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Summary

Phosphodiesterase 4 (PDE4) is a family o f around 20 cyclic AMP (cAMP) hydrolysing 

enzymes. Expression o f each isoform is regulated in a tissue and developmental specific 

manner. Such regulation suggests as yet undefined functions for each isoform. 

Understanding these functions will highlight likely therapeutic targets. I have employed 

various methods to identify possible functional roles for various PDE4 iso form s.

PDE4B4 is a novel enzyme cloned from a rat brain cDNA library. By characterising the 

biochemical properties o f this isoform in comparison to known, previously characterised 

members o f the PDE4B family, I highlighted similarities and differences within this sub

family. Recombinant PDE4B4 was characterised in a COS-1 cell, temporary expression 

system. 1 demonstrated that PDE4B4 has a molecular weight lying between PDE4B1 and 

PDE4B2, is largely cytosolic, has a relatively low Km cAMP and is highly sensitive to 

inhibition by rolipram. As it has a UCRl region it conforms to long form structure and is 

activated by PKA. It has an extreme N-terminal region homologous to PDE4D3 and 

behaves in a similar way in response to PKA phosphorylation.

Development o f macrophages from monocytes involves differential expression of various 

biochemical mediators. I developed a cell line model using the U937 pro-monocytic cell 

line and compared it against ex-vivo monocytes cultured in plastic. Using this model 1 

identifies developmental changes in PDE4 isoform expression. PDE4A activity increased 

dramatically which was due in part to novel expression of PDE4A10. PDE4D isoform 

expression was entirely lost with no im munologically detectable enzyme present in 

macrophage like cells. PDE4B2 expression more than doubled in the mature cell. Loss of 

PDE4D and gain o f PDE4B2 represents a shift from long to short form PDE4 dominance. I 

demonstrated a resultant switch in PDE4 response to extracellular signal related kinase 

(ERK) activation. Thus in monocytic cells EGF resulted in a decrease in total PDE4 

activity, while in macrophage like cells PDE4 activity increased.

To demonstrate a role for PDE4 in regulating macrophage function I stimulated the RAW 

264.7-macrophage cell line with EPS in the presence o f rolipram. 1 demonstrated a PGE2 

dependent increase in iNOS expression and a PGE2 independent increase in C 0X 2 

expression. Such differential effects, suggests a compartmentalisation o f rolipram’s action. 

Inhibition of T N F a production was not dependent on PGE2 production. 1 then found that 

LPS activates PDE4 in an ERK dependent manner, but inhibits PDE3, highlighting further



compartmentalisation o f cAMP regulation. PDE4 activation was in part due to ERK 

dependent activation of the short form PDE4B2, downstream of LPS stimulation of RAW 

cells. Such activation may be associated with physical interaction between members o f the 

ERK signalling cascade and PDE4B2.

Next I demonstrated that crosstalk between ERK signalling and cAMP occurs in the 

opposite direction as rolipram leads to an early and elevated activation of ERK 1/2 in LPS 

stimulated RAW 264.7 macrophages. In an attempt to explain this effect I used rap 1 

activation and PKA phosphorylation mutants, transfected into RAW cells to interfere with 

normal inflammatory signalling. No significant changes were observed in these studies.

Finally I attempted to develop HIV-tat, PDE4 N-terminal, fusion proteins to inhibit 

individual PDE4 isoforms. I used primers encoding the HIV-tat peptide and PDE4 

sequence to produce a cDNA fusion. This was cloned into a GST-expression vector and 

transformed into E-coli. Recombinant protein was expressed and purified using sepharose 

beads. Various problems were encountered in the course o f this project, including the 

development o f appropriate cloning primers and the production o f proteins in inclusion 

bodies. The strategies employed to resolve these difficulties are discussed.

Two further experiments are discussed. Firstly rolipram was found not to affect tritiated 

thymidine incorporation into proliferating HEK cells. This work argues against a role for 

PDE4 in regulating cell cycle in these cells. I also attempted to characterise PDE4 activity 

from the induced sputum of normal subjects. While PDE4 activity was found to survive the 

isolation process the intra-subject variability meant that useful interpretation o f fluctuations 

based on therapeutic intervention would be impossible.

In conclusion I have characterised a new member o f the PDE4B family. It shares many 

characteristics with other members o f the sub-family and long form PDE4 enzymes in 

general. I have shown upregulation o f PDE4A10 and PDE4B2 in the maturation o f 

macrophages and the loss o f long form PDE4D3 and PDE4D5. This was found to have 

biochemical significance. PDE4B2 was shown to be important in the regulation o f LPS 

activation o f RAW cells and ERK/PDE4 crosstalk was found to occur in both directions. 

Rolipram was demonstrated to influence the behaviour of stimulated macrophages in a 

compartmentalised fashion, while LPS was found to activate PDE4 and inhibit PDE3. 

Finally I was unsuccessful in the development o f a novel strategy for inhibiting individual 

PDE4 isoforms, by developing an HIV-tat fusion protein.
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........................to reflect that these elaborately constmcted forms, so different from each
other, and dependent on each other in so complex a manner, have all been produced by 
laws acting around us.
........................................................................................................................................ There is
grandeur in this view o f life, with its several powers, having been originally breathed into a 
few forms or into one; and that, whilst this planet has gone cycling on according to the 
fixed law o f gravity, from so simple a beginning endless forms most beautiftil and most 
wonderful have been, and are being, evolved.

Charles Darwin 
(fi'om The Origin of Species)



Chapter 1 Introduction

1.1 Biological diversity

Darwin identified species diversity as the stimulus to scientific investigation that 

eventually led to our modern understanding o f evolution. Careful cataloguing inspired 

observation, thoughtful interpretation and the willful incorporation o f  ideas from different 

scientific disciplines all led to the theory. Appreciating the similarities and differences 

between species has led to greater understanding o f animal behavior and interaction in 

nature. Recently similar methods have been applied across biological science disciplines. 

Understanding molecular diversity offers the modern investigator the keys to unlocking the 

complexity o f the cell, as species diversity did for nature 150 years ago. That it takes just

30,000 genes to produce a fully mature human suggests there is little redundancy in the 

expressed genome and that each transcribed gene serves a specific or multiple defined 

purposes. Understanding the purpose o f each gene or protein product will eventually lead 

to a fuller understanding o f biological life. One means o f achieving these insights is to 

compare proteins with a high level of sequence homology and to identify how they differ. 

Just as Darwin observed with Galapagos finches such differences might reveal structural 

adaptations designed to fulfill specific purposes.

Families of molecules generated by gene duplication exist abundantly within the genome. 

The phosphodiesterase (PDE) family o f cyclic nucleotide hydrolysis enzymes is such a 

family. This thesis represents work performed to observe the characteristics of one sub

family of this group, the PDE4 family, within the context o f inflammation and specifically 

with reference to macrophage function. By observing differential behavior o f PDE4 

isoforms I hope to gain insights into the overall role o f these moleeules in regulating 

inflammation.
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This introduction will begin by describing the molecular diversity o f cAMP signaling 

apparatus before focussing on the PDE4 family itself. I will describe previous insights into 

PDE4 in inflammation generally and then discuss macrophages in detail. Finally I will 

describe work that has looked at PDE4 and cAMP regulation o f some key macrophage 

mediators that I will later expand on in the experimental sections.

1.2 Cyclic amp signaling

Cyclic AMP (cAMP), signalling can be considered in three phases, synthesis, detection 

and hydrolysis. Enzymes involved at each step o f this process exist as multiple isofoims. 

Figure 1.1 illustrates the different levels of diversity.

1.2.1 An Overview

Cells reeeive inform ation from extracellular signals that m ust be transformed into 

intracellular information to produce behavioural change. The discovery in the late 1950’s 

of cyclic AMP by Sutherland et al, introduced the era o f the second messenger [1]. These 

are a diverse family o f molecules allowing signal amplification and refinement. Cyclic 

AMP and its relative cyclic GMP are cyclic purine nucleotides synthesised from their 

respective triphosphate preeursors by cyclase enzymes. In response to various ligands, G sa 

coupled receptors activate adenylyl cyclase which produces cAMP. Due to the high 

availability o f its substrate ATP, adenylyl cyclase (AC) operates at Vmax when active. 

Therefore the levels of cAMP generated by a signal depend partially on adenylyl cyclase, 

but also on the rate of degradation.

The sole means o f degrading cyclic nucleotides and thus signal limitation are hydrolysing 

enzymes called phosphodiesterases [2]. These enzymes form a family of cAMP specific, 

cGMP specific or dual specificity 3 ’,5 ’cyclic nucleotide hydrolysing enzymes [3]. 

Normally they function at less than Vmax and can be up or down regulated in activity to



Membrane associated 
Soluble GPCR: eg EPI g PCR: eg (32 receptor

Adnylyl 
Cyclases

cAMP specific PDE

Dual specific PDE

EPAC/Rapl Pka

Fig 1.1 Multiple signalling proteins involved in regulating cAMP signal transduction

Many proteins that influence cAMP signals exist as multi-member families. Illustrated 
above are the PDE and Adenylyl cyclase families and some o f  the factors that influence 
their activity.
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limit or enhance a cyclic nucleotide signal and can therefore influence both the magnitude 

and the duration of a signal [4].

I will describe the molecular diversity o f each level o f cAMP regulation and attempt to 

demonstrate functional significance for this molecular variation.

1.2.2 Adenylyl Cyclase

At least 9 adenylyl eyclase (AC) genes exist encoding AC types 1-9 [5] with differential 

splicing of the inRNA products o f AC5, AC6 and ACS, increasing molecular diversity [6]. 

Each AC contains 2 membrane-spanning units called Mi and M 2 and 2 catalytic units Cj 

and C2 . Each M unit consists of 6 transmembrane domains with an ion channel like 

structure [5]. Further complexity exists due to splice variation of the C sub-units resulting 

in CiA  and CiB isoforms and C 2 A and C2 B isoforms [7] with CiB containing many 

regulatory domains[8]. Significant degrees o f molecular diversity therefore exist at the 

point of cAMP synthesis.

Molecular diversity underlies differential AC activation and regulation [8]. Thus while 

most AC enzymes are activated by the GTP bound form o f G-protein S a  (GTP-Gsa) and 

Forskolin, AC 9 is not, [9, 10]. AC isoforms are under specific regulatory control. For 

example, inhibition o f AC by Mn^"" occurs to different degrees in different AC isoforms 

[11]. Inert purine rings can inactivate AC by P site inactivation. AC iso forms are 

differentially regulated by such P site inhibitors, [12]. The G protein G ia  selectively 

inhibits AC5 and AC6, while PKC can specifically activate AC2 [8] [13]. Finally, while 

the G protein complex G^y inhibits the function of AC 1 it synergises with G sa, in the 

activation o f AC2 and AC4 [14]. Molecular diversity therefore translates into isoform 

specific biochemical regulation.



5

Granneman et al demonstrated the physiological significance o f molecular differences in 

brown adipose tissue where a variety o f AC isoforms are expressed. Cyclic AMP 

production was increased by {32 agonists, but only AC3 activity was increased [15]. 

Diversity o f the molecular structure o f AC isoforms has therefore been shown to have 

biochemical and functional significance.

1.2.3 Cyclic AMP detection

Until recently it was believed that the sole means of propagating a cAMP signal was to 

activate protein kinase A (PKA). This remains an important downstream target, but has 

been joined by a small G-protein Effector Factor (GEF) molecule called EPAC.

1.2.3.1 Protein Kinase A

Protein kinase A (PKA) is a heterotetramer composed of two regulatory and two catalytic 

subunits termed R and C, forming a holoenzyme term ed R 2 C2 [16, 17] for which the 

crystal structure has been solved [18, 19]. PKA is activated by cAMP binding to the R 

subunit leading to a conformational change and release o f the active C [18, 20]. PKA C 

subunit is a serine threonine kinase and targets domains containing X-Arg-Arg-X- 

Ser/Thre-X m otifs [21]. Targets for C subunit kinase range from ion channels to 

transcription factors, [22-24]. Elevated cAMP can increase or decrease gene transcription 

by virtue o f PKA dependent phosphorylation of cAMP response element binding protein 

(CREB) [6, 25, 26]. Therefore functional diversity exists at a cellular level by virtue o f the 

range o f substrates expressed by a cell.

The molecular diversity o f PKA was initially identified by DEAE elution of 2 isoforms 

[27] corresponding to 2 isoforms of the R subunit R1 and R ll. Genetic analysis has 

revealed further complexity by demonstrating four isoforms R la , Rl(3, R lla  and Rll(3 [16, 

28]. Three C subunit isoforms have been identified C a , C(3 and Cy. C subunits express
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tissue specificity with C(3 being enriched in brain [29] and Cy being exclusively expressed 

in testis [30]. Tissue specific expression o f R subunit isoforms suggests important 

functional differences. For instance RI(3 is highly expressed in brain, while responses of 

certain regions o f the brain to cAMP correlates with the expression o f RIIp subunit [31, 

32]. Differences between the classes o f R subunit also exist in terms o f intracellular 

distribution, with RI being predominantly cytosolic and RII occurring mainly in the 

particulate fraction[33]. Kondrashin et al took this analysis further and found R lla  

enriched in the golgi and mitochondria o f cells fractionated in sucrose gradients [34]. The 

R subunit thus serves to target the holoenzyme to specific subcellular locations.

The nature of this targeting has recently been illuminated by the discovery of a new family 

of proteins known as A Kinase Anchoring Proteins (AKAP) [35]. These structurally 

diverse proteins are targeted within the cell by protein-protein and protein-lipid 

interactions. Tissue specific AKAP expression may refine the response o f a particular 

tissue to an adenylyl cyclase activating hormone [36]. AKAP proteins bind PKA R 

subunits at their N-terminal and target the PKA holoenzyme within the cell.

Finally the sensitivity of different R subunits to cAMP is known to vary. Thus R Iip is 

relatively insensitive to cAMP, and the regions o f rat brain rich in RIip are those areas 

known to be less responsive to cAMP [32].

Variations in intracellular targeting, tissue specific expression and sensitivity to cAMP 

concentration all regulate the PKA mediated response, allowing the cell to precisely 

control its response to cAMP by differential protein expression.

1.2.3.2 Rap-1 a novel cAMP signal transducer

The discovery o f the cAMP sensitive, Rap-1 activating GEF, EPAC added to the 

complexity o f cAMP signaling [37, 38]. Rap-1 is a GTPase sharing 50% sequence
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homology with Ras, particularly at the Ras protein interaction domain [39]. Rap-1 has 

significant homology to a drosophila gene which when Imocked out led to a lethal mutation 

[40], suggesting that its function is non-redundant despite significant homology to othei 

proteins. Cyclic AMP, calcium (Ca^"") and diacyl glycerol (DAG), can all activate Rap-1 

[41, 42]. Cyclic AMP was shown to phosphorylate Rap-1 in a PKA dependent manner m 

prostacyclin treated neutrophils [43] and it was believed that cAMP activation of Rap-1 

was due to this effect. The only Rap-1 PKA target sequence is at the C-terminal some 

distance from the sites of GTP binding, however and it may be that PKA phosphorylation 

affects targeting rather than activity [44]. Kawasaki et al demonstrated that a PKA 

deficient CHO cell could activate Rap-1 in response to cAMP [45]. Finally EPAC was 

discovered to directly activate Rap-1 in a cAMP dependent manner and PKA was shown to 

reduce Rap-1, raf binding activity [38, 46].

Evidence for two separate mechanisms of cAMP detection and downstream signaling have 

therefore been found. Cyclic AMP signaling thus displays molecular diveisity at synthesis, 

sensing and substrate levels, leading to variable functional outcomes as I have desciibed. It 

is essential that the cell can limit the “dose” o f cAMP to which it is exposed. This 

limitation is provided by the cyclic nucleotide phosphodiesterases. I will next outline some 

of the salient features of this family, and deal with PDE4 in detail in the next section.

1.2.4 Phosphodiesterases

1.2.4.1 Homogeneity and heterogeneity

Sutherland described cyclic nucleotide hydrolysing activity from heart extract in 1970 [47]. 

It soon became apparent by anion exchange chromatography that this activity existed in 

different forms, suggesting the existence o f a family o f enzymes with similar biochemical 

properties [48, 49]. The development o f advanced molecular biological techniques has



confirmed this assumption and shed light on the enormous degree o f complexity within 

this family [50]. Nineteen genes encode members o f the eleven PDE families suggesting 

some degree o f differential function. Differential tissue and developmental expression, 

different kinetic properties and specific affinities for substrate and inhibitors supports the 

notion that individual PDEs exist to serve specific functions [4].

Two major classes o f PDE have been described. Class I enzymes share homology over a 

region o f approximately 300 amino acids, o f which 56 amino acids are identical between 

the drosophila dunce gene product, the slime mould dictyostelium reg-A gene product, the 

putative c. elegans PDE and human PDE4s [51]. This highly conserved region correlates to 

the catalytic domain and points to a single ancestral gene. Class II PDEs are a group o f 

enzymes conserved in yeast, bacteria and slime moulds. They lack the catalytic domain as 

in class I and are secreted proteins. To date no mammalian homologue of class II PDEs has 

been identified [51].

The PDE4 family will form the focus of this thesis, but some important aspects o f PDE 

biology are learned from studying the shared or divergent characteristics o f the other 

members o f this superfamily. The agreed convention on nomenclature grouped PDE 

families by functional characteristics, based on substrate specificity and inhibitor 

sensitivity, PDE characteristics are summarised in table 1.1. Important functional aspects 

are outlined below.



P D E Defining Substrate Number of Chromosomal Number of
Characteristic specificity genes locations isoforms

Ca“'/CaM CAMP PDEIA A-? A - 2
activated CGMP PDE IB B-12ql3 B -  1

PDE 1C C-7 C - 5
t o E 2  4 cGMP activated CAMP 7

CGMP
cGMP inhibited CAMP PDE3A

PDE3B
l l pl S. l
l l p l 5

A - 3  
B -  1

M Ë R Rolipram CAMP PDE4A 19pl3.2 A - 6
inhibited PDE4B lp31 B - 3S PDE4C 19pl3.1 C - 3

PDE4D 5ql2 D - 5
CGMP PDE5A

PDE5B
Photoreceptor CGMP PDE6A

PDE6B
PDE6C

Rolipram CAMP PDE7A A - 2
resistant PDE7B B - 1

IBMX resistant CAMP PDE8A
PDE8B

IBMX resistant CGMP
CGMP

t o E i  c CAMP PDEl l A A - 3
-U - ------ a CGMP

Table 1.1 Characteristics o f  mammalian PDE families
Cyclic nucleotide phosphodiesterase activity exists as a multi-member family o f  
enzymes each with specific characteristics. Three groups o f  enzymes are

family is further subdivided into gene products and mRNA splice variants, resulting 
in multiple isoforms.
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1.2.4.2 Structural organisation

Phosphodiesterase enzymes share a common modular structure with different domains 

encoding different biochemical properties [50]. Figure 1.2 details the important domains.

L Catalytic domain

The highly conserved region described above encodes the catalytic legion located towards 

the C-terminal o f PDE proteins. Analysis o f the conserved regions within the catalytic 

domain demonstrates further modular organisation with 10 putative functional regions 

[51]. These regions regulate the activity of the enzyme and have been studied in a variety 

o f PDE families. For example domains II and IV encode regions homologous to zinc 

binding domains in other zinc binding hydrolases. M utations o f charged amino acids in 

these domains reduce or abolish PDE activity in PDE3, PDE4 and PDE5 [52]. Zinc has 

been shown to support PDE3 and PDE5 activity [53]. Other catalytic domains of interest 

are I and II which regulate rolipram binding to PDE4, whereas mutation of regions VIII 

and IX abolish rolipram inhibition o f PDE4, but do not affect binding [51, 54]. The 

modular organisation o f the entire molecule is therefore mirrored in the conserved catalytic 

domain. Less structural homology exists between PDE isoforms over the non-catalytic 

regions.

II. Carboxyl Terminus

The extreme C terminus contains an hydrophillic region in which conserved regions of 

acidic amino acids exist [50]. The role of these amino acids is not known. With the 

exception o f PDE 1, PDE C-terminal regions are shared by PDE gene products. This allows 

the immunological identification o f PDE4 gene families by raising antiserum against the 

C- terminal regions. Thus PDE4A, PDE4B, PDE4C and PDE4D can be differentiated on 

immunological grounds.
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III. NH3 terminus

The PDE N -terminal region lies up stream of the catalytic core and is known as the 

regulatory domain (Figure 1.2). It is in this region that molecular modifications regulate 

PDE activity. For example it is in this region that the calmodulin (CaM) binding site on 

PD El is found [55]. Ca^VCaM binding to this domain increases PD El activity and 

individual PDE 1 isoforms are structurally distinct at this domain suggesting differential 

regulation by Ca^VCaM [56]. A protein module known as GAF (cGMP binding proteins, 

anabaena adenylyl cyclase and E. Coli flilA ) has been found on PDE 2, PDE5, PDE6, 

PDE 10 and PDEl 1 [57, 58]. Each family expresses two GAF domains in close proximity 

that bind cGMP increasing the enzyme activity (Fig 1.2).

Further regulatory domains are to be found in the N termini o f other PDE families. These 

include PDE4 enzyme regulated kinase (ERK) substrate domains at which phosphorylation 

influences activity described in more detail in a later section. Thus molecular diversity of 

the N -term inals results in enzymes with the same catalytic function with specific 

regulatory properties.

1.2.4.3 Genetic Organisation

Early studies carried out on the drosophila dunce gene complex were the first to give 

insight into the complexity o f PDE gene organisation [50]. Dunce gene deletion gave rise 

to learning difficulties and sterility in fruit flies [59]. Each problem could be produced 

alone or together by differential mutation o f the various promoters in the notch complex 

upstream o f the dunce gene itself. Thus it was clear that different tissue expression of the 

dunce gene product was under the control of different promoters regulating specific
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transcriptional units [50], Further studies on slime moulds demonstrated that different 

promoters regulated PDE genes at different stages of maturation.

Similar differential regulation o f PDE expression between tissues and at different stages of 

maturation is seen in mammalian tissues. Rat brain provides a rich source o f PDE 

isoforms, which are not found elsewhere in the body e.g. PDE4A1, and various models of 

cellular differentiation have demonstrated stage specific expression o f PDE in a manner 

reminiscent of the drosophila dunce gene [60, 61].

1.3 Phosphodiesterase 4 a study in biological diversity

It is outwith the scope o f this review to detail all the structure-function relationships that 

define specific PDE4 isoforms. In summerising these relationships I will select specific 

domains within the molecules and attempt to show how these produce functional diversity 

based on molecular difference. Table 1.2 details specific characteristics of each PDE4 

isoform, PDE4 is a family o f cAMP specific, rolipram  sensitive cyclic nucleotide 

hydrolysing enzymes. The family is encoded by 4 genes A, B, C and D and splice variation 

provides additional complexity [50]. As described for PDE enzymes in general significant 

homology exists at the catalytic domain between all PDE4 isoforms. Gene families are 

defined at the molecular level by sharing an extreme C-terminal, while N-terminal regions 

have varying degrees o f homology between specific PDE4 isoforms. Finally isoform 

specificity is defined at the extreme N-terminal.

1.3.1 PDE4 structure

PDE4 genes each code for multiple forms o f their enzyme product. This occurs by mRNA 

splicing at specific splice domains.
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1.3.1.1 Splice Junctions -  "Long form " and ” Short form " distinction

All PDE4 genes encode two splice junctions [62], the first lies immediately upstream of 

the sequence of the conserved region upstream conserved region 2, (UCR2). Splicing of 

mRNA at this site produces "short-forms" with N -term inal sequence im mediately 

following UCR2 and "long forms" with common sequence including U C R l. Long forms 

have N-terminal sequence after UCRl [63]. Every PDE4 gene except PDE4C encodes both 

long and short form enzymes. In addition to this distinction the PDE4A gene encodes two 

' super-shorf enzymes known as PDE4A1 and PDE4A8 [64]. The former has N-terminal 

sequence extending from approximately half the UCR2 region while the latter, recently 

shown to exist in vivo, lacks any UCR domains and encodes the ‘core’ catalytic 

domain[64].

By aligning different long form PDE4 sequences Bolger et al identified two regions of 

sequence homology [63], conserved within PDE4 isoforms but not found in other PDE 

families. The 33 residue linker region 1 (LRl) separates U CRl and UCR2. The net polarity 

o f U C R l is +1 m aking it an attractive site for conform ational regulation by 

phosphorylation. This has been demonstrated by Mackenzie et al [65] who demonstrated 

ERK2 phosphorylation o f PDE4D3 led to inhibition by the UCR1/UCR2 module. This 

confirmed the work o f Hoffman et al [6 6 ]], who demonstrated that EGF treatment o f cells 

overexpressing PDE4D3 reduced PDE4 activity. Further confirmation was provided by 

Baillie et al [67] who showed that short form PDE4 isoforms, lacking U C R l, were 

activated by ERK2 phosphorylation of the catalytic region.
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‘ Long-torms
‘Super-short

PDE4A Splice variation

Long-forms” “ Short-forms” 
3 2

HuPDE4B splice variation

‘Long-forms” “Short-forms

HuPDE4D splice variation

Upstream conserved 
region (UCR)

Linking 
region (LR)

A /
Catalytic domain COOH

Splice
junctions

Unique N- 
terminal

F/g 1.3 The variability between PDE4 iso forms is governed by mRNA splice 
variation. Each PDE4 gene codes for a variety of isoforms in which size (long or 
short form), number of regulatory regions (UCR) and site of unique N terminal 
region, is governed by differential use of splice junctions. PDE4A, PDE4B and 
PDE4D are schematically represented. Conserved regions are colour coded, 
unique regions are black.
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U CRl contains a substrate site for phosphorylation by PKA (serine target residue, STR), 

[6 8 ]. In PDE4D3 this is Ser54, although this isoform also contains a PKA STR at S e ri3. 

Sette et al demonstrated that it was Ser54 that was responsible for the rapid activation of

PDE4D3 in FRTL-5 TSH sensitive cells [6 8 ]. PKA phosphorylation o f PDE4D3, also 

prevents the inhibitory effect o f ERK2 phosphorylation [65]. This is likely to be due to 

uncoupling o f the protein-protein interaction between U CRl and UCR2 demonstrated by 

Beard et al [69].

N-terminal regions o f PDE4 isoforms therefore limit the activity o f the enzymes. This is 

probably due to interaction o f UCR1/UCR2 modules altering substrate access to the 

catalytic domain. It follows that enzymes lacking these regions should have enhanced 

activity. A synthetic enzyme containing the core o f the PDE4A enzyme, (the catalytic 

region and the extreme C-terminal) known as met^^-RDl was shown to have significantly 

higher activity than its progenitor PDE4A1 or other PDE4A enzymes [70, 71]. Indeed I1 6 .I 

an N-terminal truncation o f PDE4A4, had a Vmax relative to its progenitor enzyme 11.5 

times greater.

The region o f most variability between PDE4 isoforms therefore dictates functional 

regulation of each isoform.

L3.1.3 Targeting

!. S u b -c e l lu la r  d is t r ibu t ion

Analysis of the characteristics of met^^-RDl described above found it to be entirely soluble 

[70, 71] suggesting that the N-terminal region was involved in targeting PDE4 isoforms to 

sub cellular locations [72]. The addition o f the PDE4A1 23 N-terminal residues absent from 

met^^-RDl to make a chim era with the norm ally soluble chloram phenicol acetyl
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transferase (CAT) resulted membrane binding [73, 74]. This is due to N-terminal 

tryptophan residues in PDE4A1 that allow the Câ "  ̂ dependent association with 

phosphatidic acid enriched domains in the cell membrane. This region of PDE4A1 has 

been term ed TA PA S-1 [75]. In comparison to PDE4A1 the long form PDE4A4 co- 

distributes between particulate and soluble compartments [76]. The long form PDE4D 

isoforms (PDE4D3, PDE4D4 and PDE4D5) which are co-distributed between particulate 

and cytosolic compartments o f disrupted cells, differ from their short form counterparts 

(PDE4D1 and PDE4D2) which are exclusively cytosolic [77, 78].

The N-terminal variable region therefore also regulates subcellular targeting o f PDE4 

isoforms.

11. P ro te in  -  p ro te in  in te ra c t io n

Protein-protein interaction domains on signalling proteins allow incorporation into macro- 

molecular signalling complexes and association with scaffold proteins. SH3 domains bind 

to proline rich regions o f other proteins [79, 80]. Analysis o f PDE4A5 reveals two class 1 

SH3 binding domains in the N-terminal region [81]. These were shown to confer 

association with the SH3 domains of the src family kinases lyn, fyn and src [81, 82]. This 

interaction reduced PDE4A5 activity suggesting that association with Lyn kinase leads to 

an increase in the local cAMP concentration. Analysis o f PDE4D4 revealed SH3 binding 

domains, and src family association is therefore not exclusive to PDE4A5 within the PDE4 

family [83].

PDE4D5 has been shown to bind the protein RACK 1 [84]. RACKl was originally 

deseribed as a protein able to bind and translocate activated PKC-(3 [85, 86]. It has since 

been shown to be a scaffold protein binding other signal transduction proteins including 

Integrins, c-src and the common |3 chain o f the interleukin receptor [87-89]. PDE4D5
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interacts with RACKl via an N-terminal domain and the last 3 WD repeats of R A C K l’s 7 

WD repeat structure [90].

The N-terminal regions o f PDE4 isoforms have therefore been shown to be important in 

both localisation and regulation o f activity.

1.3.1.4 Catalytic domain

The sequence o f the PDE4 catalytic domain has excited considerable interest, as it 

eorresponds to the site o f rolipram binding and governs the therapeutic potential for PDE4 

inhibitors. Two conformations o f this site have been described, high affinity for rolipram 

binding site (HARBS) and a low affinity site (LARBS) [91]. HARBS binding by rolipram 

appears to oceur with an affinity that relates closely to rolipram’s ability to induce emesis. 

LARBS binding affinity conforms to anti-inflammatory and bronchodilator properties [92, 

93]. Torphy et al demonstrated that histidines 506 and possibly 505 were required for 

cAMP binding to the catalytic core o f PDE4A but were not required for rolipram binding 

[94]. Mutational analysis o f other histidine sites at amino acids 433, 437, 473 and 477 

demonstrated decreased rolipram association. The same group later demonstrated that two 

conserved histidine containing domains HNXXH (m otif I), and HDXXH (motif II), were 

essential for cAMP hydrolysing activity [52]. M otif I inactivity mutants lost all activity 

while m otif II mutants lost 50% activity. Each domain proves to be a ligand for divalent 

cations such as Z n ^  or Mg^^ suggesting that full activity and rolipram binding activity 

depends on structural conformation dependent on metal ion binding. Thus structural 

analysis demonstrates that different PDE4 isoforms may interact with both substrate and 

inhibitors differentially depending on the ability of regions o f the catalytic domain to form 

particular conformations. The importance o f overall molecular structure influenced by N- 

terminal domain binding becomes apparent.
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A second level o f regulation based on molecular structure lies in two sequences found in 

the catalytic core o f PDE4D3. These ERK2 docking domains provide the necessary sites 

for ERK2/PDE4D3 interaction to allow phosphorylation o f the Ser residue at 579. 

Phosphorylation results in inhibition o f long form PDE4 isoforms. Figure 1.2 highlights 

these important regions o f the catalytic core [66].

1.3.1.5 COOH-domain

The biological purpose o f the extreme C-terminal remains obscure. This region is shared 

between all members o f a gene family and thus allows immunological identification. 

Separation o f immunologically related PDE4 isoforms by migration on SDS-PAGE allows 

discrimination between family members. The purpose o f this domain is not understood.

1.3.2 Biological diversity - consequences

The existence o f a large family o f enzymes with the same or closely related biochemical 

properties begs the question why do we need so many? The differences in regulation and 

expression outlined above suggest that each PDE and PDE4 in particular may serve 

specific functions. This in turn would suggest that cAMP though pluripotent is strictly 

regulated to perform specific tasks under certain conditions.

1.3.2.1 Compartmentalisation o f  cAMP signalling

The hypothesis o f com partmentalisation suggests that functional pools o f signalling 

chemicals and proteins exist in discrete "compartments" within the cell [95, 96]. By 

regulating the mix o f proteins within these eompartments cells ean regulate the specific 

response to any given signal. By varying the enzymes, substrates and ehemicai messengers 

in different compartments at the same time a cell could generate multiple responses to a
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given signal. This hypothesis waits rigorous testing, but offers a neat explanation for the 

diversity o f PDE4 isoforms.

L 3.2.1.1 Evidence fo r  compartmentalisation

Keely et al, demonstrated that epinephrine and PGE2 elevated myocardiocyte cAMP 

causing the PKA phosphorylation o f a range o f proteins, but isoprotenolol caused the 

phosphorylation o f approxim ately 16 more PKA targets [97]. Further examples o f 

functional compartmentalization exist. O f interest in the context o f this thesis is the work 

of Dousa et al, who demonstrated in renal mesangial cells, a distinction between PDE3 and 

PDE4 regulation o f cellular behaviour despite equivalent increases in intracellular cAMP, 

[98].

Compartmentalisation would require physical localisation o f the elements of cAMP 

signaling within the cell and such targeting was shown by Jiirevicus and Fischmeister 

when they treated frog ventricular myocytes with isoprotenolol [99]. They found that 

although L-type Ca channels were widely disseminated in cells only those close to |32 

receptors were phosphorylated by PKA. Initial attempts to localise cAMP within cells were 

hampered by the tendency for cAMP to diffuse or leach out o f areas. Using microwave 

fixing technology Barsony and Marx demonstrated discrete pools of cAMP forming after 

stimulation with different ligands [100]. More recently fluorescent RII subunits of PKA 

has allowed FRET analysis to be used by Tsien et al [101]. They demonstrated 5-HT 

induced pools o f cAMP within neuronal dendrites. Thus evidence has accumulated that 

non-random distribution o f cAMP occurs within cells.

Finally evidence supporting the functional compartmentalization o f cAMP signaling in 

inflammation was provided by Ahmad et al [102]. This group observed a distinction 

between the PDE isoforms activated by different pro-inflammatory agents. Thus while IL- 

3 activated both PDE4 and PDE3, IL-4 selectively activated PDE4.
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Thus considerable evidence exists, from diverse experimental fields supporting the concept 

o f compartmentalization.

1.3.2.1.2 The molecular basis o f  compartmentalisation

For compartmentalization of a second messenger to occur certain prerequisites must be met 

[4]. First both a synthetic and a sensing device must exist that can be targeted within the 

cell. In the case o f cAMP these criteria are met. I have described multiple forms of 

Adenylyl cyclase targeted by 6 transm embrane helices. The strongest evidence for 

targeting however exists for the cAMP sensing system PKA and its binding partner AKAP 

described above. Neurone post-synaptic densities are enriched in AKAP79 [103], AKAP 15 

is associated with skeletal muscle Ca^^ channels [104] and S-AKAP84 expression is 

developmentally regulated in male germ eells [105]. Therefore PKA targeting can be 

regulated in a subcellular and developmental fashion. If  discrete pools o f cAMP can be 

synthesised, targeting PKA to these pools regulates whieh of the various R2C2 enzyme 

modules is activated.

The second requirement for Compartmentalisation o f signaling molecules, is a means to 

prevent ‘spillage’ that could result in random activation o f sensing molecules. This 

requires cAMP hydrolysing activity targeted within the cell. PDE is the only means of 

hydrolysing cAMP and I have already deseribed the accumulating evidence for PDE4 

targeting.

PDE targeting may explain why such a diversity of molecules exists. An elegant study by 

Juilfs et al, looked at PDE distribution in olfactory neurones, by immunofluoresence [106]. 

They demonstrated that PDE1C2 co-localised with AC3 in the cilia that protrude into the 

nasal mucosa and respond to odorants. It is believed that this complex regulates the early 

phase o f odorant receptor signaling. While PDE 1C is absent from the axon and cell body, 

PDE4A can be found. These studies suggest that within the complex structure of a neurone
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PDE isoform distribution is not random. Like the studies described above for individual 

PDE4 isoforms, the PDE3 family has been intensively investigated with regards to 

intracellular targeting. PDE3A1 and PDE3B have each been isolated from membrane 

structures including ER and SR o f myocardiocytes and adipocytes [107]. The N-terminal 

region o f these isoform s contains a hydrophobic rich region believed to form 6 

transmembrane helices. Deletion analysis shows loss o f membrane association when these 

regions are removed. A third PDE3 species, PDE3A2 has been identified recently. 

Sequence analysis demonstrates alternative splicing to provide a short N-terminal highly 

polar region [108]. As expected, recombinant expression of this molecule yields a mainly 

cytosolic distribution.

1.2.2A. 2 Compartmentalisation  -  summary

All the requirements for compartmentalisation can be met by the molecules involved in 

cAMP signal transduction. This theory may therefore partially explain the requirement for 

such a large degree o f m olecular diversity w ithin the PDE4 family. A lternative 

explanations for the evolutionary persistence o f such a large family, however include the 

concept o f inter-molecular crosstalk.

1.3.2.2 Molecular Crosstalk

Integration of multiple signalling pathways allows refinement o f these pathways to take 

account of additional intracellular messages. This concept is known as crosstalk. [96].

1.3.2.2.1 Evidence fo r  crosstalk

Evidence for crosstalk between the cAMP signalling cascade and other pathways is 

accumulating. Lin et al demonstrated in RAW murine macrophages, that activation o f PKC 

potentiated the prostaglandin E2 activation o f AC [109] and Dowd et al found cAMP
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potentiation o f Ca^^ induced gene transcription en route to apoptosis [110]. Another group 

examined the integration o f PKA and ERKl and ERK2 activation [111] and demonstrated 

PKA phosphorylation at the Kinase Interaction M otif (KIM) o f ERK isoforms prevented 

the dephosphorylation by phosphatase. Therefore multiple examples o f other signalling 

pathways feeding into eAMP signal transduction have been deseribed.

1.3.2.2.2 PDE4 and molecular crosstalk

Both the cAMP cascade and the ERIC 1/2 MAPKinase signalling pathways regulate PDE4. 

PDE4B, PDE4C and PDE4D families have an ERK 1/2 KIM domain in the catalytic region 

[65, 66]. This allows phosphorylation o f Ser579 (named as for PDE4D3) and the inhibition 

of long form PDE4 aetivity, the short form PDE4B2, however is aetivated by ERK 1/2 [67]. 

PDE4A isoforms appear to be insensitive to ERK 1/2 phosphorylation. PDE4A4 however, 

is sensitive to PI-3 kinase and may integrate a different series o f signalling pathways [112]. 

Varying PDE4 isoform expression will alter the overall PDE4 response to a specific 

signalling environment.

1.3.2.2.3 Summary molecular crosstalk

PDE4 isoforms may thus play an important role in the integration o f signalling cascades. 

By altering their activity in response to different environments the level o f cAMP can be 

tightly regulated.

1.3.3 PDE4 Diversity -  Conclusions

PDE4 isoforms are a diverse group of enzymes, each of which has the same catalytic 

activity. Such a multitude of isoforms in spite o f evolutionary pressure to economise the 

expressed genome implies specific functions for each. I have demonstrated that molecular 

diversity exists at every level o f cAMP signalling from synthesis by adenylyl cyclase,
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sensing by PKA and Rap-1 and most impressively degradation by PDE. Clues to the 

specific function can be made from analysis of the molecular sequence for each PDE4 

isoform. Thus KIM domains in the catalytic region allows crosstalk between ERK 1/2 and 

cAMP. PKA phosphorylation complicates molecular crosstalk by abolishing the effects of 

ERK 1/2 inhibition. Finally targeting o f PDE4 isoforms could allow compartmentalisation 

o f cAMP signal and provide a mechanism for large macromolecular complexes to be 

formed.

Differential expression o f PDE4 iso forms at different stages o f development and in 

response to specific signalling environments would allow refinement of the response to a 

cAMP signal. Thus understanding the molecular diversity o f PDE4 has offered insights 

into the complex organisation o f cell signalling.

1.4 PDE4 in inflammation

1.4.1 Introduction

Since the description of coffee as a useful treatment for bronchospasm in the mid-ninteenth 

century [113] non specific PDE inhibtiors have been used to treat airway disease. The 

appreciation  tha t m ethyl xanth ines such as caffine and theophylline had 

immunomodulatory activity came from the work o f Lichtenstein in the early 70’s [114, 

115]. Significant volumes of work have been produced looking at the role o f PDE 

inhibitors in inflammatory cells and these have been collected in a Series o f review articles 

[50, 116-118]. I will summarise the main concepts to be gleaned from this work and 

concentrate in a later section on the work pertaining to macrophages, which is the cell of 

particular interest in this thesis.
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1.4.2 PDE content of immune cells

An understanding of the PDE expression profile of inflammatory cells offers insights into 

spécifié roles for these molecules. In summary PDE3 and PDE4 appear to be the main 

cAMP PDE species expressed in inflammatory cells. Some interesting work suggests that 

in monocytes at least compartmentalisation o f PDE species occurs with PDE4 being the 

main soluble species and PDE3 being particulate associated [119].

1.4.2.1 Mast cells and Basophils

Basophils isolated from human blood contain PDE3, PDE4 and PDE5 [120, 121]. PDE3 

and PDE4 account for the majority o f cAMP PDE activity in these cells. Mast eells are 

significantly more difficult to harvest and as such the studies o f these cells are more 

circumspect [117]. Notwithstanding this however PDE3 and PDE4 have been identified in 

mast cells isolated from guinea pig and human lung [121].

1.4.2.2 Eosinophils

Significantly more work has looked into eosinophil PDE expression profile [122-124]. By 

far the largest cAMP PDE activity expressed is PDE4. In eosinophils this activity co- 

distributes in both the particulate and the soluble fractions. PDE3 and PDEl are present in 

small amounts, but no independent functional activity has been found for these.

1.4.2.3 B lymphocytes

Suzuki et al have demonstrated PDE4 in B lymphocytes, but little more work in this 

important cell type was reported until Gantner et al compared cells from atopic and non- 

atopic donors [125]. They demonstrated that the greatest cAMP PDE activity represented 

was cytosolic PDE4 followed by cytosolic PDE7. Small amounts o f PDE3 were also



27
present. RT-PCR was used to further define the PDE4 isoform expression profile, and they 

demonstrated PDE4A, PDE4B2 and PDE4D were represented.

L4.2.4 Monocytes and Macrophages

I will review the work relating to macrophages in more detail later, however a significant 

body o f work has investigated the expression o f PDE isoforms in monocytes and 

macrophages [119, 126, 127]. In monocytes significantly more PDE4 activity is expressed. 

With the differentiation to macrophages however this balance is rectified [127]. In both 

cell types PDE4 is mainly soluble while PDE3 associates with the particulate fraction.

1.4.2.5 Summary

PDE4 is widely expressed in cells o f the immune system. As inhibiting PDE4 leads to 

elevated intracellular cAMP it would be expected that PDE inhibitors would have anti

inflammatory properties. I will discuss the evidence for this next.

1.4.3 Immunomodulation by PDE4 inhibitors

Many studies have confirmed that cAMP derived from PDE4 inhibition has anti

inflammatory activity. Again I will summarise the main focus o f this research for each cell 

type and deal with macrophages in more detail in a later section. Table 1.3 details the 

major effects o f PDE4 inhibitors in inflammatory processes.

1.4.3.1 M ast cells and Basophils

Inhibition of PDE4 prevents IgE stimulated histamine release and platelet activating factor 

(PAF) stimulated Leukotriene (LTC4) production from human basophils
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[120, 121, 128, 129]. Although these effects were dose dependent on intracellular cAMP 

concentration, some functional compartmentalisation was seen by the absence o f an 

inhibitory effect o f PDE3 or PDE5 inhibition [120]. Although PDE4 inhibition was 

capable of elevating cAMP in mast cells conflicting evidence exists for its role in mast cell 

regulation. W eston et al have found no effect on mast cell mediator release with IgE 

challenge in the presence o f PDE4 inhibitors, while Anderson et al suggest inhibition is 

achieved [121].

1.4.3.2 Eosinophils

PDE4 accounts for almost all eosinophil cAMP PDE activity, thus it is not surprising that 

PDE4 inhibition has profound effects on eosinophil function. Table 1.3.2 details these 

effects. M ediator release, surface molecule expression, oxygen radical release and 

chemotaxis have all been shown to be reduced by PDE4 inhibitors in a concentration 

dependent fashion. Again compartmentalisation o f function is suggested by the lack o f 

effect o f PDE3 and PDEl inhibitors. It must be noted however, that the effect on cAMP of 

either one o f these inhibitors is small given their relative low expression. [122-124, 130- 

134]

1.4.3.3 B Lymphocytes

Inhibition of PDE4 in B lymphocytes appears to have conflicting effects depending on the 

context. [135] This group demonstrated that PDE4 inhibition increased IgE production in 

the presence o f low IL-4, however if  IL-4 concentration is higher IgE was inhibited. 

Another group demonstrated that EPS stimulated proliferation o f B lymphocytes was 

increased in the presence o f rolipram [125] This effect was mimicked by a lipid soluble 

analogue of cAMP (db cAMP) and inhibited by H89, an inhibitor of PKA.
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1.4.3.4 T Lymphocytes

PDE4 inhibitors prevented the antigen, mitogen and MHC class I stimulated proliferation 

o f T lymphocytes, while PDE3 inhibition did not [136, 137]. This distinction lends more 

weight to the theory of compartmentalisation as PDE3 and PDE4 are fairly evenly 

represented in T cells. PDE4 inhibitors also reduced the stimulated production of cytokines 

from T cells [138]. The combined effect of PDE3 and PDE4 inhibitors failed to mimic 

completely the effect of non-specific PDE inhibitors such as[139] Theophylline. Thus it 

may be that PDE7 may play a significant role in the regulation o f T cell cAMP. PDE7 has 

since been shown to be important in the activation of T cells [140]. Another explanation 

for the differences in aetivity between both groups of drugs could be non-PDE effects of 

theophylline such as adenosine agonism.

1.4.3.5 Monocytes and Macrophages

Due to the relative abundance of monocytes a wealth o f information demonstrates a role 

for PDE4 in regulating pro-inflammatory activity. Most significantly TN Fa production by 

EPS stimulated macrophages is profoundly inhibited in the presence o f PDE4 inhibitors.[, 

[141, 142]]. Other pro-inflammatory effects are inhibited by PDE4 inhibition such as 

fMLP induced arachadonic acid release and calcium ionophore stimulated leukotriene 

production [143].

1.4.3.6 Summary

Thus non-specific and specific PDE4 inhibitors have anti-inflammatory properties across 

most o f the cells involved in inflammation and immunity. This makes PDE4 iso forms 

attractive therapeutic targets. A large volume o f pharmaceutical research is dedicated to 

developing new agents with PDE4 inhibitory properties.
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1.4.4 Development of new PDE4 inhibitors

Unfortunately just as non-specific PDE inhibitors such as theophylline are limited by 

toxicity, PDE4 inhibitors are also limited by their side effect profile. The main side effects 

experienced are nausea and headache, both o f which are believed to be due to an effect on 

the CNS due to the high affinity binding site (HARBS) [91]. As PDE4 itself is a complex 

family with different isoforms possibly regulating different cellular processes it is not 

surprising that side effects are seen with relatively non-specific agents.

Many new PDE4 inhibitors are in development, some o f which may offer relative isoform 

specificity [118]. To further understand the role o f each PDE4 isoform in cell function it 

will be necessary to investigate a cell type in more detail. I have selected the 

macrophage/monocyte cell to address phenotype specific roles for PDE4 isoforms. I will 

discuss the macrophage in terms o f development, pathogenesis in inflammation, its role in 

asthma and cAMP signalling. Asthma is discussed as increasing interest in PDE4 

inhibition in this disease is leading to considerable research into cAMP molecular 

mechanisms. It should be noted however that to date PDE4 selective inhibition has proven 

therapeutically disappointing in asthma as opposed to in COPD where it has been found to 

be therapeutically efficacious [144].

1.5 Alveolar Macrophages

Macrophages are a useful model to study PDE4 regulation o f inflammation. They represent 

a highly differentiated mature cell with a defined progenitor, the monocyte. Comparison of 

these cells can offer insights into the im portant biochem ical changes involved in 

maturation. M acrophages also have well defined and m easurable pro-inflammatory 

behaviour which is useful for studying biochem ical m odulation. Finally alveolar
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macrophages (AM) are important in the development o f lung disease and offer a potential 

therapeutic target.

1.5.1 Lung Macrophage - a heterogeneous population with 

specific developmental phenotypes

Macrophages are tissue specific accessory cells derived from circulating peripheral blood 

monocytes (PBM) both constitutively and in response to inflammation [145]. Alveolar 

macrophages (AM) are mobile phagocytic cells that reside on the surface of the alveoli and 

small bronchi o f normal lung and represent approximately 3-5% o f all lung cells [146]. 

Given that the lung is the largest interface of internal and external environment AM have a 

fundamental role in host defence by surveying airborne particles along this surface. AM 

are more adherent, less phagocytic, morphologically distinct and have increased capacity 

to produce cytokines than either peritoneal macrophages or PBM. [147]. Thus AM 

represent a phenotypically defined stage of differentiation. This differentiation is a 

biochemically regulated process.

1.5.1.1 Maturation and migration

Migration from blood to the alveolus is a process o f adherence to and passage through 

vascular endothelium, extracellular matrix and the alveolar epithelium. This requires the 

sequential interaction o f  monocyte surface receptors w ith selectins expressed on 

neighbouring cells. Transendothelial migration involves (32 integrins (GDI 1/CD 18) VLAg 

4 and 5, P-ECEL, PEC AM and I cam 1 and Vcam 1 [148]. Rosseau et al demonstrated the 

importance o f (32 integrins CDl la, b, c and d, VLA 4, 5 and 6 and CD47 in transalveolar 

migration [149]. Cell recruitment and adhesion molecule expression is biochemically 

controlled by the monocyte chemokines M CP-l and RANTES [150, 151]. Both of which 

are produced by resident cells in the lung including alveolar type II cells in response to
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TN Fa, IL-1, ÏL-2 and TGF|3 [149]. Galactin 3 is a recently described lectin involved in 

monocyte migration and macrophage development and has been shown to be specifically 

expressed in lung tissue [152].

1.5.1.2 Intermediate macrophages may represent stage specific development

A  second population o f macrophages have also been described accounting for -2%  of lung 

cells or 40% of lung macrophages [146]. These cells are found in the interstitium of lung 

tissue and are known as interstitial macrophages (IM). W hether these represent maturing 

maerophages or a separate population o f active macrophages is not clear.

Thus distinct developmental regulation of alveolar macrophages takes place in lung tissue. 

U nderstanding the biochem ical changes governing this process may increase our 

understanding o f the cells involved.

1.5.1.3 Cell line models as surrogates fo r  macrophage development

While AM are relatively abundant their isolation remains difficult and yields are often 

insufficient for biochemical analyses. Investigators have thus developed models o f 

macrophage differentiation based on leukaemic cell lines. Huberman and Callahan 

demonstrated that a granulocytic cell line HL-60, could be made to develop macrophage

like features by treating with the phorbol ester PMA [153]. Subsequently other related cell 

lines including the premonoeytic cell U937 have also been similarly shown to respond 

[154]. Such cells when treated become adherent to plastic, develop phagocytic capability 

and change their surface markers to a more mature display including the expression of (32 

integrins (C D lIP ) and MIF [155, 156], Monocytes isolated from the circulation and 

cultured on plastic develop in a similar fashion a model laiown as the “ex-vivo” model.
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L 5 .1.4 Biochemical regulation o f  development

Two studies have shown the importance o f biochemical regulation in the control o f 

macrophage development using the cell line U937. Firstly Kim et al found that the 

inhibition o f ERK 1/2 prevented the full expression of the macrophage phenotype [157]. 

Secondly, Frudovsky used CD l lb  antisense to reduce the expression o f this (32 integrin, 

previously discussed as important in monocyte migration, and prevented the expression of 

the macrophage phenotype [156]. Therefore biochemical systems control the development 

o f mature cellular phenotypes. W hat can be learned by comparing mature cells with 

progenitor cells?

1.5.1.5 Biochemical changes with macrophage development

PKC is a large family o f Ca dependent and independent kinases. Monick et al, mapped the 

changes in isoform  expression between im m ature PBM s and AM [147]. They 

demonstrated that monocytes have a relatively high level o f PKC activity with the Ca 

dependent isoforms PK C pi and PKCp2 being dominant. In AM however Ca independent 

isoforms PKC6 and PKCÇ were relatively over expressed. PKC subcellular location was 

also different in AM with a greater proportion o f PKC being membrane associated than in 

monocytic cells a distribution which is associated with activation o f the kinase [158]. To 

determine if  functional changes matched the PKC profile M onick et al, demonstrated 

reduced PMA stimulated ERK activation in AM compared to PBMs and suggested that 

this could impact significantly on a number o f macrophage specific functions. It is 

interesting that many groups have shown that EPS activate two different PKC iso forms ie 

PKC E and PKC P [159, 160#].
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1.5.1.6 Summary

Thus macrophage development is accompanied by biochemical changes with potentially 

important functional outcomes. Equivalent changes in PDE isoform expression will be 

discussed in a later section. What relevance to disease do AM have?

1.5.2 Function of Alveolar macrophages

Alveolar macrophages are capable o f secreting a large variety o f inflammatory mediators 

and cytokines that are implicated in the pathogenesis o f lung disease. The overall role of 

the AM in resting lung is believed to be immunosuppressive [161] [145] partly related to 

inhibition o f T lymphocytes [145] in which they are able to induce apoptosis. Although 

poor antigen presenting cells, IL-10 a cytokine active in asthmatic lungs, promotes this 

activity [162]. IL-10 is an important product o f cAMP treated macrophages and has been 

shown to be increased by PDE4 inhibition [163].

1.5.2.1 Alveolar macrophage in disease

The important role played by AM in resolving inflammation through recognition and 

phagocytosis o f apoptotic neutrophils is becoming clear [164]. The role of pulmonary 

based macrophages in ARDS, shock lung and pulmonary fibrosis has long been accepted. 

Their role in obstructive lung disease and especially asthma is more contentious. Evidence 

is accumulating, however that activated macrophages at least participate and may initiate 

the chronic inflammation that underlies both allergic and smoking induced obstructive 

airways disease [165]. Asthma is o f particular interest to this thesis given the weight of 

research aimed at producing asthmatic therapies based on PDE4 inhibition. It should be 

noted that AM are heavily implicated in the pathogenesis o f COPD and that novel PDE4 

inhibitors have proven more effective in this disease than in asthma.
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1.5.2.2 Mediator release

Many o f the chemical mediators and chemokines implicated in asthma pathogenesis are 

produced by AM. These include T N Fa [166], IL-1(3 [167, 168], leukotrienes, and nitric 

oxide and their production is limited by inhaled corticosteroid use in asthma [169-171]. 

Conversely AM are known to express reeeptors for pro-asthmatie mediators eg LTD4 

[172]. In this study pre-treatment o f AM with LTD4 was shown to enhance stimulated 

cytokine production. Therefore AM ean produce and respond to inflammatory mediators 

important in asthma.

1.5.2.3 Functional differences in atopic macrophages

Some functional differences exist between AM isolated from healthy and asthmatic 

subjects. AM from patients with pulmonary fibrosis were capable of producing IL-4 and 

IL-5 which are known to be important cytokines in the Th2 response [173]. Furthermore 

AM isolated from atopic asthmatics were capable o f causing enhanced IL-5 production 

compared to non-asthmatic atopies. AM isolated from asthmatic lungs have an “activated” 

phenotype defined by the expression o f ICAM-1 and LFA-1 suggesting that they were 

actively participating in the inflammation [168]. Viksman et al found that activation 

marker expression on AM from asthmatic lungs was greater than normal donors [174] and 

when stimulated with LPS, AM from asthmatic subjects produced more GMCSF, TN Fa, 

IL-8 and LTB4. Finally Lensmar et al, compared AM from atopic asthmatics before during 

and after chronic low dose exposure to pollen [175]. They demonstrated increased 

macrophage content o f broncho-alveolar lavage from exposed patients and found a shift in 

surface marker expression from a CD 16 and C D l la  bias to a CD 14 and CD l lb  

dominance. CD 14 expression in particular correlated closely with the drop in FEV l. CD 14 

is more classically considered to be a monocyte marker and overall it appears that AM 

eells were developing a more immature phenotype [176, 177].
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1.5.2.4 Mechanisms by which macrophages may support airway inflammation

It may be that in the background of an active inflammatory process such as asthma where a 

Tli2 dominance has already been asserted then cells o f the innate immune response can, by 

producing general lymphocyte growth factors such as IL-2, promote and maintain 

inflammation [178]. Indeed IL-10 produced by macrophages is loiown to support a TH2 

profile preferentially. There are other possible mechanisms.

Firstly, AM are capable o f suppressing immune activity partly by the production o f NO 

which inhibits T lymphocyte proliferation, AM are twice as good at this inhibition than PM 

[161]. It has been noted that ThI cells are more sensitive to such inhibition than Th2 cells, 

and thus selective expansion o f Th2 cells may result from activated AM producing 

NO[179]. Secondly it has been suggested that IM, by virtue of their close proximity to DC 

may influence accessory cell function and thus regulate the adaptive immune response. 

Thirdly AM and DC are the only lung cells capable o f phagocytosis and thus functioning 

as antigen presenting cells to T and B lymphocytes. In a recent study o f pollen starch 

granule (PSG) phagocytosis, it was found that AM bound and internalised PSG in a lectin 

and p2-integrin dependent fashion, [165]. Uptake o f PSG in this study was associated with 

the expression of iNOS and nitric oxide production from the AM cells studied. Thus the 

AM in the lung and bronchus may serve to screen inspired air for allergens and by 

internalising them become activated and promote the inflammatory response.

A final mechanism by which AM may promote airways inflammation is by responding to 

airbourne bacterial wall products such as LPS. LPS and other bacterial proteins are 

recognised by microbial recognition receptors on AM such as CD 14. By stimulating the 

production of cytokines and mediators these molecules can influence the behaviour o f the 

adaptive immune response. Endotoxin (LPS) has been found associated with aeroallergens 

such as pollen and house dust mite and asthma symptoms have been reported to correlate
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with the level o f household endotoxin. Macrophages from asthmatics express increased 

levels of CD 14 when compared with non-asthmatics [168]. Direct inhalation o f endotoxin 

in both mouse and human subjects causes acute inflammation, bronchoconstriction and 

airways hyper-responsiveness [180]. In other studies intravenous LPS resulted in 

bronchoconstriction mediated by COX-2 expression [181] and CD 14 +ve cells exposed to 

inhaled LPS cells have been shown to prolong eosinophil survival [182]. GM-CSF 

treatment o f isolated lungs significantly increased the sensitivity to the LPS induced 

bronchoconstriction [183]. This was believed to be due to prim ing o f lung cells and 

probably AM to produce COX-2. Finally Schwartz etal dem onstrated that topical 

application o f synthetic inhibitors o f LPS into the airway could block inflammation and 

subsequent AHR [180]. Thus by virtue o f their sensitivity to airborne LPS, AM can 

activate and perpetuate an inflammatory response in the airway that has many o f the 

hallmarks o f asthma. This model not only supports the use o f AM as a model for 

therapeutic manipulation but suggests that understanding the complex biochemistry 

associated with LPS stimulation could also aid our understanding.

1.5.2.5 Alveolar macrophages may induce bronchoconstriction by eicosanoid  

production

Accumulating evidence suggests that AM influence airway inflammation resulting in 

AHR, but it is also possible they are involved in producing bronchoconstriction. The 

molecular mechanisms prom oting bronchoconstriction lie in the chemical mediators 

released from activated macrophages. Martin et al [184] demonstrated in precision cut lung 

sections that COX-2 inhibition reduced the constrictive response to asthmatic airway 

milieu. COX-2 and the bioactive lipids that it produces including PGE2 and TXA2 are 

pathogenic for both asthma and COPD [185]. Studies comparing lung cells found that IM 

expressed most COX-2 mRNA in non-inflammatory lung closely followed by epithelial
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cells. It is interesting to speculate that in the asthmatic airway where AM may undergo a 

monocytic “de-differentiation” that COX-2 may be more active in the AM.

Finally as has already been discussed the capacity for AM to produce leukotrienes is 

enhanced by maturation. The enhanced activity is related to the nuclear localisation o f 5- 

LO the synthetic enzyme o f LTA4. This molecule is the precursor o f LTB4, which acts as 

a neutrophil chemoattractant and the cysteinyl leukotrienes (LTC4, LTD4 and LTE4). 

These chemicals promote bronchial smooth muscle contraction and vascular permeability. 

Interestingly Fuller et al found that while agents which indirectly elevate cAMP in AM, 

such as PDE inhibitors could prevent the release of TXB2, the ^2 agonist isoprenaline was 

ineffective[186]. This was thought to be due to a lack o f responsive (32-adrenoceptor.

1.5.3 Conclusions

The alveolar macrophage is an attractive model to study the role of PDE4 isoforms in the 

regulation o f inflammation. Defined developmental stages and a clear progenitor cell allow 

analysis o f isoform expression as seen for PKC isoforms. Biochemical regulation is 

important in the development and it is likely therefore that distinct PDE4 isoforms will be 

expressed at specific stages. Finally macrophages are important cells in airway disease and 

PDE4 inhibition is likely to result in significant therapeutic interventions.

1.6 Cyclic AMP in the macrophage

Cyclic AMP regulation of macrophage function and macrophage control o f cAMP signal 

transduction will provide the final topic for this discussion. Cyclic AMP is largely 

inhibitory to macrophage function thus PDE4 promotes inflammation. The effect of cAMP 

on pro-inflammatory functions is cell specific and I will limit the discussion to monocytes 

and macrophages as these form the subject of investigation in this thesis.
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1.6.1 Cyclic AMP Signalling in Macrophages

It is clear that cyclic AMP signalling can regulate important inflammatory functions of 

macrophages. The outcome of a cAMP signal depends on the range o f proteins involved in 

signal transduction expressed at a cellular level. What is known o f these molecules in 

macrophages?

1.6.1.1 Adenylyl cyclase and receptors

Cyclic AMP is generated by adenylyl cyclase in response to ligand binding to various 

receptors. Multiple AC coupled receptors are expressed by macrophages with endogenous 

ligands ranging from bioactive lipids such as prostanoids to amino acid hormones such as 

adrenaline.

1.6.1.1.1 Adrenergic Receptors

O f particular significance to respiratory disease is the expression of a range of adrenergic 

receptors. These are receptors for the endogenous catecholamine hormones adrenaline and 

nor-adrenaline. |3l, P2 and a  adrenergic receptors are expressed on alveolar and peritoneal 

macrophages [187]. Regulation o f macrophages during sepsis is mainly mediated through 

the (32 receptor [188]. The (32 receptor is a classical G-protein coupled receptor that 

activates AC upon ligand binding. Therapeutic manipulation of this receptor using agents 

such as isoprotenolol have proven effective in reducing LPS stim ulated cytokine 

production from macrophages, including T N Fa [189] and IL-12 [190]. This does not 

represent a general suppression of macrophage function however as IL-6 production is not 

inhibited [189] and the production o f IL-10 can be increased [191]. Hasko et al however 

reported a widespread suppression o f multiple cytokines from isoprotenolol treated RAW 

264.7 macrophages [192].
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L 6.1,1.2 Prostaglandin receptors

Prostaglandin receptors are also coupled to AC. Prostaglandins are important macrophage 

derived mediators o f inflammation and have autocrine effects on their cells o f origin. 

Hubbard et al dem onstrated regulation o f expression o f prostaglandin receptors with 

isoforms EP2, EP3 and EP4 being expressed in resting RAW 264.7 macrophages with a 

preponderance o f EP4 [193]. LPS treatm ent caused increased EP2 production while 

interferon y resulted in a reduction in EP2 and EP4 expression. PGE2 a macrophage 

derived ligand for both EP2 and EP4 exerts significant inhibitory effects over macrophage 

activity. For example exogenous PGE2 reduces T N Fa and IL-12 production in response to 

LPS [194]. Prostaglandins have also been shown to inhibit phagocytosis of apoptotic cells 

by macrophages [195].

1.6.1.1.3 Cytokine receptors

Cytokines represent intercellular messengers signalling between inflammatory cells. GM- 

CSF is an important macrophage growth factor and cytokine controlling proliferation and 

activation. Coleman et al found that treatment o f macrophages with GM-CSF led to 

increased AC activity in membrane preparations of isolated macrophages with a resultant 

increase in cAMP [196].

Therefore a range o f chemical mediators o f inflammation are ligands for AC coupled 

receptors. While the majority result in supression o f activity, others such as GM-CSF are 

important in the full expression o f macrophage dependent inflammation.
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1.6.1.2 Signal transduction

Cyclic AMP dependent signals can be communicated by both PKA and the cAMP 

dependent GEF, EPAC, via Rap-1 activation. Both of these cascades have been found to 

regulate important macrophages processes.

1.6.1.2.1 PKA

The role o f PKA in regulating macrophage activation is generally thought to be inhibitory. 

Cyclic AMP prevents macrophage apoptosis [197] and probably explains AC activation by 

GM-CSF. Interestingly in the context o f this thesis agents that elevate cAMP by PDE 

inhibition show diverse effects. Thus while theophylline at therapeutic concentrations 

causes apoptosis and reduces IL-5 or GM-CSF inhibition o f o f apoptosis, PDE4 selective 

agents do the opposite [198]. Rolipram was found to prevent apoptosis induced by Fas 

ligand in eosinophils and increase the anti-apoptotic effects o f IL-5 and GM-CSF. 

Otherwise PKA activation by IL-I3 activates arginase reducing nitric oxide production 

[199], inhibits T N F a production [200] and is involved in cyclic AMP prevention of 

phagocytosis [195]. Among the PKA targets expressed by macrophages is the cyclin B 

protein, cDc2 kinase. PKA phosphorylation o f this protein leads to delayed progression 

through cell cycle during proliferation and a G2 phase delay [201]. This might partially 

explain the inhibition o f macrophage proliferation by PGE2 described by Banner et al 

[202]. Finally Delgado et al found that vasoactive intestinal peptide (VIP) and pituitary 

adenylyl cyclase activating peptide (PACP), both enhanced the expression o f B7.1 co

stimulatory molecule in a PKA dependent manner [203]. This had the effect of enhancing 

macrophage stimulated T cell proliferation and may reflect accessory cell function in vivo.
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L 6 .L 2 .2  E P A C -R a p l

The discovery o f the small cAMP activated GEF, EPAC, has recently offered an 

alternative pathway for cAMP dependent signalling [38]. No studies have yet been 

published demonstrating EPAC in macrophages, but its partner Rap-1 has been found to 

regulate macrophage behaviour. Caron et al have found constitutively active Rap-1 mimics 

the effects of (31 integrin activation [204]. Rap-1 and Ras express competitive behaviour 

and constitutively activated Ras did not have the same effect. It appears that R ap-1 may 

regulate macrophage binding and therefore chemotaxis and phagocytosis.

Signal transduction o f a cAMP signal can therefore be accomplished in macrophages in a 

complex fashion. Understanding the roles o f cAMP signal transduction has therefore 

expanded our understanding of cAMP regulation o f macrophage function.

1.6.1.3 Transcription factors

Ultimately cellular regulation is achieved by gene transcription and cAMP response 

elements (CRE) are present in the promoters o f various macrophage expressed proteins. 

Cyclic AMP response elem ent binding protein (CREB), is activated by PKA by 

phosphorylation at S e r i33 [22]. CREB can promote or repress gene transcription. For 

example Parry et al demonstrated activated CREB competed with N F kB for a binding 

protein (CBP) thus reducing its potential for gene transcription [26] whereas Proffitt et al 

found CREB dependent expression of MIP-1(3 in murine macrophages [205]. O f particular 

interest to macrophage function, Delgado et al found that VIP and PCAP decreased LPS 

induced T N Fa production by CREB activation and NFkB repression [206].

Cyclo-oxygenase and i-NOS represent two im portant macrophage derived proteins 

regulated by cAMP. I will now discuss these enzymes in some detail as they form 

important subjects in the work to be described.
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1.6.1 A  Cyclooxygênase 2

Cyclooxygenase (COX) is the prostaglandin synthase, which converts arachadonic acid to 

PGH, the substrate for the more specific prostaglandin synthase enzymes [207]. Two COX 

isoforms are recognised, COX 1 and C0X 2 the latter being an inducible form found at sites 

o f inflammation [207]. COX2 is capable of producing a variety o f lipid mediaters of 

inflammation including prostaglandin E2 (PGE2), PGD2 and thromboxane A2 (TXA2). 

While macrophage expressed PGE2 is believed to promote a healing phenotype by the 

production o f the fibroblast growth factor IGF-1 [208], PGD2 is thought to support a more 

tumourocidal pattern of behaviour[209]. TXA2 on the other hand is capable of inducing 

bronchospasm in asthmatic airways [210]. COX-2 products exist therefore in a complex 

balance in the pathogenesis of asthma [211].

Fournier et al demonstrated that at sites of high T N F a production such as asthmatic 

airways COX-2 was most likely to produce PGE2 supporting the hypothesis that COX-2 

expression is protective in airways disease [209]. PGE2 is im portant in macrophage 

biology by virtue o f its capacity to maintain a specific phenotype. PGE2 promotes the 

expression o f the LPS receptor CD 14, which I have described as being increased in 

macrophages in asthmatic airways. This would be expected to enhance LPS sensitivity of 

these cells, which itself increases COX-2 and therefore PGE2 production [212]. Finally in 

the presence o f LPS, PGE2 enhances its own production ensuring that in a state o f LPS 

induced inflamm ation positive regulation o f receptor and COX-2 enzyme promotes 

phenotypic stability [213].

Studies using exogenous cAMP and AC activators have shown cAMP to cause and 

enhance LPS induced COX-2 expression [214, 215]. The role o f PKA is more contoversial. 

While zymosan stimulation, a model o f phagocytosis caused H89 resistant COX-2 

production, T N Fa induced COX-2 was reduced by H89 co-stimulation. Caivano et al 

warned that H89 was capable o f inhibiting M SKl and MSK2, as well as PKA and that this 

may interfere with post LPS signalling [216]. Examination o f COX-2 promoter regions
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suggest that cAMP can upregulate expression. Miller et al found co-stimulation o f AP-1 

and the CRE sites in the COX-2 promoter to explain the synergism between LPS and 

cAMP stimuli [217]. Gorgani et al found that mice deficient in C/EBP, an important 

transcription factor binding protein involved in cAMP response elements (CRE) in 

promoter regions, were unable to produce COX-2 in response to multiple stimuli [218]. 

Finally Wadleigh et al made multiple deletions o f the COX-2 promoter and found that 

while both cAMP response elements and NFkB response elements are present, only the 

CRE box was essential for LPS induced activation o f COX-2[212].

COX-2 therefore represents an important macrophage enzyme, promoting an asthmatic 

airway and lies under the control of cAMP.

1.6.1.5 Inducible nitric oxide synthase

Inducible nitric oxide synthase (iNOS), represents another macrophage product under 

cAMP control. Three NOS enzymes exist of which iNOS is inducible at sites o f 

inflammation including the asthmatic airway [219]. The role o f macrophage derived NO is 

not clear but some evidence points to an anti-inflammatory bronchodilatory activity [179].

Cyclic AMP can increase or decrease the expression o f iNOS in activated macropahges 

and the precise outcome appears to depend on the cell type examined and the stimulus 

applied. Nusing et al found that both db-cAMP and PGE2 applied to mesangial cells 

caused enhanced LPS stimulated iNOS production [220], while Delgado found that 

vasoactive intestinal peptide prevented LPS and interferon y (IFNy), stimulated iNOS 

production from RAW  264.7 m acrophages. Thus another im portant prom oter o f 

inflammation and macrophage regulation is regulated by cAMP signalling pathways.
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L 6.1.6 Summary

It appears therefore that the molecular apparatus for activating and transducing a cAMP 

dependent signal are available in macrophages. These molecules regulate macrophage 

function and the degree o f complexity and the molecular variety suggests a high degree of 

control can be exerted by manipulating cAMP signals. The limiting factor to any cAMP 

signal is cAMP phosphodiesterase.

1.7 Phosphodiesterase isoforms in macrophages and 

monocytes

1.7.1 PDE Profile

In 1976 Thomson et al found that the greatest cAMP phosphodiesterase activity in human 

inflammatory and immune cells correlated with PDE4 [221]. Many subsequent studies 

looking at lymphocytes and monocytes have confirmed this analysis. Interest in the field 

was generated by studies demonstrating that PDE4 inhibitors prevent proinflammatory 

behaviour in these cells. Mapping the PDE profiles and changes in response to stimuli in 

inflammatory cells has developed into a major research interest.

1.7.1.1 Ex-vivo monocytes

Many groups have shown a PDE4 dominance in the cAMP PDE profile o f monocytes 

isolated from human blood and found PDE4 to represent between 60-75% of the total 

activity [119, 126, 222, 223]. While Thompson in the original work on monocytes found 

very little PDE3 represented, subsequent studies have recorded between 9 and 40% of the 

total cAMP PDE activity to be inhibited by cGMP. While the majority of PDE3 is found in 

the particulate fraction o f  disrupted monocytes, all studies that have looked have shown
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90-100% of PDE4 to be cytosolic [223, 224]. This suggests specific isoform targeting in 

these cells.

1.7.1.2 Alveolar macrophages

Investigating the PDE profile of AM is much harder due to the lower abundance of these 

cells and the complexity in acquiring them. Tenor et al looked the PDE isoforms expressed 

in isolated alveolar macrophages and found PDE3 and PDEl to represent 45% each of 

total PDE activity while PDE4 was significantly less [127]. Again PDE4 was entirely 

soluble, while PDE3 was membrane associated. Due to the difficulties in acquiring 

macrophages Gantner et al investigated the PDE activity o f peripheral blood monocytes 

cultured on plastic and found a profile very similar to AM. PD El activity rose from 

approximately 0 to 55% of total PDE activity and PDE3 increased to 55%. PDE4, however 

fell to between 15-20% [119]. In contrast to this Kelly et al have found AM isolated from 

guinea pig lungs express significant amounts o f PDE4 [225].

It appears therefore that the maturation of macrophages from the monocyte progenitor cell 

is accompanied by a change in the mechanisms of cAMP control. This suggests that each 

PDE family is important for regulating functions specific for each type of cell.

1.7.1.3 PDE4 isoforms

Although changes in the contribution o f PDE4 to the total cAMP activity have been 

described less work has been reported on the changes in PDE4 iso form expression. 

Attempts have been made to profile PDE4 isoforms in monocytes and macrophages using 

RT-PCR and western blot analysis. Manning et al demonstrated mRNA transcripts for 

PDE4 A, B and D in resting ex-vivo monocytes, but little detectable protein [222]. After 

treatment with the P2 adrenergic receptor agonist salbutamol, for 4 hrs increases in total 

PDE4 activity, increased levels o f PDE4A and B mRNA and detectable PDE4 protein were 

recorded. Souness et al found PDE4A and PDE4B mRNA in monocytes, but also 

identified a faint band corresponding to PDE4D [223]. Studies using the U937 cell line
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have confirmed the presence of three PDE4 isoforms and demonstrated an increase in 

enzyme expression with salbutamol [226]. McKenzie and Houslay have shown that PDE4 

A, B and D are present in resting U937 cells and by im m unoprécipitation have 

demonstrated that these contribute approximately 1%, 20% and 80% respectively. No 

work specifically reporting the PDE4 isoform profile o f macrophages has been reported to 

date. This may represent a combination o f the difficulty in acquiring sufficient cells to 

identify members o f a low abundance enzyme family.

1.7.2 Functional Importance of FDE4

Regulation o f PDE4 during cell specific maturation suggests important functional roles in 

cellular control. Evidence for such important roles is hard to provide. If  dysregulation of 

PDE4 function was shown to cause a disease state then the significance of PDE4 could be 

implied.

1.7.2A  PDE4 in disease

Early studies o f PDE activity in disease found that peripheral blood monocytes from 

patients with atopic dermatitis had greater PDE4 activity than the same cells from normal 

donors [227]. Other groups have not found a similar difference however [126] Gantner et 

al went further and mapped the PDE4 isoforms and found no significant differences in 

expression between normal donors and patients with atopic dermatitis. No significant 

differences have been found in any cell type from atopic donors including B lymphocytes 

[125] and eosinophils [228]. Studies on cells purified from asthmatic subjects have been 

similarly unrewarding [229].

Inhibitors o f PDE4 on the other hand suggest that this family might have a role to play. 

While in vivo studies make it difficult to tease out the cells responsible for a therapeutic 

response. Studies o f isolated cells or cell line models allow careful cell identification.
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1.7.2.2 PDE4 inhibitors in monocyte and macrophage regulation

PDE4 inhibition potently reduces TN Fa production from LPS stimulated monocytes [223], 

and to a lesser extent macrophages [163]. Gantner et al looking at ex-vivo monocytes 

demonstrated that rolipram was capable of preventing T N Fa release at levels where cAMP 

increases were undetectable [119]. Souness et al also found that while low levels of 

rolipram were capable of inhibiting T N Fa release, to measure a significant increase in 

cellular cAMP PGE2 had to be added to activate AC [223]. That this combination 

increased cAMP over PGB2 alone demonstrates the functional importance o f PDE4 in 

monocytes as the main cAMP hydrolysing enzyme. Seldon et al found (32 adrenergic 

receptor agonists had the same effect as PGE2 with rolipram by generating an excess o f 

cAMP over the presence o f inhibitor alone [142]. Thus PDE4 is capable of altering pro- 

inflammatory behaviour at concentrations below that which result in measurable cAMP. 

This suggests that while dysregulation may not cause disease the normal functioning of 

PDE4 is permissive for inflammation to progress. What of other PDE isoforms?

Inhibitors o f PDE3 do not have the same effects on TN Fa production as PDE4 inhibitors 

[141]. This may simply reflect the smaller contribution o f PDE3 to total cAMP PDE 

activity seen in many inflammatory cells. The capacity for rolipram to inhibit T N Fa 

without substantial changes to cellular cAMP argues against a dose effect as do equivalent 

studies in macrophages where PDE3 is found in greater quantities than PDE4. Gantner et 

al found rolipram to have a weak inhibitory effect on T N F a production in monocyte 

derived macrophages while PDE3, now representing a greater proportion of the total PDE 

activity had no effect whatsoever [119]. If cAMP production was augmented by the 

addition o f PGE2 then the effect o f rolipram was significantly enhanced, as was, to a lesser 

extent that o f PDE3.

Thus the functional importance o f PDE4 in macrophages and monocytes is seen when 

inhibition o f pro-inflammatory behaviour is investigated. PDE4 inhibition can prevent
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T N Fa production at very low inhibitor concentrations. This effect can be enhanced by 

exogenous stimulators of AC and an equivalent effect is not found with PDE3 inhibitors 

even though PDE3 represents an major cAMP PDE in macrophages.

1.7.3 Compartmentalisation / crosstalk

The apparent ability o f rolipram to inhibit cellular function at concentrations less than are 

required to generate cAMP requires explanation. The principle behaviour o f rolipram is 

PDE4 inhibition and it is this behaviour that has been shown to cause immunomodulation. 

Rolipram may alter intracellular cAMP concentration to levels below the sensitivity o f 

experimental testing. Could such small changes in cAMP have demonstrable effects on 

cellular behaviour however?

One other explanation may lie in the principle of compartmentalisation described in section

1.1.3 [96]. The generation o f localised pools o f cAMP contained by targeted PDE4 

isoform s im plies that very low levels o f cellular cAMP could mask high local 

concentrations. In this case inhibitors causing a relatively small total increase in cellular 

cAMP could have significant influence over a signalling cascade in the same cellular 

compartment by the principle of crosstalk. The principle o f compartmentalisation remains 

to be rigourously tested in inflammatory cells, however several lines o f evidence support 

the concept.

1.7.3.1 Functional specificity o f  PDE isoforms

Firstly studies mentioned above describe a frmctional distinction between PDE3 and PDE4 

inhibitors in terms o f T N Fa inhibition from LPS stimulated macrophages. Chini et al 

describe a similar distinction between proliferation and superoxide release by PDE3 and 

PDE4 inhibitors in renal mesangial cells [98]. They found cAMP suppressed both 

proliferation and superoxide radical release but while PDE3 inhibitors prevented cell 

division, PDE4 inhibitors prevented superoxide radical production. M onocyte ROM
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generation has also been shown to be reduced by PDE4 inhibitors. Further evidence for 

functional compartmentalisation comes from work carried out in a myeloid cell line 

FDCP2 cells [102]. This cell line was reported to have roughly equal amounts of PDE3 and 

PDE4 but they were shown to be under different control. Total cAMP PDE activity was 

increased by treatment with IL-3, IL-4 and GM-CSF and the PKC activator PMA each 

PDE isoform responded differently. While all 4 stimulants activated PDE4 activity only 

IL-4 activated PDE3. IL-4 was shown to activate total PDE activity by PI-3 kinase 

dependent system, but while PDE4 was activated by E R K l/2  activation o f PDE3 was 

ERK l/2 independent. ERK signals were also shown to be responsible for the activation of 

PDE4 by IL-3 and PMA. Thus different PDE isoforms are under different control 

mechanisms which are functionally relevant as they represent the signalling moieties o f 

different pro-inflammatory cytokines. It is interesting from the pathological perspective 

that IL-4 a classical Th2 cytokine activates PDE3 while other cytokines do not.

1.7.3.2 Targeting o f  PDE4

While this work supports functional compartmentalisation of PDE3 and PDE4 it does not 

suggest that PDE4 isoforms are similarly distinct. Some circum stantial evidence does 

suppo rt PDE4 isoform s com partm entalisa tion . It has been suggested  tha t 

compartmentalisation implies certain prerequisites must exist [4]. A regulated source o f 

signal, a detector for that signal and a destroying activity are required. Adenylyl cyclase, 

PKA and PDE4 are all present in macrophages as described above. Another requirement is 

that these molecules are all targeted in the cell. Evidence for targeting o f PKA and AC is 

accumulating from other tissues, although little work has been done in inflammatory cells. 

Circumstantial evidence from non-inflammatory studies supports the targeting o f PDE4 

isoforms in general and suggests possible means o f targeting in inflammatory cells 

specifically.

The PDE4D5 binding partner RA CKl is important in macrophage function [84]. For 

example, impaired T N F a production due to ageing was overcome by replacing RACK
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1[230], RACK 1 has also been shown to associate with the intracellular portions of 

cytokine receptors [89] and (3 integrins [88]. Lyn kinase, a binding partner of PDE4A4, is 

only expressed by haem opoietic cells and has been im plicated in LPS activation of 

macrophages [82] [231]. Huston et al showed that PDE4A was a substrate for caspase3 a 

regulator of apoptosis and was cleaved to produce a more active enzyme [232]. The region 

found to be removed was the SH3 interaction domain implying a possible role for protein 

protein interactions as controlling cAMP in normal cells.

Thus Targeting of PDE4 isoforms within inflammatory cells has a theoretical basis, but the 

concept o f compartmentalisation dependent on differential targeting of PDE4 isoforms 

requires further testing.

1.7.4 Conclusions section 1.7

I have described the molecular basis for cAMP signalling in macrophages. The variety of 

molecules involved in the regulation of this single compound suggest that its control is 

important to the cell and that it may play a number o f roles in cell function. PDE4 

inhibitors, by virtue o f their capacity to elevate cAMP, influence pro-inflammatory 

behaviour. This behaviour has been taken advantage of by the pharmaceutical industries 

who require to address a number o f outstanding questions before rational therapeutic 

manipulation o f PDE4 can be achieved. These questions and possible means o f answering 

them will form the conclusion to this introduction.

1.8 Conclusions and hypotheses

Cyclic AMP signalling depends on a cascade of events and at every level of this cascade 

nature has provided a selection o f molecules from which effectors can be chosen. The 

pressure on nature for efficiency suggests that these choices are not random and that 

redundancy in these families o f signalling molecules is unlikely. Individual PDE4 isoforms 

are therefore likely to provide specific control over cAMP governing specific outcomes
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and in specific circumstances. Considerable circumstantial evidence suggests that sub 

cellular compartmentalisation and inter molecular crosstalk explains the roles o f each 

molecule in a given setting.

M acrophages are im portant cells in the inflamm atory response producing important 

mediators and responding to foreign agents and toxins. They are also regulated to a high 

degree by intra cellular cAMP. Cell line models offer a useful tool for examining the 

control of macrophages in vitro.

I hypo thesised that individual PDE4 isoforms would regula te specific macrophage 

functions. I tested these hypotheses by isolating individual PDE4 iso forms from LPS 

treated macropahges and measuring their activity. I further hypothesised that macrophage 

development from monocyte progenitors would be accompanied by a change in the PDE4 

isoforms expressed. These changes would suggest which isoforms are im portant in 

regulating macrophage functions. Due to the difficulty in acquiring sufficient tissue 

macrophages to measure these low abundance proteins I aimed to develop a cell model of 

macrophage development. I selected the U937 model previously described due the high 

level of characterisation already reported.

Alongside these aims I wished to measure macrophage responses to inhibition of PDE4. I 

used LPS as a stimulus for activation and rolipram as a specific inhibitor of PDE4. I also 

hypothesised that PDE4 engaged in m olecular crosstalk w ith signalling cascades 

downstream of LPS receptors. In particular I aimed to identify a crosstalk model between 

ERK l/2 and PDE4 via Rap-1. I tested this hypotheses by measuring ERIC2 activation in 

the presence and absence o f rolipram.
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Chapter 2 Materials and Methods

2.1 Materials

Unless otherwise stated all chemicals were from Sigma-Aldrich (Gillingham UK, SP8 

4XT) or Fischer Scientific (Loughborough, UK) and were of analytical grade. All solutions 

were prepared in de-ionised and filtered w ater and sterilised where appropriate by 

autoclave or filter.

2.1.1 Bioactive Reagents

The following cell signalling reagents were used. From Sigma Aldrich UK. (Gillingham 

UK SP84XT); Phorbol 12 M yristate 13-Acetate (PMA, Cat No 79346); Salmonella 

Minnesota Lipopolysaccharide (LPS y irradiated and phenoli extracted for cell culture, Cat 

No L4641); Human recom binant Epidermal Growth Factor (EGF, Cat No E9644); 

Salbutamol (Cat No S8260); Wortmannin Pénicillium Funiculosum (Wortmannin, Cat No 

W1628); Cilostamide (Cat No C7971); Tumour Necrosis Factor Alpha (TN Fa, Cat No 

T7539); A ctinom ycin D (Cat No A4262) and Protein K inase A Inhibitor Fragment 

Myristilated (PKA Inhib Myr, Cat No P9115). From Promega UK (Southampton UK, 

S016 7NS): U 0126 (Cat No V I 121) and SB203580 (Cat No V I 161). From Calbiochem 

(San Diego, CA, USA); Indomethacin (Cat No 405268) and H89 dihydrochloride (H89, 

Cat No 371963).
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2.1.2 Antibodies

Name/No Target Source Application Dilution 2°

Schering B Muman
g e n e r ic
isoforms

and rat 
PD E 4B

Schering-plough WB,ELISA,IP 1/1000 R

270 H um an
g e n e r ic
isoforms

and rat 
PD E 4A

S cottish  antibody 
produc tion unit ( 
SBTS. Lanark UK)

WB, IP 1/2000 R

93 H um an
g e n e r ic
isoforms

and ra t 
P D E 4D

S cottish  antibody 
produc tion unit ( 
SBTS. Lanark UK)

WB, IP 1/2000 R

Anti-IntegrinaM
(SC6612)

CD-11 Santa Cruz Biotech. 
(Santa Cruz. CA 
95060. US)

WB 1/5000 G

Anti-PKC(3 Protein 
isoform P

K inase C Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/5000 M

Anti-COX-2
(C22420)

Cyclooxygenase 2 Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/10,000 M

Anti-ERKl/2 
(El 7120-050)

Pan -ERK 1 and 
ERK 2 Mitogen 
activated protein 
kinase

Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/5000 M

Anti-P-ERKl/2
(T202/Y206,
612358)

Phosphorylated 
(activated) ERKl/2

Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/1000 R

Anti-RACK-1 
(TLR20620-050)

RACK-1 Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/10,000 M

Anti-iNOS
(N39120)

Inducible nitric oxide 
synthase

Transduction 
Laboratories 
(Lexington, KY, US)

WB 1/10,000 M

Anti- m ouse/rat 
TNFa (mo46423)

Turn ou r 
factora

necro sis Pharmingen ELISA M

Anti-CREB 
(scl86)

C am p
e lem en t
protein

re sp o n se
b in d in g

Santa Cruz Biotech. 
(Santa Cruz. CA 
95060. US)

WB 1/400 R
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Anti-P-CREB
(sc7978)

Anti-rap 1 
(R22020)

Phosphorylated Santa Cruz Biotech. WB
(activated) CREB (P- (Santa Cruz. CA
Serl33) 95060. US)

Human and mouse Transduction
Rap] Laboratories 

(Lexington, KY, US)

Anti-rabbit HRP Rabbit IgG (Horse Amersham
(A6154) rad ish  perox idase  Pharmacia

conjugated antibody)

Anti-mouse FIRP Mouse IgM (Horse Amersham

WB

WB ELISA

WB ELISA
(NA-931V)

An t i  -B 
(sc9002)

Anti C Raf

rad ish  peroxidase Pharmacia 
conjugated antibody)

R a f  Human B Raf

Human C Raf

Santa Cruz Biotech. IP, WB 
(San ta Cruz. CA 
95060. US)

Santa Cruz Biotech. IP, WB 
(San ta Cruz. CA 
95060. US)

1/400

1/5000

1/5000

G

1/10,000 M

1/10,000 N/A

1/10,000 N/A

M

M

Table 2.1 A ntibodies used in the follow ing research. (WB, Western Blot; IP, 

Immunoprécipitation; ELISA, Enzyme-linked Immunosorbant Assay; 2 ,̂ species o f secondary 

antibody used; M, Mouse; G, Goat; R, Rabbit)
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PDE4 Isoform Forward primer Reverse
Primer

Fragment 
size (bp)

Cycling 
conditions: 
Dn An Ex

PDE4A4B -  specific N- 
terminal region

CGGAAAGGAGCCTGTCT
CTG

AGTGCCATG
GAAGGACGA
GG

257 94 "C 
30 s

60 ”C 
30 s

72°C 
1 m

PDE4A10 -  specific N- 
terminal region

AGATCTGTCAGCTTCGAG
GCAG

AGTGAGAAG
TTGCTACGG
ACGGC

281 94 "C 
30 s

60 T  
30 s

72°C 
1 m

HIV-tat-PDE4B2 -  
specific N-terminal 
region

GAGCTCTATGGCAGGAA
GAAGCGGAGACAGCGAC
GAAGACGGCGGCGGCGG
CGGCGGCGGATGCCTTG
AGATGGCAAAGCACTC

AATCACAGT
GGTGCTCTG
CCTGAGCTC

270 94 T  
Im

68 °C
45 s

72V  
1 m

HIV-tat-PDE4B2 -  full 
length

GAGCTCTATGGCAGGAA
GAAGCGGAGACAGCGAC
GAAGACGGCGGCGGCGG
CGGCGGCGGATGCCTTG
AGATGGCAAAGCACTC

TTATGTATCC
GAGCTC

1861 94 °C 
Im

52 T  
45 s

72V  
1 m

HIV-tat-PDE4D3- 
specific N- terminal 
region

GAGCTCTATGGCAGGAA
GAAGCGGAGACAGCGAC
GAAGACGGCGGCGGCGG
CGGCGGCGGATGATGCA
CGTGAATAATTT

TGGCCAAGA
CCTGAGCAA
ATGAGCTC

358 94 °C 
Im

68 °C 
45 s

72°C 
1 m

HIV-tat-PDE4D3-full
length

GAGCTCTATGGCAGGAA
GAAGCGGAGACAGCGAC
GAAGACGGCGGCGGCGG
CGGCGGCGGATGATGCA
CGTGAATAATTT

GATCTACAT
CATGTATTG
CACTGGCGA
GCTC

2088 94 “C 
Im

52 T  
45 s

72V  
1 m

Table 2.2 Primers used in the following research. Oligonucleotides were ordered from 

Interactiva©, Cycle conditions are as follows: Dn, dénaturation; An, annealing; Ex, 

Extension; S, seconds; M, minutes
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Clone
(name)

Plasmid/ 
Restriction site

Description: Source: Reference:

PDE4B1 
(pcDNA R89)

PcDNA 3 .0 / 
Notl

Native PDE4B1 G Bolger [233]

PDE4B2 PcDNA 3 .0 / 
Notl

Native human PDE4B2 G Bolger [233]

PDE4B3 PcDNA 3.0/ 
Notl

Native human PDE4B G Bolger [233]

PDE4B4 PcDNA 3.0/ 
Notl

Native Rat PDE4B4 G Bolger (326)

PDE4B4-
S56D

PcDNA 3.0 / 
Notl

PDE4B4 with Ser56 mutated to 
Asp, mimicking the 

phosphorylated conformation.

G Bolger (326)

PDE4B4-
S56A

PcDNA 3 .0 / 
Notl

PDE4B4 with Ser56 mutated to 
Ala preventing the phosphorylation 

at this site.

G Bolger (326)

PDE4B4-
S14D

PcDNA 3 .0 / 
Notl

PDE4B4 with Seri 4 mutated to 
Asp, mimicking the 

phosphorylated conformation.

G Bolger (326)

PDE4B4-
S14A

PcDNA 3 .0 / 
Notl

PDE4B4 with Seri4 mutated to 
Ala preventing the phosphorylation 

at this site.

G Bolger (326)

PDE4B4-
FLAG

PcDNA 3.0 / 
Notl

Native Rat PDE4B4 tagged with 
FLAG peptide sequence

G Bolger (326)

PDE4B4-
S56D

PcDNA 3 .0 / 
Notl

PDE4B4 with Ser56 mutated to 
Asp, tagged with FLAG peptide 

sequence.

G Bolger (326)

PDE4B4-
S56A

PcDNA 3 .0 / 
Notl

PDE4B4 with Ser56 mutated to 
Ala tagged with FLAG peptide 

sequence.

G Bolger (326)

PDE4B4-
S14D

PcDNA 3 .0 / 
Notl

PDE4B4 with Seri 4 mutated to 
Asp, tagged with FLAG peptide 

sequence.

G Bolger (326)

PDE4B4-
S14A

PcDNA 3.0 / 
Notl

PDE4B4 with Seri4 mutated to 
Ala tagged with FLAG peptide 

sequence.

G Bolger (326)

PDE4A4 PcDNA 3.0 Native human PDE4A4 sequence In house [76]
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PDE4A10

PDE4D3

Rap 11A

Rap IA
SI 80A

Rap 1A- 
S180D

RaplA-
Serl2-Val

RaplA-
T17N

PcDNA 3.0

PcDNA3 / Notl

Native human PDE4A10 
sequences

In house

PcDNA 3.0 Native human PDE4D3 sequence In house

Native RaplA

PcDNA3 / Notl RaplA with Seri 80 mutated to Ala
preventing PKA phosphorylation

PcDNA3 / Notl RaplA with Seri 80 mutated to 
Asp mimicking PKA 

phosphorylation

pEXV3 RaplA with Seri2 mutated to Val
resulting in a constitutively active 

conformation

pEXV3 Rap 1A with Thr 17 mutated to Asn
resulting in a dominant negative 

conformation.

In house

In house

In house

J Bos et al

J Bos et al

[234]

[66]

[235] 

[235]

[235]

[204]

[204]

Table 2.3 Plasmids used in the following research. Various plasmids were used in the 

course o f this project. Some were cloned sequences generated in our laboratory, while 

some were gifts from kind collaborators. P rof G Bolger provided many o f the PDE4 

constructs in particular the PDE4B4 constructs. The R aplA  activation mutants were kind 

gifts from Prof J Bos.

Plasmids were transformed into E Coli bacteria and stored as glycerol stocks at -70 C.
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2.2 Buffers and Solutions

2.2.1 Cell Culture

2.2.1.1 Cell Culture Medium  

DMEM

Dulbecco’s modified Eagles Medium (GibCo Life technologies, Paisley, UK. Cat No 

11965). This medium supports the growth of a broad range o f mammalian cell lines.

RPMi 1640

Roswell Park Memorial Institution 1640 (GibCo Life Technologies, Paisley, UK. Cat No 

11875). This medium supports mammalian cell lines and was originally developed to 

support growth o f leukaemic cells.

Complete medium

Cell culture medium with the addition o f 10% (v/v) fetal calf Serum, 2mM L- 

Glutamine, 1 unit/ml penicillin and 1 mg/ml streptomycin.

Serum free medium

As complete but excluding fetal calf Serum

Transfection medium

5ml Complete medium (replacing fetal calf Serum newborn calf

Serum.)

1 OOpM Chloroquine
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2,2.1.2 Cell culture buffers 

Wash Buffers

Phosphate Buffered Saline (PBS)

2.7mM KCl
137mM NaCl
4mM NaiPOq

Tris Buffered Saline (TBS)

137mM NaCl
20mM Tris pH 7.6

Transfection Buffers

T E Buffer

lOmM Tris-HCl pH 7.2
IniM EDTA

DNA adhesion buffer

lOOmg DEAEDextran
10ml PBS

Shock Buffer

10%(v/v) DMSO/PBS

Lysis Buffers

KHEM lysis Buffer

50mM Hepes KOH, pH7.4
50mM KCl
lOmM EGTA
1.92mM MgClz

3T3 -  Lysis Buffer

50mM HEPES, pH 7.2
lOmM EDTA
lOOmM NaH 2P 0 4 ,2 H 2 0

1 % (v/v) Triton X -100
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Nuclear Buffer A

lOmM Hepes pH 7.5
1.5mM M gCb
lOmM KCl
0.5mM DTT

Nuclear Buffer B

20mM Hepes pH 7.5
20%(v/v) Glycerol
0.2mM EDTA
0.5mM DTT

Protease Inhibitors

Protease inhibitors were included in all lysis buffers and were added immediately 

before use to a final concentration o f 40p,l/ml. Complete EDTA free protease 

inhibitors were from Boheringer Mannheim, and made up as 2ml HzO/tablet.

2,2.2 Biochemical Techniques

2.2.2.1 Lactate dehydrogenase (LDH) reaction buffer 

150mM Tris HCl pH 7.4

2.2.2.2 LD H  reaction mix:

Washed fraction mix;

186pl LDH reaction buffer 
7|il lOmM Pyruvate

7ji.l Lysate sample

Occluded fraction mix:

17 2jil LDH reaction buffer 
7pi 1 OmM Pyruvate
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7pi Lysate sample
14pl Triton X -100

2.2 .23  PDE4 Assay buffer

lOmM M gC li
20mM Tris/HCl, pH 7.4

2.2.2.4 PDE4 Assay Dilution Buffer 

20mM Tris/HCl, pH 7.4

2.2.2.5 Protein Kinase Assay Bujfer (2X)

lOOmM Tris
3 OmM MgCl:
3 OmM P-mercaptoethanol
20% (v/v) Glycerol

2.2.2.6 Kinase Assay Reaction Mix

500pl 2X KAB
lOpl [32p]y-ATP
490pl H2 O

2.2.2.7

O.IM Na2P04 (pH 9.0)

2.2.2.8 ELISA Blocking Buffer

10% fetal bovine serum in western blot wash buffer

2.2.2.Ç ABTS Substrate Solution

150mg 2,2’-AzinO“bis-(3-ethylbenzthiazoline-6-sulfonic acid)
500ml O.IM anhydrous citric acid in dH20

2.2.2.10 5X  SDS loading buffer

0.26M Tris/HCl (pH 6.7)
55.5% Glycerol
8.8% SDS
11.1% b-mercaptoethanol

2.2.2.11 2X S D S  loading buffer

0.125M Tris/HCl (pH 6.7)
25% Glycerol
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4% SDS
5% b-mercaptoethanoi

2.2.2.12 Acrylamide resolving gel (6-8%)

6-8% 29:1 Acrylamide:N,N’-methylenebisacrylamide mix
0.375M Tris/HCl pH8.8
0.1% SDS
0.1% Ammonium Persulphate
0.06% N ,N ,N hN ’-tetramethylethylenediamine (TEMED)

2.2.2.12 Acrylamide resolving gel (10-15%)

10-15% 29:1 Acrylamide:N,N’-methylenebisacrylamide mix
0.375M Tris/HCl pH8.8
0.1% SDS
0.1% Ammonium Persulphate
0.04% TEMED

2.2.2.14 Acrylamide stacking gel

5% 29:1 Acrylamide:N,N’-methylenebisaciylamide mix
0.125M Tris/HCl pH8.8
0.1% SDS
0.1% Ammonium Persulphate
0.1% TEMED

2.2.2.15 Tris-Glycine running buffer

192mM Glycine
25mM Tris
0.15% SDS

2.2.2.16 Transfer Buffer

192mM Glycine
25mM Tris
20% Methanol

2.2.2.17 Western Blot Wash Buffer

137mM NaCl
2OmM Tris pH 7.6
0.05% Tween

2.2.2.18 Blocking Buffer

137mM NaCl
20mM Tris pH 7.6
0.05% Tween
5%(w/v) Skimmed milk protein
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2.2.2.19 Antibody Dilution Buffer

137mM NaCl
20mM Tris pH 7.6
0.05% Tween
l%(w/v) Skimmed milk protein

2.2.2.20 Ponceau S  stain

0 . 1%
3%

Ponceau S 
Trichloroacetic acid

2.2.2.21 Coomassie stain

0,025% Coomassie brilliant blue R 250
40% Methanol
7% Acetic acid

2.2.2.22 Destain

40%
7%

Methanol 
Acetic acid

2.2.3 Molecular Biological techniques

2.2.3.1 Tris Acetate Electgrophoresis (TAE) Buffer

2M Tris
IM Acetic acid
0.05M EDTA

2 PCR Reaction mix

50mM KCl ( 1 OX in Taq polymeRase buffer)
1 OmM Tris HCl (lOX in Taq polymeRase buffer)
200pM dATP
200pM dCTP
200pM dTTP
200pM dGTP
1.5mM M gCb
> ln g Template DNA
5 units Taq polymeRase
0.5pM sense/antisense primer



66

2.23 .4  cDNA synthesis mixture (all solutions from  kit)

llpl
Ipl
Ipl
20pl

“Bulk first strand cDNA mix” 
DTT solution
N otl-d(T)10 (0.2pg/pl) primer 
heat-denatured RNA

2.2.3.5 L-Broth

170mM 
0.5%(w/v) 
1 %(w/v)
+ /-

NaCl
Bacto-Yeast extract
Bacto-Tryptone
Antibiotic

2.2.3.Ô LB-Agar

170mM
0.5%(w/v)
l%(w/v)
2%

NaCl
Bacto-Yeast extract
Bacto-Tryptone
Agar

lOmM 
15 OmM 
ImM

Tris pH 8.0
NaCl
EDTA

2.2.3.8 Bacterial lysis reagents stoc/cs

Lysozyme 
Sarkosyl 
Triton X-100

lOmg/ml in STE 
10% in STE 
10% in STE
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2.3 Mammalian cell culture

All solutions used in the manipulation of cell culture were heat sterilised by autoclave.

2.3.1 Cell lines

COS 1 cells are an African green monkey renal cell line immortalised with an origin 

defective mutant simian virus 40 (SV 40). The expression o f the SV 40 T antigen in COS 

cells facilitates the transcription o f plasmid DNA containing the SV 40 origin o f 

replication. This characteristic means that COS cells provide an excellent vehicle for 

transient transfection for analysis o f over expressed proteins. COS 1 cells were maintained 

in com plete DMEM unless being prepared for transfection or Serum starved for 

stimulation. Trypsin EDTA (Sigma Aldrich T4299), solution is required to passage COS-1 

cells as they are firmly adherent to plastic.

23.7.2 C/937 (EC4CC3307/4(4(0)

U937 cells are derived from a human histiocytic lymphoma and continue to express many 

monocytic markers. U937 is a useful tool to investigate the mechanisms of monocyte 

inflammatory signalling. They are a suspension cell and were maintained in RPM I 

medium. U 9 3 7 p m a  were U937 cells treated with 4nm PMA for 4 days. Medium was 

replaced after 2 days.

23.7.3 TCmv 2W. 7 cgZ/j- (EC4CC 97002707;)

Raw 264.7 monocyte macrophage cells were isolated from a murine lymphoma caused by 

the Abelson leukaem ia virus. They are capable o f phagocytosis and have many
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charateristics o f macrophages. They are adherent and were m aintained in complete 

DMEM.

2.3.1.4 Human Monocytes

Human monocytes were collected to compare with a model based on the U937 cells.

I D o n o r  S e le c t io n

Normal healthy volunteers were selected and full ethics approval was obtained from the 

local ethics committee.

II M o n o c y t e  Iso la t ion

Heparanised whole blood was collected and centrifuged over Ficoll-Hypaque at 350 X G 

for 30 mins. The mononuclear cell layer was removed and washed in Ca^^ and Mĝ "̂  - free 

Hanks salt solution and resuspended in RPM I (Section 2.2.1.1). Monocytes were isolated 

by incubation with paramegnetic beads conjugated to anti-CD 14 antibodies (Dynabeads 

M-450 CD -14) and magnetic separation according to manufacturer's instructions.

III M o n o c y t e  C u l tu re

Monocytes were cultured under standard conditions (Section 2.3.2) in plastic lOOcm^ 

culture plates. Culture was allowed to proceed for varying lengths of time ( 0 - 7  days) with 

frequent changes in culture medium.

2.3.2 Culture Conditions

All mammalian cell culture was performed in incubators maintaining ambient temperature 

at 37°C and a 5%C02 enriched atmosphere. COS and Raw 264.7 cells were grown in 

continuous culture as a monolayer. U937 cells were grown as a continuous suspension.
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Cells were passaged at approxim ately 90%, confluence and were split 1:5. This 

necessitated passage every 4 days.

2.3.3 Pharmacological treatment

Unless otherwise stated cells were Serum-starved for 4 -1 2  hours prior to the addition of 

pharmacological agents. Signal transduction inhibitors were added 30 minutes prior to 

further stimulation or manipulation. Pharmacological agents were stored at -20°C as 10 X 

stock solutions. Lipopolysaccharide was used both in the presence and absence of Serum to 

allow for the presence of LPS binding proteins.

2.3.4 Transfection

Plasmid DNA was prepared for bacterial hosts and diluted in TE buffer (2.2.1.3.1).

2.3.4. ID EAE Dextran transfection

24 hours prior to transfection 90% confluent COS 1 cells were split 1:2. They were grown 

overnight until 50-60% confluent. lOpg plasmid DNA per 79cm^ cells was diluted to 

40ng/ml in sterile TE buffer (2.2.1.3.1), then further diluted in DNA adhesion buffer 

(2.2.1.3.2) to 40ng/ml. This mixture was incubated at room temperature for 15 min and 

5ml transfection medium (2.2.1..1.5) at 37°C was added. This was mixed then added to 

flasks from which medium had been freshly removed. Following 3-4  hours incubation, 

DNA solution was aspirated and cells were shocked by the brief (2 min) addition of 2 ml 

shock buffer (2.2.1.3.3). Cells were washed once with 10 ml PBS and complete DMEM 

added. Cells were incubated for 72 hours before being harvested.

Where mock transfections were run in parallel all steps were followed, but DNA was 

omitted.
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23 .4 .2  Superfect transfection (Qiagen)— as per manufacturer's instructions

24 hours prior to transfection Raw 264.7 cells were split to 50% confluence and grown 

over night. 5|ng/ 60mm dish DNA was dissolved in 10|ul TE buffer. 130|Ul Non enriched 

DMEM was added, followed by 30|ul superfect reagent. The solution was mixed then 

incubated at RT for 10 minutes. 1ml complete DMEM was added to the DNA solution and 

this was added to cells. Cells were incubated for 3 hours under normal conditions, then the 

solution was removed and cells washed once with PBS at 37°C. Complete DMEM was 

added and incubated for 72 hours prior to harvest.

2.3.5 Cell counting

Cell number was calculated using a standard haemocytometer. Suspension cells were 

diluted in trypan blue 1:1 (v:v), and injected under a cover-slip on an haemocytometer. 

Cells deemed viable by their ability to exclude trypan blue were counted in 5 defined areas 

in two regions o f the haemocytometer and the mean calculated. This figure was then 

adjusted for dilution and volume. Where adherent cells ( U 9 3 7 p m a )  were counted these 

were grown on gridded cover-slips and counted in the same way.

2.3.6 Disruption

Prior to disruption cells were either washed 3 times in PBS and scraped (adherent cells) or 

collected from suspension by centrifugation and washed 3 times in PBS.

2.3.6.1 Non-detergent based lysis

Cells were homogenised in KHEM buffer with 0.5mM DTT and pro tease inhibitors by 

passage through a 26 gauge needle 10 times. The homogenate was then fractionated by 

centrifugation at 2,000 rpm for 5 minutes and the supernatant (SI)  was removed. The
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resulting pellet (P I) was washed in KHEM buffer and kept on ice until resuspension. The 

SI was further fractionated by high-speed centrifugation (55,000rpm for 30 minutes), 

producing a supernatant (S2) and pellet (P2). The P2 fraction was washed in KHEM buffer 

and both pellets were resuspended in a volume equal to the final volume o f the S2 fraction. 

Lactate dehydrogenase assay was performed to confirm the integrity o f each fraction.

23 .6 .2  Detergent based lysis

Washed cells were either scraped into (adherent cells), or added to 3T3 lysis buffer and 

incubated end over end for 30 minutes before separating the detergent insoluble fraction by 

centrifugation at 13,000 rpm for 5minutes. The detergent soluble supernatant was reserved.

2.3.6 .3 Nuclear fractionation

Preparations of enriched nuclei from RAW 264.7 cells were prepared as follows. Washed 

cells were resuspended in 500 |ll1 nuclear buffer A to which the detergent NP40 (0.1%v/v) 

had been added. Cells were mixed and gently pipetted on ice for 10 minutes before being 

separated by centrifugation at 12,000rpm for 5 minutes. Pellet was retained and 

resuspended in 300pl nuclear buffer B. Enriched nuclei were lysed by sonication on ice at 

40W, for 5 seconds. Sonicate was separated by centrifugation at 12,000 rpm for 5 minutes 

and the supernatant was retained.

2.4 Biochemical Techniques

2.4.1 Sample preparation and storage

Protein samples for western blot analysis were diluted in 5X SDS loading buffer and 

heated to 100° C for 5 minutes to denature the proteins.
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Protein samples for enzyme assay analysis were frozen in liquid nitrogen and stored at 

-70°C until use.

Protein samples for other forms o f analysis were frozen in liquid nitrogen and stored at 

-20°C.

2.4.2 Protein quantification (Bradford's assay)

Lysate protein content was measured in 96 well microtitre plates against a standard curve 

derived from known concentrations o f bovine Serum albumin (BSA) 0-5p,M. A series o f 

dilutions o f test lysate were made in 50jul volumes and 200|ul 1:5 B radford’s reagent was 

added to these and the standard curve protein. Light absorbance at 590nM was measured 

on a MRX microtitre plate reader (Dynex teehnologies). All samples were measured in 

triplicate.

2.4.3 Lactate Dehydrogenase (LDH) Assay

To confirm the integrity o f high speed fractionation the activity o f the cytosolic enzyme 

lactate dehydrogenase (LDH) was measured in each fraction. The following reaction 

allows quantification o f NADH oxidation to be measured spectrophotemetrically in 96 

well microtitre plates using a MRX microtitre plate reader at 340nm wavelength:

Pyruvate + NADPLI ----- ► Lactate 4- NAD

The activity o f washed and occluded fractions were measured by setting up pre-reaction 

solutions and the reaction was started by the addition of lOfil 2mM P-NADH. Readings 

were taken at 20 second intervals for 10 minutes. The rate o f extinguishing was 

proportional to the LDH activity in the sample, and the difference between washed and 

occluded fractions represented contamination o f pellet fractions by intact cells or S2. 

(appendix 2  demonstrates the integrity of fractionation measured in this way).
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2.4.4 Phosphodiesterase assay

Cyclic AMP was stored at -20°Cas a lOmM stock and diluted to ImM  immediately prior

to use. Substrate solution was prepared by further diluting the stock cAMP to 2pM in assay

1 -1 buffer supplemented with 8 - H cAMP (O.OOSjnCi pi ). The reaction was performed in

lOOpl volume consisting o f 50pl cAMP (final concentration IpM ) and 40pl sample lysate. 

Rolipram or assay buffer contributed the remaining lOpl. The solution was mixed by 

vortexing and the reaction was performed at 30°C for 10 minutes. Where PDE4 activity 

was less abundant a longer reaction period was used after ensuring this remained in the 

linear range o f the reaction. Placing in boiling water for 2 minutes stopped the reaction and 

tubes were cooled on ice.

25pl of 1 mg/ml snake venom (Crotalus atrox venom) was added to the reaction and mixed 

by vortexing. This was then incubated for 10 minutes at 30°C and cooled on ice. 400 pi of 

a 1 :1 : 1  solution o f activated dowex : water : ethanol was then added, and thoroughly 

mixed. This was then incubated on ice for a minimum of 15 minutes with regular agitation 

before being vortexed and separated by centrifugation at 13,000 rpm for 3 mins. 150pl of 

the top soluble layer was then removed and added to 1 ml o f scintillation fluid and counted 

on a Wallac 1409 liquid scintillation counter.

Data was processed using the following calculation where X is the mean o f the PDE 

activity measured in triplicate with a value o f non-metabolised cAMP subtracted.

(X/ (total activity o f 50pl 2pM  cAMP solution)  ̂ 391.67/150 (representing the proportion 

o f total reaction supernatant sampled) * (1*10'^-10 / 10) (representing moles of cAMP in 

solution divided by the time of the reaction) \ 0 3 2  (converting to picomoles)) / quantity 

o f protein in pg tested. This equation produces an activity in terms o f velocity
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pmol/min/pg. W here activity is expressed as pmol/min/mg the figure is multiplied by 

1000 .

2.4.5 Kinetic analysis o fP D E 4 isoforms

When characterising the activity o f PDE4B4 I modified the asssay as follows.

2.4.5.1 Transfection specific activity

For each transfection o f active PDE4B4, a mock transfection and a comparison PDE4B 

isoform were included as controls. To calculate the specific activity for each PDE4B4 

assay mock activity for a given [cAMP] was subtracted from the transfected activity under 

investigation.

2.4.5.2 Relative transfection efficiency

Comparison o f relative activities between two transfections requires assessment of enzyme 

expression for each. Quantative analysis was performed by ELISA using antisera raised 

against the C-terminal region o f PDE4B iso forms or by semi-quantitative western blot 

analysis. In the latter analysis increasing quantities o f protein from two transfection lysates 

were western blotted beside each other. Densitometry using Kodak 2.0 software was then 

used to construct protein Vs density plots. The gradient o f these plots reflects the amount 

of transfected protein present. The ratio o f these gradients was used to adjust activities 

against each comparative experiment.

2.4.5.3 Relative activity determination

To define the K ^  o f PDE4B4, data from PDE assays over a range of cAMP concentrations

0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6 , 8 , 10, 15, 20, 25, 30pM, were plotted and analysed using
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computer m odelling o f the parabolic form of the M ichaelis-M enton equation. This 

equation (y=(M l*M 0)/M 2+M0, where y = V obs, M l = V max, MO = [cAMP] and M2 =

Km), was used to calculate the Km- Each assay was performed in triplicate and each

experiment was performed on three transfected samples. Equal amounts o f enzyme were 

used to generate Kobs and V max was calculated for IpM  cAMP. Relative V max 

calculations were calculated by comparing V max for PDE4B4 and comparing it against V 

max for a known PDE4B control.

2.4.5A I C 50 Rolipram

IC50 o f an enzyme for its inhibitor is calculated by measuring the activity of an enzyme at a 

set substrate concentration in this case 1 pM cAMP, in the presence o f varying amounts of 

inhibitor. I used 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01 and 0 pM rolipram and 3pg lysate 

protein. IC50 was then calculated by using a least squares log fitting algorithm.

2.4 . 6  Preparation and running o f  Tris-Glycine gel

Both mini-gels and standard 25cm gel kits (Bio-RAD, Hemel hempsted) were used for 

SDS-Poly-acrylam ide gel electrophoresis (SDS-PAGE) during this work. The gel 

apparatus was assembled as per the manufacturer’s instructions. A resolving gel (2.2.2.11, 

2 .2 .2 . 1 2 ) appropriate for the molecular weight of the protein under investigation (see table 

2.4) was prepared and poured between the plates. A protective layer o f deionised water 

was poured on top to exclude oxygen during polymerisation. The gel was left for a 

minimum o f 30 minutes at room temperature. One hour before use a stacking gel was 

prepared and poured on top o f  the resolving gel (2.2.2.13). Once poured a comb was 

inserted to make wells in the stacking gel. Running buffer was used to clean the individual 

wells o f non-polymerised gel solution. Samples prepared in SDS sample buffer (2.2.2.10) 

were warmed to 40°C prior to being loaded into wells. The gel was then immersed in a
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tank containing tris-glycine running buffer (2.2.2.14). A hood connected to an electrical 

supply was connected and electrophoresis was performed for 1-4 hours (40 V / gel) or 16 

hours ( 8  V/gel).

Acrylamide content (%) Molecular weight (kDa)
8 40-200
1 0 2 1 - 1 0 0

1 2 10-40

Table 2.4 Range of protein separation on SDS PAGE

2.4.7 Transfer to nitrocellulose

Once SDS-PAGE was complete the gel was removed and layered on a pre-soaked 

nitrocellulose membrane (Bio-RAD XjUiM). This was then immersed in transfer buffer and 

sandwiched between two protective non-insulative plates bound by 3mm blotting paper 

(Whatman, UK). This assembly was slotted in a transfer tank and proteins were electrically 

transferred to nitrocellulose at 1 A, for 1 hour. To confirm adequate transfer and equal 

loading o f lanes, membranes were washed in Panceau red stain to visualise proteins 

(2.2.2.19).

2.4.8 Immunostaining o f  proteins

Membranes were blocked in 5% milk protein blocking buffer (2.2.2.17), for 1 hour and 

washed in wash buffer three times (2.2.2.16). Proteins were visualised by incubation with 

antibodies raised against the proteins selected, at the pre-determined concentrations in 1 % 

blocking buffer. Incubations were performed for 4 hours at room temperature or o/n at 

4°C. Membranes were washed 3 times in wash buffer and incubated with peroxidase- 

conjugated secondary antibody (0 .0 0 0 0 1 %), appropriate for the species o f the primary 

antibody in 1% blocking buffer (see table 2.1). After 1 hour membranes were washed and
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treated with ECL-reagent (Amersham ltd) prior to development on blue light sensitive film 

(KODAK, UK).

In all cases positive controls were recombinant proteins expressed in COS cells (SAPU, 

PDE4 isoform antibodies) or well characterised cell conditions supplied with antibodies 

(commercial antibodies).

2.4.9 Quantification o f  western blot analysis

Where quantification of expressed protein was required radiographs were scanned on and 

densitometry o f expressed band was performed using kodak ID software. A control band o f 

recombinant sample, fi'om transfected COS cells was used as a blank value and different 

quantities o f cell lysate were compared to generate a range o f values. A mean of these 

values was used for comparison with a similarly calculated mean for an opposing set of 

conditions.

In the specific case o f phospho-ERK antibodies, the ratio o f P-ERK band density was 

compared with total ERK band density and ratios are expressed.

2.4.10PDE4B2 Back Phosphorylation

Six confluent flasks o f RAW 264.7 cells were treated with LPS for a range o f time 

intervals. Cells w ere w ashed in ice cold PBS and lysed in 3T3-lysis buffer. 

Immunoprécipitation of PDE4B isoforms was performed as described below. After 2 hours 

incubation with antibody captured PDE4B was isolated on protein A-beads, beads were 

collected and washed 3 times in 3T3-lysis buffer containing protease inhibitors. Beads 

were then washed once in PBS and once in kinase assay buffer (2,2.15).
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To Im l o f kinase assay reaction buffer, lp,l 0.2mM ATP-P^^ was added. W here 

phosphorylation was to be performed, l|al (21.4mU) recombinant ERK kinase was added 

to the immunoprecipitates in a micro-tube, followed by 50|O.l reaction buffer. These were 

mixed and incubated for 30 minutes at 30°C. Beads were collected by centrifugation, and 

supernatant removed. Beads were then boiled in 2X sample buffer collected and 

supernatants were loaded onto an SDS-poly acrylamide gel.

Following SDS-PAGE, proteins were transferred to a nitrocellulose and incubated on a 

phosphoimage plate and images were quantified on a phosphoimager (Bio-Rad LTD, UK).

2.4.11 Immunoprécipitation and Co-immunoprecipitation

Immunoprécipitation was performed using antisera, raised against cell signalling molecules 

in non-immune animals. Pre-immune serum is serum from the animal used to raise the 

antisera, prior to exposure to the antigenic portion of the molecule. Ranging experiments 

were performed to assess the optimum ratio of cell protein to antisera to immunoprecipitate 

all active target molecule.

Cells lysates were prepared in 3T3-lysis buffer and protein content quantified. A volume 

of cell lysate equivalent to the required amount o f protein was incubated with a volume of 

preim m une serum  equal to the volum e o f im m une serum  to be used for 

immunoprécipitation. Incubation was allowed to continue for 1 hour at 4°C end over end. 

During incubation, 60jil o f protein A beads per immunoprecipitate sample were prepared 

by repeated centrifugation at 13,000rpm and washed in lOOjul 3T3 lysis buffer with 

protease inhibitors. Immediately prior to use these beads were washed again, distributed to 

micro-tubes and immunoprecipitate samples were added. Protein A binds to the Fc portion 

o f IgG antibodies allowing these to be isolated from solution. Further incubation was 

allowed to continue for 30mins at 4°C.
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Preimmune antibodies bound to protein A coated beads were removed by centrifugation, 

and antiserum was added to the resulting precleared lysate. Incubation with antiserum was 

allowed to continue for 2 hours at 4°C, before being added to protein A beads prepared as 

above. Further incubation was allowed to continue for 30 mins at 4°C and beads were 

collected by centrifugation at 13,000rpm.

Protein A beads were washed in PBS with IpM  DTT, and protease inhibitors, twice and 

transferred to a new microtube. Where immunoprecipitates were to be analysed by western 

blot, beads were washed once more in 3T3 lysis buffer with protease inhibitors, collected 

by centrifugation and resuspended in IX SDS loading buffer. These samples were boiled 

for 5 mins and the bead free supernatant was collected and loaded onto polyacrylamide gel. 

Where immunoprecipitates were to be analysed by phosphodiesterase4 assay, beads were 

washed once in PDE4 assay buffer with IjiM  DTT and protease inhibitors, before being 

resuspended in I20p.l PDE4 assay buffer and distributed evenly between three microtubes.

2.4.12Enzyme-linked Immunosorbant Assay (ELISA)

ELISA was performed to quantify the amount o f protein in cell lysate or cell culture 

medium. All ELISA was performed with test samples in parallel with standards o f known 

quantity, by which a standard curve was generated. Four different quantification protocols 

were followed. Where cell culture medium was being assayed, standards were prepared in 

the culture medium used. Where cell lysate was prepared all samples were diluted in lysis 

buffer to a range o f protein concentrations (Appendix 1, presents the standard curves 

prepared).

2.4A 2.1 "In -  house ” TN Fa assay

Anti- T N Fa capture antibody, was diluted in ELISA binding buffer to 2pg/ml and 50|Ll1 of 

the resulting solution was added to each well of a 96 well ELISA plate. Plates were sealed
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with wax paper and incubated for 1 Shours at 4°C. Plates were warmed to room temperature 

and excess capture antibody removed by washing twice with PBS. Non-specific peptide 

binding was blocked by incubating each well for 2 hours at room temperature with 1 OOpl 

ELISA blocking buffer. Blocking buffer was removed by 3 washes with western blot wash 

buffer.

Samples and standards were prepared in DMEM lOOpl. T N Fa standards were prepared by 

multiple dilutions from 200ng/ml to 0.195ng/ml. lOOjil samples and standards were added 

to each well the plate was sealed with wax paper and incubation was allowed to continue 

overnight at 4°C. Following incubation plates were allowed to rewarm to room temperature 

and wells were washed 4 times with western blot wash buffer.

Biotinylated anti- T N Fa was diluted to Ifig/ml in western blot wash buffer, and lOOpl was 

added to each well. Incubation was allowed to continue for 1 hour at room temperature and 

plates were washed with lOOpl wash buffer per well 4 times. Avidin-horse radish 

peroxidase conjugate (Av-HRP) was diluted to 2pg/ml in ELISA blocking buffer and 

lOOpl was added to each well. Incubation at room temperature was allowed to continue for 

30 minutes before each well was washed in western blot wash buffer 4 times.

ABTS substrate solution was thawed immediately prior to use and 1 00|il H 2 O2 added to 

1 Imls solution. lOOpl o f prepared substrate solution was added per well and incubated at 

room temperature in the dark until colour change occurred. Plates were read in a micro- 

titre plate reader at 405nm over a range o f time. Standard curves were calculate from the 

standards and samples were measured by reference to this standard curve. Appendix 1.2 

presents a typical example of a cytokine standard curve.
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2.4.12.2 Commercial TN Fa ELISA (Chemicon International, Inc, CA, USA)

For T N F a assay in RAW 264,7 cells transfected with Rap-1 mutants the commercial 

mouse T N Fa enzyme immunosorbant assay (EIA) kit (Chemikine, mouse TN Fa EIA kit, 

Cat CYT140) was used. This kit is a competitive EIA using wells precoated with T N Fa 

antiserum to which samples and standards were added. Following washing biotinylated 

TN Fa was added to occupy free antibody sites. Streptavidin-alkaline phosphatase was 

bound to the biotin and colour reaction was achieved with commercial solutions and 

quantified by absorption at 490nm. In contrast to the in-house T N F a ELISA, a high 

reading indicates free antibody and therefore a low TN Fa content in the test solution.

2.4.12.3 Recombinant Protein ELISA

Where relative transfection efficiencies were compared by cell lysate ELISA for PDE4 

isoforms the volumes of cell lysate representing a range of protein quantities, prepared in 

KHEM were allowed to bed in 96 well ELISA plates at 4°C overnight. PDE4B content of 

this embedded lysate was detected by incubating each well with PDE4B antiserum diluted 

1/5000 in ELISA blocking buffer. Incubation was allowed to continue for 1 hour at room 

temperature and antibody was removed by washing 4 times with western blot wash buffer. 

HRP conjugated anti-rabbit antibody was diluted to 0.5jig/ml in ELISA blocking buffer 

and lOOjil was added to each well. Incubation was allowed to continue for 1 hour at room 

temperature and antibody was removed by washing 4 times in ELISA wash buffer.

ABTS substrate solution was prepared as for cytokine detection, and 100|ul was added to 

each well and incubation was continued for a range o f time periods at room temperature in 

the dark. Protein was quantified by optical density measurement at 405nm and relative 

protein quantities were plotted by O.D. against protein quantity. A representative assay is 

presented in appendix 1.2 (p249).
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2.4.12.4 Prostaglandin E2 (PGE2) EIA

PGE2 production from RAW264.7 cells was quantified using the commercial EIA kit from 

Cayman chemicals CO, USA. This competitive ETA uses 96 well ELISA plates coated 

with goat anti-mouse antiserum to which a mixture of sample or standard, mouse anti- 

PGE2 antiserum and alkaline phosphatase conjugated PGE2 is added and incubated at 

room temperature for 2 hours. This mixture is washed and colour reagent added. The 

resulting colour change is quantified by light absorption at 490nm and a plot o f known 

standard against OD 4 9 0nm was used to generate a standard curve. Test samples were 

calculated from this standard curve (appendix 1.3, p250).

2.5 Molecular biology techniques

2.5.1 Plasmid /  DNA preparation

Glycerol stocks of E Coll transformed with plasmids encoding recombinant proteins were 

maintained at -70 °C. Prior to bulk preparation a sample o f stock was smeared on antibiotic 

selective agar plates, and grown o/n at 37 °C. One colony was selected to innoculate a 10 

ml (mini-prep) or a 400ml (maxi-prep) flask o f L-Broth with appropriate antibiotic added. 

A fter incubation for 24 hours, bacteria were collected by centrifugation. Plasmid 

preparation was performed using either Qiagen’s QIAprep maxiprep kit or QIAprep spin 

miniprep kit. Manufacturer’s instructions were followed at all times.

Recovery o f cDNA from agarose gels was achieved using Q iagen’s Q IAquick gel 

extraction kit following manufacturer’s instructions.
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2.5.2 RNA extraction

Cells were collected by centrifugation and homogenised in Tri-reagent (1m l/10'^7 cells) 

using a 12 guage needle. Homogenates were incubated at room temperature for 5 minutes, 

transferred to sterile eppindorph tubes and centrifuged at 13,000rpm for 5 minutes to 

remove cell debris. Supernatants were transferred to fresh tube, 0.2ml RNAse-free 

chloroform was added and solutions were mixed by vortexing for 15 seconds. RNA and 

DNA were phase separated by incubating the mixed solutions at room temperature for 3 

minutes, then centrifugation at 13,000 rpm for 15 minutes. The aqueous (clear) phase was 

removed to a sterile tube and 0.5ml isopropanol/ml o f Tri-reagent used was added to 

precipitate RNA. Incubation at room temperature for 10 minutes then centrifugation at 

13,000 rpm and 4 oC for 10 minutes collected precipitated RNA. The pellet o f RNA was 

washed with 75% ethanol and RNA stored before quantification immediately prior to use,

2.5.3 Quantification o f  DNA and RNA

A known volume o f dissolved RNA or DNA was quantified spectrophotometrically by 

m easuring absorbance at 260nm and 280nm on a Shim adzu UV-1201 UV-VS 

spectrophotometer blanked against distilled water. Estimates o f nucleic acid quantity and 

purity were made from the following assumptions:

1 . Absorbance o f 1 at 260nm (A2 6 0) is equivalent to:

50p,g/ml double stranded DNA 

37|Lig/ml single stranded DNA 

40|ig/ml RNA

2. A2 6o:A2 8o ratio of pure DNA equals 1.8

A 2 6o:A2 8o ratio o f pure RNA equals 2
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2.5.4 First strand cDNA (Pharmacia kit)

First strand cDNA synthesis uses poly dT primers to amplify poly adenylated niRNA from 

total cell RNA. 5fig total RNA is diluted to 20|ul in DEPC treated H 2O, heated to 65 °C for 

10 minutes and transferred to ice. This was added to first strand cDNA mix (section) and 

gently mixed by pipetting. The solution was incubated at 37 °C for 1 hour then stored at - 

70 °C.

2.5.5 Polymerase chain reaction (PCR)

Where the PCR template was cDNA from total cell RNA PCR is known as reverse 

transcriptase PCR. The PCR reaction subsequently is equivalent to that using plasmid 

DNA as a template. Briefly the PCR mix was assembled (section) and cycled through a 

Techgene therm ocycler PCR machine. Cycling conditions varied for different PCR 

reactions as determined by the melting temperature o f the specific primer used and ranging 

experiments where necessary.

2.5.6 Restriction digest

Restriction enzymes were used to digest plasmid DNA to isolate an incorporated fragment 

or to screen for a cloned cDNA. Restriction enzymes were purchased from promega along 

with the appropriate buffers. Restriction digest was performed in volumes of lOpl in 

diluted buffers with lp.1 enzyme at 37°C.

2.5.7 Agarose gel analysis

Agarose gels were used to resolve nucleic acids o f different molecular weight. Agarose 

content was selected based on the molecular weight o f the nucleic acid o f interest. The
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desired amount o f agarose was added to 20ml 1 X TAE and this mix was microwave 

heated until the agarose was dissolved. Once hand warm 1.7|al ethidium bromide was 

added and mixed by swirling. Molten agarose was poured into the gel mould and allowed 

to set. The tank was filled with TAE, and wells were filled with samples mixed with 

loading dye (promega), and the gel run at 75V until the desired distance was run out. Gels 

were now visualised under UV light by virtue o f ethidium bromide incorporated into 

nucleic acid flourescence.

2.5.8 Plasmid/insert Ligation

Ligation o f PDE4-HIV tat fusion cDNA into linearised PGEX 5.3 for synthesis o f a GST 

fusion protein was achieved using the rapid DNA ligation kit (Roche). M anufacturer’s 

instructions were followed. Briefly, DNA to be ligated ( XXX linearised pGEX-5.3 and 

insert cDNA) was purified from agarose gel quantified. Various molar ratios of vector 

DNA: insert cDNA were dissolved in DNA dilution buffer to a volume of lOpl. The 

optimum molar ratio was measured for each ligation reaction performed using the 

following ratios in ranging experiments 1:7, 1:5 and 1:3. lOpl o f 2 X T4 DNA ligation 

buffer was added and the solution was mixed. Ip l T4 DNA ligase was added, mixed and 

incubated at room temperature for 5 minutes. The ligation reactions were used immediately 

for transformation into bacterial hosts.

2.5.9 Bacterial Transformation

Cloned plasmids were transformed into either TO P-10 (Invitrogen) chemically competent 

E Coli for plasm id amplification, or BL 21 chemically competent E Coli for protein 

expression. In each case transform ation was carried out in the same manner. 50pl 

chemically competent bacteria were thawed on ice and l-5|al o f ligation reaction was 

added and gently mixed. Mixtures were incubated on ice for 30 minutes before heat
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shocking at 42°C for 30-45 seconds before removing to ice. 250pl o f pre-warmed SOC 

medium was added to the transformations, incubated for 1 hour at 37°C and spread on 

appropriate antibiotic selection agar plates. These were incubated inverted o/n at 37°C and 

sample colonies selected for screening by restriction digest and sequencing analysis.

2.5.10 Induction o f  recombinant proteins

Cultures o f E Coli (BL 21), transformed with a plasmid encoding a recombinant HIV-tat 

fusion protein were incubated o/n at 37°C in 10ml L-broth containing lOOpg/ml ampicillin 

(LB amp). These cultures were used to inoculate 400ml cultures o f LB amp, which were 

grown at 37°C with agitation and frequent sampling. Once the OD 600nm was 0.6-1.0 

protein expression was induced by addition o f 4ml lOmM isopropyl P-D-thiogalactoside 

(IPTG) (final concentration O.lmM). Incubation was continued at temperatures ranging 

from 37°C to 4 °C for between 4 hours and 18 hours respectively (see text chapter 6 ). 

Finally bacteria were harvested by centrifugation at 2500g for 5 minutes. Harvested 

bacteria were resuspended in PBS containing protease inhibitors and ImM  DTT and stored 

at -20 °C until use.

2.5.11 Protein purification PBS/sonification

Frozen bacteria were rapidly thawed and kept on ice. Where lysis buffers were used these 

were added to the bacterial solution to the desired dilution. Bacteria were lysed by 

sonication in 30second bursts separated by 30 second rests. The sonicate was separated by 

centrifugation at 13,000rpm for 1 minute and pellet P I, and lysate SI were reServed. These 

were sampled for recombinant protein by addition o f 2X SDS sample buffer heated to 40 

°C and subjected to SDS-PAGE analysis.
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2.5.12 Protein purification Lysosyme/ sarkosyl

Bacteria were prepared as above. Thawed bacteria were washed in STE buffe, resuspended 

in STE Lysosyme lOOjUg/ml and incubated on ice for 15 minutes. DTT was added to a 

final concentration o f 5mM, and cells lysed by addition o f Sarkosyl in varying 

concentrations (see chapter 6 ). Lysates were centrifuged at 10,000 rpm for 5 mins and the 

supernatant reServed. Triton X-100 was added to 2%(v/v) and protein isolation continued 

as below.

2.5.13 Sepharose isolation o f  GST-fusion proteins

Glutathione-sepharose beads equilibrated in the lysis solution required, containing protease 

inhibitors and ImM  DTT were added to solutions shown to contain GST-fusion protein. 

These were incubated end over end for 4-12 hours at 4°C, before beads were collected by 

centrifugation at 13,000 rpm in a bench top refrigerated centrifuge. Beads were held on ice 

and washed in PBS containing protease inhibitors and ImM DTT 3 times. Beads were then 

aliquoted and one aliquot was heated in 2X sample buffer and analysed for protein content 

by SDS-PAGE analysis, with coomassie blue identification.

2.5.14 Protein identification and preservation

Expressed proteins were resolved by SDS-PAGE on mini-gel apparatus as described 

above. Proteins were fixed and stained by incubation in 100ml Coomassie stain and gentle 

agitation at room tem perature for 2 hours. Proteins were visualised by subsequent 

incubation in destain for 1-4 hours at room temperature. Destained gels were rehydrated by 

incubation in 1% glycerol for 30 minutes with agitation.



Finally gels were dried for preservation. The stained gel was layered on the drying surface 

o f a gel drier (Bio-Rad, LTD). The cover sheet was sealed by a vacuum and the gel was 

dried at 65“C for 2 hours.

2.6 Statistical analysis

Statistical analysis was performed on studies where n=3 or more. When comparing the 

PDE4 profile between two cellular populations Student's paired t-Test was performed on 

measures o f activity or on densitometry derived from western blot analyses. Where the 

effect o f rolipram on a EPS driven effect was analysed, the significance of the difference 

between LPS alone and basal conditions and LPS + rolipram and basal conditions. In these 

studies o f TN Fa or PGE2 production, Student's paired t-Test was performed.
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Chapter 3 Characterisation of PDE4B4 

Introduction

PDE 4 genes encode a variety o f isoforms by virtue o f mRNA splice variation and 

differential use o f multiple promoters [4]. Each PDE4 gene family exhibit almost 100% 

sequence homology within regions downstream of their unique N-terminal regions. The 

conserved domains o f U C R l, UCR2 and the catalytic site demonstrate 95% sequence 

homology across mammalian species and to the drosophila dunce gene [50]. Each PDE4 

isoform is unique however at the extreme N-terminal region. Regulatory and targeting 

domains in this region allow individual PDE4 isoforms to exhibit non-conserved 

behaviour, [6 8 ] [73]. The human PDE4B gene has been localised to chromosome 1 and the 

rat PDE4B gene to chromosome 5,[236, 237]. To date, three gene products have been 

described in both species [233]. PDE4B1 and PDE4B3 are both long forms, distinguished 

Eom the short form PDE4B2 by the presence o f the N-terminal UCRl region [50].

A new member of the PDE4B family was recently discovered by our collaborator, Dr G 

Bolger. A rat cerebral cortex cDNA library obtained from Stratagene (La Jolla, CA, USA), 

was probed with cDNA corresponding to the PDE4B UCRl using a technique previously 

described [233]. A novel cDNA named rPDE90, reflecting the novel PDE4B4 isoform, 

was identified and cloned. As has been discussed, [4], the existence o f multiple isoforms of 

PDE4 suggests functional specificity and an understanding o f the physical and biochemical 

characteristics o f each isofoiin can be expected to give clues to its function and regulation

My aim in the work described in this chapter was to dem onstrate the biochemical 

properties, the physical distribution and the regulation o f PDE4B4. By comparing each 

characteristic against other PDE4 isoforms I will demonstrate how individual members of 

each PDE4 family are related and yet exhibit distinct characteristics from each other.
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Results

Section 1

3,1.1 Sequence Confirmation o f  plasm id and transfection efficiency.

PDE4B4 is a 659 amino acid protein containing both U CRl and UCR2, making it a “long 

form” PDE4. Fig 3.1.1 demonstrates the characteristic regions common to all PDE4 

isoforms. PDE4B4 has considerable homology to the other known long form PDE4Bs, 

namely PDE4B1 and PDE4B3, over the C-terminal 642 amino acids. The N-terminal 17 

amino acids o f PDE4B4 show no sequence homology to other PDE4B sequence. However 

remarkable similarity is seen between the unique N -terminal region o f PDE4D3 and 

PDE4B4, with 12 amino acids being conserved, including a PKA phosphorylation target 

domain. This domain includes S eri4 o f PDE4B4 which correlates with S e ri3 o f PDE4D3, 

Fig 3.1.1.

The transcript o f PDE4B4 was cloned from a rat {Rattus Norwegenesis; Sprague Dawley 

strain) cerebral cortex library (Stratagene) and inserted into the N o tl site o f pcDNA3 

mammalian expression vector (Invitrogen). This brings the ORF under the control of the 

cytomegalovirus immediate early promoter allowing, for example, expression in COS cells 

(Fig 3.1.2A). Plasmids were transformed into E.Coli and kept as glycerol stocks as 

described in the methods section. Plasmids were purified as described in and restriction 

digest analysis using S a d  and N otl restriction enzymes confirmed the integrity o f the 

clone (Fig 3.1.2B). N otl cut the insert coding PDE4B4 from the plasmid revealing a very 

high molecular weight band and a fragment o f 2Kba representing PDE4B4. Sac 1 cut the 

plasmid twice and the insert once resulting in one small 700 base fragment, a larger 

IKbase fragment and the plasmid remnant.



PDE4B1 PDE4B2

PDE4B3

CR 1 UCR-2 Catalytic
Domain

COOH

Linking
regionsUnique N-terminal o f PDE4B4

Splice Junction

Unique N-terminal o f PDE4D3

Fig 3 .L I Schematic representation o f  PDE4B4

This diagram (not to scale) represents the amino acid sequence o f  
PDE4B4 and illustrates the modular nature o f the protein. All 
domains other than the red shaded region are shared by the long forms 
PDE4B1 and PDE4B3. One o f  the two PKA phosphorylation sites 
(Seri4), o f  PDE4B4 is highlighted. The second at Ser53, lies within 
the shared long form common region. The splice junction shown 
marks the point o f  divergence between long form and short form 
PDE4B isoforms. Thus PDE4B2 lacks the region N-terminal o f  this 
junction containing UCRl and LRl. The long forms finally diverge 
after UCRl where distinct N-terminal sequence is under the control o f  
specific promoters. The extreme N-terminal sequence o f  PDE4D3 is 
presented beneath the sequence o f  PDE4B4, illustrating the sequence 
homology between these two molecules. Red letters represent shared 
residues while purple letters are non-conserved.
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0
Restriction enzyme 
target sites

B

1.5Kb

0.5Kb

2Kb

— 0.7Kb

Fig 3.1.2 Restriction digest o f  PDE4B4 confirms plasmid integrity

çPNA coding for PDE4B4 was cloned into pcDNA3 plasmid vector 
between the Notl sites in the poly-linker region. A; a schematic 
representation o f the subsequent plasmid, demonstrating the 
restriction enzyme sites. B; To confirm that the clone used to 
characterise the kinetic behaviour o f  PDE4B4 was intact a restriction 
digest using Notl and Sad  restriction enzymes was performed. Sad  
was used as restriction sites exist within both the plasmid and the 
sequence o f  the cloned insert. The predicted restriction map resulted 
with bands o f  0.7Kb and 1.4Kb following Sad  digestion, and an 
insert band o f 2Kb appearing after Notl digestion. The plasmid was 
thus proven to be intact.
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3.1.2 Specific activity o f  over-expressed PDE4B4

Our laboratory has employed over-expression o f PDE4 isoforms in COS cells as a useful 

means to analyse their biochem ical properties [76], This com pensates for the low 

abundance of these enzymes in nature and the difficulty in analysing a single PDE4 

isoform distinct from other endogenously expressed species. PDE4 activity was measured 

over a range o f protein quantities for transfected and mock transfected cell lysates.

Both Mock transfected and PDE4B4 transfected COS-1 cell extracts exhibited a linear 

relationship between protein content and PDE4 activity (Fig 3.1.3). PDE4B4 transfected 

cells, however exhibited considerably higher activity with a range o f 0-3.4 pmol/min, 

corresponding to between 0 and lOfXg of lysate protein. Mock transfected cells on the other 

hand achieved a maximum PDE4 activity of 0.09 pmol/min/pg over the same range of 

protein. As can be seen the activity/protein curve eventually forms a plateau, as no further 

substrate is available for hydrolysis. Using data from the steep, linear part o f the curve, 

PDE4B4 transfected lysate is shown to have an activity of 0.6 pmol/min/pg with a specific 

activity for PDE4B4 o f 0.58 pmol/min/pg.

To ensure kinetic analysis can be compared between experiments and previous reports, I 

performed all PDE4B4 characterisation at IpM  cAMP. I elected to perform all further 

kinetic analysis using 3pg o f protein lysate as this falls on the linear part o f the 

activity/protein curve measured at l|iM  cAMP. An equivalent time ranging experiment 

was performed to ensure that assaying PDE4B4 at IpM  cAMP for 10 minutes also fell on 

the linear part o f the activity/time curve.
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Fi^ 3.1.3 PDE4B4 protein ranging experiment

COS-1 cells transfected with plasmid coding for PDE4B4 protein and 
mock transfected COS-1 cells were lysed and PDE4 activity was 
calculated for a range o f protein concentrations at 1 pm cAMP. PDE 
activity was plotted against protein to find the linear range within which to 
analyse PDE4B4 activity. As can be seen 3 pg o f transfected protein lay 
within the linear part o f the curve and corresponded to 1.8 +/- 0,3 
pmol/min/pg. In contrast mock transfected COS-1 cells exhibited a cAMP 
PDE activity o f 0.05 4/- 0.01 pmol/min/ pg.



95

Section 2

3.2.1 Calculation o f  molecular size

The predicted molecular size for PDE4B4 based on prim ary amino acid sequence is 

73kDa. The experimentally derived molecular weight is calculated from the distance 

migrated on SDS-PAGE gel compared to “markers” o f known molecular weight. This 

experimental determination gives an apparent molecular weight o f 85 +/- 3 kDa. (fig 

3.2.1).

3.2.2 Subcellular distribution ofPD E4B4

It has been shown that certain PDE4 isoforms expressed in COS cells are targeted to 

specific regions within the cell. For example while PDE4A1 is restricted to the cell 

membrane fraction, PDE4D1 and PDE4D2 exist in the soluble compartment [73, 77]. I set 

out to explore the localisation o f recombinant PDE4B4 in COS-1 cells lysed in KHEM 

buffer and subjected to high speed fractionation. The three subcellular compartments 

Pellet! (P I), Pellet2 (2) and Soluble (S2), were examined for PDE4B4 content by PDE4 

assay and western blot analysis.

Two methods of comparing PDE4B4 content can be used. In the first, the PDE4B4 content 

per unit protein of each fraction can be examined. This analysis allows the specific PDE4 

activity o f each fraction to be compared (Fig 3.2.2A). By this form o f analysis the greatest 

PDE4B4 activity in transfected COS-1 cells occurs in the S2 fraction. Different subcellular 

fractions may contain different quantities o f protein. This means that specific activities do 

not reflect proportional activities at a cellular level. Thus 3pg of PI protein is likely to be 

extracted from a different number o f cells than 3|ig o f S2 protein. To compare 

compartments that represent proportionally, a single cell, each fraction must represent the
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Figure 3.2.1 Molecular weight o f  PDE4B4

Recombinant PDE4B isoforms were expressed in COS-1 cells and resolved 
by 8% SDS PAGE fig 3.2.1 A. A typical western blot was probed with 
polyclonal anti-PDE4B antibody (Schering). (lane 1 PDE4B1, lane 2 + 3 
PDE4B4 and lane 4 PDE4B2). PDE4B4 migrates in a position between the 
long form PDE4B1 and the short PDE4B2. B. The loglO of the distance 
migrated by pre determined was markers plotted against molecular weight. 
A representative graph is presented. C. The line linking these distances was 
used to calculate the weight of recombinant PDE4B4 from the same blots. 
Three analyses from different transfections are presented. The average of 
these molecular weights was calculated. Thus the molecular weight of PDE 
4B 4 was calculated to be 85 +/- 3 Kda.
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Fig 3.2.2 Sub cellular distribution o f  PDE4B4 activity

Low speed fraction (PI) and high speed fractions (P2) and (S2) o f  
recombinant PDE4B4 expressing COS-1 cells were prepared in KHEM 
buffer as described. A; Specific cAMP PDE activity o f S2 and PI was 
calculated for 3pg o f protein. Specific activity o f P2 is estimated by 
adjusting the volume based distribution activity described below by mean 
protein content o f the fraction. B; Fractions were equalised for volume to 
represent equivalent cell numbers per lysate fraction. PDE4 activity was 
measured for a given volume representing 3pg o f  S2 lysate. The majority 
(68%), o f PDE4B4 activity was found in the S2 cytosolic compartment. 
With 23% in the PI. In each figure data represents three experiments and 
are expressed with standard errors.
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Fig 3.2.3 Sub cellular distribution o f PDE4B4 protein

Low speed (PI) and High-speed (P2 and S2) fractions of recombinant 
PDE4B4 expressing COS-1 cells were prepared as described. Each 
fraction was reconstituted to an equal volume. Equal volumes of lysate 
corresponding to 30pg S2 protein were resolved on 8% SDS PAGE gel 
and western blot analysis performed. (A, lanes 1 and 2 P2 fraction, 
lanes 2 and 4 S2 fractioniB lanes 1 and 2 S2 fraction lanes 3,4 and 5 PI 
fraction). The majority of PDE 4B4 was found in the cytosolic, S2 
fraction. The P2 fraction contains no PDE 4B4 while PI contains very 
little.
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same number o f cells. To achieve this, fractions prepared by high speed centrifugation 

were reconstituted in equal volumes o f PDE4 assay buffer. This volume was equal to the 

volume o f collected S2 and all kinetic analysis was performed on volumes o f cell lysate 

equal to that volume o f S2 lysate containing 3pg  o f  protein. This analysis allows 

proportional comparisons between subcellular fractions and using this method 62% of 

PDE4 activity was found in the S2 fraction with a further 23% in the PI fraction. 

Q uantifying LDH activity in each fraction estimates the degree of contamination 

(Appendix 2). Thus LDH is mainly cytosolic and if LDH activity is measured in PI in the 

presence o f detergent it suggests contamination with whole eells. Performing this assay 

suggested that around 30% of P I protein was from unbroken cells and adjusting the 

activities described above reduces the particulate bound proportion o f PDE4B4 still 

further. Little activity was found in the P2 fraction (fig 3.2.2.B).

Western blot analysis was performed in a similar way to the comparison described above. 

Equal volumes of fraction lysate, corresponding to 30|ag o f S2 lysate protein, were 

compared for immunological detection o f PDE4B. Figure 3.2.3 demonstrates that the 

majority of immunologically detectable PDE4B4 lies in the S2 fraction, while a small 

quantity is present in the P I and no band was resolved in the P2 fraction lanes.

Section 3

3.3.1 K,n value fo r  PDE4B4.

The Michaelis constant (Ki-q) represents the concentration o f substrate at which an enzyme

is half maximally active. Representative plots of the parabolic form o f the Michaelis- 

Menton equation are presented for the S2 and P I o f PDE4B4 (Fig 3.3.1). Using the

M ichaelis-M enton equation (V=Vmax*[cAM P]/ +[cAM P]), a plot o f PDE4B4
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activity/[cAMP] was generated, from which the Km was calculated. The Km was derived 

for three transfected lysates and the mean +/-1 standard error is presented. The Km value 

for cAMP of PDE4B4 S2 fraction is 5.4+/-0.7p,M, while that o f the P I fraction is 6.0 +/- 

0.5jaM. Figure 3.3.1 also presents the Km for recom binant PDE4B1 derived from 

experiments run in parallel to those described above. This produces a value o f 2.0 +/- 

0.1 pM, which serves as an internal control for my system.

3.3.2 Vmax value fo r  PDE4B4

Vniax represents the maximal activity for an enzyme measured at a saturating substrate 

concentration. I derived the Vmax by calculating the activity (Vobs) for a range o f protein 

quantities from COS-1 cells expressing recombinant PDE4B4. Using the mean o f these 

activities I derived the apparent Vmax for PDE4B4 from the Michaelis-Menton equation 

defined above. The apparent Vmax for recombinant PDE4B4 was 8.6pmol/min/pg and 

2.7pmol/min/pg for the S2 and PI fractions respectively. The apparent Vmax of an enzyme 

will depend on the quantity of enzyme present, thus the absolute Vmax for PDE4B4 would 

be expressed as pM cAMP/mol enzyme. Meaningful comparison between PDE4 isoforms 

thus requires some means o f quantifying the amount o f enzyme present. I wished to use 

PDE4B1 as a comparison as this has served as comparative enzyme in the past [76]. In 

order to compare enzyme quantities I performed ELISA on a range o f lysate volumes and 

identified recombinant enzyme using PDE4B antibody and a mock transfected cell lysate 

as a blank. Figure 3.3.3 illustrates one such ELISA, demonstrating that in each case a 

significant amount o f enzyme was present in transfected cell lysates, but that PDE4B1 

transfections contained more immunological enzyme than PDE4B4 transfections. The 

gradient o f the line connecting the linear part of the absorption/protein curve reflects the 

quantity of PDE4B isoform present and was used to adjust the apparent Vmax values for 

PDE4B4. This adjustment produces a relative Vmax ratio (relative to S2PDE4B1) for
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Fig 3 .3 .1 calculation PDE4B4.

Recombinant PDE4B4 expressing COS-1 cells were subjected to high speed 
fractionation in KHEM buffer. 3pg o f  cell lysate from both 82 and PI fractions 
were assayed against a range o f  cAMP concentrations. Representative plots 
from both 82 and PI are presented. This data was analysed using the parabolic 
form o f the Michalis plot. The equation y = ml*mO/(m2+mO) where ml = 
m2 = K,„and mO = [cAMP], defines the Michalis Menton equation, and can be 
used to interrogate enzyme activity data to calculate K,,̂  for an enzyme. A mean 
K„, for these experiments (n=3), was calculated and is presented with standard 
error. Mean for PDE4B1 assayed in parallel is provided for comparison.
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F ig33.2  ICso Rolipram o f  PDE4B4

The cAMP PDE activity at IpM cAMP of 3pg cell lysate from Cos-1 cells 
expressing recombinant PDE4B4 was measured in the presence of a range of 
rolipram concentrations. Activity was plotted against the Log of the rolipram 
concentration interrogated using Kaleidograph, and ICso calculated. A; A 
sample ICso plot is presented. B; The mean inhibition of cAMP PDE activity 
from a number of transfections was used to calculate percent inhibition. This 
was then plotted against Log rolipram concentration. Presented is the plot 
representing the 82 fraction (n=3). C; This table summerises the ICso 
rolipram for Cox-1 cells expressing recombinant PDE4B4 in the PI and 82 
fractions.
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PDE4B4 o f 2.1 and 0.54 for the S2 and P I fractions of COS-1 cells expressing 

recombinant PDE4B4 respectively.

3 .33  Rolipram sensitivity o f  PDE4B4

A defining property o f PDE4 enzymes is their capacity to be inhibited by the compound 

rolipram. It has been proposed that two conformations o f PDE4 activity occur that can be 

detected by virtue o f their rolipram binding affinity. Thus “high affinity, (HARB) and 

“low affinity” (LARB) conformations are said to exist [91]. Combined to this variable 

property is the range o f IC 50 values observed for different PDE4 iso forms. These range 

from 1.2)llM rolipram for the particulate fraction o f RNPDE4A5 to 20nM for the soluble 

fraction o f PDE4B2 [50]. Therefore individual PDE4 isoforms are believed to interact with 

rolipram with isoform specific kinetics. The IC50 of an enzyme describes the concentration 

o f an inhibitor that causes 50% reduction in activity at a particular substrate concentration.

The value for IC 5 0  Rolipram inhibition was ascertained by incubating recom binant 

PDE4B4 expressing COS-1 cell lysates with increasing concentrations of rolipram and 

measuring PDE4 activity at IpM  cAMP as before. Fig 3.3.3 illustrates an example o f the 

IC50 rolipram curves generated by such an approach. A mean o f 4 experiments was used to 

calculate a final IC 50 value. The IC 50 value for the S2  fraction o f PDE4B4 was 0.08 V -  

O.OljaM, while for the P I fraction IC50 value was 0.16 0.04 jiM. Table 3.1 presents

previously described kinetic values for other PDE4 isoforms.

Section 4

3.4.1 PKA activation o f  PDE4B4

Long form PDE4 isoforms are characterised by the presence o f UCRl in their N-terminal 

regions. UCRl contains a PKA phosphorylation target site defined by RRESW, with Ser54
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Fi^ 3.3.3 PDE4B ELISA contrasting recombinant protein expression

In order to calculate the Vmax of PDE4B4 relative to a known standard 
(in this case PDE4B1), the apparent activity of each isoform was 
compared and adjusted for protein expression. To calculate relative 
enzyme expression ELISA was performed using anti-PDE4B antibody 
(Schering) to immunologically detect recombinant protein. Data is 
presented as optical density (arbitary units) against the Login of the 
quantity of protein. Presented is one ELISA demonstrating that while 
two separate PDE4B4 transfections result in similar enzyme expression, 
these differ considerably from PDE4B1.
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being the Serine Target Residue (STR) in PDE4D3 [238]. This sequence is present in 

PDE4B4 with the STR being Ser56. A second PKA target site is present in PDE4B4 

around SeiT4 as shown in figure 3.1.1, The context o f this site is very similar to that of a 

second PKA target site in the N-terminal region of PDE4D3, around S e r i3. While 

phosphorylation o f Ser54 of PDE4D3 appears to result in activation o f this isoform the role 

of S eri3 phosphorylation is not clear [68].

Phosphorylation o f an amino acid residue alters the charge o f  that residue by - I .  

Conformational changes resulting from this can lead to activity or functional alterations in 

proteins containing these residues. Substituting an aspartate or a glutamate residue for the 

STR at a PKA target site adds a -1  charge to the protein and can be used to mimic the 

conform ational changes resulting from phosphorylation. Conversely if  an alanine 

substitution is made for the serine residue, no phosphorylation is possible and a dominant 

negative phosphorylation mutant results. Mutations of the STR in U CRl in various long 

form PDE4 isoforms have been made and Ser-Asp mutants were found to be constitutively 

activated, while Ser-Ala mutants were resistant to PKA activation. [239]

I wished to examine the role o f PKA in the activation of PDE4B4. I used a combination of 

IBMX and forskolin to increase cAMP and thus activate PKA. I measured the activity o f 

PDE4B4 in the presence and absence o f this treatment and demonstrated a 57% increase in 

activity (Table 3.4.1). PDE4D3 has previously been used as a model of PDE4 long form 

activation by PKA and I included a parallel experiment using recombinant PDE4D3 in 

these studies [238]. I dem onstrated a doubling o f PDE4 activity in COS-1 cells 

overexpressing PDE4D3. A second property o f PKA phosphorylation o f PDE4D3 is an 

alteration o f mobility on SDS-PAGE. It is not clear why this change in electrophoretic 

mobility should occur, but it appears to be related to phosphorylation o f Seri 3 in the N- 

terminal STR o f PDE4D3. I hypothesised that PDE4B4 would behave in a similar fashion 

due to its N-terminal sequence homology with PDE4D3. Figure 3.4.1, is a representative
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FDE41sofoim Coitiol actiMty 

(nnDl/miVMS)

Foiskclin/IBMX Perceit Change

PDE4B4 10-f/-1.5 164/-3 +57 %

PDE4D3 4 8 +100%

Table 3 .4 .1 Effect o f PKA activation on PDE4B4

COS-1 cells over-expressing recombinant PDE4B4 or PDE4D3, were 
pretreated with IBMX lOpM for 20 mins before forskolin lOpM was added 
for 15 mins. Cells in each treatment group were taken from a single 
transfections and multiple transfections were used. PDE4 activity was 
measured in cell lysate representing 3pg of cellular protein prepared in 
KHEM buffer. Activity is presented with standard error. PDE4B4 activity 
was seen to increase by 57% under treatment conditions, consistent with 
positive regulation by PKA (n=3). A lso presented for comparison is a single 
experiment performed on recombinant PDE4D3. This isoform is known be 
activated by PKA and serves as an internal control.

PDE4B4

Fig3.4.1 PKA activation alters PDE4B4 migration on SDS PAGE gel.

Cell lysates prepared as described above were subjected to western blot 
analysis on 10% SDS-PAGE gel. Equal amounts of protein were loaded in 
each lane. Lane 1; Control (untreated) cell lysate, Lane 2; IBMX/Forskolin 
treated cell lysate. As has been previously described for PDE 4D3, migration 
of forskolin/IBMX treated PDE 4B4 is retarded leading to an apparent ‘band 
shift’ on western blot.
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western blot demonstrating that a change in electrophoretic mobility does occur when 

COS-1 cells over expressing recombinant PDE4B4 are treated with IBMX/forskolin.

To investigate this behaviour further PDE4B4 cDNA sequences were mutated to contain 

aspartate and alanine residues at both the STR sites described above. In order to allow 

comparison these constructs also had a FLAG sequence tag added to the C-terminal. 

Recombinant mutant FLAG tagged PDE4B4 were expressed in COS-1 cells and activity 

was measured in the presence and absence o f IBMX/Forskolin. In order to overcome 

differences in transfection efficiency when comparing between constructs and treatments, 

immuno-activity of PDE4B was measured by densitometry on western blot for a range o f 

protein amounts. Plots of densitometry against protein (pg), were constructed and the 

linear relationship was derived. The gradient of this line reflects the transfection efficiency 

of the recombinant protein and activity values were adjusted to allow for these differences.

3.4.2 S e r i4 - A la  substitutions

Mutant PDE4B4 containing a SeiT4-Ala mutation proved to be sensitive to PKA. PDE4 

activity in COS-1 cells overexpressing this mutant form o f the enzyme rose by 90% when 

treated with IBM X/forskolin (fig 3.4.2). U nfortunately expression o f the equivalent 

mutation o f Ser56 resulted in a dramatic reduction in cell viability, and cell extracts 

contained very variable quantities o f immunoreactive PDE4B. As a result no comparable 

experiments could be performed on the effect of Ser56-Ala mutation.

3.4.3 Ser -  Asp substitutions

As described above the effect o f Ser-Asp m utation at a STR for PKA reflects 

phosphorylation o f this residue. Asp mutations o f both S e ri4 and Ser56 were made and 

PDE4 activity was measured in COS-1 cell extracts overexpressing these mutants. Activity
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PDE4B4iiutant C o ilrd  activity IBMXFordcolin Percait increase 

_  (pmol/nin/u fi) ..... ______________________  ____

Wild Type 
Seri 4  -Ala

10+/ -2  

8  4 / -4

164/-3
144/-1

60
90

B 20 

16 

a 12 *

0

1

m m

Wt

Q Control

PI IBMX/
O Forskolin

S 14 A la

Fig 3.4.2 Effect o f Ser 14 
PDE4B4

Ala mutation on PKA activation o f

PDE4B4 cDNA was mutated by quick-change to produce an Ser 14- 
ALA mutation. This mutation prevents phosphorylation by PKA from 
taking place. This mutant protein was overexpressed in Cos-1 cells 
and the effect of IBMX/Forskolin treatment was compared to 
untreated (control) PDE4 activity. To allow for transfection efficiency 
western blot was performed on increasing quantities of lysate protein 
and densitometry was used to assess PDE4B isoform expression. A; 
table presenting change in PDE4 activity with IBMX/forskolin 
treatment (+/- Standard error). B; graphic representation of the same 
data (n=3). Control activity was less than wild type PDE4B4 
suggesting a role for Ser 14 in regulating latent activity. The effect of 
IBMX/Forskolin treatment was not altered by the A la l4  mutation, 
suggesting that Ser 14 is not involved in PDE4B4 activation by PKA.



PDE4B4 Mutant PDE4 Activity 
(pmol/min/jig)

Percent Wild Type

Wild T ype 10.3+/-1.5 100

Serl4 -  Asp 8.0+/-1.6 78

Ser56 - Asp 13.8+/-3.7 145

20

i
S56 AspSI 4-AspWt

F igSA J Effect o f Ser-Asp mutations in PKA activation sites in 
PDE4B4

Ser - Asp mutations were made using quickchange technology at both 
PKA phosphorylation sites (S erl4  and Ser56), in PDE4B4 cDNA with 
a “Flag” peptide tag. Aspartate substitution adds a negative charge to 
a protein reflecting a phosphorylation event. Cos-1 cells expressing 
recombinant PDE4B4 containing each of these mutations, were lysed 
and PDE4 activity was measured using wild type PDE4B4 as a 
control. To compare activities relative transfection efficiency was 
measured using densitometry of western blots probed with anti-FLAG 
antibody. A; Table showing the relative activity differences between 
both Asp mutants and wild type PDE4B4. B; Graphic representation 
of these differences. In each case three transfections were made using 
each mutation or wild type isoform. As can be seen a 
“phosphorylation” mutation at Ser56 resulted in increased PDE4 
activity.
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of SeiT4“Asp mutant PDE4B4 was 22% lower compared with wild type enzyme. The 

Ser56-Asp mutant PDE4B4 had an activity 45% higher than wild type enzyme.

Discussion

A novel member o f the PDE4B family was cloned from a cDNA library. Use o f  a 

complimentary probe based on the PDE4B UCR2 sequence confirmed the gene source of 

this novel clone. PDE4 isoforms can be classified by the presence or absence of UCRl into 

long and short forms [63]. This structural distinction is based on a mRNA splice junction 

near the N-terminal region o f UCR2 (fig 3.1.1). Splicing of mRNA at this site leads to 

short form PDE4 isoforms, o f which PDE4B2 is the only PDE4B representative [233]. 

Comparison o f the sequence o f the novel PDE4B4 and the two other long form PDE4B 

isoforms, PDE4B1 and PDE4B3, shows 100% sequence homology downstream of the N- 

terminal 17 amino acids. Thus PDE4B4 contains UCRl confirming its identity as a long 

form PDE4. The importance o f these structural distinctions can be inferred by the 

evolutionary conservation between mammalian PDE4 and the drosophila dunce gene [59, 

63]. Groups examining the regulation of PDE4 isoform activity have shown the functional 

significance o f long form and short form distinctions. Thus Baillie et al, demonstrated that 

ERK2 phosphorylation o f  PDE4 isoforms, increased the activity o f the short form 

PDE4B2, having previously shown reduction in the activity o f the long form PDE4D3 [66] 

[67]. PDE4B4 would be expected to share the regulatory properties o f long form PDE4 

isoforms.

Further examination of the cDNA sequence o f PDE4B4, PDE4B1 and PDE4B3 highlights 

divergence after U C R l. Thus the extreme N-terminal 17 amino acids are unique to 

PDE4B4 among the PDE4B family. Such unique N-terminal identity is common to PDE4
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isoforms [50]. N-terminal diversity is achieved by differential use o f multiple start sites 

regulating isoform specific transcription. Further analysis o f the 17 N-terminal amino acid 

residues o f PDE4B4 demonstrates remarkable homology to an equivalent region o f 

PDE4D3. 13 o f the 17 residues are conserved between these regions including the PKA 

STR S e r i3 (PDE4D3). Analysis o f the primary amino acid sequence thus identifies 

PDE4B4 as a long form PDE4 isoform, sharing sequence homology at the N-terminal 

region with PDE4D3.

Based on the primary amino acid sequence, predicted molecular weights o f PDE4B1, 

PDE4B2 and PDE4B3 are 84, 64 and 82 KDa while they been determined to be 104, 78 

and 103 KDa based on SDS-PAGE migration [233]. It is not surprising therefore that 

PDE4B4, with a predicted molecular weight o f 73KDa, migrates at 84+/-5KDa on SDS- 

PAGE. As proteins are fully denatured before electrophoresis is performed means that 

secondary structure is unlikely to affect electromobility. Whether interaction between SDS 

and regions o f charged amino acids in the primary sequence o f PDE4 isoforms results in 

retarded migration is not Imown. The influence o f phosphorylation on the electromobility 

o f PDE4D3 suggests that this may be the case.

Sixty eight percent of recombinant PDE4B4 activity is found in the soluble (S2) fraction o f 

disrupted COS-1 cells. This distribution is similar to other PDE4B isoforms as 71%, 61% 

and 58% o f expressed activity is found in the S2 fraction o f recom binant PDE4B1, 

PDE4B2 and PDE4B3 lysates respectively [233]. O f the remaining activity the majority 

(23%) was localised to the PI fraction (fig3.2.2). It is possible that in an over-expressed 

system, the membrane-binding sites were saturated and excess enzyme was left free in the 

cytoplasm. However the integrity of the method for demonstrating particulate association 

has been shown for other enzymes such as RD I [240]. While western blot analysis does 

not suggest any im m unoreactive PDE4B4 outwith the S2 portion, activity analysis 

demonstrates PDE4 activity in the PI fraction. PI fraction integrity was confirmed by LDH
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assay analysis, described in appendix 1. PI fractions used in both western blot and PDE4 

activity analysis were prepared in the same way. It is not clear why this discrepancy exists, 

but confocal microscopy o f real time subcellular distribution o f PDE4B4 would help to 

clarify this issue.

The kinetic analysis o f PDE4B4 is summarised in table 3.4, with previously reported 

kinetic variables for other PDE4B isoforms presented. As can be seen the Km value for 

PDE4B4 lies close to the range set by the other PDE4B isoforms. Soluble PDE4B4 Vmax 

relative to soluble PDE4B1 Vmax is greater by 9 fold. Association with the particulate 

fraction P I reduces this difference to a third. Differences in kinetic variables associated 

with particulate association have previously been reported for PDE4A4 [76]. In this study 

particulate PDE4A4 had a relative Vmax that was 56% that o f the soluble enzyme. This 

study also described a difference in the IC50 for rolipram between particulate PDE4A4 and 

soluble PDE4A4. Such a distinction was also demonstrated in my study for PDE4B4, 

where a P I IC 50 rolipram of 0.16pM, was double the S2 fraction (0.08p.M).

Differences between the Km and Vmax values for different PDE4B isoforms may not 

seem large. Small differences in regulatory properties between PDE4B isoforms may allow 

tight control of cAMP concentrations. Thus PKA activation of PDE4 isoforms increases 

activity by 50%. I f  the local concentration o f cAMP is set to around the activation 

threshold o f PKA, then small increases in concentration w ill result in PKA 

phosphorylation o f PDE4 isoforms. The resulting increase in cAMP PDE activity will 

lower cAMP, limiting the scale and duration of the effect. Differential expression of PDE4 

isoforms with small differences in Vmax may then be used to regulate the response to 

cAMP.

Particula te association m ight influence PDE4 isoform  activity , by altering the 

conformation o f the protein. Protein-protein interaction sites on the N-terminal regions of
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PDE4 isoforms have been described [72]. Interaction o f SH3 domains on src family 

tyrosine kinase enzymes and proline rich domains in the N-terminal region of RNPDE4A5, 

HSPDE4A4 and PDE4D4 have been demonstrated [82, 83, 241]. Altered conformation of 

the PDE4 isoforms was demonstrated by a change in the sensitivity to rolipram. Thus 

interaction o f PDE4B4 with as yet undeterm ined protein partners may explain the 

differences in PI and S2 kinetics.

Regulation o f PDE4 isoforms by protein kinase enzymes results in cross talk between 

different cascades. Thus PKA activates PDE4D3 by phosphorylation at Ser54 [238], while 

ERK2 inhibits long form PDE4s by phosphorylation [66, 67]. PDE4B4 contains the 

common UCRl PKA STR at Ser53, equivalent to Ser54 o f PDE4D3, a residue shown to be 

essential for PKA activation o f PDE4D3 [238]. I have dem onstrated that elevating 

intracellular cAMP with IBMX/forskolin treatment o f COS-1 cells activated PDE4B4 as 

would be expected by the structural homology with other long form PDE4 isoforms. I have 

further suggested that Ser53 is the residue responsible for this activation as Ser53-Asp 

mutants had increased activity over wild type PDE4B4, while S e ri4-Asp mutants exhibited 

reduced activity. Unfortunately the confirmatory Ser53-Ala mutant experiment was unable 

to be performed due to toxicity and loss o f cellular viability.

Conclusion

The novel PDE4 isoform PDE4B4 has been cloned and characterised. It is a long form 

PDE4B isoform with largely soluble localisation in overexpressing COS-1 cells. Km and 

IC50 closely resemble the other long form PDE4B isoforms, while the soluble Vmax was 9 

times greater than PDE4B1. Particulate association reduced the sensitivity of PDE4B4 to 

rolipram and lowered the Vmax relative to PDE4B1. PKA activation increased PDE4B4 

activity and mutation o f PKA STR amino acids suggested this was due to phosphorylation
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of Ser56. Phosphorylation o f Serl4  resulted in electrophoretic mobility changes, but no 

apparent change to enzyme activity.
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Chapter4 PDE4 isoform expression during U937 

differentiation

4.1 Introduction

Tissue macrophages derive from circulating blood monocytes and transform through a 

series o f stages to the mature cell,[145]. Macrophages are involved in disease progression, 

chronicity and resolution so understanding the biochemical changes associated v^ith this 

phenotypic switch may suggest therapeutic targets. Hunninghake et al for instance showed 

that PKCp expression was dram atically reduced when m acrophage differentiation 

occurred, [147].

Cyclic AMP is a crucial second messenger in macrophages and monocytes. It is involved 

in regulating apoptosis [242], maturation and motility [243] o f these cells. The role of 

cAMP in the regula tion o f cytokine expression is becom ing increasingly clear. For 

example T N F a and IL-12 production are inhibited when lipopolysaccharide treated 

macrophages are exposed to agents that increase cAMP [244] [194]. On the other hand 

elevating cAMP increases LPS induced IL-10 production [245].

In 1976 Thompson et al demonstrated that PDE4 represents the greatest cAMP hydrolysing 

activity in inflammatory cells [221]. Subsequently, many groups have shown 60-70% 

inhibition o f cAMP PDE activity by rolipram in monocytes taken from peripheral blood 

[119, 246]. W hereas Thompson found little PDE3 in monocytes [221] others have 

consistently found that PDE3 comprises the greatest proportion o f the remaining cAMP 

PDE activity. Estimates o f its contribution range from 9 - 4 0  %. While the majority o f 

PDE3 activity in monocytes was found to be associated with particulate fractions 90 -  100
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% of PDE4 is soluble. This physical compartmentalisation suggests PDE isoforms are 

targeted to specifically regulate cAMP in these fractions.

Gantner et al demonstrated that PDE isoform expression profile changes upon monocyte to 

macrophage maturation [119]. While many groups have examined the PDE subfamily 

profiles o f inflammatory cells, few have investigated the individual PDE4 isoforms. This 

may be related to the low abundance o f these enzymes in cells combined with the 

relatively poor yields associated with cell isolation. W here PDE4 isoforms have been 

investigated RT-PCR has generally been employed revealing the presence o f PDE4A, 

PDE4B and PDE4D [223, 246]. Due to the potential for post-transcriptional degradation of 

mRNA it has been previously advised that cellular profiling should include analysis o f the 

enzyme protein itself [50].

Attempts to study macrophage development are hampered by the low abundance of tissue 

available for study. A ttempts to measure PDE4 isoform activity in cells isolated from 

sputum proved unrew arding due to the small number o f cells and the difficulty in 

achieving uncontaminated pure-lineages (see Appendix 2). Monocytes from human blood 

cultured on plastic have been shown to phenotypically represent tissue macrophages, but 

the small numbers o f cells produced makes analysis of low abundance signalling proteins 

difficult [119]. Increasing use o f cell lines representing monocytes has shown that they can 

be made to take on the characteristics o f macrophages [154].

The U937 promonocytic cell is a suspension cell line that under certain conditions can 

take on the characteristics o f macrophages [154]. This model has been used to identify the 

key stages in macrophage differentiation and the signalling systems involved [154, 156]. 

Previous investigators have studied the PDE4 activity o f U937 cells [226, 247, 248]. 

Before using such a model to investigate a specific aspect o f biochemical behaviour, it is
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essential to verify that the model approximates the original with regards to the behaviour to 

be analysed.

I hypothesised that tight regulation o f PDE4 iso form expression would occur during the 

development o f mature macrophages. Understanding how PDE4 isoform expression 

changes might offer insights into the roles each isoform plays in cellular behaviour. I also 

wanted to verify the U937 cell model with regards to PDE activity by comparing it to an 

ex-vivo model of macrophage development.

Results

Section 4.1 U937 differentiation

Previous reports have suggested that treatment o f U937 cells with 4nM PMA (U937pma) 

results in a phenotypic switch similar to that undergone by monocytes cultured on plastic 

[154]. One o f the earliest changes to occur on transfer o f peripheral blood monocytes to 

plastic is surface adhesion[l 19]. To assess the capacity o f U937 cells to mimic this 

behaviour I incubated suspension monocytic U937 cells in flasks containing gridded glass 

cover-slips, with or without PMA and counted adherent cells after 96 hours. Cells from 

both adherent and suspension compartments were lysed and the protein quantified. The 

relative proportion o f total cell lysate protein in the suspension and adherent populations 

was quantified and used to examine the expression of various surface phenotypic markers, 

signalling molecules and PDE activities.
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4.1.1 PMA increases the adherence index o fU 937pro  monocytic cells

Table 4.1.1 demonstrates that U 9 3 7 p m a  cells are 10 fold more adherent. Total protein is 

increased in U 9 3 7 p m a  cells by a factor o f 3 . 8 .  The proportion o f the total protein found in 

the adherent compartment in treated cells (71%), is greater than that in control U937 cells 

(2%). Thus treatment o f U937 cells with 4nm PMA leads to greater surface adherence than 

in control cells. Visually, U 9 3 7 p m a  looked larger and more spread out than control cells.

4.1.2 PMA causes the increased expression o f  f - 2  integrin (CD~11)

In view of the increased adherence and previous reports that cultured monocytes express a 

macrophage like profile o f adhesion molecules, I assessed the expression of the P2 integrin 

CDl lb[155, 156]. Figure 4.1.2 demonstrates expression of GDI lb  protein in U 9 3 7 p m a  but 

not U937 cells.

4.1.3 PMA reduces the expression o f  P K C f and increases the expression o f

To assess the effect on functional markers of macrophage behaviour I chose to examine 

PKCp and COX-2. PKCP has been shown to be down-regulated with alveolar macrophage 

development [147], while COX-2 is believed to be expressed primarily by macrophages in 

human lung .The expression o f both o f these proteins is represented in fig 4.1.3. In 

U937pMA cells, PKCp expression was dram atically reduced w hile COX 2 was 

transcriptionally activated.
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Control U937 U937pMA
No of Cells per hpf 39+/- 20 468 +/- 98

Total Protein (pg/ml) 47 +/- 4 178 +/- 14
Percent Solution (%) 97 28

Percent Adherent 2 71
(%)

Table 4.1. PMA treatment increases the surface adhesion o f  U937 
cells.
U937 cells were incubated for 96 hours with 4nM PMA, in flasks 
containing circular coverslips. After incubation coverslips were 
removed washed three times with ice cold PBS. Adherent cells were 
counted in 4 high power fields (hpf) per coverslip using a standard 
haemocytometer. Culture medium was removed from each flask and 
cells in suspension were collected by centrifugation these were 
washed and lysed in buffer containing 0.1% TritonXlOO. Remaining 
adherent cells w ere w ashed  and sim ilarly  lysed. P ro tein  
quantification was carried out and the total protein calculated for 
each flask. Number o f adherent cells per treatment is presented as a 
m ean (n=4). Total protein  represents the com bined protein 
quantification o f adherent cells and cells in solution. Proportion of 
the protein from each compartment is presented.



121

CD 11(3

Fig 4.1.2 PMA induces the expression o f (32 integrins in U937 cells.

U937 cells were treated with 4nM PMA for 96 hours and non adherent 
cells were removed. Remaining cells were washed and lysed in 3T3 lysis 
buffer. Untreated U937 cells were lysed and used as control cells. 
Proteins were separated using SDS-PAGE ensuring equal protein 
loading in each lane. Western blot analysis was performed on the cell 
lysates and nitrocellulose was probed with anti CD-I lb  monoclonal 
antibody. Lane 1; U937pma, lane 2; U937 cells. As can be seen, 96 
hours of 4nM PMA induces CD-I 1 integrin expression in U937 cells.
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Fig 4.1.3 Changes in the expression of PKC(3 and COX -2 with differentiation

U937 cells and U937pma were lysed and equal amounts of protein were separated 
by SDS-PAGE. Western blot analysis was performed and proteins identified 
immunologically with antibodies raised against PKC(3 and COX-2. Lanel; 
control U937 cells, lane2; U937pma. Fig 4.1.2.A, demonstrates that a striking 
reduction in PKCp expression occurs with macrophage differentiation. Fig 
4.1.2.B, shows that COX 2 expression is induced with differentiation. Both 
changes correspond to previously reported changes with macrophage 
development and are believed to contribute to the phenotype stability.
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4 .L4  C hanges in P D E  isoform  a c tiv ity  occur w ith  macrophage 

differentiation

I compared the effect o f PMA induced differentiation of U937 cells on PDE3 and PDE4 

activities. PMA treatment results in a fall in the total cAMP phosphodiesterase activity (fig 

4.1.3A,B). While the proportion o f PDE3 to the total activity rises from 11 to 28% on 96 

hours of PMA treatment that o f PDE4 falls. There is also a significant fall in the actual 

PDE4 activity in U 9 3 7 p m a  cells, from 132pmol/min/mg to 66pmol/min/mg. To ensure that 

this conformed to the peripheral blood monocyte model we compared the same parameters 

in cultured monocytes from human volunteers. Fig 4.1.3C demonstrates that while PDE3 

activity rose from 20 pmol/min/mg to 5 Ipmol/min/mg with 5 days o f culture, PDE4 

activity fell from 73pmol/min/mg to 47pmol/min/mg. Plastic cultured monocytes therefore 

reflect the PDE isoform changes seen in U937pMA celldevelopment.

4.1.5 Changes in PDE isoform activity in U937pma cells on a per cell basis

The data presented above suggests that PDE4 activity falls in line with total cAMP PDE 

activity. These data were calculated on a total protein basis as has previously been reported 

for macrophage differentiation studies [119]. I have also shown that the cellular protein 

content changes with U 9 3 7 p m a  development. To measure the changes in PDE isoform 

activity at a cellular level I recalculated the activity making a correction for cellular protein 

content to give activity on a per cell basis. Figure 4.1.4 shows that while total PDE4 

activity falls on per mg protein basis, it rises when calculated on a cellular basis. Both 

PDE3 and PDE4 activity rise in a similar fashion.
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Cyclic AMP PDE U937 U937pM.\

activity (pmol/min/mg) (pmol/min/mg)

Total 149+/- 38 92

PDE3 18.0 +/- 3.0 26 +/- 4

PDE4 132 +/- 6 66 +/- 5 **

g U 9 3 7  

gg U937 pma

PDE3 PDE4

80

60

I
13 40

208

monocytes Day 5 cultureU937 U 9 3 7 pma

Fig 4.1.4 Effect o f PMA on PDE isofonn expression in U937 cells and 
plastic differentiation on ex-vivo monocytes.

U937 cells and ex-vivo monocytes, were differentiated as described in 
materials and methods. U937 cells and U937PMA were counted and 
lysed in KHEM buffer. PBMC from normal volunteers were cultured on 
plastic for up to 5 days and washed and lysed in KHEM buffer. Total 
cAMP PDE activity was measured at IpM cAMP. PDE3 and PDE4 
activities were measured using the specific PDE inhibitors cilostamide 
Xpm (PDE3) and rolipram 10pm (PDE4) and subtracting the resulting 
activity from total activity. A, table expressing the Total PDE, PDE4 
and PDE3 activity for U937 and U937p\u. Protein per cell was 
calculated and used to adjust the activity per unit protein. Both activity 
per unit protein and activity per million cells are presented (n=3); B, 
graphic representation of changes in each cAMP PDE activity with 
differentiation; C, graphic representation of the percent total activity 
represented by both PDE3 and PDE4 in both U937/U937p\iv\, and ex- 
vivo monocytes/macrophages (n=l ). (**, P = 0.002 Student’s paired T Test).
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Cyclic AMP PDE C937 C937 U937Pma C937pvia

activity (pmol/min/nig) (pmoi/min/lO^cells) (pm oi/m in/n^) (pmol/min/lO^cells)

Totsà
PDE3
PDE4

149+ /. 38  

17.7 +/- 2.6  

1 3 2 + /-6

6 .8 + / -  1.8 
1 + / -  0.2 

6.2 +/- 0.5

92 
26 +/- 4  

66  +/- 5

16.5 

4.6  + /-0 .2  
1 2 + /-0 .9

lJ937pma

Ü937

PDE4 PDE3

Fig 4.1.5 Activity o f cellular PDE4 and PDE3 activity in U937 and 
U937pma cells.

U 937 cells and U 9 3 7 pma were counted and lysed in KHEM buffer. 
Total cAMP PDE activity was measured at IpM cAMP. PDE3 and 
PDE4 activities were measured using the specific PDE inhibitors 
cilostamide Xpm (PDE3) and rolipram 10pm (PDE4) and 
subtracting the resulting activity from total activity. Protein per cell 
was calculated and used to adjust the activity per unit protein. A; 
both activity per unit protein and activity per million cells are 
presented (n=3); B; graphic representation of the PDE3 and PDE4 
activity per million cells in both U 9 3 7 /U 9 3 7 pma (n=3).
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Discussion Section 4,1

Cell lines have been used previously to reflect mature inflammatory cells, [154] [155, 249]. 

U937 differentiation to U 9 3 7 p m a  reflects changes o f  m onocyte to m acrophage 

differentiation. I developed this model to measure changes in PDE4 isoform expression. To 

verify this model I measured adhesion index by comparing protein content and cell count 

in the suspension and adherent compartments o f cultured U937 and U 9 3 7 p m a  cells. 

Increased adhesion to plastic is a recognised behaviour o f both directly isolated and ex- 

vivo differentiated macrophages [119, 145]. Observing U 9 3 7 pm a  cells demonstrated 

significant phenotypic changes typical o f m acrophages. In com parison with their 

progenitor cells U 9 3 7 p m a  are flat large cells. Such an increase in the plasma membrane 

may be associated with an increase in the protein content. I used the data described above 

to calculate the amount o f protein per cell and found a significant increase in this index 

with differentiation. (47 +/- 4 Vs 179+/- 14 per 10^ cells). Again this reflects the ex-vivo 

model described by Gantner et al who reported an increase from -5 0  to -150  pg/ 10  ̂ cells 

[119]. It is likely that such an increase in protein and membrane reflects, among other 

things, the expression o f cell surface molecules associated with cell adhesion [250, 251].

CD l lb  expression reflects macrophage development and is a surface adhesion molecule 

important in cell-cell interactions in developing inflammation [149, 251]. In combination 

with CD 18 it forms the complex integrin Mac-1. H ass’ group have demonstrated that 

surrogate cell lines induced to differentiate to macrophage like cells express increased 

C D l lb  [154]. This group have recently demonstrated that elim inating expression of 

CD l lb, using antisense oligo-nucleotides, prevents the full expression o f the differentiated 

phenotype, [156]. Fig 4.1 shows increased expression o f CD l lb  in U937pMA.consistent 

with a macrophage phenotype. Hunninghake et al showed reduced PKC(3 expression in



127
AM compered to progenitor monocytes and I have dem onstrated a similar change in 

U937pMA compared to U937 cells (Fig 4.1.2) [147]. Thus key signalling molecules other 

than PDE isoforms that are known to change during macrophage development also change 

during U 9 3 7 p m a  development. Finally COX-2 expression takes plaee as macrophages 

mature [242, 252]. It has been proposed that COX-2 products such as PGE2 and TXA2 

maintain the phenotype o f mature AM. I have demonstrated that in U937 cells no basal 

expression of COX-2 is present while in U 9 3 7 pm a  COX-2 expression is seen.

The markers used above to confirm the developmental stage o f U937 cells on the 

granulocytic lineage were all effectively “on-off’ markers. Using such markers protects to 

some extent against bias related to protein content. Thus comparing equal quantities o f 

protein from each cell type may bias the result if  each cell type contains different amounts 

o f protein per cell. In fact by comparing two markers o f maerophage activation I have 

weighted the bias in favour o f the null hypothesis, that no significant change has oeeurred. 

That is iOOpg o f U937 protein reflects almost four times as many cells as 100p.g o f 

U 9 3 7 p M A  cell protein. This strengthens my results in favour o f U 9 3 7 p m a  cells reflecting 

macrophage biochemistry.

Having demonstrated that the U937pMA model accurately reflects macrophages I compared 

PDE3 and PDE4 activity in each stage o f development. This follows Gantner et al, who 

found a fall in PDE activity with a co-incident fall in PDE4 and a rise in PDE3 activities 

with AM development [119]. Other reports have also demonstrated that monocytes have 

different PDE profiles than maerophages [126, 127]. Excitingly Fig 4.1.3 demonstrates that 

PDE3 activity rises while PDE4 activity falls on the background o f falling total PDE 

activity with the development o f U 9 3 7 p m a - These data refleet the activity derived for 

expressed protein in cell lysate. As U 9 3 7 p m a  contain more protein per cell I recalculated 

the activities for total cell number (fig 4.1.4). Interestingly total PDE4 aetivity per 10  ̂cells 

does not fall as noted above. To confiim that this reflected the previously reported work by
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Gantner et al I re-calculated their data as presented and found that they too found an effect 

o f protein eontent. Doing this shows a fall in PDE4 aetivity from -  lOOpmol/min/mg in 

monocytes to -2  Op mo 1/m in/mg in day 6 differentiated macrophages. This converts to 6.2 

pm ol/m in/10^ cells and 4.5 pmol/min/10^ cells respectively. Thus in both cell marker 

expression and signalling molecule aetivity the U 9 3 7 p m a  model appears to reflect the 

changes taking place when macrophages develop. I could now examine which PDE4 

isoforms changed in activity or expression.

Section 4.2 Changes to PDE4 isoforms when U937 cells 

differentiate with PMA.

To compare the expression and activity o f various PDE4 isoforms I used western blot, RT- 

PCR and immunoprécipitation to isolate specific PDE4 families.

4.2.1 PDE4A activity is increased by PMA treatment o fU 937  cells

Our group previously reported that PDE4A4 is present in resting U937 cells [247]. 

Immunoprécipitation using antiserum raised against the common PDE4A C-terminal 

allows isolation o f all active PDE4A isoforms expressed. The PDE4 activity o f these 

immunoprecipitates can be measured to compare the relative activities between control 

U937 cells and U 9 3 7 p m a  cells. Figure 4.2.1 A, shows PDE4A contributes a greater (81%) 

proportion o f the total cellular PDE4 activity in U 9 3 7 p m a  cells than in U937 cells (2%) 

when activity is equalised for protein concentration. This increase in activity does not 

reflect the reduction in total PDE4 activity seen in section 4.1, as actual PDE4A aetivity is 

seen to increase from 1.1 pmol/min/mg to 53pmol/min/mg, (fig 4 .2 .IB). The change in
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protein content with U 9 3 7 p m a  cells would tend to limit any increase in PDE4A activity per 

cell, as PDE4A iso forms are “diluted” by other proteins. Calculating the activity per lO*’ 

cells, however shows the increase in PDE4A activity to be preserved with U937 cells 

having 0.02 pmol/min/10^ cells and U 9 3 7 p m a  cells having 9.6 pmol/min/10^ cells.

4.2.2 Change in PDE4A expression in U937pma

To test if  the increased PDE4A activity was related to a change in enzyme content, I 

examined protein expression by western blot. Fig 4.2.2 clearly shows that a band identified 

by PDE4A C-terminal anti-Sera is increased in U937pma cells. Figure 4.2.2A, compares 

equal cell numbers, while Fig 4.2.2B compares increasing amounts o f U937 and U937pma 

lysate protein. Both blots demonstrate an increase in the intensity o f the protein band 

developed with anti-PDE4A antiserum and this is quantified by densitometry in fig 4.2.2C. 

This demonstrates a profound increase in the intensity of staining for PDE4A consistent 

with the activity data described in 4.2.1.

4.2.3 Novel appearance o fP D E 4A I0  mRNA in U 9 3 7 p m a

Unfortunately two long forms o f PDE4A, PDE4A4 and PDE4A10 both run at a similar 

weight on SDS PAGE. To attempt to identify which isoforms are being expressed I 

performed RT-PCR using RNA from each cell type as template. Primers designed to 

complement the unique N-terminal regions o f PDE4A4 and PDE4A10 were used and 

conditions and sequences are presented in materials and methods section 2.1.4. Figure 

4.2.3, shows that PDE4A10 is only expressed in U 937pma cells while PDE4A4 is 

expressed in both cell types. This suggests that PDE4A10 expression is transcriptionally 

activated with maturation. Interestingly an intense RT-PCR product band is found in U937 

cells although relatively little protein is identified on western blot or immunoprécipitation.
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Fig 4.2.1 Changes in PDE4A activity when U937 cells and monocytes 
differentiate towards macrophage like cells

U937 cells were differentiated for 4 days with 4nm PMA. Adherent human 
monocytes were differentiated on plastic for 5 days. Control cells (Day 0), and 
differentiated (U937p^^  ̂ Day 5 monocytes) cells were lysed and PDE4A 
iso forms were i mmunoprec ipitated using an anti-sera raised against the 
PDE4A C terminal. Immunpoprecipitates were assayed for PDE4 activity. Fig 
4.5 A demonstrates that the proportion o f PDE4A to the total PDE4 activity 
rises dramatically from 1.94% to 81%. Fig 4.5 B demonstrates that in both the 
U937 model and in ex-vivo monocytes the PDE4A activity increases. (** P = 
0.002, Student’s T test).
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Fig4.2.2 Differentiation is associated with an increase in expression of 
PDE4A protein

U937 and U937pma cells were lysed in 3T3 lysis buffer and lysate protein 
was resolved by SDS-PAGE, followed by western blot analysis using 
antisera raised against the C-terminal of PDE4B. Fig4.2.2A,protein from 
1*10^5 cells was loaded in each lane: Lane 1 PDE4A4; Lane 2 PDE4A10; 
Lane 3 U937pma; Lane 4 control U937. Fig 4.2.2B, equal quantities of 
protein was loaded in each lane: Lane 1 PDE4A4; Lanes 2 - 4  100, 60 and 
40pg of protein from U937pma cells; lanes 4 - 7  equivalent protein 
quantities from control U937 cells. Both PDE4A4 and PDE4A10 run at the 
same weight making them difficult to distinguish on a western blot. Figure 
4.2.2C, autoradiographs were subjected to densitometric analysis, and the 
intensity of PDE4A bands relative to control U937 cells are presented 
(n=3). Note that consistent with previous activity data, PDE4A protein 
expression is significantly increased on differentiation. (P = 0.007, Student’s T 
test).
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Fig4.2.3 Differentiation is associated with an increase in transcription o f  
PDE4A10.

RT-PCR analysis of RNA isolated from U937 cells and U 9 3 7 p m a . Equal 
amounts of RNA was isolated and cDNA was prepared as described in 
materials and methods. This cDNA was used as template for PCR using 
primers directed against the specific N terminal regions of PDE4A4 and 
PDE4A10. Lanel contains markers, lane 2 - 5  contain the PCR product 
following per using PDE4A10 primers, lanes 6 - 1 0  contain per products 
from reactions using PDE4A4 primers. Lanes 2 ,  6 and 7 contain template 
cDNA from control U937 cells, while lanes 3 and 8 contain template from 
U 9 3 7 p m a  cells. Lanes 5  and 9  are positive controls and lanes 4 and 10 are 
negative controls. As can be seen while PDE4A4 is expressed under both 
control and differentiation conditions PDE4A10 expression appears only 
after 4 days of treatment with 4nM PMA.



133

4.2.4 Peripheral blood monocytes show increasedPDE4A activity with plastic  

differentiation

Imm unoprécipitation o f active PDE4A was performed on cell lysates derived from 

peripheral blood monocytes eultured for increasing periods o f time on plastic. Figure 4.2.4 

demonstrates that a similar inerease in aetivity as seen with U 9 3 7 p m a  development occurs 

in plastic cultured ex-vivo monoeytes suggesting that these changes normally occur in 

macrophage maturation.

4.2.5 PDE4D expression fa lls upon macrophage differentiation

Cell lysates derived from U937 and U 9 3 7 pm a  were analysed by western blot, with antisera 

raised against the C-terminal o f PDE4D. Figure4.2.5A, shows that while PDE4D3 and 

PDE4D5 are expressed in control U937 cells 4 days of incubation with of 4nM PMA leads 

to a fall in the expression o f both isoforms. PDE4D3 is absent from U 9 3 7 p m a  cell lysate, 

while PDE4D5 can be found only when large quantities o f protein are resolved. Figure 

4.2.5B, expresses the PDE4D5 data in terms o f intensity o f protein band using U937 cells 

as a reference point. This shows that PDE4D5 expression in U 9 3 7 p m a  cells is 18% of U937 

cell expression.

4.2.6/4.2.6.1 PD E4D  activity fa lls  with U 9 3 ? p m a  ^ n d  day Smacrophage 

development

In contrast to the increased activity o f PDE4A, immunoprécipitation o f PDE4D isoforms 

demonstrates a fall in activity of this family in U 9 3 7 p m a  cells. Figure 4.2.6A shows that as 

a proportion o f total PDE4 activity PDE4D falls from 60% to 25%, while fig 4.2.6B 

expresses this in terms o f actual activity showing a fall from 80 +/- 14 pmol/min/mg to 17 

+/- 7 pmol/min/mg in U 9 3 7 p m a  cells. With the change in cellular protein content a fall in



134

t 1

Fig 4.2.4. PDE4A activity in ex-vivo monocytes.

PBMC from normal volunteers were cultured on plastic for 
2 hours then non-adherent cells were washed off. 
Differentiation on plastic was allowed to progress for a 
range of periods. Cells were then washed and lysed in 
KHEM buffer. PDE4A isoforms were isolated by 
im munoprécipitation using antisera raised against the C 
terminal of PDE4A. PDE4 assays were performed on the 
immunoprecipitates. It can be seen that progressive culture 
resulted in the increasing expression o f  PDE4A activity.
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Fig 4 .2.5 The changes in PDE4D expression in Ü937 cells differentiated with 
4nM PMA

U937 cells and LJ937pma cells were lysed in 3T3 lysis buffer and equal 
amounts of protein were resolved by SDS-PAGE and analysed by western blot 
Fig 4.2.5A: Lane 1 positive control recombinant human PDE4D3 & 5; Lanes 2 
and 3 correspond to lOOpg and 60pg of control U937 cell lysate; Lanes 4 and 
5 contain the same protein quantities from U 9 3 7 p.\ia cells. As can be seen 
differentiation causes the com plete disappearance of PDE4D3 from U937 
cells, while PDE4D5 undergoes a significant but smaller drop in expression. 
Autoradiographs from these western blots were subjected to densitometry and 
the amount of detectable PDE4D5 relative to control U937 is presented (fig 
4.2.5B). As PDE4D3 completely disappeared no value is presented for this 
isoform, however PDE4D3 expression in U937 cells was equivalent to 
PDE4D5. As can be seen there is a dramatic reduction in the expression of 
PDE4D isoforms with macrophage differentiation.(**, p = o.(X)7, Student’s T icsi )
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Fig 4.2.6A The changes in PDE4D expression in U937 cells differentiated 
with 4nm PMA

U 937 cells and U 9 3 7 pma were lysed KHEM buffer and a volume o f  lysate 
representing 600pg protein was subjected to immunoprécipitation using 
antiserum raised against the common C terminal o f  PDE4D. 
Immunoprecipitates were analysed for PDE4 activity at IpM cAMP. Figure 
4.2.5A, the proportion o f  PDE4D activity relative to total PDE4 activity is 
presented. As can be seen the relative contribution o f PDE4D to total PDE4 
activity falls from 60% to 25% in U 9 3 7 pma Figure 4.2.5B, The actual PDE4D 
activity per unit protein is presented reflecting a substantial fall in overall 
PDE4D activity (n=3). Fig 4.2.5C, The PDE4D activity per million cells is 
presented. Again activity per cell also falls. ( ** P=0.049, * p >0.5 , Student’s 
Paired T Test)
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Fi^ 4.2.6. J The changes in PDE4D expression in p lastic adherent peripheral 
blood monocytes

Monocytes were cultured on plastic for up to 5 days. Day 1, day 3, day 5 and
undifferentiated monocytes were lysed in KHEM buffer and a volume of
lysate representing 600pg protein was subjected to immunoprécipitation using
anti serum raised against the common C terminal of PDE4D.
Immunoprecipitates were analysed for PDE4 activity at IpM cAMP. PDE4D
activity fell with time spent in culture from a initial activity of 17.1
pmol/min/mg to 2.7 pmol/min/mg. This reflects the changes seen with U937 
cell differentiation.
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activity could represent a dilution effect of other proteins, thus 1 recalculated the activity 

on a per 10^ cell basis. Figure 4.2.6C, shows that the reduction in activity seen on per mg 

protein basis is less marked at a cellular level. This is inconsistent with the western blot 

data on p ro te in  expression . F igu re 4.2.6.1 expresses the PDE4D  activ ity  

immunopreciptiated from lysates prepared from fresh peripheral blood monocytes and 

monocytes cultured on plastic. PDE4D activity again falls confirming the physiological 

relevance of the U 9 3 7 p m a  model.

4.2.7 PDE4B expression increases with U93 7pma development

Cell lysates from U937 and U 9 3 7 p m a  cells were analysed by western blot and PDE4B 

isoforms identified using antisera raised against the C-terminal of the PDE4B family. As 

previously reported only PDE4B2 is expressed in U937 cells and remains present in 

U 9 3 7 p M A  cells (fig 4.11) [247]. Differentiation to U 9 3 7 p m a  is associated with a substantial 

increase in the intensity o f the band shown in fig 4.2.7A. Three experiments are presented 

in a disordered sequence to improve densitometry. This analysis is presented in fig 4.2.7B, 

and clearly shows a 180% increase in the intensity o f the PDE4B2 band with U 9 3 7 p m a  

development.

4.2.8 PDE4B activity increases with U937pma development

Figure 4.2,8 presents data derived from immunoprécipitation o f PDE4B iso forms and 

subsequent PDE4 assay on the immunoprecipitates. Figure 4,2.8A and 4.2.8B, demonstrate 

that both the activity o f PDE4B and the contribu tion to total PDE4 activity rose 

considerably with U 9 3 7 p m a  maturation. Thus in U937 cells PDE4B activity was 8 +/- 

4pmol/min/mg representing 6% of total PDE4 activity, while in U 9 3 7 p m a  cells PDE4B 

activity was 29+/- lOpmol/min/mg, representing 44% total activity. Again the activity was 

calculated on a per cell basis and the increase in activity was preserved.
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Fig 4 .2 .7 The changes in PDE4B expression in U937 cells differentiated with 
4nM PMA

U937 cells and U937pma were washed and lysed lysed in 3T3 lysis buffer and 
equal quantities of protein from each cell type were resolved by SDS-PAGE. 
PDE4B isoforms were identified by anti-PDE4B antisera on a western blot fig  
4.2.6A. Lanes 1,4 and 5, U937pma cell lysate. Lanes 2, 3 and 6, control U937 
cells. Autoradiographs were subjected to densitometric analysis and the 
relative intensities of each PDE4B band compared to control LJ937 was 
calculated and are presented (fig 4.2.6B). Control U937 cells express only 
PDE4B2, of the PDE4B family. Differentiation with PMA causes a substantial 
increase (+180%) in the band for PDE4B2 in U937pma ( ** P = 0.02, Student’s 
Paired T test)



140

Control U937 cells

PDK4B

Total PDK4 activity

U937PMA odk

B 45 

40 

35

f:I:
10

5

0

8
Sj
1

Lé_ I '

U937 U937PMA

-Ü932. U937PMA

Fig 4.2.8 Changes in PDE4B activity in U937 cells differentiated with 4nM  
PMA.

U937 cells and U937pma cells were counted and lysed in KHEM buffer. A 
volume o f  cell lysate equal to ôOOpg was subjected to immunoprécipitation 
using antisera raised against the common C terminal o f  PDE4B. These lysates 
were analysed for PDE4 activity. Fig 4.2.7A, a pie chart representing the 
proportion o f  total PDE4 activity represented by PDE4B before and after 
differentiation. Fig 4.2.7B, The absolute activity per unit protein is presented 
+/- standard error (n=3).Fig 4.2.7C, The activity per million cells is presented. 
As can be seen an absolute increase in PDE4B2 activity is seen both in terms 
o f  absolute activity and activity per cell.( * P = 0.09, Student’s Paired T test)
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4.2.9 Densitometric analysis o f  western blot

Throughout this detailed profiling o f the PDE4 isoform content o f U937 and U937pma 

cells, I have presented data showing both activity per cell and activity per mg protein. This 

reflects the changes in cellular protein content found w ith differentiation. The 

densitometric analysis o f band intensity from western blot was performed on equal 

quantities o f protein, however and may result in bias. Figure 4,2.9 presents the 

densitometry data as optical density units with additional calculation o f expected band 

intensity for equal cell numbers. As can be seen where an increase in expression occurs, as 

with PDE4A and PDE4B comparing equal numbers o f cells would increase the difference 

described in my work. Thus it is likely that a greater quantity o f PDE4A and PDE4B are 

expressed in U937pma cells than my data suggest. In terms o f PDE4D, my data again 

underestimates the changes at a cellular level. Thus although PDE4D content of U937 cells 

is higher in my experiment than predicted for a per cell analysis, the fall is less marked. 

Thus it is likely that actual PDE4D expression at a cellular level in U937pma cells is lower 

than suggested in this work.

Discussion section 4.2

Having shown that U 9 3 7 p m a  cells represent mature macrophage development I measured 

the changes in PDE4 isoform expression. U937 cells expressed PDE4D3, PDE4D5, 

PDE4B2 and small quantities o f PDE4A4. This is in agreement with MacKenzie et al 

[247]. I demonstrated a large increase in PDE4A activity and expression in U 9 3 7 p m a - 

Increases in activity and PDE4A expression were found at both total protein and cellular 

level and were not an artefact of the changing protein content o f cells. This increase was at 

least in part due to new expression o f PDE4A10 a recently described long form PDE4A
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Fig 4 .2.9 Expression ofP D E 4 isoforms in U937 and U937pma cells

U937 and U 9 3 7 pma were lysed and western blot analysis was performed on 
equal quantities of lysate protein (lOOpg). Proteins were visualised with 
antisera raised against the C-terminal regions of PDE4 isoforms. 
Quantification of isoform expression was performed using Kodak Digital 
Science ID densitometry software. Data presented here demonstrates the 
difference between the density observed using equal quantities of protein and 
that predicted by expression per cell number. As can be seen the patterns of 
expression per cell number exaggerate the relative expression expressed per 
lOOpg protein.(n=3 per experiment (arb units = arbitrary units).
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isoforin [234]. As a novel gene expressed with a phenotypic switch PDE4A10 may play a 

role in macrophage specific regulation. On the other hand it seems likely that PDE4A4 is 

also increased in U 9 3 7 p m a  cells over U 9 3 7  cells.

Wang et al suggested that in human monocytes PDE4B2 was the key cAMP PDE isoform 

in controlling inflammatory behaviour[253]. Another group found a linear correlation 

between the ability o f a range o f cyclohexyl amine compounds' to selectively inhibit 

PDE4A or PDE4B as opposed to inhibiting PDE4D and their capacity to limit T cell 

proliferation or T N Fa production in response to house dust mite antigen [253, 254]. Using 

a knock out mouse model Jin et al dem onstrated the im portance o f PDE4B2 in 

inflammation by demonstrating failure to produce T N Fa in knock out mice exposed to 

EPS,[255]. I demonstrated a trebling o f the PDE4B2 content and activity in U 9 3 7 p m a - 

These data is consistent with the reports described above and strengthens the likelihood of 

PDE4B2 having important immunomodulatory roles.

In contrast to PDE4A isoforms and PDE4B2, PDE4D3 and PDE4D5 expression falls in 

U 9 3 7 p m a - This finding was consistent in all western blot analyses performed. The level of 

reduction in expression was greater than the fall in PDE4D activity found using 

immunoprécipitation o f U 9 3 7  and U 9 3 7 p m a  lysates. Although the trend was for a fall in 

PDE4D activity it was not consistent with the western blot data. Increasing the stringency 

of the washing steps of the immunoprécipitation, led to a complete loss in all PDE4 

isoform activity, and thus could not be used to coinect PDE4D activity. The western blot 

data was more consistent than the immunoprécipitation data. In the latter greater variability 

was found between experiments suggesting more error. The same antibody was used for 

both forms o f analysis and it seems unlikely that the error lies with the antisera. The 

immunoprecipitated PDE4D may have been isolated along side another PDE4 isoform in a 

molecular complex that then contributed to the activity recorded. No such additional PDE4 

isoform was found when immunoprecipitates were blotted with antisera raised against the



144
other PDE4 isoforms. I believe the data from the western blot is a more correct reflection 

o f the cellular changes that occur with U 9 3 7 pm a  development due to the consistency o f 

these data.

To confirm that the findings in U 9 3 7 p m a  reflected changes seen in peripheral blood 

monocytes my colleague Dr George Baillie examined the activity and expression profiles 

o f ex-vivo monocytes differentiated on plastic. He demonstrated that PDE4A isoforms 

increased alongside PDE4B2 while PDE4D3 and PDE4D5 were reduced in expression. 

Again my U937 model closely reflected the ex-vivo model.

Section 4,3 A switch in long form/ short form dominance has 

functional significance in ERK 1/2 signalling.

PDE4B2 is a short form PDE4 and its activity is increased by ERK2 phosphorylation[67]. 

PDE4D3 and PDE4D5 are long forms and their activity  is reduced by ERK2 

phosphorylation [66, 67], The changes outlined in section 4.2 demonstrate a switch from 

long form PDE4D dominance to a short form PDE4B2 dominance with U 9 3 7 p m a  

development. I hypothesised that PDE4 regulation by ERK2 would be altered by this 

change in isoform expression.

4.3.1 Changes in PDE4 response to EGF

Figure 4.3.1 demonstrates that when control U937 cells are treated with EGF the total 

PDE4 activity falls implying a long form-dominant response. U 9 3 7 p m a  cells however show 

an increased PDE4 activity consistent with a short form-dominant response.
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Effect of EGF treatment on PDE4 activity in U937 ceils
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Fig 4.11 PDE4 responses to EGF treatment varies with 
PMA treatment

Control and PMA treated U937 cells were exposed to EGF 
for increasing periods of time. Cell were washed and lysed 
and the PDE4 activity measured. As can be seen EGF 
caused a rapid 26% decrease in the PDE4 activity of U937 
cells. In PMA treated, differentiated cells however a rapid 
increase in activity was recorded. This difference probably 
corresponds to the ability of EGF to rapidly activate 
MAPKinase series of signal transduction kinases. These are 
known to exert opposite effects on the long and short 
isoforms of PDE4.
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Fig 4.3.2 PDE4 responses to salbutamol in U937 and U937 
PMA cells

Control and pma treated U937 cells were exposed tolOpM 
salbutamol for up to 25 minutes. Cell were washed and 
lysed and the PDE4 activity measured. A. U937 PDE4 
activity rose by around 10% by 5 minutes and returned to 
normal by 25 minutes. B. U937pma cell PDE4 activity 
continued to rise unchecked. The presence of the MEK 
inhibitor PD98059 leads to an increased elevation in 
activity and demonstrates that MAPkinase may become 
activated by salbutamol.
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4.3.2 Changes in response to P2 agonists

Figure 4.3.2 shows the PDE4 activity in response to treatment with salbutamol in U937 

and U937pMA cells. Although representing only two experiments these data suggests that 

PDE4 activity in U937 cells initially increases then falls while in U937pma the activity 

continues to rise.

Discussion Section 4.3

I used EGF to activate ERK2 in U937 cells because other pro-inflammatory signals such as 

EPS or T N F a activate ERK by multiple different pathways. Such ‘dirty’ signals might 

have changed PDE4 activity by other pathways that are hard to isolate in a living system. 

My data suggested that a switch in long form-dominance to short form-dominance was 

reflected by a change in crosstalk between ERK2 and cAMP signalling. This exciting 

result suggested that PDE4B2 could play a significant role in the development o f 

inflammatory signals. Cyclic AMP is believed to have anti-inflammatory behaviour on cell 

signalling and my data suggests that increased PDE4B2 activity will reduce local cAMP 

levels and permit signalling to progress.

Conversely I measured the activity o f PDE4 in response to a p2 agonist. These are 

important therapeutic agents in asthma. It is known that salbutamol increases PDE4 

activity in monocytes [226]. This may result in reduced activity o f the receptor in a process 

called heterologous desensitisation. P2 agonists are G-protein coupled receptors that 

activate adenylyl cyclase by release o f G as. It is believed however that prolonged receptor 

occupancy results in a switch in downstream signalling to a G ai activation of ERK 1/2. 

Thus I was interested to observe changes in this complex receptor system in terms of PDE4 

activity. Initial results showed an early an increase in PDE4 activity in U937 cells perhaps 

reflecting PKA phosphorylation o f PDE4 isoforms. Following activation, however a
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gradual decrease in activity occurs. Whether this represents a dephosphorylation event or a 

ERK2 related inactivation is not clear. In U 9 3 7 p m a  however activation continues 

unchecked. This suggests that a subsequent activation o f ERK2 downstream of the P2 

receptor may cause short form activation in differentiated macrophages.

Conclusions

In this chapter I have demonstrated that while tissue fixed macrophages are hard to acquire 

in vivo, the U 9 3 7 p m a  model is a useful surrogate for the study of phosphodiesterase 4  

activity. M acrophage differentiation is associated with significant changes in the 

expression and activity of PDE4A, PDE4B2 and PDE4D, In particular the new expression 

of PDE4A10 may offer a “cell specific” PDE4 isoform to target therapeutically. PDE4B2 

is also highlighted as an important PDE4 in macrophages. The overall switch from a long 

form dominant to a short form dominant profile of PDE4 may have important implications 

for our understanding of crosstalk in inflammation based signalling cascades involving 

cAMP.
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Fig 4.3.3 Diagram representing the effect o f  macrophage 
development on cAMP crosstalk with MAP Kinase
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Chapters Lipopolysaccharide regulation of PDE4 

isoforms and PDE4 inhibition in activated RAW 264.7 

cells

Introduction

In chapter 4 I demonstrated differential regulation o f PDE4 isoforms in macrophage 

development suggesting that different PDE4 isoforms might regulate specific functions. 

Support for PDE4 dependent regulation o f macrophage function comes from studies 

demonstrating specific inhibition o f PDE4 alters macrophage behaviour. For example 

PDE4 inhibitors have been shown to prevent LPS stimulated T N F a and IL-12 production 

[256, 257]. The association of rolipram with PDE4 occurs with two distinct kinetics, a high 

affinity rolipram binding site (HARBS) and a low affinity rolipram binding site (LARBS) 

[223] leading to a proposal that different conformations o f PDE4 isoforms interacting with 

rolipram in specific ways [91]. Inhibition of T N Fa production by rolipram occurs with 

kinetics more akin to PDE4 activity inhibition than H^rolipram displacement from 

HARBS, suggesting that different conformations o f PDE4 may have different roles in 

regulating cellular cAMP [223]. Mackenzie et al demonstrated in U937 cells that cAMP 

dependent phosphorylation o f CREB (PCREB), showed stepwise increases with rolipram 

dose [247]. This work suggests that rolipram may inhibit PDE4 with multiple kinetics and 

thus regulate cell function in an isoform or conformation specific fashion.

By what mechanism cAMP inhibits LPS stimulated TN Fa production is unclear although 

indirect inhibition by IL-10 has been proposed. Cyclic AMP can increase the production of 

the “anti-inflammatory” cytokine IL-10 [245] and removing with anti-IL-10 antiserum,
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prevented the inhibition o f T N Fa by rolipram [163]. Procopio et al, on the other hand 

demonstrated that in an IL-10 knock out mouse model, cAMP was still capable o f 

preventing LPS stimulated T N Fa arguing for an alternative method o f inhibition [194]. 

While Kambayashi et al did not find a change in T N F a mRNA levels from rolipram 

treatment alone, many groups have found cAMP dependent T N F a regulation occurs at 

transcriptional and post translational stages [206]. Cyclic AMP inhibition of LPS induced 

TN Fa production therefore may occur in a direct or indirect manner.

Many groups studying rolipram inhibition o f cytokine production have found that the 

effect is enhanced by the presence o f a cAMP elevating signal. Thus while rolipram alone 

will not elevate intracellular cAMP the addition o f for example, a (32 adrenergic agonist or 

PGE2 along with PDE4 inhibition causes changes in cellular behaviour [258]. Whether 

LPS can provide such a cAMP stimulus is not clear[244].

LPS activates ERK 1/2 [259, 260] and cAMP is known to inhibit the classical Ras-Raf-1 

pathway o f ERK 1/2 activation by PKA mediated phosphorylation o f Raf-1 [261]. Cyclic 

AMP generated by PDE4 inhibition is therefore well placed to prevent LPS generated 

ERK 1/2 activation if  LPS uses the Ras-Raf-1. Gutheridge et al demonstrated that both LPS 

and constitutively active Raf-, activated ERK 1/2 in RAW 264.7 cells [262]. LPS however 

did not cause Raf-1 activation. Indeed both LPS and Raf-1 were mutually antagonistic. 

Other groups have demonstrated Raf-1 independent activation o f ERK 1 in myeloid cells 

[263]. Controversial work recently presented proposes that R apl can activate B-Raf and 

thus activate ERK 1/2 [264, 265]. Rap 1 is activated by a number o f second messengers 

including cAMP [266]. A family o f guanine nucleotide exchange factor (GEFs) called 

EPAC have been shown to activate Rapl in a cAMP dependent, PKA independent fashion 

[38]. Rapl could resolve the puzzle posed by Gutheridge et al, in that if Rapl was activated 

by LPS then it might activate ERK 1/2 in a Raf-1 independent manner (Fig 5.1). Carron et
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al recently showed that LPS induces (3 integrin induced macrophage spreading in a process 

that involves rapl activation [204].

Although many studies have investigated the effects o f inhibiting PDE4 on cytokine 

generation few have looked at LPS modulation o f PDE4 activity. 1 hypothesised that 

cAMP regulation would take place in a PDE4 isoform specific manner and that this might 

influence inflammatory behaviour. Thus I proposed to measure the response o f PDE4 to 

LPS and look for functional outcomes o f PDE4 inhibition. Finally 1 investigated what role 

if any Rap-1 might play in transducing the cAMP signal generated by PDE4 inhibition

LPS receptor

DAG

Cyclic AMP

Raf-1

Fig 5.1 Proposed mechanism of cAMP crosstalk in LPS activation o f MAPkinase.

(Ca^\ calcium; DAG, diacyl glycerol; )



153

Results

Section 5.1

5.1.1 Lipopolysaccharide activates PDE4 but reduces PDE3 activity

I hypothesised that increases in cAMP phosphodiesterase activity would be required to 

“permit” pro inflammatory signals to be transduced. lOng/ml LPS was used to activate 

RAW 264.7 cells and PDE activities were measured over 90 minutes exposure (Figure 

5.1.1) (n-2). PDE4 activity climbs from 10 minutes, peaks at 50 minutes with normal 

activity regained by 90 minutes (figure 5.1.1.A). In con trast PDE3 activity, which 

contributes around 30% o f cAMP PDE activity in resting cells, is rapidly reduced 

following LPS stimulation.

LPS stimulates the production o f various mediators from macrophages. To avoid a 

secondary autocrine effect, I selected an early time point to analyse the activation further 

(figure 5.1.LB). By 30 minutes I found a significant increase o f 39.8% +/- 4.2% activation 

of PDE4 (n=4). The data presented is pooled from various experiments and percent change 

is quoted to minimise the effect o f cellular variability between experiments.

5.1.2 Wortmannin and PKA inhibitors significantly reduce LPS activation o f  

PDE4

Gene transcription and phosphorylation by PKA and ERIC2 can regulate PDE4 activity. I 

employed a battery o f signal transduction inhibitors to try and identify the pathways 

leading to PDE4 activation by LPS. Actinomycin 3p,g/ml, did not significantly affect the 

activation o f PDE4 suggesting that new protein production does not underlie the increase 

in activity at 30 minutes. Inhibition o f the MEK-ERK axis reduced PDE4 activation by
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Fig 5.1. /. LPS increases PDE4 activity while reducing PDE3 activity

Raw 264.7 cells were incubated with lOng/ml LPS for various 
periods. Cells were harvested, lysed in KHEM buffer and PDE3 or 
PDE4 activity was measured. Fig5.1.1A demonstrates that while 
PDE3 activity is rapidly reduced, PDE4 activity is preserved and 
increases from around 25 mins until 50 mins (n=2). Fig5.1.1 B 
presents data from repeated experiments looking at 30 minutes o f  LPS 
stimulation (n=4). LPS appears to increase PDE4 activity by 40% +/- 
4% after 30 minutes. (** indicates P = 0.05, calculated by paired T 
test o f  treated and non treated cells).
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Fig 5.1.2 The effects o f  various compounds on the increase in PDE4 
activity produced by 20 minutes treatment with LPS.

Raw 264.7 cells were pre-incubated with various signal transduction 
inhibitors for 30 minutes, prior to 20 minutes incubation with lOng/ml 
LPS. Cells were lysed in KHEM buffer and the PDE4 activity to I pM 
cAMP was measured. The data is presented as percentage change in 
the treated cells compared to the untreated cells. As can be seen little 
difference is recorded in the presence o f actinomycin (3pg/ml). MEK 
inhibition only inhibits 16% o f the activation seen with LPS. The 
greatest effects were seen in the presence o f H89 (lOpM) and the 
myristylated PKA inhibitor peptide (lOpM ) and wortmannin (lOpM). 
These molecules abolished PDE4 activation by LPS and reduced 
resting PDE4 activity.
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50%. The greatest inhibition o f PDE4 activation by LPS was seen with wortmannin and 

H89, both o f which reduced PDE4 activity overall.

5.L3 RAW  264.7 cells contain PDE4A1, PDE4A6, PDE4B2 and PDE4D3 

and PDE4D5

On the basis o f inhibitor studies it appeared that MEK was involved in the activation of 

PDE4 by LPS. ERK2 can activate short form PDE4 isoforms and inhibit long forms and so 

I investigated which long and short forms exist in these cells using western blot analysis. 

PDE4D5 is expressed to a greater degree than PDE4D3. The short form, PDE4B2 is the 

only member of the PDE4B family to be expressed. Two representatives o f the PDE4A 

family, rPDE4Al and rPDE4A6 are seen.

5.1.4 Lipopolysaccharide activates PDE4B2

Next I used immunoprécipitation to isolate PDE4 isoforms before and after LPS treatment 

and measured the PDE4 activity in the resulting im m unoprecipitates. Figure 5.1.4 

demonstrates that while PDE4A and PDE4D im munoprecipitates did not appear to 

increase in activity PDE4B activity rose by around 50%.

5.1.5 Inhibition o f  PDE4B in LPS treated RAW  264.7 cells

Using a range o f signal transduction inhibitors I identified the pathways involved in 

activating PDE4B. While the SB203580 compound inhibiting P38 MAPKinase, did not 

affect the activation o f PDE4B, U 0126 does abolish the activation completely. Again 

actinomycin does not alter the activation arguing against a gene transcription event.
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PDE4B2

PDE4D5 PDE4D3

Fig 5.1.3. PDE4 isoform expression in RA W 264.7 macrophage cells.

Raw 264.7 cells were lysed in either 3T3 lysis buffer (A and C) or 
KHEM and subjected to high speed fractionation (B) and proteins 
were resolved on SDS-PAGE. Nitrocellulose membranes were probed 
with antibodies raised against the common C-terminal o f PDE4 gene 
families. Within each experiment equal amount o f lysate protein were 
loaded onto each lane. Fig 5.1.3A. PDE4A isoforms. Two immuno- 
bands appear co-mi grating with rat PDE4A1 and PDE4A6. Fig 
5.1.3B, PDE4B isoforms. One band co-mi grating with PDE4B2 
appears in both soluble and particulate fractions fraction. Fig 5.1.3C, 
PDE4D isoforms. Two bands co-mi grating with PDE4D3 and 
PDE4D5 appear. There is a clear excess o f PDE4D5.
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Fig 5.1.4 PDE4B 
macrophages

is activated following LPS treatment o f RAW

RAW 264.7 cells before and after treatment for 20 minutes with lOng/ml 
LPS treatment were lysed in KHEM buffer. PDE4 isoforms were isolated by 
immunoprécipitation using antiserum raised against PDE4A, PDE4B and 
PDE4D. PDE activity o f immunoprecipitates was measured (n=3).Fig 
5.1.4A, the majority of PDE4 activity in RAW 264.7 cells is accounted for 
by PDE4D, while 5%  is accounted for by PDE4B. Fig 5.1.4B, LPS increases 
PDE4B activity but does not increase PDE4A or PDE4D activity (n=3). (**, 
P = 0.00, Paired T test o f immunoprecipitates before and after LPS treatment).
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Fig 5 .1.5 Inhibition o f  the activation o f PDE4B

Serum starved RAW 264.7 cells were pre-treated with various inhibitors 
of signal transduction cascades, prior to incubation for 20 minutes with 
1 Ong/ml LPS. PDE4B was immunoprecipitated from cell lysates and the 
PDE activity of these extracts was measured. LPS increased PDE4B 
activity by 42%. As can be seen gene transcription does not appear to 
explain the increase in activity of PDE4B as actinomycin has no 
significant effect on PDE4B activation. MEK inhibition by the U 0126  
compound results in a loss of activation. Inhibiting P38 MAPkinase with 
the SB203580 compound does not alter PDE4B activation. (**, P < 0.05, 
Student’s paired T test o f the difference between LPS and LPS + inhibitor from base).
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Discussion Section 5.1

Lipopolysaccharide’s capacity to activate o f RAW 264.7 murine macrophage has been 

shown to equate with toxicity in vivo [267]. An extensive literature exists on pathways 

downstream o f the LPS receptor complex yet surprisingly little is known about the effect 

o f LPS on PKA activity or intracellular cAMP levels [259, 268]. Indirect studies using 

inhibitors o f PKA on LPS stimulated macrophages suggest that PKA is not activated [269]. 

Other groups have shown PKA inhibition to reduce LPS responses. H89, a PKA inhibitor, 

can inhibit the activity o f MSK 1 and Caivano et al have demonstrated that some effects 

attributed to PKA on the basis o f H89 inhibition may be due to bystander effects on this 

kinase [216].

I have shown that LPS causes an increased PDE4 cAMP hydrolysis in macrophages. This 

increase in activity would be expected to lower intracellular cAMP levels, as 1 

hypothesised. PDE3 and PDE4 show contrasting responses to LPS in a similar fashion to 

other examples o f funetional conipartmentalisation. Ahmad et al, demonstrated that while 

GM-CSF, an important macrophage survival factor was capable o f activating PDE3 and 

PDE4, IL-3 specifically activated PDE4 [102]. Dousa demonstrated in kidney mesangial 

cells, PDE3 inhibitors inhibit proliferation, while PDE4 inhibitors prevent oxide radical 

release [98]. Thus biochemical compartmentalisation may explain distinct functional 

responses to anti-inflammatory agents.

The greatest effects on PDE4 activation came with PI3Kinase and PKA inhibition. 

Baseline PDE4 activity was decreased implying that a degree o f constitutive activation o f 

PDE4 is present in these cells. PKA ean activate PDE4 isoforms and PI-3Kinase has was 

shown to activate PDE4A in pre-adipocytes through a p70S6 Kinase mediated pathway
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[112, 238]. LPS is known to activate PI-3kinase in macrophages [231]. I have also found 

partial reduction in PDE4 activity with MEK inhibition. ERK2 has been shown to affect 

PDE4 isoform activity in an isoform specific manner [67]. I wished to try and tease out 

which isoform was being activated as this might suggest which pathway was dominant in 

the LPS activation.

RAW cells express one PDE4B and two PDE4A isoforms (fig 5.1.3). This pattern reflects 

the mature maerophage phenotype described in chapter 4. PDE4D5 is also expressed 

differing from our U937 model. It is possible that this isoform reflects the immortalisation 

process. Immunoprecipitated PDE4A activity did not change with LPS treatment of RAW 

264.7 cells. This argues against a direct role for the PL3kinase -  p70S6 kinase pathway 

described in preadipocytes. I f  PDE4D was the predom inant isoform responsible for 

controlling the inflammatory response LPS would be expected to inhibit PDE4 activity by 

MAPkinase activation. Thus MEK inhibition would activate PDE4. This was not seen, and 

immunoprecipitated PDE4D did not respond to LPS.

PDE4B2 is the only ‘short-form’ PDE4 isoform present in RAW cells making it the likely 

subjeet o f ERK 1/2 activation downstream o f LPS [67]. Immunoprécipitation studies 

support this hypothesis as PDE4B2 is activated. The contribution o f PDE4B2 to total 

PDE4 activity is not sufficient to explain the change in PDE4 activity recorded. This may 

reflect an artefact o f im munoprécipitation where iso forms are stripped from their 

molecular partners, altering their eonstitutive function. Again MEK inhibition reduces the 

activation of PDE4B2 further supporting its contribution to the overall activation o f PDE4 

seen.
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Section 5.2

Evidence for m ulti-m olecular signalling complexes is accum ulating [79], Physical 

compartmentalisation o f individual PDE4 isoforms may explain some o f the differences 

between the response o f FDE4B2 and PDE4D5 to EPS described above. This suggests 

differential activation o f that ER K l/2 physically associated with PDE4B2, but not that 

associated with PDE4D.

Evidence for the incorporation o f PDE4 isoforms in multi-molecular complexes is lacking. 

Yarwood et al demonstrated that RACK-1 binds PDE4D5 tightly [84] and RACK-1 was 

shown to be important in determining macrophage integrity [270]. Corsini et al have also 

shown that senility in murine macrophages could be overcome by replacing reduced 

RACKl expression [230].

I next attempted to identify roles for PDE4B2 and PDE4D5 by demonstrating a direct 

physical relationship between PDE4 isoforms and components o f the B-Raf -  ERK 1/2 

pathway and RACK 1.

5.2.1 PDE4B2 appears to co-immunoprecipitate with Phospho - ERK1/ERK2 

and B~Raf

I attempted to demonstrate physical association between PDE4B2 and activated ERK 1/2 

by co-immunoprecipitation. I used PDE4B antiserum to isolate PDE4B2 and performed 

western blot analysis o f the immunoprecipitate. These were probed with antibodies raised 

against the phosphorylated residues o f activated ERKl and ERK2. Figure 5.2.1.A shows 

that a band co-migrating with phospho-ERK2 appears associated with PDE4B2. As it is 

believed that the members o f the MAPkinase signalling pathway form multimolecular 

complexes, 1 predicted that other members o f this pathway should co-localise with
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Fig 5.2.1 Co-immunoprecipitation o f IP-Band signalling proteins of the ras- 
ERKl/2 pathway

Raw 264.7 cells treated with Ips for various times were lysed and 
Immunoprécipitation was performed from Img of lysate protein using 
antiserum raised against PDE4B (Schering, UK). Immunoprecipitates were 
resolved by SDS-PAGE. Immunobands were developed with antibodies raised 
against B-raf and phospho-ERKl/2 proteins. Fig 5.2.1 A, ERK 1/2: lane 1 
molecular weight markers and ERK 1/2 control; lane 2 1P-PDE4B from 
untreated cell lysate, lanes 3 and 4 1P-PDE4B from raw cells treated with Ips 
(lOng/ml) for 10 and 20 minutes respectively. Lane 5 positive ERK 1/2 control. 
Fig 5 .2 .IB, B-raf blot. Lanes 1 - 4 immunoprecipitates from lysates of control 
and Ips treated RAW cells. Lanes 6 - 9  contain pre-dear ‘pull-down’. It can be 
seen that although initially promising, the results of the pre-dear studies 
suggest non-specific association of B-raf and anti-serum is taking place.
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PDE4B2. Figure 5 .2 .LB demonstrates an equivalent im munoprécipitation experiment 

probed with antibodies against B-Raf. Unfortunately the right side o f this blot shows B-Raf 

appearing in the Serum taken from pre-immunised rabbits that were subsequently used to 

raise the PDE4B antibody. Thus the validity of the co-immunopreeipitation studies is poor.

Despite altering the stringency o f the washing stages of immunoprécipitation I was unable 

to produce conditions where B-Raf did not appear in the preclear supernatant.

5.2.2 Back phosphorylation o f  Immunoprecipitated PDE4B2

I used a back phosphorylation method to time the phosphorylation o f PDE4B2. PDE4B 

im munopreeipitates were used as substrates for ‘ho t’ phosphorylation studies using 

reeom binant active-ERK 2 and radiolabelled phosphate (^^P) as a label. PDE4B2 

endogenously activated by phosphorylation will resist further phosphorylation and inactive 

PDE4B2 will be labelled. Figure 5.2.2 dem onstrates that although a weak band 

coiTesponding to PDE4B2 can be made out, the degree o f phosphorylation is too slight to 

distinguish it above background ‘noise’.

5.2 .3/5 .2J PDE4D5 and RACK-1 in EPS treated RAW  264.7 cells

I investigated a physical association of PDE4D5 and RACK-1. Figure 5.2.3 demonstrates 

expression o f both these molecules in RAW 264.7 cells. In each case high speed 

fractionation was performed and Fig 5.2.3A, demonstrates that PDE4D5 is distributed to 

all fractions with a greater proportion in the particulate than the cytosolie fraction. Figure 

5.2.3B demonstrates that RACK-1 is excluded from the cytosolic compartment, with the 

majority being found in the nuclear fraction. To investigate if activation of Raw 264.7 cells 

altered RACK-1 or PDE4D5 distribution, they were treated with EPS for up to 30 minutes. 

Figure 5.2.4 shows that no significant shift o f either protein from the PI compartment to 

the S2 takes place within this time frame.
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Fig5.2.2 Back phosphorylation of immunoprecipitated PDE4B2 
from EPS treated RAW 264.7 cells

RAW 264.7 cells treated with EPS (lOng/ml) for a range of times 
were lysed and antiserum raised against PDE4B was used to 
immunoprecipitate PDE4B2 from lysates. Immunoprecipitates 
were incubated with recombinant active ERK kinase fragment in 
the presence of ^^P-ATP. Immunoprecipitates were resolved by 
SDS-PAGE, and acrylamide gels were transferred to a 
nitrocellulose membrane and exposed on a phosphoimager (Bio 
Rad LTD, UK). The resulting image is presented. Lane 1 phospho- 
markers, molecular weight markers (Amersham-Pharmacia);Lane 2 
No treatment; Lanes 3-6 and Lanes 7-10, EPS lOng/ml for 2, 5, 10 
and 20 minutes respectively. The level of PDE4B2 is marked on 
the image, but as can be seen only a faint band is detectable. 
Insufficient protein is therefore present to make an estimate of the 
degree of phosphorylation compared to basal conditions.
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Fig 5.2.3 PDE4D5 shares a similar distribution as RACK 1 in RAW 264.7 
cells

RAW 264.7 cells were harvested and subjected to high speed fractionation 
as described in materials and methods. Fraetions were resuspended in 
equal volumes and PDE4D5 and RACK 1 were visualised by western blot 
analysis. Equal volumes o f fraetion, equivalent to 40pg S2 lysate protein, 
were loaded in each lane. Fig 5.2.3A PDE4D5: lane 1 +ve eontrol; lane 2 
PI fraction; lane 3 S2 fraction and lane 4 P2 fraction. Fig 5.2.3B RACK 1 : 
lane 1 +ve control; lane 2 P2 fraction; lane 3 S2 fraction and lane 4 PI 
fraction. As can be seen the majority o f both PDE4D5 and RACK 1 is 
distributed between the particulate fraetions with a greater proportion in 
the PI fraction. RACK 1 appears to be excluded from the S2 compartment 
while a small fraction o f PDE4D5 appears here.
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Fig 5.2.4 Activation does not affect PDE4D5 or RACK 1 distribution in 
RAW 264.7 cells

RAW 264.7 cells were incubated with lOng/ml LPS for given time periods. 
Cells were subjected to high speed fractionation and PDE4D5 and RACK 1 
were visualised in the S2 and PI fractions, by western blot. Equal volumes 
of cell fraction were loaded on each lane, equivalent to 40pg of S2 protein. 
Fig 5.2.4A PDE4D5: lane + and 6 +ve control; PI fraction lanes 1 - 5, Ips 
lOng/ml 0, 1, 5,10, 30 minutes respectively; S2 fraction lanes 7 - 1 1 ,  Ips 
lOng/ml 0, 1, 5,10, 30 minutes respectively.Fig 5.2.4B RACK 1 PI fraction 
lanes 1 - 6, Ips lOng/ml 0, 1, 5,10,15, 30 minutes respectively; S2 fraction 
lanes 7 - 12, Ips lOng/ml 0, 1, 5,10,15, 30 minutes respectively. No 
significant changes in distribution occurred with Ips treatment. This does not 
rule out a translocation between particulate fractions.
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Discussion Section 5.2

These studies were carried out in order to investigate PDE4B2 activation by ERK 1/2 

following LPS treatment o f macrophages and to identify a role for PDE4D5 in macrophage 

activation. Although I was able to demonstrate physical association between PDE4B2 and 

both Erk 2 and B-Raf molecules, I also found these molecules associated with pre-immune 

Serum. Figure 1.3 illustrates that two ERK2 docking domains exist in PDE4D3.1 predicted 

that direct association between long form PDE4 and ERK2 would take place. While this 

invalidates the experiment it does not refute the hypothesis that the molecules do associate. 

My next attempt to demonstrate ‘back-phosphorylation’ of immunoprecipitated PDE4B2 

failed due to low signal-noise ratio. This probably reflects the low abundance of PDE4B2 

isoforms in RAW  264.7 cells in common with m ost PDE4 isoforms. Again this 

unsuccessful experiment does not refute my hypothesis that E R K l/ ERK2 activates 

PDE4B2 and that this requires physical association. In order to demonstrate this activity I 

would have liked to develop stable RAW 264.7 cell lines over-expressing PDE4B2. By 

increasing the substrate for ERK 1 /2 ,1 would hope to improve the sensitivity of both these 

experim ents. U nfortuna tely time restraints coupled w ith difficulty  in successful 

transfection o f these cells meant this work was not completed.

To demonstrate a role for PDE4D5 in activated RAW 264.7 cells I looked for co

localisation o f PDE4D5 and the scaffold protein RACK-1. Both molecules localised to the 

nuclear compartments o f lysed RAW 264.7 cells. RACK-1 was completely excluded from 

the cytosolie compartment. This co-localisation was exciting and led me to attempt co- 

immunoprecipitation experiments. Unfortunately this work was inconclusive. The nuclear 

distribution of RACK-1 in RAW 264.7 cells was intriguing as it has previously been 

described as a cytosolic protein [84]. One explanation for the nuclear distribution o f 

PDE4D5 is stimulation by components o f the serum in cell culture medium causing
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proliferation o f RAW 264.7 cells. To investigate this serum starvation o f these cells was 

performed, however this failed to cause any change in the distribution.

Lipopolysaccharide is known to activate macrophages and inhibit proliferation. To see if  

LPS stimulation led to a shift of PDE4D5 or RACK-1 out of the nucleus RAW 264.7 cells 

were treated with LPS. While LPS did not increase the S2 content o f either PDE4D5 or 

RACK-1 (Fig 5.2.4), a movement between the particulate eompartments cannot be ruled 

out. To further clarify this I would have liked to measure the PDE4 content o f each 

compartment over the time course. To further clarify the role o f PDE4D5, I would have 

liked to treat RAW 264.7 cells with other activators o f E R K l/ ERK2. It may be that 

restricted pools o f E R K l/ ERK2 are activated by different agents. Valledor et al showed 

that timing o f M APKlnase activation was linked to different outcomes [271]. Thus 

physical com partm entalisation o f PDE4D5 and E R K l/ ERK2 means that different 

activators may lead to different PDE4 isoforms being affected and that different 

downstream effects may result.

As my attempts to clarify EPS’ action on PDE4 were unsuccessful, 1 chose to investigate 

the result o f PDE4 inhibition on cellular behaviour. Thus 1 measured RAW 264.7 

inflammatory responses to LPS in the presence and absence o f rolipram.

Section 5.3 

Functional outcomes of PDE4 inhibition on LPS stimulated 

RAW cells.

5.3.1 PDE4 inhibition increases LPS stimulated iNOS expression

To assess what role PDE4 plays in regulating macrophage behaviour 1 examined the 

expression o f various inflammatory mediators and proteins in the presence o f rolipram. As
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rolipram potently inhibits the production o f T N Fa in LPS stimulated macrophages and 

both T N Fa and iNOS are described as being present in asthmatic airways I examined 

iNOS expression in the presence o f rolipram. Figs 5.3.1 A, demonstrates that iNOS 

expression is increased by PDE4 inhibition in the presence o f LPS at a dose o f rolipram 

between 10-50pm. To confirm that this was a PDE4 specific phenomenon, I compared the 

effect o f cilostamide with rolipram. As can be seen in fig 5.3. IB, inhibition of PDE3 failed 

to increase the expression o f iNOS to the same degree.

5.3.2 Indomethacin abolishes the increased iNOS expression

Next I co-incubated the stimulated RAW cells with indomethacin (lOOnM) to exclude a 

prostanoid driven cAMP effect. As can be seen in fig 5.3.2, Indomethacin abolished the 

increase in iNOS expression caused by rolipram.

5.3.3 Rolipram causes an increase in LPS stimulated COX-2 expression

Figure 5.3.3 shows that resting RAW 264.7 macrophages express little COX-2, but when 

exposed to LPS an immunoband corresponding to COX-2 appears. When the cells are co

incubated with rolipram and LPS this expression is dramatically increased. Fig 5.3.3 B & 

C shows rolipram’s effect is dose dependent.

5.3.4/5.3.5 Rolipram enhanced COX-2 expression is resistant to indomethacin 

and results in increased PGE2 production

COX-2 expression is under partial cAMP control. To exclude a positive feedback o f PGE2 

derived cAMP on COX-2 I included indomethacin in the medium. Fig 5.3.4 demonstrates 

that the increased COX 2 expression occurs despite the presence o f indomethacin 

(lOOnM). Rolipram appears to be exerting a direct effect on COX-2 transcription. To 

ensure that the effect of rolipram on LPS induced COX 2 expression was translated into a



171

iNOS

3 4 5 6

B

2 1 0  ►

1 2 7 -----►
iNOS

Fig 5.3. ] Rolipram enhances the transcriptional activation o f  iNOS by LPS in 
RA W 264.7 cells.

Raw 264.7 cells were incubated for 16 hours in serum free DM EM with LPS 
(lOng/ml) with or with out rolipram or cilostamide. Cells were lysed and 
western blots prepared from these cell lysates were probed with iNOS 
monoclonal antibody. Equal amounts o f protein were loaded in each lane. Fig 
5.3.1 A Lane 1 +ve, Lane 2 - 6 LPS + rolipram 0.1 pM, 1 pM, lOpM, lOOpM, 
ImM respectively. This experiment clearly showed the dose dependent 
increase in iNOS expression that occurred when rolipram was co-incubated 
with LPS in RAW cell cultures.Fig 5.3.IB. Lane 1 +ve eontrol, Lane 2 
Rolipram lOpM alone. Lane 3 cilostamide 2pM alone and Lane 4 LPS + 
cilostamide 2pM. This data demonstrates that neither rolipram or cilostamide 
alone is capable o f causing the transcription o f iNOS alone in serum free 
medium. Cilostamide, a PDE3 inhibitor, does not enhance LPS stimulated 
iNOS expression similar to Rolipram.
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Fig 5.3.2 Indomethacin reduces rolipram’s augmantation o f iNOS 
expression in the presence o f  Ips.

Raw 264.7 cells were incubated in the presence o f LPS, 
rolipram(lOpM) and indomethacin (lOOnM). Cells were lysed and 
equal amounts of protein were resolved by SDS-PAGE. 
Nitrocellulose membranes were immunoblotted using antiserum 
raised against iNOS. Lane 1 no treatment, lane 2 Ips alone, lane 3 
Ips + Rolipram. Lanes 4 - 6 as lanes 1 - 3 with the addition of 
indomethacin. While rolipram enhances LPS iNOS expression the 
addition o f indomethacin abolishes the inerease in iNOS 
expression eaused by rolipram.
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Figure 5.3.3 Rolipram but not cilostamide increases LPS stimulated cox-2 
expression.

Raw cells were incubated with LPS (lOOng/ml) +/- a range of rolipram 
concentrations, +/- cilostamide lOpM +/- forskolin lOOpM. Cell lysates were 
prepared and subjeeted to western blot analysis with 40|ig o f protein loaded 
in each lane. Blots were probed with monoclonal antibody raised to COX-2. 
Fig 5.3.3A, Rolipram does not cause COX-2 expression and enhances LPS 
induced COX-2 expression. Cilostamide has no effect on LPS mediated 
COX-2 expression. Forskolin, does not mimic the effects of rolipram alone, 
(lane 1 no treatment, lanes 2-4 rolipram lp.M, 5|liM and 10p.M respectively, 
lane 5 LPS lOOng/ml, lanes 6-7 cilostamide IpM  and lOpM respectively, 
lane 8 LPS + cilostamide lOpM, lane 9 LPS + rolipram 10|uiM, lane 10 
forskolin lOOpM. Fig 5.3.3B Rolipram increases LPS stimulated COX-2 
expression in a dose dependent manner, (lanes 1 to 10 LPS lOOng/ml + 
rolipram 30pM, 10 p-M, 3 p-M, 1 p,M, 0.3 pM, 0.1 |iM , 0.03 pM, 0.01 pM, 
0.003 pM, 0.001 pM, respectively. Lane 11 LPS lOOng/ml, lane 12 no 
treatment). Fig 5.3.3C Band intensity was measured from representative blots 
illustrated in fig 5.3.3B and a graph of intensity against Log 10 rolipram 
concentration was plotted.
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Figure 5.2.4 Rolipram enhances COX-2 expression in an indomethacin 
resistant fashion

Raw 264.7 cells were incubated for 16 hours in the presence or absence of 
LPS (lOOng/ml) +/- rolipram (lOpM) +/- indomethacin (lOOnM). Cell 
lysates were prepared and equal quantities o f protein were resolved by 
SDS-PAGE. Immunobands were visualised using antiserum raised against 
COX-2. Lane 1 no treatment, lane 2 LPS alone, lane 3 LPS + rolipram, lane 
4 indomethacin alone, lane 5 LPS + indomethacin, lane 6 LPS + 
indomethacin + rolipram. This figure demonstrates that the enhanced 
expression of COX-2 by rolipram does not represent an exaggeration of a 
autocrine feedback loop by PGE2.
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Fig 5.2.5 Rolipram dose dependently increases PGE2 production by 
RAW 264.7 macrophages.

Raw 264.7 cells were incubated with LPS and rolipram in increasing 
concentrations for 16 hours. PGE2 El A was performed on cell free 
medium. Rolipram causes a dose dependent increase in PGE 2 
production.
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functional effect I demonstrated an increase in PGE 2 production. Fig 5.3.5 clearly shows a 

dose dependent increase in PGE2 production when macrophages are activated by LPS in 

the presence o f rolipram.

5.3.6 Indomethacin does not alter the ability o f  rolipram to inhibit TNFa.

COX-2 derived PGE2 could exert anti-inflam m atory activity and partially explain 

rolipram’s negative control of TNFa. Fig 5.2.6 demonstrates that Raw 264.7 cells produce 

large amounts o f  T N Fa when activated by lOng/ml LPS. Rolipram  reduces this 

significantly, confirming that my model system behaves in a similar fashion to other 

groups’. Indomethacin introduced to the system has no significant effect on the ability of 

rolipram to inhibit T N Fa production, implying that this effect is not driven by PGE2.

Discussion Section 5.3

PDE4 is believed to have pro-inflammatory activity by virtue o f its ability to reduce 

intracellular cAMP and the anti-inflammatory activity o f rolipram. I have demonstrated 

increases in iNOS and COX-2 expression in the presence o f rolipram. This apparently 

paradoxical work suggests that NO and PGE2 may exert anti-inflammatory behaviour. 

Increasing evidence supports this view and my work offers further explanations for 

rolipram’s anti-inflammatory role [167, 244, 272, 273]. Several groups have shown these 

proteins to be under transcriptional control by cAMP [274] although both transcriptional 

activation and repression have been reported [275]. Inducible nitric oxide synthase 

regulation by rolipram was secondary to COX-2 activation, suggesting either PGE2 or 

TXA2 increases iNOS expression. Thus, COX-2 causes a PGE2 autocrine activation of 

adenylyl cyclase and cAMP production. In the presence of rolipram this cAMP is enhanced 

and a powerful signal to iNOS expression is produced.
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F/g 5.3.6. Indomethacin does not prevent rolipram inhibiting LPS 
induced TNFa in RA W macrophages.

RAW cells were cultured as described in the presenee o f LPS, rolipram 
lOpM and indomethacin (lOOnM). Cell free medium T N F a content was 
measured by ELISA. Column 1 no treatment, column 2 LPS lOng/ml, 
column 3 LPS + rolipram, column 4 indomethacin alone, column 5 LPS + 
indomethacin and column 6 LPS + indomethacin + rolipram. As can be 
seen rolipram powerfully inhibits LPS stimulated T N F a production. 
While indomethacin appears to slightly reduce T N F a production from 
LPS stimulated macrophages, it has no significant effect on rolipram.
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The indirect effect o f rolipram on iNOS through COX-2 is reminiscent of its reported 

indirect effect on T N F a through IL-10. I have demonstrated that indomethacin did not 

affect the increased expression of COX-2 in the presence of rolipram. Rolipram appears to 

affect the expression o f COX-2 in the absence o f an additional positive cAMP stimulus. 

This suggests that PDE4 normally exerts a negative regulatory effect on COX-2 expression 

following LPS stimulation. Rolipram may then act in this circumstance by elevating cAMP 

slightly, possibly in a local region of the cell, or simply preventing the negative effect of 

increased PDE4 activity following LPS stimulation. PDE4 activity increases then falls 

following LPS exposure, lowering cAMP then restoring it. This dip could allow cAMP 

inhibited signals to propagate transiently. The effect of rolipram on COX-2 expression is 

not therefore straight forward and requires further investigation. It is o f note that 

cilostamide did not cause the same effect on iNOS expression as rolipram, which may 

seem unlikely given a non-PDE source o f cAMP such as PGE2. I propose that the 

reduction in PDE3 activity seen with LPS treatment leads to the abolition of any PDE3 

inhibitor activity.

In view o f the increase in PGE2, a cAMP elevating stimulus, following rolipram I 

hypothesised that PGE2 might be responsible for T N F a inhibition. Figure 5.3.6, clearly 

demonstrates that COX-2 activity is not responsible for T N Fa inhibition by rolipram in 

RAW cells. The precise role o f cAMP in regulating T N F a production is not clear, with 

some groups disputing IL-lO’s role and suggesting a post-translation effect instead. The 

anti-inflammatory behaviour o f PGE2 and rolipram requires further investigation.

Section 5.4

LPS is a pow erful activator o f ERK 1/2, a signal transduc tion pathway that is 

characteristically inhibited by cAMP. I was surprised by the apparent ability of rolipram to 

increase LPS signalling in terms o f COX-2 expression. I hypothesised that rolipram, by
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increasing cAMP was enhancing the signal transduction cascade downstream of LPS. This 

counter-intuitive theory suggests that differential activation of signal transduction elements 

could take place. I chose to investigate rolipram’s effect on LPS activation o f the E R K l/ 

ERK2 family o f molecules.

5.4.1 LPS activates a restricted pool o f  ERK 1/2 in RAW  cells

To confirm that LPS activated MAPkinase I stimulated RAW cells with various activators 

o f ERK l/2. Using monoclonal antibodies raised against the phosphorylated residues of 

activated ERK 1/2 I compared immunoblots o f activated versus total ERK 2. Fig 5.4.1 

shows the effects o f different compounds on ERK-1/2 phosphorylation. As can be seen 

PMA causes a substantial and early (1 minute)s activation o f ERK 2 while TN Fa and LPS 

cause a sequentially less profound and delayed activation.

5.4.2 Rolipram increases the phosphorylation o f  E RK  2 over LPS alone

I measured the effect o f LPS on ERK-2 phosphorylation in the presence and absence of 

rolipram. Fig 5.4.2 shows that the presence o f rolipram leads to an earlier and more 

profound phosphorylation. Fig 5.4.2, B uses figures derived from densitometry to calculate 

the effect o f rolipram on the activation of ERK 2.

5.4.3 Rolipram activates CREB in an H89 sensitive manner

So far I have demonstrated apparently paradoxical effects o f rolipram on RAW 264.7 cells. 

To confirm that PDE4 inhibition can function in a classical manner in these cells, I 

examined the role o f rolipram on the transcription factor CREB. CREB activation 

conforms to its phosphorylation status, and fig 5.3.4 demonstrates that rolipram increases 

CREB phosphorylation in a PKA dependent manner.
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Fig 5.4.1 Different compartments o f ERK 1/2 are activated by different 
stimulators o f RAW 264.7 cells

Raw 264.7 cells were incubated in the presence of three different 
agents for varying lengths of time. Lysates were prepared and equal 
quantities of lysate protein were resolved by PAGE and subjected to 
western blot analysis. Immunodetection of activated ERK 1/2 was 
achieved using phospho-ERKl/2 antibodies. Lanes: Lanes 1, 7 and 
11, no stimulation; Lanes 2 - 5 PMA 4pM  for 1, 3, 5 and 10 minutes; 
8 - 1 0  TN Fa 10 pM 5, 10 and 20 minutes; lanes 12-13 LPS lOng/ml 
5, 10 and 30 minutes. As can be seen while all agents are known to 
activate ERK 1/2, they do so in different time frames and to different 
degrees.
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Fig 5.4.2 Effect o f  rolipram on LPS induced ERK 1/2 phosphorylation.

Raw 264.7 cells were incubated with LPS (lOng/ml) with (lanes 7-12, 40 
protein per lane) or without (lanes 1-7 60 pg protein per lane) rolipram lOpM, for 
various times. Lanes 1 + 7 0  minutes, lanes 2 + 8 Sminutes, 3 + 9 1 0  minutes, 4 + 
10 20 minutes, 5 + 1140 minutes, 6 + 12 60 minutes. As can be seen LPS causes 
the phosphorylation o f ERKl by 20 minutes. In the presence of Rolipram, 
however this activation event occurs more rapidly and to a greater degree. The 
eft'ect is particularly marked in ERK2. Fig 5.3.2.B shows ERKl staining to 
demonstrate protein loading. Slightly more protein was loaded in the lanes without 
rolipram to allow a reasonable visualisation. This would be inclined to bias the 
experiment against showing any significant difference with rolipram. Fig 5.3.2.C, 
shows the results o f this experiment subjected to densitometric analysis (n=2). 
This data confirms the more rapid and greater phosphorylation that occurs in the 
presence o f rolipram. Fig 5.3.2D Demonstrates that no effect on ERK 
phosphorylation was seen in the presence o f rolipram alone, (lane 1 Ctrl, lanes 2 - 
6, 5, 10, 15, 20 and 25 mins respectively).
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Fig5.4.3. LPS phosphorylates CREB in a MEK dependent manner, 
while rolipram acts through PKA.

Raw cells were treated with various compounds and the cell lysates 
were subjected to western blot analysis, using an antibody raised 
against the phosphorylated residue of activated CREB transcription 
factor. Lane 1 no treatment. Lane 2 LPS iOng/ml, Lane 3 LPS + 
rolipram 10/iM, Lane4 LPS + rolipram + H89 lOjuM, Lane 5 LPS + 
H89, Lane 6 rolipram alone, Lane 7 cilostamide 10/xM alone, Lane 
8 cilostamide + LPS + H89, Lane 9 LPS + U 0126 10 pM  and Lane 
10 U 0126 pM  alone. This data shows that LPS causes 
phosphorylation of CREB in a U 0126 sensitive fashion. This 
confirms Cohen et al’s work, that demonstrated MSK dependent 
activation of CREB. In their hands H89 inhibited MSK, but here 
H89 did not affect LPS phosphorylation of CREB. On the other 
hand H89 did reduce the marked phosphorylation caused by 
rolipram in the presence or absence of LPS. This suggests firstly 
that rolipram is capable of activating Pka in RAW cells, but also 
that a basal level of PDE4 activity is generally controlling the level 
of intracellular cAMP.
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Discussion Section 5.4

To demonstrate that ER K l/2  can be differentially activated in RAW 264.7 cells I used 

various agonists, chosen to elicit different functional effects. Valledor et al working with 

RAW 264.7 cells demonstrated the outcome o f ERK l/2 activation varied with the timing 

[271]. While M-CSF, PMA, GM-CSF and IL-3 cause proliferation o f macrophages and 

induce a very rapid (5min) maximal activation o f ERK l/2, LPS reduced proliferation with 

a slower (15min) peak activation. It is interesting to speculate if  this differential response 

depends on spatial as well as temporal compartmentalisation. I confirmed this using 

phosphorylation o f ER K l/2  as a surrogate marker o f ERK 1/2 activation. Thus LPS 

treatment o f resting RAW 264.7 cells causes delayed activation o f a restricted pool o f 

ERK l/2 when compared to PMA, consistent with its recorded anti-proliferative activity. 

Such differential activation supports the notion o f compartmentalised pools o f signalling 

molecules. Next I demonstrated that rolipram alters the manner in which ERK activation 

occurs. Thus in the presence o f rolipram phosphorylation occurred earlier and to a greater 

degree than in its absence. If differential ERK activation affects cell behaviour differently 

then rolipram would alter the response to LPS and may suggest a mechanism for some of 

the anti-inflammatory effects seen with rolipram.

Having demonstrated a number o f unexpected effects o f rolipram on RAW 264.7 cell 

function I ensured that more ‘classical’ activity was taking place. I measured the effect of 

elevating cAMP by rolipram on the phosphorylation o f the transcription factor CREB. I 

demonstrated H89 inhibited this pathway and thus confirm ed that the mechanics o f 

‘classical’ cAMP signalling were present in RAW 264.7 cells.
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Section 5.5

PDE4 inhibition led to increased COX 2 expression and altered ER K l/2 activation I next 

looked for a mechanism to explain these effects. A new GEF called EPAC has recently 

been described that allows cAMP to activate the small G protein R ap-1 [276]. Rap-1 has 

been controversially reported to cause ERK 1/2 activation by B-Raf [277]. Rap-1 has been 

shown to be important in macrophage behaviour, with Carr on etal showing a role in 

macrophage response to P-integrin binding [204]. Using activation and regulation mutant 

forms o f Rap-1 transfected into RAW 264.7 cells I looked for changes in inflammatory 

mediator production.

5.5.1 Successful transfection o f  RAW  264.7 cells using Superfect (Qiagen)

Attempts to transfect RAW 264.7 cells using the DEAE/Dextran method proved difficult 

and I used the Superfect (Qiagen) system to successfully express the Rap-IA  mutants. 

Figure 5.5.1 demonstrates that although transfection efficiency varies between mutants, 

each transfection expresses more Rap-IA  than mock transfected cells.

5.5.2 Over expression o f  R ap-1A activation mutants does not alter rolipram  

inhibition o f  LPS-stimulated TNFa

To investigate if  rolipram activates Rap-IA  to inhibit LPS stimulated T N Fa production, I 

created temporary transfections o f mutant Rapl constructs in RAW 264.7. These have 

previously been described [204] and are designed to represent the conformation o f active 

(GTP-bound, SeiT2/Val mutation) or constitutively inactive ( Dominant negative, GDP- 

bound, ThiT7/Asn mutation) Rapl confomiations. Cells were treated with lOng/ml LPS in 

the presence and absence of lOjiM rolipram. I measured the T N F a production in each 

case. Fig 5.5.2 suggests that constitutively active Rap-IA  transfects produced less TN Fa
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Fig 5.5.1 Success o f superfect transfection o f RAW 264.7 cells

Raw 264.7 cells were transfected using the superfect method 
(Qiagen). Activation and PKA phosphorylation mutants of rap-1A 
were prepared and transfected. Equal quantities of cell lysate were 
loaded on each lane and resolved by PAGE. Immuno-detection of 
recombinant Rapl was achieved using antisera raised against 
Rapl protein. M=Mock transfections. Fig 5.5.1.A: lanes 1 and 4, 
Wild type; lanes 2 and 5, Dom Neg; lanes 3 and 6, Cons Active. 
Fig 5.5.1.B: Lanes 1-3, Wild type; lanes 4-6 Aspartate mutants; 
lanes 7-9, Alanine mutants. As can be seen transfection efficiency 
varied between cells, but in each case rap-1A expression in 
transfected cells exceeded non-transfected ‘mock’ cells. (Dom 
Neg, dominant negative mutation. Cons Act, Constitutively active 
, Aspartate mutants. Alanine mutants )
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Figure 5.5.2 Rap-IA activation mutants alter the effect o f rolipram on Ips 
induced TNFa production

Raw 264.7 cells transfected with Rap-IA activation mutants were treated 
with lOng/ml Ips and the TN Fa production was measured in cell free 
medium by ELISA. Cons Active = Constitutively active: Serl2/Val 
mutation; Dom Neg = Dominant negative: Thrl7/A sn mutation. As can be 
seen constitutively active mutants led to reduced T N Fa production at base. 
No significant differences were seen* between the different mutants in 
terms of Ips or rolipram on TN Fa production. Note in all transfections the 
inhibitory effect of rolipram was lost by transfection. No difference was 
seen with cilostamide I OpM (Cil). (*PairedT test of differences between treatment 
groups and control).
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than controls in a resting state. No significant difference was seen, however between 

different activation mutants when treated with LPS. In each case a substantial increase in 

TN Fa was found. Rolipram failed to inhibit LPS stimulated T N Fa in any o f the cells 

regardless o f the mutant form transfected. I have previously shown a significant reduction 

o f T N Fa production in the presence o f rolipram and these data suggests that transfection 

itself may subvert the mechanics o f rolipram inhibition.

5.5.3 Over expression o f  Rap-IA  activation mutants affects rolipram induced  

increase in COX-2 expression and PGE2 production

Next I used the same transfects and measured PGE2 production and COX-2 expression 

when LPS was administered in the presence and absence o f rolipram. Fig 5.5.3 shows than 

dominant negative rap -lA  appears to abolish the effect o f LPS on these cells. When 

transfected with constitutively active mutants LPS was able to cause an increase in PGE2 

production but no additional effect o f rolipram was seen. In wild type transfects LPS 

effects were abolished, but rolipram caused activation o f the COX-2 gene. In each 

transfection no significant difference was seen in the level of COX-2 protein expression. 

There was greater expression of COX-2 between transfected cells and mock transfected.

5.5.4 Protein Kinase A activation mutants effect on TN Fa production in LPS  

stimulated RAW  264.7 cells

As the effects o f Rap-IA  activation mutants were equivocal, I reasoned that cAMP may 

involve Rap-IA  by the more classic PKA route. Our laboratory had previously made 

constructs o f Rap-IA  mutated at the PKA phosphorylation domains. Thus a SeiT80/Asp 

has a ‘phosphorylated’ conformation while a S e ri80/Ala results in a ‘non-phosphorylated
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Fig 5.3.3 Ejfect o f RAP-1 activation mutants on COX - 2 expression and 
PGE2 production by LPS stimulated RA W cells.

Raw 264.7 cells were transfected with various RAP-1 activation mutants. 
(Dom Neg, Dominant Negative Thrl7/Asn; Cons Active, Constitutivly 
active Serl2/Val.) Fig 5.3.4A. Western blot analysis of equal protein 
quantities for COX-2 expression when various activation mutants are 
treated with Ips (lOng/ml) and rolipram 10/xM. (Lanes 1-1-5 mock 
transfection, 2+ 6 wild type,3 constitutively active, 4 wild type, 7 dom 
neg.) Fig 5.3.4B, PGE2 production from various treatments of the above 
transfected RAW cells. No consistant patterns are seen. No significant 
effect of either Ips or Rolipram are evident. This data may suggest an 
important role for RAP-1 or may illustrate experimental difficulties when 
using transfected cell models.
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Figure 5.5.4 Rap-IA PKA phosphorylation mutants ejfect on Ips 
stimulated TNFa production

Raw 264.7 cells were transfected with rap-1A mutated for the PKA 
phosphorylation domains. Wild type represent non-mutated over-expressed 
Rap-IA, S to A, Seri 80/Asp activation mutants and S to D, Seri 80/Ala 
phosphorylation negative mutants. Cells were treated with lOng/ml Ips and 
TN Fa was measured in cell free culture medium by ELISA. As can be 
seen wild type rap-1A transfects behave similarly to non-transfected cells. 
In both the gain of function and loss of function mutants Ips behaved 
normally, however rolipram did not inhibit this effect to the same degree.
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non-phosphorylatable’ mutant. I made RAW 264.7 cell transfects over expressing these 

mutants and treated them as above. Fig 5.5.4 shows the effect o f rolipram in mock 

transfections to be maintained with a significant reduction in T N Fa production. The effect 

of PKA mutants however is again less clear. While the peak T N Fa produced by wild type 

transfects is muted, the effect of rolipram is retained, suggesting transfection alone may 

alter LPS signalling.

Discussion Section 5.5

I decided to investigate the role o f the novel cAMP signalling pathway EPAC-RaplA in 

transducing rolipram ’s effects in macrophage inflammation. There are two strategies 

available to measure Rap-IA  activity in cells. Firstly activated Rap-IA  is a powerful ligand 

for its partner ral in a GTP bound form (ral-GDS). Ral GDS can be synthesised in fusion 

with GST allowing R ap-IA  to be ‘fished’ out of lysate using this construct as ‘bait’. 

Several reports have suggested difficulty with this technique in immune cells [278], The 

other technique relies on G-protein’s being activated by conformational change when 

bound to GTP. This active conformation can be mim icked by mutation and thus 

conformationally active and in-active forms can be made for most G proteins. Over 

expressing these mutants and measuring the effects biochemically in comparison to each 

other allows some inferences to be drawn. Our lab received mutant forms o f Rap-IA  as a 

gift from J. Bos et al, and we made a Series of PKA domain mutants by Quickchange 

(Qiagen). I successfully developed a method o f transfecting these immune cells that have 

traditionally been difficult to manipulate.

I have not seen consistent effects of Rap lA  mutants on either LPS or rolipram’s effect on 

RAW 264.7 cells. If rolipram functioned through Rap-IA  I would expect constitutively 

active mutants to cause a diminished response to LPS and an exaggerated response to 

rolipram. Thus LPS would cause a smaller TN Fa effect and a larger COX-2/PGE2 effect.
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On the other hand dominant negative R ap-IA  mutants should take the brake off T N Fa 

production and prevention o f rolipram inhibition. Neither o f these effects was consistantly 

seen.

There are several possible methodological problems with my strategy. Firstly transfection 

efficiency varied between experiments. I attempted to split all transfections into triplits 24 

hours before treatment to avoid internal variation o f transfection efficiency. Adjusting for 

Rap-IA  expression based on western blot density did not alter the results. Transfection 

efficiency is less than 100%. This means normal cells remain that are capable of normal 

responses to LPS and rolipram. If  these normal cells constitute a large proportion o f the 

population any effects o f mutant transfection will be swamped. My data does not conclude 

that this is occuring, as the effects seen in transfected cells do not match that seen in mock 

transfections. To avoid this problem in the future, pure stable cell lines should be created 

using cytotoxic selection strategies to produce pure strains o f over-expressing cells.

Transfection o f foreign material into a cell can be a toxic proceedure to cells. Cells 

responses vary, but a pro-inflammatory effect in macrophages would not be surprising. 

Such a response would certainly invalidate my data. Including mock transfections, positive 

and negative controls partially get round this problem but not entirely.

Conclusion

I have extended my studies of PDE4 in macrophage cells by investigating biochemical and 

functional roles o f PDE4 isoforms and PDE4 inhibition. I have demonstrated increased 

PDE4 activation following LPS stimulation o f RAW cells. The complex signalling 

mechanisms activated by LPS make this global effect on PDE4 difficult to interpret. 

Certainly the effects o f signalling inhibitors suggest that constitutive activation of PDE4 

occurs in RAW cells and thus changes to total PDE4 activity is likely to reflect the balance
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of activation and de-activation o f individual isoforms. I have shown that PDE4B2 is 

activated by LPS stimulation and MEK inhibitors reduce that this. This agrees with Wang 

et al, who showed PDE4B2 to be the key isoform regulating monocyte behaviour in ex- 

vivo cells[253]. Unfortunately I have not been able to consistently demonstrate a physical 

association between PDE4B2 and members of the MAPKInase signalling pathway.

Rolipram is an anti-inflammatory compound and its behaviour varies with its ability to 

elevate cAMP and I have demonstrated two new anti-inflammatory behaviours. Firstly in 

the presence of rolipram LPS generates increased amounts o f iNOS and COX-2 protein. 

These are functionally active enzymes producing nitric oxide and PGE2 respectively. The 

role o f these mediators has come under scrutiny recently and it has been postulated that 

they may reflect an attempt to dampen an inflammatory response in diseased airways. That 

the increase in iNOS expression is dependent on COX-2 production o f PGE2 suggests that 

this latter is the key anti-inflammatory molecule. Thus I have demonstrated a new 

secondary pathway for rolipram’s physiological activity. I have also shown that this is not 

responsible for inhibition o f TN Fa production.

The second anti-inflammatory effect is a change in macrophage response to LPS. Rolipram 

causes an increased and early phosphorylation o f ERR 1/2, an event that closely correlates 

with activation. The pattern o f ERK 1/2 phosphorylation changes in the presence o f 

rolipram from an ‘activated’ profile to a ‘proliferative’ one as described by valledor et al. 

This would significantly alter the cells response to LPS and may effect the inflammatory 

outcome.
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Fig 5.5.5 Revised proposal fo r  cAM P/ERKl/2 crosstalk: Incorporation o f  rolipram
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Chapter 6  The synthesis of HIV-Tat fusion protein 

PDE4D3 and PDE4B2

Introduction

I have demonstrated regulation o f PDE4 isoform expression in macrophage development, 

and suggested certain isoforms may have function-specific roles in inflamm atory 

signalling. Compartmentalisation suggests that such specificity may reflect spatial isolation 

of individual isoforms to restricted areas o f the cell or to multi-protein signalling modules. 

Protein-protein interactions governing such physical organisation also underpin kinase and 

kinase target association essential in functional regulation. Producing ‘m ock’ peptides 

mimicking the protein interaction sites on PDE4 isoforms may thus inhibit both targeting 

and regulation by enzymes. These mock peptides must occur in the correct context to 

reduce “bystander’ effects on proteins with similar modules.

There is no entirely ‘clean’ way to introduce peptides into cells. Transfection o f DNA 

coding for the desired regions may lead to changes in cell behaviour as seen in chapter 5, 

while infection o f immune cells with adenovirus containing coding DNA has similar or 

more devastating effects. In any case both of these strategies have proven difficult in 

macrophages, which are professional phagocytic cells and very resistant to the introduction 

o f active foreign material.

Various methods o f transducing protein into intact cells have been attempted. Tagging 

peptides with lipid groups has been shown to allow small molecules to enter cells, but in a 

very variable manner. In 1999 Schwarze et al [279] described a novel method for delivery 

of a fully active enzyme into all cells o f a live mouse. This group utilised the property of
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the N-terminus of the HIV twin arginine transactivation enzyme (Tat) that allows it to pass 

through bi-lipid membranes. This small portion o f the enzyme is known as HIV-Tat, and 

Schwarze et al showed that recombinant, denatured full length P-galactosidase protein in 

fusion with H IV-Tat was not only delivered into cells, but was renatured and active once 

internalised.

My aim was to synthesise four such fusion proteins coding for full length and N-terminal 

fragments o f PDE4 isoforms linked to HIV-Tat. I chose PDE4B2 since I had previously 

shown this molecule to be important in the development o f inflammatory signalling, and 

PDE4D3 as this molecule was shown to be absent from these cells and would function as a 

negative control. A lthough unsuccessful in my attem pt this process was a useful 

methodological experience.
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Results

Section 1 

Strategy employed

Following standard protocols reported in materials and methods, I planned to produce full 

length and N-terminal PDE4 isoform-HIV tat fusion proteins. A schematic illustration of 

the method I employed is shown in figure 6.1.1. The sequence for HIV-TAT was retrieved 

by interrogating the complete HIV genome as published in the NCBI genome database, 

using the sequence published by Schwarze et al as a search tool [279]. This peptide 

sequence was connected to the PDE4 fragment o f choice by a poly-glycine linker region. 

This allows free rotation o f the combined proteins once synthesised preventing inhibitory 

interaction. A seven amino acid length sense primer for the PDE4 was added to the glycine 

linker. An antisense primer for the C-terminal region o f the PDE4 sequence to be cloned 

was created. Figure 6.1.2 describes the various elements o f the primers used. Each cDNA 

had reciprocal open restriction enzyme sites ends encoding the complimentary sequence of 

a restriction site o f the poly-linker region o f Pgex precision plasmid vector. I used Not-1 

sires for the majority of these constructs. This vector contains the sequence o f GST and a 

peptidase target domain allowing recombinant proteins to be purified on sepharose beads 

then cleaved off. By using this plasmid I untended to utilise the Kozak initiation sequence 

included. While simplifying the method, this strategy requires careful planning to ensure 

that the subsequent fusion protein ‘insert’ cDNA lies in-frame for that Kozak.

Prior to ligation the vector plasmid was linearised by incubating with a restriction enzyme 

designed to cut the plasm id within the poly-linker region. The insert cDNA was then 

ligated into the linearised poly-linker region. A plasmid was identified by RLFP and 

sequence analysis was performed to ensure correct alignment and the integrity of the DNA



A/ insert synthesis
196

PCR

%

pcDNA3 PDE4D3

B/ Clone into expression vector

St GST - poMinker - stop

Xhol

C/ Transformation and amplification

c B - " #  -

P Gex 6P- PDE4D3-NT-tat ECoIi

Fig 6.1.1 Schematic representation o f  PDE4D3 N terminal HIV tat fusion protein

PCR primers designed to recognise N  terminal sequence o f PDE4D3 and coding for 
HIV-tat and restriction enzyme binding sites were used in PCR reactions with pre
cloned PDE4D3 in pcDNA3 plasmid vector, A. The resulting cDNA was used as an 
insert for a ligation reaction into the poly-linker region o f  Eco-Rl linearised P-Gex 
5X expression vector, B. These expression clones were transformed into standard E 
Coli for amplification and screening, C. Screening was performed by restriction 
digest using pst-1 with three resulting cDNA fragments confirming correct 
sequence cloning, D. Formal confirmation was made by sequence analysis

continued..............
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D/ Restriction digest screening

E/ Growth and stimulation

IPTG 
------►

GST PX tat PDE4D3NT

F/ Isolation o f protein

Precision
Recombinant PDE4D3NT-GST protease
lysate

Sepharose coated beads 

G / PDE4D3-N Term inal -HIV tat fusion protein

PDE4D3-NT - GlyGlyGly - HIV tat

Fig 6.1.1 Continued.

A clone with confirmed sequence was selected and plasmid isolated and purified. 
This was transformed into BL 21 E Coli, a strain selected for its ability to produce 
recombinant proteins. A successfully transformed colony was identified on 
ampicillin selection media. This colony was cultured at optimised temperature and 
stimulated to produce the fusion protein by the addition o f IPTG, E. Bacteria were 
harvested by centrifugation and lysed. Protein rich supernatant from lysed bacteria 
were incubated with sepharose coated beads, F. Sepharose binds the GST o f the 
fusion protein allowing purification from the supernatant. Finally precision protease 
was used to cleave the recombinant PDE4D3-N Terminal - HIV tat fusion protein 
from the GST which was removed by bead centrifugation, D. Finally a cartoon 
representation o f  the desired fusion protein, E.
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GAGCTC
X h o l

Sense primer - ms 1

TATGGCAGGAAGAAGCGGAGACAGCGACGAAGA 

tyr - gly - arg - lys - lys - arg - arg - gin - arg - arg - arg -

HIV-tat sequence
CGGCGGCGGCGGCGGCGGCGG

gly - gly . gly - gly - gly - gly - gly

Poly-glycine linker 

ATGATGCACGTGAATAATTT 

met - met - his - val - 

5 ’ S N-Terminal PDE4D3

Anti-sense prim er - ms 2

T A A A C G A G T C C A G A A C C G G T l ' GAGCTC 

3 ’ AS N-Terminal PDE4D3 ^

Anti-sense primer - ms 3
GATCTACATCATGTATTGCACTGGCr”

3 ’ AS C-Terminal PDE4D

^  GAGCTC 

X h o l

Ms 1

PDE4D3 ORF

Ms 2 Ms 3

Fig 6.1.2 sequence o f the PDE4D3 N-Tenninal HIV tat fusion primer

Schematic representation of the primers used to generate the insert from a 
cloned stock PDE4D3 full length sequence. Sense primer codes the fusion 
peptides to be included in the cloned sequence. These are detailed as HIV- 
tat and the poly-glycine linker. A region coding for the specific N-terminal 
of PDE4D3 is included in the sense sequence. For other PDE4 isoforms the 
specific N-terminal sequence could be substituted at this point. Two anti
sense primer sequences are described. MS2, codes N-terminal truncated 
PDE4D3 while ms3 encodes the generic C-terminal PDE4D. By including 
this latter sequence full length PDE4D3 fusion protein could be 
synthesised. Finally a schematic diagram demonstrating how these primers 
related to full length sequence is provided.
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sequence. A plasmid containing verified coding sequence for HIV-tat-PDE4 was amplified 

and purified as described. This was transformed into the BL-21 E Coli expression system. 

These bacteria were stimulated to synthesise protein, using IPTG. Harvested bacteria were 

solubleised and the protein extracted from the supernatant fraction using beads coated with 

sepharose. Finally precision protease was used to cleave the peptide from the beads to 

produce a purified peptide.

I attempted to make HIV tat fusion proteins for a variety o f  PDE4 isoforms. Unless 

otherwise noted I will describe PDE4D3-N-terminal fusion protein to illustrate the 

problems encountered. Figure 6.1.2 illustrates the primers I designed to code for HIV-tat 

PDE4D3-Nterminal fusion.

Section 2 

Optimising the method

6.2.1 Optimising PCR methods HiFi Vs Taq

I set out first to compare a variety of PCR agents as successful ligation depends on having 

optimum quality cDNA product. Optimal PCR conditions were assessed by varying the 

cycling temperature and times over a range of values. Optimum cycling conditions based 

on these experiments are presented in table 2.3, (materials and methods). Figure 6.2.1 

demonstrates two agents, Taq (Promega), High Fidility (Roche) and High Fidelity2 

(Roche, with a mix containing twice the template DNA). Taq is a thermostable DNA 

polymerase, while the high fidelity mixes Taq and Pwo DNA polymerases. These latter 

enzymes contain intrinsic 3 ’-5’ proof reading capacity that increases the fidelity o f the 

PCR product. In this experiment I used HIV-tat-PDE4D3 N-terminal sense primer and a 

PDE4D3 C-terminal primer, thus cloning a full length PDE4D3-HIV tat fusion coding for
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Fig 6.2.1 Optimisation o f PCR technique

Primer pairs encoding the HIV-tat-N-terminal PDE4D3 fusion [ 
GAGCTCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGACGGCGGCGGC 
GGCGGCGGCGGATGATGCACGTGAATAATTT] and the extreme C- 
terminal of PDE4D3 [GATCTACATCATGTATTGCACTGGC] were 
incubated using a variety of PCR reagents. An cDNA of -1848 bp was 
expected. Lane I molecular weight markers, lane 2 High 
Fidelity (Roche), Lane 3 Taq (Promega) and Lane 4 High Fidelity 
(Roche, double template DNA). As can be seen the conditions selected 
were satisfactory for use with High Fidelity, PCR reagents and this was 
selected for further experiments.(values molecular size, bp: base pairs)
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Fig 6.2.2 Restriction fragment (rFLP) analysis o f ligated plasmids

PGEX 5.3X plasmids into which cDNA encoding PDE4D3 N- 
terminal - HIV tat fusion protein had been ligated using a range of 
molar ratios of insert to plasmid, were incubated with pstl restriction 
enzyme as described in materials and methods. The cDNA was 
resolved on a 1% agarose gel containing ethidium bromide and 
visualised under UV light. Lanes 1 -4 vector/insert (v/i) ratio of 1/7, 
5-8 v/i ratio 2/7 and 9-13 v/I ratio of 3/7. Expected fragments of 
5040Kba, 1049Kba and 883Kba were seen in lanes 1, 2, 3 and 12. 
These plasmids were selected for further analysis by commercial 
sequenceing.
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1.8 Kba. On the basis o f this early optimisation I used HiFi (Roche) for all further PCR 

steps.

6.2.2 Screening fo r  transformed vectors — restriction digest

Complimentary DNA encoding a PDE4 sequence fused to H IV-tat was purified from 

agarose gel and quantified by spectrophotometry. This cDNA became the “insert” DNA 

for plasmid ligation. Ligation of insert cDNA was completed as described in the materials 

and methods, and different ratios o f insert to plasmid were compared to ensure optimum 

ligation. Successful ligation o f insert into most linearised plasm id led to some re- 

cireularised plasmid that did not contain the insert and possibly some inverted sequence 

insertion. This led to false positive resistant colonies when transformed E-Coli were grown 

on selection media. To avoid selecting bacteria with non-ligated or misaligned plasmids, 

restriction digest was performed on purified plasmid from randomly selected samples from 

bacterial colonies. Figure 6.2.2 demonstrates the successful incorporation of insert in only 

4 o f 13 colonies selected. Three of the 4 successful clones were ligated with a ratio o f 

insert cDNA to vector plasmid o f 1/7 based on molarity. When other ratios were used the 

resulting number of colonies on selection media was small. Thus for future ligations this 

ratio was used. Clones suggested by digest screening were commercially sequenced to 

confirm their integrity.

6.2.3 Optimising expression

Following successful cloning and amplification o f the expression vector containing fusion 

cDNA I transformed the plasmid into BL 21 E Coli. This strain is used as an expression 

vehicle as it is less likely to make inclusion bodies with recombinant proteins than other E 

Coli. These complexes o f bacterial proteins form when ‘foreign’ proteins are improperly 

processed by bacteria and are prepared for destruction [280]. Growing the bacteria under
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Fig 6.2.3 Optimisation o f expression o f PDE4D3-NT-tat in BL 21 E Coli

BL21 E Coli transformed with PDE4D3-N Terminal-HIV tat cDNA P 
Gex vector were grown to optimum density (0.7 abs units) and IPTG 
added. 4 colonies were selected and incubated at different temperatures. 
Bacteria were harvested, lysed and particulate free lysate was boiled in 
2XSDS sample buffer. Lysate was applied to an 8% SDS-PAGE gel as 
follows: Lanes 1-4, 37°C; 5,6,8 and 9, 22°C; 10-13,4°C and lanes 7 and 
16 non-stimulated E Coli. Gels were stained with coomassie blue stain 
and dried. As can be seen different colonies appear to express protein 
optimally at different temperatures. Further analysis was performed on 
colonies represented in lanes 6 and 8, grown at 22°C.
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conditions favouring slow production of protein reduces the formation o f inclusion bodies. 

Different growth conditions were tested to optimise protein production free from IB, by 

resolving particula te free eytoplasm on SDS-PAGE. Figure 6.2.3 demonstrates that 

different colonies produced protein optimally under different conditions. This is well 

recognised and means that for any given recom binant protein optimising growing 

conditions is necessary. It was still clear that a large proportion o f the expressed protein 

existed in inclusion bodies. This may be explained by the tendency o f PDE4 N-termini, to 

form oligomers by UCRl -  UCR2 interaction. It is also known that GST can form dimeric 

forms, thus large complexes o f peptides may develop within the E Coli. I next attempted to 

vary the lysis buffer to improve solubility o f peptide in the supernatant.

6.2.4 Optimising isolation

To optimise the solubility o f the expressed peptide I attempted to lyse the BL 21 E Coli in 

a range of lysis buffers. These included two different lysozyme buffers (Lyl and Ly2 -  

section MM) and a sucrose buffer (Sul). Figure 6.2.4 demonstrates that lysozyme based 

bacterial lysis results in a greater proportion o f protein in the supernatant fraction. I next 

attempted to isolate the soluble protein on sepharose beads to maximise purification. 

Unfortunately despite achieving a high supernatant to pellet protein ratio I was unable to 

isolate the fusion protein on sepharose beads. Various conditions were tried, to enhance 

sepharose binding but the protein remained in the supernatant following collection o f beads 

by centrifugation. This suggests that little active GST was present to bind and that soluble 

protein was not an active fusion protein. I assumed therefore that most of the expressed 

protein was contained in the form o f inclusion bodies (IBs).
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Fig 6.2.4 Optimisation of bacterial lysis

BL21 E Coli transformed with P Gex plasmid containing the fusion 
cDNA coding for PDE4D3N-Terminal-HIVtat, were treated with IPTG 
and grown at 22°C for 6 hours. Bacteria were harvested and lysed in a 
range of lysis buffers Ly 2, Lyl and su 1 (section Materials Methods). 
Supernatant and pellet fractions were boiled in 2X SDS sample buffer 
and resolved on an 8% SDS-PAGE gel. Gels were stained with 
coomassie blue stain and dried. Lane 1 and 2 Ly 1, lane 3 and 4 Ly 2 
and 5 and 6 Su 1. Lanes 8 and 9 represent full bacterial cells boiled in 
lysis buffer. Even lanes supernatant fractions while odd lanes pellet 
fractions. Lysozyme (Ly) based buffers were selected for further 
analysis as a greater proportion of expressed protein is found in the 
supernatant fraction.
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6.2.5 Sarkosyl detergent based lysis o fB L  21 E  Coli

In an attempt to denature IB during bacterial lysis, I used a strategy involving the ionic 

detergent Sarkosyl. This causes IB disruption by denaturing protein-protein interactions. 

The supernatant collected from centrifugation o f bacteria lysed in 10% sarkosyl contained 

a relatively high supernatant/pellet recombinant protein ratio, (fig 6.2.5.1). In lane 6, it is 

clear that no association between sepharose beads and recombinant GST-fusion protein 

took place. It is likely that the 10% sarkosyl buffer used to produce protein dénaturation 

and inclusion body solubilisation also denatures GST causing failure to associate with 

sepharose.

To combat this problem I attempted to minimise the concentration o f sarkosyl in the lysis 

buffer (fig 6.2.5.2). As can be seen, although recom binant protein appears in the 

supernatant from low dose sarkosyl lysed bacteria (fig 6.2.5.2,A) little difference was seen 

at reducing sarkosyl concentrations when protein was collected on sepharose coated beads 

P2 (fig 6.2.5.2, B). I attempted to re-nature GST by adding the ionic detergent triton X- 

100. As can be seen (Fig 6.2.5.3) while some re-natured protein was collected on beads 

(P2), a large proportion remains in the supernatant (S2).

6.2.6 Urea dénaturation o f  inclusion bodies

Inclusion bodies can be denatured in 8M urea, and I attempted fusion protein isolation with 

this method. Lysozyme lysed bacterial pellet fraction (PI), was solubilised in 8M Urea and 

gradually renatured by osmotic replacem ent o f Urea using dialysis. Figure 6.2.6 

demonstrates a significant concentration effect of sepharose beads suggesting that dialysis 

based re-natu ration o f  GST has allowed successful isolation o f fusion protein. 

Unfortunately lane 4, shows loss o f fusion protein with peptidase cleavage o f P2.
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PDE4D3NT-tat

Fig 6.2.5.1 Comparison o f ‘GST-pull down' to pellet fraction in sarkosyl 
lysed transformed E Coli

BL 21 E Coli transformed with P Gex containing the fusion cDNA coding 
for PDE4D3N Terminal-tat, were treated with IPTG and grown at 22°C for 
6 hours. Bacteria were harvested and lysed in 10% sarkosyl lysis buffer 
(section MM). Pellet fraction (P I) and supernatant SI were collected by 
centrifugation. Sepharose coated beads were added to SI and incubated at 
4"C for 2 hours. Beads were collected and washed and collected by 
centrifugation. Collected beads (P2) and wash buffer (W l) were retained. 
All fractions were boiled in 2XSDS sample buffer and applied to an 12% 
SDS-PAGE gel as follows: lane 1 and 2 S I, Lane 3 molecular weight 
markers, lane 4 P I, lane 5 W l and lane 6 P2. Despite a significant amount 
of recombinant protein appearing in the PI fraction none appears to be 
collected on the beads. This is likely to be due to the denaturing effect of 
10% sarkosyl on GST.
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Fig 6.2.5.2 Ejfect protein solubilisation and GST dénaturation o f minimising 
sarkosyl concentration

BL 21 E Coli transformed with P Gex containing the fusion cDNA coding 
for PDE4D3N Terminal-tat, were treated with IPTG and grown at 22°C for 
6 hours. Bacteria were harvested and lysed in buffer containing a range of 
sarkosyl concentrations (section MM). Supernatant SI was collected by 
centrifugation. Sepharose coated beads were added to SI and incubated at 
4°C for 2 hours. Beads were collected and washed and collected by 
centrifugation (P2). P2 and S 1 were boiled in Laemelli buffer and applied to 
an 12% SDS-PAGE gel as follows: lanes 1 - 8, 0.025, 0.05, 0.1, 0.15, 0.2, 
0.3, 0.4 and 0.5 % respectively. Significant quantities of protein were found 
in the SI fraction from buffers containing 0.05 - 0.2 % sarkosyl, A. No 
significant sepharose bead isolation of GST fusion protein was seen at any 
concentration of sarkosyl. Thus minimising the concentration of sarkosyl 
did not prevent the inhibition of GST function.
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Fig 6 .2 .53  Ejfect on GST function o f adding triton X 100 to sarkosyl 
lysed E Coli.

BL 21 E Coli transformed with P Gex 5X containing the fusion cDNA 
coding for PDE4D3N-Terminal-tat, were treated with IPTG and 
grown at 22°C for 6 hours. Bacteria were harvested and lysed in 
buffer containing 1% sarkosyl to which 1% triton was added (section 
MM). Supernatant SI was collected and sepharose coated beads were 
added and incubated at 4°C for 2 hours. Beads were collected and 
washed by repeated centrifugation (P2), while remaining supernatant 
from bead pull down (S2) was retained. P2 and S2 were boiled in 
Lamelli buffer and applied to an 12% SDS-PAGE gel as follows: S2 
lanes 1 and 2; P2 lanes 3 and 4. S2 contains the majority of expressed 
recombinant protein, while a proportion appears associated with the 
P2 bead fraction. This proportion appears little different when triton X 
100 is included compared to no triton buffers.
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Fig 6.2.5.4 Urea dénaturation o f inclusion bodies allows more efficient 
extraction o f  recombinant protein

BL 21 E Coli transformed with P Gex 5X containing the fusion cDNA 
coding for PDE4D3N-Terminal-tat, were treated with IPTG and grown at 
22°C for 6 hours. Bacteria were harvested and lysed 8M Urea at 4"C 
(section MM). Supernatant SI was collected and dialysed through 
graduated osmotic saline solutions. Sepharose coated beads were added to 
the reconstituted lysate and incubated at 4°C for 2 hours. Beads were 
collected and washed by repeated centrifugation (P2). Half P2 was 
retained while half was incubated with precision protease to cleave the 
recombinant protein from the beads. Beads were collected by 
centrifugation (P3) and the remaining protease buffer was denatured 
using protease inhibitors. This supernantant (S3), contains the full length 
recombinant fusion protein. All fractions were boiled in Lamelli buffer 
and applied to an 12% SDS-PAGE gel as follows: lanel SI; lane 2 P2; 
lane 3 S3 and lane 4 wash 1. P2 demonstrates the concentration of 
renatured GST-fusion protein bound to sepharose beads. S3 is 
contaminated by other protein bands suggesting an impure collection.
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Chapter 6: Discussion

The ability to transduce proteins or peptide fragments into live mammalian cells offers the 

opportunity to interfere with protein activity in a highly specific fashion. In this way 

information about the functioning o f individual members o f the PDE4 family could be 

gained. I f  successful, such work would allow development o f rational therapeutic targets 

engineered to inhibit individual members of the family and hopefully reduce adverse 

effects associated with non-speeific inhibitory action. Unfortunately mammalian cells are 

highly resistant to internalising sueh foreign material. The development o f HIV-tat fusion 

proteins and allied strategies appears to offer an opportunity to overcome cells’ natural 

resistance to invasion.

Various strategies are available when synthesising fusion proteins. A full-length insert 

encoding cDNA for the entire fusion protein ean be made as I have done. Alternatively 

small sections can be made independently and inserted by ligation. The advantage o f the 

latter is that the cDNA fragments are relatively short and easier to synthesise and ligate, 

however the main disadvantage is the number of ligation reactions required. My strategy 

requires careful planning in advance to ensure all the protein remains in frame, but requires 

only one ligation step. The main disadvantage of this method is that the primers required to 

produce the fusion cDNA are very large. This makes PCR more difficult to perform due to 

the development o f secondary structure and leads to more errors as primers are less 

inclined to bind target DNA due to the large areas of ‘overhang’.

I selected a Glutathione S-Transferase (GST) fusion system to ease isolation. GST is a 

short 26Kda peptide originally isolated from Schistosoma Japonicum. It reversibly binds 

sepharose containing matrices allowing elution in increasingly ionic buffers. I used PGex
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5.3 X which contains a protease cleavage domain sensitive to the precision protease from 

Pharmacia.

In designing primers to synthesise the fusion insert cDNA, I had to bear in mind 3 

important principles. Firstly, bacterial expression of proteins requires the presence of 

upstream sequences of initiation called Kozak sequence [281]. This sequence provides the 

start o f transcription and all downstream sequence including the HIV tat, PDE4 sequences 

and the terminal stop codon must be in frame with this sequence. By using the pre

engineered plasmid PGex 5.3 I already had a Kozak sequence present. Secondly the choice 

of restriction sites for insertion is critical to allow correct alignment for transcription to 

continue and to prevent the unintentional production o f new restriction sites. Finally 

because the length o f overhang will reduce the strength o f binding o f the primer to the 

plasmid sequence I tried to make the shortest possible primers. This process is complicated 

by the need to have a long overlap section for binding to firmly attatch to the plasmid. 

Thus these two factors mean that the optimum length o f primer is hard to assess prior to 

performing PCR. A final aspect o f length is that long primers tend to form secondary 

structure or primer oligomers, which reduces the efficiency o f PCR. In the process of 

optimising the PCR reaction briefly detailed in results section 6 .2 .1 ,1 encountered some of 

the problems associated with primer design and PCR. The final proof o f successful insert 

synthesis comes with protein production thus poor primer design can waste considerable 

time and resources before becoming apparent.

Optimising conditions of reaction are critical to successful recombinant protein production. 

Optimum protein expression requires optimal cDNA synthesis, successful ligation, 

efficient transform ation and bacterial growth conditions. Each o f these aspects has 

competing factors which require careful consideration. PCR requires optimal primer 

design, and correct melting and annealing temperatures. Different Taq systems cope better 

at different temperatures and under different conditions and errors can be incorporated into
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cDNA when using long primers. I optimised the PCR system used and the reaction 

conditions over several weeks to produce the purest and greatest quantity o f insert cDNA 

possible. High Fidelity PCR reagent (Roche), has a ‘proof-reading’, capacity that seeks 

errors in cDNA sequence. I found that this system produced the purest PCR product, and 

subsequent sequence analysis confirmed the integrity of the reaction. Ligation requires the 

correct plasmid to insert ratio to increase the chances o f insertion and correct orientation. 

Again I spent some time assessing the conect ratios to use and chose 1 insert/7 plasmid 

molar ratios. Most importantly the successful production of recombinant protein in bacteria 

requires consideration be given to conditions o f growth, replication, nutrient supply, 

stimulation and time for protein production. I have detailed the conditions I experimented 

with during this phase of protein production.

The greatest problem I encountered while attempting to synthesise recombinant fusion 

proteins was the development of inclusion bodies (IBs). In mammalian systems a complex 

system o f chaperones and proteases exist to eliminate misfolded proteins. When this 

system breaks down am yloid plaques form. These are highly organised fibrillar 

proteinaceous complexes that lead to degenerative disease especially in the central nervous 

system. Inclusion bodies represent the bacterial equivalent o f amyloid plaques. These 

complexes contain proteases and over expressed proteins along with proteolytic fragments 

and chaperones. Canio et al recently demonstrated that IB are highly organised and contain 

active enzymes, including proteases and often the recom binant protein artificially 

expressed [280]. It was initially assumed that GST fusion proteins would be soluble, 

however it has been widely reported that even short peptides often form inclusion bodies 

[282]. Slowing growth conditions by reducing the incubation temperature or the dose o f 

IPTG have all been tried with varying success. I tried manipulating the growing conditions 

to improve the solubility o f the fusion protein but these strategies largely failed.
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The standard lysis buffers used in the purification of soluble protein contain the non-ionic 

detergent Triton-X 100. This detergent allows the GST to maintain its activity and bind 

sepharose. Unfortunately it has been shown that these do not enhance the solubility of IBs. 

I attempted to use different buffers to maximise the solubility o f the over expressed 

protein. Although I met with some success when using buffers containing lysosyme, I 

found that the resultant soluble protein was not active in terms o f  sepharose binding. 

Frangioni et al reported that the ionic detergent sarkosyl could solubilise IB proteins 

containing GST and described renaturation. Thus I decided to pursue a method o f IB 

purification solubilisation and renaturation. I initially used high percentage ( 10%) sarkosyl 

buffers and confirmed both the solubility of IB protein and the dénaturation of GST when 

sepharose binding was attempted. I attempted to minimise sarkosyl concentration and 

found that equivalent solubilisation was possible at between 0.05 and 0.5% sarkosyl. These 

concentrations are less than reported by Franglioni (~ 1%), but GST-Sepharose binding 

was still inhibited. Next I included 1% Triton X-100 in the buffer and demonstrated some 

isolation on sepharose beads, but this proportion was still small compared to the unbound 

protein.

Finally I attempted a method described by Wey-Jinq Lin et al [283]. They used 8M urea to 

solubilise isolated IB s and renatured them slowly by gradual dialysis in salt buffers. While 

this produced the purest samples of sepharose bound protein the quantity of product was 

too small to use in experimental analysis.

While I was unsuccessful in producing sufficient quantity o f pure fusion protein, I learned 

a lot from the attempt. The main problem encountered after conditions o f plasmid 

production had been optimised was inclusion body formation. This problem has previously 

been described by Richter et al who attempted to make His tagged PDE4A truncates for 

enzyme analysis [284]. They showed that C-terminal truncates formed dimeric forms, 

while if  the C termini were included larger aggregates were formed. This tendency for
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oligomeric aggregation may well increase the tendency for IB formation. Beard et al 

dem onstrated that UCR 1 and UCR 2 regions tend to form multimeric units when 

expressed [69]. Thus even though I was working with N-terminal fragments I may have 

produced multimeric IB complexes.

In the future various alterations to the method might be tried to prevent this happening. 

Firstly the choice o f purification may have increased the tendency to form inclusion 

bodies. Thus GST tends to form oligomers which will compound the problems described 

above. To get round this problem other tags could be used. Successful recombinant PDE4 

isoforms have been made in fusion with M(?? majo basic protein) by using the P MAL 

vector. This can then be isolated by virtue o f binding to beads coated with. The original 

authors o f the HIV tat fusion protein system described isolating their proteins by tagging 

them with HIS tag. Richter et al also successfully used His tagging in PDE4A truncate 

preparation, [284]. The tendency o f the UCR-1 and UCR-2 regions o f PDE4 N-terminals 

to form protein protein interactions results in another source o f oligomer formation. 

Curtailing the region o f PDE4 in fusion with HIV tat may reduce the efficacy o f the final 

protein product as an inhibitor, but may increase the probability of successful production.

I did not experiment with the full range o f expression bacteria available. It may be that 

some are more inclined to form IBs with certain recombinant proteins than others. In the 

future I would include an optimisation step using other E Coli such as the JM 21 strain.

Although Schwarze et al reported that proteins isolated in a denatured state were renatured 

in live cells, it is possible that alternative strategies o f transducing DNA into cells may 

provide a better solution [279]. Thus the development o f reverse transcriptase containing 

viruses capable o f transfecting immune cells may aid DNA transduction.



216
Conclusion

I attempted to synthesis a series of PDE4 isoform HIV-tat fusion proteins. 1 encountered 

various problems. Eventually time was the primary limiting factor. Careful planning of 

each stage improved the success at each point. Optimising conditions for each reaction 

helped ensure a successful outcome.
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Chapter 7 Discussion

Given the evolutionary pressure for conserving resources it is remarkable that nature has 

developed families of signalling proteins whose family members each express the same 

activity. Cyclic AMP phosphodiesterases are one such family and PDE4 constitutes one 

subfamily o f enzymes exhibiting this behaviour. The PDE4 family itself consists of an 

extensive range of enzymes with around 16 family members. Studying PDE4 is o f interest 

to biological scientists, as understanding the reasons for such variety within one enzyme 

family may shed light on basic principles of cellular regulation [4]. PDE4 enzymes are also 

o f considerable interest to medicine, and pulmonaiy medicine in particular, as inhibitors of 

PDE4, by virtue o f elevating cAMP levels, act as both anti-inflam m atory and 

bronchodilatory agents [117]. Understanding the functions of individual PDE4 isoforms 

may help to illuminate the reason for such molecular diversity and suggest specific 

therapeutic targets whose inhibition will lead to precise changes in cellular behaviour with 

a low incidence o f adverse effects. A large volume o f current PDE4 research is therefore 

aimed at identifying specific roles for individual PDE4 isoforms.

Macrophages are a useful model for investigating PDE4 isoform specific function as they 

exhibit well-characterised behaviour that is relatively easily measured. As key cells in the 

regulation o f both the innate and specific immune systems they present a target for 

therapeutic manipulation to control inflammatory disease. As a result macrophage signal 

transduction has been intensively investigated in the hope that therapeutic targets will be 

discovered [285]. PDE4 regulation o f macrophage cAMP levels has frequently been found 

to alter cellular function with important consequences for inflammation [195, 286].

I have here firstly characterised the properties o f a novel PDE4 isoform and subsequently 

investigated the importance o f individual PDE4 isoforms to macrophage function in order 

to identify possible therapeutic targets. In analysing macrophages I began by monitoring
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the changes in PDE4 isoform expression with macrophage development from monocytes 

and by measuring the response o f individual PDE4 isoforms to macrophage stimulation. In 

order to investigate the molecular mechanisms behind PDE4 inhibitor regulation o f 

inflammation I investigated the outcome o f rolipram treatment on activated macrophages. 

To illuminate these molecular mechanisms I investigated crosstalk between PDE4 and 

ERK l/2 systems and the effect o f the small GTPase Rapl on rolipram manipulation o f 

macrophage function. Finally I attempted to develop reagents that could be administered to 

cells to disrupt specific isoform function.

7.1 The new PDE4B isoform PDE4B4

The complexity o f PDE4 gene regulation means that further PDE4 isoforms are likely to be 

discovered. An understanding of the structure o f PDE4 genes coupled with the sequence o f 

rodent and primate genomes will allows new isoforms to be found. Identification can be 

done using bio-informatics approaches, looking for conserved 5' regions across species that 

may reflect exons o f novel PDE4 isoforms. Also molecular techniques can be used 

employing probes that recognise regions o f homology between members o f PDE4 gene 

families. These can be used to interrogate cDNA libraries in order to identify novel 

molecules sharing this sequence. The attractive aspect o f this strategy is that by using 

cDNA derived from expressed cellular mRNA it is likely that the cDNA identified will 

encode an expressed and therefore functional protein. Such a strategy was used in the 

discovery o f the new FDE4B isoform PDE4B4.

A region of the common domain UCR2 from the PDE4B gene sequence was used to probe 

a rat cerebral cortex library and thus identify a molecule o f different molecular size to 

other known PDE4B isoforms. It is rather surprising that no human homologue to this 

species has been identified given the high degree o f cross species conservation that exists 

between other PDE4 isoforms [50]. However inspection of the murine genome indicates an
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authentic exon encoding the unique 5' region of PDE4B4, supporting the notion that this is 

a genuine PDE4B isoform found in rodents. Other PDE4 isoforms for which such 

conservation has yet to be identified include rnPDE4A6, but whether this is a species 

specific phenomenon or a gap in our understanding is not clear [50].

K inetic analysis o f PDE4B4 reveals a cAMP hydrolysing enzym e with sim ilar 

characteristics to other PDE4B iso forms that are summarised in table 3.4. Thus the 

sensitivity to inhibition by rolipram (IC50) and an approximation o f the affinity for cAMP 

(Km), for PDE4B4 lie within a range that includes other PDE4B isoforms. The apparent 

Vmax for PDE4B4 derived from a range of observations of activity at 1|llM cAMP, relative 

to PDE4B1 is however 9 times greater. The actual activity that this represents at a cellular 

level will depend on the levels of expression, but such a range o f Vmax for one species o f 

PDE4 family demonstrates the capacity to control cellular response to cAMP by varying 

expression levels. The effect o f regulation on PDE4 isoforms may shed light on this. 

Phosphorylation o f PDE4 enzymes by PKA leads to around a 50% increase in activity (refs 

check), while phosphorylation by ERK2 reduced PDE4D3 the activity by 75% [66]. These 

changes in cAMP hydrolysing activity is achieved by increasing Vmax while leaving Km 

unaltered [68]. By setting the intracellular cAMP concentration close to the threshold for 

PKA activation a cell can control the propagation o f a cAMP dependent signal by 

controlling PDE4 isoform activity within these relatively tight limits. Having different 

PDE4 isoforms with similar affinities for cAMP but different activities may allow 

differential expression to control cAMP signals in a cell specific manner.

Particulate bound PDE4B4 Vmax differs from soluble PDE4B4 (Table 3.4). Thus while 

soluble PDE4B4 Vmax was 9 times that o f soluble PDE4B1, particulate bound PDE4B4 

Vmax was only 3 times higher. This is similar to the difference in Vmax between 

particulate and soluble fractions of PDE4A4 expressed in COS-1 cells [76]. It is suggested 

that conformational changes associated with particulate fraction binding lead to a change in
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the kinetic characteristics o f PDE4 isoforms, evidenced by the increased sensitivity o f 

particulate PDE4A4 to rolipram [82], This change in ÏC50  was mimicked by association 

with Src tyrosine kinase isoforms and lost when the Src binding domain was deleted from 

PDE4A4 [232]. PDE4B4 displays the opposite characteristic as the IC 50 for rolipram is 

greater in the PI fraction than the S2 fraction and therefore PDE4B4 is similar to other 

long form PDE4B isoforms, but differs from the short form PDE4B2 [233]. It may be that 

the interaction o f UCRl and UCR2 described by Beard et al, alters the effect of particulate 

binding in a PDE4 family specific manner [69] such that PDE4B isoforms behave in a 

different way to PDE4A isoforms. Alternatively particulate association o f PDE4B long 

forms may involve different regions o f the molecule that lead to specific conformational 

changes resulting in a different conformational switch to that described for PDE4A4. It is 

interesting that Baroja et al described association o f a PDE4B isoform with the T cell 

antigen receptor molecule CD3e [287], confirming the ability o f PDE4B isoforms to 

associate with specific membrane proteins.

Analysis o f the cDNA sequence o f PDE4B4 reveals coding regions for UCRl and UCR2 

revealing it to be a third long form PDE4B isoform along side PDE4B1 and PDE4B3 

[233]. Long form status confers certain regulatory properties on PDE4B4. For example, a 

recent observation that PKA activation o f long form PDE4 isoforms was due to 

phosphorylation of a Serine residue in the UCRl region was investigated in the context of 

PDE4B4 [239]. I have shown that Ser53 o f PDE4B4 is critical for the PKA dependent 

activation o f this molecule. Thus PKA activation led to a 57% increase in activity while the 

Ser53-Asp mutant displayed a 45% increase in activity. This degree o f activation is similar 

to that seen with PDE4D3 where Ser54 is the equivalent Serine Target Residue (STR) [68].

Finally exam ination o f the unique N-terminal region o f  PDE4B4 reveals structural 

homology to the long form PDE4 isoform PDE4D3. O f particular interest is the 

conservation o f a PKA STR around S eri4 o f PDE4B4. The equivalent residue in PDE4D3
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can be phosphorylated by PKA, but the function o f this modification is not Icnown. One 

observation in PDE4D3 that is conserved in PDE4B4 is that PKA phosphorylation results 

in retarded mobility on SDS-PAGE. It has been suggested that S e ri3 in PDE4D3 (S eri4 

PDE4B4) is responsible for this mobility shift. Consistent with data described for PDE4D3 

Seri4 in PDE4B4 does not appear to be important for PKA dependent activation.

I have investigated the kinetic characteristics o f a new long form PDE4B isoform. It shares 

many properties with other long form PDE4B family members and differs from other 

PDE4 isoforms. It displays remarkable N-terminal homology with PDE4D3 (fig3.1.1). 

This region is believed to allow association between PDE4D3 and AKAP450 and MAKAP 

and it would therefore be interesting to see if  PDE4B4 also displays protein interactions 

with these targeting molecules.

7.2 PDE4 inhibition in macrophages

M acrophages have served as a useful model for exam ining PDE4 inhibition in 

inflammatory systems. Two important principles have been described. Firstly inhibitors of 

PDE4 by virtue o f causing elevations in intracellular cAMP have anti-inflammatory 

activity [118]. Secondly the cAMP generating capacity o f PDE4 inhibition is increased in 

the presence o f a positive stimulus for cAMP such as PGE2 or a (32 agonist such as 

isoprenaline [142, 223]. The functional outcome o f PDE4 inhibition is also partially 

dependent on adenylyl cyclase stimulation. This was dem onstrated by Seldon et al in 

monocytes who found that although PDE4 inhibition elevated cAMP in a synergistic 

fashion, with both PGE2 and albuterol, increased T N Fa suppression was only seen with 

PGE2 [142]. This work suggests a degree o f functional compartmentalisation o f monocyte 

cAMP and it raises the possibility that different pools o f cAMP may control different 

cellular functions. As previous reports have found PDE4 inhibitors are effective in 

preventing EPS stimulated cytokine production from macrophages I was interested to
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investigate how LPS, which is not known to activate adenylyl cyclase could combine with 

rolipram to cause macrophage inhibition.

I elected to investigate macrophage production o f inducible nitric oxide synthase (iNOS) 

along side T N F a as this is the enzyme responsible for nitric oxide (NO) production at sites 

o f inflammation [288]. Nitric oxide and iNOS have been found to be increased in the 

airways o f active and quiescent asthmatics [219, 289], and macrophages have been shown 

to be responsible for a large proportion o f lung NO production in response to inhaled 

endotoxin [290]. Inducible NOS is thus an interesting marker for macrophage activation 

and is o f relevance to diseases of the lung. Together with this iNOS expression has recently 

been found to be under partial control by cAMP. The response o f the iNOS gene to 

elevations in cAMP, however appear to depend on the cell type and the source of adenylyl 

cyclase activation. For example Pang et al, found that forskolin and PGE2 both suppressed 

EPS induced iNOS transcription in J774 macrophages [275], Nusing et al, however found 

that db-cAMP potentiated the expression o f iNOS in response to interferon y (IFNy) in 

microglial cells [220].

7.2.1 Rolipram increases LPS stimulated iNOS expression in RAW 264.7 cells

I have found that rolipram dose dependency increases the expression o f iNOS in LPS 

treated RAW 264.7 macrophages (fig 5.3.1 A) while cilostamide, an inhibitor of PDE3 did 

not (fig 5 .3 .IB). PDE3 represents substantial (-30% ) cAMP PDE activity in resting 

macrophages (figure 5.1.1) and peripheral blood monocyte derived macrophages [119], but 

I found rapid reduction in activity following LPS stimulation. Thus failure o f cilostamide 

to cause an up regulation o f iNOS may simply reflect a cAMP dose response, or may 

suggest fimctional compartmentalisation of PDE3 and PDE4. Previous studies o f alveolar 

macrophages have found that while PDE4 inhibition has displayed anti-inflammatory 

behaviour PDE3 inhibition has not [291].
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Increasing doses o f rolipram alone did not cause iNOS expression while synergism with 

LPS was found at low doses o f rolipram. It is not known if  LPS causes activation o f 

adenylyl cyclase allowing synergism with PDE4 inhibitors. Jeon et al studying the 

cannabinoid receptor CB2 in macrophages found that CB2 dependent inhibition of AC 

prevented LPS stimulated expression o f iNOS [292]. Other studies not specifically directed 

at iNOS expression have found little effect o f PKA inhibition following LPS treatment of 

macrophages. Thus circumstantial evidence points to a role for AC downstream of LPS 

stimulation in the activation o f iNOS, but the precise nature o f this role remains to be 

understood.

On the other hand LPS can cause PGE2 production from macrophages by transcriptional 

activation o f COX-2. Prostaglandin E2 can activate AC and the resulting intracellular 

cAMP has been shown previously to partly mediate the anti-proliferative effects o f PDE4 

inhibitors [202]. Indomethacin prevented the increase in iNOS transcription with rolipram 

(fig5.3.2), suggesting that a product o f COX-2 was promoting the effect o f rolipram. 

Although cAMP is laiown to upregulate iNOS expression in some cell systems and PGE2 

acts with rolipram as described above this effect was interesting, because the body of work 

detailed below suggests PGE2 does not increase macrophage iNOS expression while 

cAMP from other sources can. Thus Ru therford found in bone marrow derived 

macrophages that PGE2 did not affect nitrite production [293]. A group studying thermal 

injury using splenic macrophages found PGE2 reduced NO products from LPS treated 

resting macrophages [294] while Pang et al found PGE2 suppressed LPS stimulated iNOS 

in J774 macrophages [275]. In contrast to this Lin et al showed that while PGE2 could 

enhance LPS stimulated iNOS expression and NO production from J774 cells this effect 

was not observed in RAW264.7 cells [295]. Cyclic AMP from other sources can also 

decrease iNOS and NO production, thus Delgado et al found that pituitary adenylyl cyclase 

activating peptide prevented LPS stimulated iNOS production from RAW264.7 cells [296]. 

Finally Morris et al found that 8-bromo-cAMP prevented the LPS stimulated production of
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iNOS from RAW264.7 cells [297] and Hasko et al demonstrated isoprotenolol inhibition 

o f LPS stimulated nitrite production in RAW264.7 cells [192]. Considerable evidence 

therefore suggests that PGE2 is unlikely to cause increased iNOS expression.

On the other hand cAMP has been shown to positively regulate iNOS expression and two 

groups, one using peritoneal macrophages, [298] and one a macrophage cell line [299] 

have found exogenous cAMP to increase nitrite and iNOS expression. Kunz et al have 

investigated this further and found that while IL-1 increases nitrite production 40 fold, 

cAMP analogues elevate this 2 fold [300, 301]. This group found two pathways regulating 

nitrite production, thus while the IL-1 signal was transduced through NFkB, cAMP was 

not.

The source o f the cAMP signal and the context of that signal, therefore appear to affect the 

outcome in terms of iNOS expression. Few studies have looked at PDE inhibition on iNOS 

expression. Okado found that IBMX, a non-selective PDE inhibitor able to inhibit both 

PDE3 and PDE4 increased iNOS protein in LPS stimulated macrophages [302] and Greten 

et al found that rolipram increased nitrite production in RAW  264.7 cells but did not 

examine iNOS expression [256]. Beshbay et al however, found that rolipram inhibited NO 

production from LPS stimulated macrophages [303]. I hypothesise that the source o f 

cAMP determines the functional outcome. Thus it may be that cAMP derived from PGE2 

activation of AC is only capable o f iNOS stimulation in the presence o f a PDE4 inhibitor. 

This argument for compartmentalisation waits rigorous testing.

7.2.2 Rolipram increases LPS stimulated COX-2 production

While I have discussed how rolipram can increase PGE2 induced cAMP production, a 

second possibility was that rolipram increased PGE2 production. I have found a dose 

dependent increase in PGE2 production with PDE4 inhibition of LPS treated RAW 264.7 

cells (fig 5,3.5). I have further demonstrated an increase in the expression o f COX-2 in
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LPS stimulated macrophages treated with rolipram (fig 5.3.4). The evidence supporting a 

cAMP mediated regulation o f COX-2 expression is persuasive. Miller et al found that PKA 

phosphorylation o f CREB was partly responsible for COX-2 regulation in chondrocytes 

[217] while Hinz et al working with peripheral blood monocytes stimulated with LPS 

found PGE2 positively regulated COX-2 expression [215]. Lo et al found db-cAMP 

enhances COX-2 mRNA and PGE2 production from LPS stimulated RAW 264.7 cells. In 

contrast the study by Pang et al referred to above looked at COX-2 in J774 macrophages 

and found PGE2 inhibited expression [275]. Mechanistic studies support a role for cAMP 

and PGE2 in regulating COX-2 expression. Caivano et al found that LPS led to CREB 

phosphorylation upstream o f COX-2 activation [304] while H inz found PGE2 could 

upregulate its own synthetic enzyme through EP2/EP4 receptors [213]. No studies have 

specifically studied the role of rolipram in regulating COX-2 expression, but two have 

looked at non-specific PDE inhibitors. Hinz et al found that IBMX enhanced LPS driven 

COX-2 mRNA and PGE2 production in monocytes while Juergens et al again working 

with monocytes showed theophylline increased LPS stimulated PGE2 production [305].

It seems likely therefore that PGE2 is capable o f upregulating its own synthetic enzyme 

and that PDE4 is present to provide a braking m echanism  to prevent excessive 

overproduction o f PGE2. If  this positive feedback model is true, then I expected to find a 

similar inhibition o f rolipram enhancement o f COX-2 expression with indomethacin as I 

have described for iNOS. On the contrary, enhanced COX-2 expression was found to be 

conserved in the presence of indomethacin (fig 5.2.4), suggesting that rolipram was not 

acting in synergy with PGE2 as predicted.

The only known function o f rolipram is PDE4 inhibition, thus increased COX-2 expression 

must be related to this behaviour. One explanation is that rolipram  inhibits PDE4 

increasing cAMP and causing COX-2 expression in the absence o f LPS co-stimulation. 

Thus the increased expression in co-stimulation is an additive effect o f each compound. I
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was not able to demonstrate any COX-2 expression in cells treated with rolipram alone. 

Another explanation is that PDE4 activity provides a brake to the expression of COX-2. 

Thus PDE4 activity in LPS treated macrophages is sufficient to keep cAMP levels low and 

remove the synergistic effects of two pathways described by Kunz et al above. This would 

suggest either that resting PDE4 levels are set to keep cAMP low enough to prevent COX- 

2 expression, or that LPS elevates PDE4 activity to allow controlled expression of COX-2.

The absence of a COX-2 signal in the presence of rolipram alone suggests that rather than 

an additive effect, the cAMP produced by PDE4 inhibition is synergistic with LPS 

signalling. It is possible that a PDE4 isoform regulates the cAMP level locally to a 

signalling complex downstream o f LPS and elevations in cAMP cause enhanced signal 

transduction.

7.23 Rolipram inhibition o f  TN Fa is not COX-2 dependent

1 have dem onstrated a prostaglandin dependent increase in iNOS expression and a 

prostaglandin independent increase in COX-2 expression by rolipram in LPS stimulated 

RAW cells. Such a dichotomy has previously been observed in vascular cells where COX-

2 cAMP led to an inhibition o f GM-CSF, but not ÏL-8 production [306].

Both iNOS and COX-2 are believed to exert anti-inflammatory effects on immune cells. I 

hypothesised that in a similar manner to the indirect inhibition o f T N F a through XL-10 

proposed by Kambayashi [245], some antiinflammatory activity o f rolipram might be 

mediated through PGE2. Thus various groups have found that exogenous PGE2 is capable 

o f inhibiting LPS driven T N Fa from monocytes and macrophages o f divers origin [194, 

307, 308]. I have found that although rolipram enhances the production of PGE2 from LPS 

stimulated macrophages indomethacin did not prevent T N F a inhibition. This further
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supports the view that cAMP alters T N F a production at the level of transcription or 

translation.

I have demonstrated some effects o f PDE4 inhibition in RAW macrophages. I have shown 

that rolipram increases iNOS production by up regulating COX-2 and PGE2 production. I 

have also shown that COX-2 up-regulation appears to be mediated by PDE4 inhibition in 

the absence o f an obvious costimulation o f adenylyl cyclase. Finally I have found that 

despite an expected increase in intracellular cAMP through inhibition o f PDE4 and 

increased PGE2 production, T N Fa inhibition by rolipram is not mediated through COX-2 

activity. Having identified possible compartmentalisation o f cAMP signalling governed by 

PDE4 isoforms I wanted next to address which PDE4 isoform s are im portant in 

macrophage function. I did this in two ways, by profiling the expression and by measuring 

the effects of PDE4 isoforms to macrophage activation.

7.3 U937 differentiation

I sought to identify PDE4 isoforms o f importance to macrophage function by recording 

changes in expression with m ature cell developm ent from progenitor cells. By 

demonstrating novel or altered expression o f specific PDE4 isoforms at different stages o f 

differentiation I hoped to propose stage specific roles for these enzymes. Two caveats must 

be considered before addressing my findings.

7.3.1 Using cell lines as inflammatory cell models

Firstly I used a cell line model to profile the PDE4 isoform changes associated with 

macrophage development. This strategy has inherent problems and some advantages over 

freshly isolated “ex-vivo” tissue. These cells are transformed tumour cells and thus some
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of their properties may reflect the changes associated with immortalisation rather than 

simply the cell o f origin. Signalling processes associated with cell cycle regulation that 

would not occur in a freshly isolated cell may influence the precise behaviour in response 

to stimuli or chemical manipulation. Finally by virtue of the process o f transformation it is 

likely that certain important signal transduction elements will have been deleted or 

switched off, these might interfere with the normal behaviour o f the cell under 

investigation. Despite these caveats I feel using a cell line is justified. Although monocytes 

are relatively abundant and easy to harvest, macrophages are much less readily available. 

Macrophages derived from peripheral blood monocytes are likewise much less abundant 

than their progenitor cells. At a cellular level individual PDE4 isoforms are low abundance 

proteins. Thus although PDE iso forms can be measured in “ex-vivo” plastic cultured 

monocytes [119] individual PDE4 isoforms are less easy to measure or subsequently 

manipulate.

A wealth o f literature describes using inflammatory cell lines as models for mature cell 

behaviour and development. Hancock et al in the 1980’s used the HL-60 cell line to 

investigate the processes of IL-2 receptor expression [309]. This cell line has been used as 

a model for neutrophil development and signalling [310, 311]. It appears to be less suitable 

for studying macrophage responses however. The U937 cell was more attractive to study 

as it has been well characterised in terms o f monocyte to macrophage differentiation by 

Hass et al [154, 155]. They demonstrated that treatment o f suspension monocytic U937 

cells with low dose PMA produced an adherent cell with surface receptors that displayed a 

m acrophage phenotype. This cell has subsequently been used as a model for 

differentiation, most recently by Prudousky et al who demonstrated the importance o f 

GDI lb  expression in the maturation process [156].

Finally U937 cells have been extensively used as models for understanding the regulation 

of PDE4 activity. Torphy et al have used these cells to demonstrate PDE4 activity changes
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following salbutamol treatment [312], while DiSanto demonstrated rolipram effects on the 

phosphatidic acid sensitivity o f PDE4 isoforms [313]. O f interest to my own work on 

PGE2 regulation Alvarez et al found that PGE2 increased PDE4 activity in U937 cells 

through PKA activation o f PDE4D3 [314].

Cell lines have therefore been used to model changes in signalling molecule expression in 

inflammatory cell development, however before any inferences can be made these models 

must be verified. I have confirmed that the U 9 3 7 p m a  cell closely reflects macrophage 

development by comparing cell surface markers, signalling molecules and behaviour 

against reports in the literature. Thus as mentioned above GDI lb  is believed to reflect 

macrophage development in the context o f monocyte differentiation [156]. I have shown 

novel GDI lb  expression in U 9 3 7 p m a  developm ent from U937 cells (fig 4.1,2). 

Hunninghakes’ group demonstrated loss o f PKCP expression in the development o f the 

alveolar macrophage and I have confirmed this in U 9 3 7 p m a  cells [147]. Finally Gantner et 

al found that an “ex-vivo” model of plastic cultured monocytes became more adherent, 

increased their surface area and protein expressed per cell [119]. I have identified all these 

behavioural changes in the U937 model. Thus I have verified my U 9 3 7 pm a  model against 

historical precedent and found it closely reflects changes associated with macrophage 

development.

Gantner et al along with various other groups since Thomson in 1976 have found 

characteristic PDE isoform expression in monocytes and macrophages [119, 221]. Before I 

could use my model to measure individual PDE4 isoform expression I had to verify it 

against these precedents. In these studies o f PDE3 and PDE4 activity I compared a model 

of “ex-vivo” monocytes prepared in our laboratory. I have found the expected fall in PDE4 

activity along with the rise in PDE3 (fig 4.1.3). Unfortunately most studies compare PDE 

activities using protein quantity as a denominator. Although this is a reasonable approach 

when comparing activity levels between cells or in the same cell following a treatment it is
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not satisfactory to compare a mature phenotype with a progenitor cell. This is because as 

described above the quantity o f protein per cell can change by orders o f magnitude, 

meaning that perceived activity losses may simply reflect a dilution effect o f increased 

protein. While an elevation of PDE3 activity thus must reflect a significant rise in activity a 

loss o f PDE4 activity may or may not be an artefact o f this effect. I have demonstrated that 

changing protein content does alter the pattern o f PDE4 activity change. Thus for activity 

expressed on a cellular level PDE4 activity rises in the U 9 3 7 p m a  model, while that in the 

ex-vivo model o f Gantner et al does not fall as significantly as reported.

7.3.2 Techniques used to profile cellular PDE4 isoform content

The second caveat to these studies concerns the use o f different techniques to quantify 

PDE4 isoforms. Various techniques are available to measure the expression o f PDE4 

isoforms. Initial studies o f expression in inflammatory cells used chromatography to 

separate PDE activity by molecular size [221]. While this demonstrated that different PDE 

activities existed it did not specify individual PDE4 isoforms. RT-PCR using harvested 

mRNA has been used to profile PDE4 isoform expression in various inflammatory cells 

[223, 315]. However although gene expression is measured in this way, regulation o f 

protein expression can be achieved at a post translational stage and mRNA transcripts may 

have specific roles in themselves that do not require protein production. It was with such 

concerns in mind that Houslay et al recommended that profiling o f the expression of PDE4 

isoforms in cells should include some attempt at quan tifying protein [50]. Protein 

identification however is not straightforward. One can measure immunological activity 

based on western blot, quantifying the physical presence o f an enzyme, but this does not 

addiess isoform activity. PDE4 isoform activity is regulated by changes to tertiary protein 

structure as well as by transcriptional expression. Quantifying activity is more difficult but 

can be approximated by immunoprécipitation. This technique takes advantage o f the 

property o f IgG Fc portion which has a high binding affinity for protein A. Thus by
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incubating a solution containing a PDE4 isoform with a specific antibody, all the antibody 

can be isolated bringing bound PDE4 with it. Due to the nature o f antibody-antigen 

binding dynamics it is important to immunoprecipitate fiom the same protein concentration 

if comparisons are being made. Thus in the case o f U 9 3 7  and U 9 3 7 p m a  cells a calculation 

had to be made to accoun t for cell number. A second consideration is that 

immunoprécipitation may or may not conserve tertiary structure o f a target protein. 

Endogenous binding partners may be lost, while immunoglobulin binding might alter the 

conformation o f the protein. Bearing these considerations in mind, however it is possible to 

make comparisons o f relative activities between two different cell states for a specific 

PDE4 isoform if  the same quantity o f protein has been used with the same amount of 

antibody.

In my studies I used all three techniques available to quantify and identify different PDE4 

isoforms. Thus I used RT-PCR to distinguish between PDE4A isoforms, western blot and 

immunoprécipitation to identify all individual isoforms.

7.3.3 PDE4 isoform profile changes in U 9 3 7 p m a  cell development

7.3.3.1 PDE4A activity rises

Although the observed PDE4 activity fell in U 9 3 7 p m a , PDE4A activity rose. When 

compared at a cellular level this rise was even more substantial (Fig 4.2.1). The proportion 

of PDE4A to the total activity measured in different experiments rose from around 2% to 

81% suggesting a considerable change in the importance o f this gene family to the 

regulation o f cAMP between monocytes and macrophages. Western blot data confirms the 

rise in PDE4A transcription as no PDE4A is immunologically detected in U937, while two 

bands are easily seen in U 9 3 7 p m a - Two human PDE4A isoforms migrate at the same 

weight on SDS-PAGE, and I used RT-PCR to define which were present. Although no
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PDE4A activity was found in U937, mRNA for PDE4A4 was seen with RT-PCR (fig 

4.2.3). This is interesting and reflects the contention discussed above that the presence of 

mRNA is not a good guide to the activity o f an individual enzyme. In U 9 3 7 p m a  cells, 

considerably more PDE4A4 transcript was present, as was the novel expression o f 

PDE4A10 mRNA. Although I did not quantify the amount o f PDE4A4 mRNA, I required 

3 dilutions o f template cDNA to gain resolution on agarose gel, suggesting a substantial 

increase in mRNA.

The PDE4A4 isoform has been shown to bind to proteins o f considerable relevance to 

macrophage function. Thus McPhee et al found PDE4A4 bound to the SH3 domains o f 

Lyn tyrosine kinase, one o f the Src family of kinase enzymes [82]. The importance of Lyn 

kinase to macrophages has recently been described [231]. Lyn recruitment and activation 

has been found following LPS stimulation of macrophages [260]. Apoptosis, a key means 

o f regulating an inflammatory response involves the co-ordinated activation of proteolytic 

enzymes called caspases. PDE4A4 is a target for the essential caspase3 and cleavage as 

part o f apoptosis removes the LYN-SH3 interaction domain on the N-terminal region o f 

PDE4A4 with a resulting increase in activity [232]. Thus circumstantial evidence points to 

the possible importance o f PDE4A4 in macrophage inflammatory Rinction.

PDE4A10 is a relatively recently identified isoform [234]. It is found in brain tissue and 

this report is the first to demonstrate regulated expression upon eellular differentiation 

[316]. As yet little is known about the functional regulation or protein binding partners for 

PDE4A10, which might point to specific roles for it in regulating cell function. My study 

however points to a role in macrophage specific regulation as no mRNA was found in 

U937 cells.
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7.33.2 PDE4B2 expression is increased in U937pma cind differentiated P B M  

cells

PDE4B2 expression increases when macrophages develop in both the U937 and ex-vivo 

models. These data are consistent across both immunoprécipitation and western blot data, 

however no new PDE4B isoforms were found in differentiated cells. A role for PDE4B in 

regulating inflammatory cell function has been postulated from work in T lymphocytes, 

where PDE4B species were found to associate with the CD3e protein of the T cell antigen 

receptor [287]. A role for PDE4B in monocyte regulation was also proposed by Wang et 

al, who found that it could be increased by LPS stimulation [253]. Interestingly PDE4B 

transcription could be limited by co-stimulation o f monocytes with IL-10, reminiscent o f 

TN Fa and further supporting a pro-inflammatory role for this isoform [317]. Jin et al have 

recently used a PDE4B knock out model and demonstrated that T N F a production in 

response to LPS was absent in contrast to the wild type mouse [255]. Thus my data further 

supports the role of PDE4B2 in supporting pro-inflammatory signalling in macrophages.

7.3.3.3 PDE4D expression is reduced in U 9 3 7 p m a  cells and differentiated 

P BM  cells

Jin et al, having demonstrated that the absence o f PDE4B acted to prevent T N Fa in 

response to LPS, then compared PDE4D deficient mice [255]. They found no difference in 

response to LPS when PDE4D knock out mice were compared with wild type mice. This 

argues against PDE4D isoforms having im portant pro-inflam m atory activity. This 

d istinction  betw een  PDE4B and PDE4D  neatly  dem onstrates a func tional 

compartmentalisation between these isoforms. My data agrees with this hypothesis, as 

PDE4D expression was severely reduced when western blot data was examined (fig 4.2.5). 

Immunoprécipitation o f PDE4D did not agree with these data however. PDE4D activity 

per U937pMA cell did not fall despite a large reduction in immunologically detectable
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isoform. This difference between the two techniques is difficult to explain. The integrity o f 

the antibody has been confirmed through rigorous assessment in the laboratory and was 

used in both types of analysis and therefore does not explain the discrepancy. It is possible 

that in immunoprécipitation studies a species of PDE4 other than PDE4D was ‘pulled 

down’ along with a small amount o f remnant PDE4D artificially elevating the activity 

measured. This was not confirmed when western blot analysis o f the immunoprecipitate 

was performed. It is possible that post translational modification o f the bound PDE4D, 

however small was sufficient to artificially increase the measured activity. Thus I am 

unable to explain why a consistent discrepancy existed between the PDE4D activity found 

by immunoprécipitation and the immunological activity identified by western blot analysis. 

I believe that western blot is the more robust form of analysis and this is backed up by the 

data from peripheral blood monocyte differentiation studies.

7 .3 3 .4  A change in ERK2 regulation o f  PD E4 occurs with U 9 3 7 p m a  

development

A significant change in the relative proportions o f PDE4D and PDE4B isoforms takes 

place in both the experimental models discussed. This has important implications for 

ERK2 regulation o f PDE4 activity and therefore for ERK2 cAMP signal crosstalk. PDE4 

isoforms can be distinguished on the basis o f their response to ERK2 phosphorylation. 

Long form isoforms such as PDE4D3 and PDE4D5 present in U937 cells, but reduced in 

U937pMA cells are inhibited by ERK2 phosphorylation, while the short form PDE4B2 

which is upregulated in U 9 3 7 p m a  cells is activated [67]. The differentiation o f U 9 3 7 p m a  

cells results in a change from long form dominant PDE4 isoforms to short form 

dominance. I have shown that this has important outcomes for PDE4 regulation as in U937 

cells PDE4 activity is reduced by ERK2 activation, while in U 9 3 7 p m a  PDE4 is activated. 

ERK2 is an important enzyme in the transduction of signals downstream of cytokine and
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endotoxin receptors and thus macrophage differentiation is likely to be accompanied by 

significant changes to ERK/cAMP crosstalk [318].

7.3.4 Summary

I have advanced the understanding of PDE4 in inflammation by demonstrating a change in 

the expression o f isoforms with macrophage development. Thus PDE4A10, PDE4A4 and 

PDE4B2 were transcriptionally upregulated, while PDE4D3 and PDE4D5 expression was 

reduced. This suggests that both PDE4A isoforms and PDE4B2 are important for 

regulating cAMP in pro-inflammatory signal transduction. Cyclic AMP is loiown to inhibit 

inflammation but how it achieves this is not clear. One possibility is that cAMP activated 

PKA can prevent downstream signalling through, for example Raf-1 inhibition. Co

ordinated PDE4 activity local to a signalling complex might therefore be permissive to 

such a signal, while inhibition by rolipram, by elevating cAMP, may inhibit the signal 

cascade. The work by Jin et al showing an distinction between PDE4 isoforms in 

regulating inflammatory signals and my work showing specific isoform expression in 

specific stages o f  macrophage maturity proposes that individual isoforms may have 

specific roles in such cAMP regulation. I wanted to further clarify the role o f different 

PDE4 isoforms by measuring their activity following LPS treatment o f macrophages.

7.4 Effect of LPS on macrophage PDE4 isoforms

Only a few studies have addressed the regulation o f PDE4 by LPS. Verghese et al found an 

LPS stimulated increase in PDE4 activity and related this to increased transcription [224]. 

PDE4B2 expression was found to be up regulated by LPS [317]. My data confinns a rise in 

PDE4 activity with LPS treatment o f RAW macrophages, however this occurs in the 

context o f a fall in PDE3 activity. Such a distinction between PDE3 and PDE4 has been 

described both in terms o f PDE activation, [319] and in terms o f function [98]. One
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explanation for the elevation in PDE4 activity is that resting intracellular cAMP 

concentration is sufficient to inhibit LPS stimulated signal transduction. Thus activating 

PDE4 reduces cAMP and permits signal transduction. An alternative explanation is that 

LPS activates adenylyl cyclase and PDE4 activation in parallel with this prevents the 

inhibitory effect o f elevated cAMP. The transient nature o f the PDE4 activation suggests 

that reaccumulation o f cAMP acts as a brake to ongoing signal transduction. This might 

support the second theory as cAMP reaccumulation will require a positive activation o f 

AC. The reduction in PDE3 activity further supports the theory o f compartmentalisation. 

Thus while cAMP controlled by PDE4 is reduced that controlled by PDE3 is elevated.

7.4.1 Regulation o f  PDE4 activation

Previous investigators have found transcriptional regulation underlies increased PDE4 

activity in LPS treated monocytes [317]. I found that the inhibition o f mRNA translation 

with actinomycin D did not prevent the increase in PDE4 activity at 30 minutes arguing 

against new protein expression (fig 5.1.2). This illustrates the need for caution when 

interpreting RT-PCR, as although increased transcript for PDE4 isoforms may be found it 

is unlikely that new protein production underlies this early phase o f activation. It may be 

that over a longer time scale, changes in the expression o f individual isoforms do occur, 

my data suggests that this is not associated with a prolonged activation of PDE4 in RAW 

264.7 cells.

Inhibitors o f PI3kinase and PKA both resulted in the abolition of LPS stimulated activation 

(fig 5.1.2). Wortmannin and H89 however reduced PDE4 activity to below the basal levels 

o f untreated cells. It is impossible on the basis o f these studies to identify a difference 

between inhibition o f  constitutive regulation in contrast with LPS stimulated activation. 

Both PKA and PDKinase have been shown to cause up regulation o f PDE4 activity [50, 

112]. The role for PB kinase in LPS signal transduction is well documented however,
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whereas the role of PKA is less well understood [320]. The effect o f MEK inhibition with 

U 0126 was interesting. This compound reduced EPS induced activation by around 50% 

(fig 5.1.2). While this could equally well represent the constitutive activation of short form 

PDE4 iso forms the effect is less profound than the previous two inhibitors. The role of 

MEK and ERK l/2 activation downstream of EPS stimulation is also well documented. The 

ERK2 dependent activation of short form PDE4 isoforms reflects the U937 data discussed 

above (section 7.3.3.4). In order to investigate the role o f ERK2 in PDE4 activation 

following EPS treatment o f macrophages I investigated the PDE4 short form activity in 

these cells.

7.4.2 RAW264.7 cells express PDE4A, PDE4B andP D E 4D  isoforms but only 

PDE4B2 is activated by LPS

The U937pMA studies described above predicted macrophages to express PDE4A and 

PDE4B isoforms. Western blot data demonstrates the presence o f PDE4D isoforms along 

with two PDE4A isoforms and PDE4B2 (fig 5.1.3). Thus although PDE4A and PDE4B 

isoforms closely match the cell model PDE4D5 and PDE4D3 appear but were not 

expected. Various differences exist between the RAW264.7 and U937 cell lines. The 

former is a rat eell line while the latter is human derived. More signifieantly RAW 264.7 

cells represent a mature cell that has been transformed whereas U 9 3 7 pm a  represent a 

differentiated immature cell line. It is possible that the expression o f PDE4D isoforms 

reflects the process o f transformation and immortalisation that are lost in the differentiation 

o f U937 cells. W eak support for this is found in the nuclear localisation of PDE4D in 

fractionated RAW 264.7 cells (fig 5.2.3).

I have already provided evidence that PDE4B isoforms are believed to play a role in 

regulating EPS signal transduction. To investigate a role for each iso form I stimulated 

RAW264.7 cells with EPS and immunoprecipitated each using PDE4 isoform specific
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antibodies. Only PDE4B2 activity increased with LPS stimulation. This agrees with Ma et 

al [317], actinomycin D however again failed to prevent PDE4B activation arguing against 

new protein transcription causing the increase. While the P38 mitogen activated protein 

kinase inhibitor SB3850-—did not affect the increase in PDE4B activity the MEK inhibitor 

U 0126 did reduce it significantly.

I have presented further evidence in support o f a role for PDE4B2 in pro-inflammatory 

signalling in macrophages. Work cited above have suggested that this enzyme is important 

in cAMP regulation in inflammation [253, 255, 317]. I have found a MEK dependent 

activation o f PDE4B2 occurring some 20 minutes following LPS treatment of RAW 264.7 

cells. MEK stimulates the activation of ERKl/2 enzymes and being a short PDE4 isoform, 

PDE4B2 would be aetivated by ERK2 phosphorylation. I was not able to demonstrate 

direct phosphorylation of PDE4B2 in LPS treated RAW264.7 cells due to low abundance 

of the protein. By using a recombinant active ERK kinase protein and ^^P-labelled ATP I 

attempted to show that PDE4B2 immunoprecipitated from LPS treated RAW 264.7 cells 

was less capable o f being phosphorylated than PDE4B2 im m unoprecipitated from 

untreated cells. I was unable to demonstrate any signal above noise, due in part to the low 

abundance of PDE4B2 in RAW 264.7 cells.

The ER K l/2  enzymes are important in the transduction o f  many cytokine stimulated 

signalling pathways and it is possible that PDE4B2 plays important regulatory roles in 

other inflammatory systems. Thus I have illustrated an example o f molecular crosstalk 

between the M EK -ERKl/2 signal cascades and the cAMP-PDE4 pathway that may have 

important implications for immune cell signalling. I have been unable to demonstrate a 

direct link between ERK l/2 and PDE4B2 however.
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7.5 Raf-MEK-ERKl/2 / cyclic AMP crosstalk

I have provided evidence for the influence of ERK l/2 signalling in regulation of cAMP in 

macrophages. Firstly I demonstrated a distinction between the effects on cellular PDE4 

activity of BGF between U937 and U937pma cells. Why less mature cells would require an 

increase in cAMP induced by an inhibition o f PDE4 is not clear. However it is possible 

that PDE4D isoforms control cAMP, which in turn regulates progress through the cell 

cycle. Several reports have described cell cycle arrest in G1 phase in macrophages 

stimulated with growth factors and treated with cAMP analogues [321, 322], On the other 

hand in mature cells where the cell cycle machinery is not active cAMP may play other 

roles in regulating pro-inflammatory signalling.

Cyclic AMP can exert both negative and positive regulation on the ras-raf-ERKl/2 signal 

transduction pathway (Houslay/Kolch). PKA phosphorylation of Ser259 of Raf-1 prevents 

its interaction with Ras and therefore downstream activation o f ER K l/2 [261]. Rap-1 is 

another ras family GTP-ase that is capable o f activating E R K l/2  by association and 

activation with B-Raf [323]. The effect o f cAMP in regulating ER K l/2 activity has been 

shown to be determined by the relative expression o f Raf-1 or B-raf in neurones [324]. 

Thus where B-raf predominates in neurones cAMP activates ERK l/2 while where Raf-1 is 

dominant in astrocytes cAMP inhibits ERKl/2 activation.

Molecular crosstalk between cAMP-PDE4 and the ERK l/2 pathways can therefore occur 

in two directions. I have provided evidence for ER K l/2 having influence over PDE4 

activity but wished to demonstrate activity in the opposite direction.

7.5.1 Rolipram increases E RK l/2  phosphorylation by LPS

ERK l/2 are protein kinases that are themselves activated by phosphorylation. Antibodies 

raised against the phosphorylated residues are thus a useful marker o f ERK l/2 activation. I
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have found that LPS treatment o f RAW264.7 cells in the presence o f rolipram leads to a 

larger and more rapid activation o f E R K l/2  than LPS alone (fig 5.4.2). E R K l/2  

phosphorylation was seen before the production of inflammatory mediators would be 

expected, suggesting that PDE4 may regulate ERICl/2 activation immediately downstream 

of LPS. Valledor et al found that timing o f macrophage ER K l/2 activation predicted the 

cellular response to stim ulation [271]. They found agents that induce macrophage 

proliferation such as PM A and CSF-1 cause an early and more substantial activation of 

ER K l/2 than LPS, which inhibits proliferation and promotes an activated phenotype. I 

confirmed that PMA and LPS could activate ER K l/2 in RAW 264.7 cells to different 

degrees and over a different time scale (fig 5.4.1). Thus rolipram, by altering the dynamics 

o f ERK l/2 activation may be expected to alter cellular response to LPS. I have only used 

phosphorylation as a surrogate marker o f ERK l/2 activation and quantified the effect by 

densitometry. I would like to confirm these data by performing ER K l/2 kinase activity 

assays.

7.5.2 Co-immunoprecipitation ofPDE4, R a f isoforms and E R K l/2

Considerable evidence is aecumulating for the formation o f complexes of signalling 

molecules bringing interacting enzymes into proximity with each other and possibly 

preventing inappropriate “over-spill” o f activated enzymes [79, 325]. I predicted that 

molecular crosstalk between PDE4 and ERK l/2 would require direct interaction between 

these moleeules. This hypothesis is supported by the presence o f kinase interaction motif 

(KIM) and FQF domains on PDE4 isoforms [65]. These motifs serve as enzyme docking 

sites for ERK2 allowing PDE4 isoforms to become target molecules for phosphorylation. 

By im munoprecipitating PDE4isoforms I hoped to isolate all the molecular binding 

partners including ER K l/2 enzymes if they were present. Although initially it appeared 

that ERK l/2 were eoimmunoprecipitated with PDE4B2, subsequent analysis o f B-raf and 

pre-immune serum suggested this could be an artefact. I was unable to increase the
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Stringency o f the eonditions sufficiently to exclude a possible experimental error in this 

work. Developing RAW264.7 cells that overexpress PDE4B2 fused to a peptide tag that 

would allow isolation without the need for immunoprécipitation might allow a “cleaner” 

isolation of PDE4B2 binding partners.

I have provided evidence for crosstalk between cAM P-PDE4 and ER K l/2  in both 

directions. That is, ER K l/2  can regulate LPS activation o f PDE4B2 thus controlling 

cAMP, while rolipram increases ERK l/2 activation suggesting a role for PDE4 isoforms in 

regulating this cascade.

7,6 Rapl mutants in RAW macrophages

One implication o f the work described above is that cAMP can activate ER K l/2 in 

macrophages. As detailed above cAMP can activate Rap-1 and subsequently ERK 1/2 by a 

B -raf dependent mechanism [264]. The im munoprécipitation studies confirmed the 

presence o f B -raf in RAW 264.7 cells which is a precondition for this pathway [324]. 

Important roles for R apl have been described in macrophage function including the 

regulation o f integrin binding [204], The essential components o f a cAMP dependent 

activation of ERK l/2 are therefore available in RAW 264.7 cells and may have important 

influence over the regulation of macrophage behaviour.

Two methods for proving a role for Rapl exist. First the GTPase binding protein Ral-GDS, 

binds only to activated rap and ras [326, 327]. By fusing this protein to a GST peptide it 

can be used to “fish” for active species of these molecules [328]. Caron et al used mutant 

Rap-1 molecules, designed to represent the active conformation or mutated to prevent 

activation [204]. These mutant Rap-1 molecules were then transfected into macrophages 

and cellular responses to stimulation were measured. Our Laboratory received plasmids 

encoding mutant Rap-1 molecules as a kind gift from J.L. Bos.
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I used RAW 264.7 cells transfected with these plasmids to measure the effect of R ap-1 

activation on T N F a and PGE2 production and COX-2 expression. Although RAW 

macrophages are difficult to transfect and are resistant to genetie manipulation, I believe 

that sufficient rapl expression was achieved. Transfection efficiency was variable between 

the mutants and all the data presented has been corrected for the relative amount o f R ap-1 

protein present.

Despite allowing for transfection differences the only signifieant effect I found was on 

PGE2 production when RAW 264.7 cells transfected with constitutively active Rap-1 were 

stimulated with LPS in the presence of rolipram. In the absence o f a significant effect of 

constitutively active Rap-1 on PGE2 production in untreated cells over either dominant 

negative or wild type mutants it is difficult to draw any conclusions from these data. It is 

interesting to note that in both the PGE2 and the T N Fa experiments transfection of wild 

type Rap-1 appeared to diminish the effect o f rolipram. I hypothesise that the act o f 

transfection results in an activated maerophage that produces many cytokines and 

mediators through alternative pathways. Finally Rap-1 may itself be a target for PKA 

mediated inhibition of activity. This is achieved by phosphorylation o f a serine residue at 

position 180 [43, 46]. I used Rap-1 constructs mutated at this residue to reflect either a 

phosphorylated conform ation or a mutant that was unable to be phosphorylated. 

Transfecting these into RAW 264.7 cells allowed me to measure a potential role for PKA 

modification o f R ap-1 in the production o f TNFa. In this case the transfection of wild type 

Rap-1 did not influence the production of T N Fa, while both mutant Rap-1 constructs 

reduced the inhibition o f rolipram. W hile this argues against the hypothesis that 

transfection alone affects the rolipram sensitivity of RAW 264.7 cells, it is hard to draw 

conclusions from the results for two opposing Rap-1 mutations having similar functional 

effects.
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7.7 HIV-tat fusion proteins

I have provided evidence o f my own backing up previous reports that PDE4B2 may have 

important roles in regulating inflammatory cell function. Proof o f such a role would come 

from the development of PDE4B2 specific inhibitors compared with other isoform specific 

inhibitors. Most PDE4 inhibitors interact with the catalytic region o f the enzyme. As this is 

the most highly conserved region o f the cell these compounds suffer from being non

isoform specific. Developing isoform specific inhibitors remains an elusive goal.

Individual PDE4 isoforms differ from each other at their extreme N-terminal region. The 

functions o f the N-terminal regions do not lend themselves to chemical manipulation. 

These functions include targeting, protein-protein interactions and phosphorylation based 

regulation. I hypothesised that catalytically inert N-terminal domains would compete with 

the sites required to express these N-terminal functions and disrupt isoform function in a 

specific manner. Although attractive this strategy is complicated by the need to get these 

proteins into cells.

Expressing foreign proteins in eells is difficult and doing so in macrophages is particularly 

so. Various methods o f transducing genetic material into intact cells exist including 

transfection and infection. Both o f these have proven difficult in RAW cells. The recent 

description by Schwarze et al o f denatured HIV-tat fused enzymes being incorporated into 

cells and renatured offered an exciting solution to this problem [329]. In this report (3- 

galactosidase was successfully introduced into the peritoneum of rats and found to have 

penetrated every tissue of the body within 12 hours. Importantly the denatured protein was 

found to be within eells and to have been renatured. I hypothesised that catalytically inert 

PDE4B2-N-terminal peptide fused with HIV-tat would have anti-inflammatory behaviour. 

I aimed to compare RAW 264.7 cells response to such a fusion peptide with a PDE4D3 N-
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terminal HIV-tat fusion protein as this protein is likely to be less important in regulating 

LPS signal transduetion.

Unfortunately I ran out o f time to successfully isolate a fused protein but I learned a lot 

from the attempt. The various stages o f synthesis are described in the text o f chapter 6, 

however some significant lessons were learned. My main problem was the development of 

inclusion bodies consisting of recombinant proteins. This is likely to be due to the adhesive 

properties o f various molecules included in the GST fusion proteins. Firstly, the N- 

terminals o f long form PDE4 isoforms contain both U CRl and UCR2 and Beard et al 

described the physical association of these regions [69]. Although PDE4B2 N-terminal 

does not contain both o f these regions it may be that other bacterial proteins expressed 

UCR2 related proteins sufficient to cause interaction. The choice o f GST as a means of 

isolating reeombinant proteins is complicated by the tendency o f this protein to form 

oligomers. This will further encourage the formation of inclusion bodies.

In the future I would overcome these problems in a variety o f ways. Previous attempts at 

PDE4 N-terminal fusion protein synthesis have been successful using shorter sequences of 

the protein. I would try to make truncated sections of the entire PDE4B2 N-terminal 

regions in fusion with HIV-tat that would have the additional attraction that I would be 

able to pin point the source o f any inhibitory effect seen. On the other hand such a strategy 

might fail due to a lack o f appropriate tertiary protein structure. I would use different a 

isolation system. Thus rather than a GST tag I would in include a “His” tag which is 

smaller, does not form oligomers and is easily isolated by association with methionine. 

Finally I would construct a plasmid vector containing the H IV-tat sequence and His tag in 

fusion into which I could clone short sequences o f the PDE4 isoforms. In this way I could 

use smaller PGR primers increasing the integrity of the cDNA product.
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Future directions

The work presented raises several questions that should be addressed. Firstly the function, 

regulation and distribution of PDE4B4 requires to be investigated. What purpose is served 

by having three separate long form PDE4B isoforms is not clear. It may be that tissues 

express each isoform under a specific set o f circumstanees. Thus probing a variety o f 

cDNA libraries or performing northern blot analysis o f different tissues might increase our 

understanding. Identifying and investigating the regulation of the splice junction promoters 

should offer insights into how each isoform is controlled. Such studies can be done through 

promoter sequence analysis and electrophorectic mobility shift assay (EMSA). This latter 

is a functional test o f promoter activation and therefore has the additional attraction of 

being physiologically relevent. ER K l/2  phosphorylation would be expected to inhibit 

PDE4B4. I would like to confirm that this does occur and investigate the possible 

interaction of PKA phosphoiylation of S eri4 and ERKl/2 inhibition.

The U937 and U937pma cell model offers considerable scope for investigating PDE4 

regulation. As this model is verified it can be used to understand how each PDE4 isoform 

interacts in generating an inflammatory pattern of behaviour. Sufficient tissue is available 

to measure the responses o f individual isoforms to specific stimuli. Creating stable 

transfected U937 cells with o f active and dominant negative PDE4 isoforms would 

advance our understanding o f the process o f differentiation. For example it may be that if  

PDE4D isoforms are over expressed the process o f macrophage differentiation will not 

oceur. On the other hand, a RAW 264.7 cell transfected with a dominant-negative form of 

PDE4B2 may act like a rolipram treated macrophage and inflammation will be prevented.

The role of cAMP in regulating individual inflammatory mediators is complex and varies 

between cell and mediator examined. Much work is required to discover the mechanisms 

by which PDE4 regulates individual pools of cAMP that in themselves regulate specific
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cytokines. Targeting o f PDE4 requires to be better understood and discovering more 

molecular partners will illuminate this further. Yeast-2 hybrid analysis can be used to 

identify new binding partners, and understanding the expressed proteosome o f stimulated 

inflammatory cell will allow an appropriate experiment to be performed.

Molecular crosstalk holds the keys to many complex questions o f regulation of cellular 

behaviour. In particular how the M APkinase and cAMP pathways interact. I have 

highlighted various possible mechanisms that require to be illuminated. For example the 

role o f the EPA C /rapl/B -R af pathway in control o f inflammatory processes may offer 

interesting therapeutic opportunities. Using Ral-GDS to “fish” for activated rapl and using 

dominant negative EPAC mutants upstream o f inflammatory responses would shed light 

on this early field of investigation.

The development o f new molecular inhibitors o f PDE4 isoforms requires a greater 

understanding of the structure/function relationships at the N-terminals. Development of 

small peptide inhibitors sueh as HIV-tat fusion should address some o f this.



247

Appendix 1 Standard curves and quantification

In chapters 3 and 5, I have used various methods to quantify proteins and chemical 

mediators o f inflammation. The solutions from which quantification was performed 

include cells lysed in KHEM buffer and cell free culture medium. Where appropriate all 

standard curves were generated using Icnown amounts of the target compound dissolved in 

the same fluid as test samples were prepared.

A ppl.l PDE4B4 quantifîcatîon

Two methods were used to quantify the relative amount o f transfected PDE4B isoforms 

when assessments o f relative activity were calculated.

App L IA  PDE4B ELISA

Firstly enzyme linked immunosorbant assay (ELISA) plates were constructed as described 

in materials and methods (section 2.4.12). Thus increasing quantities of protein from cell 

lysates prepared in KHEM were allowed to adhere to 96 well ELISA plates overnight prior 

to detection using antiserum raised against PDE4B (Schering). Antibody detection was 

carried out using HRP conjugated anti-serum raised against rabbit IgG, and visualised 

using ABTS reagent. Optical density (O.D.) of each well was counted using a multi-well 

plate reader at 405nm (Dynex technologies). Plots o f protein content against O.D. were 

constructed and the relative PDE4B isoform content of each lysate was estimated from the 

gradient of the straight line linking the plots (fig App 1.1 A).
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Figure A p p l.l  FDE4B4 relative transfection efficiency

In order to compare PDE4 activity between different transfected PDE4B 
isoforms and to compare between different treatment groups, when 
characterising PDE4B4 I used two forms o f quantitative analysis. Fig 
A pp l.l A, Enzyme linked immunosorbant assay (ELISA), was performed 
using in-house prepared ELISA plates with PDE4B anti serum (Schering). 
Increasing quantities of lysate protein was incubated in a standard ELISA 
protocol. The relative steepness o f the linear part o f the Log protein 
content/O.D. curve estimates the relative transfection efficiency. Fig 
App 1.IB, western blots were prepared for a range o f protein contents for 
each treatment group in a PKA activation analysis of PDE4B4. The 
intensity of each band was compared against a standard immunoband. Again 
the relative steepness of the gradients reflects the relative transfection 
efficiency. (O.D. Optical density; Arb Units. Arbitary density units)
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App 1. IB  Western blot analysis

The second method used to quantify relative transfection efficiencies between different 

PDE4B transfections was western blot densitometry (section 2.4.9). SDS-PAGE was 

performed on cell lysates prepared in KHEM and a range o f protein quantities from each 

transfection was resolved on an 8% gel. Net intensity o f inimunobands visualised using 

PDE4B antiserum (Schering), HRP-conjugated anti-rabbit antiserum (Sigma UK) and ECL 

detection reagent (Amersham Pharmacia) was calculated from autoradiographs using 

KODAK I.D. software. Intensity was adjusted against a standard on each autoradiograph 

and a plot o f intensity against protein content was prepared (Fig App I.IB ). Relative 

transfection efficiency was calculated from the linear part o f each curve plotted from these 

plots.

Appl.2 TNFa quantification

Two ELISA protocols were used when quantifying the content of T N Fa from the cell free 

culture medium of RAW 264.7 cells treated with LPS with or without rolipram.

App L2A In House ELISA

ELISA plates were prepared using a standard protocol by bedding mouse TN Fa antiserum 

onto 96 well ELISA plates and incubating with sample medium and a range o f known 

TN Fa quantities dissolved in culture medium (Section 2.4.12.2), HRP-conjugated TN Fa 

secondary detection antibody was then added and finally visualisation was performed 

using ABTS solution. Optical density was measured on a Dynex micro-plate reader 

(Dynex technologies) at 405nm. A plot o f TN Fa (pg) against O.D. was prepared and 

TN Fa content of test samples was recorded from the linear part o f this standard curve.
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Fig Appl.2 TNFa ELISA Standard Curves

To quantify the production of TN Fa by RAW 264.7 cells treated with 
LPS and various inhibitors I used two different ELISA kits. Fig 
Appl.2A, In house ELISA using commercially acquired TN Fa 
antiserum bedded onto standard 96 well ELISA plates. A standard 
non-competitive ELISA protocol was followed. Appl.2B, 
commercially acquired competitive TN Fa ELISA kit. Note in non
competitive ELISA O.D. increases with increasing T N Fa content, 
while in a competitive protocol the reverse is true.

(O.D. Optical density, Arb Units, Arbitrary units)
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App 1.2B Commercial competitive TN Fa ELISA

A commercial T N F a ELISA kit was also used in this study. This protocol differs from the 

in-house ELISA in being a competitive ELISA (Section 2.4.12.3). Thus pre-prepared 

ELISA plates with enbedded capture antibodies were incubated with test samples and 

standards o f known T N Fa content. Following incubation and washing, HRP-conjugated 

T N Fa was then incubated and washed off. Thus free antibody sites were occupied by HRP 

conjugate. Colour visualisation was achieved using ABTS as above. In this competitive 

ELISA a high reading at 405nm is equivalent to a low T N Fa content.

App 1.3 Prostaglandin E2 quantification

A commercial competitive assay was used to quantify the PGE2 content o f cell free culture 

medium from RAW 264.7 cells incubated with LPS with or without rolipram. This assay 

followed,a competitive protocol as described above (Section 2.4.12.4). A sample standard 

curve for this assay is presented (Fig App 1.3).
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Fig App 1.3 PGE2 ELISA Standard Curve

PGE2 content was quantified using a commercially 
acquired enzyme immunosorbant assay (EIA), (Assay 
Design Inc). This competitive assay was used to construct a 
standard curve from which to measure the PGE2 content of 
cell free culture medium from RAW 264.7 cell stimulated 
with LPS and various inhibitors.

(O.D, Optical Density. Arb Units, Arbitrary Units).

j
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Appendix 2 Lactate Dehydrogenase (LDH) analysis of cellular 

fractionation

A ssessm ent o f  the subcellular distribu tion o f PDE4B4 depended upon accurate 

fractionation o f the transfected cells. To confirm the integrity o f each compartment I 

measured the activity of LDH in each compartment. LDH is a cytosolic enzyme and should 

only appear to any extent in the S2 fraction. LDH catalyses the reaction;

Lactate + NADH < --------- >  Pyruvate + NAD

The course o f the reaction can be followed by measuring the decrease in absorption at 

340nm, due to oxidation o f NADH. Figure App 2.1 A describes a typical plot from such an 

experiment. The rate o f decrease in NADH absorption is proportional to the LDH activity 

and can be assessed by the gradient o f the linear part o f the curve. By comparing the 

activity o f each fraction in the absence and presence o f detergents that will lyse cells, 

allows assessment o f the integrity o f each fraction prepared in detergent free medium. 

Figure App 2 .IB, presents three such experiments and demonstrates that most activity 

appears in the S2 fraction, and that little if  any increase in LDH activity is seen when 

detergent is included (occluded). In the transfection, PDE4B4-2, significant activity is 

found in the P I fraction suggesting contamination with S2 lysate. This lysate was duly 

excluded from further analysis.
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M ock -0.004 -0.001 -0.002

-0.005 - 0.002 -0.003

-0.001 - 0.001 -0.001

PDE4B4-1 -0.003 -0.001 -0.001

-0.004 -0.001 -0.002

-0.001 4-0.00 -0.001

PD E4B4-2 -0.009 -0.004 -0.001

-0.009 -0.012 -0.001

-0.001 0.00

Fig App 2.1 Lactate dehydrogenase assay to confirm cellular fractionation

Cells were lysed in KHEM buffer by passage through a fine guage needle. 
Lysates were subjected to low speed (15,000 rpm) and high speed 
(35,000rpm) centrifugation to fractionate into PI, low speed pellet; S2, high 
speed supernatant and P2 high speed pellet. To confirm the integrity o f each 
pellet the activity o f the enzyme lactate dehydrogenase (LDH) was assessed 
in each fraction. LDH is exclusively cytosolic in distribution and should 
only appear in the cytosolic (S2), fraction. LDH catalyses the reaction 
described in Fig App 2.1 A. Activity o f the enzyme can be assessed by the 
decrease in absorption o f light at 340nm resulting from the oxidation of 
NADH. This activity is proportional to the gradient o f the linear part o f the 
NADH extinguish curve (fig App 2.1 A). By comparing the activity of each 
fraction resuspended in KHEM (free) with the activity when each fraction is 
resuspended in detergent (occluded) the degree o f contamination of each 
fraction can be assessed (fig App 2.1 B). Thus in the S2 fraction if activity 
increases significantly in the occluded fraction. If there is significant 
activity in the pellet fractions it is likely that they are contaminated by S2 
fraction. In the table above PDE4B4-2 lysis shows PI contamination by S2 
fraction or uni y se d cells.
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Appendix 3 Phosphodiesterase 4 activity in induced 

sputum from normal subjects

I wished to develop an assay for measuring the PDE activity from cells isolated from 

induced sputum to compare cell type against PDE4 activity. To investigate the ability of 

the standard assay protocol to measure sputum PDE4 activity I used two different subjects 

on three different days and isolated sputum using the induction method described. Sputum 

was processed to isolate cells and these were counted. PDE4 activity was measured in 

samples of lysed cells representing the same number o f cells. I elected to use this method 

to reduce the effect o f contaminating protein from non-cellular sources.

Fig App 4, demonstrates the variability that exists within samples isolated from the same 

subject on different days. This variability has a number o f different possible explanations. 

Firstly environmental exposure to air-boume agents may influence the PDE4 activity in 

bronchial cells. Thus LPS may affect immune cells, and different quantities of LPS may be 

encountered on different days. Cellularity would not affect the data as this is controlled for, 

but the cell type may do so. It was the intention of my study to measure this aspect. FDE4 

isoforms are very sensitive to the proteolytic effect o f inflammatory proteases. Even in the 

presence o f high doses o f protease inhibitors it is likely that some degradation occurs. 

Finally the viability o f the cells was measured during the counting process, however many 

cells may be going through stages o f the apoptosis process while in the lung lumen and 

possibly during the subsequent processing. As has been described caspase 3, an essential 

apoptosis regulatory enzyme, cleaves and alters the activity o f at least one PDE4 isoform
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[232]. Thus many different factors may contribute to the intra-subject variability seen in 

induced sputum PDE4 activity.

As a result o f the degree o f variability and the requirement for involved and lengthy 

processing o f material prior to performing the PDE4 assay, I elected not to use this method 

to analyse PDE4 further. Other methods that rely less on quantitative assay, such as rcpt. 

may prove to be a better tool to measure PDE4 isoform expression in cells isolated from 

induced sputum.

Summary

While PDE4 activity could be measured in reasonable quantity in induced sputum samples, 

the quality o f the protein isolated was such that meaningful analysis was impossible at this 

stage. Other non-protein based methods may prove more useful in this tissue.
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Fig App 3: Variability in PDE4 activity from  induced sputum

Two normal subjects provided sputum samples as described. Samples 
from different days were processed, cell number counted and PDE4 
activity was measured in lysed cells. PDE4 activity is presented, 
equalised for cell number to prevent non-cellular protein 
contamination. As can be seen considerable variability exists within 
the samples from different subjects.
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