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Abstract

This aim of this thesis is to study the propagation of light in Periodic Segemented
Waveguides (PSWs). The work focused on three main areas:

• Assessment of the accuracy of representing a PSW with an equivalent 

continuous waveguide, where the cut-off wavelength is a function of the PSW 
duty cycle. Experimental verification of the accuracy of this statement is 

reported, for the first time, through the fabrication and testing of TirLiNbOg 

PSWs. This is acheived by studying the cut-off wavelength of PSWs.

Due to asymmetry, TiiLiNbOg waveguides experience cut-off. This presents a 

problem in the fabrication of PSWs, where as a consequence of the 
segmentation, there is a reduction in the refractive index difference which 
reduces the cut-off wavelength. Due to the birefringence of the material the 

cut-off wavelength is different for the ordinary ray and the extraordinary ray. A 

model has been developed to obtain the cut-off wavelength as a function of the 
duty-cycle, as an aid to the fabrication of PSWs.

• The equivalent continuous waveguide model can describe some of the 
properties of PSWs, but does not account for the losses associated with the 

segmentation. For the first time light propagation in a PSW has been 

demonstrated using a 3D finite difference beam propagation method (3D FD 
BPM). The software has been specifically developed to study PSWs. This 

provides the possibility of observing the field distribution as it propagates over 

one period, and illustrates the segmentation losses in the waveguide. Careful 
control of the optical field at the edges of the computational window (to 
minimise errors) allowed an assessment of the radiation loss for different 

periods and duty-cycles. Previously published work only investigated the 
segmentation losses for 2D structures, with radiation towards the substrate 

only. We compared the mode size of PSWs and its equivalent continuous 

waveguide. The agreement between the two sets of results confirmed that the 
model can be used to describe PSWs, and indicated that the 3D BPM 

accurately simulates PSWs.



A bstract II

• Examination of the PSWs interaction in phase matching processes. In this 

thesis, PSWs were fabricated, and using the second order nonlinear properties 
of LiNbOg, the linear propagation of PSWs were studied. In grating assisted 

coupling any difference between the propagation constants is compensated by 

tlie period. Grating assisted coupling with PSWs is not new, as it has been used 
previously in SHG, but at present the behaviour of the propagation constant as 
the PSW quasi-mode propagates is not evident. Some authors propose a change 
in the propagation constant as the wave progresses through areas with different 

indices. But no evidence of this has been found in this work or the literature. In 
this thesis the fabrication of chirped PSWs and the tuning curves for SHG are 

reported. All the software used to simulate SHG has been developed to take 
into consideration the dispersion of the material and some of the limitations 
imposed by fabrication.

*



Preface

LiNbOg is a well established material in the field of integrated optics, it possesses a 
very useful combination of properties and characteristics. In Chapter 2 we discuss 

some of the aspects of bulk LiNbOg and TiiLiNbOg waveguides relevant to this 
thesis, in particular the birefringe, transmission and non-linear optical properties as 

well as the material changes which take place during the fabrication of the 

waveguides by Ti indiffusion. During the last 25 years a variety of active and passive 

integrated, high performance devices have been fabricated in LiNbOg. Here we 

propose the use of periodic segmented waveguides (PSWs) to increase the 

functionality of integrated components. The use of PSWs can be extended to any 
material system, and such devices have been reported in LiNbOg , KTP , InP , and 
glass. Initially, PSWs were used as Bragg-gratings and subsequently to obtain quasi­
phase matching (QPM) second harmonic generation (SHG). Recently PSWs have 
been employed in asymmetric Y-junction wavelength demultiplexers, asymmetric 
couples wavelength filters and in tapers.

In a PSW the increase in the 
refractive index (An) is modulated 

periodically during fabrication, this 
is shown schematically in Fig 1. 
As a consequence of the 

segmentation, the loss in the guide 

is increased and the effective 
refractive index is reduced when 

compared to a continuous 

waveguide. The application of 
PSWs in integrated optics rely on

W  ^  W  ^

t̂ A

Fig 1. Index distribution of a PSW, where A is the period the possibility of controlling the 
and n the duty-cycle.

ellective index with the duty- 
cycle, and at the same time uses its period for phase matching applications. The 

combination of both opens the gates to a range of novel devices.

The aim of this thesis is to investigate the propagation of light in PSWs, in particular 
three points were of interest:
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Exploration of the accuracy of representing a PSW by an equivalent continuous 
waveguide and obtaining the cut-off wavelength as a function of the duty- 
cycle. A PSW can be represented by an equivalent continuous waveguide with 
the same depth and width, in which the average index difference, An', is taken 

to be the weighted average of the index along the direction of propagation. In 
the case of step index waveguides this is represented by Eq. 1 .

An'' -  r/An Eq 1

until now, there have not been any reported experimental results which show 
the accuracy of this statement. Therefore we dedicate Chapter 3 to describing 
the fabrication of PSWs and to show that they can be accurately described by 

Eq 1. To do this we studied the cut-off wavelength of PSWs.

Due to asymmetry, TiiLiNbOg waveguides experience cut-off, i.e. above a 

certain wavelength the waveguide will not guide any light. This presents a 
problem in the fabrication of PSWs, as the reduction in refractive index 
difference as a consequence of the segmentation, reduces the cut-off 
wavelength, and due to the birefringe of the material, the cut-off wavelength is 

different for the ordinary ray and the extraordinary ray. In Chapter 3 a model 

has been developed to obtain the cut-off wavelength as a function of the duty- 
cycle and therefore aid us in the fabrication of PSWs. The cut-off wavelength 

is dependent on the increase of the refractive index, therefore Eq 1 could be 
implemented directly in our model, and the comparison of the experimental 

and theoretical results provides us with a direct method to prove the validity of 

Eq 1.

The model described by Eq 1 can describe some of the properties of PSWs, but 

does not account for the losses associated with the segmentation. For the first 

time light propagation in a PSW has been demonstrated. In Chapter 4, using a 
3D finite difference beam propagation method (3D FD BPM), we generated 
the optical field guided by a PSW. The software has been specifically 

developed to study PSWs. This provided us with the possibility of observing 

the field distributions as it propagates over one period, and shows the 
segmentation losses (the losses associated with the modulation of the refractive 
index) in the waveguide. Careful control of the optical field at the edges of the 
com putational window (to minimise noise) perm itted us to quantify the 
radiation losses for different periods and duty-cycles. Previous work only 

investigated the segmentation losses for 2D structures, with radiation towards
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the substrate only. W e compared the mode size of PSWs and its equivalent 
continuous waveguide. The agreement between the two sets of results confirms 

that Eq 1 can be used to describe PSWs, and indicates that the 3D BPM  

accurately simulates PSWs.

To show that PSWs interact in phase matching processes in exactly the same 
way as continuous waveguides. In Chapter 5, PSWs were fabricated, and using 

the second order nonlinear properties of LiNbOg , the linear propagation of 
PSWs were studied. Coupling between two modes takes place if a coupling 
coefficient exists, and the propagation constant of the two modes is the same. 
In grating assisted coupling any difference between the propagation constants 

is compensated by the period. Grating assisting coupling using PSWs is not 
new, it has been used in SHG, but at present the behaviour of the propagation 

constant as the PSW quasi-mode propagates is not evident. Some authors 

propose a change in the propagation constant as the wave progresses through 

areas with different indices. But no evidence of this has been found in our work 
or has been reported in the literature. In this thesis the fabrication of chirped 

PSWs and the tuning curves for SHG is reported. All the software used to 
simulate SHG has been developed to take into consideration the dispersion of 
the material and some of the limitations imposed by fabrication.
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Introduction
1.1 Material system.

Lithium Niobate (LiNbOg) is one of the most attractive materials for integrated 
optics. It allows the fabrication of low loss planar and channel waveguides by 
titanium indiffusion and proton exchange. A schematic illustration of a typical 
waveguide in LiNbOg is shown in Fig 1.1. In addition LiNbOg possesses a useful 
combination of properties and characteristics FI:

Ferroelectric with high Curie point (1120 ®C). 
Moderately large nonlinear optical coefficient: 
dg3=30 pm/v, dlJ[n ln^^)^\Q2 prn/v^

Large birefringence:
At X=L6 pim, no=2.1372 ne=2.2138 

Large electro-optic effect: 
r33=30 pm/v, r33n3=306 pm/v 

Strong piezoelectric effect 
Excellent acoustic properties.
Photoelastic effect

Ti indiffused waveguide

Fig. 1.1. Ti;LiNb03 waveguide

The electro-optic, photoelastic and piezoelectric properties have been used over the 
last 25 years to develop of a large variety of active integrated optical devices with 
high performance. Such components allow the control of phase, amplitude, 
polarisation and direction of propagation of light, generally with moderately low 

drive power levels and high bandwidth. Higher drive powers are required to operate 
at high frequencies. Active devices such as electro-optical and acousto-optical 
devices (modulators, polarisation converters, polarisation scrambler, beam

deflectors, switches, tuneable wavelength filters, etc ) have been combined with
passive devices such as lenses, polarisers, polarisation splitters, directional couplers, 
beam splitters, Bragg reflector gratings, wavelength filter/multiplexer, etc...., on a 

common LiNbOg substrate to form integrated optical circuits for signal-processing
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a p p lic a t io n s  F I. T h e y  a re  u se d  in  f ib re -o p tic a l c o m m u n ic a tio n  F . 4, 5, 6] a n d  s e n s o r  

sy s te m s  F f

Over the last 10 years, there has been a growing interest in rare-earth doped optically 

pum ped am plifiers and laser devices in LiNbOg (Er in particular) l^h The 
combination of the amplifying properties of erbium with the excellent electro-optical 
and acousto-optical properties, allows the development of a whole new class of 
waveguide devices with higher functionality FI. The large nonlinear coefficient l |
together with its broad transmission spectrum (from 0.4 to 5 jam) makes LiNbOg a 

very attractive material in the fabrication of optical parametric oscillators (OPOs)

The nonlinear properties of LiNbOg have also been used for blue light generation 
10, 11] and all optical switching F2][13]

Discussing the possibilities of LiNbOg in integrated optics W. Sohler, recently at 
ECIO'97 (8th European conference on integrated optics) in Stockholm said:

."During the last fe w  years several new LiNbO 3 -specific processing  

technologies have been developed: periodic poling o f  ferroelectric  

microdomains, dijfusion-doping with rare-earth ions, laser ablation and  
photorefractive grating fabrication, selective chemical and ion-beam  
surface etching, and acoustic waveguide definition by Ti-indiffusion. These 

technologies made possible the development o f a variety o f new integrated ÿ
optical devices o f high performance. Examples are parametric frequency 
converters o f high efficiency, optical amplifiers and modelocked, tunable 

and narrow -linew idth  lasers, ultrahigh bandwidth electrooptical 
modulators, and tailored acoustooptical filters, multiplexers and switches. f
Together with the more conventional devices they form  the building blocks ! |

o f a future monolithic integrated optics in LiNbO3 . It is a great challenge 

to develop complex application specific optical circuits (ASOCs) fo r  
optical communications, instrumentation and sensing. "

I
For applications such as high-speed electrooptic intensity modulators F^], fast 

electro-optic polarisation scramblers F][5] and as parametric frequency converters in 

OPOs [̂ 1 LiNbOg is one of the most attractive materials.
,;C,1:.
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1.2. Periodically segmented waveguides (PSW).

To date, periodic segmented waveguides (see Fig 1.2) have been reported in a 
number of different material systems including proton-exchanged LiNbOg F^l, KTP 
[16, 17, 18], in p  [19]̂  annealed proton-exchanged (APE)-LiNbOg 21, 22] and 

Ti:LiNbOg 123, 24, 25] initially, PSWs were used in Bragg-grating structures F l̂ and 

subsequently to obtain quasi-phase matched (QPM) second harmonic generation 
(SHG) 22]. Recently, PSWs have been employed in asymmetric Y-junction
wavelength demultiplexers 125], asymmetric couplers 126. 27] and in tapers to match 
the mode of the input source to the desired mode of the structure F9. 20, 28]  ̂ and 

therefore to maximise the coupling efficiency.

Fig 1.2. Index dislribulion of a 
PSW. Where A is llic pericxi and y] 
the duly cycle.

H - H
riA

In a PSW the refractive index is modulated periodically during fabrication, this is 

shown schematically in Fig 1.2. Each period of the PSW is composed of two regions 

with different refractive indices: one region, with an increase in the refractive index 
of An, and another region with a smaller increase in the refractive index (in general it 

will have the refractive index of the substrate). As a consequence of the 
segmentation, the loss in the guide is increased and the effective refractive index is 

reduced when compared to a continuous waveguide. A PSW is characterised by its 
period. A, and duty cycle, r\ (the ratio of the length of a segment and the period of 

the guide). It has been demonstrated that a PSW can be represented by an equivalent 
continuous waveguide with the same depth and width, in which the average index
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difference. An', is taken to be the weighted average of the index along the 

propagation direction. This is represented by [20 2 1 , 29, 30]

An' =  r)An Eq 1.1

Thus, by choosing the duty cycle, the 

effective index of the waveguide can be 
controlled (see Fig 1.3). The refractive 

index change determines the mode size, 
propagation constant and cut-off
wavelength of the PSW. Control of the
mode size permits the fabrication of 
input and output tapers [1 9 ,2  0 ,2  8 ] 

The possibility of controlling the 
propagation constant could be used in 
asymmetric couplers to provide
wavelength filters [26. 27] in an 

asymmetrically branched Y-junction to 
achieve wavelength splitting for 

wavelength division multiplexing
(WDM) applications Fk 25]

Except for  ̂ ,
lo s s  =nAn

m i l

Asymétrie
coupler

Asymétrie 
y junction

3D Taper

Fig 1.3. PSWs in integrated optics. By choosing 
the duty cycle, ig , the increase in the refractive 
index of the PSWs, An', and therefore the mode 
size, propagation constant can be controlled in the 
waveguide.

Equation 1.1 assumes that the refractive index of the PSW is an average of the index 

along the direction of propagation. To be exact it should be an average of the 
permittivity. This is because the material properties are introduced thought 

Maxwell's equations via the permittivity and not the refractive index. However, since 
An is small, terms in An2, or higher, can be neglected, and therefore, the average in 

the refractive index is equivalent to the average in the permittivity.

PSWs have been modelled by beam propagation method (BPM) [29], coupled-mode- 
theory (CMT) [29], and the modal method of diffraction gratings FO]- in all these 

cases the losses and the effective index of the PSWs were calculated on the 

assumption that the propagation constant and optical field did not change during 
propagation (z- invariant waveguide).

Some aspects of PSW presented in the literature will be reviewed below, in 

particular.
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• The representation of PSWs by an equivalent continuous waveguide with the 

same dimension, and increase in the refractive index given by Eq. 1.1.

• The discussion of the influence of the period in the modes of PSWs.

• The influence of the duty cycle on the losses of PSWs.

Different authors have indicated that the refractive index distribution of a PSWs can 

be represented by Eq 1.1, but the accuracy of this representation is not clear. Li and 
Burke in Ref. [30] observe that the effective index of a grating model for PSWs is 

equal to the effective index of the equivalent continuous waveguide. Chou at al. in 

Ref. [20] show good agreement between the experimental mode size of annealed- 
proton-exchange PSWs in LiNbOg with that of an equivalent continuous waveguide, 

with an average refractive index given by Eq 1.1. Thy agar aj an at al. in Ref. [21], 

using the peak index change and the diffusion depth, showed that the effective index 
of a PSW  can be represented by a continuous waveguide. However, they did not 
produce any direct evidence on the validity of Eq. 1.1. They found that the diffusion 

depth of the equivalent waveguide is independent of the duty cycle. Weissman at al. 

in Ref. [29] using a 2D BPM showed that the effective index of the mode in a PSW 
is that of a continuous waveguide with an average index difference given by Eq. 1.1. 
To obtain the mode effective index using the BPM, they did not account for the 

variations of the intensity profile of the light propagating in a PSW.

Equation 1.1 indicates that the modal properties of a PSW are independent of the 

period. To that respect Li and Burke in Ref. [30] stated that "the electromagnetic 
fie lds fee ls  only the average index o f the waveguide and pays little attention to the 
segmentation o f  the index distribution". N ir at al. in Ref. [22] showed that the 

intensity distribution of the light guided by a PSW is independent of its period and 
strongly dependent on its duty cycle. Chou at al. in Ref. [20] showed that the mode 
depth and width are strongly dependent on duty cycle, and the mode depth is 

independent of the period, while the mode width is weakly dependent on the period. 

Thyagarajan at al. in Ref. [21] showed that the mode effective index for different 
modes in a PSW  is strongly dependent on the duty cycle and independent of the 

period.

PSWs have larger losses than conventional continuous waveguides. At present it is 

not clear how the duty cycle and period affect the increase in losses. Some 
experimental results [20, 22] indicate a strong dependence on the duty cycle and weak, 
or non dependence, on the period. Some theoretical results [28,29] indicate that both
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period and duty cycle will determine the losses in PSWs. Losses cannot be estimated 

by using an equivalent waveguide defined by Eq. 1.1. Even so, in Refs. [28] [29] 
losses are estimated by extrapolating the characteristics of continuous waveguides to 

PSWs. It is assumed that the radiation and confined modes of a PSW are those of a 
continuous w aveguide (i.e. the field  distribution does not change during 

propagation). The utility of PSWs depends on their segmentation loss. Determining 
the factors that will minimise this source of loss allow the design of efficient devices 

for use in commercial systems.

1.3. Second harmonic generation (SHG).

At the end of the 80s and beginning of the 90s there was much research interest in 
waveguide second-harmonic generation (SHG) devices to implement compact short 
wavelength coherent light sources for data storage applications. More recently the 

second order nonlinear coefficient has been use for all-optical signal processing, 
mode-locking, pulse compression and solitons formation as well as parametric 
frequency conversion in OPOs [9], in  this section we summarise the methods 

proposed in the literature for efficient SHG using periodic structures. In Chapter 5 
we will show that some of the proposed methods are not viable.

Important requirements for high efficiency SHG are a large SHG coefficient, large 
optical field and phase matching. At phase matching, the propagation constant of the 
incident beam  and its second harmonic are equal. But, in general, due to the 

dispersion of the m aterial this is not the case. Phase matching techniques for 

waveguide SHG demonstrated so far include temperature and electrooptic tuning 
using birefringence F3, 34]̂  use of guide mode dispersion [35, 36,37]  ̂ use of periodic 
structures or grating 16,24, to, 39,40,41,17,18,42, ii, 43] and automatic matching in 

Cerenkov-type radiation ^ l̂. The different methods used to obtain phase matching 
are summarised in Fig 1.4.

In grating phase matching an optical property of the waveguide is periodically 
modulated and the period of the modulation is used to compensate for any phase 
mismatch, this is called quasi-phase matching (QPM). If the period for QPM is the 

same as the period for Bragg reflection, we have Bragg-resonant QPM (B QPM)[[fl. 
But in most cases the period is just used to compensate for the difference in the 
propagation constant of the pump and SH waves propagating in the forw ard 
direction, we will call this mechanism QPM (to differentiate it from B QPM). Quasi 

phase matching offers many advantages;
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No restrictions imposed on material and polarisation. 
Use of the largest nonlinear tensor component. 
Matching at arbitrary wavelength and temperature. 

High spatial coherence of output.

Phase 
matching

Temperature 
& electrooptic 
tuning using 
birefringence

Using penodic 
structures

%
Guide mode 
dispersion

Modulation of the^ 
nonlinear coefficient

Modulation of the 
effective Index ̂

Modulation of the* 
refractive index

Modulation oP 
h: the coupling 

^efficiency

Cerenkov type 
radiation

Modulation of 
the phase 
mismatch

i

Balance phase
matching

; ^V
Modulation of the 
propagating field - 
Spatial harmonics

Fig 1.4. Methosd used to obtain phase matching in SHG.



C hapter 1 - Introduction 11

SHG using periodic structures can be achieved by modulating:

• The nonlinear coefficient 4 6 ,18, ii, 4i, 4 3 ,16(b), lo, 4 0 ,17,38]^

• The refractive index ^s, 39,40,41,43]

A particularly effective type of periodic structure is one in which the sign of the 

nonlinear coefficient is m odulated throughout the waveguide. This can be 

im plem ented in ferroelectric material (such as LiNbOg, LiTaOg and KTP) by 
reversing the orientation of the dipole moment (domain reversal). Depending on the 

material and the method used to reverse the domain, the shape of the regions where 
the nonlinear coefficient is reversed is different. In LiNbOg, titanium indiffusion ĈO] 
and lithium  outdiffusion [^4] to domain inverted regions with triangular 
boundaries. Domain reversal in bulk LiNbOg [47,48, ii] and LiTaOg [49] has been 

achieved as well by applying an external field, in this case the boundaries of the 
domain go all the way through the crystal and have nearly vertical walls. In LiTaOg, 

proton exchange results in domain-inverted regions with a half-circle shape [^^’ 

and in KTP, the exchange in a Rb/Ba nitrates solution seems to create very deep 
domain inverted regions, with no lateral diffusion [i^i. The efficiencies of the second 
harm onic generation are highly dependent on these shapes [46], the m ost 

advantageous case is when the domains go deeper than the waveguide and have 

vertical walls.

PSWs have been used in SHG, in some of the occasions the SHG was produced only 
by modulation of the refractive index [16(a)], in other occasions the modulation of the 

refractive index came accompanied by domain reversal [iii> 24 I8] the last case, 

both the modulation of the linear and nonlinear properties may contribute to SHG 
[16(b), 38,41,43]^ and their effects may add either constructively or destructively.

A pure modulation of the refractive index may :

• Modulate the propagation constant. The mode of a PSW may travel with two 
different propagation constants in the two different segments of a PSW.

• M odulate the phase mismatch. It will take place if the modulation of the 

propagation constant is different for the fundamental and SH.
• Modulate the coupling efficiency [16(b), 52] The efficiency of the conversion from 

the fundamental to the SH is increased as the overlap between the two modes 

increases. In a PSW the modulation of the refractive index induces a modulation 
in the mode size. If the overlap integral is different in the two different segments,



î
C hapter 1 - Introduction 12
-------------------------------------------------------------------------------------------------------------------------

the conversion efficiency will be modulated, and this is equivalent to modulating 

the nonlinear coefficient.
I

• Modulate the propagating field. "According to the B loch’s theorem fo r  arbitrary 

periodic structures, the electric fie ld  o f  the propagating wave o f any wavelength 

in such medium should in general also contain spatial harmonics. " HO]
• Produce balance phase matching. This take place when the phase mismatch in

one segment of the PSW is the opposite of the phase mismatch in the other

segment. This can be seen as a phase matching situation, where the phase 
mismatch of the PSW, once Eq 1.1 has been applied, is zero.

An interesting problem in PSWs is that of the propagation constant of the waveguide

mode. Until now many authors have considered that the propagation constant will be 
different in regions with different refractive indices H3,16,41] But, to the knowledge 

of the author, non of the experiments in which PSWs have been used to generate SH 
shows evidences of this. Therefore modulation of the effective index and modulation 
of the phase mismatch may not take place.

But QPM SHG is not a technique without problems and limitations, and they are 

clearly presented by T. Suhara at al. in Reference [38]:

"Exact phase matching can be obtained, in principle, with a grating having 
a period to compensate the difference between the propagation constants.
In practice, however, many factors, e.g., uncertainty o f the grating period  

due to limited accuracy o f material constants used in design, fabrication  
errors, and change o f the propagation constants due to grating fabrication, 
give rise to residual mismatch. Working conditions also affect the phase 

matching; change o f  ambient temperature, deviation and fluctuation o f  
laser-diode wavelength, and photorefractive damage in waveguide cause 
deviation from  matching. "

1.4. Methods of analysis of waveguides.
■I

There are two groups of methods used to analyse waveguides (see Fig 1.5), 
depending on the cross-section of the waveguide. The first uses a mode solver to 

study waveguides with a cross-section that does not vary along the direction of 

propagation. The second is a beam propagation method (BPM) which can model the
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propagation of light in a waveguide where the cross-section changes along the 

direction of propagation.

The mode solver is used to calculate the propagation constant and optical field 
profile of the waveguide modes. The simplest one is the effective index method 

This is an approximation method where a 2D problem is decomposed into two 1 D 
problems, the method is only valid for weakly guiding structures. Although the 
propagation constant calculated with this method is accurate, this is not the case for 

the field. Other methods which have been used include the finite difference method, 
variational method and finite element method. In all these methods the mode profile 
and propagation constant are obtained from the wave equation. The finite element 

method usually employs direct solution methods that are numerically intensive. A  
variety of finite-difference methods have been considered H4]  ̂primarily employing 
interactive solution techniques, since they are faster and require minimal storage. 

The variational method ^̂ 1 is an approximation method and therefore faster. The 

accuracy of the variational method depends on the closeness of the assumed trial 

field to the exact mode field of the guiding structure. For a more complete survey of 
the extensive volume of work in this field, the reader may consult the review by 

Chiang

The BPM  has been used to study Y -junctions, X-crossing waveguides, M M I 

couplers, periodic segmented waveguides (PSW). The BPM is attractive to the 
designer of optical devices because it overcomes the difficulties of mode theory 
when applied to com plicated structures, and because of its flexibility as a 

propagation technique. The BPM is a numerical method which solves the wave 
equation in some approximate form (usually the Fresnel equation). The original 
method uses the fast Fourier transform (thus called FFT-BPM) ^9,60] the FFT 

algorithm, each plane wave component of the field profile is calculated using FFT. 

Then each plane wave component is propagated in the homogeneous medium, and at 
the end of the propagation step the field in the real space is calculated using inverse 

FFT. The FFT BPM has limitations that restrict its applications. For instance, in 

addition to the poor efficiency of the FFT-BPM, a large variation in the transverse 
refractive index profile of the waveguide will force the method to use extremely 
small propagation steps. Alternative numerical techniques to solve the wave equation 

in the spatial domain use a finite difference approximation to replace the partial 
derivatives in the wave equation (thus called FD-BPM). Recently, this approach has 
received wide attention from many workers H9,60, 61,62,63 64,65 ] _ Lately, a vectorial 

finite-difference beam propagation method has been reported [63] ^11 FD-BPM  

techniques
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have shown that this approach is much more efficient than then the FFT-BPM in 
terms of accuracy, speed and storage required. In addition, some of these techniques 

have succeeded in overcoming the main limitations of iow-contrast media in the 

FFT-BPM, and allow propagation in strongly guiding structures.

Methods to analyse 
waveguides

Mode solvers ^
l7.> invariant^ H

Effective index 
method

Finite difference
BPM

(z-variant)

Finite  ̂
ëà: elem ent

Variational

. F FT 
(Fast Fourier 

L. Transform)

Finite
difference

Implicit Explicit j

e f d  b p m
(Truly explicit  ̂
fin ite Idifference)

RS-BPM  
(Real Space)

Fig 1.5. Some of the methcxls used to analyse waveguides.
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Generally, the FD-BPM  has been used to solve the wave equation by using two 
methods; the im plicit approach and the explicit approach. At present the most 
popular implicit BPM is based on the alternating direction implicit approximation 
(ADI-BPM) [60,61,63,64,65] The ADI-BPM is unconditionally stable, but requires the 

solution of a large system of equations for each propagation step. The explicit 
approach has mainly two ways of formulating the problem; the real space method 

(RS-BPM) and the truly explicit and therefore called explicit finite difference 

m ethod (EFD-BPM ). The RS-BPM  uses the finite difference m atrix splitting 
operator to approximate the wave equation [60,64,65] This method is unconditionally 

stable but, similar to the FFT-BPM, requires small propagation steps to converge 
when applied to large contrast media. However, it proves to be much more efficient

per propagation step then the ADI- BPM. The EFD-BPM is based on applying the 
central finite-difference approximation directly to the wave equation [62,64,65] The 

propagation of the optical field is straightforward since it involves multiplication of 
the input field with a very sparse matrix, which makes the method very efficient. 
However, this algorithm is only conditionally stable, i.e. the method is stable only if 
the propagation step is smaller than a certain value[62J.

s
Î
:,r;

*
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LiNbOa
2.1. Introduction.

Lithium Niobate (LiNbOg) was first grown in 1965, since then much work has been 

done to understand its properties. Today, good quality wafers, single domain and 

transparent from 0.4 to 5 pim are routinely available. From the beginning, researchers 
realised that LiNbQs was ferroelectric at room temperature, with an elevated Curie 

temperature: 1120 “C. This permits the processing of the material at high 
temperatures without affecting the direction of the domain. In 1966, X-ray 

diffraction and neutron diffraction was used to obtain the crystal structure, and hence 
the origins of the ferroelectric, pyroelectric and piezoelectric characteristics, as well 

as its birefringence. Ferroelectric LiNbOg is non centrosymmetric, providing with 

second order nonlinearities and first order electro-optic effect.

The interest in LiNbOg continued to grow when in 1975 titanium diffusion 

waveguides were first fabricated, opening the possibility for integrated optics. Six 

years later in 1981 proton exchange waveguides were produced as an alternative to 
titanium indiffusion. In the present work only Ti:LiNbOg waveguides were 

fabricated, and therefore only this process will be discussed. From the end of the 70's 

to nearly the end of the 80’s research labs worked to understand the different aspects 
of the in-diffusion of titanium into TiiLiNbOg; in particular the indiffusion process, 

the titanium concentration distribution, the increase in the refractive index, the IÀ2 O 
outdiffusion and the domain reversal associated with the indiffusion, the fabrication 
conditions that minimise transmission losses, and the photorefractive damage 

amongst others

2.2. LiNbOs crystal.

In 1965 Ballman and Fedulov independently reported successful applications of the 
Czochralski technique to grow LiNbOg [1][2]. The next year, a  cornerstone series of 

five papers on LiNbOg came from Bell Laboratories [3][4] [5] [6] [7]. There are
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several review papers and books on LiNbOg 18][9][10][11]. In Refs. [9][12] 
thorough reviews of reported values of the different material coefficients can be 

found.

2.2.1. Growth

Hstimatcd solidus LiNbOg has a solid-solution range from

44% mol to 50 % mol L12O, and grows 

with variable composition, depending on 

the ratio of the starting compounds used. 
The phase diagram of the Li2 0 :Nb2 0 5  

system in Fig 2.1 [13] shows a single 

phase LiNbOg region extending from a 
" Li20-deficient phase boundary that is 

temperature dependent to a Li2 0 -rich 

phase boundary located at, or very near to,
the stoichiometric composition (50% mol

Fig 2.1 . Phase diagram of liN bO j in the y  q . |14][15 ||I6 |. Crystals for device 
temperature range 900-1250 C [alter 13]

applications are cut from boules grown by 
the Czochralski methcxl from a congruent 
melt at 48.6 mol % Li20. Congruent 
crystals are the simplest to grow 

uniformly and without cracks.

LiNbOg

LiNbgOg
LigNb0 4

48 49
Mole % L:20

2.30 

2.28 -

1 2.26 -
>
’■M 2.24 -

1 2.22 -
cc 2.20 -

2.18 -
0.8 1.0 1.2 

Li/Nb Mole Ratio

The properties of LiNbOg depend on the 

stoichiometry of the crystal, this is the 
case of the Curie temperature
[14][17][18], which lies in the range

1020-1180 °C. The birefringence is also 
strongly dependent on the crystal

Fig 2.2 Refractive indices of UNbO, a. [17][18U19][20|. Only the
0.6328 pm  as a function of the molar ratio extraordinary retractive index is
I i 2 0 /Nb205 in the melt [after 17]. dependent upon the Stoichiometry, while

the ordinary index is independent, this can 

be seen in Fig 2.2 [17]. The electrooptic effect shows little variation with the crystal
composition [21]. Miller and Norland [22] have reported that only the dgi second
order nonlinear coefficient is strongly dependent on the crystal composition.



C hapter 2 - LiNbOg 23

2.2.2. Crystallography, pyroelectricity and piezoelectricity.

The detailed structure of LiNbOg at room temperature has been unambiguously 

established by X-ray and neutron diffraction studies of single domain crystals by 

Abrahams et al. [5]. The crystal structure is a slightly distorted hexagonal close- 
packed (hep) oxygen lattice. The octahedral interstice formed are one third filled by 

lithium  ions, one third filed by niobium ions and one third vacant and this can be 

seen in Fig 2.3. LiNbOg is ferroelectric at room temperature and paraelectric above 

the Curie tem perature . For congruent LiNbOg the Curie tem perature is 

approximately 1120 °C, close to its melting point at about 1260 “C. W hen the 

temperature is above the Curie point, the lithium ions lie within the plane of the 

oxygen ions; the niobium ions are midway between planes. Hence, the crystal has no 
charge (paraelectric). W hen the temperature is below the Curie point, both the 

lithium and the niobium ions move in the same direction, resulting in a permanent 
dipole moment (ferroelectric). This can be seen in Fig 2.4. The polarity increases 

with decreasing temperature, which means that one end of the c axis (c+) gets a 

positive pyroelectric charge on cooling while the opposite end (c“) gets a negative 
charge. Similarly, the polarisation will affect the stress in the material which in turn 
leads to piezoelectricity. During crystal growth, if no precautions are taken, the 

structure will consist of microscopic ferroelectric domains, where adjacent domains 

have opposite polarities. To obtain single domain material a LiNbOg crystal, or boule 
section is poled with a strong DC field along the direction of the dipoles [4] [8]. The 

poling can be performed either during, or after the growth of the LiNbOg boule.

LiNbOg in its ferroelectric phase possesses a three-fold rotational symmetry about 

the c-axis, making it a member of the trigonal crystal system . It also has mirror 

sym m etry about three planes 60° apart rotating about the c-axis, but is 
noncentrosymmetric and is thus classified as a member of the 3m point group (see 
Fig 2.3). Paraelectric LiNbOg is a member of the 3m  point group (trigonal crystal 

system as well). Crystals which belong to the trigonal group can be structurally 
classified using either a hexagonal, or a rhombohedral, unit cell. The hexagonal unit 

cell has six formula units while the equivalent rhombohedral has two formula units.

The hexagonal unit cell has three equivalent an axes and one cy axes (see Fig 2.3). 
The optical properties of the ferroelectric phase are usually described in terms of 

orthonormal x, y and z components. The z axis is chosen to be the symmetry axis, 

the c axis. The y axis is chosen to be in a mirror plane. This can be seen in Fig 2.3. 
The senses of the y and z axes are chosen so that their positive ends exit crystal faces 

that obtain a positive piezoelectric charge under compression. The x axis is chosen to
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MiiTor plane
Mirror plane

Mirror plane

Mirror planes

Hexagonal 
unit cell

Oxygen

0 Niobium 

® Lithium

i

1 r

Fig 2.3. Ferroelectric LiNbOg is classified as a member of the 3m point group, 
therefore possesses a three fold rotational symmetry about the c-axis, making 
it a member of the trigonal crystal system. It also has mirror symmetry about 
three planes 60° apart rotating about the c-axis.

LiNbOg crystallise in a slightly distorted hexagonal close packed (hep) oxygen 
lattice, with 6 formula units per unit cell. This hexagonal unit cell has three 
equivalent an axes and one ch axis, the symmetry axis.

z axis - Symmetry axis. Opposite direction in neighbouring domains, 
y axis - In a mirror plane. Opposite direction in neighbouring domains.
X axis - Parallel to any aH axis. Same direction in neighbouring domains.

The positive end of the z and y axes has positive piezoelectric change under 
compression. The positive end of the z axis has positive charge on cooling.
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Ferroelectric
phase

13 .9 A 0.26  À [8 ]

0.71 A [8]

Paraelectric
phase

Octiicdra

Octaedra

#  Oxygen ( O^) 

® Lithium ( Li+) 

® Niobium ( Nb^+)

Fig 2.4. In the paraelectric phase, the Nb^+ ions are at the centre of the oxygen 
octaedra and the Li+ ions are arranged at the centre of the oxygen triangles 
between the octaedras. In reality the Li+ ions will be found, with equal 
probability, above and below the oxygen planes at a distance of 0.37 Â, and 
therefore, we represent the average position of the Li+ ions in the crystal lattice 
(91.

Below the Curie point, in the ferroelectric phase, the Li+ ions shift to one side 
of the oxygen triangles, and the Nb^+ ions move slightly away from the Li+ 
ions. This movement causes a permanent dipole to be set up along the c-axis of 
the crystal, therefore LiNbOg passes from being centrosimetric in the 
paraelectric phase to being non-centrosimetric in the ferroelectric phase. This 
give rises to the nonlinear, piezoelectric and electrooptic properties of LiNbOg.
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obtain right-handedness [231. Therefore, the z axis coincides with the c-axes, the x 
axes with any of the an axes and the positive z face gets a positive pyroelectric 

charge on cooling.

The dial axis of the paraelectric lattice coincides with the x axis. As a result, the 

direction of this axis will be the same in the ferroelectric phase, independent of on 

which side of the oxygen plane the lithium ions switch to. While the y and z axes 
have opposite directions in neighbouring domains. Piezoelectricity, the electro-optic 

effect and the non-linear properties are related to a lack of inversion symmetry, the 

case of the nonlinear coefficient is discussed in Appendix 1. The lack of inversion 

symmetry changes the sign of these coefficients in opposite domains.

2.2.3. Dielectric properties - Birefringence and transmission.

Lithium niobate single crystals are uniaxial negative (with the refractive index of the 
ordinary ray larger than the refractive index of the extraordinary ray, i.e. no>ne). The 

optical axis is the c axis as shown in Fig 2.3 and 2.4.

(a)

0.3 0.4 0.7 1.0 2 3 4 6 8

Wavelength (jim )

(b)

•a 40

2 3 4 5
Wavelength (jim )

Fig 2.5. Transmission of single-domain LiNbOg as a function of the wavelength. 
Transmission is uncorrected for reflection losses, (a) was obtained from Crystal 
technology Inc. and (b) was obtained from reference | lOj.

LiNbOg is transparent from about 0.4 to 5 pm [3 ||4 |. In the infrared region there is a 

narrow absorption band at X=2.9 pm, due to OH” grouping, this can be seen in Fig

2.5. The nature of the transmission spectra depends on the conditions of heat 
treatment and polarisation of crystals, as can be seen in Fig 2.6. Clear colourless
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lithium niobate single crystals transmit as much as 72 % (without corrections for 
reflections) over a range X = 0.4-4 pim. In a 1 cm thick specimen at X = 1.06 pm, 5.6 

% of the radiation is lost by absorption and 14.6 % by reflection from one surface, so 
that the total loss is 31%. To reduce the losses due to reflection, a single quarter 
wavelength coating of quartz (n=1.46), or magnesium fluoride (n=1.38) may be 

applied to the LiNbOg crystal surface |24|.

(a) [after 25]

0.48

Wavelength (/im)

(b) [after 26]

70"

% 40"

10 -

0.6 0.8 1.00.4

Wavelength (//m)

Fig 2.6(a). Transmission of variously colored Fig 2.6(b). Optical transmission spectra for 
LiNbOg crystals as a function of the wavelength: congruently melting LiNbOg single crystal.

1 - Clear crystal
2- Yellowish
3- Crystal 2 after annealing in oxygen
4- Crystal 2 after annealing for 5 min in 

hydrogen at 500 °C
5- Yellowish
6- Orange
7- Dark brown

1- Pulled without electric current 
maintained during the growth process

2- Grown with no electric current and 
subject to poling and concurrent 
annealing in a separate furnace

3- Grown with electric current in the growth 
process

4- Heated in Hydrogen.

Analysis of experimental data yields two equations for the temperature dependence 
of the ordinary and extraordinary refractive indices (no and n̂ ) between. 0.4 pm and 

4 pm 110):

= A +
A  +

-  + b X Eq 2.1
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A l A2 A3 A4

no 4.9130 0.1173 0.212 0.0278

ne 4.5567 0.097 0.201 0.0224

Bl B2 B3
no 1.65x10^ 2 .7 x 1 0 “" 0
ne 2.7x10"" 5.4x10" 2.605x10 '

TABLE 2.1

I
I
I

2.45- 
2.40-j 
2 .35 i 
2.304 

2.25 i  
2.204 
2.154 
2 . 10 - I

0.4

o ray

\  ............. e-ray

I
0.8 1.2

Wavelength (//m)

1.6

Fig 2.7. Dispersion curves for LiNbOg at 300 °K.

Where T, in Eq 2.1, is the 
temperature in K and \  is the

wavelength in pm. The dispersion 

curves for the extraordinary and 
ordinary ray are shown in Fig 2.7.

The standard deviation of 112 
experimentally determined values 

of the refractive indices from those 
calculated accordingly to the above 

formula is 2 .2 x 1 0 “̂ ,
demonstrating the accuracy of Eq

2 . 1.

2.2.4. Photorefraction.

In LiNbOg high intensities of light can cause local changes in the refractive index 

that distort the incident wavefront, this phenomenon is called photorefraction. Fe^+ 
and Fe^+ ions, always present in LiNbOg, can be photoexcited to produce electrons 

and holes respectively:

+hv=> + e~

Fê * + h v  => Fê * +  hole*

and an optically induced space charge field can be generated within the crystal |27|.
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In general the ratio of Fe^+ to Fe^+ is not equal to one, and neither electrons, nor 
holes, are the majority charge carriers. If electrons are in the majority the space 

charge is set up within the crystal when electrons are exited out of the illuminated 
region and re-trapped by Fe^+ ions away from the light beam. This movement of 

charge results in an electric field, and, via the electro-optic effect, a change in the 
refractive index around the beam of light. Since both electrons and holes can 
contribute to the photovoltaic current, the ratio of Fe^+ to Fe3+ ions will affect the 

magnitude of the space charge field and hence, the magnitude of the photorefractive 

response of the material.

The photorefractivity in the crystal can be minimised by oxidising, or reducing, the 
crystal so that we obtain the Fe^+/Fe^+ ratio for which the photorefractivity is 
minimum. At this point the electrons and hole currents are equal and opposite and no 
net space charge is being set up in the crystal. Above approximately 170 °C the 
photorefractive effect (optical damage) relaxes faster than it is generated.

2.2.5. Nonlinear optical properties.

As already mentioned LiNbOg at room temperature is a noncentrosymmetric crystal, 

and therefore, has second order nonlinearities. LiNbOg has large second order 

susceptibilities, whereas the third order coefficients are rather small.

The second order polarisation can be written as a function of the contracted tensor 

and has the following expression:

p^^{2co) = Eq 2.2

General crystallographic considerations indicate that for a 3m point group the 
nonlinear polarisation can be expressed as:

^ 0 0 0 0 A 5 Az^
p T —  2 S q ^ 2 2 0 Ai 0 0

k P T  J V ^3 1 J3I A3 0 0 0 y

K )
( £ ; )

K )
2 E ^E ^

2 E ^E ^

Eq 2.3

3 ’ J
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Appendix 1 illustrates the determination of the zero and non-zero coefficients for the 

nonlinear tensor. Usually, the Kleinman symmetry is also applied: As long as there is 

no strong dispersion between the wavelength of the mixing field, all terms dyk, which 

result from a rearrangement of the subscripts i, j, k, are equal. Here this makes 
d i5=d3i.. The magnitude of the non-zero coefficients are:

d i5=6 pm/v 

d22=3 pm/v 
dg3=30 pm/v

Further details on the value of the nonlinear coefficients can be seen in References 

[8][22][28]

2.3. TizLiNbOs waveguides.

Optical waveguides can be fabricated in LiNbOg using several different methods; the 

out-diffusion of L i20  from  the crystal surface, the indiffusion of metals, ion 
implantation and ion, or proton, exchange. The two most widely used methods are Ti 

indiffusion and proton exchange [29][30][31]. Titanium indiffusion increases both 
the extraordinary (Ane<0.02) and the ordinary (Ano<0.004) refractive indices 

allowing both TE and TM polarisations to be guided. Proton-exchange produces 
guides with a large change in the extraordinary refractive index (Ane<0.18) and a 

slight decrease in the ordinary index (Ano>-0.05). Ti indiffusion waveguides are 

prone to photorefractive damage, and the high temperatures used in fabrication can 

lead to Li20  outdiffusion from the crystal surface. Proton exchange waveguides do 

not suffer significant photorefractive effect [29], but an index profile instability has 
been detected [32][33], and in these waveguides the nonlinear coefficients are 

reduced [34].

2.3.1. Titanium-indiffusion.

The indiffusion of certain metals atoms into LiNb03 produces changes in the optical 
properties and specifically in the refractive index. Titanium, being tetravalent, is 
substitutional for Nb in the LiNb03 crystal lattice and has proved to be the most 
attractive of the metals for indiffusion . The exact m echanism  by which the 
indiffusion of titanium increases the refractive index is not yet fully understood but it 
appears to be due to several complex interactions [35][36].
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The Standard method for fabricating Ti indiffused waveguides commences with the 

deposition of a Ti film  onto the LiNbOg substrate by means of electron beam 
evaporation. Films thickness typically in the region of 20 to 120 nm have been used. 

The indiffusion of the titanium takes place between 900 and 1050 “C, with diffusion 
times between 0.5 and 30 hours. The diffusion temperature is limited by the Curie 
temperature (1120 °C) of the crystal. If the Curie temperature is exceeded the crystal 
must be re-poled to turn it back to a single domain again.

2.3.11. Diffusion stages.

The indiffusion process can be broken down into several stages [29] [37] [36]:

• Firstly the titanium oxidises to form Ti02 during the furnace heat up period at 

approximately 500 “C.
• In the absence of a wet atmosphere during diffusion the LiNbgOg crystalline 

phase appears at 600 ”C and rapidly disappears after reaching a maximum at 800 

°C. A wet atmosphere inhibits the formation of LiNbgOg.
• The T i0 2  layer forms an interm ediate rutile structure most likely to be 

(Lio.25Nbo.7502)o.422(Ti02)o.58- It is this rutile compound that is the real source 
for the subsequent titanium-indiffusion into the LiNbOg [36]. Armenise et al. in 

references [29][38] propose a different compound as the source for Ti diffusion: 

(Tio.65Nbo.35)02
• At temperatures usually as high as 1000 “C the titanium diffuses from the surface 

layer into the substrate until the (Lio.25Nbo.7502)o.42(Ti02)o.58 is completely 
depleted and disappears. Just before the process is complete, investigation of the 

surface layer by scanning electron microscopy has revealed islands of the mixed 

oxide. This reveals the non-uniform nature of the indiffusion process that is 

responsible for the refractive index inhomogeneties. Increasing the diffusion 
time reduces the surface roughness and decreases the inhomogeneties in the 

index.
• Precipitation of LiNbgOg may take place during cooling at temperatures between 

600 “C and 900 C with a maximum precipitation at 800 “C. Cooling rates >3 

°C/min are sufficiently rapid to avoid precipitation of LiNbgOg. The precipitation 

phase lead to an increase in optical scattering in the sample [15]

2.3.1.2. In-plane scattering

Optical losses in slab waveguides have been attributed to in-plane scattering [37]. 
The scattering depends upon the diffusion time (the losses initially decrease and then
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increase with increasing diffusion time |37 |, see Fig 2.8 ) with the optimum time 

increasing with the titanium film thickness. The scattering can be attributed to three 

main causes |37|:

4020 30100

Non-uniformities which occur during the 

Ti indiffusion, will create refractive index 

irregularities in the guide and in the 
surface.
Roughness left on the surface after 
diffusion.
Crystal strains and defects introduced by

Diffusion time (h) . . . .the titanium ions in the guiding region.

Fig 2.8. A1 gives a measure of the waveguide

^he su^ace roughness and index
temperature 1000 °C, sample coated with a homogeneties can be reduced by increasing 
25 nm thick of Ti 137] . . , .

the diffusion time, while the crystal defects
are induced by the diffusion process and therefore the density of the defects increases

with the diffusion time |37|.

References [39| and |40 | discussed the insertion losses of TiiLiNbOg waveguides for 
a variety of fabrication conditions. The best results were obtained for a z-cut wafer; 
the insertion loss was 1 dB (1.3 cm waveguide), while the propagation loss was 0.3 

dB/cm.

2.3.1.3. L12O outdiffusion

While the titanium is diffused into the LiNb0 3  substrate, there is an associated 
outdiffusion of U 2O from the surface of the LiNb0 3 . Lithium has a low activation 

energy and therefore diffuses very rapidly compared to the niobium, or oxygen, the 
Li2Û outdiffusion will increase the extraordinary refractive index and leave the 

ordinary index unaffected (see Fig 2.2). Therefore, when a stripe guide is produced 

this can result in a slab guide at the surface of the LiNb0 3  in addition to the stripe 
guide. The resulting slab guiding has only an increased extraordinary index with a 

maximum at the surface and a depth profile which can be mathematically modelled 

using a complementary error function.

To suppress outdiffusion, either an increase of Li partial pressure or the use of wet 
diffusion atmosphere have been proposed. Jackel et al observe in Reference (411 that 
the indiffusion in a water vapour atmosphere (pure oxygen flowing through water)
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eliminates the outdiffusion of U 2O by inhibiting the LiNbgOg phase, but this affects 

the optical properties of the waveguides increasing the in-plane scattering levels 

[37]. Eknoyan et al. in Reference [42] investigated the characteristics of TiiLiNbOg 
w aveguides diffused in both dry and wet O2. They observed no com plete 
suppression of outdiffusion in samples annealed in wet oxygen. Schuppert in 
Reference [43] investigated the outdiffusion of Li20 using dry and wet synthetic air. 

He suggested that the application of a wet gas without an additional L i2 0 /L i0 H  
source yields a strong increase of waveguiding (strong increase of outdiffusion) due 

to the following chemical reaction

7 / ^ 2 T" ^ !LiiOH

Shuppert reports that out diffusion in a wet atmosphere is suppressed only if used in 
com bination with a L i20  source that increases the Li partial pressure. This is 
because the outdiffusion in the Li20 source (an added wafer of LiNbOg powder) is 
strongly increased by the water vapour leading to an increased Li20 pressure in the 

diffuse tube, which itself lowers outdiffusion in the sample. He found that a 
suppression of the outdiffusion by means of increasing the Li partial pressure in a 

dry atmosphere is only successful for long diffusion times. This is because a longer 

time is necessary to raise the Li partial pressure. Fouchet et al. [44] diffused Ti into 
LiNbOg in a flowing atmosphere of dry argon cooled in oxygen. They reported no 

index variation associated with LÎ20 outdiffussion.

The exact mechanisms by which the various methods work are not yet fully 
understood and the development of an understanding has evolved though trial and 

error, with only a limited amount of exact scientific understanding. In this work 
waveguides were fabricated by Ti indiffusion in a dry O2 atmosphere, and cool 

down in a dry O2 atmosphere. No slab guiding due to Li20 depletion was observed.

2.31.4. Photorefractive effect in waveguides.

One of the most important issues which must be considered is the photorefractive 

effect. It manifests itself as a gradual refractive index change due to irradiation with 
relatively intense visible light; the effect is observed in Ti-indiffused waveguides 

[45][46] [47] [48][49] as well as bulk crystals [50] [53]. W hen the intensity of the 

light is further increased, a spatial distribution of refractive index is developed and 
the wave is scattered out of the waveguide [52]. The photorefractive effect can be 
split into two components, the photovoltaic effect and the photoconductive effect. 

The photovoltaic effect describes an optically induced change in the refractive index
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in the absence of an electric field, while the photoconductive effect describes an 

optically induced change in the refractive index in the presence of an electrical field. 
The photorefractive effect in bulk LiNbOg [50] is normally dominated by the 
photovoltaic effect. Following titanium-indiffusion Becker et al. [51] reported no 

increase in the photovoltaic effect from that observed in bulk LiNbOg for a Mach- 
Zehnder structure formed on x-cut LiNbOg. The photoconductive effect showed a 

substantial increase to become the dominant photorefractive mechanism for a field 
strength of 5x10^ V/cm. Schmidt et al [48] reported similar effects, using a 

directional coupler on z-cut LiNbOg, for a field 104 V/cm, with the magnitude of the 

effect decreasing very strongly with increasing wavelength. Harvey [49] has made a 
comparison between both Mach-Zehnder devices and directional couples fabricated 

in z-cut LiNbOg. The directional couplers showed an effect in agreement with 

Schmidt et al [48] while little effect was observed in the Mach-Zehnder. Harvey 
used a biasing field strength of 103 V/cm, at this level the degree of damage due to 
the photoconductive effect is reduced enough for the photovoltaic effect to 

dominate. Chon at al in Ref. [45] presented a theoretica] model of the photovoltaic 
effect in z-cut Ti:LiNbOg channel waveguides together with experimental results for 
mode size and output power as a function of the input optical power. Fujiwara et al. 
in Ref. [46] study the wavelength dependence of the photovoltaic effect in z-cut 
Ti: LiNbOg channel waveguides. They show that at 1.1 /<m the power necessary to 
induce a given photovoltaic effect is 3 orders of magnitude larger than at 0.63 ptm. 
At 0.53 f4m the photovoltaic damage threshold of a Ti:LiNbOg channel waveguide is 
20 W/cm^ 145], i.e. in a 5 x 5 /<m2 waveguide, the photovoltaic damage threshold is 

5 /^w.

t
Titanium strip 
before diffusion

Orientation 
of the domains 
in each region 
after diffusion

Fig 2.9. Oomain orientation after Ti 
indiffusion in the positive face of a z-cut 
LiNbOg .

2.3.1.5. Ti-indiffusion domain reversal.

In a z-cut waler of LiNbOg, integrated 
optical devices are generally fabricated in the 
negative z face [54][56]. This is because the 

diffusion in the positive z face reverses the 

ferroelectric domain of the area that has been 
indiffused, this can be seen in Fig 2.9. As 

mentioned earlier, areas with opposite 

domain orientation have electrooptic 
coefficients with different sign. Therefore, in 

these waveguides light propagates through 
areas with positive and negative electrooptic
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coefficients, reducing the average effect [56]. However, there are situations where 

dom ain reversal may be desirable, and titanium  indiffusion can be used to 

periodically reverse the sign of the electro optic or non-linear coefficient.

One can distinguish between at least two cases for which domain reversal in the 
positive face has been reported (without applying an external field); the first is a 

domain inversion in titanium indiffused areas [54] [55][56] [57] and the second is a 
domain inversion occurring on bare substrates after heat treatment above about 800 

“C [58][59]. The physical mechanisms of domain inversion have been discussed for 

instance by Peuzin and Miyazawa [57] and by Nakamura et al. [59], although all 
details are not fully understood. It seems clear, however, that the inversion is related 

to a com position gradient in the crystal. Such gradients are present in both 

situations; in the first case mainly due to titanium indiffusion and in the second cases 
due to Li%0 outdiffusion. At one face of the LiNbOg crystal, the com position 
gradient is antiparallel to the optical axis orientation, and at the other the gradient is 

parallel to the optical axis. This can explain why the inversion occurs only at the 

positive face.

Ti indiffusion takes place when the crystal is heated to 900 - 1100 °C, and inversion 

occurs at 1020 °C. The typical indiffusion depth is of the order of 2-4 p,m and it has 
been shown that the inversion depth is proportional to the Ti thickness [56] and the 
diffusion time [73]. The shape of the inverted regions is triangular with an angle of 

30“ with the surface boundary (see Fig 2.9).

For both Ti doped and lithium deficient material, the Curie temperature is lower than 

for congruent material [54]. This means that, at a uniform temperature, a sample 

with spatially varying Ti concentration will have a varying ferroelectric polarisation 
and, thus, alternating electrical fields that can affect the domain pattern, this can be 

seen in Fig 2.10. Since indiffusion is carried out at temperatures closer to the Curie 

temperature, this field may be sufficient to reverse the polarisation. Nassau et al. in 
Ref. [4] reported that domain inversion was successful with an electric field of 5 

V/cm at 20“C below the Curie temperature. At room temperature 24 kV/mm was 

required to reverse the domains. A spatial variation in polarisation can, of course, 
also be obtained in a uniform sample as a result of local temperature variations [60]. 
Near the Curie temperature the material is not a perfect insulator. Therefore, the 
electric field will slowly be compensated through charge transfer. This means that 
the heating and cooling rates are important parameters for the inversion process.
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Titanium indiffused

Polarisation.
The length of the arrows 
indicate the size of the 
plarisation, which is reduced 
as the Ti concentration 
increases

Electric Held created 
by the difference in 

larisation

Ti concentration
in the depth 
direction

Fig 2.10. Electric field created by the gradient of the titanium during the diffusion 
process

The effects of gradients inside the boule are not difficult to evaluate. It has been 

established that for a Y-doping there is an equivalent poling filed which is 
anti parallel to the concentration gradient. The conditions that prevail in the interior 

of the crystal boule are quite different from those at the surface of a wafer during 

heat treatment in a diffusion furnace. In this case the domain formation occurs at the 

surface, and among other things, this means that pyroelectric surface charge has to 
be considered. Furthermore , there is evidence that the history of the sample is 

important for the reversal process [61][62]. A review of the different pooling 

techniques can be seen in reference [74].

2.3.2. Refractive index profile of Ti:LiNb03 waveguides.

To date the origin of Titanium induced refractive index change has not been 

satisfactorily explained. As a consequence, these profiles have to be experimentally 

determined.

Several papers have already dealt with that problem [63][64][65][66][44][13]. The 
diffusion conditions; air, argon, or oxygen atmosphere, either wet or dry, are very 

different from one laboratory to the other [67]. Consequently the dispersion of 

reported results is very important. The disagreement between data, even for
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diffusion conditions apparently identical, could be due to a poor control of diffusion 

process (lithium out diffusion for example) or crystal quality. Despite these 
differences, most of published papers agree to consider that Ane and the titanium 

concentration, C, are proportional, or nearly proportional whereas Ano has a 

nonlinear behaviour versus C [63][66][44].

Although several reported values show that the diffusion of Ti^+ ions into the 
LiNbOg substrate is anisotropic with a diffusion coefficient in the z-direction 50 % 
larger than in the x-direction [66][68], other reports show that the diffusion 

coefficient in the z-direction is 30 % larger than in the y-direction [69][44], and yet 

other reports show no anisotropy but a strong dependence of the diffusion 
coefficient upon the stoichiometry of the crystal [13]. Here we are going to use the 

diffusion coefficient measured by Fouchet at al. in Reference [44].

2.3.2.1. Titanium concentration distribution after diffusion.

The diffused titanium concentration in a continuous waveguide has been shown to 
be closely modelled by a Gaussian profile in the depth direction and an error 

function in the lateral direction and can be described by the following approximation 

[70]:

Where W is the width of the titanium strip 

before diffusion (see Fig 2.11 ), Cq is the 
titanium surface concentration, and and 

Dy are the diffusion length in both 

directions. Co and the diffusion lengths can 
be obtained experimentally [44]. Here we 

are more interested in representing them as a 
function of the fabrication conditions (Ti 

thickness and diffusion time) and material parameters (Ti density before diffusion 

and diffusion coefficient).

Fig 2.11
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The titanium surface concentration, Co, is a function of the thickness of the Ti strip 
before diffusion, x, the diffusion depth, D%, and Ti density before diffusion. Cf. The 

relationship is given by [44],

The diffusion lengths and Dy are a function of the diffusion time, and the 
diffusion coefficients d% and dy. These can be seen in the following equation

D, = 2 ^ l

Therefore, the unknown parameters are Cf, d% and dy, and they have to be obtained 

experimentally. The atomic density of solid Ti is 5.6 x 10̂ * atoms/m^. But the 
density of the Ti film may be reduced depending on the process used to deposit it. 
Reference [71] uses a 75% density correction for sputtered Ti, while reference [44] 
measured 68% density correction, making Cf=3.8xlCp8 atoms/m^. The Arrhenius 

law indicates that the diffusion coefficients depend on the activation energy and the 
diffusion temperature[44]. For a diffusion temperature of 1050 °C Fouchet at al.[44] 

measured the diffusion coefficients on Z-cut LiNbOg to be

d%= 0.68 ^m^/h
dy= 0.457

2.3.2 2. Increase in the refractive index with Ti concentration.

0.025
e-ray

0 .0 2 -

o- ray0.015-
An

0.01 -

0.005 -

0.5 1.50 1 2

Based on experimental data Fouchet at

al. [44] showed that the increase in the
extraordinary index is superl inearl y
dependent on the titanium
concentration, while the ordinary index
can be well defined with a sublinear
relationship with the titanium
concentration, this can be seen in Fig

2.12. They proposed the following
Fig 2.12. Increase in the refractive index as a relationship between the increases of 
function of the Ti concentration at 300 °K for an 
operating wavelength of 1.3 pm.

Co (% mass)
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the indices and the titanium concentration :

An, = (B„(A) + B,{X)aC ,)[C{y,z)X’

An„ =  a“- (S„(l) + B,(A)aC„)[C(3',z)p

W here 

1 2
a

For nn:

For ne:

= 0 .4 7 8 +  0.464A -0 .3 4 8 A

5o = 0 .3 8 5 - 0 .430A + 0 .17U " 

=9 .13 + 3.85A -2.49A "

= 6.53 X 10"" -  3.15 X 1 0 " ^  + 7.09 X 10"U^
2

Ote=0.83
ao=0.53

The dispersion relation is valid for wavelengths in the range 0.6 < A(|Llm) < 1.6, and 

for Ti surface concentrations going up to 2% in mass.

W e decided to use the description of the index profile described by Fouchet et al. 

[44] because accounts for high Ti concentrations and the wavelength dispersion goes 

up to 1.55 jim. But this in not the only model found in the it the literature, Strake et 

al. [72] have proposed another model based on a different set of experimental 
results, however, it only describe situations were the Ti concentrations is smaller 

than 0.9 X lO"' atoms/cm-3 and for a wavelength range going from 0.6 to 1.2 jim.

2.3.2.3. Maximum surface Ti concentration

The highest surface concentration (Cq) of Ti in LiNbOg is about 2 % in mass. The 
titanium concentration in percent is defined with reference to the atomic density of 

solid Ti ( Cti). Therefore, the titanium surface concentration in mass percent is given 

by:

C„(ot %) = - ^ 1 0 0
^Ti

= 5.6 X atom t
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Therefore, the titanium thickness, %, and the diffusion time, t, have to fulfil the 

following relationship to ensure a surface concentration below 2%

2.3.3. The fabrication of titanium indiffused guides.

The fabrication steps for the titanium  indiffused w aveguides are shown 

schematically in Fig 2.13.

Before coating the sample with photoresist, the substrate was cleaned using the 
following well established procedure: Sequence of solvents

• OPTICLEAR
• Acetone

• Methanol

• RO (reverse osmosis) water

Method: The sample was placed in a bath and covered completely with the solvent 

and ultrasonic for 5 mins. Finally the sample was rinsed for 3 mins with RO water. 
The excess water was removed from the substrate with an air gun and placed on a 
hot plate to dry completely. The ferroelectric nature of LiNbOg implies the need for 

care during the cleaning procedure to avoid the electrostatic attraction of dust 

particles.

Z-cut wafers were used. The waveguides were fabricated onto the negative face to 
avoid domain reversal, or in the positive face to produce domain reversal

The photoresist, 1400-31, was spun at 4000 rpm for 30 seconds, leaving a 1.8 |im  

thick layer. To harden the photoresist for exposure, the substrate was baked at 90 
for 15 minutes, soaked in chlorobenzene for 15 minutes and then baked again at 90 

°C for a further 15 minutes. Soaking the substrate in the chlorobenzene creates a 
hard layer of photoresist at the surface which caused it to be undercut at the edge of 
the developed strip. This greatly increases the ease with which the titanium on top of 
the photoresist was removed during lift-off and improve the quality of the titanium 
strips edges.
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LiNbOa
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by e-gun
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ID -

Fig 2.13. Fabrication steps of titanium indiffused waveguides
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Next, the baked photoresist was patterned, 1400-31 is a positive photoresist, and 
with a dark field mask the pattern of the mask will be transfered to the substrate after 

lift-off. After exposing the photoresist to UV light and developing, titanium was 
evaporated on the patterned substrate with an electron-gun. To avoid titanium 

deposition at the edges of the photoresist the evaporation was set to be normal to the 
substrate. Evaporation was carried out in a vacuum chamber at a pressure of 4 x 1 0 “̂  

mbar.

After lift-off the titanium was indiffused at 1050 ®C in a dry oxygen atmosphere, 
small changes in the temperature should be implemented to avoid thermal shock 

while bringing the sample up to the diffusion temperature, and while cooling it down 
after. To introduce the sample into the furnace, first, the boat containing the samples 

was placed at the entry of the tube (see Fig 2.14 ), and after 15 minutes the boat was 

slowly pushed into the furnace; a process which takes 20 minutes. Once the cap of 

the tube had been put in place, a small flux of oxygen was passed through the tube. 
To cool the sample down, the furnace was switched off letting the oxygen flow. The 
reduction of the temperature as a function of time can be seen in Fig 2.15.

Boat with samples 
15 minutes

20 minutes

>
Boat with samples

Output
Oxygen

u. y

Boat with samples

Input
Oxygen

Fig 2.14. Procedure used to raise the temperature of the sample up to the 
diffusion temperature.

y = 944.426 * 10 -0.002X

Fig 2.15. Reduction in the furnaces 
temperature as a function of the time elapse 
after the furnace had be switched off.

400

Time (minutes)
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2.4. Summary.

In this Chapter we reviewed some of the properties of hulk LiNbOg and titanium 

diffused LiNbOg waveguides. W e have seen that LiNbOg is a good material for 

optics; wafers are routinely grown with the same composition and it is transparent 

from 0.4 to 5 jam. The crystalline structure of LiNbOg has been presented and from 
there some characteristics have been discussed: pyroelectricity, piezoelectricity, 
birefringence, nonlinear behaviour and titanium domain reversal. A brief review of 

the different aspects associated with the fabrication of titanium diffused waveguides 
has been discussed. Especially those that can affect the perform ance of the 

waveguides used in this work: scattering, Li20  out diffusion (capable of producing 

slab guiding) and photorefractive damage. In Chapter 3 we will see that scattering 
losses and outdiffusion of Li^O has not seriously affected the performance of our 
waveguides (we were not able to detect any slab guiding associated with L i2 0  

outdiffusion). This leaves the threshold for photorefractive damage as potentially the 
more important problem in Ti:LiNbOg waveguides, but in Chapter 5 photorefractive 

damage, if it existed, did not present a problem in SHG.

By looking at all work done on LiNbOg over the last 30 years, the reader realises that 
a large amount of information about LiNbOg has been accumulated. But it can not be 
said that all the process involved in the fabrication of Ti:LiNbOg waveguides are 
always understood. This is the case for L i20  outdiffusion, the increase in the 
refractive index, the domain reversal associate with titanium indiffusion, and even 

the diffusion process itself. Therefore, the optimum fabrication conditions for a 

particular application are obtained, to a certain degree, by trail and error, always 
making use of the already existing information. In situations where the behaviour of 

the waveguide has to be predicted, the major difficulty comes from the variety of 

diffusion coefficients reported in the literature.

At the end of the Chapter we described the particulars of our fabrication procedures. 

To pattern the titanium strips on the surface of the LiNbOg substrate is a straight 
forward procedure. Bringing the sample up to the diffusion temperature, selecting the 

atmosphere in the furnace and cooling down the sample are the most critical steps. 
But, the generation of a good waveguide is mostly dictated by the diffusion time, 

diffusion temperature and thickness of the titanium strip.
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3
Cut-off wavelength of periodically 
segmented waveguides in Ti:LiNb03

The cut-off wavelength for Ti:LiNbOg periodic segmented waveguides (PSWs) with 

different duty cycles and of continuous waveguides has been measured for both 
polarisations. PSWs are described by an equivalent continuous waveguide and, using 

this model, a universal relationship between the cut-off wavelength of a PSWs with 

different duty cycles is proposed and verified experimentally. Using the Fabry-Perot 
method, PSWs with a duty cycle of 0.55 have been found to have a loss coefficient 
of 1.9 dB/cm, about 0.9 dB/cm greater than the loss coefficient of a continuous 

waveguide.

3.1. Introduction

In a PSW the increase in the refractive index 
—̂ 3  “ ^ 3 “  " ^ 3 " ^  (An) is modulated periodically during

^ A ^ **t1a fabrication, this is shown schematically in Fig
3.1. As a consequence of the segmentation, the

A = Period
rk . I loss in the guide is increased and the effectiveT] = Duty-cycle ^

refractive index is reduced when compared to
Fig 3.1. Schematic representation of a • • * n r . .. ,  ,a continuous waveguide. A PSW can be

represented by an equivalent continuous

waveguide with the same depth and width, in which the average index difference ,
An', is taken to be the average of the index along the direction of propagation, and in

the case of step index waveguides is given by Eq. 3.1

An' = rjAn Eq 3.1

By choosing the duty cycle, q. An' can be spatially modified along the waveguide. 
The refractive index change determines the mode size, propagation constant and cut­

off wavelength of the PSW.
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The possibility of using Eq 3.1 to describe PSWs permits their study using existing 

tools for continuous waveguides. Thy agar aj an et al. El showed that PSWs can be 

represented accurately by an equivalent continuous waveguide. However, no direct 

evidence was produced on the validity of Eq. 3.1. To establish the accuracy of Eq.
3.1, a measurable property of the waveguide has to be related to the increase in the 

refractive index. In this Chapter we propose using the cut-off wavelength, which is 

directly related to An', If we want to verify Eq 3.1 using properties associated with 

the effective index, we require a good description of the index distribution in the 

waveguide as a function of the fabrication conditions, as well as an appropriate 

model to obtain the effective index from the index distribution.

Due to the diffusion nature of the TiiLiNbOg waveguides, Eq 3.1 can only be used to 
describe PSWs for the case of weakly confined modes, where the mode size is larger 
than the diffusion length. And this is certainly the case near cut-off. This will be 

discussed in section 5.3.2. of Chapter 5.

Strip w aveguides were fabricated in a z-cut LiNbOs substrate by titanium  

indiffusion . For this configuration the quasi-TM  mode corresponds to the 

extraordinary ray (e-ray) and the quasi-TE mode corresponds to the ordinary ray (o- 

ray). The cut-off wavelength of the fundamental mode was obtained for different 
fabrication conditions, as a function of the duty cycle and period, for both 

polarisations.

In this Chapter, we report on PSWs fabricated in Ti diffused LiNbOg designed for 

operation in the 1.3 pm and 1.55 pm  telecommunications windows. To predict the 
cut-off wavelength as a function of the duty-cycle, the approximation represented by 
Eq. 3.1 has been used to formulate a relationship between these two parameters. An 

experimental verification of this relationship has been produced. The reduction in the 
average increase of the refractive index (An'), results in a reduction in the cut-off 

wavelength. This reduction in the cut-off wavelength of the fundamental mode is 

important; firstly because we have to ensure that PSWs guide at the desired operating 

wavelength and secondly, because, in devices formed by PSWs with different duty 
cycles, e.g. tapers, the PSW section with the smaller duty cycle could be used as a 
low pass filter and/or as a polarisation filter.

The accuracy in the determination of the cut-off wavelength has been studied as a 
function of the different fabrication parameters as well as measurement conditions. 

This approach provides direct information on the considerations to be taken into 

account when using Eq. 3.1 to describe PSWs.

3
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We have used the Fabry-Perot method to obtain the loss coefficient for PSWs and 

continuous waveguides.

3.2. Derivation of a relationship between the cut-off 
wavelength and the duty cycle of PSWs.

Cut-off of the fundamental mode is defined as the condition at which the effective 

refractive index of a waveguide is the same as the refractive index of the substrate E, 
3], implying that the mode size extends over the whole substrate El. This condition 
will occur for a specific free-space wavelength, refractive index distribution and 
dimension of the waveguide. For the case of PSWs and continuous waveguides 

fabricated under the same conditions, both have the same dimensions and any 
difference in the cut-off wavelength will be due to the variation in the increase of the 
refractive index, Aupg^ for PSWs and Ancont for continuous waveguides.

3.2.1. Relationship between the cut-off wavelength of PSWs and 
continuous waveguides using the V numbers.

The relationship between the cut-off wavelength of PSW and continuous waveguides 
will be shown. Firstly for diffused slab waveguides (using the "V" number as defined 

by Hocker at al. El) and then it will be shown that we can extrapolate this result to 

channel waveguides (by using the relationship between their "V" numbers described 

in ref. [4]).

3.2.1.1. Case of diffused slab waveguides.

Firstly we shall consider the case of TiiLiNbOg slab waveguides. A normalised 
frequency V can be defined as El

y  =  E q3 .2

W here n^ax is the refractive index at the surface and it is assumed that the refractive 
index profile has a monotonie decrease from the maximum value, Umax, to the 
substrate index %. In the present context, n^ax in a PSW is a weighted average of the 
maximum value in the diffused high-index regions and the substrate index ng in the 
undoped substrate regions. Ld represents the diffusion depth of the titanium into the 
LiNbOg (which is the same for PSWs and continuous waveguides) and X is the free-



At cut-off the value of the normalised parameter V only depends on the asymmetry 

parameter El. For TiiLiNbOg waveguides we assume the asymmetry parameter will 
approach infinity E, 3,4]^ and therefore, that the value of V at cut-off will be the same 

for both PSWs and continuous waveguides:

Eq 3.3

This effectively means that as n^ax is reduced by changing the duty cycle in a PSW, 
the free space wavelength at which cut-off occurs is also reduced.

Expressing nmax as nniax=ns+An, and assuming An^«2ngAn, we obtain:

K nx-^ .v )^2 n v A n  E q3 .4

V

^PSW —
\ ^ P S W

1

J
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space wavelength. A similar normalisation has already been employed to advantage |r
in the analyses of slab guides with a step index profile 5, 6] and with a diffusion 
profile E.4]

Using the approximation of Eq 3.4 in Eq 3.2 we obtain the following expression for 

V:

2n^An Eq. 3.5

where ng and An are wavelength dependent. Then, for continuous waveguides at cut-

off:

I k

I

n.(A„„„)An(A„,„) E q3.6

where Ikcont is the cut-off wavelength for the continuous waveguide. Similarly for 

PSWs:

(  I k ' ^  *
Eq 3.7

where /ipsw  is the cut-off wavelength for the PSW. As expressed in Eq. 3.1, the 

increase in the refractive index of a PSW is reduced due to the segmentation. Using 
Eq 3.1 we obtain: 3
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Art — f?Art^/lp |̂y  ̂ Eq 3.8

and using Eq. 3.8 with Eq 3.3, 3.6 and 3.7 we obtain

^ P S W ^ s { ^ a m t ) ^ ^ { ^ c o n t )  _  Fn 3 9

On the left hand side of Eq. 3.9, the term An(A.cont)/An(?ipsw) accounts for the 
substrate dispersion and the term ns(î^cont)/hs(^PSW) for the TiiLiNbOg dispersion. 
The remaining term, , can be used as a first approximation to relate the

duty cycle and the cut-off wavelength of continuous waveguides and PSWs, i.e.:

7J = 3fflL EqS.lO
^cont

3.2.I.2. Case of channel waveguides.

This result can be generalised to diffused channel (or stripe) waveguides using the 

relationship between the "V" number of a channel waveguide (Vc) with the "V" 
number of a slab waveguide (V) M. This relationship is expressed as

W
y^ =  V b —  Eq. 3.11

Lj^

Where W is the width of the Ti film before diffusion, Ld is the diffusion depth and b 

is the normalised mode effective index M. In the context of channel waveguides, 

Umax is related to the index distribution of a diffusion channel waveguide by the 
following relationship M:

rt^(x.z) = rtj ( r t ^  -  n]) f{z)g{x)  Eq. 3.12

where f(z) and g(x) describe the diffusion profile in depth and laterally respectively.

Eq 3.11 indicates that for a given width and depth, the value of Vc depends only on 
V and b. Because b is a function of V 1̂, it is clear that Vc is directly related to V. 
Then, at cut-off Vc is the same for PSWs and continuous waveguides, and the 
results for slab waveguides can be extrapolated to channel waveguides.
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Then, at cut-off Vc is the same for PSWs and continuous waveguides, and the 
results for slab waveguides can be extrapolated to channel waveguides.

3.2.2. Relationship between the cut-off wavelength of PSW and 
continuous waveguides using the transversal propagation constant.

In this section we will show how we can arrive at the results of the previous section 
by using the transversal propagation constant ki instead of the "V" number. To 

simplify the model only the case of a step index channel waveguide is considered, 
where nc is the refractive index in the channel and nefi is the effective refractive 

index of the mode propagating through the waveguide (ns<neff^nc).

L
k e ff

The transversal propagation constant ki for the 
case of a step index waveguides is given by 1̂1; 

(see Fig 3.2)

2 ;r
k _ =  n

K  -  ("r -« ,# )  Eq. 3.13

A

2 ji At cut-off the effective refractive index nefi will
 ̂ ^ be that of the substrate n̂ . Therefore at cut-off the
. . . ,  transversal propagation constant will be
t eff

Fig 3.2. Direction and magnitude of the 2 _  2 ^ \  / 2 2\ p  S 14
propagation constant for the light ' V A /
propagating in a waveguide

Using the approximation of Eq 3.4 the transversal propagation constants at cut-off 
for continuous waveguides and PSWs are respectively:

k L .  -  2 } J  A n(A „J Eq. 3.15
\ ^cont /

and

/ ^
P̂SW ^ \~l ] 3.16

\ ^pswJ
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same for all continuous and periodic segmented step index channel waveguides, at 
cut-off they have the same transversal propagation constant.

= Eq. 3.17

Now, using Eq. 3.15, 3.16, 3.17 and Eq. 3.8 we re-obtain the result of Eq. 3.9 and 

3.10. This result for step index channel waveguides can be extrapolated to diffused 
channel waveguides.

3.2.3. Relationship between the cut-off wavelength of PSWs of 
different duty cycles.

A continuous waveguide can be regarded as a PSW with duty cycle 1. If we
substitute the continuous waveguide with a PSW, the results of Eq 3.9 and 3.10
(shown to be true for diffused channel waveguides) can be generalised to relate the 

cut-off wavelength of two PSWs with different duty cycles. This generalisation leads 

to:

^pswj'ni) ^n{^psw{'n2 )) _Jh_ Eq 3 18
^ p s w { v 2 )  ^  PSW PSW i ^ l ) )  ^2

where Apsw('O) is the cut-off wavelength of a PSW with duty cycle Tj. The 

approximation for the case where dispersion is not considered will be:

A  = E q3 .19

Rearranging Eq 3.19 the following expression is obtained:

m _  %
^pswi^i) p̂swi'ni)

Eq 3.20

This simple expression relates the cut-off wavelength of two PSW s with different 
duty-cycles.
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3.3. Ti-diffused LiNbOs waveguide fabrication.

0.025 e-ray 

o-ray 

Fabricated

0 .02 -

0 .0 1 5 -

0.01 -

Sample 1

1
>

i
.S

2 0.005 -
ue Sample 2

"T”
1.5

Co (% mass)

Fig 3.3. Increase of the refractive index at 1.3 pm  for e-ray and o-ray as a 
function of the Ti concentration in percent in mas [^0, The points indicate 
the maximum possible increase in the refractive index for both polarisations 
for the fabrication conditions of Table 3.1.

Waveguides were fabricated by Ti-diffusion in a z-cut substrate of LiNbOg. Standard 
photolithography techniques were used to pattern a layer of titanium evaporated onto 

the surface of the substrate. Once patterned, the titanium was in-diffused in a dry 
oxygen atmosphere by placing the sample in a furnace at 1050 ®C, see Chapter 2. 
The thickness of the initial titanium layer and the diffusion time were both adjustable 

parameters in this investigation and are given in Table 3.1. One of the lithographic 
masks used gave continuous strip waveguides nominally 5 pm wide and PSWs also 

nominally 5 pm wide, with periods between 15.8 and 19.8 pm in 0.2 jAva steps and a 

duty cycle of 0.5. The other mask contained continuous waveguides 4 pm wide and 
PSWs 4 pm wide with duty cycles varying from 0.35 to 0.65 in 0.05 steps with 19 

pm periods. Some variation in the duty cycle across the mask as a consequence of 

photolithographic processing of the mask is to be expected. In this investigation we 
observed that flowing dry oxygen inhibited outdiffusion of Li2 0  sufficiently to 
suppress slab guiding. For most of the fabrication conditions the increase in the 

refractive index due to Ti-indiffusion is larger for the e-ray than for the o-ray. Fig 3.3 
shows the increase in the refractive index at the surface of a slab waveguide as a 
function of the Ti concentration Ul. The points in Fig 3.3 represent the expected 

values, assuming the diffusion times and Ti thickness given in Table 3.1. The 

difference in the increase of the refractive index between the o-ray (quasi-TE 
polarisation) and e-ray (quasi-TM polarisation) is responsible for the differences in 
their cut-off wavelengths.
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Fig 3.4 shows the surface relief produce by the titanium after indiffusion. From this 
photograph we can have an idea of the titanium distribution of the PSWs after 

patterning and indiffusion.

Ti
thickness

(nm)

Diffusion
time

(houi's)

Cut-off wavelength 
o-Ray (fim)

PSW Continuous

Cut-off wavelength 
e-Ray (jim)

PSW Continuous

Sample 1 25 8 <0.6328 0.80 <0.6328 0.80

Sample 2 30 4.5 0.65 0.84 0.65 0.84

Sample 3 70 6 1.11 1.49 1.38 >1.64

Sample 4 80 5.45 1.02 1.33 1.32 >1.64

Sample 5 90 5 1.21 1.63 1.41 >1.64

Sample 6 100 12.40 1.55 >1.64 >1.64 >1.64

Sample 7 100 13:10 >1.64 >1.64 >1.64 >1.64

Table 3.1 Cut-off wavelength for both polarisation modes, for different fabrication conditions of 
Ti;LiNb03 channel waveguides. The lower limit in the cut-off wavelength is the wavelength of the 
HeNe laser, used to align the waveguides. The upper limit is given by the detector of the spectrum 
analyser. In the case of samples 1 and 2, the method could not be used to distinguish between the cut­
off wavelength of the quasi-TE and quasi-TM modes because for these samples the cut-off 
wavelength is similar for both polarisation

10 fivn

Fig 3.4. Photomicrograph (x  125) of a PSW of 
sample 7 in Table 3.1. The duty cycle is 0.54. The 
observed contrast was contributed mainly by the 
surface relief related to the Ti indiffusion.
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3 . 4 .  Measurements.

3.4.1. Transmission spectrum.

Waveguides
optical spectnun 

analyzer

Quasi-TM mtxlc

While light o
source

*

S ingel mode 
fibre

Q -20 - A
Quasi-I'E mode 

(o-ray)
(Multi mode to single 
mode transition)

multimode
fibre

(a)

Wavelength ( f im)

(b)
Fig 3.5. (a) Experimental set-up used to obtain the transmission spectra of PSWs. (b) Normalised 
transmission spectrum for the PSW of sample 4 of Table 3.1, with period 19.6 pm  and duty cycle 
0.55.

To obtain the cut-off wavelengths, unpolarised white light was end-fire launched into 
the waveguide through a single mode fibre (at 1.55 fdm), efficiently exciting all the 

modes in the waveguide and avoiding excessive coupling of light into the substrate. 
At the output, the light was collected in a multimode fibre, which was connected to 
an optical spectrum analyser, see Fig 3.5(a). The core of the output fibre, 50 /<m 

diameter, did not permit the collection of significant levels of leakage light. A similar 
set up is described in Ref. [s]. The resolution of the spectrum analyser was chosen to 
be 5 nm and it was scanned between 632.8 and 1640 nm. To eliminate the spectral 
response of the white light source and the input and output fibres, we measured the 
spectrum of the whole system without the waveguides and used it as a reference, 
which later was used to normalise the spectrum of the waveguides. Fig 3.5(b) shows 
a typical example of the normalised transmission spectrum for a PSW (period 19.6 
pm, duty cycle 0.55) of sample 4  in Table 3.1. We defined the cut-off wavelength of 

the more confined mode (e-ray in general) as the wavelength at which the 
transmission intensity dropped by 3 dB (point B in Fig 3.5(b)) after having attained 
its last maximum. The cut-off wavelength for the less confined mode (o-ray in 

general) is defined as the point at which the normalised transmission spectrum starts 

to rise again (point A in Fig 3.5(b)) after having obtained a minimum; when the less 

confined mode begins to radiate into the substrate the power in the spectrum will be 
reduced until all power in that polarisation has been dissipated, leaving the power in
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the other polarisation. To verify this, both polarisations were end-fire launched into 

the samples, and with the help of a cross-polariser, the modes in each polarisation 

were investigated, see Fig 3.6.

Laser Pol. Cross-pol.
x20 xlO

0.633 pim

source

1.3 /<m 
1.55 ptm Waveguides Detector

Fig 3.6. Lxperimental set up used to verify the 
polarisation sustained by the waveguide.

The general shape of the transmission 

spectrum shown in Fig. 3.5(b) depends on 

the overlap integral between the input field 
and the mode of the waveguide. The 

maximum transmission corresponds to a 
maximum value for the overlap integral. 
Here we assume small coupling losses 

between the waveguide and the multimode 

output fibre. The reduction in the transmission after the last maximum is due to the 

increase in the mode size. And because the transmission decreases rapidly with 
wavelength we know we are near cut-off. The segmentation losses are wavelength 

dependent 1̂ 1, and therefore they affect the transmission spectrum of a PSW. But its 

overall contribution to the shape of Fig 3.5(b) is small and will not be considered in 
this analysis. This dispersion in the segmentation losses depends on the duty-cycle of 

the PSWs.

The definition of point B in Fig 3.5(b) as the condition for cut-off is a matter of 
choice. We decided to use this point because it is easy to obtain from the 

transmission spectrum. This definition is valid if the slop of the transmission 
spectrum, after the last maximum, is independent of the period or duty-cycle of the 
PSW. But this is not the case, and we were able to observe only a small variation on 

these slops. The rate of change in the transmission as a function of the wavelength 

increases as the cut-off wavelength decreases. There are two reasons for this, the first 
is due to the dispersion in the segmentation losses of a PSW, and its dependency on 
the duty-cycle. The second is related to the variation of the mode size with 
wavelength, for waveguides with the same dimensions but different cut-off 
wavelengths (or equivalently different increase in the refractive index). The latter can 

be verified for slab waveguides by analysing the variation of the effective guide 

thickness as a function of the V number near cut-off presented in reference [2]. The 
rate of increase in the effective guide thicknesses as a function of the wavelength 
increases as the cut-off wavelength decreases. The dimensions of the waveguides 

will have an effect in the transmission spectrum, but this is not of interest to us 
because we only compared waveguides fabricated under the same conditions, and 
therefore with the same dimensions. The influences on the variation on the slops of 

the transmission spectrum in our results will be discussed later.
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3.4.2. Cut-off wavelength for PSWs and continuous waveguides for 
different fabrication conditions.

The cut-off wavelength of a TiiLlNbOg waveguide depends on its dimensions (width 

and height) and on the increase in the refractive index due to titanium indiffusion 

(Any). Table 3.1 shows the dependence on the cut-off wavelength for PSWs and 
continuous waveguides with the same width, but with different height and Any. The 
cut-off wavelengths were obtained from spectra similar to those of Fig 3.5(b), and 
were cross-checked by measuring the polarisation at the waveguide output at 0.633 
f4 m, 1.3 j4m and 1.55 ^m. In the case of diffused waveguides, the height of the 

waveguides is considered to be the diffusion depth, defined as:

Lg = 2 -JD  t Eq. 3.16

where 'D' is the diffusion coefficient, which is a function of the diffusion 
temperature, and't' is the diffusion time. All our samples were diffused at the same 

temperature and, therefore the height of the waveguides will only be a function of the 
diffusion time. The increase in the refractive index is a function of the Ti 

concentration, which will depend on the thickness of the Ti stripe before diffusion 

and the diffusion conditions. The effect of the diffusion time on the cut-off 
wavelength is not straight forward, as larger diffusion times imply lower Any but 
larger diffusion depth. In general, for a given Ti thickness an increase in the diffusion 

time will result in a larger cut-off wavelength, since the effect on the increase in the 
diffusion depth dominates over the effect of the reduction in Any.

13
Expérimental

Model

05
1.4 1.608 1

Cut-off wavelength 
continuous waveguides (jim)

Fig 3.7 The points represent the cut-off wavelength of PSWs versus the cut-off 
wavelength of continuous waveguides for the waveguides of Table 3.1. The error 
bars (the same size as the diameter of the points) reflect the dispersion in the 
results to be shown in Fig 3.8 and 3.9. The continuous hue corresponds to the 
theoretical results represented by Eq 3.10 for a duty cycle of 0.55.
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To test the model present in section 3.2. for different fabrication conditions we have 

studied the relationship between the cut-off wavelength of PSWs of duty cycle 0.55 

(in the ferric oxide mask) and continuous waveguides (PSWs with a well-defined 
duty-eycle of 1) for different fabrication conditions (see Fig. 3.7). The advantage of 
using continuous waveguides is that the duty-cycle is known precisely and therefore 
Eq. 3.10 can relate the cut-off wavelength of both waveguides to the duty cycle of 
the PSW, thus providing us with the possibility of quantitatively verifying the 

accuraey of our model. This has be done in Fig 3.7, where the points correspond to 

the experimental results for the quasi-TE mode, and the line corresponds to the 

theoretical results obtained from Eq 3.10 for a 0.55 duty-cycle. The error bars reflect 
the dispersion in the results that will be presented in Fig 3.8 and Fig 3.9, similar in 
both cases.

3.4.3. Cut-off wavelength as a function of the period of PSWs.
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Fig 3.8 Cut-off wavelength of TizLiNbOg channel PSWs as a function of the period, for both 
quasi-TE and quasi-TM modes. ITie points correspond to the measured values and the 
discontinuous line to the theœetical results obtained with Eq 3.10 for 0.55 duty-cycle. The 
waveguides are those of sample 4 in Table 3.1. The duty cycle varies depending on the 
position of the waveguide in the sample, its values were measured to be between 0.54 to 0.57.

Using spectra such as the one of Fig 3.5(b), we were able to determine the cut-off 
wavelengths for the PSWs of sample 4  (Table 3.1) as a function of the period for 

both polarisations. The results can be seen in Fig 3.8. No dependence of the cut-off 
wavelength on the period could be observed. The cut-off wavelength for the quasi- 

TM polarisation deviates by ±30 nm around an average of 1321 nm. For the quasi- 
TE polarisation the cut-off wavelength deviates by ±23 nm around an average of
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1000 nm. The variations of the cut-off wavelength appear to be a function of the 
position of the waveguide on the sample. All measurements were carried out on the 

same day, with the same fibres and same alignment conditions. Under these 

conditions, variations in coupling can account for up to 10 nm variation in the 
estimated cut-off wavelength for both the quasi-TE and quasi-TM polarisations. The 
largest variations in the estimated cut-off wavelength appear to be due to variations 

in the waveguide dimensions across the lithographic mask. The measured values for 
the duty-cycle in the mask went from 0.54 to 0.57 (nominal duty-cycle 0.50), 
sufficient to account for the dispersion of the data in Fig 3.8. In our case the pattern 

transfer from the mask to the sample does not appear to play a significant role in the 

final value of the duty cycle of the PSWs.

3.4.4. Cut-off wavelength as a function of the duty-cycle of PSWs.

Eq 3.15 indicates that the cut-off wavelength squared has a linear dependence on the 
duty cycle. The slope will depend on the fabrication conditions and, for zero duty 

cycle, zero cut-off wavelength would be expected. Fig 3.9 was obtained to assess the 
accuracy of these statements. Here the PSWs are 4 pim wide and their period is 19 

The duty-cycle in Fig 3.9 is that measured on the mask. As expected, these 
points form a straight line, but this line does not intersect the x axis at zero. In Fig 

3.9(a) the cut-off wavelength for a given duty-cycle was obtained for different 
waveguides, the spread in the data is due to measurement errors and to small 
fluctuations in the dimensions (duty cycle, width and Ti concentration) of the 

waveguides.

Quasi-TM mode 0 
(e-ray)

Quasi-TM modem, 
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Fig 3.9. Square of the PSW cut-off wavelength as a function of the actual duty cycle on the mask used 
to pattern the PSWs, for the quasi-TM mode and the quasi-TE mode. 4 pm  wide and 19 pm  period 
PSWs were fabricated by patterning 80 nm thick films of Ti and diffusing at 1050°C for 12 hours. The 
lines are the regression lines of slop "m". Graphs (a) and (b) corresponds to the same waveguides for 
different alignment conditions.
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To Study the influence of different alignment conditions on the measurement of the 

cut-off wavelength presented in Fig 3.9(a), the same set of waveguides was measured 
again after the sample was removed and cleaned, the coupling fibres were also 

cleaned and the set-up was realigned. These new results can be seen in Fig 3.9(b). 
Variations in the estimated cut-off wavelength for the same waveguide were 
typically about 30 nm for the quasi-TM mode and 20 nm for the quasi-TE mode.

Despite the alignment conditions, in Fig 3.9 and 3.10 the line corresponding to the 
quasi-TM mode always intersects the x axis further away from zero than the line of 

the quasi-TE mode. This may be due to the criteria used to define cut-off for both 

modes. In the case of the more confined mode (quasi-TM), cut-off occurs when the 
mode is larger than a certain value, and therefore the coupling power from the input 
fibre to the waveguide is reduced by 3 dB. The definition of cut-off for the less 

confined mode (quasi TE) involves certain relationships between the mode sizes of 
the two polarisations.

As already mentioned, the rate of change in the transmission spectrum after the last 
maximum increases with the duty-cycle. Therefore, a different definition of cut-off, 
say a 6 dB reduction of the transmission intensity instead of 3 dB, will modify the 

slop of the quasi-TM mode of Fig 3.9, so that the line cuts the x-axis closer to zero.

3.4.5. Loss coefficient of PSWs and continuous waveguides.

DFB laser 
1.55wm

(a)

Waveguides

(b)

Optical
spectrum
analyser

Multimode 
fibre (2

: j v \ ^
Kxy

Time (a.u.)

SaDllTCg®

Fig 3.10. (a) Experimental set-up used to measure the loss coefficient of TizLiNbO^ waveguides by 
the Fabry-Perot method as described in ref. [10]. (b) Transmitted intensity versus time (the 
temperature of the sample is a function of time), which can be seen as the resonator transmission 
versus the optical phase difference (2pL, p = propagation constant, L= length of the resonator), which 
in this case is a function of the temperature.
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The Fabry-Perot method Eio] has been used to measure the loss coefficient in both 
PSW s and continuous waveguides fabricated under the same conditions. The losses 
were measured using a 1550 nm DFB laser on the waveguides of sample 6 in Table
3.1. The experimental set-up can be seen in Fig 3.10. For the continuous waveguides 

the estimated loss coefficient is 1.0 dB/cm while for PSWs the estimated loss 

coefficient is 1.9 dB/cm. This method yields the upper limit of the waveguide 
attenuation coefficient. If the waveguides are not perpendicular to the facets or if 

imperfections are introduced by polishing, the actual attenuation coefficient can be 
smaller than the measured value .

3.5. Discussion.

T iiL iN b O g  waveguides are asym m etric, and therefore do not guide at all 
wavelengths. For a given waveguide there is a certain wavelength above which the 
light is radiated into the substrate, this is the cut-off wavelength. Due to the 
birefringence of the Ti;LiNb03 in a z-cut crystal, the two different polarisations will 

have different cut-off wavelengths. These considerations determine whether, at a 
given wavelength, the device will operate in one polarisation, both polarisations or 

none. The cut-off wavelength in stripe waveguide depends on the width, height and 

increase in the refractive index of the waveguide. But new considerations arise when 
studying PSW; the increase in the refractive index will be smaller due to the 
reduction in the average concentration of Ti along the waveguide. Fig 3.7, Fig. 3.8 

and Fig 3.9 have shown that this reduction in the increase of the refractive index is as 

given by Eq. 3.1, and furthermore they show that a simple relationship (Eq 3.20) can 
be established between the cut-off wavelength and the duty cycle of two PSWs. This 
relationship, together with Table 3.1, provides us with a wide range of PSWs 

operating at different wavelengths. In particular, we have been able to fabricate 
PSWs that will operate in the 1.3 p.m and 1.55 p,m telecomiuunication windows.

There are three sources of error that affect the estimated value of the cut-off 
wavelength. First, there is the fabrication error, where photolithographic processing 
produces changes in the duty-cycle and in the width of the PSWs. Other fabrication 
errors are associated with the uneven thickness distribution of the titanium strips 
before diffusion. The second source of errors is measurement error, associated with 
the alignment of the set-up. Finally, there is an uncertainty in the criteria chosen to 
determine the cut-off wavelength from the transmission spectrum.
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Increments of the duty cycle due to photolithographic processing were measured to 

be up to 6% and dependent on the position of the waveguide in the sample. This was 

taken into consideration in Fig 3.7 and Fig 3.8.

Two different measurements for the same alignment conditions carried out at 

different times (e. g. in the range between 30 seconds and half an hour) produced no 
significant change in the spectrum of the waveguide. Differences in alignment can 
produce a significant change in the estimated cut-off wavelength, of about 20 nm for 

the quasi-TE mode and 30 nm for the quasi-TM mode. Variations in the cut-off 

wavelength as a function of the position of the waveguides across the sample were 
found to be about 46 nm for the quasi-TE mode and 60 nm for the quasi-TM mode.

Point A in Fig 3.5(b) determine the cut-off conditions for the less confined mode, 
while point B determines the cut-off condition for the more confined modes. Because 

the criteria are different, it is not surprising that the point of intersection with the x- 

axis of the lines of Fig 3.9 differs for the two modes. It is easy to believe that the 
definition represented by points A in Fig 3.5(b) better portrays the behaviour of the 

cut-off wavelength as a function of the duty-cycle. At this point, virtually no energy 

from the less confined (quasi-TE) mode is maintained in the waveguide, unlike for 

the case of point B. This is consistent with the results of Fig 3.9, where the point of 

intersection with the x-axis for the quasi-TE mode is closer to zero; the expected 

value.

Our model predicts no dependence of the cut-off wavelength on the period, and this 

can be seen in Fig 3.8. The model predicts a linear relationship between the square of 
the cut-off wavelength and the duty cycle, which is supported by Fig 3.9. The 
accuracy to which the model can be used can be obtained from Fig. 3.7, Fig 3.8 and 

Fig 3.9. In Fig. 3.9, the point of intersection with the x-axis for the case of the quasi- 
TE mode (with better criteria for cut-off, and smaller measurement errors) is 0.02. 
Our model predicts it to be zero and the error indicates that Eq. 3.1 can be used to 

describe the increase of the refractive index of PSW with an error of 2% . Using the 
same argument for Fig 3.10 we obtain that the error is 5 %. The difference between 
these two values is purely due to measurement errors. If we relax the statistics 
slightly, and obtain the mean value and deviation with only two points, we can say 

that our model has an error of 4% ± 3%. The dispersion of the data in Fig. 3.7 and 
Fig 3.8 around the theoretical predicted value indicates similar accuracy.
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3.6. Conclusions.

We were able to fabricate PSWs for different fabrication conditions, with duty cycles 
ranging from 0.3 to 0.65, and periods ranging from 15 ]xm to 20 |im. In all cases the 

model represented by Eq 3.1 has been proved to describe the behaviour of PSWs 

successfully. We were able to measure the cut-off wavelength of PSWs and, using a 

simple model, predict its variation with the duty-cycle. Agreement between the 
model and the experimental results is excellent, which indicates that Eq. 3.1 

describes the properties of the PSWs (except loss) very accurately.
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Optical field distribution 
and losses in PSWs 
(Modes of PSWs)
A Three Dimensional Explicit Finite Difference Beam Propagation Method (3D 
EFD-BPM) has been used to study the modal characteristics and losses of Periodic 
Segmented Waveguides (PSW). Results for the variation of the mode width and 
depth, as a function of the duty cycle and period, are presented and compared with 
those obtained using the equivalent continuous waveguide model at a wavelength of 

1.55 pim. The radiation losses associated with the modulation of the refractive index 

are studied and we show that a 3D representation of a PSW is necessary to evaluate 

the radiation loss.

4.1. Introduction.

In this Chapter we are going to use the EFD-BPM IF to study the optical field o f step 

index periodic segmented waveguides (PSW) with a index distribution chosen to 

resemble that of TizLiNbOg channel waveguides. We will show that the EFD-BPM 
can be used in the study of PSWs and we will show the behaviour o f the optical field 

along the direction of propagation. One key difference between PSW and standard 
continuous waveguides is in the definition of a mode. A waveguide mode is 
normally associated with a field distribution which remains unchanged along the 

direction of propagation. However, in the case of a PSW the mode shape changes 

periodically as a function of distance. It is important to be able to understand the 
behaviour of these "quasi-modes" and to be able to account for radiation losses 

associated with the periodic modulation in refractive index. To that effect we used a 

3D BPM.

EFD-BPM was used because the method is very efficient per propagation step, and 

the propagation step used for this structures is much smaller than that required to 
make the algorithm stable Bl.
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First, in section II we are going to state the Fresnel equation (the wave equation that 
has been numerically solved by our BPM ), and indicate all assumptions and 
lim itations involved. In section III we are going to obtain the explicit finite 
difference implementation of the Fresnel equation, and discuss the conditions for 

stability and on the boundary conditions. In section IV we are going to study the 

PSWs using the 3D EFD-BPM; we will study the variation of the optical field as it 
propagates through the PSW, the variations of the mode size as a function of the duty 

cycle and period, and we will obtain the losses associated with the segmentation. 

Then we will conclude.

4,2. Fresnel equation

Starting from the Maxwell equations and using a number of approximations:

1 £ (x , y, z, t) = E " (%,y, z) exp(~icot)

2 i/r(x,y,z)exp(-ïÂ:,.z)

3 Disregard the polarisation properties of the waveguide t̂ l
4 A non conducting medium

5 Slow longitudinal variation:

' dz

W e obtain the Fresnel equation:

- 2 j k Q n , . ^  = -k^[n^(x ,y ,z ,0 ) ) -n f . ) y /  Eq 4 .1
dz d x d y

W here n(x,y,z,w) is the index distribution of the waveguide and is the free space 

propagation constant.

The Fresnel equation is an approximation of the Helmholtz equation, which in turn is 
an approximation of a vectorial wave equation resulting from Maxwell equations. 
The derivation of the Fresnel equation from Maxwell equations can be seen in 

Appendix 2 .
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4.3. Formulation of the EFD-BPM

4.3.1. Finite difference.

To obtain a solution for the Fresnel equation we are going to use a finite difference 

scheme. There are three kinds of finite differences B];

Forward differences

\ j /{ r+At ,s) - \ j/{i:,s) Eq 4.2

Backward differences

y/{T,s)-y/{ 'V-A-T,s)  Eq 4.3

Central differences

ô^y/{T,s) = y/^T + ^ A T ^ s ^ - i j / ^ 'U ~ ^ A r , s ^  Eq 4.4

W hen the central difference operator is applied twice we obtain the second order 

central difference

0^y/{T,s) = \j/{r + Ai:,s) -  2 \{/{t ,s) + \ f / { t -A T , s )  Eq 4.5

For first differences it is often convenient to use the double interval central 

difference

+ A_,) j)
Eq 4.6

= - [ y / { r 4 - A t ,s) -  A t ,s )]

By using the backward differences for the derivative in z in the Fresnel equation, the 
method becomes implicit. This is because the scheme involves more than one 
unknown value of the solution on the new propagation level z+Az. The forward 

difference and the double interval central difference will result in a explicit method. 
The forward difference results in an instability for any Az, while the double interval 

central difference is conditionally stable. Any method based on the central difference
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at  =

Az

bij (z) = -a .  -  at  -  c . -  cj  -  J (z) -  )

requires the field distribution at the present and preceding step to calculate the field 
at the next step.

4.3.2. Explicit finite difference applied to the Fresnel equation.

To solve the Fresnel equation, a parabolic partial differential equation, we use the 
double interval central difference for the derivative in z

y/{x,y,z + Azt}~ y / { x , y , z - A z )  dy/{x,y,z)
2Az '

and centred second difference for the second derivatives in x and y

Y {x  + A x , y , z ) ~ 2 Y { x , y , z ) + y / { x - A x , y , z )  d^y/{x,y,z) ^
dx^

y/{x,y + A y , z ) ~ 2 Y ( x , y , z ) + y / { x , y - A y , z )  d^y/{^,y,z) ^
i& y f  “  a /  ^ 9  4.9

■

Î

using these approximation we obtain that the Fresnel equation satisfies

Eq 4.10
v,y(z +  Az) = -  Az) + aj Y i i - i f z )  + a* V(m )M )

+ c-7 V'io-i ) ( z)+ V' ioo ) W + W  n  W

where

Az
jkoHriAxf Î

Az

jk^nXAy)
Az Eq4 .11

AM , (Ay)

n,.

\[/ij(z) and nij(z) are the optical field values and the sampled refractive index values, 
respectively, at x=xj, y=yj in the computational window, and A x=xj - xpi and Ay=yj- 

y j-l. The propagation of the optical field in Eq 4.10, is explicit and straightforward 
since it involves multiplication of the input field with a very sparse matrix, which
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makes the method very efficient. However, this algorithm is only stable under the 
condition B1

Az +
Ajc" Av

Eq4.12

This condition assures power conservation as well as stabilityBl 

4.3.3. Boundary conditions.

To solve the Fresnel equation with the BPM, boundary conditions have to be 
implemented at the edges of the computational window. The computational window 

can be seen in Fig 4.1. At present the most popular boundary conditions are the 
transparent boundary conditions which allow the radiation to escape from the 

computational window without appreciable reflections. However, this boundary 
condition has not been implemented in a EFD BPM. Here we use a different 
approach. First we make the electric field zero at the boundaries (metallic boundary 

conditions), in this situation the optical field will be reflected at the boundaries of the 
computational window. To avoid these reflections reaching the waveguide, we force 
the field to pass through an aperture. This is done by making the electric field zero in 

a single propagation step in all computational windows except for an aperture. The 

edges of the aperture are positioned so that they are far away from the guiding mode. 
In this situation the aperture has a minimum influence in the optical field (see Fig 

4.6).

\

% V'-.; V  Substrate

Nx=225 points 1587
Ny=180 points =2.1372

An=0.0215
Ax=0.20 pim 
Ay=0.22 pim 
Az=0.03 pim

(Az { to fulfil stability
condition o f Eq 23 }  = 0.06 pim)

Z direction of propagation.

Fig 4.1. Computational window used to simulate the propagation of light in a PSW 
using ITD BPM.
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4.4. Analysis of PSWs using a EFD-BPM.

In a PSW  the increase in the refractive index is modulated periodically. Each 
segment is composed of two regions with different refractive indices; a doped region, 
with an increase in the refractive index of An, and an undoped region with the same 

refractive index as the substrate. The modal properties of a PSW are determined by 
its dimensions, period (A), duty cycle (t)) and the increase in the refractive index. In 

Chapter 3 have shown that the behaviour of a step index PSW can be approximated 

by a continuous waveguide with the same depth and width, in which the average 
index difference, An’, is given by :

An'  = r}An Eq 4.13

This relationship has proved useful in the design of PSW; however, it does not 

provide information about the radiation losses associated with the modulation of the 

refractive index, or the behaviour of the optical filed along the direction of 

propagation.

4.4.1. Periodicity of the optical field; "Modes" of PSW.

The structure used in these BPM simulations was based on a 5 pm  wide, step index 

PSW, with a period of 17.5 pm, guide index 2.1587, substrate index 2.1372 and with 
a range of duty cycles varying from 0.2 to 1. This geometry was chosen to 

approximate a single-mode PSW Ti indiffused LiNbOg, where the maximum change 

in refractive index is -0 .02 Simulations were carried out at a wavelength of 1.55 

pm. We used this relatively large refractive index modulation to reduce the mode 
size, and therefore the size of the computational window. A smaller increase in the 

refractive index will require excessively large computational times. The details of the 
computational window can be seen in Fig 4.1. The results from the BPM for a PSW 
of period 17.5 pm  and duty-cycle 0.5 can be seen in Fig 4.2. Here we represent the 

intensity profile in the vertical and horizontal directions. The intensity profile in the 

vertical direction (the direction of the substrate) was calculated by adding all the 
intensity points in the transverse direction at a constant depth and is shown in Fig. 
4.2(a). The intensity profile in the horizontal direction was calculated in a similar 

manner and is shown in Fig. 4.2(c). As can be seen, the periodic modulation of the 
refractive index forces a periodic modulation of the intensity distribution along the 
direction of propagation.
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Fig 4.2. a) Depth intensity profile along 2 periods of a PSW and b) its contour curves, 
c) Horizontal intensity profile along 2 periods of a PSW and d) its contour curves. 
Period 17.5 pm, duty cycle 0.5, width 5 pm, depth 5 pm and an increase in the 
refractive index of 0.0215. Operating wavelength 1.55 pm. The period starts at the 
beginning of the doped region. Depth and width are the y and x coordinates of Fig 4.1 
respectively.

To obtain the field distribution of Fig 4.2, the input field (a Gaussian) was allowed to 

propagate until the radiation modes that may exist in the input field disappear from 

the computational window, leaving only the propagating energy together with the 
segmentation losses. We found that to obtain the "mode" of a PSW, the step size in 
the direction of propagation has to be smaller than that given by the stability 
condition of Eq 4.12. The boundaries of the computational window were placed far 
away from the guide, so that they could not affect the propagating field distribution 

or the segmentation loss.
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A mode exists when the optical field does not interfere destructively with itself when 
propagating in a waveguide. In the case of PSWs these conditions have to exist over 

a com plete period, making the mode of a PSW  a function of the transversal 
distribution of the refractive index as well as the longitudinal distribution of the 

refractive index (i.e. period and duty-cycle). Therefore, the field distribution of Fig

4.2 is the "mode" of PSWs, together with its radiation losses. From another point of 

view, the condition for the existence of a mode is that the transversal propagation 

constant is zero. i.e. the transversal propagation constant has the same magnitude in 

the opposite directions. In a PSW this condition is not fulfilled at any one point. 

However, after one period, the summation of all transversal propagation constants is 
zero, except for the radiation loss. Therefore, in the context of the latter definition, 

the radiation loss is not part of the "mode" of a PSW.

The conditions that determine the "mode" sustained by a PSW also determine the 

radiation losses. Therefore the cross section of the doped regions, the period and duty 
cycle determine the radiation losses.

The intensity distributions for PSWs with different duty-cycles are very different, not 
only in its mode size but also in the periodic distribution of the intensity. For the case 

of duty-cycle 0.5, the variation in the mode width and depth along one period is 
larger than for the PSWs with duty-cycle 0.2 or 0.8 (Fig 4.3). Later we will see how 
this can affect the radiation losses.

Fig 4.2(d) shows how the light in the horizontal direction converges when travelling 

through! the areas with the higher refractive index, and diverges when passing 
through the areas in between. Fig 4.2(b) shows that, due to the strong asymmetry, the 

light in the vertical direction bends away from the surface when passing through! the 
undoped regions. The radiation losses originate at the transition between the low 
refractive index region and the doped segment. The energy expands into the non 

doped region in such a way that, when it reaches the interface with the doped region, 
part of the energy can not be re-confined by the guide, while at the transition from 
the doped to the non-doped region, the mode is free to expand adiabatically and thus 

there are no radiation losses.
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(a)
(b)

Depth (microns)

15 0

Fig 4.3. Depth intensity profile along 2 periods of a PSW of duty cycle 0.2 (a)-(c) and
0.8 (d)-(e). The waveguides have the same dimensions, and increase in the refractive 
index as that of Fig 4.1. Operating wavelength 1.55 pm.
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Fig 4.4. A three-dimensional view of the intensity propagating in the plane normal to the 
direction of propagation for PSWs with different periods and duty-cycles. The intensity has 
been obtained at the beginning of a doped segment and has been normalised to one, and then 
truncated at 2 % of the maximum.
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4.2.2. Segmentation losses.

Figure 4.4 shows a surface plot of the optical field in the transversal plane to the 
direction of propagation, from which the details of the radiation loss can be seen. In 

some cases, the radiation spreads towards the boundaries with most of the radiation 
directed under the guides, and only a very small fraction spreads laterally. But on 
some occasions (Fig 4.4, A=30 pm , t]=0.5), a considerable amount of light is 

radiated laterally. For this reason a 3D BPM is essential to study the radiation losses 

and the modal properties of PSWs. The advance of the energy radiated toward the 
substrate, as the light propagates along one period, can be seen in Fig 4.5. The 

marked region is the radiation loss produced in one period.

Normalised Intensity
0 .0 0 8 -

z = 0
0.006 —

0 .0 0 4 -

0.002 -

z = 2

z = 4 z = 60 .0 0 6 -

0 .0 0 4 -

0 . 0 0 2 -

z = 1 0z = 80.006 —

0 .0 0 4 -

0.002-

z = l 2 z= 1 50.006 —

0 .0 0 4 -

0.002 -

5 513 11 713 9 7 911

Depth (/im)
Fig 4.5 Normalised depth intensity prolile for a PSW of period 15 pm  and duty-cycle 0.5. 
Here we can see the segmentation losses in the direction of the substrate, llie  marked region 
follows the progression of the loses generated at one period.



Chapter 4 - Optical field distribution and losses in PSWs 79

In Fig 4.2, 4.3, 4.4 and 4.5, we can observe how the radiation losses exit the 
waveguide, but provide us with no information about the magnitude of these 

radiations. Fig 4.5 shows the progress of the segmentation loss towards the substrate 
along one period. But to obtain the losses from Fig 4.5 is difficult; The losses are not 
easy to isolate from the "mode" of the PSW, or from the losses generated by previous 

periods.

Weissman et. al in ref. [7] used a 2D BPM to study the radiation losses, they used the 
modal spectrum of the waveguide to obtain the radiation losses. They justified the 

use of a 2D BPM, arguing that most of the radiation loss takes place towards the 

substrate. As we show in Fig 4.4, this is not always the case. For this reason we 
studied the radian loss in all directions, and since the PSWs modes vary periodically 

we preferred not to use the modal spectrum.

4.4.2.1. Measurement of the segmentation losses.

Horizontal radiation loss y g  obtain the segmentation loss we forced the

Waveguide \ electric field to zero at a single propagation step

in all of the computational window except for a
small aperture. This can be seen in Fig 4.6.
Here the optical field is forced to zero in the
shaded zone. The edges of the aperture are
positioned so that they are far away from the
guiding mcxie. In this situation the aperture has
a minimum inlluence in the optical field. The
aperture lets the "mode" pass and blocks some
of the radiation losses. Next we allowed the 

Fig 4.6. Here we can see the .
computational window used to obtain the optical iicld to propagate, and measured the
segmentation losses ol the PSW. The intensity that entered the shaded zone o f  Fig
waveguide radiates energy horizontally
and towards the substrate. To measure the 4.6. By doing this we observed the increase in 
losses we forced the optical field to zero j- .• i r  .• r .u
in the shaded area, and then we measured radiaüon loss as a funclioti of the
the energy that enters this zone as the light propagation distance. The results can be seen in 
propagates.

Fig 4.7. In Fig 4.7(a) the increase in the losses 

is nearly linear with the propagation distance, while in Fig 4.7(b) we can see a step 
like behaviour. Every step corresponds to the energy generated by one period. This 

cannot be seen in Fig 4.7(a) because the segmentation loss from one period overlaps 
with the radiation generated at previous periods. The losses are obtained by 
comparing the total energy in the mode with the radiation energy given by Fig 4.7:

Substrate 
radiation loss

7777777777/7 .
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Fig 4.7. Radiation entering the shaded region of Fig 4.5 as a function of the propagation distance for 
PSW of period 17.5 pm  and duty-cycle 0.5 (a) and 0.8 (b).

4.4.2 2. Segmentation loss as a function of the period and duty-cycle.

Figure 4,8 shows the segmentation loss as a function of the duty-cycle and as a 

function of the period. These absolute values are larger than those reported 

previously, both experimentally and theoretically 1̂. This is due to the 
relatively large refractive index modulation used to reduce the computational time. In 
addition, the index profile is a step function, whereas for LiNbOg waveguides a 

diffusion profile should be used. The general shape of the curves coincides with 

those of refs, [7,8,9],

(a) (b)
3,5

oa 2,5-

2

0,2 0,6 0,8 10 0,4
Duty-cycle

30
25-

B
PQ"3

I 5

25 3010 15 20 35
Period (jim)

Fig 4.8. Segmenlation loss as a function of the duty cycle (a) and period (b). The point represents the 
results obtained with the BPM and the lines are their interpolation.
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From  Fig 4.8(a) it can be seen that the radiation losses have a maximum when the 
duty-cycle is -0.5. The decrease in the radiation losses as the duty-cycle increases is 

due to the reduction in the gap between the doped segments; this minimises the space 

in which the beam is allowed to diffract. The decrease in the radiation losses as the 

duty-cycle is reduced is due to the increase in the mode size, and therefore a 

reduction in the diffraction angle. Therefore, large duty-cycle with small gap and 
small duty-cycle with small diffracting angles are competing mechanisms to reduce 
the radiation loss.

W e have also considered the case of radiation loss as a function of the period (Fig 

4.8(b)). The average mode size is the same for all periods, therefore, we expect the 
radiation losses to increase with the period (i.e. as the gap between doped regions 

increases). It should be noted that the radiation losses for waveguides of the same 
length increase as the period decreases. This is because the segmentation loss is 
proportional to the number of periods.

4.4.3. Variations of the "mode" size as a function of the duty cycle 
and period

In Chapter 3 we have shown that a PSW can be represented by an equivalent 
continuous waveguide in which the increase in the refractive index is given by Eq 

4.13. Now we are going to use this to prove that the 3D EFD-BPM  adequately 
describes the propagation of light though a PSW. To that purpose we compared the 
mode width and depth of PSWs and its equivalent continuous waveguide for 

different duty cycles using the 3D EFD-BPM. The results can be seen in Fig 4.9. The 

lines represent calculations performed for the PSWs and the points the results 
obtained using the equivalent continuous waveguide. The mode width and depth of 

the PSWs was calculated from the curves of Fig 4.10, where the intensity profile in 

the vertical and horizontal direction is shown at the beginning of each period for 
different duty- cycles and periods.

The variation of the mode width and height as a function of the period can be seen in 
Fig 4.11. Here we can see that the mode size is very similar for all periods, but there 
may be some differences in the intensity distribution. This is in agreement with the 

equivalent wavegnide model proposed.

The consensus between both sets of results for the PSW and its equivalent 

continuous waveguide in Fig 4,9, and the independence of the mode size on the
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period (Fig 4.11) indicate that a step index PSW can be represented by an equivalent 
continuous waveguide. In Chapter 3 we have experimentally demonstrated that a 

PSW can be represented by an equivalent continuous waveguide, therefore the 

results of Fig 4.9 and 4.11 suggest that the 3D EFD-BPM accurately simulate PSWs.

Mode size

Width of equivalent guide

Depth of equivalent guide 

- - - - Width of PSW 

Depth of PSW

Duty cycle

4.9. Variation of the mode width and depth with the duty cycle for PSWs 
and the equivalent continuous waveguides. ITie mode width and depth were 
obtained from the curves of Fig 4.10. The mode size were measured at 0.3 of 
the maximum. Operating wavelength 1.55 pm.
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Fig 4.10 Vertical (a) and horizontal (b) intensity pr(rfile for PSWs of period 17.5 pm  and different 
duty cycles ranging from 0.2 to 0.8. T k  intensity distribution in one direction was obtained by adding 
the intensity in the transversal direction and then it was normalised so that the maximum has a value 
of one. In all cases the intensity distribution was obtained at the beginning of a doped segment.
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Fig 4.11 Vertical (a) and horizontal (b) intensity profile of PSWs. The intensity distribution in one 
direction was obtained by adding the intensity in the transversal direction and then it was normalised 
so that the maximum has a value of one. In all cases the intensity distribution was obtained at the 
beginning of a doped segment. The duty-cycle of the PSW is 0.5.
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4.5. Conclusions.

W e have shown that a PSW can be represented by an equivalent continuous 
waveguide and that the 3D EFD-BPM adequately describes the propagation of light 

through PSWs. The equivalent waveguide model provides a good design tool for 

calculating the modal properties of PSWs. However, it does not provide any 

information about the radiation losses of the waveguides, or the behaviour of the 
optical field along the direction of propagation. W e have seen that a 3D 
representation of the PSWs is necessary to evaluate the radiation losses, both in the 

direction of the substrate and in the lateral direction.

The Three-Dimensional Explicit Finite Difference Method has been used to study the 
propagation characteristics of the optical field in Periodic Segmented Waveguides. 
W e found that the period and duty-cycle of the PSWs together with the index 

distribution, set the conditions that will allow a certain field distribution to be 
sustained by the waveguide, i.e. set the modes of the PSW and with the mode, the 

radiation losses. We have shown that PSWs have "modes" where the intensity profile 
is repeated periodically along the direction of propagation, except for a reduction of 

the amplitude due to radiation loss. Thus, modes in a PSW are three-dimensional 

functions, formed by the optical field in one period. The numerical simulations 
illustrate how the segmentation loss escapes from the waveguide. We were able to 

measure the magnitude of the losses as a function of the period and duty-cycle. We 

found that for long periods, in our structure, the radiation loss becomes excessively 
large.
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SHG in PSWs

In this Chapter we will show how, using TiiLiNbOg PSWs, we were able to generate 

the second harmonic of a 1.55 pim fundamental wave. There are a few possible 

mechanisms by which second harmonics (SH) can be generated in a PSW, but only 
two result in significant conversion; a) the periodic reversal of the sign of the 
nonlinear coefficient and b) periodic modulation of the propagation constant. We 

will show the theoretical detuning curves for both cases, and we will derive a general 
up-conversion / down-con version condition to include the case of SHG prcxluced by 

a modulation of the propagation constant.

In Chapter 3 and 4 we have shown that a PSW behaves like a continuous waveguide, 
where the increase in the refractive index is given by the average titanium 
concentration. We have illustrated that the mode size is modulated as the beam 

propagates over one period. In this Chapter, we will investigate the behaviour of the 
propagation constant along a PSW. By chirping the period of the PSWs we were able 
to control the tuning curves of the SHG process, and we were able to model them 

with numerical simulations.

5.1. Introduction.

Coupling between two modes takes place if a coupling coefficient exists, and if the 
propagation constant of the two modes is the same. In grating assisted coupling any 

difference between the propagation constants is compensated by the period. Grating 
assisted coupling using PSWs is not new, for example it has been demonstrate in 

SHG PI, but what is not clear at present is the behaviour of the propagation constant 
as the PSW mode propagates. Some authors propose a change in the propagation 
constant as the wave progresses through areas with different indices 12. 3. 4] 

However, no conclusive evidence of this has been reported in the literature.
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Traditionally SHG has been obtained by modulating the nonlinear properties, via a 

process called domain reversal. As we have shown in Chapter 2, there are situations 

where domain reversal can be obtained during the fabrication of PSWs. If  a 
TirLiNbOs PSW is fabricated on the positive face, the waveguide has both a periodic 
modulation of the refractive index and a modulation of the nonlinear coefficient. If a 

TiiLiNbOg PSW is fabricated on the negative face, the waveguide only experiences a 

modulation of the refractive index.

In this Chapter, we investigate the phase matching properties of PSW s by 
considering the details of the SHG process. Quasi-phase matching (QPM) SHG takes 
place at a wavelength where the difference between the propagation constants of the 
fundamental and SH is compensated by the period of the PSW. We will show that a 

periodic modulation of the nonlinear coefficient only, and a modulation of both the 

propagation constant and the nonlinear coefficient, yields different phase-matching 

curves. However, the experim ental detuning curves show no indication of a 
modulation in the propagation constant.

First, we fabricated and tested PSWs with different periods and attempted to predict 

the phase matching wavelength from the fabrication conditions. For this we needed 

to estimate the propagation constant of the fundamental and SH from the index 
distribution using a mode solver. The problem  with PSWs is that the index 

distribution is not uniform along the direction of propagation, and therefore we had 

to average it.

W e also fabricated chirped PSWs and compared their detuning curves with those 

obtained theoretically. Briefly, we will discuss the application of chirp waveguides in 
all-optical switching.

All the software used to simulate SHG has been developed to take into consideration 
the dispersion of the material and some of the limitations imposed by fabrication.

5.2. Theory for second harmonic generation (SHG).

In this section we will discuss the conditions required for efficient SHG. SHG is a 
second order nonlinear process and arises as a consequence of a nonlinear interaction 

between light and matter. In SHG two photons from the fundamental generate one 
photon at double the frequency, the second harmonic (SH). However, this process is 
only efficient under certain circumstances, which depend on the propagation of the 

fundamental and SH waves in the nonlinear material. Therefore, to describe SHG it
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is necessary to generate a wave equation for each of the frequencies involved and the 
coupling between them. Because this is a very difficult system to solve, some 
approximation has to be used to simplify the problem.

5.2.1. Dielectrics

As light propagates in a medium the photons will interact with the atoms. Therefore 
the light modifies the medium, which in turn influences the propagation of the light. 

The permittivity and the permeability are the macroscopic quantities which account 

for the microscopic behaviour of the light in the material. They are introduced in 
M axw ell's equations by substituting the electric field (E) with the electrical 

displacement (D) and the magnetic flux density (B) with the magnetic field (H).

The effect of the material on the electromagnetic (EM) field can be studied by 

considering that the incident EM field polarises the atoms in the material, which 
creates a polarisation charge that modifies the incident field. If the energy of the 

incident beam is small, the response of the material is proportional to the electric 
field and therefore the polarisation charge oscillates with the same frequency of the 

incident field. However, if the optical field is very intense, the response of the 

material is nonlinear and the polarisation charge oscillates at a different frequency 
from that of the incident field.

In general, for two optical fields at frequencies 0)j and cOj, the second order 

nonlinear interaction between the material and the two EM waves produces dipole 

momentiims which oscillate with the following frequencies:

û ) j  "t" CÜ2 —

tüj 0)2 ”  ^4 ) Eq 5.1

CÛ2 — Oil = ^ 5

and each dipole generates light at its oscillating frequency.

Once CÜ3 has been generated, the interaction between the new wave and the existing 

waves generates polarisation terms at the following frequencies:

Oi-l ft). — ft)o
E q5 .2

ft>3 — 6)2 = ft)j
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5.2.2. Up-con version and down-conversion

In a second order nonlinear process, where we have two optical fields at frequency 
o)i and 0)2 , there are three competing processes:

(1)

(2)

(3)

(0 1

m S ir * -
r t i U U V - ^  (0 3= 0)1 + 0)2

(0 2

(0 3= (01+ 0)2

n r n i / i r ^  I
0)2

(03= 0)1  + (02

nwuv* '

U p-conversion

D ow n-conversion

(0

Fig 5.1

In process 1, photons at frequencies o)j and a>2 generate a photon at a new frequency 

0)3 (=o)i+o)2 ). In processes 2 and 3 the generated photon at 0)3 in combination with 

one of the two original photons (0 )% or 0 )2 ) generates the other photon (0)2 or o)i). 

Therefore, the nonlinear process will generate photons at 0)3 (up-conversion), but 

will consume them as well (down conversion). Up-conversion, or down conversion 
will dominate depending on the relative phases of the three waves. Therefore, to 
analyse the system we have to obtain three wave equations which are coupled 

through the nonlinear coefficient.

Starting from the Maxwell equations and using the following approximations:

1 £ i,x ,y ,z j)  = E"“(x ,y ,z)exp{-iw t)

2  E" = É (z)exp(fAz)

3 E , will only vary on propagation, i.e. is only a function of z:

4 The envelope È  (z) varies much less rapidly than exp(i&z), the slowly

varying envelope approximation.
5 Overall permutation symmetry =>
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6 A non conducting medium.

we obtain the following system of equations:

ico
—  -  exp(iAfe)
dz cn^

d E  ‘ _  /ft),
dz CM,

/ft)-

Where:

) exp(-jA fe) Eq 5.3

4 ,^£"’ ( £ " ') ‘ exp(-iAfe)
dz cn.  ̂ /

ni, n2 and 03 are the effective indices of the propagating modes.. 
Ak = k i+ k 2 ~

X (2)

where d ĵj = , Êi are unitary vectors in the direction of E

and É

A detailed derivation of these equations can is given in Appendix 3 .

5.2.3. Second harmonic generation.

Second harmonic generation occurs when a wave interacts with itself to generate 
the sum frequency. In this situation we can use Eq. 5.3 assuming coi= 0)2=0 and 

0)3=2 0 . Then, the coupled differential equations that describe the process can be 

expressed as:

e x p ( -A k )
dz 2cn^  ̂ ’

-==— = - ^ < . . ( f t ) , f t ) ) ( E “ f  exp(/A^z) 
dz ci%  ̂ '

E q5.4

'‘2(0

Where,

An
A/c =  2/c^ -  -  %2w) Eq5.5
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This means that we have two photons of the fundamental to one of the second 

harmonic.

5.2.4. Overlap area.

pO)

Area

where is the intensity.

E^-{x,y)dxdy

w.
%

If we apply the Manley-Rowe relations we obtain 

d^j^(2cû,-co) = 2d^ff{û),œ). Eq 5.6

Equations 5.3 and 5.4 apply to plane waves, therefore, there is no confinement. To
incorporate the properties of the waveguides in our equation we define an overlap ,

area.

If we want to express the amplitude of the electric field (|E ‘̂ |)in terms of the power 

we need to know the area in which the beam is propagating:

1 |2  P® 2
 7- ^  E q5.7

' ' Area e^^cn(co)

In SHG, the efficiency of the process is given by the overlap integral between the 
fundamental and SH modes {1 overlap)- Therefore, to include the area in which the

interaction takes place we define the overlap area, Aoverlap , as: %

overlap j 2

overlap Eq 5.8
, 2

where x and y are the space coordinates in a cross section of the waveguide. The 
amplitudes are normalised according to I

1

J  J  |ê (x ,y ) dxdy = \ Eq 5.9
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5.2.5. Solving the coupled amplitude equations governing SHG.

The coupled differential equations of Eq 5.4 have been solved using the fourth-order 
Runge-Kutta method. If the fundamental beam is polarised so that the electric field 
is parallel to the z axis of the LiNbOg crystal, the nonlinear polarisation and 
therefore the SH have only a component in the z direction. This can bee seen in Eq

2.3 of Chapter 2. For this situation the d-coefficient is ds3= 30 pm/v. LiNbOg is a 
biréfringent crystal and the z direction is that of the extraordinary ray. The 
implementation of the Runge-Kutta method is outlined in more detail in Appendix 

5.

Equation 5.4 will be solved for three different structures:

• A waveguide with a periodic change in the sign of the nonlinear coefficient. This 
is implemented by changing the sign of the nonlinear coefficient in Eq 5.4 .

Fig 5.2

A waveguide with a periodic modulation of the propagation constant for the 

fundamental and SH. This is implemented by changing the value of the effective 

indices in Eq. 5.4.
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Fig 5.3

A waveguide with both a modulation in the sign of deff and the propagation 
constant. This is implemented by changing the value of the effective indices and 

sign of the nonlinear coefficient in Eq. 5.4.
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Fig 5.4
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To implement the periodic modulation in the refractive index and the nonlinear 
coefficient, only these two parameters have been changed in the coupled differential 
equation. Other effects that may take place at the boundary between two different 

materials were not considered.
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Fig 5.5. The SH conversion efficiency is the ratio 
between the SH and the initial fundamental power. 
The nonlinear ]^ase of the fundamental (phase to)

ĉo
and SH (phase 2to), is the phase terms E and
£  in Eq 5.4. The phase condition for up- 
conversion and down-conversion of Eq 5.12 and 
5.13 is labelled as phase. These values were 
obtained by niunerically solving Eq 5.4 using the 
Runge Kutta methtxl for a LiNbOg waveguide 
0.1 mm long, effective area of 2.1x10^ m^, and 
100 W input power, fhe dgg nonlinear coefficient 
was used. Operational wavelength 1.55 /tm

5.2.6. Quasi-Phase Matching

In SHG, a fundamental wave with 
frequency cn and wavelength X, interacts 

with the second-order nonlinear 

susceptibility of the material to produce 

a polarisation wave at the second 
harmonic frequency 2co. Since the 
pt^larisation wave is forced by the 

fundamental wave, it travels with the 
same velocity, determined by n^. The

polarisation wave radiates a free 
second-harmonic wave which travels at 
a velocity determined by . In 
general because of normal

dispersion in the material, so that the 

fundamental and second harmonic wave 
travel with different phase velocities. 
To a first approximation we can say that 
the direction of power flow from one 
wave to another is determined by the 
relative phase between the waves. The 

continuous phase slip between these 

waves leads to an alteration in the 
direction of the flow of power. The 

alteration in the direction of the power 
flow leads to a repetitive growth and 
decay of the second harmonic intensity 

along the length of the interaction (see 

Fig 5.5). The distance over which the 
relative phase of the two waves changes 
by K is the coherence length, Ic

/ =
jt

= —  Eq 5.10
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which is also the half period of the growth and decay cycle of the second harmonic.

If the refractive indices can be matched by some means (i.e. = n^), the second

harmonic field grows linearly with distance in the medium, and thus the intensity 

grows quadratically. This condition is known as phase matching (see Fig 5.6).

8H-04

OH+00

-S

0.6

0.5

0.4
7H-10

5E-10
0.750.25 0.5 10

Here, we propose an alternative, more 
general, condition for up-conversion and 
down conversion in SHG, depending on 

the nonlinear phases of the fundamental 
and SH, and the phase mismatch (Ak). 

From the coupled differential equations 
(Eq 5.4), the variation of the second 
harmonic electric field with propagation is 

given by:

dE
dz

1(0

cn^
exp(/M z)

Eq5.11

and using Eulers formula for the first 
order, it can be shown that the condition 
for up-conversion can be expressed as:

Jl(
no n lin ea r  \  '  2

Phasel'^nlinear

-  , àkz  + — + '^Pf^^^onlineaj
71 < — O

Length (mm)

Fig 5.6. Representation of the SH conversion 
efficiency, the nonlinear phase shift of the 
fundamental and SH, and the up conversion and 
down conversion condition of Eq 5.12 and 5.13 
for a phase marched waveguide. All the 
parameters and definitions are those of Fig 5.5 
except for the effective index for the 
fundamental and SH. Here they have artificially 
been set to be equal; U(o=n2to=2.

Pha<onlinear=

Akz 4--^ ^ 0 ,2 ; r ]

2to

(r) Eq 5.12

Where £  and £  are obtained from Eq 
5.4. The derivation of this expression is 

outlined in more detail in Appendix 6.

Using the same arguments as for Eq 5.12, 
the SH harmonic converts into 
fundamental (i.e. down- conversion)

J
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when:

- 1 A/cz +  -^  +  2Phase2,aineor > -  Eq5.13
2

and neither down conversion or up conversion occurs when:

Phasef,Zi„r -1  Afe + -J  + 2Phase,^,,„„,

In a phase matched situation : (see Fig 5.6)

P hase lZ„ „ ,-U l< z + ^  + 2 P l m s e Z „ „ ^ = 0  Eq5.15

If phase matching does not exist (i.e. n(o?̂ n2(o), a continuous growth of the SH can be 

obtained by controlling the relative phase of the SH and fundamental. This can be

5.2.6.1. Domain reversal quasi-phase matching.

condition for up-conversion, see Fig 5.7.

" ‘1

s

f  Eg 5.14

a
In Fig 5.5 we can see how the condition for up-conversion and down-conversion is 
related to an increase and decrease of the SH conversion. The condition of Eq 5.14 

corresponds to the transitions from up-conversion to down-conversion at z-nlc 

where n is 1,2,3,....

which corresponds to the most efficient case.

.done by periodically modulating the nonlinear and/or linear properties of the 

material. In this situation, the period compensates for the phase difference between 

the SH and fundamental, this is called quasi-phase matching (QPM).

If, after the fundamental and SH have propagated a distance 1̂  we reverse the sign of 

the nonlinear coefficient, the direction of the flow of power is reversed and the 
growth of the SH is regained, see Fig 5.7. The change in the sign of the nonlinear 
coefficient is equivalent to introducing a phase 7t in Eq 5.12. This means that after 
z= lc , by changing the sign of the nonlinear coefficient, we maintain Eq 5.12 in the
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5.2.6 2. Modulation of the propagation constant quasi-phase matching.

The modulation of the propagation constant implies a modulation of n̂ j, n2oj and Ak 
in Eq 5.4. Modulation of the phase mismatch (Ak) is obtained only if the modulation 

of the propagation constant of the fundamental is different from the mcxiulation of 
the propagation constant of the SH. In a typical TiiLiNbOg waveguide the 

modulation of the propagation constant on its own (without the modulation in the 
phase mismatch) results in a very inefficient quasi-phase matching process.

0.025
Here, unlike domain reversal QPM, we 

do not try to suppress the down 
conversion process. At the start of the 

propagation, the periodic modulation of 
the phase mismatch does not have a large 
effect on the net conversion from the 
fundamental to the SH, but as the optical 
field propagates in the PSW, the 
modulation of the phase mismatch has an 
accumulative effect in the up-conversion / 
down- conversion equilibrium. This can 

be seen in Fig 5.8, where the condition 
for up- conversion (as given by Eq 5.12) 
dominates the condition for down- 
conversion (given by Eq 5.13).

5.2 6.3. Modulation of the propagation 
constant and sign of the nonlinear 
coefficient quasi-phase matching.

The combined effect of domain reversal 
and periodic mcxiulation of the phase 

mismatch is not easy to predict. At the 

beginning of propagation the influence of 
the PSW on the conversion efficiency is
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Fig 5.7. Representation of the SH eonversion 
effieiency, the nonlinear phase shift of the small (see Fig 5.9), and therefore the 
fundamental and SH, and the up conversion and
down conversion condition of IZq 5.12 and 5.13 phase matching prcx)ess is similar to pure
for a wavegui^ mlh domain reversal ^1 the reversal. But after relatively long
parameters and deiimtions are those of Fig 5.5. ^
Period 18.5 pm. and a duty eyele 0.5. llie  
operational wavelength is 1.5368 pm.
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propagating distances, the accumulative effect of the PSW starts to affect the SHG.
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Fig 5.8. Representation of the SH conversion 
efficiency, the nonlinear phase shift of the 
fundamental and SI I, and the up conversion 
and down conversion eondition of Eq 5.12 
and 5.13 for a PSW with a difference in the 
modulations of the propagation eonstant of 
the fundamental and SH of 10'^. All the 
parameters and definitions are those of Fig 
5.5. ITie period of the modulation is 18.5 pm  
and the duty eyele 0.5. The operational 
wavelength is 1.5368 pm.

Fig 5.9 Representation of the SH conversion 
efficieney, the nonlinear phase shift of the 
fundamental and SH, and the up conversion and 
down-eonversion condition of Eq 5.12 and 5.13 for a 
PSW with a modulation in the propagation constant of 
the fundamental and SH, and domain reversal. All the 
parameters and definitions are those of Fig 5.5. The 
period of the modulation is 18.5 pm  and the duty- 
eyele 0.5. ITie operational wavelength is 1.5368 pm.
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5.2.7. Quasi-phase matching period.

In the case of domain reversal QPM the sign of the nonlinear coefficient has to be 
changed every coherent length, Ic. Therefore the period of the modulation, A, is 

twice the coherent length. Using Eq 5.10 we obtain:

A = =  r  E q5.16

We can also view this as a grating assisted process, where the spatial harmonics of 
the grating are used to compensate for the phase mismatch. In the case of domain 

reversal QPM we modulate the nonlinear coefficient. In the case of PSW QPM we 
m odulate the phase mismatch. In both situations we can express the periodic 

properties in the form of a Fourier series:

a{z) = ^a^j&xp{-iqKz)  Eq 5.17

W here a is either the nonlinear coefficient of the phase mismatch, and K is the 
spatial frequency of the grating:

K = ^  Eq5.18

QPM takes place when 

A/c + qK  — 0

Using Eq 5.18 and Eq 5.19 we obtain that the phase matching period is :

A  = ^  =  N Eq 5.20
A/c 2 ( « ,„ - n ^ )

Which is the same as in Eq 5.16.
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5.2.8. Detuning curves.

The conversion from the fundamental wavelength to the SH wavelength depends 

upon the phase mismatch, Ak. At phase matching (i.e.A/c = 0 )  we get maximum 
conversion from the fundamental to the SH. As we move away from the phase 
matched condition the conversion efficiency is reduced. Similarly for QPM, but now 
the maximum efficiency occurs at A/c + 2 j t /A = 0 . Therefore a detuning curve 

represents the SH conversion efficiency as we detune from phase matching. Due to 

the dependency of Ak on the wavelength (see Fig 5.10) the representation of the SH 

conversion against the wavelength results in a detuning curve, this can be seen in Fig 

5.11.

0.36 -

0.35 -
o
E 0.34 -

0.33 -

0.32 -

0.31 -
1.525 1.55 1.575 1.6

Wavelength (/im)

Fig 5.10. Dependency of the phase mismatch 
on the wavelength. For the case in which the 
e-ray of the fundamental interacts with the e- 
ray of the SH through the dĝ  coefficient. ITie 
refractive index is that of the LiNbOg 
substrate.
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Fig 5.11. Dependency of the SH conversion 
efficiency as a function of the wavelength for the 
waveguide of Fig 5.7. For QPM domain reversal. The 
duty cycle of dcanain reversal is 0.5. An'"=0.000205, 
An^*^0.000479, ITie substrate refractive indices 
corresponds to those of IJNbOg. The effective area is 
2,1x10-^ and the input power at the fundamental 
wavelength is 100 W.
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5.3. SHG in uniform PSWs.

Many authors believe that the propagation constant in a PSW is modulated along the 

waveguide, and propose to use this effect for SHG 1̂, or even if they do not 

propose to use it, they study its repercussions in domain reversal SHG I?!. In 
opposition to this, we believe that a PSW  sustains a mode, and that the propagation 

constant is characteristic of the mode, and therefore, is not modulated along the 

direction of propagation.

To our knowledge there is not a theoretical description of the detuning curves for 
w aveguides w ith a m odulation in the propagation constant (assum ing the 
propagation constant can be m odulated). In this section we will show the 
experim ental detuning curves of a uniform PSW, and compare them with our 

theoretical detuning curves assuming:

• Domain reversal only,

• Domain reversal and modulation of the propagation constant,
• Modulation of the propagation constant only

W e will show that the only possible way to reconcile experimental and theoretical 

results is by not considering a modulation in the propagation constant of the PSW.

5.3.1. Theoretical detuning curves.

The shape of the detuning curves depends on the length of the device, and on the 
conversion efficiency. The waveguides considered here are 9 mm long, with a 
conversion efficiency of about 1.7% with 100 W pump. Therefore, the effective area 
is 2.08x10-'^ m2 (see Appendix 7). The wavelength at which quasi-phase matching 

(QPM) takes place depends on the period and effective indices of the SH and 
fundamental. The device was designed to operate at 1.55 |xm. At this wavelength, the 
QPM period is about 19 pm, depending on the fabrication conditions. Due to the 

diffused nature of the PSWs the average increase in the refractive index, and 
therefore, the propagation constant is difficult to obtain. For this reason, in this work, 
the difference in the refractive index between the SH and fundamental is a fitting 
parameter.
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The detuning curve for a domain reversal waveguide has been shown in Fig 5.11. In 

this section we will concentrate on the effects that a modulation of the propagation 
constant will have on SHG.

SH conversion
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Fig 5.12. Detuning curves for waveguides where the propagation constant has been modulated. The 
same conditions as those of Fig 5.11, except for the modulation of the effective index and sign d" the 
nonlinear coefficient. ôrT and ô n “ are the modulation in the effective index for the fundamental and 
SH respectively, we have set 6»'" = 0. The duty cycle in the modulation of the effective index is 
0.5. There is no modulation in the sign of the nonlinear coefficient. ITie effective area is 
2.08 X1 0 ' m ' . and the input power is 100 W. An“=0.000205 and An^'"=0.000479.

The detuning curves for the case where only the propagation constant is mcxlulated 
can be seen in Fig 5.12. It is not shown here but the detuning curve depends on the 

difference in modulation of the propagation constants of the fundamental and SH and 
not on its individual values (i.e. the effect is due to the modulation of the phase 
mismatch, Ak). ôn “ and are the modulation in the effective index for the
fundamental and SH respectively. To simplify we assume that = 0 . Therefore 

in Fig 5.12 ôri“ is an indication of the value of the difference between ôn“ and 
. The first thing to be noticed is that if the difference between ôn“ and is 

large enough we have two peaks at which QPM takes place. One peak corresponds to



Chapters - SHG in PSWs 103

Eq5.21

and the other to

Eq5.22

/ ' =
71

ÂF
•2

Anpur An ptjr Anpun An'pa An Pun An’puj

AnsH An SH AHsh An'sp AnsH An'sH

Fig 5.13. Condition for phase matching in a 
waveguide with a mcxiulation of the phase mismatch.

The definitions of li, I2 , Ic, I'c can be 
seen in Fig 5.13.

The second point we notice in Fig 
5.12 is that a small mcxiulation in ôrT 
does not produce any significant 
SHG. As we increase the
efficiency increases up to a certain 
point, and then starts to decrease. If 

we increase ôrî“ further the detuning 

curve splits in two.

SH conversion
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l^omain Reversal only
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♦ >

1.541.5381.5361.5341.532
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Fig 5.14. Detuning curves for waveguides where the propagation constant and the sign of the 
nonlinear ewfficient had been mcxlulated. Same conditions as those of Fig 5.11, except for the 
mcxiulation of the effective index. ôAn“ and ô S n “ are the modulation in the effective index for the 
fundamental and SH respectively, we have set = 0. The duty-cycle in the mcxiulation of the
effective index and sign of the nonlinear coefficient is 0.5. ITie effective area is 2.08 x 10 and 
the input power is 100 W. An“=0.000205 and An^""=0.000479.
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The detuning curves for the case where we modulate both the phase mismatch and 

the sign of the nonlinear coefficient can be seen in Fig 5.14. As in Fig 5.12 we set 
= 0 and vary ôri .̂ The more efficient case corresponds to no modulation of the 

phase mismatch, as the modulation increases, the efficiency of the SHG process is 
reduced, and at a certain value of ôn" the detuning curve shows two peaks.

5.3.2. Experimental results.

L (a)

Second harm o n ic  field

Crafing0.8

0.2 •

52 40 1 3

Depth (/im)

0.8 ■ 

0.6 ■ 

J* 0 .4  ■ 
^  0.2 ■

I
0.2

-0 .4
- 0.6

S econd harm on ic  field

Depth (/im)

Fig 5.15. Schematic representation of a) the 
shape of the ferroelectric domain after Ti in­
diffusion, and the overlap integral of the 
fimdamental and SI I modes with a fimction that 
described the spatial variation of the 
ferroelectric domain grating, for b) the SI I in the 
I'Moo mode and c) for the SH in the I'M qi 
model*!

PSWs were fabricated in LiNbQ? by in- 
diffusing 1(X) nm of Ti at 1050 °C for 13 
hours. The Ti strips wore patterned onto 

both positive and negative faces of the 
LiNbO^ substrate, the segments were 5 
pim wide, with periods ranging from 15.8 

to 19.8 f4m and duty-cycle of 0.55. For the 
case of the Ti in-diffused onto the 
negative z face, the Ti only increases the 
refractive index. For the case of Ti in­
diffusion onto the positive face the 
indiffusion prcx êss increased the 

refractive index, and produced a reversal 
of the domain as described in Chapter 2 . 
Due to effects such as titanium lateral 
diffusion and lithium outdiffusion, the 

typical shape of the ferrœlectric 

polarisation obtained is shown 
schematically in Fig 5.15. The net results 

are thus the combination of two 

homogeneous materials with opposite 
ferroelectric polarisations separated by a 

periodic boundary. Only the section of the 
fundamental and SH mcxles that propagate 
within the periodic boundary result in 
SHG.
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At the SH wavelengths more than one mode {TM^q , ,...)  are supported

by the waveguide, and eaeh of these modes ean interact with the mcxie at the 
fundamental wavelength (TMqq) to produce SHG:

TM.00 TM‘2w
02

For a given period, QPM takes place at a different wavelength for eaeh of the SH 

modes, since they have different propagation constants. The more efficient 
interaetion is the one in which the overlap between the fundamental and SH is larger 
in the area where domain reversal exists. As we can see in Fig 5.15 the maximum 
overlap takes place for the + TM^q => interaction. In these situations, the

effective area is the overlap integral between the fundamental mode, the SH modes 

and a funetion given by the grating HI.

All of the detuning curves and phase matching wavelengths were obtained by Carlos 
Trevino Palacios at CREOL, University of Central Florida. The laser source used in 

the experiments was a synchronously pumped mode-locked (F^+)NaCl:OH color- 
center laser operating in mode-locked (76 MHz, 6-ps pulses, assuming a Gaussian 

pulse Shape). The peak power of the laser was selected to avoid substantial mode 
competition between adjaeent modes t̂ l.

5  1-575-

1.55-

1.525-

17.5

Substrate

18.5 

Period (//m)

1 r
19.5 20 20.5

 l’Moo(w) -> rMoo(2o>F'

TMqq(o)) ->TMQj(2to) 

I MQQ((o) -> T M q2(2o j)

Fig 5.16. Wavelength at which QPM takes place for PSW with 
different periods but the same duty cycle. The solid line 
represents the material dispersion of the SHG process.

In Fig 5.16 we can see the 
phase matching wavelength as 

a function of the pericxl, for 

PSWs fabricated onto the 
positive face (domain reversal 
exists). Each discontinuous 

line corresponds to phase 
matching of theTM“o mode

width different mcxles of the 

SH. The solid line 
corresponds to the dispersion 
for the case where the 

fundamental and SH 
propagate in the substrate. As 
we can see the dispersion for
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the guided modes and the substrate is the same. This ean be used to design 
waveguides for different operating wavelengths. The average conversion efficieneies 

for these waveguides were 1.5 % with a 100 W pump (for 9 mm long waveguides), 
in this situation the effective area is 2.08 x 10  ̂nt .

We propose two models to describe the index distribution in a PSW:

• Model 1. We assume that there is no diffusion in the direction of propagation, 
and that the diffusion underneath the Ti segments is that of a continuous 
waveguide (as described in section 2.3.1., Chapter 2). Then the increase in the 

refraetive index is averaged along one period aecording to Eq 1.1 of Chapter 1. In 

this model we assume no increase in the refractive index between the Ti 
segments.

* Model 2. We calculate the Ti distribution after in-diffusion for one single 
segment. To do this we assume the diffusion has a Gaussian distribution in the 
depth direction and a Error function distribution in the lateral directions:

1.575 -

bÎD 1.55 -

1.525 -

Co is chosen so that the final 
total number of atoms of Ti 
are the same as the initial 
number of atoms. Then we 
average the Ti concentration 
along one period, and from 

this Ti distribution the index 

distribution is obtained using 
the equation of section 2.3.2.2. 
in Chapter 2.

In both models the effeetive index 

of the waveguide was obtained by 

entering the index distribution into 
a mode solver. In Fig 5.17, the 
results obtained from both mcxiels

Fig 5.17. A comparison between the QPM wavelength ^ave been compared against the 
obtained experimentally and that obtained using the 
models 1 and 2 described in the text.

17.5

"rMoo(^)’^TMQQ(2a))

Model 1 
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Expérimental

Period (jim)
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Experimental
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experimental results. As we can see both models describe accurately the case of 
weakly guided modes, but they cannot be used to predict the QPM wavelength for 
the stronger confined modes. We believe that a more aecurate model has to be 
developed to obtain the Ti distribution in PSWs, as well as a new relationship 
between the Ti concentration and the increase of the refractive index.
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Fig 5.18. Typical SHG wavelength scan for a 0.9 mm long 
uniform PSW of period 19.5 pm  and duly-cycle 0.55. The 
input power is 100 w and the effective area 2.1x10^ m^ 
The sohd line represents the experimental result and the 
dotted line is the theoretical prediction. Assuming only a 
modulation on the sign of the nonlinear coefficient. The 
theoretical curve was displaced to the left by 2.32 nm to 
compensate for the discrepancy between the experimental 
and theoretical QPM wavelength of Fig 5.17

For the case of the 
TM"o TMq̂  interaction, the

difference between the QPM 

wavelength obtained with model 
number 1 and that obtained 

experimentally is 2.32 nm, and 

from now on we will use this 
value to fit our model to the 
experimental results. No other 

fitting will be implemented.

A typical SHG wavelength scan 

can be seen in Fig 5.18 .We can 
see two different peaks 
corresponding to the interactions 

between the TMqo mode at the 
fundamental wavelength with 
two different modes at the SH 

wavelength. The height of the 
peaks depends on the effective 

area.

Using the same experimental set-up we were unable to find QPM SHG for 

TiiLiNbOg PSW fabricated onto the negative face of the LiNbOs substrate (where 
domain reversal does not take place). Both, the waveguides fabricated onto the 

positive and negative face, were processed under exactly the same conditions.

5.3.3. Comparison of experimental and theoretical results.

After comparing the experimental and theoretical detuning curves, the following 
conclusions can be obtained:
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1 QPM SHG is very different for PSWs fabricated on the positive and negative 
face of LiNbOa. For waveguides fabricated on the positive face, the conversion 

efficiency was as big as 5%, while no QPM was observed in PSWs fabricated on 

the negative face. The QPM SHG obtained in the former case is due to domain 
reversal, and the mechanism for this can be seen in section 2.3.1.5. of Chapter 2.

2 The absence of QPM SHG for PSWs fabricated on the negative face of the
LiNbOg substrate indicates that there is no modulation of the phase mismatch, or 
if there is any, it is small: 0(n2®-n®)<lxlO-5 (see Fig 5.12). Here, n2m and n^ are 

the effective indices at the SH and fundamental wavelength respectively, and 
5(n2co„n®) is the modulation in the difference. We were able to resolve QPM 

SHG 75000 times smaller than the input power at the fundamental wavelength, 
i.e. we should be able to detect QPM SHG with an efficiency of 0.0013 %.

3 The absence of two peaks in the detuning curve for the PSWs fabricated on the
positive face of LiNbOg indicates that if there is any modulation of the phase 
mismatch, it is small: ô(n2“ -n®)<5xl0'5 (see Fig 5.14).

4 The absence of QPM SHG for PSWs fabricated on the negative face of LiNbOg

indicates that neither of the following QPM SHG interactions take place :

and therefore the difference in modulation of the effective index of the TMqo and 
TM qi modes of the SH is smaller than 1x10'^. This is a direct consequence of 

point 2 in this section. It is noted that the difference in the effective index 
between the TMqo and TM oi modes of the SH is 2.8x10-3.

Fig 5,17 and Fig 3.4 of Chapter 3 indicate that there is a diffusion of Ti in the 

direction of propagation. W e do not have a good model to describe the exact 
distribution of Ti concentration in PSWs, but from the results summarised in Fig 

5.17, the TMqo and TMqi modes of the SH "see" different distributions of Ti 
concentrations. The TMqo mode of the SH appears to "see" a smaller duty-cycle 
than the TMqi mode. Due to the diffuse nature of the Ti:LiNb03 waveguides, we 

expect the TMqo mode of the SH to "see" a larger modulation of the refractive 
index than the TMqi mode.

I
    ............................................
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6 If we put all the above points together we can conclude that the modulation in the 
phase mismatch is very small: 0(n2“ -n® )<lxl0'^. W e can also conclude that the 

difference in the modulation of the propagation constant of the T M qo and T M qi 

modes of the SH is very small: 0noo-Snoi<lxlO'5, despite the large difference 

between the effective indices of these two modes (noo-noi=0.0028). The reasons 
for this can be:

The modulation of the propagation constant is the same for all modes and 

wavelengths involved. But there is evidence that indicates a different 
modulation of the refractive index for different modes.

- The modulation of the propagation constant is very small for all modes 

due to the reduction in the modulation of the refractive index as a 

consequence of the diffusion of Ti along the direction of propagation. 
But, again we have evidence that indicates that the TM qo mode of the SH 
may "see" a significant modulation of the refractive index.

There is no modulation in the propagation constant of the PSWs modes.

At this point we cannot say which of these three situations occurs in our 

experiments. The only thing that the experimental detuning curves indicates is 
that, to the accuracy of our experimental set-up, the PSWs described in this 
Chapter behave as continuous waveguides in QPM SHG, and therefore in any 
other phase matching experiments.

5.4. Tuning curves of chirped PSWs.

In this section we will show the tuning curves obtained for chirped waveguides. In 
all of the analysis, we do not assume a modulation in the propagation constant.

Chirped waveguides have many applications. By making the bandwidth broader the 
device can compensate for changes of the working conditions and uncertainty due to 

the fabrication process. As well as controlling the bandwidth, chirped waveguides 
can be used to reduce the side lobes of any grating assisted coupling, and for the 
particular case of SHG, chirped waveguides can be used to generate a large nonlinear 

phase shift (due to cascaded second order nonlinearitiesF^l), in a region where the 

power of the fundamental is not depleted by SHG,

To fabricate the chirped waveguide, the total length of the device was divided in 30 

or 60 different sections, where each section is formed by uniform PSWs with a 
period depending on the position of the section in the waveguide. To work on the
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centre of the tuning range of the laser, the chirped PSW had an starting period of 

18.5 pim and a final period of 19.5 jAm.

We fabricated PSWs with three different period distributions:

1 cm long quadratic chirp waveguide. Ç
Starting pericxi 18.5 pim final pericxl 19.5 ^
pim. The spatial distribution of the pericxls %
can be seen in Fig 5.19 ^

19.5
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Fig 5.19

19.7

0.5 cm long quadratic chirp waveguide, 
starting pericxl 18.5 pim final pericxl 19.5 
/cm, followed by 0.5 cm long uniform 
PSW of pericxl 19.5 /cm. The spatial 

distribution of the pericxls can be seen in 

Fig 5.20

I
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0.5 cm long quadratic chirp waveguide, 
starting pericxl 18.5 /cm final pericxl 19.5 
/cm, followed by 0.5 cm long uniform 
PSW of pericxl 19 /cm. The spatial 
distribution of the pericxls can be seen in 

Fig 5.21
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Fig 5.21.
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The waveguides were fabricated by patterning 100 nm of Ti into the positive face of 
z-cut LiNbOj, and diffused at 1050 “C for 13 hours. As a consequence of the cutting 

/polishing process, the final length of the devices was shorter than the nominal one, 
about 1 mm shorter. This problem could be avoided by fabricating an input/output 

(I/O) section with the same duty-cycle and a different period than that required for 
SHG. In this situation there is good coupling between the I/O section and the 
remainder of the waveguide, and SHG is inhibited in the 1/0 section.
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Fig 5.22. Wavelength scan for SHG in chirp waveguides. The spatial 
distribution of the pieriod for each waveguide can be seen in the insert. The sohd 
line corresponds to experimental measurements and the dotted hnes are the 
numerical simulations
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The experimental detuning curves for the chirped waveguides together with the ones 

obtained by solving the coupled differential equation of Eq 5.4 can be seen in Fig
5.22. To obtain the theoretical curves we assumed that our waveguides were 0.9 cm 
long (0.5 mm was removed from each end by polishing). The effective area was 
calculated from the efficiency of the experimental process. The propagation constant 
for the fundamental and SH were obtained with a mode solver using an average Ti 

concentration as described by model 1 in section 5.3.2. of this Chapter, and then the 

curves were shifted 2.32 nm to the left to compensate for the discrepancies between 

the predicted and actual values of the phase matching wavelength in Fig 5.17 . The 

duty cycle was set to be 0.55.

The agreement between experimental and theoretical results indicates that is possible 
to design and fabricate chirped waveguides to meet specific need. However, there are 

certain differences between the experimental and theoretical results. From  our 

simulation, the relative position of all the other features of the tuning curves are very 

dependent on properties of the waveguide such as:

• Difficulty to precisely determine the length of the waveguide and dependency of 
the detuning curve on input the coupling; Which can be solved by introducing a 
I/O section

• Mode competition, as at certain wavelengths more than one mode may be excited 
Ĉ l. A more complex model has to be implemented to account for this.

• Phase errors introduced during fabrication.

The experimental detuning curves were obtained with 6 ps pulses, that for the case of 
a transform limited Gaussian pulse have an approximately bandwidth of 0.6 nm. 

W hile the theoretical detuning curves were solved for one of the Fourier 
components, i.e. an infinitely small bandwidth.. This is not of great consequence to 
the results of Fig 5.22, as the theoretical detuning curves do not experience a large 

variation in conversion efficiency within 0.6 nm.

To investigate the influence of the number of sections with different periods in which 

a chirp waveguide is divided, we fabricated chirp PSWs with 30 and 60 different 

periods. The wavelength scan of this waveguide can be seen in Fig 5.23. The spatial 
distribution of the period can be seen in the insert, the chirp region corresponds to 
the first 5 mm of the waveguide. The agreement between both sets of results 

indicates that only 30 different periods are required to generate the spectrum of a 
chirp waveguide. This is in agreement with our numerical simulation.
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A quadratic chirp is very attractive for all-optical switching. In a second order 
nonlinear interaction, at the phase matching condition we have conversion from the 

fundamental to the SH, as we depart from this condition the SH reconverts to the 
fundamental and this process is associated with a nonlinear phase shift of the 
fundamental M por efficient all-optical switching to take place, a large nonlinear 

phase shift has to exist at a wavelength were the conversion to the SH is small.

19.5 -

II 0.8 -  19 -

18.5

« "O 0.6 -
^ %
0 =

1 Î
 0.2 -

1520 1530 1540 1550 1560 1570 1580

Wavelength (nm)

Fig 5.23. Wavelength scan for SHG in chirp PSW, the period distribution along the waveguide can be 
seen in the insert. The chirp section consist of 30 (continuous hue) and 60 (dotted line) different 
periods.

As the SHG efficiency increases, the side lobes of a uniform PSW increase. To avoid 
loss of the signal to the SH we have to operate relatively far away from phase 
matching. But here the nonlinear phase shift is small, this can be seen in Fig 5.24 . 
To avoid this problem we can use a chirped waveguide, which reduces the size of the 
side lobes, but still maintains a large nonlinear phase shift. The different chirp 
structures under consideration can be seen in Fig 5.24 . These results were produced 
by the same numerical simulation used to predict the conversion efficiency in Fig

5.22.
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SH conversion efficiency (%) 

Phase Fundamental (units of a)

(a)
0 .5 -

0 -

-0.5
1.571.55 1.561.54

Wavelength ( jim )
Period (ubH0.75

1 9 .5 -

(b)0.5 - 19 -

18.50.25 -
0.5 I 
th (cm)

0.950.05

-0.25
1.581.54 1.561.52

Wavelength (/im)
0.6

19.5 -

0 .4 - 19 -

18.5
0 .2 - 0.5  1

igth (cm)Le

- 0.2
1.581.561.541.52

Wavelength {jim)
Period (jaa)

0 .5 -
0 .4 -

19.5 -
(d )

19 -
0.3 -

18.50 . 2 -
0.5

Ler gth (cm)

0 -
- 0.1

1.56 1.581.541.52

Wavelength {pirn)

Fig 5.24. Detuning curves obtained by numerieally solving the coupled 
differential equatims that govern SHG (Eq 5.4) for (a) a uniform PSW and 
(b)(c)(d) different chirp PSWs. The period distribution can be seen in the insert. 
The solid lines corresponds to the nonlinear phase shift experiences by the 
fundamental frequency and the dotted line is the power conversion efficiency. 
ITie parameters in this simulation are the same as those used before in Fig 5.22, 
the cmly difference is that the waveguides are 1 cm long and the effective area is 
3.5x10'^® m^ to increase the conversion efficiency.
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5.5. Conclusion.

W e have generated a novel condition for up-conversion and down conversion in 

SHG that can be applied to any circumstance.

W e were able to obtain SHG at about 1.55 jim using TiiLiNbOg PSWs fabricated 
onto the positive face of LiNbOg. None of the effects resulting from a modulation of 

the propagation constant could be measured; W e did not observe QPM SHG in 

waveguides fabricated on the negative face of LiNbOs. No deviation in the shape of 

the detuning curves from that predicted by a purely domain reversal SHG interaction 
was observed To the resolution of our measurements, any phase matching process in 
LiNbO] follows the same mechanisms as any continuous waveguide.

W e observed that the dispersion of the phase matching wavelength is that of the 

LiNbOg substrate, therefore, once we know the phase matching wavelength for one 
period, for one set of fabrication conditions, we can obtain the phase matching 

wavelength for a different period. Waveguides fabricated independently, but with the 
same fabrication conditions, have the same phase matching wavelength.

The set of partial differential equations used to describe SHG, and the method 

employed to solve them has proven accurate in predicting the detuning curves of 
QPM SHG for uniform and chirped periods. We have shown that we can fabricate 

and model chirped waveguides. These chirped waveguides can be used in all-optical 

switching (based on cascaded second order nonlinearity) to reduce the losses of the 
signal to the SH and still maintain large nonlinear phase shift.
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6
Conclusions
We were able to fabricate TiiLiNbOg PSWs for different fabrication conditions, with 

duty cycles ranging from 0.3 to 0.65, and periods ranging from 15 ptm to 20 ptm 

(Chapter 3). In all these cases the cut-off wavelength of the PSWs had been 
predicted. The model used represented the PSWs by a continuous waveguide with 

the same width and height as the PSW, but in which the average index difference. 
An', is given by Eq 6.1:

Art' = TfAn Eq 6.1

where j\ is the duty-cycle and An is the increase in the refractive index due to Ti 

indiffusion. In the case of step index waveguides, Eq 6.1 represents the weighted 

average of the index along the direction of propagation. In Chapter 4  we have shown 
that the mode size of a PSW and its equivalent continuous waveguide are the same 

for the case of step index waveguides. But, for diffused waveguides, for example 

Ti:LiNbC^, Eq 6.1 can only be used in certain cases. In Chapter 5 we have shown 
that Eq 6.1 can only be applied to the case of weakly guided modes. To use Eq 6.1 in 

the context of TiiLiNbOg waveguides, we assume no titanium diffusion in the 
direction of propagation, and a invariant index distribution in the cross section 
underneath the Ti segments (model 1 of section 5.3.2., Chapter 5). A more accurate 
model will need to include the diffusion in the direction of propagation. In Chapter 5 

we have shown that it is difficult to obtain the Ti distribution, and therefore the 

average index distribution cross section of PSWs. We have shown that the models 
available cannot be applied to PSWs. In this work we have shown that Eq 6.1 can be 
applied to PSWs with periods between 15 and 30 pim and duty-cycles ranging from 
0.2 to 1. In the case of diffused waveguides, Eq 6.1 can only be used for weakly 
guides modes and in the case of step index waveguides Eq 6.1 can be used at least 
for a An=0.02.

In Chapter 3, we noticed that the reduction in the cut-off wavelength due to the 
segmentation, has to be considered to fabricate waveguides that guide at given 

wavelengths and polarisation.
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The equivalent continuous model of PSWs can be used to describe all of the 

properties of PSWs except for the segmentation losses. Using a 3D FD BPM we 

were able to show that PSWs maintain "modes" and we were able to estimate the 
segmentation losses for step index PSWs. We have demonstrate that the "modes" of 
PSW s are a three dim ensional function, and correspond to the optical field 

distribution in one period of a PSW. We have shown that a 3D representation of the 

PSWs is necessary to evaluate the radiation losses, both in towards the substrate and 

in the lateral direction.

Using quasi-phase matched SHG we have investigated the linear behaviour of PSWs. 
To the resolution of our experiments, the PSWs described in Chapter 5 behave as 

continuous waveguides in QPM SHG, and therefore in any other phase matched 

experiments. We also demonstrated how the period of the PSWs can be chirped to 

modify the phase matching curves.

The control of the refractive index with the duty-cycle, and the phase matching 
wavelength with the period, make PSWs an attractive component of integrated 

optical circuits.
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Appendix. 1

Noncentrosymmetrlc crystals and second order 
nonlinearities.

Part 1.

Here we are going to discuss the conditions in which the nonlinear coefficients are 

zero.

From symmetry considerations, in the case of centrosiymetric material the electric 

field of the EM wave and the components of the nonlinear polarisation wave 

createed have the following relationship;

= P , = - P ,
Ey =  - E y  P y = - P ,  Eq A1.1

P z = - P z

W here E^, Ey, E^, p^, py, pz are defined in Chapter 2, section 2.2.5. The nonlinear 

polarisation is given by:

E q A l.2

p - x , y , z  
q = x ,y ,z .  
r = %,y,z

In the case of centrosymmetric crystals, using Eq A l . l  and A1.2 we obtain:

= , ( - £ , ) ( - £ , )  EqA l .3

Since Eq A1.2 and A 1.3 describe the same process, then

d „ r  =  - d „ ,  E q A l .4

and therefore dpqr=0
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Crystals with 3m point group symmetry (case of LiNbOs) are centrosymmetric in the 
X direction and noncentrosymmetric in the y and z direction, as discussed in Chapter 

2, section 2.2.2. Therefore

E . =
E y * - E y

E . #  - E .

P, = -Px  

P y * - P y  

Pz *  - P z

Eq A1.5

Therefore:

=̂> = 0

E q A l.6

zzz z z

Pz" = 'i^AzzzEzE..ZZZ z z

The remaining nonlinear coefficients can be obtained in the same form.

Since no physical significance can be attached to an exchange of Eq and E^ in Eq 
A1.2, it follows that dpqr=dpi-q. We therefore can replace the subscripts "qr" by a 

single symbol according to the piezoelectric contraction.

xx=l yy=2 zz=3 yz=zy=4 xz=zx=5 xy=yx=6 Eq A1.7

Part 2.

Here we are going to discuss the sign of the nonlinear coefficient in LiNbOg domains 
with different orientations.

For a crystal with 3m point group symmetry:
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e : = e :

e; — e;
Pz = P z  

p ; = - Eq A1.8

E : = - E -  p t  = -p -

as discussed in Chapter 2, section 2.2.2. The subscripts and represents 
domains with one orientation and the opposite. Then , using Eq A1.2 and Eq A1.8 

we have

i,* =4-

p *  -

= ^22
E q A l.9
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Appendix 2

Derivation of the Fresnel equation.

M axwells equations in an linear and isotropic medium, with no free charges, and 
with no sources of electromagnetic (EM) waves (we assumed the EM waves are 
produced by a distant source of accelerated charges : p=(r,t) and J(r,t)) are as follow

V x H  = J  + ^  U ~ o E )

V x £  =  - ^ M

V • (&E) = p  (p = 0, no free charges) Eq A 2 .1

( D = s £ ,  £ = s^e^)

W e have consider that the only current density, J, is due to the passive response of a 

ohmic medium to the electric field of the EM field. In isotropic waveguides the 

relative permittivity and relative permeability are not tensors but scalars. From 

Maxwells equations the following vectorial wave equation can be obtained

p i e ^ z ^ - O f i ^ ^  = - v { —E'Ve\ Eq A2.2
—  ^ dt^ dt “ U —  )

An overview of the different vectorial equations used to study waveguides can be 

found in Reference [1].

The term,

- v U E V e j ,  Eq A2.3

accounts for the polarisation properties of the waveguide by virtue of its cross- 
section geometry and refractive index profile. This term is responsible for the hybrid 

modes. Ignoring this term completely disregards the polarisation properties of the
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waveguide structure and leads to the scalar wave equation In homogeneous 
regions this term is zero, however, the term is non-zero along material interfaces.

If we assume the field varies as

E[x,y, z,t) = Re[E(x, y, z) exp(imr)] Eq A2.4

and if we neglect the term given in Eq A2.3 in Eq A2.2, we obtain the Helmholtz 
equation (scalar wave equation)

T E  + k'^{r,(o)E = 0 EqA 2.5

where we assumed which is true if the electric field E have Cartesian co­

ordinates . k  is the propagation constant of the mode, given by:

k'^{r,o)) = co^ide{r,Cû) + iû)fia{r,(jû) Eq A2.6

Here we allowed a possible dependency of e on the position r. The complex term in 
k'  ̂ indicates that the material present some losses (a> 0) or gain (a< 0). M ost 

commonly, k  is expressed in terms of the refractive index "n" as:

k^{r,co) = kln^{r,co) Eq A2.7

where

fc„s — = ^  EqA 2.8
" c l .

and

(r, 0)) = -  + i Eq A2.9
(oe.

In the case of dielectrics o=0, and therefore the refractive index is

EqA2.10
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But, even if a= 0  is zero, we have to remember that the permittivity, e, has a complex 

component which introduce a complex term in "k"  of Eq A2.5 and therefore losse 

(or material absorption). However, if we operate at a wavelength away from the 
resonance of the material this component is zero and absorption does not take place.

In the remainder of the Appendix, we assume that a= 0  and that we are away from 

material resonances, and therefore losses do not accur.

To solve Eq A2.5, we need some boundary conditions. The kind of boundary 
conditions we are considering is that of a nearly plane wave in which the flow of 

energy is predominantly along a single direction (+z in this case). Then, we can limit 

our derivation to a single transverse field component E, taking E as

E  = \if[x,y,z)^y^v[-ik^z) Eq A2.11-a

k y = ^  E q A 2 .n -b
c

W here ky is the average propagation constant of the electric field distribution (when 

propagating through the waveguide). If a small number of propagating modes is of 
interest, the effective propagation constant (k^) should be chosen to be representative 

of this subset.

Then, the electric field that we are propagating has the following expression 

E {x ,y ,z , t )=  y/{x,y,z)e^xp(^i{(Dt -  k,.z)) u Eq A2.12

W here u is the unitary vector in the direction of the com ponent that we are 

propagating.

By substituting E = i/r(j^,y,z)exp(-fk,.z) into the scalar form  of the Helm holtz 

equation (Eq A2.5), we obtain

2 A rt,. ^  + k l (rt^(x, y,z, co) -  ) y/ + Eq A 2.13

and assuming that the longitudinal variation is slow enough that
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,.2 dWz. d  y/
' dz "  dz^

we obtain the Fresnel equation or the paraxial wave equation for polarisation 

elements of the electric field

Eq A2.15

The Fresnel equation correctly describes waves with a relatively small angular 
spread, <50-15° Ĉ l, about a direction 0 -  cos“‘( ,̂, / with respect to the optical

axis. We will refer to as the reference refractive index, which will take the value 
of the refractive index of the substrate. n{x,y,z,Co) represents the index profile of the

waveguide for a given frequency. To include larger angular spread (wide angle scalar 
wave equation) the second derivative of \|/ with z in Eq A2.13 has to be included.

1 K S Chiang, "Review of numerical and approximate methods for tlie modal analysis of general 
optical dielectric waveguides", Optical and Quantum Electronics, 26, pp s ll3 --s l3 4 , (1994).
^A. W. Snyder and J D Love, "Optical waveguide theory", J W Arrowsmith Ltd. Bristol, 1983.
^D Yevick, " A guide to electric field propagation techniques for guide-wave optics", Optical Quant. 
Electron., 26, pp. sl8 5 -sl9 7 , (1994)
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Slowly Varying Envelope Approximation

The propagation of light in structures with second order nonlinear effects can be 
studied using a system of coupled differential equations. This system of equations is 
derived from Maxwell's Equations using a number of approximations.

Appendix 3

M axwell's equations in an linear and isotropic medium, with no free charges, and 

with no sources of electromagnetic (EM) waves (we assumed the EM waves are 
produced by a distant source of accelerated charges : p=(r,t) and J(r,t)) are as follows

V x f f  =  /  + ^  (y = c7£)
Ot

V x E  = - l J . ^

V • (eE ) = p  (p = 0, no free charges) Eq A3.1

We have consider that the only current density J is due to the passive response of an 

ohmic medium to the electric field of the EM field. In anisotropic waveguides the 
relative permittivity and relative permeability are not tensors but scalars.

If we only use one of the Fourier eomponents of E(x,y,z,t):

E{x,y ,z ,t)  = E ‘̂ {x,y,z}e-xp{-icot) Eq A3.2

Then the following wave equation can be obtained

= Ê [-icûf.L̂ C7 -o}^p„e]-p„a)^p̂ ' {̂co) Eq A3.3

W e assume we have a forward propagating EM plane wave (propagating in the +z 

direction):

E ^ = e "" {z)oxp{ikz) Eq A3.4

Ï
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and we assume that its amplitude, , will only vary on propagation, i.e. is only a 
function of z, then:

V  —  Eq A3.5
d z

If the envelope ^  {z) varies much less rapidly than exp (fc), then

dz^ dz Eq A3.6

Therefore, if we apply the approximations of Equations A3.4, A3.5 and A 3.6 to 
Equation A3.3, we reduce it to a first order differential equation:

dz 2 2 k -
Eq A3.7

where a  accounts for the material absolution associated with the conductivity, a , of 

the medium:

a  = Eq A 3.8

In Eq A3.7, A:is the propagation constant of a plane wave propagating in a medium 
that extends to infinity in the transversal direction.

Equation A3.7 is relevant for any order of nonlinearity. However, in this Appendix, 
we are only interested in second order nonlinearities, where the interaction between 
two waves of frequency cô  and produce a polarisation at the sum frequency 
6)3 = CDj + «2 • lo this case the nonlinear polarisation term is (see Appendix 4):

Eq A3.9

Using the contracted d-tensor notation and Eq A3.4 for and £ü2 we have

p^^(ct>3) = 2 fio<i(ft)j,ai2) :^ ‘̂ 'e x p [ i ( A : ;  + ^ 2)^] Eq A3.10

where.



However, the new electric field at ci)̂ , in combination with the field at or can

-V , 2
— = - ~ E ^ '  +^^^d[co^,co2 ):E^' &xp{iAkz)

C'—o), j Ci.cù,
Note that E —{E

Overall permutation symmetry => d(^G)z ,̂-G)2 ) = d[cû-^,~cù^) = d[co^,co2 ) = d  

No conductivity :=> ctj = «2 = «3 = 0

Then,

I
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-------------------------------------------------------------------------------------------------------------------------

= E q A 3 .l l

'
Then substituting Eq A3.10 into Eq A3.7, the progression of the EM wave at 0)3 is

" i..

described by I

6)3) + , 6)2):I""' ê""' exp[z(A:] + ^ 2 - ^ 3)^] Eq A3.12 |
o Z  2  C /C3 I 

Î
produce fields at cUj or 0 )̂ . Then,

, î

Î
dz 2 c X3

= —y Ê " " ' exp(-ZAfe) Eq A3.13

= exp(~/Afe)

:î

where v

A/c — A- — /C3. Eq A3.14

The set of coupled differential equations of Eq A3.13 can be rewritten by considering §

the following:

• d v . ^ ^  È  ̂ = d^ ĵ-È̂ ' wher e d̂ ĵ  = d:e^e2 , and ^2 are unitary

vectors in the direction of and .

... . L
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_  iCÙ,
dz. cn^

-1
(Ê"' )’ exp(-iAfe)

dz Crt; '' ^

i î l — = ZAzd Ê"' [È“' )* exp(-jAfa)
dz cn.y  ̂ ’

Eq A3.15

Where ni, U2 and ng are the effective indices of the propagating modes.
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Appendix 4 

Nonlinear polarisation terms.

The effect of the material in the electromagnetic (EM) radiation can be studied by 

considering that the incident EM field polarises the atoms in the material, thus 
creating a polarisation charge that modifies the incident field.

In free space, the electric field is related to the charges that produce it by

V £  = 2 -  E qA 4 ,l
Go

where p  is the charge density and fig is the free space permittivity.

If we consider that the effect of the electric field is to polarise the atoms, then we 
create a polarisation charges, p^,, given by

p ^ = - 'S /p  Eq A4.2

where p  is the dipole momentum per unit volume.

Then, the total electric field in the medium depends on both the existing charge 
density, p , and the introduced polarisation charge, p^,.

VE = — (p + p^J = — ( p - V p )  => V(^£qE + p j = p  Eq A4.3
^0 ^0

The electric displacement, D, is defined as

D = £ qE + p  Eq A4.4

This vector will account for the material properties .

In the linear case, when the incoming electric field is small, the contribution of the 

material to the total electric field is proportional to the incoming field, i.e.
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p o c E  , p  = EqXE. Eq A4.5 

then the electric displacement is

D = e ,E  + p = e , { \+ x ) E  = e,eyE  e = e„e., E qA 4.6

The refractive index is related to the relative permittivity, e,., by:

rE = Eq A4.7

If the incoming electric field is large enough, the response of the material is not only 

proportional to the field, but also its square and higher powers. Therefore the 

polarisation and the displacement are proportional to the square and higher powers of 

the electric field.

P = Eq A4.8

X  is much larger than and is much larger than In this Appendix we 

will be interested in the quadratic nonlinear term, x^^^ • The interaction of light and 
matter thought is the second order nonlinear effect. In general %, are

tensors, to account for the material anisotropy.

In general for two incident optical fields at frequencies £üj and CO2 , the polarisation 
terms at CO3 = + CO2 are:

p{<pZ) = e,x{my)E{my) + £,x'^^\a),,coyE[cû^)E[ci>y)+...
, , Eq A4.9

= p''"'"'' (<5)3 ) T p"^ (<3)3 )+ .. .

where stands for tensor multiplication. The polarisation terms at cOj and £Uj are:

£(® i) = eoX(®i)S(®i) + fioZ'^’(®3. - ® 2):£(® 5)Ê (-® î)+ -- Eq A4.10
£(û),) = e„;i;(û)j£((M2) + e„z‘"’(®3,œ ,):£(® 3)S(-® ,)+..- E q A 4 .l l
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Appendix 5

Use of the Runge-Kutta method to solve the coupled 
amplitude equations governing SHG.

The coupled differential equations governing SHG are

d E  io)
dz 2 cn-

>2«y
d E  iO)

dz cn.

■d^^{2o},-cù)È^°^[È^^ exp(~iAte)

d^ff{cù,cû)(ÈA exp(/Afe) E qA S .l

Ak = 2 k^ -  k^^ )
CO

d^j^{2cû,~co) = 2d^j^{cù,Cù) EqA 5.2

This is an initial value problem where we propagate a solution over an interval. By 

far the most often used method of solving these equations is by the fourth-order 

Runge-Kutta method. For a first order differential equation

^  =  EqA 5.3
dx

the fourth-order Runge-Kutta formulas are as follows:

J'ci+i = J ' u +  ^  + ^  + + E qA 5.4

where

h . k,

Eq A5.5
^2 - ¥ \ ^ ^ n  2 ’^"

* 3 = ¥ ( ^ ^ „ + |.3 '„ + Y

K = V { \  +h,y,^+ky)
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As can be seen, the solution at x(t+h) is obtained at the expense of evaluating the 
function /fo u r  times. The final formula agrees with the Taylor expansion up to, and 

including, the terms in ¥ .  The error therefore contains but no lower powers of h. 
W ithout knowing the coefficient of in the error, it is difficult to be precise about 
the local truncation error (i.e. the error due to the truncation of the Taylor series), in 

this situation we say that the local truncation error is "of the order of ", 
abbreviated by

Other errors are due to the accumulative effects of all local truncation errors, and the 

round-off error.

In general higher order methods (a method is conventionally nth order if its error 
term is 0 (/i'‘̂ ’)) are more accurate in the problems that contemporary scientists like

to solve, but this is not always true.

Then using the fourth order Runge-Kutta method we have that the electric field for the 
fundamental and second harmonic are

1 3  3 6
k l “

EqA5.6

c = + V + A - + T - + ^ + o[h?)

where

k : = h r { z „ , E : .E i " ‘)
.2® \  
1_

2 ' " 2 ' " 2
= h A  z„+ / £ , r + *‘

k̂  = hr\z„ + -/J
K = v°{z„ + h,E“ + k^,E l“ + k l“) Eq A5.7

 ̂ ’ dz
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k i ^ ^ h f A z , ,  + ~ , E : + - ^ , E f r + - L -

=  hMz„ +_,£» 

kl“ = ¥"“(z„ + KE: + k .̂El" +kl“)

EqA5.8

"I
I

■

1
#

i
■ï'i
¥t
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Appendix 6. 

Conditions for up-conversion and down-conversion.

Here we present a new method to determine the conditions for up-conversion and 
down-conversion.

The variation of the second harmonic electric field with propagation is given by

d E  ICO

dz
Eq. A6.1

Using Eulers formula for the first order:

i f  E ' = f{z ,E {z))  ^  E{zA-h) = E{z)A-hE\z)  Eq. A6.2

Eq 1 becomes:

{zA-h)~ { z )A -h ^ ^ ^ d J c û ,c ù )[È ^ \  Qxp(iAkz) Eq. A6.3

Up-conversion takes place if:

Eq. A6.4

and down conversion takes place if:

i2fu
E  (z + h ) < E  (z)

ZlCù
Eq. A6.5

To obtain the phase condition for up-conversion and down-conversion, we express 
the electric field for the harmonic and second harmonics in terns of its amplitude and 

phase:

E {zA-h) = Ef  “ exp(io;^®)

Gxp(z«")
Eq. A6.6
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Then using Eq A6.6 in Eq A6.3 we obtain:

+ h) exp(ta^® + Id'^h) = È (z) exp(io:’“)-H / î  expf i - r  + ila '"  + iAJcz
^̂ 1(0 \ 2V 2 

Eq. A6.7

For the two terms in the right hand side of Eq. A6.7 to add constructively their phase 
difference needs to be smaller than K jl ,  In this situation, the condition of Eq A6.4 is 

fulfilled, and up-conversion takes place. The phase difference in the terms in the 

right hand side of Eq. A6.7 is:

Eq A6.8

Then the condition for up-conversion is:

„ |  — +  ArAkz
K 

< — 
2

Eq A6.9

Using the same argument the condition for down-conversion is:

,2ffl K
- I  Y  +  2 a ®  +

K 
> — 

2
Eq A6.10

And the condition for neither up-conversion or down-conversion is:

- I  — + 2 a® +Akz Eq A 6.11

At phase matching we have:

7T Eq A6.12
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Appendix 7

Internal normalised conversion efficiency and 
effective area.

The coupled differential equations governing SHG are:

■ 0)
d E  iCO

dz 2 cn„
■ 2co

d E  ico
dz cn.

■d^ff{2œ~G))È^^[È^)\xp{-iAkz) 

d^ff{co,(û){ÈA exp(iM z) EqA7 .1

Let us assume that initially there is no light at the second harmonic (SH) frequency. 
Lets us also examine the case of low conversion efficiency such that any depletion 
of the fundamental frequency can be neglected, i.e.

n A®
= 0  Eq A7.2

dz

This simplification allows just one of the differential equations to be studied instead 
of the complete set. Hence, the evolution of the light at the SH frequency is given 

by:

0 Ê"" /Ü)
Z-d^^(m,û))(Ê'“f e x p ( iM z )  EqA 7.3
2 COdz cn.

Since È  is treated as constant (low conversion efficiency), this can be easily 

integrated along the length of the crystal to give

■(Ê“ )

Eq A7.4
œ d ^ ^ (  ^QyŸ ^iA kL/2^-^^^à k L
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Now, the electric field can be written in terms of the irradiance,

/ “ =  S E W  |£-»P Eq A7.5

r ° ’(L )=  g f r f s i n c ^ —  EqA 7.6

and the intensity in terms of the power

Eq A7.7
Area

W here "Area" is the effective area.

At the phase matching condition (A/c = 0), we obtain

= EqA 7.8
Pa, Area

where

fO = ^  Eq A7.9

Then, the effective area is:

Area =   j j L e .  EqA 7 .10
P20)

The internal normalised conversion efficiency, î?„, defining as 

P2<o = ^ . P i e  E q A 7 . l l

is given by
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Appendix 8.

Spatial chirping of waveveetor mismatch in LiNbOs 
segmented waveguides for engineering of specific 
second-harmonic generation detuning curves for 

cascading applications.

Ï

A
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C T u J l  F ig .  3 , P r e d ic t e d  g r o u p  d e la y  d i s p e r ­
s io n  v e r s u s  s e c o n d - h a r m o n i c  w a v e le n g th  f o r  t h e  
u l t r a s h o r t  A P M  d e v ic e .

m e c h a n i c s  o f  t h e  d e s ig n  p e r m i t  s o m e  p r i s m s  t o  

b e  t r a n s l a t e d  a c r o s s  t h e  b e a m  t o  a d j u s t  t h e  
t e m p o r a l  d i s p e r s i o n  o f  b o t h  t h e  f u n d a m e n t a l  

i n p u t  a n d  t h e  s e c o n d - h a r m o n i c  o u t p u t .  F i g u r e  
3  s h o w s  t h e  p r e d i c t e d  g r o u p  d e l a y  d i s p e r s i o n  

f o r  o n e  s e t  o f  p r i s m  p o s i t i o n s .  A  h i n d a m c n t a l  
p u l s e  a s  s h o r t  a s  4 0  fs  c a n  g e n e r a t e  a  4 0 - f s  

s e c o n d - h a r m o n i c  p u l s e  w i t l i  t h i s  d e v ic e ,  l i m ­
i t e d  b y  t h i r d  o r d e r  t e m p o r a l  d i s p e r s i o n  
( T O D ) ,  n o t  b y  c o n v e r s i o n  b a n d w i d t h .  A ls o ,  

t h e  s ig n  o f  t h e  r e s i d u a l  T O D  is  o p p o s i t e  t h a t  

n o r m a l l y  a c c u m u l a t e d  b y  p r o p a g a t i o n  

t h r o u g h  o p t i c a l  e l e m e n t s ,  s o  t h a t  o u r  u l t r a -  
s h o r t  A P M  d e v ic e  c o u l d  b e  u s e d  t o  c o m p e n ­

s a t e  T O D  i n  t h e  o t h e r  o p t i c s  o f  a n  e x p e r i m e n ­
t a l  a p p l i c a t i o n .

*CVILaser Inc., 361 Lindbergh Ave., Livermore, 
California 94550-9291
1. B .A . R i c h m a n ,  S .E .  B i s s o n ,  R . T r e b i n o ,

M .G .  M i t c h e l l ,  E . S id ic k ,  A . J a c o b s o n ,  O p t .

L e t t .  2 2 ,  1 2 2 3 - 1 2 2 5 ( 1 9 9 7 ) .

CTIÜ2 10:45 am

Spatial chirping of waveveetor 
mismatch In UNbOg segmented 
waveguides for engineering of specific 
second-harmonic generation detuning 
curves for cascading applications
C a r l o s  G .  T r e v i n o - P a l a c i o s ,  D a n i e l  O r t e g a ,*  

G e o r g e  I. S t e g e m a n ,  J. S t e w a r t  A i t c h i s o n ,*  
Center for Research and Education in Optics 
and Lasers, University o f Central Florida, P.O. 
Box 162700 Orlando, Florida 32826-2700;
E- ma il: carlost@mailcreol. ucf.edu

A  n e w  a s p e c t  o f  s e c o n d - o r d e r  n o n l i n e a r i t i e s ,  

n a m e l y  t h e  g e n e r a t i o n  o f  l a r g e  n o n l i n e a r  p h a s e  
s h i f t s  f r o m  c a s c a d i n g ,  h a s  p r o m p t e d  a  g r e a t  
d e a l  o f  i n t e r e s t .  T o  d a t e  h i ^  t h r o u g h p u t  a l l -  
o p t i c a l  s w i t c h i n g  u s i n g  c a s c a d e d  s e c o n d - o r d e r  
n o n l i n e a r i t i e s  h a s  b e e n  e x p e r i m e n t a l l y  d e m ­
o n s t r a t e d  i n  t e m p e r a t u r e - t u n e d  w a v e g u i d e  

s e c o n d - h a r m o n i c  g e n e r a t i o n  ( S H G ) . '  T h e  

s u c c e s s  o f  t h e s e  d e v ic e s  is  b a s e d  o n  t h e  s p a t i a l  
n o n u n i f o r m  w a v e v e e t o r  d i s t r i b u t i o n  a n d  t h e  
u n i q u e  n o n l i n e a r  p h a s e  s h i f t  i n t r o d u c e d  b y  t h e  

t e m p e r a t u r e  t u n i n g  m e t h o d  u s e d  f o r  p h a s e  
m a t c h i n g .  I n  S H G ,  t h e  f u n d a m e n t a l  a n d  

s e c o n d - h a r m o n i c  f i e l d s  r e q u i r e  s o m e  j o i n t  
p r o p a g a t i o n  a n d  a  s p e c i f i c  w a v e v e e t o r  m i s ­
m a t c h  d i s t r i b u t i o n ,  w h i c h  c o n t r o l s  t h e  l o c a l  
d e t a i l s  o f  t h e  e n e r g y  e x c h a n g e .  W i t h  t h e  d e v e l ­

o p m e n t  o f  q u a s i - p h a s e - m a t c h i n g  ( Q P M )  
t e c h n i q u e s  i t  i s  n o w  p o s s ib l e  t o  a c h i e v e  t h e  
r e q u i r e d ,  f l e x i b l e ,  g r a t i n g - a s s i s t e d  p h a s e  

m a t c h i n g  a t  a l m o s t  a n y  w a v e l e n g t h  b y  s p a t i a l
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(b)
C T u J 2  F ig . I .  T y p ic a l  S H G  w a v e le n g th  s c a n s  i n  a  L iN b O ^  s e g m e n t e d  w a v e g u id e  w i t l i  tw o  d i f f e r e n t  
n o n u n i f o r m  c l i i r p e d  g r a t i n g s  ( in s e r t s ) ,  ( a )  Q u a d r a t i c  c h i r p  a n d  ( b )  q u a d r a t i c  c h i r p  f o l lo w e d  b y  a  u n i f o r m  
g r a t in g .  D o t t e d  l in e s  s h o w  t h e  n u m e r i c a l  s im u la t io n  w i th  t h e  s a m e  p a r a m e te r s  a s  t h e  e x p e r i m e n t a l  o n e s .  
P h a s e - m a tc h i n g  a t  t h e  e x t r e m e  v a lu e s  o f  t h e  g r a t i n g  p e r i o d s  ( 1 8 .5  a n d  1 9 .5  (x m ) a r e  s h o w n  w i t h  a r r o w s  a t  
X =  1 5 3 7  a n d  1 5 7 2  n m ,  r e s p e c tiv e ly .

c o n t r o l  o f  t h e  g r a t i n g  p e r i o d .  S p a t i a l l y  v a r y i n g  

( a l o n g  t h e  p r o p a g a t i o n  p a t h )  t h e  g r a t i n g  p e ­
r i o d  n o w  a l l o w s  a n  a l l - o p t i c a l  s w i t c h  u s i n g  

c a s c a d e d  s e c o n d - o r d e r  n o n l i n e a r i t i e s  t o  b e  
i m p l e m e n t e d  a t  r o o m  t e m p e r a t u r e .

W e  i n v e s t i g a t e d  t h e  l o w  d e p l e t i o n  S H G  r e ­
s p o n s e  o f  a n  e n g i n e e r e d ,  n o n u n i f o r m  

w a v e v e e t o r  d i s t r i b u t i o n  a l o n g  t h e  p r o p a g a t i o n  

a x is .  T h e  s p e c i f i c  v a r i a t i o n  i n  t h e  w a v e v e e to r  
m i s m a t c h  w a s  a c h i e v e d  b y  a  n o m m i f o r m  c h i r p  
( i . e . ,  n o t  a  l i n e a r  c h i r p )  i n  t h e  g r a t i n g  p e r i o d  o f  
a  L i N b O j  s e g m e n t e d  w a v e g u i d e .  T h e  r e q u i r e d  
c h i r p  w a s  s y n t h e s i z e d  b y  f i r s t  c a l c u l a t i n g  t h e  

s m o o t h l y  v a r y i n g  w a v e v e e t o r  m i s m a t c h  
n e e d e d  t o  h a v e  t h e  d e s i r e d  r e s p o n s e  f u n c t i o n .  

A s  s h o w n  i n  F ig .  1 ( i n s e t ) ,  t h e  d i s t r i b u t i o n  w a s  
d i s c r e t i z e d  i n t o  d i f f e r e n t  s e c t i o n s  w h o s e  p e ­

r i o d  w a s  c h o s e n  t o  g iv e  t h e  a v e r a g e  m i s m a t c h  
f o r  e a c h  s e c t i o n .  A  m a s k  w a s  t h e n  f a b r i c a t e d  

w i t h  a  f e w  ( 5 - 1 0 )  u n i f o r m  s e g m e n t s  m a k i n g  
u p  e a c h  s e c t i o n  t o  o b t a i n  a  s t e p - w i s e  c h a n g e  in  

t h e  g r a t i n g  p e r i o d .  T h e  c h i r p  w a s  s e l e c t e d  t o  b e  
a  c o m b i n a t i o n  o f  a  q u a d r a t i c a l l y  c h i r p e d  g r a t ­

i n g s  a n d  u n i f o r m  g r a t i n g s .  S e g m e n t e d  

w a v e g u i d e s  w e r e  t h e n  f a b r i c a t e d  b y  t i t a n i u m  

i n d i f f u s i o n  w i t h  t h e  e n g i n e e r e d  m a s k  d e s ig n .  

U n i f o r m  ( n o t  c h i r p e d )  w a v e g u i d e s  w i t h  Q P M  

p e r i o d s  i n  t h e  1 8 . ^ 1 9 . 5  p m  r e g i o n  w e r e  a l s o  

f a b r i c a t e d  a n d  t h e i r  S H G  r e s p o n s e  m e a s u r e d  
f o r  c o m p a r i s o n .  T h e y  h a d  b a n d w i d t h s  o f — 1 .3  

n m  a n d  c o n v e r s i o n  e f f i c i e n c ie s  o f  1 .5 %  w i t h  a  

1 0 0 - W  p u m p .
R e p r e s e n t a t i v e  l o w  d e p l e t i o n  S H G  t u n i n g  

c u r v e s  f o r  t h e s e  w a v e g u i d e s  a r e  s h o w n  i n  F ig .  1 
f o r  t w o  d i f f e r e n t  w a v e v e e t o r  d i s t r i b u t i o n  ( i n ­
s e r t s ) .  A  s y n c h r o n o u s l y  p u m p e d  m o d e - l o c k e d  

c o l o r - c e n t e r  l a s e r  u s e d  f o r  s c a n n i n g  t h e  f u n d a ­

m e n t a l  w a v e l e n g t h .  F o r  c o m p a r i s o n ,  a  n u ­
m e r i c a l  s i m u l a t i o n  w i t h  t h e  s a m e  p a r a m e t e r s  
a s  t h e  e x p e r i m e n t a l  o n e s  a r e  s h o w n  a s  d o t t e d  
l i n e s .  W e  o b s e r v e d  a  b r o a d e n i n g  i n  t h e  b a n d ­

w i d t h  o f  t h e  S H G  d e t u n i n g  c u r v e  r e l a t i v e  t o  

t h e  u n i f o r m  g r a t i n g  c a s e  a n d  a  c o m p l i c a t e d  

d e p e n d e n c e  o f  S H G  o n  w a v e l e n g t h .  A d d i t i o n ­
a l ly ,  a l l  t h e  w a v e  v e e t o r  d i s t r i b u t i o n s  s t u d i e d  

e x h i b i t e d  s o m e  a m o u n t  o f  n o n r e c i p r o c i t y .  A s

wivERsm'
■msAa?

s h o w n  p r e v i o u s ly ,  t h i s  is a  d i r e c t  c o n s e q u e n c e  
o f  u s i n g  s i m u l t a n e o u s l y  a  n o n u n i f o r m  a n d  
n o n s y m m e t r i c a l  w a v e - v e c t o r  d i s t r i b u t i o n . ^  

S o m e  i m p o r t a n t  a p p l i c a t i o n s  o f  c o n t r o l l i n g  

t h e  S H G  e v o l u t i o n  w i t h  a n  a r b i t r a r y ,  n o n u n i -  
f o r m l y  c h i r p e d  g r a t i n g  a r e  f o r  a l l - o p t i c a l  
s w i t c h i n g  d e v ic e s  a t  r o o m  t e m p e r a t u r e  b a s e d  

o n  c a s c a d i n g ,  n e w  w a y s  o f  e n h a n c i n g  t h e  S H G  

b a n d w i d t h ,  e tc .
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B . S u m p f,* ^  Optisches Institut der Technischen 
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P o r t a b l e  d i f f e r e n c e - f f e q u e n c y  I R - s p e c t r o m e te r s  
c o n s i s t i n g  o f  a n  e le c t r o n i c  m o d u le ,  a n  i n f r a r e d  
m o d u le ,  a n d  a  s p e c t r o s c o p i c  o r  d e t e c t i o n  m o d ­

u le  h a v e  b e e n  s e t  u p  f o r  t h e  m i d - i n f r a r e d  r e g i o n  
a r o t m d  4 .7  p m  a n d  7 .2  p .m  (F ig .  1 ) . F o r  t h e  4 .7 -  

p ,m  r e g i o n  s in g l e - m o d e  d i o d e  l a s e r s  ( S D L  5 4 2 1 -  
G l ,  8 0 6  n m ,  2 0  m W  o p t i c a l  o u t p u t  p o w e r ;  

T O L D  9 1 5 0  (S ) ,  6 9 0  n m ,  6  m W )  a r e  u s e d  as  
p u m p  s o u r c e s .  A p p l y i n g  n o n c r i t i c a l  p h a s e -  
m a t d î i n g  t y p e  I  (9 0 ° )  i n  a  A g G a S ^  c r y s t a l  o f  d i ­

m e n s i o n s  4 0  X  4  X  4  m m ^  a s  n o n l i n e a r  m e d i u m  

a  n a r r o w  b a n d w i d t h  i n f r a r e d  l i g h t  s o u r c e  w i th  
s u f f i c i e n t  p o w e r  f o r  s p e c t r o s c o p i c  u s e  h a s  b e e n  

c o n s t r u c t e d .  A n  i n f r a r e d  o u t p u t  p o w e r  o f  m o r e

m r
m i
electronics

— d a ta  a c q u is i t io n

la s e r  c o n tro l le r  
T „  I , / T „ I ,

f p A P

IR-modul Gc

non-linear' 
medium IR O A l

O A R

m u lt ir e f le c t io n  c e l l

trace gas d e te c t io n d e te c to r

C T u J S  F ig .  1 . S e tu p  o f  t h e  p o r t a b l e  d i f f e re n c e  
f r e q u e n c y  I R - s p e c t r o m e te r .

mailto:kf@mail.physik.tu-berlin.de


L ist o f  publications  142

List of Publications.

periodically segmented waveguides" Paper, proc. CLEO'97, Baltimore, 1997.

Daniel Ortega, Jose M Aldariz, J. M. Arnold, and J. Stewart Aitchison, "Analysis

• T, Piorek, J M Fatah, R G Roberts, D Ortega, A A Chesworth, P Parrison, T 
Stimer, W E Hagston, "Montecarlo simulation of canier transport and relaxation 
in suiperlattices". Superlattices and microstractures, 15, pp 209-212, (1994),

• D. Ortega, R M De La Rue, and J S Aitchison, "Cut-off wavelength of 
periodically segm ented waveguides in TiiLiN bO s", Journal of Lightwave 

Technology, 16, pp. 284-191, (1998).

• D. Ortega, R M De La Rue, and J S Aitchison, "Cut-off wavelength of

• D. Ortega, J M Aldariz, J M Arnold and J S Aitchison, "Quasi-modes of 

periodically segmented waveguides", Proc. QE 13, Cardiff, 1997.

• D. Ortega, J M Aldariz and J S Aitchison, "Mode engineering in periodically 
segmented waveguides", Proc. Integrated Photonics Research'98, Victoria, 1998.

• Carlos G. Trevino-Palacios, Daniel Ortega, George I Stegeman, and J. Stewart 
A itchison, "Spatial Chirp of W avevector-M ismatch in LiNbOs segmented 

waveguides for Engineering of Specific Second Harmonic Generation Detuning 

Curves for Cascading Applications", Paper, proc. CLEO'98, San Francisco, 
1998.

• J Ruano, D Ortega, J R Bonar, J M Cooper, J S Aitchison, "Integrated waveguide 
sensors for a Biological Assays", Paper, proc. CLEO/Europe'98, Glasgow, 1998.

$

of "Quasi-modes" in Periodic Segmented Waveguides", Journal of Lightwave 

technology.
:::îi
7,

J.M.Ruano, D.Ortega, J.R. Bonar, A.J.McLaughlin, M.G.Jubber, J.M.Cooper and 
J.S. Aitchison, "Fabrication of Deep Holes and Channels for Biological Assays 

in Flame Hydrolysis Deposited Glass", Paper, proc. MNE 98, Leuven 

(Belgium), 1998.

I
;i:


