https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglaas/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
The taxonomy of *Lotus corniculatus* L. sensu lato

by

Ian M. Roberts
M.I. Biol.

A Thesis submitted to the University of Glasgow for the degree of Master of Science.

Botany Department,
West of Scotland Agricultural College,
Auchincruive, Ayr,
Scotland.

June 1984.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ACKNOWLEDGEMENTS</td>
<td>1</td>
</tr>
<tr>
<td>2 ABSTRACT</td>
<td>2-4</td>
</tr>
<tr>
<td>3 INTRODUCTION</td>
<td>5-6</td>
</tr>
<tr>
<td>4 HISTORY OF THE TAXONOMY</td>
<td>7-56</td>
</tr>
<tr>
<td>5 MATERIALS AND METHODS</td>
<td>57-62</td>
</tr>
<tr>
<td>6 RESULTS</td>
<td>63-87</td>
</tr>
<tr>
<td>6.1 Leaflet length</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Leaflet length to breadth ratio</td>
<td>65</td>
</tr>
<tr>
<td>6.3 Leaflet Hairiness</td>
<td>67</td>
</tr>
<tr>
<td>6.4 Stem Length</td>
<td>67</td>
</tr>
<tr>
<td>6.5 Hollowness of Stems</td>
<td>70</td>
</tr>
<tr>
<td>6.6 Peduncle length</td>
<td>70</td>
</tr>
<tr>
<td>6.7 Number of flowers per inflorescence</td>
<td>73</td>
</tr>
<tr>
<td>6.8 Seed length</td>
<td>75</td>
</tr>
<tr>
<td>6.9 Calyx teeth in bud</td>
<td>75</td>
</tr>
<tr>
<td>6.10 Angle between upper two calyx teeth</td>
<td>78</td>
</tr>
<tr>
<td>6.11 Length of calyx teeth</td>
<td>78</td>
</tr>
<tr>
<td>6.12 Length of Internodes</td>
<td>80</td>
</tr>
<tr>
<td>6.13 Prominence of Leaf Veins</td>
<td>83</td>
</tr>
<tr>
<td>6.14 Leaf Epidermal Cells</td>
<td>83</td>
</tr>
<tr>
<td>6.15 Leaf shape after transplantation</td>
<td>86</td>
</tr>
<tr>
<td>6.16 Presence of rhizomes</td>
<td>86</td>
</tr>
<tr>
<td>6.17 Chromosome Numbers</td>
<td>86</td>
</tr>
<tr>
<td>7 DISCUSSION</td>
<td>88-103</td>
</tr>
<tr>
<td>8 APPENDICES</td>
<td>104-110</td>
</tr>
<tr>
<td>Appendix 1 Sources of British Plant Material</td>
<td>104</td>
</tr>
<tr>
<td>Appendix 2 Sources of European Plant Material</td>
<td>107</td>
</tr>
<tr>
<td>Appendix 3 Sources of New Zealand and North American Plant Material</td>
<td>110</td>
</tr>
<tr>
<td>9 REFERENCES</td>
<td>111-115</td>
</tr>
</tbody>
</table>
Acknowledgements

I gratefully acknowledge the help of Dr. Gareth Williams who has given generously of his time, knowledge and expert advice during the preparation of this Thesis.

I should also like to thank Mrs. Janice Hampson for her willing assistance in the collection and preparation of materials.

I am also greatly indebted to the people who collected Lotus material, in particular Dr. Carole Sparke of the University of Keele and members of the University of Hull Norway Expedition (1979).

My thanks are due to Mrs. Eleanor Dixon for her skill and great forebearance in the typing of the manuscript.

Finally, but not least, I must thank my wife Valerie, without whose help much of the Latin would still be a mystery and Mrs. Katia Svoboda without whose help all of the Czech would certainly have remained so.
Plant material corresponding to *L. corniculatus* s.l. was collected from a number of sites in the British Isles, continental Europe, North America and New Zealand, and grown in experimental plots. Various morphological features were examined and the plants identified as *L. corniculatus* s.s., *L. uliginosus* and *L. tenuis* according to published descriptions. Two forms of *L. corniculatus* were recognised; those with all stems decumbent and those with any or all stems ascending or erect.

The range of variability in the characters most frequently used for identification was determined. The standard deviation of these characters for each population was compared. A number of characters: hairiness, shape and length of calyx teeth, stem length, leaflet shape, and leaflet epidermal cells showed a wide range of variation and considerable overlap between species. However, the characters of appearance of calyx teeth in bud, presence of rhizomes, seed length and number of flowers per inflorescence showed some discontinuity, proving of most value for discriminating between species. Other characters: hollowness of stems, prominence of leaf veins and leaflet length: breadth ratio were found to be indicative of species but were not consistently reliable.

Transplantation of plants from various wild habitats into more or less uniform conditions showed that under cultivation significant changes take place in leaflet length and leaflet length: breadth ratio.
Morphological differences between the two forms of *L. corniculatus* were often found to be greater than between the erect form of *L. corniculatus* and *L. uliginosus*. In some cases difficulty was experienced in distinguishing these two species in the field. Chromosome counts confirmed the number of chromosomes in *L. corniculatus* as 24 and in *L. tenuis* and *L. uliginosus* as 12.

It is proposed that sufficient distinction exists between the two forms of *L. corniculatus* in Britain to warrant their having sub-species status. It is suggested that appropriate nomenclature for the erect form is sub-species *vulgaris* Koch and the decumbent form sub-species *arvensis* Pers., following work by MacDonald (1946). The descriptions are as follows:

L. corniculatus L. ssp vulgaris Koch

Plants varying in form from having some, but not all, stems decumbent to ascending or erect. Stems (2) 25-50 (60) cm, usually solid at base but frequently becoming hollow. Internodes long 15-38 cm. Peduncles (2) 3-10 (13) cm. Leaves glabrous or hairy, ovate or obovate after mucronate, 8-21 mm long, usually more than twice as long as wide, veins usually absent or scarcely apparent. Inflorescence 3-8 flowered. Calyx teeth erect in bud. Underground stems absent. (2n = 24).

L. corniculatus L. ssp arvensis Pers.

Plants with all stems decumbent, low and spreading. Stems (5) 10-25 (35) cm, usually solid. Internodes short 5-13 cm. Peduncles erect (1) 2-7 (9) cm. Leaves glabrous or hairy, ovate or obovate (3) 5-12 (15) mm long, usually less than half as long as

Existing cultivars have been identified as the erect form of *L. corniculatus*. They show much morphological similarity with no ability to propagate themselves by rhizomatous growth. A range of unexploited sources of genetic material exists which could be used for the establishment of a breeding programme to improve the agronomic potential of indigenous *L. corniculatus*.
3. **Introduction**

The aggregate species *Lotus corniculatus* L. is one of much variability, and while it is generally agreed that it includes *L. corniculatus* L. sensu stricto, *L. uliginosus* Schkuhr and *L. tenuis* Waldst. & Kit., taxonomists over the years have disputed nomenclature, the existence of sub-species and varieties, and the status of several forms of limited geographical distribution.

One of the aims of this work has been to study the history of the taxonomy of the species in order to assess the basis for some of the differences which exist in modern classifications. As much as possible of the range of variation within the aggregate species has been investigated in order to establish the validity of these classifications.

Birdsfoot trefoils of this group of species are native to Europe, temperate Asia and North Africa as far south as Ethiopia (Zeven & De Wet, 1982) but they have since been introduced into most other temperate zone countries of the world because of their potential for forage production. They are capable of out-yielding other temperate forage legumes such as lucerne and red and white clovers (Hoveland, Haaland, Harris & McGuire, 1982). Moreover, they are tolerant of soil acidity and drought and do not cause problems of oestrogen content and bloat.

Birdsfoot trefoils have not become widely used in agricultural practice because of poor seedling vigour, slow establishment, failure to persist after cutting or grazing and low seed yields resulting from indeterminate flowering and pod shattering.

A further aspect of the investigation has therefore
been to consider whether any of the characters which may be found within the species, but are not at present found in commercial cultivars, could be incorporated in order to improve its agro­nomic value.
4. The History of the Taxonomy

L. corniculatus sensu lato is a group of species showing a considerable range of phenotypic variation. Through time this has allowed taxonomists to select and describe many different characters. Opinions on how the group should be divided have changed as awareness of the extent and nature of the variation has grown. Uncertainty about the diagnostic value of much of this variation has allowed a number of different classifications to emerge. It is now apparent that accurate identification of some members of this group is extremely difficult.

Even the origin of the generic name, "Lotus" is uncertain. Gray (1821) traces it to Theophrastus (370-285 B.C.) and the very beginnings of plant morphology. Withering (1830) was less certain and stated that the origin of the name seemed involved in mystery, possibly being of Egyptian extraction and derived from the Greek "lo", meaning, "to desire". A more prosaic explanation has been offered by Brimble (1949). He stated that a more likely origin was from the Greek 'lotos' meaning trefoil and that there are no associations with the lotus made famous by the lotus-eaters of Homer's Odyssey.

A species of Lotus was certainly growing in Britain in the 17th Century. Gerard (1633) describes in 'The Herbal or General History of Plants' a "horned Clauer" or "codded Trefoile" which he translates into Latin as *Lotus trifolia corniculata*.

"The horned Clauer, or codded Trefoile, groweth up with many weake and slender stalks lying upon the ground: about which are set white leaves, somewhat long, lesser, and narrower than any of the
other Trefoiles: the floures grow at the tops, of the fashion of those of Pea but of a shining yellow colour: after which come certain straight cods, bigger than those of Fenegreeke but blunter at their ends, in which are contained little round seed; the root is hard and wooden and sendeth forth young springs every year."

The accompanying plate (Plate 1) indicates a more robust plant than expected from the description with broad pods and few flowers per inflorescence.

Plate 1:
Although a number of unusual features are apparent, such as the absence of two opposite leaflets at the base of the petiole, this plant may well be thought of as the plant described by Linnaeus as Lotus corniculatus.

Linnaeus published his classification in Species Plantarum (1753). He recognised 15 species including Lotus rectus, L. hirsutus, L. tenuifolius as well as L. corniculatus. Although his diagnostic phrases are vague and at times ambiguous (Linnaeus held that his diagnoses should not exceed 12 words (Stern, 1973))
they provide the basis of subsequent classifications.

Lotus hirsutus

Lotus polycarpos frutescens incana alba, siliquus erectis acrorioribus & brevioribus rectis. Moris. hist. 2. p. 177. s. 2. t. 15. f. 14.
Habitat in G. Narbonensi, Italia."

"Lotus with hairy heads, upright hairy stem, pods ovate.
Lotus with bushy stem, the flowers are in heads and flattened from above, woolly calyx.
Lotus with five leaves, hairy pods.
Lotus many podded, becoming shrubby white dull white, pods upright, thicker and shorter, straight."

Lotus rectus

Lotus siliquosus glaber, flore rotundo. Bauh. pin. 332.
Lotus polycarpos frutescens hirsutis alba major latifolia, siliquus tenuibus curvis rectis. Moris. Hist. 3. p. 177. s. 3. t. 18. s. 13.
Habitat in G. Narbonensi, Sicilia, Calabria."

"Lotus with almost spherical heads, upright stems, straight glabrous pods.
Lotus with bushy stem, the heads of the flowers spherical.
Lotus glabrous, podded, flowers rounded.

Lotus many podded becoming shrubby, hairy, white, greater, broad-leaved, pods slender short and straight."

Lotus corniculatus

"3. LOTUS capitulis depressis, caulibus decumbentibus leguminibus cylindrienis.
Trifolium corniculatum, Dod. pempt. 373.
β Lotus pentaphyllos, flore magno luteo splendente. Bauh. pin. 222.
γ Lotus pentaphyllos frutescens, tenuissimis glabris foliis. Bauh. pin. 332.
Trifolium corniculatum frutescens, tenuissimis foliis. Bauh. prodr. 144.
Burs. XVIII. 73.
Habitat in Europae.
Hujus forte varietas etiam β est, cujus Caules duple longiores & angustiores, Folia linearia, & Legumina angustiora.
Videtur in umbra nata; Burserus C. Bauhino hanc attulit."

"Lotus with heads flattened from above, decumbent stems, cylindrical pods.

Lotus with slightly fleshy stems, heads of flowers flattened from above, pods decumbent and tapering.

Lotus or Melilotus five-leaved, smaller, glabrous
Trifolium corniculatus.

β Lotus five-leaved, larger flower brilliant yellow.

Lotus tenuifolius

γ Lotus five-leaved becoming bushy, very slender glabrous leaves."

This description of Lotus tenuifolius is in fact an earlier description taken from Bauhin's (1623) synonymy of plant names
'Pinax Theatri Botanici'. Linnaeus states that:

"perhaps *L. corniculatus* ≠ (*L. tenuifolius*) is a variety of this (*Lotus corniculatus*), the stems being twice as long and narrow, the leaves linear and the pods narrower. Arising in shady places, Burser brought these [facts] to the attention of C. Bauhin."

It is apparent from these diagnoses that *L. corniculatus* is a decumbent plant bearing decumbent pods, with *L. tenuifolius* being a more narrow-leaved and slender-stemmed form. *L. hirsutus* and *L. rectus*, however, are both upright plants, *L. hirsutus* being distinguished by its hairiness and *L. rectus* by its spherical inflorescence and straight or horizontal pods.

In 1772, Scopoli published his observations of the group in 'Flora Carniolica' and mentions two species; *L. corniculatus* and *L. major*.

His initial description of *L. corniculatus* is the same as that of Linnaeus.

"**LOTUS corniculatus.**
Lotus floribus umbellatis; siliquis pendulis; caule procumbente. HAL. Enum. p. 572. n. 3.
Habitat in pratis et collibus herbis; initio M. Maii florens.
Caulis sola basis, apud nos procumbens.
Umbella 4-5-flora. Calycini dentes villosuli.
Filamenta omnia apice dilatata. Stigma incrassatum, ovale, acuminatum. Siliqua uncialis, recta, nitens, fusco-rubra, arido stylo terminata."

"Lotus with heads flattened from above, decumbent stems, cylindrical spreading pods. Linnaeus.

Lotus with umbellate flowers, pendulous pods, procumbent stem. von Haller."
Habitat: It grows in meadows and on grassy hills; flowering from the beginning of May.

The bases of the stems lie on the soil, procumbent in our area (according to us). Umbels of 4 to 5 flowers. Calyx teeth slightly hairy. All filaments dilated at tip. Stigma thickened, oval, acuminate. The pods one inch long, straight, glossy, dark reddish-brown terminating in a withered style.

Why Scopoli includes the earlier (1742) description of L. corniculatus by von Haller, one of Linnaeus's foreign correspondents, is not clear. His version appears to be not at all like L. corniculatus, but more like a procumbent form of L. major with the same pendulous pods.

Scopoli later in his account elaborates on the question of the pods, contradicting von Haller by describing them as straight (or upright) but not pendulous.

The description of L. major is as follows:

"LOTUS major.
Lotus floribus umbellatis; siliquis pendulis; caule erecto. HALL. Enum. p. 571. n. 2.
Loti corniculati major species. I. BAUH.
Hist. II. p. 358.
Habitat iuxta vias in siccis; sub finem M. Mai florens."

"Lotus with umbellate flowers, pendulous pods; upright stem. von Haller.
Lotus corniculatus major species. Bauhin.
Habitat: Commonly found beside roads in dry areas. Flowers before the end of May."

This upright plant, with pendulous pods, inhabiting dry areas, would appear to be an upright form of L. corniculatus, not described by Linnaeus. There is no evidence to suggest a link between this plant, L. major, and L. rectus, for Linnaeus fits
Bauhin's description "Lotus siliquosus glaber, flore rotundo" to L. rectus, whereas Scopoli uses Bauhin's description "Loti corniculati major species" for L. major.

There is also a clear difference in the attitude of the pods which are straight in L. rectus L. and pendulous, according to von Haller in L. major. Scopoli makes no mention of the more slender form, L. tenuifolius described by Linnaeus.

Schkuhr's (1796) classification in 'Botanisches Handbuch' provides much more information on the genus and describes four species of interest: L. rectus, L. hirsutus, L. uliginosus and L. arvensis.

He states of L. rectus:

"Upright horned clover

Plants with almost round flower heads, upright, smooth stems and straight glabrous pods. It grows wild in Sicily and Calabria and is found as a bushy species in German (botanic) gardens.

In gardens the stems are 2 feet or more tall, with stems, leaves, pedicels and sepals more or less hairy. The tripartite leaves are rounded, becoming wedge-shaped or end in a small point.

The flowers are yellow. The calyx teeth are of equal length and the stigma is head-shaped."
This fuller description of *L. rectus* contains phrases used by Linnaeus in his diagnosis, so there can be some certainty that the same plant is being described, although according to Schkuhr it is a plant with a limited distribution.

Schkuhr's description of *L. hirsutus* similarly follows the Linnaean model and is a plant with a much wider distribution.

"*Lot. hirsutus*. Zottiger Schotenklee; mit fast rundem Blumenkopf einem aufrechten steifhaarigen Stamme, und erzundenen Hülsen. Wächst ausser Frankreich, Italien und der Levante, auch in Bayern wild, und ist auch in deutschen Gärten Υ, oder Η. Die Blattchen sind langlich, an beidem Enden zugespitzt, und stehen zu 4-5 auf ihrem Stiel. Die Kelche sind wollig; das Fähnchen ist blasiwoll, die Flügel weisslich, und das Schiffschen an der Spisse schwarz. Bl. im Sommer."

"Hairy horned clover

Plants with almost round flower heads and upright stem with stiff hairs and oval pods. It is perennial growing in France, Italy and the Levant and also wild in Bavaria and is also in German (botanic) gardens. The leaves are longish, pointed at both ends with 4 or 5 to a stem.

The calyx is hairy and the standard petal pale yellow, the wings whitish and the keel is black at the tip."

In what appears to be the first account of *L. uliginosus* Schkuhr states:

"*Lot. uliginosus* Sumpf Schotenklee, Sumpf Hornklee, gähnarti Sumpfklee; mit runden rohrigen Stängeln und Blumenstiel en k, gefransten zurückgekrümmten kelchspissen a, und walsen-förmi gen, abstehenden Hülsen c. Diese und folgende Art Stehen nach Linné und übrigen mir bekannten Schriftstellern als Übänderungen unter L. corniculatus, in ganz Bid. Υ, die ich aber, nach vieljährigen Beobachtungen, für zwey ganz verschiedene Arten halte, und den angegebenen Unterschied für beständig gefunden
Plants with round, hollow stems and peduncles. The calyx teeth are bent back and the pods upright. This and the following types are according to Linnaeus and other writers known to me, variations on *L. corniculatus*, but after much observation I consider *L. corniculatus* to be quite different from *L. uliginosus*. *L. uliginosus* grows in marshy, shady meadows and other such places. The stems are 1 foot, 2 feet tall or even taller and the stems and peduncles are rounded. Particularly before the flower opens the calyx teeth are bent backwards and spreading. The legumes are longer, the seeds smaller, yellowish brown on outside and yellow on the inside."

This description of *L. uliginosus* as a wetland species with hollow stems, upright pods and with calyx teeth spreading in bud distinguishes it from any previously described species.

Schkuhr contrasts it with the following species, *L. arvensis*.

"*Lotus arvensis. feld=Schotenklee, kleiner hornklee, gelbe Vogelwicke, kleiner gelber honigklee, guliherklee, wilder Steinklee, frauenfingerkraut; mit eckigem Stängel und nicht rohrigen Blumenstielien, ausrechten Kelchähnchen, und waltserformigen, abstehenden Hülsen. Wächst in ganz Dor. auf trocken Wiesen, an Wegen und Akerreinen h. Die Stängel sind gestreckt, ungefähr eine Hand und drüber lang; bis weilen scheinen die Blütenchene mehr stumpf, als bey vorigen. Die Blumen sind gelb, vordem Aufblühen"
"Field, small, yellow, small yellow or wild horned clover

Plants with angular and not hollow stems. Upright calyx teeth and upright legumes. It grows all over Germany in dry meadows and paths. The stems are procumbent, about a hand or even longer. Sometimes the leaves are more rounded than L. uliginosus. The flowers are yellow, often tinged with red before opening and the calyx teeth are tight together. The pods are shorter than previously and the seeds bigger, brown on outside and inwardly green."

Although L. arvensis appears to be the type of small, decumbent plant thought of by Linnaeus as L. corniculatus, there is an apparent difference of opinion about the appearance of the pods. Schkuhr describes the pods as being straight or upright, whereas Linnaeus claims them to be decumbent and cylindrical, and Scopoli to be spreading and cylindrical or straight. Possibly this is not the inconsistent character it appears to be, but a matter of different use of terminology. 'Spreading', 'straight' and 'decumbent' may all take the meaning, 'horizontal to the ground'.

Von Haller is the only author to describe the pods as pendulous. This observation he applies not only to decumbent forms but also to upright forms of L. corniculatus with which L. major and subsequently L. rectus and L. uliginosus are later associated. In the case of the latter two named species the pods are indisputably not pendulous.
Plate 2:

This plate (Plate 2) from Schkuhr's "Botanisches Handbuch" illustrates various characters which distinguish L. uliginosus from the more decumbent forms of L. corniculatus. L. uliginosus can be seen to have a larger number of flowers per head, reflexed or spreading, villous calyx teeth, a hollow stem and longer, narrower pods containing smaller seeds than L. arvensis.

Three years previously in 1793, Cavanilles had published in 'Icones et Descriptiones Plantarum' a description of a plant possibly similar to L. major Scopoli, named L. pedunculatus. Cavanilles states:

"LOTUS PEDUNCULATUS

LOTUS caule herbaeeo; foliitis lanceolatis, medio petiolo; floribus longe pedunculatis. Caulis herbaceus, teres, tripedalis, glaberrimus et tota planta. Folia lanceolata, apice acuta, non ita ternata, ut tria foliola in apice sedeat petioli communis;

"Lotus with green fleshy stem: lanceolate leaflets, with the middle petiolate: the flowers with elongated peduncles. The stem is fleshy, tapering upwards, 3 feet long, very glabrous, as is the whole plant.

Lanceolate leaves with pointed tips, not in threes, so that three leaflets share a common petiole, but the middle leaflet has its own petiole at the base of which are found the remnants: ovate stipules, coming to a point, broader and shorter than the leaves.

Flowers with umbellate heads, supported by axillary peduncles, single, nearly half a foot long: at the tip there is a sessile tri-partite leaf.

Calyx obconical, oblong, divided halfway into 5 parts, awl shaped almost uniform in length.

Yellow pea-like corolla, standard ovate, longer at wings, these are oblong and crescent shaped at base; shorter keel with 2 bristles at base.

Stamens and pistils the same as other members of the genus.

Fruit lacking (when examined).

Habitat - plentiful around the town of Mentrida on land commonly known as Arroya de Valdegotera. Flowers in July."

The following Plate (Plate 3) is taken from 'Icones et Descriptiones Plantarum' by Cavanilles (1793). It illustrates an upright plant with straight calyx teeth and glabrous, fleshy stem.
LOTUS PEDUNCULATUS.

Explicit. tab. a Flos integer. b Calix. c Petala expansa. d Germen. e Stamina.

Plate 3
It is apparent that *L. pedunculatus* Cav. more closely resembles *L. major* Scop. or *L. rectus* L., than it does *L. uliginosus* Schk. The differences between the calyx teeth of *L. pedunculatus* and *L. uliginosus* are distinguishable as is the contrast in the fleshiness of the stem.

Unfortunately, no description of the pods of *L. pedunculatus* was made by Cavanilles so that whether the pods were pendulous, as of von Haller's description of *L. major* or straight and spreading as of *L. rectus* remains uncertain.

A summary of the situation at the end of the 18th century is represented in Table 1.

In 1809 Willdenow published 'Enumeratio Plantarum Horti' in which he retained the Linnaean diagnosis for the genus *Lotus* with the exception of *L. tenuis*. This he regarded as a distinct species and not a variety of *L. corniculatus*. Using the original diagnosis of Waldstein and Kitaibel from 'Descriptiones et Icones Plantarum' (1799-1812) he states:

"*LOTUS tenuis.*
L. leguminibus subquaternis teretibus aristatis,
caule decumbente ramoso, foliis linear-lanceolatis glabris.
Lotus tenuis. Waldstein et Kitaibel.
Habitat in Hungaria.

"Lotus with no more than 4 aristate tapering pods, branching, decumbent stem, linear-lanceolate leaflets - glabrous.
*Habitat in Hungary."

This description becomes the reference point for many later botanists.

Major changes were brought about by de Candolle who published his revision in 'Prodromus Systematis Naturalis' between
<table>
<thead>
<tr>
<th>Author</th>
<th>Date Published</th>
<th>Equivalent Species</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauhin</td>
<td>1623</td>
<td>Lotus siliquosus glaber, flore rotundo</td>
<td>Lotus pentaphyllos</td>
<td>Melilotus pentaphyllos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siliquosus villosum</td>
<td>minor glabra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>von Haller</td>
<td>1744</td>
<td>Lotus floribus umbellatis; siliquis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pendulis; caule procumbente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linnaeus</td>
<td>1756</td>
<td>Lotus rectus</td>
<td>Lotus corniculatus</td>
<td>Lotus tenuifolius</td>
</tr>
<tr>
<td>Scopoli</td>
<td>1772</td>
<td>Lotus corniculatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavanilles</td>
<td>1793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schkuhr</td>
<td>1796</td>
<td>Lotus rectus</td>
<td>Lotus hirsutus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Table of Equivalent Species
1824 and 1874 in which he classifies each previously described species as varieties of L. corniculatus.

He states:

"42. L. CORNICULATUS (Linn. spec. 1092) caulisbus prostratis, foliisis obovatis vel linearisibus glabris vel pilosis, stipulis ovatis, bracteis lanceolatis lineari-rumustis, pedunculis longissimis, capitulis depressis 6-10 floris, calycebus campanulatis, lacinis acutis longitudine tubi et corollae muto brevioribus, leguminibus teretibus, seminibus reniformibus viridibus - atris. in pratis Europae frequentes. - Riv. t. 76. Fl. saepe extus rubri extinctione virides. (v.s.)

arvensis (Ser. mss.) glabriusculus, caulisbus subprostratis, foliisis obovatis, floribus luteis. - OEd. fl. dan. t. 991. L. arvensis Schkuhr handb. 2. t. 211. (v.v.)

major (Ser. mss.) caulisbus erectis plus minusve pilosis majoribus fistulosis. - L. major Smith engl. bot. t. 2991. In seribus humidis. L. uliginosus Schkuhr handb. 2. t. 211. (v.v.)

villosus, caulisbus foliisis villosis erectis, L. villosus Thuill. fl. par. ed. 2. p. 357. (v.v.)

crassifolius (Pers. ench. 2. p. 354) pilosus, foliisis ovatis carnulosis, caulisbus foliosis prostratis, radice crassa. - In sterilibus maritimis. (v.v.)

Alpinus (Schleich! sert. exs. n. 75) caulisbus foliisis minimis, floribus saepe extus ruberrimis. In Alpibus. (v.v.)

43. L. PEDUNCULATUS (Cav. tc. 2. p. 52. t. 164*) glaberrimus, caulis herbaceo, foliisis lanceolatis acutis terminali petiolulato, stipulis ovato-subcordatis, pedunculis longissimis, floribus umbellato-capitatis, bracteis lanceolatis acutis calyce subcampanulato longioribus, lacinis calycinis subaequalibus acutis tubi longituinde et corollae muto brevioribus, leguminibus.
"L. corniculatus (Linn.) prostrate stems, obovate leaflets, either glabrous or hairy, ovate stipules, lanceolate bracts, very long peduncles, flattened flowerheads, 8-10 flowers, bell-shaped calyx, tapering pods, kidney-shaped greenish seeds.

a. arvensis almost glabrous, almost prostrate stems, obovate leaflets, yellow flowers. L. arvensis Schkuhr.

b. major erect stems, more or less hairy, hollow stemmed. L. major Smith, in damp hedgerows, L. uliginosus Schkuhr.

c. villosus stems and leaves with erect hairs.

d. crassifolius distinctly hairy, fleshy/ovate leaflets, leafy prostrate stems, thick root. Found in infertile maritime regions.

e. alpinus very small stems and leaves, flowers very red on outside. In Alps.

f. tenuifolius stems thread-like and almost erect, leaflets and stipules linear-lanceolate. In rubbish dumps L. tenuis Kit. in Willdenow.

Lotus pedunculatus Cav. Very glabrous fleshy stem, lanceolate leaflets, the terminal leaflet being petiolated, stipules ovate with round basal lobes separated by a shallow notch, very long peduncles, umbellate flower heads, bracts sharply lanceolate, quite long with almost bell-shaped calyx. Calyx teeth pointed and of equal length, shorter than the corolla tube.... (as of Cavanilles).

Grows in Spain. Pale yellow flowers. Perhaps a variety of L. corniculatus?"

De Candolle proposes that L. arvensis and L. major, and possibly L. pedunculatus, should be regarded as varieties of L. corniculatus. He retains the distinction between the decumbent form named var. arvensis and the taller forms such as var. major. He fails to discriminate between L. major and L. uliginosus, making no reference to the spreading calyx teeth of L. uliginosus described by Schkuhr. He does however retain other previously recognised features of L. uliginosus such as the hollow stem and its
preference for damp habitats. In regarding *L. uliginosus* as synonymous with *L. major* de Candolle fails to contend with the inconsistency it creates with Scopoli's description of *L. major* as a plant of dry areas.

Introductions to the classification include var. *crassifolius* and var. *alpinus*. While both are smaller decumbent forms similar to *L. arvensis*, he distinguishes var. *crassifolius* on the basis of its fleshy leaflets, hairy appearance and maritime habitat. Var. *alpinus* is distinguished by its small leaflets and Alpine habitat.

The changes brought about by de Candolle are partly upheld by Gray (1821).

He states:

"*Lotus major*. Great birdsfoot-trefoil. Heads depressed, 20-flowered; stem upright, pipey, cylindrical; calyx-teeth bearded, bent back; legumens cylindrical, spreading; claw of the standard linear.

Lotus corniculatus major, Raiti Syn. 334, 3.
Lotus uliginosus, Hoffmann Germ. 2, 100.
Lotus rectus, De Candolle Fl. Gall. 3939.
Damp places and woods; perennial; June and July. Stem 3 feet high; branches long, diffuse; stipules nearly heartshape; flowers golden; legumens tapering towards the end.

Lotus corniculatus. Horned birdsfoot-trefoil. Head depressed, 8 to 10-flowered; stem decumbent, solid; legumens spreading, stiff; claw of the standard ovate.

Trifolium siliquosum minus, Ger. em. 1190, 5.
Small cobbled trefoil. Milk vetch.
Fields and pastures; also cultivated; perennial; June to August. Stem decumbent; opposite leaflets closed together; flowers gold-colour; standard fulvous; legumens larger towards the end. - Herb, in moist meadows, makes excellent hay;"
flowers turn green in drying, like those of indigo.

\(\beta \). \textit{tenuifolius}. Stem long, slender, rather shrubby; leaves and stipules linear, lanceolate, bald; legumen slender. *Lotus pentaphyllus minor, angustioribus foliis, fruticosior*, Raii Syn. 334, 2.

\(\gamma \). \textit{incanus}. Leaves hoary, beneath. *Lotus corniculatus minor, foliis subitus incanis, Dill. in Raii Syn 334, 5.*

While retaining \textit{L. uliginosus} as a synonym for \textit{L. major}, he also includes \textit{L. rectus}. The basis for this appears to have little historical justification. Gray combines descriptions suggestive of \textit{L. corniculatus} i.e. heads depressed and legumes cylindrical and spreading, with others that suggest \textit{L. uliginosus} i.e. calyx-teeth bent back and pipey stem.

\textit{L. rectus} Linnaeus and \textit{L. rectus} Schkuhr have rounded flower heads with upright pods, whereas \textit{L. major} Scopoli has possibly pendulous pods.

By contrast, Gray's description of \textit{L. corniculatus} remains the standard one for the decumbent form similar to \textit{L. arvensis} DC or \textit{L. corniculatus} L. He distinguishes three varieties on the basis of leaf shape and hairiness. He recognises var. \textit{tenuifolius} as a slender-leaved variety as have other authors, and also a hairy form var. \textit{incanus} and a glabrous form, var. \textit{glabra}. Var. \textit{incanus} may be equivalent to var. \textit{villosus} DC, but not to \textit{L. hirsutus} L. which was described as an upright plant.

The account by Smith (1825) in 'The British Flora' is particularly full and forms a reference point for later taxonomists.
He recognises three perennial species, *L. corniculatus*, *L. major* and *L. decumbens*.

He states:

In open grassy pastures, common. Perennial. June-September.
Root branching, somewhat woody; the fibres beset with small granulations. Stems several, spreading on the ground in every direction, varying in length from 3 to 10 inches, simple or branched, solid, filled with pith, angular, leafy, sometimes quite smooth, but for the most part clothed, like the glaucous backs of the leaves, with close-pressed hairs. Leaflets obovate, acute, entire, on short partial stalks; the lateral ones oblique, or inequilateral. Common footstalk channelled, about the length of the leaflets, having at its base a pair of ovate stipulas, resembling them, but rather smaller. Flower-stalks axillary, solitary, erect or recumbent, angular, 5 times as long as the leaves, each bearing from 2 or 3 to 5 bright yellow flowers, dark green when dried, in a flat head or umbel, accompanied by a small ternate leaf. They change to orange in verging towards decay. The standard (not keel, as by a slip of the pen in Engl. Bot.) striped with red at the base in front; its claw much dilated and vaulted. Keel pale yellow. Filaments in their separate part all dilated under the anthers. Interstices of the calyx-teeth rounded. Legume smooth, of a shining purplish brown, a little depressed and channelled along the upper side.

Trifolium siliquosum minus. Ger. Em. 1190 f.
β. Lotus corniculata minor, folis subtus incanis.
Dill. in Raii Syn. 334.
*L. corniculatus c. Fl. Br. 794."
It can be seen that this description covers the range of previously described decumbent forms including *L. arvensis*, *L. crassifolius* and possibly *var. incanus*.

Smith again raises the question of the attitude of the pods. Initially he describes them as 'spreading', and later enlarges on this when he states that they are 'a little depressed'. This may have seemed to Smith to be a satisfactory compromise after considering the previous difficulties other authors had had with this character.

Smith's description of *Lotus major* is:

L. major. Scop. Carn. v. 2. 86. Comp. ed.
Loti corniculatae major species. Rall Syn. 334.
β. *L. pentaphyllos medius pilosus*. Dill. in Rall Syn. 334.
L. corniculatus. δ. Fl. Br. 794."

Smith's view is an interesting combination of ideas. In all respects it represents the views held by de Candolle and Gray, with the one exception of the attitude of the pods. He states that *L. major* has drooping pods, his description reverting back to the original observation by von Haller and used by Scopoli. This is in direct contrast with Gray's opinion that *L. major* is synonymous with *L. uliginosus* and *L. rectus* and therefore by inference has
straight or upright pods.

Smith quite clearly does not regard \textit{L. major} as a form of upright \textit{corniculatus}, as might have been the case, having given it equivalence in some respects with \textit{L. major} Scopoli. Whereas Scopoli thought of \textit{L. major} as a plant of dry areas, to Smith it is quite different and \textit{L. uliginosus}-like in its choice of habitat. Smith states, contrasting it with \textit{L. corniculatus}, that:

"It is a plant of wet bushy places, and hedges. Very different from the foregoing species (\textit{L. corniculatus}) in general habit, and now technically distinguished by several clear and sufficient characters, for most of which I am indebted to the worthy Dean of Bristol. Every botanist had been struck with the aspect of the plant, and Scopoli long ago proposed it as a species, but without a sufficient specific definition, except that of the shorter separate filaments not being, like the longer ones, dilated under their anthers. The stems are from 1 to 2 or 3 feet high, upright, clothed, more or less, with long loosely-spreading hairs, rarely quite smooth; internally hollow, or tubular, with little or no pith in any part, which I take to be an important character. Leaves fringed or clothed with similar hairs. Fl. from 6 to 12 in each head, of a duller orange than the former. Calyx-teeth stellated in an early state; their interstices, when fully expanded, acutangular, not rounded. Claw of the standard almost linear, though vaulted. Legumes not horizontal, but drooping, slender and exactly cylindrical.

Whether there may be any difference in the agricultural qualities of these plants, and whether the present might be capable of cultivation in very wet meadows, nobody has hitherto inquired."

These views are supported by Lindley (1829) and Withering (1830), both of whom agree on the moist habitat of \textit{L. major}. The third
species, *L. decumbens*, described by Smith makes an interesting, if diverting, contribution to classification of the group. He states:

"*L. decumbens*. Spreading Bird's-foot-trefoil

Heads of few flowers. Stems recumbent, nearly solid. Legumes somewhat spreading, cylindrical, two-edged. Calyx hairy; its teeth shorter than the tube.

L. decumbens. Forst. Tonbr. 86. Stems widely spreading, partly quite prostrate, a foot or more in length, branched, filled with light pith, angular, leafy, smooth, somewhat glaucous. Leaves glaucous, smooth above; occasionally clothed beneath with short, close, bristly hairs. Leaflets and stipulas similar, lanceolate, pointed, oblique, except the terminal one, which is obovate-lanceolate. Common footstalk but half the length of the leaflets, channelled, slightly bordered. Flower-stalks axillary 4 or 5 times the length of the leaves, smooth, stout and firm, obscurely angular, each bearing an umbel of from 3 to 6 bright yellow flowers, accompanied by a ternate leaf without stipulas. In starved plants the flowers are solitary. Partial stalks and calyx all over silky, with more or less abundant, short, close hairs; the calyx-teeth lanceolate, tapering, spreading, shorter than the tube, somewhat hairy, with wide rounded interstices. Separate portion of each filament of considerable length, the longest dilated upwards. Legumes nearly erect, or but slightly spreading, smooth, dotted, cylindrical, without any depression or channel, both sutures rather prominent, forming a ridge along each margin. I can find no account of any thing approaching this species except *L. pedunculatus*, Cavan. Ic. t. 164, the plate and description of which are not very discriminative, but its stem is said to be erect, 3 feet high, and every part of the plant is perfectly smooth. *L. decumbens* grows in Switzerland and the Levant, as well as on the sandy shores of Sicily. Most botanists have supposed it a variety of the *corniculatus*."
description of *L. corniculatus*. Apart from having lanceolate and not obovate leaflets, in many ways *L. decumbens* is reminiscent of *L. crassifolius* as described by de Candolle, particularly as both *L. crassifolius* and *L. decumbens* had been observed in maritime habitats.

Why Smith should associate *L. decumbens* with *L. pedunculatus* Cavanilles is not clear. Except for having lanceolate leaflets it appears as quite different. *L. decumbens* is a prostrate, partly hairy plant with stems around 1 foot. *L. pedunculatus* is erect, glabrous, with stems 3 feet tall. Smith himself makes this comparison.

By 1830, Hooker in 'British Flora' had questioned Smith's classification and incorporated *L. decumbens* with *L. tenuis*.

He remains uncertain however of the distinction of *L. tenuis* and *L. corniculatus*, possibly because of his inclusion of *L. decumbens* and further states of *L. tenuis*:

"I am really unable to point out any marks by which this may be known from the preceding (*L. corniculatus*) except its more slender and straggling habit, and narrower foliage. It is certainly by no means an uncommon plant."

With similar doubts in mind Hooker writes of *L. major*:
"Sides of ditches and moist bushy places, by no means unfrequent. Fl. July, Aug. . - The place of growth of this plant, in moister situations than L. corniculatus, consequently inducing a greater development of every part, is I think, in itself, almost sufficient to account for those trifling differences which are said to distinguish it from that well-known species. The difference of breadth of the filaments in the two, mentioned by Smith, Mr. Wilson finds not to be constant. L. corniculatus, he adds "seems to differ chiefly in the vaulted or gibbous appearance of the upper part of the claw of the standard, which raises up the two teeth of the calyx above."

But is this mark constant? Smith says the claw of the standard of our present plant, "though linear, is vaulted."

This concern over the constancy of characters does not escape the notice of Withering (1830). In his publication 'British Plants' he makes the following observation on the genus:

"It is, perhaps, more difficult to give a true and Essential Character to this genus, than to any other, notwithstanding the general habit, which is at once perceptible, and the properties of the plants which compose it show that it is a natural one; and those who have attempted to divide it, have not been able to fix any certain limits to their subdivisions."

Despite these reservations he later makes a positive contribution to the discussion by including the results of a colleague working with both L. corniculatus and L. major:

"Mr. Sinclair states that he has raised this plant from seed on two different soils, the above characters remaining permanent (i.e. those described by Hooker) and expresses his surprise that two plants so distinct in habits should have so long been considered varieties only. "What renders a specific distinction of most importance to the farmer, is the difference which exists between them"
in an agricultural point of view. The weight of green food, or hay, produced by L. major is triple that of L. corniculatus, and its nutritive powers are little inferior, but it is extremely bitter. It does not appear to be eaten by any cattle when in a green state; but when made into hay with common grasses, sheep, oxen, and deer eat it without reluctance. In moist clayey soils it would doubtless be a most profitable substitute for red clover, but the excess of bitter extractive and saline matters it contains seems to forbid its adoption without a considerable admixture of other plants."

Hort. Gram. E.)"

The German botanist Koch (1843) showed that the current European opinion concurred with that of most British authors:

"L. CORNICULATUS (L. sp. 1092) procumbens glaber vel hirsutus, pilis patentibus, pedunculis folio quadruplo quinquiplo longioribus, capitulis subquinquefloris, dentibus calycis e basi triangulare subulatis subaequalibus ante anthesin conniventibus, alis lato-obovatis, carina subrhombica rectangula adscendente, leguminibus linearibus teretibus rectis. ι. In pasuise, pratis, ad sylvorum oras. Mai-in autumn. L. arvensis Schk. t. 331. Flores lutei, excus suepe sanguinei, raro toti sanguinei. Foliola et stipulae obovata. Variat:

α. vulgaris, glaber vel sparse pilosus.
β. ciliatus, foliolis calycibusque pilis longis ciliatis.

L. corniculatus Γ. tenutfolius L. sp. 1092., (sec. herbar. C. Bauhini, conf. Hagenb. fl.)
L. corniculatus, Decumbent, glabrous or hairy, with spreading hairs, peduncles longer with a 4 or 5 fold leaf, heads upto 5 flowered, with sharply pointed calyx teeth, almost even in length arising from a triangular base, closed together before flowering, wings laterally obovate, keel almost rhomboid with a rectangular standard, legumes linear, tapering, straight. In pastures, meadows, edges of woods, May-autumn. L. arvensis Schk. Flowers yellow, outside often red, rarely completely red. Leaves and stipules obovate. Varieties

α vulgaris; glabrous or sparsely hairy.
β ciliatus; hairy or very hairy.
γ hirsutus; completely hairy L. villosus Thuill.
L. tenuifolius. Decumbent glabrous or partly hairy, with spreading hairs, peduncles longer with a 4 or 5 fold leaf, heads upto 5 flowered, with sharply pointed calyx teeth, almost uniform in length, arising from a triangular base, closed together before flowering, wings laterally obovate, keel almost rhomboid with a rectangular standard, legumes linear, tapering, straight. In meadows chiefly in salty areas. Narrow, hollow stem with linear or linear-obovate leaflets and stipules. The wings evidently narrower than in L. corniculatus, and by this single characteristic L. tenuifolius is immediately distinguishable from the preceding plant.

L. uliginosus Schk. Somewhat erect, glabrous or slightly hairy, hairs spreading, about 12 flowers per head, very long peduncles, calyx teeth arising from a triangular base, almost even in length, equal to half the length of the corolla tube, bent back before flowering, the keel ovate at base gradually narrowing towards tip, linear, straight, tapering legumes. In ditches and marshy meadows. It differs from L. corniculatus by: taller stems, obviously narrow, many more flowers on umbels, the direction of the calyx teeth before flowering, ovate standard, not rounded, with wings covering a narrower keel which is not abruptly tapering but is completely enclosed in the living plant (the keel is visible below the wings in L. corniculatus), by pods almost twice as narrow and seeds many but half the size. Filaments are not different in length, and in this and the previously mentioned species the tips are greatly dilated."

Koch's description of L. uliginosus clearly follows that published by Schkuhr, and like Smith, Gray and De Candolle, he associates it with L. major Scop.

As L. corniculatus is taken to be a smaller, decumbent plant, in the absence of any description of an upright L. corniculatus it is almost inevitable that such taller forms could be mis-identified as L. uliginosus.

The failure to discriminate between these two forms suggests the difficulty involved in being able to do so. However, it is possible to extract from previous descriptions some characters that are more helpful than others.

Those, the more commonly described characters retained over the years, would appear to have the most useful diagnostic
value. The ones which appear most frequently for distinguishing between plants at a specific level are: growth habit, appearance of calyx teeth and number of flowers per inflorescence. Other characters, particularly degree of hairiness and leaflet shape are more favoured for their intra-specific value. By 1850 characters such as length, shape and attitude of the filaments, petals and legumes appear to have been dismissed as unreliable.

This re-evaluation of the taxonomic characters is reflected in the descriptions published by Hooker & Arnott (1850) in 'The British Flora' and by Babington (1843 and 1851) in 'Manual of British Botany'. Babington's description is as follows:

"1. L. corniculatus (L.); claw of the standard obovate transversely vaulted, calyx-teeth straight in the bud subulate from a triangular base, points of the 2 upper ones converging, heads 5-10-flowered. - Glabrous or slightly hairy. Stem ascending. Leaflets obovate. Stipules ovate. Angle between the 2 upper calyx-teeth rounded. - \(\beta \). villosus (Ser.); upper part of stem., leaves., and calyx hairy with long spreading hairs. - \(\gamma \). crassifolius (Pers.); pilose, stem caespitose, leaflets obovate fleshy, stipules ovate. - \(\delta \). L. tenuis (Sm.); glabrous or slightly hairy, stem filiform elongated procumbent or ascending, leaflets linear or linear-obovate, stipules \(\frac{1}{2} \)-ovate. - Pastures, dry banks.

2. L. major (Scop.?); claw of the standard linear, calyx-teeth spreading like a star in the bud subulate from a triangular base, two upper ones diverging, heads 8-12-flowered, leaflets obovate, stipules roundish-ovate. L. uliginosus Schkuhr. - Hairy. Stem usually erect, 1-3 feet high. Angle between the 2 upper calyx-teeth acute. - \(\beta \). glabriusculus (Bab.); glabrous, the margins and nerves of the leaves stipules bracts and sepals ciliated, stem erect or procumbent. - In damp places. \(\beta \). on drier spots."

Babington's classification is interesting for two main reasons.
Firstly, he introduces a new feature contrasting the difference between the calyx teeth of *L. corniculatus* and those of *L. major*. He mentions the angle set by the upper two calyx teeth; a diagnostic character in modern use. Secondly, Babington recognises a more glabrous form of *uliginosus*, erect or procumbent, a plant of drier areas. Possibly var. *glabriusculus* could go part way to providing the missing description for an upright *L. corniculatus*.

Such distinctions did not find universal agreement, for Bentham (1858) in his 'Handbook of the British Flora', names only one species, *L. corniculatus* L., and writes:

"It is a very variable species, accommodating itself to very different stations and climates; and some of the races appear so permanent in certain localities as to have been generally admitted as species, but in others they run so much into one another as to be absolutely indistinguishable."

Bentham's opinion is acknowledged by Hooker and Arnott (1860) in a later edition of their work. Hooker in fact restates his reservations, held since 1830 concerning *L. major*.

"The place of growth of this plant, in moister situations than *L. corniculatus*, consequently inducing a greater development of every part, is, in itself, almost sufficient to account for the trifling variations which distinguish it from that well-known species, to which it has been united by Mr. Bentham. It is sometimes nearly glabrous, but usually hairy; and a very hairy state has been gathered in Ireland."

From this time on, the specific epithet 'major' is gradually superseded by its acknowledged synonym, 'uliginosus'.

In Europe, Wagner (1871) in 'Deutsche Flora' and Bouvier
(1878) in 'Flore de Alpes' had both retained L. major Scop. But by 1889 Gremli in 'The Flora of Switzerland' and later Willkomm (1893) in 'Prodromi Florae Hispanicae, Supplementum', had both preferred the use of L. uliginosus Schk.

Of importance is the observation made by Willkomm after his description of L. uliginosus.

"3720 bis (lapsu 3719). Lotus uliginosus Schk. Adde:
β. brachycarpa Wk. in litt., leguminibus brevibus (12-15 mm l.). Prope Ronda ad ripas fluv. Rio del Tajo (Reverch. 1889) et in humidis pr. Grazalema (Reverch. 1890, forma latifolia, caulis hirsutus).
Observ. Ad hanc speciem certe referendus est L. pedunculatus Cav. qui nil est nisi forma glabra foliolo medio plus minus longe pedicellato."

"Lotus uliginosus Schk.
β. brachycarpa Wk. in litt. with short legumes (12-15mm). Beside Ronda near the river banks of the Rio de Tajo (Reverch. 1889) and in wet meadows of Grazalema (Reverch. 1890, a broad-leaved form with hairy stems).
Observation. This species is certainly called to mind by L. pedunculatus Cav. which is none other than a glabrous form with medium-sized leaves and more or less long pedicels."

The revival of L. pedunculatus and its linking with L. uliginosus added a further dimension to the classification of the group which was later to be the subject of some controversy.

Although in Britain the matter of L. pedunculatus had yet to be considered, clearly Bentham also took a broad view of the group. In a revised edition (1900) of 'The Handbook of British Flora', he remains firmly of the opinion that L. corniculatus is an aggregate species with a number of forms.

He writes:

"a. L. uliginosus, Schk. Tall, ascending or
nearly erect, glabrous or slightly hairy, and luxuriant in all its parts, with 6 to 8 flowers in the umbel. Calyx-teeth usually, but not always, finer and more spreading than in the smaller forms. In moist meadows, along ditches, under hedges, and in rich, bushy places. L. major, Sm.; L. pilosus, Becke.

b. L. crassifolius, Pers. Low and spreading often tufted at the base, glabrous or nearly so, usually with 5 or 6 rather large flowers to the umbel. Leaflets broad, and often glaucous, especially near the sea, where they become much thicker. In open pastures and on dry, sunny banks.

c. L. villosus, Coss. and Germ. Like the common variety, but covered with long spreading hairs. In dry, sunny situations, common in southern Europe, but in Britain found only in Kent and Devon.

d. L. tenuis, Waldst and Kit. Slender and more branched than the common form, with very narrow leaflets. In poor pastures and grassy places, chiefly in south-eastern Europe. Rare in Britain, and always running much into the common form. L. decumbens, Forst.

It is apparent from Bentham's description of L. uliginosus, the only upright form, that he does not regard the spreading calyx teeth as an altogether consistent character. On this description, taller, ascending forms with straight calyx teeth, perhaps better described as an upright L. corniculatus, could be included.

It cannot be assumed that such upright forms, while existing in continental Europe, did not also exist in Britain. Herbarium material of exactly this type, collected in Bullingdon, Oxfordshire, in 1893, and identified as L. uliginosus var. glaber; exists at the Royal Botanic Garden, Edinburgh.

This problem of distinguishing between these two forms, L. uliginosus and upright L. corniculatus was addressed by Hegi (1907) in 'Illustrierte Flora von Mittel-Europa'. Hegi gives an
extensive and detailed account of the group. Although he only distinguishes two species, *L. corniculatus* and *L. uliginosus*, he splits *L. corniculatus* into a number of sub-species, varieties and forms. Among these is the sub-species major

"3. subsp. major (Scop.) (= L. major Scop., = L. vindicatus Boenig., = L. angustifolius Guill., = L. tenuifolius var. odoratus Boiss.). Stengel 2 bis 3 dm hoch, aufsteigend oder aufrecht, weitrohrig, meist ziemlich lang behaart, astig, bis oben beblättert. Blättchen meist lanzettlich, die unteren länglich-lanzettlich. Blütensäcke kurz gestielt, meist 2- bis 4- (bis 6-) blütig. Blüten ziemlich klein, Kelchzähne schmal, 6 so lang wie die Kelchröhre. Südeuropa (Polauer Berge in Mähren, Krain, Istrien, Balkanlander), Asien, Nordafrika (bis Ägypten und Abessynien)."

"L. corniculatus subsp. major Scop = L. major Scopoli

Stem 2 to 3 dm high, upright to erect hollow stem with quite long hairs, leafy to the top of stem. The small leaves are mostly lanceolate with the lower ones linear-lanceolate. Peduncles are short-stemmed, mostly with 2 to 4 but up to 6 flowers. Flowers are quite small. Calyx teeth narrow, more or less as long as the calyx tube."

Hegi contrasts this with *L. uliginosus*.

Engl.: Greater bird’s-foot trefoil. Fig. 1432 f bis 1 und 1433 a, b.

Ausdauernd, mit kurzeblüger Pfahlwurzel und kränzen, mit Niederblättern besetzten, wurzelnden Bodenaushäufern (Fig. 1433a und b); aus diesen die Laubprosse entspringend. Stengel aufsteigend oder aufrecht, 3 bis 9 dm hoch, oft ziemlich stark verzweigt, schwach (daher sich oft an hohen Gräsern und Stauden stehrend),
meist weitrohrig, schwach gerillt, kahl oder
+ behaart. Blaublätter dicklich, oberseits
Lebhaft, unterseits bläulichgrün, ähnlich
denen der vorigen Art, doch die Blätchen etwas
großer, mit deutlichen Seitenrippen, die
obere oft mehr elliptisch, die unteren neben-
blattförmigen breit schief-herzförmig, alle
am Rand oft gewimpert. Blutenstandsative
kräftig, 3 bis 4 mal so lang als das tragende
Blaublatt. Blütendolden meist 8- bis 12-
(4- bis 15-) blütig, am Grund mit 1- bis 3-
zähligem Hochblatt. Blüten meist radial
ausgebretetet, 13 mm lang, deutlich gestielt.
Kelch 5- oder 10-nervig; die Zähne so lang
oder etwas kürzer als die Röhre, lineal,
weniger spitz als bei L. corniculatus, oft be-
wimpert, vor dem Aufblühren bogenförmig
abstehend bis fast sternförmig ausgebreitet."

"L. uliginosus Schkuhr = L. major Smith non Scopoli

Stem upright, 3 to 9 dm high, often quite well branched, weak
and often found among tall grasses, mostly hollow, slightly
grooved, glabrous or more or less hairy. Foliage leaves
thickish, upperside bright green, bluish-green on undersurface,
leaves similar to sub sp. major but bigger with clearly marked
veins. The upper leaves are often more elliptical, the lower
leaves, as are the stipules, almost heart-shaped, the terminal
leaflets often ciliate. Peduncle erect, 3 to 4 times as long
as the leaves. Flower heads mostly 8 to 12 (14-15) flowered,
subtended by a leaf divided 1 to 3 times. Flowers mostly
radially arranged, about 13 mm long, clearly stemmed. Calyx 5
or 10 nerved, the teeth are as long as or slightly shorter than
the tube, not as pointed as L. corniculatus, before the flower
opens the teeth are bent backwards as of a star."

It is Hegi's opinion that there is a difference between
L. major Smith and L. major Scopoli. Whereas he finds L. major
Smith to be synonymous with L. uliginosus Schkuhr, as do previous
authors, Hegi prefers L. major Scopoli to be used to describe an
upright L. corniculatus. This would appear to fit with Scopoli's
view who refers to Bauhin's naming of the plant as Lotus corniculatus
major species (Page 12).

It was Smith himself who felt that L. major Smith and
L. major Scopoli were the same (Page 27) although Babington also
appears to have had doubts. He lists \textit{L. major} (Scop?) separately from \textit{L. uliginosus} Schkuhr (Page 35).

This point is discussed by the American author, MacDonald (1946) in his book 'Bird's-foot Trefoil: its Characteristics and Potentialities as a Forage Legume',

"Considerable difficulty and confusion has existed concerning the nomenclature of \textit{L. uliginosus}. Continental European writers have followed the example of Brand (1898) describing the plant as greater or marsh bird's-foot trefoil under the name \textit{L. uliginosus} Schkuhr, while British authors generally have given it the name \textit{Lotus major} Smith. American writers have for the most part, followed the former nomenclature."

MacDonald goes on to say,

"Brand contends that \textit{L. major} Scopoli is not \textit{L. major} Sm. = \textit{L. uliginosus} Schkuhr. He feels that the descriptions given in each instance did not apply to the same species. He did not, however, compare herbarium specimens."

Prior to MacDonald, Robinson (1934) in "Birdsfoot Trefoil: A Monograph", had also discussed the matter and argued the reverse.

"If we examine Bauhin's work we find the plants now known as \textit{L. corniculatus} and \textit{L. major} both described and also illustrated. There can be no doubt that the illustration accompanying "\textit{Loti corniculi major species}" refers to \textit{L. major} Sm. = \textit{L. uliginosus} Schkuhr. It differs from \textit{L. corniculatus} in having more numerous and smaller flowers (despite the text which speaks of "flores .. in orbe conjesti, majores") and the drawing shows in one case 8 fruits per head, and in another case 7 fruits per head, numbers which are unusual in \textit{L. corniculatus} but common in \textit{L. major}."
Robinson concludes that

"it is permissible to adopt Smith's version, despite the authority of Brand, and call the Greater Birdsfoot Trefoil, Lotus major Scop. sec. Smith = L. uliginosus Schkuhr, in view of the fact that the latter name is of more recent origin.

Brand says that European botanists have little difficulty in distinguishing between the two species, but when considering extra-European forms it is not possible to draw a sharp distinction between them. He lays great stress on the lateral veins of the leaflet, which in L. major are distinct while the reverse is the case in L. corniculatus."

Hegi (1907), also points out that the leaf veins of L. uliginosus = L. major Smith are clearly visible and finds it a useful character for distinguishing between L. uliginosus and L. corniculatus ssp. major = L. major Scopoli.

While in Continental Europe these distinctions were being discussed, contemporary workers in North America were still content to provide broad descriptions of L. corniculatus. Britton & Brown (1897) in 'An Illustrated Flora of the Northern U.S. and Canada', provided the following description:

Perennial from a long root, appressed-pubescent or glabrate. Stems slender, decumbent, or ascending, 3'-20' long; leaves 3-foliately, short-petioled; leaflets obovate, oblanceolate or oblong, 3"-8" long, obtuse or acute; stipules similar to the leaflets, and often as large; peduncles elongated, sometimes 4'-6' long, umbellately 3-12-flowered; calyx-lobes acute, as long as the tube or shorter; corolla bright yellow, 6"-9" long, or the standard reddish; pods linear, about 1' long, spreading, several-seeded."
In waste places and on ballast, New Brunswick, and about the seaports of the Eastern and Middle States. Adventive from Europe. Native also of Asia, and widely distributed as a weed. Crowtoes (Milton), Cat's-clover, Sheepfoot. June-Sept.

While making a reference to Linnaeus's description of the decumbent form of *L. corniculatus*, they also include ascending forms with up to 12 flowers. Such large numbers of flowers are more commonly found in *L. uliginosus*, which is not described separately.

Not all Europeans followed the example set by Hegi either, for Coste (1937), although recognizing *L. uliginosus* Schk. as synonymous with *L. major* Sm., also provides an all-embracing description of *L. corniculatus*.

"*L. CORNICULATUS* L. - Plante vivace de 10-40 cm., glabre ou velue à tous les degrés, à souche dure; tiges pleines ou à peine creuses, couchées ou ascendantes; folioles obovales ou oblongues; stipules ovales; fleurs jaunes, verdissant par la dessication, 3-6 sur des peduncules bien plus longs que la feuille; calice en cloche, à dents égales, triangulaires en âle, dressées-concaves même dans le bouton, égalant le tube; ailes obovales, a bord inférieur fortement courbé: carène courbée presque à angle droit; gousse de 20-35 mm., linéaire, un peu épaisse, droite. Plante polymorphe.

Prés, bois, champs, coteaux, dans toute la France et en Corse. - Europe; Asie; Afrique septentrionale. - Mai-septembre."

"*L. corniculatus* L. - Perennial plant - 10-40cm, glabrous or somewhat hairy, with a woody rootstock, stems solid or slightly hollow, decumbent or ascending. Leaflets obovate or oblong, stipules oval, flowers yellow, becoming green when they dry out, 3-6 on peduncles much longer than the leaf."
Calyx bell-shaped, teeth of equal length, triangular tapering to a point, erect, gradually converging, even in the bud, the same length as the tube; obovate wings, with the lower edge sharply curved, keel is curved to the extent of being almost a right angle; pods of 20-35 mm, linear, somewhat thickened, straight. Polymorphous plant.

Meadows, wood, fields, slopes, throughout France and Corsica, Europe, Asia, North Africa. (Flowers) May-Sept."

Coste, although recognising the type of plant described by Hegi as *L. corniculatus* ssp. major, does not distinguish it from decumbent forms. Instead he prefers to point out that the plant is polymorphous.

In 1941 Binz and Thommen published their description in 'Flore de la Suisse'.

Rather surprisingly Binz and Thommen fail to recognise any decumbent form of *L. corniculatus* such as *L. crassifolius* or
L. alpinus, particularly as such a plant had previously been described in Switzerland by Thompson in 1912. In his 'Sub-Alpine Plants of the Swiss Woods and Meadows', he stated:

"Lotus corniculatus L. Bird's-foot Trefoil.
A small glabrous plant, 3-8 inches high, tufted, but very variable in habit. Leaves very shortly petioled. Flowers very shortly pedicelled, bright yellow, often streaked with crimson and turning green when dry, 5-10 flowers in a decumbent umbel or head about an inch across, on long peduncles; 2 upper calyx teeth triangular. Pods about an inch long. Pastures from the plains to 9000 feet (var. alpinus Schl.) in the Alps. May to July. Distribution. - Europe, to the Arctic regions, N. Africa, N. and W. Asia, India."

The existence of L. alpinus Schleicher had previously been discussed by Hegi (1907). By 1950 Hegi's views still influenced the classification of the group and were re-stated by the Czech botanist Dostál (1950). Although mentioning the absence of L. uliginosus in Slovakia he draws useful and clear distinctions between L. corniculatus and L. uliginosus.

"Lodyhy píne n. úzce duté, lístky bez postranních šílek, dol. šikmo vejcovité, kvetenství 2-5 květů, K. cípy dvnitř skloněné, člunek dl. zobáčnatý: L. corniculatus.
Lodyhy řetězatě duté, lístky se řetězem postranními šílkami, dol. okrouhlé srčité, kvetenství nejméně 10 květů, K. cípy rozestálé až nespět ohrnuté, člunek zemní nažípkanatý: L. uliginosus."
"L. corniculatus
Stems solid or narrowly hollow with pith; lateral veins of leaflets not obvious; stipules obovate, set at slight angle; 2-5 flowers in inflorescence; calyx teeth turned inwards; keel long and tapering to a point.

L. uliginosus
Stems distinctly hollow; leaflets with obvious lateral veins; stipules ovate; 10 flowers in inflorescence; calyx teeth turned outwards; keel comes abruptly to a point."

Dostál also describes 3 sub-species of L. corniculatus: ssp. tenuifolius; ssp. eucorniculatus, a solid-stemmed decumbent form; and ssp. major, a slightly hollow-stemmed upright form of dry sunny positions. This later description is the same as that proposed by Hegi (1907) for ssp. major Scopoli non Smith.

In Britain at this time, few if any authors had distinguished between the decumbent and ascending or upright forms of L. corniculatus. However all recognised L. uliginosus and L. tenuis as being distinct forms, if not separate species, with general agreement about the characters involved.

Hutchinson (1955) and Meledis & Bangerter (1955) refer to L. corniculatus as a plant with decumbent or ascending stems up to 1 foot. However McClintock & Fitter (1955) state that it is usually prostrate whereas Butcher (1961) refers to ascending stems of 3 to 6 inches. Clapham, Tutin & Warburg (1962) were of the opinion that British L. corniculatus was of a decumbent form.

The classification also reveals Tutin's decision to change the nomenclature of L. uliginosus used in the first edition (1952) to L. pedunculatus Cavanilles.

His descriptions are as follows:

"L. corniculatus L. Birdsfoot-trefoil, Bacon and Eggs.
A decumbent almost glabrous or rarely hairy perennial
10-40 cm. Rootstock stout, scarcely stoloniferous.
stem solid or nearly so. Lflets 3-10mm., obovate, obtuse or apiculate, lower pair broadly ovate or lanceolate; petioles short.
Heads (1-)2-6(-8)-fld; peduncles up to c. 8cm., stout. Fls c. 15mm., yellow, often streaked or tipped with red, shortly pedicelled. Calyx-teeth triangular, erect in bud, two upper with an obtuse sinus. Petals 2-3 times as long as calyx. Pod up to 3cm. Fl. 6-9. 2n = 24*.
Hp. Variable.
Native. In pastures and grassy places. 112, H40,S. Generally distributed throughout the British Is. Europe to about 71°N.; Asia; N. and E. Africa; in the tropics only on mountains.

L. pedunculatus Cav. 'Large Birtfoot-trefoil.'
L. uliginosus Schkuhr; L. major auct.
An erect or ascending glabrous or pubescent perennial 15-60(-100)cm. Rootstock slender, producing numerous stolons. Stem hollow. Lflets usually 15-20mm., obovate, often obliquely so, obtuse or mucronate, lower pair ovate; petioles up to 10mm. Heads (1-)5-12-fld; peduncles up to c. 15cm., rather slender. Fls 10-12mm. Calyx-teeth spreading in bud, 2 upper with an acute sinus. Otherwise much the same as L. corniculatus. Fl. 6-8. 2n = 12*; 24. Hp.
Native. In damp grassy places. 107, H40, S. Throughout the British Is., except the extreme north, but less common than L. corniculatus. Europe from Spain and the northern Balkans to S. Scandinavia and C. Russia; Asia; N. Africa.

Adopting L. pedunculatus in preference to L. uliginosus, presumably on the principle of priority, indicates how close Tutin felt Cavanilles's (1793) description and Schkuhr's (1796) description to be. This point had been considered earlier by Willkomm in 1893 (Page 37) but had not been followed up by other authors until this point.

The result of this re-introduction of L. pedunculatus into the classification in the early 1960's, is clearly shown in the published work at this time. This is so not only in Britain, but also in North America and Australasia.

In 1956 Curtis in 'The Student's Flora of Tasmania'
recognised *L. corniculatus*, *L. tenuis* and *L. uliginosus*, whereas by 1972 Willis in 'A Handbook of Plants in Victoria' refers to *L. corniculatus* and *L. pedunculatus*.

He states:

Stem + decumbent, solid or nearly so;
leaflets 3-10mm. long, obovate, obtuse;
calyx-teeth erect in bud; pod 2-3cm. long:
W.A., Tas., N.S.W., A.C.T., Qd, N.Z.

L. pedunculatus Cav. Icon. et Descr. Plant. 2: 52, t. 154 (1793).
L. uliginosus Schkuhr Bot. Handb. 2: 412, t. 211 (1795).
Stem erect or ascending, hollow; leaflets
mostly 15-20mm. long, obovate (often obliquely so), obtuse; calyx-teeth spreading in the bud;
pod 2-3cm. long:
W.A., Tas., N.Z.

Most taxonomists in Europe, however, remained of the opinion that *L. pedunculatus* and *L. uliginosus* were two different plants, and that the name *L. pedunculatus* should be reserved for a plant found locally in Spain around the areas first described by Cavanilles.

Many European authors, such as Mullenders (1967) in 'Flore de la Belgique, du Nord de la France et des Régions Voisines' fail to mention *L. pedunculatus* at all. Similarly no reference is made to *L. pedunculatus* as either a separate species or as a synonym for *L. uliginosus* in the Italian publication 'La Nostra Flora' by Fenaroli (1969).

It is possibly as a result of the work of Ball in collaboration with Chrtkóvá-Žertová to compile the classification in 'Flora Europaea', 1969, in which is pointed out a number of morphological differences between *L. pedunculatus* and *L. uliginosus*.
that the name *L. uliginosus* has found favour in Britain again.

In this classification found in 'Flora Europaea', Ball lists 14 species within the *L. corniculatus* group of which 5 are included below.

L. tenuis Waldst. & Kit. ex Willd., Enum. Pl. Hort. Berol. 797 (1809) (L. tenuifolius (L.) Reichenb., non Burm. fil.). Stems 20-90cm, glabrous or sparsely pubescent. Leaflets 5-15 x 1-4mm, linear or linear-lanceolate. Heads 1- to 4(-6)-flowered. Calyx-teeth equal, usually shorter than tube; corolla 6-12mm, yellow; wings obovate-oblong. Legume 15-30 x 2-2.5mm. 2n = 12. Most of Europe except the north-east and extreme north. Al.

L. corniculatus L., Sp. Pl. 775 (1753) (incl. L. ambiguus Besser ex Sprengel, L. caucasicus Kuprian). Stems 5-35cm, procumbent or ascending, glabrous to villous. Leaflets 4-18 x 1-10mm, lanceolate or oblanceolate to suborbicular. Heads (1-)2- to 7-flowered; pedicels 1-2.5mm. Calyx-teeth equal, shorter or slightly longer than the tube, triangular to filiform with triangular base; corolla 10-16mm, usually yellow. Legume 15-30 x 2-2.5mm. 2n = 24. Almost throughout Europe. All except Sb; introduced in Is.

As described here this species is very variable, it may eventually be possible to recognise a number of subspecies, but the native distribution of this and some related species is very confused, owing to their widespread use as a forage crop.

The main variants which occur in Europe are as follows:
(i) sparsely to densely pubescent; calyx-teeth shorter than tube (N. part of the range of the species, locally in the south);
(ii) glabrous or sparsely pubescent; leaflets small, fleshy; calyx-teeth about \(\frac{1}{2} \) as long as tube (coasts of W. & N. Europe);
(iii) villous or densely pubescent; calyx-teeth slightly longer than tube (C. & S. Europe).

Dwarf plants resembling 8 (*L. alpinus*) in many characters also occur in the mountains.

L. uliginosus Schkuhr, Handb. 2: 412 (1796) (L. pedunculatus auct., non Cav., L. corniculatus subsp. major auct. pro parte). Stems 30-100cm, erect or ascending, subglabrous to villous, hollow. Leaflets 8-25 x 3-15mm, obovate, obtuse, often mucronate, glaucous beneath. Heads 5- to 12(-15)-flowered; pedicels 1-2mm. Calyx-teeth about as long as tube, the upper pair separated by an acute sinus in bud; corolla 10-18mm. Legume 15-35 x 2-2.5mm. 2n = 12. Marshes and wet grassland. W, C. & S. Europe, extending northwards to 60° N. in Fennoscandia and eastwards to c. 25° E. in Ukraine; often occurring as a casual elsewhere in Europe.

L. pedunculatus Cav., Icon. Descr. 2: 52 (1793). Like L. uliginosus but leaflets rhombic, acute; heads 3- to 8(-10)-flowered; calyx-teeth longer than tube, the upper 2 separated by an obtuse sinus in bud. Stems 40-120cm, pubescent; leaflets 15-35 x 5-12mm; legume 15-40 x 2-3mm. W. & C. Spain, E.C. Portugal.

The classification shows that the main criterion used for distinguishing between L. pedunculatus and L. uliginosus is the angle between the upper two calyx teeth. It is doubtful, however, that this character is uniform, so that to some extent the distinctions that have been drawn are simply an attempt to treat the variation that exists within the group consistently.

Importantly, though for uncertain reasons, the name L. pedunculatus has persisted in Australia, New Zealand and North America, although almost certainly it is the same plant as L. uliginosus. Scoggan (1978) in 'Flora of Canada' makes the following observation, noting its spread since 1894, although it was not recognised in all floras of that time (Page 42).
"L. pedunculatus Cav.
Eurasian; apparently known in N. America only
from moist waste places and old fields in
Canada, as in s B.C. (L. ulig. reported by
Eastham 1947, as introd. as a forage crop and
apparently well established along roadside
ditches at New Westminster and vicinity; coll-
ection from near Hatzie in V), Sask. (Boivin
1966b), s Ont. (near Hamilton, Wentworth Co.;
Montgomery 1957), E. Que. (W Gaspe Pen.), N.B.
(near St. Stephen, Charlotte Co., where taken
by Pickett in 1894; CAN), and N.S. (Boivin
1966b). [L. uliginosus Schk.]."

Recent European work has generally tended to extend the
classification to include _L. alpinus_, a very prostrate form of
Schweiz' state:

"Lotus alpinus (DC.) Schleicher, Alpen-Schotenklee
5–10 cm hoch. Stengel niederliegend, am Ende
aufsteigend, meist kahl. Teilblätter bis 0,8 cm. 1–1½
mal so lang wie breit, + kahl oder am Rande
bewimpert. Blütenstände 1–3 blütig 6–7 mm lang, fast
kahl; Kelchzipfel mit 0,5–1 mm langen Haaren
bewimpert, vor dem Aufblühen zusammeneigend. Krone
12–18 mm lang, nach dem Verblühen orange;
Schiffchen spitzen purpurn. — Blüte: Sommer. 2n = 12.
Standort. Alpin, seltener subalpin, Lockere,
halkhaltige und kalkarme, steinige Böden.
Schutt- und Weiden, Rasen."

"Alpine podded clover.
5–10cm high. Stem prostrate, turning up at the end, usually
glabrous. Leaflets about 0.8cm, 1 to 1½ times as long as
broad, more or less glabrous or ciliate at the margins.
Peduncle 1 to 3 flowered, 6–7mm long, almost glabrous, calyx
teeth with 0.5 to 1mm long hairs, and straight in bud. Corolla
12–18mm long, becoming orange on withering; Keel purple.
Flowers in summer.
2n = 12.
Localities, Alpine, rarely sub-alpine, loose calcareous and
non-calcareous stony soils, scree, meadows and pastures."

In 'Flora Italica', Zangheri (1976) describes _L. alpinus_ as:
"Plant height about 3-10cm, alpine, glabrous or more or less hairy, heads of 1 to 3 flowers (seldom more); leaflets in general of not more than 8mm long; corolla 12-18mm long, reddish on outside especially towards tips, root large and woody and plant very much tufted. \([2n = 18]\) — L. alpinus (DC.) Schleicher ex Ramond."

In Britain, the present situation, as described by Clapham, Tutin and Warburg (1983) in the third edition of 'Excursion Flora of the British Isles' is as follows:

1. L. corniculatus L. Birdsfoot-trefoil. Eggs-and-Bacon

10-40 cm. usually glabrous and spreading. Stolons 0; stem solid or nearly so. Lflets 3-10 mm, lanceolate or oblanceolate to suborbicular, obtuse or apiculate, the lower pair broadly ovate or lanceolate; petioles short. Heads (1-)2-6(-8)-fld. Fis c. 15 mm. yellow, often streaked or tipped with red. Calyx-teeth triangular, erect in bud, the 2 upper with an obtuse sinus between them. Pod up to 3 cm. Fl. 6-9. Generally distributed in grassy places.

2. L. tenuis Waldst. & Kit. ex Willd. Slender Birdsfoot trefoil

Like 1 but stems more slender, often taller (to 90 cm), much more wiry; lflets linear-lanceolate, acuminate, or rarely narrowly obovate; heads rarely more than 4-fld; fis c. 10 mm; calyx-teeth narrow. Fl. 6-8. In dry grassy places; much less common than L. corniculatus and absent from much of the north.

3. L. uliginosus Schkuhr. Large Birdsfoot-trefoil

Like 1 but stoloniferous; stems hollow, soft, up to 1 m; lflets 15-20 mm obovate, obtuse or mucronate; heads 5-12-fld; calyx-teeth spreading in bud, the 2 upper with an acute sinus between them. Fl. 6-8. In damp grassy places; widely distributed northwards to Orkney."
Tutin has made two main changes to his 1962 description. *L. corniculatus* is referred to as 'spreading' whereas previously he had used the word 'decumbent'. From this could be inferred that a wider range of growth habits now occurs in Britain. Secondly, the name *L. pedunculatus* has been replaced by *L. uliginosus*. Presumably this indicates the resolution of the *L. uliginosus-pedunculatus* nomenclature problem. Rose (1981), however, still retains the name *L. pedunculatus* in his classification.

The numerous problems involved in the division of *L. corniculatus* sensu lato have been pointed out many times by many botanists. Ball (1968) in 'Flora Europaea' states that,

"The data available at the present are insufficient to produce a comprehensive account of the group, and it is likely that some of the species recognised here are heterogeneous, while others may not be distinct species."

Other taxonomists have subdivided the complex into a large number of species, sub species and varieties, which differ only very little from each other, while some have preferred to form more comprehensive groups so recognising fewer, polymorphic species.

Some distinction of species has been made on the basis of chromosome numbers. *L. corniculatus* sensu stricto is generally regarded as tetraploid (2n = 24). However Zeven and de Wet (1982) state that Landolt (1970) and Somarov & Grant (1971) have found both diploid and tetraploid *L. corniculatus*. They have suggested that the diploid is a hybrid and the tetraploid is an allotetraploid of *L. alpinus* (2n = 12) and *L. pilosus* (2n = 12).
Chrtkóva-Zertová (1973), in her monographic study, confirms that *L. corniculatus* is tetraploid (2n = 24) and recognises the probability of hybridisation within the species complex. On the other hand, she states the likelihood of hybridisation between *L. corniculatus* and a related diploid species such as *L. alpinus* to be questionable. Despite this, high altitude forms of *L. corniculatus* often appear indistinguishable from *L. alpinus*. The difficulties of separating these species morphologically may have contributed to reports of *L. alpinus* existing in both diploid and tetraploid forms.

However, Reynaud (1980) states that he was able to recognise *L. alpinus* growing within populations of *L. corniculatus* sensu stricto in the Alps. He goes on to say that *L. alpinus* may be diploid (2n = 12) or tetraploid or even hexaploid and that distribution is influenced by altitude and soil type. Diploids are more commonly found between 2200m and 3000m on acidic soils, whereas the upper limit for tetraploids is about 2400m, though they may be found up to 2700m on calcareous soils.

Chrtkóva-Zertová (1973), comments that *L. corniculatus* var. alpicola (2n = 24) is morphologically similar to *L. alpinus* (2n = 12) and that in a study of var. alpicola in the Carpathian mountains the number 2n = 24 was established. She states that in this study *L. alpinus* was not found, it occurring only in the Alps. This disagrees with findings by Borsos (1966) who had earlier reported the existence of *L. alpinus* in the Carpathian area.

L. tenuis and *L. uliginosus* are generally regarded as diploid (2n = 12). However, autotetraploid cultivars of *L. uliginosus* (*L. pedunculatus*), such as Grasslands Maku, have been produced in
New Zealand. Although these plants show increased vigour, they are morphologically very similar to the diploid L. uliginosus.

A hexaploid (2n = 36) form of L. corniculatus has been reported from the Apennines (Beuret, 1977) and work is also proceeding in New Zealand on the production of allohexaploid crosses between L. corniculatus and L. uliginosus (Charlton pers. comm.). Such developments prompt discussion on the importance of differences in chromosome number when defining species.

Generally a species is characterised by a single chromosome number, which then may serve as a useful taxonomic character. In fact the species concept sees a species as a distinct population where closely related species are kept separate by reproductive isolating mechanisms. These mechanisms prevent or reduce gene exchange. Since plants with different chromosome numbers are usually effectively genetically isolated, for even if hybridisation takes place the progeny are likely to be sterile, then it is claimed there is a case for supporting the view of one species - one chromosome number. Löve & Löve (1974) have expressed and extended this viewpoint to include the notion that differences in chromosome base-number should not be tolerated within a single genus. By using these strict criteria many new genera would be created and species divided when morphological studies alone would have shown no basis for separation, as would be the case with Lotus. Stace (1980) states:

"It is true that the great majority of species separated largely on cytological evidence were earlier recognised as taxonomic entities on morphological grounds, but the differences are often very slight and had often led to recognition at only the infraspecific level. The
redefinition of genera and species by means of chromosome number alone cannot be justified."
5. Materials and Methods

Plants corresponding to the description of *Lotus corniculatus* sensu lato were collected from a number of sites within the British Isles and Continental Europe. On examination of this material, and also plants which were grown from seed, it became apparent that while *L. uliginosus* could in most, but not all cases be distinguished immediately from *L. corniculatus* sensu stricto, there were two forms of the latter species which could also be readily distinguished. The distinction between these two forms was eventually taken to be:

a) Decumbent form. Plants with stems lying on the soil surface and with none ascending.

b) Erect form. Plants with any or all of the stems ascending or erect.

On the basis that single characters, especially in an aggregate species as variable as *Lotus corniculatus*, are of relatively little value in determining the status of different forms, other characters were studied in relation to these two forms to establish whether a case could be made for giving them taxonomic status. Measurements from each of these forms have therefore been separated and the validity for this separation is discussed. In addition, herbarium material from the Royal Botanic Garden, Edinburgh, was examined.

Seeds identified as *L. corniculatus*, *L. uliginosus*, *L. pedunculatus* and *L. tenuis* were obtained from various sources in Northern, Central and Southern Europe as well as from Canada, the United States and New Zealand.
British Material

Between April and August 1982 material identified as either *L. corniculatus* or *L. uliginosus* was collected from 67 sites throughout Britain (Appendix 1) and brought back to the West of Scotland Agricultural College, Auchincruive. Plants and seeds were grown in 4 inch pots in John Innes No. 2 compost. Stems were trimmed back as necessary to a few centimetres above soil level and the plants overwintered in a heated glasshouse. In April 1983, after a hardening-off period, plants were put 1m apart into plots and maintained under more or less uniform conditions. Various morphological measurements of *L. corniculatus* and *L. uliginosus* were taken in situ at a further 43 sites and 35 sites respectively, throughout the country.

Continental European Material

Seed was obtained from various sources throughout Continental Europe (Appendix 2). Where seeds were known to have originated from local wild populations the sites of these have been indicated, as have the origins of a small number of whole plants brought from Norway and alpine areas of Switzerland, France and Italy.

The European cultivars grown were: Tarborgsk, Puwskæ, Orseg, Bursztyn, Odenwlder, Franco, Porto and Hoki.

Canadian, United States and New Zealand Material

North American cultivars grown from seed were: Granger, Morshansk, Mansfield, Wallace, Leo, Maitland, Marshfield, Fargo,
Douglas, Border, Empire, Tana, Westriver, Viking. The New Zealand cultivars grown were Grasslands Maku and a number of unnamed varieties presently undergoing agronomic trials.

Seed was sown between February and December 1982. Seedlings were grown on in John Innes No. 2 compost in a heated glasshouse and after hardening-off in coldframes in the spring were transplanted into the plots along with the British and European material in April 1983.

Following their establishment and growth the Lotus population in the plots comprised 141 plants consisting of 59 *L. uliginosus*, 41 *L. corniculatus* (erect form), 34 *L. corniculatus* (decumbent form) and 7 *L. tenuis*.

During July and August 1983 morphological measurements were made of each plant using criteria which have previously been employed to distinguish the different species.

Measurements

Leaflet length

5 terminal leaflets from each plant were measured from the leaf tip along the main vein to the leaf base. Where plants were heterophyllous leaflets were taken from the mid-stem region.

Leaflet length:breadth ratio

Breadth was measured across the mid-point of the same leaflets.

Leaflet hairiness

The presence or absence of leaflet hairs was noted. Hairy
forms were classified as either sparsely or densely hairy.

Stem length

The lengths of 3 main stems from each plant were measured.

Hollowness of stems

Cross-sections from 3 main stems from each plant were examined and classified as either hollow with little or no pith, or solid and completely filled with medullary tissue.

Peduncle length

The lengths of 5 peduncles from each plant were measured.

Number of flowers per inflorescence

The number of flowers on 3 inflorescences of each plant were counted.

Seed size

As the length to breadth ratio appeared constant at 1.25, seed length only was taken as an indication of seed size. The lengths of 10 seeds from 20 L. corniculatus (decumbent form), 20 L. corniculatus (erect form), 20 L. uliginosus and 7 L. tenuis taken at random were measured using a haemocytometer.

Calyx teeth: appearance in bud

The calyx teeth of each plant were examined while in bud and categorised as being either spreading or erect (Plates 4 & 5).
Calyx teeth: shape

The calyx teeth were examined when the plants were in full flower and their shape subjectively assessed as being either narrowly pointed or broadly triangular (Plates 6 & 7).

Calyx teeth: angle between two upper teeth

The angle between the two upper calyx teeth was recorded as obtuse if the sinus was rounded or blunt and acute if it was brought sharply to a point.

Length of internodes

The number and length of internodes on 3 main stems of 10 randomly selected plants representing each group were recorded.

Prominence of leaf veins

The undersurface of 3 leaflets from each plant was examined to determine the prominence of the veins. Veins were recorded as being either present or absent. If veins were discernible but not conspicuously present they were classified as distinct.

Leaf epidermal cells

Epidermal tissue, obtained from a leaf tear, was microscopically examined for variation in cell shape and size.

Leaf shape after transplanting

23 *L. corniculatus* (decumbent form) and 15 *L. uliginosus* remained alive one year after transplantation from the wild. The
leaflet length and leaflet length:breadth ratio of these plants were compared to corresponding measurements made on the same plants one year previously when growing in wild conditions.

Presence of rhizomes

Plants were examined for the presence of rhizomes. Any rhizomes were themselves examined for the presence of adventitious roots.

Chromosome numbers

Stem cuttings from each plant were grown in a rooting medium of 3 parts sand : 1 part peat in a mist propagator. On establishment, young actively growing roots were removed for root squash preparations and the following procedure was carried out.

The roots were pretreated by soaking in 0.002M 8-hydroxyquinoline for 1 hour and then fixed in 3:1 mixture absolute alcohol : glacial acetic acid for 24 hours and placed in a refrigerator. On removal they were soaked in 5N hydrochloric acid for 10 minutes and washed in distilled water for 2 minutes. The root tips were excised and stained with lactopropionic orcein. A squash was prepared by repeatedly tapping the material on a glass slide with the tip of a brass rod held vertically. Subsequently the root cells were examined microscopically for variation in chromosome number.
6. Results

Most of the material studied had been supplied or identified as L. corniculatus or L. uliginosus and as explained previously, L. corniculatus plants were divided into erect and decumbent forms. These three types were the only types available in sufficient numbers for meaningful statistical analyses to be made of the measurements taken. Therefore most of the results deal with the differences between them. However, mention of L. tenuis has been made in cases where it seemed a clear-cut difference existed.

6.1 Leaflet Length

The range over which leaflets vary in length is shown in Fig. 1. Noticeably few plants have leaflets of 10 or 11mm long so that some discontinuity is apparent. Leaflets of 7 to 9mm long are most frequently encountered in the decumbent form of L. corniculatus, whereas in the erect form leaflets of 12 to 17mm are most common. Occasional plants of decumbent L. corniculatus were found with long leaves.

The range of leaflet length in L. uliginosus overlaps considerably with that of the erect form of L. corniculatus although a small percentage of the population may be found with leaves longer than any in the erect L. corniculatus population.

No significant differences (Table 2) are found between L. uliginosus and the erect form of L. corniculatus with respect to leaflet length. However both of these populations are
Fig 1. Terminal Leaflet: Length (mm)

- L. corniculatus (decumbent form)
- L. corniculatus (erect form)
- L. uliginosus
significantly different from the decumbent form of *L. corniculatus*.

Table 2: Mean Leaflet Length (mm)

<table>
<thead>
<tr>
<th></th>
<th>Mean length</th>
<th>Standard Deviation (S.D.)</th>
<th>Standard Error (S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>16.5</td>
<td>4.0</td>
<td>0.23</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>14.5</td>
<td>3.1</td>
<td>0.22</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>7.8</td>
<td>2.1</td>
<td>0.16</td>
</tr>
</tbody>
</table>

6.2 Leaflet Length to Breadth Ratio

Fig. 2 shows that the leaves of *L. uliginosus* and the erect form of *L. corniculatus* are most frequently obovate and slightly more than twice as long as broad. There appears to be no significant difference (Table 3) in this ratio between these two species. However both these length to breadth ratios are significantly different from that found in the decumbent form of *L. corniculatus*. In this population most frequently the leaves are less than twice as long as broad so the leaves appear broader and more rounded than in either the erect form of *L. corniculatus* or *L. uliginosus*. *L. tenuis* has significantly longer and thinner leaves than the others.

Table 3. Mean Leaflet Length to Breadth Ratio

<table>
<thead>
<tr>
<th></th>
<th>Mean ratio</th>
<th>S.D.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>2.03</td>
<td>0.26</td>
<td>0.03</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>2.10</td>
<td>0.56</td>
<td>0.09</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>1.83</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>L. tenuis</td>
<td>3.1</td>
<td>0.28</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Fig 2 Terminal leaflet: Ratio of Length to Breadth

L. corniculatus (decumbent form)

L. corniculatus (erect form)

L. uliginosus

% Occurrence

1.5 1.8 2.1 2.4 2.7 3.0
1.79 2.09 2.39 2.69 2.99 3.29
6.3 Leaflet Hairiness

Hairs, when present, generally appear short and weak and occur on both stems and leaves. Some plants may appear hairy on some stems but glabrous on others.

Fig. 3 shows that hairs may be found on plants of both species though more so on *L. uliginosus* than either form of *L. corniculatus*.

L. uliginosus is mostly sparsely hairy with 13% of the population densely so. The decumbent form of *L. corniculatus* is also commonly hairy with a greater proportion being densely hairy. Least frequently hairy is the erect form of *L. corniculatus* with only 7% of the population being densely so. A significant proportion of all three types is glabrous.

6.4 Stem Length

Fig. 4 and Table 4 illustrate the significant discontinuity in the range of variation in stem length of *L. corniculatus*. Stems of the decumbent form rarely exceed 200mm, whereas stems in the erect form are rarely less than 250mm.

Stem length in *L. uliginosus* is more variable than *L. corniculatus* but with the majority of the population extending over the same range as that of the erect form of *L. corniculatus*, no significant difference is apparent.
Fig 3 Leaflet Hairiness
Fig 4 Stem Length (mm)

L. corniculatus (decumbent form)

L. corniculatus (erect form)

L. uliginosus
Table 4: Mean Stem Length (mm)

<table>
<thead>
<tr>
<th></th>
<th>Mean length</th>
<th>S.D.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>356</td>
<td>112</td>
<td>8.5</td>
</tr>
<tr>
<td>L. corniculatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erect form</td>
<td>385</td>
<td>90</td>
<td>7.7</td>
</tr>
<tr>
<td>decumbent form</td>
<td>146</td>
<td>53</td>
<td>5.0</td>
</tr>
</tbody>
</table>

6.5 Hollowness of Stems

Fig. 5 shows that the large majority of plants in the L. uliginosus population have hollow stems, whereas almost all of the decumbent forms of L. corniculatus have solid stems. While the majority of the stems of the erect form of L. corniculatus are also solid at the base, in this group of the plants this character is seen more to be intermediate between L. uliginosus and the decumbent form of L. corniculatus.

6.6 Peduncle Length

Fig. 6 shows that there is considerable overlap in peduncle length between the two forms of L. corniculatus. Because of this, peduncles on the decumbent form may sometimes appear proportionately longer than on the erect form when related to stem length.

In L. uliginosus the variation in peduncle length is considerable (Table 5) and peduncles upto 30mm longer than the longest found in the erect form of L. corniculatus were observed.
Fig. 5 Hollowness of Stems
Figure 6 Peduncle Length (mm)
Table 5: Mean Peduncle Length (mm)

<table>
<thead>
<tr>
<th></th>
<th>Mean length</th>
<th>S.D.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>85.7</td>
<td>26.3</td>
<td>1.6</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>63.3</td>
<td>17.4</td>
<td>1.2</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>44.7</td>
<td>16.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

6.7 Number of Flowers per Inflorescence

Fig. 7 shows that the number of flowers per inflorescence in *L. corniculatus* ranges from 1 to 8. However, the decumbent form is commonly found with 3 to 5 flowers per inflorescence whereas the erect form more frequently has 5 to 7 flowers. Thus the variation found in each form appears to be part of the same normal distribution for this character.

L. uliginosus is again much more variable and although it is found with 4 to 15 flowers per inflorescence it is most commonly found with 5 to 12.

The differences among the three populations are significant (Table 6).

Table 6: Mean Number of Flowers per Inflorescence

<table>
<thead>
<tr>
<th></th>
<th>Mean number</th>
<th>S.D.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>9</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>6</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>4</td>
<td>1</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Fig 7 Number of flowers/inflorescence
6.8 Seed Length

Fig. 8 shows that no distinction on seed length can be made between the two forms of *L. corniculatus*. In both cases seeds varied from the smallest at 0.76mm to the largest at 1.66mm.

Seed of *L. uliginosus* is significantly smaller and is most frequently 0.76 to 0.88mm long, although the range extends from 0.5 to 1.14mm.

Seed of *L. tenuis* is indistinguishable in size and range from *L. corniculatus*.

6.9 Calyx Teeth in Bud

Plates 4 and 5 illustrate the calyx teeth of *L. uliginosus* and *L. corniculatus* when in bud. In all cases the calyx teeth of *L. uliginosus* were seen to be spreading whereas in *L. corniculatus*, decumbent and erect forms and *L. tenuis*, the calyx teeth were straight or erect. Erect calyx teeth are shown in (a) below and can be seen to continue in the same line. Spreading calyx teeth are bent back at right angles to the calyx tube (see b below).
Fig 8 Seed Length (mm⁻¹)
Plate 4 *L. uliginosus*: calyx teeth in bud

Plate 5 *L. corniculatus*: calyx teeth in bud
6.10 Angle between upper two Calyx Teeth

In the majority of cases the angle between the upper two calyx teeth of both species was acute. It was obtuse in 4% of the L. uliginosus population, 9% of the erect L. corniculatus and not at all in decumbent L. corniculatus population. The angle could vary markedly however, even in the same inflorescence.

Plate 6 shows an inflorescence of L. corniculatus viewed from above with the standard petals trimmed to reveal the calyx teeth and the angle between them. The various angles occurring in the same inflorescence can be seen. Thus depending upon the flower selected, the angle between the upper two calyx teeth, of this particular plant, could be described as acute, intermediate or obtuse. Such inconsistencies were observed also in L. uliginosus.

6.11 Length of Calyx Teeth

Plate 7 shows an inflorescence of L. corniculatus viewed from above with two of the standard petals trimmed to reveal the longer calyx teeth. The variation that exists in length and shape of the teeth even within a single inflorescence may be seen. Thus within one population long, narrowly pointed teeth may be found as well as short and broadly triangular teeth.

Similar inconsistencies were also observed in the L. uliginosus population.

Table 7, overleaf, shows that most frequently calyx teeth are found to be narrowly pointed, and that both species occur with broadly triangular teeth, particularly the decumbent form of L. corniculatus.
Plate 6 *L. corniculatus*: angle between calyx teeth

Plate 7 *L. corniculatus*: length of calyx teeth
Table 7: Shape of Calyx Teeth

<table>
<thead>
<tr>
<th></th>
<th>Narrowly Pointed</th>
<th>Broadly Triangular</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>73</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>88</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>52</td>
<td>33</td>
<td>15</td>
</tr>
</tbody>
</table>

6.12 Length of Internodes

L. uliginosus is very variable in its appearance with the erect form of L. corniculatus slightly less so. No significant difference was observed between the internode lengths of these two plants. The decumbent form of L. corniculatus however, is much less variable having more and shorter internodes so that the larger number of secondary stems give the plants a bushier and significantly different appearance. Plates 8, 9, 10 and 11 show the growth habit of plants representative of each population and Table 8 indicates the differences in internode length.

Table 8: Mean internode Length (mm)

<table>
<thead>
<tr>
<th></th>
<th>Mean length</th>
<th>Average number per plant</th>
<th>S.D. of internode length</th>
<th>S.E. of internode length</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uliginosus</td>
<td>24.8</td>
<td>12.4</td>
<td>16.9</td>
<td>1.53</td>
</tr>
<tr>
<td>L. corniculatus erect form</td>
<td>27.5</td>
<td>10.8</td>
<td>10.0</td>
<td>0.95</td>
</tr>
<tr>
<td>L. corniculatus decumbent form</td>
<td>9.3</td>
<td>16.0</td>
<td>4.5</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Plate 8 L.corniculatus (decumbent form)

Plate 9 L.corniculatus (erect form)
Plate 10 *L. uliginosus*

Plate 11 *L. tenuis*
6.13 Prominence of Leaf Veins

Table 9 shows that in *L. uliginosus* leaf veins are generally distinctly visible on the undersurface of the leaves. In contrast, the leaf veins of the decumbent form of *L. corniculatus* are generally absent. This character is more variable in the erect form of *L. corniculatus* where in half the population leaf veins were absent, and present in varying degrees in the other half.

<table>
<thead>
<tr>
<th></th>
<th>Percentage of plants occurring with leaf veins</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absent</td>
<td>Indistinct</td>
</tr>
<tr>
<td>L. uliginosus</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>L. corniculatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erect form</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>L. corniculatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decumbent form</td>
<td>82</td>
<td>18</td>
</tr>
</tbody>
</table>

6.14 Leaf Epidermal Cells

Plates 12 and 13 show examples of leaf epidermal cells in *L. corniculatus* and *L. uliginosus*. Differences in shape are apparent but the range of variation was considerable, both in these two species and in *L. tenuis*. It was found impossible to distinguish these species by this character.

6.15 Leaf Shape after Transplantation

Tables 10 and 11 show that significant changes take place in
Plate 12 Leaf epidermal cells of *L. corniculatus*

Plate 13 Leaf epidermal cells of *L. uliginosus*
leaflet length and leaflet length to breadth ratio in the
L. uliginosus and *L. corniculatus* (decumbent form) population one
year after transplantation.

In cultivation leaflets show an increase in length of
between 20 to 40%. They also increase in breadth by 60 to 70%
This affects not only the overall size of the leaflets but also
their shape so that they become less lanceolate and more broadly
ovate or obovate.

Table 10: *L. uliginosus*: Leaf Shape after Transplanting

<table>
<thead>
<tr>
<th>Terminal leaflets</th>
<th>Length to breadth ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean length (mm)</td>
<td>S.D.</td>
</tr>
<tr>
<td>In wild</td>
<td>12.7</td>
</tr>
<tr>
<td>In cultivation</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Table 11: *L. corniculatus* (decumbent form): Leaf Shape after Transplanting

<table>
<thead>
<tr>
<th>Terminal leaflets</th>
<th>Length to breadth ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean length (mm)</td>
<td>S.D.</td>
</tr>
<tr>
<td>In wild</td>
<td>5.4</td>
</tr>
<tr>
<td>In cultivation</td>
<td>7.7</td>
</tr>
</tbody>
</table>
6.16 Presence of Rhizomes

All plants were examined for the presence of rhizomes. In most cases these were found to be absent in \textit{L. corniculatus}. However in some, stems ran horizontally below the ground for a few centimetres. These were white or cream in colour but no adventitious roots were found. The only exception to this was seen in prostrate Norwegian material possibly \textit{L. corniculatus var. norvegicus} where weak adventitious roots were discovered in plants grown in pots. This material only became available late in the work and no observations were possible on its growth in the field. In contrast rhizomes were found to be present in most \textit{L. uliginosus} plants. These often rebranched forming an underground system with strong adventitious roots. The tips of these rhizomes were frequently found upturned and lying on the surface of the ground.

6.17 Chromosome Numbers

Plates 14 and 15 show metaphase preparations of the chromosomes of \textit{L. uliginosus} and \textit{L. corniculatus} at approximately 3000x magnification. In all \textit{L. uliginosus} and all \textit{L. tenuis} material examined, the number of chromosomes $2n = 12$ was recognised, whereas in all \textit{L. corniculatus} the number $2n = 24$ was established.
Plate 14 Chromosomes of *L. uliginosus*

Plate 15 Chromosomes of *L. corniculatus*
7. **Discussion**

Lotus corniculatus s.l. is not a group of species whose taxonomy may be defined precisely by genetic or morphological limits. Rather, its wide ecological range, widespread geographic distribution and polymorphous nature contrive to make the position more complex. Few characters show breaks in variation to enable relatively distinct categories to be recognised. This is not unusual. There are many species or groups of species where the same situation occurs. Stace (1980) recognises that the existence of these polymorphous complexes precludes precise definition. However, he does suggest four criteria, of which one or more may be applied, to help distinguish species.

"1. The individuals should bear a close relationship to one another such that they are always readily recognizable as members of that group.

2. There are gaps between the spectra of variation exhibited by related species; if there are no such gaps then there is a case for amalgamating the taxa as a single species.

3. Each species occupies a definable geographical area (wide or narrow) and is demonstrably suited to the environmental conditions which it encounters.

4. In sexual taxa, the individuals should be capable of interbreeding with little or no loss of fertility, and there should be some reduction in the level of success (measured in terms of hybrid fertility) of crossing with other species."

As none of these criteria is absolute, it must be recognised that the category of a species is a flexible unit of practical convenience.

In trying to produce a workable classification, most
taxonomists look for discontinuities in variation to establish boundaries. With such a widespread and variable group as L. corniculatus s.l., it is not surprising that it has been separated into a number of taxa, very different in size and degrees of diversity c.f. Koch (1843) and Hegi (1907).

The range of species now recognised in 'Flora Europaea' is considerable. Ball (1968), in describing the group, lists 14 species of L. corniculatus and distinguishes them by their perennial character from the annuals L. angustissimus L., L. subbiflorus Lang, and L. parviflorus Desf. The validity of such a distinction may be questionable. Whyte (1977) has discussed the relationship between perennial and annual growth habit in the genus. He indicates that further work could be carried out to establish which perennial species show degrees of annuality, and to what extent. This may be particularly important along the boundaries of their natural range where physiological stress may affect the situation. However, knowledge of the ecological habitats of some of the minor species and sub-species and their distribution is limited. O'Brien (1974) states that,

"there is incomplete collection over the geographic range giving incomplete range of characters within the recognisable groupings. Collections have been concentrated in the geographic area around herbaria or from known "good collecting localities". A few good specimens are considered sufficient."

This view is substantiated by the difficulty experienced in obtaining local minor species listed in 'Flora Europaea'. It is also cause to question the identity of material which apparently exists in herbaria only. This study examines three of the more easily available species (of British importance): L. corniculatus s.s.,
L. tenuis and L. uliginosus.

On initial examination of *L. corniculatus*, it was apparent that the stems varied from decumbent to erect and that the difference in appearance between the two extremes was very great. A number of intermediate ascending stages also existed. However, similarities in other morphological characters including leaflet length, stem length, internode length and number of flowers per inflorescence clearly indicated that these intermediate forms were more closely associated with the erect rather than the decumbent form. This enabled a useful general statement to be made distinguishing two groups of *L. corniculatus* according to growth habit; one group having all stems decumbent, and the other group having any or all stems ascending or erect.

There is a precedent for such a definition, for it is apparent from early descriptions (Linnaeus (1753)) that *L. corniculatus* was thought of as a decumbent plant. Linnaeus' diagnosis is "Lotus capitalis depressis, caulis deappendibus, leguminibus cylindricis". *Lotus* with heads flattened from above, decumbent stems, cylindrical pods. Early botanists, von Haller (1742), Scopoli (1772), Gray (1821) and de Candolle (1824-74) all agree on this point. Schkuhr (1796), does not describe *L. corniculatus* but makes reference to a decumbent plant he calls *L. arvensis*.

Linnaeus (1753) recognised the erect forms, *L. rectus* and *L. hirsutus*. These he distinguished on pubescence, *L. hirsutus* being hairy and *L. rectus* being glabrous. There must be doubt, however, as to the reliability of this character for separation of
plants at a specific level (Fig. 3).

Scopoli (1772) used the name *L. major* to describe an erect plant and later Cavanilles (1793) introduced *L. pedunculatus*, including an illustration of the plant (Plate 3) in 'Icones et Descriptiones Plantarum'. This clearly shows the calyx teeth of *L. pedunculatus*, in common with those of *L. corniculatus*, to be erect in bud. When Schkuhr (1796) described another erect form, *L. uliginosus*, he too found the character of calyx teeth useful. While in bud the calyx teeth, according to Schkuhr, are bent back in *L. uliginosus* so distinguishing it from *L. corniculatus*. This particular character made identification relatively easy when the plant was in bud. At other stages of growth distinguishing *L. uliginosus* from erect forms such as *L. pedunculatus* remained difficult if not impossible for many workers. This inevitably led to taxonomic confusion. Descriptions given by Clapham, Tutin and Warburg (1952, 1962 and 1983) show how opinion in Britain has varied. In 1952 the plant was named *L. uliginosus*. In 1962 this was changed to *L. pedunculatus* and in 1983 Tutin reverted to *L. uliginosus*.

Opinions on this matter are still divided and a dichotomy in the usage of the name *L. pedunculatus* appears to have arisen. In Europe the name is used to describe a locally occurring species of *L. corniculatus* in Southern Spain, whereas in Australasia and North America it is regarded as synonymous with *L. uliginosus*. Forde (1974) discusses this issue and states,

"The confusion cannot easily be resolved, because it is permissible to take a broad or a narrow view of species limits in this group. In the broad view, *L. pedunculatus* Cav. sensu lato is the
correct name for the entire pedunculatus-uliginosus group, including the cultivated forms. In the narrow view, L. pedunculatus Cav. sensu stricto can be used only for the species described by Cavanilles from the mountains of Spain (present distribution outside Spain and Portugal unknown), in which case L. uliginosus Schkuhr is the correct name for the widespread form(s). Where no qualification is given it is not clear in what sense the name is being used."

Others, Chrtková-Zertová (1966) and Lainz (1974) consider the two species distinct. They describe L. uliginosus as a European species with a sub-atlantic range, distributed throughout the greater part of Europe and in North-West Africa. L. pedunculatus, however, is reported as a west-Mediterranean endemic species with a range limited to Eastern and Southern Spain.

Ball (1968) regards the two species as similar though distinguishable by a number of morphological features. He considers L. uliginosus to have obovate leaflets with the upper two calyx teeth separated by an acute sinus. By contrast he finds that L. pedunculatus has rhombic leaflets and an obtuse sinus in bud. Both of these characters, however, have been shown to be unreliable (Page 50). The attitude of the calyx teeth in bud might have been a more useful distinguishing feature. This was not described.

Historically, several morphological characters have been used to separate erect forms of L. corniculatus from L. uliginosus, though few can claim to show the necessary discontinuity of variation to allow certain identification. The weight of evidence obtained from several characters, however, may provide sufficient information for identification in the field.
Leaf shape is one such frequently used character, despite the occurrence of a range of different shapes, even on the same plant. The erect form of *L. corniculatus* is frequently heterophyllous. While it is useful to identify *L. tenuis* on the basis of its linear or linear-lanceolate leaves, such a character appears to be of little value for distinguishing between erect forms of *L. corniculatus* and *L. uliginosus*. Leaflets may be linear, ovate, obovate or rhombic and considerable overlap exists at both inter-specific and intra-specific levels. It has been shown, however, that the decumbent form of *L. corniculatus* frequently occurs with more uniformly broader and shorter leaflets than other forms (Page 65).

Hairiness, as previously mentioned, is also of doubtful value. Although *L. uliginosus* is frequently found to have leaflets fringed with hairs, similar numbers of *L. uliginosus* and erect *L. corniculatus* were found to be glabrous. As long ago as the 17th century, Gerard (1633) may have referred to the degree of hairiness of the horned clover when describing its leaves as "white". A similar description was later provided by Linnaeus (1753) in 'Species Plantarum', "Lotus polyceratus frutescent incana alba" where the woolliness of the hairs gave an impression of whiteness (Page 9).

L. corniculatus continued to be separated into varieties according to hairiness. Koch (1843) describes the glabrous var *vulgaris* and the densely hairy var *hirsutus*. It is now known that pubescence may be environmentally induced and that differences may occur during ageing (Chrtková-Žertová, 1973). Even at an
Intra-specific level, hairiness is an unreliable criterion for separation, particularly in some varieties of prostrate L. corniculatus such as var crassifolius which possesses both glabrous and hairy forms.

Various other characters appear to be of greater value. Most classifications have described the number of flowers per inflorescence for each species. Clapham, Tutin and Warburg (1983) state that L. corniculatus frequently has from 2-6 flowers whereas L. uliginosus has 5-12 flowers per inflorescence. Earlier, Babington (1843) found L. corniculatus to have 5-10 flowers and L. uliginosus to have 8-12 flowers per head. Earlier still, Gray (1821) described L. corniculatus as having from 8 - 10 flowers whereas L. uliginosus he accredited with the unusually large number of 20 flowers per head.

The results show that the decumbent form of L. corniculatus was not found to occur with more than 6 flowers per head and the erect form with no more than 8 flowers per head. L. uliginosus, however, most frequently has 9 flowers though the exact number may vary between 4 and 15. While erect forms with fewer than 8 flowers per head would therefore be of no value for identification purposes, such a plant with more than 8 flowers per head would indicate the plant was L. uliginosus.

Another useful but inconclusive feature for identification purposes is the hollowness of stem. Schkuhr (1796) first referred to this feature in L. uliginosus and by contrast noted the solid stems of L.arvensis, a decumbent corniculatus. Since then, most authors have thought this an important character, and the
results show that in the majority of cases _L. uliginosus_ does occur with hollow stems while the reverse is true of decumbent _L. corniculatus_. Difficulties arise when using this character to distinguish between some large, erect forms of _L. corniculatus_ and _L. uliginosus_. In the former, while the base may be solid or finely bored the upper parts of the stem may be as tubular as that of _L. uliginosus_. Of note is Cavanilles' (1793) description of the stem of _L. pedunculatus_ as "fleshy". On this evidence, it would seem that Cavanilles was describing _L. corniculatus_ rather than _L. uliginosus_ with which it has been confused.

A distinction considered important by Brand (1898), but rarely referred to, is the variation in the prominence of leaf veins. Brand found the leaf veins of _L. uliginosus_ to be conspicuous on the undersurface whereas in _L. corniculatus_ they could not be seen. Although this is not a consistent feature, it is apparent that it may be of some value when used with caution. Leaf veins were found to be distinctly prominent in 80% of all _L. uliginosus_ examined and in only 21% of erect forms of _L. corniculatus_, whereas none was visible in the decumbent form of _L. corniculatus_.

Possession of stolons or rhizomes has frequently been used to distinguish between _L. corniculatus_ and _L. uliginosus_. Clapham, Tutin & Warburg (1983) state that _L. corniculatus_ has no stolons whereas _L. uliginosus_ is stoloniferous. Unfortunately the situation is not this clear. Underground stems are not always present in _L. uliginosus_ and yet may be present in decumbent forms of _L. corniculatus_, particularly in sandy areas. Stolons do not
occur in erect plants. Such stolons or rhizomes are prostrate stems, partly buried at the base and often originating from low on the crown. However no British material identified as L. corniculatus was found to produce adventitious roots along these rhizomes. This was not so of Norwegian L. corniculatus which was observed to have thick rhizomes with small adventitious roots. These, however, were only observed on plants grown in pots (Page 86).

Chrtková-Žertová (1973) states that although absence of underground stems in L. corniculatus has been regarded as a diagnostic character, some varieties characteristically possess them. They occur regularly, especially in var. crassifolius and var. norvegicus.

It is apparent that the morphological features discussed so far fall well short of providing sufficient distinction to enable the construction of a neat classification. However there are some discontinuities in the range of variation which enable relatively distinct categories to be recognised. When in bud, the spreading calyx teeth of L. uliginosus are an immediately recognisable character different from the straight calyx teeth of L. corniculatus or L. tenuis. Moreover the entirely decumbent habit of one form of L. corniculatus distinguishes it from other ascending or erect types. If additional geographical or ecological evidence is also incorporated, as would be desirable, then the situation becomes clearer still. Rarely is L. corniculatus found in persistently wet soils while it is unusual to find L. uliginosus in dry locations, although overlap does occur in intermediate conditions in the West of Scotland (Williams pers. comm.).
It is possible, therefore, on the basis of these findings to suggest descriptions of four groupings of birdsfoot trefoil.

L. corniculatus

a) Erect type. Plants varying in form from having some, but not all, stems decumbent to ascending or erect. Stems (20) 25-50 (60) cm, usually solid at base but frequently becoming hollow. Internodes long 15-38 cm. Peduncles (2) 3-16 (13) cm. Leaves glabrous or hairy, ovate, obovate often mucronate, 8-21 mm long, usually more than twice as long as wide, veins usually absent or scarcely apparent. Inflorescence 3-8 flowered. Calyx teeth erect in bud. Underground stems absent. (2n = 24).

b) Decumbent type. Plants with all stems decumbent, low and spreading. Stems (5) 10-25 (35) cm, usually solid. Internodes short 5-13 cm. Peduncles erect (1) 2-7 (9) cm. Leaves glabrous or hairy, ovate or obovate (3) 5-12 (15) mm long, usually less than half as long as wide, veins usually absent. Inflorescence 1-6 flowered. Calyx teeth erect in bud. Rootstock short and thick, often woody with underground stems, adventitious roots occasionally present. (2n = 24).

L. uliginosus. Plants varying in form with stems procumbent, ascending or erect. Stems (5) 15-50 (60) cm, often branched, usually hollow. Internodes 12-36 cm. Peduncles (2) 3-12 (15) cm. Leaves sometimes glabrous but frequently hairy, especially around margins, ovate, obovate or mucronate (5) 12-20 (24) mm long, more than twice as long as wide, veins usually distinct on undersurface.
Inflorescence (3) 5-12 (15) flowered. Calyx teeth spreading in bud. Underground stems well developed bearing adventitious roots. (2n = 12).

L. tenuis. Plants varying in form from decumbent to erect. Stems up to 90cm, solid. Internodes long giving stems a bare appearance. Leaves usually glabrous, linear-lanceolate or lanceolate, more than three times as long as wide. Inflorescence (2) 6-8 (9) flowered. Calyx teeth erect in bud. (2n = 12).

The justification for awarding L. uliginosus, L. tenuis and L. corniculatus species status is not based solely on distinctions of morphology. An important definition of a species is its ability to cross. It is generally conceded that while individuals within a species are capable of interbreeding, the level of success is reduced when crossing with other species. There is considerable experience by plant breeders (Forde pers. comm.) that L. corniculatus, L. uliginosus and L. tenuis will cross only with great difficulty.

Induced L. corniculatus x L. uliginosus hybrids are agronomically useful in New Zealand and L. uliginosus x L. tenuis hybrids have been produced for studies of Rhizobium specifically (Greenwood & Ross, 1974). More work on the genetics of the group and aspects such as Rhizobium specificity may provide clearer definitions.

Attempts, however, to split L. corniculatus s.l. into a large number of infra-specific taxa, are of doubtful value. Nevertheless, the taxonomist can point out and discuss the variation. In so doing, if categories can be reasonably defined, then the taxonomist is justified in attaching names to them. In this way, attention is drawn to that taxon. The "International Code of
Botanical Nomenclature recognizes five infra-specific ranks: subspecies, variety, subvariety, form, subform. Present trends encourage the use of only one, that of subspecies. This was defined by Du Rietz (1930) as:

"a population of several biotypes forming a more or less distinct regional facies of a species"

It may thus be regarded as a geographical race or ecotype. However Stace (1980) reports that nowadays the sub-specific rank embraces not only these forms but also physiological races, seasonal variants and various other relatively minor morphs which taxonomists wish to name. A consequence of this, according to Stace, is that this lack of means to express infra-specific variation leads to an over-splitting of a species. As "Flora Europaea" (1964-80) deals only with sub-species below the species level, then many forms may have been recognised as sub-species only because if they had been retained as varieties no mention of them would have been possible. This contraction of the system of classification may in part account for the inclusion of the large number of forms of L. corniculatus at specific level.

If two distinct forms of L. corniculatus (erect and decumbent) are recognisable in Britain, then using the same approach as "Flora Europaea", it may be possible to justify giving each sub-species status. Evidence from the morphological studies would suggest that the erect form could be called ssp. major after Scopoli (1772) and the decumbent form ssp. corniculatus after Linnaeus (1753), according to the rule of priority. However, there are a number of difficulties associated with this nomenclature.
Gray (1821) and Smith (1825) both used *L. major* as a synonym for *L. uliginosus*. This view has been supported by a number of taxonomists: Coste (1937), MacDonald (1946), Munz & Keck (1959). To reintroduce the name *L. major* for this purpose would be to perpetuate one aspect of the taxonomic confusion.

A number of alternatives are available. Chrtková-Žertová (1973) has separated *L. corniculatus* into 14 infra-specific ranks termed varieties, 4 of which appear close to the British erect form. These are var. *corniculatus*, var. *sativus*, var. *kochii* and var. *arenosus*, the latter two being specifically hairy forms.

To use the name ssp. *corniculatus* for an erect form would contradict Linnaeus (1753) who, in his original diagnosis, described *L. corniculatus* as a decumbent form. The description of var. *sativus* is precluded from use too. The range of variation it delimits is too narrow to encompass that found in the erect form. Var. *sativus* is essentially a tall plant with a hollow stem, heads (1) 3-5 (6) flowered, and glabrous or sparsely hairy. These characters do not necessarily correspond to all British material.

Chrtková-Žertová includes no completely decumbent form in her classification, though var. *crassifolius* has a number of morphological features which fit the British decumbent form. Underground shoots are present, stems are solid, leaf shape and number of flowers per inflorescence correspond. Var. *crassifolius* does vary strongly according to ecological conditions which particularly affect degree of hairiness. She also states that a distinctive feature of this form is the strongly fleshy leaflets. While this is true of some of the British population, it was not found to be a consistent feature. Chrtková-Žertová's studies of
British material were limited to herbarium specimens only.

Hughes, Heath & Metcalfe (1962) cite MacDonald's (1946) classification based on the work of Hegi (1924) and Robinson (1934). Hughes et al. state

"Two sub-species have been recognised within the broadleaf group (excluding L. tenuis - a narrow leaf trefoil). The erect form common to Continental Europe has been referred to as L. corniculatus var. vulgaris Koch, and the more dwarf form of the British Isles as L. corniculatus var. arvensis Pers."

In view of the difficulties discussed above it would seem that to use 'vulgaris' and 'arvensis' as sub-species epithets would be the most acceptable.

Koch (1843) also describes two other forms of contrasting hairiness, var. ciliatus and var. hirsutus (Page 32). These, it is suggested, should be lumped with ssp. vulgaris to form a more comprehensive group. Problems arising from extensive subdividing, especially on the basis of unreliable characters, are thus avoided. Chrtková-Žertová (1973), in discussing the problem of nomenclature, stated that there is no complete discontinuity among varieties which form part of a "hybridogenous complex", and Heyn (1970) has also commented that "the almost impossible task of the division of the L. corniculatus complex has been pointed out repeatedly." In such cases, once the extent of the variation is noted, it can only be treated informally. This avoids the necessity of naming categories that cannot reasonably be defined.

A further aim of this work was to consider whether any of the features in this group of species could usefully be introduced into cultivars to increase their economic potential. Examination
of existing cultivars or selections of *L. corniculatus* showed that they all corresponded to sub-species *vulgaris* in having erect or ascending stems and no rhizomes. While such types can be useful for cattle, grazing must be controlled to prevent excessive defoliation. Sheep too, would probably graze closely enough to destroy the crowns of the plants. As a major requirement of a forage species for less fertile soils, under British conditions, is that it is able to withstand close grazing over which there may only be limited control, it is not surprising that trials with birdsfoot trefoils have shown little long-term potential (Davies, 1969).

New Zealand is one source of commercial seed where their emphasis on introducing *L. uliginosus* into their breeding programme offers considerable promise. The rhizomatous habit should help withstand sheep grazing, and the greater tolerance of damp conditions should prove useful on some hill and upland farms in western Britain.

For drier areas, other sources of suitable material must be considered, not only from Britain but also North America. In Canada work is being carried out into forage productivity in new cultivars of *L. corniculatus* (Khayrallah & Lawson, 1976). Their results have indicated that in general, high yield, vigour and winter hardiness are closely associated. There also appears to be a correlation between prostrate growth habit and winter hardiness. While the same may be true of some of the decumbent forms of *L. corniculatus* in Britain, they have been ignored in breeding programmes, mainly because of their low yields. As some plants are rhizomatous, however, it may well be worthwhile trying to
incorporate this character into a higher yielding type. This might be done more readily than attempting to incorporate genes for rhizomatous habit from *L. uliginosus* into indigenous *L. corniculatus*. A number of new sources of material exist, particularly Norwegian *L. corniculatus* of the type var. *norvegicus* which has been shown to produce rhizomes bearing adventitious roots, (this has been confirmed in pot-grown plants only).

Leaflet size also plays a part in determining the usefulness of *L. corniculatus* as a forage crop. Results (85) indicate that *L. corniculatus* and *L. uliginosus* show significant increases in both size and shape of leaflets after transplanting from wild to cultivated conditions. Although a taxonomically superficial feature, increased leaflet area, brought about mainly by increased leaflet breadth, has important agronomic implications. Other features also affecting yield and dependent on habitat include size of plants, number of stems and number of leaves per stem (Chrtková-Žeřová, 1973).

An attempt has been made in this study to survey the great extent of the variability of *L. corniculatus* s.l. There is no doubt that the genetic potential is present for the development of new varieties suitable for agricultural use in Britain.
Appendix 1

Sources of British Plant Material

<table>
<thead>
<tr>
<th>Key</th>
<th>Region</th>
<th>Site Grid Reference</th>
<th>L. corniculatus</th>
<th>L. uliginosus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oban</td>
<td>NM 885688</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NM 808603</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>799696</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>788588</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>787567</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>740548</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>737541</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>718496</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>692467</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>650320</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>656290</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>656289</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>655278</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>675234</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>655261</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>786308</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>778576</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>852680</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kintyre</td>
<td>NR 822608</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>808603</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>799696</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>788588</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>787567</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>740548</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>737541</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>718496</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>692467</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>650320</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>656290</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>656289</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>655278</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>675234</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>655261</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>786308</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>778576</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>852680</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cumbrae</td>
<td>NS 154541</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>149546</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>149548</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>153558</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>158566</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>168588</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175591</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>179593</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>181579</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175569</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>173574</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>168568</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>167567</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>173542</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ayrshire</td>
<td>NS 348276</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>339363</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>296164</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>305140</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>385234</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>385234</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>324324</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>355152</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>364148</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>415195</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Region</td>
<td>Site Grid Reference</td>
<td>L. corniculatus</td>
<td>L. uliginosus</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
<td>Gatehouse</td>
<td>NX 492530</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>403517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Alston</td>
<td>NY 831497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lincolnshire</td>
<td>SE 995469</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA 105216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Keele</td>
<td>SJ 821482</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ 771483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Talerddig</td>
<td>SN 935010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cambridgeshire</td>
<td>TL 756820</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>840810</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>912883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>St. Davids</td>
<td>SM 725290</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Porthcawl</td>
<td>SN 110150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS 790820</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS 800815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Lands End</td>
<td>SW 343252</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>373272</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>378290</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>375332</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>382384</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>431370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>495395</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>501372</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500313</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lizard Downs</td>
<td>701140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>736205</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>724167</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>679249</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>667269</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>665280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sources of British Plant Material
Appendix 2

Sources of Continental European Plant Material

Material Obtained

1. Nigardalen Glacier
 Jostedalen
 Indre Sogn
 Norway.
 L. corniculatus from wild

2. Universitets Botaniske Have
 Ø. Færingegade 2B
 DK-1353 København K
 Denmark.
 L. corniculatus from wild

3. Bereich Botanik der Humboldt-
 Universität
 Späthstrasse 80/81
 DDR-1195 Berlin-Baumschulenweg
 German Democratic Republic.

4. Botanischer Garten
 Sektion Biowissenschaften
 Martin-Luther-Universität
 Halle-Wittenberg
 Am Kirchtor 3
 DDR-402 Halle
 German Democratic Republic.
 L. corniculatus
 L. uliginosus from wild

5. Botanischer Garten der Karl-Marx-
 Universität
 Linnestrasse 1
 DDR-7010 Leipzig
 German Democratic Republic.

6. Jardin Botanique de la Ville
 et de l'Université
 5 place Blot
 F-14000 Caen
 France.
 L. corniculatus
 L. uliginosus from wild

7. Jardin Botanique de la Ville de
 Rouen
 7 rue de Trianon
 76100 Rouen
 France.
 L. corniculatus from wild

8. Botanischer Garten der
 Universität Karlsruhe
 Am Fasanengarten 2
 D-7500 Karlsruhe 1
 Federal Republic of Germany.
Material Obtained

9. Ville de Nantes
 Service Espaces Verts et Environnement
 Jardin Botanique
 F-44000 Nantes
 France.
 L. corniculatus from wild
 L. tenuis

10. Jardin Botanique
 Université Louis Pasteur
 28 rue Goethe
 F-67083 Strasbourg Cedex
 France.
 L. corniculatus from wild
 L. uliginosus

11. Jardin Botanique de la Ville
 1 avenue Albert-Premier
 F-21000 Dijon
 France.
 L. corniculatus from wild
 L. tenuis

12. Jardin Botanique de la Ville et de l'Université
 Place du Marschal Leclerc
 F-25000 Besançon
 France.
 L. corniculatus from wild
 L. uliginosus

13. Botanischer Garten der Universität Bern
 Altenbergrain 21
 CH-3013 Bern
 Switzerland.
 L. corniculatus

14. Botanischer Garten
 Brauerstr. 69
 CH-9016 St Gallen
 Switzerland.
 L. corniculatus

15. Direction des Conservatoire et Jardin botaniques
 Case postale 60
 CH-1292 Chambéry/Genève
 Switzerland.
 L. corniculatus from wild
 L. uliginosus

16. Jardim Botânico da Universidade
 Arcos do Jardim
 Coimbra
 Portugal
 L. corniculatus from wild
 L. uliginosus

17. Italian/Swiss Alps
 Semnoz (1000m-1700m).
 L. corniculatus from wild

18. French Alps
 Col de Bluffy (630m).
 L. corniculatus from wild
Sources of Continental Plant Material
Appendix 3

Source of New Zealand Material

Dept. of Scientific and Industrial Research,
Grasslands Division,
Palmerston North,
New Zealand.

L. corniculatus
L. uliginosus

Source of North American Material

Material originating from the United States and Canada was obtained from Botany Department stocks, West of Scotland Agricultural College, Ayr.
References

BAUHIN, C. (1623) cited in LINNAEUS (1753).

BRITTON, N.L. & BROWN, A. (1897) An Illustrated Flora of the Northern United States, Canada and the British Possessions from Newfoundland to the Parallel of the Southern Boundary of Virginia, and from the Atlantic Ocean westward to the 102D Meridian, Vol. II. Scribner, New York.

GERARD, J. (1633) The Herbal or General History of Plants.

LINNAEUS, C. (1753) Species Plantarum Vol. II. Holmus.

SCOPOLI, J.A. (1772) Flora carniolica, Edl. II. Vienna.

