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Summary

The underlying thome of this thesis is that neuronal morphology influences neuronal be-
haviour. ‘Three distinct bul related projects in the application of mathematical models
o neurophysiology are presented. The first problem is an investigation into the source of
the discrepancy between the observed conduction speed of the propagated action poten-
tial in the squid giant axon, and its value predicted on the basis of the Hodgkin-Huxley
membrane model. It is shown that measurement error and biological variability cannot
explain the discrepancy, nor can the use of a three-dimensional model Lo represent the
gquid giant axon. If the propagated action potential achieved the travelling wave speed
in the experimental apparatus, as assumed hnplicitly by Hodgkin and Huxley, then it is
sugzested that the model of the membrane kinelics requires modification. The second
problem involves the generalisation of Rall's equivalent cylinder to the equivalent cable.
The equivalent cable is an unbranched structure with electrotonic length equal to the
sum of the electrotouic lengths of the segments of the original branched structure, and
an associated bijective mapping relating currents on the original branched structure to
those on the cablec. The equivalent cable is derived aualytically and can be applied to
any branched dendrite, unlike the Rall equivalent cylinder, which only exists for dendrites
satisfying very restrictive morphological constraints. Furthermore, the bijeclive mapping
generated in the construction of Lhe equivalent cable can be used to investigate the role of
dendritic morphology in shaping neuronal behaviour. Examples of equivalent cables are
wiven for spinal interneurcons from the dorsal horn of the spinal cord. The third problem
develops a new procedure to simulate neuronal morphology from a sample of neurons of
Lhe same type. It is conjectured that neurons may be simulated on the busis of the single
assumption that they arc composed of uniform dendritic sections with joing distribution of
diamneter and length that is independent of location in a dendritic tree. This assumption,
in combination with the kernel density estimation technique, is used to construct samples
of simulated interneurons from samples of real interncurons, and the procedure is snccess-
ful in predicting features of the original samples thal are not assumed by the construction

Pprocess.
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Chapter 1

Introduction

A good model is one that succeeds to reduce the complewity of the modelled

system significantly while still preserming its essential fectures. {Segev, 1992)

The underlying theme of this thesis is that neuronal morphology influences neuronal be-
haviour. This thesis presents three distinct but related projects in the application of

mathematical models to neurophysiology. The problems to be discussed are:-

(a) an investigation into the source of the discrepancy between the observed conduction
speed of the propagated action potential in the squid giant axon, and its value

predicted on the basis of the Hodgkin-Iuxley membranc modet;
{(b) the generalisation of Rall’s equivalent cylinder to arbitrary branched dendrites;

(c) the development of a new procedure to simulate neuronal morphology from a sample

of neurons of the same vype.

In cach of these cxamples of mathematical modelling in neurophysiology, the original work
made a significant contribution fio neuwropliysiology. For example, the Hodgkin-Iuxley
model (£952d) and the supporting experimental work (Hodgkin, Huxley and Katz, 1952;
Hodgkin and [fuxley, 1952a,b,c) provided the benchmark combination of theoretical and
experimental practice against which future work can be measured. Nevertheless in each of
the examples (a)-(c) there remain unresolved issues, some of which could not be resolved
at the time of the original work due either to limitations in the computationsl tocls or

the requirement of conceptual advances. The Hodgkin-Huxley model is an example of the

Lva



CHAPTIER 1. INTRODUCTION 8

former, and the Rall equivalent cylinder is an example of the latter. In view of the diverse
subject matter of this thesis, this introduction will provide a preliminary background
to the content of cach projecl, with the introduction of each chapter providing a maore

comprehensive description of the individual projects.

Hodgkin and Huxley carried out a series of experiments, some in collaboration with
RBernard Katz, which culminated in a model for the generation of an action potential
in the squid giant axon (Iodghkin et al., 1952; Hodgkin and Huxley 1952a,b,c,d). Hodgkin
and Huxley were awarded the Nobel prize for this work in 1863. Of the experimental obser-
vations predicted by the model, the prediction of the conduction speed of the propagated
action potential is the strongest test of the model, since this speed is independent of the
conditions under which the membrane model was derived. In this test, there is an 11-12%
discrepancy between the observed and predieted conduction speeds, and although this dis-
crepancy was acceptable at the time; its source remains 1o be explained. This result has
been unquestioned since it was published in 1952, Cole {1968} refers to the discrepancy
suggesting that it may have been the result of assumptions and approximations in the
experimental process and i therefore an acceptable result under the circumstances. How-
evor, given the tight experimental conditions imposed by Hodgkin and Huxley, whereby
all crrors were known and small, this explanation seems unlikely. Chapler 2 examines
Cole’s cxplanation and other possible explanations for the discrepancy between the ob-
served conduction speed of the propagated action potential in the squid giant axon and

the conduction speed predicted by the Hodgkin-Huxley membrane model.

The predominant view of the role of dendritic morphology in the mid-twentieth century,
based on intracellular recordings fromn motor neurons, was that dendritic structure was
unimportant in conditioning the behaviour of the motor neuron. Jack and Redinan (1995)
outline the controversy between the dominant view held by Eceles, that is, that dendritic
form is not important, and the position taken by Rall, that dendritic morphology was
important and must be taken into account to understand the behaviour of neurons. Once
Hall established this view of the dendrite, the investigation of the role of dendritic mor-
phology in shaping neuronal hehaviour became an important. issue. Given the complex and
varied morphology of dendritic trees, building a model of their structure is not straightfor-
ward. Using linear cable theory to describe each cylindrical segment of a dendritic free in
combination wilh several restrictive conditions, Rall derived the eguivalent cylinder. The

equivalent cylinder produces the same response at the soms as that of the branched tree

K

oy




CHAPTER 1. INTRODUCTION 9

when current is injected at the same clectrotonic distance from the soma. The conditions
imposed by Rall for this equivalence to be valid are often unrealistic when applied to real
nevrons. Particularly unrealistic were the requirements that the electrotonic distance from
any branch point te a dendritic $ip connected to that branch point be identical, and that
dendritic sections meeting at a branch point should satisfy the 3/2 puwer law, by which
is meant that the sum of the daughter diameters raised to the 3/2 power must equal the
parent diameter raised to the 3/2 power. The equivalent cylinder generated under these
assumptions is not truly equivalent to the original dendrite from which it is constructed,
because input to the equivalent ¢ylinder cannol be uniquely associated with input on the
original dendritic tree. Chapter 4 generalises the Rall equivalent cylinder to the equiva-
lent cable by relaxing all the constraints imposed by Rall. The procedure is analytical and
leads to a bijective mapping between input on the original tree and that on the equivalent
cable. Examples of equivalent cables are given for spinal interneurons from the dorsal horn

of the spinal cord that receive myelinated and unmyelinated afferent input.

The first. acenrate description of neuronal anatomy was provided by Cajal using a light
microscope to examine Golgi staincd neurons (see Cajal, 1952). From these studies, he
accurately theorised that the neuron was the basic unit of the nervous system, and fur-
thermore, that neurons communicated by the spread of a signal from the dendritic tree to
the soma and onte the axon from where the signal is transmitted to the next neuvon. It
was clear from Cajal’s work that neurons formed diverse morphological structurcs ranging
from the densely branched Purkizje cell to the sparsely branched spinal interneurons con-
sidered in this thesis. Various studies have focused on the identification of & canonical sct
of properties that characterisc neuronal morphology. Hillman (1979) was at the forefront
of this research when he described seven fundamental parameters for the size and shape of
dendritic trees, and latterly Tamori (1993) introduced two additional parameters to char-
acterise the three-dhnensional orientation of neurons. Burke, Marks and Ulthake (1992)
and Ascoli and Kirchmar (2000) simulated neuron morphology using some of the parame-
ters identified by Hillman {1979) and Tamori (1993) with varying degrees of success. For
example, Burke et l. (1992) find that they need to introduce additional correction [actors
to improve the agreement between their simulaied and real neurons. Chapter 5 sets out
a novel procedure based on the single assumption that neurons are composed of uniform
dendritic sections with joint distribution of diamcter and length that is independent of

location in a dendritic tree. This assumption, in combination with the kernel density esti-
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mation technique, is used to construct samples of simulated neurons trom a sample of real

neurons.




Chapter 2

A comparison of the
three-dimensional and
one-dimensional treatment of

action potentials

2.1 Introduction

The Hodgkin-Huxley model for membrane kinetics in the squid giant axon has become the
standard model in neurophysiology despite an 11-12% discrepancy between theory and
obscrvation in a critical test of the model. Specifically, the prediction of the conduction
velocity of the propagated action polential. The intention of the chapter is to arrive al
an explanation for this discrepancy by considering the standard assumption of a one-
dimensional model and the implications of applying a three-dimensional model to the
same prohlem. QOther possible explanations for the diserepancy will also be cxamined.
The developrent of the three-dimensional model will allow a further investigation into

the relationship between the speed of the action potential and its wavelength.

The development of the Hodgkin-Huxley membrane model marked a turuing poiot in neu-
rophysiology. The precise and systematic quantitative analysis of the ionic currents of the
squid giant axon led to an accurate and robust model that has stood the test of time since

its publication in 1952. Hodgkin and Huxley (1952d) derived a set of partial differential

11
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equations that can be used to describe the evolution of the membrane potential in the
squid giant axon. By assuming a travelling wave solution for the set of partial differential
equations, namely an action potential with fixed profile moving at a constant speed, the
equations arve simplified to a set of ordinary differential equations and subsequently solved
numerically by hand caleulation. This procedure contains obvious sources of error thal
may explain the discrepancy; possibilities are transcription errors in copying the results
of calculations from Lhe hand calculator, or rounding error introduced by the limited ac-
curacy of the hand calculator. With the development of more accurate digital compnters,
Cooley and Dodge (1966) and Huxley (1959) himself have retested the model and found
the original calculalions to be aceurate. Therefore we can exclude immediately numerical

inacenracy as a possible source of the 11-12% discrepancy.

Once numerical inaccuracies have been ruled out, one must consider the explicit and im-
plicit assumptions made in the construction of the model. The most significant implicit
assumption made is that of a one-dimensional axon. Hodgkin and Huxley used the one-
dimensional cable equation to describe the behaviowr of the three-dimensional axon, a
feature of the model that has never been guestigned. In fairness, the body of work pub-
lished prior to Hodgkin and iluxiey, for example Hodgkin and Rushton (19486}, Davis and
Lorente de No (1947), Hermann {1884) and even Lord Kelvin's (1855) original work on

cable theory all implicitly assume one-dimensional structures.

However, subsequent work alse supports the assumption of a ane-dimensional axon. 'he
approach commonly taken is a one-dimensional approximation of a three-dimensional
structwre, rather than deriving the one-dimensional object from ithe three-dimensional
model. Rall (1959) assumes that the membrane potential is a solution of Laplaces equa-
tion while Jack, Noble and 'T'sien (1975) apply o geometrical argument to investigate the
incorparation of taper into a one-dimensional model. This leaves the model vulnerable to
difficulties, for example, a change in the surface area per unit length will be constant if the
axon i8 a cylinder, however, if the axon tapers the change in surface area is no longer pro-
portional to length. As will be shown in the development of the three-dimensional model,
there are featurcs found in the simplification of the three-dimensional model that are nei-
ther geomelric nor explicit and therefore it is not obvious how they might be included in
the generalised one-dimensional model. These additional features describe radial currents
in the axon, and it is their existence that compromises the validity of one-dimensional

models.

]
i
1




CHAPTER 2. ACTION POTENTIALS 13

Sixteen years after the publication of the Hodgkin-Huxley membrane model, Cole (1968)
noted that the assumption of the absence of radial gradients in Kelvin’s work may be invalid
in cables although he did not question this assumption in the case of the squid axon. It is
interesting to note that Cole recognised that this assumption may not be valid for axons
with large diameters, and at the same time commented on the discrepancy hetween the
predicted and observed speeds of the propagated action potential in the Hodgkin-Huxley
membrane model, while not recognising that the two phenomena might be related. It is
clear therefore that both the predominant view at the time of Hodgkin and Huxley’s work
and subsequent work by Rall (1962) reached the same conclusion; namely, that it is safe

to ignore the effects of radial gradients in axonal and dendritic models.

An explicit assumption that requires verification is the validity of the travelling wave
assumption. For the fravelling wave assumption to be valid, the speed of the action
potential must reach the travelling wave speed over the length of axon over which it is
measured. In addition, one must alsc consider measurement error and biological variability
as possible sources of error. Due to the diligent reporting of Hodgkin and Huxley, the error
bounds for all of the measured parameters in their experiments are known. It is possible Lo
manipulate both measurement error and biological variability through simulation exercises,

taking into account all possible combinations o assess the effect on the conducetion speed.

An adequate test of the one-dimensional assumption takes Maxwell's equations as the
starting point of the model. The particularisation of these equations te the case of a
cylindrical axon of known diameter forms an important part of this chapter. It is shown
that Maxwell’s equations when particularised to the material properties of an axon and
its geometry lead to Laplace’s equation. Maxwell’s equations describe the fundamen-
tal features of the three-dimensional model from which a one-dimensional model of the
axon incorporating all its biophysical and geomnetrical properties can be exiracted. The
reduction of the three-dimensional madel to a vne-dimensional representation reveals irre-
ducible features of the three-dimensional model that are a consequence of radial gradients
and not geometrical features. Using the one-dimensional representation derived from the
three-dimensional model Lhe conduction speed of the propagating action potential can be
calculated withoul the travelling wave assumption. By solving Taplace’s equation {or the
potential distributions in the inferior and exterior regions, an investigation cau also be
carried out on the dispersive relationship for action potentials and their implications for

signalling in axons.
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2.2 Mathematical and physical preliminaries

This section lays out the mathematical methods and motivations used to construct the

three-dimnensional model of an axon and solve the associated equations.

2.2.1 Definitions

Before the particularisation of Maxwell’s equations, it is necessary to lay out some def-
initions and identities from vector calculus. Let i, j and X form. a right-handed triad of
mutually orthogonal unit vectors. By this we mean that
t.i=j.j=k k=1
(2.1)
ixj=k jxk=i kxi=]
where *.’ and ‘%’ denote the scalar and cross-products of vectors in R3. Let f = f(z,y,z)

be a scalar function of position then the gradient of f, denacted grad f, is the vector

2 0
glanle—'i +5§] df

The gradient of f in the direction n, where n is a unit vector, is given by

g =nu.grad f.
dn

In particular, if n is the normal vo a surface S, then this gradient is called the normal
derivative of f at {z,%,z) on the surface S.
The divergence of a vector field ¥ = Fii-|- F3j | F3k is defined by

_On  0F  OF
divF dwl6y+82"

Civen any voluine of V' with surface 8V, Gauss’s theorem asscrts that
/div]ﬂ‘ dV = F.ndsS,
v 8y
so that divF may be interpreted as the distribubion of sources of I within the volume V

that will give rise to flux F on the surface of the volume.

The curl of a vector fleld ¥ = Fj 14+ F»j + Fyk is defined by

e (OFs OF\, (OF  OF3\ . or,; OF,
LllIlF—(aJ 3z)l+(3z aa;)‘]+(793:_ ay)k' (2.2)
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Given any closed curve C in space, Stoke's theorem asserts that

fI*‘.dlz /n.cm‘leS
C JE

for all sarfaces & for which C is a boundary curve. Thus curl F is a measure of the rotation
of the vector field ¥. For example, il E is an electric field, then curl E would measure the
extent to which the ficld is not conservative, and if curl E = 0 then E is derivable as the

gradient of a potential function.
The operators grad, div and curl satisfy the important identities
div curl ¥ =0

curlcurl B = grad divF — A ¥
curl grad f = 0

where A F is called the Laplacian of F. In particular, if ¢ is expressed as a scalar function

of the Cartosian coordinates {(z,y, z) then

Fo 8¢ 9%
A(b-—-m-!“ggg'l- py

where A¢ = 0 is called Laplace’s eqnation.

2.3 Derivation of the neuronal field equations

The starting point for the three-dimensional model of a dendrite in a stationary medium

is Maxwell’s equations

divD = p, {2.3)

divB = 0, (2.4)

ewl H = J4+ —8‘%, (2.5}
o8B

cwl B = —-(-9-{. (2())

In these equations, E (mV/mm) is the electric field strength, D = B + P (uC/mm?) is
the electric displacement field with P (4C/mm?) the polarisation of the medium and ¢ =
(36)"! pF/mm is the permittivity of free space. The sealar function p (C/mm?®) is the
density of free charge in the medium, J (uA/mm?) is the current density, H (mA/mm) is
the magnetic field strength, B = pgH + M {(uW/mm?) is the magnetic induction with M
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(#W /mm?) the magnetisation of the medium and pg == 47 107! N/mA? is the permeability

of free space.

Although the physical interpretation of Maxwell’s equations is not immediately obvious
from equations (2.3)-(2.6), they can be interpreted as follows. Fquation (2.3) is the dif-
ferential form of Gauss’s law, which states that the total flux of displacement field out
af a closed surface is equal to the net charpe within the volume enclosed by the surface.
Bquation (2.4) asserts that magnetic monopoles de not exist. The second pair of equations
rolate current and magnetic fields. Equation (2.5) is Ampere’s law which states that the
current density and displacement ficld give rise to the magnetic field H. Equation (2.6) is
Faraday’s law of induction which states that a time varying magnetic field gives rise to an
electric field. The negative sign is Lenz’s law which asserts that encrgy must be expended

ta generate this electric field.
Under the conditions of dendritic modelling, it is reasonable to assume that P, M and J
are parallel to E, H and E respectively, so that

D = ke, B = ppH, J=dE (2.7)

where £ 18 a dielectric constant, g is a permeability factor and ¢ is an cleetrical conduc-
tivity. Assuming that x, x4 and o are constant [unctions of posttion, Maxwell’s equations

can now be written as

divE = -, (2.8)
"Ep
divH = 0 (2.9)
J
el H = crE—i--!tco—(,-g, (2.10)
JH

The three-dimensional model for & dendrite is developed fromr Maxwell's equations by
assessing the relative importance of the individual terms in the equations with reference
to both the morphology and biophysical propertics of the dendrite. For the extra- and
intracelhilar media, it is necessary to choose suitable values for &, g and ¢ with respect
to the dendritic medinm. The value of k & 81 is taken to be that of water. The value
of ¢ = 0.022 is estimated from the refractive index of water (n = 1.33) using the formula
n = /Ff. The value for the specific conduetivity ¢ ~ 3.3 m8/mm is taken from Katz

(1966). The typical dimensions for dendritic radius and length are B ~ 5 x 10~%m and

L
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L = 10~%m, respectively. I first consider the dispersion of electric charge and the diffusion

of the magnetic field.

2.3.1 Dispersion of charge

Maxwell’s third equation (2.10) governs the dispersion of charge in the intra- and exira-

cellular media,
__ Reg

- (2.12)

curleo(E+ﬁ%—lf-), Jé]

In the context of dendritic modelling, 4 = 2.2 x 10712 seconds in the intra-cellular region,
with a siinilarly small value in the extra-cellular region. It follows from equations (2.8)

and (2.12) that the density of free charge p satisfies the partial differential equation

9p p _
5 tg= 0, {2.13)

using the vector identity div(cur] H) = 0. The general solution of this equation is
p(r, t) = p(r, 0)6--”{’1 (2.14)

vthere p(r,0) is the initial distribution of charge. From this sohition, it is clear that free
charge decays with time constant 8 seconds, which is negligible, compared with changes
in transmembrane potential which occur on the order of microseconds. Therefore, the
dispersal of free charge has a negligible contrihution to current flow and is assumed to
be instantaneous for the purposes of dendritic modelling. Furthermore, the time rate of
change of I in equation (2.12) is significant only if it occurs on a time scale of 8 seconds,

and therefore the term 8 8E/8t is also considered negligible on a microsecond timescale.

Thercfore, the first particularisation of Maxwell’s equations comes from the hiophysical

propertics of the dendritic material and leads to the result

divE = 0, (2.15)
divE = 0, (2.16)
’ curl H = J=0E, (2.17)
| cwl & = -;mu%?-. (2.18)

The next stage in the particularisation of Mexwell’s equations considers both ihe neuronal

geometry and electrical properties of the dendrite.
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2.3.2 Diffusion of magnetic field

Let us now consider the effect of the magnetic field on the electric field, as defined in

equations {2.17) and (2.18).

An implicit assumption in nenronal modelling is that the electric field is derivable from a
potential function, that is, it satisfies Laplace’s equation. However it is clear {rom equation
(2.18) that the electric field is not gencrally derivable from a potential function due to the
time changing magnetic field. The aim then is to find conditions under which the right
hand side of equation (2.18) is negligible. Toward this end, K is eliminated between
equations (2.17) and (2.18) to obtain

. dH
curl curl B = — oMb (2.19)

Using the vector identity eurl curl H = grad divEl — AH in combination with div X ==
equalion (2.19) reduces to

ALY = omm%l—g. (2.20)

This expression can be non-dimensionalised using the changes of variable H = H/H,, ¥
= x/L and t = /T, giving the non-dimensional expression

AE opupl? o8

AH = . .
T o (2.21}

The magnitude of the non-dimensional parameter ap.p.gLQ/T governs the impact of the
time changing magnctic field on the slectric field. For a motor neuron with a soma of
diameter == 10~* and clectrical activity resolved to 10™! ms, this parameter is approxi-
mately 10 11, Therefore the right hand side of equation (2.21) is negligible and so the
magnetic field is determined by the electric field through Maxwell's equations {2.16) and
(2.17) but cannot itself drive the clectric field. Under these conditions, the eleetric field

satisfies curl E = 0, and is therefore derivable from a scalar function.

2.3.3 Maxwell’s equations in neuronal modelling

Taking into account both the biophysical and geometrical properties of neuronal material
suggest that the most appropriate particonlarisation of Maxwell’s equations is based on
instantaneous dispersal of free charge and instantaneous diffusion of the magnetic field.

Consequently, Maxwell’s cquations divide into two pairs of cquations. The first pair is

div E =0, cwl E =0, (2.22)
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which leads to the result that
B = —grad ¢, J = —ograd ¢, V2 = 0. (2.23)

Therefore the electric fields in the intra- and cxtra-cellular regious are derived from peo-

tential functions which satisfy Laplace’s equation. The second pair of equations is
div H = 0, cwl H=J =0E, (2.24)

which determine the magnetic field H from the electric field B.

2.3.4 Equations for a three-dimensional axonal cylinder

In assessing the influence that the three-dimensional representation of the axon has on
conduction speed, we consider an infinitely long axon of constant radius e, with intro-
cellular fluid of finite conductivity gs emersed in extra~cellular fluid of finite conductivity
gi separated by a membrane. The axis of the axon is taken to be the z-axis of a system
of cylindrical polar coordinates (r, 8, z) where the axonal membrane has equation r = «.
The intraccllular region is defined by v < a and the extracellular region is defined by
7 > a. The azimuthal symmetry present in the model allows # to be an ignorable variable.
Consequently, the potential ¢(r, z,1) in the intracellular regivn and the potential ®{r, 2, ¢)

in the extracellular region are required to be finite solutions of Laplace's equation

8% 109 3%

BEt i tem = 0 (2.25)
#p 190 P2

Za s = (. 2.
ar# +r or = Oz2 0 (2:26)

THowever, these potentialg are nol continuous at r = a, and it is the size of this discontinuity

thal defines the transmembrane potential
Vg = ¢(a, 5,t) — &(a, z,1). (2.27)

The presence of this discontinuity in potential induces transmembrane current Jys to flow
across the membrane. In the absence of sources of free charge within the membrane, this
current must be identical to thal predicted by the gradients of the intra- and extracellular

potentials normal to the membrane. These conditions give rige to the boundary conditions

. a¢ . a®
== (o) == J () >
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where g4 and gz are, respectively, the conductivities of the intra- and extra-cellular media
and n iz the unit normal to the membrane directed from the intra- to the extra-cellular
region.

In dendritic modelling, neither the intra- and extra-cellular potentials nor the transmem-
brane potentials are known on the dendritic membrane. Instead these functions are de-
termined by requiring continuity of transmembrane current as prescribed in the boundary
conditions {2.28) where the functional form of Jas is prescribed by the constitutive formula

(2.31).

2.3.5 Identification of the one-dimensional membrane potential

At this stage, it is necessary to define the three-dimensional equation describing the mem-
brane potential of a infinitely long cylindrical axon, derived from Maxwell’s equations.
The divergence of the Maxwell equation J = cwl H gives the identity div J = 0. The

integration of this equation over a volume of axon gives

/ (divD)rdrde = - / JAra, t)rde 4+ / (v b, ) rdr
A(z)x(a,b) Ala) A(b)
-} / J.n R/ R2dz =0,
BA(z) X (a,b}

where the membrane is the surface r == R{z), R is the derivative of R with respect ta z, J,

(2.29)

is the z-component of J and the divergence theorem has been used to replace the volume
integral on the left by surface integrals on the right. Expression (2.29) is now divided by

2h with the choices g = 2z — b and b == z + h, and the limit taken as A — 0% to obtain

3( f Jar, 2, 1) -rdr) + / J.nR/I+RE=0 {2.30)
Oz \ Ja(z) BA(z)

where A(z) is the arca formed by the intersection of the axon with a plane of fixed axial
coordinate z and 8.4(z) is the boundary of A(z). After all integrations are complete, the

identity (2.30) contains only # and ¢.

The biophysical properties of the dendritic material are introduced through a constitutive
law for the transmembrane current density Jas = J-n (uA/cm?). There are typically three
contributions Lo Jas, first the density of synaptic current Jsyny (uA/cm?), the density of
intrinsic voltage-dependent current Jrvpo (uA/em®) arising from ionic chanuels, and the
density of capacitive cwrent due to polarisation of the membrane whose lipid bi-layer

structure causes it to behave locally like a parallel plate capacitor with plates raised to
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the potential difference of the transmembrane patential Vs, The transmembrane current

density due to these processes is

av ;
Ine(Var) = em —-C;éu* + Jsyn(Var) + Jrvne (V) (2.31)

where cp; (T /cmn?) is the specific capacitance of the membrane and Var is the transmem-

brane potential defined in (2.27).

The three-dimensionally derived onc-dimensional representation of the ¢ylindrical segment
given in equation {2.30) can be further simplificd by substituting J-n = Jys, where J; has
been replaced by its definition in terms of the axial gradient of the intra-cellular potential

¢{r, z,t). This gives

“R(z) .
—2 (A(z) / G'AM rdr ) + P(2) Jpe(Var) =0 (2.32)
3z 0 Oz

where V3y = ¢a — $g is the transmembranc potential. The membrane potential, Vi,
derived via Maxwell’s equation is now compared with the membrane potential, V), given

by the conventional one-dimensional cable equation

-2 (a0 22 ) + £) eV =0, (2.5

where Jyr (V) is the travsmembrane current density at membrane potential V as defined
in equation (2.31) and P(z) — 2 R(z) and A(z) = 7R? (z).

The question now is to determine under what conditions Vys is identical to V. To achieve
this objective it is necessary to compare the expressions for transmemsbrane current and

the diffusion of axial current hetween equation {2.32) and equation (2.33).

Comparison of transmembrane current

The reconciliation of ¥V with Vs requires that the membrang currents from both equations
are eguivalent, that is,

P(z) Jp(V) = P(z) Jpe(Vie), (2.34)

where Jjs is defined in equation (2.31). As the transmembrane current Jus(Vas) is the sum

of the independent components described in equation (2.31), then a satisfactory definition
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of ¥ must satisfy each of the equations

P(Z)C‘MV = P(szMVM,
P(z)Jvpe(V) = Plz)Jivpe(Var), (2.35)

P(z)Jsyn(V) = P(2)Jsyn(Va),
because each current is an independent entily. The first condition of (2.35) requires
that ¥V = V), and if this is the case, then the sccond and third conditions of (2.33)
arc satisfied automatically. That is, in the presence of strong-cylindrical symmetry the
three-dimensionally derived one-dimensional transmembranc potential Vi and the one-
dimensionally derived one-dimensional transmeimbrane potential )V are required to be iden-

tical with respect to transmembrane current.

Comparison of diffusion of axial current

The reconciliation of ¥ and Vs furiher requires a comparisan of the terms in equations
(2.32) and {2.33) which represent the diffusion of axial current. To facilitate this compar-

ison, it is convenient to start with the mathematical identity

() 8¢ Var  [HE B(p—¢a)
L‘ O'AA(Z)-B—; rdr = caA(z) e 1 A L dr + o A A(z)

where Vs and @ are defined on the membrane and arc therefore independent of r.

0@ p
Ox

(2.36)

This identity allows Uhe partition of the potential derived [rom Maxwell’s equations into
three components. The first term on the right hand side of this identity represents the
diffusion of axial current in the conventional one-dimcusional cable equation. The second
{erm represents the discrepancy in intracellular axial current when the true intracellular
potential is represented by its value al the inner boundary of the membrane, Finally the
third term is a correction to the intraccllular axial current arising from axial variation
of the extracellular potential on the outer boundary of the membrane. To complete the
correspondence between equations (2.32) and (2.33), the diffusion term in equation (2.32),
when expressed using the right-hand side of equation (2.36), must be assaciated with the
diffusion term of equation (2.33). Therefore

& _ WV , [ Bp—da) 8% g .
apA{z) 5 aAA(z)—g- +£ e dr +o4A4(z) e (2.37)

Lt is clear from equation (2.37) that the reconciliation between )V and V) requires that

" 9lg ~ ba) g
‘/0 G‘A—-a—z—-' rdr - CTAA(Z) Az = 0, (238)
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In the development of the conventional cable equation, it is implicitly assumed that these
terms are negligible. They represent irreducible components in the description of the
membrane potential that have no represendation in the traditional one-dimensional cable
equation. This expression has been derived for a cylindrical uniform axon without taper
and implies that the introduction of taper may result in a greater difference between
the conventional one-dimensional cable equation and the three-dimensionally derived one-

dimensional model.

The identification of torms in the one-dimensional cable equation derived from Maxwell’s
equations which cannot be eliminated may have far-reaching implications for models of
axons or dendrites based on the conventional one-dimensional derivation of the cable equa-
tion., In particular, Hodgkin and Huxley developed a membrane model from the membrane
kinetics observed in voltage clamp studies on the squid giant axon. A strong test of the
model was its ability to predict the conduction speed of & propagated action potential.
In this context, two important assumptions need to be examined, the first is the ade-
quacy of the representation of the thres-dimensional axen by a oue-dimensional model
and the second is the validity of the assumption that the travelling wave speed is attained

experimentally. We treat the former first and consider the latter in Section 2.5,

2.3.6 Three-dimensional axon with Hodgkin-Huxley kinetics

Axons are conventionally modelled as cylinders. In the case of Hodgkin and Huxley
{1952d), ihe axon is assumed to have a constant radius e (cm) and the Hodgkin-Huxley

membrane Jas is defined to be

oV :
=+ gvam®h (Vi = Viva) + ax ' (Vi — Vi) +g5 (Var = Vi) (239)

I = cu

where ¢y is the membrane capacitance, gng, gx and gz, are respeclively the sodium, potas-
sium and leakage conductances (mS/c.mz), Vive, Ve and V}, are respectively the sedinm,
potassium and leakage equilibrium potentials (mV) and Vi is the transmembrane po-
tential (mV). The auxiliary fimctions A, rn and n define the kinetic behaviour of the

confiuctances through differential equations of the form

d
-Cg =ay{l—y)—Byy (2.40}

where y = b, 7,7 and o and 8 are functions of V. Each function is in effect an activation

probability, determined experimentally from data based on a number of axons.
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The boundary conditions (2.28) written in terms of the Hodgkin-Huxley membrane (2.39)

are
oP 3%
—9E P = CM—M* + gna m3h (Var — VNa)

ot (2.41)

&
+ogn (Var — Vi) + 91, (Ve = V1) = — g4 5?;—-

Solution procedure

The analysis begins by representing the interior and exterior potentials as Lhe finite Fourier
series

N
T'—l

o,z ) = Z drlrst) o 2rika L (2.42)

___
k=—1

N
2
O(r,z;t) = Z By (ryt) e 2Rz L (2.43)
kz...%
In this representation, NV is the number of intervals into which the region (0, L) is uniformly
subdivided and L is the spatial periodicity of ¢(r, z;t) and B(r, z;t) with respect to the z
coordinate. Since ¢ and ® must be solutions of Laplace’s equation, it can be demonstrated

that ¢ and P are solutions of the ordinary differential equations

oy Ldpn 2k

— _— by — = ——— ¢
ar? r dr Pk 0 s UV A (2'4 1)

d2®, 1 dd, 2k

d‘l‘z - ;‘ dr - qu)k = 01 Vg = T! (?45)

for the interior and exterior regions respectively. The general solution of these equations
takes the form

= Aplo(ver) 4 BrKo(vgr) (2.46)

where Iy and K are the modified Bessel functions of the third and fourth kind and 4
and B, are constants. The requirement that ¢ is finite at » = 0 is satisfied by the choice
By =0 and the requirement that &, is finite as r — co is satisfied by the choice Ay = 0.

Thus the expressions for she potentials ¢ and @ become

Nj2-1
prnt) = 3 et bur)e™, r<a,
k=—N/3 where v, = :‘}ﬂﬁ
Nye-1 I
P(r, 2,1) = E br(f) Ko(var) e**, v >,

k=—N/2
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‘I'he coefficients oy, and b are directly related through the conservation of charge reqnire-
ment. The membrane potential can be expressed in terms of . and b and the specification
of membrane current leads to a family of ordinary differential equations for these coeffi-
cients. The boundary conditions on the axonal membrane » = o give N first order ordinary
differential equations and N algebraic equations for the time course of ap and b, The
Hodgkin-Iuxley equations (2.40) for each of h, m and n give a further 3NV first order
ordinary differential cquations giving 4V ordinary differential equations in total. In the
absence of injected current, the functions i, m, n and the intracellular and extracellular
potentials are constanf functions of time, Action potentials in the inodel are generated
by raising the intracellular potential above threshold over a small section in the cenire
of the axon and integrating the 4V differential equations forward in time by numerical

integration.

Conduction velocity in a three-dimensional axon

The movce to the three-diinensional model gives a slight decrease in the conduction speed
from 18.73 ms~! t0 18.61 ms~!, a difference of 0.12 ms™!. Thus the approximation of the
three-dimnensional axon by the traditional cable equation does not account for the observed
discrepancy between the predicted and observed speed of the propagated action potential
(in fact, the traditional cable equation is over-optimistic). However, in other applications
using a onc-dimensional model, for example predieting latencies, this difference may be

significant.
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2.4 Measurement error and biological variability

Tt is clear fromn the preceding section, that the discrepancy hetween theory and experiment
cannot be explained by the use of a one-dimensional model to prediet the speed of the

propagated action potential. Other possible suurces of error are now investigated.

Errovs associaled with the experimental estimation of model parameters from an axon
and the errors involved in deriving the rate functivns have to be considered as possible
gources of error. The former is errors in the measwement of parameters from the axon,
for example, conductance or capacitance, while the latter is biolagical variability due to
the derivation of the rate functions from data collected from several axons. The influence
of the two forms of error on the predicted and observed conduction speed will be treated

separately in this analysis.

‘1v test the influence of possible errors in parameter estimation and biological variability
on the conduction speed of the propagated action polential, three distinct simulation
exercises are carried ont. Bach simulation exercise is based on 2000 calenlations of the
conduction speed. ‘{‘he values of the estimated parameters are drawn from distribntions of
the parameter values based on the experimental work of Hodgkin and Huxley. Therefore
each simulation is considered fo give a measurement of the conduction speed for a single
axon, The first simulation exercise assesses the influence of measurement error on the
theoretical conduction speed of the propagated action potential, whereas the second and

third assess the combined effect of measurement crror and biological variability.

2.4.1 Measurement error

The mean value and standard deviation of the parameter values used to investigate the
inflience of measurement error on the conduction speed, are given in Table (2.1). The
Hodgkin-Huxley membrane model and definitions of the parameters in Table 2.1 are de-

seribed in Section 2.3.6.
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Parameter | Mean & Std Dev |  Units Reason

Vve -72.0 4 1.00 mV Double HH error
Vi 55.0 + 2.00 mV Double HIX error
gNa 120.0 + 6.00 | mS/cm? | 5% relative ervor
9K 86.0 & 1.80 | mS/em? | 5% relative error

gz 0.3+ 0.02 | mS/em? | 5% relative error

94 28.99 — 1.45 mS/em | 5% relative error
Y, 1.0 = 0.05 pF/em® | 5% relative error

d 476 4+ 19.0 sm 4% relative error

Table 2.1: Mean and standard deviatiou of parameter values for Hodgkin-
[Tuxley membrane model. The final column deseribes the reason behind

each choice of standard deviation.

The mean parameter values in Table 2.1 were taken from the “Value chosen” columu of
Table 3 in IIodgkin and Huxley (1952d), with the exception of the axonal diameter. The
standard deviations of the sodium and potassium equilibrium potentials were chosen to be
{wice the absolufe errors reported by Hodgkin and Huxley (1952a,b). The standard devia-
tions of the remaining paramecters were not reported by Iodgkin and Huxley and therefore
are given a standard deviation of 5% of the mean value chosen. Figure I of Tlodgkin and
Huxley (1939) allows one to estimate the maximum error in measuring axonal diameter to
be approximately 17 pm. The mean axonal diameter reported in the calculation of con-
duction speed was 476 ran, and so the axonal diameter will be given a standard deviation
of 4% (19/476%100 %) in the simulation study. The final parameter to be assigned is the
leakage equilibrium potential. Once the paramecters in Table 2.1 have been assigned ot
the start of cach simmlation, the leakage equilibrium potential is chosen to give a resting
membrane polential of -60 mV. Therefore this potential acts like a random variable with
each simulation providing a reelisation of its value. The computed range of lcakage equi-
librium potentials can then be compared with the reported range (-56mV to -38mV) in
Table 3 of Ilodgkin and Huxley (1952d). This provides an internal check on the choice of
measurement errors not reported by Hodgkin and Huxley. If the distribution of computed
leakage equilibrium potentials corresponds well with the reported range, then the choicos
of values for the measurement errors are reasonable. For example, if the distribution of

leakage equilibrium potentials from the simulation exceeds the reporied range, then it is
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¢cleur thatl the magnitude of measurement error and biological variability must be reduced.

2.4.2 DBiological variability

The rate functions op, Br, %ms Pm, On and B, were derived from data collected from
seversl different axons, and therefore it is reasonable to assume that the rate functions
will be subject to hiological variability. The experimental results for the rate constants o,
Bums Gny Gn, o, and Gy, plotted in Figures 4, 7 and 9 respectively in Hodgkin and Huxley
(1952d) imply that the estimation crror increases with the value of the function. When the
rate functions are small, their observed values lie close to or on the fitted line, suggesting
that biological variability can be ipnored in this region. As the rate functions increase in
value, their spread ahout the fitted line also increases. However, this increasing variability
is only present over the short time-iuterval for which the membrane polential is distant
fromn ils equilibrium value. To reflect the increasing variability of a rate function as its
value increases, rate functions in the simulation exercise are calculated by multiplying their
Hodgkin-Huxley specification by a Gaussian deviate with mean value one and standard
deviation chosen o mimic the largest variability of the data from which that rate function

was estimated.,

It con be shown for & small sanple drawn from a Gaussian distribution that the range is
nearly as efficient as the sample standard deviation as a measure of spread in the population
(Hoel, 1954). If one defines a staudardised range as the ratio of the obscrved range to the
population standard deviation, then Table 2.2 gives the expected valuc if this ratio for

different sample sizes of a Gaussian distributed random variable (Hoel, 1954).

Sample size N 2 3 4 5 6 7 8
E(Range/o) | 1.128 1.693 2.059 2326 2534 2.704 2.847

Table 2.2: The expected value of the standardised range of a Gaussian distributed

sample of ¥V independent deviates from N = 2 to N = 8 (see Hoel, 1954).

Tor this data set, the size of the sample is the number of measurements of the rate function
in the close proximity of a given potential, and the range is the maximum relative error in
the determination of the rate fanction of that potential. This information, in combination
with the values in Table 2.2, gives a direct estimale of the population standard deviation

of the relative error. Table 2.3 displays the estimated standard deviation for each rate
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function to be used in the simulation oxercises.

Rate Function | Sample | Maximum Ratio of | DEstimated Std.
ms~! Size N Range to Mean | Deviation of Ratio
o 4 (4) 0.063/0.163 0.188 (18.8%)
On 8 (6) 0.475/0.988 0.168 (16.9%)
iy, 4(4) 3.130/7.750 0.196 (19.6%)
B 5 (3) 0.375/1.500 0.107 (10.7%)
o, 5(5) 0.188/0.875 0.092 ( 9.2%)
Bn 8 (3) 0.050/0.075 0.234 (23.1%)

Table 2.3: The estimated standard deviations of the relative error in the Hodgkin-
Huxley rate functions. The integers in brackets in the second column are the number

of different axons from which the sample was constructed.

The estimaled ervor for each function will be based on the largest relative error in that
function. Thus the simulations will everestimate the influcnce of biological variabiity on
the theoretical conduction speed making it more dificult to reject the hypothesis that the
discrepancy between the computed and observed speed of the propagated action potential

is duc to biological variability.

2.4.3 Results of simulation exercises

The distribution of conduction speeds from 2000 simulations in the presence of measure-
ment error alone (dashed line) and two combinations of measurement error and biological

variability (solid and dotted lines) can be seen in Figure 2.1.
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Figure 2.1: Probability density function of the distribution of theoretical conduction
speeds based on 2000 simulations of the model axon. The dashed line represents mea-~
surement error alone using the standard deviations in Table 2.1, while the solid line
incorporates biological variability with measurement error using the errors detailed

in Table 2.3, The dotted line is the distribution of conduction speeds with lwice the

messurement error in Table 2.1 and half the biological variability in Table 2.3.

The first combination of measurement error and bialogical variability (Figure 2.1, solid
line) follows the standard deviations and errors prescribed respoctively in Tables 2.1 and
2.3, whereas the second combination (Figure 2.1, dotted line) uscs twice the measuremont
error prescribed in Table 2.1 and half the error associated with biological variability listed

in Table 2.3.

For each simmlation exercise, the likelihood of obtaining a theoretical conduction speed of
at least 21.2 ms~! can be estimated directly from the probability densities! shown in Figure
2.1. Therefore, in the presence of measurement error alonc, the probability of achieving
at least 21.2 ms™ ig less (han 1 in 200 (0.5%), and approximatcly 1 in 8 (12-13%) for
the combination of measurcment error and magnitude ol biological variability given in
Table 2.3. Given these probabilities, it is unlikely that measurernent error alone could
account for the 11-12% discrepancy in conduction speed, and the addition of biological
variability docs not significantly improve this likelihood. In fact, the combinations of
measurement crror and biological variabilily used in (he simulations skews the distribution
of conduction speeds such that there is an increased probability of a slower speed thereby
increasing e likely discrepancy between the observed and predicted conduction speeds.

Moreover, doubling the measurcment error in 1able 2.1 and halving the crror associated

The pracedure for estimating probabilitics from probability densities is describad in Chapter 5.
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with biological variability in Table 2.3 made & vegligible difference to the probability of

predicting & conduction speed of at least 21.2 ms™1.

An internal check of each simnulation exercise lies in the distribution of leakage equilibrivm

potentials shown in Figure 2.2.
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Figure 2.2: Probability density function of the leakage equilibrium potentiat chosen o main-
tain an cquilibrium membrane potential vf -60 mV. The dashed line represents measurement
error alone using the standard deviations in Table 2.1, while the solid line incorporates bio-
logical variability with measurement ecrror using the errors detailed in Table 2.3. The dotited
line is the distribution of conduction speeds with twice the measurement error in Table 2.1
and half the biological variability in Table 2.3, The black inward-pointing arrows indicate

the range of leakage equilibrium potentials reported by Hodgkin and Huxley (1952d).

In the first simulation involving measurement error alone (dashed line, Fipure 2.2), the
distribution of equilibrium potentials corresponds well with the range of -56 mV t0 -38 mV
reported in Table 3 by Hodgkin and Huxley (1952d). However, when the errors associated
with biological variability are combined with measurement error (solid line, Figure 2.2} the
distribution of leakage equilibrium potentials far exceeds the range reported by Hodgkin
and Huxley (1952d}.

Although the choice of biological variability detailed in Table 2.3 combined with the mea~
surement errvor listed in Table 2.1 gives a 1 in 8 probability of predicting a conduction
speed of af least 21.2 ms™1, it is clear that the levels of biological variability involved
are excessive. Additionally the third simulation exercise, which doubled the measurement
error in Table 2.1 and halved the crrors in Table 2.3 associated with biological variabil-

ity, still found that the distribution of leakage equilibriwn pulentials exceeded the range
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reported by Hodgkin and Huxley.

Having eliminated numerical inaccuracy and parameter estimation error as possible sources
of the discrepancy between predicted and observed conduction speeds, the structure of
the membrane model itself must be investigated. However, in the 50 years since the
publication of the model, experimental evidence has continued to support the formulation
of the membrane model proposed by Hodgkin and Huxley. The observation thal sodium
channels are composed of four voltage-sensitive units (Caterall, 1988; Sato, Ueno, Asai,
Tukahashi, Sato, Engel, and Fujiyoshi, 2001) corresponds well with Hodgkin and Huxley’s
[our-step activation kinetics, and similarly for the configuration of potassium channels (see
Kreusch, Pfaffinger, Stevens and Choe, 1998; Meunier and Segev, 2002}. There has also
been significant work which has led to modifications in the description of the behaviour of
both the sodium and potassiun channels (Armstrong and Bezanilla, 1977; Bezanilla and
Armstrong, 1977; Caterall, 1992; Pellotta and Waggoner, 1992}, however the new channel
models have not yet been used to predict the conduction speed of the propagated aclion

potential in the squid giant axon.

Thus far we have shown that numerical inaccuracies, the one-dimensional approximation
of the three-dimensional axon, measurement error and biological variability cannot ac-
count for the discrepancy belween observation and theory. fu view of recent experimental
avidence, we choose to retain the kinetic model proposed by Hodgkin and Huxley. There-
fore, one important factor that remains to be investigated as a source of the discrepancy

between observalion and prediction is the validity of the travelling wave assuinption.
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2.5 ‘The travelling wave assumption

To reduce the partial differential equations to ordinary differential equations, Hodgkin
and Huxley (1952d) assumed that the propagating action potential was a travelling wave,
naieely a wave of invariant shape moving at constant speed. However, it is possible that
the experimental action potential did not achieve the travelling wave speed. If this is the
case, then any simulation procedure must correspond with the experimental setup and the
theoretical conduction speed must be measurcd over the same distance as that available

experimentally.

Returning to the three-dimensional model, a solution is now required that begins with the
axon initially at rest, then following a Lrief stimulation, an action potential propagates
away from the site of stimulation. Experimentally, a rapid injection of current is given at
a fixed point on the axon o generate an action potential. This effect is achieved in the

model by raising the membrane potential above threshold over a small length of axon.

The solution of the three-dimensional model for the time course of the membrane potential

at intervals of ).1ms after stimulation of the axon can be seen in Figures 2.3A.

(4) (B)

50 V—" 0.4ms 70+
Z 30+ — 0.5ms 60+
—~ -— 0.3ms |
F 10 50
5 ' 40-
5 -10+ —o2ms = |
2 30 — Olms © Observation 21.2 ms~!
© & 0 tmmr T T
e W T A 204 rzzoziTees =:
é -50 1 . 10~ Theory 18.7 ms™!
01— J r-—-m 0 i T | A— i
~15 -2 0 2 15 0 2 4 6 8 10 12

Distance (cm)

Distance {mm)

TFigure 2.3: Development of the computed action potential and its speed. (A) shows the

spatiel distribution of the computed axonal membrane potential at times 0.1ms, 0.2 ms,

0.3ms, 0.4 ms and 0.5 ms after stimulation of a small section of axon, {B) shows the speed

of the penk of the computed action poteutial versus distance travelled from the point of

stimulation. The upper and lower dashed lines in (B) refer to the reported conduckion

speed and the computed travelling wave speed respectively.
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The membrane potential grows in the first 0.3ms until the peaks of two action potentials
can be seen at 0.4ms and are clearly defined propagating away from the point of stimnla-
tion after 0.5ms. The first discernable peak al 0.4ms is taken as the starting point for the
weasurement of the conduction speed. The speed is calculated by measuring the distance
travelled by the peak of the action potential over intervals of duration 0.03ms. The con-
duction speed of the action potential as it propagates away from the point of simulation is
illustrated in Figure 2.3B. It can be seen that the computed action potential attains the
travelling wave (or steady state) speed only after it has travelled at least 9mm away from
the point of stimulation. Thercfore, u valid comparison of the conduction speeds of the
observed and predicted action patentials requires the stimulating and recording clectrodes
0 be al least 9mm apart, although in practice the terporal resolution of the recording

equipment may reguire & greater distance,

In Figure 88, Miller and Rinzel (1981) plot the instantaneous speed of the ‘pulse upstroke’
against the distance travelled by the propagated action potential in response to a stimulus,
Clearly evident, in this figure is an initial transient increase in the conduction speed of the
action potential before it settles down to its steady state speed. Miller and Rinxzel do not
comment on this effect. This transient increase in speed is very similar to that iHustrated

in Figure 2.38.

Unfortunately, Hodgkin and IIuxley do not describe the experimental conditions under
which the conduction speed of the propagated action potentinl was recorded from the
axon. If the recording chamber drawn in Figure 1 from Hodgkin et of. (1952) is asswned
to be that used o measure the conduction speed, then ithe dimensions of the chamber
suggest that it may not be appropriate to take the travelling wave speed as the predicted
conduction specd. Furthermore, the transient effect of stimulation generaves an action
potential which initially moves much faster than the steady state speed. This implies that
the discrepancy between the observed and predicted conduction speeds may be resolved
if the stimulating and recording clectrodes are suitably close. (Of conrse, the size of the
discrepancy will depend critically on the experimental apparatus, the point of stimulation
and the strength of the stimulation used to generate the action potential. The transient

behaviour of the action potential will now be further investigated.
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2.5.1 A possible explanation for the discrepancy between the observed

and predicted conduction speed

To understand how the discrepancy between the observed and predicted conduction speeds
can oceur, the shape of the action potential as it moves away [rom the point of stimulation
is cxamined. Figure 2.4A shows the speed of the leading edge of the action potential at

selected valucs of the membrane potential.
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Figure 2.4: Changing shape and speed of the computed action potential. (A) shows the
speed of the leading edge of the computed action potential at selected values of the membrane
potential. (B) illustrates the changing shape of the lcading edge of the computed action

potential in the time interval 0.4ms to 0.5 ms after stimulation.

It is clear from Figure 2.4A that the pealk of the action potential is travelling almost twice
as [ast ns itg base at 0.4 ms after stimulation. It iakes an additional 0.3 — 0.4 ms for
all parts of the action potential to reach a steady state speed, by which time the action
potential has travelled approximately 9mm away from the point of stimulation. Aligning
the peaks of the action potentials recorded at 0.4 ms (solid line), 0.45 ms (dotted line) and
0.5 ws (dashed line) in Figure 2.4B reveals that the leading edge of the aclion potential
steepens as it moves away trom the point of stimulation. It appears that this change
in shape, although small, can account for the transient increase in speed of the action

potential prior to achieving the travelling wave speed.
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2.6 Trains of action potentials

Axn action potential, or a spike, ravely propagates slong an axon on its own, but rather is
part of a train of action potentials carrying a signal {0 the next neuron in the pathway. The
essential feature of the solution of the threo-dimensional model is its asswned periodicity.
Within this assumption, it is a simple adjustment to consider trains of action potentials

with variable intervals of spatial periodicity.

In the previous section, the length of the spatial repeat pattern was chosen to be deliber-
ately large so that the generation and propagation of 4 single propagated action potential
could be studied. This procedure is adapted to investigate spike traing by adjusting L, the
length of the spatial periodicity, to provide a means by which the relationship belween the

conduction speed and spatial perindicity of the spike train can be guantified.

By changing I, the effect of refractoriness on the amplitude and conduction speed of a
spike train can be examined. Tor example, the spike amplitude reduces as L becomes
smaller until a critical value of L is passed heyond which a spike train is not sustainable.
Conversely al larger values of L the spikes behave independently and propagate at the

conduction speed predicted by Hodgkin and Huxley.

Miller and Rinzel (1981) investigated the dispersive properties of the propagating action
potential at a range of temperatures for the Hodgkin-Huxley model by assuming “a periodic
train of uniformly spaced pulses travelling with fixed speed”. Using a boundary condition
problen:, the initial conditions corresponded o a time dependent stimulating current that
initiated the propagating action potential. They found a range of frequencies at which
the propagating action potentinls achicved conduction speeds greater than the steady
state travelling wave speed. Increasing temperature cavsed a significant increase in fhe
conduction speed, due primarily to accelerating the recovery process and decreasing the

refractory period {Miller and Rinzel, 1981).

2.6.1 The dispersive rclationship

The propagaled action potential starts with the profile of a travelling wave rather being
initiated by an injected current. ‘I'his wave travels for 20 ms to allow the steady state
speed for that choice of L to be achieved before the conduction speed is calculated. The

simulation calculates the conduction speed of an action patential in the axon at 18.5°C




CHAPTER 2. ACTION POTENTIALS 37

with valucs of Z ranging from 0.25 em to 30.0 cm in increments of 0.25 em. The conduction
speed is calculated by measuring the distance travelled by the peak of the action potential
in a given timne interval. Figure 2.5A illustrates the profile of the conduction speed and
Figure 2.5B illustrates the maximum value of the action potential, both plotted against

L.
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Figure 2.5: Panel (A) shows the conduction speed of the propagated action po-
tential versus the spatial periodicity £, and Panel (B) shows the maximum value of

the action potential against the spatial periodicity L.

It is clear from Figure 2.5A that the interval between spikes in a train of action potentials
has a significant offect on the conduction speed of that train. Below L = 4.0cw, the
train of action polentials cannot be sustained. Above 4.5 cm conduction speed increases
monotonically with I until achieving a maximum speed of 19.2 ms™! when L = 12.5¢m.
Beyond this critical value of L, the conduction speed deercases asymptotically to a steady
state speed of 18.6 ms™! - the velocity predicted by the Hodgkin-Iluxley model under
the assumnpbion of a travelling wave, and is negligibly different from the Hodgkin-Huxley
conduction speed when L > 20cm. I is clear from Figure 2.5B that the peak potential also
varies with L achieving its maximumn value when L =~ 10.25 cm. Thus the spike brain with
the maximum size ol the action potential occurs for a spatial periodicity shorter than the
spaf%ial periodicily for which the action polential itselfl has maximum conduction speed.
These simulation results agree with Miller and Rinzel (1981) who noled thal the peak
amplitude occurred at a “somewhat higher frequency” than the pcak conduction speed,

providing qualitative agrecement with our results.
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To visualise how the profile of the tepeat pattern depends on L, a sample of two repeat
palterns for trains with L = 5em (small), L = 13cm (medium) and L = 30cm (large) are

plotted in Figure 2.6A-C,
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Figure 2.6: Three example spike trains are illustrated for (A)
L=5cm, (B} L= 13cm and (C} L = 30¢m.

The fundamental difference in the three patterns lies in the shape of the recovery period,
defined to be the region in which the membrane potential is below -80 mV. When L = 30 ¢m
(Figure 2.6C) the individual action potentials are elearly isolated by regions of equilibrium
membrane potential (-60mV). However when L = 13em and below (Figure 2.6A,B}, the
membrane potential enly momentarily takes the equilibrium pofential of -60mV and the
individual action potentials in the train of action potentials are clearly inieracling with
each other. The question to be addressed now is whether or not the shape of Lhe action
potential depends on the spatial periodicity £. Figure 2.7 illustrates the profile of the

action potential for L == 5em, L = 13 em and L = 30 cm on the same spatial scale.
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Figure 2.7: The spike trains from Figare 2.6 redrawn on the same
scale, where (A) L=5cm, (B} L = 13amn, (C) L =30cm,

The econclusions from this figure is that the shape of the action polential is largely inde-
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pendent of the choice of L, any dependence enters through the fact that the peak of the

action potential is indirectly dependent on L throngh the duration of the recovery period.

Taking together Figures 2.5 - 2.7 il is clear that the conduction speed and the recovery

process depend on L whereas the shape of the action potential is independent of L.

2.6.2 Activation variables

To understand how the procosses involved in the formation of an individusl action potential
manifest themselves in a train of action potentialy, the dimensionless awxiliary variables
h, m and n are displayed in Figure 2,8A-C for L = 5cm, L = 13cm and L = 30cm. These
variables describe the degree of sodium inactivation, sodium activation and potassium

activation respectively.
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Figure 2.8: The underlying auxiliary vaviables %, m and n where
(A) L="5cm, (B) L =13cm and (C) L =30cm.

Figure 2.8 suggests that the spatial extent of the sodium activation variable 1 is essentially
independent of the value of L, and in fact this is true. However, the behaviour of the sodium
inactivation and potassinm activation variables » and n respectively depends on the value
of L. When L = 30cm it is clear from Figure 2.8C that all of the auxiliary variables have
returned to their equilibrium values. When L = 13 ¢m or below it is clear that h and n do
not have the opportunity to return to their equilibrium values, that is, they are unable to

complete their recovery profile before the next action potential arrives.

Miller and Rinzel {1981) suggest, that the behaviour of the activation variables may explain
the elevated conduction speeds at medium values of L. The upstroke of the next action

potential occurs at a point in the recovery profile where the potassium activation n is
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below and sodium inactivation h is above their respective resting values, therefore the
axon may be in a more excitable state than at rest. Ior large values of L, the activation
variables have returned to their resting values and therefore the next action potential will

esscntially activate a membrane at rest, as if it were the first action potential.

Figure 2.9 displays the profiles of the combined activation variables m*k and n#, normalised

such that each peak is centred on the origin.
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Figure 2.9: Panels (A) and (B) show the profiles of m®h and n? vespec-
tively, for £ = 5em (dashed line), 7. = 13¢m (solid line) and & = 30cm

(dotted line) normaliscd such that each peak is centered on the origin,

Consider first: Figure 2.94 which illustrates the profiles of ik for small, medinm and large
choices of L. The maximum peak value of m3h is given by the choice of L — 13cm with
the peaks of both L = 5cn and L = 30cm reaching lower values. Conversely in Figure
2.9B the profile of n* is essentially unchanged for small, medium and large choices of 7.
Note thal for all values of L, the spatial extent of tho m3h profile is small and has largely

completed its cycle by the time n*

reaches its peak amplitude. The length over which the
recovery variable n? ocenrs is approximately 4-5 cm for each valne of L. The minimum
value of L for a viable train of action potentials is 4.5 ciu and is possibly determined by

this unchanging variable nt,

Using the three-dimensionally derived one-dimensional model, the dispersion characler-
istics of a lrain of action poientials could be investigated. The conduction speed of the
action potentials varied widely with the spatial periodicity L, but settled to a steady speed
at large values of L. The period of elevated conduction speeds deseribed by Miller and

Rinzel (1981) was present at around 12-13cm, and furthermore the phenomenon of the
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waximum peak potential occurring at a slightly smaller value of L than the maximumn
conduction speed was also evident. Deeper analysis of the underlying activation variables
found that the form and conduction speed of an action potential depended critically on the
point in the recovery profile at which the action potential was initiated. For a mid-range
choice of L, this resulted in a region of elevated conduction speeds, possibly due to an un-
usual balance of the activation variables 2 and n which allowed a more potent activation.
However, the combined variables 3k and n* were largely unaffected by varying L and

instead followed a set response Lo action potential initiation.
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2.7 Conclusions

The derivation of a one-dimensional model from a three-dimensional representation of an
axon provided the basis for an investigation into distinet features of the Hodgkin-Huxley
membrane model. The three-dimensional model contained irreducible terms that described
the behaviour of radial currents in the axon, a feature previously assumed negligible. The
application of this model to the Hodgkin-Huxley membrane, in particular, the calculation
of the conduclion speed of the propagated action potential found only s small difference
between the one- and three-dimensionally derived models. In light of this, an explanation
for the discrepancy hetween theory and experiment was investigated. Biological variability
and measurement error were both ruled out, and in fact, biological variability was more

likely to cause an increase in the diserepancy rather than a decrcase.

The defermination of the conduction speed of the propagated action potential without
making the travelling wave assumption, displays a transient increase in conduction speed
before attaining a steady state speed equivalent to that of the travelling wave speed. This
analysis has demonstrated that a minimum distance is required to attain the travelling
wave speed. However the distance over which Hodgkin and Huxley measured the conduc-
tion spaed of the propagated action potential remains unknown. Uncharacteristically, they
do not provide this information in the article (Hodgkin and Huxley, 1952d), they simply
say that the “velocity found experimentally in this fibre was 21.2 m/sec”, Without know-
ing the precise conditions under which this figure was obtained, the discrepancy between

the observed and predicted conduction speeds remains.

A recent personal communication with Irancisco Bezanilla revealed that it was unlikely
that the conduction specd was measured experimentally in the chamber (Hodgkin et al.
1652). If this was the case, and the experimental conditions allowed the propagated action
potential to atlain the travelling wave speed, then the discrepancy cannot be explained by
the ITodgkin-ITuxley membrane model and the kinetics of the model need to be reconsid-

ered.




Chapter 3

Neuron data and terminology

The procedures to be developed in Chapters 4 and 5 are applied to data gathered from
real neurons. To avoid unnecessary repelilion, I describe here the anatomical terminology
used to define neurons, the experimental procedures used Lo capture the data and the

process by which morphological information is extracted from the raw data.
Terminology

QOur classification of dendritic morphology follows Larkman’s (1991) description and is
illustrated in Figure 3.1. The element of dendrite between the soma and first branch point,
is called a stem segment, that between a final branch point and dendritic $ip is called a
terminal segment and that between branch points is called an intermediate segment. In

Chapters 4 and 5 a dendritic segiment is composed of an arbilrary number of sections.
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( segments

7
I

>~
£
- s
t. Sectians
[ntermediate

segment
Stem segment

Figure 3.1: An idealised dendrite.
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Neuron Data

The morphological data used in Chapters 4 and 5 was collected as part of a larger study
investigating whether or not cholinergic spinal interneurons located in laminae HI/IV of
the dorsal horn of the spinal cord received direct input from primary afferents (Olave, Puri,
Kerr and Maxwell, 2002). These interncurons arc thought to be last-order interneurons
involved in pre-synaptic inhibition (Jankowska, 1992). The cholinergic interneurons were
lalielled with an antibody raised against choline acetyltransferase (ChaT). The myelinated
afferents were labelled with the B-subunit of cholera toxin (CTh), and the unmyelinated
afferents were labelled with isolectin By (IB4) and an antibody raised against calcitonin-
gene-related peptide (CGRP). All neurons were systematically examined with a BioRad
MRC 1024 confocal laser scanning microscope, where sequential images were gathercd
at 1gm intervals from 50 pzm thiclk vibratome sections. Cells were reconstructed using
Neurolucida lor Confocal (MicroBrightField, Colchester, VT). T'wo examples of these in-

terneurons can be seen in Figure 3.2.

(&)

Figure 3.2: Examples of cholinergic interneurons that receive {A) mycli-
nated afferent input and (B) unmyelinated afferent input. The location of

the synaptic inputs can be seen on the cells.

The Neurolucida software not ouly provides informaticn on the location of synaptic con-
tacts, but also provides the Cartesian position, diameler and connectivity pattern for each
dendrite (Ascoli, Krichmar, Nasuto and Sentt, 2001}, The Neurolucida files for my work
were kindly provided by David Maxwell.,
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Ixtraction of neuron morphology

In a Neurolucida data file a dendritic segment is delined by a sequence of four-vectors in
which each four-vector corresponds to a point on the segment. The first three components
of the four-vector give the Cartesian coordinates (w,y,z) of the point, and the fourth
component is the diameter of the dendritic segment at that point. Let (®y,%1,21,d1) and
(Z2, Y2, 22, d2) be two consecntive points on a dendritic segment, then the length of dendrite

hetween these two points is

= (o - 202 (1 — 2)? + (21 — )2,

and the associaled membrane surface arca of this region of dendrite is

w(dy + dy)l

Surface area = 5

on the assumption that fhis surface area is well approximated by the frustun of a cone.
Connectivity

To facilitate the description of a branched dendrite, it is useful to introduce the notion of
parenl, child and peer segments. Consider, for example, Figure 3.1. The stem segment
has no parend segment and two child segments, The left-hand child segment of the stem
segment has the slem segment as parent segment, the right-hand child segment of the stem
segment ag a peer, and the terminal segrnents connected at its distal end as child segments.
The right-hand child segment of the ster segment has the stem segment, as parent, the left-
hand child segment of the stem segment as a peer and also has two terminal segments as
children. By definition, terminal segments do not have children. Note that i, i8 possible {or
o segment to be both a stemn and terminal segment if it fails to branch before terminating.

This is a rare occurrence and is dealt with in Chapter 5.

The overall length of a dendrite is defined to be the sum of the lengths of all its sezments.
In addition, segments may have synaptic contacts assaciated with locations (2, ¥, z) on the
dendritic segment. For example, the locations of synaptic contacts are denoted by black

circles in Figure 3.2A.




Chapter 4

Analytical development of the

equivalent cable

4.1 Introduction

The diverse morphology of dendritic trees has confounded neurophysiologists for over 100
years, Cajal proposed the ‘neuron doctrine’ which described the neuron, composed of
dendritic tree, soma and axon, as the fundamental building block of the nervous system
(Cajal, 1952). Furthermore, from the histological tissue sections that he studied under his
microscope, he developed the ‘priuciple of dynamic polarisation’. Cajal proposed that the
cells received input on the dendritic tree, and that this input was somchow transmitted
towards the axon, and from there onto other cells via axodendritic connections. Cajal
suggesied these ideas from a careful examination of dendritic forin using a light microscope

and queried how dendrites manage simultancously many incoming signals.

By contrast with Cajal’s view that morphology is important, the predominant view of
morphology in the mid-twentieth century bascd on intracellular recordings from motor
neurons was that dendritic structure was unimportant (Jack and Redmun, (995). Rall’s
first major contribution to neurophysiology was to demonstrate that dendritic morphol-
ogy was important, eand oncce recognised, then the investigation of dendritic morphology
becamme an important issue. The anly Lools available o Rall at that time to investigate
the [unetion of neuronal morphology was mathematical analysis, Rall’s sccond major

contribution to neurophysiology was to show that under certain restrictive conditions a

46
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passive dendritic tree could be described by a single unbranched cable which he called the

equivalent cylinder (Rall, 1959).

The core idea in Rall’s analysis was to show mathematically that a simple uniform Y-
junetion is functionally equivalent to a uniform cylinder provided the electrotonic lenglhs
of the two limbs of the Y-junction are identical, and both have the same terminal bound-
ary condition. The Y-junction is equivalent to the Rall cylinder in the sense that for any
configuration of input on the branched structure there is an equivalent configuration of
input on the equivalent cable such that the electrical behaviour of the Y-junction is indis-
tinguishable from that of the equivalent cylinder at the branch point. Rall showed that the
equivalent cylinder had the same terminel boundary condition as the original Y-junction,
it had the electrotonic length of one of the limbs of the Y-junction and its condnctance
was related to that of the limbs of the Y-junction by a 3/2 rule. By this is meant that the
sum of the 3/2 powers of the conductances of the limbs of the Y-junction equals the 3/2
power of the conductance of the cquivalent cylinder. Finally, Rall showed that currents
on the limhs of the Y-junction act on the eguivalent cylinder at an electrotonic distance

identical to their electrotonic distance on the limbs.

Rall's procedmre allows a branched dendrite with uniform segments to be reduced to an

equivalent cylinder provided the branched dendrite has the following properties.

1. All terminal bonndary conditions are identical, that is, they are all sealed (uo axial

current flow} or cut (potential held at V' = 0}

2. The clectrotonic length of the dendrite from any branch point to all terminals distal

to that branch point is identical.

3. At any branch point, the sum of the 3/2 power of the conductances of all the limbs of
the dendrite more distal than the branch point is the 3/2 power of the conductance

of the parent limb of the branch point,

To appreciate how these conditions are used in the construction of the equivalent cylin-
der, the reduction process starts at the dendritic terminals and condenses the outermost
branches into eguivalent cylinders. This is possible because all terminal limbs have iden-
tical boundary conditions and the same electrotonic length to the branech poiut to which
they are attached. Of course, this distance is different for different terrninal limbs. Con-

dition 3 guarantees that when the Y-junction is replaced by its equivalent cylinder, this
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cyliuder has an identical conductance to the parent limb of the branch point. Thus fhe
reduced structure will now have terminal boundary conditions that are identical and uni-
form limbs. This process can be repeated until the soma of the dendritic tree is reached,

and a single equivalent cylinder remains.

Various studies on spinal motoneurcns (Barrett and Crill, 1974; Ulthake and Kellerth,
1983, 1984) have found that dendrites do not conform to the conditions required by Rall
for the construction of the equivalent cylinder. To overcome this problem, Clements and
Redman (1989) introduced an empirical “cquivalent cable” formed by first reducing the
limbs of the tree to electrotonic units and then summing the 3/2 powers of the conductances
across the tree at the same electrotonic distance from the soma. Note that for a tree
obeying the Rall conditions this procedure is exact, and the cable will be a cylinder, bui
otherwise the ncw structure will be non-uniform. For dendritic trees that do not follow
the Rall conditions, the cmpirical cable is inaccurate (Whitehead and Rosenberg, 1993)

and is not equivalent to the original branched structure.

Turthermore, Whitehead and Rosenberg (1993} demonstrated that equivalent cables could
be constructed for branched dendrites which satisfied nonc of the Rall conditions. This
construction was numerical and was based on the Lanczos procedure. The outcome of
applying the procedure was a non-uniform cable and a bijective mapping connceting con-
figurations of input an the original dendrite with configurations of input on the cable. One
significant disadvantage of the f.anczos procedure was that it suffered from the effects of
rounding error (Golub and Van Loan, 1989) and ofteu failed to complete the transforma-
tion process in a single operation. Although the numerical procedure demonstrates the
existence of equivalent cubles for branched structures that do not satisfy Rall’s conditions,
what is required however is an analytical method to generate equivalent cables, since it is

only through an analytical procedure that vne can fully understand the equivalent cable.

'I'he aim of this chapter is to describe an exact mathematical procedure by which arbitrary
dendrites can be transforreed into equivalent cables. In this process, a bijective mapping
of configurations of input on the dendritic tree to configurations of input on the equivalent
cdble is constructed. The procedure will then be applied to real neurons generating unique
cquivalent cables. For the first time, the locations of synaptic input on real neurons will
be mapped to the equivalent cable of that neuron providing an insight into the synaptic

distribution.
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4.2 Constructing the model dendrite

Constructing a model of a branched dendrite initially appears a daunting task, but may be
simplified by lreating the dendrite as a collection of segments which are connected such that
{ransmembranc potential is continuous and core current is conserved at branch points. ‘I'he
mathematical model of the dendritic segment forms the elementary unit for constructing
a model dendrite, and together with the associated connectivity properties and boundary

conditions, forms the complete mathematical model of the branched dendrite.

The mathematical model of the dendritic segment is expressed in terms of the departure
of the transmembrane potential V' = V{2, ) (1uV) from its resting value (essumed to be
V = 0). The transmembrane potential on a segment with a passive membrane satisfies

the cable equation

p(J,)( %Vjung) T, t)—l(gafl( Al ) @)

where P(z) and A(z) are regpectively the perimeter and cross-sectional area of the segment
at distance z (cm) along the seginent, cas (uIf/em?) and gar {mS/cm?) are the specific ca-
pacitance and specific condnctance of the segment meiubrane respectively and g, (mS/cm)
is the conductance of the intracellular medium. The function Z(z,%) (#A/cm) describes
the linear density of exogenous transmembrane current and ¢ (ms) measures time. The

vore current along the segment is calenlated from the expression

OV(J, L)

Iz, 1) = —go A(z) g (4.2)

At each segment endpoint, the solution of equation (4.1) must maintain conservation of
core current and continuity of membrane polential, or satisfy a boundary condition if it is

a dendritic terminal.

The next step is to nen-dimensionalise the cable equation (4.1) using non-dimensional time

5 and electrotonic length z given by

s—t— / J‘;“a‘f(( (4.3)

thereby reducing it to the canonical form. Using the change of variable (4.3), the deriva-
tives in. non-dimensional terms are

OV _aVds Vg BV _dVds AV [gyP(w)

Dt T st s cp 9z Bzdz 0z \ ey Afz)’ (4.4)
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where it is understood in the later expression that occurrences of 2 are to be replaced by

z using the mapping (4.3). Expressions (4.4) can be substitated into the cable equation

(4.1) giving

1% a8 gy P{z) VYN [gm P(=z) .
P(x) (QME.; + SIMV) + I = (‘}aA( )\/CZ A7) 97 ) \/m, (4.5)

which is simplified by dividing through by gurP(z) to oblain

aV(z,s) Z(z,t) 1 oV (z,s)
P 4 L2 = ey (Vi@ 232 0). a0

Let the characteristic conductance ¢(z) of the segment and the non-dimensional current

density J(z,s) be defined by

G A(T)

=4/ Pz} A(x J{z,8) =T(x,t R 4.7
GadM (m} ( )a ( ’ ) ( )N .(}I»[P(-T) ( )
then in terms of these functions, the non-dimensionalised cable equation becornes
V(= v
c(z)(g—é—sl +V(z, s)) + J(z,8) = ( pradcl 3)) {4.8)

The non-dimensionalisation of the transmembrane currens is based on the observation that
in any time interval (¢, ¢ |- di) the charge Z(x, t)dz dt crossing the membrane oceupying
(2, =+ dz) must equal the charge J(z, s) dzdt crossing the same portion ol merubrane now

occupying (z, z + dz). The same non-dimensionalisation when applied to the core current

(4.2) gives

g P(x) OV (z,5)
I(z,8) = —gad(z ) }i‘m G ORS s (4.9)

where the conductance ¢(#) is defined in (4.7). The non-dimensional canonical expressions
(4.8) and (4.9) define respectively the cable equation and core current for a non-uniform

dendritic segment.

Each segment has a cable eguation and individual expression for ¢(z) and J(z,s). To
form a branched dendrite requires continuity ol membranc potential and conservation of
core current at branch points or when connecting to the parent structure. At dendritic
terminals, either the trausmembrane potential or the core current must be defined. If these
requirements are all satisfied, then the mathematical model of the dendritic tree consists

of a family of connected cable equations with unique expressions for ¢(z) and .J(z,s}.
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4.2.1 Mathematical maodel of a unitorm cable

Current input to o dendrite typically comes from synaptic contacts on its membrane.
Therefore, in constructing the equivalent cable, current input will be restricted to discrete
points spaced uniformly along the electrotonic length of the dendritic segment. The portion
of membranc beltween any two points ig called a section, and therefore current input is
treated as a boundary condition at section endpeints with J(z,s) == 0 on every section.
Furthermore, it is assumed Lhat the characteristic conductance c(z) is constant on each
section, but a different constant for different sections. Under these conditions, the non-
dimensional cable equation {4.4) takes the simplified form

8V {(z, ) +

_ 8V (z,s)
Js '

Vizs) = —55 {4.10)

This pracedure, where exogenous membrane current enters the model through the bound-
ary conditions, is similar to that used by Holmes (1986) for the treatment of synaptic
input. Holmes (1986) and Van Pelt (1992} nsed the Laplace transform methodelogy to
develop a continuous cable representation of branched dendrites. The transform varinble

in this procedure is defined as
V= / V(z,s) e Pds. (4.11)
0

The Laplace transformed representation of equation (4.10) becomes

w@V(z,s) -8 ha —P8. 3. _ 00321/(;,3) —ps
/(; el db+./{) Viz,s)e ds—ﬁ a4 ¢ ds. (1.12)

The first expression on the left-hand side of equation (4.12) gives

o 8V(Z' 3) U5 3. . e 1] &e _ /DO =PS 7.
/0 ramk ds —= [T/e ]0 A V(z,s) (—p)e™ds

= —V(0,8)+pV. (4.13)

The expression on the right-hand side of equation (4.12) gives
' 92V (7, 5) d? &0 d?V
Z MDY Lps —_— . =S = e
'/0 G ¢ ds e (/ﬂ Ve ds) PRk (4.14)
Substituting expressions {4.13) and (4.14) into equation (4.12) shows that the Laplace

transform of the membranc potential satisfies

~ ~  d*V
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which can be simplified to

&V (zp)
dz?

W*V(z,p) =0, W =p+i (4.15)

when the initial membrane potential V' (0, z} is taken to be zero, The general solution of
equation (4.15) is

V=A¢ +Be™?

where A and B are arbitrary constants. The equivalent cable analysis is developed from
two identities connecting the Laplace transforms of the core currents at either end of a
uniform section of length A to the Laplace transforms ol the membrane potentials at the

section endpoints. This is illustrated in Figure 4.1 for a dendritic section of length 5.

z2=0 th
' I
1< h >-1
i i
f}r, f'“/IR
f_{, TR.

Figure 4.1: A dendritic section of length A, with membrane po-
tential V and corresponding current [y at the left hand end and

membrane potential Vg and curreut Jg at right hand end.

Now consider the dendritic section in Figure 4.1. When z == 0, it is clear that B = ffb.

and when z = } ii is clear that A sinhwh 4 B cosh wh = 17;15, and therefore
Asinhwh = Vg — V, coshwh. (4.16)

The potentials 171, and VR must now be connected with the core currents f;, and I, r- The
core current is given by
vV
(2 8) = —c(z)dT(z’S-)-
where ¢{z) is the characteristic conductance of the section, and its Laplace transform is

Bf’(z, 7)

}‘(z.\p) = _c(‘z) Oz

= —cw(Acoshwsz + Bsinhwsz).
Thus

I(0,p) = I} = —cwA, I(h,p) = In = ~cw(Acoshwh -+ Bsinhwh).
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It is now straightforward algebra to demonstrate that

sinhwh j—"’L = —c (f;"n - f}[' cosh wh) R (4_.17)

SiE wh In = —c¢ (T;'R — f;}, coshwh) coshwh — ¢V, sinh? wh. (1.18)

Using the trigonometric identity cosh? z — sinh? z = 1 to simplify expression (4.18), the
final identities satisfied by the core current and membrane potential at the left and right

section endpoints are

sinh wh }'[ = cf;’L coshwh — Ci}ﬁ!
| lw } (4.19)
SO T, = ¢V — ¢ Vgcoshwh.
w

4.2.2 Model equations for a branched dendrite

The model equations are constructed by requiring continuity of membrane potential and
conservation of core current at section endpoints. The equation contributed by a section
boundary is formed by equaling the exogenous current injected at that boundary to the
sum of the core currents from all the segments meeting at that boundary. These boundaries
can be either branch points, internal boundaries of a segment, a boundary at a dendritic

terminal or the boundary of contact with a parent structure.

Branch point

If a current I5(s) is injecled into a branch point then congervation of core current requires
thal

Ig(s) = Ip(s) = > Tc(sh, (4.20)
where Ip(s) and Ip(s) are the respective core currents in the parent and child segments
which meet, at the branch point, and summation is taken over el child segments. The

branch point condition is constructed from. the Laplace transform

Ip=>"Ic=1Ip (4.21)
of equation (4.20). Equations (4.16) for I; and j’};_ are now particularised to I and Ip
respectively, and therefore the currents in equation (4.21) become

sinhwh ~ ~ ~
I = ¢ Vi coshwh — & Ve,

inhwh (4.22)
kot fp = PVp—cf ?Bcoshwh,

9%
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where 173 is the Laplace transform of the membrane potential at the branch point, f’c is the
Laplace transform of the membrane poteniial at the distal end of the first section of a child
segment, and Vp is the Laplace transform of the membrane potential at the proximal end
of the last scction of the parent segment. Similarly, ¢© is the characteristic conductance
of the first section of the child segment, while ¢ is the characteristic conductance of the
last scction of the parent segment. Substitntion of equations (4.22) into equation (4.21)

gives

PPN O\ e o sinhwh -
¢ Vp ((4 +Lc )VBQObhwh-i-Z(, Vo= ” Iz. (4.23)

Again, all summations in equation (4.23) are taken over the child segments. The stan-
dardised branch point equation is found by dividing equation (4.23) by the sum of the
characteristic conductances of all segments meeting at the branch point, giving

3 & 170 . sinhwh
(€ +22¢%) T w(ef +37eY)

P Vp

Fiso b a24)

- 17,3 coshwh +

Contiguous sections

Contiguous sections are treated as a special case of a branch point with a single child
segment. For contiguous sections equation (4.24) simplifies to

& Ve _ sinhwh -~
Pl weF+cd) B

——= — Vp coshwh |-

FVp
T ©

(4.25)
where Vg is the potential at the section boundary, Vp is the potential of the proximal cud
of the left-hand scction at the change in diameter and Ve is the potential al the distal end

of the right-hand section.

Connection to parent structure

The equation contributed by the section houndary hetween the parent structure and the
dendritic iree is determined directly from the branch point condition by ignoring all con-
fributions from the parent segment and replacing the injected current Ip by the current
Iy Qowing from the dendritic tree into the parent structure. The result is

o

St

where ¥ is the Laplace transform of the membrane potential at the Py, the point of

sinh wh ~

Vo coshwh + Ve = i I (4.26)

connection to the parent structure, and summation takes place over all segments meeting

at Fy.
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4.3 Notation

The analytical development to follow will apply equations (4.19} to both branched and
cable-like structures. Although both will consist of a collection of dendritic segments, the
mathematical description of the two is quite different making if necessary to distinguish
between equations referving to the cable-like structuve and those referring to the branched
structure. To avoid confusion, objcets relating to the cable will be defined by calligraphic
symbols and objects relating to the branched tree structure will be defined by roman

symbols. Where no ambiguity exists, a Roman symbol will be used (see Table 4.1).

Description Cable Tree No distinctiﬁ;xl
Cable matrix A A
Symmetrising matrix | S
Diagonal matrix D
Tri-diagonal matrix gy
Householder matrix 11
Injected current z 1
Membrane voltage 1% A%

Table 4.1: WNotation for the matrices and vectors used in the de-

scription of the branched and cable-like structurcs.



CHAPTER 4. EQUIVALENT CABLI 56

4.4 Analytical development of the equivalent cable

Equivalence transformations {Lindsay, Ogden and Rosenberg, 2001a,b) and the Lanczos
tri-diagonalisation procedure (Ogden, Rosenberg and Whitehead, 1999) have shown that
all equivalent cables take the form of pievewise uniformn cables, and therefore represent
the canonical form for the equivalent cable. The development of the equivalent cable be-
gins by deriving the mathematical representation of a plecewise uniform cable, and then
demonsirating that the mathematical model of an arbitrary branched dendrite with arbi-
trary input structure may be transformed into a piecewise unilorm cable under relatively

unrestrictive circumstances.

4.4.1 Construction of the discrete model dendrite

A branched dendrite with 7= dendritic segments of length L4, ..., Ly, is transformed by the
non-dimensionalisation defined in {4.3) to a branched dendrite with segments of electro-
tonic length Iy, ...,L, respectively. The equation for each segment now takes the form of
equation (4.4) where seginents ave defined uniquely by their characteristic conductance

{z) and their electrotonic length.

The construction of the equivalent cable begins by subdividing the dendrite into scetiong
of fixed clectrotonic length .. Each scgment is assigned an electrotonic length that is the
integer multiple of £ closest Lo the segments exact electrotonic length. Any error in the
specification of length behaves like a uniformly distribuled random variable in the interval
{=h/2,h/2). The central limit theorem suggests that the total electrotonic length of the
discretised dendrite behaves as a normal deviate with expected value 4y +lg -+ 41, and
standard deviation hy/n/12. Therefore, the electrotonic length of the discretised dendrite

can be made arbitrarily close to that of the real dendrite by an appropriate chaice of A.

As the electrotonic length of the segmont is altered by the discretisation procedure, it is
essential to modify ¢z} to ensure that the total membrane conductance of a given segment,

say the j-th segment, defined by,

L f,' ol;
P@gds = [ /Pl Alelgugads - | ez,

is preserved. To ensure that the discretised piecewise uniform segment and the continnous

0

segment have the same total membrane conductance, the conductance of the k-th section
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is assigned the value
1 [hls/m Iy ((2k— 1) 2
k=“f c(z)dz:-——-c. = 4 O ), k=1,...,m, (4.27)
h (k~1); fm mh m
where ik is the clectrotonic length of the discretised segment. The construction of the
discretised dendrite from the continuous dendrite is the only approximation made in the

developient of the equivalent cable, otherwise the analysis is exact.

4.4.2 The piecewise uniform cable

A piecewise umniform cable of electrotonic length nh is shown in Figure 4.2. The cable is
divided by the points (or nodes) Fy, Pi,. .., into = uniform sections of Jength A and

characteristic conductance dy. The current Z,(s) is injected at point Py, at potential Vi(s).

Fo & Pyt Poe2 Po1 P,
Tﬂ _é—_-—-—---‘----—*ﬂ' —————— » & -‘"‘9' Iﬂ
741 \I/ do ¢ dk dn-2 \L dn-1 J, dy
I Ik—1 Too Zn-x

Figure 4.2: A piecewise uniforin dendrite with cleetrotonic length ni,

composed of n sections of length A each with characteristic conductance d.

The identities (4.19) are now particularised for the Ath scction of the piccewise uniform

cable to give
-------- I = @ Vg1 coshwh — dy Wy, (4.28)

sinhwh Fik)
w R

di Vo1 — dy Vi, cosh.wh, (4.29}

where ¥, is the Laplace transform of the membrane potential Vi (s) and IAT:&) and fgf ) are
respectively the Laplace transforms of the core currents at the left and right hand end-
points of the £-th section of the cable. Continuity of membrane potential is guaranteed by
construction. The mathematical description of the cable is based on conservation of core

cwrrent at nodes Py, Py, ..., B, and requires that

IV(s) = ~Ta(s),
) = )+ 1% %), (k=1,...,n—1) (4.30)

IPs) = Tals),
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or in the Laplace transform space,

IP=-Ty, IP=-T+T (e=1,..,n-1), I =T (431)
The equations to be saiisfied by the membrane polentials ﬁu, ceay ﬁn are constructed from

equations (4.31) by replacing fgc) and f}-f) with expressions (4.28) and (4.29) respectively.
The result is the system of equations

sinh wh ~

-—f’o coshwh -+ ﬁl = — Ty,
diw
i = I~ de+1 sinhwh  ~
—_— V.1 - Yy coshwh + T Y o e Ty,
d}.; + d/‘;+1 k=1 k dk -+ dk—i—l kel (d;\, RE d.’c+ 1)w k (432)
ﬁn_l ~V,coshwh = sinh whfn.
dpw

The first equation describes the connection of the cable to the parent structure, the second
eynation describes all internal segments of the cable and the third equation describes the
termination of the cable. The tri-diagonal structure of this matrix is apparent. Further-
more, ithe stracture of the cquations (4.32) corresponds closely to thai described for a

branched dendrite in Section 4.2.2. Let D be the (n+ 1) x (n - 1) diagonal matrix
D = diag [d1, (dy +dp), ..., {dr -+ drg1)s- .-, (dao1 + dn), dnl, (4.33}

and let A denote the (n + 1) % (n + 1) tri-diageonal matrix with entries

it

Age oz e - Apip=—coshwh, A =
k=l = beyde B e + diort

(4.34)

where dg = 1 = 0. A is referred to as the cable matrix. In matrvix notation equations

(4.32) take the form
sinh wh

AV = ——D'T (4.35)

where
T =T, D1, Zgr- s L7,
{4.36)
B = B P Vi

are vectors in which the k-th components are respectively the injected current and trams-
membrane potential at node Pi. Note that the sum of the off-diagonal entries of A is

unity, & feature necessary for the construction of the equivalent cable.

The specification of either injected current or transmembranc potential at each node -

Fy,..., Py is necessary to solve eguations (4.35). This splits equations (4.35) into two
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sets. The first set is for the unknown membrane potentials in terms of the known injected
currents, and the second set determines the unknown injected currents from the known

membrane potentials.

4.4.3 Symmetrising a cable matrix

The final stage in the development of the canonical form of the piecewise uniform cable
is to reduce the tri-dingonal system of equations (4.35) to a symmetric form. Given the
cable matrix A and & non-gingular diagonal matrix S = diag (1, s1,..., 8n) with inverse
S-1 = diag (1, 31*1, .oy 87 %), then there is a chaice of & that will symmetrize A. To see

how this is achicved consider the matrix calculation

[STHAS) ) = D (87 AS)y
r=1
= Y (§ iy AnSy
- po (4.37)
= ) (S Va6
r=1
1

Since A is tri-diagonal and S is diagonal then T = S7LAS is a tri-diagonal matrix with

off-diagonal entries
Set1 Sk
T b1 = —— Ak, k41, Tt & = —— A1, k-
Sk k41

Symmefry in T’ requires that Ty g1 = Tgy1, 5 and therclore the elements of & st be

chosen to satisly

Skl Sk

Ap et = —— Arp1 k-
Sk byl Skil k+1,k
Thus T will be a symmetric matrix provided
Apt.
ski1 = b opy | HEILE so =1, (4.38)
Ak g1
and in this instance
A Tiapr _ _
Lk T = Tiprr = Tere = Akt pic g1 (4.39)
fe,b-+1

Since cvery off-diagonal entry of the cable matrix A is positive, then § is a real matrix.

However, one must select the appropriate algebraic sign in equation (4.38) to ensure that
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Ag e+ is positive. Once S is constructed, equation (4.35) can now be expressed in the

symmetric tri-diagonal form by noting that the criginal equation

can be expressed in the form

ginhwh

S1ASS Y~ SipiT

which in twrn shows that the canonical representation of a piecewise uniform cable is

~ inh ~
T(8~1Y) = %ﬁ‘ (D8)T. (4.40)

The aim ol the following sections is to demonstrate that the mathematical representation

of a branched dendrite can be reduced to this form.
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4.4.4 Structure of tree matrices

The model equations for the construction of a branched dendrite with (n + 1) nodes (see

Section 4.2.2) leads to the matrix representation

sinh wh

AV = DT (4.41)

2

where V and I are respectively the vectors of the Laplace transforms of membrane poten-
tials and injected currents. The (n--1) % (n+ 1) matrix A is referred to as the tree matrix

and it is neither tri-diagonal nor symmetric.

The construction of equivalent cables from dendritic structures depends crifically on the
fact that any dendritic structure characterised by (n + 1) nodes has a tree matrix A
consisting of (n + 1) non-zere diagonal entries, cne for each node, and 2n positive off-
diagonal entries distributed symmetrically about the main diagonal of A, giving a total of
3n 4 1 non-zero entries. The matrix A is structured symmetrically from the observation
that if node 5 is connected to node k then node % is connected to node 7. The number of
non-zerc off-diagonal elements of A is established by taking advantage of the self-similarity

inherent in a branched structure by using a recursive counting argument.

Self-similarity argument

In a dendritic tree, 2 node can be clagsed as one of four types: the first node which connects
with the parent siructure, an internal node, a branch point node or a dendritic terminal.
‘L'he self-similarity argument starts with a terminal node and s applied recursively until
the node connected to the parent structure is reached. The process involves counting the
deficit in off-diagonal entries in A with respect to two entries per node. Internal nodes have
no deficit while each dendritic terminal has a deficit of one. If NV terminal segments and
a parent segment meet at a branch point node, then the row of A corresponding to that
branch poiut contains (N + 1) oll-diagonal entries giving a surplus of (N — 1). Therefore
the total deficit is reduced to one at the branch point node. This node then behaves like
a dendritic terminal with respect to further counting. The deficit of one is maintained
until the node connecting to the parent struciure is reached, af which point the deficit
increases to two nodes for the entire tree. Therefore A contains exactly n pairs of non-zero

off-diagonal enbries.
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Node numbering

As already mentioned, a distinction is made between nodes at which membrane potential
or injected current has to be specified. This distinction also applies for the process of nade
numbering. Nodes at which the injected current is known and the potential has to be
found are numbered first and then the nimbering moves Lo those nodes where membrane
potential is known and injected current has to be found. Figure 4.3 shows the node
numbering method for a dendrite where the injected current is known at all nodes (4.3A)

and a dendritc where the potential is knowu al two nodes (4.3B).

GV (B)

o
10 <10

Parent
Structure

Parent
Structure

Figure 4.3: 'Lhe enumeration scheme for (A), a dendritc where the in-
jected current is known at all nodes and the merbrane potential has to be
determined and (B), the same dendrite however the membrane potential is

specificd at two dendritic terminals (nodes % and 10}.

The enumeration scheme starts at £, the counection to the parent structure. From the
parent structure, the nodes are numbered sequentially until reaching a dendritic terminal,
omitting nodes where the potential is known. The nmumbering then jumps to a second
path, starting with a node that has a connection to the first palh and again continnes
until reaching & dendritic terminal, omitiing nodes with known potential. The enumer-
ation scheme is repeated until all dendritic paths have been numbered and then repeats

numbering those nodes at which the potential is known.

Let the entries of iree matrix A be represented by black squares, then the matrix repre-
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sentation of the dendrite in Figure 4.3A is

(m®m 00000000 0]|fw] " fo/Dop |
mmWmO0OO0C OO0 00 0 O Vi /D1y
O M mH @O0 000 MmMOO||W Iy/Da
0O 0 R W MO MOOO 0| 1A Is/Ds g
00 U mEEO0O0O0DO|]|V 14/Das
0 00 0 mM®MOOO OO0 0! W =Sm2wh Is/Ds g
0 0 0 M OO MO0 0! V Is/Degs
0000060 RMBOOD|| W It/ Drs
0O 0O M0 0O OGO G B WD Vs Is/Dgg
0000000 O0MNSM®M|| % To/ Do
000000000 0 mm|[vg]| | Do/Dioao

The node rumbering scheme for the second dendrite {(Figure 4.3B}, where the membrane

potential is specified at nodes ¢ and 10 has matrix representation

‘mm 0o 00000 o0lool[w] [ %0/Dog |
m MmO OO0 O0 Q0 OO0 0 W h/Dya
O m W W 0 0 0 ™ 00 0 Va In/Ds 2
g 0 M H N 8 0 0|0 0 Vs Is/Dsy
D 0O O M B 0 0O O 0O/M O Vi T4/ Dy
00 0 Mo mmOoO0/0 0|V =000 ppes |
0 0 0 G 0O M MO0 O0{0 0 Vs ’ I6/Dsp
0 0 M 0 0 0 0 m MO O Vi It/ Dy
0O 00 0 C 0 0O M M| 0O W Vi Is/Dsg
00 0 M OO0 0 oM O Vo Is/Dyg
|00 0 0000 0.0.__Vm_ _Im/Dw,m

where the non-zero elements are denoted by black squares. The matrix is partitioned such
that the 9 % 9 block represents the nodes at which the injected current is known and the
membrane potential has to be determined. The remaining partitions represent the nodes
where the injected current has Lo be determined from the membrane potentiol specified at

nodes 9 and 10.
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4.4.5 Symmetrising the tree matrix

It was shown in Section 4.4.4 that a tree matrix with dimension {n + 1) x (n 4 1) has
(n + 1) diagonal entries and 2n positive off-diagonal entries, where Az ; # 0 if and only if
Aji # 0. Furthermore, in Section 4.4.3, it was shown that given any cable matrix A it is
possible to find a non-singular diagonal matrix S such that S~1AS is a symmetric matrix.
Tree matrices can be symmetrised in the same faghion. Let S = diag (1,$1,...,5,) be a
non-singular (n.+-1) X (n+1) diagonal matrix, then S14S is the (»+ L)} x (n -+ 1} matrix
with entries

[S~1AS] . = [S™1AS]y ;= AL, (4.42)

85 St

I’rovided that there is a matrix 5, such that the entries of S~'AS satisfy [S71AS];x =
(57148, forall j # k and A5 # 0, Ay ; # 0, then the matrix S~1AS will be symmetric.
From Scction 4.4.4, A has n non-zero pairs of entries for which A;, # 0, Ag; # 0 where

7 # k. Bach pair of equations contributes an equation of the form

Ak’j

Sk = Sj4] —, 4.43
"V Az (443
giving in total a system of n equations to determine the n unknowns si,....5,. The
corresponding symmetrised tree matrix is
[ AS)k = (57 ANk = v/ AjkAr - (4.44)

Equation (4.43) determines all the entries of §, from the observation that there are n
such equations and that each node on the tree is connected to af least one other node.
Therefore, there is no entry of S which does not appear in at least one of equations (4.43).
As sg = 1 is the initial condition of equation (4.43), then s$1,...,8, will be determined
uniquely meaning that every tree matrix can be symmetrised by an appropriate choice of
non-singular diagonal matrix S = diag (1, s1,..., 8, ). Pre-muliiplication of the system of
equations for a branched model dendrite (4.41) by S~ gives the symmetric form

sinhwh

(STLAS)SV = (05)7'1 (4.45)

4.4.6 Tri-diagonalising the symmetric tree matrix

The remaining task is to reduce the symmetrised tree matrix (4.45) into the canonical
form for a piccewise uniform cable (1.40). The symmetric tree matrix is reduced to a tri-

diagonal symmetric matrix by applying a series of Householder transformations (Lindsay,
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Qgden, Halliday and Rosenberg, 1999; Golub and Van Loan, 1989; also see Section 4.8.1).
The resulting tri-diagonal symmetric matrix can then be interpreted as a symmetrised
cable matrix.

If H is the symmetrising Householder matrix, then T = (SH) 1A(SH) is a tri-diagonal
symmetric matrix. Pre-multiplication of equation {4.45) by H ™! reduces the symmetric

malrix to a tri-diagonal symmetric matrix through the serics of matrix manipnlations

(5~1A8)S-V = Sin::wf‘;(ps)---lf’
HNS IASH HA s = Sl g pgyy,
4.46
(SHYPASH) (SH)T = S8 hopay o
TSH) W = sinl:’wh, (PSH)T,

If T is interpreted as the symmetric form of a cable matrix, both & and the equivalent

cable matrix A may be obtained.

4.4.7 Mapping of polentials and currents from tree to equivalent cable

A direct comparison of the equalions representing the symnmetrised piecewise uniform

cable and those representing the tri-diagonalised symmetric branched dendrite leads to

a mapping of potentials and currents from the branched to unbranched strueture. The

system equations for the (symmetrised) piecewise mmiform cable and those for the tri-

diagonalised symmetric branched dendrite from Sections 4.4.3 and 4.4.6 respectively are
T(S1V) = ﬂ’%‘”—h (D8)"'7,

1.47
ginhwle ( )

T(SH) W = (DSH)LT.

Equations (4.47) are identical provided membrane potentials and injected currents on the

unbranched and branched dendrites are connected by the formulae
§ W (SH)Y™W, (DS)'I=(pDsH)'L (4.48)

Formulae (4.48) relate potentials and injected currents on the branched dendrite to those
on the equivalent cable. By inverting the Laplace transforms in equations (4.48), the

potentials and injected currents on the tree are related to those on the cable by the
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formulae

S = (SHV(s), - Vi) = TyV(s)
{4.49)
(D8 I(s) = (DSH)I(s) —  I(s) = Ygl(s).
The matrices ¥y and Y ¢ appearing in equations (4.49) are called the voltage and current

electro-geometric projection (EGP) matrices respectively, and are defined by
Ty =SHTS™,  Uo=DEH s D =pryDL. (4.50)

The EGP matrices are by-products of the construction procedure. They are determined
hy the characteristic conductances of the branched dendrite, and therefore its biophysical
and geometrical properties. To construct the equivalent cable it remains to calculate the
symmetrising matrix S, the equivalent cable matrix A from 7', and the characteristic

conductance of cach cable section.

4.4.8 Construction of the equivalent cable

Constructing the unbranched cable proceeds in two steps. First, .4 is constructed and
this in turn provides the characteristic conductances and dimensions of the equivalent
cable. Second, D is constructed which is then nused to determine the one-to-one mapping

of injected currents on the branched model to those on the equivalent cable.

Characteristic conductances and equivalent cable dimnensions

T is interpreted as a tri-diagonal symmetrised cable matrix from which & and A ave to be
detormined. ‘I'he extraction of the equivalent cable from T' uses the fact that
Akg—1-1 Aggy1 = 1. (4.51)

That is, the smm of the off-diagonal catries in cach row is unity, for suitable valucs of
k. Furthermore, a cable matrix .4 corresponding to a piecewise uniforin cable with n
scctions has dimension (n + 1) X (n + 1) and satisfies Ag,; = Ann—1 = 1. This relation in

combination with (4.51) allows the extraction of A using the expression
Aryie = 70—, (4.52)

which subsequently allows the extraction of & from .4 using

Sl = isk\/ﬁ. s9= 1. (4.53)
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This is the analytical method of cxtracting A and S from the matrix 1. However, in
numerical work, in order to avoid rounding error in the repeated calculation of Ay g1
from Ap g—1 via the formula Ag gy) = 1 — Agg—1 it is beneficial to satisfy this condition

identically by the representation
App_1 = cos® O, Aj g1 = sin? 6. (4.54)

Wilh this representation of the entries of the cable matrix, the iteration procedure begins
with 0 = /2 (Ag, = 1) and ends when 6, = U. (App—1 = 1). Of course, in a numerical
calculation the cable section will be deemed to be complete when f,, < ¢ where € ig a
user-supplied small numher. The entries of the cable mairix are constructed from the

condition (4.52), expressed in the iterative form

_ -1 ITk,k+1| _ E CT
P41 = COS (wsin A ) , Oy = 5 (4.55)

The characteristic conductances of the individual cable sections are determined from the

definitions (4.34) of Agx-1 and Ag g by the iterative formaula
dipr1 = dy, tan® 6, d; given. (4.56)

This allows the characteristic conductances of each section to be calculated without directly
calculating A and §. Given the characteristic conductances, the scction diameters of the

equivalent cable are found from expression (4.6} assuming a piecewise uniform cable.

Determination of real input currents on the equivalent cable

The construction of the vector of real input currents, Z, on the cable requires the compu-
tation of Yo in eguation (4.50). The Householder matrix H, the symmetrising tree matrix
S and the diagonalising tree matrix D arise in the construction of the tree matrix and
are thervefore known. However, the symmetrising cable matrix & and the disgonal cable

matrix ‘D still need to be determined. The symmetrising cable matrix & can be calculaled

J A1k
S =48 2 4.57
k1 ;”\ A k1 (457)

diot1 dj
Ap a1 = ——+—  and Ap 1~ ———. 4,58
k, bl d + dia i,k ey + drya (4.58)

The algebraic sign in (4.57) is chosen to ensure that all valucs in the final cable matrix

from. the formula,

where

A are positive. This decision is made during the construction of & as subsequent entrics
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of S depend on previons entries. The characteristic conductances for each cable section
are calculated snalytically from (4.58) and numerically from {4.56). The final form of D

is formed froin the definition
D= diag |dy,(dy -+da),..., {dp+ Bpr1)r- -y (due1 + dn), dn) (4.59)

From here it is straightforward matrix multiplication to find ¥¢ and subsequently Z(s).

4.4.9 Summary - Concept of the equivalent cable

1u summarising the work of the previous sections, the concept of an cquivalent cable follows
from the observation that under certain conditions a symmetric tri-diagonal matrix may
be interpreted as a cable matrix. The equivalent cable is the result of a series of transfor-
mations that convert a tree matrix into a symmetric tri-diagonal matrix, This matrix in
turn may be interpreted as a symmetrised cable matrix. The associated piecewise uniform
cable represented by the latter is defined as the eguivalent cable of the branched dendrite.
In addition, the construction process provides a procedure by which the distribution of
inputs on the branched structure can be uniguely mapped to thoge on the equivalent cable

and conversely.
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4.5 Analytical construction of an equivalent cable

The manual construction of an equivalent cable is feasible only for simple branched struc-
tures, bul of course, the analytical procedure can be implemented numerically for cables
of arhitrary size. This section describes the exact construction of the equivalent cable for
three examples with increasing gcometrical complexity. These examples highlight all the
features of the equivalent cable including, the extraction of the equivalent cable from the
cablc matrix and the mapping of potentials and currents on the branched model dendrite
to the unbranched model. In addition, the distinction between the equivalent cable and

Rall’s equivalent ¢ylinder will be made precise.

4.5.1 A simple Rall branch point

Figure 4.4 shows a simple Y-junction with two limbs of clectrotonic length 2 meeting at £.
Exogenous currents I and Iy are injected at points Py and F», while core current Iy flows
from the Y-junction to its parent siructure at Fy. This Y-junchion immediately satisfies the

Rall condition that both segments forming the Y-junetion have equal electrotonic length.

h/ P —0

h
\ P, —I

Figure 4.4: A symmetric Y-junction with limbs of equal electro-
tonic length. The sections joining Iy ta I and Iy to P4 have

length £ and characteristic conductances ¢; and ¢o respectively.

Particularisation of equations (4.28) and (4.29) to the junciion in Figure 4.4, shows that

the Laplace transforms of the membrane potentials Vy(s), Vi(s) and ¥, (s) at points Py,
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Py, and % satisfy the algebraic equations

~ a o~ ~ sinhwh -
—Vp coshwh + V) + \? e T,
0 ater b et ? (et +ea}w 0
& sinhwh =~
Vp — Vicoshwh = I, (4.60)
Cpw
~ - int -
Vo — Vaocoshwh = sinhwh I,
o 0
These cquations have matrix representation,
Rad i t ; —~
AV;_SlnhuyD_lI (4.61)

w
wheve V is the column vector of the Laplace transforms of the membrane potentials at
points Fy, #4, Fo and 7 is the corresponding column vector of Laplace transforms of the

injected currents at these points. The tree mafrix is

— coshwh “ i
c1 + Co ¢ -
A= i — coshwh 0 (4.62)
1 0 — coshwh.

and 17 15 the diagonal matrix with &-th entry equal to the sum of the characteristic

condnctances of the sections which meet ai the 4-th node. Thus
D = diag [61 +ey, a, (’Q] . (463)

Tollowing the procedure described in Section 4.4.5, in particular expressions (4.43) and

(4.44), it can be shown that the diagonal matrix

S:diag[1,¢61+cz,1/cl+cz]
Cy (&)

reduces the tree matrix A to the symmetric form

—coshwh \/ 1 \/ 2
& R cy | ey
18
Vo -:Cg — coshwh 0 , (4.64)
\/ ” f: . 0 —coshwh
L 1 2 J
which leads 0 the system representation
- 15 sinh wh ~
(571A8) 87 = S22 (pgyL T (4.65)
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The next stage of the construction procedure requires S1A8 to be transformed into a

tri-diagonal symmetric matrix. This is achieved using the orthogonal symmetric matrix

1 0 o |
1 Ca
H=| 0 \/ L \/ —2 | (4.66)

0 Cn c1
L % ) c1+co |

The matrix H is derived in a systematic way as a produet of a finite sequence of House-

holder transformations described in Section 4.8.1 {see also Lindsay et ol., 1999; Golub
and Van Loan, 1989). Since T is a tri-diagonal symmetric mafrix, it may be interpreted
as the symwetric form of a cable matrix. The construction process is completed by pre-
multiplying equation (4.65) by ! to obtain

sinh wh

T(SH) 'V = (DSH)™'T (4.67)

W

where 7" = (SH)~ 1 A(SH). The resulting systemn of equations takes the form

[ _coshwh 1 o 1] Va | Iy
€y + e
lefl + Czi‘vﬁ sinhwh fl + _'fz
L= = . (468
1 —coshwh O 1+ co w 21 + c3 (4.68)
vacatvs — 2 (1 — Vo) coly — a1l
{ ¢ coshwh sy A
) AL oate /2162 (o1 - 2) ]

Equation (4.68) is the tri-diagonal symmetrised form of the original Y-junction. The Y-
junction can be represented as a cable by showing that equation (4.68) can be sssociated
with a cable matrix. The characteristic conductances of the cable sections and the mapping

between injected currents on the Y-junction and those on the cable can then be extracted.

Equations (4.68) divide naturally into the 2 x 2 system

—coshwh 1 f;'n o
_ ﬁinhwh e+ e (4.69)
Cli:’l -I-ng’z « _Tl |- fg
1 — coshwh c1 + o ¢1 - ¢z
and the single equation
 ed( V1 V;,) coshih — sinhwh | eoly — a1l (4.70)
c1+ ¢ \/01—02 (Cl -+ 02)
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Equations {4.69) and (4.70) can be interpreted as two equivalent cables, one of which is
connected to the parent structure at the branch point in Figure 4.4 and will be called the
connected cable, and the other which will be shown to be disconnected from the parent

structure and will be called a disconnecied cable.

Connected cable

The extraction of the connected section of the equivalent cable is achieved by comparing

equations (4.69) with the known form for a cable of length A, naely

— coshwh 1 Vo ‘iZQ
int d
- Simhwh {03 (4.71)
~ W I
1 — coshwh Wi d_z
The identifications
Vo = Va, dp = e +cy,
(4.72)
o = Iy, I, = L+4Dbh

render eguation (4.69) structurally identical to (4.71). The left-hand pair of identities in
(4.72) guarantees continuity of membrane potential and conservation of core current ai
the point of connection of the Y-junction to the parent structure. The right-hand pair in
(4.72) determines the characteristic conductance of the first section of the equivalent cable

and the injected current at its distal end.

Disconnected cable

The single equation (4.70) is now compared with the first equation in the general repre-

sentation of a cable (4.71) of length A, namely

~ -~ sinhwh ~
— coshwh¥ + ¥, = SRl 7 (4.73)
These equations are identical provided
Ve (Vi = Vo)
Vo = ——7F— di = e1+ ¢,

c1+ ¢cg

Iy = J2n- ] 2n Vo= 0,
\ C1 12

where the value of di is arbitrary and in this ease is chosen to be ¢ - c2. Under these

(4.74)

circumstances the second equation of (4.71) now specifies the current to be injecied at the
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distal end of the cable to maintain zero potential. However, unlike the connected cable,
this cable is not unique. For example, expressiou (4.70) may be rewritten in the equivalent

mathematical form

~(1, — Vo) coshwh =

sinhwh ‘i

won

27 - E} . (4.75)
Ci

Direct comparison of this equation with the first equation in the general representation

{4.71) leads to the identities

Vo = Vi—W, d = oy
(4.76)
ca
Iy = '"'Il—IZJ V] = 0.
4

Equation (4.76) is obtained by re-scaling equation (4.74). This means that the character-
istic conductance of the second cable is arbitrary, but once given a value, the membrane
potentiala and injecled currents on the second section are determined uniguely. The non-
uniqueness of the disconnected cable docs not affect the properties of the connected cable
since the [ormer is isolated electrically from the latter, and therefore from the parent

structure.

Summary of equivalent cable

It has been shown that a Y-junction with limbs of equal electrotonic length A and current
injected tips has an equivalent cable with electrotonic length 2k that is composed of fwo
independent cables of electrotonic length £, only one of which is counected (o the parent
structure. If ¢y and ¢p are vespectively the characteristic conductances of the lmbs of the
Y-punction and 7y and Iy are the currents injected at its terininals, then the equivalent

cable of the Y-junction has conductances and current mappings

dy = eate
Connected section
L In = Lt
_ (4.77)
dp = c1+cy
Disconnected section
L Iy
In = (C] +(‘.2) [— - —]
L 1 (&)

This cable is equivaleut to the original Y-junction because it preserves continuity of mem-

brane potential and conservation of core current at the point of connection with. the parent
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structure, and additionally, any configuration of injected currents on the Y-juction defines

a unique configuration of injected currents on the cable, and vice versa.

The distinction between the equivalent cable and Rall’s equivalent cylinder becomes clear
from this example. A cable of electrotonic length 2h has been constructed. The connected
section of this cable with length h is Rall’s equivalent eylinder. The role of the disconnected
section of this cable, also of length A, is to complete the one-to-one mapping between input
on the Y-junction and that on the equivalent cable. Evidently, Rall’s equivalent cylinder is
exact but deficient in the respect that there is no one-to-one mapping between the currents

on the tree and those on the cylinder.

4.5.2 An asymmetric Y-junction

Figure 4.5 shows an asymmetric Y-junction with limbs of {(unequal) length 2h and A
meeting at the parent structure Pg. Currents I, I and I3 are injected al Py, Fy and
P35 respectively, and core current Jp flows from the Y-junction fo its parent structure al
Fy. Clearly Rall’s equivalent cylinder could not be coustructed for this Y-junction since
the electrotonic length of the limbs of the Y-junction from the point of connection to the

parent structure to each terminal is different.

I
1\ h/ Py — I
/

€z

\ P& m?-I;;

Figure 4.5: A Y-junction with limbs of electrotonic length 2% and . The
sections joining £ to Py, P to P and £y to 3 each have clectrotonic

length £ and characteristic conductances e, ¢z and 3 respeetively.

The Laplace transforms of the membrane potentials Vq, ..., V3 at the 7,..., /% respec-

tively, when equations (4.28) and (4.29) have been particularised to the agymmetric Y-
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junction in Figure 4.3, satisfy the algebraic equations

oy sinhwh -~
-V coshwh + () -~V3 - _DMAWh By
cy-l-cg ) 4¢3 w(cy + c3)
=~ sinhwh ~
Vl coshwh -1 Ve, = 1 wn 1s
€ + C2 c2 wler + c2)
= sinhwh ~
V1~ Vacoshwh = fnhwn 2,
wey
~ ~ 1 1 ' h —
Vo — Vacoshwh = Bioduid I3.
weg
These equations have matrix representation
~  sinhwh ~
AV = DI

w

75

(4.78)

(4.79)

where V is the column vector of the Laplace transforms of the membrane potentials at

points 4, .

jected currents at these points, and A is the tree matrix

C1
€1+ ce

0

1

s

- coshwh

cp -3

— ¢oshwh.

1

0

C2

c1 1 ce
— cosh wh

0

€3
cy -+ ¢y

0

—coshwh |

..y Pa, T is the corresponding column vector of Laplace transforms of the in-

(4.80)

The k-th entry of the diagonal matrix D is the sum of the characteristic conduetances of

the scctions which meet at the k-th node. In this example,

D = diag [01 +¢3, 1 + ¢9, C2, C3].

(4.81)

Following the procedure described in Section 4.4.5, it can be shown that the diagonal

- dldf’[ fc1 + \/Cl-i 03’ \/01'%'03}
01+L2

will symmetrise the tree matrix A to obtain

matrix

[ - coshwh D a q |
P — cosh.wh 7 Q
57148 =
0 r —coshwh 0
q 0 0 — cashwh

(4.82)

(4.83)
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where p, ¢ and r represent the expressions

p —— —w-——-_-—j_——-—&.\ q = s N T = . . (4.84)
V/(e1 - ea)(e1 + e3) Vel +cs Vc1+c

The first step in the construction of the equivalent cable is to pre-multiply equation {4.79)

by $71 to gel the symmetric form

SLRWh hgy1 T 4.85)

(871AS) 57V =
w

The second step in the procedure to construct the equivalent cable requires S~ AS to be

transformed into a symmetric tri-diagonal matrix. This is achieved by observing that

1 0 0 0
0o P o L __
/2 2 /m2 2
0 0 1 0
P +q e ok ol

is a symmetric orthogonal malirix satislying the property

—coshwh /p? 402 0 0
BT
p2 + g2 —coshwh —————m Q
? - g2
H Y S AT =T = Loy . . (487)
0 ..,,_,p____, —coshwh —mb
[ + 2 /0 + @
0 0 _ﬁr__ —coshwh
VI QP ]

The matrix H is called a Houscholder matrix, and its derivation will be described in
Section 4.8.1. Since T' is a symmelric tri-diagonal matrix, it may be intcrpreted as the
symimetric form of a cable matrix. The second step is completed by ihe pre-multiplication

of equation (4.85) by H ! to obtain

sinhwh

T(SH)™WV = (DSH)'T. (4.88)

The final siep of the procedure to construct the cquivalent cable requires the derivation of
the cable matrix A, the symmetrising diagonal matrix & and the characteristic conductance

for each secticn of the cable.
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Extracting the equivalent cable

The oft-diagonal entrics of the equivalent cable matrix .4 and the symmetrising malrix &
which transforms A into T = S~1AS are extracted from 7" using the algorithm described

in Section 4.4.8. The calculation advances through each row of 1’ as follows

Tgl d+ c¢i1e3 -+ cacy
Row 1 A = 28l _ ’
o Aot (el ea)(er +ea)
: c1ey
Ay = 1-Ape= ‘
! ' (e1 +e2)(cr +ca)
T2 .
Row 2 A1 = %= (e + ) , (4.89)
A2 cf +eies +czcs
Caly
-A = 1- ,A e
e ! ¢t + ciea + coca
Row 3 _,43’2 - E‘i = 1.
Az

As Azg = 1, the last row of A confirms that the equivalent cable ends on a current inj ected

terminal. The matrix & which symmetrises the equivalent cable has form

2 : -4 ¢ : 2 4 o
S = diag |1, Clif‘_clc3+°2c3 ’ /cl | csl (c1+03), c1+01r.3.+r:203 . (490)
(e1 + e2)(e1 + e3) I Co agfer -1 e3)

It is now straightforward matrix algebra to demonstrate that the voltage EGP matrix is

[+ 0o o o ]
0 4| c3
> +
Ty = cates  ata (4.91)
0 0 1 0
0 & tee o, _a
L o .
and the current EGP matrix is
-4 -
& 0 0 0
¢ +c3
e1(dy - da) dy + dg
ot tea) | ate
Yo = ' 1 d (4.92)
0 0 Ug |- dg 0
c2
g t_ii 0 _aids
L ] cacy |

Tor the equivalence of the branched and unbranched dendrites, it is essential that Zo(s) =

Io(s), namely that both dendrites have the same current flowing into the parent structure.
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It therefore follows immediately from the first row of equation Zo(s) = Woiy(s) that
d1 = ¢1 + e3. The definition (4.34) of the cable matrix A in terms of the characteristic

conductances of the cable sections gives

d; _ c% |- e163 + ¢cocy da _ _..Elg.cl + 63) (4 93)
1 - dy (Cl - (33)((:1 + Cz)’ da + ds {:% “+ ¢ye3 + ¢acs ’
from which it follows by straightforward algebra that
ciea{er +cs) ches
di=c)+ey, dy= o 2ATE) g 28 4.94
1= ek o 2 C;z 4+ g3 | cqey : cf + ¢1¢8 + cac3 ( )

Now that dy, dz and ds are determined, expression (4.92) for the current EGP matrix
D¢ can be expressed entirely in terms of the characteristic conductunces of the branch

dendrile to gel

1 0 0 0
c1{c1 -+ ¢3) 0 (e1 + ¢o)(e1 + c3)
. 2y e o
To = C% “+ 103 + ¢enes i -k ciecg + caca ) (4‘95)
0 0 1 0

coly €1€2
¢t - c1¢c3 - caey ¢t +eyey -+ eacy

Thercfore the asymametric Y-junction in Figure 4.5 with limbs of unequal clectrotonic
length 2k and h has an equivalent cable of electrotonic length 3/ consisting of three

uniform sections with characteristic conductances and current mappings

di = c+cg

Connceted section 1 o1+ c3
ol

1 = —p—m——= ey + (1 + )]s,

! cf-l-clc::,+02(:3[]l (61 + )]

L

crea{er + ¢3)

dy =
2
Connected section 2 e + 163 + cacy
1_2 = 127
| ches
Connected section 3 !
c1e .
Ty = 2 [h Iy

&} 4 creg e

L

4.5.3 A symmetric Y-junction

Figurc 4.6 illustrates a symmetric Y-junction consisting of two limbs with electrotonic

length 2h and meeting at the branch point Fp. Curvents Io(s),...,Is(s} ave injected
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into the Y-junction dendrite at the points P, ..., Py respectively. From the previous two
examples, it is clear that this Y-junction conforms to Rall’s first condition, namely that
all dendritic terminals are the same elecirotonic distance from the point of conncction to
the parent structure to the terminals. One outeome of this analysis will be to determine
conditions under which this Y-junction bas a Rall equivalent cylinder of electrotonie length

2h, and when no such cylinder exists, to determine the equivalent cable of the Y-junction.

Figure 4.6: A Y-junction with limbs of electrotonic length 2f1. The sections
joining Fp to Py, Py to Pa, Fo to F3 and P; to £ each have length 2 and

characteristic conductances ¢1, ¢z, ¢3 and ¢4 respectively.

It follows from the application of particularised forms of equations (4.28) and (4.29) that
the Laplace transforms of the membrane potentials Vo(s),. .., Va(s) at the points Fp,. .., Py

respectively on the symmetric Y-junction illustrated in Figure 4.6 satisly the algebraic

equations _
~ a o~ ez -~ sinhwh ~
~Vgeoshwh -t -~ =17 I Vg = —— 2%
0 cites * cideg o w{c1 -k ¢3) o
- - . & -
¥, — Vi coshwh + —2—V, = _Sinhwh T,
¢+ c1 e w(c1 + )
~ inhwh ~
Vi - Vycoshwh = —20 70 (4.96)
w e
% Vo — Va coshwh + Ca Vy = sinhwh 7
cates 08 cstcr wlcatez)

ginhwh ~
Iy.
W Cq
The system equations for the symmetric Y-junction therefore have matrix representation

V3 — Vicoshwh =

sinh wh

AV = DT (4.97)
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in which V is the vector of the Laplace transforms of the membrane potentials, T is the

vector of the Laplace transforms of the injected cuwrrents and A is the tree matrix

— coshwh o 0 % 0
€1 +c3 c1tcs

o —coshwh = —2 0 0

£1 4 C2 c1 + ¢a
Q i — coshwh 0 0 (4.98)
2 0 0 — coshwh C4

€3+ C4 c3 + C4
0 0 0 1 — cashwh

The entries of the diagonal matrix D are the sums of the characteristic conduciances of
sections meeting at each point of the Y-junction. By iollowing the procedure set out in

Section 4.4.5 it can be shown that the diagonal matrix

soans[L BT LRSS ] e
will symmetrise the tree matrix A to obtain
[~ coshwh P 0 g 0 l
P - coshwh r g a
571A8 = r —coshwh 0 0 (4.100)
g 0 0 - coshwh w
i 0 0 0 u —coshwh |
where p, ¢, r and w represent the expressions
€1 £y
a Vi{er+eg){er +es) = Vo1 Fesiles ¥ er)
(4.101)

T =

(5] w = C4
, =/ :
Va+e e+

Pre-multiplication of equations (4.97) by $~* reduces them to the symmetric form

sinhwh

(51A8)S7WV = (NS~ T.

(4.102)

Since $TLAS is syminelric bul not iri-diagonal, the construction of the equivalent cable

proceeds by tri-diagonalising S~1A4S. This is achieved by using the symmetric orthogonal
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matrix
1 0 0 0 0
P g
0 — G - 0
pl | qZ _\/pﬂl 4 q2
0 0 S - 0 A (4.103)
= P + gt Jot v gwe | W
—t 0 R 0
VPt g P2
quw r
0 0 —— 0 RN
i /p2rE ¥ qtw? /0?1 - Pu J

Tor complex branched dendrites, H can be derived in a systematic way as a product of a
finite sequence of Househalder transformations. When equations (4.102) are pre-muliiplied

by H™*, the result is
sinhwh

T(SH)TV = —

(DSH) T, (4.104)

where T = (S£) "1 A(SH) is the symmetric tri-diagonal matrix

[ _ coshwh Vi g® 0 0 0 1

2,2 | 2,2
; pere - gtw .
vV p‘z + q2 - coshwh —*W 0 0
2.2, 2 2 oD
0 JETTTYhen PO W)
P24 q NN T
pa(r? — w?) rwy/p? + ¢
0 0 s o —coshwh e
\/p + /P g sz
: rw/p? - g2 )
i 0 0 0 ——m — coshwh |
(4.105)

Equations (4.105) may be inferpreted as the symmetrised, tri-diagonalised form of the
system equasions for the Y-junction in Figure 4.6, where T is the symmetric form of a
cable matrix. The final stage in the construction of the cquivalent cable involves the
derivation of the cable matrix A, the diagonal matrix & and the subsequent calculation of

the characteristic conductances of the equivalent cable.

Extracting the equivalenl cable

The off-diagonal entries of the equivalent cable matrix A and the symmetrising matrix S
for which T = §~1AS are extracted from 7" using the procedure sct out in Section (4.4.8).

The calenlation now advances through each row of T on the assumption that cjeq # eacs.
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The entries of the cable matrix A are calculated algebraically to obtain

9‘ ¥
Row1 Are = 51 _ A{eg + cs} + (e + ) ’
Aoy (cr +ea)(er + e)(es +ca)
crea{es + ca) + ezcq(cy + ca)
Ay = 1-Ajg= ;
1.2 10 (e1 4 e2){er -+ es)(cs + )
Row 2 Any = Ty _ (c1 -+ ea)lefea(es + ea)® -+ Bealer + c2)]
= Arz  [cHes +ca) - ciler + ca)llerca(es + cs) + caesler + e2)]
_ cres(eaca — crea)?
Agy = 1—Ag = e ,
28 21 (c3(ca -+ c4) + ci(ex + ca)]lcrez(ca + ca) - eacalcr + eu))
T2 o ealen ol Loen
Row3d Ags = 23 _ (1?[&1(«2(% +§4) ‘1"20364(61 t f-;)] ,
Az cico(ng 4 c4)? + cealer + ca)
cacq[cP(es + ca) - cg (e1 + c2)]
A = l—-Azs= ,
3.4 . cicalcs + ca)? + clagler + e2)?
13
Rowd Agy = —2% =1,
OwW Vg A34

gl

{4.106)
When cicq # cocs, the cquivalent cable consists of fonr sections and terminates in a current
injected lerminal. The matrix & mapping the equivalent cable into the symmetrised Y-

junction is determined from equation (4.38) and takes the value

S = diag [ i ey + cq) + cBer + ) /Im + ea)[Beafes + ex)® + chea(er + 62)7]
"V e1 + oa)er + e3){es +ea)’ \ [cren(ea + ca) + cacaler + )]

[e1 + ca][c(cs + ca) + c3er + )]
lezes — c1e4]?

[fex + eslicealcs + ca)? -+ csealer + )] ] .

! €204 [Czca — &y 04]2

(4.107)

Given 8, it is straightforward matrix algebra to show that the voltage EGP matrix is

[ "

1 0 0 4] 0
N 0 “3 0
c) + 03 ci+c3
ciea{es -+ £4) cgea(ey + ca)
Oy=|0 0 R 0 — (4.108)
0 cala +e2) 0 _tilest ) 0
CaC3 — C1C4 €3C3 — Cic4
0 0 el + ) 0 _aflestes)
. C2€3 — Ci€y €203 — C104 |
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where 77 = cica(es + cg) + caeq(ey + cz). The characteristic conductances of the sections of

the cquivalent cable are determined directly from A4, and take the values

c1ea{rs + ¢4) + czealcy + cz]'}

dy =c1+cs, dp = (e + ¢
1 = €1 -+ C3 2 (Cl 3)[ r:%(cg-}-(:d) 4 ‘%('31 ’I“CZ)

do — e1¢3 [eacs — c1e]® [erca(es -+ ca) + escaler + ca)] _ (4.109)
7 1 es +ca) + Sles + 2] [eales + cal + Bealer + 2]’ o

dy = cacalegcs — cica)?
ciea(es + ca)? + cieafer + c2)?

Given the valucs dy, ..., ds in {4.109), the current EGP matrix Yo = D ¥y D ! may be

expressed in terms of ¢i,...,cq. Since D and D! are diagonal matrices then ¥ and ¥y
are structurally identical. By this it is meant, that the non-zero entries of o and Uy are
in identical locations. Therefore in this example, ¥ has an identical struclural form to
¥y, thercfore follows that the current input at a given location on the branch structure
maps to locations on the equivalent cable that are no closer to its soma than that of the

input on the branched structure.

Special case: cjeq = ey

This special case corresponds to a Y-junction with limbs satisfying the Rall condition
c1/cg = r3/cy. Here, one limb of the Y-junction is a scaled version of the other limb.
Therefore, in the special case in which r = w, or equivalently ¢;cq == vges, the tri-diagonal

matrix T in equations (4.104) takes the particularly simple form

—coshwh /p?+42 0 0 0
Vp? 1 7* —coshwh r 0 0

7= 0 T — coshwh 0 0 , (4.110)
0 0 0 --coshwh 7
0 0 0 7 ~ coshwh |

The block diagonal form of " forces the construction of the equivalent cable to proceed
in two stages, the fixst dealing with the tri-diagonal magrix T} defined by the upper 3 x 3
block matrix in 7', and the second dealing with the tri-diagonal matrix 7, defined by the
lower 2 x 2 matrix in 7. Thus equations (4.104) decompose into the independent sets of
equations

sinhwh _ =

R T, T:asz - sinh wh.

w w

MV =

Ry (4.111)
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in which M; and M5 are respectively the 3 X 5 and 2 % 5 matrices

My =

My =

L

1 0 0
Verler +eg) 0
€1 +ea
0 0 VA
cyl-cg
vea(ey + ca) 0
[ ]
0 0 v ‘3.203"
€1 5-Cy

0

vealea +eq)

1 -k c3

0

Veles el

¢y +cs

0

and R; and Ry are respectively the 3 x 3 and 2 x 3 matrices

R =

Ry =

1
1
cp+ ey
0
1 0
c1+eg 0
L

¢ 0
1
¢y ¢z
0 a
C
c3 0
1 +ca
0

cs
e

0

Vain

cg g

P

B

0

€]
0

€1
+ ¢4

~

c3
cy |

[53] :
c -t

84

(4.112)

(4.113)

The matrices M) and My are formed respectively from the first three rows and last two

raws of (SH)™1, while R; and Ry arc likewise formed respectively from the first three rows

and last two rows of (DSH)™'. Each set of equations in {4.111) represents a different

component of the equivalent cable, the first is conneeted to the parent structure whereas

the second is not.

Connected cable

The entries of the cable matrix A corresponding to the first of equations (4,111} are now

caleulated sequentially. With the tri-diagonal matrix 73 represented by 7" (for conve-

nience), this calculation gives

Rowl Ao

A

Row 2 Ag:]

I

Toz,l a1 _ ¢
Agr atea cata
1-Ap= 2B
14 ezt ca
zl
L2 _ 4

(4.114)
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where the transformation from A to T is effected with the diagonal matrix

C Co
81:{1,,/63:04,1/2-;]. (4.115)

In this instance the expressions for the voltage and current EGP matrices corresponding

to formulae {(4.50) are respectively

1 0 0 0 0
. c1 3
Yy =61y = : c1+c3 ¢ty 0 ’
0 0 (5] 0 Cy
(&1 +CS ¢+ 3 (4 116)
1 0000
. d

bo=DSR = CIJ:CS 01010
6 01 01

Since Zy = Ig, then dy = ¢ -+ c3 and the expression for A4 leads to dy = ca(eq + ¢3)/e1.
Cable potentials and injected currenis ¥ and 7 are related to tree potentials and currents
V and I by the respective formutae ¥V = ¥y V and 7 = ¥ I. These relationships have

component form

W= . Ty = Iy,
Vi + a3l
o= —Cl |- €3 Il = - I3, (4117)
Vo = Cl% + C3V:; T = L+l
cy 4¢3

Disconnected cable

In this section the currents Zy, Z; and Ts and the potentials Vg, V4 and Vo refer to the
left-hand node, cenire node and right-hand node respectively of the disconnected cable.
The cntries of the associated cable matrix A corresponding to the second of equations
(4.111) are now calculated sequentially. With the tri-diagonal matrix T3 represented by T

(for convenience), this calculation gives

78 e .

L 2 ()

Rowl A1 = = = ,
Ao, ¢+ oyt eg

(4.118)
¢ o3

eitcr cztes
where transformation from A to T is effected with the diagonal matrix

A = 1-Ap=

8y = [1, c2 l . (4.119)

[ )
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In this instance the cxpressions for the voltage and current EGP matrices corresponding

to formulae (4.50) are respectively

[0 1 o -1 0
Ty = SeMy M

I

c1+ecs 00 2 0 - ]
1+ ¢y c1+ ey
(4.120)
s [ 2 g -2
To=DSER = hy/eala t o) ale O3 4
’ ©g (C] -+ (33) 0 0 1 0 _a

&3
Note that Uy and T only give the potential and injected currents at the first two nodes
of the detached cable. Specifically,

Vo = _.,_._._\/CE‘(CIW [Vl—Va],

c1 +¢3

o~ L g -vi,
c1+czg e+

Ty = d @ [I 3 {2] )
cp ez Yeate c3

di  es(er +cg) [I a gl
g~ 1

ey -+ ¢3 cz s I

In the expressions for 7y and Z;, the characteristic conductance of the first section of the

Vo=

(4.121)

T =

detached cable is indeterminate unkike the first section of the connected cable,

Ii can be demonstrated that Vo = 0 and that the equation comtributed by the third
node on the detached cable determines the injected current required to maintain Vo = 0.
As discnssed in the derivation of the model, the third equation does not appear in the
mathematical formulation of the cable based on the determination of unknown potentials.
Specifically, although the muthematical description of the detached cable contains three
nodes and three unknown functions, only two of these are unknown potentisls; the third
is an injected current and so does not feature in a matrix representation of the detached

cablo based on unknown potentials.

Tn this example, the symmetric Y-junction in Figure 4.6 with limbs of length 2A forms an
equivalent cable with electrotonic length 4. The first pair of uniform sections of the cable

arc connected to the parent structure while the second pair are disconnected from it.
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4.6 Application of the equivalent cable to spinal interneu-

rons

The development of the cquivalent cable and its associated mapping allows studies inta
the influence of complex dendritic morphology to be extended beyond those based on
approximate representations of dendritic morphology (see Vetter, Roth and Hiusser, 2001;
Mainen and Sejnowski, 1996). This section will describe the generation of equivalent
cables for spinal interneurons and the estimation of the distribution of associated synaptic

contacts when mapped o the equivalent cable.

The conventional description of synaptic location employs a Sholl analysis (Olave el al.,
2002). This procedure counts the number of contacts falling on regions of dendrite con-
tained within concentric shells with radii that increase in 256 ym steps from the centre of
the soma. This procedure is applied to a collection of cells. Ifor these cells a histogram
of the number of contacts within each concentric shell is calculated. The Sholl procedure
inherently assummes that dendrites radiate outwards from the soma, and thercfore when
this does not happen, the procedure misrepresents the density of comtacts. That is, a
distal contact on a branch that turns back towards the soma may be represented as a
proximal contact. Furthermore, the histogram process is a blunt lool making it diffienlt
to draw conclusions on the distributions of contacts on the same type of cells or between
different types of cells. The mapping derived in the construction of the cquivalent cable
provides a means to investigate individual neurons and synaptic contacls in a way that
incarporases fully the morphology and biophysical properties of the cell without resorting

to a histopram procedure.

4.6.1 Distribution of contactis

The equivalent cables of two cholinergic internenrons located in laminae ITL/1V of the dorsal
horn of the spinal cord have been generated numerically. An overview of the neurons and
their iuput structwre is given in Chapier 3, whilst a detailed description of these neurons
can be found in Olave cf al. (2002). To my knowledge, the following examples are the
first examples of equivalent cables constructed from real neurons by contrast with those

constructed by piecewise empirical methods (e.g. Segev and Burke, 1989).

The procedure uses the contact location from the Neurolucida, files and assigns a strength
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of one unit to each contact. A discretisation interval of one-thousandth of an electrotonic
unit is used in the construction of each sample dendrite, resulting in 1300-1400 nodes per
dendrite, and a placement of contacts with a maximum error of one two-thousandth of an
electrotonic unit. The EGP matrix, U, described in Section 4.4.7 is now used to map
contacts I on the branched dendrite to ¢ontacts 7 on the equivaleni cable according to
the rule that T = Wgf. The fraction of 7 received by the connected cable up to and
including node & is formed by swnrning the entries of 7 from j = 0 to j = k and then
normalised by dividing Lhis sum by the total number of contacts on the dendrite. The
function is smoothed by interpolation {see Section 4.8.2), and its derivative with respect
to electrotonic distance from the soma gives the density of contacts at each location on

the equivalent cable.

As the mupping of contacts from the hranched model to the equivalent cable is unique,
comparing the contact density for dillerent classes of contacts on the equivalent cable is
equivalent to comparing the distribution of these contacts on the branched model. This
procedure has clear benefits over the Sholl analysis, in particular it is unaffected by the
phenomenon of branches turning back towards the soma, giving a false impression of the

location of synapses.

Example 1: Equivalent cable representation of myelinated afferent input to

cholinergic interneurons

Figure 4.7 A shows a typical Iamina ITL/TV spinal interneuron veceiving myelinated afferent
input. The dendogram and equivalent cable for this cell can be seen in Figures 4.78B and
4,7C respectively. Note that this equivalent cable has an electrotonic length of 1.39 eu.
The cumulative distribution of contacts shown in Figure 4.7D indicates that almost 50%
of the combined effect of the distribution of contacts on the branched structure lies within
0.1 eu of the soma. The plot of contact density in Figure 4.71 suggests that the influence
of the contacts on the soma declines steadily with increasing distance from the soma until
disappcaring at approximately 1.6 en. At 0.6 eu, the diameter of the equivalent cable has

fallen to roughly 2% of its initial valuc.



CHAPTER 4. FQUIVALENT CABLE 89
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Figure 4.7: An example of a cholinergic interneuron (A) which receives myelinated
primary afferent input (e) with its associated dendogram (B) and equivalent cable
(C). Ihe first 0.72en of the connected section of the equivalent cable is shown, the
full cable has length 1.39 eu. The cumulative strength of the contacts (D) and their

associated density (15} for the cell are also illustrated.

Example 2: Equivalent cable representation of unmyelinated afferent input to

cholinergic interueurons

Figure 4.8A shows a typical lamina IITI/TV spinal internenron receiving three distinct classes

of unmyelinated afferent input. Type 1 contacts are non-peptidergic primary afferents (IB4
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staining), type 2 contacts are peptidergic primary afterents (CGRP staining) and type 0
contacts are a rarer class which stain [or both 184 and CGRP. In Tligure 4.8A, the three
classes of contacts can be seen (type 0 - %, type 1 - » and type 2 - A). The dendogram

and equivalent cable for this cell can be scen in Figures 4.8B and 4.8C respectively.

100210

0 ' 50 100 150 200 250 300 02eu
Distance from soma (pm)
(D)
1.0 7
0.8 - vmews Type 0
cenees Type 1
0.6
—— Type 2
0.4 -
0.2 4 ~
N
0.0 T T T T T T | 0.0 T 7 y .""E‘f,%'?
0002040608 101214 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
Distance from soma (eu) Distance from soma (eu)

TFigure 4.8: An example of a cholinergic internenron {A) which receives unmyelinated
, primary afferents (type 0 - %, type 1 - ® and type 2 - &) with its associated dendogram (B}
‘ and equivalent. cable {(C}. The first 0.77 su of the connecled scetion of Lhe equivalent eable is
shown, the full cable has length 1.86 en. The cumulative strength of contacts (D) and their

associated density (E) for the cell are alse illustrated.
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The equivalent cable has electrotonic length 1.36 eu, and has a distinclly different shape to
that extracted [rom the interneuron receiving myelinated afferent input (see Figure 4.7B).
The cumulative strength of contacts and the associated contact density arc calculated for
each class of contact. The cumulative strengths (Figure 4.8D) for each class of contact
suggest that the contacts form different distributions along the equivalent cable. The
plots of contact density (Figure 4.8E) accentuate the differences between the ellects of the
three classes of contact. Close to the soma, al less than 0.3 eu, the effect of the T'ype-2
contacts is dominant followed by Type-1 contacts which are in turn stronger than ihe
Type-0 contacts. Al intermediate distances, approximately 0.3 - 1.0 eu, the effects of the
contacts changes such thal Type-0 contacts are stronger than Type-1 which are in turn
stronger than Type-2 contacts. The plots of contact density clearly define the distinct
regions over which each class of contact has its effect. A coraparison of the distribuiions of
contacts from myelinated and unmyelinated afferents indicates that Type-2 unmyelinated

contacts are almost distributed identically to myelinated contacts.

The application of the equivalent cable procedure to real neurons has demonstrated first,
that ithe equivalent cables for spinal internenrons receiving myelinated afferent inpnt form
distinctly different shaped cables than those receiving unmyelinated afferent input, second,
that the distribution of contacts varics with the type of afferent input, and finally, thatl
there are three distinct distributions of unmyelinated aflerent input. The second result
confirms the observation by Olave et af. (2002) that myelinated and unmyelinated afferent
input form differont distributions, however, the final result extends the conclusions of
Olave et al. (2002) by demonstrating that the distributions of the unmyelinated inpuls

are themselves different.




CHAPTER 4. EQUIVALENT CABLE a2

4.7 Conclusions

The equivalent cable of a branched dendrite is an unbranched representation of the den-
drile and its input. The response at the soma of the branched dendrite to any configuration
of input can be represented exactly at the soma of the equivalent cable. Cenversely, the
response at the soma to any configuration of input on the cable can be represented exactly
by the response at the soma of the branched dendrite. This chapter has developed a novel
analytical procedure for coustructing an equivalent cable. This procedure transforms an
arbitrarily branched dendrite with arbitrary conligurations of input into a piccewise uni-
form cable with an input structure determined uniquely by the configuration of imputs on
the original tree. The cable is generated about the point of contact of the dendrite with
its parent structure and may be accompanied by electrically isolated cables which are dis-
connected {rom both the parent structure and cach other. The procedure for constructing
the equivalent cable ensures thal the electrotonic length of the connected cable and any
disconnected cables equals the total elecirotonic length of the dendrite as defined by the
sum of the electrotounic length of all its segrents. It is shown that the matrix correspond-
ing to an arbitrarily branched dendrite can be transformed o a symmetric tri-diagonal
matrix, which ean then be associated with the canonical form of a cable. By this route, the
representalion of the original branched dendrite by piecewise uniforin sections is mapped
into the representation of a cable (the equivalent cable) with piecewise uniform sections.
The construction process specifies how potentials and input on the branched dendrite is

mapped bijectively to potentials and input on the cquivalent cable.

This procedure for constructing the equivalent cable was used to characterise contacts on
spinal interneurons. This method could be applied to siugle interneurons and proved to

be more powerful than the traditional method based on the Sholl analysis.
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4.8 Mathematical appendix

4.8.1 Houscholder procedure

The Householder procedure is here used to reduce a symmetric tree matrix to a symmetric
tri-diagonal matrix (Golub and van Loan, 1989} as part of the procedure to construct an
equivalent cable. The resulting symmetric fri-diagonal matrix can then be interpreted as
a symmetric cable matrix. Proviously, the equivalent cable hag been developed using the
Laneczos procedure (Ogden et al., 1999) o transform the symmetric tree matrix into the
tri-diagonal cable matrix. Setting aside the fact thal the Lanczos procedure is based on a
numerical approximation of the cable equation using central dilferences, the Householder
approach enjoys two advantages over the Lanczos procedure. First, it is numerically stable
by contrast with the Lanczos procednre which is well recognised to suffer from the offects
of rounding error (Golub and van Loan, 1988). Second, the Lanczos precedure often
fails to develop the complete gymraetric tri-diagonal matrix in a single operation uulike
the Householder algorithm which always develops the complete symmetric tri-diagonal

malrix.

Householder matrices

Given any unit column vector U of dimension n, the Householder matriz H {see Golub

and Van Loan 1989) is defined by
H=T-200T (4.122)

where ! i3 the n x n identity matrix. By construction, the matrix ¥ is symmetric and
orthogonal. While the symmetry of H is ocbvious, the orthogonality property follows from

the calculation
o2

il

(I —20UTY(I-20U7T)
I -4 T 40 (T Ut {4.123)
= I-4uT +a0vT =1.

i

Thus H — H? = F~}. Given any symmetric (n + 1) X {n + 1) tree matrix S~ AS, there

is a sequence of (n — 1) orthogonal matrices Q1, @, ..., @n-1 such that

(@l QTS ASH QL Q1) =T (4.124)
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where T is a symmetric tri-diagonal matrix (see Golub and Van Loan, 1989). To interpret
the final tri-diagonal form of the tree matrix as a vable atlached to the purent structure,
it is cssential for the Ifouseholder procedure to start with the row of the symmetrised tree

matrix corresponding to its point of conneclion to the parent structure, i.e. Fp.

Let the orthogonal matrix Q1 and the symmetric tree matrix W == §71 AS have respective

block matrix forms

Y”? L 0
W | W0 . o= , (4.125)

Y Z 0 &£

where Y is a column vector of dimension 5, Z is a symmetric n X n maitrix and H; is
an n x n Hounseholder matrix constructed from a unit vector U. Assuming that the first
row and colunmm of W are not already in tri-diagonal form, the specification of U in the
construction of Hy is motivated by the result

woo (H IY)T

QWL = .
Y H{ZH,

The vector U is chosen to ensure that all elements of the column vector II1Y are zero
except the first element. If this is possible, the first row and column of QfIWQl will
form the first row and column of a tri-diagonal matrix. Furthermore, #7 ZH) is itself an
7 X 1 symmelric matrix which assumes the role of W in the next step of the Householder
procedure. This algorithm proceeds itcratively for (n — 1) steps, finally generating a 2 x 2

matrix HE_l ZH,,_; on the last iteration. It can be shown that the choice

r_ Y+ a|Y|E, Iy [1,0,--- (n—1) times ---]T,

VYV + ety Y, = YTR,

with o = 1 defines an Hy with the property that FhY = —a|Y|Ey, that is, the entries

(4.126)

of H1Y are all zero except the first eulry. This property of H; can be established by
elementary matrix algebra. The stability of the Householder procedure is guaranleed by
getting =11l Y] >0 and o = -1 if ¥7 <0, that is, a is conventionally chosen to make

oY non-negative.
Once Hi is known, the symmetric n % n matrix IfZH; is computed and the entire
procedure repeated using the (n - 1) X {n -+ 1) orthogonal matrix ()2 with block form

I 0
0 H

Qq =
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in which H3 is an (n — 1) X {(n — 1) Houscholder mutrix. Continued repetition of this

procedure penerates a sequence of orthogonal matrices ¢1,@3, -+ , Qn-.1 such that

(Qu-1 @ QST ASY Q1 Qi+ Rpr) =T (4.127)

where T is a symmetric tri-dingonal matris to be interpreted as the symmetrised matrix of
an equivalent cable. In order to construct the mepping of injected current on the branched
dendrite to its equivalent cable and wice-versa, it is nccessary to know the orthogonal
matrix Q = Q1,Qs, - ,Qn-1. In practice, this matrix can be computed efficiently by
recognising that the original symmetrised tree matiix can be systematically overwritten
as ( is constructed provided the caleulation is performed backwards, that is, the calculation
bogins with §,,~1 aud ends with ¢J;. Using this strategy, it is never necessary to store the

Housceholder matrices Hy,-+- , Hp—1.

A numerical example

A more lransparent picture of this procedure cau be established by considering the reduc-

tion of the synmnnetric matrix

9 -1 2 2]
13 4 2

W= (4.128)
9 4 14 -3
2 2 -3 4

to symmetric tri-diagonal form using Householder matrices. Irom the block matrices
(4.125) wo can see that Y7 = (~1,2,2), ¥ = (—1,2,2)T and therefore |Y] = 3. The vector
U i3 defined as

{7 = (~1,2,2)7 +a|Y](1,0,0)7, a?=1

where @ = —~1 in this case since the first element is negative. Therefore U = (—4,2,2)7

and the Householder matrix defived by U7 is therefore

1 00 16 -8 -8 -1 2 2

2 y 2 |
H=7- Uy = ; _A PR I : _
T2 010 | -8 4 4 3| 2 2 -1

¢ 0 1 -8 4 4 2 -1 2
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From the definitions (4.125}, I now define

(s 0 0 0]
hH 0 110 -1 2 2
0 H 0 2 2 -1
0 2 -1 2]

which is used to compute £ L P, where W is given by (4.128). It is un casy calculation

to show that

(3 0 0o o[ o9 -1 2 2][3 0o o o

piwp, — 107 2 2|13 4 2oz

0 2 2 -1 2 4 14 -3||0 2 2 -1

0 2 -1 2| 2 2 -3 4]|0 2 -1 2]
(93 0 o]
|33 6 0
o6 12 -3
(00 -3 6|

In this instance, one step of the [ouseholder procedure has neatly iransformed a symmetric

matrix into a symmetric tri-diagonal matrix.

4.8.2 Istimating the density of contacts

Let the equivalent cable have electrotonic length L and suppose that F'(z) is the cumulative
sum of the strength of all contacts located on the equivalent cable within electrotonic
distance # of its point of contact with the parent structure, then F(0) = 0 and FF(L) — 1.
The function I'(z) is now interpolated by the finite Chebyshev series

N

z  ol-g) 3 o Tn(?ihi) (4.129)

T
Pla) =7 72 J2

n=0
where the Chebyshev polynomial Ty,(2) is defined by the generating formula, Ty (cos ) =
cosmfl.  Since expression {4.129) satisfies automatically the conditions F (0) = 0 and
ﬁ(L) =1 for all choices of the coefficients a,,, it remains to find values for ag, ay,...,an to
optimise the fit of expression {4.129) to the cumulative strength of contacts along the en-

tire lengtl of Lhe equivalent cable, as expressed by the set of values (z1, F1),- .., (za, Fae ),
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where 1, ..., Ty are the points on the equivalent cable. The cumulative strengths of con-
tacts are kuown and Fy = F(z),) denotes the cumulative strength of contacts at zy. In

this thesis, the coefficients ag, . . -, ay are determined by minimising

M : N vy
03 [p -3~ 2 S o n (O o
=1 n=(

Tt follows immediately from expression (4.130) that

‘g;;{‘j‘ =~73 Zm (L—wy) T; (2335. )[f(wk -——..-‘""(LL—';‘%) é - Tn(kaL- L)]'
(4.131)

The optimal values of the coefficienis ay, ..., an are those which minimise ® and thercfore

it; clear from equation (4.131) that the optimal coefficients should be chosen to satisly

Z Z wk(L xk) 'l;a(zka_ L)Tj(Q:ckL— L)

=0 (4.132)

S et (rren - 2) (L),

k=1

This is a set of (N + 1) simultaneous equations in {N 4-1) unknowns. These equations are

golved for the coeflicients aq,...,an by LU decomposition.

The density of contacts on the cquivalent cable is estimated from the definition f{z) —

F1() to obtain

-—t-%fii%Tn ZxL )+ T(me Z n_T,( L)

i
1 1 —UL 2 2r — 2z{L — o 20— L (4:133)
=it LZ%[ () e ()]

Give z € [0, L], the valuc of f(.;:) can be computed by first finding # such thal cos@ =

F(z)

{2x — L)/ L. The density now becomes

-~

N
flz) = Z ay [ — cos 8 cosnd +§ gin ¢ Sin'nﬁ]

1 n=}3 - (4.134)
= 7+ 21— Z an [(n — 2) cos{n — 1)¢ — {n + 2) cos(n + 1)(9}.

n=0

b)—l
ol




Chapter 5

Building the typical neuron

5.1 Introduction

Since Cajal’s classic studies using Golgi stained neurones (Cajal, 1952), neurophiysiologists,
neuroanatomists and more recently inathematicians havs tried to understand, describe and
model both dendritic morphology and dendritic behaviour. Despite over a century of re-
scarch, the role of neuronal morphology in shaping neuronal behaviour remains poorly
understood. Although the complex morphology of dendritic trees is assumed to be impor-
tant in determining the properties of spike trains gencrated by a neuron (e.g., see, Mainen
and Sejnowski, 1996; Mel, 1994) tittle is known about this process. Furthermore, the role
of dendritic morphology in integrating the large number of input spike trains disbributed
across a dendritic tree also remains poorly undersiood, although a number of studies have
addressed this issue (e.g., see Koch, Poggio and Torre, 1982; Shepherd and Brayton, 1987).
The [irst step lowards understanding the role played by dendrilic morphology in shaping
dendritic behaviour is the quantification of dendritic morphology. The sins of this chapter

is to provide a novel approach to Lhe problem of simulating dendritic mmorphology.

Meodern computers now enable one 1o analyse and simulate neuronal morphology, Never-
theless, extracting morphological data is a complex and laborious tusk, compounded by
the diverse structure of dendritic trees. The process of fixing and sectioning the neurcn
diistorts its morphological features leading to possible artifacts in the data. Diameter and
length measurements are pronc to further error during the reconstruction process due to
the resolving power of the mieroscope and the reconstruction software (Kaspirzhny, Gogan,

Horchoile-Bossavit and Tyé-Dumont, 2002) and the subjective nature of the process itself.

98
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Much of the modern work on neuronal merphelogy was carried out by Hillman. {1979},
who introduced seven fundumental parameters to deseribe neuronal shape based on the
assumption that the cytoskeleton imposes a lower limit on the cross-sectional area of the
dendrite. Hillman’s parameters are initial and terminal segment diameter, segiment length
and taper, the ratio between cross-sectional areas of daughter branches, branch power!
and the spatial orientation of segments (Hillman, 1979). The size of the dendritic tree is
specified by the first five parameters, while the shape requires the specification of all seven
parameters, Lrom his studies, Hillman asserted thal branch power and daughter branch

ratio made the most significaut contribution to the overall shape of the dendritic tree.

There are two main approaches to the reconustruction of neuronal morphelogy based on
anatomical measurements. 'Uhe first approach typically models dendritic growth in vitre
and is referred to as the ontogenetic method, while the second approach simulates the
fully developed structure and is referred to as the phylogenetic method. The modelling of
dendritic growth in witro concentrates primarily on the probability of a branch occurring
as the dendritic segment increases in length (Uemura, Carriquiry, Kliemann and Goodwin,
1995). This procedure is limited as the neurons are grown in culture, and are not subject
to many of the factors that may influence dendritic growth #n wivo. The phylogenetic
approach involves the simulation of mature neurons and proceeds by generating either a

one-dimensional or three-dimensional representation of a neuron.

(1) The one-diizensional representation of neurons concentrates primarily on charac-
terising their branching properties, and is subdivided into two categories, namely
approaches which focus on diameter and approaches which focus on branch order,
Hillman (1979), Burke et ol. (1992) and Ascoli et al. {2001) base their analysis on
diameter and use it to determine whether a limb will branch or terminate. On the
other hand, Van Pelt & Uylings (1998) and Devaud, Quenet, Gascuel and Masson
(2000) primarily base their analysis on a description of the possible branching pat-
terns based on the number of terminal segments. Dendritic diameters and lengths
may he inclnded in this description, but this is done once the branching pattern has

been determined {Van Pelt & Uylings, 2002).

(b) The modclling of spatially orientated three-dimensional dendrites is not well devel-

1The power of a branch point is the ratio of the sum of the 3/2 power of the daughter diameters to the

3/2 power of the parent; diameter. In a Rall trec this is unity at each branch point (Rall, 1959).
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oped. Only limited progress has been made on the detailed quantification of the
parameters required to describe three-dimensional structures (Cullhiem, Fleshman,
Glenn and Burke, 1987). Tamori (1993) extended the work of Fillman (1979) by
adding the additional parameter effective volume, which is used in the calculation
of branch angles. Factors which influence the direction of growth (tropism) are
introduced within three-dimensional models and have a profound effect on the de-

velopment of the model dendrite (see Ascoli & Krichmar, 2000; Ascoli ef al., 2001).

5.1.1 Some recent models of dendritic morphology

The aim of this section is to review briefly current models that account for dendritic

morphology.

Burke, Marks and Ulthake Burke et ol. (1992) developed a recursive algorithm
based on empirical distributions for length and diameter of dendritic segments, and binary

branching. They state thal a successful simulation of dendritic morphology requires

“...a method to prodnee individnal branches that have the correct distributions
of diameters and lengths, as well as the correct proportions of branches that

either branch again or terminate.”

In this model, segment lengths grow by increments AL (an arbitrary value not derived from
the data) and segrment diameters decrease by an amount which depends on the taper rate
for that segment. After each increment in length, the segnent may continue, terminate
or branch depending on a set of probabilistic rules. Variations in dendritic shape are
determined by this stochastic process. When segments branch, the daughter diameters are
caleulated by a process that preserves the observed correlution between daughter branch
diameters, given the cmpirical distributions of the diameter of the daughter branches.
Discrepancies between observed and simulated distributions of the number of branch points
and nunber of terminations as functions of distance from the soma led to a revised modsl
(see, Burke et al., 1992, IMig 8C), in which they introduced a “grandparent correction” to
the original model. They state that the role of this correction is to incorporaie “memory”
into the process that generates daughter diameters at a branch point. Although this
reviston improves the fit between simulated and sampled data this is achieved at the cost

of a significantly maore complicated model that is more difficult to implement.
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Ascoli and Krichmar Research on the simulation of neuronal morphology bhas culmi-
nated in L-NEURQON, ‘a software package for the generation and study of anetomically
aceurate newroned onalogs’ (Ascoli & Krichmar, 2000}, L-NEURON is based on an al-
gorithm for simulating branching patterns in trees (Lindenmayer, 1968). It provides the
structural basis for combining the shape paramcters defined by Hillman (1979), the ef-
fective volume introduced by Tamori (1993) and the algorithm proposed by Burke et
el. (1992) into & single program to simulate dendritic morphologies. Iurther parameters
describing the orientation of dendrites and branching angles were added to allow the simu-
lation of three-dimensional dendrites. Finally, Rall’s power rule was relaxed hy multiplying
the parent diameter by a constant factor to reflect the experimental data (Ascoli et ol.,
2001). L-NEURON uses the experimental data directly and returns a ‘character string’
with specific drawing cornmands (i.e. grow forward, branch, taper etc.) that can be trans-
formed into graphical images of three-dimensional spatially orientated neurons {Ascoli et
al., 2001). L-NEURON also includes the global parameter tropism as a modification after
the generalion of the cells. However, LI-NEURON does not appear to contain any pro-
cedure to assess the quality with which properties of the sampled neurons are reflected
within the simmlated neurons, and in particular, properties that have not been used in the

simulation process.

Treatment of taper

Models that attempt to simulate neuronal morphology struggle with vast parameter sets
and are further complicated by correction factors when the models fail to capture the
propertics of the original sample. Taper is probably the most difficult parameter to manage
in neuronal simulation. Burke et al. (1992) found the simulation of branch length to be
particularly sensitive to their initial choice of taper despite basing this choice on the
experimentally observed data. In an attempt to rectify this problem, they ran a number
of simulations with a range of taper vafes, and then calculated the root mean square error
(Ernrs) of the deviations of the simulated length distributions from observed distributions
for each rate. The optimal taper rate was chosen as that which mintmised Fgrprg for all
branches. Hillman (1979) does include taper as oue of the fundamental parameters, yet
makes little reference to it. Tamori (1993} excludes taper from his parameter set and
instead uses the averaged diameter along a segment. Ascoli et al. {2001) do not comment

on taper, but it is assumed thai they implement taper within the implementation of L-
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NEURON. Models developed to simulate branch order (Van Pelt & Uylings, 1999 and

Devand et al, 2000} are not concerned with modelling taper.

5.1.2 A uew approach to the simulation of dendritic morphology

The models described above inherit their complexity through the absence of a simple prin-
ciple underlying the development of dendritic morphology and therefore a new approach is
required in the analysis and simulation of neuronal morphology. Toward this end, I intro-
duce a procedure based on a single assumption, namely, that a dendritic section of a given
diameter will have the same length distribution independent of its position in the dendritic
tree. Given this assunption, the dendritic section. is taken to be the basic building block
of a dendrite. A recursive algorithm based on a simple set of rules, using probability den-
sities estimated from real data, is developed that will generate a dendrits with statistical
properties that are statistically indistinguishable from those of the original sample. The
siceess of the algorithm is demonstrated by showing that the original sample and simu-
lated samples preserve several morphological characteristics that were independent of the

simulation procedure.
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5.2 Mathematical preliminaries

This section sets out the delinitions of the various probability densities used in the simu-
lation of dendritic morphology.

5.2.1 Probability density Manction

The function f(z) is a probability density function on the interval la, b| provided f(z) > 0

for all z € [a,b) and ,
] flz)da =1. {6.1)

Probability is associated with ares under the probability density function, and so the

probability that the random variable X ¢ [e,d] is
d
Proble < X £ d) :/ fl@) dz

where [¢,d] C [0,b].

5.2.2 Joint probability density {unction

The idea of a probability function in one dimension may be extended to two or more
dimensions to give what is often called a joint probability density function. For example,
f(z,y) may be interpreted as a joint probability density function of the random pair (X, 1)

over R? provided f(x,y} > 0 for all = and v and

fif_if(w,y)dwdy=1- (5.2)

The density fnction may be regarded as o probability surface in three dimensions. Prob-

ability is measured by the volume under this surface, and so
d rb
Probfe< X <bandc<¥Y < d) = / f flz,y) dedy
S a

is the probability that the random variable (X,Y") lics in the rectangle {a, b] x [¢, d].

Marginal densities

(Jiven a joint probability function f(z,y), the density of the random variable X in the

absence of uformation regarding the value of Y is called the marginal density of X.



CHAPTER 5. BUILDING THE TYPICAL NEURON 104

Similarly, the maxginal density of Y is the density of ¥ in the absence of information on

the value of X. I shall use the notation

ixtw) = [ swady, )= [ e (5.3)

to denote the marginal densities of X and Y respectively.

Conditional density

Given a joint probability funection f{x,y), the density of the random variable X giveu that
Y =y is called the conditional density of X. Similarly, the conditional density of ¥ is the

density of ¥ pgiven that X —= 2. I shall use the nofation

dy(y) bx (@)

to denote respectively the conditional density of X given Y and the conditional density of

=Y =y) = fy|X ==)= (5.4)

Y given X. In particular, the deviates X and Y are independent provided the conditional
density of X given Y is the marginal density of X, that is, the density of X is entirely
independent of ¥. In this case the joint probability density function of X and ¥ is the
product of the probability density functions of X and Y.
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5.3 A procedure for simulating a sample of dendrites

The aim of this section is to give an overview of the procedure used to simulate the
morphology of a typical dendrite from a sample of neurons which are assumed e priori to
represent a single type of neuron. The work of this chapter distinguishes between interneu-
rans that receive different classes of input, although they may come from the same group
of interneurons. The sampled neurons are specified in terins of their dendritic dismeter,
the coordinatcs of the points at which the diameters are measured, and information on
the pattern of connectivity for each segment. From this data the length of each dendritic
segment can be determined, as well as the pattemn of conneclivily between segments. This
work focuses on the development of a procedure to generate a typicol neuron from a large

sample of neurons of a single type.

The procedure to be used in this simmulation is motivated by the observation that the
dendritic scgments in the sample of interneurons at my disposal are largely composed of
uniform cylinders, and that changes in segment diameler predominantly occur al Lranch
points or are the result of local discontinuities in diameter along the segment. Based on
this observation, dendritic segments will be generated as a sequence of uniform cylinders
(sections). The basic assumption of the simulation procedure is thal the combined proper-
ties of o dendritic section, namely its diemeter and length, are independent of its location
in the dendritic free. This assumption is the basis of a recursive algorithm that is nsed
to generate model neurons. The operation of the algorithm draws from a series of prob-
ability densities that in furn have to be estimated from the sample of newrons. Both the
estimation of non-parametric probability densities and the procedures for drawing samples
from these densities lorm an important part of this algorithm. The simulation of o model
neuron begins by determining the number of dendrites connected to its soma. This num-
ber is obtained by drawing from the distribution of the number of dendrites per neuron in
the sample. Once the number of dendrites is selected, the recursive procedure is used to

generate the complete structure of each dendrite.

Select stem diameter The diameber of the first stem section is obtained by making
a random draw from the estimated distribution of diameters of first stein sections. 'L'his
pracedure is implemented once for each dendrite. Once the diameter of the first stem
section is determined, the process continues by following the protocol for generating a

dendritic segment ag a scquence of dendritic sections.
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Generate a dendritic segment Given a diameter d, the length of the associated zec-
tion is determined Dby a random draw from the joint distribution of section lengths and
section diameters conditioned on the value of d. Once the seclion is defined, there are
three possible continuations; the section terminates, the section continues or the section
branches (binary). The probability of each of these events, conditioned on the section di-
ameter, requires estimates for the distribusion of the diamcters of terminating sections, the
distribution of the diameters of continuing sections and the distribution of the diameters

of branching sections.

(a} The section terminates. The process for generating sections now continues from
the most recent incomplete branch point with a known diameter. Figure 5.1 illus-
trates one possible path in the construction of the dendrite. When segment 3, for
exainple, is complete, the process returns to branch point Py and proceeds to con-
struct segmeni 4. Once scgment 4 is complete the process returns to branch point

Py and constructs segment 5, and so on.

Figurc 5.1: Au idenlised neuren illustrating a possible path of the

recursive procedure, segmaents 1 to 7 and branch points Py to Py.

(b) The section continues. The diameter of the next section is determined by a
random draw from the joint distribution of the diameters of contiguous sections
couditioned on the diameter of the current section. The next segment length is
then generated by drawing from the joint distribution of section lengths and section

diameters conditioned on the diameter of the new section.
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(¢) The section branches. The joint distribution of the parent diameter and first
daughter diameter (defined to be the daughter with larger diameter) is estimated
from the sample. The diameter of the first daughier is determined from this density
conditioned by the value of the parent diameter. The trivariate density of the parent
and two daughier diameters is constructed, and the diameter of the second daughter
is drawn from this distribution conditioned on the parent and first daughter diam-
eters. The algorithm now lollows the path of the first daughter until all branches
have terminated before returning to the bra.x.lch point to follow the path of the second

daughier branch, as illustrated in Figure 5.1.

To summarise, the underlying assumption that the section diameter and section length are
independent of location within the dendritic tree is the basis for the recursive algorithyu for
simulating dendritic structure. The implementation of this simulation algorithm requires
the construction of various univariate and multivariate probability density functions from
the sampled neurons. This is achicved using a non-parametric tcchnique based on kernel

dengity estimation. The technique is described in the following section.
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5.4 Estimating distributions

Previous attempts to describe the statistical properties of dendritic morphology have as-
sumed that various features of the morphology follow parmmetric distributions. For exam-
ple, Ascoli et al. (2001) used Gaussian, gamnma or exponential distributions, while Hillman
(1979) and Burke et al. (1992) modelled morphological data using Gaussian distributions,
although the former recognised that this was an inappropriatic choice of distribution for the
diameter of terminal segments. By contrast to previous studies, this work uses the kernel
density estimation technique to characterise the statistical properties of neuronal morphol-
ogy. The technique generalises the notion of a histogram and leads to a non-parametric
estimate of prohability density in which each observation in a sample is treated as an

independent random variable.

Let X1, Xa,. ... X5 be a sample of n ohservations with underlying density f(z). The kernel
estimate f(a;) of f(z) is & representation of the density of X in the form

Fla)= = Z x(® “th) (5.5)

nh ]

where K () is a non-negative (kernel) finction of & satisfying

f ” Riz)du=1. (5.6)

The parameter b appearing in fermula (5.5) is called the window width, or bandwidth, of
the cstimator. It follows immediately from the properties of K () that f{x) is o probability

-~

density, that is, f(x) > 0 and
f Fla)do=1.
—00

It turns out in practice ta he the value assigned to the bandwidth & that is critical to how
well the unknown probability density is estimated by _)?(a,) (see Table 3.1 in Silverman,
1986), and not the choice of the kernel function X (). Following Silverman (1936), the
guality with which fA(r) estimates f(x) is measurcd by the Mean Integrated Square Error

{MISE) defined by
MISE (f) = E [ / (Flz) - f(=))? dm]. (5.7)

Let f(z) =E [f(:l.) |- The result of taking the expected value operator inside the integral
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is

MISE () me[(f(m)—f(w))z]da

fE[ (2) - F(z)) ds+f°° F() - 1)) d (5.8)
2 [ B[(7@) - Fo) ) - ) ] do.

v =00

Ii
i

The first integral on the right hand side of equation (5.8) is the integrated variance of the
operator. The second integral on the right hand side of equation (5.8) is the integrated
squared bias? of the MISE operator, and the third integral is sero by the delinition of f(z).
Thus the MISE can be simplified to give

o0

ise(F) = [ B[(Fo) - @) @+ [ (7o)~ @) w69

—00
The kernel bandwidth # is chosen to minimise the MISE. Silverman (1986) derives approx-
jimate expressions for both components of the MISE defined in equation (5.9} for kernel

functions K ()} satisfying the conditions

fm K{tydt =1, fm tK(t)dt =0, /m 2K (t) dt = po. (5.10)

With these assumptions Silverman (1986) shows that the M1SE is well approximated by

the expression

R(K)  hdR(")

MISE (F } =~ - T = -[my‘;?‘(s:)d:v (5.11)

where f ! (x) is the second derivative of the probabilily density function, and the first and
second terms on the right-hand side of {5.11) are respectively the integrated variance and
integrated square bias of the MISE operator. Clearly small bandwidths reduce bias in
the estimate f (z}, but at the cost of increasing its variance. On the other hand large
bandwidths reduce the variance of the estimate, but at the expense of increasing its bias.
An expression for the optimal bandwidth ¢an be found by differentiating expression (5.11)
with respect to b and finding the value of 2 for which this derivative is zevo. Tt follows

from expression (5.11) that
'( dMISE _ R(K)
dh  nh?

’Bias measures the difference hetween the axpected valne of the estimator and the actual value of the

+ A3 ER(F), (5.12)

quantity being estimated - in this case f{z) — f(z).
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and this is in turn zero when

:[ RK) ]1/5 (5.13)

Wi R
The dilliculty with expression (5.13) is thal the optimal bandwidth h is expressed in terms
of R(f"), the second order roughness of the true density, which is unknown. However,
if the density appears to be lumped then R(J”) can often be estimated by first fitting
the observations Lo a Gaussian distribution, and replacing R(f") by its value computed
analytically from the Gaussian distribution with parameters calculated from the data.
Furthermore, if K{z) is taken to be the probability density for the N({0,1) distribution,
then it is a matter of straight forward Caleulus to show that the optimal bandwidth has
value

h=1.060n"13 (5.14)

where ¢ is the standard deviation of the observations. The final expression for the kernel
estimate f{x) of the true densily f(z) in the case when K () is taken to be the probability
density for the N(0,1) distribution is

o = b S 1(55)'] 519

5.4.1 Multivariate kernel estimates of density

The univariate kernel estimation procedure just described for one dimension can be gener-
alised to the cstimation of joint probability density functions in two and three dimensions.
For example, multivariatc estimates of probability density are required in the analysis of

dendritic branch points.

Bivariate density

Suppose that (X1, ¥1),...,(Xn, ¥} are n bivariate observations, then the kernel density

estimate f{, %) of the joint probability density function f{z,y) is

T ZK(“X") (%) (5.10)

Y

.?(w)y)

where h, and k, are the bandwidths for X and ¥ respectively. Tor example, X might

denote the diameter of a dendritic section and Y might denote ils corresponding length.



CHAPTER 5 BUILDING THE TYPICAL NEURON 111
Trivariate density

Suppose that (X1,Y1,Z1),. .., (Xn,Ya, Z,) arc n trivariate observations then the kernel

density estimate f(:c, ¥, #) of the joint probability density function f(z,y, 2z} is

Flz,y,z rsk“hyhz ZK( Xk) x(% hyyk) K(z ;zzk) (5.17)

where hg, Iy and k. are the bandwidths for X, ¥ and Z. For example, X might denote

the parent diameter of a dendritic section at a dendritic branch point and Y and Z might

denote the two daughter diameters at that branch point.

5.4.2 Marginal and conditional densities

Two marginal densities are required in the construction procedurc. Tor the bivariate
distribution (5.16), the marginal density $x of X and (Zy of ¥ are derived from cquation

(5.3) and have respective values

Px(e ZK(

where the kernel properties of K (i) have been used in the calculation of these probability

)' br(v) = nh,,iK(y_;_y}:f) (5.18)

k=

densities.

Conditional distributions are nsed frequently in the simulation of dendrites. For example,
the properties of dendritic sections are controfled by the joint distribution of section lengths
and diameters. Once a diameter of & section is known, its length must be drawn. from the
joint distribution of diameters and lengths conditioned on that value of diameter. If X
denotes scetion length and Y denotes section diameter, then the kernel estimate of the

conditional probability of X in the joint density (5.16), given that Y =y, is

(2525 k(452

hz hy

[ nh hI,Z {( Fo ) y'thF)d"”‘
h,a- EZ:K(:U hJXk) K(y hy )
ZK(” )

Clearly a similar expression exists for the distribution of ¥ conditioned on X = z. How-

nh.w?h

flely=y9) =

cver, in the example just described, section diameter is always known and it is section
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length that has to be found, and therefore the density of section diameters conditioned on

section length is never needed.

As a further example of the occurrence of a conditional distribution, suppose that the
sample ohscrvations are r triples of binary branch point diameters in which X denotes the
parent diameter, Y denotes the first daughter diameter and Z denotes the second danghter
diameter. The cbservations are used to construct the joint probability density function of
(X,Y,Z), and from this density it is required to. draw a second daughter diameter given
the diameters of the parent and first daughter sections. To construct the conditional joint
distribution function of the diameter of a second daughter section, given a parent section
with diameter X = z and a first danghter section with diameter Y = y, it is first necessary
to compute the kornel estimate of the morginal distribution of the diameters of parent and
first daughter sections from the joint distribution funetion (5.17). This marginal density

is

bxv(m,y) = n—hm:zyhz g /: k(= ;;;;Xk) K(y;:’k) € ;lzzza) 5

=y () ()

and this is now used to construct the conditional joint distribution function of the diameter

of second daughter sections, conditioned on a parent section with diameter X = z and a

first daughter section with diameter Y — y. The result is

1 i p— X — -7
nhahyh, ; K(J s k) K (y thk) K (z hsz)

-

flziX =0 ¥=y)=

dxv(z.y)
5.4,.3 Bandwidth selection

The choice of bandwidths to be used in the kernel estimation of univariate and mnl-
{ivariate distributions are chosen with refercnce to the Gamnssian distribution as advo-
cated by Silverman (198G). This reference distribution is used to estimalc the various
roughness propertics (c.g., R(f")) of the trne distribution that may be required in the
estimation of optimal bandwidths in the kernel estimate of probability density. Further-
more, K(z) will be assumed to be the distribution function for an N(0,1) deviate, that
is, K(z) = (2m)~12 ¢=*"/2, With thesc assumptions, it has already been shown that the

optimal bandwidth for univariate kernel deusily estimation is o = 1.06 o n~ Y%, where o



CHAPTER 5. BUILDING THE TYPICAL NEURON 113

is the standard deviation of the sample dala, and » is the number of observations in the

sample (Silverman, 1986).

Bandwidths in higher dimensions

Tn the case of multivariate distributions, the choice of bandwidths must take into account
correlations belween variales. For a bivariate distribution, the bandwidths are calculated

using the formula
Iy = D'z(l _ ,02)5/12(1 4 p?./z)—l,fﬁn—l/ﬁ’
(5.21)
hy = oyl gL o) Hon e
where ¢, and o, are respectively the standard deviations of X and ¥ and p € [-1,1] is
the corrclation coefficient, defined as
,_ EUX-B)(¥ - B[¥)

)
Ox0y T Oy

Ty

I

(5.22)

in which oy is the sample covariance. Expressions (5.21) for the bandwidths Ay and Ay,
allow for correlation between the deviates X and Y. If p? = 0, then equations (6.21)
reduce to the cqnations given by Silverman (1986, Table 4.1) for multivariate bandwidth

selection.

Tollowing Silverman (1986), the “normal reference rule” for bandwidth selcction in & sarm-

ple space of diwension & is

B 4 U e .
he = oy, [d+ 2] (O (5.23)
where A (1 < & < d) is the bandwidth for the A-th deviate, and ey is its standard
deviation. The coefficient [ﬁ] 1/(d+4) ranges from unity when d = 2 to a minimum value

of approximately 0.924 when 4 = 11, and thereafter increases monotonically to its Hmiting
value of unity as d becomes arbitrarily large. Scott {1992) suggests that the sensitivity
of the coetlicient [-ﬁﬂ (d+4) to changes in d is sufficiently small thet this coefficient can
be treated as unity without detriment. Scott therefore suggests the use of the simplified
formula

hi = o n /(@) (5.24)

5.4.4 Comparison of distributions

Kernel density estimation allows the comparison of two distributions in one or more di-

mensions. The statistic used in this work as the basis of the comparison is the inte-
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grated squared diffcrence of probabilily density tunctions. Suppose that fi and fa are two
probability density functions defined over a sample space D, then the integrated squared
difference of f) and fa is

v= [ (fi-fPap (5.25)

where the integration is taken over the sample space . Clearly if fy = fy then ¥ = 0.

Departures from ¥ = 0 measure the extent to which f; is different from fo.

Suppose now that fi and f2 are kernel estimates of probability density based on samples Sy
and Sy respectively. The problem is to determine whether or not the sample 8 is different
from the sample S;. Although, of course, there is no way of giving a definitive answer to
this question, the statistic defined in (5.25) can be used as the basis for a hypothesis test
which will provide a probability that the null hypothesis is true, namely that & and &

are samples drawn from the same distribution.

The value of ¥ is [irst computed [or the samples & and & with fi and fa replaced by
their kernel density estimates fl and f; respectively. On the basis of the null hypothesis,
namely that samples §; and 89 are distributed identically, the data from both samples are
pooled. A simulated pair of data scts is now constructed from the pocled data without
replacement, and the value for ¥ calculated for this simulated pair. By repeating the
procedure of drawing random pairs of sample sets from the pooled data, the distribution
of the statistic T is compuled on the basis that the samples & and Sy are distributed
identically. A univariate kernel density estimate of the distribution of ¥ is now constructed
from the simulated values of T, and the position of the real value of ¥ compared against
this distribution which was constructed under the null hypothesis that &) and S are
distributed identically. If the actual value of ¥ lies in the tails of the kerncl estimate of
the distribution of ¥, namely bhe {irst or last 2.5%, then the samples $; and 8y are deemed

to be distributed differently at the 5% level of significance.

A test of the comparison procedure

'l"he aimn of $his section is to test the validity of the procedure used to comparce the difference
between two non-parametric distribulions. Recall that a Type 1 error is the probability
ol rejecting the null hypothesis when it is true. If the significance of the hypothesis test
is sct at p, then fraction p of test statistics must fail the test when the hypothesis is true.

This statement is valid for all values of p, for example, p = .01 and p = 0.05 are commeon
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choices for p, and therefore the test statistic must be uniformly distributed in {0,1]. To
test this property of ¥, two samples 81 and Sy are constructed from a normal distribution
with mean jz and standard deviation ¢, The actual value of the statistic ¥ is compuled,
and then the samples are pooled and 200 simulations of ¥ are constructed by drawing from
the pooled datla without replacement. The probability of obtaining the actual statistic is
then estimated. Figure 5.2 shows the distribution of 2000 repetitions of this experiment.
Values of ¥ are binned at intervals of 0.05 an the horizontal axis and the count is displayed

on the vertical axis.
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Figure 5.2: The histogram shows the result of 2000 repetitions of the prob-
ability with which the actual statistic is realised within 200 simulated paijrs

of samples drawn from tbe pooled data on the basis of the nuil hypothesis.

It is clear from this figure that the probability returned by any partienlar simulation is
uniformly distributed in [0,1]. Thercfore if the significance level is set at p%, then there

is a p% likelihood of rejecting the hypothesis when i is true.

5.4.5 Drawing from a random distribution

On many occasions it is required to draw a random variable {rom a kerncl estimate of
density based on a sample of n observations. The first stage of the process is to use a
uniform random number generator to choose an integer from 1 to ». This is most effectively
done by caleulating h = 1/n and then determining the random integer between 1 and n by
the formula & = [U(0,1)/k | -+ L where U/(0,1) is a uniformly distributed random mmber
in (0,1) and %] denotes the integer part of 1,

Once k is determined, the deviate Xy identifies the observation about which the drawing

is to be made. Another wniforinly distributed random number U is drawn and leads to



CHAPTER 5. BUILDING THE TYPICAL NEURON 116

the random number Xy, -+ A 1(U) where ¢{z) is the cumnlative distribution function of
the Gaussian distribution with zero mean and unit standard deviation. Since y = ¢~1(U)
is not available as a standard function (only ¢(z) is available), the usual way to find y is

to use the Lisection algorithm to solve the equation U = ¢(y).
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5.5 Validation of the model assumption

The assumption underlying the recursive algorithm for simulating dendritic morphology is
that the diameter and length of a section is independent of ifs location within the dendritic
tree. The aim of this section is to validate this assumption by examining the distributions
of dendritic sections from stem, intermediate and terminal segients with respect to length

over selected diameter ranges.

Table 5.1 illustrates the diameter ranges, the number of sections in cach range and the

p-value associated with the test that the distribution of lengths within these ranges are

identical.
Diameter No. of sections in dendritic regions | p-value: hypothesis
Range {(¢#m) | Stem Intermediate  Terminal | of identical lengths
1.00 < d < 1.50 137 228 0.983
1.50 < d < 2.00 154 110 0.989
1.50 < d < 2.50 212 135 0.681
1.50 < d < 3.50 243 147 0.436
2.00 <d < 3.00} 113 36 0.942
2.50 < d < 350 | 60 10 0.726*
225 < d < 2.75 49 28 0.755*
275 <d <325 | 37 13 0.168*
225 <d <325 | 86 38 0.204
2.26 <d < 3.75 | 105 43 0.484

Table 5.1: Comparison of section lengths lor interneurans receiving myelinated input par-
titioned by section diameter. The left coluinn of the table gives the diameter range over
which the distributiony of lengths are compared, the middle column gives the number of
sections for each dendritic region in the diameter range, and the right column gives the
p-volues for the hypothesis that the distribution of lengths within this range are identical.
‘t'he distributions were compared using the procedure described in Subsection 5.4.4, except

for those marked * where the data is discrete and a two-sample t-test was used.

The table is based on thirty-one cholinergic interneurons receiving myelinated inpnt. These
neurons gave risc to 272 stem sections, 428 intermediate sections and 577 terrinal sections.

Unbranched dendrites were omitied {rom this analysis ag they would contritiute to both the



CHAPTER 5. BUILDING THE TYPICAL NEURON 118

stemn and terminal calegories and would therefore bias the result®. Tn fotal, 40 sections were
omitted. Similarly, twenty cholinergic interneurons receiving unmyelinated input gave 240
gtem sections, 349 intermediate sections and 556 terminal sections. Table 5.2 illustrates the
diameter ranges, the number of sections in each range and the p-value associated with the
test that the distribution of lengths within these ranges are identical. Again, unbranched

dendrites were omitted from the analysis, 23 scctions in this case.

Einmetér No. of sectious in dendritic vegions | p-value: hypothesis

Range (pm) Stem Intermediate  Terminal | of identical lengths
1.00 < d < 2.00 120 159 0.872
2.00 <d < 3.00 81 48 0.469
2.00 < d < 4.00 129 63 0.392
250 < d <350 83 24 0.711
250 <d <400 97 29 0.436
200 < d < 3.00( 47 81 0.053
3.00 <d <400 | T4 48 0.665
200 <d <400 | 121 129 0.488
2.50 < d < 450 | 119 91 0.356
300 <d <3500 116 65 0.962

Table 5.2: Comparison of seclion lengths for interneurons receiving unmyelinated input
partitioned by section diameter. The left column of the table gives the diameter range over
which the distribulions ol lengths arc compared, the middle column gives the number of
sections for ench dendritic region in the diameter range, and the right column gives the
p~values for the hypothesis that the distribution of lengths within this range are identical.

The distributions were compared nsing the procedure described in Subsection 5.4.4.

1t is clear [romn Tables 5.1 and 5.2 that the distributions of lengths within each diamector
range are statistically indistinguishable. For example, consider interneurons receiving
myelinated input (Table 5.1) for diameters lying in the range 1.0 to 1.5 tun. The p-value
for & comparison of the distributions of lengths for interinediate and terminal sections is
p = 0.938. A similarly strong result holds for each diameter range for both classes of
inferneuron. Now that the underlying assumption for the procedure for coustructing a

typical dendrite has been validated, it remains to describe this procedure.

3Although these sections are removed when testing the validity of the assumption since they introduce
bias, the construction procedure generates unbranched dendrites, and their number und structure can be

compared with thaoss ohserved in the sample to provide a second and independent test of the model.
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5.6 Formal procedure for constructing a dendrite

"The formal procedure for simulating neuronal morphology is illustrated for inferncurons
receiving myelinated afferent input. The same procedure can be applied to intermeurons

receiving unmyelinated afferent input.

The fizst step in the construction procedure is to select at random the number of dendrites
that are to be constructed for the interneuron. Figure 5.3A (clear bears) shows the his-
togram for the number of dendrites per cell for inferneurons receiving myelinated afferent
input (Figwe 5.3A, solid bars, refers to interneurons receiving unmnyelinated afferent in-
put). Once the number of dendrites is selected, the reenrsive procedure ontlined in Section

5.3 begins.
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Figure 5.3: (A) Ilistogrom shows the frequency of dendrites per cell for
interneurons receiving myelinated input (clear) and uninyelinated input
(shaded). (B) Distribution of stem section diameters for neurons receiv-

ing myelinated (solid line) and unmyelinated (dashed line) inpat.

The recursive algorithm to construct a dendrite starts with the determination of the di-
ameter of the first stem section. Figure 5.3B (solid line} illustrales the distribution of the
diameters of first stem sections for interneurons receiving myelinated inpul (Figure 3.3B,
dashed line, applies to ncurons receiving unmyelinated input). The diamecter of the firsi

stem section is drawn [rom this distribution.

QOuce this diameter is known, the length of the associated section must be determined.
The latter, involves the drawing of a sample at random from the joint distribution of all
section lengths and diamcters conditioned by the section diameter. This distribution is

illustrated in Figure 5.4A,C.
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Figure 5.4: Estimated bivariate densities for (A) and (C) all section diameters and
all section lengths, and (B) and (D) all pairs of contiguous sections from interneurons
receiving myelinated input (referred to as proximal and distal sections). (A) and
(C) show the estimated density and contour plot for all section diameters and all
section lengths, and (B) and (D) show the estimated density and contour plot for

all contiguous sections. All lengths and diameters are measured in pm.

Once the length of the section has been found, it is necessary to determine if it terminates,
continues or branches. This selection process requires the estimation of the probability
density of the diameter of sections that terminate, the diameter of sections that continue
and the diameter of sections that branch. These densities for interneurons receiving myeli-
nated input are shown in Figure 5.5A (Figure 5.5B shows the distribution for unmyelinated

input).



CHAPTER 5. BUILDING THE TYPICAL NEURON 121

x 107! % 10™2
@ B) 1y

Z .
- —— Terminates — Terminates
A 10 ~—- Continues -~= Continues
- N B B Branches 54 1 e Branches
-
L
0. ""*..,,_h

0~ g 0 T "lul """ \

0 1 2 3 4 b ¢ 4 6 8
Diameter (m) Diameter (@m)

Fignre 5.5: Kernel density estimates for the distributions of diameters from
sections thut terminate (solid}, continue {dashed) or branch (dotted) for in-

terneurons receiving myelinated input (A) and unmyelinated input (B).

For a given section diameter d, let £i(d), fo(d) and fi,(d) be the respective values of the
probability density function of terminating sections, continuing sections and hranching

sections at diameter d, then the probabilities of terminating, continuing and branching are

respectively ”
> — Tt
B m fi(d) + nefo(d) + mp fo(d)
o nefo(d) .
fe = i fo(d) + nofeld) + nu fo(d) (5.26)
A - i,y (d)

n fi{d) + 'n(:fc(&) + nbfb(d).

where ng, ne and ), are the number of observations in the samples of terminating, con-
tinning and branching sections. The interval [0, 1] is subdivided into three subintervals
[Q, P, [Py, £ + F] and [P, + P, 1] and a uniform random number in [0, 1] is drawn. The

interval containing this value determines if the section terminates, branches or continues.

‘When section termination is selected the construction procedure returns to the most recent
branch point and repeats the process of determining the characteristics of the aubsequent

sections (see Figure 5.1).

If section continuation is selected, then the diameter of the next soction is drawn from
the estimated joiut distribution of contiguous sections (see Fignre 5.4B,D}, conditioned
by the diameter of the curvent scction. Omnce the diameter of the section is determined,

the construction process repeats the standard procedure for finding a section length, and

T L U S U
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determining the end condition of that section, namely, terminate, continue or branch.

If section branching is selected, daughter sections must be constructed. For this purpose
it is convenient to designate the daughter section with the larger diameter as the first
daughter section. The relationship between diameters of the parent section and first
daughter section at a branch point is illustrated in Figure 5.6A,B. It is clear from this figure
that these deviates are strongly correlated and this correlation has been recognised in the
construction of the bandwidths on which the kernel estimate of probability density is based.

The diameter of the first daughter section is now drawn from the joint distribution of parent

(A) (B)

0 Parent Diameter
0 05 10 15 20 25 3.0 35 40 45 50

Figure 5.6: Branch point distributions from interneurons receiving myelinated
input. (A) The joint distribution of parent section and first daughter diameters and

(B) the corresponding contour plot. All values are measured in pm.

and first daughter diameters, conditioned by the (known) diameter of the parent section.
Once the parent diameter and the diameter of the first daughter section are determined,
the diameter of the second daughter section is found directly from the trivariate density
of the parent, first daughter and second daughter, conditioned on the (known) diameters
of the parent and first daughter sections. Thereafter the length of each daughter section
is determined by the standard procedure.

At a branch point, the construction process generates the diameters of the two daughter
sections, then using the first daughter section it follows that path, adding sections and
branching until a section terminates. After a termination, the procedure returns to the
most recent branch point and continues from the second daughter section until there is a

termination. This process is illustrated in Figure 5.1.
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5.7 Results

The efficacy of the construction procedure is tested by generating 200 samples, in which
cach sample contains the number of interneurons in the criginal sample. The results of
these simulations are used to construct confidence intervals for parameter and probabil-
ity density estimates. The original samples contained thirty-one interneurons receiving
myelinated input and twenty interneurons receiving unmyelinated input. The simulated
samples are used to construct statistics of the properties of the typical interneurons, and
therefore can be used to test the efficacy of the construction procedure. Toward this
end, twa different properties of the sampled dendrites are considered. The first group of
properties involve features that are included in the construction process and are referred
to as construction-dependent properties. In most cases are univariale densities of diamn-
cter or bivariate densities of the relationship between diameters of contiguous sections
or of daughter diameters. The second group of properties, referred to as construction-
independent properties, are concerned with global features of a simuleted dendrite and
are not properties that are intrinsic to the process used to generate the sample dendrite.

The construclion-dependent and -independent properties are listed in Table 5.3.

Properties of the sample of real dendrites

Distributions used in Distributions independent

construction process of construction process
Number of dendrites Number of sections
Section lengths Number of branches

Branching probabilities | Number of branch points

Terminating diameters Branch length
Contiguous diameters Dendritic length
Branching diameters Unbranched dendrites

Parent with 1 daughter Daughter branch ratios

Parent with 2 daughters

Table 5.3: Charactevistic features to be compared: those used in the construc-

tion procedure and those independent of the construction procedure,

One would expect the statistical characteristics of the construction-dependent propertics of

simulated sainples to be identical to that of the original sample. A strong test of the basic
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assumption that the section is the basic building block of these interneurons, and that its
properties are location independent, would be to show that the construction-independent
properties for simulated samples are identical to thase of the original sample. Each group

ol characteristic features will be considered in turn.

5.7.1 FPirst test of the counstruction procedure

As a simple test of the construction procedure the number of sections, branches, dendrites
and branch points from the original sample are compared in Tables 5.4 and 5.5 with those

found in the simulations.

Properties Used in | Observed | Simulated value,
of dendrites simulation value mean * std. dev.
Numbex:\of dendrites Yes 95 95.2 & 4.6
Numbar of sections No 1340 1525.2 & 163.3
Number of branches No 494 551.4 £+ 60.6
Number of branch points No 160 1434 & 14.9

T'able 5.4: A comparison of the elementary properties of dendritic morphology based on
the sample of thirty-one interneurons receiving myelinated input with that based on 200

simulations. Each simulation generates s sample the same size as the original sawple.

Properties Used in | Observed | Simulated vatue, r
of dendrites simulation value mean =+ std. dev.
Number of dendrites Yes 62 61.8 + SQH
Number of sections No 1179 1176.6 + 155.6
Number of branches No 363 349.5 & 51.9
Number of branch points No 120 96.2 £ 12.5

Table 5.5: A comparison of the elementary properties of dendritic morphology based on
the sample of twenlty interneurcns receiving unmyelinated input with that based on 200

simulations. Fach simulation generates a sample the same size as the original sample,

It' is clear from Tables 5.4 and 5.5 that for each comparison the observed value of the
dendritic property lies wilhin two standard deviations of its simulated value, thus demon-
strating that the propertics of the simulated cells are statistically indistinguishable from
the real cells. It now remains to compare the original probability densities with the sirnu-

lated probability densities,
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5.7.2 Comparison of observed and simulated probability densities

The observed probability densities are now compared with the probability densities of
the construction-dependent and -independent propertics. These comparisons arc treated

separately.

Comparisan of observed and construction-dependeni probability densities

A crucial feature of the construction process is the simulation of the probabilities of ter-
minating sections, continuing sections and branching sections. These probabilities are
calculated [rom the distributions of the diameters of terminating sections, continuing sec-

tions and branching sections. These deusities are now compared in Figure 5.7.

(A) Terminates (B) Continues (C) Branches
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Figure 5.7: The distribution of the diameters of terminating {(A) and (D), contin-
uing (B) and (E) and branching {C) and (1) sections for the original (solid line)
and simulated (dashed line) samples of infernevrons. Craphs {A)-(C) correspond
to interneurons receiving myelinated input and graphs (D}(F} correspond to in-
terneurons receiving unmyelinated input, The p-value for the null hypothesis that

the distributions are identical is shown in the upper right-hand corner of each graph.

Figure 5.7 Blustrates cach of the observed (solid line) and simulated densities (dashed
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line) for each type of section ending along with the corresponding p-value for the null
hypothesis that the distributions are identical. The figure illustrates the comparisons for
interneurons receiving myelinated afferent input (5.7A-C) and unmyelinated afferent input

(5.7D-F), and in each case the null hypothesis is not rejected.

There are two further comparisons to be made between the estimated probability densities
based on the original sample and the estimated probability densities from the simulation

involving construction-dependent properties of the dendrite.
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Figure 5.8: Estimated probability densities of contiguous section diameters for
interneurons receiving myelinated input. Panels (A) and (C) show surface plots for
the original sample and simulated sample respectively, while panels (B) and (D)
show the associated contour plots. Components of contiguous sections are referred

to as proximal and distal sections. All diameters are measured in pm.

Figure 5.8A,B shows the estimated bivariate probability densities of the diameters of
contiguous section of interneurons receiving myelinated afferent input, whereas Figure

5.8C,D illustrates the same densities for simulated samples. It is clear that the simulated
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results captures well the qualitative properties of the original sample.
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Figure 5.9: Estimated probability densities of parent section diameters and first daughter
section diameters for interneurons receiving myelinated input. Panels (A) and (C) show
surface plots for the original sample and simulated sample respectively, while panels (B)

and (D) show the associated contour plots. All diameters are measured in pm.

Further, Figure 5.9A,B shows the estimated bivariate probability densities of the diameter
of parent sections and the diameter of the first daughter section at a branch point for
interneurons receiving myelinated afferent input, whereas Figure 5.9C,D shows the same
densities for simulated samples. The simulated results give good qualitative agreement

with the properties of the original sample.

The results of this section demonstrate that the probability densities used in the construc-

tion process are accurately reconstructed by the simulation procedure.
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Comparison of observed and counstruction-independent densities

A strong test of the basic assuaption that the section is the basic building block of these
interneurons, and that its propertics arc location independent, is to predict the glebal
features of dendritic morphology that ave not intrinsic to the construction process. Recall
that it has been demonstrated (Section 5.7.1) that the number of sections, number of
branches and number of branch peints in the original sample have been shown to be
statisticully indistinguishable from those in the simulated samples. Other construction-
independent features such as daughter-branch ratio, joint distribution of the diameters
of daughter branches, characteristic interneuron lengths and unbranched dendrites are

considered in this section.

Daughter branch ratio The first comparison of the global properties in this section is
between the daughter branch ratio of the original and simulated samples, defined as “the
ratio of the diameters of daughter-branch processes” at a branch point (Hillman, 1979).
Figure 3.10 illustrates histograms of these distributions for the original and simulated

samples of interneurons for both types of afferent inpul.

(A) 1004, (B) 1001
- 801 Myelinated 80+ Unmyelinated
< 60- 60
Q
~ 10 40
204 20+
C i '_i 1 1 0 ‘I-I-r‘{_LH | o 1 1
1 2 3 4 5 t 4 7 10 13
() 1004 (D) 100+
o 801 Myelinated 80 Unmyelinated
S 60 60 -
o
“ 4p- 40 -
201 20 -
0 T b I 1 0 o ] T I '
1 2 3 4 5 1 4 7 10 13
Daughter Branch Ratie Daughter Branch Ratio

Figure 5.10: Histograms showing the distributions of daughter branch ratios. Panels (A)
and (C) show histograms for the original sample and simulated sample respectively for
interneurons receiving myelinated input, while panels (B) and (D) show these histograms

for interneurons receiving unmyelinated input. Binwidth: (A),(C) = 0.2, (B),(D) = 0.5.
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As in the case of the distributions illustrated in the Section 5.7.2, there is good agreement
between the histograms generated from the original sample and those generated from the
simulation. Moreover, the distributions in Figure 5.10 for the original and simulated sam-
ples were found to be statistically indistinguishable. For interneurons receiving myelinated
afferent input, the p-value for the null hypothesis that the distributions are indistinguish-
able was p= 0.901, whereas the p-value for the same null hypothesis for interneurons

receiving unmyelinated afferent input was p= 0.806.

Joint distribution of the diameters of daughter sections Figure 5.11A,B shows
the estimated bivariate probability densities of the daughter section diameters at a branch
point for interneurons receiving myelinated afferent input, whereas Figure 5.11C,D illus-
trates the same densities for simulated samples. The simulated sample captures well the
qualitative properties of the real data.

(A) (B)

(€)

05 10 15 :
: First Daughter Diameter 0 05 10 15 20 25 30 35

Figure 5.11: Estimated probability densities of the diameter of the daughter sec-
tions for interneurons receiving myelinated input. Panels (A) and (C) show surface
plots for the original sample and simulated sample respectively, while Panels (B)

and (D) show the associated contour plots. All diameters are measured in pm.
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Characteristic neuronal lengths The final comparison of the global propertics be-
tween the original and simulated samples will consider the distributions of section, branch
and dendritic length for interneurons receiving myelinated afferent input. Recall that there
were 31 interneurons receiving myclinated afferent input. Thus 200 simulations cach gen-
erating 31 interneurons was carried ont. These simulations allow an estimate of the mean
value and standard deviation of the value of the density of each characteristic length for the
simnlated interneurons. Figure 5.12 shows the mean value (dashed line) and two standard
deviations about the mean value {(dotted lines) for these simulated probability densities.
The solid line in each panel in Figure 5.12 shows the estimated probability density for the

original sample.

Section 3 Dendrite
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Figure 5.12: Bach graph displays the distribution of lengths from the original interncu-
rons (solid line}), the mean distribution of simulated lengths {dashed line) i: two standard
deviations (dotted line). Graphs (A), {B) and (C) correspond fo the section, segment and

dendrite length respectively, from inferneurons receiving myelinated input.

With the exception of the peak value for the density of section lengths (Figure 5.12A), all
values of the density based on the original sample lie within two standard deviations of the
mean of the simulated density. These igures clearly demonstrate that the construction
procedure suceesstully predicts the characteristic lengths of the dendrite. Interneurons

that receive unmyeclinated afferent input arc trcated subsequently.

Unbranched dendrites Approximately a quarter/sixth of all dendrites from the sam-
ple of interneurons with myelinated /unmyelinated input were unbranched, that is, they
grew from the soma and terminated without branching. Recall that these dendrites were

excluded from the anslysis in Section 5.5 to avoid issues ol bias. However the sections
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from these dendrites were included in the simulation process. Unbranched dendrites are
generated naturally by the simulation process and their proportion in a simulated sample
sorves as an independent test of the busic concept that the underlying properties of a

dendritic section is independent of its location within a dendritic tree.

Afferent input No. of Dendrites No. of Unbranched  Percentage
Myelinated 95 23 24.2%
Sim Myelinated 95.2 + 4.6 30.8 4 4.8 32.4% £ 4.6
Unmyelinated 62 11 17.7%
Sim Unmyelinated 61.8 + 4.9 18.6 - 3.6 30.3% + 6.3

Table 5.6: Ratios of unbranched to branched dendrites for the original and
simulated samples of interneurons receiving myelinated and unmyelinated input.

Simulated values are described by the mean + standard deviation.

The proportion of unbranched dendrites in the original sample lies within two standard

deviations of the mean value predicted by simulation.

Dendograms

1¢ has been demonstrated that the properties of the simulated interneurons receiving myeli-
nated afferent input are statistically indistinguishable from those of the original sample.
Figure 5.13 illustrates the dendogram for oue of the sample internevrons and a simulated

interneuronm.
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Figure 5.13: Two example dendograms of interneurons that receive myelinated input,

where dendograms (A) and (B) are from the original and simulated samples respectively.

It is clear from Figwe 5.13 that the original and simulated interneurons receiving myeli-
nated inpuot display similar branching patterns: some short clustercd branches and other
long uubranched segments. Furthermore, the unusual feature of very short branches after
a branch point is common in both the original and simulated interneurons. Quantitatively,
the original inlerneuron receiving myelinated input (Figurc 5.13A) has 27 branches and
12 branch points, while the simulated interneuron (Figure 5.13B) has 29 branches and 13

branch points.

5.7.3 Summary

The underlying assumption of the construction procedure, namely that the joint distrib-
ution of the diameter and lengths of dendritic sections is independent of position in the
dendritic tree is validated. Both the construction-dependent and -independent properties
of the interneurons are retrieved hy the recursive algorithm used to simulate a dendritic

tree, further validating the basic assumption.
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5.7.4 A further development

A feature of the dendrites has been identified that requires special treatment in the sim-
ulation procedure. Specifically, the calculation of the bandwidth for the kernel density

estimation procedures assumes that the underlying density is unimodal.

The assumption of a unimodal density

Figure 5.14 shows the mean value (dashed line) and two standard deviations about the
mean value (dotted lines) for the estimated probability demsitics of simulated section,
segment and dendritic lengths from interneurons receiving unmyelinated input. The solid

line in each panel of Figure 5.14 shows the estimated probability density for the original

sample.
{(A) (C)
%—\27 1 Section L5 Dendrite
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Fignre 5.14: Bach graph displays the distribution of lengths from the original interneu-
rons (solid line}, the mesn distribution of shnulated lengths (dashed line) # two standard
deviations (dotted line). Graphs (A), (B) and {C) carespond to the section, segment

and dendrite length respectively, from interneurons receiving unyelinated input.

‘Fhe fit between the original and simulated samples for interneurons receiving unmyelinated
input is less successful than that for the interneurons receiving myelinated input (see Figure
5.12). In fact, Figure 5.14C suggests that the underlying density of dendritic lengihs may
not be unimodal, which in turn suggests that interneurons with unmyelinated input have
two types of dendrites, namely long dendrites and short dendrites. Although Olave ef al.
(2002) suggested this might be the case, they were unable to quantify the difference. If
this is truly the case then both classcs of dendrite must be identified and then treated

separately. This is an issue for further work.
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5.8 Conclusions

The procedure deseribed in this chapter for simulating dendrites differs in two important
ways from previous methods. Firss, the basis of the simulation is the single assumption
that the joint distribution of diameter and length of a dendritic scetion is independent of its
location within a dendritic tree. That is, the distribution of length for dendritic sections
with the same diameter drawn from different parts of the tree are identical. Second,
the procedure does not assume specific parametric forms for the probabilily densities
characterising the featurcs of a dendrite, but instead uses the kernel density estimation

technique to provide a non-parametric estimate of these densities,

The simplicity ol the approach has resulted in a straightforward sirmulation procedure
that successfully generates dendritic trees thal are statistically indistinguishable from the

original sample.




Chapter 6

Concluding remarks and future

work

The work of this thesis contributes to three different arcas of mathematical modelling in
neuroscience. Each contribution has introduced a novel approach to a particular newro-
physiological problem. The first problem focused on the discrepancy hetweon the obgerved
and predicted conduction speed of the propagated action potential, and the extent to which
the effects of biological variability and measurement error can account for this discrepancy.
"The second problem considered the analytical development of the equivalent eable. In this
analysis an arbitrary branched structure was represented by a piecewise uniform cable and
a nnigue bijective mapping of input between the branched structure and the cable. The
third problem developed a new and parsimonious procedure for the simulation of dendritic

morphology based on the estimation of probability density by the kernel method.

With respect to the Hodgkin-Huxley membrane model, measurement error and biological
variability were eliminated as possible sources of the discrepancy in conduction speed in
Chapter 2. Work by Armstrong and Bezanilla (1977), Bezanilla and Armstrong (1977)
and more recently by Clay (1998) suggests that the discrepancy might be accounted for by
a revision of the models for the sodium and potassium kinetics. Although Clay considers
how the threshold for the aclion poiential and its lalency are affected by the revised kinetic
scheme, lie does not use the new kinetics to predict the conduction speed of the propagated
action potential and cormpare it with its observed value. This would be the most important

test of the new model since it is a test which is independent of the procedure used to derive
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the kinetic schewe. In a future study, the revised kinetics scheme will be used to predict

the conduction speed of the propagated action potential.

A complete description ol the procedurc uscd to derive the equivalent cable was given in
Chapter 4. This procedure transforms an arbitrary branched structure into an equivalent
unbranched cable. The main feature of this procedure is the bijective mapping that exists
between the branched and unbranched structures. In a future study, the bijective mapping
will be used as a tool to investigate the influence of the neuronal morphology on neuronal

behaviour.

A new procedure lor simlating neuronal morphology was degeribed in Chapter &, This
procedure was based on a single assumption that the joint distribution of diameter and
length of a dendritic section is independent of its location within a dendritic free. By
using univariate and multivariate kernel density estimation procedures, samples of spinal
internewrons were simulated successfully from a sample of interneurons with myelinated
afferent input. Future work will involve the refinement of this procedure to estimate

accurately bimodal distributions and also its application to other classes of neurons.
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Appendix A

Associated programs

fach of the projects deseribed in the previous chapters nse C programming to implement
the various mathematical problems and manipulations. Therefore the development of the
code is itself a significant component of each project and is included here to compliment
each chapter. To avoid repetition, those functions used regulaaly arc brought together at

the end of this appendix after the main body of programs.

A.1 Action potentials

Despite using the same model, namely the Hodgkin-Huxley membrane model, the mique
problems of estimating the conduction velocity of a propagating action potentials and the
dispersion chavacteristics of a train of action potentials had to be treated quite differently.

Therefore, two distinet programs had to be developed to solve each problem.

A.1.1 HEPotVel.c

The first, HHPotVel.c investigates the condnction speed of the action potential alter a
current has been injected into an axon at the resting membrane potential. In this case,
if the injected current is large enough, the action potential develops and then propagates

away from the peint of stimulation.
itinclude <stdio.h>
#include <stdlib.h>

#include <math.h>
#include <string.h>
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/*************** *k ek ook A sl Nk s i kol Aok 7 ok o ko RN ROROKRY
Travelling Waves - Hodgkin Huxley - Squid Giant Axon

SOLVES THE PERIODIC HODGKIN HUXLEY EQUATIONS
USING SPECTRAL METHOD - FOURIER

CmV_t+ J= (ga*R/2) V_xx V(x,0) = F(x) givan

AND  (a) Spectral method ~ majoxrity of program carried out in
coefficent space - converting back for solution.
(b) Resting axon is given a large injected current, and
initiates two propagating waves: investigating first
monents after initialisation. )

This program calculates & prints out:

{i) core current along axon core.dat

{ii) radial current out of axon radial.dat
(iii1) velocity of left & right hand waves velocity.dat

(iv) potential & channel kinetic values hhwave##

{v) z-values: axial coordinates zval .dat

{vi) r-values: radial cocordinates rval.dat
(vii) intracellular potentials across radii intpot.dat
(viii) extracellular potentials to "infinity" extpot.dat

ookt ko ok o e sk ROK HOK HO SORK K ook ok o o * FAR R KR ok ok ok ok ok /

/* Daclaration of Global functions */
double bess_i0(double);
double hess_il{dauble);
double hess_k0{double) ;
double boss_ki{denhle);
void fprime( double, double *, double *);
void sgselve( int, int *, double *, double *, double *, double, double *,
void (*fcn)( double, double =, double %), int *);
void imtrp{ int, double, double #, double, doubls *, double #*, int, double **, double +};
void step( int, double %, double *, double %, double *, double *, double *, int *, int %,
int %, int %, double ##%, double *, douhle %, double %, double, double,
void (wfen) (double, doubls *, double *));
void real_c{ imt, double %, doubla *1;
void real_v{ int, doubla #, double *};

/% Biologival Parvameters #/

#dafine CELSTUS 18.5 /% Celsius temporature of neuron */

#define RD 0.0238 /* Radius of aquid axon (cm) */

#define GA 28,249 /* Specific intra-cell’r conductance (mmho/cm)+/
#define GE 28.249 /*Specific extra-cell’r conductance (mmho/cm)*/
#define CH 1.0 /*Specific membrans capacitance (muF/cm”2}*/

/+ Parameters for ODE solver #*/

#define N 1600 /+ Must be even x/
#define TEND 0.6 /% Final time #/
#define T 0.01 /* Time step */
#define TOL 5.e-16 /* Error tolorance */
#define LEN 16.0 /* Window length */

/+ Other paramelors w/

fidefina FRAC 1.0 /* Fraction of v_na for injected current*/

#define DIV 100 /+ Divieions of RD */

#define FAC 1.05 /% Mulviplication factor for extracellular region */
#define UM 9 /% Number of potentials to be sampled */

/* Declaration of HH cowfficient functions */

|
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double alfa_h{ double )
double alfu_m{ dowble );
double alfu_n{ double )
double beba_h( double )
double beta_m( double );
double beta_n( double );

/+* Derivative of Hodgkin Huxley functions */
double d_alfa _h{doubls);
double d_alfa _m{deuble);
double d_alfa_n(doubla};
double d_beta_h(double);
double d_beta_m(double);
double d_beta_n(double);

double #*fac, #*rad;

void main(void}

{
extern dvuble *fac, #*vad;
double dx=0.01, *x, #*y, *c, *c¢, *our, *nu, #*icof, *ecof, *e, tmnew, told, *ep, dist,
ti, to, tol, »elerr, abserr, rvl, 1ivl, ivde, lvm, lvr, rvm, rvr, ir, il, tf,
ts, x1f, xrf, xls, xrs, frac, xold[NUM], xnew(NUM], #mp, tup, pi, veq, meq,
heq, heq, vi, vu, vl, vr, pos;
double pots[WUM]=(~50.0, -25.0, 0.0, 10.0, 20.0, 25.0, 28.0, 29.0, 30.0};
char filename[20], ext[3];
int j, k, nh, ndim, ifail, fig, im, kk, setmem=1, first, append, appendl, append2,
success, start, fixstf;
static double v_na=65.0, v_k=-72.0, v_1=-49.387, g_na=120.0, g k=36.0, g.1=0.3;
FILE *£p, *fpl;
/ oksk oo ok ok ok ek Kok skt R oK st s bkl ook ookl ko e
Variables
yio]l -> y[N-1] Holds the potential
yIN] = y[2#N-1] Holds H at nodes
y[2*N] —> y[3+N-1] Holds M at nodes
y[3sN] —> y[4xN-1] Holds N at nodes
iAok koK PP TS T * st R MR AR Rk /

/% STEP 1. - Build ratio of Bessel functions */
nh = N/2;
pl = 4. 0*atan(l1.0);

nu = (double #)} walloc{ (mh+l)+sizeocl{double) J;

icof = (double #) malloc{ {uh+1}*sizoof (doublo) );
ecof = (double *) malloc{ {nh+1)*sizoof (double) );
fac = (double *) malloc( {mh+l)*aizeof(double) };
cur = (double *) malloc( (mnh+l)*3izeof{(double) )};
rad = (double *) malloc( (DIV+1)*pizeof (doublo) );

fac(0] = 0.0;
cur(0] = 0.0;
nul[0] = 0.0;
icoff0] = 1.0;
acof [0] = 0.0;

for { k=0 ; k<=DIV ; Ikt+ )} radfk} = (RD/DIV)*{(double) k);
for { k=1 ; k<=nh ; ket ) {
tmp = 2.0+pisRD*((double) k)/LEN;
nulk] = tmp;
icof (k] = GExbass_k1(tmp)/{(GE+bess_kl{tap)+*bess_i0 (tmp)+GA
*bese, kO(tmp)¥bess_11{tmp));
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/*

/%

/=

/%

ecof[¥] = ~GAsbess_il(tmp)/(GExbess_kl(tmp)+bess_i0{tnp)+GA
*bess_kO(tmp)*bess_il{tmp)});

fac[x] = GExtmp#beas_k%I{tmp)*bess_il(tnp)/(GE+bess_ki(tmp)*bess_i0{tmp)+GA
*hess_kO(tmp)*bess_il(tmp));

cur[k] = ~GA*RD*GE+bess_kl{tmp)*bess_il(tmp)/(GE+bess_kl (tmp)*bass_i0{tmp)+GA
*bess_kO{tmp)*besa_11{tmp)};

}

STEP 2. - Allocate memory to hold file information #/
first = 1;

firsti = 1;
gtart = 1;
ndim = 4%N;

% = (double *) malloc( {(N+1)ssizgof (double) );
y = (double *) malloc( ndim*sizeof{donble) };
mp = {double *) malloc( N+sizeof(double) };
¢ = (double *) malloc{ W*sizeof(double) );
cc = {double *)} malloc( N¥sizeof(double) );
a = (doubla *) malloc{ N*sizecf(double)} );
ap = (double *) malloc{ N¥sizeof(double)} );

STEP 3. - Calculate equilibrium potential */
va = -82.90;

vu = -58.0;
do {
veqg = 0.6x(votvu);
heq = alfa_lh(veq)/(alfa_h{veg)+beta_h{veq));

weg = alfa_n(veq)/(alfa _nu{veq)+heta_m(veq));
neg = alfa n(veq)/{(alfa_n(veq)t+beta nlveq));

ivde = g_naxpow(meq,3)*heq(vag-v_na)+g kspow (neq,4) *(vog-v_k)+g_l¥(veq-v_1);

if ( ivde < 0.0 ) {
vn = vaq;

¥} else {
vu = vag;

}

¥} while ( va-vn > 5.e-7 );

STEP 4. - Initialise the membrane */
for ( k=0 ; k<N ; k#+ ) {
x[k] = dx*({double) k);

mp{k] = veg;
y[M+k] = hoq;
y[2*N+k] = meq;
y[3%0+k] = naq;
}
x[N] = LEN;

STEP 6. - Apply injocted current to small region of maembrane+/

mp [N/2-6] = FRAC*v_na;
mp[N/2~4) = FRAC#v_na;
mp|N/2-3] = FRAC*v_na;
mplN/2-2] = FRAC¥v_na;
mp{ll/2~1] = FRACHv_na;
mpiN/2] = FRAC*v_na;

mp{N/2+1]} = FRAC*v_na;
up[N/2+2] = FRAC#v_na;
mp[N/2+3] = FRAC#v_na;
mp[N/2+4] = FRAC*v_na;
mp[N/2+5] = FRAC#v_na;

STEP 6. - Compute coafficients of initial voltage profila */
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real c(N, mp, ¥);

/% STEP 7. - Integrate forward in time */
ti = 0.0;
fig = 1;
while ( ti < TEND ) {
to = ti+hT;
relexr = 5.e-16;
abrerr = 5,a-16;
ifail = -1;
sgsolve( ndim, Zsetmem, krelerr, &abserr, &ti, teo, y, fprime, ¥ifail);
/f 1f ( couwnt %6 == 0 )} {

/* BSTEP 8. - Bnild voltage profile */
real v{N, y, mp);

/% STEP 9. - Check for potential above pots[NUM] */

k = nh;

do {
success = ( pots{NUM-1] < mp([k] };
k++;

} while { lsuccess &% k != N );

if { success ) {
for ( k=0 ; k<NUM ; kit ) {
j = N-1;
while ( mplj] < pots(k] ) j—;
frac = (pots[x]-mp[j+1]1)/(mp(j]l-mp[j+13);
xnewfk} = x[j+1)1-(z[j+t]-x{j2)*Erac;
tnew = ti;
}
if ( first ) {
for ( k=0 ; X<NUM ; k++ ) xold[k] = xnewlk];
told = tnew;
first = 0Q;
T else { // Calculate & primt velocity results to file.
if ( start ) {
fp = fopen(“velocity.dat", "w");
fpl = fopen(”dist.dat","w"};
for ( k=0 ; k<NUM ; k++ } {
fprintf (fp, "%B.51f\t", (xnewlk]-xald[k]}/(inew=-toid));
fpriantf (fpl,"%8.51E\t", xnew[k]-x{nh]);
>
fprintf (fp, "\n");
fprinti (fpl,"\n"};
fclosa{fp);
fclose{fpl);
for ( k=0 ; k<NUM ; k+4+ ) xoldlk] = xnew[k]:
told = tneu;
start = 0;
} else {
£p = fopan(®velocity.dat", "a");
fpl = fopen('dist.dat","a");
for ( k=0 ; k<NUM ; k++ ) {
fprintf(fp, "¥B.5LI\t", (xnew[k]-xold[k])/(tnew-told));
fprintf(fpl,"%8.61L\L", xnew[kl-x[nh]);
1
fprintf (fp,"\n");
fprintf(fpi,"\n");
fclose(fp};
fclose(fpl);
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for ( k=0 ; k<NUM ; k++ ) xold[k] = xnew([k];

told = tnew,;

].
if ( firstl ) {

fp = fopen{"times.dat",%w");
fprintt (fp,"%5.31f\n", ti);

fclosa{fp);
firstl = 0;
T else {

fp = fopen("times.das","a");
fprintf (fp,*%5.31L\n", ti);

felose(fp);

}

/+ B1EP 10. - Comstruct output file names */

ext[0] = fig/10+48;

ext[1] = fighiow4s;

ext[2] = *\o*;
strepy(filename, "hhwave") ;
strcat{filename,axt);

fp = fopen(filenane,"w");
for ( k=0 ; k<N ; k++ ) {-

fprintf (fp,"48.51L\t ¥%8.BLf\t %8.5Lf\t %8.BLE\t %B.51f\n", x[x}, mplk],

y kN1, yL2RNk], y[3*N4k]);

fprintf (fp, "%8.61f\t %8.51f\t %8.51f\t /8.51f\t %8.51f\n", x[¥1, mpl0l,

fclose(fp);

printf("\n Reached %4.21%",%i);

£ ig.|..|. :

}

/% BIEP 1i. ~ Write out file of x,y,z values */

append = {;
for { k=0 ; k<=DIV ; k++ ) {

if ( append ) {
fp = fopsn("zval.dat™, "a");

yiNT, y(2+N5], y[3433);

// z-values

for ( j=0 ; j<wN ; j++ ) fprintf(fp,"%9.41f",x{jl};

Lprintf (£p,"\n");
Lfclose(tp);

} oelso {
L£p = fopen("zval.dat","w");

for ( =0 ; j<=N ; j++ ) fprintf(fp,"%9.41f",x[jl1):

fprintf {Lp,"\n");
fclose(fp);
T

if ( append ) {
fp = fopen("xrval.dat","a"};

// r-values

for { j=0 ; j<=N ; j++ ) fprintf(fp,"%12.61f",red(k]);

fprintf (fp,"\n*);
fclosa{fp);

} else {
fp = fopen("rval.dat","w"};

for { j=0 : j<=N ; j++ ) fpriubvf(Ep,"%i2. 611", radll]);

fprintf (fp,"\n");
fclose{fp};

emeepepe saPWe o' mp oo mie = se g
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/% STEP 12. - Calculate intracellular potentials over radii */
c[0D] = y[0]*icof {¢]*bess_i0{nu[0]*rad(k]);
c{1] = y[1]*icof [nh)*hees 1i0(nuinh]+rad(k]);
for { j=1 ; j<uh ; 444+ ) {
c[2*j] = y[2#jlxicof[j]*bess_i0(nulj]rradfk]);
c{2%j+1] = y[2%jt1]#icof [j]1*besa_i0(nuljl+rad[kl);
}

real_v(l, c, mp);

if ( append ) { // intracellular potentials
fp = fopen{"intpos.dat","a");
for ( j=0 ; §<N ; j++ ) fprintf(fp,"%i2.61f", mpljl);
fprintf(fp,"%12.61L", mp[01);
fprintf(fp,"\n");
felose(fp);

T alse {
fp = fopen("intpot.dat","w");
for ( j=0 ; j<N ; j++ )} fprintf(fp,"%12.61£", mpljl);
fprintf (fp,"%12.611", mpl03);
fprintf (fp,"\n");
fclose{fp);

}

append = 1;

}

/+ BSTEP 13. - Calculata extracellnlar potentials for given distance */
append = appendl = append2 = UO;
dist = RD;
while ( dist < RD%10 ) {
o[0] = 0.0;
8[1] = y[1l#ecof[nh]#bess_kO(ou[uh]+dist);
for ( j=1 ; j<mh ; j++ ) L
e(2+J] = y[2%jl*ccof[jI1*bess _k0(nuljl*dist);
s(2+j+1] = yl(2*j+il*ocof [j1*boss_kO{nuljl+dist);
}
dist *= FAC;
roal_v{(N, a, ap};

1f ( append ) { // extracellular potentials
£fp = fopen("extpot.dat’,"a");
for ( j=0 ; j<N ; j++ ) fprintf{fp,"%12.61£", epl(jl);
fprintf (fp,"%12.61£", ap[0l);
fprinkf (£p,"\n");
fclosa(fp);
} else {
fp = fopen(“extpot.dat","w");
for { j=0 ; <N ; j++ ) fprintf{fp,"412.61f", epljl);
fprintf (£p,"%12.61f", epl0l);
fprintf (£p,"\n");
fclose(fp);
}

if ( appendl ) {
fp = fopen(“extdisi.dat","a");
for ( j=0 ; j<=N ; j++ ) fprintf{fp,"%12.6L£¢, dist);
fprintt {fp, "\n");
fclosa(fp);
} else {
Ip = fopon{"oxtdist.dat","w");
for ( j=0 ; j<=N ; j++ ) fprintf(fp,"%12.61£", dis¥);
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fprinst (£p,"\n");

fclose(ip);
b
if ( append2 ) { // z-values
fp = fopen("extz.dat”,"a");
for ( j=0 ; j<=N ; j++ ) fpriutl{fp,"¥9.41£",x[j1);
fprintf (fp,"\n");
fclose(fp);
} else {
fp = fopen(“extz.dat”,"w");
for ( j=0 ; j<=N ; j++ ) fprintf(fp,"%9.41£",x[j1);
fprinti (£p, "\n");
felosa(fp);
}
append = appendl = append2 = i;
}
/% BSTEP 14. -~ Free vectors */
fxee(mp) ;
frea(nu);
free(icof);
free(ecof);
free(fac);
frea(c);
frea(cc);
frea(cur);
frea(e);
frea(ep);
frea(rad);
free(y);
raturn;
¥
/ * EHk ¥ * Tk P TI LT T
OPERATION OF REAL_C and REAL_V
REAL_C
Enter with u_inlk] ( 0 <= &k < N )} as the components of
a real vector and exit with n_out[0l=c[0], u_out[1i]=
c[-N/2]) and w.out[2k] + w_out_[2k+1]l=cfkx] ( 0 < k < N/2-1 ).
REAL_YV
Enter with u_inl0l=ci0], u_in[1l=c[-N/2] and u_in[2k]+i
w_in[2k11] set to clk] { 0 < k < W/2-1 ) and exit with
u_out {k]=u(x[k]) whers { O <= I < N-f ).
foh Ak Aokok ok ok AR e ek R olok ko ok /
void fprime(double t, double #y, double *dy)
{

extern double *fac;

int k, ki, uh=N/2;

douhle *v, tmp, h, m, n, ivdec;

static double v_na=b55.0, v_k=-72.0, v _1=-49.387, g_na=120.0, g_k=36.0, g _1=0.3;

/* Step 1. - Create v[ ] and build Fourier coeffs of v[ 1 */
v = {double *) wulloc( N#sizeof (doubla) );
veal.v{ N, y, v);

/* Step 2. - Build derivatives of H, M and N %/
for ( k=0 ; k<l ; let+ ) {
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T

h = y[N+k];
m = y[2%N+k];
a = y[3sN+k];

ivdc = g_na*pow(m,3)*h*(v(k]-v_na}tg_lkwpaw{n,d)*{vIik]-v_ k}+g_1+(v[k]l-v_1);
dy[k] = ivdc/CHM; .

dy (N+k3 = alfa_h(v[k])*{1.0-h)-beta_h{v[ic])*h;

dy (2+R+k] = alfa_m(v(k3)*({1.0-m)~beta_n{v{kl)+m;

dy [3*N+k] = alfe n(v[k]}*(1.0-n)~beta_nulv[kl)+n;

/* Step 3. - Compute Fouriwr coefficients of J.ivdc %/
real_c(N, dy, v);
tmp = GA/(CM*RD3;
dy[o] = -v[0];
dy[1] = -(smp*y[1]*fac{ohl+v[11);
for {( k=1 ; k<nh ; k++ ) {

}

kk = 2¥x;
dy[kk] = ~(smpxy[kkl+*fac[k]+vIkk]l);
dy [kk+1] = -(tmpty [kk+1)sfac [kl+v[kk+1]);

free{v);

return;
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A.l.2 HI—IDisperse.c

The sccond program, HHDisperse.c investigates the characteristics of a train of action
potentials by manipulating the inter-spike interval. This problem is solved by means of
a periodie solution, and therefore does not involve the imitiation procedurs necessary in
the first prohlem. Instead this problem starts with the profile of a travelling wave which

eventually settles to the travelling wave speed of the specified inter-spike interval.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <string.h>

£ At A AR oK o s ok ok ok ook kst ok kb okl ok kol s ok s ok et e opokaon ok stk ok ok s ok ok o ke
Iravelling Waves - Hodgkin Huxley - Squid Giant Axon

SQLVES THE PERIODIC HDDGKIN HUXLEY EQUATIONS
USING SPECTRAL METHOD - FDURIER

Coum V_t + J = (g A+R/2) V_xx V{x,0) = F(x) given
AND  {a) Spoctrul mothod - majority of program carried out in
coelficent space ~ converting back for solution.
{b) Calculates velacity for a range of wavelangths.

(c) Thres Dimensional Modsl -~ uses Bessel Functions.

This program calculates & prints out:

(i) wavelength and velocity disprel.dat
{ii) potential profilss Dispersion##
(iii) Core current Coraikt
(iv) Radial current Radial##
{v) Done file Done#
* ok SR R R R e R o AR e Rk e ek e ok e skt ke skof oetet /

/* Declaration of Global functionz x/
double heas, iQ{double);
double bess_il(double);
double bess_k0(double);
double bess _ki1(double);
void fprime( double, double *, double *};
void sgsolve( int, double *, double *, double *, doubla, double =,
void (xfcn)( double, double %, double *), int %);
void intrp( int, double, double *, doublae, dewbls *, double *, int,double *%, double %);
void step( int, double *, double *, double *, double ¥, double *, double *, int *,
int %, int ¥, int *, double #**, double %, double *, double *, doublu, doubla,
void (xfcn){double, deuble *, double *));
void real_c{ int, doubla *, double *);
void real_v{ int, doubls *, double *);
double wave{ int, doubla);

/* Biclogical Parameters #/

t#tdefine CRLSTUS 18.5 /% Celsius temperature of neurom */

#dafine RD  0.0238 /% Radius of squid axon {(cm) */

#define GA 28,249 /* Specific intra-cellular conductance (mmho/cm) »/
#define GE 28.248 /* Specific extra-cellular conductance {mrho/cm) */

#define CcH 1.0 /* Specific membrane capacitance {(muF/fcm~2) */
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/% Parameters for ODE solver */

#dafine M 16 /* Nodo multiple */
#dafins TEND 20.0 /* Final time */
#define DT 0.6 /* Time step */
#dafine TOL 5.a-16 /* Error tolerance */

/* Declaration of HH coefficient functioms */
gonble alfa_h( double J):

double alfa_m( double J;

double alfa_n{ double };
double beta_h{ donble };
double bata_m{ double );
double beta_n{ double )}:

/* Derivative of Hodgkin Huxley functions %/
deuble d_alfa_h(double);

double d_alfa_m(double};

double d_alfa_n{double); H
double d_bsata_h{dounble);
double d_beta_m{double);
double d_beta_n{double);

double #fac;
int nodes;

void wain(void)

{

int X, FlleNumber, pmwax, gmax, rmax, pval, gvel, rval, pstore, gstore, rstore, min,

val, num;
extern int nodes;
double len, vel, dx; :
char filemame[20]1, output(20], digit{4];
FILE *£fp; i

for { FileNumber=1 ; FileNumber<i2i ; FileNumbexr++ ) {
nun = FileNumbszr;
digit[0] = num/100+48;
num -= 100#{oum/100);
digit[1] = num/10+48;
digit[2] = num%10+48;
digit [3] '\O';
printf ("\n File number is %s¥, digit);
strcpy(filename,"done");
streat{filename,digit) ;
if ( (fp=fopen(filename,“r")) == NULL ) { i

]

/¥ Step A - Fix wavelength (cm} and mininum number of nodes */
len = 0.26%((double)} FileNumber);
nodes = MixFilsNumber;

ek ok ook K okofoRot stk sk ok Rk ok ok b b okkotel s
Step B — Re-Estimate nuubsr of nodes.

Suppose 2°p 3°q 5”r >= nodas then

p*in(2) + q*In(3) + r+ln(5) >= 1n(nodes)

ceil (In{nodes) /1n{2))
cail(ln(nodes)/In{3))
cail (In{nodes) /In{5))

Thns 1 <= p <= puax
0 <= q <= grax
0 <= r <= rmex
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and choose p, q and r guch that 2°p 3"q 6°r >= nodes
taking the closest estimate >= nodes
Aok AR A b sk ook ek ok sk o ok ok sk ok ok otk okt bR ok o o */
pmax = ({int) ceil(log((double) nodes}/log{2.0}));
gmax = ({int) cecil(log{{double) nodes}/log{3.0)));
rmax = ({int) coil(log{(double) nodes}/Llog(5.0)));
min = nodos;
for ( pral=i; pval<=pmax ; pvalw+t ) {
for { qval=0 ; qval<=gmax ; qval++ ) {
for ( rval=Q ; rval<=rmax ; rvalt+ ) {
val = paw(2,pval)*pow(3,qval)*paw(s,rval};
if ( val >= nodes && val-nodes <= min ) {
patore = pval;
gatore = qval;
ratara = rval;
min = val-nodas;

3

nodes = pow(2,patore)*pow(3,qstore)*pow(s,ratore);

/* Step C - Fix wavelength {(cm) and minimum number of nodes */
printf ("\nCalculating length %4.21f cm with %5d nodes”, lsn, nodes);
vel = wave( FileNumber, len);
strepy (autput, "DispVel");
streat(output, digit);
fp = fopen{output,"w");
Iprintf (fp, "%2d\t %5d\t %4.21f\t %8.81f\n", FileNumber, nodes, len, vel);

fclose(£p);
fp = fopen{filename,"w");
folose(fp);
} else {
fcloso(fp);
3
¥
returm;

1

double wave{int Fileiumber, double len )
{
extern dauble #*fac;
extern dounble v[80], h{80), m[80], n[80];
extern int nodes;
double dx, *x, *y, *c, ¥cc, *cur, *mp, nu, *icof, *acof, i, teo, relerr, absarr,
ivde, va, vr, tf, ts, xf, xs, tmp, pi, voq, meqg, heq, neqg, van, vu, vl, vel;
char filename(20], ext[4]};
int j, k, nh, ndim, ifail, im, start, num;
FILE *£fp;

S hkottos skack dobokoiotooRAok ok koo ok ook okl ook okt fstokokskok ok sk deokoktkak ook
VYariables
y[0] —> y(u-1] Holds the poteatial
y[N] -> y[2*N-1] Holds H at nodes
y[2¥N] -> y[3#-1] Holds M at nodes
yi34N]) -> y[asN-1] Holds N at nodes
Sekctokokabok ok ’ fokskdokokok koA doR koA dok

/* 8TEP 1. - Build ratio of Bessel functions */
dx = len/{((double) nodes);
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nh = nodes/2;

pi = 4. 0*atan{l.0);

nu = {double *) malloc{ {nh+1)*sizaof{double} };
icof = (double *) malloc{ (nh+1)*sizeof{double) };
acof = (double #) malloc{ (nh+1)*sizeof{double) };
fac = (double *) mallec{ (nh+l}*sizaof (double) );
cur = (double *) malloc( (nh+l)*sizeof(double) };
fac{0] = cur[0] = nu[0] = 0.0;

icoff0] = 1.0;

f

scof{0] = 0.0;

for ( k=1 ; k<=nh ; kt+ ) {
tmp = 2.0#pi+RD*((double) k)/len;
k] = twp;

ico# [k] = GE#bess_ki(tmp)/(GE+bess_ki(tmp)
*basgs_10(tmp) +GAxbess_kO (tmp) *bess_il(tmp));
acof [iK] = -GAxbess, il (tmp)/(GE+bass_ki(tmp)
¥boss_i0{tmp)+GA*bess_kO(tmp) *bess_il(tmp));
fac[k] = GE+tmp+bess_kl(tmp)+baess_ii(tmp)/(GE+bess_ki(tmp)
*bess_i0(tmp)+GA¥bess_kO(tmp)*bess_il(tmp));
cnr[k] = -GA¥RD*GExbeas_ki(tmp)*bess_il (tmp)/(GE+bess_ki (tmp)
*besa_i0(tmp)+GAxbess_kO(tmp)*bess_ii(tmp));
}

/* STEP 2. - hllocate memory to hold file information */
start = 1;
adim = 4%nodes;
x = (donble *) malloc( (nodestl)*sizeof (double) );
y = {double %) malloc( ndimesizeof (double} );
mp = {double *) malloc{ nodes*sizeof(double) );
¢ = {double *) nalloc( nodes*sizeof (double) );
cc = {double *) mallec( nodes*sizeof(doubls) };

/#* 8TEP 3, - Initialise the membrane with the profile of a travelling wave */
if ( (fp=fopen{"InitialProfile.dat","r")} != NULL ) {
for ( k=0 ; k<nodes ; k#+ } {
x[k] = dx*{(double) k);
if ( fscanf { fp."%A1f %1f %1f %1£%, smplk], &ylnodes+kl, &y{2+nodesik],
&y {9*nodos+k])) == EOF } {

oplkl = wpl{k-1];
y[nodestk] = y[nodes+k-1];
y[2*nodes+k]) = y[2+nodestk~1];
y(3*nodes+k] = y{3*nodes+k~1];
I
}
fclose (fpl);
J else {
printf ("\nCannot find input file!!");
return(0.0);
}

xInodes] = len;

/% STEP 4. ~ Coumpute crefificients of initial voltage profile */
real_c(nodes, up, ¥I:

/% STEP 6. - Integrate foryard in time %/
i = 0.0;
while ( bi < TEND ) {
o = ti+DT;
rolerr = abserr = TOL;
ifail = -1;
while { ti !'= to ) {
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spsolve( ndim, &relerr, &abserr, &ti, to, y, fprima, &ifail);
it ( 4fadl I1= 2) printf("\uTroubla”);
1

/% STEP 6. - Build veltage prafils */
real_v(nodes, y, mp);

/% Step 7. - Calculate spike times */
vmn = mp[0};
im = 0;
for ( k=1 ; k<oodes ; X++ ) {
if (mplk]l > vm ) {
im = k;
vm = mplk];
}
b
printf{"\nSpike potential %8.41{", wp(inml);
if (da==0) 1
vr = mp[il;
vl = mplnodes-11;
} else if ( im == nodes-1 ) {
vl = mp[hodes~2];

vz = mplo];

} else {
vl = mplim-11;
vr = mplim+i];

¥

/* Step 8. - Calcnlate conduction velocity */
if { start ) {
xf = x[im]+0.6%dx*{v1l-vr)}/ (v1-2, Okvmivr);

tf = ti;
start = 0;
} olse {
xs = xf;
ts = tf;
xf = x[im]+0. S*dxx (vi-vr)/ (vl-2. Oxvm+vr)
tf = ti;

vel = fabs(xi-xs);
if ( len-vel < vel ) vel = len-vel;
vel = vel/(tf-ts);
b
printf{"\n Reached %4.21f",ti);
}

/% STEP 9. - Output Information om Train of Action Potentials */
aue = FileNumber;
ext[0] = num/100+48;
nun -= 100%(aum/100) ;
ext[1] = num/10+48;
axt [2] = num§10448;
ext[3] = °\0’;

/% Step SA. - Core current */
c[0] = cur[0]*y(0];
c[1] = ~cur[nhl*y[1l;
for ( k=1 ; k<nh ; k++ ) {
c[2%k]) = —cux[k]ey{a+k+1];
c[2sk+1] = cur[k]*y[2%«k};
}

real_v(nodes, ¢, cc);
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strcpy(£ilename,"core");

streat{filename,ext) ;

fp = fopen(filename,"w");

for { k=1 ; k<mh ; b+t ) fprintf(fp, "%15.101£\t", cclkl);
fclosa(fp);

/* STEP 9B. - Radial currenk */
ci0] = 0.0;
c[1] = =2.0%pi+RD*GA*y [1];
for { k=1 ; k<mh ; k++ )} {
c[2+k]) = ~2.0+pi*xRD*GA*fac [k]*y[xk+1];
c[2%k+1] = -2.0+pisRD*GA*fac[i] &y [2%k] ;
}
real_v(nodes, ¢, cc);
strcpy{filenama, "radialt);
streat(fileonano, ext);
fp = fopen(filename,"w");
for ( k=1 ; k<nh ; k++ ) fprintf(fp, "%15.101f\t", cclkl);
fclose{fp);

/% STEP 9C. - Qutput £ile nama */
strcpy (filenamo, "Disporsion”);
streat (filenome, oxt) ;
fp = fopen(filename,"w");
for ( k=0 ; k<nodes ; k++ ) {
fprintf(fp,“ZS.SIf\t %8.51f\t %8.61f\¢ %8.51f\t %B.51lf\a",
x[k], mplk], y[nodss+k], y[2+nodest+k}, y[3tnodes+kl};
}
fprintf (fp,"%8.61ENE %8.581F\t ¥8.61f\t 48.B61f\t %8.61f\n",
%x[nedasl, mp[0], ylnodes), y{2#nodes], y[3#nodesl);
fcloga(fp);

/* STEP 12. -~ Free vectors ¥/
frea(mp);
free(nu);
free(icof);
free(scof);
frae(fac);
free(c);
free(cc);
frae(cur);
traa(yl;
fraa(x);
raturn vel;

/ ol K A K kR ko Rkt dok R R OR RO ROk
OPERATION OF REAL._C and REAL_V

Enter with u_in[kl ( 0 <= k < N ) as the compounentis of
a real vector and exit with uw_out[03=c[0], u_out[1l~
¢{-N/2]} and u_out[2k] + u_out_[2k+1]l=c[k] ( 0 < k < N/2-1 ).

Bnter with uw_inl0l=¢{0], u_in(1]=cf~N/2} and u_in[2k]+i
u_in[2k+1] set to c[k] ( 0 < k < N/2-1 ) and exit with
u_out [kl=ufx[k]) where ( 0 <= k < N-1 ).

SRR ROK IR I W ROl v skt ok ek o o ok o R o R R KOK A KR o o ko e ks ik /
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void fprime{double t, douhle *y, double *dy)
{ ;
aytern int nodes; §
extern double *fac; i
int k, kk, nh=nodes/2;
double *v, tmp, h, m, n, ivdc;
gtatic double v_na=55.0, v_k=-72.0, v_1=-49,387,
g.na=120.0, g k=36.0, g _1=0.3;

/% Step 1. ~ Creute v[ ] and build Fourier coeffs of v[ 1 %/
v = (double *) malloc{ nodes*sizeof (double)} );
veal_v( nodes, ¥y, v};

/* Step 2. - Build derivatives of H, M and N */
for { k=0 ; k<nodes ; kit+ ) {
h = y[nodes+tk];
n = y{2+*nodes+k];
n = y[3+nodastk];
ivdc = g_natpow(m,3)*h+ (vik]l-v_na)ig kxpow(n,4)*(v{k]-v_k)+g_1*{v[k]-v_1);
dy[k]) = ivdc/CM;
dy[nodes+k] = alfa_h{y[x])*(1.0-h)-beta_k(v[k])*h;
dy[2#nodes+k] = alfa_m(v[k])*{1.0-m)~beta_m(v[k])*x;
dy[3#nodes+k] = alfa_n(v[k])#(1.0-n)-beta_n(v[i])+a;

¥

/* Step 8. - Compute Fourier coefficients of J_ivdc ¥/

real_c{nodes, dy, v);
tmp = GA/(CM*RD) ; i
ay[o] = ~v[0l; :
dy(1] = -(imp+y[1]*faclnh]l+v(1]); ;
for ( k=1 ; X<nh ; k++ ) {

kk = 2%k;

dy[kk] = -{vmp¥y[kk]*fac[k]+v[kk]);

dy [kk+1] = ~(tmpry [kk+ilxfac [kI+v [ki+11);

}
free{v);
return;
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A.2 Extract data from Neurolucida file

As deseribed in Chapter 3 the real morphological data needs to be carefully extracted
from the Newrolucida data files; in particular, it is essential thal the branching paliern
of the neuron is maintained. This is achieved by defining structures in the program that
arc common to neuronal morphology, for example, branch, dendrite and synaptic contact.
Each structure contains inforination about a particular object and can be defined an
arbitrary number of times. For example, a branch structure contains the coordinates of
an individual branch and its associated diameters at cach of these points. This branch
can be connected Lo other branch structures based on the notion of parent, child and peer
discussed in Chapter 3. The resnlt is in essence a dendrite, which is incorporated into
the dendrite structure. Once the data has been extracted into the appropriate structures,
minor calculations are required to find the length and surface area of each branch and
dendrite, and the associated location of synaptic contacts within the dendritic tree. In the
latter stages of this program there are small functions thal take advantage of the recursive
natwre of the dats management. It is a simple task to count contacts or terminal branches
in the cell beinyg investigated. The simulation of neuronal morphology uses this recursive
methodology to build cells based on the original neuronal morphology extracted from the

real cells.

The program BuildNeuron.c is the basie program necessary to extracl the nenronal data
into a form more suitable for analysis. The subseguent programs build on this foundation
to solve two distinctly different problems, constructing an equivalent cable and simulating

neurenal morphology.

A.2.1 BuildNeuron.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <string.h>

typedef struct soma.t

{
/% Physical properties of soma %/
int nobs; /* Yo, of observations in somal specification #/
double *x; /* X-coords of delining point »/
double *y; /* Y-coords of definimg point */
double *z; /% Z-coords of defining point */

double *d; /% Diameter of soma at poimt (x,y,z) */
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double p_len;

/* Length of soma */

/* Static biophysical properties of soma */

double c¢s;
double ga;
double gs;

/* Contact information */
contact *conlist;
int ncon;

} soma;

typedel struct contact_t

{
int id;

double xc;
double yc;
double zc;
double dc;

double xp;
double yp;
double zp;

double sd;
double pl;
double el;
double sa;

struct contact_t *prev;
struct contact_t #mext;
} contact;

typedef struct branch %

{

/« Connectivity of branch */
struct branch_ t *parent;
struct branch_t *child;
struct branch_t *pear;

/* Somal membrane capacitanca (mu F/cm~2) */
/% Intracellular conductance of soma (mS/cm) %/
/* Membrane conductance of soma (mS/cm™2) */

/+ List of contacts ¥/

/* X coordinate of contact */
/* Y voordinate of contact ¥/
/% Z coordimate of contact */
/% Dendritic diamoter at contact */

/* Projected X coordinate */
/* Projected Y coordinatae */
/% Projected 2 coordinata */

/* Shortest distance to dendrite (microm) */
/* Measurement of physical length (micron) #/
/* Measurément of eoloctrotomic langth */

/* Maasurement of surface avea (micron"2) */

/* Addross of previous contact */
/* Addraesa of noxt comtact */

/% Pointer to parent branch =/
/% Pointer to child bramch #/
/* Pointer to a peer branch %/

/% Physical properties of branch %/

int nobs;
double *x;
double *y;
double *=z;
double *d;
double p_len;
double #pl;
double *el;
double *a3a;
double e_len;

/% No. of observations in branch specification */
/* X-coordinate of defining point */

/% Y-cooxrdinate of defining point */

/* Z-coordinate of defining point %/

/* Diameter of dendrite */

/* Longth of branch */

/% Measuroment of physical length (microm) #»/

/* Measurement of electrotonic length */

/% Measurement of surface area {micron"2) */

/* Total alactrotonic length */

/* Biophysical propertles of branch %/

double cm;
deuble ga;
double pu;
int be;

/+ Dendritic membrane capacitance (mu F/em"2) */
/% Intracellular conductance (uS/cum) #*/

/% Membrane conductance (mS/cm™2) */

/* 0 - sealed */

/* 1 - cut #/

/* 2 ~ leakags *x/
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/% Node information for spatiul represcontation */

int nodes; /* Total number nodes spanning branch */
int jn; /* Junction node of the branch */
int fu; /%* Internal node connected to junction */
doubla *c; /* Characteristic condnctances x/

/* Contact information %/
contact *conlist; /¥ List of comtacts #*/
int ncon;

¥ branch;

typedef struct dendrite i

{
branch *root; /% Pointer to root branch of dendrite x/
double p_len; /* Total length of dendrite */
double area; /% Total membrans area af dendrite */

} dendrite;

typedef atruct neurou_t

{
int ndend; /% Nuwber of dendrites ¥/
dendrite *dendlist; /* Pointer to an array of demdrites %/
Boma *s; /¥ Soma structura */

} neuron;

/% Function type declaratious #/

neuron *Load_Sawpled_Neuron(char *);

void Destroy_Samplod Nenron(neuron #*};

vyoid init_branch( branch ¥, int, doublo, double, double);
void BuildContactTnfo{contact *, branch %, broanch %%);
void remove_branch( branch *#, branch #*);

void build_doendrite{ branch *x, branch #*);

void clean_dendrite( branch =);

void destroy_denmdrite( branch *};

int; count_branches( branch *, branch +);

int count_terminal_branches{ brancl *, branch *};
void branch_length{ FILE %, branch *)};

int count_branches{ branch *, branch %};

int count_contacts{ branch *, branch *);

/* Global definitions #/

#define cs 1.0
#defina GS 14.3
#define GA 0.091
tidefine CM 1.0
#defing GM 1£.3

int main{ int arge, char *fargyv)
{

nenron *n;

/+ Load sampled neuron */
if ( erge '=2 ) {
printf("\n Invoke program with load <input>\n");
return(l);
¥ olge {
n = Load_S8ampled_dsuron( argv[1] );
if ( m) {
printf("\n Failed to find sampled neuron\zn");
raturn(l);
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/%

}

¥

Clean up memory */
Destroy_Sampled_Neuron( n };
return(0);

nouron *Load_Samplod_Neuron(char #*filename)

{

/%

/*

/%

iot j, Xk, ncon, n, id, connected, ignored;

double tump, piby2, xold, xnew, yold, ynew, zold, zrew, diam, x1, xxr, 1, dr,

PX, Py, pz, min;
peuron *callj;
spma *5;
contact *oldcon, *newcon, *firstcon;
branch *bold, *bnew, *first_branch, *Dbopt;
char temp[1007;
FILE #input;

STEP 1. - QOper neuron data file */
printf{"\nOpering file ¥%s\n",filename);
if { (ioput=fopen{filenams,"r")})==NULL ) {

printf("\nProblen loading neuron dascription from fila\n"“);

return NULL;

}

STEP 2. - Get memory for neuron stricture */
coll = (neurom *) malloc( sizeof(neuron} );
g = cell->8 = (goma *) malloc{ sizeof(soma) };

STEP 3, - Initialise soma structure #*/

g->x = {double *) malloc{ n*sizeof{doublo) );
g=>y = (double *) malloc( n¥sizeof{double) };
s~>z = {doudble *) malloc{ n*sizeof(double) );
g=>d = {double *) malloc{ n*aizeof (double) );
s~>gs = (8,

s->ga = GA;

s~>»cs = C8;

g~>conlist = NULL;
g=>ncon = 0;

STEP 4. - Got soma moxphological data */

f£acanf {input,"%1f Y1f %1f %1£%,&xodd, &yold, &zold, &diow);

s->x[0] = xeld;
s->y (0] yold;
y=>2[0] = zold;
s=>d[0] = diam;
for ( k=j=1,5->p_lon=0.0 ; k<n ; kt+ ) {

fscanf (input, "¥1f 41f %Lf J1£",&xnew, &ynew, ¥znew, &diam);
tmp = pow{xnew-xold,2)+pow(ynew-yold,2)+pou{zneu-zold,2};

if ( tmp > 0.01 ) {

3->x[j] = xold = xnew;
5->y[jl = yold = ynew;
a8->2{jl = zold = znew;
s—>d[j] = diam;

3+

a~>p_len += sqgrt(tmp);
by
}
s->nobs = j;

162
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/% STEP G.

- Get branch and contact data */

oldcon = NULL;
bold = NULL;
fscanf (imput,"%s", tomp);

do {

if ( stromp(temp, "Branch") == 0 ) {

/+ STEP 6.

fscanf (inpnt, "%d", &n);
printf("Found a branch defined by ¥d nedes\a", n);
bnew = {brench #) malloc( sizeof(branch) };
if ( bold ) {
bold->child = bnew;
} elee {
first _branch = hnewu;
}
bnew->parent = bold;
bnew->peer = NULL;
bnew~>child = NULL;

- Initialise branch x/
init_branch( bmew, n, CM, GH, GA);

fecanf (Anput, “41f %41F %1f %Lf", &xold, &yold, &zold, &dian);

brnew->x%[0} = xold;
brew->y[0] = yold;
bnew->z[0] = zold;
bnew->d[0] = dianm;
for ( bnew->p_len=bnew->pl[01=0.0,k=j=1 ; k<a ; kt+t } {

)]

fscanf (input, "¥1f ALE %1f %1f",&xnew,&ynew,&znew,diam);
tmp=pow (xnew-xold, 2) +pow(ynew-yold, 2)+pow (gnew-z0ld,2) ;

if ( tmp > 0.01 ) {
bney->p_len += sqrt(tmp);
bnew—>pl[jl = bnew->p_len;
bnew—>x[j]l = xold = xnew;
bnew—>y[j] = yold = ynew;
boew->z[j] = zold = znew;
bnew->d[j]l = diam;
It
}
}
brew->nebs = j;
bold = bnew;

} else if ( stremp(temp, "Marker") == 0 ) {

/% STEP 7.

- Initialise marker #*/
fscant (input, "Ad 4d", &id, &n);
for { =0 ; &<n ; Lk++ } {
newcon = (contact *) malleoc{ sizeof (contact) };:
newcon-»sd = NULL;
nawcon-»id = id;
if ( oldcon ) {
oldcon—->next = newcon;
} else {
firstcon = newcon;

i

I
newcon—>prev = cldcon;
newcon->next = NULL;
facanf (input, "41f %LE %1f %1£Y, &newcon->xc,
&newcon->yc, &newcon->zc, Enawcon->dc );
oldcon = newcoxn;
}

} else {

priontf ("Unknown block type %s!\n", temp);

163
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return KULL;

¥
} while ( fscaunf(input,"%s", temp)!=EQF );
fclose(input) ;

/% BSTEP 8. - Complete electrotonic lengths and surface area of braunch #/
bold = first_branch;
piby2 = 2.0%atan(1.0);
while ( bold } {
bald->el[0] = 0.0;
bold~»sa[d) = 0.0;
¥1 = bold->pl[0];
dl = bolad->dfol;
tmp = 0.04%sqrt((bold->gm)/(bold->ga));
foxr { k=1 ; k<bold->mobs ; k++ ) {
xr = bold->plikl;
dr = bold->d[k];
bold->ellk] = bold->el [k-11+tmp*(zr-x1}/(eqrt (dl}+sqrt{dr));
bold->salk] = bold->salk-1]+piby2*(xr-x1)*{dl+dr);
x1 = xr;
dl = dr;
}
bold—>e_len = bold->el[bold->nobs-1];
bold = bold->child;

¥
/+ STEP 6. ~ Associate contacts with branches and goma %/
ignored = 0;

vhila ( firstcon } {

bold = first_branch;

bopt = NULL;

while ( bold )} {
BuildContactInfo( firstcon, bold, &bopt);
bold = bold->child;

}

newcon = firstcon«>noxt;

if ( firstcon-»sd > 4.0 ) {

/% STEP 9a. - Check for proximity ta soma ¥/
px = firstcon->xc;
py = firstcon->yc;
pz = firstcon->zc;

]

)|

/* First stage is different from othars %/
xnaw = 8->x[0]; ynew = s->y[0]; znew = g->z[0];
firstcon~»sd = min = sqrt(pow(xnew-px,2)
+pow (ynew-py,2)+pow{znaw-pz,2) )~ (s->d[0]);

/* Sacond stage comparss points and projected points %/
for ( k=1 ; k<s~>nobs ; k+t+ ) {
znew = s->x[k]; ynew = s->y(kl; znew = s5->z[k];
min = sqrt(pow(xnew-px,2)+pow(ynaw-py,2}
+ pow(znew-pz,2))-{(s->d[k]);
if { min < firstcon-»ad )} firstcomn—>sd = min;
}
if ( firatcon~»sd < 4.0 ) {
oldcon = s->conlist;
if { oldeon ) {
while { oldcon->mext ) oldcon = oldcon->mext;
oldcon->next = firstcon;
¥ else {

164

ox ik ..




APPENDIX A. ASSOCIATED PROGRAMS 16

s->¢onlist = firstcaon;
¥
flrstcon->prev = oldcon;
{irstcon->next = NULL;

s->ncont+t;
} elpe {
frog(firstcon);
ignorad++;
T
} else {

/% STEP 8b., - Check for proximity tc soma */
oldcon = bopt->conlist;
if ( oldeon )} {
while ( oldcon->next ) oldcon = oldcon~>next;
aldcon—>next = firstcon;
} else {
bopt->conlist = firstcon;
1
firstcor->prev = cldcon;
firstcon->noxt = NULL;
bopt->ncont++;
}
firatcon = nawcon;

}

/% STEP 10. - Count dendritic branches at soma #/
bold = first_branch;
n=20;
whila ¢ bold } {
bnew = first_branch;
do {
It = bnew—>ncbs-1;
twp = pow(beld~>x[0]l-bnew->x(k],2}+
pow (bold->y [0)~bnew—>y k], 2)+
pow(bold~>z [0] -bnaw->z [k],2};
connected = ( tmp < 0.01 };
bnew = bnew->child;
} while ( bnew && !connected };
if ( lconnected )} n++;
bold = bold->child;
}
cell~>ndend = n;

/* STEP 1i. - Tdentify somal dendrites but extract nothing */
soll->dendlist=(dendrite %) malloc((cail->ndend)*sizeof (dendrite));
bold = first_branch;
n=290;
while ( n < cell->ndend ) {

bnew = first_branch;
do {
k = bney->nebs-1;
tmp = pow{bold->x[0]-bnew~>x[i],2)+
pow (bold->y [0]-buew~>y (k] ,2)+
pow(bold->z[0]-bnew—>z{k],2);
comacted = { tmp < 0.01 );
bnew = bnew->child;
T while ( bnew &k ‘connected );
if ( {conmected ) <
cell->dendlist[n}.root = bold;
n++;

Il
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T
bold = bold->child;
}

/% B8TEP 13. - Extract root of nach dendrite from dendrite list */
for ( ¥=0 ; k<cell-»>ndend ; k++ ) {
bold = cell->dendlist[k].roet;
remove_branch{ &first_branch, bold);

b

/% STEP 14. - Build aach demdrite from its root branch %/
for ( k=0 ; k<cell->ndend ; k++ ) {
build_dendrits( &first_branch, cell->dendlist (k] .root);
clean_dendrite( cell->dendlist[k] .xoot);
}
if ( first_branch ) printf("\nWarning: Unconnected branch sapments still exist\n");
return cell;

¥

Fokokootdodor kAR Aok b kst kb ok A ok sk oh ok kR R R R R oK dokok sk b Aok ot R o ok ok
Function to imitialisa a BRANCH

Aok * o KRR KKK SR o KoK sk otk ok sk ok Kk R ok doRSOK & %

void init_branch{ branch *b, int n, double cm, doubla gm, double ga)

{

/* Allocate memory for spatial orientation of dendrite */
b->x = {(double *) mallac( n#¥sizeof (double) J};
b~>y = (double *) mallo¢{ n*sizeof(double) J};
b~>z = (double *) malloc( n*sizeof{doubls) );

/% Allocate memory for branch geometry +/
bv->d = (double *) malloc{ nsizeof{double) );
b->pl = (double ¥) malloc{ n*sizeof(double) );
b->el = (double %) malloc{ n¥sizsof (double} );
bh->sa = (double *) malloc{ n*sizecf(doudle) );

/% Set parameter values %/
b->cm = em;
b->gm = gm;
b->ga = ga;

/* Set boundary condition */
b->be = Q;

/* Initlalise node information */
b->nodes = 0;

b->fn = 0;
o->jn = 0;
o->¢ = NULL;

/* Initialise contact information */
b->conlist = NULL;
b->ncon = 0;

[ return;
}
/ B E Ed 2 M Ao ko 3 R KK K K K K R K K Sk R RO e Rk
Function to build CONTACYT information
sk st sk skofe o o stk o ook ok ek sk ok EL 2 At A R KoK ok oo ook

void BuildContactInfo(contact #con, branch *b, branch #¥bopt)

{
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int k;
double px, py, pz, tomp, xold, xnew, yold, ynew, zold, znew,
numex, denom, xmin, yain, zZmin, min;

pxX = con—>Xc;
Py = con->yc;
pz = ton->zc;

/% BTEP 1. ~ First stage ip different from others */

xnew = b->x[0]; ynew = b->y[0]; znew = b->z[0];

min = sqrt(pow(xnew-px,2)+pow{ynow-py,2)+pow(znew-pz,2)};

if ( I(eon->sd) ]| ( con~>sd && min < con->ad )} ) {
con—>ed = min;
COn~>Xp © Xpew; COn~>yp = YyOeW; COoR—>Zp = 2ZNaW;
con—>pl = con->el = con->sa = 0.0;
*bopt = b}

}

/* BSIEP 2, - Second stage compares points and projected points */
for { kel ; k<b-»nobs ; kt+ ) {
x¥01d = xunew; yold = ymew; zold = znew;
xnew = b->xfk]; ynew = b->y[kl; znew = b->z{k];
numer = (xnow=-xold)*(px-xold)+(ynew-yold)+(py-yold)
+(znew-zold) *(pz-zold) ;
denom = pow(xnew-xold,2) +pow(ynew-yold,2)+pow{znew-zald, 2} ;

/* STEP 2a. ~ Project onto branch */
if { 0.0 <= mumer && numer <= denom )} {

tmp = aumor/denom;

xmin = (1.0-tmp)*xold+tmp*xnew;

ymin = (1.0-tmp)+yold+tmprynow;

zpin = (1.0-tmp)+*zold+tmprznew;

min = sqrt(pow{xmin~-px,2)+pow(ymin-py,2)+pow(znin-pz,2));

if ( 1(con->sd) || ( con-»>sd &% min < con->sd ) ) {
con->sd = min;
con->xp = xmin; con~>yp = ymin; con->zp = zmin;
con->pl = (1.0-tmp)¥b->pl [k~1]+tmpb->pl (k] ;
con->ul = (1.0-tmp)xb—>el[k-i]+tmpxb->el[k};
con->sa = (1.0~tmp)*b~>salk-1]+tmpxb-»sa[k];
*hopt = b;

}

/% STEP 2b. - Check proximity to points of branch =/
min = sqré{pow{xnau-px,2)tpow(ynew-py,2)+pow(znew-pz,2));

if { '(eon—>8d) ]] { cou~>ed && min < con->sd ) ) o
con~>sd = minj;
con->xp = XNOw; con—>yp = ynew; Con->2p = Znew;
con->pl = b->pllk]; een~>el = b->sl[k]; con->sa = b->salk];
*bopt = bj
}
T
return;
}
/ * e o o e ok o ok ok kst Rk ok KRRk ko okok ok ok

Function to remove a branch froem a branch list
sk A A ok ok KR AR R R A KSR e oK Ao sk e KRR o ok ok

void remove_branch{branch ¥*head, branch %b)

{
if ( !{{+hoad) || 'b ) return;
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if ( vhead == b ) {
*head = b~>child;
if{ *head } (*head)->parent = NULL;
} olse {
b->parent~>child = b->child;
if { b~>child ) b->child->parent = b->parent;

}
b->parent = NULL;
b->child = NULL;

return;
}
[k AR WK Wbk ok ek doK K Kok A oK SO sk Rk o
Function to build a dendrite from its raot
R A KA KA AR R oA ok ok ok Aotk ¥k ke ek ok oR ok ok ok /
void build_dendrito( branch *¥head, branch *root)
{
int k;
doubls tmp;

branch *bnow, #*bnext, *btmp;

bnow = *head;
while { bonow ) {

/* Store bnow’s child in case it’s corrupted */
burext = bonow->child; ;

/% Search if proxiwal esnd of bnow is connected to distal end aof root */
k = (roct->nobs}-1;
tmp = pow{bnow->x [0]-reot->x[k],2)
+pow (buow->y [0] -root->y (k] ,2)
+pow (bnow->z [0] ~roat—>2{k] ,2);
if ( tmp <= 0.01 } {

/% Take bnow out of the bramch list */
remove_branch( head, bmow);

/* Comnect bnow to the root as the child or a poor of Lhe child.
Initialise childs’ children and pears to WULL ae default =/ ;
bnow->child = NULL;
bnow->peer = NULL;
bacw->parent = raot;

/+ Inform root about its child if it’s the first child, or add
now child to first child’s peer list x/

if { root->child } {
btmp = root~>child;
while { btmp->pesr ) btmp = btmp->pser;
btap->peer = bnou; :

} else i
raot->child = bnow;

T

)

/* Initialisae broy to uext branch in list ¥/
bnow = hneXxt;

¥

/* Iterate through remaining trea %/
if ( root->child } build_dendrite( head, root->child);
if ( reot—>peer )} beild_dendrite{ head, root->peer);
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return;
¥
/xx bk ook sokodokok ik Foot Aok ok dor Sk koK
Function to remove pesrless children
KRR ROR K ok AR AR Ak sk R ek ok Kok koK K ok oKk kR f
void clean_dendrite( brunch *root)
{

int k, mp, nc, wow, n;
double tmp, sarea;
contact *con;

branch %btmp, ¥brem;

/* Iterate through remaining tree */
if { root—~>child ) ¢lean_dendrite{ root->child );
if { root-»peer ) clean.dendrite{ root->pear });

/% Extend original parent limb */
brem = root->child;
it { brem && !(brem->peer) ) {
rool~>child = brem->child;
if ( brem->child ) {
brem~>child~>parent = roob;
btmp = brem->child->pesr;
while ( btmp } {
brmp->parent = root;
btup = bimp->pesr;

’
}
root—>bc = brem-rhc;
7/ root->nodes += (brem->nodes)-1;

np = root->nobs;
nc = brem->anobs;
metn = np+nc-—1;
root=>nrobs = mem;
root->x=(double #) realloc{{void *)root->x,mem*sizeof(doubla});
for ( k=np ; k<mem ; k++ ) root->x[k] = brem->x[k-np+l];
root~»y=(doubla *) realloc({veid *)root->y,mem¥sizeof(double});
for ( k=np ; k<mem ; k++ )} root->y(k] = brem->y[k-npt+l];
root—->z=(double *) realloc{{veid *}root->z,mem*sizecf(doubla});
for ( k=np ; k<mem ; k++ } root—>z(k] = brem—>z[k-np+1];
root->d=(doubla *) realloc{(void *)root->d,mem*sizect (double));
for ( k=pp ; k<mem ; kt++ ) root->d[k] = brem->d[k-np+i];
root~>ple(double *) realloc((void *)root->pl,memksizuvof (double));
for (k=np ;k<mem ;k++ ) root—>pl[kl=raot->p_lentbrem->pl [k-np+il;
root->el=(double *) realloc{(void *)raot->el,mem¥sizacf (double));
for (k=np ;%<wew ;k++ } root~>ell[k]=root->e_lemtbrem—>el[k-npti];
sarea = ruolk->sul[np-1];
root->asa={double #*) realloc{(void *)root->sa,mem*sizeof(double));
for ( k=mp ; k<mem ; k++ ) root->salk] = sareatbrem->salk-np+1];
root—->p_len += brem—>p_len;
root->e_len += brem->e_len;
root->ncon += brem->ncon;
can = rooft->coniist;
if { con ) {

while ( con—-»pext ) com = con->noext;

con->next = brem->conlist;

if { brem->conlist ) brem->conlist->prav = con;
} else {

root—>conlist = brem->conlist;

¥

169
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!
!
f[




APPENDIX A. ASSOCIATED PROGRAMS 170

brom~>c¢onlist = NULL;
froe(bren->x);
free(brem=>y);
free(brem->2) ;
free(brem->d) ;
free(brem->pl);
free(brem->al);
free(bren->sa);
if { brem->c ) free(brem—>c);
freo ( brem };

}

return;

}

J kAo koo o stokook Rkl o Rk ook A sk o sk ok ko Ak b ko sk ok ok
Function to destroy a NEURDN
ROk R A KR A KR AR KRR R OR AR ok sk ks s stk b ok ok ok o
void Destroy_Sampled Nouron(neuron *cell)
{
int i;
contact *prevcom, *nextcon;

/* Free Soma ¥/
froo { cell-»s->x );
froo ( coll->e=>y );
frea ( cell->s~>z );
frae ( cell~>s->d );
pravcen = cell->s~>conlist;
while ( prevcon )} { :
nextcon = prevcon~>*next; i
frec { prevcon );
provcon = nexteon; {
!

}
free ( cell->s );

for (i=0;i<cell~>ndend;i++) destroy dendrite{cell->dendiist{i].root}; ;
free(cell); f
ratuin;

¥

J ko ook kb ook ook R ok ok btk oR ol ok o oRololofoR b R R 4 i
Function to destroy DENDRITH |

stk R Rk KR HOR N R HOR Aok A R A ook kb ok FRRA A */

void destroy.dendrite( branch b )

i

int i;
contach fprevcoi, *nextcon;

if ( b~>child )} doetroy_dendrite(b->chila};
if ( b->peer ) destroy_dendrito(b->peer);
free(b->x);
frea{b->y);
frea{b->z);
free(b->d); !
frea(b->pl);
free(b->al);
free(b->sa} ;
if { b->c )} freal(h-~>c);
prevcon = h~>conlist;
while ( prevcon ) {

noxtcon = preveon->next;
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freo ( provcon );
preveoon = noxtcon;

}
free ( b };
Teturn;
}
Jrokkonsok ok ok ko ¥ 6k ok ok ek ok ook oK B ko ek AR K ok
Function to count contacts from c¢nrront branch )
to the dendritic tip.
#ok ek ok ok Sk ek A RO EORKHOROR ROk B0kl o Rk ROk ok f l
int count_contacts( branch sbatart, branch *bnow) [
{
static int n;
contact *Com;
if ( bstart == bnow ) n = 0;
if ( bmow ) {
if ( bnow->child ) count_contacts{bstart, bnow->child);
if ( bnow->peer ) count_contacts(bstart, bnow->peer);
con = bpow->coulisl;
while { con ) { B
n++; .
if { con->ud > 4.0 )
priutf {("\nCantact not close to dendrite %6.21f", con—>sd};
con = con~>next;
}
¥
return n;
}

7o Kk KA st AN e s R AR OROK S A e R R SCR AR ROl SRR K K ok ok ok
Fonction to count numbher of branches

i
A ek ko e Kok ks ok okl Rol ok okl ok ok ok o o o oK ¥ R KA HK S I
int count_branchas( branch *bstart, branch xbnow) I
1{

static int n;

if { bstart == bnow ) n = Q;

if ( boow J {
if { bnow->child } count_branches{bstart, bunow->child);
if ( bpow->peor ) count branches(bstart, bnow->pecr);
nt;

+

return n;

)

JFRER IR IR A AN TR KKK IAAA AR KRR kKA Rt oo A ok bk e
Function to find lengthk of dendrite from
current branch to tips.
sk kAR FoRA KRR R R ROk Rk Rk R R RO R Ak koo ok kool /
double branch_length( branch *bstart, branch *bnow)
{

static double length;

if ( bstart == bnow ) length = 0.0;

if ( bonow ) {
if ( bmow->child ) branch_length(bstart, bnow->child);
if ( bmow->peer ) branch_length(bstart, bnow->peer);
length += boow->p_len;
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raturn length;

}

JHoRskk ek ddok bR ko ok ok R AR AR Rk kb % K

Function to count number of terminal branches
ok okt ok R T ) Fook ok NOR K K ok gk Aok Rk R KRN ok R/

int count_terminal_branches{ branch ¥bstart, branch #bnow)

{

static int nj;

if { bstart == bnow ) n = 0;

if ( bnow ) {
if ¢ bnow->child ) count_terminal_branches(bstart, bnow->child);
if ( bnow->peer ) count_terminal_branches(bstart, bnow->pear);
if ( 'bonow->child ) mt+;

}

Tetura n;
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A.3 Equivalent cables

The prograin MapContacis.c uses the BuildNeuron.c program as & foundation to extract
morphological and synaptic neuronal data for the construction of equivalent cables. Map-
Contacts.c uses the transformation procedures described in Chapter 4 to construct an

equivalent cable with the associated bijective mapping of input.

A.3.1 MapContacts.c

#include <stdio.h>
#include <stdlib.lp
#include <math.h>

#include <string.h>

/* Function type declarations */

neuron *Load_Sampled Neuron{char *);

void Destroy Sampled Neurcn(neuron *);

void init_branch( branch *, int, double, double, double);
void BuildContactInfo({contact #, bruuch #, branch #x);
void remove_branch( branch **, branch #);

void build_dendrite{ branch *%, branch #);

void clean_dendrite( branch *);

void destroy_dendrite( branch *);

int count_branches( branch %, branch *);

double BranchPhysicalLength( branch *, branch ¥);

double BranchElectrotonicLength( branch ¥, branch *);

int BuildElectrotonicNodes( branch *, doublo, imt, ing);
void ConstructTreeMatrix( branch *, doublo **, double #);
int count_comtacts( branch *, branch x);

int count_terminal _branches{ branch *, b“ranch *);

void OutputProperties{ brauch ¥ );

void house{ int, double %, double *, double *);

void MapContacts{ branch *, double *, int);

/% Globel definitioms +/

#define [#35 1.0

#define GS 14.3

#tdefine Ga 14.3

#defina 4, | 1.0

#define GH 0.091

#define R 0.2

#define b1} 1

#defina DUTPUT2 "eurr_cell.out"
#define OUTPUTA "eable_cell,out"

int main{ int argc, char **argv)
1
iuk j, k, id, start, nodes, nc, fn, num;
double slen, csum, tmp, fac, pi, thota, *%a, *curx, *awp, *d, *diree,*s, *stree, ¥e;
neuren *un;
branch *braw;
FILE *£p;

/* Load sampled neuron #/
if (arge '= 2% {

f
l
|
!
5
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/%

VL]

/*

/%

/*

7%

/%

printf{"\n Invoke program with load <input>\n");
rotuxn(l);
¥ alee {
n = Load, Sampled Neuron( argv[i] );
if (In ) o{
printf{*\n Failed to find sampled neurom\n");
return(l);

}

Count contacis */
pi = 4.0%atan(1.0);
for { nc=k=0 ; k<n->ndend ; k++ } {
ac += count_contacts( n->dandiist[k].root, n~>dendlist[k].root);

}.
printf{"\n Located %d contacts on dendrites", ne);
printf{"\n Located %d contacts on soma", n->s->ncomn);

Recomputc dendritic diameters */
for ¢ ¥=0 ; k<n-»>ndend ; k++ ) OutputProperties{ n->dendlist[k].zovot);

Compute entira elsctrotonic length of a neuron */
for (elen=0.0,k=0;:k<n->ndend;k++} elen += BranchElactrotonicLength

( n~>dendlist[k].root, n->dendlist[k].xrootl};
printf("\nTotal Electrotonic Length is %12.61f", elen);

STAGE t. — Discretise slectrotonic meuron */
fn = 1;
for ( k=0 ; k<n->ndend ; k++ ) {
fn = BuildElectrotonicNodes( n->demdlist[k].voat, EU, 0, fn);
}
printf{"\n No nodes is %d", fn);

STAGE 2. - Build the model matrices %/
8 = (dauble *) melloc( fn*sizeof (double) );
d = (double *) malloc( fntsizeof(double} );
dtree = (double *) malloc( fnsizeof{double) );
curr = (double #*) malloc( fn*sizeof (double) );
a = (doublu **) malloc{ fn¥sizeof (double %) );
for ( k=0 ; k<fn 3 kt+ ) {
dlk] = 0.0;
dtresl[k] = 0.0;
currl(kl = 0.0;
alkl = (doubls *) malloc{ fnrsizeof (double) );
for { j=0 ; j<fn ; j++ ) alkl[jl = 0.0;
h

STAGE 3, - Do soma noda %/
for ( csum=0.0,k=0 ; k<n->ndend ; k++ ) csum += (n->dendlist[k].roct)->c(0];
dtres(0] = csmm;
al0](0} = ~1.0;
for { ®=0 ; k<n->ndend ; k#+ ) {
bran = n->dendlisat[k].root;
i = braa—>fu;
wf0l[j] = (bran->c[0])/csum;
}
for { k=0 ; k<n->ndend ; k++ ) ConstructTreeMatrix( n->dendlist[k].root, a, dtres);

STAGE 3a. - Consistency check %/
for ( j=0 ; j<fn ; j++ ) {
for {( k=0 ; k<fn ; k++ ) {
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if ¢ aljl(k] == 0.0 &z alkILj] != 0.0 ) printf("\u Trouble! %d %d", j, k);
}

/* STAGE 4. - SymmetXxisc the tres matrix %/

stree = (double *) malloc( fnxsizeof (double) );
for ( k=0 : k<fn ; k++ ) strealk] = 0.0;
streefld] = 1.0;
for ( j=0 ; j<fn ; j++ ) {

for ( k=0 ; k<fn ; kt++ ) {

if ¢ alj1[x3 !'= 0.0 && stree[j]l t= 0.0 )
stras[k]l = streeljl*sqrealk](jl/aljl [k1);

}
by
for {(k=0;k<fn;k++) if (istree[kl) printf{"\n Entry %d is zexro", kJ;

/% STAGE 5. - Build the symmetrised tres matrix =/
far ( j=0 ; j<fm ; j++ ) {
for ( k=j+1 ; k<fn ; k++ ) {
if ( aljllx] = 0.0 ) aljl [kl=alkl [ji=sqre{alj) (k) *alkl []]);
}
}

/% STAGE 6. - Apply the Houselolder procedure */
house( fm, a, d, 8);

/¥ STAGE 7. - Construct tha oquivalemt cable %/
for { d[1]=0.0,%=0 ; k<n->ndend ; k++) d[1] += n->dexdlist[k].root->c[0];
Lheta = 0.5%pi;
nc = 1;
while({ nc < fo-1 && faba(theta) > 0.01 ) {

fac = fabs(elncl)/sin(theta);

if ( fabs(fac) <= 1.0 ) {
thata = acos(fac);
d[nc+1] = d[nc]*pow({tan(theta),2);
nctt;

} else {
theta = 0.0;

}

}

/* SUAGE 8. - Extract physical dimension: c=(pi/2)sqri{g.mtg_a)d"{3/2} */
fac = 2.0/ (pi*sqrt(GM*GA));
fp = £opon(UUTPUTL,"w");
for (k=1 ; k<=nc ; k++)fprintf(fp,"(ZBd,XE.Zlf),",k."1.064*paw(d[k]*fac,D.BGGGGGT));
fprintf (fp,"\n\n");
for (k=1 ; k<=nc ; k++)fprintf (£p,"(%3d,%5.21£),",k,-1.0adrpow(d k] *fac,0.E666667));
fcloso(fp);

/% BTAGE 9. - Construct vector of current iuputs */
amp = {double *) malloc( fntsizeof{double) };
for ( k=0 ; k<fn ; k++ ) ampl¥] = 0.0;
for { k=0 ; k<n->ndend ; k++ ) MapContacts(n->dendlist[k].roet, amp, ID );

/* STAGE 10a. - Comstruct symmetrising diagonal matviz S */
s = (double *) mallec( (nc+1)*gizeof(double) );
g[0]l = 4.90;
d[o] = 0.0;
for ( k=0 ; k<nc—-1 ; k++ ) {
tmp = (A0k]1+d [k+1] )/ (d[k+1]+d[k+2]) ;
s[k+1] = s{k]*sqrt(tmp);
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H
tmp = dlnc-1]/d([nc)+1.0;
sfncl = s(nc-1]*sqrt{tmp);

/* STAGE 10b. ~ Correct for negatives */
for ( k=0 ; k<=nc ; kt+ ) if ( e[k] < 0.0 ) slk] = ~s[k];

/% STAGE 10c. ~ Comstruct Current EGP Matrix =/
for ( k=0 ; k<fn ; k++ ) dtreefk] *= streeilk];
for { k=0 ; k<fn ; k++ ) {
for ( j=0 ; j<fm ; j++ ) alk][j] /= dtreslj);
}
for ( k=0 ; k<=nc ; ki+ ) d[k] *= s[k]:
for ( k=0 ; k<=n¢ ; kt+ ) {
for { j=0 ; j<fn ; j++ ) alk][j] *= dlkl;
}

/¥ STAGE 11. - Calculate injscted current on cablo #/
for ( k=0 ; k<=nc ; k++ ) {
for ( j=0 ; j<fn ; j++ ) curr(k] += alk]{j]*amp{j]l;
}
fp = fopen(QUFPUTZ, "u");
for { k=0 ; k<nc ; k++ } fprintf(fp,"%4.161f\n", curr[kl};
fclose(fp);

/* Clean up memory */
for ( k=0 ; k<fn ; k++ ) free(al[k]);
frea{a);
free (anp);
froolcurr);
froc(d);
fres(dtrea);
free{e):
free(s);
froa(strea) ;
Deastroy_Sampled_Neurou( n );
return(0);

}

7 ARk ok doh ootk ook o sofokok ok ok sekaokofok ok Aok ol Aok o ok ROk
Performs Howseholder transformations on a symmetric matrix.
ok ok *kokokok AR AR ok AR KRR K ROROKRONAOR Aok

void house{ int n, double ¥*a, double *d, douhle =g)

{

int i, 3, k;
double beta, g, =2, sum, ¥y, *u, &y;

/* Allocate two working vectors each of length n */
g = (double *) malloc{ n*sizeof(double) );
u = (double *} malloc{ n*sizeof(double) };
w = (double *) malloc{ n¥sizeof(double) )};

/% A total of (n~-2) householder sieps are required - start on the
first row of al J[ ] amd progress to the third last raw - the
last 2 rows already conform to the tri-dlagonal structure */
al0]l = 0.0;
for ( i=0 ; in-2 ; i++ ) {

dfil = alil[43;

/* Detexmine the magnitude of the working row */
for ( 8=0.0,j=i+l ; j<n ; j++ )} = += ald]l (fl*alilljl;
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/*

/%

}

g = sqrt(s);
if ( afil[i+1]) < 0.0 ) 8 = -8;
oli+l] = -s;
g = sdali] (i+1];
if (8 ==0.0){
ali1(il = 1.0;

} else {
beta = 1.0/(s*g);
uli+1] = g;

for ( j=i+2 ; j<n i j++ ) uljl = alil(j];

for ( j=i+l ; j<m ; j++ ) o
for ( sum=0.0,k=i+1 ; k<n ; x++ ) sum += alj) [kI+ufk];
wljl = sumrheta;

for ( sum=0.0,{=i41 ; j<n ; j++ )} sum += uljl*w[jl;
sum ¥*= 0.5%beta;
for ( j=i+l ; j<n ; §++ ) q[jl = wljl-sumxufjl;
for ( j=i+l ; j<n ; j++ ) {

for (k=i+l;k<m;kt4) aljl [k}-=(qljl*ulk]+uljl+q[xI};
T

Store vector to gemerate orthogonal matrix */
al[ilfi]l = beta;
for ( j=i+l ; j<m ; j++ ) alilfj] = uljl:

}
)
d[n-2] = al=n-2] [n-2];
d[n-1] = aln-1) [n-1]1;
oeln~11 = a[n-2] [n-11;

Restructure a{ 1{ ] to hold product of Householder matrices */
alo-2] [n-1% = aln-13[n-2] = 0.0;
aln-2]1 (n-2) = aln-1)[n-1) = 1.0;
for ( i=n-3 ; i>=0 ; i~ ) {
beta = a[i] [1];
for ( j=it+i ; j<m ; j++ ) uljl = a[il{j);
a[dl[4] = 1.0;
for ( j=i+1 ; j<m ; j++ ) alill[j]
for ( je=i+l ; j<u ; j++ ) aljl(d]
for ( j=it+l ; j<n ; j++ ) {
for ( sum=0.0,k=i+1 ; k<n ; k++ ) sum += a[j][x]+u(k];
wlj]l = suwrbeta;

Il

0.0
0.0

]

3

}
for ( je=itl ; j<n ¢ J++ ) {
for ( k=i+1 ; k<n ; ko ) aljl0k] ~= uljl+w(xl;
}
)
froolq):
free(u);
freo(w);
rotuxrn;

J kool oRokok R kR ok s ok ok koK okl R o kok ¥ ¥k
1

Counts nodes required to discretise the slectrotonic neuron.

b - Dendritic branch

ql - Quantum of electrotonic length

jn - Node number of branch point, the proximal rode of a brauch

fn - Node numbar assigned to interior node adjacent to proximal node

ok Fodk ok Aok Rk * t**t****t#*****/
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int BuildElectrotonicNedes{ branch *b, doubla gl, imnt jo, dimt &In)

{
int j, k, nodes;
static int total_nades;
double dval, EloctrotonicStepsize;
/¥ STEP 1. - Imivialise counter if b is a rxoat dendrite wx]
if ( b->parent == NULL ) total_nodes = fn;
/% STEP 2. - Compute required number of nodes */

nodes = h~>alen/ql;
if { fmod{b->e_len/ql,1.0) > 0.5 } nodes++;
nodast+;

/% STEP 3. - Set junction node, first nede and node counter */
b->nodes = nodas;
b->jn = jn;
b->fn = fn;
total_nodes += (nodes—1);

/% STEP 4. - CUreate vector of characteristic conductances for branch */
ElsctrotonicStopsize = b->e_len/{{double) nodes-1);
b->¢ = {doublo *) malloc{ (nodes-i)*sizeof(double) );
b->cf0] = 0.0;
for ( j=1 ; j<nedes—1 ; J++ ) {
dval = EloctrotonicStepaize*{(double) j);
k = 0;
whilta ( k < h->nobs-1 && dval > b->el[k} ) k++;
b->c[j] = b->salk-1]+(b~>sa[k}-b->aa[k-1])*
(dval-(b~>el[%-1]))/(b->el[k]-b->elk-11);
}
for ( k=0 ; k<nodes-2 ; k++ ) b->clk] = b->c[k+1]-b->clkl;
b->cinodes-2] = b->salb->nobs-11-b->c[nodes-2];
for ( k=0 ; k<nodes-1 ; k++ )} b->c[kl *= (b->gm/ElectrotonicStepsize);

/% STEP 6. - Iterate */
if (b->child) BuildElectrotonicNodes
(b->child,ql,total_nodes-1,total_nodes);
if (b->peer) BuildElectrotoniclNodes( b->peer, ql, jn, total_nades);
return total_nodes;

}

Fotkakokobok ok etk s totor doR AR S Rk R sORHOR JORORRORROR R KR el ook e o ok o sk ol
Construct tres matrices for equivalent cable

kR AR oK o Sk AR HK R S R AR OK RO Ak sedoRAoORs R ek s ok ok
void ConstructTresMatrix({ branch #b, double *#a, doubls *d)
{

int j, k, row, node;
branch #*bran;
double cswu, tmp;

/¥ SIBP i. - Do internal nodas #/
row = b->fn;
node = 1;
while { node < b->nodes—-1 ) {
csum = b->c[node~1]+b~>c{nedel ;
d[row] = csum;
if ( node == 1 } {
alrowl{v->jn] = b->cInods-1]/csum;
} else {
alrow] frow-1]

]

b->c{nods-1]/csum;




APPENDIX A. ASSOCIATED PROGRAMS

H

alrow]) [rowl = -1.0;

alrow] [row+l] = b->c[node] /csum;
rowtt;

nodatd;

¥

/% STEP 2. -~ De branch point */
row = b->fn+tb—>nodes-2;
csum = b->¢[b->nodes-2];
if ( b->child ) {
bran = b->child;
csum 4= bran->c[0];
while ( bran->peer ) {
bran = bran—>psex;
csum += bran—>c{Q];
}
}
d[row] = csum;
if { node == 1) {
alrow] [b->jn] = b-»c{b->nodes-2]/csuu;
} elsa {
a[rowl [row-1]1 = b->c(b->nodws-2]/csum;
¥
a[row] [row] = -1.0;
if ( b—>child ) {
bran = b->child;
afrow] [bran—->fn] = bran->c([0]/csum;
while ( bram->peer ) {
bran = bran->peer;
a[row] [bran->fn] = bran->¢[0]/csum;

}

/= STEP 3. — Iterate %/
if ( b->child } ConstructTreeMatrix [ b-»child, a, d J);
if ( b->paer ) CongtructTreeMatrix{ b->peer, e, d };
return;

}

JER ko ok Aok ok okl ok ek ko ok Rk R R R R R ROk R R
Map coutacte onte Equivalent Cable - Lype 1

T R R e e e ] SHER AR Aok sokskok f
void MapContacts{ branch *b, double ¥amp, int id)
{

int j, k;

double sss, frac, tmp;
contact *con;

/* Step 1. - Iterate through tree */
if { b->child ) HapContacts( b->child, amp, id );
if { b->pesr ) MapComtacts( b->peer, amp, id );

/% Step 2. - Allocate currents */
sy = (b->e_len)/((doubls) b->nodes-1);
con = b—>conlist;
while ( con ) {
if ( con—>id ==id ) {
tnp = con->al/ess;
j = ((iny) floor(tmp));
frac = fmod(tmp,1.0);

179




APPENDIX A. ASSOCIATED PROGRAMS

if (J=0)<{

/% Step 2u. - Ona node is at the junction %/
amp fb->jn} += 1.0-frac;
amp [b->fn) += frac;
} else {

/¥ Step 2b. ~ Both nodes are internal */
amp [b->fn+j~1] += 1,0-frac;
amp [b->fn+j] += frac;

con = con—»next;
return;
[ sseekotokdok dokioR ok oK sk okokok sk otk ok ekl woKoK kR ROk ok R ok bk bRk

Function to find slectrotonic length of a
dendrite from current branch to tips.
o AR AR ek otk ok ok sk ok e dok o ok kR ok KR Lot ] */
double BranchElectrotonicLength{ branch *bstart, branch $bnow)
{

static donble elen;

if ( bstart == bnow )} elea = 0.0;
if ( bnow ) {
if { bnow->child ) BranchElectrotonicLength{bstart, bnow->child);
it { boow-»peer ) BranchElectrotonicLength(bstart, bnow->peer);
elan += bnow—>e_len;
printf(”\nﬂ12.61f \t %12.61f \t %12.61f \t %12.61f",
bnow->e_len, bnow->p_len, bnouw->d[0), bnow->d[bnow->nobs-131);
}
roturn olen;

}

KRR e ko e ke B o RO RORORK AR deofsk R AR S sKR SR koo ook ok ok s ek kR ok
Function to output branch diameters

A L # Fdolokd Kok R ARk
void OutputProperties( branch #b )
{

int i, k;

static int start=1;

doubls dold, dnew, len, xcld, yold, zold, xnew,
ynew, znew, dx, dy, dz, size;

branch *bran;

FILE *fp;

if ( b->child ) DutputPFroperties(b->child);
if ( b->peer } QutputProperties{b->peer);
if ( start ) {
fp = iopen("output: "oty
start = 0;
} else {
fp = fopen("output","a");
fprintf(fp,"\n“);
T

/+* Decanposes branches into lengths of uniform diamster */
len = xold = b->pl[il;
dold = b->d[1];
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for { k=2 ; k<b->nobs ; k++ )} {
¥new = b->plfk];
dnew = h->d[k];
if ( doew != dold ) {
len += 0.6+(xnew-xold};
fprintf (fp, "%6.21F \t %6.21f \n", len, dold);
len = 0.5%(xnew-xold};
} olse {
len += xueu-xold;

}
xald = xnew;
dold = dnew;

}
fprintf (£p,"%6.21f \t %6.21%f \n", len, dold);

/* Constructs diameters of a branch and its children/peers %/
1f ( b->child ) {
fprintf (fp, *%6.2LE\t)6. 2L£\L" , b->d [ (b->nobs)~1] ,b->child—>d{1]);
braun = b->child;
while ( bran->peer )} {
bran = bran->peer;
fprintf ({p,"%6.21f \t", bran->d(1]1);

1

/* Prints out branch lengths */
printf("\nBranch length %6.21f, %6.21f, }6.21i", b->p_len,b->d[0],b~>d[b->nobs-1] };
fclose(fp);
rotur;
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A.3.2 CumulativeCurrent.c

The distribution of current calculated by MapCoutacts.c is the total cmrrent at cach node
on the cable. The cumulative current density was constructed to visualise the distribution

of currenl along the cable using the program CumulativeCurrent.c below.

#include <stdio.h>
#inclvde <stdlib.h>
#include <math.h>
ftinclude <string.h>

£ RAOR RO 5 R KK ok k Ao ok e KRR okl ok ok R ok ke b okt ko

Constructs the cumulative current input
SRR AR ok okl o B SR R OR ol o bk o AR ek R kol ok ok Ao ko /

#define EU 0.001 /% Electrotonic units */
#define EL 10 /% Electrotonic length of intervals %/

int main{ int argc, cher *xargv)
{
int j, k, span, n, nc, left, start;
double *aver, eu, *sum, tmp, *Curr;
char filename[801, outputl{80], *pnt, namel80];
FILE *fp, *fpl;

/% Load cunrrent cells #/

if (arge 1= 2 ) {
printf {"\n Invoke program with load <input>\n};
return(i);

}

if ( (fpl=fopen(argviil,"r")) == NULL ) {
printf("\n No file call %s\n",argv[i]};
return(l);

].
vhile ( fscanf(fpl,"%s", &filename) != EOF } {

/* STEP 1. - Load file of current data #/
n = 0;
if ( (fp=fopen(filenanms,"r"}){=NUVLL ) {
while { fscanf(fp, "ALf %Lf", &eu, &tmp)!=EOF ) nt+;
fclose{fp);

/* STEP 2. - Allocate memory to hold file information #/

curr = (double *) malloc{ m*sizeof{double) );
ip = fopen(filename,"r");
for { k=0 ; k<n ; k++ ) fscanf(fp, "41f %1f", keu, &ecurrl[kl);
fclose(£p);

} else {
printf{"\nInput fils met found\n");
return(0);

}

printf("%s\t Ad items in £ile\n”, filenams, n};

/* STEP 3. - Avereging process */
span = n/EL;
left = n¥EL;
sum = {(double *) mulloc( (span)*sizeof{doubly) );
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/%

/%

for { k=0 ; k<span ; k++ )} sumik] = 0.0;
priutf{"\n%d intervals\n¥%d nodes not included", span, left);

for ( k=0 ; k<span ; ki+ )
for ( j=0 ; j¥ELx(k+1) ; j++ ) sum[k] += curx[jl;
}

STEP 4. - Create individual £iles %/
put = strstr{ filename,"cell");

kX = 0;

while ( #*pnt I= ?.* ) {
pame [k++] = *pnt;
put+t;

}

name {k++] = ?_?;

nane fk++] = ?s?;

name [X++] = u’;

name [k++} = m?;

pame [k++] = 2.7,

pname [k++] = ‘07,

name[k++] = 'u’;

name [k++] = 't7;

name[k] = *\0’;

fp=fopen(name,"w") ;
for ( k=0 ; k<span ; k++ ) fprintf(fp, "%1f\n", sum{k]);
fclosa{fp);

Clean up memory %/
frea(sum) ;
free{curr);

}

fclose(fpl);

return(0);
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A.3.3 Lagrauge.c

To allow comparison between the cumulagive current input from different types of synaptic
input, the curves were smoothed and then normelised. The program Lagrange.c performs
both of these actions, with the additional calculation of the current density.

finclnde <stdio.h>

fincluds <stdlib.h>

#include <math.h>
#include <string.h>

/#*************k** K ¥ % ok o Rk koK K KKKk K ok deolor Sokokokeskotakokor

Propram to filter the cumulative curves of cable
using Lagrange method - normalise curves

ok g mol o AR R SOK * *¥ Aok okt Kk OB ORE R ROK Rk Aok /
#define EU 0.001 /% Llectrotonic units */

#define EL 10 /* [lactrotonic length of intervals */
#define N & /+* No. of polynomlals */

#define M 3 /* No. of constraints */

/* Punction type declaration */
ludeap{ int, double ¥¥, int *);
veid linsol{ int, double #*, doublse %, double %, int *);

int main{ int arge, char **argv)
{
int m, i, j, k, node, nobg, nc, jj, *row;
double alt, *a, *b, ¥*e, %%, %*t, tmp, len, pi, te,
to, theta, xmax, diff, angle;
char filename[80), outputi[80], *ptr, nane(80];
FILE *fp, *fpl;

/% Load current cells */

it (arge 1=2) {
printf("\n Invoke program with load <imput>\n");
return(i};

b

if ( (fpi=fopen(argv[il},"r"}) == NULL ) {
printf("\n No file call ¥s\n",argv{il);
return(l);

}

while ( fscanf(fpl,"%s", &filename) != EQF ) {

/% STEP 1. - Loud filo of current data */
nobs = 0;
if ( (fp=fopen{filename,"x"))!=NULL ) {
while ( fsconf(fp, "%ALf", &tmp)!=EDF ) nobg++;
fclose(fp);

/% STEP 2. - Allocate memory to hold £ile information */
(double *) nalloc( {(nobg+i)*sizeof (double) };
(double *) nalloc( (N+1)+sizeof(doublse} );
(double *) malloc( (N+M+1)+*sizeof{doubla) };
(double *) malloc( {N+M+1)*sizeof{doubla) );
w (double ¥%x) malloc( (N+M+1)*sizeof(double ) );
for { k=0 ; k<{N+¥+1) ; k++ )

bkl = 0.0;

n

I

QT p oo nW
n
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clk] = {doubla #) malloc{ (N+H+1)*sizeof(double) J;
for { j=0 ; j<(W+M+1} ; j++ ) clkl[jl = 0.0; :
} 3

£p = fopen{filename,"r"); ;
x[c] = 0.0; :

for ( k=1 ; k<=nobs ; l++ ) facanf(fp, "ALf", &x[kl1);

xmax = x{nobs};

fclose(fp};
} else {

printf("\nInput file not found\n");

return 0; E
)
printf{"}is\t %d items in file\n", filename, nobs); 5

/¥ STEP 8, - Lagrange Muliipliers +/
len = {(double) nobs);
for ( k=0 ; k<=nobs ; k++ ) {
theta = 2.0%acos(sqrt({{double) k)/len));
for { j=0 ; j<=N ; j++ ) tL[jl = cos(thetar({(double) j));
for { j=0 ; j<=N ; j++ ) {
tmp = £03];
for ( m=0 ; m<=N ; m++ ) c[j)[m] += tmpet[m];
bLjI += tmprxfk];

1

/* STEF 8a. =~ Fill in last three rows and columns with constraints */
for ( alt=1.0,j=0 ; j<=N ; j++ ) {
c[3}{N+1] = alt;
cfjl[N+2] = 1.0;
c[j1[N+3} = ((doublae} j*j);
alt = -alt;

for ( alt=1.0,3j=0 ; j<=N ; j++ )} {
c[N+1] [§]1 = alx;

c[N+2]1[j] = 1.0;
c{t+3]1 [j] = {{double) j*j);
alt = —alt;

¥
b[N+2] = xmax;

/% BSTEP 4. - Solve Equations */
row = (int *) malloc( (H4+M+1)*xsizeof(int) );
Iudemp( (W+H+1), c, row);
linsol{ N+M+1, c, a, b, row);

/¥ SYTEP 6. - Create individual files #*/
pir = strstr{ filename,"cell");
k = 0Q;
while ( #*ptr 1= ?_" ) {
name [k++] = *ptx;

ptrtd;
}
name [k++] = *_*;
nawe [k++] = *17;
name [k++] = ’a’;

name [k++] = ’g’;
name[k++] = ’r’;
naneflH+] = ta’;
nameflk+t] = ', 7;
naviefk++] = 'R’;
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name [k++] = 'E’;
name [k++] = °§';
name [k] = *\0?;

/% STEP 6. - Find value of function and derivative ut given value #/
len = {{double) nobs);
pi = 4.0%atan(1.0);
fp = fopen(name,"w");
for ( k=0 ; k<=nobs ; k++ ) {
theta = 2.0%acos{sgrt({(double) k)/len));
tmp = 0.0;
for ( j=0 ; j<=N ; j+r ) {
tap += aljl*cos(thetak({doubls) j));
}
diff = 0.0;
for ( j=t ; j<=N ; j++ )} {
if ( fabs(theta) < B.e-6 ) {
diff += aljl*{(doubls) j*j);
T elee if ( fabs(theta-pi) < §.e-6 ) {
diff += a[jl*{{dauble} j*jl*pow(-1.0, j+1);
¥} olse {
angle = theva*((double) j);
diff += a[jl*{(doubls) j)*sin(angle)/sin{thota);
].
}
Aiff e 2.0/{len*EL+EY);
fprintf {£fp,"%d\t ALE\t %1E\n", k, tmp/xmax, diff/xwax);
>
fclosa(fp);

/* Glean up memory */

free{row);
free(al);
free(b):
for ( k=0 ; k<(WeM+1) ; k++ ) free(clkl);
free(c);
frea(x);
free(t);

}

return(0);

}

J ook ok K ok ok LET FessRsleRok ok ek Roh K sk koK
LU Deacomposition

ot sk ok Aok otk 4 ¥ Fk ok R ROk K ok S

int ludcwp( int n, double **a, int *row)

i

doubly wnax, tmp, sum, small=5.e-9, #ptr;
int i, j, k, imax, kval;

/% STEP 1, - Luilialise row ordering */
for ( j=0 ; j<n ; j++ ) row(jl = j;

/% STEP 2. -~ Identify pivotal row #*/
for { j=0 ; j<n-1 ; j++ ) {

imazx = j;

amax fabs(a[31[1);

for ( i=j+i ; di<m ; i++ ) {

if { (twp=fabs{ali][j1)) > amax ) {

amax = tmp;
imax = i;

186

|

R P

i
|
i
!
4
]
!




APPENDIX A. ASSOCIATED PROGRAMS 187

/*

/%

h
b3
if { fabs{amax) < small ) return -1;

STEP 3. - Interchange rows if necessary */
if ( imax != j ) {
kval = row[]];
row[j]l = rowlimax];
row[imax] = %val;
ptr = afjl;
aljl = alimax];
a[imax] = ptr;

STEP 4. - Eliminate anties in column below (j,j)th entry */
for ( i=j+1 ; i<n ; i++ ) {
if Calillj]l '=0.0) {
alil (3} = alil[j1/alj1(j1;
for { k=j+1 ; k<n ; kt+ ) alil [kl ~= alil[jI*afjl (k);

}
}
}
if ( fabs{a[n-1][n-13) < small ) return -1;
return 1;
J
/ ok e * Rk R ok R Rk R A KR

The solution function - apply ir sequence with ludcmp

sk RO K oK ok ok ek ok 4Ok SRR RROR R ***************************mxa«**m*/
void linsol{ int n, double **a, double *scln, double *b, int *row)

{

/¥

/*

/%

deuble sum;
int i, j, item;

STEF 1. - Rearrange order of equations */
for ( i=0 ; i<n ; i++ ) soln[i] = blrow[il];

STEP 2. - Forward subatitution phasa %/

for ( i=1 ; i<n ; i++ )} {
for ( sum=0,0,j=0 ; j<i ; j++ ) sum += aliJ [jI*sclnlj];
goln[1] -= sum;

1

STEP 3. ~ Backward substitution phase */

solnln-1] /= aln-1i]l[n~11;

for { 4=n~2 ; i>=0 ; i— ) {
for ( sum=ssolnl[il, j=i+1 ; j<n ; j++ ) sum ~= ali] {jl*solnkjl;
soln[i] = swm/ali] [1];

}

reoturn;
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A.4 Building the typical neuron

The program developed to simulate neuronal morphology uses similar structures to the
BuildNeuron.¢ program, however the morphological data has been extracted in a pre-
cursor program based on the BuildNeuron.c program. In summary MyeTypicalNeuron.c
gathers the data required for each density estimate and then enters the recursive process,
generating each branch diameter and length until completing the dendritic tree. Once
the simulation has ferminated, the morphological properties of the simulated cells are

extracted in the {inal section of MyeTypicalNeurcn.c.

A4.1 MyeTypicalNeuron.c

#include <stdio.h>
#includa <stdlib.h>
#include <math.h>

#inclonda <string.h>

/ ¥okk * P2 2 ¥ & ook ¥ LE 2 oF B E
Program will comstruct the "Typical Neuron".

Stage 1i: Extracts neuron morphology data to comstruct the
density estimates.
Stage 2: Generates tho typical neuron from the densikby

funchions.
Stage 3: Extract moxphological data from simulated cells.
¥ A FxK * % EE 3 T 2 Aok dow ko '****!

typoedef struct unit_t

{
/% Physical properties of unit */
double len; /% Length of unit */
double diam; /* Diameter of umit =/
int ¢hild; /% Number of children */
int roat; /* Indicates if a xoob wnib #/
int texm; /% Indicates if texrminal unit %/
} unit;

/* Input files */

#define INPUTL "MyeBranch.dat" /* Data file #/

#define INPUT2 "MyeCount .dat" /* Count data */

#lafine INPUT3 "MyeContDiam.dat" /% P and C1 diameters */
#define INPUT4 "MyeParentDiam.dat" /% P, €1 and C2 diameters #*/
#define INPUTE "MysRootDiam.dat" /* Stem lengths & diameters %/

/% Nunerical Parameters */

#define HCELL 3t /% Wo. of cellis */
#daeiine NSEED 2 /% Random No. Seed */
#define NSIM 1000 /% No. of simulaticns */
#define PRINT i /* Print out data #/

/* Glebal Functions */
double ran(unsigned long int *, nnsigned long int %, unsigned long int *};
vold heapsort( int, double % );
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double scott_bandwidth{ int, double, double * );
void scott_correlated{ int, double %, double %, double *, double * );
double <dfiD( int, doubla * };

double pdfiD( int, double, double * };

double cdf2D( int, double, double *, double * );
double ¢df3D( int, double, double, doublec #, donhle *, double * );
double phi( double };

void buildcell( double, branch * );

void clean_dendrite{ branch * );

void destroy_dondrite( branch * );

void Destxoy_Sampled_Neuron(meuron **};

int count_branches( branch *, branch *);

int count_terminal_branches{ branch *, bhraach *};
int branch_points( branch %, branch *);

void branch_length( FILE *, branch #);

void branchlen( FILE #, FILE *, branch #);

int count_root_branches{ branch *, branch *);

int count_midsection_branches( brauch *, branch #*);
void branch_data( branch % );

void outputproperties{ FILE *, branch * );

void output_branch{ FILE %, branch ¥ };

int count_unbranched{ branch #, branch *);

/* Global Parameters */
unsigned long inbt ix, iy, iz;
int n, num, vowl, auw2, nt, ac, ab;

double sigma,pi,*cediam,*cldiam,*¢2diam,*ternd,*contd,*brand,*pcont,*all_len,*all_diam;

void main{void)
{
extern unsigned long int ix, iy, 1z;
extern double sigma, #cediam, #cldiam, ¥c2diam, pil, *termd, *contd, *brand,
*all_len, *all_diam;
extern imt n, num, numi, num2, nlb, alc;
int ¢, 4, j, k, nd, nr, #sndend, *p, nod, nm, start=1l, np, nu;
double *pdend, *¥rcotd, diam, len, tmp;
it kkmye;
nauron **cell;
FILE *fp, *xipl;

/% STIEP 1, - Initialisation #*/
pi = 4.0xatan(1.0);
srand({ ({unsigned int) NSEED) );
iz = rand( J);

iy = rand( J);
iz = rand( };
£ Aoh HR R Kk SRk ok ok R okt ok Kok ok ok KA
STAGE 1. ~ EXTRACT DATA
SRRk Rk dOK s Rk desk feskte ke otk ok ok ok Kok KRR KK £

/+ QIEP 2. - Dpen myalinated data file %/
if { (fp=fopen(INPUT1,"r")) I= NULL ) {
ne=_0;

/% STEP 2A. - Scan file to establish size and quantity of daka #/
while ( facanf{fp,"N1f %1f %d %d %d",&dianm,&len,&p,&p,&p) t=EOF ) n+;

/% STEP 2B. - Allocate memory to hold myelinated data values */
mye = {unit **+) mallec( nxsizeof (unit *) );
for ( k=0 ; k<n ; k++ ) myelk]l = (unit %) malloc{ sizeof (unmit) );

189




APPENDIX A. ASSOCIATED PROGRAMS 190

rowind(fp);

/* STEP 2C. - Read data into vaectoxr %/
for ( k=0 ; k<m ; k++ ) {
fscanf (tp, “%1f Y1f %d %d %4", &{mye(kl->len), X(myelk]->diam},
&(mye [k]->child) ,&{mye k]l ~>root) ,&(mye {k] ->tern) );
b
fclosa(fp);
} else {
printf("\nCannet find input f£ile!!");
return;
}
all_len = {double %) malloc( n*eizeof (double) );
all_diam = (double *) malloc( n*=zizeof(double) );
for ( k=0 ; k<n ; k++ ) {
all_len[k] = myefk]->lan;
all_diam[k] = mye[k]->diam;
¥
fp=topon("MyeSection,dat","w");
for ( k=0 ; k<n ; kt++ ) fprintf(£fp,"%#6.21\t%6.218\n", all_lenlk], all_diam[k]);
folose(fp);

/¥ STEP 3. — Open myelinatad count data file */
if ( (fp=fopen(INPUT2,"r")) != NULL ) {
num = 0

/* STEP 3A. - Scan file to establish size and quantity of data */
while ( fscanf(fp,"%d %d %d %d %d %d %a",&p,&p,%p.&p,&p,.&p,&p) '=FOF) mupt++;

/% STEP 3B. - Allocate memory to hold count data */
ndend = (int *%) malloc{ 7*sizeof(int %} );
for{ k=0 ; k<7 ; k++ ) mdend[k]=(int *) malloc(numsizeof(int))};
rewind{fp);

/* STEP 3C. - Read data into vector #/
for { k=0 ; k<num ; kt+ ) {
fecanf(fp, "%d %d %d %d %d ¥%d %d", ¢ndend{0] [k1,&ndend[1] [k] ,&ndend [2] [x],
&ndend[3] [x), &ndend[4] (i3, &ndend[B] [x}, &udendis](k]1);

IR

}
iclose(fp);

} else {
printf("\nCannot find input file!i");
return;

}

/* STEP 4. - QOpen parent-ichild data file »/
if { (fp=fopen(INPUT3,"r"}) i= NULL ) {
ac = 0;

/% STEP 4A. - Scan file to establish size and quantity of data */
while ( fscanf(fp,"Alf %1{", &tmp, &top)!=EOF } nci+;

/% STEP 4B. -~ Allocate memory to hold paremt-lchild data */
contd = (double *) malloc( nexsizeof (double) };
ccdiam = (double *) malloc{ nc#sizeof {double) );
rowind(fp);

/% STEP 4C. - Read data imto vector */
for(k=0 ; k<nc ; k++) famcanf (Ep,"¥if %if", &contd[k], &ccdiamfk}); H
felase(Lp);

} else {

Ymyp e b bt
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printf("\nCannot find imput file(!");
return;

}

/* STEP 5. ~ Open parent-childi-child2 data file ¥/
if ( (fp=fopen(INPUL4,"r")) != NULL } {
nb = §;

/* STEP 5A. - Scan file to establish size and quantity of data */
while ( fscanf(fp,"Wlf %1f %1L", &tmp, &btwp, &tmp)!=EOF ) nbi+;

/% STEP BB. - Allocate momory to hold p~cl-c2 dala */
brand = (double *} malloc( nb*sizeof (double) ):
cidiam = (double *) malloc( mb*sizeof (double) );
c2dian = (double *) malloc( mb*sizeof (double) );
rewind (fp);

/% S8TEP 5C. ~ Read data into vector */
for (k=0 ; k<nb ; k++) fscanf(fp,"41f %1Ff %LL",&brand[k],&cldiam[k] ,kc2diam[k]);
fclose(fp);
} else {
printf("\nCannot find inpnt file!!");
return;

¥

/* STEP 6. - Get rcot length and diameter data */
if ( (fp=fopen{INPUTS,"r")} ¥= NULL ) {
nr = 0j

/% SIEP G4, - Allocate memory to hold length and diameter dete */
while ( fscamf(fp,"AlL", &rootd)!=EDF ) nr++;

/% STEP 6B. ~ Allocate memory to hold p-cl-c2 data */
rootd = (double %) malloc{ urxsizecf{double) );
rowind(fp);

/*  STEP 8C. - Read data imto vedtor */
for ( k=0 ; k<nr ; k++ ) facanf(fp, "%If", &rootvdl[kl);
fcloae{fp);
} else {
printf ("\nCannot find input filel!");
return;

¥

/* BSTEP 7. - Get remaining sections length and diameter data */
nt = Q;
for ( k=0 ; k<n ; k#+ } if ( myel[kl~>child == 0 ) nt++;

/% S8TEP 7A. - Allocate memory to hold length and diameter data */
tormd = {double *} malloc{ nt*sizeof{double) J;

s

/% STEP 7B. - Read data into vactor */
J=0;
for ( k=0 ; k<n j k++ ) {
if ( myelk]->child == 0 ) {
ternd[j1 = mye[k}->diam;
g+

R SRNSS P

1

}

fp=fopen("MyeTerm.dat","w");

for { k=0 ; k<ot ; ki+ ) fprintf(fp,"%6.2L\u", termd[k]);

B O O T
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fclose(fpl;

fp=fopen{"MyeCont.dat","w");

for ( k=0 ; k<nc ; k++ ) fprintf(fp,"%6.21f\n", centdlxl);
fclosa(fp);

fp=fopen("MyeBran.dat","w");

for ( k=0 ; k<nb ; k++ ) fpriotf(fp,"%6.21F\n", brand[k]});
fclose{fp);

/* STEP 8. - Calculate probability of dendrites per cell =/
nd = ¢;
for ( k=0 ; kénum ; k++ ) if ( ndend(0] [k} > nd ) nd = ndend[0][k];
p = (ot #) malloc ( (ndi1)#sizecf{int) J;
pdend = (double #) malloc { (and+i)+sizeof (double) );
for ( k=0 ; k<=nd ; kit ) {
pdend [kl = 0.0;

pixl = 0;
}
fox ( j=1 ; j<=md ; j++ ) {

for ( k=0 ; k<num ; k++ ) if ( ndend(0]1[k] == j ) p[jl++;
}

for ( k=1 ; k<=nd ; k++ ) plo] += p[k];
for ( k=0 ; k<=nd ; k++ ) pdend[k] = ((double) p[kl);
for ( k=1 ; k<=nd ; k#++ ) pdend[k] = pdend[k]/pdend(0];
pdend[0] = 0.0;
for ( k=1 ; k<ad ; k++ ) pdend[k] += pdemd[x-1];

=1

pdend [ndl .0;
[Hkxnks Sk hokk ok Aok oK AR kAR ok Kok
STAGE 2. - BUILD CELLS
Kook Fok b b Aok Aok ok ok koo doloksoRsE AR Rk R dokok /

pcont = (double *) malloc( 4+sizeof (double) J;

cell = {neuron *+) malloc( NCELL*sizoof (ncuxon *) };

for ( k=0 ; k<NCELL ; k++ ) coll[k] =(neuron *)malloc(sizeof(neuron));
for ( =0 ; c<NCELL ; c++ ) {

/¥ STEP 10. - Calculate number of dendrites */
top = ran( &ix, &iy, &iz)};
for ( k=0 ; k<nd ; k+tt+ ) {
if ( tmp >= pdend[k] && tmp <= pdend[k+1} ) nod = k+l;
}
cell[c]->ndend = nod;
call[c]->dendlist = (dendrite *) malloc({cell[ec]->ndend)¥gizect (dendrite));
printf {"\nCell has %d dendrites", celllcl~->ndend};

/* SIEP 11. — Run through dendrites #*/
for ( d=0 ; d<mod ; d++ )} {

/* STEP 12. - Get root diameter */
diam = cdfiD{ nr, roctd );
printf ("\nRoot section has diameter ¥1fY, diam);

/% STEP 13. - Get root leagth cvoudilioned by root diameter */
len = ¢df2D( m, diam, all_diaw, all_len);
printf({"\nHoot section has length %1£", len);
coll[c] ->dendliut [d] .xoot=(branch *)malloc{sizeof(branch));
coll[c]->dendlist [d] .root=>d=(double *Imalloc(l*sizeof (doublse));
cell[c] ->dendlist [d] .root=~>plen={double*)nalloc (1+sizeoct (double) ) ;
cell[c]~>dendlist [d} . xoot=>nols = 1;
calllec) ->dondlist [d] . root->d[0] = diam;
cellic]l->dondliet{d] .xoot->planfe] = len;
coallfc]l->dendlist{d] .xoot~>parent = NULL;

192
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/%

[+

/%

/%

/*

/%

Ve

cell[c}l->dendlist[d] .xoot—->¢hild = NULL;
cellcl—>dendlist[d] .xook->peer = NULL;

STEP 14. -~ Gemerate coordinates */
for ( k=0 ; k<3 ; kit ) {
cell(cl->dendlist[d] .xoot->L[k] = 0.0;
cell[cl->dendlist[d] .xeot->1[k] = ran( kix, &iy, &iz);

Wt

}

STEP 15. ~ Enter recursive routine to construct dendrita */
buildcell( diam, cell[c]}->dendlist{d].xact );
printf{“\nCompleted cell [4d)->dendlist[4d]\n", c,d);

¥ .

}

STEP 16. - Clean Dendrite: turn sections into branches */
for { ¢=0 ; c<NCELL ; c++ ) {
for (d=0;d<(celllc]->ndend);dI1) clean_dendrite(celllc]->dendlist[d].root)};
>
printf ("\nCleaned dendrite");

STEP 17. - Get total branch lengths */
fp=fopen("MSimBranchlen,dat","w");
fpi=fopen("MSimUnBranlen.dat","w");
for { c=0 ; c<NCELL ; c++ ) {
for (d=0;d<(cell(c]->ndend);d++) branchlen{fp,fpl,celllcl~>dendlist[d].roat);
}
fclose({fp);
fclose{fpl);

SIEP 18. - Get dendritic lengths ksskokaionfokskskokboksn tok oo fok dofolck /
fp=fopen("MSimDendLen.dat","w");
far ( ¢=0 ; ©<NCELL ; c++ } {

for (d=0; d<(celllcl->ndend} ; d++)} branch_length{fp,cell[c]->dendlist[d].zrool);
}
fclose(fp);

STEP 9. ~ Uulpub branch properties to comstruct the dendogram */
fp=fopen("HSinranchProp.dat","w");
for ( ¢=0 ; c<NCELL ; c++ )} {
fprintf(fp,"Call %d\n",c);
for { d=0 ; d<{celllcl->ndend) ; d++ ) {
output_branch( fp, celllcl~>dendlist{d].roet };
fprintf (fp,"\n");
}
¥
fclose(fp);

STEP 9. ~ Output branch properties to corstruct the dendegram */
fp=fopen("MSimSection.dat","w"};
for ( c=0 ; c<NCELL ; c++ } {

for ( d=0 ; d<{celifc]->ndend} ; d++ ) {

outputpropsrties( fp, celllcl->dendlist[d].root );

}
}
felose(fp);

/***t**¥ St 2 * &k * %K * LE L]

STAGE 3. - EXTRACT DATA FROM SINULATED CEELLS

* ok Xk ok L3 222 * o ook R Rk K K *FRF sokdokdonk f
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/*

/%

VL]

/%

/%

/%

/%

STEP 19. - Count branches x/

for ( c=0 ; e<NCELL ; c++ )} {
for ( nb=k=0 ; ¥<call[c]->ndend ; kt+ )
nb += comnt _branches( cell[c]->dendlist (k] .root,cell{c]l->dendlist [l . root);
printf("\n Found %d branches"”, mh);

STEP 20. ~ Count root branches */
for { nr=k=0 ; k<cell([c¢]->ndend ; k++ )
nr += count_root_branches (cell[c]l->dendlistk].root,cellic]->dendlist[k].root);
printf("\n Found %d root branches", nr);

STEP 21. -~ Count mid section branches */
for ( mm=k=0 ; k<celllc]l->ndend ; ki+ )
nm += count_nidsection_bramches {
calllc] ->dendlist[k] .xoot, celllcl->dendlist[k].root);
printf{*\n Found %d mid section branches", am);

STEP 22. - Count tsrminal branches */
for ( nt=k=0 ; k<cell[c]l->ndend ; k++ }
nt += count_terminal_branchas
(cell[c]l->deundlist[k] .root, celllc]->dendlist[kl.root);
priuntf("\n Found %d terminal branches\n", nt};

STEP 22. - Count unbranched branches */
for ( nu=k=0 ; kX<cell[c)->ndend ; k++ }
nu += count_unbranched
(coll [e]l~>dondlist [k] . root, cell{c]l->dendlistk].root);
printf("\n Found %d unbranched branches\n", nu);

STEP 22. - Count branch points */
for ( np=k=0 ; k<cellfc]-»>udend ; ki+ )
np += branch_points( celllc]->dendlistikl.roct, celllcl->dendlist[k].root);
print£("\n Found %d branch points\n", np);

STEP 23. - Output count data */
1f ( start ) {
fp = fopen("MSimCount,dat","w");
fprintf (fp, "%3d\t %3d\t ¥3d\t %3d\t %3d\t %3a\t %3d\n",
cell[e)->ndend, nb, np, nr, mm, nt, nu);
start = 0;
} «las {
fp » fopen("MSimCount.dat","a");
fprintf (fp, "%8a\t %3a\t %3d\t %3d\t %3d\t %34\t %3d\a",
cell[c]->udend, nb, np, nr, mm, nt, nu);
}
fclose(fp);

STEP 26. - Dutput longths and diemeter */
for { k=0 : k<cell({c]l->ndend ; k++ ) branch_data( cell[c]->dendlist[k].xoot };
H

STEP 26. ~ Tidy up */
Destroy_Sampled_Nouron{ cell };

for { k=0 ; k<n ; k++ ) freelmye[k]l};
frea(mys) ;

for { k=0 ; k<7 ; k++ ) free{ndend[k]);
free{ndend) ;

free{pdend) ;

free(rootd) ;

free(cidiam);

free{c2dian);

!
|
i

e 3
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frea{ccdiam) ;
frea{contd);
free(brand);
free{termd) ;
free{pcont);
frea(p);
free(all_len);
freaall_diam};

195

return;
Y
AR kRt ook ook ok ok =k ek el wpR K
FUNCTION TQ BUILD THE DENDRITE
SRR RNk KK : sk e ok k0RO ok Aok ek owen f
void buildcell( double diam, branch *b )
{

extern double signa, *ccdiam, %cldiam, *c2diam, *brdiam, *pcdiam,
pi, *termd, *contd, #brand, ¥pcent, #all_len, *all dian;

gxtern int n, num, numi, nue2, nt, nc, nb;
int K, next;

double 1, d, pt, pc, pb, &, ¢, by, tmp, fract, fracc, frach, di, d2;

branch #bnow, *btmp;

fract = ((double) nt)/((double) nt+nc+ub);

frace = {(double) nc)/((double) nt+nc+nbh);
frach = ({double) nb)/{(double) nt+nc+nb);
t = fract+pdfiD( mt, diam, termd );

¢ = fracc+pdfiD( nc, diam, contd };

br = fracbxpdf1D( wb, diam, brand };

pt = {&/(Fretbrd);

pe = (c/(t+etbr));

pb = (br/(t+c+br));

peont{0] = 0.0;
peont[1] = pt;
poont {21 = pt+pe;
peont [3] = pt+petphb;
tmp = ran( &ix, &iy, &iz);
for ( k=0 ; k<3 ; kt+ ) {
1f ( tmp >= pcont{k] && twp <= peontlk+i] ) next = k;
}
printf{"\nSection has %d child(ren)", next);

if (pext == 1) { // Continmnos

bnow = (branch *) mallocu{ sizeoi (branch) );
bnow->d = (double *) malloc{ Llxsizeof (double) );
bnow->plen = (double *} malloc{ l#sizeof(double) );
& = ¢cdf2D{ nc, diam, contd, ccdiam );
printf{"\nSection haa diam %1f", d);

1 = cdf2D{ n, d, all_diam, all_lem );
printf("\nSection has len #1f", 1);

b->child = bnow;

bnow->parent = b;

bnow—->child = NULL;

bnow—->peer = NULL;

bnow—>plen[0} = 1;

bnow->d[01 = 4;

bnow->nobs = 1;

for { k=0 ; <3 ; X++ ) bnow->f[k} = b->1[kJ;

for ( k=0

.
’
.
r

k<3 ; ¥++ ) bmow->Ll[k] = ren{ kix, &iy, &iz):

T et e et At e
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buildcell( d, bnow )};
} else if { next == 2 ) { // Branches
bnow = (branch #) malloc{ sizeoi{branch) J;
brow~->d = {double *) malloc( l*sizeof(double) ):
bacw->plen = {double *) malloc( L*sizeof{double) );
dl = ¢df2D( nb, diam, brand, cldiam);
1 = cdf2D( n, 41, all_diam, all_len };
b=>child = bnow;
bpow->parant = b;
bnow->child = NULL;
brow->d[0] = di;
brow->plen[0] = 1;
briow->nobe = 1;
for ( k=0 ; k<3 ; k++ ) bmow->£[k} = b->1[kl;
for ( k=0 ; k<3 ; kit ) bmow->1[k] = ran( Zix, &iy, &iz);
btmp = (branch *) malloc{ sizeof(branch) );
btup->d = {double %) malloc( l¥sizeof(double) );
btup->plan = {double *) malloc( 14sizeof(double) );
d2 = cdf3D( nb, diam, di, brand, cldiam, c2diam };
1 = cdf2D( n, 42, ell_diem, all_len );
btmp->d[0] = d2;
btmp->plen[0] = 1;
btap->parent = b;
btmp->peex = NULL;
btmp->child = NULL;
brow->peer = btmp;
btmp->nobs = 1;
for ( k=0 ; %<3 ; k++ ) btmp->£[k]
for ( k=0 ; %<3 ; k++ ) btmp->1[k]
buildcell( di, bnow );
buildcell{ 42, btmp );

B

b~->1[X];
ran{ &ix, &iy, &iz);

]

} elza { // Terminates
b->c¢hild = NULL;
raturn;
}
return;
¥
/ e K R AOK oK Ok R ok SR ok kot sk kst ok ok iRk ok detokskok ok
CALCULATES CDF AND RETURNS A DEVIATE - ONE-DIMENSION
- *kok Sk A ARk A ook s ks ok sk sk ok s ok tokok sk ok ok ok /
double cdfiD{ int n, double #*val )
{

extern unsigned long int ix, iy, i=z;
int j, X;
double cdf, min, max, mid, sum, h;

nin = max = vallCl:

for ( kel ; k<m ; b+ ) {
if { val{k] < min ) win = vall[k];
if { val{k] > max ) max = vallk];

= scott_bandwidth{ n, 1.0, val );

cdf = 0.5+0.6%ran{ &ix, &iy, Zi=);

min —= 10,0%h;

pax += 10.0%h;

do {
wid = Q.5*%(uintmax);
for ( emm=0.0,j=0 ; j<n ; j++ ) aum += phi{ (mid-val(j1)/h );
for ( j=0 ; j<mn ; j++ ) sum += phi{ (mid+valfjld/L );
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sum /= {({(double) 2%n);
if ( sum > cdf ) {
nax = mid;
} aelse {
min = mid;
}
} while { wax-min > 5.8-7 );
mid = 0.6*(nin+max);

return{mid) ;
}
7R ook ok kR ROk A K SRR kR kR otk ok ok ok Akohok *
CALCULATES PDF AND RETURNS A DEVIATE - ONL-DIMENSION
a0 KK BORKK NG M o A NON .4*.*#**mﬁ**********************t****/
double pdfiD{ int n, double diam, double *val )}
{
int ki
double ker, tmp, fac, bj
h = scott_bandwidth( n, 1.0, val );
fac = 1.0/ (h*sqrt{2.04pi}+*({double} n});
ker = 0.0;
for { k=0 ; k<n ; k++ ) {
top = 0.5%pow{(diam-vallk])/h, 2);
if ( tnp < 20.0 ) ker += exp(-tmp);
}
ker *= fac;
return(ker) ;
¥
FAL DT R S kR Wkt destorh i £y Hokokkk
CALCULATES CONDITIONAL DENSITY AND HiTURNS DEVIATE
sk ootk stk sl ok Aok ok o R R OR K Kok s Ak ok ok ok oKk Atk : Fokesk ok /

double cdf2D{ int n, double diam, double +x, double *y )
{

extexrn unsigoed lomg int ix, iy, iw;

int j, k;

double #w, cdf, min, max, mid, sum, hx, hy, tmp;

w = (double *) malloc( n*sizacf(double) J;
for { k=0 ; k<n ; k++ ) wlkl = 0.0;

scott_correlated( n, &hx, &hy, x, y );

for ( k=0 ; k<n ; kit ) {
top = (dinn-x{k})/hx;
tmp *= tmp;
if { tmp < 60.0 ) w(k] - oxp(-0.S*tmp);
tmp = (diam+x [k})/hx;
tmp *= tmp;
if { tmp < B0.0 ) w(k] += exp(-0.B*tmp);

}
for ( sum=0.0, k=0 ; k<n ; k++ ) sum += wikl;
for ( k=0 ; k<n ; k++ ) wlk] /= sum;

min = max = y{0];

tor ( k=1 ; k<n ; k++ ) {
if ( y[¥] < min ) min =
if ( y[¥] » max ) max
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3

cdi = 1.0+ran( &ix, &iy, &iz};
win ~= 10,0%hy;
max 4= 10,0%hy;
do {
mid = O.5¢(mintmax);
for( sum=0.0,3=0 ; j<n ; j++ ) sum += w[jl*phi((mid~y(j1)/hy):
for{ j=0 ; j<n ; j++ ) sum += w(jl*phi( (mid+y(j1)/hy ):
4¢ { sum > edf ) {
max = mid;
} olse {
min = mid;
}
} vhile ( max-min > §.8-7 );
mid = 0.5*{(min+max) ;

free(w);
return{mid);

¥

2R R ORR ROR KRR KRR Rk Aok e KRR ok ok sk sk Rk ko Aol bk ok
CALCULATES 3D CONDITIONAL DENSITY AND RETURNS DEVIALE

okop e N R A R HORKE KR KK Kk ko *k Hokokakok dokok ok . */

doubla ¢df3D(int n,double diam,double dl,double *p,double *ci,dovble *c2)

{

extern unsigned long int ix, iy, iz;
int j, k;
doubla *w, cdf, <2min, c2max, ¢2mid, sum, hx, hy, h, tmp, d2;

w = (doubls *) nalloc( nwsizeof(double) );
for ( k=0 ; k<a ; k++ ) wlk]l = 0.0;

scott_correlated( n, &hx, &by, p, ¢i );
for ( k=0 ; k<n ; k++ ) {
tmp = (diam-plk])/hx;
tmp *= twp;
if ( tmp < 60.0 ) wlkl = exp(-0.5%tmp);
tmp = (diam+pkd) fhox;
tmp *= tmp;
if ( tmp < 50.0 ) wlk]l += exp(-0,5%tmp);

for { sum=0.0, k=0 ; k<n ; k++ )} sum += w[k];
for { ¥=0 ; k<n ; lk++ ) wlk]l /= sum;

for { k=0 ; k<n ; k++ ) {
sum = 0.0;
top = (dl-cllk])/hy;
tmp *= tmp;
if ( tmp < 650.0 ) sum = exp(-0.5%tmp);
tmp = (di+c1lk]l)/hy;
top *= tmp;
if ( tmp < 80.0 ) sum += exp(-0.6+tmp};
wlk] %= sum;

}
for ( sum=0.0, k=0 ; k<n ; k++ ) sum += w(k]};
for ( k=0 ; k<n ; k++ ) wlk]l /= sum;

h = scott_bandwidth( n, 3.0, ¢c2 );
c2uin = c2max = c2[0];
for ( k=1 ; k<n ; kt+ } {
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cdf

if { ¢2[k] < c2min ) c2uin = c2[k];
if ( c2[k] > cZmax ) c2nax = c2[k];

L.0+rvanf{ &ix, &iy, &iz);

c2min ~= 10.0%hL;
cZmax += 10.0%h;
do {

c2mid = 0.5*(c2min¥c2max) ;
for( sum=0.0,3=0 ; j<n ; j++ )} sum += w[j)*phi({c2mid~c2[j])/h};
for( je0 ; js<n ; j++ } sum += w[jI#phi( (cZmid+c2{jl)/h );
if ( sum > cdf ) o
¢2max = <2mid;
} elso {
cldmin = c2mid;

}

} while { ¢2max-c2min > 6.e~7 );
d2 = 0.5+¢(c2mint+c2max) ;

freelw);
return(d2);

/********** stk ot b e e ok ke sk i R ok ok o oK R ok fof R K ROR SRk ok Aok sofotok ok kok Aok ok deddokok

Function to find length of branch

sk Ak Rk Aol sk AR R AR KR RORR R Aok o ok sk Aol Sk ackolot ek Ak sk deak ok /-
void bramchlen{ FLLE #fp, FILE xfpi, branch #bnew )

{

}

int

kg

double length;

if ( bnow~>child ) branchlen{ fp, fpl, bnow->child);
if ( bnow~>peer ) branchlemn( fp, £pl, bnow->peer);

for ( length=0.0,k=0 ; k<(bnow-d>nobs) ; kit ) {

}

length += bnow->plenfk];

bnow->Llen = length;
fprintf(fp,"%10.618\t%6.21f\n", bnow->len, baow->d[0]);

return;

/** A ek sk solof 3 otk Ao K ek et ok o ok dR koK R ks ROk sk kR ok ok ok ok okok sk

Function to count number of root branches and print
the lengtin of the branchesz out to file.

etk Ak oo o K sk ok ol sk Rk S M WK DK ARk Kok gtk
int counl_root_branches( branch *bstart, branch *buou)

{

static int n;

if
it

T

{ betart == bnow ) m = Q;

{ now ) {

1f ( bnow->child ) count_rout_branches(bstart, bnow->child);
if ( bnow->pser ) count_root_branches(bstart, bmoy->pesr);
if ( {bmow->parent ) n+i;

retura n;
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Jhkdokk ok oAk "k stk b okt oo ok R N R 6 AR HOR K o Kok oK K
Function to count number of root branches and print
the length of the branches out to fila.

* framsnn 4 A Ak ok ko ook sk ok ok ok skok K o ok ok ko ok
int count_midsection_branches{ branch *bstari, brunch *bnow)
{
gtatic int n;
if ( bstart == bnow ) & = O;
if ( bnow ) {
if (bnow->child)count_nidsection_branches{bstart,bnow->chiid);
if (bnaow->pesr) count_midsection_branches(betart, bnow->peer);
if (bnow->parent && bnow->child) nt++;
}
return n;
}
Rk ARk ook K ok Ak ok o Aok R sk ok o Kok Kok * Hokokot ok ok
Function to count number aof root branches and primt
the length of the branches out to file.
# 4ok ek ok i " ST TE] koK oK K sk ok ok ekl )
int count_unbranched( branch *bstart, branch *bnow)
{
static int n;
1f ( bstart == bLnow ) n = 03
it ( boow ) {
if ( bnow->child ) count_unbranched{bstart, bnow->child);
if ( bnow->pecry ) count upbranched{bstart, bnow->peer);
if ( !bnoy~>parent && !bnow->child ) n++;
¥
roturn n;
¥
Frkson N + Rk skokok ok okt ok ek sk ok koKok ok Fok ok ok okok

Fuanction to connt number of roat branches and print
the length of the branches out to fils.
AR AR AOR R R oK Rk ok sk sk kok ko ok k 4ok /

int branch_paints( branch *bstart, branch *bnow)

{
static int n;
n=0;
if ( bonow ) {
if ( bmow->child } branch_points(bstart, Lumow->child);
if { bnow->peer ) branch_points(bsturt, bnow->peor);
if ( bonow->child && Lunow->child->poor ) né+;
}
return n;
by
ek ekhkE ¥ T RAOK R o o R
Function to count number of child branches
AR Rk KRR Rk o) } Fdok ok bk E kN HAOK KR /
void branch_data{ branch +h )
{

static int k, initial=1, start=1l, first=1, firsti=i,
flag, n, num, sect, roat, child;

double deld, dnew, len, xcld, xnew;

branch *bran;

rmben e ¢
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/*

/x

/*

/*

/%

/>

FILE #fp, =fpl, *£p2, »fp3;

if { b~>child ) branch_data( b->child };
if ( b->peer ) branch_data{ b->peer );

Initialisation phase */

n = Q;

if ( start ) {
fp = fopen("M3imBranch.dat","w"};
start = 0;
num = 1;

} elee {
fp = fopen("MSinBranch.dat","a");
numl+;

}

Count number of child branches #*/
bran = b->child;
while ( bran f= RULL ) {

nt+t;

bran = bran->peer;

¥

Detexmine type of branch: root(0), midsection(l), or texminal(2} */
if { !b->parent ) {

root = 1;

} elsa {
raot = 0;

T

if { ‘b->parent )} {
sect = 0;

T else if { b->parent && b->child ) {
sect = 1;

} else if ( !B->child ) {
sect = 2;

}

Print out parent and child diameters =/

if ( farsti ) {
fp2=fopen("MSimParentDiam.dat","w") ;
firstl = 0;

} else {
fpR=fopan("HéimParentdiam.dat","a");

}

Print out root diameters =/
if ( firet ) {
fpl=fopen("MSimRootDian.dat", "w");
first = 0;
} elze {
fpl=fopen("MSimRootDian,dat","a");
¥
if  Ib->parent && b->child ) fprintf(fpl,"%4.21£\n", b->a[01);
Jflag = 1;

Prink out parent & one child diameters */

if ( initial )} {
£p3=fopen ("MSimContDiam.dat™, "w");
initial = 0;

T olse {
tp3=rfopen(“MSimContDiam.dat","a"};
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}

/+ Dacompose brainches into lengths of uniform diameter */
len = xold = b->plen(0];
dold = H->d{0];
for { ko1 ; k<b->nobe ; kt+ ) {
xnew = b->plenlkl;
donew = b~>d[x];
if ( dnew I= dold } {
child = 1;
fprintf (fp, "%6. 2LE\t %6.22F\t %3d\t %3d\t %3d\n",
ten, dold, child, sect, num);

e if ( root &k flag ) {

// tprintf(£fpl,"%6.21£\th6.21f\n%, len, dold);
// flag = 0;

7 }

fprintf (£p3, "%6.LI\tY%6.21f\n", dold, dnew);
len = xnaw;

} alse {
/f if ( root &% flag ) {
/! fprintf{fpl,"%6.21F\t¥%6.215\n", lan, dold);
// flag = 0;
// }

len += xney;

¥

xold = xnew;

dold = dnow;

1
fprintf (fp,"%6. 210\t %6.218\t %3d\t %3d\t %3d\n",
len, dold, u, sact, pum);

if { b=>child &% b->child->peer ) {
if ( b->child->d{0] > b->child->pear->df0] ) {
fprintf(fpﬁ,“ZG.QIf\t %6.21£\t %6.21f\n",
b->d[b->nobs-1}, b->child->df0], b->child->paer->d[0]);
} elza {
fprintf(fp?,"%ﬁ.?lf\t %6.21F\t 46.21f\n",
b->d[b->noba-1] ,b->child->peer->d[0] ,b->child~>d [0]) ;
}
¥
fclose (fp);
fclose(fpl);
felosa(fp2};
fclosa (fp3};

return;
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A.4.2 BiVarKernels.c

This program estimates the bivariate kernel density of two data sets, for example, parent
and child section diameter. The procedure is described in Chapter 5. 'This program uses
the correlated Scott bandwidth calculation described in Chapter 5.

#include <stdic.h>

#inciude <stdlib.h>

#include <path.h>
#include <string.h>

/ ook sk ok Ok ¥ #ok etk AR AR AR ARAOR R e o R Rk
Conatruct bivariate densities.
sokokrsiok Rk dookok ST Y * Ak Rk ok AROR Ot kR sk A KK A OOk b 3

/* Input files */

#define INPUT "MSimParentDiam,dat” /% Input £ile */
#define OUTPUT "MYinChildrenKer .dat" /% Dutput file */
#define QUTPUT1 "M¥8inChildrenCoords.dat" /% tutput file %/
/* Numerical Paramaters */

#defins NSIM 10 ' /% No. of simulations */
#definse DI 2 /* Din’s ~ no of samples %/
#define VAR 2 /* No of variables in filex/

#define NSEED 20 /* Random No. Seed ¥/

/% Global Functions */

void heapsart( int, double * );

double scoti_bandwidth( int, double # );

void scobl_correlated( int, double *, doulile %, double *, donble * );

/% Global Parawwtoxrs #/
doubla *z, *d, anow, sigwa, sigmax, sigmay;
int ndim;

void nain(void)
{
axtern double *z, #*d, anew, sigmax, sigumay;
axtern int ndim;
int i, j, k, 5, t, num;
double #%vall, *val2, *data, x, y, pi, tmp, tmpl, tup2, hx, hy,
firstl, lastl, first2, last2, dx, dy, ker, fac, v;
FILE *fp, #fpi, *fp2;

/% BTEP 1. - Dpen myelinated data file %/
if ( (fp=fopen(INPUT,"r")) f= NULL ) {
num = 0Q;

/* BTEP la. ~ Scan fils Lo establish sizs and quantity of data +/
while ( fscenf(fp,"%1lf ALL", &tmp, &tmp) !=EOF ) numt+;

/% B8TEP ib. — Allocate memory to hold myelinated data values +/
vall = (doubls *) malloc{ num*sizecf{donble)} );
val2 = {double *) malloc{ nuntsizeaf(doubls) );
rowind{fp);

1

/* B8TEP lc. - Read data into vector */
tfor ( k=0 ; k<num ; k++ ) {
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facanf(fp, "41f ALL", &valllk], &val2lkl);
}
fclosa(fp};
T else {
printf("\nCannot find input fileii");
return;

printf("\n%d items in 4s", num, INPUT);

/4 STEP 2. ~ Myslinated cells %/
data = (doubite *) malloc( mumxsizeof (double) );
for ( k=0 ; k<num ; X++ ) data[k] = 0.0;

scott_correlated{ num, &hx, &hy, vall, val2 };

/* STEP 3. - Calculate bandwidth foxr lengths */
for { k=0 ; k<num ; k++ ) {
datalk] = valilk];
heapsort({ num, data );

)

firstl = datalQl-(2.0*signax);

if { firstl < 0.0 ) firsti = 0.0;
lastl = databnum-13+(2.0%sigmax);
dx = (lastl-first1)/100.0;

/% GTEP 4. — Calculate bandwidth for lengths #/
for ( k=0 ; k<mum ; k++ ) {
datalk] = val2lk]l;
heapsort({ num, data );

}

first2 = data[0]-(2.0*siguay);

if ( first2 < 0.0 ) fixsu2 = 0.0;
last2 = datafmum-1]1+(2.0*sigmay);
dy = (last2-first2)/100.0;

/% STEP 5. - Calculato donsity */
fac = 9.0/(2000.0xhx*hy*((double) num});
fp = fopen(DUTPUT,"w"};
ipl = fopen(OUTPUTL,"w");
for ( j=0 ; j<=100 ; j++ ) {
x = firstirdxx((double) jJ;
for ( k=0 ; k<=100 ; k++ ) {
ker = 0.0;
y = first2+dy*(({double) kJ);
for ( t=0 ; t<num } t++ )} {
tmpl = fabe{{x-vall{t])/hx);
tmp2 ~ fabs{(y-val2[t])/hy);
if ( tmpl <= sqr5(5.0) && tmp2 <= aqrt(5.0)
kor += (6.0~tmplktmpl)*{5.0-tmp2xtnp2);
}
}
ker *= fac;
if ( § == x ) fprintf{fpl, "%12.61f\t", ¥);
fprintf(fp, "%12.61f\t", ker);
1
fprintf (fp,"\n");
fprintf(fpl, "%412.6Lf\n", x);
¥
fclose{fp);

) A
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fclose(fpl);

/¥ STEP 6. - Tidy up %/
free(vall);
free(val2);
free(data);

return;
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A43

To analyse the results of the simulation exercise, the following program SimSiats.c was
developed. 1t calculates the mean value and standard deviation of the density of each pa-
rameter at specified values. For example, each simulation will return an estimated density
for dendritic length and by applying SimStats.c, the mean density and corresponding stan-
dard deviation can be calculated. As displayed in Chapter 5, this can be used to compare

the real density with the simulated density when testing the results of the simulation.

SimStats.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <string.h>

/**************%**********

%k %k ¥k ko

e N ok o sk sk e ok o K ok

L St S %

Program to calculate the mean and standard deviation of
the astimatad densities from the simulation program.

* **********************#*****************$***t*/

/% Numerical Parameters %/

#define
#define
#define
#define

NAME “MSIMUBDiaSizKor.dat"
QuTPUT "MSIMUBDiamKernols.dat"
NSIM 200
NEKER 101

void main{void}

{

int

Je ks

/%
/%
/%
/%

Input file */
Onsput Lile */

Fo.

o,

of simul’s %/
of div's */

double *mu, ¥sigma, **den, #*max, #*min, mean, sd, h, dx,

pi, fac, ker, tmp, x, first, last;

FILE *ip;

/% STEP 1. - Determine file exists %/
it ( (fp=fopen(NAHE.“r")) = NULL ) {
dern = {double *#*) malloc( NSIM*sizeof{double +) );

for ( k=0 ; K<NSIM ; k++ ) den[k] = {double *) malloc{ NKER*sizeof (doubla) };

for ( k=0 ; K<NSIM ; k++ ) {

for ( j=0 ; j<NKENL ; j++ ) fscanf{fp,"%LL", kdenikl[j1):

}
fcloge(£p);

} olso {

}

printf ("\nCannot find input file!1");
return;

/* SIEP 2. - Calculate mean and standard deviation #/

mu = (double *) malloc{ NKER#sizeof (donble) );
sigma = (double #) malloc( NKER*sizeof{(doubls) };

for

for

{ k=0 ; K<NKER ; k++ ) mulk] = sigmalk] = 0.0;

( k=0 ; k<NKER ; k++ ) {
for ¢ j=0 ; j<NSIM ; j++ ) {
mulk] += denlj]Lx];
sigmalk] += pow(denfjl[kl, 2);
}
mu{k] /= ((double) NSIM);
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/%

FEs

sigmalk] /= ((decuble) NSTM);
sigmafk] = sqrt(sigmalk]-muik]*mufkl);
}

STEP 2. - {alculate and draw max and min curves */
nax = (double *)} malloc( NKER*sizeof(double) );
min = (double *) malloc( NKER#*sizeof{double) );
for ( k=0 ; K<NKER ; k++ ) max(k] = min[k] = 0.0;

for { k=0 ; K<NKER ; k++ } {
max [k] = mufk]+2.0%sigma[k];
if ( max[k} < 0.0 ) max[k}l = 0.0;
winfk) = mufk]-2.0*sigma(k];
if ( minfk) <€ 0.0 ) min(k]l = 0.0;
}

£p=fopen(OUTPUT, "w") ;

for (k=0;%k<NKER;k++) fprintf(fp,"#10.8Lf\t%10.81£\1%10.81£\n",
1000*min[k], 1000%mulk}, 1000+max[k]};

fclose(fp);

STEP 4. - Tidy up */

for ( k=0 ; RK<NSIM ; kt+ )} free{den{k]);
free(den);

free(mu);

free(sigma);

free(min);

free(max);

roturn;
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A.5 Hodgkin-Huxley rate functions

The auxiliary variables m, n and A in the Hodgkin-Huxley membrane model define the

kinetic behaviour of the conductances through differential equations of the form

d;
F =y (1=1) - Gy

where ¥ = h,m,n and « and @ are functions of Vas. The following code calculates the

values of e and B for a specified voltage for each of the auxiliary variables f, m and n.

7Rk sk sk o ok kok dokk ok ek o ok ok et o o 5 oK ok ok o kK

ALPHA for ACTIVATION OF SODIUM
*K et ok Aok Ok ko oKk AR ok A ek ok ot ok AOK Rk R RoR ko R KL/

doubls alfa_m( double volt )
{

double tmp;
gtatic double fac;
static int sturt=1i;

1f ( start ) {
fac = pow(8.0,0, 1%CELSIUS-0.63);
start = Istart;
¥
twp = -0.1*(volt+35.0);
if ( fabs(tmp)<0.001 ) {
tmp = 1.0/(({tmp/24.0+1.0/6.0)*tmp+0.5) +tmp+1.0);
¥ else {
tup = tmp/(exp(tmp)-1.0};

h
Teturn tmp¥fac;
1
7 RokoR kokok sk ok skok ok sk kR HOK ko FAOK K AR 3K K A Rk o ok N Ok oK

BETA for ACTIVATION OF SODIUM
TR AR o K KA KRR R KK KK s o o K 3 KoK KKK AHOR oKk sk kR Rk ook sk ke
double bata_m{ double volt )
{
double tmp;
static double fac;
static int start=1;

if ( start ) {
fac = pow(3.0,0.1#CELSIUS~0.63);
start = !start;
¥
tmp = (volt160,0)/18.0;
return 4.0#fackexp(-tup);
¥

J Rtk kR koK ARk K Rk o s Mo ek IR AR ok

ALPHA for INACTIVATION QF SODIUM
Fokskopokakek Ak 3 R RIOR R R OR K FoR R R R R R RSk St R Kk R ol Kol bR o 4ok ok f

double alfa_h( double volt )}

{
double tmp;
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static double fac;
static int start=l;

if ( gtaxt ) {
fac = pow(3.0,0.1%CELSIUS-0.63);
start = !start;

}

tmp = 0.05%(volt+60.0);

return Q.07xfac*exp(-tmp);

¥

/'I"Vllt 0 K o o R S Rk e o s o gk HORKOK et stk ok ok Ak sk sk ok ok i Aok sk deioloRoK ikl ok kool

BETA for INACTIVATION OF SODIUN
ook sy Nk A Ak A A AR R ROK R SR A K K KoK o FE L PR T T

double beta_h({ double wvolt )
{

double ‘tmp;
gtatic doubla fac;
static int start=i;

if ( start ) {
fac = pow(3.0,0.1*CELSIVS-0.63);
gstart = lstart;
by
tmp = -0.1x(volt+30.0);
return fac/(ezp{tmp)+1.0);
}

Foakokolefekod ok s kAo RO A SRR o oK KRR K R K r— Aok ook ok
ALPHA foxr ACTIVATION OF POTASSIUM

P — AR ok fokokok A

double alfa_n( double volt )

{

doubls tmp;
gtatic double fac;
static int start=i;

if ( start ) {
fac = pow(3.0,0.1xCELSIUS-0.63);
gtart = lastarst,;
3
tmp = -0.ix(volt+50.0);
if ( fabs(tmp)<0.001 ) {
tmp = 0.1/{{{(tmp/24.0+1.0/6.0) #tmp+D, 6> *tmp+3.0);
¥} else
tmp = 0.1*tmp/(expl{tmp)~1.0);
}
return tmpxfac;

}

FELT T TR TR LT BT * ok Kok ok ok Aotk oo % o ko RO
BETA for ACTIVATION OF POTASSIUM

2 bk R o e Al oKk oo o oK S 8 ook K Kok oK B 3R ek SR K R K R o e ok AOR o ok ok

double beta_n( doubla volt )

{

double tmp;
ztatic doubls fac;
atatic int start=l;

if ( start ) {
fac = pow(3.0,0.1%CELSIVS-0.63);

[ T
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start = !start;
}
tmp = 0.0125%(volt+60.0);
return 0.126+fuc*exp(-tmp);
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A.6 Utility programs

This section contains some standard functions that are common to many of the programs,

for example a random number generator and a number sorting algorithm.

/ A ook Rk ok ok ok ks kR kol ok ROk sk ok sk sk dolokd okl kb ok ok Aok &
Calculate the cumulative normal distribution phi(z)

RRHEA » AR KRR ok sk dook ok b dokoksokk ok /

doubls phi(double z)

{

double t, x, ¥y, brt=0.707106781186547524;

x = -zxhrt;

if {( x >= 26.6 ) return 0.0;

if { x <= -6.5 ) return 1.0;

t = 1.0=7.8/{tabs(x)+3.75);

¥ = (CCCCCCCUCC((((~1,bBD23488119651697e~11%*%
~4.945720690093929276-11) *t+1.964249535446237840~10) ¥t
+6.29796246918239617e-10) ¥t-1.317513409734938986-0) *t
-4, B4566988844706300e-9) #t:+9 ., 224748022698580040-8) ¥t
+3,14410318645430670a-8) #1-7. 26754673242913196e-8) *t
~1,B8338068960865428Ba-7) *1+6 . 5048B268069175234e-7) ¥t
+7,£854168574006430B0-7) *t~6. 1.8344429012694168e-6) +t
+3.5837149798414635706~6) *t+4, 78987882434182054a-5) *t
~1.624626646658563646-4) *t~2, 65363311432760448e~5;

y = (CCCC({{y*t+1.802962416736979936-3) *t~8.22062115413991215c-3) #t
+2.,41432239724446769e~-2) ¥1-6. 480232669497761620-2) *t
+1.0260431203219823%¢-1) *s~1.63571B95523923969a~1) ¢
+2,26008066916621481e~1) *t-2, 7T3421931405426482¢~1) xt
+1.4658972127603863%e-1;

y = 0.5xyrexp(~x*x);

if (x<0.0)y=1.0-y;

return y;
/****************************************t****t*** Mk ook
Function returna primitive uniform random auwmber in interval [0,1]
0 4 S 20 S R e SHOR 3B M o ok o ok o ok Ak e stk oK R R R b sk ok ok e ok e e ok R R Rk R Kok k¥ ***t**/

douhle ran(unsigned long int *ix,
unaigned long int *iy,
unsigned long int *iz)

doubla tnp;

/% 1st item of modular arithmetic #/
*ix = (171%(+1x))%30269;
/% 2nd item of modular arithmetic 3/
*#iy = (172 (#iy))%30307;
/% 3rd item of modular arithmetic #/
*iz = (170%(#iz))%30323;
/% (enerate random number in (0,1) %/
tmp = ({double) (*ix))/30269.0+((double) (*iy)}/30207.0
+{(double} (*iz))/30323.0;
return fmod{tmp,1.0);

/ Wokskkok AR RN KKK R AR K e eaofeofe ko e stk ok K K MOk

Order entries of vector x{ ] in ascending order
sk ok ok ok ook sk ok ok o sk sk A ok o o oK K e YRR oK oK o AR KKK ko
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void heapsort( int =, double #*x)
{

int finish;

long int i, ir, j, k;

double tmp;

if ( n<2 } return;
X = n/2;
ir w n~-1;
finish = Q;
while ( !finish ) {
if (k0 ) {
tmp ~ x[--k];
} olse {
tmp = x{irl;
x{ir} = x[01;
if { ——jr==0 ) {
zfQ0] = tmp;
finish = 1;
}
}
i=k;
3 = 2%k+1;
while ( j<=ir ) {
if C j<ir &% x[ji<xlj+1id ) j++;
if ( tmp<x[j] ) {
x[1] = x[j1;
i=j;
j = 2xj+l;
} else { |
J = dr+l;

}
¥
x[1i] = tmp;
¥
raturn;

b

£ R AROR KRR R ORI ROR AR KR ok ok K s skokok st b sttt kol ot A
Lo¢ates the minimum of the function

func{doubls) to the imterval (al,aul.
e o R AR R AR ke Ak ootk ookt o /
vold polden{ double #al, double *au, double (*func)(double) }
{
int ;

PP U FUIr W -PL. RV SO DU

donble r=0.618033588, vl, wvu, fl, fu;

/* Count frequency of voltage in given ranga */
vl = *al+r*r(#au-+*al);
1 = func{vl);
yu = *al+rs(xau-+al);
fu = func(vu);
while ( #au-*al > B.e-B ) {
1f ( £f1 >= fn ) {

*al = vl;
vl = vn;
£l = fu;

vu = val+rw{hau-+al);
fu = func(vu);

} else {
*au = vu;
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¥

/R Ak oR 3K K ok SRR AR AOROROR R R ROk K kR ok ok

Calculates the modified Bessel function I_0{x)
e sbeok ok o Ao sl RO R SRR KRR K SR SO SKR AR KR KR R ROk KRSk Rk ok

}
}

return;

va = vl;

fu = £1;

vl = #alsrsrh(*au-*al);
fl = func(vl);

double bess_iO{daubls x)

{

R R R R e e s
1

double g, t, y;

double xvsmal=3,2e-9, xbig=7.116e+2, ybig=4.8s+307,;

t = fabs(x};
if { t > xbig ) return ybig;
1f (v > 12.06 ) {

|

om0

R R RN

fi )
/]

= exp(t-0.6%log(t));

24,0/t~1.0;
~1.95673809047625728e~18;
yHt+4.73229306831831040e~14;
y#t+1.446723137991180290~12;
y*t+4,3081267732681361920-13;
y*t-4,20417106720684499¢-12;
y*t-4,346247393576910856-12;
y*t+2,82807056475565021e-12;
y*t+8. 277194012660469768-12;
y*t+1,05863621426699789a-11;

= y*p+l,895903229208007940-11;

yxt+4,82726630988879388u-11;
y*t+1.561471274765288310-10;
y*6+6.479941177934720670-10;
y*643.443450254314265670-8 ;
yx£42. 368844340668436280-8;
yAt+2.171606010612221480-7;
yHL+2 T 707018497856970~6;
y*4+6 , BOB4B2533373777630-5;

= y*y+2.18216817211604382e-3;

y*4+4,01071085086847416e~1;

return gty;
Yelse if (t> 4.0) {
= oxp(t);
0.25+6-2.0;

]

]

2.4518525296394108%0-11;
y*t-8.46900307934754898a-11;
yxt+1,23188158175419302¢-10;
y*t-3.60370474256271539¢-10;
y*t+1, 58599776268172290e-8;
y*t-4.66215489983794905e-9;
y*t+1.24131668344618429e-8;

= y*t—3.34900221934314738e-8;

y*L+8,752918392187306722e-8;
y*t-2,17663548816447667e-T7;
yrt+6.188326100695461068~7
yHt-1,187528406897665040-6;
y*t+2.61467634142262804e~5;
y*t-5.564917762110482949¢-6;
y*t+1.14032404021741277e-5;
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¥

£ Ao Rk

{

y#t+1

n

= yxi-6

R AR
L]

= yrg+l

yxt-2.
yHEHE.
yt-8.
.70524543267970595e-4;
y*g-3.
ytt+6.
= yki-L.
2 b+l
.30121694459896307e-3;
= yxtrl,
= y¥t-3.
.43431781856850311e~1;

28278165280668483e-5;
4B739018680173804e-5;
'74354291104467762e-5;

368335613200679384e-4;
72608592273773611e-4;
37638906941232170e-3;
89362046530968701e-3;

44861237337359456e-2;
71671542666085323a-2;

raturn gry;

} else if ( ©

4

i

y*L+6

n

y¥t+l
yit-3

)]

yHEAT
yrt-1
yH*E+3

n

= y*t+1
= y¥t-1

e e e A R N W o m
3

= y*t-2.
= yruL+O,
= y*t-3.
.23682654985692688e-4;
.93934532072526720a-4;
= y¥b+l,
= y¥t-3.
.70061052263382555e~3;
\713179479367166360~2;
.415053883914521679-2;
y¥t-8.
= ykpag.
= ykg-1,
.57686843969995904e-1;
.BB478066609466760e~1;
= y*t+3,

» xvemal ) {

= axp(%);

= 0.6%t-1.0;

= -7.481501657562349570-12;
= yaprd,
yrt-2.
= yxt+l,
= y¥g-5.
yrE42,
yrE-1.
.00566861079330132e~T;

44434446637B8689740-11;
10071360134561962e-10;
13415934215369209¢+-9;
94866273204269507a-9;
92006168521178836e~8;
360420135071561017e-7;

50298976966588680e-G;
3130953627697871050-6;
60645571444866286e-5;

15888319776791686e-3;
12923286666374358e-3;

04316796007737183a-2;
41616340200868389e-2;
28895621330624983e-1;

(B860832266367103%e-1;

return gxy;

} else {

return 1.0;

}

ok KK kk HAOK AR Rk kK K K ¥*

Calculates the modifisd Bessel function I_1{x)
******8*******#*************#*%***ﬁ*********#********/

double bess_ii(doubla x)

double g, t, ¥;

double xvsmal~3.2e~9, zhig=7.116e+2, ybig=4.5a+307;

t = fabs(x);
1f { t > ybig
if (£ > 12.0

nou

b R ]
1]

y¥L-5

) return ybig;
) {

exp(t~0.5%1og(t)) ;
24.0/t-1.0;
1.99448657698015488¢-13;

. T7176811730370560e-14;
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= y¥t-1.
= y¥t-3.
= yri+d.
= yatth,
yrt-3.
y*t-8,
yrt-1.
yrt-2.
n ywg-B.
yxt-1,
y*t-7,
= y*t—3.
= yxt-2,
A2,
= yxE~3,
= y¥t-9.
= yiE-6.
y = y*ti3.

nowonon

]

]

LS S I e B I I A A ]
d

48765082316961139%e-12;
963563308949377636e-13;
477366896670576%00~12;
42966462319664833e-12;
0B967293450420224e-12;
69631768630663636e~12;
1179561674222289%s~11;
0294785460276813%e~11;
23624129633653498s-11;
72060490748583241e-10;
28107961041827952e-10;
96757162863209348¢~9;
82637120880041703e-8;
7268454574140087 1e-7;
82795135453556215e-6;
1247663850849710%e-5;
406456360348237412e-3;
926244942041166666-1;

return grys(x/fabs(x));

¥ else if ( %
= exp(t)

= yRE+7.
= y*t-1.
= yRgE3,
= y*t—i
= yxgid,
= yixt-1.
= yRt42,
= y¥t-7,
= yxt+l,
= y¥t—4,
= ywt+8,
yri-1,
= y¥t+3.
= y¥t-6,
= yxg+l.
= yat-1.
= yib+2,
= yag~2.,
= yKt+5,
w y¥hts.
= yHg-3.
= yxt+l,
= y*t-3.
= yEg+9.
= yRt-2,
= yRtdl.

o g e g ] AN N Nt Mg g o (T
]

>4,0) {

= 0.25%t-2.0;
= ~2.27061376122617866e-11;

7992917G64970666460-11;
10970391104678003e-10;
3B383570696623360e—10;

.41675617446629558e-9;

1132122390493480%e-9;
076636142076177688-8;
849610412910176508-8;
28978293484163628e-8;
76306222240064495e-7 ;
05456611578661130e~7;
86951515546183908e~7;
£30102066263487720-6;
60186151617732631e-6;
63144162982509821e-6;
138189924424639620-5;
79026222767948636e-5;
47493270133618925e-5;
62051678511418163e-6;
2165731907023683%6e~6;
47999438119288094e-5;
676261808921745700-4;
173134128562663740-3;
407596479289663648-3;
760211026286467048~3;
091409238974065708~2;
34142483292698178e~1;

return gkyx(x/fabs{x));

} else if ( t

> xvsmal ) {

t = Q.126%t*1-1.0;

ft

yrb+4,
= yat+2.
yrb+l,
y#t+3.
yFt+l.
yrt2,
yHh+3,
yrE+a,

I

womo

g
I}

= 6.243879103535848320e-14;

17372709788222413e~12;
328569218846638466-10;
06662712314503956a-8;
923687109963927568-7;
1284979677995184706~5 ;
462243140392789040~4 ;
BA7639404238094988-3;
09266371827770484e~2;
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N y*u+2,.68657658522002832a-1;
¥y y*t+9,28768890114609554e~1;
y = y*t+1,19741654963670236;
returii X*y;

} else {
return 0.5*%;

}
}

Fokdetdokdsok okt R ot ko Aokl Kok ook Kok Kotk ok koo o o
Calculates the nodified Bessel function K_0(x)
ek AR KR R K AR S SRR R R ook kR ok e ko A ok /
donbla bess_kO(double x)

{

double g, &, ¥;
double xvsmal=3.26-9, egam=b.77215664901532861e-1, xbig=7.051e+2;

if (x < 0.0) {
printf(*\nKO evaluated for non-positive argument!");
return 0.0;
}
if ( x »= xbig ) retura 0.0;
if (x> 4.0) {
1= 10.0/(1,04%)-1.0;
4,437419798865510406e~14;
y+t-1,28108310826921616e-13;
= y¥t+2.0832889256266488008-13;
yri-7,31344482663931904e-13;
yrt+2.86481236187706907e—12;
yt-1,1139175857264763%e-11;
y*t+8,49664203268546992e~11;
= y+t-2,228205822888332864-10;
= y+t+1.76368321273580603¢~10;
y*t-9.41Bb663211371760730~9;
= y*t—-4.16044811174114679%e-8;
= y¥t-7.691776225292729336-7;
= y*t-6.31692398333746470a-6;
= y*t-9,026633461874046640~6;
= y*1-9,25551484766637133a-4;
= yxt~1,726836523856321641e-2;
= yxt+1,23688664769425422;
return yrexp(-x)/sqrt(x); !
} else 4f ( x > 2.0 ) { '
I

-
LI |

LI (I |

D RN T R S IR R R SRR R
1t

t = x~3.0;

= 2.435382422476537469=-12;

= y*t-7,39672783987333184e-12;

= y+£+9,11109430833001267e-12;

= y*t-2,97787564633235128e-11;

= yt+1.28905687479980147e-10;

u yxt-4,0342460787136008%e-10;

= ykt+l,22424082779432870e-9; ;

= y*t-3.88349705250555658e-9; H
yAb+1.23923137898346852e-8; i

= y*1—3.96403255713618420e-8;

= yxitl . 266726294176567360e-7;

= y4t-4.07861207862189007e-7;

= y+t+1.3206226105893242be-6;

= yx-4,30373871727268611e-6;

= y*t+1.413766093486227270~5;

= y*t-4.6893665638148367120-5;

= yxt+1.574615162368606730~4;

ot e W W N e g e
n
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n

y*t-5.37145622971910027e-4;
y*t+1.87292933725962385e-3;
y*t—ﬁ.?44596079401691933'3;
y*t+2,66253646031960321e-2;
yat-1.088018820849356132e-1;
yHb+8,877616980438517768-1;
return y*oxp(-x);
} slse if ( x> 1.0 3 {
t = 2.0%¥x-3.0;
= 2.b67466288576820685e-12;
= y4t~7.837386001086682836-12;
= y*t+9.74410162270873924b6e-12;
= y*t-3.19241059198852137e-11;
y*t+1,3799926807444271%e~10;
y*t-2,33326665618780914e-10;
yxt+1l, 32069362385968867e-9;
y4t-4,20597329258249948e-9;
yHutl, 34790467361340101e-8;
yat~4, 321.865089841834127e-8;
= y¥prl . 39217270224614163e-7;
= y¥h-4.51017292375200017e-7;
= y¥t+1.47055796078231691e~6;
= y#t~4.83134260336022161a-6;
= yat+1,60185974149720562e-5;
= y*t~-5,37101208898441760e-6;
= y*t+1,B266248008934278%6-4%;
= y*t-6,32078357460594866a-2;
= yt+2,247097296177704716-3;
= y*t-8,27780350351692662s-5;
= y*4+3,236820106498580090-2;
= y*t-1. 424779101288282640~1;
= yrt+9. £8210053224896496n-1,;
return y*exp(-x);
} elee if ( x > xvsmal } {
t o= 2.0%x¥x-1.0;
= 1.908741976145612806-14;
= g&t+7.4911073682341347%4e-12;
= g*t+2.183824118247215326'9;
= g*t+4,34562671646158210e-7;
= git+5,597023382279153836-b;
= g¥t+4.071674851713890480-3;
= g¥t+1,32976966478338191e-1;
= p+t+1.12896092946412762;
1.054077181913600000-16;
= y*t+5.16867886946332160a~14;
= y*t+1.924052642197066848~11;
= 15, 19906865680066566338-9;
= yxt43.B7878493265929443e~7;
= yi+1.095342926324016420-4;
= y#{+6.63513879313943B278-3;
yrt+1,.52436921799305196e- -1;
= yit+2,61841879256368700b6e~1; ;
return -grlog{x)+y;
T elae {
return -{log(0.5+x)+ogun);
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Calculates the modified Dessel function K_1(x)
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double bess_k1{double x)

{

double g, t, ¥i
double xsmall=7.%e-10, xbig=7.051let2, xsest=2.23e-308;

if (x<=0.0){
printf{"\nK? evaluated for mon-positive argument!");
return Q0.0;
}
if ( x >= xbig ) return 0.0;
if ( x <= xsest ) {
printf{"\uK1 evaluatsd for very small pesitive argument!");
Teturn 1.0/xsest;
}
if ( x >= xbig ) weturn 0.0;
if (x> 4&,0) {
= 10.0/(1.0+x)~1.0;
= -4,77800238111680160e-14;
= yt+1.393211228406003200-13;
= y*t-2.19287104141802752¢~13;
= y*t+8.58211623713660676e-13;
= y¥t-2.607746020202711040-12;
= yet+l, 72026097285930936a0-11;
= y*t+6.970753791177313796-12;
y*t+6.776889438575888823-10;
y*t+3.827176921214383159-9;
= yxt+4.866514200081639560-8;
y*t+4.075538569318434843-7;
yrE+4, 327764097842352116-6;
y+tid, 047206316284950200-5;
= yxg+4d,289739708987668318-4;
= yst+4,31639434283445364e-3;
= yri+h,44845264318931612e-2;
= yxt+1,30387573604230402;
return y*exp(-x)/sqrt{x);
} else if { x> 2.0 ) {

t = x-3.0;
-7.36478297050421658e-12;
y*£+2,14736751065133220e8-11;
y*£~2,02680401514736852a-11;
yAt+6.4£913423645894175e-11;
y*t—3.09667392343245062a-10;
y*t+9. 20781685906110546e-10;
= y*i~2.50039390303009069e-9;
y*e+7,7942165114483270%e-9;
y¥t-2.35856618461026265¢-8;
647, 087 233656966698806-8;
= y¥t-2.12969229346310343e-7;
= y#t+6.40581814037398274e-7;
= y#t—l.927945869954325936-6;
= y*t+45,80692311842206724e~6;
= y¥t-1,75089594354079944e-5;
= p¥b+5.28712919123131781e-5;
= y¥t~1.599948736215091468-4;
= yt+4, 85707174778663652e—4;
= yxt~1,48185472032688523e-3;
= yaird GEBE5T61206724687e-3;
= y*t-i.423631366844236466—2;
= yxt+d, 58591628414023064e-2;
y¥t~-1.600562611291327173e-1;
= y#*t-+8.06563480128786903e~1;
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return y*ezp(-x);
} else if ( x> 1.0 } {

t = 2.0%x~-3.0;
= -1.46639281782948454a~11;
= yxt+4,27404330568767242e-11;
y*t-2.02691066627023831e~11;
= y¥t+1.28044023949946257¢~10;
= xt-6.15211416898895086e~10;
= y*t+1.82808381381205361e-9;
= y*t—E.137835081403322149-9;
y*tt+1.54456653909012693e-8;
y+t—4,66928912168020101e-8;
= yht+1.401383619B51B5E609e-T;
y+t-4,20507152338834966e-7;
y*t+1,26265578331941923a-6;
= y*t-3,79227698821142908e-6;
= y*t+1,139301622026635260-5;
= y¥5-3,42424912211942134e-5;
= yxb+1,020827467000607300-4;
= y*t-3.100076810136266286-4,
= y*t+9,346941543876429406-4;
= y*t~2.824507B78416559516~3;
= y+t+8,57388087067410039¢~3;
= y*t-2,62545818720427417e-2;
= y¥t+8.202502208806938880~2;
= y*t-2.71910714388669413¢~1;
yrr+1,24316687355255209;

return y*oxp(-%);
} else if ( x > xamall ) {
2,0*x¥x-1.0;
= 1,18964962439910400e~15;
= g*t+5.33888268065668944e-13;
= ght+1,79784792880166752e-10;
= gai+4,32764823642897763e-8;
= p¥t+8.956300274548206237e-8;
= p*t+G.71842805873408653a-4;
= g*t+3.25725988137110456e-2;
= gat+b, J190786E69133527620-1;
= 3,29881056801986b6600e~15;
= y+t+1.409171030245143010-12;
= yii+a1,468286284366186790-10;
y*t+8,966886882737816316-8;
= yrb+] . 44612432533006139e-5;
= yHE+1.20333685668219028e—3;
= yht+4, 50490442966943726e~2;
= y*i:13.51825828289325536e1;

return (gxlog(x)-y)*x+1.0/x;
} else {

return 1.0/x;
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A.7 Bandwidth calculations

The calculation of the bandwidth is required in all problems associated with the simnulation
of dendritic morphology. As described in Chapter b there are two options for the bandwidth

- regular and correlated. The functions to generate both are included here.

Rk kol * Wk KR koK oK ok R AR A Kok ok ARk koK oK AOK A
FUNCTION RETURNS SCODTTS BANDWIDYTH

ko ekok ok *¥o¥ bk kokok FA RO Rk [

double scott_bamdwidth{ int nobs, doubla *obs )

1{

extern doubls sigma;
double mu, h, tmp;
int k;

/% STEP 1. -~ Calculate mean and standard deviation */
mu = sigma = 0.0;
for ( k=0 ; k<mobs ; k¥+ ) {
mu += obs[x];
sigma += pow(cbs[kl, 2);
H
mu /= ({donble) nobs);
sigma /= ((doubls) nobs);
sigma = sqrt(sigma-mrkmu);

/% STEP 2. - Determine mutiplying factor by dimension #/
it (DIM == 1) {

tmp = 1.08;

} else if (DiM == 2 ) {
tmp = 0.96;

} else {

tmp = pow{{(4.0/(2.0%DIM+1.0}}), (1.0/(DIM+4)});
}

/* SITEP 3. - Calculate bandwidth ¥/
h = tmp*sigma/pow({double) nabs, 1.0/(4 0+DIM));

return h;
}
/ * At ok K K AR K kR K kb Kok R ok ok Rk ok
FUNCTION RETURNS THE CONMRELATED SCOTTS BANDWIDTH
* FAok kK o Ak R ORHORHORRRHORK K ok ko ot koK K *kok ek ok sk Kok ok

void scott_correlated{ iut nobs, double *hx, double *hy, douhle *x, douwble =yl
{

extern double sigmax, siguay;

double mux, muy, h, rho;

int 3, k;

/* STEP 1. ~ Calculate mean and standard deviation of x */
mux = sigmax = 0.0;
for ( k=0 ; k<nobs ; k++ ) {
mus += x{k];
siguax += pow(x[x}, 2);
3
mux /= ({double) nobsa);
sigmax /= {{double) nobe);
gigmax = sqrt(sigmax-mux*mux) ;
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™

i*

f*x

STEP 2. - Calculate mean and standaxd deviation of y */
muy = sigmay = 0.0;
for ( k=0 ; k<nobs ; k++ ) {
muy += y[kl;
sigmay += pow(y{xl, 2);
}
wuy /= ({doubla) nocbs);
sigmay /= ({double) nobs);
sigmay = squt(sigmay-muy+muy);

STEP 3. - Calculate rho */

rho = 0.0;

for { k=0 ; k<nobs ; k++ } rho += (x[k]-muc)*{ylk]l-uouy);
rho /= {{(double) nobs)}+sigmaxrsigmay);

STEP 3. - Calculate bandwidth */
*hx = pigmagtpow((1.0-Thoxrho), 5.0/12.0)*pow((1.0+0.6*rho*rho),

~1.0/6.0)spow({(davbla) nobs), -1.0/6.0);

*hy = sigmayrpow({1.0-rho*rho), 5.0/12.0)*pow({l.0+0.5+rhosrho),

-1.0/8.0) +pow{{ (double) ncbs), ~1.0/6.0);

return;
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A.8 Fast Fourier Transform

This section contains the code used to perform the Fast Fourler Transform in the calcula-

tion of the propagated action potential in Chapter 2.

/4

ok oh ek o e e o ook sk e e ¢ ol N ok o ROR SRR ok ke

Function to factorize n into prime factoxs 2, 2 snd 5

ok ok ks KRR ok KN sk RN R R R o Ak o ok ok sk sk ok ok
int *factorize( int n )

{

/%

i

/%

/¥

}

int nb=0, n3=0, n2=0, nt, *ifac;

Step 1. - Check n is not zero */

if ( n==0 ) {
printf (“Intoger n is zero - failurs\a");
returun ifac;

}

Step 2. - Factor 2, 3 and 5 from n */

nt = n;

while { nt%6 == 0 ) {
nb++;
at /= 5§,

}

while ( nt¥%3 == 0 ) {
n3++;
nt /= 3;

}

while ( nt42 == Q0 ) {
n2++;
ot /= 2;

}

Step 3. - Check that n is complately factorised #/

if (nt > 1) 4
printf{"\nInteger n has factors larger than 5 - failure\n");
ifac = NULL;
retnrn ifac;

}

Step 4. - Fill vector of factors */

ifac = {int *) nmalloc{ (n2+n3+n5+1)*sgizeof (iny) );
ifac[0) = n24n3+n5;

for ( nt=1 ; nt<=nS ; nt++ ) ifac[nt] = 5;

for { nt=nS+1 ; nt<=n5+n3 ; nt++ )} ifac[nt] = 3;

for { nt=nSma+1l ; nt<=nS+n3+nZ ; ntt+ ) ifacfut] = 2;
return ifac;

/****************************************$**************1**

Computee trignometric expressions meeded in TFFT

n

cog{2.0+PI*K/N) 0 <= K <= N-1
sin(2.0*¥PI+K/N) O <= K <= N-1

trig[0] [0, .n-1]
trigl1] (0. .n-1]

ok AR A A AR AR o ko DR TR AR Kk kAR AR/
void TrigVals( int n, double #¥trig )

{

double fac, angle;
int j;
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fac = 8.0*atan(1,0)/((double) n);
for ( j=0 ; j<m ; j++ ) {
augle = facx{(double) j);
trig{ol [j1 = cos(angle);
trig[11[j) = sinangla);

}
Taturn;

¥

void £Lt{ int n, double %**ai, double **aa)
{
int ka=1, odd=1, i, *ifac, *factorize( int J; .
void rrigVals( int, double #x);
void pass( int, double *¥, double **, imnt, int, doubls #x);
domble *ptr, **trig;

ifac = factorize(n};
trig = (double **) malloc( 2+sizeof (double *) J;
trigl0} = (double %) malloc( msizeof (double) );
trigfi] = (double *} malloc( n*sizeof (double) };
TrigVals{ n, trigl);
for ( i=1 ; i<=ifac(0] ; i++ } {

if (odd ) {

pass( n, ai, ao, ifac[il, ka, trig);
} else {
pass{ n, ao, ai, ifaclil, ka, trig);

¥

odd = 1odd;

ka *= ifac[il;
¥
if ( odd )} {

ptr = acl0};

aol[0] = ail[0];

ai[0] = ptr;

ptr = ao[1];

ao(i] = aifl];

aifil = ptr;
3
froo(ifac);
free{trigl0l1);
free{triglil);
free(trig);
return;

¥

vold pass(int n,double ¥*¥a,double *#¢,int ifac,int ka,double Aktrig)
{

int ind{&], jnd[5], wmval, j, k, ival, jval, jump,

i0, i1, 12, i3, 14, jo., ji, j2, 33, j4;
double ar, ai, br, bi, cr, c¢i, dr, di, or, =i, fr, fi,
cl, c2, ¢3, ¢4, 81, 82, 83, s4;
static double 2in36=0.587785262292471, sin60=0.866026403784439,
sin72=0.951066516296163, factl=0.559016994374947;

/% Step 1. - Initialise indexing */
mval = n/ifac] .
foxr ( k=0 ; k<ifac ; kit ) {
ind [k} = k*mval;
ind [k} = k+ka;
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juap = (ifac-1)+ka;
ival = jval = O}

/% Step 2. — Compube FF1 %/
for {( k=0 ; k<=mval-ka ; k+=ka )} {
for ( j=0 ; j<ka ; j++ > {
if ( ifac = 2 ) {
i0 = ind[0]+ival;

il = ind[1J+ival;

30 = jond[0])+jval;

j1 = jndf1]+jval,

cl = trig[0] [k];

al = trig11[k];

if (k==0 ) {
c{0][jO] = al0l {30]+afod [i1l;
cf11{j0) = alil[i01+a(1][11];
clo]l [j1) = al0l £30]1-al0] [i1];
cf13[ji] = a1l [10}-af13[il1];

} else {
clo} (0] = afo] [10]+a{0] [i1];
c[11{j0Y = al1] [10]+a[1] [11];
ar = al0] [10]-a(0] [i1];
ai = a(1) [40]-al2] [11];
cl0]1[j1] = clsar-sixai;
cf1][j1] = sixar+cl*ai;

}

} olee if ( ifac == 3 ) {

10 = dnd{01+ival;

il = tndlil+ival;

i2 = ind(2]+ival;

10 = ind{0]+jval;

j1 = jndltl+jval;

j2 = jnd(2]+jvai;

Af (% ==0){
ar = al0][i1]+a[0][i2];
ai = a[t)fi1]+a(1]i2];
c¢[01[jo) = a[0] (10}+ar;
c[13[j0] = a[1]{i0}+adi;

ar = a[0] [i0]1-0.5+aT;
ai = a1} {i0]-0.5%ai;
br = 3in60+(af{0] [i1]l-al0}{12]);
bi = 3in60*(af1][i1]1-al11[i2]);
cf0][j11 = ar-bi;
cf11[ji] = aitbr;
c[01[32] = ar+bi;
cl1][j2} = ai-bx;
} alse {
cl = trig[0JIx);
c2 = trig[0] [2*k];
sl = trig[1] [¥]);
82 = trigll] [2%k];
ar = al0}[i1]+al0]l [i2];

ai = a[1}[i1]+af1][i2];
c(0]1{j0]1 = a(0} [i0]+ax;
c[11[§0] = al(1] [101+ai;

ar = aj0) [10]-0.6%ar;

ai = al1]1[10]1-0.5%ai;

br = sin0*(al0] [111-al0}{12]);
bi = sin60+(al1][11}-a[1]}[12]);
¢r = ar-bi;

¢i = ai+br;
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cf0] [§1]
cf11 i1}
cr = artbi;
¢i = ai-br;
c[0][j2] = c2¥cr-s+ci;
c[1]1[j2] = s2¥cr+c2¥cij

cixcr-siwci,;
gltor+cleci;

non

¥
} else if { ifac == 5 ) {

10 = ind[0]+ival;
11 = ind[1]rival;
i2 = ind[2]+ival;
i3 = ind[3]+ival;
i4 = ind(4]+ival;
j0 = jnd[0]+jval;
il = jnd[il4jval;
j2 = jndl2]+jval;
j3 = jnadl3]l+jval;
j4 = jud[4]+jval;

if (k=0 {
ar = af0]Lliil+a(0]{i4];

ai = a[t][1i]+al3}[i4];
br = a[o] {i2)+a[0] [13];
bi = a{1] [i2}+a[1][13];
¢r = ar+tbr;
¢i = ai+bi;

«f{0]1130) = al0} (i0]+cz;
¢[11750]1 = al1) fi0}+ci;
br = factl*{ar-br);

bi = facti¥{ai-bi);

cr = al0] [10}~0.25%cr;
ci = al1] (10]-0.26%ci;
ar = crtbr;

ai = citbi;

br = cr-br;

bi = ci-bi;

er = al0] [11]1-a[0] [i4];
ci = al1] [L1]-a(1][14];
dr = af0] [i21-af0] [13];
di = a[11[i2}-af1]1[i3];
er = s8in72*cr+gin36*dr;
ei = 3in72+ci+gin36xdi;
c[0]1{ji] = ar-ei;
c[1]1{j1] = aiter;
c[01[j4] = ar+ei;
ci11[14] = mi-er;

er = sindé*cr-sin72%dr;
ai = 8ind6xci-gin72*di;
cl0] [j2] = br-ei;
c[11[]2] = biter;
c[0)[j3] = br+ei;
c[1) (331 = bi-er;

} else {

cl = triglolfk);

c2 = trigl[0) {2+kl;

¢d = trig[0] [3*k];

cd = triglo] [4+k];

s1 = oerig{1] [k);

a2 = trig{l] [2%k];

53 = prigli] [3xki;

st = tripgl[il} [4xkd;

ar = a[0] [i1]+a[03 [1i4];
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ai = al1) [i1)+al1] [i4];
br = a[0] [i2]+al0] [i3];
bi = al1] [12}+af1] [i3);
cr = artbr;

ci = alrbi;

e[03[j01 = al0] [10]+cr;
c[13{j0] = 211 (i0l+ci;
br = facti*(ar-bx);

bi = factl*(ai-bi);

cr = a[0] [10]-0.26%cx;
¢d = a[1] [10]-0.26%ci;
ar = cr+br;

ai = citbi;

br = cr-br;

bi = ci-bi;

er = a[0] [i11-a{0] [14];
ci = a[1] Ei1]-a[1] [14];
dr = af0] [i2]-a(0] [i3];
di = a[11{i2]-al1]1[i3]};
eT = Sin¥2*cr+sin36k*dr;
ol = sin72#ci+sin36¥di;
c¢[0]1[j1] = ar-ei;
c[11[j1] = aiter;
c{0]1[j4] = ar+ei;
c[1]1[j4] = ai-er;

fr = ar-ei;

fi = aiter;

c[01[j1] = cixfr-si*ii;
c[11[j1] = sixfr+clsii;
fr = artei;

fi = aji-er;

c[01(j4} = cdrfr-sd+fi;
c[11(f4) = sdsfr+cdsfi;
ar = sin36*cr—sin72x*dr;
ei = 8in36*xci-sin72%di;
fr = br-ei;

fi = biter;

cf011j2] = v2afr-s2+fi;
c[11[j2] = e2%fr+c2xfi;
fr = brtei;

fi = bi-e1;

cf0]1[j3] = c3#fr-s3«fi;
c[11[j3] = s3#fr+cI*fd;

}
}
ival++;
jualt++;
}
jval += jump;
by
return;
I
/**** EE 2

st ok ookl ook ook ok ok e ok ok sk e stk thobakeok 3K S KRR X stk
Function takes as input the values of u{x) at the unipoints

urfk] --> valuo of w at x[k]

(o<

k <= N-1 )
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uef0] --> ul0] (guarantesd to be real)

ncf1] --> uf-nh] (guaranteed to be real)

ncf2k] --> real part of u[k] i<=k<=nk-1
uc[2k+1] --> imag part of ufk] 1<=k<=nh-1

ko ok ok ok R ok Kk foorok ot ok ek o
void real_c{ int n, double #ur, double *uc)

{

/*

Y3

J*

/*

¥

/**‘k*#******4‘i*i&***’k**####’k******** s ek skesdesiesk g e e Mook b dokollokekokk

double fac, theta, angle, c¢c¢, ss5, sl, 82, **a, **c;
int k, nh, nd, kk;
void f£ft( int, double **, double sw);

Step 1. - Allocate al 1[ J wnd <[ 1[ 1 #/

nh = n/2;

a = (double *¥) malloc( 2xsizaof(double *) );

¢ = (double **) malloc{ 2%sizeof (double %) J;

for { k=0 ; k<2 ; k++ ) {
okl = (double *) malloc( mh*sizeof {double} );
c[k] = (donble *) malloc{ mhksizeof{double} J;

i)

Step 2. - Assign al 1[0 1} =/
for ( k=0 ; k<nh ; Jt+ ) {
kk = 2*k;
a(0] [k] = nrikkl;
af1] (k] = nrikk+1];
¥

Step 3. - Apply FFT x/
£ft( uh, a, ¢);

Step 4. ~ lnterpret c[ 1[ ] to get ucl 1 %/
ucl0] = (c[0][0]+c(1} [01)/({double} n);
uel1l = {c[0110]1~c[1] [0])/({double) nJ;
theta = 4.0*atan(l.0)/({double) nh);
for ( k=1 ; k<nh ; k++ ) {

angle = thota*{{doubls) k);

ss = sin(angle);

ce = cos(angle);

nd = vh-k;

'}

s1 = ¢(0] [k)1~c[0]{nd];
32 = c[1] [kJ+cf1] [nd);

uc [2xk]

= ¢[0] [k]+< (0] fnd]+a1*s8+s2%cc;
uc{2¥kr1] =

c (1] [nd] ~c[1] [k)+sl*xcc-s2+sa;
}

fac = 0.5/((double} mn);

for { k=2 ; k<n ; I++ ) uc[k] #*= fac;

Step 5. - Free memoxry */

for ( k=0 ; k<2 ; k++ ) {
frea(afkl);
free(c(k]);

}

frea(a);

fraa(c);

return;

tote %/
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Input
----- wr[0] --> value of £[0] (puarantead real)
ur[1]} --> valune of £{-N/2} (guaranteed real)
ur(2k] --> value of Ra{fik]) ( 1 <= k <= N/2-1 )
ur(2k+1] --> value of Im(f[k}) ( 1 <= k <= N/2-1)
Output

------ ucfk] ~-> value of u at x[x] ( 0 <= k <= N~1 )

skt sk kR ok AR AOR Rk AR KA Kok R ROK K ARk A AOR o KRRk ok Rt ok A f
void real_v{ int a, double +ux, double *uc)

{

/%

/%

/*

/%

/¥

double theta, angle, cc, 38, 81, 83, *¥a, *x%g;
int k, nh, nd, nm, kk;
void ££5( int, double **, double *¥);

Step 1. - Allocate al JL ] and cL 1[ 1 */

nh = n/2;

a = (doubls *x) malloc{ 2#sizsof (double ¥) );
¢ = (double **) mmlloc( 2%zizeof (doubla *) );
for ( k=0 ; k<2 ; kt+ ) {

alkl = (double *) mallac{ nh*sizeof (doubls) );
clk] = (double *) malloc{ nhtsizeof(double} );
¥
Step 2. ~ Aessign ucl[ J{ ] and ux[ I[ 1 %/
c¢[01[0] = uwrlOl+ur[i];
c[11 [0 = ur[0l-ur[1];
theta = 4.0xatan(1.0)/((double) nh);
for ( k=1 ; k<nh ; k ++ ) {
kk = 2#k;
nd = n-kk;
s1 = ur(kk]-ur[nd];
52 = ur[kk+1]+urfnd+i];
angle = theta*{(doudle) kj;
cc = cos{angle);
s = sin{angle);
¢f0] [k] = ur[kk]+ur[nd]+sikxss-s2+cc;
cl1] (k] = ur[kk+1]-~ur[nd+i1]+si*ccts2*ss;
}

Step 3. - Apply FFT %/
£f4( nh, ¢, a);

Step 4. - Interpret al J[ 1 to get uc[ ] */
ucl0] = al0ol[0];
ucfn-11 = al11[0];
for ( %=1 ; k<nh ; Lk++ ) {
kk = 2%Kk;
uclkkl = al01[x];
uclkk~11 = a1l [k];
}

Step 5. - Free memory */

for ( k=0 ; k<2 ; k+t )} {
freefalk]);
Lfroo(clk]);

}

free(a);

fraaslc);

return;
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A.9 Differential equation solver

This section contains the code used to salve the differential equations in the calculation of

the propagated action potential in Chapter 2.

/% Global function declarations */

void intrp{ int, double, double %, double, doukle *, donble *, int,
double *%, doubla *);

void step( iut, double *, double *, double #*, double *, doubls ¥,
double *, int *, int ¥, int *, int *, double **, double #,
double *, double *, double, double, void (*fcn) (douhle,
double *, double *));

/ ¥k ok Aok ok ok ook ok ok
BGSOLVE is a C translation of the FORTRAN program DE which is
completely explainsd and documented in the text COMPUIER SOLUTIDN
OF ORDINARY DIFFERENTIAL EQUATIONS: THE INLTYAL VALUE PROBLEX
BY L. F., SHAMPINE AND M. K. GORDDN.

SGSOLVE integratos a system of first order differential equations

DY(I)/DT = F(T, ¥Y(1),¥{2), ... ¥
Y{I) GIVEN AT T

for arbitrary order N. Initial conditions entered through y[ ] at
"tin" are intagrated to "tont" in accordanco with the relative

error "relerr" and absolute error "abserr" and autpnt through y[ .
On successful output, "tin" takes the value "tout' and "ifail=l1".
SGSOLVE may be repeated as necessary provide “"ifail=+2/-2" on output.
Otherwisa, "tin" contains the limit of integration prior to failure.

SGSOLVE uses an INTEGRATOR code and an INTERPOLATIOM cods. The
forwex iz based onm a modified divided difierence form of the ADAMS
PECE formulas and local. EXTRAPOLATION. ORPER and STEP SIZE control
local exrror. Normally each application ¢f the integrator advances
the scolution cne step towards "tous", For reasons of efficiency,
intornal integration proceeds beyond "tout" though never beyond
"tnow+10* (tout~tnow)". The latter interpolates the solution at
"gout". If integration beyond "tout" is impessidla, “ifail=-i" on
GNLYy.

INPUT to SGSOLVE
The differential equation is supplied through a void function, e.g.
void fprime( double t, double *y, double *dy).

The address of fprime is passed to SG3QLVE via the void pointer
"fen'. ALl parameters of SGSOLVE must be suitably initialiszed with
either ifail=+1, if integrationm beyond "tout' 1s possible, or
ifail=-1 if integration beyoand “tout" is impossibla.

OUTPUT from SGSOLVE

“tin’ containa the last point for which integration was successful
- "tout" for a normal exit - and y[ ] contains the solution vector
at "tin". The tolerances "relerr” and "abserr” are normally
unchanged on exit except wher "ifail=3" in which case they are
increased. The error indicator on exit takes the values




APPENDIX A. ASSOCIATED PROGRAMS 230

ifail = 2 -- Normal returu. Integration reached "tout".
= 8 -- Integration failed to reach "tout" because "relerr"
and “abserr” are too small ~ "relerr" and "ahserr"
increased appropriately so that integration can be

continued.

= 4 -- Too many integration steps nosdad ta rsach "tout",

= 5 —-- Integration feiled to reach "tont" ~ aquations seem
STIFF.

= B -- Invalid input parameters {(fatal error).

" * kAR ek Kfoksokokok Aok skt ok R kAR kR ok /
void sgsolve( int n, /* Order of system */
int *bagin, /% Memory allocatior flag */

double *relerr, /# Relative (local) error tolerance */
double #abserr, /# Absolute {local) error tolerance */

double *tim, /* Entry value of iundepondont variables/
double tout, /* Exit value of independent variable */
doubla *y, /* S01’n vector of dependent variables */

void (#fecn)( double, double *, double *),
/* Pointer to derivativea dy[i]/dt =/
int *ifail /* Exrror indicator */ )

int i, k, m, start, crash, stiff, iflag, isn, kled4, finish;

atatic int waxiter-60000, isnold, kold, nostep;

static double told, hold, delsgn;

static double #*psi, *yy, *wt, *#phi, *p, *yp, *ypout;

doubls x, raderr, two_rnderr, four_rnderr, ops, del, absdel, tend,
releps, abseps, k, min;

/% Step 0. - Allocate nemory */
if ( *begin ) {

if ( psi ) free(psi);
psi = (double *) malloc { 12#sizeof(doubla) );
if ( yy ) free(yy);
yy = (double #*) walloc { n+sizaof (double) };
1f ( wt ) free{wt);
wt = (double *) malloc { n¥sizecf(double) );
if ( yp ) free(yp);
yp = (doubla *) malloc ( n¥sizeof (double) );
if ( ypout ) free(ypout);
ypoub = {double #) mallec { m*sizeof{dauble) );
if ( p ) freelp);
p = {double *) malloc ( n*sizaof(double) );

if ( phi ) {
for ( i=0 ; i<n ; i+ )} frea{philil);
free{phi);

H

phi = (double #*) malloec { nesizoof (double *) );
for (i=0;i<n;i++) philil=(double *) malloc(i6+sizeof (double));
#*begin = 03

}

/+ 8tep 1. - Determine machine precision "rnderr" */
roderr = 1.0;
while ( rnderz+1.0 != 1.0 ) runderr *= 0.b;
two_rndery = 4.0xrndorxr;
four_rnderx = 8.0*randorr;

/* Step 2. ~ Test for invalid entry paromotors */
if ( n<l ) xifail = 6; /% Order not set %/
if ( xtin==tout ) #*ifail = 6; /¥ Zero int of integration %/

if ( *relerr<0.0 || *abserxr<0.0 )} #*ifail = 6; /* At least oue
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Lolerance not set %/

eps = ( #relerr>=fabserr ) 7 *relerr : *abserr;
if ( eps<=0.0 ) xifail = 6; /¥ Ny positive tolerance set */
if  xifail==0 ) *ifail = 6; /* Exroxr indicator not set */
isn = ( *ifail<0 ) 7 ~1 @ 1;
iflag = disnx(*ifail);
if ( iflag>=2 && *tin!=told } *ifail = 6;

/* Point of ra-entry changed */
if ( *ifail==6 )} return;

/% Step 3. — Bet inbterval of integration and initislise step counter.
Adjust imput error tolerances to define weight vector for
function STEP */
finish = 0;
del = tout-(#tin);
absdel = fabs(del);
tend = (xtin)+10,0%dal;
if ( isn<0 ) tend = tout;

nostep = O}

kled = G;

stiff = ¢;

raleps = (xrelerr)/eps;
abzeps = (*abserr}/eps;

/* Step 4. - On & start/restart, set work variablos "z" and yy[ ], store
direction of integration and initialise atep sime. */
if ( iflag==1 || isnold<0 || delsgn*del<=0.0 ) {
start = 1;
x = #tin;
for ( m=0 ; m<n ; m++ ) yyln] = yl;
dalspn = ( dsl>=0.0 ) 7 1.0 : -1.0;
b = four_rnderrsfabs{x):
if ( fabs{tout-x} » b ) h = fabs(tout-x);
if ( tout < ¥ )} h = ~h;
1
while { (finish ) {
finish = 1;
if ( fabs(x~(*tind2> >= absdel ) {
/* Step 5, - Already beyond output point amd 30 interpolate and return */
intrp( n, x, y¥. tout, y, ypout, kold, phi, psil);
*ifail = 2;
*tin = %ousg;
isnold = dsn;
} else if ( 1sn<0 &k fabs(tout-x)}<fouxr_rndexrr#fabs(x) ) {
/* Step 6. - No passage beyond “"tout" but closo enough to extrapolate */
h = tout-x;
(xfcn) C x, vy, yp)i
for ( w=0 ; m<n ; wr+ ) ylw] = yy[n]l+hkyplal;
*ifail = 2;
*t£in = tout;
isnold = isn;
} else if ( nostep >= maxitor } {
/* Step 7. - Test for too much work #/
*ifail = 4%isn;
if ( gbiff ) *ifeil = Sxisn;
for ( w=Q ; m<n ; m++ ) 'ylm] = yyful;
*tin = X3
isnold = 1;
¥ olse {
/* Step 8. ~ Limit step size, set weight veclor and take step */
min = fabs(taend-x);

‘

|

¢ b ——— 1
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if ( fabs(b) < min ) min = fabs{h);
h=(h?> 0.0) ? min : ~min;
for ( m=0 ; m<n ; m++ ) wt[m] = releps*fabs(yy[m])+absops;
step( n, &x, yy, &h, &eps, wt, &hold, &start, &crash, &k,
&kold, phi, p, yp, psi, two_rnderr, four_rnderr, fen);
/% Step 8. - Test for tolerancos that ara too small */
if ( exash ) {
*¥1fail = 3%isn;
*ralerr = aps*releps;
*abserr = eps*abseps;
for ( m=0 ; m<n ; m++ ) ylm} = yylmd;
*tin = x;
isnold = 1;
} elae {
/% Step 10. - Increase counter and test for stiffness ¥/
noshapt+;
klad++;
if ( kold>4 ) Klad = 0;
if { kled>=B0 )} stiff = 1;

finigh = Q;
}
}
}
told = *tin;

/% if { *reset_mem==1 )}
begin = 1;
*reset_mem = 0;
fras{psi);
fres(yy);
fres(wt);
free(yp);
froe(ypout);
frealp):
for ( 1=0 ; i<n ; i++ ) free(philil);
free(phi);

¥ ow/
return;

}

/ * ok ok Rk Kk kR Sk ok Rk ook ELET koK
This code is the C tramslation of FORIRAN interpolation code which
is completely explained and documented in the text COMPUTER
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE
PROBLEM BY L. I'. SHAMPINE AKD M. XK. GORDON.

Routine STEP approximates the solution near "x" by a polynonial.
INTRP spproximates the solution at "xout" by evaluating the
polynomial there. Information defining this polynomial is passed
from STEP and so INTRP camnot be used as a stand-alone youtine.
INPUT to INTRP
Parameters are pssed from STEP in the normal way.

QUTPUT from INTRP

yout{ ] -- Solution vector at "xout®

ypout[ 1 -~ Derivative of gsolution at "“xout"

s RO AR AR A o ko e ok o ok ok ok sk Aedookakod FAORERK * /

void intrp( iut u, /% Order of system ¥/

double X, /% Point where y{ ] is approx’d by STEP #/
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double +y, /* Solution vector at "x" %/

double xout, /* Point at which solution is required %/
double *yout, /* Solution vectar at "xout" */

double *ypout, /* Derivative vector at "xout" x/

int kold, /% Drder of scheme */
double **phi, /+ Matrix of workspace */
double *psi /* Vector of workspace */ )

int i, j, jmi, m, lim;
double hi, term, gama, eta, tmpl, tmp2, *g, *u, *r;

/* Step 0. - Allocato momory to gl 1, w[ 1 and rhol 1 %/
g = (double *) mallec{ 13#sizecf(double} );
w = (double *) malloc{ 13*siznof(double) J;
r = {doubla *) malloc{ 1i3*sizeof (double) );

/% Step 1. - Initialise g[0} and x{0] */
gi0} = 1.0;
r{o] = 1.0;
hi = xout-x;

/% Step 2. - Initialise w[ ]} for computing g[ 1 #/
for ( i=0 ; i<=kold ; i++ ) w(i] = 1.0/((double) i+i);

/* Step 3. - Compute gl ] */
for ( term=0.0,j=1 ; j<=kold ; j++ ) {

jmi = j-1;
tmpl = 1.0/psiljnil;
gama = tmpl*{hi+term);
eta tmpl+hi;
lim = kold-i;
for ( i=0 ; i<=lim ; i++ ) wli] = pamasw(i)-etarw[i+1];
glil = wlol;
r[j] = gama*r(jnil;
texm = pailjnil;

/% Step 3. - Interpolata */
for (m=0 ; m<n ; m++ ) {
ypout [w] = 0.0;
yout[m] = 0.0;

|
|
]
|

}
for ( j=0 ; j<=xold ; j++ ) {
1 = kold-j;
tmpl = gl(il;
tmp2 = r[i}; )
for ( m=0 ; m<n ; m++ ) { E
yout (m] += tupliphd[m] [il; !
ypout (] ++ twp2+phd [wi {il; i
} :
}
for { m=0 ; m<n ; w++ ) yout[m] = y[ml+hisyout[md;
frae(g);
frec(w);
frea(r);
raturn;

}

/*******#***fnImkmlk***#'k*ﬂ'***#*t**************************t*****%***
‘This routine ig a € translation of the FORTRAN STEP routine which
is completely explained and docuwented in the text COMPUTER
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SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE
PROBLEM BY L. [F. SHAMPINE AND ¥, K. GORDON.

STEP integrates a system of first ordar ordinary diffaerential
aquations from "x" to "x+h" using a modified divided difference
form of the ADAMS PECE formulas. Local extrapolation is used to
improve absoluts stability and accuracy. Order and step-3ize are
adjusted to contxol local error, Special devices control roundoff
error and detect ovor ambitdous accuracy raquests.

PARAMETER DEFINITIONS

x

y[1
yel ]
n

h

aps
wtl ]
atart
hold

kold
crash

Indopondent variable
Solntion vector at "x"

Derivative of solution vactor at "x" after a snccessful sbep

Order of systen

Appropriate step-size for next step. Determined by code
Local error tolerance

Vector of weights for error criterion

Sel 1 (TRUE) for first step and set O (FALSE)} otherwise
Step size for last successful stap

Appropriate order for next step. Determined by code.
Order used for lact successful stop

Set 1 (TRUE) when no step possible and set 0 {FALSE)
otherwiae

The arrays phil J[ ] and psil[ ] are needed for the (interpelatiovn}
function INTRP and p[ 1 is internmal. The system of differential
equations DY(I)/DT = F(T, Y(1),¥(2), ... ,¥(N)) is supplied through
a void function, o.g.

void fprime( double 1+, double *y, double +dy).

The address of fprime is passed to STEP via the veid peinter “fcn".

INPUT

X
vyl 1]
n

h

eps
wtl ]
start

to

STEP (first call) ... BET

Initial value of independent variablo

Initial value of solution vectox af “x'

Order of system

Maxinum step-size indicating direction of integration
Local exror tolerance per step

Vector of weights for error criterion

Set 1 (TRUE) for first step and set 0 (FALSE) otherwise

STEP needs the L2 NORM of the vector with componentas
lacal_srror[jl1/wt(j] to be less than "eps" for a succeasful step.
The array wtf{ 1 allows the specificatien of difforent exrer tests
in accurdence with the criteria

wi 3]

= 1.0 spocifies absolute error,

fabe(y{j1) spocifies error relative to the most recent
value of y[jl, the j-tl comwponent of the solutiom vector,
fabs(yp[jl) specifies orror relative to the most recent
velue of ypfjl, the j-th compoment of the derivative of
the solution vecter,

MAX (wt [j],fabs(y [j1)) specifies error relative to the
largest magunitudo of the j-th component obtained so far,
fabs(y[j])+relorr/opstabserr/eps specifies a mixed
relative/absolute error tost where relerr/sbserr are
relative/absolute error amnd "aps'" is nax{relexry,abserr).

234
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INPUT to STEP (subsaquent calls) ... SET

STEP returns all that is needed to continta integration, imcluding
step-size "h" and oxder "k¥. With the exception of step-size, the
error tolerance and the weights, none of the parameters should be
changed. Array wit[ 1 must be updated after esach step 'to maintain
rolative exror tests. Normally integration is continuesd just heyond
the desired ondpeint and INTRP used to interpolate sclution. If it
is not possible to integrate beyond the endpeint, “h" is

adjusted to meet "tout". To change the direction of integratiom,
set "startmi" (TRUE) before calling STEP again. This is the only
situation in which "start® should be changed.

DUTPUT from STEP (successful)

After each successful step, "start=crash=0". The independent variable
Ux" 1s advanced by "hold" from its valwa ocu entry. The solution vectoxr
y[ 1 is given at the new value of "x" whilse all other parameters
contain information needed to continue integration from the neu

I!XM'

OUIPUT from STEP (unsuccessful)

If the error tolerance is too small fox machine precision, "crash=1"
and no gtep is taken. An appropriate step-size and error tvolerance f[ux
continuation are estimated and all other parameters re-instated before
raturaing. To continue with the new tolerance, call code again. 4
restart is neither required por desirable.

* *k *okokok ¥k KoK ok kK fkE R /

void step( int =, /% Order of first order system */
double *x, /* Current value of independent variable*/
double *y, /* The solution vector */
double *h, /* The suggested step-size */
double *eps, /* Max of the rel/abs error tolerances */
double *wt, /% Waights for exror tolarances */
double *hold, /* Last successful step-size x/
int *start, /% Initialisation £lag »/
int *crash, /* Failed step indicator x/
int *k, /* Suggested order for the next step %/
int #*kold, /* Order of last successful step «/
double **phi, /* Workspace */
double *p, /* Workspace */
double *yp, /4 Holds derivative of solution vector #*/
double *psi, /* Workspace */

double two_rnderr, /* Twe times the machine precizion */
double four_rnderr, /# Four times the machine precision %/
void (+fen)( double, double *, double *)

/* Pointer to derivatives dylil/dt =/ )

int i, j, m, km3, ko2, kmi, kpl, neml, nspl, iml, lim, ipl, nfail;

static int phasel, normd, ns, kuew;

double round, halfeps, sum, absh, tmp, tmpl, tmp2, erk, arkmi,

erkm?, hanew, hmin, xold, err, srkpi;

static double alfa[12}, betal12], wl12], vlizl, gl[13], sigli3];

static double gstr[13}={0.5000, 0.0833, 0.0417, 0.0264, 0.0188,
0.0143, 0.0114, 0.00236, 0.00739, 0.00679,
0.005952, ©.00524, 0.00468};

static double twoll3l={ 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0,
266.0, 512.0, 1024.0, 2048,0, 4096.0, Bi92.0)};

g AP AR



APPENDIX A. ASSOCIATED PROGRAMS 236

/% Initialise some elemonts */

glol = 1.0;
elll = 0.5;
sigfC] = 1.0;

/+ Begin BLOCK O
{a) Check step-size and error tolerance not too small for rounding
erxox, (b) If first step, initialise phil J[ 1 and estimate initial
step-size */

/* If stap-size too small, set "h” to minimum step-size */
*crash = 1;
hmin = four_ruderr*fabg(*x);
if { fabs(#h) < hmin ) {
#«h = ( *k >= 0.0 ) 7 hmin : -hmin;
return;
h
halfaps = Q.56+(xops);

/% If error tolerance too small, increase it to a suitable value #/
for ( round=0.0,m=0 ; m<n ; m++ ) round += pow(y(m}/wtlnl,2};
round = two_rnderr*sqrt(round):
if ( halfeps < round ) {

*eps = 2.0xround*{1,0+four rnderr);
return;

¥

/% Initialise phil }[ ] and determine a suitable first step */
xcragh = 0
if { #start ) {
(#fen) ( *x, ¥, ¥p)i
for { swn=0.0,m=0 ; m<n ; m++ )
phil(m] {0} = ypln];
phi{m] [1] 0.0;
gum += pow(yp[mi/wtlm],2);

}

sum = sqre(eum);

abgh = fabs(*h);

if ( xeps < 16.0¢sum*(xh)*(*#h) ) absh = 0.25%sqrt(*eps/sum);
tmp = { absk >= lmin } 7 absh : hmin;

*h = (% >= 0,0 ) 7 tap : ~tmp;

*hold = 0.0;

*k = 1;

*kold = 0;

*gtart = Q;

phagel = %;

noxnd = 1;

it ( halfeps <= 100.0#%round ) {
noxrnd = ¢;

for ( m=0 ; m<n ; m++ ) philmd(14] = 0.0;
}
/% End BLOCK ¢ and begin BLOCK 1 %/

/* Compute coefficients of formulas for this step. Avoid computing
quantities not changed when step-size remains unchanged */

b bt et et e vt GOfion & ¢ e ¢ weeege s e Bese uLL e b e mta it

nfail = 0;

for (5 ;24
kpl = *k+1;
kml = *k-1;
km2 = #k-2;

1
i
!
5




APPENDIX A. ASSOCIATED PROGRAMS 237

m3 = #k-3;

/* Integer "ms" counts the number of steps with size "h", including
the current stop. When k<=ns, no coefficients change */
if ( *h t= *hold ) us = -1;
ng = { ne < *kold ) ? ns+l : *kold;
nspl = astl;

/% Check if alfal J, betal ], psil[ 1, =sigl } change and make them
where noecessary */
if ( kmi >= ns ) {
petaine] = 1.0;
tup = {(double) nst+l);
alfalns) = 1.0/tmp;
tmpl = (sh}*tmp;
ciglnepll] = 1.0;
for { i=nspl ; i<=kml ; i++ ) {
iml = 1-1;
top2 = psiiimi];
psil[imi] = tmpl;
betalil = heta[im1]*psi[inl] /tup2;
tmpl = tmp2+{(*h);
alfaf[i]l = (#h)/tmpl;
sigli+1] = alfal1)*asigli]*{(double)} i+1);
T
psilkml] = tmpi;

/% Compute coefficients gl 1, imitialise v{ ] an set w[ 3.
gl1] is set praviocusly */
if (05 >0) {
if ( *k > xkold ) {
/* Order increasad -> update diagonal part of v[ ] #/
v[km1] = 1.0/((double)} kpix(+k} );
nsmil = ns-1;
for ( j=L ; j<=nsml ; j++ ) {
i = kmi-j;
v[i] = v[i]l-alfa[jl#viiv1];

T

/% Update v[ ] end set wl 1 »/
lim = kml-ns;
for ( i=0Q ; i<=lim ; i++ ) {
v[t] —= alfa[ms]*v[i+1];

w(i) = v[il;
}
glusptl] = w[0];
} else {

i B bmeabt v aet e et

for ( i=0 ; i<=lmi ; i++ ) {
v[i] = 1.0/((doubla) (i+1)*(i+2));
wlil = v[il;

1

.
t
i
i
H
i

/% éomput;e gl 1 in the work vector w[ } */
for ( i=nspl ; i<=kmi ; i++ )} {
lim = kml-i;
for ( j=0 ; j<=linm ; j++ ) wijl -= alfalil+w[j+1];
gli+11 = wl0];
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/¥ End BLOCK 1 and begin BLOCK 2 «/

/% Predict solution p[ ]. Evaluato derivatives using predicted
solution. Estimata leocal error at order "k" and errxors at orders
ngr, “kmi* and "km2" as if constant step size were used. Chamgo
phi[ I ta phix[ ] */

for ( i=mspl ; i<=kml ; i++ ) {
for ( m=0 ; m<n ; w+t ) phi[m] [i] *= betalil;
¥

/% Predict solution znd differences *x/
for (m=0 ; m<n ; me+ ) o{
phi [w] Ekpd] = philm] [*kl;
phi. [m] [¥k]) = 0.Q;

pin] = 0.0;
}
for ( j=0 ; j<=kml ; j++ ) {
i = Jml-j;
ipl = i+1;
for ( m=0 ; m<u ; mi+ ) {
plu] += g[il+philm] [i];
phi[m] [i] += phi[w] [ipi];
J.
}

if ( nornd ) {
for ( m=0 ; m<n ; mi+ ) ple]l = ylml+{+h)*pim];
} else {
for (mw=0 ; m<n ; md+ ) {
tmp = (n)*piml-phil[m] [14] ;
plm] = ylm]+tmp;
phifm] (18] = (plml-y[m])-tmp;

}
}
xold = *x;
*x += #h;

absh = fabs(*h);
(¥fen) ( *x, p, yp);

/% Eatimate errors at orders "k", "kmi" and "km2" */

for ( arkm2=0.0,erkml=0.0,erk=0.0,n=0 ; m<n ; mi+ ) {
topl = 1.0/wt[m);
top2 = ypim]l-phifm] [0];
if ( *k > 2 ) erkm2 += pow((phi [w] [kw2] +twp2)*tmpl,2);
if ( %k > 1 ) erkml += pow{(phi[m] [kmil]+twp2)*tupl,2);
erk += pow(tmp2+tmpl,2);

}

if ( *k > 2 ) erkm2

if ( %k > 1) erkmi

abshksig[km2] xgstr [km3] +sqrt (erkm2} ;
absh#sig[knl] *gstr [km2] *sqrt (arkml} ;

tmp = absh¥sqrt{erk);

err = tmp*(glkm1J~g[*x]);
ork = tmp*sigl*kisgstriknil;
knaw = *xk;

/* Test if oxder should be reduced #/
if ( *k > 2 && erkml <= erk && erim2 <= erk ) knew = kmi;
if ( *k > 1 &% erkml <= 0.5%erl ) knew = kmi;

/* End BLOCK 2 and begin BLOCK 3 */

/* The step has been unsuccessful and soc restora “x", phil 1[ 1,
peil 1. I£ this is a third consecutive failwre, sot order ta 1. If
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step fails more than 3 tdmes, comsider an optimal step-size. Double
erroy tolerance and return if estimated step-size is too small for
machine precision. Restore "x", phil[ 1{ ] and psil ] */
if ( exr > %eps ) {
phasel = 0;
for ( *x=x0ld,i=0 ; di<=kml ; i++ ) {
tmp = 1.0/betaflil;
ipl = 1+i;
for {( m=0 ; m<a ; m++ )
phifm] [i3 = twp+(phifm] [i}-phi [m] [ipl]);
}
for ( i=0 ; i<=km2 ; i++ ) psi[i] = psili+1]-(xh);

/# On 3rd failure, set order to i. Thereafter usv optimal step-size %/
nfail++;
tmp = ¢.5;
if ( nfail>3 &% halfeps<0.256*ark ) tmp=sqrt(halfepa/erk);
if { nfail > 2 ) knew = 1;
*h %= tmp;
*It = knew;
if ¢ fabs(xh) < hmin ) {
®crash = 1;
¥*n = ( %h >= 0.0 ) 7 hmin : -hmin;
*eps *= 2.0;
raturn;
}
} else {

/* End BLOCK 3 and begin BLOCK 4 */

/* Step successful. Correct predicted solution, evaluate derivatives
using corrected solution aud update differences. Determine best order
and step-size for naxt step. #/

*kold = *k;
*hold = *h;

/% Correct and svaluata %/
top = (*h)*g+k];
if { nornd ) {
for { m=0 ; m<n ; A+ )
ym] = pla)+top+ (ypin]-pki ] [01);
} else {
for {m=0 ; m<n ; mt+ ) {
tmpd = twpx(ypln] -phi [m3 [Q])-phi [m] [15] ;
yim] = pIm]+tmpl;
philwi[14] = (y[m}-plwml)~twpl;
T
)
(«fen)( *x, y, yp);

/% Update differences for next step */
for (m=0 ; w<n ; m++ ) {
phiim] [*k] = yp[w]-phi(w][0];
phi (m] (kpi] = phi [m) (k] -phi [l [kpi];
}
for ( i=0 ; i<=kmi ; i++ )} {
tor ( m=0 ; m<n ; m#+ ) philw] (il += phifn] [*k];
>

/* Estimate error at order “kpl" unless either in first phase when
always raise ordar or have already decided to lowaer order or
step-size not constant so estimate unreliable */

239
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erkpil = 0.0;

if { knaw=<=kal || #k==12 ) phasel = 0;

if ( phazel ) £ /* Raise oxdexr %/
*k = kpl;
erk = erkpl;

} else if ( knew==kunl ) { /% Lower oxder */
+k = lmil;
erk = erkmi;

Y} alse if ( %k <= ns ) {
for ( m=0 ; m<n ; m++ )
erkpl += pow{phi[m] {kpi] /ut[ml,2};
erkpl = absh*gstr[*k]*sqri{erkpl);

/4 Using estimated error at ordey "kpl"”, determine oredr for next step */
if (+k > 1) {
if ( erkai<=erk &% erkmi<=erkpl ) {
/% Lowar order %/
*k& = kml;
erk = erkml;
} else if { erkpl<erk &k #k!=12 ) {
/* Raisa order */

¥k = kpl;
ark = erkpl;
} else {

}
} else if ( erkpl < 0.5%axk ) {

/* Hers "erkpl < exkp < max(erkml,erkm2}' else order would have been
lowered in BLOCK 2. Thus oxder is to ba raised */
¥ = kpl;
ark = erkpl;
¥ else {
}
¥ else {
3

/* With new order determine suitable step-size fox next step */
hnew = 2.0%(xh};
if ( !phasel && ( halfeps < erkxtwolxkl ) } {
hnew = wh;
if ( halfeps < erk ) {
tmp = 1.0/({double) *k+1)};
hnew = pow(halfeps/erk,tmp);
if ( hmew > 0.9 ) hnew = 0.9;
if ¢ hnew < 0.5 )} hnaw = 0.5;
hnew *= ahsh;
hmin = four_roderr*faba(*x};
if ( hnew < hmin ) hnew = hmin;
hnaw = { *h >= 0,0 ) 7 hnew : ~hnew;
}
}
*h = hnew;
Yeturn;

b

/* End BLOCK 4 */
}




