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"Wiiii uiitoiiumy we declare that no sphere is o ff  limits. We will send our spacecraft 

to search beyond the horizons, accepting that we can not directly control them, and  

relying on them to tell the tale''

Bob Rasm ussen, New M illennium  Autonomy Team



Abstract

Cun ent research in space systems engineering has highlighted the requirem ent for 

increasingly autonom ous spacecraft and planetary rovers to meet the stringent needs 

of future missions. The purpose of this thesis is to present a new approach in the 

concept and im plem entation of single and clustered m icro-spacecraft. The one true 

“artificial agent” approach to autonom y requires the m icro-spacecraft to interact in a 

direct m anner with the environm ent through the use of sensors and actuators. As 

such, there is little computational effort required to im plem ent such an approach, 

which is clearly of great benefit for lim ited m icro-satellites. Rather than using 

complex world models, which have to be updated, the agent is allowed to exploit the 

dynamics of its environm ent for cues as to appropriate actions to take to achieve 

mission goals. The particular artificial agent im plem entation used here has been 

borrow ed from studies of biological systems, where it has been used successfully to 

provide models o f motivation and opportunistic behaviour. The so called “cue- 

deficit” action selection algorithm considers the m icro-spacecraft to be a non linear 

dynamical system with a num ber o f observable states. Using optim al control theory, 

rules are derived which determine which of a finite repertoire of behaviours the 

satellite should select and perform. The principal benefits of this approach is that the 

micro-spacecraft is endowed with self-sufficiency, defined here to be the ability to 

achieve mission goals, while never placing itself in an irrecoverable position.
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Chapter I Introduction to Spacecraft Autonomy

CHAPTER I

INTRODUCTION TO SPACECRAFT AUTONOMY

1.1 PREFACE

The developm ent of autonom y technologies is the key to three vastly 

important strategic technical challenges facing future spacecraft missions. The 

reduction of m ission operation costs, the continuing return of quality science products 

through increasingly limited com m unications bandwidth and the launching of a new 

era of solar system exploration, characterised by sustained presence and in depth 

scientific studies. New deep space missions, coupled with the challenge to do things 

“faster, better, cheaper” have highlighted the need for increasingly more autonomous 

spacecraft. Spacecraft autonomy will bring significant advantages by improving 

resource m anagem ent, increasing fault tolerance and sim plifying payload operations. 

Also, when considering the com m unication delays in deep space missions, the 

requirem ent for autonom y becomes clear. Ground stations and controllers will not be 

able to com m unicate and control distant spacecraft in real-tim e to guarantee pointing 

precision and safety. There is the need therefore to provide autonom ous and semi- 

autonom ous computational capabilities to enable and enhance further deep space 

missions.

This thesis will propose an autonom ous action selection m ethodology 

applicable to a variety of autonom y problems. The approach considered in this work
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provides a m ethod for action selection that balances the demands o f the satellite users 

-  gathering or transm itting data -  and the actions necessary to guarantee the survival 

of the spacecraft -  charging the battery and thermal control. The study is presented 

firstly with an exam ination o f the theories and applications behind behaviour oriented 

agents consisting o f Chapters 2 and 3. A background in control theory using potential 

functions and the general application of this algorithm is exam ined in Chapter 4. The 

description of the environm ental and spacecraft model is given in Chapter 5. The 

extensions of the methods, introduced in the earlier chapters, to a control algorithm 

capable of controlling single and clustered spacecraft satellite are discussed in 

Chapters 6 and 7. Finally conclusions and recom m endations are drawn in Chapter 8.

1.2 ESTABLISHING A VIRTUAL PRESENCE IN SPACE

Recently, renew ed motives for space exploration have been offered to the 

scientific comm unity, thanks to a series of discoveries that suggest the possibility of 

life in space. W hile still controversial, the best known exam ple is the Martian 

m eteorite A LH 8400I, discovered in 1996, which analysed at fine resolution showed 

'biative microfossils, minej-alogical fea tures characteristic o f  life, and evidence o f  

complex organic chemistry" [McKay et al. 1996]. M ore recently, after much 

speculation [Lewis 1971, Reynolds et al. 1983], the Galileo m ission has provided 

encouraging evidence that Europa, one of Jupiter’s sixteen known m oons, might have 

an ocean of liquid water under a layer of ice, stimulating ideas that life m ight possibly 

exist in such an environm ent [KeiT 1997, M cKinnon 1997, Zim m erm an 1997]. If the 

search for life on M ars is to be a fossil hunt, the hunt for life on Europa will be for
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low  level life. Extending a virtual presence in space to confirm or deny these findings 

requires new means o f exploration that have higher performance and lower costs than 

traditional m issions. Planetary m issions such as G alileo or Cassini have budgets 

exceeding several billion dollars, and ground crews o f over 100 personnel.

The Mars Pathfinder m ission introduced a shift within N A S A  towards lighter 

and cheaper m issions, operated by small ground teams [Cook 1998]. The viability o f  

this concept was demonstrated in the summer o f  1998 when the Mars Pathfinder 

landed on Mars and enabled the Sojourner micro-rover to land on the surface o f the 

red planet [Mishkin et al. 1998], Figures 1.1 and 1.2.

Figure 1.1 Pathfinder and Sojourner on Mars

J
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Figure 1.2 Sojourner rover leaving Pathfinder to explore Mars

Pathfinder and Sojourner although successful, lack the on-board intelligence 

necessary to achieve the goals o f more challenging m issions. Future Mars rovers are 

expected to operate for over one year, em phasizing the need for the developm ent o f  

remote agents that are capable o f continuously and robustly interacting with an 

unknown environment. A current project under consideration at the N A SA  Lewis and 

N A SA  Am es research centres is the developm ent o f a solar aeroplane to survey the 

Martian surface. Given the thin CO 2 atmosphere on Mars, an aeroplane flying a few  

hundred feet above the Martian surface is equivalent to a terrestrial plane flying more 

than 30 km above sea level. D eveloping an aeroplane that can autonom ously survey 

Mars over long periods o f time, while negotiating the harsh Martian clim ate, requires 

the creation o f remote agents that are able to accurately model and quickly adapt to 

their environment.
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A second exam ple, which m otivates new space science m issions, is the 

discovery o f  the first planet around another star. This discovery raises the question o f  

the existence o f Earth-like planets som ewhere in the universe [M ayor and Queloz 

1995]. To meet this challenge N A SA  is developing a series o f  interferometric 

telescopes, which identify and categorize planets by measuring a “w obble” in the star, 

around which the planets are orbiting [Dallas 1998]. This can be achieved by placing 

three optical units onto three separate spacecraft, extending the technology challenge 

to the developm ent o f multiple, tightly co-ordinated remote agents.

A final exam ple is the question o f the possibility o f  life under Europa’s frozen 

surface. In February o f 1998, the G alileo m ission identified features that lead to the 

conclusion that Europa may have subsurface oceans, hidden under an icy layer. To 

explore this ocean, N A SA  is currently considering an ice penetrator (cryobot) and 

submarine (hydrobot) that could navigate beneath Europa’s surface [N A SA  1999], 

Figure 1.3.

Figure 1.3 Hydrobot exploring Europa’s ocean.
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This hydrobot would need to operate autonom ously within an environm ent that is 

com pletely unknown. This is perhaps the greatest challenge which autonomous 

systems m ust face: to be situated in an environm ent of which little, if nothing at all is 

known, to face unprecedented conditions and dangers, hours away from  a possible 

rem ote human intervention. Another suggestion for the exploration o f Europa is the 

“Arthur C. Clai'ke” mission, which proposes the utilisation of a fleet of self- 

organising im aging m icrobot explorers [Bucldand and Johnson 1999].

Taken together these exam ples of small explorers, including micro-rovers, 

aeroplanes, foiTnation flying interferom eters, cryobots and hydrobots, provide an 

extraordinary opportunity to develop remote agents that will assist in establishing a 

virtual presence in space, on land, in the air and under the sea of other worlds.

1.3 NEW MILLENNIUM PROGRAMME

As highlighted above, the level of on-board autonom y necessary for future 

m issions is unprecedented. Coupled with this is the challenge o f achieving such 

capabilities at a fraction of the cost and design time of previous missions. W ith the 

creation o f the New M illennium  Program  in 1995, NASA has put forth the challenge 

of reducing m ission costs, while at the same time im proving space technologies and 

scientific return [JPL 1996]. To successfully meet these new standards four major 

challenges m ust be met. Firstly, the spacecraft m ust can y  out autonom ous operations 

for long periods of time with no hum an intervention. This requirem ent stems from a 

variety of sources including the cost and limitations of deep space communication. 

Secondly, autonom ous operations m ust guarantee success through tight deadlines and
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resource constraints. Tight deadlines derive from orbital dynamics and rare celestial 

events, while lim ited resources, such as power or propellant, m ust be carefully 

m anaged throughout the mission. Thirdly, spacecraft operations will have to be 

highly reliable. The harsh environm ent o f space may cause unexpected failures, and 

flight software must com pensate for such failures through reconfiguration or repair. 

Finally, spacecraft operations involve parallel activities between coupled subsystems: 

sensors (star trackers, sun sensors, gyros), actuators (thrusters, reaction wheels) and 

science instruments. These hardw are/software subsystems operate as concunent 

processes that must be co-ordinated to ensure m eaningful interactions. New 

M illennium  Program  missions will demonstrate these new technologies. Each one of 

the missions already planned has clearly defined scientific objectives, although recent 

discussions have raised the issue of doing too much science and not enough 

technology. By using new technology to successfully accom plish these objectives, the 

New M illennium  Program  missions will demonstrate that the technology is not only 

reliable but also applicable to future NASA missions [Rayman 1998].

1.3.1 Deep Space 1 -  Validating New Technology -

The first of the New M illennium  Program missions, Deep Space 1 (D S l), has 

validated a dozen new technologies in flight. Deep Space 1 was launched on a Delta 

7326 rocket on Saturday October 24, 1998 and has now com pleted the first leg of its 

mission with the flyby of comet Braille on July 29, 1999, Figure 1.4.
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Figure 1.4 Artist impression of Deep Space I at comet Braille

An additional encounter with the short period com et Borrelly was performed in 

Septem ber 2001. One o f the technologies to be validated is solar-electric propulsion: 

a Xenon ion engine coupled with solar concentrator arrays, which provides a power

source for the ion engine [JPL 1998a]. Ion propulsion allow s faster access to

interesting regions o f the solar system  with a lower launch mass. Sensors evaluating  

the impact o f  ion propulsion on the spacecraft help determine the com patibility o f the 

propulsion system  with other spacecraft subsystem s and science instruments [JPL 

1998b]. More importantly, D S l tested an artificial intelligence system  designed to 

plan and execute spacecraft activities. The Rem ote Agent Experiment (R A X ) was 

scheduled to act as an agent o f  the operations team on-board the spacecraft, 

formulating its own plans [JPL 1998c]. The Rem ote Agent devises its plan by

com bining m ission goals, provided by the operations team, with its detailed

know ledge o f  both the conditions o f the spacecraft and how to control it. It then 

executes the plan, constantly monitoring its own progress. Should problems develop,
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the Rem ote Agent is able to repair them, or work around them  in m ost cases. The 

Rem ote Agent software uses m odel-based reasoning algorithms, constraint-based, 

goal-directed planning and execution algorithm s, and a fail-operational fault- 

protection approach. Specifically RAX is made up of three com ponents with each 

playing a significant, integral role in controlling the spacecraft. The Planner and 

Scheduler (PS) produces flexible plans, specifying the basic activities that m ust take 

place in order to accomplish the m ission goals. Sm art Executive (EXEC) carries out 

the planned activities while the M ode Identification and Recovery (M IR), also known 

as Livingstone, m onitors the health of the spacecraft and attem pts to conect any 

problems that occur. These three parts work together and com m unicate with each 

other to make sure that D S l accomplishes the goals of the mission. EX EC requests a 

plan of action from PS. A plan for a given time period, based on the general mission 

goals and cunen t state of the spacecraft is produced by PS. EXEC receives the plan 

from PS and fills in the details of the plan -  detennining which subsystem  must be 

activated to com plete the planned activities -  and com m ands the spacecraft systems 

to take the necessary actions. M IR constantly m onitors the state of the spacecraft, and 

in the case of failures, suggests recovery actions. EXEC executes the recovery action 

or requests a new plan from PS that will take into account the failure. All components 

of RAX are constantly comm unicating, using inter-process com m unication, with each 

other and with external components of the spacecraft. M IR receives infonnation 

regarding the state of different components from m onitors located throughout D S l. 

PS must receive information from planning experts in order to generate a plan: the 

navigation system reports to PS regarding the spacecraft’s cun'ent attitude, and the 

attitude control system  tells PS how long it will take to turn the spacecraft to a new
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attitude. Finally EXEC sends commands' to other pieces of the flight software which 

in turn control the spacecraft’s system s or flight hardware.

M ay 1999 represented a m ilestone in the history of the developm ent of 

spacecraft autonomy. In two separate experim ents the Rem ote Agent was given 

control of Deep Space 1 and dem onstrated num erous autonomy concepts ranging 

from the ability to respond to high level goals by generating and executing plans on

board, to robust plan execution and m odel-based fault protection. The Rem ote Agent 

Experim ent was scheduled to be perfoim ed during a three week period starting M ay 

10, 1999. An unexpected anomaly on board D S l, which led to spacecraft safing, 

delayed the staid of the experim ent and took time away from the preparation for the 

Braille asteroid encounter. In order not to jeopardize the encounter, the D S l team 

decided to lim it RAX to just one week of operation starting M ay 17, 1999, reclaim ing 

the following week for encounter preparations. On M onday M ay 17, 1999, at 03:04 

GM T, mission control received a telemetry packet confirm ing the beginning of the 

RAX on D S l. The first plan was generated correctly, but not after some unexpected 

circumstances created some apprehension. PS was generating the plan following a 

different search trajectory than what had been observed in ground testing with no 

appaient reason for this discrepancy. It was later found out that the spacecraft and the 

ground test-bed differed on the contents o f the file containing asteroid goals, and PS 

was actually solving a slightly different problem than the one it had solved on the 

ground. In fact this unexpected circumstance allowed RAX to demonstrate that PS 

problem solving was robust to last m inute changes in the planning goals.

The two day scenario continued smoothly and uneventfully with a simulated 

M iniature Integrated Cam era and Spectrom eter (M ICAS) switch failure, the ensuing 

re-plan, and the stait of Ion Propulsion System (IPS) thrusting. The following day

10
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however it became apparent that RA X  had not comm anded the term ination of the IPS 

thrusting as expected. The experiment was stopped shortly after, with an estimated 

70%  of the RAX validation objectives achieved. The cause o f the problem  was 

identified as a m issing section in the plan execution code. This created a race 

condition between two EXEC threads. If the wrong thread won the race, a deadlock 

situation would occur, by which each thread would be waiting for an event from the 

other. This is what happened in flight, although this same situation never arose in 

m ore than a thousand ground platform  simulations. Follow ing the discovery of this 

problem, the D S l team generated a 6 hour RAX scenario to demonstrate the 

rem aining 30% of the RAX validation objectives. This new scenario was activated on 

Friday M ay 21, 1999, and everything ran smoothly until the time to activate the IPS 

arose. Unfortunately an unexpected problem  in the supporting software failed to 

confinn  an IPS state transition thus causing RA to conectly  stop com m anding the IPS 

stait-up sequence. This discrepancy however did not cause any m ajor problems, and 

RA was able to continue executing the rest of the scenario to achieve the rest of its 

validation objectives [Nayak et al. 2000].

Future work regarding the Rem ote Agent can be divided into three categories: 

fundam ental im provem ents in the capabilities of its components, improvements in 

usability and upcoming applications. Several basic research areas are being pursued 

to improve future iterations of the Rem ote Agent. Contingent planning enables a 

planner to create a plan with branches that may be taken if any o f a range of likely 

events occur, reducing the need to re-plan. Im proving uncertainty handling will allow 

M IR to better track m ultiple ambiguous trajectories the system m ay be following and 

recom m end actions that are safe and goal directed. New tools for graphically creating 

and debugging m odels are being developed to make Rem ote Agent and similar

II
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technologies more capable, easier to usé, and easier to test and validate. Remote 

Agent technology is also being successfully transferred beyond the original team, to 

other NASA missions [Bernard et al. 1999].

1.3.2 Deep Space 2 -  Networked Science on the M artian Surface -

The Deep Space 2 (DS2) mission was launched on January 3, 1999 

piggybacking on the M ars Polar Lander. DS2 consisted of two small probes designed 

to conduct experim ents below the surface o f M ars [JPL 1998d]. On December 3 

1999, five m inutes before entering M ars’ upper atmosphere, the lander was to jettison 

the cruise stage, to which the DS2 probes were attached. The force of separation 

would initiate m echanical pyro devices, which in turn would separate the 

m icroprobes from the cruise stage, approxim ately 18 seconds later. Each DS2 entry 

system consisted o f a 27 x 35 cm elliptical aeroshell containing the probes. Upon 

impact with the M artian surface, the aeroshell would shatter and the probe would 

separate into two parts. The forebody would penetrate as far as 1 m eter below the 

surface, with the aftbody rem aining on the surface to relay data back to Earth via the 

M ars Global surveyor spacecraft, which has been orbiting M ars since September 

1997.

12
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Figure 1.5 Deep Space 2 probing the Martian surface

Com m unications between the aftbody and the forebody w ould be ensured by a 

flexib le cable. This m ission targets several scientific and technological goals. The 

primary goal o f using two probes was to demonstrate networked planetary m issions. 

F ollow ing impact the probes would have started collecting data to validate new  

microelectronic and micromechanical technologies. Each probe w ould then transmit 

data to the orbiting Mars Global Surveyor using a radio in the UH F band at 7000 bits 

per second. Norm ally each probe would be in a low -pow er listening mode until 

receiving a signal from Mars Global Surveyor telling it to transmit data. The orbiter 

would switch back and forth between com m unicating with each o f  the D S2 probes for 

about two minutes apiece and then either transmit the data to Earth im m ediately, or

13
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Store the data tem porarily and transm it it as soon as possible. Unfortunately since 

Decem ber 3, 1999, there has been no contact between Earth ground stations and 

either the M ars Polar Lander or the Deep Space 2 microprobes. Investigations are 

cunently  underway to try and understand the dynamics of the accident and provide 

explanations.

1.3.3 Deep Space 3 -  Formation Flying Optical Interferometry -

Deep Space 3 (DS3) will consist of three form ation-flying spacecraft designed 

to image remote objects in great detail. Since G alileo’s first telescope m ankind has 

tried to build bigger and better telescopes to help us see further out into the universe, 

in increasingly great detail. A m ajor new opportunity came with our ability to put 

large telescopes into orbit, above the E arth’s obscuring atm osphere. The Hubble 

Telescope, launched a decade ago, was the first large optical telescope in space, 

opening up stunning new possibilities for astronomical research. Instead o f constantly 

increasing the size o f space telescopes, m aking them heavier and more expensive, 

DS3 will validate a new concept for viewing the distant Universe. The telescopes will 

be placed on individual spacecraft, and arranged to form a constellation, giving us the 

resolution of a single, very large telescope. Figure 1.6. The spacecraft cairying the 

telescopes will have to fly in an incredibly precise formation: a fom iation that would 

provide the greatest possible resolution. The amount of detail visible to such a 

telescope will allow unprecedented detail of nearby stars and galaxies [JPL 1998e].

14
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Figure 1.6 Deep Space 3 formation-flying

The technological obstacles for such a m ission are high because o f  the demanding 

requirements o f  interferometry: the three spacecraft must be able to maintain their 

positions and orientation within ± 1cm and ± larcminute o f  each other [JPL 1998f]. 

The spacecraft will be separated across distances o f order 1 km, and continuously  

turned and pointed at different stars, contracting and expanding the relative distances. 

These demanding conditions require high precision lasers and sensors to monitor 

m illim etre-sized positional changes, miniature attitude control jets, and advanced 

autonom ous control system s, to make the individual system s act as one. The scientific 

benefits are obvious, and the success o f D S3 will make future interferometry m issions 

(Space Interferometry M ission, Terrestrial Planet Finder and Terrestrial Planet 

Imager) more feasible and less expensive.

15
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1.3.4 Deep Space 4 -  Rendezvous With a Comet -

D eep Space 4 (D S4), also known as Cham pollion, was scheduled to launch in 

April 2003. It would have then rendezvoused with the com et Tem ple I and gone into 

orbit about the nucleus on April 2006. After four months o f orbiting at 100 km, a 

lander would be deployed to soft-land on the com et’s surface. A  drill would then have 

been used to collect sam ples o f  the nucleus, which were to be analysed on-board with 

the resulting science data transmitted back to Earth. The possibility o f returning the 

sam ple to Earth was scheduled for 2010 [Muirhead and Kerridge 1999]. Due to the 

small size, irregular shape and variable surface properties o f  small bodies, accurate 

position estim ation is needed for safe and precise small body exploration. Because o f  

the com m unication delay induced by the large distances between Earth and targeted 

small bodies, landing must be done autonom ously using on-board sensors and 

algorithms.

Figure 1.7 D eep Space 4 lander on the cometary surface.

16
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CuiTcnt navigation technology does not provide the precision necessary to accurately 

land on a small body, so other positioning techniques had to be investigated. 

Com puter vision offers a possible solution to the precise positioning problem ; camera 

images can be autom atically analysed to determ ine the position of the spacecraft with 

respect to a proximal body. A software tool was developed that enables autonomous 

position estimation near small bodies through on-board visual surface feature tracking 

and landm ark recognition. Feature tracking and m otion estim ation are used to 

deteim ine continuous updates to the spacecraft state vector. Visual landmark 

recognition and position estimation are used to estim ate spacecraft position in a body- 

centred co-ordinate system. By com bining continuous m otion estimates with 

occasional position estimates, continuous body-centred position is obtained [Johnson 

and M atthies 1999]. Unfortunately this mission was cancelled in July 1999, due to 

budgetary constraints.

1.3.5 Space Technology 5 ~ Constellation Trailblazer -

This m ission, planned for launch in 2003, will attempt to fly three miniature 

spacecraft in fonnation [JPL 2000a]. Space Technology 5 (ST5) will test methods for 

operating a constellation of spacecraft as a single system, Figure 1.8. Another eight 

new technologies will be validated in the harsh space environm ent near the boundary 

of E arth’s protective magnetic field, known as the m agnetosphere. ST5 will usher a 

new era of smart, m iniature satellites, which will cany  a range of spacecraft services 

including advanced guidance, navigation and control, attitude control, propulsion, 

high bandwidth and complex com m unication functions [JPL 2000b].
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Figure 1.8 Space Technology 5 in orbit over the Earth

The scientific return will be concentrated on measuring the effects o f solar activity on 

the Earth’s magnetosphere. The goal is to achieve sufficient scientific understanding 

o f solar activity and terrestrial magnetic storms to enable the forecasting o f space 

weather and allow for its harmful effects on space and ground system s to be 

m inim ized [JPL 2000c]. Am ong the technologies that w ill be validated is the 

Formation Flying and Com m unications Instrument (FFCI). Currently under 

developm ent at JPL, this is a miniature spacecraft com m unications system  that 

provides the capability to com m unicate between spacecraft and determine the 

positions o f the spacecraft relative to each other and the ground, using the Global 

Positioning System.
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1.4 ESA HORIZON 2000

In 1983 it became clear that the European Space Agency (ESA) could no 

longer continue with its existing m ethod of selecting projects without a long term 

prospective, and some form of comm itm ent that would allow the scientific 

com m unity to better prepare itself for the future [Bonnet 1995]. In June 1984, 

priorities had been established and the “Cornerstones” were approved in four 

domains; solar teirestrial physics, comet science. X-ray and subm illim etre astronomy. 

In addition, the plan also included both small and medium size projects, but with no a 

priori exclusion of disciplines, so that a comm unity not “served” by one of the 

scheduled missions could still find its place. In this way the program m e had an 

elem ent of flexibility and its contents could be adapted to the evolution of science, as 

well as to the opportunities offered by international cooperation. Along with the main 

m issions, cheaper and faster missions, called Small M issions for Advanced Research 

in Technology (SM ART) have recently been introduced. The purpose of these 

m issions is to test new technological concepts to better prepare for future 

Cornerstones m issions [ESA 1998].

1.4.1 SMART 1 -  Lunar Observer -

The planetary objective selected for the SM A R T -1 m ission is to orbit the 

M oon for a nom inal period of six m onths and will mark the first time that Europe 

sends a spacecraft to the Moon, Figure 1.9. The project aims to have the spacecraft 

ready early in 2003 for launch as an A riane-5 auxiliary payload, and designed to test 

new technologies for future missions including solar electric propulsion and on-board 

data handling.
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Figure 1.9 Smart 1 orbiting the Moon

It will take the spacecraft approximately 17 months to reach the m oon and enter a 

polar lunar orbit o f  1000 km peri lune and 10,000 km apolune. For the follow ing 6 

months the spacecraft will carry out its scientific objectives, by returning data on the 

geology, m orphology, topography and mineralogy o f  the M oon. Follow ing in the 

steps o f  D S l,  SM ART 1 will be contributing to on-board autonom y with the On 

Board Autonom ous Navigation (O B A N ) experiment. The spacecraft will not be 

relying itself on O B A N  for guidance and navigation, which w ill be managed from the 

ground station at the European Space Operations Centre (ESOC), but will function in 

open loop, obtaining all the data required for navigation. Instead o f  being processed  

on- board, this information will be sent back to be processed on Earth. The 

experim ent will involve the spacecraft looking at certain celestial objects, taking 

im ages o f  them with the camera and relaying this together with information from the
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attitude and control system s to the O B A N  ground system , which w ill calculate the 

precise trajectory [ESA 2000].

1.4.2 Rosetta -  Landing on a Comet -

The Rosetta m ission is one o f  the cornerstone m issions o f  the European Space 

A gency scientific programme. After launch in January, 2003 (the launch window  

opens January 15), Rosetta will fly out to Mars for a gravity assist in August 2005  

and return for an Earth tJyby on Novem ber 2005. A flyby o f  the main belt asteroid 

M imistrobell will occur on July 2006, follow ed by a second gravity-assist Earth flyby  

on Novem ber 2007. F ollow ing another asteroid flyby (Rodari, April 2008) the 

spacecraft enters a heliocentric drift phase to intercept the com et at a point close  

enough to allow  com m unication with the Earth. A rendezvous manoeuvre in 

Novem ber 2011 will lower the spacecraft velocity relative to that o f  Comet 

PJWirtanen to about 25 m /s and put it into the near com et drift phase. Figure 1.10.

Figure 1.10 Rosetta orbiting com et Wirtanen.
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At the end of a -9 0  day cometary observation phase, the relative velocity between 

R osetta and W irtanen will have been reduced to 2 m/s, at a distance of about 300 

com et nucleus radii. A t this point landm arks and radiom etric m easurem ents will be 

used to malce a precise determination of spacecraft and com et relative positions and 

velocities and the rotation and gravity of the comet nucleus to fine-tune the approach. 

A fter global studies o f the nucleus are completed, about five areas (500 x 500 m) will 

be selected for close observation at a distance down to 1 nucleus radius in August 

2012. Using the information gathered from orbit, a landing site will be chosen for the 

Surface Science Package (SSP). The spacecraft will go into an eccentric orbit with a 

pei'icenter as low as 1 km over the landing site and an ejection mechanism will 

separate the SSP from the spacecraft. The lander will touch down on W irtanen’s 

surface at a relative velocity of less than 5 m/s and will transm it data from the surface 

to the spacecraft, which will relay it to Earth. The spacecraft will remain in orbit 

about the comet and make observations through perihelion on 10 July 2013 

[Schwehm and Schulz 1999]. The role of autonom y in such a m ission is obvious and 

multi-faceted. The spacecraft will have to contend with uncertainties in real-time due 

to the long time delay in com m unication with Earth. Rosetta will also have to select 

an appropriate landing site and descend to the com etary surface autonom ously and 

safely, in a gravitational environm ent of which nothing is known at the moment 

[Bernard et al. 2002]

1.4.3 Beagle 2 -  Exploring Mars -

Beagle 2 is the name given to the lander com ponent of the ESA M ars Express 

mission. The main focus of Beagle 2 is to establish whether there is convincing 

evidence for past life on Mars, or to assess if conditions were ever suitable. The
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eleven day launch w indow opens on June 1, 2003 with Mars Express arriving at Mars 

on Decem ber 26, 2003. The Beagle 2 lander will be released 5 days before this and 

coast for five days after release and enter the martian atmosphere. After initial 

deceleration in the martian atmosphere by an aeroshell, parachutes will be deployed  

and, about 1 km above the surface, large gas bags will inflate around the lander and 

protect it when it hard lands on the surface. After landing, the bags will deflate and 

the top o f the lander w ill open. B eagle 2 is a flat cylindrical spacecraft (diameter o f  

65 cm and depth o f 25 cm ) and includes four deployable solar panels. Figure 1.11.

Figure 1.11 Beagle 2 on Martian surface.

At the heart o f B eagle 2 is the on-board software that must execute all the activities o f  

the lander. During the surface operations phase it is responsible for controlling all o f  

the instruments and cameras together with the lander subsystem s such as the robotic 

arm, com m unications and power. For most o f the operations phase the lander will be 

out o f contact with the Mars Express Orbiter and must autonom ously perform the
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experiments while m aintaining the lander’s safety. In addition, although it is only 

intended that the experim ents will be perform ed sequentially, m any other tasks must 

be perfonned continuously so that this is a naturally m ulti-tasking problem  because 

the lander only has a single processor. During the operations phase the on-board 

software will be required to: ensure the safety of the lander by continuously 

m onitoring and controlling the lander subsystems, deploy the instrum ents using the 

robotic arm, use the instruments to perform  the experim ents requested by the mission 

controllers, acquire images using the cameras, manage the com m unications sessions 

with the orbiter and execute telecom m ands and generate telemetry. In addition, this is 

a real-tim e system so there are many tasks, which could jeopardise the mission if they 

do not finish within a specified time or are out of sequence.

1.4.4 PROBA -  Project for Onboard Autonomy -

This mission was initiated in February 1998 and is now in its final phase 

[Teston et al., 1997]. Proba was successfully launched on O ctober 22“  ̂ 2001, and 

injected directly into its final polar sun-synchronous orbit at an altitude of 817 km, 

and 98.7° inclination, initially for a one year mission. The puipose of the mission is to 

demonstrate new on-board technologies and the opportunities and benefits of 

increased spacecraft autonomy. A high degree of spacecraft on-board autonomy, 

together with ground-station automation, considerably reduces the need for ground 

operations. Proba on-boai'd automatic functions include: nominal operation and 

resource m anagem ent computation and control of cam era pointing and scanning from 

raw inputs from users (target latitude, longitude and altitude), payload operations 

scheduling and execution, data com m unications management. Proba ground-segment
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automatic functions include: spacecraft pass operations, spacecraft performance 

evaluation, high-level user requests to spacecraft via Internet

Figure 1.12 Proba in flight

The main autonomy functions to be demonstrated by PRO BA include the 

management o f on-board resources, the planning scheduling and execution o f  

scientific observations and the detection, identification and recovery from on-board 

failures [de Lafontaine et al., 1999]. Key to all these on-board autonom ous functions 

is the Attitude and Control Navigation System s (A C N S) software. The ACNS is 

responsible for acquiring and maintaining on-board know ledge o f the attitude and 

orbit (the navigation function) for com puting the reference trajectories required in 

various attitude manoeuvres (the guidance function) for executing the attitude control
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comm ands (the control function) and for detecting and identifying on-board failures 

originating from, or observable by, the ACNS subsystem. D uring normal operations 

the attitude knowledge is acquired autonom ously from  the double-head star tracker. 

Each o f the two optical heads can determ ine its three-axis inertial orientation starting 

from  a “lost in space” attitude. Knowledge of the PROBA orbit is acquired 

autonom ously via a GPS receiver which is a crucial com ponent o f the on-board 

autonom y demonstration. This will allow pointing o f the spacecraft to any orbit- 

referenced attitude without the need of an Earth sensor. Pointing to geographical 

Earth references will either be to a fixed target, during ground station overfly or 

imager utilisation, or in a scanning motion over a 19 km user-selected tai'get aiea.

1.5 NASDA & ISAS -  Japanese Efforts -

Japan has been one of the most successful nations in the realm of terrestrial 

autonom y applications, and has a huge base of research and developm ent, ranging 

from  components to working systems, for m anufacturing, construction and human 

service industries. From  this base, Japan has looked to use autonom ous technology in 

space applications, funding work since the m id-1980s. At first the efforts were 

prim arily concentrated on space robotics, but have since m oved on to encompass a 

w ider range of applications. This work was initiated with the developm ent of the 

Japanese Experim ental M odule (JEM), which is Japan’s contribution to the 

International Space Station. Follow ing this, the Japanese envision their own robotic 

space laboratory -  Cosm o-Lab -  and the slightly more visionary idea of an orbiting 

space hotel. To realize these scenarios NASDA has developed free-flying robots that
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grab, dock and manipulate w hile in orbit. A lso considered are m ultiple m issions to 

the M oon and Mars with the aim o f carrying out extensive surface explorations, using 

autonom ous m obile robots.

1.5.1 Muses-C -  To an Asteroid and Back -

The primary scientific objective o f the M uses-C m ission is to collect a surface 

sam ple o f material from an asteroid and return the sample to Earth for analysis. The 

m ission plan calls for a M ay 2003 launch with the arrival at the asteroid 1998 SF36  

scheduled in the first half o f  2006, Figure 1.13. M uses-C will initially survey the 

asteroid surface from a distance o f about 20 km and then m ove c lose  to the surface 

for a series o f soft landings and collection o f sam ples at three sites.

Figure 1.13 M uses-C probing the asteroid
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O n-board optical navigation will be em ployed extensively during this period since the 

long com m unication delay prohibits ground-based, real-tim e conunanding [Kubota et 

al. 2000]. The mission also calls for the lander to deploy a small NA SA rover onto 

the surface of the asteroid, however this project was recently cancelled. All operations 

at 1998 SF36 m ust take into account the extremely low gravity at the asteroid’s 

surface. After a few months in close proxim ity to the asteroid, the spacecraft will fire 

its ion engines to begin its cruise back to Earth. The re-entry capsule will be detached 

from the main spacecraft and the capsule will coast on a ballistic trajectory, re

entering the Earth's atmosphere in June 2007, landing via parachute at a site yet to be 

determined.

The M uses-C spacecraft has a box-shaped main body 1.5 m along each side 

and 1.05 m high. The launch mass is 365 kg, including 64 kg of chemical propellant 

and 29 kg of xenon gas for its main ion engines. Two solar wings protrude from the 

side and a 1.5 m diam eter high-gain parabolic antenna is m ounted on top on a two- 

axis gimbal. The m ission will be equipped with a camera, which will be used for 

imaging, visible-polarim etry studies and optical navigation near the asteroid, a laser 

ranging device (LEDAR), and a near-IR spectrometer. The lander will be equipped 

with a universal sample collection device which will gather 1 to 10 grams of surface 

samples taken from landings at 3 different locations. Prior to each sampling run, the 

spacecraft will drop a small target plate onto the surface from about 30 m altitude to 

use as a landm ark to ensure the relative horizontal velocity between the spacecraft 

and asteroid surface is zero during the sampling.

The rover, or Small Science Vehicle (SSV), should have been dropped onto 

the surface of the asteroid by the M uses-C spacecraft [Jones et al. 2000]. The rover 

goals were to make texture, com position and m oiphology m easurem ents of the
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surface layer at scales smaller than 1 cm , investigations o f lateral heterogeneity, 

investigation o f  vertical regolith structure and to measure constraints on the 

mechanical and thermal properties o f  the surface layer. The rover was scheduled to 

weigh about 1 kg and with capabilities o f  rolling, clim bing, or hopping around on the 

surface o f the asteroid. It was designed to run on solar power and projected to carry a 

multi-band imaging camera, a near-infrared point spectrometer, and an alpha/X-ray 

spectrometer (A X S).

1.5.2 Selene -  Selenological and Engineering Explorer -

Japan’s 30-year project to establish a lunar base is divided into three parts that 

will start with an unmanned probe and develop into a manned base. The first part o f  

the project, known as the SELENE Project (SELenological and ENgineering  

Explorer), has already started. Figure 1.14.

P

Figure 1.14 Selene orbiting the Moon

Japan plans to use the H-IIA rocket currently being developed to launch its own  

unmanned M oon probe around 2004. The plan calls for the collection  and retrieval o f

29



Chapter I Introduction to Spacecraft Autonomy

data to deteim ine the origins and evolution of the M oon and developm ent of technical 

abilities that will allow for a soft-landing on the M oon’s surface. The lunar 

exploration stage of the SELENE Project involves an orbiter and a relay satellite. The 

orbiter consists of a mission m odule and a propulsion module. It will take five days 

after its launch to reach the relay satellite and enter its elliptical orbit. Then, as it 

gradually approaches the M oon’s surface, it will separate from its relay satellite. At its 

furthest point in the lunar elliptical orbit, the apolune, the relay satellite will be 2,400 

kilom etres above the M oon’s surface and will measure the gravitational field on the 

far side of the M oon, and also relay infoim ation between the satellite and the Earth. 

The satellite will take approxim ately one year and survey the entire M oon surface.

After leaving the lunar orbit at an altitude o f 100 km, the propulsion module 

will reach peri lune at a lunar altitude of 15 km. From peri lune the m odule will start to 

descend via a m inim um  fuel path, using its main engine. About 4 km above the lunar 

surface it will stabilise its attitude to start a vertical landing. In the last descent phase 

it will reduce speed with decreasing acceleration and when 2 m above the surface will 

stop the descent engine, soft landing at a final speed of about 3 m/s [NASDA 1998]. 

The orbital correction m anoeuvres together with the final soft-landing phase will be 

peifoim ed autonom ously on-board and used as a technology dem onstrator for future 

lunar missions.

1.6 MICRO AND NANOTECHNOLOGY

As seen in the previous subsections, the main objective o f space agencies is to 

reduce the costs and delays associated with space-based services, by reducing
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spacecraft lifecycle costs without reducing performance. Spacecraft m anufacturing is 

cunently  a labour intensive task: few sim ilar units are ever produced. Due to this fact, 

traditional cost reduction approaches such as new design, pre-fabrication and 

m odularity will help reduce costs, but not to the levels required for space missions. 

One area where innovation is proceeding at a very fast pace is m iniaturisation, as can 

be observed in consum er electronics. M iniaturisation may be achieved by applying 

m icro and nanotechnologies. There are several advantages offered by 

m icro/nanotechnologies. The resources required are reduced, high system reliability 

is made possible by incorporating several microsystems for redundancy, they can be 

produced in a batch process and small test facilities are suitable. These advantages are 

even more significant for the space sector, where each of the above points has a 

strong influence on costs.

Launch is one of the highest costs for space-based system s, and is directly 

related to mass. The payload and spacecraft bus are the two other m ajor contributors 

to cost. The bus mass and cost are related to the payload mass, pow er requirem ents 

and volume. Any reductions in mass, volume and pow er requirem ents are therefore 

desirable and will have a significant effect on cost. M icrosystem s are considered an 

excellent means of obtaining these mass and cost reductions. They could also become 

the means to implem ent decentralisation, where a num ber of com ponents could be 

used in place of a larger centralised one. This leads to cost reduction on space 

systems, not only at the payload and bus levels, but also in launchers and ground 

station facilities. The motivation behind the application of m icrosystem s in space is 

therefore multiple: significant cost reductions, the possibility of enabling new 

functions and improving the performance of existing ones, better ways of achieving 

m ission goals, the ability to accom modate data proliferation and increases in data
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quality and shorter developm ent tim es.'A ll of these m otivations amount to better 

performance per unit cost and mass. There are however some space specific 

lim itations to m icrosystems which the space sector will have to devote resources to 

overcome if this technology is to become widespread and common. The two most 

critical lim itations ai*e the high costs of developm ent and the high susceptibility to 

radiation. As for any other devices having a high degree of integration, such as 

microprocessors, costs will increase due the need to qualify them  for space use. For 

example the risk of single event upsets, which are non destructive but disrupt 

operations, are problem atic as devices shrink in size and packing becomes even more 

dense.

1/7 CURRENT APPROACHES TO AUTONOMY

As highlighted in the previous sections, future international deep space 

exploration provides unprecedented demands for autonom ous spacecraft, rovers, 

aeroplanes and submarines. W hen considering the distances involved in deep space 

missions, and the ensuing comm unication delays, the need for autonomy becomes 

clear and obvious: Earth based mission controllers will be unable to communicate 

with and control distant spacecraft and non-human explorers to ensure timely 

precision and safety. The new generation of spacecraft and rovers must be smart, 

adaptable and self-reliant in harsh and unpredictable environm ents. Several different 

techniques are currently being investigated as possible methods for autonomy.
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1.7.1 Expert and Knowledge-Based Systems

Simply described, expert systems are particular types o f com puter programs. 

They differ from m ost other com puter program s in the following ways. Functionally, 

they can perform decision m aking or problem  solving tasks within a well defined 

dom ain at performance levels alm ost comparable to those of hum ans. Expert systems 

primarily encode and manipulate symbolic knowledge rather than numerical data, 

mathematical equations or algorithms. The greater emphasis is on knowledge, rather 

than numerical computation. Expert systems arose out o f the efforts to apply research 

in the field of artificial intelligence to practical issues. Artificial intelligence is 

prim arily concerned with trying to model intelligence and human solving capabilities 

using computational techniques, the central concept being that computers could 

imitate human intelligence. The 1950s and 1960s were the period when artificial 

intelligence was prim arily concerned with the developm ent of com puter programs 

that could perform tasks that were considered to require a high degree of intelligence, 

such as playing chess or theorem solving. The key developm ent during this period 

was the idea of heuristics [Simon and Newell 1958], defined as guidelines for 

choosing among alternative actions and the creation of LISP (LISt Processing), a 

symbolic program m ing language [M cCarthy 1962]. Broader aspects of intelligence 

began to be addressed in the early 1970s, with research being oriented towards model 

cognition, inteipreting natural language, understanding nawative and ways to 

represent reason about diverse kinds of knowledge. During this period, artificial 

intelligence was applied toward solving practical real-word problem s with the 

developm ent of Dendral [Feigenbaum et al. 1971], M acsym a [Martin and Fateman 

1971] and Strips [Fikes and Nilsson 1971]. The explosion of expert systems in the 

early 1980s was caused by the realization that com puter program s could perform

33



Chapter I Introduction to Spacecraft Autonomy

useful tasks at expert level of perform ance, if they were endow ed with large volumes 

of specialized Icnowledge, and were constrained to naiTow but real domains. 

Researchers tried to reproduce human experts by capturing their empirical 

knowledge. Successful expert systems from this period were M ycin [Buchanan and 

Shortliffe 1976], Prospector [Duda et al. 1979] and R1 [M cDerm ott 1982]. These 

successes led to the idea of an expert system that had the basic structure in which 

rules could be entered, and the m atching capability to make deductions based upon 

these rules.

In a knowledge-based system, the amount of detail in which propositions have 

to be laid out for a com puter to make use of them causes a problem  in the 

m anagement of the profusion of rules. One o f the techniques em ployed to deal with 

the confusion of rules is to associate a number, called the certainty factor, with each 

assertion. This num ber would indicate how sure the system is about the truth. The 

certainty factor ranges from one -  full belief -  to minus one -  disbelief. Anything in 

between would indicate a certain degree of doubt or ignorance. The system adopts the 

conclusion with the highest certainty factor at the end. Another technique is to link 

related ideas together in “fram es” , much in the same way the hum an mind can caiTy 

m ost ideas with a reasonable set o f associations, A third approach has been to remove 

the limitation that an expert system cannot retract any inference drawn from its rules. 

Som e inference engines do allow them  to start again if a particular line of reasoning 

runs into a dead end. The predom inant models of representation and reasoning are 

logic, rules and objects. Logic program ming supports a declarative style of 

representation: knowledge about a domain is represented in the form  of facts. The fact 

base can then be queried about the truth or falsehood of the statem ent to be tested. 

This method, also known as first-order predicate logic, though appealing has several
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shortcomings. The syntax of assertions has to conform to a rigid fram ew ork of logic. 

These assertions have difficulty in dealing with time and neither do they possess the 

capability to retract conclusions that no longer hold true. Rule-based systems were 

first pioneered by applications like M ycin and R l ,  and are the m ost comm only used 

form of representation used in expert systems. Knowledge is represented as IF THEN 

rules, which are essentially association pairs. The system  consists of three 

components: the rule base contains the knowledge expressed in IF TFIEN associations 

over variables, the working m em ory contains all facts which are true at any stage in 

the computational process, and the inference engine is the dom ain and knowledge- 

independent processing mechanism. The inference machine searches the rule base, 

matches variable values in the working memory to the preconditions and conclusions 

of rules in the rule base. W hen more than one rule is applicable in a situation, the 

inference engine uses conflict resolution to decide which one is used. The 

shortcomings o f rule-based representation are that they are solely based on variable- 

value binding. There are other types of relationships essential to capturing knowledge 

about a domain that are outside the scope of a rule based representation. The use of 

meta-rules also obscures the actual problem solving strategy used by the system. 

O bject-oriented representation addresses many of the shortcom ings of rule-based 

representation. The structure used in object-oriented system s is an object with 

associated properties. One of the advantages of these systems is that they allow the 

representation o f all declarative infomnation about a process in a structured way. The 

disadvantage is that they generally have no built-in problem  solving capabilities. The 

best systems use a hybrid structure, by coupling the object system  with a rule base.

Expert systems have been used for many years with great success in various 

te iT estr ia l fields, ranging from accountancy [Brown and Phillips 1991] to

35



Chapter I Introduction to Spacecraft Autonomy

m eteorology [Takle 1990], and from m edicine [Frenster 1989] to law [W alter 1988]. 

Despite these successes, expert systems have intrinsic disadvantages which would 

make their use in the space autonom y field problematic. The main problem is that 

knowledge based expert systems are not always able to cope successfully with 

unusual or rarely occurring situations; to account for all conceivable possibilities 

would make such a system extrem ely intensive computationally, while also never 

being absolutely sure of having covered all avenues. There is also the possibility that 

com peting lines of action lead to a dead-end, virtually stalling the spacecraft, as 

recently w itnessed during the Rem ote Agent Experim ent on-board Deep Space 1. 

Coupled with the fact that expert systems are limited in their capabilities by their 

knowledge, makes them unlikely candidates to meet the stringent requirements of 

future space missions as, for example, the Europa hydrobot explorer, where there is a 

small knowledge base. The use of expert systems however can still prove very useful 

for ground station procedures during routine operations.

1.7.2 Fuzzy Logic

Fuzzy logic was devised in 1964 by Lofti Zadeh [Zadeh 1965]. The main idea 

behind fuzzy logic is that there are many cases where true m d  fa lse  or on and c ^ fa il  

to describe a given situation. These cases require a sliding scale where variables can 

be m easured as partly on or mostly true. Traditional set theory is based on bivalent 

logic where a num ber or object is either a member of a set or it is not. W ith fuzzy 

logic, an object can be a m em ber of m ultiple sets with a different degree of 

membership in each set. A degree of membership in a set is based on a scale from 0 

to 1, with 1 being complete m em bership and 0 being no membership. In a control 

system, an output is calculated based on the amount of m em bership a given input
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signal has in the configured fuzzy sets. Each com bination o f sets is configured to 

have a specified output, and the fuzzy control system  calculates an output based on 

the weighted sum o f the amount o f membership in each set. Information flow  through 

a fuzzy control system  requires that the system  inputs go through three major 

transformations before becom ing system  outputs. Figure 1.15 show s the three 

transformations known as fuzzification, fuzzy rule association and de-fuzzification.

Fuzzy Rule 
Association

OUITUTINPUT De-FuzzificationFuzzification

Figure 1.15 Fuzzy system block diagram.

Fuzzification is the process o f decom posing a system  input into one or more fuzzy 

sets. Each fuzzy set consists o f  three components: domain -  the range o f system  input 

or output values over which the set is mapped, membership function -  the curve 

which maps a system  input or output value to a degree o f membership value and 

degree o f membership -  and the value produced by the membership function. Many 

types o f membership curves can be used; however, triangular shaped membership 

functions are the most com m on. Each fuzzy set spans a particular region o f a system  

input or output value, and through the membership function produces a degree o f  

membership value between 0 and 1. The result o f the fuzzy set represents the degree 

to which a system  input or output value is a member o f that particular fuzzy set. Once 

the system  inputs and outputs have been decom posed into their respective groups o f
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fuzzy sets, a set of rules associating these fuzzy sets m ust be defined to govern the 

system ’s behaviour. Each rule consists of a condition and an action, where the 

condition is a function of the input fuzzy sets and the action is a function of the output 

fuzzy sets as follows:

IF  CONDITION T H E N  ACTION

where

CONDITION = f (Input Fuzzy sets)

ACTION = f (Output Fuzzy sets)

A fuzzy system usually requires more than one rule to com pletely describe all the 

necessary actions. In practice a set of rules, which comprise all com binations of all 

possible fuzzy sets for all system inputs, is necessary and can be denoted by an mray 

called the Fuzzy Associative M emory (FAM). The inputs are evaluated using this 

m atrix to deteiinine which rules are true. Since a particular input may fall within 

more than one com ponent of a fuzzy set, m ultiple rules may be true for any given set 

of inputs. Each cell in the matrix contains the control output change for the 

coiTesponding input combination. W hether the fuzzy system is perfonning control or 

m odelling a process, the final result must be an exact -  or “crisp” -  value and not a 

fuzzy value. De-fuzzification is required to convert the fuzzy result into an exact 

value or number. The result of the fuzzy system is the com bination of all of the 

results of all of the rules. For example, if the strength of the condition has a nonzero 

value, then the action is expected to contribute, at that strength, to the final output. 

Since several rules can “fire” at the same time, a weighted com bination of each rule 

must be calculated to create a final output value.
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Originally, the technique was devised as a means for solving problems in the 

soft sciences, particularly those that involved interactions between humans, or 

between humans and machines. It was when Yoshim ura Terano [Terano et al. 1972] 

introduced fuzzy sets to Japan in 1972, that the full power of the m ethod could be 

appreciated, leading to a host of comm ercial applications, alm ost entirely in the field 

of physical control. The current field of applications range from  mass consumer 

applications [Terai 1991, Tobi and H anafusa 1991, Klein 1996], to large-scale 

electro-mechanical processes [Yasunobu and M iyam oto 1985, Ujihara and Tsuji 

1988, Spooner and Passino 1995].

Fuzzy logic has features that are particularly attractive in the light of the 

problems posed by spacecraft autonomy, allowing us to model different types of 

uncertainty and imprecision and build robust controllers starting from heuristic and 

qualitative models. However the current knowledge for such applications is still at a 

very early stage and different problems have to be solved before successfully 

validating such a technology. The formal analysis of a fuzzy behaviour is the object 

of intensive research. Some tools exist to prove stability given that a model of the 

system  is available [Tanaka and Sugeno 1992]. How ever a new set of qualitative 

perfoiTnance criteria are needed and formal tools that can tell when a fuzzy controller 

will, approximately, satisfy these criteria [Shin and Cui 1991]. Also, while fuzzy 

logic gives us a valuable tool for writing co-ordination strategies, it does not give a 

solution to the general problem of behaviour co-ordination. Currently there is no way 

to discrim inate a situation where different comm ands proposed by different 

behaviours should be averaged, from one where they should be regarded as a conflict 

to be resolved in some way [Saffiotti 1997]. Before fuzzy logic can satisfy stringent
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spacecraft autonomy requirements, progress towards stronger foundation theory and 

its semantics has to be made [Ruspini 1991, Hohle 1997, Bilgiç and Tiirksen 1998].

1.7.3 Neural Networks

The concept of neural networks in artificial intelligence evolved from the 

study of the human mind. In the human brain neurons are connected to sensory 

organs like the ears, nose, eyes, etc. These neurons are activated when a human is 

hearing, smelling, seeing, etc. The brain recognizes the experience based on the 

pattern o f the neurons that are active and those that are not. Artificial neural networks 

sim ulate the same process within the com puter in such a way that they can read sets 

of data and leam from  them. M cCulloch and Pitts [McCulloch and Pitts 1943] were 

the first to develop models of neural networks based on their understanding of 

neurology in the 1940s. The interaction between com puter experts and neuroscientists 

continued establishing a m ultidisciplinary trend, which continues to the present day. 

Considerable interest and activity was stirred in 1958 when Rosenblatt designed and 

developed the Perceptron [Rosenblatt 1958, 1962]. This system  could learn to 

connect or associate a given input to a random  output unit. Another system was the 

AD ALINE (ADAptive Linear Element) developed in 1960 by W idrow and H off at 

Stanford University [W idrow and H off I960]. In 1969 a book by M inski and Papert 

[Minski and Papert 1969] generalised the limitations of single layer perceptrons to 

m ulti-layered systems, with the significant result of raising considerable prejudice 

against the research and consequent funding reductions. Although public interest and 

available funding were minimal, several researchers continued worldng to develop 

neurom orphically based computational methods for problem s such as pattern 

recognition. During this period several paradigms were generated which modem
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work continues to enhance. The progress of the works of Amari [Amari 1967], 

W erbos [Werbos 1975], Fukushim a [Fukushima 1975], G rossberg [Grossberg 1976] 

and K lopf [Klopf 1982] were im portant to the re-emergence of interest in the neural 

netw ork field.

The novel structure of the information processing system is the key element of 

neural networks: it is composed of a large num ber of highly interconnected 

processing elem ents that are analogous to neurons and are tied together with weighted 

connections that are analogous to synapses, as shown in Figure 1.16.

Biological Artificial
Input

dentrites

cell body

axon

Output

Input

t
Output

Figure 1.16 Biological and artificial neural networks. The cell receives and combines signals from 
other neurons through input paths called dendrites and when activated transmits a signal through a 
single path called axon.

The processing elem ent of a neural network is an artificial neuron. In general 

each neuron has a set of n inputs aj with /  6 [ I . . . / 2]. Each input is weighted before 

reaching the main body of the processing element by the connection strength or 

weight factor vvj. In addition, it has a bias term and a threshold value 0  that has to
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be reached or exceeded for the neuron to produce a signal. A nonlinearity function 

then acts on the produced signal giving an output, which becomes an input for other 

neurons. Artificial neurons process signals by first sum m ing all the inputs reaching 

the neuron:

n
net. -  E  w ..x .+ b .  [1.1]

' j=o y J J

where neti is the total input which reaches the artificial neuron, and second by filing if 

the summ ed input reaches or exceeds the threshold level

F {neti)> ©  [1.2]

The purpose of the nonlinearity function is to ensure that the neuron’s response is 

dam ped as a result of large or small activating stimuli and thus is controllable. In the 

biological world, conditioning o f a stim ulus is done by sensory inputs. For example to 

perceive a sound as twice as loud, an actual tenfold increase of the sound must take 

place; hence the alm ost logarithmic response of the ear. The nonlinearity function 

used in neural netw orks however is not necessarily a close replica of the biological 

one; and is often used merely for mathematical convenience.

CuiTently neural networks are used in several fields for classification 

[Kathman 1993, Peltorana and Pfurtscheller 1996, Hyotniemi 1996], forecasting 

[Schoneberg 1990, Grudnitski and Osbum  1993, A zoff 1994, Gorr et al. 1994] and 

m odelling [M iller and Sutton 1990, H anis and Stroud 1992, Horwitz and El-Sibaie 

1995]. Despite the success of neural networks their use for spacecraft autonomy
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would be problematic. The main problem  lies in the fact that the performance of a 

neural net is entirely dependent on the training data used. If it is easy to obtain data 

for stock market predictions, medical outcomes or m aterials classification, it is not so 

for an environm ent of which little, if anything at all, is known. To account for all 

unknown param eters, conditions and situations would lead to validation problems. 

Neural networks also cannot handle the elem ent of tim e very well, and this could 

prove to be a problem in deep space missions when the ground station may be 

available for comm unication for a lim ited period of time and even then with 

significant lag.

1.8 WORK OVERVIEW

This thesis aims to provide a method, which will allow the autonomous 

operation of single, and multiple spacecraft, using a behavioural algorithm. The 

previous sections have highlighted the need for increased spacecraft autonomy to 

meet the challenges and demands of future space m issions, together with increased 

m iniaturisation of components to reduce launch and operational costs. Different 

approaches to the problem  of autonomy were investigated and, while generally 

successful, present problem s in meeting the challenges of guaranteeing complete 

autonomy, while at the same time reducing the computational worldoad. In Chapter 2 

we will consider the ethological theories and methods that have been used to provide 

successful motivational schemes for biological agents, animals, while in Chapter 3 we 

will see how these ideas can be transported into the realm of Artificial Intelligence 

and autonomous artificial agents. A rigorous m athematical foundation, based on
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Pontryagin’s M axim um  Principle is then used to validate the behavioural algorithm 

that will allow the spacecraft to sequence its tasks to achieve m ission goals. In 

Chapter 4 we will introduce an attitude control m ethodology generated by using 

potential functions. At first, Lyapunov’s second method, upon which the control 

schem e is based, is presented. The potential function is described both in its attractive 

and repulsive components. The spacecraft attitude change is controlled through an 

attractive potential that forces the spacecraft to reach a target attitude (new position of 

equilibrium  for the system) while through the repulsive potential we ensure that the 

spacecraft satisfies any pointing constraints that m ay be present. This attitude control 

m ethod will be used to slew the spacecraft between the different objectives, as 

required by the behavioural algorithm introduced in Chapter 3. In Chapters 5, 6 and 7 

the environm ent and spacecraft are m odelled and sim ulations to ascertain the 

effectiveness and robustness of the behavioural algorithm are perform ed, both for a 

single and m ultiple spacecraft.
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CHAPTER II

STATE SPACE APPROACH TO BEHAVIOURISM

2.1 PREFACE

In this chapter we will try and understand how optimal control theory and 

state space analysis are an appropriate fram ework for the m ulti-dim ensional problems 

of artificial agent behaviour. It is within this fram ew ork that the ideas and theories are 

then expanded to be applied in the realm of Artificial Intelligence. An agent is 

defined here as any self-sufficient autonomous system, either biological or artificial. 

Although the motivation for the state space approach to behaviourism  has come from 

biological systems, the application will ultimately be autonom ous spacecraft.

2.2 INTRODUCTION

Traditionally, animal behaviour had been classified into functional categories, 

such as aggressive, feeding and parental behaviour. The assum ptions were, not only 

that the activities within each category serve a comm on biological function, but also 

that they have causal factors in common. For example, the various aspects of feeding 

are said to serve the comm on function of food intake and are clearly driven by 

hunger. This led to the tendency of studying a m otivational system in relative
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isolation from others. In recent years however, interactions between motivational 

systems are taking on considerable importance.

On the basis of the generalised homeostatic (equilibrium ) type of motivational 

system shown in Figure 2.1, M cFarland distinguishes between prim ary and secondary 

aspects of m otivation [McFarland, 1971].

IntakeEnvironm ental
Factors

Secondary PartPrimary Part

Monitoring
Mechanism

Physiological
Imbalances

Physiological
Mechanisms

Physiological
Imbalances

Behavioural
Conseauences

Physiological
Conseauences

Other Motivational Systems

Figure 2.1 Homeostatic motivational system. (After McFarland 1971).

This motivational state system distinguishes between primary and secondary aspects 

of motivation reflecting the view that physiological imbalances happen both as a 

result of environm ental factors, such as temperature, and as a result of influences 

from other motivational systems, such as the feeding system. These imbalances are 

m onitored by the central nervous mechanism, which in turn actuates two types of 

corrective mechanism  -  physiological or behavioural, which act to conserve the 

com m odity in imbalance, but are not always able to restore the balance. This is the 

prime function of the behavioural mechanism, the action of which results in intake of 

the required commodity. Such intake can have three types of effect: purely 

behavioural consequences, physiological consequences which act to restore the
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balance, and it can influence other motivational systems -  for exam ple ingesting cold 

w ater can have therm oregulatory consequences. The prim ary part is always active, 

while the secondary part is active only when the animal is occupied in the appropriate 

type of behaviour. Interactions between motivational systems can exert their effects 

on either the prim ary or secondary pads. For example, we can distinguish between 

prim ary drinking, for which the causal factors relate to water imbalance, and 

secondary drinking, which may be a consequence of feeding or environmental 

changes [Fitzsimons 1968].

W ithin this system, three levels of interaction may be identified as shown in 

Figure 2.2. They are the primary level, the seconda’y level and the “final common 

path” level [M cFarland and Sibly 1975].

Behaviour A

Behaviour B

Decision
Mechanism

Physiological Monitoring
Imbalances Mechanisms

Behavioural
Mechanisms

Physiological
Imbalances

Monitoring
Mechanisms

Behavioural
Mechanisms

Figure 2.2 Interaction between motivational systems. (After McFarland et al. 1975).

At the prim ary level, influences may derive from the environm ent, but more 

comm only are a consequence of behaviour (I). Thus water balance may change due to 

feeding, as m any foods have a high salt level which the body counters with water 

[M cFarland, 1965]. The state of one system may change the physiological imbalances 

of another (II). Thus a high brain tem perature induces sweating and consequent
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changes in the water balance. W ithin the Secondary level of interaction the results of 

one behaviour may influence the motivational state of another behaviour (III) 

[M cFarland and Budgell, 1970]. There could also be a direct intervention of state 

variables in one system, which also affects the state variables in another system (IV). 

For example, the depressive effects of thirst on feeding are due to inhibition within 

the central nervous system  [M cFarland 1964, Oatley and Tonge 1969].

The problem s arising here are that interactions become more complex when 

they are specified separately, thus making it difficult to have a clear picture of the 

control system in its entirety [Hinde 1959]. Extending this argum ent many ethologists 

proposed that drives, and motivational variables, should be expressed not as scalars 

but as vector quantities [Milsun 1966]. The consequences of feeding, not only 

reduces hunger but also alters different aspects of the anim al’s internal state, such as 

salt balance, fat levels, etc. It is therefore im portant to represent hunger for example, 

as a m ultidimensional vector. The interaction between behaviours discussed above 

and the vector approach to motivational variables will be the key to the state space 

approach to behaviourism , and its ultimate application to autonomous artificial 

agents.

2.3 BEHAVIOUR AND ITS CAUSAL FACTORS

M cFarland and Sibly represent the anim al’s total m otivational state in a causal 

factor space, hypothesising that the anim al’s behaviour is controlled by a set of causal 

factors [M cFarland and Sibly 1975]. These causal factors result from the anim al’s 

perception of both environm ental and internal stimuli. This can be represented in a
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two dimensional space with one axis conesponding to the anim al’s internal variables 

and the other to environm ental cues. For example the state of hunger might be 

represented in a two-dim ensional space with one axis conesponding to the anim al’s 

degree of hunger, and the other to the strength of food cues -  the anim al’s estimate of 

the availability of food.

To formulate this model M cFarland and Sibly had to make several 

assumptions. The first one is that an action is associated to one and only one 

behaviour. In other words, an action cannot happen at the same tim e as another one, 

and a behaviour is defined as a set of actions, which are m utually exclusive from 

other behaviours. The second assum ption is that the state of the causal factors 

determines a unique action, and therefore behaviour will occur. In other words, a 

particular state of the causal factors will always lead to the same action although a 

certain action may be induced by more than one state of the causal factors. At any 

tim e the causal factors relevant to several actions m ight be present, but only one 

action can occur. Therefore, each action is a candidate to control the behaviour of the 

animal. There will always be a behaviour the animal cannot perform  because of the 

lack of causal factors and other behaviours which display adequate causal factors, in 

com petition among each other. The strength of one candidate over another is seen as 

a measure of the anim al’s tendency to pe ifonn  the activity associated with that 

behaviour. This leads to the im portant point that the same tendency can be activated 

by different causal tendencies. Let us consider the feeding tendency of an animal 

represented by the degree of hunger and food cues as in Figure 2.3.
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Food cue

X3: State of hunger- combined cue 
V  strength and level of internal factors

Internal Hunger

Figure 2.3 Two dimensional causal factor (cue-deficit) space for feeding. The feeding tendency 
follows a motivational isocline.

The line joining all the motivational states (a'i...jcn) yielding the same behavioural 

tendency is called a motivational isocline. A high hunger, but low food cue strength 

(x\) gives the same feeding tendency as a high food cue strength but low hunger 

situation (xn). This causal factor space (cue-deficit) is continually changing because 

of changes in the environm ent and the anim al’s own behaviour and internal state. 

These changes give rise to a trajectory in the causal factor space. As the trajectory 

m oves across the motivational isoclines, there will be a change in the behavioural 

tendencies. If this shift causes some behavioural tendency to becom e larger than the 

previous largest tendency, a new behaviour will be observed. Therefore every 

trajectory in the causal factor space uniquely determines a sequence of behaviours. 

However, the characteristics of a trajectory are deteiTnined largely by the 

consequences of the behaviour, but the characteristics of the coiTesponding behaviour 

sequences are determ ined jointly by the path of trajectory and the shape of the 

isoclines which the trajectory crosses. The trajectories vary from occasion to 

occasion, but the isoclines remain the same. Each action initiated by a paiticulai'
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combination of causal factors, is a candidate to control the behaviour of the animal. 

The situation is best summ arized in Figure 2.4.

Water cue
Drinking
Behaviour

drinking tendency

Switching
Surface

Mating ^  
Behaviour

Water deficit 
Mate cue

mating tendency

Resulting
behaviour

Mating deficit

Feeding
Behaviour

Food cue
feeding tendency

Food deficit

Figure 2.4 Scenario of an animal subject to three essential state variables: food, water and mating. The 
graphs on the left represent the cue-deficit or causal factor space in which the tendencies to perform 
behaviours are associated with each state variable are highlighted. On the right we have the candidate 
space, the space in which the tendencies are compared against the switching surface to determine 
which behaviour is to be performed. (After McFarland and Spier 1997).

In general a determined behaviour will be observed when the behavioural tendency 

for it is greater than the the tendencies of other behaviours. In Figure 2.4, the animal 

is subject to three different behavioural tendencies -  eating, m ating and drinking. 

W hen these tendencies are com pared in the anim al’s state space, the animal will 

perform the behaviour that is associated with the highest tendency. As the animal 

performs a behaviour, the tendency for that behaviour decreases: for example, if 

hungry the animal will eat until satiated (restored to equilibrium ) and the feeding 

tendency will be minimal. For particular values of feeding, mating and drinking, there 

will be a switching surface in the space which will trigger a change between
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behaviours. For example after eating, the animal may suffer water imbalances, due to 

the presence of saline composites in the food and digestive processes. This leads to an 

increase in the drinking tendency which coupled with a reduction in the feeding 

tendency, may bring the animal to switch behaviour, from  eating to drinldng.

2.4 INTERNAL FACTORS IN MOTIVATION

Every activity performed affects the stability of the anim al’s internal 

environm ent through the use of energy and physiological m echanism s. The internal 

environm ent of an animal can be viewed as a system of interacting variables 

influenced by the anim al’s own behaviour. The state of any biological system can be 

characterised in tenns of state variables of the system. The state of the internal 

environm ent can also be described in terms of a finite num ber of physiological state 

variables, each of which is represented in an axis o f an N-dimensional space [Sibly 

and M cFarland 1974]. W ithin this space there will be boundaries, determined by 

physiological constraints which cannot physically be reached, such as negative 

hormonal levels, and by lethal state variables values such as tem perature extremes 

which would prove to be fatal. The origin o f the physiological state is the optimal 

point on each axis: the value that is optimal in a biochem ical or physiological sense. 

An example of a physiological space is presented in Figure 2.5
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Temperature
JL Upper lethal boundary

Hormone Level
Lower
lethal
boundary

Upper lethal boundary

Lower lethal boundary

Figure 2.5 A possible two-dimensional state space with the origin O corresponding to optimal values 
for body temperature and hormone level. The current physiological state is identified by the vector P. 
The boundary line S separates the possible physiological states from the lethal region.

The physiological state of an animal is represented by the vector P. W hen P  is pulled 

towards the lethal boundary S, through changes in external (temperature) and/or 

internal (hormone level) variables, physiological and acclim atisation mechanisms 

come into play.

The extent of the adaptation mechanisms is represented by the vector a  The 

adaptive vector may not necessarily directly oppose the displacem ent d, therefore 

there will be a resultant displacem ent r. The ways in which adaptive mechanisms 

oppose physiological state changes vary from short-term regulation to long-term 

acclimatisation. For example there is an obvious physiological displacem ent when a 

person is transported suddenly to high altitude. This is firstly counteracted by a short- 

tenn  mechanism  such as increased breathing rate. As time goes by the body increases 

the num ber of red blood cells circulating to account for the changed environmental 

conditions. W ithin the physiological space we can define a regulatory space in which 

the state is m aintained by regulatory mechanisms. If extrem e environmental 

conditions (high temperature, low salinity) are present, the regulatory mechanisms
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may not be able to maintain the physiological state within the regulatory space, and a 

drift will occur as shown in Figure 2.6.

Temperature Level

^  Hormone Level

Figure 2.6 Regulatory space R within the physiological state space S. When the current physiological 
state P is displaced by a distance d, adaptive mechanisms act to an extent represented by a, so that the 
resulting displacement is r.

It is thus fundamental that the rate of drift be reduced to zero otherwise the 

physiological state will eventually be dragged towards the lethal boundary S. The 

physiological changes may be counteracted by different processes: behavioural, 

regulatory and acclimatisation. In the process of physiological adaptation these 

processes interact and combine to provide adaptation. Behavioural mechanisms can 

sometimes provide short-term relief. For example an animal or human in a hot 

climate may stay in the shade, thus reducing the cause o f drift. Regulatory 

mechanisms provide another short-term  adaptation: for exam ple an increased 

breathing rate at high altitude. Acclim atisation, occurring in the longer term, 

alleviates the necessity for extreme behavioural or regulatory mechanisms. For 

example the individual may become acclim atised to the hot climate relaxing the 

behavioural measures, or increasing the num ber of circulating red blood cells, 

involved in high altitude acclimatisation. It is obvious from these examples that the

54



Chapter II State Space Approach to Behaviourism

adaptation processes acts in parallel and their effects are additive, and at the same 

tim e the success of one mechanism reduces the necessity for another.

A change in physiological state is always involved in acclim atisation, and can 

be expressed by means o f an acclimatisation vector a as shown in Figure 2.7.

a) b)

Figure 2.7 The drift is initially (a) opposed by a strong regulatory vector a,, combined with a weak 
acclimatisation vector a|. At a later stage (b) the contribution of acclimatisation is greater, reducing the 
regulatory effort.

The drift is in the short term opposed mainly by regulatory responses. As the 

organism  becomes more used to the new conditions, the acclim atisation effect in the 

adaptation m echanism s may play a bigger role reducing the regulatory effort. The 

resultant adaptation a must, whatever the com bination of m echanism s, be able to 

counteract the drift d, to maintain the stability. The adaptation vector a, is the sum of 

the mechanisms used to counteract the drift d, and is the sum of the regulation, 

behaviour and acclim atisation vectors, although these processes m ay not be shaiply 

delineated from each other in reality. Physiological stability however, is dependent 

upon the efficiency of these processes.
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2.5 EXTERNAL FACTORS IN MOTIVATION

Environm ental changes may have a direct physiological impact on an animal, 

as discussed in this previous chapter, but also provide stimuli, which the animal 

evaluates perceptually. For example, an increase in environm ental temperature is 

detected by peripheral therm oreceptors, and evaluated as a thennal cue, which 

induces a behavioural response [Benzinger 1969], A num ber o f assumptions have 

now to be made. Firstly, we m ust recognize that sensory capabilities are always 

limited, and no animal perceives every aspect of an environm ental situation. This 

means that there will be particular environmental events, which have no role as cues, 

even though they affect the anim al’s state. For example certain types of radiation may 

alter the anim al’s physiological state, but are not detected by the anim al’s sensory 

apparatus [Rozin and Kalat 1971, M cFarland 1973]. Secondly, certain aspects of the 

stim ulus situation may have a uniquely powerful significance for an animal [Lack 

1943]. The third assumption is that animals generally make the most of the available 

stimuli that they are able to detect. Little may be known of how the animal perceives 

the stimulus but it is somehow interpreted in accordance with the anim al’s interests 

and knowledge [Hailman 1977, Keeton 1974]. Finally, we assume that the evaluation 

o f the environm ental cues is, to some extent, quantitative, so that a stimulus may be 

said to be stronger, or more relevant, than what others are.

W e can now treat the external causal factors in a m anner analogous to that of 

internal factors as presented in Section 2.4. The effectiveness o f an external stimulus, 

the cue strength, will have a num ber of dimensions, each generating different cue 

strengths. The various cue strengths are com bined in a cue space, which has an
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independent axis for each cue. A point in the cue space represents the cue state 

associated with a particular environm ent at a particular time.

Changes in the cue state can occur as a result of time cues. In addition to their 

influence upon the anim al’s internal state, endogenous clocks, circadian, lunar or 

circannual, can provide cues, which the animal can utilize in assessing the 

significance of external stimuli. M any animals are able to learn and adjust their 

behaviour on the basis of time [M cFarland 1977]. For an animal to behave 

appropriately in the interactions with its environment, inform ation about the 

environm ent must be incorporated in the m echanism s responsible for the behaviour.

The survival and reproductive success o f an individual animal depends largely 

on the anim al’s use of resources such as food, tenitory, mates, etc. At any particular 

time an animal may have alternative courses of possible action so that a choice has to 

be made. Every activity will have associated costs and benefits in terms of the 

ultim ate reproductive success or fitness of the animal [W ooton 1971]. Thus there are 

both benefits and costs associated with various activities. In general the costs and 

benefits are attached to both the behaviour of the animal and its internal state. Let us 

consider the situation of an animal in cold wet weather. The animal has a choice 

between standing up to feed and sitting down to shelter from the wind. There are 

costs and benefits associated with each behaviour. By standing the animal has a good 

field view and can easily look out for possible danger and it can also feed, but at the 

same time is much more exposed to the weather. By sitting the animal is able to save
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energy, both by being less active and reducing heat loss in sheltering from  the cold 

wind. On the other hand however, it is less well placed to spot possible predators and 

it cannot feed effectively. Clearly in assessing the relative m erits of the two possible 

behaviours, the anim al’s state of hunger m ust be taken into account. If the animal is 

not hungry it can probably afford to sit down and wait for the storm to pass. If, 

however, it is in need of food, it may endanger its life by neglecting to feed because 

of the weather condition. Even for such a simple decision, the balance of costs and 

benefits is a delicate one. It is this interesting balancing o f cost-benefit which brought 

ethologists to envisage a relationship between animal behaviour and economics 

[Darwin 1859, Fisher 1930, Ham ilton 1963].

A general principle subscribed to by both econom ists and ethologists, is that 

in the process of decision m aking something is maximised. At the global level 

ethologists account for behaviour in terms of genes or fitness, whereas the economists 

introduce the more vaguely defined concept of value. At the individual level there is a 

more direct parallel between the concepts o f cost and utility. A person obtains a 

certain amount o f personal satisfaction or utility from leisure pursuits, which require a 

detennined cost. However, for an animal building a nest, for exam ple, the utility of 

nest material would generally be a decelerating function of the amount of nest 

material already obtained. In biological terms the cost o f not having nest material 

decreases with the increasing amount of nest material as shown in Figure 2.8.
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Utility Cost

Amount of nest material

(a)

Amount of nest material

(b)

Figure 2.8 The decreasing utility of nest material (a) and its equivalent cost (b).

The implication is that a com ponent of the risk to reproductive success is inversely 

related to the amount of nest material gathered. W e can see therefore, that the 

concepts of cost and utility are the inverse of each other, and we can speak of an 

animal as m axim ising utility, or m inimising cost.

It is a well established theory that the rational economic agent is a maximising 

agent, and the function that is m axim ised is generally called a utility function. 

Similarly, on the basis of decision theory, an animal can be considered an optimising 

machine, whose behaviour aims at m aximizing an objective function as shown in 

Figure 2.9.

UTILITY COST

UTILITY POLICY
FUNCTION FUNCTION
Function that is 

maximised by the 
individual person

Social value will be maximised in 
a given environment, if the person’s 

utility function equals the policy 
function

OBJECTIVE COST
FUNCTION FUNCTION
Function that is 

maximised by tlie 
individual animal

Fitness will be maximised in 
a given environment, if the animal’s 

goal function equals the cost 
function

Figure 2.9 Parallel concepts between economics and ethology (After McFarland and Houston 1981).
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M any biologists even take the view that the process of evolution is itself an 

optim ising process [Oster and W ilson 1978, M aynard Smith 1978].

Alongside the objective function, which the animal actually maximizes, we 

have another function, called the cost function, which the animal should maximize if 

it were to perfectly adapt to the environm ent [M cFarland 1977, M cCleery 1978]. This 

function is a property o f the environm ent rather than the animal. Only when the 

animal is perfectly adapted to its environm ent is the objective function identical to the 

cost function. In reality however, this will rarely be the case, because o f genetic 

variations between individuals, competition, and evolution. In likening an animal to 

an economic consumer, we can regard energy as analogous to money. The animal can 

earn it by eating and drinking and spend it upon various activities. Over and above 

the basic continuous level of metabolic expenditure, the animal can save energy, by 

hoarding food or depositing fat, or can spend it upon various activities, such as 

m ating, hunting, nesting. M uch in the same way that humans, on top of basic daily 

expenditure (food, drink, etc.), can save money and use it on different activities such 

as holidays, sport, leisure, etc. W hen the price of an activity is high, the animal is 

subject to a tight budget constraint, and when the cost of an activity is reduced, the 

animal experiences an increase in income, and the budget constraint is relaxed.

There are three main stages in reaching an understanding of the decision

m aking process. Firstly a m axim izing principle must be established; secondly there 

m ust be recognition that there will inevitably be some trade-off between various 

aspects of the problem; and thirdly a set of optimal criteria must be formulated. In the 

study o f decision-m aking in animals, m aximizing principles are seen in terms o f cost. 

The trade-off is between activities that are m utually exclusive in the sense that they 

cannot be perform ed sim ultaneously, and the optim ality criteria are em bodied either

60



Chapter II State Space Approach to Behaviourism

in a set of decision rules or in some kind of objective function. Let us consider the 

strength of feeding behaviour, as a result from a trade-off betw een internal hunger 

and strength o f food cues. The same feeding tendency can result from different 

combinations of these variables. The line joining all points of equal candidature 

strength is called the motivational isocline (see Section 2.3), as the animal has to 

compare its feeding tendency against tendencies for other types of behaviour (see 

Figure 2.4). An animal in which the feeding tendency is too dom inant over other 

aspects of behaviour or is too easily oveiTuled is at a disadvantage com pared to other 

animals. Therefore we would expect the optimality criteria (shape of the isoclines) for 

feeding to be designed by natural selection in accordance with the anim al’s ecological 

circumstances. For exam ple where food availability is euatic , m ore emphasis should 

be given to cue strength, while the emphasis attached to hunger should be related to 

the anim al’s physiological tolerance [M cFarland 1976]. Because there is a trade-off in 

terms of natural selection, which can be expressed in terms of a cost function (see 

Figure 2.9), there m ust also be a trade-off that is em bodied within the decision 

m aking mechanism s of each individual animal. These trade-offs and optimality 

criteria will be explored within the next chapter.

2.7 RELEVANCE TO ARTIFICIAL AUTONOMOUS SYSTEMS

W hen trying to construct an artificial autonomous agent a critical issue has to 

be resolved. The problem  is the ability to carry on lifelong adaptation in an open 

world environment. Open worlds are those for which no fixed boundai"y conditions 

can be guaranteed. They are characterized by chaotic dynamics and non-stationary 

processes, leading to significant difficulties in precise m athematical formulations,
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which could be used to design strictly rational agents. The states of such worlds are 

difficult, if not im possible to predict, especially for longer tim e scales. This is the 

nature of the "real world" in which biological agents must com pete for critical 

resources to survive and reproduce. That biological agents succeed in doing so attests 

to the efficacy o f adaptation and learning. The real world into which artificial agents 

are expected to operate is not just dynamic it is also non-stationary, constantly 

changing. This means that patterns o f association change over time in indeteiTninate 

ways. Typical machine learning systems have been m onotonie with respect to the 

gain in knowledge, treating the world as a closed system. So long as the agent is 

exposed to environm ents that are indeed closed, even if highly stochastic, such a 

schem e can work reasonably well. In large part this pursuit was m otivated by a simple 

motivation: closed worlds are subject to tractable mathematical analysis. One can 

offer proofs that a given algorithm produces a claim ed result. These systems are 

aim ed at stationary targets. The problem  has been that when these same systems are 

aim ed at different tai'gets from the real world they fail to produce the promised 

results.

Natural environments are not closed worlds. Environm ental interactions that 

took place in a prior time period on the periphery of the agent’s immediate 

environm ent can alter relationships that the agent has already learned. The agent’s 

knowledge is thus rendered less useful and certainly sub-optimal. Adding to the 

com plexity of real worlds, the time scales of these indeterm inate changes are 

themselves indeteim inate. Anything from catastrophe to subtle, long-teim  changes 

can ensue depending on the dynamics of the interaction and the spatial scale 

involved. An earthquake, resulting from eons of pressure build-up in the tectonic 

plates, can alter the landscape in an instant. Changes in solar radiation due to sun spot
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activity will cause colder or warm er seasons over m any years. Anim als, our best 

examples of autonom ous agents in real world environm ents, need to adapt to a wide 

range of changing conditions to survive in the real world.

Autonomy means being able to make independent decisions while the agent is 

deployed on a mission. W e can envision some m issions extending over significant 

periods of time during which there would be no opportunity for re-training the agent. 

U nder such circum stances the agent m ust be capable of learning continuously as the 

environm ent changes, and that is why the study of animal behaviour is extremely 

useful, and indeed vital, in the field of artificial autonom ous agent research.
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CHAPTER III

FROM ETHOLOGY TO ROBOTICS

3.1 PREFACE

In this chapter the ethological theories and methods presented in Chapter 2 

will be applied to artificial agents. It will be shown how the state space and cue- 

deficit methods can be translated from biological systems and m odified to a robotic 

model in general, and to a spacecraft model in particular. The concept of cost function 

is given a rigorous mathematical foundation and used to determ ine optimal behaviour 

with Pon tray g in’s M axim um  Principle.

3.2 INTRODUCTION

Traditionally, Artificial Intelligence (AI) has, until recently, been focusing on 

higher order cognitive activities such as expert problem solving. The inspiration for 

Artificial Intelligence theories has mainly come from logic and the cognitive 

sciences, particularly psychology and linguistics as discussed in Chapter 1. In the last 

decade however, some research has been directed towards em bodied intelligence and 

made strong alliances with biology and ethology. This has been characterised by 

bottom -up AI [Brooks 1986], the animat approach [Wilson 1991], behaviour-based
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AI [Steels 1990] or animal robotics [M cFarland 1992] as discussed in Chapter 2. The 

phenom ena o f interest are those traditionally covered by ethology and ecology, for 

animals, or psychology and sociology in the case of humans. The behaviour of a 

single or group of agents is analysed concentrating on what makes behaviour 

intelligent and adaptive, and how it may emerge. Behaviour is defined as a regularity 

observed in the interaction between the characteristics and processes o f an agent, and 

the characteristics and processes of the environment. Behaviour can be considered 

intelligent if it maximises preservation of the agent in its environm ent. The main 

emphasis is not on the physical basis of behaviour, as in the case o f neural networks, 

but on the principles that can be form ulated at the behavioural level. For example 

explaining the formation of paths in ant society, with no reference to how they are 

neurologically im plem ented [W erner 2001].

The scientific comm unity traditionally builds models in terms of a set of 

equations which link different observational variables to hypothesised theoretical 

variables. Advances in both the computational and mechanical fields, have brought to 

the fore two additional types of m odels : computational models, and artificial models. 

Com putational models consist of a process-oriented description in terms of 

algorithms and data. W hen the algorithm is executed, m odifying the data over time, 

different phenom ena can be observed by observing the changes in the data structure. 

Artificial models on the other hand consist of a physical device whose behaviour can 

be com pared to natural phenom ena in sim ilar circumstances. Clearly, computational 

and artificial models must be distinguished. For example it is possible to build a 

computational model of the flight mechanisms of a bird, by sim ulating the air flow 

around the bird, the aerodynamics o f the body and wings, the pressure differential 

caused by the wings m ovem ents, etc. W hile surely a valuable tool, such a model
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would clearly be incapable of physically flying through the air. In contrast a model 

could be built in terms of physical components -  body, wings, etc. -  but could only 

be considered useful if  it could perfoim  real flying. Another fundam ental ingredient is 

a strong biological orientation, which shows up in the way intelligence is defined. 

The “classical” AI approach defines intelligence in teim s of knowledge: a system is 

intelligent if it m aximally applies the knowledge that it has [Newell 1982]. The 

behaviour oriented approach defines intelligence in terms of observed behaviour and 

self-preservation, or in the case of an agent, autonomy [M cFarland and Bosser 1992]. 

It is based on the idea that the essence of biological system s is their capacity to 

continuously preserve and adapt themselves. The drive tow aids self-preservation 

applies to all organisms from the most simple, such as genes or cells, to the more 

complex, such as societies or species. An analogy with cells, which are the smallest 

biological autonom ous agents can strengthen this case, as shown in Figure 3.1.

Cell Behaviour System

Biochemical Processes Transfoim ation Processes

Biochemical Structures Electrical signals and States

Genes Behaviour Program s

Incom ing M aterial Energy Transduced by Sensors

Outgoing M aterial Energy Transduced by Actuators

Adaptation to Cell Environm ent Adaptation to External Environm ent

Figure 3.1 Comparison between cells and behaviour systems.

A cell consists of a group o f biochem ical structures, and processes, which are guided 

by genes, and take place when chemicals pass through the cell membrane in either
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direction. A behaviour system sim ilarly consists of a set o f dynamic and static 

structures, which include physical components, such as sensors and body parts and 

networks through which electrical signals are propagated. The system  is guided by a 

behaviour progiam , which acts on inputs coming from the outside which modify the 

internal state. Like a cell, a behaviour system is continuously active and adapting to 

environm ental changes.

3.3 IMPORTANT ASPECTS OF BEHAVIOUR BASED AGENTS

Traditional robotics relies, much like classic AI, on exact models as well as 

symbolic and centralised control schemes. Behaviour based agents on the other hand, 

try to achieve control through sim ultaneous operations of simple processes, called 

behaviours. So behaviours stand in contrast to the classic notion of action where a 

single comm and activates an effect over a fixed period of time, with clear, well 

defined m oments in time where the action begins and ends. Therefore, behaviours do 

not rely on complex world models but on close, continuous couplings between sensor 

outputs and actuator activation. Behaviour based agents present many characteristics 

and properties, which makes their use particularly promising for space missions.

The word autonomy is derived from  the Greek words a v r o  (self) and vojuoa  

(law, rule). So an autonomous agent is a self-governed system, independent from 

direct and continuous human supervision and maintenance. Autonom ous agents face 

two m ajor problem s. Firstly they have to be capable of dealing with unforeseen 

circumstances, and secondly they have to be capable of some resource management, 

particulaiiy with respect to energy. Obviously both capabilities can be extremely
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useful for m any applications. One im portant area is obviously space exploration (see 

Chapter 1), but also on Earth there are many areas where hum ans cannot or should 

not have access, and where direct control of robots is difficult if not impossible 

[Kirchner and Hertzberg 1997].

Unlike classical robots, which are based on precise m echanics, as they rely 

heavily on exact models, behaviour based agents are m ore like natural devices. There 

is no need for high demands on part assembly and m aintenance, and they can 

therefore be produced more cheaply [Fujita and Kageyama 1997]. W hile valid for 

Earth based agents this is not always the case in space m issions, where often, new 

technological advances in hardware m iniaturisation may lead to cost increases. There 

is however the possibility of using off-the-shelf mechanical or electrom echanical 

components, which have been repeatedly space validated. Partially as a consequence 

of their mechanical imprecision, behaviour oriented agents cannot rely on precise 

complex world models. Instead they have to be controlled with simple rules. As a 

positive side effect, their need for computational resources is small. For example, 

instead of intensive calculations of inverse kinematics for articulated robots, simple 

couplings between sensor outputs and m otor activation are used. Therefore, less 

processing power is needed. For mobile robots, instead of detailed maps, simple 

beacons and sensors are used to navigate the robot. Therefore, less m em ory is needed.

Learning and adapting, defined as the ability of the agent to change and 

improve its performance through experiences, can help in coping with surprises due 

to its mechanical imprécisions, with unexpected situations in the environm ent, new 

tasks, and so on. Last but not least, behaviour oriented robots are not seen as isolated 

devices, but as part of an environm ent. The environmental cues have to be exploited 

for stable operation of the agent.
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3.4 THE BASIC CYCLE

Self-sufficient agents have, ju st like animals or people, to decide how to 

allocate scarce resources among a variety of alternative uses. If the agent has to be not 

only self-sufficient, but also econom ically viable, then there are two basic resources 

that must be provided by the agent’s environm ent. These are energy E, which the 

agent must be able to obtain in some way, and work IT, which can be generated by 

perform ing useful tasks. W hen considering a single self-sufficient agent, it is evident 

that it should perform  a basic cycle of activities to m aintain its viability. The agent 

goes through a cycle of; work -  find fuel -  refuel. W hen worldng the agent gains W  

and loses E. At some point the agent breaks off work and goes to find fuel. This also 

leads to a reduction in E, but what happens to W? Since IT represents the utility of the 

agent’s work, from the point of view of a user there are three basic possibilities 

outlined in Figure 3.2

Work
▲

(a) Unproductive time

Find
fuel ^  W. Work 

Refuel 

(c) Energy gain

(b) Unproductive 
energy loss

Find./ \ Work

Refuel

Find f̂uel

Work

Energy

Figure 3.2 Three different types of basic cycle represented in the Energy-Work plane. In (a) W declines 
throughout all unproductive time: when the agent is not working. In (b) W declines only when there is 
unproductive energy loss: when die agent is looking for a fuel source. In (c) W declines when the agent 
is refuelling: the agent is effectively paying for its fuel with W.
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If the user is mainly interested in an agent that spends as much time as possible doing 

useful work, irrespective of energy expenditure, then there will be no utility gain from 

the time spent not working as shown in Figure 3.2 (a). If the user is concerned about 

energy expenditure on activities that are not productive, then W  will decline during 

that period of the basic cycle, as shown in Figure 3.2 (b). If on the other hand the user 

is concerned to minimise energy expenditure in general, then it makes sense for the 

agent to pay for its fuel. In Figure 3.2 (c) W  is earned during work, and spent during 

refuel.

The basic cycle however defined, will always consists of; work -  find fuel -  

recharge. A certain amount of time of the cycle is devoted to work, some to finding 

the fuel, and some to recharging. The portion of cycle spent not recharging is called 

the active time, during which energy is spent by the agent either by working or by 

searching for fuel. This energy m ust be recoverable during recharging. Some of the 

active time is spent working and some is spent in finding the fuel. Clearly the agent 

must not spend too much time and energy working, or it may be unable to find the 

fuel before it runs out. The agent m ust decide when to stop worldng and start looking 

for fuel, if it does this too early, it will not be working to maximal efficiency, if it 

leaves it too late it may run out of fuel. Similar arguments apply to the decision to 

stop recharging and start working. W e can now imagine an optimal cycle, in which 

the agent switches from  one activity to another at the optimal point. Optimality 

approaches provide a useful design guide since they provide m ethods to determine 

the upper bound to the performance of an agent, where the concept o f self-sufficiency 

provides the lower bound.
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From Ethology to Robotics

The state space model for agents was proposed by Sibly and M cFarland [Sibly 

and M cFarland 1974, M cFarland and Sibly 1975] and further developed by 

M cFarland and Houston [M cFarland and Houston 1981]. W ithin this framework the 

agent is characterised as possessing a minimal set o f internal variables that can 

com pletely describe its state. In such a description of a biological system we could 

possibly identify hunger, thirst, tem perature, hoiTnone level, etc, as essential 

physiological state variables (see Figure 2.6). For a robot we could identify energy, 

oil level, task achievement, etc. The first to develop this model for a spacecraft was 

Gillies et al. who identified three state variables as being essential: energy, measured 

through battery level, internal tem perature and memory level [Gillies et a l  1999]. 

These variables sit within an Euclidean vector space with the states as its orthogonal 

axes as shown in Figure 3.3.

Battery

Lethal Region

Temperature

Lethal Region

Memory

Figure 3.3 An example of a possible three dimensional state space with origin O. The current state is 
indicated by the vector P. The boundary volume V separates the possible state values from the lethal 
limits, r  is a possible trajectory the satellite could take to return to the homeostatic equilibrium point 
O.
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W ithin this space there will be regions that the satellite can physically never 

encounter, for instance negative m em ory or negative battery level, and regions, that 

should the satellite cross into, it would cease to function, such as below the lower or 

above the upper possible operating temperatures. The boundaries that separate the 

regions that are fatal to the satellite from those that are not are called lethal limits. 

The task of the spacecraft w ithin such a model is therefore to maintain the 

hom eostasis (equilibrium) of its state variables under the perturbation of its own 

behaviour, and the environm ent’s im pact on its resources. For exam ple during eclipse 

the satellite must activate the heater to stay above the lower lethal tem perature, while 

also draining the battery. In the robotics literature each axis is associated with a 

specific task the agent has to perfoiTn [Blumberg 1994, Steels 1994, Spier and 

M cFarland 1996, and M cFarland and Spier 1997]. However this is not the case for 

the spacecraft model. The tem perature axis bounds the operational limits for the 

different subsystems, but is not directly part of the action selection algorithm.

The spacecraft will be able to perform useful work VF, to sustain its viability, 

by either obtaining images through a payload camera, or gathering data through some 

appropriate payload instrument, and then storing the data on a hardware device, or 

downloading, by means of a transmitter, the recorded data to an Earth ground station. 

Both activities do however require a certain amount of energy E, to be consumed, 

draining the battery level. To replenish its energy source the spacecraft must point its 

solar airay towards the Sun, thus recharging the depleted battery. We can see 

therefore that the spacecraft is subjected to three different types of behaviour: target 

pointing. Earth pointing, and Sun pointing. The tem perature seems to bear no 

importance within the state space since it is not directly related to any particular 

behaviour. How ever it has to be noted that tem perature plays a fundamental role in
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space mission design. All hardware devices work within well-defined temperature 

limits. It is therefore vital for the m ission’s success that the internal temperature is 

kept within a predefined range to ensure that all subsystems function properly. The 

spacecraft is therefore equipped with a heater, which autom atically switches on when 

the tem perature reaches a certain lower limit; clearly this requires a certain amount of 

energy. The tem perature therefore is not linked directly to a behaviour, but indirectly 

affects the spacecraft’s behaviour selection.

3.6 THE OPTIMALITY CRITERION

It was discussed in Chapter 2 that an animal could use behavioural means to 

regulate its physiological state: for example drinking or m oving towards a shaded 

area in hot weather. U nder favourable conditions an animal may be able to do all it 

would Tike’ to do, but when resources are scarce it may have to make a decision 

about what to do and what to leave undone. In order to predict how an animal should 

allocate its time and energy under such circumstances, we must know the costs 

associated with various deviations from the ‘ideal’ state. It was also shown in Chapter 

2 that an anim al’s state could be represented in an u-dim ensional space. The state can 

be thought of as a specification of the value of n vaiiables, where ?i is large enough to 

characterise the animal. The model incoiporates a very simple relationship between 

behaviour and state. It is assumed that when the animal is perform ing activity u\, the 

rate of change of the state Xj {i = l-/z) is given by:

[3 .1]
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This means that activity zq, has consequences only along axis The value of in this 

model represents the ‘return’ the animal gets from  performing activity Wj mediated 

through a constant param eter c; which links the sensitivity of a variable in relation to 

an activity.

It seems reasonable to assume that the risk of death, or failure in the case of an 

artificial agent, must increase steeply the nearer a state vaiiable is to its lethal 

boundary. For exam ple it is obviously dangerous to allow hunger to approach lethal 

levels if a future food supply is not guaranteed. Let us therefore consider a 

physiological variable z which takes values between two lethal boundaries -  0

and Zi = L. Let us assume that when the animal is not perform ing the behaviour 

relevant to this state variable, the variable moves either to the right or to the left, with 

a probability of half. If M  is the expected num ber of moves required for z reaching 

either ^  or z , , then M  is given by the following equation [Feller, 1957]:

M ( z ) = z ( L “ z ) [3.2]

so that M = 0 if z ~ 0 or z = L. By the symmetry of the m odel, M  must be at a 

m axim um  when z is equidistant from Zq and z^, or when z = L/2. This suggests

introducing a new variable z = z + L/2, which gives us the displacem ent from the 

optim al state. Equation 3.2 therefore becomes:

M { z ) =
f  I 1 '

z H— L  L — Z — — L  
2 1 2

= - L ^ - z '  [3.3]
4
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SO that M, gives some indication of how safe it is to be at point z. As L^/4 is a 

constant, this suggests a cost function o f the form:

C{z) ^  [3.4]

Although this encourages the view that the cost function is proportional to z" -  i.e. the 

cost function is quadratic -  it is not a proof of its validity. The choice o f a quadratic 

function has been made for mathematical simplicity, although clearly any convex 

function may be used [Sibly and M cFarland, 1976].

W hen more than one state is being considered, some assessm ent of the total 

cost C(z) must be made. If C(z) can be represented as the sum of the cost associated 

with each Zi in z (i = 1-3), then C(z) is said to be separable. This means that the risk 

associated with the value of one variable is independent of the values of the other 

variables. For example, if the probability of death from heat stress were unaltered by 

the nutritional condition of the animal. This is not to say that foraging does not 

influence the probability of survival, but that the effect of body temperature on 

survival is independent of nutritional condition. So the cost C(z) of being in state z is 

a weighted sum of the squares o f the displacem ents that constitute z. For example if z 

= [zi, Z2, Z3] then:

where the weighting param eters Qi (i = 1-3) are refeiTed to as the resilience of the 

variable Zi (z = 1-3) [Houston and M cFarland 1980]. The optim ality criterion then
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amounts to requiring the animal to spend'its time in such a way that the displacements 

from  the homoestatic position results in the smallest possible cost.

To complete the specification of the optim isation problem  we then have to 

resort to Equation 3.1 to link the anim al’s behaviour to consequences for its state. If 

during some time span the duration of time spent performing activity rq is d\ then the 

total consequence of such a behaviour for axis will be d\r\. In other words if 

began at a value its value at the end of the time span considered x\{T) will be 

given by X{{T) -  jCi(O) -  Yn- Therefore at the end of the time span considered the state 

of the agent will have resulted in a deficit for that axis. As will be seen dy plays a 

fundamental role in the action selection algorithm

3.7 STATIC OPTIMISATION

W e have ju st shown how an agent’s state (or a spacecraft’s state) could be 

represented in an «-dimensional space. The state can be thought of as a specification 

o f the value of n variables, where n is large enough to characterise the agent -  or the 

spacecraft in our case -  for our puiposes. Control laws for each o f these variables 

now have to be com puted with a dynamic optimisation method. The m ethod chosen is 

Pontryagin’s m aximum  principle, which is a fundam ental m ethod in the field of 

dynamic optimal control. As it has to be considered with its static optimisation 

counterpart, Lagrange M ultiplier theory, we will first introduce this to understand 

more easily what lies beneath Pontryagin’s maximum  principle.

The optim ality criterion in the case of a static optim isation is based upon the 

m inimisation of a cost function. The use of the word ‘cost’ is due to the fact that these 

optim isation methods were first used in the field of economics. How ever, the tenn
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suits well to the idea that each action' involves a cost regarding one or several 

resources of the system. There is a cost associated with being in each particular 

physiological state, this cost being related to the survival of the system. W hen more 

than one state variable is being considered, as it will be the case here, the total cost 

C(x) can be represented as the sum of the cost associated with each state variable %i as 

discussed earlier. The total cost function in the more general case will therefore have 

the following form:

C (x) =  T  [3.7],2
i=l

where the coefficients a\ are constants depending on the weighting of the importance 

of each state variable in the cost function. These are just the inverse of the resilience, 

defined in section 3.6.

The pui-pose of the optim isation will thus be to m inim ise this function, under a 

constraint linked to the way the system, which is being investigated, is worldng. 

Given the problem of maximising some function C(x) subject to the constraint N{x) -  

0, the optimal solution can be found by constructing the function L(x,A) defined as:

j[fx,/V== Cfxj --/LhYic) [3.8]

where A is the Lagrange multiplier. To better understand what lies beneath the 

Lagrange multiplier, let us assume that there are two state vaiiables, x\ and %2 and that 

the cost is given by some function C(%i, X2 ) and the constraint to be some function 

N(x], X2 ) = 0. The optimal solution is found by finding the isocline of lowest cost
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com patible with the constraint and can be denoted by This point is

characterised by the fact that the cost isocline is tangent to the constraint curve and so 

their slope must be equal. The common slope for cost function and constraint is given 

by;

dC dx. dN  dx. ro m---------L = ---------- L [3.9]
dxi dC dx^ dN

which means that:

dC dxy dC dx^ L  --------- £. [3.1UJ
dxy dN dx. dN

If we let A, be the value of both sides of Equation 3.10 we can reairange to write;

= 0 [3.11]
dX: dx:

W e can now define a new function L(xi, xg) = C(xi, X]) -  À/F(xi, xj)  such that at the 

optimal solution dX/dx] is zero (/ = 1,2). The implication is that the problem of 

m inim ising C subject to the constraint N  has been replaced by the unconstrained 

m inimisation of L.

Let us try and illustrate the use of Lagrange M ultipliers with the following 

exam ple in which we want to m inimise the function C(x, y) = x^ + subject to the 

constraint N{x, y) = (1 + x)^ F y = 0. W e can define a new function L(x, y) = C(x, y) -  

XN{x, y) and then m inimise it with respect to the state variables x and y so that:

78



Chapter III From Ethology to Robotics

—  = 2 x - 2 A ( l  + x ) = 0  [3.12a]
dx

f ^  = 2 y - Â  = 0  [3.12b]
dy

Therefore we find that:

% = —  [3.13a]
1 - / 1

y  = - X  [3.13b]

and so substituting the values of the Lagrange m ultiplier into the constraint equation 

we obtain a third order polynomial:

— 2 Y  + A, + 2 = 0 [3.14]

The only real root of this equation is: A = -  0.698 and as a consequence we can now 

find the following constrained solution: x = -  0. 411 and y = -  0.349. Following this 

illustration of static optimisation, the problem of dynamic optim isation will now be 

considered.
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3.8 DYNAMIC OPTIMISATION

In the previous section we introduced the concept of static optimisation in 

which time does not enter directly into the problem. In this section we will consider 

dynamic problems, in which any action taken at any given time has consequences, 

which are evaluated over some period of time into the future. In this case the problem 

is to look at the cost associated with different paths through some state space. The 

optimal solution will be the one along which the total accum ulated cost is least. 

Finding this total cost involves the mathematical operation of integration.

The optimal control problem  can now be defined. W e have an objective 

function C(x, u , t) dependent on the state variable x, and the behavioural control ii. 

The aim is to move the system, to a specified state or for a specified amount of time, 

such that the integral of the objective function is minimised. A technique that is 

applicable in such cases was developed by Pontryagin in the 1950s [Pontraygin 

1962].

3.8.1 Pontryagin's Maximum Principle

The dynamic problem of finding the path of least cost appears to be very 

sim ilar to the static problem solved in the previous section by the introduction of the 

Lagrange m ultiplier method. In fact Pontryagin approached the optimal control 

problem  by defining a state function called the Pontryagin (also known as 

Ham iltonian) function denoted by H. Pontryagin’s m axim um ’s principle states that 

the problem of finding the path of least cost is equivalent to the more direct problem 

of instantaneously m aximising the function H  -  the principle can also be considered 

as an instantaneous minimisation.
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A new sort of constraint is however introduced by the m ethod itself, sim ilar to 

the static optim isation method introduced previously. In the static case, one way to 

solve the problem  was to introduce a function À , known as the Lagrange multiplier, 

which can be seen as the cost o f the constraint. This form alisation merely takes into 

account that two state variables x\ and xz cannot be varied independently. In a similar 

way, the dynamic problem  of optimal control must represent the fact that the state 

variable x and the control variable ii that constitutes the instantaneous cost function 

cannot be varied independently. The reason for the dependence is the fact that u 

controls x, the nature o f this control being given by the system  equation -  Equation 

3.1.

In the dynamic case A becomes a function o f time but still plays the same role 

as in the static case. Here A represents the change in total future cost along the 

optimal trajectory that results from a small change in state and is called the costate 

vector. It is, in effect, a set of Lagrange m ultipliers, introduced to satisfy the system 

equation constraint.

Pontryagin’s function can therefore be thought o f as the gradient of the cost 

functional, that is to say H indicates how cost varies with a chosen control at any 

given position of time. Let us now sum up the principle: In order to minimise the total

T

cost j  C(x,u, r ) r i f , the control law ii must be chosen in such a way as to
1=0

instantaneously m aximise the Pontryagin function:

H  = f { x , u , t ) - C { x , u , t )  [3.15]
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where C(x, u, t) is the objective function giving the total c o s t,/ (x , u , t) represents the 

system equation and is the m atrix transpose o f the costate vector X, The rate of 

change o f both the state and costate vectors are then given by the following equations 

[Dixit, 1976]:

dfl
[3.16]

aX

1 = - ^  [3.17]
ax

To show how Pontryagin’s principle works, let us consider the case of how an animal 

feeds. We assume that the anim al’s goal is to maximise its rate of energy intake. If an 

animal starts with a given energy deficit that it must diminish, the dynamic 

optim isation involves looking for a trajectory from the initial deficit along which the 

total value of the objective function is minimised.

W e therefore chose a quadratic cost function:

C ^ a x ^ + i r  [3.18]

and therefore have to m inimise the integral of the cost function under the system 

equation constraint x  = - c u  . W e can define the Pontryagin’s function H  as follows:

H ( x ,u )  = —X c u --ax^ -  i r  [3.19]

Since we have to find the optimal control u that m inimise H,  we now have to 

differentiate H  with respect to u and equate the result to zero to obtain:
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M = - —  [3.20]
9.

M oreover, by definition of the rate of change of state and costate vectors we find 

from Equations 3.16 and 3.17 that;

x  = ~  [3.21]
2

i  = 2ax  [3.22]

Differentiating Equation 3.21 and substituting into the result the value of A from

Equation 3.22 we obtain the following differential equation of the second order

2

x ~ ~ ' k - c “ax  [3.23]

As the state of the system  cannot diverge, the optimal trajectory for the food deficit is 

given by the solution of Equation 3.23 as;

x{t) ^  XqO-™' [3.24]

which implies that the control (the behaviour of the animal) should have a trajectory 

of the form:

u{t)-ax{t)  [3.25]
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u{t) -  ' [3.26]

Equations 3.25 and 3.26 are equivalent forms of the control law for the problem. The 

first is expressed as a function of the state variable, while the second as a function of 

time. The exponential decrease in the rate of behaviour can be explained intuitively. 

W hen A' is large, it is worthwhile to feed as soon as possible to reduce a, since a 

change in food deficit reduces the cost substantially. W hen a  is small, however the 

cost of a high rate of behaviour would not be offset by a reduction in a, so u declines 

as A is reduced. The optimal behaviour results in the exponential decline in the control 

function u expressed by Equation 3.26.

3.9 AVAILABILITY AND ACCESSIBILITY

Two parameters, the availability r  and the accessibility k model the resources 

in the environm ent. This duality may seem arbitrary, and r and k  should be united into 

one single variable. However, these two parameters provide a powerful way with 

which to consider the environment. The availability is associated with the density of 

the resource in the environment. Such a density can be m anifested in many ways. For 

instance, water could be in small units but unifomaly distributed over a large area, 

much like dew, or food could be in lai'ge units but at a low density, like insect prey. 

Both alternatives could yield the same global density of resource in the environment.

The accessibility is associated with the ease with which an agent can obtain 

the resource through its own behaviour. For example, consider the scenario of an 

agent trying to find food underneath a caipet of leaves in a garden. A bird may peck

84



Chapter III From Ethology to Robotics

at individual leaves, lifting them up, to inspect for nuts beneath; such behaviour 

involves great effort but does not yield many nuts. Consequently this behaviour 

would have a low accessibility. A mobile robot may be fitted with a vacuum 

attachment, which sucks up the leaves and nuts, spitting out the leaves and catching 

the nuts; such behaviour would have a high accessibility.

Applying these definitions to the spacecraft problem  allows us to assess the 

environmental resources at hand for the spacecraft. The availability and accessibility 

will be associated with the different behaviours the spacecraft is capable of 

performing. Charging the battery, recording and transmitting data, will therefore all 

have an assigned accessibility and availability. The spacecraft is equipped with 

sensors -  Sun sensor, and GPS -  that determine the availability n of any resource (/ = 

1 -  n). For exam ple when the satellite detects, via its Sun sensor, that it is in sunlight 

Aun = 1, while we will have rsun = 0 if the satellite is in the eclipsed arc of its orbit. 

The ground station availability will be 0 < /ground station < 1 when the satellite detects 

through a global positioning system  or up-link signal, that the ground station is 

present, otherwise I'ground station = 0. Sim ilaiiy if the satellite is in sight o f the target area 

0 < /'target < 1 and /'target = 0 if not. The rate at which the satellite can perform  a certain 

task is m odelled by the accessibility k\ (/ = I -  n) and is associated with the ease with 

which the spacecraft can obtain a resource through its behaviour. For example the rate 

/csun at which the satellite can charge the battery by pointing towards the Sun is the 

m aximum  ainay pow er output. If the solar anay  is dam aged then is lowered: for 

example if 50% of the array fails at t = rfaiiure, then /csun(haiiure) = 0.5/csun(haunch)- 

Similarly we will have kground station, and /rtarget which are defined by hardware 

constraints before launch and deteiTnined by the m aximum  data rates for acquiring 

and down-linking data. Should the satellite suffer an antenna, transm itter or payload
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instrument failure, these param eters would be lowered accordingly. Importantly it 

will be found that explicit failure detection is not required and that the satellite will 

resequence its actions to compensate for failure modes. This is one of the key benefits 

o f the algorithm which will be presented.

3.10 OPTIMAL BEHAVIOUR

W e now have all the tools to determine the optimal behaviour the agent will 

perform at any given time. The solution obtained from Pontryagin’s M aximum 

Principle (the optimal behaviour) depends on the conditions constraining the anim al’s 

or the agent’s behaviour [Sibly and M cFm iand 1976]. There are four important 

constraints that need to be considered:

1. The im possibility of performing behaviour at a negative rate implies that > 0.

2. Behaviours are rate limited, so that the agent cannot work faster than some 

limiting rate defined by the accessibility Jq, therefore iq < k\.

3. The rate of perform ing a behaviour is defined by , for availability n

where ij is the rate of change of the state Xj {i = 1-n).

4. The agent can perfoim  only one behaviour at a time. For exam ple, for an animal, 

the act o f feeding limits the amount of time available for other activities. In the 

case of a spacecraft, if it is pointing towards the Sun for battery charging it cannot 

downlink to the ground station or activate the payload.

This last point is worth looldng at more closely. If a proportion s, of the anim al’s time 

is allocated to feeding, then a proportion (1 -  5 ) is available for drinking. This,
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assumes that drinking and feeding are the only two behaviours that the animal 

perfonns. If feeding occurs at a m axim um  rate, then the rate of feeding at that stage is 

ski. In general, considering condition 2 we can say that U] < sk\ and 112 < (1 -  s)k2 , 

which can be expressed, taking into account condition I as:

ki k^
[3.27]

W e now have all the tools to help us determine what the optimal behaviour at any 

given time. Let us consider a quadratic cost function with two state variables x\ and 

A'2 : C = Af+A4+w,"+ « 2 , subject to the constraint introduced with condition 3. 

Follow ing the formulation of Pontryagin’s M aximum Principle we can define the new 

function to be m axim ised as:

H  — À̂ Xi + AjÂt — A," — A'2 — wf — ll'z [3.28]

If constraint 3 holds, then À, = -  qu- and Equation 3.28 can be expressed as:

IL + II. + \>\

V 2 y
— A, — A., [3.29]

The optimal behaviour therefore requires the controls u\ to m axim ise H  subject to the 

constraints 1-4 introduced previously. The solution to this is m ost easily found 

geom etrically in a space with axes u\ + A.iri/2, U2 + X2/ 2 /2  in which lines of equal H

87



Chapter III From Ethology to Robotics

appear as segments of circles. The origin is the point of highest / / ,  which decreases as 

the diam eter of the circles increases, as shown in Figure 3.4.

Ü2 +  A,2r2/2

H < 0

switching line

Figure 3.4 Lines of equal H, which increases the closer it is to the origin. The switching line separates 
the two possible behaviours (adapted from Sibly and McFarland, 1976).

The optimal control strategy is to set iii = k\ and « 2  = 0 if the current state of

the agent is to the left of the switching line and mi = 0 and « 2  = ^2 if the cuixent state is

to the right. This switching line is the two dimensional equivalent of the switching 

surface introduced in Chapter 2. Therefore we will have the two following situations:

Perform behaviour 1 at rate k] if Xink i  > X in k i  

Perfonn behaviour 2 at rate ki  if Xirikj > X\r\k\

Thus the optimal trajectory heads towards the switching line -  where X\r\k\  = Xjrjki  -  

and then follows it to the origin. M oreover if  we look at how we defined the 

Pontryagin function, Equation 3.28, and how the costate vector X is defined, Equation
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3.17, we can introduce a new param eter called deficit which is defined as [Elgerd, 

1967]:

d - , = ^  [3.30]

and therefore if we consider the two com peting behaviours as eating and drinking we 

will have:

Eat at rate if d\r\ki > d2 r2ki

Drink at rate k 2 if > dit'ik\

This solution combines the agent’s state with the param eters that describe the 

environm ent. The interesting property to note is that the structure of the rule does not 

change depending on the type of cost function chosen. The cost function acts simply 

as a scaling factor to the state variables. W e can therefore say that the optimal 

behaviour is to perform an activity at the m aximum  rate at which it is available and a 

choice made between behaviours. Therefore, the choice between feeding and drinking 

should be made according to whether the product of deficit x  availability x 

accessibility is greater for food or water. Several examples o f this motivational 

behaviour have been studied in the animal kingdom  [Bolles 1967, Schoener 1971, 

Krebs 1973, Sibly 1975, M cCleery 1977]. This switching rule now forms the basis 

for the spacecraft action selection algorithm.
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3.11 SATELLITE ACTION SELECTION ALGORITHM

W e can now apply what we have introduced previously to the case of an 

autonom ous agent, and in particular to the case of an autonom ous satellite. For a 

spacecraft possessing the three essential state variables discussed earlier; battery 

charge, memory level and internal tem perature, the cost function has been determined 

to have the following expression [Gillies et al. 1998].

C = - k - [3.31]

W here b represents the battery charge deficit, t represents the data transmission 

deficit and m  represents the data recording deficit. A deficit is defined as being the 

m agnitude of the difference between some current state variable and its nominal 

equilibrium  value. The deficits have the following expression;

6 = [3.32a]
jj   l̂) 'm ax mill

[3.32b]

t = [3.32c]

where the subscript c identifies the current value of a state variable and the subscripts 

max  and min, identify the upper and lower lethal values for the state variable. It can 

be noted how the deficit for the battery charge increases as the value of the current 

battery charge decreases. Similarly the deficit for recording data is greatest when the
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cuiTent available m emory space, identified by is zero, and decreases as the storage 

device fills with recorded data. Opposite is the behaviour of the transm ission deficit r, 

which is highest when the memory is full, and decreases as data is down-linked to the 

ground station freeing up storage space. Essentially, the state vaiiable deficits 

determine how far away from the origin that state variable is. Finally, it m ust be noted 

that a quadratic cost function has the desirable property that the cost of possessing

any particular deficit increases more rapidly, than linearly, the further away from the

hom eostatic equilibrium  point the spacecraft’s variable lies. This is important because 

the closer the spacecraft is to a lethal limit, the m ore likely it is that it will suffer a 

failure and cease to operate. The system  equations, which link the rate of change of a 

state variable with a behaviour for the satellite are;

^ [3.33a]

'  = -  [3.33b]

™ = - ''record". [3.33c]

with the constraint on the behaviours given by;

0 < x ^ +  + -2^ '— <1 [3.34]
^sun iransmiE record

To ensure its survival, the spacecraft must never drain its battery below the 

lower lethal limit. The satellite energy deficit b, is the m easure of how much the 

batteries have discharged. Pointing the solar panels towards the Sun and charging the 

battery reduces this deficit. The spacecraft must also produce useful work, by
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recording data from its payload and transmitting it back to Earth. The payload will be 

associated with a work deficit com posed of a recording deficit m, and a transmitting 

to Earth ground station deficit t. B y  storing data, the spacecraft may reduce the 

recording deficit, while downloading data back to Earth will reduce the transmission 

deficit. It has been shown earlier that the behaviour to be perfom ied by the spacecraft 

is the one associated with the highest drk  product. In this form ulation the deficits 

from the state variables combine with stimuli from the environm ent to determine a 

behavioural sequence. The stimuli are considered to be a cue to resources that will 

have consequences for the agent’s state variables.

The decision to perform a particular behaviour is made by calculating the 

tendencies to perform all the various activities the spacecraft may exhibit and 

choosing the behaviour that possesses the highest tendency as explained in section 

3.10. Empirical evidence that this occurs in animals has been discussed at length 

[Barends et al. 1955, Sibly 1975, Houston and M cFarland 1976]. In addition, the cost 

function model predicts that such a multiplicative combination rule, when applied to 

the deficit and cue, should generate optimal behaviour sequencing. W e can therefore 

finally summ arise the problem of optimal control for the spacecraft as: behaviour =* 

M ax[deficitxavailabilityxaccessibility].

Max[Z>-rsun- .̂sun] => Charge the battery [3.35a]

Max[/«-rtargcf^'target] => Rccoi'd data [3.35b]

M ax[r-rgroundstation-/% roundstation] => Transm it to Earth ground station [3.35c]

The satellite selects the optimal behaviour by com puting the various deficits, 

talcing environm ental cues to assess availability and accessibility of the resources and
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finally calculating the drk  product associated with each behaviour. The optimal 

behaviour at any time is therefore the one which yields the highest of the above 

products. This algorithm also shows a degree of opportunism, because it considers 

environmental factors together with internal deficits. For exam ple even if the battery 

deficit is low and the work deficit is high, the satellite may still opt to charge the 

batteries if sunlight is available and cues for doing work -  visibility o f ground station 

or target area -  are low. Such opportunism  is one of the m ajor benefits of this 

algorithm  and it is difficult, if not impossible, to code into conventional artificial 

intelligence engines. Another significant advantage of such a m ethod is that the 

spacecraft measures environmental parameters (such as the presence of sunlight or 

ground station) and internal parameters (such as battery charge and m em ory level) so 

that complex models of the environm ent are not required to select the appropriate 

behaviour. Also, it is not necessary to have complex m odels of the spacecraft and its 

internal subsystems. If we consider the battery charge as an example, the model used 

for it is not directly relevant to the performance of the action selection algorithm; the 

algorithm uses the direct measure of battery charge rather than a model of the battery. 

Therefore, we can expect that the modelling of more complex and numerous 

spacecraft subsystems will not change the qualitative behaviour of the algorithm. This 

m ethod however m ay easily incoiporate additional tasks which will either form paii 

of the action selection process, or which can be scheduled at a particular time by 

setting the drk  product to equal unity at a fixed time. Adding extra tasks is 

straightforward; each new behaviour will be given a deficit, availability and 

accessibility. The resulting behaviour will always be the one with the highest drk 

product.
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CHAPTER IV

POTENTIAL FUNCTIONS

4.1 PREFACE

In this chapter we introduce an attitude control m ethodology generated using 

Lyapunov’s Second M ethod. This control m ethod has the desirable properties of 

guaranteeing smooth convergence to the desired final attitude, not being software 

intensive and being fully autonomous. It will be used to slew the spacecraft between 

different objectives -  Sun, ground station, and target area -  as required by the action 

selection algorithm.

4.2 INTRODUCTION

A spacecraft attitude control system aims to adapt and stabilise the attitude of 

the spacecraft with regard to its present state and the tasks it has to perform 

[Chobotov 1991]. In general, it consists o f four m ajor functional sections: sensing, 

logic, actuation and vehicle dynamics as shown in Figure 4.1. In the case of an 

autonom ous control system, these four elem ents work in a closed-loop. The sensing 

function determines the satellite attitude, the logic program s the signals to be sent in 

the coiTect sequence to the torque producing elem ents (m om entum  wheels, gas jets,
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etc.), which in turn rotate the spacecraft about its centre of mass. The resulting motion 

is then monitored by the spacecraft sensors, thus closing the loop.

LogicSensing Actuation Dynam ics

Figure 4,1 Structure of a spacecraft attitude control system

CuiTcntly many spacecraft m issions have the requirem ent of perform ing large angle 

slew manoeuvres. Open-Ioop schemes have been proposed [Vadali and Junkins 

1983], which do not require feedback m easurem ents, avoiding the possibility of 

closed-loop instability. However these methods are sensitive to spacecraft parameter 

uncertainties and disturbances. Also, these manoeuvres are often constrained because 

of payload safety considerations. These constraints arise from either not directing 

sensitive instrumentation towards bright sky regions, or avoiding blinding of attitude 

sensors. Also, three-axis stabilized satellites must perform large angle slew 

manoeuvres to safe pointing modes in the case of system failures.

The planning of constrained m anoeuvres can be time consuming, particularly 

for missions with frequent payload re-targeting. Conventional approaches to on-board 

autonomy have centred on artificial intelligence or expert systems [Olszweslri 1990] 

to allow real time on-board navigation and control. H ow ever these methods 

necessitate the implem entation of significant on-board software, increasing the loads 

on lim ited flight computers. Similarly, approaches using neural networks [Canara 

and Rios Nieto 1999], although successful, are difficult to explicitly validate. 

Potential function methods have been used as a basis for com putationally efficient
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autonomous guidance and control systems. Applications range from  terminal descent 

to a planetary surface to constrained proxim ity m anoeuvring for space station 

rendezvous to on-orbit assembly [M clnnes 1993, Roger and M clnnes 2000, M cQuade 

and M clnnes 1997].

In feedback control the attitude of the spacecraft must be known at all times. 

For large angle m anoeuvres the orientation can be represented by a cosine matrix, 

Euler angles, or quaternions. W e will presents the stability and control analysis of 

large angle feedback manoeuvres for a spacecraft using Euler angles for ease of 

illustration. The method is based firstly on defining a scalar potential function which 

meets the conditions of Lyapunov’s theorem. This function is defined to have a 

global minimum at the desired final attitude and later includes regions of high 

potential which represent pointing constraints. Once the state space has been mapped 

onto an appropriate potential function, the controls are then chosen such that the 

derivative of the potential function is rendered negative definite. This then assures 

that the spacecraft converges to the desired terminal state without violating the 

desired pointing constraints.

,3 LYAPUNOV'S SECOND METHOD

Aleksandr Milchailovich Lyapunov (1857-1911) first proposed a novel 

m ethod for determining the stability properties of non-linear systems at the end of the 

19̂ *̂  century [Lyapunov 1892]. Despite being extensively used by other Russian 

mathematicians and engineers, the m ethod did not achieve popularity in the W est 

until Kalman and Bertram  applied it to a wide range of control problem s [Kalman and
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Bertram  I960]. Since then, Lyapunov’s second m ethod has been widely applied to 

stability problems for both terrestrial and spacecraft control problem s [Grantham and 

Chingcuanco 1984, Rimon and Koditchek 1992].

The aim of Lyapunov’s second method is to guarantee the stability of a set of 

differential equations which describe a dynamical system. In physical terms, this has 

been described as:

' 'I f  the rate o f  change o f  dE (x)/dt o f  the energy E (x) o f  an isolated physical system is 

negative fo r  every possible state x, except fo r  a single equilibrium state Xe, then the 

energy will continually decrease until it fina lly  assumes its minimum value E(Xe). ”

This intuitively coiTesponds to the definition of all stability problems. If a stable 

system  is perturbed from its equilibrium state, it will always return to it. In 

mathematical terms this can be expressed as:

“A dynamical system is stable (in the sense that it returns to equilibrium after any 

perturbation) i f  and only i f  there exists a Lyapunov fiinction, a scalar function V(x) o f  

the state with the fo llow ing properties’'"'.

V(x) > 0 and V(x) < 0  forxT^x^ [4.1a]

V(x) = 0 and V(x) = 0 for x = x  ̂ [4.1b]

where Xe is the equilibrium  state of the dynamical system. If these conditions are 

satisfied, it is possible to guarantee that the origin of the state space is a point of 

asymptotic global attraction and that all the trajectories inside the space, regardless of
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the initial conditions converge to this point.

An extended forai of the Lyapunov function, the called potential function, will 

be used in the following analysis. This function can be defined analytically and will 

be used to force the state vector of the dynamical system  to converge to the desired 

goal. The m echanism  which drives the convergence is based upon the rate of change 

o f the potential function. If the rate of change of the potential V(x) is negative 

definite the state vector will converge to the goal point, which is the global minimum 

of the potential function. If V (x )  is positive however, we will see the state vector 

diverging from the goal point. In this case, to render È (x) once again negative, some 

form of control is required. It is therefore possible to derive a control methodology 

which forces the convergence to the desired goal of the dynamical system. Defining a 

potential function based on some state vector x so that:

y = # )  [4.2]

and differentiating this potential function with respect to time yields:

V = V f - x  [4.3a]

where

V / = —  [4.3b]
dx

Therefore, since x is a function of the control vaiiable, by analytically deteimining
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the potential derivative R (x ) , it is possible to calculate the control inputs, which are 

required to renderÿ (x )  negative, and so ensure the convergence o f the dynamical 

system  to the desired goal point. In the following sections, we will introduce two 

different control methods. The first is a continuous control method, the second is a 

discrete control method. The continuous method forces the rate o f change of potential 

to be continuously negative by im plem enting a continuous control action. The 

discrete method differs in that the control is only implem ented when the rate of 

change of the potential is zero or positive.

4.4 ATTITUDE DYNAMICS AND KINEMATICS

The majority o f space-based systems require the use of accurate pointing, 

either as part of an antenna or payload mechanism  or indeed a complete structure 

such as the Hubble Space Telescope. The control m echanism  for m odifying the 

attitude of the spacecraft may be m om entum  wheels, m agneto-torquers, gas jets, etc.

Consider a rigid body having a set of body fixed axes, rotating about its centre 

o f mass with angular velocity co. The origin of the set. of axes is chosen to be at the 

centre-of-m ass of the body. The angular velocity vector has components C0 \, Oh and 

(ÛI along the x, y  and z body axes respectively. Therefore if i, j  and k are the unit 

vectors in the x, y  and z direction we have:

CÙ = &>]! + + £p3k  [4.4]

Now, the angular m omentum  vector h of the body can be expressed as the matrix
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product of the inertia tensor I and the angular velocity co such that:

■̂ 11 -̂ 12 A3

■̂ 21 ^22 2̂3

At A2 ^33

CWl

C0 2

CO.

=  I  • [4.5]

where (i = 1-3) is the moment of inertia of the body around the i-th axis, while /y (i, 

j = 1-3) is the product of inertia around the i-th and j-th  axis. It is known that the 

external moment, M  is equal to the rate of change of angular m om entum  with respect 

to a fixed axes system [Likins et al. 1983]. However, with reference to the body fixed 

axis system, this becomes:

+ coxh [4.6]

In component form, Equations 4.5 and 4.6 lead to:

ikfI = + (cofo^ — CO2 )f 12 ■” + côCÜ2 )f 13 + ”  CO2 )L3 "h (̂ 33 ~  ^22) [4.7a]

M 2 ~ <7 2̂ /22  ~ ^3 X23 “  (^1 0 0 2 (^ 2  X12 ~~ ^3 ^13 (/i 1 ~ 733 ) [4.7b]

^ 3  ~  ~~ ) 7 | 3  “  ( t ^ 2  CO^CO^ 23  ~  ^ 1 2  ~  ' ^ l  1 )  [ 4 - 7 c ]

which are E uler’s equation of motion for a rigid body rotating about its centre-of- 

mass. As they stand Equations 4.7 are difficult to manipulate. Considerable 

sim plification can be made by allowing the body fixed axes to coincide with the 

principal axes of inertia, thus defining the products of inertia to be zero and reducing 

the system  of equations to:
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M  \ — 7| I + (^33 ~ ^22 )

M 2  —  ( ^ 2 ^ 2 2  ^ 1̂ 3 (^11 ~  ^33 )

^ 3  ~ ^ 3^33 ^ 1 ^ 2  (^2 2 ~  ^11 )

[4.8a]

[4.8b]

[4.8c]

W hen defining the oiientation of a body with respect to a fixed reference frame, a 

series of pure rotations is used which results in an orthogonal transform ation. The 

associated rotations uniquely determine the orientation of the body. The sequence of 

rotations from inertial frame {X,Y,Z) with unit vectors (I, J ,  K) to body frame (x,y,z) 

with unit vectors (i, j, k), used here, is illustrated in Figure 4.2 and can be listed as:

a) Rotation about the Z-axis through angle 6 \.

b) Rotation about th e x ’-axis through Oi.

c) Rotation about the z’-axis through ^  to produce %, y  and z axes.

X

Figure 4.2 Rotational sequence used to defined Euler’s angles and unit vectors.
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where each rotation is characterized as an orthogonal transform ation. It is possible to 

link the Euler angles to the body rates 0 )\, coi and through the following Idnematic 

relation:

= 2 : g , » ,
j=i

[4.9]

where Gy is the transformation matrix:

sin 9. sec^., cosRsecT?^

cos^. sinR

sinl9^cot6?2 - c o s 6?̂  cot^^

[4.10]

W e can then obviously express the body rates in terms of the rotational rates by using 

an inverse transformation to obtain:

tü, ” 6 ', sin 6*2 s in 6>3 + $ 2  co s^3

CÜ2 =^i sin 6̂ 2 cos ̂ 3 - 6 2  sin 6̂ 3

CD̂ = 9̂  cos 9 2  + ^3

[4.11a]

[4.11b]

[4.11c]

These transform ations will be used later following the definition of the potential 

function.
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4.5 CONTINUOUS CONTROL

The required solution for the problem is to bring the spacecraft to rest at some 

desired attitude. The terms which must be controlled therefore are the Euler angles -  

6 [, $ 2  and 6  ̂ -  and the body rates -  eoi, coz and The potential function will now be 

defined to have the following form:

= [4.12]

The components of the potential function due to the Euler angles will take the form of 

a quadratic polynomial function:

where 0. is the goal attitude and a\ is a shaping parameter. The potential function

com ponent due to the body rates will have a sim pler form with the goal 

corresponding to null body rates:

4 , = i

The global potential, being the sum of the Euler and body rate components will
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therefore take the form:

Z 1=1 L

To satisfy Lyapunov’s theorem, the rate of change of the potential V  must be 

rendered negative definite. Therefore differentiating the potential leads to:

Ream inging and substituting Equations 4.8 and 4.9 into the rate of change of the 

potential and simplifying, leads to the following equation:

i=l i=l 7 = 1

which will be used to generate the control laws. A possible control torque which will 

render V negative definite may be expressed by:

M , -  ~  k,CÜ, -  a, ( ( ) ,-§ ,]  [4.18]
j=l
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where h  (i = l-3)is a positive definite shaping parameter. W hen the control torque is 

substituted into Equation 4.17 the potential derivative then takes the form:

ÿ = [4.19]

so that the control laws which will rotate the spacecraft to the desired goal attitude are 

available in analytical form. W e will now consider a case study to evaluate the 

performance of the controller.

For illustration we will define a spacecraft as a solid cube with a length of 20 

cm, and we assume a mass of 25 kg. The moments of inertia are then easily 

calculated from:

/, = / .  = /3  = ^ m E =  0.7 kgm- [4.20]

where m is the mass of the spacecraft and I is its side length. Furtherm ore we will 

now define the initial conditions for the body rates and Euler angles as:

= CÜ2 -  Cdj = 0

[4.21]

[ e ,,e , ,e ,] = [ 0 A , x ]

and the final goal conditions for the body rates and Euler angles as:
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W ^-CO^- CÔ — 0
[4.22]

[o>o ,o]

Equations 4.8 and 4.9 fom i a system  of six differential equations which fully 

characterise the rotation of the body. Together with the initial conditions we can 

num erically integrate the equations using a Runge-Kutta method. The control torques 

are im plem ented as expressed by Equation 4.18 with k  = 10 (i = 1-3) and ctj = 1 (i ~ 

1-3). The results are shown in Figures 4 .3-4.6 . In Figure 4.3 we can see the behaviour 

of the Euler angles, which represent the attitude o f the body. W e can clearly see that 

the control algorithm slowly damps the three angles to the desired goal attitude. The 

body rates are shown in Figure 4.4. Once again we can see that the three angular 

velocities are driven to the desired goal values identified by the body at rest. In Figure 

4.5 we can see how the m agnitude o f the torques decay as the body approaches the 

goal attitude, thus allowing for smooth convergence. In Figure 4,6 we see that the 

potential is reduced to zero, while the rate of change of the potential rem ains clearly 

negative definite, thus complying with Lyapunov’s theorem and guaranteeing 

convergence. W e can also note a strong coupling about each body axis. As axis 2 and 

3 are controlled, there is a clear displacem ent of axis I as a consequence. The 

potential function control algorithm, however, brings the body to rest at the desired 

goal attitude. W e have therefore dem onstrated that the potential function m ethod can 

successfully control a complex non-linear dynamical system by continuously 

controlling the rate of change of the potential.
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Figure 4.3 Continuous control: Euler angles
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Figure 4.4 Continuous control: body rates
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Figure 4.5 Continuous control: control torques

r
%Ü- 2

-1

Potential 
Potential derivate

10 20 30
Time (sec)

40 50 60

Figure 4.6 Continuous control: potential function
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4.6 DISCRETE CONTROL

W e will now have to introduce a new potential function, which complies with 

the conditions required by Lyapunov’s Second M ethod [Radice and M clnnes, 2000]. 

Only when the rate of change of the potential is positive, will control action be taken 

so as to render the rate of change negative once again, thus ensuring convergence to 

the goal attitude. W e will now consider the current attitude of the satellite by means 

of a vector assum ed to be directed along the axis o f the payload. W e also have the 

goal attitude identified by the vector such that:

n, -  (sin6[Sin63 + cos^ isinô^coséj)! + (sinôjcosô^ -fcos^^sin^^sin^^)} 

4-cos(9iCOs 6?2E
[4.23]

Uj- = cosQyCOSg/ I + sinct^cos£^ J  + singy K  [4.24]

where I, J  and K  are the unit vectors along the inertial frame of reference axes, and 

where a{ and 6 { are the azimuth and elevation angles of the goal attitude, as shown in 

Figure 4.7.
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X

Y

Figure 4.7. Schematic large angle slew

W e can then obtain the slew angle S  from the scalar product between these two 

vectors:

Ô ~ arccos ■ » , ) [4.25]

which then allows us to define the potential function as a quadratic function of the 

slew angle S, given by:

v  = - s ^  
2

[4.26]

The time derivative of the potential function is given by:
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V ^ à ô  [4.27]

where 6  can be calculated analytically from Equation 4,25. W hen this function is 

negative the attitude motion is propagated in open-Ioop, If it assumes a positive value, 

control action is activated as previously discussed. The m ethod now consists of 

finding the change in slew rate necessary to render the rate of change of the potential 

negative definite again. This can be achieved by calculating the necessary change in 

slew rate as:

A6  = 8 , -  0 ,  [4.28]

where 0  ̂ is the cuirent attitude rate of the satellite with respect to the goal, while 0 ^

is the slew rate that has to be im plem ented to render the potential derivative negative

definite with the vector 0 = (^i, Oi, %). Since the torque levels are finite, the body 

angular accelerations are finite, m eaning that the change in slew rate to ensure that 

the rate of change of the potential is negative cannot be achieved instantaneously, 

leaving the possibility that the rate of change of the potential is positive, while A0 is 

being reduced to zero. To avoid this problem  a threshold param eter > 0 can be 

introduced. The control will therefore be activated when the potential derivative 

surpasses this fixed threshold: V > -(3. The required rate is now defined as:

0 , [4.29]

with n  being the unit vector down the gradient of the potential function, defined as:
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n =  l i ^  [4.30]
v y

and Q  is some shaping function. A particular function which slows the attitude slew 

as the satellite approaches the goal point is given by:

J[ 2  ~ exp (~À S^)) [4.31]

where À  and Q q are free parameters which influence the weight that £2 has as a 

shaping function. Ü q is the mean angular velocity, and the higher the value the 

quicker the satellite will slew to the desired goal point. À is linked to the angular 

deceleration of the satellite approaching the target. The values of the two shaping 

parameters affect the time and fuel consumption of the slew m anoeuvre.

The body rates are linked to the rotational angles by Equation 4.11. Knowing 

the value of 8  ̂we can therefore obtain the required body rates co,- Since the cuirent 

body rates coc are known by means o f the satellite sensors we can find the necessary 

change in body rates as:

Am = m  ̂ -  0)^ [4.32]

Through Euler’s sim plified equations of motion. Equation 4.8, we can now determine 

the thruster pulse width An (i = 1-3) for each axis as:
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1
Ar - i£ c o  —— [4.33a]

: 1 M
1

/
At ~ / \û )  [4.33b]

2 2 M

I
At ~ A CO - 4 -  [4.33c]

3 3 M
3

The activation of the thrusters will therefore render the potential derivative 

negative once again. The process is then repeated again when the rate of change of 

the potential surpasses the activation threshold; V > - p .  The thrusters are assumed to 

produce a constant thrust of 1 N. To avoid excessive control activity, they are 

activated only if the required pulse width is longer than 0.01 sec. To fine tune the 

m anoeuvre in the proxim ity of the target the pulse width can be decreased. The 

resulting attitude motion consists of a series of open-loop arcs connected by a set of 

discrete control events.

To initially validate this control method, a simple analysis is can ied  out. The 

spacecraft is forced to move from some initial attitude, to a desired final attitude. 

After having dem onstrated the success of a single point-to-point transfer, the m ethod 

will be expanded so that the spacecraft has to move between several target attitudes 

before reaching the final attitude. The spacecraft again is characterized by the 

following m oments of inertia: ~  2.7 kgm^, as defined in section 4.5. The

free parameters used to model the shaping function are the following: À -  1 0 0  and Q q 

= 0.01. The initial conditions are set as = 0.01 with the final conditions

requiring the spacecraft to be at rest. Results from such a sim ulation are shown in 

Figures 4.8-4.11.
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Figure 4.10 Discrete control: potential

- 0.008

- 0.01

- 0.012

0)  - 0.014 
>
COI - 0.016
Q 
10

- 0.018

- 0.02

- 0.022

- 0.024

-0 .026
0 50

Activation Threshold

/  ! /
/

100 150
Time (sec)

200 250

Figure 4.11 Discrete control: potential derivative
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It can be seen, from Figures 4.8-4.11 that the angular velocity tends to zero as the 

satellite reaches the final attitude; since the shaping function has the property of 

slow ing the attitude slew as the satellite approaches the goal point. The potential 

function decreases monotonically as predicted by Lyapunov’s theorem. The thrusters 

are activated once, in conespondence to the moment when the potential derivative 

assumes a V > --/? value, with 0 .0 1 .

Having shown the effectiveness of the method we now extend the analysis so 

that the satellite will be slewed between a num ber of target attitudes and so we will 

have to define the potential in a different form. The potential function is used, as 

before, to generate a path between the various targets. Each taiget point will be 

defined as a local m inimum  for the potential. Once a desired attitude is reached, the 

potential will assume a new form to take into account that a goal point has been 

reached. Firstly the satellite is driven by the potential towards the nearest goal point, 

which is a local minimum for the potential function. Once the z-th target is reached, a 

switching param eter L\ is changed from 1 to 0 to rem ove that local minimum. The 

satellite then progresses to the next nearest goal point, again a local minimum for the 

potential function, where once again the corresponding value of L\ is switched from 1 

to 0. The procedure is then re-iterated until the satellite reaches the final goal point, 

which will now be the global m inim um  of the potential. A potential function which 

can satisfy these requirem ents, will be defined as a sequence o f polynomials for N  

targets using:

V = - i l . y "  [4.34]
2. , I '
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with âi being the angle between the cuiTent satellite vector Us and the i-th goal attitude 

and Li is the switching parameter. The intermediate attitudes are local m inim a for the 

potential, with the final attitude being the global minimum. This method is not 

suitable for optimal path planning, however it does guarantee that all targets are 

visited only once. Results for a sim ulation in which the spacecraft is required to reach 

four intermediate goal attitudes before the final attitude are shown in Figures 4.12- 

4.13. The spacecraft is considered to have an initial angular velocity of 0,01 rad/sec 

around each axis. The goal attitudes are identified by the following pairs o f values of 

azimuth and elevation: (cr,, £]) = ( -  7d2, 0 ); (% , = (0 , 0 ); (<% £3 ) = (0 , tz/2 ); (o%,

£■4 ) = (ttJI, 0); ((%, £5) = {n, 0). Figures 4.12a and 4.12b show the behaviour of the 

potential as the spacecraft moves between the desired target attitudes, while the 

thrusters pulses are shown in Figure 4.13. The following considerations can be made. 

As the spacecraft reaches a target the switching param eter L\ in the potential function 

changes from the value one to zero. The potential will therefore assume a new form 

with the following local minimum becoming the new target. The intermediate 

attitudes are local m inima for the potential, with the final attitude being the global 

minimum. Again, this method is not suitable for true optimal path planning, however 

it does guarantee that all targets are visited, and visited only once.
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Figure 4.12b Multiple target transfer
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4.7 POINTING CONSTRAINTS

For any system using potential functions, active constraint enforcem ent may 

be im plem ented to constrain the separation of the satellite payload axis and any 

pointing constraints which may be present. Such constraints, for a sensitive payload, 

may represent for example pointing towards the Sun, or other bright sky regions. A 

constraint may be identified within the potential field by placing a large potential 

around this direction, therefore preventing the satellite from pointing the payload 

towards the constraint. This large repulsive field is defined using a polynomial 

function of the fonn;

where 4  is the angle between the spacecraft’s current vector and the vector Oo 

which identifies the pointing constraint given as:

n„ = cosa^,cos£„ I +sina^^cos£^^ J  + sin 6̂  ̂K  [4.36]

The param eter 4  detennines the fonn of the potential, by determ ining the size of the 

constraint’s angular radius, while %  and are the azimuth and elevation of the 

constraint as shown in Figure 4.13.
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X

Y

Figure 4.14 Schematic large angle slew with pointing constraint

When the angular distance between the satellite and the pointing constraint 

decreases, the repulsive component of the potential increases. This increase modifies 

the rate of change of the potential. The controls are therefore activated and the 

satellite is slewed away from the constraint. The path is therefore shaped in such a 

way, so as to avoid the pointing constraint. The repulsive component of the potential 

will therefore have the following form:

re p u ls iv i
(4.37]

Let us now consider the case of two pointing constraints which have different 

orientations; one along the X-axis, and one along the Z-axis. It can be seen that the 

projection of the constraint in the 9\-9i plane is different in the two cases. This is due
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to the fact that the projection varies depending on where the constraint is in reference 

to the X-Y  plane. The projection of the constraint is circular, if positioned vertically 

above the X-Y  plane. As the position of the constraint is changed, its projection on the 

X -Y  plane changes. At first it assumes an elliptical form and then it will eventually 

become a strip in the 0 \ - 0 2  plane, as shown in Figure 4.15.

02 (rad)

01 (rad)

Figure 4.15 Obstacle avoidance slew
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4.8 GLOBAL POTENTIAL

In the more general case we will have to deal with m ultiple targets (N) and 

m ultiple obstacles (M) [Radice and M clnnes 2001]. Therefore the global potential 

which will be used to control the spacecraft will comprise an attractive component, 

which guides the spacecraft towards the desired attitudes, and a repulsive component 

which guarantees that the spacecraft avoids those regions which could prove 

damaging for the payload or sensors:

1 N 1 M I

=  K .irac iiV C  +  K e i ,u h i  vc “  “  X  ^  ^  2  [ 4 . 3 8 ]

The form of the potential is now such that we can guarantee that the satellite will 

avoid any pointing constraints due to the repulsive component. The presence of an 

attractive com ponent guarantees that the satellite will also reach the desired goal 

location. For the potential defined in Equation 4.38 the possibility of a local minimum 

occurs. However, this local minimum is usually an unstable saddle point and so is not 

problematic. A range of methods exists to deal with true local m inim a [Zelek 1994]. 

W ith the potential expressed in the above form, we ensure that the spacecraft will 

visit all N  targets, due to the attractive com ponent and avoid all the M  pointing 

constraints because of the repulsive component. It can also be appreciated that as the 

distance to the obstacle decreases, the repulsive potential increases until such a point 

that the global potential is dom inated by that component. This causes the potential 

derivative to become positive, thus activating the necessai'y control actions and 

slewing the satellite away from the pointing constraint. The path to the goal attitude is
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therefore shaped to avoid the obstacle cone while m oving towards the next target.

W e can now see how the control algorithm  performs, with the spacecraft 

initially at rest, and having to reach one intermediate attitude before the final goal, 

while at the same time avoiding two pointing constraints. The desired attitudes aie 

identified by: (a i ,  £i) = (0, 7if2 ) and (<%, £2) = ( - M ,  0), while the obstacles are 

identified by (% i £qi) = - 7iJ4 ) and (% 2 , ^ 2) = (5:^4, 7d4 ). In Figures 4.15-4.16

we can see the results of such a simulation. In Figure 4.15 we can see the overall and 

partial trajectory in the potential field. It can be seen that the two obstacles have an 

elliptical shape in the 61-62 plane, because of their 45° elevation in the X - Y  plane. 

Once again as the first target is reached the param eter Lj associated with it is 

switched to zero, and therefore the potential assumes a new fonn  with the second 

target becoming the new minimum. W e can also note the periodicity of the potential 

field; this is because the potential is defined as a function of trigonometric functions 

and therefore 2 ;r symmetric. We can see that the thrusters are activated immediately 

to slew the spacecraft towards the intermediate target attitude. A fter approximately 

450 seconds this goal is reached and the spacecraft rests for 20 seconds before firing 

the thrusters again to reach the final target attitude. It is thus shown that the spacecraft 

is successfully guided to the two target points while steering away from the two 

pointing constraints.
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4.9 CONCLUSIONS

An analytic m ethod has been presented to control constrained large angle slew 

manoeuvres. This m ethod can provide the basis for a com putationally efficient 

autonomous guidance and control system. The m ethod hinges on defining a potential 

function, in principle in accordance with L yapunov’s theorem. The control algorithm 

presented here meets the criteria defined for spacecraft control. Two different 

methodologies were presented, the discrete and continuous method, and both proved 

to be satisfactory. The potential function control method will then be used to slew the 

spacecraft between targets as demanded by the action selection algorithm introduced 

in Chapter 3.
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CHAPTER V

ORBITAL AND SPACECRAFT MODEL

5.1 PREFACE

We will now examine how the spacecraft and orbital models are constructed 

using Simulink. The mathematical and geometrical considerations of the two-body 

problem  and the formulation of K epler’s equation, will be investigated and the 

different subsystems that comprise the spacecraft will be presented. It will also be 

shown how the action selection algorithm, presented in Chapter 3, and the attitude 

control, presented in Chapter 4 are integrated within the spacecraft model.

5.2 TWO BODY PROBLEM

For all practical situations involving spacecraft, one of the masses in the two- 

body problem is much greater then the other. The force o f attraction is always 

directed to a fixed point in inertial space with m agnitude solely a function of distance 

between the field point and the centre o f attraction. The basic equation of motion for 

the two body problem  is [Roy 1982];

129



Chapter V Orbital and Spacecraft Model

r + ^ r  = 0 
r

[5.1]

W here // = G{M  + m) is the gravitational param eter of the problem  with G being 

N ew ton’s gravitational constant. If M  »  m it becomes evident that the much smaller 

body of mass m, has no influence on the motion of the much larger body of mass M, 

which can be seen as an inertial body as far as the small body is concerned. If we 

consider Figure 5.1, since the motion is in a plane, we can introduce the polar 

coordinates r and 9.

Y

m

Mi

Figure 5.1 Radial and tangential components of the velocity.

The vectors i and j are unit vectors in the directions of respectively r and the normal 

to r. In this notation the components of the acceleration acting on m along and 

perpendicular to the radius vector are found to be [Roy 1982]:

r = ( r - r é 9  + (2r0 + fg)i [5.21
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and so substituting into Equation 5.1 we obtain:

^ + "Af i = 0 [5.3]

Therefore equating the coefficients of the Equation 5.3 gives us:

= [5.4a]

f - ( r é ) = 0  [5.4b]
r d r  '

The integration of Equation 5.4b provides the angular m omentum  integral r~B = h . 

W e now make use of the substitution ii = l/r ,  and elim inating time in Equation 5.4a 

leads to:

- ^ ^  + « = 4  [5.5]
d6^

the general solution of which is:

li = - ^  + A c o s ( 6  - $q) [5.6]

where A and 6b are the two integration constants. If we now reintroduce r, Equation 

5.6 becomes:
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1 + COS>{d -  <9g )
M

[5.7]

which can be rewritten as:

r  = --------------------------------------------------------------------------------------------------- [5,8]
1+ g  C OS O

where p  and e are geometrical constants of the orbits, respectively the semi-latus 

rectum  and eccentricity. Equation 5.8 is the equation of a conic section: the general 

orbit equation from which different fam ilies of orbits are generated -  circular, elliptic, 

parabolic and hyperbolic.

5.3

The location of a body in any orbit can be described either in terms of its 

angular deviation from  the m ajor axis, or by the time elapsed from  its passage 

through perigee. The true anomaly 6  is defined as the angle between the m ajor axis 

pointing to the perigee and the radius vector from the prime focus F to the moving 

body. To define the eccentric anomaly we draw an auxiliary circle with radius a, 

centred at the centre o f the m ajor axis. The eccentric anomaly (^is then defined as in 

Figure 5.2
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Y

Perigee
►  x

Figure 5.2 Geometry for finding the relationship between #and y/.

We can now find some important relationships between the true and eccentric 

anomalies. R efening to Figure 5.2 we find that: x  + y = c = ae, also x  = a cosy/a n d  y  

= rcos{ 7T- 0 ) = -  rcos&, hence x + >’ = a c o s y / -  rcosO =  ae.

Using the geometrical relationships evinced from Figure 5.2 we can rewrite Equation 

5.8 as:

a cos y/ = ae +
c/(l -  e~)cos6^ _ a e - ^ a  cosO

1 + eco s6 1 + e c o s 6

[5.9]

and
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cosy/

C O S 0

6 4-COS^

l + e cos6

COS yf — e 

1 - e c o s ^

s in ^  -
sin e V r

1 + geos 6

; s in ^
sin y / y l -
1 - g c o s ^

Orbital and Spacecraft Model

[5.10]

[5.11]

Also, it can be shown that [Roy 1982]:

jl + e ''y/'^
tan — = J  tan

V l - g
[5.12]

It can now be shown that it is possibie to express the true anomaly (9 in series as a 

function of the eccentric anomaly \j/ and the eccentricity e:

y/ +
r

g  +  — s in ^  + ^  g"sin2^/ + “ g^sinS^ + (j{e^ ) [5.13]

W e can now introduce a new param eter cailed mean anomaly M, defined as the angle 

swept by a radius vector rotating with mean angular velocity ?i, with n =■^[Ju7a  ̂ , in 

the interval of time (t -  r) where r  is defined as the time of perigee passage. 

Geometrical considerations allow us to express the mean anomaly as a function of the 

eccentric anomaly yr.

M  =y/ -  e sinyj [5.14]

Lagrange developed a solution to Equation 5.14 in the form of a trigonometric series:
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k=î

where A  is a Bessel function of the first kind of order k. W e can now combine 

Equations 5.13 and 5.15 to obtain the equation of the centre, which expresses the true 

anomaly 6* as a function of the mean anomaly M:

2g-I IsinAf + — g"sin2Af H g sin3Af -t-gr(g^^ [5.16]
4 4 12  ̂ ^

V

Thus when e and M  are given, the true anomaly can be found directly by using 

Equation 5.16. As M  = n{t - t) we will be able to express ^  as a function of time for 

small values of the eccentricity. This formulation is used in the simulation of the 

orbital model which will be introduced in the next section.

5.4 ORBITAL MODEL

For an Earth orbiting spacecraft, it is common use to define an inertia] frame 

of reference with the centre-of-m ass of the Earth as its origin. For practical puiposes 

this system of reference can be accepted as being inertial, despite the Earth moving 

around the Sun. The Z-axis is the axis of rotation of the Earth. The X -Y  plane of this 

system of coordinates is taken as being the equatorial plane of the Earth, which is 

peipendicular to the E arth ’s rotation axis. The X-axis coincides with the line formed
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by the intersection of the Earth’s equatorial plane and the ecliptic plane, which is the 

plane of the Earth’s orbit around the Sun. The third axis T-completes a right-handed 

orthogonal system. Having defined the geometric coordinate system we need to 

introduce an additional three param eters to position an orbit in space. In Figure 5.3 

the orbital plane is inclined with respect to the X -Y  plane by an angle /, the inclination 

of the orbit.

Spacecraft

i L
Perigee

Descending Node

Node
Xine

Ascending Node

Figure 5.3 Parameters that define the location of orbits in space

The orbital plane and the equatorial plane intersect at the nodal line. The angle 

in the equatorial plane that separates the node line from the X-axis is called the right 

ascension of the ascending node i2. In the orbital plane, r  is the radius vector to the 

m oving body; Tp is the radius vector to the perigee of the orbit. The angle between Fp 

and the node line is co, the argument of the perigee. These three param eters together 

with the eccentricity e the sem i-m ajor axis a and the true anomaly 6 , complete a
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system that suffices to define a location in space of a body m oving in any Keplerian 

orbit. A Simuiink model was created using the previous analysis. The user can define 

five key param eters which uniquely characterise an orbit in space. The output is the 

projection o f the radius vector r, along the three inertial axes, as a function of time. In 

Figure 5.4 we can see the blocks of the Simuiink model used to represent the orbital 

dynamics o f the problem.

Rz

Rx

Perigee Argument

Ascending Node

Inclination

Apogee

Perigee

Apogee

Ascending Node

Inclination

Perigee

Perigee Argument

BY

RZ

RX

Orbital Parameters Orbital Dynamics

Figure 5.4 Simuiink model of orbital dynamics.

Looking at the orbital dynamics model in more detail, in Figure 5.5, we can see that 

we use Equation 5.16 to obtain the true anomaly. Knowing the true anomaly allows 

us to calculate the orbital radius ||r|| using Equation 5.8. The projection o f the orbital 

radius ||r||, along the inertial axes can be determ ined using the following equations:

-  r[cosÊ2cos(uj + 6 ) -  cosz sin fl sin(co + 6  

Ry = r[sin cos(uj 4- 6  )d- cosz cosO  sin(fti + 6  

R^ = z [sinz sin(td 4-6

[5.17a]

[5.17b]

[5.17c]

where I, J  and K  are the unit vectors along the X, Y and Z axis respectively. In Figure 

5.5 we can see a detailed picture of the orbital dynamics model.
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Figure 5 .5  D e ta i l e d  m ode l  o f  orbital d y n a m ic s
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In Figure 5.6 we present behaviour of the position vector components {R^, Ry, Rz) in 

the case of a 1000x10000 km orbit with an inclination of 86°. This orbit has a period 

of 3 hours, 34 minutes and 38 seconds. W e can see that the orbital radii have a 

periodic pattern, with the recurrence being given by the orbital period.

X 10

2 3 4 5 6
Time (hrs)

Figure 5.6 Orbital radii for a 1000x10000 Earth orbit.

This orbital model will be used to generate state information for the different orbits 

required for the case studies in Chapter 6 and 7.
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5.5 ECLIPSE MODEL

Orbital and Spacecraft Model

During each orbit the spacecraft may be in Sun eclipse. This means that the 

orbit the spacecraft is following takes the satellite into the shadow cone of the Earth 

and therefore is not in direct sunlight. This affects the tem perature of the spacecraft, 

which will if necessary have to switch a heater on, which in turn affects the electrical 

power subsystem as energy is consum ed to activate the heater. In Figure 5.7 we can 

see the Simuiink model used.

(Z>
Rx

Ry Sun availability

Rz

Sun Availability

Figure 5.7 Simuiink model of eclipse

S u n a v

The sun availability algorithm takes the input (the projection of the spacecraft 

position vector along the inertial axes) from the orbital dynamics model introduced 

previously. It returns 1 if the spacecraft is in sunlight, and 0 if it is in eclipse. To 

explain this in more detail we can look at Figure 5.8. The Sun is considered to be 

aligned along the X-axis, therefore the spacecraft will be in sunlight if > 0. If on 

the other hand Æ* < 0, the satellite will be in sunlight if the following condition is

satisfied: > R^^^ . Should the two conditions not be met, the spacecraft will

be in eclipse.
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Ài

Spacecraft

Shadow
cylinder

Figure 5.8 Geometrical configuration for eclipse condition

In Figure 5.9 we can see the different Sun availability between a 200 km orbit and a 

1200 km orbit. As expected, the lower altitude orbit has a lower sun availability 

period com pared to the higher altitude orbit. However having a shorter orbital period 

and therefore viewing the Sun more often offsets this to some extent.

200 km 
1200 km

0.8

0.6

0.4

0.2

543210
Time (Hrs)

Figure 5.9 Sun availability for two different orbits
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5.6 SPACECRAFT MODEL

The satellite is considered to have three rotational degrees o f freedom, which 

can be controlled by reaction wheels. The electrical power system consists of a solar 

array, battery and several electrical loads. The payload is a cam era that records at a 

steady data rate when active, solid state m em ory and a radio transm itter to down-link 

data to the ground station. The individual subsystems are coupled together: for 

example, switching the transm itter on drains the battery and reduces the amount of 

stored data. The satellite is controlled by switching the camera, the transm itter and an 

internal heater on or off, and com m anding an attitude control subsystem  to track one 

of the three objectives -  Sun, payload target and Earth ground station -  by activating 

the reaction wheels. To provide pointing constraints, the solar panel is located on a 

different face of the 20 cm cube shaped m icro-satellite to the cam era and antenna, as 

shown in Figure 5.10. In Appendix I the procedure to determ ine an estimated sizing 

of the spacecraft is explained.

> +z face

Antenna

Camera

4-y face

Solar Cells

4-x face

Figure 5.10 Satellite model
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The internal heater may be switched on or o ff independently o f what other 

task the spacecraft may be performing; the heater automatically turns on when the 

temperature drops below a certain fixed threshold value o f 240 K and is not 

com m anded by an action selection algorithm. The choice o f the threshold value is 

linked to the performance o f the on-board sensors and actuators which have well 

defined temperature ranges in which to operate. Activating the heater however drains 

the battery, and therefore indirectly influences the action selection. In Figure 5.11 we 

can appreciate how the action selection algorithm is im plem ented within the satellite 

model.

Solar Array CCD Camera
Battery /

: : : : : -------------------------Memory

Sun Sensor

Sun-Pointing | —

Qpg Action Selection

Tx Antenna \  Earth-Poi

N \ T ----------------------------

Target-Pointing

Earth-Pointing

Figure 5.11 Action selection model

The satellite can perform three different tasks. It can charge its battery by 

pointing the solar panel towards the Sun, detected by the Sun sensor, it can record 

data by activating the camera and it can download data to Earth ground station 

through the transmitter when the GPS determines that the target or ground station are 

present. The spacecraft selects the optimum behaviour at any tim e by evaluating the
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deficits of the state variables, assessing the availability and accessibility of the 

environm ental resources and finally com puting the drk  product as discussed in 

Chapter 3. To avoid oscillating between behaviours with sim ilar drk  products, the 

spacecraft switches between different behaviours when the difference between two 

drk  products suipasses a fixed threshold.

5.6.1 Subsystems

Individual spacecraft can be very different from  one another and might 

display widely different design approaches in solving the same or sim ilar mission 

architecture problems. M ore recent spacecraft, thanks to im provements in various 

technological fields, often have a sm aller volume and are less massive than their 

predecessors, yet there are common functions carried out by different spacecraft 

regardless of size. Not all types of spacecraft, though, present the same subsystem 

typology. The satellite model used here can be considered as a generic orbiter type 

spacecraft and the following subsystems comprising the spacecraft will be presented 

and discussed, m otivating the choices and assumptions made: payload, data handling, 

attitude control, telecom m unications, electrical power, and thermal control.

5.6.1.1 Payload

Spacecraft designers often consider the most im portant com ponent of the 

spacecraft to be the payload. Although all subsystems must work equally well to 

guarantee success, it is the payload that fulfils and justifies the space mission 

requirements. All the engineering subsystems and components serve a single purpose: 

to deliver science or other instruments to their destination and enable them to cany
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out their observations and experiments, and return data from the instruments. There 

are many different kinds of scientific instruments although they all fall into one of the 

two following categories; direct sensing and rem ote sensing. D irect sensing 

instruments interact with physical phenomena in their im m ediate vicinity while 

registering their characteristics. Exam ples of such instruments are a heavy ion 

counter, dust detector and magnetometer. These instruments measure properties such 

as mass, speed, direction and do not attempt to form  any image of the source. Remote 

sensing instruments on the other hand, form some Irind of image or characterisation 

of the source of the phenomena. They record characteristics o f the objects at a 

distance and sometimes form an image by gathering, focusing and recording light. 

Examples of this are altimeters, which use radar pulses to determine variations in the 

height of the teirain being overflown, or traditional optical imaging.

The science instrument present on the generic satellite considered here is a 

camera. An imaging instrument uses optics such as lenses or m inors to project an 

image onto a detector plane where it is converted into digital data. Light falling on a 

well is absorbed by a photoconductive substrate, such as silicon, and releases a 

quantity of electrons proportional to the intensity of the light. The CCD detects and 

stores accum ulated electrical charge representing the light level on each well. These 

charges are then read out for conversion to digital data. In Figure 5.12 we can see the 

Simuiink model o f the payload. The payload is activated when the spacecraft is flying 

over the target and the drk product associated with the ‘record’ behaviour is the 

highest of the three. In output the payload produces a data rate o f 5000 bits per 

second, which is stored within the solid state memory, and a pow er consumption of 

0.09 W atts which affects the battery chai'ge [Lu 2001].
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5.6.1.2 Data Handling

There is usually one com puter identified as the spacecraft central computer, 

responsible for overall management of the satellite’s activities. This unit is often 

referred to as com m and and data subsystem. It maintains timing, interprets commands 

from Earth, collects, processes and formats the telemetry data to be returned to Earth, 

and manages high-level fault protection and safing routines. Because o f the way the 

spacecraft is m odelled (antenna on a single face), not only will it not always be in 

contact with the ground station, but also when the spacecraft is not Earth pointing. 

There is therefore a requirem ent for a data storage device such as tape or solid-state 

recorder. The storage device can be com m anded to transmit stored data when a 

downlink is available, and then to overwrite the old data with new. The choice was to 

opt for a model of a solid state recorder. Unlike the tape recorder, the solid state 

recorder has no reels, tape and no m oving parts to wear out and lim it lifetime. Data is 

digitally stored in m emory chips until it can be played back to Earth ground station. 

Not having moving parts means that the solid state recorder cannot fall victim to 

failures, such as a break in the tape or a mechanical defect. It also doesn’t need any 

pressurised sealing to protect the tape and the delicately lubricated m oving parts from
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the hazards of space vacuum. In Figure 5.13 we can see the Sim uiink block for the 

data handling device.
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Figure 5.13 Data handling model

The mass memory takes in input the data recorded by the payload, the data sent back 

to the ground station by the transmitter, and the m em ory capacity. In output it 

produces the amount of data which is currently stored on-board the spacecraft. The 

m axim um  amount of data that can be stored on board is 5,000,000 bits [NASA 2002].

5.6.1.3 Attitude Control

A spacecraft’s attitude must be stabilised and controlled so that it may 

accurately point the antenna to Earth, direct the solar panel towards the Sun or 

accomplish precise pointing for collection of data by directing the on-board camera 

towards the desired targets. There are three ways of controlling a spacecraft; passive, 

spin and three axes. Passive control methods use the fact that an elongated object in a 

gravity field aligns its longitudinal axis through the E arth’s centre. To achieve 

stabilisation the satellite uses electrically powered reaction wheels. These wheels are 

m ounted in three orthogonal axes on the spacecraft. They provide a means to trade 

angulai' m omentum  back and forth between the spacecraft and wheels. To rotate the
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spacecraft in one direction, the proper wheel must be spun up in the opposite 

direction. To rotate the spacecraft back, the wheel is slowed down. The satellite is 

also assumed to be equipped with sensors, which determine the attitude with respect 

to a defined reference frame.

To generate the maximum amount o f power, a solar an ay  needs to be facing 

the Sun, perpendicular to the incident sunlight, as flux through the surface is greatest 

when the flow direction is normal to that surface. The Sun sensor is a device that can 

determine the location of the Sun. The horizon sensor is an infrai'ed device that uses 

the contrast between the cold of deep space and the heat of E arth’s horizon as 

reference. The spacecraft therefore has to perform the double task of first assessing its 

attitude with respect to the Sun, ground station and target area, and then slew towards 

the environmental resource it needs: the Sun to charge the battery, the ground station 

to download data, and the target area to record data. In Figure 5.14 we can see the 

geometric configuration of the first problem: determ ining the relative orientation of 

spacecraft and environm ental resources.
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Figure 5.15 Definition of parameters for line of sight

The availability of the target or the ground station is defined by the angle y, which is 

the angle between the local vertical and the spacecraft and is defined as:

y = arccos
r. r [5.18]

where

r, = c o sa , cos£,I + sina ,cos£ ,J  + sin£,K [5.19]

where and are the azimuth and elevation angles of the target. The azimuth angle 

is a function of time as: Oi = Oto + coeU — to) with coe is the angular velocity of the
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Earth and defined as = 2TdTE where Te is the Earth rotational period. The satellite 

vector r. is defined as:

n  - r [5.20]

It can be seen that the angle y  will vary between -  Till and tïI2. Accordingly, the 

availability will be m aximum  when the spacecraft is directly above the local vertical. 

As the spacecraft moves away from the local vertical the availability will decrease its 

value until it reaches the local horizon plane. At that point the availability will 

become zero, and the spacecraft will not be able to view the target or ground station. 

In Figure 5.15 we can see the Simuiink model for the resource availability.

Œ }  
%

Œ ) — ►

Rx

Ry

Rz Resource Availability -

Resource Azimuth

Resource Elevation

Resource Availability

Figure 5.15 Resource availability model.

The azimuth and elevation of the target and the ground station can be defined by the 

user and uniquely identify the desired location. The availability module also receives

150



Chapter V Orbital and Spacecraft Model

the three position vector projections (i?x, Ry and Rz) from  the orbital dynamics model 

as inputs, and produces the resource availability in output.

In Figures 5.16-5.18 we can see how the availability varies, depending on the 

spacecraft orbit and on the location on the Earth of the target. In Figure 5.16 we have 

two equatorial circular orbits of varying altitude with the resource located at 0° 

latitude on the Equator. W e can see that as the resource and spacecraft orbit lie on the 

same plane, the satellite will always fly directly above the resource and therefore the 

availability will be maximum. The lower altitude orbit, having a sm aller orbital 

period will fly over the resource more often, 3 times more in Just over one day, but 

for less viewing time than the higher altitude orbit.

In Figures 5.17-5.18 we see what happens in the case of two polar circular 

orbits with the target located first on the Artie Polar Circle, at 66.5° and then located 

on the Tropic of Capricorn at -22 .5°. We can see that in these two cases the viewing 

pattern is far more irregular than the previous case. The spacecraft does not, in the 

time interval examined, fly directly over the resource and therefore the availability 

never reaches the value of 1. Also, as the resource rotates with the Earth, the 

availability has a different value from one fly over to the next. M oreover, it appears 

as if in this case, not only is the higher altitude orbit beneficial as the time spent 

flying over the resource is longer, but that the higher orbit has more viewing 

opportunities than the lower orbit. This is clearly because the spacecraft in the higher 

orbit has a larger view area of the E aith ’s surface.
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Figure 5.16 Resource availability for two equatorial orbits with target located on Equator
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Figure 5.17 Resource availability for two polar orbits with target located on Artie Polar Circle
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Figure 5.18 Resource availability for two polar orbits with resource located on Tropic of Capricorn

Having explained how the spacecraft determines the resource location, we must now  

solve the problem o f slew ing the spacecraft between the different resources. Once the 

spacecraft has selected which behaviour to perform, it must slew  towards the desired 

attitude to point the transmitter towards the ground station, the camera towards the 

target or the solar array towards the Sun. The geom etric configuration is illustrated in 

Figure 5.19
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Figure 5.19 Definition of parameters for target pointing

The spacecraft must orient itself such that the correct instrum ent is directed towards 

the appropriate resource to be able to carry out the required task. The direction along 

which the spacecraft must direct its payload is given by:

.inertial _ r, - r [5.21]

where r is obtained from the orbital dynamics block and rt is defined by the user as 

explained previously. The spacecraft has a camera and an antenna placed on the face 

normal to the y  body axis, identified by:

-body _  :
-  J [5.22]
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where j  is the unit vector along the y-axis of the body frame of reference. Now the rp 

vector m ust be transform ed into one common frame of reference. This is done by 

using the transform ation matrix R  obtained through the 3-1-3 Euler angle sequence 

and explained in Chapter 4.

.m en ia l body [5.23]

This then yields three equations with the three unknowns being the desired Euler 

angles.

r  = (cos6 , cos63  -  sin cos 6 2  sin 6 3 ) 1  + (sin 6 ; cos 63 -  cos 6 j cos 6 3  sin 6 3 )! T sin ô jS in ô jK

[5.24]

However, because is the rotation angle along the cam era and antenna axis its value 

is not required, therefore we can arbitrarily set its value to ti!2. This also has the 

positive effect of avoiding any possibility of a singularity during the solution of 

E uler’s equations. In Figure 5.20 we can see the Sim uiink block used.
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Figure 5.20 Target pointing model
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The block receives the azimuth and elevation o f the target or the ground station, 

together with the projection of the position vector along the inertial frame of 

reference. The output is the required Euler angles the spacecraft has to slew towards 

through so as to point towards the target or ground station.

To slew the spacecraft we use the potential function control method 

introduced in Chapter 4. In Figure 5.21 we can see the top level Sim uiink model of 

the attitude control algorithm.
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Figure 5.21 Top level attitude control algorithm model

The user defines the inertia moments l\ (i = 1-3) of the spacecraft, while the pointing 

algorithm introduced previously feeds the desired attitude angles to the attitude 

control algorithm. The parameters Oî and k\ (i = 1-3) are chosen by the user and 

influence the slewing rate and slewing time as explained in Chapter 4. The demand 

on the power subsystem, when the potential function control is active, is 1.5 Watts 

[W ertz 1992]. In Figure 5.22 we can see the bottom  level Sim uiink model of the 

control algorithm.
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Figure 5.22 Bottom level attitude control algorithm model
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W e can now see that the desired attitude angles are fed into the potential function 

control algorithm, together with the shaping param eters ai and /q. The control 

algorithm, Equation 4.18, produces as outputs the torques necessary to slew the 

spacecraft to the desired orientation. The value of the torques are linked into Euler’s 

equation, Equation 4.8, together with the m oments of inertia for the spacecraft. In 

turn, this provides the angular velocities, which are then, through Equation 4.11, used 

to generate the current attitude angles, thus closing the control loop.

5,6.1.4 Telecommiinlcations

The comm unications subsystem  is the interface between the spacecraft and 

Earth, or other satellites. The transm itter and receiver must be in view of each other, 

using frequencies high enough, above 100 M Hz, to easily penetrate the Earth’s 

ionosphere. Since the satellite is designed for a near Earth orbit, there is no need to 

equip it with a high gain antenna and a powerful transmitter, which would result in a 

useless weight and power increase. The transmitter, when active, downloads to the 

ground station 10000 bits of data per second, and requires 2.88 W atts to operate 

[W inton et al. 1996]. In Figure 5.23 we can see the Sim ulink model of the transmitter.
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Figure 5.23 Transmitter model
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The transmitter is switched on when the spacecraft is flying over the ground station 

and the drk  product associated with the ‘transm it’ behaviour is the highest of the 

three. In output, the transm itter block produces a data rate, which affects the solid 

state memory, and a pow er consumption which affects the battery charge.

5.6.1.5 Electrical Power

The main function of the electrical power subsystem  is to provide, store, 

distribute and control the electrical power on boai'd the spacecraft. On a spacecraft, 

electrical power is required to power the computers, radio transmitters and receivers, 

motors, valves, data storage devices, instruments, sensors and other devices. We 

assume the use of a 20 x 20 cm solar anay  composed of silicon cells, which have an 

energy conversion efficiency of approxim ately 15% [W ertz 1992]. The Simulink 

model of the solar airay is shown in Figure 5.24

Array Power Output -Eclipse

S o la r  Array

Figure 5.24 Solar panel model

The solar panel produces a constant power output of 8 W atts when in direct sunlight, 

while there is obviously no power output if the spacecraft is in eclipse.

Energy storage is an integral part of the spacecraft’s electncal power 

subsystem. Any spacecraft that uses photovoltaic cells as a pow er source requires a 

system  to store energy for peak pow er demands and eclipse periods. Energy storage 

typically occurs in a battery, which receives a charge from the main bus when the
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solar panels are in the sunlight, and a discharge into the bus to m aintain its voltage 

whenever the solar panels are shadowed by the planet, or off Sun-pointing during 

spacecraft m anoeuvres. A battery can convert chemical energy into electiical energy 

during discharge and electrical energy into chemical energy during charge. The 

Sim ulink model of the battery is shown in Figure 5.25,

Net Power Input

Max charge Battery Charge Level-
--------------- ► ©

Max discharge depth

Battery 

Figure 5.25 Battery model

The battery model receives the net power input from the different subsystems which 

require energy such as payload and transmitter, as well as the upper and lower lethal 

limits. The battery is considered to have a capacity of 24 KJ and an efficiency in 

converting the power coming from the solar aixay of 0.3. The m inimum  charge to 

guarantee the spacecraft’s survival is 8 KJ. In output, the block produces the cuiTent 

battery charge level [Wertz 1992].

Integrating the solar array model and the battery model, we obtain the 

electrical power model shown in Figure 5.26
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Figure 5.26 Electrical power model

The electrical power subsystem provides the battery charge, which affects the action 

selection algorithm, as well as producing a thermal dissipation term, which influences 

the thermal subsystem  discussed below.

5.6.1.6 Thermal Control

The thermal control subsystem tries to maintain all the elements of the 

spacecraft system within their temperature limits during all the mission phases. A 

satellite orbiting Earth will be subjected to different heat fluxes: Solar, Earth reflected 

(albedo) and Earth em itted energy. The thermal control system affects, and is 

affected, by almost all other spacecraft systems. For example, the power subsystem 

interacts strongly with the thermal control subsystem  since the latter must account for 

all dissipated electrical energy and radiate this energy to space. The spacecraft is 

assum ed to be equipped with an electric heater and a tem perature sensor. When the 

internal tem perature reaches a fixed threshold the heater is autom atically switched on 

to ensure that the tem perature is raised to the desired level. In Figure 5.27 the 

tem perature control model is shown.
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Figure 5.27 Thermal control model

The thermal control model receives as inputs, the energy dissipated by other on-board 

subsystems, the Sun availability, the upper and lower lethal temperatures and the 

Earth infrared em itted energy. The m axim um  tem perature is chosen to be 350 K 

while the minimum is 220 K [Wertz 1992]. W ithin this range the components in the 

different subsystems will operate normally, while out with this range the spacecraft 

will cease to function. The output of the block is the current internal temperature 

level. When the tem perature reaches the threshold value of 240 K the heater is 

activated to ensure that the spacecraft tem perature is kept above the m inimum  lethal 

value. The heating subsystem  is shown in Figure 5.28.
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Figure 5.28 Heating subsystem model

The value of the internal tem perature is used together with Sun visibility and the 

battery charge to activate the heating subsystem. The output is a command, which 

switches the heater on or off as required, as shown in Figure 5.29.

D issipated PowerSwitch

H eater

Figure 5.29 Heater model

The heater requires 10 W atts to operate, and has the task of m aintaining the internal 

tem perature above a lethal threshold value while at the same time it consumes 

electrical power [W ertz 1992].
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5.6.1.7 Task Sequencing Algorithm

We will now show how the action selection algorithm introduced in Chapter 3 

is modelled within the spacecraft. In Figure 5.30 we can see the top level of the task 

sequencing Simulink model.
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Figure 5.30 Top level task sequencing model

The inputs are the availabilities for the different resources; the solar availability 

annves from the eclipse model, while the target and ground station availabilities 

an ive from the resource availability models. The lethal limits for the state variables, 

together with the values of the battery charge and the amount o f data stored are used 

to calculate the deficits. The outputs are the three behaviours which the spacecraft can 

perform; charging the battery, recording data and downloading data. In Figure 5.31 

we can see the details of the action selection algorithm.
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The deficits are calculated as explained in section 3.12, while the accessibilities are 

fixed by hardware constraints and have the following values: ĉharge = 1, r̂ecord = 1 and 

A.'iransmii = 1- The values of the deficits, availabilities and accessibilities are then 

multiplied to obtain the drk product associated with each behaviour. The values are 

then passed through the Simulink model, which determines which task has to be 

performed and shown in Figure 5.32.

drk charge do nothing

drk record 

drk transmit
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MATLAB
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Figure 5.32 Task selection model

This block decides which drk product is the highest and hence what task should be 

performed. A filter is added so that the spacecraft does not oscillate between tasks 

with sim ilar drk products. To perform a new behaviour, the drk associated with it has 

to surpass the drk product associated with the behaviour the spacecraft is currently 

performing by 0.1. Also, should the drk  products be all larger than 0.9 or all zero, the 

spacecraft will not perform any task, and simply drift along its orbit.
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5.7 COMPLETE MODEL

Having introduced the individual subsystems and components that make up 

the model, we can now appreciate the complete system, shown in Figure 5.32. We 

can see that there are two main blocks in the model. The first one is the action 

selection block, in which the algorithms introduced in Chapter 3 are put into action. 

In this block the deficits, availabilities and accessibilities o f the environmental 

resources are com puted to determine which task the spacecraft has to perfoiTn. The 

second major block is the orbital dynamics and spacecraft model. Here the spacecraft 

moves along its orbit and assesses the availabilities of the resources. As the task 

coming from the action selection block is linked in here, the spacecraft will change its 

attitude, using the potential function attitude control, and, according to the task being 

performed, there will be variations in the state variables as the satellite will charge the 

battery, record, or download data. The new values of the environmental availabilities 

and state variable deficits are then passed to the action selection algorithm thus

closing the entire global loop.
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CHAPTER VI

SINGLE SPACECRAFT

6.1 PREFACE

In this chapter we will evaluate the peifoiTnance of the attitude control 

algorithm, based on Lyapunov’s Second M ethod introduced in Chapter 4, and the 

behavioural sequencing algorithm introduced in Chapter 3, within the spacecraft and 

environm ental models introduced in Chapter 5.

6.2 CASE STUDIES

As explained in the previous chapter, the satellite will operate in different 

orbits and is considered to have three rotational degrees of freedom  that can be 

controlled by reaction wheels. The electrical power system consists of a solar airay, 

battery and several electrical loads. The payload is a cam era that records at a constant 

rate when active and a radio transm itter to broadcast data to the ground station. The 

individual subsystems are coupled together; switching the transm itter on drains the 

battery and reduces the amount of stored data. The spacecraft is controlled by 

switching the camera, the transm itter and an internal heater on or off, and 

comm anding the attitude control subsystem  to track one of the three targets. Sun, 

Earth ground station and Eailh target, by activating the reaction wheels. The
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spacecraft has an internal heater which may be switched on or off independently of 

w hat other task the spacecraft m ay be performing; the heater is automatically 

activated when the tem perature drops below a certain threshold value fixed at 240 K 

and is not com m anded by an action selection algorithm. The heater however di'ains 

the battery, and therefore indirectly influences the action selection process. The 

spacecraft selects the optimum behaviour at any time by evaluating the deficits of the 

state variables, battery and memory level, assessing the availability and accessibility 

o f the environm ental resources, Earth ground station, Sun and Earth target, and 

finally com puting the drk product. The spacecraft will switch between different 

behaviours when the difference between two drk  products surpasses a fixed threshold. 

To test the perform ance of the model we will consider two different types of low 

Earth orbits: a polar orbit and an equatorial orbit.

6.2.1 Polar O rbit

The spacecraft is at first inserted into a polar low Earth orbit. Low altitude 

polar orbits are widely used for Earth observation since each day the Eaith rotates 

below the spacecraft, so that the entire surface can be covered over a repeat cycle. 

Polar orbiters are used for m ainly used for Earth-m onitoring and weather 

observations. In Tables 6.1-6.3 we can see the sim ulation param eters used to select 

the orbit, the target and gi’ound station location and model the spacecraft. The 

sim ulation m ns for ju st over 100 orbits, which equates to over 6 mission days. In 

Figures 6.1-6.12 we can see the results of the simulation.
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P aram eter V aille
Sem i major axis (km) 6788.14
Eccentricity 0
Inclination (deg) 86
Right ascension (deg) 0
Argument o f perigee 0
Orbital period (sec) 5677

Table 6.1 Orbital parameters

P aram eter V alue
Ground station latitude (deg) 40
Ground station longitude (deg) 0
Target latitude (deg) 57
Target longitude (deg) 180

Table 6.2 Ground station and target parameters

Param eter V alue
Maximum battery charge (KJ) 24
Minimum battery charge (KJ) 8
Initial battery charge (KJ) 16
M aximum temperature (K) 350
Minimum temperature (K) 220
Initial temperature (K) 300
M aximum data storage (M bits) 5
Minimum data storage (M bits) 0
Initial data storage (M bits) 0
Battery charge accessibility 1
Recording accessibility I
Transmission accessibility 1
Moment o f Inertia (Kgm") 60

Table 6.3 Spacecraft parameters
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As we can see from the Figures 6.1-6.4, the battery charge, internal temperature and 

Sun availability are strongly coupled. W hen the spacecraft is in eclipse we can see 

that the tem perature rapidly decreases as the Earth eclipses the spacecraft as 

evidenced by Figures 6.1 and 6.2. In Figure 6.4 we can see different slopes as the 

battery charge level decreases. This is due at first to the transm itter or payload being 

active; when either is operational there is a dem and on the battery for their activation. 

After that, there is a period during which the transm itter or payload is not active and 

the discharge in the battery level proceeds at a lower rate. W hen the heater is then 

turned on to m aintain the internal temperature, above the m inimum  lethal level of 220 

K, the battery is discharged at an increased rate. W hen the spacecraft exits the eclipse, 

the temperature increases as the satellite experiences the solar heating. The battery 

charge also increases as the spacecraft slews and points the solar panel towards the 

Sun.

In Figures 6.5-6.8 we can see how the spacecraft handles the data 

management by recording data when flying above the target, and by transmitting data 

when in view of the ground station, depending on the resource availability and 

accessibility. It can be noted that as the spacecraft downloads data, there is obviously 

a decrease in the amount of data stored on-board. W hat is m ore interesting to 

highlight however, is the behaviour of the spacecraft with respect to the availability 

of the target and ground station. As was explained in Chapter 5, the resource 

availability varies with each orbital pass, depending on where the spacecraft is, with 

respect to the target or ground station. W e can actually see that the spacecraft has 

several orbits without flying over either one or the other. The non-periodic nature of 

the ground station availability and target availability is due to the fact that the orbital 

period of the spacecraft in a 5001cm circular orbit is 94.62 m inutes, and therefore not
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repeatable during the 24 hour rotation period of the Eaith. There are then two 

interesting differences that we can highlight when looldng at the stored data and the 

target availability. W hen the availability of the resource is high the spacecraft records 

a significant amount of data. How ever when the availability of the taiget area is low 

the spacecraft m ay opt not to image, as highlighted by the amount o f data stored in 

the memory rem aining constant. This is because the spacecraft may have more 

pressing needs; i.e. charging the battery or downloading recorded data, or because 

recording data during a low availability flyby is not an efficient activity from an 

energetic point of view. Looking at the data transm itted and the ground station 

availability allows us to make sim ilar considerations. W e can see how, when the 

ground station has a good availability the spacecraft transmits significant data. On the 

other hand, when the ground station availability is poor there is little data transmitted 

back to Earth. Finally, we can see how storing of data starts immediately. This is 

because at the beginning of the mission scenario the deficit for the ‘recording’ 

behaviour is maximum. On the other hand, transmission of on-board data to the 

ground station starts after approxim ately 8 orbits, since the deficit for this behaviour 

is at first zero and then increases, as data is gradually stored in the memory.
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It is also interesting to look at the behaviour of the spacecraft’s state variables, 

battery charge, m em ory level and internal tem perature, dining the mission. This is 

shown in Figures 6.9-6.12, where the state vaiiabies are first viewed in a three- 

dim ensional state space and then projected in a two-dim ensional state plane to 

facilitate the interpretation of the data. The values of the state variables are 

norm alised between one and zero. W e can see that the spacecraft settles down to a 

lim it cycle after an initial transient of a few orbits, due to the difference between the 

initial conditions and the nominal operating conditions. We can then see how the two 

m ost critical state variables, battery charge and internal tem perature, both stay well 

w ithin the lethal limits during the mission and never once is the spacecraft put into a 

situation which could lead to a perm anent failure. Looking in detail at each state 

variable we can see that the tem perature oscillates between norm alised values of 0.4 

and 0.8; it never sui-passes 0.8, as that is the value at which the heater is turned on to 

maintain the tem perature above the lethal level. The battery chaige oscillates between 

nonnalised values of 0 and 0.4, which signifies that the spacecraft is always close to, 

or at, full charge. The memory state on the other hand ranges from  norm alised values 

0 to 1 as data is recorded and downloaded, filling the memory to completion and then 

em ptying it in full.
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6.2,2 Equatorial O rbit

Tropical countries around the equatorial belt are at a disadvantage from the 

point of view of polar satellites because of short and infrequent pass times. In these 

highly inclined orbits, each LEO satellite appears above the horizon for only 10 to 15 

minutes per pass on the average. On the equator there may be at m ost 2 or 3 good 

passes on any one day. In the regions around the equator, a re-visit time of 16 days 

for remote sensing applications is not uncommon. In Tables 6.4-6.6 we can see the 

parameters used for the orbit, the target, gi'ound station and the spacecraft. The 

sim ulation runs for ju st over 100 orbits, which equates to over 6 m ission days. In 

Figures 6.13-6.24 we can see the results o f the simulation.
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P aram eter Vahme
Sem i major axis (km) 6788.14
Eccentricity 0
Inclination (deg) 0
Right ascension (deg) 0
Argument o f perigee 0
Orbital period (sec) 5677

Table 6.4 Orbital Parameters

P aram eter V alue
Ground station latitude (deg) 0
Ground station longitude (deg) 0
Target latitude (deg) 0
Target longitude (deg) 180

Table 6.5 Ground station and target parameters

P aram eter V alue
M aximum battery charge (KJ) 24
M inimum battery charge (KJ) 8
Initial battery charge (KJ) 16
M aximum temperature (K) 350
Minimum temperature (K) 220
Initial temperature (K) 300
M aximum data storage (M bits) 5
M inimum data storage (M bits) 0
Initial data storage 0
Battery charge accessibility 1
Recording accessibility 1
Transmission accessibility 1
M om ent o f Inertia (Kgm  ) 60

Table 6 .6  Spacecraft parameters
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The considerations m ade for the polar orbit case could be easily repeated for the 

equatorial orbit, when looking at the internal tem perature and battery charge. Once 

again it is easy to see how the Sun availability strongly affects both the internal 

tem perature and the battery charge. It is worth noting however, how there is an 

approxim ately 15 orbit cycle during which the battery charge reaches a slightly lower 

value than average. This happens in connection with a slightly higher value than 

average for the tem perature, once again highlighting the coupling between the two 

state variables. The explanation o f this phenom enon can be the following: every 15 

orbits the spacecraft reaches the threshold tem perature of 240 °K in an earlier portion 

o f the eclipse than usual. Therefore the heater is activated sooner and as a 

consequence the battery has a higher discharge rate.

It is more interesting how ever to note the differences in the two cases with 

regards to the data management. The difference is apparent by comparing the 

evolution of the data stored (Fig 6.5 and 6.17) and the data transm itted (Fig 6.7 and 

6.19) in the polar orbit case, and in the equatorial orbit case. W e can see that in the 

equatorial case the data handling appears to have a far more regular pattern. This can 

be easily understood and explained by com paring the target (Fig 6.6 and 6.18) and 

ground station (Fig 6.8 and Fig 6.20) availabilities in the two cases.
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In the equatorial orbit the spacecraft has a regular viewing pattern of both the 

target and the ground station, due to the characteristics o f the orbit, and the location 

of the environm ental resources. The satellite orbits over the target and ground station 

every orbit and the availability of the resource is always maximum , as the fly over is 

vertical. On the other hand for the polar orbit, the spacecraft does not view the target 

and ground station during each orbit period, due to their location with respect to the 

satellite orbit. The resource availability is also always less than maximum , as the 

spacecraft never flies directly over them. This means that not does only the spacecraft 

in equatorial orbit have more opportunities of recording and dow nloading data, but 

that the drk products associated with these behaviours are generally higher due to the 

higher environm ental cues than for a polar orbit. Also, the longer time spent in view 

of the target or ground station means that the spacecraft can record or download more 

data. Finally, it can be seen that because of what has just been explained, the 

spacecraft in equatorial orbit transmits more data to the ground station than when in 

polar orbit; in fact one order of m agnitude more.

Once again it is interesting to look at the behaviour of the spacecraft’s state 

variables, battery charge, memory level and internal tem perature, during this mission. 

This is shown in Figures 6.21-6.24 where the state variables are first viewed in a 

three-dimensional state space and then projected in a two-dim ensional state plane to 

facilitate the interpretation of the data. Again we can see that the spacecraft settles 

down to a limit cycle after an initial transient of a few orbits, due to the difference 

between the initial conditions and the nominal operating conditions. W e can see how 

the two most critical state variables, battery charge and internal tem perature, stay both 

well within the lethal limits during the mission and, again, never once is the 

spacecraft put into a situation which could lead to a perm anent failure.
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6.3 OPPORTUNISM

As was shown in the previous section, the action selection algorithm manages 

the spacecraft tasks readily. It is in displaying opportunism  however, that this 

algorithm  has an advantage over a traditional controller, which sim ply selects tasks 

based on the most pressing need. In Figures 6.25-6.27 we can com pare the deficits of 

the state variables with the spacecraft’s cue-deficit products and behaviour. It can 

easily be seen that there are several instances in which the spacecraft does not select 

the behaviour associated with the highest deficit. This is because the action selection 

algorithm decides what to do, based not only on the deficit of the state variable, but 

also on the environm ental cues associated with that particular behaviour. For 

exam ple, if the spacecraft has a high transmit deficit and a lower charge deficit, it 

m ay still opt to charge the battery if sunlight is available and the visibility of the 

ground station is low. This is clearly an opportunistic behaviour. It should also be 

noted, in Figure 6.25, how the transm ission deficit and the recording deficit are 

strictly coupled. Following the definition of the two deficits in Chapter 3, we can see 

that the evolution of one mirrors the other: as the recording deficit decreases, the 

transm ission deficit increases by the same amount. As can be seen clearly from 

Figure 6.26, the drk  products associated with the different behaviours depend from 

the environm ental cues, and will be greater than zero only when a resource is present. 

In Figure 6.27 we can see how the spacecraft alternates between behaviours as it 

m oves along its orbit. There are several points during the mission sim ulation in which 

none of the environm ental resources -  Sun, tai'get and ground station -  are present 

and therefore the spacecraft simply drifts without perform ing any behaviour.
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6.4 ATTITUDE CONTROL ALGORITHM

We will now evaluate the performance of the attitude control algorithm 

introduced in Chapter 4. As was explained in Chapter 5, once the spacecraft has 

determined where the environmental resource associated to a particular behaviour is, 

it has then to perform a slew to reach it. A potential field is generated as a function of 

the desired attitude angles necessary for the slew m anoeuvre. Torques are then 

generated to slew the spacecraft to the desired orientation. We perform the analysis of 

the attitude control algorithm in the case of the equatorial case. The orbital, 

environmental and spacecraft param eters are listed in Tables 6.4-6.6. In the case of an 

equatorial orbiter, 6\ will be the more solicited attitude angle as it relates to the East-
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W est orientation of the spacecraft. In the case o f a polar orbit 0^ will be the more 

solicited attitude angle as it is related to the North-South orientation o f the Spacecraft. 

As explained previously, the spacecraft has to rapidly change attitude to track the 

ground station, the target and the Sun. The required attitude orientation for ground 

station and target tracking are given by the pointing algorithm introduced in Chapter 

5. To track the Sun the required attitude angles are d\ -  Qi = 0 °  since the Sun is 

assum ed to be fixed along the X  inertial axis. In Figures 6.28 and 6.29 we can see the 

results for such a simulation. In Figure 6.28 we see how the control algorithm  forces 

6\ to follow the desired attitude necessary for target tracking. As the spacecraft flies 

over the target the spacecraft maintains its pointing towards it. Once the target is out 

of view, the control algorithm changes the spacecraft attitude to track the Sun. In 

Figure 6.29 we see how the control algorithm forces Q\ to follow the desired attitude 

necessary for ground station tracking. As the spacecraft riies over the ground station 

the spacecraft maintains its pointing towards it. Once the ground station is out of 

view, the control algorithm  changes the spacecraft attitude to track the Sun. It can 

easily be seen therefore, how the control algorithm, introduced in Chapter 4, guides 

the spacecraft to successfully follow the desired orientation to track the Sun, target 

and ground station.
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In Figures 6.30 and 6.31 we can see the evolution of the angular velocity and the 

control torques for the spacecraft. W hen the spacecraft has to slew between different 

targets, the control algorithm comm ands the torques that have to be applied to reach 

the desired attitude by following Equation 4.18. As the reaction wheels produce the 

required torques, the spacecraft at rest, increases its angular velocity. W hen the final 

attitude is reached the spacecraft is set back at rest, until another target slew has to be 

performed. In Figures 6.32 and 6.33 we can see how the potential and potential 

derivative vary during the spacecraft m ission. As a new target has to be reached and a 

potential field generated, the control algorithm forces the spacecraft towards the 

desired attitude. As the spacecraft is moving towards the goal attitude, the potential 

decreases until it reaches zero when the desired attitude has been attained. Finally it 

should be noted that the potential derivative is always negative, thus satisfying the 

conditions laid down by Lyapunov’s Second Method.
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6.5 ENERGY MANAGEMENT

It is interesting to note how the spacecraft m anages its internal energy 

available through the battery, and the external energy available through the Sun and 

solar array during its mission, shown in Figure 6.34. The spacecraft has a steady load 

of 0.2 W atts, which is used to power all the on-board sensors, subsystems and central 

processing unit (CPU) that have to always be operational. As the spacecraft alternates 

between behaviours, such as recording or downloading data, the consum ed power 

increases as either the camera or the transm itter are active. There is also a power 

dem and from the attitude control subsystem as the spacecraft has to activate the 

reaction wheels to slew between targets. It is interesting to note that, as expected, the 

highest power consum ption occurs when the spacecraft is in eclipse. During this 

phase of the orbit the tem perature decreases to the lower tem perature threshold value, 

which then activates the heater. The heater is therefore turned on to maintain the 

internal tem perature above the lower lethal value and the pow er consumption 

increases greatly, reaching 10 W atts. As the spacecraft m oves out o f eclipse, and 

returns to sunlight, the internal tem perature increases, the heater is switched off and 

the consum ed pow er drastically decreases. During the sunlit portion o f the orbit the

solar panels produce a steady power of 8 W atts, which is used to pow er the spacecraft

and recharge the battery, drained during the eclipse.
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6.6 HARDWARE FAILURES

To test the robustness o f the action selection algorithm, the spacecraft is 

subjected to non-critical hardware failures. The failure o f the solar array, the 

transmitter and the payload are investigated. It will be shown that the spacecraft 

successfully reschedules its tasks to account for the degraded performance o f the solar 

panel, transmitter or payload. A failure o f the Sun sensor or global positioning system  

(GPS) would be far more critical as the spacecraft would not receive any cues as to 

the presence o f the environmental resources. If such a failure would occur the 

spacecraft would not be able to continue its operation autonom ously.
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6.6.1 Solar Panel Failure

Results for a simulation where 50% of the solar panel fails during a mission 

are shown in Figure 6.35. The aiTay fails after 30 of the 70 orbit m ission simulation. 

This failure means that the accessibility associated with the charging behaviour is 

reduced from 1 to 0.5. This decrease will obviously influence the action selection 

algorithm in the form of the drk  product associated with the charging behaviour. A 

partial damage to the solai* panel also implies a reduction in the am ount of power that 

the solar airay can produce, decreasing from 8 W atts to 4 W atts. The battery charge 

settles into a periodic pattern after a few orbits, and the spacecraft starts recording 

data, and after approxim ately 4 orbits, downloading data. Follow ing the solar airay 

failure, after an initial transient due to the new operational conditions, the battery 

charge settles down to another periodic pattern, which has a slightly lower average 

charge, but nonetheless ensures the spacecraft’s survivability. It can be seen that this 

failure does not com prom ise the mission as the spacecraft continues recording and 

downloading data. In fact, we can see that there is not a big difference when 

com paring the data handling before and after the solar anay  failure. It is therefore 

shown that the spacecraft successfully reschedules its tasks to account for the reduced 

capabilities of the solar panel.
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6.6.2 Payload Failure

Results for a simulation where 50% of the payload capacity fails during a 

m ission are shown in Figure 6.36. The payload fails after 30 of the 70 orbit mission 

simulation. This failure means that the accessibility associated with the recording 

behaviour is reduced from 1 to 0.5. This decrease will obviously influence the action 

selection algorithm in the fotm  of the drk  product associated with the recording 

behaviour. A partial damage to the payload cam era also implies a reduction in the 

amount o f data that is recorded, decreasing from 5000 bits to 2500 bits. It can be seen 

that the amount o f data stored increases far less rapidly after the payload failure as the 

reduced accessibility affects the drk  product associated with this behaviour. As was 

shown in the section 6.3, the recording deficit is coupled with the transmission 

deficit, therefore a reduced payload activity implies a reduced transm itter activity. 

This is because, if data is stored at a low rate, due to a payloEid failure, the 

transmission deficit will grow slowly. It can be seen that less data is stored after the 

failure and as a consequence less data is transm itted back to the ground station. 

Nevertheless the spacecraft successfully reschedules its tasks to account for the 

reduced capabilities of the payload.
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Figure 6.36 Spacecraft performance during partial payload failure
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6.6.3 Transmitter Failure

Results for a simulation where 50% of the transm itter capacity fails during a 

m ission are shown in Figure 6.37. The transm itter fails after 30 o f the 70 orbit 

m ission simulation. This failure means that the accessibility associated with the 

transm itting behaviour is reduced from  1 to 0.5. This decrease will obviously 

influence the action selection algorithm  in the form  of the drk  product associated with 

the transmitting behaviour. A partial damage to the transm itter also implies a 

reduction in the amount of data that is downloaded to the ground station, decreasing 

from 10,000 bits to 5000 bits. Once again we can see the coupling that exists between 

the recording and transmitting behaviours. As less data is downloaded to the ground 

station because of the reduced transm itter capabilities, the m em ory storage decreases 

less rapidly than before the failure. This means that the deficit associated with the 

recording behaviour decreases more slowly than before, and therefore to account for 

this, less data can be acquired and stored. It is shown however that once again the 

spacecraft successfully reschedules its tasks to account for the reduced capabilities of 

the transmitter.
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Figure 6.37 Spacecraft performance during transmitter failure
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6.7 COST FUNCTION ANALYSIS

As was explained in Chapter 3, the choice o f a particular cost function has the 

potential for m odifying the overall perform ance of the artificial autonom ous agent. 

This is due to the relationship between the cost function and the deficit o f a resource. 

The deficit is defined as the partial derivative of the cost function with respect to that 

paiticulai- resource, as shown in Equation 3.30. Our aim is now to understand if the 

satellite exhibits different overall perfoiTnances depending on the type of cost 

function associated to its state space [Radice et al. 2000]. W e will now choose four 

quadratic cost functions to determine which one provides the best performance. The 

best spacecraft perform ance is defined here as the amount of data received by the 

ground station while not placing itself in an irrecoverable position. W e will compare 

a normal quadratic cost function with other cost functions that em phasize either the 

energy aspect or the work aspect of the spacecraft. As we explained in Chapter 3, 

work is defined as data handling, either recording or transm itting infonnation, while 

energy is defined as battery charging. The cost functions are defined as:

C; = +r

C-^ =  b "  + / “ )

where a, and Pi are scaling factors inserted in the cost function equation to 

increase the weight of energy and work respectively. The values chosen for the 

scaling factors are the following: a =  = 10 and p i ~  50. In Figure 6.38 we can see 

the result of a 70 orbit sim ulation. The spacecraft, environm ental and orbital
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parameters are listed in Tables 6 .4-6.6, It can easily be seen that the cost function C2, 

which em phasises energy acquisition provides the worst spacecraft performance. This 

is because almost any time the spacecraft is in sunlight, it will slew  towards the Sun 

and charge the battery, even if target or ground station may be present for data 

recording or download. The quadratic cost function Ci, provides a good performance 

averaging the battery charging with data handling, reaching a spacecraft performance 

one order o f magnitude greater than C2. It is however with the work cost functions, C3 

and C 4, that we obtain the best spacecraft performances. In this case the spacecraft 

w ill, almost always, record and transmit data when flying over the target or ground 

station. A lm ost twice the volum e o f data is transmitted with a work cost function than 

with the normal cost function.

X 10

4.5

3.5

I  2 .5
sh-

§

0.5

706020
Orbits

Figure 6.38 Cost function comparison
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6.8 CONCLUSIONS

An innovative and appealing m ethod for spacecraft task selection, introduced 

in Chapters 3, 4 and 5, has been here tested to assess its perform ance. It was shown 

that the action selection algorithm successfully sequences tasks to achieve both, 

m ission goals and spacecraft survival. The differences in peiform ance between a 

spacecraft in a polar orbit and an equatorial orbit were investigated. It was also shown 

that this particular behavioural algorithm  displays a degree o f opportunism  that is 

difficult, if not impossible, to code into traditional controllers. The performance of the 

attitude control algorithm was assessed and found to be good as the spacecraft is 

slew ed between objectives to track the target, ground station or Sun. To test the 

robustness of the action selection algorithm, the spacecraft was subjected to non

critic al hardware failures. It was shown that the spacecraft successfully reschedules 

its tasks to account for the degraded peiformances of the solar anay , payload or 

transmitter. Finally an investigation of how the choice of the cost function affects the 

spacecraft performance was earned  out, and an optimum work-based cost function 

explored.
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CHAPTER VII

CLUSTERED SPACECRAFT

7.1 PREFACE

In this chapter we will be considering a cooperating spacecraft constellation. 

W e will at first try and understand why there is cooperation in biological systems and 

then identify the conditions under which autonomous agents may benefit from 

cooperation. This will be then used to extend the concept of a single spacecraft 

introduced in Chapter 6 to a cluster of cooperating spacecraft.

7^INTltOIHjCTnK)N

The fact that a highly autonomous agent, capable of functioning in a changing 

environm ent has still to be created has led artificial intelligence researchers to 

propose the organization of several sim pler robots into collections of cooperating 

populations [Jung 1995]. It has been hypothesised that system s of multiple 

autonomous agents should prove more efficient and more fault tolerant due to their 

number, more cost effective due to their individual relative sim plicity and more 

flexible in their worldng configurations due to their redundancy, than a single more 

complex agent [Taipale and Shigeold 1992]. The concept of cooperation has been the
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subject of countless philosophical ponderings. Cooperative behaviour, in one form or 

another, has been investigated by many brilliant individuals in the fields of 

economics, anthropology, psychology, evolutionary biology and more recently 

robotics. It is however important to understand that ‘cooperation’ is a word, 

something which helps define a human concept. In this case, the concept refers to a 

category of human, animal and also artificial agent behaviour. It does not follow that 

this behaviour is necessarily beneficial to the people, animals or artificial agents 

involved. As we shall see later, animal and human cooperative behaviour is a 

conglom erate of various behavioural tendencies selected for different reasons. 

However, since the design of cooperative autonomous agents is in a different context, 

we would like to understand why humans and animals cooperate so that we can 

determine if the same principles and benefits apply to autonomous artificial agents.

7.3 COOPERATION IN BIOLOGICAL SYSTEMS

The theory of biological evolution is based on the concept o f survival of the 

fittest [Darwin 1859]. D arw in’s theory of natural selection implies that individuals 

behave in a com pletely selfish m anner to increase their own fitness, yet cooperation is 

comm on between members of the same species and even members of different 

species. Therefore, the question of why do biological organisms cooperate arises. 

Darwin resolved this paradox by outlining inclusive fitness theory more than 100 

years before Ham ilton [Hamilton 1963]. He recognised that, if natural selection 

operated at colony or group level, then many features of the individuals, including 

their cooperative behaviour and altruistic tendencies were readily understandable.
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The emotions that have evolved to support cooperation between mates, 

siblings and other kin, have, thus far, a genetic basis. These do not explain why 

hum ans and animals are altruistic towards and cooperate with individuals with whom 

they are unrelated. The process by which altruistic relationships arise between 

unrelated individuals is called reciprocal altruism [Trivers 1971]. There are, however, 

a num ber of prerequisites to be m et before an evolutionary stable strategy will arise. 

The cost of an altruistic act m ust be low in relation to the received benefit. 

Individuals must be able to recognise each other as individuals and be capable of 

keeping track of their history in previous dealings, including detecting cheaters. In 

addition, stable groups are required for the same individuals to encounter each other 

repeatedly in situations that present opportunities for altruistic acts. When these 

prerequisites are met, individuals can cooperate following the tit-for-tat strategy 

[Axelrod 1984].

Prim ate societies, including humans, are based on a dom inance hierarchy. 

The individuals who are at the top of the hierarchy are com m anding the greatest 

resources, such as access to females, power over other individuals, food and 

protection. W ith the advent of language, one of the most im portant resources became 

information. Two individuals can profit by forming a relationship based on reciprocal 

altruism, an alliance or friendship. This provides the opportunity to barter these 

resources, and information, for mutual benefit. The strength o f the alliance, or the 

willingness to cooperate, is based on the amount of trust between the individuals 

involved. The type o f relationship requires that individuals can uniquely identify each 

other and rem em ber past dealings.

2 1 3



Chapter VII Clustered Spacecraft

7.3.1 Cellular Cooperation

Cooperation between sim ple organisms on Earth is alm ost as old as life. 

Biologists have long understood that bacteria live in colonies, but only recently has it 

becom e evident that most bacteria comm unicate using a num ber o f sophisticated 

chemical signals and engage in altruistic behaviour [Kaiser and Losic 1993]. The 

chemical signals only have a m eaning when interpreted in the behavioural context. 

The resulting cooperative behaviour is an emergent consequence of the behaviour 

policy indirectly genetically encoded in each individual. M ulti-cellular organisms, 

such as insect and animals, are also a common example of cellular cooperation. In 

this case however, the cells cooperate not just by taking on specialised behaviour in 

particular circumstances, but also by having evolved differentiated forms. The key 

issue is that comm unicated signals have no intrinsic meaning; they have a meaning 

when inteipreted. Therefore a signal may have two possible meanings, one according 

to the ‘speaker’ and one according to the ‘listener’, and they may not be the same. 

Only when the signal is interpreted correctly, will there be efficient cooperation.

7.3.2 Social Insects Societies

The idea of the social insect colony as a superorganism  can be dated back to 

the end of the 19̂  ̂ century [W eismann 1893]. O f the social insect societies the most 

thoroughly studied are those of ants, bees, termites and wasps [W ilson 1971, Wilson 

1975, Crespi and Choe 1997]. M uch of what has been learned has been applied to 

robotics [Srinivasan et al., 1997]. Ants display a large ainay of cooperative 

behaviours, only some of which will be described. Just like bacteria, ants use
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interaction with the environm ent to im plem ent cooperative foraging. Upon describing 

a new food source, a worker ant leaves a pherom one trail during its return^ to the nest 

[Pasteels et al., 1987]. Recruited ants will follow this trail to the food source with 

some valuation while laying their own pherom ones down. Any variations that result in 

a shorter trail to the food will be reinforced at a slightly faster rate, as the time back 

and forth is less. Therefore, it has been shown that a near optimal shortest patch is 

quickly established as an emergent consequence of simple trail following with 

random  variation.

7.3.3 Primate C oopera tion

Primates, just as other animals, use interaction via the environment, 

interaction via sensing and interaction via comm unication during cooperation. What 

distinguishes prim ates from other animals is their sophistication in learning and 

representing internal goals, plans, dispositions and intentions of others and their 

ability to construct collaborative plans jointly  [Bond 1996]. All primates, humans 

included, obviously, have the ability to co-construct jo int plans with one or more 

interacting individuals, and flexibly adapt and repair them in real time. In this case 

the agent must adjust its action selection based on the evolution o f the ongoing 

interaction. In order to achieve interlocking coordination each action may be 

conditional on the situation, including the successful completion of appropriate 

actions by collaborators. Each agent attempts different plans, assesses the actions, 

plans and goals of others, and alters the selection of its own actions and goal to 

achieve a m ore coordinated interaction where jo in t goals are satisfied. Perceived 

actions and intentions of other primates are obtained by visual and auditory cues. This
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provides a comm unication channel through which joint action can be sought,

established and controlled. In the case of non-human prim ates, much of this

comprises passive observation of collaborators. Hum ans however, make heavy use of 

explicit communication, and comm unicative acts can be considered behavioural 

actions just as m uch as physical acts.

7.4 COOPERATION IN ARTIFICIAL MULTI AGENT SYSTEMS

W e have seen that the three main reasons why animals and humans cooperate 

are to secure reproductive opportunities [Maynard Smith 1978, Halliday 1994], to 

promote genes shared with kin [Hamilton 1964, Dawkins 1996] and to barter 

resources for mutual benefit [Trivers 1971, Axelrod 1984]. Unless artificial agents are 

endowed with some sort of biological-like reproductive m echanism s, it is unlikely 

that they will find the first two reasons beneficial. On the other hand, artificial agents 

can benefit from displaying reciprocal altruism towards each other. So how can we 

use the lessons learnt from cooperation in biological systems, and apply them to 

artificial autonomous agent?

W e will start by following Franklin’s typology of cooperation, shown in 

Figure 7.1, placing it in the context of multi agent systems and then defining specific 

types of cooperation [Franklin et al. 1996].
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Discrete

NegotiatingDeliberative

Independent

Com m unicative

Cooperative

Non-Com m unicative

Emergent
Cooperation

M ulti Agent Systems

Figure 7.1 Cooperation Typology

A multi-agent system is independent if each agent pursues its own agenda 

independently from others. A m ulti-agent system is discrete if it is independent, and if 

the agendas of the agents bear no relation to one another [Franklin and Graesser 

1997]. Discrete systems involve no cooperation. However, agents can cooperate with 

no intention of doing so. The spacecraft constellation, which will be introduced later, 

forms an independent system, each following the agenda of recording and 

downloading data [Radice et al. 1998]. A balanced m em ory load among the 

constellation is an emergent behaviour of the system in that, from the observer’s point 

of view, the spacecraft appear to be working together, but from the spacecraft’s 

viewpoint they are not. They are simply canying  out their own individual behaviour. 

The complement of independent systems are systems in which the agendas of the 

agents include cooperating with other agents in the system in some way: cooperative 

systems. Such communication can either be comm unicative, in that some agents 

communicate, through the intentional sending and receiving of signals with each 

other in order to cooperate, or it can be non-communicative. In the latter case, agents 

coordinate their cooperative activity by each observing and reacting to the behaviour
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of Others. Intentional comm unication can take at least two forms: agents can 

deliberate or they can negotiate. In deliberative systems agents jo in tly-p lan  their 

actions so as to cooperate with each other. Negotiating system s aie similar to 

deliberative systems, but have an added aspect of competition.

W e have seen how layering arises in biological system s due to the way 

evolution functions, and noted that some of the same benefits can be had in artificial 

autonomous agents. The lowest layer will use interaction via the environm ent, with 

no explicit comm unication so that the spacecraft perform their tasks unaware of any 

neighbour. However, we saw that awareness can increase cooperative task 

performance, and this will be achieved by a second layer which uses interaction via 

sensing: the spacecraft will be aware of the presence of one or more neighbouring 

satellites through some appropriate Inter-Satel 1 ite-Link. By using interaction by 

comm unication in the third layer, perfom iance can be further enhanced. In this case, 

the spacecraft will be aware of a neighbouring spacecraft’s state and use this 

information proficiently.

7.5 SELF-ORGANISING SPACECRAFT CONSTELLATION

Self-organisation has three important characteristics. First, a self-organising 

system can accom plish complex tasks with little and simple behaviour. Secondly, a 

change in the environm ent may influence the same system to generate a different task 

without any change in the behavioural characteristics. Finally, any small differences 

in individual behaviour can influence the collective behaviour of the system. 

Therefore, com plexity of a system  is compatible with sim ple and identical
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individuals, as long as comm unication among the members can provide the necessary 

amplifying mechanism . W hat makes a self-organising system  advantageous is the fact 

that it is based on individual agents requiring simple program m ing and 

comm unication. This collective behaviour will have an “adaptive” character. Such a 

system is therefore simple, reliable and adaptive, with only a few basic rules needed 

to define individual behaviour and interactions. Furthermore, the breakdown of one 

agent will not affect the whole group. A single satellite can provide only partial 

coverage of the planet it is orbiting. To obtain the global coverage for remote sensing 

needed in many future planetary missions there is the need to deliver several 

satellites. Once the geometry and orbits have been determined, so that their coverage, 

or footprints, overlay the planet we have established a constellation.

The action-selection model we introduced in Chapter 6 for a single satellite, is 

now expanded to a spacecraft constellation. Sibly and M cFarland have successfully 

proven that adding extra tasks to an autonomous agent using the cue-deficit action 

selection model is relatively simple [Sibly and M cFarland 1976]. The new behaviours 

are each associated with a deficit, availability and accessibility. The behaviour which 

will be performed is, as explained in Chapter 3, the one with the highest drk product. 

T h e  sp acecraft are  now  en d o w ed  w ith  the ab ility  to tran sfe r s to red  da ta  

be tw een  each  o ther. Therefore the single satellite, in addition to the possibility of 

charging the battery, storing data and transmitting data to the ground station has now 

the possibility of perform ing a new behaviour. This new behaviour is to transmit data 

to a neighbouring satellite as shown in Figure 7.2. A spacecraft with full memory, and 

not in sight o f the ground station, can transmit part of the stored information to a 

neighbouring spacecraft that has more memory space available.
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Ground
Station

Memory Full

Figure 7.2 Co-operating satellite constellation

The introduction o f a new behaviour demands the introduction o f the deficit, 

availability and accessibility associated with it. The new deficit w ill be termed the 

satellite deficit and for satellite i has the follow ing expression:

m- -  mj
[7.1]

m.

where m\ is the current memory load on satellite i and mj is the memory load on 

satellite y. This deficit w ill be higher as the difference between the memory loads on 

the two spacecraft increases. The rate at which the behaviour can be performed is 

related to the availability associated with this behaviour, as w e saw in Chapter 3:

s  = -  
Ü 'j >j

[7.2]
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with the availabilty between satellite i and j  defined as:

.5 = 1' [7,3]
0 / not visible to j

with z = 1 -  n and j  = 1 -  n, where n is the total num ber of spacecraft in the 

constellation. The cost function for the satellite will therefore be m odified by the

addition of the satellite deficit:

C + r + m ^ + Y . S  [7.4]
i l l  I ij

Once again, using Pontriaygin’s maximisation method allows us to find the optimal 

behaviour, which at any time is the one associated with the highest drk product. 

Every spacecraft will now be able to perform one of the following behaviours:

Max[Z)-rsundCsun] => Charge the battery [7.5a]

Max[;7Z-rtargct7ctaiget] Record data [7.5b]

M a x [f-r g ,o u n d  Station'/Cgroundstation] => Transm it to Earth ground station [7.5c]

Max[i'ij-rfij-/dij] => Transm it to neighbouring spacecraft [7.5d]

This leads to a modification of the action selection Simulink model shown in Chapter 

5. In Figure 7.3 we can see the new model. Data is passed between satellites through 

an Inter-Satellite-Link at a rate of 2500 bits/sec and requiring a power consumption of 

1 W att [Wertz 1992].
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Figure 7.3 Action selection model for spacecraft in constellation
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7.6 CASE STUDY

Let us consider the situation o f an eight spacecraft constellation orbiting the 

Earth in a circular polar orbit with a radius o f 7000 km. This orbital radius has been 

chosen since this is the minimum altitude to allow a spacecraft to be in sight o f  

another neighbouring spacecraft and therefore be able to transmit data between each 

other. In Figure 7 .4  w e can see the geometrical considerations for this problem.

Satellite 1

\  L ine o f  sight

Satellite 2

Figure 7.4 Geometrical considerations for spacecraft to spacecraft line o f sight
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In the case of an equally spaced, eight spacecraft constellation there is a 45° angle 

between neighbouring satellites. Therefore the m inimum  altitude requirem ent is given 

by the following simple trigonometric relationship:

= 6904 km [7.6]
cos(22.5)

where /?o.bit is the minimum orbital radius required for two neighbouring spacecraft 

to be in sight of each other, and /dearth is the orbital radius of Earth.

In Tables 7.1-7.3 we can see the orbital, environm ental and spacecraft 

param eters selected for the case study. The simulation runs for 60 orbits. In Figures 

7.5-7.8 we can see the results of the simulation.
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Parameter Value
Semi major axis (km) 7000
Eccentricity 0
Inclination (deg) 86
Right ascension (deg) 0
Argument o f perigee 0
Orbital period (sec) 5826

Table 7.1 Orbital Parameters

Parameter Value
Ground station latitude (deg) 40
Ground station longitude (deg) 0
Target latitude (deg) 57
Target longitude (deg) 180

Table 7.2 Ground station and target parameters

Parameter Value
Maximum battery charge (KJ) 24
M inimum battery charge (KJ) 8
Initial battery charge (KJ) 16
M aximum temperature (K) 350
Minimum temperature (K) 220
Initial temperature (K) 300
M aximum data storage (M bits) 5
M inimum data storage (M bits) 0
Initial data storage (M bits) 0
Battery charge accessibility 1
Recording accessibility 1
Transmission accessibility 1
Spacecraft-to-spacecraft accessibility 1
M om ent o f Inertia (Kgm^) 60

Table 7.3 Spacecraft parameters
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In Figure 7.5 we can see the total amount of data, which is being transm itted by the 

spacecraft. As can be appreciated there is an almost constant stream  of data being 

received by the ground station. This can be understood easily by looking at Figure 7.6 

which shows see the global availability of the ground station. The global availability 

is defined as the sum of the ground station availabilities for each individual satellite. 

The spacecraft start downloading data after approximately 5 orbits: this because each 

spacecraft has to fill up its internal memory before the drk  product associated with 

transmitting the data to a neighbouring spacecraft can ‘com pete’ with the other 

behaviours. It should also be noted that there is an almost constant flux of infonnation 

being received by the ground station as at least one spacecraft is always in view of the 

ground station, again as can be seen from Figure 7.6. It should also be noted how, as 

was explained in Chapter 5, the availability changes as the spacecraft move in their 

orbit and the ground station rotates below them with the Earth. Also there are several 

instances in which two or more spacecraft can view the ground station, highlighted by 

the increase in amount of data received.
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Figure 7.5 Data received by ground station
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Figure 7.6 Ground station availability for constellation
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W hat is m ore interesting however is to have a closer inspection of what 

happens with the individual satellites in Figures 7.7-7.8. Generally, as satellite j  

transmits data to the Earth ground station, its available m emory space increases. This 

will lead to an increase in the satellite transmission deficits of the two neighbouring 

satellites .yj-i and 5j+i. Depending on the m agnitude o f the other drk  products the 

neighbouring satellites will therefore be able to transmit data to satellite j  should this 

behaviour prevail. In the case of Figure 7.7 and 7.8 we can see that satellite 3 has 

available memory space and satellite 4, not being able to download data to the Earth 

ground station has the opportunity of decreasing its m emory load deficit by 

transm itting data to it. Similarly as satellite 4 is dum ping part of its stored data to 

satellite 3 its m emory load will decrease. This means that its satellite transmission 

deficit will increase and therefore satellite 5 will have the possibility of reducing its 

stored memory by transmitting data to satellite 4. This data flow has two positives 

effects which affect both the individual spacecraft and the overall constellation: the 

first is reducing the memory load of the individual spacecraft and therefore having a 

more balanced load throughout the constellation, the second is having an almost 

constant stream of data reaching the ground station.
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Figure 7.7 Data stored for satellites 3, 4 and 5.
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Figure 7.8 Data transmitted from satellite 5 to satellite 4, and satellite 4 to satellite 3
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7.7 SPACECRAFT FAILURE

Once again it is vital that the action selection algorithm is tested to determine 

its robustness. Having considered individual com ponent failures in Chapter 6 we will 

now look at what happens in the case of a total spacecraft failure within a 

constellation [Radice et al. 2001]. A m ission scenario is proposed, where the orbital, 

environmental and spacecraft param eters are listed in Tables 7.1-7.3. An eight 

spacecraft constellation, orbits the Earth in a low polar orbit, o f which only two are 

equipped with a transmitter to down-link data to a ground station. The rem aining six 

spacecraft, equipped with Inter-Satellite-Links only, will therefore have to rely on the 

two transmitting spacecraft to download all data back to the ground station. It is 

expected that the behavioural algorithm will be able to account for this situation and 

successfully schedule the tasks to ensure that as much data as possible is transmitted 

back to Earth. After just over 40 orbits, one of the two transm itting spacecraft is 

failed, leaving the six spacecraft to rely solely on the rem aining main spacecraft. It is 

expected that the action selection algorithm  will reschedule the sequential behaviour 

to take into account this new situation, and still manage to accom plish the mission 

goal of downloading data, while never placing itself in an irrecoverable position. In 

Figures 7.9-7.10 we can see the results of such a simulation. It would be expected that 

the two transmitting spacecraft would download a sim ilar volume of data, but we can 

see that one broadcasts a larger amount than the other in Figure 7.9. However, 

looking at the situation more closely, this behaviour is consistent with the action 

selection algorithm; as more data is sent to the ground station the bigger the size of 

the available m emory becomes, into which the neighbouring satellites can transmit 

part of their load. This behaviour can also be explained and understood by loolring at
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the availability of the ground station with respect to the two transm itting spacecraft in 

Figure 7.10. W e can see that before the failure, spacecraft 2 has higher average 

ground station availability than spacecraft 1. This means that, not only the drk  

product associated with the ‘transm it’ behaviour will be greater, but also that the time 

spent flying over the ground station will be longer. This has the implication that more 

data can be downloaded to the ground station by spacecraft 2 com pared to spacecraft 

1. As a consequence, the available memory space will be larger for spacecraft 2 than 

for spacecraft 1, meaning that the neighbouring satellites can transm it more of their 

data to it. After the spacecraft failure we can see that the constellation successfully 

reschedules itself and that the one rem aining transmitting spacecraft is now 

downloading more data than before the failure. This is obvious, as spacecraft 1 is now 

the only satellite that can download data to the ground station. Therefore the rest of 

the satellites have to transmit their stored data to a neighbouring spacecraft until it 

reaches spacecraft 1 which will then proceed to the downlink. Again this purely 

em ergent behaviour is a result of the interaction of the rules being implemented on 

each individual spacecraft, and not built-in to the action selection algorithm  a priori.
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Figure 7.9 Data received by ground station
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Figure 7.10 Ground station availability
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It is interesting to note how this new configuration fares against a traditional 

constellation, in which all the spacecraft can download data to the groundrstation. In 

Figure 7.11 we can see the comparison in the data received by the ground station 

between a configuration in which eight spacecraft can transmit, and a configuration in 

which only two spacecraft can transm it data to the ground station. A fter 40 orbits one 

of the two transmitting spacecraft is failed leaving the second constellation with only 

one transmitting satellite. It can be seen that the ‘fu ll’ constellation performs better 

than the ‘tw o’ constellation, with the ground station receiving approxim ately 1.5x10^ 

bits of data more ju st before the spacecraft is failed. This should be expected as in one 

configuration there is always at least one spacecraft in view of the ground station, 

while in the other the viewing opportunities are more limited. Together with the 

reduced ground station availability, which can be appreciated com paiing Figures 7.6 

and 7.10, we also have to consider that the download time is lim ited by the fly-by of 

the spacecraft over the ground station. After just over 40 orbits one spacecraft is 

failed and the gap in performance between the two constellations increases. The 

reduction in the performance of the degraded constellation has to be expected, as 

there is now only one spacecraft that can download data to the ground station. We can 

see that in less than 30 orbits the difference in downloaded data is increased to 4x10^ 

bits.
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Figure 7.11 Comparison between 8 transmitting spacecraft and 2 transmitting spacecraft constellations.

7.8 COST FUNCTION ANALYSIS

As was done in Chapter 6 for the individual spacecraft, w e will now try to 

determine if  the satellite constellation exhibits different overall performances 

depending on the type o f cost function associated with its state space [Radice et al. 

2000]. W e will choose three different cost functions to determine which one provides 

the best performance. Once again the best spacecraft performance is here defined as 

the amount o f data received by the ground station, w hile not placing itself in an 

irrecoverable position. The spacecraft, environmental and orbital parameters are listed 

in Tables 7.4-7.6.
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Parameter Value
Sem i major axis (km) 7000
Eccentricity 0
Inclination (deg) 0
Right ascension (deg) 0
Argument o f perigee 0
Orbital period (sec) 5826

Table 7.4 Orbital Parameters

Parameter Value
Ground station latitude (deg) 40
Ground station longitude (deg) 0
Target latitude (deg) 180
Target longitude (deg) 0

Table 7.5 Ground station and target parameters

Parameter Value
M aximum battery charge (KJ) 24
Minimum battery charge (KJ) 8
Initial battery charge (KJ) 16
M aximum temperature (K) 350
M inimum temperature (K) 220
Initial temperature (K) 300
M aximum data storage (M bits) 5
Minimum data storage (M bits) 0
Initial data storage (M bits) 0
Battery charge accessibility I
Recording accessibility I
Transmission accessibility 1
Spacecraft-to-spacecraft accessibility 1
M om ent o f Inertia (Kgm^) 60

Table 7.6 Spacecraft parameters
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W e will compare a normal quadratic cost function Ci, with a quadratic cost function 

that emphasize the work aspect of the spacecraft C3 . As was explained in Chapter 3 

the choice of a quadratic function was for mathematical simplicity only, but any 

convex function could be used. The third cost function C2 , will therefore be of the 

exponential form.

where /?=  1 0  is a scaling factor inserted in the cost function equation to increase the 

weighting on performing useful work. In Figure 7,11 we can see the result of a 50 

orbit simulation. It can easily be seen that the cost function Ci, provides the worst 

spacecraft perfoimance. The quadratic cost function that emphasises work, C3, 

downloads close to twice the amount of data than a normal quadratic cost function. 

This because the spacecraft will, almost always, record and transmit data when flying 

over the target or ground station. The best perfoimance is however provided by the 

exponential cost function, Ci- This should have been expected as the cost function is 

strictly linked to the action selection algorithm through the deficit of a state variable. 

This is because the cost of possessing the deficit of a state variable increases 

exponentially, and not quadratically any more, the further away from the homeostatic 

equilibrium position.
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Figure 7.12 Cost function comparison

7.9 CONCLUSIONS

The action selection algorithm has been expanded from a single spacecraft to 

a constellation o f satellites. N ew  deficits, availabilities and accessibilities were 

introduced to account for the increased number o f tasks the spacecraft can perform. It 

was shown that the action selection algorithm successfully sequences tasks to achieve 

both m ission goals and spacecraft survival. To test the robustness o f  the action 

selection algorithm the constellation was subjected to critical failures. It was shown  

that the constellation successfully reschedules its tasks to account for the spacecraft 

failure. Finally an investigation o f the choice o f the cost function affects the 

performance o f  the constellation was performed.
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CHAPTER VIII

CONCLUSIONS

8.1 REVIEW

A review of spacecraft autonomy, and the approaches to this issue by the main 

international space agencies, NASA, ESA and ISAS, was initially performed in 

Chapter I. Together with this, an overview of current approaches to autonomy 

ranging from fuzzy logic, to neural networks, through expert systems was provided. 

The state space analysis was shown to be an appropriate framework for the multi

dimensional problems of autonomous behaviour in Chapter 2. Ethological studies of 

biological systems allow us to determine the causal factors of behaviour resulting 

from both the animal’s perception of the environment and its internal stimuli. This led 

to the introduction of the concept of motivational isoclines and switching lines, or 

surfaces, which separate the candidate states, which are a combination of behavioural 

tendencies. In Chapter 3 these ethological theories and methods were applied to 

autonomous agents. Mathematical foundations were introduced with the concept of 

cost function, availability and accessibility, and the optimal behaviour formalised 

through Pontryagin’s Maximum Principle. A flexible attitude control method was 

discussed in Chapter 4, where the development of the potential function method from 

Lyapunov’s Second Method and the application to spacecraft attitude control problem 

was introduced. The potential function method provides a robust, highly flexible
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control method, and in addition, stability, and convergence is ensured in a smooth 

manner. The method was applied in the case of a continuous torque control and a 

discrete on-off torque control. Multiple pointing constraints in the environment were 

added, through the introduction of a high potential region, and slewing to multiple 

intermediate attitudes before the final goal attitude was investigated. The 

environmental and spacecraft models were presented in Chapter 5. The cue-deficit 

method together with the potential function method were then used to control a 6 

degrees-of-freedom dimensional model of a spacecraft in Chapter 6 . To test the 

robustness of the spacecraft, the subsystems, solar an  ays, transmitter and camera, 

were subjected to various degrees of failure and it was shown that the spacecraft still 

accomplished mission goals, albeit in a degraded manner. The influence of different 

types of polynomial cost functions was then considered together with the analysis of 

different mission orbits. Finally, in Chapter 7, the single satellite model was expanded 

to a clustered formation and new spacecraft behaviours were introduced. Again to test 

the robustness of the algorithm, the constellation was subjected to failures, and it was 

shown that the total failure of a member of the cluster does not compromise the 

overall success of the mission.

8.2 RECOMMENDATIONS

We have introduced a scheme for sequencing tasks on-board a spacecraft. The 

action selection algorithm is easily implemented by virtue of its computational 

simplicity. Moreover, the strategy is derived from optimal control theory. The model 

is however somewhat simplified, and an actual spacecraft may have several more
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operational tasks that may be autonomously controlled or be scheduled or 

commanded by a ground station. This method however may easily incorporate 

additional tasks which will either form part of the action selection process, or which 

can be scheduled at a paiticular time by setting the drk product to equal unity at a 

fixed time. Adding extra tasks is relatively straightforward; each new behaviour will 

be given a deficit, availability and accessibility. The resulting behaviour will always 

be the one with the highest drk product. A significant advantage of such a method is 

that the spacecraft measures environmental parameters (such as the presence of 

sunlight or ground station) and internal parameters (such as battery charge and 

memory level). Complex models of the environment are not required to select the 

appropriate behaviour. Also, it is not necessary to have complex models of the 

spacecraft and its subsystems. If we consider the battery charge as an example, the 

model used for it is not directly relevant to the performance of the action selection 

algorithm; the algorithm uses the measure of the battery charge rather than using a 

model of the battery charge. Therefore, we can expect that the addition of more 

complex and numerous spacecraft subsystems will not change the qualitative 

behaviour of the algorithm.

Any future progress of this model can be divided into the near-term 

improvement of the constellation model, the medium-term enhancement of the 

potential function and action selection methodologies and the long-term development 

of a physical prototype. Expansion of the model of constellations of co-operating 

spacecraft to include more satellites, allow for sensor sharing and emergent solutions 

to achieve mission goals should be the first aim of any future work. We could, for 

example, envision the situation where advanced knowledge, such as satellite i 

informing satellite i -  1 that the target has cloud cover, is available. This would cause
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a change in the accessibility of the target for satellite i -  1 , and therefore a change of 

the drk products, so as to ensure that a more useful activity is performed.

With regards to the action selection methodology, rigorous analysis of the 

mathematical basis of the cue-deficit methodology to investigate extensions to the 

algorithm, for example to on-line learning, is expected, together with the detailed 

analysis of competing algorithms, such as fuzzy logic, stochastic methods, finite state 

machines or traditional scheduling methods. The extension of the methodology to a 

hybrid system with conventional scheduling algorithm as top-level planner and the 

reactive behaviour-based system below should be performed to evaluate its 

performance.

In the long term, with a view to producing reliable flight software, detailed 

definition of mission scenarios for single spacecraft and constellations, Earth orbiting 

and planetary missions, will have to be performed. High fidelity simulations of these 

scenarios will also allow the critical evaluation of the methodologies developed 

during the course of future work. The method should also be extended to include a 

detailed model of a generic power system, attitude control actuators and appropriate 

payloads, SAR, optical and hyperspectral cameras, ultimately leading to future on- 

orbit flight testing and evaluation.
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A P P E N D I X  I

Mass and Volume First Estimate

I'he procedure used here is needed to deteiTnine the spacecraft’s mass, volume 

and size [Wertz 1992],

S T E P IN PU T  D A TA P R O C E D U R E O U T P U T  D ATA

1. Payload weight 0.2 kg Starting point -

2. Estimate dry 
weight

Payload weight Multiply payload 
weight by 3.3

Dry wgt = 0.66 kg

1 3. Estimate 
propellant weight

!

Dry weight Normal Range is 
25 % of Dry 
Weight

Prop, wgt = 0 kg, as 
we assume the 
control to be 
performed through 
inertia wheels

4. Calculate loaded 
w Cl gin

Dry weight and 
1 propellant weight

Add Load wgt = 0.66 kg

5 Estimate volume Loaded weight

1
1

Divide loaded 
i weight by average 
1 density of 79 kg/m ’

Volume = 0.008 m'^

Having chosen to model the satellite as a cube we determine that each face will 

measure 20 cm, which gives us a volume V = 0.2 X 0.2 X 0.2 = 0.008 m^

bXov'HRSIT- j 
E i zrary  ;
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