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Chapter 1 : 

Review of Literature



I) Introduction

Synchronising the timing of oestrus and ovulation in cattle involves the 

manipulation of ovarian activity such that the time of ovulation can be predicted 

accurately for successful pre-planned breeding (Odde, 1990; Macmillan and 

Burke, 1996). Synchronisation treatments aim to induce consistently and 

predictably a new transient Follicle Stimulating Hormone (FSH) rise intimately 

associated with emergence of a new wave of antral follicles approximately 3 mm 

in diameter, from which a single new dominant follicle (DF) is selected to continue 

to grow in all treated animals. If DF selection is combined with luteolysis and 

treatment withdrawal, an excellent synchrony of oestrous onset is predicted in all 

treated animals, allowing single fixed-time artificial insemination and resulting in 

high fertility (Roche et al., 1998).

Before a transient FSH rise and emergence of a new wave can occur, 

growth of all existing follicles needs to be synchronously terminated irrespective of 

the stage of their development at start of treatment (Roche et a!., 1998). As the 

fate of growing wave and selected dominant follicles depends mainly on 

circulating concentrations of the two gonadotrophins FSH and luteinizing hormone 

(LH) (Adams et al., 1992a; Savio et al., 1993, Stock and Fortune, 1993), any 

successful manipulation of ovarian activity must modify FSH and LH 

concentrations in order to influence wave or dominant follicle growth.

The aims of this literature review are to highlight:

a) The dependence of antral follicle growth beyond >3mm in diameter on 

gonadotrophin stimulation in cattle, and;



b) The use of steroids to manipulate gonadotrophin secretion and thus modify 

antral follicle growth as part of existing programmes to synchronise oestrus and 

ovulation in cattle.

Hence, this literature review will lead to a deeper understanding of the 

regulation of follicle growth and provide the basis of future studies to improve the 

success of steroid combination synchronisation treatments.

II) Overview of the oestrous cycle and follicle wave growth

The oestrous cycle in the bovine species varies in length from 18 to 24 

days In both cows and heifers (Arthur et al., 1989). The cycle consists of four 

different periods (Fig 1), viz. oestrus lasting 6 to 30 hours, followed by ovulation 

about 12-15 hours after the end of oestrus; the main ovarian hormone produced 

being oestradiol which rises before the onset of behavioural oestrus with peak 

values at the onset of oestrus and which stimulates the surge of LH from the 

anterior pituitary which is necessary for follicular maturation and ovulation. 

Metoestrus the phase succeeding oestrus where the granulosa and theca cells of 

the ovulated follicle give rise to lutein cells thus forming the corpus luteum which 

secretes progesterone; this period of corpus luteum (CL) formation is assumed to 

last four days. Dioestrus, the period when the CL is fully functional, 13-15 days in 

length; and during which time no LH surge and thus oestrus can occur. 

Proestrus, when plasma oestradiol is increasing and progesterone is basal after 

regression of the CL (Glencross et al., 1973). Cattle may also experience 

Anoestrous periods during which dominant follicles grow but do not ovulate and 

CLs are not present (Ginther et al., 1989a; Evans et al., 1994; Stagg et al., 1995).
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1) Follicle growth

Follicular growth is a dynamic process beginning in the foetal ovary 

(Ireland, 1987; Fortune, 1994; Ginther et ai, 1996). Initiation of follicle growth 

involves the passage of primordial follicles from a quiescent growth-arrested state 

into a growth-committed state characterised by changes in shape of granulosa 

cells from squamous to cuboidal, proliferation of these cells, and enlargement of 

the oocyte (Hirshfield, 1991). Once follicles have entered the growth pool, they 

continue to grow until they become atretic (>99%) or ovulate (<1 %). Thus, the 

process of atresia involves far more follicles than does the process of dominance, 

prerequisite for ovulation. Atresia means the degeneration of ovarian follicle cells 

and oocytes and occurs during pre-natal and post-natal development via 

apoptosis (Jolly et al., 1994). In cattle up to 2.7x10® oocytes are present in the 

foetal ovary up to day 110 of gestation, but this number is reduced to 

approximately 160,000 by parturition through the process of atresia (Erickson, 

1966). By puberty, this number is further reduced, and in post pubertal cyclic 

animals the process of atresia continues with the exception of one or possibly two 

ovulatory follicles per cycle. Thus, only 200-300 follicles and oocytes, much less 

than 1% of the original germ cell endowment, survive atresia during foetal, post

natal or adult development. Atresia can occur during all stages of follicle 

development, though it is most commonly detectable in early antral follicles in a 

variety of species (Kaipia and Hsueh, 1997).

Follicles are classified according to their size and number of layers of 

granulosa cells (Rajakoski, 1960). Primordial follicles contain one layer of



squamous granulosa cells and are < 40pm in diameter. Once follicles leave their 

resting quiescent state and start growing (recruitment), they are termed Primary 

follicles which contain 1-2 layers of cuboidal granulosa cells. Subsequently, 

Secondary and Pre-antral follicles contain 2-6 layers of granulosa cells at the 

inside of the basement membrane and the theca interna layer develops on the 

outside. Oocytes initiate meiosis but then arrest in the diplotene phase of 

prophase 1 ; in primary follicles their growth is initiated when at least 40 granulosa 

cells are present (Braw-Tal and Yossefi, 1997). The acquisition of an antrum, a 

fluid filled cavity surrounded by granulosa cells occurs when follicles are between 

200 and 500 pm in diameter and when > 6 layers of granulosa cells are present 

(Lussier ef a/., 1987).

Little is currently known about progression of follicles from the primordial to 

the preantral stage, but it seems to be independent of gonadotrophins and involve 

oocyte or granulosa cell derived growth factors. Proliferating granulosa and theca 

cells develop FSH and LH receptors from primary or secondary stage respectively 

(Xu et al., 1995). Thus, preantral follicles are responsive to, but not dependent 

on, the key endocrine regulators, FSH and LH. Various local growth factors 

modulate this stage of follicular development which suggests that mitogenic 

growth factors are active in stimulating cell division, and follicle and oocyte 

growth, whereas cell-differentiating growth factors are less active (Wandji et al., 

1996). The specific roles and nature of this growth factor cascade remain to be 

identified in farm animals.

Antral follicles are present in laboratory rodents, sheep and cattle in the 

absence of circulating gonadotrophins and in the presence of basal FSH and



absence of LH (Dufour et a!., 1979; Prendiville et al., 1995; Gong et al., 1996). 

Thus, antrum acquisition in sheep and cattle does not appear to be a FSH 

dependent event, yet antral follicles are responsive to FSH. However, on 

reaching 3 to 4 mm in size antral follicles are dependent on increased FSH for 

their continued growth (Gong et al., 1996; Crowe et al., 2001), but the exact 

mechanisms and stages at which they switch from just FSH responsiveness to 

FSH dependency are not known. Growth from 3 mm in cattle, as seen during 

emergence of a follicle wave of up to 24 follicles (Ginther et al., 1996) is 

dependent on transient FSH rises from baseline. Ovarian transrectal ultrasound 

scanning determined that from this group of emerging follicles, one follicle is 

selected to become the dominant follicle (DF), while all other follicles belonging to 

the emerging wave undergo atresia (Fig 2). The DF that develops in the presence 

of an active corpus luteum (CL) will undergo atresia due to the absence of a 

frequent LH pulse pattern as a result of high progesterone concentrations. 

Therefore, only the dominant non-atretic follicle that is present when the CL 

regresses will become the preovulatory follicle and has the opportunity to ovulate 

releasing the egg.

Two (Ginther et al., 1989b) or three (Savio et al., 1988) waves of DF 

development occur based on the presence of a single large highly oestrogenic 

follicle on the ovary on two or three separate occasions during the cycle, on days 

5, 13-15 of the cycle, and in 3 wave cycles at the end of the cycle during the pre

ovulatory period (Day 0 = oestrus).
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Antral follicle wave growth in cattle has been defined to occur in three 

phases namely emergence, selection and dominance (Ireland and Roche, 1987). 

Each wave begins with a group of follicles (cohort) being stimulated to grow 

simultaneously and their emergence is detected by ultrasound scanning at 

approximately 3 mm in diameter. Following the emergence of the new cohort, the 

number of follicles that continue to grow and remain oestrogen-active is 

sequentially reduced to that of the specific ovulatory quota of one in cattle. This 

process encompasses the selection period, and the selected follicle is now the 

DF; it continues to grow while the other follicles cease growth and start to regress 

in size. During its dominance period, no other follicle cohort emerges. Dominant 

follicle selection in cattle can be defined by the following criteria a) 

morphologically by daily ultrasound measurements of follicles and b) hormonally 

by estimating the intrafollicular oestradiol-progesterone or androgen ratio 

(oestrogen-active: ratio > 1; oestrogen inactive: ratio < 1; Ireland and Roche, 

1983; Sunderland et al., 1994). Although initially, neither size nor oestrogen 

activity of follicles after wave emergence are good predictors of future dominance 

(Ginther et al., 1997a; Mihm et al., 2000), over time size and/or oestrogen activity 

become a good predictor or indicator of dominance (Sunderland et al., 1994). 

However, all follicles in a wave can become the DF, as random destruction of 

follicles in the 5-mm category does not alter the timing of DF selection (Gibbons et 

al., 1997). The controlling factors that determine which follicle of the emerged 

cohort will become dominant are currently the subject of intense study and the 

sequence of events leading to DF selection remains to be determined. Loss of 

dominance and DF atresia is indicated by emergence of the next follicle wave 

induced by transient FSH (Adams et al., 1992a; Sunderland et al., 1994).
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Fig 1.3 Oestrous cycle with two follicle waves In cattle. The first dominant 
follicle Is anovulatory, the second wave In the cycle selects the ovulatory

dominant follicle.
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Fig 1.4 Oestrous cycle with three follicle waves In cattle. The first and 
second wave have an anovulatory dominant follicle whereas the third wave 

selects the ovulatory dominant follicle.
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2) Hormonal Changes

a) Foiilcle-Stimulating-Hormone

Follicle-Stimulating hormone Is the key endocrine hormone responsible for 

stimulation of antral follicle growth in farm animals in a wave-like manner, but 

relatively little is known about the differential regulation of its synthesis and its 

dependency on ovarian status (Roche et al., 1998). Gonadotropin-releasing 

hormone (GnRH) is a key regulator of FSH; exogenous GnRH induces FSH 

release, and GnRH immunization or GnRH agonist/antagonist treatments 

suppress transient FSH rises and follicle turnover in cattle (Prendiville et a!., 1995; 

Gong et a!., 1996). Transient FSH rises are detectable every 7 to 10 days during 

the cycle, in early pregnancy, and in postpartum anoestrous beef suckler cows 

independent of LH pulse frequency (Roche et a!., 1998). The structure of FSH is 

heterogeneous due to post-translational modification of the carbohydrate moiety, 

which leads to different isoforms in the pituitary gland and circulation. Follicle- 

Stimulating Hormone isoforms differ in their receptor binding affinity, metabolic 

clearance rate, and bioactivity (Cooke et a!., 1996). The proportion of different 

isoforms varies during different reproductive states, and it is regulated by different 

factors such as GnRH, oestrogen, and androgens (Cooke et a!., 1996). 

Androgens stimulate the synthesis and release of more acidic forms, which are 

less potent but have long half-lives. Basic or less acidic FSH isoforms are 

stimulated by GnRH and oestradiol, and these forms are more bioactive in vitro 

but have a shorter half-life than more acidic forms (Cooke et ai., 1996). The 

existence of FSH isoforms in circulation raises the possibility that changes in 

proportion rather than amount of FSH in blood could be a potent way to regulate

12



follicle wave dynamics. However Cooke et at., (1997a) reports that the profile of 

FSH isoforms does not change before or at the maximum of the first or the 

second FSH rise of the oestrous cycle, or after declining FSH in heifers. A shift to 

less acidic forms was only noted before and during the gonadotrophin surge. 

Thus, non-ovulatory follicle waves in cattle do not seem to be regulated by shifts 

in proportion of FSH isoforms.

Following the early demonstration of a peri-ovulatory FSH rise in cattle 

(Dobson, 1978; Roche and Ireland, 1981), associated with emergence of the first 

new follicle wave of the cycle, it has been conclusively shown that each 

emergence of a cohort is linked to the transient FSH rise (Turzillo and Fortune, 

1990; Adams et al., 1992a) and that sequential FSH rises associated with new 

follicle waves occur during the oestrous cycle (Adams et al., 1992a; Sunderland et 

al., 1994), in the postpartum period (Crowe et al., 1998; Stagg et al., 1998), and 

before puberty in cattle (Evans et a/., 1994). Thus, morphological selection of the 

OF in a single ovulatory species occurs in association with the decline in FSH. 

Prevention of this decline by administration of physiological amounts of FSH 

delays selection of a DF in cattle (Adams et al., 1993; Mihm et al., 1997). 

Although physiological regulation of the selection process is not well understood, 

the FSH decline does alter key intrafollicular growth factors involved in selection. 

Because FSH is a key survival factor preventing granulosa cell death via 

apoptosis in follicles, the putative future DF has to gain the capacity to survive the 

FSH decline and still continue to grow and produce oestradiol, while unselected 

follicles undergo apoptosis (Austin et al., 2001 ).

13



LH in early luteal phase LH in mid luteal phase LH in follicular phase

FP

LH LHLH

8h 8h
8h

FSH

FSH 0.4___E2 __ 6

.3.

___4

02
E2

___1

0 105 15 20

Days of oestrous cyde
Fig 1.5 Changes in FSH and the LH puise profiie in the eariy iuteai (EL) and mid 

iuteai (iVIL) and foiiicuiar (FP) phase with changes of progesterone and 
oestradioi concentrations during the oestrus cycie in cattie

14



b) Oestradiol

During final maturation of the pre-ovulatory DF, the oestradiol 

concentration increases gradually during the 3 days preceding oestrus 

(Sunderland et al., 1994; Cooke et al., 1997a) and show a sharp peak about 4 h 

before the onset of oestrus (Shemesh et al., 1972). By the time the first signs of 

oestrous behaviour are detected, the oestrogen level has already begun to 

decline, and it reaches its nadir 12 hours later (Shemesh et al., 1972). Minimal 

oestradiol levels are maintained at the time of ovulation (20 to 32 hours after 

onset of oestrus). The pre-ovulatory elevation in oestradiol stimulates a further 

increase in GnRH pulse frequency, and a prolonged surge in GnRH (Moenter et 

al., 1991) which induces the gonadotrophin surge, luteinization and ovulation. 

Subsequently, a minor oestradiol rise is observed consistently on Days 4-6 of the 

cycle coincident with selection of the first DF, and a more sustained increase on 

Days 10 to 13, with a peak on Day 11 was reported in one study, possibly 

coincident with selection of the second DF of the cycle (Shemesh et al., 1972). 

Rises in oestradiol were observed 1-2 times during the luteal phase in addition to 

the pre-ovulatory rise following CL regression and thus Ireland and Roche (1987) 

hypothesized that these were the times when an oestrogen active DF was 

selected and growing during the oestrous cycle.

c) Progesterone

Once ovulation has taken place 24 -  30 hours after onset of oestrus 

(Austin et al., 2001) the corpus luteum (CL) is formed and will be responsible for

15



the secretion of progesterone during the luteal phase. The CL is the major source 

of progesterone during the cycle, with serum concentrations of progesterone 

positively correlated with the amount of luteal tissue as assessed 

ultrasonographically (Kastelic et al., 1990, Battocchio et al., 1999). Progesterone 

concentrations in peripheral blood increase slowly, and reach 1 ng/ml 

approximately 3-4 days into the oestrous cycle, which is 2-3 days after ovulation. 

Maximum concentrations are observed by Days 9-12 and are maintained until 

luteolysis from Day 17 (Glencross et al., 1973; Cupp et al., 1995).

d) Luteinizing hormone

Mean concentrations of LH are low during the luteal phase of the oestrous 

cycle due to the strong negative feedback effect of progesterone on GnRH, 

resulting in decreased GnRH and hence LH pulse frequency (Goodman and 

Karsch, 1980). Following luteolysis, caused by oxytocin-induced release of 

prostaglandin F2a on Days 16-18 of the oestrous cycle, progesterone 

concentrations decline to their lowest level during the follicular phase, and thus 

the pulse frequency and the mean concentration of LH both increase (Rahe et al., 

1980). Once regression of the CL occurs, the dominant follicle present (under the 

influence of increasingly frequent but lower amplitude LH pulses) begins its pre

ovulatory growth phase, resulting in increased oestradiol production. This 

increased oestradiol results in the GnRH and therefore the LH and FSH surge, 

which is responsible for ovulation. Thus, changing concentrations of LH and FSH 

during the cycle determine growth of follicles, and the increased frequency of LH 

pulses during the follicular phase is responsible for stimulating the pre-ovulatory

16



steroidogenic changes resulting in ovulation. Subtle decreases in LH pulse 

frequency also occur between day of dominance of the first wave DF of the 

oestrous cycle Day 5 and initiation of atresia on Day 8-11 (Mihm et al., 1995; 

Evans et al., 1997), and a transient increase in mean LH has been associated 

with the time of deviation in growth rates between the dominant follicle and its 

largest subordinate follicle (Ginther et ai, 1999; Ginther et ai, 2001 ).

Luteinizing hormone plays an important role in determining oestrogen 

activity and final fate of the DF. It stimulates androgen precursor production in 

theca cells, which is necessary for oestradiol synthesis and continued health of 

the DF. The pattern of LH release is controlled by GnRH output and hence is 

pulsatile in character. The LH pulse pattern changes during the oestrous cycle, 

with frequent low amplitude pulses during Days 1 to 4 of the cycle as 

progesterone concentrations increase (Rahe et ai, 1980). There are also small 

but significant changes in LH pulse frequency during the luteal phase while high 

progesterone concentrations persist (Cupp et ai, 1995). Relatively minor 

changes in LH can determine whether a DF undergoes atresia (low LH pulse 

frequency) or ovulates (1 LH pulse/hour). The period of dominance is also 

affected by LH pulse frequency. Subluteal concentrations of progesterone that 

arise from use of intravaginal progesterone devices after 4 days, or ear implants 

of synthetic progestagen in the absence of the animal’s own CL, result in an 

increase in LH pulse frequency (1 pulse per 1 to 2 h), prolongation of the period of 

dominance and formation of persistent DF (Savio et ai, 1993; Stock and Fortune,

1993). In contrast, atresia of the persistent DF can be caused most reliably by an 

acute decrease in LH pulse frequency using exogenous progesterone (Savio et

17



al., 1993; Rajamahendran and Manikkam, 1994) or oestrogen (Yelich et al.,

1997).

In postpartum anoestrus and before puberty, infrequent LH pulses occur 

every 3 to 6 hours, which results in loss of oestrogen activity and dominance of 

the first DF resulting in a subsequent FSH rise within 1 to 2 days (Roche et al.,

1998). Therefore, lack of LH pulses during the luteal phase, during the early 

postpartum period, pre-puberty or during pregnancy does not inhibit antral follicle 

development, nor dominant follicle selection; however, the lack of LH leads to 

inadequate oestradiol production from dominant follicles, lack of gonadotrophin 

surges and thus lack of oestrus and ovulation (Stagg et al., 1998).
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Ill) Regulation of antral follicle growth In cattle

1) Regulation of LH and FSH 

a) Regulation via GnRH

It is the hypothalamus that is responsible for the control of release of 

gonadotrophins from the anterior pituitary by the action of a specific releasing 

substance gonadotrophin releasing hormone (GnRH); GnRH is secreted from 

hypothalamic neurones and carried from the median eminence of the 

hypothalamus by the hypothalamic-hypophyseal portal blood system. 

Gonadotrophin releasing hormone was isolated 30 years ago (Amoss et al., 

1971), and the molecular structure was determined as being a decapeptide and 

subsequently synthesised (Matsuo et al., 1971; Geiger ef a/., 1971). GnRH binds 

to specific receptors on the gonadotrophs, but the GnRH effect is transient due to 

gonadotroph cells becoming insensitive to GnRH if it is continually present caused 

by a down regulation of GnRH receptors. The main forces that affect the 

Hypothalamo - pituitary axis are external such as suckling and nutrition, or internal 

such as concentrations of progesterone and/or oestradiol.

The anterior pituitary gonadotrophin cells release LH and FSH causing 

ovarian steroid production, which in turns has either a negative or positive 

feedback on the hypothalamus or anterior pituitary gland influencing GnRH or LH 

surge or pulsatile release and FSH secretion. Both FSH and LH are hetero- 

dimeric glycoprotein hormones with a common a-subunit but a specific p-subunit 

(Chappel et al., 1983; Brown and McNeilly, 1999). As its name suggests FSH is 

involved in stimulating follicle growth in the female and is also involved in
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spermatogenesis in the male. Luteinizing hormone (LH) is involved in final 

maturation of dominant/ovulatory follicles, a surge of LH triggers ovulation and LH 

is required for normal corpus luteum function

The GnRH pattern determines the specific pulsatile pattern of LH release 

(Clarke and Cummins, 1982; Moenter et al., 1991; 1992). GnRH tightly regulates 

LH in most physiological situations. Except during the gonadotrophin surge, each 

pulse of GnRH in portal blood results in an LH pulse in peripheral circulation in 

ewes (Moenter et al., 1992; Caraty et al., 1995). However, such a close 

relationship has not been seen during FSH secretion, as pulses of FSH are 

detected in portal blood which are independent of GnRH pulses (Padmanabhan et 

al., 1997). Thus, LH and FSH are produced in the same cell under the influence 

of a single releasing hormone GnRH, but are differentially regulated and thus 

divergent throughout the oestrous cycle (Sunderland et ai, 1994; Cooke et ai, 

1997a) and postpartum period of cows (Stagg et a i, 1998). Thus, GnRH 

mediates control of LH through exocytosis of stored secretory granules containing 

LH (Currie and McNeilly, 1995). In contrast, FSH, once synthesised is released, 

implying that control of FSH is at the level of hormone synthesis (Farnworth, 1995; 

Brown and McNeilly, 1999). The FSH regulation must, therefore, involve an 

endocrine component active directly on the gonadotrophs, as well as locally 

controlled feedback systems in the form of growth factors including activin, inhibin, 

and folIistatin within the pituitary gland.
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b)-Regulation via steroids

During the luteal phase a surge of GnRH and gonadotrophin is prevented by 

high concentrations of progesterone secreted from the CL (Kasavubu et al., 

1992). Progesterone has also been shown to suppress GnRH pulse frequency 

and thus LH pulse frequency (Goodman and Karsch, 1980; Karsch et al., 1987; 

Kasavubu et al., 1992). After luteolysis a marked reduction in progesterone is 

seen, the negative feedback by progesterone on the hypothalamus is removed 

and GnRH pulses are released at higher amplitudes and frequencies than during 

the luteal phase. This causes particularly LH to be released at higher levels, thus 

promoting follicular development and the production of oestradiol during the 

follicular phase. Oestradiol in turns exerts a positive feedback on the neurones of 

the hypothalamus surge centre and induces a prolonged GnRH surge and thus 

gonadotrophin surge in 12 hours (Moenter etal., 1990; Evans etal., 1995).

The suppressive effects of progesterone on LH have been well documented in 

ovariectomised (Price and Webb 1988) and cyclic heifers (Ireland and Roche 

1982a, Kinder et al., 1996) in which LH pulse frequency plus amplitude differ 

depending on the level of progesterone during the luteal phase (Rahe etal., 1980; 

Cupp et al., 1995). Coadministration of oestradiol and progesterone enhances 

the suppression of LH pulses compared with progesterone alone in 

ovariectomised (Price and Webb, 1988; Burke et al., 1996) and cyclic cattle 

(Rajamahendran and Manikkam, 1994). Treatment with 0.75 mg oestradiol 

benzoate and a progesterone device in early metoestrus suppressed transiently 

FSH and completely obliterated LH pulses in beef heifers (Austin, 2000). 

Oestradiol appears to preferentially reduce LH pulse amplitude while
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progesterone inhibits LH pulse frequency (Goodman and Karsch, 1980).

Oestradiol from the DF is a likely endocrine candidate involved in regulation of 

FSH secretion. Oestradiol has a direct negative feedback on FSH as exogenous 

oestradiol suppresses FSH within 18 to 24 h in cattle (Price and Webb, 1988; Bolt 

et al., 1990; O’Rourke et al., 2000). It is thought that transiently rising oestradiol 

concentrations associated with dominance periods during the oestrous cycle 

could result in the rise and decline of FSH (Ginther et al., 2000a). However, 

follicle waves result in undetectable peripheral oestradiol rises a) in the early 

postpartum period of nutritionally compromised beef suckler cows, which fail to 

ovulate for over 100 days, and b) in the mid-luteal phase of cyclic cattle in most 

studies (Ireland and Roche, 1987), yet these cows have recurrent FSH rises 

similar to animals, in which significant oestradiol is produced after first wave 

emergence and before onset of atresia of the first DF (Stagg et al., 1998). In 

cyclic heifers FSH declines on days 2 to 3 of the cycle and this decline begins 

before oestradiol rises noticeably in circulation; in addition the next FSH increase 

does not occur immediately following the initial abrupt decline in oestradiol noted 

between days 5 and 8 of the cycle (Cooke et al., 1997a). Thus, factors other than 

oestradiol are involved in the negative feedback regulation of FSH secretion. 

Steroid-free bovine follicular fluid suppresses FSH, but the precise roles of 

oestradiol or follicular fluid peptides in regulation of FSH remain to be elucidated.

c) Regulation via members of the inhibin family

Inhibin was first isolated from ovarian follicular fluid as a granulosa cell 

product, and was characterised as a disulphide-linked dimeric glycoprotein
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(consisting of one a and one p subunit; Knight, 1996) capable of selectively 

suppressing the synthesis and secretion of FSH by pituitary gonadotrophs (de 

Jong and Sharpe, 1976; Findlay and Clarke, 1987; Ying, 1988; Sugino et al., 

1992). Two forms of inhibin (A and B) are expressed in the ovaries of most 

species examined; the mature, fully processed forms of inhibin A and B (Mr-

32.000) share a common a subunit (Mr- 18 - 20,000) but have one of two p 

subunits (Mr-13 -  15,000) termed pA or pB, respectively (Knight, 1996). So far, 

one form (inhibin A containing the pA subunit) has been isolated from bovine and 

ovine ovaries (Knight, 1996).

During the course of purifying inhibin from follicular fluid, two other 

molecules with modulatory effects on pituitary FSH release were discovered. 

These were termed activin and follistatin. Activin was characterised as a (Mr-

25.000) disulphide-linked dimer of two inhibin p subunits which stimulates pituitary 

FSH release and FSHp mRNA accumulation, thereby opposing the action of 

inhibin (Ling et al., 1986, Vale et al., 1986). Two forms of activin were initially 

isolated from pig follicular fluid, now referred to as activin A (pApAdimer) and 

activin AB (pApB dimer). Both inhibin and activin belong to the TGFp superfamily. 

Follistatin was characterised as a monomeric, cysteine-rich polypeptide, which, 

although structurally unrelated to inhibin, suppresses pituitary FSH release in a 

similar manner to inhibin but with less potency (Ueno et al., 1987; Robertson et 

al., 1987). A single gene encodes the molecule and the existence of several size 

variants of follistatin (Mr 32-39,000) reflects alternate splicing of gene transcripts 

to yield carboxy-terminal truncated forms, as well as differential glycosylation 

(Sugino et al., 1997). Follistatin, although structurally unrelated to the TGFp
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family, neutralises activin bioactivity by acting as a specific high-affinity binding 

protein.

Inhibins, activins, and follistatins are expressed In granulosa cells, are 

locally regulated and function as intragonadal autocrine or paracrine regulators of 

follicle cell differentiation and steroidogenesis. In addition they subserve local 

regulatory roles in numerous extragonadal tissues, including brain, adrenal gland, 

bone marrow and placenta but perhaps most notably the anterior pituitary where 

they can be of systemic or local origin (Knight, 1991).

Inhibin dimers produced in the ovary suppress FSH secretion during 

culture of pituitary cells (Robertson et al., 1987; Good et al., 1995) and 

immunoneutralization of inhibin by passive immunization of cows during the 

growth phase of the first dominant follicle causes FSH to increase within 8 hours 

of treatment (Kaneko et al., 1997) indicating an in vivo role of inhibins in 

suppression of FSH during the first wave.

in several species including cattle, the smallest and most predominant form 

of biologically active inhibin identified has an Mr of approximately 31,000-32,000 

(Fig 4), (Miyamoto et al., 1985; Robertson et al., 1985). Since the a  and p 

subunits are generated by proteolytic cleavage of two independently synthesised 

precursor molecules (Forage et al., 1986; Mason et al., 1986), it is, perhaps, not 

surprising that inhibin forms of higher Mr have also been identified in ovarian 

follicular fluid from various species (Robertson et al., 1985; Miyamoto et al., 

1986).
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Inhibin precursors and monomeric forms in bovine follicular fluid

a- Subunit Precursor p -Subunit Precursor

aN

PA

PB

or

(B) Dimeric inhibins forms in bovine foiiicuiar fluid

aC a

34 kDa S—S
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—
S-S
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110 kDa S-S

>160 kDa forms of inhibin in follicular fluid may represent aggregation of Inhibin a and 
psubunits, presence of novel proteins containing a and p subunits, or the complexing of 
smaller forms to larger inhibin binders, such as a2-macroglobulins.

Fig.1.6 Structure of inhibins in bovine foiiicuiar fluid
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Several in vivo studies, involving intact rats (Ying et a!., 1987), 

ovariectomized ewes (Findlay et ai, 1987) and ovariectomized heifers (Beard et 

a!., 1990) have confirmed that highly purified inhibin preparations do indeed 

suppress plasma FSH concentrations with little or no effect on plasma LH 

although there is some in vitro and in vivo evidence that inhibin increases LH 

release (Muttukrishna and Knight, 1990; McKeown et al., 1997). Exposure of 

cultured sheep pituitary cells to highly purified bovine inhibin actually enhances 

GnRH-induced LH release without affecting basal LH release; basal and GnRH- 

induced FSH release were suppressed by inhibin in a manner similar to that 

observed in rats (Muttukrishna and Knight, 1990).

An injection of bFF or highly purified bovine inhibin decreased plasma 

concentrations of FSH in ovariectomized (Beard et al., 1990) and cyclic heifers 

(Quirk and Fortune, 1986), indicating that inhibin has the ability to suppress FSH 

secretion in cows in vivo suppressing emergence of the next wave when 

administered to cattle (Turzillo and Fortune, 1990; Adams et al., 1992a). Also, 

bovine follicular fluid has the ability to suppress FSH during the dominance period 

of the first wave DF (Adams et al., 1992a; Turzillo and Fortune, 1993; Ginther et 

al., 1999; Bergfelt et al., 2000). However, due to the possibility that other FSH- 

suppressing and stimulating factors are present in bovine follicular fluid, such data 

are not conclusive in terms of effects of inhibin. Immunoneutralization of 

endogenous inhibin during the luteal phase of the bovine oestrous cycle results in 

a marked and selective increase in plasma concentration of FSH, thus inhibin 

must be an important factor in the regulation of FSH secretion during the luteal 

phase of the cow's oestrous cycle (Kaneko et al., 1993).
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2) Follicle wave development and dependence on changes in FSH and LH

Several waves of development of dominant follicles occur during a bovine 

oestrous cycle. Each wave has three phases: emergence, selection and 

dominance followed by atresia or ovulation of the DF (Ireland and Roche, 1987). 

Two waves of antral follicular development were proposed initially for the bovine 

oestrous cycle in dairy cows, and each wave resulted in a follicle of pre-ovulatory 

diameter (Rajakoski, 1960). It is now well established that two or three waves of 

follicular development occur during the majority of bovine cycles (Pierson and 

Ginther 1988; Savio et al., 1988; Sirois and Fortune, 1988; Knopf et al., 1989; 

Ginther et al., 1989b). However, it must be pointed out that small proportions of 

cycles exhibit just one or alternatively four waves per cycle (Pierson and Ginther, 

1988; Sirois and Fortune, 1988).

From the simultaneously emerging cohort and over 2-3 days, the cohort 

follicles differentiate into one large follicle that continues to grow (the selected 

dominant follicle) and the remaining wave or subordinate follicles, which are 

characterised by a reduced growth rate and stasis with subsequent regression 

within 2-4 days after wave emergence (Savio et al., 1988; Sirois and Fortune, 

1988; Ginther et al., 1989b; Knopf et al., 1989).

In earlier studies it was thought that the dissociation into dominant and 

subordinate follicles was a gradual event beginning at emergence. Later studies 

(Ginther et al., 1997b) demonstrated that dissociation in terms of growth rates and 

size was often an abrupt event and this time-point was considered to be the start 

of follicle deviation. Regression of the dominant follicle consistently occurs 

following emergence of a new follicle wave during the luteal phase of the cycle
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(Ginther et al., 1989b). Generally the first dominant follicle of the oestrous cycle is 

detectable as one of a cohort of 3-mm follicles that are present the day after 

ovulation. The future dominant follicle appears to emerge at 3 mm a mean of 6 h 

(Ginther et al., 1997a) or at 4 mm a mean of 7h (Kulick et al., 1999) earlier than 

the future largest subordinate follicle. However maintaining individual identity of 

up to 24 follicles in a wave is considered to be one of the limitations of ovarian 

ultrasound scanning and thus a growth advantage from emergence without 

detectable size differences up to the time of deviation may be very difficult to 

prove.

The DF is selected during the following 2 to 4 days and becomes dominant 

between Days 4 and 5 of the cycle (Ireland and Roche, 1987; Sunderland et al., 

1994). Deviation is characterised by enhanced growth of the largest follicle to 

become the dominant follicle and reduction or cessation of growth by the 

remaining follicles to become subordinate follicles (Ginther et al., 2000a; 2000b). 

The mean diameter of the two largest follicles in cattle at the beginning of 

deviation were 8.5 and 7.7 mm with deviation beginning a mean of 2.5 days after 

emergence of the largest follicle at 4 mm (Ginther et al., 1997b; 1999; Kulick et 

al., 1999). The follicles grow in parallel initially, so that the largest follicle 

maintains about a 0.5-mm diameter advantage (non-significant!) until deviation 

(Ginther et al., 1997b; Kulick et al., 1999). However, the differences in mean 

diameter of the largest and the second largest follicle only become significant from 

follicle deviation.
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Fig 1.7 Follicle dynamics in cattle with emerging follicles measuring 3-5 
mm to reach 16 mm after dominance. The third dominant follicle is the 

ovulatory follicle in the three-wave cycle In the cow.
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During the dominant phase after deviation, the subordinate follicles 

undergo atresia (Ireland and Roche, 1983; Adams etal., 1992a; Sunderland et al.,

1994), while the DF continues to grow, secretes oestradiol and is able to undergo 

final differentiation and ovulate. In the first wave the dominant follicle reaches its 

maximum diameter of 14.6 ± 0.4 mm on day 7 (the second largest follicle’s 

maximum diameter was 6.3 ± 0.3 mm in Pierson and Ginther (1988), or reaches 

13-16 mm between days 6 and 8 of the cycle (Roche and Boland, 1991) followed 

by a period of relative stability between days 6 and 10. Finally, the first DF 

decreases in size and is no longer identifiable by day 15. The end of each 

dominance phase is preceded by loss of FSH and luteinizing hormone (LH) 

receptors and therefore the oestrogen producing capacity of the dominant follicle 

(Ireland and Roche, 1983), and occurs during low or reduced LH pulse 

frequencies (Savio et al., 1993). Loss of dominance is indicated by emergence of 

a new follicle wave between Days 10-14 preceded by a transient rise in FSH 

(Adams etal., 1992a; Sunderland etal., 1994).

Approximately 75% of well-fed beef heifers have three waves of 

development of the DF during the oestrous cycle (Fortune, 1994); the mean 

length of cycles with 3 dominant follicles was 21.3 ±1.5 days. The first wave is 

post-ovulatory and the first dominant follicle was identified on average by Day 4 

(range 2-5 days; Sirois and Fortune, 1988), reached its maximum size by Days 6- 

8 and was detectable on average until Day 15 (range 10-20 days). The maximal 

size reached by the dominant follicle in the first, second and third wave was 12.3 

± 0.2, 10.2 ± 0.5, and 12.8 ± 0.3mm, respectively (Sirois and Fortune, 1988) and 

15.5, 15.9 and 18.8 mm respectively (Savio et al., 1988). The dominant follicle of 

the second wave is present on average between Days 12 and 19 (range 10-22
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days) and reaches its maximum size on Day 16 (range 13-18 days) with a 

significantly smaller size and slower growth rate compared with the first or third 

wave DF (Sirois and Fortune, 1988).

The growth rate and duration of detection were not different between the 1®̂ 

and the 2"^ dominant follicle but duration of growth, maximum size and day of 

maximum diameter were significantly different (Savio et al., 1988). Oestrous 

cycles with two follicular waves are somewhat shorter than three wave cycles (21 

versus 23 days) (Pierson and Ginther, 1988; Sirois and Fortune, 1988; Ginther et 

al., 1989b). The ovulatory dominant follicle in animals with three follicle waves 

emerges around Day 16, is significantly larger than the first and the second 

dominant follicle (Savio etal., 1988) and ovulates 7 days later.

Follicle waves occur before puberty, during the oestrous cycle, in 

postpartum anoestrus and during early pregnancy in cattle (Ginther et al., 1989a, 

1989b; Evans et al., 1994; Stagg et al., 1995). The emergence of a follicular 

wave in cattle is stimulated by FSH rise. The rise reaches a maximum peak by 

the time the follicles attain 4mm in diameter (Ginther et al., 1997b; Austin et al., 

2001). As without transient FSH rises follicular growth stagnates at the 5mm size 

categories (Prendiville et al., 1995; Gong et al., 1996), in the following follicular 

gonadotrophin dependencies are outlined.
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There is a clear association between transient rises in FSH secretion and 

the emergence of follicular waves (Adams et al., 1992a). It has recently been 

demonstrated in cattle, that early stages of follicle development (up to 4 mm) are 

not dependent on gonadotrophins, but that development from 4 to 9 mm requires 

a rise in FSH, and further development beyond 9 mm requires LH pulses 

(Prendiville et al., 1995; Gong et al., 1996; Crowe et al., 2001). These 

observations are clearly important for the precise regulation of follicular 

development. Suppression of the periovulatory FSH rise using bovine follicular 

fluid blocks new wave emergence (Turzillo and Fortune, 1990). The concurrent 

administration of bFF and FSH results in wave emergence, indicating that FSH 

triggers each follicular wave (Bergfelt et al., 1994a). This is supported by 

experiments in which heifers were immunized against GnRH, which suppresses 

recurrent FSH increases, abolishes LH pulses (Prendiville et al., 1996), and 

blocks follicular growth at the 4 to 5 mm stage (Prendiville et al., 1996).

Declining FSH after a transient rise coincides with selection of a dominant 

follicle and atresia of the remaining cohort follicles (subordinates) in cattle. This 

declining and low FSH at the time of follicle deviation is still important for the DF, 

yet already too low for its subordinate follicles which are no longer FSH 

responsive (Ginther et al., 1999; Bergfelt et al., 2000). A functional coupling 

between follicle growth and declining FSH exists following emergence, and the DF 

appears responsible for FSH suppression at the time of follicle deviation (Ginther 

et al., 2000a; 2000b). In the first 33 hours of the FSH decline, differential 

alterations in FSH- dependent growth factors are seen within the cohort of pre

selection follicles, simultaneously inducing growth and enhanced oestradiol- 

producing capacity of the surviving follicles and already committing some follicles
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to their fate of subordinate follicles undergoing atresia (Mihm et al., 1997; Austin 

et al., 2001).

In cattle, all of the growing cohort follicles > 5 mm contribute to the decline 

in FSH concentrations, thus precipitating their own atretic fate, as FSH is still 

needed by growing follicles (Adams et al., 1993; Mihm et al., 1997; Ginther et al., 

2000a). The main follicle-produced FSH suppressants appear to be oestradiol 

and inhibin. During the selection process, the largest follicle also develops the 

ability to utilise the reduced concentrations of FSH for its continued growth in 

addition to enhancing its FSH-suppressing ability. It was demonstrated that in 

heifers that had the largest follicle ablated, oestradiol concentrations were lower 

than in controls heifers by hour 4 and FSH concentrations increased between 

hours 4 and 12 after the ablation (Ginther et al., 1999; 2000a). Thus, these 

results support the hypothesis that the largest follicle releases increased 

oestradiol into the blood at the beginning of follicular deviation, and that the 

released oestradiol is involved in the continuing depression of FSH concentrations 

below the requirement of the smaller follicles (Ginther et al., 2000b).

During a prolonged dominance phase, administration of progesterone or 

synthetic progestagen reduces LH pulse frequency and dominant follicle atresia 

occurs with an associated decrease in intrafollicular oestradiol, increases in lower 

molecular weight insulin-like growth and binding proteins (IGFBPs), which are 

indicators of reduced follicle health, and granulosa cell apoptosis (Savio et al., 

1993; Manikkam and Rajmahendran, 1997). Subtle decreases in LH pulse 

frequency also occur between the first day of dominance of the first wave DF of 

the oestrous cycle (Day 5), loss of oestrogen activity preceding atresia on Day 8 

and loss of dominance and atresia on Day 11 based on new wave emergence
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(Mihm et a!., 1995; Evans et ai, 1997). In postpartum anoestrus and before 

puberty, infrequent LH pulses occur every 3 to 6 hours, which result in small DF, 

rapid loss of oestrogen activity and dominance resulting in a new transient FSH 

rise within 1 to 2 days after selection (Evans et al., 1994; Stagg et al., 1995;

1998).

Recurrent periods of turnover of dominant follicles are seen in pre-pubertal, 

cyclic, early pregnant or immunised heifers with persistent corpora lutea 

independent of presence or absence of progesterone but in a common

environment characterised by low LH pulse frequency. Thus, it seems that

relatively minor changes in LH can determine whether a DF undergoes atresia 

(one LH pulse every 3-6 hours) or stays healthy, grows and attains the ability to 

ovulate (1-2 LH pulses/hour), demonstrating the acute LH-dependence of 

selected dominant follicles. Exogenous LH pulses administered during the luteal 

phase (Taft et al., 1996) or early postpartum (Duffy et al., 2000) maintain

dominant follicles that would otherwise undergo atresia. It is again worth

emphasising that the dominant follicle that develops in the presence of an active 

corpus luteum (first DF in cycles with two and second DF in cycles with three 

dominant follicles) will also undergo atresia due to the absence of an LH pulsatile 

pattern conducive to high oestradiol synthesis and the presence of progesterone 

blocking the GnRH and LH surge. The non-atretic dominant follicle, which is 

present, or developing at the time of regression of the corpus luteum will become 

the ovulatory follicle due to the increased follicular LH pulse frequency which is 

sufficient to stimulate final maturation, pro-oestrus oestradiol and LH surges, and 

ovulation.
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3) Intra-follicular health markers during follicle wave development

As DF selection is dependent on the FSH decline following its transient 

rise, it is likely that the biochemical factors that are involved in the selection 

process are FSH-dependent, although it is not known whether changes in those 

factors are initiated before or after wave emergence. Alterations in amounts of 

several key FSH-dependent growth factors and health markers in follicles 

progressing from wave emergence to dominance have been characterised in 

detail during the first follicle wave in cattle (Ireland and Roche, 1983; Badinga et 

al., 1992; Mihm et al., 1997; Austin et al., 2001). These studies show that; a) 

intrafollicular concentrations of oestradiol, inhibins, insulin-like growth factor I 

(IGF-I) and insulin-like growth factor binding proteins (IGFBP) were dramatically 

altered between Days 3 and 5 of the heifers’ oestrous cycle, during a period of 

declining nadir FSH concentrations and coinciding with selection of the dominant 

follicle and atresia of subordinate follicles (Mihm et al., 1997), and b) that 

exogenous FSH administered in physiological amounts on Day 2 and 3 of the 

oestrus cycle delayed selection of the DF1 and atresia of subordinate follicles and 

blocked most of the aforementioned alterations in intrafollicular hormones and 

growth factors (Mihm et al., 1997). Thus, biochemical mechanisms employed by 

the future DF to continue its growth and oestradiol production despite declining 

FSH concentrations can be identified.

Follicular factors likely are responsible for the depressed FSH 

concentrations during the declining portion of the FSH surge that stimulated wave 

emergence (Ginther et al., 1999; 2000a). The identity of such factors has not 

been demonstrated, but oestradiol and inhibin are candidates (Ginther et al.,
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1996). Inhibins and intrafollicular factors such as the IGF family of proteins have 

a role in controlling follicular development, through either regulation of systemic 

gonadotrophins or local intraovarian modulation of the effects of the 

gonadotrophins especially FSFI (Roche etal., 1998).

As mentioned previously systemic oestradiol concentrations increase two 

or three times during the oestrous cycle in cattle and most of the oestradiol in 

circulation is produced by a single ovary (Ireland et al., 1984); periodic increases 

correspond to the time of DF development (Ireland and Roche, 1987). Follicular 

development from emergence to dominance is accompanied by increased 

follicular oestradiol production (Sunderland et al., 1994), and an increase in the 

expression of mRNA for aromatase in granulosa cells of growing antral follicles 

(Bao et al., 1997).

It was shown that intrafollicular concentrations of oestradiol were 

dramatically altered between Days 3 and 5 of the heifer’s oestrous cycle when 

FSH concentrations were still declining and the DF1 was selected (Sunderland et 

al., 1994; Mihm et al., 1997). Follicular oestradiol concentrations of all follicles 

were relatively low at 5 hours after the peak in FSH concentrations. In addition 

there were no differences in oestradiol concentrations between follicles from 2.5 

to 6.0 mm (Austin etal., 2001). Differentiation into growing follicles with increased 

intrafollicular oestradiol and those with maintained or reduced follicular fluid 

oestradiol concentrations were seen at 33 hours after the FSH peak. At 84 hours 

after the FSH peak, the DF1 was the follicle in cohort with highest concentrations 

of oestradiol in follicular fluid (Austin et al., 2001). Thus, the attainment of 

dominance by a single follicle is characterised by its largest size, highest 

intrafollicular oestradiol concentrations, continued growth despite low systemic
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FSH concentrations, and its capacity to suppress growth of other follicles i.e. 

functional dominance (Ginther ef a/., 1996).

Follicular theca cells and in DF also granulosa cells produce progesterone, 

and increased progesterone in follicular fluid (FF) may reflect onset of atresia or 

luteinization (Singh et al., 1998). However, follicular fluid progesterone 

concentrations are similar in the DF and the subordinate follicles and 

progesterone in the DF does not necessarily change following loss of dominance, 

while intrafollicular oestradiol is reduced markedly (Badinga et al., 1992; 

Sunderland et al., 1994). However in late atresia, when follicles are decreasing in 

size, progesterone concentrations in follicular fluid increase (Singh etal., 1998).

3.1) Changes in inhibins, IGFs and IGFBP during the first follicle wave

The intrafollicular concentrations of inhibins were also altered between 

Days 3 and 5 of the heifer oestrous cycle in follicles becoming dominant versus 

those undergoing subordinate atresia (Mihm et al., 1997). At 5 hours after the 

peak in FSH concentrations, all follicular size classes had similar amounts of each 

inhibin form (Austin et al., 2001). At 33 hours after the peak in FSH, an increase 

in the higher molecular weight inhibins (> 34 kDa) was seen which was significant 

in the largest two follicles, and the largest follicle already had higher amounts of 

the 6 precursor inhibin forms than the smallest two follicles examined. These 

differences were maintained without a further increase in intrafollicular inhibins, 

and at 84 hours after the FSH peak, the two largest follicles (DF1 and largest 

subordinate) had highest amounts of higher molecular weight inhibins (Austin et 

al., 2001). In addition, subordinate status was associated with an increase in the
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34 kDa inhibin dimer on Day 5 similar to what is seen in atretic follicles 

(Sunderland etaL, 1996; Mihm etal., 1997).

An endocrine role of inhibin in the regulation of growth and atresia of 

follicles has been suggested since intrafollicular concentrations of total a-inhibin, 

as determined by RIA, increase during growth of oestrogen-active dominant 

follicles when FSH declines, but decrease during regression of oestrogen-inactive 

old dominant follicles (Martin et al., 1991; Guilbault et al., 1993) when FSH rises 

again. These studies suggest that oestradiol and inhibin may act to suppress 

FSH secretion and thus block recruitment and growth of other follicles during the 

growing phase of a dominant follicle (Martin et al., 1991). However, inhibin may 

be the more important factor in the regulation of FSH secretion during the luteal 

phase of cows (Kaneko et al., 1993) and in ewes only inhibin reduces FSH 

concentration to levels seen before ovariectomy (Mann etal., 1992).

Only one study has so far investigated the relationship between systemic 

inhibin-A, FSH, oestradiol and follicle growth in cattle (Bleach et al., 2001). It was 

demonstrated in cattle that mean plasma inhibin-A (~ 50 pg/ml before luteolysis) 

rises steadily during the induced follicular phase to a peak (-125 pg/ml) coincident 

with the preovulatory oestradiol, LH and FSH surge and after ovulation inhibin-A 

fell sharply to a nadir (-55 pg/ml) coincident with the secondary FSH rise (Bleach 

et al., 2001). Similarly, both inhibin-A and oestradiol fall to basal values after the 

pre-ovulatory gonadotrophin surge in the ewe (Knight et ai, 1998). During the 

next 3 days in the heifer cycle (early luteal phase), inhibin-A increased to 

approximately 90 pg/ml in association with growth of the new wave and DF, and 

plasma oestradiol also rose twofold during this period, whereas FSH fell by 

approximately 50% (Bleach et ai, 2001). Thus, the growth of the first- wave (non
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ovulatory) DF from 5 to 10 mm over approximately 3 days was associated with a 

rise in inhibin-A and oestradiol and a fall in FSH. Thereafter, both inhibin-A and 

oestradiol declined despite the fact that this DF remained >10mm for a further 7 

days. The above decline in inhibin and oestradiol presumably reflecting loss of 

functional dominance of the first wave DF was associated with a marked increase 

in FSH; again, growth of the ovulatory DF was associated with a 3-fold rise in 

inhibin-A and a 5-fold rise in oestradiol. Thus, Bleach et al., (200^) conclude in 

accordance with Ginther et al., (1996) that a reduction in concentrations in both 

follicular secretions, oestradiol and inhibin-A, contributes to the generation of the 

post ovulatory FSH rise required to initiate the FSH- dependent growth of new first 

wave cohort follicles.

A second, increasingly important family of proteins belonging to the IGF 

system has been studied in relation to follicle wave growth. Members of the IGF 

system studied in detail in bovine follicles are the two peptides IGF-I and II, the 

IGF-type 1 receptor and four different and specific IGF binding proteins (IGFBPs), 

which regulate IGF activity by binding their ligand with high affinity thus preventing 

IGF receptor interaction (Spicer and Echternkamp, 1995). Follicle proliferation 

and steroidogenesis in response to gonadotrophins are thought to be enhanced 

by IGF-I (Spicer et al., 1993), but no close relationship has been found between 

stage of follicle development and intrafollicular total IGF-I concentrations possibly 

due to the presence of IGFBPs (Stewart et al., 1996; Mihm et al., 1997). In fact, 

follicle oestrogen activity is negatively correlated with intrafollicular amounts of the 

IGFBPs < 40 kDa (that is IGFBP2, 4 and 5) with increased oestrogen activity of 

follicles being accompanied by decreased total IGF-BP and lower amounts of low 

molecular weight forms of IGF-BP (Echternkamp et al., 1994; Stewart et al., 1996;
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de la Sota et al., 1996). Increases in the lower MW IGFBP2, 4 and 5 have been 

seen in atretic bovine follicles (Mazerbourg et al., 2000). Gong et al. (1991) 

proposed an important positive in vivo role for IGF-I in antral follicular growth 

showing that growth hormone treatment of heifers increased systemic total IGF-I 

and numbers of small follicles without affecting LH and FSH concentrations

During declining and nadir serum FSH concentrations (between Days 3 

and 5 of the bovine oestrous cycle), the increased growth and enhanced 

oestradiol secretion of the DF are associated with increased intrafollicular 

concentrations of IGF-I, but markedly reduced total IGF-I binding activity. 

Specifically, the IGF binding proteins 2, 4 and 5 (produced by follicular cells) were 

maintained low during DF selection while subordinate fate was linked to an 

increase in IGFBP4 and 5 (Mihm et al., 1997; Austin et al., 2001). Thus, the 

selected DF has a marked net increase in overall intrafollicular IGF-I bioactivity. 

Also, the newly selected DF has increased lGF-BP-4-specific proteolytic activity 

(Chandrasekhar et al., 1996). Enhanced proteolytic activity results in the 

degradation of IGF-BP-2, 4, 5 and thus more bioavailable IGFs (Besnard et al.,

1997). However the mechanisms responsible for differential synthesis and 

processing of IGF-BP in only one follicle of a cohort of oestrogen-active follicles 

prior to dominance is currently unknown. One study showed recently that the 

ability to maintain low amounts of intrafollicular IGFBP-4 may be linked to DF 

selection (Mihm et al., 2000). Such an ability was also seen in successful cohort 

follicles during the FSH decline and linked with enhancement of oestradiol 

synthesis (Austin et al., 2001). The cessation of growth and diminished oestradiol 

production of subordinate follicles are dynamic events, which occur coincident 

with the continued growth and enhanced oestradiol production of the DF (Mihm et
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al., 1997). Loss of oestradiol production in subordinate and increased % of 

apoptotic granulosa cells is associated with increased amounts of all lower 

molecular weight forms of IGFBP, and thus reduced IGF bioavailability forms (de 

la Sota et al., 1996; Mihm et al., 1997; Austin et al., 2001). Similarly, the DF 

shows an increase in the lower molecular weight of IGFBP and % of apoptotic 

granulosa cells during induced loss of dominance (Manikkam and 

Rajamahendran, 1997).
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IV) Manipulation of Follicle Waves Using Progestagen-Oestradiol 

Combination Treatments

1) Synchronisation

Good synchronisation of oestrus and ovulation in cattle will help us improve 

reproductive efficiency by allowing planned breeding with subsequent good 

fertility. Improved reproductive efficiency is due to reduced postpartum intervals, 

increased submission rates and thus reduced and pre-planned breeding and 

calving seasons, and due to the increased use of AI allowing disease control and 

an accelerated increase in genetic merit within herds and disease control 

(Macmillan and Burke, 1996)

For oestrous synchronisation to be considered successful, > 95 % of 

treated animals are expected to display oestrus within a defined 12-hour period, 

and fertility should at least be the same as after natural mating or insemination 

following natural oestrus (depending on age and production type of animals > 45- 

55 % calving rates). As already mentioned earlier, it is essential to manipulate 

follicle wave development to ensure a healthy DF at end of treatment, which will 

ovulate predictably following luteolysis and treatment withdrawal. Very strict 

criteria apply to the ovulatory DF, as duration of dominance at oestrus affects 

subsequent fertility with dominance periods of > 8 days drastically decreasing 

pregnancy rates; duration of dominance of pre-ovulatory DF at oestrus also 

affects the spread in oestrous onset between animals (Austin et al., 1999). Least 

variability in oestrus onset was achieved following 2-4 day dominance periods,
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and this was also combined with highest fertility (Austin et al., 1999). Thus, it is 

no longer sufficient to cause synchronous luteolysis using PGF2a as stage of 

follicle wave development determines the interval from PGF2a to oestrus; follicle 

waves will have to be managed such that luteolysis and selection of a new DF 

occur at the same time. It is also no longer sufficient to ensure that all animals 

have a DF present at the time of luteolysis and treatment withdrawal; the 

treatment required for this will cause subluteal progesterone levels in blood, lead 

to some animals developing persistent follicles with much reduced fertility, and at 

the end of treatment DF with differing durations of dominance will exist which will 

increase variation in time to oestrous onset. In the following, the induction of 

synchronous atresia in follicles present at time of treatment to ensure 

synchronous and predictable growth of a new follicle wave and a new DF will be 

considered.

2)  Follicle Wave Management

As discussed above, it is essential for successful synchronisation treatments 

to induce a new follicle wave synchronously in all treated animals, such that 

synchronous luteolysis can be initiated just when a new DF is selected. As wave 

emergence is linked with transient FSH rises (Adams et al., 1992a; Sunderland et 

al., 1994), and transient FSH rises can only occur following loss of dominance of a 

DF or removal of the inhibitory effects of the growing healthy cohort or dominant 

follicles, it is necessary to cause the demise of all existing follicles independent of 

their stage of differentiation.
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Removal of a DF via electrocautery (Ko et al., 1991; Adams et al., 1992a) 

will advance the next wave causing its emergence within 2 - 2.5 days, and 

ultrasound- guided ablation of DF or all follicles from 5 mm will immediately lead 

to FSH rises and emergence of a new follicle wave 1-1.5 days later (Bergfelt et 

al., 1994b; Bodensteiner et al., 1996). Induction of ovulation of dominant follicles 

using exogenous GnRH agonist treatment (Twagiramungu et al., 1995; Ryan et 

al., 1998; Mihm et al., 1998), thus removing the inhibitory effects of healthy DF, 

will cause an FSH rise within 1.5 days followed by the predictable emergence of a 

new wave and selection of a new DF in 4 - 5 days. Thus, it has been shown that 

removal of the inhibitory effects of follicles on FSH and other follicle growth will 

lead to a predictable transient FSH rise coupled with the emergence of a new 

follicle wave. However, such physical means, although considered to be very 

successful in synchronising follicle wave growth, are not practical at farm level. In 

addition, the success of any GnRH treatment in causing synchronous new wave 

emergence will depend on the presence of a healthy DF at the time of treatment 

which is able to respond to the induced gonadotrophin surge (Roche et al., 1998). 

There is, therefore, a need to hormonally cause acute atresia of all growing 

follicles present at time of treatment, using treatments which are acceptable to the 

farmer regarding cost and labour intensity but also to the public in terms of animal 

welfare and subsequent product quality.
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3) Causing Atresia of wave follicles before DF selection

The one characteristic of cohort follicles is their absolute dependence on 

raised FSH concentrations from baseline. Treatment with bovine follicular fluid 

from ovulation will prevent the secondary transient FSH rise and thus delay the 

emergence of the first post ovulatory follicle wave (Turzillo and Fortune, 1990). 

Conversely, maintenance of raised FSH will delay selection of a DF by 

maintaining growth of most of the wave follicles and preventing subordinate 

atresia (Adams et al., 1993; Mihm et al., 1997). Thus, removal of FSH stimulus 

from growing wave follicles before DF selection will cause follicle atresia; this 

happens naturally in all but one follicle following emergence of a follicle wave, and 

also occurs following a premature decline in FSH caused by treatment with 

oestradiol benzoate from the day of ovulation (Adams et al., 1992a; Sunderland et 

a/., 1994; Cooke etal., 1997b).

Oestradiol has been used extensively to suppress FSH and also LH in the 

presence of progesterone. It has been shown to have a transient suppressive 

effect on circulating FSH concentrations (Bolt et al., 1990; O’Rourke et al., 2000), 

and thus its inclusion into hormonal treatments to manipulate follicle wave 

development is considered essential to 1)- cause premature suppression of the 

transient FSH rise and thus terminate a newly emerging follicle wave (Cooke et 

al., 1997b; Austin, 2000), 2)-delay the next transient FSH rise if administered 

during the dominance period by approximately 2 days thus delaying the next wave 

emergence (Bo et al., 1993; 1995; O'Rourke etal., 1998). Pharmacologically high 

doses of oestradiol given in combination with progestagen during the growth 

phase of the first follicle wave (1 day after ovulation in the absence of endogenous
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progesterone) will cause an initial FSH decline, a small FSH surge one day later, 

cessation of follicle growth in 0.5 -  1.3 days followed by rising FSH to reach 

maximum concentrations 3-5 days after treatment; new wave emergence occurs 1 

day after maximum FSH and is advanced by 2 days versus controls (Bo et al., 

1993; 1994). However, no new wave emergence or variation in intervals to new 

wave emergence ranging from 2-7 days from oestradiol treatment have been 

reported by other studies (Duffy et al., 1997; O’Rourke et al., 1998). Thus, 

variation in intervals from treatment to new wave emergence appears to exist and 

is so far unexplained, yet may compromise success of steroid synchronisation 

treatments essential for fixed-time Al. Why the next transient FSH rise is 

protracted reaching its maximum only 3-5 days after oestradiol treatment 

compared to the fast natural transient FSH rises is so far unexplained. Rapidly 

declining but still relatively high circulating oestradiol concentration following a 

single administration of oestradiol ester, or persisting and still partially functional 

follicles may both be responsible for such a protracted FSH rise.

Different oestradiol esters have different half-lives and thus persistence in 

circulation. The use of 5mg oestradiol valerate is clearly pharmacological both in 

relation to magnitude >100 pg/ml and duration (5 to 7 days) of the estradiol rise 

(Bo et al., 1993; Duffy et al., 1997); similarly, 5 mg of oestradiol benzoate (ODB) 

raises serum concentrations to the pharmacological range, but duration of 

elevation is reduced to 3 to 4 days (O’Rourke et al., 1998). Single injections of 

ODB in the range of 0.5 to 1.0 mg elevate oestradiol concentrations in blood 2 to 

3 times above follicular phase concentrations for 36 to 60 hours. However, 

intravaginal administration of high doses (5 or 10 mg) of ODB as a dissolvable 

capsule inserted into the groove within the CIDR or the inside of the coil of the
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PRID only elevates serum concentrations to maximal (2-4 pg/ml), i.e. early luteal 

phase levels and concentrations above 1 pg/ml may only be achieved for 

approximately 2-3 days. These varying concentrations of oestradiol cause a dose 

dependent decrease in FSH followed by a rise in FSH, despite the fact oestradiol 

concentrations are elevated to 5 to 50 pg/ml (O’Rourke et al., 1998). Therefore, 

oestradiol has only a transitory suppressive effect on FSH concentrations in cattle, 

which may be insufficient to block follicle growth at different stages of the follicle 

wave.

The i.m. injection of 5 mg oestradiol 17-|3 dissolved in ethanol and 

administered in sesame oil rapidly leads to extremely high maximum 

concentrations of 650 pg/ml followed by a much more rapid elimination from 

circulation, and high concentrations only persist for 42 hours before basal levels 

are reached (Bo etal., 1994).

Wave follicles after emergence are also responsive to changes in the LH 

pulse environment. When progesterone is administered early during emergence 

of the first follicle wave (just after ovulation) suppressing LH pulse frequency, first 

follicle wave growth is suppressed, leading to reduced maximum diameter of the 

DF and largest SF, and a tendency for more 3-wave cycles possibly due to 

advanced DF atresia and second wave emergence (Adams et al., 1992b; Taylor 

et al., 1994; Burke et al., 1994; Austin, 2000). Although selection of the first DF is 

not suppressed, attainment of maximum size and duration of dominance appear 

to be affected beyond treatment duration, indicating that follicles were responsive 

to the LH pulse environment after their emergence but before DF selection. This 

is not surprising as follicular oestradiol production depends on LH stimulated 

thecal androgen precursor synthesis and follicle growth is linked with oestradiol
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synthesis in successful wave follicles (Austin et al., 2001). In addition, follicles > 8 

mm acquire LH receptors on their granulosa cells, which is an important step of 

differentiation for the selected DF. More detailed studies investigating the effects 

of suppression of LH via progesterone before or after follicle deviation did indicate 

that the freshly selected DF was compromised in terms of intrafollicular oestradiol 

and free IGF-1 but only after follicle deviation occurred and not before (Ginther et 

al., 2001).

So, can treatments that suppress FSH consistently cause atresia of 

growing wave follicles? While treatment with bovine follicular fluid (bFF) to 

suppress FSH alone will delay wave emergence if administered from ovulation 

(Turzillo and Fortune, 1990; Adams et al., 1992a), the effect on growing wave 

follicles before DF selection but already experiencing the FSH decline has not 

been studied so far. Exogenous oestradiol treatments reaching up to twice 

follicular phase levels in circulation and given in the absence of progesterone, i.e. 

very early after ovulation (at the peak of the transient FSH rise approximately 30- 

36 hours after onset of heat), will reduce the duration of the transient FSH rise but 

may also cause a mini gonadotrophin surge and an increase in the LH pulse 

amplitude (Bo et al., 1993; Cooke et al., 1997b, Austin, 2000). However, no 

significant differences in wave growth and intrafollicular health parameters are 

seen 1.5 days after a single injection of 0.75 mg ODB compared with untreated 

controls (Austin, 2000). When Img ODB injections were continued on a daily 

basis, however, the first cohort regressed before selecting a DF (Cooke et al., 

1997b). It is worth noting that endogenous progesterone was rising in this study 

and the combined actions of exogenous oestradiol and endogenous progesterone 

may have reduced LH pulse frequency and amplitude and thus effects on the
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wave were probably due to modification of both FSH and LH concentrations in 

serum.

Indeed, the combination of oestradiol benzoate with a progesterone 

treatment given just after ovulation will abolish LH pulses most effectively, and 

delays ultrasound-detectable emergence and selection of the first wave DF, and 

reduces the maximum size of the DF (Austin, 2000). Such an effect on the first 

follicle wave may again be due the premature reduction in FSH concentrations 

combined with the reduction in LH pulse frequency and amplitude.

Treatment with a combination of oestradiol and progestagen given 1 day 

after ovulation or on the day of emergence of the first follicle wave will modify 

follicle wave growth depending on the dose of oestradiol and its preparation used. 

In beef heifers, pharmacologically high doses of oestradiol (5mg of oestradiol-17p 

or ODB) will lead to a reduction of the maximum size achieved to 6.4 - 8 mm, with 

cohort follicles becoming static 0.5-1.3 days after oestradiol treatment, will 

prevent selection of a DF and cause regression of the first wave and new wave 

emergence in 5 - 6 days (oestradiol-17p) (Bo et al., 1994; 1995) or 8 days from 

oestradiol treatment (ODB) (O’Rourke et al., 1998). Lowering the dose of ODB to 

twice follicular phase levels also affected selection of the first DF in most animals 

and caused emergence of the next wave in approximately 5 days from ODB 

treatment (O’Rourke et al., 1998). Although Bo et al., (1994; 1995) report that 

variation in time interval to new wave emergence is small due to the use of 

oestradiol -17p with its short half life (within 42 hours oestradiol concentrations are 

reduced to baseline levels), such consistent time intervals have not been seen 

using oestradiol preparations licensed for use in cattle (oestradiol benzoate or 

oestradiol valerate). Thus, variation in interval from oestradiol treatment to new
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wave emergence in beef cattle is quite marked after ODB, and merits 

investigation into possible causes. Data are also not available in relation to dairy 

breeds, which may respond differently due to genetic, nutritional or growth 

characteristics. In this context it may be interesting to speculate that rising FSH 

concentrations after their initial suppression following oestradiol administration 

and despite high circulating oestradiol concentrations (Bo et al., 1994; Cooke et 

al., 1997b; O’Rourke et al., 2000), may variably support wave follicles with 

sufficient FSH receptors left to respond which may in turn variably suppress new 

follicles preventing an immediate and synchronous new wave emergence. Thus 

the atretogenic effect of steroid combination treatments on growing wave follicles 

will have to be determined in the future.

4) Causing atresia of dominant follicles

Following its selection the DF is dependent on LH pulses (Savio et al., 

1993) and each LH pulse is followed by pulsatile release of oestradiol from the 

ovary with the dominant follicle (Walters et al., 1984). Luteal phase frequencies of 

1 LH pulse per 3-4 hours or less (Rahe et al., 1980) will cause loss of oestradiol 

synthesising capacity, stasis and finally regression of the DF, followed by a 

transient FSH rise and emergence of a new wave. This occurs during the luteal 

phase of the cycle and is the fate of DF selected post-partum (Stagg et al., 1998), 

pre-puberty (Evans et al., 1994), during pregnancy (Ginther et al., 1989a) or 

nutritional anestrous (Rhodes et al., 1995; Stagg et al., 1998) where very low LH 

pulse frequencies predominate. Conversely, an increase in LH pulse frequency,
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as occurs naturally in the follicular phase following luteolysis (Rahe et a!., 1980) or 

after treatment with LH pulses during the luteal phase (Taft et al., 1996), will lead 

to enhanced oestradiol production and continued growth of the DF. If an 

adequate LH pulse environment persist, DF will respond with long term growth 

and oestradiol production for up to 12 days and longer DF persistence (Stock and 

Fortune, 1993; Mihm etal., 1994; 1999).

During the cycle and pregnancy it is progesterone secretion from the CL 

that determines LH pulse frequency and thus DF lifespan via negative feedback 

on GnRH pulsatile release from the hypothalamus (Goodman and Karsch, 1980). 

Thus, exogenous progestagen treatments routinely used to suppress the 

gonadotrophin surge and oestrus for a specific time period (Taylor et al., 1993) 

also suppress LH pulse frequency with varying potencies, and thus affect DF 

development during treatment. Exogenous progesterone administered 

intravaginally in the form of a PRID (Sanofi Animal Health) or CIDR device (CIDR- 

B® InterAg, Hamilton, New Zealand) elevate serum progesterone concentrations 

in ovariectomized animals above luteal phase levels (Macmillan et al., 1991; Van 

Cleeff et al., 1992) for approximately 4 days. Subsequently, serum progesterone 

concentrations fall to subluteal concentrations of 1-2 ng/ml, which will cause an 

increase in the LH pulse frequency to 1 LH pulse every 1-2 hours (Sirois and 

Fortune, 1990; Stock and Fortune, 1993). In cyclic animals, administration of 

intravaginal devices during the luteal phase will elevate progesterone 

concentration to twice-luteal phase concentrations (Burke et al., 1996). However, 

if a device is inserted towards the end of the luteal phase, concentrations of 

progesterone will fall to subluteal levels following luteolysis and after ca. 4-5 days 

of insertion time. This again is predicted to result in high LH pulse frequencies.
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which will support any healthy DF sometimes for very long periods until device 

removal. Synthetic progestagen treatments, such as norgestomet 3mg or 6mg 

silastic subcutaneous ear implants or oral preparations such as megoestrol 

acetate will prevent the gonadotrophin surge for the duration of treatment (Taylor 

et al., 1993) but do not mimic the CL in terms of negative feedback on LH (Kinder 

et al., 1996). These synthetic progestagen treatments, therefore, lead to higher 

LH pulse frequencies in the absence of the animal’s own CL which may lead to 

persistence of the DF present at the time of luteolysis (Rajamahendran and 

Taylor, 1991; Savio etal., 1993; Mihm etal., 1999).

Ovulation of persistent DF has been linked with reduced fertility (Stock and 

Fortune, 1993; Savio et al., 1993; Mihm et al., 1994: Cooperative regional 

research project NE-161, 1996). Specifically if treatment duration leads to an 

extended duration of dominance of the DF beyond 8 days, severe reductions in 

pregnancy rates are seen (Mihm et al., 1994; Austin et al., 1999) linked with 

changes in follicular fluid parameters of health, and premature resumption of 

meiosis in oocytes before the gonadotrophin surge (Revah and Butler, 1996; 

Bigelow and Fortune, 1998; Mihm et al., 1999). Oviduetal secretions at and after 

ovulation are altered (Binelli et al., 1999), and early embryonic development 

appears to be compromised following ovulation of persistent DF and fertilisation 

(Ahmad et al., 1995). However, the prolonged and high pre-ovulatory oestradiol 

rise and subsequent luteal function do not appear to be the main causes of 

reduced fertility as pregnancy rates following embryo transfer in recipients which 

ovulated persistent DF were similar to those in control recipients (Wehrman et al.,

1997), and fertility was not reduced if a new DF was allowed to ovulate following
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long-term persistence and prolonged oestradiol secretion from the preovulatory 

DF (Fikeefa/., 1997).

Thus it is essential to cause atresia of DF present at the time of treatment 

initiation in order to avoid DF persistence as a consequence of subluteal 

progesterone concentrations or the presence of synthetic progestagen after 

luteolysis. Abolishing LH pulses using GnRH antagonist treatment (Manikkam et 

al., 1995) or a sudden reduction in LH pulse frequency using norgestomet will 

cause atresia of a persistent (maintained by high LH pulse frequency) DF (Savio 

et al., 1993), followed by emergence of a new wave 5 days later. Progesterone 

induced atresia of a persistent DF maintained by one norgestomet implant 

following exogenous luteolysis is accompanied by characteristic changes in 

intrafollicular steroid concentrations, lower molecular weight IGF-Binding proteins, 

and granulosa cell apoptosis, with first biochemical changes occurring 5 days 

after treatment (Manikkam and Rajamahendran, 1997). When exogenous 

oestradiol, testosterone and progesterone were evaluated in their ability to cause 

persistent DF atresia, progesterone and oestradiol 17p led to DF atresia most 

consistently and emergence of a new wave occurred 5 days after treatment 

(Rajamahendran and Manikkam 1994). As mentioned previously, the addition of 

oestradiol will enhance the negative effect of progesterone and suppress LH pulse 

amplitude as well as frequency (Goodman and Karsch, 1980; Bolt et al., 1990). 

Thus, a more powerful negative feedback is exerted on LH pulsatile release 

abolishing LH pulses more completely than progesterone alone as was seen 

immediately after ovulation (Austin, 2000) and in the mid-luteal phase (Burke et 

al., 1996). Combination treatments using progestagen and oestradiol may thus
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initially abolish LH pulsatility, which will lead to more consistent DF atresia than 

any of the steroids used on their own.

When oestradiol-progestagen combination treatments were administered to 

the healthy DF, its further growth and maximum size were suppressed and the 

next wave emerged 4-5 days (Bo et al., 1994; 1995) or 7 days after oestradiol 

treatment (O’Rourke et al., 1998); the difference may be due to the oestradiol 

preparations (oestradiol- 17p versus ODB) and the progestagen used (synthetic 

norgestomet versus progesterone). No effect on the current DF, but differences in 

the interval from oestradiol treatment to new wave emergence were again seen 

between the oestradiol-17p + norgestomet combination and ODB + progesterone 

combination when treatments were administered during dominance just before 

next (second) wave emergence: oestradiol-17p plus norgestomet delayed second 

wave growth by 2 days with new wave emergence occurring 4.7 days after 

oestradiol treatment (Bo et al., 1995), while ODB plus progesterone delayed next 

(second) wave emergence until 7 days after oestradiol treatment (O’Rourke et al.,

1998). These differences warrant further research into the differential effects of 

oestradiol and progestagen preparations on LH and FSH and thus on DF atresia.

Thus, it appears that once a DF is selected, it is doubtful whether it can be 

made atretic very acutely and predictably, as the interval from treatment to 

emergence of a new wave may vary between 4 and 7 days (Bo et al., 1995; 

O’Rourke et ai, 1998). The persistent DF (possibly a model for the pre-ovulatory 

DF) can reliably be induced to become atretic using progestagen or a combination 

of progestagen and oestradiol suppressing LH pulse frequency within 6 hours 

(Kinder et al., 1996), however, it will take approximately 5 days from treatment for 

a new follicle wave to emerge, and approximately 8 days for a new DF to become
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selected (Manikkam and Rajamahendran, 1997). In fact, induction of a persistent 

follicle first, then causing its synchronous atresia thereby inducing synchronous 

and predictable new wave emergence may be an easier goal to achieve than 

acute atresia of follicles in different stages of their development. However, this 

necessitates long-term treatments. For example, administration of oestradiol-17p 

or progesterone during the later stages of a synthetic progestagen treatment was 

aimed to regress persistent DF and ensure ovulation of a healthy freshly selected 

DF. Such a treatment was found to increase pregnancy rates (Anderson and 

Day, 1994; Yelich et a!., 1997; Cavalieri et al., 1998) or leave pregnancy rates 

unchanged compared with animals only treated with the synthetic progestagen 

(Fike et al., 1999). It is not clear, whether the lack of very high pregnancy rates 

seen in these studies expected after ovulation of DF with very short duration of 

dominance is due to inadequate atresia of the persistent DF or some other factors 

influencing fertility particular to each study.

One reason for combining oestradiol with a progestagen pre-treatment is to 

prevent oestradiol from inducing a GnRH and thus a gonadotrophin surge in a low 

endogenous progesterone environment, for example after luteolysis. Small 

gonadotrophin surges were seen just after ovulation in the early luteal phase (Bo 

et al., 1993; Cooke et al., 1997b). This would cause ovulation of a DF present at 

the time and a quicker new wave emergence than expected. It would also 

consistently necessitate the induction of luteolysis 7 days later. The effects of a 

surge on growing cohort follicles before DF selection are unclear, but preliminary 

data appear to indicate that cohort growth will be unaffected (Ryan et al., 1998; 

Mihm et al., 1998).
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V) Conclusions

What is the success of current progesterone and oestradiol combination 

treatments in terms of induction of synchronous atresia of follicles at random 

stages of their development? At this stage oestradiol and progestagen 

combination treatments have been used randomly (Bo et al., 1996; Yaakub et al.,

1998) and at different stages of development of the first follicle wave in order to 

explain the variation that occurs in the interval from oestradiol treatment to new 

wave emergence (Bo et al., 1993; O’Rourke et al., 1998). The effects of 

treatment during the second wave or in the mid-luteal phase have not been 

monitored as closely. One research group concludes that the use of 5mg 

oestradiol-17p combined with a norgestomet treatment given one day prior to 

oestradiol will cause predictable atresia of existing cohort or dominant follicles and 

induce new wave emergence in 4 days independent of stage of follicle wave 

development (Bo et al., 1994; 1995; 1996). However, such consistent timing and 

low variation in new wave emergence was not reported elsewhere using 

oestradiol preparations licensed for use in cattle combined with progesterone 

(O’Rourke et al., 1998; Yaakub et al., 1998). In these studies the interval from 

treatment to new wave emergence is on average 5-8 days depending on stage of 

development of the first wave, longer if treated before emergence or DF selection, 

shorter if treated at the time of DF selection, and with quite large variation 

between animals. Thus it is clear that current steroid combination treatments are 

unable to cause consistent and acute atresia especially of emerging wave follicles 

via suppression of FSH and LH, and the underlying reasons merit further 

research.
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In addition, it is unknown whether atresia is indeed induced in growing 

wave follicles following steroid combination treatments: if atresia is complete, it 

may be possible that prolonged high oestradiol concentrations or secretions from 

follicles undergoing atresia may prevent immediate new wave emergence. It is 

also possible that atresia is incomplete in growing wave follicles following some 

steroid combination treatments, and follicles may be maintained and continue to 

grow for a certain period of time suppressing the transient FSH rise and/or 

immediate new wave emergence.

Therefore, as no detailed information of the effects of oestradiol- 

progestagen combination treatments on follicle dynamics and circulating hormone 

concentrations are available in dairy heifers or cows, our study aims to address 

some of the questions raised above in order to explain why steroid manipulation 

of follicle wave growth appears to be very difficult and does not result in 

synchronous new wave emergence in all treated animals. In particular, we are 

trying to determine in dairy heifers whether:

- Changes in the FSH profile occur following steroid treatment during 

emergence of the first follicle wave which could be responsible for lack of 

synchrony and prolonged intervals to new wave emergence.

- The fate of follicles belonging to the first postovulatory wave (such as: (i) no 

further growth; (ii) continued growth until stasis< 8mm; (iii) continued growth with 

selection of DF but shortened dominance period; (iv) unaffected wave growth, DF 

selection and dominance period) depends on the dose of ODB given with 

norgestomet at the time of emergence of the first follicle wave.
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- Wave or dominant follicles present after treatment with ODB and 

norgestomet given at the time of emergence of the first follicle wave, influence the 

next FSH rise (rate of rise, maximum) and thus the timing of emergence of the

next wave and the next DF.

- Inhibin-A concentration in serum can be used as a marker of follicle health, 

as has been shown for the higher molecular weight forms of inhibin in follicular

fluid, and thus can be used to evaluate the atretogenic effect of ODB +

norgestomet given at the time of emergence of the first follicle wave.
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Chapter 2:

Hormonal and follicular responses to steroid treatment 

administered during emergence of the first follicle wave in

dairy heifers
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1) Abstract

Current oestrous synchronisation programmes in cattle include a 

combination of oestradiol and progestagen to cause atresia of follicles present on 

ovaries at the time of treatment, followed by a transient FSH rise and emergence 

of a new follicle wave. In order to determine why the timing of new wave 

emergence is relatively unpredictable and intervals from treatment are prolonged 

when steroids are given during emergence of a follicle wave, the aims of our study 

were to: 1)- compare hormonal and follicular events following dominant follicle 

(DF) aspiration (predicted to cause an immediate transient FSH rise and new 

wave emergence in all animals) with those seen after treatment with two different 

doses of oestradiol benzoate (ODB) combined with a synthetic progestagen 

during emergence of the first follicle wave of the dairy heifer oestrous cycle. 2)- 

determine the suppressive effect of the largest follicles present 3 days after 

steroid treatment on FSH and follicle emergence, and 3)- evaluate systemic 

inhibin-A as a marker for health or atresia of follicles present on ovaries in control 

and steroid manipulated oestrous cycles.

Holstein Friesian heifers (year 1: 14 heifers, 2-3 cycles each; year 2: 4 

heifers 2 cycles each, total of 42 experimental oestrous cycles) were given 

prostaglandin F2(% in the presence of a corpus luteum to cause luteolysis and

oestrus (=Day 0). On Day 2, heifers were left untreated (control cycles; n =15) or 

treated with 0.75mg (n =9 cycles) or 5mg (n= 18 cycles) ODB (Oestradiol 

Benzoate 5mg, Intervet UK Ltd, UK) in sterile corn oil i.m. and a subcutaneous 

ear implant containing 3mg norgestomet (P; Crestar, Intervet UK Ltd, UK) left in 

place for a 10 day period. Transvaginal ultrasound-guided aspiration of the 

largest follicles present on Day 5 was carried out in 5 control cycles, 5 0.75mg
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ODB+P treated cycles and 10 5mg ODB+P treated cycles. Progression of the 

first and second follicle wave was monitored daily using transrectal ultrasound 

scanning, and changes in systemic FSH, oestradiol and inhibin-A were 

established using validated RIA and ELISA from blood samples collected every 

12-24 hours.

Aspiration of the freshly selected first DF resulted in serum oestradiol and 

inhibin-A declining (p<0.05) within 24 hours, while FSH increased (p<0.05) to 

reach maximum concentrations 2 days after aspiration, which coincided with the 

time of emergence of the next wave. Selection of the next DF occurred 5 days 

after DF aspiration. In contrast, the intervals from steroid treatment to the next 

FSH maximum, emergence and selection of the next DF were longer (p<0.05) 

than following DF aspiration. FSH declined (p<0.05) initially, then began to rise 

on the second day after steroid treatment to reach a maximum 3 days earlier 

(p<0.05) than in control cycles, associated with a 2-2.5 day earlier emergence of 

the next wave. This wave selected the next DF in almost all cases in 5mg ODB+P 

treated cycles 1.7 day earlier (p=0.06) than in controls, while in 0.75 mg ODB+P 

treated cycles the new DF was selected from this or another wave at the same 

time (p>0.05) as in control cycles. Concentrations of inhibin-A declined (p<0.05) 

from the day of steroid treatment to reach nadir concentrations 2.5 (0.75mg) and 

3.4 (5mg) days earlier (p<0.05) than in control cycles. Inhibin-A concentration 

increased again (p<0.05) associated with growth of the next wave and selection of 

the next DF similar to control cycles. Aspiration of the largest one (0.75mg ODB) 

or 1-4 (5mg ODB) follicles present 3 days after steroid treatment did not advance 

(p >0.05) the timing of the next FSH rise and next wave emergence further, and 

did not shorten (p>0.05) the intervals from steroid treatment to selection of the
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next DF.

In summary, treatment with a combination of ODB and P was less efficient 

in advancing the transient FSH rise, next wave emergence and next DF than DF 

aspiration, possibly due to differing FSH profiles as well as the continuation of 

growth of follicles from the first wave especially when treated with 0.75 mg 

ODB+P. We, therefore, conclude that the lack of an immediate and short 

transient FSH rise and the inability of currently available steroid treatments to 

cause immediate and permanent follicle atresia are responsible for the variable 

and prolonged intervals from treatment to a new DF. We also conclude that 

elevated inhibin-A concentrations in serum are an excellent marker of growth of 

healthy wave or dominant follicles.
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2) Introduction

The ovulation of a newly selected dominant follicle (DF) is crucial for 

optimum fertility and oestrous synchrony in cattle (Mihm et al., 1994; Austin et al.,

1999). Any successful oestrous synchronisation programmes, therefore, will 

have to manipulate follicle wave growth such that the interval from treatment to 

selection of a new DF is consistent and predictable in all treated animals. 

Consistent intervals of 4 days to emergence of a new wave following the use of 

oestradiol 17p one day after synthetic progestagen treatment reported previously 

(Bo et al., 1995) were not repeated when using a combination of oestradiol 

benzoate and progesterone or synthetic progestagen; in contrast, variable 

intervals to emergence of a new wave and selection of a new DF were seen and 

considered to be dependent on the stage of follicle wave development treatment 

was initiated (Duffy et ai, 1997; O’Rourke et ai, 1998; Roche et ai, 1998).

Such differences in the interval from treatment to new wave emergence 

may be due to oestrogen ester or progestagen used, doses administered, timing 

of administration in relation to follicle wave development and type of animals 

synchronised. Specifically, steroid combination treatments administered during 

growth of the first follicle wave of the oestrous cycle appear to cause prolonged 

intervals of 6 to more than 8 days to selection of a new DF (Bo et ai, 1995; 

O’Rourke et ai, 1998) with absence of new wave emergence reported in some 

cases (Duffy et ai, 1997). This is in marked contrast to the predictable and short 

intervals to new wave emergence and DF selection following acute removal of DF 

or all follicles present from 5mm via ovulation using GnRH (Mihm et ai, 1998;
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Ryan et al., 1998), electrocauterization (Ko et al., 1991; Adams et al., 1992a) or 

transvaginal ultrasound-guided ablation (Bergfeit et al., 1994; Bodensteiner et al., 

1996; Boni et al., 1997). Clearly, currently available steroid combination 

treatments do not cause such acute atresia and predictable new wave emergence 

especially when administered during follicle wave growth before DF selection, yet 

the atretogenic effects of steroid treatments on growing wave follicles are so far 

undetermined.

Several possibilities why steroid treatments do not immediately result in 

synchronous follicle atresia and/or new wave emergence in all treated animals, 

exist and need to be explored in order to improve success of current steroid 

synchronisation treatments. It is possible that the suppressive effect of 

exogenous oestradiol and progestagen on both gonadotrophins LH and FSH is 

not sufficient to cause immediate atresia of growing wave follicles comparable to 

follicle ablation, resulting in continued growth and function, i.e. suppression of 

FSH and other follicle growth. Conversely, steroid treatments may suppress 

gonadotrophin concentrations to such an extent that next wave emergence is 

inhibited due to a suppressed or modified transient FSH rise and the absence or 

severe reductions in LH pulses (Turzillo and Fortune, 1990; Gong et al., 1996). 

Oestradiol has been shown to only have a transient suppressive effect on FSH 

concentrations (O’Rourke et al., 2000), and FSH rises are seen within 2 days 

following treatment of cyclic heifers with oestradiol 17p and progestagen (Bo et 

al., 1994). High circulating oestradiol concentrations, however, may modify any 

subsequent FSH rise such that the rate of increase is reduced, which may affect 

growth of a new FSH-dependent cohort. A comparison between the presumed
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rapid FSH rise following DF aspiration (Ginther et al., 1999) and the FSH rise 

following steroid combination treatments has not yet been reported.

Although ultrasound monitoring of individual follicle growth has proven 

essential to estimate morphological dominance and subordinate atresia 

(Sunderland et al., 1994), gross morphological characteristics are insufficient to 

determine follicle function as shown by loss of oestrogen activity in the first 

dominant follicle on day 8 of the cycle despite its morphological dominance 

(Badinga et al., 1992). Systemic markers reflecting health or atresia of the current 

ovarian follicle population (wave or dominant follicles) have not yet been 

investigated, although systemic oestradiol concentrations appear to rise or decline 

in the presence or absence of oestrogenic DF (Ireland and Roche, 1987). 

However, several intrafollicular peptide factors, such as the insulin-like growth 

factors, inhibins and their respective binding proteins have been characterised in 

detail during growth of the first follicle wave (Sunderland et al., 1996; Mihm et al., 

1997), and an increase in intrafollicular amounts of dimeric inhibin precursors > 34 

kDa has been found to be associated with wave emergence and its continued 

growth (Austin et al., 2001). So far, only one study exists of systemic dimeric 

inhibin-A concentrations during the peri-ovulatory period in cattle, and appears to 

confirm that DF selection and growth are associated with high or rising systemic 

inhibin-A concentrations (Bleach et al., 2001). The usefulness of inhibin-A as a 

systemic marker for presence of healthy or atretic follicles especially following 

steroid treatments remains to be determined. Therefore, this study addresses the 

issue of lack of predictability and consistency in intervals to new wave emergence 

and DF selection following a steroid combination treatment given at emergence of
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the first follicle wave of the oestrous cycle in dairy heifers: specifically this study 

aims to i) compare DF aspiration followed by an acute and predictable FSH rise 

and new wave emergence with the effect of a commercially available steroid 

combination treatment, i.e. two doses of oestradiol benzoate combined with the 

synthetic progestagen norgestomet, on circulating FSH and follicle wave growth; 

ii) evaluate the use of systemic inhibin-A as a marker for presence of healthy or 

atretic wave or dominant follicles; and iii) estimate indirectly whether the steroid 

treatments cause complete atresia of the first follicle wave by determining the 

effects of aspirating the largest follicles present after steroid treatment on FSH, 

inhibin-A and growth of the second follicle wave. Growth and atresia of the first 

and growth of the second follicle wave were determined morphologically by 

ultrasound, as well as functionally using changes in serum FSH, oestradiol and 

inhibin-A concentrations.
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3) Materials and Methods

a) Animals and Treatments

Holstein Friesian heifers (year 1: 14 heifers, 2-3 cycles each; year 2: 4 

heifers 2 cycles each, total of 42 experimental oestrous cycles) were housed In 

straw pens, fed a growth diet of ad libitum hay and twice daily concentrates to 

achieve a mean growth rate of 0.6 ±0.04 kg/day (year 1) and 0.8 ± 0.14 kg/day 

(year 2), and had ad libitum access to water. Heifers were between 16-22 months 

of age, and in year 1 and 2 heifers weighed on average 303.6 ± 4.2 kg and 285 ± 

8 kg, respectively, before the study commenced. Heifers were given one or two 

i.m. injections of 15 mg Luprostiol, a prostaglandin F2a analogue (PG; Prosolvin,

Intervet UK Ltd., Cambridge, U.K.), in the presence of a corpus luteum to cause 

luteolysis. From the day of PG, heifers were checked three-four times daily for 

onset of oestrus (= Day 0). On Day 2 of the cycle, heifers were either left 

untreated (n= 15 control cycles) or received a subcutaneous ear implant of 3 mg 

of the synthetic progestagen norgestomet (P; Crestar, Intervet UK Ltd., U.K.) plus 

oestradiol benzoate (ODB; Oestradiol Benzoate, Intervet UK Ltd., U.K) diluted in 

sterile corn oil and given as a 3 ml i.m. injection; the dose given was either 0.75 

mg (0.75ODB+P; n=9 cycles) or 5 mg ODB (50DB+P; n=18 cycles). Implants 

were withdrawn after 10 days (Day 12 of cycle), and control and steroid-treated 

heifers were allowed to complete their oestrous cycle before re-allocation to 

another experimental oestrous cycle (see below).
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During five of the control and 0.75ODB+P cycles, and during 10 of 

50DB+P cycles, heifers underwent ultrasound-guided transvaginal aspiration of 

the largest follicle (control and 0.75ODB+P) or the largest 1-4 follicles (50DB+P) 

present on Day 5 of the cycle, using a scanner fitted with a 6 MHz, 31 cm long, 

human transvaginal transducer (model 601 v TOSHIBA), a 15g 30 cm introducer 

with a central stylet to penetrate the vaginal wall, and 18 or 20g 45 cm needles 

with an echogenic tip (Casmed, Cheam, Surrey, UK) connected to a suction unit 

with a foot-pedal activated pump (Karri-vac 2, Rocket, London, UK; suction 

adjusted to 25 ml of water per minute) (Scott et al., 1994). Prior to the aspiration 

procedure, each heifer received a 4 ml epidural injection of 20 mg/ml Lignocaine 

Hydrochloride BP (Lignavet Injection, C-Vet Veterinary Products, UK), 10 ml i.v. 

30 f.ig/ml clenbuterol hydrochloride (Planipart, Boehringer Ingelheim, UK) to 

facilitate ovarian manipulations and 0.75 ml of 2% Xylazine solution i.m. (Rompun, 

Bayer pic, UK) as a sedative.

In year 1, the 14 heifers underwent 34 experimental oestrous cycles over a 

period of 7.5 weeks: the first experimental cycle was either a control (n=10) or 

0.75ODB+P cycle without follicle aspiration (n=4), while during their second 

experimental cycle heifers either received 0.75mg ODB+P and the largest follicle 

was aspirated on Day 5 (n=5), or 5mg ODB+P with (n=4) or without (n=5) 

aspiration of the largest follicles on Day 5. Subsequently, six heifers were re

allocated on their second oestrus and underwent a third experimental cycle 

untreated (n=5 control cycles) or treated with 5mg ODB+P (n=1) with aspiration of 

the largest follicle on Day 5.
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As there was concern that the status of the first follicle wave at the time of 

treatment with 5mg ODB+P determined subsequent success of the ultrasound- 

guided follicle aspiration, another 4 heifers and 8 experimental oestrous cycles 

were allocated to the 5mg ODB+P treatment in year 2 over a 5.5 week period, 

with (n= 5) and without (n=3) transvaginal ultrasound-guided follicle aspiration of 

the largest follicles on Day 5.

b) Ovarian ultrasound scanning and blood sampling

Starting from Day 0, growth and regression of individual follicles greater 

than 2 mm were monitored daily by ultrasonography using a real-time, B-mode, 

linear array ultrasound scanner with a 7.5 MHz rectal transducer (Toshiba 

Capasee, model SSA-220-A; Toshiba Medical System, Manor Royal, Crawley, 

UK). Ultrasound scanning continued until the first day of dominance of the 

second DF of the cycle (approximately Day 13). The day of emergence of a new 

follicle wave was defined retrospectively as the day when the first member of the 

new wave reached a size of 4 mm in diameter. The first day of dominance of any 

dominant follicle was defined by the following two morphological criteria: i) the DF 

had achieved a minimum diameter of 8 mm, and ii) the difference in size between 

the DF and the next largest (subordinate) follicle was at least 1 mm and this size 

difference was increased the next day.

Heifers were blood sampled every 12 hours from Day 2 (all steroid-treated 

cycles and control cycles without DF aspiration) or Day 5 (control cycles with DF 

aspiration) until the first day of dominance of the second DF of the cycle. Blood
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samples were collected via jugular venepuncture (10ml into evacuated glass 

containers) to establish circulatory concentrations of FSH, oestradiol and Inhibin- 

A. Each blood sample was maintained at room temperature for 1 hour after 

collection, at 4° C overnight, then centrifuged at 700g for 20 min and the serum 

was stored at -20° C until determination of hormone concentrations.

c) Hormone analysis and data representation

Serum FSH concentrations were quantified using a heterologous assay 

previously validated (Crowe et a!., 1997), with the NIDDK-anti-oFSH antibody 

(AFP-C 5288113), ovine tracer and a bovine FSH standard preparation (USDA 12 

bFSH). The following modification was introduced as reported by Amridis et al., 

(1999): the precipitating antibody used (400|Lil/tube) was a donkey anti-rabbit 

antibody (SAPU S022, batch 8164B) at a dilution of 1:20, with normal rabbit 

serum (SAPU, batch 7989B) at a dilution of 1:200. The sensitivity of this assay 

was 0.08 ng mM and the mean intra- (n=2-6) and interassay (n=7) coefficients of 

variation for 2 serum samples containing 0.1 and 0.6 ng/ml FSH were 14.7 and 

21.4 % (low) and 10 and 29.7 % (high).

Concentrations of oestradiol in serum were estimated using a validated RIA 

(Prendiville et a!., 1995). The sensitivity of this assay was 0.4 pg m l'\ and the 

mean intra- (n=2-8) and interassay (n= 7-8) coefficients of variation for 2 serum 

samples containing 1.1 and 4.4 pg/ml FSH were 15.6 and 24 % (low) and 12.4 

and 11.3 % (high).
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Concentrations of inhibin-A in serum were estimated using a validated 

ELISA (Bleach et al., 2001). The sensitivity of this assay was 15 pg mM, and the 

mean intra- (n = 2-7) and inter-assay (n = 15) coefficients of variation for two 

serum pools containing 41.8 and 108.8 pg/ml Inhibin-A were 21.4 and 18.3 % 

(low) and 21.5 and 13.7 % (high). Standards and test samples were mixed with 

50 pi of SDS solution (6% [w/v]) and heated for 10 min at 90 °C. After cooling, 

100 pi of ELISA buffer (10%)[w/v], BSA, 5% [v/v] Triton X-100, 2% [v/v] normal 

mouse serum, 0.1 M Tris- HCL buffer [pH 7.5]) and 50 pi of distilled water 

containing 10% (v/v) hydrogen peroxide (Sigma UK ltd., Poole, Dorset, UK) were 

added, tubes were incubated and 100 pi aliquots transferred to microplates 

coated with the monoclonal antibody against the inhibin pA subunit. On the 

second day ELISA buffer containing 1 pg/ml of biotinylated a subunit-specific mAb 

(PPG 14/6) was added followed by ELISA buffer containing extravidin-alkaline 

phosphate conjugate (1:20 000; Sigma). Finally, bound alkaline phosphatase was 

quantified using a commercially available ELISA amplification kit (Immuno Select 

ELISA Amplification System; Gibco BRL, Uxbridge, Middelsex, Uk) according to 

the supplier’s instructions. Data were processed by immunoassay curve-fitting 

software (Riacalc; Pharmacia, Milton Keynes, Bucks, UK).

d) Statistical analysis and data representation

Serum hormone concentrations were compared between control cycles 

and cycles in which heifers were treated with two doses of ODB combined with 

progestagen using repeated measures twoway analysis of variance, with time and 

treatment as the two main effects. If a significant time or treatment effect or time x
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treatment interaction were seen, one way analysis of variance was used to 

determine whether differences in means between days in one treatment or 

between treatments on specific days were significant.

Comparisons between control cycles and cycles treated with the two 

steroid combinations of mean maximum or nadir concentrations, the mean day 

specific concentrations were reached, and mean ultrasound parameters of growth 

of the first and second follicle wave were carried out using one way analysis of 

variance followed by Fisher’s test for individual comparisons when 3 or 4 

treatment groups or student’s t test when only two treatment groups were 

compared. Data underwent logarithmic transformation when the Bartlett’s test for 

equal variances showed that variances differed significantly; however, data are 

presented in absolute values for clarity. A non-parametric test (Kruskall-Wallis) 

was carried out if logarithmic transformation did not restore equality to variances. 

Chi-square analysis was used to determine differences in the ratio of new waves 

resulting in new DF out of all new waves in 5 mg ODB+P treated cycles.

No differences were seen in any of the parameters analysed between 5mg 

ODB+P treated cycles in year 2 in which follicles were or were not aspirated on 

Day 5 compared with equivalent treatment cycles in year 1, and thus data from 

the two years for aspirated or non-aspirated 5mg ODB+P treated cycles were 

pooled. For analysis of serum oestradiol concentrations following 0.75 or 5mg 

ODB both aspirated and non-aspirated treatment cycles were pooled, as follicle 

aspiration did not affect any of the parameters relating to serum oestradiol 

concentrations.
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in one control aspiration cycle, the first DF filled up again and continued to 

grow following ultrasound-guided follicular fluid aspiration, despite an echogenic 

area within the cavity indicating successful penetration of the needle and the 

formation of an intrafollicular blood-clot; emergence of the second wave occurred 

later than in all other control aspiration cycles indicating that the aspirated DF had 

re-attained its dominance. As this demonstrates normal variation within this 

model, data relating to this cycle were included in the analysis. Similarly, the first 

DF formed after treatment with 0.75mg ODB+P was successfully aspirated, yet 

filled up again, continued to grow, and resumed dominance, indicated by absence 

of emergence of a second wave. This DF, however, also ovulated following a 

short luteal phase, similar to what occurred in one 0.75mg ODB+P treated cycle 

without follicle aspiration; here, the selected DF also remained dominant and 

ovulated after a short luteal phase with no detectable emergence of a second 

wave. Again, as these scenarios demonstrate normal variation within the 

aspiration models used, hormone and ultrasound data relating to the first follicle 

wave were included in the analysis.
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4) Results

1) Serum oestradiol concentrations following treatment with two doses of ODB+P 

at emergence of the first follicle wave

Treatment with ODB on Day 2 increased (p<0.05) maximum serum 

oestradiol concentrations 5.3 fold (0.75mg) or 32 fold (5mg) compared with control 

cycles; maximum concentrations were achieved 2 days earlier than in controls, 

and the subsequent decline (p<0.05) to concentrations below 2 pg/ml took 3 

(0.75mg) or 6 days (5mg) (Table 2.1). Thus, oestradiol concentrations in 5mg 

ODB treated cycles were higher (p<0.05) than control concentrations on every 

day until Day 10 of the cycle; in 0.75mg ODB treated cycles oestradiol 

concentrations were higher (p<0.05) than control concentrations on Days 3 to 5, 

and were lower (p<0.05) than in 5mg ODB treated cycles on Days 3 to 8 (Figure 

2.1). On the day of emergence of the next follicle wave, oestradiol concentrations 

were still 10-fold and 2.8-fold higher (p<0.05) in 5mg ODB treated cycles 

compared with control or 0.75mg ODB treated cycles, respectively (Table 2.1).
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Figure 2.1 Serum oestradiol concentrations (mean±sem) in control cycles (n=10), 

and in ail cycles in which dairy heifers were treated with 0.75mg (n=6-9) or 5mg 

ODB+P (n=11-18) on Day 2 of their oestrous cycle.

E
*9)Q.
Ô
=5
(0

8

100.0 -,

10 .0 -

1 .0 -

0.1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—  control cycles
—  0.75mg ODB+P cycles

—  5mg ODB+P cycles

76



Table 2.1 Parameters (mean±sem) relating to serum oestradiol (Eg) in control 

cycles, and in all cycles in which dairy heifers were treated with 0.75mg or 5mg 

ODB + P on Day 2 of their oestrous cycle.

Control

n=10

Treatment cycles 

0.75mg ODB+P

n=9

5mg ODB+P

n=18

Eg on Day 2 (pg/ml) 0.3±0.f 0.5+0. f 0.9+0.2"

Maximum Eg (pg/ml) 2.1±0.3® 10.9+1.0" 66.5+10.5°

Day of cycle of max. Eg 5.0±0.2^ 3.O+O.O" 3.1+0.1"

Day of cycle E2 declines

to < 2pg/ml 6.0±0.2^ 5.9±0.2= 9.4+O.5"

E2 on day of emergence

of the 2"^ wave (pg/ml) 0.5±0.f 1.4+0.4" 5.1+1.0"

abcMeans with different superscripts within rows are statistically different (p<0.05).
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2) The effects of aspiration of the freshly selected first dominant follicle on Day 5 

or treatment with two doses of ODB + P at emergence of the first follicle wave on 

Day 2 on FSH and growth of the first and second follicle wave

In all control aspiration cycles the largest follicle on Day 5 was aspirated 

which was also the freshly selected first DF, thus preventing first-wave DFs from 

reaching their normal maximum diameter (Table 2,2). However, during one cycle 

the aspirated follicle re-gained its follicular fluid and function within 2 days, and no 

further follicle growth was seen until emergence of the second wave on Day 9. 

Immediately following DF aspiration serum oestradiol concentrations declined 

(p<0.05) and remained low, while FSH concentrations increased (p<0.05) to reach 

a maximum 2 days after aspiration which was 2 days earlier than in non-aspirated 

control cycles (p<0.05), and associated with earlier emergence of the second 

follicle wave (p<0.05) (Figure 2.2a,b; Table 2.2). Subsequently, FSH 

concentrations declined rapidly and the first day of dominance of the second DF 

was advanced (p<0.05) by 2.4 days compared to control cycles (Figure 2.2a; 

Table 2.2).

Following treatment with ODB + P FSH declined by 40-50% (p<0.05) to 

reach nadir concentrations within one day which was 2 days earlier (p<0.05) than 

in control cycles; concentrations subsequently increased to reach the maximum of 

the next FSH rise 3 days earlier (p<0.05) than in control cycles (Table 2.2; Figure 

2.3a). Thus, FSH concentrations were higher (p<0.05) in 5mg ODB+P treated 

cycles on Days 4-6 of the cycle compared with controls (Figure 2.3a).
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Treatment with 0.75mg ODB+P at emergence of the first wave did not 

influence selection of the first DF in 8/9 cycles, which reached a similar (p>0.05) 

maximum size to the one reached in control cycles (Table 2.2). However, 

treatment with 5mg ODB+P caused suppression of first wave growth, and led to 

reduced (p<0.05) maximum size attained 1-2 days after treatment compared with 

control and 0.75ODB+P cycles (Table 2.2). Associated with the earlier second 

rise in FSH, a new wave emerged 2 days earlier (p<0.05) in ODB+P cycles than 

in control cycles. In 5mg ODB+P cycles, this new wave led to selection of a new 

DF in 6/8 cycles, and the first day of dominance of this new DF tended to be 

earlier (p=0.06) than in control cycles. However, in cycles treated with 0.75mg 

ODB this new wave did not lead to selection of a new DF in 2/3 cycles, which on 

average emerged later, at the same time (p>0.05) as in control cycles (Table 2.2).

Following treatment with ODB+P FSH increased more slowly to reach a 

later maximum (p<0.05) than following ablation of the DF (Figure 2.4a, Table 2.2), 

while maximum FSH concentrations were similar (p>0.05) between treatments. 

Consequently, the time from ablation or steroid treatment to emergence of the 

new DF was 3 or 4 days longer (p<0.05) in 5mg or 0.75mg ODB+P cycles, 

respectively, compared with DF ablation cycles (Table 2.2).
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Figure 2.2 Serum concentrations (mean±sem) of a) FSH, b) oestradiol and c) 
inhibin-A in control cycles (n=10 for FSH and oestradiol; n=6 for inhibin-A) and in 
control cycles, in which the dominant follicle (DF) was aspirated on Day 5 (n=4-5).
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Figure 2.3 Serum concentrations (mean+sem) of a) FSH and b) inhibin-A in 

control cycles (n=10) and in cycles in which dairy heifers were treated with 0.75mg 

(n=3“4) or 5mg ODB + P (n=3-8) on Day 2 of their oestrous cycle.
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Figure 2.4 Serum concentrations (mean±sem) of a) FSH and b) inhibin-A in 

control cycles, in which the dominant follicle (DF) was aspirated on Day 5 (n=3-5), 

and in cycles in which dairy heifers were treated with 0.75mg (n=3-4) or 5mg ODB + 

P (n=3-8) on Day 2 of their oestrous cycle.
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Table 2.2 Parameters (mean+sem) relating to serum FSH and growth of the first and 
second follicle wave in control cycles, in control cycles in which the first dominant follicle 
(DF) was aspirated on Day 5, and in cycles in which dairy heifers were treated with 
0.75mg or 5mg ODB plus Progestagen on Day 2 of their oestrous cycle.

Control cycles 
No
aspiration
n=10

Aspiration 
of first DF
n=5

Treatment cycles 
0.75mg 5mg 
ODB+P ODB+P
n=3-4  ̂ n=8

Serum FSH concentrations 
Nadir FSH (ng/ml) 0.10+0.01" jk 0.18+0.0f 0.12+0.01"
Day of cycle of nadir FSH 4.4+0.6" 2.6±0.f 2.7+0.1"
Maximum FSH (ng/ml) 0.40+0.04" 0.38+0.03" 0.41+0.03" 0.35+0.03"
Day of cycle of max. FSH 9.1+0.4" 6.9+0.6‘̂ 6.1+0.4'' 6.3+0.2"
Interval from nadir to next 
maximum (days) 4.7+0.6" _* 3.5+0.5" 3.6+0.2"
Interval from DF aspiration or 
steroid treatment to max. FSH 1.9+0.6" 4.1+0.4" 4.3+0.2"
(days)

First follicle wave 
Maximum size of largest 
follicle (mm) 13.3±0.6" 10.8±0.8^** 11.4+1.4"'' 6.3+0.3''
Day of cycle of max. size 8.4+0.4" 5.8+0.8^** 8.8+1.7" 3.3+0.3''

Second follicle wave
Day of cycle of 2"̂  wave
emergence (Em) 9.3+0.4" 6.8±0.6^ 7.3+1.8" 6.8+0.3"
Day of cycle of Em of 2̂  ̂DF 9.6+0.3" 7.2±0.6‘̂ 9.7+1.7" 7.0+0.3"
Interval from DF aspiration or 
steroid treatment to Em of 2"̂ 2.2+0.6" 7.7+1.7" 5.0+0.3"
DF (days)
First day of dominance of 2"̂  
DF (day of cycle) 12.2+0.5" 9.8±0.8^ 11.0+2.0"" 10.5+0.7""***
Size of 2"̂  DF on first day of 
dominance (mm) 9.0+0.2" 8.9+0.3" 9.1+0.3" 8.6±0.2=
Interval from DF aspiration or 
steroid treatment to first day of 4.8+0.8" 9.0+2.0" 8.5+0.7"
dominance of 2"̂  DF (days)"aBcMeans with different superscripts within rows are statistically different (p<0.05).
'̂ In one of the 0.75mg ODB+P treated cycles no new wave emergence occurred and the 
old DF continued to grow and ovulated following a short luteal phase, thus, only data 
relating to the first wave are available.
*ln control cycles in which the first DF was aspirated, blood samples were only collected 
from Day 5, it is, therefore, not possible to determine nadir FSH concentrations.
**Size of the first DF on Day 5 (n=4) or Day 9 (n=1; follicular fluid aspiration did not 
terminate follicle function).
***Means in the 5mg ODB+P treatment cycles tended to differ from control cycles 
(p=0.06).
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3) Systemic inhibin-A and the presence of growing wave or dominant foiiicies

In control cycles, serum inhibin-A concentrations were already high on Day 

2 with a maximum of 98.0+7.1 pg/ml associated with the first wave on Day 3.5 of 

the cycle. Concentrations were maintained high up to Day 6 of the cycle, followed 

by a decline (p<0.05) to reach nadir concentrations of 34.8+5.4 pg/ml on Day 

9.0+0.6. Subsequently, inhibin-A concentrations increased (p<0.05) to a second 

maximum of 78.1+10.5 pg/ml on Day 12 at the end of the study when the second 

DF was selected (Figure 2.3b).

Following aspiration of the first DF on Day 5, inhibin-A concentrations fell 

precipitously (p<0.05) on Day 6 to reach 46.4+7.9% of the previous’ day values, 

which was reduced (p<0.05) compared with control cycles In which 95.8+4.7% of 

the previous’ day values were maintained. Thus, nadir inhibin-A concentrations 

were reached 2 days earlier (p<0.05) following aspiration of the first DF on Day 

6.8+0.6, followed by an increase to reach a second maximum of 74.9+4.4 pg/ml 

again 2.3 days earlier (p=0.05) than in control cycles (Figure 2.2b), associated 

with earlier growth of the second wave and selection of the second DF.

Following treatment with ODB+P, maximum inhibin-A concentrations 

associated with the first follicle wave were reduced (p<0.05) to 69.2+9.3 pg/ml 

(0.75mg) and 71.5+5.5 pg/ml (5mg) compared with control cycles, and this 

maximum was reached 1.5 days earlier (p<0.05) in 5mg ODB+P treated cycles 

compared with control cycles (Figure 2.3b). In fact, concentrations of inhibin-A 

declined (p<0.05) from the day of steroid treatment to reach nadir concentrations
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of 21.3+5.8 (0.75mg) and 11.1±2.2 pg/nni (5mg; p<0.05) 2.5 (0.75mg) and 3.4 

(5mg) days earlier (p<0.05) than in control cycles (Figure 2.3b). Subsequently, 

inhibin-A concentrations increased (p<0.05) associated with growth of the second 

wave to reach a second maximum of 73.5+7.3 (0.75mg) and 48.6+5.5 pg/ml 

(5mg; p<0.05) on Days 12.5+1.0 (0.75mg) and 10.4+1.1 (5mg) of the cycle 

(Figure 2.3b).

4) The effects of aspiration of the largest follicles present on Day 5 three days 

after treatment with two doses of ODB + P at emergence of the first foliicie wave

In five of nine 0.75mg ODB+P treated cycles the largest follicle (LF) 

present on Day 5 was aspirated similar to control DF aspiration cycles. In all five 

cycles a new wave emerged following LF ablation on Day 5; the new DF was 

selected from this new wave In 3 cycles, while in one cycle another wave 

emerged causing selection of the new DF. In the remaining cycle, the aspirated 

follicle re-gained its follicular fluid content and its function, continued to grow and 

re-asserted its dominance following emergence of the new wave; this wave 

regressed and no other follicle growth was seen for the remainder of the 

(shortened) cycle. As mentioned above, in three of the four 0.75 mg ODB+P 

treated cycles without follicle aspiration a new wave emerged, but this new wave 

only led to selection of the new DF in one case.

Overall, the diameter of the largest follicle present on Day 6 of the cycle 

was reduced (p<0.05) following LF aspiration on Day 5, but LF aspiration did not 

change (p>0.05) the day of cycle when the largest follicle of the first wave reached 

its maximum diameter following treatment with 0.75 mg ODB+P (Table 2.3).
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Largest follicle aspiration on Day 5 did not advance (p>0.05) the timing of the 

second FSH rise and second wave emergence any further, and it did not shorten 

(p>0.05) the interval from steroid treatment to selection of the second DF following 

treatment with 0.75 mg ODB+P (Figure 2.5a; Table 2.3). There were also no 

differences seen (p>0.05) in the serum oestradiol profile following ODB treatment 

(Figure 2.5b).

8 6



Figure 2.5 Serum concentrations (mean±sem) of a) FSH and b) oestradiol in 

cycles in which heifers were treated with 0.75mg ODB + P on Day 2 without any 

further treatment (n=2-4), and in which the largest follicle (LF) present on Day 5 was 

aspirated (n=2-5).
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Table 2.3 Parameters (mean±sem) relating to serum FSH and growth of the 

first and second follicle wave in cycles in which dairy heifers were treated with 

0.75mg ODB plus P on Day 2 of their oestrous cycle with or without aspiration of 

the largest follicle (LF) present on Day 5.

^^Means with different superscripts within rows are statistically different (p<0.05).
*ln one of the 0.75mg ODB+P treated cycles without LF aspiration, no new wave emergence

occurred; in one of the 0.75mg ODB+P treated cycles with LF aspiration no new DF was selected

(follicle aspiration did not terminate follicle function). In both cases the old DF continued to grow

and ovulated following a short luteal phase; thus, only data relating to the first wave are available.

0.75mg ODB+P cycles 
No LF aspiration 
aspiration Day 5
n=3-4* n=4-5*

Serum FSH concentrations 
Nadir FSH (ng/ml) 0.18±0.0f 0.12±0.02‘’
Day of cycle of nadir FSH 2.6+O.f 2.5+0.0®
Maximum FSH (ng/ml) 0.41 ±0.03^ 0.44±0.05®
Day of cycle of max. FSH 6.1+0.4^ 6.1+0.4=
Interval from nadir to next 
maximum (days) 3.5±0.5^ 3.6±0.4^
Interval from steroid treatment to 
max. FSH (days) 4.1±0.4" 4.1+0.4^

First follicle wave
Size of largest follicle on Day 5 9.6+0.3® 9.1±0.7=
(mm)
Size of largest follicle on Day 6 9.6±0.3= 6.3±0.8"
(mm)
Maximum size of largest follicle 11,4±1.4® 10.6+1.5®
(mm)
Day of cycle of max. size 8.8±1.7= 6.6+1.6®

Second follicle wave*
Day of cycle of 2"  ̂ wave 7.3±1.8= 7.0+0.0®
emergence (Em)
Day of cycle of Em of 2"  ̂DF 9.7±1.7® 7.5+0.5®
Interval from steroid treatment to 
Em of 2"  ̂DF (days) 7.7+1.7= 5.5+0.5®
First day of dominance of 2"̂  ̂ DF 
(day of cycle) 11.0±2.0= 10.8+1.1®
Size of 2̂  ̂ DF on first day of 
dominance (mm) 9.1 ±0.3^ 9.3+0.4®
Interval from steroid treatment to 
first day of dominance of 2"^ DF 9.0±2.0^ 8.8 ±1.1®
(days)



Following treatment with 5mg ODB+P the largest follicle was aspirated in 6 

of 18 cycles, while the 2-4 largest follicles were aspirated in 4 of 18 cycles. Thus, 

on average 1.8+0.4 follicles were ablated with a mean size of 6.4+0.3 mm and a 

largest size of 6.8+0.2 mm in diameter. There were no differences seen (p>0.05) 

in the follicle status on Day 2 or on Day 6 of the cycle between 5mg ODB+P 

treated cycles in which follicles were or were not aspirated on Day 5 (Table 2.4). 

However, on Day 5 of the cycle, follicle aspiration was carried out in cycles in 

which less follicles < 5mm and more follicles >6 mm were seen (p<0.05), and the 

largest follicle was > 1mm larger (p<0.05) in diameter compared with cycles in 

which no aspiration was carried out (Table 2.4). In addition, maximum size of any 

follicle of the first wave was reached 1 day later (p<0.05) and was larger (p=0.05) 

in 5mg ODB+P treated cycles in which follicle aspiration was carried out on Day 5 

compared without follicle aspiration (Table 2.4).

Although a new follicle wave emerged in all 5mg ODB+P treated cycles 

approximately 5 days after steroid treatment, this new wave gave rise to the new 

DF in only 3/10 cycles in which follicles had grown larger for longer before 

aspiration on Day 5 compared to 6/8 cycles without follicle aspiration (p<0.05). 

The new DF was finally selected from another wave, which emerged 

subsequently in the majority of 5mg ODB+P cycles with follicle aspiration. This is 

reflected in a 2-day delay in the timing of the second FSH maximum (p<0.05) and 

a 1.6-day delay in the day of emergence of the second DF (p<0.05) in 5mg 

ODB+P cycles in which follicles had grown larger for longer before aspiration on 

Day 5 compared to cycles without aspiration (Figure 2.6a; Table 2.5). However, 

no further differences (p>0.05) were seen in the rise and decline of serum FSH
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and oestradiol concentrations, and in the decline and rise of inhibin-A 

concentrations in 5mg ODB+P treated cycles in which follicles had grown larger 

for longer before aspiration on Day 5 compared to cycles without follicle aspiration 

(Figure 2.6).
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Figure 2.6 Serum concentrations (mean±sem) of a) FSH, b) oestradiol and c) 
inhibin-A in cycles in which heifers were treated with 5mg ODB + P on Day 2 without 
any further treatment (n=2-8), and in which the largest follicle(s) present on Day 5 
(average size 6.4 mm) were aspirated (n=2-18).
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Table 2.4 Parameters (mean±sem) relating to growth of the first follicle wave 

in cycles in which dairy heifers were treated with 5mg ODB + P on Day 2 of their 

oestrous cycle with or without aspiration of the largest follicle(s) present on Day 5.

5mg ODB+P cycles 

No aspiration Follicle aspiration Day 5
n=8 n=10

First follicle wave 

Follicle numbers on Day 2:

< 5mm 4.1+0.6^ 4.5±0.8^
5-6mm 1.0+0.6^ 1.9+0.6^
> 6mm 0.4±0.2^ 0.7±0.5^

Follicle numbers on Day 5:

< 5mm 5.1±0.6^ 2.8+0.6"
5-6mm 1.4+0.7^ 1.6+0.3^
> 6mm 0.4±0.3^ 1.5+0.5"

Follicle numbers on Day 6:

< 5mm 3.9±0.9^ 5.1±0.8=
5-6mm 1.0+0.6^ 0.7+0.3"
> 6mm 0.6±0.3^ 0.4±0.3^

Size of largest follicle on:

Day 2 (mm) 5.4±0.3® 5.6±0.3^

Day 5 (mm) 5.3±0.4^ 6.8+0.2"

Day 6 (mm) 5.5±0.3^ 5.4+0.4"

Maximum size of largest follicle (mm) 6.3±0.3^ 7.0+0.2"

Day of cycle of maximum size 3.3±0.3® 4.310.2"

abMeans with different superscripts within rows are statistically different (p<0.06).
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Table 2.5 Parameters (mean+sem) relating to serum FSH and growth of the 

second follicle wave in cycles in which dairy heifers were treated with 5mg ODB 

plus progestagen on Day 2 of their oestrous cycle with or without aspiration of the 

largest follicle(s) present on Day 5.

5mg ODB+P cycles 

No aspiration Foliicie aspiration Day 5
n=8 n=10

Serum FSH concentrations

Nadir FSH (ng/ml) 0.12+0.01^ 0.11+0.02^

Day of cycle of nadir FSH 2.7+O.f 2.5±0.0^

Maximum FSH (ng/ml) 0.35+0.03^ 0.43±0.08®

Day of cycle of max. FSH 6.3+0.3® 8.2+0.5''

Interval from nadir to next

maximum (days) 3.6±0.2® 5.3±0.4^

Interval from steroid treatment to

max. FSH (days) 4.3±0.2^ 6.2±0.4^

Second follicle wave

Day of cycle of 2̂  ̂ wave

emergence (Em) 6.8±0.3^ 6.6±0.3^

Day of cycle of Em of 2"^ DF 7.0±0.3^ 8.610.5^

Interval from steroid treatment to

Em of 2""̂  DF (days) 5.0±0.3^ 6.6+0.5b

First day of dominance of 2"^ DF

(day of cycle) 10.5+0.7^ 12.1+1.53

Size of 2"^ DF on first day of

dominance (mm) 8.6±0.2^ 8.8+0.23

Interval from steroid treatment to

first day of dominance of 2"^ DF 8.5±0.7^ 10.1+0.53
(days)

^^Means with different superscripts within rows are statistically different (p<0.05).
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5) Discussion

Steroid combination treatments administered during emergence of the first 

follicle wave in heifers have been shown to cause follicle atresia and advance the 

time of next wave emergence (Bo et al., 1994; 1995; O’Rourke et al., 1998). 

Intervals from treatment to the next wave and selection of the next DF may 

depend on the dose and type of oestradiol used, and can be variable and 

prolonged (Bo et al., 1994; 1995; Duffy et al., 1997; O'Rourke et al., 1998). Yet, 

unpredictable time intervals to selection of the next DF will compromise the 

success of oestrous synchronisation treatments in terms of synchrony of oestrous 

onset and subsequent fertility. The first main aim of our study was to compare 

hormonal and follicular events following DF aspiration with those seen after 

treatment with a low (2 x follicular phase levels) or high (pharmacological) dose of 

ODB combined with progestagen given at the time of first wave emergence. 

Predictably (Bodensteiner et al., 1996; Amiridis et al., 1999; Ginther et al., 1999), 

aspiration of the freshly selected first DF generally resulted in a transient FSH rise 

and emergence of the next wave 2 days later, followed by selection of the next DF 

5 days after aspiration. This timing of events was similar to other studies where 

the DF was removed by either electrocautery (Ko et al., 1991; Adams et al., 

1992a) or ovulation using exogenous GnRH (Mihm et al., 1998; Ryan et al., 

1998). In contrast, the intervals from steroid treatment to the next FSH maximum 

and new wave emergence were more than twice as long as following aspiration, 

with FSH declining initially, then only beginning to rise on the second day after 

treatment; the interval to selection of the next DF was also 4 days longer than 

following DF aspiration. Thus, the longer intervals from steroid treatment to new
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DF selection are associated with a changed FSH profile, which in turn influences 

emergence of the next wave. Interestingly, follicle wave growth linked to the next 

FSH maximum did not lead to selection of the next DF in 12/27 (44%) of cycles 

following steroid treatment, further delaying intervals to selection of the next DF, 

although the next FSH maximum and wave emergence were advanced compared 

to control cycles. It is possible that first wave DFs selected despite the low dose 

of ODB+P may have experienced a partial or transitory loss in function causing an 

FSH rise stimulating follicle emergence initially, but then recovered some of their 

inhibitory effects on FSH and/or FSH-dependent follicles. There is some evidence 

regarding the direct inhibitory effects of healthy DF on other follicle growth despite 

raised FSH (Adams et al., 1992a; Bungartz and Niemann, 1994; Mihm et al., 

1995). However, in cycies treated with the high dose of ODB+P where follicles 

continued to grow for 2 days after treatment, wave growth was transitory and 

unsuccessful (without DF selection) in the majority of cycles despite rising FSH 

and absence of follicles > 5 mm. Thus, it is proposed that factors other than FSH 

or healthy wave or dominant follicles control the timing of new wave emergence 

after steroid treatment, and these may be related to secretions from wave follicles 

> 7mm undergoing atresia. Lack of immediate new wave emergence in response 

to rising FSH may also be related to an inadequate population of small FSH- 

dependent follicles present at the time. However, follicle waves consistently 

emerge following follicle ablations carried out at a random stage of the cycle or 

twice weekly for several months (Bergfelt et al., 1994; Boni et al., 1997), thus lack 

of follicles ready to emerge does not appear to be the reason for lack of 

ultrasound-detectable emergence.
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The initial drop in FSH was seen following both doses of ODB+P and was 

most pronounced following treatment with the high ODB dose; this is in 

accordance with the known FSH suppressive effect of oestradiol which is dose 

dependent (Price and Webb, 1988; Bolt et al., 1990; O’Rourke et al., 2000). 

However, FSH rises immediately following the initial decline despite 

pharmacologically high serum oestradiol concentrations, similar to what was 

previously seen in cyclic or ovariectomized heifers (Bo et al., 1993; 1994; 

O’Rourke et al., 2000), and induces growth of the next follicle wave at oestradiol 

concentrations normally seen during the follicular phase of the cycle (Bo et al., 

1993; Sunderland et al., 1994). The abrupt decline in FSH and the subsequent 

rise foliowing the high dose of ODB+P are associated with follicle stasis at 6 or 7 

mm in diameter and regression thereby preventing DF selection. This was 

followed by an advanced next FSH maximum and next wave emergence 5 days 

later and, if the wave follicles became static within 2 days of treatment, selection 

of the next DF also tended to be advanced compared with control cycles. In 

contrast, the low dose of ODB+P did not prevent DF selection and did not affect 

the timing of emergence of the next DF compared with control cycies, but it did 

cause a temporarily changed FSH profile associated with the advanced 

emergence of a new wave 5 days later. However, this wave only led to selection 

of the next DF in one of three cycles, while in the other two cycles follicles 

regressed again and new follicles emerged coincident with next wave emergence 

in control cycles.

By aspirating the largest follicle present on Day 5, three days after 

treatment with the low dose of ODB +P, we tried to determine whether this follicle
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still had any residual suppressive effects on FSH or other follicles. No significant 

effects of largest follicle aspiration were seen following treatment with the low 

dose of ODB+P in contrast to control cycles, which indicates that the first wave 

was affected by treatment even if the largest follicle was dominant 

morphologically. In a previous study using the low dose of ODB and an 

intravaginal progesterone device the first wave showed temporary loss of function, 

as a delay in wave growth and reduced intrafollicular oestradiol concentrations in 

the largest follicles were seen (Austin, 2000). However, this largest follicle may 

still have been functionally dominant at times, as in 3 of 4 aspiration cycles 

selection of the next DF occurred from the advanced next follicle wave similar to 

control aspiration cycles and different to 0.75ODB+P treated cycles without 

aspiration.

Aspiration of the largest follicle(s) present 3 days after treatment with 5mg 

ODB+P did not advance the next wave or the next DF, thus, these follicles were 

not actively suppressing any other follicle growth. However, due to the limitation 

of the technique, only follicles larger than 5mm were aspirated in general, and this 

led to a difference in cycles treated with the high dose of ODB + P. Only cycles in 

which more first wave follicles grew beyond 6 mm underwent the aspiration 

technique, and such divergent follicle growth between Days 2 and 5 appeared to 

delay the next transient FSH rise and emergence of the next wave independent of 

aspiration (follicle status on Day 6 was similar in all cycles treated with the high 

dose of ODB+P). Thus, treatment with a pharmacologically high dose of ODB in 

combination with progestagen at the time of wave emergence may lead to two 

distinct responses:
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1) the steroid treatment will cause immediate suppression of wave growth 

from 1 day after treatment at 6mm; the next wave consistently emerges 5 days 

after steroid treatment which is advanced compared to control cycles and similar 

to the intervals reported in other studies using 5 mg E-17(3 (Bo et al., 1994; 1995).

2) the first follicle wave grows for 2 more days to a larger size of 7 mm 

despite the high dose of ODB +P, which is associated with a delay in the next 

FSH maximum and emergence of the next DF despite advanced FSH rise and 

follicle emergence. This response has not been reported previously, and may 

indeed be specific to this study, but could possibly account for the variation seen 

in intervals to the next new DF following the use of high ODB+P combination 

treatments (Duffy et al., 1997; O'Rourke et al., 1998). It is possible that some 

wave follicles continue to grow despite pharmacologically high oestradiol and 

acutely suppressed FSH because they are no longer as acutely FSH-dependent 

as others. Such growth may subsequently determine success of the next follicle 

wave (in terms of DF selection), and may reflect differences in the local or 

systemic environment not measured in our study, which needs to be explored in 

the future to avoid divergent responses to steroid combination treatments.

Overall, the effect of ODB+P on the growing first follicle wave appears to be 

dose dependent in our study and others (O'Rourke et al., 1998) and may also 

depend on the genotype of heifers and the progestagen used in combination. In 

our study in postpubertal dairy heifers treated during emergence of the first wave, 

only the high dose of ODB+P consistently prevented DF selection and tended to 

advance the next DF when follicles became static within 2 days of treatment. 

Others saw a simiiar effect in beef heifers with a similarly high dose of oestradiol-
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17(3 on its own or in combination with the same synthetic progestagen (Bo et al., 

1993; 1994; 1995), or with the low dose of ODB in combination with an 

intravaginal progesterone releasing device (O'Rourke et al., 1998). In the latter 

study, the use of the high dose of ODB plus a progesterone releasing device also 

disrupted first follicle wave growth similar to our study, but did not advance the 

next wave. Follicles in our study were generally more suppressed at 6-7 mm than 

other studies report following steroid treatment at or after wave emergence. For 

example, Bo et al., (1993) and (1995) reports cessation of the wave 1.3 and 0.6 

days after treatment at a maximum size of 8 or 9.6 mm. Such divergent effects on 

first wave growth may also be due to the timing of treatment in relation to wave 

emergence and the oestradiol profile in circulation.

The relative contributions of the two gonadotrophins FSH and LH in follicle 

wave growth were determined in studies where GnRH actions were reduced or 

abolished using active GnRH immunization (Crowe et al., 2001) or continuous 

GnRH agonist exposure (Gong et al., 1996), and FSH and LH were supplemented 

exogenously. Thus, it emerged, that transient FSH rises are essential for wave 

follicle growth, while LH pulses are needed for follicular oestradiol production and 

growth beyond 9 mm in diameter. We assume that the severe drop in FSH 

caused by pharmacologically high doses of oestradiol in our combination 

treatment is responsible for causing stasis and regression of the first follicle wave, 

as these follicles are considered FSH-dependent. This is in agreement with a 

recent study which concluded that the suppressive effects of oestradiol on the first 

follicle wave were exerted indirectly rather than directly at the ovarian level (Bo et 

al., 2000). However, oestradiol only has a transient suppressive effect on FSH,
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as FSH began to rise again in this study and others within 2 days of treatment 

(Cooke et al., 1997b; O’Rourke et al., 2000). Yet, follicles were unable to respond 

to this FSH rise in our study and regressed in all cycles treated with the high dose 

of ODB+P, indicating an atretogenic effect of transiently reduced FSH 

concentrations.

In addition, both oestradiol and progesterone in combination also exert a 

potent negative feedback on GnRH and thus LH pulse frequency and amplitude 

(Goodman and Karsch, 1980). Whether severely reduced LH pulses, occurring 

within 36 hours of treatment with the low dose of ODB and progesterone (Austin, 

2000), are also involved in wave atresia, is so far undetermined. However, 

reduced LH pulse frequencies may contribute to subtle losses in follicle function 

and decreased diameters of subsequently selected DF when experienced during 

wave emergence (Adams et al., 1992b; Burke et al., 1994; Austin, 2000) and 

cause DF atresia when experienced during a prolonged dominance period (Savio 

et al., 1993; Taylor et a/., 1994; Manikkam and Rajamahendran, 1997). Although 

the prolonged high oestradiol concentrations following the high dose of ODB are 

thought to also exert prolonged inhibitory effects on LH pulsatility in combination 

with exogenous P and progesterone secretion from the corpus luteum, new waves 

are still able to emerge, thus demonstrating the relative insensitivity of emerging 

follicles to the LH pulse environment.

Oestradiol concentrations in serum were still relatively high when the next 

transient FSH rise occurred and new follicles emerged, thus oestradiol as such 

does not have a direct inhibitory effect on growing cohort follicles. However, high 

oestradiol concentrations may have been responsible for the protracted rise in
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FSH seen following steroid treatment either directly at the level of the pituitary or 

via reducing GnRH pulsatile release from the hypothalamus (Bolt et al., 1990). 

Whether different FSH profiles influence wave emergence or its subsequent 

growth is so far undetermined. Such a protracted FSH rise, however, may 

contribute to the delay seen in emergence of the next follicle wave or its lack of 

progression in 44% of steroid treated cycles when compared with the rapid events 

seen following DF ablation. Oestradiol preparations with a very short half life, for 

example oestradiol-17p (Bo et al., 1994, 1995), cause systemic oestradiol 

concentrations to return to baseline in 42 hours, and thus may allow a more 

physiological transient FSH rise beneficial to rapid cohort growth and selection of 

a DF. This may be the reason for a shorter and more predictable interval to 

emergence of the next wave reported following treatment with oestradiol-17 p than 

following the use of oestradiol benzoate or valerate (Bo et al., 1995; Duffy et al., 

1997; O’Rourke etal., 1998).

Our second main aim was to evaluate systemic inhibin-A as a marker for 

health or atresia of follicles present on both ovaries. Inhibins in follicular fluid 

have proven to be very accurate physiological indicators of follicle health or 

atresia in several studies. Higher molecular weight forms of inhibins are 

increased in oestrogen - active versus - inactive follicles (Ireland et al., 1994), in 

freshly selected DF versus their subordinate follicles and versus the old DF 

following its loss of dominance (Sunderland et al., 1996; Mihm et al., 1997). In 

addition, intrafollicular amounts of higher molecular weight inhibins (> 34 kDa) 

increase by 33 hours after the FSH peak in the largest cohort follicles and 

continue to be maintained high in the successful follicles up to DF selection (Mihm
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et al., 1997; Austin et al., 2001). Thus, we hypothesized that the synthesis and 

secretion into circulation of high molecular weight inhibins are a good marker for 

follicle survival, assuming that ovarian sources are mostly responsible for 

circulating concentrations of inhibins and changes in circulation reflect changes in 

ovarian/follicular secretions. However, measurements of dimeric inhibin in 

circulation have proven difficult in the past in cattle, and assays for the higher 

molecular weight inhibins do not exist at the moment. Only very recently, an 

inhibin-A assay previously published for sheep plasma (Knight et al., 1998) has 

been modified and validated for bovine plasma and shown to detect all dimeric 

forms of inhibin-A (Bleach et al., 2001).

Increases in inhibin-A were seen to be associated with growth of the pre

ovulatory follicle during the follicular phase, followed by a decline and a 

subsequent smaller increase during growth of the first follicle wave of the cycle 

(Bleach et al., 2001). Results from our study extend this information and show for 

the first time:

Firstly, the healthy first wave DF secretes inhibin-A and is, in fact, 

responsible for circulating inhibin-A during its dominance period, as DF aspiration 

on Day 5 caused an abrupt fall in inhibin-A within 12 hours coincident with a drop 

in oestradiol, and followed by a transient rise in FSH reaching its maximum 2 days 

later. This differs from control cycles, where serum oestradiol also declines quite 

abruptly between Days 5 and 6, while inhibin-A only declines slowly reaching 

nadir concentrations on Day 9, the day when the second transient FSH rise 

reaches its maximum. Thus, we conclude, that secretions from the DF and in
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particular inhibin-A more so than oestradiol, dynamically regulate FSH 

concentrations during the dominance period.

Secondly, increasing and high concentrations of inhibin-A are associated 

with growth of a follicle wave, and no further increases are seen following DF 

selection. This was the case in our study in all 28 control or treated cycles studied 

where serum inhibin-A was determined every 12 or 24 hours, and is in agreement 

with findings of Bleach et al., (2001) in relation to the postovulatory follicle wave. 

In control cycles from our study, maximum concentrations of inhibin-A were 

achieved on Day 3.5 after wave emergence but before DF selection, and this is 

reflected by the changes seen in intrafollicular amounts of inhibins reported for the 

first follicle wave; healthy growing wave follicles showed increased intrafollicular 

amounts of the higher molecular weight inhibins within 33 hours of the FSH 

maximum and amounts did not change any further following DF selection (Mihm 

et al., 1997; Austin et ai, 2001). Maximum inhibin-A concentrations in circulation 

precede the FSH nadir by 1 day in control cycles, while intrafollicular and systemic 

oestradiol concentrations reach their maximum after the FSH nadir with 

completed selection of the DF. As all dimeric moiecular weight forms of inhibin 

have been shown to suppress FSH secretion from pituitary cells (Good et ai, 

1995), we would propose that inhibin-A secretions from the growing follicle wave 

are the main endocrine regulator of the FSH decline essential for DF selection, 

while both oestradiol and inhibin-A secreted from the DF are involved in 

maintaining FSH low during the dominance period thus preventing any other 

follicle growth.
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And finally, as increases in inhibin-A after wave emergence are probably 

the result of stimulation of inhibin synthesis from FSH-dependent wave follicles by 

the transient FSH rise, the abrupt decline in inhibin-A following steroid treatment 

at first wave emergence must reflect the abrupt withdrawal of FSH support caused 

by oestradiol. Such a decline in inhibin-A was previously only seen following 

ovulation (Bleach et ai, 2001) or in our study following DF aspiration, and appears 

to indicate a loss in function of wave follicles similar to the first DF when it loses 

dominance in control cycles. This is mirrored by the reductions in higher 

molecular weight inhibins seen in follicular fluid during DF or subordinate atresia 

(Sunderland etal., 1996; Mihm etal., 1997). Interestingly, the decline in inhibin-A 

is not as pronounced in cycles treated with the low dose of ODB+P where the 

follicle wave still progresses to DF selection. However, as inhibin-A 

concentrations were still reduced compared to control cycles, the function of this 

wave must have been compromised to a certain extent as discussed above. Also 

interesting is the fact that inhibin-A concentrations declined equally abruptly and 

severely in all cycles treated with the high dose of ODB+P, even when follicles 

grew for 2 more days to reach a larger maximum diameter following steroid 

treatment. Thus, declining inhibin-A may be related to reduced FSH response in 

wave follicles, but not necessarily reflect all functions related to follicle growth and 

atresia. Overall, however, high inhibin-A concentrations in circulation reflect the 

presence of healthy growing wave or dominant follicles and declining or nadir 

concentrations are associated with loss of follicle function, generally followed by 

follicle atresia. Thus, we conclude, that systemic inhibin-A is an excellent marker 

of the presence of healthy follicles on ovaries, although it may not differentiate 

between wave or dominant follicles in the absence of ovarian ultrasound
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scanning. In agreement with Bleach et al., (2001), we also conclude that follicular 

inhibin-A very likely plays an important role in the regulation of FSH, possibly 

more than oestradiol, as in all control cycles of our study the time of the inhibin 

nadir and the time of each FSH maximum preceding new follicle emergence were 

identical. Thus, declining or low inhibin-A concentrations due to loss of function of 

follicles present allow the subsequent rise in FSH, the rate of which may be 

controlled by other follicular or endocrine (oestradiol) factors.

Our study evaluated the follicular and hormonal responses of 2 steroid 

combination treatments administered at emergence of the first follicle wave in 

dairy heifers. Overall, the most consistent response was seen in cycles treated 

with a pharmacologically high dose of ODB + P, where wave follicles became 

arrested in their growth within 2 days of treatment at a maximum size of 6mm. 

However, the time interval from treatment to the next FSH rise, wave emergence 

and new DF was 3-5.5 days longer in steroid treated cycles than following 

removal of the freshly selected DF. This delay is attributed to a different FSH 

profile following steroid treatment characterised by an initial decline and a 

subsequent protracted rise, and inadequate follicular atresia following steroid 

treatment: first wave follicles continued to grow between Days 2 and 5 to a DF 

(low ODB dose) or to 7 mm (high ODB dose) despite steroid treatment, which 

may have affected success of the next wave that emerged in response to rising 

FSH. Serum inhibin-A rose and declined coincidentally with the presence of 

healthy or atretic wave or dominant follicles, and thus can be used to determine 

the success of any steroid treatments aimed to cause predictable and acute 

follicle atresia. We conclude, that further studies need to be carried out regarding
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the efficiency of steroid combination treatments to cause follicle atresia and thus 

consistently and predictably synchronise follicle wave emergence and DF 

selection in cattle, a prerequisite of high oestrous synchrony coupled with 

optimum fertility.
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Chapter 3: 

General Discussion
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The success of oestrous cycle synchronisation programmes in cattle 

depends on the precise manipulation of ovarian follicle wave growth in such a way 

that a newly selected dominant follicle is present at the time of luteolysis and 

treatment withdrawal. This will ensure that the interval from treatment withdrawal 

to oestrus and ovulation is consistent and predictable in all treated animals 

allowing single fixed-time insemination with subsequent high fertility. However, 

steroid combination treatments administered during different stages of follicle 

wave development have so far yielded unsatisfying results with varying intervals 

of 2-7 days from treatment to growth of a new follicle wave selecting a new 

dominant follicle. Our study addressed the effects of administering oestradiol 

benzoate and a synthetic progestagen during growth of the first follicle wave of 

the cycle in dairy heifers, as this stage of wave development has been shown to 

respond variably to different steroid combinations and doses of oestradiol 

benzoate in beef heifers; in addition, no comparable studies investigating the 

response of wave follicles in terms of continued wave growth or follicle atresia 

have been carried out in dairy heifers.

In our study we compared follicular and hormonal changes occurring 

following ablation of the freshly selected first dominant follicle with those following 

two doses of oestradiol benzoate administered in conjunction with progestagen at 

emergence of the first follicle wave. Treatment with oestradiol benzoate and 

progestagen was less efficient in advancing the transient FSH rise, next wave 

emergence and selection of the next dominant follicle than the dominant follicle 

aspiration technique. In addition, an oestradiol benzoate dose effect previously 

reported in some beef heifers became very evident in our dairy heifers, where the
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low dose did not abolish dominant follicle selection, although it appeared to 

compromise dominant follicle function causing an initial drop in inhibin-A, a rise in 

FSH, and emergence of a small wave which then regressed again. Unfortunately, 

the number of heifers allocated to this treatment was low and due to premature 

luteolysis occurring in one animal, only responses in three animals could be 

evaluated. Aspiration of the dominant follicle selected following treatment with the 

low dose of oestradiol benzoate and progestagen did not cause differences in the 

timing of subsequent wave growth as it did in control animals, again indicating 

some compromise of function of this selected dominant follicle. In this study we 

were unable to collect uncontaminated follicular fluid from the dominant follicles 

selected under exogenous steroid treatment, and in the future perfection of the 

aspiration technique will allow us to investigate any changes which may occur in 

intrafollicular parameters of health (such as oestradiol, inhibins and insulin-like 

growth factor binding proteins) and the oocyte following steroid treatment. Thus, 

we will be able to estimate the atretogenic effect of a steroid treatment using the 

low dose of oestradiol benzoate; at the moment, it does not appear sufficient in 

dairy heifers to cause immediate and predictable atresia of wave follicles.

The high dose of oestradiol benzoate combined with progestagen 

consistently prevented dominant follicle selection, and advanced the subsequent 

FSH rise and wave emergence similar to previous reports using oestradiol-17p 

preparations but not oestradiol benzoate in beef heifers. If follicles became static 

within 2 days of treatment selection of the next dominant follicle was also 

advanced compared with control animals; however, the interval from treatment to 

presence of e newly selected dominant follicle was still > 8 days, which is very 

long in the current climate of short synchronisation treatments and necessitates a
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minimum treatment duration of 8-9 days before withdrawal. A second response to 

administration of the high dose of oestradiol benzoate was seen, which has not 

been reported previously; follicles continued to grow for 2 days after treatment 

reaching a larger maximum size and this was associated with a delay in the next 

FSH maximum and selection of the next dominant follicle. This was also the 

group of animals treated with the high dose of oestradiol benzoate and 

progestagen in which follicles from 5 mm were successfully aspirated. It was very 

clear that aspiration 3 days after steroid treatment did not advance new wave 

emergence, and this allowed us to conclude that medium follicles present at the 

time could not inhibit small follicles belonging to the next wave. However, it is 

possible that the follicles which grew for 2 more days despite treatment with the 

high dose of oestradiol benzoate combined with progestagen had an inhibitory 

effect while they were growing and this may have affected the success of 

subsequent wave growth (the early emerging follicle wave did not select a new 

dominant follicle but regressed). In the future, aspiration of growing wave follicles 

1, 2 and 3 days following treatment with the high dose of oestradiol benzoate 

combined with progestagen should elucidate whether follicles are inhibitory during 

their growth phase thus affecting success of the subsequent wave. It is, of 

course, possible that the two different responses seen following treatment with the 

high dose of oestradiol benzoate were due to differences in other hormones not 

measured in our study, such as progesterone and its effects on LH, and that these 

same differences also subsequently affected new wave growth. We have to 

conclude, however, that treatment with the high dose of oestradiol benzoate and 

progestagen may lead to two different responses in terms of causing atresia of 

wave follicles present at the time of treatment which will again affect the
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predictability and consistency of the timing to new wave and dominant follicle 

selection.

Finally, our study used inhibin-A measurements in serum for the first time 

to determine ovarian status, i.e. presence of healthy or atretic follicles. Serum 

inhibin-A increased and declined coincident with the presence of healthy or atretic 

wave or dominant follicles, and thus, we conclude that elevated inhibin-A 

concentrations in serum are an excellent marker of growth of healthy wave or 

dominant follicle. Whether low inhibin-A concentrations are an equally good 

marker of the presence of atretic follicles will need to be determined in the future, 

as no differences in the inhibin-A decline were seen in cycles treated with the high 

dose of oestradiol benzoate and progestagen where follicles continued to grow for 

1 or 2 more days achieving different maximum sizes. Thus, secretion of inhibin-A 

may indicate that wave follicles are able to respond to FSH, and thus is reduced 

when FSH declines, but our inhibin-A measurements may have been too 

insensitive to detect differences between the two follicular responses to the high 

dose of oestradiol benzoate.

In summary, treatment of dairy heifers with a combination of oestradiol 

benzoate and progestagen at the time of emergence of the first follicle wave of the 

cycle does not cause a predictable new transient FSH rise, wave emergence and 

dominant follicle selection in all animals even following the use of the high dose of 

oestradiol benzoate. Further experiments need to be completed to improve the 

efficacy of steroid combination treatments in relation to their ability to cause follicle 

atresia, a necessary prerequisite to consistently and predictably synchronise 

follicle wave emergence and dominant follicle selection in cattle.
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