Holton & Cornish, 1995; Duthie & 

Crozier, 2000) the skins might also contain elevated levels of flavonols. Red leafed, 

anthocyanin rich varieties of lettuce have been shown to contain very high levels of 

conjugated quercetin compared to many green leafed varieties (Crozier et aL, 1997). The 

skin of the daikly pigmented tomato variety Noire Charbonneuse was found to be 

particularly rich in flavonols (440 pg/g/fwt). However, not all of the dai’kly pigmented 

varieties were found to be high in flavonols; skin from vai’iety Aubergine, a variety 

characterised by purple striations, contained only 108 pg/flavonol/g.

It was clear from analysis of Spanish tomatoes that the highest flavonol 

concentrations were present in cherry tomatoes, with lower levels in normal sized and 

beefsteak fruits. One factor which may explain the elevated levels of flavonols in cherry 

tomatoes compared to normal varieties, first reported by Crozier et al (1997), is the 

higher skin: volume ratio of small tomatoes compared to larger varieties.



Cherry tomato varieties and some darkly pigmented fruit varieties may be 

identified as being particularly rich in flavonols and may allow for the production of high 

flavonol fruits without having to resort to genetic modification,

7.3 Effect of Countiy of Origin on Flavonol Content

Tomato fruits grown in warm sumiy climates such as Spain and S.Africa were found to 

contain far higher concentrations of flavonols than British fruits. An understanding of the 

effect of fruit variety and environmental conditions on the flavonol content of tomato 

fruits may allow British tomato fruit growers to optimise these conditions in order to 

increase the flavonol content of their produce.

Commercial tomato fruit growing in Scotland and England requires the use of 

glasshouses in order to maintain the temperatures required for fruit set and also to control 

pests and disease. Due to the costs involved in building and maintaining these 

glasshouses, tomato growing is of high intensity with plants tightly packed together and 

temperatuie and feeding regimes maximised to obtain the highest possible yield. Tomato 

plants are grown in strictly regimented rows with sufficient space between the rows only 

to allow staff to hand pick the fruits. In addition, each tomato plant is coimected by a wire 

to the roof of the greenliouse; as the plant grows the wire is lowered to allow more room 

for growth upwards, a consequence of this is that the tomato fruits are always found at 

the bottom of the plants. These developing fruits receive little direct sunlight, with light 

being filtered first through glass and then thr ough the foliage of surrounding plants.
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Fruit from warmer climates such as Spain are usually field grown and if necessary they 

are shielded from the elements using plastic rather than glass. The developing fruits 

would receive more sunlight and would be exposed to UVB light.

Light, paiticulai'ly UVB light, is known to be an important factor in the induction 

of flavonoids in many plant species (Lois, 1994; Brandt et a l, 1995; Price et a l, 1995). 

Where light is the main limiting factor to flavonol induction other influences such as 

tomato fruit variety may have less impact. The flavonol content of British fruits may be 

increased primarily by providing greater exposure of developing tomato fruits to sunlight. 

This may require a change in cultivation methods to physically alter the manner in which 

tomato plants are cultivated to avoid shading of the fruit, e.g. trellising. Alternatively, 

supplementary lighting could be provided at the level of the fruits, although this would 

increase production costs and may not be commercially viable.

In addition to increasing the light induction of flavonols within tomato 

fruits, the adoption of cherry tomato varieties believed to have a greater capacity to 

synthesise flavonols may also allow for a greater flavonol content of British produce. 

Alternatively, growing heavily pigmented tomato varieties such as Noire Charbonneuse, 

which appear genetically predisposed to synthesise higher levels of flavonoids including 

flavonols, may allow for the production of high flavonol fruits in Britain.
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7.4 Screening Processed Tomato Products for Flavonol Content

Tomato flavonols were able to survive industrial processing methods and could be 

detected in a wide range of tomato based food products. Tomato juice was found to be a 

rich source of flavonols with a total flavonol content of 14-16 pg/ml, comparable with 

that of red wine which can vary from 4.6- 41.6 pg/ml (McDonald et aL, 1998). Safeway 

tomato puree was also identified as a particularly rich source of flavonols containing 70 

pg/g. In contrast to tomato fruit, which contains almost exclusively conjugated quercetin, 

up to 30 % of the quercetin in processed produce was in the free form. The accumulation 

of fl'ee quercetin may be a result of enzymatic hydrolysis of rutin and other quercetin 

conjugates during pasteurisation and processing procedures.

7.5 Absorption and Excretion of Flavonols from Tomato

Identification of flavonol rich foods is clearly important with respect to their potential 

nutritional value. However it is also necessary to determine whether these flavonols are 

absorbed by the human body during digestion. Following the consumption of Spanish 

cherry tomatoes c.v Paloma or tomato juice (Del Monte) flavonols were detected in 

human plasma. Quercetin was detected in plasma, mainly in the conjugated form believed 

to be derived from rutin, with kaempferol appearing not to be absorbed or absorbed at 

very low levels. Conjugated flavonols were also detected unchanged in urine following 

consumption of tomato fruits or tomato juice. This evidence suggests that flavonols from 

tomatoes are absorbed and are available in the body to exert biological activity.
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7.6 Environmental Regulation of Flavonol Accumulation in Plant Tissues

7.6.1 The Effect of Nutrient Deficiency on Flavonol Accumulation in Plant Tissues

Previous studies indicated a link between nutrient deficiency and flavonoid accumulation 

in plant tissues (Caipena et al, 1982; Zornoza & Esteban, 1984). Information on the 

exact nature of these flavonoids is lacking. In addition, although tomato was commonly 

used as a model system in which to study the effects of nutrient deprivation there is little 

information on the effect of nutrient stress on tomato fmits.

The effect of nitrogen or phosphorus deprivation on the flavonol content of plant 

tissues was studied initially using Arabidopsis thaliana seedlings as a test system and 

then on tomato seedlings, mature vegetative tissue and fruit tissue. The flavonol content 

of Arabidopsis seedlings was found to be far higher than that of tomato, 25 fold higher in 

conditions of zero nitrogen and 16 fold higher in conditions of zero phosphate. 

Arabidopsis was therefore an excellent system in which to quickly determine the flavonol 

response of plant tissues to nutrient stress. Exposure of Arabidopsis or tomato seedlings 

to conditions of reduced nitrogen or phosphorus demonstrated a clear inverse relationship 

between nitrogen and phosphorus nutrition and flavonol content. On the basis of this 

observation a trial was established under commercial conditions to determine the effect of 

nutrient stress on the flavonol content of matiue leaf tissue and tomato fruit tissue. 

Consistent with previous work (Caipena et ah, 1982; Bongue-Bartelsman & Phillips., 

1995), reduced nitrogen availability caused an increase in flavonol content in the leaves 

of tomato plants, reduced phosphorus nutrition did not elicit this response.
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The effect of nitrogen and phosphate deprivation on the flavonol content of 

tomato fruit tissue was also assessed. To the best of the author’s knowledge, this is the 

first study to assess the effect of nutrient stress on the individual flavonols of tomato 

fruits in a commercial setting. The skins of red, breaker and green fruits were analysed 

for flavonol content. Exposure to the low nitrogen or phosphate treatments caused an 

increase in the flavonol content of tomato fruit skins early in the ripening process (mature 

green stage). Any effect of nutrient stress on the flavonol content of fruits was lost as 

ripening progressed. It is possible that green fruits may have to compete with other plant 

sinks for available nutrients and may therefore suffer from a lack of available nutrients. 

Dur ing ripening the sink strength of the fruit is likely to increase such that the nutrient 

deficiency no longer has any effect on flavonol accumulation. Alternatively, induction of 

flavonols in the skins of green fruits may be important to protect the fruit tissues and 

developing seeds from penetration by potentially damaging radiation. As ripening is a 

process of dying during which the tomato seeds within the fruit reach maturity, the 

induction of such protective compounds may carry no further advantage.

The present study provides clear evidence that the flavonol content of plant 

tissues is influenced by their nutritional status. Manipulation of nutrient availability does 

not stimulate increased levels of flavonols within tomato fruits. However, nutrient stress 

could be used to manipulate the flavonol content of vegetative crops, although nutrient 

stress may have implications for disease resistance and reduction in yield.

189



7.6.2 Effect of Light Quality and Low Tem perature on CHS Expression in 

Arabidopsis thaliana

As information on signal transduction mechanisms and interactions between regulatory 

systems becomes available, signal transduction models can begin to be constructed, not 

just of individual pathways but of complex networks (Jenkins, 1999). Such a network 

would be required to decipher the range of environmental information regulating CHS 

expression in order to produce an appropriate response.

Early in Arabidopsis seedling development, red light induces CHS expression via 

the well-characterised phytochrome photoreceptor. CHS induction by red/far red light 

during photomorphogenesis allows photoprotectants to be accumulated before 

photo synthetic apparatus sensitive to the damaging components of sunlight are produced. 

Phytochrome signal transduction regulating CHS transcript accumulation has been shown 

to require G-protein activation (Roux, 1994) and cGMF (Bowler et at., 1994).

CHS expression in mature Arabidopsis leaf tissue is regulated by UVB, UVA 

and blue light (Jackson & Jenkins, 1995; Fuglevand et ah, 1996). Regulation by UVB 

and UV A/blue light is believed to occur via separate but interacting signal transduction 

mechanisms (Fuglevand et aL, 1996). Pharmacological studies using inhibitors and 

antagonists of Icnown signal transduction components provide further evidence for the 

presence of distinct UV A/blue and UVB signalling pathways (Christie & Jenkins, 1996). 

There is a requirement for calmodulin in UVB signal transduction but not for UV A/blue 

signal transduction. Both UVB and UV A/blue signalling require an increase in cytosolic
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calcium, protein kinase and phosphatase activity was also required. Such studies show 

that both UVB and UV A/blue signalling pathways are distinct from phytochrome signal 

transduction.

Signal transduction originating from UVB can interact with blue and UVA 

light to increase CHS transcript accumulation in a synergistic manner. In addition, CHS 

induction is increased further if the blue light treatment precedes the UVB/UVA 

treatment (Fuglevand et aL, 1996). It was hypothesised that exposure to blue light 

produced a signal that could enhance the subsequent response to UVB light. Studies with 

the Arabidopsis hy4 mutant revealed that blue/UVA light regulation of CHS transcript 

accumulation is mediated by the CRYl photoreceptor. Although the hy4 mutant lacks the 

CRYl photoreceptor and shows a reduced inductive response to blue and UVA light it 

retains the synergistic increase in CHS transcript accumulation when blue or UVA light is 

combined with UVB.

Light regulation of CHS transcript accumulation is further complicated by 

interactions between the cryptoclirome UV A/blue light receptor and phytochrome (Wade 

& Jenldns, unpublished). In conditions of limited light, cryptoclirome and phytoclnome 

signal transduction pathways interact to allow de-etiolation and synthesis of 

photoprotectants (Ahmad & Caslimore, 1997; Casal & Mazzella, 1998).

Previous studies have shown that plants synthesise photoprotectants in the 

presence of light in response to low temperature (Leyva et aL, 1995). Cold signal 

transduction has been shown to require increased cytosolic calcium, protein kinase and 

protein phosphatase activity (Knight et al, 1996; Monioy & Dhindsa, 1995). Signal

191



transduction ultimately leads to changes in flavonoid gene transcript accumulation 

including PAL, CHS and to a lesser extent 4Cl and CHI (Clnistie et a l, 1994).

In this study, the branch of the signal transduction network leading to 

regulation of CHS transcript accumulation in conditions of low temperature has been 

identified. Combining blue/UVA light with low temperature (10 °C) induced a 

synergistic increase in CHS expression. This CHS response appears to be specific for 

UV A/blue light. UVB irradiation produced only a slight increase in CHS expression in 

plants simultaneously exposed to low temperature. Similarly, exposure of plants to red 

light at low temperature did not increase CHS expression significantly more than non- 

inductive white light at low temperature.

The Arabidopsis hy4 mutant lacking the CRYl blue/UVA photoreceptor 

showed a very limited response to blue or UVA light at low temperature. In addition, the 

synergistic interaction of blue/UVA light at low temperature was not observed. It is 

therefore proposed that the signal transduction mechanism originating from cold 

perception is interacting with the blue/UVA phototransduction pathway originating from 

the CRYl photoreceptor.

Combining blue/UVA and UVB light treatments at low temperature produced 

the greatest induction of CHS promoter activity observed in this study. This level of 

induction may result from an interaction between two synergistic responses, the 

blue/UV A/cold synergism and blue/UVA/UVB synergism.

The induction of flavonoids in conditions of low temperature in the presence 

of light suggests a photoprotective role. Simultaneous exposure to light and low 

temperature can cause severe inhibition of photosynthesis (Hodgson & Raison, 1989).
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Reduced efficiency of the photosynthetic apparatus at low temperatures due to factors 

such as membrane disruption and reduced enzyme activity can lead to a build up of 

highly oxidative photosynthetic by-products in the presence of light. Such by-products 

would normally be eliminated by superoxide dismutase and catalase, however, at low 

temperatures the activity of these enzymes is inhibited (Graham & Patterson, 1982). 

Accumulation of anthocyanins and other photoprotective pigments such as flavonols in 

conditions of low temperature would reduce penetration of harmful levels of light thereby 

affording protection against the deleterious effects of cold on photosynthesis. In addition, 

it is possible that flavonols and anthocyanins may function as antioxidants in plant cells, 

although this has not been fully investigated.

7.7 Conclusions

Tomatoes and tomato-based products are a rich source of conjugated quercetin and 

kaempferol. Cherry tomatoes originating from warm, sumiy climates were found to 

contain the highest flavonol concentrations. Tomato flavonols were able to withstand 

industrial processing methods allowing their detection in a wide variety of tomato based 

products. Tomato juice and tomato puree, were found to be particularly rich in flavonols.

Following consumption of tomato fruits and tomato juice, conjugated quercetin 

was detected imchanged in plasma and urine. Flavonols present in tomato fruits are 

therefore absorbable and bioavailable.
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The flavonol content of plant tissues is influenced by their nutritional status. 

Nutrient deprivation caused an increase in flavonol accumulation in vegetative plant 

tissue and in fruit tissue duiing the early stages of development.

Flavonol biosynthesis is regulated by light and temperature. Cold treatment 

combined with blue/UVA light produces a synergistic increase in CiTS'-promoter activity 

in wild-type Arabidopsis seedlings. The hy4 blue light response mutant of Arabidopsis 

did not display this light/cold synergism suggesting that the signalling pathway mediating 

CHS regulation interacts with the CRYl UV A/blue phototransduction pathway.

7.8 Future W ork
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The flavonol content of tomato fruits grown in Britain is generally very low compared to 

imported fruits. It would be of interest to determine whether the flavonol content of 

British fmits could be increased by the adoption of tomato fruit varieties identified as 

being particularly rich in flavonols. Such varieties could be tested in a commercial 

setting. In addition, the effect of providing greater light exposure to developing tomato 

fruits could be tested by providing supplementary lighting at the level of the fruits or 

trellising the vines such that the fruits are directly exposed to sunlight.

It is clear that nutrient stress increases the flavonol content of seedling and 

vegetative plant tissues of Arabidopsis and tomato. The effect of nutrient stress on 

flavonol content could be tested on a vegetative crop plant such as cabbage or lettuce. It 

would be of interest to determine whether exposure to a short period of nutrient stress



could elevate flavonol levels without significantly reducing yield or resistance to pests 

and disease.

Studies with Arabidopsis, wild type and hy4 mutant allowed a hypothesis relating 

to interactions between cold and UV A/blue light signal transduction to be proposed. 

These experiments could be extended to include other blue light mutants such as the 

related photoreceptor mutant cry2, or the double mutant cry 1/cry2. In addition, an 

interaction was identified between the synergistic blue/UVA/coId reaction and 

blue/UVA/UVB synergistic induction of CHS transcript accumulation. It would be of 

interest to determine whether this interaction between two synergisms was additive or 

whether there was a further synergistic increase in CHS expression.

195



Reference List

Adamse, P.; Jaspers, P.A.P.M.; Bakker, J.A.; Wesselius, J.C.; Heeringa, G.H.; Kendrick, 

R.E.; Koorneef, M. Photophysiology of a tomato mutant deficient in labile phytochrome. 

Journal o f  Plant Physiology 1988,133, 436-440.

Ahmad, M.; Caslimore, A.R. Seeing blue; the discovery of cryptochrome. Plant 

Molecular Biology 1996, 30, 851-861.

Ahmad, M.; Cashmore, A.R. The blue-light receptor cryptoclirome 1 shows functional 

dependence on phytochiome A or phytochrome B in Arabidopsis thaliana. The Plant 

Journal 1997, 77,421-427.

Aziz, A.A.; Edwards, C.A.; Lean, M.E.J.; Crozier, A. Absorption and excretion of 

conjugated flavonols, including quercetin-4'-0-|3-glucoside and isorhamnetin-4-O-(3- 

glucoside by human volunteers after the consumption of onions. Free Radical Research 

1998, 29, 257-269.

Bongue-Bartelsman, M.; Phillips, D.A. Nitrogen stress regulates gene expression of 

enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiology & 

Biochemistry 1995, 55, 539-546.

Bowler, C.; Yamagata, H.; Neuhaus, G.; Chua, N.-H. Phytochrome signal transduction 

pathways are regulated by reciprocal control mechanisms. Genes and Development 

1994, 5,2188-2202.

196



Boylan, M.T.; Quail, P.H. Phytochrome A overexpression inliibits hypocotyl elongation 

in transgenic Arabidopsis. Proceedings o f  the National Academy fo r Science. USA 1991, 

88, 10806-10810.

Bradford, M.M. A rapid and sensitive method for the quantitation of micro gram 

quantities of protein utilising the principle of protein-dye binding. Analytical 

Biochemistry 1976, 72, 248-254.

Brandt, K.; Giannini, A.; Lercari, B. Photomorphogenic responses to UV radiation III: a 

comparative study of UVB effects on anthocyanin and flavonoid accumulation in wild 

type and aurea mutant of tomato (Lycopersicon esculentum MILL.). Photochemistry and 

Photobiology 1995, 62, 1081-1087.

Briggs, W.R.; Liscum, E. The role of mutants in the search for the photoreceptor for 

phototropism in higher plants. Plant Cell & Environment 1997, 20, 768-771.

Brouillard, R.; Dangles, O. Flavonoids and flower colour. In The Flavonoids - Advances 

in Research Since 1986; Harbourne, J.B., Ed.; Chapman & Hall: London, 1996.

Burger, J.; Edwards, G.E. Photosynthetic efficiency, and photo damage by UV and visible 

radiation, in red versus green leaf coleus varieties. Plant Cell Physiol 1996, 37, 395-399.

Carpena, O.; Zornoza, P.; Mataix, J. Incidence of P, Mn and B defieiencies on the levels 

of the whole and individual flavonoid groups in tomato leaves. Journal o f Plant Nutrition 

1982, 5, 1197-1208.

197



Casai, J.J.; Boccalandro, H. Co-action between phytoclii'ome B and HY4 m Arabidopsis 

thaliana. Planta 1995, 7P7, 213-218.

Casai, J.J.; Mazzella, M.A. Conditional synergism between cryptochrome 1 and 

phytochrome B is shown by the analysis of phyA, phyB and hy4 simple, double, and triple 

mutants m. Arabidopsis. Plant Physiol 1998, 118, 19-25.

Cashmore, A.R. The cryptochi'ome family of photoreceptors. Plant, Cell and 

Environment 1997, 20, 764-767.

Chappie, J.; Hahlbrock, K. Transcription of plant defense genes in response to UV light 

or fungal elicitor. Nature 1984, 311, 76-78.

Chory, J.; Peto, C.A.; Ashbaugh, M.; Saganich, R.; Pratt, L.; Ausubel, F. Different roles 

for phytoclirome in etiolated and green plants deduced from characterisation of 

Arabidopsis thaliana mutants. The Plant Cell 1989, 1, 867-880.

Christie, J.M.; Jenkins, G.I. Distinct UV-B and UVA-Blue light signal transduction 

pathways induce chalcone synthase gene expression in Arabidopsis cells. The Plant Cell 

1996, 8, 1555-1567.

Cliristie, P.J.; Alfenito, M.R.; Walbot, V. Impact of low-temperature stress on general 

phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and 

anthocyanin pigmentation in maize seedlings. Planta 1994,194, 541-549.

198



Cook, N.C.; Samman, S. Flavonoids-Chemistry, metabolism, cardioprotective effects, 

and dietary sources. Nutritional Biochemistry 1996, 7, 66-76.

Crozier, A.; Lean, M.E.J.; McDonald, M.S.; Black, C. Quantitative analysis of the 

flavonoid content of commercial tomatoes, onions, lettuce and celery. Journal o f  

Agricultural and Food Chemistry 1997, 45, 590-595.

Das, N.P.; Sothy, S.P. Biliary and urinary excretion of metabolites of (+)-(U-C*'^)- 

catechin. Biochemical Journal 1971,125, 417-423.

Day, T.A. Relating UV-B radiation screening effectiveness of foliage to absorbing- 

compound concentration and anatomical characteristics in a diverse group of plants. 

Oecologia 1993, 95, 542-550.

Day, T.A.; Vogelmann, T.C. Alterations in photosynthesis and pigment distribution in 

pea leaves following UV-B exposure. Physiologia Plantarum 1995, 94, 433-440.

DeWhalley, C.V.; Rankin, S.M.; Hoult, R.S.; Jessup, W.; Leake, D.S. Flavonoids inhibit 

the oxidative modification of low density lipoproteins by macrophages. Biochemical 

Pharmacology 1990, 39, 1743-1750.

Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. The Plant Cell 

1995, 7, 1085-1097.

Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Current Opinion in 

Lipidology 2000, 11, In Press

199



Feinbaum, R.L.; Storz, G.; Ausubel, F.M. High-intensity and blue light regulated 

expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana 

plants. Molecular and General Genetics 1991, 226, 449-456.

Franlcel, E.N.; Kanner, J.; German, J.B.; Parks, E.; Kinsella, J.E. Inhibition of oxidation 

of human low-density lipoprotein by phenolic substances in red wine. The Lancet 1993, 

341^ 454-457.

Fuglevand, G.; Jackson, J.A.; Jenkins, G.I. UV-B, UV-A, and blue light signal 

transduction pathways interact synergistically to regulate chalcone synthase gene 

expression in Arabidopsis . The Plant Cell 1996, 8, 2347-2357.

Garcia-Closas, R.; Aguda, A.; Gonzalez, C.A.; Riboli, E. Intake of specific carotenoids 

and flavonoids and the risk of lung cancer in women in Barcelona, Spain. Nutrition and 

Cancer 1998, 32, 154-158.

.Garcia-Closas, R.; Gonzalez, C.A.; Agudo, A.; Riboli, E. Intake of specific carotenoids 

and flavonoids and the risk of gastric cancer in Spain. Cancer Causes and Control 1999, 

70,71-75.

Gilmour, S.J.; Hajela, R.K.; Thomashow, M.F. Cold acclimation’m Arabidopsis thaliana. 

Plant Physiol 1988,57,745-750.

Goosey, L.; Palecanda, L.; ShaiTOck, R.A. Differential patterns of expression of the 

Arabidopsis PHYB , PHYD, and PHYE phytochrome genes. Plant Physiol 1997,115, 

959-969.

200



Graham, D.; Patterson, B.D. Responses of plants to low, nonfreezing temperatures: 

proteins, metabolism, and acclimation. Annual Review o f plant Physiology 1982, 33, 347- 

372.

Gugler, R.; Leschik, M.; Dengler, H.J. Disposition of quercetin in man after single oral 

and intravenous doses. European Journal o f  Clinical Pharmacology 1975, P, 229-234.

Guidi, L.; Lorefice, G.; Pardossi, A.; Malorgio, P.; Tognoni, F.; Soldatini, G.F. Growth 

and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen 

deficiency. Biologia Plantarum 1998, 40, 235-244.

Guo, K.; Duong, H.; Ma, N.; Lin, C. T\iq Arabidopsis blue light receptor cryptochrome 2 

is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. 

The Plant Journal 1999,19, 279-287.

Halliwell, B.; Gutteridge, J.M.C.; Cross, C.E. Free radicals, antioxidants, and human 

disease: Where are we now? Journal o f  Laboratory and Clinical Medicine 1992,119, 

598-618.

Halliwell, B. Antioxidants: Elixirs of life or tonics for tired sheep? The Biochemist 1995, 

Feb/Mar, 3-6.

Harbomne, J.B. Plant Polyphenols-XIV. Characterization of flavonoid glycosides by 

acidic and enzyme hydrolyses. Phytochemistry 1965, 4, 107-120.

201



Harbourne, J.B.; Grayer, R J. Flavonoids and Insects. In The Flavonoids - Advances in 

Research Since 1986; Harbourne, J.B., Ed.; Chapman & Hall: London, 1996.

Haslam, E. Polyphenols, collagen and leather. In Practical Polyphenols - From Structure 

to Molecular Recognition and Physiological Action; Haslam, E., Ed.; Cambridge 

University Press: Cambridge, 1998.

Heller, W.; Forlanami, G. Biosynthesis of flavonoids. In The Flavonoids-Advances in 

Research Since 1986; Harbourne, J.B., Ed.; Chapman & Hall: London, 1994.

Herrmann, K.M. The Shikimate Pathway: Early steps in the biosynthesis of aromatic 

compounds. The Plant Cell 1995, 7, 907-919.

Hertog, M.G.L.; Ho liman, P.C.H.; Venema, D.P. Optimisation of a quantitative HPLC 

determination of potentially anticai'cinogenic flavonoids in vegetables and fruits. Journal 

o f Agricultural and Food Chemistry 1992, 40, 1591-1598.

Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic 

flavonoids in vegetables and fruits. Journal o f  Agricultural and Food Chemistry 1992,

40, 2379-2383.

Hertog, M.G.L.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B.; Ki'omhout, D. Dietary 

antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The 

Lancet 1993, 342, 1007-1011.

202



Hertog, M.G.L.; Hollman, P.C.H.; van de Putte, B. Content of potentially 

anticarcinogenic flavonoids of tea, infusions, wines, and fruit juices. Journal o f  

Agricultural and Food Chemistry 1993, 41, 1242-1246.

Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake of potentially 

anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutrition 

and Cancer 1993, 20, 21-28.

Hertog,M.G.L. Flavonols and flavones in foods and their relation with cancer and 

coronary heart disease risk. PhD thesis, Agricultural University Wageningen, 1994.

Hertog, M.G.L.; Kiomhout, D.; Aravansis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; 

Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic, B.S.; 

Toshima, H.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B. Flavonoid intake and long

term risk of coronary heart disease and cancer in the seven countries study. Archives o f  

International Medicine 1995, 155, 381-386.

Hodgson, R.A.J.; Raison, J.K. Inhibition of photosynthesis by chilling in moderate light: 

a comparison of plants sensitive and insensitive to chilling. Planta 1989,178, 545-552.

Hollman, P.C.H.; De Vries, J.H.M.; van Leeuwen, S.D.; Mengelers, M.J.B.; Katan, M.B. 

Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. 

American Journal o f  Clinical Nutrition 1995, 62, 1276-1282.

Hollman, P.C.H.; van Trijp, J.M.P.B.N.C.P. Fluorescence detection of flavonols in HPLC 

by postcolumn chelation with aluminium. Analytical Chemistry 1996, 65, 3511-3515.

203



Hollman, P.C.H.; Gaag, M.V.D.; Mengelers, M.J.B.; van Trijp, J.M.P.; De Vries, J.H.M.; 

Katan, M.B. Absorption and disposition kinetics of the dietary antioxidant quercetin in 

man. Free Radical Biology & Medicine 1996, 27, 703-707.

Hollman, P.C.H. Determinants of the absorption of the dietary flavonoid quercetin in 

man. PhD thesis, Waginingen Agricultural University, 1997.

Holton, T.A.; Cornish, B.C. Genetics and biosynthesis of anthocyanin biosynthesis. Plant 

Cell 1995, 7, 1071-1083.

Jackson, J.A.; Fuglevand, G.; Brown, B.A.; Shaw, M.J.; Jenkins, G.I. Isolation of 

Arabidopsis mutants altered in the light regulation of chalcone synthase gene expression 

using a transgenic screening approach. The Plant Journal 1995, 8, 369-380.

Jackson, J.A.; Jenkins, G.I. Extension-growth responses and expression of flavonoid 

biosynthesis genes in thQ Arabidopsis hy4 mutant. Planta 1995,197, 233-239.

Janssen, P.T.L.M.K.; Mensink, R.P.; Cox, F.J.J.; Harryvan, J.L.; Hovenier, R.; Hollman, 

P.C.H.; Katan, M.B. Effects of the flavonoids quercetin and apigenin on hemostasis in 

healthy volunteers: results ftom an in-vitro and a dietary supplement study. American 

Journal o f  Clinical Nutrition 1998, 67, 255-262.

Jenkins, G.I. UV and blue light signal transduction in Arabidopsis, Plant, Cell and 

Environment 1997, 20, 773-778.

204



Jenkins, G.I. Signal transduction networks and the integration of responses to 

environmental stimuli. Advances in Botanical Research 1999, 29, 53-73.

Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and 

flavanones in fruits, vegetables and beverages by high-performance liquid 

chromatography with photo-diode array and mass spectrometric detection. Journal o f  

Chromatography A 1998, 799, 101-110.

Kamei, H.; Kojima, T.; Koide, T.; Hasegawa, M.; Umeda, T.; Teraba, K.; Hashimoto, Y. 

Influence of OH group and sugar bonded to flavonoids on flavonoid-mediated 

suppression of tumor. Cancer Biotherapy and Radiopharmaceuticals 1996,11, 247-149.

Kim, B.C.; Tennysen, D.J.; Last, R.L. UVB induced photomorphogenesis'm Arabidopsis 

thaliana. The Plant Journal 1998,15, 667-674.

Kleiner, O.; Kircher, S.; Harter, K.; Batschauer, A. Nuclear localisation of the 

Arabidopsis blue light receptor cryptochrome 2. The Plant Journal 1999,19, 289-296.

Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary 

mortality in Finlandia cohort study. British Medical Journal 1996, 312, 478-481.

Knekt, P.; Jarvinen, R.; Seppanen, R.; Heliovaara, M.; Teppo, L.; Pukkala, E.; Aromaa, 

A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. 

American Journal o f  Epidemiology 1997, 146, 223-230.

205



Knight, H.; Trewavas, A.J.; Knight, M.R. Cold calcium signalling in Arabidopsis 

involves two cellular pools and a change in calcium signature after acclimation. The 

Plant Cell 1996, 8, 489-503.

Koorneef, M.; Rolff, E.; Spruit, C.J.P. Genetic control of light-inliibited hypocotyl 

elongation in Arabidopsis thaliana. Z.Pflanzenphysiol. 1980,100, 147-160.

Kosslak, R.M.; Bookland, R.; Barkei, J.; Paaren, H.E.; Appelbaum, E.R. Induction of 

Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine 

max. Proceedings o f  the National Academy for Science. USA 1987, 84, 7428-7432.

Kuhnau, J. The Flavonoids. A class of semi-essential food components: Their role in 

human nutrition. Wld Rev.Nutr.Diet 1976, 24, 117-191.

Kuo, S.-M. Dietary flavonoid and cancer prevention: evidence and potential mechanism. 

Critical Reviews in Oncogenesis 1997, 8, 47-69.

Landry, L.G.; Chappie, C.C.S.; Last, R.L. Arabidopsis mutants lacking phenolic 

sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 

1995,109, 1159-1166.

Leake, D. The French paradox. The Biochemist 1995, Feb/Mar, 12-15.

Leyva, A.; Jarillo, J.A.; Salinas, J.; Martinez-Zapater, J.M. Low temperature induces the 

accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of 

Arabidopsis thaliana in a light-dependant manner. Plant Physiol 1995,108, 39-46.

206



Li, J.; Ou-Lee, T.M.; Raba, R.; Ammidson, R.G.; Last, R.L. Arabidopsis flavonoid 

mutants are hypersensitive to UV-B irradiation. The Plant Cell 1993, 5, 171-179.

Lin, C.; Yang, H.; Guo, H.; Mockler, T.; Chen, J.; Cashmore, A.R. Enliancement of blue- 

light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochi’ome 2. 

Proceedings o f  the National Academy fo r  Science. USA 1998, 95, 2686-2690.

Liscum, E.; Hangarter, R. Arabidopsis mutants lacking blue light-dependant inhibition of 

hypocotyl elongation. Plant Cell 1991, 3, 685-694.

Lois, R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in 

Arabidopsis thaliana L. Planta 1994,194, 498-503.

Lois, R.; Buchanan, B.B. Severe sensitivity to ultraviolet radiation in BXi Arabidopsis 

mutant deficient in flavonoid accumulation. Planta 1994,194, 504-509.

Long, J.C.; Jenkins, G.I. Involvement of plasma membrane redox activity and calcium 

homeostasis in the UV-B and UV-A/blue light induction of gene expression in 

Arabidopsis. The Plant Cell 1998,10, 2077-2086.

Lopez-Juez, E.; Nagatani, A.; Tomizawa, K.-L; Dealt, M.; Kern, R.; Kendrick, R.E.; 

Furuya, M. The cucumber long hypocotyl mutant lacks a light-stable PHYB Like 

phytoclnome. The Plant Cell 1992, 4, 241-251.

207



Malhotra, K.; Kim, S.T.; Sancar, A. Characterisation of a medium wavelength type DNA 

photolyase: purification and properties of photolyase from Bacillus firmus. Biochemistry 

1994, 35, 8712-8718.

Manach, C.; Morand, C.; Demigne, C.; Texier, O.; Regarat, F.; Remesy, C. 

Bioavailability of rutin and quercetin in rats. FEBS Letters 1997, 409, 12-16.

Mai’gna, U. Control at the level of substrate supply - an alternative in the regulation of 

phenylpropanoid accumulation in plant cells. Phytochemistry 1977,16, 419-426.

Mauri, P.L.; lemoli, L.; Gardana, C.; Riso, P.; Simonetti, P.; Porrini, M.; Pietta, P.G. 

Liquid chi'omatography/ electrospray ionization mass spectrometric characterisation of 

flavonol glycosides in tomato extracts and human plasma. Rapid Communications in 

Mass Spectrometry 1999,13, 924-931.

McAnlis, G.T.; McEneny, J.; Pearce, J.; Young, I. Absorption and antioxidant effects of 

quercetin from onions, in man. European Journal o f  Clinical Nutrition 1999, 53, 92-96.

McDonald, M.S.; Hughes, M.; Burns, J.; Lean, M.E.J.; Matthews, D.; Crozier, A. Survey 

of the free and conjugated myricetin and quercetin content of red wines of different 

geographical origins. Journal o f  Agricultural and Food Chemistry 1998, 46, 368-375.

Momoy, A.F.; Dhindsa, R.S. Low-temperature signal transduction: Induction of cold 

acclimation- specific genes of Alfalfa by calcium at 25C. The Plant Cell 1995, 7, 321- 

331.

208



Nagatani, A.; Chory, J.; Furuya, M. Phytoclirome B is not detectable in the hyS mutant of 

Arabidopsis, which is deficient in responding to end-of day far-red light treatments. Plant 

Cell Physiol 1991, 32, 1119-1122.

Neuhaus, G.; Bowler, C.; Kern, R.; Chua, N.-FI. Calcium/calmodulin-dependent and - 

independant phytoclirome signal transduction pathways. Cell 1993, 73, 937-952.

Parks, B.M.; Quail, P.H. hy8, a new class o f Arabidopsis long hypocotyl mutants 

deficient in functional phytochrome A. The Plant Cell 1993, 5, 39-48.

Price, S.F.; Breen, P.J.; Valladao, M.; Watson, B.T. Cluster sun exposure and quercetin in 

Pinot noir grapes and wine. American Journal ofEnology and Viticulture 1995, 46, 187- 

194.

Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultaviolet-B- and ozone-induced biochemical 

changes in antioxidant enzymes o f Arabidopsis thaliana. Plant Physiol 1996,110, 125- 

136.

Ratty, A.K.; Das, N.P. Effects of flavonoids on non-enzymatic lipid peroxidation: 

Structure-activity relationship. Biochemical Medicine and Metabolic Biology 1988, 39, 

69-79.

Renaud, S.; De Lorgeril, M. Wine, alcohol, platelets, and the French paiadox for 

coronary heart disease. The Lancet 1992, 339, 1523-1526.

209



Rice-Evans, C.A.; Miller, N.J.; Pagaiiga, G. Structure-antioxidant activity relationships of 

flavonoids and phenolic acids. Free Radical Biology & Medicine 1996, 20, 933-956.

Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Anti oxidant properies of phenolic 

compounds. Trends in Plant Science 1997, 2, 152-159.

Rimm, E.B.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willet, W.C. Relation between 

intake of flavonoids and risk for coronary heart disease in male health professionals. 

Annals o f  International Medicine 1996,125, 384-389.

Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxide anions. Biochemical 

Pharmacology 1988, 37, 837-841.

Roux, S.J. Signal transduction in phytochrome responses. In Photomorphogenesis in 

Plants. Kendrick, R.E.; Kronenberg, G.H.M., Eds.; Kluwer Academic Publishers; 

Dordrecht, 1994.

Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Rice-Evans, C.A. 

Polyphenolic flavanols as scavengers of aqeous phase radicals and as chain-breaking 

antioxidants. Archives o f Biochemisty and Biophysics 1995, 322, 339-346.

Sambrook, J.; Fritsch, E.F.; Maniatis, T. Plasmid vectors- extraction and purification of 

plasmid DNA. In Molecular Cloning - A Laboratory Manual; Ford, N.; Nolan, C.; 

Ferguson, M., Eds.; Cold Spring Harbour Laboratory Press; New York, 1989.

210



211

Sharrock, R.A.; Quail, P.H. Novel phytochrome sequences in Arabidopsis thaliana: 

structure, evolution and differential expression of a plant regulatory photoreceptor family. 

Genes and Development 1989, 5, 1745-1757.

Sheahan, J.J. Slnapate esters provide greater UV-B attenuation than flavonoids in 

Arabidopsis thaliana (Brassicaceae). American Journal o f  Botany 1996 , 83, 679-686.

Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggeman, E.; Koorneef, M.; Ausubel, P.M.; 

Goodman, H.M. Analysis o f Arabidopsis mutants deficient in flavonoid biosynthesis. The 

Plant Journal 1995, 8, 659-671.

Shvarts ,M.; Borochov, A.; Weiss, D. Low temperature enhances petunia flower 

pigmentation and induces chalcone synthase gene expression. Physiologia Plantarum 

1997, 99, 67-72.

Somers, D.E.; Shanock, R.A.; Tepperman, J.M.; Quail, P.H. The hy3 long hypocotyl 

mutant o f Arabidopsis is deficient in phytochrome B. The Plant Cell 1991, 3, 1263-1274.

Spalding, E.P.; Cosgrove, D.J. Large plasma-membrane depolarisation proceeds rapid 

blue-light-induced grovrth inhibition in cucumber. Planta 1989,178, 407-410.

Stohs, S.J. The role of free radicals in toxicity and disease. Journal o f  Basic & Clinical 

Physiology & Pharmacology 1995, 6, 205-228.

Strack, D. Phenolic metabolism. In Plant Biochemistry; Dey, P.M.; Harbourne, J.B., Eds.; 

Academic Press: London, 1997.



Tan, S.C. Phenylalanine ammonia-lyase and the phenylalanine ammonia-lyase 

inactivating system; Effects of light, temperature and mineral deficiencies. Australian 

Journal o f  Plant Physiology 1980, 7, 159-67.

Trezzini, G.E., Horrichs, A., Somssich, I.E. Isolation of putative defense-related genes 

from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Molecular 

Biology 1993, 27,385-389.

Ueno, I.; Nakano, N.; Hirono, I. Metabolic fate of quercetin in the ACI rat.

Japanese Journal o f  Experimental Medicine 1983, 53, 41-50.

Ulrychova, M.; Sosnova, V. Effect of phosphorus deficiency on anthocyanin content in 

tomato plants. Biologia Plantarum (Praha) 1970, 72, 231-235.

Vinson, J.A.; Jang, J.; Dabbagh, Y.A.; Serry, M.M.; Cai, S. Plant polyphenols exhibit 

lipoprotein-bound antioxidant activity using an in-vitro oxidation model for heart disease. 

Journal o f  Agricultural and Food Chemistry 1995, 43, 2798-2799.

Wagner, D.; Tepperman, J.M.; Quail, P.H. Overexpression of phytochrome B induces a 

short hypocotyl phenotype in transgenic Arabidopsis. The Plant Cell 1991, 3, 1275-1288.

Young, J.F.; Nielsen, S.E.; Haialdsdottir, J.; Daneshvar, B.; Lauridsen, S.T.; Knuthsen,

P.; Crozier, A.; Sandstrom, B.; Dragsted, E.G. Effect of fruit juice intake on urinary 

quercetin excretion and biomarkers of antioxidative status. American Journal o f  Clinical 

Nutrition 1999, 69, 87-94.

212



Zeiger, E.; Zhu, J. Role of zeaxanthin in blue-light photoreception and the modulation of 

light-CO] interactions in guard cells. Journal o f  Experimental Botany 1998, 49, 433-442.

Zornoza, P.; Esteban, R.M, Flavonoids content of tomato plants for the study of the 

nutritional status. Plant and Soil 1984, 82, 269-271.

213

G L A S G O W  
 ̂ UNIVERSITY
I L B R A R Y


