

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

M athem atical M odelling in

Neurophysiology: N euronal

G eom etry in the C onstruction of

N euronal M odels

by

Gayle Tucker

A thesis submitted to the

Faculty of Biomedical and Life Sciences

at the University of Glasgow

for the degree of

Doctor of Philosophy

December 2004

ProQuest Number: 10390947

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10390947

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

GLASGOW
u n iv e r s ITVI
LIBRARY

DW
IS ITV

Summary

The underlying theme of this thesis is that neuronal morphology influences neuronal be­

haviour. Three distinct but related projects in the application of mathematical models

to neurophysiology are presented. The first problem is an investigation into the source of

the discrepancy between the observed conduction speed of the propagated action poten­

tial in the squid giant axon, and its value predicted on the basis of the Hodgkin-Huxley

membrane model. It is shown that measurement error and biological variability cannot

explain the discrepancy, nor can the use of a three-dimensional model to represent the

squid giant axon. If the propagated action potential achieved the travelling wave speed

in the experimental apparatus, as assumed implicitly by Hodgkin and Huxley, then it is

suggested that the model of the membrane kinetics requires modification. The second

problem involves the generalisation of Rail’s equivalent cylinder to the equivalent cable.

The equivalent cable is an unbranched structure with electrotonic length equal to the

sum of the electrotonic lengths of the segments of the original branched structure, and

an associated bijective mapping relating currents on the original branched structure to

those on the cable. The equivalent cable is derived analytically and can be applied to

any branched dendrite, unlike the Rail equivalent cylinder, which only exists for dendrites

satisfying very restrictive morphological constraints. Furthermore, the bijective mapping

generated in the construction of the equivalent cable can be used to investigate the role of

dendritic morphology in shaping neuronal behaviour. Examples of equivalent cables are

given for spinal interneurons from the dorsal horn of the spinal cord. The third problem

develops a new procedure to simulate neuronal morphology from a sample of nem'ons of

the same type. It is conjectured that neurons may be simulated on the basis of the single

assumption that they are composed of uniform dendritic sections with joint distribution of

diameter and length that is independent of location in a dendritic tree. This assumption,

in combination with the kernel density estimation technique, is used to construct samples

of simulated interneurons from samples of real inter neurons, and the procedure is success­

ful in predicting features of the original samples that are not assumed by the construction

process.

Acknow ledgem ents

My degree was funded by the Future and Emerging Technologies programme (IST-FET)

of the European Community, under Grant IST-2000-28027 (POETIC). The information

provided is the sole responsibility of the author and does not reflect the Community’s

opinion. The Community is not responsible for any use that might be made of data

appearing in this publication.

In addition, I would like to thank the following people who have contributed, in their own

way, to my thesis:

My two supervisors: Professor Jay Rosenberg and Dr Kenneth Lindsay. Between them,

they knew the answer to almost every question I could think of and showed great patience

while waiting for the penny to drop inside my head. Although I think the latter may have

been aided by freshly ground coffee, and occasionally some calce.

Dr Jim Morrison for providing moments of light relief, small quantities of milk and who I

thank for telling me about this opportunity in the first place.

My family and friends, who quite openly had no idea of what I was doing but supported

me nonetheless.

And Martin for being there always.

Contents

1 Introduction 7

2 Action Potentials 11

2.1 Introduction... 11

2.2 Mathematical and physical preliminaries... 14

2.2.1 Definitions ... 14

2.3 Derivation of the neuronal field eq u a tio n s .. 15

2.3.1 Dispersion of c h a rg e .. 17

2.3.2 Diffusion of magnetic fie ld ... 18

2.3.3 Maxwell’s equations in neuronal modelling... 18

2.3.4 Equations for a three-dimensional axonal cylinder 19

2.3.5 Identification of the one-dimensional membrane potential 20

2.3.6 Three-dimensional axon with Hodgkin-Huxley k inetics...................... 23

2.4 Measurement error and biological variability... 26

2.4.1 Measurement e r ro r ... 26

2.4.2 Biological variability.. 28

2.4.3 Results of simulation exercises .. 29

2.5 The travelling wave assumption.. 33

2.5.1 A possible explanation for the discrepancy between the observed and

predicted conduction s p e e d ... 35

CONTENTS 4

2.6 Trains of action potentials... 36

2.6.1 The dispersive relationship ... 36

2.6.2 Activation v a ria b les .. 39

2.7 Conclusions... 42

3 Neuron data and terminology 43

4 Equivalent cable 46

4.1 Introduction... 46

4.2 Constructing the model d e n d r ite ... 49

4.2.1 Mathematical model of a uniform c a b le .. 51

4.2.2 Model equations for a branched dendrite.. 53

4.3 N otation.. 55

4.4 Analytical development of the equivalent c a b l e ... 56

4.4.1 Construction of the discrete model dend rite .. 56

4.4.2 The piecewise uniform cable.. 57

4.4.3 Symmetrising a cable m a t r ix .. 59

4.4.4 Structure of tree m a trices ... 61

4.4.5 Symmetrising the tree m a tr ix ... 64

4.4.6 Tri-diagonalising the symmetric tree m a tr ix .. 64

4.4.7 Mapping of potentials and currents from tree to equivalent cable . . 65

4.4.8 Construction of the equivalent c a b le .. 66

4.4.9 Summary - Concept of the equivalent c a b le .. 68

4.5 Analytical construction of an equivalent cab le .. 69

4.5.1 A simple Rail branch p o i n t .. 69

4.5.2 An asymmetric Y-junction ... 74

4.5.3 A symmetric Y-junction.. 78

4.6 Application of the equivalent cable to spinal in terneurons........................... 87

CONTENTS 5

4.6.1 Distribution of c o n ta c ts ... 87

4.7 Conclusions.. 92

4.8 Mathematical a p p e n d ix .. 93

4.8.1 Householder procedure... 93

4.8.2 Estimating the density of c o n ta c ts .. 96

5 Building the typical neuron 98

5.1 Introduction.. 98

5.1.1 Some recent models of dendritic morphology .. 100

5.1.2 A new approach to the simulation of dendritic m orphology................. 102

5.2 Mathematical prelim inaries.. 103

5.2.1 Probability density function..103

5.2.2 Joint probability density function.. 103

5.3 A procedure for simulating a sample of dend rites .. 105

5.4 Estimating distributions...108

5.4.1 Multivariate kernel estimates of d e n s ity ...110

5.4.2 Marginal and conditional d ensities... I l l

5.4.3 Bandwidth selection..112

5.4.4 Comparison of distributions..113

5.4.5 Drawing from a random distribution .. 115

5.5 Validation of the model assumption.. 117

5.6 Formal procedure for constructing a d e n d r ite ..119

5.7 Results... 123

5.7.1 First test of the construction p ro ced u re .. 124

5.7.2 Comparison of observed and simulated probability densities...............125

5.7.3 S um m ary .. 132

5.7.4 A further development... 133

CONTENTS 6

5.8 Conclusions..134

6 Concluding remarks and future work 135

References 137

A Associated programs 143

A.l Action poten tials..143

A.1.1 HHPotVel.c.. 143

A.I.2 HHDisperse.c...152

A.2 Extract data from Neurolucida f i l e .. 159

A.2.1 BuildNeuron.c .. 159

A.3 Equivalent cab les...173

A.3.1 M apContacts.c..173

A.3.2 CumulativeCurrent.c...182

A.3.3 Lagrange.c ..184

A.4 Building the typical n e u io n ...188

A.4.1 MyeTypicalNeuron.c...188

A.4.2 BiVarKernels.c..203

A.4.3 SimStats.c... 206

A.5 Hodgkin-Huxley rate fu n c tio n s ...208

A.6 Utility p ro g ram s... 211

A.7 Bandwidth calculations ...220

A.8 Fast Fourier Transform..222

A.9 Differential equation solver ...229

C hapter 1

Introduction

A good model is one that succeeds to reduce the complexity of the modelled

system significantly while still preserving its essential features. (Segev, 1992)

The underlying theme of this thesis is that neuronal morphology influences neuronal be­

haviour. This thesis presents thiee distinct but related projects in the application of

mathematical models to neurophysiology. The problems to be discussed are:-

(a) an investigation into the source of the discrepancy between the observed conduction

speed of the propagated action potential in the squid giant axon, and its value

predicted on the basis of the Hodgkin-Huxley membrane model;

(b) the generalisation of Rail’s equivalent cylinder to arbitrary branched dendrites;

(c) the development of a new procedure to simulate neuronal morphology from a sample

of neurons of the same type.

In each of these examples of mathematical modelling in neurophysiology, the original work

made a significant contribution to neurophysiology. For example, the Hodgkin-Huxley

model (1952d) and the supporting experimental work (Hodgkin, Huxley and Katz, 1952;

Hodgkin and Huxley, 1952a,b,c) provided the benchmark combination of theoretical and

experimental practice against which future work can be measured. Nevertheless in each of

the examples (a)-(c) there remain unresolved issues, some of which could not be resolved

at the time of the original work due either to limitations in the computational tools or

the requirement of conceptual advances. The Hodgkin-Huxley model is an example of the

CHAPTER 1. INTRODUCTION 8

former, and the Rail equivalent cylinder is an example of the latter. In view of the diverse

subject matter of this thesis, this introduction will provide a preliminary background

to the content of each project, with the introduction of each chapter providing a more

comprehensive description of the individual projects.

Hodgkin and Huxley carried out a series of experiments, some in collaboration with

Bernard Katz, which culminated in a model for the generation of an action potential

in the squid giant axon (Hodgkin et ai, 1952; Hodgkin and Huxley 1952a,b,c,d). Hodgkin

and Huxley were awarded the Nobel prize for this work in 1963. Of the experimental obser­

vations predicted by the model, the prediction of the conduction speed of the propagated

action potential is the strongest test of the model, since this speed is independent of the

conditions under which the membrane model was derived. In this test, there is an 11-12%

discrepancy between the observed and predicted conduction speeds, and although this dis­

crepancy was acceptable at the time, its source remains to be explained. This result has

been unquestioned since it was published in 1952. Cole (1968) refers to the discrepancy

suggesting that it may have been the result of assumptions and approximations in the

experimental process and is therefore an acceptable result under the circumstances. How­

ever, given the tight experimental conditions imposed by Hodgkin and Huxley, whereby

all errors were known and small, this explanation seems unlikely. Chapter 2 examines

Cole’s explanation and other possible explanations for the discrepancy between the ob­

served conduction speed of the propagated action potential in the squid giant axon and

the conduction speed predicted by the Hodgkin-Huxley membrane model.

The predominant view of the role of dendritic morphology in the mid-twentieth century,

based on intracellular recordings from motor neurons, was that dendritic structure was

unimportant in conditioning the behaviour of the motor neuron. Jack and Redman (1995)

outline the controversy between the dominant view held by Eccles, that is, that dendritic

form is not important, and the position taken by Rail, that dendritic morphology was

important and must be taken into account to understand the behaviour of neurons. Once

Rail established this view of the dendrite, the investigation of the role of dendritic mor­

phology in shaping neuronal behaviour became an important issue. Given the complex and

varied morphology of dendritic trees, building a model of their structure is not straightfor­

ward. Using linear cable theory to describe each cylindrical segment of a dendritic tree in

combination with several restrictive conditions. Rail derived the equivalent cylinder. The

equivalent cylinder produces the same response at the soma as that of the branched tree

CHAPTER 1. INTRODUCTION 9

when current is injected at the same electrotonic distance from the soma. The conditions

imposed by Rail for this equivalence to be valid are often unrealistic when applied to real

neurons. Particularly unrealistic were the requirements that the electrotonic distance from

any branch point to a dendritic tip connected to that branch point be identical, and that

dendritic sections meeting at a branch point should satisfy the 3/2 power law, by which

is meant that the sum of the daughter diameters raised to the 3/2 power must equal the

parent diameter raised to the 3/2 power. The equivalent cylinder generated under these

assumptions is not truly equivalent to the original dendrite from which it is constructed,

because input to the equivalent cylinder cannot be uniquely associated with input on the

original dendritic tree. Chapter 4 generalises the Rail equivalent cylinder to the equiva­

lent cable by relaxing all the constraints imposed by Rail. The procedure is analytical and

leads to a bijective mapping between input on the original tree and that on the equivalent

cable. Examples of equivalent cables are given for spinal interneurons from the dorsal horn

of the spinal cord that receive myelinated and unmyelinated afferent input.

The first accurate description of neuronal anatomy was provided by Cajal using a light

microscope to examine Golgi stained nemons (see Cajal, 1952). From these studies, he

accurately theorised that the nemon was the basic unit of the nervous system, and fur­

thermore, that neurons communicated by the spread of a signal from the dendritic tree to

the soma and onto the axon from where the signal is transmitted to the next neuron. It

was clear from Cajal’s work that neurons formed diverse morphological structures ranging

from the densely branched Purkinje cell to the sparsely branched spinal interneurons con­

sidered in this thesis. Various studies have focused on the identification of a canonical set

of properties that characterise neuronal morphology. Hillman (1979) was at the forefront

of this research when he described seven fundamental parameters for the size and shape of

dendritic trees, and latterly Tamori (1993) introduced two additional parameters to char­

acterise the three-dimensional orientation of neurons. Burke, Marks and Ulfhalce (1992)

and Ascoli and Kirchmar (2000) simulated neuron morphology using some of the pai’ame-

ters identified by Hillman (1979) and Tamori (1993) with varying degrees of success. For

example, Bmke et al. (1992) find that they need to introduce additional correction factors

to improve the agreement between their simulated and real nem'ons. Chapter 5 sets out

a novel procedure based on the single assumption that neurons are composed of uniform

dendritic sections with joint distribution of diameter and length that is independent of

location in a dendritic tree. This assumption, in combination with the kernel density esti-

CHAPTER 1. INTRODUCTION 10

mation technique, is used to construct samples of simulated neurons from a sample of real

nemons.

C hapter 2

A com parison o f th e

three-dim ensional and

one-dim ensional treatm ent of

action potentials

2.1 Introduction

The Hodgkin-Huxley model for membrane kinetics in the squid giant axon has become the

standard model in neurophysiology despite an 11-12% discrepancy between theory and

observation in a critical test of the model. Specifically, the prediction of the conduction

velocity of the propagated action potential. The intention of the chapter is to arrive at

an explanation for this discrepancy by considering the standard assumption of a one­

dimensional model and the implications of applying a three-dimensional model to the

same problem. Other possible explanations for the discrepancy will also be examined.

The development of the three-dimensional model will allow a further investigation into

the relationship between the speed of the action potential and its wavelength.

The development of the Hodgkin-Huxley membrane model marked a turning point in neu­

rophysiology. The precise and systematic quantitative analysis of the ionic currents of the

squid giant axon led to an accurate and robust model that has stood the test of time since

its publication in 1952. Hodgkin and Huxley (1952d) derived a set of partial differential

11

CHAPTER 2. ACTION POTENTIALS 12

equations that can be used to describe the evolution of the membrane potential in the

squid giant axon. By assuming a travelling wave solution for the set of partial differential

equations, namely an action potential with fixed profile moving at a constant speed, the

equations are simplified to a set of ordinary differential equations and subsequently solved

numerically by hand calculation. This procedme contains obvious sources of error that

may explain the discrepancy; possibilities are transcription errors in copying the results

of calculations from the hand calculator, or rounding error introduced by the limited ac­

curacy of the hand calculator. With the development of more accurate digital computers,

Cooley and Dodge (1966) and Huxley (1959) himself have retested the model and found

the original calculations to be accurate. Therefore we can exclude immediately numerical

inaccuracy as a possible source of the 11-12% discrepancy.

Once numerical inaccuracies have been ruled out, one must consider the explicit and im­

plicit assumptions made in the construction of the model. The most significant implicit

assumption made is that of a one-dimensional axon. Hodgkin and Huxley used the one­

dimensional cable equation to describe the behaviour of the three-dimensional axon, a

featm’e of the model that has never been questioned. In fairness, the body of work pub­

lished prior to Hodgkin and Huxley, for example Hodgkin and Rushton (1946), Davis and

Lorente de No (1947), Hermann (1884) and even Lord Kelvin’s (1855) original work on

cable theory all implicitly assume one-dimensional structures.

However, subsequent work also supports the assumption of a one-dimensional axon. The

approach commonly taken is a one-dimensional approximation of a three-dimensional

structme, rather than deriving the one-dimensional object from the three-dimensional

model. Rail (1959) assumes that the membrane potential is a solution of Laplaces equa­

tion while Jack, Noble and Tsien (1975) apply a geometrical ai'gument to investigate the

incorporation of taper into a one-dimensional model. This leaves the model vulnerable to

difficulties, for example, a change in the surface area per unit length will be constant if the

axon is a cylinder, however, if the axon tapers the change in surface area is no longer pro­

portional to length. As will be shown in the development of the three-dimensional model,

there are features found in the simplification of the three-dimensional model that are nei­

ther geometric nor explicit and therefore it is not obvious how they might be included in

the generalised one-dimensional model. These additional features describe radial currents

in the axon, and it is their existence that compromises the validity of one-dimensional

models.

CHAPTER 2. ACTION POTENTIALS 13

Sixteen years after the publication of the Hodgkin-Huxley membrane model, Cole (1968)

noted that the assumption of the absence of radial gradients in Kelvin’s work may be invalid

in cables although he did not question this assumption in the case of the squid axon. It is

interesting to note that Cole recognised that this assumption may not be valid for axons

with large diameters, and at the same time commented on the discrepancy between the

predicted and observed speeds of the propagated action potential in the Hodgkin-Huxley

membrane model, while not recognising that the two phenomena might be related. It is

clear therefore that both the predominant view at the time of Hodgkin and Huxley’s work

and subsequent work by Rail (1962) reached the same conclusion; namely, that it is safe

to ignore the effects of radial gradients in axonal and dendritic models.

An explicit assumption that requires verification is the validity of the travelling wave

assumption. For the travelling wave assumption to be valid, the speed of the action

potential must reach the travelling wave speed over the length of axon over which it is

measured. In addition, one must also consider measurement error and biological variability

as possible sources of error. Due to the diligent reporting of Hodgkin and Huxley, the error

bounds for all of the measured parameters in their experiments are known. It is possible to

manipulate both measurement error and biological variability through simulation exercises,

taking into account all possible combinations to assess the effect on the conduction speed.

An adequate test of the one-dimensional assumption talres Maxwell’s equations as the

starting point of the model. The particulai’isation of these equations to the case of a

cylindrical axon of known diameter forms an important part of this chapter. It is shown

that Maxwell’s equations when particularised to the material properties of an axon and

its geometry lead to Laplace’s equation. Maxwell’s equations describe the fundamen­

tal features of the three-dimensional model from which a one-dimensional model of the

axon incorporating all its biophysical and geometrical properties can be extracted. The

reduction of the thiee-dimensional model to a one-dimensional representation reveals irre­

ducible features of the three-dimensional model that are a consequence of radial gradients

and not geometrical featmes. Using the one-dimensional representation derived from the

three-dimensional model the conduction speed of the propagating action potential can be

calculated without the travelling wave assumption. By solving Laplace’s equation for the

potential distributions in the interior and exterior regions, an investigation can also be

carried out on the dispersive relationship for action potentials and their implications for

signalling in axons.

CHAPTER 2. ACTION POTENTIALS 14

2.2 M athem atical and physical preliminaries

This section lays out the mathematical methods and motivations used to construct the

three-dimensional model of an axon and solve the associated equations.

2.2.1 D efin itions

Before the particularisation of Maxwell’s equations, it is necessary to lay out some def­

initions and identities from vector calculus. Let i, j and k form a right-handed triad of

mutually orthogonal unit vectors. By this we mean that

i i = j j = k .k = 1
(2 .1)

i x j = k j x k = i k x i = j

where ‘.’ and ‘x ’ denote the scalar and cross-products of vectors in Let / — f {x,y, z)

be a scalar function of position then the gradient of / , denoted g rad /, is the vector

The gradient of / in the direction n, where n is a unit vector, is given by

5 ^ = n .g ra d /.

In particular, if n is the normal to a surface 5, then this gradient is called the normal

derivative of / at (x,yyz) on the surface S.

The divergence of a vector field F = i + F2 j + F3 k is defined by

OX dy dz

Given any volume of V with surface dV, Gauss’s theorem asserts that

[divFdV = [F .n d S ,
Jv JdV

so that div F may be interpreted as the distribution of sources of F within the volume V

that will give rise to flux F on the surface of the volume.

The curl of a vector field F = F) i -t- F2 j -f F3 k is defined by

CHAPTER 2. ACTION POTENTIALS 15

Given any closed curve C in space, Stoke’s theorem asserts that

J F .dl = J n . curlFdS

for all surfaces S for which C is a boundary curve. Thus curl F is a measure of the rotation

of the vector field F. For example, if E is an electric field, then curl E would measure the

extent to which the field is not conservative, and if curlE = 0 then E is derivable as the

gradient of a potential function.

The operators grad, div and curl satisfy the important identities

div curl F = 0

curl curl F = grad div F - A F

curl grad / = 0

where A F is called the Laplacian of F. In particular, if 0 is expressed as a scalar function

of the Cartesian coordinates (x, y, z) then

where A0 = 0 is called Laplace’s equation.

2.3 Derivation of the neuronal field equations

The starting point for the three-dimensional model of a dendrite in a stationary medium

is Maxwell’s equations

div D =

div B =

Py (2.3)

0 , (2.4)
a n

(2,5)

SB
~ 'd t ' (2.6)

In these equations, E (mV/mm) is the electric field strength, D = cqE + P {pC/mm^) is

the electric displacement field with P {pC/mm^) the polarisation of the medium and cq =

(367r)“ ̂ /LiF/mm is the permittivity of free space. The scalar function p (nC/mm®) is the

density of free charge in the medium, J (pA/mm^) is the current density, H (mA/mm) is

the magnetic field strength, B = /rgH + M (pW/mm^) is the magnetic induction with M

CHAPTER 2. ACTION POTENTIALS 16

(fiW/mnP) the magnetisation of the medium and /xq = dvr 10"^ N/mA^ is the permeability

of free space.

Although the physical interpretation of Maxwell’s equations is not immediately obvious

from equations (2.3)-(2.6), they can be interpreted as follows. Equation (2.3) is the dif­

ferential form of Gauss’s law, which states that the total flux of displacement field out

of a closed surface is equal to the net charge within the volume enclosed by the surface.

Equation (2.4) asserts that magnetic monopoles do not exist. The second pair of equations

relate current and magnetic fields. Equation (2.5) is Ampere’s law which states that the

current density and displacement field give rise to the magnetic field H. Equation (2.6) is

Faraday’s law of induction which states that a time varying magnetic field gives rise to an

electric field. The negative sign is Lena’s law which asserts that energy must be expended

to generate this electric field.

Under the conditions of dendritic modelling, it is reasonable to assume that P , M and J

are parallel to E, H and E respectively, so that

D = /ccqE, B = /xpoH, J = cjE (2.7)

where k is a. dielectric constant, /x is a permeability factor and a is an electrical conduc­

tivity. Assuming that xc, fi and a are constant functions of position, Maxwell’s equations

can now be written as

(2 .8)

(2.9)

(2 .11)

The three-dimensional model for a dendrite is developed from Maxwell’s equations by

assessing the relative importance of the individual terms in the equations with reference

to both the morphology and biophysical properties of the dendrite. For the extra- and

intracellular media, it is necessary to choose suitable values for xc, p and a with respect

to the dendritic medium. The value of xc Ps 81 is taken to be that of water. The value

of /X PS 0.022 is estimated from the refractive index of water (n = 1.33) using the formula

n = y/KjI. The value for the specific conductivity a % 3.3 mS/mm is taken from Katz

(1966). The typical dimensions for dendritic radius and length are 72 ss 5 x 10"®m and

div E = P
Kco’

div H = 0 ,

curl H = (tE 4- K60

curl E =

CHAPTER 2. ACTION POTENTIALS 17

L % 10“^m, respectively. I first consider the dispersion of electric charge and the diffusion

of the magnetic field.

2.3.1 D ispersion o f charge

Maxwell’s third equation (2.10) governs the dispersion of charge in the intra- and extra­

cellular media,

curlH = <r(E + ,8 ^ ^ , 0 ^ ^ - (2 1 2)

In the context of dendritic modelling, f3 rn2.2x 10“ ®̂ seconds in the intra-cellular region,

with a similarly small value in the extra-cellular region. It follows from equations (2.8)

and (2 .12) that the density of free charge p satisfies the partial differential equation

| + f = 0 . (2.13)

using the vector identity div(curl H) = 0. The general solution of this equation is

p(r, t) = p(r, 0)e“ 7̂̂ , (2.14)

where p(r, 0) is the initial distribution of charge, Fi'om this solution, it is clear that free

charge decays with time constant (3 seconds, which is negligible, compared with changes

in transmembrane potential which occur on the order of microseconds. Therefore, the

dispersal of free charge has a negligible contribution to current flow and is assumed to

be instantaneous for the purposes of dendritic modelling. Furthermore, the time rate of

change of E in equation (2.12) is significant only if it occurs on a time scale of (5 seconds,

and therefore the term j3dE/dt is also considered negligible on a microsecond timescale.

Therefore, the first particularisation of Maxwell’s equations comes from the biophysical

properties of the dendritic material and leads to the result

d ivE = 0, (2.15)

d ivH = 0, (2.16)

curl H = J = aE, (2.17)

curl E a n (2.18)

The next stage in the particularisation of Maxwell’s equations considers both the neuronal

geometry and electrical properties of the dendrite.

CHAPTER 2. ACTION POTENTIALS 18

2.3.2 D iffusion o f m agnetic field

Let us now consider the effect of the magnetic field on the electric field, as defined in

equations (2.17) and (2.18).

An implicit assumption in neuronal modelling is that the electric field is derivable from a

potential function, that is, it satisfies Laplace’s equation. However it is clear from equation

(2.18) that the electric field is not generally derivable from a potential function due to the

time changing magnetic field. The aim then is to find conditions under which the right

hand side of equation (2.18) is negligible. Toward this end, E is eliminated between

equations (2.17) and (2.18) to obtain

dHcurl curl H = - u/x/xq- ^ . (2.19)

Using the vector identity curl curl H = grad divH - AH in combination with div H = 0

equation (2.19) reduces to
AH

A H = <T/x/xo— . (2.20)

This expression can be non-dimensionalised using the changes of variable H — H/Hq, x

= x/L and T = t/T , giving the non-dimensional expression

ÂH = (2 .21)
7 at

The magnitude of the non-dimensional parameter appoL^/T governs the impact of the

time changing magnetic field on the electric field. For a motor neuron with a soma of

diameter Ps 10" “̂ and electrical activity resolved to 10“ ̂ ms, this parameter is approxi­

mately 10“ ^̂ . Therefore the right hand side of equation (2.21) is negligible and so the

magnetic field is determined by the electric field through Maxwell’s equations (2.16) and

(2.17) but cannot itself drive the electric field. Under these conditions, the electric field

satisfies curlE = 0 , and is therefore derivable from a scalar function.

2.3.3 M axw ell’s equations in neuronal m odelling

Taking into account both the biophysical and geometrical properties of neiuonal material

suggest that the most appropriate particularisation of Maxwell’s equations is based on

instantaneous dispersal of free charge and instantaneous diffusion of the magnetic field.

Consequently, Maxwell’s equations divide into two pairs of equations. The first pair is

div E = 0, cmi E = 0, (2.22)

CHAPTER 2. ACTION POTENTIALS 19

which leads to the result that

E = —grad 0, J — —crgrad 0, V^0 = 0. (2.23)

Therefore the electric fields in the intra- and extra-cellular regions are derived from po­

tential functions which satisfy Laplace’s equation. The second pair of equations is

div H = 0, cm-1 H = J = uE, (2.24)

which determine the magnetic field H from the electric field E.

2.3.4 Equations for a three-dim ensional axonal cylinder

In assessing the influence that the three-dimensional representation of the axon has on

conduction speed, we consider an infinitely long axon of constant radius a, with intra­

cellular fluid of finite conductivity gA emersed in extra-cellular fluid of finite conductivity

QE separated by a membrane. The axis of the axon is talcen to be the z-axis of a system

of cylindrical polar coordinates (r, $, z) where the axonal membrane has equation r — a.

The intracellular region is defined by r < a and the extracellular region is defined by

r > a. The azimuthal symmetry present in the model allows 9 to be an ignorable variable.

Consequently, the potential 0(r, z,t) in the intracellular region and the potential #(r, z, t)

in the extracellular region are required to be finite solutions of Laplace’s equation

However, these potentials are not continuous at r = a, and it is the size of this discontinuity

that defines the transmembrane potential

Vm ~ 0(a, z,t) - #(a, z, t). (2.27)

The presence of this discontinuity in potential induces transmembrane current Jm to flow

across the membrane. In the absence of sources of free charge within the membrane, this

current must be identical to that predicted by the gradients of the intra- and extracellular

potentials normal to the membrane. These conditions give rise to the boundary conditions

CHAPTER 2. ACTION POTENTIALS 20

where g a and gs are, respectively, the conductivities of the intra- and extra-cellular media

and n is the unit normal to the membrane directed from the intra- to the extra-cellular

region.

In dendritic modelling, neither the intra- and extra-cellular potentials nor the transmem­

brane potentials are known on the dendritic membrane. Instead these functions are de­

termined by requiring continuity of transmembrane current as prescribed in the boundary

conditions (2.28) where the functional form of Jm is prescribed by the constitutive formula

(2.31).

2,3.5 Identification o f th e one-dim ensional m em brane potential

At this stage, it is necessary to define the three-dimensional equation describing the mem­

brane potential of a infinitely long cylindrical axon, derived from Maxwell’s equations.

The divergence of the Maxwell equation J = curl H gives the identity div 3 = 0. The

integration of this equation over a volume of axon gives

/ (div J)rdr< iz = — / J%(r, a, () r (7r + I Jz{r,b,t)rdr
JA{z)x(a,b) J A{a) J A{h)

+ f J , n R y / l + dz — 0 ,
JdA(z)x(a.b)

(2.29)

'9.A(z)x(a.,6)

where the membrane is the surface r — R{z), Rz is the derivative of R with respect to z, Jz

is the z-component of J and the divergence theorem has been used to replace the volume

integral on the left by surface integrals on the right. Expression (2.29) is now divided by

2h with the choices a = z ~ h and b — z + h, and the limit taken as /i O’̂ to obtain

■ ^ (f Jz{r ,z ,t)rdr^ A- [J . n R \ / 1 + R"̂ ~ 0 (2.30)
\ JAiz)) JdA{z)

where A{z) is the area formed by the intersection of the axon with a plane of fixed axial

coordinate z and dA(z) is the boundary of A(z). After all integrations are complete, the

identity (2.30) contains only z and £.

The biophysical properties of the dendritic material are introduced through a constitutive

law for the transmembrane current density Jm == J - n (/rA/cm^). There are typically three

contributions to J ^ , first the density of synaptic current Js y n (pA/cm^), the density of

intrinsic voltage-dependent current JivDC (pA/cm^) arising from ionic channels, and the

density of capacitive current due to polarisation of the membrane whose lipid bi-layer

structure causes it to behave locally like a parallel plate capacitor with plates raised to

CHAPTER 2. ACTION POTENTIALS 21

the potential difference of the transmembrane potential Vjvf • The transmembrane current

density due to these processes is

JMiVu) — + JsYNiyu) + JlVDciyM)y (2.31)

where cm (pF/cm^) is the specific capacitance of the membrane and Vm is the transmem­

brane potential defined in (2.27).

The three-dimensionally derived one-dimensional representation of the cylindrical segment

given in equation (2.30) can be further simplified by substituting J n — Jmi where has

been replaced by its definition in terms of the axial gradient of the intra-cellular potential

0(r, z, t) . This gives

2
dz

A(z) y -\r P{z) J m {Vm) — d (2.32)

where Vm = <f>A — is the transmembrane potential. The membrane potential, Vm,

derived via Maxwell’s equation is now compared with the membrane potential, V, given

by the conventional one-dimensional cable equation

2
dz (^oaAÇz)-^^ + P(z) Jm(V) — 0, (2.33)

where Jm (V) is the transmembrane current density at membrane potential V as defined

in equation (2.31) and F(z) = 27r F(z) and yl(z) = tvR? (z).

The question now is to determine under what conditions Vm is identical to V. To achieve

this objective it is necessary to compare the expressions for transmembrane current and

the diffusion of axial current between equation (2.32) and equation (2.33).

Comparison of transmembrane current

The reconciliation of V with Vm requires that the membrane currents from both equations

are equivalent, that is,

F(z) J m (V) = P(z) J m (Vm), (2.34)

where Jm is defined in equation (2.31). As the transmembrane current Jm{Ym) is the sum

of the independent components described in equation (2.31), then a satisfactory definition

CHAPTER 2. ACTION POTENTIALS 22

of V must satisfy each of the equations

P{z)cmP = P{z)cmVm ,

P{z)JivDc{y) = H{z)JiVDc{yM), (2.35)

P(z)JgyN(V) = P(z)Jgyjv(yM),

because each current is an independent entity. The first condition of (2.35) requires

that V ~ Vm , and if this is the case, then the second and third conditions of (2.35)

are satisfied automatically. That is, in the presence of strong-cylindrical symmetry the

three-dimensionally derived one-dimensional transmembrane potential Vm and the one-

dimensionally derived one-dimensional transmembrane potential V are required to be iden­

tical with respect to transmembrane current.

Comparison of diffusion of axial current

The reconciliation of V and Vm further requires a comparison of the terms in equations

(2.32) and (2.33) which represent the diffusion of axial current. To facilitate this compar­

ison, it is convenient to start with the mathematical identity

r dr = <̂aA(z) ^ + aA- ^ r dr + <taA{z) ^ (2.36)

where Vm and are defined on the membrane and are therefore independent of r.

This identity allows the partition of the potential derived from Maxwell’s equations into

three components. The first term on the right hand side of this identity represents the

diffusion of axial current in the conventional one-dimensional cable equation. The second

term represents the discrepancy in intracellular axial current when the true intracellular

potential is represented by its value at the inner boundary of the membrane. Finally the

third term is a correction to the intracellular axial current ai'ising from axial variation

of the extracellular potential on the outer boundary of the membrane. To complete the

correspondence between equations (2.32) and (2.33), the diffusion term in equation (2.32),

when expressed using the right-hand side of equation (2.36), must be associated with the

diffusion term of equation (2.33). Therefore

a A A (z) ^ = r dr + (2.37)

It is clear from equation (2.37) that the reconciliation between V and Vm requires that

a A ^ ^ ^ Z ^ r d r + a A A { z) ^ = 0. (2.38)

CHAPTER 2. ACTION POTENTIALS 23

In the development of the conventional cable equation, it is implicitly assumed that these

terms are negligible. They represent irreducible components in the description of the

membrane potential that have no representation in the traditional one-dimensional cable

equation. This expression has been derived for a cylindrical uniform axon without taper

and implies that the introduction of taper may result in a greater difference between

the conventional one-dimensional cable equation and the three-dimensionally derived one­

dimensional model.

The identification of terms in the one-dimensional cable equation derived from Maxwell’s

equations which cannot be eliminated may have far-reaching implications for models of

axons or dendrites based on the conventional one-dimensional derivation of the cable equa­

tion. In particular, Hodgkin and Huxley developed a membrane model from the membrane

kinetics observed in voltage clamp studies on the squid giant axon. A strong test of the

model was its ability to predict the conduction speed of a propagated action potential.

In this context, two important assumptions need to be examined, the first is the ade­

quacy of the representation of the three-dimensional axon by a one-dimensional model

and the second is the validity of the assumption that the travelling wave speed is attained

experimentally. We treat the former first and consider the latter in Section 2.5.

2.3.6 T hree-dim ensional axon w ith H odgkin-H uxley k inetics

Axons are conventionally modelled as cylinders. In the case of Hodgkin and Huxley

(1952d), the axon is assumed to have a constant radius a (cm) and the Hodgkin-Huxley

membrane Jm is defined to be

Jm = + 9Na {Vm - Veo) + 9K {Vm ~ Wc) + 9l {Vm - Vl) (2.39)

where cm is the membrane capacitance, gjva, qk and gi, are respectively the sodium, potas­

sium and lealcage conductances (raS/cm^), W/a, Vk and Vl are respectively the sodium,

potassium and leakage equilibrium potentials (mV) and Vm is the transmembrane po­

tential (mV). The auxiliary functions /i, m and n define the kinetic behaviour of the

conductances through differential equations of the form

~ Oiy {I - y) - pyy (2.40)

where y — h^m^n and a and (3 are functions of Vm . Each function is in effect an activation

probability, determined experimentally from data based on a number of axons.

CHAPTER 2. ACTION POTENTIALS 24

The boundary conditions (2.28) written in terms of the Hodgkin-Huxley membrane (2.39)

are

3 V m . S u f x r T / \
- 9 E + 9Na 'tnrh {V m - Vn o)

St (2,41)
+ 9K >»'* (Vm - Vk) + g i (Vm ~ V l) = - q a - ^ .

Solution procedure

The analysis begins by representing the interior and exterior potentials as the finite Fourier

series

(^(r,z;t) = ^ (2.42)
* = -f

$ (r,z ;t) = ^ (2.43)
fc = -f

In this representation, N is the number of intervals into which the region (0, L) is uniformly

subdivided and L is the spatial periodicity of 0(r, z; t) and $(r, z\ t) with respect to the z

coordinate. Since (j) and # must be solutions of Laplace’s equation, it can be demonstrated

that (f)k and are solutions of the ordinary differential equations

(“ I

for the interior and exterior regions respectively. The general solution of these equations

takes the form

4>k - Akhipkr) + BkKo{ukr) (2.46)

where Iq and K q are the modified Bessel functions of the third and fourth kind and

and Bk are constants. The requirement that is finite at r = 0 is satisfied by the choice

= 0 and the requirement that 4»/. is finite as r —> oo is satisfied by the choice Ak — 0.

Thus the expressions for the potentials (j> and $ become

iV/2-l
4>{r, z,t) ^ ^ ak{t) loiizkr) e , r < a ,

k=—N/2 27tA:
N /2-1 = I T

®(r, z ,t) = ^ 2 h (t) Ko(vki') , r > a ,
k=-N/2

CHAPTERS. ACTION POTENTIALS 25

The coefficients a* and are directly related through the conservation of charge require­

ment. The membrane potential can be expressed in terms of a/c and bk and the specification

of membrane current leads to a family of ordinary differential equations for these coeffi­

cients. The boundary conditions on the axonal membrane r = a give N first order ordinary

differential equations and N algebraic equations for the time course of ak and bk- The

Hodgkin-Huxley equations (2.40) for each of h, m and n give a further 2>N first order

ordinary differential equations giving 4A ordinary differential equations in total. In the

absence of injected current, the functions /i, rn, n and the intracellular and extracellular

potentials are constant functions of time. Action potentials in the model are generated

by raising the intracellular potential above threshold over a small section in the centre

of the axon and integrating the AN differential equations forward in time by numerical

integration.

Conduction velocity in a three-dimensional axon

The move to the three-dimensional model gives a slight decrease in the conduction speed

from 18.73 ms~^ to 18.61 ms“ ,̂ a difference of 0.12 ms~^. Thus the approximation of the

three-dimensional axon by the traditional cable equation does not account for the observed

discrepancy between the predicted and observed speed of the propagated action potential

(in fact, the traditional cable equation is over-optimistic). However, in other applications

using a one-dimensional model, for example predicting latencies, this difference may be

significant.

CHAPTERS. ACTION POTENTIALS 26

2.4 M easurem ent error and biological variability

It is clear from the preceding section, that the discrepancy between theory and experiment

cannot be explained by the use of a one-dimensional model to predict the speed of the

propagated action potential. Other possible sources of error are now investigated.

Errors associated with the experimental estimation of model parameters from an axon

and the errors involved in deriving the rate functions have to be considered as possible

sources of error. The former is errors in the measurement of parameters from the axon,

for example, conductance or capacitance, while the latter is biological variability due to

the derivation of the rate functions from data collected from several axons. The influence

of the two forms of error on the predicted and observed conduction speed will be treated

separately in this analysis.

To test the influence of possible errors in parameter estimation and biological variability

on the conduction speed of the propagated action potential, three distinct simulation

exercises are carried out. Each simulation exercise is based on 2000 calculations of the

conduction speed. The values of the estimated parameters are drawn from distributions of

the parameter values based on the experimental work of Hodgkin and Huxley. Therefore

each simulation is considered to give a measurement of the conduction speed for a single

axon. The first simulation exercise assesses the influence of measmement error on the

theoretical conduction speed of the propagated action potential, whereas the second and

third assess the combined effect of measurement error and biological variability.

2.4.1 M easurem ent error

The mean value and standard deviation of the parameter values used to investigate the

influence of measurement error on the conduction speed, are given in Table (2.1). The

Hodgkin-Huxley membrane model and definitions of the parameters in Table 2.1 are de­

scribed in Section 2.3.6.

CHAPTERS. ACTION POTENTIALS 27

Parameter Mean ± Std Dev Units Reason

% a -72.0 ± 1.00 mV Double HH error

VfC 65.0 ± 2.00 mV Double HH error

9Na 120.0 ± 6.00 mS/cm^ 5% relative error

9K 36.0 ± 1.80 mS/cm^ 5% relative error

9L 0.3 db 0.02 mS/cm^ 5% relative error

9A 28.99 ± 1.45 mS/cm 5% relative error

CM 1.0 ± 0.05 IjF/cnE 5% relative error

d 476 ± 19.0 /rm 4% relative error

Table 2.1: Mean and standard deviation of parameter values for Hodgkin-
Huxley membrane model. The final column describes the reason behind

each choice of standard deviation.

The mean parameter values in Table 2.1 were talcen from the “Value chosen” column of

Table 3 in Hodgkin and Huxley (1952d), with the exception of the axonal diameter. The

standard deviations of the sodium and potassium equilibrium potentials were chosen to be

twice the absolute errors reported by Hodgkin and Huxley (1952a,b). The standard devia­

tions of the remaining parameters were not reported by Hodgkin and Huxley and therefore

are given a standard deviation of 5% of the mean value chosen. Figure 1 of Hodgkin and

Huxley (1939) allows one to estimate the maximum error in measuring axonal diameter to

be approximately 17 (im. The mean axonal diameter reported in the calculation of con­

duction speed was 476 /im, and so the axonal diameter will be given a standard deviation

of 4% (19/476x100 %) in the simulation study. The final parameter to be assigned is the

lealcage equilibrium potential. Once the parameters in Table 2.1 have been assigned at

the start of each simulation, the lealmge equilibrium potential is chosen to give a resting

membrane potential of -60 mV. Therefore this potential acts like a random variable with

each simulation providing a realisation of its value. The computed range of lealcage equi­

librium potentials can then be compared with the reported range (-56mV to -38mV) in

Table 3 of Hodgkin and Huxley (1952d). This provides an internal check on the choice of

measurement errors not reported by Hodgkin and Huxley. If the distribution of computed

leakage equilibrium potentials corresponds well with the reported range, then the choices

of values for the measurement errors are reasonable. For example, if the distribution of

lealtage equilibrium potentials from the simulation exceeds the reported range, then it is

CHAPTER 2. ACTION POTENTIALS 28

clear that the magnitude of measurement error and biological variability must be reduced.

2.4.2 B iological variability

The rate functions ah, ph, CKm, Pm, «n and Pn were derived from data collected from

several different axons, and therefore it is reasonable to assume that the rate functions

will be subject to biological variability. The experimental results for the rate constants am,

Pm, an, Pn, och and Ph plotted in Figures 4, 7 and 9 respectively in Hodgkin and Huxley

(1952d) imply that the estimation error increases with the value of the function. When the

rate functions are small, their observed values lie close to or on the fitted line, suggesting

that biological variability can be ignored in this region. As the rate functions increase in

value, their spread about the fitted line also increases. However, this increasing variability

is only present over the short time-interval for which the membrane potential is distant

from its equilibrium value. To reflect the increasing variability of a rate function as its

value increases, rate functions in the simulation exercise are calculated by multiplying their

Hodgkin-Huxley specification by a Gaussian deviate with mean value one and standard

deviation chosen to mimic the largest variability of the data from which that rate function

was estimated.

It can be shown for a small sample drawn from a Gaussian distribution that the range is

nearly as efficient as the sample standard deviation as a measure of spread in the population

(Hoel, 1954). If one defines a standardised range as the ratio of the observed range to the

population standard deviation, then Table 2.2 gives the expected value if this ratio for

different sample sizes of a Gaussian distributed random variable (Hoel, 1954).

Sample size N 2 3 4 5 6 7 8

E(Range/cr) 1.128 1.693 2.059 2.326 2.534 2.704 2.847

Table 2.2: The expected value of the standai-dised range of a Gaussian distributed
sample of AT independent deviates from N = 2 to N ~ 8 (see Hoel, 1954).

For this data set, the size of the sample is the number of measurements of the rate function

in the close proximity of a given potential, and the range is the maximum relative error in

the determination of the rate function of that potential. This information, in combination

with the values in Table 2.2, gives a direct estimate of the population standard deviation

of the relative error. Table 2.3 displays the estimated standard deviation for each rate

CHAPTER 2. ACTION POTENTIALS

function to be used in the simulation exercises.

29

Rate Function

ms~^

Sample

Size N

Maximum Ratio of

Range to Mean

Estimated Std.

Deviation of Ratio

Oih 4(4) 0.063/0.163 0.188 (18.8%)

Ph 8 (6) 0.475/0.988 0.169 (16.9%)

4(4) 3.130/7.750 0.196 (19.6%)

Pm 5(3) 0.375/1.500 0.107 (10.7%)

aji 5(5) 0.188/0.875 0.092 (9.2%)

Pn 8(3) 0.050/0.075 0.234 (23.4%)

Table 2.3: The estimated standard deviations of the relative error in the Hodgkin-
Huxley rate functions. The integers in brackets in the second column are the number
of different axons from which the sample was constructed.

The estimated error for each function will be based on the largest relative error in that

function. Thus the simulations will overestimate the influence of biological variability on

the theoretical conduction speed making it more difficult to reject the hypothesis that the

discrepancy between the computed and observed speed of the propagated action potential

is due to biological variability.

2.4.3 R esults of sim ulation exercises

The distribution of conduction speeds from 2000 simulations in the presence of measure­

ment error alone (dashed line) and two combinations of measurement error and biological

variability (solid and dotted lines) can be seen in Figure 2.1.

CHAPTER 2. ACTION POTENTIALS 30

0.4

^0.3- oTJ

!go.24
roJQ
2
CL 0.1

0.0
0 10 12 14 16 18 20 22 24 26 28

Speed (m /s)

Figure 2.1: Probability density function of the distribution of theoretical conduction

speeds based on 2000 simulations of the model axon. The dashed line represents mea­
surement error alone using the standard deviations in Table 2.1, while the solid line

incorporates biological variability with measurement error using the errors detailed
in Table 2.3. The dotted line is the distribution of conduction speeds with twice the

measurement error in Table 2.1 and half the biological variability in Table 2.3.

The first combination of measurement error and biological variability (Figure 2.1, solid

line) follows the standard deviations and errors prescribed respectively in Tables 2.1 and

2.3, whereas the second combination (Figure 2.1, dotted line) uses twice the measurement

error prescribed in Table 2.1 and half the error associated with biological variability listed

in Table 2.3.

For each simulation exercise, the likelihood of obtaining a theoretical conduction speed of

at least 21.2 ms“ ̂can be estimated directly from the probability densities^ shown in Figure

2.1. Therefore, in the presence of measurement error alone, the probability of achieving

at least 21.2 ms“ ̂ is less than 1 in 200 (0.5%), and approximately 1 in 8 (12-13%) for

the combination of measurement error and magnitude of biological variability given in

Table 2.3. Given these probabilities, it is unlikely that measurement error alone could

account for the 11-12% discrepancy in conduction speed, and the addition of biological

variability does not significantly improve this likelihood. In fact, the combinations of

measurement error and biological variability used in the simulations skews the distribution

of conduction speeds such that there is an increased probability of a slower speed thereby

increasing the likely discrepancy between the observed and predicted conduction speeds.

Moreover, doubling the measurement error in Table 2.1 and halving the error associated

‘The procedure for estimating probabilities from probability densities is described in Chapter 5.

CHAPTER 2. ACTION POTENTIALS 31

with biological variability in Table 2.3 made a negligible difference to the probability of

predicting a conduction speed of at least 21.2 ms” .̂

An internal check of each simulation exercise lies in the distribution of leakage equilibrium

potentials shown in Figure 2.2,

0.16i

T3
i'0-08-
In
I20.04-

0.00
70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20

Potential (mV)

Figure 2.2: Probability density function of the leakage equilibrium potential chosen to main­

tain an equilibrium membrane potential of -60 mV. The dashed line represents measurement

error alone using the standard deviations in Table 2.1, while the solid line incorporates bio­
logical variability with measurement error using the errors detailed in Table 2.3. The dotted
line is the distribution of conduction speeds with twice the measurement error in Table 2.1

and half the biological variability in Table 2.3. The black inward-pointing arrows indicate
the range of lealcage equilibrium potentials reported by Hodgkin and Huxley (1952d).

In the first simulation involving measurement error alone (dashed line, Figure 2.2), the

distribution of equilibrium potentials corresponds well with the range of -56 mV to -38 mV

reported in Table 3 by Hodgkin and Huxley (1952d). However, when the errors associated

with biological variability are combined with measurement error (solid line, Figure 2.2) the

distribution of lealcage equilibrium potentials far exceeds the range reported by Hodgkin

and Huxley (1952d).

Although the choice of biological variability detailed in Table 2.3 combined with the mea­

surement error listed in Table 2.1 gives a 1 in 8 probability of predicting a conduction

speed of at least 21.2 ms~^, it is clear that the levels of biological variability involved

are excessive. Additionally the third simulation exercise, which doubled the measurement

error in Table 2.1 and halved the errors in Table 2.3 associated with biological variabil­

ity, still found that the distribution of leakage equilibrium potentials exceeded the range

CHAPTER 2. ACTION POTENTIALS 32

reported by Hodgkin and Huxley.

Having eliminated numerical inaccuracy and parameter estimation error as possible sources

of the discrepancy between predicted and observed conduction speeds, the structure of

the membrane model itself must be investigated. However, in the 50 years since the

publication of the model, experimental evidence has continued to support the formulation

of the membrane model proposed by Hodgkin and Huxley. The observation that sodium

channels are composed of four voltage-sensitive units (Caterall, 1988; Sato, Ueno, Asai,

Talcahashi, Sato, Engel, and Fujiyoshi, 2001) corresponds well with Hodgkin and Huxley’s

four-step activation kinetics, and similarly for the configuration of potassium channels (see

Kreusch, Pfafhnger, Stevens and Choe, 1998; Meunier and Segev, 2002). There has also

been significant work which has led to modifications in the description of the behaviour of

both the sodium and potassium channels (Armstrong and Bezanilla, 1977; Bezanilla and

Armstrong, 1977; Caterall, 1992; Ballotta and Waggoner, 1992), however the new channel

models have not yet been used to predict the conduction speed of the propagated action

potential in the squid giant axon.

Thus far we have shown that numerical inaccuracies, the one-dimensional approximation

of the three-dimensional axon, measurement error and biological variability cannot ac­

count for the discrepancy between observation and theory. In view of recent experimental

evidence, we choose to retain the kinetic model proposed by Hodgkin and Huxley. There­

fore, one important factor that remains to be investigated as a source of the discrepancy

between observation and prediction is the validity of the travelling wave assumption.

CHAPTER 2. ACTION POTENTIALS

2.5 The travelling wave assum ption

33

To reduce the partial differential equations to ordinary differential equations, Hodgkin

and Huxley (1952d) assumed that the propagating action potential was a travelling wave,

namely a wave of invariant shape moving at constant speed. However, it is possible that

the experimental action potential did not achieve the travelling wave speed. If this is the

case, then any simulation procedure must correspond with the experimental setup and the

theoretical conduction speed must be measured over the same distance as that available

experimentally.

Returning to the three-dimensional model, a solution is now required that begins with the

axon initially at rest, then following a brief stimulation, an action potential propagates

away from the site of stimulation. Experimentally, a rapid injection of current is given at

a fixed point on the axon to generate an action potential. This effect is achieved in the

model by raising the membrane potential above threshold over a small length of axon.

The solution of the three-dimensional model for the time course of the membrane potential

at intervals of 0 .1ms after stimulation of the axon can be seen in Figures 2.3A.

(A)

50 n

? 30

10

0-50-1
-70

f 0.4ms

0.5ms
0.3ms

0.2ms

0.1ms

(B)

70

60

50

g 40

■§ 30-(U
to 20-j

-15
1
15

10

0

Observation 21.2 ms

Theory 18.7 ms'

Distance (cm)

1------- 1-----1------ 1
6 8 10 12

Distance (mm)

Figure 2.3: Development of the computed action potential and its speed. (A) shows the
spatial distribution of the computed axonal membrane potential at times 0.1ms, 0.2 ms,

0.3 ms, 0.4 ms and 0.5 ms after stimulation of a small section of axon. (B) shows the speed

of the peak of the computed action potential versus distance travelled from the point of
stimulation. The upper and lower dashed lines in (B) refer to the reported conduction
speed and the computed travelling wave speed respectively.

CHAPTER 2. ACTION POTENTIALS 34

The membrane potential grows in the first 0.3ms until the peaks of two action potentials

can be seen at 0.4ms and are clearly defined propagating away from the point of stimula­

tion after 0.5ms. The first discernable peak at 0.4ms is taken as the starting point for the

measurement of the conduction speed. The speed is calculated by measuring the distance

travelled by the peak of the action potential over intervals of duration 0.01ms. The con­

duction speed of the action potential as it propagates away from the point of simulation is

illustrated in Figure 2.3B. It can be seen that the computed action potential attains the

travelling wave (or steady state) speed only after it has travelled at least 9mm away from

the point of stimulation. Therefore, a valid comparison of the conduction speeds of the

observed and predicted action potentials requires the stimulating and recording electrodes

to be at least 9mm apart, although in practice the temporal resolution of the recording

equipment may require a greater distance.

In Figure 8B, Miller and Rinzel (1981) plot the instantaneous speed of the ‘pulse upstroke’

against the distance travelled by the propagated action potential in response to a stimulus.

Clearly evident in this figure is an initial transient increase in the conduction speed of the

action potential before it settles down to its steady state speed. Miller and Rinzel do not

comment on this effect. This transient increase in speed is very similar to that illustrated

in Figure 2.3B.

Unfortunately, Hodgkin and Huxley do not describe the experimental conditions under

which the conduction speed of the propagated action potential was recorded from the

axon. If the recording chamber drawn in Figure 1 from Hodgkin et al (1952) is assumed

to be that used to measure the conduction speed, then the dimensions of the chamber

suggest that it may not be appropriate to take the travelling wave speed as the predicted

conduction speed. Furthermore, the transient effect of stimulation generates an action

potential which initially moves much faster than the steady state speed. This implies that

the discrepancy between the observed and predicted conduction speeds may be resolved

if the stimulating and recording electrodes are suitably close. Of course, the size of the

discrepancy will depend critically on the experimental apparatus, the point of stimulation

and the strength of the stimulation used to generate the action potential. The transient

behaviour of the action potential will now be further investigated.

CHAPTER 2. ACTION POTENTIALS 35

2.5.1 A possib le explanation for th e discrepancy b etw een th e observed

and predicted conduction speed

To understand how the discrepancy between the observed and predicted conduction speeds

can occur, the shape of the action potential as it moves away from the point of stimulation

is examined. Figure 2.4A shows the speed of the leading edge of the action potential at

selected values of the membrane potential.

(A)
40 “1

:T'T
E 3 0 -
-o
^ 25H

1/Î

(B)

2 0 -

30 mV

29 mV
28 mV
25 mV

0 mV -
-50 mV

Q—j----------
0.0

—I------1------1------1------1
0.4 0.5 0.6 0.7 O.f

Time (ms)

30 n

2 0 -

CL
0.50ms
0.45ms
0.40ms

0 1 2 3
Distance (mm)

Figure 2.4: Changing shape and speed of the computed action potential. (A) shows the
speed of the leading edge of the computed action potential at selected values of the membrane

potential. (B) illustrates the changing shape of the leading edge of the computed action

potential in the time interval 0.4 ms to 0.5 ms after stimulation.

It is clear from Figme 2.4A that the peak of the action potential is travelling almost twice

as fast as its base at 0.4 ms after stimulation. It talces an additional 0.3 — 0.4 ms for

all parts of the action potential to reach a steady state speed, by which time the action

potential has travelled approximately 9mm away from the point of stimulation. Aligning

the peaks of the action potentials recorded at 0.4 ms (solid line), 0.45 ms (dotted line) and

0.5 ms (dashed line) in Figme 2.4B reveals that the leading edge of the action potential

steepens as it moves away from the point of stimulation. It appears that this change

in shape, although small, can account for the transient increase in speed of the action

potential prior to achieving the travelling wave speed.

CHAPTER 2. ACTION POTENTIALS 36

2.6 Trains of action potentials

An action potential, or a spike, rarely propagates along an axon on its own, but rather is

part of a train of action potentials carrying a signal to the next neuron in the pathway. The

essential feature of the solution of the three-dimensional model is its assumed periodicity.

Within this assumption, it is a simple adjustment to consider trains of action potentials

with variable intervals of spatial periodicity.

In the previous section, the length of the spatial repeat pattern was chosen to be deliber­

ately large so that the generation and propagation of a single propagated action potential

could be studied. This procedure is adapted to investigate spike trains by adjusting L, the

length of the spatial periodicity, to provide a means by which the relationship between the

conduction speed and spatial periodicity of the spike train can be quantified.

By changing A, the effect of refractoriness on the amplitude and conduction speed of a

spike train can be examined. For example, the spike amplitude reduces as L becomes

smaller until a critical value of L is passed beyond which a spike train is not sustainable.

Conversely at larger values of L the spikes behave independently and propagate at the

conduction speed predicted by Hodgkin and Huxley.

Miller and Rinzel (1981) investigated the dispersive properties of the propagating action

potential at a range of temperatures for the Hodgkin-Huxley model by assuming “a periodic

train of uniformly spaced pulses travelling with fixed speed”. Using a boundary condition

problem, the initial conditions corresponded to a time dependent stimulating current that

initiated the propagating action potential. They found a range of frequencies at which

the propagating action potentials achieved conduction speeds greater than the steady

state travelling wave speed. Increasing temperature caused a significant increase in the

conduction speed, due primarily to accelerating the recovery process and decreasing the

refractory period (Miller and Rinzel, 1981).

2.6.1 T he dispersive relationship

The propagated action potential starts with the profile of a travelling wave rather being

initiated by an injected cmrent. This wave travels for 20 ms to allow the steady state

speed for that choice of L to be achieved before the conduction speed is calculated. The

simulation calculates the conduction speed of an action potential in the axon at 18.5°C

CHAPTER 2. ACTION POTENTIALS 37

with, values of L ranging from 0.25 cm to 30.0 cm in increments of 0.25 cm. The conduction

speed is calculated by measuring the distance travelled by the peak of the action potential

in a given time interval. Figure 2.5A illustrates the profile of the conduction speed and

Figure 2.5B illustrates the maximum value of the action potential, both plotted against

L.

(A)
20 n

19 -
18 -

& 1 7

I 16 HQ.
^ 15

(B)

>
E

35 n

30

25 -

n I I I I I
5 10 15 20 25 30
Spatial periodicity (cm)

” 1------1------ 1------ 1------1
10 15 20 25 30

Spatial periodicity (cm)

Figure 2.5: Panel (A) shows the conduction speed of the propagated action po­
tential versus the spatial periodicity L, and Panel (B) shows the maximum value of
the action potential against the spatial periodicity L.

It is clear from Figure 2.5A that the interval between spikes in a train of action potentials

has a significant effect on the conduction speed of that train. Below L — 4.5 cm, the

train of action potentials cannot be sustained. Above 4.5 cm conduction speed increases

monotonically with L until achieving a maximum speed of 19.2 ms“ ̂ when L = 12.5 cm.

Beyond this critical value of L, the conduction speed decreases asymptotically to a steady

state speed of 18.6 ms” ̂ - the velocity predicted by the Hodgkin-Huxley model under

the assumption of a travelling wave, and is negligibly different from the Hodgkin-Huxley

conduction speed when L > 20 cm. It is clear from Figure 2.5B that the peak potential also

varies with L achieving its maximum value when L % 10.25 cm. Thus the spike train with

the maximum size of the action potential occurs for a spatial periodicity shorter than the

spatial periodicity for which the action potential itself has maximum conduction speed.

These simulation results agree with Miller and Rinzel (1981) who noted that the peak

amplitude occurred at a “somewhat higher frequency” than the peak conduction speed,

providing qualitative agreement with our results.

CHAPTER 2. ACTION POTENTIALS 38

To visualise how the profile of the repeat pattern depends on L, a sample of two repeat

patterns for trains with L = 5cm (small), L = 13cm (medium) and T = 30cm (large) are

plotted in Figure 2.6A-C.

(A) (B) (C)
401
2 0 ”

cm

-80-J

40
20

0

- 2 0 ”

-40-
-60
-80

” r
13

cm
1
26

40
204

0
-204
-40

-604
-80

cm r
30

1
60

Figure 2.6: Three example spike trains are illustrated for (A)
L = 5 cm, (B) L — 13 cm and (C) L = 30 cm.

The fundamental difference in the three patterns lies in the shape of the recovery period,

defined to be the region in which the membrane potential is below -60 mV. When L = 30 cm

(Figure 2.6C) the individual action potentials are clearly isolated by regions of equilibrium

membrane potential (-60 mV). However when L — 13 cm and below (Figure 2.6A,B), the

membrane potential only momentarily takes the equilibrium potential of -60 mV and the

individual action potentials in the train of action potentials are clearly interacting with

each other. The question to be addressed now is whether or not the shape of the action

potential depends on the spatial periodicity L. Figure 2.7 illustrates the profile of the

action potential for L — 5 cm, A = 13 cm and L = 30 cm on the same spatial scale.

Figure 2.7: The spike trains from Figure 2.6 redrawn on the same
scale, where (A) L = 5 cm, (B) L — 13 cm, (C) L — 30 cm.

The conclusions from this figure is that the shape of the action potential is largely inde-

CHAPTER 2. ACTION POTENTIALS 39

pendent of the choice of L, any dependence enters through the fact that the peak of the

action potential is indirectly dependent on L through the duration of the recovery period.

Talcing together Figures 2.5 - 2.7 it is clear that the conduction speed and the recovery

process depend on L whereas the shape of the action potential is independent of L.

2.6.2 A ctivation variables

To understand how the processes involved in the formation of an individual action potential

manifest themselves in a train of action potentials, the dimensionless auxiliary variables

h, m and n are displayed in Figme 2.8A-C for L = 5 cm, L — 13 cm and L = 30 cm. These

variables describe the degree of sodium inactivation, sodium activation and potassium

activation respectively.

(A)
1.0

0.6

0.4

0.2
m

100 5

(B)
1.0-1

0 . 8 -

0.6

0.4-

0.2 -

0

Distance (cm)

r
0 13

Distance (cm)

n

m
n
26

(C)
1.0

0.8

0.6

0.4

0.2

0

h \. ___ . f — \

n
1

' mi
1

0 30 60
Distance (cm)

Figure 2.8: The underlying auxiliary variables h, m and n where
(A) L = 5 cm, (B) L = 13 cm and (C) L = 30 cm.

Figure 2.8 suggests that the spatial extent of the sodium activation variable m is essentially

independent of the value of L, and in fact this is true. However, the behaviour of the sodium

inactivation and potassium activation variables h and n respectively depends on the value

of L. When Z, = 30 cm it is clear from Figme 2.8C that all of the auxiliary variables have

returned to their equilibrium values. When L — 13 cm or below it is clear that h and n do

not have the opportunity to return to their equilibrium values, that is, they are unable to

complete their recovery profile before the next action potential arrives.

Miller and Rinzel (1981) suggest that the behaviour of the activation variables may explain

the elevated conduction speeds at medium values of L. The upstroke of the next action

potential occurs at a point in the recovery profile where the potassium activation n is

CHAPTER 2. ACTION POTENTIALS 40

below and sodium inactivation h is above their respective resting values, therefore the

axon may be in a more excitable state than at rest. For large values of L, the activation

variables have returned to their resting values and therefore the next action potential will

essentially activate a membrane at rest, as if it were the first action potential.

Figure 2.9 displays the profiles of the combined activation variables m^h and n^, normalised

such that each pealc is centred on the origin.

(A) (B)
— 5 cm
— 13 cm
 30 cm

0.30 n

0 . 20 -

0 . 10 -

0.0 J
-0.5 0 0.5 1.0 1.5

0.40 ” - 5 cm
—- 13 cm
 30 cm0.30-

0 .2 0 -

0. 1 0 -

0 .0 -J
2 -1 0 1 2 3 4 5

Distance (cm) Distance (cm)

Figure 2.9: Panels (A) and (B) show the profiles of m^h and n‘̂ respec­
tively, for L = 5cm (dashed line), L — 13cm (solid line) and L = 30cm
(dotted line) normalised such that each peak is centered on the origin.

Consider first Figure 2.9A which illustrates the profiles of m^h for small, medium and large

choices of L. The maximum peak value of m^h is given by the choice oî L — 13 cm with

the peaks of both L = 5 cm and L = 30 cm reaching lower values. Conversely in Figure

2.9B the profile of is essentially unchanged for small, medium and large choices of L.

Note that for all values of L, the spatial extent of the m^h profile is small and has largely

completed its cycle by the time reaches its peak amplitude. The length over which the

recovery variable rA occurs is approximately 4-5 cm for each value of L. The minimum

value of L for a viable train of action potentials is 4.5 cm and is possibly determined by

this unchanging variable ré.

Using the three-dimensionally derived one-dimensional model, the dispersion character­

istics of a train of action potentials could be investigated. The conduction speed of the

action potentials varied widely with the spatial periodicity L, but settled to a steady speed

at large values of L. The period of elevated conduction speeds described by Miller and

Rinzel (1981) was present at around 12-13cm, and furthermore the phenomenon of the

CHAPTER 2. ACTION POTENTIALS 41

maximum peak potential occurring at a slightly smaller value of L than the maximum

conduction speed was also evident. Deeper analysis of the underlying activation variables

found that the form and conduction speed of an action potential depended critically on the

point in the recovery profile at which the action potential was initiated. For a mid-range

choice of L, this resulted in a region of elevated conduction speeds, possibly due to an un­

usual balance of the activation variables h and n which allowed a more potent activation.

However, the combined variables rréh and ré were largely unaffected by varying L and

instead followed a set response to action potential initiation.

CHAPTER 2. ACTION POTENTIALS 42

2.7 Conclusions

The derivation of a one-dimensional model from a three-dimensional representation of an

axon provided the basis for an investigation into distinct features of the Hodgkin-Huxley

membrane model. The three-dimensional model contained irreducible terms that described

the behaviour of radial currents in the axon, a feature previously assumed negligible. The

application of this model to the Hodgkin-Huxley membrane, in particular, the calculation

of the conduction speed of the propagated action potential found only a small difference

between the one- and three-dimensionally derived models. In light of this, an explanation

for the discrepancy between theory and experiment was investigated. Biological variability

and measurement error were both ruled out, and in fact, biological variability was more

likely to cause an increase in the discrepancy rather than a decrease.

The determination of the conduction speed of the propagated action potential without

making the travelling wave assumption, displays a transient increase in conduction speed

before attaining a steady state speed equivalent to that of the travelling wave speed. This

analysis has demonstrated that a minimum distance is required to attain the travelling

wave speed. However the distance over which Hodgkin and Huxley measured the conduc­

tion speed of the propagated action potential remains unlcnown. Uncharacteristically, they

do not provide this information in the article (Hodgkin and Huxley, 1952d), they simply

say that the “velocity found experimentally in this fibre was 21.2 m/sec”. Without know­

ing the precise conditions under which this figure was obtained, the discrepancy between

the observed and predicted conduction speeds remains.

A recent personal communication with Francisco Bezanilla revealed that it was unlikely

that the conduction speed was measured experimentally in the chamber (Hodgkin et al

1952). If this was the case, and the experimental conditions allowed the propagated action

potential to attain the travelling wave speed, then the discrepancy cannot be explained by

the Hodgkin-Huxley membrane model and the kinetics of the model need to be reconsid­

ered.

C hapter 3

N euron data and term inology

The procedui’es to be developed in Chapters 4 and 5 are applied to data gathered from

real neurons. To avoid unnecessary repetition, I describe here the anatomical terminology

used to define neurons, the experimental procedures used to capture the data and the

process by which morphological information is extracted from the raw data.

Terminology

Our classification of dendritic morphology follows Larkman’s (1991) description and is

illustrated in Figure 3.1. The element of dendrite between the soma and first branch point

is called a stem segment, that between a final branch point and dendritic tip is called a

terminal segment and that between branch points is called an intermediate segment. In

Chapters 4 and 5 a dendritic segment is composed of an arbitrary number of sections.

Terminal
segments

Sections
Intermediate

segment
Stem segment

Figure 3.1: An idealised dendrite.

43

CHAPTER 3. NEURON DATA AND TERMINOLOGY 44

N euron D ata

The morphological data used in Chapters 4 and 5 was collected as part of a larger study

investigating whether or not cholinergic spinal interneurons located in laminae III/IV of

the dorsal horn of the spinal cord received direct input from primary afferents (Olave, Puri,

Kerr and Maxwell, 2002). These interneurons are thought to be last-order interneurons

involved in pre-synaptic inhibition (Jankowska, 1992). The cholinergic interneurons were

labelled with an antibody raised against choline acetyltransferase (ChaT). The myelinated

afferents were labelled with the B-subunit of cholera toxin (CTb), and the unmyelinated

afferents were labelled with isolectin B4 (IB4) and an antibody raised against calcitonin-

gene-related peptide (CGRP). All neurons were systematically examined with a BioRad

MRC 1024 confocal laser scanning microscope, where sequential images were gathered

at 1 //m intervals from 50 }im thick vibratome sections. Cells were reconstructed using

Neurolucida for Confocal (MicroBrightField, Colchester, VT). Two examples of these in­

terneurons can be seen in Figme 3.2.

(A)

(B)

Figme 3.2: Examples of cholinergic interneurons that receive (A) myeli­
nated afferent input and (B) unmyelinated afferent input. The location of
the synaptic inputs can be seen on the cells.

The Neurolucida software not only provides information on the location of synaptic con­

tacts, but also provides the Cartesian position, diameter and connectivity pattern for each

dendrite (Ascoli, Krichmar, Nasuto and Senft, 2001). The Neurolucida files for my work

were kindly provided by David Maxwell.

CHAPTER 3. NEURON DATA AND TERMINOLOGY 45

E xtraction of neuron m orphology

In a Neurolucida data file a dendritic segment is defined by a sequence of four-vectors in

which each four-vector corresponds to a point on the segment. The first three components

of the fom-vector give the Cartesian coordinates (x,y,z) of the point, and the fourth

component is the diameter of the dendritic segment at that point. Let {xi,yi, zi, di) and

(æg, 2/2, Z2 ,d2) be two consecutive points on a dendritic segment, then the length of dendrite

between these two points is

I — y { x i - X2Ÿ + (2/1 - V2Ÿ' + (^1 - 2̂) ,̂

and the associated membrane surface area of this region of dendrite is

c r 7r(di + d2)lSurface area = —— ------

on the assumption that this surface area is well approximated by the frustum of a cone.

Connectivity

To facilitate the description of a branched dendrite, it is useful to introduce the notion of

parent, child and peer segments. Consider, for example, Figure 3.1. The stem segment

has no parent segment and two child segments. The left-hand child segment of the stem

segment has the stem segment as parent segment, the right-hand child segment of the stem

segment as a peer, and the terminal segments connected at its distal end as child segments.

The right-hand child segment of the stem segment has the stem segment as parent, the left-

hand child segment of the stem segment as a peer and also has two terminal segments as

children. By definition, terminal segments do not have children. Note that it is possible for

a segment to be both a stem and terminal segment if it fails to branch before terminating.

This is a rare occurrence and is dealt with in Chapter 5.

The overall length of a dendrite is defined to be the sum of the lengths of all its segments.

In addition, segments may have synaptic contacts associated with locations (æ, y, z) on the

dendritic segment. For example, the locations of synaptic contacts are denoted by black

circles in Figure 3.2A.

C hapter 4

A nalytical developm ent o f the

equivalent cable

4.1 Introduction

The diverse morphology of dendritic trees has confounded neurophysiologists for over 100

years. Cajal proposed the ‘neuron doctrine’ which described the neuron, composed of

dendritic tree, soma and axon, as the fundamental building block of the nervous system

(Cajal, 1952). Furthermore, from the histological tissue sections that he studied under his

microscope, he developed the ‘principle of dynamic polarisation’. Cajal proposed that the

cells received input on the dendritic tree, and that this input was somehow transmitted

towards the axon, and from there onto other cells via axodendritic connections. Cajal

suggested these ideas from a careful examination of dendritic form using a light microscope

and queried how dendrites manage simultaneously many incoming signals.

By contrast with Cajal’s view that morphology is important, the predominant view of

morphology in the mid-twentieth century based on intracellular recordings from motor

neurons was that dendritic structure was unimportant (Jack and Redman, 1995). Rail’s

first major contribution to neurophysiology was to demonstrate that dendritic morphol­

ogy was important, and once recognised, then the investigation of dendritic morphology

became an important issue. The only tools available to Rail at that time to investigate

the function of neuronal morphology was mathematical analysis. Rail’s second major

contribution to neurophysiology was to show that under certain restrictive conditions a

46

CHAPTER 4. EQUIVALENT CABLE 47

passive dendritic tree could be described by a single unbranched cable which he called the

equivalent cylinder (Rail, 1959).

The core idea in Rail’s analysis was to show mathematically that a simple uniform Y-

j unction is functionally equivalent to a uniform cylinder provided the electrotonic lengths

of the two limbs of the Y-junction are identical, and both have the same terminal bound­

ary condition. The Y-junction is equivalent to the Rail cylinder in the sense that for any

configuration of input on the branched structure there is an equivalent configuiation of

input on the equivalent cable such that the electrical behaviour of the Y-junction is indis­

tinguishable from that of the equivalent cylinder at the branch point. Rail showed that the

equivalent cylinder had the same terminal boundary condition as the original Y-junction,

it had the electrotonic length of one of the limbs of the Y-junction and its conductance

was related to that of the limbs of the Y-junction by a 3/2 rule. By this is meant that the

sum of the 3/2 powers of the conductances of the limbs of the Y-junction equals the 3/2

power of the conductance of the equivalent cylinder. Finally, Rail showed that currents

on the limbs of the Y-junction act on the equivalent cylinder at an electrotonic distance

identical to their electrotonic distance on the limbs.

Rail’s procedure allows a branched dendrite with uniform segments to be reduced to an

equivalent cylinder provided the branched dendrite has the following properties.

1. All terminal boundary conditions are identical, that is, they are all sealed (no axial

current flow) or cut (potential held at F = 0).

2. The electrotonic length of the dendrite from any branch point to all terminals distal

to that branch point is identical.

3. At any branch point, the sum of the 3/2 power of the conductances of all the limbs of

the dendrite more distal than the branch point is the 3/2 power of the conductance

of the parent limb of the branch point.

To appreciate how these conditions are used in the construction of the equivalent cylin­

der, the reduction process starts at the dendritic terminals and condenses the outermost

branches into equivalent cylinders. This is possible because all terminal limbs have iden­

tical boundary conditions and the same electrotonic length to the branch point to which

they are attached. Of course, this distance is different for different terminal limbs. Con­

dition 3 guarantees that when the Y-junction is replaced by its equivalent cylinder, this

CHAPTER 4. EQUIVALENT CABLE 48

cylinder has an identical conductance to the parent limb of the branch point. Thus the

reduced structure will now have terminal boundary conditions that are identical and uni­

form limbs. This process can be repeated until the soma of the dendritic tree is reached,

and a single equivalent cylinder remains.

Various studies on spinal motoneurons (Barrett and Grill, 1974; Ulfhalce and Kellerth,

1983, 1984) have found that dendrites do not conform to the conditions required by Rail

for the construction of the equivalent cylinder. To overcome this problem, Clements and

Redman (1989) introduced an empirical “equivalent cable” formed by first reducing the

limbs of the tree to electrotonic units and then summing the 3/2 powers of the conductances

across the tree at the same electrotonic distance from the soma. Note that for a tree

obeying the Rail conditions this procedure is exact, and the cable will be a cylinder, but

otherwise the new structure will be non-uniform. For dendritic trees that do not follow

the Rail conditions, the empirical cable is inaccurate (Whitehead and Rosenberg, 1993)

and is not equivalent to the original branched structure.

Furthermore, Whitehead and Rosenberg (1993) demonstrated that equivalent cables could

be constructed for branched dendrites which satisfied none of the Rail conditions. This

construction was numerical and was based on the Lanczos procedure. The outcome of

applying the procedure was a non-uniform cable and a bijective mapping connecting con­

figurations of input on the original dendrite with configurations of input on the cable. One

significant disadvantage of the Lanczos procedure was that it suffered from the effects of

rounding error (Golub and Van Loan, 1989) and often failed to complete the transforma­

tion process in a single operation. Although the numerical procedure demonstrates the

existence of equivalent cables for branched structures that do not satisfy Rail’s conditions,

what is required however is an analytical method to generate equivalent cables, since it is

only through an analytical procedure that one can fully understand the equivalent cable.

The aim of this chapter is to describe an exact mathematical procedure by which arbitrary

dendrites can be transformed into equivalent cables. In this process, a bijective mapping

of configurations of input on the dendritic tree to configurations of input on the equivalent

câble is constructed. The procedure will then be applied to real nemons generating unique

equivalent cables. For the first time, the locations of synaptic input on real neurons will

be mapped to the equivalent cable of that neuron providing an insight into the synaptic

distribution.

CHAPTER 4, EQUIVALENT CABLE 49

4.2 Constructing the m odel dendrite

Constructing a model of a branched dendrite initially appears a daunting task, but may be

simplified by treating the dendrite as a collection of segments which are connected such that

transmembrane potential is continuous and core current is conserved at branch points. The

mathematical model of the dendritic segment forms the elementary unit for constructing

a model dendrite, and together with the associated connectivity properties and boundary

conditions, forms the complete mathematical model of the branched dendrite.

The mathematical model of the dendritic segment is expressed in terms of the departure

of the transmembrane potential V = V(x, t) (mV) from its resting value (assumed to be

F = 0). The transmembrane potential on a segment with a passive membrane satisfies

the cable equation

P{x)^cm~q:^ P 9mV^ +T{x, t) = o ^ (9 aA{x)— ' ̂ (4.1)

where P{x) and A{x) are respectively the perimeter and cross-sectional area of the segment

at distance x (cm) along the segment, cj^ {(jF/crn^) and qm (mS/cm^) are the specific ca­

pacitance and specific conductance of the segment membrane respectively and Qa (mS/cm)

is the conductance of the intracellular medium. The function X(x,t) (yuA/cm) describes

the linear density of exogenous transmembrane current and t (ms) measures time. The

core current along the segment is calculated from the expression

I (a:, t) == -gaA{x) - ■ (4.2)

At each segment endpoint, the solution of equation (4.1) must maintain conservation of

core current and continuity of membrane potential, or satisfy a boundary condition if it is

a dendritic terminal.

The next step is to non-dimensionalise the cable equation (4.1) using non-dimensional time

s and electrotonic length z given by

" ~ J o

thereby redncing it to the canonical form. Using the change of variable (4.3), the deriva­

tives in non-dimensional terms are

g y = 9m P{x)
d t d s d t d s CM ’ d x d z dx d z y c m A { x) ’

CHAPTER 4. EQUIVALENT CABLE 50

where it is understood in the later expression that occurrences of x are to be replaced by

z using the mapping (4.3). Expressions (4.4) can be substituted into the cable equation

(4.1) giving

P(x) (sM ^ + m v') + i = L S I jIt)] / (4.5)

which is simplified by dividing through by gMP(x) to obtain

Let the characteristic conductance c(z) of the segment and the non-dimensional current

density J{z, s) be defined by

c{z) = V^ga9 MP{x)A{x), J{z, s) = X{x, t) ^

then in terms of these functions, the non-dimensionalised cable equation becomes

c(z) (^ ^ ^ + V(Z, s}) + J (^ .,) = L . (4.8)

The non-dimensionalisation of the transmembrane current is based on the observation that

in any time interval {t,t + dt) the charge X{xp) dx dt crossing the membrane occupying

(a;, X + dx) must equal the charge J{z^s) dz dt crossing the same portion of membrane now

occupying {z, z -f dz). The same non-dimensionalisation when applied to the core current

(4.2) gives

I{z,s) = (4.9)

where the conductance c(z) is defined in (4.7). The non-dimensional canonical expressions

(4.8) and (4.9) define respectively the cable equation and core current for a non-uniform

dendritic segment.

Each segment has a cable equation and individual expression for c{z) and J(z,s). To

form a branched dendrite requires continuity of membrane potential and conservation of

core current at branch points or when connecting to the parent structure. At dendritic

terminals, either the transmembrane potential or the core current must be defined. If these

requirements are all satisfied, then the mathematical model of the dendritic tree consists

of a family of connected cable equations with unique expressions for c{z) and J{z, s).

CHAPTER 4. EQUIVALENT CABLE 51

4.2.1 M athem atical m odel of a uniform cable

Current input to a dendrite typically comes from synaptic contacts on its membrane.

Therefore, in constructing the equivalent cable, current input will be restricted to discrete

points spaced uniformly along the electrotonic length of the dendritic segment. The portion

of membrane between any two points is called a section, and therefore current input is

treated as a boundary condition at section endpoints with J(z, a) = 0 on every section.

Furthermore, it is assumed that the characteristic conductance c(z) is constant on each

section, but a different constant for different sections. Under these conditions, the non-

dimensional cable equation (4.4) takes the simplified form

= (4.10)

This procedure, where exogenous membrane current enters the model through the bound­

ary conditions, is similar to that used by Holmes (1986) for the treatment of synaptic

input. Holmes (1986) and Van Pelt (1992) used the Laplace transform methodology to

develop a continuous cable representation of branched dendrites. The transform variable

in this procedure is defined as

V
POO

— I V {z ,s)e’~^^ds. (4.11)
Jo

The Laplace transformed representation of equation (4.10) becomes

r ̂ +r =r (^ .n)

The first expression on the left-hand side of equation (4.12) gives

r f ° ° V (z , s) { - p) e - ”̂ ds
Jo ̂ 0 7o

= -V (0 ,s)4 -pV . (4.13)

The expression on the right-hand side of equation (4.12) gives

(4.14)

Substituting expressions (4.13) and (4.14) into equation (4.12) shows that the Laplace

transform of the membrane potential satisfies

d^V—V(0, z) P p V -j- V dz^

CHAPTER 4. EQUIVALENT CABLE 52

which can be simplified to

^ ^ l l . - u j ‘̂ V{z,p) = 0, w ^ = p + l (4.15)

when the initial membrane potential V(0,2;) is talten to be zero. The general solution of

equation (4,15) is

V ^ A e ^ ^ P B e '- '^ ^

where A and B are arbitrary constants. The equivalent cable analysis is developed from

two identities connecting the Laplace transforms of the core currents at either end of a

uniform section of length h to the Laplace transforms of the membrane potentials at the

section endpoints. This is illustrated in Figme 4.1 for a dendritic section of length h.

z — 0 z — h

I ̂ I
1-̂ —— h.......... .——i I

Vl Vr

I I Jr

Figure 4.1: A dendritic section of length h, with membrane po­

tential VL and corresponding current I I at the left hand end and
membrane potential Vr and current I r at right hand end.

Now consider the dendritic section in Figure 4.1. When z — 0, it is clear that B == Vr ,

and when z — h it is clear that A sinh i v h p B cosh cuh — Vr , and therefore

Asinhwfr — Vr ~ Vr coshwh. (4.16)

The potentials Vr and Vr must now be connected with the core currents I r and I r . The

core current is given by

T(^, a) = -c(%)^ - ^ ^

where c(z) is the characteristic conductance of the section, and its Laplace transform is

T(z,p) = - c(z) — — — cw(A coshwz -L B sinhw z).

Thus

/(0 ,p) = I r — —cloA , I { h ,p) = I r = — clü{ A coshcoh P Bsinh.coh).

CHAPTER 4. EQUIVALENT CABLE 53

It is now straightforward algebra to demonstrate that

I r = - c “ VLCOshoj/i^, (4.17)

— - c — VL coshcj/i^ coshwh - cVr sinh^ w/i. (4.18)

Using the trigonometric identity cosh^x - sinh^x = 1 to simplify expression (4.18), the

final identities satisfied by the core current and membrane potential at the left and right

section endpoints are
sinh w/t ~ ~
 Il = c VL coshwn - c VL,

^ (4.19)
sinhuj/i ~ t. K---------- I r — c Vr — c Vr cosh. u)h.

w

4.2.2 M odel equations for a branched dendrite

The model equations ai'e constructed by requiring continuity of membrane potential and

conservation of core cmrent at section endpoints. The equation contributed by a section

boundary is formed by equating the exogenous current injected at that boundary to the

sum of the core currents from all the segments meeting at that boundary. These boundaries

can be either branch points, internal boundaries of a segment, a boundary at a dendritic

terminal or the boundary of contact with a parent structure.

B ranch point

If a current Jb (s) is injected into a branch point then conservation of core current requires

that

I b (s) = I p (s) - Y _ I c (s), (4 .20)

where I p { s) and l c { s) are the respective core currents in the parent and child segments

which meet at the branch point, and summation is taken over all child segments. The

branch point condition is constructed from the Laplace transform

/p - Y (4.21)

of equation (4.20). Equations (4.16) for I r and I r are now particularised to I c and I r

respectively, and therefore the currents in equation (4.21) become
sinhw/i ~
----------Ic = (P V r coshw/i - Vct
_ (4.22)

sinhcu/i ~ p TV- p fr T. I----------I p — c^Vp — c^ VL cosh ijoh,
UJ

CHAPTER 4. EQUIVALENT CABLE 54

where Vr is the Laplace transform of the membrane potential at the branch point, Vc is the

Laplace transform of the membrane potential at the distal end of the first section of a child

segment, and Vp is the Laplace transform of the membrane potential at the proximal end

of the last section of the parent segment. Similarly, is the characteristic conductance

of the first section of the child segment, while is the characteristic conductance of the

last section of the parent segment. Substitution of equations (4.22) into equation (4.21)

gives

+ = (4.23)

Again, all summations in equation (4.23) are taken over the child segments. The stan­

dardised branch point equation is found by dividing equation (4.23) by the sum of the

characteristic conductances of all segments meeting at the branch point, giving

- % coshw;, + t . - (4.24)(cP + 2 f) " (cP + E w(cP + E 0°)

Contiguous sections

Contiguous sections are treated as a special case of a branch point with a single child

segment. For contiguous sections equation (4.24) simplifies to

- Vbcoshcft + 4 Î P = ÏB (4.25)(>P _|_ gC Uj{c^ + c^)

where Vr is the potential at the section boundary, Vp is the potential of the proximal end

of the left-hand section at the change in diameter and Vc is the potential at the distal end

of the right-hand section.

Connection to parent structure

The equation contributed by the section boundary between the parent structure and the

dendritic tree is determined directly from the branch point condition by ignoring all con­

tributions from the peuent segment and replacing the injected current Tg by the current

Iq flowing from the dendritic tree into the parent structure. The result is

Vq cosh ojhp Vc - Iq , (4.26)w A, c^

where Lb is the Laplace transform of the membrane potential at the Pq, the point of

connection to the parent structure, and summation takes place over all segments meeting

at Pq.

CHAPTER 4. EQUIVALENT CABLE

4.3 N otation

55

The analytical development to follow will apply equations (4.19) to both branched and

cable-like structures. Although both will consist of a collection of dendritic segments, the

mathematical description of the two is quite different making it necessary to distinguish

between equations referring to the cable-like structure and those referring to the branched

structure. To avoid confusion, objects relating to the cable will be defined by calligraphic

symbols and objects relating to the branched tree structure will be defined by roman

symbols. Where no ambiguity exists, a Roman symbol will be used (see Table 4.1).

Description Cable Tree No distinction

Cable matrix

Symmetrising matrix

Diagonal matrix

Tri-diagonal matrix

Householder matrix

Injected current

Membrane voltage

.4 A

S S

V D

T

H

X I

V V

Table 4.1: Notation for the matrices and vectors used in the de­
scription of the branched and cable-like structures.

CHAPTER 4. EQUIVALENT CABLE 56

4.4 A nalytical developm ent of the equivalent cable

Equivalence transformations (Lindsay, Ogden and Rosenberg, 2001a,b) and the Lanczos

tri-diagonalisation procedure (Ogden, Rosenberg and Whitehead, 1999) have shown that

all equivalent cables take the form of piecewise uniform cables, and therefore represent

the canonical form for the equivalent cable. The development of the equivalent cable be­

gins by deriving the mathematical representation of a piecewise uniform cable, and then

demonstrating that the mathematical model of an arbitrary branched dendrite with arbi­

trary input structure may be transformed into a piecewise uniform cable under relatively

unrestrictive circumstances.

4.4.1 C onstruction o f th e d iscrete m odel dendrite

A branched dendrite with n dendritic segments of length Li , . . . , is transformed by the

non-dimensionalisation defined in (4.3) to a branched dendrite with segments of electro­

tonic length l i , . .. respectively. The equation for each segment now takes the form of

equation (4.4) where segments are defined uniquely by their characteristic conductance

c{z) and their electrotonic length.

The construction of the equivalent cable begins by subdividing the dendrite into sections

of fixed electrotonic length h. Each segment is assigned an electrotonic length that is the

integer multiple of h closest to the segments exact electrotonic length. Any error in the

specification of length behaves like a uniformly distributed random variable in the interval

[—h/2,h/2). The central limit theorem suggests that the total electrotonic length of the

discretised dendrite behaves as a normal deviate with expected value h + h l h and

standard deviation hy^'n/12. Therefore, the electrotonic length of the discretised dendrite

can be made arbitrarily close to that of the real dendrite by an appropriate choice of h.

As the electrotonic length of the segment is altered by the discretisation procedure, it is

essential to modify c{z) to ensure that the total membrane conductance of a given segment,

say the j-th segment, defined by,

[P{x)gMdx = f A/P{x)A{x)gMgadz = f c{z)dz,
Jo Jo Jo

is preserved. To ensure that the discretised piecewise uniform segment and the continuous

segment have the same total membrane conductance, the conductance of the fc-th section

CHAPTER 4. EQUIVALENT CABLE 57

4 = 1 / ’“ ’ ”̂ c(z)dz = P c (^ P - P V) + 0 { h ^) , = (4,27)
mh \ 2 m J

is assigned the value
'klj/m

where mh is the electrotonic length of the discretised segment. The construction of the

discretised dendrite from the continuous dendrite is the only approximation made in the

development of the equivalent cable, otherwise the analysis is exact.

4.4.2 T he p iecew ise uniform cable

A piecewise uniform cable of electrotonic length nh is shown in Figure 4.2. The cable is

divided by the points (or nodes) P q, P i , . . . , Pn into n uniform sections of length h and

characteristic conductance dfc. The current Xk{s) is injected at point P^ at potential Vfc(s).

Pq Pi Pk~l Pn-2 P n -l Pn
Xq

d i ^ <̂ 2 ^ dk dji—2 ^ dfi—1 ^ dji

X\ Xn-2 X n-l

Figure 4.2: A piecewise uniform dendrite with electrotonic length nh,
composed of n sections of length h each with characteristic conductance d.

The identities (4.19) are now particularised for the kth section of the piecewise uniform

cable to give

Î R̂ = dfc Vfc_icosho;h-dfcVfc, (4.28)

smhujh _ dkVk-i-dkVkCoshu;h, (4.29)

where Vfc is the Laplace transform of the membrane potential Vfc(a) and and Ip^ are

respectively the Laplace transforms of the core currents at the left and right hand end­

points of the A;-th section of the cable. Continuity of membrane potential is guaranteed by

construction. The mathematical description of the cable is based on conservation of core

current at nodes Pq,P\,. .. ,Pn and requires that

^ -Jo(s),

/g^(a) = -2L(s)+ /jf^^^(s), (A: = 1, . . . ,n - 1) (4.30)

= M s) ,

CHAPTER 4. EQUIVALENT CABLE 58

or in the Laplace transform space,

- - f o , = + (lc = l n - 1) , 4 " ’ = î " - (4.31)

The equations to be satisfied by the membrane potentials Vo, • • •, Vn are constructed from

equations (4.31) by replacing a n d w i t h expressions (4.28) and (4.29) respectively.

The result is the system of equations

U U sinhcu/i--Vo coshwh -L Vl — — :----- Xq,dicj

~ ~ sinhwh-
Vn—1 — Vn coshwn — -—:----- Xn-CtfiUJ

The first equation describes the connection of the cable to the paient structure, the second

equation describes all internal segments of the cable and the third equation describes the

termination of the cable. The tri-diagonal structure of this matrix is apparent. Further­

more, the structure of the equations (4.32) corresponds closely to that described for a

branched dendrite in Section 4.2.2. Let T> be the (n -f-1) x (n H- 1) diagonal matrix

B — diag [di, (d% 4- ^2), • • • 1 (dfe T d^_|_̂),. . . , (dn—1 P dn), dn], (4.33)

and let A denote the (n -f 1) x (n -f 1) tri-diagonal matrix with entries

= (4.34)

where do = dn+i = 0 . .4 is referred to as the cable matrix. In matrix notation equations

(4 .32) take the form

= " i p - t î (4.35)
w

where
X = [T o â l , . . . , î k , - - . , S n f ,

(4.36)
V = [V o ,V i ,V fc , . . . ,V „ r

are vectors in which the A:-th components are respectively the injected current and trans­

membrane potential at node Note that the sum of the off-diagonal entries of A is

unity, a feature necessary for the construction of the equivalent cable.

The specification of either injected current or transmembrane potential at each node

Po,...,Pn is necessary to solve equations (4.35). This splits equations (4.35) into two

CHAPTER 4. EQUIVALENT CABLE 59

sets. The first set is for the unknown membrane potentials in terms of the known injected

currents, and the second set determines the unknown injected currents from the known

membrane potentials.

4.4.3 Sym m etrising a cable m atrix

The final stage in the development of the canonical form of the piecewise uniform cable

is to reduce the tri-diagonal system of equations (4.35) to a symmetric form. Given the

cable matrix A and a non-singular diagonal matrix S — diag (1, s i , . . . , s„) with inverse

«S~̂ = diag (1, • • •) tben there is a choice of S that will symmetrise A. To see

how this is achieved consider the matrix calculation

[5-l(.45)]y = f^{S-^) ir{AS)rj
r = l

— ^^(<S)ir^ ̂Ark^kj
r—1 k=l (4.37)

= X^(5"^)zrAj<5j
7'=1

Since A is tri-diagonal and S is diagonal then T — S~^AS is a tri-diagonal matrix with

off-diagonal entries

Tk,k+i = ^^Ak,k+i, Tk+i,k = — —Sk Sk+l

Symmetry in T requires that Tk^k+i ~ Tk+i,k and therefore the elements of S must be

chosen to satisfy
■5/î+l ̂ /I
——Ak,k+i = A +i,k .

^k f̂c-f-1

Thus T will be a symmetric matrix provided

Sk+i = ± Sk\ So = 1, (4.38)V ■Afc,fc+i

apd in this instance
ji2

Ak+i,k = Tk,k+i = Tkpi,k = ^/Ak+i,kAk,k+i> (4.39)

Since every off-diagonal entry of the cable matrix A is positive, then 5 is a real matrix.

However, one must select the appropriate algebraic sign in equation (4.38) to ensure that

CHAPTER 4. EQUIVALENT CABLE 60

Ak,k+i is positive. Once S is constructed, equation (4.35) can now be expressed in the

symmetric tri-diagonal form by noting that the original equation

W

can be expressed in the form

w

which in turn shows that the canonical representation of a piecewise uniform cable is

T (S -'V) = (P 5)-1 Ï. (4,40)

The aim of the following sections is to demonstrate that the mathematical representation

of a branched dendrite can be reduced to this form.

CHAPTER 4. EQUIVALENT CABLE 61

4.4 .4 Structure o f tree m atrices

The model equations for the construction of a branched dendrite with (n + 1) nodes (see

Section 4.2.2) leads to the matrix representation

AV = (4.41)

where V and I are respectively the vectors of the Laplace transforms of membrane poten­

tials and injected currents. The (n + 1) x (n + 1) matrix A is referred to as the tree matrix

and it is neither tri-diagonal nor symmetric.

The construction of equivalent cables from dendritic structmes depends critically on the

fact that any dendritic structure characterised by (n -f 1) nodes has a tree matrix A

consisting of (n 4- 1) non-zero diagonal entries, one for each node, and 2 n positive off-

diagonal entries distributed symmetrically about the main diagonal of A, giving a total of

3n 4-1 non-zero entries. The matrix A is structured symmetrically from the observation

that if node j is connected to node k then node k is connected to node j . The number of

non-zero off-diagonal elements of A is established by taking advantage of the self-similarity

inherent in a branched structure by using a recursive counting argument.

Self-similarity argument

In a dendritic tree, a node can be classed as one of four types: the first node which connects

with the parent structm'e, an internal node, a branch point node or a dendritic terminal.

The self-similarity argument starts with a terminal node and is applied recursively until

the node connected to the parent structure is reached. The process involves counting the

deficit in off-diagonal entries in A with respect to two entries per node. Internal nodes have

no deficit while each dendritic terminal has a deficit of one. If N terminal segments and

a parent segment meet at a branch point node, then the row of A corresponding to that

branch point contains (AT 4-1) off-diagonal entries giving a surplus of (TV — 1). Therefore

the total deficit is reduced to one at the branch point node. This node then behaves like

a dendritic terminal with respect to further counting. The deficit of one is maintained

until the node connecting to the parent structure is reached, at which point the deficit

increases to two nodes for the entire tree. Therefore A contains exactly n pairs of non-zero

off-diagonal entries.

CHAPTER 4. EQUIVALENT CABLE 62

N ode num bering

As already mentioned, a distinction is made between nodes at which membrane potential

or injected current has to be specified. This distinction also applies for the process of node

numbering. Nodes at which the injected current is known and the potential has to be

found are numbered first and then the numbering moves to those nodes where membrane

potential is known and injected current has to be found. Figure 4.3 shows the node

numbering method for a dendrite where the injected current is known at ail nodes (4.3A)

and a dendrite where the potential is known at two nodes (4.3B).

(A) (B)

10 10

Parent
Structure

5

Parent
Structure

9

Figure 4.3: The enumeration scheme for (A), a dendrite where the in­
jected current is known at all nodes and the membrane potential has to be
determined and (B), the same dendrite however the membrane potential is
specified at two dendritic terminals (nodes 9 and 10).

The enumeration scheme starts at Foj the connection to the parent structine. From the

parent structure, the nodes are numbered sequentially until reaching a dendritic terminal,

omitting nodes where the potential is known. The numbering then jumps to a second

path, starting with a node that has a connection to the first path and again continues

until reaching a dendritic terminal, omitting nodes with known potential. The enumer­

ation scheme is repeated until all dendritic paths have been numbered and then repeats

numbering those nodes at which the potential is known.

Let the entries of tree matrix A be represented by black squares, then the matrix repre-

CHAPTER 4. EQUIVALENT CABLE

sentation of the dendrite in Figure 4.3A is

63

■ ■ 0 0 0 0 0 0 0 0 0 ' Vb h /

■ ■ ■ 0 0 0 0 0 0 0 0 VI h /D i , i

0 ■ ■ ■ 0 0 0 0 ■ 0 0 Vb l2!T>2,2

0 0 ■ ■ ■ 0 ■ 0 0 0 0 F3 h / D z ^ z

0 0 0 ■ ■ ■ 0 0 0 0 0 Vb /4/D4,4

0 0 0 0 ■ ■ 0 0 0 0 0 Fs
sinhwh

U) h / E s , b

0 0 0 ■ 0 0 ■ ■ 0 0 0 Vb I q/ D q ĝ

0 0 0 0 0 0 ■ ■ 0 0 0 Vr h j D r j

0 0 ■ 0 0 0 0 0 ■ ■ 0 Vs h / T > s , s

0 0 0 0 0 0 0 0 ■ ■ ■ Vg h / T > q q̂

0 0 0 0 0 0 0 0 0 ■ ■ . 1̂0 . h o / D i o ^ i o

The node numbering scheme for the second dendrite (Figure 4.3B), where the membrane

potential is specified at nodes 9 and 10 has matrix representation

m ■ 0 0 0 0 0 0 0 0 0

m ■ ■ 0 0 0 0 0 0 0 0

0 ■ ■ ■ 0 0 0 ■ 0 0 0

0 0 m ■ ■ ■ 0 0 0 0 0

0 0 0 ■ ■ 0 0 0 0 ■ 0

0 0 0 ■ 0 ■ ■ 0 0 0 0

0 0 0 0 0 ■ ■ 0 0 0 0

0 0 ■ 0 0 0 0 ■ ■ 0 0

0 0 0 0 0 0 0 ■ ■ 0 ■

0 0 0 0 ■ 0 0 0 0 ■ 0

0 0 0 0 0 0 0 0 ■ 0 ■

Vb

hi

Vb

V3

V4

V5

Vb

V?

Vs

Vq

Vio

sinhoj/i

lo/Eofi

A /D i,i

h /T) 2,2

h/D sfi

I a/ ̂ 4,4

h/T>Qfi

I 7 / D j j

h /T)s ,8

Iq/H q̂q

ho/Dio^io

where the non-zero elements are denoted by black squares. The matrix is partitioned such

that the 9 x 9 block represents the nodes at which the injected current is known and the

membrane potential has to be determined. The remaining partitions represent the nodes

where the injected current has to be determined from the membrane potential specified at

nodes 9 and 10.

CHAPTER 4. EQUIVALENT CABLE 64

4.4.5 Sym m etrising th e tree m atrix

It was shown in Section 4.4.4 that a tree matrix with dimension (n -f 1) x (n + 1) has

(n + 1) diagonal entries and 2n positive off-diagonal entries, where A/^j ^ 0 if and only if

Aj,h 7̂ 0. Furthermore, in Section 4.4.3, it was shown that given any cable matrix A it is

possible to find a non-singular diagonal matrix S such that is a symmetric matrix.

Tree matrices can be symmetrised in the same fashion. Let S — diag (1, s i , . . . , s„) be a

non-singular (n-1- 1) x (n-f 1) diagonal matrix, then S~^AS is the (n-t-1) x (n 4- 1) matrix

with entries

(4.42)
S j Sj^

Provided that there is a matrix S, such that the entries of S~^AS satisfy [S~^AS]j^k —

[S~^AS]k,j for all j ^ k and Aj^k / 0 , A ^j ^ 0, then the matrix will be symmetric.

From Section 4.4.4, A has n non-zero pairs of entries for which Aj^k 0, A/ej 7 ̂0 where

j 7̂ k. Each pair of equations contributes an equation of the form

giving in total a system of n equations to determine the n unknowns s i, . . . ,Sn- The

corresponding symmetrised tree matrix is

[S~'^AS]j^k = = ^/Aj,kÀk,j. (4.44)

Equation (4.43) determines all the entries of S, from the observation that there are n

such equations and that each node on the tree is connected to at least one other node.

Therefore, there is no entry of S which does not appear in at least one of equations (4.43).

As 5o = 1 is the initial condition of equation (4.43), then s i , . . . , will be determined

uniquely meaning that every tree matrix can be symmetrised by an appropriate choice of

non-singular diagonal matrix S — diag (l , s i , . . . , s„) . Pre-multiplication of the system of

equations for a branched model dendrite (4.41) by S~^ gives the symmetric form

{S-^AS)S-^V = — - ^ {D S y^L (4.45)U)

4.4.6 Tri-diagonalising th e sym m etric tree m atrix

The remaining task is to reduce the symmetrised tree matrix (4.45) into the canonical

form for a piecewise uniform cable (4.40). The symmetric tree matrix is reduced to a tri­

diagonal symmetric matrix by applying a series of Householder transformations (Lindsay,

CHAPTER 4. EQUIVALENT CABLE 65

Ogden, Halliday and Rosenberg, 1999; Golub and Van Loan, 1989; also see Section 4.8.1).

The resulting tri-diagonal symmetric matrix can then be interpreted as a symmetrised

cable matrix.

If H is the symmetrising Householder matrix, then T = {SH)~^A{SH) is a tri-diagonal

symmetric matrix. Pre-multiplication of equation (4.45) by reduces the symmetric

matrix to a tri-diagonal symmetric matrix through the series of matrix manipulations

(D S)-U ,ÜÜ

U)

{SHy^A{SH){SH)~^V - (D S'L f)-i/,
(4.46)

OJ

T {SH)~ W - smhca/t

If T is interpreted as the symmetric form of a cable matrix, both S and the equivalent

cable matrix A may be obtained.

4.4 .7 M apping of potentials and currents from tree to equivalent cable

A direct comparison of the equations representing the symmetrised piecewise uniform

cable and those representing the tri-diagonalised symmetric branched dendrite leads to

a mapping of potentials and currents from the branched to unbranched structure. The

system equations for the (symmetrised) piecewise uniform cable and those for the tri-

diagonalised symmetric branched dendrite from Sections 4.4.3 and 4.4.6 respectively are

T(<S-iV) =
. , (4.47)

T { S H y ^ V - ^ - ^ ^ ^ { D S H y ^ L

Equations (4.47) are identical provided membrane potentials and injected currents on the

unbranched and branched dendrites are connected by the formulae

- {SH y^V , { v s y ^ l = {DSH)~^ 7. (4.48)

Formulae (4.48) relate potentials and injected currents on the branched dendrite to those

on the equivalent cable. By inverting the Laplace transforms in equations (4.48), the

potentials and injected currents on the tree are related to those on the cable by the

CHAPTER 4. EQUIVALENT CABLE 66

formulae

S-^V(s) = (SH)-^V(s), V(.s) =
(4.49)

(P<S)~^J(s) = (D SH)-^I(s) -> I(s) - '^cl(s).

The matrices and appearing in equations (4.49) are called the voltage and current

electro-geometric projection (EGP) matrices respectively, and are defined by

(4.50)

The EGP matrices are by-products of the construction procedure. They are determined

by the characteristic conductances of the branched dendrite, and therefore its biophysical

and geometrical properties. To construct the equivalent cable it remains to calculate the

symmetrising matrix S, the equivalent cable matrix A from T, and the characteristic

conductance of each cable section.

4.4.8 C onstruction o f th e equivalent cable

Constructing the unbranched cable proceeds in two steps. First, A is constructed and

this in turn provides the characteristic conductances and dimensions of the equivalent

cable. Second, V is constructed which is then used to determine the one-to-one mapping

of injected currents on the branched model to those on the equivalent cable.

Characteristic conductances and equivalent cable dimensions

T is interpreted as a tri-diagonal symmetrised cable matrix from which S and A are to be

determined. The extraction of the equivalent cable from T uses the fact that

Ak,k~i +Ak,k+i ~ 1- (4.51)

That is, the sum of the off-diagonal entries in each row is unity, for suitable values of

k. Furthermore, a cable matrix A corresponding to a piecewise uniform cable with n

sections has dimension (n -f 1) x (n + 1) and satisfies v4o,i = An,n-i — 1. This relation in

combination with (4.51) allows the extraction of A using the expression

(4.52)

which subsequently allows the extraction of S from A using

sk+i — "̂0 = 1- (4.53)V Ak,k-i-i

CHAPTER 4. EQUIVALENT CABLE 67

This is the analytical method of extracting A and S from the matrix T. However, in

numerical work, in order to avoid rounding error in the repeated calculation of Ak,k+i

from Ak,k-i via the formula Ak,k+i = I ~ Ak,k~i h is beneficial to satisfy this condition

identically by the representation

= cos ̂ Ok, Ak,k+i = sin^ Ok- (4.54)

With this representation of the entries of the cable matrix, the iteration procedure begins

with do = 7t / 2 (.Ao.i — 1) and ends when On = 0 {An,n-i = !)• Of course, in a numerical

calculation the cable section will be deemed to be complete when On < e where e is a

user-supplied small number. The entries of the cable matrix are constructed from the

condition (4.52), expressed in the iterative form

„ TT

The characteristic conductances of the individual cable sections are determined from the

definitions (4.34) of Ak,k-i and Ak,k+i by the iterative formula

dk4-i — dk tan^ Ok, d\ given. (4.56)

This allows the characteristic conductances of each section to be calculated without directly

calculating A and S. Given the characteristic conductances, the section diameters of the

equivalent cable are found from expression (4.6) assuming a piecewise uniform cable.

Determination of real input currents on the equivalent cable

The construction of the vector of real input currents, X, on the cable requires the compu­

tation of ’Fc' in equation (4.50). The Householder matrix H, the symmetrising tree matrix

S and the diagonalising tree matrix D arise in the construction of the tree matrix and

are therefore known. However, the symmetrising cable matrix S and the diagonal cable

matrix V still need to be determined. The symmetrising cable matrix S can be calculated

from the formula ______

Sk+i = ± S k J '^ '̂ (4.57)
y A.k,kA-l

where

The algebraic sign in (4.57) is chosen to ensure that all values in the final cable matrix

A are positive. This decision is made dming the construction of S as subsequent entries

CHAPTER 4. EQUIVALENT CABLE 68

of S depend on previous entries. The characteristic conductances for each cable section

are calculated analytically from (4.58) and numerically from (4.56). The final form of V

is formed from the definition

Î? = diag \d\, {d\ T dg),. . . , (d ̂4- d^+i)j • • • > (d^—i T d^), d^]. (4.59)

Prom here it is straightforward matrix multiplication to find and subsequently X{s).

4.4.9 Sum m ary - C oncept o f th e equivalent cable

In summarising the work of the previous sections, the concept of an equivalent cable follows

from the observation that under certain conditions a symmetric tri-diagonal matrix may

be interpreted as a cable matrix. The equivalent cable is the result of a series of transfor­

mations that convert a tree matrix into a symmetric tri-diagonal matrix. This matrix in

turn may be interpreted as a symmetrised cable matrix. The associated piecewise uniform

cable represented by the latter is defined as the equivalent cable of the branched dendrite.

In addition, the construction process provides a procedure by which the distribution of

inputs on the branched structure can be uniquely mapped to those on the equivalent cable

and conversely.

CHAPTER 4. EQUIVALENT CABLE 69

4.5 A nalytical construction of an equivalent cable

The manual construction of an equivalent cable is feasible only for simple branched struc­

tures, but of course, the analytical procedure can be implemented numerically for cables

of arbitrary size. This section describes the exact construction of the equivalent cable for

three examples with increasing geometrical complexity. These examples highlight all the

features of the equivalent cable including, the extraction of the equivalent cable from the

cable matrix and the mapping of potentials and currents on the branched model dendrite

to the unbranched model. In addition, the distinction between the equivalent cable and

Rail’s equivalent cylinder will be made precise.

4.5.1 A sim ple R ail branch point

Figure 4.4 shows a simple Y-junction with two limbs of electrotonic length h meeting at Pq.

Exogenous currents I\ and I2 are injected at points Pi and P2 , while core current Iq flows

from the Y-junction to its parent structure at P q. This Y-junction immediately satisfies the

Rail condition that both segments forming the Y-junction have equal electrotonic length.

Pi

P2 —►/2

Figure 4.4; A symmetric Y-junction with limbs of equal electro­
tonic length. The sections joining P q to Pi and P q to P 2 have
length h and characteristic conductances ci and cg respectively.

Particularisation of equations (4.28) and (4.29) to the junction in Figure 4.4, shows that

the Laplace transforms of the membrane potentials l/o(s), Vi(s) and V2 {s) at points Pq,

CHAPTER 4. EQUIVALENT CABLE 70

Pi and P2 satisfy the algebraic equations

—Vo coshwh H-----^ — Vl + ■V2 =
Cl + C2 ‘ Cl + C2

Vo — Vl coshwh =

Vf) — V2Cosha;/i —

sinhwh
(ci + C2) w

sinhw/i ~
i l J

Cl w

sinhw/t

lo

(4.60)

C2 W I 2 .

These equations have matrix representation,

AV sinh ujh
LO (4.61)

where V is the column vector of the Laplace transforms of the membrane potentials at

points Po,P i,P2 and I is the corresponding column vector of Laplace transforms of the

injected currents at these points. The tree matrix is

Cl C2

A =

cosh u)h
Cl + C2

- cosh coh

0

Cl + C2

0

■ cosh to/i.

(4.62)

and D is the diagonal matrix with fc-th entry equal to the sum of the characteristic

conductances of the sections which meet at the Â -th node. Thus

D = diag [ci +C2, ci, C2]. (4.63)

Following the procedure described in Section 4.4.5, in particular expressions (4.43) and

(4.44), it can be shown that the diagonal matrix

1 ,S = diag

reduces the tree matrix A to the symmetric form

- coshco/i

Cl + C2 Cl + C2

Cl

Cl

C2

Cl

Cl + C2

C2

Cl + C2

which leads to the system representation

Cl 4- C2

cosh CO/i

0

C2

Cl + C2

0

cosh u)h

(4.64)

CO
(4.65)

CHAPTER 4. EQUIVALENT CABLE 71

The next stage of the construction procedure requires S ^AS to be transformed into a

tri-diagonal symmetric matrix. This is achieved using the orthogonal symmetric matrix

H =

0

Cl
Cl + C2

C2
Cl + C 2

0 C2 Cl

(4.66)

Cl + C2 v Cl 4- C2 .

The matrix H is derived in a systematic way as a product of a finite sequence of House­

holder transformations described in Section 4.8.1 (see also Lindsay et al., 1999; Golub

and Van Loan, 1989). Since T is a tri-diagonal symmetric matrix, it may be interpreted

as the symmetric form of a cable matrix. The construction process is completed by pre­

multiplying equation (4.65) by H^^ to obtain

sinh uhT{SH)-^V
w

(4.67)

where T = {SH) ^A{SH). The resulting system of equations takes the form

— coshw/t 1 0 lo
C l 4- C2

1 — coshw/i 0
c i V i + C2V2

Cl 4- C2
sinh u)h

w
h 4- 1 2

Cl 4-C2

0 0 — coshoj/i
V ^ { V i - V2) C2̂ 1 — C1/2

Cl 4- C2 WC1 C2 (ci 4- C2)J

(4.68)

Equation (4.68) is the tri-diagonal symmetrised form of the original Y-junction. The Y-

junction can be represented as a cable by showing that equation (4.68) can be associated

with a cable matrix. The characteristic conductances of the cable sections and the mapping

between injected cmrents on the Y-junction and those on the cable can then be extracted.

Equations (4.68) divide naturally into the 2 x 2 system

-coshoj/i 1

1 — coshw&

and the single equation

^yciC2{Vi — V2)
Cl + C2

Vb

ClVl + C2̂ 2
Cl + C2

lo
sinhw/i Cl 4- C2

w h 4- 1 2

. C l 4- C2 .

(4.69)

cosh w A = sinh ioh
w

C2I 1 — C1/2
y/CiC2 (ci 4- C2) (4.70)

CHAPTER 4. EQUIVALENT CABLE 72

Equations (4.69) and (4.70) can be interpreted as two equivalent cables, one of which is

connected to the parent structure at the branch point in Figure 4.4 and will be called the

connected cable, and the other which will be shown to be disconnected from the parent

structure and will be called a disconnected cable.

Connected cable

The extraction of the connected section of the equivalent cable is achieved by comparing

equations (4.69) with the known form for a cable of length h, namely

(4 .7 1)

— cosh tüh 1 Vo ■ % ■

sinhto/i dl
U) %

1 — cosh Loh
. . - d2 .

The identifications
Vo = Vq, di — C1 + C2,

(4.72)

To = Iq, = h + h

render equation (4.69) structurally identical to (4.71). The left-hand pair of identities in

(4.72) guarantees continuity of membrane potential and conservation of core current at

the point of connection of the Y-junction to the parent structure. The right-hand pair in

(4.72) determines the characteristic conductance of the first section of the equivalent cable

and the injected current at its distal end.

Disconnected cable

The single equation (4.70) is now compared with the first equation in the general repre­

sentation of a cable (4.71) of length h, namely

— cosh w/tVo 4- Vi

These equations are identical provided

ycic2 (Vi — V2)

sinhwh
diu) To.

Vo —

To —

Cl + C2
dl = C1 + C2 ,

V i = 0 ,

(4.73)

(4.74)

Cl V C2

where the value of d\ is arbitrary and in this case is chosen to be ci -h 03. Under these

circumstances the second equation of (4.71) now specifies the current to be injected at the

CHAPTER 4. EQUIVALENT CABLE 73

distal end of the cable to maintain zero potential. However, unlike the connected cable,

this cable is not unique. For example, expression (4.70) may be rewritten in the equivalent

mathematical form

(Vi - V2) cosh wh =
sinhw/t

WC2 h - h (4.75)

Direct comparison of this equation with the first equation in the general representation

(4.71) leads to the identities

Vo = Vi — V2

C2To
Cl

dl — C2,

Vi = 0.
(4.76)

Equation (4.76) is obtained by re-scaling equation (4.74). This means that the character­

istic conductance of the second cable is arbitrary, but once given a value, the membrane

potentials and injected currents on the second section are determined uniquely. The non­

uniqueness of the disconnected cable does not affect the properties of the connected cable

since the former is isolated electrically from the latter, and therefore from the parent

structure.

Sum m ary of equivalent cable

It has been shown that a Y-j unction with limbs of equal electrotonic length h and current

injected tips has an equivalent cable with electrotonic length 2 h that is composed of two

independent cables of electrotonic length /i, only one of which is connected to the parent

structme. If ci and C2 aie respectively the characteristic conductances of the limbs of the

Y-j unction and 7% and I 2 are the currents injected at its terminals, then the equivalent

cable of the Y-j unction has conductances and current mappings

Connected section

Disconnected section

d l — Cl -1- C2

Ti = h P h ,

d2 = Cl 4- C2

T2 — (c i 4- C2)
' h _
T i

h
C2 .

(4.77)

This cable is equivalent to the original Y-j unction because it preserves continuity of mem­

brane potential and conservation of core current at the point of connection with the parent

CHAPTER 4. EQUIVALENT CABLE 74

structure, and additionally, any configuration of injected currents on the Y-juction defines

a unique configuration of injected currents on the cable, and vice versa.

The distinction between the equivalent cable and Rail’s equivalent cylinder becomes clear

from this example. A cable of electrotonic length 2 h has been constructed. The connected

section of this cable with length h is Rail’s equivalent cylinder. The role of the disconnected

section of this cable, also of length h, is to complete the one-to-one mapping between input

on the Y-junction and that on the equivalent cable. Evidently, Rail’s equivalent cylinder is

exact but deficient in the respect that there is no one-to-one mapping between the currents

on the tree and those on the cylinder.

4.5.2 A n asym m etric Y -junction

Figure 4.5 shows an asymmetric Y-junction with limbs of (unequal) length 2h and h

meeting at the parent structure Pq- Currents /i, I 2 and I3 are injected at Pi, P2 and

P3 respectively, and core current 7o flows from the Y-junction to its parent structure at

pQ. Clearly Rail’s equivalent cylinder could not be constructed for this Y-junction since

the electrotonic length of the limbs of the Y-junction from the point of connection to the

parent structure to each terminal is different.

h
h

h

Figure 4.5; A Y-junction with limbs of electrotonic length 2 h and h. The
sections joining Pq to Pi, Pi to P2 and Pq to P3 each have electrotonic
length h and characteristic conductances ci, cg and C3 respectively.

The Laplace transforms of the membrane potentials Fo, - - , % at the Pq, . . . , P3 respec­

tively, when equations (4.28) and (4.29) have been particularised to the asymmetric Y-

CHAPTER 4. EQUIVALENT CABLE 75

junction in Figure 4.5, satisfy the algebraic equations

-Vo coshwh 4 ^L—Vi 4-----------1/̂
Cl 4- C3 Cl 4- C3

sinhw/i -jr
fo,

Cl 4-C 2
Fo - Fi cosh wL 4----- —— F2 =

Cl 4- C2

Vi — F2 cosh u)h =

Fb — Fscoshoj/i =

ta(ci 4- C3)

sinhwL
w(ci 4- C2)

sinhwL

A, (4.78)

WC2

sinhwL
WC3

72,

73.

These equations have matrix representation

sinhtu/iAY = D - I 7
w

(4.79)

where V is the column vector of the Laplace transforms of the membrane potentials at

points pQ,. . . , 7^, 7 is the corresponding column vector of Laplace transforms of the in­

jected currents at these points, and A is the tree matrix

Cl ^ C3- cosh ujh

Cl

Cl 4 - C2

0

1

Cl 4- C3

- cosh ujh

1

0

0

C2

Cl 4- C3

0
Cl 4- C2

- cosh u}h 0

0 — coshwL

(4.80)

The A:-th entry of the diagonal matrix D is the sum of the characteristic conductances of

the sections which meet at the k-th node. In this example,

D = diag [ci 4“ C3 , ci 4 - cg , eg, C3] - (4.81)

Following the procedure described in Section 4.4.5, it can be shown that the diagonal

matrix

S = diag 1 ,
Cl 4 - C3 /C l 4 - C3 Cl + C3

Cl + C2

will symmetrise the tree matrix A to obtain
C2 C3

(4.82)

S-'^AS =

cosh ujh p

p — cosh u)h

0 r

q 0

0

r

cosh u)h

0

Q

0

0

cosh Loh

(4.83)

CHAPTER 4. EQUIVALENT CABLE 76

where p, q and r represent the expressions

Cl C3 C2

^ \/(c i + cg)(ci 4-C3) ' ̂ V c i + c / ^ C1 PC2 ̂ ^

The first step in the construction of the equivalent cable is to pre-multiply equation (4.79)

hy S ̂ to get the symmetric form

(5 - U 5) S~^V = - {DS)~^ I.
w (4.85)

The second step in the procedure to construct the equivalent cable requires S ^AS to be

transformed into a symmetric tri-diagonal matrix. This is achieved by observing that

H =
0 0

V ^ - T ÿ

is a symmetric orthogonal matrix satisfying the property

— cosh u)h T

(4.86)

H~'^{S-^AS)H = T =

“2 — coshw/t

pi'

0

0

pr
VP^"+V
— cosh Loh

qr
yJp^ A q̂

0

qr
y/p^ +

— cosh ujh

(4.87)

The matrix H is called a Householder matrix, and its derivation will be described in

Section 4.8.1. Since T is a symmetric tri-diagonal matrix, it may be interpreted as the

symmetric form of a cable matrix. The second step is completed by the pre-multiplication

of equation (4.85) by to obtain

sinhwL
T{SH)-^V { D s n y '^ L (4.88)

The final step of the procedure to construct the equivalent cable requires the derivation of

the cable matrix A, the symmetrising diagonal matrix S and the characteristic conductance

for each section of the cable.

CHAPTER 4. EQUIVALENT CABLE 77

Extracting the equivalent cable

The off-diagonal entries of the equivalent cable matrix A and the symmetrising matrix S

which transforms A into T = S~^AS are extracted from T using the algorithm described

in Section 4.4.8. The calculation advances through each row of T as follows

cf T C1C3 + C2C3
Row 1 Aifl —

Aifi =

Row 2 ^ 2,1 =

^2,3 =

Row 3 A3,2 =

% = ,
A o , l (c i + C 2)(c i + C 3) ’

1 A - C1C2
(C l + C 2) (c i - f C3) ’

^ 1 ,2 _ C l (c i + C 3)

A i ,2 c f + C1C3 T C2C3 ’
(4.89)

c f + C1C3 + C2C3

rp 2
AM. = 1
A 2.3 ■

As A3,2 = 1, the last row of A confirms that the equivalent cable ends on a current injected

terminal. The matrix S which symmetrises the equivalent cable has form

diag 1 ,
Cl + C1C3 4- C2C3 I Cl + C3 (ci 4- C3) / Cl 4- C1C3 + C2C3 (4.90)

(ci 4 -C2)(c i + C3) ’ V C2 Cg y C3(ci 4- C3)

It is now straightforward matrix algebra to demonstrate that the voltage EGP matrix is

0

Cl
Cl 4- C3

0

Cl 4- C2

0

C3

C l 4- C3

0

and the current EGP matrix is

dl
Cl 4- C3

0

C2

0

Cl
C2

0

(4.91)

c i(d i 4- dg)
(ci 4- cs)(ci 4 -eg)

0

C2

0

dg 4- c?3
C2

0

0

dl 4- d2

Cl 4- C3

0

Cld3
C2C3

(4.92)

For the equivalence of the branched and unbranched dendrites, it is essential that T q{s) =

7o(s), namely that both dendrites have the same current flowing into the parent structure.

CHAPTER 4. EQUIVALENT CABLE 78

It therefore follows immediately from the first row of equation T q (s) = that

dl = Cl + C3. The definition (4.34) of the cable matrix A in terms of the characteristic

conductances of the cable sections gives

dl _ cf + C1C3 + C2C3 dg
di+dg (ci + ca)(ci + cg) ’ dg + dg

from which it follows by straightforward algebra that

cicg(ci + C 3)

Cl (ci + C3)

c f + C1C3 + CgC3

d l = Cl - f C3, d g =
cf + C1C3 + C2C3 cf + C1C3 T CgC3

(4.93)

(4.94)

Now that dl, dg and ds are determined, expression (4.92) for the current EGP matrix

can be expressed entirely in terms of the characteristic conductances of the branch

dendrite to get

0 0 0

c i (c i 4 - C3)

cf 4- C1C3 4- cgC3

0

C2C3
cf 4- C1C3 4- C2C3

(ci + c g)(c i 4-C3)
cf 4- C1C3 4- C2C3

0

______ ClC2
cf + C1C3 4- C2C3

(4.95)

Therefore the asymmetric Y-junction in Figure 4.5 with limbs of unequal electrotonic

length 2 h and h has an equivalent cable of electrotonic length 3h consisting of three

uniform sections with characteristic conductances and current mappings

Connected section 1

Connected section 2

Connected section 3

dl

J i

d g

Xg

da

%3

C l + C3

Cl 4- C3
cf 4- C1C3 4- cgC 3

c i c g (c i 4 - C3)

cf + C1C3 4- C2C3

72,

[ci7i 4- (ci 4- cg)7a],

cfc3
cf 4- C1C3 4- C2C3

ClCg

cf 4- C1C3 4- C2C3
- [7 i -73].

4.5.3 A sym m etric Y -junction

Figure 4.6 illustrates a symmetric Y-junction consisting of two limbs with electrotonic

length 2h and meeting at the branch point P q. Currents 7q(s), . . . , 74(5) are injected

CHAPTER 4. EQUIVALENT CABLE 79

into the Y-junction dendrite at the points Pq, . . . , P 4 respectively. Pi’om the previous two

examples, it is clear that this Y-junction conforms to Rail’s first condition, namely that

all dendritic terminals are the same electrotonic distance from the point of connection to

the parent structure to the terminals. One outcome of this analysis will be to determine

conditions under which this Y-junction has a Rail equivalent cylinder of electrotonic length

2/1, and when no such cylinder exists, to determine the equivalent cable of the Y-junction.

P2 — h

P 4 — >• I 4

Figure 4.6: A Y-junction with limbs of electrotonic length 2/i. The sections
joining Pq to Pi, Pi to P2, Pq to P3 and P3 to P4 each have length h and
characteristic conductances ci, cg, C3 and C4 respectively.

It follows from the application of particularised forms of equations (4.28) and (4.29) that

the Laplace transforms of the membrane potentials Fg(s) , . . . , ^4(5) at the points Pq, . . . , P4

respectively on the symmetric Y-junction illustrated in Figure 4.6 satisfy the algebraic

equations
~ , , C l ~ C 3 ~ s i n h w / i ~

-Vq cosh uih + — Vi 4------:-----V3 = — 7----:---- r 7o ,C1 +C3 Cl 4-C3 w (ci 4- C3)

. V o - V , c o s i , . h + ^ V , = y y h ,
Cl -4- C2 Cl P e g U) (c i + Cg)

Y i-Fgcoshw/i = — - Jg , (4.96)
W Cg

-V o-V acoshujhP —^ V i = 73 ,C3 + C4 C3 PC4 UJ (C3 + C4)

f> f> , T sinhuj/i ~V3 — V4 cosh w a = --------- h .WC4
The system equations for the symmetric Y-junction therefore have matrix representation

Î (4,97)
w

CHAPTER 4. EQUIVALENT CABLE 80

in which V is the vector of the Laplace transforms of the membrane potentials, I is the

vector of the Laplace transforms of the injected currents and A is the tree matrix

- cosh u)h

Cl
Cl + Cg

0

C3
C3 + C4

0

Cl
Cl + C3

' cosh cc/i

0

C2

C3

C l P Cg

- coshwL

0

0

Cl P Cg

0

0

- coshwL

0

0

0

C4
C3 P C4

- coshwL

(4.98)

The entries of the diagonal matrix D are the sums of the characteristic conductances of

sections meeting at each point of the Y-junction. By following the procedure set out in

Section 4.4.5 it can be shown that the diagonal matrix

S — diag 1 ,
C l P Cg / C l p C3 /ci p Cg

C3 PC4Cl P Cg ’ V Cg

will symmetrise the tree matrix A to obtain

S~^AS =

cosh a;/i

V

0

q

0

P

cosh Loh

r

0

0

0

r

— cosh (jjh

0

0

where p, ç, r and w represent the expressions

Cl
P

q

0

0

- coshw/i

w

Cg

C l P Cg

C4

0

0

0

w

■ coshwh

(4.99)

(4.100)

\/(c i Pcg)(ci Peg) ’ V(ci Pcs)(c3 PC4) ’
(4.101)

C2
Cl P Cg

w = C4
Cg p C4

Pre-multiplication of equations (4.97) by S' ̂ reduces them to the symmetric form

(S-^A S)S '-V = {DS)~^ / . (4.102)

Since S ^AS is symmetric but not tri-diagonal, the construction of the equivalent cable

proceeds by tri-diagonalising S~^AS. This is achieved by using the symmetric orthogonal

CHAPTER 4. EQUIVALENT CABLE 81

matrix

H 0

9
Vp2Xj7p

0

0

0

pr

0

qw

^p2 ^ q2

0

P

0

0

0

qw

0

pr

(4.103)

For complex branched dendrites, H can be derived in a systematic way as a product of a

finite sequence of Householder transformations. When equations (4.102) are pre-multiplied

by H~^, the result is

T{SH)-'^V = {DSH)-^ 7,U) (4.104)

where T = {SH) ^A(SH) is the symmetric tri-diagonal matrix

— cosh wh y^p2 _j_ q2

P q^ — coshw/t

0

p2 _|_ q,2

0

/p̂ r̂ P
/ p2pg2

— cosh u)h

pg(r^ — w^)

pq(r^ — w^)
y^p2 p g2 ŷ p2y.2 ç2.ĵ 2

0 0

cosh u)h rw V ? p ÿ

rm \/p^ P 9̂
y/p2j.2 _|_ g2yj2

y/p'^r’̂ P

— cosh w/i

(4.105)

Equations (4.105) may be interpreted as the symmetrised, tri-diagonalised form of the

system equations for the Y-junction in Figure 4.6, where T is the symmetric form of a

cable matrix. The final stage in the construction of the equivalent cable involves the

derivation of the cable matrix A, the diagonal matrix S and the subsequent calculation of

the characteristic conductances of the equivalent cable.

Extracting the equivalent cable

The off-diagonal entries of the equivalent cable matrix A and the symmetrising matrix S

for which T = are extracted from T using the procedure set out in Section (4.4.8).

The calculation now advances through each row of T on the assumption that C1C4 cgcg.

CHAPTER 4. EQUIVALENT CABLE 82

The entries of the cable matrix A are calculated algebraically to obtain

%

Row 1 A 1,0

A 1 ,2 = l - A i , o

Row 2 A 2,1

A 2,3

Row 3 A 3,2

A 3 ,4

Row 4 A 4,3

^0,1 _ Ci(c3 T q) + ^1(̂ 1 T C2)

A 0,1 (c i + C2) (c i + C3) (c 3 + C4) ’

C1C2(C3 p C4) + CSCjjci + C2)
(ci p C 2)(ci P Cg) (C3 p C4)

(ci p C3)[CiC2(c3 p 04) ̂+ c j c y c i P 2̂)]̂
A 1,2 [c f (c 3 p C4) P c | (c i p C 2)][C 1C 2(C 3 P C4) P 0 3 0 4 (0 1 P Cg)] '

0103(0203 - 0104)2
— 1 — A 2,1 [of (0 3 p 0 4) P o |(ci p C 2)] [c i c g (c 3 p 0 4) P 0 3 0 4 (0 1 p Og)] ’

7^2,3 __ Cj0 3 (0 1 0 2 (0 3 P 0 4) p 0 3 0 4 (^ 1 P C2)]

cfcg(03 P 04)2 P 0^04(01 P Cg)2

^ 0204kl(C3 P C4) P CgQci + C2)]
cfcg(c3 P 04)2 P c |c4(ci P Og)2 ’

A 2,3

1 “ A g , 2

îf,4
A

= 1.
3,4

(4.106)

When Cl 04 ogcg, the equivalent cable consists of four sections and terminates in a current

injected terminal. The matrix S mapping the equivalent cable into the symmetrised Y-

junction is determined from equation (4.38) and takes the value

«5 = diag 1,
 ̂ C l(c 3 p 0 4) p o |(ci P Og) / [ci P Cgjkf0 2 (0 3 P 0 4)^ P og04(01 P O g)2]

(c i p c g) (c i p 0 3) (0 3 P 0 4) y [0 1 0 2 (0 3 P 0 4) P 0 3 0 4 (0 1 P C g)]2

I [01 p 03] [o f (03 P 04) p c § (c i p C g)] / [oi P 03] [c f c g (03 p 04) ^ P 0304(01 + 02) 2] '
y [0203 - C l 04] 2 ' y 0204(0203 - C l 04] ^

(4 .107)

Given 5 , it is straightforward matrix algebra to show that the voltage EGP matrix is

0

Cl

01 P 03

0

0 3 (0 1 P 0 2)

02 03 - 0 1 0 4

0

0

03

0102(03 + 04)

0 3 (0 1 p 0 2)

CgCs — Cl 04

01 P 03

0

Cl (0 3 p 0 4)

O2O3 - 0 1 0 4

0

0 3 0 4 (0 1 p 0 2)

01(03 p 04)
OgOg — Cl 04 _

(4 .108)

CHAPTER 4. EQUIVALENT CABLE 83

where i] — 0103(03 + 04) + 0304(01 + 02). The characteristic conductances of the sections of

the equivalent cable are determined directly from A, and take the values
0102(03 + 04) + 0304(01 + Cg)-

d l = C l + 03 , dg = (ci + 03)
o f (0 3 + 0 4) + c | (o i + Cg)

ds =
C l03 [c g o g - 0 1 0 4]^ [0 1 0 2 (0 3 + 0 4) + 0 3 0 4 (0 1 + Cg)]

[o f (0 3 + 0 4) + C § (o i p O g)] [c f o g (o 3 P 04)2 P 0 § C 4 (c i P Cg)^] ’

0 2 0 4 (0 2 0 3 - 0 1 04]^

(4.109)

of Cg(c3 p 04)2 P 0^04(01 p Cg)2 ■

Given the values d i , . , . , d4 in (4.109), the current EGP matrix 4/c == # v L)~^ may be

expressed in terms of c i , . . . , 04. Since V and D~^ are diagonal matrices then and

are structurally identical. By this it is meant, that the non-zero entries of and Ÿy are

in identical locations. Therefore in this example, has an identical structural form to

$ y therefore follows that the current input at a given location on the branch structure

maps to locations on the equivalent cable that are no closer to its soma than that of the

input on the branched structure.

Special case: 0 1 0 4 = cgog

This special case corresponds to a Y-junction with limbs satisfying the Rail condition

oi/cg — 0 3 / 0 4 . Here, one limb of the Y-junction is a scaled version of the other limb.

Therefore, in the special case in which r = w, or equivalently 0 4 0 4 — 0 3 0 3 , the tri-diagonal

matrix T in equations (4.104) takes the particularly simple form

— cosh Loh yp2 q. q2 0 0 0

^p2 q. q2 — coshwh r 0 0

T = 0 r — cosh u)h 0 0

0 0 0 — cosh u)h r

0 0 0 r — cosh w A

(4.110)

The block diagonal form of T forces the construction of the equivalent cable to proceed

in two stages, the first dealing with the tri-diagonal matrix Ti defined by the upper 3 x 3

block matrix in T, and the second dealing with the tri-diagonal matrix Tg defined by the

lower 2 x 2 matrix in T. Thus equations (4.104) decompose into the independent sets of

equations
T iM iV = a , j , T2M 2V = E î i i i * % 7 (4.111)

LÜ U)

CHAPTER 4. EQUIVALENT CABLE 84

in which M i and Mg are respectively the 3 x 5 and 2 x 5 matrices

Ml —

Mg —

V^ci(ci +cg)
C l + Cg

0

y c 3 (c i P e g)

C l P Cg

0

0

0

\/ciCg
C l P Cg

0

\/CgC3

\ / c 3 (c 3 P C4)

C l p C3

0

\ / c i (c 3 + C4)

C l p C3

0
C l p Cg

and Ri and iîg are respectively the 3 x 5 and 2 x 5 matrices

Ri =
Cl P Cg

R 2 —
Cl P Cg

0 0 0

Cl
C l P Cg

0

C3

C3 P C4

0

Cg

Cl p Cg

0

Cl
C3PC4

0

0

VC3C4
C l P Cg

0

\/ClC4
C l p e g .

(4.112)

(4.113)

The matrices Mi and Mg are formed respectively from the first three rows and last two

rows of while Ri and Rg are likewise formed respectively from the first three rows

and last two rows of Each set of equations in (4.111) represents a different

component of the equivalent cable, the first is connected to the parent structure whereas

the second is not.

Connected cable

The entries of the cable matrix A corresponding to the first of equations (4,111) are now

calculated sequentially. With the tri-diagonal matrix Tf represented by T (for conve­

nience), this calculation gives

Row 1 A 1,0
Cl Cg

A 0,1 Cl P Cg C3 P C4 ’

Cg C4
Ai,g = 1 — A 1.0 —

Row 2 A 2,1 A

1,0
Cl P Cg Cg p C4

(4.114)

1,2

C H A P TE R ! EQUIVALENT CABLE

where the transformation from A to T is effected with the diagonal matrix

.Si 1,
C3

85

(4.115)
Cg + C4

In this instance the expressions for the voltage and current EGP matrices corresponding

to formulae (4.50) are respectively

0

= iSiMi

0
Cl

Cl + Cg

0

0
Cl

0

C3
C l P Cg

0

0

0

C3
ciPcg

~ H S iR i dl
C l P Cg

(4.116)Cl P e g

1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

Since Iq = Iq, then di — ci P cg and the expression for Ao,i leads to dg = cg(ci P cg)/ci.

Cable potentials and injected currents V and 1 are related to tree potentials and currents

V and I by the respective formulae V = ’Fy V and X = 'Ifc 7. These relationships have

component form

% = Xa = lo.
Cl Vi P e g Fg

Xi = 7 iP7g , (4.117)Vi
Cl P Cg

C1V2 + C3V4

Cl P Cg
Vg = 2g = 7g P 74 .

Disconnected cable

In this section the currents %o, %i and Jg and the potentials Vo, Vi and Vg refer to the

left-hand node, centre node and right-hand node respectively of the disconnected cable.

The entries of the associated cable matrix A corresponding to the second of equations

(4.111) are now calculated sequentially. With the tri-diagonal matrix Tg represented by T

(for convenience), this calculation gives
m 2

Cg C4
Row 1 A 1,0

A 1,2

= %
A 0,1

= 1 — Ai,o

Cl P Cg Cg P C4 ’

Cl Cg
(4.118)

C l P Cg Cg p C4

where transformation from A to T is effected with the diagonal matrix

^ 2 = 1,
Cg

Cl P e g
(4.119)

C H A P T E R ! EQUIVALENT CABLE 86

In this instance the expressions for the voltage and current EGP matrices corresponding

to formulae (4.50) are respectively

'Fy = S2 M2
y / c 3 (c i + Cg)

C l + Cg

5'c — DiSgRg
d l i / c g (c i + Cg)

Cg (c i P Cg)

0 1

0 0

0

0

Cg

C l P Cg

0

Cg

C l p Cg .

(4.120)
Cg 0

Cg

Cl P Cg

0 0 1

Cg P C4

0 Cl
Cg

Note that $y and only give the potential and injected currents at the first two nodes

of the detached cable. Specifically,

\Zcg(ci P Cg)
Vo

Vi

Jo

J i

Cl p Cg

Cg

Cl P Cg

dl
C l p Cg

n - .
[Vi - Vi

Cg

Cl p e g V c i P Cg
h

dl \Zcg(ci P

Cl

Cg

h

h
(4.121)

Cl

Cg
h

Cl p Cg Cg

In the expressions for Jo and J i, the characteristic conductance of the first section of the

detached cable is indeterminate unlike the first section of the connected cable.

It can be demonstrated that Vg — 0 and that the equation contributed by the third

node on the detached cable determines the injected current required to maintain Vg ~ 0.

As discussed in the derivation of the model, the third equation does not appear in the

mathematical formulation of the cable based on the determination of unknown potentials.

Specifically, although the mathematical description of the detached cable contains three

nodes and three unknown functions, only two of these are unknown potentials; the third

is an injected cmrent and so does not feature in a matrix representation of the detached

cable based on unknown potentials.

In this example, the symmetric Y-junction in Figure 4.6 with limbs of length 2h forms an

equivalent cable with electrotonic length 4,h. The first pair of uniform sections of the cable

are connected to the parent structure while the second pair are disconnected from it.

CHAPTER 4. EQUIVALENT CABLE 87

4.6 Application of the equivalent cable to spinal interneu­

rons

The development of the equivalent cable and its associated mapping allows studies into

the influence of complex dendritic morphology to be extended beyond those based on

approximate representations of dendritic morphology (see Vetter, Roth and Hausser, 2001;

Mainen and Sejnowski, 1996). This section will describe the generation of equivalent

cables for spinal interneurons and the estimation of the distribution of associated synaptic

contacts when mapped to the equivalent cable.

The conventional description of synaptic location employs a Sholl analysis (Olave et aZ.,

2002). This procedure counts the number of contacts falling on regions of dendrite con­

tained within concentric shells with radii that increase in 25 (im steps from the centre of

the soma. This procedure is applied to a collection of cells. For these cells a histogram

of the number of contacts within each concentric shell is calculated. The Sholl procedure

inherently assumes that dendrites radiate outwards from the soma, and therefore when

this does not happen, the procedure misrepresents the density of contacts. That is, a

distal contact on a branch that turns back towards the soma may be represented as a

proximal contact. Furthermore, the histogram process is a blunt tool making it difficult

to draw conclusions on the distributions of contacts on the same type of cells or between

different types of cells. The mapping derived in the construction of the equivalent cable

provides a means to investigate individual neurons and synaptic contacts in a way that

incorporates fully the morphology and biophysical properties of the cell without resorting

to a histogram procedure.

4.6.1 D istribution o f contacts

The equivalent cables of two cholinergic interneurons located in laminae III/IV of the dorsal

horn of the spinal cord have been generated numerically. An overview of the neurons and

their input structme is given in Chapter 3, whilst a detailed description of these neurons

can be found in Olave et al. (2002). To my knowledge, the following examples are the

first examples of equivalent cables constructed from real neurons by contrast with those

constructed by piecewise empirical methods (e.g. Segev and Burke, 1989).

The procedure uses the contact location from the Neurolucida files and assigns a strength

CHAPTER 4. EQUIVALENT CABLE 88

of one unit to each contact. A discretisation interval of one-thousandth of an electrotonic

unit is used in the construction of each sample dendrite, resulting in 1300-1400 nodes per

dendrite, and a placement of contacts with a maximum error of one two-thousandth of an

electrotonic unit. The EGP matrix, described in Section 4.4.7 is now used to map

contacts I on the branched dendrite to contacts Z on the equivalent cable according to

the rule that Z = 4/c l- The fraction of Z received by the connected cable up to and

including node k is formed by summing the entries of Z from j — 0 to j — k and then

normalised by dividing this sum by the total number of contacts on the dendrite. The

function is smoothed by interpolation (see Section 4.8.2), and its derivative with respect

to electrotonic distance from the soma gives the density of contacts at each location on

the equivalent cable.

As the mapping of contacts from the branched model to the equivalent cable is unique,

comparing the contact density for different classes of contacts on the equivalent cable is

equivalent to comparing the distribution of these contacts on the branched model. This

procedure has clear benefits over the Sholl analysis, in particular it is unaffected by the

phenomenon of branches turning back towards the soma, giving a false impression of the

location of synapses.

Example 1: Equivalent cable representation of myelinated afferent input to

cholinergic interneurons

Figure 4.7A shows a typical lamina III/IV spinal interneuron receiving myelinated afferent

input. The dendogram and equivalent cable for this cell can be seen in Figures 4.7B and

4.70 respectively. Note that this equivalent cable has an electrotonic length of 1.39 eu.

The cumulative distribution of contacts shown in Figure 4.7D indicates that almost 50%

of the combined effect of the distribution of contacts on the branched structure lies within

0.1 eu of the soma. The plot of contact density in Figure 4.7E suggests that the influence

of the contacts on the soma declines steadily with increasing distance from the soma until

disappearing at approximately 0.6 eu. At 0.6 eu, the diameter of the equivalent cable has

fallen to roughly 2% of its initial value.

CHAPTER 4. EQUIVALENT CABLE

(A) I----------------

89

lOOjLiin

(B) (C)

 # # # #-

' * - c £
I I------ 1----1--------- r----- 1------ 1

0 50 100 150 200 250 300
Distance from soma (/xm)

(D)
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance from soma (eu)

(E)

0.2 eu

6.0 n

4.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance from soma (eu)

Figure 4.7: An example of a cholinergic interneuron (A) which receives myelinated
primary afferent input (•) with its associated dendogram (B) and equivalent cable
(C). The first 0.72 eu of the connected section of the equivalent cable is shown, the
full cable has length 1.39 eu. The cumulative strength of the contacts (D) and their
associated density (E) for the cell are also illustrated.

Example 2 : Equivalent cable representation of unmyelinated afferent input to

cholinergic interneurons

Figure 4.8A shows a typical lamina III/IV spinal interneuron receiving three distinct classes

of unmyelinated afferent input. Type 1 contacts are non-peptidergic primary afferents (IB4

CHAPTER 4. EQUIVALENT CABLE 90

staining), type 2 contacts are peptidergic primary afferents (CGRP staining) and type 0

contacts are a rarer class which stain for both IB4 and CGRP. In Figure 4.8A, the tlrree

classes of contacts can be seen (type 0 - type 1 - • and type 2 - A). The dendogram

and equivalent cable for this cell can be seen in Figures 4.8B and 4.8C respectively.

(A)

' X

(B)

I— I— 1— I— I— I— I— I—-1— I— I— I— n
0 50 100 150 200 250 300

Distance from soma (/um)

(C)

0.2 eu

1.0

Type 0

Type 1

Type 2

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(E)

Type

Type4.0-

Type

2 . 0 -

0.0

Distance from soma (eu)Distance from soma (eu)

Figure 4.8: An example of a cholinergic interneuron (A) which receives unmyelinated

primary afferents (type 0 - type 1 - • and type 2 - A) with its associated dendogram (B)

and equivalent cable (C). The first 0.77 eu of the connected section of the equivalent cable is
shown, the full cable has length 1.36 eu. The cumulative strength of contacts (D) and their

associated density (E) for the cell are also illustrated.

CHAPTER 4. EQUIVALENT CABLE 91

The equivalent cable has electrotonic length 1.36 eu, and has a distinctly different shape to

that extracted from the interneuron receiving myelinated afferent input (see Figure 4.7B).

The cumulative strength of contacts and the associated contact density are calculated for

each class of contact. The cumulative strengths (Figure 4.8D) for each class of contact

suggest that the contacts form different distributions along the equivalent cable. The

plots of contact density (Figure 4.8E) accentuate the differences between the effects of the

three classes of contact. Close to the soma, at less than 0.3 eu, the effect of the Type-2

contacts is dominant followed by Type-1 contacts which aie in turn stronger than the

Type-0 contacts. At intermediate distances, approximately 0.3 - 1.0 eu, the effects of the

contacts changes such that Type-0 contacts are stronger than Type-1 which are in turn

stronger than Type-2 contacts. The plots of contact density clearly define the distinct

regions over which each class of contact has its effect. A comparison of the distributions of

contacts from myelinated and unmyelinated afferents indicates that Type-2 unmyelinated

contacts are almost distributed identically to myelinated contacts.

The application of the equivalent cable procedure to real neurons has demonstrated first,

that the equivalent cables for spinal internemons receiving myelinated afferent input form

distinctly different shaped cables than those receiving unmyelinated afferent input, second,

that the distribution of contacts varies with the type of afferent input, and finally, that

there are three distinct distributions of unmyelinated afferent input. The second result

confirms the observation by Olave et al. (2002) that myelinated and unmyelinated afferent

input form different distributions, however, the final result extends the conclusions of

Olave et al. (2002) by demonstrating that the distributions of the unmyelinated inputs

are themselves different.

CHAPTER 4. EQUIVALENT CABLE 92

4.7 Conclusions

The equivalent cable of a branched dendrite is an unbranched representation of the den­

drite and its input. The response at the soma of the branched dendrite to any configuration

of input can be represented exactly at the soma of the equivalent cable. Conversely, the

response at the soma to any configuration of input on the cable can be represented exactly

by the response at the soma of the branched dendrite. This chapter has developed a novel

analytical procedure for constructing an equivalent cable. This procedure transforms an

arbitrarily branched dendrite with arbitrary configurations of input into a piecewise uni­

form cable with an input structure determined uniquely by the configuration of inputs on

the original tree. The cable is generated about the point of contact of the dendrite with

its parent structure and may be accompanied by electrically isolated cables which are dis­

connected from both the parent structure and each other. The procedure for constructing

the equivalent cable ensures that the electrotonic length of the connected cable and any

disconnected cables equals the total electrotonic length of the dendrite as defined by the

sum of the electrotonic length of all its segments. It is shown that the matrix correspond­

ing to an arbitrarily branched dendrite can be transformed to a symmetric tri-diagonal

matrix, which can then be associated with the canonical form of a cable. By this route, the

representation of the original branched dendrite by piecewise uniform sections is mapped

into the representation of a cable (the equivalent cable) with piecewise uniform sections.

The construction process specifies how potentials and input on the branched dendrite is

mapped bijectively to potentials and input on the equivalent cable.

This procedure for constructing the equivalent cable was used to characterise contacts on

spinal interneurons. This method could be applied to single interneurons and proved to

be more powerful than the traditional method based on the Sholl analysis.

CHAPTER 4. EQUIVALENT CABLE 93

4.8 M athem atical appendix

4.8.1 H ouseholder procedure

The Householder procedure is here used to reduce a symmetric tree matrix to a symmetric

tri-diagonal matrix (Golub and van Loan, 1989) as part of the procedure to construct an

equivalent cable. The resulting symmetric tri-diagonal matrix can then be interpreted as

a symmetric cable matrix. Previously, the equivalent cable has been developed using the

Lanczos procedure (Ogden et al, 1999) to transform the symmetric tree matrix into the

tri-diagonal cable matrix. Setting aside the fact that the Lanczos procedure is based on a

numerical approximation of the cable equation using central differences, the Householder

approach enjoys two advantages over the Lanczos procedure. First, it is numerically stable

by contrast with the Lanczos procedure which is well recognised to suffer from the effects

of rounding error (Golub and van Loan, 1989). Second, the Lanczos procedure often

fails to develop the complete symmetric tri-diagonal matrix in a single operation unlike

the Householder algorithm which always develops the complete symmetric tri-diagonal

matrix.

Householder matrices

Given any unit column vector U of dimension n, the Householder matrix H (see Golub

and Van Loan 1989) is defined by

H = I -2 U U '^ (4.122)

where I is the n x n identity matrix. By construction, the matrix H is symmetric and

orthogonal. While the symmetry of I I is obvious, the orthogonality property follows from

the calculation
= {I ~2UU '^){I -2 U U ’̂)

= I - 4U U'^ + 4U {U^U)U'^ (4.123)

= I -4 U U '^ + 4UU^ ^ I.

Thus H — H'^ = Given any symmetric (n -f 1) x (n -f 1) tree matrix S~^ AS^ there

is a sequence of (n — 1) orthogonal matrices Qi, , Qn-\ such that

• • • Q r‘)(S~'.4S')((3i • • ■ Q „-i) = T (4.124)

CHAPTER 4. EQUIVALENT CABLE 94

where T is a symmetric tri-diagonal matrix (see Golub and Van Loan, 1989). To interpret

the final tri-diagonal form of the tree matrix as a cable attached to the parent structure,

it is essential for the Householder procedure to start with the row of the symmetrised tree

matrix corresponding to its point of connection to the parent structure, i.e. Pq.

Let the orthogonal matrix Qi and the symmetric tree matrix W — S~^AS have respective

block matrix forms

W
w q q

, Qi =
h 0

Y Z 0 Hi _

(4.125)

where V is a column vector of dimension n, Z is & symmetric n x n matrix and Hi is

an n X n Householder matrix constructed from a unit vector U. Assuming that the first

row and column of W are not already in tri-diagonal form, the specification of U in the

construction of Hi is motivated by the result

■ woo {HiY)T
Q l^W Q i =

_ H iY H f Z B i

The vector U is chosen to ensure that all elements of the column vector H iY are zero

except the first element. If this is possible, the first row and column of Q ï^W Q i will

form the first row and column of a tri-diagonal matrix. Furthermore, H ^Z H i is itself an

n x n symmetric matrix which assumes the role of W in the next step of the Householder

procedure. This algorithm proceeds iteratively for (n - 1) steps, finally generating a 2 x 2

matrix H ‘̂ _iZHn~i on the last iteration. It can be shown that the choice

\T
U

Y + a\Y\E i El = [1,0, • • ■ (n — 1) times

y, =
(4.126)

^/2\Y\{\Y\ + aY i)'

with = l defines an Hi with the property that H iY — —a\Y \E i, that is, the entries

of H iY are all zero except the first entry. This property of Hi can be established by

elementary matrix algebra. The stability of the Householder procedure is guaranteed by

setting Q = 1 if Vi > 0 and a — — 1 if Vi < 0, that is, a is conventionally chosen to make

aYi non-negative.

Once Hi is known, the symmetric n x n matrix H fZ H i is computed and the entire

procedure repeated using the (n + 1) x (n -I-1) orthogonal matrix Q2 with block form

Q2 =
h 0

0 H 2

CHAPTER 4. EQUIVALENT CABLE 95

in which H2 is an (n - 1) x (n — 1) Householder matrix. Continued repetition of this

procedure generates a sequence of orthogonal matrices Q i , Q 21 • • • , Qn-~i such that

{Qn-l " ' Q k " ' Q i){ S A 5 ') (Q i ■ ' - Q k " ‘ Q n- i) — T (4.127)

where T is a symmetric tri-diagonal matrix to be interpreted as the symmetrised matrix of

an equivalent cable. In order to construct the mapping of injected current on the branched

dendrite to its equivalent cable and vice-versa^ it is necessary to know the orthogonal

matrix Q — Qi, Q2, - - ' ,Qn~i- In practice, this matrix can be computed efficiently by

recognising that the original symmetrised tree matrix can be systematically overwritten

as Q is constructed provided the calculation is performed backwards, that is, the calculation

begins with Qn~i and ends with Q\. Using this strategy, it is never necessary to store the

Householder matrices 77i, • • ■ , Hn-i-

A numerical example

A more transparent picture of this procedure can be established by considering the reduc­

tion of the symmetric matrix

W = (4.128)

9 - 1 2 2

- 1 3 4 2

2 4 14 - 3

2 2 - 3 4

to symmetric tri-diagonal form using Householder matrices. From the block matrices

(4.125) we can see that = (—1,2,2), F — (—1,2,2)^ and therefore |F | — 3. The vector

U is defined as

U = (- l , 2 ,2 f V o |F |(l, 0,0)^, = 1

where a ~ —1 in this case since the first element is negative. Therefore U — (—4,2,2)^

and the Householder matrix defined by U is therefore

H \U\ rUU'^ =

1 0 0
2

16 -8 -8
1

-1 2 2

0 1 0 ” 24 -8 4 4 ” 3 2 2 -1

0 0 1 -8 4 4 2 -1 2

CHAPTER 4. EQUIVALENT CABLE

Prom the definitions (4.125), I now define

96

Pi
h 0

0 H

3 0

0 - 1

0 2

0 2

0 0

2 2

2 - 1

-1 2

which is used to compute P-̂ ^WPi where W is given by (4.128). It is an easy calculation

to show that

p -^W P i =

3 0

0 - 1

0 2

0

0

2

2

2 - 1

9 - 1 2

- 1 3 4

2 4 14

2 2 - 3

0 0 0

- 1 2 2

2 2 - 1

2 - 1 2

9 3 0 0

3 3 6 0

0 6 1 2 - 3

0 0 - 3 6

In this instance, one step of the Householder procedure has neatly transformed a symmetric

matrix into a symmetric tri-diagonal matrix.

4.8.2 E stim ating th e density o f contacts

Let the equivalent cable have electrotonic length L and suppose that F{x) is the cumulative

sum of the strength of all contacts located on the equivalent cable within electrotonic

distance x of its point of contact with the parent structure, then F(0) = 0 and F{L) — 1.

The function F(a;) is now interpolated by the finite Chebyshev series

^ / 9 a - _ r . \
(4.129)

where the Chebyshev polynomial Tn{z) is defined by the generating formula T„(cos0) =

cosn9. Since expression (4.129) satisfies automatically the conditions P(0) = 0 and

F{L) — 1 for all choices of the coefficients a^, it remains to find values for ao, a i , . . . , aw to

optimise the fit of expression (4.129) to the cumulative strength of contacts along the en­

tire length of the equivalent cable, as expressed by the set of values (2:1, P i) , . . . , (x m -, Fm)-,

CHAPTER 4. EQUIVALENT CABLE 97

where x i , . . . , xm are the points on the equivalent cable. The cumulative strengths of con­

tacts are known and Fk — F{xk) denotes the cumulative strength of contacts at In

this thesis, the coefficients gq, • • •) are determined by minimising

(4.130)
fc=l n=0

It follows immediately from expression (4.130) that

M AT

da
(4.131)

fc=i L2
n=0

The optimal values of the coefficients ao, • • •, ujv are those which minimise 0 and therefore

it clear from equation (4.131) that the optimal coefficients should be chosen to satisfy

N rp - L \ ^ (2xk - L

n=0 fc=l

= f ; - X.) (F (x ,) - f) T, (2 2 ^) .
fc=l

(4.132)

This is a set of (i V - f - l) simultaneous equations in (i V - f l) unknowns. These equations are

solved for the coefficients gq, . . . , gat by LU decomposition.

The density of contacts on the equivalent cable is estimated from the definition f[x) —

F'{x) to obtain

N „ X- \ N

f{x)
1 L ~ 2,x E ^»(^) + ̂ E

n= 0 n=0

1
L + L

■ L — 2x /2x — L \ 2x{L — x) , (2x — L
(4.133)

-Tx
n=0

/ Zx — Lf\
I L) + L2 (^)]

Give X e [0,L], the value of f{x) can be computed by first finding 9 such that cos#

{2x ~ L)/L . The density now becomes

J{x) == T 4- T y] an
n = 0

N

ncos 9 cos nO + — sin 6 sin nO
(4.134)

n=0
——h ^ ̂ a<n (n — 2) cos(n — 1)# — {n T 2) cos(n T 1)#

C hapter 5

Building the typical neuron

5.1 Introduction

Since Cajal’s classic studies using Golgi stained neurones (Cajal, 1952), neurophysiologists,

neuroanatomists and more recently mathematicians have tried to understand, describe and

model both dendritic morphology and dendritic behaviour. Despite over a century of re­

search, the role of neuronal morphology in shaping neuronal behaviour remains poorly

understood. Although the complex morphology of dendritic trees is assumed to be impor­

tant in determining the properties of spike trains generated by a neuron (e.g., see, Mainen

and Sejnowski, 1996; Mel, 1994) little is known about this process. Furthermore, the role

of dendritic morphology in integrating the large number of input spike trains distributed

across a dendritic tree also remains poorly understood, although a number of studies have

addressed this issue (e.g., see Koch, Poggio and Torre, 1982; Shepherd and Brayton, 1987).

The first step towards understanding the role played by dendritic morphology in shaping

dendritic behaviour is the quantification of dendritic morphology. The aim of this chapter

is to provide a novel approach to the problem of simulating dendritic morphology.

Modern computers now enable one to analyse and simulate neuronal morphology. Never­

theless, extracting morphological data is a complex and laborious task, compounded by

the diverse structure of dendritic trees. The process of fixing and sectioning the neuron

distorts its morphological features leading to possible artifacts in the data. Diameter and

length measurements are prone to fm'ther error during the reconstruction process due to

the resolving power of the microscope and the reconstruction software (Kaspirzhny, Gogan,

Horcholle-Bossavit and Tyc-Dumont, 2002) and the subjective nature of the process itself.

98

CHAPTER 5. BUILDING THE TYPICAL NEURON 99

Much of the modern work on neuronal morphology was carried out by Hillman (1979),

who introduced seven fundamental parameters to describe neuronal shape based on the

assumption that the cytoskeleton imposes a lower limit on the cross-sectional area of the

dendrite. Hillman’s parameters are initial and terminal segment diameter, segment length

and taper, the ratio between cross-sectional areas of daughter branches, branch power^

and the spatial orientation of segments (Hillman, 1979). The size of the dendritic tree is

specified by the first five parameters, while the shape requires the specification of all seven

parameters. Prom his studies, Hillman asserted that branch power and daughter branch

ratio made the most significant contribution to the overall shape of the dendritic tree.

There are two main approaches to the reconstruction of neuronal morphology based on

anatomical measurements. The first approach typically models dendritic growth in vitro

and is referred to as the ontogenetic method, while the second approach simulates the

fully developed structure and is referred to as the phylogenetic method. The modelling of

dendritic growth in vitro concentrates primarily on the probability of a branch occurring

as the dendritic segment increases in length (Uemura, Carriquiry, Kliemann and Goodwin,

1995). This procedure is limited as the neurons are grown in culture, and are not subject

to many of the factors that may influence dendritic growth in vivo. The phylogenetic

approach involves the simulation of mature neurons and proceeds by generating either a

one-dimensional or three-dimensional representation of a neuron.

(a) The one-dimensional representation of neurons concentrates primarily on charac­

terising their branching properties, and is subdivided into two categories, namely

approaches which focus on diameter and approaches which focus on branch order.

Hillman (1979), Bmke et al. (1992) and Ascoli et al. (2001) base their analysis on

diameter and use it to determine whether a limb will branch or terminate. On the

other hand, Van Pelt & Uylings (1999) and Devaud, Quenet, Gascuel and Masson

(2000) primarily base their analysis on a description of the possible branching pat­

terns based on the number of terminal segments. Dendritic diameters and lengths

may be included in this description, but this is done once the branching pattern has

been determined (Van Pelt & Uylings, 2002).

(b) The modelling of spatially orientated three-dimensional dendrites is not well devel-

^The power of a branch point is the ratio of the sum of the 3/2 power of the daughter diameters to the

3/2 power of the parent diameter. In a Rail tree this is unity at each branch point (Rail, 1959).

CHAPTER 5. BUILDING THE TYPICAL NEURON 100

oped. Only limited progress has been made on the detailed quantification of the

parameters required to describe three-dimensional structures (Cullhiem, Fleshman,

Glenn and Burke, 1987). Tamori (1993) extended the work of Hillman (1979) by

adding the additional parameter effective volume, which is used in the calculation

of branch angles. Factors which influence the direction of growth (tropism) are

introduced within three-dimensional models and have a profound effect on the de­

velopment of the model dendrite (see Ascoli & Krichmar, 2000; Ascoli et al, 2001).

5.1.1 Som e recent m odels o f dendritic m orphology

The aim of this section is to review briefly current models that account for dendritic

morphology.

Burke, M arks and Ulfhake Burke et al (1992) developed a recursive algorithm

based on empirical distributions for length and diameter of dendritic segments, and binary

branching. They state that a successful simulation of dendritic morphology requires

“...a method to produce individual branches that have the correct distributions

of diameters and lengths, as well as the correct proportions of branches that

either branch again or terminate.”

In this model, segment lengths grow by increments AL (an arbitrary value not derived from

the data) and segment diameters decrease by an amount which depends on the taper rate

for that segment. After each increment in length, the segment may continue, terminate

or branch depending on a set of probabilistic rules. Variations in dendritic shape are

determined by this stochastic process. When segments branch, the daughter diameters are

calculated by a process that preserves the observed correlation between daughter branch

diameters, given the empirical distributions of the diameter of the daughter branches.

Discrepancies between observed and simulated distributions of the number of branch points

and number of terminations as functions of distance from the soma led to a revised model

(see, Burke et al, 1992, Fig SC), in which they introduced a “grandparent correction” to

the original model. They state that the role of this correction is to incorporate “memory”

into the process that generates daughter diameters at a branch point. Although this

revision improves the fit between simulated and sampled data this is achieved at the cost

of a significantly more complicated model that is more difficult to implement.

CHAPTER 5. BUILDING THE TYPICAL NEURON 101

Ascoli and K richm ar Research on the simulation of neuronal morphology has culmi­

nated in L-NEURON, ‘a software package for the generation and study of anatomically

accurate neuronal analogs’ (Ascoli & Krichmar, 2000). L-NEURON is based on an al­

gorithm for simulating branching patterns in trees (Lindenmayer, 1968). It provides the

structural basis for combining the shape parameters defined by Hillman (1979), the ef­

fective volume introduced by Tamori (1993) and the algorithm proposed by Burke et

al (1992) into a single program to simulate dendritic morphologies. Fm’ther parameters

describing the orientation of dendrites and branching angles were added to allow the simu­

lation of three-dimensional dendrites. Finally, Rail’s power rule was relaxed by multiplying

the parent diameter by a constant factor to reflect the experimental data (Ascoli et al,

2001). L-NEURON uses the experimental data directly and returns a ‘character string’

with specific drawing commands (i.e. grow forward, branch, taper etc.) that can be trans­

formed into graphical images of three-dimensional spatially orientated neurons (Ascoli et

al, 2001). L-NEURON also includes the global parameter tropism as a modification after

the generation of the cells. However, L-NEURON does not appear to contain any pro­

cedure to assess the quality with which properties of the sampled neurons are reflected

within the simulated neurons, and in particular, properties that have not been used in the

simulation process.

Ti’eatm ent of ta p e r

Models that attempt to simulate neuronal morphology struggle with vast parameter sets

and are fmther complicated by correction factors when the models fail to capture the

properties of the original sample. Taper is probably the most difficult parameter to manage

in neuronal simulation. Burke et al (1992) found the simulation of branch length to be

particularly sensitive to their initial choice of taper despite basing this choice on the

experimentally observed data. In an attempt to rectify this problem, they ran a number

of simulations with a range of taper rates, and then calculated the root mean square error

{ E r m s) o f the deviations of the simulated length distributions from observed distributions

for each rate. The optimal taper rate was chosen as that which minimised E r m s f o r all

branches. Hillman (1979) does include taper as one of the fundamental parameters, yet

makes little reference to it. Tamori (1993) excludes taper from his parameter set and

instead uses the averaged diameter along a segment. Ascoli et al (2001) do not comment

on taper, but it is assumed that they implement taper within the implementation of L-

CHAPTER 5. BUILDING THE TYPICAL NEURON 102

NEURON. Models developed to simulate branch order (Van Pelt & Uylings, 1999 and

Devaud et al, 2000) are not concerned with modelling taper.

5 .1.2 A new approach to th e sim ulation o f dendritic m orphology

The models described above inherit their complexity through the absence of a simple prin­

ciple underlying the development of dendritic morphology and therefore a new approach is

required in the analysis and simulation of neuronal morphology. Toward this end, I intro­

duce a procedure based on a single assumption, namely, that a dendritic section of a given

diameter will have the same length distribution independent of its position in the dendritic

tree. Given this assumption, the dendritic section is taken to be the basic building block

of a dendrite. A recursive algorithm based on a simple set of rules, using probability den­

sities estimated from real data, is developed that will generate a dendrite with statistical

properties that are statistically indistinguishable from those of the original sample. The

success of the algorithm is demonstrated by showing that the original sample and simu­

lated samples preserve several morphological characteristics that were independent of the

simulation procedure.

CHAPTER 5. BUILDING THE TYPICAL NEURON 103

5.2 M athem atical preliminaries

This section sets out the definitions of the various probability densities used in the simu­

lation of dendritic morphology.

5.2.1 P robability density function

The function f{x) is a probability density function on the interval [a, b] provided f{x) > 0

for all X G [a, b] and

f f{x)dx — 1. (5.1)
Ja

Probability is associated with area under the probability density function, and so the

probability that the random variable X E [c, d] is

rd
Prob(c < X < d) = J f{x) dx

where [c, d] Ç [a, b].

5.2.2 Joint probability density function

The idea of a probability function in one dimension may be extended to two or more

dimensions to give what is often called a joint probability density function. For example,

f{x, y) may be interpreted as a joint probability density function of the random pair (A, Y)

over provided f {x,y) > 0 for all x and y and

/ OO roo
/ f {x , y)dxdy = 1. (5.2)

OO J — GO

The density function may be regarded as a probability surface in three dimensions. Prob­

ability is measured by the volume under this surface, and so

I'd nb
Prob(a < X < b and c < Y < d) — I I f{x, y) dx dy

Jc Ja

is the probability that the random variable {X, Y) lies in the rectangle [a, b] x [c, d].

M arginal densities

Given a joint probability function f {x,y), the density of the random variable X in the

absence of information regarding the value of Y is called the marginal density of X.

CHAPTER 5. BUILDING THE TYPICAL NEURON 104

Similarly, the marginal density of Y is the density of Y in the absence of information on

the value of X. I shall use the notation

/ OO r o o

f {x , y)dy , (l>Y(y)^ f { x , y)dx (5.3)
-OO J — CO

to denote the marginal densities of X and Y respectively.

Conditional density

Given a joint probability function f{x, y), the density of the random variable X given that

Y — y \s called the conditional density of X. Similarly, the conditional density of Y is the

density of Y given that X = x. 1 shall use the notation

to denote respectively the conditional density of X given Y and the conditional density of

Y given X. In particular, the deviates X and Y are independent provided the conditional

density of X given Y is the marginal density of X, that is, the density of X is entirely

independent of Y. In this case the joint probability density function of X and Y is the

product of the probability density functions of X and Y.

CHAPTER 5. BUILDING THE TYPICAL NEURON 105

5.3 A procedure for sim ulating a sample of dendrites

The aim of this section is to give an overview of the procedure used to simulate the

morphology of a typical dendrite from a sample of neurons which are assumed a priori to

represent a single type of neuron. The work of this chapter distinguishes between interneu­

rons that receive different classes of input, although they may come from the same group

of interneurons. The sampled neurons are specified in terms of their dendritic diameter,

the coordinates of the points at which the diameters are measured, and information on

the pattern of connectivity for each segment. From this data the length of each dendritic

segment can be determined, as well as the pattern of connectivity between segments. This

work focuses on the development of a procedure to generate a typical neuron from a large

sample of neurons of a single type.

The procedure to be used in this simulation is motivated by the observation that the

dendritic segments in the sample of interneurons at my disposal are largely composed of

uniform cylinders, and that changes in segment diameter predominantly occur at branch

points or are the result of local discontinuities in diameter along the segment. Based on

this observation, dendritic segments will be generated as a sequence of uniform cylinders

(sections). The basic assumption of the simulation procedure is that the combined proper­

ties of a dendritic section, namely its diameter and length, are independent of its location

in the dendritic tree. This assumption is the basis of a recursive algorithm that is used

to generate model neurons. The operation of the algorithm draws from a series of prob­

ability densities that in turn have to be estimated from the sample of nemons. Both the

estimation of non-parametric probability densities and the procedures for drawing samples

from these densities form an important part of this algorithm. The simulation of a model

nem’on begins by determining the number of dendrites connected to its soma. This num­

ber is obtained by drawing from the distribution of the number of dendrites per neuron in

the sample. Once the number of dendrites is selected, the recursive procedure is used to

generate the complete structure of each dendrite.

Select stem diam eter The diameter of the first stem section is obtained by malting

a random draw from the estimated distribution of diameters of first stem sections. This

procedure is implemented once for each dendrite. Once the diameter of the first stem

section is determined, the process continues by following the protocol for generating a

dendritic segment as a sequence of dendritic sections.

CHAPTER 5. BUILDING THE TYPICAL NEURON 106

G enerate a dendritic segm ent Given a diameter d, the length of the associated sec­

tion is determined by a random draw from the joint distribution of section lengths and

section diameters conditioned on the value of d. Once the section is defined, there are

thi’ee possible continuations; the section terminates, the section continues or the section

branches (binary). The probability of each of these events, conditioned on the section di­

ameter, requires estimates for the distribution of the diameters of terminating sections, the

distribution of the diameters of continuing sections and the distribution of the diameters

of branching sections.

(a) T he section te rm inates. The process for generating sections now continues from

the most recent incomplete branch point with a known diameter. Figure 5.1 illus­

trates one possible path in the construction of the dendrite. When segment 3, for

example, is complete, the process returns to branch point P2 and proceeds to con­

struct segment 4. Once segment 4 is complete the process returns to branch point

Pi and constructs segment 5, and so on.

Figure 5.1: An idealised neuron illustrating a possible path of the
recursive procedure, segments 1 to 7 and branch points Pi to P3.

(b) The section continues. The diameter of the next section is determined by a

random draw from the joint distribution of the diameters of contiguous sections

conditioned on the diameter of the current section. The next segment length is

then generated by drawing from the joint distribution of section lengths and section

diameters conditioned on the diameter of the new section.

CHAPTER 5. BUILDING THE TYPICAL NEURON 107

(c) The section branches. The joint distribution of the parent diameter and first

daughter diameter (defined to be the daughter with larger diameter) is estimated

from the sample. The diameter of the first daughter is determined from this density

conditioned by the value of the parent diameter. The trivariate density of the parent

and two daughter diameters is constructed, and the diameter of the second daughter

is drawn from this distribution conditioned on the parent and first daughter diam­

eters. The algorithm now follows the path of the first daughter until all branches

have terminated before returning to the branch point to follow the path of the second

daughter branch, as illustrated in Figure 5.1.

To summarise, the underlying assumption that the section diameter and section length are

independent of location within the dendritic tree is the basis for the recursive algorithm for

simulating dendritic structure. The implementation of this simulation algorithm requires

the construction of various univariate and multivariate probability density functions from

the sampled neurons. This is achieved using a non-parametric technique based on kernel

density estimation. The technique is described in the following section.

CHAPTER 5. BUILDING THE TYPICAL NEURON 108

5.4 Estim ating distributions

Previous attempts to describe the statistical properties of dendritic morphology have as­

sumed that various features of the morphology follow parametric distributions. For exam­

ple, Ascoli et al (2001) used Gaussian, gamma or exponential distributions, while Hillman

(1979) and Burke et al (1992) modelled morphological data using Gaussian distributions,

although the former recognised that this was an inappropriate choice of distribution for the

diameter of terminal segments. By contrast to previous studies, this work uses the kernel

density estimation technique to characterise the statistical properties of neuronal morphol­

ogy. The technique generalises the notion of a histogram and leads to a non-parametric

estimate of probability density in which each observation in a sample is treated as an

independent random variable.

Let Xi, X2, . . . , X„ be a sample of n observations with underlying density f{x). The kernel

estimate f{x) of f{x) is a representation of the density of X in the form

k—1

where K(x) is a non-negative (kernel) function of x satisfying

/ OO

K{x)dx — l. (5.6)
-00

The parameter h appearing in formula (5.5) is called the window width, or bandwidth, of

the estimator. It follows immediately from the properties of K{x) that f{x) is a probability

density, that is, /(x) > 0 and

f{x) dx = 1.L' —00

It turns out in practice to be the value assigned to the bandwidth h that is critical to how

well the unlmown probability density is estimated by f{x) (see Table 3.1 in Silverman,

1986), and not the choice of the kernel function K{x). Following Silverman (1986), the

quality with which f{x) estimates f{x) is measm'ed by the Mean Integrated Square Error

(MISE) defined by

MISE(/) = E [r (f i x) - f i x) f d x] , (5.7)
- J —00 ^

Let J{x) = E [/(x)]. The result of taldng the expected value operator inside the integral

CHAPTER 5. BUILDING THE TYPICAL NEURON 109

I S

/OO r ^ r

E { f { x) - f { x) y
-GO

/OO r ^ „ o 1 r ° ° - 9

E { f { x) - f { x)) \ d x + { f { x) - f { x)) dx (5.8)
-OO J — OO

/OO r ^ _ „ n
E (f {x) - f {x)) { f {x) - f {x)) dx.

-OO ^ ^

The first integral on the right hand side of equation (5.8) is the integrated variance of the

operator. The second integral on the right hand side of equation (5.8) is the integrated

squared bias^ of the MISE operator, and the third integral is zero by the definition of f{x).

Thus the MISE can be simplified to give

/ OO r ^ 1 roo _

E (f { x) - f { x)) \dx-\- { f { x) - f { x)) dx. (5.9)
-OO J — OO

The kernel bandwidth h is chosen to minimise the MISE. Silverman (1986) derives approx­

imate expressions for both components of the MISE defined in equation (5.9) for kernel

functions K (a;) satisfying the conditions

/ OO p o o POO

K{t)dt — 1, / tK{t)dt — 0, / t^K{t) dt — {jL2. (5.10)
-OO J ““ OO J — OO

With these assumptions Silverman (1986) shows that the MISE is well approximated by

the expression

+ R i i ,) = j y i x) d x (5.11)

where f" (a:) is the second derivative of the probability density function, and the first and

second terms on the right-hand side of (5.11) are respectively the integrated variance and

integrated square bias of the MISE operator. Clearly small band widths reduce bias in

the estimate f{x), but at the cost of increasing its variance. On the other hand large

bandwidths reduce the variance of the estimate, but at the expense of increasing its bias.

An expression for the optimal bandwidth can be found by differentiating expression (5.11)

with respect to h and finding the value of h for which this derivative is zero. It follows

from expression (5.11) that

^ = + (5.12)^Bias measures the difference between the expected value of the estimator and the actual value of the

quantity being estimated - in this case f{x) — f{x).

CHAPTER 5. BUILDING THE TYPICAL NEURON 110

and this is in turn zero when

h
R(K)

. (5,13)n^Rif) J
The difficulty with expression (5.13) is that the optimal bandwidth h is expressed in terms

of R{f"), the second order roughness of the true density, which is unlcnown. However,

if the density appears to be lumped then R{f") can often be estimated by first fitting

the observations to a Gaussian distribution, and replacing R{f") by its value computed

analytically from the Gaussian distribution with parameters calculated from the data.

Furthermore, if K{x) is talten to be the probability density for the N(0,1) distribution,

then it is a matter of straight forward Calculus to show that the optimal bandwidth has

value

/i = 1.06 (5.14)

where a is the standard deviation of the observations. The final expression for the kernel

estimate f{x) of the true density f{x) in the case when K{x) is talmn to be the probability

density for the N(0,1) distribution is

(5-15)
/C“ l

5.4.1 M ultivariate kernel estim ates o f density

The univariate kernel estimation procedure just described for one dimension can be gener­

alised to the estimation of joint probability density functions in two and three dimensions.

For example, multivariate estimates of probability density are required in the analysis of

dendritic branch points.

Bivariate density

Suppose that (Xi, Yi), . . . , (X, ,̂ Y)̂ are n bivariate observations, then the kernel density

estimate f {x,y) of the joint probability density function f{x,y) is

where hx and hy are the bandwidths for X and Y respectively. For example, X might

denote the diameter of a dendritic section and Y might denote its corresponding length.

CHAPTER 5. BUILDING THE TYPICAL NEURON 111

Trivariate density

Suppose that (Xi, Yi, (X„, Yn, ^n) are n trivariate observations then the kernel

density estimate f {x ,y, z) of the joint probability density function f {x ,y , z) is

where hx, hy and hz are the bandwidths for X, Y and Z. For example, X might denote

the parent diameter of a dendritic section at a dendritic branch point and Y and Z might

denote the two daughter diameters at that branch point.

5,4.2 M arginal and conditional densities

Two marginal densities are required in the construction procedure. For the bivariate

distribution (5.16), the marginal density 4>x of X and 4>y of Y are derived from equation

(5.3) and have respective values

where the kernel properties of K (x) have been used in the calculation of these probability

densities.

Conditional distributions are used frequently in the simulation of dendrites. For example,

the properties of dendritic sections are controlled by the joint distribution of section lengths

and diameters. Once a diameter of a section is known, its length must be drawn from the

joint distribution of diameters and lengths conditioned on that value of diameter. If X

denotes section length and Y denotes section diameter, then the kernel estimate of the

conditional probability of X in the joint density (5.16), given that Y — y, is

 Thhxhji . _ V hx ' ' /
/(x i Y = y) = k=\

(5.19)

fc=i

fc=i
Clearly a similar expression exists for the distribution of Y conditioned on X — x. How­

ever, in the example just described, section diameter is always known and it is section

CHAPTER 5. BUILDING THE TYPICAL NEURON 112

length that has to be found, and therefore the density of section diameters conditioned on

section length is never needed.

As a further example of the occurrence of a conditional distribution, suppose that the

sample observations are n triples of binary branch point diameters in which X denotes the

parent diameter, Y denotes the first daughter diameter and Z denotes the second daughter

diameter. The observations are used to construct the joint probability density function of

(X, y, Z), and from this density it is required to. draw a second daughter diameter given

the diameters of the parent and first daughter sections. To construct the conditional joint

distribution function of the diameter of a second daughter section, given a parent section

with diameter X = x and a first daughter section with diameter Y = y, it is first necessary

to compute the kernel estimate of the marginal distribution of the diameters of parent and

first daughter sections from the joint distribution function (5.17). This marginal density

is ^

and this is now used to construct the conditional joint distribution function of the diameter

of second daughter sections, conditioned on a parent section with diameter X = x and a

first daughter section with diameter Y = y. The result is

^ Tihxhyhz , \ hx ' ' hy / V hz /
/(z I X = X, y = y) = ------------— ----------------------------- . (5.20)

ÿxy(æ,y)

5.4.3 B a n d w id th se lec tion

The choice of bandwidths to be used in the kernel estimation of univariate and mul­

tivariate distributions are chosen with reference to the Gaussian distribution as advo­

cated by Silverman (1986). This reference distribution is used to estimate the various

roughness properties {e.g., R { f ”)) of the true distribution that may be required in the

estimation of optimal bandwidths in the kernel estimate of probability density. Further­

more, K{x) will be assumed to be the distribution function for an N(0,1) deviate, that

is, K{x) = With these assumptions, it has already been shown that the

optimal bandwidth for univariate kernel density estimation is h — 1.06 where a

CHAPTERS. BUILDING THE TYPICAL NEURON 113

is the standard deviation of the sample data, and n is the number of observations in the

sample (Silverman, 1986).

Bandwidths in higher dimensions

In the case of multivariate distributions, the choice of bandwidths must talce into account

correlations between variâtes. For a bivariate distribution, the bandwidths are calculated

using the formula
f t . = +

(5.21)

where ax and ay are respectively the standard deviations of X and Y and p G [-1,1] is

the correlation coefficient, defined as

, = E | (X - E [X |) (y - E M)] _ (5.22)
axay ax ay

in which axy is the sample covariance. Expressions (5.21) for the bandwidths hx and hy

allow for correlation between the deviates X and Y. If = 0, then equations (5.21)

reduce to the equations given by Silverman (1986, Table 4.1) for multivariate bandwidth

selection.

Following Silverman (1986), the “normal reference rule” for bandwidth selection in a sam­

ple space of dimension d is

4 (g.23)hk = <̂k . d T 2 .

where h^ {1 < k < d) is the bandwidth for the A;-th deviate, and a^ is its standard

deviation. The coefficient [ranges from unity when d = 2 to a minimum value

of approximately 0.924 when d = 11, and thereafter increases monotonically to its limiting

value of unity as d becomes arbitrarily large. Scott (1992) suggests that the sensitivity

of the coefficient [to changes in d is sufficiently small that this coefficient can

be treated as unity without detriment. Scott therefore suggests the use of the simplified

formula

hk^akU-^/^^-^^y (5.24)

5.4.4 Com parison o f d istributions

Kernel density estimation allows the comparison of two distributions in one or more di­

mensions. The statistic used in this work as the basis of the comparison is the inte­

CHAPTER 5. BUILDING THE TYPICAL NEURON 114

grated squared difference of probability density functions. Suppose that / i and /g are two

probability density functions defined over a sample space V, then the integrated squared

difference of / i and A is

« = / { f i - f 2 ? d V (5.25)

where the integration is talcen over the sample space V. Clearly if f i = then = 0.

Departures from 4̂ — 0 measure the extent to which f i is different from / 2-

Suppose now that f \ and /g are kernel estimates of probability density based on samples

and Jg respectively. The problem is to determine whether or not the sample S± is different

from the sample Jg. Although, of course, there is no way of giving a definitive answer to

this question, the statistic defined in (5.25) can be used as the basis for a hypothesis test

which will provide a probability that the null hypothesis is true, namely that Si and

are samples drawn from the same distribution.

The value of $ is first computed for the samples 5i and iSg with f i and /g replaced by

their kernel density estimates f i and /g respectively. On the basis of the null hypothesis,

namely that samples <Si and S 2 are distributed identically, the data from both samples are

pooled, A simulated pair of data sets is now constructed from the pooled data without

replacement, and the value for Ÿ calculated for this simulated pair. By repeating the

procedure of drawing random pairs of sample sets from the pooled data, the distribution

of the statistic $ is computed on the basis that the samples Si and S 2 are distributed

identically. A univariate kernel density estimate of the distribution of $ is now constructed

from the simulated values of Ÿ, and the position of the real value of T compared against

this distribution which was constructed under the null hypothesis that 5i and S 2 are

distributed identically. If the actual value of 'F lies in the tails of the kernel estimate of

the distribution of 4̂ , namely the first or last 2.5%, then the samples Si and ^2 are deemed

to be distributed differently at the 5% level of significance.

A test of the comparison procedure

The aim of this section is to test the validity of the procedure used to compare the difference

between two non-parametric distributions. Recall that a Type 1 error is the probability

of rejecting the null hypothesis when it is true. If the significance of the hypothesis test

is set at p, then fraction p of test statistics must fail the test when the hypothesis is true.

This statement is valid for all values of p, for example, p = 0.01 and p = 0.05 are common

CHAPTER 5, BUILDING THE TYPICAL NEURON 115

choices for p, and therefore the test statistic must be uniformly distributed in [0,1]. To

test this property of 4̂ , two samples Si and S 2 are constructed from a normal distribution

with mean fx and standard deviation a. The actual value of the statistic # is computed,

and then the samples are pooled and 200 simulations of 9 are constructed by drawing from

the pooled data without replacement. The probability of obtaining the actual statistic is

then estimated. Figure 5.2 shows the distribution of 2000 repetitions of this experiment.

Values of are binned at intervals of 0.05 on the horizontal axis and the count is displayed

on the vertical axis.
80

70

60

50

40

30

20

10

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.2: The histogram shows the result of 2000 repetitions of the prob­
ability with which the actual statistic is realised within 200 simulated pairs
of samples drawn from the pooled data on the basis of the null hypothesis.

It is clear from this figure that the probability returned by any particular simulation is

uniformly distributed in [0,1]. Therefore if the significance level is set at p%, then there

is a p% likelihood of rejecting the hypothesis when it is true.

5.4.5 D raw ing from a random distribution

On many occasions it is required to draw a random variable from a kernel estimate of

density based on a sample of n observations. The first stage of the process is to use a

uniform random number generator to choose an integer from 1 to n. This is most effectively

done by calculating h = 1/n and then determining the random integer between 1 and n by

the formula k ~ [t/(0, l) /h] - f l where 1/(0,1) is a uniformly distributed random number

in (0,1) and [ip] denotes the integer part of ip.

Once k is determined, the deviate Xk identifies the observation about which the drawing

is to be made. Another uniformly distributed random number U is drawn and leads to

CHAPTER 5. BUILDING THE TYPICAL NEURON 116

the random number X̂ . 4- h(f)~^{U) where (p{x) is the cumulative distribution function of

the Gaussian distribution with zero mean and unit standard deviation. Since y — (j)^^{U)

is not available as a standard function (only <p{x) is available), the usual way to find y is

to use the bisection algorithm to solve the equation U = (p{y).

CHAPTER 5. BUILDING THE TYPICAL NEURON 117

5.5 Validation of the m odel assum ption

The assumption underlying the recmsive algorithm for simulating dendritic morphology is

that the diameter and length of a section is independent of its location within the dendritic

tree. The aim of this section is to validate this assumption by examining the distributions

of dendritic sections from stem, intermediate and terminal segments with respect to length

over selected diameter ranges.

Table 5.1 illustrates the diameter ranges, the number of sections in each range and the

p-value associated with the test that the distribution of lengths within these ranges are

identical.

Diameter

Range (pm)

No. of sections in dendritic regions p-value: hypothesis

of identical lengthsStem Intermediate Terminal

1.00 < d < 1.50 137 228 0.983

1.50 < d < 2.00 154 110 0.989

1.50 < d < 2.50 212 135 0.681

1.50 < d < 3.50 243 147 0.436

2.00 < d < 3.00 113 36 0.942

2.50 < d < 3.50 60 10 0.726*

2.25 < d < 2.75 49 25 0.755*

2.75 < d < 3.25 37 13 0.168*

2.25 < d < 3.25 86 38 0.294

2.25 < d < 3.75 105 43 0.484

Table 5.1: Comparison of section lengths for inter neurons receiving myelinated input par­
titioned by section diameter. The left column of the table gives the diameter range over
which the distributions of lengths are compared, the middle column gives the number of
sections for each dendritic region in the diameter range, and the right column gives the
p-values for the hypothesis that the distribution of lengths within this range are identical.
The distributions were compared using the procedure described in Subsection 5.4.4, except
for those marked where the data is discrete and a two-sample t-test was used.

The table is based on thirty-one cholinergic interneurons receiving myelinated input. These

neurons gave rise to 272 stem sections, 428 intermediate sections and 577 terminal sections.

Unbranched dendrites were omitted from this analysis as they would contribute to both the

CHAPTER 5. BUILDING THE TYPICAL NEURON 118

stem and terminal categories and would therefore bias the result^. In total, 40 sections were

omitted. Similarly, twenty cholinergic interneurons receiving unmyelinated input gave 240

stem sections, 349 intermediate sections and 556 terminal sections. Table 5.2 illustrates the

diameter ranges, the number of sections in each range and the p-value associated with the

test that the distribution of lengths within these ranges are identical. Again, unbranched

dendrites were omitted from the analysis, 23 sections in this case.

Diameter

Range (pm)

No. of sections in dendritic regions p-value: hypothesis

of identical lengthsStem Intermediate Terminal

1.00 < d < 2.00 120 159 0.872

2.00 < d < 3.00 81 48 0.469

2.00 < d < 4.00 129 63 0.392

2.50 < d < 3.50 53 24 0.711

2.50 < d < 4.00 97 29 0.436

2.00 < d < 3.00 47 81 0.053

3.00 < d < 4.00 74 48 0.665

2.00 < d < 4.00 121 129 0.488

2.50 < d < 4.50 119 91 0.356

3.00 < d < 5.00 116 65 0.962

Table 5.2: Comparison of section lengths for interneurons receiving unmyelinated input

partitioned by section diameter. The left column of the table gives the diameter range over
which the distributions of lengths are compared, the middle column gives the number of

sections for each dendritic region in the diameter range, and the right column gives the

p-values for the hypothesis that the distribution of lengths within this range are identical.

The distributions were compared using the procedure described in Subsection 5.4.4.

It is clear from Tables 5.1 and 5.2 that the distributions of lengths within each diameter

range are statistically indistinguishable. For example, consider interneurons receiving

myelinated input (Table 5.1) for diameters lying in the range 1.0 to 1.5 pm. The p-value

for a comparison of the distributions of lengths for intermediate and terminal sections is

p = 0.938. A similarly strong result holds for each diameter range for both classes of

interneuron. Now that the underlying assumption for the procedure for constructing a

typical dendrite has been validated, it remains to describe this procedure.

^Although these sections are removed when testing the validity of the assumption since they introduce
bias, the construction procedure generates unbranched dendrites, and their number and structure can be
compared with those observed in the sample to provide a second and independent test of the model.

CHAPTER 5. BUILDING THE TYPICAL NEURON 119

5.6 Formal procedure for constructing a dendrite

The formal procedure for simulating neuronal morphology is illustrated for interneurons

receiving myelinated aEerent input. The same procedure can be applied to interneurons

receiving unmyelinated afferent input.

The first step in the construction procedure is to select at random the number of dendrites

that are to be constructed for the interneuron. Figure 5.3A (clear bars) shows the his­

togram for the number of dendrites per cell for interneurons receiving myelinated afferent

input (Figure 5.3A, solid bars, refers to interneurons receiving unmyelinated afferent in­

put). Once the number of dendrites is selected, the recursive procedure outlined in Section

5.3 begins.

(A)
20

>, 15u
g
g -10 HQ)

4 -

ru

4 —F-
1 2 3 4 5

No. of dendrites

1—2

50 -

Q 30 -

= 20 -
-Q fO_o 10 -

Q_

0 4 8 12
Diameter (/rm)

Figure 5.3: (A) Histogram shows the frequency of dendrites per cell for
interneurons receiving myelinated input (clear) and unmyelinated input
(shaded). (B) Distribution of stem section diameters for neurons receiv­
ing myelinated (solid line) and unmyelinated (dashed line) input.

The recursive algorithm to construct a dendrite starts with the determination of the di­

ameter of the first stem section. Figure 5.3B (solid line) illustrates the distribution of the

diameters of first stem sections for interneurons receiving myelinated input (Figure 5.3B,

dashed line, applies to neurons receiving unmyelinated input). The diameter of the first

stem section is drawn from this distribution.

Once this diameter is known, the length of the associated section must be determined.

The latter, involves the drawing of a sample at random from the joint distribution of all

section lengths and diameters conditioned by the section diameter. This distribution is

illustrated in Figure 5.4A,C.

CHAPTER 5. BUILDING THE TYPICAL NEURON 120

(A)

Diameter

(B)

Section
Diameter Proximal Section Diameter

(C)

40

70

90

100 Diameter
28 7 4 3 1 06 5

(D)
4.0

3.5

3.0

2.5

2.0

1.0

0.5
Proximal Section Diameter

F ig u re 5.4; Estim ated bivariate densities for (A) and (C) all section diam eters and

all section lengths, and (B) and (D) all pairs of contiguous sections from interneurons

receiving myelinated input (referred to as proximal and distal sections). (A) and

(C) show the estim ated density and contour plot for all section diam eters and all

section lengths, and (B) and (D) show the estim ated density and contour plot for

all contiguous sections. All lengths and diam eters are m easured in /xm.

Once the length of the section has been found, it is necessary to determine if it terminates,

continues or branches. This selection process requires the estimation of the probability

density of the diameter of sections that terminate, the diameter of sections that continue

and the diameter of sections that branch. These densities for interneurons receiving myeli­

nated input are shown in Figure 5.5A (Figure 5.5B shows the distribution for unmyelinated

input).

CHAPTER 5. BUILDING THE TYPICAL NEURON 121

(A)

3 4
Diameter (/um)

(B)

Terminates
Continues
Branches

Terminates
Continues
Branches

Diameter (/im)

Figure 5.5; Kernel density estimates for the distributions of diameters from
sections that terminate (solid), continue (dashed) or branch (dotted) for in­
terneurons receiving myelinated input (A) and unmyelinated input (B).

For a given section diameter d, let ft{d), fdd) and fh{d) be the respective values of the

probability density function of terminating sections, continuing sections and branching

sections at diameter d, then the probabilities of terminating, continuing and branching are

respectively

Fb

ntft{d) + ricfc{d) + rihfh{d)

_________ncfc(d)_________
ntft{d) + ricfc{d) + nb/b(d)

nhfh{d)

(6.26)

+ nc/c(d) + nhfh{d) '
where nt, ric and Ub are the number of observations in the samples of terminating, con­

tinuing and branching sections. The interval [0,1] is subdivided into three subintervals

[0, Pt]> [Ft, Ft + He] and [Pt -f Pc, 1] and a uniform random number in [0,1] is drawn. The

interval containing this value determines if the section terminates, branches or continues.

When section termination is selected the construction procedure returns to the most recent

branch point and repeats the process of determining the characteristics of the subsequent

sections (see Figure 5.1).

If section continuation is selected, then the diameter of the next section is drawn from

the estimated joint distribution of contiguous sections (see Figure 5.4B,D), conditioned

by the diameter of the current section. Once the diameter of the section is determined,

the construction process repeats the standard procedure for finding a section length, and

CHAPTER 5. BUILDING THE TYPICAL NEURON 122

determining the end condition of that section, namely, terminate, continue or branch.

If section branching is selected, daughter sections must be constructed. For this purpose

it is convenient to designate the daughter section with the larger diameter as the first

daughter section. The relationship between diameters of the parent section and first

daughter section at a branch point is illustrated in Figure 5.6A,B. It is clear from this figure

that these deviates are strongly correlated and this correlation has been recognised in the

construction of the band widths on which the kernel estimate of probability density is based.

The diameter of the first daughter section is now drawn from the joint distribution of parent

(A) (B)

A

First
Daughter
Diameter 0 2 3

Parent Diameter

4.0

3.5

3.0

2.5

2.0

1.0

0.5

F ig u re 5.6: Branch point distributions from interneurons receiving myelinated

input. (A) The joint distribution of parent section and first daughter diam eters and

(B) the corresponding contour plot. All values are measured in fiin.

and first daughter diameters, conditioned by the (known) diameter of the parent section.

Once the parent diameter and the diameter of the first daughter section are determined,

the diameter of the second daughter section is found directly from the trivariate density

of the parent, first daughter and second daughter, conditioned on the (known) diameters

of the parent and first daughter sections. Thereafter the length of each daughter section

is determined by the standard procedure.

At a branch point, the construction process generates the diameters of the two daughter

sections, then using the first daughter section it follows that path, adding sections and

branching until a section terminates. After a termination, the procedure returns to the

most recent branch point and continues from the second daughter section until there is a

termination. This process is illustrated in Figure 5.1.

CHAPTER 5. BUILDING THE TYPICAL NEURON

5.7 R esults

123

The efficacy of the construction procedure is tested by generating 200 samples, in which

each sample contains the number of interneurons in the original sample. The results of

these simulations are used to construct confidence intervals for parameter and probabil­

ity density estimates. The original samples contained thirty-one interneurons receiving

myelinated input and twenty interneurons receiving unmyelinated input. The simulated

samples are used to construct statistics of the properties of the typical interneurons, and

therefore can be used to test the efficacy of the construction procedure. Toward this

end, two different properties of the sampled dendrites are considered. The first group of

properties involve features that are included in the construction process and are referred

to as construction-dependent properties. In most cases are univariate densities of diam­

eter or bivariate densities of the relationship between diameters of contiguous sections

or of daughter diameters. The second group of properties, referred to as construction-

independent properties, are concerned with global features of a simulated dendrite and

are not properties that are intrinsic to the process used to generate the sample dendrite.

The construction-dependent and -independent properties are listed in Table 5.3.

Properties of the sample of real dendrites

Distributions used in
construction process

Number of dendrites

Section lengths

Branching probabilities

Terminating diameters

Contiguous diameters

Branching diameters

Parent with 1 daughter

Paient with 2 daughters

Distributions independent
of construction process

Number of sections

Number of branches

Number of branch points

Branch length

Dendritic length

Unbranched dendrites

Daughter branch ratios

Table 5.3: Characteristic features to be compared: those used in the construc­
tion procedure and those independent of the construction procedure.

One would expect the statistical characteristics of the construction-dependent properties of

simulated samples to be identical to that of the original sample. A strong test of the basic

CHAPTER 5. BUILDING THE TYPICAL NEURON 124

assumption that the section is the basic building block of these interneurons, and that its

properties are location independent, would be to show that the construction-independent

properties for simulated samples are identical to those of the original sample. Each group

of characteristic features will be considered in turn.

5.7.1 F irst test o f th e construction procedure

As a simple test of the construction procedure the number of sections, branches, dendrites

and branch points from the original sample are compared in Tables 5.4 and 5,5 with those

found in the simulations.

Properties
of dendrites

Used in
simulation

Observed
value

Simulated value,
mean ± std. dev.

Number of dendrites Yes 95 95.2 ± 4.6

Number of sections No 1340 1525.2 ± 163.3

Number of branches No 494 551.4 ± 60.6

Number of branch points No 160 143.4 ± 14.9

Table 5.4: A comparison of the elementary properties of dendritic morphology based on
the sample of thirty-one interneurons receiving myelinated input with that based on 200
simulations. Each simulation generates a sample the same size as the original sample.

Properties
of dendrites

Used in
simulation

Observed
value

Simulated value,
mean ± std. dev.

Number of dendrites Yes 62 61.8 ± 3.9

Number of sections No 1179 1176.6 =b 155.6

Number of branches No 363 349.5 ± 51.9

Number of branch points No 120 96.2 ± 12.5

Table 5.5: A comparison of the elementary properties of dendritic morphology based on
the sample of twenty interneurons receiving unmyelinated input with that based on 200
simulations. Each simulation generates a sample the same size as the original sample.

If' is clear from Tables 5.4 and 5.5 that for each comparison the observed value of the

dendritic property lies within two standard deviations of its simulated value, thus demon­

strating that the properties of the simulated cells are statistically indistinguishable from

the real cells. It now remains to compare the original probability densities with the simu­

lated probability densities.

CHAPTER 5. BUILDING THE TYPICAL NEURON 125

5.7.2 C om parison o f observed and sim ulated probability densities

The observed probability densities are now compared with the probability densities of

the construction-dependent and -independent properties. These comparisons are treated

separately.

Comparison of observed and construction-dependent probability densities

A crucial feature of the construction process is the simulation of the probabilities of ter­

minating sections, continuing sections and branching sections. These probabilities are

calculated from the distributions of the diameters of terminating sections, continuing sec­

tions and branching sections. These densities are now compared in Figure 5.7.

(A)

S 12
X

Terminates (B) Continues (C)

p — 0.814 ^ " p = 0.185 6 -
r \

/ 2 -
- Z —,— -----r 0 - 1 ' 9

p — 0.306

"I—
1 2 3

Diameter (//m)

2 3 4 5

4 p = 0.579
3

2

1

0
0 2 4 6 8

Diameter (/rm)

Branches

p = 0.786

3 p = 0.286

2

1

0
0 2 4 6 8

Diameter (//m)

Figure 5.7: The distribution of the diameters of terminating (A) and (D), contin­
uing (B) and (E) and branching (C) and (F) sections for the original (solid line)
and simulated (dashed line) samples of interneurons. Graphs (A)-(C) correspond
to interneurons receiving myelinated input and graphs (D)-(F) correspond to in­
terneurons receiving unmyelinated input. The p-value for the null hypothesis that
the distributions are identical is shown in the upper right-hand corner of each graph.

Figure 5.7 illustrates each of the observed (solid line) and simulated densities (dashed

CHAPTER 5. BUILDING THE TYPICAL NEURON 126

line) for each type of section ending along with the corresponding p-value for the null

hypothesis that the distributions are identical. The figure illustrates the comparisons for

interneurons receiving myelinated afferent input (5.7A-C) and unmyelinated afferent input

(5.7D-F), and in each case the null hypothesis is not rejected.

There are two further comparisons to be made between the estimated probability densities

based on the original sample and the estimated probability densities from the simulation

involving construction-dependent properties of the dendrite.

(A)

(C)

Diameter Proximal Section Diameter

Distal
Section 0
Diameter

(B)
4.0

3.5

3.0

2.5

2.0

0.5
Proximal Section Diameter

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Proximal Section Diameter

(D)
4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5
Proximal Section Diameter

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

F ig u re 5.8: Estim ated probability densities of contiguous section diam eters for

interneurons receiving myelinated input. Panels (A) and (C) show surface plots for

the original sample and sim ulated sample respectively, while panels (B) and (D)

show the associated contour plots. Com ponents of contiguous sections are referred

to as proximal and distal sections. All diam eters are measured in ^m .

Figure 5.8A,B shows the estimated bivariate probability densities of the diameters of

contiguous section of interneurons receiving myelinated afferent input, whereas Figure

5.8C,D illustrates the same densities for simulated samples. It is clear that the simulated

CHAPTER 5. BUILDING THE TYPICAL NEURON

results captures well the qualitative properties of the original sample.

127

(A)

(C)

Daughter
Diameter Parent Diameter

Daughter
Diameter

3.0

2.5

2.0

1.5

1.0

0.5
Parent Diameter

Parent Diameter

(D)
3.5

3.0

2.5

2.0

0.5

Parent Diameter

F ig u re 5.9: Estim ated probability densities of parent section diam eters and first daughter

section diam eters for interneurons receiving myelinated input. Panels (A) and (C) show

surface plots for the original sample and sim ulated sample respectively, while panels (B)

and (D) show the associated contour plots. All diam eters are measured in fim.

Further, Figure 5.9A,B shows the estimated bivariate probability densities of the diameter

of parent sections and the diameter of the first daughter section at a branch point for

interneurons receiving myelinated afferent input, whereas Figure 5.9C,D shows the same

densities for simulated samples. The simulated results give good qualitative agreement

with the properties of the original sample.

The results of this section demonstrate that the probability densities used in the construc­

tion process are accurately reconstructed by the simulation procedure.

CHAPTER 5. BUILDING THE TYPICAL NEURON 128

Com parison of observed and construction-independent densities

A strong test of the basic assumption that the section is the basic building block of these

interneurons, and that its properties are location independent, is to predict the global

features of dendritic morphology that aie not intrinsic to the construction process. Recall

that it has been demonstrated (Section 5.7.1) that the number of sections, number of

branches and number of branch points in the original sample have been shown to be

statistically indistinguishable from those in the Simulated samples. Other construction-

independent featmes such as daughter-branch ratio, joint distribution of the diameters

of daughter branches, characteristic interneuron lengths and unbranched dendrites are

considered in this section.

D aughter branch ra tio The first comparison of the global properties in this section is

between the daughter branch ratio of the original and simulated samples, defined as “the

ratio of the diameters of daughter-branch processes” at a branch point (Hillman, 1979).

Figure 5.10 illustrates histograms of these distributions for the original and simulated

samples of inter neurons for both types of afferent input.

(A)
80-

60-
Myelinated

40-

20 -

1 3 54

(C) 100-1

80-

i 60-

' 40*

20 -

0

Myelinated

lp = c u .

(B) 100 -

80-

60

40-

2 0 -

0

 1
1 2 3 4 5

Daughter Branch Ratio

Unmyelinated

todn=pLa„ ” T—
10 13

(D) 100 -I

80

60

40-

20 -

0

Unmyelinated

 r ____ ,
1 4 7 10 13

Daughter Branch Ratio

Figure 5.10: Histograms showing the distributions of daughter branch ratios. Panels (A)
and (C) show histograms for the original sample and simulated sample respectively for
interneurons receiving myelinated input, while panels (B) and (D) show these histograms
for interneurons receiving unmyelinated input. Binwidth; (A),(C) = 0.2, (B),(D) = 0.5.

CHAPTER 5. BUILDING THE TYPICAL NEURON 129

As in the case of the distributions illustrated in the Section 5.7.2, there is good agreement

between the histograms generated from the original sample and those generated from the

simulation. Moreover, the distributions in Figure 5.10 for the original and simulated sam­

ples were found to be statistically indistinguishable. For interneurons receiving myelinated

afferent input, the p-value for the null hypothesis that the distributions are indistinguish­

able was p= 0.901, whereas the p-value for the same null hypothesis for interneurons

receiving unmyelinated afferent input was p= 0.806.

Jo in t d istribu tion of the d iam eters of daughter sections Figure 5.11A,B shows

the estimated bivariate probability densities of the daughter section diameters at a branch

point for interneurons receiving myehnated afferent input, whereas Figure 5.11C,D illus­

trates the same densities for simulated samples. The simulated sample captures well the

qualitative properties of the real data.

(A)

(C)

Daughter 1.0 1.5 2.0Diameter
2.5 3 0 ^ ®

First Daughter Diameter

Second 1
Daughter
Diameter 1,0 15 " : » ” "

Flf#t Daughter Diameter

(B) 3°
2.5

2.0

0.5

First Daughter Diameter
0.5 1.5 2.0 2.5

(D) 3.0 I

First Daughter Diameter
1.0 1.5 2.0 2.5 3.0 3.5

Figure 5.11: Estimated probability densities of the diameter of the daughter sec­
tions for interneurons receiving myelinated input. Panels (A) and (C) show surface
plots for the original sample and simulated sample respectively, while Panels (B)
and (D) show the associated contour plots. All diameters are measured in pm.

CHAPTER 5. BUILDING THE TYPICAL NEURON 130

C haracteristic neuronal lengths The final comparison of the global properties be­

tween the original and simulated samples will consider the distributions of section, branch

and dendritic length for interneurons receiving myelinated afferent input. Recall that there

were 31 interneurons receiving myelinated afferent input. Thus 200 simulations each gen­

erating 31 interneurons was carried out. These simulations allow an estimate of the mean

value and standard deviation of the value of the density of each characteristic length for the

simulated interneurons. Figure 5.12 shows the mean value (dashed line) and two standard

deviations about the mean value (dotted lines) for these simulated probability densities.

The solid line in each panel in Figure 5.12 shows the estimated probability density for the

original sample.

(A)
50i Section

so­

lo-

50 100 1500
Length {fim)

(B)

Segment

0 50 100 150 200
Length (//m)

(C)
3 Dendrite

2

1

0
0 250 500 750 1000

Length (/xm)

Figure 5.12: Each graph displays the distribution of lengths from the original interneu­
rons (solid line), the mean distribution of simulated lengths (dashed line) ± two standard
deviations (dotted line). Graphs (A), (B) and (C) correspond to the section, segment and
dendrite length respectively, from interneurons receiving myelinated input.

With the exception of the peak value for the density of section lengths (Figure 5.12A), all

values of the density based on the original sample lie within two standard deviations of the

mean of the simulated density. These figures clearly demonstrate that the construction

procedure successfully predicts the characteristic lengths of the dendrite. Interneurons

that receive unmyelinated afferent input are treated subsequently.

U nbranched dendrites Approximately a quarter/sixth of all dendrites from the sam­

ple of interneurons with myelinated/ unmyelinated input were unbranched, that is, they

grew from the soma and terminated without branching. Recall that these dendrites were

excluded from the analysis in Section 5.5 to avoid issues of bias. However the sections

CHAPTER 5. BUILDING THE TYPICAL NEURON 131

from these dendrites were included in the simulation process. Unbranched dendrites are

generated naturally by the simulation process and their proportion in a simulated sample

serves as an independent test of the basic concept that the underlying properties of a

dendritic section is independent of its location within a dendritic tree.

Afferent input No. of Dendrites No. of Unbranched Percentage

Myelinated 95 23 24.2%

Sim Myelinated 95.2 ± 4.6 30.8 ± 4.8 32.4% ± 4.6

Unmyelinated 62 11 17.7%

Sim Unmyelinated 61.8 ± 3.9 18.6 ± 3.6 30.3% ± 6.3

Table 5.6; Ratios of unbranched to branched dendrites for the original and
simulated samples of interneurons receiving myelinated and unmyelinated input.
Simulated values are described by the mean ± standard deviation.

The proportion of unbranched dendrites in the original sample lies within two standard

deviations of the mean value predicted by simulation.

D endogram s

It has been demonstrated that the properties of the simulated interneurons receiving myeli­

nated afferent input are statistically indistinguishable from those of the original sample.

Figure 5.13 illustrates the dendograra for one of the sample interneurons and a simulated

interneuron.

CHAPTER 5. BUILDING THE TYPICAL NEURON 132

(A)

—

{HI—

Length ()um)
I- - - - - - — ~J—~- - - - - - - 1- - - - I 1- - - - - - - - - ~1- - - - - - 1- - - - - - - - - - - - - T - - - - - - - - - - - 1
0 50 100 150 200 250 300 350 400

Figure 5.13: Two example dendograms of interneurons that receive myelinated input,
where dendograms (A) and (B) are from the original and simulated samples respectively.

It is clear from Figure 5.13 that the original and simulated interneurons receiving myeli­

nated input display similar branching patterns: some short clustered branches and other

long unbranched segments. Furthermore, the unusual feature of very short branches after

a branch point is common in both the original and simulated interneurons. Quantitatively,

the original interneuron receiving myelinated input (Figure 5.13A) has 27 branches and

12 branch points, while the simulated interneuron (Figure 5.13B) has 29 branches and 13

branch points.

5.7.3 Sum m ary

The underlying assumption of the construction procedure, namely that the joint distrib­

ution of the diameter and lengths of dendritic sections is independent of position in the

dendritic tree is validated. Both the construction-dependent and -independent properties

of the interneurons are retrieved by the recursive algorithm used to simulate a dendritic

tree, further validating the basic assumption.

CHAPTER 5. BUILDING THE TYPICAL NEURON 133

5.7.4 A further developm ent

A feature of the dendrites has been identified that requires special treatment in the sim­

ulation procedure. Specifically, the calculation of the bandwidth for the kernel density

estimation procedures assumes that the underlying density is unimodal.

The assumption of a unimodal density

Figure 5.14 shows the mean value (dashed line) and two standard deviations about the

mean value (dotted lines) for the estimated probability densities of simulated section,

segment and dendritic lengths fi'om interneurons receiving unmyelinated input. The solid

line in each panel of Figure 5.14 shows the estimated probability density for the original

sample.

(A)
27 1 Section

o
j — i

X 18

50 100 1500
Length (^m)

Segment

Length (fim)

(C)

1 r
100 200 300 400

1.5i Dendrite

0.5-

0 0.5 1 1.5 2
Length (mm)

Figure 5.14: Each graph displays the distribution of lengths from the original interneu­
rons (solid line), the mean distribution of simulated lengths (dashed line) ± two standard
deviations (dotted line). Graphs (A), (B) and (C) correspond to the section, segment
and dendrite length respectively, from interneurons receiving unmyelinated input.

The fit between the original and simulated samples for interneurons receiving unmyelinated

input is less successful than that for the interneurons receiving myelinated input (see Figure

5.12). In fact, Figure 5.14C suggests that the underlying density of dendritic lengths may

not be unimodal, which in turn suggests that interneurons with unmyelinated input have

two types of dendrites, namely long dendrites and short dendrites. Although Olave et al.

(2002) suggested this might be the case, they were unable to quantify the difference. If

this is truly the case then both classes of dendrite must be identified and then treated

separately. This is an issue for further work.

CHAPTER 5. BUILDING THE TYPICAL NEURON 134

5.8 Conclusions

The procedure described in this chapter for simulating dendrites differs in two important

ways from previous methods. First, the basis of the simulation is the single assumption

that the joint distribution of diameter and length of a dendritic section is independent of its

location within a dendritic tree. That is, the distribution of length for dendritic sections

with the same diameter drawn from different parts of the tree are identical. Second,

the procedure does not assume specific parametric forms for the probability densities

characterising the features of a dendrite, but instead uses the kernel density estimation

technique to provide a non-parametric estimate of these densities.

The simplicity of the approach has resulted in a straightforward simulation procedure

that successfully generates dendritic trees that are statistically indistinguishable from the

original sample.

C hapter 6

C oncluding remarks and future

work

The work of this thesis contributes to three different areas of mathematical modelling in

neuroscience. Each contribution has introduced a novel approach to a particular neuro-

physiological problem. The first problem focused on the discrepancy between the observed

and predicted conduction speed of the propagated action potential, and the extent to which

the effects of biological variability and measurement error can account for this discrepancy.

The second problem considered the analytical development of the equivalent cable. In this

analysis an arbitrary branched structure was represented by a piecewise uniform cable and

a unique bijective mapping of input between the branched structure and the cable. The

third problem developed a new and parsimonious procedure for the simulation of dendritic

morphology based on the estimation of probability density by the kernel method.

With respect to the Hodgkin-Huxley membrane model, measurement error and biological

variability were eliminated as possible sources of the discrepancy in conduction speed in

Chapter 2. Work by Armstrong and Bezanilla (1977), Bezanilla and Armstrong (1977)

and more recently by Clay (1998) suggests that the discrepancy might be accounted for by

a revision of the models for the sodium and potassium kinetics. Although Clay considers

how the threshold for the action potential and its latency are affected by the revised kinetic

scheme, he does not use the new kinetics to predict the conduction speed of the propagated

action potential and compare it with its observed value. This would be the most important

test of the new model since it is a test which is independent of the procedure used to derive

135

CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK 136

the kinetic scheme. In a future study, the revised kinetics scheme will be used to predict

the conduction speed of the propagated action potential.

A complete description of the procedure used to derive the equivalent cable was given in

Chapter 4. This procedure transforms an arbitrary branched structme into an equivalent

unbranched cable. The main feature of this procedme is the bijective mapping that exists

between the branched and unbranched structures. In a future study, the bijective mapping

will be used as a tool to investigate the influence of the neuronal morphology on neuronal

behaviour.

A new procedure for simulating neuronal morphology was described in Chapter 5. This

procedme was based on a single assumption that the joint distribution of diameter and

length of a dendritic section is independent of its location within a dendritic tree. By

using univariate and multivariate kernel density estimation procedures, samples of spinal

interneurons were simulated successfully from a sample of interneurons with myelinated

afferent input. Future work will involve the refinement of this procedure to estimate

accurately bimodal distributions and also its application to other classes of neurons.

References

Armstrong, C.M. and Bezanilla, F. (1977), Inactivation of the sodium channel: II, Gating

current experiments. J. Gen. Physiol. 70, 567-590.

Ascoli, G. A. and Krichmar, J. L. (2000). L-neuron: A modelling tool for the efficient

generation and parsimonious description of dendritic morphology. Neurocomputing. 32-

33, 1003-1011.

Ascoli, G. A., Krichmar, J. L., Nasuto, S. J. and Senft, S. L. (2001). Generation, de­

scription and storage of dendritic morphology data. Phil. Trans. R. Soc. Lond. B. 356,

1131-1145.

Barrett, J.N. and Grill, W.E. (1974). Specific membrane properties of cat motoneurones.

J. Physiol. 239, 301-324.

Bezanilla, F., and Armstrong, C.M. (1977). Inactivation of the sodium channel: I. Sodium

current experiments. J. Gen. Physiol. 70, 549-566.

Burke, R. E., Marks, W. B. and Ulfhake, B. (1992). A parsimonious description of mo­

toneuron dendritic morphology using computer simulation. J. Neurosci. 12, 2403-2416.

Ramon y Cajal, S. (1952). Histologie du System Nerveux de l’Homme & des Vertébrés,

CSIC, Madrid.

Caterall, W.A. (1988). Structure and function of voltage-sensitive ion channels. Science.

242, 50-61.

Caterall, W.A. (1992). Cellular and molecular biology of voltage-gated sodium channels.

Physio. Rev. 72(Supp), S15-S48.

Clay, J. R. (1998). Excitability of the squid giant axon revisited. J. Neurophysiol. 80,

903-913.

137

REFERENCES 138

Clements, J.D. and Redman, S. J. (1989). Cable properties of cat spinal motoneurons mea­

sured by combining voltage clamp, current clamp and intrarcellular staining. J. Physiol

409, 63-87.

Cole, K.S. (1968). Membranes, Ions and Impulses. University of California Press; Berke­

ley and Los Angeles.

Cooley, J. W. and Dodge Jr., F. A. (1966). Digital computer solutions for excitation and

propagation of the nerve impulse. Biophys. J. 6, 583-599.

Cullheim, S., Fleshman, J. W., Glenn, L. L. and Burke, R. E. (1987). Three-dimensional

architecture of dendritic trees in type-identified u-motoneurons. J. Comp. Neurol. 255,

82-96.

Davis, L. Jr and Lorente de No, R. (1947). Contribution to the mathematical theory of

the electrotonus. Stud. Rockefeller Inst. M. Res. 131, 442-496.

Devaud, J. M., Quenet, B., Gascuel, J. and Masson, C. (2000). Statistical analysis and

parsimonious modelling of dendograms of in vitro neurons. Bull. Math. Biol. 62, 657-683.

Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations (2nd Ed.). Johns Hopkins

University Press, Baltimore.

Hermann, L. (1884). Nachtrag zu Seite 150. Pflilgers Arch. ges. Physiol 33, 162-168.

Hillman, D. E. (1979). Neuronal shape parameters and substructures as a basis of neu­

ronal form. In: The neurosciences, fourth study program. Ed. Schmitt, F. pp. 477-498.

Cambridge, MA: MIT Press.

Hodgkin, A.L. and Huxley, A. F. (1939). Action potentials recorded from inside a nerve

fibre. Nature. 144, 710-711.

Hodgkin, A.L. and Rushton, W.A.H. (1946). The electrical constants of a crustacean neve

fibre. Proc. Royal Soc. Lond. B 133, 444-479.

Hodgkin, A.L. and Huxley, A. F. (1952a). Currents carried by sodium and potassium

through the membrane of the giant axon of Loligo. J. Physiol 116, 449-472.

Hodgkin, A.L. and Huxley, A. F. (1952b). The components of membrane conductance in

the giant axon of Loligo. J. Physiol 116, 473-496.

REFERENCES 139

Hodgkin, A.L, and Huxley, A. F. (1952c). The dual effect of membrane potential on

sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497-506.

Hodgkin, A. L. & Huxley, A. F. (1952d). A quantitative description of membrane current

and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544.

Hodgkin, A. L,, Huxley, A. F. & Katz, B. (1952). Measurements of current-voltage rela­

tions in the membrane of the giant axon of Loligo. J. Physio. 116, 424-448.

Hoel, P.G. (1954). Introduction to Mathematical Statistics. Wylie, NY.

Holmes, W.R. (1986). A continuous cable method for determining the transient potential

in passive dendritic trees of known geometry. Biol. Cyhem. 55, 115-124.

Huxley, A. F. (1959). Ion movements during nerve activity. Ann. N Y Acad. Sci. 81,

221-246.

Jack, J.J.B., Noble, D. and Tsien, R.W. (1975). Electric current flow in excitable cells.

OUP, Oxford.

Jack, J. and Redman, S. (1995). Introduction to cable properties of neurons with complex

dendritic trees. In: The Theoretical Foundation of Dendritic Function — Selected Papers

of Wilfrid Rail with Commentaries. Ed. Segev, I , Rinzel, J. and Shepherd, G.M. pp.

27-33. The MIT Press, Cambridge, Massachusetts.

Jankowslca, E. (1992). Interneuronal relay in spinal pathways from propioceptors. Prog.

Neurobiol. 38, 335-378.

Kaspirzhny, A.V., Gogan, P. Horcholle-Bossavit, G. and Tyc-Dumont, S. (2002). Neu­

ronal morphology data bases: morphological noise and assesment of data quality. Net­

work: Comput. Neural Syst. 13, 357-380.

Katz, B. (1966). Nerve, muscle and synapse. McGraw-Hill. New York.

Kelvin, Lord (William Thompson). (1855). On the theory of the electric telegraph. Proc.

R. Soc. Lond. 7, 382-399.

Koch, C., Poggio, T. and Torre, V. (1982). Retinal ganglion cells: A functional interpre­

tation of dendritic morphology. Phil. Trans. R. Soc. Lond. B 298, 227-263.

REFERENCES 140

Kreusch, A., Pfaffinger, P. J., Stevens, C. F. & Choe, S. (1998). Crystal structure of the

tetramerization domain of the Shaker potassium channel. Nature. 392, 945-948.

Larkman, A. U. (1991). Dendritic morphology of pyramidal nem’ons of the visual cortex

of the rat: I. Branching Patterns. J. Comp. Neurol. 306, 307-319.

Lindenmayer, A. (1968). Mathematical models for cellular interactions in development I

Sz II. J, Theor. Biol. 18, 280-315.

Lindsay, K.A., Ogden, J.M., Halliday, D.M. and Rosenberg, J.R. (1999). An introduction

to the principles of neuronal modelling. In: Modem techniques in neuroscience research.

Ed. Windhorst, U. and Johannson, H. pp. 213-306. Springer Verlag, Berlin.

Lindsay, K.A., Ogden, J.M. and J.R. Rosenberg, J.R. (2001)a. Dendritic subunits deter­

mined by dendritic morphology. Neural Comp. 13, 2465-2476.

Lindsay, K.A., Ogden, J.M. and Rosenberg, J.R. (2001)b. Equivalence transformations

for dendritic Y-junctions: a new definition of dendritic sub-unit. Math. Biosci. 170,

133-154.

Mainen, Z.F. and Sejnowski, T.J. (1996). Influence of dendritic structure on firing pattern

in model neocortical neurons. Nature 382, 363-366.

Mel, B.W. (1994). Information processing in dendritic trees. Neural Comp. 6, 1031-1085.

Miller, R.N. and Rinzel, J. (1981). The dependence of impulse propagation speed on

firing frequency, dispersion, for the Hodgkin-Huxley model. Biophys. J. 34, 227-259,

Meunier, C. and Segev, I. (2002). Playing the devil’s advocate: is the Hodgkin-Huxley

model useful? Trends Neurosci. 25, 558-563.

Ogden, J.M., Rosenberg, J.R. and Whitehead, R.R. (1999). The Lanczos procedure for

generating equivalent cables. In: Modelling in the Neurosciences - from ionic channels

to neural networks. Ed. Poznanski, R.R. pp. 177-229. Harwood Academic Publishers,

Australia.

Olave, M. J., Puri, N., Kerr, R, and Maxwell, D. J. (2002). Myelinated and unmyelinated

primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal

horn. Exp. Brain Res. 145, 448-456.

REFERENCES 141

Pallotta, B.S. and Waggoner, P.K. (1992). Voltage-dependent potassium channels since

Hodgkin and Huxley. Physio. Rev. 72(Supp), S49-S67.

Rail, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Exp.

Neurol. 1, 491-527.

Rail, W. (1962). Theory of physiological properties of dendrites. Ann. N. Y. Acad. Sci.

96, 1071-1092.

Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M., Engel, A. 8z Fujiyoshi, Y. (2001).

The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities.

Nature. 409, 1047-1051.

Scott, D.W. (1992). Multivariate Density Estimation Theory, Practice, and Visualisation.

John Wiley and Sons, Inc, New York.

Segev, I. and Burke, R.E. (1989). Compartmental models of complex neurons. In: Methods

in neuronal modelling: from synapses to networks.Ed. Koch, C. and Segev, I. pp. 93-136.

MIT press, Cambridge, MA.

Segev, I. (1992). Single nemone models: oversimple, complex and reduced. Trends Neu­

rosci. 15, 414-21.

Shepherd, G.M. and Brayton, R.K. (1987). Logic operations are properties of computer-

simulated interactions between excitable dendritic spines. Neuroscience. 21, 151-166.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London:

Chapman & Hall.

Tamori, Y. (1993). Theory of dendritic morphology. Phys. Rev. E 48, 3124-3129.

Uemura, E., Carriquiry, A., Kliemann, W. and Goodwin, J. (1995). Mathematical mod­

elling of dendritic growth in vitro. Brain Res. 671, 187-194.

Ulfhake, B. and Kellerth, J.-O. (1983). A quantitative morphological study of HRP-

labelled cat a-motoneurones supplying different hindlimb muscles. Brain Res. 264, 1-19.

Ulfhake, B. and Kellerth, J.-O. (1984). Electrophysiological and morphological measure­

ments in cat gastrocnemius and soleus a-motoneurons. Bruin Res. 307, 167-179.

REFERENCES 142

Van Pelt, J. (1992). A simple vector implementation of the Laplace-transformed cable

equations in passive dendritic trees. Biol. Cybem. 68, 15-21.

Van Pelt, J. and Uylings, H. B, M. (1999). Natural variability in the geometry of dendritic

branching patterns. In: Modelling in the neurosciences: from ionic channels to neural

networks. Ed. Poznanski, R. R. pp. 79-108. Amsterdam, The Netherlands: Harwood

Academic Publishing.

Van Pelt, J. and Uylings, H. B. M. (2002). Branching rates and growth functions in the

outgrowth of dendritic branching patterns. Network: Comp. Neur. Syst. 13, 261-281.

Vetter, P., Roth, A. and Hausser, M. (2001). Propagation of action potentials in dendrites

depends on dendritic morphology. J. Neurophys. 85, 926-937.

Whitehead, R.R. and Rosenberg, J.R. (1993). On trees as equivalent cables. Proc. R.

Soc. Lond. B 252, 103-108.

A ppend ix A

A ssociated program s

Each, of the projects described in the previous chapters use C programming to implement

the various mathematical problems and manipulations. Therefore the development of the

code is itself a significant component of each project and is included here to compliment

each chapter. To avoid repetition, those functions used regulai'ly are brought together at

the end of this appendix after the main body of programs.

A .l A ction potentials

Despite using the same model, namely the Hodgkin-Huxley membrane model, the unique

problems of estimating the conduction velocity of a propagating action potentials and the

dispersion characteristics of a train of action potentials had to be treated quite differently.

Therefore, two distinct programs had to be developed to solve each problem.

A .1.1 H H P otV el.c

The first, HHPotVel.c investigates the conduction speed of the action potential after a

current has been injected into an axon at the resting membrane potential. In this case,

if the injected current is large enough, the action potential develops and then propagates

away from the point of stimulation.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

143

APPENDIX A. ASSOCIATED PROGRAMS

/***********+***
Travelling Waves - Hodgkin Huxley - Squid Giant Axon

SOLVES THE PERIODIC HODGKIN HUXLEY EQUATIONS
USING SPECTRAL METHOD - FOURIER

C_m V_t + J = (g_A*R/2) V_xx V(x,0) = F(x) given

AND (a) Spectral method - majority of program carried out in
coefficent space - converting back for solution.

(b) Resting axon is given a large injected current, and
initiates two propagating waves: investigating first
moments after initialisation.

144

This program calculates & prints out:
(i) core current along axon
(ii) radial current out of axon

(ill) velocity of left & right hand waves
(iv) potential & channel kinetic values
(v) z-values: axial coordinates

(vi) r-values: radial coordinates
(vii) intracellular potentials across radii

(viii) extracellular potentials to "infinity"

core.dat
radial.dat

velocity.dat
hhwave##

zval.dat
rval.dat

intpot.dat
extpot.dat

* /

/* Declaration of Global functions */
double bess_iO(double);
double bess_il(double);
double bess„kO(double);
double bess_kl(double);
void fprime(double, double *, double *);
void sgsolve(int, int *, double *, double *, double double, double *,

void (*fcn)(double, double *, double *), int *);
void intrp(int, double, double +, double, double *, double *, int, double +*, double *);
void step(int, double *, double *, double *, double *, double *, double

int *, int *, double **, double *, double *,
void (*fcn)(double, double *, double *));

void real_c(int, double *, double *);
void real_v(int, double *, double *);

/* Biological Parameters */

double *,
int *,

double, double,
int *,

#define CELSIUS 18.5 /* Celsius temperature of neuron */
#define RD 0.0238 /* Radius of squid axon (cm) */
#define GA 28.249 /* Specific intra-cell’r conductance (mmho/cm)*/
#define GE 28.249 /♦Specific extra-cell'r conductance (mmho/cm)*/
#define CM 1.0 /♦Specific membrane capacitance (muF/cra''2)*/

/* Parameters for ODE solver */
#define N 1600 /* Must be even */
#define TEND 0.6 /* Final time */
#define DT 0.01 /* Time step */
#define TOL 5.e-16 /* Error tolerance */
#define LEN 16.0 /* Window length * /

/* Other parameters */
ttdefine FRAC 1.0 /* Fraction of v_na for injected current*/
#define DIV 100 /* Divisions of RD */
#define FAC 1.05 /* Multiplication factor for extracellular region */
#define HUM 9 /* Number of potentials to be sampled */

/* Declaration of HH coefficient functions */

APPENDIX A. ASSOCIATED PROGRAMS 145

double alfa_hC double)
double alfa„m(double)
double alfa_uC double)
double beta_h(double)
double beta„m(double)
double beta_n(double)

/ * Derivative of Hodgkin Huxley functions */
double d_alfa_h.(double);
double d_alfa_m(double);
double d_alfa_n(double);
double d_beta„h(double);
double d_beta_m(double);
double d_beta_n(double);

double *fac, *rad;

void main(void)
{

extern double *fac, *rad;
double dx=0.01, *x, *y, *c, +cc, *cur, *nu, *icof, *ecof, *e, tnew, told, *ep, dist,

ti, to, toi, relerr, abserr, rvl, Ivl, ivdc, Ivm, Ivr, rvm, rvr, ir, il, tf,
ts, xlf, xrf, xls, xrs, frac, xold[NUM], xnew[NUM], *mp, tmp, pi, veq, meq,
heq, neq, vn, vu, vl, vr, pos;

double pots[MUM]={-60.0, -25.0, 0.0, 10.0, 20.0, 25.0, 28.0, 29.0, 30.0};
char filename[20], ext[3];
int j, k, nh, ndim, ifail, fig, im, kk, setmem=l, first, append, appendl, append2,

success, start, firstl;
static double v_na=55.0, v„k=-72.0, v_l=-49.387, g_na=120.0, g_k=36.0, g_l=0.3;
FILE *fp, *fpl;

I *

Variables

y[0] -> y[N-l] Holds the potential
y[N] -> y[2*N-l] Holds H at nodes

y[2*N] -> y[3*N-l] Holds M at nodes
y[3*N] -> y[4*N-l] Holds N at nodes

* /

/* STEP 1. - Build ratio of Bessel functions */
nh = N/2;
pi = 4.0*atan(l.0):

nu = (double *) malloc((nh+1)*sizeof(double));
icof = (double *) malloc((nh+1)*sizeof(double));
ecof = (double *) malloc((nh+1)*sizeof(double));
fac = (double *) malloc((nh+1)*sizeof(double));
cur = (double *) malloc((nh+1)*sizeof(double));
rad = (double *) malloc((DIV+1)*sizeof(double));
fac[0] = 0.0;
cur[0] =0.0;
nu[0] = 0.0;
icof[0] = 1.0;
ecof[0] = 0.0;
for (k=0 ; k<=DIV ; k++) rad[k] = (RD/DIV)*((double) k);
for (k=l ; k<=nh ; k++) {

trap = 2.0*pi*RD*((double) k)/LEN;
nu [k] = trap ;
icof[k] = GE*bess_kl(tmp)/(GE*bess_kl(trap)*bess_iO(trap)+GA

*bes8_kO(trap)*bess_il(tmp));

APPENDIX A. ASSOCIATED PROGRAMS 146

ecof[k] = -GA*b0Ss_il(tmp)/(GE*bess_kl(tmp)*bess_iO(tmp)+GA
♦bess_kO(tmp)*bess_ilCtmp));

fac[k] = GE*tmp*bess_kl(tmp)*bess„il(trap)/(GE*bess„kl(trap)*bess_iO(trap)+GA
+bess_kO(tmp)*bess_ii(trap));

cur[k] = -GA*RD*GE*bess_kl(trap)*bess_il(trap)/(GE*bess_kl(trap)*b0ss_iO(tmp)+GA
♦bess_kO(trap)*bess_il(trap));

/ * STEP 2. - Allocate memory to hold file information */
first = 1;
firstl = 1;
start = 1;
ndira = 4*N;
X = (double *) malloc((N+l)*sizeof(double));
y = (double *) raalloc(ndira*sizeof(double));
rap = (double ♦) malloc(N*sizeof(double));
c = (double ♦) malloc(N*sizeof(double));
cc = (double *) raalloc(N+sizeof(double));
e = (double *) malloc(N*sizeof(double));
ep = (double *) malloc(N*sizeof(double));

/* STEP 3. “ Calculate equilibrium potential */
vn = -62.0;
vu = -58.0;
do {

veq = 0.5*(vn+vu);
heq = alfa_h(veq)/(alfa_h(veq)+beta_h(veq));
meq = alfa_ra(veq)/(alfa_m(veq)+beta_ra(veq));
neq = alf a_n(veq)/(alfa_n(veq)+beta_n(veq));
ivdc = g_na*pow(meq,3)*heq+(veq-v_na)+g_k*pow(neq,4)*(veq-v_k)+g_l*(veq-v_l);
if (ivdc < 0.0) {

vn = veq;
} else {

vu = veq;
}

} while (vu-vn > 5.e-7);

/* STEP 4. - Initialise the membrane */
for (k=0 ; k<H ; k++) {

x[k] = dx*((double) k);
rap[k] = veq;
y[N+k] = heq;
y[2*N+k] = meq;
y [3*H+k] = neq;

>
x[N] = LEN;

/* STEP 5. - Apply injected current to small region of membrane*/
rap[M/2-6] = FRAC*v„na;
rap[M/2-4] = FRAC*v_na;
rap[N/2-3] = FRAC*v_na;
rap[M/2-2] = FRAC*v_na;
mp[M/2-1] = FRAC*v_na;
rap[M/2] = FRAC*v_na;
rap[M/2+1] = FRAC*v_na;
rap[M/2+2] = FRAC*v_na;
rap[M/2+3] = FRAC*v_na;
rap[M/2+4] = FRAC*v_na;
rap[M/2+5] = FRAG*v„na;

/* STEP 6. - Compute coefficients of initial voltage profile */

APPENDIX A. ASSOCIATED PROGRAMS 147

real_c(N, mp, y);

/ * STEP 7. - Integrate forward in time * /
ti = 0.0;
fig = 1;
while (ti < TEND) {

to = ti+DT;
relerr = 5.e-16;
abserr = 5.e-16;
ifail = -1;
sgsolveC ndim, fesetmem, ferelerr, ftabserr, &ti, to, y, fprime, &ifail);

// if C count %6 = = 0) {

/* STEP 8. - Build voltage profile * /
real_v(N, y, rap);

/ * STEP 9. - Check for potential above pots[NUM] */
k = nh;
do {

success = (pots[NUM-1] < mp[k]);
k++ ;

} while (! success && k != N);

if (success) {
for (k=0 ; k<NUM ; k++) {

j = N-i;
while (mp[j] < pots[k]) j — ;
frac = (pots [k]-rap [j+1])/(mp[j]-mp[j+1]) ;
xnew[k] = x[j+l]-(xCj+l]-x[j])*frac;
tnew = ti;

}
if (first) {

for (k=0 ; k<NUM ; k++) xold[k] = xnew[k] ;
told - tnew;
first = 0;

} else { // Calculate & print velocity results to file,
if (start) {

fp = fopenCvelocity.dat", "w") ;
fpl = f openC'dist .dat", "w") ;
for (k=0 ; k<NUM ; k++) {

fprintf(fp, "%8.51f\t", (xnew[k]-xold[k])/(tnew-told));
fprintf (fpl, " 7.8.51f\t ", xnew [k] -x [nh]) ;

>
fprintf(fp,"\n");
fprintf(fpl,"\n");
fclose(fp);
fclose(fpl);
for (k=0 ; k<NUH ; k++) xold[k] = xnew[k];
told = tnew;
start = 0;

} else {
fp = fopen("velocity.dat", "a");
fpl = fopenC'dist .dat" , "a") ;
for (k=0 ; k<NUM ; k++) {

fprintf(fp, "%8.51f\t", (xnew[k]-xold[k])/(tnew-told));
fprintf (fpl, "7.8.51f\t", xnew [k]-x [nh]) ;

}
fprintf(fp,"\n");
fprintf(fpl,"\n");
fclose(fp);
fclose(fpl);

APPENDIX A. ASSOCIATED PROGRAMS 148

for (k=0 ; k<NUM ; k++) xold[k] = xnewCk]; |
told = tnew; ?

>
if (firstl) { J

fp = fopenC'times .dat" , "w") ; |
fprintf (fp,"'/,5.31f\n", ti) ; i
fclose(fp); j
firstl =0; ?

} else {
fp = fopen("times.dat","a");
fprintf (fp, "’/.5.31f\n", ti) ;
fclose(fp);

}
}

}

/* STEP 10. - Construct output file names * /
ext[0] = fig/10+48;
ext[l] = fig%10+48;
ext[2] = '\0';
strcpy(filename,"hhwave");
strcat(filename,ext);
fp = fopen(filename,"w");
for (k=0 ; k<N ; k++) {

fprintf(fp,"%8.51f\t %8.51f\t %8.51f\t %8.51f\t %8.61f\n", x[k], rap[k],
y tk+N], y [2*N+k], y [3*N+k]);

fprintf(fp,"%8.51f\t %8.51f\t %8.51f\t %8.51f\t %8.51f\n", x[N], mp[0],
y[N], y[2*N], y[3+N]);

fclose(fp);
printf("\n Reached */,4.21f " ,ti) ;
fig++;

>
}

/* STEP 11. “ Write out file of x,y,z values * /
append = 0;
for (k=0 ; k<=DIV ; k++) {

if (append) { // z-values
fp = fopenC'zval.dat","a") ;
for (j=0 ; j<=N ; j++) fprintf (fp, "’/,9.41f" ,x[j]) ;
fprintf(fp,"\n");
fclose(fp);

} else {
fp = fopenC'zval.dat" , "w") ;
for (j=0 ; j<=M ; j++) fprintf (fp, 9.41f" ,x[j]) ;
fprintf(fp,"\n");
fclose(fp);

}

if (append) { // r-values
fp = fopenC'rval.dat", "a") ;
for (j=0 ; j<=N ; j++) fprintf (fp, "7,12.61f",rad[k]) ;
fprintf(fp,"\n");
fclose(fp);

} else •£
fp = fopenC'rval.dat", "w") ;
for (j=0 ; j<=N ; j++) fprintf (fp," 7*12.61f", rad [k]) ;
fprintf(fp,"\n");
fclose(fp);

}

APPENDIX A. ASSOCIATED PROGRAMS 149

/* STEP 12. - Calculate intracellular potentials over radii * /
c[0] = y[0]*icof[0]*bess_i0(nu[0]*rad[k]);
c[l] = y[l]*icof[nh]*bess_iO(nu[nh]*rad[k]);
for C j=l ; j<nh ; j++) {

c[2*j] = y[2*j]*icof[j]*bess_iO(nu[j]*rad[k]);
c[2*j+l] = y[2+j+l]*icof[j]*bess_iO(nu[j]*rad[k]);

}
real_v(N, c, mp);

if (append) { // intracellular potentials
fp = fopenC"intpot.dat‘',"a") ;
for (j=0 ; j<N ; j++) fprintf (fp,'"/,i2.61f", mp[j]);
fprintf (fp,"'/,12.61f", mp[0]) ;
fprintf(fp,"\n");
fclose(fp);

} else {
fp = fopenC'intpot.dat","w");
for (j=0 ; j<N ; j++) fprintf(fp,"’/,12.61f", mp[j]);
fprintf (fp," 7,12.61f", mp [0]) ;
fprintf(fp,"\n");
fclose(fp);

}
append = 1;

}

/ * STEP 13. - Calculate extracellular potentials for given distance */
append = appendl = append2 = 0;
dist = RD;
while (dist < RD*10) {

e[0] = 0.0;
e[l] = y[l]*ecof[nh]*bess_kO(nu[nh]+dist);
for (j=l ; j<nh ; j++) {

e[2*j] = y[2*j]*ecof[j]*bess_kO(nu[j]*dist);
e[2+j+l] = y[2*j+l]*ecof[j]*bess_kO(nu[j]*dist);

}
dist *= FAC;
real_v(H, e, ep);

if (append) { // extracellular potentials
fp = fopenC'extpot .dat", "a") ;
for (j=0 ; j<H ; j++) fprintf (fp, "7.12.61f", ep[j]);
fprintf (fp, "7.12.61f " , epCO]) ;
fprintf(fp,"\n");
fclose(fp);

} else {
fp = fopenC'extpot .dat" , "w") ;
for (j=0 ; j<N ; j++) fprintf (fp, "7.12.61f", ep[j]);
fprintf (fp," 7.12.61f", epCO]) ;
fprintf(fp,"\n");
fclose(fp);

}

if (appendl) {
fp = fopenCextdist.dat" , "a") ;
for (j=0 ; j<=N ; j++) fprintf (fp, "7.12.61f", dist);
fprintf(fp,"\n");
fclose(fp);

} else {
fp = fopenC'extdist.dat","w");
for (j=0 ; j<=N ; j++) fprintf (fp, "7,12.61f", dist);

APPENDIX A. ASSOCIATED PROGRAMS 150

fprintf(fp,"\n");
fclose(fp);

}

if (append2) { // z-values
fp = fopenCextz.dat", "a") ;
for (j=0 ; j<=N ; j++) fprintf (fp, "'/.9.41f" ,x[j3) ;
fprintf(fp,"\n");
fclose(fp);

} else {
fp = fopenCextz.dat", "w") ;
for (j=0 ; j<=N ; j++) fprintf (fp, "7,9.41f" ,x[j]) ;
fprintf(fp,"\n");
fclosa(fp);

}
append = appendl = append2 = 1 ;

}

/* STEP 14. - Free vectors */
free(mp);
free(nu);
free(icof);
free(ecof);
free(fac);
free(c);
free(cc);
free(cur);
free(e);
free(ep);
free(rad);
free(y);
return;

/**
OPERATION OF REAL_C and REAL_V

REAL_C

Enter with. u_in[k] (0 <= k < N) as the components of
a real vector and exit with u_out[0]=c [0], u_out[l] =
c[-N/2] and u_out[2k] + u_out_[2k+l]=c [k] (0 < k < N/2-1).

REAL_V

Enter with u_in[0]=c[0], u_in[l]=c[-N/2] and u_in[2k]+i
u_in[2k+l] set to c[k] (0 < k < N/2-1) and exit with
u_out[k]=u(x[k]) where (0 <= k < N-1).

void fprime(double t, double *y, double *dy)
{

extern double *fac;
int k, kk, nh=N/2;
double *v, tmp, h, m, a, ivdc;
static double v_na=55.0, v_k=-72.0, v_l=-49.387, g_na=120.0, g_k=36.0, g_l=0.3;

/* Step 1. - Create v[3 and build Fourier coeffs of v[] */
V = (double +) malloc(N*sizaof(double)) ;

real_v(N, y, v);

/* Step 2. - Build derivatives of H, M and N */
for (k=0 ; k<N ; k++) {

APPENDIX A. ASSOCIATED PROGRAMS 151

h = y [N+k];
m = y [2*N+k];
n = y [3*N+k];
ivdc = g_na*pow(m,3)*h*(v[k]-v_na)+g_k*pow(n,4)*(v[k]-v_k)+g_l*(v[k]-v_l);
dy[k] = ivdc/CM;
dy[N+k] = alfa_h(v[k])*(1.0-h)-beta_h(v[k])*h;
dy[2*N+k] = alfa_m(v[k])*(1.0-m)-beta_m(v[k])*m;
dy[3*N+k] = alfa_n(v[k])+(1.0-n)-beta„n(v[k])+n;

1

/* Step 3. - Compute Fourier coefficients of J„ivdc */
real_c(N, dy, v);
tmp = GA/(CM+RD);
dy [0] = - V [0] ;
dy[l] = -(tmp*y[l]*fac[nh]+v[l]);
for (k=l ; k<nh ; k++) {

kk = 2*k;
dy[kk] = -(tmp*y[kk]*fac[k]+v[kk]);
dy[kk+l] = -(tmp*y[kk+l]*fac[k]+v[kk+l]);

}
free(v);

return;

APPENDIX A, ASSOCIATED PROGRAMS 152

A .I .2 H H D isperse.c

The second program, HHDisperse.c investigates the characteristics of a train of action

potentials by manipulating the inter-spike interval. This problem is solved by means of

a periodic solution, and therefore does not involve the initiation procedure necessary in

the first problem. Instead this problem starts with the profile of a travelling wave which

eventually settles to the travelling wave speed of the specified inter-spike interval.

#include <stdio.h>
#include <stdlib.h>
#include <math.b>
#include <5tring.h>

/**********************************+*********************************
Travelling Waves - Hodgkin Huxley - Squid Giant Axon

SOLVES THE PERIODIC HODGKIN HUXLEY EQUATIONS
USING SPECTRAL METHOD - FOURIER

C_m V_t + J = (g_A*R/2) V_xx V(x,0) = F(x) given

AND (a) Spectral method - majority of program carried out in
coefficent space - converting back for solution.

(b) Calculates velocity for a range of wavelengths.
(c) Three Dimensional Model - uses Bessel Functions.

This program calculates & prints out:
(!) wavelength and velocity dispvel.dat

(ii) potential profiles Dispersion##
(iii) Core current Core##
(iv) Radial current Radial##
(v) Done file Done##

***/

/* Declaration of Global functions */
double bess_iO(double);
double bess„il(double);
double bess_kO(double);
double bess„kl(double);
void fprime(double, double *, double *);
void sgsolve(int, double *, double *, double *, double, double *,

void (+fcn)(double, double *, double *), int *);
void intrp(int, double, double +, double, double *, double *, int,double **, double *);
void step(int, double *, double *, double *, double +, double *, double *, int *,

int *, int *, int *, double **, double *, double *, double *, double, double,
void (*fcn)(double, double *, double *));

void real_c(int, double *, double *);
void real_v(int, double *, double *);
double wave(int, double);

/* Biological Parameters */
#define CELSIUS 18.5
#def ine RD 0.0238
#define GA 28.249
#define GE 28.249
#define CM 1.0

/ * Celsius temperature of neuron */
/* Radius of squid axon (cm) * /
/ * Specific intra-cellular conductance (mmho/cm) */
/ * Specific extra-cellular conductance (mmho/cm) * /
/ * Specific membrane capacitance (muF/cm"2) */

APPENDIX A. ASSOCIATED PROGRAMS 153

/ * Parameters for ODE solver * /
#define M 15 / * Node multiple */
#define TEND 20.0 / * Final time +/
#define DT 0.5 / * Time step * /
#define TGL 5.6-16 / * Error tolerance * /

/* Declaration of HH coefficient functions */
double alfa_h(double);
double alfa_m(double);
double alfa_n(double);
double beta„h(double);
double beta„mC double);
double beta_n(double);

/* Derivative of Hodgkin Huxley functions * /
double d_alfa_h(double);
double d„alfa_m(double);
double d_alfa_n(double);
double d_beta_h(double);
double d_beta_m(double);
double d_beta_n(double);

double *fac;
int nodes;

void main(void)
{

int k, FileNuraber, praax, qmax, rmax, pval, qval, rval, pstore, qstore, rstore, min,
val, num;

extern int nodes;
double len, vel, dx;
char filename[20], output[20], digit [4];
FILE *fp;

for (FileNumber=l ; FileNumber<121 ; FileNumber++) {
num = FileNumber;
digit[0] = num/100+48;
num -= 100*(num/100);
digit[1] = num/10+48;
digit [2] = num'/,10+48;
digit[3] = '\0’;
printf("\n File number is %s", digit);
strcpy(filename,"done");
strcat(filename,digit);
if ((fp=fopen(filename,"r")) == NULL) {

/* Step A - Fix wavelength (cm) and minimum number of nodes */
len = 0.25*((double) FileNumber);
nodes = M*FileNumber;

f* *

Step B - Re-Estimate number of nodes.

Suppose 2"p 3~q 5~r >= nodes then

p*ln(2) + q*ln(3) + r*ln(5) >= In(nodes)

Thus 1 <= p <= pmax = ceil(In(nodes)/ln(2))
0 <= q <= qmax = ceil(In(nodes)/ln(3))
0 <= r <= rmax - ceil(In(nodes)/ln(5))

APPENDIX A. ASSOCIATED PROGRAMS 154

and choose p, q and r such that 2“p 3"q 5"r >= nodes
taking the closest estimate >= nodes

***/
pmax = ((int) ceil(log((double) nodes)/log(2.0)))
qmax = ((int) ceil(log((double) nodes)/log(3.0)))
rmax = ((int) ceil(log((double) nodes)/log(5.0)))
min = nodes;
for (pval=l; pval<=pmax ; pval+t) {

for (qval=0 ; qval<=qmax ; qval++) {
for (rval=0 ; rval<=rmax ; rval++) {

val = pow(2,pval)*pow(3,qval)*pow(5,rval);
if (val >= nodes && val-nodes <= min) {

pstore = pval;
qstore = qval;
rstore = rval;
min = val-nodes;

>

}
nodes = pow(2,pstore)*pow(3,qstore)*pow(5,rstore);

/* Step C - Fix wavelength (cm) and minimum number of nodes */
printf("\nCalculating length %4.21f cm with %6d nodes", len, nodes);
vel = wave(FileNumber, len);
strcpy(output,"DispVel");
strcat(output, digit);
fp = fopen(output,"w");
fprintf(fp, "%2d\t %5d\t %4.21f\t %8.61f\n", FileNumber, nodes, len, vel);
fclose(fp);
fp = fopen(filename,"w");
fclose(fp);

} else {
fclose(fp);

}
}
return;

double wave(int FileNumber, double len)
{

extern double *fac;
extern double v[80], h[80], m[80] , n[80];
extern int nodes;
double dx, *x, *y, *c, *cc, *cur, *mp, *nu, *icof, *ecof, ti, to, relerr, abserr,

ivdc, vm, vr, tf, ts, xf, xs, tmp, pi, veq, meq, heq, neq, vn, vu, vl, vel;
char filename[20], ext [4];
int j , k, nh, ndim, ifail, im, start, num;
FILE *fp;

j *

Variables

y[0] -> y [N-1] Holds the potential
y[N] -> y[2*N-l] Holds H at nodes

y[2*N] -> y[3*N-l] Holds M at nodes
y[3*N] -> y[4*N-l] Holds N at nodes

* /

/* STEP 1. - Build ratio of Bessel functions */
dx = len/((double) nodes);

APPENDIX A. ASSOCIATED PROGRAMS 155

nh = nod0s/2 ;
pi = 4.0*atan(l.0);
nu = (double *) malloc((nb+l)*sizeof(double));
icof = (double *) malloc((nh+l)*sizeof(double));
ecof = (double *) malloc((nb+l)*sizeof(double));
fac = (double *) malloc((nb+l)*sizeof(double));
cur = (double *) malloc((nh+l)*sizeof(double));
fac[0] = cur[0] = nu[0] = 0.0;
icof[0] = 1.0;
ecof[0] = 0.0;
for (k=l ; k<=nh ; k++) {

tmp = 2.0*pi+RD*((double) k)/len;
nu[k] = tmp;
icofCk] = GE*bess_kl(tmp)/(GE*bes8_kl(tmp)

*bes8_iO(tmp)+GA*bess_k0(tmp)*bess_il(tmp));
ecof[k] = -GA*bess_il(tmp)/(GE*bess_kl(tmp)

*bess_iO(tmp)+GA*bess_kO(tmp)*bess_il(tmp));
fac[k] = GE+tmp*bess_kl(tmp)*bess_il(tmp)/(GE*bess_kl(tmp)

*bess_iO(tmp)+GA*bess_kO(tmp)*bess_il(tmp));
cur[k] = -GA*RD*GE*bess_kl(tmp)*bess_il(trap)/(GE*bess_kl(tmp)

*b0Ss_iO(tmp)+GA*bess_kO(tmp)*bess_il(tmp));
}

/* STEP 2. - Allocate memory to hold file information */
start = 1;
ndim = 4*nodes;
X = (double *) malloc((nodes+l)*sizeof(double));
y = (double *) malloc(ndim+sizeof(double));
mp = (double *) malloc(nodes*sizeof(double));
c = (double *) malloc(nodes*sizeof(double));
cc = (double *) malloc(nodes*sizeof(double));

/ * STEP 3. “ Initialise the membrane with the profile of a travelling wave */
if ((fp=fopen("InitialProfile.dat","r")) != NULL) {

for (k=0 ; k<nodes ; k++) {
x[k] = dx*((double) k);
if (fscanf (fp,"%lf %lf %lf ’/.If", &mp[k] , &y[nodes+k] , &y[2*nodes+k],

&y[3*nodes+k]) == EOF) {
mp[k] = mp [k-1] ;
y[nodes+k] = y [nodes+k-1];
y[2+nodes+k] = y[2*nodes+k-l];
y[3*nodes+k] = y[3*nodes+k-l];

>
}
fclose(fp);

} else {
printf("\nCannot find input file!!");
return(0.0);

}
X[nodes] = len;

/ * STEP 4. - Compute coefficients of initial voltage profile */
real_c(nodes, mp, y);

/* STEP 5. - Integrate forward in time */
ti = 0.0;
while (ti < TEND) {

to = ti+DT;
relerr = abserr = TQL;
ifail = -1;
while (ti != to) {

APPENDIX A. ASSOCIATED PROGRAMS 156

sgsolveC ndim, ftrelerr, ftabserr, &ti, to, y, fprime, &ifail);
if (ifail != 2) printf("\nTrouble");

>

/ * STEP 6. - Build voltage profile */
real_v(nodes, y, mp);

/* Step 7. - Calculate spike times * /
vm = mp[0]:
im = 0;
for (k=l ; k<nodes ; k++) {

if (mp[k] > vm) {
im = k;
vm = mp[k];

}
}
printf("\nSpike potential %6.41f", mp[im]);
if (im == 0) {

vr = mp [1] ;
vl = mp[nodes-i];

} else if (im == nodes-l) {
vl = mp[nodes-2];
vr = mp[0];

} else {
vl = mp[im-l] ;
vr = mp[im+i] ;

1

/* Step 8. - Calculate conduction velocity */
if (start) {

xf = x[im]+0.6*dx*(vl-vr)/(vl-2.0*vm+vr);
tf = ti;
start = 0;

} else {
xs = xf;
ts = tf;
xf = x[im]+0.5*dx*(vl-vr)/(vl-2.0*vm+vr);
tf = ti;
vel = fabs(xf-xs);
if (len-vel < vel) vel = len-vel;
vel = vel/(tf-ts);

}
printf ("\n Reached */,4.21f " ,ti) ;

}

/* STEP 9. - Output Information on Train of Action Potentials */
num = FileNumber;
ext[0] = num/100+48;
num -= 100+(num/100);
ext[l] = num/10+48;
ext [2] = num'/,10+48;
ext[3] = ’\0';

/*; Step 9A. - Core current */
c [0] = cur [0] *y [0] ;
c[l] = -cur [nh] *y [1] ;
for (k=l ; k<nh ; k++) {

c[2*k] = -cur[k]+y[2+k+l];
c[2*k+l] = cur [k] *y [2*k] ;

}
real_v(nodes, c, cc);

APPENDIX A. ASSOCIATED PROGRAMS 157

strcpyCfilename,"core");
strcat(filename,ext);
fp = fopen(filename,"w");
for (k=i ; k<nh ; k++) fprintf (fp, "'/.15.101f\t", ccCk]);
fclose(fp);

/ * STEP 9B. - Radial current */
c[0] = 0.0;
c[l] = -2.0*pi*RD*GA*y[l];
for (k=i ; k<nh ; k++) {

c[2*k] = “2.0*pi*RD*GA*fac[k]*y[2+k+l];
c[2*k+l] = -2.0*pi*RD*GA*fac[k]*y[2*k];

>
real_v(nodes, c, cc);
strcpy(filename,"radial");
strcat(filename,ext);
fp = fopen(filename,"w");
for (k=l ; k<nh ; k++) fprintf (fp, "’/,15.101f\t", cc[k]);
fclose(fp);

/ * STEP 9C. - Output file name * /
strcpy(filename,"Dispersion");
strcat(filename,ext);
fp = fopen(filename,"w");
for (k=0 ; k<nodes ; k++) {

fprintf (fp," 7.8.51f\t %8.51f\t %8.61f\t %8.51f\t %8.51f\n",
x[k], mp[k], y[nodes+k], y [2*nodes+k], y [3*nodes+k]);

}
fprintf (fp, "7.8,51f\t %8.51f\t %8.51f\t %8.51f\t %8.51f\n",

x[nodes], mp[0] , y [nodes], y[2*nodes], y[3*nodes]);
fclose(fp);

/ * STEP 12. - Free vectors */
free(mp);
free(nu);
free(icof);
free(ecof);
free(fac);
free(c);
free(cc);
free(cur);
free(y);
free(x);
return vel;

OPERATION OF REAL_C and REAL_V
REAL„C

Enter with u_in[k] (0 <= k < N) as the components of
a real vector and exit with u_out[0]=c[0], u_out[l]=
c[-N/2] and u_out[2k] + u_out„[2k+l]=c[k] (0 < k < N/2-1)

REAL_V

Enter with u_in[0]=c[0], u_in[l]=c[-N/2] and u_in[2k]+i
u_in[2k+l] set to c[k] (0 < k < N/2-1) and exit with
u_out[k]=u(x[k]) where (0 <= k < N-1).

*************+**********************+***************************/

APPENDIX A. ASSOCIATED PROGRAMS 158

void fprime(double t, double *y, double *dy)
{

extern int nodes;
extern double *fac;
int k, kk, nh=nodes/2;
double *v, trap, h, m, n, ivdc;
static double v_na=55.0, v_k=-72.0, v_l=-49.387,

g_na=120.0, g_k=36.0, g_l=0.3;

/ * Step 1. - Create v[] and build Fourier coeffs of v[] */
V = (double *) malloc(nodes+sizeof(double));
real_v(nodes, y, v);

/* Step 2. - Build derivatives of H, H and N */
for (k=0 ; k<nodes ; k++) {

h = y [nodes+k];
m = y [2*nodes+k];
n = y [3*nodes+k];
ivdc = g_na*pow(ra,3)*h*(v[k]-v_na)+g_k*pow(n,4)*(v[k]-v_k)+g_l*(v[k]-v_l);
dy[k] = ivdc/CM;
dyCnodes+k] = alfa_b(v[k])*(i.O-b)-beta_h(v[k])*h;
dy[2*nodes+k] = alfa_m(v[k])+(1.0-m)-beta_m(v[k])*m;
dy[3*nodes+k] = alfa_n(v[k])*(1.0-n)-beta_n(v[k])+n;

}

/* Step 3. - Compute Fourier coefficients of J_ivdc * /
real_c(nodes, dy, v);
tmp = GA/(CM*RD);
dy [0] = - V [0] ;
dy[l] = -(tmp*y[l]*fac[nh]+v[l]);
for (k=l ; k<nb ; k++) {

kk = 2*k;
dy[kk] = -(tmp*y[kk]*fac[k]+v[kk]);
dy[kk+i] = -(tmp*y[kk+l] *fac[k]+v[kk+l]) ;

}
free(v);
return;

APPENDIX A. ASSOCIATED PROGRAMS 159

A .2 Extract data from Neurolucida file

As described in Chapter 3 the real morphological data needs to be carefully extracted

from the Neurolucida data files; in particular, it is essential that the branching pattern

of the neuron is maintained. This is achieved by defining structures in the program that

are common to neuronal morphology, for example, branch, dendrite and synaptic contact.

Each structure contains information about a particular object and can be defined an

arbitrary number of times. For example, a branch structure contains the coordinates of

an individual branch and its associated diameters at each of these points. This branch

can be connected to other branch structures based on the notion of parent, child and peer

discussed in Chapter 3. The result is in essence a dendrite, which is incorporated into

the dendrite structure. Once the data has been extracted into the appropriate structures,

minor calculations are required to find the length and surface area of each branch and

dendrite, and the associated location of synaptic contacts within the dendritic tree. In the

latter stages of this program there are small functions that talœ advantage of the recursive

nature of the data management. It is a simple task to count contacts or terminal branches

in the cell being investigated. The simulation of neuronal morphology uses this recursive

methodology to build cells based on the original neuronal morphology extracted from the

real cells.

The program BuildNeuron.c is the basic program necessary to extract the neuronal data

into a form more suitable for analysis. The subsequent programs build on this foundation

to solve two distinctly different problems, constructing an equivalent cable and simulating

neuronal morphology.

A .2.1 B uildN euron.c

#include <stdio.h>
Mnclude <stdlib.h>
#include <math.h>
#include <string.h>

typedef struct soma_t
f
/* Physical properties of soma * /

int nobs; / * No. of observations in somal specification */

double *x; /* X-coords of defining point +/
double *y; / * Y-coords of defining point */
double *z; / * Z-coords of defining point */
double *d; /* Diameter of soma at point (x,y,z) * /

APPENDIX A. ASSOCIATED PROGRAMS 160

double p_len; / * Length of soma +/

/* Static biophysical properties of soma * /
double cs; /* Somal membrane capacitance (mu F/cm^Z) */
double ga; / * Intracellular conductance of soma (mS/cm) */
double gs; / * Membrane conductance of soma (mS/cm''2) */

/* Contact information */
contact *conlist; / * List of contacts * /
int neon;

} soma;

typedef struct contact_t

int id;

double xc; / * X coordinate of contact */
double yc; /* Y coordinate of contact */
double zc; /* Z coordinate of contact +/
double do; /* Dendritic diameter at contact */

double xp; /* Projected X coordinate */
double yp; / * Projected Y coordinate */
double zp; /* Projected Z coordinate */

double sd; / * Shortest distance to dendrite (micron) */
double pi; /* Measurement of physical length (micron) */
double el; /+ Measurement of electrotonic length * /
double sa; /+ Measurement of surface area (micron"2) */

struct contact_t *prev; /* Address of previous contact * /
struct contact_t *next; /* Address of next contact */

} contact ;

typedef struct branch_t

/* Connectivity of branch */
struct branchât *parent; /* Pointer to parent branch */
struct branch_t *child; /* Pointer to child branch */
struct branchât *peer; /* Pointer to a peer branch */

/* Physical properties of branch */
int nobs; / * No. of observations in branch specification */
double *x; /* X-coordinate of defining point */
double *y ; /* Y-coordinate of defining point * /
double *z; /* Z-coordinate of defining point */
double *d; /* Diameter of dendrite * /
double p_len; /* Length of branch +/
double *pl; / * Measurement of physical length (micron) */
double *el; / * Measurement of electrotonic length */
double *sa; / * Measurement of surface area (micron"2) */
double e_len; /* Total electrotonic length +/

/ * Biophysical properties of branch */
double cm; /* Dendritic membrane capacitance (mu F/cm''2) */
double ga; /* Intracellular conductance (mS/cm) */
double gm; / * Membrane conductance (mS/cm“2) */
int be; /* 0 - sealed */

/* 1 - cut */
/ * 2 - leakage * /

APPENDIX A. ASSOCIATED PROGRAMS 161

/* Node information for spatial representation */
int nodes; / * Total number nodes spanning branch * /
int jn; /* Junction node of the branch * /
int fn; / * Internal node connected to junction */
double *c; / * Characteristic conductances */

/ * Contact information */
contact *conlist; / * List of contacts */
int neon;

> branch;

typedef struct dendrite_t
{

branch *root; / * Pointer to root branch of dendrite * /
double p_len; /* Total length of dendrite */
double area; / * Total membrane area af dendrite */

} dendrite;

typedef struct neuron_t
{

int ndend; /* Number of dendrites */
dendrite *dendlist; / * Pointer to an array of dendrites */
soma *8 ; /* Soma structure */

} neuron;

/ * Function type declarations * /
neuron *Load_Sampled_Neuron(char *);
void Destroy_Sampled„Neuron(neuron *);
void init_branch(branch *, int, double, double, double);
void BuildContactlnfo(contact +, branch *, branch **);
void remove_branch(branch **, branch *);
void build„dendrite(branch **, branch *);
void clean_dendrite(branch *);
void destroy_dendrite(branch *);
int count.branches(branch *, branch *);
int count_terminal_branches(branch *, branch *);
void branch.length(FILE *, branch *);
int count.branches(branch *, branch *);
int count.contacts(branch *, branch *);

/ * Global definitions */
#define CS 1.0
#define GS 14.3
#define GA 0.091
#define CM 1.0
#define GM 14.3

int main(int argc, char *+argv)

neuron *n;

/* Load sampled neuron */
if (argc != 2) {

! printf("\n Invoke program with load <input>\n");
return(l);

} else {
n = Load.Sampl0d.Neuron(argvCl]);
if (!n) {

printf("\n Failed to find sampled neuron\n");
return(1);

>

APPENDIX A. ASSOCIATED PROGRAMS 162

/* Clean up memory */
Destroy_Sampled_Neuron(n);
return(O);

}

neuron *Load_Sampled_Neuron(char *filename)
{

int j , k, neon, n, id, connected, ignored;
double trap, piby2, xold, xnew, yold, ynew, zold, znew, diam, xl, xr, dl, dr,

px, py, pz, min;
neuron *cell;
soma *s;
contact *oldcon, *newcon, *firstcon;
branch *bold, *bnew, +first_branch, *bopt;
char temp[100];
FILE *input;

/* STEP 1. - Open neuron data file */
printf("\nOpening file %s\n",filename);
if ((input=fopen(filename,"r"))“=NULL) {

printf("\nProblem loading neuron description from file\n");
return NULL;

}

/ * STEP 2 . - Get memory for neuron structure */
cell = (neuron *) malloc(sizeof(neuron));
s = cell->s = (soma *) malloc(sizeof(soma));

/* STEP 3, - Initialise soma structure */
s->x = (double ♦) malloc(n*sizeof(double));
s->y = (double +) malloc(n*sizeof(double));
s~>z = (double *) malloc(n*sizeof(double));
S “ > d = (double ♦) malloc(n*sizeof(double));
S“>gs = GS;
s->ga = GA;
s->cs = CS;
B->conlist = NULL;
s->ncon = 0;

/* STEP 4. - Get soma morphological data * /
fscanf (input, If %lf %lf */,lf " ,&xold, ftyold, fezold, &diam) ;
s->x[0] = xold;
s~>y[0] = yold;
s->z[0] = zold;
s->d[0] = diam;
for (k=j=l,s->p_len=0.0 ; k<n ; k++) {

fscanf (input,'"/.If '/.If %lf %lf",&xnew, feynew, &znew, fediam) ;
tmp = pow(xnew-xold,2)+pow(ynew-yold,2)+pow(znaw~zold,2);
if (tmp > 0.01) {

s->x[j] = xold = xnew;
s->y[j] = yold = ynew;
S“>z[j] = zold = znew;
s->d[j] = diam;
j++;
s->p_len += sqrt(tmp);

}
}
s->nobs = j ;

APPENDIX A. ASSOCIATED PROGRAMS 163

/ * STEP 5. - Get branch and contact data +/
oldcon = NULL;
bold = NULL;
fscanf (input, "*/,s ", temp) ;
do {

if (strcmp(temp, "Branch") == 0) {
fscanf (input, "7,d", &n) ;
printf("Found a branch defined by %d nodesXn", n);
bnew = (branch ♦) malloc(sizeof(branch));
if (bold) {

bold“>child = bnew;
} else {

first.branch = bnew;
>
bnew->parent = bold;
bnew->peer = NULL;
bnew->child = NULL;

/ * STEP 6. - Initialise branch */
init.branch(bnew, n, CM, GM, GA);
fscanf (input,"%lf %lf ’/.If %lf ", fexold, feyold, &zold, fediam) ;
bnew->x[0] = xold;
bnew->y[0] = yold;
bnew->z[0] = zold;
bnew->d[0] = diam;
for (bnew“>p_len=bnew->pl[0]=0.0,k=j=l ; k<n ; k++) {

fscanf (input,"%lf '/.If '/.If %lf",&xnew,&ynew,&znew,&diam);
tmp=pow(xnew-xold,2)+pow(ynew-yold,2)+pow(znew-zold,2);
if (tmp > 0.01) {

bnew->p.len += sqrt(tmp);
bnew->pl[j] = bnew">p.len;
bnew->x[j] = xold = xnew;
bnew->y[j] = yold = ynew;
bnew->z[j] = zold = znew;
bnew->d[j] = diam;

}
bnew->nobs = j ;
bold = bnew;

} else if (strcmp(temp, "Marker") == 0) {

/* STEP 7. - Initialise marker */
fscanf(input, "%d %d", &id, &n);
for (k=0 ; k<n ; k++) {

newcon = (contact *) malloc(sizeof(contact));
newcon->sd = NULL;
newcon->id = id;
if (oldcon) {

oldcon->next = newcon;
} else {

firstcon = newcon;
}
newcon->prev = oldcon;
newcon->next = NULL;
fscanf (input, "'/.If '/.If %lf %lf ", &newcon->xc,

&newcon->yc, &newcon->zc, &newcon->dc);
oldcon = newcon;

>
} else {

printf ("Unknown block type '/.s ! \n", temp) ;

APPENDIX A. ASSOCIATED PROGRAMS 164

return NULL;
>

} while (fscanf (input, "*/.s", temp)!=EOF);
fclose(input);

/* STEP 8. - Complete electrotonic lengths and surface area of branch * /
bold = first.branch;
piby2 = 2.0*atan(i.0);
while (bold) {

bold->el[0] = 0.0;
bold->sa[0] = 0.0;
xl = bold“>pl[0] ;
dl = bold->dCO];
tmp = 0.04*sqrt((bold->gm)/(bold->ga));
for (k=l ; k<bold->nobs ; k++) {

xr = bold->pl[k];
dr = bold->d[k];
bold->el[k] = bold->el[k-l]+tmp*(xr-xl)/(sqrt(dl)+sqrt(dr));
bold->sa[k] = bold->sa[k-l]+piby2*(xr-xl)*(dl+dr);
xl = xr;
dl = dr;

}
bold->e_len = bold->el[bold->nobs-l];
bold = bold">child;

}

/ * STEP 9. - Associate contacts with branches and soma */
ignored = 0;
while (firstcon) {

bold = first.branch;
bopt = NULL;
while (bold) {

BuildContactlnfo(firstcon, bold, febopt);
bold = bold->child;

}
newcon = firstcon->next;
if (firstcon->sd > 4.0) {

/ * STEP 9a. - Check for proximity to soma */
px = firstcon->xc;
py = firstcon->yc;
pz = firstcon->zc;

/* First stage is different from others * /
xnew = 8->x[0]; ynew = s->y[0]; znew = s->z [0];
firstcon->sd = min = sqrt(pow(xnew-px,2)

+pow(ynew-py,2)+pow(znew-pz,2))-(s->d[0]);

/* Second stage compares points and projected points */
for (k=l ; k<s->nobs ; k++) {

xnew = s->x[k]; ynew = s->y[k]; znew = s->z[k];
min = sqrt(pow(xnew-px,2)+pow(ynew-py,2)

+ pow(znew-pz,2))-(s->d[k]);
if (rain < firstcon->sd) firstcon->sd = min;

>
if (firstcon->sd < 4.0) {

oldcon = s->conlist;
if (oldcon) {

while (oldcon->next) oldcon = oldcon->next;
oldcon->next = firstcon;

} else {

APPENDIX A. ASSOCIATED PROGRAMS 165

S">conlist = firstcon;
}
firstcon->prev = oldcon;
firstcon->next = NULL;
s->ncon++;

} else {
freeCfirstcon);
ignored++;

}
} else {

/* STEP 9b. - Check for proximity to soma */
oldcon = bopt->conlist;
if (oldcon) {

while (oldcon->next) oldcon = oldcon->next;
oldcon->next = firstcon;

} else {
bopt->conlist = firstcon;

}
firstcon->prev = oldcon;
firstcon->next = NULL;
bopt->ncon++;

}
firstcon = newcon;

/ * STEP 10. - Count dendritic branches at soma */
bold = first.branch;
n = 0;
while (bold) {

bnew = first.branch;
do {

k - bnew->nobs-l;
tmp = pow(bold->x[0]-bnew->x[k],2)+

pow(bold->y[0]-bnew->y[k],2)+
pow(bold->z[0]-bnew->z[k], 2) ;

connected = (tmp < 0.01);
bnew = bnew->child;

} while (bnew &Sc ! connected) ;
if (! connected) n++;
bold = bold->child;

>
cell~>ndend = n;

/* STEP 11. - Identify somal dendrites but extract nothing */
cell->dendlist=(dendrite *) malloc((cell->ndend)*sizeof(dendrite));
bold = first.branch;
n = 0;
while (n < cell->ndend) {

bnew = first.branch;
do {

k = bnew->nobs~l;
tmp = pow(bold~>x[0]-bnew">xCk],2)+

pow(bold->y[0]-bnew->y[k],2)+
pow(bold->z[0]-bnew->z[k],2);

connected = (tmp < 0.01);
bnew - bnew“>child;

} while (bnew && ! connected);
if (! connected) {

cell->dendlist[n].root = bold;
n++;

APPENDIX A. ASSOCIATED PROGRAMS 166

}
bold = bold~>child;

/* STEP 13. - Extract root of each dendrite from dendrite list */
for (k=0 ; k<cell->ndend ; k++) {

bold = cell->dendlist[k].root;
remove.branchC &first.branck, bold);

}

/ * STEP 14. - Build each, dendrite from its root branch * /
for (k=0 ; k<cell->ndend ; k++) {

build.dendriteC fefirst.branch, cell->dendlist[k].root);
clean.dendriteC cell->dendlist[k].root);

>
if (first.branch) printf("\nWarning: Unconnected branch segments still exist\n");
return cell;

y*******************♦*****+*++******♦*****+********************
Function to initialise a BRANCH

**y
void init.branch(branch *b, int n, double cm, double gm, double ga)
{

y* Allocate memory for spatial orientation of dendrite */
b->x = (double *) malloc(n*sizeof(double));
b->y = (double *) malloc(n*sizeof(double))
b->z = (double *) malloc(n*sizeof(double));

/* Allocate memory for branch geometry */
b”>d = (double *) malloc(n*sizeof(double));
b">pl = (double *) malloc(n*sizeof(double))
b->el = (double *) malloc(n*sizeof(double))
b->sa = (double *) malloc(n*sizeof(double))

/* Set parameter values */
b->cm = cm;
b->gm = gm;
b->ga = ga;

y* Set boundary condition * /
b->bc = 0;

/* Initialise node information * /
b->nodes = 0;
b->fn = 0;
b->jn = 0;
b->c = NULL;

/* Initialise contact information */
b->conlist = NULL;
b->ncon = 0;
return;

y **
Function to build CONTACT information

**y
void BuildContactlnfo(contact *con, branch *b, branch **bopt)
{

APPENDIX A. ASSOCIATED PROGRAMS 167

int k;
double px, py, pz, tmp, xold, xnew, yold, ynew, zold, znew,

numer, denom, xmin, ymin, zmin, min;

px = con->xc;
py = con->yc;
pz = con->zc;

/ * STEP 1. “ First stage is different from others * /
xnew = b“>x[0]; ynew = b->y[0]; znew = b->z[0];
min = sqrt(pow(xnew-px,2)+pow(ynow-py,2)+pow(znew-pz,2));
if (I(con->sd) I I (con->sd && min < con->sd)) {

con->sd = min;
con->xp = xnew; con->yp = ynew; con->zp = znew;
con->pl = con->el = con->sa = 0.0;
♦bopt = b ;

/ * STEP 2. - Second stage compares points and projected points */
for C k=l ; k<b->nobs ; k++) {

xold = xnew; yold = ynew; zold = znew;
xnew = b->x[k]; ynew = b->y[k]; znew = b->z[k];
numer = (xnew-xold)*(px-xold)+(ynew-yold)*(py-yold)

+(znew-zold)*(pz-zold);
denom = pow(xnew-xold,2)+pow(ynew-yold,2)+pow(znew-zold,2);

/♦ STEP 2a. - Project onto branch */
if (0.0 <= numer && numer <= denom) {

tmp = numer/denom;
xmin = (1.0-tmp)*xold+tmp*xnew;
ymin = (i.O-tmp)*yold+tmp*ynew;
zmin = (1.0-tmp)*zold+tmp*znew;
min = sqrt(pow(xmin-px,2)+pow(ymin-py,2)+pow(zmin-pz,2));
if (!(con->sd) I I (con->sd && min < con->sd)) {

con->sd = min;
con->xp = xmin; con->yp = ymin; con->zp = zmin;
con->pl = (1.0-tmp)*b->pl[k-l3+tmp*b->pl[k];
con->el = (1.0-tmp)*b->el[k-l]+tmp*b->el[k];
con->sa = (1.0-tmp)*b->sa[k-l]+tmp*b->sa[k] ;
♦bopt = b;

/♦ STEP 2b. - Check proximity to points of branch */
min = sqrt(pow(xnew-px,2)+pow(ynew-py,2)+pow(znew-pz,2));
if (!(con->sd) I I (con->sd && min < con->sd)) {

con->sd = min;
con->xp = xnew; con->yp = ynew; con->zp = znew;
con->pl = b->pl[k]; con->el = b->el[k]; con->sa = b->sa[k];
♦bopt = b;

}
}
return;

/♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦*♦♦♦♦♦♦♦**♦*♦♦♦♦♦♦♦♦♦♦♦♦♦
Function to remove a branch from a branch list

♦♦♦*♦*♦♦*♦*♦♦♦♦♦*♦**♦♦♦♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦/
void remove_branch(branch ♦♦head, branch *b)

if (!(♦head) I I !b) return;

APPENDIX A. ASSOCIATED PROGRAMS 168

if (*head == b) {
♦head = b->child;
if(♦head) (♦head)->parent = HULL;

} else {
b->parent->child = b->child;
if (b“>child) b->child~>parent = b->parent;

}
b->parent = NULL;
b->child = NULL;
return;

/ ♦ ♦ ♦ ♦ ♦ * * * ♦ ♦ ♦ ♦ * * ♦

Function to build a dendrite from its root
************♦****♦*♦♦♦/
void build_dendrite(branch ♦♦head, branch ♦root)
{

int k;
double tmp;
branch ♦bnow, +bnext, ♦btmp;

bnow = ♦head;
while (bnow) {

/♦ Store bnow's child in case it’s corrupted ♦/
bnext = bnow->child;

/♦ Search if proximal end of bnow is connected to distal end of root ♦/
k = (root->nobs)-l;
tmp = pow(bnow->x[0]-root->x[k],2)

+pow(bnow->y[0]-root->y[k],2)
+pow(bnow->z[0]-root->z[k],2);

if (tmp <= 0.01) {

/♦ Take bnow out of the branch list ♦/
remove_branch(head, bnow);

/♦ Connect bnow to the root as the child or a peer of the child.
Initialise childs’ children and peers to NULL as default ♦/

bnow->chiId = NULL;
bnow->peer = NULL;
bnow->parent = root;

/♦ Inform root about its child if it’s the first child, or add
new child to first child’s peer list ♦/

if (root->child) {
btmp = root“>child;
while (btmp->peer) btmp = btmp->peer;
btmp->peer = bnow;

} else {
root->child = bnow;

/♦ Initialise bnow to next branch in list ♦/
bnow = bnext;

}

/♦ Iterate through remaining tree ♦/
if (root->child) build_dendrite(head, root->child);
if (root->peer) build_dendrite(head, root->peer);

APPENDIX A. ASSOCIATED PROGRAMS 169

return;

y**
Function to remove peerless children

void clean.dendriteC branch *root)
{

int k, np, nc, mem, n;
double tmp, sarea;
contact ♦con;
branch ♦btmp, ♦brem;

/♦ Iterate through remaining tree ♦/
if (root->child) clean.dendriteC root->child);
if (root->peer) clean.dendrite(root->peer);

/♦ Extend original parent limb ♦/
brem = root->child;
if (brem && !(brera->peer)) {

root“>child = brem->child;
if (brem->child) {

brem~>child”>parent = root;
btmp = brem->child->peer;
while (btmp) {

btrap->parent = root;
btmp = btmp->peer;

}
>

root->bc = brem->bc;
yy root->nodes += (brem->nodes)-l;

np = root->nobs;
nc = brem->nobs;
mem = np+nc-1;
root->nobs = mem;
root->x=(double ♦) realloc((void ♦)root->x,mera+sizeof(double));
for (k=np ; k<mem ; k++) root->x[k] = brem->x[k-np+l];
root->y=(double ♦) realloc((void ♦)root->y,raem*sizeof(double));
for (k=np ; k<mem ; k++) root->y[k] = brem->y[k-np+1];
root->z=(double ♦) realloc((void ♦)root->z,mem^sizeof(double));
for (k=np ; k<mem ; k++) root->z[k] = brem->z[k-np+1];
root->d== (double ♦) reallocC(void ♦)root->d,mem+sizeof(double));
for (k=np ; k<mem ; k++) root->d[k] = brem->d[k-np+1];
root->pl=(double ♦) realloc((void ♦)root->pl,mem+sizeof(double));
for (k=np ;k<mem ;k++) root->pl[k]=root->p_len+brem->pl[k-np+1];
root->el=(double ♦) realloc((void ♦)root->el,mem+sizeof(double));
for (k=np ;k<mem ;k++) root->el[k]=root->e.len+brem->el[k-np+1];
sarea = root->sa[np-l];
root->sa=(double ♦) reallocCCvoid ♦)root->sa,mem+sizeof(double));
for (k=np ; k<mem ; k++) root->sa[k] = sarea+brem->sa[k-np+1];
root->p.len += brem->p_len;
root->e.len += brem->e.len;
root->ncon += brem->ncon;
con = root->conlist;
if (con) {

while (con->next) con = con->next;
con->next = brem->conlist;
if (brem->conlist) brem->conlist->prev = con;

} else {
root->conlist = brem->conlist;

}

APPENDIX A, ASSOCIATED PROGRAMS 170

brem~>conlist = NULL;
free(brem->x);
free(brem->y);
free(brem->z);
free(brem->d);
free(brem->pl);
free(brem->el);
free(brem->sa);
if (brem->c) free(brem->c);
free (brem);

}
return;

Function to destroy a NEURON

void Destroy.Sampled.Neuron(neuron *cell)
{

int i;
contact *prevcon, *nextcon;

/♦ Free Soma */
free (cell->s->x)
free (cell->s->y)
free (cell->s->z)
free (cell->s->d)
prevcon = cell->s->conlist;
while (prevcon) {

nextcon = prevcon->next;
free (prevcon) ;
prevcon = nextcon;

>
free (cell->s);

for (i=0;i<cell->ndend;i++) destroy_dendrite(cell->dendlist[i].root)
free(cell);
return;

y**
Function to destroy DENDRITE

void destroy_dendrite(branch *b)

int i;
contact ♦prevcon, *nextcon;

if (b->child) destroy_dendrite(b->child);
if (b->peer) destroy.dendrite(b->peer);
free(b->x)
free(b“>y)
free(b->z)
free(b->d)
free(b->pl);
free(b->el);
free(b->sa);
if (b->c) free(b->c);
prevcon = b->conlist;
while (prevcon) {

nextcon = prevcon->next;

APPENDIX A. ASSOCIATED PROGRAMS 171

free (prevcon);
prevcon = nextcon;

}
free (b);
return;

Function to count contacts from current branch
to the dendritic tip.

int count.contacts(branch *bstart, branch ♦bnow)
■C

static int n;
contact ♦con;

if (bstart == bnow) n » 0;
if (bnow) {

if (bnow“>child) count.contacts(bstart, bnow->child);
if (bnow->peer) count.contacts(bstart, bnow->peer);
con = bnow->conlist;
while (con) {

n++;
if (con->sd > 4.0)

printf ("\nContact not close to dendrite 7,6.21f", con->sd) ;
con = con->next;

}
}
return n;

♦

Function to count number of branches
* * * * * * * * * * * * * ♦ * * * * * * * * * * * ♦ 7

int count.branches(branch ♦bstart, branch ♦bnow)
{

static int n;

if (bstart == bnow) n = 0;
if (bnow) {

if (bnow“>child) count.branches(bstart, bnow->child);
if (bnow->pear) count.branches(bstart, bnow~>peer);
n++;

}
return n;

♦

Function to find length of dendrite from
current branch to tips.

* ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * * ♦ * ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ * * * ♦ * ♦ * ♦ 7

double branch_length(branch ♦bsteirt, branch ♦bnow)
{

static double length;

if (bstart == bnow) length = 0.0;
if (bnow) {

if (bnow->child) branch.length(bstart, bnow->child);
if (bnow->peer) branch.length(bstart, bnow->peer);
length += bnow->p.len;

}

APPENDIX A. ASSOCIATED PROGRAMS 172

return length;

y***
Function to count number of terminal branches

**/
int c o u n t_terminal_branches(branch *bstart, branch *bnow)
{

static int n;

if (bstart == bnow) n = 0;
if (bnow) {

if (bnow->child) count_terminal_branches(bstart, bnow->child)
if (bnow->peer) count_terminal_branches(bstart, bnow->peer);
if (!bnow->child) n++;

>
return n;

APPENDIX A. ASSOCIATED PROGRAMS 173

A .3 Equivalent cables

The program MapContacts.c uses the BuildNeuron.c program as a foundation to extract

morphological and synaptic neuronal data for the construction of equivalent cables. Map­

Contacts.c uses the transformation procedures described in Chapter 4 to construct an

equivalent cable with the associated bijective mapping of input.

A .3.1 M apC ontacts.c

#irLclude <stdio.h>
#include <stdlib.h>
#include <math.b>
#include <string.b>

/ * Function type declarations * /
neuron *Load_Sampled_Neuron(char *);
void Destroy„Sampled_Neuron(neuron *);
void init_branch(branch *, int, double, double, double);
void BuildContactlnfo(contact *, branch *, branch **);
void remove_branch(branch **, branch +);
void build_dendrite(branch **, branch *);
void clean_dendrite(branch *);
void destroy_dendrite(branch *);
int count.branches(branch *, branch +);
double BranchPhysicalLength(branch *, branch *);
double BranchElectrotonicLength(branch *, branch *);
int BuildElectrotonicNodes(branch +, double, int, int);
void ConstructTreeMatrix(branch *, double **, double *);
int count_contacts(branch *, branch *);
int count_terminal„branches(branch *, branch *);
void OutputProperties(branch *);
void house(int, double **, double *, double *);
void MapContacts(branch *, double *, int);

/* Global definitions * /
#define CS 1.0
#define GS 14.3
#define GA 14.3
#define CM 1.0
#define GM 0.091
#define EU 0.2
#define ID 1
#define 0UTPUT2 "curr.i
#define OUTPUTl "cable.

int main(int argc, char **argv)

int j, k, id, start, nodes, nc, fn, num;
double elen, csum, tmp, fac, pi, theta, *+a, *curr, $amp, *d, *dtree,»s, *stree, +e;
neuron *n;
branch *bran;
FILE *fp;

/+ Load sampled neuron * /
if (argc != 2) {

APPENDIX A. ASSOCIATED PROGRAMS 174

printf("\tt Invoke program with load <input>\n");
return(1);

} else {
n = Load_Sampled_Neuron(argv[l]);
if (!n) {

printf("\n Failed to find sampled neuron\n");
return(l);

>
}

/ * Count contacts */
pi = 4.0*atan(l.0);
for C nc=k=0 ; k<n->ndend ; k++) {

nc += count.contactsC n->dendlist[k].root, n->dendlist[k].root);
}
printf("\n Located %d contacts on dendrites", nc);
printf("\n Located %d contacts on soma", n->s->ncon);

/ * Recompute dendritic diameters ♦/
for (k=0 ; k<n->ndend ; k++) OutputPropertiesC n->dendlist[k].root);

/* Compute entire electrotonic length of a neuron * /
for (elen=0.0,k=0;k<n->ndend;k++) elen += BranchElectrotonicLength

(n->dendlist[k].root, n->dendlist[k].root);
printf("\nTotal Electrotonic Length is */,12.61f", elen);

/ * STAGE 1. - Discretise electrotonic neuron */
fn = 1;
for (k=0 : k<n->ndend ; k++) {

fn = BuildElectrotonicNodesC n->dendlist[k].root, EU, 0, fn);
>
printfC"\n No nodes is %d", fn);

/* STAGE 2. ~ Build the model matrices */
e = (double +) malloc(fn*sizeof(double));
d = (double *) malloc(fn*sizeof(double));
dtree = (double *) malloc(fn*sizeof(double));
curr = (double *) malloc(fn+sizeof(double));
a = (double **) raalloc(fn*sizeof(double *));
for (k=0 ; k<fn ; k++) {

d[k] =0.0;
dtree [k] =0.0;
curr[k] =0.0;
a[k] = (double *) malloc(fn*sizeof(double));
for (j=0 ; j<fn ; j++) a[k][j] = 0.0;

}

/* STAGE 3. - Do soma node */
for (csum=0.0,k=0 ; k<n->ndend ; k++) csum += (n->dendlist[k].root)->c[0];
dtree[0] = csum;
a[0][0] = “1.0;
for (k=0 ; k<n->ndend ; k++) {

bran = n“>dendlist[k].root ;
j = bran->fn;
a[0][j] = (bran->c[0])/csum;

}
for (k=0 ; k<n->ndend ; k++) ConstructTreeMatrix(n->dendlist[k].root, a, dtree);

/ * STAGE 3a. - Consistency check */
for (j=0 ; j<fn ; {

for (k=0 ; k<fn ; k++) {

APPENDIX A. ASSOCIATED PROGRAMS 175

if C a[j] [k] == 0.0 && a[k][j] != 0.0) printf ("\n Trouble! ’/.d %d", j , k) ;
}

}

/ * STAGE 4. - Symmetrise the tree matrix * /
stree = (double *) malloc(fn*sizeof(double));
for (k=0 ; k<fn ; k++) stree[k] =0.0;
stree [0] = 1.0;
for (j=0 ; j<fn ; j++) {

for (k=0 ; k<fn ; k++) {
if (a[j] tk] 1= 0.0 && stree[j] != 0.0)

stree [k] = stree[j]*sqrt(a[k] [j]/a[j] [k]) ;
}

}
for (k=0;k<fn;k++) if (!stree[k]) printf("\n Entry %d is zero", k);

/ * STAGE 5. - Build the symmetrised tree matrix */
for (j=0 ; j<fn ; j++) {

for (k=j+l ; k<fn ; k++) {
if (a[j] [k] != 0.0) a[j][k]=a[k][j]=sqrt(a[j][k]*a[k][j]);

>
}

/ * STAGE 6. - Apply the Householder procedure */
house(fn, a, d, e);

/ * STAGE 7. - Construct the equivalent cable * /
for (d[l]=0.0,k=0 ; k<n->ndend ; k++) d[l] += n->dendlist[k].root->c[0];
theta = 0.5*pi;
nc = 1;
while(nc < fn-1 && fabs(theta) > 0.01) {

fac = fabs(e[nc])/sin(theta);
if (fabs(fac) <= 1.0) {

theta = acos(fac);
d[nc+l3 = d[nc]*pow(tan(theta),2);
nc++;

} else {
theta = 0.0;

>
>

/* STAGE 8. - Extract physical dimension: c=(pi/2)sqrt(g_m*g_a)d"{3/2} */
fac = 2.0/(pi*sqrt(GM*GA));
fp = fopen(aUTPUTl,"w");
for (k=l ; k<=nc ; k++)fprintf(fp,"(%3d,%6.21f),",k,-1.0e4*pow(d[k]*fac,0.6666667));
fprintf(fp,"\n\n");
for (k=l ; k<=nc ; k++)fprintf (fp,"('/,3d,'/.5.21f) ," ,k,-l .0e4*pow(d[k] *fac,0.6666667)) ;
fclose(fp);

/* STAGE 9. - Construct vector of current inputs */
amp = (double *) malloc(fn*sizeof(double));
for (k=0 ; k<fn ; k++) amp[k] =0.0;
for (k=0 ; k<n“>ndend ; k++) MapContacts(n->dendlist[k].root, amp, ID);

/ * STAGE 10a. - Construct symmetrising diagonal matrix S */
s = (double *) malloc((nc+l)*sizeof(double));
s[0] = 1.0;
d[0] = 0.0;
for (k=0 ; k<nc-l ; k++) {

tmp = (d[k]+d[k+l])/(d[k+l]+d[k+2]) ;
s[k+l] = stk]*sqrt(tmp) ;

APPENDIX A. ASSOCIATED PROGRAMS 176

}
tmp = d[nc-l]/d[nc]+l .0;
s[nc3 = s[nc-l]*sqrt(tmp) :

/* STAGE 10b. - Correct for negatives +/
for (k=0 ; k<=nc ; k++) if (e[k] < 0.0) s[k] = -s[k];

/ * STAGE 10c. - Construct Current EGP Matrix * /
for (k=0 ; k<fn ; k++) dtree[k] *= stree[k];
for (k=0 ; k<fn ; k++) {

for (j=0 ; j<fn ;) a[k] [j] /= dtree [j];
}
for C k=0 ; k<=nc ; k++) d[k] *= s[k];
for (k=0 ; k<=nc ; k++) {

for (j=0 ; j<fn ; j++) a[k] [j] *= d[k] ;
>

/ * STAGE 11. - Calculate injected current on cable */
for (k=0 ; k<=nc ; k++) {

for (j=0 ; j<fn ; j++) curr[k] += a[k] [j]*amp[j] ;
}
fp = fopen(0UTPUT2,"w");
for (k=0 ; k<nc ; k++) fprintf (fp, "*/,4.161f\n", curr[k]) ;
fclose(fp);

/* Clean up memory */
for C k=0 ; k<fn ; k++) free(a[k])j
freeCa);
free(amp);
free(curr);
free(d);
free(dtree);
free(e);
free(s);
free(stree);
Destroy_Sarapled_Neuron(n);
return(O);

y**
Performs Householder transformations on a symmetric matrix.

void house(int n, double **a, double *d, double *e)
{

int i, j , k;
double beta, g, s, sum, +q, *u, *w;

/ * Allocate two working vectors each of length n */
q = (double *) malloc(n*sizeof(double))
u = (double *) malloc(n*sizeof(double))
w = (double *) malloc(n*sizeof(double))

/ * A total of (n-2) householder steps are required - start on the
first row of a[][] and progress to the third last row - the
last 2 rows already conform to the tri-diagonal structure * /
e[0] = 0.0;
for (i=0 ; Kn-2 ; i++) {

d[i] = a[i] [i] ;

/ * Determine the magnitude of the working row * /
for (8=0.0,j=i+l ; j<n ; j++) s += a[i][j]*a[i][j];

APPENDIX A. ASSOCIATED PROGRAMS 177

s = sqrt(s);
if (a[i][i+i] < 0.0) s = -s;
e[i+l] = "s;
g = s+a[i] [i+i] ;
if C s == 0.0) "C

a[iHi] = 1.0;
} else {

beta = 1.0/(s*g);
u[i+l] = g;
for (j=i+2 ; j<n ; j++) u[j] = a[i] [j] ;
for (j=i+l ; j<n ; j++) {

for (sum=0.0,k=i+l ; k<n ; k++) sura += a[j]Ck]*u[k];
w[j] = sum*beta;

}
for (sum=0.0,j=itl ; j<n ; j++) sum += u[j]*w[j];
sum *= 0.5*beta;
for (j=i+l ; j<u ; j++) qCj] = w[j]-sum*u[j] ;
for (j=i+l ; j<n ; j++) {

for (k=i+l;k<n;k++) a[j][k]-=(q[j]*u[k]+u[j]*q[k]);
}

/ * Store vector to generate orthogonal matrix */
a[i] [i] = beta;
for C j=i+l ; j<n ; j++) a[i] [j] = u[j] ;

}
}
d[n-2] = a[n-2][n-2]
d[n-l] = a[n-l] [n-1]
e[n-l] = a[n-2][n-1]

/* Restructure a[][] to hold product of Householder matrices */
a[n-2][n-1] = a[n-1][n-2] = 0.0;
a[n-2][n-2] = a[n-1][n-1] = 1.0;
for (i=n-3 ; i>=0 ; i—) {

beta = a[i] [i] ;
for (j=i+l ; j<n ; j++) u[j] = a[i][j];
a[i][i] = 1.0;
for (j=i+l ; j<n ; j++) a[i][j] = 0.0;
for (j=i+l : j<n ; j++) a[j][i] = 0.0;
for C j=i+l ; j<n ; j++) {

for (sum=0.0,k=i+l ; k<n ; k++) sum += a[j][k] *u[k];
w[j] = sum*beta;

}
for (j=i+l ; j<n ; j++) {

for (k=i+l ; k<n ; k+t) a[j][k] -= u[j]*w[k];
}

>
free(q);
free(u);
free(w);
return;

Counts nodes required to discretise the electrotonic neuron.

b - Dendritic branch
ql - Quantum of electrotonic length
jn - Node number of branch point, the proximal node of a branch
fn - Node number assigned to interior node adjacent to proximal node

**+/

APPENDIX A, ASSOCIATED PROGRAMS 178

int BuildElectrotonicNodesC branch +b, double ql, int jn, int fn)
{

int j, k, nodes;
static int total.nodes;
double dval, ElectrotonicStepsize;

/ * STEP 1. - Initialise counter if b is a root dendrite */
if (b->parent == NULL) total.nodes = fn;

/ * STEP 2. - Compute required number of nodes */
nodes = b->e„len/ql;
if (fmod(b”>e_len/ql,1.0) > 0.5) nodes++;
nodes++;

/* STEP 3. - Set junction node, first node and node counter */
b->nodes = nodes;
b->jn = jn;
b->fn = fn;
total.nodes += (nodes-1);

/ * STEP 4. - Create vector of characteristic conductances for branch */
ElectrotonicStepsize = b->e_len/((double) nodes-1);
b->c = (double *) mallocC (nodes-1)*sizeof(double));
b->c[0] = 0.0;
for (j=l ; j<nodes-l ; j++) {

dval = ElectrotonicStepsize*((double) j);
k = 0;
while (k < b->nobs-l && dval > b->el[k]) k++;
b->c[j] = b->sa[k-l]+(b->sa[k3”b->sa[k-l])*

(dval-(b->el[k-1]))/(b->el[k]-b->el[k-1]);
}
for (k=0 ; k<nodes-2 ; k++) b->c[k] = b->c[k+1]-b->c[k] ;
b->c[nodes-2] = b->sa[b->nobs-l]-b->c[nodes-2];
for (k=0 ; k<nodes-l ; k++) b->c[k] *= (b->gm/ElectrotonicStepsize);

/ * STEP 5. - Iterate */
if (b->child) BuildElectrotonicNodes

(b->child,ql,total_nodes-l,total.nodes);
if (b->peer) BuildElectrotonicNodesC b->paer, ql, jn, total.nodes);
return total.nodes;

/ *

Construct tree matrices for equivalent cable
***/
void ConstructTreeMatrixC branch *b, double **a, double *d)
{

int j , k, row, node;
branch *bran;
double csum, tmp;

/* STEP 1. - Do internal nodes */
row = b->fn;
node = 1;
while (node < b->nodes-l) -[

csum = b“>c[node-1]+b->c[node];
d[row] = csum;
if (node == 1) {

a[row][b->jn] = b->c[node-1]/csum;
} else {

a[row][row-1] = b->c [node-1]/csum;

APPENDIX A. ASSOCIATED PROGRAMS 179

}
a[row][row] = -1.0;
a[row] [row+1] = b->c[node]/csvim;
row++;
node++;

/ * STEP 2. - Do branch point */
row = b->fn+b->nodes-2;
csum = b->c[b“>nodos-2];
if (b->child) {

bran = b->child;
csum += bran->c [0];
while (bran->peer) {

bran = bran->peer;
csum += bran->c [0];

}
>
d[row] = csum;
if (node == 1) {

a[row][b->jn] = b->c[b->nodes-2]/csum;
} else {

a[row][row-1] = b->c[b->nodes-2]/csum;
>
a[row][row] = -1.0;
if (b->child) {

bran = b->child;
a[row][bran->fn] = bran->c[0]/csum;
while (bran->peer) {

bran = bran->peer;
a[row][bran->fn] = bran->c[0]/csum;

}
}

/* STEP 3. - Iterate */
if (b->child) ConstructTreeMatrix (b->child, a, d);
if (b->peer) ConstructTreeMatrixC b->peer, a, d);
return;

Map contacts onto Equivalent Cable - type 1

void MapContacts(branch *b, double *amp, int id)
{

int j , k;
double ess, frac, tmp;
contact *con;

/ * Step 1. - Iterate through tree */
if (b->child) MapContactsC b->child, amp, id);
if (b->peer) MapContactsC b->peer, amp, id);

y* Step 2. - Allocate currents */
ess = (b->e_len)/C(double) b->nodes-l);
con = b->conlist;
while (con) {

if (con->id == id) {
tmp = con->el/ess;
j = ((int) floor(tmp));
frac = fmodCtmp,1.0);

APPENDIX A. ASSOCIATED PROGRAMS 180

if (j == 0) {

/ * Step 2a. - One node is at the junction * /
amp[b->jn] += 1.0-frac;
amp[b->fn] += frac;

} else {

/* Step 2b. “ Both nodes are internal */
amp[b“>fn+j-l] += 1.0-frac;
amp[b->fn+j] += frac;

}
}
con = con->next;

}
return;

}

y***
Function to find electrotonic length of a

dendrite from current branch to tips.
*** ******y

double BranchElectrotonicLength(branch *bstart, branch *bnow)
{

static double elen;

if (bstEirt == bnow) elen = 0.0;
if C bnow) {

if (bnow->child) BranchElectrotonicLength(bstart, bnow->child);
if (bnow->peer) BranchElectrotonicLength(bstart, bnow->peer);
elan += bnow->e_len;
printf("\n'/,12.61f \t 7,12.61f \t %12.61f \t %12.61f",

bnow->e_len, bnow->p_len, bnow->d[0], bnow->d[bnow->nobs-l3);
>
return elen;

y ,(<*** ***********
Function to output branch diameters

************************ y

void OutputPropertiesC branch *b)

int i, k;
static int start=l;
double dold, dnew, len, xold, yold, zold, xnew,

ynew, znew, dx, dy, dz, size;
branch *bran;
FILE *fp;

if (b->child) QutputProperties(b->child);
if (b->peer) OutputProperties(b->peer);
if (start) {

fp = fopenC"output","w");
start = 0;

} else {
fp = fopenC"output","a");
fprintf(fp,"\n");

}

/* Decomposes branches into lengths of uniform diameter */
len = xold = b->pl[1];
dold = b->d[l];

APPENDIX A. ASSOCIATED PROGRAMS 181

for (k=2 ; k<b~>nobs ; k++) {
xnew = b->pl[k];
dnew = b”>d[k];
if (dnew != dold) {

len += 0.5*(xnew-xold);
fprintf (fp, 6.21f \t %6.21f \n" , len, dold);
len = 0.5*(xnew-xold);

} else {
len += xnew-xold;

>
xold = xnew;
dold = dnew;

}
fprintf (fp, " 7,6.21f \t %6.21f \n" , len, dold);

/* Constructs diameters of a branch and its children/peers */
if (b->child) {

fprintf(fp,"%6.21f\t%G.21f\t",b->d[(b->nobs)-l],b->child->d[l]);
bran = b->child;
while (bran->peer) {

bran = bran->peer;
fprintf (fp, "7.6.21f \t", bran->d[l]);

}

/* Prints out branch lengths */
printf ("\nBranch length 7,6.21f, %6.21f, %6.21f", b->p_len,b->d[0] ,b->d[b->nobs-i]) ;
fclose(fp);
return;

}

APPENDIX A. ASSOCIATED PROGRAMS 182

A .3.2 C um ulativeC urrent.c

T h e distribution of current calculated by MapContacts.c is the total current at each node

on the cable. T h e cumulative current density was constructed to visualise the distribution

of current along the cable using the program CumulativeCurrent.c below.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

y**
Constructs the cumulative current input

+*************/

#define EU 0.001 /* Electrotonic units */
#define EL 10 /* Electrotonic length of intervals * /

int mainC int argc, char **argv)
{

int j , k, span, n, nc, left, start;
double *aver, eu, *sum, tmp, *curr;
cheir filename [80] , output 1 [80], *pnt, name [80];
FILE *fp, *fpl;

/ * Load current cells */
if (argc != 2) {

printf("\n Invoke program with load <input>\n");
return(l);

}
if ((fpl=fopen(argv[l],"r")) == NULL) {

printf C"\n Wo file call 7,s\n", argv [1]) ;
return(l);

>

while (fscanf (fpl, "7,s", fefilename) != EOF) {

/ * STEP 1. - Load file of current data */
n = 0;
if ((fp=fopen(filename,"r"))!=NULL) {

while (fscanfCfp, "%lf %lf", &eu, &tmp)!=EOF) n++;
fclose(fp);

y* STEP 2. - Allocate memory to hold file information * /
curr = (double *) malloc(n*sizeof(double));
fp = fopen(filename,"r");
for (k=0 ; k<n ; k++) fscanf(fp, "%lf 7,lf", feeu, &curr[k]);
fclose(fp);

> else {
printf("\nlnput file not found\n");
return(O);

}
printf("%s\t %d items in file\n", filename, n);

/ * STEP 3. - Averaging process * /
span = n/EL;
left = n%EL;
sum = (double *) malloc((span)*sizeof(double));

APPENDIX A. ASSOCIATED PROGRAMS 183

for (k=0 ; k<span ; k++) sum[k] = 0.0;
printf("\n'/,d intervals\n'/,d nodes not included", span, left);

for (k=0 ; k<span ; k++) {
for (j=0 ; j<EL*(k+l) ; j++) sum[k] += curr[j];

}

/ * STEP 4. - Create individual files * /
put = strstrC filename,"cell");
k = 0;
while (*pnt != '.') {

name[k++] = *pnt;
pnt++;

}
name[k++] =
name[k++] = ’s’
name[k++] = ’u ’
name[k++] = ’m ’
name[k++] = ’.’
name[k++] = ’o’
name[k++] = ’u ’
name[k++] = ’t’
name[k] = ’\0’ ;

fp=fopen(name,"w");
for (k=0 ; k<span ; k++) fprintf(fp, "%lf\n", sum[k]);
fclose(fp);

/* Clean up memory */
free(sum);
free(curr);

}
fclose(fpl);
return(0);

}

APPENDIX A. ASSOCIATED PROGRAMS 184

A .3.3 L ag range , c

To allow comparison between the cumulative current input from different types of synaptic

input, the cm'ves were smoothed and then normalised. The program Lagrange.c performs

both of these actions, with the additional calculation of the current density.

#include <stdio.h>
#include <stdlib.h>
ttinclude <math.h>
ftinclude <string.h>

y**
Program to filter the cumulative curves of cable

using Lagrange method - normalise curves

#define EU 0.001 /*
#define EL 10 / *
#define N 4 / *
#def ine M 3 / *

/ * Function type declaration */
ludcmpC int, double **, int *);
void linsolC int, double **, double *, double *, int *);

int mainC int argc, char +*argv)
{

int m, i, j , k, node, nobs, nc, jj, *row;
double alt, *a, *b, *+c, *x, *t, tmp, len, pi, te,

to, theta, xmax, diff, angle;
char filename[80], outputl[80], *ptr, name[80];
FILE *fp, *fpl;

/ * Load current cells */
if (argc != 2) {

printfC"\n Invoke program with load <input>\n");
returnCl);

}
if ((fpl=fopen(argv[l3,"r")) == NULL) {

printf C"\n No file call ’/,s\n", argv[i]) ;
return(l);

}
while (fscanf (fpl,"'/,s", fefilename) != EOF) {

/* STEP 1. - Load file of current data */
nobs = 0;
if ((fp=fopen(filenarae,"r"))!=HULL) {

while (fscanfCfp, "%lf", &tmp)!=EOF) nobs++;
fclose(fp);

/ * STEP 2. - Allocate memory to hold file information */
X = (double *) mallocC (nobs+l)*sizeof(double));
t = (double *) mallocC (N+1)*sizeof(double));
a = (double *) mallocC (N+M+l)*sizeof(double));
b = (double *) mallocC (N+M+l)*sizeof(double));
c = (double **) mallocC (N+M+i)*sizeof(double +));
for (k=0 ; k<(N+M+l) ; k++) {

b[k] = 0.0;

APPENDIX A. ASSOCIATED PROGRAMS 185

c[k] = (double *) malloc((N+M+l)+sizeof(double));
for (j=0 ; j<(N+M+l) ; j++) c[k][j] = 0.0;

}
fp = fopen(filename,"r");
x[0] = 0.0;
for (k=l ; k<=nobs ; k++) fscauf(fp, "%lf", &x[k]);
xmax = x[nobs];
fclose(fp);

} else {
printf("\nlnput file not found\n");
return 0;

}
printf("%s\t %d items in file\n", filename, nobs);

/* STEP 3. - Lagrange Multipliers */
len = ((double) nobs);
for (k=0 ; k<=nobs ; k++) {

theta = 2.0*acos(sqrt(((double) k)/len));
for (j=0 ; j<=N ; j++) t[j] = cos(theta*((double) j));
for (j=0 ; j<=M ; j++) {

tmp = tCj] ;
for (m=0 ; m<=N ; m++) c[j][m] += trap*t[m];
b[j] += tmp*x[k];

}
}

/* STEP 3a. " Fill in last three rows and columns with constraints */
for (alt=1.0,j=0 ; j<=N ; j++) {

c[j][N+l] = alt;
c[j][N+2] = 1.0;
c[j][N+3] = ((double) j*j) ;
alt = -alt;

}
for (alt=i.0,j=0 ; j<=N ; j++) {

c[H+l][j] = alt;
c[N+2][j] = 1.0;
cCN+3][j] = ((double) j*j) ;
alt = -alt;

}
b[N+2] = xmax;

/* STEP 4. - Solve Equations */
row = (int *) malloc((N+M+l)*sizeof(int));
ludcmp((N+M+1), c, row);
linsoK N+M+1, c, a, b, row);

/* STEP 5. - Create individual files */
ptr = strstr(filename,"cell");
k = 0;
while (*ptr !=) {

name[k++] = *ptr;
ptr++;

}
name[k++] =
name[k++] = ’1 ’
name[k++] = ’a’
name[k++] = ’ g ’
name[k++] = ’r ’
name[k++] = ’a’
name[k++3 = ’. ’
name[k++] = ’R ’

APPENDIX A. ASSOCIATED PROGRAMS 186

name[k++] = ’E ’;
name Ck++] = ’S ’;
name[k] = ’\0 ’ ;

/ * STEP 6. “ Find value of function and derivative at given value */
len = C(double) nobs);
pi = 4.0+atan(l.0);
fp = fopen(name,"w");
for (k=0 ; k<=nobs ; k++) {

theta = 2 .0+acos(sqrt(((double) k)/len));
tmp = 0 .0 ;
for (j=0 ; j<=K ; j++) {

tmp += a[j]*cos(theta*((double) j));
}
diff = 0 .0 ;
for (3=1 ; j<=N : j++) {

if (fabs(theta) < 5.6-6) {
diff += a[j]*((double) 3*3);

} else if (fabs(theta-pi) < 5.e-6) {
diff += a [3]*((double) 3*j)*pow(-1 .0 , 3+I);

} else {
angle = theta*((double) 3);
diff += a[j]*((double) j)*sin(angle)/sin(theta);

}
}
diff *= 2.0/(len*EL*EU);
fprintf (fp,"7,d\t %lf\t %lf\n", k, tmp/xmax, diff/xmax) ;

}
fclose(fp);

/ * Clean up memory * /
free(row);
free(a);
free(b);
for (k=0 ; k<(N+M+l) ; k++) free(c[k]);
free(c);
free(x);
free(t);

}
return(O);

/ * ♦ ♦ * + * ♦ * * * * * *

LU Decomposition
**/
int ludcmp(int n, double **a, int *row)
{

double amax, tmp, sum, small=5.e-9, *ptr;
int i, 3 , k, imax, kval;

/* STEP 1. - Initialise row ordering */
for (3=0 ; 3<n ; j++) row[j] = 3 ;

/* STEP 2. “ Identify pivotal row */
for (3=0 ; 3<n-l ; 3++) {

imax = 3 ;
amax = fabs(a[j][j]);
for (i=3+l ; i<n ; i++) {

if ((tmp=fabs(a[i][j])) > amax) {
amax = tmp;
imax = i;

APPENDIX A. ASSOCIATED PROGRAMS 187

}
>
if C fabs(amax) < small) return -1;

/* STEP 3. - Interchange rows if necessary * /
if (imax != j) {

kval = rowCj] ;
row [j] = row [imax] ;
row[imax] = kval;
ptr = a[j] ;
a[j] = a [imax] ;
a[imax] = ptr;

>

/ * STEP 4. - Eliminate enties in column below (j,j)th entry */
for (i=j+l ; i<n ; i++) {

if (a[i] [j] != 0.0) {
a[i][j] = a[i][j]/a[j][j];
for (k=j+l ; k<n ; k++) a[i] [k] -= a[i][j]*a[j][k];

}
}

}
if (fabs(a[n-1][n-1]) < small) return -1;
return 1;

y***
The solution function - apply in sequence with ludcmp

**y
void linsoK int n, double **a, double *soln, double *b, int *row)
{

double sum;
int i, j, item;

y* STEP 1. - Rearrange order of equations */
for (i=0 ; i<n ; i++) soln[i] = b[row[i]] ;

/* STEP 2. - Forward substitution phase * /
for (i=l ; i<n ; i++) {

for (sum=0.0,j=0 ; j<i ; j++) sum += a[i][j]*soln[j];
soln[i] -= sum;

>

/* STEP 3. - Backward substitution phase * /
soln[n-l] /= a [n-1] [n-1] ;
for (i=n-2 ; i>=0 ; i—) {

for (sum=soln[i],j=i+l ; j<n ; j++) sum -= a[i][j]*soln[j];
soln[i] = sura/a[i][i];

}
return;

>

APPENDIX A. ASSOCIATED PROGRAMS 188

A .4 Building the typical neuron

The program developed to simulate neuronal morphology uses similar structures to the

BuildNeuron.c program, however the morphological data has been extracted in a pre­

cursor program based on the BuildNeuron.c program. In summary MyeTypicalNeuron.c

gathers the data required for each density estimate and then enters the recursive process,

generating each branch diameter and length until completing the dendritic tree. Once

the simulation has terminated, the morphological properties of the simulated cells are

extracted in the final section of MyeTypicalNeuron.c.

A .4.1 M yeT ypicalN euron.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

y**
Program will construct the "Typical Neuron".

Stage 1: Extracts neuron morphology data to construct the
density estimates.

Stage 2: Generates the typical neuron from the density
functions.

Stage 3: Extract morphological data from simulated cells.
***y

typedef struct unit.t
{
/* Physical properties of unit */

double len; /* Length of unit */
double diam; /* Diameter of unit */
int child; /* Number of children */
int root; y* Indicates if a root unit *y
int term; / * Indicates if terminal unit * /

} unit;

y* Input files */
#define INPUT! "MyeBranch.dat" /* Data file */
#define INPUT2 "MyeCount.dat" /* Count data */
#define INPUTS "HyeContDiam.dat" /* P and Cl diameters */
#define INPUT4 "MyeParentDiam.dat" /* P, Cl and C2 diameters */
#define INPUTS "MyeRootDiam.dat" /* Stem lengths & diameters */

/* Numerical Parameters */
/* No. of cells */
y* Random No. Seed */
y* No. of simulations */
/* Print out data */

double ranCunsigned long int *, unsigned long int *, unsigned long int *);
void heapsortC int, double *);

#define NCELL 31
#define NSEED 2
#define NSIM 1000
#define PRINT 1

/* Global Functions */

APPENDIX A. ASSOCIATED PROGRAMS 189

double scott.bandwidthC int, double, double *);
void scott_correlated(int, double *, double *, double *, double *);
double cdflDC int, double *);
double pdfIDC int, double, double *);
double cdf2D(int, double, double *, double *);
double cdf3D(int, double, double, double *, double *, double *);
double phi(double);
void buildcellC double, branch *);
void clean_dendrite(branch *);
void destroy_dendrite(branch *);
void DeBtroy_Sampled_Neuron(neuron **);
int count.branches(branch *, branch *);
int count.terminal.branchesC branch *, branch *);
int branch.pointsC branch *, branch +);
void branch.lengthC FILE *, branch *);
void branchlen(FILE *, FILE *, branch *);
int count_root.branches(branch *, branch *);
int count_midsection.branches(branch *, branch *);
void branch.dataC branch *);
void outputpropertiesC FILE *, branch +);
void output.branch(FILE *, branch *);
int count.unbranched(branch *, branch *);

/* Global Parameters */
unsigned long int ix, iy, iz;
int n, num, numl, num2, nt, nc, nb;
double sigma,pi,*ccdiam,+cldiam,*c2diam,*termd,*contd,*brand,*pcont,*all.len,*all.diam;

void main(void)
{

extern unsigned long int ix, iy, iz;
extern double sigma, *ccdiam, *cldiam, *c2diam, pi, *termd, *contd, *brand,

*all.len, *all.diam;
extern int n, num, numl, num2, nib, nlc;
int c, d, j, k, nd, nr, **ndend, *p, nod, nm, start=l, np, nu;
double *pdend, *rootd, diam, len, tmp;
unit **mye;
neuron **cell;
FILE *fp, *fpl;

/ * STEP 1, - Initialisation */
pi = 4.0*atan(1.0);
Brand(((unsigned int) NSEED));
ix = rand();
iy = rand();
iz = rand();

/**
STAGE 1. - EXTRACT DATA

***/

/ * STEP 2. - Open myelinated data file */
if ((fp=fopen(INPUTl,"r")) != NULL) {

n = 0;

/ * STEP 2A. - Scan file to establish size and quantity of data * /
while (fscanf (fp, "'/.If 7.1f %d %d ’/.d",&diam,&len,&p,&p,&p) !=EOF) n++;

/* STEP 2B. - Allocate memory to hold myelinated data values * /
mye = (unit **) malloc(n*sizeof(unit *));
for (k=0 ; k<n ; k++) mye[k] = (unit *) malloc(sizeof(unit));

APPENDIX A. ASSOCIATED PROGRAMS 190

rewind(fp);

/ * STEP 2C. ~ Read data into vector */
for (k=0 ; k<n ; k++) {

fscanf(fp, "%lf %lf %d %d %d", &(mye[k]->len), &(mye[k]->diam),
&(mye[k]->child),&(mye[k]->root),&(mye[k]->term));

}
fclose(fp);

} else {
printf("\nCannot find input file!!");
return;

}
all.len = (double *) malloc(n*sizeof(double));
all.diam = (double *) malloc(n*sizeof(double));
for (k=0 ; k<n ; k++) {

all_len[k] = mye[k]->len;
all_diam[k] = mye[k]->diam;

}
fp=fopen("MyeSection.dat","w");
for (k=0 ; k<n ; k++) fprintf(fp,"%6.21f\t%6.21f\n", all_len[k], all.diam[k]);
fclose(fp);

/* STEP 3. - Open myelinated count data file */
if ((fp=fopen(INPUT2,"r")) != NULL) {

num = 0;

/* STEP 3A. - Scan file to establish size and quantity of data * /
while (fscanf (fp, "'/,d %d %d %d %d %d %d",&p,&p,&p,&p,6p,&p,&p)!=E0F) num++;

/ * STEP 3B. - Allocate memory to hold count data */
ndend = (int **) malloc(7*sizeof(int *));
for(k=0 ; k<7 ; k++) ndend[k]=(int *) malloc(num*sizeof(int));
rewind(fp);

/* STEP 3C. - Read data into vector * /
for (k=0 ; k<num ; k++) {

fscanf(fp, "%d %d %d %d %d %d %d",&ndend[0][k],&ndend[l][k],&ndend[2] [k],
&ndend[3] [k] , &ndend[4] [k] , &ndendE5] [k] , &ndend[6] [k]) ;

}
fclose(fp);

} else {
printf("\nCannot find input file!!");
return;

}

/ * STEP 4. “ Open parent-lchild data file */
if ((fp=fopen(INPUT3,"r")) != NULL) {

nc = 0;

/* STEP 4A. - Scan file to establish size and quantity of data */
while (fscanf (fp, "7,lf %lf ", &tmp, &tmp)!=E0F) nc++;

/* STEP 4B. - Allocate memory to hold parent-lchild data */
contd = (double *) malloc(nc*sizeof(double));
ccdiam = (double *) malloc(nc*sizeof(double));
rewind(fp);

/ * STEP 4G. - Read data into vector */
for(k=0 ; k<nc ; k++) fscanf (fp, If %lf ", &contd[k] , &ccdiam[k]);
fclose(fp);

} else {

APPENDIX A. ASSOCIATED PROGRAMS 191

printf("\nCannot find input file!!");
return;

}

/ * STEP 5. - Open parent“childl-child2 data file * /
if ((fp=fopen(INPUT4,"r")) != NULL) {

nb = 0;

/ * STEP 5A. - Scan file to establish, size and quantity of data * /
while (fscanf (fp, "'/.If '/.If '/.If", &tmp, &tmp, &tmp)!=EOF) nb++;

/* STEP SB. - Allocate memory to hold p-cl-c2 data */
brand = (double *) malloc(nb*sizeof(double));
cldiam = (double *) malloc(nb*sizeof(double));
c2diam = (double *) malloc(nb*sizeof(double));
rewind(fp);

/ * STEP 5C, - Read data into vector */
for (k=0 ; k<nb ; k++) fscanf (fp,'"/.If '/.If '/.If " ,&brand[k] ,&cldiam[k3 ,&c2diam[k]) ;
fclose(fp);

} else {
printf("\nCannot find input file!!");
return;

}

/* STEP 6. - Get root length and diameter data */
if ((fp=fopen(INPUT5,"r")) != NULL) {

nr = 0;

/ * STEP 6A. - Allocate memory to hold length and diameter data */
while (fscanf(fp,"%lf", &rootd)!=EOF) nr++;

/* STEP 6B. - Allocate memory to hold p-cl-c2 data */
rootd = (double *) malloc(nr*sizeof(double));
rewind(fp);

/ * STEP 6C. - Read data into vector */
for (k=0 ; k<nr ; k++) fscanf (fp, "'/.If", &rootd[k]);
fclose(fp);

> else {
printf("\nCannot find input file!!");
return;

}

/ * STEP 7. ~ Get remaining sections length and diameter data */
nt = 0;
for (k=0 ; k<n ; k++) if (mye[k]~>child == 0) nt++;

/* STEP 7A. - Allocate memory to hold length and diameter data */
termd = (double *) malloc(nt*sizeof(double));

/* STEP 7B. - Read data into vector +/
j=0;
for (k=0 ; k<n ; k++) {

if (mye[k]->child == 0) {
termd[j] = mye[k]->diam;
j++;

}
}
fp=fopen("MyeTerm.dat","w");
for (k=0 ; k<nt ; k++) fprintf (fp,'"/.6.21f\n", termd [k]);

k++) p [0] += p [k] ;
k++) pdend[k] = ((double) p[k]);
k++) pdend[k] = pdend[k]/pdend[0];

APPENDIX A. ASSOCIATED PROGRAMS 192

fclose(fp);
fp=fopBn("MyeCont.dat","w");
for (k=0 ; k<nc ; k++) fprintf(fp,"*/,6.21f\n", contdCk]);
fclose(fp);
fp=fopen("MyeBran.dat","w");
for (k=0 ; k<nb ; k++) fprintf (fp, "7,6.21f\n", brand[k]):
fclose(fp);

/* STEP 8. - Calculate probability of dendrites per cell */
nd = 0;
for (k=0 ; k<num ; k++) if (ndend[0][k] > nd) nd = ndend[0][k];
p = (int *) malloc ((nd+l)*sizeof(int));
pdend = (double *) malloc ((nd+l)+sizeof(double));
for (k=0 ; k<=nd ; k++) {

pdend[k] = 0.0;
pCk] = 0;

}
for (3=1 ; 3<=nd ; j++) {

for (k=0 ; k<num ; k++) if (ndend[0][k] == j) p[j]++:
>
for (k=l ; k<=nd
for (k=0 ; k<=nd
for (k=l : k<=nd
pdend[0] =0.0;
for (k=l ; k<nd ; k++) pdend[k] += pdend[k-1];
pdend[nd] = 1.0;

y**
STAGE 2. - BUILD CELLS

pcont = (double *) malloc(4*sizeof(double));
cell = (neuron **) malloc(NCELL*sizeof(neuron *));
for (k=0 ; k<NCELL ; k++) cell[k] «(neuron *)malloc(sizeof(neuron));
for (c=0 ; c<NCELL ; c++) {

y* STEP 10. - Calculate number of dendrites */
tmp = ran(&ix, &iy, 6iz);
for (k=0 ; k<nd ; k++) {

if (tmp >= pdend[k] && tmp <= pdend[k+l]) nod = k+1;
}
cell[c]->ndend = nod;
cell[c]->dendlist = (dendrite *) malloc((cell[c]->ndend)*sizeof(dendrite))
printf("\nCell has %d dendrites", cell[c]->ndend);

y* STEP 11. - Run through dendrites */
for (d=0 ; d<nod ; d++) {

y* STEP 12. - Get root diameter */
diam = cdflD(nr, rootd);
printf("\nRoot section has diameter %lf", diam);

/* STEP 13. - Get root length conditioned by root diameter */
len = cdf2D(n, diam, all.diam, all.len);
printf("\nRoot section has length %lf", len);
cellCc]->dendlist[d].root=(branch *)malloc(sizeof(branch));
cell[c]->dendlist[d].root->d=(double *)malloc(l*sizeof(double));
cell[c]->dendlist[d],root~>plen=(double*)malloc(l*sizeof(double));
cell[c]->dendlist[d].root->nobs = 1;
cell[c]->dendlist[d].root->d[0] = diam;
cell[c]->dendlist[d].root->plen[0] = len;
cell[c]->dendlist[d].root->parent = NULL;

APPENDIX A. ASSOCIATED PROGRAMS 193

cell[c]->dendlist[d].root->child = NULL;
cell[c]->dendlist[d],root“>peer = NULL;

/ * STEP 14. - Generate coordinates * /
for (k=0 ; k<3 ; k++) {

cell[c]->dendlist[d].root->f[k] = 0.0;
cell[c]->dendlist[d].root->lEk] = ran(&ix, &iy, &iz);

}

/* STEP 15. - Enter recursive routine to construct dendrite */
buildcelK diam, cell [c]->dendlist[d] .root);
printf("\nCompleted cell[%d]->dendlist[%d]\n", c,d);

}
}

/* STEP 16. - Clean Dendrite: turn sections into branches */
for (c=0 ; c<NCELL ; c++) {

for (d=0;d<(cell[c]“>ndend);d++) clean_dendrite(cell[c]->dendlist[d].root);
}
printf("\nCleaned dendrite");

/* STEP 17. - Get total branch lengths * /
fp=fopen("MSimBranchLen.dat","w");
fpl=f openCMSimUnBranLen.dat" , "w") ;
for C c=0 ; c<NCELL ; c++) {

for (d=0;d<(cell[c]->ndend);d++) branchlen(fp,fpl,cell[c]->dendlist[d].root);
}
fclose(fp);
fclose(fpl);

/* STEP 18. - Get dendritic lengths *******************************/
fp=fopen("MSimDendLen.dat","w");
for (c=0 ; cCNCELL ; c++) {

for (d=0; d<(cell[c]->ndend) ; d++) branch.length(fp,cell[c]->dendlist[d].root);
}
fclose(fp);

/* STEP 9. - Output branch properties to construct the dendogram */
fp=fopenC"HSimBranchProp.dat","w");
for C c=0 ; cCNCELL ; c++) {

fprintf(fp,"Cell %d\n",c);
for (d=0 ; d<(cell[c]->ndend) ; d++) {

output.branch(fp, cell[c]“>dendlist[d].root);
fprintf(fp,"\n");

}
}
fclose(fp);

/* STEP 9. - Output branch properties to construct the dendogram »/
fp=fopen("MSimSection.dat","w");
for (c=0 ; cCNCELL ; c++) {

for (d=0 ; d<(cell[c]->ndend) ; d++) {
outputpropertiesC fp, cell[c]->dendlist[d].root);

}
}
fclose(fp);

y**
STAGE 3. - EXTRACT DATA FROM SIMULATED CELLS

**y

APPENDIX A. ASSOCIATED PROGRAMS 194

/* STEP 19. - Count branches */
for (c=0 ; cCNCELL ; c++) {

for (nb=k=0 ; kCcell[c]->ndend ; k++)
nb += count.branches(cell[c]->dendlist[k].root,call[c]->dendlist[k].root);
printf("\n Found %d branches", nb);

/ * STEP 20. - Count root branches */
for (nr=k=0 ; kCcell[c]->ndend ; k++)
nr += count.root.branches (cell[c]->dendlist[k].root,cell[c]->dendlist[k].root);
printf("\n Found %d root branches", nr);

/* STEP 21. - Count mid section branches */
for (nm=k=0 ; kccell[c]->ndend ; k++)
nm += count_midsection.branches (

cell[c]->dendlist[k].root, cell[c]->dendlist[k].root);
printf("\n Found %d mid section branches", nm);

/* STEP 22. ~ Count terminal branches */
for (nt=k=0 ; kCcell[c]->ndend ; k++)
nt += count.terminal.branches

(cell[c]->dendlist[k].root, cell[c]->dendlist[k].root);
printf("\n Found %d terminal branches\n", nt);

/* STEP 22. - Count unbranched branches * /
for (nu=k=0 ; kCcell[c]->ndend ; k++)
nu += count.unbranched

(cell[c]“>dendlist[k].root, cell[c]->dendlist[k].root);
printf("\n Found %d unbranched branches\n", nu);

/* STEP 22. - Count branch points * /
for (np=k=0 ; k<cell[c]->ndend ; k++)
np += branch.points(cell[c]->dendlist[k].root, cell[c]->dendlistCk].root);
printf("\n Found %d branch points\n", np);

/ * STEP 23. - Output count data */
if (start) {

fp = fopen("MSimCount.dat","w");
fprintf(fp, "%3d\t %3d\t %3d\t %3d\t %3d\t %3d\t %3d\n",

cell[c]“>ndend, nb, np, nr, nm, nt, nu);
start = 0;

} else {
fp = fopen("MSimCount.dat","a");
fprintf (fp, "*/,3d\t %3d\t %3d\t %3d\t %3d\t %3d\t %3d\n",

cell[c]->ndend, nb, np, nr, nm, nt, nu);

fclose(fp);

/* STEP 25. - Output lengths and diameter */
for (k=0 ; k<cell[c]->ndend ; k++) branch.data(coll[c]->dendlist[k].root);

}

/* STEP 26. - Tidy up */
Destroy_Sampled.Neuron(cell) ;
for (k=0 ; k<n ; k++) free(mye[k]);
free(mye);
for (k=0 ; k<7 ; k++) free(ndend[k]);
free(ndend);
free(pdend);
free(rootd);
free(cldiam);
free(c2diam);

APPENDIX A. ASSOCIATED PROGRAMS 195

free(ccdiam);
free(contd);
free(brand);
free(termd);
free(pcont);
free(p);
free(all.len);
free(all_diam);
return;

y *

FUNCTION TO BUILD THE DENDRITE
**y
void buildcelK double diam, branch *b)

extern double sigma, *ccdiam, *cldiam, *c2diara, *brdiam, *pcdiam,
pi, *termd, *contd, *brand, *pcont, *all.len, *all„diam;

extern int n, num, numl, num2, nt, nc, nb;
int k, next;
double 1, d, pt, pc, pb, t, c, br, tmp, fract, frace, fracb, dl, d2;
branch *bnow, *btmp;

fract = ((double) nt)/((double) nt+nc+nb);
fracc = ((double) nc)/((double) nt+nc+nb);
fracb = ((double) nb)/((double) nt+nc+nb);

t = fract*pdflD(nt, diam, termd);
c = fracc*pdflD(nc, diam, contd);
br = fracb*pdflD(nb, diam, brand);

pt = (t/(t+c+br));
pc = (c/(t+c+br));
pb = (br/(t+c+br));
pcont[0] =0.0;
pcont[1] = pt;
pcont[23 = pt+pc;
pcont[3] = pt+pc+pb;
tmp = ran(&ix, feiy, &iz);
for (k=0 ; k<3 ; k++) {

if (tmp >= pcont[k] && tmp <= pcont[k+1]) next = k;
}
printf("\nSection has %d child(ren)", next);

if (next == 1) { // Continues
bnow = (branch *) malloc(sizeof(branch));
bnow->d = (double *) malloc(l*sizeof(double));
bnow->plen = (double *) malloc(l*sizeof(double));
d = cdf2D(nc, diam, contd, ccdiam);
printf("\nSection has diam %lf", d);
1 = cdf2D(n, d, all.diam, all.len);
printf("\nSection has len ’/.If", 1);
b->child = bnow;
bnow->parent = b;
bnow->child = NULL;
bnow->peer = NULL;
bnow->plen[0] = 1;
bnow->d[0] = d;
bnow->nobs = 1;
for (k=0 ; k<3 ; k++) bnow->f[k] = b->l[k];
for (k=0 ; k<3 ; k++) bnow->l[k] = ran(&ix, &iy, &iz);

APPENDIX A. ASSOCIATED PROGRAMS 196

buildcelK d, bnow) ;
} else if C next == 2) { // Branches

bnow = (breinch *) mallocC sizeof (branch)) ;
bnow->d = (double *) mallocC l*sizeof(double));
bnow“>plen = (double *) mallocC i+sizeof(double));
dl = cdf2D(nb, diam, brand, cldiam);
1 = cdf2D(n, dl, all.diam, all.len);
b->child = bnow;
bnow->pEirent = b;
bnow“>child = NULL;
bnow->d[0] = dl;
bnow->plen[0] = 1;
bnow“>nobs = 1;
for (k=0 ; k<3 ; k++) bnow->f[k] = b->l[k];
for (k=0 ; k<3 ; k++) bnow->l[k] = ran(&ix, &iy, &iz);
btmp = (branch *) mallocC sizeof(branch));
btmp“>d = (double *) mallocC l*sizeof(double));
btmp“>plen = (double *) mallocC l*slzeof(double));
d2 = cdf3D(nb, diam, dl, brand, cldiam, c2diam);
1 = cdf2D(n, d2, all.diam, all.len);
btmp->d[0] = d2;
btmp->plen[0] = 1;
btmp->parent = b;
btmp->peer = NULL;
btmp->child = NULL;
bnow->peer = btmp;
btmp->nobs = 1;
for (k=0 ; k<3 ; k++) btmp->f[k] = b->l[k];
for (k=0 ; k<3 ; k++) btmp->l[k] = ran(&ix, &iy, &iz);
buildcell(dl, bnow);
buildcell(d2, btmp);

} else { // Terminates
b->child = NULL;
return;

}
return;

y**
CALCULATES CDF AND RETURNS A DEVIATE - ONE-DIMENSION

double cdfID(int n, double *val)
{

extern unsigned long int ix, iy, iz;
int j , k;
double cdf, min, max, mid, sum, h;

min = max = val [0] ;
for (k«l ; k<n ; k++) {

if (val[k] < min) min = val[k];
if (val[k] > max) max = val[k];

}
h = scott„bandwidth(n, 1.0, val);

cdf = 0.5+0.5*ran(&ix, &iy, &iz);
min -= 10.0*h;
max += 10.0*h;
do {

mid = 0.S*(min+max);
for (sum=0.0,j=0 ; j<n ; j++) sum += phi((mid-val[j])yh);
for (j=0 ; j<n ; J++) sum += phi((raid+valCj])/h);

APPENDIX A. ASSOCIATED PROGRAMS 197

sum /= ((double) 2+n);
if (sum > cdf) {

max = mid;
} else {

min = mid;
>

} while (max-min > 5.e-7);
mid = 0.5*(min+max);

return(mid);

y**
CALCULATES PDF AND RETURNS A DEVIATE - ONE-DIMENSION

**************+********+************+***+*****************************/
double pdfID(int n, double diam, double *val)
{

int k;
double ker, tmp, fac, h;

h = scott_bandwidth(a, 1.0, val);
fac = 1.0/(h*sqrt(2.0*pi)*((double) n));
ker = 0.0;
for (k=0 ; k<n ; k++) {

tmp = 0.5*pow((diam-val[k])/h, 2);
if (tmp < 20.0) ker += exp(-tmp);

>
ker *= fac;

return(ker);

/**************************************+*******************************
CALCULATES CONDITIONAL DENSITY AND RETURNS DEVIATE

******+*****************************+**+*********+********************/
double cdf2D(int n, double diam, double *x, double *y)
•C

extern unsigned long int ix, iy, iz;
int j, k;
double *w, cdf, min, max, mid, sum, hx, by, tmp;

w = (double *) malloc(n*sizeof(double));
for (k=0 ; k<n ; k++) w[k] =0.0;

scott_correlated(n, &hx, &hy, x, y);

for (k=0 ; k<n ; k++) {
tmp = (diam-x[k])/hx;
tmp *= trap;
if (tmp < 50.0) w[k] = exp(-0.5*tmp);
tmp = (diam+x[k])/hx;
tmp *= tmp;
if (tmp < 50.0) w[k] += exp(-0.5*tmp);

}
for (sum=0.0, k=0 ; k<n ; k++) sum += w[k];
for (k=0 ; k<n ; k++) w[k] /= sum;

min = max = y [0];
for (k=l ; k<n ; k++) {

if (y [k] < rain) min = y Ck] ;
if (yCk] > max) max = y[k];

APPENDIX A. ASSOCIATED PROGRAMS 198

cdf = 1.0+ran(&ix, &iy, &iz);
min -= 10.0*hy;
max += 10.0*hy;
do {

mid = 0.5*(min+max);
for(sum=0.0 ,3=0 ; j<n ; j++) sum += w [j]*phi((mid-y[j))/hy);
for(3=0 ; j<n ; j++) sum += w[j]*phi((mid+y[j])/hy);
if (sum > cdf) {

max = mid;
} else {

min = mid;
}

} while (max-min > 5.e-7);
mid = 0,5+(min+max);

free(w);
return(mid);

y**
CALCULATES 3D CONDITIONAL DENSITY AND RETURNS DEVIATE

double cdf3D(int n,double diam,double di,double *p,double *cl,double *c2)
{

extern unsigned long int ix, iy, iz;
int 3 , k;
double *w, cdf, c2min, c2max, c2mid, sura, hx, hy, h, tmp, d2;

w = (double *) raalloc(n*sizeof(double));
for (k=0 ; k<n ; k++) w[k] =0.0;

scott_correlated(n, &hx, &hy, p, cl);
for (k=0 ; k<n ; k++) {

tmp = (diam-p[k])yhx;
trap *= trap;
if (tmp < 50.0) w[k] = exp(-0.5*tmp);
trap = (diam+p[k])/hx;
trap *= trap:
if (tmp < 50.0) w[k] += exp(-0.6*tmp);

}
for (sum=0.0, k=0 ; k<n ; k++) sum += w[k];
for (k=0 ; k<n ; k++) w[k] /= sum;

for (k=0 ; k<n ; k++) {
sum = 0.0;
tmp = (dl-cl[k])/hy;
tmp *= tmp;
if (tmp < 50.0) sum = exp(-0.5*tmp);
tmp = (dl+ci[k])/hy;
tmp *= tmp;
if (tmp < 50.0) sum += exp(-0.6*tmp);
w[k] *= sum;

}
for (sum=0.0, k=0 ; k<n ; k++) sum += w[k];
for (k=0 ; k<n ; k++) w[k] /= sum;

h = scott_bandwidth(n, 3.0, c2);
c2min = c2max = c2 [0];
for (k=l ; k<n ; k++) {

APPENDIX A. ASSOCIATED PROGRAMS 199

if (c2[k] < c2min) c2min = c2[k];
if C c2 [k] > c2max) c2max = c2 [k];

}

cdf = 1.0+ran(&ix, &iy, &iz);
c2min -= 10.0*h;
c2raax += 10.0*h;
do {

c2mid = 0.5*(c2min+c2max);
for(sum=0.0,j=0 ; j<n ; j++) sum += w[j]*phi((c2mid-c2[j])/h);
forC j=0 ; j<n ; j++) sum += w[j]*phi((c2mid+c2[j])/h);
if (sum > cdf) {

c2max = c2mid;
} else {

c2min = c2mid;
}

} while (c2max-c2min > 5.e-7);
d2 = O.S+(c2min+c2max);

free(w);
return(d2);

j **
Function to find length of branch

**/
void branchlen(FILE *fp, FILE *fpl, branch *bnow)
{

int k;
double length;

if (bnow~>child) branchlenC fp, fpl, bnow->child);
if (bnow“>peer) branchlenC fp, fpl, bnow->peer);

for (length=0.0,k=0 ; k<(bnow->nobs) ; k++) {
length += bnow->plen[k];

}
bnow->len = length;
fprintfCfp,"'/,10.61f\t*/,6.21f\n", bnow~>len, bnow->d[0]);

return;

/************************+******************+*****************
Function to count number of root branches and print
the length of the branches out to file.

**/
int count_root_branches(branch *bstart, branch *bnow)
{

static int n;

if (bstart == bnow) n = 0;
if (bnow) {

if C bnow->child) count_root_branches(bstart, bnow->child);
if (bnow->peer) count_root_branches(bstart, bnow->peer);
if (! bnow->péir0nt) n++;

}
return n;

J

APPENDIX A. ASSOCIATED PROGRAMS 200

Function to count number of root branches and print
the length of the branches out to file.

int count_midsection_branches(branch *bstart, branch *bnow)
{

static int n;

if C bstart == bnow) n = 0;
if (bnow) {

if (bnow->child)coimt_inidsection_branches(bstart,bnow->child)
if (bnow->paer) count_midsection_branches(bstart, bnow->peer)
if (bnow->parent && bnow->child) n++;

}
return n;

Function to count number of root branches and print
the length of the branches out to file.

int count_unbranched(branch *bstart, branch *bnow)
{

static int n;

if (bstart == bnow) n = 0;
if (bnow) {

if (bnoW“>child) count_unbranched(bstart, bnow->child);
if (bnow“>peer) count„unbranched(bstart, bnow->peer);
if (!bnow">parent && !bnow~>child) n++;

}
return n;

y ***
Function to count number of root branches and print
the length of the branches out to file.

**y
int branch„points(branch *bstart, branch *bnow)
{

static int a;

n = 0;
if (bnow) {

if (bnow->child) branch_points(bstart, bnow->child);
if (bnow->peer) branch_points(bstart, bnow~>peer);
if (bnow->child && bnow->child->peer) n++;

>
return n;

y ***
Function to count number of child branches

**/
void branch„data(branch *b)
{

static int k, initial=i, start=i, first=l, firstl=l,
flag, n, nun, sect, root, child;

double doId, dnew, len, xold, xnew;
branch *bran;

APPENDIX A. ASSOCIATED PROGRAMS 201

FILE +fp, *fpl, *fp2, *fp3;

if (b">child) branch_data(b->child);
if (b~>peer) branch^dataC b->peer);

/* Initialisation phase * /
n = 0;
if (start) {

fp = fopenC'HSimBranch.dat'', "w") ;
start = 0;
num = 1;

} else {
fp = fopenC'HSimBranch.dat" , "a") :
nnm++;

}

/ * Count number of child branches */
bran = b->child;
while (bran != NULL) {

n++;
bran = bran->peer;

}

/ * Determine type of branch: root(O), midsection(l), or terminal(2) */
if (!b->parent) {

root = 1;
} else {

root = 0;
}
if (!b->parent) {

sect = 0;
} else if (b->parent &Ss b->child) {

sect = 1;
} else if C !b->child) {

sect = 2;
}

/* Print out peirent and child diameters */
if (firstl) {

fp2=fopen("HSimParentDiam.dat","w");
firstl = 0;

> else {
fp2=fopen("MSimParentDiam.dat","a");

}

/ * Print out root diameters */
if (first) {

fpl=fopenC'MSimRootDiam.dat","w");
first = 0;

} else {
fpl=fopenC'MSimRootDiam.dat","a");

>
if (!b->parent && b->child) fprintf(fpl,"%4.21f\n", b->d[0]);
/flag = 1;

/ * Print out parent & one child diameters * /
if (initial) {

fp3=fopen("MSimContDiam.dat","w");
initial = 0;

} else {
fp3=fopenC'MSimContDiam.dat","a");

APPENDIX A. ASSOCIATED PROGRAMS 202

/ * Decompose branches into lengths of uniform diameter * /

len = xold = b->plen[0];
dold = b“>d[03;
for (k=l ; k<b->nobs ; k++) {

xnew = b->plen[k];
dnew = b->d[k];
if (dnew != dold) {

child = 1;
fprintf(fp,"'/,6.21f\t '/.6.21f\t %3d\t %3d\t %3d\n",

len, dold, child, sect, num)
// if (root && flag) {
// fprintfCfpl,"*/.6.21f\t*/,6.21f\n", len, dold);
// flag = 0;
/ / }

fprintf(fp3,"%6.21f\t%6.21f\n", dold, dnew);
len = xnew;

} else {
// if (root && flag) {
// fprintf(fpl,"%6.21f\t%6.21f\n", len, dold);
// flag = 0;
/ / >

len += xnew;
}
xold = xnew;
dold = dnew;

}
fprintf (fp. "'/.6.21f\t %6.21f\t %3d\t %3d\t %3d\n" ,

len, dold, n, sect, num)

if (b->child && b->child->peer) {
if (b->child->d[0] > b->child->peer->d[0]) {

fprintf(fp2,"%6.21f\t %6.21f\t %6.21f\n",
b->d[b->nobs-l3, b->child->d[0], b->child->peer->d[0]);

> else {
fprintf(fp2,"7.6.21f\t %6.21f\t %6.21f\n",

b->d[b->nobs-l] ,b->child->peer->d[0] ,b->child~>d[0]) :
}

}
fclose(fp);
fclose(fpi);
fclose(fp2);
fclose(fp3);

return;

APPENDIX A, ASSOCIATED PROGRAMS 203

A .4.2 B iV arK ernels.c

This program estimates the bivariate kernel density of two data sets, for example, parent

and child section diameter. The procedure is described in Chapter 5. This progiam uses

the correlated Scott bandwidth calculation described in Chapter 5.

#in.clude <stdio.h>
#ittclude <stdlib.h>
#include <math.h>
#include <string.h>

y***
Construct bivariate densities.

/ * Input files * /
#define INPUT "MSimParentDiam.dat" /* Input file */
#define OUTPUT "MSimChildrenKer.dat" / * Output file */
#define OUTPUT1 "MSimChildrenCoords.dat" / * Output file */

/ * Numerical Parameters */
#define NSIM 10 > y*
#define DIM 2 /*
#define VAR 2 / *
#define NSEED 20 / *

/* Global Functions */
void beapsortC int, double *);
double scott_bandwidth(int, double *);
void scott„correlated(int, double *, double *, double *, double *);

/ * Global Parameters */
double *z, *d, anew, sigma, sigmax, sigraay;
int ndim;

void main(void)
{

extern double +z, *d, anew, sigmax, sigmay;
extern int ndim;
int i, j , k , s, t , num;
double *vall, *val2, *data, x, y, pi, tmp, tmpl, tmp2, hx, hy,

firstl, lastl, first2, last2, dx, dy, ker, fac, v;
FILE *fp, *fpl, *fp2;

y* STEP 1. - open myelinated data file * /
if ((fp=fopen(INPUT,"r")) != NULL) {

num = 0;

y* STEP la, - Scan file to establish size and quantity of data */
while (fscanf(fp,"7,lf */,lf", &tmp, &tmp)!=EOF) num++;

/* STEP lb. - Allocate memory to hold myelinated data values * /
vail = (double *) malloc(num*sizeof(double));
val2 = (double *) malloc(num*sizeof(double));
rewind(fp);

/ * STEP Ic. - Read data into vector * /
for (k=0 ; k<num ; k++) {

APPENDIX A. ASSOCIATED PROGRAMS 204

fscanfCfp, "7,lf 7.1f", &vall[k], &val2[k3);
>
fclose(fp);

} else {
printf("\nCannot find input file!!");
return;

}
printf("\n7.d items in %s", num, INPUT);

/ * STEP 2. - Myelinated cells */
data = (double *) malloc(num*sizeof(double));
for (k=0 : k<num ; k++) data[k] = 0.0;

scott_correlated(num, &hx, &hy, vail, val2);

/* STEP 3. - Calculate bandwidth for lengths */
for (k=0 ; k<num ; k++) {

data[k] = vall[k];
heapsort(num, data);

}

firstl = data[0]-(2.0*sigmax);
if (firstl < 0.0) firstl = 0.0;
lastl = data[num-l]+(2.0*sigmax);
dx = (lastl-firstD/lOO.O;

/* STEP 4. - Calculate bandwidth for lengths */
for (k=0 ; k<num ; k++) {

data[k] = val2[k] ;
heapsort(num, data);

}

first2 = data[0]-(2.0*sigmay);
if (first2 < 0.0) first2 = 0.0;
last2 = data[nUm-l3+(2,0*sigmay);
dy = (last2-first2)/i00.0;

/* STEP 5. - Calculate density */
fac = 9.0/(2000.0*hx*hy*((double) num));
fp = fopen(OUTPUT,"w");
fpl = fopen(OUTPUTl,"w");
for (j=0 ; j<=100 ; j++) {

X = firstl+dx*((double) j);
for (k=0 ; k<=100 ; k++) {

ker = 0.0;
y = first2+dy*((double) k);
for (t=0 ; t<num ; t++) {

tmpl = fabs((x-vall[t])/hx);
tmp2 = fabs((y-val2[t])/hy);
if (tmpl <= sqrt(5.0) && tmp2 <= sqrt(B.O)) {

ker += (5.0-tmpl*tmpl)*(5.0-tmp2*tmp2);
}

}
ker *= fac;
if (j == k) fprintf(fpl, "%12.61f\t", y);
fprintf(fp, "%12.61f\t", ker);

}
fprintf(fp,"\n");
fprintf(fpl, "%12.61f\n", x);

}
fclose(fp);

APPENDIX A. ASSOCIATED PROGRAMS 205

fclose(fpl);

/ * STEP 6. - Tidy up »/
free(vall);
free(val2);
free(data);

return;
>

APPENDIX A. ASSOCIATED PROGRAMS 206

A .4.3 S im Stats.c

To analyse the results of the simulation exercise, the following program SimStats.c was

developed. It calculates the mean value and standard deviation of the density of each pa­

rameter at specified values. For example, each simulation will return an estimated density

for dendritic length and by applying SimStats.c, the mean density and corresponding stan­

dard deviation can be calculated. As displayed in Chapter 5, this can be used to compare

the real density with the simulated density when testing the results of the simulation.

#include <stdio,h>
#include <stdlib.h>
#include <math.h>
#lnclude <string.h>

j *

Program to calculate the mean and standard deviation of
the estimated densities from the simulation program.

* ♦ * /

/* Numerical Parameters */
#define NAME "MSIMUBDiaSimKer.dat" /* Input file */
#define OUTPUT "HSIMUBDiamKernels.dat" /* Output file */
#define NSIM 200 /* No. of simul's */
#define NKER 101 /* No. of div’s +/

void main(void)
{

int j , k;
double *mu, *sigma, **den, *max, *min, mean, sd, h, dx,

pi, fac, ker, tmp, x, first, last;
FILE *fp;

/* STEP 1. - Determine file exists */
if ((fp=fopen(NAME,"r")) != NULL) {

den = (double **) malloc(NSIM*sizeof(double *));
for (k=0 ; k<NSIM ; k++) den[k] = (double *) malloc(NKER*sizeof(double));
for (k=0 ; k<NSIM ; k++) {

for (j=0 ; j<NKER ; j++) fscanf (fp, "’/,lf ", &den[k][j]);
}
fclose(fp);

} else {
printf("\nCannot find input file!!");
return;

}

/* STEP 2. - Calculate mean and standard deviation */
mu = (double *) malloc(NKER*sizeof(double));
sigma = (double *) malloc(NKER*sizeof(double));
for (k=0 ; k<NKER ; k++) mu[k] = sigma[k] = 0.0;

for (k=0 ; k<NKER ; k++) {
for (j=0 ; j<NSIM ; j++) {

mu[k] += den[j] [k] ;
sigma[k] += pow(den[j] [k] , 2);

}
mu[k] /= ((double) NSIM);

APPENDIX A. ASSOCIATED PROGRAMS 207

sigma[k] /= ((double) NSIM);
sigma[k] = sqrt(sigma[k]-mu[k]*mu[k]);

>

/ * STEP 3. - Calculate and draw max and min curves * /
max = (double *) malloc(NKER*sizeof(double));
min = (double *) malloc(NKER*sizeof(double));
for (k=0 ; k<NKER ; k++) max[k] = min[k] = 0.0;

for (k=0 ; k<NKER ; k++) {
max [k] = mu[k]+2.0*sigma[k];
if (max[k] < 0.0) max[k] = 0.0;
minCk] = mu[k]-2.0*sigma[k] ;
if (min[k] < 0.0) min[k] = 0.0;

}

fp=fopen(OUTPUT,"w");
for (k=0;k<NKER;k++) fprintf(fp,"%10.81f\t%10.81f\t%10.81f\n",

1000*min[k], 1000*mu[k], 1000*max[k]);
fclose(fp);

/* STEP 4. - Tidy up */
for (k=0 ; k<NSIM ; k++) free(den[k]);
free(den);
free(mu);
free(sigma);
free(min);
free(max);
return;

APPENDIX A. ASSOCIATED PROGRAMS 208

A .5 H odgkin-H uxley rate functions

The auxiliary variables m, n and h in the Hodgkin-Huxley membrane model define the

kinetic behaviour of the conductances through differential equations of the form

^ ay {1 - y) - y

where y = h^m,n and a and (3 are functions of Vm- The following code calculates the

values of a and p for a specified voltage for each of the auxiliary variables /i, m and n.

f**
ALPHA for ACTIVATION OF SODIUM

***/
double alfa_m(double volt)
{

double tmp;
static double fac;
static int start=l;

if (start) {
fac = pow(3.0,0,l*CELSIUS-0.63) ;
start = ! start;

}
tmp = -0.l*Cvolt+35.0);
if (fabs(tmp)<0.001) {

tmp = 1.0/(((tmp/24.0+1.0/6.0)*tmp+0.5)*tmp+1.0);
} else {

tmp = tmp/(exp(tmp)-1.0);
}
return tmp*fac;

/ *

BETA for ACTIVATION OF SODIUM
**/
double beta_m(double volt)
{

double tmp;
static double fac;
static int start=l;

if (start) {
fac = pow(3.0,0.1*CELSIUS“0.63);
start = ! start;

>
tmp = (volt+60.0)/18.0;
return 4.0*fac*exp(-tmp);

/ *

ALPHA for INACTIVATION OF SODIUM
**/
double alfa_h(double volt)
{

double tmp;

APPENDIX A. ASSOCIATED PROGRAMS 209

static double fac;
static int start=i;

if (start) {
fac = pow(3.0,0.1*CELSIUS-0.63);
start = ! start;

}
tmp = 0.06*Cvolt+60.0);
return 0.07*fac*e%p(-tmp);

/*********************************+**********************************
BETA for INACTIVATION OF SODIUM

+***********/
double beta_h(double volt)
{

double tmp;
static double fac;
static int start=l;

if (start) {
fac = pow(3.0,0,1+CELSIUS-O.63);
start = ! start;

}
tmp = -0.l*(volt+30.0);
return fac/(exp(tmp)+1.0);

/**
ALPHA for ACTIVATION OF POTASSIUM

+***********************/
double alfa_n(double volt)
{

double tmp;
static double fac;
static int start=i;

if (start) {
fac = pow(3.0,0.1*CELSIUS-0.63);
start = ! start ;

}
tmp = -0.1*(volt+50.0);
if (fabs(tmp)<0.001) {

tmp = 0.l/(((tmp/24.0+1.0/6.0)*tmp+0.5)*tmp+1.0);
} else {

tmp = 0.1*tmp/(exp(tmp)-1.0);
}
return tmp*fac;

/**
BETA for ACTIVATION OF POTASSIUM

**/
double beta_n(double volt)
{

double trap;
static double fac;
static int start=l;

if (start) {
fac = pow(3.0,0.1*CELSIUS~0.63);

APPENDIX A. ASSOCIATED PROGRAMS 210

start = ! start;
}
tmp = 0.0125*(volt+60.0);
return 0.125*fac*exp(-tmp);

}

APPENDIX A. ASSOCIATED PROGRAMS 211

A .6 U tility programs

This section contains some standard functions that are common to many of the programs,

for example a random number generator and a number sorting algorithm.

y**
Calculate the cumulative normal distribution phi(z)

double phi(double z)

double t, X, y, hrt=0.707106781186547524;

X = -z*hrt;
if (X >= 26.6) return 0.0;
if (X <= -6.5) return 1.0;
t = 1.0-7.5/(fabs(x)+3.75);
y = (((((((((((((((-l.B8023488119651697e-ll*t

-4.949720690093929278-11)*t+l.86424953544623784e-10)*t
+6.29796246918239617e-l0)+t-1.34751340973493898e-9)*t
-4.84566988844706300e-9)*t+9.22474802259858004e-9)*t
+3.14410318645430670e-8)*t-7.26754673242913196e-8)*t
-1.83380699508554268e-7)*t+6.59488268069175234e-7)*t
+7.48541685740064308e-7)*t-6.18344429012694168e-6)*t
+3.583714979841453578-6)*t+4.78987832434182054e-5)*t
-1.52462664665855354e-4)*t-2.55353311432760448e-5;

y = ((((((((y*t+l.80296241673597993e-3)*t-8.22062115413991215e-3)*t
+2.414322397244457698-2)*t-5.48023266949776152e-2)*t
+1.02604312032198239e-l)*t-l.63571895523923969e-l) *t
+2.260080669166214318-1)*t-2,73421931495426482e-l)*t
+1.455897212760386398-1 ;

y = 0.5*y*exp(-x*x);
if (X < 0.0) y = 1.0-y;
return y;

y *

Function returns primitive uniform random number in interval [0,1]
**y
double ran(unsigned long int *ix,

unsigned long int *iy,
unsigned long int *iz)

{
double trap;

y* 1st item of modular arithmetic */
♦ix = (171+(+ix)) 7.30269 :

y* 2nd item of modular arithmetic */
♦iy = (172* (♦iy)) 7.30307;

/* 3rd item of modular arithmetic * /
♦iz = (170* (*iz)) 7.30323;

y* Generate random number in (0,1) */
trap = ((double) (*ix))/30269.0+((double) (*iy))y 3 0 3 0 7 .0

+((double) (*iz))/30323.0;
return fmod(tmp,1.0);

y *

Order entries of vector x[] in ascending order
**y

APPENDIX A, ASSOCIATED PROGRAMS 212

void heapsortC int n, double *x)
{

int finish;
long int i, ir, j, k;
double tmp;

if C n<2) return;
k = n/2;
ir = n-i;
finish = 0;
while (! finish) {

if C k>0) {
tmp = X [— k];

} else {
tmp « X[ir];
X [ir] = X [0] ;
if (— ir==0) {

x[0] = tmp;
finish = 1;

>
}
i = k;
j = 2*k+l;
while (j<=ir) {

if C j<ir x[j]<x[j+l]) j++;
if (trap<x[j]) {

x[i] = x[j] ;
i = j;
j = 2*j+l;

} else {
j = ir+1;

}
}
x[i] = tmp;

}
return;

Locates the minimum of the function
fune(double) to the interval [al,an].

***/
void golden(double *al, double ♦an, double (*func)(double))
{

int ;
double r=0.618033988, vl, vu, f1, fu;

/* Count frequency of voltage in given range */
vl = *al+r*r*(*au-*al);
f1 = func(vl);
vu = *al+r*(*au"*al);
fu = fune(vu);
while (*au-*al > 5.e-5) {

if (fl >= fu) {
*al = vl;
vl = vu;
fl = fu;
vu = *al+r*(*au~*al);
fu = fune(vu);

} else {
*au = vu;

APPENDIX A. ASSOCIATED PROGRAMS 213

vu = vl;
fu = fl;
vl = *al+r+r*(*au-+al) ;
fl = func(vl);

return;

y**
Calculates the modified Bessel function l_0(x)

double bess„iO(double x)
{

double g, t, y;
double xvsmal=3.2e-9, xbig=7.116e+2, ybig=4,5e+307;

t = fabs(x);
if (t > xbig) return ybig;
if (t > 12.0) {

g = exp(t-0.6*log(t));
t = 24.0/t-l.O;
y = -1.95679809047625728e-13;
y = y*t+4.73229306831831040e-14
y = y*t+1.44572313799118029e~12
y = y*t+4.30812577328136192e-13
y = y*t-4.29417106720584499e-12
y = y*t-4.34624739357691085e-12
y = y*t+2.82807056475555021e-12
y = y*t+8.27719401266046976e-12
y = y*t+1.05863621425699789e-ll
y = y*t+1.89599322920800794e-ll
y = y*t+4.82726630988879388e-ll
y = y*t+1.56147127476528831e-10
y = y*t+6.479941177934720576-10
y = y*t+3.44345025431425567e-9
y = y*t+2.36884434055843528e-8
y = y*t+2.17160601061222148e-7
y = y*t+2.79770701849785597e-6
y = y*t+5.59848253337377763e-5
y = y*t+2.18216817211694382e-3
y = y*t+4.01071065066847416e-l
return g*y;

> else if (t > 4.0) {
g = exp(t);
t = 0.25*t-2.0;
y = 2.45185252963941089e-ll;
y = y*t~S.46900307934754898e-ll
y = y*t+l.231881581754193026-10
y = y*t-3.80370174256271589e-10
y = y*t+1.58599776268172290e-9
y = y*t-4.66215489983794905e-9
y = y*t+1.24131668344616429e-8
y = y*t-3.349002219343147386-8
y = y*t+8.752918391873057226-8
y = y*t-2.17653548816447667e-7
y = y*t+5.18632519069546106e-7
y = y*t-l.18752840689765504e-6
y = y*t+2.61457634142262604e-6
y = y*t-5.54917762110482949e-6
y = y*t+l.140324040217412778-5

APPENDIX A. ASSOCIATED PROGRAMS 214

= y*t“2.28278155280668483e-5
= y*t+4.48739019580173804e-5
= y*t-8.743542911044677620-5
= y*t+l.705245432679705956-4
= y*t-3.358335132006793840-4
= y*t+6.725085922737736116-4
= y*t-l.376389069412321708-3
= y*t+2.893620465309687010-3
= y*t-6.301216944598963070-3
= y*t+l.448612373373594550-2
= y*t-3.715715425660853230-2
= y*t+l.434317818568503110-1

return g*y;
else if (t > xvsmal) {
g = exp(t);

= 0.5*t-1.0;
= -7.481501657562349570-12;
= y*t+4.444844466378689740-11;
= y*t-2.100713601345519620-10;
= y*t+l.134159342153692090-9
= y*t-5.948562732042595070-9
= y*t+2.920961635211788350-8

y*t-l.360420135071510178-7
= y*t+6.0056686l079330132e-7
= y*t-2.502989759665886800-6
= y*t+9.813958627697871050-6
= y*t-3.606455714448862860-5
= y*t+l.236826949896926880-4
= y*t-3.939345320725267200-4
= y*t+1.15888319775791686e-3
= y*t-3.129232866563743580-3
= y*t+7.700610522633825558-3
= y*t-l.713179479357165368-2
= y*t+3.415053883914521570-2;
= y*t-6.043167950077371830-2;
= y*t+9.416163402008683890-2;
= y*t-1.28895621330524993e-l
= y*t+l.57686843969995904e-!
= y*t-l.864780666094667600-1
= y*t+3.085083225536710390-1

return g*y;
else {
return 1,0;

/***+**********
Calculates the modified Bessel function I_l(x)

* /

double bess„il(double x)
{

double g, t, y;
double xvsmal=3.2e-9, xbig=7.116e+2, ybig=4.5e+307;

t = fabs(x);
if (t > xbig) return ybig;
if (t > 12.0) {

g = exp(t-0.5*log(t));
t = 24.0/t-l.O;
y = 1.994485575980154880-13;
y = y*t-5.771768117303706608-14;

APPENDIX A. ASSOCIATED PROGRAMS 215

= y*t-1.487650823i5961139e-12
= y*t-3.95353303949377536e-13
= y+t+4.477355896570576900-12
= y*t+4.429664623196643330-12

y*t-3.059572934504202240-12
= y*t-8.696317666305636350-12
= y*t-l.117955167422228990-11
= y*t-2.029478546027581390-11

y*t-5.235241295335534980-11
= y*t-l.720604907485832410-10
= y*t-7.281079610418279520-10
= y+t-3.967571628632093480-9
= y+t-2.825371208800417030-8

y+t-2.726845457414008710-7
= y*t-3.827951354535562150-6
= y*t-9.124755355084971090-5
= y*t-6.405453603482374126-3
= y*t+3.926244942041165550-1

return g*y*(x/fabs(x));
else if (t > 4.0) {

g = exp(t);
t = 0.25*t-2.0;

= -2.270613761226178560-11;
= y+t+7.79929176497056645a
= y*t-l.10970391104678003e
= y*t+3.38883570696523350e
= y*t-l.41575617446629553e
= y*t+4.11321223904934809e
= y*t-l.07563514207617768e
= y*t+2.84961041291017650e
= y*t-7.28978293484163628e
= y*t+l.76305222240064495e
= y*t-4.05456611578551130e
= y*t+8.86951515545183908e
= y*t-l.83910206626348772e
= y*t+3.60186151617732531a
= y*t-6.63144162982509821e
= y*t+l.13818992442463952e
= y*t-l.79026222757948636e
= y*t+2.47493270133518925e
= y*t-2.62051678511418163e
= y*t+5.21557319070236939e

y+t+8.47999438119288094e
= y*t-3,67626180992174570e
= y*t+l.17313412855965374e
= y*t-3.40759647928956354e
= y*t+9.76021102528646704e
= y*t-2.99140923897405570e
= y+t+1.34142493292698178e

return g*y*(x/fabs(x));
else if (t > xvsmal) {

t = 0.125+t*t-1.0;
y = 6.24387910353848320e-14;
y = y*t+4.17372709788222413e
y = y*t+2.32856921884663846e
y = y*t+l.06662712314503955e
y = y*t+3.92368710996392755e
y = y*t+l.12849795779951847e
y = y*t+2.45224314039278904a
y = y*t+3.84763940423809498e
y = y*t+4.09286371827770484e

-11
-10
-1 0
-9
9

- 1 2 ;
- 1 0 ;
-8 ;
■7
■5
•4
-3
2

APPENDIX A. ASSOCIATED PROGRAMS 216

y = y+t+2.68657659522092832e-l;
y = y*t+9.28758890114609554e-l;
y = y*t+l.19741654963670236;
return x*y;

else {
return 0,5*x;

y**
Calculates the modified Bessel function K_0(x)

***/
double bess_k0(double x)
{

double g, t, y;
double xvsmal=3.2e-9, egam=5.77215664901532861e-l, xbig=7.051e+2;

if (X <= 0.0) {
printf("\nKO evaluated for non-positive argument!");
return 0.0;

if (X >= xbig) return 0.0;
if (X > 4.0) {

t = 10.0/(1.0+x)-1.0;
y = 4.43741979886551040e-14;
y = y*t-1.28108310826991616e-13
y = y*t+2.06328892562554880e-13
y = y*t-7.31344482663931904e-13
y = y*t+2.854812351677059070-12
y = y*t-1.11391758572647639e-ll
y = y*t+3.495642932566459920-11
y = y*t-2.228295822888332650-10
y = y*t+l.753593212735806030-10
y = y*t-9.415553211371760730-9
y = y+t-4.160448111741145790-8
y = y*t-7.691776225292729330-7
y = y*t-6.316923983337464700-6
y = y*t-9.02553345187404564e-5
y = y*t-9.265514647656371330-4
y = y*t-l.726836523853216410-2
y = y*t+l.23688664769425422;
return y*exp(-x)/sqrt(x);

} else if (X > 2.0) {
t = x-3.0;
y = 2.435382422475374590-12;
y = y*t-7.39672783987933184e-12;
y = y*t+9.111094308330012676-12;
y = y*t-2.977875646332351280-11;
y = y*t+l.289055874799801476-10;
y = y*t-4.034246078719600890-10;
y = y*t+l.224249827794329700-9
y = y*t-3.88349705250555658e-9
y = y*t+l.239231378983468520-8
y = y*t-3.954032557135184206-8
y = y*t+i.266726294175673600-7
y = y*t-4.07851207862189007e-7
y = y*t+l.320522610589324250-6
y = y*t-4.303738717272685110-6
y = y*t+l.413765093436227270-5
y = y*t-4.689366538148967120-5
y = y*t+1.57451516235860573e-4

APPENDIX A. ASSOCIATED PROGRAMS 217

= y*t-5.37145622971910027e-
= y*t+l.87292939725962385e-
= y*t-6.74459607940169198e-

y*t+2.56253646031960321e-
= y*t-l.08801882084935132e-
= y*t+6.97761598043851776e-

return y*exp(-x);
else if (X > 1.0) {

t = 2.0+X-3.0;
= 2.57466288575820595e-12;
= y*t-7.83738609108569293e-

y*t+9.74410152270679245e-
= y*t-3.19241059198852137e-
= y*t+l.37999268074442719e-
= y*t-4.33326665618780914e-
= y*t+l.32069362385968867e-
= y*t-4.20597329258249948e-

y = y+t+1.34790467361340101e-
y = y*t-4.32185089841834127e-

= y*t+l.39217270224614153e-
= y+t-4.51017292375200017e-
= y*t+l.47055796078231691e-

y*t-4.83134250336922161a-
= y*t+l.60185974149720562a-
= y*t-5.37101208898441760e-
= y+t+1.82652460089342789a-
= y+t-6.32678357460594866a-
= y*t+2.24709729617770471a-

y*t-8.27780350351692662e-
= y*t+3.23582010649653009e-
= y*t-l.42477910128828254e-
= y*t+9.58210053294896496a-

return y*exp(-x);
else if (X > xvsmal) {

t = 2.0+X+X-1.0;
g = 1.90674197514561280e-14;
g = g+t+7.49110736894134794a-
g = g*t+2,16382411824721532e-
g = g*t+4.34562671546158210e-
g = g+t+5.59702338227915383e-
g = g+t+4.07157485171389048a-
g = g+t+1.32976966478338191e
g = g*t+l.12896092945412762;
y = 1.05407718î91360000e-16;

= y+t+5.16867886946332160e-
= y*t+l.92405264219706684e
= y+t+5.19906865800665633e-
= y+t+9.57878493265929443e-

y+t+1.09534292632401542e-
y*t+6.63513979313943827e-
y+t+1.52436921799395196e

= y+t+2.61841879258687055e-
return -g*log(x)+y;

else {
return -(log(0.5*x)+egam);

f *********+++*********+**+****+****+**+****+*+++++++*
Calculates the modified Bessel function K_l(x)

* * * * + + + * + + + + + + + + + + + + + + + + + ♦ + + + + + + + + + + * + ♦ + + + + + + + + + ♦ + + + + /

APPENDIX A. ASSOCIATED PROGRAMS 218

double bess_kl(double x)
{

double g, t, y;
double xsmall=7.9e-10, xbig=7.051e+2, xsest=2.23e-308;

if (X <® 0.0) {
printf("\nKl evaluated for non-positive argument!");
return 0.0;

}
if (X >= xbig) return 0.0;
if (X <= xsest) {

printf("\nKl evaluated for very small positive argument !")
return 1.0/xsest;

if (X >= xbig) return 0.0;
if (X > 4.0) -C

t = 10.0/(1.0+x)“1.0;
y = -4.7785023Bill580160e-14;
y = y*t+l.393211229406003206-13;
y = y*t-2.19287104441802752e-13;
y = y+t+8.58211523713560576e-13
y = y+t-2.60774602020271104e-12
y = y*t+l.720260972859309368-11
y = y+t+6.970753791177313796-12
y = y+t+6.77688943857588882e-10
y = y*t+3.82717692121438315e-9;
y = y+t+4.86661420008153956e-8
y = y+t+4.07563856931843484e-7
y = y+t+4.3277640978423521le-6
y = y+t+4.047206315284950200-5
y = y+t+4.299739708987668310-4
y = y+t+4.316394342834453640-3
y = y+t+5.448452543189316120-2;
y = y+t+1.30387573604230402;
return y+exp(-x)/sqrt(x);

} else if (X > 2.0) {
t = x-3.0;
y = -7.36478297050421658e-12;
y = y*t+2.147367510651332208-11
y = y+t-2.02680401514735862e-ll
y = y+t+6.449134235458941756-11
y = y*t-3.096673923432450628-10
y = y+t+9.207816859061105460-10
y = y+t-2.590393993080090590-9;
y = y+t+7.79421651144832709e-9
y = y+t-2.368556184610252650-8
y = y+t+7.08723366696569880e-8
y = y+t-2.129692293463103438-7
y = y+t+6.405818140373982746-7
y = y+t-1.92794586996432593e-6
y = y+t+5.80692311842296724e-6
y = y+t-1.75089594354079944e-5
y = y+t+5.287129191231317816-5
y = y+t-1.599948736216991460-4
y = y+t+4.857071747786636520-4
y = y+t-1.48185472032688523e-3
y == y+t+4.55865751206724687e-3
y = y+t-1.42363136684423646e-2
y = y+t+4.585915284140230646-2
y = y+t-1.600526112913271730-1
y = y*t+8.06563480128786903e-!

APPENDIX A. ASSOCIATED PROGRAMS 219

return y+exp(-x);
else if (X > 1.0) {

t = 2.0+X-3.0;
y = ~1.46639291782948454e”ll;
y = y*t+4.27404330568767242e-ll
y = y+t-4.025910666270238318-11
y = y+t+1.280440239499462678-10
y = y*t-6.162114168988950860-10
y = y+t+1.828083813812053610-9
y = y*t-5.137835081403322146-9
y = y+t+1.544566539090126930-8
y = y*t-4.669289121680201016-8
y = y+t+1.401383519851855096-7
y = y+t-4.205071523389349560-7
y = y+t+1.262655783319419238-6
y = y+t-3.792276988211429080-6
y = y+t+1.139301692025635260-5
y = y+t-3.424249122119421346-5
y = y+t+1.029827467000607300-4
y = y+t-3.100076810136266206-4
y = y+t+9.345941543876429406-4
y = y+t-2.824507878416559510-3
y = y+t+8.573880870674100890-3
y = y+t-2.625458187294274176-2
y = y+t+8.20250220860693888e-2
y = y+t-2.719107143886894130-1
y = y+t+1.24316587355255299;
return y+expC-x);

else if C X > xsmall) {
t = 2.0*x*x-1.0;
g = 1.189649624399104000-15;
g = g+t+5.33888268665658944e
g = g+t+1.79784792380155752e
g = g*t+4.32764823642997753e
g = g+t+6.95300274548206237e
g = g+t+6.71642805873498653e
g = g*t+3.25725988137110495e
g = g+t+5.31907865913352762e
y = 3.298810580198656000-15;
y = y+t+1.40917103024514301e
y = y+t+4.46828628435618679e
y = y+t+9.96686689273781531e
y = y+t+1.44612432533006139e
y = y+t+1.20333585658219028e
y = y+t+4.50490442966943726e
y = y+t+3.51825828289325536e
return (g+log(x)-y)*x+1.0/x;

else {
return 1.0/x;

-13;
10;

-8 ;

1 2 ;
10;

■8 ;

-5
-3
-2
-1

APPENDIX A. ASSOCIATED PROGRAMS 220

A .7 Bandwidth calculations

The calculation of the bandwidth is required in all problems associated with the simulation

of dendritic morphology. As described in Chapter 5 there are two options for the bandwidth

- regular and correlated. The functions to generate both are included here.

FUNCTION RETURNS SCOTTS BANDWIDTH
*+**+*****+******+*+*******+*+*****+***********+*********+*/
double scott_bandwidth(int nobs, double +obs)

extern double sigma;
double mu, h, tmp;
int k;

/* STEP 1. - Calculate mean and standard deviation +/
mu = sigma = 0,0;
for (k=0 ; k<nobs ; k++) {

mu += obs[k];
sigma += pow(obs[k], 2);

}
mu /= ((double) nobs);
sigma / - ((double) nobs);
sigma = sqrt(sigma-mu+mu);

/ * STEP 2. - Determine mutiplying factor by dimension * /
if (DIM == 1) {

tmp = 1.06;
} else if (DIM == 2) {

tmp = 0.96;
} else {

tmp = pow(((4.0/(2.0+DIM+1.0))), (1.0/(DIM+4)));
}

/ * STEP 3. - Calculate bandwidth +/
h = tmp*sigma/pow((double) nobs, 1,0/(4.0+DIH));

return h;

/*****+**+***********+****+****+*++*+****+***++*+**+*****+***++*+++*+*+
FUNCTION RETURNS THE CORRELATED SCOTTS BANDWIDTH

************+***+***+++++****+****+*****+**+*++*+************+********/
void scott_correlated(int nobs, double *hx, double *hy, double *x, double +y)
{

extern double sigmax, sigmay;
double mux, muy, h, rho;
int j , k;

/* STEP 1. - Calculate mean and standard deviation of x */
mux = sigmax = 0.0;
for (k=0 ; k<nobs ; k++) {

mux += x[k] ;
sigmax += pow(x[k], 2);

>
mux /= ((double) nobs);
sigmax /= ((double) nobs);
sigmax = sqrt(sigmax-mux+mux);

APPENDIX A. ASSOCIATED PROGRAMS 221

/* STEP 2. - Calculate mean and standard deviation of y */
muy = sigmay = 0.0;
for (k=0 ; k<nobs ; k++) {

muy += y [k] ;
sigmay += powCyEk], 2);

}
muy /= ((double) nobs);
sigmay /= ((double) nobs);
sigmay = sqrt(sigmay-muy*muy);

/ * STEP 3. - Calculate rho +/
rho = 0.0;
for (k=0 ; k<nobs ; k++) rho += (x[k]-mux)*(y[k]-muy);
rho /= (((double) nobs)+sigmax+sigmay);

/ * STEP 3. - Calculate bandwidth */
*hx = 8igmax*pow((1.0-rho*rho), 5.0/12.0)*pow((1.0+0.5*rho+rho),

-1.0/6.0)*pow(((double) nobs), -1.0/6.0);
+hy = sigmay+pow((1.0-rho*rho), 5.0/12.0)*pow((1.0+0.5*rho+rho),

-1.0/6.O)*pow(((double) nobs), -1.0/6.0);

return;

APPENDIX A. ASSOCIATED PROGRAMS 222

A .8 Fast Fourier Transform

This section contains the code used to perform the Fast Fourier Transform in the calcula­

tion of the propagated action potential in Chapter 2.

y***
Function to factorize n into prime factors 2, 3 and 5

**/
int *factorize(int n)
{

int n5=0, nS=0, n2=0, nt, *ifac;

/* Step 1. - Check n is not zero +/
if (n==0) {

printf("Integer n is zero - failure\n");
return ifac;

}

/ * Step 2. - Factor 2, 3 and 5 from n * /
nt = n;
while (nt%6 == 0) {

n5++;
nt /= 5;

}
while C nt%3 == 0) {

n3++;
nt /= 3;

}
while (nt%2 == 0) {

n2++:
nt /= 2;

}

/ * Step 3. - Check that n is completely factorised */
if (nt > 1) {

printf("\nlnteger n has factors larger than 5 - failure\n");
ifac = NULL;
return ifac;

}

/ * Step 4. “ Fill vector of factors */
ifac = (int *) malloc((n2+n3+n5+i)+sizeof(int));
ifacfO] = n2+n3+n5;
for (nt=l ; nt<=n5 ; nt++) ifac[nt] = 5;
for (nt-nS+l ; nt<=n5+n3 ; nt++) ifac[nt] = 3;
for (nt=n5+n3+l ; nt<=n5+n3+n2 ; nt++) ifac[nt] - 2;
return ifac;

f **
Computes trignometric expressions needed in FFT

trig[0][0..n-1] = cos(2.0*PI+K/N) 0 <= K <= N-1
trig[l][0..n-l] = sin(2.0*PI+K/N) 0 <= K <= N-1

+/
void TrigVals(int n, double **trig)
{

double fac, angle;
int j;

APPENDIX A. ASSOCIATED PROGRAMS 223

fac = 8.0+atan(1.0)/C(double) n);
for (j=0 ; J<n ; j++) {

angle = fac*((double) j);
trigCO][j] = cos(angle);
trigCl] [j] = sin(angle);

>
return;

void fft(int n, double **ai, double **ao)
{

int ka=l, odd=l, i, *ifac, *factorize(int);
void TrigVals(int, double **);
void pass(int, double **, double int, int, double
double *ptr, **trig;

ifac = factorize(n);
trig = (double **) malloc(2*sizeof(double *));
trigEO] “ (double *) malloc(n*sizeof(double));
trigEl] = (double *) malloc(n*sizeof(double));
TrigVals(n, trig);
for (i=l ; iOifacEO] ; i++) {

if (odd) {
pass(n, ai, ao, ifac[i], ka, trig);

} else {
pass(n, ao, ai, ifac[i], ka, trig);

}
odd = !odd;
ka *= ifac[i];

}
if (odd) {

ptr = ao[0];
ao [0] = ai [0] ;
ai[0] = ptr;
ptr = ao [1] ;
ao [1] = ai [1] ;
ai[l] = ptr;

}
free(ifac);
free(trig[0]);
free(trig[l]);
free(trig);
return;

void pass(int n,double **a,double **c,int ifac,int ka,double **trig)
{

int ind[5], jnd[5], mval, j, k, ival, jval, jump,
iO, il, i2, i3, i4. jO, jl, j2, j3, j4;

double ar, ai, br, bi, cr, ci, dr, di, er, ei, fr, fi,
cl, c2, c3, c4, si, s2, s3, s4;

static double sin36=0.587785252292471, sin60=0.866025403784439,
sin72=0.951056516295153, factl=0.559016994374947 ;

/* Step 1. - Initialise indexing */
mval = n/ifac;
for (k=0 ; k<ifac ; k++) {

ind[k] = k*mval;
jnd[k] = k*ka;

}

APPENDIX A. ASSOCIATED PROGRAMS 224

jump = (ifac-l)+ka;
ival = jval = 0;

/* Step 2. - Compute FFT */
for (k=0 ; k<=mval-ka ; k+=ka) {

for (j=0 ; j<ka ; j++) {
if C ifac == 2) {

10 = iud[0]+ival;
11 = ind[l]+ival;
JO = jnd[0]+jval;
jl = jud[l3+jval;
cl = trig[0] [k] ;
si = trig[l][k];
if (k==0) {

c[0][j0] = a[0] Ci03+aC03 [il]
c[l][jO] = a[l][iO]+a[l][il]
c[0][jl] = a[0] [i0]-a[0] [il3
c[i][ji] = a[l] [iO]-a[l] [il]

} else {
c[0][j0] = a[0][i0]+a[0][il]
c[l][jO] = a[l] [iO]+a[l] [il]
ar = a[0] [i0]-a[0] [il]
ai = a[l] [i03-a[l] [il]
c[0][jl] = cl*ar-sl*ai
c[l][jl] = sl*ar+cl»ai

}
> else if (ifac = = 3) {

10 = ind[0]+ival;
11 = iud[l]+ival;
12 = ind[2]+ival;
jO = ind[0]+jval;
jl = jnd[l]+jval;
j2 = jnd[2]+jval;
if (k == 0) -[

ar = a[0] [il]+a[0] [i2]
ai = a[l3[il]+a[l][i2]
c[0][j0] = a[0] [iO]+ar
c[l][jO] = a[l][iO]+ai;
ar = a[0][i0]-0.5*ar;
ai = a[l][i0]-0.5+ai;
br = sin60*(a[03 [il]-a[0] [i2]) ;
bi = sin60*(a[l] [il]-a[l] [i2]) ;
c[0][jl] = ar-bi;
c [1][j1] = ai+br;
c[0][j2] = ar+bi;
c[l][j2] = ai-br;

} else {
cl = trig[0][k];
c2 = trig[0] [2*k] ;
si = trig[l] [k] ;
s2 = trig[l] [2*k] ;
ar = a[0] [il]+a[0] [i2] ;
ai = a[l] [il]+a[l] [i2] ;
c[0][j0] = a[0][i0]+ar;
c[l][jO] = a[l][iO]+ai;
ar = a[0] [i0]-0.5*ar;
ai = a[l] [i0]“0.5+ai;
br = sin60*(a[0] [il]-a[0] [i2]) ;
bi = sin60+(a[l] [il]-a[l] [i2]);
cr = ar-bi;
ci = ai+br;

APPENDIX A. ASSOCIATED PROGRAMS 225

c[0][jl] = cl*cr-sl+ci;
c[l][jl] = sl*cr+cl*ci;
cr = ar+bi;
ci = ai-br;
c[0][j2] = c2*cr-s2*ci;
c[l][j2] = s2*cr+c2*ci;

}
} else if (ifac == 6) {

10 = ind[0]+ival;
11 = ind[l]+ival;
12 = ind[2]+ival;
13 = ind[3]+ival;
id == ind[43+ival;
jO = jnd[0]+jval;
jl = jnd[i]+jval;
j2 = jttd[2]+jval;
j3 = jnd[3]+jval;
j4 = jnd[4]+jval;
if (k == 0) {

ar = a[0][il]+a[0][i4];
ai = a[l] [il]+a[l] [i4] ;
br = a[0] [i2]+a[0] [i3] ;
bi = a[l] [i2]+a[l] [i3] ;
cr = ar+br;
ci = ai+bi;
c[0][j0] = a[0][i0]+cr;
c[l][jO] = a[l][iO]+ci;
br = factl*(ar-br);
bi = factl*(ai-bi):
cr = a[0][i0]-0.25*cr;
ci = a[l][i0]-0.25*ci;
ar = cr+br;
ai = ci+bi;
br = cr-br;
bi = ci-bi;
cr = a[0] [il]-a[0] [i4] ;
ci = a[l][il]-a[l][i4];
dr = a [03 [i2]-a[0] [i3] ;
di = a[l] [i2]-a[l] [i3] ;
er = sin72*cr+sin36*dr;
ei = sin72*ci+sin36*di;
c[0][j1] = ar-ei;
c[l][jl] = ai+er;
c[0][j4] = ar+ei;
c[l][j4] = ai-er;
er = sin36*cr-sin72*dr;
ei = sin36*ci-sin72*di;
c[0] [j2] = br-ei;
c[l] [j2] = bi+er;
c[0] [j3] = br+ei;
c[l] [j3] = bi-er;

} else {
cl = trigEO] [k];
c2 = trig[0][2*k]

/ c3 = trig[0][3*k]
c4 = trigEO] [4*k]
si = trigEl] [k] ;
s2 = trigEl] [2*k]
s3 = trigEl] [3*k]
s4 = trigEl][4*k]
ar = a[0] [il]+a[0] [i4] ;

APPENDIX A. ASSOCIATED PROGRAMS 226

ai = a[l] [il]+a[l] Ei4]
br = a[0] [i2]+a[0] [i3]
bi = a[l] [i2]+a[l] [i3]
cr = ar+br;
ci = ai+bi;
c[0][j0] = a[0] [iO]+cr;
c[l][jO] = a[l][iO]+ci;
br = factl*(ar-br);
bi = factl*(ai-bi);
cr - a[0] [i0]-0.25*cr;
ci = a[l][i0]-0.26*ci;
ar = cr+br;
ai = ci+bi;
br = cr-br;
bi = ci-bi;
cr = a[0] [il]-a[0] [i4]
ci = a[l] [il]-a[l] [i4]
dr = a[0] [i2]-a[0] [i3]
di = a[l][i2]-a[l][i3]
er = sin72*cr+sin36*dr
ei = sin72’t'ci+sin36*di
c[0][jl] = ar-ei;
c[l] [jl] = ai+er;
c[0][j4] = ar+ei;
c[l][j4] = ai-er;
fr = ar-ei;
fi = ai+er;
c[0][jl] = cl*fr-sl*fi;
c[l][jl] = sl*fr+cl*fi;
fr - ar+ei;
fi = ai-er;
c[0][j4] = c4*fr-s4*fi;
c[l][j4] = s4*fr+c4*fi;
er = sin36*cr-sin72*dr;
ei = sin36*ci-sin72+di;
fr = br-ei;
fi = bi+er;
c[0][j2] = c2*fr-s2*fi;
c[l][j2] = s2*fr+c2*fi;
fr = br+ei;
fi = bi-er;
c[0][j3] = c3*fr-s3*fi;
c[l][j3] = s3+fr+c3*fi;

>
}
ival++;
jval++;

}
jval += jump;

>
return;

y***
Function takes as input the values of u(x) at the unipoints

Input

ur[k] --> value of u at x[k] (0< = k <= N-1)

Output

APPENDIX A. ASSOCIATED PROGRAMS 227

ucCO] — > u[0] (guaranteed to be real)
uc[l] — > u[-nh] (guaranteed to be real)

uc[2k] — > real part of u[k] K=k<=nh-1
uc[2k+l] — > imag part of u[k] K=k<=nh-1

********************************+************+*+*************/
void real„c(int n, double *ur, double *uc)

double fac, theta, angle, cc, ss, si, s2, **a, **c;
int k, nh, nd, kk;
void fft(int, double **, double **);

/ * Step 1. - Allocate a[3 C] and c[][3 */
nh = n/2;
a = (double +*) malloc(2*sizeof(double *));
c = (double **) malloc(2*sizeof(double *));
for (k=0 ; k<2 ; k++) {

a[k] = (double *) malloc(nh+sizeof(double));
c[k] = (double *) malloc(nh*sizeof(double));

/* Step 2. - Assign a[][] */
for (k=0 ; k<nh ; k++) {

kk = 2*k;
a [0] [k] = ur [kk] ;
a[l] [k] = ur[kk+l] ;

>

/ * Step 3. - Apply FFT */
fft(nh, a, c);

/ * Step 4. - Interpret c[][] to get uc[] * /
uc[0] = (c[03 [0]+c[l] [0])/((double) n) ;
uc[l] = (c[0] [0]"c[l] [0])/((double) n) ;
theta = 4.0*atan(1.0)/((double) nh);
for (k=l ; k<nh ; k++) {

angle = theta*((double) k);
ss = sin(angle);
cc = cos(angle);
nd = nh-k;

si = c [0] [k]-c[0] [nd] ;
s2 = c[l3 [k]+c[l] [nd] ;

uc[2*k] = c[0] [k]+c[0] [nd]+sl*ss+s2*cc;
uc[2*k+l] = c[l][nd]-c[l][k]+8l*cc-s2*ss;

}
fac = 0.5/((double) n);
for (k=2 ; k<n ; k++) uc[k] *= fac;

/+ Step 5. - Free memory * /
for (k=0 ; k<2 ; k++) {

free(a[fc]);
free(c[k]);

}
free(a);
free(c);
return;

>

f* *

APPENDIX A. ASSOCIATED PROGRAMS 228

Input
 ur[0] — > value of f [0] (guaranteed real)

ur[l] — > value of f[-N/2] (guaranteed real)
ur[2k] — > value of Re(f[k]) (1 <= k <= N/2-1)

ur[2k+l] — > value of Im(f[k]) (1 <= k <= N/2-1)

Output
 uc[k] — > value of u at x[k] (0 <= k <= N-1)

***/
void real_v(int n, double +ur, double *uc)
{

double theta, angle, cc, ss, si, s2, +*a, **c;
int k, nh, nd, nm, kk;
void fft(int, double **, double **);

/ * Step 1. - Allocate a[][] and c[][] * /
nh = n/2;
a = (double **) malloc(2*sizeof(double »));
c = (double **) malloc(2*sizeof(double *));
for (k=0 ; k<2 ; k++) {

a[k] = (double *) malloc(nh*sizeof(double));
c[k] = (double *) malloc(nh+sizeof(double));

/ * Step 2. - Assign uc[][] and ur[][] +/
c [0] [0] = ur [0] +ur [1] ;
c[l][0] = ur[0]“ur[l];
theta = 4.0*atan(1.0)/((double) nh);
for (k=l ; k<nh ; k ++) {

kk = 2*k;
nd = n-kk;
si = ur[kk]-ur[nd];
s2 = ur[kk+l]+ur[nd+l];
angle = theta*((double) k);
cc = cos(angle);
ss = sin(angle);
c[0][k] = ur [kk]+ur [ud]+sl*ss“s2*cc;
c[l][k] = ur[kk+l]-ur[nd+l]+sl*cc+s2*ss;

}

/* Step 3. - Apply FFT +/
fft(nh, c, a);

/* Step 4. - Interpret a[][] to get uc[] */
uc [0] = a [0] [0] ;
ucCn-1] = a[l][0];
for (k=l ; k<nh ; k++) {

kk = 2*k;
uc[kk] = a [0][k];
uc [kk-1] = a[i] [k] ;

}

/* Step 5. - Free memory */
for (k=0 ; k<2 ; k++) {

free(a[k]);
free(c[k]) ;

}
free(a);
free(c);
return;

>

APPENDIX A. ASSOCIATED PROGRAMS 229

A .9 Differential equation solver

This section contains the code used to solve the differential equations in the calculation of

the propagated action potential in Chapter 2.

/* Global function declarations * /
void intrpC int, double, double *, double, double *, double *, int,

double +*, double *);
void stepC int, double *, double *, double *, double *, double *,

double +, int *, int *, int *, int *, double **, double *,
double *, double *, double, double, void (*fcn)(double,
double *, double *));

y***
SGSOLVE is a G translation of the FORTRAN program DE which is
completely explained and documented in the text COMPUTER SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM
BY L. F. SHAMPINE AND M. K. GORDON.

SGSOLVE integrates a system of first order differential equations

DY(I)/DT = F(T, Y(1),Y(2), ... ,Y(N))
Y (I) GIVEN AT T

for arbitrary order N. Initial conditions entered through y[] at
"tin" are integrated to "tout" in accordance with the relative
error "relerr" and absolute error "abserr" and output through y[].
On successful output, "tin" takes the value "tout" and "ifail=l".
SGSOLVE may be repeated as necessary provide "ifail=+2/-2" on output.
Otherwise, "tin" contains the limit of integration prior to failure.

SGSOLVE uses an INTEGRATOR code and an INTERPOLATION code. The
former is based on a modified divided difference form of the ADAMS
PECE formulae and local EXTRAPOLATION. ORDER and STEP SIZE control
local error. Normally each application of the integrator advances
the solution one step towards "tout". For reasons of efficiency,
internal integration proceeds beyond "tout" though never beyond
"tnow+10+(tout-tnow)". The latter interpolates the solution at
"tout". If integration beyond "tout" is impossible, "ifail=-l" on
entry.

INPUT to SGSOLVE

The differential equation is supplied through a void function, e.g.

void fprime(double t, double *y, double *dy).

The address of fprime is passed to SGSOLVE via the void pointer
"fen". All parameters of SGSOLVE must be suitably initialised with
either ifail=+l, if integration beyond "tout" is possible, or
ifail=-l if integration beyond "tout" is impossible.

OUTPUT from SGSOLVE

"tin" contains the last point for which integration was successful
- "tout" for a normal exit - and y[] contains the solution vector
at "tin". The tolerances "relerr" and "abserr" are normally
unchanged on exit except when "ifail=3" in which case they are
increased. The error indicator on exit takes the values

APPENDIX A. ASSOCIATED PROGRAMS 230

ifail = 2 — Normal return. Integration reached "tout".
= 3 — Integration failed to reach "tout" because "relerr"

and "abserr" are too small - "relerr" and "abserr"
increased appropriately so that integration can be
continued.

= 4 — Too many integration steps needed to reach "tout".
= 5 — Integration failed to reach "tout" - equations seem

STIFF.
= 6 — Invalid input parameters (fatal error).

**/
void sgsolve(int n, / * Order of system * /

int *begin, / * Memory allocation flag */
double *relerr, /* Relative (local) error tolerance */
double *abserr, /* Absolute (local) error tolerance * /
double *tin, /* Entry value of independent variable*/
double tout, /* Exit value of independent variable */
double *y, /* Sol’n vector of dependent variables */
void (*fcn)(double, double *, double *),

/* Pointer to derivatives dy[i]/dt */
int *ifail /* Error indicator */)

{
int i, k, m, start, crash, stiff, iflag, isn, kle4, finish;
static int maxiter=50000, isnold, kold, nostep;
static double told, hold, delsgn;
static double *psi, *yy, *wt, **phi, *p, *yp, *ypout;
double X, rnderr, two_rnderr, four_rnderr, eps, del, absdel, tend,

releps, abseps, h, min;

/* Step 0. - Allocate memory */
if (*begin) {

if (psi) free(psi);
psi = (double *) malloc (12*sizeof(double));
i f (y y) free(yy);
yy = (double *) malloc (n*sizeof(double));
if (wt) free(wt);
wt = (double *) malloc (n*sizeof(double));
if (yp) free(yp);
yp = (double *) malloc (n*sizeof(double));
if (ypout) free(ypout);
ypout = (double *) malloc (n*sizeof(double));
if (p) free(p);
p = (double *) malloc (n*sizeof(double));
if (phi) {

for (i=0 ; i<n ; i++) free(phi[i]);
free(phi);

}
phi = (double **) malloc (n*sizeof(double *));
for (i=0;i<n;i++) phi[i]=(double *) malloc(16*sizeof(double));
*begin = 0;

/* Step 1. - Determine machine precision "rnderr" */
rnderr = 1.0;
while (rnderr+1.0 != 1.0) rnderr *= 0.5;
two_rnderr = 4.0*rnderr;
four_rnderr = 8.0*rnderr;

/* Step 2. - Test for invalid entry parameters */
if (n<l) *ifail =6; /* Order not set */
if (*tin==tout) *ifail =6; /* Zero int of integration */
if (*relerr<0.0 I 1 *abserr<0.0) *ifail = 6; /* At least one

APPENDIX A. ASSOCIATED PROGRAMS 231

tolerance not set */
eps = (*relerr>=*abserr) ? *relerr : *abserr;
if (eps<=0.0) *ifail =6; /* No positive tolerance set */
if (*ifail==0) *ifall =6; /* Error indicator not set */
isn = (*ifail<0) ? -1 : 1;
iflag = isn*(*ifail);
if (iflag>=2 k k *tin!=told) *ifail = 6;

/ * Point of re-entry changed */
if (*ifail==6) return;

/* Step 3, - Set interval of integration and initialise step counter.
Adjust input error tolerances to define weight vector for
function STEP */
finish = 0;
del = tout-(*tin);
absdel = fabs(del);
tend = (*tin)+10.0*del;
if (isn<0) tend = tout;
nostep = 0;
kle4 = 0;
stiff = 0;
releps = (*relerr)/eps;
abseps = (*abserr)/eps;

/ * Step 4. - On a start/restart, set work variables "x" and yy[], store
direction of integration and initialise step size. * /
if (iflag==l II isnold<0 II delsgn*del<=0.0) {

start = 1;
X = +tin;
for (m=0 ; m<n ; m++) yyCm] = y[m];
delsgn = (del>=0.0) ? 1.0 : -1.0;
h = four_rnderr*fabs(x);
if (fabs(tout-x) > h) h = fabs(tout-x);
if (tout < X) h = -h;

}
while (! finish) {

finish = 1;
if (fabs(x-(*tin)) >= absdel) {

/ * Step 5. - Already beyond output point and so interpolate and return */
intrp(n, x, yy, tout, y, ypout, kold, phi, psi);
♦ifail = 2;
♦tin = tout ;
isnold = isn;

> else if (isn<0 k k fabs(tout-x)<four_rnderr*fabs(x)) {
/* Step 6. - No passage beyond "tout" but close enough to extrapolate */

h = tout-x;
(*fcn)C X, yy, yp);
for (m=0 ; m<n ; m++) y[m] = yy[m]+h*yp[ra];
♦ifail = 2;
♦tin = tout;
isnold = isn;

} else if C nostep >= maxiter) {
/♦ Step 7. - Test for too much work ♦/

♦ifail = 4*isn;
if (stiff) ♦ifail = 5*isn;
for C m=0 ; m<n ; m++) y Cm] = yy[m];
♦tin - x;
isnold = 1;

} else {
/♦ Step 8. - Limit step size, set weight vector and take step ♦/

min = fabs(tend-x);

APPENDIX A. ASSOCIATED PROGRAMS 232

if (fabs(h) < min) min = fabs(h);
b = (h >= 0.0) ? min : -min;
for (m=0 ; m<n ; m++) wt[m] = releps*fabs(yy[m])+abseps;
step(n, &x, yy, &b, feeps, wt, Ahold, Astart, Acrash, Ak,

Akold, phi, p, yp, psi, two_rnderr, four_rnderr, fen);
/ * Step 9. - Test for tolerances that are too small * /

if (crash) {
♦ifail = 3+isn;
♦relerr = eps♦releps;
♦abserr = eps+abseps;
for (m=0 ; m<n ; m++) y Cm] = yy Cm];
♦tin = x;
isnold = 1;

} else {
/♦ Step 10. - Increase counter and test for stiffness ♦/

nostep++;
kle4++;
if (kold>4) kle4 = 0;
if (kle4>=50) stiff = 1;
finish = 0;

>
}

}
told = ♦tin;

/♦ if (♦reset„mem==l) {
begin = 1;
♦reset_mem = 0;
free(psi);
freeCyy);
free(wt);
free(yp);
free(ypout);
free(p);
for (i=0 ; i<n ; i++) free(phi Ci]);
free(phi);

> ♦/
return;

/***************************♦*♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
This code is the C translation of FORTRAN interpolation code which
is completely explained and documented in the text COMPUTER
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE
PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

Routine STEP approximates the solution near "x" by a polynomial.
INTRP approximates the solution at "xout" by evaluating the
polynomial there. Information defining this polynomial is passed
from STEP and so INTRP cannot be used as a stand-alone routine.

INPUT to INTRP

Parameters are pssed from STEP in the normal way.

OUTPUT from INTRP

youtC] — Solution vector at "xout"
ypoutC] — Derivative of solution at "xout"

***************************♦♦♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦/
void intrp(int n, /♦ Order of system ♦/

double X, /♦ Point where yC] is approx’d by STEP ♦/

APPENDIX A. ASSOCIATED PROGRAMS 233

Solution vector at "x" */
Point at which solution is required */
Solution vector at "xout" */
Derivative vector at "xout" * /

double +y, /♦
double xout. /♦
double ♦yout, /♦
double ♦ypout, /♦
int kold. /♦
double **phi. /♦
double ♦psi /♦

int i, j, jml, m, limj
double hi, term, gama, eta, tmpl, trap2, *g, *w, ♦r;

/* Step 0. - Allocate memory to g[], w[] and rho[] * /
g = (double *) malloc(13*sizeof(double));
w = (double *) malloc(13*sizeof(double));
r = (double ♦) malloc(13*sizeof(double));

/♦ Step 1. - Initialise g[0] and r[0] * /
gEO] = 1.0;
r[03 = 1.0;
hi = xout-x;

/ * Step 2. - Initialise w[] for computing g[] ♦/
for (i=0 ; i<=kold ; i++) w[i] = 1.0/((double) i+1);

/* Step 3. - Compute g[] */
for (term=0.0,j=l ; j<=kold ; j++) {

jml = j-1;
tmpl = 1.0/psi[jml];
gama = tmpl*(hi+term);
eta = tmpl*hi;
lim = kold-j;
for (i=0 ; i<=lim ; i++) w[i] = gama*w[i]-eta*w[i+l];
gCj] = w[0] ;
r[j] = gama*r[jml];
term = psi [jml] ;

}

/* Step 3. - Interpolate ♦/
for (m=0 ; m<n ; m++) {

ypout[m] = 0.0;
youtCm] = 0.0;

}
for (j=0 ; j<=kold ; j++) {

i = kold-j;
tmpl = g [i] ;
tmp2 = r [i] ;
for (m=0 ; m<n ; m++) {

youtCm] += tmpl*phi[m] [i] ;
ypout[ra] += tmp2*phi[m][i];

}
}
for (m=0 ; m<n ; m++) yout[m] = y [m]+hi*yout[m];
free(g);
free(w);
free(r);
return;

This routine is a C translation of the FORTRAN STEP routine which
is completely explained and documented in the text COMPUTER

APPENDIX A. ASSOCIATED PROGRAMS 234

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE
PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

STEP integrates a system of first order ordinary differential
equations from "x" to "x+h" using a modified divided difference
form of the ADAMS PECE formulas. Local extrapolation is used to
improve absolute stability and accuracy. Order and step-size are
adjusted to control local error. Special devices control roundoff
error and detect over ambitious accuracy requests.

PARAMETER DEFINITIONS

X — Independent variable
y[] — Solution vector at "x"

ypC] — Derivative of solution vector at "x" after a successful step
n — Order of system
h — Appropriate step-size for next step. Determined by code

eps — Local error tolerance
wt[] — Vector of weights for error criterion
start — Set 1 (TRUE) for first step and set 0 (FALSE) otherwise
hold — Step size for last successful step

k — Appropriate order for next step. Determined by code,
kold — Order used for last successful step
crash — Set 1 (TRUE) when no step possible and set 0 (FALSE)

otherwise

The arrays phi[][] and psi[] are needed for the (interpolation)
function INTRP and p[] is internal. The system of differential
equations DY(I)/DT = F(T, Y(1),Y(2), ... ,Y(N)) is supplied through
a void function, e.g.

void fprime(double t, double *y, double *dy).

The address of fprime is passed to STEP via the void pointer "fen".

INPUT to STEP (first call) ... SET

X — Initial value of independent variable
y[] — Initial value of solution vector at "x"

n — Order of system
h — Maximum step-size indicating direction of integration

eps — Local error tolerance per step
wt[] — Vector of weights for error criterion
start — Set 1 (TRUE) for first step and set 0 (FALSE) otherwise

STEP needs the L2 NORM of the vector with components
local_error[j]/wt[j] to be less than "eps" for a successful step.
The array wt[] allows the specification of different error tests
in accordance with the criteria

wt[j] = 1.0 specifies absolute error,
= fabs(y[j]) specifies error relative to the most recent

value of y[j], the j-th component of the solution vector,
= fabs(yp[j]) specifies error relative to the most recent

value of ypCj], the j-th component of the derivative of
the solution vector,

= MAX(wt[j],fabs(y[j])) specifies error relative to the
largest magnitude of the j-th component obtained so far,

= fabs(y[j])*relerr/eps+abserr/eps specifies a mixed
relative/absolute error test where relerr/abserr are
relative/absolute error and "eps" is max(relerr,abserr).

APPENDIX A. ASSOCIATED PROGRAMS 235

INPUT to STEP (subsequent calls) ... SET

STEP returns all that is needed to continue integration, including
step-size "h" and order "k". With the exception of step-size, the
error tolerance and the weights, none of the parameters should be
changed. Array wt[] must be updated after each step to maintain
relative error tests. Normally integration is continued just beyond
the desired endpoint and INTRP used to interpolate solution. If it
is not possible to integrate beyond the endpoint, "h" is
adjusted to meet "tout". To change the direction of integration,
set "start=l" (TRUE) before calling STEP again. This is the only
situation in which "start" should be changed.

OUTPUT from STEP (successful)

After each successful step, "start=crash=0". The independent variable
"x" is advanced by "hold" from its value on entry. The solution vector
y[] is given at the new value of "x" while all other parameters
contain information needed to continue integration from the new

OUTPUT from STEP (unsuccessful)

If the error tolerance is too small for machine precision, "crash=l"
and no step is taken. An appropriate step-size and error tolerance for
continuation are estimated and all other parameters re-instated before
returning. To continue with the new tolerance, call code again. A
restart is neither required nor desirable.

void step(int n,
double *x,

* Order of first order system */
* Current value of independent variable*/
* The solution vector */
* The suggested step-size ♦/
* Max of the rel/abs error tolerances */
* Weights for error tolerances */
* Last successful step-size */
* Initialisation flag */
* Failed step indicator */
* Suggested order for the next step */
* Order of last successful step */
* Workspace * /
* Workspace */
* Holds derivative of solution vector */
* Workspace */
* Two times the machine precision */
* Four times the machine precision */

void (*fcn)(double, double *, double *)
/* Pointer to derivatives dy[i]/dt */)

double *y,
double *h,
double *eps,
double *wt,
double *hold,
int *start,
int *crash,
int *k,
int *kold,
double **phi,
double *p,
double *yp,
double *psi,
double two_rnderr,
double four_rnderr,

int i, j, m, km3, km2, kml, kpl, nsml, nspi, iml, lim, ipl, nfail;
static int phase1, nornd, ns, knew;
double round, halfeps, sum, absh, tmp, tmpl, tmp2, erk, erkml,

erkm2, hnew, hmin, xold, err, erkpl;
static double alfa[12] , beta[12] , w[12] , v[12], g[13], sig[13] ;
static double gstr[13]={0.5000, 0.0833, 0.0417, 0.0264, 0.0188,

0.0143, 0.0114, 0.00936, 0.00789, 0.00679,
0.00592, 0.00524, 0.00468};

static double two[13]={ 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0,
256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0};

APPENDIX A. ASSOCIATED PROGRAMS 236

/ * Initialise some elements * /
g[0] = 1.0;
g[l] = 0.5;
sigCO] = 1.0;

/* Begin BLOCK 0
(a) Check step-size and error tolerance not too small for rounding

error, (b) If first step, initialise phi[][] and estimate initial
step-size */

/* If step-size too small, set "h" to minimum step-size */
♦crash = 1;
hmin = four_rnderr*fabs(*x);
if (fabs(*h) < hmin) {

*h = (*h >= 0.0) ? hmin : -hmin;
return;

}
halfeps = 0.5*(*eps);

/♦ If error tolerance too small, increase it to a suitable value ♦/
for (round=0.0,m=0 ; m<n ; m++) round += pow(y[m]/wt[m],2);
round = two_rnderr*sqrt(round);
if (halfeps < round) {

♦eps = 2.0*round*(1.0+four_rnderr);
return;

}

/♦ Initialise phi[][] and determine a suitable first step ♦/
♦crash = 0;
if { ♦start) {

(♦fcn)(*x, y, yp);
for (sum=0.0,m=0 ; m<n ; m++) {

phi Cm][0] = yp[m];
phi Cm][1] = 0.0;
sum += pow(yp[m]/wt[m],2);

}
sum = sqrt(sum);
absh = fabs(*h);
if (♦eps < 16.0*sum*(^h)*(*h)) absh = 0.25*sqrt(*eps/sum);
tmp = (absh >= hmin) ? absh : hmin;
♦h = (*h >= 0.0) ? tmp : -tmp;
♦hold = 0.0;
♦k = 1;
♦kold = 0;
♦start = 0;
phase1 = 1;
nornd = 1;
if (halfeps <= 100.0*round) {

nornd = 0;
for (m=0 ; m<n ; m++) phi[m][14] = 0.0;

}
}

/♦ End BLOCK 0 and begin BLOCK 1 ♦/
/♦ Compute coefficients of formulas for this step. Avoid computing

quantities not changed when step-size remains unchanged ♦/
nfail = 0;
for (; ;) {

kpl = ♦k+l;
kml = ♦k-l
km2 = ♦k-2

APPENDIX A. ASSOCIATED PROGRAMS 237

km3 = *k-3;

/ * Integer "ns" counts the number of steps with size "h", including
the current step. When k<=ns, no coefficients change */

if (+h != *hold) ns = -1;
ns = { ns < *kold) ? ns+1 : ♦kold;
nspl = ns+1;

/♦ Check if alfa[], beta[], psi[], sig[] change and make them
where necessary ♦/

if (kml >= ns) {
beta[ns] = 1.0;
tmp = ((double) ns+1);
alfatns] = 1.0/tmp;
tmpl = (♦hj^tmp;
sigCnspl] = 1.0;
for (i=nspl ; i<=kml ; i++) {

iml = i-1;
tmp2 = psi[iml];
psi[iml] = tmpl;
beta[i] = beta[iml]+psi[iml]/tmp2;
tmpl = trap2+(+h);
alfa[i] = (♦h)/tmpl;
sig[i+l] = alfa[i]*sig[i]+((double) i+1);

}
psi[kml] = tmpl;

/♦ Compute coefficients g[], initialise v[] an set w[].
gCl] is set previously ♦/

if (ns > 0) {
if (+k > ♦kold) i
/♦ Order increased -> update diagonal part of v[] ♦/

v[kml] = 1.0/((double) kpl+(*k));
nsml = ns-1;
for (j=l ; j<=nsml ; j++) {

i = kml-j;
v[i] = v[i]-alfa[j]^v[i+l] ;

}
}

/♦ Update v[] and set w[] */
lim = kml-ns;
for (i=0 ; i<=lim ; i++) {

v[i] -= alfa[ns]*v[i+1] ;
w[i] = v[i] ;

}
g [nspl] = w[0] ;

} else {
for (i=0 ; i<=kml ; i++) {

v[i] = 1.0/((double) (i+l)+(i+2));
w[i] = v[i] ;

/♦ Compute gC] in the work vector w[] ♦/
for (i=nspl ; i<=kml ; i++) {

lim “ kml-i;
for (j=0 ; j<=lim ; j++) w[j] -= alfa[i]+w[j+l]
g [i+1] = w[0];

}

APPENDIX A. ASSOCIATED PROGRAMS 238

/* End BLOCK 1 and begin BLOCK 2 ♦/
/♦ Predict solution p[]. Evaluate derivatives using predicted

solution. Estimate local error at order "k" and errors at orders
"k", "kml" and "km2" as if constant step size were used. Change
phi[] to phi*[] * /

for (i=nspl ; i<=kml ; i++) {
for (m=0 ; m<n ; m++) phi[m][i] *= beta[i];

}

/ * Predict solution and differences * /
for C m=0 ; m<n ; m++) {

phi[m][kpl] = phi[ra][*k];
phi[m][*k] = 0.0;
p[m] = 0.0;

}
for (j=0 ; j<=kml ; j++) {

i = kml-j;
ipl = i+1;
for (m=0 ; m<n ; m++) {

p [m] += g [i] *phi [m] [i] ;
phi[m][i] += phi[m] [ipl] ;

}
>
if (nornd) {

for (m=0 ; m<n ; m++) p[m] = y[m] + (*h)*p[m];
} else {

for (m=0 ; m<n ; ra++) {
tmp = (*h)*p[m]-phi[m][14];
p[m] = y [m] +tmp ;
phi [m] [15] = (p[m]-y[m])-tmp;

}
}
xold = +x;
♦x += *h;
absh = fabs(*h);
(*fcn)(*x, p, yp);

/♦ Estimate errors at orders "k", "kml" and "km2" * /
for C erkm2=0.0,erkml=0.0,erk=0.0,m=0 ; m<n ; m++) {

tmpl = 1.0/wt[m];
tmp2 = yp[m]-phi[m][0];
if (*k > 2) erkm2 += pow((phi[m][km2]+tmp2)*tmpl,2);
if (*k > 1) erkml += pow((phi[m][kml]+tmp2)*tmpl,2);
erk += pow(tmp2*tmpl,2);

}
if (*k > 2) erkm2 = absh*sig[km2]+gstr[km3]+sqrt(erkm2);
if (*k > 1) erkml = absh*sig[kml]*gstr[km2]*sqrt(erkml);
tmp = absh*sqrt(erk);
err = tmp*(g[kml]-g[*k]);
erk = tmp*sig[*k]*gstr[kml];
knew = *k;

/ * Test if order should be reduced */
if (*k > 2 && erkml <= erk && erkm2 <= erk) knew = kml;
if (*k > 1 && erkml <= 0.5+erk) knew = kml;

/ * End BLOCK 2 and begin BLOCK 3 ♦/

/♦ The step has been unsuccessful and so restore "x", phi[][],
psi[]. If this is a third consecutive failure, set order to 1. If

APPENDIX A. ASSOCIATED PROGRAMS 239

step fails more than 3 times, consider an optimal step-size. Double
error tolerance and return if estimated step-size is too small for
machine precision. Restore "x", phi[][] and psi[] * /

if C err > *eps) {
phasel = 0;
for C *x=xold,i=0 ; i<=kml ; i++) {

tmp = 1.0/beta[i];
ipl = i+1;
for (m=0 ; m<n ; m++)

phi [m] [i] = trap* (phi [m] [i] -phi [m] [ipl]) ;
}
for (i=0 ; i<=km2 ; i++) psi[i] = psi[i+l]-(*h);

/* On 3rd failure, set order to 1. Thereafter use optimal step-size */
nfail++;
trap = 0.5;
if (nfail>3 && halfeps<0.25*erk) tmp=sqrt(halfeps/erk);
if (nfail > 2) knew = 1;
*h *= trap;
*k = knew;
if (fabs(*h) < hmin) {

♦crash = 1;
*h = (*h >= 0.0) ? hmin ; -hmin;
*eps *= 2.0;
return;

}
> else {

/* End BLOCK 3 and begin BLOCK 4 */
/* Step successful. Correct predicted solution, evaluate derivatives

using corrected solution and update differences. Determine best order
and step-size for next step. */

*kold = *k;
*hold = *h;

/* Correct and evaluate */
tmp = (*h)*g[*k];
if (nornd) {

for (m=0 ; m<n ; ra++)
y [ra] = p [m] +tmp* (yp [m] -phi [m] [0]) ;

} else i
for (m=0 ; m<n ; m++) {

tmpl = tmp*(yp[m]-phi[m] [0])-phi[m] [15] ;
y[m] = p[m]+tmpl;
phi[m][14] = (y[m]-p [m])-tmpl;

}
}
(*fcn)(*x, y, yp);

/* Update differences for next step */
for (m=0 ; m<n ; m++) {

phi [ra] [*k] = yp [m] -phi [m] [0] ;
phi[ra][kpl] = phi[m][*k]-phi[m][kpl];

>
for (i=0 ; i<=kml ; i++) {

for (m=0 ; m<n ; m++) phi [m] [i] += phi[m][*k];
}

/* Estimate error at order "kpl" unless either in first phase when
always raise order or have already decided to lower order or
step-size not constant so estimate unreliable */

APPENDIX A. ASSOCIATED PROGRAMS 240

erkpl = 0.0;
if (knew==kml I I *k==12) phasel = 0;
if (phasel) { / * Raise order ♦/

*k = kpl;
erk = erkpl;

} else if (knew==kml) { /♦ Lower order * /
*k = kml;
erk = erkml;

} else if (*k <= ns) {
for (m=0 ; ra<n ; ra++)

erkpl +“ powCphiCm] Ckpl]/wt[m] ,2) ;
erkpl = absh*gstr[*k]*sqrt(erkpl);

/* Using estimated error at order "kpl", determine oredr for next step * /
if (*k > 1) {

if (erkml<=erk && erkml<=erkpl) {
/* Lower order */

*k = kml;
erk = erkml;

} else if (erkpKerk k k *k!=12) {
/ * Raise order */

*k = kpl;
ark = erkpl;

} else {
}

} else if (erkpl < 0.5*erk) {

/* Here "erkpl < erkp < max(erkml,erkm2)" else order would have been
lowered in BLOCK 2. Thus order is to be raised * /

*k = kpl;
erk = erkpl;

} else {
}

} else {
}

/* With new order determine suitable step-size for next step */
hnew = 2.0*(*h);
if (!phasel k k (halfeps < erk*two[*k])) {

hnew = *h;
if (halfeps < erk) {

tmp = 1.0/((double) *k+l);
hnew = pow(halfeps/erk,tmp);
if (hnew > 0.9) hnew = 0.9;
if (hnew < 0.5) hnew = 0.5;
hnew *= absh;
hmin = four_rnderr*fabs(*x);
if (hnew < hmin) hnew = hmin;
hnew = (*h >= 0,0) ? hnew : -hnew;

♦h = hnew;
return;

/* End BLOCK 4 */
}

UN!VL=FiS;TY |

