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Abstract 

 

Identifying how injected CO2 is retained underground is a fundamental challenge for 

carbon capture and storage. Developing tracers that are cheap and widely applicable will 

increase confidence that stored CO2 remains in place. This PhD examines the applicability 

of the isotopic composition of noble gases (He, Ne, Ar, Kr and Xe) that are present as 

minor natural constituents in CO2, as tracers of the fate of injected CO2. The Cranfield oil 

field (MS, USA), into which natural CO2 is injected for enhanced oil recovery (EOR), was 

developed as a site for a parallel study of carbon capture and storage, and is the focus of 

this research. Samples of gas from the transported CO2, and the injection and production 

wells were taken 18 and 45 months after the commencement of injection in July 2008.  

 

Neon isotope data are consistent with simple binary mixing between the injected and in 

situ natural gas. This relationship allows the Ne isotope composition of the pre-injection 

gas in Cranfield to be determined. Coherent correlations between Ne, He and Ar isotopes 

allow the natural gas end-member composition to be calculated as well. The noble gas 

isotopic ratios (
3
He/

4
He = 0.05 RA, where RA is the atmospheric value of 1.39 x 10

-6
, 

20
Ne/

22
Ne = 9.62, 

21
Ne/

22
Ne = 0.0384, 

40
Ar/

36
Ar = 836 and 

40
Ar

*
/
4
He = 0.09, where 

40
Ar

*
 is 

the sum of the radiogenic and mantle derived 
40

Ar) of the natural gas in Cranfield are 

typical of natural gases derived from the continental crust. 

 

Helium isotope ratios and the 
40

Ar
*
/
4
He ratio notably correlate with CO2 concentrations, 

indicating that the noble gas fingerprints of the injected gas are preserved, and may offer 

utility as a tracer of the CO2. The He and Ar isotope systematics of the four sampled wells 

that have the lowest CO2 concentrations identify the loss of a significant amount of CO2 

from the free gas phase. The amount of loss in each of the four wells can be quantified 
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from the measured 
3
He/

4
He and 

40
Ar

*
/
4
He ratios and changes in the CO2/

3
He values. 

Losses vary between 22% and 96%, with good agreement between the different methods. 

It is notable however, that these four wells do not have significant gas production, and do 

not contribute significantly to the total amount of produced and re-injected gas. So, even 

though there is a significant loss from these wells, the total amount of CO2 lost is estimated 

to be only ~0.1% of the total injected gas, equivalent to 10kt gas. Notwithstanding this, the 

new data indicate that, across the entire field, CO2 is retained as a free phase and 

stratigraphic trapping is the most important storage mechanism. The fractionation of 

40
Ar

*
/
4
He, CO2/

3
He and δ

13
CCO2 in the CO2-poor samples is consistent with dissolution in 

water. 

The non-radiogenic noble gases (
20

Ne, 
36

Ar, 
84

Kr, 
132

Xe) originate from the atmosphere 

and are present in the gas, water and oil phases in the reservoir to differing degrees. It has 

been revealed that groundwater degassing, induced by CO2 injection plays an important 

role in fractionating 
20

Ne/
36

Ar, 
84

Kr/
36

Ar and 
132

Xe/
36

Ar at the early stage of injection, but 

a large heterogeneity in the degree of degassing has been observed throughout the 

reservoir. Some wells have shown 100% water degassing, while others are close to 0%. Oil 

degassing, and therefore the active CO2 – oil contact, became important during the later 

phase of injection, which is consistent with the fact that more CO2 injection was required 

to degas the oil than water. Temporal variations in the non-radiogenic noble gas ratios and 

3
He/

4
He are indicative of the evolution of the oil displacement efficiency. This fully agrees 

with the injection – production well data recorded in the field during sampling. This 

suggests that noble gases can also be used as a reservoir engineering tool to better 

understand the interaction of CO2, water and oil in the subsurface not only during CO2 

storage but also to track EOR operations.  

  



4 

 

Table of contents 

 

Table of contents .................................................................................................................... 4 

List of Tables.......................................................................................................................... 7 

List of Figures ........................................................................................................................ 8 

Acknowledgements .............................................................................................................. 11 

Declaration ........................................................................................................................... 14 

Chapter 1 Tracing CO2 injection in carbon sequestration sites ...................................... 16 

1.1 Introduction .......................................................................................................... 16 

1.2 Climate change and the need for climate mitigation ............................................ 16 

1.3 Carbon Capture and Storage (CCS) ..................................................................... 20 

1.3.1 Outline ............................................................................................................ 20 

1.3.2 History of CO2 injection and the importance of EOR ................................... 24 

1.3.3 Near future development of CCS ................................................................... 26 

1.4 Tracing injected CO2 ............................................................................................ 28 

1.4.1 Natural CO2 fields .......................................................................................... 28 

1.4.2 CO2 injection fields ........................................................................................ 32 

1.5 Outline of this thesis ............................................................................................ 35 

Chapter 2 Gas sampling and analytical technique .......................................................... 36 

2.1 Introduction .......................................................................................................... 36 

2.2 Gas sampling technique ....................................................................................... 36 

2.3 Analytical technique............................................................................................. 39 

2.3.1 The gas inlet and purification line .................................................................. 39 

2.3.2 Gas analysis procedure ................................................................................... 44 

2.4 Commissioning and testing of the new system .................................................... 55 

Chapter 3 The Cranfield EOR field and tracing CO2 by δ
13

CCO2 ................................... 57 

3.1 Introduction .......................................................................................................... 57 

3.2 The Cranfield field ............................................................................................... 57 

3.3 Previous geochemical tracing studies from Cranfield ......................................... 62 

3.3.1 Anthropogenic tracer injection test ................................................................ 62 

3.3.2 Stable carbon isotopes .................................................................................... 63 

3.4 Sampling strategy ................................................................................................. 63 

3.5 Recent CO2 and δ
13

CCO2 results from Cranfield ................................................... 65 

3.6 Tracing CO2 by δ
13

CCO2(gas) .................................................................................. 67 



5 

 

3.7 Conclusions .......................................................................................................... 68 

Chapter 4 Tracing injected CO2 in Cranfield with noble gas isotopes ........................... 69 

4.1 Introduction .......................................................................................................... 69 

4.2 Results .................................................................................................................. 72 

4.2.1 Bulkline CO2 .................................................................................................. 72 

4.2.2 Injected and produced gas .............................................................................. 75 

4.3 Defining the natural gas end-member composition ............................................. 79 

4.4 Noble gas isotope composition of the in-place natural gas .................................. 84 

4.5 Tracing injected CO2 ............................................................................................ 85 

4.6 Conclusions .......................................................................................................... 88 

Chapter 5 Storage mechanism of the injected CO2 in the Cranfield field ...................... 89 

5.1 Introduction .......................................................................................................... 89 

5.2 Quantifying CO2 loss from the gas phase ............................................................ 89 

5.2.1 
3
He/

4
He and 

40
Ar

*
/
4
He vs. CO2 ...................................................................... 89 

5.2.2 CO2/
3
He .......................................................................................................... 92 

5.2.3 Quantifying the total CO2 loss ....................................................................... 94 

5.3 Mechanism of CO2 loss ........................................................................................ 96 

5.3.1 He and Ar isotope constraints ........................................................................ 96 

5.3.2 Carbon isotopes .............................................................................................. 99 

5.4 Storage of injected CO2 ...................................................................................... 102 

5.5 Conclusions ........................................................................................................ 105 

Chapter 6 Examining the interaction of injected CO2, brine and oil in the Cranfield fluid 

reservoir using non-radiogenic noble gases ....................................................................... 106 

6.1 Introduction ........................................................................................................ 106 

6.2 The influence of injected Kr and Xe at the DAS site ......................................... 107 

6.2.1 84
Kr/

132
Xe in the DAS site in March 2012 ................................................... 108 

6.2.2 Assessing the potential leak from the DAS reservoir .................................. 113 

6.3 Non-radiogenic noble gas data: mixing with air-saturated water ...................... 115 

6.4 Partial degassing of groundwater ....................................................................... 121 

6.4.1 The composition of non-radiogenic noble gases prior to injection in the gas 

phase….. ............................................................................................................... …..121 

6.4.2 84
Kr/

36
Ar ....................................................................................................... 122 

6.4.3 132
Xe/

36
Ar ..................................................................................................... 125 

6.5 Partial degassing of oil ....................................................................................... 125 



6 

 

6.5.1 The composition of non-radiogenic noble gases prior to injection in the oil 

phase 125 

6.5.2 
84

Kr/
36

Ar ....................................................................................................... 128 

6.5.3 
132

Xe/
36

Ar ..................................................................................................... 131 

6.6 Future development ............................................................................................ 133 

6.7 Conclusions ........................................................................................................ 135 

Chapter 7 Conclusion and future work ......................................................................... 137 

7.1 Summary ............................................................................................................ 137 

7.2 Future work ........................................................................................................ 139 

Appendix I Raw data .......................................................................................................... 141 

Appendix II Publications of this work ............................................................................... 152 

References .......................................................................................................................... 154 

 

  



7 

 

List of Tables 

 

Table 2.1. Comparison between the theoretical and measured composition of air. ............ 56 

Table 3.1. CO2 concentration and δ
13

CCO2 data from Cranfield.. ........................................ 66 

Table 4.1. The average noble gas composition of the Jackson Dome CO2 compared to two 

independent measurement of the bulkline gas ..................................................................... 73 

Table 4.2. Major gas and noble gas isotope data from the Cranfield EOR field. ............... 76 

Table 4.3. Details of wells from where samples have been taken for this study................. 78 

Table 5.1. Measured and theoretical 
40

Ar
*
/
4
He of well gases that have lost CO2. .............. 91 

Table 5.2. The percentages of CO2 loss from the 2009 well gas samples based on CO2/
3
He 

and noble gas ratios. ............................................................................................................. 91 

Table 5.3. The observed and calculated CO2 concentration and amount of gas produced 

where CO2 loss has been found. ........................................................................................... 95 

Table 5.4. The average amount of injected gas around the production wells and the amount 

of produced oil in 2009 production wells. ......................................................................... 104 

Table 6.1. Kr and Xe concentrations of the three main components in the Cranfield 

reservoir.............................................................................................................................. 112 

Table 6.2. The non-radiogenic isotopic composition of CO2 well gases from Cranfield. 116 

Table 6.3. Degree of oil degassing from well gases from Cranfield. ................................ 130 

Table I.1. The mass 44/15, measured on the QMS from calibration gases with different 

CO2 contents…………………………………………………………………………..…141 

Table I.2. Selected calibration data of mass 44/15 over time from the QMS………...…141 

Table I.3. The measured 
84

Kr of selected samples on both QMS and noble gas mass 

spectrometer……………………………………………………………………...………142 

Table I.4. Selected δ
13

CCO2 calibration data over time from the IRMS………………….143 

Table I.5. Selected He calibration data from the noble gas mass spectrometer………....144 

Table I.6. Selected Ne calibration data from the noble gas mass spectrometer………....145 



8 

 

Table I.7. Selected Ar calibration data from the noble gas mass spectrometer………….146 

Table I.8. Selected Kr and Xe calibration data from the noble gas mass spectrometer....147 

Table I.9. The obtained 
40

Ar/aliquot from the air calibration bottle from two different 

standards…………………………………………………………………………………147 

Table I.10. Recorded production well data on the Cranfield field at the time of 

sampling……………………………………………………………………………….…148 

Table I.11. Fractionation of CO2/
3
He and 

40
Ar

*
/
4
He during gas dissolution in the Cranfield 

reservoir………………………………………………………………………………..…148 

Table I.12. Fractionation of CO2/
3
He and δ13

CCO2 in Cranfield during CO2 precipitation 

and dissolution……………………………………………………………………………149 

Table I.13. The isotopic composition of the injected tracer into the DAS site in 2009 and 

in 2010……………………………………………………………………………………149 

Table I.14. The fractionation of ASW-like noble gases with decreasing G/W ratio in the 

Cranfield reservoir……………………………………………………………………..…150 

Table I.15. The fractionation of ASW-like noble gases during water-oil contact in the 

Cranfield field……………………………………………………………………………150 

Table I.16. The fractionation of noble gases during the degassing of the oil phase in the 

Cranfield field……………………………………………………………………………151 

 

List of Figures 

 

Figure 1.1. The concentration of atmospheric CO2 and the isotopic composition of 

hydrogen (δD) from Antarctic ice cores from the last 800,000 years. ................................. 17 

Figure 1.2. The global temperature anomaly compared to the average temperature from the 

last 150 years. ....................................................................................................................... 18 



9 

 

Figure 1.3. The contribution of CO2 storage capacity of the four main mechanisms over 

time. ...................................................................................................................................... 23 

Figure 1.4. The carbon isotope composition of CO2 with respect to its source. ................. 29 

Figure 1.5. Illustrative picture of the distinct sources of the different noble gas isotopes. . 30 

Figure 2.1. Sampling of high pressure gases by the Cu-tube method. ................................ 38 

Figure 2.2. Schematic picture of the noble gas extraction line. .......................................... 42 

Figure 2.3. Diagram of the pre-existing noble gas purification line. .................................. 43 

Figure 2.4. Calibration of the mass 44/15 (CO2/CH4) ratio on the quadrupole mass 

spectrometer. ........................................................................................................................ 45 

Figure 2.5. The stability of the QMS with respect to 44/15 over time................................ 46 

Figure 2.6. The expected amount of 
84

Kr in the noble gas mass spectrometer and the 
84

Kr 

signal/amount of gas in the QMS. ........................................................................................ 48 

Figure 2.7. The variability of the measured δ
13

CCO2 of the calibration gas over time. ....... 49 

Figure 2.8. He isotopic ratio data of the calibration gas. .................................................... 50 

Figure 2.9. Ne isotope data from the calibration bottle compared to air............................. 52 

Figure 2.10. Fractionation of Ar isotopes in the calibration gas compared to air. .............. 52 

Figure 2.11. The variation of the ratio of 
84

Kr and 
132

Xe of the calibration gas. ................ 53 

Figure 2.12. The calculated concentration of 
40

Ar / aliquot from the calibration bottle from 

two different international standards. ................................................................................... 54 

Figure 3.1. The map of the Cranfield EOR field in Mississippi, USA. .............................. 58 

Figure 3.2. Stratigraphic column of the region of Cranfield, MS, USA. ............................ 59 

Figure 3.3. Plot of δ
13

CCO2 (‰) against CO2 concentration for Cranfield well gases. ....... 65 

Figure 4.1. The relation of mass fractionation of the Jackson Dome gas and the 

composition of the bulkline. ................................................................................................. 74 

Figure 4.2. Well gas data from Cranfield plotted on the Ne three-isotope plot. ................. 80 

Figure 4.3. 
20

Ne/
22

Ne of Cranfield well gases plotted against He and Ar isotopic ratios. .. 83 



10 

 

Figure 4.4. The CO2 content of Cranfield well gases plotted against He and Ar isotopic 

ratios. .................................................................................................................................... 87 

Figure 5.1. Plot of CO2/
3
He against CO2 concentration for Cranfield well gases. ............. 93 

Figure 5.2. Plot of CO2/
3
He against 

40
Ar

*
/
4
He for Cranfield well gases. ............................ 97 

Figure 5.3. The plot of CO2/
3
He versus δ

13
CCO2 for Cranfield well gases. ....................... 101 

Figure 6.1. Schematic picture of the gas cycle in Cranfield. ............................................ 110 

Figure 6.2. The concentration of 
132

Xe and 
84

Kr in Cranfield injection and production well 

gases. .................................................................................................................................. 114 

Figure 6.3. 
84

Kr/
36

Ar and 
132

Xe/
36

Ar of gases from injection and production wells from 

Cranfield ............................................................................................................................. 117 

Figure 6.4. The non-radiogenic noble gas ratios plotted against 
20

Ne/
22

Ne for gases from 

Cranfield. ............................................................................................................................ 120 

Figure 6.5. The plot of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar for well gases from 2009. ................ 124 

Figure 6.6. The plot of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar for well gases from 2009. .............. 127 

Figure 6.7. The plot of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar for well gases from 2012. ................ 129 

Figure 6.8. Combined diagram of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar from 2009 and 2012. ...... 130 

Figure 6.9. The plot of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar for well gases from 2012. .............. 132 

Figure 6.10. Combined diagram of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar from 2009 and 2012. .. 133 

 

Final word count = 40752 

  



11 

 

Acknowledgements 

 

Firstly I would like to thank Glasgow University for its financial support and Denbury 

Resources Incorporated for the permission for taking gas samples and giving assistance in 

the Cranfield field (MS, USA). 

I would like to express how grateful I am to my supervisors: Prof. Fin Stuart, Dr Stuart 

Gilfillan and Prof. Susan Waldron for choosing me for this Ph.D. adventure despite my 

broken English. 

During my studies in SUERC I have been in the comfortable situation of learning from the 

bests. Fin Stuart’s enthusiasm couldn’t really be reduced by the numberless dead ends I 

have attacked. His office door has always been open for me. He has always managed to 

devote some time for discussion that helped me to find the final pathway to write this 

thesis. He has always been managed to find the necessary resource for solving a problem. 

Fin has been the brain and soul of the mass spectrometer and an invaluable help in editing. 

I thank Stuart Gilfillan’s advices, helps and recommendations that have also been 

indispensable. His pace of working is remarkable and has always been in touch to discuss 

my ideas. I also thank Stuart for organising the sampling trips. 

I would like to thank Susan Waldron, whose ability to see the bigger picture of my 

research is remarkable. Her contribution not only gave a special taste of this work but also 

contributed a lot to my personal development. 

I have had the beauty of using a great selection of equipment and instruments and therefore 

interacting with many people in SUERC. 

Firstly I would like to thank Andrew Tait, who has always been behind me with up to date 

knowledge regarding anything can possibly happen to any type of mass spectrometer. I 



12 

 

would like to say thank to him for the uncountable times of replacing filaments, multipliers 

and the likes. 

I would like to thank Luigia Di Nicola for taking time out of her very tight schedule to help 

me in the noble gas laboratory, to tackle a problem in the UHV system and to teach me to 

set up the diagnose based on symptoms in the mass spectrometer. 

Thanks Jim Imlach and Ross Dymock whose technical expertise in ultra-high vacuum 

technologies has massively reduced the time of fixing a problem. 

Thanks to Terry Donnelly, whose knowledge in vacuum line parts and stable isotope 

analysis is remarkable and without him I would not have been able to get my stable isotope 

data. 

I would like to thank Julie Dougans and Alison McDonald for assisting me in the stable 

isotope laboratories. 

I would like to say thank Leah Morgan and Angel Rodés who has always been a great deal 

of help anytime in a computational and mathematical problem. 

I thank Adrian Boyce, Dan Barfod, Philippa Ascough, Darren Mark, Pauline Gulliver and 

Gillian MacKinnon for their help and input. 

I thank Graham Muir and Elaine Dunbar for their contribution to the stable isotope 

analysis. 

I would like to say thank Callum Murray and Frank Elliot, whose regulator and adaptors, 

which have never been returned, allowed me to sample cylinder gases. 

I would like to thank Robert MacLeod for his glassblowing work and Simon Murphy for 

his help in electronics and Ian Cameron for general maintenance. 

I thank Vincent Gallagher for not switching on his light next door that would have masked 

my multiplier measurement readings. 



13 

 

I would like to say thank Nicole Doran, Tracey Mark and Maureen Hastings for their warm 

welcome anytime I walked into the buildings. 

I would like to say thank Delia Gheorghiu and Maria Miguens-Rodrigez for helpful 

conversations. 

I would like to say thank the students in SUERC for general background noise in the 

office. Thanks to Ana Carracedo Plumed, Brett Davidheiser-Kroll, Leisa Douglas, Piotr 

Jacobson, Jessica Bownes, Kieran Tierney, Kim Woods, Sevasti Modestou and Helen 

Hastie. As well as Katarzyna Łuszczak, Anna Varga-Vass and Callum Graham from 

Glasgow University and Rory McKavney from the University of Edinburgh. 

I thank Derek Hamilton, Kerry Sayle and Alex Brasier to help me to find my way at the 

very early stage of my PhD studentship. 

I thank my wife, Lenke Mattyasovszky for pushing me up to 192 summits in Scotland, 

classified as Munro during my study, giving me the chance to focus on something else, 

refresh my brain and let an interpretation suddenly hit me.  

Lastly I would like to thank Róbert, my five month old son who has constantly reminded 

me, particularly in the writing phase, that sleeping is such a waste of time. 

 

  



14 

 

Declaration 

 

No part of the work presented in this thesis has been submitted for any other degree or 

qualification. The thesis is the result of my independent research, carried out between 

October 2011 and August 2015 at SUERC, University of Glasgow, under the supervision 

of Prof. Finlay Stuart, Dr Stuart Gilfillan and Prof. Susan Waldron. Any material, 

published or unpublished used in this thesis is given full acknowledgement. 

 

 

Signature ________________________ 

Printed name _____Györe Domokos______ 

 

 

Signature ________________________ 

Printed name ______Finlay Stuart________ 

 

  



15 

 

 

 

A geochemist is a person who has the special ability to lose in a fraction of a second in the 

laboratory a sample that has been created over millions of years. 

  



16 

 

Chapter 1  

Tracing CO2 injection in carbon sequestration sites 

 

1.1 Introduction 

 

The geologic storage of man-made carbon dioxide (carbon sequestration) is thought to be a 

way to significantly reduce its emission into the Earth’s atmosphere, which is responsible 

for climate change. In order to deploy the technique safely methods need to be developed 

for monitoring and verifying secure storage (IPCC, 2005). Enhanced oil recovery by CO2 

injection (CO2-EOR) has the potential to make CO2 injection economically sustainable but 

also gives an excellent opportunity for carrying out research into the transport and 

sequestration of anthropogenic CO2 (Moniz and Tinker, 2010). 

This study is devoted to identifying tracers of injected CO2 in an EOR field, investigating 

the mechanisms by which CO2 is retained in the reservoir, and determining the history of 

CO2 interaction with the reservoir fluids. This chapter is a review of the current status of 

underground carbon sequestration and the development of techniques that have been 

developed to trace injected CO2. 

 

1.2 Climate change and the need for climate mitigation 

 

The global temperature of the Earth is fundamentally influenced by the presence of 

greenhouse gases (GHG) in the atmosphere because they absorb and emit infrared 

(thermal) radiation. The most important GHGs are CO2, CH4, N2O and 

chlorofluorocarbons (CFC) (IPCC, 2007). CO2 is the most abundant GHG compound in 

the atmosphere (~0.04 %), and its mean lifetime is estimated to be several decades (EPA, 

2015). Consequently it is the most critical terrestrial greenhouse gas. The concentration of 

atmospheric CO2 over the last 800,000 years has been determined from Antarctic ice cores 
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where the ancient air had been trapped as bubbles. It has been found to have an average at 

around 230 ppmv. The largest changes (±100 ppmv) are between glacial and interglacial 

periods (Figure 1.1) (Jouzel et al., 2007; Lüthi et al., 2008). 

 

 

Figure 1.1. The concentration of atmospheric CO2 and the isotopic composition of 

hydrogen (δD) from Antarctic ice cores from the last 800,000 years. The average CO2 

concentration is largely stable around 230 ppmv, with largest changes (±100 ppmv) 

observed between interglacial and glacial periods. The isotopic composition of hydrogen, 

which is a proxy for the temperature of the atmosphere, correlates well with the CO2 

concentration. Consequently the Earth’s temperature shows stability in the last 800ka. 

Picture is modified from https://www.bas.ac.uk 

 

 

The most rapid natural increase in atmospheric CO2 recorded from ice cores was a 20 

ppmv increase in 1,000 years from 12,000 year old ice cores (Jouzel et al., 1987). The 

concentration of CO2 in the atmosphere has increased since the industrial revolution from 

~280 ppmv to near 400 ppmv by 2007, with 20 ppmv increases occurring in less than 10 

years (IPCC, 2007). 

The isotopic composition of hydrogen (δD) is a proxy for the temperature of the 

atmosphere (e.g. Jouzel et al., 2007). It correlates well with the concentration of CO2 from 

ice core records and therefore the temperature of the Earth in the last 800,000 years (Figure 

https://www.bas.ac.uk/
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1.1) (Jouzel et al., 2007; Lüthi et al., 2008). Global temperature has increased by 

approximately 0.6°C compared to the average temperature of the past ~150 years since 

2000s (Brohan et al., 2006) (Figure 1.2). A similar increase has been recorded in 115,000 

year old Greenland ice cores by δ
18

O data (Andersen et al., 2004). This is explained by the 

sudden change in heat transport in the ocean from the tropics, caused by the presence of a 

massive ice sheet over North America (Andersen et al., 2004). 

 

 

Figure 1.2. The global temperature anomaly compared to the average temperature from the 

last 150 years. Globally the temperature has increased by about 0.6°C in recent years in 

comparison to the average value. Picture obtained from 

http://www.ncdc.noaa.gov/sotc/global/201113 

 

The energy industry, in particular the burning of fossil fuels, is the most significant CO2 

emitter (e.g. Mackenzie et al., 2001). The United Nation Framework Convention on 

Climate Change (UNFCCC) was signed in 1992 with the primary aim of stabilizing 

greenhouse gases in the atmosphere. The UNFCCC conference in Kyoto, Japan, in 1997 

recommended that developed countries should reduce their GHG emission to below 1990 
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levels by the end of the period of 2008-2012. Although many countries agreed on different 

reduction targets based on their individual circumstances, not all countries, including the 

USA and Australia, ratified the so-called Kyoto Protocol (Gale, 2004 and references 

therein). 

Estimations from climate models suggest that the world could warm up by 5.8°C by the 

end of the 21
st
 century as the result of GHG emissions (IPCC, 2001). Reducing emissions 

of the GHGs according to the Kyoto Protocol by all countries will still see a rise in the 

global temperature of ~2°C by that time. This means that actions taken now will generally 

influence the Earth temperature significantly after 2100 (IPCC, 2001). CO2 emissions will 

be reduced rapidly and significantly by switching from burning coal to gas due to the 

different heat capacities (e.g. IEA, 2014a). This trend has started with the increasing 

availability of shale gas (unconventional gas) in the US (Heath et al., 2014). However, 

burning methane will not decarbonise the energy industry in the long-term. There has been 

a considerable increase in the use of renewable energy sources such as solar and wind 

turbines globally. Since 2007, the contribution of renewables to the total power generation 

increased by 4% by 2014 (IEA, 2014b) but the complete fuel ‘switch’ is unlikely to happen 

in the next few decades and based on the most optimistic modelling, fossils fuels will 

remain the major source of energy for decades (Cozzi, 2011). Thus in order to achieve 

GHG emissions targets CO2 reduction technologies are being widely investigated (Gale, 

2004 and references therein). 
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1.3 Carbon Capture and Storage (CCS) 

1.3.1 Outline 

 

The capture of anthropogenic CO2 from power plants and its consequent storage in a 

suitable repository is thought to be the only way to reduce CO2 emissions by the degree 

required to mitigate climate change (e.g. Herzog, 2011). Carbon capture and storage is the 

integration of a few different technologies to fulfil this purpose: 

Capture: There are three principal approaches by which CO2 can be captured: (i) post-

combustion, where the CO2 removal is carried out after ‘normal’ combustion; (ii) pre-

combustion, where the CO2 is removed after gasification but before final combustion of the 

fuel (relevant to oil and coal); and (iii) the oxyfuel combustion technique, which produces 

highly concentrated waste CO2 (e.g. Tondeur and Teng, 2008). 

Treating, compression and transportation: The different capture techniques and the 

variety of fuels (coal, oil, gas) means that the composition of CO2 for sequestration varies. 

Consequently a treatment that produces gas suitable for injection and storage needs to be 

applied. CO2 is typically transported to the storage site via pipelines under supercritical 

conditions. Currently thousands of miles of onshore pipelines are in operation for CO2 

transport (mostly in the USA, Herzog (2011). In contrast the offshore pipeline 

infrastructure is less well established. The complexity of international transport is 

summarized by Coleman (2009). 

Storage: CO2 storage can be achieved in two basic ways: i) by the enhancement of natural 

CO2 sinks or ii) by carbon capture and storage. 

The first group of methods includes forestry (Marland and Schlamadinger, 1999) and soil-

based (Paustian et al., 1997) sequestration. These are unlikely to make significant impact 

on CO2 reduction and have issues with reversibility (Gale, 2004 and references therein). 

Carbonation, which is the replacement of silicate minerals by carbonates can also be 
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considered a natural option and interestingly, has been found a means of CO2 sequestration 

on Mars (Tomkinson et al., 2013). CO2 storage options include deep geology (Lewis and 

Shinn, 2001), deep ocean (Brewer et al., 1999), ocean floor basalt (see also below) 

(Goldberg et al., 2008) and deep ocean carbonate sediments (House et al., 2006). Deep 

ocean storage has a significant uncertainty over its environmental impact (Gale, 2004 and 

references therein). 

Deep geologic storage is the most developed method and carries the least uncertainties. 

There are three major types of target reservoir for CO2 storage: saline aquifers, depleted 

hydrocarbon fields and un-minable coal seams. Natural analogues of all types indicate that 

they provide long term security. For example the Bravo Dome gas field in New Mexico 

(USA) has held magmatic CO2 for over 50,000 years (Baines and Worden, 2004). 

The global capacity for CO2 storage in saline aquifers, the largest target reservoir, is 

estimated to be ~10
4
 Gt (IPCC, 2005), although there is a debate about the approach hence 

the absolute value (Thibeau and Mucha, 2011). Nevertheless this is much higher than the 

annual global emission in 2010 (~33 Gt), which means the Earth’s crust could host the CO2 

equivalent to several decades of emissions. 

CO2 storage by CO2-EOR is currently the most significant activity in CCS (Global CCS 

Institute, 2015) and its success is the key to further develop and understand subsurface 

storage of the injected CO2. Despite having orders of magnitude less capacity than saline 

aquifers, depleted hydrocarbon reservoirs are currently extremely important (Moniz and 

Tinker, 2010). 

Un-minable coal seams could adsorb CO2 by desorbing CH4. This phenomenon could be 

utilized during coal bed methane (CBM) extraction (Shi et al., 2008). The terminology of 

the mechanisms by which injected CO2 is retained may be confusing (Zhang and Song, 

2014), and can vary from place to place (e.g. Saadatpoor et al., 2009). The four widely 

accepted trapping mechanisms are:  
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Physical or stratigraphic trapping - where the microscopic pore space is filled with 

injected gas (or supercritical) phase and it ascends slowly. Typically a physical barrier, 

such as a low permeability rock (e.g. mudstone, shale or clay) must prevent migration to 

the surface. This is the most 

Residual trapping - where CO2 bubbles are disconnected from each other and become 

immobile as a non-wetting phase between grains. 

Solubility trapping - injected CO2 dissolves in water (or in other fluid such as oil). Water 

migration out of the reservoir may be a limitation if this led to release of stored CO2 to the 

atmosphere. 

Mineral trapping - occurs when CO2 precipitates as carbonate mineral and is thought to be 

the most permanent storage mechanism. 

Each storage mechanism operates on a different timescale (Figure 1.3). Structural trapping 

has the most significant role (80%) and mineral trapping is negligible at the start of the 

operational phase, which is measured in decades. The contribution in storage capacity then 

is slowly taken over by residual and solubility trapping mechanisms. The significance in 

mineral trapping becomes important on timescales of centuries to millennia. The increasing 

role in residual, solubility and mineral trapping increases the safety of geologic CO2 

storage because the amount of free phase (mobile) CO2 decreases (Bachu et al., 2007). 

CO2 capture, transportation and storage requires energy. This ultimately means more CO2 

must be captured, transported, and stored in order to fulfil current energy demand. 

However at the current state of knowledge there is no alternative (Scott et al., 2013 and 

references therein). 
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Figure 1.3. The contribution of CO2 storage capacity of the four main mechanisms over 

time. At the beginning of injection structural trapping has the most significant role (~80%) 

and mineral trapping is negligible. Then its contribution to storage capacity is slowly taken 

over by solubility and residual trapping. They become dominant in a couple of decades, 

which is the timescale of the operational phase. In the post injection phase (centuries to 

millennia) the significance of mineral trapping becomes more important, with solubility 

and residual trapping remaining the major types of sink. The increasing role of mineral, 

solubility and residual trapping increases the safety of geologic CO2 storage through 

reducing the amount of free phase (mobile) CO2. After IPCC (2005). 
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1.3.2 History of CO2 injection and the importance of EOR 

 

The injection of natural gas into depleted oil and gas reservoirs has a long history, while 

the concept of using it as a climate mitigation tool is relatively recent. The injection of gas 

is a commercial activity in order to fulfil local seasonal gas demand. The first injection and 

storage of natural gas into depleted gas reservoirs happened in 1915 in Weland County, 

Ontario, Canada (NaturalGas, 2015). Since then, the storage of natural gas underground 

has become widespread, and saline aquifers have been tested as well (Herzog, 2011). 

CO2 injection for enhanced oil recovery (CO2-EOR) (and enhanced gas recovery (EGR) is 

a tertiary recovery technique, by which pressurised CO2 is injected into the reservoir to 

decrease the viscosity of the oil and to drive it towards production wells. CO2-EOR was 

first employed in 1972 (Herzog, 2011). Reményi et al. (1995) have described a CO2-IOR 

(Improved Oil Recovery) project carried out on sandstone reservoirs of the Budafa and 

Lovászi fields, in SW Hungary, commencing in 1972. The project used natural gas from 

the Nagylengyel gas field and continued until 1992 (Doleschall et al., 1992; Magyari and 

Udvardi, 1991). There is no clear information regarding the amount of injected gas and its 

composition. 

In the same year the Val Verde project (Texas, USA) started operating (Crameik and 

Plassey, 1972). It is still in operation and the CO2 injection rate is 1.3 Mt/a as of May 2015. 

It is the world’s largest anthropogenic CO2 injection project (Carbon Capture and Storage, 

2015). The first countries to implement the technique outside of Hungary and the USA 

were Canada, Turkey and Trinidad and Tobago. Today the USA, Canada and Brazil are 

operating large scale CO2-EOR projects and there is one in the UAE and several in China 

in the planning phase. The biggest EOR project currently in operation is the Century Plant 

project in Texas, USA, which is injecting 8.4 Mt gas per year (Global CCS Institute, 2015), 
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although another source states 5 Mt per year (Carbon Capture & Sequestration 

Technologies, 2015). 

The main limiting factor in CO2-EOR is the price of the high purity CO2, hence the low 

number of countries that are currently using this technology, not least because a significant 

proportion of the injected CO2 is retained in the reservoir. For example at the Cranfield 

EOR field (Mississippi, USA), 4 of the 6.8 Mt CO2 that have been injected has been stored 

(Hovorka et al., 2013). However EOR fields offers the ability to verify CO2 storage for 

sequestration purposes, and allows other aspects of the technology (e.g. finance, legal, 

policy) to be tested (e.g. Moniz and Tinker, 2010). 

The Sleipner gas field in the Norwegian sector of the North Sea is operated by Statoil and 

was the first project to inject post-captured CO2 in order to avoid CO2 emission in 1996 

(Torp and Brown, 2005). This was followed by the In Salah CO2 Storage Project 

(Sonatrach, BP and Statoil, Algeria) in 2004 and the Snøhvit Project (Statoil, North Sea, 

Norway) in 2008, both of which injected post-captured CO2 (e.g. Eiken et al., 2011). Since 

then there have been no new large scale CCS projects in operation that are not connected to 

EOR. The development and future plan is discussed in 1.3.3. 

Pilot studies have been carried out in deep sea basalt storage of CO2. In such a reservoir, 

the injected CO2 not only mixes with seawater but also reacts with basalt. Both, brine and 

basalt are rich in alkaline elements (e.g. Mg, Ca). The release of them from basalt will 

react with CO2 and form carbonate minerals (Goldberg et al., 2008). Calculations of basalt-

water-supercritical CO2 have shown the mineralization to be so rapid that it could be 

validated in pilot studies (see mineralization timescale in Figure 1.3). Basalts with 

significant storage capacity occur in the US and India (McGrail et al., 2006). The purpose 

of the CarbFix Pilot Project in Iceland was to optimise methods for CO2 storage in basalts.  

(Matter et al., 2009). Geothermal CO2 from the Hellisheidi Geothermal Power Plant will be 
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used. Field experiments for sequestering CO2 in basalt (Columbia River Basalt) have also 

been carried out in NW United States. (Tollefson, 2013). 

 

1.3.3 Near future development of CCS 

 

The biggest challenge in CCS is the integration of all the techniques in order to make the 

full CCS chain work. Although this has been achieved at medium scale (Mt) (e.g. 

Boundary Dam, Saskatchewan, Canada) it has not been demonstrated at the largest (Gt) 

scale. The recent IPCC report highlighted that if CCS is going to make headway in climate 

change, 120 Gt of greenhouse gases will need to be stored until 2050. This would require 

over 3,000 large-scale CCS projects (Global CCS Institute, 2015; IPCC, 2014). Only a 

handful of large scale projects are currently in operation, of which only the North Sea 

projects are non-EOR and several (EOR and non-EOR) are in different stages of 

development. 

International organizations provide a high quality overview of the current global status of 

CCS. The International Energy Agency (IEA) has the most comprehensive platform to 

gain information about the most recent developments (IEA, 2015). The Global CCS 

Institute (Global CCS Institute, 2015) and the Zero Emission Research Organization (Zero, 

2015) have developed databases on CCS and EOR projects from all over the world. The 

European CCS Demonstration Project Network shows all the European Projects (European 

CCS Demonstration Project Network, 2015), while the CO2CRC covers developments in 

Australia and in New Zealand (CO2CRC, 2015). 

Six large-scale CCS projects are planned to be in operation by the period of 2019 and 2022 

in the UK (Global CCS Institute, 2015). Two of these projects will be in Scotland - the 

Peterhead CCS Project and Caledonian Clean Energy Project (Grangemouth) - with the 

remainder in England: C.GEN North Killinghome, Don Valley, Teesside and the White 
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Rose CCS Projects. Each will have a capture capacity between 1.0 and 3.8 Mt/a. 

Additionally there are several small scale project throughout the country at different stages 

of development (SCCS, 2015). 

In the rest of Europe, several countries have made significant developments. Austria, 

France, Germany and Italy have pilot projects. France, Malta and Norway (including 

Svalbard) have projects in the planning phase. Other EU countries where CCS projects 

have been developed but cancelled or finished are: Bulgaria, Denmark, Finland, Poland 

Romania, Spain, Sweden and The Netherlands (SCCS, 2015). 

In the Middle East, the United Arab Emirates and Saud Arabia will employ large scale 

CO2-EOR by 2016 and 2015, respectively, both with the injection plan of 0.8 Mt/a. In the 

Far East, South Korea will have two CCS (non-EOR) projects by 2020, both of them with 

the plan of injecting 1Mt CO2/a. China plans to operate 11 projects by 2020, of which 5 

will be EOR and the cumulative injection rate will be 15 Mt/a. Australia will operate two 

projects by 2020 with the combined injection rate of up to 9 Mt/a. Canada will run three 

more EOR projects by 2019 besides its significant current EOR performance and two CCS 

by 2020. The United States plans to run two CCS projects and 10 EOR by 2020 (Global 

CCS Institute, 2015). 

Despite the high volume of research in CO2 monitoring including core analysis, seismic, 

geophysical and geochemical methods (e.g. Ajo-Franklin et al., 2013; Arts et al., 2004; 

Boreham et al., 2011) and the high pace of development globally, there are significant 

uncertainties in the understanding of CO2 tracing and storage, and consequently its safety 

(Watson et al., 2014). As a result the In Salah Project was suspended in 2011 (e.g. Verdon 

et al., 2015) due to concerns about the seal. The issue of safety drives the question of 

public acceptance (Watson et al., 2014). Public acceptance requires the demonstration of 

the reliability of the technology, and education. In the absence of that, similar events in the 

future such as the leak allegation in Weyburn (Saskatchewan, Canada) (Beaubien et al., 
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2013) and the Barendrecht project cancellation (The Netherlands) (Feenstra et al., 2010) 

will continue.  

 

1.4 Tracing injected CO2 

 

Tracing the movement of the CO2 in the subsurface started initially with numerical 

modelling and laboratory experiments. Fluid flow and physical-chemical processes acting 

on injected CO2 have been extensively studied (e.g. Ennis-King and Paterson, 2007; 

Knauss et al., 2005; White et al., 2005; Xu et al., 2005) and trapping mechanisms within 

engineered fields have been developed (Arts et al., 2004; Emberley et al., 2005). However 

these models require that the constraining parameters are determined by field techniques 

(see Jeandel et al., 2010). Studies from CO2 injection fields have used existing techniques 

that are routinely employed in natural gas fields, as summarized below.  

 

1.4.1 Natural CO2 fields 

 

Natural CO2 accumulations in the crust provide analogues for the long-term storage of 

man-made CO2 (e.g. Baines and Worden, 2004; Haszeldine et al., 2005). Therefore all 

research that has aimed to understand the origin and migration of the CO2 and reservoir 

processes in such fields can make a significant contribution to the ongoing development of 

a global CO2 monitoring technique for carbon sequestration. 

The carbon isotope composition of the CO2 (δ
13

CCO2) has been used for several decades for 

tracking carbon derivatives in geochemical research. The quantification of isotope 

fractionation under entirely different conditions for different CO2-fluid-rock systems was 

carried out in early studies (e.g. Deines et al., 1974; Mook et al., 1974; Vogel et al., 1970). 

The application of δ
13

CCO2 is now widespread, and includes tracing of atmospheric CO2 in 

oceans (e.g. Bauch et al., 2000), and of the origin of CO2 in deep reservoirs (e.g. Clayton et 
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al., 1990; Javoy et al., 1986). Although the carbon isotope composition of CO2 is 

diagnostic of the process that formed it (Wycherley et al., 1999), in fields with high CO2 

concentration (> 70%) δ
13

CCO2 typically overlaps the range produced by carbonate 

breakdown and magmatic degassing (δ
13

CCO2 = -8 to + 3‰) (Figure 1.4) (Jenden et al., 

1993). As a result, the origin of CO2 in most high concentration fields cannot be reliably 

constrained by δ
13

CCO2 alone, so that additional methods are required (e.g. Matthews et al., 

1987; Sherwood Lollar et al., 1997). Additionally, the high reactivity and solubility of CO2 

in water requires a precise knowledge of the degree of interaction in order to, for example, 

quantify the amount of CO2 that has dissolved (e.g. Gilfillan et al., 2008). 

 

 

Figure 1.4. The carbon isotope composition of CO2 with respect to its source. The 

majority of CO2-rich crustal fluids have δ
13

C(CO2) that are confined to a narrow range 

(between -8 and +3‰). The average value covers the typical value of both CO2 formed by 

alteration of marine carbonates and magmatic CO2. Hence, if there is a need for 

distinguishing between these two sources in crustal fluids, δ
13

C alone does not provide an 

unambiguous identification. From Jenden et al. (1993). 
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Noble gases (He, Ne, Ar, Kr and Xe) are present in crustal fluids in minor quantities and 

they have several isotopes with distinct sources (Figure 1.5). They are chemically inert and 

can be used to trace the physical processes that have affected the fluid that hosts them (e.g. 

Ballentine et al., 2002 and references therein). The study of the noble gases as tracers dates 

back to the 1960s (Zartman et al., 1961) and the technique has been used since then to 

study gas origin in a wide selection of reservoirs worldwide. 

 

 

 

Figure 1.5. Illustrative picture of the distinct sources of the different noble gas isotopes. 

Noble gases (He, Ne, Ar, Kr, Xe) are typically minor components in crustal fluids. These 

can originate from the crust, the mantle and the atmosphere. The contribution of each 

reservoir can be estimated via distinct isotope composition. Redrawn from Ballentine et al. 

(2002). 
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Early studies demonstrated an enrichment in heavier noble gases relative to air from well 

gases in Mexico (Hennecke and Manuel, 1975) and in Japan (Nagao et al., 1981). The 

origin of deep (mantle) sourced gases has been identified in the Yellowstone geothermal 

area (USA) (Kennedy et al., 1985, 1988) and in Iceland (Marty et al., 1991) by He 

isotopes. Helium also has shown mantle origin in the Western USA in connection to arc 

volcanism (Jenden et al., 1988; Poreda et al., 1986; Welhan et al., 1988), in the Rhine 

Graben, where also recent volcanism occurred (Griesshaber et al., 1992) and in the 

Songalio Basin (China) (Xu et al., 1995). Regions of recent crustal thinning also show 

mantle-sourced gas, for example the North Sea gas fields (Hooker et al., 1985) and the 

Carpathian Basin (Cornides et al., 1986; Martel et al., 1989). 

The interaction between CO2 and reservoir fluids and solubility-controlled fractionation of 

noble gas isotopes has been intensively studied in crustal fluids from France (Pinti and 

Marty, 1995) where a qualitative assessment on the duration of water-oil contact has been 

shown. From some SE Mediterranean oil accumulations (Bosch and Mazor, 1988) the role 

of oil degassing in fractionating noble gas ratios has been demonstrated. In the Pannonian 

Basin (Stute et al., 1992) the groundwater circulation system was studied. From the 

Pakistan Indus Basin (Battani et al., 2000) a complex distillation process was modelled. A 

comprehensive review on noble gas geochemistry of oil and gas accumulations is given by 

Prinzhofer (2013). These studies have supported a strong background for model 

developments on CO2 migration. 

A comprehensive model has been developed to describe CO2–water interaction in some 

reservoirs in the Colorado Plateau (USA) using noble gases (Gilfillan et al., 2008). δ
13

CCO2 

and noble gases in several reservoirs have been used to provide a way of quantifying CO2 

loss by dissolution in water or precipitation (Gilfillan et al., 2009). The models have then 

been used to estimate the rate of dissolution of CO2 in the Bravo Dome (USA) (Sathaye et 

al., 2014). The water degassing induced by CO2 injection and the consequent re-dissolution 
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of the gas (Gilfillan et al., 2008) explains gas-water interaction in natural gas fields but has 

not yet been applied to CO2 injection fields. This would not only provide information on 

the CO2–fluid interaction but may also be used to determine the timescale of stripping and 

re-dissolution of CO2. 

 

1.4.2 CO2 injection fields 

 

From the early 2000s attention turned to CO2 in injection fields with the purpose of 

developing tracers of the injected CO2. Carbon isotopes have been extensively studied to 

assess their utility in tracing CO2 in the Pembina Cardium field (Alberta Canada) (Johnson 

et al., 2011). In their work Johnson et al. (2011) showed that the carbon isotopic 

compositions correlates strongly with the CO2 concentrations from production wells and 

are effective for identifying preferential gas flowpaths. A good correlation between CO2 

concentration and δ
13

CCO2 was also found in the Cranfield (MS USA) CO2-EOR field (Lu 

et al., 2012b). δ
13

CCO2 has also been found to be a useful tracer in the CO2CRC Otway 

Project (Victoria, Australia) (Boreham et al., 2011). 

In all cases above the δ
13

CCO2 values of the injected gases are within the negative side of 

the narrow magmatic range (down to ~ -8 ‰) indicating a natural source of the gas (see 

Figure 1.4.). The δ
13

CCO2 values of the ‘traditionally’ combusted gas are generally much 

lighter (from -24 ‰ to -40 ‰; Widory, 2006), which is where the isotopic composition of 

the CO2 would be from the oxidation of hydrocarbons (see Figure 1.4.). A recent 

measurement has also shown that δ
13

CCO2 of the captured CO2 is around -20 ‰ after both 

coal gasification and amine capture techniques (Flude et al., 2015). This significantly 

different end-member value in comparison to previous studies may suggest the need of re-

evaluation of tracing CO2 in the reservoir by δ
13

CCO2. 
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Ionic trapping (synonym for solubility trapping) of CO2 has been quantified in the 

Weyburn field by carbon isotopes (Raistrick et al., 2006) and it has been concluded that the 

technique applied should be applicable to other CO2 injection fields, regardless of the 

reservoir type (deep saline or hydrocarbon) if there is a considerable difference in the end-

members of the injected and reservoir gas. 

Oxygen isotopes (δ
18

O) have been used to show CO2-water interaction in the Weyburn 

CO2-EOR field (Saskatchewan, Canada) (Johnson et al., 2009) where the preservation of 

the fingerprint of the injected gas was found suitable for tracing. Rapid changes in both O 

and C isotopes from the Ketzin Site (Germany) were explained by the interaction between 

injected CO2 and reservoir water (Myrttinen et al., 2010). 

Nimz and Hudson (2005) reported that a unique noble gas isotopic composition can be 

detected from production wells from the Mabee EOR field from West Texas (USA). In 

their work they proposed that Xe was the most favourable tracer due to the low volume 

required, cost and availability. Early attempts were also made by Kharaka et al. (2006) in 

the Frio Formation, Texas (USA), which was exposed to the injection of 1600 tonnes of 

CO2. It was found that the water pH decreased rapidly due to CO2 dissolution, and that the 

He and Ar concentrations increased from the injection to production wells.  

Chemical tracers (e.g. deuterated methane, CD4), SF6, perfluorocarbons and heavy noble 

gases) have been added to injected gas in order to determine breakthrough time. SF6 has 

been found to provide the most obvious evidence of breakthrough compared to Kr and CD4 

in the Otway CO2 Project. It is because Kr had higher background level in the reservoir 

due to its atmospheric source and the amount of injected CD4 seemed unsatisfactory 

(Stalker et al., 2015). It was also concluded that CD4 could be used as tracer in a high CH4 

background environment. The experiment in the Cranfield (MS, USA) Detailed Area of 

Study (DAS) site on added Kr and SF6 revealed significant heterogeneity in fluid flow and 

that the wells are connected through different pathways (Lu et al., 2012a). Kr was used as a 
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tracer in the Ketzin experiment and was found that its maximum peak intensity occurred 

hours before the maximum CO2 peak (Giese et al., 2009). SF6 and fluorescent indicator 

were injected into basalt within the CarbFix Project in Iceland (Matter et al., 2006). 

Surface monitoring is equally as important as the subsurface monitoring because the ability 

to detect a leak from a CO2 injection field is a key. Combined carbon and noble gas isotope 

research has been applied in the Weyburn CO2-EOR field, revealing that there was no 

evidence of CO2 migration from the oil field into the groundwater (Gilfillan and 

Haszeldine, 2011; Gilfillan et al., 2013). The same conclusion has been made by ‘process 

based’ methods (Romanak et al., 2012, 2013) and also there are recommendations on 

different geochemical tracers based on the Weyburn experiment (Risk et al., 2015). The 

isotopic composition of the injected CO2 was found to be a suitable tracer if its isotopic 

composition is distinct from the reservoir gas (Mayer et al., 2015), while assessments of 

geochemical data from the Green River (Utah, USA) suggest combined use of water 

chemistry, δ
13

CCO2 and noble gases to study the migration and origin of the gas (Wilkinson 

et al., 2009). 
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1.5 Outline of this thesis 

 

This work focuses on geochemical tracing of injected CO2 at the Cranfield EOR field (MS, 

USA), the largest non-power plant associated CO2 injection project currently in operation 

in the world. It is the first test of how well the naturally occurring noble gases in the 

injected CO2 can be used as a low cost alternative to adding tracers. 

Chapter 2 describes all aspects of the gas sampling and the analytical technique that was 

developed at SUERC in order to undertake the study.  

Chapter 3 introduces the geology and injection history of the Cranfield EOR site and 

discusses the ability of existing and new δ
13

CCO2 data to trace the injected CO2.  

In Chapter 4 the noble gas compositions of the gas end-members are determined using Ne 

isotope composition of the production well gases. The ability of 
3
He/

4
He, 

40
Ar/

36
Ar and 

40
Ar

*
/
4
He to trace CO2 is determined and the fate of the injected CO2 is discussed.  

In Chapter 5 the CO2/
3
He ratio, along with the relationship of 

3
He/

4
He and 

40
Ar

*
/
4
He and 

CO2 concentration is used to identify and quantify the loss of CO2 from the gas phase. The 

modelled fractionation of 
40

Ar
*
/
4
He and δ

13
CCO2 constrain the process by which CO2 is lost 

and the storage mechanism is discussed.  

In Chapter 6 the non-radiogenic noble gas ratios (
20

Ne/
36

Ar, 
84

Kr/
36

Ar and 
132

Xe/
36

Ar) are 

used to test the role of groundwater and oil. A model of gas stripping from groundwater 

and oil during CO2-reservoir fluid contact is developed that can explain the noble gas data 

and better understand the oil displacement efficiency. The potential for reservoir 

engineering is discussed. 

Chapter 7 synthesizes the results of this work and attempts to assess the potential for 

naturally occurring noble gases as tracers in commercial CCS projects. 
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Chapter 2  

Gas sampling and analytical technique 

 

2.1 Introduction 

 

In this thesis the determination of the major gases (CO2, CH4), δ
13

CCO2, and the isotope 

composition of noble gases in samples of high pressure gas from the Cranfield EOR site is 

reported. The first part of this chapter introduces the method of sampling gases in the field. 

The second part describes the analytical procedures. The analysis of noble gas isotopes 

from high pressure gas samples for this project required the design, construction and 

optimisation of a vacuum line for extraction and purification of gases from Cu tubes. The 

design of this was adapted and evolved from that used by Gilfillan et al. (2008) in 

Manchester, UK. Thus, the bulk of the chapter is devoted to reporting the noble gas 

measurement procedures. 

 

2.2 Gas sampling technique 

 

Samples were collected from high pressure wellheads or pipelines via sampling ports in 

internally polished ~70 cm long, ~6 mm internal diameter, refrigeration-grade copper 

tubes. The copper tube was retained in a metal holder with clamping devices at each end 

(Figure 2.1). Gas was collected at a pressure of ~0.15 MPa, providing a sample volume 

between the clamps approximately 10 cm
3
 at STP. To collect samples a stainless steel step 

down regulator with a high pressure input (up to 2.1 MPa) and low pressure output (< 0.2 

MPa) was connected to the pipeline or wellhead through a suitable adaptor. In the case of 

the bulkline, the CO2 was supercritical, held around 21 MPa and 32°C (see supercritical 

condition in e.g. Suehiro et al., 1996). In the case of production wells, where oil, water and 

gas were present, samples had to be taken from the top of the pipeline in order to avoid 
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sampling liquid. Production wells were operating at pressures between 0.8 MPa and 9.1 

MPa. The Cu tube was connected to the regulator through ~50 cm long, high pressure 

flexible tubing. Another hose was connected to the other end of the copper tube act as an 

exhaust in order to avoid backflow from air. Gas was allowed to flow through the line for 

at least 5 minutes then the downstream end was sealed by cold welding using the clamp. 

The pressure in the tube was adjusted to ~0.15 MPa and the upstream end of the tube was 

sealed. From production wells only one sample was collected, whereas from injectors and 

from the bulkline duplicate was taken. After sampling, the copper tubes were shipped back 

to the UK with clamps intact, retaining an atmosphere tight seal. 
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Figure 2.1. Sampling of high pressure gases by the Cu-tube method. Regulator is attached to the pipeline through a suitable adaptor. The Cu tube, kept in 

a metal holder, is attached to the regulator via a high pressure flexible hose. Gas is flushed through for ~5 minutes before clamps are closed. The clamps 

form a He tight cold welded seal on the copper tubes and the samples were stored in the Cu tubes until analysis.
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2.3 Analytical technique 

2.3.1 The gas inlet and purification line 

 

The newly built gas inlet and purification system (Figure 2.2) is directly connected to a 

pre-existing purification line (Figure 2.3) (e.g. Codilean et al., 2008), which is linked 

directly to the noble gas mass spectrometer. The entire system is constructed of stainless 

steel tubing. The vast majority of the system is 16 mm internal diameter pipes connected 

via Cu-gasketed knife-edge seals. Only the ‘stable isotope section’ and some flexi tubes 

between that and the sample (Figure 2.2) are built from ~6 mm outer diameter pieces, 

connected by compression fittings. All-metal, bakeable valves are built in with either Cu 

sealing pad closure or Cu/stainless steel stem tip closure. The system is pumped to less 

than 10
-8

 mbar by two Pfeiffer Vacuum HiPace 80 turbo-molecular pumps. Pressure is 

monitored by a Pfeiffer Vacuum PKR 251 Compact Full Range pressure gauge. The 

pumping line is constructed from 35 mm internal diameter stainless steel pipe. The volume 

of each section was determined by inert gas expansions and consequent pressure 

measurements and is known to ±0.5 % (1σ). The system is held at ~150°C using heating 

tapes when not in use in order to remove adhering gases. Analyses are conducted with the 

line at ~35°C. 

Cu tubes are connected to the vacuum system by Swagelok compression fitting and the 

volume between the clamp and the first valve of the vacuum system is pumped to ultra-

high vacuum (UHV). The clamp from the Cu tube is removed and the gas is expanded into 

a ~20 cm
3
 volume. In some cases a proportion of the sample (~5 cm

3
) is stored for stable 

isotope analysis. In this case the gas is transferred into a glass tube by liquid nitrogen 

where CO2 is separated from hydrocarbon gases cryogenically using a procedure modified 

after Kusakabe (2005) and Robinson and Kusakabe (1975). The separation is undertaken at 

the freezing point of iso-pentane (~-160°C), where the CH4 fully and C3H8 partially 

remains in the vapour phase, and these gases are then pumped away while the CO2 remains 
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absorbed onto the cold finger (Dean, 1998; Levenson, 1974). The isotopic composition of 

the remaining CO2 is determined by an isotope ratio mass spectrometer (IRMS) (see 

2.3.2.3). 

A ~1 cm
3
 aliquot of gas is expanded into a volume where the pressure is measured by an 

MKS 615-A Baratron capacitance manometer. Small fractions of the gas are taken from 

the pressure gauge volume and the major gas composition determined by a Pfeiffer 

Vacuum 200 quadrupole mass spectrometer (QMS) (see 2.3.2.2). The majority of the gas is 

then expanded into a VG Scienta ST22 titanium sublimation pump to remove active gases 

(e.g. H2, H2O, CO2, N2) and thermally cracks hydrocarbon molecules (e.g. CH4). It runs 

sequentially between ~900°C and cold water temperatures until the pressure drops below 

~1 mTorr in the manometer. The purified gas is then exposed to a SAES GP50 ZrAl alloy 

getter (high specific surface adsorbent) held at 250°C, and then expanded into a 500 cm
3
 

reservoir where it is stored for noble gas isotope analysis (Figure 2.3). Concentrations of 

4
He, 

20
Ne, 

40
Ar and 

84
Kr are determined on the QMS using the remaining gas in the line in 

order to determine the optimum amount to take from the reservoir to the noble gas mass 

spectrometer. The heavy noble gases (Ar, Kr, Xe) are trapped on liquid nitrogen-cooled 

charcoal and 
4
He and 

20
Ne are measured. After measurements, they are pumped out of the 

mass spectrometer, the charcoal heated to room temperature and 
40

Ar and 
84

Kr are 

measured. 

The quantitative noble gas analysis is carried out on the gas trapped in the noble gas 

reservoir. For each noble gas, a separate aliquot of gas is taken out except for Kr and Xe, 

which are measured from a single aliquot. For helium, an aliquot of gas is taken from the 

tank and purified by exposure to two SAES GP50 ZrAl alloy getters held at 250°C then 

liquid nitrogen cooled charcoal for 20 minutes, and then analysis is performed. Samples for 

Ne analysis were purified as per He, and the Ne is trapped by a cryogenic activated 

charcoal finger at -243°C for 20 minutes. He is removed by the pump and the Ne released 
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at -173°C for 15 minutes prior to analysis. For argon analysis a new gas aliquot is taken 

and purified as per He, and as a consequence Ar remains trapped on the charcoal. He and 

Ne are removed by the pump and Ar is then desorbed from the charcoal by heating to room 

temperature for 15 minutes and analysis is then performed. Lastly an aliquot is taken for Kr 

and Xe. It is cleaned as per the procedure for Ar up to the point of pumping away the He 

and Ne. Then the liquid nitrogen cooled charcoal is warmed up to -80°C by acetone–dry 

ice slush for 15 minutes and the gas is analysed. This step releases ~100% of Ar, ~15% of 

Kr and ~5% of Xe. Then the charcoal is warmed up to ~80°C by hot water for 15 minutes 

that desorbs all remaining heavy noble gases which are then analysed. The sum of the two 

intensities of Kr and Xe from each run is used in interpretations. Quantity of aliquots in all 

cases is pre-determined by the QMS.
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Figure 2.2. Schematic picture of the noble gas extraction line. Green line: Stainless steel piping; Grey line: Glass; Orange line: Copper; Black line: 

Representation of quadrupole rod; Claret line: Rubber sealing; Red line: Representation of ion beam; Blue line: Teflon; Crossed circles: Valves. 
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Figure 2.3. Diagram of the pre-existing noble gas purification line. Green line: Stainless steel piping; Black line: Magnet; Grey line: Representation of 

ion beam. Crossed circles: Valves.
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2.3.2 Gas analysis procedure 

2.3.2.1 Major gas composition determination 

 

All Cranfield samples are CO2–CH4 mixtures with trace concentrations of nitrogen, heavy 

hydrocarbons, oxygen and hydrogen (Lu et al., 2012b). There may be a small quantity of 

H2S as well, originating from Jackson Dome (Zhou et al., 2012). The absolute sensitivity 

of the QMS for CO2 and CH4 is dependent upon their respective concentrations and the 

total pressure, and is independent of the trace gases (as long as the source parameters were 

not changed during the analytical period). The instrument was calibrated by determining 

the CO2/CH4 ratio of several different known binary mixtures at different total pressures. 

Gas pressures were manipulated to ensure all measurements fell within the range of 

pressure calibration. The results are plotted in Figure 2.4. (see data in Table I.1. in the 

Appendix). The 44/15 ratio remains largely unchanged within the observed pressure 

interval if the CO2 concentration is between 30 and 96%. There is however an observable 

slope in both, 100% CO2 and CH4 concentrations on the diagram. 

Calibration gases were supplied by Air Products Inc. The reproducibility of CO2/CH4 ratio 

measurements was `±1% (1σ). Both, CO2 and CH4 were measured on the Faraday cup, at 

mass 44 and 15 respectively, in static mode. Blanks were continuously monitored and 

found negligible at all times. A 70% CO2 – 30% CH4 reservoir was permanently attached 

to the UHV system and used to check calibrations throughout the analysis period. Initially 

its 44/15 ratio was accurately determined at a gas concentration of 3 x 10
-5

 cm
3
 STP and 

was found to be 1.688 ± 0.02 (standard conditions are after Ozima and Podosek, 2001). 

Later measurements show no variation at all, implying that the QMS performance was 

stable with time (Figure 2.5) (see data in Table I.2. in the Appendix). The gas composition 

of samples was calculated by linear interpolation. 
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Figure 2.4. Calibration of the mass 44/15 (CO2/CH4) ratio on the quadrupole mass 

spectrometer. Calibration was undertaken with different CO2-CH4 binary mixtures at two 

different total pressures except for the mixture with 70% CO2 (red line). That special 

mixture, permanently attached to the UHV system served the purpose to track changes 

with time (see Figure 2.5). The composition of a sample between two end-members is 

calculated by linear interpolation. 

 

 

 

 

 

 

0% CO2 

96% CO2 

30% CO2 

80% CO2 

70% CO2 

100% CO2 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

2.0 2.5 3.0 3.5 4.0

m
a

s
s
 4

4
/1

5
 

Vgas in QMS (x 10-5 cm3 STP) 



46 

 

 

 

Figure 2.5. The stability of the QMS with respect to 44/15 over time. It was monitored by 

a binary mixture (70% CO2 – 30% CH4). Data are calculated to Vgas = 3 x 10
-5

 cm
3
 STP 

gas amount. Red continuous line: original calibration, red dashed line: its 1σ uncertainty. 

Black: Re-calibration data. Data point’s uncertainties are 1σ. Short term variation (days) 

are within the pre-determined range in both analytical sessions (April and July, 2014). This 

rules out long term variations (months) and indicates that the QMS is stable over time. 

 

2.3.2.2 QMS determination of noble gas concentrations 

 

Prior to analysing the noble gas isotope composition, concentrations were determined on 

the QMS in static mode. 
4
He and 

20
Ne were measured on both Faraday and channeltron 

detectors, 
40

Ar was measured on the Faraday, and 
84

Kr on the channeltron. The channeltron 

was operated at 2.0 kV. Blanks were negligible throughout the analytical period, but 

required significant effort in the early stages. Figure 2.6 illustrates the relationship between 

the measured 
84

Kr intensity on the QMS relative to the amount of gas let in, and the 

theoretical 
84
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taking one gas aliquot from the noble gas reservoir (see Figure 2.2) (see data in Table I.3. 

in the Appendix). The data define a straight line as expected but there are severe deviations 

from it in some cases. This is explained by the QMS not being tuned for noble gas analysis 

but for the precise determination of CO2/CH4 ratio, hence the noble gas measurements on 

the QMS carry significant uncertainties. 

 

2.3.2.3 Carbon isotope determination 

 

A VG Optima dual inlet isotope ratios mass spectrometer was used in dynamic mode to 

determine δ
13

CCO2 relative to PDB international standard (Craig, 1957) based on 

Equation 2.1 

𝛅 𝐂 =  (
( 𝐂𝟏𝟑 / 𝐂𝟏𝟐 )

𝐬𝐚𝐦𝐩𝐥𝐞

( 𝐂𝟏𝟑 / 𝐂𝟏𝟐 )
𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝

− 𝟏) 𝟏𝟎𝟎𝟎𝟏𝟑  Equation 2.1 

according to established procedures (e.g. Bezard et al., 2014). The vacuum system is 

established by an Edward rotary pump (low vacuum) and by a Balzer turbo molecular 

pump (high vacuum). Pressure is monitored by a PVG1 Pirani gauge and a VIG24 ion 

gauge, respectively. The ionization occurs by electron impact, and for detection a Faraday 

cup is used. The dual inlet system ensures identical flow rates of both the reference gas and 

the sample removing the need of a calibration curve with respect to total pressure. The gas 

inlet system is fully automated once samples are attached to the manifold. The internal 

reproducibility was found ~0.02 ‰. In order to track external reproducibility, aliquots of 

the calibration gas, permanently attached to the newly built inlet system were prepared 

frequently and measured by the IRMS. 

The mean δ
13

CCO2 of the calibration gas was found to be -33.3 ‰ and showed 0.2 ‰ 

reproducibility (1σ). Thereafter the calibration gas was measured prior to each batch of 

sample and showed only slight shift from the mean value in the short term (days), which 
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allowed all samples to be corrected (Figure 2.7) (see data in . Long term (months) variation 

was not observed. The reproducibility of the calibration gas is taken as the uncertainty of 

all sample measurements. 

 

 

Figure 2.6. The expected amount of 
84

Kr in the noble gas mass spectrometer and the 
84

Kr 

signal/amount of gas in the QMS. The figure contains a wide selection of samples, from 

magmatic (low 
84

Kr) to air-like gases (high 
84

Kr) Blue: samples; Red dashed line: Amount 

of 
84

Kr in the calibration bottle. All other major noble gas isotopes measured on the QMS 

showed similar relationship and allowed the necessary amount of gas let in to the noble gas 

mass spectrometer to be calculated. Uncertainties are not shown because data do not reflect 

the result of quantitative measurements. Highest uncertainty is introduced by the QMS 

measurement due to the set up for other (CO2/CH4) analysis and it explains deviation from 

non-linearity. 
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Figure 2.7. The variability of the measured δ
13

CCO2 of the calibration gas over time. 

Calibration measurements (blue) varied more than the reproducibility (red dashed line) (0.2 

‰) of the mean value (red continuous line) therefore calibration gas was run with all 

samples. 

 

 

2.3.2.4 Noble gas isotope ratio and concentration measurements 

 

Noble gas isotope measurements were carried out by a Mass Analyser Product (MAP) 215-

50 mass spectrometer operating, in static mode. It is a dual collector 50° magnetic sector 

mass spectrometer, equipped with a 10
11

 Ohm resistor Faraday cup and a Burle 

Channeltron electron multiplier operated in pulse counting mode at 2.5 kV. The source was 

operated at 3 kV acceleration potential and 300 μA trap current. 
4
He, and all Ar isotopes 

were measured on the Faraday detector while 
3
He, 

20
Ne, 

21
Ne, 

22
Ne, 

84
Kr and 

132
Xe on the 

electron multiplier. During He and Ne isotope analysis liquid nitrogen-cooled charcoal was 

used to remove residual heavy noble gases and active gases from the mass spectrometer. 

The level of hydrogen was minimised by a cold GP50 getter (Figure 2.3).  

The resolving power (~ 600) allowed complete resolution of 
3
He

+
 from H3-HD

+
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of the required resolution of as high as 1777 and 6231, respectively. Correction was 

completed by continuous monitoring of the ratios of 40
+
/40

2+
 and 44

+
/44

2+
 with respect to 

the concentration of hydrogen and by measuring H2
+
, 40

+
 and 44

+
 with neon. Isobaric 

interferences from 
1
H

19
F

+
 and 

1
H2

18
O

+
 at 

20
Ne and from 

63
Cu

3+
 at 

21
Ne (required resolution 

1450, 894 and 1212 respectively) were typically less than 0.001% of total 
20

Ne and 0.01% 

of total 
21

Ne (see also Vermeesch et al., 2015). 

Mass fractionation during the isotope ratio measurements were determined by repeated 

determinations of standard gases. Helium isotope determinations were calibrated using the 

HESJ international standard (20.63 RA; Matsuda et al. 2002). Calibration gas was 

measured prior to each measurement because the calibration data showed significant 

variation in comparison to each other (Figure 2.8). 

 

 

Figure 2.8. He isotopic ratio data of the calibration gas. Data show significant changes 

with time compared to the reproducibility (0.99%, see text) therefore a calibration was 

measured before each sample. Uncertainties are 1σ. Cps = counts per second. 
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This short term variation (days) is explained by the changes in the sensitivity of the 

multiplier and changes in the ion-source. Both are expected results of continuously 

exposing the ion source and multiplier to small quantities of hydrocarbon gases. However 

several consecutive measurement allowed the reproducibility to be determined and was 

found 0.99% for the 
3
He/

4
He ratio. It is a little lower than what was found on the same type 

of instrument (2.5%; Stuart and Turner 1992) and is explained by the much higher signal 

of 
3
He in our case than in their work where air was used as standard. Long term (months) 

variation was not observed during the analytical period (see data in Table I.5. in the 

Appendix). 

Mass discrimination of Ne and Ar isotopes were determined using air (Eberhardt et al., 

1965; Mark et al., 2011; Ozima and Podosek, 2001). 
20

Ne and 
21

Ne, relative to 
22

Ne is 

plotted against each other in Figure 2.9 (see data in Table I.6. in the Appendix). The 

variability of data is typical for the kind of mass spectrometer in the long term (days). All 

data are significantly off the mass fractionation line. That is most likely the result of an 

overcorrection on mass 22 (see above) or, less likely kinetic (mass independent) 

fractionation (personal communication with F. Stuart). Ne calibrations were run less 

frequently than He. Reproducibility of 
20

Ne/
22

Ne and 
21

Ne/
22

Ne was found 0.40 and 0.94% 

respectively. 

The argon calibration data are shown in Figure 2.10 (see data in Table I.7. in the 

Appendix). Data are fractionated compared to air. The composition of air is after Mark et 

al. (2011). Fractionated values overlap with the mass fractionation line. Ar calibration was 

carried out on a daily basis. Reproducibility of 
40

Ar/
36

Ar and 
38

Ar/
36

Ar was found 0.62% 

and 0.84% respectively, which is in a good agreement with Renne et al. (2009) from the 

same type of mass spectrometer. 
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Figure 2.9. Ne isotope data from the calibration bottle compared to air. Data (blue) show 

fractionation compared to air (red) and they are significantly off the mass fractionation line 

(MFL). The variation of the data is typical for the MAP 215 mass spectrometer 

measurements. Uncertainties are 1σ. 

 

 

Figure 2.10. Fractionation of Ar isotopes in the calibration gas compared to air. 

Calibration data (blue) show fractionation compared to air (red) and they mostly overlap 

with the mass fractionation line (MFL) within uncertainty. Observed data are typical for 

MAP 215 type noble gas mass spectrometer. Uncertainties are 1σ. 
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As only one isotope of Kr and Xe were measured the 
84

Kr/
132

Xe ratio was monitored to 

track changes in the sensitivity of any of the compounds. A series of measurements are 

shown in Figure 2.11 (see data in Table I.8 in the Appendix). All measured data overlap 

with each other within 1σ uncertainty, indicating a stable system. All data are much below 

the air value (after Basford et al., 1973), which is explained by the fact that efficiency of 

ionization is different for Kr and Xe during the analysis. The reproducibility of the ratio is 

~5.1% but not relevant as the individual concentration’s uncertainty is the key (see below). 

 

 

Figure 2.11. The variation of the ratio of 
84

Kr and 
132

Xe of the calibration gas. Measured 

ratios (blue) are mostly within a narrow range, with spikes occurring only occasionally. Air 

composition (continuous red line) and its 1σ uncertainty (red dashed line) are shown for 

reference. Data uncertainties are 1σ. Data points are well below the air ratio, which is 

explained by the different ionization efficiencies of the different elements in the ion source. 
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al., 2015). The air bottle was calibrated with two standards, CREU-1 quartz for 

cosmogenic 
21

Ne (Vermeesch et al., 2015) and GA1550 biotite for radiogenic 
40

Ar 

(McDougall and Wellman, 2011) in order to check elemental fractionation. Results of both 

calibrations are shown on Figure 2.12 and demonstrate that the calculated 
40

Ar 

concentration from both methods overlap substantially with 2σ uncertainty, therefore 

fractionation (if it occurred at all) can be considered negligible (see data in Table I.9. in the 

Appendix). For concentration determinations of all isotopes (except He) the CREU-1 

quartz was used, meaning that their uncertainty is not better than 3.6% (1σ). 

 

 

Figure 2.12. The calculated concentration of 
40

Ar / aliquot from the calibration bottle from 

two different international standards. Results well overlap with 2σ uncertainty therefore 

elemental fractionation in the calibration bottle can be ruled out. 
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Cu-tube blanks were measured twice during the analytical period and no significant 

difference was observed compared to the routine method. The blank intensity of all 

isotopes was typically less than 0.1% of that measured in samples. This is more than an 

order of magnitude less than the uncertainty of the measurement from any sample and can 

be considered negligible. 

 

2.4 Commissioning and testing of the new system 

 

The new system and procedures were checked with analysis of two “knowns” i) air and ii) 

Jackson Dome CO2 (Zhou et al., 2012 & unpublished data from S. Gilfillan). The 

composition of Jackson Dome is discussed in detail in 4.2.1. 

Air samples were taken by Cu tubes (see 2.2 in this chapter) at 0°C, at 188 m above sea 

level under 60 % relative humidity in East Kilbride, Scotland. Theoretical noble gas 

concentrations were calculated from the standard data given for dry air at sea level (see 

references above) after Kipfer et al. (2002). There is no significant difference between 

measured and calculated air He, Ne and Ar isotope ratios. Measured concentrations of He, 

Ne and Xe overlap with 2σ uncertainty but measured Ar and Kr is higher than air (Table 

2.1). This could be explained by an artefact, which could not be tracked due to the small 

number of measurements (n = 2). Also, very significant sub sampling had to be applied as 

a result of the large volume of the smallest aliquot that could be let in into the mass 

spectrometer by the standard procedure for Ne, Ar, Kr and Xe analysis. This results in 

98.5% of the aliquot having to be pumped away, which undoubtedly introduces an 

uncertainty and is not taken into account. The experiment, although it cannot be considered 

a validation for the system, demonstrates that isotopic ratios can well be reproduced from 

deep magmatic (Jackson Dome) to air-like gases, but there may be a large increase in the 

uncertainty when significant sub-sampling is applied. Nevertheless, this is not an issue in 
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the measurements from Cranfield as the system was designed to have no need for sub-

sampling for these samples. 

 

Table 2.1. Comparison between the theoretical and measured composition of air. 

Concentrations are in ppm and fraction of volume. 2σ uncertainties are in brackets. 

 Theoretical 
composition 

Measured 
composition 

4He 5.11 (10) 5.42 (42) 
3He/4He 1.000 (18) 1.02 (15) 
20Ne (x 101) 1.604 (8) 1.744 (180) 
20Ne/22Ne 9.805 (160) 9.769 (212) 
21Ne/22Ne 0.0290 (6) 0.0286 (12) 
40Ar 9068 (20) 10006 (770) 
40Ar/36Ar (x 101) 29.856 (62) 29.78 (38) 
38Ar/36Ar 0.1885 (6) 0.187 (28) 
84Kr 0.633 (12) 0.75 (4) 
132Xe 0.0234 (6) 0.026 (2) 
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Chapter 3  

The Cranfield EOR field and tracing CO2 by δ
13

CCO2 

 

3.1 Introduction 

 

This chapter describes the geology of the Cranfield enhanced oil recovery field and gives 

an introduction to the history of hydrocarbon extraction. This is followed by a review of 

the CO2 injection schedule and its development from the start of injection until the last 

sampling campaign for this study. Previous geochemical tracing studies at the site, which 

includes the application of both natural and artificial tracers, are considered. Lastly the 

CO2 concentration and δ
13

CCO2 measurements from this study are shown and put into the 

context of CO2 tracing. 

 

3.2 The Cranfield field 

 

The Cranfield oil and gas field is located ~20 km east of the Mississippi river (Figure 3.1) 

close to the town of Natchez in south western Mississippi, USA. The field varies between 

60 and 120 m above sea level and sits on a SE-NW directed normal fault that divides the 

reservoir into two parts. The oil and gas reservoir, the target reservoir for CO2 injection, is 

a circular (diameter is ~6.4 km), four-way anticline of highly permeable fluvial sediments 

in the Upper Cretaceous Lower Tuscaloosa Formation, locally called the ‘D-E’ units. The 

reservoir rock is largely 15-25 m thick unit of conglomerates, sandstones and muddy 

sandstones that occurs at ~3,000 m below surface level (Hosseini et al., 2013; Lu et al., 

2012b). The base and the top of the injection zone unit consists of low permeability 

terrestrial mudstone (Hovorka et al., 2013). Figure 3.2 shows the stratigraphic column of 

the Cranfield region after Lu et al. (2013) and shows drill core samples taken from the 

injection zone (Gilfillan et al., 2011). 
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Figure 3.1. The map of the Cranfield EOR field in Mississippi, USA. The contour shows 

the depth of the oil-water contact (feet). Distribution of injection wells (red triangle) and 

production wells (green circles) are as per located on the surface. Only those production 

wells are shown that have been sampled for this study. Unsampled wells are shown as 

small blue circles. The inset figure shows the location of the Cranfield site relative to the 

Jackson Dome field, which is the source of the injected CO2. DAS: Detailed Area of Study 

(see text). Redrawn after Lu et al. (2012b). 

 



59 

 

 

 

Figure 3.2. Stratigraphic column of the region of Cranfield, MS, USA. Modified after Lu 

et al. (2013). 
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Channel deposits are present in core samples taken by Lu et al. (2012b), that are similar to 

those described by Stancliffe and Adams (1986). These may introduce significant 

heterogeneity in the fluid flow and provides a major uncertainty in fluid-flow modelling 

(Hosseini et al., 2013; Lu et al., 2012a). 

The reservoir was discovered in 1943 by California Company (Dudley, 1993) and oil and 

gas production commenced in the following year. The field has an associated gas cap and 

down-dip oil ring. The field was considered depleted for primary recovery by 1959. After 

unsuccessful water injection tests for secondary recovery in the NW part of the reservoir in 

1958-59, the field was abandoned in 1966. 

CO2 injection for EOR started in July 2008 by Denbury Resources Incorporated. Injection 

started at the north part of the oil field through 6 injectors (Figure 3.1). The development of 

injection and production wells has been undertaken in several phases and has followed a 

clockwise pattern. By the time of the December 2009 sampling campaign for this study 

(after 18 months of CO2 injection) the N and NE sections were in operation. In early 2011 

24 injectors were in operation and had increased to 29 by March 2012 (45 months of CO2 

injection), when the second sampling campaign took place. That meant the E and SE part 

of the field was fully covered (Hovorka et al., 2013) and sampled. The amount of injected 

CO2 has progressively increased with time. By April 2010 the rate of injection reached one 

million metric tonnes per annum (Hovorka et al., 2013) and as of January 2015 it was 1.5 

Mt/year. This makes Cranfield the world’s largest CO2 injection project for non-power 

plant CCS projects (Carbon Capture & Sequestration Technologies, 2015). 

Gas, water and oil are extracted from the production wells. The oil is removed, the water is 

disposed onsite and the gas (CO2 and CH4) is mixed with incoming CO2 and re-injected 

(this is termed recycled gas). Between July 2009 and January 2013 the proportion of 

recycled gas in the injected gas had increased from ~9 to ~30% (Choi et al., 2013; Hovorka 
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et al., 2013). By 2013 the total injected gas (including recycled gas) reached 6.8 Mt, from 

which 4 Mt had been retained in the reservoir (Hovorka et al., 2013). 

The high purity (99%) CO2 used in the process is pumped from the Jackson Dome deposit 

in central Mississippi (Figure 3.1). The gas is transported via pipeline (referred to as 

bulkline) ~160 km to Cranfield. The CO2 is kept under supercritical conditions during 

transport. The Jackson Dome deposit is one of the world’s deepest commercial CO2 

deposits, with the main reservoirs lying at between 4,270 and 5,180 m (Zhou et al., 2012). 

Approximately 2.8 x 10
10

 m
3
 of gas is present in the deposit (Studlick et al., 1987) 

supplying approximately 1.6 x 10
6
 m

3
/day for mostly nearby EOR projects (Zhou et al., 

2012). The name ‘Jackson Dome’ refers to a Late Cretaceous igneous intrusion (Baksi, 

1997). The regional geology is described in e.g. Studlick et al. (1990) and the local 

geology is summarized in Zhou et al. (2012). The Jackson Dome gas is 98-99% CO2 with 

minor nitrogen, H2S and methane. A recent noble gas study has shown a strong 

contribution from the mantle as the origin of the gas with 
3
He/

4
He ratios between 4.27 and 

5.01 RA (Zhou et al., 2012). 

Prior to injection the Cranfield reservoir regained hydrostatic pressure by groundwater 

recovery over the four decades of abandonment. The continuous CO2 injection with no 

water injection means that Cranfield can be viewed as an analogue for injection into a 

saline aquifer (Hovorka et al., 2013; 2011; Lu et al., 2012b). Saline formations offer the 

vast majority of available global CO2 storage capacity (Scott et al., 2013) (see 1.3.1). 

Therefore in Cranfield a comprehensive monitoring research program has been carried out 

and that was the central purpose of the U.S. Department of Energy-funded Southeast 

Regional Carbon Sequestration Partnership (SECARB) project. The research program is a 

collaboration between the field operator Denbury Resources Incorporated and the Bureau 

of Economic Geology (Choi et al., 2013; SECARB, 2015). CO2 monitoring, fluid flow 

modelling, capacity estimation, sequestration modelling, retaining mechanism constraining 
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and leak detection research have been undertaken extensively in the past few years 

(Hosseini et al., 2013; Hovorka et al., 2013; Lu et al., 2012a; Lu et al., 2013; Nicot et al., 

2013; Zhang et al., 2013; Zhang et al., 2014). 

 

3.3 Previous geochemical tracing studies from Cranfield 

3.3.1 Anthropogenic tracer injection test 

 

As part of the collaborative research program, artificial tracer injection tests were carried 

out at the easternmost part, on a hydrologically isolated section of the field termed the 

‘Detailed Area of Study’(DAS) (Figure 3.1). The DAS site consists of one injection well 

(31F-1) and two observation wells (32F-2 and 32F-3) that are 67 and 109 m away from the 

injector. CO2 injection started on the 1
st
 of December 2009 at the rate of 250 t/day (0.09 

Mt/year average, see also Chapter 6). This means that the DAS site is rather small 

compared to the whole field. The injected CO2 was the same as that used for the main 

reservoir and it contained ~10% recycled gas at that time (Hovorka et al., 2013). The 

injection test targeted a zone below the oil/water contact (Gilfillan et al., 2011; Hovorka, 

2013; Hovorka et al., 2013). 

Two types of tracers have been added to the injected CO2: SF6 and noble gases (Kr and 

Xe) in different stages. Two stages of noble gas injection and three stages of SF6 injection 

took place (see also 6.2). The tests have revealed that CO2 dissolved into the water 

inducing CH4 degassing (Gilfillan et al., 2011; Lu et al., 2012a). This, along with the 

existence of different flow paths resulted in ‘boosts’ in the concentration of CH4 (Lu et al., 

2012a). Both tracers have responded to changes in the observed CO2 and CH4 

concentrations in observation wells, indicating a potential for tracing (Lu et al., 2012a). 

The possible leakage of injected Kr and Xe into main reservoir that would affect Kr and Xe 

data measured from samples collected from the main reservoir is thoroughly investigated 

in 6.2. 
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3.3.2 Stable carbon isotopes 

 

The isotopic composition of the CO2 (δ
13

CCO2) from Cranfield production wells has been 

reported previously and during CO2 injection by Lu et al. (2012b). This work measured a 

pre-injection CO2 concentration of 4% and δ
13

CCO2 = -10.5 ‰. The δ
13

CCO2 values from 

production well gases match well with the theoretical gas mixing relationship (Lu et al., 

2012b) indicating a simple two-component mixing between the reservoir and injected gas 

(Figure 3.3). 

The relatively heavy carbon (-10 ‰ to -3 ‰) in CO2 is rather unusual when the CO2 

concentration is very low in a hydrocarbon field (e.g. Battani et al., 2000); however, it is 

theoretically possible (Whiticar, 1999). According to Hovorka et al. (2011) the isotopic 

composition of CO2 in Cranfield is consistent with biodegradation of thermogenic methane 

(albeit no stable isotope value is stated in their work). 

The reservoir sandstone contains up to 36.8% calcite and 9.8% dolomite (Lu et al., 2012b), 

which means that some carbonate breakdown is a possible formation mechanism of CO2. A 

mixture of CO2 originated from both, transformation of organic materials and thermal 

decomposition of carbonate minerals has been revealed in some Carpathian oil 

accumulations (Kotarba et al., 2014). 

 

3.4 Sampling strategy 

 

Due to the unique noble gas isotopic composition of the injected gas (see above), the ideal 

sampling strategy would have been started with baseline recording. However, as this was 

not possible due to logistical issues, samples for this study were instead collected 18 and 

45 months after the start of injection in July 2008. The main reason why pre-injection 

samples were not specifically taken was the different original purpose of the first sampling 

trip. This issue is addressed and solved later in Chapter 4. 
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The first sampling campaign took place in December, 2009, at the same time as the 

artificial tracer injection test into the DAS site commenced. At that time, the artificial 

injection of Kr and Xe into the DAS site seemed to provide an excellent opportunity to test 

the applicability of noble gas isotopes (not only Kr and Xe) to trace the movement of 

injected CO2 in the reservoir (e.g. Nimz and Hudson, 2005). Beside the DAS site (1 

injector and 2 producers), all the 10 production wells in operation along with an injector 

and the incoming CO2 were sampled from the main reservoir. In April and May 2010 when 

again, artificial tracers were injected (see more in 6.2), more samples were taken from the 

DAS site for noble gases but there was no sampling schedule from the main reservoir for 

logistic reasons. 

The noble gas isotope data from the DAS site did not provide a dataset that could be 

understood without the understanding of the interaction of the fluids (injected and natural) 

in the main reservoir during CO2 injection. To this end another sampling trip was 

organised in March 2012 that aimed to sample the main reservoir and all 12 production 

wells in operation, an injector and the incoming CO2 were sampled then (no DAS site 

sampling). This work aims to understand the behaviour of noble gases in the main 

reservoir. 

Both sampling campaigns from the maim reservoir were carried out under the 

collaboration between the University of Edinburgh and the Bureau of Economic Geology 

at the University of Texas at Austin and Denbury Resources Inc. 
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Figure 3.3. Plot of δ
13

CCO2 (‰) against CO2 concentration for Cranfield well gases. Data 

are located around the theoretical mixing curve. The mixing curve end members are: 4% 

CO2 and δ
13

C = -10.5 ‰ for the natural gas and 99.3% CO2 and δ
13

C = -2.6 ‰ for the 

bulkline (or Jackson Dome) after Lu et al., (2012b) (inset figure). Their bulkline 

composition is slightly different from that of this study.1σ uncertainties are smaller than 

symbols. 

 

3.5 Recent CO2 and δ
13

CCO2 results from Cranfield 

 

The CO2 concentration and isotopic composition of CO2 from Cranfield were measured for 

some samples in this study (Table 3.1) (see extended CO2 concentration dataset in Table 

4.2.) 

The bulkline gas is > 99% CO2 with a trace amount of CH4. The δ
13

CCO2 value (-2.9 ‰) 

overlaps the range measured previously -2.6 to -2.95 ‰ (Lu et al., 2012b; Zhou et al., 2012 

respectively) (for calculating the average composition of the Jackson Dome see section 

4.2.1). The injected gas sampled in 2009 and 2012 significantly differs from the bulkline. 
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The CO2 content is lower; 96% in 2009 and 87% in 2012, consistent with the increased 

proportion of methane-rich produced gas in the injected gas as a result of recycling (see 

3.2). The δ
13

CCO2 was only measured in the 2009 injected gas (-2.5 ‰). It is slightly 

heavier than the bulkline, but overlaps within the uncertainty of the measured range. 

CO2 concentration measurements from produced gases vary between 80.4% (28-2 from 

both years) and 94.9% (29-9 2009). The δ
13

CCO2 values in both 2009 and 2012 sampling 

are rather constant (-2.4 to -3.1 ‰). When plotted against CO2 concentration (Figure 3.3) 

data points plot around the theoretical mixing curve defined by Lu et al. (2012b). 

 

Table 3.1. CO2 concentration and δ
13

CCO2 data from Cranfield. For detailed well 

information see Table 4.3. 

Well ID Well 
Type 

Date of 
sampling 

CO2%     
± 0.1 

δ13CCO2‰ 
(PDB)            
± 0.17 ‰ Bulkline NA 2012 99.3 -2.96 

31F-1 Injector 2009 96.0 -2.49 

27-3 Producer 2009 81.0 -2.66 

28-2 Producer 2009 80.4 -2.48 

28-2 Producer 2012 80.4 -3.10 

28F-2 Producer 2012 81.9 -2.43 

29-6 Producer 2009 91.8 -2.52 

29-9 Producer 2009 94.9 -2.72 

29-1 Producer 2012 82.0 -2.55 

45F-4 Producer 2012 81.6 -2.58 
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3.6 Tracing CO2 by δ
13

CCO2(gas) 

 

The asymptotic nature of the mixing curve (see Figure 3.3) makes δ
13

CCO2 rather 

insensitive to changes in the CO2 concentration in the range of 50 and 100%. In contrast, 

the extreme slope (or sensitivity in other words) of the curve in the low CO2 region (0 – 

10% CO2) indicates high potential for tracing CO2 loss. 

The CO2-δ
13

CCO2 system could be used to identify processes that cause CO2 loss from the 

gas phase, such as dissolution and carbonate mineral precipitation, which are the key 

mechanisms by which CO2 could be stored in a reservoir. This is discussed in more detail 

in Chapter 5. Many data from the original study do not plot on the curve in the low CO2 

region (Lu et al., 2012b). This is evident at other CO2 injection sites (e.g. Johnson et al. 

(2011) although the importance of this has been over-looked.  

In Chapter 4 & Chapter 5 it will be shown that the low CO2 samples at Cranfield have lost 

CO2 by dissolution into the (high salinity) groundwater. This is qualitatively consistent 

with the C isotope data of Lu et al. (2012b). The quantification of the CO2 loss by using 

only the CO2-δ
13

CCO2  system is rather difficult though because it requires determination of 

the initial CO2 concentration and δ
13

CCO2 for each sample. This would require data from 

the water (or oil) and solid (rock) phase (δ
13

CDIC and δ
13

CCaCO3) as well as a precise 

knowledge of fluid flow to estimate e.g. the amount of CO2 that could be dissolved under a 

certain well. Although these data could be obtained it makes CO2 tracing rather impractical 

by δ
13

C alone.  
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3.7 Conclusions 

 

CO2 concentration and δ
13

CCO2 data from the Cranfield EOR field are consistent with 

previous findings, confirming two-component mixing. Due to the shape of the mixing 

curve the δ
13

CCO2 is not capable of characterizing the proportion of the injected CO2 when 

its concentration is high, whereas it could be a very sensitive tracer in the low 

concentration region. Dissolution and mineralization, both which are very important 

processes to discuss in the CCS context could be identified by the CO2 - δ
13

CCO2 but the 

quantification of any of them is complicated and impractical and therefore requires another 

method. 
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Chapter 4  

Tracing injected CO2 in Cranfield with noble gas isotopes 

 

4.1 Introduction 

 

In the previous chapter it has been found that δ
13

CCO2 on its own cannot quantify the 

amount of injected gas in production (observation) wells over a wide range of CO2 

concentration due to the asymptotic nature of the mixing curve. In the following three 

chapters the ability of the minor amounts of noble gases that are present in the injected 

CO2 to trace its movement and interactions in the Cranfield EOR field is assessed.  

Generally, solubility controlled processes and phase equilibriums are examined in depth. In 

solutions, the solubility of noble gases is governed by Henry’s law, expressed by Equation 

4.1 in a non-ideal system (e.g. Atkins, 1979), where Ki is the Henry constant, Φi is the 

Φ𝑖𝑝𝑖 = 𝛾𝑖𝐾𝑖𝑥𝑖  Equation 4.1 

fugacity coefficient, γi is the activity coefficient, pi the pressure in the gas phase and xi is 

molar concentration in the liquid phase of a compound ‘i’. The meaning of the law is that 

the concentration of a compound ‘i’ in the liquid phase is proportional to the partial 

pressure of that compound in the gas phase in a multicomponent mixture. The Henry 

constant’s unit depends on the unit of the other variables and here is given in GPa. Φi can 

be derived from Φi
0

 by Lewis-Randall rule (Equation 4.2.) (e.g. Atkins, 1979), where Φi
0
 is 

the fugacity coefficient of the pure component. Φi
0

 is obtained from for example the 

empirical Virial equation (Equation 4.3. & 4.4) 

Φ𝑖 = Φ𝑖
0(𝑝, 𝑇)𝑥𝑖 Equation 4.2 

Φ𝑖
0(𝑝, 𝑇) = exp [

𝐵(𝑇)

𝑉𝑚
+ (𝐶(𝑇) + 𝐵(𝑇)2/2𝑉𝑚

2] Equation 4.3 
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𝑝𝑉𝑚

𝑅𝑇
= 1 +

𝐵(𝑇)

𝑉𝑚
+ 𝐶(𝑇)/𝑉𝑚

2 Equation 4.4 

Where R is the gas constant (8.314 J/mol K), T the temperature, p the pressure, Vm the 

molar volume, B and C are the Virial constants. B, C and Φ as a function of temperature 

and pressure (or depth) for noble gases, CO2 and CH4 can be obtained from Dymond and 

Smith (1980). 

The γi activity coefficient in Equation 4.1 can be expressed by Equation 4.5 

𝛾𝑖 = exp [𝐶𝑘𝑖(𝑇)] Equation 4.5 

Where ‘C’ is the concentration of the salt in a solution and ki is the Setchenow coefficient. 

Constants can be obtained from Smith and Kennedy (1983). Henry constants under 

reservoir conditions for water can be found in Crovetto et al., (1981) and Smith (1985) and 

for crude oil in Kharaka and Specht (1987). 

After the solubilities are known under reservoir conditions, fractionation of e.g. noble 

gases during phase equilibrium and partitioning can be calculated. In this thesis two basic 

models, Batch and Rayleigh fractionations are used. The relative fractionation in a gas-

water and a water-oil system are given by Equation 4.6 & 4.7 (Batch fractionation) after 

Bosch and Mazor (1988): 

(
[𝑖]

[𝐴𝑟]
)

𝑔𝑎𝑠

= (
[𝑖]

[𝐴𝑟]
)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑉𝑔𝑎𝑠

𝑉𝐻2𝑂
+

1

𝐾𝐴𝑟
𝑑

𝑉𝑔𝑎𝑠

𝑉𝐻2𝑂
+

1

𝐾𝑖
𝑑

 Equation 4.6 

(
[𝑖]

[𝐴𝑟]
)

𝑜𝑖𝑙

= (
[𝑖]

[𝐴𝑟]
)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑉𝑜𝑖𝑙
𝑉𝐻2𝑂

+
𝐾𝐴𝑟,𝑜𝑖𝑙

𝑑

𝐾𝐴𝑟,𝐻2𝑂
𝑑

𝑉𝑜𝑖𝑙
𝑉𝐻2𝑂

+
𝐾𝑖,𝑜𝑖𝑙

𝑑

𝐾𝑖,𝐻2𝑂
𝑑

 Equation 4.7 
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where V is the volume, K the Henry constant and [i] the molar concentration of a noble gas 

other than Ar. 

The Rayleigh fractionation law (dynamic system) can be described by Equation 4.8: 

(
[𝑖]

[𝐴𝑟]
)

𝑤𝑎𝑡𝑒𝑟

=  (
[𝑖]

[𝐴𝑟]
)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑃𝛼−1 Equation 4.8 

where P is the remaining Ar fraction in the liquid phase and α the fractionation coefficient. 

α is defined as Equation 4.9 in a gas-water system and as Equation 4.10 in a water-oil 

system. 

𝛼 =
𝐾𝑖

𝑤𝑎𝑡𝑒𝑟

𝐾𝐴𝑟
𝑤𝑎𝑡𝑒𝑟 Equation 4.9 

𝛼 =
𝐾𝑖

𝑤𝑎𝑡𝑒𝑟𝐾𝐴𝑟
𝑜𝑖𝑙

𝐾𝑖
𝑜𝑖𝑙𝐾𝐴𝑟

𝑤𝑎𝑡𝑒𝑟
 Equation 4.10 

The physical chemistry of noble gases with several case studies is well reviewed by 

Ballentine et al., (2002). 

This chapter firstly deals with the determination of the injected and the natural gas end-

members. The inability to sample noble gases of the in-place methane at the site prior to 

CO2 injection has required that its noble gas composition is estimated by extrapolation. 

Later in the chapter, the mixing relationship between the injected and the in-place natural 

gas is examined. 

  



72 

 

4.2 Results 

4.2.1 Bulkline CO2 

 

The noble gas isotopic composition of the bulkline CO2 in Cranfield, sampled in December 

2009 was determined at the University of Rochester. Noble gas isotope data of a bulkline 

sample taken in March 2012 as part of this project are reported in Table 4.1. The 2012 

bulkline 
3
He/

4
He (5.3 ± 0.1 RA) is slightly higher than the 2009 sample (4.76 ± 0.1 RA) and 

the average value of the gas sampled at Jackson Dome (4.86 ± 0.05 RA; Zhou et al. 2012). 

The average composition of the Jackson Dome is obtained by averaging the sample called 

‘Denkmann’ from Zhou et al., 2012 with the average of all remaining samples from Zhou 

et al. (2012). The Ne isotopes composition of the 2012 bulkline sample (
20

Ne/
22

Ne = 10.82 

± 0.11; 
21

Ne/
22

Ne = 0.0366 ± 0.0009) overlaps with the Jackson Dome values (
20

Ne/
22

Ne = 

10.74 ± 0.08; 
21

Ne/
22

Ne = 0.0355 ±0.0012) within 1σ uncertainty. The 
40

Ar/
36

Ar (5043) is 

higher than the Jackson Dome value (4331) of Zhou et al. (2012). The Ne and Ar isotopes 

from the 2009 sampling appear to be affected by minor air contamination. 

Despite the similarity of isotopic compositions, the noble gas concentrations of both the 

2009 and 2012 bulkline samples (Table 4.1) are approximately an order of magnitude 

lower than those measured in samples of Jackson Dome CO2 taken from the gas field 

(Zhou et al., 2012). Mass dependent fractionation of noble gases in the CO2 cannot account 

for the bulkline data (Figure 4.1). In the bulkline 
20

Ne is more depleted, while 
36

Ar, 
40

Ar 

and 
84

Kr are more enriched relative to 
4
He in comparison to what mass fractionation of the 

Jackson Dome can explain. Mass fractionation was calculated after Equation 4.1. 

∆𝐼 = 𝐼1√
𝑚2

𝑚1
 Equation 4.11 

Where ‘I’ is the certain parameter (e.g. 
20

Ne/
4
He) of the Jackson Dome value and ‘m1’ and 

‘m2’ are the masses of the two isotopes. A likely control over fractionation is the solubility: 
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noble gases may degas from the supercritical CO2 into the gas phase (atmosphere) at the 

time of sampling according to Henry’s law. Although supercritical CO2–H2O system has 

recently been studied for noble gas partitioning (Warr et al., 2015) there are no partitioning 

coefficients available for the CO2(supercritical) – CO2(gas) phase system. The depletion in noble 

gases could also result from solidification of CO2 (dry ice) within the pipes during 

sampling. This observation suggests that care must be taken sampling high purity 

supercritical CO2 and may require the development of revised sampling methods. In future 

discussions the average concentration of noble gases of the Jackson Dome CO2 measured 

by Zhou et al. (2012) are used, for instance, in determining mixing relationships. 

 

 

Table 4.1. The average noble gas composition of the Jackson Dome CO2 compared to two 

independent measurement of the bulkline gas (UoR in 2009 and SUERC in 2012). Bulkline 

sample was taken from the pipeline, from supercritical phase. Jackson Dome is after Zhou 

et al. (2012). The order of magnitude difference in the concentrations between Jackson 

Dome and bulkline is explained by a significant loss of CO2 during the sampling of 

supercritical CO2 from the bulkline (see text). The Ne and Ar isotopic ratios of the bulkline 

from 2009 are explained by slight air contamination. Concentrations are ppm and fraction 

of volumes. NM: Not measured. UoR: University of Rochester. 1σ uncertainties are in 

parentheses. 

 Jackson Dome Bulkline  Bulkline  
  (UoR) (SUERC) 
4He 85.4 (7) 12.06 (10) 10.01 (35) 
3He/4He 4.86 (4) 4.76 (2) 5.30 (10) 
20Ne 0.0110 (3) 0.0027 (3) 0.00057 (2) 
20Ne/22Ne 10.74 (8) 10.38 (2) 10.82 (11) 
21Ne/22Ne 0.0355 (12) 0.0320 (13) 0.0366 (9) 
40Ar (x 101) 4.32 (18) 0.810 (8) 0.602 (22) 
40Ar/36Ar 

(x101) 

5043 (26) 1903 (4) 4331 (75) 
38Ar/36Ar NM 0.231 (1) 0.188 (42) 
84Kr 0.000180 (1) 0.000021 (1) 0.000028 (2) 
132Xe NM 0.0000017 (1) 0.0000049 (3) 
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Figure 4.1. The relation of mass fractionation of the Jackson Dome gas and the 

composition of the bulkline. Mass dependent fractionation cannot explain the bulkline 

data. Ne shows depletion, while 
36

Ar, 
40

Ar and 
84

Kr enrichment compared to He in the 

bulkline. MFL: Mass fractionation line. 
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4.2.2 Injected and produced gas 

 

The He, Ne and Ar isotope data from injection and production well gases are summarised 

in Table 4.2. Details of all sampled well are summarized in Table 4.3. The He isotope ratio 

of the injected gas has decreased from 4.73 ± 0.07 RA to 4.00 ± 0.06 RA between 2009 and 

2012. 
20

Ne/
22

Ne and 
21

Ne/
22

Ne appear to have increased, in the injector from 2009 to 2012 

from 10.61 ± 0.1 to 10.69 ± 0.1 and from 0.0349 ± 0.0007 to 0.0372 ± 0.0007, 

respectively. Similarly the 
40

Ar/
36

Ar decreased from 2,906 ± 27 to 2,763 ± 107. These 

changes are broadly consistent with the increased contribution of recycled gas to the 

injected gas with time (see 3.2). 

The production well data show a wide variation. Typically an increase in the proportion of 

injected gas with time is observed in the wells that were sampled in 2009 and 2012. This is 

apparent as increase in 
3
He/

4
He, 

20
Ne/

22
Ne and 

40
Ar/

36
Ar along with decreases in 

21
Ne/

22
Ne 

and 
4
He, 

20
Ne and 

40
Ar concentrations. 

3
He/

4
He values vary between 0.2 RA (28F-2 2009) 

and 4.26 RA (29-9 2009). Well 28F-2 sampled in 2009 shows the lowest 
20

Ne/
22

Ne (9.79), 

while the highest (10.93) was measured in well 29-6 2009. 
21

Ne/
22

Ne values vary between 

0.0388 (29F-1 2009) and 0.0365 (29-9 2009). 
40

Ar/
36

Ar ranges from 609 (27-3 2012) to 

3,823 (29-6 2009). 
38

Ar/
36

Ar values are fairly constant in all injection and production 

wells, usually within uncertainty indistinguishable from the air value. 
4
He/

20
Ne ratios are at 

least five orders of magnitude higher than the atmospheric value ruling out any significant 

contamination from air during sampling or analysis. 

Four samples (29-6 2009 & 2012, 29-9 2009 and 29-5 2012) have 
40

Ar/
36

Ar ratios which 

are significantly higher than the injected gas values. These samples also have high 

corresponding 
3
He/

4
He values. 
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Table 4.2. Major gas and noble gas isotope data from the Cranfield EOR field. Uncertainties (1σ) in last significant figures are in parentheses. 

The composition of air is after Eberhardt et al. (1965); Mamyrin et al. (1970); Mark et al. (2011). Relative uncertainties of CO2 measurements 

are 1%, while the absolute uncertainty of δ
13

CCO2 is ±0.2 ‰. Noble gas concentrations are cm
3
 STP/cm

3
 after Ozima and Podosek (2001). 

 

  Well ID 
Year of 
sampling 

Well Type CO2 %                           
± 0.1 % 

3He/4He      
(R/RA) 

20Ne/22Ne 21Ne/22Ne 40Ar/36Ar 38Ar/36Ar 4He (x 10-4) 20Ne (x 10-9) 40Ar (x 10-5) 

Bulkline 2012 NA 99.3 5.40 (10) 10.82 (11) 0.0366 (2) 4331 (75) 0.188 (42) 0.100 (4) 0.57 (2) 0.60 (2) 

31F-1 2009 Injector 96.0 4.73 (7) 10.61 (10) 0.0349 (7) 2906 (27) 0.185 (14) 0.79 (3) 9.07 (38) 4.27 (16) 

32F-4 2012 Injector 87.9 3.99 (6) 10.69 (10) 0.0372 (7) 2763 (10) 0.195 (7) 0.58 (2) 5.00 (21) 3.38 (13) 

27-3 2009 Producer 81.0 3.33 (5) 10.33 (13) 0.0382 (11) 1263 (9) 0.188 (6) 1.17 (4) 5.91 (25) 5.36 (20) 

27-3 2012 Producer 82.3 3.39 (6) 10.54 (10) 0.0373 (8) 609 (2) 0.186 (4) 0.87 (3) 5.95 (25) 5.98 (22) 

29F-1 2009 Producer 3.3 0.38 (1) 09.89 (10) 0.0388 (9) 910 (5) 0.190 (8) 2.83 (10) 13.32 (81) 6.54 (24) 

29F-1 2012 Producer 70.5 2.18 (6) 10.30 (10) 0.0383 (7) 1565 (18) 0.187 (10) 1.17 (4) 7.76 (33) 4.26 (16) 

29-5 2009 Producer 40.0 1.37 (3) 10.33 (10) 0.0377 (7) 1154 (5) 0.192 (5) 3.14 (9) 17.95 (76) 8.56 (32) 

29-5 2012 Producer 85.5 3.92 (6) 10.66 (10) 0.0376 (7) 3126 (12) 0.190 (8) 0.77 (2) 5.71 (24) 3.46 (13) 

28-2 2009 Producer 80.4 2.75 (5) 10.46 (10) 0.0374 (7) 1989 (23) 0.189 (8) 0.91 (3) 6.50 (28) 3.75 (14) 

28-2 2012 Producer 80.4 2.77 (6) 10.49 (10) 0.0376 (8) 2017 (39) 0.190 (14) 0.94 (3) 6.47 (27) 3.77 (14) 

28F-2 2009 Producer 0.9 0.21 (2) 09.79 (9) 0.0383 (8) 839 (6) 0.190 (10) 2.98 (11) 10.57 (45) 5.99 (22) 

28F-2 2012 Producer 81.9 3.22 (5) 10.43 (10) 0.0365 (7) 2123 (9) 0.196 (10) 0.87 (3) 7.20 (31) 3.57 (13) 

29-6 2009 Producer 91.8 4.18 (9) 10.93 (10) 0.0380 (8) 3671 (32) 0.186 (15) 0.89 (3) 7.15 (30) 4.32 (16) 

29-6 2012 Producer 94.9 4.18 (9) 10.71 (10) 0.0370 (7) 3823 (31) 0.186 (24) 0.66 (2) 5.13 (22) 3.08 (11) 

29-9 2009 Producer 94.9 4.26 (9) 10.74 (10) 0.0365 (7) 3473 (17) 0.190 (18) 0.82 (3) 6.78 (29) 3.69 (14) 

29-9 2012 Producer 82.4 3.46 (7) 10.62 (10) 0.0374 (8) 2306 (36) 0.190 (29) 0.90 (3) 5.70 (24) 3.88 (14) 

29-1 2009 Producer 80.7 2.85 (6) 10.45 (10) 0.0373 (8) 2012 (17) 0.190 (13) 1.04 (4) 7.63 (32) 3.99 (15) 

29-1 2012 Producer 82.0 3.23 (8) 10.62 (10) 0.0375 (8) 2604 (9) 0.190 (15) 0.95 (3) 6.71 (28) 4.15 (15) 

27-5 2009 Producer 46.9 1.71 (4) 10.08 (9) 0.0373 (8) 1348 (11) 0.190 (6) 0.92 (3) 5.26 (22) 4.17 (15) 
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  Well ID Year of 
sampling 

Well Type CO2 %                           
± 0.1 % 

3He/4He      
(R/RA) 

20Ne/22Ne 21Ne/22Ne 40Ar/36Ar 38Ar/36Ar 4He (x 10-4) 20Ne (x 10-9) 40Ar (x 10-5) 

27-5 2012 Producer 82.5 2.85 (5) 10.56 (10) 0.0376 (8) 2592 (17) 0.180 (16) 1.01 (4) 6.29 (27) 3.64 (13) 

44-2 2009 Producer 8.4 0.69 (2) 9.92 (9) 0.0376 (7) 1133 (5) 0.190 (8) 3.12 (11) 14.37 (61) 9.66 (36) 

45F-4 2012 Producer 81.6 2.90 (7) 10.51 (10) 0.0375 (8) 2427 (29) 0.200 (20) 0.83 (3) 5.99 (25) 3.77 (14) 

32F-10 2012 Producer 80.3 2.91 (6) 10.62 (10) 0.0362 (7) 2156 (14) 0.202 (9) 0.96 (4) 6.46 (27) 3.15 (12) 

70-2 2012 Producer 83.4 3.18 (8) 10.51 (9) 0.0371 (7) 2486 (34) 0.184 (16) 0.95 (3) 6.44 (27) 3.61 (13) 

AIR NA NA NA 1.000 (9) 9.81(8) 0.0290 (3) 298.6 (3) 0.1885 (3) 0.052 (1) 16452 (36) 930 (1) 

  Table 4.2. Continued from previous page. 
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Table 4.3. Details of wells from where samples have been taken for this study. 

Well ID Well Type Location Latitude Longitude API number 

31F-1 Injector Franklin Co. SEC 31-T7N-R1E 
 

31.563560 -91.141330 23-037-21488-0000 
 32F-4 Injector Franklin Co. SEC 32-T7N-R1E 31.551200 -91.145650 23-037-21496-0100 

27-3 Producer Adams Co. SEC 27-T7N-R1W 31.579880 -91.160130 23-001-03394-0001 

29F-1 Producer Franklin Co. SEC 29-T7N-R1E 31.565364 -91.150319 23-037-00046-0001 

29-5 Producer Adams Co. SEC 29-T7N-R1W 31.580939 -91.179189 23-001-00173-0001 

28-2 Producer Adams Co. SEC 28-T7N-R1W 31.576350 -91.157210 23-001-23372-0000 

28F-2 Producer Franklin Co. SEC 28-T7N-R1W 
 

31.572275 -91.153649 23-037-00048-0001 

29-6 Producer Adams Co. SEC 29-T7N-R1W 31.577300 -91.172600 23-001-00198-0001 

29-9 Producer Adams Co. SEC 29-T7N-R1W 31.573561 -91.166689 23-037-00159-0001 

29-1 Producer Adams Co. SEC 29-T7N-R1W 31.583589 -91.176239 23-001-00176-0001 

27-5 Producer Adams Co. SEC 27-T7N-R1W 31.583410  -91.159740 23-001-23380-0100 

44-2 Producer Adams Co. SEC 44-T7N-R1W 31.571200 -91.182660 23-001-23346-0000 

45F-4 Producer Franklin Co. SEC 45-T7N-R1E 31.541440 -91.153430 23-037-00336-0001 

32F-10 Producer Franklin Co. SEC 32-T7N-R1E 31.554860 -91.152940 23-037-00333-0000 

70-2 Producer Adams Co. SEC 70-T7N-R1W 31.537590 -91.155040 23-001-23410-1000 
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4.3 Defining the natural gas end-member composition 

 

As this PhD started after injection it was not possible to sample the in-place natural gases 

at Cranfield prior to CO2 injection commencing. In the absence of pre-injection natural 

gas, its composition can only be determined by data extrapolation. The Ne isotope 

composition of the production well gases offers a straightforward way to identify the 

natural gas composition. Neon in natural gas accumulations is generally a mixture of three 

isotopically distinct sources: atmosphere, crust and mantle (Ballentine and O'Nions, 1991). 

The Ne isotopic composition of the three end-members are: (
20

Ne/
22

Ne)air = 9.805, 

(
21

Ne/
22

Ne)air = 0.029, (
20

Ne/
22

Ne)crust = 0.3, (
21

Ne/
22

Ne)crust = 0.52, (
20

Ne/
22

Ne)mantle = 12.5, 

(
21

Ne/
22

Ne)mantle = 0.06 (Ballentine, 1997; Ballentine and Burnard, 2002; Eberhardt et al., 

1965; Holland and Ballentine, 2006; Kennedy et al., 1990). 

Neon in the Jackson Dome CO2 is a mixture of mantle-derived gas and air-derived gas that 

was fractionated prior to mixing. The fractionated air component has 
20

Ne/
22

Ne = 10.46 

and 
21

Ne/
22

Ne = 0.03 (Zhou et al., 2012). Figure 4.2 shows the previous measurements of 

Jackson Dome CO2 where the grey dashed line shows the mixing trend. The Ne isotopic 

composition of the gases from all injection and production well gases from Cranfield is 

shown in Figure 4.2. The data define a clear trend between a point on the Jackson Dome 

mixing line (
20

Ne/
22

Ne = 10.92; 
21

Ne/
22

Ne = 0.037), and a point on the mixing line 

between air and crustal radiogenic Ne (
20

Ne/
22

Ne = 9.62 ± 0.02, 
21

Ne/
22

Ne = 0.0384 ± 

0.001). These two points represent end-member compositions that have been determined 

by fitting a best-fit mixing line through the data using general mixing equation and a least 

square method (Langmuir et al., 1978). The intersection of the best-fit line with the 

Jackson Dome CO2 mixing line is indistinguishable from the measured bulkline (
20

Ne/
22

Ne 

= 10.82 ± 0.11; 
21

Ne/
22

Ne = 0.0366 ± 0.0009. The intersection with the air–crust line 

represents the best estimate of the Ne isotope composition of the in-place natural gas. It is 
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an entirely feasible composition considering the absence of evidence for local Cenozoic 

magmatism (see 3.2). The identification of these end-member compositions allows the 

noble gas isotope composition of each component to be determined. A similar technique 

has been applied for end-member determination by Ballentine et al. (2005). 

 

 

Figure 4.2. Well gas data from Cranfield plotted on the Ne three-isotope plot. The data 

plot as a binary mixture between injected gas (yellow), (similar to the composition of 

Jackson Dome CO2 after Zhou et al., 2012), and natural gas (red), defined by the best fit 

mixing line (red line). The calculated composition of the natural gas is: 
20

Ne/
22

Ne = 9.62 ± 

0.02 and 
21

Ne/
22

Ne = 0.0384 ± 0.001. Red dashed lines represent the 1σ uncertainty of the 

best fit line. Black square: bulkline, triangle: injected gas, circle: produced gas, green: 

2009, blue: 2012, grey circles: Jackson Dome CO2 data from Zhou et al. (2012). MFL: 

Mass fractionation line. MORB: Mid-Ocean Ridge Basalt. Uncertainties are 1σ. 
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The 
3
He/

4
He of the injection and production well gases is plotted against 

20
Ne/

22
Ne ratios 

on Figure 4.3A. Extrapolating to the 
20

Ne/
22

Ne of the natural gas end-member, the best-fit 

mixing curve defines the 
3
He/

4
He of 0.05 ± 10 % RA. This is slightly in excess of the value 

of radiogenic He from the continental crust (~0.02 RA; Andrews (1985) and is lower than 

the lowest measured 
3
He/

4
He from well 28F-2 2009 (0.2 RA). The degree of the curvature 

of the line is determined by 
4
He/

22
NeJackson Dome/

4
He/

22
Nenatural gas (0.488). Integrating this 

value with the 
4
He/

22
Ne measured in Jackson Dome CO2 (12,452; Zhou et al. (2012) 

implies that the 
4
He/

22
Ne of the natural gas is 25,524 ± 1942. The 

4
He/

22
Ne measured from 

the lowest CO2 sample is 28,178 ± 1556 (28F-2 2009), which is consistent with the 

calculated value. The hyperbolic nature of the mixing relationship means that the 
3
He/

4
He 

of the in-place natural gas end-member is rather poorly defined. The 
4
He concentration of 

the natural gas end-member is assumed to be close to that of the lowest CO2 sample (28F-2 

2009; 3 x 10
-4

 ± 2 x 10
-5

 cm
3
 STP/cm

3
). 

When the 
40

Ar/
36

Ar values are plotted against 
20

Ne/
22

Ne (Figure 4.3B) the 
40

Ar/
36

Ar data 

are broadly consistent with mixing between a high 
40

Ar/
36

Ar injected gas and in-situ 

natural gas with lower 
40

Ar/
36

Ar. The best-fit line defines the 
40

Ar/
36

Ar of the in-situ 

natural gas to be 836 ± 75. This is considerably higher than the atmospheric 
40

Ar/
36

Ar 

value (298.6; Mark et al. (2011) and requires that the in-situ natural gas contains 

radiogenic 
40

Ar. The concentration of 
36

Ar of the in-situ reservoir gas (7 x 10
-8

 cm
3
 

STP/cm
3
) is taken from well 28F-2 2009 (the lowest CO2 sample). The gradient of the 

mixing line is defined by 
36

Ar/
22

NeJackson Dome/
36

Ar/
22

Nenatural gas = 0.2. Combining this with 

the measured 
36

Ar/
22

Ne of the Jackson Dome gas (8.36), the 
36

Ar/
22

Ne of the in-situ natural 

gas is calculated to be 41.7. 

Air-derived noble gases are present in variable concentrations as a third component that 

tends to mask the mixing trend in Ne-Ar isotope systematics. The extremely high 
4
He/

20
Ne 
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of the produced gases (10
4
 – 10

5
) rules out direct air contamination. The source of the 

atmospheric component in the Cranfield reservoir is examined in detail in Chapter 6. 

The production of 
36

Ar in the crust and mantle is insignificant and it can be assumed that 

all 
36

Ar in the Cranfield gases ultimately originates from the atmosphere. The atmospheric 

40
Ar contribution can be removed by Equation 4.12: 

Ar∗ =  𝐴𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
40 − ( 𝐴𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (

𝐴𝑟40

𝐴𝑟36 )
𝑎𝑖𝑟

36 )40  Equation 4.12 

where the radiogenic 
40

Ar (from both crust and mantle) is
 
denoted 

40
Ar

*
. This is commonly 

normalised to radiogenic 
4
He to trace the source and interaction history of ancient and 

modern fluids in the crust (Stuart and Turner, 1992). 

A plot of 
40

Ar
*
/
4
He vs. 

20
Ne/

22
Ne reveals a coherent mixing trend between the high 

40
Ar

*
/
4
He injected gas and the low 

40
Ar

*
/
4
He reservoir gas (Figure 4.3C). Using the end-

member 
20

Ne/
22

Ne yields 
40

Ar
*
/
4
He = 0.09 ± 0.01 in the natural gas end-member. 

There is a coherent trend between 
20

Ne/
22

Ne and 
20

Ne/
36

Ar that mimics the isotope ratios 

(Figure 6.4). The distribution of data points along the mixing curve is similar to that of 

40
Ar/

36
Ar versus CO2 plot (Figure 4.3B) where both 2009 and 2012 samples from well 27-

3 plot significantly below the curve. The lowest 
20

Ne/
36

Ar (28F-2 2009; 0.148) is close to 

the value recorded by air saturated water (ASW) (0.163). The abundances of the non-

radiogenic noble gases (
20

Ne, 
36

Ar, 
84

Kr and 
132

Xe) are dealt with in Chapter 6. 
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Figure 4.3. 
20

Ne/
22

Ne of Cranfield well gases plotted against He and Ar isotopic ratios. A: 

3
He/

4
He, B: 

40
Ar/

36
Ar and C: 

40
Ar

*
/
4
He. In all cases the composition of the natural gas end-

member is determined by the previously determined 
20

Ne/
22

Ne of natural gas end-member 

(9.62) and the best fit line defined by the data. The bulkline is for illustration only. On 

figure B, data from well 27-3 was rejected when fitting the line. Uncertainties are 1σ. 
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4.4 Noble gas isotope composition of the in-place natural gas 

 

The He, Ne and Ar isotope ratios of the in-situ natural gas are consistent with an origin in 

the shallow crust, and provide no evidence of significant mantle-derived volatiles. The He 

concentration (~3 x 10
-4

 cm
3
 STP/cm

3
) overlaps with the range measured in natural 

methane deposits that have not been affected by leakage of mantle volatiles (e.g. Ballentine 

et al., 1991; Kotarba et al., 2014). The 
40

Ar
*
/
4
He is significantly lower (0.09 ± 0.01) than 

the average production ratio in the continental crust (~0.2; Torgersen et al. (1989) and is 

the result of the preferential release of 
4
He from minerals at lower temperature than 

40
Ar by 

diffusion and/or ejection of α-particles. Again this is typical of oil field gases (Ballentine et 

al., 1996). 

The CH4/
36

Ar is indicative of the degree of gas–groundwater contact and gas transportation 

mechanism in the reservoir (Ballentine and O'Nions, 1994; Elliot et al., 1993). The 

CH4/
36

Ar from well 28F-2 2009 is 1.4 ± 0.05 x 10
7
. Under reservoir conditions (3km, 

100°C, 32 MPa, 2M salinity; Lu et al., 2012b) the concentration of CH4 in brine is ~2.1 

cm
3
 STP/cm

3
. This calculation is based on laboratory experiments and empirical equations 

after (Price et al., 1981). If the 
36

Ar originates from groundwater recharge (see Chapter 6) 

and the groundwater is taken as seawater after Lu et al., (2012b) the 
36

Ar concentration in 

the brine is 8.8 x 10
-7

 cm
3
 STP/cm

3
 (Smith and Kennedy, 1983). This gives CH4/

36
Ar of 

2.4 x 10
6
. This is considerably lower than value from 28F-2 2009. The higher value in well 

28F-2 2009, which is indicative of the Cranfield reservoir end-member suggest that not all 

the CH4 originates from the groundwater. This excess methane is unlikely to have been 

transported in the water phase (e.g. Ballentine and O'Nions, 1994). A more likely 

explanation is that the excess methane in the natural gas originates from the large amount 

of heavy hydrocarbons by decomposition and degassing, similar to that of noble gas 

degassing in natural hydrocarbon accumulations (e.g. Bosch and Mazor, 1988). This means 
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that some of the CH4 is transported in the reservoirs in the hydrocarbon phase. If this is the 

case the presence of CH4 in the gas phase may be affected by the efficiency of oil 

displacement during EOR activity in certain wells (see Chapter 6). Such an abnormal CH4 

concentration has been observed in production well 27-5 and discussed in 5.2.2.  

 

4.5 Tracing injected CO2 

 

The coherent relationship between the He, Ne and Ar isotope compositions of the 

production well gases (Figure 4.3) implies that they may be promising tracers of the 

injected CO2. The helium isotopic composition of well gases is plotted against the CO2 

concentrations in Figure 4.4A. Mixing curves are drawn between the 2009 and 2012 

injected gases and the in-situ natural gas end-member (
3
He/

4
He = 0.05 RA, see above). The 

curvature of the mixing lines is dependent on the 
4
He concentration in the injected gas and 

the in-situ natural gas. 

The 2009 and 2012 mixing lines overlap as the evolution of the injected gas (see section 

3.2) fairly well mirrors the gas mixing underground. Except from the five lowest CO2 

samples from 2009, all data plot within the area defined by the mixing curves, implying 

that they are consistent with the predicted binary mixing. This demonstrates that 
3
He/

4
He 

fingerprints the CO2 and has the potential to be used as a tracer CO2 from CCS sites where 

the difference between the helium isotopic composition of the injected and in-place gases 

is significant. 

Figure 4.4B shows the 
40

Ar/
36

Ar of the well gases plotted against the CO2 content, along 

with theoretical mixing lines. The curvature of mixing lines is defined by the 
40

Ar/
36

Ar of 

the natural gas (836) from the Ar-Ne relationship and data from injectors. The 

concentration of 
36

Ar has been determined above. The systematic mixing relationship 

observed for 
3
He/

4
He vs. CO2 is not as apparent in 

40
Ar/

36
Ar-CO2 space. The five low CO2 
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samples that plot above the mixing line in case of He, also plot above the curves. Samples 

from well 27-3 taken in both sampling campaigns plot significantly below the mixing 

curve. These may be due to the addition of small amount of atmosphere derived Ar that 

would lower 
40

Ar/
36

Ar ratios. 

The
 40

Ar
*
/
4
He ratio allows the effect of small addition of air-derived Ar to be removed 

(Equation 4.1). In Figure 4.4C the 
40

Ar
*
/
4
He is plotted against CO2 concentrations along 

with theoretical mixing lines. Generally, the data follow the mixing lines to a greater extent 

than Ar isotopes. As with He and Ar isotope data, the low CO2 samples plot above the 

mixing line. 

The five low CO2 concentration gases from 2009 are the general exception to the 

systematic mixing relationships identified in both CO2 vs. 
3
He/

4
He and 

40
Ar

*
/
4
He. In both 

cases, the data plot significantly above the theoretical mixing lines. The internal 

consistency of the noble gas isotope data suggests that this is unlikely to be the result of the 

addition of a third noble gas component. The simplest and most likely explanation is that it 

mirrors the loss of CO2 from the gas phase during the early (18 months after injection) 

phase of CO2 injection. The amount of CO2 sequestered and the sequestration mechanism 

are investigated in Chapter 5. 

Some of the remaining data points are also located slightly off the mixing curve on Figure 

4.4. Those may indicate that a small proportion of CO2 has been lost from the gas phase. 

This may comply well with the fact that there is a small but observable changes in the 

CO2/
3
He ratios in some high CO2 concentration samples in comparison to the Jackson 

Dome value (see e.g. Figure 5.3, page 101). Although the possibility of a minor CO2 loss 

in those samples is not exploited in this work, this indicates that noble gases could be a 

sensitive means for CO2 tracing. 
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Figure 4.4. The CO2 content of Cranfield well gases plotted against He and Ar isotopic 

ratios. A: 
3
He/

4
He, B: 

40
Ar/

36
Ar, C: 

40
Ar

*
/
4
He. Mixing lines are drawn between natural gas 

end-member determined by Ne isotopes in Figure 4.3. Uncertainties are 1σ. 
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4.6 Conclusions 

 

The unique noble gas isotope composition of the Jackson Dome CO2 injected in the 

Cranfield CO2-EOR field facilitates testing how well He, Ne and Ar isotopes can be used 

to trace injected gas. The isotopic composition of well gases from Cranfield defines binary 

mixtures between injected gas and the in-place natural gas. This allows the noble gas 

isotopic composition of the reservoir gas to be determined. 
3
He/

4
He and 

40
Ar

*
/
4
He of 

produced gas samples plot on theoretical mixing lines with CO2 content suggesting that, 

the noble gas isotopes track the presence of the injected CO2. In general the noble gas 

ratio(s) are much more sensitive to CO2 concentration changes over the whole range of 

CO2 concentration than δ
13

CCO2. Also in the noble gas system there is potentially flexibility 

to adjust the tracer to a certain need. The five samples with the lowest proportion of CO2 

sampled in 2009 sit above the theoretical mixing lines. The most likely explanation is that 

a significant proportion of CO2 has been lost from the gas phase. This loss is discussed 

further in Chapter 5. 
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Chapter 5  

Storage mechanism of the injected CO2 in the Cranfield field 

 

5.1 Introduction 

 

In the previous chapter it has been shown how the He, Ne and Ar isotope data from five 

production well gases at the Cranfield EOR site sampled in 2009 appear to record the loss 

of some amount of CO2 from the gas phase. Here two methods are used to quantify the 

extent of CO2 loss and demonstrate how the noble gas isotopes can be used to distinguish 

the fate of the CO2. The mechanism responsible for the CO2 loss is investigated using 

variation in the CO2/
3
He as well as noble gas and carbon isotope compositions, and with 

production well data. The storage mechanism of the CO2 is discussed and compared with 

the findings of previous studies. 

 

 

5.2 Quantifying CO2 loss from the gas phase 

5.2.1 3
He/

4
He and 

40
Ar

*
/
4
He vs. CO2 

 

The majority of the production well gases sampled in 2009 and 2012 are consistent with 

the simple two component mixing in 
3
He/

4
He-CO2 and 

40
Ar

*
/
4
He-CO2 diagrams (see 

section 4.5). Therefore the CO2 concentration of any free gas sample can be calculated 

from the 
3
He/

4
He and 

40
Ar

*
/
4
He value. 

In this section the loss of CO2 is quantified in each well. For gases that have lost CO2, the 

off-set between the predicted and measured CO2 represents the absolute change in 

concentration. The proportion of lost CO2 is calculated from Equation 5.1: 

𝐶𝑂2 𝑙𝑜𝑠𝑠(%) =  
[𝐶𝑂2]𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  [𝐶𝑂2]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

[𝐶𝑂2]𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
100 Equation 5.1 
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However, the process responsible for CO2 loss may result in the fractionation of noble gas 

element ratios such as 
40

Ar
*
/
4
He, in which case the equation above cannot fully quantify 

the relative loss. This could slightly affect the predicted CO2 concentration. Relative CO2 

loss is calculated on the basis of the relationships of 
3
He/

4
He-CO2 and 

40
Ar

*
/
4
He-CO2. 

Additionally the theoretical CO2, obtained from the 
3
He/

4
He-CO2 relationship is used to 

estimate a theoretical 
40

Ar
*
/
4
He on the bases of 

40
Ar

*
/
4
He – CO2 mixing relationship (Table 

5.1). The newly calculated 
40

Ar
*
/
4
He value allows estimation of the CO2 loss if 

3
He/

4
He 

had not fractionated during the loss, which is certain. The predicted CO2 content of the five 

low CO2 well gases using 
3
He/

4
He and both, measured and predicted 

40
Ar

*
/
4
He are shown 

in Table 5.2. The proportion of the injected CO2 lost from the gas phase calculated for the 

measured 
3
He/

4
He ratios is between 30% (27-5 2009) and 93% (28F-2 2009). From the 

measured 
40

Ar
*
/
4
He ratios the range is 22% to 96% and from the predicted 

40
Ar

*
/
4
He ratios 

the range is 44% to 97%. It should be noted that the contribution of these wells to the total 

produced CO2 is yet unknown. 

Uncertainties in the proportion of CO2 loss are dependent upon two factors: 1) the 

uncertainty in the CO2, 
3
He/

4
He and 

40
Ar

*
/
4
He measurements, and 2) the uncertainty of 

both the natural gas and the injected gas end-members (ratios and concentrations) that 

define the mixing curves (see 4.3.1). The propagated uncertainties reveal that the 

proportional loss of CO2 calculated by the three different methods (
3
He/

4
He and two 

40
Ar

*
/
4
He) overlaps within 2σ uncertainty in case of well 28F-2, 29F-1 and 44-2 (Table 

5.2). The large difference between the calculated relative loss, obtained from the method 

40
Ar

*
/
4
Hepredicted and the two remaining may be explained by the high 

4
He (3.14 x 10

-4
 cm

3
 

STP/cm
3
) concentration (and therefore the inconsistency in the 

40
Ar

*
/
4
He ratio in 

comparison to others). This is higher than the 
4
He content of the end-member natural gas 
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(see 4.4) and may be explained by heterogeneity of the concentration of 
4
He in the natural 

gas. Explanation is given for the observed differences in well 27-5 in 5.2.2. 

 

Table 5.1. Measured and theoretical 
40

Ar
*
/
4
He of well gases that have lost CO2. 

Calculation is based on the 
3
He/

4
He-CO2 and 

40
Ar

*
/
4
He-CO2 system. Uncertainties are 1σ 

in brackets. 

Well Measured 
40Ar*/4He 

Theoretical 
40Ar*/4He 

28F-2 

2009 

0.130 (7) 0.142 (13) 
29F-1 

2009 

0.155 (8) 0.190 (16) 

44-2 2009 0.228 (12) 0.261 (19) 

29-5 2009 0.202 (9) 0.361 (15) 

 

 

27-5 2009 0.352 (18) 0.381 (30) 

 

 

Table 5.2. The percentages of CO2 loss from the 2009 well gas samples based on CO2/
3
He 

and noble gas ratios. 
40

Ar
*
/
4
He ‘measured’ refers to the use of measured ratio, while 

‘predicted’ refers to the calculated 
40

Ar
*
/
4
He on the basis of the 

3
He/

4
He – CO2 and 

40
Ar

*
/
4
He relationship. 2σ uncertainties are in parentheses. 

Well CO2/
3He CO2-

3He/4He 

CO2-
40Ar*/4He(measured) 

CO2-
40Ar*/4He(predicted)   

28F-2 2009 96 (2) 93 (4) 96 (4) 97 (3) 
29F-1 2009 91 (4) 84 (4) 90 (4) 93 (6) 

44-2 2009 89 (4) 77 (4) 85 (6) 87 (8) 

29-5 2009 71 (12) 30 (8) 22 (8) 

 

 

51 (4) 

27-5 2009 NA 28 (6) 42 (4) 44 (3) 

 

  



92 

 

5.2.2 CO2/
3
He 

 

Previous studies have demonstrated that CO2/
3
He of natural gases is a powerful tracer of 

the history of crustal natural gases that were derived from magmatic sources (e.g. Marty et 

al., 1989). Figure 5.1 shows the CO2/
3
He of the Cranfield gases plotted against the CO2 

concentration. The injected gases show a slight increase in CO2/
3
He from 2009 (1.84 x 10

9
) 

to 2012 (2.71 x 10
9
), which overlap the range of Jackson Dome CO2 (1.1 x 10

9
 – 4.6 x 10

9
 

Zhou et al. (2012) and magmatic gases in general (10
9
 – 10

10
, Marty and Jambon (1987). 

Mixing curves are drawn between the natural gas (black circle on Figure 5.1, CO2/
3
He = 

1.9 x 10
9
 and the extreme Jackson Dome values (small yellow squares on Figure 5.1). The 

natural gas composition has been calculated by using the concentration of 
4
He and 

3
He/

4
He 

from section 4.3 (3 x 10
-4

 cm
3
 STP/cm

3
 and 0.05 RA) and the pre-injection CO2 

concentration of 4% after Lu et al. (2012b). CO2/
3
He values of the production well gases 

vary between 9.65 x 10
7
 (28F-2 2009) and 4.01 x 10

9
 (29-5 2012), the majority of which 

fall on the mixing trend. Gases from both injector wells, all the production wells in 2012, 

and the high CO2 wells from 2009 have lower CO2 concentrations that reflect the dilution 

of the injected CO2 by the in-place reservoir CH4. The four 2009 gas samples with the 

lowest CO2 content (and the lowest 
3
He/

4
He and 

40
Ar

*
/
4
He) have CO2/

3
He that are 

considerably lower than injected gases. This is consistent with the loss of CO2 from the gas 

phase and cannot be explained by mixing with the in-place natural gas. 

The gas sample from well 27-5 taken in 2009 is an exception. Although the 
3
He/

4
He-CO2 

and 
40

Ar
*
/
4
He-CO2 relationships shows that it suffered CO2 loss (Figure 4.4A & C) this is 

not apparent from the CO2/
3
He ratio which overlaps the range in Jackson Dome and 

injected gases. The CO2/
3
He – [CO2] relationship indicates that there has been significant 

dilution of the CO2 but no significant change in the CO2/
3
He ratio. Well 27-5 was the most 

prolific oil producer of all the Cranfield wells. The gas/oil (G/O) and gas/water (G/W) ratio 

is lower than observed in all other oil producing wells (including those sampled in 2012).  
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Figure 5.1. Plot of CO2/
3
He against CO2 concentration for Cranfield well gases. The pink 

surface is showing the range of global magmatic CO2/
3
He (Marty and Jambon, 1987). 

Mixing curves are drawn between the natural gas and mean Jackson Dome CO2/
3
He 

(continuous line) and minimum and maximum Jackson Dome CO2/
3
He (dotted lines). The 

effect of dilution by the in-place natural gas (pure CH4), addition and loss of CO2 are 

shown by arrows. Four 2009 production well gases appear to have lost a significant 

amount of CO2. These are the same samples that show CO2 loss according to 
3
He/

4
He and 

40
Ar

*
/
4
He data (Figures 4.4A & C). Yellow square represents the average measured in 

Jackson Dome CO2, small squares its extreme values (Zhou et al., 2012). 1σ uncertainties 

are smaller than symbols. 
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In 2009 G/O = 9.2, while the average field value is 86, with an individual well exceeding 

256 (well 29-6) in December 2009. Similarly, the G/W = 3.9, average field value is 10.4 

with the maximum value of 32 (well 28-2), in 2009 (personal communication with field 

operator) (see well data in Table I.10. in the Appendix). The degassing of He-poor CH4 

from the oil is the likeliest explanation for observed data in well 27-5.  

In order to quantify the loss of CO2 from the four low CO2/
3
He well gases, the measured 

CO2/
3
He with the average of Jackson Dome CO2/

3
He (2.5 x 10

9
;
 
Zhou et al., 2012) and 

4.2.1) are compared. The proportional loss of CO2 calculated using Equation 5.1 can be 

seen in Table 5.2. It ranges from 71% (well 29-5) to 96% (well 28F-2). Uncertainties are 

propagated using the measured CO2 and 
3
He concentration data from each well and the 

standard deviation of the Jackson Dome CO2/
3
He value (σ = 5 x 10

8
) using the two 

extreme values (see above). Except for well 29-5, the data agree with the CO2 loss 

calculated using the methods described in section 5.2.1 (Table 5.2). The high degree of 

CO2 loss calculated for well 29-5 (71%) compared to the 
3
He/

4
He and 

40
Ar

*
/
4
He based 

methods (30%, 22% and 51% respectively) may be explained by heterogeneity in 
4
He/CH4 

ratio of the natural gas. 

 

5.2.3 Quantifying the total CO2 loss 

 

Using the amount of CO2 lost in each well provides a means to estimate the percentage of 

cumulative injected CO2 that has been lost. The injected gas is a mixture of the produced 

gas and the incoming Jackson Dome gas (Choi et al., 2013). The composition of the 

cumulative produced gas (before mixing with the Jackson Dome CO2 to form the injected 

gas composition, see Figure 6.1) could not be measured. However it is estimated that by 

December 2009 the CO2 made up 82.5% of the produced gas, which is equivalent to 0.35 

Mt produced CO2 (see calculation in 6.2 for more details). This estimate is based on the 

amount of produced gas at the time of sampling, weighted by the concentration of CO2 as a 
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proportion of the total produced gas. The calculation uses production well data as if no 

CO2 loss had happened.  

The theoretical total amount of produced CO2 can be estimated in the same way. In this 

case the CO2 concentrations from those four wells (therefore the amount of produced CO2 

in each well) where CO2 loss was identified are replaced with the predicted value based on 

the 
3
He/

4
He - CO2 relationship (Table 5.3). The calculation with these modified data reveal 

78% CO2, equivalent to be 0.36 Mt produced CO2, suggesting that ~0.01 Mt has been lost 

from the free gas phase. Until December 2009 1.4 Mt of new CO2 (excluding recycled) 

was injected in Cranfield (Hovorka et al., 2013), which means that approximately 0.7% of 

the injected Jackson Dome gas has been lost from the gas phase. This is in comparison to 

the gas that had been retained until December 2009 based on this calculation (1.4 – 0.35 = 

1.05 Mt) (see also Hovorka et al., 2013) is negligible (0.09%) and is considered a 

maximum value (see 6.2). 

 

 

Table 5.3. The observed and calculated CO2 concentration and amount of gas produced 

where CO2 loss has been found. The calculation is based on the 
3
He/

4
He and CO2 

relationship where the theoretical CO2 is the most certain. The theoretical gas amount in 

each well allows the cumulative CO2 loss to be estimated (see text). 

 

Well Measured 

CO2% 

Measured 

gas (x 10-6 

Mt/day) 

Theoretical 

CO2% from 
3He/4He 

Theoretical 

injected gas       

(x 10-6 Mt/day) 

28F-2 2009 0.9 3 11.8 43 
29F-1 2009 3.3 5 21.8 31 

44-2 2009 8.4 4 36.5 17 

29-5 2009 40 3 57.5 4 
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5.3 Mechanism of CO2 loss 

5.3.1 He and Ar isotope constraints 

 

The possibility that the CO2 injected into the Cranfield field has dissolved into a fluid 

phase can be tested by exploiting the differential solubility of the noble gases and CO2 in a 

likely fluid phase. The relative solubility of noble gases in water (Xe>Kr>Ar>Ne>He) 

(Smith and Kennedy, 1983) means if dissolution has occurred the lighter noble gases will 

be enriched in the gas phase. Noble gases was first applied in fluid interaction studies in 

the 1960s (Zartman et al., 1961) and has subsequently been used to constrain gas migration 

(e.g. Battani et al., 2000), oil bank estimation (e.g. Ballentine et al., 1996) as well as CO2 

migration mechanism (e.g. Gilfillan et al., 2008). 

The CO2/
3
He and 

40
Ar

*
/
4
He of the Cranfield injection and production wells are plotted in 

Figure 5.2 along with theoretical mixing lines between the Jackson Dome CO2 (Zhou et al., 

2012) and the in-place reservoir gas (see 4.4). The majority of the well gas data plot within 

the mixing zone. 

The four data points that have lost CO2 plot significantly below the mixing line. 

Dissolution into a fluid will result in a decrease in 
40

Ar
*
/
4
He of the gas phase due to the 

greater solubility of Ar in water than He (Zartman et al., 1961). The theoretical CO2 

concentration of each sample was calculated on the basis of CO2–
3
He/

4
He relationship (see 

4.5 and Table 5.3) and used to determine a theoretical 
40

Ar
*
/
4
He according to the mixing 

equation between CO2 and 
40

Ar
*
/
4
He (Table 5.1). Fractionation curves (dashed line) are 

drawn from the initial values with increasing amount of dissolution (decreasing the 

gas/water ratio). Henry constants (K) for CO2 and noble gases were calculated for reservoir 

conditions: 3 km depth, ~100°C, 32 MPa, ~2M salinity (Lu et al., 2012b). They were 

found to be KCO2 = 0.88 and KHe = 18.5 GPa and KAr = 12.3 GPa. Calculations have been 
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made after Ballentine et al. (2002) and references therein (see data in Table I.11. in the 

Appendix). 

 

 

Figure 5.2. Plot of CO2/
3
He against 

40
Ar

*
/
4
He for Cranfield well gases. The mixing 

between natural gas end-member and Jackson Dome is shown as thin orange lines, with 

best estimate shown as thick orange line. The extreme values of the Jackson Dome 

CO2/
3
He are indicated as small yellow squares. Samples significantly below the mixing 

region show CO2 loss. Curved lines show the batch fractionation curves for water 

dissolution in different gas/water (G/W) ratios. Their starting point is the calculated 

theoretical 
40

Ar
*
/
4
He (see text) value for each sample. Except well 29-5 all data can be 

explained by solubility controlled processes (see text). Uncertainties are 1σ.  
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The measured 
40

Ar
*
/
4
He of gases from wells 44-2, and 29F-1 sit on the predicted 

dissolution curve, supporting the contention that the low CO2 content of these samples is 

due to dissolution into water. Gas from well 29-5 has a lower 
40

Ar
*
/
4
He than predicted and 

is explained by the high 
4
He concentration (see section 5.2.1). 

The measured 
40

Ar
*
/
4
He from well 28F-2 lies to the right of the theoretical fractionation 

curve. A possible hypothesis can be given to explain this: The 
40

Ar
*
/
4
He of the natural gas 

may vary throughout the reservoir. For instance well 28F-2 is on the east side of the fault 

that dissects the field, while 44-2 is on the west side (Figure 3.1). Well 28F-2 has a higher 

degree of water degassing (i.e. more noble gases have entered to the gas phase from the 

water phase) than 44-2 (see e.g. Figure 6.5). If it is in connection with a higher 
40

Ar
*
/
4
He 

fluid and the dominant mechanism is the gas stripping as opposed to dissolution, the 

40
Ar

*
/
4
He ratio will decrease from the initial value (e.g. 0.2) but would never reach the 

fractionation line until dissolution becomes more important than stripping. To test this 

hypothesis precise baseline data would be needed from both parts of the reservoir as well 

as non-radiogenic noble gas data from well 29F-1. That well is the neighbour of 28F-2 

hence the initial 
40

Ar
*
/
4
He would be expected to be the same (e.g. 0.2). As 29F-1 lies on 

the fractionation curve on Figure 5.2 it would be expected to show near zero water 

degassing on Figure 6.5. The competitive stripping and dissolution is similar to that of 

described by Gilfillan et al. (2008). 

Although the Jackson Dome composition could be slightly different due to its natural 

variability (small yellow squares on Figure 5.2) it has little effect on the shape of the 

fractionation curve. 

The noble gases are considerably more soluble in oil than in water and the relative 

solubility is the same than in water (Kharaka and Specht, 1988; Smith and Kennedy, 

1983). Consequently the residual gas phase after dissolution in oil would be more depleted 

in the heavy noble gases than if the gas was dissolved in water. The resulting fractionation 
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curves would be less vertical than in Figure 5.2. Therefore only data point that plot to the 

left of the water dissolution fractionation curve could be explained by the presence of oil. 

No data (except 27-5, explained above) plot to the left of the water curve therefore 

significant dissolution in oil can be ruled out. This is also supported by well data because 

except for 29F-1, the wells did not produce any oil by the time of sampling. See also 

Chapter 6. 

 

5.3.2 Carbon isotopes 

 

The fractionation of δ
13

CCO2 and CO2/
3
He has previously been used to distinguish between 

CO2 precipitation to carbonate minerals and dissolution into the water (Gilfillan et al., 

2009). This technique has been applied in natural gas fields (Dubacq et al., 2012; Zhou et 

al., 2012) but to date it has not been used in a CO2 injection field. 

Lu et al. (2012b) have reported the δ
13

C of CO2 from several production well gases that 

were sampled during the 2009 campaign at the same time as samples for noble gas isotopes 

were collected for this study. This includes one of the four well gases that suffered CO2 

loss (29F-1; δ
13

C = -4.81 ‰). This can be combined with the CO2/
3
He from this study in 

order to test the CO2 dissolution model. 

The effect of dissolution into groundwater and mineral precipitation on CO2/
3
He and 

δ
13

CCO2 is shown in Figure 5.3. The plotted data use the CO2/
3
He data from this study and 

δ
13

CCO2 values measured at SUERC (symbols as per Figure 5.2) or from Lu et al. (2012b) 

(small grey circles). Where δ
13

CCO2 has been measured in both laboratories the data tend to 

overlap within 1σ uncertainty. The starting point for the fractionation curves is the average 

Jackson Dome CO2 (yellow square; CO2/
3
He = 2.5 x 10

9
, δ

13
CCO2 = -2.96 ‰; Zhou et al. 

(2012). The large variation in Jackson Dome CO2/
3
He is demonstrated by the small yellow 

square which represents the minimum value CO2/
3
He (Zhou et al., 2012). The Jackson 
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Dome CO2/
3
He is combined with δ

13
CCO2 from Lu et al. (2012b) (-2.6 ‰) and shown as a 

grey square. The data typically have CO2/
3
He ratio that are within the Jackson Dome range 

but well 29F-1 is significantly below any Jackson Dome value and the δ
13

CCO2 is much 

lower than all others. 

The dotted line shows the predicted trend for carbonate precipitation according to the 

Rayleigh fractionation equations for the CO2–calcite system after Deines et al. (1974), 

using equations after Gilfillan et al. (2009). The change in the CO2/
3
He ratio as a function 

of the fraction of the CO2 precipitated is given by Equation 5.2. 

(
𝐶𝑂2

𝐻𝑒3 )
𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛

=  (
𝐶𝑂2

𝐻𝑒3 )
𝐽𝑎𝑐𝑘𝑠𝑜𝑛 𝐷𝑜𝑚𝑒

(1 −
(𝐶𝑂2)𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒𝑑(%)

100
) Equation 5.2 

The continuous lines show the trend expected by dissolution into water at different pH 

under reservoir conditions (see above). Calculations have been made assuming that CO2 

forms either H2CO3 or HCO3
-
 but negligible CO3

2-
 (Gilfillan et al., 2009) (see data in Table 

I.12. in the Appendix). 

The proportion of H2CO3 or HCO3
- 
is pH dependent and can be calculated by Equation 5.3 

𝑝𝐻 = 𝑝𝐾𝑎 + log
[𝐻𝐶𝑂3

−]

[𝐻2𝐶𝑂3]
 Equation 5.3 

where pKa is 6.3 (Fritz and Fontes, 1980). Henry constants for He and CO2 for the 

calculations are those calculated in 5.3.1.  

The low CO2 sample (well 29F-1) plots significantly below the mineral precipitation line 

which tends to rule out significant transformation of CO2 into carbonate minerals. It plots 

between the dissolution lines defined by pH 6 and 7. This supports the evidence from noble 

gases that the local groundwater is the sink of the injected CO2. This reservoir pH 

estimation is not far from that measured by Lu et al. (2012b) (pH = 5.8), however their 

value has been measured on the surface and is expected to be somewhat higher under 

reservoir conditions (see Lu et al. (2012b). The quantification of the degree of dissolution 
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is difficult to obtain because of the variability of the Jackson Dome gas CO2/
3
He and 

δ
13

CCO2. 

 

 

Figure 5.3. The plot of CO2/
3
He versus δ

13
CCO2 for Cranfield well gases. The dashed line 

shows the theoretical mixing. The dotted line shows the fractionation trend for carbonate 

precipitation, while continuous lines plot fractionation expected for dissolution in water at 

different pH values (Gilfillan et al., 2009). Sample 29F-1 (red circle) plots in the 

dissolution field. Uncertainties are 1σ. 
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5.4 Storage of injected CO2 

 

On balance it seems that the CO2 loss is best explained by dissolution into the saline 

groundwater. The lack of evidence for mineral trapping is consistent with the predicted low 

pace of carbonate formation (Bachu et al., 2007). In contrast, other siliciclastic reservoirs 

have shown that up to 18% of the CO2 in the Bravo Dome (Gilfillan et al., 2009), and up to 

27% in the Jackson Dome (Zhou et al., 2012) has been trapped in mineral form. CO2 

dissolution into groundwater is more common than mineral precipitation in natural gas 

fields even on long time scales (Battani et al., 2000; Bosch and Mazor, 1988; Gilfillan et 

al., 2009; Zhou et al., 2012). CO2 dissolution has been demonstrated by a sharp decrease in 

the pH of brine from the Frio experimental site where 1600 tonnes of CO2 were injected 

(Kharaka et al., 2006). Solubility trapping has also been found to have an important role in 

storing CO2 from the beginning of injection (see Figure 1.3). 

The majority of the CO2 injected at Cranfield over the 3 year period of this study appears to 

have remained as a free gas phase with no significant gas loss. In the majority of the 

production well gas samples the noble gas isotopic and elemental ratios can be explained 

by mixing between injected and reservoir gases. This means that neither mineral nor 

solubility trapping processes have resulted in the storage of a significant volume of CO2. 

Whether some of the CO2 is retained by residual trapping (see 1.3.1) is something that 

isotope geochemistry cannot model on current knowledge. Due to the nature of that 

trapping mechanism the CO2/noble gas ratio should be more or less unchanged, as it is 

similar to stratigraphic trapping. Although some degree of the occurrence of residual 

trapping cannot be ruled out it is expected to become significant only after CO2 injection 

has stopped (e.g. Lu et al., 2013). 

Conclusions made on how the majority of CO2 is stored in Cranfield are fully consistent 

with the work carried out by Lu et al. (2013). They concluded that the CO2 was dominantly 
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trapped as a free gas, on the basis of seismic data and core analysis at Cranfield. The 

Cranfield reservoir is a four-way anticline, which is an ideal condition for structural 

trapping. The Cranfield reservoir water has high salinity and is saturated with CH4 (Lu et 

al., 2012b), making it difficult to dissolve CO2. The reservoir fluid geochemistry remained 

mostly unchanged for major anions and cations, during the 14 months of injection (Lu et 

al., 2012b). The abundance of reactive minerals is low (Lu et al., 2012b; Lu et al., 2013). 

Also, the 3.6 Mt of injected gas (excluding recycled) by early 2012 is an extremely high 

amount.  

The storage mechanism may be a function of the relative CO2 flux compared to the volume 

(and type) of reservoir fluids. The number of injection and production wells, the 

complexity of the injection schedule (Choi et al., 2013) and the absence of injection data 

means reconstructing the CO2 flux at any well at the time of sampling at Cranfield is rather 

imprecise. 

However Table 5.4 shows an attempt to calculate the amount of injected CO2 that could 

have reached the production wells. These calculations use the injection data from the wells 

that directly surround each production well (usually from three to five injectors). The data 

reflect the injected CO2 on the day of sampling in 2009 (personal communication with 

field operator), or the day closest to the time of sampling (MSOGB, 2015). The volume of 

injected CO2 was weighted by the reciprocal of the relative linear distance between each 

injector and the producer, and a weighted average amount of injected CO2 was calculated. 

This does not take into account changes in fluid flow, caused by heterogeneity in, for 

example, the permeability of the rocks between the injectors and producers. 
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Table 5.4. The average amount of injected gas around the production wells and the amount 

of produced oil in 2009 production wells. Wells are categorized into low and high flux 

production wells. 28F-2, 29F-1, 44-2 and 29-5 show low flux (see text). In case of the first 

two it is explained by the low amount of injected gas. In case of 44-2 and 29-5 the lack of 

oil is the indicator, which suggests geological heterogeneity. Source: MSOGB (2015). 

Well CO2% Injected CO2;        

m3 STP/day (x 103) 

around the well 

Produced oil  

m3/day  

28F-2 0.9 65.7 0 
29F-1 3.3 86.9 10.8 

44-2 8.4 203.5 0 

29-5 40.0 142.6 0 

27-5 46.9 151.8 57.8 

29-1 80.7 107.4 13.0 

29-9 94.9 148.9 7.8 

27-3 81.0 176.0 22.1 

28-2 80.4 180.1 32.8 

29-6 91.8 149.1 7.5 

 

 

The volume of injected CO2 ranges from 65.7 to 203.5 m
3
. The lowest volume of injected 

gas was around wells 28F-2 and 29F-1 (65.7 and 86.9 respectively). The two other wells 

that have shown CO2 loss (44-2 and 29-5) do not show low injected volumes (203.5 and 

142.6 respectively). However, they had not produced oil by December 2009, implying a 

low CO2 flux to the well. This may be governed by the presence of low permeability rocks 

that limits the CO2–oil contact and is supported by core analysis that showed large 

permeability variations within the reservoir sandstone, from <1 and 1900 mD (Lu et al., 

2013). In all other cases the high amount of injected gas from surrounding injectors is 

accompanied by significant oil production, therefore the CO2 flux is relatively high in 

comparison to the four discussed. 
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5.5 Conclusions 

 

The proportion of CO2 loss can be best estimated by the combined use of CO2/
3
He – CO2 

and 
3
He/

4
He – CO2 systems. It was quantified to be ~0.1% of the total injected gas. 

According to the fractionation of CO2/
3
He and 

40
Ar

*
/
4
He, solubility controlled processes 

are responsible for the observed CO2 loss. This is supported by the fractionation of δ
13

CCO2. 

The majority of wells that did not show loss of gas are consistent with a stratigraphic (or 

residual) trapping mechanism that was found to be the most important storage mechanism 

in Cranfield previously (Lu et al., 2013) and expected within the timescale of CO2 injection 

(Bachu et al., 2007). The different trapping mechanism observed spatially and temporary 

are consistent with the differences in the average CO2 flux under production wells. 
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Chapter 6  

Examining the interaction of injected CO2, brine and oil in the Cranfield 

fluid reservoir using non-radiogenic noble gases 

 

6.1 Introduction 

 

In the previous chapters the mixing between injected and reservoir gas has been examined 

using the radiogenic noble gas isotopes. The Ne-Ar isotope systematics led to the 

conclusion that a small contribution of atmosphere-derived gases is present in the Cranfield 

reservoir fluids (section 4.3). The atmosphere is the dominant reservoir of non-radiogenic 

noble gas isotopes in the Earth, and recharge of air saturated water (ASW) is the dominant 

mechanism for introducing these gases into the shallow crust. The large mass range of the 

dominant non-radiogenic noble gas isotopes (
20

Ne, 
36

Ar, 
84

Kr and 
132

Xe) means that ASW 

patterns are fractionated significantly by physical processes such as variation in 

atmosphere equilibration temperature, evaporation and equilibrium with other fluids (e.g. 

Kennedy et al., 2002).  

Natural gases, both CH4-rich and CO2-rich, typically have non-radiogenic noble gas 

patterns that are consistent with derivation from an air saturated water source (e.g. Pinti 

and Marty, 1995). Variation of 
20

Ne/
36

Ar, 
84

Kr/
36

Ar and 
132

Xe/
36

Ar ratios in natural gases 

can be used to identify the degree of gas–water interaction (e.g. Battani et al., 2000) and 

even gas-water–oil interaction (Bosch and Mazor, 1988). 

In this chapter the 
20

Ne/
36

Ar, 
84

Kr/
36

Ar and 
132

Xe/
36

Ar ratios of the gas end-members in the 

Cranfield reservoir are identified, and the data from production wells are used to test the 

mixing models identified in Chapters 4 and 5, with the specific intention of trying to track 

the interaction history between injected CO2, brine and oil.  

As part of the SECARB (see 3.2) large-scale CO2 injection tests, a large volume of 

atmospheric Kr and Xe was injected into the Cranfield reservoir in late 2009 and early 



107 

 

2010 in the hydrologically-isolated ‘Detailed Area of Study’ (DAS) site (Lu et al., 2012a) 

(Figure 3.1). The possibility that the injected Kr and Xe migrated from the DAS site into 

the main reservoir is a complication that must be assessed beforehand to determine 

whether the heavy noble gases constrain sources and mixing history. 

 

6.2 The influence of injected Kr and Xe at the DAS site 

 

This section investigates whether there has been any significant leak of heavy noble gases 

from the DAS site into the main reservoir. To this end a three-component mixing system is 

set up: Bulkline gas, main reservoir prior to injection (well 28F-2, see section 4.2.1) and 

the gas injected at the DAS site (see Table 6.1). The Kr/Xe ratios of the production wells 

from the main reservoir are compared to the proposed end-members in order to assess the 

extent of leakage. 

Noble gas tracers were injected into the DAS site on 3
rd

 December 2009 and 15
th

 April 

2010 (Gilfillan et al., 2011; Lu et al., 2012a). The injected gas was approximately 50% N2, 

40% Kr and 10% Xe (Gilfillan et al., 2011). As the isotopic composition of the injected Kr 

and Xe is identical to air (see Table I.13 in the Appendix), the 
84

Kr/
132

Xe ratio of the 

injected gas is 27.8 (unpublished data, S. Gilfillan). This is significantly higher than the 

range of values measured in production gases from the main Cranfield reservoir from both 

years (9.09 –14.13) (Table 6.2). 

The first injection of Kr and Xe at the DAS site occurred 2 days before the production 

wells from the main reservoir were sampled in 2009 for this study. The breakthrough of the 

injected 
84

Kr in the observation well at the DAS site, 68 m from the injector (well 31F-1), 

took 15 days (Gilfillan et al., 2011). Gases sampled from the main reservoir production 

wells in December 2009 for this study are several hundreds of meters away from the DAS 
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injection well. Therefore it is highly unlikely that the injected Kr and Xe are present in any 

of the 2009 production well gases. 

A substantial time (827 days) had elapsed between tracer injection and the March 2012 

sampling campaign. Given the rate of movement through the DAS site, the injected Kr and 

Xe could have reached many of the wells in the main reservoir if it is not hydrologically 

isolated. As a result the injected DAS site gas is only possible in the 2012 production well 

samples. 

 

6.2.1 84
Kr/

132
Xe in the DAS site in March 2012 

 

In order to assess the extent, if any, of the injected DAS site gas in the main reservoir the 

Kr and Xe concentration of the leaking gas must be determined. It has three sources of Kr 

and Xe: i) the artificial gas added to the CO2 stream, ii) the injected Jackson Dome CO2 

(Zhou et al., 2012) and iii) the pre-injection reservoir gas. 

i) Approximately 1.49 m
3
 STP of atmospheric Kr was injected on 3/12/2009. This equates 

to 0.852 m
3
 STP of 

84
Kr. During the second injection phase 0.574 m

3
 Kr ,so 0.327 m

3
 STP 

of 
84

Kr, were injected (Gilfillan et al., 2011; Lu et al., 2012a). The total injected 
84

Kr was 

therefore 1.18 m
3
 STP by March 2012. 

ii) The Jackson Dome CO2 carried 1.78 x 10
-10

 cm
3 
STP/cm

3
 Kr (Zhou et al., 2012). The 

DAS CO2 injection started in December 2009 and the average injection rate until March 

2012 was ~0.09 Mt/a (personal communication with J. Lu). This means that ~0.2 Mt CO2 

(~1 x 10
8
 m

3
 STP) was injected by March 2012. Using the 

84
Kr concentration of the 

Jackson Dome CO2 from Zhou et al. (2012) the total amount of injected 
84

Kr is calculated 

to be 0.02 m
3
 STP. 

The injected CO2 in the DAS site is identical to that injected into the main reservoir. The 

recycling of production well gas means the injected gas is continuously being enriched in 
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84
Kr because (i) the high concentration in the reservoir gas (well 28F-2, 2.6 x 10

-9
 cm

3
 

STP/cm
3
) compared to Jackson Dome (1.8 x 10

-10
 cm

3
 STP/cm

3
), and (ii) it is not extracted 

(there is no production well). Although the degree of Kr enrichment could be calculated in 

the case of pure gas mixing, it is unknown whether i) only mixing is responsible for the 

changes of the concentration of 
84

Kr and ii) whether the reservoir gas enriches the injected 

gas and does not itself leak from the DAS site, investigation of which is the purpose of this 

section. It is unlikely that the calculated 
84

Kr (0.02 m
3
 STP) would change significantly as 

there is no obvious source or sink, and it is negligible compared to the artificially injected 

84
Kr (1.18 m

3
 STP), so such a small change would not change the interpretation in section 

6.2.2. 

iii) The amount of the naturally occurring 
84

Kr in the DAS site needs to be estimated. This 

can be done by estimating the amount of natural Kr in the main reservoir. 

To this end the following model is established. By Equation 6.1 & 6.2 (see Figure 6.1) 

𝐶3 =
M1𝐶1 − M𝑠𝐶1 + M2𝐶2

M1𝐶1 − M𝑠𝐶1 + M2𝐶2 + 𝑀2(1 − 𝐶2)
 Equation 6.1 

 𝐶4 =
2M1𝐶1 − M𝑠𝐶1 + M2𝐶2

2M1𝐶1 − M𝑠𝐶1 + M2𝐶2 + M2(1 − 𝐶2)
 Equation 6.2 

Where ‘C’ is concentration in % and ‘M’ is mass in Mt. 

The Jackson Dome CO2 (M1), with CO2 concentration (C1), mixes with an unknown 

amount of reservoir gas (M2) after injection, which is a mixture of CO2 and CH4 with CO2 

concentration (C2, 4%) (see Chapter 4). The mixed gas (M3), reduced by the amount of 

stored gas, retained in the reservoir (Ms) is extracted through production wells (M3 = 

M1+M2-Ms) has a CO2 concentration (C3). The produced gas (M3) is mixed with the 

incoming Jackson Dome gas (M1) and results in the injected gas, of which the 

concentration was measured (C4). The reinjection facility does not separate CO2 from CH4 
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thus the recycled gas is a CO2-CH4 mixture (Choi et al., 2013). The illustration of the 

model can be seen in Figure 6.1. 

 

Figure 6.1. Schematic picture of the gas cycle in Cranfield. For the model see text. 

 

This calculation assumes that all the initial reservoir gas remained in the gas phase and was 

extracted, i.e. there was no CO2 loss by dissolution or mineral precipitation (see section 

5.3). The model is used for December 2009, when all the production wells in operation 

were sampled. This allows the average composition of the recycled gas (C3), to be 

estimated. All producers contribute to the recycled gas according to the amount of gas 

produced and the CO2 concentration.  

Using the individual well data, the total amount of gas extracted up to December 2009 was 

0.4 Mt (personal communication with field operator). This is a maximum estimate because 

some wells started operating after the start of injection in July 2008. This value is close to 

the 0.2 Mt estimated by Hovorka et al. (2013). The average CO2 concentration of the 
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recycled gas (C3) can be calculated to be 82.5% by weighting the CO2 concentration of 

individual wells by the amount of gas produced, measured at the time of sampling. By 

using the composition of the injected gas in 2009 (96%) the boundary condition that C1 = 

100% and the total injected gas amount by December 2009 (M1 = 1.4 Mt) and the total 

recycled gas (M3 = 0.2 Mt) after Hovorka et al. (2013), the pre-injection gas (M2) can be 

estimated to be 0.08 Mt. 

The composition of the recycled gas is influenced by processes other than mixing such as 

dissolution, which is an important sink of the CO2 in some wells (see section 5.3). The 

most significant uncertainty is the assumption that all the reservoir gas was extracted. 

Nevertheless, this provides an approximate constraint on the amount of reservoir gas prior 

to injection. This is equivalent to 2.2 x 10
8
 m

3
 STP total gas in the main reservoir. 

The DAS site is smaller than the main reservoir. The mass of the gas can be estimated by 

using the relative volumes of the DAS site and main reservoirs. Since the average depth is 

the same in both reservoirs (~3 km) (Lu et al., 2012a, b) the surface area can be used for 

calculation. The main reservoir is approximately circular with a diameter of 6.4 km (Lu et 

al., 2012b), giving a surface area of 32.2 km
2
. The DAS site area is 1 km

2
 (Carter and 

Spikes, 2013). Using the estimated amount of gas in the main reservoir (0.08 Mt) this 

would mean 0.003 Mt and therefore 2 x 10
6
 m

3
 STP gas prior to injection in the DAS site. 

Using the concentration of 
84

Kr of well 28F-2 to represent the Kr concentration in the 

natural gas (2.6 x 10
-9

 cm
3
 STP/cm

3
) this means 0.004 m

3
 STP of 

84
Kr. 

The total 
84

Kr in March 2012 in the DAS site (1.18 + 0.02 + 0.004 m
3
 STP) is 1.204 m

3
 

STP. The concentration of 
84

Kr in the DAS site can be calculated by VKr/Vtotal gas where 

Vtotal gas is the sum of reservoir and injected gas (1 x 10
8
 + 2 x 10

6
) and is ~1 x 10

8
 m

3
 STP. 

Consequently the concentration of 
84

Kr is 1.2 x 10
-8

 cm
3
 STP/cm

3
. 

Calculating the Xe from the DAS site is hampered by the lack of a measured value in the 

Jackson Dome CO2. However in case of 
84

Kr the contribution of that source is only 1.6% 
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of the total 
84

Kr present in the DAS site by March 2012 and is therefore negligible. Here it 

is assumed that the 
132

Xe concentration in the Jackson Dome CO2 be proportionately small, 

considering the source of the gas (see Zhou et al., 2012). 

The remaining two sources of Xe in the DAS site (artificial injection and naturally 

occurring prior to injection) can be calculated. The cumulative amount of Xe injected into 

the DAS site in the two injection events (see above) was 0.14 m
3
 STP (Gilfillan et al., 

2011; Lu et al., 2012a). By using the concentration of Xe of the natural gas end-member 

(28F-2 2009, 1.2 x 10
-10

 cm
3
 STP/cm

3
) and the total gas amount in the DAS site prior to 

injection (2 x 10
6
 m

3
 STP) the baseline amount of Xe can be estimated to be 0.0002 m

3
 

STP, which can also be considered negligible. The concentration of 
132

Xe in the DAS site 

by March 2012 can be calculated by VXe/Vtotal gas where the total 
132

Xe is 0.14 m
3
 and the 

total gas is 2 x 10
6
 (natural gas) + 1 x 10

8
 (Jackson Dome) = ~ 1 x 10

8
 m

3
 STP. The 

concentration of 
132

Xe therefore is calculated to be 1.4 x 10
-9

 cm
3
 STP/cm

3
. As is apparent 

from the calculations, the predominant Kr and Xe source in the DAS site is the artificial 

tracer injection test. The concentrations of both isotopes are an order of magnitude higher 

in the DAS site than in the main reservoir and two order of magnitude higher that that of 

the bulkline gas. 

 

Table 6.1. Kr and Xe concentrations of the three main components in the Cranfield 

reservoir. Concentrations are cm
3
 STP/cm

3
. 

 84Kr 132Xe 

DAS site by March 
2012 

1.2 x 10-8 1.4 x 10-9 

Main reservoir 
prior to injection 

2.6 x 10-9 1.2 x 10-10 

Bulkline  2.8 x 10-11 4.9 x 10-12 
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6.2.2 Assessing the potential leak from the DAS reservoir 

 

The Kr and Xe concentration of the three main gas components in the main Cranfield 

reservoir are in Table 6.1 and shown in Figure 6.2 along with the injection and production 

well data from the main reservoir. The composition of the gas in the main reservoir prior to 

injection is taken to be represented by well 28F-2 (orange circle on Figure 6.2). If there has 

been no DAS site leakage the data would be expected to fall on the mixing line between 

the main reservoir gas and Jackson Dome CO2 in Figure 6.2. Leakage of Kr- and Xe-rich 

gas from the DAS site would be expected to generate gases from 2012 that plot at 

considerably higher concentrations of Kr and Xe than the natural gas, plotting between the 

bulkine-DAS injection and natural gas-DAS injection mixing lines.  

All the 2012 injection and production well gas data plot within the envelope defined by the 

three mixing lines, indicating that all three sources may have contributed (Table 6.2). 

However, there are several reasons why this is unlikely to be the case. The 2012 

production well gas samples have Kr/Xe ratios that are indistinguishable from the 2009 

production well data – in Figure 6.2 they plot along a trend that overlaps that described by 

the 2009 samples. As the 2009 data cannot be due to leakage of DAS injected gas this is 

difficult to explain by leakage. Furthermore, the highest Kr/Xe is from a production well 

27-5 that was sampled in 2009. Also, leakage from DAS site would likely be most evident 

in the production wells closest to the DAS site. Instead, the highest Kr and Xe 

concentration are found in well 70-2 2012 that is the farthest from the DAS site. 

These observations appear to show that significant leakage from the DAS site can be ruled 

out. This is consistent with studies that demonstrate the DAS site to be isolated from the 

main reservoir at Cranfield (Hovorka, 2013). That the production well gases do not have 

Kr-Xe composition indicating simple two component mixing in Figure 6.2 imply that a 

process other than mixing has occurred in the main reservoir. 
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Figure 6.2. The concentration of 
132

Xe and 
84

Kr in Cranfield injection and production well 

gases. In case of a simple gas mixing between injected (bulkline, black square) and 

reservoir (well 28F-2, orange circle) in the main reservoir, the data would lie on the black 

mixing line. If there was no CO2 injection into the main reservoir but into the DAS site 

only, data would be on the dashed line between the main reservoir gas and gas injected at 

the DAS site (yellow circle in embedded figure). The bulkline – DAS mixing line is 

represented by dotted line. Data plot within the area defined by the three end-members. 

The 2009 data show the same trend as 2012 data and do not require DAS noble gases. 

Uncertainties are 1σ. 
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6.3 Non-radiogenic noble gas data: mixing with air-saturated water 

 

Having ruled out contamination of injected gases from the DAS site and identified the need 

for process(es) other than mixing in the reservoir, the non-radiogenic noble gases can be 

used to identify the source and interaction history of the fluids during CO2 injection. In 

common with previous studies (e.g. Bosch and Mazor, 1988) the non-radiogenic noble 

gases (
20

Ne, 
84

Kr and 
132

Xe) are normalised to 
36

Ar in future discussions (Table 6.2). 

The 
20

Ne/
36

Ar of the Jackson Dome CO2 is 1.29 ± 0.06 (Zhou et al., 2012). The 
20

Ne/
36

Ar 

of the injected gas decreased from 0.617 to 0.409 between 2009 and 2012. The 
20

Ne/
36

Ar 

of the production well gases range from 0.148 (28F-2 2009) to 0.637 (well 29-6 from both 

campaigns). 
20

Ne/
36

Ar data are generally lower than the air value (0.526), while some 

exceed it. 

The 
84

Kr/
36

Ar of the Jackson Dome CO2 is 0.021 ± 0.001 (Zhou et al., 2012). The 

84
Kr/

36
Ar of the injection well gases increased with time, from 0.030 to 0.044 from 2009 to 

2012. Among production well gases well 29-9 2009 has the lowest value (0.030) and 70-2 

2012 has the highest (0.056). 
84

Kr/
36

Ar data are all higher than the air value of 0.021. 

The 
132

Xe/
36

Ar in injectors changed from 0.0025 to 0.0048 between 2009 and 2012. 

Production well gases vary between 0.0024 (well 44-2 2009) and 0.0053 (well 28-2 2012). 

All values are higher than the air value of 0.00075. Xe was not measured in Jackson Dome 

CO2 by Zhou et al. (2012) but in order to model mixing between reservoir and injected gas 

with 
132

Xe/
36

Ar the ratio of the Jackson Dome CO2 needs to be estimated. 

. 
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Table 6.2. The non-radiogenic isotopic composition of CO2 well gases from Cranfield. Noble gas concentrations are cm
3
 (STP)/cm

3
. 1σ uncertainties are 

in parentheses. The values for Jackson Dome are after Zhou et al. (2012) but the Xe was estimated (see text). Air composition is after Ozima and Podosek 

(2001). ASW is calculated as atmosphere that equilibrated with zero salinity groundwater at 16°C and 50 m altitude, and contains a 10 % excess of Ne 

(Aeschbach-Hertig et al., 1999; Kipfer et al., 2002). For well data see Table 4.3. 

Well ID Year Well Type CO2 % 
±0.1 

84
Kr                           

x 10
-10

 

132
Xe              

x 10
-11

 

20
Ne/

36
Ar

 84
Kr/

36
Ar 

 

132
Xe/

36
Ar 

 
Bulkline 2012 NA 99.3 0.284 (12) 0.489 (26) 0.411 (24) 0.020 (1) 0.0035 (2) 

Jackson Dome NA NA 99.0 1.782 (39) 1.271 (100) 1.291 (32) 0.020 (1) 0.0014 (2) 

Injector 2009 Injector 96.0 4.356 (181) 3.743 (196) 0.618 (35) 0.030 (2) 0.0025 (2) 

Injector 2012 Injector 87.9 4.045 (168) 4.384 (230) 0.547 (31) 0.044 (3) 0.0048 (3) 

28-2 2009 Producer 80.4 7.278 (303) 6.835 (358) 0.345 (20) 0.039 (2) 0.0036 (2) 

28-2 2012 Producer 80.4 13.81 (57) 13.34 (69) 0.255 (14) 0.054 (3) 0.0053 (3) 

28F-2 2009 Producer 00.8 25.82 (99) 19.19 (99) 0.148 (40) 0.036 (2) 0.0027 (2) 

28F-2 2012 Producer 81.9 7.026 (292) 6.989 (366) 0.428 (24) 0.042 (2) 0.0042 (3) 

29-6 2009 Producer 91.8 3.439 (143) 3.103 (163) 0.607 (35) 0.030 (2) 0.0026 (2) 

29-6 2012 Producer 94.9 3.411 (142) 3.101 (162) 0.637 (36) 0.042 (2) 0.0038 (2) 

29-9 2009 Producer 94.9 3.041 (126) 2.691 (141) 0.637 (36) 0.030 (2) 0.0025 (2) 

29-1 2009 Producer 80.7 7.273 (303) 8.000 (419) 0.384 (22) 0.037 (2) 0.0040 (3) 

29-1 2012 Producer 82.0 6.056 (252) 5.952 (312) 0.422 (24) 0.038 (2) 0.0037 (2) 

27-5 2009 Producer 46.9 12.77 (53) 13.83 (72) 0.170 (15) 0.041 (3) 0.0045 (3) 

27-5 2012 Producer 82.5 6.723 (279) 6.865 (359) 0.448 (25) 0.048 (3) 0.0049 (3) 

44-2 2009 Producer 08.4 24.06 (98) 17.03 (89) 0.201 (20) 0.034 (2) 0.0024 (2) 

45F-4 2012 Producer 81.6 7.929 (329) 7.502 (393) 0.386 (22) 0.051 (3) 0.0048 (3) 

32F-10 2012 Producer 80.3 7.897 (328) 7.567 (396) 0.443 (25) 0.054 (3) 0.0052 (3) 

70-2 2012 Producer 83.4 8.141 (338) 7.551 (395) 0.443 (26) 0.056 (3) 0.0052 (3) 

AIR NA NA NA 6498 (5) 234 (3) 0.526 (3) 0.021 (0) 0.0007 (0) 

ASW NA NA NA NA NA 0.163 0.039 0.0025 
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To this end the 
84

Kr/
36

Ar is plotted against 
132

Xe/
36

Ar of injected and produced gases in 

Figure 6.3. The data define a near straight line, which is broadly consistent with the 

previously identified binary mixing between the injected CO2 and reservoir gas (see 

section 4.3). The 
84

Kr/
36

Ar of the Jackson Dome CO2 is identical to that of air (Zhou et al., 

2012). The Jackson Dome 
132

Xe/
36

Ar can be estimated from the intersection of the best-fit 

line with the air value in Figure 6.3. In this way the 
132

Xe/
36

Ar is estimated to be 0.0014 ± 

0.0001. Using the published 
36

Ar concentration (Zhou et al., 2012) the 
132

Xe concentration 

in Jackson Dome CO2 is 1.3 x 10
-11

 cm
3
 STP/cm

3
. 

 

 

Figure 6.3. 
84

Kr/
36

Ar and 
132

Xe/
36

Ar of gases from injection and production wells from 

Cranfield. The best fit line to all injection and production gas samples seems to represent 

the previously identified mixing. The 
84

Kr/
36

Ar of the Jackson Dome is known to be air 

(red dotted line and see text in section 5.2). Extrapolation of the best fit line to the 

84
Kr/

36
Ar of Jackson Dome thus defines the 

132
Xe/

36
Ar Jackson Dome CO2 (red rectangle) 

and was found to be 0.0014 ± 0.0001. Uncertainties are 1σ. 
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The fact that the production well 
84

Kr/
36

Ar and 
132

Xe/
36

Ar ratios are higher than air rules 

out the direct contamination by air, for instance during sampling, as the source of the non-

radiogenic gases. The pattern observed in 
20

Ne/
36

Ar, 
84

Kr/
36

Ar and 
132

Xe/
36

Ar is generally 

consistent with the fractionation generated by the dissolution of atmosphere-derived noble 

gases in fluids such as groundwater or oil. This pattern is typical of hydrocarbon gases (e.g. 

Kennedy et al., 2002), and models have been developed that explain the noble gas 

abundance pattern of natural gases as a result of stripping of noble gases from air saturated 

water (ASW) (e.g. Battani et al., 2000; Gilfillan et al., 2008). The injection of CO2 into a 

hydrocarbon field might be an obvious mechanism for the presence of highly fractionated 

noble gases in the gas phase. During EOR operation the CO2 will dissolve in water and oil 

and the pre-existing noble gases in those fluids may be removed. In section 4.4 I 

demonstrated how the 
20

Ne/
22

Ne of the production well gases can be used to determine the 

He and Ar isotopic composition of the in-place reservoir gas. By plotting the non-

radiogenic noble gas data in this way it can be used to assess how well the pre-injection 

reservoir gas fits ASW-derived noble gases. 

The 
20

Ne/
36

Ar data generally follows the mixing curve (Figure 6.4A). Several samples 

have 
20

Ne/
36

Ar values that are below the mixing line. These samples have low 
40

Ar/
36

Ar 

(section 4.3) indicative of a small amount of air. The three 2012 production well samples 

with 
20

Ne/
36

Ar values that are higher than the injected gas from 2012 have higher 
3
He/

4
He 

ratios than the injected gas, implying a higher contribution from the Jackson Dome 

component than would be expected according to mixing alone. The fit of the 
20

Ne/
36

Ar 

data to the mixing curve indicates that ASW is a realistic source of Ne and Ar in the 

natural gas. The 
20

Ne/
36

Ar ratio of the ASW component is likely to be spatially and 

temporally variable as the reservoir contains a mixture of meteoric water and brine, with 

the latter dominating near the oil-water contact.  
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Mixing between an ASW-derived in-place natural gas and injected Jackson Dome CO2 is 

much less apparent in the case of 
84

Kr/
36

Ar (Figure 6.4B) and 
132

Xe/
36

Ar (Figure 6.4C). 

The 
84

Kr/
36

Ar of the 2009 production well gases are close to the predicted mixing curve, 

but all the 2012 production well gases plot above the theoretical mixing line and, with the 

exception of the gas from production well 44-2 2009, the 
132

Xe/
36

Ar of the wells sampled 

in 2009 and 2012 plot above on the mixing curve. There is no clear relationship between 

the extreme 
20

Ne/
36

Ar samples and 
84

Kr/
36

Ar or 
132

Xe/
36

Ar values. 

While ASW-derived noble gases may be extracted from groundwater by dissolution of the 

injected CO2 (Gilfillan et al., 2008), the heavy noble gas data do not support a simple two-

component mixing with injected Jackson Dome CO2. The data require either the presence 

of a third source of non-radiogenic noble gases (e.g. from the pre-injection natural gas) 

and/or that some processes have fractionated the gas mixtures. 
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Figure 6.4. The non-radiogenic noble gas ratios plotted against 
20

Ne/
22

Ne for gases from 

Cranfield. Mixing curves are drawn between Jackson Dome (yellow rectangle; Zhou et al. 

(2012) and air-saturated water (ASW) compositions (see text). (A) 
20

Ne/
36

Ar mostly 

follows the mixing curve that confirms ASW composition a suitable end-member. Kr (B) 

and Xe (C) data do not sit on the curve indicating either the presence of a third end-

member or a more complicated process than mixing that causes severe fractionation. 

Green: 2009, blue: 2012, circle: production well, triangle: injection well. Uncertainties are 

1σ. 
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6.4 Partial degassing of groundwater 

6.4.1 The composition of non-radiogenic noble gases prior to injection in the gas 

phase 

  

While the gas phase may acquire ASW-like noble gases due to dissolution of injected CO2 

into groundwater (e.g. Gilfillan et al., 2008) the noble gas composition of the pre-injection 

natural gas composition may complicate the simple binary mixing scenario (see section 

4.3). Here the composition of that natural gas is quantified and used to interpret data from 

production well gases. 

Air-derived noble gases enter the reservoir through groundwater. When the water is in 

contact with the gas phase (CH4) in the reservoir, noble gases will partition between the 

two phases according to Henry’s law. As a general rule the heavier noble gases are more 

soluble in water; 
132

Xe > 
84

Kr > 
36

Ar > 
20

Ne (Smith and Kennedy, 1983). Consequently the 

gas phase will have higher 
20

Ne/
36

Ar and lower 
84

Kr/
36

Ar and 
132

Xe/
36

Ar than ASW. In 

order to calculate the pre-injection composition of noble gases in the gas phase after the 

natural degassing of ASW groundwater the gas/water (G/W) ratio needs to be determined 

for the pre-injection Cranfield reservoir. 

The pre-injection G/W ratio can be estimated in the same way as concentration data (see 

4.4). Well 28F-2 2009 represents the natural gas end-member and the G/W in this well 

represents the reservoir composition, although at a different pressure. The measured G/W 

in that production well was ~6 and the pressure was 1.3 MPa (personal communication 

with field operator). The reservoir pressure before CO2 injection was 32 MPa (Lu et al., 

2012b). From Boyle-Mariotte Law (e.g. Atkins, 1979) (Equation 6.3), the reservoir 

gas/water ratio is calculated to be 0.25 before injection. 

𝑝1𝑉1 =  𝑝2𝑉2 Equation 6.3 
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Henry constants for reservoir conditions for Ne and Ar are given in section 5.2.1 and for 

Kr and Xe they are 10.39 and 8.36 GPa, respectively (Ballentine et al., 2002 and references 

therein). According to the batch fractionation equation (Bosch and Mazor, 1988) the 

reservoir gas has 
20

Ne/
36

Ar = 0.183, 
84

Kr/
36

Ar = 0.0333 and 
132

Xe/
36

Ar = 0.0021 (see data 

in Table I.14 in the Appendix). 

Complications in the phase equilibrium can emerge in a three phase system such as water, 

gas and oil as is present in Cranfield. Air-derived noble gases are unlikely to dissolve into 

the oil phase directly. More likely the noble gases in the oil originate from the water by oil-

water contact and concurrent partitioning of noble gases (e.g. Ballentine et al., 1996). It 

will be shown in section 6.5.1 that the pre-injection oil/water ratio is low and therefore the 

degree of extraction of noble gases from the water by oil leaves the water phase nearly 

intact with respect to noble gas composition. Consequently the investigation of the water-

gas system remains valid. 

In the following sections the heavy noble gas data are compared to the expected 

fractionation trend for partial degassing of groundwater. 

 

6.4.2 84
Kr/

36
Ar 

 

The 
84

Kr/
36

Ar of 2009 samples is plotted against 
20

Ne/
36

Ar in Figure 6.5. The red dotted 

lines show the composition of air (Ozima and Podosek, 2001), while the blue dotted lines 

define the composition of ASW (see above). The Jackson Dome CO2 (yellow rectangle, 

composition of the injected gas at time zero) has atmospheric 
84

Kr/
36

Ar but 
20

Ne/
36

Ar is 

much higher (1.29; Zhou et al., 2012). The batch fractionation line (dotted line) defines the 

evolution of the noble gas composition in the gas phase degassed from groundwater. It 

starts from the pre-injection composition (
20

Ne/
36

Ar = 0.183 and 
84

Kr/
36

Ar = 0.0333, see 

6.4.1 and Table I.11.) and reaches ASW when the G/W ratio approaches infinity. 
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The mixing line between gas from the fully degassed water and Jackson Dome CO2 is 

shown as a continuous line. The dashed line defines mixing between the natural gas and 

Jackson Dome CO2. Data that would plot within the area defined by the batch fractionation 

line and the two mixing lines are consistent with partial degassing of water. 

Gases from two wells (28F-2 and 44-2) lie on the batch fractionation line. This requires 

contact between the injected gas and the water, suggesting that the water–CO2 contact is 

ongoing and therefore degassing of the ASW may still be taking place. These are the two 

samples that have lost CO2 for which heavy noble gases were measured (see section 5.2.2). 

Gases from three wells (28-2, 29-1 and 27-5) plot on the ASW–Jackson Dome CO2 mixing 

curve within uncertainty. These samples appear to have acquired their Ne, Ar and Kr by 

complete degassing of ASW. Data from well 27-5 also suggest that no CO2 loss has 

happened through dissolution (see 5.2.2). 

Gases from injection well and production wells 29-6 and 29-9 respectively overlap the 

mixing line defined by the reservoir noble gas end-members. The injected gas is the 

mixture of all the produced gases and Jackson Dome CO2 therefore its composition is 

determined by the degree of contribution of each production wells. Since the latter is 

unknown, the injected gas composition is not discussed any further. As the well 29-9 and 

29-6 gases have high 
20

Ne/
36

Ar they plot away from the batch fractionation line. The 

location of these samples on the mixing line means that the amount of injected CO2 is 

much higher than in the case of e.g. well 44-2, evidence for a less efficient ASW degassing 

than the one above. Well gases 29-6 and 29-9 show the highest CO2 concentrations of all 

production wells, and the noble gas data are also distinct. These samples exhibit the highest 

3
He/

4
He, 

20
Ne/

22
Ne, 

40
Ar/

36
Ar and 

40
Ar

*
/
4
He ratios (see e.g. 4.5). This is consistent with the 

injected CO2 flowing through the reservoir with little contact with the formation water, and 

supports the hypothesis that the in-place natural gas has Ne, Ar and Kr in relative 

proportion that is consistent with partially degassed groundwater. 
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Figure 6.5. The plot of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar for well gases from 2009. Samples 

from 2009 are explained by different degree of noble gas stripping from water. The dotted 

line is the batch fractionation line for water degassing starting from the natural gas 

composition (orange square, G/W = 0.25) (see text) and reaching ASW compositions when 

degassing has completed. The mixing between Jackson Dome CO2 and the natural gas (no 

degassing, dashed line) and the gas after the water fully degassed (continuous line) makes 

the degassing process evident in the field. Groups of production wells show different stage 

of degassing. Samples on the fractionation line show intense and ongoing CO2–water 

contact. Samples on the straight line show full degassing. Samples on the zero degassing 

(dashed) line show little degassing and the closer the sample is to the Jackson Dome value 

the more unlikely is degassing (mobilizing). Injected gas: triangle. Uncertainties are 1σ. 
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6.4.3 132
Xe/

36
Ar 

 

The 
132

Xe/
36

Ar ratios of 2009 samples are plotted against 
20

Ne/
36

Ar in Figure 6.6. Using 

the technique described above, mixing curves are drawn between undegassed, and fully 

degassed water and the Jackson Dome CO2 composition. The 
132

Xe/
36

Ar of the Jackson 

Dome CO2 is obtained from Figure 6.3. Interestingly, the majority of the 2009 gases plot 

well above the curve that would indicate fully degassed water, except for those from well 

44-2. Also, the three distinct groups that have been identified based on the Kr/Ar data are 

still observable. The two wells gases that have lost CO2 (28F-2 and 44-2) are the closest to 

the batch fractionation line. The three that require fully degassed water (28-2, 29-1 and 27-

5) plot together. The injection well and the production wells 29-6 and 29-9 that did not 

show significant interaction with the groundwater also have similar Xe/Ar ratios. The high 

Xe/Ar concentrations than required by the ASW – Jackson Dome mixing line is discussed 

in section 6.5.3. 

6.5 Partial degassing of oil 

6.5.1 The composition of non-radiogenic noble gases prior to injection in the oil 

phase 

 

As shown in Figure 6.4 the 
84

Kr/
36

Ar and 
132

Xe/
36

Ar are not consistent with simple binary 

mixing between the injected gas and ASW. All 2012 
84

Kr/
36

Ar and most 2009 and 2012 

132
Xe/

36
Ar data are much higher than ASW values. No data from 2012 would fit into the 

water degassing model. Highly fractionated noble gases have previously been explained by 

oil degassing (e.g. Bosch and Mazor, 1988) and more recently have been summarized in 

e.g. Prinzhofer (2013). Here an attempt is made to explain observed noble gas data by the 

partial degassing of the oil phase induced by CO2 injection. 

Noble gases in oils most likely originates from a water phase by phase equilibrium (e.g. 

Ballentine et al., 1996). In order to quantify the noble gas ratios in the oil phase after 
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equilibrium, the oil/water (O/W) ratio needs to be estimated for the Cranfield reservoir 

prior to CO2 injection. Well 28F-2-2009 is thought to be representative of the pre-injection 

Cranfield reservoir and had not produced oil (i.e. less that the 0.04 m
3
/day detection limit). 

The produced water (76 m
3
/day; personal communication with field operator) means the 

oil/water ratio was <0.001.  

By using the estimated O/W value the fractionation of noble gases between the water and 

oil phase can be calculated in a similar way as in case of the CO2-water system. The 

solubility of noble gases in crude oil for gravity degree (API) = 34° (light oil) have been 

calculated from after Kharaka and Specht (1988), which is the best representation of the 

Cranfield oil (API = 39°, Hosseini et al., 2013). Calculated Henry constants under reservoir 

conditions are 373.9, 136.8, 48.5 and 25.1 atm kg/mol for oil and 2039, 1141, 788 and 568 

atm kg/mol for water for Ne, Ar, Kr and Xe respectively (see also above). This means that 

solubility of noble gases in oil is higher than in water (see also 5.3.1). 

As a result of the oil-water equilibrium, and assuming ASW noble gases in the water, the 

oil phase would have 
20

Ne/
36

Ar = 0.107, 
84

Kr/
36

Ar = 0.075 and 
132

Xe/
36

Ar = 0.007. The 

relatively low oil/water ratio means that the noble gas composition of water will be largely 

unchanged: 
20

Ne/
36

Ar = 0.162, 
84

Kr/
36

Ar = 0.0387 and 
132

Xe/
36

Ar = 0.0024 (see data in 

Table I.15. & 16. in the Appendix). In the following sections the calculated noble gas 

isotopes ratios are used to explain observed data from production well gases. 
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Figure 6.6. The plot of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar for well gases from 2009. Definition 

of the curves see text and Figure 6.5. The three groups of production well gases (green 

circles) are the same than defined by Kr data but all data show much higher 
132

Xe/
36

Ar 

values than would be expected according to the identified degassing. This means an excess 

of Xe is in the water. The excess Xe most likely originates from the organic phase (oil) 

(see also text). Red square: estimated Jackson Dome (see text). Symbols are as per Figure 

6.5. Uncertainties are 1σ. 
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6.5.2 84
Kr/

36
Ar 

 

The 
84

Kr/
36

Ar of the 2012 well gas samples are plotted against 
20

Ne/
36

Ar in Figure 6.7, and 

all data are plotted in Figure 6.8. The batch fractionation line (dash dotted line) defines the 

gas phase degassed from oil. Mixing between ASW and Jackson Dome CO2 is represented 

by a continuous line. Mixing between gas released from oil and Jackson Dome CO2 is 

shown by the dash-double dotted line. 

As with the gas-water system for the 2009 data these three lines delineate a region that 

represents mixing between the three noble gas components. The majority of the data are 

located within the area showing partial oil degassing. The smallest fractionation of 

84
Kr/

36
Ar is shown by well 29-1. Two well gases (32F-10 and 70-2) plot close to the fully 

degassed oil line and may be explained by the time elapsed since the start of EOR 

operation until those wells started producing. They are from the E-SE part of the field 

which was the last section to be subjected to CO2 injection and was only exposed to CO2 

flooding shortly before the March 2012 sampling. This could indicate: 

1) Oil degassing by continuous CO2 injection reached near complete degassing by the time 

these two wells started producing, implying that oil degassing (active CO2 – oil contact) 

and oil production are unrelated and the oil degassing is a regional event. 

2) The initial O/W is different in that part of the reservoir, which caused different noble 

gas composition in the oil phase during phase equilibrium. This will result in a different 

composition in the gas phase in the case of complete degassing, which will generate a line 

with a different slope. 

Here the first explanation is preferred because the second is a very unlikely scenario. This 

allows the partial degassing to be quantified in each well (Figure 6.7). The calculation 

assumes that the degree of degassing is proportional to the relative distance of a sample 

from the ASW–Jackson Dome and the fully degassed oil – Jackson Dome mixing lines. 
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In general the effective CO2-oil contact is more difficult to establish (e.g. it takes longer 

and therefore more gas is needed) than the CO2-water contact. This may be in connection 

to an unsuccessful water injection test in the 1950s (Lu et al., 2012b). This is similar to the 

difficulties of degassing water in case of well 29-6 and 29-9. 

 

 

Figure 6.7. The plot of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar for well gases from 2012. Data from 

2012 (blue circle) are explained by partial gas stripping from oil. The evolution of the 

noble gas composition caused by increasing degassing is represented by the fractionation 

curve (dash-dotted line) The area defined by the fractionation line and the two mixing lines 

(Jackson Dome–ASW = continuous line, fully degassed oil–Jackson Dome = double dotted 

dashed line) defines an envelope, in which partial degassing is observed. Most of the data 

are within that, indicating partial oil degassing. One datum overlaps with the fully 

degassed oil line, which is the latest sample that has been exposed to CO2 flooding. 

Uncertainties are 1σ. 
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Table 6.3. Degree of oil degassing from well gases from Cranfield. 

Well Degree of oil 
degassing (%) 

 

 

28-2 58 

45F-4 60 

27-5 56 

28F-2 32 

29-1 16 

29-6 58 

32F-10 87 

70-2 78 

 

 

 

Figure 6.8. Combined diagram of 
84

Kr/
36

Ar against 
20

Ne/
36

Ar from 2009 and 2012. Line 

code is as per Figure 6.5 & 6.7. 
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6.5.3  
132

Xe/
36

Ar 

 

The 
132

Xe/
36

Ar data of the 2012 well gases are plotted against 
20

Ne/
36

Ar ratios in Figure 

6.9. The batch fractionation line does not start from ASW value due to the composition of 

the remaining water phase, explained earlier. The location of the majority of data on Figure 

6.9 is similar to the location of the Xe-Ar-Ne data from 2009 well data in Figure 6.6. 

However four samples (injected gas, 27-5, 70-2 and 32F-10) show more than 100% oil 

degassing. The explanation for this is the presence of excess Xe in the 2009 production 

well samples (see section  6.4.3). 

Excess Xe has been described in sedimentary basins as trapped in (or adsorbed on) 

organic-rich material (Zhou et al., 2005). If such an excess Xe is present in Cranfield it will 

have been transferred into the water phase by phase equilibrium resulting in high 

concentrations of 
132

Xe in the water phase. Water degassing is the key mechanism to 

explain the 2009 data. This results in most of the Xe being transferred into the gas phase, 

giving high 
132

Xe/
36

Ar (Figure 6.6). In the 2012 well gases (Figure 6.9) the sum of the 

degassed Xe is seen in the gas phase that had been degassed from the water (2009) and 

from the oil (2012). Data from both 2009 and 2012 sampling campaigns are summarized in 

Figure 6.10. The similarity of the 2009 and 2012 
132

Xe/
36

Ar data reflects the small 

contribution of Xe from the oil phase. This in turn reflects the difficulty of degassing Xe 

from the oil phase due its high solubility in oil. Consequently the dominant source of Xe in 

the gas phase in 2012 is still what had been degassed from the water in 2009.  

 

 

 

 

 



132 

 

 

 

 

 

Figure 6.9. The plot of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar for well gases from 2012. Although 

the data may show almost full degassing of oil, data are rather explained by presence of 

Xe, degassed from the water (see Figure 6.8) and inefficient degassing of Xe from the oil 

due to its high solubility. Fractionation line starting point is not ASW and see text in 

section 6.5.1. The meaning of the different lines are as per Figure 6.7. Uncertainties are 1σ. 
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Figure 6.10. Combined diagram of 
132

Xe/
36

Ar against 
20

Ne/
36

Ar from 2009 and 2012. 

Lines are as per Figure 6.8. 
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3
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4
He seems to be consistent with the temporal changes in the gas/oil 

ratio observed by the field operator, which is in turn connected to the well displacement 

efficiency. Noble gas data are available for five wells that were sampled in both 2009 and 
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Well 28-2: The 
3
He/

4
He value (2.75 (3) and 2.77 (6) RA in 2009 and 2012) is unchanged 

over time. This means that the injected gas had already equilibrated with the reservoir 

fluids by December 2009. The 
20

Ne/
36

Ar and 
84

Kr/
36

Ar data from 2012 are consistent with 

oil degassing, indicating that oil is the major source of non-radiogenic noble gases and not 

the injected CO2. This suggests constantly high oil production. This is supported by the 

steady gas/water and gas/oil ratios in 2009 and 2012: ~2,500 and ~1,300 and 32 and 21, 

respectively. The amounts of produced water and oil are largely unchanged, which means 

that the well acts as an efficient producer. 

Well 27-5 shows a change in 
3
He/

4
He from 1.71 (4) in 2009 to 2.85 (5) RA in 2012, 

indicating that water degassing appears to have been recently completed in 2009. 

Following this the CO2 promotes degassing (mobilizing) oil. This is reflected by the 

increase in the 
84

Kr/
36

Ar (from 0.041 to 0.047). However by 2012 the Kr/Ar composition 

reflects more strongly the injected gas composition, indicating that the oil displacement is 

more difficult than in case of well 28-2. This is supported by the increase in the gas/water 

(from 230 to 1,500) and gas/oil ratios (from 540 to 4,200). This well must have became an 

effective producer between the two sampling campaigns. 

Well 28F-2 exhibits a similar, but more pronounced change between the two sampling 

campaigns, compared to well 27-5. There is a significant change in the 
3
He/

4
He (from 0.21 

(2) RA to 3.22 (5) RA) which means that the water, the sink of CO2 in 2009 (see 5.3) must 

have been fully saturated with respect to CO2 by 2012 and was then mobilizing oil. The 

gas/water ratios increased two orders of magnitude (from 70 to 2,700) and the gas/oil from 

zero to 3,700. 

Well 29-6: It has been shown that the CO2–water contact is not effective therefore the 

same can be expected for the CO2–oil system. Due to the low degree of contact between 

CO2 and water and oil and the high amount of injected gas present, the 
3
He/

4
He is 

unchanged (4.18 RA in both years). The low (and unchanged) efficiency to degas water 
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would predict the need of an extremely high amount of gas to start degassing oil. Actually 

this well shows the highest gas/oil ratio (50,000) of the five wells. In terms of the gas 

needed for mobilizing oil the well is ineffective. 

Well 29-1: There is a modest change in 
3
He/

4
He (2.85 (6) to 3.23 (8). Although the water 

was fully degassed by December 2009, and consequently the CO2 must have started the oil 

degassing (mobilizing) the air derived noble gases still define 16% of oil degassing only by 

March 2012. The amount of injected gas in the area of the well (see 5.4) is high but the 

amount of produced gas is the lowest among the five wells discussed here. This indicates 

that the majority of the injected gas is not reaching this well and not helping to extract oil. 

The gas/oil ratio increased from 1,000 to 8,000 from 2009 to 2012, due to both the increase 

in the amount of gas and the decrease in the amount of oil. 

 

6.7 Conclusions 

 

There is no strong indication of a contribution of injected Kr and Xe at the DAS site in to 

the main reservoir. Consequently, the heavy noble gas dataset can be used to trace 

processes occurring to the fluids (injected gas, water and oil) in the Cranfield main 

reservoir. 

Gas stripping, induced by CO2 injection into water has been described by Gilfillan et al. 

(2008). This model was developed for natural gas fields where CO2 injection occurred on 

long time scales and complete degassing was achieved. 

I propose that partial gas stripping has occurred for the gas-water-oil system at Cranfield. 

This can fully explain the data obtained from an industrial CO2 injection field, where the 

CO2 has been injected for ~3 years. This short period of time allows the degassing process 

to be looked at with high resolution. It has been found that water degassing happened in 

the early stage of injection (2009), when the oil degassing was unimportant. By the later 
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stage of injection (2012) the degassing of oil reached sufficient level and governs the 

observed data. 

The water degassing has shown significant heterogeneity throughout the reservoir. Some 

wells show a relatively free flow path, where little formation water is contacted. Those, 

where CO2 loss has been identified previously show active and ongoing contact, while 

others show complete degassing of the water.  

Degassing of oil may be a regional event. CO2 mixes with the oil (miscible flooding), 

decreasing its viscosity. It is mobilised from the pore space during which process noble 

gases are being degassed but it takes much longer until the ‘mobilised’ oil gets produced 

By 2012 the interaction between injected CO2 and oil (so the cumulative produced oil) has 

become significant meaning that the majority of noble gases from the oil phase are 

transferred to the gas phase. Significantly, the results from 2012 show that there has not 

been sufficient contact of the supercritical CO2 with oil to fully degas it. 

The Xe/Ar ratios imply that there is significant excess xenon in the gas phase that must 

have been present in the water phase prior to injection. 

The temporal investigation of non-radiogenic noble gases obtained from individual 

samples, along with 
3
He/

4
He could be used to constrain the oil displacement efficiency for 

each well and data are consistent with production data. The requirement of the amount of 

gas needed and therefore the G/O ratio can be estimated for a certain well. 
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Chapter 7  

Conclusion and future work 

 

7.1 Summary 

 

Enhanced oil recovery by CO2 injection into depleted hydrocarbon reservoirs is an 

analogue for the large CO2 sequestration projects that will be required to ameliorate 

atmospheric CO2 (Whittaker and Perkins, 2013). Consequently EOR fields provide an 

opportunity for research into the process of carbon sequestration (e.g. Boot-Handford et al., 

2014). In order to deploy CCS safely, methods need to be developed for tracing and 

verifying the secure underground storage of CO2 (Scott et al., 2013). The work presented 

here is the first to systematically use the naturally occurring noble gases in injected CO2 to 

trace its movement and history of interaction with reservoir fluids.  

The He, Ne and Ar isotopic compositions of production well gases from the Cranfield 

EOR field define a two-component mixture between the injected gas and the in-place 

reservoir gas, with minimal effect from contaminating atmosphere-derived gases. Each 

component has a distinct Ne isotope composition. Consequently plotting the He and Ar 

isotope composition against the 
20

Ne/
22

Ne allows the composition of the reservoir gas to be 

defined. 

3
He/

4
He and 

40
Ar

*
/
4
He data from the production wells plot on theoretical mixing lines with 

CO2 concentrations. Generally they are more sensitive to changes in CO2 concentration 

over the whole range of CO2 concentration than δ
13

CCO2 due to the difference in shape of 

mixing curves. Production well gas samples with the lowest CO2 content sampled during 

the 2009 sampling campaign sit above the mixing lines. The most plausible explanation is 

that a considerable amount of CO2 has been lost from the gas phase. 

The amount of CO2 lost from each well can be estimated by the 
3
He/

4
He-CO2 relationship, 

although values determined using the 
40

Ar
*
/
4
He and CO2/

3
He ratio overlap. The proportion 
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of gas loss ranges from 22 to 97%. The lost CO2 scaled to the whole field represents only 

the 0.09% (~10 kt) of the total injected CO2 (~1.4 Mt). The fractionated CO2/
3
He, 

40
Ar

*
/
4
He and δ

13
CCO2 of the low CO2 samples are consistent with dissolution of CO2 into 

the groundwater. 

The majority of production wells did not reveal any CO2 loss, consistent with trapping of 

free CO2 in pore space in the reservoir rock (stratigraphic trapping) as the main 

sequestration mechanism. This was noted previously (Lu et al., 2013) and also expected 

within the timescale of CO2 injection (Bachu et al., 2007). Further evidence for the 

different trapping mechanism observed spatially and temporary are supported by the 

differences in the average CO2 flux under production wells. 

The non-radiogenic noble gases isotopes (
20

Ne, 
36

Ar, 
84

Kr, 
132

Xe) are ultimately 

atmospheric in origin, having entered the reservoir in groundwater. This generated a 

unique composition in the reservoir in the gas, water and the oil phase by phase 

equilibrium. The elemental ratios in the gases sampled in 2009 imply an origin from water 

degassing by CO2 flooding. However the degree of water degassing was not uniform 

throughout the reservoir. Some wells show high rates of gas flow with little contact with 

formation waters while others showed active and ongoing contact, as well as complete 

degassing of water. 

By 2012 the interaction between the oil and the injected CO2 has become significant. The 

heavy noble gases from the oil phase are present in the free gas indicating that the oil is 

degassing. Results from 2012 show that there has not been sufficient contact of the CO2 

with oil to fully degas it. The elemental ratios can be described by partial gas stripping, 

similar to that of Gilfillan et al. (2008) developed for natural gas fields. The non-radiogenic 

noble gases, combined with 
3
He/

4
He appear to reflect the changes in the oil displacement 

efficiency spatially as well as with time. The data are consistent with the changes in the 

measured gas/oil ratios. The degree of oil degassing, determined by the fractionation of the 
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non-radiogenic noble gases, can be used to estimate the requirement of the amount of gas 

needed. The 
3
He/

4
He reflects when a major change in the efficiency on the oil production 

happened in the well, which is in turn, can be used to quantify how economic the well is. 

These findings suggest that noble gases have potential not only in CO2 – reservoir fluid 

interaction modelling but reservoir engineering. 

 

7.2 Future work 

 

Previous studies of noble gases in CO2 injection have largely been based on the injection 

of single elements (e.g. Giese et al., 2009). However this is costly even on the scale of 

small, short-term injection tests (e.g. over a few weeks, Lu et al., 2012a), and would be 

prohibitively expensive when scaled up to CCS projects that are necessary to impact the 

global CO2 inventory (see 1.4.2). 

Although this work has successfully demonstrated that the noble gas isotopes that naturally 

exist as minor components in injected CO2 can be used to trace the fate of the injected gas, 

it remains to be shown that they are applicable in future large scale CCS projects.  

In this study the noble gas isotopic composition of the injected and the reservoir gas were 

significantly different. This may not be the case in commercial CCS. Specifically the 

injected gas has a composition with a strong mantle signature in the He and Ne isotope 

composition. In all likelihood commercial CCS projects will source CO2 from power 

stations where the initial noble gas isotopic composition will derive from coal or gas, and 

therefore will be strongly radiogenic. In this case He, Ne and (likely) Ar isotopes will be 

similar to the natural gases and groundwaters that exist in the reservoir. This not only 

means a possible lower resolution in the noble gas – CO2 system but also a greater need to 

precisely determine the isotopic composition (and it’s variability) of the fluids in the 

reservoir prior to injection.  
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This study has also succeeded because the concentration of the noble gases in the injected 

gases has been in the range where analysis has been possible with conventional analytical 

protocols. There are several methods of capture and purification of anthropogenic CO2 

prior to injection (Yang et al., 2008). It is likely that these techniques will remove the 

noble gases. There is no published work in this field, and it is clearly a topic that would 

benefit from further research. If it proves to be the case it might be used to modify the 

purification technique to leave the noble gases in the mixture. 

Atmosphere derived noble gases have shown the ability to track CO2-fluid interaction 

history in the reservoir. This could be exploited in future CCS trials. The quantification of 

the CO2-fluid interaction is essential to better understand the timescale where solubility 

and mineral trapping operates in a certain field. Dissolution and mineralization are the 

mechanisms by which CO2 is ultimately aimed to be stored. Consequently research into the 

heavy noble gases in CCS trials would provide a better constraint on long term and safe 

CO2 storage. 

 

 

 

.  
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Appendix I 

Raw data 

 

Table I.1. The mass 44/15, measured on the QMS from calibration gases with different 

CO2 contents. Uncertainties are 1σ. Data are plotted on Figure 2.4. 

Gas Gas amount cm3 
(STP) x 10-5 

Mass 44/15 d(mass 44/15) 

Pure CH4 2.100 0.0049 1.75E-05 
Pure CH4 3.790 0.0037 1.66E-05 
Pure CO2 2.200 444.6699 1.86E+00 
Pure CO2 3.628 821.8366 1.22E+00 
96% CO2 3.753 16.2478 1.65E-02 
96% CO2 2.100 13.1368 6.66E-02 
30% CO2 3.940 0.6344 6.57E-04 
30% CO2 2.080 0.4968 9.52E-04 
80% CO2 3.980 3.3050 1.43E-03 
80% CO2 2.080 3.3446 2.89E-03 
70% CO2 2.765 1.7710 2.11E-03 
70% CO2 3.815 1.7759 1.65E-03 
70% CO2 2.050 1.5590 1.50E-03 
70% CO2 2.440 1.6780 1.79E-03 
70% CO2 3.050 1.6020 2.20E-03 
70% CO2 3.501 1.7416 1.87E-03 

 

Table I.2. Selected calibration data of mass 44/15 over time from the QMS. Data are 

plotted on Figure 2.5. 

Date of run Mass 44/15 d(mass 44/15) 

10/04/2014 1.690 0.0159 
11/04/2014 1.654 0.0164 
12/04/2014 1.684 0.0170 
13/04/2014 1.710 0.0165 
14/04/2014 1.700 0.0175 
15/04/2014 1.687 0.0182 
16/04/2014 1.671 0.0198 
12/07/2014 1.677 0.0145 
13/07/2014 1.710 0.0194 
14/07/2014 1.648 0.0200 
15/07/2014 1.689 0.0174 
16/07/2014 1.698 0.0165 
17/07/2014 1.678 0.0160 
18/07/2014 1.698 0.0178 
19/07/2014 1.699 0.0189 
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Table I.3. The measured 
84

Kr of selected samples on both QMS and noble gas mass 

spectrometer. Data are plotted on Figure 2.6. Volumes are in cm
3
 (STP). 

84Kr (A)/Vgas     in 
QMS           (x 10-

12) 

V84Kr/aliquot from 
noble gas reservoir (x 
10-10) 

64.70 138.33 
99.83 388.36 
26.43 130.86 
32.30 190.47 
24.34 126.05 
22303.24 3739.39 
25431.68 3739.39 
27841.63 3402.95 
25700.64 3402.95 
28389.13 3402.95 
2.73 11.17 
10.57 40.47 
8.78 40.47 
9.30 42.19 
2.27 7.57 
1.40 8.61 
5.24 29.48 
2.79 36.62 
2.71 58.55 
2.95 147.17 
3.03 21.80 
4.35 17.35 
7.12 34.96 
8.75 61.56 
1.45 9.10 
1.54 7.47 
3.52 23.48 
1.42 7.68 
2.40 20.54 
4.87 45.50 
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Table I.4. Selected δ
13

CCO2 calibration data over time from the IRMS. The CO2 originates 

from the bottle that contains 70% CO2 – 30% CH4 gas mixture and is permanently attached 

to the UHV system. The real δ
13

CCO2 of that gas is unknown and irrelevant for this thesis. 

Uncertainties are 1σ. Data are plotted on Figure 2.7. 

Date of run δ13CCO2 ‰ 

(PDB) 

Uncertainty 

10/04/2014 -33.284 0.017 
11/04/2014 -33.477 0.055 
12/04/2014 -33.733 0.016 
13/04/2014 -33.529 0.025 
14/04/2014 -33.757 0.011 
15/04/2014 -33.635 0.024 
16/04/2014 -33.800 0.032 
17/04/2014 -33.339 0.022 
18/04/2014 -33.518 0.009 
19/04/2014 -33.257 0.011 
20/04/2014 -33.478 0.009 
21/04/2014 -33.955 0.013 
22/04/2014 -33.576 0.018 
23/04/2014 -33.764 0.012 
12/07/2014 -33.503 0.015 
13/07/2014 -33.436 0.044 
14/07/2014 -33.352 0.045 
15/07/2014 -33.365 0.046 
16/07/2014 -33.380 0.038 
17/07/2014 -33.394 0.047 
18/07/2014 -33.317 0.022 
19/07/2014 -33.503 0.007 
20/07/2014 -33.199 0.010 
21/07/2014 -33.390 0.007 
22/07/2014 -33.255 0.020 
23/07/2014 -33.349 0.019 
24/07/2014 -33.758 0.039 
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Table I.5. Selected He calibration data from the noble gas mass spectrometer. Data are 

plotted on Figure 2.8., uncertainties are 1σ. 

Date of run 3He/4He 
Cps/V 

d(3He/4He) 
Cps/V 

23/04/2014 1897 38 
24/04/2014 1806 10 
25/04/2014 1883 20 
26/04/2014 1949 19 
27/04/2014 1907 15 
28/04/2014 1804 14 
10/05/2014 1856 20 
11/05/2014 1806 44 
12/05/2014 1910 54 
13/05/2014 1967 34 
14/05/2014 1930 32 
15/05/2014 1908 40 
16/05/2014 1947 62 
17/05/2014 1982 45 
01/07/2014 1902 35 
02/07/2014 1968 28 
03/07/2014 1825 14 
04/07/2014 1812 27 
05/07/2014 1827 20 
06/07/2014 1909 16 
07/07/2014 1874 41 
08/07/2014 1898 38 
09/07/2014 1876 21 
10/07/2014 1946 17 
11/07/2014 1973 18 
12/07/2014 1966 21 
13/07/2014 1858 24 
14/07/2014 1783 31 
15/07/2014 1830 36 
16/07/2014 1832 34 
17/07/2014 1821 17 
18/07/2014 1813 20 
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Table I.6. Selected Ne calibration data from the noble gas mass spectrometer. Data are 

plotted on Figure 2.9. and show mass fractionation in comparison to air. Uncertainties are 

1σ. 

ID 20Ne/22Ne d(20Ne/22Ne) 21Ne/22Ne d(21Ne/22Ne) 

1 9.907 0.01967 0.0288 0.00018 
2 9.946 0.01872 0.0288 0.00025 
3 9.959 0.02036 0.0288 0.00019 
4 9.886 0.03579 0.0283 0.00028 
5 10.003 0.01727 0.0281 0.00014 
6 10.023 0.01900 0.0285 0.00020 
7 9.954 0.01892 0.0284 0.00016 
8 9.996 0.01702 0.0286 0.00028 
9 9.991 0.01881 0.0286 0.00018 
10 9.998 0.02615 0.0283 0.00011 
11 9.939 0.02745 0.0280 0.00024 
12 10.014 0.02873 0.0286 0.00021 
13 9.918 0.01991 0.0286 0.00025 
14 9.953 0.01260 0.0283 0.00016 
15 9.974 0.01256 0.0287 0.00027 
16 9.980 0.01683 0.0289 0.00014 
17 10.052 0.01447 0.0288 0.00008 
18 9.929 0.01922 0.0283 0.00017 
19 9.983 0.03252 0.0288 0.00020 
20 9.826 0.02339 0.0290 0.00030 
21 9.983 0.02685 0.0287 0.00009 
22 9.795 0.01253 0.0283 0.00017 
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Table I.7. Selected Ar calibration data from the noble gas mass spectrometer. Data are 

plotted on Figure 2.10. and show mass fractionation in comparison to air. Uncertainties are 

1σ. 

ID 40Ar/36Ar d(40Ar/36Ar) 38Ar/36Ar d(38Ar/36Ar) 

1 293.3 0.6 0.19 0.001 
2 293.7 0.4 0.19 0.002 
3 293.9 0.3 0.19 0.002 
4 293.8 0.5 0.19 0.002 
5 292.6 0.5 0.2 0.002 
6 291.4 0.4 0.2 0.003 
7 295.5 0.4 0.19 0.001 
8 292.8 0.3 0.19 0.003 
9 293.1 0.3 0.19 0.002 
10 289.3 0.7 0.19 0.004 
11 294.0 0.3 0.18 0.003 
12 293.0 0.4 0.19 0.002 
13 299.0 1 0.19 0.003 
14 294.2 0.7 0.19 0.003 
15 294.5 0.8 0.19 0.002 
16 294.3 0.7 0.19 0.002 
17 303.0 1 0.23 0.002 
18 298.2 0.8 0.19 0.001 
19 293.0 0.6 0.19 0.003 
20 294.0 0.5 0.19 0.002 
21 296.6 0.3 0.19 0.003 
22 295.6 1.9 0.19 0.002 
23 296.4 0.39 0.19 0.003 
24 297.8 1.28 0.19 0.002 
25 301.9 0.64 0.19 0.004 
26 295.8 0.68 0.19 0.002 
27 294.9 0.63 0.19 0.002 
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Table I.8. Selected Kr and Xe calibration data from the noble gas mass spectrometer. Data 

are plotted on Figure 2.11. Uncertainties are 1σ. 

Date of run 84Kr/132Xe d(84Kr/132Xe) 

15/10/2014 23.027 0.182 
16/10/2014 22.984 0.143 
17/10/2014 21.791 0.205 
18/10/2014 24.615 0.162 
19/10/2014 23.392 0.138 
20/10/2014 23.667 0.240 
21/10/2014 24.678 0.190 
22/10/2014 22.831 0.240 
05/12/2014 22.558 0.240 
06/12/2014 22.676 0.880 
07/12/2014 22.984 0.143 
08/12/2014 22.273 0.260 
09/12/2014 23.570 0.239 
10/12/2014 22.841 0.205 
11/12/2014 23.027 0.182 
12/12/2014 22.984 0.143 
13/12/2014 23.125 0.146 
02/02/2015 24.164 0.199 
03/02/2015 23.450 0.268 
04/02/2015 22.984 0.143 
05/02/2015 23.125 0.146 
06/02/2015 22.121 0.075 
07/02/2015 22.387 0.281 
08/02/2015 23.667 0.240 
09/02/2015 24.678 0.190 
10/02/2015 22.831 0.240 
11/02/2015 22.558 0.240 

 

Table I.9. The obtained 
40

Ar/aliquot from the air calibration bottle from two different 

standards. Results overlap within 2σ uncertainty. Data are plotted on Figure 2.12. 

Standard Obtained 
40Ar/aliquot 

Uncertainty 

CREU-1 4.56E-07 3.24E-08 
GA1550 4.78E-07 2.18E-08 
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Table I.10. Recorded production well data on the Cranfield field at the time of sampling. 

Well ID Year of 
sampling 

 

 

Pressure 
MPa 

Oil/Water 
(O/W) 

Gas/Oil 
(G/O) 

Gas/Water 
(G/W) 

27-3 2009 6.65 0.163 4773.4 779.0 
27-3 2012 7.34 0.797 6219.3 4956.0 
29F-1 2009 2.17 0.100 327.6 32.8 
29F-1 2012 3.06 0.235 2274.1 535.2 
29-5 2009 1.89  0  NA 26.3 
29-5 2012 7.55 0.140 12497.9 1749.7 
28-2 2009 9.06 0.609 4086.2 2487.2 
28-2 2012 7.20 0.374 3414.7 1277.8 
28F-2 2009 1.31  0  NA 68.6 
28F-2 2012 8.03 0.724 3741.9 2709.1 
29-6 2009 6.65 0.040 14622.4 577.6 
29-6 2012 6.86 0.042 49902.6 2107.0 
29-9 2009 6.31 0.042 6544.3 275.7 
29-9 2012 2.17 0.005 74037.1 383.9 
29-1 2009 2.01 0.102 1067.6 109.1 
29-1 2012 2.65 0.092 7965.9 731.0 
27-5 2009 6.65 0.413 544.8 224.9 
27-5 2012 7.41 0.356 4282.4 1523.2 
44-2 2009 0.79  0  NA 62.9 
45F-4 2012 7.41 0.023 42402.7 982.0 
32F-10 2012 Unknown Unknown Unknown Unknown 

70-2 2012 Unknown Unknown Unknown Unknown 

 

Table I.11. Fractionation of CO2/
3
He and 

40
Ar

*
/
4
He during gas dissolution in the Cranfield 

reservoir. Data are plotted on Figure 5.2. 

Gas/Water 
(G/W) 

CO2/
3He    (x 

109) 

28F-2 29F-1 44-2 29-5 

40Ar*/4He 40Ar*/4He 40Ar*/4He 40Ar*/4He 

100 2.526 0.142 0.190 0.260 0.360 

50 2.522 0.142 0.190 0.260 0.360 

10 2.485 0.142 0.189 0.260 0.359 

1 2.179 0.141 0.189 0.259 0.359 

0.1 1.070 0.137 0.184 0.252 0.348 

0.01 0.252 0.116 0.155 0.213 0.294 

0.001 0.130 0.097 0.131 0.179 0.248 

0.0001 0.118 0.094 0.126 0.173 0.239 

 

 

 



149 

 

 

Table I.12. Fractionation of CO2/
3
He and δ13

CCO2 in Cranfield during CO2 precipitation 

and dissolution. δ13
CCO2 is relative to PDB. 

Dissolved 
CO2 % 

Precipitation as calcite Dissolution into water 

CO2/
3He   

(x 109) 
δ13CCO2 

CO2/
3He 

(x 109) 

δ13CCO2 δ13CCO2 δ13CCO2 

pH = 6 pH = 7 pH = 8 

1 2.50 -2.98 2.50 -2.96 -2.97 -2.97 

10 2.28 -3.18 2.28 -2.98 -3.08 -3.11 

20 2.02 -3.43 2.04 -3.01 -3.22 -3.28 

30 1.77 -3.72 1.79 -3.04 -3.38 -3.47 

40 1.52 -4.05 1.54 -3.08 -3.56 -3.70 

50 1.27 -4.44 1.29 -3.12 -3.77 -3.96 

60 1.01 -4.91 1.04 -3.17 -4.03 -4.28 

70 0.76 -5.52 0.78 -3.24 -4.36 -4.69 

80 0.51 -6.38 0.53 -3.33 -4.84 -5.28 

90 0.25 -7.86 0.26 -3.50 -5.64 -6.28 

99 0.25 -12.76 0.27 -4.03 -8.33 -9.59 

 

 

Table I.13. The isotopic composition of the injected tracer into the DAS site in 2009 and 

in 2010. The composition of atmospheric air is after Berglund and Wieser, (2011). The 

injected gas in composition in both cases is identical to air. 1σ uncertainties are in 

parenthesis. The measurements have been carried out by the University of Rochester after 

Poreda and Farley (1992). 

 Atmospheric air 

 

 

Injected gas 
(03/12/2009) 

Injected gas 
(15/04/2010) 

124Xe/132Xe 0.0035 (0) 0.0031 (1) 0.0032 (1) 
126Xe/132Xe 0.0033 (0) 0.0028 (1) 0.0024 (1) 
128Xe/132Xe 0.0710 (0) 0.071 (1) 0.071 (1) 
129Xe/132Xe 0.9811 (3) 0.987 (11) 0.981 (9) 
130Xe/132Xe 0.1513 (1) 0.151 (2) 0.151 (2) 
131Xe/132Xe 0.7891 (1) 0.789 (9) 0.788 (8) 
134Xe/132Xe 0.3878 (1) 0.387 (5) 0.388 (6) 
136Xe/132Xe 0.3292 (2) 0.328 (4) 0.330 (4) 
80Kr/84Kr 0.040 (0) 0.041 (1) 0.040 (1) 
82Kr/84Kr 0.203 (1) 0.204 (2) 0.204 (1) 
83Kr/84Kr 0.202 (0) 0.202 (2) 0.202 (2) 
86Kr/84Kr 0.304 (1) 0.301 (4) 0.302 (3) 
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Table I.14. The fractionation of ASW-like noble gases with decreasing G/W ratio in the 

Cranfield reservoir. The Cranfield pre-injection end-member is defined at G/W = 0.25. 

Gas/Water (G/W) 

 

20Ne/36Ar 84Kr/36Ar 132Xe/36Ar 

Infinite (ASW) 0.163 0.039 0.00248 

1000 0.1630 0.0390 0.002480 

500 0.1630 0.0390 0.002480 

100 0.1631 0.0390 0.002478 

10 0.1637 0.0388 0.002464 

1 0.1691 0.0369 0.002346 

0.25 0.1829 0.0333 0.002118 

0.1 0.1990 0.0304 0.001931 

 

 

Table I.15. The fractionation of ASW-like noble gases during water-oil contact in the 

Cranfield field. The pre-injection oil/water ratio in Cranfield is 0.001 (see text). 

Oil/Water 
(O/W) 

water equilibrated oil (WEO) water after oil equilibrium (WAOE) 

20Ne/36Ar 84Kr/36Ar 132Xe/36Ar 20Ne/36Ar 84Kr/36Ar 132Xe/36Ar 

Infinite 
(ASW) 

0.163 0.039 0.00248 0 0 0 

0.99 0.1542 0.0411 0.00266 
 

0.0002 0.0001 0.00007 
 0.9 

 
0.1534 0.0414 0.00268 

 
0.0237 0.0057 0.00057 

 0.8 0.1525 0.0416 0.00270 
 

0.0451 0.0108 0.00100 
 0.7 0.1513 0.0420 0.00273 

 
0.0646 0.0154 0.00133 

 0.6 0.1498 0.0424 0.00277 
 

0.0823 0.0197 0.00160 
 0.5 0.1478 0.0431 0.00282 

 
0.0986 0.0236 0.00181 

 0.4 0.1452 0.0439 0.00290 
 

0.1135 0.0272 0.00199 
 0.3 0.1416 0.0453 0.00303 

 
0.1273 0.0305 0.00214 

 0.2 0.1360 0.0477 0.00325 
 

0.1401 0.0335 0.00227 
 0.1 0.1264 0.0531 0.00378 

 
0.1520 0.0364 0.00238 

 0.05 0.1186 0.0594 0.00447 
 

0.1576 0.0377 0.00243 
 0.02 0.1121 0.0669 0.00540 

 
0.1609 0.0385 0.00246 

 0.01 0.1094 0.0708 0.00594 
 

0.1619 0.0387 0.00247 
 0.005 0.1080 0.0732 0.00630 

 
0.1625 0.0389 0.00248 

 0.002 0.1071 0.0749 0.00655 
 

0.1628 0.0389 0.00248 
 0.001 0.1068 0.0754 0.00664 

 
0.1629 0.0390 0.00248 
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Table I.16. The fractionation of noble gases during the degassing of the oil phase in the 

Cranfield field. Fractionation is calculated from the oil composition is that of after the oil-

water equilibrium at O/W = 0.001. 

Gas/Oil (G/O) 20Ne/36Ar 84Kr/36Ar 132Xe/36Ar 

100 0.1068 0.0754 0.00663 

50 0.1068 0.0754 0.00663 

10 0.1069 0.0753 0.00663 

1 0.1073 0.0744 0.00655 

0.1 0.1116 0.0671 0.00590 

0.01 0.1459 0.0426 0.00375 
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Appendix II 

Publications of this work 

 

In peer reviewed scientific journals 

Györe, D., Stuart, F.M., Gilfillan, S., Waldron, S., 2015. Tracing injected CO2 in the 

Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes 

International Journal of Greenhouse Gas Control, 42, p 554-561. 

 

In international conferences 

Györe, D., Stuart, F.M., Waldron, S., Gilfillan, S., 2015. Noble gas isotopes in injected 

CO2 as a tracer in the Cranfield enhanced oil recovery field (MS, USA). 25
th

 

Goldschmidt Conference, Prague, Aug 16-21, poster presentation. 

Gilfillan, S., Haszedline, S., Stuart, F., Györe, D., Kilgallon, R., Wilkinson, M., 2014. The 

application of noble gases and carbon stable isotopes in tracing the fate, migration and 

storage of CO2. GHGT 12 Conference, University of Texas at Austin, 5-9 October, 

2014; Energy Procedia 63, 4123. 

Gilfillan, S., Györe, D., Stuart, F. Talk entitled 'Tracing the migration and fate of CO2 in 

the Cranfield CO2-EOR field using noble gases'14th April 2014 - Geological Society of 

London Meeting on 'Geological Carbon Storage: Meeting the Global Challenge', at 

Burlington House, London. 

Gilfillan, S., Györe, D., Stuart, F. Talk entitled 'Tracing the migration and fate of CO2 in 

the Cranfield CO2-EOR field using noble gases', 28th Feb 2014 - CRIUS workshop on 

'Geochemical processes during CO2 storage' in Keyworth, Nottingham. 
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Györe, D. Stuart, F.M., Waldron, S., Gilfillan, S., Talk entitled ‘Noble gases as natural 

tracers of carbon sequestration in injection fields’ 10th Applied Isotope Geochemistry 

Conference, Budapest, September 22-27, 2013; Central European Geology, Acta 

Geologica Hungarica 56 (2-3), 147. 

Györe, D., Stuart, F., Gilfillan, S., Waldron, S. Talk entitled ’Stable and noble gas isotopes 

as tracers of subsurface processes acting on CO2 injected’ 12th Annual Conference on 

Carbon Capture,Utilization and Sequestration, May 13, 2013 Pittsburgh, PA, USA. 
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