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Abstract

This aim of this thesis is to study the propagation of light in Periodic Segemented
Wavcguides (PSWs). The work [ocused on three matn arcas:

. Assessment of the accuracy of representing a PSW with an equivalent
continuous waveguide, where the cut-off wavelength is a function of the PSW
duty cycle. Experimental verification of the accuracy of this statement is
reported, for the first time, through the fabrication and testing of Ti:LiNbO;
PSWs. This is acheived by studying the cut-off wavelength of PSWs.

Due to asymmetry, Ti:LiNbO3 waveguides experience cut-off. This presents a
problem in the fabrication of PSWs, where as a conscquence of the
segmentation, there is a reduction in the refractive index difference which
reduces the cut-off wavelength. Due to the birelringence of the material the
cut-off wavelength is different for the ordinary ray and the extraordinary ray. A
model has been developed to obtain the cut-off wavelength as 4 function of the
duty-cycle, as an aid to the fabrication of PSWs.

. The equivalent continuous waveguide model can describe some of the
properties ol PSWs, but does not account for the losscs associated with the
segmentation. For the first time light propagation in a PSW has been
demonstrated using a 3D finite diffcrence beam propagation method (3D FD
BPM). The soltwarc has been specifically developed to study PSWs. Thus
provides the possibility of observing the ficld distribution as it propagates over
one period, and illusirates the segmentation losses in the waveguide. Carctul
conirol of ihe optical ficld at the edges of the computational window (io
minimise errors) allowed an assessment of the radiation loss for different
periods and duty-cycles. Previously published work only investigated the
segmentation losscs for 2D structures, with radiation towards the substrate
only. We compared the mode size of PSWs and its equivaleni continuous
waveguide. The agrecment between the two sets of results confirmed that the
mode]l can be used to describe PSWs, and indicatcd that the 3D BPM
accurately simulates ’SWs.




Abstract I

Examination of the PSWs interaction in phase matching processes. In Lhis
thesis, PSWs were fabricated, and using the second order nonlinear properiies
of LiNbQs, the linear propagation of PSWs were studied. In grating assisted
coupling any difference between the propagation constants is compensated by
the period. Grating assisted coupling with PSWs is not new, as it has been used
previously in SHG, but at present the behaviour of the propagation constant as
the PSW quasi-mode propagates is not evident. Some authors propose a change
in the propagation constant as the wave progresses through areas with different
indices. But no evidence of this has been found in this work or the literature. In
this thesis the fabrication of chirped PSWs and the tuning curves for SHG are
reported. All the software used to simulate SHG has been developed to take
into consideration the dispersion of the material and some of the limitations
imposed by fabrication.




Preface

LiNbO; is a well established material in the field of integrated optics, it possesses a
very useful combination of properties and characteristics. In Chapter 2 we discuss
some of the aspects of bulk LiNbO3; and Ti:LiNbO3; waveguides relevant to this
thesis, in particular the birefringe, transmission and non-linear optical properties as
well as the material changes which take place during the fabrication of the
waveguides by Ti indiffusion. During the last 25 years a variety of active and passive
integrated, high performance devices have been fabricated in LiNbO3. Here we
propose the use of periodic segmented waveguides (PSWs) to increase the
functionality of integrated components. The use of PSWs can be extended to any
material system, and such devices have been reported in LiNbO3 , KTP , InP , and
glass. Initially, PSWs were used as Bragg-gratings and subsequently to obtain quasi-
phase matching (QPM) second harmonic generation (SHG). Recently PSWs have
been employed in asymmetric Y-junction wavelength demultiplexers, asymmetric
couples wavelength filters and in tapers.

In a PSW the increase in the
S refractive index (An) is modulated
_// ) periodically during fabrication, this
: is shown schematically in Fig 1.

As a consequence of the

segmentation, the loss in the guide
is increased and the effective

refractive index is reduced when

2 U0 & 0 v compared to a continuous
|-

[ T

A ak waveguide. The application of

PSWs in integrated optics rely on

Fig 1. Index distribution of a PSW, where A is the period the possibility of controlling the
and m the duty-cycle. : : 2
effective index with the duty-

cycle, and at the same time uses its period for phase matching applications. The

combination of both opens the gates to a range of novel devices.

The aim of this thesis is to investigate the propagation of light in PSWs, in particular
three points were of interest:




Preface 2

Exploration of the accuracy of representing a PSW by an equivalent continuous
waveguide and obtaining the cut-off wavelength as a function of the duty-
cycle. A PSW can be represented by an cquivalent continuous waveguide with
the same depth and width, in which the average index difference, An', is taken
to be the weighted average of the index along the direction of propagation. In

the case of step index waveguides this is represented by Eq. 1 .
An’ = nAn Eq!

until now, there have not been any reported experimental results which show
the accuracy of this statement. Therefore we dedicate Chapter 3 to describing
the fabrication of PSWs and to show that they can be accurately described by
Eq 1. To do this we studied the cut-off wavelength of PSWs.

Due to asymmetry, Ti:LiNbO3 waveguides experience cut-off, i.e. above a
certain wavelength the waveguide will not guide any light. This presents a
problem in the fabrication of PSWs, as the reduction in refractive index
difference as a consequence of the segmentation, reduces the cut-off
wavelength, and due to the birefringe of the material, the cut-off wavelength is
ditferent for the ordinary ray and the exltraordinary ray. In Chapter 3 4 model
has been developed to obtiin the cut-off wavelength as a function of the duty-
cycle and therefore aid us in the fabrication of PSWs. The cut-off wavelength
is dependent on the increase of the refractive index, therefore Eq 1 could be
implemented directly in our model, and (he comparison ol the experimental
and thcoretical results provides us with a direct method to prove the validity of
Eq L.

The model described by £q 1 can describe some of the properties of PSWs, bul
does not account for the losses associated with the segmentation. For the first
time light propagation in a PSW has been demonstrated. In Chapter 4, using a
3D finite difference beam propagation method (31D FID BPM), we generated
the optical field guided by a PSW. The soltware has been specifically
developed to study PSWs. This provided us with the possibility of observing
the lield distributions as it propagates over one period, and shows the
segmentation losses (the losses associated with the modulation of the refractive
index) in the waveguide. Careful control of the optical field at the edges of the
computational window (to minimise noise) permitted us to quantify the
radiation losses for different periods and duty-cycles. Previous work onty

investigated the segmentation losses for 2D structures, with radiation towards




Preface 3

the substrate only. We compared the mode size of PSWs and its equivalent
continuous waveguide. The agreement between the two sets of results confirms
that Eq 1 can be used to describe PSWs, and indicates that the 3D BPM
accurately simufatcs PSWs.

To show that PSWs interact in phase matching processes in exactly the same
way as continuous waveguides. In Chapter 5, PSWs were fabricated, and using
the sccond order nonlinear properties of LINbOj3 , the linear propagation of
PSWs were studied. Coupling between two modes takes place if a coupling
coefficient exists, and the propagation constant of the two modes is the saine.
In grating assisted coupling any difference between the propagation constants
is compensated by the period. Grating assisting coupling using PSWs is not
new, it has been used in SHG, but at present the behaviour of the propagation
constant as the PSW quasi-mode propagates is not evident. Some authors
propose a change in the propagation constant as the wave progresses through
areas with diffcrent indices. But no evidence of this has been found in our work
or has been reported in the literature. In this thesis the fabrication of chirped
PSWs and the tuning curves for SHG is reported. All the software used to
simulate SHG has been developed to take into consideration the dispersion of
the material and some of the limitations imposed by fabrication.




1

Introduction

1.1 Material system.

Lithium Niobate (LiNbO3) is one of the most attractive materials for integrated
optics. It allows the fabrication of low loss planar and channel waveguides by
titanium indiffusion and proton exchange. A schematic illustration of a typical
waveguide in LiNbO;3 is shown in Fig 1.1. In addition LiNbO3 possesses a useful
combination of properties and characteristics [11:

» Ferroelectric with high Curie point (1120 °C). Ti indiffused waveguide
e Moderately large nonlinear optical coefficient:
d33=30 pm/v, df,/(n:nw ) ~102 pm* /v’
» Large birefringence:
At A=1.6 ym, n,=2.1372 n=2.2138

* Large electro-optic effect:

r33=30 pm/v, r33n3=306 pm/v
* Strong piezoelectric effect LiNbO3

* Excellent acoustic propertics. Fig. 1.1 TiLINO; ‘wavegnide
* Photoelastic effect

The electro-optic, photoelastic and piezoelectric properties have been used over the
last 25 years to develop of a large variety of active integrated optical devices with
high performance. Such components allow the control of phase, amplitude,
polarisation and direction of propagation of light, generally with moderately low
drive power levels and high bandwidth. Higher drive powers are required to operate
at high frequencies. Active devices such as electro-optical and acousto-optical
devices (modulators, polarisation converters, polarisation scrambler, beam
deflectors, switches, tuneable wavelength filters, etc......) have been combined with
passive devices such as lenses, polarisers, polarisation splitters, directional couplers,
beam splitters, Bragg reflector gratings, wavelength filter/multiplexer, etc...., on a
common LiNbO;3 substrate to form integrated optical circuits for signal-processing
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applications 2], They are vsed in fibre-optical communication 3. 4. 3. 61 and sensor

systems [7],

Over the las( 10 years, there has becn a growing interest in rare-carth doped optically
pumped amplifiers and laser deviees in LiNbOs (Er in particular) [3). The
combination of the amplifying properties of erbium with the excellent electro-optical
and acousto-optical properties, allows the development of a whole new class of
waveguide devices with higher functionality 31, The large nonlinear cocfficient
tagether with its broad transmission specttum (from 0.4 to 5§ um) makes LiNbO3 a
very attractive material in the fabrication of optical parametric oscitlators {OPQOs) 18,
The nonlinear properties of LiNbO3 have also been used for blue light generation 1%
10, L1] and all optical switching [221013],

Discussing the possibilities of LiNbO3 in integrated optics W. Sohler, recently at
ECI0'97 (8th European conference on integrated optics) in Stockholm said:

"During the last few years several new LINbO3-specific processing
technologies have been developed: periodic poling of ferroelectric
microdomains, diffusion-doping with rare-earth ions, laser ablation and
photorefractive grating fabrication, selective chemical and ion-beam
surface etching, and acoustic waveguide definition by Ti-indiffusion. These
technologies made possible the development of a variety of new integrated
optical devices of high performance. Examples are pavametric frequency
converters of high efficiency, optical amplifiers and modelocked, runable
and narrow-linewidth lasers, ultrahigh bandwidth electrooptical
modulators, and tailored acoustooptical filters, multiplexers and switches.
Together with the move conventional devices they form the building blocks
of a future monolithic integrated optics in LINDO3. It is u greal challenge
to develop complex application specific optical circuits (ASOCs) for

optical communications, instrumentation and sensing."

For applications such as high-spced clectrooptic intensity modulators [14] fast
electro-optic peolarisation scramblers (115) and as parametric frequency converters in
OPOs 18] LiNbO3 is one of the most attractive materials.
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1.2. Periodically segmented waveguides (PSW).

To date, periodic segmented waveguides (see Fig 1.2) have been reported in a
number of different material systems including proton-exchanged LiNbO3 (151, KTP
(16, 17. 18], [nP [191  annealed proton-exchanged (APE)-LiNbO3 [20. 21. 22] and
Ti:LiNbOj3 [23. 24. 251 [nitially, PSWs were used in Bragg-grating structures [15] and
subsequently to obtain quasi-phase matched (QPM) second harmonic generation
(SHG) [16. 17. 18, 22]. Recently, PSWs have been employed in asymmetric Y -junction
wavelength demultiplexers [25], asymmetric couplers [26. 271 and in tapers to match
the mode of the input source to the desired mode of the structure [19. 20. 28] and

therefore to maximise the coupling efficiency.

Fig 1.2 Index distribution of a
PSW. Where A is the period and i
the duty-cycle.

\:}A

7 ) U

. e
A nA

In a PSW the refractive index is modulated periodically during fabrication, this is
shown schematically in Fig 1.2. Each period of the PSW is composed of two regions
with different refractive indices: one region, with an increase in the refractive index
of An, and another region with a smaller increase in the refractive index (in general it
will have the refractive index of the substrate). As a consequence of the
segmentation, the loss in the guide is increased and the effective refractive index is
reduced when compared to a continuous waveguide. A PSW is characterised by its
period, A, and duty cycle, n (the ratio of the length of a segment and the period of
the guide). It has been demonstrated that a PSW can be represented by an equivalent
continuous waveguide with the same depth and width, in which the average index
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difference, An', is taken to be the weighted average of the index along the

propagation direction. This is represented by [2021.29,30],
An' = nAn Eq 1.1

Thus, by choosing the duty cycle, the pa /)

]

effective index of the waveguide can be [ v E i

_ _ An xcept for Kok ahn
controlled (see Fig 1.3). The refractive loss -
index change determines the mode size,

propagation constant and cut-off EREEEEEEENE Asymetric
wavelength of the PSW. Control of the E——— coupler

mode size permits the fabrication of
l l l l Asymetric

y-junction

input and output tapers [19.20.28],

The possibility of controlling the
propagation constant could be used in
asymmetric  couplers to  provide

wavelength filters 126 271 and in an I Il._ 3D Taper

asymmetrically branched Y -junction to

achieve ~ wavelength  splitting  for gjg 1.3. PSWs in integrated optics. By choosing

wavelength  division  multiplexing &flciu:)); ‘:g:l;’)s '\]Vs ‘i‘;f":ﬂ’g"fﬁcz f(‘)hrz :;2":5‘;‘;:

(WDM) applications (31,251, size, propagation constant can be controlled in the
waveguide.

Equation 1.1 assumes that the refractive index of the PSW is an average of the index
along the direction of propagation. To be exact it should be an average of the
permittivity. This is because the material properties are introduced thought
Maxwell's equations via the permittivity and not the refractive index. However, since
An is small, terms in An2, or higher, can be neglected, and therefore, the average in

the refractive index is equivalent to the average in the permittivity.

PSWs have been modelled by beam propagation method (BPM) (291, coupled-mode-
theory (CMT) [29], and the modal method of diffraction gratings 139 In all these
cases the losses and the effective index of the PSWs were calculated on the
assumption that the propagation constant and optical field did not change during
propagation (z- invariant waveguide).

Some aspects of PSW presented in the literature will be reviewed below, in
particular:
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» The representation of PSWs by an equivalent continuous waveguide with the

same dimension, and increase in the refractive index given by Hy. 1.1,
¢ The discussion of the infiuence of the period in the modes of PSWs.
¢ The influence of the duty cycle on the losses of PSWs.

Different authors have indicated that the refractive index distribution of a PSWs can
be represented by Eq 1.1, but the accuracy of this representation is not clear. Li and
Burke in Ref. [30] observe that the effective index of a grating model [for PSWs is
equal to the effective index of the equivalent continnous waveguide. Chou at al. in
Ref. [20] show good agreement between the experimental mode size of annealed-
proton-exchange PSWs in LiNbQ3 with that of an equivalent continuous waveguide,
with an average refractive index given by Eq 1.1. Thyagarajan at al. in Ref. [21],
using the peak index change and the diffusion depth, showed that the effective mdex
of a PSW can be represented by a continuous waveguide. However, they did not
produce any direct evidence on the validity of Eq. 1.1. They found that the diffusion
depth of the equivalent waveguide is independent of the duty cycle. Weissman at al.
in Rel, [29] using a 2D BPM showed that the effective index of the mode in a PSW
is that of a continuous waveguide with an average index difference given by Eq. 1.1.
To obtain the mode effective index using the BPM, they did not account for the
variations of the intensity profile of the light propagating in a PSW.

Equation 1.1 indicates that the modal properties of a PSW are independent of the
period. To that respect Li and Burke in Rei. [30] stated that "the electromagnetic
fields feels only the average index of the wavegaide and pays little attention to the
segmentation of the index distribution”. Nir at al. in Ref. [22] showed that the
intensity distribution of the light guided by a PSW is independent of its period and
strongly dependent on its duty cycle. Chou at al. in Ref, [20] showed that the mode
depth and width are strongly dependent on duty cycle, and the mode depth is
independent of the period, while the mode width is weakly dependent on the period.
Thyagarajan at al. in Ref, [21] showed that the mode effective index for different
modes in a PSW is strongly dependent on the duty cycle and independent of the

period.

PSWs have larger losses than conventional continuous waveguides. At present it is
not clear how the duty cycle and period affect the increase in losses. Some
experimenltal results [20.22] indicaie a strong dependence on the duty cycle and weak,
or non dependence, on the period. Some theoretical results 28, 291 indicate that both
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period and duty cycle will determine the losses in PSWs. Losses cannot be estimated
by using an equivalent waveguide defined by IEq. 1.1. Fven so, in Refs. [28][29]
losses are estimated by extrapolating the characteristics of continuous waveguides o
PSWs. It is assumed that the radiation and confined modes of a PSW are those of a
continuous waveguide (i.e. the ficld distribution does not change during
propagation). The utility of PSWs depends on their segmentation loss. Determining
the factors that will minimise this source of loss allow the design of efficient devices

for use in commercial systems.

1.3. Second harmonic generation (SHG).

At the end of the 80s and beginning of the 90s there was much research interest in
waveguide second-harmonic generation (SHG) devices to implement compact short
wavelength coherent light sources for data storage applications. More recently the
seccond order nonlinear coefficient has been use for all-optical signal processing,
mode-locking, pulse compression and solitons formation [32], as well as parametric
frequency conversion in OPOs [2]. In this section we summarise the methods
proposed in the literature for efficient SIIG using periodic structures. In Chapter 5

we will show that some of the proposed methods are not viable.

Important requirements for high elficiency SHG are a large SHG coefficient, Jarge
optical field and phase matching. At phase matching, the propagation constant of the
incident beam and its second harmonic are equal. But, in general, due to the
dispersion of the material this is not the case. Phase matching techniques for
wavegnide SHG demonstrated so far include temperature and electrooptic tuning
using birefringence [33. 34), use of guide mode dispersion [35.36. 371 yge ot periodic
structures or grating [38. 16,24, 10, 39, 40, 41, 17, 18, 42. 11, 431 apd antomatic matching in
Cercnkov-type radiation 144: 43}, "The different methods used to obtain phase matching
are summarised in Fig 1.4.

In grating phase matching an optical property ol the waveguide is periodically
modulated and the period of the modulation is used to compensate for any phase
mismalch, this is called quasi-phase matching (QPM). If the period for QPM is the
same as the period for Bragg rellection, we have Bragg-resonant QPM (B QPM)I7L,
But in most cases the period is just used lo compensale for the difference in the
propagation constant of the pump and SH waves propagating in the forward
direction, we will call this mechanism QPM (to differentiate it from B QPM). Quasi
phase matching offers many advantages:
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* No restrictions imposed on material and polarisation.
* Use of the largest nonlinear tensor component.

* Matching at arbitrary wavelength and temperature.

* High spatial coherence of output.

Phase
matching

-/ 2 2

Fig 1.4. Methosd used to obtain phase matching in SHG.
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SHG using periodic structures can be achieved by medulating:

» The nonlinear coefficient [42. 46, 18, 11, 41, 43, 16(b), 10, 40, 17, 38]
» The refractivc index (10, 16, 17. 38,39, 40, 41, 43]

A particularly effective type of periodic structure is one in which the sign of the
nonlinear coefficient is modulated throughout the wavcguide, This can be
implemented in ferroeleciric material (such as LiNbQj3, LiTaO3 and XKTP) by
reversing the orientation of the dipele moment (domain reversal). Depending on the
material and the method used to reverse the domain, the shape of the regions where
the nonlinear coefficient is reversed is different. In LiINbO3, tlanivm indiffusion [10]
and lithium outdiffusion [24! lead to domain inverted regions with triangular
boundaries. Domain reversal in bulk LiNbOg [47, 48, 1] and [iTaO3 [49) has been
achieved as well by applying an external field, in this case the boundaries of the
domain go all the way through the crystal and have nearly vertical walls. In LiTaO3,
proton exchange results in domain-inverted regions with a half-circle shape 5% 511,
and in KTP, the cxchange in a Rb/Ba nitrates solution seems (o create very deep
domain inverted regions, with no lateral diffusion 18], The efficiencies of the second
harmonic generation are highly dependent on these shapes 461, the most
advantageous case is when the domains go deeper than the waveguide and have

vertical walls.

PSWs have been used in SHG, in some ol the occasions the SHG was produced only
by madulation of the refractive index [6@)] , in other occasions the modulation of the
refractive index camc accompanied by domain reversal (1. 24 18] In the last case,
both the modulation of the linear and nonlinear properties may contribute to SHG
[16(b), 38, 4(. 43] and their effects may add either constructively or destructively.

A pure modulation of the refractive index may :

* Modulate the propagation constant. The mode of a PSW may travet with two
different propagation constants in the two different segments of a PSW.

*  Modulate the phase mismatch, It will takc placc if the modulation of the
propagation constant is different for the fundamental and SH.

*  Modulate the coupling efficiency [16(®), 521, The efficiency of the conversion from
the fundamental to the SH is increased as the overlap between the two modes
increases. In a PSW the modulation of the refractive index induces a modulation
in the mode size. If the overlap integral is different in the two different scgments,
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the conversion efficiency will be modulated, and this is equivalent to modulating
the nonlinear coefficient.

* Modulate the propagating field. “"According to the Bloch's theorem for arbitrary
periodic structures, the electric field of the propagating wave of any wavelength
in such medivm should in general also contain spatial harmonics." 401

* Produce balance phase matching. This take place when the phase mismatch in
one segment of the PSW is the opposite of the phase mismatch in the other
segment. This can be seen as a phase matching situation, where the phase
mismatch of the PSW, once Eq 1.1 has been applied, is zero.

An interesting problem in PSWs is that of the propagation constant of the wavegnide
mode. Until now many authors have considered that the propagation constan( will be
different in regions with different refractive indices {43 16 411, Bug, (o the knowledge
of the author, non of the experiments in which PSWs have been used to generate SH
shows evidences of this, Thercforc modulation of the effective index and modulation
of the phase mismatch may nof take place.

But QPM SHG is not a technique without problems and limitations, and they are
clearly presented by T. Suhara at al, in Reference [38]:

"Exact phase matching can be obtained, in principle, with a grating having
a period to compensate the difference between the propagation constants.

In practice, however, many factors, e.g., uncertainly of the grating period

due to limited accuracy of material constunts used in design, fubrication
errors, and change of the propagation constants due to grating fabrication,
give rise to residual mismatch., Working conditions also affect the phase
matching; change of ambient temperature, deviation and fluctuation of
laser-diode wavelength, and photorefractive damage in waveguide cause

deviation from matching.”

1.4. Methods of analysis of waveguides.

There are two groups of methods used to analyse waveguides (see Fig 1.5),
depending on the cross-section of the waveguide. The first uses a mode solver to
study waveguides with a cross-section that does not vary along the direction of

propagation. The second is a beam propagation method (BPM) which can model the
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propagation of light in a waveguide where the cross-section changes along the
direction of propagation.

The mode solver is used to calculate the propagation constant and optica! tield
profile of the waveguide modes. The simplest one is the effective index method 331,
This is an approximation method where a 2D problem is decomposed into two [ D
problems, the method is only valid for weakly guiding structures. Although the
propagation constant calculated with this method is accurate, this is not the case for
the field, Other methods which have been used include the finite difference method,
variational method and finite element method. In all these methods the mode profile
and propagation constant are obtained from the wave equation. The finite element
method usually employs direct solution methods that are numerically intensive. A
variety of finite-difference methods have been considered 4], primarily employing
interactive solution tcchniques, since they are faster and require minimal storage.
'I'he variational method 135: 56] is an approximation melhod and therefore faster, The
accuracy of the variational method depends on the closeness of the assumed trial
field to the exact mode field of the guiding structure. For a more complete survey of
the extensive volume of work in this [ield, the reader may consult the review by
Chiang 57,

The BPM has been used to study Y-junctions, X-crossing waveguides, MMI
couplers, periodic segmented waveguides (PSW). The BPM is attractive to the
designer of optical devices because it overcomes the difficullies of mode theory
when applied to complicated structures, and becausc of its flexibility as a
propagation technique, The BPM is a numerical method which solves the wave
equation in some approximate form (usually the Fresnel equation). The original
method uses the fast Fourier transform (thus called FFT-BPM) 158,59, 60 In the FFT
algorithm, each plane wave component of the field profile is calculated using T'I°T.
Then each plane wave component is propagated in the homogeneous medium, and at
the end of the propagation step the field in the real space is calculated using inverse
FFT. The FFT BPM has limitations that restrict its applications. For instance, in
addition to the poor efficiency ol the FET-BPM, a large variation in the transverse
refractive index profile of the waveguide will force the method to use exlremely
small propagation steps. Alternative numericul techniques to solve the wave cquation
in the spatia] domain use a finite difference approximation to replace the partial
derivatives in the wave cquation (thus called FD-BPM). Recently, this approach has
received wide attention from many workers 159, 60, 61,62, 63 64,651 T ately, a vectorial
[inite-difference beam propagation method has been reported [631, All FD-BPM
techniquces




Chapter 1 - Introduction 14

have shown that this approach is much more efficient than then the FFT-BPM in
terms of accuracy, speed and storage required. In addition, some of these techniques
have succeeded in overcoming the main limitations of low-contrast media in the
FFT-BPM, and allow propagation in strongly guiding structures.

Methods to analyse
waveguides

Fig 1.5. Some of the methods used to analyse waveguides.
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Generally, the FD-BPM has been used to solve the wave equation by using two
methods; the implicit approach and the explicit approach. At present the most
popuiar implicit BPM is bascd on the altcrnating direction implicil approximation
(ADI-BPM) [60, 61, 63. 64, 651 The ADI-BPM is unconditionally stable, but requires the
solution of a Jarge system of equations for each propagation step. The explicit
approach has mainly two ways of formulating the problem; the real space method
(RS-BPM) and the truly explicit and therefore called explicit finite difference
method (EFD-BPM). The RS-BPM uses the finite difference matrix splitting
operator to approximate the wave equation [60: 64, 65, This method is unconditionally
stable but, similar to the FFT-BPM, reguires small propagation steps to converge
when applied to large contrast media. However, it proves to be much more efficient
per propagation step then the ADI- BPM, The EFD-BPM is based on applying the
central finite-difference approximation directly to the wave equation [62.64.65], The
propagation of the optical field is straightforward since it involves multiplication of
the input field with a very sparse matrix, which makes the method very efficient.
However, this algorithm is only conditionally stable, i.e. the method is stable only if
the propagation step is smaller than a certain valucl®2,

S L e T
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LiNbO;

2.1. Introduction.

Lithium Niobate (LiNbO3) was first grown in 1963, since then much work has becan
done to understand its properties. Today, good quality wafers, single domain and
transparent from 0.4 to 5 pgm are routinely available. From the beginning, researchers
realised that LiNbO3 was ferroelectric at room temperature, with an elevated Curie
temperature: 1120 °"C. This permits the processing of the material at high
temperatures without affecting the dircction of the domain. In 1966, X-ray
diffraction and ncutron diffraction was used to obtain the crystal structure, and hence
the origins of the ferroelectric, pyroelectric and piezoelectric characteristics, as well
as its birefringence. Ferroelectric LiNbQO3 is non centrosymmeltric, providing with
sccond order nonlinearities and {irst order electro-optic effect.

The interest in LiNbOz continued to grow when in 1975 titanium diffusion
waveguides were first fabricated, opening the possibility for integrated optics. Six
years later in 1981 proton exchange waveguides were produced as an alternative to
titapium indiffusion. In the present work only Ti:LiNbO3 waveguides were
fabricated, and therefore only this process will be discussed. From the end of the 70's
to nearly the end of the 80's research labs worked to understand the different aspecis
of the in-diffusion of titanium into Ti:LiNbO3; in particular the indiffusion process,
the titanium concentration distribution, the increase in the refractive index, the Li2O
outdiffusion and the domain reversal associated with the indiffusion, the fabrication
conditions that minimise transmission losses, and the photorefractive damage
amongst others

2.2. LiNbOj; crystal.

In 1965 Ballman and Fedulov independently reported successful applications of the
Czochralski technique to grow LiNbO3 [1][2]. The next vear, a cornerstone series of
five papers on LiNbO3 came from Bell Laboratories [3]{4][5][6][7]. There are
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several review papers and books on LiNbOj3 [8][9][10][11]. In Refs. [9][12]
thorough reviews of reported values of the different material coefficients can be

found.
2.2.1. Growth
Fstimated solidus
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Fig 2.1 . Phase diagram of LiNbO3 in the
temperature range 900-1250 °C [after 13]
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Fig 2.2 Refractive indices of LiNbO; at

0.6328 um as a function of the molar ratio
Lio O/NbyOs in the melt [after 17].

LiNbO3 has a solid-solution range from
44% mol to 50 % mol LipO, and grows
with variable composition, depending on
the ratio of the starting compounds used.
The phase diagram of the Li2O:NbzOs
system in Fig 2.1 [13] shows a single
phase LiNbO3 region extending from a
Li2O-deficient phase boundary that is
temperature dependent to a LipO-rich
phase boundary located at, or very near to,
the stoichiometric composition (50% mol
Li,O) [14][15][16]. Crystals for device
applications are cut from boules grown by
the Czochralski method from a congruent
melt at 486 mol % LipO. Congruent
crystals are the simplest o grow
uniformly and without cracks.

The properties of LiNbO3 depend on the
stoichiometry of the crystal, this is the
case of the Curic (emperature
[14][17][18], which lies in the range
1020-1180 °C. The birefringence is also
strongly dependent on the crystal
composition [17][18][19][20]. Only the
extraordinary  refractive  index  is
dependent upon the stoichiometry, while
the ordinary index is independent, this can

be seen in Fig 2.2 [17]. The electrooptic effect shows little variation with the crystal
composition [21]. Miller and Norland [22] have reported that only the d3; second
order nonlinear coefficient is strongly dependent on the crystal composition.
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2.2.2. Crystallography, pyroelectricity and piezoelectricity.

The detailed structure of LiINbO3 at room lemperalure has been unambiguously
established by X-ray and neutron diffraction studies of single domain crystals by
Abrahams et al. [5]. The crystal structure is a slightly distorted hexagonal close-
packed (hep) oxygen lattice, The octahedral interstice formed are one third filied by
lithium ions, onc third filed by niobium ions and one third vacant and this can be
seen in Fig 2.3. LiNbQ3 is ferroelectric at room temperature and paraclectric above
the Curie temperature. For congruent LiNbOj3 the Curie temperature is
approximately 1120 °C, close to its melting point at about 1260 "C. When the
temperature is above the Curie point, the lithium 1ons lie within the plane of the
oxygen ions; the niobium ions arc midway betwceen plancs, Hence, the crystal has no
charge (paraelectric). When the tempcrature is below the Curic peint, both the
lithium and the niobium ions move in the same direction, resulting in a permanent
dipole moment (ferroelectric). This can be seen in Fig 2.4, The polarity increases
with decreasing temperature, which means that one end of the ¢ axis (c) gets a
positive pyroelectric charge on cooling while the opposile end (c-) gets a negative
charge. Similarly, the polarisation will affect the stress in the matcrial which in turn
leads to piczoelectricity. During crystal growth, if no precautions are taken, the
structure will consist of microscopic ferroclectric domains, where adjacent domains
have opposite polarities. To obtain single domain material a LINDO3 crystal, or boule
section is poled with a strong DC field along the direction of the dipoles [4]{8]. The
poling can be performed either during, or after the growth of the LiNbO3 boule.

LiNbQO3 in its ferroclectric phase possesses a three-fold rotational symmetry about
the c-axis, making it a member of the trigonal crystal system. It also has mirror
symmelry about three planes 60° apart rotating about the c-axis, bul is
noncentrosymmetric and is thus classified as a member of the 3m point group (sce
Fig 2.3), Paraelectric LiNbOs3 is a member of the 3m point group (Lrigonal crystal
system as well), Crystals which belong to the trigonal group can be structurally
classified vsing either a hexagonal, or a thombohedral, unit cell, The hexagonal unit

cell has six formula units while the equivalent rhombohedral has two formula units,

The hexagonal unit cell has three equivalent ay axes and one cy axes (see Fig 2.3).
‘The optical properties of the ferroelectric phase are usually described in terms of
orthonormal x, y and z components. The z axis is chosen to he the symmetry axis,
the ¢ axis. The y axis is chosen to be in a mirror planc. This can be seen in Fig 2.3.
The senses of the y and 7 axes are chosen so that their positive ends cxit crystal faces
that obtain a positive piezoelectric charge under compression. The x axis is chosen to
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) Mirror plane
Mirror plane Mirror plane

Hexagonal
unit cell

® Oxygen

@  Niobium

@  Lithium

Mirror planes

Fig 2.3. Ferroelectric LiNbO; is classified as a member of the 3m point group,
therefore possesses a three-fold rotational symmetry about the c-axis, making
it a member of the trigonal crystal system. It also has mirror symmetry about
three planes 60° apart rotating about the c-axis.

LiNbO; crystallise in a slightly distorted hexagonal close packed (hcp) oxygen
lattice, with 6 formula units per unit cell. This hexagonal unit cell has three
equivalent ay axes and one cy axis, the symmetry axis.

z axis - Symmetry axis. Opposite direction in neighbouring domains.
y axis - In a mirror plane. Opposite direction in neighbouring domains.
x axis - Parallel to any ay axis. Same direction in neighbouring domains.

The positive end of the z and y axes has positive piezoelectric change under
compression. The positive end of the z axis has positive charge on cooling.
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Fig 2.4. In the paraelectric phase, the Nb>* ions are at the centre of the oxygen
octaedra and the Lit* ions are arranged at the centre of the oxygen triangles
between the octaedras. In reality the Li* ions will be found, with equal
probability, above and below the oxygen planes at a distance of 0.37 A, and

therefore, we represent the average position of the Li* ions in the crystal lattice
[9].

Below the Curie point, in the ferroelectric phase, the Li* ions shift to one side
of the oxygen triangles, and the Nb5* ions move slightly away from the Li*
ions. This movement causes a permanent dipole to be set up along the c-axis of
the crystal, therefore LiNbOs3 passes from being centrosimetric in the
paraelectric phase to being non-centrosimetric in the ferroelectric phase. This
give rises to the nonlinear, piezoelectric and electrooptic properties of LiNbO3.
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obtain right-handedness [23]. Therefore, the z axis coincides with the c-axes, the x
axes with any of the ay axes and the positive z face gets a positive pyroelectric

charge on cooling.

The dial axis of the paraelectric lattice coincides with the x axis. As a result, the
direction of this axis will be the same in the ferroelectric phase, independent of on
which side of the oxygen plane the lithium ions switch to. While the y and z axes
have opposite directions in neighbouring domains. Piezoelectricity, the electro-optic
effect and the non-linear properties are related to a lack of inversion symmetry, the
case of the nonlinear coefficient is discussed in Appendix 1. The lack of inversion

symmetry changes the sign of these coefficients in opposite domains.
2.2.3. Dielectric properties - Birefringence and transmission.
Lithium niobate single crystals are uniaxial negative (with the refractive index of the

ordinary ray larger than the refractive index of the extraordinary ray, i.e. no>ng). The
optical axis is the c axis as shown in Fig 2.3 and 2.4.

(a) (b)
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Fig 2.5. Transmission of single-domain LiNbO3 as a function of the wavelength.
Transmission is uncorrected for reflection losses. (a) was obtained from Crystal
technology Inc. and (b) was obtained from reference [10].

LiNbQOj is transparent from about 0.4 to 5 um [3][4]. In the infrared region there is a

narrow absorption band at A=2.9 um, due to OH™ grouping, this can be seen in Fig
2.5. The nature of the transmission spectra depends on the conditions of heat
treatment and polarisation of crystals, as can be seen in Fig 2.6. Clear colourless




Chapter 2 - LiNbO3 27

lithium niobate single crystals transmit as much as 72 % (without corrections for
reflections) over a range A = 0.4-4 um. In a 1 cm thick specimen at A = 1.06 pm, 5.6
% of the radiation is lost by absorption and 14.6 % by reflection from one surface, so
that the total loss is 31%. To reduce the losses due to reflection, a single quarter
wavelength coating of quartz (n=1.46), or magnesium fluoride (n=1.38) may be
applied to the LiNbO3 crystal surface [24].

(a) [after 25] (b) [after 26]

‘ § g 70 3

| 5 £ 3

| i g '
| £ g

: I

0.32 0.48 0.64 0.8 o " ) 4

04 06 08 1.0

Wavelength (zm) Wavelength (zm)

Fig 2.6(a). Transmission of variously colored Fig 2.6(b). Optical transmission spectra for
LiNbO;3 crystals as a function of the wavelength: ~congruently melting LiNbO3 single crystal.

1- Clear crystal 1- Pulled without electric current
2- Yellowish maintained during the growth process
3- Crystal 2 after annealing in oxygen 2- Grown with no electric current and
4- Crystal 2 after annealing for 5 min in subject to poling and concurrent
hydrogen at 500 “C annealing in a separate furnace
5- Yellowish 3- Grown with electric current in the growth
6- Orange process
7- Dark brown

4- Heated in Hydrogen.

Analysis of experimental data yields two equations for the temperature dependence
of the ordinary and extraordinary refractive indices (no and ne) between. 0.4 um and

4 um [10]:

A, + BT’
Al - (A3 * BzTZ)

n’=A + > — AAN + BT’ Eq 2.1
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Al A2 A3 A4
no 4.9130 0.1173 0.212 0.0278
nNe 4.5567 0.097 0.201 0.0224
B] B2 B3
no 1.65x10° 2.7%10”" 0
Ne 2.7x10°° 5.4x10° 2.605x 107’
TABLE 2.1
Where T, in Eq 2.1, is the
2453 temperature in K and } is the
W 240=
g 235-E i wavelength in pm. The dispersion
'g 230_ "."' R Ry, curves for the extraordinary and
£ 225= "o,," ordinary ray are shown in Fig 2.7.
& 2204
D : 0,,, trttryy,
~ 2~15'§ “sesscesssersesss. | The standard deviation of 112
2.10 T T T . .
oA o8 B i experimentally determined values
of the refractive indices from those
Wavelength (zm)

Fig 2.7. Dispersion curves for LiNbO3 at 300 “K.

2.2.4. Photorefraction.

calculated accordingly to the above
formula is 2.2x107%,
demonstrating the accuracy of Eq
2.1.

In LiNbO3 high intensities of light can cause local changes in the refractive index

that distort the incident wavefront, this phenomenon is called photorefraction. Fe?+

and Fe3* ions, always present in LiNbO3, can be photoexcited to produce electrons

and holes respectively:

Fe* + hv=> Fe** +e”

Fe** + hv = Fe® + hole*

and an optically induced space charge field can be generated within the crystal [27].
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In general the ratio of Fe2+ to Fe3+ is not equal to one, and neither electrons, nor
holes, are the majority charge carriers. I electrons are in the majority the space
charge is set up within the crystal when electrons are exited out of the illuminated
region and re-trapped by Fed+ ions away from the light beam. This movement of
charge results in an electric field, and, via the electro-optic effect, a change in the
refractive index around the beam of light. Since both electrons and holes can
conlribute 1o the photovoltaic current, the ratio of Fe?+ to Fe3* ions will affect the
magnitude of the space charge field and hence, the magnitude of the photorefractive
response of the material.

The photorefractivity in the crystal can be minimised by oxidising, or reducing, the
crystal so that we obtain the Fe?*/Fe3+ ratio for which the photorefractivity is
minimum. At this point the electrons and hole currents are equal and opposite and no
net space charge is being set up in the crystal. Above approximately 170 "C the
photorefractive cffect (optical damage) relaxes faster than it is generated.

2.2.5. Nonlinear optical properties.
As already mentioned LiNbO3 at room temperature is a noncentrosymmetric crystal,
and therefore, has second order nonlinearities. LiNbQO3 has large second order

susceptibilities, whereas the third order coefficients are rather small.

The second order polarisation can be written as a function of the contracted tensor

and has the foliowing expression:
P (2w) = 2&,d(,, 0, [ E(@)] Eq 2.2

General crystallographic considerations indicate that for a 3m point group the

nonlinear polarisation can be expressed as:

P 0 0 0 0 ds =dyY V7,
P =26 ~dy dy O dy 0O O (Ei,),,, Eq 2.3
P2 dy dy dy 0 0 0 i?ﬂ* gm

2ECE? )
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Appendix 1 illustrates the determination of the zero and non-zero coefficients for the
nonlinear tensor, Usually, the Kleinman symmetry is also applied: As long as there is
no strong dispersion between the wavelength of the mixing field, all terms dj, which
resull from a rearrangement of the subscripts i, j, k, are equal. Here this makces
djs5=d31.. The magnitude of the non-zero coefficients are:

d15=6 pm/v
dp2=3 pm/v
d33=30 pm/v

Further details on the value of the nonlinear cocfficients can be seen in Relerences
[81[22](28]

2.3. Ti:LiNbO3 waveguides.

Optical waveguides can be fabricated in LINbO3 using several different methods; the
out-diffusion of Li,O from the crystal surface, the indiflfusion ol metals, ion
implantation and ion, or proton, exchange. The two most widely used methods are Ti
indiffusion and proton exchange [29][30][31]. Titanium indiffusion increases both
the extraordinary (Ane<0.02) and the ordinary (Ang<0.004) refractive indices
allowing both TE and TM polarisations to be guided. Proion-exchunge produces
guides with a large change in the extraordinary refractive index (Ane<0.18) and a
slight decrease in the ordinary index (Ang>-0.05). Ti indiffusion waveguides are
prone to photoretractive damage, and the high temperatures used in fabrication can
iead (o LioO outdiffusion from the crystal surface. Proton exchange waveguides do
not suffer significant photorcfractive cffect [29], but an index profile instability has
been detected [32][33], and in these waveguides the nonlinear coefficients are
reduced |34].

2.3.1, Titaninm-indiffusion.

The indiffusion of certain metals atoms into LiINDO3 produces changes in the optical
properties and specifically in the refractive index. Titanivm, being fetravalcnt, is
substitutional for Nb in the LiNbO3 crystal laltice and has proved to be the most
attractive of the metals for indiffusion. The cxact mechanism by which the
indiffusion of titanium increases the refractive index is not vet folly understood but it
appears to be due to several complex interactions |351]36].
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The standard method for fabricating Ti indiffusced waveguides commences with the
deposition of a Ti film onto the LiNbOj3 substrate by means of electron beum
evaporation. Films thickness typically in the region of 20 to 120 nm have been used.
The indiffusion of the titanium takes place between 900 and 1050 °C, with diffusion
times between 0.5 and 30 hours. The diffusion temperature is limited by the Curie
temperature (1120 °C) of the crystal. If the Curie temperature is exceeded the crystal
must be re-poled to turn it back to a single domain again.

2.3.1.1. Diffusion stages.

The indiffusion process can be broken down into several stages [29]{37][36]:

*  Firstly the Litanium oxidises to form TiOj during the furnace heat up period at
approximatcly 500 °C.

» In the absence of a wet atmospherc during diffusion the LiNb3Og crystallinc
phase appears at 600 "C and rapidly disappears after reaching a maximum at 800
°C. A wet atmosphere inhibits the formation of LiNb3Og.

* The TiO2 layer forms an intermediate rutile structure most likely to be
(Lig25Nbg,7502)0.422(TiO2)g sg. It is this rutile compound that is the real source
for the subsequent titanivm-indiffusion into the T.iNbO3 [36]. Armenise et al. in
references [29]{38] propose a different compound as the source for Ti diffusion:
(Tio,65Nbg,35)02

» At temperatures usually as high as 1000 °C the titaninm diffuses from the susface
layer into the substrate until the (Lip25Nbg.7502)0,42(TiO49)0 58 is completely
depleted and disappears. Just befare the process is complete, investigation of the
surface layer by scanning electron microscopy has revealed islands of Lhe mixed
oxide. This reveals the non-uniform nature of the indiffusion process that is
responsible for the refractive index inhomogeneties. Increasing the diffusion
time reduces (he surface roughness and decreases the inhomogeneties in the
index.

*  Precipitation of LiNb3Og may take place during cooling at temperatures between
600 °C and 900 C with a maximum precipitation at 800 "C. Cooling rates >3
“C/min are sufficiently rapid to avoid precipitation of LiNb3Og. The precipitation
phase lcad to an incrcase in optical scattering in the sample [15]

2.3.1.2. In-plane scattering

Optical losses in slab waveguides have been attributed to in-plane scattering [37].
The scattering depends upon the diffusion time (the losses initially decrease and then
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increase with increasing diffusion time [37], see Fig 2.8 ) with the optimum time
increasing with the titanium film thickness. The scattering can be attributed to three
main causes [37]:

’ * Non-uniformities which occur during the
) : Ti indiffusion, will create refractive index
é 4 irregularities in the guide and in the
5 3 surface.
T * Roughness left on the surface after
+ : ' ' diffusion.
0 10 20 30 40

W . * Crystal strains and defects introduced by
Diffusion: time: (b the titanium ions in the guiding region.

Fig 2.8. Al gives a measure of the waveguide
quality, it indicate how performance is .
degraded by inplane scattering. Diffusion The surfface  roughness and index

temperature 1000 "C, sample coated with a homogeneties can be reduced by increasing
25 nm thick of Ti [37] : ; > .

the diffusion time, while the crystal defects
are induced by the diffusion process and therefore the density of the defects increases

with the diffusion time [37].

References [39] and [40] discussed the insertion losses of Ti:LiNbO3 waveguides for
a variety of fabrication conditions. The best results were obtained for a z-cut wafer;

the insertion loss was 1 dB (1.3 cm waveguide), while the propagation loss was 0.3
dB/cm.

2.3.1.3. Li20O outdiffusion

While the titanium is diffused into the LiNbOj substrate, there is an associated
outdiffusion of Li,O from the surface of the LiNbO;. Lithium has a low activation
energy and therefore diffuses very rapidly compared to the niobium, or oxygen, the
Li;O outdiffusion will increase the extraordinary refractive index and leave the
ordinary index unaffected (see Fig 2.2). Therefore, when a stripe guide is produced
this can result in a slab guide at the surface of the LiNbO; in addition to the stripe
guide. The resulting slab guiding has only an increased extraordinary index with a
maximum at the surface and a depth profile which can be mathematically modelled
using a complementary error function.

To suppress outdiffusion, either an increase of Li partial pressure or the use of wet
diffusion atmosphere have been proposed. Jackel et al observe in Reference [41] that
the indiffusion in a water vapour atmosphere (pure oxygen flowing through water)
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eliminates the outdiffusion of LisO by inhibiting the LiNb3yOg phase, but this affects
the optical properties of the waveguides increasing the in-plane scattering levels
[37]. Eknoyan et al. in Reference [42] investigated the characleristics of Ti:LiNbO3
waveguides diffused in both dry and wet O,. They observed no complete
suppression of outdiffusion in samples annealed in wet oxygen. Schuppert in
Refercnce [43] investigated the outdiffusion of Li,O using dry and wet synthetic air.
He suggested that the application of a wet gas without an additional Li;O/LiOII
source yields a strong increasce of waveguiding (strong increase of outdiffusion) due

to the following chemical reaction

LiyO + H,0 — 2LiOH

Shuppert reports that out diffusion in a wet atmosphere is suppressed only if used in
combination with a Li;O source that increases the Li partial pressure. This is
because the ouldiffusion in the LiO source (an added wafer of LiNbO3 powder) is
strongly increased by the water vapour leading to an increased Li;O pressure in the
diffuse tube, which itseif lowers outdiffusion in the sample. TTe found that a
suppression of the outdiffusion by means of increasing the Li partial pressure in a
dry atmosphere is only successful for long diffusion times. This is because a fonger
time is necessary to raise the Li partial pressure. Fouchet ct al. [44] diffused Ti into
LiNbO3 in a flowing atmosphere of dry argon cooled in oxygen. They reported no
index variation associated with Li,O outdiffussion.

'The exact mechanisms by which the various methods work are not vet fully
understood and the development of an understanding has evolved though (rial and
error, with only a limited amount of exact scientific understanding. In this work
waveguides were fabricated by Ti indiffusion in a dry Oy atmosphere, and cool

down in a dry O atmosphere. No sfab guiding due to Li,O depletion was observed.
2.3.1.4. Photorcfractive effect in waveguides.

One of the most important issues which must be considered is the photorefractive
effect. It manifests itself as a gradual refractive index change due to irradiation with
relatively intense visible light; the effect is observed in Ti-indiffused waveguides
[45]][46][47][48]{49] as well as bulk crystals [530][53]. When the intensity of the
light is further increased, a spatial distribution of refractive index is developed and
the wave is scattered out of the waveguide [52]. The photorefractive effect can be
split into Lwo components, the photovoltaic effect and the photoconductive effect.

The photovoltaic cffcct describes an optically induced change in the refractive index
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in the absence of an electric field, while the photoconductive effect describes an
optically induced change in the refractive index in the presence of an electrical field.
The photorefractive effect in bulk LiNbO3 [S0] is normally dominated by the
photovoltaic effect. Following titanium-indiffusion Becker et al. [51] reported no
increase in the photovoltaic effect from that observed in bulk LiNbO3 for a Mach-
Zehnder structure formed on x-cut LiNbO3. The photoconductive effect showed a
substantial increase to become the dominant photorefractive mechanism for a field
strength of 5x10* V/cm. Schmidt et al [48] reported similar effects, using a
directional coupler on z-cut LiNbO3, for a field 104 V/cm, with the magnitude of the
effect decreasing very strongly with increasing wavelength. Harvey [49] has made a
comparison between both Mach-Zehnder devices and directional couples fabricated
in z-cut LiINbO3. The directional couplers showed an effect in agreement with
Schmidt et al [48] while little effect was observed in the Mach-Zehnder. Harvey
used a biasing field strength of 103 V/cm, at this level the degree of damage due to
the photoconductive effect is reduced enough for the photovoltaic effect to
dominate. Chon at al in Ref. [45] presented a theoretical model of the photovoltaic
effect in z-cut Ti:LiNbO3 channel waveguides together with experimental results for
mode size and output power as a function of the input optical power. Fujiwara et al.
in Ref. [46] study the wavelength dependence of the photovoltaic effect in z-cut
Ti:LiNbO3 channel waveguides. They show that at 1.1 ym the power necessary to
induce a given photovoltaic effect is 3 orders of magnitude larger than at 0.63 ym.
At 0.53 um the photovoltaic damage threshold of a Ti:LiNbO3 channel waveguide is
20 W/cm? [45], i.e. ina 5 x 5 yum? waveguide, the photovoltaic damage threshold is
5 puw.

>3 2.3.1.5. Ti-indiffusion domain reversal.
7 e
e 1

= . In a z-cut wafer of LiNbOj3, integrated
£ optical devices are generally [abricated in the
negative z face [54][56]. This is because the
Titanium strip diffusion in the positive z face reverses the
- before diffusion ferroelectric domain of the area that has been
Oslentation indiffused, this can be seen in Fig 2.9. As
* of the domains mentioned earlier, areas with opposite
in each region domain orientation have electrooptic

after diffusion

coefficients with different sign. Therefore, in

Fig 2.9. Domain orientation after Ti these waveguides light propagates through
indiffusion in the positive face of a z-cut . g . ;
LiNbO3 . arcas with positive and negative electrooptic
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coefficients, reducing the average effect [56]. However, there are situations where
domain reversal may be desirable, and titaninm indiffusion can be used to
periodically reverse the sign of the electrooptic or non-linear coefficient.

One can distinguish between at least two cases for which domair reversal in the
positive face has been reported (without applying an external field); the first is a
domain inversion in titanium indiffused areus [54][S5][56][57] and the second is a
domain inversion occurring on bare substrates after heat treatiment above about 800
°C [58]159]. The physical mechanisms of domain inversion have been discussed for
instance by Peuzin and Miyazawa {57] and by Nakamura et al, [59], although all
details are not fully understood. It seems clear, however, that the inversion is related
to a composition gradient in the crystal. Such gradients are present in both
situations; in the first case mainly due to titanium indiffusion and in the second cases
due to LinO outdiffusion. At one face of the LiNbOj crystal, the composition
gradient is antiparallel Lo the optical axis orientation, and at the other the gradient is
parallel to the oplical axis. This can cxplain why the inversion occurs only at the

positive face.

Ti indiffusion takes place when the crystal is heated to 900 - 1100 °C, and inversion
occurs at 1020 °C. The typical indiffusion depth is of the order of 2-4 pm and it has
been shown that the inversion depth is proportional to the Ti thickness [56] and the
diffusion time [73]. The shape of the inverted regions is triangular with an angle of
30" with the surface boundary (see I'ig 2.9).

For both Ti doped and lithium deficient material, the Curie temperature is lower than
for congruent material {S4}. This means that, at a uniform temperature, a sample
with spatially varying Ti concentration will have a varying ferroclectric polarisation
and, thus, alternaling electrical fields that can affect the domain pattern, this can be
seen in Fig 2.10. Since indiffusion is carried out at temperatures closer to the Curie
temperature, this field may be sufficient to reverse the polarisation. Nassau et al. in
Ref. [4] reported that domain inversion was successful with an electric field of 5
V/em at 20°C below the Curic temperature, At room temperature 24 kKV/mm was
required to reverse the domains. A spatial variation in polarisation can, of cousse,
also be obtained in a uniform sample as a result of local temperature variations [60].
Near the Curie temperature the material is not a perfect insulator. Therefore, the
electric [ield will slowly be compensated through charge transfer. This means that
the heating and cooling rates are important parameters for the inversion process.
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Electric field created
by the difference in

larisation
Titanium indiffused ‘:::gg

Ti concentration
in the depth
direction

Polarisation.
The length of the arrows
indicate the size of the
plarisation, which is reduced
as the Ti concentration
increases

Fig 2.10. Electric field created by the gradient of the titanium during the diffusion
process

The effects of gradients inside the boule are not difficult to evaluate. It has been
established that for a Y-doping there is an equivalent poling filed which is
antiparallel to the concentration gradient. The conditions that prevail in the interior
of the crystal boule are quite different from those at the surface of a wafer during
heat treatment in a diffusion furnace. In this case the domain formation occurs at the
surface, and among other things, this means that pyroelectric surface charge has to
be considered. Furthermore , there is evidence that the history of the sample is
important for the reversal process [61][62]. A review of the different pooling
techniques can be seen in reference [74].

2.3.2. Refractive index profile of Ti:LiNbO3 waveguides.

To date the origin of Titanium induced refractive index change has not been
satisfactorily explained. As a consequence, these profiles have to be experimentally
determined.

Several papers have already dealt with that problem [63][64][65][66][44][13]. The
diffusion conditions; air, argon, or oxygen atmosphere, either wet or dry, are very
different from one laboratory to the other [67]. Consequently the dispersion of
reported results is very important. The disagreement between data, even for
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diffusion conditions apparently identical, could be due to a poor control of diffusion
process (lithium out-diffusion for example) or crystal quality. Despite these
differences, most of published papers agree to consider that Ane and the titanium
concentration, C, are proportional, or nearly proportional whereas An, has a
nonlinear behaviour versus C [63][66][44].

Although several reported values show that the diffusion of Ti%* ions into the
LiNbO3 substrate is anisotropic with a diffusion coefficient in the z-direction 50 %
larger than in the x-direction [66][68], other reports show that the diffusion
coefficient in the z-direction is 30 % larger than in the y-direction [69][44], and yet
other reports show no anisotropy but a strong dependence of the diffusion
coefficient upon the stoichiometry of the crystal [13]. Here we are going to use the
diffusion coefficient measured by Fouchet at al. in Reference [44].

2.3.2.1. Titanium concentration distribution after diffusion.

The diffused titanium concentration in a continuous waveguide has been shown to
be closely modelled by a Gaussian profile in the depth direction and an error
function in the lateral direction and can be described by the following approximation
[70]:

C()’,Z)=%Cuexp{-i‘[e,ffw+2)’) +erf(W—2y)}

,_
o
N~

Where W is the width of the titanium strip
before diffusion (see Fig 2.11 ), C, is the
titanium surface concentration, and D, and
Dy are the diffusion length in both
directions. C,, and the diffusion lengths can

i /20 W/2

y be obtained experimentally [44]. Here we

) are more interested in representing them as a
Fig 2.11 function of the fabrication conditions (Ti
thickness and diffusion time) and material parameters (Ti density before diffusion

and diffusion coefficient).
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The titanium surface concentration, C,, is a function of the thickness of the Ti strip
before diffusion, T, the diffusion depth, D,, and Ti density before diffusion, Cy. The

relationship is given by [44],

2

& T
C,=—=C,—
* Jn /D,

The diffusion lengths D, and Dy are a function of the diffusion time, and the
diffusion coefficients d, and dy. These can be seen in the following equation

D, ~2JTi

Therefore, the unknown parameters are Cy, d, and dy, and they have to be obtained
experimentally. The atomic density of solid Ti is 5.6 x10** atoms/m3. But the
density of the Ti film may be reduced depending on the process used to deposit it.
Reference [71] uses a 75% density correction for sputtered Ti, while reference [44]
measured 68% density correction, making C=3.8x1028 atoms/m3. The Arrhenius
law indicates that the diffusion coefficients depend on the activation energy and the
diffusion temperature[44]. For a diffusion temperature of 1050 °C Fouchet at al.[44]
measured the diffusion coefficients on Z-cut LiINbO3 to be

d,= 0.68 um?2/h

dy= 0.457 ym?/h

2.3.2.2. Increase in the refractive index with Ti concentration.

0.025

Based on experimental data Fouchet at
al. [44] showed that the increase in the
extraordinary index is superlinearly

0.02
0.015

0.01 dependent on the titanium

0.005 concentration, while the ordinary index

. can be well defined with a sublinear

0 0.5 1 1.5 » relationship  with  the titanium

Co (% mass) concentration, this can be seen in Fig
2.12. They proposed the following

Fig 2.12. Increase in the refractive index as a relationship between the increases of
function of the Ti concentration at 300 ‘K for an

operating wavelength of 1.3 pm.
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the indices and the titanivm concentlration :

An, = a%(B,(1) + B(A)aC,)[C(»2)]
An, = a“(By(A)+ B,(A)aC, ) C(y, 2

Where
1 2
—=-=C,
@ N
- B, =6.53%107% =3.15x 10724 +7.09 x 107 )2
orn
° B, =0.478+ 0.4644 — 0.3484
B, =0.385—-0.4304 + 0.1714?
Forng: ,
B =9.13+3.854 -2.494°
0,.=0.83
()5.0:0.53

The dispersion relation is valid for wavelengths in the range 0.6 < A{pum) < 1.6, and

for Ti surface concentrations going up to 2% in mass.

We decided to use the description of the index profile described by Fouchet et al,
[44] because accounts for high Ti concentrations and the wavelength dispersion gocs
up to 1.55 um. Bul this in not the only model found in the it the literature, Strake et
al. [72] have proposcd another model based on a different set of experimental
results, however, it only describe situations were the Ti concentrations is smaller

than 0.9 x 10*" atoms/cm-3 and for a wavelength range going from 0.6 to 1.2 pm.
2.3.2.3. Maximum surface Ti eoncentration

The highest surlace concentration (Cy) of Ti in LiNhOg3 is about 2 % in mass. The
titaninm concentration in pereent is defined with reference to the atomic density of
solid Ti ( Cyy). Therefore, the titanium surface concentration in 1nass percent is given
by:

T

¢, (in %) = g 100

Cp, = 5.6 x 10" atom | m"
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Therefore, the titanium thickness, T, and the diffusion time, t, have to fulfil the

Tollowing relationship to ensure a surtace conceniration below 2%

't 100

2.3.3. The fabrication of titanium indiffused guides.

The fabrication steps for the titanium indiffused waveguides are shown
schematically in Fig 2.13.

Before coating the sample with photoresist, the substrate was cleaned using the
following well established procedure: Sequence of solvents

«  OPTICLEAR
«  Acetone
*  Methanol

* RO (reverse 0smosis) water

Method: The sample was placed in a bath and covered completely with the solvent
and ultrasonic for 5 mins. Finally the sample was rinsed for 3 mins with RO water.
The excess water was removed [rom the subsirale with an air gun and placed on a
hot plate to dry completely. The ferroclectric nature of LiINbOs implies the need for
care during the cleaning procedure to avoid the electrostatic attraction of dust
particles.

Z-cut wafcrs were used. The waveguides were fabricated onto the negative face to
avoid domain reversal, or in the positive face to produce domain reversal

The photoresist, 1400-31, was spun at 4000 rpm for 30 seconds, leaving a 1.8 um
thick layer. T'o harden the photoresist for exposure, the substrate was baked at 90 °C
for 15 minutes, soaked in chlorobenzene for 15 minutes and then baked again at 90
°C for a further 15 minutes. Soaking the substrate in the chlorobenzene creates a
hard layer of photoresist at the surface which caused it to be undercut at the edge of
the developed strip, This greatly increases the ease with which the titanivm on top of
the photoresist was removed during lift-off and improve the quality of the titanium
strips edges.
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Fig 2.13. Fabrication steps of titanium indiffused waveguides
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Next, the baked photoresist was patterned, 1400-31 is a positive photoresist, and
with a dark field mask the pattern of the mask will be transfered to the substrate after
lift-off. After exposing the photoresist to UV light and developing, titanium was
evaporated on the patterned substrate with an electron-gun. To avoid titanium
deposition at the edges of the photoresist the evaporation was set to be normal to the
substrate. Evaporation was carried out in a vacuum chamber at a pressure of 4 x 107
mbar.

After lift-off the titanium was indiffused at 1050 °C in a dry oxygen atmosphere,
small changes in the temperature should be implemented to avoid thermal shock
while bringing the sample up to the diffusion temperature, and while cooling it down
after. To introduce the sample into the furnace, first, the boat containing the samples
was placed at the entry of the tube (see Fig 2.14 ), and after 15 minutes the boat was
slowly pushed into the furnace; a process which takes 20 minutes. Once the cap of
the tube had been put in place, a small flux of oxygen was passed through the tube.
To cool the sample down, the furnace was switched off letting the oxygen flow. The
reduction of the temperature as a function of time can be seen in Fig 2.15.

Boat with samples

15 minute& 0:
=l — [

- P
20 minutes

o Input
utput

Oxygen
Oxygen Boat with samples

Boat with samples

Fig 2.14. Procedure used to raise the temperature of the sample up to the
diffusion temperature.

1250

y =944.426 * 10 000

Fig 2.15. Reduction in the furnaces
temperature as a function of the time elapse
after the furnace had be switched off.

Temperature (°C)
wn
=

(U | T T T
0 100 200 300 400

Time (minutes)
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2.4. Summary.

In this Chapter we reviewed some of the properties of bulk LiNbOs3 and titanium
diffused LiNbO3 waveguides. We have scen that LiNbO3 is a good material for
optics; wafers are routinely grown with the same composition and it is transparent
from 0.4 to 5 pm. The crystalline structure of LiNbO3 has been presented and from
there some characteristics have been discussed: pyroelectricity, piezoeleciricity,
birefringence, nenlinear behaviour and titanium domain reversal. A brief review of
the different aspects associated with the fabrication of titanium diffused wavegnides
has been discussed. Especially those thal can affect the performance of the
waveguides used in this work: scattering, LinO out diffusion {capable of producing
slab guiding) and photorefractive damage. In Chapter 3 we will see that scattering
losses and outdiffusion of LipO has not seriously affected the performance of our
waveguides (wc were not able to detect any slab guiding associated with LizO
outdiffusion). This leavces the threshold for photorefractive damage as potentially the
more important problem in Ti:LINbO3 waveguides, but in Chapter 5 photorefractive
damage, if it existed, did not present a problem in SHG.

By looking at all work done on LiNbO3 over the last 30 years, the reader realises that
a large amount of information about LiNbQO3 has been accumulated. But it can not be
said that all the process involved in the fabrication of Ti:LiNbO3 waveguides are
always understood. This is the case for LipO outdiffusion, the ibicrease in the
rcfractive index, the domain reversal associate with titanium mdiffusion, and even
the diffusion process itself. Therefore, the optimum fabrication conditions for a
particular application are obtained, to a certain degree, by trail and ervor, always
making use ol the already existing information. In situations where the behaviour of
the waveguide has to be predicted, the major difficulty comes from the variety of

diffusion coefficients reported in the literature,

At the end of the Chapter we described the particulars of our fabrication procedures.
To pattern the titanium strips on the surface of the LiNbO3 substrate is a straight
forward procedure. Bringing the sample up to the diffusion temperature, selecting the
atmosphere in the furnace and cooling down the sample are the most critical steps.
But, the generalion of a good waveguide is mostly dictated by the diffusion time,

diffusion temperaturc and thickness of the titanium strip.
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Cut-off wavelength of periodically
segmented waveguides in Ti:LiNbO3

The cut-off wavelength for Ti:LiNbO3 periodic segmented waveguides (PSWs) with
different duty cycles and of continuous waveguides has been measured for both
polarisations. PSWs are described by an equivalent continuous waveguide and, using
this model, a universal relationship between the cut-off wavelength of a PSWs with
different duty cycles is proposed and verified experimentally. Using the Fabry-Perot
method, PSWs with a duty cycle of 0.55 have been found to have a loss coefficient
of 1.9 dB/cm, about 0.9 dB/cm greater than the loss coefficient of a continuous
waveguide.

3.1. Introduction

In a PSW the increase in the refractive index

=2 — Fxi T ™ (An) is modulated periodically during
I A l I N AI fabrication, this is shown schematically in Fig

. 3.1. As a consequence of the segmentation, the
A = Period " g

n = Duty-cycle loss in the guide is increased and the effective

refractive index is reduced when compared to
Fig 3.1. Schematic representation of ) .
= BRSO % % a continuous waveguide. A PSW can be
PSW. 5 s
represented by an equivalent continuous
waveguide with the same depth and width, in which the average index difference ,
An', is taken to be the average of the index along the direction of propagation, and in

the case of step index waveguides is given by Eq. 3.1
An' = nAn Eq 3.1
By choosing the duty cycle, ), An' can be spatially modified along the waveguide.

The refractive index change determines the mode size, propagation constant and cut-
off wavelength of the PSW.
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The possibility of using Fq 3.1 to describe PSWs permits their study using existing
tools for continuous waveguides. Thyagarajan et al. [l showed that PSWs can be
represented accurately by an equivalent continuous waveguide. However, no direct
evidence was produced on the validity of Eq. 3.1, To establish the accuracy of Eg.
3.1, a measurable property of the waveguide has to be related to the increase in the
refractive index. In this Chapter we propose using the cut-off wavelength, which is
directly related to An'. If we want to verify Eq 3.1 using propertics associated with
the elfective index, we require a good description of the index distribwtion in the
waveguide as a function of the fabrication conditions, as well as an appropriate
model to obtain the effective index from the index disiribution.

Due to the diffusion naturc of the Ti:LiINbO3 waveguides, Eq 3.1 can only be used to
describe PSWs for the case of weakly conflined modes, where the mode size is larger
than the diffusion length. And this is certainly the case near cut-oif. 'this will be
discussed in section 5.3.2. of Chapter 3.

Strip waveguides were fabricated in a z-cut LiNbQs substrate by titanium
indiffusion. For this configuration the quasi-I'M mode corresponds to the
extraordinary ray (e-ray) and the quasi-TE mode corresponds to the ordinary ray (o-
ray). The cut-off wavelength of the fundamental mode was obtained for different
fabrication conditions, as a function of the duty cycle and period, for both

polarisations.

In this Chapler, we report on PSWs fabricated in Ti diffused LiNbO3z designed for
operation in the 1.3 pm and 1.55 pm telecommunications windows. To predict the
cut-off wavelength as a function of the duty-cycle, the approximation represented by
Fq. 3.1 has been used to formulate a relationship between these two parameters. An
experimental verification of this relationship has been produced. The reduction in the
average increase of the refractive index (An'), results in a reduction in the cut-off
wavelength. This reduction in the cut-off wavelength of the fundamental mode is
important; firstly because we have to ensure that PSWs guide at the desired operating
wavelength and secondly, because, in devices formed by PSWs with different duty
cycles, e.g. tapers, the PSW section with the smaller duty cycle could be used as &
low pass filter and/or as a polarisation fiiter.

The accuracy in the determination of the cut-off wavelength has been studied as a
function of the different fabrication parameters as well as measurement conditions.
This approach provides direct information on the considerations to be taken into
account when using Eq. 3.1 to describe PSWs.
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We have used the Fabry-Perot method to obtain the foss coefficient for PSWs and
continuous waveguides.

3.2. Derivation of a relationship between the cut-off
wavelength and the duty cycle of PSWs.

Cut-off of the fundamental mode is defined as the condition at which the effective
refractive index of a wavegnide is the same as the refractive index of the substrate 12
31, implying that the mode size extends over the whole substrate 13, This condition
will occur for a specific free-space wavelength, refractive index distribution and
dimension of the waveguide. For the case of PSWs and continuous waveguides
fabricated under the same conditions, both have the same dimensions and any
difference in the cut-off wavelength will be due to the variation in the increase of the
refractive index, Anpgw for PSWs and Ancope for continuous waveguides.

3.2.1. Relationship between the cut-off wavelength of PSWs and
continuous waveguides using the V nmmbers.

The relationship between the cul-off wavelength of PSW and continucus waveguides
will be shown. Firstly for diffuscd slab waveguides (using the "V" number as defined
by Hocker at al. [3)) and then it will be shown that we can extrapolate this result to
channcl waveguides (by using the relationship between their "V" numbers described
in ref. [4]).

3.2.1.1. Case of diffused slab waveguides.

Tiirstly we shall consider the case of Th:LiINbO3 slab waveguides. A normalised

requency V can be defined as [

V= LD -Q%E(nium - ﬂ'.\?)if2 Eq 3.2

Where npmax 1s the refractive index at the surface and it is assumed that the refractive
index profile has a monotonic decrease from the maximum value, nyax, to the
substrate index ng. In the present context, nyax in a PSW is a weighted average of the
maximum value in the diffused high-index regions and the substraie index ng in the
undoped substrate regions. Lp represents the diffusion depth of the titanium into the
LiNbQO3 (which is the same for PSWs and continuous waveguides) and A is the free-
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space wavelength. A similar normalisation has already been employed to advantage
in the analyses of slab guides with a step index profile [2. 5 6] and with a diffusion
profile 3. 4],

At cut-off the value of the normalised parameter V only depends on the asymmetry
parameter 4. For Ti:LINbO3 waveguides we assume the asymmeiry parameter will
approach infinity [2.3. 41, and therefore, that the value of V at cut-off will be the same
for both PSWs and continuous waveguides:

Vier? = Vi Eg3.3

cant

This effectively mcans that as ny,y is reduced by changing the duty cycle in a PSW,
the free space wavelength at which cut-off occurs is also reduced.

EXpressing Npx as Nax=ng+An, and assuming An2<<2ngAn, we obtain:

(r12 - f-f.] =2nAn Eq3.4

JisHES

Using the approximation of Eq 3.4 in Eq 3.2 we obtain the following expression for
V:
27

2
Vi= L”(T) 2n An Eq. 3.5

where ng and An are wavelength dependent. Then, for continuous wavegnides at cut-
off:

cont

2
chnm = LD 2[122] ns (/lcmu) M(‘a‘cunr) Eq 3.6

where Agone 18 the cut-off wavelength for the continuous waveguide. Similarly for
PSWs:

i

Vﬁsw =L, 2( ] ”.\-(-;Lpsw) A”’(;me) Eq 3.7

FSW

where Apgw is the cut-off wavelength for the PSW. As expressed in Eq. 3.1, the
increase in the refractive index of a PSW is reduced due to the segmentation. Using

Eq 3.1 we obtain:
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M’(;me) = ??A”(Apsw) Eq3.8

and using Eq. 3.8 with Eq 3.3, 3.6 and 3.7 we obtain

2’ZPS W" 7’.-.' ( ’a’cmif ) An(j‘mm )
A2 it (Apsyn ) AR A sy )

=1 [q 3.9

conet Ty

On the left hand side of Eq. 3.9, the term An(Acont)/An(Apsw) accounts for the
substrate dispersion and the term ng(Acont)/ns(Apsw) for the Ti:LiNbO3 dispersion.

2
coi

The remaining term, A% /A%, , can be used as a first approximation to relate the

duty cycle and the cut-off wavelength of continuous waveguides and PSWs, i.e.:

22
n= Agﬁw Eq 3.10

cont

3.2.1.2. Case of channel waveguides.

This result can be generalised to diffused channel (or stripe) wavegnides using the
relationship between the "V" number of a channel waveguide (V) with the "V"
number of a slab waveguide (V) 4], This relationship is expressed as

v =X Eq. 3.11
L

D

Where W is the width of the Ti film before diffusion, Lp is the diffusion depth and b
is the normalised mode effective index 4. In the context of channel waveguides,
Nax 18 related to the index distribution of a diffusion channel waveguide by the

following relationship (41

n’(x.2) = n + (o, — 1) f(2)g(x) Hy. 3.12
where f(z) and g(x) describe the diffusion profile in depth and laterally respectively.
Eq 3.11 indicates that for a given width and depth, the value of V. depends only on
V and b. Because b is a function of V [231, it is clear that V is directly refated to V.

Then, at cut-off V¢ is the same for PSWs and continuous waveguides, and the

results for stab waveguides can be extrapolated to channel waveguides.
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Then, at cut-off V¢ is the same for PSWs and continuous waveguides, and the

results for slab waveguides can be extrapolated to channel waveguides.

3.2.2. Relationship between the cut-off wavelength of PSW and
continuous waveguides using the transversal propagation constant.

In this section we will show how we can arrive at the results of the previous section
by using the transversal propagation constant ki instead of the "V" number. To
simplify the model only the case of a step index channel waveguide is considered,
where n. is the refractive index in the channel and nefp is the effective refractive

index of the mode propagating through the waveguide (ng<neg=nc).

k, K The transversal propagation constant k¢ for the
| ‘: case of a step index waveguides is given by [6k
Kk (see Fig 3.2)
=eff
' 2_” = 2 2
o _an k=1 A) (n? - n%) Eq.3.13
off A o
2 At cut-off the effective refractive index negr will
- A n, be that of the substrate ng. Therefore at cut-off the
Kok K transversal propagation constant will be
N
Fig 3.2. Direction and magnitude of the 2 _ (2 _Jt) 2 2
propagation constant for the light k; -\ A (n“ n‘) .34

propagating in a waveguide

Using the approximation of Eq 3.4 the transversal propagation constants at cut-off
for continuous waveguides and PSWs are respectively:

k:(l’ll = 2( 2” \ nS(A(.n"') An(A(‘ﬂ"’) BJ' 3- 15
and
9 2
J
kfz’SW = 2( 2 ) nx(A’PSW)AnI(APSW) Eq. 3.16
PSW
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same for all continuous and periodic segmented step index channel waveguides, at
cut-off they have the same transversal propagation constant.

Fegor ™ = feue-olt Eq.3.17
Now, using Eq. 3.15, 3.16, 3.17 and Eq. 3.8 we re-oblain the resull of Eq. 3.9 and

3.10. This result for step index channel waveguides can be extrapolated to diffused
channel waveguides.

3.2.3. Relationship between the cut-off wavelength of PSWs of
different duty cycles.

A continuous waveguide can be regarded as a PSW with duty cycle 1. If we
substitute the continuous waveguide with a PSW, the resulis of Eq 3.9 and 3.10
{shown to be true for diffused channcl waveguides) can be gencralised to relate the
cut-off wavelength of two PSWs with different duty cycles. This gencralisation leads

to:

Apsw (T ’%( psw{7h) )A”(?”PSW(”Z}) I Eq 3.18

;L}s*w( J?z) 7, (lpsw(nl )) PSW (;Vpsw(nl )) m,

where Apgw(mn) is the cut-off wavelength of a PSW with duty cycle 1. The

approximation for the case where dispersion is not considered will be:

M Arswl) Eq3.19

> B "'szsw(m)

Rearranging Eq 3.19 the following expression is obtained:

o __ Eq 3.20
;ﬁww(nt) }é’sw[ﬂz) 4

This simple expression relates the cut-off wavelength of two PSWs with different
duty-cyeles.
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3.3. Ti-diffused LiNbO3 waveguide fabrication.
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Fig 3.3. Increase of the refractive index at 1.3 ym for e-ray and o-ray as a
function of the Ti concentration in percent in mas [21]. The points indicate
the maximum possible increase in the refractive index for both polarisations
for the fabrication conditions of Table 3.1.

Waveguides were fabricated by Ti-diffusion in a z-cut substrate of LiNbO3. Standard
photolithography techniques were used to pattern a layer of titanium evaporated onto
the surface of the substrate. Once patterned, the titanium was in-diffused in a dry
oxygen atmosphere by placing the sample in a furnace at 1050 °C, see Chapter 2.
The thickness of the initial titanium layer and the diffusion time were both adjustable
parameters in this investigation and are given in Table 3.1. One of the lithographic
masks used gave continuous strip waveguides nominally 5 pm wide and PSWs also
nominally 5 um wide, with periods between 15.8 and 19.8 um in 0.2 ym steps and a
duty cycle of 0.5. The other mask contained continuous waveguides 4 ym wide and
PSWs 4 ym wide with duty cycles varying from 0.35 to 0.65 in 0.05 steps with 19
pum periods. Some variation in the duty cycle across the mask as a consequence of
photolithographic processing of the mask is to be expected. In this investigation we
observed that flowing dry oxygen inhibited outdiffusion of LiyO sufficiently to
suppress slab guiding. For most of the fabrication conditions the increase in the
refractive index due to Ti-indiffusion is larger for the e-ray than for the o-ray. Fig 3.3
shows the increase in the refractive index at the surface of a slab waveguide as a
function of the Ti concentration [7). The points in Fig 3.3 represent the expected
values, assuming the diffusion times and Ti thickness given in Table 3.1. The
difference in the increase of the refractive index between the o-ray (quasi-TE
polarisation) and e-ray (quasi-TM polarisation) is responsible for the differences in
their cut-off wavelengths.
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Fig 3.4 shows the surface relief produce by the titanium after indiffusion. From this

photograph we can have an idea of the titanium distribution of the PSWs after

patterning and indiffusion.

Cut-off wavelength

Cut-off wavelength

Ti Diffusion :
thickness time o-Ray (pm) e-Ray (ow)
(nm) | (hours) § pSw  Continuous | PSW  Continuous
Sample 1 25 <0.6328 0.80 <0.6328 0.80
Sample 2 30 0.65 0.84 0.65 0.84
Sample 3 70 1.11 1.49 1.38 >1.64
i St

Sample 80 1.02 1.33 1.32 >1.64

1.21 1.63 1.41 >1.64
Sample 6 100 1.55 >1.64 >1.64 >1.64
Sample 7I 100 >1.64 >1.64 >1.64 >1.64

Table 3.1 Cut-off wavelength for both polarisation modes, for different fabrication conditions of
Ti:LiNbO3 channel waveguides. The lower limit in the cut-off wavelength is the wavelength of the
HeNe laser, used to align the waveguides. The upper limit is given by the detector of the spectrum
analyser. In the case of samples 1 and 2, the method could not be used to distinguish between the cut-
off wavelength of the quasi-TE and quasi-TM modes because for these samples the cut-off

wavelength is similar for both polarisation.

Fig 3.4. Photomicrograph (X 125) of a PSW of
sample 7 in Table 3.1. The duty-cycle is 0.54. The
observed contrast was contributed mainly by the
surface relief related to the Ti indiffusion.
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3.4. Measurements.

3.4.1. Transmission spectrum.

Quasi-TM mode

-10 (g-ray)
) optical spectrum  §
Waveguides analyzer § = B
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SO g 8. (o-ray)
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Singcl — s % mode transition)
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Fig 3.5. (a) Experimental set-up used to obtain the transmission spectra of PSWs. (b) Normalised
transmission spectrum for the PSW of sample 4 of Table 3.1, with period 19.6 ym and duty-cycle
0.55.

To obtain the cut-off wavelengths, unpolarised white light was end-fire launched into
the waveguide through a single mode fibre (at 1.55 ym), efficiently exciting all the
modes in the waveguide and avoiding excessive coupling of light into the substrate.
At the output, the light was collected in a multimode fibre, which was connected to
an optical spectrum analyser, see Fig 3.5(a). The core of the output fibre, 50 ym
diameter, did not permit the collection of significant levels of leakage light. A similar
set up is described in Ref. [8]. The resolution of the spectrum analyser was chosen to
be 5 nm and it was scanned between 632.8 and 1640 nm. To eliminate the spectral
response of the white light source and the input and output fibres, we measured the
spectrum of the whole system without the waveguides and used it as a reference,
which later was used to normalise the spectrum of the waveguides. Fig 3.5(b) shows
a typical example of the normalised transmission spectrum for a PSW (period 19.6
um, duty cycle 0.55) of sample 4 in Table 3.1. We defined the cut-off wavelength of
the more confined mode (e-ray in general) as the wavelength at which the
transmission intensity dropped by 3 dB (point B in Fig 3.5(b)) after having attained
its last maximum. The cut-off wavelength for the less confined mode (o-ray in
general) is defined as the point at which the normalised transmission spectrum starts
to rise again (point A in Fig 3.5(b)) after having obtained a minimum; when the less
confined mode begins to radiate into the substrate the power in the spectrum will be
reduced until all power in that polarisation has been dissipated, leaving the power in
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the other polarisation. To verify this, both polarisations were end-fire launched into
the samples, and with the help of a cross-polariser, the modes in each polarisation
were investigated, see Fig 3.6.

The general shape of the transmission

Laser: POl Cross-pol.

iz spectrum shown in Fig. 3.5(b) depends on
AN the overlap integral between the input field

and the mode of the waveguide. The
’ Waveguides Defector . P
1.55 ym & maximum transmission corresponds to a

T — maximum value for the overlap integral.
polarisation sustained by the waveguide. Here we assume small coupling losses

between the waveguide and the multimode
output fibre. The reduction in the transmission after the last maximum is due to the
increase in the mode size. And because the transmission decreases rapidly with
wavelength we know we are near cut-off. The segmentation losses are wavelength
dependent [°], and therefore they affect the transmission spectrum of a PSW. But its
overall contribution to the shape of Fig 3.5(b) is small and will not be considered in
this analysis. This dispersion in the segmentation losses depends on the duty-cycle of
the PSWs.

The definition of point B in Fig 3.5(b) as the condition for cut-off is a matter of
choice. We decided to use this point because it is easy to obtain from the
transmission spectrum. This definition is valid if the slop of the transmission
spectrum, after the last maximum, is independent of the period or duty-cycle of the
PSW. But this is not the case, and we were able to observe only a small variation on
these slops. The rate of change in the transmission as a function of the wavelength
increases as the cut-off wavelength decreases. There are two reasons for this, the first
is due to the dispersion in the segmentation losses of a PSW, and its dependency on
the duty-cycle. The second is related to the varation of the mode size with
wavelength, for waveguides with the same dimensions but different cut-off
wavelengths (or equivalently different increase in the refractive index). The latter can
be verified for slab waveguides by analysing the variation of the effective guide
thickness as a function of the V number near cut-off presented in reference [2]. The
rate of increase in the effective guide thicknesses as a function of the wavelength
increases as the cut-off wavelength decreases. The dimensions of the waveguides
will have an effect in the transmission spectrum, but this is not of interest to us
because we only compared waveguides fabricated under the same conditions, and
therefore with the same dimensions. The influences on the variation on the slops of
the transmission spectrum in our results will be discussed later.

Bk AR B R e e
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3.4.2. Cut-off wavelength for PSWs and continuous waveguides for
different fabrication conditions.

The cut-off wavelength of a Ti:LiNbO3 waveguide depends on its dimensions (width
and height) and on the increase in the refractive index due to titanium indiffusion
(Any). Table 3.1 shows the dependence on the cut-off wavelength for PSWs and
continuous waveguides with the same width, but with different height and Ant. The
cut-off wavelengths were obtained from spectra similar to those of Fig 3.5(b), and
were cross-checked by measuring the polarisation at the waveguide output at 0.633
pum, 1.3 ym and 1.55 pm. In the case of diffused waveguides, the height of the

waveguides is considered to be the diffusion depth, defined as:
Ly, =2JD1 Eq.3.16

where 'D' is the diffusion coefficient, which is a function of the diffusion
temperature, and 't' is the diffusion time. All our samples were diffused at the same
temperature and, therefore the height of the waveguides will only be a function of the
diffusion time. The increase in the refractive index is a function of the Ti
concentration, which will depend on the thickness of the Ti stripe before diffusion
and the diffusion conditions. The effect of the diffusion time on the cut-off
wavelength is not straight forward, as larger diffusion times imply lower Ant but
larger diffusion depth. In general, for a given Ti thickness an increase in the diffusion
time will result in a larger cut-off wavelength, since the effect on the increase in the
diffusion depth dominates over the effect of the reduction in Anr.

» b4 Experimental
=
B - Model
) ~
< E
2> 09 -
=2
=47
PR 07 o
Bl
-
O
05 T T v T v T
0.8 1 12 1.4 1.6
Cut-off wavelength

continuous waveguides (zm)

Fig 3.7 The points represent the cut-off wavelength of PSWs versus the cut-off
wavelength of continuous waveguides for the waveguides of Table 3.1. The error
bars (the same size as the diameter of the points) reflect the dispersion in the
results to be shown in Fig 3.8 and 3.9. The continuous line corresponds to the
theoretical results represented by Eq 3.10 for a duty cycle of 0.55.




Chapter 3 - Cut-off wavelength of PSWs in Ti:LiNbO3 61

To test the model present in section 3.2. for different fabrication conditions we have
studied the relationship between the cut-off wavelength of PSWs of duty cycle 0.55
(in the ferric oxide mask) and continuous waveguides (PSWs with a well-defined
duty-cycle of 1) for different fabrication conditions (see Fig. 3.7). The advantage of
using continuous waveguides is that the duty-cycle is known precisely and therefore
Eq. 3.10 can relate the cut-off wavelength of both waveguides to the duty cycle of
the PSW, thus providing us with the possibility of quantitatively verifying the
accuracy of our model. This has be done in Fig 3.7, where the points correspond to
the experimental results for the quasi-TE mode, and the line corresponds to the
theoretical results obtained from Eq 3.10 for a 0.55 duty-cycle. The error bars reflect
the dispersion in the results that will be presented in Fig 3.8 and Fig 3.9, similar in
both cases.

3.4.3. Cut-off wavelength as a function of the period of PSWs.
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Fig 3.8. Cut-off wavelength of Ti:LiNbO3 channel PSWs as a function of the period, for both
quasi-TE and quasi-TM modes. The points correspond to the measured values and the
discontinuous line to the theoretical results obtained with Eq 3.10 for 0.55 duty-cycle. The
waveguides are those of sample 4 in Table 3.1. The duty cycle varies depending on the
position of the waveguide in the sample, its values were measured to be between 0.54 to 0.57.

Using spectra such as the one of Fig 3.5(b), we were able to determine the cut-off
wavelengths for the PSWs of sample 4 (Table 3.1) as a function of the period for
both polarisations. The results can be seen in Fig 3.8. No dependence of the cut-off
wavelength on the period could be observed. The cut-off wavelength for the quasi-
TM polarisation deviates by +30 nm around an average of 1321 nm. For the quasi-
TE polarisation the cut-off wavelength deviates by +23 nm around an average of
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1000 nm. The variations of the cut-off wavelength appear to be a function of the
position of the waveguide on the sample. All measurements were carried out on the
same day, with the same fibres and same alignment conditions. Under these
conditions, variations in coupling can account for up to 10 nm vanation in the
estimated cut-off wavelength for both the quasi-TE and quasi-TM polarisations. The
largest variations in the estimated cut-off wavelength appear to be due to variations
in the waveguide dimensions across the lithographic mask. The measured values for
the duty-cycle in the mask went from 0.54 to 0.57 (nominal duty-cycle 0.50),
sufficient to account for the dispersion of the data in Fig 3.8. In our case the pattern
transfer from the mask to the sample does not appear to play a significant role in the
final value of the duty cycle of the PSWs.

3.4.4. Cut-off wavelength as a function of the duty-cycle of PSWs.

Eq 3.15 indicates that the cut-off wavelength squared has a linear dependence on the
duty cycle. The slope will depend on the fabrication conditions and, for zero duty
cycle, zero cut-off wavelength would be expected. Fig 3.9 was obtained to assess the
accuracy of these statements. Here the PSWs are 4 ym wide and their period is 19
pum. The duty-cycle in Fig 3.9 is that measured on the mask. As expected, these
points form a straight line, but this line does not intersect the x axis at zero. In Fig
3.9(a) the cut-off wavelength for a given duty-cycle was obtained for different
waveguides, the spread in the data is due to measurement errors and to small
fluctuations in the dimensions (duty cycle, width and Ti concentration) of the
waveguides.
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Fig 3.9. Square of the PSW cut-off wavelength as a function of the actual duty cycle on the mask used
to pattern the PSWs, for the quasi-TM mode and the quasi-TE mode. 4 ym wide and 19 pm period
PSWs were fabricated by patterning 80 nm thick films of Ti and diffusing at 1050°C for 12 hours. The
lines are the regression lines of slop "m". Graphs (a) and (b) corresponds to the same waveguides for
different alignment conditions.
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To study the influence of different alignment conditions on the measurement of the
cut-off wavelength presented in Fig 3.9(a), the same set of waveguides was measured
again after the sample was removed and cleaned, the coupling fibres were also
cleaned and the set-up was realigned. These new results can be seen in Fig 3.9(b).
Variations in the estimated cut-off wavelength for the same waveguide were
typically about 30 nm for the quasi-TM mode and 20 nm for the quasi-TE mode.

Despite the alignment conditions, in Fig 3.9 and 3.10 the line corresponding to the
quasi-TM mode always intersects the X axis further away from zero than the line of
the quasi-TE mode. This may be due to the criteria used to define cut-off for both
modes. In the case of the more confined mode (quasi-TM), cut-off occurs when the
mode is larger than a certain value, and therefore the coupling power from the input
fibre to the waveguide is reduced by 3 dB. The definition of cut-off for the less

confined mode (quasi TE) involves certain relationships between the mode sizes of
the two polarisations.

As already mentioned, the rate of change in the transmission spectrum after the last
maximum increases with the duty-cycle. Therefore, a different definition of cut-off,
say a 6 dB reduction of the transmission intensity instead of 3 dB, will modify the
slop of the quasi-TM mode of Fig 3.9, so that the line cuts the x-axis closer to zero.

3.4.5. Loss coefficient of PSWs and continuous waveguides.
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Fig 3.10. (a) Experimental set-up used to measure the loss coefficient of Ti:LiNbO3 waveguides by
the Fabry-Perot method as described in ref. [10]. (b) Transmitted intensity versus time (the
temperature of the sample is a function of time), which can be seen as the resonator transmission
versus the optical phase difference (2L, f = propagation constant, I.= length of the resonator), which
in this case is a function of the temperature.
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The Fabry-Perot method 191 has been used to measure the loss coefficient in both
PSWs and continuous waveguides fabricated under the same conditions. The losses
were measured using a 1550 nm DFB laser on the waveguides of sample 6 in Table
3.1. The experimental set-up can be seen in Fig 3.10. For the continuous waveguides
the estimated loss coefficient is 1.0 dB/cm while for PSWs the estimated loss
coefficient is 1.9 dB/cm. This method yields the upper limit of the waveguide
attenuation coefficient. If the waveguides are nol perpendicular to the facets or if
imperfections are introduced by polishing, the actual attepuation coefficient can be
smaller than the measured value .

3.5. Discussion.

Ti:LiNbO3 waveguides arc asymmetric, and therefore do not guide at all
wavelengths. For a given waveguide there is a certain wavelength above which the
light is radiated into the substrate, this is the cut-off wavelength. Due to the
birefringence of the Ti:LINbO; in a z-cut crystal, the two different polarisations will
have dilferent cut-éff wavelengths. These considerations determine whether, at a
given wavclength, the device will operate in one polarisation, both polarisations or
none. The cut-off wavelength in stripe waveguide depends on the width, height and
increase in the refractive index of the waveguide. But new considerations arise when
studying PSW; the increase in the refractive index will be smaller due to the
reduction in the average concentration of Ti along the waveguide. Fig 3.7, Fig. 3.8
and Fig 3.9 have shown that this reduction in the increase of the refractive index is as
given by Eq. 3.1, and furthermore they show that a simple relationship (Eq 3.20) can
be established between the cut-ofl wavelength and the duty cycle of two PSWs, This
relationship, together with Table 3.1, provides us with a wide range of PSWs
operating at different wavelengths. In particular, we have been able to fabricate

PSWs that will operate in the 1.3 yum and 1.55 pum telecommunication windows.

There are three sources of error that affect the cstimated value of the cut-off
wavelength. First, there is the fabrication etror, where photolithographic processing
produces changes in the duty-cycle and in the width of the PSWs. Other fabrication
crrors are associated with the uneven thickness distribution of the titanium strips
before diffusion. The second source of errors is measurement error, associated with
the alignment of the set-up. Finally, there is an uncerlainty in the criteria chosen to
determine the cut-off wavelength from the (ransmission spectrum.
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Increments of the duty cycle due to photolithographic processing were measured to
be up to 6% and dependent on the position of the waveguide in the sample. This was
taken into consideration in Fig 3.7 and Fig 3.8.

Two different measurements for the same alignment conditions carried out at
different times (e. g. in the range between 30 seconds and half an hour) produced no
significant change in the spectrum ol the waveguide, Diflerences in alignment can
produce a significant change in the estimated cut-off wavelength, of about 20 nm for
the quasi-TE mode and 30 nm for the quasi-TM mode. Variations in the cut-off
wavelength as a function of the position of the waveguides across the sample were

found to be about 46 nm for the quasi-TE mode and 60 nm for the quasi-TM mode.

Point A in Fig 3.5(b) determine the cut-off conditions for the less confined mede,
while point B determines the cut-off condition for the more confined modes. Because
the criteria are different, it is not surprising that the point of intersection with the x-
axis of the lines of Fig 3.9 differs for the two modes. It is casy to belicve that the
definition represented by points A in Fig 3.5(b) better portrays the behaviour of the
cut-off wavelength as a function of the duty-cycle. At this point, virtually no energy
from the less conflined (quasi-TE) mode is maintained in the waveguide, unlike for
the case of point B. This is consistent with the results of Fig 3.9, where the point of
intersection with the x-axis for the quasi-TE mode is closer to zero; the expected

value.

Our model predicts no dependence of the cut-off wavelength on the period, and this
can be scen in Fig 3.8. The model predicts a linear relationship between the square of
the cut-off wavelength and the duty cycle, which is supported by Fig 3.9. The
accuracy to which the model can be used can be obtained from Fig. 3.7, Fig 3.8 and
Fig 3.9. In Fig. 3.9, the point of intersection with the x-axis for the case of the quasi-
TE meode {with better criteria for cut-off, and smaller measurement errors) is 0.02.
Our model predicts it to be zero and the error indicates that Eq. 3.1 can bhe used to
describe the increase of the refractive index of PSW with an error of 2% . Using the
same argument for Fig 3.10 we obtain that the error is 5 %. The difference between
these two values is purely due to measurement errors. If we reiax the statistics
slightly, and obtain the mean value and deviation with only two points, we can say
that our model has an etror of 4% + 3%. The dispersion of the data in Fig. 3.7 and
Fig 3.8 around the theoretical predicted value indicates similar accuracy.
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3.6. Conclusions.

We were able to fabricate PSWs for different fabrication conditions, with duty cycles
ranging from 0.3 to 0.65, and periods ranging from I5 pm to 20 pm. In all cases the
model represented by Eq 3.1 has been proved to describe the behaviour of PSWs
successlully. We were able to measuse the cut-off wavelength of PSWs and, using a
simple model, predict its variation with the duty-cycle. Agreement between the
model and the experimental results is excellent, which indicates that Hq. 3.1

describes the properties of the PSWs (except loss) very accurately.
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Optical field distribution
and losses in PSWs
(Modes of PSWs)

A Three Dimensional Explicit Finite Difference Beam Propagation Method (3D
EFD-BPM) has been used to study the modal characteristics and losscs of Periodic
Segmented Waveguides (PSW). Results for the variation of the moade widih and
depth, as a function of the duty cycle and period, are presented and compared with
thosc obtatned using the equivalent continuous waveguide model at a wavcelength of
1.55 pm. The radiation losses associated with the modulation of the refractive index
are studied and we show that a 3D represcentation of a PSW is necessary to evaluate

the radialion loss.

4.1. Introduction.

In this Chapter we are going to use the FFFD-BPM {1 to study the optical field of step
index periodic scgmented waveguides (PSW) with a index distribution chosen to
rcsemble that of Ti:LiNbOz channel waveguides. We will show that ihe EFD-BPM
can be used in the study of PSWs and we will show the behaviour of the optical {ield
along the direction of propagation. Onc key difference between PSW and standard
continuous waveguides is in the definition of a mode. A waveguide mode is
normally associated with a ficld distribution which remains unchanged along the
direction of propagation. Ifowever, in the case of a PSW the mode shapc changes
pentodically as a function of distance. It is important to be able to understand the
behaviour of these "quasi-modes” and to be able Lo account for radiation losses
associated with the periodic modulation in refractive index. To that effect we used a
3D BPM.

EFD-BPM was used because the method is very efficient per propagation step, and
the propagation step used for this structures is much smaller than that required to
make the algorithm stable 111,
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Iirst, in section I we are going to state the Fresnel equation (the wave equation that
has becen numerically solved by our BPM), and indicate all assumptions and
limitations involved. Tn section III we are going to obtain the explicit finite
difference implementation of the Fresnel equation, and discuss the conditions for
stability and on the boundary conditions. In section IV we ate going to study the
PSWs using the 3D EFD-BPM; we will study the variation of the optical field as it
propagates through the PSW, the variations of the mode size as a function of the duty
cycle and period, and we will obtain the losses associated with the segmentation.

Then we will conclude,

4.2. Fresnel equation

Stacting from the Maxwell equations and using a number of approximations:

E(x,y,z,8) = E®(x,y,2)exp(—ict)

E = y(x,y,z) exp(—ik,z)

Disregard the polarisation properties of the waveguide £21
A non conducting medinm

[ R S

Slow longitudinal variation:
9 w

We obtain the Fresnel equation:

81;; 321,1/ Iy

o" (? ’ =~k (nz{x, ¥,2,0) = nf) 7 Eq 4.1

—2 jkgtt, — -

Where n(x,y,z,w) is the index distribution of the waveguide and £, is the free space

propagation constant.

The Fresnel cquation is an approximation of the Helmholtz equation, which in furn is
an approximation of a vectorial wave equation resulting from Maxwell equations.
The derivation of the Fresncl equation (rom Maxwell equations can be seen in
Appendix 2 .
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4.3. Formulation of the EFD-BPM
4.3.1. Finite difference.

To obtain a solution for the Fresnel equation we are going to use a finite dilference
scheme. There are three kinds of finite differences B31:

Forward differences

A, (T8} = w{T+AT,s)~ W(7,s) Eq 4.2
Backward differences

A_y(7,s)=w(7,5)— y{T—AT,5) Eq 4.3

Central differences
S, y(1,s)= w[’f+%AT,S)—W[T~%AT,SJ Eq 4.4

When the central difference operator is applied twice we obtain the second order

central difference
82y (T,s) = w(t+ A1,5) - 2y(1,5) + w(T— AT, s) Lg 4.5

For first differences it is often convenient to use the double interval central

difference

Ay, W(T’S] - %(Ar + "5‘—1‘) W(T,S)
1 Eq 4.6
— 5[ w(T+AT,5)— w(1- At,5))

By using the backward diffcrences for the derivative in z in the Fresnel equation, the
method becomes implicit. This is because the scheme inveolves more than one
unknown value of the solution on the new propagation level z+Az. The forward
difference and the double interval central difference will result in a explicit method.
The forward difference resuits in an instability for any Az, while the double interval

central difference is conditionally stable. Any method based on the central difference
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requires the field distribution at the present and preceding step to calculate the field
at the next step.

4.3.2. Explicit finite difference applied to the Fresnel equation.

To solve the Fresne! equation, a parabolic partial differential cquation, we use the

double interval central difference for the derivative in z

yix v z+az)— yix,y,z—Az)  Iy(x,y,z)

Fq 4.7
2Az oz 1
and centred second difference for the second derivatives in x and y
w(x+Ax,y,2) -2y (x,y.2)+ y{x— Ax,y,z) P p(x,y,z) Coag
7 = 5 qé.
(Ax) I
Wiy +Ay)-2y(xy,z)+ wlny—Ayz)  Pylxpz) By 49
(4y)" o"f '

using these approximation we obtain that the Fresnel equation satisfies

‘f’;j(:’- +Az) = %‘(Z —Az)+a; Ilu(r‘—l)j(z) + a:‘w{i‘;rl)j(z)
~ N Eq 4.10
+C W () + ¢ l{/i(j-ﬂ)(z) + b{j(z) Wy (z)

where

L’Ib, — AZ
L Jen, (Ax)’
- Az

. Az Eg4.11

- - - + Az
b{z)=—a; —a; —c] —c] — kyf ( Hz)—- n)

Wij(z) and njj(z) are the Optlc.d] ﬁcld values and the sampled refractive index values,
respectively, at x=Xj, y=yj in the computational window, and Ax=x; - xj.; and Ay=y;-
¥j-1- The propagation of the optical field in Eq 4.10, is explicit and straightforward
since it involves multiplication of the input field with a very sparse mattix, which
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makes the method very efficient. However, this algorithm is only stable under the
condition [1]

Az<2kn{A 2 - |m} Eq 4.12

This condition assures power conservation as well as stabilityl!l
4.3.3. Boundary conditions.

To solve the Fresnel equation with the BPM, boundary conditions have to be
implemented at the edges of the computational window. The computational window
can be seen in Fig 4.1. At present the most popular boundary conditions are the
transparent boundary conditions [4. 5| which allow the radiation to escape from the
computational window without appreciable reflections. However, this boundary
condition has not been implemented in a EFD BPM. Here we use a different
approach. First we make the electric field zero at the boundaries (metallic boundary
conditions), in this situation the optical field will be reflected at the boundaries of the
computational window. To avoid these reflections reaching the waveguide, we force
the field to pass through an aperture. This is done by making the electric field zero in
a single propagation step in all computational windows except for an aperture. The
edges of the aperture are positioned so that they are far away from the guiding mode.
In this situation the aperture has a minimum influence in the optical field (see Fig
4.6).

ale NX=225 points  ng,=2.1587
- 20pm .. .%&Lrn, Ny=180points . =2 1372
An=0.0215
45 Ax=0.20 um
pgm Ay=0.22 ym
Az=0.03 ym
S (Az {to fulfil stability
y _ condition of Eq 23 } = 0.06 um)
Substrate
x y ' Z direction of propagation.

Fig 4.1. Computational window used to simulate the propagation of light in a PSW
using EFD BPM.
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4.4. Analysis of PSWs using a EFD-BPM.

In a PSW the increase in the refractive index is medulated periodically. Each
segment is composed of two regions with different refractive indices; a doped region,
with an increase in the refractive index of An, und an undoped region with the same
refractive index us the substrate. The modal properties of a PSW are determined by
its dimensions, period (A), duty cycle (1) and the increase in the refractive index. In
Chapter 3 have shown that the behaviour of a step index PSW can be approximated
by a continuous waveguide with the same depth and width, in which the average
index difference, An', is given by :

An’ = nAn Lq4.13

This relationship has proved useful in the design of PSW; however, il does not
provide information about the radiation losses associated with the modulation of the
refractive index, or the behaviour of the optical filed along the direction of
propagation.

4.4.1. Pcriodicity of the optical field; "Modes™ of PSW,

The structure used in these BPM simulations was based on a 5 um wide, step index
PSW, with a period of 17.5 um, guide index 2.1587, substrate index 2.1372 and with
a range of duty cycles varying from 0.2 to 1. This geometry was chosen to
approximate a single-modc PSW Ti indiffused LiNbO3, where the maximum change
in refractive index is ~0.02 (6], Simulations werc carricd out at a wavelength of 1.55
pm., We used this relatively large refractive index moduolation to reducc the mode
size, and thercfore the size of the computational window. A smaller increase in the
refractive index will require cxecssively large computational times. The details of the
computational window can be seen in Fig 4.1, The resuits from the BPM for a PSW
of period 17.5 wm and duty-cycle 0.5 can be seen in Fig 4.2, Here we represent the
intensity profile in the vertical and horizontal directions. The intensity profile in the
vertical direction (the direction of the substrate) was calcufated by adding all the
intensity points in the transverse direction al a constant depth and is shown in Fig.
4.2(a). The intensity profile in the horizontal direction was calculaled in a similar
manner and is shown in Fig. 4.2(c). As can be seen, the periodic modulation of the
refractive index forces a periodic modulation of the intensity distribution along the
direction of propagation.
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Fig 4.2. a) Depth intensity profile along 2 periods of a PSW and b) its contour curves.
c¢) Horizontal intensity profile along 2 periods of a PSW and d) its contour curves.
Period 17.5 pm, duty cycle 0.5, width 5 pm, depth 5 pum and an increase in the
refractive index of 0.0215. Operating wavelength 1.55 pm. The period starts at the
beginning of the doped region. Depth and width are the y and x coordinates of Fig 4.1
respectively.

To obtain the field distribution of Fig 4.2, the input field (a Gaussian) was allowed to
propagate until the radiation modes that may exist in the input field disappear from
the computational window, leaving only the propagating energy together with the
segmentation losses. We found that to obtain the "mode" of a PSW, the step size in
the direction of propagation has to be smaller than that given by the stability
condition of Eq 4.12. The boundaries of the computational window were placed far
away from the guide, so that they could not affect the propagating field distribution
or the segmentation loss.
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A mode exists when the optical field does not interfere destructively with itself when
propagating in a waveguide. In the case of PSWs these condilions have to exist over
a complete period, making the mode of a PSW a function of thc transversal
distribution of the refractive index as well as the longitudinal distribution of the
refractive index (i.e. period and duty-cycle). Therefore, the field distribution of Fig
4.2 is the "mode" of PSWiy, together with its radiation losses. From another point of
view, the condition Cor the existence of a mode is that the transversal propagation
constant is zero. i.e. the transversal propagation constant has the same magnitude in
the opposite directions. In a PSW this condition is not fulfilled at any one point.
However, after one period, the summation of all transversal propagation constants is
zero, except for the radiation loss. Therelore, in the context of the latter definition,
the radiation loss is not part of the "mode" of a PSW.

The conditions that determine the "mode"” sustained by a PSW also determine the
radiation losses. Therefore the cross section of the doped regions, the period and duty

cycle determine the radiation losses.

The intensity distributions for PSWs with dilferent duty-cycles are very diflerent, not
only in its mode size but also in the periedic distribution of the tntensity. For the casc
of duty-cycle 0.5, the variation in the mode width and depth along one period is
larger than for the PSWs with duty-cycle 0.2 or 0.8 (Fig 4.3). Later we will see how
this can affect the radiation losses.

Fig 4.2(d) shows how the light in the horizontal direction converges when travelling
throught the areas with the higher refractive index, and diverges when passing
through the areas in hetween. Fig 4.2{(b) shows that, due to the strong asymmetry, the
light in the vertical direction bends away [rom the surface when passing throughl the
undoped regions. The radiation losscs originate at the transition between the low
refractive index region awd the doped segment. The energy expands into the non
doped region in such a way that, when it reaches the interface with the doped region,
part of the energy can not be re-confined by the guide, while at the transition from
the doped to the non-doped region, the mode is free to expand adiabatically and thus
there are no radiation losses.
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Fig 4.3, Depth intensity profile along 2 periods of a PSW of duty cycle 0.2 (a)-(c) and
0.8 (d)-(e). The Waveguides have the same dimensions, and increase in the refractive
index as that of Fig 4.1. Operating wavelength 1.55 Hm,

76




Chapter 4 - Optical field distribution and losses in PSWs

; | "!‘1 l:],‘l’\
M"l“ l\‘lf!!'

) 'JJ"

Fig 4.4. A three-dimensional view of the intensity propagating in the plane normal to the
direction of propagation for PSWs with different periods and duty-cycles. The intensity has

been obtained at the beginning of a doped segment and has been normalised to one, and then
truncated at 2 % of the maximum.
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4.2.2. Segmentation losses.

Figure 4.4 shows a surface plot of the optical field in the transversal plane to the
direction of propagation, from which the details of the radiation loss can be seen. In
some cases, the radiation spreads towards the boundaries with most of the radiation
directed under the guides, and only a very small fraction spreads laterally. But on
some occasions (Fig 4.4, A=30 um, =0.5), a considerable amount of light is
radiated laterally. For this reason a 3D BPM is essential to study the radiation losses
and the modal properties of PSWs. The advance of the energy radiated toward the
substrate, as the light propagates along one period, can be seen in Fig 4.5. The
marked region is the radiation loss produced in one period.

Normalised Intensity
0.008

z=0
0.006 -

0.004 —
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Fig 4.5 Normalised depth intensity profile for a PSW of period 15 yum and duty-cycle 0.5.
Here we can see the segmentation losses in the direction of the substrate. The marked region
follows the progression of the loses generated at one period.
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In Fig 4.2, 43, 44 and 4.5, we can observe how the radiation losses exit the
waveguide, but provide us with no information about the magnitude of these
radiations. Fig 4.5 shows the progress of the segmentation loss towards the substrate
along one period. But to obtain the losses from Fig 4.5 is difficult; The losses are not
easy to isolate from the "mode" of the PSW, or from the losses generated by previous
periods.

Weissman et. al in ref. [7] used a 2D BPM to study the radiation losses, they used the
modal spectrum of the waveguide to obtain the radiation losses. They justified the
use of a 2D BPM, arguing that most of the radiation loss takes place towards the
substrate. As we show in Fig 4.4, this is not always the case. For this reason we
studied the radian loss in all directions, and since the PSWs modes vary periodically
we preferred not to use the modal spectrum.

4.4.2.1. Measurement of the segmentation losses.

Horizontal radiatign loss To obtain the segmentation loss we forced the

Waveguide clectric field to zero at a single propagation step
mm in all of the computational window except for a
A
Ly N -

& — . small aperture. This can be seen in Fig 4.6.

R Bl Here the optical field is forced to zero in the
? shaded zone. The edges of the aperture are
% positioned so that they are far away from the

v
%
/ ra?ilij:tior::zss / guiding mode. In this situation the aperture has
/// //% / / a minimum influence in the optical field. The
S ~/  aperture lets the "mode" pass and blocks some
///,// M of the radiation losses. Next we allowed the

Fig 4.6. lere we can see the .

computational window used to obtain the OPtical field to propagate, and measured the
segmentation losses of the PSW. The jniengity that entered the shaded zone of Fig
waveguide radiates energy hornzontally ] . _ :
and towards the substrate. To measure the 4.6. By doing this we observed the increase in

i;’sf:: :{l:dﬁmthzngpttﬁzl S:Ig:m the radiation loss as a function of the

the energy that enters this zone as the light  propagation distance. The results can be seen in
propagates.

Fig 4.7. In Fig 4.7(a) the increase in the losses
is nearly linear with the propagation distance, while in Fig 4.7(b) we can see a step
like behaviour. Every step corresponds to the energy generated by one period. This
cannot be seen in Fig 4.7(a) because the segmentation loss from one period overlaps
with the radiation generated at previous periods. The losses are obtained by
comparing the total energy in the mode with the radiation energy given by Fig 4.7:
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Fig 4.7. Radiation entering the shaded region of Fig 4.5 as a function of the propagation distance for
PSW of period 17.5 ym and duty-cycle 0.5 (a) and 0.8 (b).

4.4.2.2. Segmentation loss as a function of the period and duty-cycle.

Figure 4.8 shows the segmentation loss as a function of the duty-cycle and as a
function of the period. These absolute values are larger than those reported
previously, both experimentally [8 ! and theoretically [7- 9. This is due to the
relatively large refractive index modulation used to reduce the computational time. In
addition, the index profile is a step function, whereas for LiNbO3 waveguides a
diffusion profile should be used. The general shape of the curves coincides with
those of refs. [7,8,9].
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Fig 4.8. Segmentation loss as a function of the duty-cycle (a) and period (b). The point represents the
results obtained with the BPM and the lines are their interpolation.
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From Fig 4.8(a) it can be seen that the radiation losses have a maximum when the
duty-cycle is ~0.5. The decrease in the radiation losses as the duty-cycle increases is
due to the reduction in the gap betwech the doped segments; this minimises the space
in which the beam is allowed to diffract. The decrease in the radiation losses as the
duty-cycle is reduced is due to the increase in the mode size, and therefore a
reduction in the diflraction angle. Therefore, large duty-cycle with small gap and
small duty-cycle with small diffracting angles are competing mechanisms to reduce
the radiation loss.

We have also considered the case of radiation loss as a function of the period (Fig
4.8(b)). The average modc sizc is the same for all periods, therefore, we expect the
radiation losses to increase with the period (i.e. as the gap between doped regions
increases). It should be noted that the radiation losses for waveguides of the same
length increase as the period decreases. This is because the segmentation loss is

proportional to the number of periods.

4.4.3. Variations of the "mode" size as a [unction of the duty cycle
and period

In Chapter 3 we have shown that a PSW can be represented by an equivalenl
continuous waveguide in which the increase in the refractive index is given by Eq
4.13. Now we are going to usc this to prove that the 3D EFD-BPM adequately
describes the propagation of light though a PSW. To that purpose we compared the
mode width and depth of PSWs and its equivalent continuous waveguide for
different duty cycles using the 3D EFD-BPM. The results cao be seen in Fig 4.9. The
lines represent calculations performed for the PSWs and the points the results
obtained using the equivalent continuous waveguide. The mode width and depth of
the PSWs was calculated from the curves of Fig 4.10, where the intensity profile in
the vertical and horizontal direction is shown at the beginning of each period for
different duty- cycles and periods.

The variation of the mode width and height as a function of the period can be seen in
Fig 4.11. Here we can see that the mode size is very similar for all periods, but there
may bc some differences in the intensity distribution. This is in agreement with the
cquivalent waveguide model proposed.

The consensus between both sets of results for the PSW and its cquivalent
continuous waveguide in Fig 4.9, and the independence of the mode size on the
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period (Fig 4.11) indicate that a step index PSW can be represented by an equivalent
continuous waveguide. In Chapter 3 we have experimentally demonstrated that a
PSW can be represented by an equivalent continuous waveguide, therefore the
results of Fig 4.9 and 4.11 suggest that the 3D EFD-BPM accurately simulate PSWs.

.8 J‘ = Width of equivalent guide
Mode size 7 % ® Depth of equivalent guide
- - - - Width of PSW
—— Depth of PSW
RRapL L s '
L
0.2 0.4 0.6 0.8 1

Duty cycle

Fig 4.9. Variation of the mode width and depth with the duty cycle for PSWs
and the equivalent continuous waveguides. The mode width and depth were
obtained from the curves of Fig 4.10. The mode size were measured at 0.3 of
the maximum. Operating wavelength 1.55 ym.
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Fig 4.10. Vertical (a) and horizontal (b) intensity profile for PSWs of period 17.5 ym and different
duty cycles ranging from 0.2 to 0.8. The intensity distribution in one direction was obtained by adding
the intensity in the transversal direction and then it was normalised so that the maximum has a value
of one. In all cases the intensity distribution was obtained at the beginning of a doped segment.
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Fig 4.11. Vertical (a) and horizontal (b) intensity profile of PSWs. The intensity distribution in one
direction was obtained by adding the intensity in the transversal direction and then it was normalised
so that the maximum has a value of one. In all cases the intensity distribution was obtained at the
beginning of a doped segment. The duty-cycle of the PSW is 0.5.
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4.5. Conclusions.

We have shown that a PSW cuan be represented by an equivalent continuous
waveguide and that the 3D EFD-BPM adequately describes the propagation of light
through PSWs. The equivalent waveguide model provides a good design tool for
calculating the modal properties of PSWs. IHowever, it does not provide any
information about the radiation losses of the waveguides, or the behaviour of the
optical field along the direction of propagation. We have seen that a 3D
representation of the PSWs is necessary to evatuate the radiation losses, both in the
direction of the substrate and in the lateral direction.

The Three-Dimensional Explicit Finite Difference Method has been used to study the
propagation characteristics of the optical field in Periodic Segmented Waveguides.
We found that the peried and duty-cycie of the PSWs (ogether with the index
distribution, set the conditions that will allow a certain field distribution to be
sustained by the waveguide, i.e. set the modes of the PSW and with the mode, the
radiation l[osses. We have shown that PSWs have "modes" where the intensity profile
is repeated periodically along the direction of propagation, except for a reduction of
the amplitude due to radiation loss. Thus, modes in a PSW are three-dimensional
functions, formed by the optical field in one period. The numerical simulations
illustrate how the segmentation loss escapes from the waveguide. We were able to
measure the magnitude of the losses as a function of the period and duty-cycle. We
found that for long periods, in our structure, the radiation loss becomes excessively

large.
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5
SHG in PSWs

[n this Chapter we will show how, using Ti:LiNbO3 PSWs, we were able to generate
the second harmonic of a 1.55 um fundamental wave. There are a few possible
mechanisms by which second harmonics (SH) can be generated in a PSW, but only
two result in significant conversion: a) the penodic reversal of the sign of the
nonlinear coefficient and b) periodic modulation of the propagation constant. We
will show the theoretical detuning curves for both cases, and we will derive a general
up-conversion / down-conversion condition to include the case of SHG produced by
a modulation of the propagation constant.

In Chapter 3 and 4 we have shown that a PSW behaves like a continuous waveguide,
where the increase in the refractive index is given by the average titanium
concentration. We have illustrated that the mode size is modulated as the beam
propagates over one period. In this Chapter, we will investigate the behaviour of the
propagation constant along a PSW. By chirping the period of the PSWs we were able
to control the tuning curves of the SHG process, and we were able to model them
with numerical simulations.

5.1. Introduction.

Coupling between two modes takes place if a coupling coefficient exists, and if the
propagation constant of the two modes is the same. In grating assisted coupling any
difference between the propagation constants is compensated by the period. Grating
assisted coupling using PSWs is not new, for example it has been demonstrate in
SHG [1], but what is not clear at present is the behaviour of the propagation constant
as the PSW mode propagates. Some authors propose a change in the propagation
constant as the wave progresses through areas with different indices [2. 3. 4],
However, no conclusive evidence of this has been reported in the literature.
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Traditionally SHG has been obtained by modulating the nonlincar propertics, via a
process called domain reversal. As we have shown in Chapter 2, there are situations
where domain reversal can be obtained during the fabrication of PSWs, If a
Ti:LiNbO3 PSW is fabricated on the positive face, the waveguide has both a periodic
modulation of the refractive index and a modulation of the nonlinear coefficient. If a
Ti:LINDO3z PSW is labricated on the negative face, the waveguide ouly experiences a
modulation of the refractive index,

In this Chapter, we investigate the phase matching properties of PSWs by
considering the details of the SHG process. Quasi-phase matching (QPM) SHG takes
place at a wavelength where the difference between the propagation constants of the
fundamental and SH is compensated by the period of the PSW. We will show lhal u
periodic modulation of the nonlinear coefficient only, and a modulation of both the
propagation constant and the nonlinear coetficient, yields different phase-matching
curves. ITowever, the experimental detuning curves show no indication of a

modulation in the propagation constant,

First, we fabricated and tested PSWs with differcnt periods and attempted to predict
the phase matching wavelength from the fabrication conditions, For this we needed
to estimate the propagation constant of the fundamental and SH from the index
distribution using a mode sclver. The problem with PSWs is that the index
distribution is not uniform along the direction of propagation, and therefore we had

lo average it.

We also fabricated chirped PSWs and compared their detuning curves with those
obtained theoretically. Briefly, we will discuss the application of chirp waveguides in
all-optical switching.

All the software used to simulate SHG has been developed to take into consideration

the dispersion of the material and some of the limitations imposed by fabrication.
5.2. Theory for second harmonic generation (SHG).

In this section we will discuss the conditions required for efficient SHG. SHG is a
second order nonlinear process and arises as a conscquence of a nonlinear interaction
between light and matter. In SHG two photons from the fundamental generate onc
photon at double the frequency, the second harmonic {SH). However, this process is
only cfficicnt under certain circumstances, which depend on the propagation of the
fundamental and SH waves in the nonlinear material. Thercfore, to describe SHG it
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is necessary to generate a wave equation for each of the frequencies involved and the
coupling belween themn. Because this is a very difficult system to solve, some

approximation has to be used to simplify the problem.

5.2.1. Dielectrics

As light propagates in a medium the photons will interiact with the atoms. Therefore
the light medifies the medium, which in turn influences the propagation of the light.
The permittivity and the permeability are the macroscopic quantities which account
for the microscopic behaviour of the light in the material. They are introduced in
Maxwell's equations by substituting the electric field (E) with the clectrical
displacement (D) and the magnetic flux density (B) with the magnetic ficld (H).

The effect of the matcrial on the electromagncetic (EM) (ield can be studied by
considering that the incident EM field polarises the atoms in the material, which
creates a polarisation charge that modifies the incident field. If the energy of the
incident beam is small, the response of the material is proportional to the electric
field and therefore the polarisation charge oscillates with the same frequency ol the
incident ficld. However, if the optical ficld is very intensc, the response of the
material is nonlinear and the polarisation charge oscillates at a different frequency

from that of the incident fieid.

In general, for two oplical fields at {requencies @, and @,, the second order
nonlinear interaction between the material and the two EM waves produces dipole
momentums which oscillate with the following frequencies:

W, + @, = O,
Rl ) Eqs.1

and each dipole generates light at its oscillating frequency.

Once ®, has been generated, the interaction between the new wave and the existing
waves generates polarisation terms at the following frequencies:
W, ~ @, = W,

BEg5.2
@y — @, = 0y
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5.2.2. Up-conversion and down-conversion

In a second order nonlinear process, where we have two optical fields at frequency
; and w,, there are three competing processes:

(|

U™ 2,0, TSI

1 .
0 L~ ®3=1+ 07 Up-conversion
m2
M3=Mm1+ 2
U (2
(2) ¥ (w3,-mz) VUV
> OF
OF) _
Down-conversion
m3=m+m2
> _(2) >
(3) X (w3,—01)

™7

>

M

Fig 5.1

In process 1, photons at frequencies w; and w, generate a photon at a new frequency
o3 (=w;+my). In processes 2 and 3 the generated photon at w3 in combination with
one of the two original photons (w; or w;) generates the other photon (w; or wy).
Therefore, the nonlinear process will generate photons at w3 (up-conversion), but
will consume them as well (down conversion). Up-conversion, or down conversion
will dominate depending on the relative phases of the three waves. Therefore, to
analyse the system we have to obtain three wave equations which are coupled

through the nonlinear coefficient.

Starting from the Maxwell equations and using the following approximations:

1 Ex,yz1)=E"(xy z)exp(-iowt)
E” = E" (z)explikz)

Em , will only vary on propagation, i.c. is only a function of z:

9

The envelope E (z) varies much less rapidly than exp(ikz), the slowly

A W

varying envelope approximation.
5 Opverall permutation symmetry =

X(Z)( ‘”3’_“’2) - X(Z)(w:s"wn) = X(z)(wvwz)= Xm
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6 A non conducting medium.

we abtain the following system of equations:

(05”  iw, . ey s '
S —cr: d b7 157 explidkz)
g A
AE” i, . st e\t . _
1= B (£ exp(-itk) T 5.3
1
~ -
IE"  iw o f fan ) .
i —2d E "’-’(E“") exp(—iAkz)
Z cn,
Where:
* ny, ny and n3 are the ellfective indices of the propagating modes..
hd Akzkl 'I"kz_kj
{2)
T2
« duBEME" =d EME™
where d,, =dié,¢, , €, and ¢, are unitary vectors in the direction of E®
and £,
A detatled derivation of these equations can is given in Appendix 3 .

5.2.3. Second harinonic generation.

Second harmonic generation occurs when a wave interacts with itself to generate
the sum frequency. In this situation we can use Eg. 5.3 assuming m{=wy=w and

W3=20. Then,

expressed as:

AQ )
dE o
oz 2cn,
24
JE i
dz oy,
Where,

Ak =2k, —k,,

the coupled differential equations that describe the process can be

d,;(20,-0)E* (E°) exp(-iAks)

Eq 5.4
—d (@, w)(ﬁ“’)z exp(iAkz)
:%ﬁ("m =) Eq 5.5

(o]
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If we apply the Manley-Rowe relations we oblain

dy (20, ~w) = 2d 4 (0, ®). Eq 5.6
This means that we have two photons of the fundamental to one of the second

harmonic.

5.2.4. Overlap area.

Equations 5.3 and 5.4 apply to plane waves, therefore, there is no confinement. To
incorporate the properties of the waveguides in our cquation we define an overlap

area.

If we want to express the amplitude of the electric field (

E‘°|]in terms of the power

(), we need to know the area in which the beam is propagating:

= e .
2
=|E =———— Eq 5.7
o pe Area € cn(@)
 Area

where I is the intensity.

In SHG, the efficiency of the process is given by the overlap integral between the
fundamental and SH modes (1,,,,,,). Thercfore, to include the area in which the
interaction tukes place we define the oveslap area, Asperiap » 88.
1
averfup = 2

et ) Eq 5.8
I

where x and y are the space coordinates in a cross section of the waveguide. The
amplitudes are normalised according to

[ I B dndy =1 Bq5.9
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5.2.5. Solving the coupled amplitude equations governing SHG.

The coupled differential equations of Eq 5.4 have been solved using the fourth-order
Runge-Kutta method. If the fundamental beam is polarised so that the electric field
is parallel to the z axis of the LiNbO3 crystal, the nonlinear polarisation and
therefore the SH have only a component in the z direction. This can bee seen in Eq
2.3 of Chapter 2. For this situation the d-coefficient is d33= 30 pm/v. LiNbO;3 is a
birefringent crystal and the z direction is that of the extraordinary ray. The
implementation of the Runge-Kutta method is outlined in more detail in Appendix
3.

Equation 5.4 will be solved for three different structures:

* A waveguide with a periodic change in the sign of the nonlinear coefficient. This
is implemented by changing the sign of the nonlinear coefficient in Eq 5.4 .

Fig 5.2

* A waveguide with a periodic modulation of the propagation constant for the
fundamental and SH. This is implemented by changing the value of the effective
indices in Eq. 54.

An An ANgun
NsH Angy Angy
Fig 5.3

e A waveguide with both a modulation in the sign of d¢ and the propagation

constant. This is implemented by changing the value of the effective indices and

sign of the nonlinear coefficient in Eq. 5.4.

NFun ANFun An
Ansy Angy Angy
+ + +
Fig 5.4
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To implement the periodic modulation in the refractive index and the nonlinear

coefficient, only these two parameters have been changed in the coupled differential
equation. Other effects that may take place at the boundary between two different

materials were not considered.
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Fig 5.5. The SH conversion efficiency is the ratio
between the SH and the initial fundamental power.
The nonlinear phase of the fundamental (phase w)

and SH (phase 2m), is the phase terms of Ew and

EM in Eq 54. The phase condition for up-
conversion and down-conversion of Eq 5.12 and
5.13 is labelled as phase. These values were
obtained by numerically solving Eq 5.4 using the
Runge- Kutta method for a LiNbO3 waveguide
0.1 mm long, effective area of 2.1x107 m2, and
100 W input power. The d33 nonlinear coefficient
was used. Operational wavelength 1.55 pm.

5.2.6. Quasi-Phase Matching

In SHG, a fundamental
frequency w and wavelength A interacts

with  the
susceptibility of the material to produce

wave with

second-order  nonlinear
a polarisation wave at the second
harmonic frequency 2w. Since the
polarisation wave is forced by the
fundamental wave, it travels with the
same velocity, determined by n,. The

polarisation wave radiates a free

second-harmonic wave which travels at
a velocity determined by n, . In
general n, >n_, becausc of normal
dispersion in the material, so that the
fundamental and second harmonic wave
travel with different phase velocities.
To a first approximation we can say that
the direction of power flow from one
wave to another is determined by the
relative phase between the waves. The
continuous phase slip between these
in the
direction of the flow of power. The

waves leads to an alteration

alteration in the direction of the power
flow leads to a repetitive growth and
decay of the second harmonic intensity
along the length of the interaction (see
Fig 5.5). The distance over which the
relative phase of the two waves changes
by x is the coherence length, 1.

| = ———— = Eq 5.10

E4
Ak
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which is also the half period of the growth and decay cycle of the second harmonic.

If the refractive indices can be matched by some means (i.e. n,, =n,), the second

harmonic field grows linearly with distance in the medium, and thus the intensity

grows quadratically. This condition is known as phase matching (see Fig 5.6).

8E-04

6E-04 -

4E-04 =

2E-04

SH convesion

OE+00
1

phase ®
(units of )

-1 T T T
0.6 v

Phase 20
(units of n)

Here, we propose an alternative, more
general, condition for up-conversion and
down conversion in SHG, depending on
the nonlinear phases of the fundamental
and SH, and the phase mismatch (Ak).
From the coupled differential equations
(Eq 5.4), the varnation of the second
harmonic electric field with propagation is
given by:

. pl0 .

JE ... deﬂ(w,wXEA‘m)zexp(iAkz)

oz o,

Eq5.11

and using Eulers formula for the first

0.5 - 7 =%
order, it can be shown that the condition
for up-conversion can be expressed as:

0.4 ' i

7E-10 y : — ) ( - x
) ] w w y
e ' hasenonlinrar_ \Akz + : + 2Phasennnlinrur) < :
E '
§ o 2w A2wm
'g_% 6E-10 - Pha“enrmlinfar= Phase E
-
Phase®, ... = Phase( : ‘") Eq512
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0 025 05 075 1 Akz+ €027 ]
Length (mm)

Fig 5.6. Representation of the SH conversion
efficiency, the nonlinear phase shift of the
fundamental and SH, and the up-conversion and
down-conversion condition of Eq 5.12 and 5.13
for a phase marched waveguide. All the
parameters and definitions are those of Fig 5.5
except for the effective index for the
fundamental and SH. Here they have artificially
been set to be equal; ny,y=ny,=2.

Where Ezw and Em are obtained from Eq
5.4. The derivation of this expression is

outlined in more detail in Appendix 6.

Using the same arguments as for Eq 5.12,
the SH
fundamental

harmonic  converts into

(i.e. down- conversion)
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when:

s Z Eqg5.13

Phase>” - (Akz + -;E + 2 Phase” ) 5

nembinear ronlinear

and neither down conversion or up conversion occurs when:

nembinear

iIPha.vew - [NCZ + % +2Phas efr;inlmcar)

T
= — Eq 5.14
2 q

In Fig 5.5 we can see how the condition for up-conversion and down-conversion is
related to an incrcase and decreasc of the SH conversion. The condition of Eq 5.14
corresponds to the transitions from up-conversion to down-conversion at z=nl,
where nis 1,2,3,.....

In a phase matched situation : (see Fig 5.6)

=0 Eq 5.15

wonfincar nontinear

‘Phase“’ - [Akz + g + 2Phase” j

which corresponds Lo the most efficient case.

If phase matching docs not exist (i.e. ng#ng), a continuous growth of the SIH can be
obtained by controlling the relative phase of the SH and fundamental. This can be
done by periodically modulating the nonlinear and/or linear properties of the
material. In this situation, the period compensates for the phase difference between
the SH and fundamental, this is called quasi-phase matching (QPM).

5.2.6.1. Domain reversal quasi-phase matching.

If, after the fundamental and SH have propagated a distance |, we reverse the sign of
the nonlinear coefficient, the direction of the flow of power is reversed and the
growth of the SH is regained, see Fig 5.7. The change in the sign of the nonlinear
cocfficient is equivalent to introducing a phase 7 in Eg 5.12. 'T'his means that after
z=1g, by changing the sign of the nonlinear coefficient, we maintain Eq 5.12 in the

condition for up-conversion, see Fig 5.7.

o B omt
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5.2.6.2. Modulation of the propagation constant quasi-phase matching.

The modulation of the propagation constant implies a modulation of n,,, nz,, and Ak
in Eq 5.4. Modulation of the phase mismatch (Ak) is obtained only if the modulation
of the propagation constant of the fundamental is different from the modulation of
the propagation constant of the SH. In a typical Ti:LiNbO; waveguide the
modulation of the propagation constant on its own (without the modulation in the

phase mismatch) results in a very inefficient quasi-phase matching process.
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Fig 5.7. Representation of the SH conversion
efficiency, the nonlinear phase shift of the
fundamental and SH, and the up-conversion and
down-conversion condition of Eq 5.12 and 5.13
for a waveguide with domain reversal. All the
parameters and definitions are those of Fig 5.5.
Period 18.5 ym and a duty-cycle 0.5. The
operational wavelength is 1.5368 ym.

Here, unlike domain reversal QPM, we
do not try to suppress the down
conversion process. At the start of the
propagation, the periodic modulation of
the phase mismatch does not have a large
cffect on the net conversion from the
fundamental to the SH, but as the optical
field propagates in the PSW, the
modulation of the phase mismatch has an
accumulative effect in the up-conversion /
down- conversion equilibrium. This can
be seen in Fig 5.8, where the condition
for up- conversion (as given by Eq 5.12)
dominates the condition for down-
conversion (given by Eq 5.13).

5.2.6.3. Modulation of the propagation
constant and sign of the nonlinear

coefficient quasi-phase matching.

The combined effect of domain reversal
and periodic modulation of the phase
mismatch is not easy to predict. At the
beginning of propagation the influence of
the PSW on the conversion efficiency is
small (see Fig 5.9), and therefore the
phase matching process is similar to pure
domain reversal. But after relatively long
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propagating distances, the accumulative effect of the PSW starts to affect the SHG.
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SH conversion
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Phase 20
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Fig 5.8. Representation of the SH conversion
efficiency, the nonlinear phase shift of the
fundamental and SH, and the up-conversion
and down-conversion condition of Eq 5.12
and 5.13 for a PSW with a difference in the

modulations of the propagation constant of

the fundamental and SH of 105 All the
parameters and definitions are those of Fig
5.5. The period of the modulation is 18.5 ym
and the duty-cycle 0.5. The operational
wavelength is 1.5368 pm.
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Fig 5.9. Representation of the SH conversion
efficiency, the nonlinear phase shift of the
fundamental and SII, and the up-conversion and
down-conversion condition of Eq 5.12 and 5.13 for a
PSW with a modulation in the propagation constant of
the fundamental and SH, and domain reversal. All the
parameters and definitions are those of Fig 5.5. The
period of the modulation is 18.5 ym and the duty-
cycle 0.5. The operational wavelength is 1.5368 pm.
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5.2.7. Quasi-phase matching period.

In the case of domain reversal QPM the sign of the nonlinear coefficient has to be
changed every coherent length, 1.. Therefore the peried of the modulation, A, is

twice the coherent length. Using Eq 5.10 we obtain:
in A

A=2] =22 "o Eq 5.16
A 2ny, —n,) b

We can also view this as a grating assisted process, where the spatial harmonics of
the grating are used to compensate for the phase mismatch. In the case of domain
reversal QPM we modulate the nonlinear coefficient. In the casc of PSW QPM we
modulate the phase mismatch. In both situations we can express the periodic

properties in the form of a Fourier series:

a(z)= D a, exp(—igKz) Eq 5.17

g=—ea

Where a is eilher the nonlinear coelficient of the phase mismatch, and K is the
spatial frequency of the grating:

K:Qf Eq5.18
QPM takes place when

Ak+g¢gK=0 .
g=1.2,3. Eq 5.19

Using Eq 5.18 and Eq 5.19 we obtain that the phase matching period is :

_._2__13__ ;{’m

A=RE Ay Eq5.20
A 2(my, 1) 1

Which 1s the same as in Eq 3.16.
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5.2.8. Detuning curves.

The conversion from the fundamental wavelength to the SH wavelength depends

upon the phase mismatch, Ak. At phase matching (i.e.Ak =0) we get maximum

conversion from the fundamental to the SH. As we move away from the phase

matched condition the conversion efficiency is reduced. Similarly for QPM, but now

the maximum efficiency occurs at Ak+2afA =0. Therefore a detuning curve

represents the SH conversion efficiency as we detune from phase matching. Due to
the dependency of Ak on the wavelength (see Fig 5.10) the representation of the SH
conversion against the wavelength results in a detuning curve, this can be seen in Fig

S.I1:

0.36
0.35
0.34 -

033

Ak (1/pm)

0324

1.5 1.525 155 1.575 1.6

Wavelength (pzm)

Fig 5.10. Dependency of the phase mismatch
on the wavelength. For the case in which the
e-ray of the fundamental interacts with the ¢-
ray of the SH through the ds; coefficient. The
refractive index is that of the LiNbO;
substrate.

0.025
0.02 -
0.015

0.01 =

SH conversion

0.005

P -

0—‘
1.53 1.534 1.538 1.

Wavelength (pm)

7
'
'
'
1
1
1
1
'
'
1
e S,
5
'
1
M
1
"
2

Fig 5.11. Dependency of the SH conversion
efficiency as a function of the wavelength for the
waveguide of Fig 5.7. For QPM domain reversal. The
duty-cycle of domain reversal is 0.5. An®=0.000205,
An?=0.000479, The substrate refractive indices
corresponds to those of LiNbO3. The effective area is
2,1x10-7 and the input power at the fundamental
wavelength is 100 W.
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5.3. SHG in uniform PSWs.

Many authors believe that the propagation constant in a PSW is medulated along the
waveguide, and propose to use this effect for SHG [5: 6], or even if they do not
propose to use it, they study its repercussions in domain reversal SHG [7]. In
opposition to this, we believe that a PSW sustains a mode, and that the propagation
constant is characteristic of the mode, and therefore, is not modulatcd along the
direction of propagation.

To our knowledge there is not a theorctical description of the detuning curves for
waveguides with a modulation in the propagation constant (asswming the
propagation constant can be modulated). In this section we will show the
experimental detuning curves of a uniform PSW, and compare them with our

theoretical detuning curves assuming:

* Domain reversal only,
*  Domain reversal and modulation of the propagation constant,
* Modulation of the propagation constant only

We will show that the only possible way to reconcile experimental and theoretical
results is by not considering a modulation in the propagation constant of the PSW.,

5.3.1. Theoretical detuning curves.

The shape of the detuning curves depends on the length of the device, and on the
conversion efficiency. The waveguides considercd here are 9 mun long, with a
conversion efficiency of about 1.7% with 100 W pump. Therefore, the cffective area
is 2.08x10-7 m? (see Appendix 7). The wavelength at which quasi-phase matching
(QPM) takes place depends on the period and effective indices of the SH and
fundamental. The device was designed to operate at 1.55 . At this wavelength, the
QPM period is about 19 pm, depending on the fabrication conditions, Due to the
diffused nature of the PSWs the average increase in the refractive index, and
therefore, the propagation constant is difficult to obtain. For this reason, in this work,
the difference in the refractive index between the SH and fundamental is a fitting

parameter.
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The detuning curve for a domain reversal waveguide has been shown in Fig 5.11. In
this section we will concentrate on the effects that a modulation of the propagation

constant will have on SHG.

SH conversion
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Fig 5.12. Detuning curves for waveguides where the propagation constant has been modulated. The
same conditions as those of Fig 5.11, except for the modulation of the effective index and sign of the

nonlinear coefficient. dn"and 67’ are the modulation in the effective index for the fundamental and
SH respectively, we have set 6n’” = 0. The duty-cycle in the modulation of the effective index is

0.5. There is no modulation in the sign of the nonlinear coefficient. The effective area is
2.08x107 m’ and the input power is 100 W. An”=0.000205 and An?*=0.000479.

The detuning curves for the case where only the propagation constant is modulated
can be seen in Fig 5.12. It is not shown here but the detuning curve depends on the
difference in modulation of the propagation constants of the fundamental and SH and
not on its individual values (i.e. the effect is due to the modulation of the phase
mismatch, Ak). én° and dén"” are the modulation in the effective index for the
fundamental and SH respectively. To simplify we assume that on™ =0. Therefore
in Fig 5.12 6n” is an indication of the value of the difference between dn” and
on*” . The first thing to be noticed is that if the difference between dn” and 6n™” is
large enough we have two peaks at which QPM takes place. One peak corresponds to
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Angy

ANgyn
Angy

Fig 5.13. Condition for phase matching in a
waveguide with a modulation of the phase mismatch.

SH conversion
0.002

The definitions of 1j, 15, I, I'c can be
seen in Fig 5.13.

The second point we notice in Fig
5.12 is that a small modulation in én"”
does not produce any significant
SHG. As on” the

efficiency increases up to a certain

we  increase
point, and then starts to decrease. If
we increase on” further the detuning

curve splits in two.
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Fig 5.14. Detuning curves for waveguides where the propagation constant and the sign of the
nonlincar coefficient had been modulated. Same conditions as those of Fig 5.11, except for the
modulation of the effective index. An” and An’” are the modulation in the effective index for the
fundamental and SH respectively, we have set 8An™ = 0. The duty-cycle in the modulation of the
effective index and sign of the nonlinear coefficient is 0.5. The effective area is 2.08 x10 " m’, and

the input power is 100 W. An=0.000205 and An*“=0.000479.
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The detuning curves for the case where we modulate both the phase mismatch and

the sign of the nonlinear coefficient can be seen in Fig 5.14. As in Fig 5.12 we set

on”” =0 and vary dn”. The more efficient case corresponds to no modulation of the

phase mismatch, as the modulation increases, the efficiency of the SHG process is

reduced, and at a certain value of én” the detuning curve shows two peaks.

5.3.2. Experimental results.
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Fig 5.15. Schematic representation of a) the
shape of the ferroclectric domain after Ti in-
diffusion, and the overlap integral of the
fundamental and SII modes with a function that
described the spatial varation of the
ferroelectric domain grating, for b) the SH in the
TMy mode and ¢) for the SH in the TMy,

model8]

PSWs were fabricated in LiNbO3 by in-
diffusing 100 nm of Ti at 1050 °C for 13
hours. The Ti strips were patterned onto
both positive and negative faces of the
LiNbO3 substrate, the segments were 5
pum wide, with periods ranging from 15.8
to 19.8 um and duty-cycle of 0.55. For the
in-diffused the
ncgative z face, the Ti only increases the

case of the Ti onto
refractive index. For the case of Ti in-
face the
the

refractive index, and produced a reversal

diffusion onto the positive

indiffusion  process  increased
of the domain as described in Chapter 2 .
Due to effects such as titanium lateral
diffusion and lithium outdiffusion, the
typical of the
polarisation obtained is
schematically in Fig 5.15. The net results
thus the

homogencous

shape ferroelectric

shown
two

are combination of

materials with opposite
ferroelectric polarisations separated by a
periodic boundary. Only the section of the
fundamental and SH modes that propagate
within the periodic boundary result in
SHG.
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At the SH wavelengths more than one mode (TMgy , TM.; , TM_y , ...) are supported

by the waveguide, and each of these modes can interact with the mode at the
fundamental wavelength (TM,,) to produce SHG:

TMZ, + TM2, = TM2®
TM?, + TMS = TMZ?
™S, + TMy, = TM.y

For a given period, QPM takes place at a different wavelength for each of the SH
modes, since they have different propagation constants. The more efficient
interaction is the one in which the overlap between the fundamental and SH is larger
in the area where domain reversal exists. As we can see in Fig 5.15 the maximum
overlap takes place for the TM, + TMj, => TM.\" interaction. In these situations, the
effective area is the overlap integral between the fundamental mode, the SH modes
and a function given by the grating [41.

All of the detuning curves and phase matching wavelengths were obtained by Carlos
Treviio Palacios at CREOL, University of Central Florida. The laser source used in
the experiments was a synchronously pumped mode-locked (F2+)NaCl:OH color-
center laser operating in mode-locked (76 MHz, 6-ps pulses, assuming a Gaussian
pulse Shape). The peak power of the laser was selected to avoid substantial mode
competition between adjacent modes [9].

1.6

In Fig 5.16 we can see the
phase matching wavelength as
a function of the period, for
PSWs fabricated onto the

positive face (domain reversal

Wavelength (xm)
5
1

exists). Each discontinuous

line corresponds to phase

75 18 185 19 195 20 205 : w
: matching of theTM,;, mode

Period (um ; :
() width different modes of the
SH. The solid line
Substrate aessgpeane | I'Mgo(®) >TM 1 (2m) - 3
corresponds to the dispersion
et TMgoo) >TMgof 208" TMofe) T2 for the case where the

Fig 5.16. Wavelength at which QPM takes place for PSW with fundamental and SH
different periods b_ul l!lc same duty-cycle. The solid line propagate in the substrate. As
represents the material dispersion of the SHG process. ) i

we can see the dispersion for
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the guided modes and the substrate is the same. This can be used to design
waveguides for different operating wavelengths. The average conversion efficiencies

for these waveguides were 1.5 % with a 100 W pump (for 9 mm long waveguides),
in this situation the effective area is 2.08 x 10" m”.

We propose two models to describe the index distribution in a PSW:

* Model 1. We assume that there is no diffusion in the direction of propagation,
and that the diffusion underneath the Ti segments is that of a continuous
waveguide (as described in section 2.3.1., Chapter 2). Then the increase in the
refractive index is averaged along one period according to Eq 1.1 of Chapter 1. In

this model we assume no increase in the refractive index between the Ti
segments.

* Model 2. We calculate the Ti distribution after in-diffusion for one single
segment. To do this we assume the diffusion has a Gaussian distribution in the
depth direction and a Error function distribution in the lateral directions:

_Zy)”e’f( u;;zx) +erf( wz-sz)}

x

Ax,y,2) = Caexp{ Fz- {ed( +2y ) cerf

1.6

Cp is chosen so that the final
1575 total number of atoms of Ti
are the same as the initial
155 number of atoms. Then we
average the Ti concentration
along one period, and from

this Ti distribution the index

1.525 -

Wavelength (pm)

1.5 - T . Y ' distribution is obtained using
17.5 18 18.5 19 19.5 20 the equation of section 2.3.2.2.
Period (pm) in Chapter 2.

TMgo(0)->TMgg(20) - TMgo()->TMy;2) In both models the effective index

""""" Model 1 —  Modell of the waveguide was obtained by
EREEEEE  Model 2 — Model 2 entering the index distribution into
a mode solver. In Fig 5.17, the
results obtained from both models

have been compared against the

==+®-ess Experimental — 9  Experimental

Fig 5.17. A comparison between the QPM wavelength
obtained experimentally and that obtained using the
models 1 and 2 described in the text.
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experimental results. As we can see both models describe accurately the case of
weakly guided modes, but they cannot be used to predict the QPM wavelength for
the stronger confined modes. We believe that a more accurate model has to be
developed to obtain the Ti distribution in PSWs, as well as a new relationship
between the Ti concentration and the increase of the refractive index.

For the case of the

value to fit our model to the

, TMgg->T Mo, TM,, — TM," intcraction, the

difference between the QPM

- g 0.8 - wavelength obtained with model

% ) . number 1 and that obtained

EE ' experimentally is 2.32 nm, and

; E 049 TMy>TMoo from now on we will use this
=

experimental results. No other

fitting will be implemented.
155 1.56 1.57 1.58 1.59

Wavelength (zm) A typical SHG wavelength scan
Fig 5.18. Typical SHG wavelength scan for a 0.9 mm long can be seen in Fig 5.18 .We can
uniform PSW of period 19.5 um and duty-cycle 0.55. The see  two  different  peaks
input power is 100 w and the effective area 2.1x107 m2-
The solid line represents the experimental result and the
dotted line is the theoretical prediction. Assuming only a between the TM, mode at the
modulation on the sign of the nonlinear coefficient. The i

theoretical curve was displaced to the left by 232 nm to [undamental wavelength with

compensate for the discrepancy between the experimental S
and theoretical QPM wavelength of Fig 5.17 two different modes at ‘e SH

corresponding to the interactions

wavelength. The height of the
peaks depends on the effective

areca.

Using the same experimental set-up we were unable to find QPM SHG for
Ti:LiNbO3 PSW fabricated onto the negative face of the LiNbO3 substrate (where
domain reversal does not take place). Both, the waveguides fabricated onto the

positive and negative face, were processed under exactly the same conditions.

5.3.3. Comparison of experimental and theoretical results.

After comparing the experimental and theoretical detuning curves, the following
conclusions can be obtained:
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1

QPM SHG is very dilfercent for PSWs fabricated on the positive and negative
face of LiNbO3. For wavcguides fabricated on the positive face, the conversion
efficiency was as big as 5%, while no QPM was observed in PSWs fabricated on
the negative face. The QPM SHG obtained in the former case is due to domain
reversal, and the mechanism for this can be seen in section 2.3.1.5. of Chapter 2.

The absence of QPM SHG for PSWs fabricated on the negative face of the
LiNbO5 substrate indicates that there is no modulation of the phase mismatch, or
if there is any, it is small: 8(n2®-n®)<1x10-3 (sce Fig 5.12). Here, ny, and 1, are
the effective indices at the SH and fundamental wavelength respectively, and
S(n2@-nw) is the modulation in the differencc. We were able to resolve QPM
SIIG 75000 times smaller than the input power at the fundamental wavelength.
i.c. we should be able to detcet QPM SHG with an efficiency of 0.0013 %.

The absence of two peaks in the detuning curve for the PSWs fabricated on the
positive face of LiNbQ; indicates that if there is any modulation of the phase
mismatch, it is small: d(n?®-pn0)<5x10-3 (sce Fig 5.14).

The absence of QPM SHG for PSWs fahricated on the negative face of LINbO3
indicates that neither of the following QPM SHG interactions take place :

TME + TM g = TMZ
IME + TMD = TMZ2?

and therefore the difference in modulation of the effective index of the TMpg and
TMg; modes of the SH is smaller than 1x10-5. This is a direct consequence of

point 2 in this section. It is noted that the difference in the effective index
between the TMgg and TM ¢y modes of the SH is 2.8x10-3.

Fig 5.17 and Fig 3.4 of Chapter 3 indicatc that there is a diffusion of Ti in the
direction of propagation. We do not have a good model 10 describe the exact
distribution of Ti concentration in PSWs, but from the results summarised in Fig
5.17, the TMgyo and TMy; modes of the SH "see” different distributions of Ti
concentrations. The TMpg mode of the SH appears te "see" a smaller duty-cycle
than the TMg; mode. Due to the diffuse nature of the Ti:LiNbO3 waveguides, we
expect the TMpg mode of the SH to "see" a larger modulation of the refractive
index than the ‘1'My; mode.
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6 If we put all the above points together we can conclude that the modulation in the
phase mismatch is very small: 8(n2®-n®)<1x10-5. We can also conclude that the
difference in the modulation of the propagation constant of the TMpy and TMg,
modes of the SH is very small: 8ngg-8ngi<x10-3, despite the large difference
between the effective indices of these two modes (ngp-ng=0.0028). The 1easons
for this can be:

- The modutation of the propagation constant is the same for alt modes and
wavelengths involved. But there is evidence that indicates a different
modulation of the refractive index for different modes.

- The modulation of the propagation constant is very small for all modes
due to the reduction in the moduiation of the refractive index as a
consequence of the diffusion of Ti along the direction of propagation.
But, again we have evidence that indicates that the TMgg mode of the SH
may “"see" a significant modulation of the refractive index.

- 'There is no modulation in the propagation constant of the PSWs modes.

At this point we cannoi say which of these three situations occurs in our
experiments. The only thing thut the experimental detuning curves indicales is
that, to the accuracy of our experimental set-up, the PSWs described in this
Chapter behave as continuous waveguides in QPM SHG, and therefore in any
other phase matching cxperiments.

5.4. Tuning curves of chirped PSWs.

In this section we will show the tuning curves obtained for chirped waveguides. In

all of the analysis, we do nof assume a modulation in the propagation constant.

Chirped waveguides have many applications. By making the bandwidth broader the
device can compensate for changes of the working conditions and uncertainty due to
the fabrication process. As well as controlling the bandwidth, chirped waveguides
can be used to reduce the side lobes of any graiing assisted coupling, and for the
particular case of SHG, chirped waveguides can be used to generate a large nonlinear
phase shift (due to cascaded second order nonlinearities!101), in a region where the
power of the fundamental is not depleted by SHG.

To fabricate the chirped waveguide, the total length of the device was divided in 30
or 60 different sections, where each section is formed by uniform PSWs with a
period depending on the position of the scction in the waveguide. To work on the
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centre of the tuning range of the laser, the chirped PSW had an starting period of
18.5 um and a final period of 19.5 ym.

We fabricated PSWs with three different period distributions:

19.5 4
e 1 cm long quadratic chirp waveguide. E '3 7
Starting period 18.5 ym final period 19.5 ,‘3 19.1 =
pm. The spatial distribution of the periods '§ 189 =
can be seen in Fig 5.19 A
187
185 T T T
0 025 05 075 1
Length (cm)
Fig 5.19
197
* 0.5 cm long quadratic chirp waveguide, 195 =
starting period 18.5 ym final period 19.5 g 193
um, followed by 0.5 cm long uniform 2 19.1
PSW of period 19.5 um. The spatial & 189 1
distribution of the periods can be seen in B 187 -
Fig 5.20 185 T T r :
0 02 04 06 08 1
Length (em)
Fig 5.20.
* 0.5 cm long quadratic chirp waveguide, 197
starting period 18.5 ym final period 19.5 195 4
pum, followed by 0.5 cm long uniform g 193 -
PSW of period 19 um. The spatial B 1914
distribution of the periods can be seen in 5 .
: A :
Fig 5.21 il
185 4 T
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Length (cm)

Fig 5.21.
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The waveguides were fabricated by patterning 100 nm of Ti into the positive face of
z-cut LiNbOs3, and diffused at 1050 °C for 13 hours. As a consequence of the cutting
/polishing process, the final length of the devices was shorter than the nominal one,
about 1 mm shorter. This problem could be avoided by fabricating an input/output
(I/0) section with the same duty-cycle and a different period than that required for
SHG. In this situation there is good coupling between the [/O section and the
remainder of the waveguide, and SHG is inhibited in the /O section.
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Fig 5.22. Wavelength scan for SHG in chirp waveguides. The spatial
distribution of the period for each waveguide can be seen in the insert. The solid
line corresponds to experimental measurements and the dotted lines are the
numerical simulations
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The experimental detuning curves for the chirped waveguides together with the ones
obtained by solving the coupled differential equation of Eq 5.4 can be seen in Fig
5.22. To obtain the theoretical curves we assumed that our waveguides were 0.9 cm
long (0.5 mm was removed from each end by polishing). The cffective area was
calculated from the efficiency of the experimental process. The propagation constant
for the fundamental and SH were obtained with a mode solver using an average Ti
concentration as described by model 1 in section 5.3.2. of this Chapler, and then the
curves were shifted 2.32 nm to the left to compensate for the discrepancies between
the predicted and actual values of the phase matching wavelength in Fig 5.17 . The
duty cycle was sct to be 0.55.

The agreement between experimental and theoretical results indicates that is possible
to design and {abricate chirped waveguides to meet specific need. However, there arc
certain differences between the experimental and theoretical results. From our
simulation, the relative position of all the other features of the luning curves are very

dependent on properties of the waveguide such as:

« Difficulty to precisely determine the length of the waveguide and dependency of
the detuning curve on input the coupling; Which can be solved by introducing a
I/0 section

« Mode competition, as at certain wavelengths more than one mode may be excited
61, A more complex model has to be implemented to account for this.

* Phase errors introduced during fabrication.

The experimental detuning curves were abtained with 6 ps pulses, that for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>