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Sum m ary

Neuronal dendritic trees exhibit a huge variety of morphologies, and their information 
processing capabilities are, for the most part, poorly understood. The fundamental diffi
culty stems from the fact that dendrites can be bewilderingly complicated and appear to 
operate at a global level; an event in one location potentially influences the entire tree. At 
first sight, it would seem that the entire tree must be analysed as a single entity unless 
conceptual simplifications can be introduced.

This thesis presents procedures for reducing passive neuronal dendritic tree models 
to fully equivalent unbranched non-uniform cables. A fully equivalent cable is equivalent 
in a mathematical sense to the original tree model and capable of reproducing the same 
physiological behaviour. An understanding of the construction procedures, as well as 
the results they produce, gives new, and general, insight into the local and global signal 
processing capabilities conferred on passive dendritic trees by their geometry.

Chapter One {Neurophysiological Background and Dendritic Function) outlines the 
basic neurophysiology of relevance to this thesis. The major neuronal components, i.e. 
dendritic trees, soma, axon, neuronal membrane, and synaptic connections, are introduced. 
The electrochemical basis of membrane excitability, manifest as a changing transmembrane 
electrical potential, is described. We consider how ion channels allow specific ion species 
(K+, Na+, Ca^+, 01“ ) to pass across the membrane, and how equilibrium is sought as 
transmembrane electrostatic forces balance with transmembrane chemical gradients to 
establish a resting transmembrane potential. Equivalent cable construction is particularly 
concerned with dendritic trees and so their signal processing role is considered, from the 
generally accepted signal integration mechanisms that follow almost inevitably for such 
branching excitable structures, to some theoretical and speculative possibilities that have 
not so far been verifiable due to the lack of appropriate experimental techniques, but could 
possibly have a significant role in certain aspects of real neuron operation.

Chapter Two {Cable Theory and the Multiple Segment Dendritic Tree Model) details 

a generalisation of the one dimensional cable theory commonly used to describe electrical 
activity in neuronal structures. The derivation follows from fundamental principles such 
as charge conservation and from the nature of membrane constitutive properties. Other
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than the one-dimensional and ohmic electrical properties of the dendritic cytoplasm, few 
assumptions are made about electrical and geometrical properties. The resulting cable 
equation is valid for segments of dendrite with non-uniform cross-sectional profiles and can 
incorporate arbitrary types and densities of ion channels and synaptic inputs. Following 
this, the assumptions which must be made to yield the passive linear cable equation 
— which is the basis of equivalent cable construction — are explained. By assuming 
the existence of a steady resting transmembrane potential, the transmembrane currents 
can be quite naturally expressed as a sum of linear and non-linear contributions. The 
linear cable equation is obtained by assuming the non-linear component is zero. The 
standard dimensionless (electrotonic) form of this equation is then formulated, along with 
joining and terminal boundary conditions for the multiple segment dendritic tree model. 
The multi-cylinder specialisations of the general equations are also given since these will 
be used in later chapters to derive the methods of equivalent cable construction. For 
the passive tree model to be valid for equivalent cable construction, the membrane time 
constant must be a constant over the entire tree, and only cut (zero potential) and current 
injection (specified potential gradient) boundary conditions may be applied at terminals.

Chapter Three {Equivalent Cables) outlines the equivalent cable concept as it has de
veloped over the years. An equivalent cable is basically an unbranched dendrite model 
which is, in some sense, “equivalent” to a dendritic tree model. We start with a detailed 

examination of the first major result concerning equivalence, i.e. Rail’s equivalent cylin
der, then proceed with an outline of the empirically derived and geometrically and/or 
electrically restrictive cables that have been inspired by Rail’s model. We then move to a 
thorough description of the new fully equivalent cables that are the concern of the rest of 
this thesis, describing important structural properties such as the existence of disconnected 
cable sections, and conserved quantities, such as electrotonic length and steady-state input 

conductance. Of major importance is the definition of equivalence. Unlike previous mod
els, fully equivalent cables satisfy a rigorous mathematical definition of equivalence which 
demands the existence of a bijective electrical mapping that specifies a unique relationship 
between configurations of electrical activity on the tree model and those on its equivalent 
cable. Whereas previous models have been developed mainly as an aid for neuron elec
trical parameter estimation, the new fully equivalent cable model must be regarded as a 
fundamentally different, and more powerful mathematical object. They have implications 
for the understanding of local and global signal processing functions that arise as a conse
quence of dendritic geometry, and introduce several new ideas such as passive coincidence 
detection and characteristic distributions of tree activity. Much emphasis is placed on the 
transformation of basic singly branched structure. Any tree may be transformed to an 
equivalent cable by successive reduction of such Y-junctions.



Chapter Four {Matrix Methods for Constructing Fully Equivalent Cables) describes a 
matrix formalism for transforming passive dendritic tree models into their fully equivalent 
cables. The matrix methods employ a finite difference scheme to build a nearly tri-diagonal 
matrix representation of a dendritic tree. This matrix is then tri-diagonalised, and the 
resulting matrix represents the fully equivalent cable. Two methods, requiring specific 
implementations of Lanczos tri-diagonalisation and Householder tri-diagonalisation, have 
been found suitable. We show how the original tree matrix structure guarantees that 
essential equivalent cable matrix structure is preserved. Computer algorithms are given for 
both methods, and aspects such as efficiency and storage are discussed. Algebraic examples 
of each method are given. By employing numerical procedures, these methods obscure 
details of the underlying construction mechanism, and we conclude that the theoretical 
foundation of fully equivalent cable construction must follow from a more fundamental 
analysis of the passive linear cable equation. This theoretical foundation is developed in 
Chapters Five, Six and Seven.

The full set of analytical construction rules exhibit a high level of algebraic complexity. 
In order to present the basic cable construction ideas, and avoid too much technical detail, 

we start in Chapter Five {Foundations of Equivalent Cable Construction) by introducing 
all the required concepts via specific and reasonably simple examples. General solutions of 
the Laplace transformed passive cable equation are employed as part of a loosely defined 
first-principles algorithm for cable construction. This first-principles approach indicates 
that cable construction is actually an iterative two-stage procedure. Firstly, electrical con
tinuity, i.e. voltage continuity and current conservation, must be guaranteed between the 
cylinders tha t form a fully equivalent cable. We state several of the “electrical continuity” 
rules that are developed in full in Chapter Six. However, it turns out that these rules do not 
uniquely determine equivalent cable structure, i.e. cylinder diameters are not fixed. The 
necessary constraints for determining the final, and unique, cable structure, and simulta
neously ensuring eventual termination, are imposed by an “isolation condition” , which we 
also state. This condition ensures tha t a dendritic sub-tree may be transformed without 
concerning oneself with the structure to which it is connected. Although the electrical 
continuity rules are obtained in the Laplace domain, properties of the construction rules 
are such tha t these rules are equally valid in the physical (electrotonic) domain.

Chapter Six {The General Analytical Construction Rules) contains the technical deriva
tion of the analytical construction rules for a singly branched tree. Firstly, the general 
electrical continuity rules are obtained using the first-principles approach given in Chap
ter Five. These rules are are applied to an expression for the potential in one cylinder 
in order to generate an expression for the potential in the next cylinder. Only a “frame
work” potential is generated however, since cable cylinder diameters are not determined
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at this stage. The necessary constraints for determining the final cable structure, and 
simultaneously ensuring eventual termination, are imposed by a set of self-reinforcing 
isolation-termination rules, of which the “isolation condition” is the simplest and most 
fundamental. Ensuring that dendritic sub-structure may be transformed in isolation from 
the rest of the tree corresponds to ensuring that the isolation condition is always satisfied.
Prior to construction, equivalent cable section lengths and boundary conditions may be 
predicted using results from this chapter. There are indications in the analytical method 
of a deeper mathematical structure that has yet to be fully determined.

Chapter Seven (An Analysis of Cable Structure Using Branch Shifting) takes a more 
in depth look at simple Y-j unctions — singly branched structure where each branch is 
formed from a single uniform dendritic segment. Their fully equivalent cables may be 
constructed rapidly using a method that follows straightforwardly from the simplest ana
lytical construction rules. This method, referred to as branch-shifting, involves producing 
an equivalent cable by passing through a set of equivalent Y-j unctions, the final member 
of which transforms to the fully equivalent cable. The analytical expressions given by this 
method for a fully equivalent cable’s geometry and electrical mapping give very useful in
sights into overall trends in cable structure. These insights are also valid for more general 
Y-j unctions, and may be simply stated as “sealed terminals promote narrow cable diam
eters, strong voltage mappings and weak current mapping” , and “cut terminals promote 
large cable diameters, weak voltage mappings, and strong current mappings” .

Chapter Eight {Discussion, Conclusions, and Future Work) provides an overview of 
the nature of fully equivalent cables and their implications. We briefiy review the con- :
struction methods, and discuss, in physiological terms, and with illustrated examples, 
revelations from previous chapters concerning fully equivalent cable structure. To link the 
construction techniques with reality, cables created using data for several real motoneuron 
dendrites are also illustrated. Mathematical equivalence of fully equivalent cables permits 
an exhaustive, and novel, analysis of the properties of passive dendritic geometry that 
goes beyond the capabilities of previous “quasi-equivalent” cable models, or numerical 
simulation. It is significant that this method reveals signal integration properties that 
arise solely as a consequence of dendritic geometry. We discuss the relationship between 
dendritic geometry and dendritic function in this new light. Limitations of the passive 
model are balanced with the insight gained, and we consider the implications for more 
generally realistic active models. Possible applications and future extensions of this work 
are discussed.
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C hapter 1

N europhysiological Background  
and D endritic Function

1.1 In trod u ction

Formed from billions of interconnected neurons, the human nervous system is an incred
ibly complicated structure. The level of physical intricacy is often bewildering, from the 
molecular to the single neuron, through the local networks they form, to the larger net
works associated with distinct functional regions of the brain. When one also considers the 
range of electrical and biochemical processes through which neurons are able to interact 
and adapt, and the range of time scales over which these processes take place, it becomes 
even clearer why it has been difficult to obtain a detailed understanding of most aspects 
of nervous system function. Evolution has enabled coherent function to emerge from the 
interaction of all these processes.

Neuron structure and interconnectedness seems to confer upon the brain its ability to 
perform an impressive array of mechanical, regulatory and cognitive functions; through 
various electrical and chemical processes, the brain is able to receive, encode, decode, 
transmit and retain, vast quantities of information. The way in which information is 
represented and processed by neurons and their networks is only understood in limited 

detail. Many advances have been made where work has concentrated on functions that are 
well-specified and do not present too much difficulty for experimental access, e.g. some 
aspects of the visual and motor systems. Properties of the nervous system tha t underlie 
less directly accessible functions such as memory, and other cognitive aspects of brain 
function, are not as well understood. However, with the introduction and widespread 
use of powerful visualisation tools such as functional magnetic resonance imaging, it is 
possible to observe (large scale) regional changes in brain activity associated with specific
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cognitive functions, enabling improved understanding of higher brain function. There 
have also been advances at the molecular level, concerning, for example, the development 
and the genetic basis of the nervous system. It is a major challenge, however, to gain a 
detailed understanding of the intermediate functional levels of the single neuron and the 
neural network.

Advances in understanding neuron function are contributed primarily by experiment, 
although theoretical and mathematical modelling approaches play a significant role in 
attem pts to explain and predict the electro-chemical behaviour that underlies experimen
tally observed phenomena. Neuronal models and signal analysis techniques are also used 
to investigate how information might be coded in the electrical signals that are input to 
and output from real neurons and their networks, and how this information is transformed. 
Many signal processing operations tha t real neurons might perform have been postulated, 
for example simple logic operations, input coincidence detection, and Hebbian learning 
(see McKenna et al, 1992, for an overview of several possibilities). The fact that neurons 
process information in some way often motivates a description of neuron function in terms 
of “computation” . However, since signal processing in complicated real neurons is not 
well understood (in contrast with digital computation), the term is presently used fairly 
vaguely, encompassing broad possibilities of neuron operation. Interesting discussions on 
the nature of computation for real neurons can be found in Schwartz (1990).

Ever since the wealth of dendritic structure was revealed by Ramon y Cajal (1911), the 
observed complexity and variety of single neuron morphology has raised many questions 
concerning the role that geometry might play in neuronal signal processing. Unfortu
nately, an extensively branched tree does not generally lend itself to mathematical or 
experimental analysis which might reveal subtle and important function associated with 
specific neuronal shapes. However, the fully equivalent cables that are the subject of this 
thesis allow one to extract previously unobtainable information about the way dendritic 
geometry can influence the full range of electrical activity that arises in a particular class 
of tree models (electrically passive models). These equivalent cables are the first such tool 
to allow this type of analysis for dendritic trees.

The purpose of this chapter is to introduce some basic neurophysiology, describing the 
nature of electrical activity in neurons and covering briefly the role of dendritic trees in 
neuron function. The detail given here should be sufiicient for an understanding of the 
mathematical models and methods described in later chapters.
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Figure 1.1; Idealistic representation of a neuron, (a) The main anatomical components of 
a neuron are illustrated: the cell body, dendritic trees, and axon, (b) Cells influence one 
another via synaptic connections. See discussion in text for more details.

1.2 N eu ron  S tructure and C onnections

Figure 1.1 illustrates the main physical features of a neuron in an idealised representation. 
Not all neurons share these features, while some exhibit additional structure. The cell body, 
or soma, is usually a distinct bulk, from which several long, thin, and usually branching, 
cable-like appendages may emerge — the dendritic trees (or dendrites), of which there 
can be several, are traditionally regarded as gatherers of electrical input, while the single 
axon is the path of electrical output. Electrical activity at the soma (or more specifically, 
at a trigger zone on, or near, the soma), which is due to the combined effects of inputs 
on the dendritic trees and the soma itself, will determine if an output is generated at any 
point in time.

The axon branches to form synaptic connections with other cells, often forming many 
connections on each target cell. Local neurons form connections with other neurons in 
the immediate vicinity of the output-generating cell, while the axons of projection neurons 
are longer and sheathed in myelin, allowing signals to travel significant distances rapidly 
and with little degradation to more distant target cells. The myelin sheath is broken at 
regular intervals, known as nodes of Ranvier, where output signals are reinforced.

This division of function among the main components of a neuron is a useful general
isation for many purposes, but there is great scope within the dendritic trees and axonal
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trees for more complex roles. Dendritic trees, for example, because of their branched 
structure and electrical properties, are possibly capable of localised signal processing (e.g. 
Koch et aL, 1982; Woolf et al, 1991). Section 1.4 discusses general dendritic function in 
greater detail.

Of course, a self-contained system of neuron to neuron input-output is not of much 
practical use to a living creature: some neurons (in the peripheral nervous system, rather 
than the central nervous system) must gather information about the outside world, and 
others must control functions of the body. Apart from the most prevalent interneurons 
which connect to other neurons, there are specialised sensory neurons which receive, for 
example, visual, and auditory information; motoneurons control muscle.

Each neuron is bounded entirely by a thin membrane (width approximately 2.3 nm), 
separating the intracellular fluid (cytoplasm) from the extracellular space. The membrane 
exhibits a capacitive effect, and is capable of retaining a charge density on the membrane- 
intracellular and membrane-extracellular interfaces (the membrane capacitance per unit 
area is often approximated as 1.0 fiF/cm^). The intracellular medium is an ionic solution 
which contains sub-cellular components that perform essential metabolic processes; the 
soma contains the cell’s nucleus. Immediately extracellular to a neuron is another ionic 
solution that forms a narrow region (roughly 20 nm) between cells; segments of other 
dendrites and axons may lie close by, perhaps receiving input from or sending input to 
the same sources, perhaps not. Also present are cells generally associated with regulatory 
brain functions, known collectively as glial cells.

A distribution of ion channels lies across the membrane, allowing specific ionic species 
(in particular sodium, potassium, calcium and chloride ions) that are in solution either 
side of the membrane to pass across it. Section 1.3 explains how the type and density 
of ion channels distributed over the neuron membrane, combined with intracellular and 
extracellular ion concentrations, determines the range of excitable electrical phenomena 
that can be produced when the neuron is subject to synaptic input.

A synapse is a junction between two cells, where pre-synaptic structure (usually an 
axon terminal) influences post-synaptic structure (usually the dendrites or soma). The 
majority of synapses are chemical synapses, where the cells are not directly connected. In
stead a neurotransmitter substance is released at the axon terminal of the pre-synaptic cell 
in response to electrical activity (more specifically, an increase in intracellular calcium con
centration). The neurotransmitter difiuses across the small gap between cells (the synaptic 
cleft, approximately 20-40 nm in width) and binds to receptors on the post-synaptic cell 
membrane, thus initiating electrical activity (sometimes through a secondary process) by 
opening specialised ion channels and allowing specific ions to flow more easily across the 
membrane. Chemical synapses are either excitatory, in which case, when activated, they
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increase the likelihood of an output signal being generated by the post-synaptic cell, or 
inhibitory, in which case the likelihood is decreased. There are also electrical synapses 
where the two cells are directly connected by a small membrane gap-junction which allows 
electrical activity to spread between cells in the same manner as it spreads within a cell. 
These connections are often associated with synchronisation of activity between popu
lations of neurons. Electrical synapses are given no further consideration in this thesis. 
Synaptic organisation in the brain is discussed in great detail in Shepherd (1990).

Depending on the neuron type, synapses may be located at many thousands, tens of 
thousands, or even hundreds of thousands, of sites over the dendritic trees and soma. In 
addition to the axo-dendritic (axon to dendrite) and axo-somatic (axon to soma) connec
tions described above, there exist axo-axonic (axon to axon) synaptic connections where 
output from one neuron can directly influence the output of another by connecting in the 
region of an axon terminal. Less common, though not necessarily less important, are the 
dendro-dendritic synapses, where a dendrite of one cell forms a synaptic connection with 
the dendrite of another cell.

It is useful to consider typical dimensions of the often studied motoneuron, to get 
an idea of the sizes of the objects under consideration, though it should be noted there 
can be significant variation between neuron types, (source of following data: Tuckwell, 
1988a). The dendritic membrane surface area is usually much larger than that of the cell 
body. For example, the ratio of dendritic to somatic surface area for the motoneuron is 
of the order 10, with a total combined surface area averaging 145,000 the density of 
synaptic connections over the membrane is around 10-20 synapses per 100 ^m^, but varies 
over the cell body and dendrites. The roughly spherical motoneuron soma has diameter of 
approximately 80yum, while dendritic diameters range from around 10/im, narrowing with 
distance from the soma. The dendrites of a single cell are typically long compared to the 
soma and dendrite diameters, reaching up to 500/im or more in length from the cell body. 
Local neurons output to cells within a few millimeters of the cell body, while projection 
neurons can reach many centimeters.

D endritic Structure

Neuronal dendritic trees exhibit a wide variety of observably distinct branching patterns, 
as shown by Ramon y Cajal (1911). Figure 1.2 illustrates several of the many neuron types 
familiar to neurophysiologists. The major geometrical differences between neurons can be 
characterised by the number of trees that emerge from the soma, the number of branches 
and branch points, branch lengths and diameters, and the three-dimensional orientation 
of the branches.

Some dendritic trees, for example those of Purkinje cells (Figure 1.2a), are highly
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Figure 1.2: Examples of real neurons, (a) Purkinje cell, (b) Pyramidal cell, (c) Motoneu
ron.
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branched, with branches tightly packed together in a two dimensional planar orientation; 
it is estimated that as many as two hundred thousand synapses may form on these cells. 
Others, such as the pyramidal cell (Figure 1.2a), have less packed branching and, in this 
particular cell, there are two distinct dendritic components: the apical dendrites emerge 
from a long dendritic trunk, while the basal dendrites branch closer to the cell body. Both 
types of branching exhibit a three dimensional distribution.

The dendritic trees of certain neuronal types (e.g. Purkinje cells, pyramidal cells) 
may, at least in part, be covered in dendritic spines which are tiny protrusions from the 
surface (in a sense tiny branches) still ensheathed in membrane to preserve the continuous 
boundary of the cell. Spines may take several distinct shapes, from the short stubby 
type, to mushroom shaped, and elongated types (see e.g. Rail and Segev, 1990). If a 
dendritic segment is covered in spines, synapses are usually associated with the spines 
rather than the main shaft of a dendritic branch segment. One physical advantage of 
spines is that they protrude through materials that closely surround the neuron, perhaps 
allowing synaptic connections to form more easily. However, it is the role of spines in 
synaptic plasticity that may be significant for learning and memory (see, e.g. Brown et 
al, 1992). Dendritic spines are narrow, with typical widths in the range 0.1-0.5 fj-m, 
much wider than the cell membrane. Typical lengths are in the range 1-2/^m,

Extensive illustration and discussion of central and peripheral nervous system organ
isation, neuron morphologies, the chemical make-up of the membrane, glial cells, and 
general cellular mechanisms can be found in e.g. Kandel et al (1991).

1.3 T h e N atu re o f E lectrical E xcitab ility  in  N eu ron s  

M embrane Ion Channels

The following is a brief discussion of the nature of ion channels and the vital role they play 
in nerve cell excitation. Certain aspects of the electro-chemical processes are presented in 
a slightly simplified manner or in limited detail to highlight the most im portant features 
for the mathematical models developed later. Hille (1984) gives a detailed account of 
membrane ion channel properties and a historical background to the theory and experiment 
surrounding their discovery. More extensive discussion of the material outlined below can 
also be found in this book, and also in Shepherd (1990).

Ionic species that are mobile in the intracellular and extracellular solutions, most 
significantly the cations potassium (K+), sodium (Na'*'), and calcium (Ca^+), and the 
anion chloride (Cl“ ), can permeate the membrane through a distribution of ion channels.

Significantly, extracellular and intracellular solutions contain different concentrations
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of the various ion species. For example, the ratio of intracellular to extracellular K+ 
concentrations is generally very high (a typical ratio may be 30:1), while for Na+ and Cl", 
the extracellular to intracellular concentration ratio is high (a typical ratio may be 10:1 
in each case). As diffusive and electrical processes act to move ions across the membrane, 
and also cause them to disperse intracellularly, a spatio-temporally varying transmembrane 
electrical potential distribution is established.

Ion channels are either non-gated or gated. Non-gated channels are a permanently 
open two-way route for ionic currents. Gated ion channels are opened in response to 
either electrical (voltage gated channels) or chemical (chemically gated channels) stimuli.

Ion channels are often highly selective for just one ion species, i.e. primarily ions of 
that type are able to pass, though they may display limited permeability to other major 
species. There are also ion channel types that are significantly permeable to more than 
one of the main ion species. Ion channel types that differ physically (in their chemical 
structure) may also be associated with the same ion species.

It is possible to identify, experimentally, many distinct ionic currents, the time courses 
of which are determined by differing channel activation and inactivation characteristics; 
these characteristics are controlled by underlying molecular kinetics and so can depend on 
the chemical structure of the channel, local membrane electrical activity, the concentra
tions of specific ion species, and neurotransmitter substances. It is through combinations 
and interactions of these various currents that a specific neuron displays its characteristic 
electrical behaviour. Ion channel types and densities can vary significantly over a single 
neuron’s membrane, and between different neuron types. By employing different types 
and distributions of ion channels, two classes of neuron can exhibit markedly different 
electrical behaviour. A multitude of different ionic currents and channel types have been 
discovered in recent years (Sejnowski, 1997). Hille (1984) gives an account of activation 
and inactivation kinetics. See McCormick (1990) for a useful overview of many different 
types of ion currents and their activation/ inactivation characteristics.

Ion channels are pores, and, when open, essentially form holes in the membrane. The 
size of an ion species (more specifically its hydrated form in solution) will determine 
whether it can pass through a specific channel. When open, a single ion channel allows 
rapid movement of ions across the membrane, with rates typically of the order 10^-10^ 
ions per second. The conductance of a single ion channel typically lies at some point 
in the range 1-150 pS. The low density of ion channels (of the order 1 per /rm, though 
increased at synaptic sites and other “hot spots” of activity such as nodes of Ranvier and 
the action potential initiation site; they typically occupy less than one percent of the total 
membrane), is capable of producing transmembrane currents strong enough for typical 
levels of cell excitation (source of data: Hille, 1984).
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Figure 1.3: Equilibrium states for membrane permeable to a single ion species, (a) Equi
librium state for sodium ions in solution either side of a membrane permeable only to 
sodium ions. Extracellular concentration is higher, so diffusive and electrical forces bal
ance when transmembrane potential is positive, (b) Equilibrium state for potassium ions 
in solution either side of a membrane permeable only to potassium. Intracellular concen
tration is higher, so diffusive and electrical forces balance when transmembrane potential 
is negative.

T he Equilibrium  P otential

By convention^ transmembrane potential is internal potential minus external potential. 
Consider a single ion species, Na'*', with extracellular concentration higher than intracel

lular concentration, and a membrane permeable only to this ion. If the potential difference 
across the membrane is initially zero, i.e. the solutions on each side of the membrane are 
electrically neutral, then Na+ ions will diffuse down the concentration gradient, from ex
tracellular to intracellular medium. The quantity of ions that traverse the membrane is 
assumed to have negligible effect on the ion concentrations — this is generally true unless 
the activity is maintained for long periods, or excited structure is small, such as a spine 
or narrow dendrite, where significant changes in concentration of certain ions may occur. 
A positive transmembrane potential develops since there is a greater number of positive 
ions intracellularly, and the anions that ensure total overall electrical neutrality cannot 
pass across the membrane. The resulting electric field across the membrane acts to resist 
the movement of additional positive charge until eventually, at equilibrium, the diffusive 
and electrical forces are balanced. There is no net flow of ions and so no current flows. 
Figure 1.3 illustrates the balance of forces for both Na"’” and K"** ions individually.

The equilibrium transmembrane potential (or Nernst potential)^ for a single ion species,
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Figure 1.4: Equilibrium state for sodium and potassium ions in solution either side of a 
membrane permeable only to these two ion species. Potassium permeability is higher than 
sodium permeability of the membrane so concentration gradients and electrostatic forces 
balance when transmembrane potential is negative.

k say, is defined as the potential at which electrical forces balance diffusive forces. It is 
denoted and given by the Nernst equation^

N A
[k\i’

(1.1)

where R  is the gas constant (8.314 Jmol~^K“ ^), T  is Kelvin temperature (K), F  is the 
Faraday constant (9.648x 10  ̂ Cmol"^), ^ is the valency of the ionic species, and 
[A;]̂  are respectively the extracellular and intracellular concentration of ion species k. A 
derivation of this equation is given in Tuckwell (1988a). The equilibrium potential for 
potassium is typically negative (around ~80mV to — lOOmV); and for sodium it is positive 
(around +40mV to +60mV).

The equilibrium potential for a single ion species is independent of the level of per
meability of the membrane to the ion species and so, if the transmembrane potential is 
at the Nernst potential, opening any additional ion channels selective for species k will 
not induce any current flow. If the transmembrane potential is less than the equilibrium 
potential, ions of species k flow outward across the membrane to the extracellular solution 
(if k is negatively charged) or inward (if k is positively charged) to restore the equilibrium. 
The converse is true if the transmembrane potential is above the equilibrium potential.

When more than one ion species is involved, there are now multiple concentration gra
dients (assumed independent) to be considered. The equilibrium potential in the presence
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of n  ion species, assuming they all have the same valency, is
’ n

_ _ R T , k=l

E ^ t [k]i
k=l

(1.2)

where is the permeability coefficient of the membrane for ion species fc, which is simply 
a measure of how easily those ions will pass across the membrane. The value of Pk will 
depend on the density of open ion channels selective for each species and the rate at which 
each ion channel allows ions to pass. The sum is taken over all ion species to which the 
membrane is permeable. This is a special case of the more general Goldman formula 
derived by assuming a constant electric field through the membrane (Goldman, 1943; 
see also Hille, 1984; Tuckwell, 1988a). Figure 1.4 illustrates the situation for membrane 
permeable to just sodium and potassium ions (with constant PNa+ a-nd Pk +)-

When membrane is permeable to multiple ion species and the membrane potential is 
at the corresponding equilibrium potential, no net current will flow. This potential is in 
general different from the equilibrium potential for any one specific ion species, and so 
ions of all relevant species must be continually flowing across the membrane via channels. 
Inevitably, there must eventually be a change in intracellular and extracellular ion concen
trations, and a consequent alteration in the individual ion equilibrium potentials, unless 
processes act to maintain the ion concentrations. These processes are the active trans
port^ or pumping mechanisms. Ions are exchanged between intracellular and extracellular 
solutions by carrier molecules which are embedded in the membrane. Most notably, the 
Na-K pump which exchanges sodium and potassium ions (three Na+ for each K+, so there 
is a net pumping current in this case), moving sodium outwards and potassium inwards. 
Discussion of active transport processes can be found in Hille (1984) and references therein.

For many neurons, the overall equilibrium, or resting^ potential due ion channel and 
pumping currents, is roughly -70 mV, between the sodium and potassium Nernst poten
tials, but much closer to the potassium potential since at rest there are more potassium 
channels open.

The derivation of these equations assumes ionic independence, i.e. the ion solutions 
are dilute enough that the probability of an ion crossing the membrane is independent of 
the presence of other ions. The general mathematical representation of ionic currents is 
given in Chapter 2.

Overview  o f E lectrical Input, Integration, and O utput

It is useful to give an overview of the process of signal input, integration and output within 
a neuron, in the light of the previous discussion of membrane ion channels. Figure 1.5
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Figure 1.5: Shape and strength of neuronal electrical signals. Synaptic potentials on 
dendrites and soma combine spatially and temporally. If the total effect at the soma 
(trigger zone) reaches a threshold value then an action potential is initiated which flows 
along the axon.

illustrates the strength and shape of typical input and output potentials.
Membrane is depolarised when the potential becomes less negative than the resting 

potential. The membrane is hyperpolarised when the potential becomes more negative 
than the resting potential.

Electrical activity is initiated when ion channels open briefly to allow influx or efflux of 
specific ion species at synaptic sites; the channels then inactivate and are closed (eventually 
reactivating so that it is once more possible for them to open). The time scale of a typical 
synaptic event is in the millisecond range (though there are important exceptions, such as 
long term potentiation, see e.g. Brown et a/., 1992). The activity spreads from the synaptic 
site as charge disperses intracellularly within the dendritic and somatic cytoplasm. As this 
charge disperses, it can leak across the membrane, and may also initiate additional activity 
by causing voltage-gated ion channels away from the initiation site to open. As a neuron 
is bombarded with spatio-temporal patterns of thousands of synaptic inputs, the resulting 
distribution of excitation through a neuron can be extremely complicated.

Excitatory synaptic input causes a depolarisation of the membrane at the synaptic site 
by temporarily increasing the number of channels open to ions with equilibrium potentials 
greater than the resting potential (sodium ions and calcium ions). This causes charge to 
briefly seek an equilibrium potential that is temporarily raised. The membrane voltage 
disturbance initiated in the post-synaptic cell by an excitatory synapse is known as the 
excitatory post-synaptic potential or EPSP.

Inhibitory synaptic input acts to prevent membrane excitation by opening channels
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selective for ions with equilibrium potentials less than or perhaps close to the resting po
tential (chlorine and potassium ions). In the former case, the membrane is hyperpolarised. 
In the latter case, there will be no discernible influence on electrical activity unless the 
membrane is already excited away from rest; this is known as shunting inhibition. A mem
brane voltage disturbance initiated in the post-synaptic cell by an inhibitory synapse is 
known as the inhibitory post-synaptic potential., or IPSP.

Individual synaptic inputs typically alter the local membrane polarisation by a few 
millivolts. Synaptic input on the soma will have an immediate influence on the likelihood of 
an output being generated, causing a sharp brief change in the local potential. By contrast, 
input on distant sections of a dendritic tree will take time to exert their full influence on the 
soma. As charge spreads within the tree, the voltage distribution is typically smoothed 
and attenuated, with a weaker, graded, and longer lasting impact at the soma. If the 
total depolarisation at the soma is sufficiently strong, i.e. the membrane potential reaches 
a threshold value, then an output spike (action potential) will be generated. Differing 
spatio-temporal relationships between inputs can have markedly different combined effect 
on the soma.

Note that, in contrast with dendrites, most axons have very similar ionic properties, 
with action potentials controlled by Na"*" and K"*" ion channels. The sharp local depolar
isation of membrane when a threshold potential is reached is due to sudden opening of 

voltage-gated sodium channels and an in-rush of Na"*", turning the membrane potential 
positive. This influx quickly inactivates and a slower efflux of potassium ions restores the 
membrane to equilibrium after a small hyperpolarisation. The signal can move along the 
axon, regenerated by the opening of sodium channels as the signal progresses, eventually 
inffuencing potentially many hundreds, or even thousands, more neurons.

Action potentials can also be initiated in dendrites, but are usually associated with 
Ca*̂ "*" currents. They have been found in, for example, Purkinje and pyramidal cells.

1.4 T h e  S ignal P rocessin g  R ole of D en d ritic  G eom etry

This thesis is concerned with dendritic signal processing function, in particular how elec
trical activity interacts in the presence of these complicated branched structures and how 
to analyse this interaction. W hat follows is a brief overview of some fairly general and 
widely accepted aspects of signal processing in dendritic trees, and, in addition, we spec
ulate about the possible significance of differing geometries. Some aspects of dendritic 
function have been investigated in modelling studies, however most suggestions that have 
been made are, at present, difficult to confirm by experiment. For much more exten
sive discussion of neuron function, and experimentally observed phenomena in particular
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neuronal types (primarily motoneurons, Purkinje cells, and pyramidal cells), see, for ex
ample, Mel (1994), McKenna et al. (1992), Segev et al. (1995), Koch (1997), Koch and 
Segev (1989), and Rugg (1997). Segev and Rail (1998) discuss recent experimental results 
obtained using optical recording techniques.

The formation in the nervous system of networks, neurons, and their dendritic trees is 
due to a combination of genetic pre-specification and learning or adaptation mechanisms 
involving structural or synaptic modification. Some basic neural framework within which 
function may take place must be pre-defined, while learning mechanisms will adapt the 
individual neuron structure and connections over time to fine tune their eventual function. 
The two mechanisms may have contrasting significance for different neuron types.

Neuron to neuron communication largely takes the form of spike trains. Information is 
encoded in the temporal pattern of the spikes, since the spikes themselves are essentially 
indistinguishable. This is of course a vital component of neuron processing, however, 
here the focus is on the processes that occur within dendritic trees, though the two are 
inevitably strongly linked.

The number and branching patterns of dendrites can vary widely between different 
neuron types and it is a natural question to query the significance of a specific neuron 
morphology. W hat functional advantages (if any), for example, does the shape of a mo
toneuron dendrite offer over dendrites of, say, pyramidal or Purkinje cells, so that the 
whole cell might perform its assigned task optimally? It is likely that the characteristic 
shape of a specific class of dendritic trees is optimised specifically for the task the neurons 
are involved in. Ideally, one wants tools to investigate, quantitatively, the effect dendritic 
geometry has on the integration of the full range of complex spatio-temporal patterns of 
synaptic input, with a view to understanding the nature of any signal processing opera
tions being performed, and perhaps determining the synaptic distributions that might be 
involved.

The dendritic tree has a fairly general and loosely defined role as an integrator of, and 
physical framework for, distributed synaptic activity. Dendrites essentially funnel excita
tion towards the cell body, but also allow each point on the tree to potentially influence 
every other. Considering the complicated spatio-temporal patterns of synaptic input they 
receive, and adding to this mechanisms for synaptic and structural modifications (e.g. 
dendritic spines are thought to be involved is synaptic plasticity), then it is reasonable to 

believe that dendritic trees may be powerful signal processing units.
In terms of enhanced signal processing capability, a branched structure has several 

advantages over an unbranched structure, although branching is not essential for providing 
the necessary surface area for all synaptic connections. There must be other reasons that 
neurons can have such a wide field of reception. Branching that takes of advantage of three
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dimensional space allows a neuron to receive inputs more easily from sources originating 
from numerous directions. Branching can support complex patterns of spatio-temporally 
distributed input, and allows a division of synaptic input into regions of a dendritic tree 
which are themselves electrically remote from each other or the soma — in other words, 
branching may support extensive local signal processing (Koch et al. 1982; Woolf et al, 
1991; Mel, 1994). Branching allows input from numerous sources to connect at distributed 
points which are equally significant, electrically, with respect to the soma, or with respect 
to other points on the tree.

There is also important variation in synapse types, aside from the fundamental dif
ferences that makes them inhibitory or excitatory. The membrane potentials they induce 
can vary in strength and time-course, features that may depend on the neurotransmitters 
involved, the local potential at the point and time of initiation, and on the presence of 
other chemicals. Yet more variation can be found in the different membrane channels, and 
consequent form of the ionic currents — a single neuron may exhibit varying types and 
densities over its surface, and the types may change from neuron to neuron. In conjunction 
with dendritic geometry, a suitable arrangement of synapses and ion channels with par
ticular voltage-dependent characteristics is possibly a vital feature for certain processing 
operations. Perhaps “hot-spots” of ion channels that initiate strong activity play an im
portant role in controlling this structure-signal interaction. Results in this thesis suggest 
that processing properties can arise solely as a consequence of specific geometry. It may 
also be beneficial for a robust nervous system if a neuron has multiple ways of performing, 
or taking part in, the same signal processing operation; this idea of electrical degeneracy, 
or redundancy, as a consequence of branching, is also introduced in this thesis within the 
formal mathematical framework of the fully equivalent cable.

The initiation of an output spike or spike train depends on the input patterns over the 
dendritic trees. Can single neurons, or groups of neurons, represent information^, different 
aspects of which are accessed (in some sense) and transmitted as output, depending on 
the input pattern. Does a different input configuration mean that a different operation is 
performed on this information, or maybe that different information is accessed altogether. 
Basically, it is possible there are several modes of operation a single neuron may be in, 
depending on outside influences (see e.g. Demander et al, 1994; Demander et al, 1991; 
Holmes and Woody, 1989). Perhaps changes between modes are permanent, temporary, 
or transient. It may be that short term modifications are part of a processing operation, 
while long term  changes mark an alteration in processing capabilities. For example, syn
chronisation of synaptic activity has been investigated by Demander et al (1994) and 
Rapp et al. (1992).

^The term “information” here is not used in any formal sense.

30



In conclusion, it is easy to speculate about possible dendritic function, and difficult to 
determine the precise relationship between neuron function and dendritic structure. For 
experimental reasons it is difficult to establish whether or not real neurons perform in 
many of the ways that have been suggested (here and elsewhere).

This thesis outlines a method for completely analysing the role geometry plays in 
signal integration within a specific type of tree model, i.e. the passive tree model. New 
and extensive insight into passive signal integration in neurons can be gained using this 
technique. This is by no means the most realistic model, but it can capture well the 
sub-threshold behaviour of some neurons. One cannot hope to understand in any great 
depth the role of geometry in more complicated models until the simpler models on which 
they are based are fully understood.

31



C hapter 2

Cable T heory and the M ultip le  
Segm ent D endritic Tree M odel

2.1 In trod u ction

W ithin the context of neuronal modelling the term “cable theory” refers to a range of 
non-linear and linear models that may be used to describe the behaviour of electrical 
activity in arbitrarily branched dendritic trees, axons, and axonal trees, where physical and 
electrical properties of the cell are represented to varying degrees of biophysical realism. 
Cable theory was initially developed by Kelvin (1855) to describe electrical transmission 
in submarine cables. See Rail (1977) and Segev et al (1995) for historical overviews.

Initially, we formulate a general non-linear cable equation that describes a non-uniform 
segment of (unbranched) dendrite, for example that illustrated in Figure 2.1. Here, non
uniformity implies that the cross-sectional area and perimeter may vary continuously. This 
model can incorporate arbitrary synaptic inputs and distributions of gated and non-gated 
ion channels. The derivation follows simply from charge conservation and a direct analysis 
of the currents that are allowed to flow, given model assumptions about constitutive 
properties of the dendritic segment.

Starting with the non-linear cable equation, which is significantly more general than 
cable equations normally used for modelling purposes, we make simplifying assumptions 
about the geometrical and electrical properties of the segment, progressively yielding sev
eral equations more typical of those used in simulations. In particular, cylindrical ge
ometry is often assumed, as is the existence of a resting state. We show how the lat
ter allows a separation of the term due to transmembrane ionic currents into linear and 
non-linear components. To highlight the progression from the non-linear equation to the 
passive linear equation that is eventually required, we briefly discuss how the assumption

32



of voltage-independence of the ion channel currents leads to a general linear cable equation 
incorporating ionic equilibrium potentials.

Eventually we obtain the linear cable equation for a uniform electrically passive den
dritic segment, in both dimensional and convenient non-dimensional forms. The validity of 
the corresponding simplifying assumptions is considered. Here, uniformity implies a con
stant cross-sectional area along the length of the segment, and also a constant perimeter. 
The common assumption of a circular cross-section (e.g. Jack et al., 1983; Tuckwell, 1988a) 
need not be made. The given equations will usually be expressed in terms of bulk electri
cal parameters that are independent of geometrical structure, however, to provide a linlc 
with previous representations of the cable equation, commonly used geometry-dependent 
parameters are also included.

A dendritic tree model is then derived. It is formed from connected segments, each 
represented by a general cable equation and linked or terminated by appropriate boundary 
conditions. The non-dimensional linear cable equation is the basis of the passive dendritic 
tree model used for constructing the fully equivalent cables described in the remaining 
chapters of this thesis. Important electrical properties of some simple passive structures 
are illustrated and discussed.

2.2 G eneral M od el o f a D en dritic  Segm ent

The model has three main components: the intracellular medium, ensheathed in a uni
formly thin membrane, forms the dendritic segment; the segment is immersed in a perfectly 
conducting extracellular medium. The membrane is highly resistive, and also acts, in part, 
as a capacitor, retaining charge on the membrane-liquid interfaces. Charge can accumulate 
within the dendrite, moving across the membrane through a distribution of ion channels, 
and dispersing longitudinally, establishing a time- and space-dependent transmembrane 
voltage distribution. We assume the whole system is isothermal, so the temperature de
pendence of relevant chemical interactions can be ignored.

2.2.1 Fundamental M odel Assum ptions 

Intra-cellular M edium  —  Ohmic Core Conductor

The cross-sectional dimensions of the core medium are small compared to the length of a 
dendritic segment. Assuming an isotropic core, potential gradients over the cross-sectional 
surface are small compared to those longitudinally, i.e. for our purposes the cross-section 
is effectively equipotential (a perfect conductor radially!).

These assumptions conveniently permit a one-dimensional treatment of the core; the
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Dendritic Membrane

( X g  -  x ^ )

Extracellular SpaceIVDCDendritic Core

P(x)J |l A(x}

Figure 2.1: A non-uniform segment of dendrite. The cross-sectional area profile of the 
intracellular medium is A(æ), while the perimeter profile is P{x). If J  is the axial current 
density, axial current flowing into the segment at point x\  is J{xi , t )A{x i) ,  while current 
leaving the segment at point X2  is J{x 2 -,t)A{x2 )- Membrane current densities are synap
tic, Jsc,  intrinsic and voltage dependent, JrvDC, and active transport, Jp,  while J jc  is 
injected current.

only spatial dimension that is of explicit interest is denoted x  and measured axially along 
the length of dendritic segments. Only spatial variation of the transmembrane potential 
with X is of concern. The cross-sectional profile of the dendritic segment must have a 
shape that does not invalidate these assumptions. The imperfect, but roughly circular, or 
elliptical, cross-sections of real dendrites are perfectly acceptable, though they are normally 
treated as circular.

For cylindrical segments, a three-dimensional analysis of intracellular current flow has 
been performed by Rail (1969b), and also Eisenberg and Johnson (1970), justifying the 
one dimensional treatment, except perhaps in the vicinity of a point current source in the 
core, where cross-sectional potential gradients may be significant.

Extra-cellular M edium  —  E xternal Conductor

The extracellular solution forms a very narrow region between neighbouring cells. How
ever, for many modelling purposes, it can be regarded as a very good conductor compared 
to the highly resistive membrane. It is commonly treated as a perfect conductor, and we 
follow this approach; charge that leaks from the dendritic segment is instantly incorpo
rated into what is regarded as an isopotential extracellular ion pool. Consequently, at 
the membrane-extracellular interface there is no potential gradient to drive extracellular 
currents, and this interface is isopotential. Branching angles, or curvature in dendritic seg
ments may also conveniently be ignored since there are no complicated three-dimensional
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patterns of current flows to account for in this model.
The cable equation derivation that follows later may be easily adapted to incorporate 

an external longitudinal resistivity to current flow, whereby currents flow in the extra
cellular medium flow parallel to the segment axis (see, for example, Tuckwell, 1988a, for 
details).

Transm em brane P otential

Denote the internal (core) potential by Vi{x,t)- The spatially uniform extracellular po
tential is denoted Ug, but can be arbitrarily fixed, and so is usually taken to be zero. 
The potential difference between internal and external media is called the transmembrane 
potential^ and denoted Vm, where

V i { x , t )  -Ve -  (2.1)

Note that, by convention, x  increases along dendrites away from the soma.

A xial Core Current and A xial R esistiv ity

The resistance to axial current flow presented by the core conductor is assumed to be 
ohmic. If J  denotes the axial current density (axial current flow per unit cross-sectional 
surface area) in the direction of increasing a-, then Ohm’s law (for one dimension) is

=  (2 .2)
Pi  bfX

where pi is the axial resistivity of the core, and is assumed to be constant. If the cross- 
sectional area of the dendritic segment is denoted A(cr), then the axial current, %a(æ,t), is 
given by

ia{xA) ~  A{x )J{x A)- (2.3)

By convention, axial current is positive where there is a net flow of positive charge in the 
direction of increasing x.

Consider a uniform slab of core material with cross-sectional area A  and length Z, as 
illustrated in Figure 2.2. Ohm’s law (2.2) can be integrated to give V  — I R  where V  is 
the potential across the segment, I  is the axial current flowing through the segment, and 
R  is the total resistance this slab presents to axial current flow, so that

R =  (2.4)

Thus the resistance per unit length of this segment, denoted r%, is
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V - -

Figure 2.2: Uniform segment of core medium. Segment has surface area A, length 1. Axial 
current is I,  while potential difference across segment is V.

If cross-sectional area varies axially, then so will the resistance per unit length,

ri{x) = Pi
A{x)'

Using equations (2.2), (2.3), and (2.6), the axial current may be written

*a(^5 )̂ —
1 dVm

(2 .6)

(2.7)
Ti dx  ’

The above equations can be adapted for spatially varying pi, however experimental 
evidence for such variation is limited (see Rail et al, 1992, for an overview). The final 
model we develop will require core homogeneity.

Cell M em brane

The membrane is permeable to the ion species relevant to cell excitation at sparsely dis
tributed ion channels, as discussed in Chapter 1 (see also Hille, 1984). Associated with 
each ionic species that contributes to electrical activity within the dendritic cylinder are 
channels that permit only ions of that type to pass across the membrane. Ion channel 
density may vary over a segment of dendrite. A proportion of channels are non-gated, i.e. 
permanently open, and always allow ionic currents to flow. The remaining channels may 
be voltage-gated and chemically-gated. Ion channels are modelled as parallel transmem
brane conductances. Although channels are located at discrete points over the membrane, 
they can be effectively modelled as a continuum. The full model representation of the 
corresponding ionic currents will be left until the general cable equation has been de
rived. For the moment, we just consider the term Jt {x , t), which is a total current density 
(current per unit area of membrane) that has contributions from all possible sources of 
transmembrane currents. This includes gated and non-gated membrane ion channel cur
rents, exogenous injected currents, synaptic currents and current due to active transport
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mechanisms. It does not include capacitive currents. We follow the convention that the 
membrane current is positive when net positive charge flows outwards from the core. Con
sequently, —J t  gives the current flowing into the core across the membrane. Note that 
only the spatio-temporal variation of J t  is explicitly indicated; contributions to J t  may 
also have explicit voltage dependence, as well as dependence on variables describing the 
molecular kinetics of the underlying mechanisms that allow current flow. For simplicity, 
such dependencies may be assumed acceptable unless we state otherwise.

M em brane C apacitance

Let C m  be the capacitance per unit surface area of membrane. It is assumed uniform over 
the dendritic segment, although the cable equation derivation that follows allows spatial 
(axial) variation. The current density (per unit area) due to capacitive effects, denoted 

Jc,  is then

(2.8)

The membrane capacitance per unit length of segment, Cm, is also commonly used. If 
P{x)  describes the non-uniform segment perimeter (Figure 2.1) then

Cm{x) — C m P { x ) -  (2.9)

2.2.2 Derivation of the General Cable Equation

Consider the dendritic segment illustrated in Figure 2.1. It has non-uniform cross-section 
and non-uniform perimeter, and the two ends of the segment are at points x i  and X2 , 
where X2  > xi- Using equation (2.3), the total current flowing into the segment at time t 
must be

f X2
A { x i ) J { x i , t ) —A{x 2 )J{x 2 , t ) ~  J t { x , î ) P { x )  dx. (2.10)

J  XI

So, during the time interval [Uî^2]î the total charge flowing into the segment is
r t 2  r t2 px2
/ [A{xi)J{xi , t)  — A{x 2 )J{x 2 ,t)] dt — / / JT{x, t)P{x) dxdt.  (2 .11)

J t i  J x i

This additional charge is stored on the dendritic membrane, which has capacitance C m

per unit area. The charge stored in the segment over time interval [t\, 2̂] must be
r x2 r x2

/ CMP{x)Vm{x,t2 ) d x -  CMP{x)Vm{x,ti) dx. (2.12)
J x i  J x \

Conservation of charge requires that equations (2.11) and (2.12) are equal, so
-X2

C m P [ x ) [VrnixM)  -  Vm{x, t i ) \  dx =
U2  ̂ rt2 rx2 (2.13)

I [ A { x i ) J { x i , t ) ~ A { x 2 ) J { x 2 , t ) ] d t — /  /  J T { x , t ) P { x ) d x d t .
t\ Jti J X l
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This is the fundamental equation describing the temporal and spatial evolution of the 
membrane potential Vm(x,t). Provided Vm is a sufficiently differentiable function of space 
and time, then by dividing equation (2.13) by (tg —ti) and subsequently letting t i , t 2  —> t, 
it follows that

I Cm P{x )--- ^ — dx = [A{xi )J{x i , t)  — A{x2 )J{x 2 ^t)] ~  I  JT{x, t)P{x) dx.

(2.14)
Similarly, now divide by ( $ 2  — â i) and take the limit x \ ,X 2  x, revealing that Vm{x,t) 
satisfies the partial differential equation

=  „  1 ,*)) _  ) (2.15)
ot P{x) ox

This equation is entirely a consequence of charge conservation, and the initial assumptions 
ensuring only axial core current flow. At this point we assume the core is a homogeneous 
ohmic resistance, and substitute for axial current density J  using equation (2.2), giving

This equation will subsequently be referred to as the general cable equation. A second 
order partial differential equation, it describes the non-linear diffusion of the transmem
brane voltage over a segment of dendrite. Capacitive currents (the term on the left), 
diffusive currents (the second order term) and membrane currents must all balance. As 
charge moves axially in the core and radially across the membrane, an equilibrium state is 
continually sought (whether or not it is ever actually reached depends on the properties of 
the membrane and the associated transmembrane currents). Many commonly used cable 
equations can be obtained from this general form.

The next section completes the description of a dendritic segment by specifying general 
forms for the transmembrane currents Jy. For details of the representation of specific 
currents in various models, see e.g. Poznanski (1999), Tuckwell (1988b), Koch and Segev 
(1989), and McKenna et al. (1992). Subsequent subsections detail how assumptions 
concerning geometrical and membrane constitutive properties give rise to various non
linear and linear models. In section 2.5 we move to a complete tree where segments 
must be linked at branch points by voltage continuity and current conservation boundary 
conditions, assigned appropriate terminal boundary conditions, and the trunk of the tree 
should be linked to a representation of the cell body.

The N on-dim ensionalised N on-linear Cable Equation

The general cable equation may be expressed in a non-dimensional form, by an appropriate 
change of variables from x  and t. Full details of the non-dimensionalisation procedure are 
given in section 2.4, where it is applied to the passive linear cable equation.
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2 .2 .3  S p ec ifica tio n  o f  th e  M em b ran e C urrents

Assume the membrane current density, Jt -, consists of four main components,

Jt  = JivDC +  Jsc  J- Jp — Ji g -, (2.17)

where J i v d c  represents Intrinsic and Voltage Dependent Currents, tha t is, currents 
through all gated and non-gated ion channels, except those currents through chemically- 
gated channels opened during synaptic events; Jsc  represents all Synaptic Currents; Jp

,

represents Pump currents due to active transport mechanisms. These first three currents 
are determined by the constitutive properties of the membrane. The convention for di
rection of current flow used for Ji v d c , Jsc  and Jp is the same as for Jp- The fourth 
contribution, J /c ,  represents exogenous current density (Injected Current, which is strictly 
injected directly into the core medium, but is straightforwardly treated as a membrane 
current density), however this current is assumed positive when positive charge is injected 
into the core, hence the minus sign in equation (2.17).

M odelling Ion Channel Currents

The flow of ions through ion channels, and the resulting theory of equilibrium and resting 
potentials was discussed in Chapter 1. Denote the current density (current per unit area) 
flowing due to ionic species k by (the ^-current). It is modelled by

(2.18)

where is the conductance per unit area of membrane, and is the equilibrium 
potential (1.1) for ion species k. There is zero /c-current when Vm — Pk, as should be 
expected when diflfusive and electrical forces are balanced and provided the ion species 
flow essentially independently of each other. The conductance is generally non-linear, 
following from the underlying kinetic processes that determine the activation/inactivation 
characteristics of the ion channels; it is a function of time, often of voltage (if not explicitly, 
then in terms of kinetic variables that are themselves voltage dependent in some way), 
and may also contain explicit spatial variation if there is an inhomogeneous density of ion 
channels (there is already implicit spatial variation).

The total ion channel current is then given by

J i v d c  = ~ Ek)-  (2.19)
k

where the sum is over all the relevant ion species.
Conductances can be determined experimentally using techniques such as voltage- 

dam p (for details see Jack et al., 1983; Hille, 1984); patch-clamp techniques allow currents
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through single ion channels to be recorded (Hamill et al,  1981; Sakmann and Neher, 
1983). For example, the original Hodgkin-Huxley equations describing the squid giant axon 
(Hodgkin and Huxley, 1952) identify one sodium current, and one potassium current, both 
with non-linear conductances which describe the activation and inactivation characteristic 
of the currents. The sodium current is rapid, quickly depolarising the membrane, and 
then quickly inactivating after a millisecond or so. The potassium current, which develops 
more slowly, then takes over, repolarising the membrane and after a brief hyperpolarisation 
returning the membrane to rest. Their model required another current referred to as the 
leak current which is not associated with any one particular ion type but is necessary 
to complete the model description of the experimental observations. The leak current is 
effectively modelled with a constant leak conductance and a constant leak equilibrium 
potential. More detail can be found in, e.g. Tuckwell (1988b).

At this point, it would be possible to introduce additional equations to account for 
varying intracellular and extracellular ion concentrations, so that equilibrium potentials 
are not constant. However, we now assume constant concentrations since this is often 
realistic, simpler to deal with, and essential for the final model that will be developed.

M odelling Synaptic Inputs

The synaptic current, Jsc,  which describes all inhibitory and excitatory synaptic events, 
are due to a temporary opening of specific chemically-gated ion channels. Again, they can 
be modelled by a conductance change at the synaptic site. If synapse j  is located at point 
Xj, for j  — 1,2, . . . ,N, and initiated at times tij then

oo N

Js c {x , t ) -  ^  ^ P % (t -  )̂ -  Ek]S{x -  Xj) (2.20)
i = l  j =i  k

where t^j, t^j, ... are the times at which ionic current k associated with synapse j  becomes 
active, while ^iyn(t) models the conductance associated with this current, and J(æ — xj) 
is the Dirac delta function at æ =  rc/c (see below, equation 2.26). The profile of the 
conductance gi%{t) is a consequence of the kinetics of the neurotransmitter binding to 
receptors and any other processes involved in opening ion channels. However, it is often 
modelled using the time dependent alpha function (Jack et al, 1983),

9

where gi '̂  ̂ and a  are constants.
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M odelling A ctive Transport M echanism s

In cable theory, active transport currents are not often modelled explicitly. The corre
sponding currents are typically relatively small over the time scales typical of neuronal 
signals. They may be assumed to contribute a constant current or they could be dependent 
upon the membrane potential and ion concentrations.

M odelling A pplied Currents

Current sources are assumed to inject charge directly into the core medium. The resulting 
axial core currents have uniform flux density through the cross-section, (the injected charge 
at X may be regarded as applied uniformly over the cross-section at x  because of the 
effectively zero radial resistance in the core). The distribution of applied current over a 
dendritic segment can be expressed as a current line density (current per unit axial length), 
id(x,t), where

id{x,t) =  J ic{x,t)P{x).  (2.22)

So, if iA{x\ ,X2 ,t) denotes the total charge injected between points x\  and X2  on the 
segment, where x\  < X2 , then

rx2
iA{xi ,X2 ,t) = / id{x,t)dx.  (2.23)

J  X l

It is also convenient to define
iA{x,t) — ÎA{0,x,t). (2.24)

A single point source of current, iA{t), injected at some point x — a along the segment 
has current density

id(x, t] =  iA{t)6{x -  a), (2.25)

where J(æ) is the Dirac delta function, satisfying
'+eJ  0{x)dx = 1, (2.26)
— G

for any e > 0. If /  is function of x  then,
’ + 00

f { x )0 { x ~ a )d x  = f{a).  (2.27):
The applied current density (per unit length) may be expressed in terms of the charge

injected into the dendritic segment. If qA{x,t) represents the total charge introduced over
dendritic segment [0,x] over time interval [0,t], then, by definition

= (2.28)

so that

f  (2-29)

41



'#

(a)

(b)

(c)
f

Figure 2.3: Special cases of dendritic structure described by simplified cable equations, 
(a) Uniform dendritic segment with irregular cross-section, (b) Non-uniform dendritic 
segment with cylindrical cross-section, (c) Uniform cylindrical dendritic segment.

2.2.4 Constraints on G eom etry

Consider now how constraints on geometrical structure simplify the form of the general 
cable equation.

Tapering Cylindrical D endrite

If the core cross-section is circular, as is widely assumed, with continuous diameter profile 
d{x), as Figure 2.3b illustrates, then the cross-sectional surface area and cross-section 
perimeter are given by

T\(f{x)A(æ)
4 and P{x) — 'Kd{x).

The general cable equation (2.16) can be rearranged to give

dvm I d (  d? dvm
Cm - Jt -

(2.30)

(2.31)
dt  4d dx  \  pi dx

Using equations (2.6) and (2.9), note that the membrane capacitance per unit length of 
dendrite and the intracellular resistance per unit length are given by

4mCm(^) =  CMT^d{x) and ri{x) 'K(P{x)
(2.32)

«
.• !
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U n ifo rm  S egm ents  o f D e n d rite

For uniform dendritic segments (not necessarily cylindrical), for example Figure 2.3a, the 
cross-sectional area. A,  and the perimeter, P , are constant, so from equations (2.6) and 
(2.9),

Cm — Cm P  and — p i / A  (2.33)

are constant. Rewrite the cable equation (2.31) as

- F J t .  (2.34)
dVm 1 d'^Vr

dt  ri dx^

U nifo rm  C y lind rica l Segm ents of D en d rite

For the special case of uniform cylindrical dendritic segments, with constant diameter d, 
e.g. Figure 2.3c, then

P ^ T r d ,  A =  Cm -  Cu'ïïd, (2.35)

Assumptions about current flow in the cylinder ensure that the rotational symmetry 
(invariance under rotation about axis) of the cylinder holds for electrical activity as well 
as physical structure.

2 .2 .5  C o n s tr a in ts  o n  C o n s t i tu t iv e  M e m b ra n e  P r o p e r t i e s  

L in ear an d  N o n -lin ea r C o n trib u tio n s  to  Ionic C u rren ts

Consider again the general cable equation describing a non-uniform dendritic segment. We 
now suppose the segment can be in a resting state, i.e. when no net current flows across 
the membrane. At rest there is no axial current flow in the segment, no current may be 
injected, and there are no synaptic events, so J jc  = Jsc  =  0; no net transmembrane 
current must flow so Jp  4- JivDC = 0. All ionic channel and pumping currents that flow 
across the membrane are balanced. The corresponding resting potential, denoted v r , is 
uniform over the segment membrane. External and internal ion concentrations for the 
various ion species are maintained.

Denote the current density due to ion channels and active transport by J m , so

Jm  — Jp + J i v d c -  (2.36)

Since at rest this must be zero, we can write, without loss of generality,

JM =  (7(^^) -  C(t;p), (2.37)
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where (7 is a constitutive function of membrane potential. Assuming that C is a suitably 
differentiable function of Vm, the mean value theorem states that

Jm  =  -  Vr ) =  g{v*) {Vm -  Vr ) , (2.38)

where v* =  v*{vm,VR) is a potential between Vm and vr , and g{v*) may be regarded as 
a non-linear conductance (per unit area). Similarly, the mean value theorem applied to 
g{v*) yields

daiv** )
g{v*) =  g{vR) +  i'u* -  v r )  == g u  + 9 n l ,  (2.39)

where gM — g{vR) is a constant membrane conductance per unit area, v** — v * * { v ' \ v r )  

is a potential between v* and v r  (and consequently between Vm and v r )  and gjvL defines 
a non-linear conductance per unit area. Note that gj^L is implicitly a function of Vm and 
is zero when Vm = v r .  Thus, equations (2.38) and (2.39) combined give

Jm  ~  9M {.Vm V r )  T gjTL (Vm V r )  , (2.40)

which neatly separates the linear contribution to membrane potential from the non-linear 
contribution. The constant conductance per unit area, gM, can be associated with 
non-gated ion channels (or at least those that are open at rest), and resting state 
pumping currents, while gjvL can be associated with voltage-gated ionic currents and 
activity-dependent transport processes. The dendritic segment membrane is said to be 
passive if gjvL ~  0, otherwise it is active. Conductance gjiL may also be referred to as 
the active conductance.

The general cable equation (2.16) can be re-written using equations (2.17), (2.36) and
(2.40), to give

dvm{x,t) 1 d f  A{x) dvm{x,t)
Cm

f  A{x) dvm {x , t ) \  \ T , T
dt -  p (x ) dœ ( y : ------ d P ~  j  “

(2.41)
It is convenient to work with the potential relative to the resting potential, v, given by

v{x, t) — Vm{x, t) V r ,  (2.42)

so that, if the dendritic membrane is in a resting state then v — 0. Since v r  has been 
assumed constant, the cable equation (2.41) now becomes

-  P R S  ■> -

Prom equations (2.7) and (2.42), and noting again that v r  is constant, the axial current 
can be written in terms of the deviation from resting potential,

44



T he General Linear Cable Equation

Returning to the general cable equation, one can obtain the most general form for a linear 
cable equation by assuming that all sources of transmembrane current only exhibit spatial 
and temporal dependence. Basically, ion channel conductances, are voltage
independent so that the contribution from the ion channel currents maintain the linearity 
of the differential operator. Similarly, synaptic conductances, giyh, and consequently 
synaptic currents must maintain the linearity of the differential operator (e.g. the alpha 
function), as must pumping currents and, as usual, injected currents.

While the resulting equation is strictly linear, it is not considered passive since mem
brane properties may still vary The equation traditionally thought of as the cable equation 
is a simplified version, with — 0, and additional geometrical constraints, as shown 
below. It is much more easily solved.

2.3 T h e P assive Linear C able E quation

The linear cable equation for a uniform segment of passive dendrite is obtained from 
the cable equation (2.43), with the relevant geometrical simplifications given by equation 
(2.33)^. There are no synaptic currents {Jsc  — 0), the non-linear contribution to mem
brane conductance is zero {gjvL — 0), and applied currents are expressed as a line density, 
using equation (2.22). Thus, after a slight rearrangement,

= (2.45)

This expression is strictly only valid where \gNl\ {ç m I, that is, when the transmembrane 
potential does not deviate far enough from rest to open significant numbers of voltage gated 
channels. The validity of the expression for a particular neuron, or dendritic segment, 
depends entirely on the nature of any active conductances, and the threshold potentials 
at which they are strongly activated. The linear cable equation effectively describes sub
threshold neuronal activity, although it should be noted that some active conductances, 
i.e. significant non-linearities, may be activated very rapidly at low threshold.

In its own right, the linear cable equation describes membrane where the ionic cur
rents flow through a constant population of open ion channels; any pumping mechanisms 
contribute a constant current. At the resting membrane potential, these currents are bal
anced. Synaptic input currents must now only be modelled using the linear exogenous 
current injection term, id, and not as conductance changes.

Note again that the segment has not been assumed cylindrical, as is conventional. Such

 ̂A passive non-uniform segment would be described if the assumption of uniformity had not been made.
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a condition is unnecessary, as the equations are of the same fundamental form whether 
the cross-section is circular or not.

A nother Form of the Linear Cable Equation

The membrane conductance is often expressed as a conductance per unit axial length of 
segment, g-m, where

9m =  9m P = — , (2.46)
Tm

and 7'm is the membrane resistance of a unit (axial) length of cylinder.
Finally, the linear cable equation (2.45) for a uniform dendritic segment of length I 

can be multiplied through by Vm, and reformulated as

+  v{x, t) -  rmid{x, t), 0 < x < I, t >  0, (2.47)

where, to re-cap, at position x and time t, v(x,t) is the transmembrane potential with 
respect to the segment’s uniform resting potential, id(x, t) is a current line density applied 
directly into the core medium, Xm is the membrane resistance of a unit length of segment, 
Vi is the resistance of the intracellular medium per unit length of segment, Cm is the 
membrane capacitance per unit length of segment. To summarise, the three important 
electrical parameters are given by

r'm^^ 'g ^ p ‘> Cm =  Cm P- (2.48)

C ircu it A nalogy

The linear cable equation (2.47) is traditionally derived by considering a circuit diagram. 
The membrane is treated as a discrete network of parallel capacitance and resistance 
connecting the isopotential extracellular compartment to the resistive core compartment. 
Current is conserved in the segment of infinitesimal length Ax, and the limit is taken. For 
details see, for example, Tuckwell (1988a).

2.4 T he D im en sion less Linear C able E quation

2 .4 .1  E le c tro to n ic  U n its

The linear cable equation (2.47) can be simplified even further by rewriting it in terms of 
dimensionless, or electrotonic units, which are measures of space and time that characterise 
the steady-state electrical properties of a passive uniform segment.
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E lectrotonic Length

Axial resistance is expressed per unit length by while membrane resistance is expressed 
times unit length by Tm- Consider the length of segment, denoted A, for which the core 
axial resistance is matched to the membrane resistance,

, l A =  (2.49)

so that, using equations (2.48),

= v{x). (2.51)

This characteristic length, determined by electrical and geometrical properties of both 
core and membrane, is known as the electrotonic space constant^ though significantly it 
actually varies with the cross-sectional profile

Electrotonic length is essentially a measure of the electrical compactness of a uniform 
dendritic segment. This is better illustrated by considering steady-state solutions of the 
cable equation. The steady-state cable equation is obtained by setting the time derivative 
to zero in the linear cable equation (2.47), and ignoring the time dependence, thus

rm d‘̂ v{x)

Take a semi-infinite cylinder with diameter d and apply a constant current boundary 
condition, %a(0, t) — «o? Eit terminal æ =  0 for a time long enough so that a steady state is 
achieved, and a constant potential vq is evolved. Let t»(a;) —>■ 0 as æ —)• oo be the second 
boundary condition (boundary conditions are considered in more detail in section 2.5). 
The steady-state solution is of the form

v{x) — vo€~^^^. (2.52)

At a: — A, i.e. one space constant, the potential has decayed to 1/e of its value at æ =  0.
Consider, for example, the two semi-infinite cylinders, with different diameters, illus

trated in Figure 2.4. For cylindrical geometry, A / P  = d/4, thus

(2.53)

so the space constant varies with the square root of diameter. Other specific electrical 
properties being equal, a larger diameter implies a larger space constant so that, at the 

same physical distance from the terminal, the potential on the narrower cable experiences 
greater attenuation, and is considered more compact electrotonically.
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AI C ylinder 1

C ylinder 2

Figure 2.4: Electrical compactness of a semi infinite nerve cylinder. 

E lec tro to n ic  T im e

Consider a uniform segment of dendrite with passive membrane and transmembrane po
tential v {x , t )  — v{t )  that is ensured uniform over the segment. There are no applied 
currents and the potential is initially non-zero, such that v(0) — vq- This segment is 
described by the space-independent (space-clamped) cable equation,

dv( t )
dt

with solution,

V{t) =  Voe

(2.54)

(2.55)

The segment may be regarded as a capacitor that is discharging through the membrane. 
Current flows only radially as charge leaks across the membrane in such a way that the 
potential has decayed to 1/e of its initial value after characteristic time, r ,  given by

Cm
T  —  m .C m .  —

9 M
(2.56)

This is the membrane tim e constant, determined entirely by properties of the membrane, 
not the core.

R e-ex p ressin g  th e  L inear C able E q u a tio n

Dimensionless electrotonic length, X ,  and time, T, are given in units of the space constant 
and time constant, respectively

t
X

A’
T (2.57)

48



All electrical quantities can be re-expressed in terms of electrotonic units, and are writ
ten in upper case in this chapter to distinguish them from their dimensional counterparts. 
The transmembrane potential (with respect to the resting potential), is

V { X , T ) = v { x , t ) .  (2.58)

In terms of units and magnitude, V  and v are identical. Note the following transformations,

(2.59)

(2.60) 

(2.61)

Re-expressed in electrotonic units, using equations (2.48) and (2.50), axial current, 
equation (2.44), becomes

where U, referred to as the u-value (with units ohm” ,̂ i.e. a conductance), is a product 
of electrical {E) and geometrical (G) parameters, i.e. U =  EG,  where

E  = ctnd G =  V J P .  (2.63)

dv d V d T I d V
dt dT  d t ' '~ r d T '
dv dV  d X 1 d v
dx d X  dx

d^v 1 d'^v
dx"̂ A2

Re-expressed in electrotonic units, charge injected into dendritic segment [0, X] over 
time interval [0, T] is given by

Q a { X , T )  ^  qA{x, t ) .  (2.64)

Prom equation (2.29), the applied current line density may be rewritten

i J r  t) =  d^QAjX,T) d X  dT ^  1 i P Q A X , T )
^  d X d T  dx dt A t d X d T  '  ̂ ^

It is convenient to define an electrotonic current density which has no geometry depen
dence,

U X . T )  =  (2.66)

since, as will emerge later, its behaviour can be directly related to that of the actual 
applied currents. A point current source, îa ( )̂) injected at some point along the segment, 
can be written

fA(T)==%AOO. (2.673
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Finally, substitute for æ, t, v{x,t)  and id{x^t) in the cable equation (2.47) using equa
tions (2.59) and (2.61) to alter the derivatives, (2.58) to alter the voltage, then (2.65) and 
(2.66) to alter the applied current term. This yields the dimensionless cable equation for 
a uniform segment, with time constant r  and space constant A, and electrotonic length 
L  — l /X,

T > 0 ,  |2 .« )

where, to re-cap, at electrotonic length X  and electrotonic time T, V { X , T )  is the trans
membrane potential with respect to the resting potential, I d{X , T) is an electrotonic cur
rent density (charge applied per unit electrotonic length per unit electrotonic time), and
G is a constant for the uniform segment.

Uniform  Segm ents or Uniform  Cylinders?

In neuronal modelling, cable theory is almost invariably used just to describe cylindrical 
dendritic segments. For a cylinder with diameter d,

G =  ^ ,  (2.69)

and the dimensionless cable equation can be written

where

n  =  — - .  (2.71)
tttE

For convenience, an alternative geometrical parameter is used, i.e. the three halves power 
of diameter which is commonly encountered term when dealing with passive cylinders,

c =  (2.72)

where c will be referred to as the c-value (terminology introduced in Ogden et al,  1999). 
In this case, the segment electrical parameters may be written

r {  —  "  3 ,  C m  — A =  — { O M P i )  ^  \/d , T  —  .
7rd^ dM T T d 2  q m

(&73)
Note the diameter dependence of all parameters except the time constant.

It should be noted that all results and methods that have been developed over the 
years for the cylindrical case are equally valid, perhaps with very slight modifications, for 
the more general uniform segment case.
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The general form is also valid for equivalent cable construction, however, although 
the spatial structure of a dendritic tree is collapsed, the methods used require tha t the 
temporal properties of the membrane, embodied in r ,  are constant for all segments used 
to represent a complete dendritic tree.

2.5 T he M u ltip le  Segm ent M odel o f a D en d ritic  Tree

2 .5 .1  In tr o d u ctio n

A dendritic tree can be represented by a number of non-uniform segments, enough to 
connect all branch points and mark all terminals. However, it is much more common to 
find that a multi-cylinder representation is used. An arbitrary number of these uniform 
cylinder building blocks, generally with different diameters, can be placed together to 
form features such as tapering and branching. As a consequence, rather than a particular 
branch being modelled by a single general cable equation (2.16), it is described by a set 
of cylinders that are each described by a geometrically simplified cable equation (2.34). 
Each model branch therefore has a piecewise uniform, rather than continuous, diameter 
profile.

Computer modelling of dendritic trees was pioneered by Rail (1964), who adapted 
compartmental modelling. W ith compartmental models, a tree is essentially represented 
by an arbitrary number of cylinders. However, instead of modelling each cylinder with a 
cable equation, they are assumed to be isopotential compartments linked by axial resis
tances. Each compartment is described by the space-clamped cable equation (2.54) (with 
additional synaptic, ionic, injected currents), a first order ordinary differential equation. 
The model is integrated in time using finite difference schemes. (For details of compart
mental models see, e.g. Perkel and Mulloney, 1978a, 1978b; Edwards and Mulloney, 1984; 
Hines, 1984; Segev et al, 1989; Lindsay et al, in press).

In the limit, as compartment size decreases and the number of compartments increases, 
the compartmental model tends to produce the same results as the cable model. However, 
compartmental modelling (which is regularly used) is distinguished from cable modelling 
(rarely used for numerical purposes) because if a limited number of isopotential compart
ments are used, the tree geometry is not well represented. If each cylinder is modelled by 
a cable equation, the full influence of geometry can be accounted for. It is in fact perfectly 
feasible to perform computer simulations of the non-uniform cable model using spectral 
methods (e.g. Lindsay et al., in press; Canute et al, 1990) which have numerical proper
ties that are far superior to those of the traditional finite difference schemes employed in 
compartmental modelling (e.g. Mascagni, 1989).
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2 .5 .2  M o d e llin g  U sin g  R ea l D a ta

When morphological data, typically consisting of branch lengths and diameters (plus 
branching angles and three-dimensional orientation in some circumstances, though this 
information is not required here), obtained by sampling the real tree at a suitable number 
of points, is acquired from a real neuron and used to build a model tree, it is given to some 
level of resolution dependent upon the experimental measuring procedure. Dimensional 
constraints have thus automatically been placed on the model, so that any variation in 
branch lengths and diameters within a certain bound cannot really be considered alter
ations at the level of the model. However, at the level of resolution typically obtained, it 
is reasonable to suspect that the essential morphological variation is well represented by 
the data.

There are additional constraints on the electrical properties of the model. While it is 
possible to examine a neuron at the single channel level to obtain local information about 
the membrane properties, it is difficult to determine accurately how membrane properties 
vary over the whole neuron membrane. A lot of assumptions must be made about ion 
channel densities, and distribution of synaptic inputs.

There is also the question of how to represent terminals, and what sort of terminal 
boundary conditions to apply. Should a terminal be represented by a narrowing chain of 
short segments, or a single abrupt terminal cylinder (and does it really m atter given the 
model resolution). Does the terminal leak a significant current, or can it be considered 
leak-free.

Model detail (physical structure, membrane properties, numerical accuracy) must even
tually balance with computational cost (time, storage) when it comes to actually running 
computer simulations.

When dealing with a computer model of a dendritic tree, whether for simulation or 
equivalent cable construction purposes, it is necessary to replace the real data with ap
proximations suitable for computer implementations. Suppose the physical lengths of the 
segments tha t make up the original tree data are denoted li, I2 , ... In- The corresponding 
electrotonic lengths are denoted Li, L 2 , ... Associated with each electrotonic length, 
Lj is an error ej which embodies errors in measuring the length and the cross-sectional 
profile of the dendritic segment. We want to choose a suitably small quantum length L  

such that
|Lfc -  mkL\ <€k,  l < k  < n ,  (2.74)

where m i, m 2 , ...., m„ are integers. Each measured electrotonic length, Lk,  can therefore 
be replaced by a model electrotonic length, m^L, that is an integral multiple of the quan
tum  length. The two lengths are identical within the level of resolution afforded by the
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data. More details are given in Lindsay et al (in press).

Incorporating Spines

If a segment of dendritic tree is covered in spines, the spines will contribute significantly to 
the electrotonic properties of the tree. Spines can be modelled explicitly as small branches; 
alternatively, physical or electrical properties of dendritic segments can be adjusted to 
account for the membrane surface area of spines (Stratford et al., 1989; Holmes, 1986; 
Holmes and Woody, 1989; Rail et al, 1992 summarise the methods). This thesis is not 
concerned with the non-passive properties of spines.

2 .5 .3  O b ta in in g  S o lu tio n s  for a S y ste m  o f C able E q u a tio n s

This thesis is not concerned directly with solving a set of cable equations for an arbitrarily 
branched tree. Many methods are available for this task, and many computer modelling 
suites implement numerical procedures.

In particular, there are several analytical methods now available for solving the linear 
cable equations that describe a multi-cylinder passive tree model. The steady state system 
was solved by Rail (1959). For the time-dependent problem, Butz and Cowan (1974) 
introduced a graphical method based on Laplace transforms that could handle arbitrary 
geometry; this approach was extended by Horwitz (1981, 1983); Kawato and Tsukahara 
(1983) adapted it for dendrites with spines. Tuckwell (1988a) has presented several steady- 
state and time-dependent solutions to cable equations. Abbot et al. (1991), introduced a 
path integral approach (see also Abbot, 1992; Cau and Abbot, 1993).

There are many recent papers that present analytically derived series solutions in 
terms of eigenfunctions of the system. The various papers deal with different boundary 
and initial conditions and tree geometries: Major (1993); Major et al. (1993a); Major et 
al. (1993b); Major and Evans (1994); Evans and Kember (1998); Evans et al. (1992); 
Evans et al. (1995); Kember and Evans (1995).

Numerical procedures are generally of more practical use, since they are not restricted 
to the linear cable model. Several computer programs are available that have either been 
written specifically with neuron simulation in mind, or can be adapted for such use (e.g. 
NEURON, NODUS, Genesis, SPICE). De Schutter (1992) provides an overview of this 
software. (Note, however, that simulation using spectral methods is superior to compart
mental modelling in most respects and should become more prevalent as the modelling 
community becomes more familiar with them; see Lindsay et al,  in press).

Despite the variety of methods now available, the large number of possible input con
figurations for any one simulation mean it is difficult to use these methods to get any
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insight into how geometry shapes the full range of electrical activity over a neuron.

2 .5 .4  T ree S tru ctu re  T erm in o logy

Here we define the terminology used to describe features of multi-cylinder dendritic struc
ture. This should help to avoid any possible confusion, though most terms are fairly 
obvious in their meaning. Figures 2.5a-b illustrate the use of terms the are not specific 
to the multi-cylinder model, i.e. that can describe features of any tree, while Figure 2.5c 
describes features characteristic of the multi-cylinder model.

A complete dendritic tree, formed from a set of cylinders (or uniform segments) of 
various lengths and diameters is often referred to simply as a tree. Several trees may 
connect to a single neuron’s soma. Note that the distance between two points on a tree 
is measured along the shortest, non-recursive, axial path within the tree. Furthermore, 
physical length (and consequently electrotonic length) is measured along such a path, 
always increasing away from the soma.

A point on a tree where three or more cylinders meet is called a branch point or 
junction] a three cylinder junction is called a binary branch point. Of the cylinders that 
meet at the branch point, that nearest the soma is the parent cylinder, the others are 
known as child cylinders. The point where two cylinders meet is called a diameter step. A 
point that marks the end of one cylinder, and is not associated with any other cylinders, 
is called a terminal.

The term branch itself refers to a segment of tree that connects one branch point to 
another or one branch point to a terminal. Of the branches that meet at a branch point, 
that nearest the soma is the parent branch, the others are called child branches. It is 
possible that a cylinder constitutes an entire branch.

Each tree has a branching order defined as the maximum number of branch points 
encountered in a non-recursive path starting at the soma, and ending on a terminal, moving 
away from the soma at all times. An unbranched structure therefore has branching order 
0. Each branch or cylinder in a tree can also be assigned a branching order, i.e. the 
number of branch points that are encountered on a direct path from soma to the branch 
or cylinder. A structure with branching order one, the single branch point being binary, 
is called a Y-junction. It consists of a parent branch (optional) connected to two child 
branches, usually referred to as left and right.

Take any branch and isolate a cylinder on it. This cylinder plus the entire section of 
the tree connected to it, and further from the cell body than it, is called a sub-tree, or 
dendritic substructure. Any two cylinders in a sub-tree are linked by path along a subset 
of the cylinders that form the sub-tree. The tree branch that connects to the cell body is 
called the trunk. The branch at the root of a sub-tree is referred to as the trunk of that
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Figure 2.5: Dendritic tree model terminology, (a) General tree terminology, (b) Y-junction 
terminology (c) Multi-cylinder terminology. See text for full details.

sub-tree. Similarly, there will be trunk cylinders, and sub-tree trunk cylinders.

2 .5 .5  In it ia l and  B o u n d a ry  C on d itio n s

If one’s aim is to solve the set of cable equations describing a complete tree, the initial 
electrical state of the segments must be specified, as must the physical boundaries and 
the nature of the electrical activity at these boundaries. Voltage continuity and currents 
conservation conditions must be applied where dendritic segments connect, i.e. at branch 
points, or where diameter is discontinuous. It will become clear in later chapters that 
equivalent cable construction, on the other hand, only requires knowledge of boundary 
conditions (even then no representation of the soma is usually required, and only the 
general type of terminal need be know).

The following conditions are given in physical units. For the passive tree model, elec
trotonic forms of the conditions acceptable for equivalent cable construction are given 
later.

In itial C onditions

Initial conditions constitute a specified transmembrane potential distribution,

'ü(æ, 0) —'Uo(a;). (2.75)
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G eneral Terminal Condition

Consider a dendritic segment with length Z, terminated at a; — 0 and x — I. The trans
membrane potential at the terminal is Z); a current is also injected. The total 

current flow out from the terminal must be This current is assumed to
be driven, by deviations from the resting potential, across a terminal with leakage
conductance qt , thus

= 9Tv(l,t). (2.76)

Rewriting the axial current contribution using equation (2.44) gives an alternative form 
of this boundary condition,

+gr^(Z ,t) =iA{t).  (2.77)

If a similar condition is imposed at a; =  0 then, because of conventions for the direction 
of current flow, the current leaking from the terminal is —Za(0, t) -f iA{t)i thus

~ia{0, t) + m(Z) =  9Tv{0, t), (2.78)

and so
+  9Tv{0,t) -  iA{t)- (2.79)

Under certain assumptions this general boundary condition collapses to the following 
more commonly used conditions.

G eneral Current Injection Condition

If a generally time-dependent axial current is specified at segment boundary x  — and 
no current may leak from the terminal, so that =  0 in equation (2.76), then

=  -Û (^)- (2.80)

The minus sign appears because injected current is constrained to flow in the direction of
decreasing x. Similarly, at æ =  0, equation (2.78) gives

%a(0,Z) == -  — — == +û(Z). (2.81)

In this case injected current is constrained to flow in the direction of increasing x.
A zero terminal conductance is equivalent to an infinite terminal resistance to axial 

current flow. Thus, from equation (2.6), this condition is equivalent to a sudden drop in 
cross-sectional surface area to zero.
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Sealed End C ondition

The sealed end condition is the special case of the general current injection condition 
(2.80) or (2.81) where no current is actually applied,

i A { t )  -  0, (2.82)

so that

i a { l , t )= 0  or %«(0,t) = 0 , (2.83)

This is often taken as the natural terminal condition for dendritic tips. Essentially, no 
current leaks from the terminal.

C ut End C ondition

The cut end (or killed end) condition is obtained from (2.76) by letting gp oo, thus

u(Z, i)—0 or p(0,t) — 0, (2.84)

depending on the terminal subject to the boundary condition. The transmembrane po
tential at the terminal is equal to the segment’s resting potential.

This is not strictly a short circuit across the membrane, in which case the actual 
transmembrane potential at the terminal would be zero. However, there is essentially no 
axial resistance to currents that would move the potential at the terminal away from rest. 
Equation (2.6) suggests that a cut terminal may be regarded as a point where the segment 
surface area jumps abruptly to infinity.

Joining Conditions

If the parent segment (p) has length Ij, and is connected to n  child segments (ci, ..., Cn) 
then the voltage continuity condition at the branch point can be expressed

=  UcjO,^), (2.85)

for all child cylinders 1 < k < n. Denote axial current in segment j  by i a j .  Conventions 
for direction of axial and exogenous injected currents requires that at the branch point

n

Z) +  Zyi(Z) — 'y  ̂ (0, t), (2.86)
k = l

where iA{i) is current injected into the junction and the sum is over all child segments.
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The Som a Boundary Condition

To complete the model (ignoring the axon), it is necessary to attach the dendritic tree 
to a representation of the soma. Most commonly, a point representation is used. The 
soma membrane has surface area A s ,  capacitance per unit area Cs ,  and transmembrane 
potential ug.

Suppose that m dendritic trees segments are attached to the soma. Segment j  has 
transmembrane potential Vj [x)  and cross-sectional area A j  (x). Voltage continuity requires 
that vs(t) — vi(0 ,t) =  V2(0,t) — ... — 'ÜTn(0,<). The axial current in segment j  is denoted 
iaj- Suppose also that Jg is the total current density (per unit area) flowing out from the 
soma across the membrane. The total amount of charge then flowing into the soma is

-JsAs -  = -JsAs + E
U .  J^l Pi

This must balance the somal capacitive current, so

A s C s ^  =  (2.88)

The current density Jg may consist of voltage dependent ionic currents, synaptic currents, 
pumping currents and exogenous injected currents. It can be expressed in a similar manner 
to the segment transmembrane current Jp, with synaptic, injected, ionic and pumping 
components. The reduction in soma surface area where dendrites connect has not been 
accounted for, but is easily done so by replacing As  with A s  — Ylj  Mj(0).

2 .5 .6  T h e  P a ss iv e  M u lti-S e g m e n t T ree M od el

The passive multi-segment tree model, valid for the construction of fully equivalent cables, 
is now summarised.

A tree is represented by an arbitrary number of uniform segments. Associated with 
each cylinder j  is a surface area, Aj ,  a perimeter Pj,  a space constant Xj,  a physical length 
lj, a potential Vj,  an applied current density Idj ,  and electrotonic length L j  — I j /Xj .  

Furthermore, there is a u-value Uj = E j G j ,

From equation (2.70), the electrical characteristics of cylinder j  are described by the 
dimensionless linear cable equation,

T > 0 .  ( Z «

Axial current for cylinder j  is denoted Ia, j {x, t ) ,  so equation (2.62) is

=  (2.90)

Only the following boundary conditions are valid for equivalent cable construction.
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General Current Injection C ondition

The current injection condition, equation (2.80), becomes

h ( L , T )  = = - I a {T).  (2,91)

Similarly, at æ =  0, equation (2.81) becomes

4 (0 , T) =  =  n (T ) .  (2.92)

Sealed End C ondition

The sealed end condition, equation (2.83), is the special case of the general current injection 
condition (2.91) where no current is actually applied,

I a { L , T ) ^ 0  or Ia(0,T) =  O, (2.93)

depending on the terminal subject to the boundary condition.

Cut End Condition

In electrotonic units, the cut end condition (2.84) is

V(L, T ) = 0  or y(0, T) =  0, (2.94)

depending on the terminal subject to the boundary condition.

Joining C onditions

If the parent cylinder (p) is connected to n  child cylinders (c%, ..., c„), then the voltage 
continuity condition in electrotonic form is

Fp(Lp,T) =  14,(0,T), (2.95)

for all k where 1 < k < n.
Conventions for the direction of axial and exogenous injected currents requires that at 

the branch point
n

Ia,v(I'p,T) + I a (T) =  ^ 4 , l ( 0 , T ) ,  (2.96)
fc=l

where /^(Z) is current injected into the junction and the sum is over all child cylinders k 
that meet parent cylinder p  at the junction.

To ensure that this passive tree model is suitable for equivalent cable construction, it 
is only necessary to insist that r  is constant over the whole tree, i.e. the quantity Ca / qm
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is constant over the tree. Cylinder c-values (3/2 power of diameter), which have a more 
immediate physical interpretation than the u-values. Thus we shall formulate the passive 
multi-cylinder model with homogeneous specific electrical parameters.

2 .5 .7  T h e  P a ss iv e  M u lti-C y lin d e r  T ree M o d el

We assume tha t the specific electrical constants for dendritic cylinders, gM-> Pii and Cm, are 
identical for each cylinder used to represent the tree. Consequently, r  must be constant, 
as must E .  It has already been shown in equation (2.48) that Cm, r m ,  and equation 
only have a diameter dependence over the tree.

Prom equation (2.70), the electrical characteristics of cylinder j  are described by the 
dimensionless linear cable equation,

d'^Vj{X,T) _  dVj{X,T)

Axial current for cylinder j  is

P V j { X , T ) - Q - ^ L n ^ ^ ,  0 < X < L i ,  T  > 0. (2.97)

4 . , ( X , T )  =  (2 .9 8 )

where

2 .5 .8  T y p ica l E lec tr ica l P a ra m eters  in  a Tree

The membrane capacitance per unit area. Cm, is usually assumed to be l.O/iFcm"^. 
Intracellular resistivity, pi, may range around 50-100ü/cm. Membrane resistance per unit 
surface area { I / q m )  is not easily determined accurately, but typically is assumed to fall 
within the range 5,000 to 100,000 Ocm^. Rail et al (1992) outline methods for parameter 
estimation.

2 .5 .9  T h e  T ree M o d e l Surface A rea

The membrane surface area of uniform dendritic segment j ,  with length Ij and perimeter 
P j ,  is

S j  =  P j l j .  (2.100)

In terms of electrotonic length, where L j  — l j  / X j , this becomes

S j  ~  P j X j L j .  (2.101)

The total surface area, of tree is

Sç = Y ^ S j ,  (2.102)
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where the sum is over all segments used to represent the tree.
Now, suppose all segments have the same physical length, Z, the total surface area is 

given by

Sf = lY iP 3 -  (2.103)
j

If all segments have the same electrotonic length, L, total surface area is given by

(2.104)
j

If the uniform segment is cylindrical, and electrical properties are constants for the 

tree, then P j X j  — i r C j / 2 ^ g M p i ,  and

Essentially, the surface area of a unit electrotonic length of segment is proportional to its 
c-value. The sum of the c-values can be used as a measure of tree membrane surface area.

2.6 E lectrica l A ctiv ity  in S im ple P assive S tructu res

2 .6 .1  P a ss iv e  S ign a l P ro p a g a tio n

Electrical input on a passive dendritic tree will, geometry permitting, induce changes in 
the membrane potential at structure nearer and further from the soma than the input 
site. These effects are carried by charges spreading axially as equilibrium is sought. A 
transient current input, for example, causes a transient change in membrane potential at 
the input location. The magnitude of this effect decays in time, as charge moves both 
across the membrane (radially) and through the branching tree system (axially), causing 
changes in the membrane potential at all points in the tree. The distance of a point on 
the tree from the input site, as well as overall tree geometry and the electrical properties 
of tree membrane and core, determine the strength and time course of the response at this 
point. Dendritic geometry and terminal boundary conditions can have a major influence 
on the spread of charge at points such as terminals, branch points and changes in diameter. 
Recall again that a general current injection condition is analogous to a drop in diameter 
to zero, while a cut condition is analogous to a sudden jump of diameter to infinity — 
charge may flow unhindered from the terminal.

2 .6 .2  Im p ed a n ce  M a tch in g

Impedance matching is a useful concept. Two adjacent structures on a dendritic tree 
are impedance matched if a charge imbalance that has accumulated at the contact point
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disperses equally into both. Essentially, there is equal immediate (local) impedance to 
current flow into both structures.

For example, any point on a uniform infinite cylinder represents an impedance matched 
structure and consequently an electrical input generates a voltage distribution tha t is 
symmetric about the input site. Impedances are not matched at terminals and abrupt 
diameter changes. At branch points, where more than two cylinder meet, it is possible 
that subsets of the cylinders are impedance matched. Where impedances are not matched, 
which is likely in real neurons, structures with lower impedances (larger diameters) receive 
more of the accumulated charge.

2 .6 .3  S te a d y  S ta te  S o lu tio n s  o f  th e  C able E q u ation

It is helpful to illustrate impedance matching by considering the steady state solution for 
constant current injected at the point where two semi-infinite cylinders connect. In Figure 
2.6a, two such cylinders are illustrated. Figure 2.6b shows that the voltage response in 
physical space is unsymmetric about the contact point. If x  is measured increasing away 
from the discontinuity for both cylinders, the solutions in each cylinder are,

vi{x) = and V2 {x) = . (2.106)

The voltage decays with a shorter space constant in the narrower cylinder. However, if 
the response is drawn in electrotonic space, Figure 2.4c, it is symmetric about the contact 
point, since

V,{X)  =  V i iX]  =  Voe -^ .  (2.107)

Current conservation at the discontinuity means that

(2T08)
dVi

Ia (T)  =  - K c i
æ=0

Since K  is constant and the voltage response profiles are identical in electrotonic space, 
then the ratio of the currents flowing into each cylinder is the ratio of c-values. (This 
generalises to the u-values for uniform segments with different electrical and geometrical 
properties.)

Now consider a binary branch point where three semi-infinite cylinders (denoted par
ent, left and right) connect. In each cylinder, x  increases away from the branch point. 
Again, the voltage responses in each cylinder are identical in electrotonic space (though 
in physical space they will depend on the diameter). The ratio of current flowing into 
any two cylinders depends on their relative c-values. Thus, the same amount of current 
flowing into the left and right cylinders will equal that flowing into the parent only when 

cp = Cl + CR.
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Figure 2.6: Steady state response in two connected semi-infinite cylinders.

Consider a set of connected cylinders. One sub-set of these cylinders is impedance 
matched with the remaining sub-set if the sum of c-values for each sub-set is equal.

2 .6 .4  S te a d y -S ta te  In p u t C on d u cta n ce

The steady-state input conductance, Gin with respect to a specific point on a branched 
tree structure, is the ratio of steady input current (%o) at the input site to the the steady 
potential (uq) evolved at the input site, thus

G irt. — (2.109)

For example, in the case of a semi-infinite cylinder, equations (2.44) and (2.55) give

1 1
Gin. — (2 .110)

nX ■s/rmTi '

Rail (1959) gives a recursive procedure for evaluating Gin for any multi-cylinder passive
tree.

2 .6 .5  U n ifo rm  V o lta g e  D eca y

Consider a complete multi-segment dendritic tree with arbitrary geometry but all terminals 
sealed. The tree is isopotential so that no axial currents flow. A similar analysis to 
that for the single dendritic segment (Section 2.4.1) reveals that this voltage decays with 
characteristic time constant r . The total capacitive discharge current flow is

d t
(2 .111)

where the sum is over all dendritic segments that form the tree. The current is proportional 
to the surface area.
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2,7 R eq u irem en ts for E quivalent C able C on stru ction

Although cable construction theory is valid for passive uniform segments (provided the 
membrane time constant is actually a constant for the whole tree), the rest of this thesis is 
developed from just the dimensionless passive linear cable equation for cylindrical geometry 
(2.97), the corresponding equation for axial current (2.98), expressions for cut and current 
injection terminal boundary conditions (2.91, 2.93, and 2.94), plus voltage continuity and 
current conservation joining conditions (2.95 and 2.96). Bulk electrical parameters Cm , 
gM and pi are taken to be constant.

If required, cable results could be extended quite naturally from cylinders to segments, 
with u-values replacing c-values. Thus there is some flexibility in the choice of electrical 
parameters gM, Pi, and Cm , and geometrical parameters A  and P  which may vary between 
segments provided a constant membrane time constant {Cm /Qm ) is maintained.

The measures of surface area, steady-state input conductance, and the idea of a uni
form potential over a completely sealed tree decaying uniformly, are introduced because 
they are significant whole-tree properties that must be conserved during equivalent cable 
construction for all, or important classes of, model trees.
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C hapter 3

Equivalent Cables

3.1 In trod u ction

W ithin the context of neuronal modelling, the term “equivalent cable” has been used 
to describe a variety of unbranched, and often non-uniform, reduced models which are 
“electrically equivalent” , in some sense, to an original dendritic tree model (or perhaps 
axonal tree model), and can thus be used to analyse its electrical properties and signal 
processing function. The motivation for developing these models has been the success of 
the original equivalent cylinder result (Rail, 1962b), which we describe in detail in section 
3.3. In principle, the electrical properties of an unbranched structure can be analysed more 
easily than the original tree. If one can construct an unbranched structure that preserves 
many of the tree’s electrical properties, then it may be easier to gain some insight into 
its function, or estimate important electrical parameters. Rail showed how this could be 
done for a limited class of tree, and subsequent efforts have attem pted to generalise his 
result.

Here we describe and compare the different cable models that have been proposed, 
then comment briefly on how they are constructed, and how they are used, i.e. primarily 
whole-cell electrical parameter estimation. We emphasise the fact that these cable models 
cannot be equivalent to the original tree model in a mathematical sense. We subsequently 
state a precise definition of equivalence that has a rigorous mathematical basis, and then 
describe the fully equivalent cables that were discovered by Whitehead and Rosenberg 
(1993) and which satisfy this definition. True mathematical equivalence between a tree 
model and an unbranched cable is a very powerful concept, and we consider some of 
the general insights that follow from this result. Existing quasi-equivalent cable models 
are also compared in light of the definition of equivalence. Three different methods for 
constructing these cables are briefly discussed; the full details, given in Chapters 4, 5, 6 
and 7 form the bulk of this thesis. Significant general features concerning the shape and
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boundary conditions of fully equivalent cables are also outlined, anticipating more detailed 
discussion and illustration, also given in these chapters and overviewed in Chapter 8.

It is important to note that, while the results given in this chapter assume, and were 
originally derived for, cylindrical dendritic segments, they can be shown to be valid for 
general uniform segments with non-circular cross-section, as was stressed in Chapter 2. 
The model equations have an essentially identical form.

In this chapter, in contrast to the previous chapter, for notational convenience lower 
case letters are used to represent electrotonic units and quantities expressed in terms of 
electrotonic units.

3.2 T h e V arious C able M odels

An equivalent unbranched structure can only be constructed and compared to the dendritic 
tree it is supposed to represent provided one has a working definition of what is meant by 
“equivalence” . Previous notions of equivalence has primarily been “needs-led”, e.g. the 
need to reproduce results with the cable model that can be identified with results of an 
experimental procedure, such as a transient voltage response at the soma. Equivalence is 
typically measured with respect to the soma, and once a cable has been generated it is 
attached to the soma instead of the tree (that is, the model is replaced); ideally the two 
structures have identical electrical properties and thus represent identical electrical loads 
that are indistinguishable by the soma. In practice, the perceived notion of equivalence 
is often either geometrically and/or electrically restrictive (Rail 1962a, 1962b; Tuckwell, 
1988a; Ohme and Schierwagen, 1998), or even approximate in nature (Fleshman et al, 
1988; Stratford et al, 1989; Clements and Redman, 1989; Manor et al, 1991). The question 
“W hat constitutes true electrical equivalence?” is often unasked. It is easy to say this 
with hindsight, of course. It is most likely that, given the complexity of realistic geometry, 
it was assumed unlikely an exactly equivalent structure existed in general. Construction 
procedures for quasi-equivalent cables can differ markedly, are intimately linked to the 
definition of equivalence, and can be classified into two general types.

(A) Restricted Cables: Equivalent cables that follow directly from the mathematical 
model of the dendritic tree, i.e. it is possible to prove that they meet some level 
of “equivalence” . One imposes conditions, some of which are unrealistic, or at best 
rarely encountered, on the geometry of, and/or the electrical activity within, a den
dritic tree, until the equivalent model falls out inevitably, via mathematical analysis, 
from the specified mathematical description of the tree. (Note that any such condi
tions are in addition to the basic assumptions of the mathematical model — usually 
the passive multi-cylinder model described in Chapter 2.)

66



(B) Empirical Cables: Equivalent cables that are constructed using some heuristic based 
on empirically observed conditions for reproducing voltage responses observed at the 
cell body. Given some known parameters that are characteristic of the whole tree 
(for example steady-state input conductance, and in certain cases membrane surface 
area) tha t one expects should be invariant in an equivalent structure, one tries to 
build a cable that also has these properties.

In addition, the fully equivalent cables introduced by Whitehead and Rosenberg (1993) 
fall into a category of their own.

(C) Fully Equivalent Cables: See definition later.

Cables of both type (A) and (B) are, under certain circumstances, incomplete special 
cases of type (C) — significantly, they are always incomplete in a mathematical sense. 
Categories (A) to (C) roughly encapsulates the chronological order of the introduction of 
all cables, with minor exceptions.

The power of true equivalence, and the absence of geometrical and electrical restric
tions, ensures that the new cables represent an analytical tool capable of giving far more 
insight into the signal processing properties of passive tree geometry than cables of type 
(A) and (B).

It should be noted that unbranched models are often used in computer simulations 
where one is investigating properties of neurons but is not necessarily concerned with 
the influence of branching structure (see, for example, Goldstein and Rail, 1974; Halliday, 
1995b; Toth and Crunelli, 1998). The unbranched structure is just a convenient framework 
for producing the phenomena of interest. Though often similar in structure to equivalent 
cables, they are not intended as a replacement for a specific dendritic tree.

3.3 R a il’s Equivalent C ylinder

The classic, and probably most well-known example of a reduced model is Rail’s equivalent 
cylinder (Rail, 1962b, 1964, 1977), which is the precursor to, and inspiration for, all 
subsequent equivalent cable models. It falls into category (A). The desire to construct 
equivalent cables has arisen primarily because of the success of Rail’s model for estimating 
passive electrical parameters of neurons (e.g. qm , pi)- Its simple structure makes it more 
susceptible to mathematical analysis and its electrical properties are more easily visualised 
than those of the corresponding tree.

Given a multi-cylinder model of a passive dendritic tree, as described in Chapter 2, 
where uniform cylinders meet only at branch points, the tree is a Rail tree provided the 
following three conditions hold:
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cp — CL +  C R

Figure 3.1: Singly branched binary Rail tree and its equivalent cylinder. Each tree limbs 
has electrotonic length I, as does the equivalent cylinder. Tree limbs and equivalent cylin
der have the same terminal boundary condition, denoted T.

1. All terminal boundary conditions are of the same type.

2. At any branch point the sum of child cylinder c-values (ci, ..., c„) equals the c-value 
of the parent cylinder (p), thus Cp — Y^ci. Recall from Chapter 2 tha t Ck — so 
this is Rail’s 3/2 power law for dendritic cylinder diameters.

3. All dendritic terminals are located at the same electrotonic distance, L, from the 
soma.

We assume that condition (1) simply requires that the potential, vi{x^ i), of terminating 
cylinder %, satisfies the boundary condition

avi{li,t) +  (3.1)

where, from equation (2.76), a  is a measure of leakage conductance from the terminal, 
/3 is a measure of intracellular axial conductance at the terminal, and f i  represents the 
(current) supply or forcing term. The quantity a//? thus measures relative amounts of 
leakage and axial current flow. Current injection {a =  0) and cut (a  -> co) conditions are 
just special cases of equation (3.1). Condition (2) is essentially an impedance-matching 
condition between the parent cylinder and its child cylinders at each branch point.

A Rail tree may be replaced by a uniform cylinder, attached to the soma. This cylinder 
exhibits the same impedance matching properties as the Rail tree. It has electrotonic 
length L, the same type of terminal condition as the tree terminals, and c-value equal to 
that of the trunk cylinder, i.e. that which connects to the soma. It has total surface area 
equal to that of the tree.

Figure 3.1 illustrates a singly branched Rail tree and its equivalent cylinder. The 
equivalent cylinder result need only be proven for this simple case. The general result for 
multiple branching follows by successive reductions.
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d v L d v R

« = 0 x = 0 -
i j  = - K

Now consider the simple linear combination of potentials,

vc{x, t)  =  — ~ — v i{x , t )  H ^ — VR{x,t). (3.5)
Cl  T  CR C l +  CR

The claim is that vc  represents the potential in a uniform cylinder, with c-value Cl +  cp,
and which can be connected to the branch point instead of the Y-junction while still
preserving voltage continuity and current conservation. Voltage continuity where the new
cylinder connects to the junction is guaranteed, because of voltage continuity in the original
Y-junction junction, i.e.

ac(0 ,t) =  — ^ — % (0,f) +  — %( 0, t )  =  ^L(0,^) VR{0,t). (3.6)
Cl  +  Cr  Cl  +  Cr

Also, since

and

v c { l , t )  ^  ^ — VL{l, t) - f  — ^ — VR{l,t), (3.7)
C L  +  C i? CL +  Cr

dvc{l ,t ) ^  CL dvL{l,t)  ̂ CR dvR{l,t)
dx C L  + Cr  dx Cl  -i- Cr  dx '

69

3.3.1 Proof

Rail originally demonstrated the foundations of his result by analysing steady state solu
tions of the cable equations, and determining the simplifying conditions that ensure the 
steady state input conductance for the tree is identical to that for a uniform cylinder (Rail, 
1959; 1962b). This approach is unnecessary (though insightful) however, and the result 
follows simply for the time-dependent case from an elementary analysis of the partial 
differential equations. One need not be concerned with specific expressions for the tree 
cylinder potentials (e.g. steady-state solutions in terms of sinhæ and cosher). All that is 
required are the describing equation (the cable equation) and the boundary conditions.

Consider the left (L) and right (R) cylinders of the simple symmetric Y-junction, each 
with electrotonic length I ,  and c-values c l  and c r . The left and right potentials, v l { x R )  

and V R { x ^ t )  satisfy the dimensionless cable equation, thus

^  =  and ^  =  0 < x < i ,  (3.2)
dx^ d t  c l  dx^ dt  c r

where iL{x.ft) and iR{x,t) are the electrotonic applied current densities on each branch. 
Recall that O is constant. Voltage continuity at the branch point ensures that ^(O,i^) — 
VR{0,t). The two terminal boundary conditions are

avL{l,t) +  =  fL{t) and avR{l,t) + =  /i?(^)- (3.3)

Using equation (2.98), the total axial current flowing into the two cylinders from the 
junction is
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then VC satisfies the terminal condition

avcil ,  t) +  =  /c (i) . (3.9)

where

M i )  =  (3.10)

Current conservation at the junction is guaranteed since, from equation (2.98), and using 
equations (3.8) and (3.4)

dvc = i j ,  (3.11)
æ=0

provided cc = cl -t- cr. Choosing

ic{x, t)  = iL {x , t)  ^ iR {x , t ) ,  (3.12)

it is easy to check that vc  satisfies

^  =  ^  +  0 < x < l .  (3.13)
OX^ dt Cc

The equivalent cylinder result for the Y-junction follows immediately.
The general Rail tree can be reduced Y-junction by Y-junction, with the equivalent 

cylinder potentials (applied currents) now being formed from nested combinations of tree 
cylinder potentials (applied currents) as more and more structure is transformed. If vj {x) 
and ij{x) represent the potential and applied current on branch j ,  at a distance x from 
the cell body., then the potential and applied current over the equivalent cylinder that 
represents the whole tree are given by

vc[x)  =  ^  — aj(a;) and ic[x) ^  ^ ÿ ( æ ) ,  (3.14)
J ;

where the sums are taken over all branch cylinders, that lie at a distance x  from the cell 
body. The cylinder c-value, cc, is the sum of all branch c-values that lie at any particular 
distance from the soma — the Rail conditions ensure this is a constant throughout the 
tree, from soma to tips.

Figure 3.2 illustrates the reduction of a highly symmetric Rail tree with four orders of 
branching. If any of the structures (b) to (e) are attached to the soma instead of the original 
tree (a), one cannot determine which from their individual voltage responses at the soma. 
Any electrical activity on tree (a) can be mapped (using equations of the form 3.5 and 3.12) 
to any structure (b) to (e). Note that, of course, activity only needs to be mapped from 
sub-structure that has been transformed. Electrical activity on untransformed structure 
will be identical. Resulting electrical activity observed at the cell body will be, necessarily, 
identical.
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Figure 3.2: Successive reduction of Rail Y-junctions at the tips of more complicated Rail 
trees, to transform a complicated Rail tree to its equivalent cylinder. Reduction from (a) 
4-order branching, though (b)-(d) to (e) zero orders of branching. All terminal boundary 
conditions are of the same type.

Note that Tuckwell (1988a) has proposed an equivalent cylinder theorem (theorem 
5.2) including applied currents that attem pts to formalise Rail’s result, but imposes un
necessary restrictions upon v r , ih and %r . His subsequent theorem (theorem 5.3) (see 
also Walsh and Tuckwell, 1985) is essentially the correct result. He also states that it 
is possible to determine the potential over the whole Rail tree using this theorem, given 
the potential over the cylinder. It is not however, possible to determine an unique con
figuration given the potential on the equivalent cylinder. The following discussion about 
mapping electrical activity should clarify this point.

3.3.2 Mapping Electrical A ctivity  Between Tree and Cylinder

Given some configuration of electrical activity (voltage distribution and applied currents) 
in the Y-junction, the activity within the cylinder that generates the same response at the 
branch point is given by equations (3.5) and (3.12).

It is less clear how to map electrical activity back to the tree from the cylinder. Consider 
Figure 3.3a. A single input current, I , is mapped from the Rail Y-junction limb to the 
equivalent cylinder using equation (3.12). In Figure 3.3b, two currents are applied to 
the Y-junction, one on each branch, at the same distance from the branch point. One 
has magnitude r / ,  the other magnitude si ,  where r  -t s =  1. Again the corresponding
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r  +  s  =  1
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Figure 3.3: The electrical mapping from Rail cylinder to tree is not unique. Different 
applied currents on the trees (a)-(c) will map to the same configuration over the cable.

input current on the equivalent cylinder is I, at the same distance from the branch point. 
So, there is an infinite number of tree input configurations, determined by the choice of 
r  and s, tha t map to the same cylinder input. Inputs need not even be located at the 
same distance from the soma. In Figure 3.3c, two additional currents, + I i  and —/i ,  are 
applied on the limbs, equidistant from the branch point. They cancel when mapped to 
the equivalent cylinder. The consequent non-uniqueness of the mapping from cylinder to 
tree is clear — to which tree configuration is the cylinder input mapped?

In mathematical terms, the mapping of electrical activity from tree to cylinder is 
surjective (every configuration of cable activity is associated with at least one configuration 
of tree activity), however it is not injective (which requires that no two tree configuration 
map to the same unique cable configuration), thus the mapping between cable and tree is 
not unique, i.e. the mapping is not bijective, which follows from surjectivity and injectivity 
combined.

In a different form, this non-uniqueness of the mapping between Rail tree and equiva
lent cylinder has been referred to as the “principle of independence of response on geom
etry” for Rail trees (Tuckwell, 1988a; Walsh and Tuckwell, 1985). Given the response at 
the soma to an input somewhere on the tree, only the electrotonic distance of the input 
from the soma may be inferred, not its precise location on the tree. The same current
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Figure 3.4; The mapping between a Rail Y-junction and its fully equivalent cable is unique, 
(a) A single injected current maps to the usual injected current on the cylinder plus a scaled 
current on the disconnected section, (b)-(c) Individually, these cable currents each map 
to two tree currents, (d) The mapping in (a) is unique and reversible.

input at two different locations on the tree, equidistant from the soma, will give rise to 
the same response at the soma. The soma cannot distinguish such inputs.

3 .3 .3  A  H in t o f  Full E q u iva lence

It is instructive to introduce, in their simplest form, some features of fully equivalent 
cables. Consider the anti-symmetric combination of Rail Y-junction limb potentials (as 
opposed to the weighted symmetric combination vc),

v d { x ,  t )  =  v l { x ,  t )  -  V r { x ,  t ) ,  

and observe that vd satisfies a cut condition at a: =  0, i.e.

VD{^,t) =  %(0, t )  -  VR{0,t) == 0,

(3.15)

(3.16)
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in sympathy with voltage continuity at the origin, k t  x  — vd satisfies the boundary 
condition

m>D(i,t) +  / 3 ~ ^  =  /D (t). (3.17)

where

f u i t )  =  Î L { t )  -  /iî(i). (3.18)

Taking
ip{x, t ) ^ û(æ,t) _ iR{x,t)

C D  Cr  Cr

potential vd satisfies the cable equation

(3.19)

^  =  ^  +  ^ D - n ^ ,  o < x < ; .  (3.20)ox^ at CD

So, up is the potential in a cylinder with electrotonic length /, and c-value cp (which has 
not been specified, and may take any positive value). Appropriate boundary conditions 
are satisfied at æ =  0 and x — and cylinder D is not attached to the soma — in fact 
it is not attached to anything. This is the disconnected section of a Rail Y-junction’s 
fully equivalent cable; the equivalent cylinder is the connected section. In this case, the 
disconnected section describes the difference between the potentials on the two limbs. 
This is information that structure connected to the Y-junction cannot discern, hence the 
disconnection.

We now have two linearly independent equations describing the two potential functions 
on the two Y-junction limbs. The entire space of electrical activity over the Y-junction 
is represented by vq and up. It is now possible to invert the mapping from tree to cable 
(equations 3.5 and 3.12), thus

VL{x,t) ^  v c { x , t ) — VD{x,t), %(æ,^) =  Up(æ,^) -  — Up(æ,f), (3.21)
Ce Ce

and

ÎL{x,t) = ic{x, t)  —  4-âp(æ,t) — , iR(x,t) ^  i c {x , t )—  -  i D { x , t ) ^ ^ ^ .  (3.22)
Ce c e  CD Ce  cpcp

Transformations that generate fully equivalent cables must be (electrotonic) length-
preserving. By their very nature, no quasi-equivalent cable model can achieve this.

Figure 3.4 illustrates the equivalent cylinder for a singly branched binary Rail tree,
and the uniqueness of the electrical mapping. Figure 3.5 illustrates the equivalent cable
for the 4-order Rail tree in Figure 3.2.

Slight R elaxations o f R ail’s Conditions

We just briefly mention that an extension to the above analysis, using multiple cylinders 
for each limb, will show that if the Y-junction has branches with non-uniform (piecewise
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(e)

Figure 3.5: The Y-junction by Y-junction reduction of a Rail tree into its fully equivalent 
cable. Trees (a)-(d) are successively reduced and eventually (e) a single connected section 
is produced, plus 2"̂  — 1 disconnected sections. All five structures are equivalent since an 
electrical mapping will uniquely relate activity between any two.
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uniform) diameter profiles, such that cl{x ) I cr{x ) =  r  is a constant, but otherwise satisfies 
the Rail conditions (1) and (3) above, then the potential

T 1
vc{x, t)  == (3 .2 3 )

describes an equivalent structure with diameter profile cc{x) — (1 +  r)cR{x). A discon
nected section with potential

v d {x , t) =  v l{x , t) -  v r{x , t) (3.24)

has a similar diameter profile, with cp(æ) — F c r { x ) ^  where F  is an arbitrary positive 
constant.

Again, successive reductions may be applied to a highly branched tree provided the 
diameter profiles of each limb are appropriate. This result is discussed in greater detail in 
Chapter 6, where an alternative proof is given.

The left and right c-value profiles may in fact be continuous functions of x. This can 
easily be shown using a similar analysis to that above for Rail’s equivalent cylinder, but 
using a non-uniform passive cable equation based on equation (2.16) (it must first be non- 
dimensionalised). Taking the arguments even further, the diameter profiles may in fact be 
a mixture of both continuous and discontinuous segments, again provided that the limb 
ratios are constant. The quantity qm/Omi  i.e. the time constants, may even vary in each 
limb, provided t l { X )  —  t r { X ) .

3 .3 .4  A p p lic a t io n  o f  R a il’s E q u iva len t C ylinder

The equivalent cylinder concept was just one result that followed from Rail’s application of 
passive cable theory to obtain expressions for steady-state electrical properties of neurons 
(details given in Rail, 1977; Rail et «7, 1992). Rail (1959, 1960) recognised that previous 
estimates of motoneuron parameters, such as steady state input conductance, and the 
membrane time constant, were erroneous because the significance of the electrical and 
geometrical properties of dendrites had been underestimated. Historical overviews can be 
found in Rail (1977) and Segev et al. (1995). This work clarified the electrical significance 
of dendrites, and also synaptic events that are initiated away from the cell body, and was 
an important step in treating the spatial complexity of these structures mathematically.

Estimating parameters is a vital component of constructing and constraining biophysi- 
cally detailed models of neural activity. A typical approach to parameter estimation using 
the equivalent cylinder model may. involve analysing recorded somatic voltage transients 
(generated by applying a current pulse at the soma) and comparing them, in some way, 
to theoretical responses corresponding to an equivalent cylinder. For example, the voltage 
response in a passive tree may be theoretically a sum of exponential decays. One can
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estimate the largest decay time constant since it dominates the tail (late times) portion 
of the transient voltage response. Additional time constants are determined by “peeling”, 
which involves subtracting the estimated exponential contribution to the transient so that 
the tail portion is now dominated by the next largest time constant.

The obvious limitation of the equivalent cylinder representation for realistic dendritic 
trees was recognised by Rail (who has cautioned against its inappropriate use), yet it has 
proved to be an extremely useful simplification that has helped in the understanding of the 
electrical characteristics of passive dendritic trees, and has been widely used in theoretical 
(e.g. Rail and Rinzel, 1973; Rinzel and Rail, 1974; Jack and Redman, 1971a, 1971b) and 
experimental (e.g. lansek and Redman 1973; Jackson, 1992; Ulrich et al. 1994) studies.

The problem of parameter estimation using equivalent structures can be quite compli
cated, with many experimental and theoretical factors to consider, as discussed in detail 
in Rail et al  (1992). While Cm  is often taken to be 1.0/.iF, there can be great variation 
in the values of çm and pi that fit experimental data. Furthermore, as soon as one starts 
using these techniques for trees which do not satisfy Rail’s conditions, then one must be 
careful how one should (if at all) interpret the results. Although for certain real neuronal 
trees Rail’s conditions for an equivalent cylinder seem to be satisfied approximately, for 
others, and in general, this clearly isn’t the case (see Rail, 1977 for discussion), and the 
equivalent cylinder is not an appropriate representation. Consequently, there have been 
several efforts to improve and extend the parameter estimation using model to dendritic 
trees which are not geometrically constrained by Rail’s conditions.

Following from the equivalent cylinder approach is the idea that a complicated dendritic 
tree might have an effective electrotonic length — the electrotonic length of its best fit 
equivalent cylinder. Expressions for estimating the electrotonic length of a cylinder for 
various boundary conditions are given in Rail (1969a).

3.4  C ontinuous T apering M od els

Rail (1962a) proposed an extension to the equivalent cylinder result in an attem pt to 
account for tapering tree geometry. This result assumes that the number of branches 
at a distance x  from the soma is continuous function, n{x), of distance from the soma, 
as is the radius of each branch, r{x). The idea is to choose a tapering profile, r, then 
determine the corresponding n so that the tree can be represented by one cable equation 
(with generalised length parameter) that describes an equivalent cylinder. Jack et al. 
(1983) list several pairs of tapering and branching functions. These cables are of type (A) 
(restricted cables). Clearly, the introduction of fractional orders of dendritic branching 
is unphysiological. One must approximate the theoretical object with a tree that has
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Figure 3.6: Electrotonic dendrogram representation of a dendritic tree and its correspond
ing lambda cable.

I

integral numbers of branches at any distance from the soma. Consequently, this approach 
is limited in its applicability, and is only remotely reasonable for trees with a high order 
of branching.

Poznanski (1988, 1991, 1994; Poznanski and Glenn, 1994) has used tapering cable 
models to estimate effective electrotonic lengths using the formulas of Rail (1969a) derived 
for the equivalent cylinder.

Ohme and Schierwagen (1998) have proposed continuous tapering cables which they 
claim justify the use of the (discontinuous) empirical cables discussed in the next section. 
They also claim that their result is a generalisation of Rail’s equivalent cylinder to active 
dendrites with tapering diameter profiles. It is in fact just an extension to Tuckwell’s 
(unnecessarily restrictive) variation on the equivalent cylinder result (Tuckwell, 1988a), 
with an array of imposed unrealistic geometrical and electrical conditions on the tree that 
are essential only in the non-linear case.

3.5 E m pirical C able M odels

Empirical cables (type B) are built by marching along a dendritic tree in small steps, from 
soma to tips, using some measure of electrotonic architecture to determine the step size in 
each branch; at each step outwards from the soma, segments of tree are lumped together 
by preserving surface area.

The original, and most commonly used, measure of step size is electrotonic length 
(Clements and Redman, 1989; Fleshman et al, 1988). Burke (1997) refers to cables gen
erated in this way as lambda cables. This approach automatically preserves surface area; 
when drawn in electrotonic space, the soma-to-tip surface area profile of the dendritic tree
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is identical to the original tree, as Figure 3.6 illustrates using an electrotonic dendrogram. 
Burke (1997) has also used the “temporal delay for transient signals propagating outward 
from the soma” and “outward steady-state attenuation” (see also Agmon-Snir and Segev, 
1993) to determine step size. The different cables, and original tree, generally have slightly 
different steady-state input conductances.

When compared to full branching multi-cylinder passive tree models of real motoneu
rons (e.g. Burke et al., 1994; Burke 1997), it has been found that these cables reproduce 
a reasonably accurate transient voltage response (for late times, where the largest time 
constants dominates) at the soma when it (the soma) is subject to an exogenous current 
pulse, thus justifying their use in parameter estimation for these neurons.

There are no geometrical restrictions on trees that may be reduced using the empirical 
construction procedures, although their acceptability is in question when branches termi
nate at distinctly different electrotonic lengths. Although it does not seem to have been 
made explicit previously, all terminals must be assumed sealed. This is essential, otherwise 
the surface area need not be preserved. Recall that a cut terminal, for example, acts like 
a sudden diameter step to infinity. The important influence of boundary conditions on 
equivalent cable structure, and in particular on what tree properties one can expect to be 
preserved, becomes clearer in later chapters.

Empirical cables are of practical use in parameter estimation (Rail et al., 1992) and 
because of their flexibility have replaced the restrictive equivalent cylinder; they have 
also been used in computer simulations (Manor et al. 1991) to dynamically reduce trees 
during computer simulation to improve efficiency of calculations on tree segments subject 
to low activity. Empirical cables are often more practical in these situations than fully 
equivalent cables since they can be constructed and simulated very quickly, while producing 
results of a suitable accuracy (Burke and Ogden, unpublished observations). This can be 
an important consideration when one runs repeated simulations with varying electrical 
parameters, or if one is repeatedly reducing and expanding portions of a tree during 
simulation. It should be noted, however, that parameter estimation can be done using 
the original tree model, and the only advantage an empirical equivalent cable model offers 
is efficiency in construction and simulation. In fact, simplified “equivalent” tree models 
(“cartoon representations”) have also been used (Stratford et al,  1989).

The principles of parameter estimation are similar to those for the equivalent cylinder. 
Experimentally recorded voltage transients are analysed, allowing estimation of time con
stants, specific electrical parameters, and effective electrotonic lengths. Holmes and Rail 
(1992a, 1992b) and Holmes et al  (1992) discuss the problem of estimating electrotonic 
length for trees where branches terminate at different electrotonic lengths. This problem 
is also considered in Chapter 8, in light of fully equivalent cable results.
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An up-to-date exposition of cable theory for parameter estimation, the underlying 
assumptions, and the limitations of empirical cable models can be found in Rail et at 
(1992).

3.6 Fully E quivalent C ables

3.6 .1  A  D efin itio n  o f  E q u iva len ce

Mathematically, equivalence is really about information preservation. For dendritic trees, 
this involves retaining all information about electrical activity and geometrical structure 
at every point within the tree. The ability of the equivalent model to reproduce, exactly, 
somatic transients generated by the full tree model, is a natural consequence of such 
equivalence, not the goal.

Two models of a dendritic tree are equivalent provided there exists a transformation 
that allows one to identify every possible configuration of electrical activity over one model 
with a unique configuration over the other model. All geometrical and electro-chemical 
information described by a tree model is preserved, in some form, in the equivalent struc
ture. Thus, all electrical phenomena permitted by the tree model must be reproducible, 
in some form, in the equivalent structure.

Note the generality of this definition (this is, in part, optimism that the equivalent 
cables of this thesis can be generalised to active models in some way); we do not restrict 
ourselves to one dimensional cable models, linear or otherwise, nor do we insist equivalent 
structure is necessarily unbranched. The important point is that a bijective relationship 
(an electrical mapping) can be established between equivalent structures. Determining 
whether or not this is possible for any particular model is the difficult part.

This definition of equivalence is certainly demanding and until Whitehead and Rosen
berg (1993) introduced a new type of equivalent cable, full mathematical equivalence had 
not been considered. Rather than attempting to satisfy this more abstract definition, 
physical or somal equivalence has been the main concern. However, now these new cables 
have been established, a range of new applications and insights follow directly from their 
existence.

By giving the above definition of equivalence, there is no implication that structures 
not meeting its requirements are not useful. Clearly this is not the case, given the success of 
Rail’s equivalent cylinder and its empirical extensions over the past three decades. It just 
seems more natural that, since our analytical tool of choice is the language of mathematics, 
when one talks of equivalence one should use the term in its strict mathematical sense, 
which brings with it notions of exactness, uniqueness, and completeness; the benefits of 
doing so are many fold.
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Figure 3.7: Any point over a tree may be chosen as the origin, provided the appropriate 
conditions for transformation to an equivalent cable are satisfied with respect to this point, 
(a) A Rail tree is equivalent to a cylinder when the soma is chosen as origin; the terminal 
condition is denoted t . (b) when a non-soma origin is chosen, the Rail conditions do not 
hold and the tree is not equivalent to a cylinder.

3 .6 .2  T h e  C ab le  O rig in

An equivalent cable must be equivalent with respect to some reference point, referred to 
here as the origin. In all previous cables, the origin has been taken as the point where 
the dendritic tree connects to the soma. The soma makes sense from a physiological point 
of view as it the central region of the neuron where dendritic trees exert their combined 
influence, and where experimental access for parameter estimation is usually gained.

The nature of the origin boundary condition doesn’t affect the fully equivalent cable 
construction process. This is mostly true of previous cable models, though attenuation 
and delay cables are exceptions since the nature of the soma influences the measure of 
electrotonic architecture. In previous cable models, any point on the dendritic tree could 
have been chosen as origin, provided the appropriate geometrical and electrical conditions 
hold with respect to this point. For example, given a point on a Rail tree, the tree viewed 
from this point is not (in general) an idealised Rail tree, thus not equivalent to a cylinder, 
as Figure 3.7 illustrates.

The main problem when moving to a non-soma origin is that the boundary condition 
at the soma must now be accounted for in any equivalent cable. For empirical cables, this 
strictly means that an unrealistic sealed condition must be applied. A fully equivalent 
cable can only be constructed for a non-soma origin provided a cut or general current 
injection boundary condition is applied at the soma. Thus, the soma is usually chosen as 
origin.

3 .6 .3  In tr o d u ctio n  to  F u lly  E q u iva len t cab les

The theoretical foundation of equivalent cable construction follows from passive linear 
cable theory, as presented in Chapter 2. A dendritic tree is represented by the homogeneous
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multi-cylinder passive tree model. To summarise, each cylinder, j ,  is described by the 
dimensionless cable equation

dvj ^ i j  , ,
-  0 - ,  0 < x < l j ,  t >  0, (3.25)
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where Vj is the membrane potential, ij represents exogenous currents, Cj is the c-value of 
the cylinder, Ij is its length, and x  and t are, respectively, electrotonic space and time. 
Specific electrical parameters qm (membrane conductance per unit area), Cm  (membrane 
capacitance per unit area) and pi (intracellular resistivity) are constant for the tree, and
SO IS It.

Current conservation and voltage continuity conditions are imposed where cylinders 
meet, while current injection (specified potential gradient) or cut (zero potential) condi
tions may be imposed at terminals. Except for certain tree geometries, these are the only 
non-origin boundary conditions valid for equivalent cable construction. (In certain special 
cases, the cut boundary condition may be generalised to a non-zero voltage condition, but 
care must be taken when doing so. This usually involves a transformation of the potentials 
in the cable equations.)

Construction procedures ensure that current is conserved and voltage is continuous 
in an equivalent cable, and also ensure that any terminating dendritic sub-structure may 
be transformed in isolation from the rest of the tree. The latter is essential for allowing 
reduction of dendritic sub-trees. These elements of cable construction are made explicit 
in the analytical theory given in Chapters 5, 6 and 7, but are implicit in the matrix 
procedures of Chapter 4.

The fully equivalent cable is formed from passive dendritic cylinders, is generally non- 
uniform and has total electrotonic length equal to the total electrotonic length of all 
cylinders that form the original tree. It may consist of several disjoint sections, only one 
of which, the connected section is attached to the origin; the remaining are disconnected 
sections, which are isolated from the origin, each end being properly terminated. Figure 3.8 
illustrates some simple artificial trees and their equivalent cables. Observe that electrotonic 
lengths have been expressed as integral numbers of some basic length. The physical shape 
of an equivalent cable section, i.e. its length and diameter profile in physical space, is 
completely independent of specific electrical parameters pi, qm and Cm - In electrotonic 
space, a change in qm or pi for example, forces a corresponding change in the actual 
electrotonic length of each tree and cable cylinder. However the basic shape of the cable, 
i.e. relative electrotonic lengths and actual diameters, is unchanged.

Construction procedures generate a bijective (thus invertible) electrical mapping that 
identifies every configuration of electrical activity (transmembrane voltage distribution, 
i.e. depolarisations and hyperpolarisations, and also applied currents) over the tree with a
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Figure 3.8: A selection of simple trees and their equivalent cables. Bach tree-cable pair is 
shown in both electrotonic and physical space. Electrotonic lengths are integral multiples 
of some basic unit of electrotonic length, (a) A simple degenerate Y-junction with sealed 
ends, (b) Another simple Y-junction with sealed ends, this time non-degenerate, with 
significant length asymmetry, (c) A 2-order tree with sealed ends. Only one sub-tree is 

degenerate, (d) a non-uniform Y-junction with one cut terminal. The equivalent cable 
experiences a large increase in diameter (indicated by dotted lines).
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unique configuration over the cable, and vice versa. Denote the voltage mapping by My, 
and the mapping that relates applied currents by M j, thus

Vc — M v {v t ) and VT — Mÿ^{vc)-, (3.26)

i c  — and — M j  ^(^c), (3.27)

where and v c  are vectors of cylinder potentials and It  and i c  are vectors of cylinder 
.applied currents for the entire tree and cable respectively. Mappings My and M / are 

intimately linked. By reducing trees to equivalent cables, physical complexity is simply f
traded for complexity in the electrical mapping. Generally, electrical activity at one point 
in the tree is mapped to activity at many points on the cable, and vice versa.

Like the cable shape, the electrical mapping is independent of the specific whole- A
cell electrical parameters representative of the passive model — it always maps between #
the same physical points on tree and cable, while between the same relative points in :f
electrotonic space; a cable can be constructed just by knowing the physical lengths and *
diameters of the tree cylinders. Altering electrical parameters merely requires a rescaling f
of the cable’s electrotonic length and/or the membrane time constant.

Cable diameter profiles are typically discontinuous, which is inevitable for trees which 
do not satisfy Rail’s 3/2 power law for impedance matching at branch points.

3 .6 .4  E q u iva len t C ab les for B a sic  B ran ch in g  S tru ctu re

Fully equivalent cables are best understood by considering initially the basic unit of branch- :§
ing structure, the general Y-junction (Figure 3.9a), comprising two limbs, with arbitrary y
lengths and diameter profiles, that meet at a branch point and satisfy appropriate bound- A
ary conditions at their respective terminals. ?

The equivalent cable for a general Y-junction contains a connected section plus at most /
one disconnected section. A Y-junction is classified as degenerate if its cable contains a 
disconnected section, otherwise it is non-degenerate. Figures 3.9b,c illustrate the two types 
schematically.

The C onnected Section

The connected section always defines, via the electrical mappings M ÿ^  and M ^^, electrical 
activity over the Y-junction that will influence the membrane potential at the branch point Ij
and in attached structure.

For example, a positive input current at some point along the connected section will 
be mapped (M/“ )̂ to a distribution of input currents over the Y-junction limbs that, as 
far as the branch point and attached structure is concerned, acts like a single focussed
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Figure 3.9: The general Y-junction and its equivalent cable, (a) Y-j unctions are either non
degenerate or degenerate, (b) Non-degenerate trees are transformed to an equivalent cable 
consisting of just a connected section, (c) degenerate trees are transformed to equivalent 
cables with a connected section plus a single disconnected section.

input on an unbranched structure. The mapped activity may be a mixture of positive and 
negative inputs. Similarly, a depolarisation over the connected section will be mapped 
(Mÿ^)  to a distribution of depolarisation and/or hyperpolarisation over the tree that 
will disperse passively producing the same effect at the branch point and in attached 
structure. A non-zero configuration of activity on a connected section must exert some 
influence on the electrical activity in structure connected to the Y-junction. The actual 
strength and shape of the voltage response at the branch point will, of course, depend 
on tree structure, boundary conditions and specific electrical parameters. Figure 3.10a 
illustrates the mapping of a current input from a Y-junction to its connected section.

As one moves along the connected section, from the cylinder that is attached to the 
origin (junction), to the final terminal cylinder, the corresponding electrical mappings 
define configurations of electrical activity over the tree that produce weaker and more 
graded responses at the origin (assuming the same current is injected as one moves from 
cylinder to cylinder).

Taking a different point of view, another aspect of connected section activity can be 
understood. Suppose that there is no activity initiated in the Y-junction itself, but it is 
still influenced by activity initiated in the structure to which it is connected, i.e. axial 
charge dispersal induces voltage changes in the Y-junction. This Y-junction activity, when
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mapped to the cable, must be represented only in the connected section since the two are 
electrically identical with respect to the branch point. This activity cannot influence any 
disconnected section since it is not attached to the branch point. Basically, the connected 
section can be used to define the Y-junction voltage distributions tha t can be induced by 
activity in structure connected to the Y-junction.

T he D isconnected  Section

Over a degenerate Y-junction, many different configurations of electrical activity can exert 
the same influence on the membrane potential at the branch point, or in tree structure 
to which the Y-junction is attached. A disconnected section defines, via Mÿ ^  and 

configurations of electrical activity that interact entirely locally, within the Y-junction, 
independent of the tree structure to which it is attached. For example, a configuration of 
current inputs over the disconnected section is mapped {Mf^)  to current inputs over the 
Y-junction limbs which exert absolutely no influence on the potential at the branch point 
and in attached tree structure. Again, a similar effect is observed if one maps (Mÿ^) a 
distribution of depolarisation and hyperpolarisation over the disconnected section. The 
corresponding distribution of depolarisation and hyperpolarisation over the Y-junction 
will decay passively in a way that generates no effect at the branch point and in attached 
structure. Figure 3.10b illustrates a mapping between a disconnected section and a Y- 
junction.

Now consider electrical activity mapped from both connected and disconnected sec
tions. Suppose an arbitrary set of input currents were simultaneously applied over the 
Y-junction, giving rise to a voltage transient at the Y-junction branch point. If the same 
configuration is re-applied, together with inputs mapped to the Y-junction from its dis
connected section (not necessarily simultaneously), exactly the same response is observed 
— hence the degeneracy. Figure 3.10c illustrates the mappings from Figures 3.10a and 
3.10b combined.

Disconnected sections are not uncommon; relative electrotonic lengths of Y-junction 
limbs and their terminal boundary condition types are the primary determinants of Y- 
junction degeneracy, and also dominate in determining the fine structure of the cable 
sections. The analytical results of Chapters 6 and 7 show how degeneracy can be predicted. 
Approximate degeneracy is also a valid concept and will be discussed later. As structure 
becomes more complicated, the boundaries between exact degeneracy and approximate 
degeneracy become more blurred, especially when one considers real neuron morphological 
data, and the inherent uncertainty associated with it.
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Figure 3.10: Mapping electrical activity between a dendritic tree and its fully equivalent 
cable, (a) Mapping electrical activity from a connected section, (b) Mapping electrical 
activity from a disconnected section to the original Y-junction gives a distribution of tree 
activity that has no effect outside the two limbs, (c) Map both previous tree inputs, and 
the same response is observed as for input distribution (a).
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Figure 3,11: Passive coincidence detection in dendritic trees. The voltage response due to 
two subsets of tree activity mapped from a disconnected section, (a) Mapping electrical 
activity from a disconnected section to the original Y-junction gives a distribution of tree 
activity that has no effect outside the two limbs, (b), (c) Subsets of this activity will 
influence membrane outside the Y-junction, but not when applied simultaneously.

C oincidence D etection  in a Y -junction

Implicit in the existence of disconnected sections is a mechanism for coincidence detection 
in passive trees. Activity mapped from a disconnected section to degenerate Y-junction 
can be divided into a number of subsets of activity, each of which could be activated by 
a separate source. If these subsets are activated simultaneously in the Y-junction, then 
their influence on attached structure is rendered ineffective. If applied asynchronously, 
the delay between subset activation would determine the strength of the influence of Y- 
junction activity.

Taking the mapped disconnected section activity from Figures 3.10, Figures 3.11c,d 
illustrates the voltage disturbance due to two subsets of the activity. If both configurations 
are applied coincidentally, no voltage disturbance is observed, Figure 3.11(a).

A degenerate Y-junction can thus act as a passive coincidence detector for many differ
ent subsets of activity, all defined by activity mapped from the disconnected section, which 
in turn is determined entirely by tree geometry and is independent of specific electrical 
parameters of the model.

The role of neurons as coincidence detectors has often been discussed (e.g. Abeles, 
1982; Softky and Koch, 1994; Softky, 1993), but usually in terms of coincident activity 
increasing chances of the neuron generating an output, and not as a local operation that 
is a consequence of tree geometry.

#
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General Properties o f Y -junction Equivalent Cables

It is useful to summarise properties exhibited by the fully equivalent cables of general Y- 
junctions. Many of these feature will be explained in more detail in later chapters, either 
through mathematical or physical arguments, or both. Where we mention sealed end 
boundary conditions, the result is equally relevant for the more general current injection 
boundary condition.

• Total electrotonic length is preserved — the total electrotonic of all cable sections 
equals the combined electrotonic length of the Y-junction limbs. A (electrotonic) 
length-preserving transform is essential for the existence of a bijective mapping.

• The equivalent cable contains at most one disconnected section.

• Only Y-junction structure up to distance x  from the branch point origin influences 
cable structure up to distance x  from the origin. Thus if two Y-j unctions have 
identical structure up to distance a from the origin, then so will their connected 
sections. If a is greater than the maximum origin-to-tip electrotonic length then the 
whole Y-junction influences the cable structure at this point.

• A connected section is at least as long as the longest Y-junction limb; consequently, 
a disconnected section is never longer than the connected section. Only in special 
cases (Rail Y-j unctions, a slight generalisation, and a few other exceptions) will 
connected and disconnected sections be the same length.

• For both degenerate and non-degenerate Y-j unctions, if both limbs are sealed then 
the connected section is sealed. If either limb is cut then the connected section is 

cut.

• For degenerate Y-j unctions, the equivalent cable’s disconnected section has at least 
one cut terminal. If both Y-junction limbs are sealed, so is the second disconnected 
section terminal. If one Y-junction terminal is cut while the other is sealed, the dis
connected section is cut at one end and sealed at the other. If both Y-junction limbs 
are cut, so are both the disconnected section terminals. There is thus a conservation 

of sealed terminals for degenerate Y-j unctions.

• Steady-state input conductance of the connected section equals the steady-state 
input conductance of the original Y-junction (with respect to the origin).

• Provided both terminals are sealed, connected section surface area equals tree surface 
area. Also, the total exogenous current injected into the connected section equals 
the total mapped exogenous current injected into the Y-junction, and vice versa.
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Figure 3.12: The Y-junction by Y-junction reduction of a dendritic tree to its fully equiva
lent cable, (a) A complex tree is reduced to its equivalent cable Y-junction by Y-junction; 
branch points are labelled (A)-(E). (b) The equivalent cables for each sub-tree marked by 
branch points (A)-(E). Disconnected sections associated with a specific tree are labelled 
with the same letter as the corresponding branch point. The fine structure of diameter 
profiles is not illustrated.

Note that a disconnected section may be regarded as an extension of the connected sec
tion. The two sections can be joined at their common boundary condition. From the point 
of view of the connected section, however, the disconnected sections effective diameter is 
either zero or infinity (depending on the connected section’s terminal condition).

3 .6 .5  C o m p lica ted  B ran ch in g  S tru ctu re

The results and concepts described above for the general Y-junction extend naturally to 
trees that exhibit higher orders of branching. The tree is collapsed, Y-junction by Y- 
junction, removing branch points by successive reductions until the fully equivalent cable 
for the whole tree is obtained. Each Y-junction is either degenerate or non-degenerate (in 
which case it may be approximately degenerate — see below). A sub-tree may thus be 
classified as degenerate if any degenerate Y-j unctions are encountered during its collapse. 
Initially, cable sections are associated with distal Y-j unctions and define configurations of 
electrical activity over reasonable small, localised regions of a tree. As more structure of 
a complicated tree is transformed, cable sections are associated with activity distributed 
over wider regions of the tree — disconnected sections associated with larger sub-trees will 
define ineffective (at the soma) electrical activity over significant portions of the tree.

Coinciding activity in one degenerate sub-tree emphasizes the influence of activity in
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the rest of the tree simply by removing the combined effect of a number of inputs. Figure 
3.12 illustrates (without fine structural detail) a tree with just five branch points, and 
the fully equivalent cables associated with the sub-tree at each branch point. Differing 
geometries will exhibit different levels of degeneracy and different electrical mappings, 
and thus varying local processing capability. The complexity of the electrical mapping 
associated with a disconnected section will depend on the complexity of the Y-junction.

This notion of local signal processing — as geometry determined coincident activity 
associated with specific sub-structure — contrasts with other definitions (Koch et al, 
1982; Woolf et al 1991) in which dendritic sub-units are physical regions that are elec
trically isolated from the soma, according to some subjective measure of isolation based 
on voltage attenuation between points. However, these sub-units are insensitive to subtle 
morphological features, and dependent on specific electrical parameters — change pi, for 
example, and the whole sub-unit structure may change.

Disconnected sections could be regarded as alternative, robust, and well-defined electri
cal sub-units tha t are independent of specific electrical parameters and determined entirely 
by geometry.

The results specific to each Y-junction listed above are either immediately valid for 
the general tree or can be extended naturally.

• Total electrotonic length is preserved

• The equivalent cable contains no more disconnected sections than the total number 
of Y-j unctions that must be transformed to generate it.

• Only tree structure up to distance x  from the branch point origin influences cable 
structure up to distance x  from the origin. Thus if two trees have identical structure 
up to distance a from the origin, then so will their connected sections; if a is greater 
than the maximum origin-to-tip electrotonic length then the whole tree influences 
the cable structure.

• If all tree terminals are sealed then so is the connected section terminal. If one or 
more terminals is cut, so is the connected section terminal.

• Steady-state input conductance of the connected section equals the steady-state 
input conductance of the original tree.

• Provided all terminals are sealed (or of general injected current type), connected sec
tion surface area equals tree surface area. Also, the total exogenous current injected 
into the connected section equals the total mapped exogenous current injected into 
the tree.
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Figure 3.13: Equivalent cable structure is robust. 1 — deviations from completely sym
metric sealed Rail Y-junction. The length of one limb is extended by the specified amount.

3 .6 .6  E q u iva len t C able S tru ctu re  is R ob u st

The discussion so far has concentrated on cables that have been constructed exactly, i.e. 
with algebraic precision. While equivalent cable construction procedures can be performed 
algebraically, computer implementations are the only practical approach in general, and 
there will be error associated with round-off effects, in addition to any uncertainty in 
measurements of the original tree data. However, equivalent cables, in particular their 
disconnected sections and electrical mappings, are quite robust objects, dominated by 
electrotonic tree symmetries (most of which are not obvious) which permit the introduction 
of the concept of approximate degeneracy.

When moving from a continuous real dendritic tree to an abstract multi-cylinder repre
sentation, one automatically imposes dimensional constraints — if the difference between 
two diameters is below a prescribed bound, they are essentially identical in the avail
able model representation. Narrow cable sections within this bound can be regarded as 
essentially disconnected.

While exact degeneracy of a tree may disappear and reappear as one moves between 

slightly different model representations of the same tree data, the overall properties of the 
cable and electrical mapping do not change significantly.

Suppose both limbs of a degenerate Y-junction have sealed terminals. The connected 
section terminates with a sealed terminal, while the disconnected section has one sealed and 
one cut terminal. One can think of the disconnected section as attached to the connected 
section by joining the two sealed terminals. The disconnected section is essentially an 
extension, with zero diameter, to the connected section (though the disconnected section 
may have its own fine structure of cylinders). If the electrotonic length of one Y-junction
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limb is now altered very slightly so that the new Y-junction is non-degenerate, then the 
equivalent cable is very similar to that previously, except that the structure at the end of 
the connected section narrows very rapidly, rather completely disconnecting immediately. 
The effect of electrical activity on such narrow sections is negligible at the soma compared 
to similar activity on other segments. One can make a rough measure of the significance 
of the change in tree structure by noting whether the change in surface area due to the 

change in branch length is much less than the total surface area of the Y-junction.
Consider the simple Rail Y-junction. The equivalent cable is shown in Figure 3.13. In 

electrotonic space the disconnected section is drawn as a thin extension to the equivalent 
cylinder, while in physical space it disappears (since finite zero diameter electrotonic length 
equal zero physical length). Also illustrated are the equivalent cables for trees which 
deviate from the ideal Rail situation. The electrotonic length of one branch is increased 
by 2%, 10% and 20%, showing how the cable structure very gradually shifts from the 
Rail case. At 2% deviation, the cable rapidly shrinks to very small diameters. There is 
very little change in overall cable structure however, with the extra surface area being 
accounted for in a negligible extension to the cable. The narrow section is essentially 
disconnected. The electrical mapping will have changed very slightly, but the strongest 
components form a mapping that is practically identical to that from the disconnected 
section.

A similar argument can be made for degenerate trees where the connected section 
terminates with a cut terminal. Again, the disconnected section can be regarded as at
tached to the connected section, except this time it represents an extension of infinite 
diameter. A slight alteration in the length of a Y-junction limb can be made so that a 
non-degenerate tree is produced. The connected section, rather than terminating early as 
before, will suddenly jump in diameter by an extreme amount. The increase in diameter 
is large enough to be regarded as approximate cut end, and the tree can be regarded as 
approximately degenerate.

Figure 3.14 illustrates this for the Rail Y-junction, again, this time for 2% and 20% 
deviations from the Rail situation. At 2% deviation, the jump is particularly massive, 
with the cable having a correspondingly huge physical length (indicated by arrows).

3 .6 .7  T rees W ith  Id en tica l C o n n ec ted  S ectio n s

Once a tree has been reduced to its fully equivalent cable, the connected section’s suitabil
ity as a tool for comparing and classifying passive trees becomes apparent. Consider the 
two trees illustrated in Figures 3.15a-b. Despite their obviously dissimilar morphologies, 
their fully equivalent cables (c) have identical connected sections. The two trees therefore 
have identical global properties (the soma cannot distinguish them), but different local
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Figure 3.14; Equivalent cable structure is robust. 2 — deviations from cut Rail Y-junction.
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Figure 3.15: Identical fully equivalent cable connected sections implies electrical équiva
lence, with respect to the soma, of different trees. Two trees (a) and (b) have the same 
equivalent cable connected section (c), and thus global passive properties. Tree (a) has 
three exactly disconnected sections, while tree (b) has one. The tree has different local 
processing properties.
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properties. A configuration of electrical activity over tree (a) may be mapped to its equiv
alent cable. Activity on tree (a) that will not influence the response at the soma can be 
mapped from cable (a)’s disconnected sections. Now map the connected section activity 
to tree (b) — the same response will still be observed. Again, tree (b)’s activity can be 
modified without effect on the soma by mapping any activity from tree (b) ’s disconnected 
sections. Thus we can define, exhaustively, all configurations of activity on tree (a) and 
tree (b) that give the same response at the soma.

If two equivalent trees both have no disconnected sections, there is a unique configu
ration of activity on each tree that generates any specific response.

3 .6 .8  M e th o d s  o f  C o n stru ctio n

There are three methods described in this thesis for constructing fully equivalent cables for 
trees of arbitrary multi-segment geometry: two matrix procedures (Lanczos and House
holder) are given in Chapter 4, and one analytical procedure is given in Chapter 6. Chapter 
7 gives the optimal method for transforming simple Y-j unctions.

For the Lanczos and Householder procedures, discretised cable equations are used to 
formulate a matrix representation of a dendritic tree (Whitehead and Rosenberg, 1993; 
Ogden et al.  ̂ 1997; Ogden et al. 1999; Lindsay et a/., in press), to implement what is 
essentially a algebraic transform (there is no discretisation error in the matrix procedures). 
Degeneracy of a Y-junction corresponds to degeneracy in the eigenvalues of the tree matrix. 
The analytical procedure follows from the theoretical basis of cable construction. The three 
procedures are intimately linked, and generate the same fully equivalent cable (within 
the bounds of numerical error when implemented on computer). The electrical mapping 
is discrete for the matrix procedure, but continuous for the analytical procedure. The 
continuous mapping can be inferred from the discrete mapping given an understanding of 
the analytical construction procedure.

The analytical theory presented in Chapter 6 provides most insight into why the cables 
can be constructed. It also allows one to predict exactly which general Y-j unctions will 
be degenerate. The branch-shifting construction process developed in Chapter 7 can be 
used to transform simple Y-j unctions, and this approach provides very useful insight into 

how tree lengths and boundary conditions shape equivalent cable fine structure and the 
electrical mapping.

3 .6 .9  C o n stru c tio n  and  P re-p rogram m in g  o f  A rtific ia l D e n d r it ic  T rees

One possible future application of the fully equivalent cable model is in the construction, 
in software, or possibly even in hardware, of networks of neurons with passive trees that
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perform complicated signal processing operations controlled by coincidence detection of 
characteristic input configurations. It is straightforward to choose degenerate tree geom
etry so that certain activity mapped from a disconnected section consists of any specified 
number (greater than two) of significant inputs over the tree. The usefulness of the passive 
tree as a form of programmable analogue processing element needs further investigation.

3.7  D iscu ssion

Simulation of biophysically detailed model neurons can give great insight into the electro
chemical processes that underlie locally observed phenomena associated with a series of 
inter-related conductance changes, but are less practical as a tool for investigating the 
influence of complicated geometry, given the vast number of possible configurations of 
activity. Even passive structures have been poorly understood in this regard, as the 
results presented in this thesis show.

If one regards the previous quasi-equivalent cable models as representing degrees of 
equivalence, then they are, in one way or another, certainly less equivalent than fully 
equivalent cables (it is difficult to decide how one would organise previous cables in order 
of increasing equivalence, however). In a mathematical sense they are not equivalent at 
all.

For the limited geometrical structure for which it is valid, a Rail tree and its equivalent 
cylinder are identical electrical loads. A mapping relates tree activity to cylinder activity, 
but the mapping is not unique. As was shown, a disconnected section is required to 
complete the equivalent structure. The equivalent cylinder represents a very restricted 
subset of equivalent cables, with the soma taken as origin, and disconnected sections (of 
which there will be at least one) ignored. In fact the number of disconnected sections, 
as well as their electrotonic length, is very much dependent upon a Rail tree’s branching 
structure. In addition to being unphysiological, the continuous tapering extensions to 
Rail’s result suffer most of the limitations of the original equivalent cylinder. Interestingly, 
of all the previous models, the empirical cables could be regarded as the least equivalent, 
yet they have proven the most practical in application. There is no electrical mapping, 
just a relationship between somatic voltage responses for the tree and cable model th a t is 
generally approximate.

In principle, fully equivalent cables can replace previous models in all capacities in 
which they are used. In practice, computational considerations mean this is not always 
worthwhile. The new cables have many applications beyond this, however, and this is their 
strength. Previously unknown features of passive dendritic trees have been revealed, with 
significant insights gained concerning local and global processing capabilities of passive
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trees. More detailed discussion of equivalent cable fine structure, and general implications 
of the equivalent cable result, is included in Chapter 8.

In the rest of this thesis, the terms “cable” and “equivalent cable” are generally em
ployed as shorthand meanings for “fully equivalent cable” .
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C hapter 4

M atrix  M ethods for C onstructing  
Fully Equivalent Cables

4.1 In trod u ction

If the physical and electrical structure of a passive dendritic tree model is expressed in a 
suitable matrix form, its equivalent cable can be constructed using matrix transformation 
procedures. In this chapter discretised cable equations are derived from the dimensionless 
linear cable equation. They can be collected together to form a matrix equation. The 
number of discrete cable equations required to represent a tree depends on its geometry, 
terminal boundary conditions, and the degree of accuracy required in the model. The 
accuracy is embodied in the basic electrotonic length, of which all cylinder lengths are 
an integral multiple, as discussed in section 2.5.2. The primary component of the matrix 
representation is the tree matrix., denoted A y, which exhibits significant and exploitable 
structural features.

The equivalent cable construction process involves three stages: the tree matrix must 
first be symmetrised, the symmetric matrix then tri-diagonalised, and finally the tri
diagonal matrix must be de-symmetrised. Each step must be carried out, using similarity 
transformations, in a way that preserves essential matrix structure. In practice, this 
determines the specific tri-diagonalisation algorithms that may be employed in the second 
stage. The symmetrisation and de-symmetrisation transformations are independent of 
the tri-diagonalisation algorithm and critically dependent on the nature of discrete cable 
equations. In fact, the matrix structure conveniently lends itself to the efficient application 
of each transformation.

Two methods of tri-diagonalisation, namely Lanczos tri-diagonalisation and House
holder tri-diagonalisation have been found suitable, but there may be others. The two



algorithms both work effectively, although their numerical nature limits any insight they 
may give into the biophysics underlying the cable construction process. The analytical 
rules of Chapters 5, 6 and 7 are much more revealing.

Both Lanczos and Householder procedures are presented in this chapter. The Lanczos 
method was introduced by Whitehead and Rosenberg (1993), and full details, extended to 
incorporate exogenous applied currents, have subsequently been given by Ogden, Rosen
berg and W hitehead (1999). The Householder method was originally illustrated by Ogden, 
Lindsay and Rosenberg (1997), with full details given in Lindsay et al. (in press).

Although the algorithms central to the matrix methods are commonly employed in 
numerical computation applications (see Golub and Van Loan, 1990, for an overview of 
the Householder and Lanczos methods), it should be noted that the matrix formalism and 
the reduction procedures implement the appropriate algebraic operations with no discreti
sation error; performed algebraically, they will yield the same results as the analytical 
algorithm presented in Chapter 6 — the linear mapping between tree and cable is essen
tially identical in each case. For the purposes of equivalent cable construction (though not 
numerical simulation), the tree matrix is an exact representation of the physical structure 
of the passive tree model. Standard results that follow from the analytical method allow 
one to predict the number of cable sections, their length, and whether or not a discon
nected section is associated with any particular sub-tree. Matrix procedures^ will generate 
the same connected and disconnected sections, but without any guidance as to what to 
expect.

Technicalities of implementing the algorithms in a computer program are also dis
cussed. Aspects such as storage, speed, and numerical stability are briefly covered. Practi
cal computer algorithms are given, and the mechanics of the matrix methods are illustrated 
using simple algebraic examples.

4.2 T h e M atrix  R ep resen ta tion  o f a D en d ritic  Tree

We now develop a set of discretised cable equations that describe branching dendritic 
structure in terms of electrical activity at a set of spatially distributed points over the 
tree. The objective is to form a matrix equation of the form

%  = + (4.1)

where v and g  are vectors describing potentials and applied currents at points over the 
tree, and A  is a matrix determined by the spatial structure of the tree.

 ̂When implemented computationally (essential for any dendritic tree other than the simplest singly 
branched structures or those with high levels of electrotonic symmetry), the Lanczos and Householder 
procedures exhibit markedly different numerical properties.
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4 .2 .1  D isc r e tisa tio n  N o d e s  and  T erm in o logy

Recall that, for the purpose of equivalent cable construction, all cylinder electrotonic 
lengths must be integral multiples of some basic, or quantum, electrotonic length, here 
denoted H.  Suppose a tree is represented, to arbitrary accuracy, by n cylinders. In terms 
of I I , the length of cylinder j  is kjH, where the integers ki, k2 , kn have no common 
factor. A tree can be represented by a number of nodes by subdividing the quantum 
length into z intervals of length h, so that

H  — zh. (4.2)
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Nodes are automatically placed at each end of a cylinder to emphasize points of disconti
nuity, and internally so that the internodal electrotonic length is always h and the distance 
spanned by z +  1 nodes is H.

A node is connected to its nearest neighbouring node(s) and two connected nodes are 
always located on the same cylinder (though are not necessarily unique to that cylinder). 
A node common to multiple cylinders is referred to as a shared node., for example a branch 
point or diameter step; a node connected to two other nodes in the same cylinder is called 
(and must be) an internal node] a terminal node is connected to exactly one other node. 
There is one node that deserves special treatment, namely the soma node which marks 
the soma-to-tree connection point. It is useful (and essential in light of the tree matrix 
structure) to regard this node as a terminal node, yet it may also be shared between the 
trunk cylinders of several dendrites (consider multiple dendritic trees connected to a single 
soma treated as a point-like structure). The possibility of a shared soma node is discussed 
briefly, and the appropriate discrete cable equation is given^.

A multi-cylinder tree model will be discretised by a minimal number of nodes when 
H  — h {z — 1, i.e. two nodes spanning each quantum length). However, when this level 
of discretisation is used, ambiguities can arise concerning the correct interpretation of an 
equivalent cable from the matrix representation that is eventually generated. Situations 
can arise where there are not enough nodes to adequately describe cable structure in terms 
of finite difference equations. An internal node is really required to properly convey the 
existence of a cable. W ithout one, any equation, not just the cable equation, could be 
operating in the cylinder.

In anticipation of this, a finer discretisation will be required, with each length H  
represented by at least three nodes so that z > 2. This guarantees the existence of an 
internal node for even the shortest possible cylinder. We rely on the fact tha t if the I

 ̂While it is useful to know that such a configuration is valid, such structures don’t provide any additional 
insight when deriving and illustrating the construction procedures, which can naturally accommodate any 
terminal node provided boundary conditions are suitable.
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dendritic cylinders have a common basic unit of length H  = zh, then the same must be 
true of the equivalent cable cylinders. This fact is clearer from the analytical construction 
procedure in Chapter 6. When moving, for example, from H  — h to H  — 2h in the same 
multi-cylinder dendritic tree, no new structure is represented by the the extra nodes, and 
consequently no new structure will appear in the equivalent cable — each cable cylinder is 
also guaranteed at least one internal node. Figure 4.1 illustrates the discretisation scheme 
for z ~  1 and z =  2 on the same tree model.

Since the discretisation is merely a tool for describing an algebraic transformation of 
the tree model, different discretisation levels (different z) on the same tree will only in
fluence round-off error in a computational implementation. If intended solely for cable 
construction purposes, there is no error associated with the discretisation itself. A dis
cretisation level of z — 2 is therefore optimal. The matrix construction procedures only 
generate a discontinuous electrical mapping, from dendritic tree nodes to equivalent cable 
nodes. However, provided z > 2, it is possible to infer a continuous mapping^ from the 
discrete one, though this requires some knowledge of the analytical methodology given in 
Chapter 6.

N ode N um bering

The discretisation nodes must now be numbered. Any well-ordered numbering system may 
be used, however the scheme outlined next will be used in examples. This scheme simplifies 
the matrix representation of the tree and the equivalent cable construction process (as 
well as the description of it), and thus is implemented both for reasons of efficiency and 
of clarity. (The computational advantages of careful branch numbering are already well 
established in compartmental modelling, e.g. Hines, 1984.)

Node “0” will always mark the tree-to-soma connection point. Each cylinder has a 
node nearest the soma (its proximal or near-end node) and a node furthest from the soma 
{distal or far-end node). It is an inevitable consequence of branching structure that if 
a node, n  say, is common to more than two cylinders (e.g. a binary branch point) then 
it is impossible to guarantee consecutive numbering of the nodes on each cylinder that 
shares node n. However it is certainly possible to number, consecutively and increasing 

away from the soma, all nodes on a cylinder except the one closest to the soma. So, node 
numbers increase from near-end node to far-end node, except where a node has already 
been numbered (this may occur at a branch point) or must not be numbered (a cut end 
terminal, since, as will be seen later, nodes where the potential is known need not be

^It is practical in many situations to use z  =  1 and generate the correct cable structure, however the 
corresponding discrete electrical mapping does not provide enough information to infer the continuous 
mapping.
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Figure 4.1: Discretisation of a dendritic tree. All nodes are equally spaced (electrotoni- 
cally). Node numbering starts from 0 at the soma. The node at the cut terminal is not 
numbered. (A) discretisation level z = I; (B) discretisation level z  = 2.
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represented).

Step through the individual cylinders in the following manner, starting with the cylin
der (or one of the cylinders) that is (are) connected to the cell body. Once the nodes of a 
cylinder have been numbered, examine the tree structure at the far end. If any cylinders 
connect, choose one and continue the numbering. If none connect, step back through the 
cylinders that have already been numbered (in reverse order) until a cylinder is found that 
connects at its far end to an as yet unnumbered cylinder or group of cylinders — now 
choose one of these cylinder to continue the numbering. The numbering is complete when 
no cylinders with unnumbered nodes can be found.

Figure 4.1 illustrates a simple discretised tree, and some of the terminology introduced 
above. Note that a tree terminal which has been assigned a cut end boundary condition 
is represented by an unnumbered node since cut ends are not incorporated directly into 
the matrix representation. This is clarified later.

4 .2 .2  D isc r e te  C able E q u ation s

Once a tree has been discretised, only the physical structure and electrical activity at 
nodes is of concern. A discrete cable equation can be associated with each numbered tree 
node, its complexity depending on tree structure at that node. Construction of equivalent 
cables is time-independent.

Start with the dimensionless cable equation for uniform passive cylinder j ,  as derived 
in Chapter 2,

=  +  0 < * < J , .  (4.3)
ox^ dt a

Axial current is given by

4 j(a ;,()  - K c j  • (4.4)

F inite Difference Formulae

and

Now consider how the continuous spatial derivatives are approximated in a discrete system. 
The forward and backward Taylor series for a sufficiently differentiable function f  oî x  are

f { x  +  h) == f{x )  +  h f{ x )  +  y /" (a ; )  +  y / '" ( æ )  +  0{h^) (4.5)

f { x  ~  h) = f{x )  -  hf'{x)  -F y /" ( æ )  -  y / '" ( rc )  -F O(h^). (4.6)

Here 0{h^)  represents terms involving the and higher, powers of of h. It can be 
defined properly by

0 <  I » 2 |  < ». (« I
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Basically, we can find a finite value B, independent of o, that can be used to define an 
upper bound for the additional terms.

Using these expansions, it is simple to obtain expressions for f '{x)  and f ”{x) which 
are correct to second order in h,

m  =  +  (4.8)

f"{x)  =  f± ± R ^ lip± î(l^  + 0(h^). (4.9)

These are the central difference approximations for first and second order derivatives.

Internal Nodes

Denote the transmembrane potential at node n by Vn{t). Since the potential is continuous 
(as is its time derivative), this is well defined (as is dvnjdt), whatever the tree structure 
at node n.

Consider first the internal node n connected to node p  (nearer the soma) and node q 
(further from the soma). Using the given numbering scheme, p < n < q and in fact q — 
n + 1. The second order spatial derivative of the potential at node n can be approximated, 
using (4.9), as

^  + 0(h?). (4.10)
dx"  ̂ h?

Substituting this for the second order derivative in the cable equation for cylinder j  (4.3) 
yields, after a slight rearrangement,

Dip T  Vq d v j i  ^  i

correct to O(h^), where in(t) =  ij(node n,t), the applied electrotonic current density at 
node n (it will soon be shown how the discrete current density relates to an actual applied 
current at the node). This is the discrete cable equation for internal node n. Note that 
the time-dependence of the potentials and applied currents has been suppressed.

Since each cable equation only describes electrical activity within a uniform dendritic 
segment, a direct substitution of the finite difference for the second order derivative can 
only be performed where n is an internal node. Greater care must be taken when treating 
shared nodes.

The Potential Gradient at Shared and Terminal Nodes

Changes in dendritic structure must be taken into account when constructing discrete cable 
equations for shared nodes that link two (diameter step), three (binary branch point) or
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more (general branch point) cylinders, and also terminal nodes connected to only one 
other node. These changes are embodied in the terminal and joining boundary conditions.

In order to deal with the boundary conditions, we require an expression for the voltage 
gradient in terms of nodes that all lie on the same cylinder. There are several ways this 
may be done, yielding expressions correct to differing orders of h. The approach used 
here, which involves introducing “virtual” nodes, and subsequently removing them, gives 
an expression suitable for equivalent cable construction.

The first derivative of the potential at node n is, from the finite difference formula 
(4.8),

dv

Unfortunately, n could be connected to any number of nodes, so nodes q and p don’t have 
an immediate interpretation.

It is necessary to introduce some additional notation when dealing with voltage gradi
ents because they may be discontinuous. If n is a shared node, for example, the gradient 
may take different values depending on the cylinder under consideration. The electrotonic 
space derivative of the potential at node n, in cylinder j ,  is therefore written as

d v n j { t )  dvj{x,t)
dx dx (4.13)

node n

Basically, node n is approached from a point on cylinder j .

There are two situations to be considered. Firstly, suppose node n is shared, and an 
expression is sought that involves only node n and those closer to the soma but also on 
the same cylinder. Equations (4.11) and (4.12) can be rearranged to give

Vq = ^ T  "F 2̂  Un, -l- O(h^), 2h-^---- 1- 0(/i^). (4.14)

The applied current at node n  has been set to zero and will be dealt with explicitly later. 
Here, node q is fictitious, an imaginary extension of the cylinder, j ,  on which nodes p  and 
n  lie, such that the differential equations are still valid. It can now be eliminated simply 
by equating the two forms of Vq, yielding an expression for the potential gradient that is 
independent of structure beyond node n,

Similarly, if we want an expression for the potential gradient at node n, but this time 
in terms of nodes n and q on cylinder k, then node p can be eliminated to give

105



106

Note that equations (4.15) and (4.16) differ only in the direction electrotonic distance 
X is measured, towards or away from n (i.e. replace x  with —x  in one equation to get 
the other). They are also correct only to 0 (h), which is acceptable (in fact desirable, 
because these expressions have the exact form we want for the tree matrix representation) 
for equivalent cable construction, but may not be ideal for numerical simulation purposes.

Shared N ode at a General Branch Point

Voltage continuity at a branch point node is already guaranteed by the discrete model. 
By imposing conservation of axial and applied currents we may link cylinders in a single 
discrete cable equation.

It is useful to denote the c-value of the uniform cylinder section between two connected 

nodes m and n by Cmn- If and n  lie on cylinder j  then Cmn =  Cj. Clearly Cmn — Cnmi 
however, where possible, we use the convention that the node closest to the soma is 
subscripted first.

Another important geometric quantity, the c-sum at node n, is defined by

^   ̂ » (4.17)
k

■ ‘Y
where the sum is taken over all nodes connected to node n. When node n is a binary 
branch point (parent cylinder P  connected to left, L, and right, R, child cylinders) this 
yields Cn = cp + c l P cr . If node n  marks a step in diameter (parent P  meets single child 
C) then Cn ~  cp P cc-  If n  is an internal node of cylinder j  then Gn =  2cj.  If cylinder 
j  terminates at node n  with a current injection boundary condition then On =  Cj. The 
c-sum is not required for unnumbered cut terminal nodes.

Consider shared node n, connected to node p on the parent cylinder and nodes j  on the 
child cylinders. Conventions for the direction of current flow imply that the axial current 
flowing into the branch point from the parent cylinder plus any current injected into the 
core at the branch point, equals the total axial current flowing out of the branch point 
into the child cylinders.

Equation (2.96), in conjunction with equation (4.4), gives a form of the current con
servation law in terms of potential gradients and injected current at node n,

J

where M^(^) is current applied at node n.
Using the finite difference formulae for the voltage gradients, equation (4.15) for the 

parent cylinder and equation (4.16) for each of the child cylinders, discretise the first order
i
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derivatives in (4.18) to give

I dVfi
dt

-0{h).

(4.19)
Rearranging gives the discrete cable equation for a general branch point node,

‘̂ ^p n  f  '2i . 2 \  dV f
■ V r

(4.21)

3

correct to 0 (h ), and where, taking into account equation (2.99),

h ■

As can now be seen, in the discrete formalism the current density basically averages the 
point current source over the internodal length. This is useful because the electrical 
mapping that relates electrotonic current densities between a tree and its fully equivalent 
cable is an equally valid mapping for the actual applied currents. The r  appears simply 
because the rate of charge flow is measured in electrotonic rather than physical time.

There are several other important properties of the general discrete cable equation to 
note: the sum of the node potential coefficients is —1; the sum of node potential coefficients 
apart from node n is 2/h^; the coefficient of Vn is — (1 +  2/h^); all these quantities are 
independent of any specific c-values. This equation links all nodes connected to n.

The following particular cases, several illustrated in Figure 4.2, are of more practical 
use when representing realistic dendritic geometry. Any discrete cable equation can easily 
be derived as a special case of the general discrete cable equation (4.20).

Binary Branch Point

Simply set to three the number of cylinders meeting at node n in equation (4.20). The 
shared node is connected to node p on the parent cylinder (P) and nodes I and r on the 
left (L) and right (R) child cylinders, so

A brupt Change in D iam eter

A node that marks an abrupt step in diameter is shared by only two cylinders. Node n 
is connected to node p on the parent cylinder (P) and node q on the child cylinder (C). 
From equation (4.20), the discrete cable equation in this case is

7 ^ " ' -  + 1) =
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(a)
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Figure 4.2: Some simple structures illustrating node connectivity in discrete cable equa
tions. In each case, node n relates to the discrete cable equation that accounts for the 
specific structure illustrated, (a) Binary branch point, (b) Diameter step, (c) Internal 
node, (d) Current injection terminal, (e) Cut terminal.

Only this equation, and certain simplified cases of it, are required to describe unbranch
ing structure, and thus it is vital in a discrete equivalent cable representation. Note that 
the ratio of coefficients of Vg and Vp equals the ratio of c-values for the cylinders C  and P. 
The sum of these coefficients must of course still be 2//%̂ .

Internal N ode R evisited

Not surprisingly, if cc = cp then the two adjoining cylinders may be collected together 
and replaced with one cylinder, j  say, that has their combined length — node n  then 
becomes an internal node of this cylinder. For consistency, rewrite equation (4.11) as

Since Cn — 2cj, the earlier choice of in (4.21) for the general shared node is now seen to 
be consistent with that for the internal node (4.11).

Term inal N odes —  Current Injection Boundary C ondition

Suppose node n, on cylinder j ,  marks the terminal of a dendritic tree (in which case it is 
always at the far end of the cylinder). It is connected to a single node, p. If the terminal 
is subject to a current injection boundary condition, and current îa ^ is injected, then
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equation (2.91) becomes'^.

=  - i A „ .  (4 .2 5 )

Using the appropriate finite difference approximation for the derivative, where n is at the 
far end of the cylinder (4.15), produces

where in takes the usual form (4.21). Set iAni^) — 0 to yield the sealed end condition. 
Recall that Cn = Cj in this situation. The in now represents the boundary condition, 
rather than arbitrary applied currents.

Recall tha t node n may be treated as a point where the diameter falls abruptly to zero 
(since there is no current leak). Equation (4.26) could also have been derived simply by 
setting Cc =  0 in the discrete cable equation for a diameter step (4.23).

Terminal N odes —  Som a-to-Tree C onnection N ode

The soma node, if chosen as origin, may be assigned any boundary condition, since this 
node does not interfere with critical elements of the cable construction process. It is 
convenient then to just assign a current injection boundary condition (this need only be 
temporary, just for the reduction process). Denote the soma node by s (it is number “0” 
using the numbering scheme outlined previously). The equation can be derived in a similar 
manner to the current injection boundary condition at a dendritic terminal (4.26), except 
that Cp rather that cc is set to zero in the equation for a diameter step (4.23), giving

) |  +  l )  ’'» +  ^  (4-27)

It has been assumed here that only one node, q, is connected to the soma node, i.e. we are 
dealing with a single dendritic tree. If multiple dendritic trees connect to a point-like soma 
representation subject to a current injection condition, then the appropriate equation can 
be found from the general discrete cable equation (4.20) by setting cp =  0, as above.

Terminal N odes —  Local Origin

The matrix methods must be applied Y-junction by Y-junction if full information about 
disconnected sections is required. This involves isolating the Y-j unction, transforming it.

^Recall that charge is constrained to flow in the direction of decreasing x,  so positive injected current 
implies a negative axial current, and vice versa.
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then attaching the cable connected section at the local origin, keeping aside the discon
nected section if one has been generated.

The local origin, node 0, is connected to nodes I and r  on the left and right branches, 
and can be assigned a temporary sealed end. From (4.28)

Term inal N odes —  Cut End Boundary condition

The potential at terminal node q on cylinder j  is fixed at zero (membrane potential is 
fixed at rest), so

Vq =  0. (4.30)

The cut condition must be incorporated into the discrete cable equation describing 
the single node, n, to which it is connected. Assuming z > 2 ,  then n  must be internal to 
cylinder j ,  so equation (4.24), in conjunction with (4.30), becomes

(™  +  l ) ^ „  =  ^ - 2 S Î ^ .  (4.31)

If node n is internal but connected to two cut terminals, then extending this argument 
yields,

è + 0 ”- - ï ' " “ s  <“ >
Thus, terminal nodes with cut boundary conditions^ are skipped during node 

numbering.

It was noted previously that equivalent cable structure (though not the full electrical 
mapping) could usually be determined even when z == 1. This may be desirable for reasons 
of efficiency when the cable structure, but not the electrical mapping, is required.

As a warning, however, it is useful at this point to illustrate some of the ambiguities and 
limitations of discrete cable equations associated with certain dendritic structures when 
H  — h. The main problem involves short structures, i.e. of length H  or 2H. Dendritic 
trees models are highly unlikely to be represented so simply, but these are typical lengths 
for disconnected sections.

The most striking example is the cylinder represented by two nodes, each assigned 

a cut end condition, as illustrated in Figure 4.3a. No discrete cable equations describe

^For trees exhibiting certain geometrical properties, it is acceptable to use more general time-varying 
voltage boundai-y conditions. A constant non-zero boundary voltage condition is generally valid, provided 
all voltage terminals on the tree satisfy exactly the same constant condition. It was originally thought that 
a general voltage condition was acceptable in all situations, (Ogden et  al., 1999), but analytical results in 
Chapter 6 show this is not actually the case.
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(a) CUT ( g 3  CUT

(b ) SEALED CUT

( c ) CUT

Figure 4.3: Problems encountered with discrete cable equations if describing short cable 
structure when z = 1. (a) A quantum length cable with two cut ends contains no numbered 
nodes, (b) A quantum length cable with one cut and one current injection terminal is 
represented by one numbered node, (c) A cable of two quantum lengths, but subject at 
each end to a cut terminal, is also represented by just one numbered node.

this structure! However, it is always possible to infer its existence by checking whether 
electrotonic length has been preserved by the cable sections that are actually produced.

Consider also the following two situations: (1) a node that has been assigned a cut 
condition connected to a node, n, that has been assigned a current injection condition; 
(2) a node, n, marking a diameter step connected to two nodes that have been assigned 
cut conditions. By making the appropriate simplifications to equations (4.23) and (4.26), 
it turns out that the same discrete cable equation describes both structures, i.e. equation 
(4.32). The two cables, illustrated in Figures 4.3b and 4.3c, have different lengths but 
cannot be distinguished by their discrete cable equations, hence the ambiguity.

4 .2 .3  T h e  M a tr ix  R ep resen ta tio n  o f  a  D en d r itic  T ree

Once a dendritic tree is represented by k nodes, numbered from zero to & — 1 (by the given 
procedure) a matrix representation for the entire tree may be formulated.

We first introduce some additional notation. The /c-length vector of node potentials 
is denoted v t ; similarly, the /c~length vector ip  represents applied currents at each node. 
So,

Vt

Do ■ io  '

n h

, =

Vk~~2

—1

(4.33)
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The diagonal matrix of the tree node c-sums is

D t  — diag {C q,C i,  ,C k- 2 ,C k- i}  . (4.34)

Each discrete cable equation may be written in the form

AjVT =  I j ~ - 2 Ü D j \ r -  (4.35)

Here, A j is the row of a connectivity matrix, A t - The entries in this row are all zero 
except the and those corresponding to nodes connected to j .  Similarly, I j  is the 
row of the k x k  identity matrix, with only one non-zero element, i.e. a “1 ” in location j .  
Likewise, is the row of with a single non-zero element, in the slot. 

For example, an internal node n connected to nodes p and q has non-zero entries in the 
qth of An- A binary branch node, n connected to nodes p, I and r  has 

non-zero entries in the and slots of A„. A current injection terminal node
n, connected to node p, has non-zero entries in only the p*̂ ’' and slots. An internal 
node n connected to node p and an unnumbered cut terminal node has non-zero elements 
in just the p̂ ^̂  and slots of A„. Specific examples are illustrated in the next section. 

The discrete cable equations are collected together to form the matrix equation,

A t Vt  -  ^  -  2ÜD^^iT- (4.36)

P ro p e r tie s  o f th e  T ree M a trix

The k x k  square connectivity matrix A t  is referred to as the tree matrix, and represents 
the geometry and boundary condition types (cut or current injection) of the tree model. 
Denote the element in row i and column j  of A t  by aij. Since the coefficient of d„ in 
discrete cable equation n is always non-zero, the diagonal elements are all non-zero, and 
in fact identical®,

1 -f- y-g ^  1 0   ̂ ^  ^  ~  1- ( 4 .3 7 )

The row and column numbers of each non-zero ofLdiagonal element define two nodes that 
are directly connected, so the tree matrix structure mimics the connectivity of the tree. 
The tree matrix is not symmetric since a -̂ 7  ̂ aji, however it is structurally symmetric in 
the sense that

ttij 7  ̂ 0 aji 7  ̂0. (4.38)

:n

^Thiis is not actually a requirement for the origin node (usually the soma node) but, for cable con- ■;
struction, the origin type is irrelevant and may as well be assumed sealed so that the constant diagonal is 
maintained.
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This follows trivially from the reflexive property of node connectivity, i.e. if node i is 
connected to j ,  then node j  must also be connected to i. From the discrete cable equations, 
it can be seen that all off-diagonal elements are non-negative.

The node numbering scheme used, in conjunction with the structure of the second order 
difference equations, ensures that the tree matrix is almost tri-diagonal, i.e. elements are 
concentrated on the diagonal, sub-diagonal and super-diagonal. Off-tri-diagonal elements 
only arise because the presence of branch points prevents consecutive numbering of all 
the nodes on each cylinder. Branching also gives rise to consecutively numbered nodes 
that are not connected, since numbering must proceed directly from a terminal node to 
another cylinder.

A counting argument will show how for each pair of non-zero off-tri-diagonal elements 
there exists a pair of zero element on the sub- and super-diagonals. Also, the tree matrix 
for a dendritic tree represented by k nodes contains 3k — 2 non-zero elements, enough, in 
fact, to fill just the central-, sub- and super-diagonals.

It should first be noted however that an unbranched structure is represented by a purely 
tri-diagonal tree matrix, as illustrated schematically in Figure 4.4a. In fact, it is possible 
to place several unbranching structures together in the same matrix^, as illustrated for two 
cables in Figure 4.4c. A pair of zero elements on the sub- and super-diagonals indicate that 
they are separate. Singly branched structure (Y-junctions) have very similar structure, 
with two tri-diagonal portions of the matrix divided by a pair of zero elements but linked 
by a pair of off-tri-diagonal elements. Figure 4.4b.

Any tree with N  terminals can be divided into a set of N  paths, each consisting of 
consecutively numbered nodes. There is one path, the soma path, where numbering starts 
from ”0” and ends on a dendritic terminal, plus N  — 1 additional paths each starting 
with a node connected to a branch point and ending on a dendritic terminal (or a node 
connected to a terminal in the case of a voltage boundary condition). Observe tha t these 
paths are uniquely determined by the numbering scheme and have the property that every 
tree node lies on exactly one path. Each path must contribute a tri-diagonal portion to 
the tree matrix, plus additional off-tri-diagonal elements arising from the connection of 
that path to the rest of the tree.

Now consider any path starting with node p and connected to another path at the 
branch point described by node j .  The numbering scheme ensures that p > _?' 4- 1. Tree 
connectivity ensures that elements ajp and Opj of the matrix A t  are non-zero and off- 

tri-diagonal, while elements ûp(p-i) — cb{p-i)p — 0 since node p — 1, which must be a

^These structures hint at the procedure for generating an equivalent cable — tri-diagonalisation of a 
tree matrix to generate a cable matrix. Furthermore, it is clear how a tree matrix can represent multiple 
disjoint sections (connected and disconnected sections).
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dendritic terminal, and therefore cannot be connected to node p. Since the soma path 
does not connect to another path, each non-somal path contributes a pair of non-zero 
off-tri-diagonal entries and a pair of zero elements on the sub- an super-diagonals of A t ,  
in total N  — 1 pairs of non-zero off-tri-diagonal elements and N  — 1 pairs of zero elements 
on the sub- and super-diagonals of Ay.

If the tree is represented by k nodes then there are k -  2N  nodes that lie within 
paths. Each such element, j  say, must connect to nodes j  — 1 and j  +  1 and so contributes 
two off-diagonal elements to the row of A, giving a total of 2{k -  2N) off-diagonal 
elements. The off-tri-diagonal elements due to connections between paths have already 
been determined as 2{N ~  1). Since the starting node, p say, of each path (including 
the soma path) must also be connected to node p +  I, there are a further N  off-diagonal 
elements, one each in row p. Finally, each of the N  terminal nodes must connect to 
just one other node, yielding a further N  off-diagonal elements. In total, then, there are 
2{k — 2N) +  2{N — 1) -f iV -f iV ~  2{k — 1) off-diagonal elements. Add the k diagonal 
elements, and the argument is complete.

Tree M atrix Exam ples

Tree matrix examples one, two and three below represent the dendritic trees in Figure 4.5. 
To simplify the matrices £> — (2 -f /i^) is used.

Exam ple One

The tree matrix for the tree in Figure 4.5a is

Aj- 1

D 2 0 0 0 0 0 0 0
1 D 1 0 0 0 0 0 0
0 2cp

C2 D 0 0 0 C-2 0
0 0 1 D I 0 0 0 0
0 0 0 1 D 1 0 0 0
0 0 0 0 1 D 1 0 0
0 0 0 0 0 2 D 0 0
0 0 1 0 0 0 0 D I
0 0 0 0 0 0 0 2 D

(4.39)

The soma node “0” is sealed and described by equation (4.27). The two dendritic 
tips are sealed, so nodes “6” and “8” are described by equation (4.26) Internal nodes “1” , 

“3”, “4” , “5” and “7” are described by equation (4.24). Node 2 is a binary branch point 
described by equation (4.22).
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X  n o n -z e ro  o f f - tr id ia g o n a l e le m e n t

Figure 4.4: Branched trees, unbranched cables and their tree matrix representation, (a) 
Any single unbranched structure has a perfectly tri-diagonal tree matrix, (b) A singly 
branched tree has nearly tri-diagonal structure, (c) Placing two unbranched cables in 
the same matrix representation gives a tri-diagonal matrix, however the sub-matrices 
representing each cable are separated by two zero elements along the diagonal.
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® Sealed

Sealed
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ë  Cut

Cut
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P Sealed

Figure 4.5: Simple examples of discretised dendritic trees, (a) Dendritic tree for Example 
One, consisting of cylinders P , P , and L. (b) Dendritic tree for Example Two, consisting 
of cylinders P , P , P, F. (c) Dendritic tree for Example Three, consisting of cylinders P , 
P , P, P , and G.

E xam p le  Tw o

The tree matrix for the tree in Figure 4.5b is

D 2 0 0 0 0 0 0

1 D 1 0 0 0 0 0

0
2 c p

0*2
D C2 0 0

2 c l

C2 0

0 0 1 D 1 0 0 0

0 0 0
2 c p

C*4
D 2 c p

C-4
0 0

0 0 0 0 1 D 0 0

0 0 1 0 0 0 D 1

0 0 0 0 0 0 2 D

(4.40)

Again the soma node is assigned a sealed end condition. Node “5” is an internal node 
connected to a cut terminal, so is described by equation (4.31) Node “4” is a point of 
abrupt diameter change described by equation (4.23).

116



Exam ple Three

A t If

the tree in Figure 4.5c is

D 2 0 0 0 0 0 0 0 0 0
1 D 1 0 0 0 0 0 0 0 0
0 2cp

C2 D 0 Ca 0 0 0 0 0
0 0 1 D 1 0 0 0 0 0 0
0 0 0 2 D 0 0 0 0 0 0
0 0 1 0 0 D 1 0 0 0 0
0 0 0 0 0 1 D 1 0 0 0
0 0 0 0 0 0 1 D 1 0 0
0 0 0 0 0 0 0 2ci

Cs D
0 0 0 0 0 0 0 0 1 D 0
0 0 0 0 0 0 0 0 1 0 D

(4.41)

A lgebraic structure o f the Y -junction Tree M atrix

Consider the general Y-junction illustrated in Figure 4.6. The left branch is formed from 
m cylinders each of length if ,  while the right branch is formed from n cylinders also of 
length H. Cylinders, and nodes, are labelled from 1 to m on the left branch, then from 
m +  1 to m +  n on the right branch. Both terminals are sealed, as is the Junction node. 
A discretisation level of .2 — 1 is used simply to avoid including the internal nodes (two 
connected cylinders can easily be given the same c-value to produce the appropriate matrix 
for 2: — 2).

The algebraic structure of the corresponding tree matrix is very simple, with a single 
pair of off-tri-diagonal elements due to the single binary branch point; there is a corre-
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Figure 4.6: Schematic of a general Y-junction. 

spending pair of zero elements, one on the super- and one on the sub-diagonal.

_1_
h?

D 2ci
Co 0 0 0 Co 0 0 0
D 0 0 0 0 0 0

0 C2
D 2ça

C2
0 0 0 0 0

0 0 Cs D
2c,n

0 0 0 0

0
0 0 0 2 D 0 0 0 0

C'm+l 0 0 0 0 D 2Cnv+2 
Cm.-1-1 0 0

0 0 0 0 0 2Cni4-2
Cm+2 D 2Cm+3

Cm+2 0

0 0 0 0 0 0 2 C m  H- 3

Cm+ 3
D 0

2C m + n

Cjn+n—
0 0 0 0 0 0 0 0 2 D

(4.42)

Eigenvalues and Eigenvectors

A non-zero vector 1/  is an eigenvector oi a. k x k  square matrix A  provided there exists a 
scalar yu, called an eigenvalue, such that

A v  =  }j,u. (4.43)

Suppose J3 is a nonsingular matrix of the same order as A ,  then

B A B ^ ^  {Bi/) — n {B u ) . (4.44)

Matrix B A B ~ ^  therefore has the same eigenvalues as A,  but different eigenvectors,
namely B u .  Matrix B  is a similarity transform, and matrix B A B ~ ^  is similar to A.

If A u  =  fiu, then for 0 <  î <  — 1, it follows that
k—l

j=0
(4.45)
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where Uj, is the element of u .  This may be rewritten

k—l
[flu /^)^i — ^   ̂ (4.46)

3-0,j^i

If Ui is the largest component of u  then

k—l I I  k—l
|o.u — ^  k u l - (4.47)

i= 0 ,i7 ^ i 3 = 0 , j : ^ i

This result, known as Gershgoran’s circle theorem, simply says tha t the magnitude of the 
difference between an eigenvalue and the central diagonal element in row i is less than the 
sum of the magnitudes of the off-diagonal elements in row i.

For the particular case of the tree matrix, the central diagonal element is always 
— (1 +  2/h^), whatever node we are dealing with. For internal nodes, diameter steps, 
branch points, and current injection terminals, the sum of the off-diagonal elements is 
2/h^. For internal nodes connected to cut terminals, the sum is 1/h^. It follows from 
equation (4.47) that

2
< p ,  (4.48)

Consider the complex plane. Any circle centred on — (1 +  2/h^) with radius \fj,\ must lie 
in the left half-plane (negative real part). No circle may contain the origin, thus /i — 0 is 
not an eigenvalue.

It will be shown shortly that a tree matrix may be symmetrised by a similarity trans
form. The eigenvalues of any symmetric matrix are real, and consequently the tree matrix 
has real eigenvalues. It follows from (4.48) that

-  M < -1 ,  (4.49)

SO bounds for the matrix eigenvalues can be determined. The significance of this result is 
discussed further in the next section.

4.3 Transform ing a Tree M atrix  to  a C able M atrix  —  

E quivalent C able C onstruction

4 .3 .1  In tr o d u ctio n  and  O u tlin e  T h eo ry

In overview, three matrix transformations (similarity transformations), denoted S , T  and 
X ,  are applied to the tree matrix equation as follows: first the tree matrix is symmetrised 
(5), the result is tri-diagonalised (T), followed by de-symmetrisation {X).  This sequence 
of transformations generates a matrix equation that describes an equivalent cable. The
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new equation carries a form similar to the tree matrix equation, i.e. the matrix elements 
are coefficients of node potentials in discrete cable equations. Matrices S , T  and X  are 
all nonsingular square matrices of the same size as A t  ■

A tree matrix, though not symmetric, has just the right form tha t it can be easily 
symmetrised using a simple scale transformation. Equation (4.36) then becomes

{ S A t S - ^ ) { S v t ) =  -  2 n { S D ^ ^ T ) ,  (4.50)

where A t s  — S A t S~ ^  is called the Symmetric Tree Matrix.
The tri-diagonalisation collapses the branching dendritic structure into an unbranching 

cable structure (from one symmetric matrix form to another), so that (4.50) becomes

( T S A t S - ^ T ~ ^ ) ( T S v t ) = -  2 Ü {T S D ^H t ), (4.51)

where A c s  — T S A t S~^T~^  is the tri-diagonal Symmetric Cable Matrix.
The de-symmetrisation of A cs  has much in common with the symmetrisation process. 

Using another scale transformation, a matrix equation is generated tha t is a collection of 
discrete cable equations representing an equivalent cable. Equation (4.51) becomes

{ X T S A t S ^ ^ T ^ ^ X ~ ^ ) { X T S v t ) -  -  2 ü {X T S D ~ '^ iT ) ,  (4.52)

or

A c v c  — — 2 Q .D ÿ ic ,  (4.53)

where A c  -  X T S A t S ~ ^ T ~ ^ X - \  v c  -  X T S v t , and i c  -  D c X T S D i f } i T .  These 
three quantities are, respectively, the Gable Matrix, a vector of cable node potentials, and 
a vector of injected currents over the cable nodes. As with D t  ̂we have defined a diagonal 
matrix of equivalent cable c-sums,

D c  = diag {Co, C i , . . . ,  C t_ 2 , C&-i} , (4.54)

where C j  is the c-sum at cable node j.
The cable matrix is determined entirely by the tree matrix and the node chosen as 

origin (usually “0”) and, like the tree matrix, defines cable shape and boundary condition 
types. When mapped from tree to cable, tree vectors v t  and Ît  together determine 
electrical activity on the equivalent cable — they do not influence its shape.

The Lanczos and Householder procedures may be applied to any tree matrix, however 
complicated the tree might be. However, since disconnected sections are associated with 
a specific sub-tree, it is usually only practical to generate them using a Y-junction by Y- 
junction approach, whereby a Y-junction is isolated, discretised, numbered, transformed
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to its equivalent cable, with the branch point chosen as a local origin and assigned a tem
porary sealed boundary condition. Its connected section is reattached to the local origin 
while, if the Y-junction is degenerate, the disconnected section is kept aside and marked as
associated with the sub-tree. On completion of the cycle, the final connected section and
any disconnected sections may be collected together in one matrix, provided one makes 
sure the electrical mapping and equivalent cable nodes have been made consistent.

4 .3 .2  S om e P r o p e r tie s  o f  T ree and  C ab le M atr ices  

T he Electrical M apping

It is convenient to define the electrical mapping from dendritic tree nodes to equivalent 
cable nodes by

M  =  X T S .  (4.55)

The inverse, which defines the electrical mapping from cable to tree, is easily obtained from 
its component matrices. Both S  and X  are diagonal, while T  is orthogonal (T “  ̂ =  T ^), 
therefore

=  S ~ ^ T ' ^ X - \  (4.56)

In practice JVf directly maps potentials between the equivalent cable nodes and the 
tree nodes, that is,

Vc  — M v t , and v t  — M ~ ^vc -  (4.57)

To map applied currents (including non-zero current boundary conditions) between tree 
and cable, simply use the modified mappings

M i  = D c M D - ^  and (4.58)

so that

i c  — M j i x ,  and i x  — M J ^ ic -  (4.59)

D isco n n ec ted  Sections

The structure of A<r has been thoroughly described in section 4.2.3. It is useful at this 
point to describe some general properties of A c s  a*nd A c ,  before actually showing how 
to generate them.

The whole point of generating A c s  is that it is tri-diagonal, and represents an un
branched dendrite. However, it is possible that the symmetric cable matrix actually con
sists of a set of distinct tri-diagonal square submatrices located along the block diagonal; 
adjacent matrices are separated by a pair of zeros, one on the sub-diagonal and one on 
the super-diagonal. This possible matrix structure has already been illustrated in Figure

121



4.4. and may be interpreted as multiple disjoint cable sections, provided the discrete cable 
equations are acceptable, i.e. they describe properly terminated unbranched structure.

Exact conditions under which this can occur (essentially electrical symmetries implicit 
in the tree geometry) are discussed in more detail in section 4.3.4 (in mathematical terms) 
and in Chapter 6 (in terms of the physical structure of the tree).

Consider the important case of the general Y-junction. Denote the kc^-kc connected 
section sub-matrix by Aeon, and, if it exists, the kdXkd disconnected section sub-matrix 
by Adis- For degenerate Y-junctions, k — kc + kd and, in block form,

A cs Icon 0
0 Adis

(4.60)

in which case the tri-diagonalisation operation for the Y-junction matrix may be written 
in block form as

Toon
T d i s

where Tcon is a. kcXk matrix and T^is is a. kdXk matrix.
For non-degenerate Y-j unctions, k = kc and

T (4.61)

A cs  — Ac T - T c (4.62)

Once a complete tree has been reduced, the full equivalent cable sub-matrix may be 
built up. The leading sub-matrix, now denoted Aeon describes the connected section, 
while additional square kiXki sub-matrices are denoted A^g where 1 <  i < r, form the 
set of r disconnected sections. So, in block notation,

A cs

where

j(0)-^con 0 0 0 0 0
0 4 2 0 0 0 0
0 0 0 0 0

(4.63)
0 0 0 0 0
0 0 0 0 4 r ' ’ 0
0 0 0 0 0 4 L

k - k{. (4.64)

j
•ii
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The tri-diagonalisation operation may be written

on(0) -*■ con
41)T dis

T ( r - l)
dis

dis

(4.65)

where is a, kcXk matrix that relates tree node potentials to cable connected section 
node potentials; similarly, is a, kiXk  matrix that relates tree node potentials to cable 
disconnected section z’s node potentials. Thus,

dis/con T (d
dis/con (  ^\  dis/con J (4.66)

The rows of T  are essentially a set of basis vectors spanning n-dimensional space. Any 
distribution of electrical activity (scaled appropriately by S  and X )  over a tree can be 
written as a linear combination of these vectors. In general, some activity is mapped to 
the connected section, while the rest maps to the disconnected sections.

Associated with each sub-matrix is a subspace (closed under multiplication
by A t s ), with

ai ~  span : where æ is a row of ^^fs/con} * (4.67)

Subspace Ctq describes activity that the origin can detect, and remaining subspaces describe 
activity that the origin cannot detect.

Note that, when applied Y-junction by Y-junction, the Householder tri-diagonalisation 
will automatically generate the invariant subspaces and their corresponding sub-matrices,
i.e. it generates the disconnected section if a Y-junction is degenerate; the Lanczos pro

cedure will only do so after some effort to restart the process after early termination.

Spectral P roperties o f th e  Tree and Cable M atrices

For most of this thesis, we will not be concerned directly with the temporal properties 
of the cable equation, however it is useful to consider some important properties of the 
tree matrix eigenvalues. It has already been shown (4.49) that the eigenvalues of a tree 
matrix are negative, and lie in the range - 1  to - (1  -i- 4//i^). Clearly, the smaller the 
internodal interval the greater the range of eigenvalues. The tree matrix eigenvalues 
have an im portant physical interpretation, and are related to the decay time constants 
of characteristic voltage distributions over the tree model nodes.
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Suppose that Ît  is zero. If Ui is an eigenvector of A t  and jjii is the corresponding real 
eigenvalue then,

A t V'i == (4.68)

From equation (4.36), regarding the eigenvectors as distributions of potentials of the tree 
nodes, we may then write

(4.69)

This equation has solutions of the form

V i  =  feje''-*. (4.70)

Eigenvector i î is essentially a characteristic distribution of node potentials (whose initial 
distribution is given by ki) which decays exponentially over the whole tree with time 
constant ~  —1/fii (given in units of the membrane time constant, r)  of the tree matrix 
A t > Importantly, time constants can never be greater than r.

Since AT is a similarity transform (a product of three similarity transforms) the eigen
values of A c  are the same as those of A t - The corresponding eigenvectors, or charac
teristic voltage distributions, are given by M u i .  Thus, a tree eigenvector potential is 
mapped by M  to the equivalent cable eigenvector potential that will decay at the same 
characteristic rate. This is an important feature for the equivalence of a dendritic tree 
and its equivalent cable.

It is vital that one distinguishes between time constants determined by matrix eigen- 
values (of which there are finitely many^) and the time constants that are characteristic 
of the original spatially continuous model (denoted rj’, and of which there are infinitely 
many, see Rail, 1969a). For example, the voltage response at the soma due to a configu
ration of inputs at t =  0 somewhere on the tree can often be expressed as an infinite sum 
of decay time constants, that is

OO
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vs{t) = Y , B i e - ‘/^‘ (4.71)

where the Bi are coefficients determined by initial conditions.
Typically only a very small proportion of the largest matrix eigenvalues will give rea

sonable approximations to actual time constants. This is an unavoidable consequence of 
approximating a continuous model by a discrete model. A finer discretisation (smaller 
A, more nodes) can improve the accuracy of the larger matrix time constants, but still 
only a small proportion usually are acceptable. For the purposes of simulations, the larger

For a&x& tree matrix, there are at most k eigenvalues. There are less than k if the tree matrix 
has repeated eigenvalues. The existence of disconnected sections, i.e. electrical degeneracy in the tree, is 
associated with the existence of repeated (degenerate) eigenvalues in the tree matrix.
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time constants dominate the structure of voltage transients since the effects of the smaller 
(faster) constants can only be significant at initiation of the transient.

Sealed Trees in Particular

If all terminals on a tree are sealed, then the sum of non-zero elements in any row of the 
tree matrix must be —1. Therefore, the potential distribution

=  (4.72)

is an eigenvector of A t , with corresponding eigenvalue —1, i.e.

=  — I / .  (4.73)

This uniform distribution therefore decays with characteristic time constant r , the mem
brane time constant.

Mapping this uniform potential to the equivalent cable always give a uniform distri
bution over the connected cable section. This is explained in more detail in Chapter 6 
(conservation of coefficients), however, it follows because, for sealed trees, the sum of each 
row of M  associated with a cable connected section node is unity. Alternatively, a physi
cal argument demands that the cable origin must also observe the same uniform decay of
voltage. The connected section of the equivalent cable must also be sealed, otherwise this 
is not possible, and so

4 L  =  -i>, (4.74)

where

is a /Cc-length vector.

(4.75)

Partial Generation of the Cable

Under some circumstances, the complete equivalent cable may not be required, or it may 
not be practical to generate the full cable because of numerical considerations. For ex
ample, the connected section may be all that is of interest. In such situations the tri- 
diagonalisation and de-symmetrisation need only be partially completed.

Let Tjn be the m x n  matrix that generates the m xm  leading sub-matrix of the full 
symmetric cable matrix. Only this sub-matrix need be de-symmetrised so let X m  denote 
the leading m xm  sub-matrix of X . This partial cable matrix equation can be written

dt
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where superscripted matrices and vectors describe m  nodes of the equivalent cable, and 
the partial cable matrix is

a P  =  X ^ T ^ S A t S - ^ t I x - \  (4.77)

The mappings from tree to partial cable and from partial cable to tree are then

M ,„  =  M - i  =  S - ^ T ^ X - ^  (4.78)

though there is information missing, and the full space of electrical activity over the tree 
will not be accounted for in the mapping.

4.3.3 The Sym m etric Tree M atrix

There is a non-singular k x k  diagonal matrix S  such that the k x k  tree matrix. A t , can 
be symmetrised,

S A t S~ ^  — A t s - (4.79)

Transformation S  consists of non-zero scaling factors,

S =  diag { so ,s i,.........,Sk- 2 ,S k - i} ,  (4.80)

where
f 1 2 =  0

Each scaling factor fixes two ofF-tri-diagonal elements. After initialising one scaling fac
tor (so), there are just the right number of off-diagonal elements, i.e. 2{k — 1) to be 
symmetrised by a further k — 1 scaling factors.

Denoting the elements of A t s  by it is easy to check that, for i ^  j ,

dij — üj'i — Clij - — Q>ji ■ — ̂  Qiij dji. (4.82)
S j  Si

and the central diagonal is unaltered. It fact, there is a clear structure to the Sj. Suppose 
j  > i. Since dij = 2cijfh^Ci, then from (4.81),

Si = S j J ^ .  (4.83)
V 3̂

By recursive substitution for S j  so that s i  is expressed in terms of lower and lower numbered 
scaling factors, there is repeated cancellation of the denominator, and we obtain

Co'

since so =  1-
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Also, non-zero off-diagonal elements of A t s  may be written

2c
nj dji — V (4.85)

where Cij is the c-value of the cylinder section linking connected nodes i and j .  
Matrix S  is trivially nonsingular, and its inverse is easily obtained.

S ' (4.86)

As an example, the symmetric form of the tree matrix in example two (4.40), is

A t s _L

with

V 0

%/2 D / 2cp
V c-2

0 j 2cp
V C2 D

0 0

0 0 0

0 0 0

0 0

0 0 0

S  =  diag < 1, V^,

C2
D

c
0

0

0

2CR1
c p

y
2cAi
C4

D

0

0

0 0 0

0 0 0

0 /2c/,
V

0

0 0 0

0 0

D 0 0

0 D y/2

0 V2 D

2CR2
cp C p  V C p

(4.87)

(4.88)

A lgebraic  S tru c tu re  o f A t s  an d  S .

If we write

Wi — \/CiCi+i, and (4.89)
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with

then the symmetric form of the general Y-junction tree matrix given in equation (4.42) is

0 

0 
0 

0 

0 
0 

0 

0 

0

D
(4.90)

(4.91)

D

# 0

0

Wi

0

0

0

0

2Cm+l 0

0

0

0

Wo

D
Wo(m+l)

0

0 Wi D m 0 0 0 0

0 0 m D
Cm

0 0 0

Wm— 1
0 0 0 C/n. D 0 0 0W „i_l

Crn+l
b3(m+l)

0 0 0 0 D Cm 4-2 
Wm-t-1 0

0 0 0 0 0 Cm+2
Wm+1 D Cm4-3

Wm4-2

0 0 0 0 0 0 Cm 4-3 
Wm4-2 D

0 0 0 0 0 0 0 0 h7n+n—1

S  =  diag < 1, Y i
Co Co'V  Co

Cm-\-n

Co

4 .3 .4  L anczos T ri-d iagon a lisa tion

This method of tri-diagonalisation was introduced by Lanczos (1950). General discussion 
of Lanczos tri-diagonalisation and its startling convergence properties can be found in 
Golub and Van Loan (1990) and Paige (1976, 1980). It has been used extensively in 
nuclear physics (Whitehead et al, 1977), and it is via this field that the method found 
its way to neuronal modelling. Previously, an outline of the general ideas underlying the 
process, with specific application to equivalent cables, and in particular the connected 
section, has been given in Whitehead and Rosenberg (1993). Further details are presented 
in Ogden et al (1999), and expanded upon even further here.

Lanczos tri-diagonalisation does not naturally generate disconnected sections since the 
algorithm terminates after generating the connected section, however, with a little effort, 
it is often possible to restart the algorithm if necessary.

When using the Lanczos procedure, we set T  — L.

General Theory

The Lanczos method is normally associated with solving the eigenproblem,

A x  = ij,x, (4.92)
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where A  is generally large, symmetric, and sparsely filled®.
First, choose an initial, normalised Lanczos vector, uq. The choice is very significant 

for the progress of the algorithm, but may depend on the reasons for using the process 
in the first place (in the case of equivalent cable construction the initial vector has an 
important physical meaning). After pre-multiplying uq by A, the result may be expressed 
as a linear combination of the first Lanczos vector (uq) and a new normalised Lanczos 
vector (wi), orthogonal to the first. This action is then repeated with the newly generated 
Lanczos vector, again pre-multiplying by A, and choosing yet another normalised Lanczos 
vector, which will be orthogonal to all previous Lanczos vectors. In this manner, the 
following tri-diagonal structure is built up.

A u o =  « 0 ^ 0 + pQUl
A u i ^  PoUq + aiUi T PlU2
A u 2 z= PlUi + CX2 U2 + p2m
A u 3 P2 U2 + OK3 U3 +  psU4

The coefficients of the Ui are the elements of the new tri-diagonal
that orthogonality of the Ui implies

ai — u j  A u i,  (4.93)

and

A — uJ^iAxsU i.  (4.94)

After one iteration, enough elements have been generated to construct a 1x1 matrix,

A(^)

After a second iteration, a 2x2 matrix,

A(^) =

ao

«0 A
A  Oil

(4.95)

(4.96)

may be constructed, and so on. Thus, the jth. iteration of the algorithm produces enough 
elements to construct à j x j  matrix, denoted A^^\  whose diagonal is given by ckq to a j - i  
and super- and sub-diagonals given by /?o to A-2-

^While the method may be extended to unsymmetric matrices, this is at the cost of introducing bi- 
orthogonal sets of Lanczos vectors. For tree matrices, it is much more convenient to take advantage of 
structure and symmetrise first — a very quick process. In fact, it is more efficient to generate A t s  directly 
from tree data, bypassing A t  altogether.
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Extraordinary convergence properties of the method mean that information about A ’s 
extremal eigenvalues emerge long before tri-diagonalisation is complete. Essentially, as j  
increases, the extremal eigenvalues (largest and smallest) of are better and better 
approximations to the extremal eigenvalues of A.

This is not, however, the reason we use Lanczos tri-diagonalisation. For our purpose, 

the most im portant property of the Lanczos tri-diagonalisation is that it preserves essential 
matrix structure, allowing eventual interpretation as an equivalent cable.

Provided the convergence properties and extremal eigenvalues are the points of interest, 
the Lanczos’ advantages over a more stable Householder method are storage and speed. 
These have been vital consideration for the massive sparse matrices commonly found in 
nuclear shell model calculations (Whitehead et al, 1977). Highly complicated dendritic 
trees are also likely to require huge sparse matrices for a reasonable representation. The 
major pitfall when using the Lanczos procedure is that roundoff errors, and a loss of 
orthogonality among the Lanczos vectors, can be troublesome.

It can happen that after some iteration, j  < k, element is zero, at which point 
the algorithm terminates prematurely, with the construction of a subspace. This happens 
when the initial vector, rto, is deficient in some of the eigenvectors of A ,  i.e. uq can 
be expressed as a linear combination of j  < k eigenvectors. In this situation, A  has 
repeated, or degenerate, eigenvalues. The j  x j  tri-diagonal matrix that has been produced 
is non-degenerate, i.e. contains exactly one copy of each of the eigenvalues of A.

A pplication  to  the Tree M atrix

For the specific case of a. k x k  symmetric tree matrix, there are several factors in our favour 
that simplify Lanczos tri-diagonalisation: the central diagonal is a known constant and 
the choice of initial Lanczos vector is fixed by the node chosen as origin.

The standard unit vectors, e^, are useful, where

eo

'  1 " '  0  " 0

0 1 0

0
e i  ^

0
, . . .  Gi

1

0 0

_ 0  _ _ 0  _ 0

(4.97)

It is useful to think of as representing node i on the dendritic tree. The set of 
orthonormal Lanczos vectors play a similar role for equivalent cable, with Ui representing 
node i on the cable.

130



The initial, normalised Lanczos vector, uq, must represent the node chosen as origin. 
For example, if the soma node is taken as origin, as would normally be the case, then

Wo = Go. (4.98)

Lanczos Vector Structure

When tri-diagonalising the symmetric tree matrix, the resulting tridiagonal matrix must 
of an acceptable form. The central diagonal elements of A c s  must be constant and equal 
to that in A t s  if it is to be eventually interpreted as a set of discrete cable equations. The 
general Lanczos procedure does not produce this constant diagonal, so we now prove the 
following result which shows how tree matrix connectivity can impose interesting structure 
on the Lanczos vectors, and thereby ensure the cable matrix structure we require.

Let A  be a symmetric tree connectivity matrix with constant diagonal element D. I f  A  
is tri-diagonalised by the Lanczos method, taking initial vector wq to be a standard unit 
vector, then the diagonal elements of the resulting tri-diagonal matrix are also all the same 
and equal to D.

Proof: First, observe that ai — u f  A m  may be written

k~l k-1
C-pq'^p^'C-q ,̂ (4.99)

p=0 g—Q

where Up'̂  denotes the element of m-  The central diagonal of A t s  is constant, m  is 
normalised, and Upq =  0 unless node p is connected to node q, so equation (4.99) may be 
simplified to

k~l
=  D +  apqu!f'>u^f\ (4.100)

where q-^p means that the sum is over all nodes connected to p. It remains to show that 
if nodes p and q are connected then one of Up  ̂ and Uq'̂  must be zero, in other words two 
connected nodes do not both contribute to the same Lanczos vector^®. Once this has been 
shown, it follows immediately that ai — D, for all i. Clearly, this is the case for the initial 
unit Lanczos vector {i — 0), so ao = D.

Suppose now that Lanczos vector m - i  only has non-zero elements contributed by nodes 
that are either (1) all an even number (or zero) of h from the origin, called even-distant 
nodes, or (2) all an odd number of h from the origin, called odd-distant nodes. In either 
case, no two nodes that contribute to this Lanczos vector are connected.

say a tree node, i , con tribu tes to vector U j if the î ’̂' element of u j  is non-zero.
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fc-1
,6 - 1)

Prom the general Lanczos vector/tri-diagonal matrix structure above we can write «

A-iWj +  — A u i - i  — a i- iU i- i ,  1 <  Î < /c — 1, (4.101)

provided we set /3_i = 0 and w_i = 0. Now observe that thep*^^ element of the right hand 
side of this expression can be rewritten

[{A -  a m i l )  Ui-i]p ^  y  apjuj  ̂ (4.102)

Restricting the sum to the non-zero elements, i.e. where j  is connected to p, gives

[(A — o(f_iX) ̂   ̂dpjiJj  ̂ (4.103)
j^P  ,;;ïj

Consider first situation (1), where non-zero elements of u m i  are contributed by even- 
distant nodes. If p is odd-distant then those nodes connected to p must be even-distant, 
so when p is odd-distant (4.103) may be non-zero. If p is even-distant then those nodes 
connected to node p are odd-distant, and (4.103) must be zero. Consequently, if only
even-distant nodes contribute to m - i  then it must be true that only odd-distant nodes f
contribute to p i - im  4- A - 2 W%_2 (the left hand side of 4.101).

A similar argument for situation (2) shows that if only odd-distant nodes contribute 
to Ui-i then it must be true that only even-distant nodes contribute to P i- im  -f A - 2 Wt_2 .

Now, we can establish initially that since uq has one contribution from the origin node 
(counted as even-distant), then u \  has contributions from odd-distant nodes. It then 
follows that U2  has contributions from even-distant nodes.

Now, suppose Ui- 2  has contributions from odd-distant (even-distant) nodes and 
Ui-i has contributions from even-distant (odd-distant). The latter ensures that 

Pi-iUi -I- P i- 2 Ui- 2  has contributions from odd-distant (even-distant) nodes, while the 
former now ensures that m  on its own must have contributions only from odd-distant 
(even-distant) nodes. This argument holds true for % — 1 and i = 2, and so by induction 
holds for all i. Thus, only unconnected nodes contribute to m ,  and the result follows. f

This result gives some insight into how the Lanczos vectors develop, and consequently i
how the electrical mapping is built up.

Further consideration of equation (4.103), and a similar induction argument to that A
above show that only nodes connected to those nodes that contribute to u m i  may actually (■
contribute to Wj_i. This leads to an evolution of the Lanczos vectors which ensures that ;;
the equivalent cable structure that is j  internodal lengths from the origin depends only 
on dendritic tree structure up to j  internodal lengths from the origin. Furthermore, there
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must be an even number of internodal electrotonic lengths (A) between any two nodes 
contributing to a particular Lanczos vector.

Since uq is always a standard unit vector, orthogonality ensures that the origin never 
actually contributes to any other vector. This may be taken as an indication that equiva
lent cable structure is independent of the nature of the origin boundary condition (though 
of course it will depend on the location of the origin). The physical structure of a dendritic 
tree determines whether or not a node that may contribute actually does contribute to a 
Lanczos vector.

The Lanczos algorithm applied to the symmetric tree matrix therefore yields 
A t s u q  =  D u q  4-  P q U i

A tS U i  — PqUq 4- D u i  4- PlU2

A t SU2 = PlUi + D u2 4- Aws
At5W3 =  P2 U2  4- Dus  4- PsU4

The coefficients of the m  are the elements of the tri-diagonal symmetric cable matrix. 
W ithout loss of generality, the A are chosen to be positive. The tri-diagonalisation is 
complete when k orthonormal Lanczos vectors {uq  to U k - i )  have been generated, spanning 
the complete /c-dimensional vector space.

Transformation T  is a row-partitioned matrix of transposed orthonormal Lanczos vec
tors {u f) ,  so

Wr
U T

U T

U T
k-1

(4.104)

Orthonormality of the Lanczos vectors implies that L  is an orthogonal matrix, and so
= L~^,  allowing simple inversion of L.
The algorithm will terminate when a vector Um has been generated such that no new 

vector Umpi is required to represent AxsU m ,  i-e. Pm = 0. At this point, the connected 
section (A%n) has been generated. If, when applied to a. k x k  symmetric tree matrix, the 
algorithm terminates when m =  (A; -  1), so that k Lanczos vectors have been produced, 
then we are finished; the entire space of electrical activity over the dendritic tree is rep
resented on the equivalent cable connected section. If instead the algorithm terminates 
prematurely after producing m  < k Lanczos vectors, a subspace has been generated; this 
subspace describes electrical activity that can be observed and distinguished by the origin.
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Any additional subspaces and sub-matrices that are associated with disconnected sec
tions can be generated provided suitable new initial normalised Lanczos vectors, orthog
onal to all previous Lanczos vectors, can be found. However, if a complex branched 
dendritic tree is treated as a single unit, it is not clear exactly how to choose a new vector 
(unlike uq for the connected section). For a tree with several orders of branching, there 
are usually many possible new choices of orthonormal vector, most of which will not allow 
a proper physical interpretation of the resulting sub-matrix as a disconnected section. As 
stated previously, since a disconnected section is associated with a specific sub-tree, it 
is usually only practical to generate the new vector if the Lanczos algorithm is applied 
in a Y-junction by Y-junction manner. For each Y-junction there is a maximum of one 
additional subspace to determine. A method, based on analytical results and observations 
presented in Chapter 6, is available for finding the new Lanczos vector, and is discussed 
in Section 4.3.4.

Once a new Lanczos vector has been found, the tri-diagonalisation process can be 
restarted and continued as before.

Partial G eneration o f the Cable

Denote the matrix of the first m transposed Lanczos vectors by Lm, so

Ur
Ui

(4.105)

This is obtained once the leading m x m  symmetric cable sub-matrix is obtained, repre
senting the connected section of the equivalent cable. So,

A (m) X m L r (4.106)

Y"junctions and D isconnected  Sections

For a Y-junction by Y-junction reduction of a tree, the complete Lanczos procedure must 
be applied to each Y-junction. Before transformation, the Y-junction’s nodes must be 
renumbered from zero (using the standard scheme). When the connected section is re
attached, the nodes that form the intermediate dendritic structure must be renumbered 
to ensure consecutive numbering. It is essential that we keep track of the correct electrical 
mapping from original tree to final equivalent cable. This is merely a record keeping task, 
ensuring that we can relate the nodes involved in each electrical mapping through all the
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intermediate structures. Eventually the matrices X ,  T , A c s  and A c  for the complete 
equivalent cable and the mapping from the original tree can be constructed from the 
matrices generated for each Y-junction.

The Y-junction approach is acceptable because the branch point nature of the tempo
rary origin (like any origin) does not influence construction of the Y-junction’s equivalent 
cable. The local origin can be temporarily assigned at sealed boundary condition. The 
intermediate dendritic structures generated by the process are, as seen by the origin, 
electrically equivalent.

In fact, any terminating substructure may be isolated, transformed and re-attached in 
this way. However, the Y-junction is the basic unit of branching dendritic structure and 
is the key to choosing new Lanczos vectors to restart the tri-diagonalisation and generate 
disconnected sections.

If a Y-junction is degenerate, we need to re-initialise construction of its equivalent 
cable with a new ortho normal Lanczos vector. It was clear for the connected section which 
node the initial vector should represent (the origin). We need to choose a new Lanczos 
vector that will also represent a terminal node on the equivalent cable. An approach 
that has been effective, and is based on analytically derived results, is to restart where 
the connected section finished, at the only (non-origin) equivalent cable terminal node we 
have knowledge of at this stage. It is possible to construct a new Lanczos vector which, 
in a sense, also represents this node — it incorporates the same boundary condition, but 
represents structure on the far side of the node, i.e. beyond the connected section.

If a connected section terminated prematurely with cable node (m -  1), represented 
by Lanczos vector Um-i, choose a new vector Um where the only possible non-zero el
ements are at the same locations as non-zero elements in Um-i but adjusted to ensure 
orthogonality with Um-i as well as wq to Um-2 - So, if

then pi = 0 implies % =  0. Solving for the qi using

Bm'^m ~  b (4.108)

allows one to generate a new vector Um- The tri-diagonalisation of the Y-junction’s sym
metric tree matrix can now be restarted.
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C om putational Lanczos Tri-diagonalisation

Lanczos tri-diagonalisation is a powerful tool for finding extremal eigenvalues of large 
sparse symmetric matrices (Paige, 1980; Golub and Van Loan, 1990), although, due to in
herent instability, it is not the preferred choice as a general method of tri-diagonalisation. 
Other techniques (see Golub and Van Loan, 1990) offer more favourable numerical prop
erties.

Round-off errors and loss of orthogonality among the Lanczos vectors are the major 
concerns. The complexity of a dendritic tree, its boundary conditions, and the number 
of nodes by which it is represented, as well as the working significance of floating point 
arithmetic, will determine how much of an equivalent cable can be constructed before 
arithmetic errors begin to manifest themselves unacceptably. Double floating point arith
metic, at least, should be used when working with complicated structures.

When transforming a complicated tree there may be a loss of acceptable accuracy at 
distances far (greater than the maximum origin-to-terminal electrotonic distance) from 
the origin along the connected section. Similar problems can arise for the Y-junction 
approach after several orders of branching have been transformed. Disconnected sections 
associated with the simpler substructures can often be generated, but errors may make 
it impossible to complete a connected section and thus choose a new Lanczos vector if a 
Y-junction is highly irregular and represented by a large numbers of nodes. Note that it 
is possible to use analytical results from Chapter 6 at each stage of the Y-by-Y reduction
to ensure tha t cable section lengths are correct. If correct degeneracy is ensured for each
Y-junction transformed, the final equivalent cable sections must inevitably exhibit the 
right electrotonic lengths.

Four subtly different algorithms, along with an error analysis, are fully discussed by 
Paige (1972, 1976). In a limited test of complex trees, we have found no single algorithm 
to give significant advantage over the others when generating equivalent cables. A version 
of the algorithm Paige calls A (l, 7) is given below. It is modified, to our advantage, for 
equivalent cable generation since the central diagonal element is always known and need 
not be computed each iteration.

The initial Lanczos vector is uq, and let go — A t s u q . The repeated central diagonal 
element is D. For j  =  0 to termination, repeat steps (4.109) to (4.113) :

aj  ~  D {= uJ A'TS'^j) (4.109)

Wj =  g • — oijUj (4.110)

A +i =  (4.111)

Wj+i =  (4.112)
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=  A x s U j + i -  Pj4-iUj. (4.113)

If a Y-junction is degenerate, the process is restarted.
Calculating the central diagonal using equation (4.109) and comparing to the known 

value, D, is a useful indicator of where the algorithm loses stability.
Rounding errors can become significant when w j  becomes small due to cancellation.

Element A + i then small, indicating a sudden narrowing of the cable. This could be 
considered an approximate termination point if errors are significant enough.

It may be possible to improve the process by re-orthogonalisation, i.e. to combat loss of 
orthogonality, after each iteration the new Lanczos vector, is forced to be orthogonal
to all previous vectors wq to Uj (details in Golub and Van Loan, 1990).

4 .3 .5  H o u seh o ld er  T ri-d iagon a lisa tion  

H ouseholder R eflections

A Householder reflection H  takes the form

H  — I  — 2 v v ^ /v ^ v ,  (4.114)

where I  is the identity matrix and w is a Householder vector. Matrix H  is square, orthog
onal, and idempotent, i.e. it is its own inverse, so

H  = H ^  = (4.115)

When a vector x  is pre-multiplied by H ,  then x  is reflected in a fc-dimensional hy
perplane defined by the orthogonal complements^ of span(w). The idea extends simply to 
matrices: pre-multiplication of an n x m  matrix by H  reflects each column vector of the 
matrix in the hyperplane; post-multiplication of an m x n  matrix reflects each row-vector 
of the matrix in the hyperplane.

Householder reflections are typically used to zero a selected portion of a matrix row 
or column. The conventional method of doing this involves constructing the Householder 
vector using the matrix elements one wishes to zero, moving progressively from the bottom- 
right to the top-left of the matrix (details can be found in Golub and van Loan,T990). 
On application of this method to tree matrices, the resulting symmetric matrix does not 
have a direct interpretation as an equivalent cable, and thus seems to fail. It is therefore 
necessary to implement another Householder strategy.

orthogonal complement of a vector space, S  is the space spanned by vectors y  where y'^æ  — 0 for 
all X e S .
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The H ouseholder O peration

To summarise, Householder reflections will be used to zero a single element at a time. 
Repeated post- and pre-multiplication of the symmetric tree matrix by a series of suitable 
Householder reflections generates the symmetric cable m a t r i x ^ A  custom implementation 
of the new algorithm also makes it possible to take advantage of the high level of sparsity 
that is maintained in intermediate full matrices, and store them efficiently. This is not 
usually possible using “off the shelf” Householder implementations which typically store 
full intermediate matrices.

Consider a. k x k  symmetric matrix A ,  and denote its elements by The Householder 
reflection required to zero element dmn is, in block matrix form,

Hr

where n > m -1- 1, I j  is the j x j  identity matrix, and

I  m 0 0 0 0

0 a 0 p 0

0 0 F  n —m ~ 2 0 0

0 p 0 — a 0

0 0 0 0 ^ k —n

(4.116)

a and P
)2 +  {a;

so that
oP +  P"̂  =  1.

The corresponding Householder vector is 

11 =  4: 0 0 \ / l  — a  0 0 v T + a  0 0

(4.117)

(4.118)

(4.119)

though it is not used explicitly.
It is easy to show that post-multiplication of A  by Hmn  will zero off-tri-diagonal 

element while pre-multiplication of A  by Hmn  will zero off-tri-diagonal element 
Individually, the reflections disrupt matrix symmetry and destroy the constant diagonal. 
Combined, however, pre- and post-multiplication by Hmn, referred to as a Householder 
operation, e.g.

JB — H  rr,r>.AH r (4.120)

will zero a pair of elements while maintaining matrix symmetry and the constant diagonal 
(a proof of the latter is given later).

^^The process is similar to the application of Given’s rotations (Golub and van Loan, 1990), except that 
this method destroys essential matrix structure. The Householder reflection employed does however share 
some structural similarities with Given’s rotations.
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(b)

(d)

Figure 4.7: Schematic of the Householder tri-diagonalisation procedure applied to the tree 
matrix for a general Y-junction. (a) The symmetric tree has one pair of off-tri-diagonal 
elements, (b) zeroing this element produces new off-tri-diagonal element further towards 
the lower-right corner of the matrix, (c)-(d) repeat until tri-diagonality is achieved. The 
resulting cable matrix will represent either (e) two sections (one connected, one discon
nected) or (f) one section (connected).

Denoting elements of B  by this pair of reflections essentially map the unwanted 
off-tri-diagonal elements and into locations &rn(m+i) a-nd b̂ rn+i)rrf) while modifying 
or producing additional off-tri-diagonal elements. Note that operation Hmn  ensures that 

element =  ^(m+i)m is positive.

T he Tri-diagonalisation Procedure

Element zeroing must be done in a controlled manner. Unstructured application of House
holder reflections to zero off-tri-diagonal elements is not effective because the reflection 
can spawn many new off-tri-diagonal elements in the resulting matrix.

The structure of the Householder operation Hmn  guarantees that only rows and 
columns m -t-1 and n will be modified. Furthermore, provided the leading (m — 1) x (m — 1) 
sub-matrix is already tri-diagonal then new non-zero elements are introduced only in row 
m 4-1 or higher (and column m -|-1 or higher). All that happens in row m  and column m is 
tha t a pair of elements are zeroed. These facts are easily verified. Starting with the lowest 
numbered row which contains a non-zero off-tri-diagonal element, it is possible to funnel 
off-tri-diagonal elements towards to bottom-right of the matrix until they must disappear 
entirely.

Denote the matrix produced after application of the refiection by \  with ele
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ments Denote the reflection by Hr-, so

^(r) _  (4.121)

The procedure starts of course with the symmetric tree matrix, so write

— A t s  (4.122)

A tri-diagonal matrix will be generated after p such operations, so

A 'c s =  (H pH p-i ■ • • H 2 H 1 ) A t s  ■ ■ ■ i î “4  JTp ^) ■ (4.123)

The superscript * simply indicates that the matrix generated may not yet be the symmetric 
cable matrix. Very occasionally negative element on the sub- and super-diagonals will 
appear in A^s- This can happen where structure is automatically tri-diagonal without 
the need to apply a Householder operation which would ensure that the elements are 
non-negative. In practice, this seems to only happen in matrix structure representing 
disconnected sections.

Suppose that and two such negative elements. By pre- and post-
multiplying with the matrix

I m  0  0
r ("‘> = 0 - 1 0  , (4.124)

0 0 ^  k ~ m

the sign of each entry in row m -j-1 and column m-{-1 are inverted, except the (m -|-l,m +l) 
diagonal entry (the sign of which is actually inverted twice). Negative elements may be 
introduced on sub- and super-diagonals further down the matrix, so a series of correction 
matrices will chase the negatives to the bottom-right of the matrix until they disappear. 
Thus, if q such operations are required,

A cs  =  • • • R 2R 1) A };s  {R ï^ R i'-  ■ ■ ■ /Z - 2 iR 4 )  • (4.126)

We write
T  =  H  =  R q R g - i  • ■ • R 2 R i H p H p - i  - ■ • H 2 H 1 (4.126)

It may be more efficient to correct any negative elements during the tri-diagonalisation, 
rather than after. When moving from one row, a say, where off-tri-diagonal elements have 
been zeroed, to a new row, 6, where off-tri-diagonal elements must still be zeroed, then if 
6 > a 4-1 check intermediate rows for negative elements on the super-diagonal, and correct 
them if necessary.

The Householder process assumes that node 0 is origin. If a tree node other tha t the 
soma node is to be used as origin, then number it “0” instead and number the rest of the 
tree using the usual scheme, but with respect to the origin rather than the soma node.
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A C onstan t Central D iagonal is Guaranteed

As with the Lanczos method, it is the structure of A t s , this time on conjunction with 
the structure of the Householder operation, that guarantees the central diagonal element 
is the required constant. Again, an induction argument is used.

Let be a tree connectivity matrix or any full intermediate matrix generated during 
the Householder tri-diagonalisation as described above. Suppose that the matrix structure 
satisfies two conditions, namely (1) the diagonal elements are identical and equal to D, 
and (2) the row and column number of any off-tri-diagonal element correspond to tree 
nodes that are separated by an odd number of h.

We now show that application of a Householder operation to a matrix of this form 
guarantees that the resulting matrix has a similar structure, i.e. it also satisfies conditions 
(1) and (2).

The simple structure of Householder operation Hmn, where n > m -h 1, ensures that, 
when it is applied to a matrix A^^), only rows m +  1 and n plus columns m -f-1 and n are 
operated upon. The only diagonal elements that can possibly be modified are therefore 

‘̂ (m+i)(m+i) aim- Simple algebraic expansion of =  HmnA^^^Hmn show that

(̂TTi+i)(m+i) — +  2a/3a(^m,+i)n (4.127)

and

= D -  2aPa(^m+i)n (4.128)

Clearly, the constant diagonal is maintained if =  0. Condition (2) guarantees this
since nodes m -I-1 and n must be separated by an even number of h, so it remains to show
that condition (2) always holds.

Again, without going into full details, it may be shown that the Householder operation 
produces

®(m+i)z =  +  ^(*5, m + 2 < i < k - l ,  i ^ n  (4.129)

=  -0^4n  +  ^4{m+ iy  m +  2 <  ?: < /j -  1, % f  M (4.130)

^{7n+l)n ^  ~  ^\m+l)n ~  (4.131)

Off-tri-diagonal elements in the lower tri-angle must maintain the symmetry so do not 
need to be considered.

Since rows m +  1 and n in A^ )̂ correspond to nodes separated by an even number 
of h, condition (2) ensures that the same element positions in each row may be occupied 
by non-zero elements. Essentially, equation (4.129) says that row m  in is a lin
ear combination of these two rows and so maintains condition (2) type structure in this

141



row. Similarly equation (4.129) ensures that condition (2) type structure is maintained in 
column n  of .

Since the initial symmetric tree matrix satisfies conditions (1) and (2), it follows that 
all intermediate matrices and the final symmetric cable matrix must also satisfy conditions 
(1) and (2). Therefore the central diagonal is maintained.

C om putational H ouseho lder A lgorithm

Symmetry allows us to concentrate on the upper triangular section of the matrix. The 
following discussion of rows applies equally to columns.

Initially, go to row zero of the symmetric tree matrix. Let rc denote the current row 
and A(^) indicate the current matrix of interest. Initially, Tc — 0 and A^ )̂ =  A t s  — A (°\

1. Move down the rows of matrix A^^\ starting with row checking the elements in 
each row j  for non-zero elements other than and

For each row j  satisfying the tri-diagonality, also check if elements and
are non-negative; if negative, they must be made positive using a correction opera
tion.

As soon as we find a row j  that does not satisfy tri-diagonal structure, stop, and set 
Vc — j- If no such row is found, we are finished.

2. Select an off-tri-diagonal elements in row j .  To zero it, construct the appropriate 
Householder refiection, and pre- and post-multiply A^ )̂ by it. Now increment the 
current matrix (i.e. c-^c-f 1). Repeat (2) until there are no more off-tridiagonal 
elements in row Vc- After each operation a full intermediate symmetric matrix is 
produced.

3. Repeat stages (1) and (2) until a tri-diagonal symmetric cable matrix has been 
generated.

Figure 4.7 illustrates the procedure schematically for a general Y-junction symmetric 
tree matrix.

The simple structure of Householder reflection Hmn  ensures that each zeroing opera
tion will only modify rows m-f-l and n and columns m- f l  and n  of the current intermediate 
matrix. Furthermore, since only elements in rows/columns m  or greater are actually al
tered, and the structure of intermediate matrices (as highlighted in the prior subsection) 
suggests that approximately at least half of the elements in any one row are zero, then
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Householder operation Hmn  may be applied efficiently, involving a maximum of roughly 
{k — m  — 1) element modifications.

The Householder operations by which the symmetric tree matrix is manipulated into 
the symmetric cable matrix maintain a high level of sparsity in intermediate matrices. 
The temporary off-tri-diagonal elements are small in number and may be stored in triplet 
form.

The electrical mapping between tree and fully equivalent cable can be stored in terms 
of the sequence of individual Householder reflections, each of which may be stored as a 
triplet. For example, Hmn  is the triplet {m,n^p) (ce and the structure of Hmn, follow 
from equation (4.118). Of course, to appreciate the connection between dendritic tree and 
fully equivalent cable, a full electrical mapping matrix M  is required. Since H  is not 
generally sparse, if it is built up during each step of the tri-diagonalisation then a large 
amount of storage space may be required.

4 .3 .6  E x t r a c t in g  th e  E q u iv a le n t C a b le  

D e-sy m m etris in g  th e  S y m m etric  C ab le  M a trix

Matrix A c s  is assumed to be the symmetrised form of a tri-diagonal connectivity matrix, 

A c ,  i.e.
A c s  = X -~ ^ A c X .  (4.132)

where
diag {.To,æi, ■ (4.133)

This is similar to the symmetrisation of the tree matrix. The elements of A c s ,  which are 
known, are denoted 6̂ -, while the elements of A c  are denoted bij. Equation (4.82) implies 
that

h( i - i - i )  — b(i4.-\ ) i  — bi ( i4 . i )

The task now is to determine the bij and Xi.
The de-symmetrisation procedure may be partitioned into three distinct stages. Stage 

(A) describes how to start the equivalent cable connected section, stage (B) describes a 
recursive procedure that simply produces the main body of the cable section, and stage 
(C) describes how cables terminate, and how to restart if additional sub-matrices need to 
be de-symmetrised.

S tage  A. We require knowledge of the boundary condition at cable node 0. We have 
assumed a general current injection condition, so the cable origin is described by equation 
(4.27),

^  +  +  =  (4.135)
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Consequently the first row of the cable matrix must be

A  . . .
(4.136)

so that 600 — D and 601 — 2 /h^.

S tage  B. Given the super-diagonal element 62(1+1), equation (4.134) allows us to determine 
the lower diagonal element 6 (2+1)̂  using

+ + i)i =  (4.137)

The fact that the sum of the two off-diagonals in each row is always 2/h? (except possibly 
when a terminal is reached) ensures that

2
6 ( i + i ) ( i + 2 )  =  ̂  -  & (i+ i ) i ,  (4.138)

An iterative procedure that cycles through (4.137) and (4.138) can be initialised with % — 0 
since 601 is known. Since rro =  1, the scaling factors can be determined, again drawing 
parallels with the symmetrisation,

Xi+I =  (4.139)

Note however, that if 6 (2+i)(i+2) — 0, then it must be the case that 6 (+|_i)(2+2) =  0, and 
the process terminates because the end of the cable connected section has been reached, 
whatever value equation (4.138) might yield. The terminal boundary condition of the 
connected section falls out naturally from the desymmetrisation procedure. In fact, if the 
terminal is sealed, then equation (4.26) demands that 6 (2+i)2 =  2jh?' and equation (4.138) 
produces 6 (2+i)(i+2) — 0 anyway. If the terminal is cut, however, then equation (4.31) 
demands tha t 6 2̂+i)i — 1 /h^ (this is strictly only true provided .% > 2 , so cable node (i + 1 ) 
is actually an internal node connected to an unnumbered cut terminal) so that equation 
(4.138) will not produce the expected zero element. In either case, it is necessary to move 
onto stage (C) and restart the de-symmetrisation, unless of course % — A; — 2, in which case 
the full matrix has been de-symmetrised and there are are no disconnected sections.

S tage C. Suppose the de-symmetrisation has terminated at row p. Scaling factors xi^ 
X2 , . . . ,  Xp have been determined. It is necessary to restart the de-symmetrisation with
row p 4-1. The scaling factors must also be reinitialised since there are two less non-zero
off-diagonal elements with which to specify the We therefore choose Xp+i = 1.

It is at this stage that a discretisation level of 2: >  2 becomes very useful. This allows 
to look examine symmetric cable matrix structure in rows p +  1 and p -f 2  and determine
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the boundary condition with which the disconnected section starts. There are several 
situations that must be considered.

If the terminal is sealed and connected to an internal node then equation equations 
(4.24) and (4.26) ensure the unsymmetrised and unsymmetrised forms of the first two rows 
of the sub-matrix are, respectively

D
1 D  &

D
D (4.140)

If the terminal is cut, in which case node (p +  1) is internal then, from equation 4.31, 
and assuming node p T 1 is connected to a diameter step node, then the unsymmetrised 
and symmetrised forms of the first two rows are, respectively,

D
2cp

(Cp+cqJP"

1

D (cp+cq)/i2

D

( c p + c q )

1 V%F 
^  ( c p + c q )

D (4,141)

where c p  is the c-value of the cylinder on which the cut terminal lies, and c g  is the 
connecting cylinder.

So, if the disconnected section is represented by more than two numbered nodes, el

ement 6 (p+i)(p+2) in equation (4.141) is less than that in equation (4.140), and the two 
terminal types can be distinguished in their symmetrised form. The first row is easily 
determined, and one can return to stage (B) to complete the disconnected section.

However, if the structure is represented by just two numbered nodes, then two slightly 
different configurations may be produced. Either the leading node p -f 1 is sealed, but 
connected to an internal node that then connects to a cut terminal, giving, respectively, 
unsymmetric and symmetric matrix structure

D  $
JL L h'^ D

D
D

Otherwise the leading node is the internal node, and, setting e g  

unsymmetric and symmetric forms are

D
2

L

D
D

(4.142)

0 in (4.141), the

(4.143)

Clearly, the symmetric forms are identical, while the unsymmetric forms differ. One might 
think that the choice of unsymmetric matrix then doesn't matter, however the order of 
boundary conditions must be chosen so that the electrical mapping is correct — only one 
form is actually correct.
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The key is to look at the electrical mapping associated with node p +  1, i.e. row p +  1 
of tri-diagonalising matrix T. If the location of non-zero elements in this row correspond 
to internal nodes then node p +  1 is internal, otherwise it is sealed.

Finally, it is possible that an internal node connects to two cut terminals. Pi’om 
equation (4.32), the matrix form is,

D ] . (4.144)

Note that, similarly to the Si, the Xi may be expressed

(4.145)

where Ci is the c-sum for cable node i, and q is the cable c-sum of the initial cylinder of 
the cable section the boundary of which is represented by node q.

E q u iva len t C ab le  S tru c tu re

Discrete cable equation (4.23) for a diameter step implies that c-value ratios are given by
ratios of super- and sub-diagonal elements in the same row, so

, (4.146)
C ( i - l ) i  ^2 -  6 2 ( 2 + 1 )

Given the c-value of the cylinder on which node 0 lies, the remaining connected section 
c-values follow. For each disconnected section, choose an initial non-zero c-value for one 
section and the c-values of remaining sections follow.

It is possible to extract cable c-values direct from the symmetric cable matrix by 
following an algorithm similar to the de-symmetrisation, but discarding elements of A c s  
once used.

T h e  E lec trica l M app ing

After symmetrisation, tri-diagonalisation, and de-symmetrisation, the matrix equation for 
the tree (4.36) becomes a matrix equation for the cable,

A c v c  =  ^  (4.147)

where

A c  — M A j 'M '~ ^ , v c  = M v t , i c  — D c A ID j ,^ iT -  (4.148)
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The electrical mapping, M  is given by

M  = X T S .  (4.149)

To map electrical quantities from cable to tree, the inverse of M  is required. It can be 
obtained quite simple from its component transformations. Matrices S  and X  are easily 
inverted, and, since T  is a product of orthogonal transformations, T ~ ^  — T ^ .  Thus,

M “ i  -  (4.150)

4 .3 .7  F urther C o m p u ta t io n a l C on s id era tion s

The tree and cable matrices can be efficiently stored since they are sparse and nearly 
tri-diagonal. It has already been explained that a tree matrix based on k numbered nodes 
contains 3k ~  2 non-zero entries. The elements of the main diagonal can be stored as 
one element, which suffices for all all tree and cable matrices (and intermediate matrices 
generated during Householder tri-diagonalisation). The 2k — 2 elements are respectively 
the row and column of the element while the last is the element value.

However, it is more practical to build the symmetric tree matrix directly from tree data. 
Diagonal matrix S  {k elements) is straightforwardly constructed (equation 4.85), while the 
symmetric cable matrix is constructed using equation (4.85). The symmetrisation matrix
S  is stored in a /c-length vector, while the offidiagonal elements of symmetric matrix A t s

can be stored a.s k — 1 row-columns-value triplets.
Specific computational considerations for the Lanczos and Householder procedures are 

given in their respective sections earlier in this chapter.
After completing the tri-diagonalisation operation, the symmetric cable matrix may 

be stored as a single {k — 1)-length vector; it can be built up element by element during 
the tri-diagonalisation. The cable matrix, super- and sub-diagonals, can be stored as two 
{k — 1)-length vectors. The de-symmetrisation matrix, X  is just another A;-length vector.

It should be noted, however, that it is not actually necessary to store the cable matrix. 
The equivalent cable structure is easily extracted from the symmetric cable matrix using 
a modified de-symmetrisation algorithm, while matrix X  is given by equation (4.145).

In conclusion, the passage from dendritic tree to fully equivalent cable can be achieved 
with high speed and efficient memory utilisation in view of the sparse nature of dendritic 
structure matrices. However, the electrical mapping, being an association between points 
on the dendritic tree and fully equivalent cable, requires calculations on full matrices for 
a complete specification and therefore is inevitably slow and memory intensive.
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4.4 A lgebraic E xam ples o f th e  M a trix  M eth od s

4 .4 .1  T h e  L anczos M eth o d

We illustrate the Lanczos procedure with a simple algebraic example. Consider the Y- 
junction in Figure 4.5b. Set h = 1 for convenience. The branches have a total electrotonic 
length of 8, and so the equivalent cable must have electrotonic length 8.

The tree matrix is

A t

D 2 0 0 0 0 0 0

1 D 1 0 0 0 0 0

0 C2 D * 0 0 2cr,
Ca 0

0 0 1 D 1 0 0 0

0 0 0 C4 D 2c F 
C4 0 0

0 0 0 0 1 D 0 0

0 0 1 0 0 0 D 1

0 0 0 0 0 0 2 D

(4.151)

After symmetrisation, using equations (4.82) and (4.84), the tree matrix becomes

V2 0 0

D 0

A t s

D

V2

0

0

0

0

0

0

D

D

D

D

0

0

0

0

0

D

0

0

0

0

0

0

V2

D

(4.152)

with symmetrising scale transformation 

S  — diag < 1, \/2, (4.153)

The Lanczos method can now be applied. Recall that Ĉ  ̂ — c r ^ cf- Take the soma, 
node 0, as the origin. The initial Lanczos vector is wq =  eo, and so, apply the first cycle 
of the procedure

A t s u q  =  D uq +  v ^ e i  (4.154)

Set u i  == e i to satisfy the tri-diagonal structure and orthonormality of the Ui, so

A t s ^ i =  V2uq +  D u \  -f (4.155)
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Choosing

ensures that

Now, the next iteration yields

Choosing

allows this stage to be rewritten in tri-diagonal form,

+ D u ,  + J ^ c X T + S ' " " '

After some algebraic effort to ensure symmetry, the next cycle produces,

/ 2 ( 4  +  CiC'4) , „
=  V C4 (c« +  0 . )

+  [“ ClCfVc^cs +  CRCp\/c£eQ +  Cĵ (c_R +  Cf,) 1/ 0^ 6 5 ]

Ciî +  CL V 0 4 (0% +  CLC4 ) '

This can be rewritten

A t s u ^

where

U5
Y  Cr Cr {Cj  ̂ +  C l C 4 ) ( c h  +  C l )

[— C L C R y / c R e s  +  C R C p y / c £ e Q  +  c r { c r  +  c l)v ^ S 5 -]  (4.164)

It is easy to check that u^.u^ = 0.

149

f

In this case, set U2  =  6 2  since the tri-diagonal structure and orthonormality of the U{ is 
already ensured. Non-tri-diagonal structure is now encountered in the matrix, so

___

A ‘j'S'^2 — ^ ~ ^ ~ u i  T D 1 12 +  \ T \ j (4.156)

 ̂  . I

A t s U2 — \ l ^ ^ u i  + D u2 + (4.158)

'f

1

 ̂ ^ (4.162)
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At the next iteration the algorithm terminates, since A t s u ^  can be expressed in terms 
of U4  and u^,

A t s U5
2crcf

-U4 +  D uq, (4.165)CiicR +  Cl )

The connected section sub-matrix is complete, but two vectors have yet to be found. 
Another Lanczos vector, orthogonal to all the previous six, must be found so we may 
initialise construction of the disconnected section sub-matrix. Choose vector uq to be 
similar to u^, with coefficients of 6 3  and ee having the same relative size (i.e. ~ \ [ crJ cl) 
to ensure orthogonality with uq to « 4 . Just change the value of the coefficient of 6 5 , so 
that Uq can be made orthogonal to uq. If AT is a normalisation factor and AT is a constant 
then

Uq = N  { es -66 +  K bq (4.166)

The dot product of uq and Uq must be zero so K  = \ / cfJcr  ̂ and, after normalisation,

(4.167)Uq
Cl CR

- 6 3  -f ■Gq
Cr + ClC4^^ ' Y T CLC4

Now, the Lanczos method may be continued as before

Clcf
(̂ R T  Cl C4

6 5 .

A tsuq 

and so we must take

D uq
2clC4

( c | +  CLC4 )
6 4  -b

Cr -f- CLC4

C L C 4

{c\ CrC4 ) 6 4  T ' R

<̂R +  CLC4
e?,I t y  —  —

so that

A-trUq ~  Duq -|- \ /2u^ .

Finally, the Lanczos method can be completed,

A 5P5 W7 — V2 uq +  Duj.

The symmetric cable matrix is, from the expressions for A t s u i ,

(4.168)

(4.169)

(4.170)

(4.171)

D V2 0 0 0 0 0 0
\/2 D / 2cp

V C-2 0 0 0 0 0

0 V C-2 D h{CR+Ct)
V C2 0 0 0 0

A cs —
0 0 /2{cr+cl)

V C-2 D /"2(c|+Ci,C'4)
V C4{or+Cl) 0 0 0

0 0 0 /^(4+ClC4) D r  2 crcf 0 0V Q{ca+ci) V C'4(cjî+Cl,)
0 0 0 0 /  SCflCir

V 04{cr+cl) D 0 0
0 0 0 0 0 0 D V2
0 0 0 0 0 0 V2 D

(4.172)
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|>0 ©1 ©3 @5
Cut

Cut 0 6

C p Cl + CR c r c f {c r  +  C l )

c | + ClC4
Sealed

Figure 4.8: The equivalent cable for the Lanczos example in section 4.4. All lengths are 
electrotonic. The first cylinder, connected to the origin, is the same in both structures 
and has electrotonic length 2 and c-value cp. The diameter of the disconnected section 
doesn’t m atter — set it to 1. See text for more details.

Note that the disconnected section submatrix begins with an internal node connected to 
a cut terminal, since elements of uq are contributed by internal nodes of the tree. It is 
easy to check that all the Lanczos vectors are orthonormal, as is expected.

The cable matrix can be extracted using the procedure given in section 4.3.6. The 
first super-diagonal element is 2, from equation (4.26) for the sealed end at node 0. The 
first three nodes on the connected section form the same cylinder as those on the origi
nal dendritic tree. Cable nodes 2-4 are described by discrete cable equation (4.23). The 
connected section terminates at node 5, with a cut terminal, equation (4.31). Recall that 
this equation represents an internal node connected to the cut terminal node. The dis
connected section must have length 2 for the equivalent cable to have total length 8. The 
disconnected section symmetric submatrix is characteristic of a 2h length structure repre
sented by 2 nodes, one at a sealed terminal and the other at an internal node connected 
to both terminals.

The cable matrix is

A c  =

D 2 0 0 0 0 0 0

1 D 1 0 0 0 0 0

0 2cp
C2 D

2(ciî-fc£,)
C’a 0 0 0 0

0 0 1 D 1 0 0 0

0 0 0
‘̂ (.c\ 4 - c lC4)

D 2 c r c r 0 0C 4{c r + c l ) C 4{c r + c l )

0 0 0 0 1 D 0 0

0 0 0 0 0 0 D 1

0 0 0 0 0 0 2 D

(4.173)

with de-symmetrising scale transformation

X  =  diag < 1,
a/2 ’

cp c p ( c p  +  clCa) /  c p{c \  -t- Cr C^) 1

2(cp +  Cp) ’ y C4 {cR -f c l Y  ’ Y 2cpcp(cp 4- cp) 1 ,

(4.174)
The c-value ratio for cylinders either side of a non-terminal equivalent cable node, n, is 

given by the ratio of elements in row n of the cable matrix, either side of the diagonal. Not
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surprisingly, the first cylinder (length 2) must have c-value cp to initialise the c-values. 
The second (length 2) has c-value cp +  cp. The third and final connected section cylinder 
has c-value c r c f { c r  +  cp)/(cp +  cpC^).

The electrical mapping is

M

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

X L S  =
0 0 0 C R

C R + C L
0 0 C L

Cr + c l
0

0 0 0 0 C R
0 0 C L

c r + c l Cr + c l

0 0 0 C L 0 1 C L 0
c r -{-c l C R  +  C L

0 0 0 ~~p C r 0 - P C F P C R 0

_ 0 0 0 0 ~ P ^ 4 0 0 P C R

(4.175)

The total surface area of the original tree is (scaled by a constant)

S t r e c  —  C p  T  C p  +  Cp T  C p . (4.176)

Note that, since the tree had a cut terminal, total surface area need not be preserved in 
the connected section, and in fact, in this particular case, it is less than the tree surface 
area.

S, C p  +  ( c p  +  C p ) +  ?  2̂ ^ ^  " L  =  C p  +  (cp +  C p ) 4 -  C p  
fC p  +  C p 0 4 j

C p  4 -  c p c p

C p  4 -  c p c p  4 -  c p c p
^  Stree- 

(4.177)
When trees have cut terminals, it is more common for surface area to be greater in the 
connected section than in the tree.

Figure 4.8 shows the original dendritic tree and the equivalent cable that has just been 
generated.

1

4 .4 .2  T h e  H ou seh o ld er  M e th o d

To illustrate the construction process, consider a very simple singly branched Rail tree, 
with a parent limb (P) and two child limbs {L and P), each of quantum length, H,  with 
a discretisation level of z =  2 so there are three nodes per cylinder. Trees with higher 
levels of complexity generally exhibit a much more elaborate algebraic structure, and are 
less practical for demonstration purposes.

1Ï

.a
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The Tree Matrix

A t  — h?

The Symmetric Tree Matrix

D

A(o)

D 2 0 0 0 0 0

1 D 1 0 0 0 0

0 2cp
C2 D 0 2cfi.

C2
0

0 0 1 D 1 0 0

0 0 0 2 D 0 0

0 0 1 0 0 D 1

0 0 0 0 0 2 D

a/ 2 0 0 0 0

v/2
0

0

0

0

0

D

D

D

0

0

0

0

a/ 2

D

0

0

0

0

D

a/ 2

0

0

0

0

0

D

with

S diag
[ y cp y Cp

(4.178)

(4.179)

(4.180)

Tri-diagonalisation

We want to zero elements and . The first Householder reflection takes the form

iTi 14

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 a 0 0
0 0 0 0 1 0 0
0 0 0 /? 0 —a 0
0 0 0 0 0 0 1

(4.181)

where

a  ~ CL
Cr  T  c l

and /? C r

cr + cl '
(4.182)
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yielding

D

V2

0

0

0

0

0

a/ 2

D

D

c
0

0

0

. h{cL+CR)
V C-2

D

y
2c r, 

cl+cr
0
2cfi

Ci+Cü

cl+cr

Ci+CR

cz,+cp

2cr
C L + C R

0

V _2çp

Now elements ^md must be zeroed with Householder reflection

CL+Cr

D
(4.183)

H2 = H 36

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 a 0
0 0 0 0 0 1 0
0 0 0 0 0 —a

(4.184)

where again a  and (5 take the same form as in equation (4.182). Note that this is only 
because of the simplicity and symmetry of the example. In general, much more algebraic 
complexity is observed in the intermediate matrices, and expressions for a  and (3.

After application of this reflection, the symmetric cable matrix is generated.

A c s  =

D a/ 2 0 0 0 0 0
a/ 2 D ficp 

V C2 0 0 0 0

0 /  2c p
V C2 D 0 0 0

0 0 /2(cL+Cii)
V Cz D a/ 2 0 0

0 0 0 a/ 2 D 0 0
0 0 0 0 0 D a/ 2

0 0 0 0 0 a/ 2 D

(4.185)
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D e-sym m etrisa tion

Simply apply the de-symmetrisation algorithm yields

A c

with

X  =  diag { 1

D 2 0 0 0 0 0
I D 1 0 0 0 0
0 2cp

C-2 D 2(cz,4-cjt)
C2 0 0 0

0 0 1 D 1 0 0
0 0 0 2 D 0 0
0 0 0 0 0 D 1
0 0 0 0 0 2 D

1 Fcf / Cp / cp
V 2’ V 2(cp 4- Cr ) 'V {cl 4- Cr )

(4.186)

(4.187)

Cable C-values

W ith the parent cylinder, length i7, unaltered by the transformation, it has c-value cp. 
By examining ratios of off-diagonal elements in row 2, the diameter changes at node 2 to 
Cl +  Cr  (the simple Rail sum), and the cable terminates with a sealed end at node 4 after 
a further length H . The disconnected section is of length H,  starts with a cut terminal 
(examining row 5 of the mapping below tells us node 5 is an internal node connected to a 
cut terminal), and ends with a sealed terminal.

Electrical M apping

The electrical mapping is

M  = X H 2 H 4 S

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 C p 0 C R 0C L + C r C L + C R

0 0 0 0 Cl 0 C R
C L + C R C l + C r

0 0 0 1 0 - 1 0
0 0 0 0 1 0 - 1

(4.188)

4.5 O b serva tions and D iscu ss ion  o f M a trix  M eth od s

The Householder and Lanczos methods have both been found to work effectively, producing 
the same cable structure with the same boundary conditions when applied to the same 
matrix representation of a discretised dendritic tree model (numerical errors aside). These

Î
■I
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methods do not constitute a proof that equivalent cables exist as concrete mathematical 
objects (they could feasibly, though it is unlikely, be a strange facet of the matrix method 
itself). We develop an analytical theory for cable construction in the remaining chapters 

of this thesis.
The tree matrix developed in this section is designed primarily for the purpose of 

equivalent cable construction. However, the discretisation may be extended to the time 
derivative and the system of equations may be solved by some appropriate numerical 
scheme. If not used for cable construction, boundary conditions other than cut or cur
rent injection may be incorporated into the discretisation scheme. Lindsay et al. (in 
press) outline the relevant extensions and why this not the ideal approach to numerical 
simulation.

For either the Lanczos or Householder method, any disconnected sections are gener
ated using a Y-junction by Y-junction approach. It is possible to apply the Householder 
method to any tree matrix and generate the connected section matrix plus a set of ad
ditional sub-matrices. However, although there seems to often be the right number of 
sub-matrices representing sections that are correctly terminated, these matrices do not 
always correspond to the expected disconnected sections. Essentially, the subspaces of 
electrical activity described by a group of disconnected sections are mixed up and the 
electrical mappings, though describing activity not seen by the soma, do not correspond 
to the expected mappings for a specific Y-junction. Recovering the desired mappings and 
disconnected sections from these matrices may not strictly be necessary, but a method for 

doing so has not yet been found for a general tree.
It has already been noted that the Householder method preserves a high level of spar

sity. Exactly why has not yet been fully investigated, but it is undoubtably a consequence 
of the structure of the symmetric connectivity matrix and the Householder operation em
ployed. This is, however, a more general linear algebra problem, and may be of benefit 
in areas other than neuronal modelling. For large matrices, and where possible, a sparse 

Householder algorithm is always preferable to the general Householder which stores a full 
intermediate matrix.
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C hap ter 5

Foundations o f Equ ivalent Cable 
C onstruction

5.1 In trod u c tion

Results generated by the matrix methods described in Chapter 4 suggest very strongly 
that fully equivalent cables exist as well defined, concrete mathematical objects (though 
the matrix methods do not constitute a proof of their existence). It seems that dendritic 
trees of arbitrary geometry (represented by the multi-cylinder passive model described in 
Chapter 2) may be transformed to their equivalent cables straightforwardly and efficiently 
using the Lanczos and Householder procedures. Questions now arise concerning why 
the reduction procedures work at all. W hat features does the general system of linear 
cable equations exhibit that permit this interesting and surprising result? W hat is the 
theoretical foundation for the construction of fully equivalent cables?

If the matrix methods of equivalent cable construction are applied algebraically, one 
can observe, even for some fairly simple tree structures, an incredible level of complexity 
in the resulting expressions for the equivalent cable potentials and c-values, in terms of 
the corresponding tree potentials and c-values. How does this process always guarantee 
that connected and disconnected cable sections terminate with appropriate boundary con
ditions? When and why should disconnected sections be expected? Is it possible to. clarify 
why the equivalent cable for a general Y-junction contains at most one disconnected sec
tion? There are further results (described later) that are particular to certain trees and 
their cables and which are also not clearly explained. The natural progression at this stage 
is to try and determine the underlying rules of cable construction that are implemented 
by the matrix methods.

The Lanczos and Householder procedures on their own do not give enough insight to
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determine these rules easily, if at all, but some general features of equivalent cable shape 
and electrical mapping structure observed in results generated by these methods hint at 
equivalent cable features that must be guaranteed during cable construction (for example, 
the first cable cylinder is always Rall-like, and the electrical mapping is always seen to 
exhibit structure consistent with a vitally important construction rule — the “isolation 
condition” , which will be formally developed later). These features have been key factors 
for the development and testing of the analytical theory.

The formulation of the analytical construction procedure eventually reveals a reason
ably straightforward set of underlying principles and construction rules which can form 
the basis of an effective cable construction algorithm. The algorithm involves repeated 
application of a set of rules, producing one cable cylinder after each cycle through the 
rules. This repetition can lead to the expected rapid accumulation of algebraic complexity 
in expressions for the electrical mapping and cable c-values. Fortunately these expressions 
need not be dealt with directly.

The analytical theory of equivalent cable construction is developed in Chapters 5, 6 and 
7. The analytical rules are derived for, and applied to, the multi-cylinder representation of 
a passive dendritic tree, with the only trees explicitly considered being Y-junctions (singly 
branched trees). Any tree may then be transformed by successive reductions (the validity 
of this Y-junction by Y-junction approach is also confirmed by the analytical rules). All 
cylinder electrotonic lengths are a multiple of some basic electrotonic length. A cable 
equation is associated with each uniform cylinder, acceptable boundary conditions are 
imposed at terminals, and joining conditions apply where cylinders meet.

To introduce some of the most important ideas that are employed in cable construction, 
in this chapter we will concentrate of the fundamental principles from which the rules will 
eventually follow. This is most easily done by considering specific examples. A fairly 
loosely defined first-principles scheme for cable construction is described and then used to 
construct fully equivalent cables for two specific Y-junctions. This will allow us to observe 
how the construction procedure naturally consists of two distinct sets of rules,

• Electrical continuity rules'. These rules guarantee voltage continuity and current 
conservation between adjacent equivalent cable cylinders, but in a way that does not 
uniquely determine cable structure.

• Isolation-termination rules: These rules ensure that any dendritic sub-tree may be 
transformed in isolation from structure it is connected to. These rules simultane- 
ously guarantee eventual termination of the equivalent cable. The cable structure is 
uniquely defined in the process.

This chapter will be concerned mainly with the electrical continuity construction rules.
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The most important special cases will be listed, and it is shown that they do what is 
claimed. We then describe the isolation condition, the simplest and most fundamental 
of the isolation-termination rules. Chapter 6 contains full technical details, showing how 
general forms for each set of rules follow from the first-principles approach and other 
considerations.

As would be expected from the matrix results, the analytical rules depend entirely on 
the c-values and relative electrotonic lengths of dendritic cylinders. Specific electrical pa
rameters (membrane conductance per unit area, internal resistivity, membrane capacitance 
per unit area) that describe the passive tree need not be known. The shape and electrical 
mapping of an equivalent cable is entirely dependent on geometry. The application of 
the analytical rules does not require one to actually solve the system of cable equations, 
although the derivation of some analytical rules does involve the use of Laplace transforms 
(however, the manner in which they are used may be regarded as unconventional).

5.2 T h e M u lti-cy lind er Tree M od e l in  th e  L aplace D om ain

Laplace transforms are commonly employed where they can simplify the task of obtaining 
solutions to differential equations — one solves the transformed equation, then determines 
the inverse, either analytically (there are many well know pairs of function and their inverse 
transform) or by numerical means (e.g. contour integration and residue calculus). The 
novelty of their use when generating equivalent cables lies in the fact that the information 
sought is not the solutions themselves but rather how they are combined to give the correct 
electrical mapping. The electrical continuity rules are derived in the Laplace domain, that 
is, the electrical mapping they produce relates Laplace transformed cable potentials to 
Laplace transformed tree potentials. Linearity guarantees that the electrical mapping is 
equally valid for the untransformed tree and cable potentials.

Throughout this chapter, as in Chapter 4, it is understood that lower case letters 
are used to denote quantities expressed in terms of electrotonic length and time. Also, 
“electrotonic length” will often be referred to simply as “length” .

5.2 .1  T h e  L aplace T ransform

The Laplace transform of a function /( t ) ,  where i > 0, is defined by
r o o

f { s ) = c [ f { t ) ; s ] =  e~^^f{t)dt. (5.1)
Jo

Given f  (s), the inverse Laplace transform allows us to find f{t)  such that / (a) — C [/(f); s]. 
We write

f{ t)  = C-^[f(s)- ,t] .  (5.2)
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P roperties o f the Laplace Transform and the Inverse Laplace Transform

If the Laplace transforms of two functions /  and g exist then

C [af{t) +  I3g{t)] s] =  aC  [/(f); s] +  [p(f); s] . (5.3)

where a  and are constants. Also,

[af{s) +Pg{s)] t] == aC~^ [Z(s);f] + /5 £ “  ̂[p(s);f] =  a / ( f )  4-/3g(f). (5.4)

If /  is a differentiable function of f then

£

5 .2 .2  T h e  C ab le E q u a t io n

dt ■ ; s = sf{s) ~  f{0). (5.5)

From Chapter 2, the dimensionless cable equation for a uniform cylinder with electrotonic 
length I and c-value c is,

3'^v Sv j
Q < x < l ,  (5.6)ox^ ot c

where x  and f are electrotonic length and time respectively, u(æ, f) is the cylinder potential, 
i{x,t)  represents applied currents, and is a constant.

The Laplace transform of the cable equation, with respect to electrotonic time f, is

■ =  (1 +  s)v{x, s) -  v{x, 0) -  , 0 < æ < /, s > 0, (5.7)

or
=  cv̂ ÿ(.'z;, s) + /(æ, s), 0 < x < l ,  s >  0, (5.8)

where
—  (1 - I -  g) and f { x , s )  =  —H - — - — - — f ( a ; ,  0). (5.9)

A xial Current

From equation (2.98), the Laplace transformed axial current is

Za(æ, s) ™ (5. 10)

5 .2 .3  B o u n d a ry  C o n d it io n s

The boundary conditions listed in Chapter 2 as being acceptable for equivalent cable 
construction are almost identical in the Laplace domain, since temporal, rather than spa
tial, dependence is being transformed. Conditions (2.91), (2.93), (2.94), (2.95) and (2.86) 
become:
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C urren t In jec tion  C on d ition

The time-varying axial current is specified at boundary æ =  Z on a cylinder,

Jail, s) = = a(i,) . (5.11)

Recall that x  = I may be regarded as a point where the cylinder diameter falls abruptly 
to zero. The sealed end special case is

dv{l^s]
dx

Cut End Condition

=  0. (5.12)

The potential a.t x  — I is set to zero, i.e. the transmembrane potential is fixed at the 
resting potential,

v { l , s ) ^ 0 .  (5.13)

Recall that x — I may be regarded as a point where the diameter jumps abruptly to 
infinity.

Jo ining C ondition

Suppose a parent cylinder (p) meets n  child cylinders (ci, cg,...., Cn) at a junction. Voltage 
continuity may be expressed

Vp{lp,s) — (0, ^), (5.14)

for all k where 1 < A: < n. The current conservation condition may be expressed
n

ia,p{lp,s) -l-iA(s) ^  ^ia,Cfc(0,s), (5.15)
k—l

where (a) is the Laplace transform of an applied current source at the junction.

5 .2 .4  S o lu t io n s  o f  th e  L ap lace T ran sform ed  C ab le E q u a t io n

Prom here onwards, the s-dependence in the Laplace domain will be suppressed, by writing

v(rr) =  15(0;, s) and ia{x) ^  ia{x.,s). (5.16)

G eneral So lution

The Laplace transformed cable equation (5.8) has general solution

1 /’* -n(a;) ~  asinhcarc 4-/3cosh(næ H / f{y)smh.(jo{x — y)dy.  (5.17)
^  Jo

The integral term represents the contribution to the potential due to the initial state 
of the membrane and input currents along the cylinder, while the coefficients a  and (3 are 

determined by boundary conditions.
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Cylinder w ith  a Sealed End

If a cylinder terminates at rr — Z with a sealed end boundary condition, then

=  0. (5.18)
dv
dx

X -

Suppose there are also no external current sources (except at f =  0), and the membrane 
potential is initially zero, so that f{x)  — 0. If vq is the potential at æ =  0 then the 
coefficients in the general solution (5.17) become

.  sinhcaZ ,

which yields, using standard identities for hyperbolic trigonometric functions,

^  _^C 08hw ((-A
cosh Lol

C ylinder w ith  a Cut End

Similarly, if the cylinder terminates at æ =  i with a cut end boundary condition then

v{l) =  0. (5.21)

Again iio is the potential at æ — 0. The coefficients in the general solution (5.17) are

_ coshw! , _ _
CK ~  -iJQ-:-!— T and P ~ vq, (5.22)smhcjZ

which yields

, ( . )  =  (5.23)smh u)l

5.3 T h e S tra tegy  for E qu ivalen t C able C on stru c tion

Consider a cylinder with length I and c-value c. If the potential and axial current at end 

a; — 0 are given by n(0) =  v j  and 2^(0) =  i j ,  then a  and /? in equation (5.17) can be 
replaced to give

i j  1 ~
v{x) =  v j  cosh wa; — ——  sinh wa: H—  / f{y)  sinhoj(a; — y) dy. ■ (5.24) 

J\U)C to Jq

For reasons that will become apparent this solution will be referred to as the generator 
equation.

Thus if the potential and axial current at one end of a cylinder are known, an expression 
for the potential throughout the cylinder is obtained, provided the distribution of applied 
currents in the cable cylinder can also be specified (this is easily done, following from the 
linearity of the system). Once the equivalent cable origin has been chosen, it is possible to
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(a)

I2

I2 — I3

(c)

(d) I

Figure 5.1: Fully equivalent cable construction from first principles for a general Y- 
junction. Cable construction is based on voltage continuity and current conservation, 
(a) A general Y-junction formed from cylinders (of arbitrary diameters, but represented 
here as identical segments). Initialise the procedure with the voltage at the junction (Vj) 

and current fiowing into left (7l) and right {Ir) child branches, (b) Construct the first 
cable cylinder using this information then determine the axial current (I2 ) and potential 
( V 2 )  at the end of this first cylinder, (c) Use these two new quantities to generate the 
second cable cylinder, (d) Repeat this procedure until the equivalent cable is constructed. 
The cylinder determined at each stage is shaded. Note that cable cylinder diameters are 
also different, in general.
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take advantage of this in the following way. Given the potential at the origin, and the axial 
current flowing from the origin into the tree structure that is the target of the procedure, 
we can write down an expression for the potential throughout the first equivalent cable 
cylinder, using the generator equation. Consequently, expressions for the potential and 
axial current at the end of the first cylinder can be obtained. Voltage continuity and 
current conservation in the cable ensure that the potential and axial current at æ — 0 
in the second equivalent cable cylinder (i.e. where the second cylinder connects to the 
first) are known; again using the generator equation, an expression for the potential in the 
second cable cylinder can now be obtained.

In principle, this process, illustrated in Figure 5.1, can be repeated to generate an 
expression for the potential in each cable cylinder. However, the algorithm above is rather 
loosely specified. Several questions must still be answered, such as how are the c-value 
and lengths of the cable segments determined, and how does the procedure terminate?

So far, we simply have the basis of a constructive mechanism for fully equivalent cable 
generation. The algorithm can be used as a first principles approach (the technique is 
illustrated in examples in the next section). For more practical purposes, the algorithm 
is used in Chapter 6 to generate the general construction rules. The electrical continuity 
rules follow directly, while the isolation-termination rules follow from the need to impose 
a certain structure on the electrical mapping.

It should be clear that the construction mechanism automatically ensures that the 
steady-state input conductance of the cable connected section will equal that of the tree 
since we initialise the cable potential and axial current with the tree origin potential and 
axial current.

5.4 E xam ples o f C able C on struc tion  from  F irst P rin cip les

5 .4 .1  E x a m p le  O ne

Consider the simple Y-junction in Figure 5.2a. The left cylinder (l) has electrotonic length 
c-value c^, and terminates with a sealed end. The right cylinder { r )  has electrotonic 

length 3/, c-value c^, and also terminates with a sealed end. The two cylinders meet at 
æ =  0. For simplicity suppose that there are no input current terms. The potential in 
equivalent cable cylinder k will be denoted /̂c, its axial current ŷ., and its c-value is c^.

The potentials in the left and right branches are, from equation (5.20),

""W =

(5.26)
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The potential at the junction is %(0) =  ük(0) =  nj, and only at this point are the left 
and right potentials related. Choose the junction point as origin. The total axial current 
flowing into the two cylinders is i j .  Using equation (5.10),

OX ox

(5.27)iüKvj sinhwZ p sinh 3wZ
T ocoshcnü coshScu^

Cable Cylinder One

Apply the generator equation (5.24) using v j  and i j  to try and generate the first cable f
cylinder.

0 1  (a;) — v j  coshwæ -  v j sinh Lul sinh lux sinh 3cul sinh tux 
+ (5.28)

Zi cosh w/ Cl cosh

Using standard identities for the hyperbolic functions,

j  , . _ , A _ coshw(Z — æ) „ coshw(3Z — æ)
^ l ( x )  =  c o s h w x  (^1 _  _  _  _  j  +

/  ( /nL I \  „R
^  V J  coshoJx ( 1 ------------   ) 4- ~ ^ v l { x )  T -g-nR(a:). (5.29)

\  ^ 1 / ^ 1  1̂

Note that Ci has not been specified at this stage (we regard 0i, in the form above, as a 
framework potential function). Nevertheless, voltage continuity and current conservation 
are guaranteed at the origin, whatever structure the Y-junction is connected to, and 
whatever value may eventually take.

Of course, it is well established from the Rail equivalent cylinder result given in Chapter 
3 that

=  (5.30)

This value removes the spurious term v j  cosh l u x  (which cannot be interpreted as a cable 
solution), leaving a linear combination of Y-junction potentials.

The c-value of the first cable cylinder has now been found, as has its potential function. 
W hat, then, is its electrotonic length? Note that v l{x ) is only valid for length I since the 
left branch has length 1. Choose the length of cylinder one to be /, otherwise the right- 
branch contribution to the potential function is partially invalid. Thus,

(f)i{x) = — v l { x )  + — v r { x ) ,  0 < x < L  (5.31)
Cl Cl
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Now that cable cylinder c-value cf has been specified, we regard 0i as a fully specified 

potential function, i.e. no longer a framework potential. More generally, 0^ is regarded as 
a framework potential until c^ has been determined, at which point it can be substituted 
for and the unique potential function has been determined.



The construction procedure has succeeded for the first cable cylinder. Perhaps this is 
not too surprising though, since the first cylinder is almost identical to Rail's equivalent 
cylinder, the difference being that, at x =  0 i cannot terminate since v r {1) and dvR{ l ) /dx  

are both unconstrained. We must proceed with the construction.

C ab le  C y lin d er Two

Prom continuity of voltage and conservation of current.

cosh Lul

=  Kojc“v j

cosh ’ 
sinh 2ul

(5.32)

(5.33)
dx  '  "  cosh3w/

The generator equation (5.24) gives an expression for the potential in the second cable 
cylinder,

cosh wx cosh 2a;/cosh eux sinh 2a;/ sinh wx
M x )  

Rearranging gives

h { x )

cosh a;/ cosh 3a;/
vj-

cosh 3a;/
(5.34)

c"", 1------------  y
cosh Lul cf 2

cosh a; (2/

c‘-_ 1 cosh a; (2/ +  x)
cosh 3a;/ 
cosh a; (2/ — x)

x) cosh a; (2/ 1_ x)
cosh 3a;/

cosh 3a>/ cosh 3a;/

2l
'2C.

cosh CÜX

VJ
coshw(2/ +  x) 1

cosh 3a;/ +

C_ _ _ _ _ _  
cf cosh oj/

I T VJ-
cosha;(2/ — x) 

cosh a;3/

^) + 1 4 - C ;  ^ i î ( ^  +  X)  4 --------

2 /
x).

(5.35)

The second cable cylinder, like the first, must have length / since this is the maximum 
range for which the three components of the expression are valid. At this point, there is no 
clear choice for Cg, but it is insightful to check for the possibility of termination at x =  /. 
Clearly, v r { 2 1 )  and dvR{2l)jdx  are unrestricted, however, observe that if the sum of the 
coefficients of vr{1 — x) and % (/ — x) is zero (i.e. coefficients have the same magnitude 
but opposite sign), then

=  0, (5.36)

and at X =  / in cable cylinder two, voltage continuity at the tree junction ensures these 
two terms will cancel giving

02(/) = c?2 14- v r {21). (5.37)
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If the right hand cylinder were actually length 21, and satisfied a cut end condition at the 
terminal, then 0 2 ( 0  =  0, and the cable terminates. Bear this in mind, as we proceed now 
to the next cable cylinder, without specifying C2 in potential 0 2 .

Cable C ylinder Three

Once more, voltage continuity and current conservation give the required information for 
the proximal end of the next cylinder.

^3(0) VJ0 2 ( 0

«a,2 ( 0  =  -

— KuJC^Vj

+ .c 
"1 J

+ 1 T cosh a;/ 
cosh 3ujI (5.38)

o % ( 0
 ̂ dx

cf 2
sinh 3a;/ 1
cosh 3a)/ Cl 2 1 +

sinh a;/ sinh a)/
cosh 3a)/ +

cf cosh a)/
(5.39)

03 (x)

The generator equation (5.24) gives 
« 1

VJ -  12

c ^ c f2
c^ c^

T c f

A

cosh a x  + 1

vj-
sinh 3a)/ sinh a x

cosh 3a/
sinh a /  sinh ax  

cosh a /

1 + 1>c
'2

cosh a / cosh a x  
cosh 3a/

% 1 + vj-
sinh a /  sinh a x  

cosh 3a/

v j  cosh ax

c 
2___C o  cis  

1 

2

T ~  ( 1 +

ç£
C3

1 +

1

c^ 1 
cf 2
c ^ l
c? 2

c " l
1 -

_ sinh a  (3/ — x)
V J - cosh 3a/

+

C2 c^ _ s in h a ( /— x)
V J cosh a /

1 + £l
eg

_ cosha(/ +  x) 
cosh 3a/

_ cosha(/ — x) 
cosh 3a/

v j  cosh ax

,c3 eg 2
Co C
d 
1 
2 
1

‘ - f

1 +

A .
eg

c^ 1 
^ 2

c f2

V r { x )

u 2

cgc-

T

- . c"3 2̂
v l { x )

1 H— v r { 2 1  — x) 
2̂ /  

c ? \
1 +  ) v r { 2 1  4- x).

2̂ /
(5.40)

It is easy to check that voltage continuity and current conservation have been guar
anteed at the point where the second and third cable cylinders meet, even though eg and
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'4%

and equation (5.36) itself gives up the c-value,

.C^R 
1crc

 ̂ 2c^ +

The third cylinder potential (5.40) can be rewritten

(5.42)

=  (5.44)

Therefore, ia,s(0 is zero provided

"4~ 2c^
- v r { 2 1  -  x) +  -- -nfi(2/ 4- x), 0 < x < / ,  (5.46)

3c^ 4* 3c^

with (5.45) giving
c  c^(c^4-3c^)

-  c« +  2c‘ ■
Thus, after length 3/, it is possible to force termination of the cable by carefully 

choosing eg such that 0 3 (x) satisfies a sealed condition at x — /.
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eg are both still unspecified. Potential 0s is valid for length L Again, an unwanted term 
proportional to v j  cosh a x  has been produced. This time, it can be set to zero by ensuring |
that eg satisfies the condition (5.36) for the cancellation of v r { 1  —  x )  and % ( /  — x) at x — /  

in potential 0 2  (x). The second cylinder potential (5.35) then simplifies to

(f)2 {x) = - ^  { v l { 1  -  x ) - v r {1 -  x)) A v r { 1  + x), 0 < X < / .  (5.41)
^1

0a(x) — — {v l{x ) — n_R(x))4-- ( l  t)/j(2/—x )4 --  ( l A - — ] v r {21-\-x ). (5.43) fCg Cl z \  eg /  /  \  eg

Now investigate termination of the third cable cylinder. Since v r { 1 )  does not satisfy a 
cut condition, it is impossible for cable cylinder three to satisfy a cut condition. However, 
dvL{l)/dx — 0 and dvR{3l)/dx — 0 because of the left and right sealed terminals. Is it 
possible to choose eg such that the cable can terminate with a sealed end at this stage?

The axial current at x — / on cable cylinder three is

C2 ^  =  ^(C3 -  eg). (5.45)

Consequently, the third cable cylinder potential (5.43) can now be written in its fully T
determined form,

_
^g(^) =  - ^ — 3 - 7



Sealed

Sealed

cr

Sealed

3i

C2

Sealed

C3

Cut

C4

Figure 5.2: A simple Y-junction and its equivalent cable, determined from first principles, 
(a) The Y-junction has one limb with electrotonic length I, c-value c^, another with elec
trotonic length 3/, c-value c^; both terminals are sealed, (b) The equivalent cable has a 
connected section, length 3̂ , with a sealed terminal, and a disconnected section of length 
I. The connected section is formed from three cylinders each with length Z, and c-values 
cf  to C3 . The disconnected section consists of one cylinder with cut and sealed terminals. 
See text for full details.

Cable C ylinder Four —  The D isconnected Section

The total electrotonic length of left and right Y-junction limbs was 4Z, so the fully equiva
lent cable is incomplete. There must be a disconnected section of length I. W ithout going 
into great detail (disconnected sections are discussed in Chapter 6 ), we can only write one 
function which satisfies a sealed end condition at æ — 0  and a cut condition at re =  Z, 
namely

04(æ) =  A -  x) -  v r {1 -  x ) -  vr{1 +  x) +  v r {31 -  ic)]. (5.48)

where A is a non-zero real constant. There is no other acceptable form. Also choose 
€4 = 1  (though it may take any value — the equivalent cable and electrical mapping will 
be correct whatever).

Sum m ary o f Cable P oten tia l Functions and C-values

It is a trivial step now to take the inverse Laplace transform of the cable cylinder potential 
functions, simply by replacing barred potentials with unbarred potentials. So, in the 
physical domain, the Y-junction potentials are mapped to the fully equivalent cable by

{Vl{1 — x) — V r { 1  — x)) -f V r { 1  -t- x).

"1“
+-3 ^ '  +  cH +  3c/. -  ^) +  ^

(l)4 {x) — v l { 1  — x) — v r { 1  — x) — v r {1 + x)- i - v r { 3 1  — x). (5.49)
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The potential functions 1564 form a set of four linear independent homogeneous
equations. It is simple to invert the mapping and write the tree potentials in terms of 
cable potentials,

=  ^ i(x ) +  -  a:) -  fe(x)] + -  æ)

v r { x )  =  <t>i{x) -  [ < h ( l  -  x )

v r {21 +  re) =  (f)z{x) -  2  q -  x). (5.50)

The c-values of the cable cylinders are

cf =  c- +  c«, =  =  ' 4 = 1 .  (5.51)

Figure 5.2 illustrates the original simple Y-junction and its equivalent cable.

D iscussion o f E xam ple  O ne

This very simple example provides no clear set of rules to follow when evaluating cable 
cylinder potential functions and c-values, though it does hint at a distinct division of labour 
between constructing a cylinder’s potential function (a framework potential function) and 
subsequently determining its c-value. There are some indications of rules which must be 
applied to one potential to generate the next framework potential — note the terms

and , (5.52)

in ^ 2  (5.35) where & — 1, and in <^3 (5.43) where k — 2. Furthermore, the choice of c-values 
appear geared towards arranging termination of part (a local termination) or all of the 
potential function.

The first principles construction algorithm seems to preserve voltage continuity and 
current conservation independently of the cable c-values that are eventually chosen. There
fore, it is not directly responsible for determining c-values.

5 .4 .2  E x a m p le  T w o

Now consider the Y-junction in Figure 5.3a. The right branch consists of one cylinder 
which has length I and terminates with a cut end. The left branch has electrotonic length 
21, but consists of two cylinders, each of length 1. One cylinder, denoted l ,  meets the right 
branch at the junction. The other, denoted Q, meets L  at one end and terminates with a 
sealed terminal at the other. Again, we suppose that there are no input current terms.
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The potential at the junction is denoted vj.  The potential where cylinders l  and Q 
meet is denoted vx-  The axial current flowing into cylinder L is denoted «l- From equation 
(5.20) (for cylinder q), (5.23) (for cylinder r ), and (5.24) (for cylinder l) , the potentials 
in the left and right branches can be expressed

vl{x ) — v j  cosh wæ — sinhwa;, 0 < x < L  (5.53)

(5.54)

0 < x < i .  (5.55)

Since voltage continuity requires that v l{1) = 11^(0), we may solve for îl to obtain

v l{^) = Vj coshwæ +  {vx — v j  cosh p  (5.56)
SIXXXX (aJ v

Choose the junction point as origin. The total axial current flowing into the two 
cylinders is i j .  Using equation (5.10),

OX ox

u)K
„cosh(u/ 1

Vjc -~7 7 , +  c {vx -  Vj  cosh U)l)-rsinh u)l sinh lüI (5.57)

C ab le  C y lin d er O ne

Apply the generator equation (5.24) using v j  and i j  to try and generate the first cable 
cylinder,

(f)i{x) — v j  coshwæ
_ coshwZ sinhcua; sinh war
v j - ^  " T  j h - ^ [ v x  -  v j  cosh col)-:of sinh wZ cf sinh a;/

(5.58)

Using standard identities for the hyperbolic functions,

sinhajx
(^i(x) — v j  cosh wrr f 1 — ^  ^  | +

cr cr c\
v j  coshwa; T {vx — v j  coshw^) sinhwZ

c^_ sinh Cl) (/ — æ) 
'^c?'^'^ sinh a;/

/  4-
— v j  coshwæ I 1 ---------5----  +  — v l {x ) +  - ^ v r ( x ) .  ' (5.59)

V ^ 1 / ^ 1

This is exactly the same framework form for the first potential obtained in the previous 
example. For the same reasons, we must choose c  ̂ — +  c^, the “Rall-like” sum of
diameters. Thus, as before,

i i { x )  = % v l {x ) A ^ v r {x ), 0 <  æ < L (5.60)
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C ab le  C y lin d er Tw o

Prom continuity of voltage and conservation of current,

(l)2 {0 ) =  0 1  (Z) =  — [i»ycosho;f +  {vx — 'yjcoshw/)] (5.61)

*S,2(0) =  T tl(i) =  - i ï C î M

-Kvüc^ v j  sinhwZ +  {vx — v j  cosh w()
coshw^
sinho;/

+ K u jc^ v j~ (6 .62)
sinh Lol

The generator equation (5.24) gives an expression for the potential in the second cable 
cylinder.

02 (æ)

+  -

[vj coshwZ +  {vx -  v j  cosh wO] coshwa;

v j  sinhw/ +  {vx — v j  cosh a;/)
coshw^
sinhwZ

sinh u)x

_ sinhwæ 
sinh a;? ’

After some algebraic effort, this can be rewritten as

(5.63)

0 2  (a;) =
c r  c' sinho;a;

-wj-

gC gQ

Cg j  C
-.C

v j  coshw(! — x) + {vx — v j  coshwü)
sinhw(Z — x)

cr \ _ coshw(Z — x)
c I -----------------

Cl c^_

coshwa;

Cl

sinhujl

eg ĉ - v l{1 -  x)

(5.65)

The individual contributions from the tree cylinder potentials are each valid only for 
length and so restrict the second cable cylinder to length I. At this point, as in the 
previous example, there is no clear choice for eg. Observe again, however, that if the sum 
of the coefficients of v r {1 — x) and %(Z — a;) is zero, then

Cl
=2 Cf

+ gL gQ
GCl e 

eg = 0,

This yields
c  _  C \  (c'^cg +  c*e^) 

<̂2 — ~

(5.66)

(5.67)
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(a) (b)
Cut

Sealed

C3
1 Cut
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Figure 5.3: The Y-junction and its fully equivalent cable for first-principles example two.
See text for full details.

and

=  c f i J f J  + c-c-} 0 <  ^ < j.
(5.68)

This potential would immediately satisfy a cut terminal at æ =  f if the longer branch 
satisfied a cut terminal. It does not however, so the process continues.

C ab le  C y lin d er T h ree

Once more, voltage continuity and current conservation give the required information for 
the proximal end of the next cylinder,

M O )  =  M l )  = (5-69)

(cfco +  c‘ c«)’'^ 'iîîE w î'

After even more algebraic efi'ort, the generator equation (5.24) gives

7 , . _  _ coshwæ C2  (c^)^c^ _ sinhwa:
 ̂ ^ {cfc^ +  coshwZ ^  Cg Cj (c^cQ 4- sinhw!

=  ~ | cf (cfo« +  +  ( c f / + -  2:)" (5 71) ^

As usual, it is easy to check that voltage continuity and current conservation have been 
guaranteed at the point where the second and third cable cylinders meet, even though Cg |
is still unspecified. Potential ^ 3  is valid for length I.

We now look once more to see if we can terminate the equivalent cable at this stage 
(in fact if the cable is going to terminate, it has to terminate here since we have reached ^|
the maximum cable length). |



At X — I, v r { 1 )  satisfies a cut terminal condition. Can we choose Cg so that the other |
two contributions to the potential satisfy a cut terminal where they meet at a; — /? This 
requires i

4  I n

Cg Cl (c^cQ +  C^C )̂ {CiC^ +  c^c^) ’
which yields i

^  _  c^ (c?c^ +  c^c^)
 ̂ CjC'5

The third cable cylinder potential can therefore be rewritten i

^ 3 (3;) -  (cfcQ +  c^c^) -  ̂ )] ■ (5.74)

S u m m ary  o f C able P o te n tia l F unctions an d  C-values

As in the first example, take inverse Laplace transforms of the potential functions to obtain 

(f)l{x) ^  -^Vl {x ) + ~^Vr {x),

=  cf (cfc« +  c-c-«j - * ) -  +  ( c f / +
. . I

=  ^̂ ^̂7 7 7 7 7 ^  [%(æ) -  %(æ) +  -  T)].

The inverse mapping can be obtained quite easily by analysing these three linearly t
independent equations,

V r { x )  =  ^ i{x)  -  (j)2 {l -  x) + (j}z{x) 

V l { x )  = (pl{x) + ■— [(j)2 {l ~  x) ~  (f)3 {x)]

The equivalent cable c-values are

c - l L l f A + E Y ) , = (6.75)

D iscussion  o f E xam ple  Tw o

The second example has progressed much as the first, with framework potential functions 
determined from the first-principles construction algorithm, and then additional assump
tions being made to determine c-values in a way that ensures termination is possible. Note 
the coefficients

-- , and f l  -H -^4--') , (6.76)
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from equation (5.65), where k = 1. For the specific situation where =  c^, these simplify 
to the coefficients highlighted from the previous example, equation (5.52).

A general mechanism for choosing c-values is still not clear, but again seems to be 
associated with ensuring termination of the cable. In particular, the two contributions to 
potential ^ 2  (5.68) are again arranged so that they satisfy a local cut condition. Even in 
this simple example, algebraic complexity rapidly accumulates.

5.5 A n  In trod u c tion  to  th e  C on struction  R u les

5.5 .1  P o te n t ia l F u n c tion  C o m p o n en ts  and C o m p o n en t D iagram s

A potential function, 0^, for a cable cylinder with length /, is a linear combination of 
contributions from tree cylinder potentials. Each contributions is referred to as a “com
ponent” . A component is a directed segment of a tree cylinder potential. A component 
has a coefficient which determines its strength compared to other components; a source 
point, which is the point on the tree it describes when a; — 0; a destination point, which 
is the point on the tree it describes when x = a. direction that is either inward, towards 
the origin (if the destination is closer than the source to the origin) or outwards, away 
from the origin (if the destination is further than the source from the origin).

For example, consider example one. Potential (5.49) contains two outward compo
nents; one lies on the left branch, one on the right, both with the origin as source. The left &
component has the sealed end at rr =   ̂ as destination while the right component has an 
internal point x = I as destination. The left coefficient is c^/c^ and the right coefficient is | ‘
c^ I Cl, Potential (f)̂  (5.49) has four components. Three lie on the right cylinder, and one 
lies on the left. There are three inward components, and one outward component.

Component diagrams are useful for illustrating the contributions a Y-junction’s left and 
right limb potentials make to each cable potential. Figure 5.4 shows component diagrams 
for the four cable cylinder potentials determined in example one, and summarised in (5.49).

5 .5 .2  T h e  E lec tr ica l C o n t in u ity  R u les

The electrical continuity rules are applied to potential function (pk to generate 0/c-fi in a 
framework potential form, i.e. without specifying cable cylinder c-value c^_ î.

Consider now two connected tree cylinders, denoted P  and Q ,  each with length I.
Voltage continuity ensures that vp{l) = vp(0). Suppose potential (pk contains a component t
vp{x).  The electrical continuity rules determine contributions to (pt+i that arise entirely |

because of the existence of up(a;) in <p>k. In fact, two components are introduced by vp{x),  S
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Left branch

Origin
□ S

Right branch

2 :

S - sealed terminal

Figure 5.4: Component diagrams for the cable potential functions generated for a sim
ple Y-j unction with both terminals sealed. Top — a schematic of a simple Y-j unction. 
The left branch is one basic length; the right branch is three quantum lengths. Boxes 
1-4 — component diagrams showing the direction and location of the components of the 
four potential functions. Each arrow represents one component, showing its length, di
rection, source and destination. Branch segments that do not contribute components to 
the potential function are represented as lines. In 1-3, the circled components are those 
whose coefficients are matched up to determine c-values and/or arrange partial or full 
termination of the function.
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and we use the notation to indicate this, like so

.q \
vp{x) -> 'k

c^-HcQ
vp{l — x) ~\~ qP qQ 1 + n o M .  ( 5 . 7 7 )

f̂c+l  ̂ /  u -r U ' y /

This is the electrical continuity rule for reflect ion-transmission of a tree potential at a 
diameter step. Potential vp in cp̂  has introduced two new component in (pk+i- One is 
transm itted along cylinder <5 , i.e. in the same direction as the original component. The 

other new component is reflected in the opposite direction, back along cylinder F .  At 
2  =  0 , the two new components meet at the diameter step, while a,t x  = I they describe 
structure that is length 2 1  apart.

It is easy to confirm that voltage continuity between the original component and those 
it generates has been guaranteed, irrespective of the actual equivalent cable c-values, since

%g(0)V p { l )  +qP q_ cQ cP cQ

qP q- cO qP -j- cQ V p { l )

Noting that current conservation in the tree ensures

^pdvp{l) _  odvQ{0 )

( 5 . 7 8 )

(5.79)
dx dx

then it can be shown that current conservation is guaranteed between component up (2 ) 
(in (pk) and the components it generates in (pkpii i.e.

c d y p j l )

* d x
= —ck+l qP q_ qQ 

nQ
-f

1

I T

Internal Po in t

Important special cases include reflection-transmission at an internal point of a cylinder. 
Set =  0*5 in (5.77) to obtain.

vp{x)

Sealed Terminal

-+ (5.81)

A single component is reflected from a sealed (or current injection) terminal. Set == 0 
in (5.77) to obtain

Up (2 ) —> vp{l — x) (5.82)

'1
J

I
I

.j:

4 dvp{l)
)

'Æ+1 JJ dx

S)'k+l J  _

5 u q ( 0 )  

dx '
( 5 . 8 0 )
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Cut Terminal

A single component is also reflected from a cut terminal. Letting oo in (5.77) gives

(P
v p { x )  —y — up(Z — x )  (5.83)

^k+i

R eflection from the Origin —  The Iso lation Condition

Reflection from the origin is only acceptable (i.e. independent of structure connected 
to the Y-j unction) when the two coefficients of the components that meet at the origin 
sum to zero — this is the “isolation condition” . Consider two cylinders, denoted l  and 
F, each with length and suppose a potential function contains the pair of components 
v p { l  — x )  — v r { 1 — x ) . Because of voltage continuity, up(0) =  up(0) and so this combination 
satisfies a cut condition at 2  — 1. The component pair is therefore reflected from the origin 
just like a single component reflected from a cut terminal,

v p { x ) - v r { x )  — ^ [ v l { 1 - x ) - v r { 1 - x ) ]  (5.84)
^k+i

Since a potential function is simply a sum of components, then voltage continuity and 
current conservation are guaranteed between a potential function &nd framework po
tential function (pk+i • Additional properties of the electrical continuity rules are described 
in detail in Chapter 6.

5.6 E xam p le O ne U s in g th e  A naly tica l C on stru ction  R u les

We can repeat example one, though much more rapidly, using the analytical construction 
rules directly. Recall Figure 5.2a. Example two could be repeated in a similar manner.

Cable C ylinder One

Cable construction is always initialised with the “Rall-iike” potential function,

(pi{x) = ^ vr{x ) ■ \ - ^ v r [x ), 0 <  2  <  (5.85)

and c-value
4- c^. (5.86)
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C able  C y lin d e r Tw o

The left cylinder component in 0i reaches a sealed terminal at 2  =  and so, using 
(5.82), it produces a single reflected component, with the same coefficient, in The 
other component of (j>i reaches an internal point of the right cylinder, and so, using (5.81) 
contributes two new components to ^ 2 , & reflected component where the coefficient is mul
tiplied by 0.5(1 — 4 / 4 ) ,  and a transm itted component where the coefficient is multiplied 

by 0.5(1 +  4/4)- Thus,

%(Z -  2 ) T  f l  +  v r { 1  + x )  +  (5.87)
C l z  \  C2 y  Cl  z  \  C2 J  Cl

We must apply the isolation condition to ensure that any additional structure con
nected to the Y-j unction does not interfere with the procedure, so

c^ 1 /  c ^ \  . c^
7 2  Vc ? 2 V‘

yielding

and

(5-89)

o'-
4>2(x ) = — ( « t ( i  - x ) ~  v r { 1  -  x))  + v r ( 1  + x) .  (5.90)

C able  C y lin d ers  T h ree  an d  Pour

The isolation condition has linked the two contributions that meet at the junction. When 
X = I m. (p2 i they are reflected together using (5.84), as if from a cut terminal, contributing 
two linked components to ^ 3 . The remaining component of (p2 i on the right branch, again 
reaches an internal point at 2  =  /, and again using (5.81) contributes two new components 
to ^ 3 , one reflected and one transmitted. And so,

c
0 3 ( 2 )  =  - ~ [ v l { x )  -  v r { x ) ]C

I -  2 ) +  i ^ 1  +  v r { 2 1  +  2 ). (5.91)
2 V 4  /  2

The more complicated isolation-termination rules developed in Chapter 6  could be 
brought into play here (they will produce an identical result), but we have to choose

<  -
anyway, if termination of the cable connected section (with a cut end) is to be forced at 
this stage, as was done when using the first-principles algorithm. Again, discussion of 
disconnected sections will be left until Chapter 6 .
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5.7 D iscussion

The first-principles algorithm for cable construction in the Laplace domain generates equiv
alent cables effectively for simple structures of the type considered in the two examples. 
Tedious algebra makes the process generally impractical. Fortunately, the first-principles 
approach yields a much more efficient method for generating potential functions, i.e. the 
electrical continuity rules. These rules remove a whole layer of complexity in the construc
tion process since they embody the algebraic manipulation used in the Laplace domain, 
and therefore allow us to bypass it altogether. However, the first-principles method does 
not directly indicate a general method, i.e. a set of rules, for determining cable cylinder 
c-values. It only suggests that they are evaluated by arranging some or all contributions 
to a potential function in a way that allows them to satisfy local cut or sealed boundary 
conditions. A key feature of these additional rules is that when two components meet at 
the origin, they must have coefficients of the same magnitude but opposite sign — this is 
the “isolation condition” , discussed in full in Chapter 6. The isolation condition is just 
one of the isolation-termination rules, whose dual function is to ensure that the isolation 
condition is always satisfied, and that termination is eventually guaranteed.

180



181

I

il:
I

I
i: 

i

C hapter 6

T he G eneral A naly tical 
C onstruction R u les

6.1 In trod u ction

In this chapter we derive a complete set of equivalent cable construction rules for the 
general Y-j unction. The analytical method is an iterative two-stage process, and two 
distinct sets of construction rules are developed,

.• Electrical Continuity Rules: These first stage rules generate a framework potential 
function for each cable cylinder. The framework potential function is a linear com
bination of tree cylinder potentials, with coefficients expressed in terms of tree and 
cable c-values. It guarantees voltage continuity and current conservation between 
equivalent cable cylinders, but in a manner that leaves their c-values undetermined.
Cable cylinder lengths are found straightforwardly at this stage. These rules will at 
times also be called reflection and transmission rules — a reference to the way in 
which one cable cylinder potential is used to generate the next.

• Isolation-Termination Rules: These second stage rules ensure that, when trans
forming a Y-j unction (or any sub-tree), the structure of its equivalent cable depends 
only on the local tree structure being transformed, i.e. any structure connected to 
the Y-j unction (or sub-tree) does not influence the cable construction process. To 
achieve this, these rules uniquely determine equivalent cable c-values in terms of 
tree c-values; consequently the framework potential function becomes a uniquely de
fined potential function. The choice of c-value simultaneously guarantees that cable 
sections will eventually terminate with an appropriate boundary condition.

The rules are applied repeatedly, “ensuring continuity” then “preparing for termi
nation” , one after the other, generating an equivalent cable cylinder and its associated
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portion of the electrical mapping (its potential function) at each step, starting with the 
cylinder connected to the origin. The full electrical mapping between tree and cable is the 
complete set of cable cylinder potential functions (i.e. those that describe all connected 
and disconnected sections).

The electrical continuity rules follow directly from a generalised application of the first- 
principles approach introduced in Chapter 5. Consequently, this involves a consideration 
of tree cylinder potentials in the Laplace domain, so recall, from section 5.2, the form 
of the boundary conditions, the dimensionless cable equation, and its general solution in 
the Laplace domain. The resulting electrical continuity rules (which generate framework 
potential functions) are straightforwardly also valid in the physical (electrotonic) domain. 
Rules are given for relating potentials, current densities, and injected currents between a 
tree and its fully equivalent cable.

To derive the isolation-termination rules, we consider the conditions that must be sat
isfied if we insist that it must be possible to transform dendritic sub-trees in isolation from 
structure they are connected to. This consideration leads directly to the isolation condi
tion, from which the full set of self-reinforcing isolation-termination rules will eventually 
follow.

As the isolation-termination rules are developed, there are hints that there may be an 
even deeper mathematical structure which is not revealed directly by the approach used.

6.2 N o ta tio n  and T erm ino logy for th e G eneral Y »junction

This section gives notation and terminology for describing the general Y-j unctions and 
equivalent cables used to determine the general rules of cable construction.

6 .2 .1  E le c tr ic a l and P h y s ic a l P r o p e r tie s  o f T ree and  C ab le  C y lin d ers  

G eom etry

A general Y-j unction is illustrated in Figure 6.1. It consists of a left branch (l), formed 
from mj^ cylinders, and a right branch (it), formed from rriR cylinders. Each of the (m^ 4- 
mP) cylinders has electrotonic length Z, so the total electrotonic length of the two branches 
is [rriî  4- As discussed in Chapter 3, I is an arbitrarily small quantum electrotonic
length which allows for the required resolution of the model. W ithout loss of generality, 
we set mL<mR — the left branch is always the shorter of the two, though of course the 
choice is immaterial when =  m^.

The cylinder (counting from origin to tip) of branch j  has c-value 4 -  The c-value 
sum, or c-sum, of cylinders n and n -h 1 (the two cylinders that meet at length nl from
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-m£,

-mj;, - 1
Left Branch

Junction
Origin

Right Branch

Figure 6.1: The general Y-j unction. See text for details of notation, 

the origin) on branch j  is

(6 .1)

Term inal C onditions

The left and right branch terminal boundary conditions are denoted Tl and Tn. Branch j  
( l  or r )  may terminate with either a current injection condition (generalised (S)ealed) or 
a (C)ut condition, represented, respectively

Tj=s and Tj^c.

M em brane Poten tials and V o ltage Continu ity

The potential in the cylinder of branch j  is denoted

t), 0 < X < I.

Since the potential is continuous, then 

and at the junction,

=  V i ( 0 , t ) .

(6.2)

( 6 . 3 )

( 6 . 4 )

( 6 . 5 )

It is sometimes useful to represent the potential in each branch by one function valid for 
the length of the branch. The potential in the left branch is

VL(s:,t), 0 < æ <
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and in the right branch,

so that, at the origin, æ =  0,

VR{x,t), 0 < x < n i R l ,

=  VR{0 ,t).

The whole-branch potential and individual cylinder potentials are related by

v l{x, t )  =  Wj((n -  1)̂  + x, t).

Axial Current and Current Conservation

The axial current in the cylinder of branch j  is denoted

(6.7)

(6 .8)

(6.9)

Since current is conserved,

(6.10)

(6 .11)

where i'^^„(i) is an external source injecting current at a; ~  nZ along cylinder j .  This may 
also be written as

cP ^  
" dx

X = l

_  J  H + l  
'  dx

or equivalently

x = { n i y

K

K

a ; = 0

n+l dx x = { n l ) +

(6 .12)

(6.13)

where {nl) denotes point nl approached from a point closer to the origin, and (nZ)"̂  
denotes point nl approached from a point further from the junction.

Fully Equivalent Cables

As will become clear, the equivalent cable for the general Y-j unction will also consist of 
(m^, +  nifi) cylinders, each of length I. The potential in the cable cylinder is

M x ) ,  0  < x  < 1 , 

while its c-value is denoted c^. Axial current is denoted

(6.14)

All the time-dependent expressions above, for the electrotonic domain, have their 
Laplace transformed equivalents with s replacing t (though suppressed for most of this 
chapter); potentials and currents are replaced with their transformed (barred) quantities.
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6 .2 .2  Fram ew ork  P o te n t ia ls  and  U n iq u e ly  D efin ed  P o te n t ia ls

The two stages of fully equivalent cable construction have the result that after the electrical 
continuity rules are applied, an intermediate expression for a cable cylinder’s potential is 
obtained — it is expressed in terms of the corresponding cylinder’s c-value, which has not 
actually been determined. The isolation-termination rules then determine the c-value and

;-y-

the potential is uniquely defined. Although both forms of the potential are written using 
the (pk notation, the difference is always very clear.

6 .2 .3  P o te n t ia l F u n c tion  C o m p o n en ts  and C o m p o n en t D iagram s

Potential function components and component diagrams were introduced in in Chapter 

5. The potential function for a cable cylinder, k (with length I) is a linear combinations 
of tree potentials. A component of a cable potential function is a weighted tree potential, 
valid over a specific range of a tree cylinder. The following properties can be associated 
with a component:

1. A coefficient, or weight, indicating the significance of the contribution this component 
makes to the potential function. The relative significance of components can be 
measured by comparing their coefficients.

2. A source point, which is the position on the tree associated with the component 
when a; — 0 on the cable cylinder.

3. A destination point, or end point, which is the position on the tree associated with 
the component when x ~  I on the cable cylinder.

A direction, which is determined by relative positions of source and destination 
points. A component is an inward component when the destination is closer to the 
junction than the source; a component is an outward component when the destination 
is further from the junction than the source.

5. A length, which is the range of validity of the component, i.e. the distance from 
source to destination. All components of the same potential function necessarily 
have the same length.

There is in fact a great deal of structure (determined primarily by the electrical con
tinuity rules) to the components of a potential function. Components never overlap, and 
often many source or destination points are common to pairs of components.

For the specific case where all cylinders are of the same length, I, (as in the represen
tation used for the general Y-junction), components exhibit a simple structure and will
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have either the form

w v l { x ) ,  (6.15)

or
wvi{l — x), (6.16)

where w is the weight. The first form is the outward component since as x  increases along 
the cable cylinder, Vn{x) represents the potential moving outwards away from the junction. 
The second form is the inward component since as x  increases, Vn{l — x) represents the 
potential moving inwards towards the junction.

Component diagrams will be used extensively to illustrate the nature of the general 
analytical construction procedure.

6.3 T h e E lectrical C on tinu ity  R ules

Although we shall eventually specialise to the binary Y-junction, we consider initially a 
general junction point, where an arbitrary number of cylinders meet, as illustrated in 
Figure 6.2.

The rules, which will relate transmembrane potential, electrotonic current density, and 
applied currents between a tree and its fully equivalent cable are derived by considering 
the effect the generator equation,

i j  1 /‘® -
v{x) = v j  coshujx ~  —— sinhojæH—  / f  {y) smb. u){x — y) dy, (6.17)

K u c  u) Jq

(which we restate here for convenience) has on a single component that ends on the branch 
point.

6 .3 .1  D er iv a tio n  o f  G enera l R efiec tio n -T ra n sm iss io n  R u le s

At a branch point, suppose there are n  +  1 cylinders of interest, that is, one primary
cylinder (numbered “0”) that connects to n  secondary cylinders (numbered “1” to “n”),
each of length I. For convenience, the direction of x  in the cylinders is specified as follows; 
in each of the secondary cylinders, x  increases away from the junction, and point æ — 0 
marks the junction; for the primary cylinder, x  increases towards the junction and x = I 
marks the location of the junction. (Note that the primary cylinder need not be a parent 
cylinder, though conventions for current flow differ from those specified in Chapter 2, 
and used until now, when this is not the case. This does not matter, as long as voltage 
continuity holds and the current conservation condition is correctly specified.)

Denote the potential in cylinder j  by Vj{x), and the potential at the junction by vj ,  
so that

== i^o(0 ^  %(0)> (6.18)
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for any secondary cylinder 1 <  j  < n. Denote the axial current in cylinder j  by 
Taking account of the above conventions for the direction of current flow, current conser
vation demands that,

n

ia,o{l) T (Q); (6.19)
1=1

where ix  represents a point current source at the junction.
From equation (6.17), the potential in the primary cylinder, valid for 0 <  æ <  ,̂ is

üo(ai) =  v j  cosh a? (Z — x) + sinhw(Z — æ) -f — [  fo{y) sinhw(Z -  x  -  y) dy. (6.20)K wcq w Ji

The potential in secondary cylinder j ,  also valid for 0 <  æ < ,̂ is

Vj{x) ~  VJ coshwæ 4 j  (0) sinhwæ -f
1

KwCn LÜ jQf  /l(y)si
Jo

sinh a; (æ — y) dy. (6 .21)

Now, suppose the equivalent cable cylinder has been constructed. It has length I 
and c-value c^. Suppose also that cylinder fc’s potential function, a linear combination 
of tree cylinder potentials, is known, and assume that a component is contributed by the 
primary cylinder, so the potential function can be written

(6 .22)

where F is the component coefficient and the dots simply indicate the remaining compo
nents of the potential function. The axial current in cable cylinder k is

K r c ? ^ M x ) (6.23)

where, again, the dots indicate the contribution from all other components of cable po
tential function k. Current conservation between cable cylinders k and Ar -f 1 requires 
that

+ i c  = %a,&+i(0), (6.24)

where ic  is a current source injecting into the point where the two cylinders meet.
At the distal end of cable cylinder k,

and

dx - K d
dvo{l)

dx + .

(6.25)

. (6.26)

Expressions for the potential and axial current aX x ~  I on cable cylinder k have been 
obtained. Now take advantage of voltage continuity and current conservation where cable
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cylinders k and A: +  1 meet. It is possible to use the generator equation (6.17) to write 
down an expression for the the potential function in cable cylinder A; +  1,

"".IIICVX- 1----
'0

which can be expanded using equations (6.25) and (6.26),

v j  coshoja;  smhwæ — ,  ̂  _— sinhwæ
cg+i Tfuico

Æ +i(y)si
^  Jo

sinhw(æ -  y) dy (6.28)

where is the portion of the input current density term contributed to the cable
cylinder A: +  1 on application of the generator equation to component uo(a;). Also, is 
the portion of ic  injected into the cable diameter step due to the current injected at the 
general junction point. The dots in this expression represent the contributions due to 
other components in

For the moment we are only interested in how the generator equation affects the 
component contributed by the primary cylinder, so, without loss of generality (because of 
linearity) ignore the coefficient F, and just consider the term

eg ia,o{l) . ,
V j  coshwæ  sinhwæ

K w c q

H—  I Æ +iW  sm hw (æ -t/)d î/,
Jo

sinh u)x

1

which is obtained by just applying the generator equation to initial component

=  vo{x)-

(6.29)

(6.30)

W ith a little algebraic effort, equation (6.29) can be rewritten as a linear combination 
of the potentials in the primary and secondary cylinders. Introduce into the right hand 
side of equation (6.29) several new terms whose sum is zero, like so

4>k+ii^) ^  ̂v j  cosh (VX sinh cvx
'k+l K lüCq

sinhwæ

+
Cfc sinhwx cg % 4,o(() sinhwx

sinh (u a: /

K ivcq E " = o 9

ia,o{l) + i r  ~  yi%q,r(0) )

Kivco

+ E ( . Cï'

^k+ 1  y "Yjj—0
I _
-  / /a+1 iv) sinhu) {x -  y) dy.
^ Jo

v j  coshwæ

+ -w

E ( . Cq'
f̂c+1 j.^1 \Y 2 j=o^j

v j  coshwæ

(6.31)
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The hyperbolic sine and cosine term s can be collected together into the following form,

Co

+ _ g . - -
E"=o%-

= ? + l  CO

cg E j= iC j \ «a,o(Z)sinhwx

V J  coshwx +  V  = 4 7 ----  I 1 +  j y j  coshwx
^ E j = o C i V  Cfc+l/

' k+ l K u Cq

4+1 Co 

1

K ojcq

4  4 o ( 0  sinhwæ /  ̂ S ”= 1  Cj ^ ^  %o,r (0) sinh cvx

+
IT

\  E ? = o 9

sinhojrc
K lo

EI S j= o  Cj

Ck+i 
1 -

4—  /  /fc+i(2/) sinhw(æ -  y) dy.
Jo

(6.32)

The final form is starting  to  emerge. Once more using current conservation a t the  tree 

junction, as well as
,  E ^ ^ = l9 _  CO

E n  ̂ v^n „ :
j - Q  Cj 2 L j= 0  Cj

equation (6.32) can be rearranged to give

( -i 4  JYj^i 9

(6.33)

^k+ii^)
Co

E"=oOi''3
n

W  Co
V j  cosh LOX + ia ,o{ l )  s in h wæ

+ÊE ? = o % -
1 +

+

+

r=l '—V—" ■' \  k + l

i x

V j  cosh LOX

ktocQ 

îû,r(0) sinh wæ
k c O C r

cg%T
Y 2 j^ 0  C; Ĉ 4-1 Y 2j =0  Cj Ĉ +1 

1  -
-  /  f k + l i y )  sinhoj(x -  y )  dy .

Jo

sinh LOX 

K l o

Now, carefully organise the electrotonic current densities by choosing

f k i A )
Co

E7=oCj
1 - 1 Cj

Cn
1 +

C&+1 Co

Then, zero the contribution due to applied current terms by setting

i x

-.c
-fc+i

+
Z}jzzO Cj cg^^ Cj 4+1

0.

This may be rew ritten

iQ ~  IX
4  +  cg+i
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f r { x ) .

(6.35)

(6.36)

(6.37)
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vdx ,  t).

These choices allow the potential in cable cylinder k + l  to be written as a linear 
combination of the potentials in the cylinders that meet at the junction,

= y n ^  f l  -   c-2̂ j=o Cj \  ĉ +i Co J 2vj=o Cj \  ĉ +i J
(6.38)

The relationships (6.35), (6.37), and (6.38), must also be valid for the original 
untransformed potentials and applied currents, so we can now summarise the general 
electrical continuity rules.

The E lectrical C ontinu ity R ules —  A. The M embrane P oten tia l

Simply taking the inverse Laplace transform of equation (6.38) gives

t) =  ( l  -  +  g

Expression (6.39) encapsulates the electrical continuity rules entirely. It basically says 
that, if a tree cylinder, j  say, contributes a component V j { x )  to cable cylinder /s’s potential 
function, then, on application of the generator equation, this component introduces a 
number of components in cable cylinder {k 4- l ) ’s potential function. The number of new 
components will depend on the tree structure at point x  = I on cylinder j .  It should be 
clear now why these rules may also be referred to as reflection and transmission rules: 
if there are n +  1 paths away from component u /s  destination, then equation (6.39) 
generates n +  1 terms in the new potential function. A single component may be reflected 
from the junction back down the primary cylinder (its direction is opposite to tha t of the 
original component), while all other components are transmitted along all the connecting 
cylinders (their directions are the same as that of the original component). Of all the new 
components, only the single reflected one can possible be zero, in which case there is a 
total of n new components, all transmitted.

Figure 6.2 shows a component diagram illustrating the original component in and 
those it generates in (f)k+i, for both the general and the zero-reflection situation. Note 
that if multiple components of cable potential (j)k have the same destination, they must 
each generate contributions to the same components in potential 0^+1. It is also possible 
tha t multiple contributions to the same new component may cancel.

The E lectrical Continu ity R ules —  B. Electrotonic Current D ensity

Consider equation (6.35), in conjunction with the expression for /  (5.9). Since the initial 
potential distribution in the cable is related to that in the tree by the potential mapping,
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(a )

General Zero Reflection

(c)

Figure 6.2: Component diagrams illustrating the electrical continuity rules at the general 
branch point, where n +  1 cylinders meet, (a) A single component of potential function k 
is directed towards the branch point, (b) In general, this single component generates n -f 1 
components in potential function k + l. Each component emanates from the branch point. 
There are n transm itted components, on cylinders 1 to n, plus one reflected component 
on cylinder 0. (c) Under certain conditions, there is no reflected component, so just n 
transm itted components are generated.
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we can use the electrical continuity rules for potentials (6.39) to give (after taking the 
inverse Laplace transform)

__ Co f  = i Q [ l  —  X , t )

cg+1 CO ;  CO 1 3̂ \  f̂c+1 /  Cr
(6.40)

and so

E?=oC,

n

Cfc+I -  —  ̂ j  io(i - x , t )  + (cg+i + c )̂ ^ i,{x, t)

(6.41)
which defines the relationship between current densities on tree and cable.

T h e  E lec trica l C o n tin u ity  R u les —  C. A pp lied  C u rre n t Sources

Taking the inverse Laplace transform of equation (6.37) gives the relationship between 
applied current sources on the tree and those on the equivalent cable,

i^[t) — iri t) (6.42)
E ”=o«i

The contribution to applied current at the cable discontinuity is thus equal to the current 
injected at the branch point multiplied by the ratio of cable c-sum to tree branch point 
c-sum.

T h e  U se o f L aplace T ransfo rm s

We have seen how powerful the Laplace approach has been. By considering general so
lutions of the Laplace transformed cable equation, we have formed a set of refiection- 
transmission rules that are valid for solutions of the untransformed cable equation. Now 
that these rules have been developed, we can return to, and remain in, the physical (elec
trotonic) domain.

6 .3 .2  G en era l O b servation s C on cern in g  th e  E lec tr ica l C o n t in u ity  R u les

For convenience, from now on the time-dependence in expressions for potentials and cur
rents will be suppressed. We write

v { x ) — v{x,t),  ia{x) = and i { x ) — i{x,t).  (6.43)

V oltage C o n tin u ity  an d  C u rre n t C onserva tion

Voltage continuity and current conservation have been guaranteed between a component 
of cable cylinder k  and those it generates in cylinder A; +  1, without the need to specify
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cg+1 , thus

^o(0 =  0fc+i(O), (6.44)

Since this will be true for all components that contribute to potential function (j>k, it must 
hold that

4>k{̂ ) = 4>k+i{^), (6.46)

and also,

i“ )

Coefficient Conservation in a P oten tia l Function

9  \  0̂ )  r=i ^ i= o  9  \  ^k+i ,

Again, this result is independent of cable c-values. We refer to this condition as conserva
tion of coefficients. It is always valid, except for reflection from a cut end, as will be seen. 
(This result is particularly significant for trees with all terminals sealed^.)

^As noted in Chapter 4 regarding cable matrix eigenvectors.
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Significantly, the sum of the coefficients of the components in (6.39) is equal to the 
coefficient of the single component in i.e. one,

CO +  (6.48)

I

Zero R eflected  C om ponent

Note that the reflected component in equation (6.39) has zero magnitude when

(6.49)
E ? = ic /

Figure 6.2c illustrates the component diagram in this case.

T he R e lationsh ip  B etw een A pplied Currents and E lectrotonic Current D ensity

Consider the situation in equation (6.42) when applied current is injected at an internal
'

point of a cylinder, and mapped to an internal point of a cable cylinder so that cg — cg^j, 

n =  1 and cq = ci. The relationship (6.42) between ic  and may then be expressed

| = S -



From the relationship between electrotonic current densities (6.41), under the same 
conditions we obtain

S M  =  (6.51)
Cf CO

Clearly, the mapping between internal points of tree cylinder and cable cylinder is identical 
for applied currents and electrotonic current density. However, they will not be identical 
when mapping from a point of discontinuity. The current densities are not strictly valid 
at these points (the boundary conditions describe electrical activity at the boundaries), 
however they can be given a useful interpretation.

Suppose that a current injected at a branch point can be regarded as divided among the 
connecting cylinders. A portion of the current is injected into each, though the injecting 
point is still the branch point. This is simply a useful abstraction. We introduce the 
quantity isT, where

n

isT = ia { l )+ Y . ir{0 ) .  (6.52)
r = l

The individual current densities are then expressed

io(0 =  — and v(0) =  (6.53)
Z-/j=0 3̂ Zjj=0 3̂

so the portion of current associated with a cylinder is determined by its c-value.
Now, from equation (6.41), observe that, if a: — 0 marks a diameter step on cable

cylinder k + l,

CO
(cg+lEj=0 Cj

Co
fcfc+iE"=oCj

^k+lI’ST
Z^j= 0 Cj-

^3=1 3̂ \ isT 3̂ / c I „C\
0̂ j  E"=0 Cj +  E"=o C j   ̂ +  '= ) E"=0 C jj=o y  y  A^j=o 3̂

(6.54)

We introduce the quantity i s c  where

isa = iU ‘) + i t + M .  (6.55)

Now, summing the two cable contributions given by equations (6.51) and (6.54) gives

Iso — ŜT <^k+4+i
E L o c ,

(6.56)

In conclusion, the sum of the contributions to the current density at a point are mapped 
between cable and tree in the same way as the actual applied currents at the point.
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(a)
Branch point 

Change In illaniclcr

(b)

0
IHi 11 1 

1

0 1

0 1

Figure 6.3: Reflection and Transmission at (a) binary branch point and (b) diameter step. 
The electrical continuity rules generate components directed along all paths away from 
the point of discontinuity. It is possible that the reflected component (that directed away 
from the discontinuity along cylinder 0) in each case has zero coeflicient.
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6 ,3 ,3  R e flec tio n  and T ran sm ission  a t Specific  G eo m etr ica l S tru ctu re  

R eflection and Transm ission at a B inary Branch Po int

If, as in Figure 6.3a, x = l marks a binary branch point where the primary cylinder (“0”) 
meets two secondary cylinders (“1” and “2”), then

-  (CO +  C l +  c )  y  “  I M l  -  x )

+  a  ( i  +
(co +  Cl +  C2 ) I

eg (C1 +C 2)
.c
'k+l Co

J ) VI (æ)
^k+1 )

vO V2{x)
‘̂ fe+l /

Step

In Figure 6.3b, x ~  I marks a point where the primary cylinder (“0”) meets a single 
secondary cylinder (“1”), so

R eflection and Transm ission at an Interior Point o f a Cylinder

If æ — Z marks an interior point of the primary cylinder (“0”) then Cq — c% in equation 
(6.58) and

1 %b(Z — æ) +  ~ I 1 4- •™™-I vo{l 4- æ). (6.59)
 ̂ V  ̂ V J

Another interesting result occurs when cq — ^2]=! ^ 3  in the general equation (6.39), so 
that

4>k+ii^) ÏÏ f  1 -  æ) +  ^  ^  A  +  vj{x).  (6.60)
^ \  ^k+l )  y Ĉ +1 j

The reflected component behaves as if the primary branch is uniformly extended at the 
branch point. This condition is essentially Rail’s 3/2 power law for impedance matching.

R eflection at Terminals

At terminals subject to current injection or cut conditions, there are no secondary cylin
ders, and so no transm itted components.
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(a)

(so lation

(b)

Figure 6.4: Component diagram illustrating reflection of origin bound components in a 
Y-junction, provided the isolation condition holds. No components are transm itted into 
structure connected to the Y-j unction.

Consider the diameter step, equation (6.58), and let ci =  0 to obtain the reflection 
rule for a current condition.

-  x)- (6.61)

Thus the reflected component retains the same coeflicient.
Let Cl -> oo in (6.58) to obtain the reflection rule for a cut end condition,

-  æ). (6.62)
c 

T

(These rules are easily checked by applying the generator equation directly to a component 
tha t reaches a cut terminal at x = I.) Clearly coefficient conservation is violated in this 
situation.

Here, it becomes clear why non-zero voltage conditions are generally invalid for equiv
alent cable construction — the assumption of voltage continuity between cable cylinders 
would be broken, i.e.,

<̂ %+i(0) 7  ̂— § ^ ï;o (0  unless = %o(0 == 0. (6.63)
%+i

R eflection at a Local Origin —  T he Iso lation Condition

I

Consider the situation in which a single Y-j unction is being transformed. The junction 
point has been chosen as a local origin. Denote the two branches L (left) and R (right).

Suppose the potential function for cable cylinder fc, of length Z, contains two compo
nents, one from each tree branch, directed towards the origin, and both with the origin as 
destination, so

(f)k = -  x ) q v R { l  -  x) + . . . ,  0 < x < l ,  (6.64)

where p and q are constant coefficients. A number of other cylinders , numbered “0” to 
“n” may be connected to the origin, but are not part of the Y-j unction that we wish to

y
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transform. Only the left and right branches contribute additional components, represented 
in this equation by the dots, (for convenience, just assume x  increases away from the junc
tion for all cylinders, and a; =  0 marks the junction) Applying the reflection/transmission 
rules (6.39) to each component yields

(pk+i(x) ^  p CL
( c r  +  C l +  I 2 j = o  ^ j )

____________ £ r ____________ I

(cR +  Cl -h X)Lo Cj) '

1

1 +

c& (CR + 'Ei^o^j)
-k+l
nP \  1

CL
v l { x )

■,C I
'k+ 1  /

v r ( x )

^  (cr +  C l  +

CR I
1 +

'k+1
Vi{x)

e g  ( c l  T  E S  Ci)

(cr + cl +  E j = 0  Cj) 

CL

Cr
Vr ( x )

( c r  +  Cl  +  E i = o  C j)

n

+ E

1 +
3̂-

Ci

'k+l J
Vl ( x )

(cr +  C l  4 -  E S = o  C j)
1 + .c

■ ' f c + 1

Uî(æ) + (6.65)

This can be rearranged into a more illuminating form.

Cfc
^k+l

________
0 +  CL +  E j = 0  Cj)

P ( c R  +  E j = 0  C j) -  qC L

n C
-fc+l

(cR +  CL +  E L o  Cj)
, \ , g(cL +  E j= o C j)-p c R

Vl (x ) +   , , ,  ^ V r (x )
( c r  +  c l  +  E S - 0  Cj)

( c R  +  CL +  E j = 0  Cj) J 

+  . . .

(6 .66)

If no restrictions are imposed on the values of p  and g, then the equivalent cable poten
tials depend, in general, on structure connected to the Y-junction. If, however, we can 

guarantee that
p-f-g =  0, (6.67)

then equation (6.64) becomes

<̂k = P (v l (x ) -  % ( æ ) )  -I- 

and equation (6.66) simplifies substantially to

( / ^ k + i { x )  =  - ~ ^ P  (% ( a ;)  -  v r ( x ) )  +  . . .

(6.68)

(6.69)
'k+l

To understand the appearance of the reflection coeflicient in equation (6.69), note that 
voltage continuity at the junction (origin) ensures that components of the form

6(a;) == v l (1 - x ) -  v r (1 -  x) (6.70)
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behave as if re ~  H s a cut end, since

((0  =  0. (6.71)

It is significant that coefficient conservation still holds, unlike when a single component 
reflects from a real cut terminal.

To guarantee that Y-junctions or any sub-tree may be transformed in isolation from 
the rest of the tree, we must ensure that components contributed by tree cylinders that 
meet at the origin are always equal in magnitude and opposite in sign, i.e. their sum is 
zero. This requirement will subsequently be referred to as the isolation condition^ and is 
a critical link between the electrical continuity rules and the isolation-termination rules, 
which follow from the need to maintain this condition in all cable potential functions. 
Figure 6.4 illustrates reflection of components from the local origin when the isolation 
condition holds.

6 .3 .4  E le c tr ic a l C o n t in u ity  R u les  in  th e  G enera l Y -ju n c t io n

Initialisation o f the C onstruction Procedure

Enough information is now available to generate the framework potential function for a 
cable cylinder, given the potential function for the prior cylinder. The process must be 
initialised with the potential function for the cylinder connected to the origin. The initial 
cable potential function, is essentially the same for any Y-junction — the simple
Rail combination of the left and right cylinders connected at the origin junction,

(6-72)

The Rall-like c-value is
f - c f  +  cf. (6.73)

C om ponen ts

-

-1.7Only a limited subset of the full range of possible electrical continuity rules need be
considered; reflection and transmission at a diameter step, reflection at cut terminals, 
reflection at current terminals, and reflection at the origin (junction) when the isolation 
condition holds.

Since all tree cylinders have length Z, all components, and consequently all cable cylin
ders, will have length I. This is an inevitable consequence of the electrical continuity rules, 
which need only be applied where cylinders connect (and not internally).

The notation is used to indicate the contribution a component (with unit coeffi
cient) of equivalent cable cylinder k makes, when the electrical continuity rules are applied 
at a; =  Z, to generate the framework potential for cable cylinder k 1 ,
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For the general Y-junction, components can be directed away from the origin (branch 
point), in which case,

4i
I 1 -  C JCsn \  fc-hl Cn

' T ’ i 1 +  ^ ) 4 + i W - (®-74)
Csn \  ^k+1 J

They may also be directed towards the origin,

dd+S~^) 4^ I IT —
^sn

C  I T i  1
fc+1 /  Csn \

d  d
^k+ 1  d-L l .

^ + i M .  (6.75)

Components with a terminal as destination will either be reflected from a sealed end,

d d )  ^»(^ -  a;), (6.76)

or reflected from a cut end.

d d )
Cfc+i

(6.77)

Pairs of components satisfying the isolation may be reflected from the local origin,

v [ [ l  -  x )  -  v ^ [ l  -  x )  - >  — ^  ( n ^ ( a ; )  -  n f ( j ; ) ) (6.78)

It is common for two components, v ^ x )  and 'u^+i(Z—æ) to appear in the same potential 
function, 4>k{x) say. Since they have the same destination, at æ ~  Z, both contribute to 
the same two new components (see Figure 6.5),

+/5^Jn+l(^ “ 4
d

d - n .

a l l - n + 1

=fc+i d Cl■/;+l
cPSi+1
dn

a l l  +
■uC
- ' f c + l

+  /5 1 -
d

^k+i 4+1

=  -  ^) +  ^4+ 1W -

Conservation of coefficients means that

a  +  /3  —  p - f  g .

6.4 T he Iso lâ tion -T erm in a tion  R u les

< ( Z  -  x)

4+ 1  (^)

(6.79)

(6.80)

The isolation-termination rules follow primarily from the requirement that the isolation 
condition is always satisfied, whatever the structure of tree or cable. First, to illustrate 
the strategy for deriving these rules, consider the initial three cylinders of the equivalent
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k — 1 k fc + l /s + 2

!
î

(a) (b)

fc +  1

k + 1

k + l

(e) a v i i x , t )  pvi_^_T^(l~x,t)

k + l

Figure 6.5: Component diagrams for component structure relevant to the general Y- 
junction, (a) Reflection of component Vn{x) 3À x = I generates a origin-directed reflected 
component and a terminal-directed transm itted component, (b) Reflection of component 
vl^j^i{l—x) a,tx = l generates a terminal-directed reflected component and a origin-directed 
transm itted component, (c) Components avi{x)  and — x) contribute to the same
two components on application of the electrical continuity rules.

a

E
■I

. ,:E
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cable for a general Y-junction. The ideas introduced can then be generalised to give the 
rule for the cable cylinder — first assuming no terminals have been encountered in the 
process, then taking into account termination of both left and right branches. Only cylin
der potentials are considered. The mapping of applied currents follows straightforwardly 
(replace the potential at a point with the current divided by c-sum at that point).

6 .4 .1  C ab le  C y lin d ers “1” to  “3”

Cable C ylinder “1”

The initial cable cylinder must have the Rall-like potential function

M x )  =  % v l{ x )  T  % v r { x ) ,  0 < X < 1 ,  (6.81)Cl • ■ ĉ i

where

cf == Cl +  cf. (6.82)

The sum of the two component coefficients is one,

%  +  %  =  !■ (6-83)

This condition will be referred to as rule one, or the Rall-like condition. The immedi
ate implication of this rule, combined with coefficient conservation, is that the sum of 
component coefficients in any subsequent cable potential function is always one unless at
some point a component is reflected from a cut terminal. A component diagram for this
potential is illustrated in Figure 6.6

Cab le Cylinder “2”

Application of electrical continuity rules (6.74) to each of the two components of gives 
a framework potential function,

S i \  ^ 2  ^sl \  2̂ /  Cl

+ #- ( i  +  # )  +  + + o<x<(.
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\  /  Cl %  \   ̂ ^

(6.84)

where Cg must be chosen so that the coefficients of v l { 1 — x) and v r { 1  — x) satisfy the 
isolation condition, i.e. their sum is zero,



Left

Origin

Right

Origin

Origin

Origin

Figure 6.6: Component diagrams for the first three equivalent cable cylinders (1-3) for 
the general Y-junction.

Simply rearranging gives

and so

+ cfcf c‘i)
( W ) s i  +  ( c f )

(6.86)

Cl c f(c fc f c^cf)
df{cfcoC^2^sl ^  1̂

Xt ni l
1 C2 C51

+ cfcfcfP)
{ v l { 1  - x ) -  V r {1 -  x ) )

(C i4cfi +  c fc f  cji)
v r {1 +  æ ) 4 -

Cl ^2 C5I
(C l4 < l +  cfcfcj'i)

v r {1 +  x )  ̂ 0 <x<l.

(6.87)

Note the left-right symmetry in equations (6.84) through (6.87) — swap around the 
L  and E, and the expressions are unaltered. This is expected, given the generality of the 
structure being transformed. The isolation condition will also be referred to as rule two.

m

:
:

Cable C ylinder “3”

The second potential function may be regarded as consisting of essentially three compo
nents — two directed away from the origin, the other towards. Applying the electrical 
continuity rules (6.74) to the outward components and (6.78) to the inward components 
of ^ 2  gives a framework potential function,

C2 cfcf {cf cf  4  cf)
03 (ic)

C3 c ? (4 c jc j i  4 -cfcfc^i)
{ v l { x )

+■

+

42
fI.
c&

:3 Cg
C1 C2 Cgi

C3 C2 /  (ciC^cfi T c fc fc ^ i)

t^E(æ))

-  x)

cfcfCfii
C3 c J /  ( c f 4 4 i  +  4 4 4 i )

v r {21  -  x )

A
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+

+

E l
42
eI
42

1 +

1 +
4  /  ( 4 4 4 i  +  4 4 4 i )

cfcfcJi
4 /  ( 4 4 4 i  +  4 4 4 i )

v r (21 +  x ), 0 < x < l .  (6.88)

At this point, where two components have the origin as source, the requirement for 
isolation is not of immediate relevance. We still need to determine cg somehow. The 
trick is to choose cg so that, whatever the tree structure beyond the third cylinder of each 
branch (i.e. structure that is not represented in potential functions so far), components of 
0 4 (æ) will satisfy the isolation condition (a similar idea leads to the rule).

Writing equation (6 .8 8 ) as

0 3 (4  =  A ( v l (x ) ~  v r (x )) +  B v r (21 -  x ) +  C v r (21 -  x )  

+ jDv r (21 +  a?) +  E v r {21 T  a:), (6.89)

the electrical continuity rules can be applied to give

0 4  (.t ) — A- 4
,C '

4  Cl

+

+

+

-A
4 i

4 4
,G

: 4 (

r 4

1 +

4  4

4 i  \

Cgl

4 ^
4V

v l {1 -  a:)

4 .

4 i
1

,C'

Csl
4 4  
4  4  
4

4  Cg A
C3 cf
4  cf

v l {^1  — a:) +  (  1
43 V

r3 /

v r {1 -  x)

v l { 1 +  A

v r {1 a  x )

A  (1  + J )  +  X ) +  Æ! J  (1  +

4 4  
4  C3

Vr {M -  x)

)r {M a  æ). 0 < x < l .

(6.90)

The isolation condition will only be satisfied if

4
- s i

4 4
4  Cl

A +
-si

1 + B A 4
-si

4  cf
-si

(6.91)
Rewriting this in the form M  A {4f c%)N  gives

h { A  + B)  + A ( ^ A  + G) + ^
(-sl *-4-si

4_
cJi -si

=  0. (6.92)

It can easily be shown that M  — W by the following argument.

N - A A  +
-si

b a

A A a ^ B A
4 i c

^-(-A ) +  A +
si Cgi
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f-»Xj

^ A  + ^ B  + ^ ( - A )  + ^ C
Cfii S i  S i  S i

M,

so that equation (6.92) can be rewritten

t ( A  +  B) +  ^ ( - A  +  C)
U^SI S i

1 +

or
— f - A  H— I b  +  

4 i  cf-si + & c
- s i

1 +

0 ,

£ 3

C4
0 .

(6.93)

(6.94)

(6.95)
c;i c;

Cable c-values must be non-negative (and anyway, this condition must be independent 
of structure beyond the third cylinder of each Y-junction limb tree), so

j ^ { A a B )  A ~  { - A  +  C7) -  0, 
s i  S i

which is referred to as the voltage-like form of rule three, or equivalently

C =  0.

(6.96)

(6.97)
‘-si S i  S i  S i

which is referred to as the current-like form of rule three. Note that M  contributes the 
voltage-like rule, while N  contributes the current-like rule.

To understand the nomenclature, consider the component diagram in Figure 6.6. For 
the voltage-like rule, note in equation (6.89) that if A =  —B,  then (6.96) requires that 
A =  (7, and the four associated components cancel at x — I, leaving

0 3 ( 0  ^  D v l { ^ 1 )  - f  E v r { ' H) .

For the current-like rule, now consider the spatial derivative of 0g,

d03
dx

= A
dvL
dx

A B dvL
i- dx

■A
1+

dvR
dx

A C
dvR
dx

dvL
ax

a e
dvR

u- dx

(6.98)

. (6.99)
3 i-

If CgA — cf B,  then (6.97) requires that Cg (—A) =  cfC7, and, from equation (6.13), the 
two pairs of associated components satisfy a current injection condition aX x — I, with the 
derivatives cancelling, leaving

503
dx

D dvL
l- dx

A E
dvR

3(- dx + -T-vr- +
31- K (6 .100)

When generalising to rule k, both voltage- and current-like rule forms exist, which is 
significant for termination of the cable.

In either version of the rule, put in expressions for A, B,  and C  given by the electrical 
continuity rules in equation (6.88), and a unique expression for Cg is obtained. Using the
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voltage form of rule three (6.96),

El
- s i

C2 4 4 ( 4 4  -  4 4 )
C 3  C l  ( 4 4 f ial +  crc6'cM 4 i )

+ -
C2 CjC£Jj f ^R

4 4 )

+

+
4 i  Vc3 Cl ( 4 4 4 i  +  4 4 4 i )  f

4_
Cs2
4
-s2

1 -

C2C| 
C3 4

i _ ^ 4
C3Cf

-iC^Cgl
( 4 4 4 i  +  4 4 4 i )

cfcfc ji
(cfc2 4 i +  4 4 4 i >

- 0 ,

(6 .101)

which gives.

(<=1̂ 2 -  C2cf) +  ((Cl)^cfcf(cji)^cf2 +  (cf)^cfcJ(cJi)^C^2)
{ i c t n c ^ n c f + c % +

and the third potential function, valid for 0  < x < I,

^1^2 0s(®) ~

C l C f  ( 4 4  -  4 4 )  [ ( C i ) ^ ( c 2 ) 4 c ? i ) ^ c f 2  +  ( c f ) 4 c 2 ) 4 c J i ) A ^ 2 ]  (^ E (a ^ )  -  v l {x ) )

(6 .102)

+ 4 4 4 4 i (c i) '^4 (4 i)^  ( 4 4  -  4  eg) +  c^cfcg (44  -  cgcf )^

(4 )^ 4 (4 i)^  ( 4 4  -  4 4 )  +  4 4 4  ( 4 4  -  cgcg)

vi,{2 l "  a?) 

'ce(2^ — æ)

+ 4 4 4 4 i 4 2

+ c f 4 4 4 i 4 2

( (4 )^ 4  (4i)^  +  (4 )^ 4 (4 i ) ^ )  Cl +  Cl eg { 4 4  -  cgcg)^ %(2f +  x)

( ( c i ) A ^ ( c f i ) 2  +  ( 4 ) ^ 4  ( 4 j 2 j  Cl +  eg eg  (eg  eg  -  4 4 Ÿ \  % ( 2 f  +  a;),

(6 .1 0 3 )

where

9.1

92

cgcgcJi +  4 4 4-1 <-2 '-'si

c icg cg g cg a  (e g e g  -  4 4 f  4- ( ( c g )^ c g c g (c g i)^ c ^  +  ( e g ) ^ c g c f  (cg i)^ cg2 ) e g .

(6.104)

The left-right symmetry is still maintained, as expected.
Clearly, at this point the level of complexity involved in the expressions for the cable 

potential functions and c-values is increasing rapidly. In fact, the expressions for eg and 
0 4  (æ) exhibit a similar increase in complexity over eg and 0 3 (æ) as they themselves over eg 
and 02(a;). Fortunately, we can derive general rules for the A:-th cable section by extending 
slightly the ideas used above.

Special cases o f the first three cab le cylinders

Consider potential 02 again (equation 6.87), and suppose the reflected components are 
zero, so

4 4  ~  e^cf — 0, (6.105)

I
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On rearranging, clearly this condition simply says that the ratio of first to second tree 
cylinder c-values is the same in each branch,

Equivalently, the ratio of left to right c-values is the same for the first two tree cylinder 
in each branch. Write

Cl Cg

Similarly, consider cable potential 03 (equation 6.103). If the above zero reflection

-1 -̂2 1-3
and

03 (A =  +  x) +  +  æ). (6.113)
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f
It is also clear from the framework potential (6.84) that both reflected components are
zero only if -y

u
so the same c-value ratio is exhibited by the first two cable cylinders. The cable potentials 
generated so far may be rewritten 7

01 (æ) =  Y ^ ^ z ,(æ ) +  (6.109)
'I

and

02 (A =  +  (t) +  +  x). (6.110)

condition (6.106) still holds true then the coefficients of v l { 2 1  — x) and v r { 21  — x) (which 7

are the closest components to the origin that are also directed towards the origin) sum to 
zero (similarly to the original isolation condition). This follows directly from rule three 

(6.96).
In addition, the coefficients of reflected components v l { 2 1  — x) and v r { 2 1  — a;) in ^ 3  71

can only be zero if the condition

1 = 1 = f
also holds. Thus,

p!b péf
(6 .112)4  _  4  ^  4  /A 1101 ]

4  4  Co S'

:4
It can now be shown that the conditions for zero reflection are easily extended to the ; |

4̂ '- tree cylinder in each branch.



6.4.2 The P iecew ise Generalisation o f R ail’s Equivalent Cylinder

Consider a Y-junction where the left and right branches have the same electrotonic length, 
and terminate with the same boundary condition (we are not actually restricted to just 
cut and current injection conditions for the special case under consideration), A slight 
generalisation of Rail's equivalent cylinder is obtained if the 3/2 power law for diameters 
is relaxed so that

r =  cg/cg, l < k < r r i L =  tUr . (6.114)

Suppose the 4 ^  cable cylinder potential is of the form

(j)k{x) — AvLÜk — 1)1 A x) A BvR{{k — 1)1 A x), 0 <  x <  I. (6.115)

Now apply the electrical continuity rules at rc =  / to generate the (k 4- 1)^  ̂ framework 
potential,

0/cH-i(^) — I 1 +    I AvR(kl 4- x) 4- ( l -\— I BvR{kl A  x)4+1 1 
+  1

f l4 -

^ 4

c''k+l } ^sk \  ^k+l

f  -  3:) +  ^  [ l  -  B .E(M  -  cr).
V ^k+ 1  ^k J ^sk \  ^k+l % J

Note that the two reflected components are only both zero provided

^k ^  4  _
pO pL pR ^
S+1 ^k+ 1

(6.116)

(6.117)

which follows automatically from the relaxed Rail condition so

^k+i{x) = AvR{kl 4- æ) 4- B v r { M  4- x). (6.118)

Note that this is independent of the actual values taken by A  and B .

Since 0i(æ) takes the form of equation (6.115), with A — r / { l A r )  and B  — 1/(1 4-r),
and since the relaxed Rail condition holds for all k, then through mathematical induction
it follows that

T 1
 ̂ ^vi,{{k — 1)Z 4- cr) 4- ——--™-v̂ ((A: — 1)Z 4- cr), 0 < cr <  Z, (6.119)

for all k.
Equivalently, describing the left and right c-values by functions ci{x)  and Cj%(cr), which 

are stepwise uniform, then

=  r ,  0 < cr < m j .  (6.120)
c r { x )
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The potential in the cable is now represented by one function, (fc-, so we can write
T 1

<h{x) =: 0 < cr < m j .  (6.121)

At ctr =  the cable (connected section) will terminate with the same type of condition 
as the Y-junction limbs.

It now remains to construct the disconnected section. Consider a cylinder with c-value 
4  5 described by the potential

= XL{{k — 1)1 A x) — VR{{k — 1)1 A x), 0 < cr < Z. (6.122)

Again, note that this takes the form of equation (6.115), this time with A  =  —B  — 1. Since
the left and right branches satisfy condition (6.120), there must also be zero reflection on
application of the electrical continuity rules to yielding

f ,k+ i= ‘̂ L { k lA x ) - V R { k lA x ) ,  (6.123)

It is trivial to repeat the argument used for the connected section, starting this time 
with

== v l {x ) -  v r{x ), (6.124)

which satisfies a cut condition at æ =  0. Therefore, the disconnected section c-values 
(superscripted by d ) satisfy

4  _  4 (6.125)
^k+l ^k+l

It is necessary to choose a c-value for one disconnected section cylinder so tha t the rest 
may be extracted from the ratios. It is convenient to choose cf — 1.

The potential in the disconnected section can be written as

( f > D { x )  =  v r { x )  —  v r { x ) ,  0 < a; < m^Z. (6.126)

which must satisfy the same type of boundary condition at æ =  m B  as the connected 
section. The disconnected and connected sections therefore have identical shape.

Figure 6.7 illustrates a few examples of piecewise cables. This is a very important 
special case. When tree structure deviates from the relaxed Rail conditions, there must 
at some point be reflected components, and the general analytical rules that follow must 
be used.

Note that the connected sections of such cables are identical to the lambda cables 
(Burke, 1997) obtained simply by moving from junction to Y-junction tips summing c- 
values (see Chapter 3). Rail’s equivalent cylinder is the special case where =  1
for all k.

This result is the discontinuous version of the continuous non-uniform cables mentioned 
in Chapter 3. A combination of both arguments allows for c-value profiles that are a 
mixture of continuously varying and discontinuous segments.
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Cut

(b)

(c)

C ut

Cut

Figure 6.7: Examples of non-uniform generalised Rail trees, (a)-(c) Three examples of 
the piecewise generalisation of Rail’s equivalent cylinder. Tree terminals satisfy the same 
boundary condition T . The ratio of the branch c-values is a constant. In each case 
the connected and disconnected sections have the same electrotonic length and diameter 
profile.
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" 1

6 ,4 .3  C ab le  C y lin d er  k  —

P rio r  to  L eft and  R ig h t  B ran ch  T erm in a tion

Consider equivalent cable cylinder k where k < rriL^mR, i.e. for the moment we avoid the 
additional complexities introduced when terminals must be taken into account. General 
expressions for the current-like and voltage-like forms of rule k (for determining c-value c^, 
and consequently potential (j)k) will be stated. A proof by mathematical induction will be 
given showing that these rules are correct if we require that the isolation condition must
always be satisfied by any (even numbered) potential function. First, however, consider
the general structure of cable potential function

Part One: P oten tia l Function k and Framework P oten tia l /c +  1

The electrical continuity rules ensure that the potential function for the k^^ equivalent 
cable cylinder for the general Y-junction can be expressed as a linear combination of 
components each with length I and lying along an entire Y-junction cylinder. The k-odd 

and fc-even cases must be considered separately.

If k is odd and k > 1, then (f)k{x) can be expressed in a compact form,

Ai + l

(̂ A:(a;) ^  ^  -  1)̂  +  â ) +  ^PnVi{2nl -  æ), (6.127) |
i —L,R n = l

where
=  0 . ( 6 . 128)
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Figure 6.8a illustrates component diagrams for the potentials and when k is odd.
Constants and are, respectively, the coefficients of the outward and H

inward components contributed by branch i to the cable potential function. It is à
convenient to pair components that have the same destination. On each branch, numbering 
starts at n — 1 for the pair of components nearest the origin, increasing towards (but not 
yet reaching) the terminals.

Note that component ^al^Vi{2{n —1)1 + x) lies on odd numbered cylinder (2n — 1) while 
component ^j3^Vi{2nl — x) lies on even numbered cylinder 2n (on branch i). f

On each branch, there is one outward component that cannot be paired, i.e. that 
furthest from the origin, lying on the k^^ cylinder. For notational convenience, each is !»
paired with a zero component, i.e. a component with zero coefficient, hence condition f
(6.128).



If k is even and fc > 2 then,

(!>k{x) =  Y2 Y ]  -  l)z 4-æ) +  ^qlvi{{2n 4- 1)Z -  æ), (6.129)
i = L , R  n=0

where
fc „ iPo =  0 and q \ == 0. (6.130)

Figure 6.8b illustrates component diagrams for the potentials <pk and <pk-\-i when fc is even..
Constants and ^q\ are, respectively, coefficients of the outward and inward 

components contributed by branch i to the fc*̂  cable potential function. Components 
with the same destination are paired. Numbering in this case starts at n  — 0 for the 
two components that meet at the origin. These are paired with zero components for 
notational convenience, as, again, are those two terminal-directed components furthest 
from the origin (contributed by the fc*̂  left and right branch cylinder), hence conditions 
(6.130).

Note that component ^p\^Vi{2{n — 1)Z -f x) lies on even numbered cylinder 2n while 
component ^q'^Vi{2 nl — x) lies on odd numbered cylinder 2n -f 1.

The electrical continuity rules are now applied to both forms of (pk- The isolation 
condition (rule two) is assumed to hold.

If fc is odd, then applying the electrical continuity rules to equation (6.127) generates

0fc+i(æ) ^2n-l
s ( 2 n - - l )

^2n-l
s ( 2 n - - l )

s ( 2 n - l )

J  \ 
A ^2n \

^k+l ^2 n-l

&  Ui((2n -  1)/ -  x)

+  -T-
-2n 1 -  M ( 2 n  -  l)f +  æ)

^2n J J
(6.131)

' s { 2 n - l )

Since fc -1- 1 is even, this must take the form of equation (6.129) with fc 4- 1 replacing fc, 
and so may be expressed as

fc+i

(pk+i{x) ' ^ ^ ' ^ ^ P n V i { { 2 n - 1)1-1-x) + ^'^^qlvi{{2n + 1 ) 1 - x),  (6.132)
i = L , R  n — Q

2 1 2
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4
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1
: 'V

i
where

1 + —  I a:
k + l

n — 0 

l < n < ^
(6.133)

and

"+41-1
4»-i

^s(2n-l) l < n < ^

n fc+ 3

(6.134)
Be sure to remember that ~  0, so and take a slightly simplified

2 2 2
form.

If k is even, then applying the electrical continuity rules to equation (6.129) generates

=  Y
i ~ L , R

E
71=1

'271
" s { 2 n )

1 -  V p "  +  f  1 +  # 1  " * 1  V,i2nl -  X)
C&+1

\S(27i) V ^k+1 J  ^s{2n) \  ^k+1^2n+l

-"k k .

s ( 2 t i )  \  k + l

P _7
k  2 n  \  k

<tn V i [ 2 n l  +  x )

" k + l

(6.135)

Since fc +  1 is odd, this may be expressed in the form of equation (6.127), with fc +  1 
replacing fc. Ï

k + 2
2

( p k + i { x ) ^  Y ]  ^ + ^ Q ! ^ i; ^ (2 ( n  -  1) 1  +  a;) +  ^ + ^ /3 ^ U j(2 n ^  -  x ) ,

i — L , R  77 =  1

(6.136)

where
3

and

*+ 41

‘' 2 n - l

‘̂ 3 2 (7 7 -1 )
1 +  & )  4 L i  +  11'-k+l

2̂(71-1) \ k^i
‘32n-l Tn-l

71 =  1

2 < n < ^

„C

3̂̂+1 ‘̂271 '-k+l
l < n < |

0 71 k + 2

(6.137)

(6.138)

In this case, remember that ^q\ =  0, so that f3\ and a \ + 2  take slightly simplified
2 2 2

forms.
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(®) Left

Origin 1 2 3

Right

odd

k-1 k k+l

(jik Origin

4>k+l Origin

(b ) Left

Origin 1 2 3

Right

k-1 k k+l

(pk Origin

(pk+l Origin

Figure 6.8: Component diagrams for the and (fc+1)^^ cable cylinder potential functions, 
prior to termination of either left or right branch. Dotted lines represent extended portions 
of each branch, with components following the given pattern, (a) k is odd. (b) k is even.
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P a r t  Tw o: V oltage an d  C u rre n t Form s o f R ule  k

Now, suppose that the k*̂  ̂ rule takes the following voltage-like and current-like forms.

If k is odd and fc > 3, then assume the voltage-like form of rule fc is

E È + */3‘„) “K  =  0, (6.139)
i = L , R  n —1

while the current-like form of rule fc is
k+l

2

E E ( - 7 - ^ ' “ » + I =  0. (6.140)

where

i = L , R n = l  \  ^ s { 2 n —l )  ^ s (2 n —1)

=  0 and =  0, (6.141)

so tha t the final term in each sum over n  is always zero. The and are constants,
referred to as the voltage-rule coefficients and current-rule coefficients respectively. 
Although the sum is over (fc +  l) /2  pairs of component coefficients for each branch, only 
(fc — l) /2  have a non-zero current-rule or voltage-rule coefficient. The rules are written 
this way for notational convenience.

If fc is even and fc > 4, then the voltage-like form of rule fc is

fc

E E ( 4 ;  +  * 4 ) * K  =  0, (6.142)
i — L , R  n —1

while the current-like form of rule fc is

E
r fc 2 / I. I C

„=1 \  ^t(2 n) ^s(2 n)
0. (6.143)

where
=  0 and '^Fl = 0. (6.144)

2 2

Again, although zero, the final term in each sum is included for notational convenience. 
Observe the additional term  involving the coefficients of the two components with the 
destination as origin.

Note also that the isolation condition (rule two) may be written

E =  0, (6.145)
i = L , R
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so that
-  1. (6.146)

Though similar to the fc-even current-like form, this condition is regarded as voltage-like 
since the isolation condition arranges these inward components so that they can satisfy a 
cut condition when they meet at the junction. One of the main points of the remaining 
rules is to ensure that this is always the case, i.e. that

E 4 5  = o- (6.147)
l - L , R

From equations (6.96) and (6.97), the voltage and current rules (fc-odd) are known to 
take these forms for rule three (fc =  3), with

and 1 . (6.148)
"si

The “voltage-like” and “current-like” nomenclature can be explained quite simply, just 
as for rule three.

Consider first the voltage-like rules for rule fc. If =  0 for 1 < n < (fc — l)/2 ,
then, from potential function (6.127),

= ’̂ 0£k±lVL{kl) -f*am ^R (fc/), (6.149)

for fc odd. All the paired components have cancelled at this point since voltage continuity 
allows them to satisfy a cut condition.

Similarly, if =  0 for 1 <  n <  (fc — 2)/2, then from potential function (6.129),

(pk{l) — phVL{kl) +  pkVR{kl), (6.150)

for fc even, since aX x = I all other components cancel due to voltage continuity.

For the current-like rules, differentiate potential function (6.127) to give

% ( 0
dx

t t i
2E ™

Z—U
i —L, R  n = l

dvj
dx

dVj
dx {2n—l) l+

(6.151)

Observe that, if = C2n-i^(^n for 1 <  n < (fc — l)/2 , the current conservation law
(6.13) can be used for each pair of components to give

9(pk
dx kl~ 2 dx
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, y '  ^  ‘̂A,2n - l (6.152)

'■■■It

:
■<;



for k odd. Again, at rr =  Z, all other terms involving derivatives have cancelled, contribut
ing simply an applied current term since they satisfy a current injection condition.

The final case is slightly different. If for 1 < n < (fc — 2)/2, then
differentiating potential function (6.129) gives

k
d(pk
dx

R  d V g

7 ‘- ‘i t
k l  i = i , ^ R ' n — l  2n-f-l

(6.153)
for fc even. In this case, as well as the two most distal components, two terms are con
tributed by the two components whose destination is the origin.

It is clear, from expressions (6.149), (6.150), (6.152), and (6.153), that cable cylinder 
fc cannot terminate with either a cut or a current injection condition until fc >  mL,mR. 
Otherwise, there are components that don’t end on a terminal, and are not paired with 
another component (zero components don’t count since they are just a notational device). 
Components must have at least reached both terminals, though, except in special cases, 
termination doesn’t actually occur until after this. Furthermore, when fc is even, it will 
not be possible for a cable cylinder to satisfy a current injection condition unless the 
are zero.

P a r t  T h ree : E n su rin g  <pk+i Satisfies R u le  fc — 1

Now that the rules have been given, it is necessary to show that, under specific conditions, 
all rules must actually take these forms.

Recall tha t rule fc =  3 was found by ensuring that component coefficients from (^4 (æ) 
would satisfy rule two (the isolation condition), whatever Y-junction structure might be 
encountered beyond the third cylinder of each branch.

Assume that rule (fc — 1) (fc odd or fc even) takes the voltage-like (6.139 and 6.142) 
and current-like (6.140 and 6.143) forms. We can now prove that rule fc must also take 
these forms if we want to guarantee that rule (fc — 1) holds for the component coefficients 
of the (fc +  1 )*̂  potential function, whatever structure is encountered beyond the fc*̂  ̂ left 
and right branch cylinders.

If fc is odd and fc > 3, then (fc — 1) > 2 is even. We want rule (fc — 1) to hold true for 
the and ia 4 > k + i  (6.132), so, from equations (6.142) and (6.143), we require

that
jh-t)

E  È  ( * + 4 i  +  " + 4 i ) * - ' 4  =  o, (6.154)
i = L , R  n = l
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or

E
i —L, R

( f c - 1 )
2

E
n —1

^2n+l fc+1^ , 
i  P n  ^
s(2n.)

^2t7 A 4-1, k —1 Tpi

's{2n)

k+l ̂  k— 1 Tjii % ^0 (6.155)

If k is even and fc > 4, then (fc — 1) is odd and (fc — 1) > 3. We want rule (fc — 1) to 
hold true for the and 4>k+i (equation 6.136). From equations (6.139) and
(6.140), we require that the voltage-like rule

E Ê +*+4l) = 0,
i = L , R  71=1

and the current-like rule.

(6.156)

<̂2ti k + l j  , ffi2n - A k + lJ  \ k-ljpi
Oin  4----- 7 A ' K  = 0.

7=1.,JÎ 71=1 \  a(271—1) 4 ( 2 7 1 - 1 )

are satisfied.

(6.157)

At this point, just the voltage-like forms of rule (fc — 1) will be used, with the 
appropriate component coefficients substituted from framework potential ( p k + i -  The 
current-like forms of rule (fc — 1) could be used instead, however in the next section it is 
shown that the two expressions are in fact equivalent.

If fc is odd, then use the voltage-like form of rule (fc —1) (6.154) and substitute for 
and using equations (6.133) and (6.134), (the coefficients of framework potential
(pk+i, 6.132) gives

2
E E

i = L , R  71=1 

4 n + l  A

"271 ^  _j Tfc I A ^ ,7  I /"2 7 1

.S(2ti- 1) 
c:

nC4+1
" a n  +

4(271-1) V ^^ + 1  *̂ 271

Cfc '"2(71+1)

S(2?z+1) \  f̂c+1 ^2n+l )
0̂ 71+1 +

^2n+l
d
4(271+1)

1 - f -
"6 \ k /oi

I ^n+1 
4 + 1  /

6—1 Tpi^  =  0,

(6.158)

which may be rewritten as

2

E E
i = L , R  71=1 s(27l —1) 4(271+1)
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+ _  E  E
6 + 1  i = L , R  7 1 = 1

2̂71 6a.

+ +
4(271+1)

4(271—1) 

pî271+1 k/Ql

2̂71-1 k
-d
4 ( 2 7 1 - 1 )

4 (2 7 1 + 1 )
/^7l+l =  0 .

(6.159)

Of course,  ̂ — 0, so the final term in each sum over n  does not contribute.
2

Note that this equation has the form

M  +- nC 
"6 + 1

iV =  0. (6.160)

If k is even, then using the voltage-like form of rule fc — 1 (6.156), and substituting for 
and using equations (6.137) and (6.138), gives

r  k 
2

E
71=2

+-=

^71-1 L  Cfc  ̂ fc_̂
. 4 2 ( 7 1 - 1 )

.c
" 6 +1

p:i-i +  1
6 2(71—1) \ 6 1

Ç 7 1 - I
4 ( 2 ( 7 1 - 1 ) )

pC
4 + 1  ^ 2 n - l

.1
'271

" s (2 n )

,c
r'C' pi4 + 1  CgH

4 ^  + 1
V 4 + 1  4 2

"s (2 n )  

d

f  7 ) Y  + é4+1 4  y 42
2

" 6+1  

"6 + 1
=  0 ,

(6.161)

which may be rewritten as

E
i = L , R

I
E , .  ,
71=2 \  s(2ti)

( A2n  , k j ^ .( %  +  % )  +
4 ( 2 ( 7 1 - 1 ) )

"6

" 6 + 1
E

r  *
2

E
71=2

C 2 n + 1  k  i  I ^ 2 ^  6  i  
1 ------  Pti +  “Ï  Qn

pi
4 7 1 - 1  6 4

" s 2 ( t i - 1 )

P n - 1  “

"52

"2(71—1) fc i
7̂1—1

"52(71 — 1)

0.

4(271) 4 (2 7 1 )

C3 6 -■ Cr
nl
"52

Note that — 0, and again this equation has the form M  4- {c^ /c^^ i)N  =  0.

+  1
CoO Cg2

6—1

(6.162)

Part Four; Equivalence o f V oltage and Current Forms o f R ule fc

It may now be shown that M  = N  îor both the fc-odd and fc-even cases.
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When k is odd and fc > 3, begin with the expression for N  from equation (6.159),

pi pi \
2n k^,i 2n—1 k a i  \

( k - 1 )
2

N E  E
i = L , R  n = l 4(271-1) 4 ( 2 7 1 - 1 )

+ 2( r a + l )  fc Z I ‘^ 2 n + l  fc f n  

"4 2 n+D ^:(2.+l)
fc-1K

( k - 1 )2
E  E

i = L , R  71=1

"271

"5(271-1)
( * <  + % ) - %

( k - 1 )2
E  E

i = L , R  71=1
( " <  +  % )  +  (*< + 1  +  4 L i )

.  5 (2 7 1 -1 ) "5(271+1)
k - l m

(fc-1)2
- E  E (

i = L , R  71=1

Since coefficient conservation ensures that

4 + 1 + * 4 )

fc

(6.163)

(6.164)

the last term may be written
(fc-i)

2

E  E  (""%  +  " 4 i ) " - 4 1 ,  (6.165)
i = L , R  71=1

which is the voltage-like form of the (fc — 1)*̂  ̂ rule applied to potential function fc — 1 
(equation 6.142), which must hold according to assumptions we have made, and so this 
term is zero. The remaining term is simply M, hence M  = N  and the voltage- and 
current-like forms of the rule are seen to impose the same conditions on the component 
coefficients of 4 >k.

If fc is even and fc > 4, then starting with N  in equation (6.162),

N E
i ~ L , R

E
71=2

C271+1 64  , fc
4(271)

P ; +  +
"s (27i ) /

"271—1 6 4

4 2 (71- 1)
P 7 1 —1

2(71—1) fc 
d
"52(71-1)

971-1
fc -l_ g i

E
i —L, R

r  k 
2

E
71=2

"271

4(271)
("p l +  d i )  + ( % _ ,  +  * ; L , )  -  ( %  +  * ,L i )

52(71—1)

f
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+

E
i = L , R

( p p i + d i )P n + " • « ; + ■ +E _
n = 2  \ ^ s { 2 n )  4(2(n-X ))

I
+  f -  ( V i + * îi)  " - % ]  - E E  ( v „ + * 4 - i ) (6.166)

7 = L ,H n = l

In this case, coefficient conservation ensures that 

so that the second sum may be rewritten as

(6.167)

E E (
i = L , R  71=1

4 1 )  * - + i , (6.168)

which is the voltage-like form of the (fc — 1)*̂ '' rule applied to potential function fc — 1. 
This rule already holds true according to assumptions we have made, and so this term is 
zero. The remaining term is simply the voltage-like form of rule fc-even, thus N  — M. 
Again, the two rule forms are essentially the same condition.

Equations (6.159) and (6.162) can be rewritten as M(1 4- {c^/c^^j)) — 0 or 

# (1  -f [c,k/^k+i)) — 6. It is therefore necessary that M  ~  N  = d, since cable c-values 
should be non-negative (and anyway the rule should be independent of more distal cable 
structure).

By re-ordering the sums, one can extract from (6.159) and (6.162) the voltage-like 
and current-like forms of rule fc. The expressions for M  give the voltage-like rules, while 
the expressions for N  give the current-like rules. They take the forms given in part two, 
and are now summarised below with the voltage-rule and current-rule coefficients for rule 
fc expressed in terms of the voltage-rule coefficients for rule fc — 1, so that they may be 
determined iteratively.

Part Five; Summary of Pre-terminal Voltage-like and Current-like Rules 

fc odd and fc > 3

The voltage-like rule is
fc+i

A n )  " 4  =  0. (6-169)

fc + l

i ~ L , R  77=1
E E N  +
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If A; — 3 then

Otherwise k > 6  and

and ^ E \  =  0.
"si

'=Ei

p - lg j ]  ^

The current-like rule is
A ± l

2

n =  1 

2 < n < ^

n fc+i

E E ^ 2 n  k

i —L,Rn=^l  \  s(2ri“ l)

If A; — 3 then
3 rpi

" s ( 2 n - l )

K  =  1 and =  0.

Otherwise k > b and

k  rni

rA —1 ip iE{] n ~  1

2 < n < k - l
2

n k + l

Remember that  ̂ =  0.
2

(6.170)

(6.171)

(6.172)

(6.173)

(6.174)

:

-

Ji; ,

k even an d  A; > 4 

The voltage-like rule is

where

k  Tpi
K  =

i ~ L , R n = l

[k-lEi , 1 f25.+i 4- p-1  
 ̂ "+̂ -1 -L(2n) ^   ̂ <(2.)

0

K n <

n

/c—2

(6.175)

(6.176)

Note that the coefficients of the two components that meet at the origin are not involved 
in this expression. The isolation condition has already ensured that ^ Q q  —  so these
two components will automatically satisfy a cut terminal at x — I. I
The current-like rule is

E
i = L , R

E
n = l

''■Fi+
S ( 2 n )  ^ s(2n ) /

0 ,
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Left

k-1 k k + l
 I i---------—

Rigtit

Potential function 7

Potentiai function

Potential function 9

, Potential function 10

10U 10,'Ei

Figure 6.9: Interaction between voltage rule coefficients. See text for discussion.

where

'FI
n 0

(6.178)p - i g y  _

0 n

Note that the coefficients of the two components that meet at the origin do contribute 
to this expression. Since these two components can only satisfy a cut terminal at æ — 
the only way in which a current injection condition could be satisfied when k is even is if

k^R _  Q R,emember that  ̂ = 0 .

The iterative procedure by which the voltage rule coefficients are determined can 
be visualised in Figure 6.9. Each new coefficient is some combination of two previous 
coefficients, except near the origin and furthest from the origin. At the origin, odd num
bered voltage rule coefficients and even numbered current rule coefficients are determined 
by just one previous coefficient. The coefficients associated with the group of components 
furthest from the origin are determined by the furthest coefficient in the previous potential 
function.

■ft
■ft

■|

I

:

Part Six: R u le R einforcem ent

The rules of this form guarantee that the isolation condition will always be satisfied.
■i
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It was proven in parts three to five that if potential cfŷ  satisfies rule A:, then potential 
must satisfy rule A: — 1. Suppose now that 2  is a non-negative integer with 2: < 

{k — 2)/2. Using an identical argument to that in part three, but this time to ensure that 
potential 4 > k + 2 z - \ - i  satisfies rule A: —  1, reveals that the required condition is for rule k to 
be satisfied by component coefficients of potential Simply replace the coefficients

P̂n-> Q̂-h with coefficients and and the result
follows straightforwardly because the relevant structure of potential function i.e.
those components lying on the first k — 1 cylinders of each Y-junction branch, is like that 
of whatever value is taken for %. This can be seen by considering the component 
diagrams in Figure 6 .8 . If k is odd, then A; +  2z is odd. If k is even, then A; +  2̂ ; is even.

As the cable is constructed, and more rules are applied, this leads to a cascading effect, 
with each new rule reinforcing previous rules. Consider step k, for example. Rule k will 
guarantee that (pk+i satisfies rule A: — 1. Inevitably, then, the coefficients of 4 >k+ 2  must 
satisfy rule k — 2 . Potential must then satisfy rule A; — 3, and so on, with (f>k+r 
satisfying rule A; — r  for all r  <  A: — 1. Eventually even-numbered potential function (j)2 k-~2  

must satisfy the isolation condition.
Of course, when one then moves to step A: +  1, rule A; +  1 ensures that potential (f)k̂ 2  

satisfies rule A;, which in turn ensures that (/ifc+s satisfies ru le& —1, and so on with potential 

(/)fc+2+î’ satisfying rule k - r .
There is continual reinforcement to ensure that the latest potential function satisfies all 

previous relevant rules. Component coefficients in odd numbered cable potential function 
( ^ k  will satisfy all odd numbered rules from 3 to k. For even numbered potential functions, 
the coefficients will satisfy all rules from 2  to k.

Basically, whatever the tree structure that might be encountered as one progresses 
with the cable construction, rule k ensures that the isolation condition is satisfied in a 
later potential. Figure 6.10 illustrates the reinforcement process. Further analysis of the 
rules will be given once terminals have been considered.

Part Seven: Conclusion and A pplication o f Rule k

Given the results of parts one to six, the proof can now be completed.
First, assume rule {k — 1 ) is valid. Potential must satisfy rule k if potential 4 > k + i  is 

to satisfy rule A; — 1 . As discussed in part six, this is sufficient to ensure that all previous 
rules are satisfied in later potential functions and that the isolation condition is always 
satisfied by even numbered potential functions.

It was explicitly shown that the third voltage- and current-like rules were of the form 
given above. Now consider A: — 4. Rule four must take the given form if the component 
coefficients of ^ 5  are to satisfy rule three. The validity of the remaining rules follow by
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Left

k-1 k k + l

Right

Rule k-4 Rule k-2 Rule k Potential function k

Potential function k + lRule k-5 Rule k-3 Rule k-1 Rule k+I

Rule k+2 Potential function k+2Rule k-2 Rule k

Potential function k+3Rule k-5 Rule k + lRule k-1

Figure 6.10: Rule reinforcement in potential functions. The circle surrounding a group 
of four components corresponds to the rule for which these components are the furthest 
from the origin, e.g. in potential function k, rule k involves the group of four components 
(two on each branch) that meet at a point {k — 2 ) 1  from the junction, plus all components 
nearer to the origin. Arrows indicate the backward moving nature of rule reinforcement 
so that the isolation condition is always guaranteed.
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induction.

To actually apply rule k and generate cable cylinder c-value c^, it is necessary to replace 
the component coefficients in rule k {’̂ a^ and if k is odd; and if k is even) 
with the coefficients from the k^^ framework potential function, obtained by applying the 
electrical continuity rules to the (A: —1)*̂ '' potential function, which must have already been 
fully determined. The current-rule or voltage-rule coefficients are determined iteratively, 
initialised with those for A: — 3.

Once has been obtained, potential function can then be fully determined by 
substituting into the framework potential function.

Left-right symmetry is maintained in all rules and expressions for c-values and potential 
functions.

S im plified  N o ta tio n

Once boundary conditions are incorporated, the left-right symmetry in all previous rules 
and potential functions will disappear. In anticipation of this, write potential function k 
as a pair of separate left and right contributions.

(pkix) =  4- $g(æ), (6.179) , |

The isolation-termination rules can also be divided into left and right portions. Write T
the voltage-like form of rule k as £

+ = (6.180)

and the current-like form of rule k as

=  0. (6.181)

6 .4 .4  C a b le  c y l in d e r  k —

A p p ro a c h in g  th e  L e ft B ra n c h  T e rm in a t io n :  k = ttIl a n d  k — ttll +  1

When k — or A: =  -f 1, the pre-terminal rules can still be applied.
When A; =  mj ,̂ at last a component on the left branch reaches a terminal. Examination 

of the pre-terminal rules (6.169, 6.172, 6.175 or 6.177) at this stage reveals that they are 
completely independent of the boundary condition (remember that conditions (6.141) and 
(6.144) ensure the final term in each sum over n is zero anyway). No left branch c-values 
from non-existent structure beyond the terminal appear in either the rules, or the current- 
rule and voltage-rule coefficients. Also, of the component coefficients that would be used 
to generate the c-value, none have been influenced by the boundary condition. There has
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(a) Left branch

Origin

Right branch

Left Terminal

Origin

rriL odd
k =  m i, 

k  =  mi, +  1

Origin

(b) Left branch

Origin

Right branch

Origin

mi, even
k — mi, 

k =  mi, +  1

Origin

Left Terminal

“iTi,

Figure 6.11: Component diagrams for the cable cylinder potential function k = rui and 
k ~  rriL +  1. (a) ïtil is odd. (b) mi, is even.
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been no opportunity for the electrical continuity rules to reflect a component from the 
terminal.

The situation changes slightly when k =  T 1. Again, no c-values beyond the 'I
terminal are explicitly involved in the rules. However, a component is now reflected from 
the left terminal, and its coefficient will indicate this fact. Thus, the form of the rule to be 
applied is identical to that where no terminals have been encountered, with only a single , \
coefficient containing information about the terminal.

Moving to & =  rriL +  2 and beyond, the rules themselves must now be adapted to 
account for the terminal.

6 .4 .5  C ab le  cy lin d er  k —

In clu d in g  th e  L eft B ran ch  T erm in a tion

It is possible to derive the rules that account for termination by adapting the proof for 
the pre-terminal rules and applying it to slightly altered forms of the potential functions ■
and rules (which will be given below) with components restricted to the first rrii, cylinders 
on the left branch and rriji cylinders on the right branch. General forms for the potential 
functions and rules are given in parts one and two, but parts three to seven follow those T
of the pre-terminal rules and it is unnecessary to repeat most of the detail.

Consider the situation where k > rui, and k < mu. We only consider one terminal £
at the moment. The treatment of the second terminal, i.e. k > mji, will follow almost 
immediately. For convenience, we write m =

Note that rule one (The Rall-like condition) and rule two (isolation condition) are ®
always the same no m atter what value mi, takes.

It is essential that the boundary conditions are treated properly. The m*^ left cylinder 
can be regarded as connected to cylinder (m +  1) (beyond the terminal) which has zero
c-value if the terminal is sealed, and infinite c-value if the terminal is cut. It is then 
possible to write

and -  < (6.182)
Tl=C [ 1 Tl=C

P a r t  One: P o te n tia l F unctio n  k a n d  F ram ew ork  P o te n tia l F u n c tio n  A; -t- 1

It is necessary to take into account whether m is odd or even, as well as if k is odd or 
even. The potential functions now take four distinct forms, which can be extracted from 
the pre-terminal potential functions (6.127) and (6.129) with the sum over the left branch 
cut short because of the terminal. The right branch contribution to each potential is 
identical to tha t in pre-terminal potentials.

228

.1



Figures 6.12a,b illustrate component diagrams for each of the four cases.

If m > 1 is odd and fe > m is odd, then (pk{^) has the following general structure,

2

4>k{x) =  ^  ^a^VL{2{n -  1)1 +  æ) +  ’̂ p^VL{2nl -  x).  (6.183)
n—l

where
f im+i = 0. (6.184)

In this case, there is one component with the terminal as destination, and, as usual, it 
has been paired with a zero component for convenience.

If m > 1 is odd and k > m  + l  is even, then 0fc(æ) has the following general structure,
m —1

^k{x) = (æ) +  % % ((2 n  -  1)Z 4- a?) +  ’̂ q!^VL{{2n 4- 1)/ -  x). (6.185)
n= 0

where

4 o  =  0. (6.186)

Here, no components end on the terminal, but two components meet as the origin and 
are paired with zero components.

If m > 2 is even and fc >  m 4-1 is odd, then 4>k{x) has the following general structure,

4>k{x) = $g(a;) 4- ^a^% (2(n -  1)Z +  æ) +  ^(3l^Vi{2nl -  æ). (6.187)
n = l

In this case, there are no components with the junction or terminal as destination.

If m > 2 is even and k > m  is even, then (j)k{x) has the following general structure,

T
(j)k{x) =  $^(æ) 4- Y 2  -  1)  ̂+  æ) +  ^g>L((2n 4 -1)1 -  x). (6.188)

n = 0

where
k„L _ n r. .4 kPq — 0 and qm — 0. (6.189)

In this final case, two components meet at the origin, and a component also reaches the 
terminal, so there are three zero components.

Now apply the electrical continuity rules to generate 4>k+i and observe the situations 
in which there is reflection from the terminal. The isolation condition is always assumed
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(a) Left branch

Origin ____

Right branch

rriL
Left Terminal

Origin

rriL odd
k  odd 

k even

Origin
-*Ti,

(b) Lett branch

Origin___________

Right branch

TUl
Left Terminal

Origin

rriL even
k  odd 

k  even

Origin

Figure 6.12: Component diagrams for the cable cylinder potential functions with k > rtiL. 
(a) rriL odd; (b) rui, even.

to hold.

If m is odd and k is odd, then A: 4-1 is even and (l>k+i takes the form of equation (6.185) 

with A: +  1 replacing k,

2

0jt+i(æ) =  #fc+i(æ) +  Y Z  ^^Vj^L((2n -  1)1 4-æ) 4- ^'''^ç>L((2n 4- l)f -  æ), (6.190)
71=0

where

I r n 4 ^- ' s ( 2 n - l )

.O 

f̂c+1 ) ■'k+l "'2n

n =  0
(6.191)

and

= <

2̂w-l
'« (2 7 1 -1 ) - k + l  "'271-1 'k+l

K n < 771—1

«̂771 + 1

Cb+1 2

2

771+1ÏI — 2 ; Tjj—S

n 771+1
2  ,

(6.192)
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If m is odd and k is even, then A: 4-1 is odd and 4>k+i takes the form of equation (6.183) 
with A: -f 1 replacing A:,

2

(l^k+iix) =  0^+1 (a;) 4- Y Z  V L (2 (n  -  1)/ + x) + -  x), (6.193)
n = l

where

and

‘̂ 2n-ln r
's2(ti — 1)

ÿ  k^L

fc + l /Dl/ , ( 2 n )

_l_ 1 1 _  "̂ 2(n-l) \ k„L

1 -  +  f 1 +  7 ^  )

n =  1

2 < n < % ^
(6.194)

'k+l "'2n 'k+l
l< n < 2 ç i

n m + l
(6.195)

If m is even and A: is odd, then A: -H 1 is even and tpk+i takes the form of equation 
(6.188) with A; -k 1 replacing A:,

</jfc+i(aj) =  # g + i(a : )  4- Ÿ Z  -  1)^ +  a;) + ^ + ^ g > i ( ( 2 n  +  1)/ -  x), (6.196)

where
n = 0

and

4 ^' 3 { 2 n  — 1)

*̂ 2n-l
/c+1 «+

k̂ + l /  \  ‘̂k + l 2̂71

n =  0 

K n < '
(6.197)

n 771+ 2

(6.198)

If m  is even and k is even, then fc +  1 is odd and 4>k+i takes the form of equation 
(6.183) with A: 4-1 substituting k,

T
<̂ *4-1 (a;) =  ^f+i(a:) +  YZ V L (2 (n  -  1)/ 4- a;) -f -  æ). (6.199)

7 1 = 1

where

2̂n~l
„L'«2(71—1) 'k+l

4 » ‘

1 +  ) ^Pn- 1  +  I 1 -  ;;ü— :j7k̂+l "'271-1

n — l

2 < n < ^
(6.200)
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and

-L
s(2n)

1 -

'k+l

gO \
Ck+1 2

n

n

f ,  TL=a 

f ,  Tl=c

(6 .201)

The terminal type only has a direct influence on framework potential (pk+l when k and 
m are both odd or both even.

P a r t  Tw o: V oltage an d  C u rre n t Form s of R ule k

We now suppose the voltage- and current-like versions of rule k take the forms given 
below. They can be obtained from the pre-terminal rules (6.169), (6.172), (6.175) and 
(6.177) with the left sum cut short due to the terminal. The right branch contribution is 
w ritten below in simplified form. We shall only consider the case where > 2. When 
m,L — 1, extra care must be made to fit the rules into the general framework. This 
situation is dealt with much more easily in Chapter 7 concerning the branch-shifting 
method of cable construction.

If m  is odd and m > 3, A: is odd and k > m, then the voltage-like form of rule k is

mid

V  +  ^  -  0. (6.202)
n —l

The current-like rule is
Hi 

77=1

2

"3(277-1)
+ "277-1 k a L  \ k rp L

"5(277-1)
=  0, (6.203)

Remember that = 0. For the case k — m, where the boundary condition is not yet
2

relevant, E ^+i = 0 and ^F^+i =  0, as with the pre-terminal rules. These conditions will 
2 2 

not necessarily hold when A: > m -f 2.
It is useful to take into account condition (6.182) and rewrite the current-like rule,

kj^L
2

E
77=1

'277 k„ .L

"5(277 — 1)
'277—1 k oL  I k rpL

" 5 ( 2 7 7 - 1 )

0  Tl=S
Ti=c

2 2

(6.204)
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If m  is odd and m > S , k i s  even and A; >  m +  1, then the voltage-like form of rule k is

+ è  Cp»+ *'«») = 0. (6.205)
77=1

The current-like rule is

 2  /  „L r
+ E f- VJlt + ‘go'“Jo' = 0. (6.206)

\  ^s2t7 Cg2a /

If m is even and m > 2, A: is odd and A: >  m 4- 1, then the voltage-like form of rule k is

‘v" + ÿ} (‘4 + %) = 0, (6.207)
77 =  1

while the current-like form is
ÎZ1 /2 / .,LI" + Ë “Fi = 0. (6.208)

77—1 \  5(277—1) ^s(2t7—1)

If m  is even and m > 2, A; is even and k > m  then the voltage-like form of rule k is

+ E (% + *’5̂) ‘-E» = 0> (6.209)
71=1

while the current-like form is

‘I"  + E +  # - ‘g« ) +  ‘ go‘ ^0 =  0 . (6 .210)
Xj

'277+1 k  L I 2 2 7  
P n  “Î" L  

7 7 = 1  ^  s 2 t1 ^ s 2 t7

Remember that ^qm = 0. For the case k — m, where the boundary condition is not yet
relevant, — 0 and ^Fm — 0. These conditions don’t necessarily hold when A; > m-1-2. 

2 2

Once more, the current-like rule can be rewritten by taking into account the terminal 
conditions (6.182). If m == 2 then

Otherwise m > 4 and
m  —  2  /■

' I "  =  È +  ^ ' ‘5») ' P i  + -  \ * , 1 ,  • (6-212)
^—2 \  s2t7 s277 /  I Piÿ. Pan 1 l ~ C
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Observe how, in each of the rules above, coefficients of components that end on a 
cut terminal, or have the origin as destination, are not involved in the voltage-like rules. 
Similarly, coefficient of components that end on a sealed terminal are not involved in the 
current-like rules.

It remains now to show that the rules must always take the form set out above, and 
to find expressions that relate the current-rule and voltage-rule coefficients so they may 
be determined iteratively.

Part Three to  Part Seven

The remaining derivation of the post-terminal rules follows the same pattern as the deriva
tion of the pre-terminal rules.

As before, all forms of rule k are found by requiring that potential function 4>k+i 
satisfies rule k — 1. Again, only the voltage-like forms of rule k — 1 need be used. This will 
generate an expression for rule k in the form M  4- (c^/c^+i)A, where M  is the voltage-like 
rule and N  is the current-like rule.

Once more, it can be shown that M  ~  N h y  taking advantage of coefficient conservation 
and the fact that rule k —1 has been satisfied by potential The procedure works for
for both current injection and cut terminal boundary conditions.

Yet again, re-order the sums in the resulting expressions and extract the voltage-like 
(from M) and current-like (from N )  rules. These rules can be found in the full isolation- 
termination rules summary of section 6.4.7.

Each new rule still reinforces previous rules in later potential functions so that potential 
function where k is odd satisfies all odd numbered rules from 3 to k, and where k is 
even satisfies all even numbered rules from 2to&.

Note that the pre-terminal version of rule m +  1 is identical to the post-terminal 
version of rule m +  1 in every case. At this point, either can be used. The transition 
from pre-terminal to post-terminal is smooth, and the mathematical induction progresses 
straightforwardly, initialised for post-terminal rules by rule m -f-1.

6 .4 .6  C ab le  C y lin d er k —
B ey o n d  B o th  L eft an d  R ig h t T erm inals

The left and right Y-junction branches contribute independently to the voltage- and 
current-like rules, i.e. the form of the left branch contribution does not depend on struc
ture in the right branch. If one derived the rules for k > mu using the same approach as
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(a) Left branch

Origin ____

rriL odd
Left Terminai

tHr  odd
Right branch

Right Terminai

Origin -*Tl
-ITh

k odd 

k even

Origin

(b) Left branch

Origin ____

niL even
Left Terminal niR  even

Right branch
Right Terminal

Origin HTr

k  odd 

k even

Origin

(c) Left branch

Oiigin ____

rriL odd
Left Terminal tttr even

Right branch
Right Terminal

Origin

k  odd 

k even

Origin -ITr

(d ) Left branch mx, even
Origin

Left Terminal m n  odd
Right branch

Right Terminal

Origin

k  odd 

k  even

Origin HITr

Figure 6.13: Component diagrams for the cable cylinder potential functions with k > 
rriL^rnR. (a) mx, odd, odd; (b) tjil even, ttir even, (c) odd, even, (d) rui, even, 

rriR odd.
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above, it would emerge that the right branch post-terminal contribution is similar to the 
left branch post-terminal contribution, of course with r replacing l ,  and so ttir replacing 
rriL.

The purpose of all rules, both pre- and post-terminal is to ensure rule reinforcement is 
maintained, even though when k > rriR-hl enough rules are already satisfied to ensure that 
the isolation condition will always hold. Since rule k ensures that potential 02Æ-2 satisfies 
the isolation condition, if fe >  +  1 then 2k — 2 > 2mr > mx, +  mR. The reinforcement
procedure is now ensuring isolation in cable cylinders that will never actually exist. If the 
isolation condition were the only condition we wished to maintain, then perhaps alternative 
rules could be employed now. However, it is the rule-reinforcement structure that is 
necessary to ensure eventual termination, and subsequent construction of disconnected 
sections, rather than just one specific rule. It is vital that all odd rules are satisfied in odd 
potentials and all even rules are satisfied in even potentials, otherwise there is no way to 
guarantee termination.

6 .4 .7  F u ll Iso la tio n -T erm in a t io n  R u le s  Su m m ary (mx,mxe >  2)

In general, the voltage-like form of rule k can be expressed

Y Z  =  0, (6.213)
i,zzzjj

and the current-like form of rule k can be expressed

Y Z  =  0. (6.214)
i=L,R

236

Rule k is applied to the framework potential to generate the c-value c^. To understand 
termination and construction of the disconnected sections, the rule structure is considered 
in greater detail in following subsections. For m i,m R  > 2, the rules are divided into the 
following categories. (For mx, ~  1 or tUr = 1, the branch-shifting method described in 
Chapter 7 can be used.)

A. U n iversa l C ond itions: k = 1, k = 2, k = 3

The first three rules always take the same form, whatever the structure of the Y-junction. 
Trivially, rule one is the Rall-like condition, while rule two is the isolation condition,

(6.215)

Rule three is of the general form summarised below, and is used to initialise the
voltage-rule and current-rule coefficients.
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B. Pre-term inal Conditions; fc < +  1 and k is odd

The contribution from branch i to the voltage-like form of rule k is

k tl

=  +  (6.216)

If =  3 then

Otherwise, A: > 5 and

71=1

^  ^  and ^Ei -  0. (6.217)
' s i

[ft-lgi] ^  1

‘ e ;  =  <{ [‘ -" B y  4 ^  +  [‘ -" S L i]  411=1- 2 < n < ^  . (6.218)
s ( 2 î i — 1) 5 ( 2 n ' - l )

0 n =  ^

The contribution from branch i to the current-like form of rule k is

à±l
2

‘ r  =  E  I -  +  £ ^ = ^ 4 1  I ‘ B y (6.219)

If A; — 3 then

n = l  \  S ( 2 t7 - 1 )  *^5(271-1)

^Fi -  1 and ^F^ =  0. (6.220)

Otherwise, A: > 5 and

-  n =  1
2 < n < ^  . (6.221)

0 n =  ^

Remember that ^dk+i — 0.
2

C. Pre-term inal Conditions; k < m i F l  and k is even

The contribution from branch i to the voltage-like form of rule k is

k
=  +  (6.222)

77=1

If A; > 4, then

0
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Note that the coefficients of the two components that meet at the origin are not involved 
in this expression. The isolation condition has already ensured that so these
two components will automatically satisfy a cut terminal at æ — / .

The contribution from branch i to the current-like form of rule k is

2 /

"s(2n)

If A: > 4, then

k  rpi
L ^    0

l < n < ^
0

(6.224)

(6.225)

Note that the coefficients of the two components that meet at the origin do contribute 
to this expression. The isolation condition has already ensured that =  —^q^ so that 
these two components can only satisfy a cut terminal at x ~  L The only way in which a 
current injection condition could be satisfied when k is even is if =  0.
Remember that ^q\ = 0.

D . P o s t- te rm in a l C ond itions: is odd  and  k is odd , k > rrii 2

The contribution from branch i to the voltage-like form of rule k is
mi + l

=V"= Ÿ ,  ( ‘ 4  +  % )  ‘ B y
n = l

If nrii — 3 then

k ^ i
n — l

n — 2, T i = s  

n =  2, Ti=c

Otherwise, > 5 and

‘b 1

[‘ - ‘Bl] 4

[‘-"4]
'« (2 7 1 - 1 )

k - l ^ i
'« (2 7 1 -1 )

n — l 

2 < n < mi~l

n =  Ti=S

n =  Ti=c

(6.226)

(6.227)

(6.228)

The contribution from branch i to the current-like form of rule k is
7771 + 1 

2
'2n  k

n = l "s(2n—1)
CKr  +

'271—1 k a i  \  k

' s (2 n —l)
P I (6.229)
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If — 3, then

Otherwise, >  5 and

k p i

\ k - l p i

n = 2, % = c

n 3= 2, Tl=5

n = 1
[‘ - " B y  +  [* -"B 4 ,]  2 < n < mi —1

A:-l p i rrii+l , Ti=C 

2 , Ti=g

2

mj+1

Remember that =  0.
2

E . P o s t- te rm in a l C onditions: rrii is odd  an d  k is even, k > rrii F 1 

The contribution from branch i to the voltage-like rule is

If m > 3 then

k p i    I k —1 xpi
n + l

'2 » + l
r i   ̂ ,■"s(2ti)

+

1 = 1

k —1 p i

p i  + ^qi)  “B y

-'271 1 < n <
rrii — 1

J c-
(271)

The contribution from branch i to the current-like rule is
mj —1 

2

71=1 s (2 t i ) "5(271)

If m,: > 3, then

k p i -  n =  0
[‘ -" B y  -  [‘ - " B ^ y  ! < » < = + !

F. P o s t- te rm in a l C ond itions: rrii is even  an d  k is odd , k > rrii F  I 

The contribution from branch i to the voltage-like rule is

‘ V  =  ^ ( ‘ 4  +  ‘ 4 )  ‘B y
71=1
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(6.230)

(6.231)

(6.232)

(6.233)

(6.234)

(6.235)

(6.236)
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If mi — 2, then

Otherwise, rrii > 4 and

‘ b ;
' s i

p - iE |]  A

ffc —Ipi ]  2̂n I ffc —1 Eli ] *̂277-1
n —l

(6.237)

(6.238)

The contribution from branch i to the current-like form of rule k is

kpi 2n k . ^2n—1 k o i  \ k T?iT

If mi — 2, then

n —l  \  s (2 n —1)

k rpi

"5(277-1)

FI k ~ l  r p iE{

Otherwise, mi > 4 and

k p i -  n -  1
[‘ -" B y  +  [‘ - " B ;_ J  2 <  n <

G. P o s t- te rm in a l C onditions: mi is even  an d  k is even, /c > m  ̂+  2 

The contribution from branch i to the voltage-like form of rule k is
rrij

2

If mi =  2, then

Otherwise, mi > 4 and

^Ei

‘v"" +  X ) ( ‘4  +  ‘ i )  ‘B - = 0 ,
7 7 = 1

j  [‘ -"B[] 71 =  1, n = s

1 0 n =  1, T i= c

‘ B i

[‘- ‘b 4i ] + [‘->4] -4-  1 < „ < 7 7 7 1 -2

'« (2 7 7 )

2

0

3 ( 2 7 7 )

777 in  — , Ti—s

n =  ^ ,  Ti=c

(6.239)

(6.240)

(6.241)

(6.242)

(6.243)

(6.244)

The current-like rule is

7 1 = 1

=  0,
"5 ( 271) "5 ( 271)

(6.245)
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Remember that 0 .

6 .4 .8  T erm in a tio n  and  D isc o n n e c te d  S ection s

W ith the rules that have been developed so far one can construct, cylinder by cylinder, 
the fully equivalent cable for a general Y-junction. Apply the electrical continuity rules to 
generate a framework potential, then apply the isolation-termination rules to determine 
cylinder c-values and fix the potential function.

If one does this, then eventually the process terminates at the end of a cable cylinder, 
n  say, and the connected section is produced, simply because eventually the component 
weights for potential function turn out to be just right for termination. Basically, for 
each component pair, the two components will have the same magnitude but opposite 
sign (for satisfying an overall cut end) or their ratio will equal the ratio of their respective 
cylinder c-values (so that an overall current condition can be satisfied). Of course, an 
additional requirement for proper overall termination is that non-zero single components 
cannot end on a cut terminal when the overall terminal condition is sealed, and vice-versa; 
it has previously been noted that a sealed terminal could never be achieved when k is even 
unless the two components ending at the origin have zero coefficient.

How, though, do the isolation-termination rules guarantee this termination, and how 
are disconnected sections determined for degenerate Y-junctions. The key lies in a further 
examination of the structure of the voltage-like and current-like rules.

C ounting R u les and C om ponen ts —  Cable Predictions

As the number, k say, of generated potential functions increases, then for both the odd- 
numbered and even-numbered rules the number of components involved in potential k 
increases until both left and right terminals have been reached. Once the terminals have

ts

If mi — 2, then

Otherwise, m > 4 and

kpi _

0

0

1, T+=C 

1,

n — 0

K + l] 1 < n < mi— 2  
2

n = Ti=C

0 n = r f , Ti==S

(6.246)

(6.247)
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xn

been reached (when k — rriR in fact), however, subsequent potentials cannot involve any 
more than ttil -\- rriR components. Consequently, the number of components involved in 
the voltage- and current-like rules must reach a maximum. Consider the structure of -
post-terminal potential functions, as already illustrated in Figure 6.13. For a specific 
and rriR, all even-numbered potential functions will have the same general component 
structure, as will all odd-numbered potential functions. Of course, component weights 
will vary between two structurally similar, but different numbered, potential functions.

Meanwhile, as k increases beyond itir, the number of rules tha t describe the structure 
of the components will still increase. Recall that all odd-numbered rules from 3 to k apply 
to the component coefficients of odd-numbered potential k, while all even-numbered rules 
from 2 to k apply to the component coefficients of even-numbered potential k. It is simple 
enough to count them, revealing that fc-odd potential functions satisfy {k — l) /2  rules, 
while A:-even potential functions satisfy k / 2  rules, including the isolation condition.

Now consider once again the form of the voltage-like (6.226, 6.232, 6.236, 6.242) and 
current-like rules (6.229, 6.234, 6.239, 6.245). Each voltage-like rule is essentially a linear 
combination of component pairs sums plus the occasional single component (or two). Each 
current-like rule takes a similar form, but is a linear combination of weighted component 
differences, again with the occasional single component (or two), and also possibly a pair 
of components that meet at the origin. (In the forms given for the rules, the terminal 
components are actually paired with zero components for convenience.)

It is straightforward to determine from the construction rules (voltage and current), 
tha t for each branch i the following number of components pairs and singles are involved
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in the rules for post-terminal potential function k,

component pairs (voltage) 
or component differences (current)

m i ~ l
2

HR
2

rrii—2

rrii odd, k odd or even 
rrii even, k odd 
rrii even, k even

origin components 
for current-like rules 

(always zero for voltage-like)

0 k odd
1 k even.

number of 
terminal components 
in voltage-like rules

0 Ti=C
1 Ti=s, mi odd, k odd
1 Ti=5,77ii even, A: even
0 Ti=s, mi even, k odd
0 odd. A: even

number of 
terminal components 
in current-like rules

0 Ti=S
1 Ti=c, mi odd, k odd
1 Ti=c, mi even, k even
0 Ti=c, mi even, k odd
0 Ti=c, mi odd. A; even

(6.248)
Note that only the number of origin and terminal components differs between voltage

like and current-like rules.
Each rule can be regarded as a linear equation in a number of unknowns. Each com

ponent pair, single terminal component, and single origin component is regarded as an 
unknown, while the and are the linear coefficients. The set of odd rules and the 
set of even rules may each be regarded as a set of linear homogeneous equations.

Using equation (6.248), Table 6.1 summarise the total numbers of paired components 
and single components (referred to collectively as unknowns) on the left and right Y- 

junction branches for all configurations of m^  odd/even, m^ odd/even, and k odd/even. 
Note that the results for even and m^ odd are essentially the same as for m^  odd, m^ 
even, since it does not m atter really which branch is longer, and so they are not included 
to avoid repetition. It must be emphasized that different sets of rules apply depending 
on whether k is odd or even. For convenience, the total number of left and right branch 
cylinders is denoted m^, so

rriT — +  ttir. (6.249)

For each combination of m^, m ^, T+, Tr , k odd and k even, and for both voltage-like
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J

I

rriL o d d  a n d  mn o d d m i  ev en  a n d  mn ev en m i  o d d  a n d  m n  ev en

k o d d k ev en k o d d fc even k o d d A e v e n

ru le s  -+ (fc -  l ) / 2 kl2 (A -  l)/2 k/2 (fc — l ) / 2 k/2
Tl-=G, Tr^C niT — 2 rriT rriT rriT — 2 m r  — 1 m r  — 1
u n k n o w n s  -+ 2 2 2 2 2 2

{ v o ltag e  ru le )  

m a tc h  k — * m T  — 1 ■Ittit rriT + 1 tm T  — 2 t m r * m r  — 1

t u t  +  2 ïtït +  2 m r m r  4- 4 m r  4- 1 m r  4- 3
u n k n o w n s  -+ 2 2 2 2 2 2

( c u r r e n t  ru le )  

m a tc h  k = TTly +  3 Tot  +  2 niT +  1 m r  4- 4 m r  +  2 m r  4" 3

Tl=S, Tr^S rriT + 2 rriT mr m r  4- 2 m r  4" 1 m r  4" 1
u n k n o w n s  -+ 2 2 2 2 2 2

(v o lta g e  ru le )  

m a tc h  k = niT +  3 ^tut triT 4" 1 m r  4" 2 m r  4- 2 m r  4* 1

TTlp — 2 rriT + 2 rriT rriT m r  — 1 m r  4 -1
u n k n o w n s  —> 2 2 2 2 2 2
( c u r r e n t  ru le )  

m a tc h  k — *rriT — 1 ttit +  2 niT +  1 *mr * m r m r  4- 1

Tl=S, TR=C rriT rriT m r rtiT m r  4~ 1 m r  — 1
u n k n o w n s  —> 2 2 2 2 2 2

(v o lta g e  ru le )  

m a tc h  k — ttit +  1 *niT triT "k 1 * m r m r  4- 2 * m r  — 1

rriT rriT +  2 rriT txit 4" 2 m r  — 1 m r  4" 3
u n k n o w n s  ~+ 2 2 2 2 2 2

( c u r r e n t  ru le )  

m a tc h  k = tut +  1 niT + 2 rriT 4- 1 m r  +  2 t m r m r  4" 3

T l = C ,  T r = S rriT rriT rriT rriT m r  — 1 m r  4“ 1
u n k n o w n s  -+ 2 2 2 2 2 2

(v o lta g e  ru le )  

m a tc h  k ~ TUt +  1 *rriT m r  4* 1 *mT * m r m r  + 1

rriT m,T + 2 rriT rriT 4- 2 m r  4- 1 m r  4- 1
u n k n o w n s  —>■ 2 2 2 2 2 2

( c u r r e n t  ru le )  

m a tc h  k = niT + 1 777t + 2 m r  4- 1 m r  4" 2 m r  4" 2 mr 4 - 1

'li;-
4,

Table 6.1: Predictions for fully equivalent cable structure for the general Y-junction. 
Notation: =  mL+rriR. A * indicates at what length and with what boundary condition
the connected section terminates. A t indicates where a unit-length disconnected section 
occurs. A  ̂ indicates where a two-length disconnected section occurs. See text for more 
details.

Î
■'I'

I
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and current-like rules, the total number of unknowns is tallied, and we determine the value 
of k for which the total number of rules that are valid for the components of equals 
the total number of unknowns in rule k. Using the resulting information, it is possible to 
predict the lengths of connected and disconnected sections for all possible combinations 
of branch lengths and terminal conditions.

Suppose the odd rules and even rules each form a set of linearly independent homo
geneous equations. If we have n such equations (the rules) in n unknowns (component 
pairs or weighted differences, and singles) then there is no non-trivial solution and the 
unknowns must therefore be zero. For voltage-like rules, this leads to every pair of compo
nent coefficients summing to zero, i.e. the two coefficients have the same magnitude but 
opposite sign and so can satisfy a cut condition; in addition, any component tha t might 
end on a sealed terminal would have to be zero. On the other hand, for current-like rules 
this leads to each weighted difference of two components being equal to zero, i.e. the ratio 
of the two coefficients equals the ratio of the corresponding c-values, and so the component 
pair can satisfy a sealed condition where they meet; in addition, the coefficients of any 
components ending at the origin or at a cut terminal must become zero.

C onnected Sections

To predict cable structure for each combination of tUl , tur, Tl , and Tr (there are twelve 
distinct possibilities given in the Table 6.1), search for acceptable values of k, i.e. k must 
be less than or equal to -f tur, since total Y-junction electrotonic length is preserved 
in the cable. The lowest value of k, i.e. the first instance, for which equations match 
unknowns is indicated by a -k. If this value is A: — 4- niR then the Y-junction is
non-degenerate and the connected section is the full equivalent cable.

Note that, although there are apparently seven types of non-degenerate Y-junction 
from the Table 6.1, there are really only five actual fundamentally different situations. 
There are two pairs of equivalent situations due to the fact that when both branches have 
odd length or even-length, the same result applies if one swaps around the two different 
terminal conditions.

An example of this situation occurs when rriL is odd, rriR is even, and both terminals 
are sealed. Only one of the four possible combinations of rule-type (voltage or current) 
and k odd/even is acceptable (all the other evaluate to A: > mx, -f- m.R). It is the current
like rule/A; odd combination, i.e. the number of current-like rules equals the number of 

unknowns involved in the current-like rules when k — rriR -f itir {k odd). The connected 
section therefore terminates with a sealed terminal.

Figure 6.14 illustrates one component diagram for each of the five non-degenerate 
cases. Each component diagram describes the potential function structure in the final
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terminating cylinder.

It is also possible that equations and unknowns are matched when k < ttil +  rriR (the £
't,

remaining five situations from Table 6.1). In such cases the connected section is less than 
the total equivalent cable length, and a disconnected section remains to be found. For -I.

y
example when and tur are both odd, and both terminals are cut. The number of 
voltage-like rules matches the number of unknowns involved in the voltage-like rules when f
k = m i  d- ttir — 1  {k odd).

D isconnected  Sections

From the predictions made in Table 6.1, there are five classes of degenerate Y-junctions,
The cables for four of these have a unit length disconnected section, i.e. k — -f itlr — 1
(one off maximum) is the lowest value of k where equations match unknowns. In each ; ■
of these four cases, there also happens to be a rule-unknown match when k = rtiR +
(indicated by a f), i.e. if the connected section ends with a fc-odd rule then the k-even 
rules can subsequently be satisfied by the disconnected section. Similarly, if the connected 
section ends with a A:-even rule then the A;-odd rules can subsequently be satisfied by the ■£
disconnected section.

Proceeding as before, we would just apply the electrical continuity rules once more 
to get the appropriate framework potential function. Unfortunately this cannot be done «
in the conventional manner because c-value ratios between connected and disconnected 
cylinders are effectively either zero or infinity.

Consider first the case where the connected section terminates with a cut end, and 
consider the final potential function, k say (less than uir -fmjx), of the connected section.
Two components on the same branch which meet to satisfy a cut terminal must have the f
form

("̂ 7 ( 0  ^  1)̂  T æ) — fi((j  T 1)̂  — (c)). (6.250)
h

The are similarities here to the isolation condition, i.e. the two component coefficients ft
sum to zero. Applying the electrical continuity rules now produces,

— ^  { V i { j l  - x )  -  V i { { j l  +  r e ) ) . (6.251)
J

Since the c-value is effectively infinity as far as the connected section is concerned, 
this expression is not acceptable as it stands.

Similarly, consider the final potential function. A:, of a connected section terminated
.

with a sealed end. Observe that two components on the same branch which meet to satisfy :>■
a sealed terminal have the form

A (cjVi((j -  1)/ + x )  Fj+iVi{{j 4- 1)Z -  x)) . (6.252)
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Left branch: even length, sealed terminal 
(a) Right branch: even length, sealed terminal

Origin
- I  Sealed

Sealed

Cable has even length and final cylinder satisfies a sealed terminal

Left branch: even length, sealed terminal 
(b) Right branch: even length, cut terminal

Origin
- I  Sealed

Cable has even length and final cylinder satisfies a cut terminal

Left branch: odd length, sealed terminal 
(c) Right branch: odd length, cut tenminal

Origin
Sealed

Cable has even length and final cylinder satisfies a cut terminal

Left branch: odd length, sealed terminal 
(d) Right branch: even length, sealed terminal

Origin
- I  Sealed

Cable has odd length and final cylinder satisfies a sealed terminal

Left branch: odd length, cut terminal 
(e) Right branch: even length, sealed terminal

Origin
- I  Cut

Cable has odd length and final cylinder satisfies a cut terminal

Cut

Cut

Sealed

Sealed

Figure 6.14: The component structure for the final cylinder of the connected section for 
all non-degenerate Y-junctions. The right branch need be the longer branch, (a) Left 
and right branches both have even lengths and sealed terminals. The connected section 
has even length, and terminates with a sealed end, so the two components tha t meet at 
the origin must each have zero coefficient, as must the two that end at the cut terminals, 

(b) Left and right branches both have even lengths, one with a sealed terminal and one 
with a cut terminal. The connected section has even length, and terminates with a cut 
end end, so only the component that reaches the sealed end must be zero, (c) Left and 
right branches both have odd lengths, one with a sealed terminal and one with a cut 
terminal. The connected section has even length and terminates with a cut end, so no 
components need be zero, (d) Left branch has odd length, right branch has even length. 
Both terminate with a sealed end. The connected section has odd length and terminates 
with a sealed end. No components need be zero, (d) Left branch has odd length, with a 
sealed end. Right branch has even length, with a cut end. The connected section has odd 
length and terminates with a cut end. No components need be zero.
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Applying the electrical continuity rules to this produces

A (cjVi(jl - x )  + +  x)) , (6.253)

so the components coefficients have clearly been conserved. There is no obvious problem 
with cable c-values at this point since the zero c-value representing the boundary 
condition doesn’t appear, however, applying the normal reflection rule simply doesn’t 
produce the correct result.

Components in that end on a cut or a sealed end are not actually involved in 
the voltage-like and current-like rules respectively. They do not need to be because they 
automatically satisfy the appropriate terminal condition. When they are next reflected to 
produce a contribution to the next cable potential, the reflected component may take any 
value and still satisfy the same condition at æ — 0. We therefore have some flexibility in 
our choice of such reflected components.

So, if the connected section is cut, we apply the the reflection rules to all pairs of 
components, except those ending at the origin or at cut terminals. This will ensure a 
cut terminal is satisfied at x =  0 in the new potential. The components must be divided 
through by the reflection coefficient to remove the problem of an infinite cable diameter, 
and then we can fix any “free” components so that the next rule (k ~  is satisfied 
(there will be only one choice for each reflected component if the entire potential is to 
satisfy a terminal condition at æ =  /). The process is similar if the connected section is 
sealed, except that no rescaling is necessary, and the new potential satisfies a sealed (or 
current injection) condition at æ =  0.

Although this approach works, fortunately, in all circumstances where the disconnected 
has unit length, the structure of the potential is easily determined without having to make 
any effort to re-apply the electrical continuity rules. There is actually little choice over 
the potential function for a unit length cable segment which is terminated at each end. 
Only two boundary condition configurations arise — either both ends are cut, or one is 
cut and one is sealed.

If both terminals are cut then the components for the disconnected section potential 
must all have coefficients of the same magnitude but arranged such that compo

nents on adjacent cylinder have opposite sign. Figure 6.15a illustrates the configuration. 
One simply chooses one component at random and assigns it a non-zero coefficient; the 

remaining component coefficients are therefore fixed automatically.
If one terminal is sealed and the other is cut, the arrangement is only slightly more 

complicated. All component pairs that meet with a cut terminal must have coefficients 
with the same magnitude but different sign. The different component pairs which meet 
at a the sealed terminal must have a coefficient ratio equal to the corresponding cylinder
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(a) Left branch

Origin
Cut

Right branch

+A  - A + A + A  - A

Origin

—A + A - A + A  - A  h-A - A  - A

Cut

(b) Left branch

Origin

Right branch

]  Sealed

3 S ea led

-A

Origin

- A + A ^ Aÿ ,    2̂

Figure 6.15: Unit length disconnected section component structure, (a) A unit length 
disconnected section with two cut terminals, (b) A unit length disconnected section with 
one cut and one sealed terminal. See text for details.

c-value ratio. This configuration is illustrated in Figure 6.15b.
Both types of component structure trivially satisfy the relevant (A:-odd or A:-even, 

voltage-like or current-like) construction rule.
There is one final degenerate Y-j unction to be considered, i.e. that indicated in Table

6.1 b y a$ .  Here, both m,L and are even, and a voltage condition can be satisfied when 
k = -h rriji — 2 {k even), i.e. two unit lengths short of the full equivalent cable. There 
doesn’t appear, however, to be a larger k for which equation and unknowns are matched. 
This is because the disconnected section has a length of two units and satisfies another 
cut condition when k — uil mu {k even again).

Simply use the method described above to reflect the components of the final connected 
section potential, and rescale by the cut reflection factor m this case). The
k — rUi +  mji — 1 current-like and voltage-like rules (as well as all previous odd numbered 
rules) must be satisfied by the first cylinder of the disconnected section, and this fixes 
the coefficients of the components reflected from the origin and terminals. The electrical 
continuity rules and the isolation-termination rules then determine the final cylinder.

The full set of predictions are illustrated in Figures 6.16, 6.17 and 6.18. There are ten 
in total. These predictions don’t actually depend on which branch is the longer, just on

' -

...

■l!
: €

:;:g
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Left branch: even length 2a units, cut terminal

I". II— 31..  .....i cut
Origin ir— ---- ii ii——i cut

Right branch: even length 2b units, cut terminal

Connected section: even length 2 (a+b-1) units, cut terminal

Origin c z z z iL —  ii i cut

Cut 1. IfZ Z ZD Cut 

Disconnected section; even length 2, two cut terminals

(b)
Left branch: even length 2a units, sealed terminal

1—  - I d  ll m  — _J Sealed
Origin

I I f  II 1~ ~ ~ ----------------- I-------- II-------- II I Seated

Right branch: even length 2b units, sealed terminal

Connected section: even length 2 (a+b) units, sealed terminal

Origin I  ll II  ) I II ll ~1 Sealed

(c )

Left branch: even length 2a units, cut/sealed  terminal

LL— JCr.! II J I I I I I I I I I I Z I C I  I C ut/Sealed
Origin If-----ii= 3 :::: : :: :: : ::c = z i[= —11 1 seated/cut

Right branch: even length 2b units, sealed / cut terminal

Connected section: even length 2 (a+b) units, cut terminal

Origin I If II ..... ' P  I II 11 1 Cut

Figure 6.16: Predicted Equivalent cable structure when each Y-junction limb is an even 
number of basic length units.
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(a)

Origin

Left branch: odd length 2a+1 units, cut terminal

c r ~ i c L Z L [ z r z i : : : : : : : : : : : : [ z z - j  cut

Right branch: odd length 2b+1 units, cut terminal

Connected section: odd length 2 (a+b) +1 units, cut terminal

Origin I ZDI  ll  i II

Cut I I Cut 

Disconnected section; length 1, two cut terminals

Cut

]  Cut

(b) Left branch; odd length 2a+1 units, sealed terminal

Sealed
Origin

Right branch: odd length 2b+1 units, sealed terminal

Connected section: odd length 2 (a+b) +1 units, sealed terminal

Origin I

Sealed

D Sealed

Sealed I" I Cut 

Disconnected section: length 1, one cut terminal, one sealed terminal

(G)

Origin

Left branch: odd length 2a+1 units, cut / sealed terminal

c = i c = ] [ = ] : : : : : : : : : : : : c = ]  c u t /sea led

]  Sealed/C ut

Origin

Right branch: odd length 2b+1 units, sealed /  cut terminal

Connected section: even length 2 (a+b+1) units, cut terminal 

I II II 1- - ~ ................- ....................... I ir Cut

Figure 6.17: Predicted Equivalent cable structure when each Y-junction limb is an odd 
number of basic length units.
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(a) Left b ra n c h :  o d d  len g th  2 a+ 1  u n its , c u t  term in a l

Origin
] cut

11 I
Right branch: even length 2b units, cut terminal

Connected section: even length 2 (a+b) units, cut terminal

Origin CZZZ1CZZZZ3CZZZ]: : : : : : : : : : : : : : : : : : : : : : :  cn :
Cut I I Cut 

Disconnected section: length 1, two cut terminals

Cut

1 Cut

(b)
Left branch; odd length 2a+1 units, sealed terminal

Origin
J Sealed

I ' II " I Sealed

Right branch: even length 2b units, sealed terminal

Connected section: odd length 2 (a+b) +1 units, sealed terminal

Origin 1 ]  Sealed

(c)

Origin

Left branch: odd length 2a+1 units, cut terminal

C ZZ 3LLZL1IZ— I - - - - - - - - - - - - I-------- 1 Cut

Origin

Right branch: even length 2b units, sealed terminal

Connected section: odd length 2 (a+b) +1 units, cut terminal

Sealed

Cut

(d) Left branch: odd length 2a+1 units, seated terminal

L Z I Z I T  I Sealed
Origin

J l   L.

Right branch: even length 2b units, cut terminal

Connected section: even length 2 (a+b) units, cut terminal

Origin I IF" ' ll ~1~ ZZZZZZZZZZZZZZZZZZZZZZ I "

Cut I Sealed

Cut

Cut

Disconnected section: length 1, one cut terminal, one seated terminal

Figure 6.18: Predicted Equivalent cable structure when one Y-junction limb is an even 
number of basic length units, and the other is an odd number of basic length units.
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oddness and evenness, and boundary condition types. The predictions can also be used as 
a guide for determining electrical degeneracy and cable section length in advance of using 
the matrix methods of cable construction (Chapter 4). This can be an advantage when 
numerical errors prevent the generation of the exact subspaces in the matrix methods. 
The implications of these results, when constructing fully equivalent cables using real tree 
data, are discussed in Chapter 8.

The only situations in which the predictions are not accurate are when a Y-junction 
is a Rall-tree or the generalisation of this result for non-uniform diameter profiles. In 
these situations, there are never any reflected components and the connected section will 
terminate as soon as the terminals are reached, as shown in section 6.4.2.

6.5 A  M atrix  Form alism  for A naly tica l R esu lts

The continuous electrical mapping between a tree and its fully equivalent cable can be 
represented in a matrix form. For this purpose, we define vectors of potential functions,

V  = [vi{x, t),v^{l  -  x , t ) , . . . , v f{x, t ) , v^{ l  -  æ , i ) , . ..] (6.254)

and
#  =  [(l)i{x,t),(l)2 {l -  x, t),(l)s{x,t). , ,  (6.255)

Note how the even numbered tree and cable potentials are written so that both odd and 
even cable potentials can be expressed in terms of the same basic tree potentials. It is also 
necessary to define vectors of Y-junction and equivalent cable c-values,

'^T  ~~ diag , C2 , ^Tni^+mR-i ’ ^mL+mjî^ ’ (6.256)

and
T>c =  diag , c j , . . . ,  • (6.257)

The relationship between Y-junction and cable can then be expressed in the notation 
similar to that in Chapter 4.

Ÿ =  M v V ,  (6.258)

where Af is a matrix of potential function component coefficients, referred to as the voltage 
EGP~matrix (Electro-Geometric Projection matrix). The initial structure of A d  takes the 

form

M  =

0 0 0 0 . . 0 0 0 0 0 . . 0
0 0 0 . . 0 0 0 0 . . 0

"A" 0 0 . . 0 0 0 . . 0
0 . . 0 SE S 2 0 . . 0

(6.259)

'
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V
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i
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4 ::
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and it is fairly easy to see how it continues in the same manner.
Along the same lines, there is a current EGP-matrix,

M i  -  V c M v T^t ,̂ (6.260)

which relates the current injected along cable and Y-junction cylinders.

E xtracting th e Continuous M apping from the D iscrete M apping

This continuous mapping can be identified with the internal node of a matrix representa
tion when every tree cylinder is represented by three nodes (z=2). Once a cable has been 
constructed using a matrix method, the continuous mapping can be inferred by observing, 
from a simple understanding of the electrical continuity reflection-transmission procedure, 
the direction of the corresponding component.

6.6 F uture A n aly tica l W ork

Although much insight into why and how cables exist has been gained simply through 
deriving the rules, there are still results that have not yet been explained. Application of 
the analytical rules will produce a cable that properly terminates, along with any discon
nected sections. However, it has not been shown explicitly that c-values are guaranteed to 

.be positive. Also, in the case of a completely sealed tree, how does the procedure ensure 
surface area is preserved, and input current is conserved — these features are undoubtably 
related to the coefficient conservation that is always guaranteed in sealed trees. Physical 
arguments show that these properties must be conserved.

The rule development hints at much deeper mathematical structure that is not yet fully 
understood (though work completed so far suggests approaches to the problem that are 

likely to reveal this structure). For example, we had to move to potential function <pk+i to 
determine the right form of rule k. Yet despite this, the rules are conveniently independent 
of tree structure beyond the k̂ ^̂  cylinder on each branch. There is also the fact that the 
rules generally involve component coefficients that have already been arranged, although 
in quite a complex fashion, and the rules as presented don’t take direct advantage of 
this. The branch-shifting operations in Chapter 7 shed some additional light on simple 
Y-junction structure and hint that a more complicated procedure involving a “folding in” 
of branch potentials.

D eriving the M atrix Procedures U sing A nalytical R esults

Work has been done in deriving the matrix method from the analytical results, but it is
.incomplete and requires further investigation. Again, an proper derivation of the matrix
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methods will likely follow once the analytical theory is fully understood (the matrix meth
ods, in particular the scaling/rescaling transformations, are important considerations in 
developing the deeper analytical rules). In overview, the odd and even numbered potential 
functions are analogous to the odd and even numbered orthogonal vectors tha t form T, 
the tri-diagonalising matrix. This matrix relates scaled tree and cable potentials. The 
potential functions relate the actual potentials. The idea is to derive the orthogonality of 
the scaled potential functions, and show how this can lead to a matrix formulation of the 
problem.
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C hapter 7

A n A nalysis o f Cab le Structure  
U sing Branch-sh ifting

7.1 In trod u ction

The general analytical rules (Chapter 6) for constructing fully equivalent cables are com
plicated, and difficult to analyse to determine the deeper mathematical structure that we 
believe exists. Fortunately, a start can be made with simple Y-j unctions since they always L
have fairly simple equivalent cables and electrical mappings. This simplicity isn’t immedi- 
ately obvious, but manifests itself as the ability to generate equivalent cables rapidly and |
highly efficiently by using a branch-shifting method.

Branch-shifting is a procedure whereby a simple Y-junction may be reduced to its 
equivalent cable by way of a number of intermediate steps which involve a partial collapse f
of the tree, producing a portion of the equivalent cable connected section to which another, S
shorter (in terms of total child limb lengths) Y-junction is attached. Total electrotonic Y
length is preserved at each stage, and only at the final branch-shifting step is any discon
nected section produced. Essentially the method generates an intermediate set of fully 
equivalent singly branched trees^.

The results in this chapter include analytical expression for equivalent cable c-values 
and potential functions that clearly indicate how the electrotonic lengths of a tree’s ?
branches, as well as boundary conditions, shape the fine structure of an equivalent ca- 4!
ble. Observations concerning the trends in cable structure obtained from these results are L

1^The derivation of the general analytical rules in Chapter 6 hints at an deeper mathematical framework 
for cable construction which has yet to be determined. Branch-shifting may be a manifestation of this 
underlying structure. Thus, the deeper mathematical framework for general Y-junctions may also be an 
iterative collapsing procedure, although mathematical structures generated at intermediate stage may not Yi
always have a physical interpretation.
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equally valid for general Y-junction.
As in previous chapters, a Y-junction consists of left and right branches, with the left 

being the shorter (electrotonically) of the two. For simple Y-junctions, the left and right 
branch cylinders have electrotonic lengths ml and {m n)l respectively, where m > 1 
and n > 0. The total electrotonic length of the Y-junction is therefore (2m -f n)l. Left 
and right boundary conditions are denoted Tr and 7^, and are either cut (c) or sealed 
(s). (Of course, the general current injection condition is also valid, but the additional 
applied current is merely mapped to applied currents on the cable without influencing 
cable structure. From results in Chapter 6, i.e. equation (6.42), the current mapping 
follows from a slight modification of the voltage mapping.)

Length and boundary condition configurations can be divided into five distinct classes 
which cover all possible simple Y-junctions.

• Symmetric Y-junctions (n =  0).

• Short branch has a cut end (ly^c, n > 0).

• Short branch has a sealed end; long branch is over twice the length of the short 
branch (Ti,=5, n > m).

• Short branch has a sealed end; long branch has a sealed end; long branch no greater 
than twice the length of the short branch {tr-S^ Tr-S^ 0 <  n < m).

• Short branch has a sealed end; long branch has a cut end; long branch is no greater 
than twice the length of the short branch [Tl-S, Tr-C^ 0 < n < m).

For each case, rules are given for determining cable c-values and an electrical mapping 
between the Y-junction and its branch-shifted equivalent. At any point during the iterative 
procedure, the Y-junction in the current equivalent structure will fit into one of these 
classes and so, with all five possibilities accounted for, any simple Y-junction can be 
branch-shifted until the final equivalent cable is generated. Up to four Y-junction classes 
may be encountered when the branch-shifting procedure is applied to a particular simple 
Y-junction. As usual, time dependence in all expressions will be suppressed.

All branch-shifting results follow straightforwardly from the analytical construction 
rules. The fact that voltage continuity and current conservation holds in the each new 
Y-junction structure, electrotonic length is preserved, and a bijective electrical mapping is 
established, may be regarded as proof of the validity of the results. However, to indicate 
the methods by which these results were originally obtained, full derivations are given for 
the two Y-junction classes listed second and third.
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(a) Sealed

m l

Sealed

+ ĉ
]  Sealed

Sealed ]  Cut

m l

(b) Cut

m l

Cut

Cut

m l

Cut

Cut

(C) Cut

m l

Sealed

Cut

2 m l

Figure 7.1: The branch-shifting operations for symmetric Y-junctions. Cylinder lengths 
and c-values are given, (a) Rail Y-junction with two sealed terminals, (b) Rail Y-junction 
with two cut terminals, (c) Non-Rail Y-junction with on cut and one sealed terminal.

7.2 T h e S ym m etric Y -ju n c tion

The Y-junction is regarded as electrotonically symmetric when n — 0. This very simple 
condition encapsulates three of the situations that can mark the final stage in a branch- 
shifting sequence. These junctions collapse directly to unbranched structures, and are 

illustrated in Figure 7.1.

7 .2 .1  R a il S y m m e tr ic  Y -ju n c t io n

Provided Tl=Tr , the Y-junction is a simple, degenerate Rail tree and collapses to a equiv
alent cable consisting of the cylinder (connected section) with c-value

C l  —  c^, (7.1)
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and potential

1̂ 1 =  c‘ +  0 < x < m i ,  (7.2)

plus a disconnected section,

(f>2 (a;) =v l (1  ~  x)-~vr(1 -  x), 0 < x < m l ,  (7.3)

which may be arbitrarily assigned a non-zero c-value.
If both Y-junction cylinders are sealed, the connected section is sealed, while the 

disconnected section has a sealed terminal at æ — 0 and a cut terminal at a; =  L If both 
Y-junction cylinders are cut, the connected section is cut, while the disconnected section 
has a cut terminal at both æ — 0 and x  ~  I. The form of the first cylinder in any reduced 
structure is Rall-like (its c-value is the sum of the connecting Y-junction cylinders), so ■ •
equations (7.1) and (7.2) are repeatedly encountered.

7.2.2 Non-Rail Sym m etric Y-junction

Now suppose that the Y-junction has one cut limb (assumed to be the left cylinder) while 
the other (the right cylinder) is sealed. The connected section has length 2W , terminates 
with a cut end, and is the complete equivalent cable, i.e. such Y-junctions are non

while the c-value is

‘ .i-i

degenerate. This time the second cylinder is not disconnected and its potential function Y
ycomponents are obtained by elementary application of the isolation condition, so S

(p2 (x)  =  (v l (1  -  x)  -  vr(1  -  (k)) , 0 < x < m l ,  (7.4)

The electrical continuity rules ensure that current conservation and voltage continuity are 
guaranteed, i.e. 0i(/) =  </>2 (0 ) and d(d4>i{ l) /dx  =  cj502(O)/^a;.

7.3 Short C ylinder has a C ut Term inal

This is the simplest actual branch shifting operation, and involves shifting the short branch 
length m l  along the right branch by moving the branch point, redefining potentials and d
rescaling certain c-values. Despite its simplicity, this case illustrates the general approach v
used to determine the new equivalent structure.

Applying the electrical continuity rules to potential function (7.2), and then ensuring y
that the isolation condition holds, yields

=  ~ c ° ( c «  +  2c'-} -  “ « H  -  a:)) +  (7 .6 )
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h { x )  = (7.12)
-2 ^2

where C2 =  +  c^. It therefore follows that

M x )  = - |r-^  -  æ) -  -  æ)) +  - ^ v r {1 +  x). (7.13)
C| Cg Cj Cg
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valid for length W , and

c? =  (T.r)

At this point we ask whether it is possible to choose two properly terminated branches 
that form a Y-junction which, when connected to the initial cable cylinder, forms a new 
tree with the same total electrotonic length as the original Y-junction. Voltage continuity 
and current conservation must hold at the new branch point, and an electrical mapping 
between the Y-junction and new tree must be produced. If this is possible, the new 
structure must be equivalent to the original Y-junction.

Denote the potentials in the new left and right branches by ^l {x ) and Cr {x ), and their 
c-values by and . The only reasonable choice for the potentials, since we must be 
prepared for arbitrary structure beyond x — I on the right branch, is to set

^l {x ) == a{vR{ml -  x ) —VR{ml -  x)) and ^r {x ) = /3vR{ml-i-x). (7.8)

where a  and P are yet to be determined. The new left potential can only be valid for 
length ml, while the new right potential must be valid for nl, i.e. the length of the section 
of the right branch which has yet to be collapsed. Since these new limbs connect to the 
initial cable segment, which has length ml, total electrotonic length is preserved. Potential 

terminates properly at a; =  / with a cut terminal, while ^r  terminates with the right 
branch condition at x — nl.

Voltage continuity requires that, at the new branch point,

&(0) =  Îb(0) =  R{1), (7.9)

thus a = P = I Cl, and the potentials may be written

^r {x ) ^ — {vR{ml -  x ) - V R i m l - x ) ) , 0 < x < m l ,  (7.10)
^1

and
^r (x ) = ~VR{m l  +  æ), 0 <  a; <  nl. (7.11)

•=1 I
Since the new Y-junction, when collapsed, must have an initial cylinder corresponding

to the second fully equivalent cable cylinder, the two new branch potentials must be related
to (j) 2  by the simple Rail sum,
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Matching this up with the known expression for 02 (7.6) gives

c c
Cj C2 qC^qR _j- 2 c^) ’ and

■ ? ¥cfcj  (c^ +  2c^)’

so that Ĉ L 
1crc
,iî

C\2(cf)

Checking current conservation shows that

d(f)i
dx x = l

cf
dx x = 0

+ cf dx

(7.14)

(7.15)

(7.16)
£C=0

and the branch-shifting operation illustrated in Figure 7.2, has been established.
Note that the c-value for the new left branch is the same as that for the second cylinder 

on the non-Rail symmetric Y-junction, If n  =  0, i.e. the right branch disappears, then 
we can obtain two of the symmetric results by observing how the right branch condition 
influences the point where the cable stem and left branch meet. If the right branch 
condition is cut, then the cable stem and left branch must essentially both leak current 
into the cut terminal. The fact that they are each connected to the other cylinder of finite 
diameter is irrelevant considering the effectively infinite diameter of the cut terminal. The 
two branches are electrically isolated from each other, hence the disconnection. If the right 
branch is sealed, however, no disconnection occurs because current flows between cable 
stem and left branch as if there were no right branch at all.

It is useful to perform a brief analysis of the magnitudes of the new limb c-values and 
the implications of this. Observing that

and >c"" +  c^, (7.17)

it is clear that, in order to obtain equivalence, the new Y-junction limbs are wider than 
those of the original Y-junction. If the right branch of the original Y-junction is long 
enough, it is possible to repeat this same operation perhaps several times. Using the 
above c-values, it is straightforward to determine that, in general, after j  such shifting 
operations, the cable cylinder is given by

(c^ +  jc^)(c^ +  [j -  l)c^)
(7.18)

The left and right Y-junction limbs after j  such operations are

% 3  = + c")

{jc^ +  C«)2
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(a) Cut

m l

m  4- n ) l

Cut / Sealed

Cut

m l

Cut / Sealed

(b)

Cut
m l

m l
m l

m l

Cut /  Sealed

Figure 7.2: The branch-shifting operation when the short branch has a cut terminal, (a) 
The single operation, (b) Typical structure when three such operations are applied, i.e. 
n  > 2m.

Cable cylinder c-values are clearly increasing, i.e. Note also, that the quantity

(7.20)

is preserved over j .  Figure 7.2b illustrates the equivalent structure after three such op
erations. Eventually, a point is reached where the new Y-junction must be reassessed to 
determine the class it falls into.

7.4 Short C ylinder has a Sealed Term inal

When the short cylinder has a sealed terminal, it is necessary to construct length 2ml 
of the cable before attaching the new Y-junction. There are three distinct cases to be 
considered. When n > m, the rules are not much more complicated than those for the 
cut short branch. If n <  m, however, the long cylinder boundary condition must also be 
taken into account and it is necessary to express m  in terms of n,

m  = kn z, (7.21)

where A: > 1 is an integer and 0 < z <  n is an integer that makes up any deficit length. 
Clearly, i f  z  — 0  then m is an exact multiple of n, and so are both Y-junction cylinders —
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such situations actually lead to unbranched structure and so are possible final stages of a 

branch-shifting process. Together with the symmetric trees, such situations complete the 

set of final shifting operations.

7 .4 .1  L ong B ran ch  is at L east T w ice  as L ong as Sh ort B ran ch  (n  >  m )

In this case, the electrical continuity rules and the isolation condition, when applied to 
potential function (7.2), give

(j)2 { x)  =  { v L { m l  - x )  -  V R { m l  -  x ) )  V R { m l  +  x ) ,  (7.22)
c

valid for length m l ,  and

At this point, it turns out th a t it is not possible to branch shift ju st length m l .  Voltage 
continuity and current conservation simply cannot be achieved at the new branch point. 

Applying analytical construction rules once more yields

“f" 2c^
3̂ 1. - ^ )  + +  x), (7.24)

and

'■ -
This tim e we assume there is a  new Y-junction connected at the end of the second 

cable section. The new left and right potentials are again denoted w ith c-values

c^, c^. To allow for arb itrary  right branch structure, it is necessary to choose

^l {x ) =  a [ v R { x )  -  v l {x ) +  V R { 2 m l  -  x) ]  and ^r {x ) =  P v R { 2 m l x ) .  (7.26)

where a  and (3 must again be determined. The new left branch has length m l  and term i

nates w ith a  sealed end, while the new right branch has length { n  ~  m ) l  and term inates

w ith the original right branch condition.

Voltage continuity demands tha t

(j)2 { m l )  =  <^l(0) =  ^jî(O), (7.27)

so Q! ~  =  1, and the new potentials may be w ritten

^l {x ) — v r {x ) — vi^{x)  V R { 2 m l  ~~ x ) ,  0 < x < m l

^r {x ) =  V R { 2 m l  +  æ), 0 <  æ <  (n — m ) l .  (7.28)

Since 03 must be a simple Rail combination of the two new potentials, then

h { x )  ^  +  -^(^(æ ). (7.29)
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Consequently,

C t c f
03(æ) =  —  [ v r { x ) -  v l { x )  4- V R { 2 m l  -  x ) )  +  +  x ) ,

and, by matching up coefficients from potential function (7.24), we obtain

(7.30)

c f  =  c ^ .
 ̂ +  2c^ ’

Current conservation at the new branch point can be checked as before, showing

(7.31)

=.‘ t +  c
,T=0

(7.32)
æ=0

Interestingly in this situation, the right branch c-value is not scaled. Since the original 
Y-junction structure beyond 2 m l  on the right branch may take any form, this must be the 
case if total surface area is to be preserved — it is easily shown that cf 4- C2 +  c | =  2c^ +  c^ 
(recalling that the c-value is effectively a measure of surface area for a unit electrotonic 
length of cylinder). The branch-shifting operations must maintain surface area until a 
cut terminal is encountered.

Again, an analysis of new cable c-values can be performed, so note initially that

c f  >  >  c f . (7.33)

Also, while the right branch maintains the same c-value, the left c-value narrows, i.e.

c^ <  c^. (7.34)

In fact, it can be proven using a simple induction argument that, if j  is odd then

c ?  =  c« 1 +

while if j  is even.

cy =  c* 1

(7.35)

(7.36)4- jc^
As j  — 0 0 , clearly cf -> c^.

So, if the right branch is long enough for multiple shifting operations the general trend 
for the cable c-values is to tend towards the right branch c-value, but with a castellated 
diameter profile oscillating above and below c^, as illustrated in Figure 7.3b.

The new left branch limb after a  operations is connected to the ( 2 a ) c a b l e  cylinder, 
and has c-value

c  c

c« +  (2a)c^ ■
which clearly decreases as a  increases.
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(b) Sealed6 m l

(n  — 5 m ) l

Cut /  Sealed

v:

(a) Sealed

m l

f m  +  n)l

Cut / Sealed

(2ĉ  + c«) Sealed
c^(c^ + c ” ) 
(2c^ +  c«)

2W \ ( n  —

Cut / Sealed é

Figure 7.3; The branch-shifting operation when the short branch has a sealed terminal 
and n >  m. (a) The single operation, with new c-value. (b) If right branch is long enough, 
the operation can be repeated multiple times.

7 .4 .2  L ong C y lin d er  H as a S ea led  E nd and is L ess T h an  T w ic e  th e  

L en g th  o f  th e  Sh ort C y lin d er (n <  m ).

The c-values and potential function expressions now start to get more complex, with the 
equivalent trees having stems consisting of more than two cylinders. A full derivation is 
not given since it is similar to the previous case^.

Recall that m  = kn z. The part of the equivalent cable that is generated (i.e. the 
stem to which the new Y-junction will be connected) is formed from [k -f- 2) cylinders. 
The first cable segment is the usual one, with length ml. Connected to this cylinder are 
k cylinders each of length nl, and then a final cylinder of length zl, at the end of which 
a new Y-junction is connected. One of the two new Y-junction cylinders has length zl, 
while the other has length {n ~  z)l.

The first two stem c-values, and , are identical to those of the previous Y-junction 
class, as are the potential functions except that 02 is only valid for length nl. The remain
ing c-values are given iteratively, for 3 <  « < (A; -T 2) by

cf
{ j  -  l)c f 4-c^ '

(7.38)

^Though with an indnctive extension to the argument.
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It is then easily shown that

cf
 ̂ [(i -  l)ci +  c^][{3 -  2)cf +  c^] ’

which is also valid for j  — 2. Clearly the c-values decrease as j  increase. 
The new Y-junction cylinders have c-values

(7.39)

Clearly, for large k at least, the new Y-junction c-values are small, yet they will still be 
significantly bigger the cf^g- After length 2ml, then, the cable c-values are pumped up 
slightly before they continue narrowing when the new Y-junction is reduced.

To simplify the corresponding potential functions, it is convenient to write

0 ( æ )  == v r { x ) -  v l ( x ) .

Now, if j  is odd and 3 < j  < k + 2  then

0j(.'e) =  ip((m -  (j -  2 )n)l-j-x) -  ^  ^ ( ( ^  -  {j -  2 )n)l -  x)

(7.42)

+ ^  -0((m — (2a -f l)n)Z T x) -f ip{{m — {2a -f- l)n)ü — x)
a=0

+  V R { { m n ) l  — x). (7.43)

(Note that the sum goes to zero for j  = 3.) Otherwise, for j  even and 2 < j  < k-i-2,  

(pj{x) == ^  ^ 'ip{{m -  {j -  2)n)/ -  g:) -b VR{{ml +  a;)

2

■T ^  '0((m — 2(o -T l)n)Z + x) + ‘ip{{m — 2an)l — x). (7.44)
a = 0

(This formula also produces the correct potential for j  — 2).
Each stem potential from 02 to 4>k+i is valid for 0 <  a; < n/. The final stem potential 

(pk+ 2  is valid for 0 <  æ < zL Each pair of components with the same destination satisfies 
a local sealed condition (i.e. their coefficients have the same sign and magnitude).

If k is odd then the potentials in the new Y-junction are

^l{x)  = 'ipix) + 'ip{2 zl -  x]
2

-f ^  'tp{{m -  (Id- 2ci)n 4- z)l — æ) +  0((m  — (1 +  2a)n — z)l x)
ci“ 0

+  V R { { n - \ - m  — z ) l x ) ,  d < x < z l .  (7.45)
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(a)
z  >  Q c ^ , z l

Sealed

m l

Sealed

+ ĉ  C2 Cfĉ 2 \  Sealed  

—^ /  Sealed
2 m l

c f , { n - z ) l

z  =  0

C2 —>•
Sealed

(2m +  n)l

(b)

Figure 7.4: The branch-shifting operation when both Y-junction terminals are sealed and 
n < m. (a) A new Y-junction is formed when 0 < z < M (b) This is a final shifting 
operation when z =  0, and the original Y-junction is non-degenerate. See text for full 
details of c-value expressions.

^r{x) =  ijj{2 zl -F x)
f c - 3

2

+  ^  'tp{{m — (1 -f 2 a)n +  z)l +  x) 4- -0({m — (1 +  2 a)n — z)l — x)
0=0

+ VR{{n + m  — z)l — x), 0 < X < {n — z)L (7.46)

(Note that the sum goes to zero when k — I.) Otherwise k is even and 

^l {x ) ^ (x )
f c - 2

2

4- ^  ■0((m — 2{a +  l)n  4- z)l — x) 4- — 2an — z)l 4- x)
0 = 0

4- V R { { m z ) l  — x)^ 0 < x < z l .

^r{x) — — 2 (a 4- l)n  4- z)l x) + — 2 an — z)l — æ)
0=0

4- % ((m  4- 4- a;), ^ < x < { n ~ 'z ) l .

(7.47)

(7.48)

Both child cylinders terminate with a sealed condition.
Consider now the special case where z = 0. The right cylinder of the new Y-junction 

has length n/, while the left disappears. Both terminals, but in particular the left, are 
sealed and so the new right limb becomes the final segment of an equivalent unbranched
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structure, i.e. there is no disconnected section. Since one limb of the original Y-junction 
has length equal to an odd number of nl while the other is an even number, analytical 
results in Chapter 5 have already predicted this non-degeneracy. We can write — c^. 
Figure 7.4 illustrates this operation for both z 0 and z = 0.

It is important to note that, as j  increases, and cylinder c-values decrease, the potential 
function component coefficients become large. Basically, the voltage electrical mapping 
from tree to narrow cylinders is strong. Recalling from Chapter 6 that injected current 
divided by c-value is mapped in the same way as the potential, then, since the cable c- 
values become much smaller than tree c-value, the current mapping from tree to narrow 
cable sections is weak.

7 .4 .3  L ong C y lin d er  H as a  C ut E n d  and  is L ess T h a n  T w ice  th e  L en g th  
o f  th e  S h ort C y lin d er (n  <  m ).

This situation is the most complicated encountered when dealing with simple Y-junctions. 
The first two cable cylinders and potentials take forms identical to those in the previ
ous case where the long branch is sealed. This is not surprising since at this stage no 
components have reflected from the cut terminal. Again the stem is formed from {k 4- 2) 
cylinders, with the same lengths as in the previous case (i.e. m, k times n, and z), then 
the stem splits into a new Y-junction, with one child length zl, the other length (n — z)L 

When j  is odd and 3 < j  < A: 4- 2,

1 +
2cf

{j -  3)cf 4- d

Otherwise, for j  even and 2  < j  <  A; 4- 2,

- j- i
2cf

(i -  l)ci' 4-c^_ ■

It can be subsequently be shown quite easily that when j  is odd and j> 3  then

U -  1 )0° +  c'
4  =

C “ C

while if J >  2 is even, then
R „ C  

1c c

L(;-2)c^-kc^

{j -  2)cf 4- d

(7.49)

(7.60)

(7.51)

(7.52)
 ̂ d  [ ( j ~ l ) c j 4 - c ^

Clearly, then, the cable c-values exhibit a castellated diameter profile, and as j  —f oo, they 
tend to c-value c^c^/c^, i.e. the c-value of the second cable cylinder for the symmetric 
non-Rail Y-junction. This is because the large j  (high k) are only possible when the right 
branch in only slightly longer than the short branch, i.e. tree structure does not deviate 
too much from the symmetric case.
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The new Y-junction c-values are, for both k even and k odd,

A: + n.C
-1 J

- k + 2 fc +  1 -F
"1 J

(7.53)

The larger the value of k, the bigger the c-values in the new Y-junction. 
If j  is odd and 3 < j  < k + 2 the potential functions are

(j -  l)c f  +  d
—— -  {j -  2 )n)l -  x)

-F (-1 )  2 -  {j -  2 ) n ) l x )
■ ? -5  

7-1 ^
-F (—1) 2 y~^(—1)^ bPijiR — (1 +  2a)n)l + x) — ip{{m — (1 +  2a)n)l — x)]

a = 0

-F (—l)^ - t;ij( (m  +  n)^ “  x).

(The sum is zero when j  = 3.) Observe that where two components on the same branch 
meet their coefficients ensure a local current condition.

Otherwise, if j  is even and 2 < j  <  A: +  2,

(7.54)

{j -  l)c f  +  d

i = i
2

+  (—1) 2 ^ ( —1)“ bPii'm — 2{a -F l)n)/ -F æ) — ip{{m — 2an)l — x)]

(7.55)
a=0

(j —1)
+  ( - l ) “ 2“ t;^(m/+  æ)

Observe that where two components on the same branch meet their coefficients ensure a 
local cut condition.

The new child cylinder potential functions are, if k is odd

{k +  l)c f  +  d
fc-i

2

^l {x ) — i^jx) -F y^(-l)^+^i/)(2(z -F an)l -F x)
a=0

-F ^  (_i)a+i-0(2(a -F l)n l — x)
a=0

fc+i
+  (—1) 2 v u { k n ld x ) ,  0 < X < zl. (7.56)

(A: +  l)c f  +  d
^r{x) =  ^  {-l)^i/j{ 2 {z + an)l + x)

a=0
, _ f c - 3

+  ^  (—l)“^^^(2(a +  l)nf — æ)
a=0

-F (—1) 2 vji{{k-\-l)nl ~  x), 0 < X < {n — z)L{7.57)

269



In this case, the new left branch satisfies a sealed condition, while the right branch satisfies 
a cut condition. Otherwise, k is even and

kc9 +  d
. k - 2  

2

(1=0
. k - 2  ■ 2

4- ^  ("-l)“+^'0(2(a 4 -l ) n / 4-a:)
a=0

4- {—l)^vji{{m  + z)l — x)), 0 < x < z l .  (7.58)

kef  4- d
. k - 2  ■ 2

^r (x ) =  { - l)° ‘ijj{2{z + an)l + x)
a—0

a k — 2
2

a—O

4~ (—1) 2uj^((?n 4" z)l 4” ic), 0 ^ 3 ? ^  (n — z^l. (7.59)

In this case, the new left branch satisfies a cut condition, while the right branch satisfies 
a sealed condition.

If =  0, then m is an integral multiple of n, and the left branch disappears. In this 
case we have a final branch-shifting operation. However, the existence of a disconnected 
section depends on whether k is odd or even.

Consider k odd, where the left branch has a sealed terminal. When z — 0, this condition 
is essentially shifted to the connection between right branch and cable, but as has been 
noted preciously, the sealed terminal does not interfere with current flow between the right 
branch and cable. Thus when k is odd, the original Y-junction is non-degenerate. The 
right branch simply extends the cable by length nl, and we may write (jy^+six) = ^r {x ).

If k is even, however, the left branch has a cut terminal. Shifting the cut terminal to 
the point where right branch and cable meet effectively isolates them electrically, and the 
right branch, with length nl, forms a disconnected section.

Figure 7.5 illustrates all cases for this class of Y-junction.
In contrast to the situation where both terminals are sealed, when j  increases, and 

cylinder c-values increase, the potential function component coefficients become small. 
The voltage electrical mapping from tree to wide cylinders is weak. Again recalling that 
injected current divided by c-value is mapped in the same way as the potential, then the 
current mapping from tree to wide cable is strong.
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Figure 7.5: The branch-shifting operation when the short cylinder terminal is sealed, the 
long terminal is cut and n < m . (a) A new Y-junction is formed when 0 <  % < n. (b) This 
is a final shifting operation when % =  0, and the original Y-junction is non-degenerate if 
k  is odd, and degenerate if k  is even. See text for full details of c-value expressions.
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Figure 7.6: Example 1, illustrating the branch-shifting process. (1) The original tree, 
consisting of one cylinder length 3Ü with a cut terminal, and one cylinder length with 
a sealed terminal. (2) The equivalent tree generated after shifting the short cut cylinder 
length 31 along the long branch. (3) The equivalent tree after shifting the new Y-junction's 
short sealed cylinder by length 21 along the new Y-junction's long cut terminal. (4) The 
non-degenerate fully equivalent cable obtained after collapsing the non-Rail symmetric 
Y-junction.
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Sealed
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Figure 7.7; Example 2, illustrating the branch-shifting process. (1) The original tree, 
consisting of one cylinder length 9/ and one cylinder length bl, both with sealed terminals.
(2) The equivalent tree generated after shifting the short sealed cylinder by length 101. 
Since 5 =  1x4 -f- 1, three cylinders of the equivalent cable are produced, with lengths 5Z, 
41 and I in order. The new Y-junction has one branch with length 3̂  and one with length 
I, both with sealed terminals. (3) The equivalent tree generated after shifting the new 
short sealed cylinder by length 2L (4) The fully equivalent cable after collapsing the Rail 
symmetric Y-junction. The original Y-junction is therefore degenerate.
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7.5 D iscu ssion

Branch-shifting operations can be applied to generate fully equivalent cables for simple 
Y-junctions, as illustrated in Figures 7.6 and 7.7. They may also be used to partially 
collapse Y-junctions that have suitable (i.e. uniform) structure up to a certain distance 
from the junction. For example, the short branch may consist of one cut cylinder of length 
41 while the right branch consists of one cylinder of length 6Z connected to a further two 
Z-length cylinders the second of which terminates with a sealed condition. The short cut 
branch may be shifted once, but none of the given shifting operations are valid after this.

Attempts have been made to extend the branch-shifting process to general Y-junctions, 
however, shifting of multi-cylinder short branches has proven problematic. Therefore, it 
has not been possible to derive general branch-shifting operations that apply to trees with 
order higher orders of branching because the fully equivalent cable for a uniform Y-junction 
is not usually uniform itself. Basically, it seems that in these more complex structures, 
the analytical rules don’t ensure that simple sub-sets of potential function components bI
can satisfy boundary conditions. However, branch-shifting is possible if the left branch 
consists of one cylinder length ml, while the right cylinder consists of a chain of cylinders 
of length ml. The derivation of these results takes only a little more effort than for the 
simple Y-junction, and is not repeated.

Despite this current lack of obvious extensibility, the analytical results produced by 
the branch-shifting method clearly indicate how cable structure is shaped by length and |
boundary conditions, and how the electrical mapping is obtained by a repeated nesting 
of simpler potentials. Formulae for equivalent cables c-values for general Y-junctions Y
are much more complicated, but this is only because the cable fine structure is more 
complicated. The general trend is for c-values to (1) increase in size when a cut terminal J|
is encountered, (2) castellate when a single sealed terminal has been encountered, or 
castellate and/or increase when both a cut and sealed terminal have been encountered,
(3) narrow when two sealed terminals have been encountered, and (4) increase rapidly in 
size if two cut terminals have been encountered.

Further discussion, from a physiological point of view, of why cable structure follows 
these trends is given in Chapter 8.
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with the quasi-equivalent cables models that were outlined in Chapter 3. Fully equivalent
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8.1 In trodu ction

Beyond their general role as integrators of distributed electrical activity, the full implica
tions of complicated dendritic morphologies for neuronal signal processing are not known. 
Fully equivalent cables are a novel approach to the geometrical analysis of passive den
drites that allows one to extract information about their signal processing capabilities that 
is otherwise obscured by physical complexity.

This chapter summarises and discusses the main results of this thesis. Included is 
a brief comparison of the fully equivalent cable construction methods and a thorough 
discussion, in physiological terms, of cable structure as revealed through the analytical 
results in Chapters 5, 6 and 7. To link the theory with reality, several cables are constructed 
from morphological data for real motoneuron dendrites. We consider how equivalent 
cable structure is robust under small changes in dendritic structure; this is an important 
consideration given inevitable uncertainties in any experimentally obtained data.

The novelty and generality of the approach used makes fully equivalent cables far more 
suitable than either numerical simulation or previous cable models as a tool for analysing 
passive dendritic tree geometry and signal integration within such structures. We discuss 
the physiological implications of fully equivalent cables for understanding the relation
ship between structure and function in passive tree models, in particular the geometry- 
determined local and global signal processing capabilities of complicated dendrites. The 
implications for models with active membrane are also considered.

We also consider briefly the subject of parameter estimation, commonly associated
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cables have several implications in this area.

Finally, we consider possible applications of fully equivalent cables, and outline future 
work that might employ or extend the equivalent cable theory.

8.2 Fu lly  E quivalen t C ab le C on struction

The passive tree model (Chapter 2) is formed from linked neuronal cylinders subject 
to joining (current conservation, voltage continuity) and terminal boundary conditions. 
Terminals may either be of the cut (zero voltage) or current injection (specified voltage 
gradient) types. For simplicity, only the sealed end (zero voltage gradient) special case 
of the latter will be considered, since the specific value of the gradient has no bearing on 
cable structure and only enters the problem through the electrical mapping.

The existence of fully equivalent cables follows, without restrictions, from the passive 
model, and they are obtained on application of a suitable mathematical transformation.
Also formed from linked cylinders, though without branching, a fully equivalent cable 
is electrically identical, with respect to a point of origin, to its associated tree. A fully 
equivalent cable consists of one connected section that is attached to the origin, and pos
sibly several isolated disconnected sections. The (electrotonic) length-preserving mapping 
which relates electrical activity between tree and cable ensures that fully equivalent ca
bles satisfy the mathematical definition of equivalence given in Chapter 3. None of the 
previous restrictive or empirical quasi-equivalent cable models meet the requirements for 
mathematical equivalence.

Several mathematical procedures for transforming multiple uniform segment (in par
ticular multi-cylinder) passive dendritic tree models into their fully equivalent cables have 
been presented. These comprise two matrix methods (Chapter 4) and an analytically de
rived method (Chapters 5 and 6), each of which is suitable for transforming passive tree 
models of arbitrary morphology. In addition, a branch-shifting process (Chapter 7) will 
reduce simple Y-junctions (two uniform limbs) to their equivalent cables via an interme
diate set of equivalent Y-junctions. Figure 8.1 summarises cable construction and general 
features of cable structure. Each construction method can be implemented effectively as ;
a computer algorithm.

In order to generate disconnected sections, the construction methods must transform a 
tree in a Y-junction by Y-junction fashion, gradually removing branch-points, transforming 
more and more structure, and accumulating any disconnected sections associated with 
specific sub-trees, until the fully equivalent cable is generated. If a (binary) tree has 
N  branch points, a set of -f 1 equivalent structures (equivalent structures include the 
original tree, the intermediate trees with disconnected sections associated with transformed
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Figure 8.1: Features of fully equivalent cable structure and the construction methods, 
(a) An electrically passive multi-cylinder dendritic tree model may be transformed to (b) 
its fully equivalent cable, using (c) either a matrix or analytically derived construction 
algorithm, A connected section is attached to the cell body instead of the original tree. 
Disconnected sections (A, B, and C) are associated with local activity over specific den
dritic sub-trees (stemming from points A, B, and C).

sub-structure, and also the final equivalent cable) will be generated in the process. This 
does not constitute the full set of equivalent structures, however, since one can usually 
transform certain Y-junctions in a different order, and additional intermediate trees may 
be found if any Y-junctions can be branch-shifted. Note that the order in which its sub
trees are reduced does not affect the structure of the the final equivalent cable.

The derivation of the analytical method of cable construction (consisting of two sets 
of construction rules) gives great insight into why the cables can actually exist at all. The 
electrical continuity rules, which follow straightforwardly from a first-principles construc
tion algorithm (Chapter 5), show that it is possible to guarantee voltage continuity and 
current conservation in a new unbranched structure, but without uniquely defining this 
structure. By insisting that Y-junctions may be transformed in isolation from the rest 
of the tree, a set of isolation-termination rules may be formulated which ensure that the 
cable will eventually terminate, and is uniquely defined. The isolation-termination rules 
simplify substantially for simple Y-junctions. There are indications that an even deeper 
mathematical structure, and a more fundamental set of construction rules probably exists.

The analytically derived construction algorithm is reasonably effective, although, in 
the form given, cannot compete with the matrix methods for raw speed. If any simple 
Y-junctions are encountered during the transformation of a tree, then by far the most 
efficient way to rapidly produce their equivalent cables is to use the analytical expressions 
obtained from the branch-shifting method (Chapter 7).
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Of the two matrix methods, the Householder is the preferred approach since it naturally 
generates disconnected sections, and is established as a highly stable procedure. The 
Lanczos method is the fastest and most memory-efiScient way to construct fully equivalent 
cable structure provided the connected section is all that is required, i.e. information 
concerning disconnected sections and the electrical mapping is not retained. It is not 
as numerically stable as the Householder method, but this instability is only likely to 
emerge where the tail of a sealed connected section narrows rapidly. Fortunately, analytical 
results allow cable structure, and the existence of disconnected sections in particular, to 
be predicted prior to construction, and this enables checks to be made as the matrix 
algorithms progress.

The construction methods all ensure that important properties of a tree are conserved 
in its fully equivalent cable. The total electrotonic length of a tree equals the total electro
tonic length of its fully equivalent cable. The steady-state input conductance of the tree 
equals the steady-state input conductance of the cable connected section. In addition, if 
the tree terminals are sealed (or subject to current injection boundary conditions), total 
surface area and injected current are preserved in the equivalent cable’s connected section.

The assumptions for the passive multi-cylinder model ensure that cable results are 
independent of specific electrical parameters, i.e. membrane capacitance per unit area, 
membrane conductance per unit area, and cytoplasmic resistivity, which have been taken 
to be constant for the tree^.

8.3 Fu lly  E quivalen t C ab le S tructure and Tree F un ction

Electrical activity on a multi-cylinder passive dendritic tree model either must (if all Y- 
junctions encountered during reduction are non-degenerate) or may (if any Y-junctions are 
degenerate) induce a resultant disturbance in the potential at the origin. Fully equivalent 
cable cylinders must have just the right electrotonic lengths, diameters and boundary 
conditions such that the corresponding activity over the equivalent cable, as defined by 
the electrical mapping, will generate exactly the same effect at the origin. An input current 
(or the membrane potential) at one point on a dendritic tree will typically map to many 
inputs (or a distribution of membrane potentials) on the equivalent cable, and vice-versa.

The analytical results in Chapter 6 have shown that the electrotonic lengths of each 
separate cable section can be determined prior to construction (see Figures 6.16, 6.17 and 
6.18). In addition, the branch-shifting results of Chapter 7 clearly describe trends in the

^Recall from Chapter 2 that there is actually more flexibility than this, i.e. in the choice of cross-sectional 
profile { A  and P )  and the electrical parameters (p,, q m , C m ) in each uniform segment of dendrite, provided 
that the ratio C m  jQm  is a constant throughout the tree.
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connected section fine structure which, are determined primarily by boundary conditions, 
and also by relative electrotonic lengths of branches. Disconnected sections are generally 
short (compared to the total electrotonic length), most often consisting of a single cylinder 
of basic unit length. They are long only when the original Y-junction exhibits a high level of 
symmetry, i.e. Rail trees and the non-uniform generalisation given in section 6.4.2 (where 
the left and right branches have the same electrotonic length and boundary condition, 
and a constant c-value ratio from origin to tips). In such cases, the disconnected section 
structure is similar to that of the connected section, except that one end terminates with 
a cut end rather than being attached to the junction (recall Figure 6.7).

8 .3 .1  T h e  In flu en ce o f  B o u n d a ry  C on d it ion s

Boundary conditions dominate in determining whether there is a tendency for an in
creasing, decreasing, or roughly uniform (castellating) trend in the diameter profile of an 
equivalent cable’s connected section (moving away from the origin towards the terminal).
These trends are clear from the analytical expressions obtained in Chapter 7 for simple 
Y-junctions. As one moves from junction to branch tips of a Y-junction, constructing a 4
fully equivalent cable cylinder by cylinder, c-values tend to

1. Increase in size once a single cut terminal is encountered.

2. Castellate, or oscillate, when a single sealed terminal has been encountered.

3. Narrow when two sealed terminals have been encountered, possibly with the occa
sional distinct jump in diameter.

4. Increase rapidly in size if two cut terminals have been encountered.

5. Castellate, or oscillate, and/or increase in size, once both a cut and sealed terminal 
have been encountered.

The connected section terminates with a cut terminal unless both Y-junction terminals 
are sealed, in which case it terminates with a sealed end.

Recalling that the current injection boundary condition is equivalent to a sudden drop 
in diameter to zero, while a cut boundary condition is equivalent to a sudden jump to 
infinite diameter, then it can be seen that a boundary condition tends to impose itself 
on cable structure by shifting c-values towards the particular extreme diameter that the 
terminal condition represents.

Tree structure at an electrotonic distance x  from the origin can only influence cable 
structure beyond a distance x  from the origin. Although there exist symmetric trees (Rail 
tees and the generalisations given in Chapter 3) where boundary conditions don’t have a
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chance to exert their influence on cable structure before the connected section terminates 
(tree boundary conditions only determine cable boundary conditions), in general the length 
of the connected section is longer than the maximum origin-to-tip electrotonic length, 
enabling a boundary condition at electrotonic length I to influence subsequent equivalent 
cable connected section structure.

Figure 8.2 illustrates a set of equivalent cables for Y-junctions where each branch has 
the same c-value, as well as sealed terminals. Total electrotonic length, and consequently 
surface area, is the same in each Y-junction — they are distinguished only by the relative 
electrotonic lengths of the two branches, indicated to the left of the connected section. The 
sealed boundary conditions ensure that cable structure tends to experience castellating 
and/or narrowing, while relative lengths determine how far from the origin significant 
(if any) narrowing takes place. Clearly, the smaller the difference in branch lengths (i.e. 
the closer the Y-junction is to satisfying conditions for a Rail tree) then the shorter the 
connected section length before either termination or distinct narrowing occurs. In fact this 
length corresponds to the length of the longer Y-junction limb. In most cases, the narrower 
structure is clearly not negligible. Note that the construction methods for empirical cable 
models (Chapter 3) would terminate when the long limb terminal was reached, unable to 
approximate important tail sections in the fully equivalent structure.

It is not practical to illustrate cables for the same trees but with both terminals cut, 
since diameters, from origin to terminal, often range over several orders of magnitude — 
c-values are always increasing. Except for the Rail Y-junction, the surface area of the 
connected section is very much greater than that of the tree.

A selection of cables for Y-junctions, where one terminal is cut and the other is sealed, 
are illustrated in Figure 8.3. Ratios of sealed branch length to cut branch length range 
from 39:1 to 3:37. For the length of the sealed branch, the equivalent cables have identical

I:

’Ï
structure to the corresponding cables in Figure 8.2. Beyond this point, the cut terminal 
comes into play and the diameters are generally increasing. The closer the cut terminal 
to the junction, the more dramatic the influence it has on cable structure, increasing 
surface area considerably. The non-Rall symmetric Y-junction (20:20) is merely a uniform 
cylinder, but with electrotonic length twice that the origin-to-tip length.

8 .3 .2  S ign a l Loss and  S ign a l R e flec tio n

The fact that two boundary condition types have extreme and opposite effects on equiva
lent cable diameters, can be understood in terms of signal loss and signal reflection at the 
dendritic tree terminals. Recall from Chapter 2 that no charge may leak from a sealed 
terminal (this is regarded as signal reflection, since charge flow is redirected back towards 
the cell body), while charge leaks directly from a cut terminal (this is regarded as signal
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Figure 8.2: A selection of cables for simple Y-junctions with the same surface area but 
dijfferent left and right branch lengths; both tree terminals are sealed. Both branches have 
the same diameter so that all trees have the same total electrotonic length (40 basic units). 
The cable origin is at the left in each case. Moving from top to bottom, the tree branch 
length ratio progresses from 20:20 (the Rail Y-junction) to 39:1. The quantum length for 
a particular is the largest common factor of the two branch lengths, which in many cases 
is larger than 1, in the units given. See text for discussion.
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Figure 8.3: A selection of cables for simple Y-junctions with the same surface area but 
different left and right branch lengths; one tree terminal is sealed, while the other is cut. 
Both branches have the same diameter so that all trees have the same total electrotonic 
length (40 basic units). The cable origin is at the left in each case, branch length ratios 
are given in the form (sealed branch length):(cut branch length). See text for discussion.
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loss). We must consider cable structure in conjunction with the nature of the electrical 
mapping to this structure.

As the analytical expression derived from the branch-shifting method have already 
indicated (Chapter 7), there is a clear relationship between equivalent cable cylinder di
ameter and the relative magnitude of the electrical mapping from any point on the tree to 
that cylinder. Since trends in cable structure are determined primarily by boundary con
ditions, then so is mapping strength. Basically, sealed terminals promote strong voltage 
mappings and weak injected current mappings, while cut terminals promote weak voltage 
mappings and strong injected current mappings.

This can now been seen in Figures 8.4a-c. A unit potential is mapping from each tree 
to its equivalent cable. The potential at electrotonic distance X  on the dendritic tree will 
map to a scaled potential at distance X  on the cable connected section, plus multiple :
positive and negative potentials further down the cable. These additional potentials are

'Inecessary to compensate for the non-Rall nature of the Y-junction, i.e. they account for 
the modulation of electrical activity in unsymmetric dendritic structure.

For a unit potential input on a branch of the dendritic tree, at distance A, say, from 
the origin, then beyond distance X  along the equivalent cable there is generally a large 
mapping to cylinders with small diameters and a small mapping onto cylinders with large 
diameters. The current mapping follows straightforwardly — recall that the ratio of 
applied current to c-value is mapped in the same way as voltage. Where there is a large 
membrane surface area (large diameter), a large current will be required to depolarise it a 
small amount, while only small currents are required to produce a significant depolarisation 
across the membrane of thin cylinders.

The promotion of large diameters by cut ends is consistent with the fact that accumu
lated charge leaks from cut terminals. Since the greater amount of current flows in the 
direction of lower impedance (i.e. larger diameters), within these large cylinders a greater 
amount of charge is channelled away from the origin towards the cut end. The large 
current mapping describes this lost current. The corresponding small voltage mapping 
mimics the fact that there is minimal signal reflection within the tree.

The promotion of small diameters by a completely sealed tree is consistent with the 
fact that there is no signal loss from such a terminal. The decreasing cylinder diameters 
channel the greater amount of charge back towards the equivalent cable origin, a result 
of full reflection at sealed terminals in the original tree. The strong voltage mapping 
describes the strong reflected component of the signal, while the corresponding weaker 
current mapping mimics the zero current loss from terminals.

Two different boundary conditions on a Y-junction (one cut and one sealed) results in 
an equivalent cable connected section with a cut terminal. This ensures that accumulated
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Figure 8.4: Examples of electrical mappings in Y-junction dendritic trees where the elec
trotonic lengths of child branches are unequal. The sizes of the arrows indicate the strength 
of the mapping at each point.

283



charge may still leak from the system (other than through the membrane).

8 .3 .3  Im p lica tio n s  o f  “F u zzy” T>ee D a ta

The trees that are used for cable construction must be formed from cylinders whose lengths 
are multiples of a common basic length, however small this might be. As discussed in 
Chapter 2, real tree morphological data has some measure of uncertainty associated with 
it. For example, it is possible that two Y-junction representations, one degenerate and 
one non-degenerate, are equally valid models of real data for a Y-junction. The point is 
that fully equivalent cables are equivalent to the tree model, not the data.

It is important to note that, except in the unlikely case of the non-uniform generali
sations of a Rail tree, the length of a disconnected section is typically one basic unit, but 
possibly two units (if both terminals are cut). Clearly, then, by decreasing the basic unit of 
electrotonic length in order to increase model resolution, one is likely to increase the elec
trotonic length of the connected section, and decrease the length of disconnected sections 
by the corresponding amount (in certain cases so that disconnected sections may disappear 
completely). Exactly disconnected sections, and therefore exact electrical degeneracy, are 
features of the multi-cylinder model, not necessarily of the original tree data.

This is where approximate degeneracy must be considered. It is possible that sections 
of the connected section that are near the end of the connected section are so narrow 
(in the case of a sealed end), or so wide (in the case of a cut end), as to be regarded as 
effectively disconnected, and having negligible influence at the origin. The corresponding 
electrical mappings describe activity that is, for all intents and purposes, ineffective at the 
origin in comparison to similar activity mapped from cable cylinders that are closer to the 
origin. Fully equivalent cables are robust objects, as discussed in Chapter 3.

8 .3 .4  C o m p lica ted  D en d r it ic  G eo m etry

Equivalent cable results for Y-junctions generally extend naturally to more complicated 
trees — after all, any tree can be turned into a Y-junction by successive reduction of 
its sub-trees. The major differences are in the number of disconnected sections, and the 
subtlety in the fine structure of the cable, while the influence of boundary conditions 
is more pronounced, i.e. cut terminals promote extremely large diameters, while sealed 
terminals promote more significant narrowing of a cable. Of course, these things depend 
on the level of complexity in the dendritic tree being transformed.

As more structure is transformed, the ratio of basic electrotonic length to total elec
trotonic length becomes smaller. This tends to produce cables that are less obviously 
discontinuous, and have a smoother diameter profile.
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For example, suppose the Y-junctions at the tips of a sealed tree (with n orders of 
branching) are transformed, producing narrowing cables that are reattached at the corre
sponding branch points. The Y-junctions at the tips of the new tree (with n — 1 orders of 
branching) must then have, in general, distinctly narrowing limbs. These new Y-junctions 
are transformed in turn, producing cables that have even more pronounced narrowing. 
The process continues until the final fully equivalent cable is generated. An even more 
striking effect is seen with cut terminals, with extreme increases in diameter, as more and 
more Y-junctions are transformed — large diameters in equivalent cables for sub-trees 
promote even larger diameter in the final equivalent cable.

Eleven dendrites from an alpha motoneuron (identified as M43/5) have been discretised 
and transformed (thanks to Dr. R.E. Burke, NINDS, NIH, for supplying morphological 
data for motoneuron dendrites. See Burke et al. (1988) and Cullheim et al. (1987a, 1987b) 
for additional details of this cell). The equivalent cables (connected sections) are illustrated 
in Figure 8.5 (in physical space). In addition, the eleven trees (regarded as attached to a 
point-like lumped soma) are collapsed into one equivalent cable, also illustrated.

All terminals are treated as sealed, and the consequent narrowing of the cables is 
clear. Because of the small basic unit of electrotonic length used, the large combined 
cable appears as an effectively continuous structure.

Fully equivalent cable structure has several implications for parameter estimation methods 
that use quasi-equivalent cable models. As well as being a possible replacement for the 
quasi-equivalent cables, fully equivalent cables can serve as guide to interpretation of 
results obtained using these previous methods, i.e. to determine when it is reasonable to 
use quasi-equivalent cables, and to warn against their use when it is not appropriate.

Parameter estimation for real neurons is inherently prone to uncertainty, relying on 
several geometrical and electrical assumptions about properties of a neuron’s dendritic 
trees and cell body. The use of fully equivalent cables instead of, say, lambda cables, may 
not remove much of the uncertainty in estimates of obtained in this way. However, by 
comparing a lambda cable to the fully equivalent cable connected section for the same 
tree, one can observe how close a match the two are, and consider whether the differences 
are significant enough to cause concern.

One must also beware of interpreting data where the assumption of sealed dendritic 
terminals may not be valid. It is possible that experimental conditions under which 
transient voltage responses are recorded at the soma cause some dendritic branches to be 
physically cut, and a cut condition may be more realistic than a sealed condition because 
of significant current leakage. The assumption of empirical cable models (in particular the
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Figure 8.5: Equivalent cables generated from data for motoneuron cell M43/5. Eleven 
dendrites have been transformed individually, and also combined together. See text for 
discussion.
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lambda cables) that surface area is conserved in the replacement structure, is no longer 
valid. It can be seen from Figures 8.2 and 8.3 that the same tree structure subject to 
different boundary conditions yields markedly different fully equivalent cables.

The structure of fully equivalent cables also raises questions as to what is meant by 
“effective electrotonic length” (Rail, 1969a; see also Holmes and Rail, 1992a,b; Holmes et 
aZ., 1992) of a tree, which is often used as a measure of the electrical compactness of a 
tree. While this concept is certainly valid for Rail trees, for less symmetric trees it is a less 
well defined quantity. In Figure 8.5, the total electrotonic length of the cable is essentially 
the total electrotonic length of all the tree limbs, and so significantly greater than the 
electrotonic length of quasi-equivalent cable models. Of course, a tail portion of this is 
clearly very narrow. The tapering is gradual, however, and there is often no clear decision 
as to where the cut-off point lies. The idea of effective electrotonic length is therefore not 
very meaningful unless discussed in conjunction with the fully equivalent cable’s geometry 
— for example, one might define a measure of electrotonic length as that length from the 
origin at which the cable diameter has fallen to some proportion of the initial diameter.

8 .3 .6  L oca l and G lob a l P ro c essin g

Fully equivalent cables allow one to completely classify the geometry-dependent signal 
processing properties of a passive dendritic tree model with arbitrary geometry.

Electrical activity over a tree is mapped into activity over cable cylinders. Each cable 
cylinder can be regarded as representing a characteristic configuration of activity over the 
tree — i.e. a configuration that acts like it is generated in just one cable cylinder of an 
unbranched structure. Any activity over the tree is a combination of such characteristic 
“modes” of electrical activity. Disconnected sections define configurations, or modes, of 
activity that interact entirely locally. The connected section defines configurations, or 
modes, of activity that have global influence on the tree. When considering real trees, 
narrow cylinders or extremely wide cylinders at the end of a connected section can be 
regarded as representing modes of activity that are negligible at the origin.

It is interesting that the electrical mapping from specific cable cylinders back to the 
tree usually maps a single input on the cable to many inputs on the tree. It would 
be even more interesting if, for certain neurons, excitatory and inhibitory synapses are 
arranged over dendritic sub-tree in such a way that the resulting activity decays passively 
in corresponding configurations (though this is possibly overoptimistic). In particular, if 
such an input configuration equates to activity mapped from a disconnected section, then 
it may be that synapses are arranged to take advantage of the local processing capabilities 
of geometry. Sub-sets of the local configuration may be activated simultaneously — the 
passive coincidence of configurations of activity discussed in Chapter 3.
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8 .3 .7  T ree C lassifica tion

While two different dendritic trees may have entirely different local properties, it is possible 
tha t they have very similar global properties. One implication of fully equivalent cables 
is that observably different dendritic trees may transform to equivalent cables tha t will 
have the same, or approximately the same, connected section. Similarities in connected 
sections can form the basis for a classification of neuronal types (in terms of their passive 
properties). Electrical mappings and disconnected sections will be different, of course 
(unless the two trees are morphologically identical!). Recall Figure 3.15.

8.4 C onclud ing R em arks and Future P ersp ectives

While some areas still need further mathematical clarification, the foundations of equiv
alent cable construction have now been laid. However, the full implications of the fully 
equivalent cables has yet to be determined for real neurons. In the present model the 
membrane time constant must be uniform over the tree, a factor which prevents the cur
rent techniques being used for the construction of dynamic cables with active membrane. 
Synaptic inputs must be simulated by current injection (rather than conductance change), 
so transmembrane depolarisations and hyperpolarisations are assumed to interact linearly. 
Observations made using fully equivalent cables should have significance for classes of neu
ron where passive electrotonic structure dominates the spread of membrane potential (or 
where active properties have been pharmacalogically blocked). Sub-threshold voltage dis
turbances can behave passively, and equivalent cables describe how geometry shapes this 
activity.

The present cables will not account for non-linear effects due to active membrane 
conductance changes, and so will not naturally reproduce observed phenomena such as 
action potentials, or other phenomena involving signal regeneration by the voltage-gated 
opening of ion channels.

It has often been recognised that the simpler case of passive tree geometry must be fully 
understood before one can even begin to understand the interaction between geometry and 
active membrane properties (e.g. Rapp et aZ., 1994). At this stage, we sacrifice full realism 
in an attem pt to get a handle on the function of complicated dendritic tree geometry. One 
cannot hope to understand geometry in the active model beforehand. The passive model 
describes a fundamental layer of geometry determined signal processing capability that 
is probably enhanced enormously by non-linear effects associated with voltage-dependent 
conductance changes.

The apparent power of equivalent cables which satisfy the demands of a rigorous m ath
ematical definition of equivalence suggests that, if these techniques can be adapted for tree
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models where the membrane is active, one may gain further insights into the role of geome
try in signal processing. Though extensive work has been done to investigate the properties 
of passive geometry, they have almost invariably involved an analysis of solutions, rather 
than the describing equations themselves.

If the fully equivalent cable concept cannot be extended to active membrane, then at 
least it may prove useful to investigate configurations of inputs and voltage distributions 
mapped from connected and disconnected sections in an attempt to determine a significant 
role for passive coincidence detection in shaping sub-threshold activity.

Significantly, for the first time it is possible to overcome geometrical complexity to 
perform a thorough quantitative analysis of the role of passive geometry. Concepts such 
as electrical degeneracy, and layers of coincident configurations of activity associated with 
tree sub-structure, show that a neuron can take full advantage of the spatial structure of 
trees to process signals. It is highly likely tha t more complicated electrical degeneracies, or 
redundancies, exist in real neurons — an ability for the same signal processing operation to 
be performed by many different input configurations is possibly a highly desirable feature. 
These results also suggest that an understanding of singly branched dendritic trees with 
active membrane may transfer quite easily to highly branched structure.

Many analytical and numerical tools are available to solve cable equations. Recorded 
transients can be analysed in several ways, electrotonic structure of the tree can be visu- 
alised, and parameters can be estimated. Fully equivalent cables define clear properties of 
tree geometry in a novel and physiologically intuitive way. Together, all these tools allow 
a complete understanding of the properties of the passive tree model. The move to gain 
similar insights into the non-linear models can be made more confidently.
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