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Summary
Phosphoenolpyruvate carboxylase (PEPc) is a ubiquitous enzyme in higher plants, 

performing primary CO2  fixation in C4  and Crassulacean acid metabolism (CAM) plants 

and a range of housekeeping functions in C3 , C4  and CAM plants. In C3 and C4  plants, 

PEPc activity is regulated in response to light whilst in CAM plants it is regulated by an 

endogenous circadian oscillator. The regulation of PEPc is brought about through 

reversible protein phosphorylation which modulates the allosteric properties of the enzyme. 

The phosphorylated form of the enzyme is less sensitive to feedback inhibition by malate. 

The phosphorylation state of PEPc is itself regulated by the activity of the Ca^+- 

independent PEPc kinase which is induced by light in C3 and C4  plants, and by a circadian 

oscillator in CAM plants. Both the light- and circadian-induction of PEPc kinase activity 

require de novo protein synthesis. The aim of the work in this thesis was to investigate the 

requirement for protein synthesis in the induction of PEPc kinase in higher plants.

A novel assay was developed in which isolated plant RNA was translated in vitro 

using a rabbit reticulocyte lysate system and the translation products were assayed directly 

for PEPc kinase activity. A series of experiments were performed which demonstrate that 

the assay provides a valid estimate of the amount of PEPc kinase translatable mRNA in 

any sample of RNA. The extent of labelling of exogenous PEPc in the assay is proportional 

to the volume of translation products used, the amount of RNA translated and (after a short 

lag) the duration of the in vitro translation. Inclusion of EGTA in the kinase assays of 

translation products demonstrated that the kinase activity produced was Ca^+-independent, 

like the activity detected in plant extracts. Size fractionation of a sample of mRNA 

revealed that PEPc kinase mRNA has a length of between 0.9 and 1.3 Kb which 

corresponds well with the predicted size calculated from the molecular weight of partially 

purified PEPc kinase polypeptides.

In the leaves of the CAM plant Bryophyllum {Kalanchoe) fedtschenkoi, in normal 

diurnal conditions, kinase mRNA was high at night and below the limits of detection 

during the day. In constant environmental conditions (continuous darkness, CO2 -free air, 

15“C) kinase mRNA exhibited circadian oscillations. The circadian disappearance of

xvu



kinase mRNA and kinase activity was delayed by lowering the temperature to 4°C and 

accelerated by raising the temperature to 30°C. Pharmacological agents were used to 

dissect the signal transduction cascade that mediates circadian regulation of PEPc kinase 

mRNA levels and PEPc kinase activity. The nocturnal appearance of kinase mRNA and 

activity was blocked by a number of protein and RNA synthesis inhibitors which act on 

different components of the transcription and translation machinery. In addition to 

transcription and translation, the circadian appearance of PEPc kinase mRNA and activity 

requires protein dephosphorylation and a calcium/calmodulin interaction.

The physiological relevance of changes in PEPc kinase mRNA and activity to 

CAM with respect to CO2  assimilation and total leaf malate content was investigated using 

intact plants of Kalanchoe daigremontiana. The leaf malate content was manipulated by 

placing leaves in an atmosphere of pure nitrogen during the night for various lengths of 

time to prevent CO2  fixation and respiration. The effects of blocking nocturnal CO2 - 

fixation and malate accumulation on PEPc kinase mRNA and activity levels were 

examined with a view to determining whether the metabolite status of the leaf could 

influence the circadian control of the allosteric properties of PEPc. Changes in CO2  

fixation and PEPc kinase activity reflected those in kinase mRNA except in leaves 

transferred from nitrogen to ambient air at the start of the light period. In these leaves, 

kinase activity fell even though kinase mRNA rose, probably due to a rapid increase in 

cytosolic malate. The highest rates of CO2  fixation and levels of kinase mRNA were 

observed in leaves subjected to anaerobic treatment for the first half of the night and then 

transferred to ambient air. A temperature increase from 19°C to 27“C led to a rapid 

reduction in kinase mRNA and activity. However, this was not observed in leaves in which 

malate accumulation had been prevented by anaerobic treatment. These results demonstrate 

that the metabolite status of the leaf and in particular the leaf malate status can override the 

circadian clock control of PEPc kinase mRNA and activity. The discrepancies between 

kinase mRNA and activity in some conditions suggest that (a) kinase turnover may be 

regulated, independent of kinase synthesis, and (b) light may either block translation of
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kinase mRNA, increase its rate of destruction or cause the appearance of a tight-binding 

inhibitor of PEPc kinase.

In the leaves of C3 and C4  plants PEPc kinase activity and the apparent Ki of PEPc 

for malate increase in response to illumination. Maize and barley were used as 

representative C4  and C3 plants respectively. In both maize and barley, PEPc kinase 

mRNA was found to increase in response to light. This light induction was found to require 

transcription but not translation. In fact, protein synthesis inhibitors caused an 

accumulation of PEPc kinase mRNA above control levels in response to light. The light 

induction of kinase mRNA in maize was found to involve protein dephosphorylation and a 

calcium/calmodulin interaction. Collectively these results indicate that the light induction 

of PEPc kinase mRNA in C4  and C3 plants involves transcription of the PEPc kinase gene 

itself and that the activation of the PEPc kinase promoter involves both protein 

dephosphorylation and a possible calcium derived signal propagated via calmodulin.
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Chapter 1

Introduction
1.1. The € 3  pathway of photosynthesis

1.1.1. The physiology and biochemistry of the C3 pathway

In the majority of higher plant species, primary carbon dioxide fixation occurs in 

the chloroplasts and is catalysed by the enzyme ribulose 1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) in the Calvin-Benson cycle (reductive pentose phosphate 

cycle) (Macdonald and Buchanan, 1990). For every three molecules of ribulose 1,5- 

bisphosphate (Rbu-1 ,5 -P2 ) carboxylated by Rubisco six molecules of 3-phosphoglycerate 

(3-PGA) are formed. Energy from the light reactions of photosynthesis is used to reduce 3- 

PGA to glyceraldehyde 3-phosphate (G3P). One molecule of G3P is exported from the 

Calvin-Benson cycle and is converted to dihydroxy acetone phosphate (DHAP). The DHAP

represents the net gain of fixed carbon from the Calvin-Benson cycle. It can either be used 

for starch synthesis inside the chloroplast or exchanged into the cytosol, via the phosphate 

translocator, for sucrose synthesis. The remaining steps of the Calvin-Benson cycle 

regenerate the Rbu-1 ,5 -P2  via a series of isomerizations, condensations and 

rearrangements. These steps convert five molecules of triose phosphate into three 

molecules of pentose phosphate (Rbu-5-P), which is then phosphorylated using ATP to 

regenerate three molecules of Rbu-1 ,5 -P2  (see figure 1.1). This pathway of photosynthetic 

CO2  fixation is termed C 3 photosynthesis because the product of CO2  assimilation (3- 

PGA) possesses three carbon atoms.

1.1.2. Photorespiration

Despite the majority of higher plants performing primary CO2  assimilation via 

Rubisco, the process is inherently inefficient because Rubisco also catalyses the 

oxygenation of Rbu-1 ,5 -P2  forming one molecule of 3-PGA and one molecule of 2 - 

phosphoglycolate (Canvin, 1990). Subsequent metabolism of the phosphoglycolate leads to 

the light-dependent evolution of CO2 , which is called photorespiration. The 

phosphoglycolate passes through the photosynthetic carbon oxidation (PCO) cycle. This 

pathway is localized in three separate organelles; namely the chloroplast, peroxisome and

t
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Figure 1.1. The C3 pathway of photosynthesis (the reductive pentose phosphate 

pathway)

Abbreviations: RuBP, ribulose 1,5-bisphosphate; PGA, 3-phosphoglycerate; DiPGA, 1,3- 

diphosphoglycerate; Ru5P, ribulose 5-phosphate; G3P, glyceraldehyde 3-phosphate; 

DHAP, dihydroxyacetone phosphate; FBP, fructose 1,6-bisphosphate; F6 P, fructose 6 - 

phosphate; Xu5P, xylulose 5-phosphate; B4P, erythrose 4-phosphate; SBP, sedoheptulose 

1,7-bisphosphate; S7P, sedoheptulose 7-phosphate; R5P, ribose 5-phosphate; G6 P, glucose 

6 -phosphate; G IP, glucose 1-phosphate; 2-PG, 2-phosphoglycolate.

The enzymes which catalyse each step are as follows:

1. ribulose 1,5-bisphosphate carboxylase oxygenase

2 . phosphoglycerate kinase

3. glyceraldehyde 3-phosphate dehydrogenase

4. triose-phosphate isomerase

5. aldolase

6 . fructose 1 ,6 -bisphosphatase

7. transketolase

8 . sedoheptulose 1,7-bisphosphatase

9. phosphopentoepimerase

1 0 . phosphoriboisomerase

1 1 . phosphoribulokinase

1 2 . hexose phosphate isomerase

13. phosphoglucomutase

14. ADP-glucose pyrophosphorylase and starch synthase
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mitochondrion (see figure 1.2) . Photorespiration leads to the loss of NH3 and CO2  in the 

mitochondrion, whilst 3-PGA is eventually returned to the chloroplast to replenish the 

Calvin cycle. The NH3 must be reassimilated in the chloroplast by glutamine synthetase to 

provide the glutamine necessary for the continued operation of the PCO cycle. The CO2  is 

released and represents a loss of carbon due to the oxygenase activity of Rubisco. 

Photorespiration is an energy consuming process that can reduce the net rate of 

photosynthesis in C3 plants by 25-50 %. Increasing leaf temperature increases the affinity 

of Rubisco for oxygen and decreases its affinity for CO2 . This means that, in C3 plants, 

increasing temperature takes the leaf beyond the CO2  compensation point (the 

concentration of CO2  at which the release and assimilation of CO2  aie equal) and hence the

loss of CO2  through photorespiration becomes greater than the assimilation of CO2  in the 

Calvin-Benson cycle. C3 plants are therefore poorly adapted to surviving in environments 

where high temperatures are commonplace such as the tropics and sub-tropics. However, a 

small proportion of higher plants have evolved a specialized biochemistry of 

photosynthesis for limiting or abolishing photorespiration which entails concentrating CO2  

at the active site of Rubisco. These plants are highly efficient at surviving in high 

temperature, high irradiance environments and fall into two distinct photosynthetic classes 

according to the temporal and spatial separation of their primary and secondary CO2  

fixation steps; they exhibit Crassulacean acid metabolism (CAM) or C4  photosynthesis.

1.2. The C4  pathway of photosynthesis

1.2,1. CO2 assimilation in C4  plants

Plants which perform C4  photosynthesis have a specialized leaf anatomy. The 

bundle-sheath cells are arranged in a ring or sheath ('Ki*anz' anatomy) around the vascular 

strands and have prominent starch-filled chloroplasts and thickened walls (Leegood, 1997).

The mesophyll cells occur throughout the lamina and possess small chloroplasts and thin
■;

walls. Primary CO2  fixation occurs in the mesophyll cells and is catalysed by the cytosolic 

enzyme phosphoenolpyruvate carboxylase (PEPc). PEPc is localized specifically in the 

mesophyll cells and actually uses HCO3 - as its substrate rather than CO2  The product of 

the initial CO2  fixation step is oxaloacetate which is rapidly converted to malate by malate

I



Figure 1.2. The photosynthetic carbon oxidation (PCO) cycle

Abbreviations: RuBP, ribulose 1,5-bisphosphate; 2-PG, 2-phosphoglycolate; PGA, 3- 

phosphoglycerate; THF, tetrahydrofolic acid; Fd(red or ox), ferredoxin (reduced or 

oxidised). The figure was adapted from Canvin (1990).

The enzymes which catalyse each step are as follows:

1. ribulose 1,5-bisphosphate carboxylase/oxygenase

2 . phosphoglycolate phosphatase

3. glycolate oxidase

4. catalase

5. serine: glyoxylate aminotransferase

6 . glutamate: glyoxylate aminotransferase

7. glycine decarboxylase

8 . serine hydroxymethyltransferase

9. hydroxypyruvate reductase

1 0 . glycerate kinase

1 1 . glutamine synthetase

1 2 . glutamate synthase
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dehydrogenase (in some types of C4  plant aspartate is formed from the oxaloacetate by 

transamination) (Hatch, 1987). The malate (or aspartate) moves down a concentration 

gradient through the plasmodesmata which link the mesophyll cells to the bundle sheath 

cells. In the bundle sheath cells, malate is decarboxylated by either NAD-malic enzyme 

(NAD-ME) or NADP-malic enzyme (NADP-ME), or oxaloacetate is decarboxylated by 

phosphoenolpyruvate carboxykinase (PEPCK), depending on the type of C4  plant. The 

CO2  which is liberated is then fixed by Rubisco in the Calvin cycle (see figure 1 .3).

C4  plants therefore display a spatial separation of primary and secondary carbon 

dioxide fixation. This effectively acts as a 'pump' which concentrates CO2 in the bundle 

sheath cells where the Rubisco is localized in the chloroplasts. Mesophyll cell chloroplasts 

lack granal stacks and Rubisco which prevents them from fixing CO2  via the Calvin cycle.

Hence, the oxygenase activity of Rubisco is inhibited by the presence of high 

concentrations of CO2  in the bundle sheath cells. Furthermore, a combination of the 

internal position of the bundle-sheath cells, around the vascular strand, and their thick cell 

walls (and in some plants the presence of suberin in the cell wall) helps to prevent the 

diffusion of oxygen (and gaseous CO2 ) into the bundle sheath.

1.2.2. Photorespiration in C4  plants?

For many years, C4  plants were believed to perform little, if any, photorespiration 

due to their efficient mechanism for concentrating CO2  at the site of Rubisco. Increasing 

the CO2  concentration increases the carboxylase reaction of Rubisco and effectively out 

competes the oxygenase reaction. However, evidence has recently come to light which 

indicates that photorespiration occurs in the NAD-ME type C4  plant Amaranthus edulis. In 

this plant, approximately 6  % of the total net photosynthetic CO2  assimilation was lost 

through the photorespiratory cycle (Lacuesta et a l, 1997). It is therefore evident that 

photorespiration does occur in at least some C4  plants. It has been suggested that 

photorespiration may be a mechanism for protecting C3 plants from photooxidation caused 

by the failure to dissipate excess light energy (Kozaki and Takeba, 1996). Transgenic 

tobacco plants possessing elevated levels of plastidic glutamine synthetase (GS2) were 

found to have an improved capacity for photorespiration and an increased tolerance to

j



Figure 1.3. The C4 pathway of photosynthesis

The diagram gives an overview of the pathway and its intracellular compartmentation for 

each of the three subgroups of C4  plants. For most reactions, cofactors, transaminations 

etc. have been omitted for clarity. In PEP carboxykinase type C4  plants NAD-malic 

enzyme also performs malate decarboxylation. The diagram was adapted from Leegood 

(1997).

Abbreviations; RuBP, ribulose 1,5-bisphosphate; OAA, oxaloacetate; ala, alanine; PEP, 

phosphoenolpyruvate.

The enzymes which catalyse key steps in each subgroup are as follows:

1 . phosphoenolpyruvate carboxylase

2. ribulose 1,5-bisphosphate carboxylase/oxygenase

3. NADP-malic enzyme

4. NAD-malic enzyme

5. phosphoenolpyruvate carboxykinase

6 . NADP-malate dehydrogenase

7. NAD-malate dehydrogenase

8 . pymvate, phosphate dikinase
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high-intensity light. Kozaki and Takeba (1996) demonstrated that photorespiration can 

dissipate excess energy from photosynthetic electron transport in the absence of 

photosynthesis. It is therefore possible that photorespiration plays a similar role in C4  

plants, particularly considering that they are usually found in high irradiance environments.

1.2.3. Development and regulation of the C4  pathway

In dark-grown, developing leaves of a C4  plant such as maize, the chloroplasts of 

both the mesophyll and the bundle-sheath cells possess low levels of Rubisco, both at the 

transcript and protein level (Langdale et al., 1988; Sheen and Bogorad, 1985). Upon 

illumination Rubisco accumulates in the bundle-sheath cells and is turned over in the 

mesophyll cells. However, nuclei isolated from illuminated bundle-sheath and mesophyll 

cells were both found to synthesize the rbcS transcript suggesting that the repression of 

Rubisco in mesophyll cells occurs post-transcriptionally (Nelson and Langdale, 1992; 

Schaffner and Sheen, 1991). Illumination of dark-grown leaves causes an increase in the 

steady-state levels of a number of C4  enzymes and mRNAs (Nelson et al., 1984; Sheen and 

Bogorad, 1987a; Sheen and Bogorad, 1987b). For example, the C4  isoform of PEPc and its 

gene {Ppc) are induced and expressed specifically in the mesophyll cells during greening 

(Sheen and Bogorad, 1987a). Similarly pyruvate orthophosphate dikinase (PPdK) and 

NAD-ME, NADP-ME or PEPCK are induced at the transcriptional level by light during 

greening of etiolated leaves (Nelson and Langdale, 1992). PPdK is induced in mesophyll

chloroplasts (Sheen, 1991), NAD-ME is induced in bundle-sheath mitochondria (Long and 

Berry, 1996), NADP-ME is induced in bundle-sheath chloroplasts (Sheen and Bogorad, 

1987a) and PEPCK is induced in bundle-sheath cytoplasm (Finnegan and Burnell, 1995), 

The promoters of a number of the genes for C4  specific enzymes have been isolated and 

characterized. Stockhaus et al. (1997) demonstrated that 2 Kb of the 5' flanking region of 

the Flaveria trinervia C4  PpcAl gene is sufficient to direct mesophyll-specific expression 

of the 8 -glucuronidase reporter gene in transgenic F. bidentis (C4 ) plants. However, despite 

extensive comparisons of the promoters of C4  genes, no conserved elements responsible for 

C4  bundle-sheath or mesophyll cell specific gene expression have been identified (Nelson 

and Langdale, 1992).

I
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1.2.4. Post-translational regulation of C4 enzymes

In addition to the transcriptional and post-transcriptional regulation of specific 

isoforms of C4  genes described above, a number of C4  enzymes have also been 

demonstrated to be post-translationally regulated (Budde and Randall, 1990; Chollet et al, 

1996; Hatch, 1987). Whilst transcriptional regulation ensures developmental and light- 

mediated cell and organelle specific expression, post-translational regulation permits fine 

tuning of an enzyme's regulatory properties in response to subtle changes in light-intensity, 

temperature and the metabolic status of the cell. Three key enzymes of the C4  pathway 

have been found to undergo post-translational regulation in response to light. This 

regulation occurs in leaves which are fully green and actively utilising the C4  pathway.

The C4  isoform of pyruvate orthophosphate dikinase (PPdK, B.C. 2.7.9.1) is a 

mesophyll cell-localized enzyme found in the chloroplast stroma which is rapidly and 

reversibly light activated. It catalyses the conversion of pyruvate plus ATP and Pi to PEP 

plus AMP and PPi. The reversible light activation was found to occur via 

phosphorylation/dephosphorylation. Unusually, this phosphorylation involves ADP as the 

phosphate donor. The catalytic enzyme-phosphoryl intermediate of PPdK (E-His-P) is the 

target for ADP-dependent phosphorylation. Only the E-His-P form of the enzyme can 

undergo inactivation by the phosphorylation of a neighbouring threonine (Thr) residue. The 

His-P is thought to be extremely labile and is probably lost non-enzymatically. This results 

in the inactive configuration E-His/Thr-P. Activation occurs via the phosphorylytic 

removal of Pi forming PPi and active E-His/Thr. Light activation is thought to be mediated 

by the light-dependent transport of pyruvate into the chloroplast (Ohnishi and Kanai, 

1987). The presence of pyruvate means that the E-His-P/Thr phosphoryl catalytic 

intermediate can continue with catalysis generating PEP, rather than being inactivated by 

the ADP-dependent phosphorylation of the neighbouring Thr. The inactivation and 

activation processes are thought to be catalysed by a single bifunctional regulatory protein 

(RP) which possesses two physically distinct active sites.

The mesophyll-chloroplast located NADP-malate dehydrogenase of C4  plants is 

regulated by light (Hatch, 1987). This process involves interconversion between an active



dithiol form of the enzyme and an inactive disuphide form. Activation of NADP-malate 

dehydrogenase from maize leaves in vitro involves the reduction of two disulphide groups 

resulting in four thiol groups (Jenkins et a l, 1986). Light intensity is sensed through the 

redox state of ferredoxin, a component of the photosynthetic electron transport chain 

(Nakamoto and Edwards, 1986). A specific thioredoxin regulates the interconversion 

between the two forms of the enzyme (Droux et al., 1987). A number of other plant 

enzymes have been found to be regulated in response to light by this 

ferredoxin/thioredoxin system, including a number of enzymes involved in carbohydrate 

biosynthesis and degradation (Cseke and Buchanan, 1986).

The C4  isoform of phosphoenolpyruvate carboxylase (PEPc, E.C. 4.1.1.31) is a 

cytosolic mesophyll-cell enzyme (Perrot-Rechenmann et al., 1982). This enzyme 

undergoes post-translational regulation via the phosphorylation of a single N-terminal 

serine residue catalysed by a highly specific serine/threonine kinase (Chollet et a l, 1996). 

This will be discussed in detail in section 1.4.5.

1.3. Crassulacean acid metabolism (CAM)

1.3.1. The physiology and biochemistry of CAM

CAM is a unique and specialised form of photosynthesis which is found in a wide 

range of plant families. It was first discovered in the family Crassulaceae, which lent its 

name to CAM (Ranson and Thomas, 1960). It has since been discovered in a diverse group 

of plant families including Cactaceae, Euphorbiaceae, Asclepiadaceae, Agavaceae, 

Aloeaceae, Liliaceae, Aizoaceae, Asteraceae, Vitaceae, Orchidaceae and Bromeliaceae 

(Dittrich et a l, 1973; Winter and Smith, 1996). These include families of 

monocotyledonous and dicotyledonous angiosperms. This indicates that CAM probably 

evolved prior to the separation of monocotyledons and dicotyledons into distinct lineages 

and that CAM has evolved on a number of separate occasions (Toh et a l, 1994). The 

occurrence of CAM in the Isoetaceae (Lycopodiopsida), Polypodiaceae (Filicopsida), 

Vitarriaceae (Filicopsida) and Welwitschiaceae (Gnetopsida), all of which are 

representatives of classes which evolved before the angiosperms, indicates that CAM most 

probably did exist in the ancestors of the angiosperms (Smith and Winter, 1996).



The key physiological features of CAM include the following (see figure 1.4):

a) the stomatal pores open at night, allowing gas exchange, and close in the day (Osmond 

and Hokum, 1981; Winter and Smith, 1996).

b) CO2  is initially fixed at night via PEPc and the malate produced is stored in the vacuole 

as malic acid. This malic acid greatly increases the titratable acidity of the leaves of CAM 

plants at night (Osmond and Hokum, 1981; Winter and Smith, 1996). A few species 

accumulate significant amounts of citric acid as well as malic acid (e.g. Clusia minor) 

(Borland and Griffiths, 1997).

c) during the day the malic acid stored in the vacuole is released and decarboxylated by 

either malic enzyme or PEP carboxykinase (PEPCK, which actually decarboxylates OAA 

produced from the malate) depending on the type of CAM plant (Dittrich, 1976; Dittrich et 

al., 1973; Walker and Leegood, 1996). Only at this point is the CO2  refixed by Rubisco 

using photosynthetically captured energy in the Calvin cycle. CAM is thus a CO2  

concentrating mechanism which overcomes the O2  inhibition of Rubisco (Osmond et al., 

1982).

CO2  fixation via Rubisco is associated with a larger discrimination against 1 ^ 0 0 2  

compared to the much more abundant i^C0 2  than is CO2  fixation via PEPc (Winter and 

Smith, 1996). Thus, when the tissues of plants are examined by mass-spectrometry, the 

relative abundance of ^̂ C compared to i^C can be used as a strong indication that primary 

CO2  fixation is occurring via either Rubisco or PEPc. A value called the carbon isotope 

discrimination ratio (Ô^^C value) can be calculated from the levels of and in a 

sample (Winter and Smith, 1996). For example, an analysis of a wide range of tropical and 

subtropical species of epiphytic Orchidaceae from Australia revealed a continuous 

spectrum of values from those with full CAM (-15 to -12 %o) to those with values 

characteristic of the C 3 pathway (-33 to -24 %o) (Winter and Smith, 1996). Application of 

this method to fossils of Miocene and Pliocene grasses revealed that fossils with C3 

anatomy had C 3  values whilst fossils with Kranz anatomy had C4 -like values

10



Figure 1.4. Crassulacean acid metabolism (CAM)

The arrows in red represent steps which occur during the dark period, whilst the arrows in 

black represent steps which occur during periods of illumination.

Abbreviations: RPP, reductive pentose phosphate pathway; PEP, phosphoenolpyruvate; 

OAA, oxaloacetate; TP, triose phosphate.

The key enzymes of the CAM pathway are as follows:

1 . carbonic anhydrase

2 . phosphoenolpyruvate carboxylase

3. malate dehydrogenase

4. phosphoenolpyruvate carboxykinase

5. NADP-malic enzyme

6 . pyruvate, phosphate dikinase
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(Raven and Spicer, 1996). However, examination of various Palaeozoic and Mesozoic 

fossils revealed only values indicative of C3 plants and no values indicative of CAM 

plants have been obtained (Raven and Spicer, 1996).

The temporal sequence of CAM in a well-watered obligate CAM plant has been 

categorized into four distinct phases (figure 1.5) (Osmond, 1978). Phase I occurs during 

the dark period and is characterized by a marked increase in the assimilation of CO2  via 

PEPc, the accumulation of malic acid in the vacuole and a reciprocal decrease in the 

storage carbohydrate (soluble sugars or glucans). Towards the end of phase I CO2  fixation 

begins to decline due to the inhibition of PEPc by the high concentration of accumulated 

malate and an increase in the malate sensitivity of PEPc (Nimmo et a l, 1984; Winter, 

1980; Winter, 1982). The properties of PEPc are discussed fully in section 1.4. Rubisco 

becomes active in response to illumination and the combined action of Rubisco and PEPc 

during phase II results in a brief burst of CO2  fixation into both C4  acids and C3 

compounds. As the stomata close, fixation of atmospheric CO2  via PEPc ceases. Also 

during phase II, malic acid levels peak and begin to decline due to the commencement of 

deearboxylation. During the middle of the day the stomata are closed due to the high 

intercellular partial pressure of CO2  generated by malate decarboxylation (phase III). 

During phase III, vacuolar malic acid levels drop to their basal value and net CO2  uptake 

reaches a minimum. Once all the vacuolar malic acid has been decarboxylated, the internal 

CO2  concentration is very low. This causes the stomata to open in favourable 

environmental conditions (e.g. well-watered plants). Atmospheric CO2  uptake then begins 

to increase due to the activity of Rubisco and Rubisco-mediated CO2  uptake peaks during 

phase IV. PEPc may also be active towards the end of phase IV but malic acid does not 

accumulate. The cycle is then repeated upon the return to darkness.

This pattern of carbon dioxide fixation and stomatal opening makes CAM plants 

extremely efficient at surviving in deserts, semi-arid regions, salt marshes and epiphytic 

sites (as for the epiphytic and lipophytic orchids) (Osmond, 1984). Some CAM plants 

utilise the CAM mode of metabolism at all stages of their life cycle and these are termed 

"obligate" CAM plants. A second class of CAM plants only utilise CAM when they require

12



Figure 1.5. The phases of CAM

Generalized schematic representation of malic acid and glucan levels, and rates of net CO2  

fixation in air, used to identify four phases of metabolism in ME-type CAM plants (taken 

from Leegood and Osmond, 1990)
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the greatly increased water use efficiency it affords. At other times they use C3  

photosynthesis. These are termed "facultative" CAM plants and they only invoke CAM 

when induced to do so by drought stress, day-length, salt level in the soil water or severe 

day-night temperature fluctuations (Osmond, 1984).

A variation of the method of examining the Ô̂ ^C value of plant material, called 

instantaneous on-line discrimination of carbon isotopes, allows the relative contribution of 

PEPc and Rubisco to CO2  fixation by a living leaf to be examined. Changes in the Ô̂ ^C # 

ratio of CO2  in air as it passes over a leaf will reflect changes in both diffusional resistance 

to CO2  and carboxylation pathway (Evans et al., 1986). Discrimination (A) is a positive |
i'i

term with the extent of depletion in directly related to the magnitude of discrimination 

processes. Typical values of A would be 3.0 %o for CAM and 17.4 % o  to 22.7 % o  for C3 

photosynthesis (Borland and Griffiths, 1996). Application of this approach to facultative 

CAM plants has allowed an accurate determination of the relative contribution of PEPc to 

CO2  fixation throughout the 24 h cycle in response to drought stress both in the natural 

environment and in the laboratory (Borland and Griffiths, 1996). In Sedum telephium, 

well-watered plants display A values around 23 % o  throughout the diurnal cycle. However, 

when the leaf relative water content has been reduced to 60 % by water-stressing the plant, 

the A values drop to about 12 at night indicating significant nocturnal fixation of CO2  

by PEPc. When leaf relative water content is 52 %, A values are less than 15 %o even 

during the photoperiod indicating significant CO2  fixation via PEPc even during the 

photoperiod (Borland and Griffiths, 1996).

Clusia minor was examined in the field in Trinidad during the wet and dry season 

using on-line discrimination (Borland et a l, 1993). During the wet season plants displayed 

on-line discrimination values of 15 to 25 % c  throughout the diel cycle in shaded and 

exposed leaves, indicating that little, if any, CAM was occurring in these leaves. However, 

during the dry season both exposed and shaded leaves performed significant nocturnal 

uptake of CO2  and had A values below 10 %o at night indicating significant CO2  fixation 

by PEPc. Furthermore, these leaves showed significant fixation of CO2  via PEPc during 4

the early part of phase II (first 3 h after dawn) and the latter part of phase IV (Borland and

14



Griffiths, 1996). Exposed, dry season, leaves also kept their stomata open during the 

transition from dusk to darkness, with the decrease in A indicating an increase in PEPc 

activity (Borland and Griffiths, 1996). Such physiological examinations of the relative 

contributions of C4  and C3 carboxylation to the carbon budget of facultative CAM plants 

provide fascinating insights into the phenotypic plasticity of these plants and indicate the 

substantial natural variations in the processes occurring during the four phases of CAM 

(e.g. continued fixation of CO2  by PEPc well into phase II coupled with delayed stomatal 

closure and decarboxylation) (Borland and Griffiths, 1996). Combination of such
:

physiological approaches with detailed biochemical and molecular analyses of the 

underlying processes will provide invaluable insights into the operation of the CAM 

pathway.

1.3.2. CAM in Bryophyllum (Kalanchoë) fedtschenkoi

B. fedtschenkoi is an obligate CAM plant which is endemic to Madagascar. There 

it is exposed to low night temperatures and high day temperatures, which means that CAM 

is a physiological advantage to the plant. Since the late 1950's a great deal of research has 

been carried out on the persistent circadian rhythm of carbon dioxide output or assimilation 

which is observed in detached leaves of B. fedtschenkoi (Wilkins, 1992). When leaves are 

detached from the plant at 16.00 h (the end of the light period), and placed at 15“C in 

continuous darkness and a C0 2 -free air stream, a circadian rhythm of peaks in CO2  output 

is observed (see figure 1.6) (Wilkins, 1959; Wilkins, 1962). This rhythm persists for 3-4 

days, and is observed between temperatures of 10-28°C (Wilkins, 1959; Wilkins, 1962).

The observed rhythm of CO2  output seems to be generated by the oscillation of the flux 

through PEPc. This can be inferred from the observation that incorporation of trace '̂̂ C0 2 , 

in an otherwise C0 2 -free air stream, results in the periodic labelling of malate (Warren and 

Wilkins, 1961). When the enzyme is active then respired CO2 , the only CO2  available, is 

refixed and this generates corresponding troughs in the measured CO2  output (Wilkins,

1959). By contrast, when PEPc is inactive respired CO2  escapes from the leaf generating 

corresponding peaks in CO2  output. When malate synthesized during periods of PEPc 

activity accumulates in the cytosol it will inhibit PEPc, curtailing the troughs in CO2

I'
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Figure 1.6. The circadian rhythm of C02-output from B, fedtschenkoi leaves 

maintained in continuous darkness and CO2  -free air at 15°C

Detached B. fedtschenkoi leaves were placed in continuous darkness and C0 2 -free air at 

15°C and the CO 2 -output from the leaves was measured using an infra-red gas analyser.
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output. However, the malate is pumped into the vacuole and this then allows PEPc to be |
■i

active again leading to a second trough in the CO2  output of the leaf. In conditions of 

constant darkness and C0 2 -free air the rhythm of CO2  output is thought to disappear after 3 I

to 4 days due to the vacuole reaching its capacity for malate. Under these circumstances, 

the malate synthesized during periods of PEPc activity will remain in the cytoplasm and 

therefore prevent the refixation of respired CO2  by PEPc. The CO2  output from the leaves
y

therefore plateaus after 3 to 4 days as indicated by the constant escape of respired CO2  

from the leaves. Exposure of such leaves to a 4 h period of illumination allows all the 

malate to come out of the vacuole into the cytoplasm, where it is decarboxylated, causing a 

large peak in CO2  output. The rhythm will then reinitiate until the vacuole has once more

become saturated with malate (Wilkins, 1992). It must be noted that although this theory 

has a number of attractive features, such as the fact that reinitiation of the rhythm by light 

can be explained by decarboxylation of the accumulated malate, other factors must also be 

important. For example, the total malate content of leaves which have been in C0 2 -free air 

at 15“C in the dark for 3-4 days does not reach anything like the malate content of leaves 

after a single normal night. Stored glucan provides the PEP which is the substrate for PEPc
'Ï;

activity and the possibility that the rhythm damps out after 3-4 days due to depletion of the 

glucan stores has not been tested. The molecular mechanism that underlies the changes in 

flux through PEPc is discussed in section 1.4.3.

In continuous light and a stream of normal air, detached Bryophyllum leaves show a 

rhythm of CO2  assimilation, rather than output, which lasts for at least 1 0  days (figure 1 .7 ) 

(Anderson and Wilkins, 1989; Wilkins, 1984). However, at any particular temperature, 

with the exception of 3 TC, the period of the rhythm is shorter than in darkness and a CO2 - |  

free air stream (Wilkins, 1992). When PEPc is least active then CO2  assimilation becomes 

negligible or CO2  output is detected and CO 2  assimilation is occurring only via the Calvin- 

Benson cycle (Wilkins, 1992). There is no evidence that the rate of photosynthesis is 

regulated by a circadian rhythm in B. fedtschenkoi leaves (Wilkins, 1992). The rhythm of 

CO2  assimilation by leaves in continuous light and a stream of normal air is believed to
#:

continue for up to 10 days because malate does not accumulate in the vacuole. The

.



Figure 1.7. The circadian rhythm of CO2 -exchange in B. fedtschenkoi leaves 

maintained in normal air and continuous light at 15°C

Detached B. fedtschenkoi leaves were placed in continuous light and normal air at 15°C 

and the CO2 -exchange of the leaves was monitored using an infra-red gas analyser.
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conditions of continuous illumination mean that malate moves easily from the vacuole to 

the cytoplasm so the vacuole is not available as a malate storage compartment. Wilkins 

(1984) suggested that malate which accumulates during the first period of PEPc activity 

inhibits the enzyme and then the malate is removed via decarboxylation. This would
î:

require the circadian oscillator to drive a circadian alteration of the properties of the malate 

removal system (i.e. malic enzyme) and there is some evidence for this (Cook et a l, 1995).

The CO2  released may be refixed by Rubisco or escape from the leaf. Hence, the malate 

synthesized during each period of PEPc activity will subsequently be decarboxylated and 

so each cycle of the rhythm will begin with the leaf having a low malate content.

1.4. Phosphoenolpyruvate carboxylase in higher plants

1.4.1. The reaction mechanism, effectors and roles of phosphoenolpyruvate 

carboxylase in plants

Phosphoenolpyruvate carboxylase [orthophosphate oxaloacetate carboxylase 

(phosphorylating)] (EC 4.1.1.31., PEPc) catalyses the 13-carboxylation of 

phosphoenolpyruvate (PEP) using HCO3 " to yield oxaloacetate (OAA) and inorganic 

phosphate (Pi) (Andreo et a l, 1987). A number of divalent cations can act as cofactors for 

PEPc in vitro. The most effective cofactor is Mg^+, but Mn^+ and Co^+ are also active 

(Andreo et a l, 1987). Ca^+ is inhibitory (Andreo et a l, 1987). The reaction proceeds in 

two steps and is strongly exergonic (AG° = -25 to -33 kJ mopi) to the extent that it is 

effectively unidirectional (Vennesland et a l, 1954). The first, reversible step involves the 

transfer of phosphate to form carboxyphosphate and the enolate of pyruvate (figure 1 .8 ). 

The enolate is then irreversibly carboxylated to give OAA and Pj (Andreo et a l, 1987; 

Chollet et a l,  1996). The OAA is rapidly reduced into malate by NADP-malate 

dehydrogenase (MDH, E.C. 1.1.1.37) or transaminated into aspartate by aspartate 

aminotransferase (EC 2.6.1.1).

Several metabolic effectors of PEPc are known. Malate is a potent feedback 

inhibitor and is thought to act, at least partly, allosterically at a number of sites mediating 

competitive, non-competitive and mixed inhibition (Doncaster and Leegood, 1987; Duff et
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Figure 1.8. The proposed reaction mechanism of phosphoenolpyruvate carboxylase

Mechanism of the biotin-independent carboxylation of PEP (phosphoenolpyruvate) by 

PEP carboxylase. Abbreviation: Me^+, divalent cation. The figure was taken from Vidal 

and Chollet (1997).



Bicarbonate Phosphoeno/pyruvate

H C O 3 -  +  2 - O 3 P - 0

CH2 = C  — CO2

Carboxyphosphate

H O 2 C - 0 - P O 3 2 -

Phosphate

+

IVIê +
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a l, 1995; Wedding et al., 1990). The pattern and extent of malate inhibition is dependent 

on the assay pH, phosphorylation status of the enzyme and whether the N-terminal region 

of the enzyme has been removed by proteolysis (Ausenhus and Oleary, 1992; Duff et at., 

1995; Jiao and Chollet, 1991; McNaughton et al., 1991; Wang et al., 1992). The apparent 

Ki (L-malate) of recombinant Sorghum PEPc at pH 7.3 was 0.17 mM and 1.2 mM for the 

dephosphorylated and phosphorylated forms respectively (Duff et al., 1995). Glucose 6 - 

phosphate is an allosteric activator of PEPc and is thought to act at a different site to malate 

(Doncaster and Leegood, 1987; O'Leary, 1982). The sensitivity of PEPc to activation by 

G6 P varies according to its phosphorylation state. For example the Ka (G6 P) of 

recombinant Sorghum PEPc at pH 7.3, 1 mM pyruvate was 1.3 mM and 0.28 mM for the 

dephospho- and phospho-forms of PEPc respectively (Duff et a l, 1995). PEPc is also 

inhibited by organic acids and PEP/pyruvate analogues, although the significance of this in 

vivo is not known. Interestingly, flavanoids and shikimic acid have been demonstrated to 

be potent inhibitors of PEPc (Colombo et a l, 1996; Pairoba et a l, 1996). It has been 

suggested that this may allow plants to divert PEP into the shikimic acid pathway for 

subsequent secondary metabolite (flavanoid) biosynthesis under conditions of excess 

products of glycolysis (including PEP), or photosynthetic metabolites (including PEP in C4  

plants) (Colombo et al, 1996). A thorough coverage of the inhibitors and activators of 

PEPc is given in Rajagopalan et a l (1994).

Higher plant PEPc carries out a number of metabolic processes. In the leaves and 

non-photosynthetic tissues of C3 plants PEPc's major role is anaplerotic, providing four 

carbon skeletons (OAA, malate or aspartate) for nitrogen assimilation and amino acid 

biosynthesis (Melzer and O'Leary, 1987; Van Quy e ta l,  1991a). PEPc also maintains pH 

and ionic balance, recaptures respiratory CO2  and plays a role in the transfer of reducing 

power (NADH) (Lepiniec et a l, 1993). More specialised functions of PEPc include the 

regulation of stomatal movement (Schulz et al, 1992; Tarczynski and Outlaw, 1993; 

Zhang et a l, 1994) and nitrogen assimilation in roots and root nodules (Deroche and 

Carrayol, 1988; Schuller e ta l,  1990; Schuller and Werner, 1993). In the leaves of C4  and 

CAM plants, distinct isoenzymes of PEPc carry out the initial, photosynthetic fixation of
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atmospheric CO2  (as HCO3 ") (Chollet et a l, 1996; Cushman and Bohnert, 1997; Lepiniec 

et a l, 1994; Toh et a l, 1994; Vidal and Chollet, 1997).

1.4.2. The structure and evolution of plant PEPc

The PEPc protein and corresponding cDNA have now been characterized from a 

wide range of species encompassing C3 , C4  and CAM plants. C4  and CAM plants possess a 

specific isoform of PEPc involved in the C4  and CAM pathways respectively. In addition 

they possess C3 , stomatal and housekeeping isoforms of PEPc which are not directly 

involved in the C4  or CAM pathway. For example, 2 genes encoding PEPc have been 

cloned from the facultative CAM plant M. crystallinum whilst four bands can be detected 

on Western blots; and 3 genes which code for PEPc have been cloned from the C4  plant 

Sorghum vulgare, corresponding to the C3 , C4  and root isoforms of the enzyme (Bohnert 

et a l, 1992; Cretin et a l, 1990). In M. crystallinum the 3.2 Kb ppc2 gene encodes the 109 

kDa Cs-form of PEPc whilst the 3.4 Kb ppcl gene encodes the 110 kDa, salt-inducible, 

CAM-form of PEPc (Bohnert et a l, 1992; Cushman and Bohnert, 1989a; Cushman and 

Bohnert, 1989b; Rickers et a l, 1989). In maize there are at least five members of the PEPc 

gene family (Grula and Hudspeth, 1987). The monocot C4  species, maize and Sorghum, 

possess a single gene for the C4  isoform of PEPc, whilst in the C4  dicot Flaveria trinervia, 

a small subgroup of the genes in the PEPc multigene family encode the C4  isoform of 

PEPc (Grula and Hudspeth, 1987; Hermans and Westhoff, 1990; Hermans and Westhoff, 

1992; Lepiniec e ta l, 1993; Poetsch e ta l, 1991).

When all of the published, deduced amino acid sequences for PEPc are aligned, a 

number of well conserved residues and motifs become evident. In particular, the 

phosphorylation motif near the N-terminus has been found in all higher plant PEPcs 

including a gymnosperm, but is absent from the bacterial and cyanobacterial PEPc 

sequences (Relie and Wild, 1996; Vidal and Chollet, 1997). This motif has the consensus 

sequence - E/DR/KxxSIDAQL/MR (the phosphorylated serine is highlighted in bold) 

(Chollet et a l,  1996). The presence of this phosphorylation motif in all the higher plant 

PEPc deduced amino acid sequences indicates that they are all capable of undergoing 

phosphorylation on this N-terminal serine residue. The plant PEPcs also possess five
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conserved cysteine residues which may be involved in subunit interactions to maintain the 

tetrameric stmcture or redox regulation (Andreo et al., 1987; Chardot and Wedding, 1992).

Other species invariant motifs in the PEPc sequences include T A H P T ,  

VMxGYSDSxKDxG, and FHGRGxxxxRGxxP which contain the Arg, His and Lys 

residues (indicated in bold) that have been implicated in the active site domain (Chollet et 

al., 1996). The region surrounding the lysine in the VMxGYSDSxKDxG motif is thought 

to be involved in the binding of PEP/catalytic activity (Jiao et al., 1990). For the E. coli 

enzyme, the histidine in the TAHPT motif has been proposed to be involved in the 

formation of OAA by using a site-directed mutagenesis approach (Terada and Izui, 1991).

Further characterization of the structure/function relationships of PEPc may result from 

work involving the site-directed mutagenesis of additional conserved sites in the enzyme g

and the production of a model of the three dimensional structure of the enzyme as a 

consequence of X-ray crystallography studies (Chollet et a l, 1996). The X-ray structure of 

Eschericia coli PEPc has recently been resolved and hopefully this will permit modelling 

of the structure of the plant PEPcs using the E. coli structure as a basis (Kai et ai, 1997).

Site-directed mutagenesis of the phosphorylatable N-terminal serine residue found
i!

in the plant PEPc sequences has demonstrated the importance of this residue for the 

regulation of the enzyme. Examination of the C4  isoform of PEPc from Sorghum vulgare 

has demonstrated that Ser^ undergoes phosphorylation (Cretin et a l, 1991a; Jiao et al,

1991b). Site-directed mutagenesis of this serine residue to an aspartate (S8 D) mimicked 

phosphorylation by introducing a negative charge at this position (Wang et a l, 1992). The
i

S8 D form of the enzyme could not be phosphorylated by the C4 -leaf PEPc kinase but was i
%

malate-insensitive like the phosphorylated (Ser^-P) form of the enzyme found in planta I

(Duff et a l, 1995; Wang et a l, 1992). However, when Ser  ̂was mutagenised to a cysteine 

(S8 C) the resulting enzyme could not be phosphorylated by PEPc kinase and was malate 

sensitive like the dephosphorylated enzyme found in planta (Wang et a l, 1992).

When the S8 C form of the enzyme was subjected to S-carboxymethylation by 

iodoacetic acid, the resulting negative charge a position 8  caused the I 0 . 5  (L-malate) of t h e  

enzyme to increase from 0.12 mM to 0.35 mM which mimics the change mediated by
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phosphorylation of the wild type enzyme at Ser^ (0.15 to 0.40 mM) (Duff et a l, 1993). 

Further, evidence of the cardinal role of Ser^ in Sorghum PEPc with regard to the changes 

in the kinetic properties of the enzyme brought about by phosphorylation at this residue has 

been obtained by using specific anti-phosphorylation site antibodies. Anti-phosphorylation 

site antibodies reacted specifically with the N-terminal phosphorylation domain of PEPc.

Binding of the antibodies to dephospho-PEPc blocked the subsequent phosphorylation of 

the enzyme by mammalian cyclic AMP-dependent protein kinase (PKA) and caused a 

decrease in the L-malate sensitivity of the enzyme which mirrored the change brought 

about by the phosphorylation of Ser^ (Pacquit et ai, 1995). Hence, binding of an antibody 

to the N-terminus of PEPc appears to cause the same changes to the properties of PEPc as 

phosphorylation. It would seem likely from this data that in the dephospho-form of the 

enzyme the N-terminal region interacts with the rest of the protein and this can be 

prevented by either phosphorylation or antibody binding.

The deduced amino acid sequences of PEPc from over 20 species of plant and 

bacteria have been published. Analysis of the phylogenetic relationships between these 

sequences provides an insight into the evolutionary transition from C3 to C4  and CAM 

plants. The C4  isoforms of PEPc from monocots fall on their own branch of the 

phylogenetic tree and are distinct from a dicot C4  sequence, various monocot, dicot and 

gymnosperm C3 and CAM sequences and also their indigenous C3 isoforms (Lepiniec et
■

al., 1994; Relie and Wild, 1996). It has been suggested that this may indicate that the 

monocot C4  PEPc genes appeared due to a duplication event which occurred prior to the 

divergence of the monocots and dicots, and the appearance of C4  plants. The gene for C4

PEPc may have evolved from this original duplication in some species (such as maize and 

Sorghum) whilst it was lost from other species that did not evolve the C4  pathway of 

photosynthesis (Chollet et a l, 1996). This hypothesis would explain the separate position 

of monocot C4  PEPc sequences on the phylogenetic tree. The sequence of the C4  isoform 

of PEPc from the dicot Flaveria trinervia is more closely related to that of the C3 and 

CAM isoforms than it is to the sequences of the C4  isoforms from the monocots maize and 

Sorghum. This indicates that the C4  pathway has most probably evolved on numerous
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separate occasions and that the mechanism of evolution probably differs in each case. For 

example, the C4  Ppc gene from F. trinervia has a promoter sequence very similar to that of 

an orthologous gene in the closely related Cg-species F. pringleL (Hermans and Westhoff, 

1992). Thus, it has been suggested that, in the case of the genus Flaveria, the C4  isoform of 

PEPc has evolved via the 'fine tuning’ of the promoter of the orthologous C3 gene 

(Hermans and Westhoff, 1992). This 'fine tuning' allowed an alteration to the expression 

pattern of PEPc such that it is expressed in a mesophyll-cell cytosol specific manner in C4  

F. trinervia (Hermans and Westhoff, 1992).

Interestingly, the PEPc gene for the CAM isoform of PEPc from the monocot CAM 

plant Aloe arborescens does not group with the C4 ~monocot PEPcs, but instead groups 

with the root isoform of PEPc from Sorghum  and the CAM isoform from the dicot 

Mesembryanthemum crystallinum (Honda et a l, 1996). This indicates that the monocot 

CAM-form of PEPc is unlikely to have originated via a gene duplication event which 

occurred prior to the separation of monocots and dicots, as has been proposed for the gene 

from C4  monocots (Chollet et al., 1996). Instead, the monocot CAM isoform of PEPc 

seems to have evolved from the monocot C3  isoform, and this possibly occurred at or after 

the separation of the monocots and dicots. The CAM isoform of PEPc from M. 

crystallinum also falls within the C3 -type grouping, on a separate branch from the C4 - 

monocots. Hence, both the CAM PEPc sequences published to date seem to have evolved 

from their C3 counterparts either around the time of the divergence of monocots and dicots 

or after this divergence. Whether this will remain the case as further CAM-PEPc sequences 

are produced, or whether there proves to be some CAM-PEPcs which occurred prior to the 

separation of monocots and dicots must await the publication of other CAM-PEPc 

sequences. Particularly interesting will be the analysis of the phylogenetic relationships of 

the CAM isoform of PEPc from pteridophytes and Isoetes, because this may reveal 

whether the CAM isoforms of PEPc in the angiosperms are closely related to the CAM 

isoforms in some of the ancestors of the angiosperms (Griffiths, 1988; Raven and Spicer, 

1996).

25



1.4.3. PEPc regulation in B. fedtschenkoi

When the diurnal changes in CO2  metabolism in B. fedtschenkoi leaves were 

studied at the biochemical level, it was discovered that the sensitivity of PEPc to the 

feedback inhibitor L-malate also changes between day and night (Nimmo et al, 1984). 

Rapidly desalted extracts prepared during the day contained PEPc with a low apparent Ki 

for malate of 0.3 mM. The PEPc in desalted extracts made from B. fedtschenkoi leaves at 

night showed an apparent Ki ten-fold greater at 3.0 mM (Nimmo et aL, 1984). The specific 

activity of PEPc within the extracts did not vary over a 24 h period indicating that the 

amount of PEPc protein in the leaves remains constant throughout. This was confirmed 

immunologically (Nimmo et al., 1986). This suggested that PEPc was regulated post- 

translationally. In order to determine the nature of the post-translational regulation of 

PEPc, detached leaves were allowed to take up 32pj for 72 hours followed by rapid 

extraction and immunoprécipitation of PEPc (Nimmo et al., 1984). The 

immunoprecipitated PEPc was separated by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE). Autoradiography of the resulting gel demonstrated that the night form of 

PEPc contained 2̂ pj but the day form did not (Nimmo et al., 1984). The phosphate group 

was shown to be bound to serine using two dimensional thin-layer electrophoresis of 

hydrolysed 32p_iabelled PEPc (Nimmo et al., 1986). This suggested that protein 

phosphorylation was the post-translational modification responsible for controlling the 

circadian rhythm of PEPc activity.

Further investigations led to the purification of the phosphorylated night form and 

dephosphorylated day form of PEPc from Bryophyllum leaves and the subsequent 

characterisation of the enzyme in the two phosphorylation states (Nimmo et al., 1986). 

Both forms of the enzyme contained two proteins, a major one (subunit Mr 112 000) and a 

minor one (subunit Mr 123 000) as determined by SDS PAGE. These subunits are related 

as judged by proteolysis patterns and this is not an artefact of proteolysis in vitro (i.e. both 

subunits exist in planta). Both subunits became phosphorylated at night (Nimmo et al, 

1986). Alkaline phosphatase was found to remove the phosphate group from the night
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form PEPc in vitro. This gave a concomitant increase in the apparent Ki of the PEPc for 

malate to that of the day form (Nimmo et a l, 1984).

Analysis of PEPc from detached Bryophyllum leaves maintained in continuous 

darkness and a stream of CO^-free air, showed a good correlation between periods when 

the leaves were fixing respiratory CO2  and periods when the PEPc was in the 

phosphorylated night form (Nimmo et al., 1987b). With all the evidence pointing to 

phosphorylation as the cause of the circadian rhythm of PEPc activity in Bryophyllum the 

search for the enzyme(s) responsible for regulating the phosphorylation state of PEPc 

began. There were obviously two possible candidates for the role, namely the kinase and 

the phosphatase.

The first evidence as to the nature of the phosphatase which dephosphorylates PEPc 

at the end of the dark period came from experiments in which the purified catalytic 

subunits of rabbit skeletal muscle type 1 and 2A protein phosphatases were tested for in 

vitro activity against phosphorylated PEPc. This lead to the discovery that phosphorylated 

PEPc from Bryophyllum could only be dephosphorylated by protein phosphatase type 2A 

and not type 1 (Carter et al., 1990). Furthermore, by using specific inhibitors, Carter et al. 

(1990) were able to demonstrate that Bryophyllum leaves contain a type 2A protein 

phosphatase that can dephosphorylate PEPc. Examination of the specific activity of this 

protein phosphatase type 2A over the 24 h period showed that there was no significant 

diurnal variation in its activity (Carter e ta l,  1991).

Subsequent work in the same laboratory lead to the discovery of a kinase in 

Bryophyllum leaves capable of phosphorylating PEPc (Carter e ta l,  1991). In plants under 

short day conditions (photoperiod 08.00-16.00), the kinase activity appeared between 

2 0 .0 0 h and 2 2 . 0 0  h and persisted at a high level throughout the middle of the dai’k period, 

but was virtually undetectable by 06.00 h (Carter et a l, 1991). Presence of kinase activity 

correlated with the Ki of PEPc for malate being high. This pattern of activity indicated that 

it is the kinase and not the phosphatase that is responsible for the observed circadian 

rhythm of PEPc phosphorylation.
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This raised the question as to what regulates the activity of the kinase such that it is 

active at night but not in the day. Detached Bryophyllum leaves were allowed to take up 

puromycin, cycloheximide (protein synthesis inhibitors), cordycepin and actinomycin D 

(RNA synthesis inhibitors) during the day in an attempt to ascertain whether the nocturnal 

appearance of PEPc kinase activity is controlled at the level of protein synthesis and/or 

RNA synthesis (Carter et al., 1996; Carter et al., 1991; Nimmo, 1993). Rapidly desalted 

extracts prepared from these leaves in the middle of the following night were found to 

contain no PEPc kinase activity. This was true whether the inhibitor was applied during the 

previous day or just 1-2 h prior to kinase assays in the middle of the night (Carter et al., 

1996; Nimmo, 1993). The PEPc in these extracts was dephosphorylated, as judged by its 

malate sensitivity. This work suggested that both de novo protein synthesis and an increase 

in the steady state level of an mRNA, possibly PEPc kinase mRNA, are necessary for the 

appearance of PEPc kinase activity. Furthermore, the fact that application of the inhibitors 

only 1 - 2  h prior to assay lead to loss of activity suggested that kinase activity was being 

rapidly turned over. It would appear from these results that the activity of PEPc kinase 

plays a key role in the control of the circadian rhythm of PEPc activity and CO2  

metabolism in B. fedtschenkoi.

Recent work on the effect of temperature on PEPc kinase activity and the 

phosphorylation state of PEPc in Bryophyllum has brought to light some interesting effects 

that are of great significance to the physiology of the plant in the wild (Carter et al., 

1995a). At 30“C a distinct circadian rhythm of CO2  output was observed in the absence of 

a detectable rhythm in PEPc kinase activity. Therefore, it would appear that kinase activity 

is not completely essential for the generation of a circadian rhythm in PEPc activity and 

CO2  output (Carter et al., 1995b). Rather, circadian changes in kinase activity may increase 

the amplitude of the rhythm. Decreasing temperature increases the apparent Ki of PEPc for 

malate irrespective of whether or not it is phosphorylated. At 3°C the apparent Ki of 

dephosphorylated PEPc for malate is 9 mM whereas the Ki of the phosphorylated form is 

20 mM. These values are markedly higher than the values of 0.3 mM and 3.0 mM 

respectively obtained at 25“C (Carter et al., 1995a). The catalytic activity of PEPc is
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greatly reduced at 3“C. However, this seems to be overcome in vivo by the greatly 

increased Ki of the enzyme for malate which renders PEPc physiologically active. This 

finding is supported by measurements of the malate concentration in leaves of Bryophyllum 

at a range of temperatures (Carter et al., 1995b. Between 10 and 25°C leaf malate 

concentrations were around 50 mM after 72 h in the dark with a supply of normal air 

(Carter et a l, 1995b). At 3”C and 0°C the malate concentration was much higher, reaching 

up to 90 mM (Carter et al., 1995b). This supports the finding that the PEPc in leaves held 

at this temperature is stabilised in the phosphorylated form and achieves a Ki of around 2 0  

mM (Carter et a l, 1995a; Carter et a l, 1995b). Decreasing temperature, as is experienced 

by Bryophyllum as night approaches in Madagascar, thus promotes maximal fixation of 

CO2  into malate throughout the night. This allows the plant to make optimum use of the 

high concentration of CO2  caused by the nocturnal opening of the stomata. Increasing 

temperature has the reverse effect and thus helps prevent any futile recycling of CO2  by 

PEPc in the day (Carter et al, 1995b).

In C4  plants a number of the possible links in the signal transduction cascade which 

regulates PEPc kinase activity have already been established (Vidal and Chollet, 1997) (see 

section 1.4.5). In Bryophyllum, however, the signal transduction process is less well 

understood. It has been speculated that, in the light of the effects of RNA and protein 

synthesis inhibitors, it could be the kinase itself that is synthesised / degraded in response 

to a circadian oscillator (Nimmo, 1993). However, the inhibitors used are not specific to 

PEPc kinase regulation (i.e. they inhibit all protein and RNA synthesis). Therefore, it is 

equally feasible that some other protein or proteins is / are required to activate and / or 

inactivate the kinase. An example of such a protein would be a kinase-kinase, which 

phosphorylates the PEPc kinase causing it to be physiologically active or inactive. In fact 

there could be a whole cascade of kinases involved, but ultimately there must be at least 

one gene, and a protein that it encodes, which form the molecular basis of the circadian 

clock in Bryophyllum, In Neurospora crassa and Drosophila melanogaster two such loci 

have already been found and characterised at the molecular level (see section 1.5.2) (Page, 

1994). The per locus in Drosophila and the frq  locus in Neurospora have both been shown
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to display rhythmic RNA and protein levels (Aronson et al., 1994; Page, 1994). The 

product of frq  negatively regulates its own transcription and this results in the daily 

oscillation of the amount of frq  transcript (Aronson et al., 1994). A gene with similar 

properties to per and frq  probably controls the circadian rhythm of PEPc kinase activity in 

Bryophyllum and it is the identification of this gene which must be the ultimate goal of 

research into the molecular basis of the circadian rhythm. The first step towards this will be 

discovering exactly how PEPc kinase is regulated.

1.4.4. PEPc regulation in other CAM species

The regulation of PEPc has also been studied in a number of other CAM plants, 

including both constitutive CAM plants like Kalanchoë daigremontiana and facultative 

CAM plants such as Mesembryanthemum crystallinum and Clusia minor. For example, 

Brulfert et al. (1986) demonstrated that the PEPc from K. daigremontiana, K. tubiflora and
'

K. blossfeldiana was phosphorylated in vivo at night. When the night-form of PEPc from 

K. blossfeldiana was incubated with acid phosphatase the L-malate sensitivity of the 

enzyme increased to that of the day-form of the enzyme (Brulfert et al., 1986).

K. uniflora is an epiphytic species that develops long trailing shoots which possess 

a pair of CAM performing leaves and minute roots at each leaf node. Cutting these shoots 

at internodes allows multiple self-sufficient CAM performing units to be obtained. This 

system has been used to examine the diel course of CO2  metabolism, malic acid 

accumulation and the malate sensitivity and phosphorylation status of PEPc simultaneously 

(Kluge and Brulfert, 1996). Using this system, PEPc was found to become phosphorylated 

and malate-insensitive at night. This was accompanied by an increase in CO2  assimilation 

and malate accumulation (Kluge and Brulfert, 1996). These results demonstrate that the 

conclusions of Nimmo et al. (1984) are valid for another species of Kalanchoë which has a 

markedly different growth habit to B. fedtschenkoi.

The common ice plant (M. crystallinum) is a facultative CAM plant. During the 

early stages of its development it performs C3 photosynthesis, but from about four weeks 

after germination it can be induced to perform CAM by salt or water stress (Edwards et al.,

1996). Salt stress causes increases in the activity of a number of enzymes associated with
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CAM, including PEPc and both NAD- and NADP-malic enzyme (ME) (Holtum and 

Winter, 1982). It has also been found that the induction of CAM leads to an increase in the 

transcript levels for a wide range of genes including Ppcl (PEPc, cytosol), Mdhl (NADP- 

MDH, chloroplast), Mdh2 (NAD-MDH, mitochondria/cytosol). Modi (NADP-ME, 

cytosol), Mod 2 (NAD-ME, mitochondria) and Ppdkl (PPdK, chloroplast) (Cushman and 

Bohnert, 1996; Cushman and Bohnert, 1997). Furthermore, it has been shown that CAM- 

induced M. crystallinum leaves perform the in vivo phosphorylation of PEPc and contain 

PEPc kinase activity during the dark period (Baur et al., 1992; Weigend, 1994). This 

indicates that the induction of CAM is accompanied not only by the induction of both the 

transcripts, proteins and enzyme activities necessary for CAM, but also by the regulatory 

machinery responsible for modulating the diurnal pattern of CO2  metabolism in CAM.

This was supported by the work of Li and Chollet (1994) who demonstrated that a 

Ca^+-independent PEPc kinase is induced concomitantly with PEPc by salt stress in M. 

crystallinum. PEPc kinase activity was detected only from stressed plants at night. 

Maximal induction of both PEPc protein and PEPc kinase activity occurred 10 days after 

salt-stressing the plants with 0.5 M NaCl (Li and Chollet, 1994). The PEPc kinase activity 

from darkened CAM-performing leaves of M. crystallinum was partially purified about 

3500-fold and found to have a native molecular weight of -33, 000 (Li and Chollet, 1994). 

However, "in gel" PEPc kinase assays on night extracts of CAM-induced M. crystallinum 

leaves indicated two Ca^Mndependent PEPc kinase polypeptides with molecular weights 

of 39 and 32 kDa (Li and Chollet, 1994). Determination of the exact molecular weight of 

PEPc kinase from M. crystallinum will require its complete purification and/or the cloning 

of its gene.

1.4.5. The regulation of PEPc in C4  plants

Following the discovery that PEPc from CAM plants undergoes post-translational 

regulation via protein phosphorylation (Nimmo et a l, 1984), it was subsequently found 

that PEPc in C4  plants undergoes a similar process of post-translational regulation (Budde 

and Chollet, 1986; Nimmo et al., 1987a). However, whilst the phosphorylation of PEPc 

and the appearance of PEPc kinase occur at night in CAM plants, the equivalent processes
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in C4  plants were found to occur during periods of illumination (Budde and Chollet, 1986; 

Carter et a l, 1991; Jiao and Chollet, 1989; McNaughton et a l, 1991; Nimmo et a l, 1987a; 

Nimmo et a l, 1984). Initial work by Budde and Chollet (1986) demonstrated that PEPc 

can be phosphorylated in vitro when ATP is supplied as substrate, but failed to link this to 

changes in the allosteric properties of the enzyme. However, Nimmo et a l  (1987) found 

that the Ki of PEPc for L-malate in rapidly desalted extracts of illuminated leaves was 2-3 

times higher than that of PEPc in extracts from leaves kept in darkness. This change in the 

malate sensitivity of PEPc was accompanied by an increase in the extent of 

phosphorylation of PEPc in vivo. This was determined by supplying detached maize leaves 

with and then subjecting them to periods of illumination or darkness. Subsequent 

immunoprécipitation of the PEPc from extracts made from these leaves and separation of 

the immunoprecipitates by SDS-PAGE allowed the determination of the degree of 

phosphorylation of the PEPc. The PEPc from illuminated leaves was found to be 

phosphorylated and have a high Ki for malate (1.2 mM) whilst the PEPc from darkened 

leaves was found to be dephosphorylated and have a low Ki for malate (0.5 mM) (Nimmo 

et a l, 1987a). Phosphopeptide analysis of the in vivo phosphorylated PEPc indicated that 

maize PEPc was phosphorylated on a serine residue, confirming the findings of Budde and 

Chollet (1986) for the in vitro phosphorylated maize enzyme.

Subsequently, it was discovered that illuminated maize leaves contain a soluble 

protein kinase capable of phosphorylating PEPc on a serine residue (Jiao and Chollet, 

1989; McNaughton et a l,  1991). This protein kinase was partially purified by ammonium 

sulphate precipitation and affinity chromatography on blue-dextran agarose such that PEPc 

contamination was removed. A reconstituted, in vitro PEPc kinase assay was developed. 

This involved incubating purified dark-form maize leaf PEPc with the partially purified 

protein kinase from illuminated leaves and [y-32p]ATP. In this assay system, the protein 

kinase preparation activated the purified dark-form (dephospho-form) of maize leaf PEPc 

by decreasing its L-malate sensitivity (Jiao and Chollet, 1989). This activation was 

accompanied by a concomitant increase in the phosphorylation status of the PEPc. The 

maximal molar ^^P-incorporation value was 0.25 per 100 kDa subunit, which is equivalent
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to 1 per holoenzyme. However, later work by McNaughton et al. (1991) showed that the 

maximum extent of phosphorylation of PEPc by a partially purified, illuminated maize leaf 

protein kinase was 0.7-0.8 molecules per PEPc subunit. They proposed that the lower value 

(0.25 molecules/subunit) reported earlier by Jiao and Chollet (1989) may have been due to 

partial proteolysis of the PEPc, which they had overcome by the inclusion of a cocktail of 

protease inhibitors in their extraction buffers (McNaughton etal., 1991).

Earlier work by Jiao and Chollet (1988) had demonstrated that incubating the light 

form of maize leaf PEPc with alkaline phosphatase caused an increase in the L-malate 

sensitivity of the enzyme to that of the dark-form of the enzyme, whereas the dark-form 

was unaffected. This observation was complemented and extended by the work of 

McNaughton et al. (1991). They found that the purified catalytic subunit of rabbit skeletal 

muscle protein phosphatase type 2A (PP-2A) was capable of dephosphorylating maize 

PEPc which had been labelled in vitro by a partially purified kinase. This 

dephosphorylation was accompanied by an increase in the L-malate sensitivity of the 

PEPc. However, the PP-1 from rabbit skeletal muscle did not dephosphorylate PEPc nor 

affect its L-malate sensitivity (McNaughton et al., 1991). Furthermore, the specific 

activities of PP-1 and PP-2A (using phosphorylase a as substrate) in maize leaf extracts 

were unaffected by illumination whilst the activity of the PEPc protein kinase was shown 

to increase in response to illumination (Echevarria et al, 1990; McNaughton et a l, 1991).

The amino acid sequence around the phosphorylated, N-terminal serine of maize 

PEPc was determined by performing automated Edman degradation analysis on the 32p„ 

labelled regulatory site phosphopeptide purified from a tryptic digest of the in vitro 

phosphorylated, purified dark-form maize leaf PEPc (Jiao and Chollet, 1990; Terada et a l,

1990). The sequence of the phosphopeptide was His-His-Ser(P)-Ile-Asp-Ala-Gln-Leu-Arg, 

regardless of whether the PEPc had been phosphorylated with mammalian cyclic AMP- 

dependent protein kinase or an illuminated maize-leaf protein kinase (Jiao and Chollet, 

1990; Terada et a l, 1990). This corresponds exactly to residues 13-21 of the deduced 

amino acid sequence of maize leaf PEPc (Jiao and Chollet, 1990; Terada et al, 1990). This 

means that it is serine 15 in the maize PEPc sequence that is the target for phosphorylation.
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This in vitro phosphorylation site was confirmed as the in vivo phosphorylation site by 

performing automated Edman sequencing on in vivo phosphorylated PEPc from both 

maize and Sorghum (Jiao et al, 1991b). Only a single N-terminal serine residue (Ser-15 for 

maize and Ser- 8  for Sorghum) was phosphorylated in vivo (Jiao et al., 1991b), 

Examination of the deduced N-terminal sequences of other PEPcs, encompassing C3 , C4  

and CAM species indicated a conserved N-terminal motif, Lys/Arg-X-X-Ser, which 

corresponds to this phosphorylation site (Jiao and Chollet, 1990).

At the beginning of the 1990's, research on the regulation of C4  PEPc began to 

focus more specifically on the protein kinase responsible for phosphorylating PEPc in vivo 

because it became clear that the phosphorylation status of PEPc changed largely due to 

changes in the activity of this kinase, rather than that of the PP-2A responsible for 

dephosphorylating PEPc (Echevarria et al., 1990; McNaughton et al., 1991). Maize PEPc 

kinase activity increased and decreased according to the duration of periods of illumination 

or darkness respectively (Echevarria et al., 1990; McNaughton et al., 1991). The light 

induction of PEPc kinase was found to require a threshold photosynthetic photon flux 

density (PPFD) of about 300 pmol m‘̂  s“̂  as inferred from estimates of the malate 

sensitivity of PEPc at a range of PPFDs (Bakrim et a l, 1992; Nimmo et a l, 1987a). 

Furthermore, light quality had no effect on the light-induced decrease in the L-malate 

sensitivity of PEPc, with white, red and blue light proving equally effective (McNaughton 

et a l, 1991). This suggested that the induction of PEPc kinase was not controlled by 

phytochrome or the blue-light photoreceptor. The requirement for at least 300 jxmol m'^ s'̂  

of light for a change in the malate sensitivity of PEPc suggested that flux through 

photosynthesis was involved in the light-induction of PEPc kinase. This possibility was 

tested by supplying detached maize leaves with photosynthetic electron transport and 

Calvin cycle inhibitors prior to illuminating them. Photosystem II (DCMU, isocil), 

photosystem I (methyl viologen) and Calvin cycle (DL-glyceraldehyde) inhibitors all 

blocked the subsequent light activation of PEPc kinase and the resulting change in the L- 

malate sensitivity of PEPc (Jiao and Chollet, 1992; McNaughton et a l, 1991). This 

finding was confirmed in leaves of Sorghum suggesting that the signal transduction
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pathway for the regulation of PEPc kinase and PEPc in C4  plants is conserved (Bakrim et 

a l,  1992). Additionally, Bakrim et a l  (1992) supplied an ATP synthesis inhibitor 

(gramicidin) to detached Sorghum leaves and demonstrated that ATP synthesis is also 

required for the light-induction of C4 -PEPC kinase (Bakrim et al., 1992).

One of the most important findings concerning the regulation of C4 -PEPC kinase 

was the discovery that the light-induction of the kinase requires de novo protein synthesis 

(Bakrim et al., 1992; Bakrim et a l, 1993; Jiao et a l, 1991a). This was determined by 

feeding cytosolic protein synthesis inhibitors to detached leaves and attempting to induce 

PEPc kinase activity by illuminating the leaves. Subsequent analysis of the PEPc kinase 

activity in these leaves showed that the protein synthesis inhibitors prevented the light- 

induction of PEPc kinase without affecting the light activation of other photosynthesis- 

related enzymes in maize (cytosolic sucrose-phosphate synthase, chloroplast stromal 

NADPH-malate dehydrogenase and pyruvate Pi dikinase), stomatal conductance or the 

Calvin-Benson cycle (Bakrim et a l, 1992; Bakrim et a l, 1993; Jiao et a l, 1991a). 

However, treatment of leaves with chloramphenicol (a chloroplast protein synthesis 

inhibitor) had no effect on the light activation of maize leaf PEPc kinase (Jiao and Chollet,

1991). This requirement for cytosolic protein synthesis in the light-induction of PEPc 

kinase represents evidence that the kinase itself or a secondary component undergoes de 

novo protein synthesis during its induction. This is very unlike the typical animal 

paradigm, in which protein kinase activity is regulated by a second messenger, a 

metabolite or a protein phosphorylation cascade without net synthesis/degradation of the 

kinase.

Unlike the situation in CAM-plants, where the circadian-clock mediated, dark- 

induction of PEPc kinase has been shown to require both protein and RNA synthesis using 

an inhibitor based approach, the light-induction of PEPc kinase in C4  plants apparently 

does not require RNA synthesis. This conclusion is drawn from the findings of Giglioli- 

Guivarc'h et a l  (1996) that the RNA synthesis inhibitors a-amanitin and actinomycin D 

did not block the light- and weak-base induced decrease in the L-malate sensitivity of 

PEPc in isolated mesophyll protoplasts from leaves of the C4  grass Digitaria sanguinalis.
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It was concluded from this result that the increase in PEPc kinase activity most likely
.

results from the increased translation of pre-existing mRNA (Giglioli-Guivarc'h et al.,

1996). However, these authors failed to demonstrate the effectiveness of their RNA 

synthesis inhibitors at blocking RNA synthesis in D. sanguinalis protoplasts and it 

therefore remains possible that C4 -PEPC kinase is transcriptionally regulated.

The use of mesophyll protoplasts and cells from both Sorghum and D. sanguinalis 

has permitted a more detailed analysis of the light-transduction cascade responsible for 

inducing PEPc kinase activity in C4  plants. Initial findings with Sorghum mesophyll 

protoplasts demonstrated that PEPc kinase can be light activated in isolated protoplasts 

(Pierre et al., 1992). The process of light-activation was found to require protein synthesis, 

alkalinization of the cytosol and an increase in the cytosolic calcium concentration (Duff et 

al., 1996; Pierre et al., 1992). A more detailed analysis of the signal cascade in D. 

sanguinalis mesophyll protoplasts involved the use of a wide variety of highly specific 

inhibitors of possible signal transduction events (Giglioli-Guivarc'h etal., 1996). Light 

induction of PEPc kinase and an increase in the apparent phosphorylation state of PEPc 

were both found to require light plus a weak-base such as NH4 CI or methylamine, which 

caused the alkalinization of the cytosol. The role of the weak-base was mimicked by 

supplying 3-PGA, which may indicate that, in the intact leaf, 3-PGA is transported from 

the bundle-sheath cells (where the chloroplasts possess a complete Calvin cycle) to the 

mesophyll cells as one of the early steps in the light induction of PEPc kinase. A variety of 

calcium channel blockers were tested for their ability to perturb the light- and weak base 

dependent induction of PEPc kinase. Only verapamil and TMB- 8  inhibited the decrease in 

the L-malate sensitivity of PEPc, whilst the plasmalemma calcium channel blockers 

diltiazem and nifedipine had no effect. TMB- 8  was also shown to inhibit the light- 

induction of PEPc kinase activity. Both verapamil and TMB- 8  block the activity of 

tonoplast membrane calcium channels and it has therefore been suggested that the light- 

induction of PEPc kinase requires the flux of vacuolar Ca^+ into the mesophyll cytosol. 

Giglioli-Guivarc'h et al. (1996), also demonstrated that the light- and weak-base mediated 

activation of PEPc kinase requires a calcium/calmodulin-dependent protein kinase activity.
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as implied from the inhibition of the decrease in the L-malate sensitivity of PEPc by W7, 

W5 and compound 48/80. W7 also inhibited the increase in PEPc kinase activity. Protein 

synthesis, ATP synthesis and PSII electron transport were also found to be necessary for 

the light and weak-base dependent induction of PEPc kinase, whilst, as already mentioned, 

RNA synthesis was not required (Giglioli-Guivarc'h et a l, 1996). This data led to the 

development of a model of the signal-transduction pathway involved in the light induction 

of PEPc kinase in C4  mesophyll cells (see figure 1.9) (Vidal and Chollet, 1997).

1.4.6. Establishing the properties of the ’real* C4 -PEPC kinase

The identity of the 'real' C4 -PEPC kinase has been the subject of some confusion 

since C4 -PEPC kinase was first described in 1989 (Jiao and Chollet, 1989). Whilst, 

Echevarria et al. (1990) and McNaughton et a l (1991) defined maize PEPc kinase as a 

calcium-independent kinase, Ogawa et al. (1992) described a Ca^+-dependent kinase 

capable of phosphorylating PEPc and activating it, although they did not display any data 

to demonstrate how their kinase activated PEPc. Other work has demonstrated the 

existence of both Ca2+-dependent and Ca^+-independent PEPc kinases in both Sorghum 

and maize (Bakrim et a l, 1992; Echevarria et al., 1988; Li and Chollet, 1993; Wang and 

Chollet, 1993b). Bakrim et al. (1992) partially purified both a Ca^+-dependent and a Ca^+- 

independent kinase from illuminated Sorghum leaves. Only the Ca^+-independent kinase 

mediated a decrease in the L-malate sensitivity of PEPc concomitant with phosphorylation 

of PEPc (Bakrim et al., 1992). Similarly, both Ca^+-dependent and -independent PEPc 

kinases have been identified in maize (Li and Chollet, 1993; Ogawa et al., 1992; Wang and 

Chollet, 1993b). Ogawa et al. (1992) partially purified a Ca^+-dependent maize PEPc 

kinase which they characterized using specific protein kinase inhibitors. Their kinase was 

inhibited by specific inhibitors of myosin light chain kinase which belongs to the Ca^+ 

-calmodulin-dependent protein kinase family. It was also inhibited by a calmodulin 

antagonist (W7) and in the presence of EGTA. The effect of EGTA was overcome by 

adding excess calcium at twice the EGTA concentration confirming that their kinase was 

indeed Ca^+-dependent (Ogawa et a l, 1992). However, Wang and Chollet (1993) partially
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Figure 1.9. The proposed signalling pathway which mediates the light-induction of 

PEPc kinase in C4  plants

Abbreviations: 3-PGA, 3-phosphoglyceric acid; PS, photosystem; pHc, cytosolic pH; 3- 

PGA(H), partially protonated (2-) form of 3-PGA; CaM, calmodulin; CDPK, calmodulin

like domain protein kinase; PP2A, type 2A protein phosphatase; Pi, inorganic phosphate. 

The figure was taken from Vidal and Chollet (1997).
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purified a Ca^^-independent PEPc kinase from illuminated maize leaves. This kinase was 

purified 4000-fold and shown to be a ~30 kDa monomer. Despite applying rapid 

purification protocols in the presence of a complete arsenal of protease inhibitors (as 

suggested by Ogawa et a l,  1992) they failed to demonstrate the presence of a Ca^+- 

dependent PEPc kinase in their purified PEPc kinase preparation. Their Ca^+-independent 

kinase was shown to cause an increase in the I0 .5  (L-malate) of recombinant dephospho- 

Sorghum PEPc which was concomitant with the exclusive phosphorylation of Ser-8 .

As had been reported previously for less purified preparations of maize PEPc 

kinase, the Ca^+-independent kinase studied by Wang and Chollet (1993) was inhibited by 

L-malate (Jiao and Chollet, 1991; McNaughton et al., 1991; Wang and Chollet, 1993b). 

This was most probably due an effect of L-malate on the structure of the kinase substrate 

(PEPc) because the phosphorylation of PEPc by mammalian cAMP-dependent protein 

kinase (PKA) was also inhibited by L-malate, whilst L-malate had no effect on the 

phosphorylation of casein by PKA (Wang and Chollet, 1993b).

Concurrent work in the same laboratory used a method of "in gel" kinase assay 

which involves separation of the kinase sample by denaturing electrophoresis. This is 

followed by the in situ renaturation of the proteins in the gel which allows them to be 

assayed in vitro for PEPc kinase activity by incubating gel segments in the presence of [j- 

32p]ATP and dephospho-PEPc. This approach reveals proteins in the gel capable of 

phosphorylating PEPc and allows the determination of their molecular weight by virtue of 

their separation through the gel (Li and Chollet, 1993). Using this approach Li and Chollet 

(1993) resolved one Ca^+-dependent (-57 kDa) and two Ca^+-independent (-37 and -30 

kDa) polypeptides capable of phosphorylating PEPc in vitro exclusively at the target serine 

residue. The -57 kDa and -37 kDa polypeptides were capable of autophosphorylation 

whilst the -30 kDa polypeptide was not, and was therefore assumed to correspond to the 

-30 kDa PEPc kinase partially purified by Wang and Chollet (1993). Furthermore, the 

activity of the -57 kDa polypeptide was abolished by EGTA indicating it was Ca^+- 

dependent, whilst the -37 and -30 kDa polypeptides were unaffected and therefore Ca^+- 

independent. However, all three kinases were capable of phosphorylating the single N-
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terminal serine of PEPc which is involved in the regulation of the enzyme. In order to 

resolve which of these polypeptides was the physiologically relevant PEPc kinase, Li and 

Chollet (1993) performed experiments in which maize leaves were supplied with inhibitors 

known to prevent the light-induction of PEPc kinase activity (cycloheximide and methyl 

viologen). Subsequent analysis of extracts from these leaves using the in situ renaturation 

approach revealed that the -57 kDa polypeptide was present in darkness and unaffected by 

the inhibitor treatments, whilst the -37 and -30 kDa polypeptides were not present in 

darkness and their light-induction was blocked by inhibitors of protein synthesis and 

photosynthetic electron transport. The authors argued that the physiologically relevant 

PEPc kinase, which undergoes light activation that is blocked by cycloheximide and 

methyl viologen, is Ca^+-independent and is either one or both of the -37 kDa and -30 

kDa polypeptides (Li and Chollet, 1993). Since 1993, no further work has been published 

concerning the purification and characterization of the Ca^+-independent C4 -PEPC kinase. 

This is most probably due to the extreme difficulties encountered when trying to purify a 

protein which represents «0 . 0 2  % of the total soluble leaf protein in a fully light-induced 

maize leaf (Vidal and Chollet, 1997; Wang and Chollet, 1993b). This means that, to date, 

there are no antibodies available to PEPc kinase and its corresponding cDNA has not been 

cloned. Thus, detailed analysis of the expression of the kinase in C4  plants has been 

restricted to analysis of factors which affect the level of kinase activity rather than the level 

of kinase protein or mRNA.

1.4.7. The regulation of PEPc in C3  plants

Phosphoenolpyruvate carboxylase performs a range of housekeeping functions in 

the tissues of C3 , C4  and CAM plants in addition to its central role in primary CO2  fixation 

in C4  and CAM plants. 'C3 ' isoforms of PEPc (so called purely because they are not 

involved in the C4  pathway or CAM) occur and have specific roles in roots, root nodules, 

guard cells, fruits, seeds and leaves of C3 plants (Deroche and Carrayol, 1988; Law and 

Plaxton, 1995; Melzer and O'Leary, 1987; Osuna et a l, 1996; Pacquit et a l, 1993; 

Sangwan et a l, 1992; Zhang et aL, 1994). The major 'C3 ' role of PEPc is the provision of 

C4  acids (oxaloacetate, malate or aspartate) to replenish the intermediates removed from
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the TCA cycle for use as the skeletons for amino acid biosynthesis. In this role, PEPc is 

considered an anaplerotic enzyme due to its replenishing function (Melzer and O'Leary,

1987). PEPc also performs specialized roles in the carbon metabolism of nitrogen fixing 

nodules of Legume roots and stomatal guard cells during opening (Du et a l, 1997; Nimmo 

et al., 1995; Schnabl et al., 1992; Schuller gf ac/., 1990; Schuller and Werner, 1993; Zhang 

et al., 1994; Zhang et al., 1995). Early work suggested that the C3 isoforms of PEPc did 

not undergo changes in activity and sensitivity to effectors (Chastain and Chollet, 1989; 

Tarczynski and Outlaw, 1990). However, it would be advantageous for a plant to be able to 

regulate the activity of a number of these C3 PEPc isoforms. In particular, an ability to 

regulate the root nodule enzyme in response to photosynthate supply, the guard cell 

enzyme during stomatal opening and the anaplerotic enzyme during periods of favourable 

conditions for amino acid biosynthesis (high light and NO3 ') would allow optimization of 

each of these processes. These possibilities have now been investigated by a number of 

research groups.

Sequence analysis of a variety of PEPcs from C3 plants and the C3 isoforms from 

C4  and CAM plants reveals that they all possess the highly conserved N-terminal serine 

residue and phosphorylation motif previously characterized in C4  plants (Cretin et al,

1991b; Jiao et a l, 1991b; Lepiniec et a l, 1993). Thus, it was feasible that C3 isoforms of

ÏPEPc also undergo in vivo phosphorylation as part of their regulation. In vivo 

phosphorylation of wheat leaf PEPc was first demonstrated by Van Quy et al. (1991). 

When detached wheat leaves from NO3 " depleted plants were supplied with 32pj for 16 h in 

darkness the PEPc was only minimally labelled with 32p, However, when these leaves 

were then subjected to 2 h of illumination in I0 W-NO3 - and high-NOs" the 32p labelling of 

the PEPc was 416 and 665 % of the dark control respectively. These treatments also altered 

the L-malate sensitivity of PEPc such that the Io.5 (malate) was 1.45 mM, 1.7 mM and 3.4 

mM for the enzyme from dark control, illuminated I0 W-NO3 " and illuminated high NO3 " 

leaves respectively (Van Quy et a l, 1991a). These results were later confirmed by Duff 

and Chollet (1995), who extended these observations by performing in vitro PEPc kinase 

assays and demonstrating that wheat-leaf PEPc kinase activity was highest in illuminated.
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high NO3 - leaves. The wheat-leaf PEPc kinase activity was Ca^+-independent and did not 

phosphorylate the phosphorylation site mutant (S8 D) form of Sorghum PEPc. This latter 

point indicates that this PEPc kinase exclusively phosphorylates PEPc at the N-terminal 

serine residue which is phosphorylated by other PEPc kinases (Duff and Chollet, 1995). 

Wheat-leaf PEPc kinase activity was completely abolished by feeding leaves with methyl 

viologen prior to inducing them with light and high NO3 " and diminished by 

cycloheximide. This implies that the induction of PEPc kinase activity in N-depleted 

wheat-leaves requires photosynthetic electron transport from H2 O to NADP and at least 

part of the increase requires de novo protein synthesis. Hence, it was clear that the increase 

in the Iq,5 (malate) of wheat leaf PEPc was accompanied by an increase in the 

phosphorylation state of the enzyme and PEPc kinase activity.

Interestingly, both illumination and high NO3 - were required to achieve the greatest 

phosphorylation of wheat-leaf PEPc (Van Quy et al., 1991a). Other concurrent work on N- 

depleted wheat-leaves demonstrated that the resupply of inorganic nitrogen to the leaves 

caused an increase in the production of amino acids and a short-term inhibition of sucrose 

synthesis (Champigny et al., 1992; Van Quy et al., 1991b). Feeding inorganic nitrogen to 

N-depleted leaves led to the diversion of ^^C-labelled photosynthetic carbon away from 

sucrose synthesis into organic acid and amino acid biosynthesis (Champigny and Foyer,

1992). Whilst PEPc was activated by the resupply of NO3 ", sucrose phosphate synthase 

(SPS) was transiently inactivated (Champigny et al., 1992; Van Quy and Champigny, 

1992; Van Quy et al., 1991a). When mannose was supplied to leaves to block protein 

kinase reactions, by sequestering P, as mannose 6 -phosphate and thereby inhibiting the 

synthesis of ATP, NO3 “-dependent PEPc activation and SPS inactivation was inhibited 

(Van Quy and Champigny, 1992). Furthermore, feeding leaves with okadaic acid, to block 

PEPc and SPS phosphatase activity, did not block the light- and high NO3 “-dependent 

induction of PEPc activity and inactivation of SPS (Van Quy and Champigny, 1992; Van 

Quy et al., 1991a). This indicated that the resupply of high N0 3 “ to N-depleted leaves did 

not activate PEPc and inactivate SPS by inactivating the relevant phosphatases, but rather 

by activating the relevant kinases (Van Quy and Champigny, 1992).
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The exact nature of the NO3 ‘-mediated signal which stimulates the light-induction 

of PEPc phosphorylation and the increase in the Io.5 (malate) of PEPc in wheat leaves was 

dissected by feeding detached, N-depleted wheat leaves with NO3 ", NH4 +, glutamine, 

glutamate, alanine and aspartate. N-depleted wheat leaves were also supplied with NOs" 

plus either sodium tungstate, methionine sulphoximine, azaserine or amino oxyacetate in 

order to inhibit nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase 

(GOGAT) or amino transferases respectively (Manh et aL, 1993). Glutamine enhanced the 

light-activation of PEPc and the concomitant decrease in sucrose synthesis. However, 

glutamate and aspartate prevented the light-activation of PEPc. Treatment of N-depleted 

leaves with sodium tungstate (NR inhibitor) and methionine sulphoximine (GS inhibitor) 

blocked the light and NO3 "-dependent induction of PEPc activity. By contrast, azaserine (a 

GOGAT inhibitor which causes the accumulation of glutamine) resulted in lower net 

sucrose synthesis and PEPc was activated above light plus NO3 " control levels. Similar 

results for the effect of inhibiting GS activity, and thus blocking glutamine synthesis in 

vivo, on PEPc activity were obtained when N-limited barley leaves were supplied with 

phosphoinothricine (another type of GS inhibitor) (Diaz et al., 1996; Diaz et al., 1995). 

Collectively, these results demonstrate that the effect of NO3 " on the light activation of 

PEPc activity and the inhibition of sucrose synthesis in N-depleted C3 leaves is due to an

increase in the in vivo glutamine concentration and not a direct effect of NO3 " itself (Manh 

etal., 1993).

In vitro assays on a partially purified PEPc kinase from wheat leaves demonstrated 

that the activity was enhanced by glutamine and inhibited by glutamate (Manh et al.,

1993). However, this observation was later refuted by Duff and Chollet (1995) who found 

no direct effect of glutamine on the in vitro activity of the Ca^+-independent wheat-leaf 

PEPc kinase using a [y-^^pjATP-based in vitro kinase assay. It should be noted that Manh 

et al. (1993) did not include EGTA in their in vitro PEPc kinase assay, so their kinase, 

which was activated by glutamine, may have been Ca^+-dependent and therefore a separate 

kinase from the Ca2+-independent kinase reported by Duff and Chollet (1995). Manh et al. 

(1993) also assayed for the activity of PEPc kinase by incubating extracts with the
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Sorghum leaf dark-form (dephospho-) PEPc in the presence of ATP and subsequently 

assaying the activity of PEPc as an estimate of the degree of phosphorylation. Glutamine 

did not directly enhance the in vitro activity of wheat-leaf PEPc, but Manh et al. (1993) did 

not test the effect of glutamine on the activity of the Sorghum leaf PEPc used as the 

substrate in their kinase assays.

Isolated C3 isoforms of PEPc were first shown to undergo phosphorylation in vitro 

using the purified enzyme from tobacco leaves, soybean nodules and the recombinant C3 - 

type PEPc from the C4 -plant Sorghum vulgare (Pacquit et al., 1993; Schnabl et al., 1992; 

Schuller and Werner, 1993; Wang and Chollet, 1993a). Wang and Chollet (1993) purified 

tobacco leaf PEPc approximately 1000-fold and demonstrated that it could be 

phosphorylated in vitro by both an illuminated tobacco leaf kinase and an illuminated 

maize leaf kinase (Wang and Chollet, 1993a). The PEPc kinase activity from illuminated 

tobacco leaves was partially purified and found to be Ca^+-independent (Wang and 

Chollet, 1993a). Similarly , the recombinant C3 isoform of PEPc from Sorghum was found 

to undergo regulatory phosphorylation by mammalian PKA, the C4 -PEPC kinase from 

Sorghum leaves and a novel C3 -PEPC kinase from Sorghum roots (Pacquit et al., 1993). 

Phosphorylation of the recombinant C3 -type Sorghum PEPc by both PKA and a root PEPc 

kinase activity was accompanied by an increase in the I0 .5  for L-malate of the PEPc. This 

indicated that in vitro phosphorylation of C3 PEPc mediated changes in the regulatory 

properties of the enzyme similar to those reported for the C4  and CAM enzymes.

Detailed analysis of the regulatory properties of C3 -leaf PEPc in the dark and light 

has been performed using barley-leaf protoplasts. Kromer et al. (1996) demonstrated that 

barley-leaf PEPc can be phosphorylated in vivo and that this phosphorylation increases in 

response to light and decreases upon the return to darkness. Light-induced increases in 

PEPc phosphorylation were accompanied by an increase in PEPc activity and a decrease in 

PEPc malate sensitivity (Kromer et al., 1996a). However, the inhibitory effect of malate 

was totally overcome by physiological concentrations of G6 P and therefore considered to 

be of little importance in vivo (Kromer et al., 1996b). In fact, Kromer et al. (1996b) 

considered that feedback regulation of PEPc by aspartate and glutamate is more important
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in the C3 system since they are present at in vivo concentrations much higher than that of 

malate. This data raised the possibility that metabolite regulation of Ca-leaf PEPc is more 

important than post-translational regulation. Leport et al. (1996) used an inhibitor based 

approach to show that pea leaf and root PEPc is not regulated by phosphorylation, but is
;

instead allosterically controlled by changes in the relative concentration of malate, G6 P 

and PEP. However, they did not determine whether the in vivo phosphorylation status of 

PEPc or the level of PEPc kinase activity varied in response to light and nitrate supply in 

their pea leaf and root system, but simply based their conclusions on the failure of protein 

kinase and phosphatase inhibitors to perturb changes in PEPc activity (Leport et at., 1996).

The signal transduction cascade which regulates PEPc and PEPc kinase in response 

to light in C3 leaves has been investigated in barley leaf mesophyll protoplasts (Smith et 

al., 1996) and tobacco leaves (Li et a l, 1996). In barley protoplasts, light-mediated 

changes in the allosteric properties of PEPc and PEPc kinase activity were found to occur 

in the presence or absence of additional nitrogen (Smith et al., 1996). The specific activity 

of barley protoplast PEPc did not change with dark to light transitions, but its sensitivity to 

inhibition by L-malate was significantly diminished following illumination. Protoplasts 

possessed PEPc kinase activity in the dark and this was enhanced by incubating the 

protoplasts in the light for 1-2 h. The light induction of PEPc kinase activity in barley 

mesophyll protoplasts was not affected by DCMU (a photosynthetic electron transport 

inhibitor) indicating that light activation of the barley leaf protoplast kinase does not 

require photosynthesis (Smith et a l, 1996). Nevertheless, DCMU did prevent the light 

activation of nitrate reductase in barley mesophyll protoplasts in concurrent work in the 

same laboratory indicating that the inhibitor was effective in this system (Lillo et al.,

1996a). Incubating the protoplasts in the presence of cycloheximide prevented the light- 

induced decrease in the malate sensitivity of PEPc and blocked the light-activation of PEPc 

kinase activity. However, approximately 50 % of the kinase activity in barley protoplasts 

was unaffected by prolonged treatment with cycloheximide indicating the presence of a 

basal level of PEPc kinase activity which is only slowly turned over (Smith et al, 1996). 

Reducing the intercellular Ca2+ concentration of the protoplasts by supplying EGTA and
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the calcium ionophore A23187 enhanced the light-mediated reduction in the malate 

sensitivity of PEPc, but had no effect on the PEPc kinase activity. This supports the idea of 

two different PEPc kinase activities in barley, one which is slowly turned over and present 

in the dark and a second that is light-induced and rapidly turned over.

In contrast to the findings of Smith et aL (1996) using barley mesophyll 

protoplasts, Li et a l. (1996) demonstrated that tobacco leaf PEPc kinase activity is absent 

in the dark and is reversibly light activated. The light activation of tobacco leaf PEPc 

kinase requires both photosynthesis and protein synthesis. Additionally, the light induction 

of PEPc kinase in tobacco leaves is blocked by inhibiting GS with methionine 

sulphoximine. This effect is partially, but specifically, reversed by feeding glutamine to the 

leaves. These findings supported the earlier work of Manh et a l (1993) by demonstrating 

the importance of glutamine as part of the C3 PEPc kinase signal transduction cascade. The 

tobacco leaf PEPc kinase was found to be Ca^+-independent confirming early findings for 

both the tobacco leaf enzyme and the wheat-leaf enzyme (Duff and Chollet, 1995; Li eta l, 

1996; Wang and Chollet, 1993a). "In gel" kinase assays on the partially purified kinase 

from tobacco demonstrated that the light-induced, Ca^+-independent PEPc kinase 

polypeptides in tobacco leaves have molecular weights of 30 and 37 kDa. These 

polypeptides have molecular weights which are identical to the corresponding polypeptides 

in maize leaves (Li et a l, 1996). However, unlike tobacco PEPc kinase, the light-induction 

of maize PEPc kinase was not influenced by the glutamine status of the leaf (Li et al, 

1996). It should be noted that the Ca^+-independent PEPc kinase activity of one type of C3 

tissue, the aleurone layer of barley seeds, is present in dry seeds (Echevarria et a l, 1997). 

Similarly, the PEPc kinase activity in banana fruit is present throughout ripening (Law and 

Plaxton, 1997). Indirect evidence suggests that the phosphorylation state of wheat-seed 

PEPc increases during germination (Osuna et a l, 1996). When barley seeds were allowed 

to germinate in the presence of a wide range of inhibitors, which have previously been 

shown to prevent the light-induction of PEPc kinase in C4  leaves, no effect on the in situ 

regulation of PEPc phosphorylation was detected (Echevarria et a l, 1997). Hence, it must
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be remembered that C3 PEPc kinase activity is not always induced, but can be 

constitutively expressed in certain tissues.

The roots of many Leguminous plants develop nitrogen-fixing nodules in a 

symbiotic association with bacteria. In these nodules, the host plant PEPc performs two 

specific roles. One is the supply of C4  dicarboxylic acids (malate) to the bacteroid as a 

source of energy and the other is the provision of carbon skeletons for the assimilation of 

the NH4 ' ,̂ produced due to N2  fixation in the bacteroid, into amino acids. PEPc constitutes 

0.5 to 2 % of the soluble protein in alfalfa (Deroche and Carrayol, 1988) and soybean 

(Zhang et a i, 1995) nodules, and thus, is one of the most abundant plant enzymes in the 

nodule. Nodule PEPc was found to be regulated by a range of metabolites including G6 P, 

L-malate and aspartate (Schuller et al., 1990). In vitro phosphorylation of purified soybean 

nodule PEPc by an endogenous kinase increased its apparent Ki for malate from 0.35 to 

1.24 mM (Schuller and Werner, 1993). Soybean nodule PEPc was also shown to undergo 

in vivo phosphorylation by incubating detached nodules with 32P; and subsequently 

immunoprecipitating the PEPc from crude extracts and separating it by SDS-PAGE 

followed by autoradiography (Zhang et al., 1995). The malate sensitivity of nodule PEPc 

and the level of PEPc kinase activity seem to respond to the supply of photosynthate from 

the phloem. For example, in the light when sucrose is arriving in the nodule from the 

leaves, PEPc kinase activity is high and PEPc is relatively malate insensitive. After 

prolonged darkness, decapitation (shoot removal) or stem girdling, all of which stop the 

supply of photosynthate arriving in the phloem, PEPc is dephosphorylated and malate 

sensitive and PEPc kinase activity decreases (Wadham et al., 1996; Zhang and Chollet, 

1997; Zhang et al., 1995). The soybean nodule PEPc kinase has been partially purified 

~3000-fold and it is a Ca^+-independent kinase which is inhibited by malate and has a 

native molecular weight of ~30 kDa (Zhang and Chollet, 1997). "In gel" kinase assays on 

the partially purified soybean nodule PEPc kinase revealed active polypeptides of -32 and 

-37 kDa (Zhang and Chollet, 1997). Hence, the properties of soybean nodule PEPc kinase 

seem to be virtually identical to those of PEPc kinase from tobacco, maize and M. 

crystallinum (Zhang and Chollet, 1997).
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Finally, the 'C3 ' isoform of PEPc found in stomatal guard cells has also been 

extensively studied. Stomatal aperture is regulated through changes in the osmotic pressure 

of the pair of guard cells that flank each stoma. During stomatal opening guard cells 

accumulate K+ salts and this is accompanied by the pumping of H+ out of the guard cells 

by the plasmalemma H+-ATPase. As part of the mechanism of maintaining the 

intercellular pH during this proton extrusion, guard cells accumulate organic anions, 

mainly malate^- (Du et al., 1997). During the accumulation of malate two protons are 

released to the cytosol, which replenishes the extruded protons. The increase in K+ salts 

and organic anions decreases the guard cell osmolyte potential which causes osmotic water 

uptake and hence, guard cell swelling and stomatal opening. Thus, PEPc is a key enzyme 

in stomatal guard cells because it catalyses the first step in the synthesis of the malate. 

Guard cell PEPc has been shown to be significantly inhibited by 400 |iiM malate in the dark 

but not during opening (Zhang et al., 1994). This change in malate sensitivity has recently 

been demonstrated to be correlated with an increase in the in vivo phosphorylation status of 

PEPc (Du et al., 1997). Furthermore, the increase in the phosphorylation state of PEPc was 

promoted by fusicoccin (which promotes stomatal opening) and the effect of fusicoccin 

was reversed by abscisic acid (which causes stomatal closure) (Du et al., 1997). However, 

in vivo phosphorylation of guard cell PEPc in Commelina communis guard cell protoplasts 

does not correlate with changes in the malate sensitivity of the enzyme, but does correlate 

with a drop in the of the enzyme for PEP (Nelson, 1994). For example, treatment of C. 

communis guard cell protoplasts with either light or fusicoccin caused a significant 

increase in the phosphorylation state of the enzyme whilst the Km of PEPc for PEP 

approximately halved (Nelson, 1994).

It is evident from the data described in this section that the 'C3 ' isoform of PEPc is 

capable of undergoing phosphorylation both in vivo and in vitro. However, whilst in some 

cases the phosphorylation of C3 PEPc can cause alterations in its regulatory properties, in 

particular its sensitivity to L-malate, there are others in which C3 isoforms of PEPc are not 

regulated by phosphorylation. In particular, the light activation of some C3 leaf isoforms of 

PEPc can be accounted for wholly by changes in the concentration of its effectors which
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occur upon illumination (Leport et a l, 1996). Clearly, there are no fixed rules about the 

regulation of C3 PEPc. Whilst the N-terminal phosphorylation motif with its target serine 

residue has been identified in all the published sequences of PEPc, including a 

gymnosperm PEPc, and PEPc kinase activity seems to have been detected in all plant 

tissues in which it has been sought, the mechanism of reversible phosphorylation may not 

always be central to the regulation of PEPc in vivo. It is perfectly possible that the 

phosphorylation motif and PEPc kinase activity are evolutionary relicts in some species. 

As more C 3 isoforms of PEPc are sequenced it will be interesting to note whether some 

actually lack the phosphorylation motif, as seems to be the case for another plant phospho- 

protein which has an N-terminal phosphorylation motif (PEP carboxykinase), from some 

C4  grasses (Walker and Leegood, 1996).

1.5. Circadian rhythms: their characteristics and regulation

1.5.1. Characteristics of circadian rhythms

A wide variety of biological functions occur rhythmically with a period of about 24 

h. Such natural rhythms in biological systems are termed "circadian" {circa - about, dies - 

day). Circadian rhythms are a ubiquitous feature amongst living organisms (Anderson and 

Kay, 1996). For a rhythm to be truly circadian it must have certain characteristics. Firstly, 

the rhythm must persist in constant environmental conditions. Secondly, the rhythm should 

have a period of approximately 24 h, although few rhythms have a period of exactly 24 h, 

and finally, the period of oscillation must show significant temperature compensation 

(Wilkins, 1992). The ability of the circadian oscillator to compensate for fluctuations in 

temperature has led to it being called a 'biological clock'. Circadian rhythms are studied 

under constant environmental conditions of light (or dark), temperature, humidity, air 

composition etc. Rhythms are generally entrained by the daily light-dark cycle and persist 

under a range of constant conditions. The phase of the rhythm can be shifted by 

interrupting the constant conditions with specific environmental or chemical signals 

(Wilkins, 1992). The circadian oscillator which generates the circadian rhythm has been 

modelled as a negative feedback loop (see Anderson and Kay, 1996; Page, 1994). 

Biochemically, the oscillator may consist of the transcription, translation, post-translational
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modification, and/or nuclear transport, of a clock protein that negatively autoregulates its 

own production (Anderson and Kay, 1996; Page, 1994).

Circadian rhythms have been studied in a wide variety of biological organisms 

including prokaryotes, fungi, plants, insects, reptiles and mammals, including man 

(Wilkins, 1992). The physiological characteristics of these rhythms are remarkably similar, 

perhaps indicating a conserved evolutionary origin (Wilkins, 1992). The following sections 

will give a brief overview of characteristics of circadian rhythms in a few well studied 

organisms.

1.5.2. The regulation of circadian rhythms in Neurospora crassa and Drosophila 

melanogaster

Some of the most detailed work on the molecular basis of the circadian clock has 

been performed using clock mutants in the fruit fly D. melanogaster and the filamentous 

fungus N. crassa. D. melanogaster displays physiological and behavioural rhythms and N. 

crassa displays rhythms in asexual spore production (conidiation). Screening mutant lines 

of both species for anomalies in these circadian rhythms led to the identification of the 

mutant loci per (period) in D. melanogaster detidfrq (frequency) in N. crassa 

respectively (Feldman and Hoyle, 1973; Konopka and Benzer, 1971). The mRNA and 

protein levels of per and frq  display circadian oscillations (Aronson et al., 1994; Hardin et 

a l, 1992; Hardin et a l, 1990). Both per and/r^ are elements of feedback loops in which 

their protein products (PER and FRQ) regulate the expression of their respective genes 

(Page, 1994). This feedback regulation is believed to be a central feature of the clock's loop 

(Aronson et a l, 1994). Independent single locus mutations of per m dfrq  yield both long- 

and short-periods and arrhythmicity (Page, 1994).

The circadian regulation of conidiation by the frq  locus in N. crassa has recently 

been the subject of intensive research. Following the peak in frq mRNA at the beginning of 

the day, two forms of FRQ appear some 4-6 h later as a result of the alternative use of the 

first and third in-frame AUG translation initiation sites (Garceau et al., 1997). Negative 

feedback of FRQ to reduce its own transcript level is rapid and efficient, requiring only 

about 10 molecules of FRQ per nucleus, so that most of the day is devoted to
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posttranscriptional and posttranslational processing of FRQ prior to its turnover (Merrow 

et a l, 1997). Both forms of FRQ are rapidly phosphorylated following translation and then 

progressively re-phosphorylated throughout the day, with the level of phosphorylation 

peaking prior to the turnover of FRQ. That frq  transcript levels do not rise until the end of 

the night/beginning of the morning (when FRQ disappears) suggests that the various 

phosphorylated forms of FRQ are effective at maintaining depression of frq transcript 

levels throughout most of the day and night (Garceau et a l, 1997). Furthermore, the two 

forms of FRQ have been shown to vary in abundance according to temperature. Either 

form of FRQ is sufficient for a functional clock at some temperatures, but both are 

necessary for robust, temperature-compensated rhythmicity (Liu e ta l,  1997). Temperature 

favours particular translation initiation sites such that expression solely from AUG#1 

permitted rhythmicity at lower temperatures, but rhythmicity was lost above 27^C, whilst 

expression from AUG#3 permitted rhythmicity at higher temperatures but became 

arrhythmic at temperatures of 20“C and below. In wild type N. crassa the amounts of 

AUG#1 FRQ and AUG#3 FRQ are virtually equal at 18"C, but the relative proportion of 

AUG#1 FRQ increases with temperature such that at 29“C the ratio of AUG#1 

FRQ/AUG#3 FRQ is above 2 compared to a ratio of 1 at 18“C (Liu et a l, 1997). Thus, it 

would seem that a threshold level of FRQ is necessary to achieve rhythmicity at low 

temperatures and that rhythmicity is maintained as temperature increases due to an increase 

in the relative translation from AUG#1 which largely accounts for an overall increase in 

FRQ amount (Liu eta l, 1997; Merrow et al, 1997).

In D. melanogaster a second mutation, timeless (tim), has been isolated that 

abolishes both the circadian rhythms of behaviour, the rhythm of per mRNA abundance 

and the accumulation of several reporter-PER fusions in the nucleus (Sehgal et a l, 1994; 

Vosshall et a l, 1994). Both the tim and per genes are turned on in the morning, and their 

corresponding mRNAs accumulate during the day. After dusk the TIM and PER proteins 

peak and they interact, forming a heterodimeric complex (this process may be favoured by 

phosphorylation of PER) (Page, 1994; Zeng et a l, 1996). This complex moves to the 

nucleus to stop transcription of the per and tim genes (Vosshall et a l, 1994; Zeng et al.
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1996). Subsequently, tim, and then per mRNA levels fall and this is followed by a 

concomitant drop in their protein concentrations. By dawn, TIM and PER are at such low 

levels that they no longer inhibit transcription of their genes and the cycle restarts. TIM is 

destroyed by light which means that light mediates the dissociation of the PER-TIM 

complex. It would seem that light-mediated phase shifting of the D. melanogaster rhythm 

is caused by destruction of TIM. If flies are subjected to light in the early evening then 

TIM levels drop due to its destruction so it can no longer pair up with PER to move to the 

nucleus (Lee et al., 1996a; Myers et al., 1996; Zeng et al., 1996). However, tim mRNA is 

still abundant in the early evening and TIM levels are soon restored so the clock is simply 

set back a few hours. When flies are subjected to light in the morning then the destroyed 

TIM cannot be replenished as tim mRNA is absent. This allows the tim and per genes to 

come on a few hours earlier in the morning, advancing the clock (Lee et al., 1996a). In N. 

crassa, FRQ levels peak during the day rather than at night and it has been demonstrated 

that phase shifting by light pulses during the night is caused by an increase in transcription 

of thQfrq gene (Aronson et al., 1994; Crosthwaite et al., 1995). Hence, these two circadian 

clocks have similar characteristics, but whilst light-mediated phase shifting in D. 

melanogaster occurs due to the destruction of TIM, the equivalent process in N. crassa 

occurs due to increased transcription of frq.

Recently a candidate clock gene from mammals, named clock, has been cloned 

which may well be a functional homologue of per, tim and frq. The clock locus was 

identified in mice by mutagenizing -300 gametes with N-ethy 1-N-nitrosourea and then 

screening the second generation progeny for significant alterations in the period of the 

wheel running behavioural rhythm (see Reppert and Weaver, 1997). The mutated gene was 

cloned by both positional cloning and functional identification using a transgenic approach 

(Antoch et a l, 1997; King et a l,  1997). The sequence of clock contains a PAS domain 

which bears a striking resemblance to the basic-helix-loop-helix (bHLH)-PAS genes. The 

PAS domain is a protein dimerization domain which occurs in the sequence of PER and 

several bHLH transcription factors. The fact that clock is a member of the bHLH-PAS 

family of transcription factors suggests it is involved in the transcriptional regulation of a

52



basic clock mechanism. Of particular interest in this context is the discovery of two genes, 

white collar {wc-l) and wc-2, in N. crassa which are PAS-domain containing transcription 

factors thought to be responsible for controlling the expression of all light responsive genes 

in this fungus. New data suggests that in addition to their roles in photoperception and 

signalling, wc-J is a clock controlled gene and wc-2 is a clock component (Crosthwaite et 

al, 1997). WC-2 appears to be involved in promoting the expression oifrq  and is required 

for the normal operation of a functional circadian clock. WC-2 is essential for the 

oscillation in the level of frq  transcript and protein in conditions of constant darkness 

indicating it is an oscillator component in addition to its role in photoperception and 

signalling. WC-2 is not involved in the light-induction o ifrq  mRNA because the light- 

induction of frq  mRNA occurs in wc-2~ mutant strains. In the absence of WC-1, light- 

induced/r^ expression does not occur and the clock does not 'tick'. WC-1 is essential for 

the induction of frq  by light and is therefore likely to be the link between photoreception 

and the oscillator which mediates light-dependent phase shifting of the N. crassa clock 

(Crosthwaite et aL, 1997; Crosthwaite et al, 1995). However, in wc-l~ mutants, inducing 

the expression of frq using a quinic acid inducible promoter was accompanied by an initial 

peak of frq mRNA and subsequently of FRQ which decayed away upon removal of the 

quinic acid. Unexpectedly,/r^ mRNA and FRQ levels rose again and completed a second 

circadian cycle in the absence of quinic acid (Crosthwaite e ta l,  1997). This indicates that 

WC-1 is not a required component of the loop but probably is essential to drive the 

expression of genuine clock components such as frq  and wc-2. In the light of the 

involvement of PAS-containing transcription factors or genes in the circadian oscillators of 

D, melanogaster, N. crassa and mice, it has been suggested that PAS-containing 

transcription factors may function as necessary components of circadian oscillators of a 

wide range of taxa (Crosthwaite et a l, 1997; Reppert and Weaver, 1997). Whether PAS- 

domains occur in all transcription-translation-based negative feedback loops that form the 

molecular basis of the circadian oscillator must await the cloning of circadian oscillator 

genes from other organisms such as plants and prokaryotes.
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1.5.3, Circadian rhythms of bioluminescence in Gonyaulax polyedra

The marine alga G. polyedra possesses specialized organelles called scintillons 

which contain luciferase (LCF), its substrate luciferin (LH2 ) and a luciferin binding protein 

(LBP) (Mittag and Hastings, 1996; Nicolas et a l, 1987). Scintillons extend from the 

cytoplasm/tonoplast into the vacuole as "bubbles" (Nicolas etaL, 1987). Luciferin is bound 

to LBP at cytosolic pH (-pH 7.5), but it is released due to a conformational change when 

the pH drops to -6.5 due to protons being pumped into the scintillon (Morse et al., 1989). 

The free luciferin is the substrate for the luciferase in the scintillon. Luciferase catalyses 

the oxidation of luciferin with O2  to give a product in an electronically excited state which 

emits light upon decay (Mittag and Hastings, 1996).

The whole of this bioluminescent system is under circadian control. Up to 400 

scintillons per cell occur at night whilst only -40 per cell occur during the day . Levels of 

both luciferase and LBP peak at night and continue to peak in the subjective night under 

constant conditions (Mittag and Hastings, 1996). Luciferase and LBP mRNA levels remain 

constant over the diurnal cycle indicating they are not transcriptionally regulated by the 

circadian clock. In fact, they were found to be translationally regulated by the clock. A 

region of UG repeats that form a 14 nucleotide hairpin loop in the 3' untranslated region 

(UTR) of the Ibp mRNA has been shown to bind a single protein (circadian controlled 

translational regulator, CCTR) from G. polyedra extracts, whilst no proteins were detected 

which bind to the 5' UTR. This protein is believed to mediate the translational regulation of 

Ibp mRNA in response to the circadian clock (Mittag and Hastings, 1996). CCTR binds the 

Ibp 3' UTR during the day, indicating that it represses Ibp translation. Derepression occurs 

at night when the extent of binding of CCTR to the Ibp 3' UTR diminishes. The binding 

activity of CCTR may be modulated between night and day by phosphorylation or possibly 

dimerization/multimerization (Mittag and Hastings, 1996). Daily fluctuations in the 

binding activity of CCTR persist under continuous dim light indicating that the regulation 

of the binding properties of CCTR is under circadian control.

Phase shifts in the rhythm of bioluminescence in G. polyedra occur in response to 

light. These phase shifts can be blocked by the protein kinase inhibitor 6 -
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dimethylaminopurine, but not the PPl and PP2A inhibitors okadaic acid, calyculin A and 

cantharidin (Comolli et a l, 1996). However, okadaic acid did cause significant period 

lengthening, whereas calyculin A and cantharidin caused phase delays but had no effect on 

period. Thus, light phase shifting requires a protein kinase activity but not a phosphatase 

activity. This has been explained using a hypothesis in which light phase shifting requires 

the phosphorylation of an unknown protein (possibly CCTR) which is blocked by the 

kinase inhibitor, whereas the phosphatase inhibitors maintain the unknown protein in the 

phosphorylated state and enhance the response to light (Comolli et al., 1996). Despite quite 

detailed knowledge of the regulation of some of the proteins which are controlled by the 

circadian clock in G. polyedra, such as luciferase and LBP, nothing is known about the 

functional homologue of per, tim and frq  in this alga. Screening for mutants in circadian 

bioluminescence should prove a powerful route to isolating the circadian oscillator in G, 

polyedra.

1.5.4. Circadian rhythms in plants

A wide variety of physiological processes, enzymes and genes have been found to 

be regulated by the circadian clock in higher plants. These include leaf movement, stomatal 

conductance, photosynthesis, CO2  assimilation (see section 1.3.2), PEPc and PEPc kinase 

activity (see section 1.4.3), nitrate reductase activity, sucrose phosphate synthase activity 

and the transcription of the genes for the chlorophyll a/b binding protein (cab), the small 

subunit of Rubisco (rbcS) and catalase (cat2, cat3) (Boldt and Scandalios, 1995; Carter et 

al., 1991; Giuliano et al, 1988; Hennessey et al., 1993; Jones and Ort, 1997; Kloppstech, 

1985; Lillo et al., 1996b; Nimmo et al., 1987b; Pilgrim and McClung, 1993; Satter et al, 

1988; Wilkins, 1959; Zhong et a l, 1994). Whilst knowledge of the circadian regulation of

all these diverse output processes is relatively detailed, very little is known about the 

underlying circadian oscillator in plants (Anderson and Kay, 1997). Such an oscillator 

would be the functional homologue of the D. melanogaster genes tim and per or the N. 

crassa gono frq, but no homologous sequences to these genes have been detected in 

Arahidopsis (Anderson and Kay, 1996).
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However, a genetic approach has allowed the identification of circadian clock 

mutants in Arahidopsis (Millar et a l, 1995a). A reporter gene construct consisting of the 

promoter of the circadian-regulated CAB2 gene fused to the firefly luciferase (lue) coding 

region was used to generate transgenic Arahidopsis plants {cab2-luc). These plants display 

circadian oscillations of bioluminescence that indicate periods when the CAB2 promoter is 

transcriptionally active. When transgenic plants were grown for 5 days in 12 h light: 12 h 

dark (LD) cycles and transferred to constant white light (LL) the mean period of 

bioluminescence driven by transcription of the CAB2 promoter was 24.7 h. When the same 

plants were transferred to constant darkness (DD) the oscillations rapidly damped and 

displayed a period of 30 to 36 h (Millar et a l, 1995b). This rapid damping is thought to be 

due to the decline in photoreceptor activation in DD conditions. Seed from cab2-luc plants 

was mutagenized using ethylmethane sulphonate (EMS) and the resultant seed was 

screened for aberrant patterns of cyclic bioluminescence. A total of 26 'timing of CAB' 

(toe) lines were identified under LL conditions, encompassing both long (26-28 h) and 

short (21-22.5 h) periods and a single line with wild type period but reduced amplitude 

(Millar era/., 1995a).

One particular short period line (tocJ, mean period of 20.9 h) was analyzed in 

detail. Light or dark grown tocl seedlings were morphologically indistinguishable from 

wild type. The tocl gene segregated away from the transgene, indicating that the mutation 

was independent of the reporter gene, and was mapped to the lower arm of chromosome 5 

(Millar et a l, 1995a). tocl was found to be a semi-dominant mutation as has been found 

for per and frq. The period of the circadian rhythm of leaf movement was also shorter in 

tocl plants (23.3 h compared to 25.2 h in the wild type) indicating that tocl is a common 

element in the circadian regulation of both CAB expression and leaf movement in 

Arahidopsis. The cloning of tocl is currently underway and analysis of the expression of 

the cloned gene and its corresponding protein will demonstrate whether tocl is a 

component of the oscillator mechanism or a component of an input pathway upstream of 

the oscillator (Anderson and Kay, 1996; Millar e ta l, 1995a). Of particular interest will be 

the determination of whether the tocl gene possesses a PAS protein dimerization domain
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in its sequence as has been found for the D. melanogaster clock protein PER, the N. crassa 

clock component wc-2 and clock-associated gene wc-l, and the recently isolated mouse 

gene clock (Crosthwaite etal., 1997; King e ta l, 1997; Page, 1994).

Transgenic cab2-luc Arahidopsis plants have also been used to study the 

involvement of phototransduction pathways in the regulation of circadian period. Both 

constant red and blue light shorten the length of the period to 25 h (compared to 30-36 h in 

the wild type under DD). This indicates the involvement of phytochrome and the blue-light 

photoreceptor in the input pathway of the circadian rhythm of CAB2 expression. When 

cab2-luc was crossed into the hy 1-100 mutant (which lacks spectrophotometricaily 

detectable phytochrome) the length of the period in red light increased to 26.5 h. However, 

this is still much shorter than the wild type in DD (30-36 h) indicating that hyl plants 

contain sufficient phytochrome to allow phytochrome-mediated shortening of the DD 

period in the presence of red light. The cab2-luc transgene was also crossed into the detl 

(de-etiolated) mutant background. This mutant exhibits characteristics of light-grown 

plants even when grown under constant darkness. For example, CAB genes are expressed 

in detl despite the absence of a light signal to induce their expression. In this detl mutant 

background the period of expression of the cab2-luc transgene in DD was shortened to 

about 18 h and slightly longer (19-20 h) in blue, red and LL. Furthermore, crossing cab2- 

luc into another d e t  mutant (det2) and a c o p  mutant {copl, constitutively 

photomorphogenic) shortened the DD period to approximately 29 and 23 h respectively, 

compared to 30-36 h for the wild type (Millar et al., 1995b). Collectively, these results 

indicate that the phototransduction pathways which are constitutively activated in det and 

cop mutants are involved in the control of both the amplitude (difference between 

maximum and minimum CAB2 levels) and period of the circadian oscillations in CAB2 

gene expression. It is likely that DETl, DET2 and COPl function upstream of the 

circadian clock because some signal transduction pathways from the phytochromes and the 

blue-light photoreceptors converge at or before the regulatory steps defined by det and cop 

(Anderson and Kay, 1996).
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One obvious way in which the circadian oscillator in plants could communicate 

with its output pathways in a co-ordinate manner is via calcium signals. Expression of a 

transgene for the calcium-sensitive luminescent protein apoaequorin in tobacco and 

Arahidopsis revealed circadian oscillations in cytosolic and chloroplastic free calcium 

(Johnson et aL, 1995). The circadian oscillations in the cytosolic calcium concentration 

were most marked in constant light and tended to damp out upon transfer to constant 

darkness, but low amplitude oscillations were occasionally detectable in constant darkness 

as well. Constant red light restored the circadian oscillations of cytosolic free-calcium 

following periods of constant darkness. This implicates a role for phytochrome in the 

reinitiation and maintenance of calcium rhythms in plants. Chloroplastic free-calcium was 

relatively constant throughout periods of constant light, but upon transfer to constant 

darkness there was a massive peak in luminescence representing an increase from a basal 

level of 150 nM to 5 to 10 jiM calcium. Thereafter, in constant darkness, damped 

oscillations of chloroplastic luminescence with a circadian period were detected (Johnson 

et a l, 1995). The rapid and large increase in chloroplast free-calcium following the 

transition from light to dark suggests that this calcium spike may be part of the plant's 

recognition of lights-off. Johnson et al. (1995) speculated that the circadian oscillations in 

free-calcium which they were able to detect could account for circadian oscillations in the 

function of many cellular systems. Examples include the movements of stems, petioles and 

changes in stomatal aperture, which are regulated by changes in turgor pressure due to the 

movement of potassium ions across the plasma membrane through a Ca^+-gated potassium 

channel. In addition, growth and mitosis, protein kinases and the expression of CAB genes 

are known to be regulated by cytosolic calcium concentration and the circadian clock 

(Johnson et al., 1995). Thus it would seem likely that one mechanism for co-ordinating a 

wide range of cellular processes in response to the circadian clock in plants is via 

oscillations in the free-calcium concentration. However, discovery of whether calcium is 

an essential component of the plant circadian oscillator itself or simply part of the input 

and output pathways must await the cloning and analysis of plant circadian pacemakers.
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One possible lead in the hunt for plant circadian oscillator genes is the fact that a 

number of the cloned circadian clock genes contain the PAS protein dimerization sequence 

(Crosthwaite et al., 1997). Phytochromes, which play a key role in the regulation of the 

circadian clock in plants, possess PAS-domains (Johnson et at., 1995; Millar et at., 1995b; 

Wilkins, 1992). Thus, homology based cloning of other plant PAS-domain containing 

genes in plants may fortuitously yield plant circadian oscillator components. Additionally, 

cloning and sequence analysis of the Arahidopsis tocl locus is eagerly awaited because this 

gene may not only represent a component of the plant circadian clock but could possibly 

contain a PAS-domain (Anderson and Kay, 1997; Millar and Kay, 1997). The next few 

years should be extremely exciting time in the study of the plant circadian clock.
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1.6. Reversible protein phosphorylation in plants

1.6.1. Plant protein kinases

Protein phosphorylation performs a wide variety of functions in living organisms. 

Proteins can be phosphorylated on serine, threonine, tyrosine and histidine residues and the 

phosphorylation of these residues generally mediates conformational changes in the protein 

which alter its properties. Phosphorylation is performed by protein kinases (PK) and 

dephosphorylation is performed by phosphoprotein phosphatases (PP) as outlined below:

SIGNAL

The SIGNAL can affect either the activity of the P K  or the PP. Either way, the 

phosphorylation state of the protein  is increased (increased proportion of protein-P 

compared to protein) which in turn favours the conversion of A to B. The active form of 

the protein could also be the dephosphorylated form {protein). The factors A and B could 

be the substrate and product of an activated metabolic enzyme {protein-P). Likewise, 

protein-P could be an activated protein kinase (or an inactivated phosphoprotein 

phosphatase) such that A could be an inactive second kinase and B is the active form,
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which subsequently passes on the signal to the next level of a signal transduction cascade. 

Protein kinases are commonly activated by a second messenger such as calcium, cyclic 

AMP or mitogen. However, the plant protein kinase which phosphorylates and activates 

phosphoenolpyruvate carboxylase is uniquely activated via de novo protein synthesis (see 

section 1.4.3). Protein phosphorylation cascade systems are extremely efficient methods of 

transducing signals within the living cell and are widely employed for this purpose. 

Although protein phosphorylation has been most intensively studied in animals and yeast 

(particularly Saccharomyces cerevisiae), the understanding of plant protein 

phosphorylation cascades and plant PKs and PPs has increased significantly over the last 

decade.

Protein kinases are a large superfamily of enzymes (Hanks et al., 1988). Estimates 

have suggested that between 1 and 3% of functional eukaryotic genes encode protein 

kinases (Stone and Walker, 1995). Apart from the histidine kinases, which belong to a 

family of genes distinct from the eukaryotic protein kinase superfamily, all the sequenced 

eukaryotic protein kinases contain a catalytic domain which possesses 1 1  highly conserved 

domains interspersed by much more divergent regions (Hanks et al., 1988). This has meant 

that a large number of the cloned plant protein kinases have been isolated by a homology 

based approach using these conserved domains as probes or PCR primers. A number of 

other plant protein kinase cDNAs have been cloned due to their ability to complement 

yeast mutants that are lacking particular proteins kinase activities (e.g. plant SNFl 

homologues) (Alderson et al., 1991). A small number of plant protein kinases have been 

cloned as the knocked out genes in plant mutants (e.g. the Raf homologue CTRl, which is 

involved in the ethylene response and the novel serine/threonine kinase Tsl, which is 

involved in plant morphological development) (Kieber et al., 1993; Roe et al., 1993). 

Whilst these diverse approaches have proved a very powerful approach for isolating plant 

protein kinase cDNAs, the characteristics of the proteins encoded by the cloned genes are 

largely unknown. In particular the substrate of cloned plant kinases has rarely been 

identified. This means that there are only a few examples where a plant protein kinase with

a known substrate and function has been cloned. One particular example is the plant
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homologue of sucrose non-fermenting 1 (SNFl) kinase and this will be discussed in 

section 1.6.4.

The eukaryotic protein kinase superfamily has been subdivided into five main 

groups (Hanks and Hunter, 1995); (a) the "AGC" group consisting of the cyclic nucleotide- 

dependent family (PKA and FKG), the PKÇ (protein kinase C) family, and the ribosomal 

S6  kinase family; (b) the "CaMK" group, consisting of calcium-Zcalmodulin-dependent 

kinases (CaMKs) and the SNFl/AMP-activated protein kinase; (c) the "CMGC" group, 

containing the CDK (cyclin-dependent kinase), the MAPK (mitogen activated protein 

kinase), GSK-3 (glycogen synthase kinase), and ÇKII (casein kinase II) families; (d) the 

"conventional PTK" group, and (e) the "other" group. Plant members of every group except 

the protein tyrosine kinase (PTK) group have been identified (Hardie, 1996; Stone and 

Walker, 1995). Although no plant homologues of conventional isoforms of protein kinase 

C (PKC) have been cloned, biochemical evidence is beginning to accumulate to support the 

existence of a kinase resembling PKC in plants (Nanmori et a l, 1994; Subramaniam et a l, 

1997; Xing et a l, 1996). In particular, plant homologues of PKC seem to participate in 

elicitor-induced defence responses and it has been speculated that one PKC homologue 

may in fact be directly activated by the elicitor arachidonic acid in potato tubers 

(Subramaniam et a l, 1997; Xing et al, 1996). Additionally, many plant calcium-dependent 

protein kinases (CDPKs, "CaMK" group) have been cloned. The majority of the CDPKs in 

plants do not require calmodulin, phospholipids, or diacylglycerol which makes them 

different from both the CaMK and PKC families prevalent in mammals (Roberts and 

Harmon, 1992). A number of unique plant CDPKs have been cloned which possess an 

integral calmodulin-like domain at their C-terminus and a protein kinase domain with 

homology to the protein kinase catalytic domains of the CaMK family at their N-terminus 

(Harper 6*/., 1991).

Despite the fact that a large number of these CDPKs have been cloned, their 

physiological roles are little understood. However, recent work has identified one possible 

target of plant CDPKs, namely serine acetyltransferase (SAT), a key enzyme in the 

cysteine synthesis pathway (Lee et a l, 1997). When soybean SAT was expressed in
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bacteria it could be phosphorylated by three different soybean CDPKs. The resultant 

phosphorylated form of SAT was not subject to feedback inhibition by cysteine whilst the 

dephospho-form of SAT was inhibited (Lee et a l, 1997). This demonstrates that SAT is 

not only a substrate for CDPKs, but also that phosphorylation of SAT by CDPKs causes 

physiologically significant changes in its regulatory properties. CDPKs have also been 

shown to phosphorylate the root nodule symbiosome membrane protein nodulin 26 

(Weaver and Roberts, 1992). Nodulin 26 is a membrane channel protein which is a major 

protein component of the symbiosome membrane. Nodulin 26 is specifically 

phosphorylated on serine 262 by a CDPK and this alters the voltage-dependent channel 

gating by the protein (Roberts, 1996; Weaver and Roberts, 1992). A third possible target 

which has been identified for the plant CDPKs is the plasma membrane proton pump (H"""- 

ATPase). The H+-ATPase can be phosphorylated by a CDPK from oat root plasma 

membrane vesicles and a recombinant thaliana CDPK (Sussman, 1993). In

yeast, glucose alters the phosphorylation state of the plasma membrane proton pump and 

this is thought to be at least partially responsible for the rapid activation of the proton pump 

in response to glucose (Chang and Slayman, 1991). In plants, there is no data concerning 

the effects of phosphorylation on the H+~ATPase, but simply evidence that 

phosphorylation can be performed by CDPKs (Sussman, 1993). However, Xing et al.

(1996) demonstrated that dephosphorylation of the tomato plasma membrane H+-ATPase 

occurred in response to fungal elicitor treatment. In this case, the re-phosphorylation of the 

H+-ATPase was performed in the first hour by a PKC-like kinase activity and in the
:

second hour by a CaMKII-like protein kinase rather than a CDPK activity (Xing et al.,

1996).

Another group of kinases which have been widely identified in plants are the 

mitogen activated protein kinases (MAPKs), which are members of the "CMGC" group of 

kinases. This group of kinases are serine/threonine kinases which link extracellular signals I 

perceived at the cell surface to intracellular events controlling growth and differentiation.

In vertebrates MAPKs are typically activated by various mitogenic agents such as growth 

factors and hormones and they subsequently phosphorylate other kinases and transcription 

7
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factors such as c-Myc and c-Jun. MAPK's are themselves activated due to phosphorylation 

on tyrosine and threonine residues by a single dual-specific activator, MAP kinase kinase 

(MAPKK). This latter kinase is itself activated via phosphorylation on a serine residue by 

MAP kinase kinase kinase (MAPKKK) and in some cases MAPKKK's are themselves 

activated by protein kinase C. Thus, the MAPK signal cascade employs a whole series of 

phosphorylation steps to transduce signals from outside the cell to particular intracellular 

targets. In plants, the MAPK signalling pathway has been proposed to be involved in 

environmental stress (in particular cold, drought and wounding), auxin and ethylene 

responses and plant homologues of MAPK, MAPKK and MAPKKK have been cloned 

(Bogre e ta l ,  1997; Mizoguchi et al., 1993; Shmozaki et al., 1997; Tregear etal., 1996). 

Some workers have shown that wounding causes an increase in the steady state transcript 

levels for MAP kinase (Seo et al., 1995; Us ami et al., 1995), whilst others have 

demonstrated that wounding mediates a transient activation of MAP kinase which does not 

require transcription and translation (Bogre et al., 1997). Thus, it seems likely that more 

than one MAP kinase signalling cascade exists in plants and that each pathway can have a 

separate mode of regulation. Some MAP kinases are induced via transcription and 

translation whilst others are induced by post-translational modification of pre-existing 

MAP kinase. It is clear from the currently published data that MAP kinase cascades play a 

central role in some of the major plant signal transduction pathways and their further 

dissection will be vital to a thorough understanding of these signalling pathways.

One fascinating group of plant protein kinases that belong to the "other" group in 

the kinase superfamily classification are the receptor-like protein kinases (RLKs) (Walker 

et al., 1996). The RLK's have structural features similar to the receptor tyrosine kinases 

(RTKs), which are transmembrane proteins that have an extracellular domain which 

recognises a polypeptide ligand. Recognition of this ligand leads to autophosphorylation of 

the cytoplasmic kinase domain which can then propagate the signal within the cell. 

However, plant RLKs have kinase catalytic domains which are serine and threonine 

specific rather than tyrosine specific. RLKs have been identified from a number of plants 

and whilst their functions a largely unknown, a number of recent studies have revealed that
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some RLKs function in plant development and disease resistance (Beeraft et al., 1996; 

Clark et al., 1997; Lee et al, 1996b; Song et al., 1995; Torii et al, 1996). In addition, the 

self-incompatibility locus (S-locus) in Brassica is tightly linked with two genes, the S- 

locus glycoprotein (SLG) and the S-locus receptor kinase (SRK). Mutations in the SRK 

abolish the self-incompatibility response indicating the essential role of this particular RLK 

in the Brassica self-incompatibility signalling pathway (Goring etal., 1993). Two proteins 

that interact with SRK were cloned using the yeast two-hybrid system (Bower et al., 1996). 

Both these proteins were found to be members of the thioredoxin-h family and the fact that 

they interact with SRK demonstrates that they could be responsible for propagating the 

signal to reject incompatible pollen (Bower et al, 1996).

A third protein that interacts with the catalytic domain of a plant RLK has been 

cloned using an interaction cloning technique. KAPP  (kinase associated protein 

phosphatase) interacts only with the autophosphorylated form of the kinase catalytic 

domain of the A. thaliana RLK5 gene (Horn and Walker, 1994; Stone et al., 1994). KAPP 

has three functional domains, an N-terminal region characteristic of a type one signal 

anchor which localizes proteins to the cytoplasmic surface of a membrane, a central kinase 

interaction (KI) domain responsible for phosphorylation-dependent interaction with RLK5, 

and a C-terminal region with sequence homology to, and activity characteristic of, a type 

2C protein phosphatase (Stone et a l,  1994). The KI domain is conserved between 

monocots and dicots and interacts with a subset of the known plant RLKs (Braun et a l, 

1997). This indicates that KAPP may be involved in transducing signals from multiple 

RLKs, but that it is not a component of all RLK signalling pathways. However, if KAPP is 

responsible for transducing the signal from multiple RLKs, then there must be a 

mechanism to permit temporal specificity of KAPP for particular receptors. The nature of 

this mechanism and the role of KAPP and RLK5 in A. thaliana cell signalling are unknown 

at present.
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1.6.2. Plant phosphoprotein phosphatases

Research on plant phosphoprotein phosphatases (PPs) has tended to lag behind that 

into protein kinases because the protein kinases have generally been found to be the highly 

regulated, and therefore most interesting, partner in most plant protein phosphorylation 

events. However, a number of different protein phosphatase activities have been detected 

in plant extracts which are homologous to mammalian type-1, -2A and -2C protein 

serine/threonine phosphatases (MacKintosh et ah, 1991; MacKintosh and Cohen, 1989;

Smith and Walker, 1996). These protein phosphatase activities are found in a number of 

the subcellular compartments of the plant cell, including the cytosol and nucleus 

(MacKintosh eta l, 1991; Smith and Walker, 1996).

The classification of protein phosphatases into type-1 and type-2 is based on their 

unique substrate specificities and sensitivities to various inhibitors. Type 1 protein 

phosphatases preferentially dephosphorylate the G-subunit of mammalian phosphorylase 

kinase and are selectively inhibited by two heat stable proteins, termed inhibitor- 1 and 

inhibitor-2. Type 2 protein phosphatases prefer the a-subunit of phosphorylase kinase as a 

substrate and are resistant to inhibitors -1 and -2. Type 2 protein phosphatases are further 

categorized into PP2A, PP2B and PP2C according to their subunit structure, divalent cation 

requirements and substrate specificities (Cohen, 1989). PP2A is a heterotrimer of a 

catalytic C-subunit and two different regulatory subunits, termed A and B. PP2B is 

activated by calcium ions and exists as a heterodimer containing a catalytic A-subunit and 

a regulatory B-subunit that possesses an EF-hand motif which is found in some calcium- 

binding proteins. PP2C exists as a monomer that requires Mg^+ for activity. In terms of 

sequence, PP2C is clearly in a different family to the rest of the protein phosphatases which 

are related. In mammals, the catalytic subunits of all type 1 and 2 protein phosphatases are 

encoded by separate genes.

A great deal of information concerning the involvement of protein phosphatases in 

signalling processes in plants has been obtained by using specific inhibitors of protein 

phosphatases. For example, the diarrhetic shellfish poison okadaic acid is a polyether 

carboxylic acid that inhibits both PPl and PP2A, but it inhibits PP2A (Iq.s ~ 0.1-1.0 nM)
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much more potently than PPl ( I q .s  « 10-100 nM) (MacKintosh and MacKintosh, 1994). 

Many of the PP inhibitors are readily taken up by plant cells and have therefore been used 

for the in vivo analysis of the involvement of PPs in plant signalling processes (Christie 

and Jenkins, 1996; MacKintosh and MacKintosh, 1994; Sheen, 1993). The use of PP 

inhibitors, and in particular combinations of inhibitors with different specificities, allows 

differentiation between the involvement of PPl and PP2A in a particular signal cascade 

(Sheen, 1993). For example, greening of etiolated maize leaves in response to light requires 

protein phosphatase activity (Sheen, 1993). Okadaic acid blocked chlorophyll 

accumulation only when applied at a concentration of 1 |aM. Furthermore, by using a 

protoplast transient expression system. Sheen (1993) demonstrated that transcription of 

light-induced genes is prevented by pretreatment with both 1 |liM okadaic acid and 10-100 

nM calyculin A. At a concentration of 100 nM, okadaic acid was ineffective at preventing 

the light-induced transcription from the C4  ppdk promoter and the rbcS promoter, but it did 

block transcription at 1 |iM. Thus, this evidence suggests that PPl activity is necessary for 

the light-induction of ppdk and rbcS in etiolated maize leaves (Sheen, 1993).

The induction of pathogenesis-related (PR) proteins by salicylic acid (SA) in 

tobacco leaves has recently been demonstrated to involve protein dephosphorylation by 

using a range of protein phosphatase inhibitors (Conrath et ah, 1997). Both okadaic acid 

and calyculin A blocked the SA-mediated induction of PR-1 steady state mRNA levels and 

protein, whilst protein kinase inhibitors induced PR-1 expression in the absence of SA. 

Thus, blocking protein kinase activity favours the dephosphorylation of some protein or 

proteins involved in the induction of PR-L Interestingly, the protein kinase inhibitor K- 

252a stimulated the production of SA which suggests that a phosphoprotein acts upstream 

of SA as well as downstream, as demonstrated by the fact that PP inhibitors block SA 

induction of PR-1 (Conrath et ah, 1997). Protein phosphatase inhibitors have been used to 

demonstrate that protein dephosphorylation by serine/threonine phosphatases is required 

for proper functioning of the circadian clock in G. polyedra (Comolli et a l, 1996). 

Okadaic acid and cantharidin block the UV-B and UV-A/blue light induction of chalcone 

synthase steady state mRNA levels in a photomixotrophic Arahidopsis cell suspension
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culture (Christie and Jenkins, 1996) and okadaic acid blocks the gibberellic acid (GA)- 

induced changes in calcium concentration, gene expression and cell death in wheat 

aleurone cells (Kuo et a l, 1996). These are just a few from a growing plethora of examples 

which, by the use of specific inhibitors, demonstrate the involvement of protein 

dephosphorylation in a wide range of signalling processes in plants and other 

photosynthetic organisms. Initial confirmation of the requirement for protein phosphatase 

activity in a particular signal transduction pathway using inhibitors can then be followed up 

by identifying protein phosphatases which are active or activated during the induced (light, 

SA, GA, etc.) conditions for a particular signalling pathway.

Protein phosphatase inhibitors have also been used to demonstrate that particular 

phosphorylated plant proteins require dephosphorylation for activation/inactivation. 

Okadaic acid blocks the light-activation (dephosphorylation) of SPS and NR (Huber et al, 

1992; Huber and Huber, 1990). SPS-phosphatase undergoes a rapid dimer-trimer 

conversion upon illumination or feeding mannose to leaves in order to deplete metabolic 

phosphate pools in the cytoplasm. This light/mannose activation requires de novo protein 

synthesis indicating that the additional subunit in the trimeric form may be newly 

synthesized in response to light (Weiner, 1997). The trimeric form of SPS-phosphatase is 

the active form and this mediates the light-activation of SPS by dephosphorylating it. 

Okadaic acid also blocks the in vitro dephosphorylation and concomitant increase in the L- 

malate sensitivity of PEPc from the C4  plant maize and the CAM plant B. fedtschenkoi by 

inhibiting both a rabbit skeletal muscle PP2A and a partially purified B. fedtschenkoi leaf 

PP2A (Carter et aL, 1990; McNaughton et al., 1991). Furthermore, supplying the PPl and 

PP2A inhibitor microcystin-LR to detached maize leaves had no effect on the light-induced 

decrease in the L-malate sensitivity of PEPc and overcame the effect of cycloheximide 

which blocks the light decrease when supplied alone (Jiao et al., 1991a). Another plant 

metabolic enzyme which can undergo phosphorylation is phosphoenolpyruvate 

carboxykinase (PEPCK). This enzyme can be dephosphorylated in vitro by a mammalian 

PP2A, and again this is blocked by microcystin-LR (Walker and Leegood, 1995). 

However, unlike the situation for SPS, NR and PEPc, it is not yet known how
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phosphorylation/dephosphorylation influences PEPCK activity (Walker and Leegood, 

1995; Walker and Leegood, 1996).

Plant protein phosphatases, along with their accompanying kinases, seem to be 

involved in virtually every signal transduction pathway that has been analysed in this 

respect. The use of highly specific protein phosphatase inhibitors has greatly facilitated the 

elucidation of the fundamental importance of protein phosphorylation/dephosphorylation in 

plant signalling. Hopefully in the ensuing years this solid background of inhibitor based 

information will be expanded by the identification of many of the protein kinases and 

phosphatases that are vital to each individual plant signal transduction pathway and 

probably to the numerous points of cross talk between many of the plant signal 

transduction pathways.

1.6.3. The regulation of plant metabolism by protein phosphorylation

As already alluded to on a number of occasions in the preceding sections, a number 

of key enzymes in plant metabolism have their activity tightly regulated by reversible 

protein phosphorylation. PEPc is one of the most thoroughly studied plant proteins which 

undergoes regulation via reversible phosphorylation and this is described in detail in 

section 1.4. Other metabolic enzymes which undergo reversible phosphorylation in plants 

include SPS (sucrose biosynthesis), sucrose synthase (SuSy, sucrose breakdown)), 3- 

hydroxy-3-methylglutaryl-coenzyme A reductase (HMG CoA reductase, sterol 

biosynthesis), NR (nitrate assimilation), the mitochondrial pyruvate dehydrogenase 

complex (mtPDC, provision of acetyl CoA for the Krebs cycle and NADH for oxidative 

phosphorylation), and possibly PEPCK (gluconeogenesis and decarboxylation in some C4  

and CAM plants) and malate synthase (MS, glyoxylate cycle in fatty seeds) (Hardie et al, 

1997; Huber and Huber, 1996; Huber et al, 1996a; Huber et a l, 1996b; MacKintosh et al, 

1996; Randall et a l, 1996; Yang et a l, 1988). Of these enzymes, SPS, NR and HMG CoA 

reductase have been studied in most detail and the kinases involved in the phosphorylation 

of these enzymes may be closely related. Thus, the regulation of these three plant enzymes 

by phosphorylation will be discussed below in section 1.6.4. The regulation of a few of the 

remainder of the enzymes mentioned above will be briefly discussed in this section.
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PDCs are large multi-enzyme complexes which catalyse the oxidative 

decarboxylation of pyruvate to yield acetyl-CoA, CO2  and NADH. The multi-enzyme 

complex is made up of pyruvate dehydrogenase (El), dihydrolipoyl transacetylase (E2) and 

dihydrolipoyl dehydrogenase (E3). Plants have PDCs in both their mitochondria and their 

chloroplasts, but only the mitochondrial PDC undergoes regulatory phosphorylation 

(Randall et al., 1996). Phosphorylation of mtPDC on up to three serine residues of the El 

subunit inactivates the complex and is catalysed by PDH kinase. Dephosphorylation is 

catalysed by PDH-P phosphatase and this activates the complex. The reversible 

phosphorylation of the plant mtPDC acts as an on-off switch with 

phosphorylation/inactivation being promoted by light (Randall et a l, 1996). The light- 

inactivation of mtPDC results from ATP production during photorespiratory glycine 

metabolism and can be mimicked by supplying darkened leaf strips with glycine (Gemel 

and Randall, 1992). During photorespiration NĤ "*" is produced in the mitochondria due to 

glycine oxidation (see section 1.1.2). This NH4 + activates the PDH kinase and in so doing 

promotes the inactivation of the mtPDC (Schuller et a l, 1993). Thus, as photosynthesis 

increases in response to illumination so photorespiration will increase due to the oxygenase 

activity of Rubisco, and it seems that the portion of photorespiration which occurs in the 

mitochondrion inactivates the mtPDC complex preventing mitochondrial respiration in the 

light.

Sucrose synthase (SuSy) catalyses the breakdown of sucrose using UDP to yield 

UDP-glucose and fructose. The reaction is readily reversible, but is believed to go in the 

direction of sucrose breakdown in vivo and consequently the highest SuSy activity is found 

in heterotrophic sink tissues that are actively growing or accumulating starch 

(Geigenberger and Stitt, 1993; Kruger, 1990; Sung e ta l,  1994; Sung e ta l,  1989). Plants 

possess two major isoforms of SuSy, termed SSI and SS2, and these proteins are encoded 

by the Shi and Susl genes respectively in maize (Echt and Chourey, 1985). A possible 

mode of regulation of SuSy, which may account for it predominantly performing sucrose 

breakdown in vivo, is protein phosphorylation (Huber et al., 1996a). In developing maize 

leaves SuSy activity is highest in the elongation zone which is an actively growing sink
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(Kalt-Torres and Huber, 1987). The predominant form of SuSy in the elongation zone is 

the SS2 protein (Nguyen-Quoc et a l, 1990). When detached maize shoots were supplied 

with [32p]orthophosphate both SSI and SS2 became phosphorylated (Huber et a l, 1996a). 

Phosphorylation occurs on serine-15 of the maize leaf enzyme. A Ca^+-dependent protein 

kinase that phosphorylated SuSy in vitro was identified and partially purified from maize 

leaves. Phosphorylation was accompanied by an increase in the affinity of the enzyme for 

its substrates sucrose and UDP indicating that sucrose breakdown is promoted by 

phosphorylation of SuSy. Thus, a physiologically relevant alteration in the kinetic 

properties of SuSy is concomitant with phosphorylation and this may account for the in 

vivo flux through SuSy predominantly occurring in the direction of sucrose breakdown. 

The phosphorylation site in maize leaf SuSy was found to be conserved in the sequences of 

all plant SuSys for which sequence data exists, indicating that phosphorylation may be a 

ubiquitous mechanism for favouring the breakdown of sucrose by SuSy (Huber et a l, 

1996a).

Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the ATP-dependent 

decarboxylation of oxaloacetate to form phosphoenolpyruvate. In some CAM and C4  

plants this is a key step in photosynthetic carbon dioxide fixation (see section 1 . 2  and 1 .3 ). 

PEPCK is also a key enzyme in gluconeogenesis during the germination of fat-storing 

seeds such as cucumber (Leegood and ap Rees, 1978). Only recently has an unproteolysed 

form of PEPCK been purified from a plant tissue (Walker et a l, 1995). It transpired that 

only the intact form of the purified PEPCK (74 kDa form) from cucumber cotyledons 

could be phosphorylated in vitro by both a partially purified maize PEPc kinase preparation 

and mammalian cAMP-dependent protein kinase (Walker and Leegood, 1995). The 

proteolysed, 62 kDa form of PEPCK could not be phosphorylated and proteolysis was 

accompanied by loss of the ^^P-label from the phosphorylated 74 kDa form of PEPCK 

(Walker and Leegood, 1995). Feeding to cucumber cotyledons led to the labelling

of PEPCK in the dark, but not in the light (Walker and Leegood, 1995). Walker and 

Leegood (1996) went on to demonstrate that PEPCK can undergo in vivo phosphorylation 

in a wide variety gluconeogenic seedlings, C4  and CAM plants. In the leaves of C4  plants.
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which had a 71 kDa isoform of PEPCK, phosphorylation was highest in the dark and 

greatly reduced by illumination, as had been found in the cucumber seedlings (Walker and 

Leegood, 1996). However, the PEPCK in some of the C4  species analysed had a molecular 

weight around 67-69 kDa and this form of the enzyme was not subject to phosphorylation. 

This is thought to be due to these smaller isoforms of PEPCK lacking the N-terminal 

extension which contains the putative phosphorylation site. In the leaves of CAM plants, 

PEPCK had a molecular weight of 74-78 kDa and was subject to in vivo phosphorylation in 

all the species examined (Walker and Leegood, 1996). In the CAM plant Tillandsia 

fasciculata, PEPCK (78 kDa) was most highly phosphorylated towards the middle of the 

day, but then became dephosphorylated in the late afternoon. The level of phosphorylation 

began to increase again upon the return to darkness. In CAM plants, both PEPc and 

PEPCK occur together in the cytoplasm. Thus, futile cycling of carboxylation and 

decarboxylation steps could easily occur. Phosphorylation of PEPc at night in CAM plants 

makes the enzyme physiologically active (see section 1.4). It therefore follows that the 

phosphorylation of PEPCK at night and into the middle of the day may represent evidence 

that phosphorylation inactivates PEPCK preventing futile cycling. However, this 

hypothesis is dependent on phosphorylation causing inactivation of PEPCK and the effect 

of phosphorylation on the enzyme has yet to be determined (Walker and Leegood, 1996). 

In C4  plants, carboxylation of PEP by PEPc occurs in the mesophyll cells and 

decarboxylation of oxaloacetate by PEPCK occurs in the bundle-sheath cells. This spatial 

separation of PEPc and PEPCK will in itself overcome the possibility of futile cycling 

between carboxylation and decarboxylation. Hence, the phosphorylation domain may have 

been lost in the evolution of some C 4  grasses because there was no longer a requirement to 

regulate flux through PEPCK tightly.



1.6.4. The post-translational regulation of sucrose phosphate synthase, nitrate 

reductase and HMG-CoA reductase in plants

In higher plant tissues, SPS, NR and HMG Co A reductase are all inactivated by 

protein phosphorylation on serine residues. SPS is a key enzyme in the pathway of sucrose 

biosynthesis and catalyses the conversion of UDP-glucose and fructose-6 -phosphate to 

sucrose-6 ’-phosphate, UDP and H+. In vivo the sucrose-phosphate is rapidly removed by 

sucrose phosphatase and this effectively makes the reaction irreversible. SPS activity is 

greatest in source leaves where sucrose is actively synthesised from the products of 

photosynthesis, but it is also found in sink tissues where it seems to be involved in a futile 

cycle of sucrose turnover (Geigenberger and Stitt, 1991; Reimholz et al., 1994). SPS is 

regulated by metabolites and reversible protein phosphorylation. It is activated by glucose- 

6 -phosphate and inhibited by Pj. SPS is more sensitive to inhibition by Pi at night than 

during the day (Stitt et al., 1988). A number of groups discovered that this alteration in the 

kinetic properties of SPS is due to reversible protein phosphorylation (Huber et al., 1989; 

Siegl et al., 1990; Walker and Huber, 1989). SPS undergoes phosphorylation at a number 

of sites, but regulatory phosphorylation seems to occur at serine 158 of the spinach leaf 

enzyme and serine 162 of the maize leaf enzyme (Huber and Huber, 1996; McMichael et 

al., 1993). Phosphorylation of SPS inactivates the enzyme and in leaves of spinach and 

maize this process occurs in the dark. Activation of phosphorylated SPS occurs in response 

to illumination and is performed by a light-activated PP2A (Weiner et a l, 1993). The light- 

activation of SPS-PP2A occurs via a dimer-trimer conversion and requires protein 

synthesis (see section 1.6.2) (Weiner, 1997; Weiner et al., 1993). SPS kinase has been 

partially purified from a number of species. In spinach leaves, two SPS protein kinases 

have been resolved with apparent molecular masses of 45 (peak I) and 150 kDa (peak III) 

(McMichael et al., 1995). The peak I kinase is Ca^+-dependent whilst the peak III kinase, 

which has a tendency to copurify with SPS, is Ca^+-independent. By contrast only a single 

form of SPS kinase has been identified in maize leaves (Huber and Huber, 1996).

In darkened spinach leaves SPS is phosphorylated and inactivated via 

phosphorylation of ser-158. However, the SPS in darkened leaves can be partially activated
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in the dark in response to osmotic stress. This osmotic stress-induced activation of SPS has 

been demonstrated to be due to phosphorylation of a separate site, ser-424 (Toroser and 

Huber, 1997). Phosphorylation of ser-424 in the dark seems to reactivate SPS which has 

already been inactivated by phosphorylation of ser-158. A novel Ca^+-dependent, 150 kDa 

protein kinase (peak IV) was partially purified and found to phosphorylate and activate 

phosphoserine-158 SPS in vitro. Hence, it would appear that SPS can undergo two separate 

phosphorylation events. One inactivates it in response to darkness (low G6 P, F6 P and high 

Pi), and a second activates the enzyme in response to osmotic stress (Toroser and Huber,

1997).

Nitrate reductase (NR) catalyses the reduction of nitrate to nitrite using NAD(P)H 

as the electron donor and this is considered the rate limiting step in nitrogen assimilation in 

plants. NR transcript levels are induced by nitrate and this is concomitant with an increase 

in NR activity (Campbell, 1996). NR activity is also regulated post-translationally in 

response to light/dark transitions and other environmental signals. NR is rapidly converted 

to a low activity, magnesium-inhibited form whenever the rate of photosynthesis is reduced 

(Huber et al., 1992; MacKintosh, 1992; MacKintosh et al., 1996). Inactivation of NR is 

caused by phosphorylation of the enzyme on serine-543 of the spinach leaf enzyme 

(Douglas et a l, 1995; Bachmann et al., 1996b). Dephosphorylation and activation of NR is 

catalysed by a microcystin-, calyculin A-, cantharidin- and okadaic-acid sensitive protein 

phosphatase and this occurs in response to illumination (Kaiser and Huber, 1994; 

MacKintosh, 1992). The phosphorylated residue, serine-543, is located in the hinge 1 

region that connects the cytochrome b domain with the molybdenum-pterin cofactor 

binding domain of NR (Bachmann et al., 1996b; Su et al., 1996). However, 

phosphorylation alone does not inactivate NR, inactivation also requires the binding of an 

inhibitor protein (NIP) to the phosphorylated form of NR (Glaab and Kaiser, 1995; Glaab 

and Kaiser, 1996; MacKintosh et al., 1995; Spill and Kaiser, 1994).

This inhibitor protein has recently been purified and was found to be a 14-3-3 

protein (Bachmann et al., 1996a; Moorhead et al., 1996). 14-3-3 proteins constitute a large 

family of proteins which participate in a wide array of signal transduction pathways (Fed,
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1996). Their exact mode of action is still largely unknown, but in some cases they act as 

adapters which bring specific target proteins together or to particular locations, as 

solubility factors or as enzyme inhibitors (Perl, 1996). The isolation of the NIP 14-3-3 has 

assisted the purification of various kinases capable of phosphorylating NR because a 

reconstituted assay can be set up containing NR and NIP and the NR is then simply 

incubated with the kinase and assayed for sensitivity to inhibition by Mg^+. McMichael et 

al. (1995) isolated three peaks of kinase activity from spinach leaves variously capable of 

phosphorylating NR and/or SPS. Their peak I enzyme had an apparent molecular weight of 

45 kDa and could phosphorylate and inactivate both NR and SPS, whilst the peak II kinase 

(60 kDa) was active against NR and the peak III kinase (150 kDa) was active against SPS 

(McMichael et al., 1995). Bachmann et al. (1995, 1996) also purified the peak I and peak 

II (45 and 60 kDa) kinases capable of phosphorylating NR and further characterized the 

peak II kinase because it solely phosphorylated NR. Both the peak I and II kinases were 

Ca^+-dependent and this raised the possibility that they may be CDPKs (Bachmann et al., 

1996b). Both kinases were inhibited by K252a (a CDPK and PKC inhibitor), but not H-7 

and H - 8  (cyclic-nucleotide dependent protein kinase and PKC inhibitors). However, only 

the peak II enzyme cross-reacted with a mixture of monoclonal antibodies specific to the 

catalytic domain of soybean cell CDPKa (Bachmann et al., 1996b).

Douglas et al. (1997) identified three peaks of kinase activity from spinach leaf 

extracts which phosphorylated and inactivated NR in the presence of NIP 14-3-3 (Douglas 

et al., 1997; Moorhead et al., 1997). The major NR kinase activity was peak I which had a 

molecular mass of 45 kDa. Interestingly, this peak I kinase was Ca^+-dependent when 

prepared in the absence of protein phosphatase inhibitors, and largely Ca^+-independent 

when prepared in the presence of protein phosphatase inhibitors. The peak I kinase itself 

seems to be regulated by two functionally distinct phosphorylation events (Douglas et al., 

1997; Moorhead et al., 1997). The peak II kinase was Ca^+-dependent under all tested 

conditions whilst the peak III enzyme (-140 kDa) was Ca^+-independent and inactivated 

by incubating it with PP2A or PP2C. This suggests that the peak III kinase is also regulated 

by phosphorylation. The peak III kinase was also very active in phosphorylating and
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inactivating Arabidopsis HMG CoA reductase at the same site which is phosphorylated by 

HMG CoA reductase kinase A (HRK-A) from cauliflower (Douglas et a l, 1997; Moorhead 

et al., 1997). HRK-A has been demonstrated to be a SNF-1 like kinase and western 

blotting of the peak III kinase with two separate antisera specific to plant SNF-1 

homologues revealed that the peak III kinase is a plant SNF-1 homologue (Ball, 1996; 

Douglas et al., 1997; MacKintosh et al., 1992; Moorhead et al., 1997).

The yeast SNFl protein kinase is an integral part of the carbon catabolite signal 

transduction pathway which senses cellular glucose levels and links them to the repression 

and derepression of glucose-repressible genes such as the invertase gene SUC2 (Celenza 

and Carlson, 1986). A mammalian gene which has high homology to SNFl is the gene for 

AMP-activated protein kinase (AMPK) (Carling et al., 1994). AMPK inactivates both 

acetyl CoA carboxylase and HMG CoA reductase by phosphorylating them, and this 

regulates lipid metabolism (Hardie, 1992). A number of plant homologues of the SNFl 

related protein kinases have been cloned by both complementation of the yeast snfl mutant 

and homology based methods (Alderson et al., 1991; Halford et al., 1996). The rye 

endosperm gene RKINl was the first plant SNFl related cDNA to be cloned. The Rkinl 

protein was able to complement the yeast snfl mutant by restoring growth on a glycerol 

minimal medium (Alderson et a l, 1991). This indicates that the rye RKINl gene encodes a 

functional -related protein kinase. Subsequently a number of plant homologues of 

RKIN1/5AF7 have been isolated by homology based cloning methods. These include 

SNFl homologues fvom Arabidopsis (Le Guen et al., 1992), M. crystallinum (Baur et al., 

1994), barley (Halford et al., 1992), and tobacco (Muranaka et al., 1994).

Biochemical evidence for the existence of SNFl homologues in plants has come 

from the analysis of HMG-CoA reductase kinase (HRK) activity in plants. The 

development of a peptide based kinase assay for AMPK/SNFl-like activity has greatly 

assisted attempts to purify plant HRK activities. The SAMS peptide has a sequence based 

on the major phosphorylation site of rat acetyl-CoA carboxylase and is phosphorylated 

readily and specifically by mammalian AMPK and yeast SNFl (Ball, 1996). MacKintosh 

et al. (1992) partially purified SAMS peptide kinase activity from cauliflower, pea, oilseed

75



rape, potato and wheat. These kinase activities could also phosphorylate mammalian 

HMG-CoA reductase, mammalian acetyl-CoA carboxylase and plant HMG-CoA 

reductase, but not plant acetyl-CoA carboxylase (Ball et al., 1994; MacKintosh et al., 

1992). Two HRK activities from cauliflower florets were resolved by column 

chromatography, termed HRKA and HRKB, but HRKA was the major activity and had a 

subunit molecular weight characteristic of plant SNFl homologues (58 kDa) (Ball et al., 

1994). However, both the plant HRK activities and the yeast SNFl kinase have not been 

found to require AMP for activity, unlike mammalian AMPK (Ball, 1996). An activity 

equivalent to cauliflower HRKA has also been isolated from barley endosperm (Barker et 

al., 1996). This latter kinase activity could phosphorylate Arabidopsis HMG-CoA 

reductase and the SAMS peptide, and had a subunit molecular weight of 58 kDa which is 

identical to the predicted size of plant SNFl-homologues. However, the most convincing 

evidence that the barley HRK activity was a plant SNFl-related kinase was obtained by 

immunological methods. Two antisera were raised, one against both an overexpressed 

portion of the rye RKINl gene and a second against a conserved peptide designed by 

aligning the sequences of all plant SNF1 -homologues. Both antisera recognized a 60 kDa 

polypeptide in the purified barley endosperm HRK preparation. Furthermore, both antisera 

also recognize cauliflower HRK-A (Ball et al., 1995). This confirms that plant HRK is a 

SNFl homologue (Ball et al., 1995; Barker et a l, 1996).

Two isoforms of HRK, HRK-A and HRK-C have been isolated from spinach 

leaves. Both enzymes inactivate A. thaliana HMG-CoA reductase by phosphorylating it at 

ser-577 (Hardie et al., 1997). They also phosphorylate and inactivate spinach SPS and NR. 

Both kinases were inactivated by dephosphorylation and can be reactivated by 

phosphorylation with mammalian AMPK kinase. They have native molecular masses of 

-160 kDa and contain 58 kDa polypeptides that are recognized by the RKINl antiserum. 

Thus, it is becoming increasing likely that plant HRK, SPS-kinase and NR-kinase are 

closely related members of the SNF-1 related protein kinase family. They seem to play a 

central role in sensing the supply of carbohydrate from photosynthesis or energy reserves 

and in response they can switch off major biosynthetic pathways by rapidly
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phosphorylating enzymes such as SPS, NR and HMG-CoA reductase. They may also 

regulate gene expression (Halford, 1997). It would seem highly likely from the evidence 

currently available that plant SNFl homologues, like their mammalian and yeast 

counterparts, play a central role in the regulation of carbon metabolism. Manipulation of 

the expression of specific plant SNF-1 homologues by antisense techniques may permit the 

redirection of carbon into particular pathways which could, for example, allow the starch 

composition of potato tubers and cereal grains to be manipulated for economic gains.

1.7 Objectives

Higher plant phosphoenolpyruvate carboxylase is responsible for primary CO2  

fixation in C4  and CAM plants and a range of housekeeping functions in all plants. Flux 

through PEPc can be regulated by changes in its allosteric properties. The allosteric 

properties of plant PEPc are controlled by reversible protein phosphorylation. The 

phosphorylation state of PEPc is largely a result of the level of PEPc kinase activity. PEPc 

kinase is induced by light in C3 and C4  plants and the circadian clock in CAM plants.

Light- and circadian clock-mediated activation of PEPc kinase activity has been shown to

involve de novo protein synthesis (Carter et a l, 1991; Jiao et a l, 1991a; Li et al, 1996). 

The nature of the protein which must be synthesized de novo is currently unknown. 

However, it has been speculated that it could be the PEPc kinase protein itself or a 

secondary component that is required for the activation of PEPc kinase. Numerous 

attempts to purify PEPc kinase to homogeneity have failed, and thus, there are no 

antibodies or cDNA probes available for PEPc kinase. The major aim of this work was to 

overcome this shortfall in the understanding of PEPc and PEPc kinase regulation by 

studying the regulation of PEPc kinase translatable mRNA levels in plants. At the outset, a 

novel assay was proposed which would permit analysis of PEPc kinase translatable mRNA 

in which isolated plant RNA would be translated into proteins using an in vitro translation 

system and the translation products would then be assayed directly for PEPc kinase 

activity. The initial objective was to determine if this assay would work and if so was it a 

valid assay for PEPc kinase mRNA. If the assay was to permit the analysis of PEPc kinase

'■ a

"ii
77



"■'-'IKli

78

mRNA levels then the signal transduction cascades involved in regulating PEPc kinase ¥
■ I

mRNA and activity were to be dissected. It was also hoped that the novel assay would 

provide a method for cloning the PEPc kinase cDNA based on the reaction catalysed by the
f

kinase rather than homology-based cloning which requires prior knowledge of the 

sequence of the desired gene. "



Chapter 2 

Materials and Methods

2.1. Materials

Acetic acid (glacial), acetone, boric acid, chloroform, disodium hydrogen 

phosphate, ethylene diamine tetra-acetic acid (EDTA, disodium salt), glycine, Hepes, 

hydrochloric acid (HCl), magnesium chloride(MgCl2 ), methanol, potassium chloride 

(KCl), sodium acetate, sodium chloride (NaCl), sodium hydrogen carbonate (NaHCOs) 

and sodium hydroxide (NaOH) were from Fisher Scientific (U.K.) Ltd., Loughborough, 

U.K.

Actinomycin D, antipain hydrochloride, benzamidine hydrochloride, Bis-Tris, 

bovine serum albumin (BSA), Bromophenol Blue, cantharidin, casein enzymatic 

hydrolysate, chymostatin, Coomassie Brilliant Blue G250, cordycepin, cycloheximide, 

diethyl pyrocarbonate (DEPC), dimethyl sulphoxide (DMSG), formaldehyde, formamide, 

glucose 6 -phosphate (G6 P, monosodium salt), hexadecyltrimethylammonium bromide 

(CTAB), leupeptin (hemisulphate salt), lithium chloride, L-malic acid, octanol, 

phosphoenolpyruvate (PEP, monosodium salt), polyethylene glycol (PEG, MW 15000- 

20000), polyvinylpolypyrrolidone (PVPP or insoluble PVP), puromycin, sodium azide, 

spermidine hydrochloride and N,N,N',N’-tetramethylethylenediamine (TEMED) were from 

Sigma (London) Chemical Co., Poole, Dorset, U.K.

Adenosine 5'-triphosphate (ATP, disodium salt), nicotinamide adenine dinucleotide 

reduced form (NADH, disodium salt) and pig heart malate dehydrogenase (MDH) were 

from Boehringer Mannheim Corp. (London) Ltd., Lewes, Sussex, U.K.

[y-32p] ATP (triethylammonium salt, 3000 Ci mmoF^), [a-^^P] dCTP (3000 Ci 

mmol‘0, Hybond N blotting membrane, rabbit reticulocyte lysate in vitro translation kit 

and Redivue"^^ ^^S-methionine (1000 Ci mmol'O were from Amersham International, 

Bucks., U.K.

Agar, tryptone (peptone from casein) and yeast extract were from Merck, 

Darmstadt, Germany.
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Agarose and 1 Kb DNA ladder were from Gibco BRL, Life Technologies Ltd., 

Paisley, Scotland.

Ammonium peroxodisulphate, ethanol (100 % v/v), hydrogen peroxide, 2- 

mercaptoethanol, potassium dihydrogen orthophosphate, sodium dodecyl sulphate (SDS), 

and trichloroacetic acid were 'AnalaR' grade from BDH Chemicals, Poole Dorset, U.K.

Bay K8644, staurosporin and W7-HC1 were from Calbiochem-Novabiochem 

(U.K.) Ltd., Nottingham, U.K.

Dithiothreitol (DTT) was from Alexis Corporation (U.K.) Ltd., Nottingham, U.K. 

Dynabeads Oligo (dT)25 were from Dynal (U.K.) Ltd., Merseyside, U.K. 

Hydroxylapatite (Bio-gel HTP) and 37.5:1 acrylamideibis-acrylamide solution were 

from Bio-Rad Laboratories (England) Ltd., Bramley, Kent, U.K.

mMessage mMachine T3 in vitro transcription kit was from Ambion Inc., AMS 

Biotechnology (U.K.) Ltd., U.K.

Nucleon Easi-RNA kit was from Scotlab Biosciences, Coatbridge, Scotland, U.K. 

Oligo (dT)-cellulose redi column, Sephadex G25 (medium), Sephadex G50 and 

FPLC Superose 6  pre-packed column were from Pharmacia, Milton Keynes, Bucks., U.K. 

Okadaic acid was from Moana Bioproducts.

Poly ATract mRNA isolation system, RNA size markers (0.28 - 6 . 6  Kb), Taq DNA 

polymerase, all DNA restriction enzymes and the Wizard DNA clean-up system were from 

Promega (U.K.) Ltd., Southampton, U.K.

QIA-quick gel extraction kit and QIA-prep spin plasmid miniprep kit were from 

Qiagen Ltd., Crawley, West Sussex, U.K.

Tris was from ICN Biomedicals, Ohio, U.S.A.

2.2. Plant material

2.2.1. Bryophyllum (Kalanchoë) fedtschenkoi

Bryophyllum (Kalanchoë) fedtschenkoi Hamet et Perrier was propagated by 

cuttings from the original stock used in previous studies (Wilkins, 1959; Wilkins, 1960). 

Cuttings were grown in a glasshouse under a 16 h photoperiod, maintained throughout the
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year using mercury-vapour lamps. Four to six month old plants were transferred to either 

of two controlled environment growth chambers. In one chamber the 8  h photoperiod was 

from 0800 h - 1600 h and in the other the photoperiod was 1600 h - 2400 h (reverse- 

phase). Light was provided by white fluorescent tubes and twelve 100 W tungsten lamps, 

giving a radiant fluence rate of 20 W m-  ̂ s"k The temperature was 28 'C during the 

photoperiod and 15 °C in the dark. Plants were watered every 4 to 5 days. Plants were 

allowed to adjust to growth chamber conditions for at least 7 days prior to use. All 

experiments were carried out using leaf material from between nodes six and ten.

2.2.2. Maize

Maize {Zea mays, cv. Jubilee FI) were grown from seed in potting and bedding 

compost (William Sinclair Horticulture Ltd., Lincoln, U.K.) in a greenhouse under a 16 h 

photoperiod supplemented with mercury-vapour lamps. Two to three week old plants were 

transferred to a controlled environment growth chamber (Fi-Totron model PG1700, Sanyo- 

Gallenkamp, Loughborough, U.K.) and grown under a 12 h photoperiod provided by eight 

250 W halogen and eight 60 W tungsten lamps to give a light intensity of 700 p.moles m*2 

S"i at plant height. The temperature was 27 “C during the photoperiod and 18 °C in the 

dark. The relative humidity was 60 % in the photoperiod and 80 % during the dark. Plants 

were used from the age of six weeks,

2.2.3. Barley

Spring barley {Hordeum vulgare L. var. Hart) (Plant Breeding International, 

Cambridge, U.K.) were grown from seed under a 12 h photoperiod of 300 pmol m-2 s’  ̂

using warm white fluorescent tubes, tungsten lamps and constant temperature (2 0 °C) in 

vermiculite moistened with nutrient solution containing 15 mM NO3 '  (Hoagland and 

Arnon, 1950) in a Fitotron TM 600 growth chamber (Fisons, Loughborough, U.K.). The 

plants were resupplied with the above nutrient solution 5 d and 7 d after sowing. The 

primary leaf of each plant was harvested 1 0  days after sowing and, after either 1 0  h of 

darkness or 3 h of light, used to isolate RNA.
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2,2.4. Kalanchoë daigremontiana

Plants of Kalanchoë daigremontiana Hamet et Perrier, which were approximately 

one year old and growing in 1 0 0 -mm diameter pots, were acclimated in the growth 

chamber for 4 weeks prior to experimentation. All measurements were conducted on the 

fourth leaf pair from the growing tip.

The plants were acclimated in a Fitotron growth chamber (Sanyo Gallenkamp, 

Leicester, UK) which was programmed to provide gradual changes in temperature, 

humidity and photon flux density (PFD) at the start and end of the photoperiod in an 

attempt to mimic conditions found naturally at dawn and dusk. From 08:30 until 12:00, 

PFD increased to a maximum of 530 jimol m-  ̂ s-̂  at leaf height, temperature increased 

from 19“C to 27°C and relative humidity decreased from 80% to 60% (vapour pressure 

deficit (VPD) increased from 1.8-2.9kPa). These conditions were maintained until 16:00 

when PFD decreased gradually until lights off at 19:30, temperature decreased to 19“C and 

relative humidity increased to 80% (VPD l.SkPa). Over the 13h dark period, temperature 

(19°C) and relative humidity (80%) remained constant.

2.3. General biochemical methods

2.3.1. pH calibrations were performed using a Russel pH probe connected to an EDT 

instruments microprocessor pH meter. The pH of all buffers and solutions was adjusted at 

their working temperature (i.e. 4°C or room temperature).

2.3.2. Glassware and plastics were cleaned in “Haemo-sol” solution (Alfred Cox 

(Surgical) Ltd., UK), rinsed in distilled water and oven dried.

2.3.3. Chromatographic materials. Sephadex G-25M, DEAE-cellulose and 

hydroxylapatite were swollen and packed according to the manufacturer’s protocols. 

Sephadex G-25M was stored in 0.02 % (w/v) sodium azide. Hydroxylapatite and DEAE- 

cellulose retained plant pigments and were therefore only used once.

2.3.4. Concentration of protein samples was performed using Centricon 30 

microconcentrators (Amicon Ltd., Stonehouse, Glos., UK) according to the manufacturer’s 

protocols.
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2.3.5. Spectrophotometric assays were carried out in semi-micro quartz cuvettes or 

plastic disposable cuvettes (1 cm path length, 1 ml volume). A Philips PU 8700 series 

UV/Vis scanning spectrophotometer was used for all enzyme assays and the determination 

of the concentration of DNA/RNA solutions.

2.3.6. Centrifugation was performed in a Beckmann model J2-21 centrifuge using either a 

JA20 or JS13.1 rotor. Samples less than 1.5 ml were centrifuged in Eppendorf tubes using 

a benchtop microfuge (MSE Micro Centaur or Eppendorf 5415 C).

2.3.7. Micropipetting (0.5 jxl-1 ml) was performed using adjustable Finnpipettes 

(Labsy stems, Helsinki, Finland).

2.4. Enzyme extraction and purification

2.4.1. Purification of phosphoenolpyruvate carboxylase from Bryophyllum 

(Kalanchoë) fedtschenkoi

All buffers are defined in section 2.3.2. All steps were performed at 4°C in a cold 

room except for the Superose 6  (FPLC) column which was at room temperature. Day form 

(dephosphorylated) PEPc was extracted by taking 40 g of leaves between 09.00 and 11.00 

h and homogenizing them at low speed in a Waring blender for a total of 30 seconds with 

30 ml of buffer 1 , 1.5 g of insoluble polyvinyl pyrrolidone, 2.0 g Sodium Bicarbonate and 

a few drops of octanol. The homogenate was filtered through two layers of muslin and 

centrifuged for 15 minutes at 5000 rpm. The supernatant was filtered again through two 

layers of muslin prior to loading the entire sample onto a 15 cm x 4.5 cm (200 ml) bed 

volume Sephadex G-25 M column pre-equilibrated with buffer 2. The extract was washed 

through the column with buffer 2 at a flow rate of 5 ml/min and 5 ml fractions were 

collected with a fraction collector. The A2 8 0  nm of the fractions was determined in order to 

identify the peak of protein. The peak fractions were pooled and mixed with 10 ml of 

hydroxylapatite (HAP) pre-equilibrated with buffer 2. The mixture was swirled gently on 

ice for 10 minutes and then spun briefly to 5000 rpm to rapidly pellet the HAP. The 

supernatant was poured off and the pellet resuspended and used to repour the HAP column. 

The column bed was allowed to settle and the eluate discarded. The column was then
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washed in about 30 mis of buffer 2. The bulk of the protein was then eluted with buffer 3 

until the Aaso nm of the fractions was the same as the A2 8 O nm of the buffer. The PEPc was 

then eluted from the HAP column with buffer 4. The flow rate was 2 ml/min and 1 min 

fractions were collected. Again the peak fractions were pooled and desalted on a 55 cm x 

2.2 cm (200 ml) Sephadex G-25 M column pre-equilibrated with buffer 5. The flow rate 

was 7 ml/min and 0.5 min fractions were collected. The peak fractions were pooled to a 

maximum of 30 ml and slowly (no faster than 1 ml / 2 minutes) loaded onto a 1.2 cm x 1 

cm (1 ml) DEAE-cellulose column pre-equilibrated with buffer 5. The column was washed 

with buffer 5 until the A2 8 O nm of the washings decreased to that of the buffer. The PEPc 

was eluted from the DEAE column with buffer 6 . 500 qi fractions were collected and 

checked for PEPc activity. The peak fractions were pooled, filtered and then concentrated 

in Centricon-30 tubes at 5000 rpm using a 8  X 50 ml angled-rotor (JA-20) in a Beckman 

centrifuge (Model J2-21) for 40-80 minutes until the volume was reduced to below 500 pi. 

The concentrated sample was loaded onto a 30 cm x 1 cm Pharmacia (FPLC) Superose 6  

column pre-equilibrated with buffer 7. The flow rate on the FPLC was set at 0.3 ml/minute 

and three 10 minute fractions were collected followed by 1 minute fractions. The PEPc 

eluted at fractions 20-25. The fractions were checked for activity and the activity peak was 

pooled and dialysed overnight into dialysis buffer at 4°C. The dialysed, purified PEPc was 

then aliquoted into separate tubes at 0.3 units per tube (enough for 10 PEPc kinase assays) 

and stored at -70°C.

2.4.2. Buffers used in the purification of PEPc

Buffer 1

100 mM Tris -HCl (pH 8.0) containing 2 mM EDTA, 10 mM L-malate, 2% (w/v) 

polyethylene glycol 15-20, 000, 1 mm DTT, 1 mM benzamidine hydrochloride.

Buffer 2 (desalting Sephadex G25i and HAP )

100 mM Tris-HCl (pH 7.5) containing 2 mM EDTA, 10 mM L-malate, 1 mM DTT, 1 mM 

benzamidine hydrochloride.

Buffer 3 (Hydroxylapatite wash)
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100 mM Tris-HCl (pH 7.5) containing 0.1 mM EDTA, 10 mM L-malate, 40 mM 

potassium phosphate, 1 mM DTT, 1 mM benzamidine hydrochloride.

Buffer 4 (PEPc elution from HAP)

100 mM Tris-HCl (pH 7.5) containing 0.1 mM EDTA, 10 mM L-malate, 150 mM 

potassium phosphate, 1 mM DTT, 1 mM benzamidine hydrochloride.

Buffer 5 (desalting Sephadex G25n and DEAE-cellulose)

50 mM Tris -HCl (pH 7.5) containing 0.1 mM EDTA, 1 mM DTT, 1 mM benzamidine 

hydrochloride.

Buffer 6  (Elute PEPc from DEAE-cellulose)

50 mM Tris-HCl (pH 7.5) containing 0.1 mM EDTA, 100 mM NaCl, 1 mM DTT, 1 mM 

benzamidine hydrochloride.

Buffer 7 (Superose 6  column on Waters FPLC)

50 mM Bis-tris Propane (pH 7.5) containing 0.1 mM EDTA, 50 mM potassium chloride, 1 

mM DTT, 1 mM benzamidine hydrochloride.

Dialysis Buffer

50 mM Bis-tris Propane (pH 7.5) containing 0.1 mM EDTA, 1 mM DTT, 1 mM 

benzamidine hydrochloride and 50% (v/v) glycerol.

2.4.3. Preparation of rapidly desalted extracts

(i) B, fedtschenkoi and K. daigremontiana Leaves were ground in extraction buffer 

(100 mM Tris-HCl, pH 8.0, 2 mM EDTA, 10 mM L-malate, 1 mM benzamidine 

hydrochloride, 1 mM dithiothreitol, 2% (w/v) polyethylene glycol 20000) (2 ml/g fresh 

tissue) with 1 0 0  mg sodium bicarbonate/g and 2 0 0  mg insoluble polyvinylpyrrolidine/g in 

a mortar and pestle at 4°C (Carter et a l, 1991). The homogenate was filtered through two 

layers of muslin and centrifuged for 30 s in a microfuge at full speed to remove particulate 

material. Prior to assays of PEPc and PEPc kinase, extracts were desalted into 50 mM Tris- 

HCl, pH 7.8, 1 mM benzamidine hydrochloride, 1 mM dithiothreitol , 5% (v/v) glycerol 

using a pre-equilibrated 12 cm x 1 cm (10 ml) Sephadex G25 M column.
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(ii) Maize. Leaves were ground in extraction buffer (100 mM Tris-HCl, pH 8.0, 10 

mM MgCU, 5 mM dithiothreitol, 1 mM EDTA, 10 jig/ml chymostatin) (4 ml/g fresh 

tissue) with 40 mg insoluble polyvinylpyrrolidine/g and 0.5 % (w/w) acid-washed sand in a 

mortar and pestle at 4°C. The homogenate was filtered through two layers of muslin and 

centrifuged for 30 s at full speed in a microfuge to remove particulate material. Extracts 

were then desalted into 50 mM Hepes-KOH, pH 7,3, 5 mM MgCl2 , 5 mM dithiothreitol, 1 

mM EDTA, 10 pg/ml chymostatin, 20% (v/v) glycerol using a 12 cm x 1 cm (10 ml) 

Sephadex G25 M column.

2.5. Enzyme Assays

2.5.1. Estimation of PEPc activity and the apparent K* of PEPc for L-malate

The apparent Ki for L-malate and the activity of PEPc in desalted extracts of B. 

fedtschenkoi leaves were determined using a spectrophotometric assay. The standard 1 ml 

assay cocktail contained 50 mM Tris-HCl, pH 7.8, 5 mM MgCh, 2 mM PEP, 0.2 mM 

NADH, 10 mM NaHCOg"' 5 units of MDH and the enzyme sample. The oxidation of 

NADH by the coupling enzyme MDH was monitored as the decrease in the A3 4 0  nm at 

25°C. This decrease was dependent on the PEPc concentration in the enzyme sample 

(Nimmo et al., 1984). The malate sensitivity of PEPc was ascertained by adding an 

appropriate range of concentrations of L-malate to the standard assay cocktail. The 

concentration of malate needed to produce 50 % inhibition the initial PEPc activity 

(apparent Ki) was determined using a plot of percentage inhibition of the rate minus L- 

malate versus malate concentration.

For maize the assay buffer consisted of 50 mM Hepes-KOH, pH 7.3, 0.5 mM 

phosphoenolpyruvate, 10 mM MgCh, 10 mM NaHCOs, 0.2 mM NADH, 5 units of malate 

dehydrogenase, 5 mM glucose-6 -phosphate and the enzyme sample. The apparent K, of the 

PEPc for L-malate was determined as for B. fedtschenkoi (Nimmo et a l, 1987a).

One unit of enzyme activity is the amount required to catalyse the formation of 1 

|imol of product per min.
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2.5.2. PEPc kinase activity in rapidly desalted extracts

PEPc kinase activity in desalted extracts was assayed using an in vitro assay (Carter 

et al., 1991). Desalted extract containing 0.002 units of PEPc activity was incubated in 50 

mM Tris-HCl, pH 7.8 containing 1 mM benzamidine hydrochloride, 10 pg antipain/ml, 10 

pg leupeptin/ml, 5 nM okadaic acid, 5 mM MgCls, 0.01 mM[y-3^P] ATP (1 pCi) and 0.03 

units of purified, dephosphorylated PEPc from B. fedtschenkoi, in a total volume of 25 pi. 

Assays were initiated by adding the radioactive ATP. Incubations were at 30“C for 30 min. 

Assays were stopped by the addition of one fifth volume of 5X SDS sample buffer (see 

2.7.1) and heating in a boiling water bath for 4 min. Samples were then separated by SDS- 

PAGE (see 2.7.1) (Laemmli, 1970). Dried radioactive gels were routinely phosphoimaged 

and autoradiographed (see 2.7.3).

2.5.3. PEPc kinase activity in in vitro translation products

PEPc kinase activity in in vitro translation products was assayed by incubating 5 pi 

of translation products (which contain unlabelled ATP) with 50 mM Tris-HCl, pH 7.8 

containing 3 mm MgCl], 1 mM benzamidine hydrochloride, 1 0  pg antipain/ml, 1 0  pg 

leupeptin/ml, 5 nM okadaic acid, 0.03 units of purified, dephosphorylated PEPc from B. 

fedtschenkoi and 10 pCi [y-32p] ATP. Incubations (30 min at 30“C) were terminated by the 

addition of 10 pi of polyclonal rabbit mti-Bryophyllum PEPc antibody (Nimmo et al, 

1986), followed by incubation on ice for 1 h. Immunoprecipitated PEPc was pelleted by 

centrifugation in a microfuge at full speed for 7 min. The supernatant was removed and the 

pellet washed in 200 pi of 1.5 M NaCl, 2 mM EDTA (pH 7.0). The PEPc was repelleted by 

microfuging at full speed for 7 min and the pellet resuspended in 30 pi of 5X SDS sample 

buffer (see 2.7.1), followed by heating to 100“C for 4 min in a boiling water bath. 

Incorporation of 32p into PEPc was monitored by SDS-PAGE (see 2.7.1) (Laemmli, 1970) 

and phospho-imaging or autoradiography (see 2.7.3).
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2.6. Manipulation of Crassulacean acid metabolism

As a means of inhibiting C4  carboxylation at night, individual leaves of intact K. 

daigremontiana plants were enclosed in an atmosphere of N2  overnight, thereby 

preventing access to external CO2  and inhibiting the release of internal (respiratory) 

sources of CO2  (full N2 ). Some leaves were enclosed in an atmosphere of N2  for the 

first half of the dark period and then exposed to ambient air for the remainder of the 

dark period (half N2 ). Control leaves were exposed to the ambient atmosphere in the 

growth chamber.

A batch of plants, half of which were maintained in ambient air (control), half 

with leaves enclosed in an atmosphere of N2  (half N2 ) were subjected to an increase in 

temperature from 19“C to 27°C in the middle of the dark period (02:30-03:00). The 

leaves enclosed in N2  were subsequently exposed to ambient air from 03:00 onwards 

with temperature maintained at 27°C and relative humidity at 70%.

2.7. Gas exchange measurements

For experiments on K. daigremontiana, rates of net CO2  assimilation were 

measured continuously on the same leaf over 24h with 3 separate runs made for each 

treatment. The leaf was enclosed in a porometer head which tracked the environmental 

conditions in the growth chamber with gas exchange parameters measured using an open 

infra-red gas exchange system (H. Walz, GmbH Effeltrich, Germany) with a Binos gas 

analyser. Gas exchange parameters were calculated using DIAGAS software supplied by 

Walz.

2.8. Measurement of total leaf malate content

For experiments on K. daigremontiana, discs were punched from leaves subjected 

to the various treatments at intervals over the dark and light periods and immediately 

plunged into hot (80°C) methanol (80% v/v). The methanol extracts were heated for 1 h at 

70°C before being evaporated to dryness, taken up in 100 mM bicine, pH 7.8 and malate



content determined enzymatically using malate dehydrogenase in a spectrophotometric 

assay at 340 nm by monitoring the oxidation of NADH.

2.9. RNA isolation

2.9.1. Isolation of total RNA

For all three plants, total RNA was isolated according to the protocol of Chang et. 

al. (1993), with slight modifications. All solutions, except for ones containing Tris, were 

treated overnight with 0.5 % (v/v) diethylpyrocarbonate (DEPC) to destroy RNase activity 

and subsequently autoclaved for at least 20 min to destroy the DEPC (it breaks down into 

ethanol and carbon dioxide upon autoclaving). Tris containing solutions were prepared 

using autoclaved, DEPC-treated, distilled water and subsequently autoclaved. All plastic 

tubes and pipette tips were autoclaved prior to use. Gloves were worn at all stages of the 

procedure to reduce the risk of contaminating samples with hand-borne RNases. Every 

possible precaution was taken to keep RNA samples free from RNase and samples were 

kept on ice at all times, except when the samples required heating, to minimise 

degradation.

In a fume hood, 2-3 g of liquid nitrogen-frozen leaf tissue were ground to a fine 

powder in liquid nitrogen using a pestle and mortar. The fine powder was quickly added to 

a 30 ml plastic centrifuge tube (Sardstedt, U.K.) containing 10 ml of extraction buffer (2 % 

(w/v) hexadecyltrimethylammonium bromide, 2  % (w/v) polyvinylpyrrollidone 40, 1 0 0  

mM Tris-HCl, pH 8.0, 25 mM EDTA, 2 M NaCl, 0.5 g/1 spermidine-HCl and 2 % (v/v) 6 - 

mercaptoethanol (added after autoclaving)), which was preheated in a 65“C water bath. 

The tube was quickly inverted a few times to mix the frozen material into the hot 

extraction buffer and returned to the 65°C water bath whilst further samples were 

processed. Tubes were shaken at regular intervals to ensure thorough mixing of the tissue 

in the extraction buffer. Next, 10 ml of chloroform was added to each tube, the tubes were 

shaken to mix the two phases and the tubes were centrifuged for 10 min at 9500 rpm, 4°C 

using a 6  X 50 ml swing-out rotor (JS 13.1) in a Beckman centrifuge (Model 12-21). The 

upper aqueous phase was removed to a fresh 30 ml centrifuge tube on ice, using a
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disposable plastic transfer pipette, and a further 1 0  ml of chloroform was added followed 

by thorough mixing. The tubes were centrifuged for 10 min at 5000 rpm, 4°C and the 

upper, aqueous layer removed to a fresh tube. 3 ml of ice-cold 10 M lithium chloride was 

added to each tube and the tubes were shaken to mix the contents. Samples were then 

placed at 4“C in a fridge overnight to allow the RNA to precipitate. Tubes were then 

centrifuged at 9500 rpm for 20 min at 4°C to pellet the RNA. The supernatant was 

removed and discarded using a disposable, plastic transfer pipette. The pellets were 

allowed to dry for 5 min by inverting the tubes onto clean, dry tissues. Next, the pellets 

were resuspended in 500 fxl of ice-cold 10 mM Tris-HCl, pH 7.5 containing 1 mM EDTA 

(TE) and transferred to 1.5 ml microfuge tubes, 500 pi of chloroform was added to each 

tube and the contents mixed. Tubes were then centrifuged for 10 min at full speed in a 

microfuge in the cold room. The upper aqueous phase was transferred to a fresh microfuge 

tube and 50 pi of 3 M sodium acetate, pH 5.2 and 2.5 volumes of ice cold ethanol were 

added. The tubes were thoroughly mixed and placed at -70°C for at least an hour to allow 

the RNA to precipitate. The tubes were then centrifuged at full speed in a microfuge in the 

cold room for 20 min. The supernatant was removed and discarded, and the pellets dried 

using a Speed Vac Plus (Savant, model SC 110A) connected to a vacuum pump 

(Vacuubrand Gmbh and Co., Wertheim, Germany). The dried pellets were redissolved in a 

minimal volume of sterile, DEPC-treated, distilled water and stored at -70°C.

The quantity and purity of the RNA was determined spectrophotometrically by 

monitoring the absorbance at 260 nm and comparing it to the absorbance at 280 nm. For 

RNA an A 260 nm of 1 is equivalent to a concentration of 40 pg/ml. An A26O/28O ratio of 

between 1.8 and 2.0 indicates 'clean' RNA, relatively free from protein contamination. 

A26O/28O ratios below 1.8 indicate significant contamination with protein. Intactness of the 

RNA was determined by agarose gel electrophoresis; the integrity of the ribosomal RNA 

bands was checked.
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2.9.2. Isolation of poly (A)+ RNA

Poly (A)+ RNA was obtained from isolated total RNA using either oligo dT- 

cellulose column chromatography (Pharmacia, U.K.), Dynabeads oligo dT (Dynal, Oslo, 

Norway) or Promega's poly ATract system (Promega, U.K.). All systems were used 

according to the manufacturers' protocols.

2.10. In vitro translation

The rabbit reticulocyte lysate system (Amersham, U.K.) possessed no detectable PEPc 

kinase activity and was used for in vitro translation of isolated RNA. 5 pg of total RNA, or 

the poly (A)+ RNA from 20 pg total RNA in the case of maize, were translated according 

to the manufacturer’s protocols using Redivue™ p5S]~methionine as the labelled amino 

acid. Incubations were for 45 min at 30°C unless stated otherwise. The incorporation of 

[35S]-Met into protein was measured by precipitation with trichloroacetic acid according to 

the manufacturer’s protocols to allow standardisation of the subsequent PEPc kinase 

assays.

2.11. Gel electrophoresis techniques

2,11.1. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins

Proteins were separated by discontinuous SDS-PAGE according to the method 

originally outlined by Laemmli, (1970). All SDS-PAGE gels used in this work contained 

an 8  % polyacrylamide separating gel and a 3 % stacking gel. Samples were denatured by 

the addition of one fifth volume of 5 X concentration sample buffer (125 mM Tris-HCl, pH 

6 .8 , 2.5 % (w/v) SDS, 25 % (v/v) glycerol, 0.05 % Bromophenol Blue and 2.5 % (v/v) 2- 

mercaptoethanol) to achieve a final concentration of 1 X, and heating in a boiling water 

bath for 4 min. Samples were then loaded onto the gel and electrophoresed at 60-70 mA for 

2-2.5 h until the tracking dye had left the bottom of the separating gel.
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2.11.2. Staining SDS-PAGE gels

The stacking gel was removed and discarded and the separating gel was stained for 

30 min at 37 °C in 0.1 % Coomassie Brilliant Blue G250, 50 % (v/v) methanol, 10 % (v/v) 

glacial acetic acid and destained in several changes of 1 0  % (v/v) methanol, 1 0  % (v/v) 

glacial acetic acid at 37 °C.

2.11.3. Drying, autoradiography and phospho-imaging of SDS-PAGE gels

SDS-PAGE gels were dried onto Whatman 3MM chromatography paper using a 

Biorad Laboratories Gel Drier (model 1125) connected to an Aquavac Junior multi

purpose vacuum unit (Uniscience Ltd., London). Dried radioactive gels and blots were 

exposed onto X-ray film (Fuji RX) using two intensifying screens at -70 °C for 1-3 days. 

X-ray film was developed using a Kodak X-OMAT Processor (model ME-3). Radioactive 

gels and blots were also routinely phospho-imaged using a Fuji Bio-Imaging Analyser 

(Fuji Photo Film Co. Ltd., Japan) by exposing the gel to a pre-blanked imaging plate for 1- 

24 h in a cassette at room temperature. Exposed plates were developed automatically by 

the Fuji Bio-Imaging Analyser and the images were captured onto a Macintosh Quadra 650 

computer running Mac-Bas software (Fuji Photo Film Co. Ltd., Japan)

2.11.4. Agarose gel electrophoresis of RNA and DNA

Samples of purified DNA and RNA were routinely checked for integrity and 

molecular weight distribution using horizontal agarose gel electrophoresis. 1 % (w/v) 

agarose gels were prepared and run in 0.5 X TBE (45 mM Tris-borate, pH 8.0, 1 mM 

EDTA) buffer containing 0.25 p,g/ml ethidium bromide. Samples of DNA or RNA were 

mixed with 4 X loading buffer (0.25 % (w/v) bromophenol blue, 0.25 % (w/v) xylene 

cyanol and 30 % glycerol (v/v) in water) to facilitate loading into the gel, and 

electrophoresed at 5 V/cm for 1-2 h depending on the dimensions of the gel. For DNA 

samples, 1 Kb ladder (Gibco BRL, U.K.) was run alongside the samples to allow the 

subsequent estimation of the molecular weight of the sample DNA,
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2.11.5. Denaturing agarose gel electrophoresis of RNA

RNA samples to be blotted onto nitro-cellulose for Northern hybridization were 

separated by electrophoresis through denaturing formaldehyde/Mops agarose gels. This 

method ensures accurate separation of RNA according to size as the denaturing conditions 

remove secondary structure that can cause RNA to run at aberrant molecular weights in 

non-denaturing agarose gels.

Gels (0.8-1.3 % (w/v) agarose) were prepared in 1 X Mops buffer, pH 8.0 (10 X 

Mops buffer: 200 mM Mops, pH 8.0, 50 mM sodium acetate and 10 mM EDTA) and 10 % 

(v/v) formaldehyde. This was achieved by dissolving the agarose in water by microwaving 

it until it just reached boiling point. This agarose solution was swirled until all the agarose 

had dissolved and left to cool to approximately 60°C. Then, in a fume hood, the 

formaldehyde and 10 X Mops were added and mixed in thoroughly. The gel was poured 

and left to set in the fume hood. Gels were run in 1 X Mops buffer, pH 7.0 (10 X stock as 

above but with the pH adjusted to 7.0). Samples were prepared by combining 8  p,l of RNA 

(5-20 p,g, but constant for all samples on a single gel) with 6  |xl of sample buffer (72 p.g/ml 

ethidium bromide, 2 X Mops, pH 8.0, 6  % (v/v) formaldehyde and 70 % (v/v) formamide) 

and heating to 65°C for 2.5 min. 1-2 |xg of RNA size markers (Promega, UK) were treated 

in the same manner, and run alongside the samples to allow the later estimation of the 

molecular weight of RNA bands of interest. Samples were then snap cooled on ice for 5 

min and loaded onto the gel. Gels were run at 5 V/cm for 2-4 h.

2.12. Northern blotting

2.12.1. Transfer of RNA from denaturing agarose gels onto nitro-cellulose 

membranes

RNA was blotted onto Hybond N nitro-cellulose membrane using 20 X SSC (3 M 

NaCl and 0.3 M sodium citrate, pH 7.0) as the transfer buffer, A tray was filled with 20 X 

SSC and a platform big enough to support the gel placed within it. The platform was 

covered with a wick made from a sheet of Whatman 3MM filter paper, saturated with 

blotting buffer. The gel was placed face down on the wick and any air bubbles removed by
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rolling them out with a sterile pipette. The gel was surrounded with cling film to prevent 

the blotting buffer short-circuiting directly into the paper towels above. Then, a piece of 

Hybond-N membrane was cut to the exact size of the gel, pre-wet in distilled water and 

placed on the gel. Again, air bubbles were rolled out with a sterile pipette. Three sheets of 

Whatman 3MM were cut to the size of the gel, soaked in transfer buffer and placed on top 

of the Hybond-N membrane. Air bubbles were rolled out again and a stack of paper towels 

were placed on top of the Whatman paper (approximately 5 cm high). Finally a glass plate 

was placed on top of the paper towels and a 0.75-1 Kg weight placed on the plate. Transfer 

was then allowed to proceed overnight. After transfer, the apparatus was dismantled down 

to the gel which was removed with the membrane attached and the membrane was marked 

with a biro to orientate it relative to the gel. The gel and membrane were briefly examined 

on a UV transilluminator to check that all the RNA had transferred to the membrane prior 

to separating the membrane from the gel. The membrane was briefly dipped in distilled 

water to remove any excess salt deposits left by the transfer buffer and placed RNA side-up 

on a sheet of Whatman 3MM in a UV crosslinker (UVP Ultraviolet Crosslinker). The RNA 

was then crosslinked to the membrane by exposing it to a set dose (120000 pJ cm-^) of UV 

irradiation. The blot was then left to dry in air and stored between two pieces of Whatman 

3MM wrapped in aluminium foil.

2.12.2. Hybridization of radiolabelled cDNA probes to Northern blots

All hybridization steps were performed in an hybridization oven (Techne 

Hybridiser HB-ID). To prepare blots for hybridization with cDNA probes they were first 

prehybridized at 55°C for 1-2 h in 0.5 M Na2 HP0 4 , pH 7.2, 7 % (w/v) SDS, 10 mg/ml 

BSA. Following this, the radioactive cDNA probe (see section 2.11,2) was added to the 

prehybridization solution and the blot left to hybridize at 55°C overnight. Then the 

hybridization buffer containing the remaining radioactive probe was poured off into a tube 

and stored for future use. The blot was routinely washed in 2 X SSC / 1 % SDS at 55°C 

for 10 min. This would be followed by a number of other possible higher stringency
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washes depending on how radioactive the blot was, for example, 2 X SSC / 1 % SDS at 

65°C for 10 min, 1 X SSC / 1 % SSC at 65"C for 10 min, 0.5 X SSC / 0.1 % SDS at 65°C 

for 10 min and so on, until the signal to background ratio was acceptable. Then the blot 

was heat sealed into plastic and exposed onto X-ray film or phospho-imaged.

2,13. Culture and transformation of Eschericia coli

2.13.1. Production of competent cells of E, coli

Competent cells were produced by the calcium chloride method. 5 ml of LB broth 

(1% (w/v) Bacto tryptone, 0.5 % (w/v) Bacto yeast extract, 1 % (w/v) NaCl, pH 7.5) was 

inoculated with a single colony of XLl Blue MRF’ E. coli and grown at 31°C with shaking 

overnight. This culture was diluted 1 in 100 into fresh LB broth and grown at 31° C with 

shaking for 3-4 h until the optical density at 600 nm was between 0.4 and 0.6. The cells 

were then centrifuged at 3000 rpm, 4°C for 10 min and the supernatant decanted off. The 

pellet was gently resuspended in a half volume of ice-cold 50 mM CaCH and left on ice for 

1 h. Again the cells were centrifuged at 3000 rpm, 4°C for 10 min and the supernatant 

decanted off. The pellet was then resuspended in one tenth of the original volume of ice- 

cold 50 mM CaCl2 / 2 0  % glycerol. The cells were then aliquoted into 1.5 ml Eppendorf 

tubes, frozen in liquid nitrogen and stored at -70°C.

2.13.2. Transformation of E. coli with plasmid DMA

Calcium chloride competent cells of E, coli XLl Blue MRF were used for 

transformation. An aliquot of cells were thawed on ice and 10-100 ng of plasmid DMA 

added to 100 |il of competent cells. These were mixed gently by flicking the tube. This 

mixture was incubated on ice for 30 min, followed by incubating at 42°C for 60 s. Then 1 

ml of LB broth was added and the cells incubated for 60 min at 3TC  with shaking. The 

ceils were then spun down gently in a microfuge for 5 min and gently resuspended in 1 0 0  

fil of LB broth. 10 and 90 jul of these resuspended cells were plated out onto LB broth 

plates (as for LB broth plus 1.5 % (w/v) Bacto agar) containing 100 |ig/ml ampicillin
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(added before pouring the plates when the temperature of the LB broth is approximately 

45°C). These plates were incubated overnight at 37“C.

2.13.3. Culture of E. coli strains possessing plasmids containing cloned cDNA inserts

Single colonies were selected from the selection plates detailed in section 2.10 

using a sterile yellow micropipette tip and the whole tip was ejected into 5 ml of LB broth 

containing 100 jig/ml ampicillin. The culture was grown overnight at 3TC  with shaking. 

Glycerol stocks were generated by mixing 850 pi of this overnight culture with 150 pi of 

sterile glycerol. The mixture was vortexed to mix and frozen in liquid nitrogen before 

being stored at -70°C. To grow cells from a glycerol stock the surface of the frozen 

glycerol stock was scratched with an inoculating ring and the attached cells spread out onto 

selection plates. The plates were grown overnight at 37“C and then individual colonies 

were picked and used to inoculate 5 ml overnight cultures as described above.

2.14 Plasmid DNA isolation

Plasmid DNA was isolated from 5 ml overnight cultures of the desired strain of E. 

coli containing the plasmid of interest using the QIA-prep spin plasmid miniprep kit 

(Qiagen, UK) according to the manufacturer's protocols.

2.15 cDNA isolation and generation of radiolabelled cDNA probes for 

Northern blotting

2.15.1. Excision of cDNA inserts from isolated plasmids

cDNA inserts were excised from plasmids by performing a restriction digest. 

Restriction enzymes which would cut the plasmid DNA at sites flanking the cDNA insert 

were chosen by studying the plasmid map. These restriction enzymes were then used 

according to the manufacturers' protocols to excise the cDNA fragment from the plasmid. 

The digested DNA was separated using a 1 % (w/v) agarose gel and the agarose containing 

the cDNA fragment was excised from the gel with a sterile scalpel. The cDNA was
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extracted from the agarose using the QIA-quick gel extraction kit according to the 

manufacturer's protocols.

2.15.2. Random priming of cDNAs to synthesize radioactive probes

cDNA inserts excised from plasmids and purified as described in section 2.11.1 

were radiolabelled for use as probes on Northern blots by the method of random priming 

using the Klenow fragment of DNA polymerase I. 2.5-25 ng of DNA were labelled with 

the redi^nmQ DNA labelling system (Amersham, UK) according to the manufacturer's 

protocol, using 50 pCi of Redivue [^^P]dCTP (Amersham, UK). Once synthesized, probes 

were denatured by heating to 95-100°C for 5 min followed by chilling on ice before adding 

to the hybridization solution as described in section 2 .8 .2 .

2.16 In vitro transcription

In vitro transcription was performed using the T3 mMESSAGE mMACHINE large 

scale in vitro transcription kit for the synthesis of capped RNAs according to the 

manufacturer's protocol (Ambion, UK). Template DNA consisted of isolated plasmid DNA 

linearized by performing a restriction digest with Xho 1. The linearized DNA was purified 

from the restriction digest using the Wizard DNA clean up kit (Promega, UK) before being 

used for in vitro transcription.

2.17 Size fractionation of mRNA

Size fractionation of mRNA was performed using 10 pg of poly (A)+ RNA isolated 

from B. fedtschenkoi leaves sampled at 00.00 h. This mRNA was separated using a sterile 

1 % (w/v) agarose gel in 1 X TAE (50 X TAE: 2 M Tris-HCl, pH 8.0, 3 % (v/v) glacial 

acetic acid, 0.1 mM EDTA). An aliquot of RNA size markers (Promega, UK) was run 

either side of the mRNA. The gel was run for 4-5 h a t 5 V/cm, 4“C in a cold room. The 

RNA size marker lanes were excised and stained in 1 X TAE/1 pg/ml ethidium bromide 

for 30 min. They were then realigned with the mRNA containing lane to allow size 

selection of the mRNA lane. The mRNA containing lane was cut into fourteen 0.5 cm
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segments between approximately 300 bp and 8  Kb to size fractionate the RNA. The 

mRNA was recovered from each 0.5 cm segment of agarose using the Nucleon Easi-RNA 

kit (Scotlab Biosciences, UK) according to the manufacturer’s protocol. The recovered 

mRNA from each segment was used to prime the in vitro translation assay for PEPc 

kinase, to identify which size fraction of mRNA contained PEPc kinase mRNA.
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Chapter 3

Development and validation of an assay for PEPc kinase 
translatable mRNA

3.1 Introduction

The phosphorylation state of PEPc is largely regulated by the activity of its kinase, 

PEPc kinase (Carter et a l, 1991). PEPc phosphatase is a protein phosphatase type 2A 

(Carter et a l, 1990) and its activity seems to be constant throughout the diurnal cycle 

(Carter et al., 1991). The discovery that it is the activity of PEPc kinase which controls the 

phosphorylation state of PEPc was made possible by the development of an in vitro assay 

for PEPc kinase activity which could be used on crude extracts (Carter et a l, 1991; 

Echevarria et al., 1990; Jiao and Chollet, 1989; McNaughton et al., 1991). This also led to 

the elucidation of some of the ways in which PEPc kinase activity is regulated in vivo. For 

example, the CAM enzyme is regulated by a circadian clock and appears at night whilst the 

C4  and C3 enzymes are light-induced (Carter et at., 1991; Echevarria et al., 1990; Li et al., 

1996; McNaughton et al., 1991; Smith et al., 1996). Furthermore, experiments involving 

the use of protein and RNA synthesis inhibitors have shown that kinase activity is 

regulated by a process that involves protein synthesis/degradation (Carter et al., 1996; 

Carter et al., 1991; Jiao et a i, 1991a; Li et al., 1996; Nimmo, 1993; Smith et al., 1996). 

The ability to assay PEPc kinase activity also allowed a number of workers to attempt to 

purify the enzyme from CAM and C4  tissues (G.A. Nimmo, unpublished) (Carter et al., 

1991; Li and Chollet, 1994; Wang and Chollet, 1993b). However, though purification 

factors of 3500 to 4000 (Li and Chollet, 1994; Wang and Chollet, 1993b) or considerably 

greater than this (G.A. Nimmo, unpublished) have been achieved, there have been no 

reports of the isolation of antibodies to the enzyme, nor has its gene been cloned (Vidal 

and Chollet, 1997). It has therefore not been possible to ascertain whether the component 

which must be synthesized for kinase activity to appear is the kinase protein itself or 

another component that activates the kinase.

With this shortfall in the understanding of PEPc kinase regulation in higher plants 

in mind, a novel assay for monitoring the level of PEPc kinase mRNA in plant tissues was
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developed. Isolated RNA is translated in vitro using rabbit reticulocyte lysate and the
1

translation products are assayed directly for PEPc kinase activity. A wide variety of 

experiments were performed to test the validity of this assay, and size fractionation of 

mRNA allowed the determination of the approximate length of PEPc kinase mRNA.

3.2 Results

3.2.1 The in vitro translation of isolated total or mRNA produces active PEPc kinase

To determine whether PEPc kinase activity could be detected in the in vitro translation 

products from isolated plant total RNA, total RNA was isolated from B. fedtschenkoi 

leaves harvested in the light and dark periods of the diurnal cycle. Previous work had 

shown that PEPc kinase activity is readily detectable in leaf extracts prepared during the 

middle of the dark period but not those prepared during the light period (Carter et al.,

1991). The in vitro translations were carried out using p^Sj-Met and the results of a typical 

experiment are shown in Figure 3.1. Panel A shows that the RNA samples from leaves 

harvested during the light and dark periods direct the synthesis of a somewhat different 

range of proteins. However, the total amounts of protein synthesized in the two cases were 

similar, as judged by the incorporation of 35S-radioactivity into trichloroacetic acid- 

precipitable protein. No protein was synthesised in incubations without added RNA.

Samples of the translation products were assayed for PEPc kinase activity in vitro using 

exogenous, dephosphorylated PEPc as substrate. The PEPc was isolated by 

immunoprécipitation and analysed by SDS gel electrophoresis as shown in Panel B. The 

control, with the products from a translation with no added RNA, gave some 32p_labelling 

of PEPc. This was caused by the presence of trace amounts of PEPc kinase activity in the 

exogenous PEPc, not in the translation mix (data not shown). However, the RNA isolated 

from leaves harvested during the dark period directed the appearance of much more PEPc 

kinase activity than did the sample isolated from leaves in the light (compare lane 2  with 

lane 3). B. fedtschenkoi PEPc contains two related subunits with Mr values of 1 12,000 and 

123,000 in a ratio of some 10:1 (Nimmo et al., 1986). Both bands were phosphoryiated, as 

can be seen in Panel B lane 2. The 32p_radioactivity in both PEPc bands shown in Panel B 

was assessed by phosphoimaging. Subtraction of the background (lane 1) indicated that the
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RNA sample isolated from leaves in darkness contained some 20-fold more translatable 

PEPc kinase mRNA than the sample isolated from leaves in the light. The relative band 

intensities quoted in this and other experiments were calculated by correcting the 32p_ 

radioactivity in each band for the efficiency of translation in the different samples as 

revealed by the use of p^SjMet (see Materials and Methods).

3.2.2 In vitro translated PEPc kinase activity is Ca2+-independent

In an attempt to establish that the PEPc kinase activity generated by the in vitro 

translation of B. fedtschenkoi RNA was representative of the 'real' PEPc kinase, 

experiments were performed which included EOT A in the kinase assay. The PEPc kinase 

responsible for phosphorylating PEPc in B. fedtschenkoi has previously been demonstrated 

to be Ca2+-independent (Carter et a i, 1991). This has also been found to be the case for the 

C4  and C3  enzymes (Li and Chollet, 1993; Li et aL, 1996; Wang and Chollet, 1993b). The 

inclusion of EGTA in the kinase assay chelates all available Ca^+ ions rendering them 

unavailable for use by Ca^+-dependent enzymes such as Ca^+-dependent protein kinases (at 

least one of which is capable of correctly phosphorylating PEPc) (Bakrim et ai, 1992; Li 

and Chollet, 1993; Ogawa et a i, 1992). Thus, if the PEPc kinase activity generated in the 

translation products was Ca^^-dependent, the inclusion of EGTA in the kinase assay should 

completely inhibit the kinase. The translation mix itself contains EGTA in excess over 

Ca^+ ((Pelham and Jackson, 1976); see also protocol for the use of the rabbit reticulocyte 

lysate system, RPN 3150 and RPN 3151, Amersham International pic), but additional 

EGTA (0.25 mM) was added to ensure that all Ca^+ ions were rendered unavailable to the 

kinase. Figure 3.2 shows that the PEPc kinase activity generated in the in vitro translation 

products of B. fedtschenkoi RNA was only slightly less in the presence of 0.25 mM EGTA 

than in the absence of EGTA. This was the case for the translation products from both 

'dark' and 'light' RNA. Thus the PEPc kinase synthesized by the in vitro translation of 'dark' 

and 'light' RNA is Ca^+-independent like the kinase detected in desalted extracts (Carter et 

a i, 1991).

The omission of radioactive ATP from some of the kinase assays allowed the level of de 

novo synthesized, 35g_Met labelled PEPc in each translation to be determined. For the
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'dark' translation products, this was less than the amount of radioactive labelling detected in 

the presence of radioactive ATP (figure 3.2). However, the 'light' translation products 

contained levels of ^^S-Met labelled PEPc similar to the total level of labelling detected in 

the plus 32p-ATP assays. This suggests that there is little if any PEPc kinase activity 

produced by the 'light' translation products. Thus, the detection of much greater PEPc 

kinase activity in the 'dark' translation products than in the 'light' translation products (see 

figure 3.1) is not due to 35S-Met labelling of PEPc in the translations. This also holds true 

in the case of maize and barley where the 'light' translation products possess much greater 

PEPc kinase activity than the 'dark' translations products (see chapter 6 , figure 6.2). 

Collectively, this data demonstrates that, in B. fedtschenkoi, the mRNA for the Ca^+- 

independent PEPc kinase is absent in the 'light' and that this level increases very 

significantly in the 'dark', whilst in maize and barley the reverse is true. However, barley 

does possess very low levels of PEPc kinase mRNA in the dark (see figure 6.2).

3.2.3 The validity of the PEPc kinase translatable mRNA assay

The validity of any assay depends on the satisfaction of several criteria. In this case, for 

the PEPc kinase translatable mRNA assay to be a valid assay for the level of PEPc kinase 

mRNA in a plant leaf it had to show certain basic traits. The degree of phosphorylation of 

the PEPc in kinase assays on translation products should increase linearly in response to 

increasing the volume of translation products, the time of translation and the amount of 

RNA translated.

Figure 3.3 shows that the extent of phosphorylation of PEPc is proportional to the input 

of translation products. Since the non-radioactive ATP in the assay is derived from the 

translation mix (see Materials and Methods), this experiment was carried out by mixing the 

translation products from RNA isolated from leaves in darkness with products from a 

control translation with no added RNA (e.g. to assay 1 |LiI of translation products, 1 |ul of a 

'dark' B. fedtschenkoi RNA translation products was mixed with 4 |ul of 'no RNA' 

translation products).

Figure 3.4 shows that the amount of kinase activity present in translation products and 

the amount of total protein synthesized during the translation increased in parallel with the
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amount of RNA translated. This relationship holds up to 10 p-g of total RNA; in routine 

assays, 5 jig of RNA were used.

The amount of kinase activity present in the translation products increased with time 

after a short lag (0-5 min) for up to 40-50 min. One representative experiment is shown in 

figure 3.5. The same ratio of translatable kinase mRNA in RNA samples from leaves in 

darkness to that in RNA samples from leaves in light was obtained when translations were 

carried out for 20 or 60 min (figure 3.6).

3.2.4 Size fractionation of B, fedtschenkoi mRNA yields a single mRNA fraction 

possessing PEPc kinase translatable mRNA

In order to determine the approximate length of B. fedtschenkoi PEPc kinase 

mRNA, a sample of mRNA was size fractionated. The mRNA sample used was isolated 

from B. fedtschenkoi leaves sampled at 00.00 h and therefore represented an mRNA 

sample containing high levels of PEPc kinase mRNA (see figure 3.1). The mRNA was 

separated through a non-denaturing agarose gel. Non-denaturing conditions were used 

because the formaldehyde and formamide in a denaturing gel interfered with the 

subsequent translation of any RNA recovered from the gel. However, the estimate of the 

size of PEPc kinase mRNA could be erroneous if the mRNA adopts any secondary 

structure in the gel.

Significant PEPc kinase activity was detected in the translation products of only a 

single fraction of the mRNA. This fraction corresponded to the mRNAs having lengths 

between approximately 0.9 - 1.3 Kb (figure 3.7). It must be noted that this size fraction of 

the mRNA also gave the greatest incorporation of ^^S-Met into TCA-precipitable protein. 

However, this is not surprising, as the majority of mRNAs would be expected to fall within 

this size range. The fractions above and below this fraction gave only slightly less 

incorporation of ^^S-Met and yet produced virtually no detectable PEPc kinase activity.

3.3 Discussion

The data presented in this chapter demonstrate that a valid assay has been 

developed which allows the accurate determination of the level of translatable mRNA for 

PEPc kinase in isolated RNA samples from plant tissues. The assay clearly differentiates
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between samples which possess high levels of kinase mRNA and samples with low levels 

of kinase mRNA (see figure 3.1). However, it was vital for the subsequent application of 

the assay that the kinase activity produced by the in vitro translation should possess the 

same properties as the PEPc kinase already characterized from desalted extracts of plant 

tissues. It was demonstrated that the in vitro translated PEPc kinase activity was largely 

Ca^+-independent, as had been found for the enzyme in plant extracts (figure 3.2)(Bakrim 

et al., 1992; Carter et a l, 1991; Li and Chollet, 1993; Li and Chollet, 1994; Vidal and 

Chollet, 1997; Wang and Chollet, 1993b). If the in vitro translation assay produced a Ca^+- 

dependent PEPc kinase it would have been impossible to justify any data obtained using 

the assay as being physiologically relevant with regard to the kinase found in planta. 

However, the data indicates that the in vitro translation assay produces a kinase with the 

same properties as the PEPc kinase activity detected in planta. Obviously, the only 

property tested was the Ca^+-independence of the in vitro translated kinase, but this is 

widely accepted as the most diagnostic feature of the bona fide PEPc kinase.

Having established that the assay produces a physiologically relevant PEPc kinase 

activity it was important to ascertain whether the assay provides a valid estimate of the 

level of PEPc kinase mRNA. To test the validity of the assay a number of the assay's 

parameters were varied. Increasing the duration of translation, the volume of translation 

products and the amount of RNA translated, all caused a linear increase in the degree of 

phosphorylation of the PEPc in kinase assays on the translation products (figures 3.3, 3.4, 

and 3.5). Hence, if equal amounts of RNA are translated for the same amount of time and 

equal volumes of the translation products are assayed for PEPc kinase, the resulting 

phosphorylation of PEPc will be directly proportional to the amount of PEPc kinase 

mRNA in each of the RNA samples. This means that RNA samples from leaves treated 

with any number of experimental conditions can be directly compared to one another with 

regard to their PEPc kinase mRNA levels determined using this assay.

Another important opportunity raised by the development of a valid assay for PEPc 

kinase mRNA was the size fractionation of a sample of RNA. This allowed the 

determination of the length of PEPc kinase mRNA. A sample of mRNA isolated from B.
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fedtschenkoi leaves collected in the middle of the night was size fractionated using a non

denaturing agarose gel. Only mRNA having a length between 0.9 and 1.3 Kb produced 

PEPc kinase activity upon in vitro translation, indicating that PEPc kinase mRNA falls 

within this size range. This estimation of the length of PEPc kinase mRNA corresponds 

well with the predicted length of the mRNA estimated from the size of the partially 

purified candidate protein. For example, assuming the mean molecular weight of amino 

acid residue is about 110, the -32 kDa and -39 kDa Ca^+-independent PEPc kinase 

polypeptides reported to be salt-induced in the facultative CAM plant Mesembryanthemum 

crystallinum would have predicted mRNAs of approximately 0.9 and 1.1 Kb respectively 

(Li and Chollet, 1994). Both of these lengths fall well within the approximate length range 

estimated in this study by size fractionation of mRNA from B. fedtschenkoi.

Another interesting point from the results of the size fractionation of mRNA is that 

only a single fraction possessed PEPc kinase mRNA. It was possible that, following size 

fractionation and translation, none of the fractions would produce PEPc kinase activity or 

that more than one fraction would possess PEPc kinase mRNA. The fact that only one 

fraction contained PEPc kinase mRNA indicates either that there is only one PEPc kinase 

and it falls within this length range or that, if there is more than one PEPc kinase mRNA 

then they all fall within this length range. Also, if the kinase has to be activated by a 

secondary component, both the kinase and the secondary component must fall within this 

length range.
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Figure 3.1. PEPc kinase translatable mRNA levels are highest during the dark period

in B. fedtschenkoi. Proteins were separated on 8 % SDS-polyacrylamide gels. The figure 

shows phosphoimages of the dried gels.

(A) Total in vitro translation products from isolated RNA.

Lane 1, control - 5 pi of translation products from no added RNA.

Lane 2, 5 pi of translation products from 5 pg of total RNA from leaves in the middle of 

the dark period.

Lane 3, 5 pi of translation products from 5 pg of total RNA from leaves in the middle of 

the light period.

(B) PEPc kinase assays on 5 pi of the translation products shown in (A).

Lane 1, no RNA translation products.

Lane 2, ‘dark’ RNA translation products.

Lane 3, ‘light’ RNA translation products.

The major immunoprecipitated 32p_iabelled PEPc band is arrowed. The numbers below 

each lane represent the relative intensities of the PEPc bands.
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Figure 3.2. The PEPc kinase activity synthesized during the in vitro translation of B. 

fedtschenkoi total RNA is Ca^+-independent and the labelling detected in the PEPc 

kinase assays is not a result of p5S]Met labelling of de novo synthesized PEPc in the 

translation products.

Samples of B. fedtschenkoi total RNA from leaves taken at 21.00 h (dark) and 12.00 h 

(light) were translated in vitro and the translation products assayed for PEPc kinase 

activity in the presence or absence of 0.25 mM EGTA. In addition assays was performed 

in the absence of ^^P-ATP to allow the determination of the amount of p^SJMet labelled 

PEPc in the translation products.

(A) PEPc kinase assays on in vitro translation products.

Lane 1, dark translation products plus EGTA. Lane 2, dark translation products minus 

EGTA. Lane 3, dark translation products assayed in the absence of 32p-ATP. Lane 4, light 

translation products plus EGTA. Lane 5, light translation products minus EGTA. Lane 6 , 

light translation products assayed in the absence of 32p-ATP.

The numbers below each lane represent the relative intensities of the PEPc bands.

(B) Total in vitro translation products.

Lane I, total B. fedtschenkoi RNA isolated from leaves sampled at 21.00 h (dark).

Lane 2, total B. fedtschenkoi RNA isolated from leaves sampled at 12.00 h (light).

Lane 3, control no RNA.

The numbers below each lane represent the percentage incorporation of ^^S-Met into TCA 

precipitable material by each RNA sample.
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Figure 3.3. Increasing the volume of translation products increases the signal from 

the translatable mRNA assay.

Different volumes of translation products from B. fedtschenkoi 'dark' total RNA were 

mixed with translation products from a "no RNA " translation to give a fixed volume of 5 

111 of translation products in each assay. Values represent the relative ^^P-labelling of the 

exogenous PEPc on a phosphoimage of the dried SDS-gel and are corrected for 

background labelling of the PEPc.

(A) Phosphoimage of the gel of the kinase assays. The volume of translation products 

assayed for PEPc kinase activity is given above each lane.

(B) Graphical representation of the relative 32p_iabelling of the PEPc doublet in the kinase 

assays shown in (A).
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Figure 3.4. The response of the translatable mRNA assay to increasing amounts of 

RNA.

Different amounts of B. fedtschenkoi total RNA (isolated in the middle of the dark period) 

were translated for 45 min and assayed for PEPc kinase activity.

(A) Phosphoimage showing the PEPc kinase activity in translation products from 0 to 10 

jig of total RNA. The amount of RNA translated is given above each lane.

(B) Graphical representation of the amount of total protein synthesized (D) and the amount 

of kinase activity in the translation products (O), corrected for the values obtained in a 

control with no added RNA, and expressed as a percentage of the values obtained with 10 

jig RNA. The incorporation of p^SjMet into trichloroacetic acid-precipitable protein 

represented 0.2 and 3 % of the total [35S]Met with 0 and 10 pg RNA, respectively.
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Figure 3,5 The appearance of PEPc kinase activity with time during an in vitro 

translation.

A large scale translation was set up using 5 pg of B. fedtschenkoi 'dark' total RNA and 5 pi 

aliquots were removed at the times indicated and assayed for PEPc kinase activity.

(A) Phosphoimage of the kinase assays with the time indicated above each lane.

(B) Graphical representation of the relative ^^P-labelling of the PEPc bands shown in (A).
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Figure 3.6 The relative PEPc kinase activity in the translation products from 

different B. fedtschenkoi total RNA samples remains constant irrespective of whether 

translations are incubated for 60 or 20 min.

B. fedtschenkoi total RNA from three different time points in the diurnal cycle was 

translated for either 60 or 20 min and the translation products assayed for PEPc kinase 

activity. Phosphoimages are shown of the dried SDS-gels. The relative intensity of the 

PEPc doublet is given below each lane.

(A) Total RNA from 12.00, 21.00 and 24.00 h was translated for 60 min and then 5 |il of 

each translation was assayed for PEPc kinase activity.

Lane 1, 12.00 h total RNA.

Lane 2, 21.00 h total RNA.

Lane 3, 24.00 h total RNA.

Lane 4, no RNA control.

(B) Total RNA from 12.00, 21.00 and 24.00 h was translated for 20 min and then 5 |il of 

each translation was assayed for PEPc kinase activity.

Lane 1, 12.00 h total RNA.

Lane 2, 21.00 h total RNA.

Lane 3, 24.00 h total RNA.

Lane 4, no RNA control.
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Figure 3.7 Size fractionation of B. fedtschenkoi 'dark' mRNA yields a single fraction 

possessing PEPc kinase translatable mRNA.

10 jig of B. fedtschenkoi 'dark' poly (A)+ RNA was size fractionated using a non

denaturing agarose gel at 4“C. The mRNA containing portion of the gel was 4 cm long and 

covered mRNAs from 0.3 to 3.1 Kb in length. This portion of the gel was divided into 5 

mm segments and the RNA was recovered from each segment using the Scotlab Nucleon 

Easi RNA kit.

(A) Kinase activity in translation products from mRNA size fractions between 0.3 and 0.9 

Kb.

Lane 1, total mRNA control; lane 2 ,0.3-0.4 Kb mRNAs; lane 3, 0.4-0.5 Kb mRNAs; lane 

4, 0.5-0.6 Kb mRNAs; lane 5, 0.6-0.8 Kb mRNAs; lane 6 , no RNA control.

(B) Kinase activity in translation products from mRNA size fractions between 0.9 and 3 

Kb.

Lane 1, total mRNA control; lane 2, 0.8-1.4 Kb mRNAs; lane 3, 1.4-1.9 Kb mRNAs; lane 

4, 1.9-2.5 Kb mRNAs; lane 5, 2.5-3.1 Kb mRNAs; lane 6 , no RNA control.

For panels (A) and (B) the relative intensity of the PEPc bands is given below each lane.

(C) Translation products from mRNA size fractions between 0.3 and 0.9 Kb. The lanes 

correspond to those in panel (A).

(D) Translation products from mRNA size fractions between 0.9 and 3.1 Kb. The lanes 

correspond to those in panel (B).

For panels (C) and (D) the percentage incorporation of [35S]Met into TCA precipitable 

material is given below each lane.
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Chapter 4

The regulation of PEPc kinase mRNA in Bryophyllum 
(Kalanchoë) fedtschenkoi

4.1 Introduction

Bryophyllum (Kalanchoë) fedtschenkoi Hamet et Perrier is a Crassulacean acid 

metabolism (CAM) plant. In the characteristic diurnal pattern of CAM, flux through PEPc 

at night leads to the formation of malic acid, which is stored in the vacuole. During the 

following day, malate released from the vacuole is decarboxylated, and the resulting CO2  

is fixed in the Calvin cycle (Osmond and Holtum, 1981). Thus, in order to avoid the futile 

cycling of CO2  through PEPc, CAM plants must have a mechanism which allows flux 

through PEPc at night and reduces or eliminates this flux during the day. CAM leaf PEPc 

was found to be significantly more sensitive to inhibition by malate during the day than at 

night (Winter, 1982). The molecular mechanism responsible for this change in the malate 

sensitivity of PEPc was found to be protein phosphorylation (Nimmo et al„ 1984; Nimmo 

et al, 1986). In the CAM leaf, PEPc is phosphorylated at night and less sensitive to malate. 

During the day, PEPc is dephosphorylated and more sensitive to malate inhibition (Nimmo 

et a l, 1986). It was established that the nocturnal increase in the phosphorylation state of 

PEPc is mediated through an increase in the activity of PEPc kinase whilst PEPc 

phosphatase activity remains relatively constant throughout the day and night (Carter et al, 

1990; Carter et al, 1991).

5. fedtschenkoi exhibits circadian rhythms of CO2  metabolism that arise through 

circadian control of the flux through PEPc (Wilkins, 1992). This circadian control of flux 

through PEPc was found to be largely due to circadian rhythms in the activity of PEPc 

kinase, which cause concomitant rhythms in the phosphorylation state and the L-malate 

sensitivity of PEPc (Carter et a l, 1991). It was found that the circadian increase in PEPc 

kinase activity requires protein and RNA synthesis (Carter et a l, 1996; Carter et a l, 1991). 

This could represent evidence that the circadian clock itself requires protein and RNA 

synthesis to function or that either PEPc kinase itself or a secondary component must
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undergo de novo synthesis to achieve the observed circadian increase in PEPc kinase 

activity.

The signal transduction cascade which regulates PEPc kinase activity in B. 

fedtschenkoi is poorly understood. In contrast, a number of the events involved in the light- 

mediated increase in PEPc kinase activity in the leaves of C4  plants have been determined. 

These events include photosynthesis in the bundle sheath cells, alkalinisation of the 

mesophyll cytosol, an efflux of vacuolar Ca^+ into the mesophyll cytosol, an unknown 

Ca^+Zcalmodulin-dependent protein kinase and protein synthesis (Giglioli-Guivarc'h et a l, 

1996; Vidal and Chollet, 1997). For B. fedtschenkoi, protein synthesis and RNA synthesis 

are required. It has been reported that, in a C4  plant, RNA synthesis is not required, but 

this is discussed further in chapter 6 .

In the present study the novel method described in the previous chapter was used to 

examine the regulation of the level of PEPc kinase translatable mRNA in leaves of B. 

fedtschenkoi. This method overcomes the fact that there are no antibodies or cDNA clones 

available for PEPc kinase by allowing a study of the regulation of this kinase at the 

molecular level. Experiments were performed to determine whether diurnal and circadian 

changes in kinase activity and the malate sensitivity of PEPc are accompanied by changes 

in kinase mRNA. The involvement of protein and RNA synthesis in the circadian induction 

of PEPc kinase was reassessed by measuring kinase mRNA levels. Furthermore, the 

signalling cascade which mediates changes in the level of kinase mRNA was dissected 

using both a pharmacological approach and experimental manipulations of the 

environment. All these experiments were performed with a view to deciphering precisely 

how PEPc kinase is regulated in B. fedtschenkoi.

4,2 Results

4.2.1 PEPc kinase translatable mRNA fluctuates in concert with PEPc kinase activity 

and the malate sensitivity of PEPc in B. fedtschenkoi

Initial experiments, in which it was established that PEPc kinase mRNA is significantly 

higher during the night than in the day in B. fedtschenkoi leaves, have already been 

described (see chapter 3, figure 3.1). PEPc kinase mRNA was readily detectable in an
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RNA sample from leaves in the middle of the night, but there was no PEPc kinase mRNA 

present during the day (see figures 3.1 and 3.2). It was therefore important to examine how 

PEPc kinase mRNA levels fluctuate during the normal diurnal cycle.

Pairs of leaves were sampled from B. fedtschenkoi plants at regular intervals throughout 

a 24 h period. One leaf was used to isolate RNA, which allowed the subsequent analysis of 

the level of PEPc kinase mRNA, and the second leaf was used to make a rapidly desalted 

extract so that the malate sensitivity of PEPc and the PEPc kinase activity could be 

determined. Figure 4.1 shows how the levels of PEPc kinase translatable mRNA and PEPc 

kinase activity fluctuate throughout the normal diurnal cycle in B. fedtschenkoi. The 

apparent Kj of PEPc for malate, which reflects the phosphorylation state of PEPc (Carter et 

al., 1991), was measured in the same extracts that were assayed for PEPc kinase activity. 

The level of PEPc kinase mRNA reaches its peaks and troughs before those in both the 

kinase activity and the apparent Ki of PEPc for malate. This is most clearly seen in the 

decrease in the level of PEPc kinase translatable mRNA between 24.00 h and 03.00 h, 

some 5 to 8  h before the onset of light. The level of PEPc kinase activity begins to decrease 

between 03.00 h and 05.00 h, 3 to 5 h before the onset of light. The level of translatable 

PEPc kinase mRNA peaks in the middle of the dark period (24.00 h) whilst the level of the 

kinase protein and the apparent K jfor malate of PEPc peak at 03.00 h. Neither kinase 

activity nor translatable mRNA increase within the first hour of the dark period; the major 

changes occur 3-5 h after the start of the dark period.

4.2.2 Circadian control of PEPc kinase translatable mRNA in B. fedtschenkoi

The discovery that the level of PEPc kinase mRNA increases and decreases entirely 

within the dark period of the diurnal cycle (figure 4.1) indicated that it may be regulated by 

a circadian clock. To investigate this possibility further, detached Bryophyllum leaves were 

placed in constant conditions (darkness and COg-free air at 15“C) for 48 h. RNA samples 

were prepared from leaves at intervals during this period. Figure 4.2 shows the level of 

PEPc kinase translatable mRNA at four time points throughout the 48 h period. As can be 

seen, the amount of PEPc kinase translatable mRNA did indeed oscillate in constant 

conditions, confirming that its level is controlled by a circadian clock. However, the
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magnitude of the oscillations in the level of kinase mRNA diminishes rapidly within 48 h 

whilst the circadian rhythm of CO^-output in leaves subjected to the same constant 

conditions persists for about four days (see Introduction). The possible reasons for this 

difference will be explored in the discussion.

4.2.3 Perturbation of the circadian decrease in PEPc kinase translatable mRNA by 

temperature

Temperature has been shown to influence the disappearance of PEPc kinase activity 

that normally occurs towards the end of the dark period in B. fedtschenkoi (Carter et aL, 

1995a). These effects were re-examined at the translatable mRNA level (Figure 4.3). 

Treatments began at midnight, 8  h before the end of the dark period. At 4“C PEPc kinase 

activity and translatable mRNA are stabilised over 6  h whilst at 15“C both disappear over 

this period. At 30“C both the kinase activity and translatable mRNA disappear rapidly 

within 2 h whilst after 2 h at 15°C both still remain. This suggests that a temperature of 4“C 

causes PEPc kinase mRNA and hence PEPc kinase activity levels to be stabilised. PEPc 

remains phosphorylated and its apparent Ki for malate stays high. At 30“C the PEPc kinase 

mRNA and hence activity disappear rapidly and PEPc becomes dephosphorylated giving a 

concomitant decrease in its apparent Ki for malate. Hence, the circadian control of PEPc 

kinase mRNA can be affected by temperature changes in such a way that the mRNA will 

persist at 4“C and disappear rapidly at 30“C, This is consistent with observations on the 

effect of temperature on the rhythms in CO2  metabolism and PEPc kinase activity in B, 

fedtschenkoi (Carter et aL, 1995a; Carter et aL, 1995b). It has been suggested that the 

stabilisation of PEPc kinase activity and the phosphorylation state of PEPc at 4°C may 

contribute to the ability of CAM plants to fix CO2  during cold nights (Carter et aL, 1995a).

4.2.4 The circadian increase in PEPc kinase translatable mRNA requires both protein 

and RNA synthesis

The circadian increase in PEPc kinase activity can be disrupted by the prior supply 

of protein and RNA synthesis inhibitors to detached leaves (Carter et aL, 1996; Carter et 

aL, 1991; Nimmo, 1993). The effects of these treatments were examined at the translatable 

mRNA level and the results for PEPc kinase mRNA levels with two types of both classes
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of inhibitor are shown in Figure 4.4. The results demonstrate that virtually no PEPc kinase 

mRNA appears in leaves supplied with either type of inhibitor, whilst in the control leaves 

supplied with distilled water (or the solvent the inhibitor was dissolved in) kinase mRNA 

appears. Similar results were obtained for PEPc kinase activity in duplicate leaves supplied 

with the same inhibitor solutions (figure 4.4).

4.2.5 Some signalling elements involved in the circadian increase in PEPc kinase 

translatable mRNA

Having established that the circadian increase in PEPc kinase mRNA requires both 

protein and RNA synthesis, it was important to see if any further steps in the signal 

transduction cascade could be elucidated. A range of inhibitors of specific signal 

transduction events were supplied to detached B. fedtschenkoi leaves at the beginning of 

the light period and samples were collected in the middle of the subsequent dark period. 

Duplicate leaves were treated with each inhibitor, one for RNA isolation and the other for 

the determination of the malate sensitivity of PEPc and the PEPc kinase activity. The effect 

of a calcium channel blocker (Bay K8644), a protein kinase inhibitor (staurosporin), a 

Ca^+Zcalmodulin antagonist (W7) and a protein phosphatase inhibitor (cantharidin) on the 

nocturnal decrease in the L-malate sensitivity of PEPc is shown in figure 4.5. Staurosporin 

and Bay K8644 have no effect on the change in the L-malate sensitivity of PEPc, whilst 

cantharidin almost completely inhibits the change in the L-malate sensitivity of PEPc. 

Cycloheximide was included as a positive control because it had already been shown to 

block the change in the L-malate sensitivity of PEPc. Cantharidin is almost as effective as 

cycloheximide at preventing the circadian decrease in the malate sensitivity of PEPc. W7 

seems to cause a slight inhibition of the decrease in the L-malate sensitivity of PEPc when 

used at 500 pM. W7 also caused a slight inhibition of the circadian increase in PEPc 

kinase translatable mRNA (figure 4.6). Cantharidin caused the complete abolition of the 

increase in PEPc kinase mRNA, whilst staurosporin and Bay K8644 had no detectable 

effect at the concentrations used (figure 4.6). When W7 was supplied to detached B. 

fedtschenkoi leaves at 1 mM, it caused significant inhibition of the change in the L-malate 

sensitivity of PEPc and the increase in the level of PEPc kinase mRNA and activity (figure
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Cycloheximide was again included as a positive control, and W7 was not as effective as 

cycloheximide at blocking the changes in the three parameters measured. This may be due 

to poor uptake of W7 by detached B, fedtschenkoi leaves as suggested by the need for such 

a high concentration to achieve significant inhibition.

4.3 Discussion

Previous work had established that PEPc kinase activity is regulated by a circadian 

clock in B, fedtschenkoi and that circadian oscillations in PEPc kinase activity require 

protein and RNA synthesis (Carter et aL, 1996; Carter gt aZ., 1991; Nimmo, 1993). 

However, this earlier work did not reveal whether the component which must be 

synthesized for PEPc kinase activity to appear is the kinase protein itself or another protein 

that activates the kinase. Attempts to solve this problem have been impaired because PEPc 

kinase is an extremely low abundance enzyme, making it a very difficult protein to purify 

to homogeneity. Thus, there are no antibodies or cDNA clones available that are specific to 

PEPc kinase.

This shortfall was circumvented in the present work by using a novel assay for 

PEPc kinase mRNA (see chapter 3). The data presented in this chapter demonstrate that 

PEPc kinase is regulated at the translatable mRNA level in the CAM plant B. fedtschenkoi. 

There is an excellent correlation between the amount of PEPc kinase activity generated in 

the in vitro translation products, the amount of PEPc kinase activity in B. fedtschenkoi leaf 

extracts and the phosphorylation state of PEPc, as judged by its apparent Kj for malate (see 

figure 4.1). This correlation holds not only during the diurnal cycle in B. fedtschenkoi, but 

also during temperature and inhibitor treatments that affect the phosphorylation state of 

PEPc and the fixation of CO2  (Carter et aL, 1991; Carter et aL, 1995a).

The oscillations in the level of PEPc kinase mRNA under constant conditions of 15 

“C, C0 2 -free air and constant darkness (figure 4.2) are evidence that kinase mRNA levels 

are controlled by the circadian clock. However, the magnitude of these oscillations rapidly 

damps out when compared to the oscillations in CO2  output under the same constant 

conditions (cf. figure 1.6). This may represent evidence that the circadian rhythm of CO2
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output is not only controlled by oscillations in PEPc kinase mRNA and activity, but also by 

oscillations in the cytosolic malate concentration as proposed by Wilkins (1984).

The nocturnal increase in PEPc kinase mRNA in B. fedtschenkoi was blocked by 

two protein synthesis inhibitors and two RNA synthesis inhibitors, each having different 

modes of action. Cycloheximide inhibits the peptidyl transferase activity of the 60 S 

ribosomal subunit whilst puromycin causes premature chain termination by acting as an 

analogue of aminoacyl-tRNA. Actinomycin D intercalates specifically into double-helical 

DNA and prevents it from being an effective template for RNA synthesis. Cordycepin 

prevents the completion of RNA synthesis by inhibiting the poly A polymerase responsible 

for the 3'-polyadenylation of eukaryotic mRNAs. It is particularly interesting that 

actinomycin D blocked the increase in PEPc kinase mRNA in B. fedtschenkoi because it 

acts directly on the DNA. Hence, its effect indicates that transcription and translation must 

occur in their entirety from the DNA level through to the completed polypeptide chain. It is 

possible that the transcription step is part of the operation of the circadian clock, or the 

transcription of the PEPc kinase gene itself, or both. Assessment of exactly where 

transcription occurs in the signalling pathway must await the cloning and expression 

analysis of the PEPc kinase gene.

The circadian appearance of PEPc kinase activity in B. fedtschenkoi requires 

protein synthesis (Carter et aL, 1991). The data presented here extend that observation by 

showing that protein synthesis inhibitors block the appearance of PEPc kinase translatable 

mRNA. Since the level of PEPc kinase translatable mRNA oscillates both in the normal 

diurnal cycle and in constant conditions, this implies that at least two separate protein 

synthesis steps are required for the appearance of the kinase. One is in the chain of events 

leading to appearance of kinase translatable mRNA, for example the operation of the 

circadian clock itself. The other is the translation of PEPc kinase mRNA into protein.

PEPc kinase activity declines rapidly some 3 h after PEPc kinase translatable 

mRNA declines in B. fedtschenkoi (figure 4.1). This indicates that kinase protein is turned 

over rapidly. Carter et. al. (1995a) showed that the circadian disappearance of PEPc kinase 

activity is delayed by low temperature and accelerated by high temperature. This could
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reflect control of either synthesis or destruction of the kinase. The present results show that 

these temperature changes alter the amounts of translatable kinase mRNA and kinase 

activity in parallel. Hence, there is no direct evidence that the rate of destruction of PEPc 

kinase is itself regulated, though any such effects cannot be ruled out at present.

The circadian increase in PEPc kinase mRNA was found to require protein 

phosphatase activity and a Ca^+Zcalmodulin interaction through the use of specific 

inhibitors. However, a calcium channel blocker and a protein kinase inhibitor had no 

detectable effect at the concentrations applied. Precisely where the protein phosphatase 

activity and Ca^+Zcalmodulin interaction are required in the signal transduction cascade is 

unclear from this data. Both events could be involved in the functioning of the circadian 

clock itself andZor the signal pathway between the clock and PEPc kinase mRNA. For 

example, one possible explanation of their effect would be that the protein phosphatase 

dephosphorylates a calcium-dependent protein kinase (CDPK), and activates it, and then 

the activated CDPK phosphorylates a transcription factor which binds to the PEPc kinase 

promoter and mediates transcription of the gene. Obviously this is only one of many 

explanations which could be proposed for the effects of these inhibitors. The exact 

sequence of events will only be elucidated by cloning the individual genes involved.

I .

120



Figure 4.1. Diurnal regulation of the apparent K; of PEPc for L-malate, PEPc kinase 

activity and translatable PEPc kinase mRNA in leaves of B. fedtschenkoi.

The photoperiod was 08.00 h to 16.00 h. Samples for PEPc and PEPc kinase assays, and 

RNA isolation were taken simultaneously. Kinase activity and translatable mRNA are 

expressed as a percentage of the maximum reached during the 24 h period. A, Apparent Kj 

of PEPc for L-malate; O, PEPc kinase activity; O, PEPc kinase translatable mRNA.
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Figure 4,2. Circadian regulation of PEPc kinase translatable mRNA levels in B.

fedtschenkoi.

Leaves were detached at 16.00 h and placed in constant darkness and C0 2 -free air at 15°C. 

Samples were collected at intervals throughout the following 48 h. PEPc kinase 

translatable mRNA was assayed as described in Materials and Methods and quantified by 

phosphoimaging the dried SDS-gel.
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Figure 4,3. The influence of temperature on the disappearance of PEPc kinase in 

detached leaves of B. fedtschenkoi.

Leaves were detached in the middle of the 16 h dark period and placed in constant 

darkness and normal air at 4°C, 30°C or 15"C (control). Leaves were sampled 2 h later for 

the 30“C treatment and 6  h later for the 4°C treatment; a control leaf kept at 15°C was 

taken at both time points. The figure shows phosphoimages of the 32p_iabelled PEPc bands 

following gel electrophoresis. The relative intensity of each PEPc doublet on the 

phosphoimages is shown below each track.

(A) Desalted extracts were assayed for PEPc kinase activity and the apparent Ki for malate 

of the PEPc in the extracts was measured.

Lane 1, 30“C treatment for 2 h.

Lane 2, 15°C treatment for 2 h.

Lane 3, 4“C treatment for 6  h.

Lane 4, 15°C treatment for 6  h.

(B) In vitro translation products from isolated total RNA were assayed for PEPc kinase 

activity.

Lane 1, control, no RNA.

Lane 2, 30“C treatment for 2 h.

Lane 3, 15°C treatment for 2 h.

Lane 4, 4°C treatment for 6  h.

Lane 5, 15°C treatment for 6  h.
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Fig. 4.4. Effects of protein and RNA synthesis inhibitors on the appearance of PEPc 

kinase translatable mRNA and activity in detached leaves of B. fedtschenkoi.

Leaves were detached and placed with their petioles in inhibitor solution at the beginning 

of the 8  h photoperiod. In the middle of the subsequent dark period, desalted extracts and 

total RNA were prepared from separate leaves. The figure shows phosphoimages of the 

32p-labelled PEPc bands following gel electrophoresis.

(A) Desalted extracts were assayed for PEPc kinase activity and the apparent Kj for malate 

of the PEPc in the extracts was also measured.

Lane 1, control leaf placed in distilled water.

Lane 2, leaf placed in 1 mM cordycepin.

Lane 3, leaf placed in 1 mM puromycin.

(B) PEPc kinase activity in in vitro translation products.

Lane 1, control, no RNA.

Lane 2, RNA from a leaf placed in distilled water.

Lane 3, RNA from a leaf placed in 1 mM cordycepin.

Lane 4, RNA from a leaf placed in 1 mM puromycin.

Lane 5, RNA from a control leaf in the light (7 h into the photoperiod).

(C) Desalted extracts were assayed for PEPc kinase activity and the malate sensitivity of 

the PEPc in the extracts was also measured.

Lane 1, control leaf placed in 13 % methanol.

Lane 2, control leaf placed in 1% ethanol.

Lane 3, leaf placed in 500 |iM actinomycin D.

Lane 4, leaf placed in 1 mM cycloheximide.

(D) PEPc kinase activity in in vitro translation products.

Lane 1, control, no RNA.

Lane 2, RNA from a leaf placed in 13 % methanol.

Lane 3, RNA from a leaf placed in 1 % ethanol.

Lane 4, RNA from a leaf placed in 500 |iM actinomycin D.

Lane 5, RNA from a leaf placed in 1 mM cycloheximide.
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Figure 4.5. Influence of a range of pharmacological agents on the circadian decrease 

in the L-malate sensitivity of PEPc in B. fedtschenkoi.

Leaves were detached at 16.00 h and placed with their petiole in the appropriate inhibitor 

solution. Controls treatments involved placing leaves in the appropriate concentration of 

ethanol, methanol, DMSO or water because the inhibitors were variously dissolved in 

these solvents. Leaves were sampled at 24.00 in the middle of the subsequent dark period 

and desalted extracts were assayed for the malate sensitivity of PEPc. The solvent control 

for each inhibitor precedes the inhibitor(s) dissolved in it.

1 , distilled water control.

2, 500 |LlM W7.

3, 1 % ethanol control.

4, I mM cycloheximide.

5 , 13% methanol control.

6 , 500 jiM actinomycin D.

7, 10 fiM staurosporin.

8 , 100 |iM Bay K8644.

9, 1 % DMSO control.

10, 1 mM cantharidin.
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Figure 4.6 Pharmacological characterization of the circadian increase in translatable 

PEPc kinase mRNA in B, fedtschenkoi.

Duplicate leaves were treated as described in figure 4.5 with a variety of pharmacological 

agents as a means to characterize some of the signal transduction events involved in the 

circadian increase in PEPc kinase mRNA.

(A) Effect of W7 on the nocturnal appearance of PEPc kinase translatable mRNA.

Lane 1, distilled water control.

Lane 2, 500 p.M W7,

(B) Effect of cycloheximide on the nocturnal appearance of PEPc kinase translatable 

mRNA (positive control for inhibitor feeding experiments).

Lane 1,1% ethanol control.

Lane 2, 1 mM cycloheximide.

(C) Effect of actinomycin D, staurosporin and Bay K8644 on the nocturnal appearance of 

PEPc kinase translatable mRNA.

Lane 1,13% methanol control.

Lane 2, 500 jiM actinomycin D.

Lane 3,10 |iM staurosporin.

Lane 4, 100 p.M Bay K8644.

(D) Effect of cantharidin on the nocturnal appearance of PEPc kinase translatable mRNA. 

Lane 1,1% DMSO control.

Lane 2, 1 mM cantharidin.

Lane 3, no RNA control.
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Figure 4.7 A calcium/calmodulin interaction is required for the nocturnal appearance 

of PEPc kinase mRNA and activity in B. fedtschenkoi.

B. fedtschenkoi leaves were detached at 16.00 h and placed with their petiole in a solution 

of distilled water or the calmodulin inhibitor W7. Duplicate leaves were then collected at 

24,00 h in the middle of the subsequent dark period. One leaf was used to prepare a 

desalted extract to allow the determination of the PEPc kinase activity and the L-malate 

sensitivity of PEPc and the other leaf was used to isolate total RNA.

(A) PEPc kinase activity and malate sensitivity of PEPc.

Lane 1, distilled water control.

Lane 2, 100 cycloheximide (positive control).

Lane 3, 1 mM W7.

The relative intensity of the PEPc bands is given below each lane and along with the 

corresponding malate sensitivity of PEPc.

(B) PEPc kinase translatable mRNA.

Lane 1, distilled water control.

Lane 2, 100 jiM cycloheximide (positive control).

Lane 3, 1 mM W7.

Lane 4, no RNA control.

The relative intensity of the PEPc bands each shown below each lane.
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Chapter 5

The regulation of PEPc kinase translatable mRNA under 
anaerobic conditions in Kalanchoë daigremontiana

5.1 Introduction

When the leaves of the Crassulacean acid metabolism plant K. fedtschenkoi are 

detached and placed in constant conditions they display a circadian rhythm of CO2  

metabolism. This rhythm varies with the conditions. For example, when leaves are placed 

in C0 2 "free air at 15°C in the dark they show a rhythm of CO2  output which lasts for about 

four days and which has a period of about 23 h. Leaves placed in continuous light and 

normal air at 15°C show a rhythm of CO2  uptake with a period of about 16 h which persists 

for up to 10 days (Wilkins, 1992). Wilkins (1983) proposed that these rhythms are 

controlled by the concentration and distribution of malate within each compartment of the 

cell. In particular it was postulated that movement of malate in and out of the vacuole 

combined with its periodic breakdown in the cytoplasm could maintain the rhythm 

(Wilkins, 1983). It has been hypothesized that both light and high temperature treatments 

open 'gates' in the tonoplast and thus allow malate to move down a concentration gradient 

from the vacuole to the cytoplasm (Wilkins, 1983; Wilkins, 1989). This hypothesis can 

account successfully for the properties of the rhythms and phase re-setting by light and 

temperature changes and places malate as a pivotal signalling metabolite in the generation 

and perturbation of the circadian rhythm of CO2  metabolism in K. fedtschenkoi.

At the biochemical level, it was found that the rhythm in CO2  fixation is generated 

by periodic flux through PEPc which is regulated by changes in the malate sensitivity of 

the enzyme (Nimmo e ta l,  1984; Nimmo e ta l, 1987b). As described in chapter 4, PEPc is 

phosphorylated and malate-insensitive at night and dephosphorylated and malate-sensitive 

in the day. The changes in the phosphorylation state of PEPc are regulated by the nocturnal 

induction of PEPc kinase mRNA and activity by the circadian oscillator (see chapter 4) 

(Carter et aL, 1991). Hence, when malate is released from the vacuole during the day, 

PEPc kinase mRNA and activity are absent, and the dephosphorylated form of PEPc is 

inhibited by the malate and rendered inactive. At night, PEPc kinase is induced and active
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and the phosphorylated form of PEPc can maintain CO2  fixation despite the accumulation 

of malate generated as a result of the flux through PEPc. The flux through PEPc is further 

assisted by pumping of the malate into the vacuole at night.

Whilst the results in chapter 4 demonstrate a strict correlation between the level of 

PEPc kinase translatable mRNA, the level of kinase activity and the K, of PEPc for malate, 

the majority of the experiments (except for the results in figure 4.1) were performed with 

detached leaves of K. fedtschenkoi rather than leaves which remained attached to a healthy 

plant. For the work described in this chapter, a collaboration was established with Dr. A.M. 

Borland of the University of Newcastle with a view to examining whether changes in PEPc 

kinase mRNA and activity are physiologically relevant in the intact CAM plant. In 

particular, it was important to manipulate the malate content of intact leaves during the 

night to determine whether this might influence the level of PEPc kinase mRNA and 

activity.

Dr. Borland had previously developed an experimental system in which nocturnal 

CO2  fixation by leaves of intact K. daigremontiana plants could be prevented by placing 

them in an atmosphere of pure nitrogen (anaerobic conditions) throughout the night 

(Borland and Griffiths, 1997). Such leaves showed no nocturnal malate accumulation when 

compared to the control leaves kept in normal air. However, malate did accumulate at the 

beginning of the photoperiod, when N2 ~treated leaves were returned to normal air, at a time 

when the total malate content of control leaves was decreasing. This increase in leaf 

malate content correlated well with a sharp increase in the rate of CO2  assimilation and an 

elevated Ki of PEPc for malate which remained high for 3-4 h during phase II. However, 

despite this period of CO2  fixation by PEPc during phase II the leaf malate content 

achieved much less than half that in the control leaves. This was most probably due to 

decarboxylation accompanying carboxylation (Borland and Griffiths, 1997).

One of the most interesting points about these experiments in the context of the 

present work was that, upon the return to normal air, the Kj of PEPc for malate in N2 - 

treated leaves initially increased slightly, achieved an higher value than the control leaves 

and remained above the K\ in control leaves for some 4 h into the light period (phase II).
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This suggested that PEPc kinase might remain active well into the light period in N2 - 

treated leaves whilst in control leaves it appeared to be inactive within 30 minutes of the 

start of the photoperiod. Thus, in N^-treated leaves, some factor overcame the circadian- 

regulated destruction of PEPc kinase upon the return to normal air and light. One of the 

most obvious candidates for this factor was the leaf malate content. In control leaves, the 

commencement of the photoperiod, with its accompanying increase in temperature, is 

accompanied by diffusion of malate from the vacuole into the cytoplasm whereas in N2 - 

treated leaves there is no accumulated malate. The possibility of metabolite regulation of 

PEPc kinase mRNA and activity in intact plants was therefore investigated in the present 

study by subjecting leaves of K. daigremontiana to various periods of N2  encapsulation. 

The rate of CO2  assimilation, the total leaf malate concentration, the Kj of PEPc for L- 

malate, the PEPc kinase activity and the level of PEPc kinase translatable mRNA both 

during and after N2 -treatment were examined. These experiments were planned jointly 

with Dr. Borland. The plants were grown and manipulated at the University of Newcastle 

by Dr. Borland who also determined the rate of CO2  assimilation, the total leaf malate 

concentration and the apparent Ki of PEPc for malate. Frozen samples of the same leaves 

were brought to Glasgow where PEPc kinase activity and mRNA levels were determined. 

The results demonstrate a fascinating complexity of control of PEPc kinase mRNA and 

activity in response to the metabolite status of the cell in addition to the underlying 

circadian regulation.

5.2 Results

5.2.1 Physiology of CAM and manipulation by N%

Figure 5.1a illustrates how the dark/light pattern of net CO2  uptake, which may be 

dissected into four phases (Osmond, 1978), was modulated in response to anaerobic 

conditions which were imposed for part or all of the dark period. Inhibiting CO2  uptake 

over the first half of the dark period by enclosing leaves in an atmosphere of N2  for 7 . 5  h, 

resulted in a substantial increase in rates of net CO2  assimilation when leaves were 

removed from N2  and transferred to ambient air (half-N2 ) compared to control plants 

which were exposed to ambient air throughout the night. The malate content of the half-
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N2 -treated leaves increased rapidly when leaves were transferred to ambient air (Figure
:

5.1b). After only 3 h in ambient air, the malate content in half-N2  leaves was higher than 

the malate in control leaves which had accumulated over 9 h. At the end of the dark period, 

the malate content of half-N2  leaves was approximately 25 % higher than that measured in 

control leaves.

In half-N2  leaves at the start of the photoperiod, both the amplitude and the 

duration of phase II net CO2  uptake were stimulated compared to control plants (Figure 

5.1a). This was accompanied by a short delay (-30 min) in the net breakdown of malate 

compared to controls (Figure 5.1b). However, in full N2  leaves, transfer to ambient air at 

the start of the photoperiod resulted in a substantial increase in the rate of net CO2  

assimilation over both control and half N2  leaves during phase II and stomatal closure was 

delayed by about 2 h compared to controls (Figure 5.1a). Moreover, after transfer to 

ambient air at the start of the photoperiod, the full N2  leaves accumulated roughly 60 mol 

m-2 malate over the first 2.5 h of the photoperiod, indicating that PEPc was still active at a 

time when net breakdown of malate was occurring in control and half N2  leaves (Figure 

5.1b). Despite this day-time accumulation of malate in full N2  leaves, the malate content 

only attained 50% of that measured in control leaves and the majority of decarboxylation 

was accomplished within 2 h. Consequently, stomata remained closed for only 2 h in full 

N2  leaves compared to 5 h in control leaves (Figure 5.1a).

5.2.2 PEPc kinase translatable mRNA and activity in N2 -treated leaves

The variation in PEPc kinase activity and translatable mRNA in control and full N2  

leaves throughout the dark period is shown in figure 5.2. In control leaves, PEPc kinase 

activity increased over the first part of the dark period, peaking after 8.5 h in darkness 

(Figure 5.2a). For leaves maintained in N2  during the dark period, PEPc kinase activity 

increased steadily over the course of the dark period and was substantially higher than that 

measured in control leaves at comparable stages throughout the night. However, the results
. .i;

in figure 5.2c and 5.2d indicate that the level of kinase translatable mRNA in control and 

full N2  leaves was similar for the first 8.5 h of the dark period. Subsequently, the level of
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translatable mRNA in full Na-leaves was higher than that measured in control leaves over 

the last 3 h of the dark period.

The time course of changes in PEPc kinase activity and translatable mRNA,

together with changes in the apparent K, of PEPc for malate for control and full N2  leaves 

are illustrated graphically in figure 5.3. Changes in the apparent K| of PEPc for malate, 

which reflects the phosphorylation state of PEPc (Carter et aL, 1991) closely followed 

changes in PEPc kinase activity; the increased PEPc kinase activity measured in full N2  

compared to controls was reflected by a decreased malate sensitivity of PEPc in full N2  

leaves. The marked increase in the level of PEPc kinase translatable mRNA from 00:00 to 

04:00 h in control leaves is accompanied by an increase in PEPc kinase activity. In full N2  

leaves, the peak in kinase mRNA levels occurred at 06:00 h with levels of mRNA 

substantially higher than those measured in control leaves at this time. In both control and 

full N% leaves, levels of translatable mRNA declined over the last 2 h of the photoperiod.

Figure 5.4 illustrates changes in the apparent Kj of PEPc for malate, PEPc kinase 

activity and translatable mRNA which occurred when half-N2  leaves were subsequently 

transferred to ambient air for the remainder of the night. Again, changes in the apparent Ki 

of PEPc for malate closely mirror the change in PEPc kinase activity in half-N2  leaves. The 

apparent Ki of PEPc for malate, the level of kinase mRNA and the PEPc kinase activity 

were approximately 2-fold higher than controls in N2 -treated leaves immediately after 

removal from N2 . In the 2 h following transfer to ambient air, levels of translatable kinase 

mRNA rose sharply and rates of net CO2  uptake reached a maximum (figure 5.1a). By 

06:00 h, when malate content peaked (figure 5.1b), kinase mRNA had dropped to a level 

comparable to that measured in control leaves. The peak in kinase mRNA (at 04:00 h) 

preceded the peak in PEPc kinase activity in half N2  leaves at 06:00 h when the malate 

content reached a maximum (Figure 5.1b).

Figure 5.5 compares changes in the above components which occur at the start of 

the photoperiod in control and full-N2  leaves. In control leaves, PEPc is rapidly down- 

regulated due to a decrease in PEPc kinase activity with the concomitant increase in the 

sensitivity of PEPc to malate inhibition over the first hour of the photoperiod. This down-



regulation of PEPc is accompanied by closure of the stomata and the commencement of 

malate breakdown (Figure 5.1). In the same leaves, the already low levels of kinase mRNA 

declined to levels below the limits of detection after 2 h in the light. In full-N^ leaves, the 

apparent Ki of PEPc for malate, PEPc kinase activity and mRNA at the start of the 

photoperiod were substantially higher than those measured in control leaves and remained 

so for the next 2-3 h as net CO2  uptake continued and malate was accumulated (Figure 

5.1). As found with leaves removed from N2  in the middle of the dark period (Figure 5.4), 

levels of kinase mRNA rose sharply during the first hour after transfer to ambient air in the 

light. However, unlike the situation in half-N2  leaves in the dark (Figure 5.4), this peak in 

kinase mRNA level in the light was not followed by an increase in PEPc kinase activity 

(Figure 5.5), which may reflect an effect of the increase in cytosolic malate content which 

would not have occurred in the dark.

5,2.3 Physiological aspects of temperature manipulations

It has been suggested that disruption of the circadian oscillator in CAM plants by 

high temperature may be a consequence of increased efflux of malate from the vacuole to 

the cytosol, the site of PEPc activity (Grams et al., 1997; Wilkins, 1983). Figure 5.6 

illustrates the physiological consequences of exposing both control and half-N2  leaves to 

an 8 “C increase in temperature in the middle of the night (from 02:30-03:00 h). In control 

leaves there was a rapid drop in the rate of net CO2  assimilation as temperature increased 

from 19-27°C (Figure 5.6a). The shaip increase in malate content over the 30 min rise in 

temperature may be attributed to an increase in refixation of respiratory CO2 . Overall, 

maximum net assimilation rate at 27“C was < 50 % of maximum net assimilation rate 

measured at 19°C in control leaves. Despite the continued net uptake of CO2  by control 

leaves, the malate content dropped slightly over the first few hours of exposure to the 

higher temperature. This may represent utilization of the malate as a respiratory metabolite 

in the mitochondria as the rate of respiration will be significantly higher at 27'’C. However, 

marked breakdown of malate was observed over the last hour of the dark period when net 

CO2  assimilation had virtually ceased. This could be due to earlier activation of 

decarboxylation enzymes in addition to the high rates of respiration. Rates of net CO2
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assimilation in leaves removed from N2  immediately after the temperature had increased to 

2TC  were approximately 5-fold higher than those measured in control leaves at this time. 

Net assimilation rates dropped sharply during the first 1.5 h at the higher temperature in 

N2 "treated leaves, reached a plateau for 3h and then decreased over the last hour of the 

dark period. The malate content in the N2 -treated leaves showed a marked increase over 

the first 2  hours at the higher temperature and a more gradual increase over the remaining 

3.5 h. By contrast to control leaves, net breakdown of malate in N2 -treated leaves did not 

commence until the start of the photoperiod, as was found for control and half-N2 -leaves 

which had not been subjected to the 8 °C rise in temperature in the middle of the night.

5.2.4 Modulation of PEPc kinase activity and translatable mRNA by temperature

Figure 5.7 shows that in leaves prevented from accumulating malate over the first 

half of the dark period, an 8 °C rise in temperature resulted in a marked increase in PEPc 

kinase activity and kinase translatable mRNA compared to the decrease in these 

components in control leaves. However, after the N2 -treated leaves were transferred to 

ambient air at 27°C, the level of PEPc kinase translatable mRNA, kinase activity and the 

apparent Kj of PEPc for malate all decreased markedly within 2 h at the higher 

temperature. These changes occurred at a time when malate accumulated (figure 5.6b), 

presumably in the cytosol. For the remainder of the dark period, the apparent K, of PEPc 

for malate and the level of kinase activity and mRNA were marginally higher in N2 -treated 

leaves, which continued to accumulate malate, compared to controls in which malate 

content declined (Figure 5.6b). For example in the half-N2  leaves at 05:00 h, it appears that 

an apparent Ki of 2.5 mM measured in vitro can sustain PEPc in an active state in the 

presence of around 80 mmol m-~ malate, assuming the malate is equilibrated equally 

between the tonoplast and cytosol at 27°C. However, in the control leaves at 05:00 h, the 

apparent K, of PEPc for malate is 0.5 mM which evidently does not sustain PEPc in an 

active state in the presence of -130 mmol m-  ̂malate.
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5.3 Discussion

For the work described in this chapter, intact plants were manipulated to control the 

magnitude of dark CO2  uptake and malate accumulation, and monitored for the effects of 

these manipulations on the levels of PEPc kinase mRNA and activity. The results allow a 

number of conclusions about the control of PEPc kinase to be drawn. First, the data clearly 

demonstrate the physiological significance of PEPc phosphorylation, as is shown by the 

close correlation between the activity in vitro of PEPc kinase, net CO2  uptake by PEPc and 

malate accumulation in vivo under ambient air and after transfer from anaerobic conditions 

to ambient air. For example, leaves prevented from accumulating malate overnight in an 

atmosphere of N2  exhibited an extended period of CO2  uptake by PEPc for 2-3 hours at the 

start of the photoperiod under ambient air (Borland and Griffiths, 1997). Under these 

conditions, kinase activity remained detectable and PEPc remained phosphorylated for 

several hours into the photoperiod (figure 5.5). In leaves moved from N2  to ambient air 

mid-way through the dark period, malate accumulated significantly faster thereafter, PEPc 

kinase activity was higher and PEPc was more highly phosphorylated (as judged by its 

malate sensitivity) than in control leaves (figures 5.1 and 5.4). The data presented here 

support and extend those in the previous chapter on K. fedtschenkoi in showing that these 

physiologically significant changes in PEPc kinase activity usually reflect changes in the 

translatable mRNA for this protein. There is one exception to the general rule that kinase 

activity tracks kinase mRNA. In leaves that had been exposed to ambient air at 08:30 after 

a night in N2 , there is a marked decline in kinase activity between 08:30 and 11:00 despite 

a marked increase in kinase mRNA between 08:30 and 09:30. Possible reasons for this are 

discussed further below.

Previous work has demonstrated clearly that PEPc kinase mRNA and activity, and 

the phosphorylation state of PEPc, are under the control of the circadian oscillator (Carter 

et al., 1991; Nimmo et al., 1987b). These effects contribute to the well-established 

circadian control of CO2 fixation in CAM plants (Wilkins, 1992). A second conclusion 

about the control of PEPc kinase is that the circadian control of kinase mRNA and activity 

can be influenced by metabolite levels. In leaves that cannot accumulate malate, PEPc
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kinase activity is significantly higher than in control leaves, even though PEPc kinase 

mRNA levels are comparable. This suggests that some metabolite, present at a higher 

concentration in control leaves, either reduces translation of the mRNA or increases the 

rate of destruction of the kinase protein. One attractive candidate metabolite is the 

cytosolic malate concentration. This factor might also affect transcription of the PEPc 

kinase gene, or stability of PEPc kinase mRNA, so that a high malate concentration leads 

to a low level of PEPc kinase mRNA. Such an effect could account for the effect of an 

increase in temperature from 19°C to 27“C on PEPc kinase mRNA levels. This temperature 

jump reduced PEPc kinase mRNA in control leaves, but actually increased it in leaves in 

which malate accumulation had been prevented (fig. 5.7). Equally, a metabolite present at a 

lower concentration in control than N2 -treated leaves might enhance translation of kinase 

mRNA or reduce the rate of destruction of the kinase protein.

The effect of increased temperature on circadian rhythms of CO2  fixation has been 

ascribed to increased permeability of the tonoplast membrane to malate (Wilkins, 1983; 

Wilkins, 1992), and there is some direct experimental support for this hypothesis (Friemert 

et al., 1988). The sharp reduction in PEPc kinase mRNA seen during the temperature 

increase in control leaves (fig, 5.7) could reflect a large increase in cytosolic malate, 

resulting from efflux from the vacuole, that was not possible in the N2 -treated leaves. If 

this hypothesis is correct, the cytosolic malate level in control leaves must be insufficient 

to reduce the accumulation of PEPc kinase mRNA during the first 10 h of darkness. PEPc 

kinase mRNA starts to decline later in control leaves than in half-N2  leaves, at 06:00 and 

04:00 respectively. It is worth noting that the total leaf malate contents are actually similar 

at these times in the two treatments. Hence there may be a threshold level of total malate, 

at about 120 mol m- ,̂ above which the cytosolic malate is sufficient to reduce PEPc kinase 

mRNA. In leaves treated with full N2 , the decline in PEPc kinase mRNA started when the 

total malate content had only reached some 70 mol m'^. However, it must be borne in mind 

that this decline occurred after the start of the photoperiod, at a time when the temperature 

had reached 2TC, and a much higher proportion of the total malate was presumably in the 

cytosol than would be the case in darkness.
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There were sharp increases in the level of PEPc kinase mRNA when N2 -treated 

leaves were transferred to ambient air in the dark (fig. 5.4) or the light (fig. 5.5). These 

results imply that kinase gene expression might also be modulated by a factor related to the 

rate of respiration. The increase in mRNA in the dark is followed, after a lag, by an 

increase in kinase activity (fig. 5.4). However, as noted above, the increase in kinase 

mRNA in the light occurs during a decrease in kinase activity (fig. 5.5), There are several 

possible reasons for this. One is that the rapid increase in total malate content, under 

conditions in which malate is not stored in the vacuole, could lead to a high cytosolic 

malate concentration, and stimulation of the rate of destruction of the kinase (or reduction 

in the translation of kinase mRNA, see above). Other possibilities are that the start of the 

photoperiod might lead to formation of a tight-binding inhibitor of the kinase, or that light 

itself decouples transcription of the kinase gene from translation.

Overall, the control of flux through PEPc is clearly multi-layered. Fine control is 

achieved by changes in cytosolic levels of opposing metabolic effectors such as malate 

(negative) and glucose 6 -phosphate (positive). The phosphorylation of PEPc represents a 

means for course control of flux through this enzyme. Timing of the phosphorylation is set 

by a circadian oscillator. The data in this chapter show that circadian control can be over

ridden by metabolite control, probably in various ways. It would seem highly likely that a 

metabolite, possibly cytosolic malate, can affect PEPc kinase gene expression or mRNA 

stability, or the stability of the kinase itself. Respiratory metabolism may also affect these 

parameters. Such metabolite effects may influence entrainment of the circadian rhythm to 

environmental conditions which, in turn, support photosynthetic flexibility and survival 

through temporarily optimizing CO2  uptake. Identification of the metabolites responsible 

will require careful measurement of metabolite pools in particular compartments of the 

cell.
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Figure 5,1 Rates of net CO2  uptake and the concomitant malate content in leaves of 

K. daigremontiana exposed to anaerobic conditions for either half or the whole of the 

dark period.

(A). Leaves were enclosed in an atmosphere of N2  for the first half (half N2 ) or entire 

duration (full N2 ) of the dark period before transfer to ambient air and rates of net CO2  

assimilation were measured. Control leaves were exposed to the ambient atmosphere in the 

growth chamber. Each gas exchange curve is representative of 3 replicate runs with SE < 

1 0 % of mean.

(B). Malate content was measured in leaves subjected to the above treatments with each 

point the mean of 3 replicates with SE < 10% of mean. The solid bar on the x-axis 

represents the period of darkness.
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Figure 5.2. The effect of anaerobic conditions on the level of PEPc kinase translatable 

mRNA and activity during the dark period in K, daigremontiana leaves .

Leaves were enclosed in an atmosphere of N2  overnight, to prevent malate accumulation, 

or maintained in ambient air. Samples for PEPc kinase activity and RNA isolation were 

taken simultaneously from the same leaves at intervals over the 13 h dark period. The 

figure shows autoradiographs of the 32p_iabelled PEPc bands following gel 

electrophoresis. The relative intensity of each PEPc band, shown below each track, was 

determined by phosphoimaging. Total in vitro translation products appeared similar for 

RNA isolated from control and N2  treated leaves (data not shown).

(A) PEPc kinase activity in control leaves kept in normal air.

Lane 1, 0.75 h into the dark period.

Lane 2,2.5 h into the dark period.

Lane 3,4.5 h into the dark period.

Lane 4, 6.5 h into the dark period.

Lane 5, 8.5 h into the dark period.

Lane 6 , 10.5 h into the dark period.

Lane 7, 13 h into the dark period.

(B) PEPc kinase activity in leaves enclosed in nitrogen (anaerobic conditions).

Lane 1, 2.5 h into the dark period.

Lane 2, 4.5 h into the dark period.

Lane 3, 6.5 h into the dark period.

Lane 4, 8.5 h into the dark period.

Lane 5, 10.5 h into the dark period.

Lane 6 , 13 h into the dark period.

(C) PEPc kinase translatable mRNA levels in control leaves kept in normal air.

Lanes correspond to those listed for panel (A) above.

(D) PEPc kinase translatable mRNA levels in leaves enclosed in nitrogen (anaerobic 

conditions).

Lanes correspond to those listed for panel (B) above.
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Figure 5.3. Time course of apparent Ki of PEPc for L-malate, PEPc kinase activity 

and translatable mRNA under ambient and anaerobic conditions during the dark 

period.

Leaves were enclosed in an atmosphere of N2  overnight, to prevent malate accumulation, 

or maintained in ambient air. Samples for PEPc and PEPc kinase assays, and RNA 

isolation were taken simultaneously from the same leaves at intervals throughout the 13 h 

dark period. Kinase activity and translatable mRNA values are expressed as a percentage 

of the maximum reached during the 13 h dark period.

(A) Variation in the apparent K| of PEPc for L-malate in rapidly desalted extracts prepared 

from control and full N2 -treated leaves.

(B) Variation in PEPc kinase activity in rapidly desalted extracts prepared from control 

and full N2 -treated leaves.

(C) Variation in PEPc kinase translatable mRNA levels in control and full N2 -treated 

leaves.
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Figure 5.4. Apparent K; of PEPc for L-malate, PEPc kinase activity and translatable 

mRNA after transfer from anaerobic conditions to ambient air in the dark period.

Leaves were enclosed in an atmosphere of N2  to prevent malate accumulation for the first 

half of the dark period before transfer to ambient air. Control leaves were maintained in 

ambient air throughout the night. Samples for PEPc and PEPc kinase assays, and RNA 

isolation were taken simultaneously from the same leaves at intervals over the dark period. 

Kinase activity and translatable mRNA values are expressed as a percentage of the 

maximum reached during the 13 h dark period.

(A) Variation in the apparent Ki of PEPc for L-malate in rapidly desalted extracts prepared 

from control and half N2 -treated leaves.

(B) Variation in PEPc kinase activity in rapidly desalted extracts prepared from control 

and half N2 -treated leaves.

(C) Variation in PEPc kinase translatable mRNA levels in control and half N2 -treated 

leaves.
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Figure 5.5. Down regulation of the apparent Ki of PEPc for malate and PEPc kinase 

activity and translatable mRNA at the start of the photoperiod following a night in 

ambient or anaerobic conditions.

Leaves which had been maintained in an atmosphere of N2  overnight to prevent malate 

accumulation were transferred to ambient air at the start of the photoperiod. Control leaves 

were maintained in ambient air throughout. Samples for PEPc and PEPc kinase assays, and 

RNA isolation were taken simultaneously from the same leaves at intervals during the first 

few hours of the photoperiod. Kinase activity and translatable mRNA values are expressed 

as a percentage of the maximum reached during the photoperiod.

(A) Variation in the apparent Kj of PEPc for L-malate in rapidly desalted extracts prepared 

from control and full Ni-treated leaves.

(B) Variation in PEPc kinase activity in rapidly desalted extracts prepared from control 

and full N2 “treated leaves.

(C) Variation in PEPc kinase translatable mRNA levels in control and full N2 -treated 

leaves.
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Figure 5.6. Modulation of net CO2  assimilation rates and malate accumulation by a 

nocturnal temperature increase.

Leaves were exposed to ambient air (control) or enclosed in an atmosphere of N 2  for the 

first half of the dark period to prevent malate accumulation (half N2 ) and subjected to an 

8 “C rise in temperature (19-27“C) between 02:30-03:00 h. The N2  treated leaves were 

subsequently exposed to ambient air and the temperature remained at 2TC  for the duration 

of the dark and subsequent photoperiod.

(A) Rates of net CO2  uptake in leaves under the two treatments with each gas exchange 

curve representative of 3 replicate runs with SE < 10% of mean.

(B) Malate content was measured in leaves subjected to the above treatments with each 

point the mean of 3 replicates with SE < 10% of mean. The solid bar on the x-axis 

represents the period of darkness.
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Figure 5.7. Modulation of apparent Kj of PEPc for L-malate, PEPc kinase activity 

and translatable mRNA by an increase in temperature at night.

Leaves which were maintained in ambient air or in an atmosphere of N2  to prevent malate 

accumulation were subjected to an 8 °C rise in temperature (19-27°C) in the middle of the 

dark period (from 02:30-03:00h). The temperature remained at 27°C for the remainder of 

the dark period and subsequent photoperiod. The N2  treated leaves were transferred to 

ambient air at 03:00 h, immediately following the temperature increase and samples for 

PEPc and PEPc kinase assays, and RNA isolation were taken simultaneously from the 

same leaves at intervals over the dark period. Kinase activity and translatable mRNA 

values are expressed as a percentage of the maximum reached during the 13 h dark period

(A) Variation in the apparent K| of PEPc for L-malate in rapidly desalted extracts prepared 

from control and half N2 -treated leaves.

(B) Variation in PEPc kinase activity in rapidly desalted extracts prepared from control 

and half N2 -treated leaves.

(C) Variation in PEPc kinase translatable mRNA levels in control and half N2 -treated 

leaves.
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Chapter 6

The regulation of PEPc kinase translatable mRNA by 
light in maize and barley

6.1 Introduction

In the leaves of C4  plants, primary CO2  fixation occurs in the mesophyll cells and is 

catalysed by a specific isoform of PEPc. The malate which is subsequently formed is 

transported to the bundle-sheath cells where it is decarboxylated. The CO2  is then refixed 

by Rubisco in the Calvin cycle which is powered by photosynthetic energy. In C3 plants, 

PEPc performs a range of housekeeping functions. Specific isoforms are involved in the 

anaplerotic provision of TCA cycle intermediates for amino acid biosynthesis, the 

regulation of stomatal aperture, seed formation and germination, fruit ripening, and C^-acid 

formation in the nitrogen-fixing nodules of legume roots (Chollet et al., 1996; Du et a l, 

1997; Osuna et al., 1996; Zhang et a l, 1995). Ail of the C4  and C3 isoforms of PEPc 

which have been sequenced possess the N-terminal serine that is the target of PEPc kinase 

(Vidal and Chollet, 1997). Additionally, PEPc kinase activity has been detected in desalted 

extracts from the leaves of at least four species of C4  plant, plus Sorghum roots, and the 

leaves of at least three species of C3 plant (Duff and Chollet, 1995; Giglioli-Guivarc'h et 

a l, 1996; Jiao et a l, 1991a; Li et a l, 1996; Pacquit et al, 1993; Smith et al, 1996). PEPc 

kinase has also been detected in Vicia faba and Comellina communis guard cells, soybean 

root nodules, banana fruits and wheat seeds (Du et a l, 1997; Law and Plaxton, 1997; 

Nelson, 1994; Osuna et a l, 1996; Zhang et al, 1995).

In contrast to the circadian-regulation of PEPc kinase activity in CAM plants which 

has already been described in chapters 3, 4 and 5, the equivalent enzyme in C4  and C3 leaf 

tissue is induced by light (Chollet et a l, 1996). The C3 enzyme has also been shown to be 

induced by nitrate re-supply in nitrogen-limited wheat leaves (Duff and Chollet, 1995).

The light induction of PEPc kinase in C4  plants has been the subject of intensive 

research over the last ten years. Both calcium-dependent and independent kinases capable 

of phosphorylating C4 -PEPC have been described. It is now widely accepted that it is the 

calcium-independent kinase which is induced in response to light and is responsible for
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altering the Ki of PEPc for malate (Vidal and Chollet, 1997). The light-mediated increase 

in the activity of this calcium-independent PEPc kinase requires protein synthesis (Jiao et 

al., 1991a). This implies that either the kinase itself, or a secondary component, must be 

synthesized de novo. A number of other steps in the C4  signal transduction cascade have 

been determined using a variety of specific inhibitors of cellular processes. These steps 

include; the movement of a photosynthetically derived signal (possibly 3-PGA) from the 

bundle sheath cells to the mesophyll, which is thought to cause the alkalinisation of the 

mesophyll cytosol; an increase in cytosolic Ca^+ concentration, probably due to its release 

from the vacuole; stimulation of a Ca^Vcalmodulin-dependent protein kinase; and protein 

synthesis (Bakrim et a i, 1992; Giglioli-Guivarc'h et a i, 1996; Pierre et al., 1992; Vidal 

and Chollet, 1997). The exact order of these events and the number of times each one 

occurs is unknown. Despite all this detailed knowledge of possible upstream events, no 

evidence exists to demonstrate whether the increase in the activity of PEPc kinase is 

caused by an alteration in its transcription, translation, turnover or post-translational state.

In C3 plants, PEPc kinase activity is induced by light and/or the re-supply of nitrate 

(Duff and Chollet, 1995; Li et al., 1996; Smith et al., 1996). The kinase is calcium- 

independent and its induction by light is blocked by protein synthesis, glutamine 

synthetase and photosynthesis inhibitors (Li et a l, 1996). As with the C4  system, it is not 

known how PEPc kinase activity is increased in vivo.

It was therefore vital to investigate the regulation of PEPc kinase mRNA levels in a 

C4  and a C3 plant. Maize and barley were used as representative C4  and C3 plants 

respectively. Light mediated changes in the level of kinase mRNA were investigated in 

these plants. Inhibitors of protein and RNA synthesis were employed to ascertain whether 

transcription and/or translation are necessary for the observed changes in kinase mRNA. 

Other pharmacological agents were utilised to dissect the signalling cascade involved in 

the light-induction of PEPc kinase mRNA levels.
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6.2 Results

6.2.1 Regulation of PEPc kinase translatable mRNA by light in maize and barley

Preliminary experiments were carried out to ascertain whether light has any effect 

on the level of PEPc kinase translatable mRNA in maize and barley. For both plants, the in 

vitro translation assay was used to compare the kinase activity in translation products from 

samples of isolated 'dark' and 'light' RNA. The purified, dephosphorylated PEPc from B. 

fedtschenkoi can be phosphorylated by the light-activated PEPc kinase from maize and 

barley and was therefore used as the substrate in kinase assays. Translations were 

performed using total RNA for barley, but, in initial experiments, the efficiency of 

translation with total maize RNA was very low (this was later overcome by using very 

high concentrations (800 pg/ml) of total RNA). However, maize poly (A)+ RNA directed 

protein synthesis efficiently. Figure 6.1 shows that for both maize and barley, mRNA 

coding for PEPc kinase is significantly increased in the light compared to the dark. Parts C 

and D of figure 6.1 show that there are only minor differences between the in vitro 

synthesized proteins produced by samples of 'light' and 'dark' RNA from maize and barley. 

However, for both maize and barley, the total amounts of protein synthesized in the 'light' 

and 'dark' were similar, as judged by the incorporation of 35g_radioactivity into 

trichloroacetic acid-precipitable protein.

As demonstrated previously for B. fedtschenkoi, the kinase activity generated in the 

translations is Ca^+-independent (figure 6.2). Kinase activity in 'dark' and 'light' translation 

products was consistently slightly higher in the presence of EOT A, emphasising that the 

signal is produced by a calcium-independent kinase. The omission of radioactive ATP 

from some of the kinase assays allowed the degree of 35s-Met labelling of newly 

synthesised PEPc in the translations to be ascertained. Barley RNA synthesised no 

detectable 35s-Met labelled PEPc (figure 6.2). However, maize mRNA directed the 

synthesis of ^^S-Met labelled PEPc from both the 'light' and 'dark* mRNA samples. In fact, 

the labelling of de novo synthesised, 35g_Met labelled PEPc in maize 'dark' mRNA 

translations was equivalent to the total labelling detected in kinase assays on the same 

translation products which contained radioactive ATP (figure 6.2). This indicates that
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PEPc kinase mRNA is not detectable in the dark in maize because the observed labelling is 

accounted for entirely by the 35S-Met portion of the signal. However, in the light, the 

labelling of PEPc in the plus radioactive ATP assays is tenfold higher than that in the 

absence of radioactive ATP.

The abundance of PEPc kinase mRNA, as judged by this assay, is lower in barley 

than in either maize, B. fedtschenkoi or K, daigremontiana. The amount of kinase mRNA 

approximately doubled in the light in barley, and increased from zero (infinitely) in the 

light in maize. Thus the data indicate that the light-induced increase in PEPc kinase 

activity in both C4  and C3 plants is due, at least in part, to a light-induced increase in the 

level of PEPc kinase translatable mRNA.

6.2.2 The light induction of PEPc kinase mRNA in maize and hariey requires 

transcription but not translation

Plaving established that the level of translatable mRNA for PEPc kinase increases 

in response to light in maize and barley it was logical to investigate how this increase in 

translatable mRNA is mediated. For example, it was important to determine whether the 

observed increase in kinase mRNA requires transcription and/or translation, as has been 

established for B. fedtschenkoi. Initially, the influence of two types of RNA and protein 

synthesis inhibitors on the light-induced change in the L-malate sensitivity of PEPc was 

examined. A range of concentrations of all four inhibitors were supplied to detached maize 

leaves in the dark and the leaves were then subjected to 3 h of illumination. The percentage 

inhibition, by 1 mM L-malate, of the PEPc in rapidly desalted extracts made from these 

treated leaves was determined (figure 6.3). This allowed the establishment of whether each 

inhibitor had any effect on the decrease in the malate sensitivity of PEPc and, if so, the 

minimum effective concentration of each inhibitor. These minimum concentrations were 

then used to investigate the effect of each type of inhibitor on the level of PEPc kinase 

translatable mRNA in leaves illuminated for 3 h. Both 500 jnM actinomycin D and 500 pM 

cordycepin (RNA synthesis inhibitors) partially blocked the light-induction of PEPc kinase 

mRNA in detached maize leaves. This concentration also inhibited the decrease in the L-
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malate sensitivity of PEPc (figure 6.4). However, at a concentration of 50 jiiM both RNA 

synthesis inhibitors had no detectable effect.

Interestingly, whilst 100 jaM cycloheximide and 1 mM puromycin (protein 

synthesis inhibitors) blocked the decrease in the L-malate sensitivity of PEPc, they both 

caused an accumulation of PEPc kinase translatable mRNA over and above the light 

control level (Figure 6.5). This data demonstrates that both types of protein synthesis 

inhibitor block the translation of PEPc kinase mRNA into PEPc kinase in vivo, which 

prevents the kinase from changing the malate sensitivity of PEPc. This also causes an 

accumulation of the mRNA. The possible reasons for this observed accumulation will be 

covered in the discussion.

As a control for these inhibitor treatments Northern analysis was carried out on the 

same RNA samples in order to ascertain whether the steady-state expression of other C4  

photosynthetic genes was also perturbed in a similar manner. The expression of malic 

enzyme (ME) and pyruvate: orthophosphate di-kinase (PPDK) was examined (figs. 6.4 and 

6.5). Light induces both genes and this induction is diminished by 500 jiM, but not 50 |iM, 

actinomycin D and cordycepin. This mirrors the situation for PEPc kinase mRNA (figure 

6.4). However, both of the protein synthesis inhibitors block the increase in the steady-state 

level of ME and PPDK mRNA whilst they cause PEPc kinase mRNA to accumulate 

(figure 6.5). Hence, the inhibition of light-induced increases in the mRNA levels for other 

C4  photosynthetic genes does not disrupt the light-induction, and excess accumulation, of 

PEPc kinase mRNA.

The same inhibitors were applied to detached barley leaves to investigate how they 

influence the light induction of PEPc kinase translatable mRNA in a C3 plant. As observed 

with maize, RNA synthesis inhibitors block the light-induction of PEPc kinase mRNA in 

barley, but protein synthesis inhibitors cause kinase mRNA to accumulate above light 

control levels (figure 6 .6 ). Northern analysis on the level of expression of the small 

subunit of Rubisco (rbcS) in the same RNA samples shows that this gene is induced by 

light and that the light induction is blocked by both RNA and protein synthesis inhibitors 

(figure 6 .6 ). Again it seems that, whilst protein synthesis inhibitors block the light-
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induction of the rbcS gene, they cause the light-induced accumulation of PEPc kinase 

translatable mRNA.

It is therefore evident that, for both maize and barley, the light-induction of PEPc 

kinase translatable mRNA requires a transcription event, whilst translation is not 

necessary. However, translation is required for the increase in both kinase activity and the 

Kj of PEPc for L-malate, and the transcript levels of ME and PPDK. This data strongly 

suggests that the light-induction of PEPc kinase activity in both C4  and C3 plants requires 

transcription of the PEPc kinase gene itself. Complete confirmation of this and analysis of 

the extent to which transcription is involved in the in vivo regulation of the enzyme awaits 

the cloning of the PEPc kinase cDNA.

6.2.3 Some possible elements In the signal transduction cascade between light and 

PEPc kinase translatable mRNA in maize

In an attempt to ascertain some of the other elements in the light signal transduction 

cascade which mediates an increase in the level of PEPc kinase translatable mRNA, a 

variety of inhibitors were supplied to detached maize leaves. A range of concentrations 

were tested for each inhibitor in order to determine whether they had any effect on the 

induction of PEPc kinase and if so what the minimum effective concentration was. Neither 

staurosporin, an inhibitor of protein kinases nor the calcium channel blocker Bay K8644 

had any detectable effect on the light-induced decrease in the L-malate sensitivity of PEPc 

at the concentrations used (figure 6.7). However, the calcium-calmodulin antagonist W7 

and the protein phosphatase inhibitors okadaic acid and cantharidin were all found to 

inhibit the light-induced increase in PEPc kinase translatable mRNA (figure 6 .8 ). W7 also 

inhibited the decrease in the L-malate sensitivity of PEPc whilst cantharidin did not. In 

fact, cantharidin caused the L-malate sensitivity of PEPc to decrease more than in light 

controls (figure 6 .8 ). Thus conditions were discovered where, after 3 h of illumination, the 

PEPc in the cantharidin treated leaves was in a highly phosphorylated, malate insensitive 

form and yet the level of PEPc kinase translatable mRNA was at dark control levels.

This appeared to be anomalous because under all previously examined conditions 

PEPc kinase mRNA was high when the PEPc was in its malate insensitive, phosphorylated
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form. However, a possible explanation for this anomaly concerns the time course of 

changes in kinase mRNA. The mRNA may have risen early during the 3 hour period of 

illumination but subsequently decreased to the level detected at 3 hours. This would mean 

that PEPc kinase was active during the early part of the illumination period. PEPc would 

become phosphorylated and then be maintained in a highly phosphorylated, malate 

insensitive state due to inhibition by cantharidin of the type 2A protein phosphatase 

responsible for dephosphorylating PEPc in vivo.

The data in figure 6 . 8  indicate the involvement of a calcium-calmodulin interaction, 

possibly mediating its effect through a calcium-dependent protein kinase (CDPK), and a 

protein déphosphorylation event upstream of the increase in the level of PEPc kinase 

mRNA. These events are in addition to, and probably upstream of, the transcription step 

already mentioned. A protein kinase inhibitor and a calcium channel agonist had no effect 

at the concentrations tested. However, this does not rule out the involvement of protein 

phosphorylation and Ca^+ movements in the signal cascade, as no controls were performed 

to demonstrate that these inhibitors had actually inhibited their target processes.

6.3 Discussion

The results obtained in this part of the study, for the C4  plant maize and the C3 plant 

barley, further demonstrate that the in vitro translation assay provides valid data over a 

whole range of higher plant taxa. This includes representatives of all 3 major forms of 

photosynthetic metabolism in which PEPc plays diverse roles. This emphasises the 

extreme sensitivity of the assay and its ability to detect accurately when PEPc kinase 

mRNA is present or absent, regardless of the plant system under examination. As already 

described for the CAM system, the level of kinase mRNA in C4  and C3 plants changes in 

concert with changes in kinase activity and the Ki of PEPc for malate. In C4  and C3 plants 

all three parameters increase in response to light and not the circadian clock. However, the 

light increase can be blocked by a number of inhibitors of specific cellular processes. This 

provides evidence about the signal transduction cascade which transmits the light signal 

through the cell and ultimately causes an increase in kinase translatable mRNA.
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Work published during the course of this study indicated that RNA synthesis is not 

necessary to obtain a light- and weak base-dependent increase in PEPc kinase activity, and 

a concomitant decrease in the L-malate sensitivity of PEPc, in mesophyll protoplasts from 

the C4  plant Digitaria sanguinalis (Giglioli-Guivarc'h et aL, 1996). This result implies 

that the increase in PEPc kinase activity in D. sanguinalis protoplasts may result from 

increased translation of pre-existing mRNA. The translation assay employed in the present 

study involves isolated total or mRNA which is heated to 67°C for 10 min immediately 

before translation. Hence, if the increases in PEPc kinase translatable mRNA in maize 

shown in the figures of this chapter are due to increased translatability, this effect must be 

mediated by modification of the RNA, rather than by protein/RNA interactions or effects 

on the secondary structure of the RNA. However, it must be noted that Giglioli-Guivarc'h 

et. at. (1996) included no positive control to demonstrate the effectiveness of the RNA 

synthesis inhibitors used in their study. Furthermore, in the present study the use of one of 

the inhibitors (actinomycin D) at the same concentration used by Giglioli-Guivarc’h et. al. 

(1996) had no detectable effect, whereas this inhibitor was effective in preventing increases 

in PEPc kinase mRNA and activity at higher concentrations (see figures 6.3, 6.4 and 6.5). 

Admittedly, in the present study, the inhibitor was supplied to intact, detached leaves and 

not isolated protoplasts so it is understandable that a significantly higher concentration was 

necessary to cause inhibition. However, without positive controls it is difficult to interpret 

anything from the negative result obtained by Giglioli-Guivarc'h et. al. (1996) because the 

inhibitors may not have been inhibitory to RNA synthesis in their protoplasts at the 

concentration used.

The data obtained in this study using RNA and protein synthesis inhibitors on the 

leaves of a C4  and a C3 plant suggest the clear possibility that PEPc kinase is 

transcriptionally regulated in response to light. Unlike the circadian clock-controlled CAM 

system, protein synthesis is not required for the increase in kinase mRNA whilst RNA 

synthesis is. It remains possible that the in vitro translation system translates both a 

putative kinase activator and PEPc kinase itself and therefore reconstitutes the events that 

are blocked in vivo by protein synthesis inhibitors. This would mean that the in vitro
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translation of RNA from light-induced, protein synthesis inhibitor-treated leaves would 

generate both the activator and the kinase and hence active kinase, overcoming the 

blockage caused by the inhibitor in vivo. However, this scenario is very unlikely, because 

attempts to increase the activity of PEPc kinase in extracts by mixing experiments and/or 

addition of potential co-factors (e.g. mixing extracts of B. fedtschenkoi or maize leaves 

prepared during the day and night, plus and minus ATP) have proved negative (P.J. Carter, 

G.A. Nimmo and H.G. Nimmo, unpublished). Moreover, the appearance of PEPc kinase 

activity during in vitro translation is approximately linear with time for 40-60 min, after a 

short lag that probably results from the time required to translate mRNAs. A linear increase 

would not be expected if there were a cascade system in which PEPc kinase is activated by 

an additional component. Thus, the most feasible and likely explanation of the results 

obtained in this study is that PEPc kinase is regulated transcriptionally in response to light 

in C4  and C3 plants.

That protein synthesis inhibitors cause PEPc kinase to accumulate above control 

levels in response to light is an interesting effect in itself. All evidence suggests that PEPc 

kinase mRNA and activity are rapidly turned over in vivo. The exact level of kinase mRNA 

detected in a given RNA sample is a result of the balance between its rate of synthesis and 

its rate of degradation. For example, in maize following illumination the level of PEPc 

kinase mRNA may increase due to an increase in the rate of its transcription whilst the rate 

of degradation remains unchanged or vice versa. Thus, for the level of kinase mRNA to 

accumulate above control levels in protein synthesis inhibitor treated leaves, the rate of 

transcription must increase or the rate of degradation must decrease. If, for example, the 

rate of transcription of the gene increases, this could be due to disruption by the protein 

synthesis inhibitor of the transmission of a signal which controls the rate of transcription. If 

the rate of degradation of the kinase mRNA is diminished, this could be because the 

protein synthesis inhibitor blocks the synthesis of a specific RNase. Whether either of these 

possible hypotheses are correct awaits the results of future experiments.
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Some of the elements in the light-induced signal transduction cascade that 

instigates the increase in PEPc kinase in C4  plants have previously been dissected using 

both intact leaves, and isolated protoplasts and cells, from a range of C4  species. However, 

the location of these processes in the signalling cascade relative to the increase in the level 

of PEPc kinase mRNA was not investigated due to the inability of earlier workers to 

measure the mRNA level. Thus, the effect of a variety of inhibitors of processes previously 

reported to be involved in the cascade were re-examined in the present study. W7, a 

calcium-calmodulin antagonist which had previously been found to block the light- 

induction of PEPc kinase activity was also found to inhibit the light-induction of PEPc 

kinase mRNA. Also two protein phosphatase inhibitors were found to inhibit the light- 

induction of PEPc kinase mRNA whilst a protein kinase inhibitor and a calcium-channel 

blocker were both found to have no effect at the concentrations used. This is the first 

evidence suggesting the involvement of a dephosphorylation event in the signalling 

cascade. Protein kinase inhibitors and vacuolar calcium channel blockers have previously 

been found to block the light-induction of PEPc kinase in another C4  system (Giglioli- 

Guivarc'h et aL, 1996). Although it is possible that the protein kinase and calcium channel 

steps are downstream of the level of PEPc kinase mRNA, it is more likely that the 

inhibitors used in this study were simply ineffective at the concentrations used. This is 

probably due to the inhibitors failing to reach the target mesophyll cells at high enough 

concentrations. This problem may be overcome by employing either isolated mesophyll 

protoplasts or a cell culture approach. Other inhibitors which merit future investigation 

include the calcium channel agonists TMB8 , nifedipine and diltiazem, and the 

photosynthesis inhibitors DCMU, methyl viologen, isocil, DL-glyceraldehyde and 

gramicidin. The use of these inhibitors should allow the dissection of which type of 

calcium channel and which parts of photosynthesis may be involved in the light-induction 

of PEPc kinase mRNA in maize. Similar inhibitor experiments should also be performed 

on the C3 leaf system with the addition of feeding glutamine, and the glutamine synthetase 

inhibitors methionine sulphoximine and phosphoinothricine. These latter treatments should 

allow dissection of the involvement of glutamine as a signal metabolite in the C3 signal
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transduction network, and thus shed light on the cross-talk between light and nitrate supply 

in the regulation of PEPc kinase mRNA.
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Figure 6.1. Effect of light on PEPc kinase translatable mRNA in maize and barley.

The figure shows phosphoimages of PEPc phosphorylated in vitro by translation products 

from maize poly (A)+ RNA and barley total RNA. The figures given below each band 

represent the relative intensity of each band.

(A) PEPc kinase activity (^^P-labelling of PEPc) using the in vitro translation products 

from maize poly (A)+ RNA purified from 20 |ig of total RNA.

Lane 1, no RNA control.

Lane 2, poly (A)+ RNA isolated from mature leaves illuminated for 3 h.

Lane 3, poly (A)+ RNA isolated from mature leaves darkened for 3 h.

(B) PEPc kinase activity (32p-labelling of PEPc) using the in vitro translation products 

from barley total RNA.

Lane 1, no RNA control.

Lane 2, barley total RNA isolated from leaves illuminated for 3 h.

Lane 3, barley total RNA isolated from leaves darkened for 10 h.

(C) In vitro translation products (p^SJMet labelled) corresponding to panel (A).

The lanes correspond to those listed above for panel (A).

(D) In vitro translation products (p^SJMet labelled) corresponding to panel (B).

The lanes correspond to those listed above for panel (B).
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Figure 6.2. The PEPc kinase activity synthesized during the in vitro translation of 

maize poly (A)+ RNA and barley total RNA is Ca^+ independent and the labelling 

detected in the PEPc kinase assays is not a result of ^®S-Met labelling of de novo 

synthesized PEPc in the translation products.

The figure shows phosphoimages of PEPc phosphorylated in vitro by translation products 

from maize poly (A)+ RNA and barley total RNA.

(A) PEPc kinase activity p^P-labelling of PEPc) using the in vitro translation products 

from maize poly (A)+ RNA purified from 20 jxg of total RNA.

Lane 1, poly (A)+ RNA isolated from mature leaves illuminated for 3 h plus 0.25 mM 

EGTA.

Lane 2, poly (A)+ RNA isolated from mature leaves illuminated for 3 h minus 0.25 mM 

EGTA.

Lane 3, poly (A)+ RNA isolated from mature leaves illuminated for 3 h assayed in the 

absence of 32p_ATP .

Lane 4, poly (A)+ RNA isolated from mature leaves darkened for 3 h plus 0.25 mM 

EGTA.

Lane 5, poly (A)+ RNA isolated from mature leaves darkened for 3 h minus 0.25 mM 

EGTA.

Lane 6 , poly (A)+ RNA isolated from mature leaves darkened for 3 h assayed minus 2̂ p- 

ATP.

(B) PEPc kinase activity (32p-labelling of PEPc) using the in vitro translation products 

from barley total RNA.

Lane 1, barley total RNA isolated from leaves illuminated for 3 h plus 0.25 mM EGTA, 

Lane 2, barley total RNA isolated from leaves illuminated for 3 h minus 0.25 mM EGTA. 

Lane 3, barley total RNA isolated from leaves illuminated for 3 h assayed minus ^^P-ATP. 

Lane 4, barley total RNA isolated from leaves darkened for 10 h plus 0.25 mM EGTA. 

Lane 5, barley total RNA isolated from leaves darkened for 10 h minus 0.25 mM EGTA. 

Lane 6 , barley total RNA isolated from leaves darkened for 10 h assayed minus 32p-ATP.
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Figure 6.3. Influence of protein and RNA synthesis inhibitors on the light-mediated 

decrease in the L-malate sensitivity of PEPc in desalted extracts from maize leaves.

Fully expanded maize leaves were detached from the plant and placed in the indicated 

concentrations of control solutions or inhibitors in darkness for 3 h. Next, dark controls 

were sampled immediately and frozen in liquid nitrogen. The remainder of the leaves were 

illuminated (-700 jxmoles m-^ s-̂ ) for 3 h prior to sampling. Rapidly desalted extracts were 

prepared from the leaves and assayed for the L-malate sensitivity of PEPc. The light 

regime is indicated by the shaded bar along the top of the graph and the mean percentage 

inhibition of PEPc by 1 mM L-malate in the dark and light controls is indicated to assist in 

visualizing the effect of each inhibitor.
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Figure 6.4. RNA synthesis is required for the light-induction of PEPc kinase 

translatable mRNA in maize.

Duplicate detached maize leaves were treated with RNA synthesis inhibitors or control 

solutions as described for figure 6.3 and sampled for RNA isolation. For each sample, 20 

jxg of total RNA was in vitro translated and the translation products were assayed for PEPc 

kinase activity. As a control for the inhibitor treatments, 10 jig of the same RNA samples 

were analysed by Northern blotting for the steady state transcript levels of the light- 

inducible C4  photosynthesis genes me and ppdk.

(A) PEPc kinase translatable mRNA levels in light-induced leaves supplied with RNA 

synthesis inhibitors.

Lane 1, 3 h dark plus 10 % methanol control.

Lane 2, 3 h light plus 10 % methanol control.

Lane 3, 3 h light plus 50 |xM actinomycin D.

Lane 4, 3 h light plus 500 |iM actinomycin D.

Lane 5, 3 h light plus 50 pM cordycepin.

Lane 6 , 3 h light plus 500 {xM cordycepin.

Lane 7, no RNA control.

(B) Northern blot probed using me.

Lanes correspond exactly to those above in panel (A) except that lane 7 is absent.

(C) Northern blot probed using ppdk.

Lanes correspond exactly with those above in panels (A) and (B) except that lane 7 is 

absent.
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Figure 6.5. Protein synthesis is not required for the light-induction of PEPc kinase 

translatable mRNA in maize.

Duplicate detached maize leaves were treated with protein synthesis inhibitors or control 

solutions as described for figure 6.3 and sampled for RNA isolation. For each sample, 20 

jig of total RNA was in vitro translated and the translation products were assayed for PEPc 

kinase activity. As a control for the inhibitor treatments, 10 jig of the same RNA samples 

were analysed by Northern blotting to determine the steady state transcript levels of the 

light-inducible C4  photosynthesis genes me and ppdk.

(A) PEPc kinase translatable mRNA levels in light-induced leaves supplied with protein 

synthesis inhibitors.

Lane 1, 3 h dark plus 1 % ethanol control.

Lane 2, 3 h light plus 1 % ethanol control.

Lane 3, 3 h light plus 1 mM puromycin.

Lane 4, 3 h light plus 100 jiM cycloheximide.

Lane 5, no RNA control.

(B) Northern blot probed using me.

Lanes correspond with those above in panel (A) except that lane 5 is absent.

(C) Northern blot probed using ppdk.

Lanes correspond with those above in panels (A) and (B) except that lane 5 is absent.
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Figure 6 .6 . The light-induction of PEPc kinase translatable mRNA in barley leaves 

requires RNA but not protein synthesis.

Detached barley leaves (10 days old) were placed in the appropriate control solution or 

solutions of protein or RNA synthesis inhibitors and kept in the dark for 3 h. The leaves 

were then either sampled immediately as dark controls or illuminated (-700 pmoles m-^ s‘ 

0  for 3 h. Total RNA was isolated from the leaf samples and used to prime the PEPc 

kinase translatable mRNA assay. As a control for the inhibitor treatments, 10 |ig of each 

RNA sample was also analysed by Northern blotting to determine the steady state 

transcript levels of the light-inducible rbcS gene.

(A) PEPc kinase translatable mRNA in light-induced barley leaves which had been pre

treated with protein and RNA synthesis inhibitors.

Lane 1, dark control.

Lane 2, 3 h light control.

Lane 3, 3 h light plus 50 pM actinomycin D.

Lane 4, 3 h light plus 50 jxM cordycepin.

Lane 5, 3 h light plus 5 jxM cycloheximide.

Lane 6 , 3 h light plus 50 |iM cycloheximide.

Lane 7, no RNA control.

(B) Northern blot probed with rbcS.

Lanes correspond with those above in panel (A) except that lane 7 is absent.
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Figure 6.7. The influence of a range of pharmacological agents on the light-mediated 

decrease in the L-malate sensitivity of PEPc in maize leaves.

Fully expanded maize leaves were detached from the plant and placed in the indicated 

concentrations of control solutions or inhibitors in darkness for 3 h. Next, dark controls 

were sampled immediately and frozen in liquid nitrogen. The remainder of the leaves were 

illuminated (-700 jimoles m-  ̂S'0  for 3 h prior to sampling. Rapidly desalted extracts were 

prepared from the leaves and assayed for the L-malate sensitivity of PEPc. The light 

regime is indicated by the shaded bar along the top of the graph and the mean percentage 

inhibition of PEPc by 1 mM L-malate in the dark and light controls is indicated to assist in 

visualizing the effect of each inhibitor.
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Figure 6.8. The influence of a range of pharmacological agents on the light-induction 

of PEPc kinase translatable mRNA in maize leaves.

Duplicate detached maize leaves were treated as described in figure 6.7, but samples were 

used for RNA isolation. For each sample, 20 |ig of total RNA was in vitro translated and 

the translation products were assayed for PEPc kinase activity. The figures show 

phosphoimages of the 32p_iabelled PEPc bands. The relative intensity of the PEPc bands is 

given below each lane.

(A) The effect of the type 1 and type 2A protein phosphatase inhibitor okadaic acid and the 

calmodulin inhibitor W7 on the light-induction of PEPc kinase translatable mRNA and the 

decrease in the L-malate sensitivity of PEPc in maize leaves.

Lane 1, dark control.

Lane 2 dark plus 250 nM okadaic acid.

Lane 3, 3 h light control.

Lane 4, 3 h light plus 250 nM okadaic acid.

Lane 5, 3 h light plus 250 fiM W7.

Lane 6 , no RNA control.

(B) The effect of protein kinase (staurosporin), calmodulin (W7), calcium channel (Bay 

K8644) and protein phosphatase (cantharidin) inhibitors on the light-induction of PEPc 

kinase translatable mRNA and the decrease in the L-malate sensitivity of PEPc in maize 

leaves.

Lane 1, dark plus distilled water control. Lane 2, dark plus 13 % methanol control. Lane 3, 

dark plus 10 % ethanol control. Lane 4, 3 h light plus distilled water control. Lane 5, 3 h 

light plus 13 % methanol control. Lane 6 , 3 h light plus 10 % ethanol control. Lane 7, 3 h 

light plus 10 |iM staurosporin. Lane 8 , 3 h light plus 500 |xM W7. Lane 9, 3 h light plus 

100 jiM Bay K8644. Lane 10, 3 h light plus 1 mM cantharidin. Lane 11, no RNA control.
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Chapter 7

General Discussion and Future Research
The regulation of higher plant PEPc by protein phosphorylation has been the 

subject of intensive research since its first discovery some 13 years ago (Nimmo et aL, 

1984; Nimmo et a l, 1996; Vidal and Chollet, 1997). Major developments have occurred 

since the initial reports which have established PEPc as one of the most thoroughly 

understood phosphorylated plant proteins. These developments include the discovery that 

it is the activity of PEPc kinase, rather than PEPc phosphatase, which is regulated in 

response to light and the circadian clock and that the highly regulated PEPc kinase is Ca^+- 

independent (Carter et aL, 1991; Li and Chollet, 1993; Li and Chollet, 1994; Li et al, 

1996; Wang and Chollet, 1993b). Also, the finding that all plant PEPc sequences contain 

the N-terminal phosphorylation site suggests that protein phosphorylation may be involved 

in the regulation of all the plant isoforms of PEPc, including the gymnosperm form 

(Lepiniec et aL, 1994; Relie and Wild, 1996; Vidal and Chollet, 1997). Significant insights 

have been made into the light signal transduction cascade which regulates PEPc kinase in 

C4  plants whilst understanding of the CAM signalling processes has lagged behind 

(Giglioli-Guivarc'h et aL, 1996; Vidal and Chollet, 1997). One fundamental finding has 

been the discovery that the induction of PEPc kinase requires de novo protein synthesis in 

the leaves of C3 , C4  and CAM plants (Carter et aL, 1991; Jiao et aL, 1991a; Li et aL, 

1996). However, further analysis of this requirement for protein synthesis has been 

hampered by difficulties with purifying PEPc kinase to homogeneity and/or cloning the 

PEPc kinase gene.

Major efforts have been directed towards the purification of PEPc kinase from C4 , 

CAM and C3 plants, but still there are no reports of protein sequence from these purified 

preparations nor has the gene been cloned, nor antibodies raised (Law and Plaxton, 1997; 

Li and Chollet, 1993; Li and Chollet, 1994; Li et al., 1996; Wang and Chollet, 1993b; 

Zhang and Chollet, 1997). This has left a large gap in the understanding of PEPc kinase 

regulation because it is not known whether the factor which must undergo de novo protein 

synthesis is the kinase itself or a secondary component which is required for kinase
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activation. One report has suggested that the light-induction of PEPc kinase in C4  plants 

does not involve transcription because RNA synthesis inhibitors fail to block the light- 

induced decrease in the malate sensitivity of PEPc (Giglioli-Guivarc'h et aL, 1996). 

However, no evidence was included to demonstrate the effectiveness of the RNA synthesis 

inhibitors used and so the involvement of transcription could not be ruled out. By contrast, 

RNA synthesis inhibitors were found to block the circadian increase in kinase activity in a 

CAM plant, implicating a transcription event upstream of the de novo protein synthesis 

step (Carter et aL, 1996).

The aim of the work described in this thesis was to circumvent this shortfall in the 

understanding of PEPc kinase regulation in plants by developing a novel assay for PEPc 

kinase mRNA which does not require a complementary nucleic acid probe. This was 

achieved by translating isolated plant RNA into protein in vitro using a rabbit reticulocyte 

lysate system that possessed no detectable endogenous PEPc kinase activity. The translated 

proteins are assayed in vitro for PEPc kinase activity using the purified dephosphorylated 

form of PEPc as a substrate and [y-^^P] ATP as the label. A series of control experiments 

established that the resultant labelling of the exogenous PEPc reflects the level of PEPc 

kinase mRNA in each RNA sample (see chapter 3). Furthermore, the kinase activity 

synthesized was Ca^+-independent like the activity detected in planta, and the RNA could 

be size fractionated to a single size range of 0.9-1.3 Kb. This assay was used to examine 

the regulation of PEPc kinase mRNA levels in C3 , C4  and CAM plants. In general, changes 

in the level of PEPc kinase mRNA were found to underlie changes in both PEPc kinase 

activity and the malate sensitivity of PEPc, and in some cases the malate content and net 

CO2 assimilation of leaves. In addition, a number of interesting exceptions to this rule were 

discovered which increase our understanding of the complex regulatory machinery which 

controls PEPc in plants.

The results in chapters 4 and 6  demonstrate that transcription is required for the 

increase in PEPc kinase mRNA in all three photosynthetic classes, but whilst protein 

synthesis is also required in CAM plants, it is not necessary in C3 and C4  plants. The 

requirement for both transcription and translation for the circadian increase in kinase
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mRNA in CAM plants could simply be due to inhibition of the underlying circadian 

oscillator. At the molecular level circadian oscillators have been found to involve an 

autoregulatory feedback loop in which a clock protein inhibits the transcription of its own 

clock gene (Page, 1994). Thus, both protein and RNA synthesis inhibitors will prevent the 

operation of the circadian oscillator itself. However, the involvement of transcription of the 

PEPc kinase gene itself cannot be ruled out for the CAM system at this stage. The fact that 

these inhibitors prevent the nocturnal increase in PEPc kinase mRNA in the CAM system 

also indicates that at least two protein synthesis events are required for the increase in 

kinase mRNA. One is the translation of PEPc kinase mRNA into active PEPc kinase 

protein. The other could be in the operation of the circadian oscillator itself and/or the 

translation of a component of the clock output pathway which is required to convey the 

signal from the level of the circadian clock through to the level of PEPc kinase mRNA.

In C3 and C4  plants there is only a single protein synthesis event in the light- 

induction of PEPc kinase activity. This can be concluded because, whilst RNA synthesis 

inhibitors block the light-induction of kinase mRNA and the decrease in the malate 

sensitivity of PEPc, protein synthesis inhibitors only blocked the latter effect. Furthermore, 

protein synthesis inhibitors not only did not block the light-induction of PEPc kinase 

translatable mRNA levels but actually caused the mRNA to accumulate to over twice the 

light control level. This increased accumulation of kinase mRNA suggests that, in the 

presence of protein synthesis inhibitors, the signal to increase the level of PEPc kinase 

translatable mRNA is transmitted, but some other signal which controls the maximum 

level of kinase mRNA is blocked. There are two possible explanations for this large 

accumulation of kinase mRNA. One is that, in the absence of protein synthesis inhibitors, a 

specific RNase is synthesized which turns over a proportion of the kinase mRNA. The 

second explanation is that, in addition to the feedforward signal from light which induces 

kinase mRNA, there is a feedback signal, possibly from a metabolite such as malate, which 

accumulates as a result of flux through PEPc. If the feedback signalling pathway requires 

de novo protein synthesis to function then the presence of protein synthesis inhibitors 

would block the feedback pathway and thus prevent any moderation of kinase mRNA
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levels. Fixation of CO2  by PEPc and the formation of malate may mediate this feedback 

signalling pathway because protein synthesis inhibitors block the light-induced 

phosphorylation and activation of PEPc.

Another important conclusion which can be drawn from the effects of protein and 

RNA synthesis inhibitors on PEPc kinase mRNA levels is that the PEPc kinase gene is 

probably transcriptionally regulated. Whilst this conclusion would be a rather ambitious 

one to draw from the effects of RNA synthesis inhibitors on the circadian induction of 

PEPc kinase mRNA in CAM plants, because it is likely that transcription is required for 

the functioning of the clock itself, the results with C3 and C4  plants provide much stronger 

support for this hypothesis. As mentioned above, transcription is required for the increase 

in kinase mRNA in C3 and C4  plants, but translation is not necessary. The simplest 

explanation of this result is that the transcription of the PEPc kinase gene itself and/or 

reduced destruction of kinase mRNA is necessary to produce the observed increase in the 

level of kinase translatable mRNA. This explanation is supported by the fact that protein 

synthesis is not required for the increase in kinase mRNA, whilst it is required for the 

decrease in the malate sensitivity of PEPc. However, a more complicated explanation, 

which cannot be ruled out, is that a secondary component undergoes transcriptional 

regulation and that the in vitro translation system translates this secondary component, 

allowing it to activate the translation of pre-existing PEPc kinase mRNA. This would mean 

that the translation system reconstitutes the last two steps of the signal transduction 

cascade which were blocked in planta by the RNA synthesis inhibitor. Although this latter 

hypothesis is more complicated, it is supported to some extent by the conclusions of 

Giglioli-Guivarc'h et al, (1996) that the light-induction of PEPc kinase activity in the C4  

grass Digitaria sanguinalis is the result of increased translation of pre-existing mRNA. 

However, Giglioli-Guivarc'h et a l (1996) drew this conclusion from a failure of RNA 

synthesis inhibitors to block the light- and weak base-induced decrease in the malate 

sensitivity of PEPc in isolated mesophyll protoplasts of D, sanguinalis. In the present 

work, RNA synthesis inhibitors did block the light-induced decrease in the malate 

sensitivity of PEPc when supplied to detached whole maize leaves (see chapter 6 ). This
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conflict between results is difficult to explain, but Giglioli-Guivarc’h et aL (1996) did not 

display any results which demonstrated that the RNA synthesis inhibitors they applied to 

their protoplasts prevented de novo transcription in the protoplasts. It therefore remains 

possible that transcription could still occur in the protoplasts and thus, kinase mRNA and 

activity could increase in response to the light and weak base signal. Unfortunately, 

unequivocal proof of whether or not transcription of the PEPc kinase gene itself is involved 

in the induction of PEPc kinase activity in plants must await the cloning and expression 

analysis of the PEPc kinase gene. However, the results presented in this thesis provide 

significant new impetus for such studies to be performed as soon as possible, because they 

provide strong evidence to support the transcriptional regulation of PEPc kinase. This 

would be a novel and exciting finding for a protein kinase gene.

A number of separate lines of evidence also support the hypothesis that PEPc 

kinase is not regulated by a secondary component. As mentioned in chapter 6 , mixing 

experiments in which dark and light extracts of B, fedtschenkoi or maize were mixed in the 

presence of potential co-factors to investigate whether, for example, a component in a light 

extract of maize could activate an inactive PEPc kinase in a dark extract, have proved 

negative (P.J. Carter, G.A. Nimmo and H.G. Nimmo, unpublished) . Such results suggest 

that PEPc kinase is not a pre-existing protein that is activated by a de novo synthesized 

secondary component but is itself synthesized de novo in response to the clock or light. 

Furthermore, the appearance of PEPc kinase activity in an in vitro translation is linear with 

time, which would be unlikely if a cascade system had to be reconstituted in which PEPc 

kinase is activated by a secondary component which is also translated by the rabbit 

reticulocyte lysate. In this latter case one might expect that the appearance of active PEPc 

kinase during in vitro translation would show a lag followed by an exponential increase 

with time. This would be caused by the requirement for a second component to be 

synthesized and then either activate PEPc kinase or activate the translation of pre-existing 

PEPc kinase mRNA. Such a secondary component could be a positive translation factor 

which, once synthesized, mediates the specific translation of PEPc kinase mRNA. Another 

possibility is that samples of RNA which produce low PEPc kinase activity upon in vitro
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translation may contain high levels of mRNA for a specific PEPc kinase RNase which, 

when translated in vitro, destroys pre-existing kinase mRNA before it can itself be 

translated. Despite these perfectly feasible alternative hypotheses, the simplest explanation 

of the results in this thesis still remains that the level of PEPc kinase mRNA in isolated 

RNA samples reflects the level of transcription of the PEPc kinase gene at the time of 

sampling.

In addition to the requirement for transcription in the induction of PEPc kinase 

mRNA and activity in maize and B. fedtschenkoi both protein dephosphorylation and 

calmodulin are involved in the induction of the kinase. This conclusion is drawn from the 

effects of specific inhibitors of PPl and PP2A and calmodulin. Other inhibitors of protein 

kinases and calcium channels were found to have no effect at the concentrations applied. 

However, this does not preclude the involvement of an additional protein phosphorylation 

event and a flux of calcium through calcium channels because the effectiveness of the 

inhibitors on their target proteins was not determined. Furthermore, the effects of 

phosphatase and calmodulin inhibitors must be interpreted with an element of caution due 

to the high concentrations of inhibitors required to achieve inhibition. This requirement for 

high concentrations of the inhibitors to achieve inhibition is probably due to the mode of 

application of the inhibitors to the leaves. Detaching leaves from their parent plant is an 

inherently stressful process which will induce a wounding response that is likely to be 

accompanied by the induction of a range of genes involved in the defence response. 

However, short of cutting leaf discs or even isolating protoplasts, which are both much 

more invasive, it is the simplest method of supplying inhibitors to leaves. The assumption 

is that the inhibitor will be taken up through the petiole and will eventually reach the target 

mesophyll cells via the transpiration stream. Problems with uptake and cell to cell 

movement will all decrease the final concentration of inhibitor which reaches the target 

cells. This may mean that, the concentration of inhibitor which reaches the target 

mesophyll cells could be several orders of magnitude lower than the concentration 

supplied. This is why significant attempts were made in this study to define the minimum 

effective concentration of each inhibitor. In addition to problems with uptake, a further
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problem is that the inhibitor may have an effect due to it inhibiting a step in a closely 

related pathway which impinges on the pathway of interest. In some cases inhibitors can 

also inhibit processes quite distant to their target which impinge on the whole metabolism 

of the cell. For example, protein phosphatase inhibitors can block mammalian protein 

synthesis due to the requirement for dephosphorylation for continued initiation (eIF-2) and 

elongation (eEF-2) factor activity (Redpath and Proud, 1989). Protein phosphatase 

inhibitors have also been found to inhibit the incorporation of 35S-Met into total soluble 

protein in maize leaves (Redinbaugh et al., 1996). Hence, inhibitor experiments must be 

interpreted with an element of caution. However, with this caveat in mind, valuable 

insights into some of the possible elements in the signal transduction cascades which 

regulate PEPc kinase mRNA and activity levels have been made in this study. These 

possible signal elements are indicated in figure 7.1 which summarizes the data on the 

regulation of PEPc kinase in this thesis.

Although PEPc kinase activity in the leaves of C3 , C4  and CAM plants has been 

found to be induced by light or the circadian clock, examples have recently appeared which 

demonstrate that in other systems, such as seeds and fmits, PEPc kinase is pre-existing and 

its activity does not vary throughout the diurnal cycle (Echevarria et al., 1997; Law and 

Plaxton, 1997). It will be interesting to examine whether PEPc kinase mRNA is present in 

such tissues. This would allow the determination of whether kinase mRNA is also 

permanently present in seeds and fruits which might suggest that the RNA and activity are 

constantly turned over and therefore require continuous synthesis to maintain a high level 

of activity, or whether the kinase activity is stable and does not require de novo synthesis 

to maintain a high level. The level of PEPc kinase in the seeds of barley is unaffected by 

cycloheximide, which indicates that in this system the mRNA could well be absent 

(Echevarria et a l, 1997). Analysis of such systems with the PEPc kinase translatable 

mRNA assay would prove valuable because it may provide evidence of other conditions 

where the level of kinase mRNA does not always mirror the level of kinase activity. Such 

conditions have been identified in this study in the CAM plant K. daigremontiana during
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Figure 7.1. Summary of the signalling events involved in regulating the level of PEPc 

kinase translatable mRNA and activity in C3 , C4  and CAM plants

The diagram represents an overview of the results presented in this thesis concerning the 

signal transduction cascades which regulate PEPc kinase, and hence PEPc itself, in the 

three major photosynthetic classes of higher plants. Question marks (?) are used to indicate 

steps which could occur at one or more points in the signalling cascade.
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daigremontiana during and after a night in anaerobic conditions and when the leaves of C3 

and C4  plants are supplied with protein synthesis inhibitors.

As described in chapter 5 the level of PEPc kinase mRNA generally underlies 

changes in PEPc kinase activity in K. daigremontiana. However, when leaves are 

encapsulated with pure nitrogen during the dark period, kinase mRNA levels remain close 

to control levels until the latter part of the night, whilst kinase activity is higher than 

controls and increases throughout the night at a greater rate than controls. Furthermore, 

when leaves were removed from nitrogen at the beginning of the photoperiod a sharp peak 

in kinase mRNA was detected which was not followed by a peak in kinase activity. 

However, when leaves were removed from nitrogen in the middle of the night the peak in 

kinase mRNA was followed by a peak in kinase activity. These results demonstrate that 

circadian clock control of PEPc kinase interacts with metabolite and possibly light control 

of the kinase. Malate is one metabolite which may interact with clock regulation of PEPc 

kinase mRNA and activity. For example, when malate is low due to nitrogen encapsulation 

a rapid increase in temperature from 19 to 2TC  causes an increase in kinase mRNA and
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activity whilst in control leaves, where the temperature rise will cause accumulated malate 

to diffuse out of the tonoplast, kinase mRNA and activity drop over the same period. Light 

may prevent the translation of PEPc kinase mRNA or cause the appearance of a tight- 

binding inhibitor of PEPc kinase which prevents detection of PEPc kinase activity. In 

addition, the return of nitrogen encapsulated leaves to normal air in the middle of the dark 

period results in a peak in kinase mRNA and activity at a time when control levels have 

plateaued in response to the clock. This suggests that respiration and/or the commencement 

of flux through PEPc can stimulate PEPc kinase production. One possible explanation of 

this effect is that the resupply of air permits aerobic respiration and thus ATP will begin to 

become more readily available. Also PEP may have accumulated during the period of 

anaerobic conditions due to the inhibition of flux through PEPc so the resupply of CO2  will 

cause high flux through PEPc leading to malate formation. It is clear from this study that 

metabolites play a key role in the regulation of PEPc kinase in CAM plants in addition to 

the circadian clock.
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In vitro translation products have only rarely been assayed successfully for enzyme 

activity (Hruby and Ball, 1981; Raj and Pitha, 1977), The novel method described here for 

measuring the mRNA encoding a protein kinase is of great sensitivity, because the specific 

activity of the ATP can be very high. It is complementary to estimates of mRNA 

abundance that are based on hybridization, and may be useful in cases of translational 

control. The method cannot of course discriminate between mRNAs for isoenzymes that 

catalyse the same reaction. The method should prove generally applicable for measuring 

the mRNAs for any protein kinase for which both a specific substrate and an antibody to 

that substrate are available. It may also be applicable to mRNA prepared from cDNA 

cloned into a vector with an appropriate adjacent promoter. Analysis of such libraries could 

provide a simple way of cloning protein kinase cDNAs, based on the reactions catalysed 

by particular kinases rather than on conserved sequences within the protein kinase family.

The possibility that the PEPc kinase translatable mRNA assay may be a powerful 

method of cloning the PEPc kinase cDNA was explored in this study. A cDNA library was 

synthesized from a sample of poly (A)+ RNA prepared from B. fedtschenkoi leaves 

sampled in the middle of the dark period. This RNA was used because it possessed 

maximum levels of PEPc kinase translatable mRNA. Mass excision of the plasmids from 

the phage of this cDNA library allowed the production of a plasmid library containing 

cDNA inserts representing all the expressed genes in the original RNA sample in the 

pBluescript plasmid. Plasmids were isolated from a representative sample of the plasmid 

library and linearized using the Xho 1 restriction enzyme. The linearized plasmid was used 

as the template for in vitro transcription reactions. This was possible because the multiple 

cloning site of pBluescript, in which the cDNA inserts reside, is flanked by the T3 and T7 

bacterial promoters. T3 RNA polymerase was used to synthesize RNA from the cDNA 

because the original cDNA was obtained by unidirectional cloning which meant that 

reading from the T3 promoter would generate sense mRNA. The in vitro transcribed RNA 

was isolated and used to prime the in vitro translation assay for PEPc kinase activity.

Figure 7.2 shows that in vitro transcribed RNA from the B. fedtschenkoi dark 

cDNA library does direct the synthesis of detectable amounts of PEPc kinase activity. This
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Figure 7,2. Evidence that transcription and translation of a B, fedtschenkoi 'dark ’ 

plasmid cDNA library can yield active PEPc kinase

In vitro transcribed RNA synthesized using linearized B. fedtschenkoi 'dark' cDNA library 

plasmid as a template was translated using the rabbit reticulocyte lysate in vitro translation

system and the translation products were assayed for PEPc kinase activity.

(A) PEPc kinase activity synthesized by various amounts of in vitro transcribed RNA 

Lane 1, 2.5 jig of in vitro transcribed RNA

Lane 2, 6.3 jig of in vitro transcribed RNA

Lane 3, 12.5 jig of in vitro transcribed RNA

Lane 4, 5 fig of B. fedtschenkoi 'dark' control total RNA

Lane 5, no RNA control

Lane 6 , 1.25 fig of in vitro transcribed RNA

Lane 7, 7.5 jig of B. fedtschenkoi 'dark' control total RNA

(B) In vitro translation products synthesized by various amounts of in vitro transcribed 

RNA

Lanes are as described for panel (A)
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indicates that this basic assay can be used to isolate the PEPc kinase cDNA. This task 

would be approached by separating the plasmid library into pools, isolating the plasmid 

from each pool and performing the transcription/translation assay for PEPc kinase cDNA 

inserts in the plasmids. The pool of plasmid DNA possessing the peak amount of PEPc 

kinase cDNA would be retransformed into E. coli, grown up to multiply each plasmid and 

the pooling process repeated. Numerous rounds of this pooling should eventually lead to 

the isolation of a single population of plasmids which contain cDNA inserts which encode 

kinases capable of phosphorylating PEPc. Presumably one of these kinase genes would be 

the bona fide Ca^+-independent PEPc kinase. Isolation of the PEPc kinase cDNA would 

open the way for a wide array of exciting new research. For example, expression analysis 

of the kinase gene could be performed using Northern blotting and this should finally 

resolve the question of whether PEPc kinase is transcriptionally regulated in response to 

light or the circadian clock. Also, the genomic clone for PEPc kinase could be isolated and 

the promoter analysed. Isolation of the promoter should allow cloning of transcription 

factors which regulate the PEPc kinase gene and this may in turn permit the isolation of 

earlier steps in the signalling pathway such as protein kinases or phosphatases that control 

the transcription factors. The promoter could also be placed in front of a reporter gene such 

as 6 -glucuronidase or green flourescent protein to permit the analysis of the in vivo 

expression of PEPc kinase in transgenic plants. Also, introducing the PEPc kinase gene 

into transgenic plants in the antisense orientation may permit analysis of precisely how 

crucial PEPc kinase is to the circadian regulation of CO2  assimilation in CAM plants and 

the maintenance of high rates of photosynthesis in C4  plants. These and many other 

exciting aspects of research on the regulation of PEPc in higher plants must await the 

cloning of the PEPc kinase gene. Hopefully, this will be achieved within the coming year 

and research into PEPc and PEPc kinase regulation can enter this exciting new phase as we 

enter the new millennium.
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