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ABSTRACT

Two methods of predicting normal cell radiosensitivity were investigated in different 
patient groups. Plasma transforming growth factor beta one (TG Fpl) levels were measured 
by ELISA, using a commercially available kit. Residual DNA double strand breaks were 
measured in normal epidermal fibroblasts following 150 Gy. After allowing 24 hours for 
repair, the DNA damage was assayed using pulsed field gel electrophoresis (PFGE). Pre­
treatment plasma TGFp 1 levels were investigated retrospectively in patients with 
carcinoma of the cervix in relation to tumour control and late morbidity following 
radiotherapy. Plasma TG Fpl levels increased with increasing disease stage. They also 
correlated with two other known measures of tumour burden i.e. plasma levels of 
carcinoma antigen 125 (CA125) and tissue polypeptide antigen (TPA). Elevated pre­
treatment plasma TGFp 1 levels predicted for a poor outcome both in terms of local control 
and overall survival. Plasma TG Fpi levels did not predict for the development of 
radiotherapy morbidity of any grade. In conclusion pre-treatment plasma TGFp 1 levels 
predict for tumour burden and tumour outcome in patients with carcinoma of the cervix. 
Changes in plasma TG Fpi levels measured prospectively may predict for radiation 
morbidity and should be investigated. A prospective study was undertaken in patients with 
carcinoma of the head and neck region. Changes in plasma TGFp 1 levels between the start 
and the end of a course of radical radiotherapy were investigated in relation to the 
development of acute radiation toxicity. Patients were categorised according to the pattern 
of response of their TGFp 1 levels over the course of their treatment. Those patients whose 
TGFp 1 levels decreased, but did not normalise during radiotherapy were assigned to 
category 2. Category 2 predicted for a severe acute reaction, as measured using the LENT 
SOMA score, with a sensitivity of 33% and a specificity of 100%. The positive predictive 
value of was 100%. As part of the validation of the commercially available T G Fpl kit, 
samples were obtained from sixty-six normal volunteers with a wide age distribution. This 
large series demonstrated an unexpected age-related rise in TG Fpl levels that had not been 
previously demonstrated in the literature. In breast carcinoma patients, two assays were 
performed retrospectively. Both pre-treatment plasma TG Fpl levels and residual DNA 
double strand breaks (measured using PFGE) were correlated with clinical outcome. 
Outcome was in the form of a total LENT SOMA score and late radiation fibrosis score, as 
measured by clinical palpation. No relationship was demonstrated between either pre­
treatment TGFp 1 levels or residual DNA double strand breaks and late radiotherapy 
outcome. This failed to validate a similar series of patients investigated in the same 
department using the same technique. This work has shown that measurement of residual 
DNA double strand breaks using PFGE is not sufficiently robust to be used clinically as a 
predictor of normal tissue radioresponse. In conclusion, changes in TGFp 1 plasma levels 
occurring over time during a course of radical radiotherapy, hold promise for the 
development of a rapid test of intrinsic radiosensitivity.
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CHAPTER 1: INTRODUCTION

1.1 Aetiology of cancers studied in this thesis

The incidence of cancer in the population is set to rise in the 21®̂  century for two main 

reasons. First, as the size of the population increases, there is an absolute rise in the number 

of cancer cases diagnosed. Second, as the average age of the population increases, the 

incidence of cancer also rises. This occurs as most tumours show a significant age-related 

increase in incidence. At present, one in four people will develop cancer during their 

lifetime. By the middle of the century, this rate is expected to rise to one in three.

Cervical cancer

The incidence of cervical cancer in the UK is currently 10.4 per 100,000 of the female 

population (Factsheet 1.4, Cancer Research Campaign, 1998). For the year 1997, the 

mortality rate was 46 per 1,000,000 women (CRC CancerStats: Mortality -  UK, 1999). 

Approximately 4,500 cases of cervical cancer are seen each year in the UK and this 

incidence is currently decreasing (Factsheet 12.1, Cancer Research Campaign, 1994)). It is 

thought that the widespread introduction of screening has been at least partly responsible 

for this (Gatta et al, 1999). Mortality rates vary greatly with disease stage at presentation: 

less than 10% of women with stage IV disease survive five years compared with between 

80 and 90% of those women with stage I disease (Magos et al, 1991, Marcial and Marcial, 

1993). There are a number of risk factors for the development of cervical cancer, o f which
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sexual factors are the strongest. Low age at first intercourse and multiple sexual partners 

are the greatest predictors of disease. The link between oral contraceptive pill use and 

cervical cancer has yet to be fully elucidated, but this may merely represent clustering of 

risk behaviour. A sexually transmitted factor has been proposed for many years, and 

recently attention has focused on the human papilloma virus (HPV), especially HPV types 

16 and 18 (Wang et al, 1997). Smoking greatly increases the risk of developing cervical 

cancer, but is less strong than sexual factors. Cervical cancer is also commoner in women 

in lower socio-economic classes. In the past, more than 95% of cervical cancers were of 

squamous histology. In recent years, there has been a slight increase in the percentage of 

adenocarcinomas seen (Stockton et al, 1997).

Head and neck cancer

Overall there are approximately five thousand new cases of head and neck cancer 

registered in the UK every year (Factsheet 1.3, Cancer Research Campaign, 1998) and at 

least 2,500 disease-related deaths (CRC CancerStats: Mortality -  UK, 1999)). Apart from 

tumour stage and nodal involvement, tumour site is also an important prognostic indicator. 

There is a male preponderance in the incidence of head and neck tumours, with a sex ratio 

of between 1.4 and 2 male cases for every female, in the various tumour types. These 

tumours occur predominantly in the lower socio-economic groups. Tumours of the head 

and neck region form a heterogeneous group. The aetiology, biological behaviour, 

treatment and prognosis of these cancers vary depending on their site of origin (DeVita et 

al, 1997; Wang, 1997b). In this thesis, cancers of the orbital tissues and central nervous 

system are not included in the definition of head and neck tumours. The tumours discussed
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here comprise six groupings. The first group comprises tumours of the larynx. The second 

group constitutes tumours of the oral cavity. This comprises tumours of the lip, floor of 

mouth (FOM), anterior two-thirds of the tongue, buccal mucosa, hard palate, alveolar sulci 

and retromolar trigone. The third grouping is tumours of the pharynx. The fourth group of 

tumours comprises those of the nasal cavity and sinuses. The fifth group includes tumours 

of the ear. The sixth and final grouping constitute tumours of the salivary glands, both 

major and minor. The majority of these tumours are benign, but prone to local recurrence 

(Renehan er a/, 1996).

The majority of head and neck tumours exhibit a squamous histology. Other tumour types 

are seen, but none is particularly common. Malignant mucosal melanomas are rare, 

accounting for less than 10% of all melanomas, but occur with similar frequencies in the 

head and neck, anal and genital regions (Pandey et al, 1998). Benign tumours of the 

salivary glands are generally pleomorphic salivary adenomas. Malignant salivary tumours 

are uncommon and comprise a number of pathologies e.g. adenoid cystic carcinoma, 

adenocarcinoma, muco-epidermoid carcinoma, but real rarities, such as small cell 

carcinoma do occur (Renehan et al, 1996).

The most potent risk factor in developing any form of head and neck cancer is tobacco. 

This applies to cigarette and pipe smoking, as well as chewing tobacco. Cigarette smoking 

is a greater risk factor than tobacco smoking. Ingestion of alcohol is the second factor. 

These risk factors are synergistic rather than additive in combination (Lewin et al, 1998). 

Other risk factors tend to be specific for the development of head and neck cancer in a 

given site. Adenocarcinomas of the paranasal sinuses are found more commonly in those
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people who have worked with wood. Infection with the Epstein-Barr virus is a recognised 

risk factor in the development of nasopharyngeal cancer, especially in those patients who 

originate from South East Asia. Exposure to ultra-violet radiation is associated with an 

increased risk of carcinoma of the lip (Pogoda et al, 1995). Carcinoma of the oral cavity 

has been linked with long-term trauma from e.g. poor dentition. Oral cancer secondary to 

infection with syphilis is decreasing in incidence (Dickenson et al, 1998). Carcinoma of the 

hypopharynx is commoner in patients with iron-deficiency anaemia and upper oesophageal 

webs i.e. Brown-Kelly-Paterson (Plummer-Vinson) syndrome (Wahlberg et al, 1998).

Breast cancer

Women in the UK have a 1 in 10 risk of developing breast cancer during the course of their 

lifetimes. This risk has been increasing in recent years. With the advent of screening, 

cancer incidence has increased in the screened population. This is due to the increased 

detection of impalpable, asymptomatic tumours. The mortality from breast cancer has 

decreased in some patient groups over the past ten years. Currently breast cancer accounts 

for over 13,000 deaths per annum in the UK (CRC CancerStats: Mortality -  UK, 1999).

Breast cancer is commonest in older age groups, with a marked age-related rise in 

incidence. As much as 5% of the total incidence of breast cancer may be directly related to 

genetic factors, such as the presence of germline mutations in the BRCAl and 2 genes. 

These are likely to account for a disproportionately large amount of the breast cancer 

incidence in women under 40 years of age (Frank et al, 1999). The risk of breast cancer is 

greatest in women of higher socio-economic status. Women with a late menopause or early
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menarche are also at increased risk of breast cancer. The risk of developing breast cancer is 

decreased in those women whose first full term pregnancy is before 17 years of age. 

Pregnancy has a protective effect on developing breast cancer unless the first full term 

pregnancy occurs after 35 years of age (Ghadirian et al, 1998). Women who take the oral 

contraceptive pill have an increased risk of breast cancer during and for the ten years 

following use. Their risk then drops to that of their non-pill taking contemporaries. The risk 

of breast cancer associated with the use of combined hormone replacement therapy is, as 

yet, unquantified. Finally, ionising radiation is an accepted risk factor in the development 

of breast cancer (Mattsson et al, 1995).

Adenocarcinoma is the most common histology. Most cancers arise in the upper outer 

quadrant of the breast. Sixty to seventy per cent of breast cancers are ductal 

adenocarcinomas of no special type. Twenty to thirty per cent of breast cancers are lobular 

adenocarcinomas. The remaining breast cancers are made up of tumours of special 

histological type that confer an improved prognosis. These include tubular and mucinous 

adenocarcinomas (Pereira e? a/, 1995).

1.2 Radiotherapy

At present, 50% of patients with a diagnosis of cancer receive radiotherapy at some stage in 

the course of their disease. Radiotherapy is estimated to be directly responsible for at least 

40% of those who survive beyond 5 years (Sikora 1999). In a few tumour types, e.g. cervix, 

radiation is the mainstay of curative treatment. For some tumour types, e.g. head and neck 

cancer, radiotherapy offers similar cure rates to radical surgery, but with the added
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advantage of functional organ preservation (DeVita et al, 1997). In other cancers, e.g. 

breast, adjuvant radiotherapy is given following surgery to decrease the rate of local 

recurrence. In a few tumour types, e.g. ovary and teratoma, the role of radiotherapy is 

limited mainly to the palliative setting.

Radiotherapy is a local treatment. The aim of radiotherapy is to deliver a tumouricidal dose 

of ionising radiation to a well-defined area, known as the planning target volume. The 

ionising radiation is most commonly delivered as photons or electrons. Access to proton 

therapy is severely limited in this country. Treatment with neutrons and heavy particles is 

reserved for trial settings. The planning target volume is comprised of three main parts. 

First, any gross macroscopic tumour, either in those patients for whom radiotherapy is the 

primary treatment modality, or following incomplete surgical resection. Second, the 

presumed extent of any microscopic tumour remaining. This varies between tumour types 

and is derived from the examination of surgical and post-mortem specimens. It may also 

include the rest of the organ at risk, e.g. all the breast tissue remaining in the ipsilateral 

breast following wide local excision (WLE) of the tumour in breast cancer. Finally, there is 

a margin allowed for physical factors such as patient movement during respiration and 

machine set-up variation (Dobbs et al, 1992; DeVita et al, 1997).

Cervical cancer

Treatment of stage I disease generally involves radical surgery, using W ertheim’s 

hysterectomy. In those patients medically unfit for or who refuse surgery, treatment is with 

radical radiotherapy. Treatment of Stage II - IV disease involves radical radiotherapy.

17



Radiotherapy is administered with a mixture of external beam treatment and brachytherapy, 

depending on disease stage and local protocols. There is increasing evidence for the use of 

concurrent chemo-radiotherapy in the treatment of locally advanced disease (Morris et al, 

1999; Rose et al, 1999). Overall, approximately 55% of women diagnosed as having 

cervical cancer survive 5 years or more, the bulk of these being due to radiation treatment 

(Marcial and Marcial, 1993).

Head and neck cancer

Treatment for carcinoma of the head and neck depends on the site and stage of the disease 

and may often involve combined modality therapy with surgery and radiotherapy. 

Concurrent chemo-radiotherapy is becoming increasingly popular, especially in those 

tumour types with a poor prognosis (reviewed in Haffty 1999). Small good prognosis 

tumours are generally treated with radical radiotherapy. This affords cure rates comparable 

with radical surgery, while allowing organ and hence voice preservation. This has a 

significant positive effect on a patient’s quality of life. Curative surgical excision remains 

an option reserved for those patients who develop isolated local recurrences. Methods of 

surgical reconstruction have advanced greatly in recent years. Advanced tumours that 

respond poorly to primary radiotherapy can sometimes be surgically removed, with 

successful functional reconstruction. Radiotherapy can be given post-operatively to those at 

high risk of recurrence (Ravasz et al, 1993). This may involve radiotherapy to the primary 

tumour only, e.g. when there is lymphovascular invasion; or to the neck nodes only e.g. 

when there is extra-capsular nodal spread. Post-operative radiotherapy can be given to both 

these regions simultaneously. Treatment for cancers of the head and neck region are best
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decided in the context of a multi-disciplinary team, with in-put of both clinical oncologists 

and surgeons who specialise in the treatment of tumours of this type. Following 

radiotherapy, five year local control rates for T i and carcinoma vary between 20 and 

77% depending on tumour site and nodal status. For more locally advanced tumours this 

figure falls to 0 -  37% (Hong et al, 1990). The picture is further complicated by the fact 

that patients treated initially with either surgery or radiotherapy can sometimes be salvaged, 

at relapse, by the other treatment modality.

Breast cancer

It is now currently accepted that local recurrence rates are no different between those 

women who have a simple mastectomy and those who have a wide local excision of their 

tumour (lumpectomy) and radiotherapy to the remainder of the breast (Hess and 

Schmidberger, 1998). This has led to a trend toward breast conserving surgery. This is 

especially true of women with smaller tumours, or those with slightly larger tumours and 

more substantial breasts. Most cancers detected by screening are amenable to breast 

conserving surgery. Thus, with the advent of screening the number of patients who receive 

radiotherapy is increasing. The main impact from radiotherapy is the decrease in local 

relapse rates from approximately 30 - 40% (over all stages), to approximately 5%, in those 

patients receiving adjuvant radiotherapy. Recently, evidence is accruing for a survival 

benefit in patients with poor prognosis disease treated with chest wall radiotherapy 

following mastectomy (Overgaard et al, 1997). Current practice is to give appropriate 

systemic treatment, in addition to radiotherapy, to improve survival rates. This systemic
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treatment may involve cytotoxic chemotherapy, hormonal manipulation to induce the 

menopause, the anti-oestrogen tamoxifen or a combination of all three (Cufer 1999).

When prescribing radiotherapy to the breast, the whole of the breast is treated via a 

tangential two-field arrangement. As the breast curves around the chest wall, it is 

impossible to treat the whole of the breast without treating some underlying lung tissue. In 

left-sided treatments, part of the heart may also be treated. In patients whose axillary 

contents have been removed (complete axillary clearance), further treatment is generally 

only given to the axilla if nodal involvement is heavy or there is residual disease. In 

patients with a negative, but adequate axillary sample (more than four nodes recovered), no 

further treatment is required to the axilla. In patients with a positive or inadequate sample, 

further treatment to the axilla may be required. This involves irradiation of the axillary 

contents and varies according to local protocols.

1.3 Radiation tolerance

The dose of radiation that can be delivered to a patient is limited by the sensitivity of the 

surrounding normal tissues. This intrinsic radiosensitivity varies from site to site within the 

body, but all normal tissues have a specific radiation tolerance. Thus, the site of a tumour 

has an impact on the radiation dose which can be delivered, which in turn affects the 

radiocurability of any given tumour (Tan et al, 1997). The radiation tolerance doses of 

different tissues were discovered initially by trial and error, but more recently complex 

mathematical models have been developed. For most tumours, doses are prescribed to 

cause a population incidence of severe late radiation side effects of 5% or less. In the case
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of the spinal cord, where severe late radiation side effects must be avoided at all costs, the 

dose prescribed is reduced below the population threshold of late radiation side effects.

M ost tumours show a dose response for the probability of obtaining local tumour control. 

This dose-response curve is sigmoidal in shape, with the steepest part of the curve 

occurring over the range of therapeutic doses delivered. Thus, for any small increase in 

radiotherapy dose delivered, the rate of tumour control rises rapidly. However, normal 

tissues have a dose response relationship between dose delivered and the risk of severe late 

radiation sequelae that is also sigmoidal in nature. This curve is shifted to the right of the 

tumour dose-response curve. This means that for any dose of radiation delivered, there is a 

risk of late radiation sequelae. Over the therapeutic range, any gains in local control made 

by increasing the radiation dose are offset by a sudden rapid rise in the incidence of late 

radiation side effects (Hall 1994; DeVita et al, 1997). This is illustrated in Figure 1.1.
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Figure 1.1: The relationship between tumour control probability (solid line) and 

normal tissue complication probability (broken line) (taken from Burnet et al, 1996)
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1.4 Side effects of radiotherapy

Radiotherapy is a treatment that is directed locally at a specific area. Therefore most side 

effects experienced by patients are dependent on the area being treated. Local radiation side 

effects can be divided into two broad categories: acute and late. Acute side effects often 

include a systemic component, which in most patients is limited to a feeling of tiredness 

and lethargy during treatment and for the subsequent 4 - 8  weeks. Some patients also 

experience anorexia. This is thought to result from cytokines, released by dead and dying 

cells, leaking into the circulation and mediating systemic effects via an endocrine effect. 

Patients generally only experience severe nausea and vomiting if the liver or small intestine 

are irradiated (Fossa et al, 1999). As the number of people with cancer in the population 

rises, increasing numbers of patients will receive radiotherapy. Many of these patients will 

be elderly and have a significant burden of co-morbid disease. As a patient’s performance 

status worsens, their ability to tolerate complex treatments with significant side effects is 

decreased (Pignon et al, 1998).

Acute side ejfects

Acute side effects start during treatment and can continue for up to six months following 

the completion of treatment. In many patients, they have fully resolved two months 

following the completion of treatment. The severity of acute side effects varies from person 

to person, but is unpredictable. Acute side effects are thought to be result from depletion of 

viable stem cells in the basal compartments of tissues with a high turnover (Wang, 1997). 

Thus, acute side effects most commonly affect the skin, haemopoietic tissues and mucosal
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surfaces such as the gut, mouth and vagina. Table 1.1 summarises the histological features 

associated with acute radiation reactions in the skin and subcutaneous tissues.

For acute effects, the main determinants of side effect severity are the time course of the 

radiation and fraction size (Hall 1994; DeVita et al, 1997). Acute radiation side effects are 

mainly seen in those tissues with a high turnover. Thus, side effects are only seen when cell 

death in rapidly dividing tissues outweighs replacement of cells from the stem cell 

compartment. The longer the time allowed for repopulation, the less severe the side effects. 

Increased fraction size leads to an increase in cell kill per fraction. This puts increased 

pressure on the repopulation ability of the tissue, leading to increased severity of acute 

effects. Providing tissue tolerance is not exceeded and the stem cell compartment too 

depleted to recover, acute radiation side effects will settle, despite their severity. Severe 

prolonged acute side effects, e.g. mucosal ulceration, leaves the underlying soft tissues 

unprotected and vulnerable to pathogens. This can lead to increased risk of late side effects, 

but is not as a direct result of the acute side effects themselves. These are known as 

consequential late effects (Denham et al, 1999).

Late ejfects

Late radiation side effects are divided into two overlapping categories: consequential and 

generic. For many years it was thought that the severity of acute radiation side effects bore 

no relationship to the development of late radiation sequelae. This has recently been 

brought into dispute (Turesson et al, 1996; Denham et al, 1999). It is now accepted, that 

while the majority of late radiation sequelae do indeed occur de novo, some arise as a result
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of damage consequent on severe acute reactions. This is most important where the skin or 

mucosal barrier has been breached allowing the entry of infection during treatment. Late 

radiation sequelae do not appear until at least six months following the completion of 

treatment, and may not appear for many years. Once established, they are progressive and 

generally irreversible (Turesson et al, 1996). They are therefore more serious than acute 

reactions. Histological features of late radiation sequelae in the skin and subcutaneous 

tissues are displayed in Table 1.1. Late radiation sequelae are manifest as functional loss. 

Although the histological changes seen in tissues with late radiation sequelae are well 

established, their aetiology is complex and poorly understood. Controversy exists as to the 

precise aetiological mechanisms underlying the observed changes. There are two main 

hypotheses on the aetiology of late radiation sequelae (discussed in Fajardo 1982). One 

school of thought believes that the depletion of endothelial cells is the crucial initiating 

step and that all subsequent damage is dependent on this (Hendry, 1987; Wang, 1997). 

Dysfunction of the endothelium occurs acutely during radiotherapy, when blood vessels 

become leaky. Damage to the endothelial cells becomes evident over a prolonged period of 

time, due to slow cell turnover in the endothelium. Depletion of the stem cell compartment 

occurs. As blood vessels are ubiquitous, late radiation sequelae occur in all tissue types. As 

the endothelial cells die, they are replaced by fibroblasts that migrate into the damaged 

area. Unfortunately, the fibroblasts cannot perform the specialised role of endothelial cells 

and the tissue becomes relatively hypoxic. This results in the death of the specialised cells 

that comprise the tissue, which in turn results in tissue atrophy and dysfunction. Further 

fibrosis is consequent on these changes, resulting in the establishment of a vicious circle, 

which continues to progress, leading to loss of tissue function. The alternative hypothesis 

of late radiation sequelae views the death of the specialised cells of the irradiated tissue as
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the initial step. As occurs in acute reactions, stem cell depletion takes place in the 

irradiated tissue. These cells have a much slower cell turnover time than acutely reacting 

tissues and thus the loss of tissue function is delayed (Otsuka and Meistrich, 1990). This 

hypothesis is somewhat analogous to the aetiology of acute reactions, but with a longer lag 

time, due to differing cell kinetics. These cells are replaced by fibroblasts, which do not 

perform specialist functions. Collagen deposited by the fibroblasts disrupts the architecture 

of the tissue, leading to reduced oxygenation and subsequent increased cell death. The 

fibrosis is therefore progressive. In addition, endothelial stem cells are also depleted, 

leading to fibrosis and poorly functional blood vessels, with consequent fibrosis. As can be 

seen, both hypotheses fit the observed clinical pattern of late radiation sequelae: they have 

a latent period, they are progressive, they are characterised by histological changes in the 

architecture of the blood vessels, as well as widespread tissue atrophy and fibrosis. Both 

hypotheses are not mutually exclusive as they result in the same final common pathway. 

However, the relative importance of the role played by endothelial dysfunction has not yet 

been elucidated.

Late radiation side effects are dependent on the total dose received, the volume irradiated 

and the fraction size. The overall treatment time is less important in the development of 

late effects. Enough time must be left between fractions to allow for maximal repair of 

normal tissues. The optimal inter-fraction interval is still controversial, but generally 

accepted to be no less than six hours (Bentzen et al, 1999; Lee et al, 1999). If a treatment is 

accelerated, then the volume irradiated must be decreased or the fraction size reduced 

otherwise the risk of late reactions is increased.
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Tablel.l: Comparison of acute and late histological changes seen in the skin and 

subcutaneous tissues following radiation exposure (after Fajardo 1982).

Acute changes Late changes

Often visible within one week 

Established by three weeks 

Resolves by three, or at most six, 

months

Capillary dilatation 

Fibrin thrombi blocking small 

arterioles 

Increased vascular permeability

± Inflammatory exudate 

Oedema

Increased pigmentation 

Ulceration (at high doses or with 

hypofractionation)

Epilation and loss of sebaceous glands

Visible by six months 

Continues to progress

Absolute decrease in capillary number, with 

irregularly dilated superficial blood vessels 

(telangiectasia)

Persistent fibrin thrombi 

Myointimal proliferation in arterioles 

Eccentric, enlarged endothelial cells

Inflammatory cells absent unless there is 

infection present 

Persistent fibrinous exudate 

Stromal oedema 

Dense irregular collagen deposition forming 

rigid skeleton around other stmctures e.g. 

nerves

Large, irregular, atypical fibroblasts

Hypopigmentation 

Thin, atrophic skin 

Ulceration (occurs at high doses)

Some recovery of hair follicles (dose- 

dependent)
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Relationship between acute and late ejfects

A number of studies have investigated the link between acute and late reactions. These 

studies have generally concentrated on patients with breast cancer. The are a number of 

reasons for this. There are a large number of patients with breast cancer receiving 

radiotherapy each year, especially since breast conservation has become an accepted 

treatment modality. The advent of screening has increased the proportion of patients 

eligible for breast conservation surgery. Overall survival in breast cancer is good, meaning 

a large proportion of patients live long enough for their late radiation reactions to become 

manifest. Finally, the breast is an easy organ to assess from the standpoint of both acute 

and late reactions. Clinical photographs can be used for some end-points, reducing the 

number of clinicians seen by the patient.

The main evidence of a link between acute and late effects comes from an intensively 

studied group of patients from Gothenburg. These patients received post-mastectomy 

radiotherapy between 1974 and 1982 and have been monitored ever since. The latest 

analysis of these data (Turesson et al, 1996) has shown a positive relationship between 

severity of acute skin reaction (measured by reflectance spectrophotometry) and the lag 

period to the development of telangiectasia in the treatment field. A relationship was also 

demonstrated between acute skin reaction and telangiectasia progression i.e. a more severe 

acute skin reaction led to the development of earlier and more severe telangiectasia. There 

is no link demonstrable in this series of patients between severity of acute reaction and 

development of late radiation fibrosis. This is generally agreed on (Overgaard et al, 1987; 

Brock et al, 1995; Johansen et al, 1996). Probably the main reason for this is that all late
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tissue responses are reported together. It is likely that different cell types mediate different 

late radiation end-points, e.g. fibroblasts are responsible for late radiation fibrosis, whereas 

telangiectasia is mediated by damage to endothelial cells.

Scoring o f late radiation side effects

In the past, recording of late radiation effects has been poor in a number of ways and for a 

number of reasons. Most studies have not systematically included a measure of late 

radiation sequelae in their protocols. Reporting has been intermittent and incomplete. In 

those studies that have reported side effects, there has been a mixture of purely descriptive 

and graded reporting of reactions. Grading varies between treatment sites. The graded 

reports have been inconsistent from centre to centre and for the same treatment site within 

the same centre. Differences in recording practices have made direct comparisons between 

different centres and regimens virtually impossible. Some tumour sites, where late 

radiation toxicity is of critical importance, e.g. cervix have evolved complex validated 

tools for recording sequelae e.g. the Franco-Italian glossary (Sinistrero et al, 1993), but this 

is not applicable to most tumour sites.

LENT SOMA

In 1995, a joint group of the FORTC and RTOG published a consensus document on the 

nomenclature of late radiation reactions (Rubin et al, 1995a; Rubin et al, 1995b; Pavy et al, 

1995). This was called the LFNT (Late Fffects Normal Tissues). All possible degrees of 

late radiation injury for all tumour sites were incorporated in a number of scales. These
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were called the SOMA scales (Subjective, Objective, Management and Analytic). The 

LENT SOMA document was one of the first to allow patients to grade subjective 

perceptions of their symptoms. This included both intensity and duration of the symptoms. 

The late radiation side effects are rated by an oncologist, giving an objective account of the 

damage present, even if it is subclinical in nature. Simple, routinely available tests of 

damage e.g. haemoglobin and weight are also included in this category as raw data to allow 

as much access to unrefined source material as possible. The management aspects of the 

symptoms are recorded. This not only allows a description of sequelae at a defined time 

point following radiotherapy, but also allows the individual symptoms to be followed in a 

longitudinal fashion. This highlights the progressive nature of many late radiation sequelae, 

visible as patient management changes with time. The analytical category allows other, 

more sophisticated techniques to be involved in the grading of damage in a site appropriate 

manner. However, as the management scales form a distinct category, they are not 

mandatory to the function of the scale. This was a deliberate measure to allow all centres, 

even those relatively materiel poor, to use the scales. Thus the clinical utility of the scales 

would be available to the largest number of clinicians possible. The number of centres that 

could participate in any trial using the SOMA scales was also maximised. The LENT 

SOMA should be administered prior to the start of any treatment, to obtain a baseline value 

and delineate any inter-individual variations in organ function. This is particularly 

important in older patient age groups for two main reasons. First, many elderly patients 

receive suboptimal treatment, as there is a widespread belief that they are unable to tolerate 

conventional treatment schedules. Adequate use of the LFNT SOMA would answer this 

question decisively. Second, proper use of the LFNT SOMA would highlight a treatment 

option with unacceptable morbidity in a population with poor baseline function. For the

29



LENT SOMA to become an accepted and valuable tool for describing and recording late 

radiation reactions, it must undergo validation. This is more easily achievable in those 

tumour sites with an existing validated tool e.g. cervical cancer. Once the validation 

process is completed, it is hoped that the LENT SOMA will become adopted as the gold 

standard tool for scoring late radiation morbidity worldwide.

1.5 Radiotherapy side effects in the cancers studied in this thesis

Cervical cancer

In cervical cancer treatment acute systemic side effects generally include non-specific 

weakness and lethargy. Nausea is uncommon, although not unknown. The skin of the groin 

becomes erythematous, and dry desquamation, sometimes accompanied by 

hyperpigmentation occurs. This may progress to moist desquamation, especially in skin 

creases, due to increased friction and radiation dose build-up over curved surfaces (DeVita 

et al, 1997). Groin hair is lost after 2 -3 weeks treatment, but generally some regrowth 

occurs following the completion of treatment. Radiation cystitis can occur, with frequency, 

urgency, and strangury. Haematuria may also develop. Radiation proctitis can occur, with 

increased stool frequency and decreased stool consistency. Urgency and tenesmus are also 

features. Fresh spotting of blood per rectum  (PR) is also a relatively common occurrence, 

especially where haemorrhoids are present prior to radiation treatment.

Late radiation side effects develop more than six months following the end of treatment, 

and may not be manifest for years. They include subcutaneous fibrosis in the treated area.
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This is generally asymptomatic and of no great consequence. Late radiation cystitis can 

occur due to fibrosis of the bladder wall muscle. This leaves a shrunken bladder that is 

poorly functional and may be excessively irritable. Symptomatically, this can lead to 

persistent urgency, frequency and, in some cases, incontinence. The incidence of urinary 

infections may increase. Damage to the blood vessels in the bladder wall can cause them to 

become telangiectatic and fragile, leading to haematuria, which may be both sudden and 

severe. The vagina becomes shortened and stenosed. This may be prevented, in some cases, 

by diligent use of dilators in the immediate post-treatment period. Late radiation damage to 

the small and large bowel can occur. In the small bowel, fibrosis can lead to subacute 

obstruction, with subsequent cramping abdominal pains, constipation and severe diarrhoea, 

and nausea and vomiting. In extreme cases, surgical resection of the affected segment is 

necessary. In the large bowel late radiation damage is generally manifest as lower 

abdominal pain, stool frequency and urgency, and faecal incontinence. Severe PR bleeding 

may occur due to telangiectatic blood vessels in the bowel mucosa. Surgical resection of 

affected areas may again be necessary. In the most severe cases, fistulae may develop 

between the bladder, bowel, vagina or abdominal wall. Due to the poor healing of 

irradiated tissues, defunctioning urostomies or colostomies may be the only viable 

treatment option. Patients with late radiation sequelae can suffer pain of varying intensities, 

but may require opioid analgesia. All late radiation sequelae have a tremendous negative 

impact on quality of life in these patients, who may be cured of their disease, but severely 

impaired in their activities of daily living by their radiation-induced side effects. Finally, 

the incidence of second malignancies is increased in those patients who have received 

radiotherapy.
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Head and neck cancer

Systemic acute side effects of radiotherapy include lethargy and often anorexia. Other side 

effects are dependent on the area treated. Acute skin reactions include erythema, dry and, 

sometimes, moist desquamation. In tumours of the nasal cavity, nasal sinuses, 

nasopharynx, oral cavity, salivary glands and oropharynx this occurs on the skin of the 

face. In tumours of the larynx and hypopharynx, the reaction is seen on the skin of the 

neck. This reaction is worsened by friction, and therefore wet shaving is discouraged in 

those patients undergoing treatment (Neal and Hoskin, 1997). Loss of beard hair in treated 

areas begins within two weeks of starting treatment. This generally recovers in the longer 

term, providing doses of less than 50-55 Gy are given, but beard growth may always 

remain sparse in the treated area (Dobbs et al, 1992; Wang, 1997). Acutely, the nasal cavity 

mucosa is damaged, leading to dryness, discomfort, nasal blockage or running and crusting. 

Small epistaxis is a common phenomenon. Acute mucosal damage in the mouth leads to 

loss of the mucosal barrier. This may be patchy or confluent. This results in mouth ulcers, 

which can be acutely painful for the patient leading to a decreased oral intake, with 

consequential dehydration and malnourishment. These mouth ulcers may bleed. At doses 

below 26 Gy, reversible transitory impairment of saliva production is seen (Eisbruch et al, 

1999). This leads to a dry mouth, which is distressing for the patient. If the posterior third 

of the tongue is irradiated, the sensation of taste is altered or completely lost. At doses 

above 55 -6 0  Gy, return of this sensation is very slow (may take years) and can be 

incomplete. Food is cleared inefficiently from the mouth leading to stagnation and often 

low-grade infection with Candida albicans. Mucositis of the throat leads initially to the 

feeling of “something being present” at the back of the throat. This can progress through
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discomfort to frank pain and dysphagia requiring strong opioid analgesia and, in severe 

cases, institution of enteral feeding to maintain weight.

Late radiation damage can occur at all sites in the head and neck. Subcutaneous fibrosis, 

leading to palpable thickening of the skin is common. It is generally asymptomatic, save 

where it affects large areas of the skin beneath the chin (woody induration - the 

radiotherapy “dewlap”). This is most commonly seen in patients treated for cancer of the 

floor of mouth. Permanent ulceration of the skin is very rare. Telangiectasia are 

uncommon, but most often seen in patients treated for laryngeal cancer, where a strip of 

bolus material has been added to the shell over the midline. W hen treating carcinoma of the 

nasopharynx, care must be taken to limit the dose to the optic chiasm and auditory nerves, 

to less than 55 Gy (in 2 Gy fractions), as damage to these structures leads to blindness and 

deafness (Dobbs et al, 1992). When the paranasal sinuses, in particular the maxillary sinus, 

are treated, scattered dose to the lens of the eye should be kept below 6-8 Gy, as higher 

doses may result in the development of a radiation cataract. High, but therapeutic, doses of 

radiation to the nasal cavity can result in permanent damage to the mucosal tissues with 

epilation of nasal hairs. This results in permanent nasal running and crusting. Epistaxis can 

become a long-term problem. A damaged nasal mucosa can leave the patient prone to 

infections, with subsequent consequential damage to the mucosa. The most frequent late 

radiation complication in the oral cavity is loss of function of one or more salivary glands. 

Loss of function of one salivary gland leads to a decreased amount of saliva being present. 

If both parotid glands are affected, the mouth may produce saliva with an altered 

consistency or may be completely dry. This is very distressing for the patient. It can also 

lead to poor dental hygiene. Dental caries can progress very quickly in a mouth with
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inadequate saliva. Dental extractions in those patients who have had their mandible 

irradiated can be very dangerous. Irradiated bone is less able to repair itself than normal 

bone. Any dental extraction has the potential to become infected. In irradiated bone, 

infection is not as easily cleared and may lead to chronic osteomyelitis. Even in the absence 

of infection, the mandible can suffer from osteoradionecrosis. The mandible becomes 

necrotic due to late radiation damage. This has a severe impact on the patient’s ability to 

eat and consequent quality of life. Damage to the vocal cords may result in permanent 

hoarseness following radiotherapy. In the larynx, late radiation damage can cause swelling. 

This may be of no functional consequence, or may threaten the patient’s airway (DeVita et 

al, 1997). In the latter case, a permanent tracheostomy may be required, even in the 

absence of disease recurrence. The larynx itself may develop cartilaginous radionecrosis, 

requiring removal. This condition can result in the death of the patient. Again, there is an 

increased incidence of second malignancies in those patients who have received 

radiotherapy. The increase in second tumours is at a maximum 5 - 7  years following 

treatment.

Breast cancer

Patients who receive chemotherapy in addition to radiotherapy are at increased risk of acute 

and late radiation side effects (Dubey et al, 1998). Acute systemic side effects include 

tiredness and lethargy. Locally, the skin of the breast becomes erythematous after 

approximately one weeks treatment. Dry desquamation and hyperpigmentation often occur 

in the next few weeks. Moist desquamation is common, especially in women with heavier 

busts, and especially in the inframammary and axillary folds. The breast becomes swollen
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and often tender, with the skin resembling peau d ’orange. In those patients, whose 

supraclavicular nodes are being treated, there is often a mild radiation oesophagitis, 

resulting in dysphagia. In patients who have had a large volume of lung treated, 

symptomatic radiation pneumonitis may develop. This is manifest by a dry cough, low- 

grade fever and inflammatory infiltrates visible on the chest X-ray. In patients with 

impaired respiratory function, a feeling of breathlessness may occur.

In the longer term, most women who have undergone breast irradiation notice a persistent 

alteration in the texture of the breast. This generally is of no clinical or symptomatic 

importance. The treated breast may visibly and palpably more swollen than the 

contralateral breast. This is again generally asymptomatic, but may cause a feeling of 

heaviness or a general “ache”, which may he refractory to analgesia. Fibrosis and retraction 

of the soft tissues can lead to shrinkage and distortion of the breast. This may be very 

painful, as well as cosmetically unattractive. Fat necrosis is a rare event, which leads to 

atrophy of segments of the breast in an uneven fashion, again disrupting cosmesis. 

Persistent, non-healing skin ulcers are a rare, but acknowledged occurrence. The skin of the 

breast may develop telangiectasia from damaged blood vessels. These can continue to 

progress for at least 8 years (Turesson et al, 1996) and have no known treatment. The lung 

underlying the breast, in the longer term, becomes fibrotic and non-functioning. This has 

no clinical impact unless the patient already has impaired lung function, when it is manifest 

as a deterioration in breathlessness. Late radiation reaction in the costal cartilages can lead 

to symptomatic costochondritis. This can be painful on both inspiration and direct 

palpation, and can be very debilitating to the patient. Rib fractures can also occur. Late 

radiation damage incurred by the heart is still a matter of controversy. In patients treated
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with orthovoltage machines (where the absorbed cardiac dose was higher), there is 

evidence of an excess of non-cancer, cardiac-related deaths in those treated for left sided 

tumours (Gyenes et al, 1998). This has not been shown in those treated with more modern 

megavoltage equipment, but a small excess of cardiac deaths cannot yet be ruled out 

(Gustavsson et al, 1999). In those patients who have had axillary radiotherapy or surgery 

alone, the rate of lymphoedema in the affected arm is between 5 and 10% (Hoe et al, 1992; 

S totter and Chandler, 1999). In those patients treated with surgery and radiotherapy, the 

risk of lymphoedema can reach 80% in some series (Yeoh et al, 1986). This is due to 

damage to lymphatic drainage channels by both treatment modalities. Probably, the most 

feared late radiation complication is that of brachial plexus neuropathy. This results in a 

painful, non-functioning arm. In the past, this has most commonly been caused by 

overdosage of the brachial plexus due to repositioning of the arm between treatment of the 

breast and axilla (Royal College of Radiologists, 1996). Brachial plexus neuropathy can 

occur rarely in those given less than tolerance doses of radiotherapy.

1.6 Molecular mechanisms of radiotherapy damage

Ionising radiation causes damage at the molecular level that is then reflected in the overall 

function of the tissue and/or organ irradiated. When the body is irradiated, the energy of the 

radiation is deposited in the tissues, leading to the formation of free radicals. It is these 

molecules, which are formed as a result of ionisation, that are responsible for the damage 

caused by radiation. Damage due to free radicals occurs in all components of the cell. It is 

now accepted that damage to the DNA is responsible for the observed long-term effects of 

radiation (Dahm-Daphi et al, 1998; Ross, 1999). One gray of radiation results in
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approximately 150,000 nuclear ionisation events per cell. The free radicals produced have a 

short half-life, which is terminated by oxidation reactions. Some of the radicals are 

harmlessly cleared by the tissue itself, using molecules which easily donate electron pairs 

e.g. superoxide dismutase. Those radicals that are responsible for long-term damage react 

with protein in general and DNA especially. The damage is generally divided into two 

types: direct and indirect. Direct damage is the rarer of the two. This occurs when the 

radiation interacts directly with the DNA molecule to create a DNA free radical. This is an 

oxidative reaction, which changes the chemical structure of the DNA, with a subsequent 

alteration in DNA function. Indirect damage is the more common type of damage seen, 

accounting for up to 80% of reactions. Here, the radiation interacts with an intracellular 

molecule (water at least two-thirds of the time). A free radical is formed (in the case of 

water, this is the hydroxyl radical). This radical then diffuses to the DNA, with which it 

interacts, breaking chemical bonds and leading to alterations in DNA structure. These 

alterations lead to functional changes that are at the heart of radiation damage. This 

molecular damage is manifest in a number of different ways. Adjacent pyrimidine bases on 

the DNA can dimerise. DNA-DNA and DNA-protein cross-linkages and single and double 

strand DNA breaks can occur. In areas where large amounts of energy are deposited 

complex multiply damaged sites of DNA are generated. DNA double strand breaks (dsb) 

and multiply damaged sites are thought to be the main lesions resulting in lethal damage to 

any cell, either tumour or normal (Jenner et al, 1993; Olive, 1998). All cells have 

mechanisms whereby the repair of these lesions is attempted. Some lesions are more 

efficiently repaired than others. It is this difference in repair capacity between tissues that 

gives rise to the therapeutic ratio observed in patients.
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1.7 Determinants of radiation-induced side effects

Individuals vary in their response to radiotherapy. This variation is governed by medical, 

physical and dosimetric confounding factors and intrinsic normal cell radiosensitivity.

Physical confounding factors

Physical confounding factors are patient-dependent. Some are related to the patient’s 

behaviour during treatment, while others are related to the physical nature of the patient. 

Behavioural factors may impact on the severity of acute radiation reactions. Patients who 

smoke during treatment tend to have more severe acute mucosal reactions (Rugg et al, 

1990). They also have poorer lung function after 3 years than their non-smoking 

counterparts (Smith et al, 1989). Patients who are incontinent tend to develop more severe 

acute skin reactions during pelvic treatments due to friction and constant moistness of the 

skin in the treated area. Factors that are patient-dependent, but are not affected by patient 

behaviour include patient build. Patients with larger breasts are at increased risk of 

suffering severe acute radiation reactions (Brierley et al, 1991).

Medical confounding factors

Certain conditions increase the likelihood of developing a severe late radiation reaction. 

These conditions generally affect the vascular system and include diabetes and 

hypertension (Gragoudas et al, 1999; Zelefsky et al, 1999). Certain vasculo-connective 

tissue disorders have been reported as causing an increased risk of developing severe late
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sequelae (Morris et al, 1997). These reports are generally anecdotal or contain very small 

numbers of patients. There are no large randomised studies covering any of the conditions. 

This is partly due to the small numbers of patients with these diseases and also the fact that 

only a small proportion of them will receive radiation treatment at any one centre (De 

Naeyer et al, 1999). Multi-modality treatment leads to increased severity of acute radiation 

effects (Bosset et al, 2000). The late radiation sequelae following multi-modality 

treatments are unquantified for most tumour sites, but use of multiple modalities is likely to 

increase the severity of reactions seen (Robert et al, 1999).

Dosimetric confounding factors

The aim of radiation therapy is to irradiate the planning target volume (PTV) to the 

prescribed dose in a uniform fashion, while limiting the dose delivered to surrounding 

tissues (Dobbs et al, 1992; DeVita et al, 1997). Due to the constraints of planning the PTV 

is generally rhomboidal in shape. This is not the shape of most tumours. In the case of 

breast cancer, the entire ipsilateral breast tissue remaining following surgery is irradiated. 

Even if there is no post-surgical distortion of the breast, this volume presents a number of 

problems for treatment planning. The breast has a different three-dimensional shape, both 

in a cranio-caudal and right to left lateral direction. It also curves around the chest wall, 

meaning the posterior border of the treatment volume (over the ribcage) is concave. This 

presents great technical difficulties in producing a plan where the dose delivered does not 

fluctuate. ICRU Report 29 states it is usually unacceptable for the dose of radiation 

delivered to vary by more than ± 5 %  over the PTV. In practice, this is virtually impossible 

to achieve for a breast PTV. Most centres compromise in some fashion and accept a dose
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variation of ±  10% in breast treatment plans. The main areas of the breast that become 

overdosed are the inferior lateral corners of the breast, which may receive up to 110% of 

the prescribed dose. This overdosage poses a problem for all women, but especially those 

with larger breasts or with wide inter-field distances. These women may exhibit an excess 

of severe late radiation reactions due to an accepted overdosage in their treatments.

Normal cell radiosensitivity

There is significant inter-individual variation in both acute and late responses of normal 

tissues to radiotherapy (Tucker et al, 1992). It has been estimated that between 80 and 90% 

of this variation is genetic in origin (Geara et al, 1993; Turesson et al, 1996). The main 

support for this comes from a well-defined cohort of patients treated for early breast cancer 

in Gothenburg between 1972 and 1985 and subsequently followed intensively (Turesson et 

al, 1986; Tucker et al, 1992; Burnet et al, 1992; Burnet et al, 1994; Brock et al, 1995; 

Turesson et al, 1996). There were significant inter-individual variations in the onset and 

rate of progression of telangiectasia in these patients (Turesson, 1990; Tucker et al, 1992; 

Turesson et al, 1996). Despite different fractionation schedules, however, marked 

correlations were seen between acute reactions in the right and left internal mammary node 

fields of the same patient (Tucker et al, 1992). As intrinsic cellular radiosensitivity plays a 

significant role in the determination of normal tissue radioresponse, there is considerable 

interest in developing a robust radiosensitivity assay that can be used to individualise 

patient treatment schedules in a clinical setting.
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1.8 Measuring normal cell radiosensitivity

Taylor et al (1975) first demonstrated that fibroblasts cultured from individuals with ataxia 

telangiectasia (A-T) have a significantly higher radiosensitivity than normal fibroblasts. 

This was confirmed (Little and Nove, 1990) and extended to other genetic disorders 

(Deschavanne et al, 1986; Little and Nove, 1990). Significant inter-individual differences 

were subsequently demonstrated in the radiosensitivity of fibroblasts cultured from normal 

individuals (Little et al, 1988; Malaise et al, 1994). Malaise et al (1994) also demonstrated 

that the best discrimination between cells was obtained using parameters that describe the 

initial part of radiation survival curves (i.e. doses below 3.5 Gy).

A number of retrospective series have examined the intrinsic radiosensitivity of fibroblasts 

from patients with an atypically severe reaction to radiotherapy (e.g. Woods et al, 1988; 

Loeffler et al, 1990). These have demonstrated a fibroblast radiosensitivity that is 

significantly greater than in normal patients. These non-syndromic radiosensitive 

individuals are rare. As differences in fibroblast radiosensitivity existed between 

individuals and could be detected, studies were undertaken to investigate the relationship 

between fibroblast radiosensitivity and clinical endpoints in the form of acute and late 

radiation sequelae. In a selected series of Gothenburg patients, Burnet et al (1992) 

demonstrated a positive correlation between fibroblast radiosensitivity and the degree of 

both maximal erythema (acute) and telangiectasia (late). The relationship between 

measured fibroblast radiosensitivity and acute radiation reaction was not confirmed in a 

reanalysis of the same data and in other independent studies (Begg et al, 1993; Geara et al, 

1993; Burnet et al, 1994). Although a number of studies have correlated fibroblast
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radiosensitivity with late radiation reactions, including fibrosis (Geara et al, 1993;

Johansen et al, 1994) and telangiectasia (Burnet et al, 1994; Brock et al, 1995), more 

recent studies have not produced significant correlations with late clinical endpoints 

(Russell et al, 1998; Rudat et al, 1999; Carlomango et al, 2000; Peacock et al, 2000).

All of these studies were carried out on fibroblasts using clonogenic assays. Although 

clonogenic assays are the acknowledged “gold standard”, at least 8 weeks are required to 

generate results using fibroblasts. Results using lymphoblastoid cell lines derived from 

patient lymphocytes are quicker but less robust (Ramsay et al, 1995). There is also interest 

in using peripheral blood lymphocytes because they are easily available and in sufficiently 

large numbers to perform assays. Lymphocytes from patients with A-T demonstrate 

hypersensitivity to radiation (West et al, 1994). Significant inter-individual differences are 

also seen in lymphocytes from normal donors (Geara et al, 1992; El y an et al, 1993). 

However, lymphocyte intrinsic radiosensitivity correlates with clinical endpoints in some 

studies (West et al, 1995; W est et al, 1998), but not in others (Geara 1993).

Both lymphocytes and fibroblasts have been used in studies aimed at evaluating potential 

rapid predictive assays for measuring normal cell radiosensitivity. These have involved a 

number of non-clonogenic endpoints. Assays of chromosome damage include using 

premature chromosomal condensation (Johnson et al, 1970) or fluorescent in situ 

hybridisation (FISH) (Russell et al, 1995) to score chromosomal aberrations. Aberrations 

can also be scored directly in both Go (Jones et al, 1995) and G2 (Mitchell and Scott, 1997). 

The micronucleus assay is also of interest as a potentially rapid method for scoring 

chromosomal damage (Huber et al, 1989; Mill et al, 1996; Scott et al, 1996). It has also

42



been used on fibroblast lines but studies of the relationship with clonogenic data have 

produced conflicting results (O’Driscoll et al, 1998; Johansen et al, 1998). However, 

chromosome damage assays are predominantly performed on lymphocytes for a number of 

reasons. First, large numbers of cells can be obtained easily. Second, synchronisation of the 

cell cycle and induction of mitosis can be controlled using dmgs. Some studies have shown 

a relationship between lymphocyte radiosensitivity, measured using chromosome damage 

as an endpoint and normal tissue response (Jones et al, 1995; Slonina and Gasinska, 1997; 

Barber et al, 2000). However, others have shown no relationship (Rached et al, 1998).

Radiation can affect the differentiation state of fibroblasts and this has been exploited in 

the development of a differentiation assay that may predict for late radiotherapy reactions 

(Rodemann et al, 1996; Lara et al, 1996; Herskind et al, 1998). Measuring radiation- 

induced apoptosis has also formed the basis of assay development (Crompton et al, 1999; 

Bedi et al, 1995). Defects in DNA repair can lead to severe reactions to radiotherapy in 

syndromic individuals (Little and Nove, 1990). Polymorphisms in the DNA repair genes 

X R CC l and XRCC3 have been assessed as the basis for a rapid predictive assay of normal 

cellular sensitivity (Price et al, 1997). Recently, there has been increased interest in the 

potential clinical utility of assays measuring the plasma levels of TGFp 1, a cytokine 

intimately linked with radiation response (see Section 1.11).

Radiation toxicity is manifest because of DNA damage. Patients with a recognised genetic 

syndrome that leaves them hypersensitive to radiation, often have defective DNA damage 

repair mechanisms. Therefore, interest has centred on DNA damage assays in the search for 

a robust measure of intrinsic radiosensitivity. Assays performed on single cells are
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attractive, as it is easier to obtain sufficient cells to perform a test. Single cell gel 

electrophoresis (“comet” assay) can measure both double and single strand DNA breaks, 

depending on experimental conditions (Olive et al, 1991). This assay can measure 

significant inter-individual differences in radiation sensitivity using either lymphocytes or 

fibroblasts (Sarkaria et al, 1998). However, the sensitivity of the assay in detecting 

differences between cell lines of differing radiosensitivities is poor (Olive et al, 1994). No 

correlation was found between clonogenic survival and radiosensitivity measured in 

lymphocytes using the comet assay (Sarkaria et al, 1998), but a correlation between 

clonogenic parameters and fibroblast radiosensitivity has been seen (Eastham et al, 1999). 

Measurements of DNA damage in large numbers of cells can be investigated using a 

variety of electrophoretic methods. These include clamped field gel electrophoresis 

(CFGE) (Chukhlovin et al, 1995; Dikomey et al, 2000), graded field gel electrophoresis 

(GFGE) (Dahm-Daphi et al, 1995; Dahm-Daphi et al, 1998), as well as pulsed field gel 

electrophoresis (PFGE) (Wurm et al, 1994; Kiltie et al, 1997).

1.9 Pulsed-field gel electrophoresis (PFGE)

In PFGE, the sample to be studied is loaded into a gel and subjected to electrophoresis for a 

given period of time, depending on the protocol used. By varying the electrophoretic 

conditions, different sized DNA fragments migrate for different distances into the gel. Both 

single and double DNA strand breaks can be measured by varying the pH of the buffer 

solution. However, in the field of predictive assay testing, double strand breaks are thought 

to be the more important lesion and, in this thesis, only work concerned with these will be
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discussed. The amount of DNA that migrates into the gel is measured and expressed as the 

fraction of damage released (FDR) from the sample.

In fibroblasts, measurements of initial and residual (i.e. following a period for repair) DNA 

damage have been investigated, as well as rate of repair. In most studies correlation with 

clonogenic endpoints has been undertaken, but in a small number of studies correlations 

with clinical endpoints have been assessed.

No relationship has been demonstrated in normal cells between initial damage and 

clonogenic radiosensitivity. Correlation between the rate of repair of radiation-induced 

DNA damage and clonogenic radiosensitivity has been demonstrated using fibroblasts for 

both non-syndromic (Blocher et al, 1990; Kiltie et al, 1997; Sarkaria et al, 1998) and 

syndromic (Wurm et al, 1994; Foray et al, 1995) individuals. A number of studies have 

shown that clonogenic parameters are also correlated with the levels of residual DNA 

damage (Wurm e ta l, 1994; Foray eta l, 1995; Kiltie eta l, 1997). This is advantageous as 

measures of rate of repair are timing consuming to perform. Controversy exists as to the 

optimum time point at which to measure residual damage. Wurm et al (1994) found a 

correlation between clonogenic radiosensitivity and residual damage measured after 4 

hours repair. Foray et al (1995) showed that A-T homozygotes had a more rapid initial 

repair phase (first 4 hours) than normals, but after this, repair was greater in normals. He 

found no further repair after 24 hours. Kiltie et al (1997) found residual DNA double 

strand breaks at 24 hours correlated with clonogenic radiosensitivity using vaginal 

fibroblasts obtained from patients with cervical cancer prior to radiotherapy with a small 

range of SF2 values.
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Subsequently, Kiltie et al (1999) correlated residual DNA double strand breaks at 24 hours 

with clinical outcome in a group of 39 patients treated more than ten years previously for 

breast cancer. Normal fibroblasts were cultured from a 5 mm skin punch biopsy. Clinical 

endpoints included fibrosis and oedema (measured clinically) and retraction, atrophy and 

telangiectasia (scored independently, in a blinded fashion, by three experienced clinicians, 

from a clinical photograph). A significant correlation was demonstrated between the degree 

of fibrosis and the level of residual radiation-induced DNA damage at 24 hours (r = 0.46, p 

= 0.003).

1.10 Transforming growth factor beta one (TGF(31)

The transforming growth factor beta (TGFp) group of molecules was discovered in 1981. 

They were named for their observed ability to cause anchorage-independent growth in 

normal rat kidney (NRK) fibroblasts in culture. Anchorage-independent growth in non- 

haemopoietic cells is generally limited to transformed cell lines. On removal of TGFP, 

NRK cells reverted to their normal phenotype; i.e. TGFp is not a transforming agent per se. 

TGFP belong to a large superfamily of related proteins that appear in many animal species 

ranging from Drosophila and Xenopus, through to man. The superfamily includes activins, 

inhibins, bone morphogenic proteins and Mullerian inhibitory substance (Roberts et al, 

1988). Subsequently, TGFP was discovered to exist in a number of isoforms. TGFp 1-3 are 

found in man, TGFP4 in chickens and TGFp5 in Xenopus (Lawrence, 1996). In this thesis 

only T G Fpl will be discussed in detail.
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TGpp 1 is a multi-functional cytokine, the full roles of which, despite intensive study, have 

not been completely elucidated. The isoforms of TGFp are coded for by independent genes, 

which have different promoter regions. The gene that codes for T G Fpl is located on 

chromosome 9ql3 , has 6 introns and encodes for an mRNA molecule of 2.5 kb (Lawrence,

1996). The active TG Fpl molecule is the C-terminal of the protein product. T G F pi is a 

homodimer of two 112 amino acid chains (Lawrence, 1996). Trace quantities only of 

heterodimers of p l/p2 , P2/p3 and p i/p 3  have been found. Conservation of the isoforms of 

TGFp is high, with homology between the human isoforms of TGFp ranging from 72 - 

84% (Lawrence, 1996). The amino acid chains are linked by one interchain disulphide 

bond occurring between cysteine residues. Each TG Fpl molecule has eight further cysteine 

residues that take part in forming the protein’s conformai structure (Lawrence, 1996).

TG Fpi is secreted initially as an inactive latent precursor (known as proTG Fpi). This 

molecule comprises the active C-terminus end of the T G Fpl protein product in non- 

covalent association with the non-functional N-terminal end. The N-terminus is known as 

the latency associated peptide (LAP) and the complex of LAP and TGFP as the small latent 

complex (Lawrence, 1996; Gleizes et al, 1997). Binding to LAP is thought to mask the 

TG Fpl active molecule from intracellular lysosomes, preventing degradation of the 

protein. The plasma half-life of latent TG Fpl is greater than 100 minutes, as compared 

with a few minutes for the active form (Lawrence, 1996). The existence of a latent form is 

unusual for a cytokine and this implies that activation rather than genetic up-regulation is 

the most important area of TG Fpl control. It also means that increased TG Fpi levels can 

be achieved quickly, with no lag time needed for increased protein transcription. The small
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latent complex can become covalently associated with a number of homologous latent TGF 

binding proteins (LTBP). Large LTBP is released from platelets along with the small latent 

complex. Small LTBP is similar in structure to the fibrillin proteins of the extracellular 

matrix (ECM) and may become covalently incorporated into the ECM. There is no 

covalent link between the TG Fpl molecule and the small LTBP (Lawrence, 1996). A 

stable pool of activatable T G ppi is therefore available in the stroma of most tissues. The 

structures of the small and large latent complexes are illustrated in Figure 1.2.

small latent complex

 (5'̂  5  ■

laige latent conplex

Figure 1.2; Diagram of the structure of the small and large latent complexes of 

TGFpl (black area represents TGFpi molecule; white area represents latency 

associated peptide; hatched area represents latent TGFp binding protein; s-s 

represents disulphide bonds) (taken from Lawrence 1996)
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There are a number of mechanisms whereby TGpp 1 can be activated. In vitro TGpp 1 can 

be activated by acidification, alkalinisation, heat, redox reactions and chaotropic agents e.g. 

urea. In vivo the exact mechanism of TGFp 1 activation is unclear and indeed may differ 

between different tissue types (Roberts eta l, 1988; Lawrence, 1996). T G Fpl plays an 

important role in controlling bone formation and the microenvironment surrounding 

osteoblasts can be as low as pH 3.0, implying activation by acidification is important in this 

site. Plasmin can activate TGpp 1, but thrombospondin, a glycoprotein found in blood 

platelets can activate TG Fpl via enzyme-independent mechanisms. Active T G F pl can be 

found in mammary tissue one hour following exposure to ionising radiation (Barcellos- 

Hoff et al, 1994). It is unclear whether radiation directly activates T G ppi or whether 

activation takes place via redox reactions produced by ionising radiation. Active TG Fpl 

can persist in the stroma of irradiated tissues for many weeks (Canney and Dean, 1990; 

Langberg et al, 1994; Richter et al, 1997).

TGPp 1 is produced by many different cell types, with the highest concentration per dry cell 

weight found in blood platelets (Roberts et al, 1988). All normal mammalian cells have 

receptors for TGFp and these receptors occur in three main types (Lawrence, 1996). 

Receptor types I and II are both serine/threonine protein kinases. Receptor type II (70 -80 

kD) is constitutively active (Wrana et al, 1994). When TGFp is bound, receptor type II 

transphosphorylates receptor I (Wrana et al, 1994; Massague et al, 1996). A heterotetramer 

is the functional unit (Attisano and Wrana, 1996) and the intracellular domains of both 

receptors are required for signal transduction (Lawrence, 1996; Massague et al, 1996). 

There is relatively little homology between both receptor types. Both type I and II receptors
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exist in a number of forms. Different TGFp isoforms have different affinities for different 

receptor forms. The relative abundance of receptor types varies between different tissues 

and this is thought to partly account for the different effects of TGPp isoforms in different 

tissues. There can be up to 4000 receptors per cell and signal transduction to the nucleus is 

via the Smad pathway (Attisano and Wrana, 1996; Massague et al, 1996). Receptor type m  

is betaglycan, a 300 kD protein. It is not thought to be involved in signal transduction, but 

instead acts by assisting ligand binding and possibly acting as a reservoir of active TGFp 1. 

It is not found in epithelial, endothelial or lymphoid cells. Endoglin, a circulating 

betaglycan analogue, is known to bind T G F pi, as is a-2 macroglobulin. This latter 

molecule is known to undertake a scavenging role for other active proteases. T G F pi bound 

to a-2  macroglobulin is inactive, which lends supportive evidence to a scavenging role 

(O’Connor-McCourt and Wakefield, 1987; Lawrence 1996).

M ost cytokines have paracrine and autocrine functions only. TGFP can be identified in the 

plasma of humans, implying an additional endocrine role for this molecule. Circulating 

TGFp levels can be measured in serum or plasma by a number of different protocols 

(Anscher a/, 1994; Reinhold gf a/, 1997; Philips eta l, 1995; Abe et at, 1994). Generally, 

levels are measured in platelet free plasma as the high concentration of TGFP released 

from degranulated platelets gives misleading results in serum. Normal plasma levels in the 

region of 2 -  6 ng/ml are most commonly quoted. In general, most of the studies have 

shown no age-related increase in TG Fpi levels (Wakefield et al, 1995). The vast majority 

of circulating TGFp is in the form of TG Fpi. Less than 0.2 ng/ml is TGFP2 (Grainger et 

al, 1999; Wakefield et al, 1995). TGFp3 has been isolated in trace amounts only from 20%
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of individuals studied (Grainger et al, 1999). Grainger et al (1999) investigated 170 pairs 

of female twins (84 monozygotic and 86 dizygotic) and found that around 54% of the 

variation in plasma levels of TG Fpi had a heritable basis. He also identified some common 

allele polymorphisms occurring in the promoter region of the TG Fpi gene. Thus genetic 

factors play a part in the control of circulating TG Fpi levels.

1.11 Functions of TGFpi

TG Fpi has multiple functions that differ between cell types. Despite intensive study, many 

of these functions are poorly understood especially where interactions with other cytokines 

occur. The distinct actions of T G Fpi are summarised in Table 1.2.

T G Fpi is necessary for ordered embryogenesis. Fifty percent of TG Fpi null mice die in 

utero due to impaired haemopoiesis and vasculogenesis of the yolk sac (Bonyadi et al, 

1997; Martin et al, 1995). The remaining mice die at 2 -  3 weeks post-partum  due to a 

systemic wasting inflammatory disorder that results in organ necrosis (Kulkarmi et al,

1993; McCartney-Francis and Wahl, 1994). Transgenic fusion mice, who produce a 

constitutively active form of TGFp 1, die rapidly after birth due to a progressive systemic 

inflammatory/ fibrotic illness (McCartney-Francis and Wahl, 1994; Sanderson et al, 1995). 

Exogenous T G F pi, when administered parenterally also gives rise to a similar systemic 

fibrotic disorder (Zugmaier et al, 1991). This can be successfully reversed by 

administration of the latency associated peptide (Bottinger et al, 1996). Thus T G Fpi plays 

an important role in the normal embryonic development, as well as regulation of fibrotic
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tissue production. Mice who lack the gene for the TG FplRII also die in utero from 

impaired vasculogenesis and haemopoiesis (Oshima et al, 1996).

Table 1.2: Individual functions of TGFpi in vivo

Action Cell type affected Reference

Growth induction Mesenchymal cells e.g. 

fibroblasts, myoblasts 

Malignant cells (late in 

progression)

Roberts et al, 1992 

Lawrence 1996

Growth suppression Epithelial and endothelial 

cells

T and B lymphocytes 

Malignant cells (early in 

progression)

Roberts et al, 1992 

Lawrence 1996

Immune suppression IgG and IgM production 

decreased 

NK and LAK cell activity 

decreased

Roberts et al, 1992 

Lawrence 1996

Inflammatory mediator Chemo-attractant for 

neutrophils, macrophages, 

monocytes and mast cells 

(strongest known)

Roberts et al, 1992 

Richter et al, 1997

Apoptosis Demonstrated in cells in 

culture

Raynal et al, 1997

Prevention of 

differentiation

Adipocytes and myoblasts Roberts e ta l, 1992
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The individual effects of TGpp 1 in different cell types do not occur in isolation in the 

body. Body tissues are made up of multiple cellular types, which are diversely affected by 

TGFp 1. The observed action of TGFp 1 is a composite of many effects, some of which are 

mutually exclusive. This is illustrated in Table 1.3.for tissue healing and extra-cellular 

matrix production.

Table 1.3: Tissue associated properties of TGFpi

Tissue TGFpi associated 

properties

Reference

Extra-cellular matrix T production of ECM 

components 

si breakdown of the ECM 

Î  production of ECM 

breakdown inhibitors 

T collagen production 

indirect promoter of 

angiogenesis

Roberts e ta l, 1986 

Roberts et al, 1988 

Lawrence, 1996

Tissue healing (wounds, 

post-MI and 

hepatectomy, bony 

fractures)

leucocyte attraction and 

activation 

angiogenesis 

fibrosis

Roberts e ta l, 1986 

Roberts e ta l, 1988 

McCartney-Francis and 

Wahl, 1994

53



1.12 TGFpi in oncology

Marker o f  tumour progression

Cervical cancer has been used as a model to study the role of TGpp 1 in tumour 

progression. T G ppi is the strongest known inhibitor of epithelial cell growth and acts early 

in malignant progression as a tumour suppressor (Reiss, 1997). For example, cell lines 

derived from the normal ectocervix are growth inhibited by exogenously administered 

TG Fpi (De Geest et al, 1994). Malignant transformation is associated with loss of 

sensitivity to the growth inhibition of T G ppi. In carcinoma of the cervix, this is 

independent of HPV status (Braun et al, 1990; De Geest et al, 1994; Rorke and 

Jaeobberger, 1995), suggesting that acquired TG Fpi insensitivity is a late occurrence in 

carcinogenesis. Braun et al (1990) demonstrated that HPV mRNA production also 

decreased in response to TGFp 1 administration, but only in lines retaining sensitivity to the 

growth inhibitory effects of T G ppi. Woodworth et al (1996), however, found that five out 

of seven HPV immortalised cell lines were growth promoted by the addition of exogenous 

T G F pi.

Immunohistochemical studies have shown that the distribution of TGFp 1 changes with 

disease progression (Comerci et al, 1996; Xu et al, 1999). Normal cervical epithelium 

stains strongly positive for intracellular T G ppi, with minimal staining in the stroma. In 

malignant disease, TGpp 1 staining is concentrated in the extracellular compartment of the 

stroma adjacent to the neoplastic epithelium, with no staining remaining in the epithelium.
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or in adjacent stroma underneath normal epithelium. Sections from patients with in situ 

disease fell between the two extremes of TG Fpi expression, giving a distinct spectrum of 

change in TG Fpi expression as cervical carcinogenesis progresses. Although de Gruijl et 

al (1999) showed TG Fpi mRNA is present in both malignant and benign cervical disease, 

no quantitation of TGFP 1 mRNA or staining for the active TG Fpi molecule was 

undertaken. In contrast, a study in breast cancer showed increased T G Fpi mRNA and 

activity in cancer stroma and an inverse correlation between TG Fpi expression and tumour 

differentiation (Cardillo et al, 1997). This latter finding was confirmed in a study showing 

increased TGFP 1 in conditioned medium from fibroblasts derived from the stroma 

surrounding malignant breast lesions, but not from fibroblasts obtained from nearby areas 

with a normal overlying epithelium (Chakravarthy et al, 1999).

Different mechanisms have been proposed for the loss of TGFp 1 growth inhibitory effects 

during malignant transformation. These include decreased TG Fpi production, inability to 

activate TG Fpi and changes in receptor signaling mechanisms (Reiss, 1997). The latter 

two have been the most intensely studied. Signaling changes can occur due to receptor 

mutation (Chen et al, 1999), altered distribution (Muro-Cacho et al, 1999, Anderson et al, 

1999, Chakravarthy et al, 1999), or decreased expression (Tokunaga et al, 1999). 

Temporally initiated up-regulation of TG Fpi production, sequentially followed by 

TG F plR I and II production occurred in mice mammary cancers treated with perillyl 

alcohol, a recognised differentiation-inducing anti-cancer agent. This increase in T G F pi 

corresponded with tumour regression (Ariazi et al, 1999). However, this has not been 

demonstrated in all tumour types. Friedenberg et al (1999) demonstrated no change in
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TGFp 1 receptor density on malignant cells from patients suffering from chronic 

lymphocytic leukaemia (CLL) compared with normals. Norgaard et al (1996) established 

and characterised three cell lines from the same patient with small eell carcinoma, at 

different stages during their disease. In this patient, disease progression was linked to the 

reappearance of T G F plR I and II proteins and increasing sensitivity to T G Fpi growth 

inhibition. The initial cell line derived from this patient, prior to any treatment, possessed 

neither of the above. It may be that treatment, in the form of ionising radiation and 

polychemotherapy, selected clonally for both of these traits for, as yet, unknown survival 

gains.

A number of studies have shown that TGFp 1 production continues and is increased in 

tumours that are resistant to the negative growth effects of TGFp 1. The TGFp 1 is 

deposited extracellularly in increasing amounts in the peri-tumoural stroma. The selection 

advantage this accrues is not precisely known, but it is likely that severe local immune 

suppression (Young et al, 1996; Spellman e ta l, 1996) and increased angiogenesis (Taipale 

et al, 1998; Saito et al, 1999) both play a part.

Tumour marker

As described above, excessive deposition of TGFp 1 can occur extracellularly in the stroma 

of patients with malignant disease. This is thought to provide a pool from which increased 

circulating TGFP 1 is derived. Circulating TGFp 1 has been investigated as a tumour marker 

in a wide range of malignancies. When a normal range is quoted, it has been generated 

using methodology identical to that of the study population. As such, the normal ranges
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vary from study to study. Elevated serum levels of TGpp 1 have been found in patients with 

transitional cell carcinoma (TCC) of the bladder (Eder et al, 1997), nasopharyngeal cancer 

(Xu et al, 1999) and cervical cancer (Chopra et al, 1998). Elevated plasma levels of T G ppi 

have been demonstrated in patients with malignant melanoma (Krasagakis et al, 1998), 

renal cell carcinoma (Wunderlich et al, 1998; Reinhold et al, 1997), colorectal carcinoma 

(Tsushima et al, 1996), a variety of intracerebral malignancies (Gridley et al, 1998), 

squamous cell carcinoma of the lung (Kong et al, 1996) and breast cancer prior to surgery 

(S mini a eta l, 1998; Kong eta l, 1995). Wakefield e ta l  (1995) found elevated plasma 

T G ppi levels in only 2/28 patients with metastatic breast cancer. Perry et al (1997) showed 

no significant elevation in plasma levels of TGpp 1 in patients with prostate cancer, 

however urinary levels of T G ppi were significantly elevated. Tsai et al (1997) also 

demonstrated this finding in hepatocellular carcinoma (HCC). Finally, Friedenberg et al 

(1999) demonstrated a significant decrease in plasma TG Fpi levels correlated with 

advancing disease stage in patients with chronic lymphocytic leukaemia.

Prognostic marker

A number of studies have correlated elevated T G ppi levels with poor prognosis in a 

variety of tumours. These studies comprise a mixture of ELISA-based blood and urine and 

immunohistochemical studies. Increased expression of TG Fpi in tumours has been 

correlated with poor prognosis in colorectal tumours (Robson et al, 1996) and gastric 

cancer (Maehara et al, 1999). Increased urinary excretion of T G ppi correlated with 

worsening prognosis in hepatocellular carcinoma. Elevated serum levels of TGFp 1

57



correlated with poorer prognosis in nasopharyngeal cancer (Xu et al, 1999). In breast 

cancer the picture is more confused due to a greater volume of published work. Kong et al 

(1995) demonstrated that persistently elevated plasma levels of T G F pi in the post­

operative period were due either to the presence of residual disease or axillary node 

positive status. However, Sminia et al (1998) and Li et al (1998) found no correlation 

between TG Fpi plasma levels and poorer prognostic factors in breast cancer patients. 

Finally, Decensi et al (1998) correlated significantly increased plasma levels of T G Fpi 

after twelve months treatment with a retinoid compound (fenretinide), to shorter survival 

free from the development of a second primary breast cancer.

Effect o f  radiation on TG Fpi in tissues

Immunohistochemically, active TGFp 1 in normal rodents is limited to the epithelium and 

peri-epithelial stroma. Following irradiation of the mouse mammary gland, active TGFp 1 

can be seen for the first time in adipose stromal tissues within one hour (Barcellos-Hoff et 

al, 1994). This increased active TG Fpi persists for at least seven days in the mouse 

mammary gland (Barcellos-Hoff et al, 1994) and 26 weeks in rat small intestine (Langberg 

et al, 1994; Richter et al, 1997). Mice irradiated with strontium (Sr-90) to varying doses 

(ranging from 1 - 5 0  Gy), showed an initial decrease in TG Fpi mRNA activity for the first 

three hours following exposure. By 48 hours post-irradiation the TG Fpi mRNA activity 

had increased by 200% over control levels and remained persistently elevated for at least 8 

weeks (Randall and Goggle, 1995). Immunohistochemical analysis of TG Fpi and 

quantitative measurement of TGFp 1 mRNA activity in irradiated pig skin gave comparable
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results (Martin et al, 1993). The staining for TG ppi was increased in the dermis from 3 

weeks (first measurement) and persisted for at least one year. There was a corresponding 

significant elevation in the activity of TG Fpi mRNA levels in the same areas. In humans, 

4/6 patients who received pre-operative radiotherapy for rectal cancer had significantly 

increased TGFp 1 immunoreactivity in normal tissues within the irradiated field. All six 

patients also had significantly increased TGFP 1 in tumour bearing tissue. Three matched 

patients, who had initial surgical management, but no radiotherapy, also had elevated 

TGFp 1 in the tumour tissue. These patients had no TGFp 1 immunoreactivity in any 

unirradiated tissues (Canney and Dean, 1990). The irradiated tissues were examined 

between 7 and 40 weeks post-radiotherapy. Thus, increased TG Fpi immunoreactivity can 

be seen within one hour of irradiation and persists for prolonged periods (up to 40 weeks) 

depending on the model used. This implies that molecular events are set in motion at the 

time of radiotherapy, which persist for a prolonged period, often in the absence of 

symptoms.

Response to radiotherapy

Changes in plasma levels of TGFP 1 following treatment have been investigated in a small 

number of studies. At diagnosis, patients with intracerebral malignancy had increased 

plasma TG Fpi levels (Gridley et al, 1998). Following radiotherapy, two patients had 

persistently elevated TG Fpi levels. The malignancy in both of these patients was 

uncontrolled by radiotherapy. In a cohort of surviving lung cancer patients at one year 

follow-up, those patients who had no evidence of disease had significantly lower plasma
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TG Fpi levels than those patients with demonstrable recurrent disease (Kong et al, 1996). 

This finding was confirmed by Groen et al (1997). The former study showed the clinical 

utility of changes in plasma TGFp 1 as a predictor of response was restricted to those 

patients initially presenting with an elevated TG Fpi level.

Prediction o f normal tissue radioresponse

In tissues the distribution of TGFp 1 changes in response to disease progression or therapy. 

In the field of radiotherapy, there is interest in assessing whether these changes can be used 

to predict normal tissue response. This interest is in the area of both acute (symptomatic 

radiation pneumonitis) and late (fibrosis) reactions.

In vitro and in vivo studies have implicated TGFP 1 as a mediator of radiation damage in 

normal cells. Exogenous TGFP I, when added to a mink lung epithelioid cell line in culture 

caused reversible growth impairment. When the colony-forming ability of the cell line was 

investigated using a combination of DNA damaging agents (including radiation) and 

T G F pi, the lethal effects of the agents were enhanced (Raynal et al 1997). This increased 

lethality was mediated via TGFP 1-induced apoptosis in this wild-type p53 cell line. In 

mice, exogenous TGFp 1 administered one hour prior to total body irradiation (TBI) 

enhances the lethality of a given radiation dose. This increased radiosensitivity may be 

secondary to a Gi phase arrest of the cell cycle (Neta, 1997).
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Following radiotherapy, increased TGFp 1 deposition co-localised with de novo expression 

of collagen type m  in mice (Barcellos-Hoff, 1993) and with fibrosis, mucosal ulceration 

and connective tissue mast cell hyperplasia in rats (Langberg et al, 1994; Richter et al,

1997). T G Fpi immunoreactivity was also significantly correlated with an overall radiation 

injury score as well as intestinal wall fibrosis alone. Increasing T G Fpi immunoreactivity 

significantly correlated with increasing fraction size as well as decreased overall treatment 

time (Langberg et al, 1994). The former implies increased TG Fpi activity following 

irradiation is linked to the development of de novo late radiation sequelae in the form of 

fibrosis. The latter implies that increased TG Fpi activity is responsible for the 

development of consequential radiation injury. Acute radiation injury, in the form of 

ulceration, increases with decreasing overall treatment time, if other parameters remain 

unchanged. Prolonged severe ulceration is the initiating lesion of consequential late 

radiation damage. Increased TG Fpi immunoreactivity was seen in relation to areas of 

ulceration. TG Fpi immunoreactivity as well as TG Fpi mRNA activity both increased in a 

dose dependent manner in irradiated pig skin. This increase co-localised with increased 

dermal fibrosis (Martin eta l, 1993). In rats who underwent hemi-thoracic radiotherapy, 

increased TG Fpi activity was demonstrable in the broncho-alveolar lavage fluid and 

increased TG Fpi mRNA activity in lung tissue (Yi et al, 1996). Histological analysis 

revealed increased TGFp 1 in areas of fibroblastic proliferation in the alveolar septae. 

Plasma levels of T G ppi increased in rats given hemi-thoracic radiotherapy from 18 weeks 

following the insult. They remained elevated for 6 -8  weeks and this coincided with the 

period of maximal symptoms (Vujaskovic et al, 1997). In irradiated rat liver, TG Fpi
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immunoreactivity in hépatocytes increased in a dose dependent manner and the intensity of 

staining significantly correlated with the extent of fibrosis (Anscher et al, 1990).

Increased TG Fpi staining was seen in the irradiated tissues of 4/6 patients treated with pre­

operative radiotherapy for rectal cancer (Canney and Dean, 1990). This was present at 7 

weeks and persisted for at least 40 weeks. Patients who receive pre-operative radiotherapy 

are known to develop fibrosis in the treated area (Napoleon et al, 1991). Thus it seems 

likely that TG Fpi plays an important role in the development of radiation induced fibrosis.

Interstitial pneumonitis and hepatic veno-occlusive disease are major causes of morbidity 

and mortality following bone marrow transplantation (BMT). Both diseases are 

characterised by increased fibrosis. Forty-one patients who underwent BMT for poor 

prognosis breast cancer had their plasma TGFP 1 levels measured prior to treatment, after 

completion of induction chemotherapy and following transplantation. Those patients, in 

whom TGFp 1 levels were elevated at the end of induction chemotherapy, had an increased 

risk of developing a fibrotic complication. The positive predictive value of a plasma 

TG Fpi level greater than two standard deviations above the mean control level, for fibrotic 

complications was 90% (Anscher et al, 1993). Changes in plasma TG Fpi levels have been 

shown to be predictive of the development of symptomatic radiation pneumonitis in 

patients receiving thoracic radiotherapy, with curative intent, for lung cancer (Anscher et 

al, 1994; Anscher et al, 1998a; Groen et al, 1997) or a variety of malignancies (Anscher et 

al, 1997). These patients can have either normal or elevated pre-treatment plasma TG Fpi
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levels. During radiotherapy, the plasma TGFp 1 level can remain the same (either normal or 

elevated), or can become elevated (if initially normal) or normalise (if initially elevated).

The TGFp 1 ratio is defined as below: -

TGFp 1 ratio = end of treatment plasma TGFB1 level 

pre-treatment plasma TGFP 1 level 

In order for the TGFp 1 level to be fully normalised, it must not only be less than the pre­

treatment value, it also must be lower than the normal population value (defined as the 

mean plus two standard deviations of normal controls). In patients with lung cancer, the 

TGFp 1 ratio has a 90% positive predictive value for freedom from symptomatic 

pneumonitis (Anscher et al, 1998a). In patients with intra-thoracic malignancies, the 

positive predictive value of developing pneumonitis is 75% (Anscher et al, 1997). For 

those patients with initial elevated pre-treatment plasma T G Fpi levels, the comparable 

predictive values are 90% and 83% respectively. Elevated plasma TG Fpi levels in post­

operative breast cancer patients have also been found to correlate with the development of 

fibrosis following radiotherapy (Li et al, 1999),

1.13 Aims

The aims of this study were: -

(a) To investigate the relationship between pre-treatment plasma TG Fpi levels and 

outcome in a cohort of radically treated patients with cervical cancer
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(b) To establish the reliability of a commercially available kit for measuring plasma 

TGPpi

(c) To correlate changes in plasma T G ppi levels with outcome in a group of patients 

undergoing radical radiotherapy to the head and neck region

(d) To investigate the link between plasma TGpp 1 levels and late radiation outcome in a 

group of patients treated 4 - 6  years ago for early stage breast cancer

(e) To validate the use of an established PFGE assay in the prediction of normal tissue 

radioresponse in a group of patients treated 4 - 6  years ago for early stage breast cancer

Study Design

The cervical and breast carcinoma studies were retrospective in nature. The head and neck 

carcinoma study was prospective. All outcome data were collected in a blinded fashion. No 

interim analyses of data sets were carried out. All correlations were sought in a blinded 

fashion.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Patients

Ethical approval was granted for all patient groups by the South M anchester Loeal 

Regional Ethics Committee. All patients received relevant information sheets, approved by 

the Committee (Appendices 1&2). All samples were obtained following informed written 

consent.

Cervical carcinoma

Patient samples were available from those patients referred to the Christie Hospital 

between June 1990 and December 1993. Prior to the start of treatment, an EUA 

(examination under anaesthetic) was performed on all patients. During this procedure 

tumour stage, according to the FIGO classification was confirmed, and fresh biopsy 

material was obtained for independent histological analysis. All patients were treated 

according to strict protocols, depending on the stage of disease at presentation. Patients 

with small stage la tumours were treated mostly by radical surgery. However, in those who 

were medically unfit or who declined surgical treatment, radical radiotherapy consisted of 

two intracavitary insertions a week apart, giving a total prescribed dose of 65 Gy. Patients 

with higher stage disease, but without enlarged pelvic lymph nodes on CT scan, received 

45 Gy in 20 fractions, external beam radiotherapy, in a four field pelvic “brick”. This was 

followed, after one week, by a single intracavitary insertion, bringing the total dose 

received to 67.5 Gy. Patients with enlarged pelvic nodes were also treated initially by
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external beam therapy, to a dose of 40 Gy in 20 fractions. The pelvic field was larger and 

irregular. A single intracavitary insertion was performed one week following the end of 

external beam treatment, giving a total dose of 62.5 Gy. A small number of patients 

received initial treatment in the form of surgery or chemotherapy. Only patients treated 

with radical intent were included in the study.

Head and neck carcinoma

Between August 1998 and February 2000, consecutive new patient referrals to the 

specialist head and neck clinic at the Christie Hospital, Manchester were invited to take 

part in the study. All patients approached were eligible to receive radical radiotherapy and 

none had a second, uncontrolled malignancy. The dose prescribed for radical radiotherapy 

in the head and neck region varied according to tumour site, tumour size, whether or not 

the patient had undergone surgery and whether or not the draining lymph nodes in the neck 

were treated. Patients with small volume disease present in the larynx received 52.5 Gy in 

15 fractions, by means of a wedged pair. Patients, whose primary tumour had not been 

resected surgically, received between 50 and 52.5 Gy in 16 fractions. The field 

arrangements used depended on the site of the primary tumour. Patients who had surgical 

resection of their primary tumour, or whose parotid gland was treated received 50 Gy in 20 

fractions. The same protocol applied to patients whose treatment fields covered the 

temporal lobe, e.g. carcinoma of the middle ear. In addition to having treatment to the area 

of the primary tumour, patients at high risk of nodal involvement received 47.5 Gy in 15 

fractions to the neck prophylactically. Those patients with proven nodal involvement 

received 50 Gy in 15 fractions to the neck.
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Patients were approached either during treatment preparation (a process taking up to three 

weeks) or in the early stages of treatment (when less than a fifth of the dose prescribed had 

been delivered). Eighty-six patients entered the study and eleven patients withdrew at their 

own request. All patients had a histologically proven malignancy of the head and neck 

region.

Breast carcinoma

Patients were approached at routine follow up appointments. Those patients who agreed to 

take part in the study were given a further appointment. This second appointment was for 

more than two weeks in advance to allow the patients to discuss the trial with their family 

and withdraw consent, if they so desired. Patients were recruited from a cohort of 190 

women with early stage breast cancer treated at the Christie Hospital, Manchester between 

1993 and 1994. All patients received external beam radiotherapy to the remaining breast 

tissue, following lumpectomy. A dose of 40 Gy in 15 fractions, prescribed to the isocentre, 

was given via a tangential wedged pair. No patient received a boost to the tumour bed. 

Patients received either axillary surgery or adjuvant nodal irradiation. Nodal irradiation was 

prescribed as a single anterior field, and the dose received was 40 Gy in 15 fractions. This 

cohort of patients had already taken part in a clinical study, at the time of their 

radiotherapy. All patients had a clinical photograph available (taken post-surgery and prior 

to any radiotherapy) as well as stored plasma samples taken prior to radiotherapy.

Fifty patients were recruited. Their ages ranged from 45 - 75 years (median 62 years). 

Patients who received any adjuvant medical treatment, other than tamoxifen, were not
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recruited. Other exclusion criteria were: an inability to give fully informed consent, further 

surgery to either breast, development of a second primary tumour, and development of 

metastatic disease.

2.2 Normal volunteers

Ethical approval was granted by the South Manchester Local Regional Ethics Committee to 

obtain blood from normal volunteers. People with no history of cancer were recruited. This 

provided a large group of normal control samples with which to compare the patient 

samples. There were 22 men and 44 women. Their ages ranged from 20 - 84 years (median 

62 years).

2.3 Sample processing

Plasma processing

Heparin method: Ten millilitres of blood was added to a 20 ml sterile Universal (Bibby 

Sterilin Ltd., Stone, England) containing 600 |Lil Heparin (Monoparin, CP Pharmaceuticals, 

England). The sample was left overnight at room temperature and then centrifuged at 240 

ref for 30 mins. The upper 50% of the plasma supernatant was divided into 350 p i  aliquots, 

frozen and stored at -80°C. This yielded typically between four and six aliquots for 

experimentation.
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EDTA method: Ten millilitres of blood was added to a Universal containing 15 mg of Tri- 

K  EDTA, and placed immediately on ice. Centrifugation at 1,000 ref for 30 mins took 

place within 30 mins, in a centrifuge pre-cooled to between 2 and 8°C. The plasma 

supernatant was then divided into 1 ml aliquots. Each aliquot was subjected to a further 

centrifugation at 10,000 ref for 10 mins, in a centrifuge pre-cooled to between 2 and 8°C. 

The upper 350 pi of each aliquot was frozen individually and stored at -80°C. This yielded 

typically 3 or 4 aliquots for experimentation.

In a random selection of patients, using the EDTA method, the aliquots were numbered 

sequentially in the order in which they were obtained from the plasma with 1 being the 

topmost aliquot and 6 the lowest. As defrosting and refreezing cycles can lead to 

degradation of T G ppi molecules and therefore to spuriously low results, aliquots were 

frozen individually to allow multiple assays of TGFp 1 without repeated defrosting of 

plasma samples.

Tourniquet usage

A  tourniquet was used in all patients. Ideally, to fully minimise platelet degranulation, 

venepuncture should be performed without the aid of a tourniquet. Prior to the start of this 

study a decision was made that all blood samples (patients and volunteers) would be taken 

using a tourniquet. There were a number of reasons for this: first, patients with head and 

neck malignancies are often chronically malnourished, making venepuncture difficult 

without the aid of a tourniquet. Second, all patients were donating 20 ml of blood, on two 

separate occasions. It was thought that the chances of obtaining enough blood, from 

patients who were often unwell, with the minimum of discomfort to the patient, would
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require the use of a tourniquet. Patients who have had a traumatic single venepuncture, or 

who have multiple attempts at venepuncture, are understandably more reluctant to have a 

further venepuncture which will be of no direct impact on their health. None of the patients 

who withdrew from the study cited traumatic venepuncture specifically as a reason. Less 

than 3% of samples required more than 1 venepuncture to obtain a blood sample. Finally, 

the more easily blood is withdrawn at venepuncture, the less likelihood of spontaneous 

coagulation or turbulence resulting in platelet degranulation occurring. Thus, for a larger 

volume of blood to be drawn quickly, use of a tourniquet is a sensible compromise. 

Therefore, to distribute the risk of a systematic increase in TG Fpi levels secondary to 

tourniquet use evenly, a tourniquet was used when taking samples from all volunteers.

2.4 Patient samples

Cervical carcinoma

Prior to the start of treatment, a venous blood sample was obtained from each patient and 

processed according to the heparin method outlined above. The lymphocytes were 

separated using Cappel Lymphocyte Separation Medium (LSM) (ICN Pharmaceuticals 

Ltd., Basingstoke, England) and stored in liquid nitrogen. In 1998, 127 samples were 

identified and defrosted into 350 |il aliquots.
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R ead  and neck carcinoma

Blood samples for the measurement of plasma TG Fpi were obtained by venepuncture of 

all subjects at the time of initial recruitment. A further sample was obtained in the final 

week of treatment, as near to the completion of radiotherapy as possible. In a randomly 

picked group of nine patients weekly venepunctures were performed, at the same time each 

week. Using a 21F-gauge needle (Becton Dickinson UK Ltd., Cowley, England) and a 20 

ml syringe (Kendall Monoject, Gosport, England), 20 ml of venous blood was obtained 

from each patient, and divided into two 10 ml aliquots. The blood was processed according 

to the EDTA method outlined above.

Breast carcinoma

All patients had a 10 ml venous blood sample taken and processed according to the heparin 

method outlined above.

Skin samples

Patients, who had been treated previously for breast carcinoma, answered a questionnaire 

on risk factors pertaining to local anaesthetic use and the presence of a bleeding diathesis. 

The right or left buttock was chosen for the procedure according to patient preference. The 

skin was exposed and draped using materials from a NHS standard sterile supply pack 

(Readyfield option n+, NHS Supplies Authority, England). Sterets Tisept antiseptic (Seton 

Prebbles, Oldham, England) was used to clean the skin. One percent plain lignocaine
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(Astra Pharmaceuticals Ltd., Kings Langley, England) was infiltrated into the chosen area 

of skin, using a 23F-gauge needle (Becton Dickinson) and a 10 ml disposable plastic 

syringe (Becton Dickinson). The local anaesthetic was left for a few minutes to take effect 

and the area of skin then tested for pinprick sensation using the 23F-gauge needle. W hen 

the skin was anaesthetised, a 5mm diameter punch biopsy of full dermal thickness was 

taken using a sterile disposable punch biopsy needle (Stiefel Laboratories (UK) Ltd., 

W ooburn Green, England).

Pressure was applied to the wound until haemostasis was achieved. The edges of the 

wound were then approximated using Steristrips (3M Health Care, MN, USA); and the 

area covered with gauze swabs (Vernaid, Vernon-Carous Ltd., Preston, England) and 

secured with transpore tape (3M Health Care). Patients were given instructions as to skin 

care and then allowed home. A letter, detailing the procedure was sent to the patient’s GP, 

both as courtesy and in case infectious complications developed.

2.5 Volunteer samples

Volunteers had a 20 ml sample of blood taken. A number of volunteers donated blood on 

more than one occasion. Blood was processed according to the heparin and EDTA methods 

outlined above.
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2.6 Transforming growth factor beta one (TGFpi) assay

Transforming Growth Factor Beta 1 (TG Fpi) levels were measured using a commercially 

available Quantikine Kit (R&D Systems Abingdon, Oxon, UK). Instructions for processing 

blood samples to obtain platelet free plasma for assay have been outlined above. Only 

those samples prepared according to the EDTA method were as per kit instructions. 

Previously stored samples had been prepared according to the heparin method. All samples 

were assayed in a blinded fashion.

Sample preparation

All samples to be measured on the same kit run were defrosted simultaneously. Each 

aliquot contained 350 \lI of platelet free plasma. This meant multiple assays, at differing 

dilutions, could be performed on one sample during the same kit run. It also meant that 

preparation errors could be corrected for without defrosting another sample aliquot. One 

hundred microlitres of each sample were placed in individual 1.5 ml eppendorfs (Anachem 

Ltd., Luton, England). Thorough mixing of each sample with an equal volume of 2.5 N 

acetic acid/10 M urea was performed, prior to incubation at room temperature. After 10 

mins, 100 \i\ of 2.7 N NaOH/1 M HEPES was added and the contents of each eppendorf 

mixed. Both of these reagents cause activation of latent T G Fpi. Therefore, in all samples, 

total TGFp 1 levels were measured. The resultant pH of the final mixture was checked on 

three randomly picked samples regularly, and confirmed to be between pH 7.0 and 7.5.

73



Prior to plating, the sample mixture was diluted to an appropriate concentration with the 

kit-specified diluent. In the case of the EDTA samples this was a 12-fold dilution. The 

stored samples taken using heparin as an anti-coagulant were measured using a 24-fold 

dilution. If the sample results were higher than the upper limit of the standard curve, the 

sample was assayed again, using a fresh aliquot and an appropriate dilution, at a later date. 

Any defrosted plasma not used was discarded safely.

The 96 wells (which comprised the plate) were supplied pre-coated with recombinant 

human TGFp receptor type II (TGFpRII). For each kit run, a standard curve was generated. 

Recombinant human TGFP 1 was prepared to a known standard concentration using the kit- 

specified diluent. A serial dilution was then performed to produce decreasing 

concentrations of T G F pi, using the same kit-specified diluent. Two hundred microlitres of 

diluent alone, and then each successive concentration of T G F pi, were added to three 

successive wells. Thus 24 wells in every kit were used to generate a standard curve. The 

remaining 72 wells were each filled with 200 pi of the sample mixture, either in duplicate 

(cervix samples) or triplicate (all other samples). The plate was then covered with an 

airtight adhesive strip and left to incubate at room temperature. After three hours, the 

adhesive strip was removed and the contents of each well aspirated and discarded. The 

wells were then washed three times with 300 pi of kit supplied wash buffer. Each well then 

received 200 pi of TGFP 1 conjugate; this consisted of a polyclonal anti-TGFpl antibody 

conjugated to horseradish peroxidase. The plate was covered again with an airtight 

adhesive strip and left to incubate at room temperature.
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After 1.5 hours the strip was removed, the wells aspirated and the wash step repeated. Two 

hundred microlitres of the substrate solution (which consisted of equal volumes of 

hydrogen peroxide and a stabilised chromogen solution, added together within 15 minutes 

of use) was added to each well and the plate left to incubate, this time uncovered. A blue 

colour developed in each well. After 20 mins, 50 p,l of 2 N sulphuric acid was added to 

each well to halt the colour reaction. W ith the addition of the acid the mixture in the wells 

turned yellow.

The optical density (OD) of the well contents was measured using a dual wavelength 

spectrophotometer (Titertek Multiskan, MCC/340 mark n, Labsystems, UK) within 30 

mins. The filter wavelengths used were 450nm and 540nm. The difference in OD between 

these filters gave the final OD from which all results were derived. In practice, the plate 

was read twice within a thirty-minute period for each plate run. This established that there 

was no significant colour degradation over time.

Processing o f results

The individual ODs were input into an Excel spreadsheet and the mean OD value was 

calculated. The corrected OD was determined, for all samples, using the formula:

corrected OD = mean OD - background OD

The background OD was the mean OD of the three wells containing diluent only. The 

concentration of the standards ranged from 0-2000 pg/ml. The corrected ODs typically
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ranged from 0.03 -1 .5 . The standard curve data were transferred to Origin, and a scatter 

plot generated. A linear fit of the data was then performed. Logarithmic transformation of 

the data was not required to produce a straight line. The equation of the line was then 

transferred back to the Excel spreadsheet to derive the concentrations of all test samples.

2.7 Pulsed-field gel electrophoresis (PFGE) assay

Tissue disaggregation

Skin biopsies were placed in 10 ml of filtered HBSS (GIBCO, Paisley, Scotland) on ice 

and transported to the laboratory. All biopsies were processed within 2 hours of being 

taken. All manipulations of the skin biopsies, and cells subsequently grown were carried 

out in a Class 2 microbiological containment cabinet. Each skin biopsy was disaggregated 

in 50ml high anti-biotic medium. High anti-biotic medium comprised BME (GIBCO) 

without serum, supplemented with 20 pg/ml amphotericin (Sigma, Dorset, England), 20 

pg/ml gentamicin (Sigma) and 50 mM HEPES (GIBCO). In addition collagenase type I 

(Sigma), DNAse type I (Sigma) and pronase (Boehringer Mannheim, GmbH, Germany) 

were dissolved in the medium to concentrations of 0.5 mg/ml, 0.5 mg/ml and 0.4 mg/ml, 

respectively.

The biopsy was trimmed of subcutaneous fat and then divided into six or eight equal pieces 

using two sterile scalpels (Swann-Morton Ltd., Sheffield, England). The samples were 

distributed between two 100 ml capacity durans each containing 25 ml of the high anti­

biotic/enzyme cocktail. The neck of each duran was covered with adhesive tape (Scientific 

Marketing Associates, Hertfordshire, England). The durans were then placed in a preheated
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shaking waterbath at 37°C. After 1.5 hours, the high anti-biotic/enzyme cocktail mixture 

was aspirated using 25ml sterile disposable pipettes (Falcon, Fred Baker Scientific, 

Cheshire, England), leaving the tissue samples in the duran. Ten ml of a 0.5% (w/v) trypsin 

(Lome Laboratories, Twyford, England) solution was added to each duran. The bottles 

were resealed and replaced in the shaking waterbath.

After a further 30 mins, the bottles were removed and 10 ml medium added to each duran 

to neutralise the trypsin. The neutralising medium consisted of MEM (GIBCO) plus 15% 

PCS (Biowhittaker, Wokingham, England), 2 mM glutamine, 100 U/ml penicillin and 100 

pl/ml streptomycin (all from GIBCO). This medium was also used for feeding and 

cryopreserving all fibroblast lines grown subsequently. The contents of each duran were 

individually filtered, first through a 100pm (Falcon) and then 40pm (Falcon) bottle top 

filter into a 50 ml conical bottomed centrifuge tube (Falcon). Both tubes were then 

centrifuged at 1800 ipm for 10 mins. Following centrifugation, the supernatant was 

removed and the cells resuspended in 2 ml of fresh medium. One millilitre of the cell 

suspension was added to a vented T12.5 sterile tissue culture flask (Becton Dickinson) i.e. 

four T12.5 flasks were derived from one tissue sample. These flasks were then placed in an 

incubator at 37°C, in a 5% CO2 in air atmosphere and left undisturbed for seven days.

Tissue culture

At seven days post-biopsy, the T12.5 flasks were examined for signs of growth. All cell 

lines became established. Fresh medium, 1ml, was then added to each flask. Thereafter, the 

cells in each flask were fed at least once per week, and often twice, depending on their 

requirements. Most flasks initially grew a mixture of fibroblasts and kératinocytes.
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reflecting the heterogeneous cell population released from the tissue biopsy. Kératinocytes 

are more difficult than fibroblasts to maintain in culture, requiring special media. By 

passage 2 all flasks contained a morphologically pure fibroblast culture.

Once the cells in each T12.5 flask became confluent, they were passaged into larger (T25) 

flasks. This occurred at a mean of 17 days post-biopsy (range 1 2 - 3 3  days). The cells in 

each of the four flasks grew at different rates and the range quoted is that of the quickest 

growing cells. When cells were ready for passaging, the medium was removed and 1-5 ml 

of 0.01% EDTA (BDH, Chemicals, Poole, England) was added, denaturing all non-specific 

serum based anti-trypsin activity. Between 1 and 5 ml of 0.01% (w/v) trypsin (Lome 

Laboratories) was added to each flask to digest the collagen anchoring the cells to the 

plastic flask. The flask was then agitated to ensure all cells were in suspension. In general, 

this took around 5mins. The cells were exposed to trypsin for no longer than 15 mins, in 

order to prevent cell damage.

The cell suspension was added to an equal volume of medium in a sterile Universal 

container. If a cell count was required, 50 pi of the cell suspension was mixed with an 

equal volume of 0.03% trypan blue (ICN Pharmaceuticals) solution, and added to a 

haemocytometer slide (H12-158 double modified, Fuchs Rosenthal, Philip Harris, Trafford 

Park, Manchester). The total number of cells present was then calculated. The cell 

suspension was centrifuged at 1000 rpm for 5 mins, to produce a cell pellet. The 

supernatant was aspirated and the cells resuspended in the required volume of fresh 

medium and added to the larger flask. This was returned to the incubator. Generally, once 

the cell lines became established, they were passaged on a 7 - 14 day cycle.
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Cell cryopreservation

Each tissue biopsy generated four T75 flasks of cells. Only one of these was needed for 

initial experiments. In culture non-transformed fibroblasts have a limited life span of 15-20 

passages. The longer a cell line is kept in a flask, the greater the likelihood of infection 

occurring, resulting in loss of unique cell line material. For both these reasons, as well as to 

preserve stocks for future and repeat experiments, it was necessary to store the cells. This 

was accomplished by cryopreservation and storage of the cell lines in liquid nitrogen.

Cells were cryopreserved when they reached confluence in a T75 flask. Twenty-four hours 

prior to cryopreservation, fresh medium was added to the flask. On the day of 

cryopreservation, the cells were suspended in the flask using EDTA and trypsin and 

counted as outlined above. The cell suspension was then spun at 1000 rpm for 5 mins to 

form a cell pellet, which was resuspended in an appropriate amount of fresh medium. Cells 

were cryopreserved at a concentration of 1-2 x 10^ per ml medium. To prevent lethal 

intracellular ice crystals forming during cryopreservation, DMSO (Sigma) was added to the 

cell suspension to a final concentration of 10%, i.e. a maximum of 2 x 10^ cells were 

frozen in 0.9 ml fresh medium plus 0.1 ml of DMSO. This mixture was placed in 2ml 

capacity cryotubes (Nalgene Nunc, Techmate Ltd., Milton Keynes, England) that were 

transferred to the liquid nitrogen freezer for storage.

Defrosting cells

Cell lines were defrosted, as required, for further experiments. The cryotube containing the 

desired cell line was removed from liquid nitrogen storage, and defrosted rapidly in a 

water-bath at 37°C. The contents of the tube were then added to a Universal container, and
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10 ml of previously warmed fresh medium was added dropwise. The resulting mixture was 

spun at 1000 rpm for 5 mins, to form a cell pellet. On removal from the centrifuge, the 

supernatant was aspirated and the cell pellet resuspended in 1 ml of warmed medium. This 

was added to 2 ml of warmed medium in a vented T12.5 flask and placed in the incubator. 

As most of the DMSO was removed by the initial centrifuge step, the medium did not 

require changing after 24 hrs. The cells were passaged into larger flasks once they had 

reached confluence (usually after 2-3 days), until enough cells were available for an 

experiment.

Cell preparation

For enough cells to be available, a minimum of one confluent T25 flask was required. In 

practice, a confluent T75 flask was most commonly used. Cells were disaggregated, using 

trypsin as described above and, while in suspension, were counted. A cell pellet was then 

formed by centrifugation at 1000 rpm for 5 mins. The cell pellet was resuspended in an 

appropriate volume of medium to give 1x10^ cells/ml. Cells were seeded simultaneously 

into two T12.5 flasks (one for irradiation and one as a control), at a density ranging from 

2x10^ to 2x10^ cells, depending on the previously observed growth characteristics of that 

cell line. These flasks were placed side by side in the incubator until confluence was 

reached. This generally took 10-14 days, but ranged from 6-28 days.

Irradiation

W hen the cells reached confluence, the experimental flask was irradiated at room 

temperature to 150 Gy. A ‘^^Cs y-ray source, at a dose rate of 3.11 Gy/min, was used for all
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irradiations. Following irradiation, the flasks were replaced in the incubator for 24 hrs to 

allow repair to take place.

Plug preparation

After 24 hrs, the cells were disaggregated using 0.01% trypsin, neutralised with an equal 

volume of medium and counted. Flasks with less than 1.7x10^ or greater than 8x10^ cells 

were discarded. A cell pellet was formed by centrifugation at 1000 rpm for 5 mins. The 

supernatant was removed and the pellet resuspended by gentle pipetting with an 

appropriate amount of 0.7% Sea Plaque low gelling point agarose (FMC BioProducts, 

Flowgen, Staffordshire, England). The final concentration of cells was 2 x 10^/75 p,l of 

agarose. Aliquots of 75 p.1 were pipetted into 1.5 x 5 x 10 mm plug moulds (Bio-Rad 

Laboratories, Hemel Hempstead, England) which were placed in the fridge for 10 mins to 

set.

Control plugs containing lambda DNA (Promega, Southampton, England) were made in a 

similar fashion. Five microlitres of lambda DNA stock solution (428pg/ml) was mixed 

with 75.3 p,l of ddHzO. This solution was added subsequently to 320 |il of 0.7% low 

melting agarose and mixed thoroughly. The final mixture was then pipetted in 75 |al 

aliquots into plug moulds and allowed to set. This made a double plug. The double plugs 

were stored in 0.5 M EDTA prior to use. Ten double plugs required 4 ml of EDTA solution 

for storage. The double lambda plugs were stored at 4°C and used within two months.
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Cell lysis

Control and irradiated double plugs were lysed in separate bijou bottles (Bibby Sterilin 

Ltd.). Lysis solution consisted of 2% sodium lauroyl sarcosinate “Sarkosyl” NL30 (BDH),

5 p.g/ml proteinase K (Sigma) and 0.47 M EDTA (BDH). The lysis solution was made up 

less than one hour prior to use and stored at 4°C. Proteinase K was made up as a 10 mg/ml 

solution in ddHiO. It was stored in 1 ml aliquots at -20°C and defrosted for each use. Each 

double plug was placed in a minimum of 1 ml lysis solution and returned to the fridge for a 

minimum of 30 mins. The plug/lysis mixture was then placed in the incubator overnight for 

a minimum of 17 hours. The double plugs were then stored at 4°C until electrophoresis. 

This took place within 4 weeks of irradiation.

PFGE

Prior to loading onto a gel, each double plug was cut in two transversely, giving two 

identical plugs. Each plug was loaded onto a separate gel. Two gels were loaded identically 

and run simultaneously. Each gel contained 0.95g of molecular specification agarose 

(Kodak Scientific Imaging Systems, Anachem, Luton, England) dissolved in 135 ml of 

xO.5 TBE. TBE was made up as a stock solution of x5 strength comprising 54 g TRIS base 

(Boehringer Mannheim, GmbH, Germany), 27.5 g boric acid (Sigma) and 20ml 0.5 M 

EDTA (pH 8.0), in 1000 ml ddH^O. This stock solution was stored at room temperature 

and diluted with ddHzO, as required. The gels were 15 x 15 x 0.6 cm in size and comprised 

0.7% agarose. They were cast with a comb containing sixteen 5 x 1.5 mm teeth set 

approximately 2.5 cm from the anode end. Each plug was placed in the corresponding lane 

of each gel. A lambda control plug was placed in one lane of each gel. One to three lanes in
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each gel were left empty to provide realistic background measurements when the gels were 

analysed. The plugs were sealed by addition of a small amount of 0.7% low melting point 

agarose once all lanes were filled.

The PFGE apparatus was a complex unit containing: two interconnected gel tanks 

(Pharmacia Biotech, St. Albans, Hertfordshire, England), a cooling unit, a power pack, and 

a control unit (Pulsaphor, Pharmacia Biotech). The gel tanks each contained 2.5 1 of xO.5 

TBE, which was circulated around the tank constantly. The cooling unit was set at 9°C, 

which was the equivalent of 14“C in the gel tank. Each gel was placed in a separate tank 

and both were subjected simultaneously to a 40 hour electrophoresis run at 47.5 V (1.7 

V/cm), with a 75 min switch interval. This was followed by a 2 hour run at 100 V, with a 

switch time of 30 mins.

Gel drying

Both gels were dried at the end of each run. This facilitated storage and staining of the gels. 

Each gel was removed individually from the gel tank and carefully placed flat. All save 8 

cm of gel was trimmed from the cathode end. The bottom left hand corner of the gel was 

cut on the diagonal to allow orientation when dried. The cathode end of the gel was cut 

approximately 2 mm from the plugs. A corresponding cut was made approximately 2 mm 

to the anode side of the plugs. The piece of gel containing the plugs was then flipped 

through 90° to display the largest surface area of the plugs in series with the lanes. The cut 

edges were then approximated and the gel transferred to a piece of 3mm chromatography 

paper (3mmChr, Whatman, Maidstone, England) on the gel dryer (Gel-Vac, Hybaid, 

Middlesex, England) and covered with Saran wrap (Jencons, Leighton Buzzard, England).
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The gel dryer was run at 30°C for 30 mins prior to use, to clear any moisture in the trap. 

Once the gels were in place, the dryer was run at 30°C for 30 mins, then turned up to 60°C 

for 60 mins. The gels were then removed and the dryer run at 30°C for a further 30 mins to 

clear the trap. The gels could then be stored until staining took place.

Gel staining

The gels were rehydrated prior to staining. The Saran wrap was peeled carefully away from 

the anterior of the gel, and the blotting paper/gel complex placed in 500 ml of ddH20 for 

10 mins. The blotting paper was then peeled away from the gel, leaving it floating in the 

water. Using gentle movements, any remaining fibres of blotting paper were removed from 

the gel. Each gel was then placed in a separate sealed plastic container to be stained. Each 

container was filled with 200 ml xO.5 TBE at pH 8.0, Twenty microlitres of SYBR green I 

stain (Molecular Probes, Eugene, USA) were added to each container and mixed well. As 

SYBR green I is a photosensitive compound, all mixing steps were performed rapidly and 

the containers covered with aluminium foil. The gels were submerged fully in the liquid 

and the containers transferred to a prewarmed oven (50°C) for three hours.

Imaging with the STORM optical imager

After three hours incubation in the oven, the containers (still covered to exclude light) were 

transferred to the STORM optical imager. The gels were thoroughly rinsed in ddH20 and 

placed on the glass screen of the STORM machine. The orientation was determined by 

means of the cut bottom left hand corner. In addition, all gels were loaded asymmetrically
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so that any accidental change in orientation would be easily identifiable. The gels were 

imaged using the blue fluorescence screen of the STORM machine, and ImageQuant 

software. Rectangles were drawn around each plug and lane individually, as well as the 

equivalent areas for those plugs and lanes that had been left blank. The empty plug and 

lane were used to correct for incidental background fluorescence. The fluorescence in any 

one lane was divided by the total fluorescence in that lane plus the corresponding plug.

This gave a measure of the fraction of damaged DNA released (FDR) into the lane from the 

plug. This corresponded to the residual DNA damage left after 24 hours repair. In addition, 

the same calculation was performed for the lambda plug that acted as a positive control.

The FDR was calculated for all lanes in all gels using an Excel spreadsheet.

Normalising FDR results

The spreadsheet provided results for all plugs run on any one gel. Two identical gels ran 

simultaneously. The mean FDR of the control, i.e. unirradiated plugs, was obtained and 

subtracted from the mean FDR of the irradiated plugs of the same cell line. This gave the 

normalised FDR for that experiment. In forty-four cell lines, a minimum of three, 

independent normalised FDRs were obtained. In five cell lines, two independent FDRs 

were obtained. From one cell line, no useful results were obtained, due to high FDR values 

in the control plugs. The average of all valid normalised FDRs for a particular cell line was 

obtained and used in the final analysis of data.
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2.8 Assessment of clinical outcome

Cervical carcinoma

In this group of patients survival was monitored prospectively by medical staff at routine 

follow-up appointments. Results of routine physical examinations were obtained also. The 

incidence of loco-regional and distant failure was recorded, as was cause of death. For 

those patients who defaulted from follow-up, regular letters inquiring about patient survival 

and recurrence were sent to the named GP. Morbidity was monitored retrospectively by 

means of the Franco-Italian glossary. Morbidity at all possible sites was recorded on a pro 

forma and entered on a password-controlled database. Grade of morbidity was recorded 

using WHO criteria, taking into account recorded patient symptoms, investigations and in­

patient stays, if applicable.

Head and neck carcinoma

Following informed consent, a LENT SOMA questionnaire was completed by one of two 

dedicated Research Sisters. The same questionnaire was completed in the final week of 

radiotherapy treatment, six weeks following the end of treatment and six monthly thereafter 

for a total of three years.

Due to the geographically dispersed nature of the treated patient population, only those 

willing and able to attend the Christie Hospital for follow up visits were recruited initially. 

Consequently, initial recruitment was slow. It was realised that, in order to recruit enough 

patients to gain meaningful long term follow up data, patient accrual into the study would
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have to be increased. Therefore, the LENT SOMA questionnaire was modified into a postal 

format. Once the postal questionnaire was available, accrual continued at an increased and 

satisfactory rate.

Breast carcinoma

When the patients returned for their second visit, the trial was again explained and any 

questions answered. Written informed consent was then obtained. One of two dedicated 

Research Sisters then completed a LENT SOMA questionnaire which dealt with subjective 

data. Objective data on fibrosis and oedema as late normal tissue end-points were obtained 

by breast examination. This was carried out in all patients by myself. A clinical photograph 

was taken to allow assessment of retraction, telangiectasia, breast and body size, by three 

independent clinicians, experienced in the field of late radiation reactions. Each photograph 

was scored, using a pro forma in a convenient A4 format (Appendix 3). At the time of 

scoring, the clinicians had access to a previously agreed library of clinical photographs for 

comparison. None of the patients being scored in this study appeared in the standard library 

of photographs.
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2.9 Data collection and analysis

Cervical carcinoma

At the time of the initial experiments, all demographic and tumour-specific data were 

collected on a customised database. The database was password secured, and has been 

maintained by the regular addition of follow-up data. The measured plasma levels of 

TG Fpl were added to this database, and an SPSS statistical package used to analyse the 

data. Plasma TG Fpi levels were correlated with other parameters using nonparametric 

tests. Log-rank analysis of plasma TG Fpl levels was performed in relation to morbidity, 

local control and survival. For measures of sensitivity a 2 x 2 table was constructed (see 

example below) and the patients assigned to the appropriate category.

Disease factor positive 

i.e. patient alive

Disease factor negative 

i.e. patient dead

Test factor positive i.e. 

low TGFpl level

A B

Test factor negative i.e. 

high TGFPI level

C D

The sensitivity and specificity were then deteimined using the following form ulae:- 

Sensitivity = A / (A + C) and

Specificity = D / (B -i- D)
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Head and neck carcinoma

Demographic and tumour details from all patients were prospectively loaded onto a 

customised database, which was password controlled. Plasma TG Fpl levels were added to 

this database as soon as they became available. Data were analysed using an SPSS software 

package. Correlations between TGFp 1 levels and clinical endpoints were sought using 

nonparametric tests. Sensitivity and specificity were determined as described above. The 

positive predictive value was calculated as:- 

Positive predictive value = A / (A + B)

Breast carcinoma

Demographic details obtained from all patients were loaded into a specially created, 

password secured database. Scores relating to cosmesis, derived from clinical photographs 

and physical examination, were added to the database, as were the mean normalised FDRs 

from all cell lines. Pre-treatment and delayed plasma TG Fpi levels were also added. 

Correlations were sought between all aspects of cosmesis scored from the clinical 

photographs: subjective and objective measures obtained from the LENT SOMA 

questionnaires, plasma TG Fpi levels, and normalised FDRs from each patient. The data 

were analysed using an SPSS software package, and nonparametric tests.
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CHAPTER 3: CERVICAL CARCINOMA

3.1 Introduction

In normal tissues TGFp 1 is the most potent known inhibitor of epithelial growth (Moses et 

al, 1991). In response to injury, it stimulates fibroblast migration, proliferation and 

collagen production (Shah et al, 1999). T G Fpl acts early in carcinogenesis as a tumour 

suppressor. Later in carcinogenesis it acts as a tumour promoter by stimulating tumour 

angiogenesis and proliferation and inhibiting host immune function (Roberts et al, 1988; 

Reiss, 1999). Evidence is accumulating that this switch may occur as a consequence of 

changes in TGFP signaling, in particular mutations of the TGFpRII gene, which is prone to 

genomic instability (Lu et al, 1995; Simms et al, 1997).

In radiation oncology, interest in TGFp 1 lies in its role in the pathogenesis of both acute 

and late radiation sequelae. Changes in plasma TGFP 1 levels have been shown to have 

potential clinical usefulness as a predictor of acute radiation morbidity in patients receiving 

thoracic radiotherapy (see Section 1.12). Pre-treatment plasma levels have also been shown 

to identify breast cancer patients with an elevated risk of developing late fibrosis following 

radiotherapy (Li et al, 1999).

To date no studies have examined the prognostic significance of circulating T G F pl levels 

in relation to outcome in carcinoma of the cervix. Therefore, the following study was 

carried out to examine the prognostic significance of measurements of plasma TGFp 1 for
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tumour control and morbidity in a group of patients treated with radical intent for 

carcinoma of the cervix.

3.2 Previous data available

Blood samples were taken from patients prior to the start of radical radiotherapy between 

1990 and 1993, Plasma from the samples was frozen at -80°C and was available for study. 

The plasma samples had been assayed previously in a blinded fashion, for three tumour 

markers: carcinoma antigen 125 (CA125), tissue polypeptide antigen (TPA) and squamous 

cell carcinoma antigen (SCC). This work has been published elsewhere (Sproston et al, 

1995). The intrinsic radiosensitivity of peripheral blood lymphocytes was determined using 

a limiting dilution clonogenic assay (West et al, 1998). All previous data are listed in Table 

3.1.
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Table 3.1: Data for patients with carcinoma of the cervix

Lab. 
Numb 

er

Age
(years)

Stage Histology Grade Plasma
TGFpi
levels

(ng/ml)

Plasma
CA125
(U/ml)

Plasma
SCC

(ng/ml)

Plasma
TPA

(U/ml)

Lymph.
S F /

1

10
12
13
15
16 
18 
19 
21 
22
23
24 
26 
27
30
31
32
33 
35
37
38
39
42
43
44
45
46
47
48 
52 
56
58
59
60 
61 
62
64
65

30
38
59 
50 
70 
68 
U 
45 
33
54 
45 
81 
77
60 
81 
69 
53 
60 
60
69 
64
67 
32 
64 
47 
83 
66
50 
41 
61
70 
43 
56
55 
60 
59
51 
40
63 
50 
74 
73
64 
49
68

U

U

U

U

U

U

U

U

12.01
9.08 
7.12 
4.61
6.98 
5.82 
11.64 
12.92
7.1 

15.91 
4.76
3.95
6.8

5.05
9.32 
4.81
4.93
6.02 
7.09 
5.88
3.96
3.06 

21.85
9.6 

8.52 
6.19
4.99
6.97 
11

5.28
8.2

7.01 
4.41
3.1

5.94
5.32 
4.87 
2.46
5.7 

4.11
8.95
5.2 

6.74
6.2 

6.63

U
U

8.7 
18.6
22.4
35.4
64.7
17.9
32.9 

U 
15

24.5
25.5 

U 
12 
15

10.5
25.7
8.3 
U

18.7 
12

114.6
40.9
12.7 
6.57 
11.1
19.1
20.6 
21

11.2
11.8 
3.5 
19

12.3 
18

32.7
11.3
24.2
19.7 
13

30.3 
101.4

29
25.2

U
U

0.52
6.73
0.12
0.16
3.69
23.5
3.29

U
1.18
0.11
0.24
1.99
24.7 
3.12 
0.48 
0.47 
0.24

U
4.02 
0.48
140.2 
0.01 
0.41
25.8 
0.59 
16.22 
9.59 
0.89 
1.17 
3.33 
0.21 
0.09
1.14 
5.81 
0.49 
1.58
2.14 
0.57

1.43
20.6
1.18
1.06

U
U

24.1
77.2
68.4 
22.8 
81.6

370.7 
26.6

U
48.4
92.7 
109.9
69.8
105.7
62.7
15.3
47.5
26.3 

U
72.3 
20.1 

682.6
89.9

372.8
61.6
36.3
51.9

246.5
21.8
51.7
106.5 
23.2
21.9
19.9
76.5
67.4 
54.1
182.4
49.6
82.5
134.5
180.7
113.8
31.9

0.23
0.42
0.49

U
0.39
0.43

U
0.37
0.25
0.18
0.48
0.46
0.37
0.27
0.21
0.53
0.54
0.24
0.3
0.3

0.18
0.32
0.09
0.2
U

0.34
0.31
0.3
0.3

0.37
0.39
0.3
U

0.27
0.32

U
0.36

U
0.35
0.33
0.23
0.23
0.34
0.3

0.22
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Lab.
Numb

er

Age
(years)

Stage^ Histology^ Grade^ Plasma
TGFpl
levels

(ng/ml)

Plasma
CA125
(U/ml)

Plasma
SCC

(ng/ml)

Plasma
TPA

(U/ml)

Lymph.
SFg*

68 29 2 U U 10.46 24.7 1.37 99.1 0.25
71 54 1 1 u 3.86 12.8 1.26 84.3 0.22
73 70 2 1 2 6.68 17.6 0.54 47.7 0.27
75 62 2 1 2 4.75 2.9 3.78 108.1 0.65
81 70 1 1 2 3.5 10 9 266.5 0.33
84 48 2 1 2 7.13 12.5 2.86 51 0.21
86 56 1 1 U 5.53 4.6 0.49 45.7 0.42
87 52 3 1 3 9.59 458.8 43.8 327.8 0.28
90 61 3 1 2 7.48 23.4 2.12 62.2 0.28
91 68 3 1 2 3.74 3.8 108.7 595.3 0.21
92 53 1 1 U 3.51 6.9 0.3 25.2 0.42
96 50 1 1 2 2.38 11.1 1.86 41.6 0.36
102 60 1 2 1 3.88 0 0.1 29.6 0.38
103 61 1 U U 4.96 7.51 0.07 36.5 0.4
105 23 1 1 2 4.31 11.2 64.8 41.4 0.33
107 66 1 1 2 6.67 32.8 0.09 27.8 0.23
108 36 3 1 2 5.57 19.4 18.07 24.1 0.26
109 70 1 1 3 2.55 0 0 43.1 0.2
110 38 3 1 2 7.36 45 7.02 100.5 0.27
111 68 1 1 3 12.04 20.7 0.52 67 0.44
112 69 2 1 3 4.99 22.4 0.36 48.4 0.33
114 61 2 1 2 5.53 5.7 17.3 189 0.35
118 60 1 1 U 2.91 6.2 7.23 31.7 0.36
120 54 1 1 2 1.95 8.2 1.31 50.9 0.4
125 38 1 1 U 6.44 12.2 0.22 30.7 0.27
126 38 2 2 2 1.87 10.1 1.22 56.9 0.32
127 33 2 1 2 6.02 19.7 3.46 37.9 0.44
140 48 2 1 U 3.07 U 4.28 51.2 0.24
141 76 3 1 2 3.7 U 3.16 38.1 0.34
186 69 2 1 2 9.69 U 7.58 22.9 0.33
230 65 3 1 1 4.61 9.4 41.1 59.6 0.33
232 71 3 1 U 7.46 10.5 3.2 77.5 0.26
242 45 2 1 2 5.75 32.7 41 146.3 U
275 67 3 1 1 4.99 9.2 20.4 25.1 0.28
276 38 2 1 U 4.2 47.1 11.4 33.9 0.11
277 44 2 1 1 3.48 15.9 0.1 33.9 0.45

 ̂ -  u  indicates unknown

 ̂-  Histology -  1 = squamous carcinoma, 2 = adenocarcinoma

 ̂-  Grade -  1 = well differentiated, 2 = moderately differentiated, 3 = poorly differentiated 

-  Lymph. - lymphocyte
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3.3 Plasma TGFpl results

The samples were processed and centrifuged as per the Heparin protocol described in 

Section 2.3, prior to storage at -80°C. In 1998, 127 samples were identified and defrosted 

into 350 p,l aliquots. Plasma T G ppi levels were estimated using the Quantikine kit and the 

values obtained ranged from 1.87-21.85 ng/ml (Figure 3.1). The mean with one standard 

deviation and median values were 6.30 ±  3.20 ng/ml and 5.70 ng/ml, respectively. 

Significant differences were detected between patient samples using one-way analysis of 

variance (ANOVA) (p < 0.001). Assay reproducibility was examined using 43 volunteers 

measured in triplicate. Intra-individual variability was ascertained on 9 volunteers 

measured on two or three separate occasions. Table 3.2 summarises the comparison of 

assay and donor variability.
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Figure 3.1: Distribution of TGFpi levels in samples from patients with carcinoma of

the cervix

Table 3.2: Summary of assay reproducibility

Variability N Coefficient of variation 

(CV)

Assay 43 4%

Intra-volunteer 9 13%

Inter-patient 79 51%
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3.4 Comparison of biological and clinical parameters

Spearman’s non-parametric regression analysis was used to examine correlations between 

T G ppi levels and patient age, tumour stage and grade (Table 3.3). There was a weak 

significant correlation between stage and TG Fpl levels (r = 0.30, p = 0.006). The 

distribution of TG Fpl across the disease stages is illustrated in Figure 3.2. None of the 

other patient parameters showed significant correlation with plasma TG Fpi levels. The 

relationship between TGFp 1 levels and histology was investigated using the Mann- 

W hitney u-test. The mean plasma levels of TG Fpi in 72 patients with squamous carcinoma 

and 7 patients with adenocarcinoma were 6.35 and 5.39 ng/ml respectively. There was no 

significant differences between these values (p = 0.28). Using Spearman’s regression 

analysis, there was a significant positive relationship between plasma T G F pi levels and the 

levels of previously measured circulating tumour markers, CA125 and TPA. There was no 

relationship between T G Fpi levels and SCC. These correlations are displayed in Figure 

3.3.

Table 3.3: Correlation of TGFpl levels with patient parameters

Patient

parameter

n r p*

Age 80 -0.047 0.68

Stage 80 0.31 0.0060

Differentiation 55 0.26 0.055

* 2 tailed
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Figure 3.2: Correlation of TGFpl levels with disease stage
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Figure 3.3: Relationship between plasma levels of TGFpl, CA125, SCC and TPA 

(patient numbers 73,77 and 77 respectively)
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3,5 Tumour control

The median follow-up time was 66 months. The level of TG Fpl used for stratification was 

decided prior to any analyses being performed. There were no contemporary controls 

available. For the analyses of survival and local control, a level of 4.28 ng/ml was selected 

as it corresponded with the first quartile and the upper limit of the normal population, as 

quoted in the kit literature.

Patients with elevated plasma TGFp 1 levels had a significantly decreased probability of 

survival (Figure 3.4). There was a 90% survival rate for patients with levels in the lowest 

quartile compared with a rate of 59% for the remaining patients. The sensitivity of the 

assay as a prognostic factor for survival was 92% and the specificity was 34%. A 

significant difference was also seen in local control (Figure 3.4). The local control rate was 

95% for patients with low pre-treatment plasma TG Fpl levels versus a rate of 71% for the 

remaining patients. Table 3.4 summarises the survival and local control data for disease 

stage and patient age. As disease stage was a highly significant prognostic factor and 

because of the association seen between stage and TG Fpl levels, a bivariable log-rank 

analysis was carried out including these two factors. After allowing for stage, T G Fpi 

levels showed borderline significance as a prognostic factor for both survival (p=0.065) 

and local control (p=0.073).
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Figure 3.4: Kaplan Meier plot of overall survival (upper) and local control (loiver) for 

patients with TGFpl levels in the lowest versus the highest three quartiles. Values in 

parentheses indicate the number of deaths/local recurrences and the total number of

patients in the groups.
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Table 3.4: Summary of local control and survival data

Clinical parameter N Survival Local control

Age <60 years 38 p = 0.57 p= 0.68

>60 years 41

Stage I 34 p= 0.0098 p= 0.011

n 30

m 15

T G F p l<4.26 ng/ml 20 p= 0,022 p= 0.033

>4.26 ng/ml 59

3.6 Morbidity

The median follow-up time was 66 months. The level of T G ppi used for stratification was 

again decided prior to any analyses being performed. A level of 7.12 ng/ml was chosen as 

this corresponded to the third quartile and the level most often quoted in the published 

literature (Anscher et al, 1998).

The incidence of morbidity of all types and grades was 42% for this cohort of patients. 

There were no fatalities due to radiation side effects. Severe morbidity (Franco-Italian 

glossary grade HI) was seen in less than 2% of patients. Figure 3.5 displays the incidenee of 

all morbidities (upper graph) and grade m  morbidity only (lower graph). In neither case
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was there a significant relationship with TG Fpl levels. Figure 3.6 displays the weak, but 

significant inverse correlation of plasma TG Fpl levels and lymphoeyte (i.e. normal tissue) 

radiosensitivity, as measured by Spearman’s test. Thus, despite there being no relationship 

between plasma TGFp 1 levels and morbidity, patients with radiosensitive normal tissues 

had increased levels of circulating plasma TG Fpl.
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Figure 3.5: Pre-treatment plasma TGFpi levels in relation to all morbidity (upper 

graph) and grade III morbidity only (lower graph) for those patients with plasma 

TGFpl levels in the highest versus the lowest three quartiles. Values in parentheses 

indicate number of events in each group and the total number of patients in the

group.

103



0.7-1

0 .6 -

w &5- 
LL 
CO
^  0 .4 -
oo

0 .3 -

0 .2 -

r=-0.24, p=0.034
0.0

2515 201050

Plasma TG Fpl levels (ng/ml)

Figure 3.6: Relationship between lymphocyte radiosensitivity and plasma TGFpl 

levels

3.7 Discussion

Despite intensive study over the past 17 years, the multiple roles played by TG Fpl in 

malignant disease have yet to be fully understood. It is likely that the predominant function 

of TGpp 1 varies at differing stages in the development and progression of any malignancy. 

As cervical epithelial cells become invasive, they lose sensitivity to the inhibitory effects of 

TGpp 1. This is independent of human papillomavirus (HPV) genome expression (Braun et 

al, 1990). In response to this negative feedback loop, increased TG Ppl is deposited
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extracellularly in the tumour stroma (Comerci et al, 1996). It is likely that increased 

circulating T G ppi is derived from this pool.

Plasma TGPp 1 has been put forward as a marker of tumour burden in biologically and 

histologically very different tumours, including colorectal (Tsushima et al, 1996), renal 

(Wunderlich et al, 1998), nasopharyngeal (Xu et al, 1999) and hepatocellular carcinoma 

(Shirai et al, 1994). In this study, pretreatment plasma TG Ppl levels were significantly 

correlated with disease stage, and hence tumour burden. In support of this we also found 

correlations with plasma levels of circulating serum markers known to be associated with 

burden of disease (Sproston et al, 1995; Ngan et al, 1996). Our findings are also in 

agreement with published data showing significantly increased circulating levels of TG Ppl 

in patients with stages II - IV carcinoma of the cervix versus normal controls or patients 

with stage I disease (Chopra et al, 1998).

There is evidence that measurements of TG Fpl can provide prognostic information with 

elevated levels predicting poor outcome. This has been demonstrated using urine samples 

from patients with hepatocellular carcinoma (Tsai et al, 1997), serum samples in 

nasopharyngeal carcinoma (Xu et al, 1999), and tumour sections from gastric (Saito et al, 

1999) and colorectal (Robson et al, 1996) cancers. In this study we have shown that pre­

treatment plasma levels of TGFp 1 can provide prognostic information in carcinoma of the 

cervix. There is also some suggestion from our work that this may prove to be independent 

of disease stage. There was a borderline level of significance in bivariable analysis after 

allowing for disease stage that would probably become significant with a larger patient 

population.
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In contrast, we found no relationship between pre-treatment plasma levels of T G Fpl and 

morbidity in carcinoma of the cervix. For patients receiving radical thoracic radiotherapy, 

the TGFp 1 ratio (the plasma TGFp 1 level in the final week of treatment divided by the 

pretreatment value) significantly predicted the development of acute radiation pneumonitis 

(Groen et al, 1997; Anscher et al, 1998a). In patients treated with high dose chemotherapy 

and autologous bone marrow transplant for locally advanced breast cancer, plasma TGFp 1 

significantly predicted the development of fibrotic complications in both liver and lung 

(Anscher et al, 1993). Also, pre-treatment levels in breast cancer have been shown to 

correlate with the development of late radiation-induced fibrosis (Li et al, 1999). In our 

study, the lack of correlation may be because of a confounding influence of tumour burden. 

Elevated plasma TGFp 1 levels can decrease after surgical removal of a tumour. This has 

been shown in both breast (Kong et al, 1995) and colorectal (Tsushima et al, 1996) 

cancers. Therefore, our finding does not rule out the possible utility of changes in TGPp 1 

levels during radiotherapy predicting morbidity. In support of this we found a weak 

association between pre-treatment plasma TG Fpl levels and intrinsic radiosensitivity 

measured in lymphocytes as SF2.

In conclusion, pretreatment plasma TGFp 1 levels are a significant prognostic factor for 

survival and local control in patients with cervical carcinoma. Although, no relationship 

was found with late radiation-induced morbidity, it might be necessary to evaluate 

measurements towards the end of treatment once tumour burden is reduced. The evidence 

in the literature points to this being a worthwhile study for future consideration.
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CHAPTER 4: HEAD AND NECK CARCINOMA

4.1 Introduction

TGFp 1 is a multi-functional cytokine. Generally its function is that of a tumour suppressor 

(Reiss, 1999), but as carcinogenesis progresses it acts as a tumour promoter (De Geest et 

al, 1994; Woodworth et al, 1996). Plasma TG Fpl levels are a measure of tumour burden in 

cervical (Chopra et al, 1998), colorectal (Tsushima et al, 1996) and breast (Kong et al,

1995; Sminia et al, 1998) cancer. Persistently elevated plasma T G ppi levels following 

radiotherapy indicate the presence of residual tumour in lung (Kong et al, 1996; Groen et 

al, 1997) and brain tumours (Gridley et al, 1998). Changes in plasma TG Fpl levels have 

been shown to accurately predict the occurrence of symptomatic radiation pneumonitis in 

patients receiving thoracic radiotherapy for lung (Anscher et al, 1994; Groen et al, 1997; 

Anscher et al, 1998) and other malignancies (Anscher et al, 1997). A number of animal 

studies (Bareellos-Hoff, 1993; Langberg et al, 1994; Richter et al, 1996) have shown 

increased TGFP 1 deposition in tissues in association with the development of late radiation 

fibrosis. In humans increased TG Fpl deposition persists in irradiated areas for at least 40 

weeks (Canney and Dean, 1990). Elevated plasma TG Fpl levels predict for the 

development of late fibrotic complications in patients undergoing radiotherapy for breast 

cancer (Li et al, 1999) and also autologous bone marrow transplantation for locally 

advanced breast cancer (Anscher et al, 1993). This prospective study was designed to 

investigate the relationship between changes in plasma TG Fpl levels and radiation 

morbidity in a eohort of patients treated with curative intent for malignancies of the head
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and neck region. Due to the timescale of this thesis, data is only available for acute effects. 

Samples were obtained from a group of healthy volunteers to establish the range of plasma 

TGFp 1 levels in a non-cancer population.

4.2 Volunteer samples

Samples were obtained from sixty-six volunteers with no history of malignancy (data 

summarised in Table 4.1) and processed according to the EDTA method (see Section 2.3). 

The median age of the volunteers was 62 years (range 20 - 84). There were 44 females and 

22 males. One volunteer smoked; 52 did not smoke and for 13 the information was 

unavailable.

Plasma TG Fpl levels ranged from 0.71 -  3.21 ng/ml (Figure 4.1). The mean with one 

standard deviation and median values were 1.47 ± 0.49 ng/ml and 1.41 ng/ml, respectively. 

The normal range was defined as the mean plus two standard deviations, giving a normal 

upper limit of 2.45 ng/ml. Significant differences between the volunteer samples were 

sought using a univariate analysis of variance (uni-ANOVA). This allowed nested 

comparison of individual samples, as well as comparison of samples taken from the same 

individual on more than one occasion (n = 4) and the same sample analysed on two or more 

different occasions (n = 23). The inter-sample CV was 11%  and the intra-sample CY was 

43%. The assay CV was 4%. Although the intra-sample CV was high, significant 

differences between the patient and volunteer samples were detectable using ANOVA (p < 

0.001). Using Spearman’s regression test, there was a significant relationship between 

plasma TG Fpl levels and volunteer age (r = 0.41, p = 0.001) (Figure 4.2). W hen the data
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were examined, there were three outliers with plasma TG Fpl levels greater than 2.45 

ng/ml. Although care had been taken not to recruit any volunteers with a history of 

malignancy, it was possible that these elderly volunteers (ages 6 8 - 7 3  years) had a latent 

malignancy present, which might cause an increased plasma TG Fpl level. The data were 

therefore reanalysed following removal of the outliers, but the significant underlying 

relationship between donor age and plasma TG Fpi levels remained (r = 0.39, p = 0.001) 

(Figure 4.3). Using the Mann-Whitney u test there was no significant relationship between 

plasma TG Fpl levels and patient gender (p = 0.14). Due to the small number of smokers 

sampled, no meaningful comparison could be made regarding the effect of smoking.
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Table 4.1: Demographic data for volunteer samples processed by the EDTA method

Lab.
number

Age Sex Current
Smoking

Habit

TGFpl
level

(ng/ml)
T35 29 F N 1.76
T36 20 F N 1.10
T38 38 M N 1.02
T39 32 F N 0.93
T40 36 F N 0.86
T41 30 M N 0.94
T49 24 M N 0.77
T52 25 M Y 0.95
T53 73 F U' 1.56
T54 74 F U 1.70
T55 76 F U 1.31
T56 72 F U 1.57
T57 69 M U 1.34
T58 71 M U 1.18
T59 84 F U 1.68
T60 72 F U 1.49
T61 65 F U 1.06
T62 75 M U 1.38
T63 73 M U 2.87
T64 77 F U 1.98
T65 79 M U 1.79
T66 45 F N 1.60
T67 21 M N 1.49
T68 21 M N 0.71
T69 41 F N 1.24
T70 31 M N 1.34
T71 30 M N 1.30
T72 54 M N 1.18
T74 42 F N 1.18
T75 54 M N 1.17
T76 34 F N 1.11
T77 46 F N 1.60
T78 24 F N 1.78

Lab.
number

Age Sex Current
smoking

habit

TGppi level 
(ng/ml)

T79 55 M N 1.04
T80 30 F N 1.70
T81 29 M N 1.45
T82 34 M N 1.41
T83 65 F N 0.99
T84 53 F N 2.04
T85 70 F N 2.04
186 77 M N 2.17
187 72 F N 2.70
T88 68 F N 3.21
T89 68 F N 1.43
T90 80 M N 2.06
T91 80 F N 1.31
192 74 F N 1.52
T93 79 F N 1.22
T94 82 M N 1.47
T95 77 F N 1.41
196 67 F N 1.35
197 78 F N 2.29
198 25 F N 0.95
T99 70 F N 0.95
I l  00 74 F N 1.04
1101 69 F N 1.09
I l  02 53 F N 1.91
I l  03 45 M N 1.13
I l  04 47 F N 0.97
T105 63 F N 2.05
T106 74 F N 1.73
T107 68 F N 1.62
T108 61 F N 1.08
T109 52 F N 1.53
T110 51 F N 1.45
T111 51 F N 1.80

-  U indicates unknown
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Figure 4.1: Distribution of plasma TGFpi levels in volunteer samples processed using

the EDTA method (n = 66).
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Figure 4.2: Relationship between plasma TGFpi levels and donor age in normal

volunteers (n = 66)
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Figure 4.3: Relationship between plasma TGFpl levels and donor age in normal

volunteers (n = 63)

4.3 Patient samples

Patient characteristics

Seventy-five patient pre-treatment samples were available and 74 from the final week of 

treatment (Table 4.2). The TG Fpl data are summarised in Table 4.3. Using the upper limit 

of the range of T G Fpl levels obtained from normal donors (see Section 4.2), elevated 

values were seen in twenty pre-treatment and 16 end of treatment samples.

112



The median patient age was 60 years (range 38 -  80 years). There were 63 men and 12 

women in this series. Thirty-one patients were smoking at the time of recruitment. Thirty- 

nine patients were ex-smokers and three had never smoked. Data on smoking habit were 

unavailable for two patients. Using a Kruskall Wallis test, no relationship was found 

between smoking habit and pre-treatment TG Fpl level (p = 0.63). Table 4.2 summarises 

the distribution of patients according to stage, histology and treatment. The primary tumour 

was included in the treatment volume in 70 patients, with two receiving nodal irradiation 

only and data unavailable for three patients. In forty-two patients, the cervical nodes were 

not treated. Unilateral cervical nodal irradiation occurred in seven patients and bilateral 

nodal irradiation in 23 patients. Data were absent for three patients.
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Table 4.2: Demographic data for patients with carcinoma of the head and neck

Pat.
I.D.
no.

Age
In

Years

Gender Current
smoking

hablt^

Site^ Stage^ Hist.'* Surg.^ Chemo. Total
dose
given
(G y f

Fraction
number

TM39 63 M E 1 T3N0 1 Y N 50 20
TM40 59 M Y 1 T2N0 1 N N 52.5 16
TM41 67 M E 3 T2NX 1 Y N 50 16
TM43 60 M N 3 T3N1 1 Y N 50 20
TM44 57 F Y 3 T2N1 1 N N 50 16
TM45 65 M E 3 T2N3 1 Y N 55 20
TM46 57 M E 3 T4N0 1 Y N 50 20
TM47 43 M Y 2 T4N1 1 Y N 50 20
TM48 70 F E 6 T1N0 Y N 50 20
TM49 76 M E 1 T2N0 1 N N 52.5 16
TM50 55 M Y 3 T4N3 1 N N 50 20
TM51 72 M E 1 T1N0 1 N N 52.5 16
TM52 80 M Y 1 T4N0 1 N N 50 16
TM53 68 M U 1 T1N0 1 N N 52.5 16
TM54 70 M U 4 TXNO Y N 47.5 15
TM55 64 M Y 1 T2N0 1 N N 52.5 16
TM56 52 M E 3 T4NX 1 Y N 52.5 20
TM58 76 M E 2 T2N2 1 N N 52.5 16
TM60 53 M Y 3 T4N0 1 N N 50 16
TM61 50 M E 1 T2N0 1 N N 50 16
TM62 57 M Y 1 T1N0 1 N N 52.5 16
TM64 57 M E 3 T4N0 1 Y N 50 20
TM65 47 M N 3 T2N1 1 Y N 50 16
TM66 42 F Y 3 T4N0 1 N N 52.5 20
TM67 38 M E 1 T1N0 1 N N 52.5 16
TM68 56 M Y 1 T1N0 1 N N 52.5 16
TM69 54 M Y 2 TXNX 1 Y N 50 15
TM70 39 M Y 3 T4N1 1 N Y(1) 70 35
TM71 70 F E 6 T3N0 Y N 50 16
TM72 60 M E 1 T1N0 1 N N 52.5 16
TM73 56 M Y 3 T3N2 1 N Y{2) 50 16
TM74 67 M Y 3 T1N0 1 N N 50 16
TM75 61 M E 2 T2N0 1 Y N 50 20
TM76 70 M E 3 T3N1 1 N N 55 20
TM77 49 M Y 1 T1N0 1 N N 50 16
TM78 64 M Y 1 T3N0 1 N N 52.5 16
TM79 72 M E 1 T2N0 1 N N 52.5 16
TM80 64 M E 1 T3N0 1 N N 52.5 16
TM81 69 F E 6 T1N0 Y N 50 20
TM82 55 F Y 2 T4N0 1 N N 50 16
TM83 56 M E 3 T3N1 1 Y N 50 20
TM84 65 M Y 3 T2N0 1 N N 50 16
TM85 53 M E 1 T1N0 1 N N 52.5 16
TM86 74 F E 1 T4N0 1 Y N 50 20
TM87 73 M E 1 T2N0 1 N N 52.5 16
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Pat.
I.D.
no.

Age
In

years

Gender Current
smoking

habit^

SKe= Stage* Hist.'* Surg.® Chemo.* Total
dose
given
(Gy)I

Fraction
number

TM88 68 M Y 1 T3N0 1 N N 50 16
TM89 68 M E 1 T2N0 1 N N 52.5 16
TM90 75 M Y 2 T2N0 1 Y N 50 20
TM91 60 M Y 2 T2N0 1 Y N 50 20
TM93 67 F N 3 TXN1 1 Y N 50 20
TM95 54 M E 1 T2N0 1 N N 52.5 16
TM96 58 M E 1 TXNO 1 N N 50 16
TM97 70 M Y 1 T3N0 1 N N 52.5 16
TM98 66 M Y 2 T1N1 1 Y N 50 15
TM99 59 M Y 1 T2N0 1 N N 52.5 16

TM100 58 M Y 1 T1N0 1 N N 50 16
TM101 51 M E 1 T1N0 1 N N 50 16
TM102 54 F E 2 T1N0 1 Y N 50 20
TM104 56 M E 1 T1N0 1 N N 50 16
TM106 49 F Y 3 T2N0 1 N N 52.5 16
TM107 46 M Y 3 T4N1 1 N Y(2) 70 35
TM108 50 M E 3 T2N0 1 N Y(2) 50 16
TM109 72 M Y 1 T2N0 1 N N 52.5 16
TM113 74 M Y 1 T3N0 1 N N 50 16
TM114 70 M E 3 T3N0 1 N Y(2) 50 16
TM116 74 M Y 2 T4N0 1 Y N 47.5 16
TM117 59 M E 1 T2N2 1 Y N 50 20
TM118 69 M E 1 T2N0 1 N N 52.5 16
TM119 65 F E 1 T1N0 1 N N 50 16
TM120 50 M E 3 T2N1 1 Y N 52.5 20
TM121 70 M E 1 T2N0 1 N N 52.5 16
TM122 61 M Y 3 T3N0 1 N N U U
TM123 50 M E 1 T2N0 1 N N U U
TM124 48 F E 2 T1N0 1 Y N 50 16
TM125 69 M E 1 T2N0 1 N N U U

 ̂ -  E = ex-smoker, Y = current smoker, N = never smoked, U -  unknown 
 ̂-  For site: 1 = larynx, 2 = oral cavity, 3 = pharynx, 4 = nasal cavity and sinuses, 5 = ear, 6 

-  salivary glands 
 ̂-  X indicates unknown 
-  Histology: 1 = squamous carcinoma, 2 = melanoma, 3 = pleomorphic salivary adenoma, 

4 = adenoid cystic carcinoma, 5 = myoepithelial carcinoma, 6 = basal cell carcinoma, 7 = 
small cell neuroendocrine carcinoma, 8 = adenocarcinoma, 9 -  acinic cell carcinoma 
 ̂-  Surgery - Yes does not include diagnostic biopsy 
 ̂-  Chemotherapy - numbers in parenthesis indicate number of cycles given 
 ̂ - U indicates unknown
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Table 4.3: Summary of patient plasma TGFpl levels

TGFpi level N Mean ± S.D. 

(ng/ml)

Median

(ng/ml)

Range

(ng/ml)

Pre-treatment 75 2.31 4= 1.26 1.86 0.88-6.72

End of 

treatment

74 2.32 ± 1.76 1.78 0.69 -  10.87

Plasma T G ppi levels

Using Spearman’s regression analysis, there was no significant relationship between 

TG Fpl levels and patient age (Figure 4.4). Pre-treatment TG Fpi levels correlated weakly, 

but significantly with increasing T stage (r = 0.31, p = 0.011) (Figure 4.5). Using a Mann- 

Whitney u test the relationships between individual plasma TGFP 1 levels and smoking, 

chemotherapy, pre-treatment surgery and patient gender were investigated. There were no 

significant associations found between any of these variables and either pre-treatment or 

end of treatment TG Fpi levels. A Kruskall Wallis test showed no significant relationship 

between either pre-treatment or end of treatment TGFP 1 level and whether the cervical 

nodes were treated.

An ANOVA showed no significant differences between the age distribution in the 

volunteer and patient groups (p = 0.60). Figure 4.6 is a superimposed plot of volunteer and 

patient ages, illustrating that age is not a confounding factor in this analysis. There was a 

positive correlation between the two TG Fpl levels obtained from each patient (Figure 4.7).
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In nine patients, TG Fpl levels v^ere measured prior to and every week during treatment. 

Seven patients had a three week course of radiotherapy and hence four sequential T G Fpl 

levels were available. One patient had a four week course of radiotherapy and hence 5 

sequential TGFp 1 levels were available. In one patient, the aliquot from the second week 

of a three week course of radiotherapy was unavailable, meaning there were only three 

values available for this patient. These sequential values are illustrated in Figure 4.8.
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LENT SOMA score

Data on the LENT SOMA scores are summarised in Table 4.4. Using the Mann-Whitney u 

test, the relationship between the individual LENT SOMA scores and pre-treatment 

surgery, chemotherapy and patient gender were investigated. Women had significantly 

higher LENT SOMA scores recorded than men, both at the end of treatment and at first 

follow-up (p = 0.036 and 0.008, respectively) (Figure 4.9). Those patients who received 

radiotherapy as the primary treatment modality had significantly lower LENT SOMA 

scores recorded at first follow-up than those who had undergone surgery prior to 

radiotherapy (p = 0.004) (Figure 4.10). The LENT SOMA scores for those patients who 

had received chemotherapy were significantly higher than those who had not, both at the 

end of treatment and at first follow-up (p = 0.011 and 0.050, respectively) (Figure 4.11). In 

both the pre-treatment and end of treatment groups 42 patients had irradiation of the 

primary tumour only, seven patients had unilateral cervical nodal irradiation (CNI) and 

twenty-three patients bilateral CNI. At first follow-up 35 patients had received radiotherapy 

to the primary tumour only, three had received unilateral CNI and 16 patients had received 

bilateral CNI. Using a Kruskall Wallis test, the measured LENT SOMA score was 

significantly higher both at the start and at the end of treatment in those patients who 

received CNI (p = 0.005 and 0.027, respectively). The LENT SOMA score at first follow- 

up approached significance for this group (p = 0.068) (Figure 4.12).

121



Table 4.4: Summary of LENT SOMA scores

LENT SOMA 

score

n Mean ± S.D. Median Range

Pre-treatment 75 11 ± 9 9 0 - 3 6

End of treatment 73 2 6 + 1 4 23 4 - 3 9

At first follow-

up

54 13 ± 1 2 10 0 - 4 7
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Figure 4.9: Relationship between LENT SOMA scores and patient gender (upper
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4.4 Changes in plasma TGF|31 levels

In radiation oncology, most interest has focussed on the clinical utility of changes in 

plasma TGpp 1 levels being predictive of symptomatic acute radiation toxicity. The TGFp 

ratio (defined as the end of treatment TGFp 1 value divided by the pre-treatment value (see 

Section 1.12)) was calculated for all patient samples. The ratio was available on 74 samples 

(data summarised in Table 4.5). The ratio ranged from 0.23 - 3.36 (Figure 4.13). Using 

criteria defined elsewhere (Anscher et al, 1995; Anscher et al, 1997) patients were grouped 

into three categories. Category one patients had a TGFp ratio of less than one and a normal 

end of treatment TG Fpl level. Category 2 patients had a TG Fpi ratio of less than one and 

an elevated end of treatment TGFp 1 level. Category three patients had a TGFP ratio of 

greater than one. In this series there were 37 category one patients, 4 category two patients 

and 33 patients in category three. According to the published literature (Anscher et al,

1995; Anscher et al, 1997; Groen et al, 1997), it is patients in category two that are most at 

risk of developing symptomatic acute radiation toxicity.
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Table 4.5: LENT SOMA and TGFpl data for patient samples processed by the

EDTA method

Patient
I.D.

number

LENT SOMA 
score (pre­
treatment)

LENT
SOMA
score
(post­

treatment)

LENT 
SOMA 

score (at 
first follow-

up)

TGFpi 
level (pre­
treatment) 

(ng/ml)

TGFpi level
(post­

treatment)
(ng/ml)

TGFP
ratlo^

Category 
of TGFP 

ratio^

TM39 7 10 6 3.22 7.72 2.4 3
TM40 13 4 9 5.71 2.47 0.43 1
TM41 15 55 40 3.37 2.45 0.73 1
TM43 14 10 5 3.7 1.66 0.45 1
TM44 21 37 U 2.73 9.17 3.36 3
TM45 18 40 7 3.66 5.17 1.41 3
TM46 16 33 20 2.43 1.77 0.73 1
TM47 20 38 47 3.42 10.87 3.18 3
TM48 15 27 24 1.67 1.31 0.78 1
TM49 4 18 4 2.83 1.74 0.61 1
TM50 6 12 8 1.56 2.83 1.81 3
TM51 8 12 0 1.17 1.2 1.03 3
TM52 36 40 14 1.78 1.85 1.04 3
TM53 6 37 4 2.4 2.31 0.96 1
TM54 0 17 0 2.46 2.3 0.93 1
TM55 3 26 0 5.75 2.19 0.38 1
TM56 26 41 36 1.62 2.15 1.32 3
TM58 11 26 31 6.72 3.03 0.45 2
TM60 19 49 5.87 1.36 0.23 1
TM61 2 22 0 2.76 2.81 1.02 3
TM62 7 13 6 1.86 1.24 0.67 1
TM64 20 18 32 3.15 2.61 0.83 2
TM65 2 41 16 1.55 2.53 1.63 3
TM66 30 58 45 3.2 2.63 0.82 2
TM67 20 23 16 5.48 4 0.73 1
TM68 7 29 1 1.46 1.73 1.18 3
TM69 0 16 U 1.92 1.71 0.89 1
TM70 29 59 u 2.14 1.44 0.67 1
TM71 3 41 16 2.11 2.06 0.97 1
TM72 4 12 1 1.27 1.16 0.91 1
TM73 3 18 29 4.49 3.95 0.88 2
TM74 2 32 U 2.36 2.35 0.99 1
TM75 7 19 6 1.24 1.51 1.22 3
TM76 33 33 19 1.94 1.96 1.01 3
TM77 12 16 6 3.17 6 1.89 3
TM78 15 22 13 1.65 1.77 1.08 3
TM79 25 22 17 1.51 1.65 1.09 3
TM80 15 15 2 1.91 1.8 0.94 1
TM81 9 38 19 1.41 1.41 1 3
TM82 8 34 U 3.94 1.6 0.41 1
TM83 0 13 4 1.35 1.31 0.97 1
TM84 5 23 8 1.29 1.26 0.97 1
TM85 8 14 12 1.34 1.31 0.98 1
TM86 6 10 14 1.74 1.91 1.1 3
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Patient
i.D.

number

LENT SOMA 
score (pre­
treatment)

LENT
SOMA
score
(post­

treatment)

LENT 
SOMA 

score (at 
first follow- 

up)

TGPP1 
level (pre­
treatment) 

(ng/ml)

TGFpl level 
(post­

treatment) 
(ng/ml)

TGFP
ratlo^

Category 
of TGFP 

ratio^

TM87 4 17 1 1.69 1.17 0.69 1
TM88 23 32 6 1.64 1.23 0.75 1
TM89 20 29 13 1.75 1.28 0.73 1
TM90 8 12 8 2.17 2.13 0.98 1
TM91 10 39 U 1.36 1.35 0.99 1
TM93 20 52 20 2.35 2.47 1.05 3
TM95 9 15 6 1.59 1.61 1.01 3
TM96 5 4 5 1.83 2.12 1.16 3
TM97 7 12 12 1.29 1.4 1.09 3
TM98 7 12 25 1.04 0.8 0.77 1
TM99 12 14 10 1.85 2.2 1.19 3

TM100 1 17 3 1.67 1.5 0.89 1
TM101 10 26 15 1.44 .99 0.69 1
TM102 12 33 20 1.22 1.66 1.36 3
TM104 3 13 7 1.26 1.46 1.15 3
TM106 13 51 U 1.11 1.08 0.97 1
TM107 14 43 U 2.09 1.18 0.56 1
TM108 0 56 34 1.47 2.02 1.38 3
TM109 7 19 3 2.2 2.44 1.11 3
TM113 15 19 U 2.28 1.74 0.76 1
TM114 13 40 U 1.76 2.39 1.36 3
TM116 2 31 U 1.72 1.52 .88 1
TM117 23 35 U 1.45 1.15 0.79 1
TM118 11 19 U 2.32 2.81 1.21 3
TM119 19 20 U 2.2 2.24 1.02 3
TM120 2 25 U 1.23 1.71 1.38 3
TM121 9 25 u 1.59 1.59 1.01 3
TM122 25 U u 1.42 U U U
TM123 3 15 u 0.88 1.2 1.36 3
TM124 3 13 u 3 1.78 0.59 1
TM125 2 U u 2.11 1.24 0.59 1

 ̂ -  see text for definition of terms 

 ̂-  see text for definition of terms

3 -  U indicates unknown
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Figure 4.13: Distribution of TGFP ratios

Relationship between TGFp results and LENT SOMA score

The relationship between the individual LENT SOMA scores and plasma T G ppi values 

were investigated using Spearman’s non-parametric regression test. There was no 

significant relationship between T G Fpl levels prior to (Figure 4.14) or at the end of 

treatment (Figure 4.15) and any LENT SOMA score. Using the Mann-Whitney u test there 

was no significant difference between the LENT SOMA scores pre-treatment, at the end of 

treatment and at first follow-up for a TGFp ratio of less than or greater than one (p = 0.64, 

0.80 and 0.77, respectively).

Using a Kruskall Wallis test, the distribution of LENT SOMA scores between the three 

TGFp categories was examined (Figure 4.16). The LENT SOMA score at first follow-up
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was significantly higher in category two patients, compared to categories one or three (p = 

0.008). The mean LENT SOMA scores in categories 1, 2 and 3 were 10, 34 and 13, 

respectively. This finding was confirmed by a t-test, which showed that the LENT SOMA 

score at first follow-up was significantly different in category two patients compared with 

those in categories one or three (p = 0.002 and 0.003, respectively).

The LENT SOMA scores at the end of treatment correspond to the height of the acute 

radiation reaction. After a three week course of radical radiotherapy, the acute reaction can 

intensify beyond the end of treatment for 10 - 14 days. After this, a steady improvement 

occurs over the following weeks. The bulk of the acute reaction should have settled by six 

weeks, which is the date of first follow-up. In this series, a severe acute reaction was one 

that had persisted until first follow-up. This was defined as a LENT SOMA score at first 

follow-up in the highest quartile (greater than 19). This level was chosen for analysis as it 

approximated the level of the mean LENT SOMA score at the end of treatment, when the 

acute reaction is intense. The sensitivity and specificity of category 2, in predicting a severe 

acute radiation reaction were 31% and 100%, respectively. The positive predictive value of 

a category 2 score was 100%.
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4.5 Discussion

The volunteer samples processed according to the EDTA protocol were in keeping with the 

published literature (Anscher et al, 1994; Reinhold et al, 1997). There was a significant 

age-related increase in plasma TG Fpl levels, which is not borne out by the literature 

(Wakefield et al, 1995). This may have occurred for a number of reasons. First, the 

volunteer group in this study comprised 66 individuals. This is larger than most control 

groups quoted in the literature. Second, the ages of normal controls are not specified in the 

literature and probably do not span the wide range sampled in this study. Third, although 

every attempt was made to sample only volunteers with no history of malignancy, because 

of the ages of some of the volunteers a latent malignancy may have been present. However, 

removal of these donors with elevated TGpp 1 levels did not remove the significance of the 

age-related rise in TG Fpl levels. This implies that this is a real phenomenon that merits 

further study. There were no differences between plasma TGFp 1 levels in men and women, 

which is in keeping with the literature (Wakefield et al, 1995). The number of smokers (1) 

in the volunteer group meant that no meaningful conclusion could be drawn about the 

effects of smoking on normal plasma TG Fpl levels. Patient smoking habit did not appear 

to influence measured TG Fpi levels.

Pre-treatment TGFp 1 levels were positively correlated with increasing T stage, which lends 

support to their role as a marker of tumour burden (Sminia et al, 1998, Gridley et al, 1998) 

and agrees with the data from patients with cervical cancer (see Section 3.3). Patients who 

had received multi-modality therapy, in the form of either chemotherapy or primary 

surgery, had significantly increased LENT SOMA scores at first follow-up. Those who had
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chemotherapy only also had increased LENT SOMA scores at the end of treatment. There 

are a number of possible reasons for this. First, most patients receiving chemotherapy had 

longer fractionation patterns and therefore would have been at the height of their reaction at 

the end of treatment. Second, patients receiving combined modality therapy experience 

greater side effects (Tseng et al, 1997). LENT SOMA scores from this group of patients 

contained mainly subjective categories i.e. those dealing with the patients’ perception of 

their illness. Objective data were only available in the form of amount of analgesia used 

and this was self-reported by the patients. The LENT SOMA scores recorded at the end of 

treatment and at first follow-up were significantly higher in women. This relationship is 

unexpected. It is difficult to explain as only men received chemotherapy in this cohort of 

patients. It may reflect a better articulation of subjective feelings in women, or male 

inability to articulate feelings to the female research nurses that administered the 

questionnaire. Acute side effects are dependent on the volume irradiated. The increased 

LENT SOMA score in patients receiving nodal irradiation is probably due to the larger 

volume irradiated.

The mean LENT SOMA score at first follow-up was significantly elevated in those patients 

whose TGFp 1 levels remained elevated above normal. Changes in plasma TGFp 1 levels 

have been shown to identify those patients with an increased risk of developing 

symptomatic acute radiation toxicity (Anscher et al, 1994; Anscher et al, 1998; Groen et al,

1997) in lung cancer and other thoracic malignancies. The specificity of a category 2 TGFP 

ratio in identifying those at risk of a severe acute reaction in this study was 100%. The 

positive predictive value of a category 2 TGpp ratio was also 100%. This study has 

demonstrated the clinical utility of measuring TGpp in order to predict acute toxicity in a
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group of predominantly squamous malignancies. Thus, those patients who will go on to 

suffer a prolonged severe acute reaction can be accurately identified at the end of treatment 

and targeted with increased support from a clinical nurse specialist and other input e.g. 

enteral feeding.

If the TGFp ratio is obtained in the final week of treatment, the option exists to omit the 

final fraction of radiotherapy. This would be an unlikely option for a number of reasons. 

First, most acute reactions are self-limiting and have completely resolved by six months 

following the end of treatment. Second, time to development and rate of progression of 

telangiectasia are the only late toxicities for which there is a proven link with the severity 

of the acute reaction. Unless convincing evidence of a link between the severity of acute 

and all late reactions became available; most clinicians would be highly averse to 

compromising a potentially curative treatment modality for the sake of symptoms that, 

despite their severity, will settle spontaneously.

If analysis of this data at a future date demonstrates a relationship between TGFp 1 levels 

and late radiation toxicity, then a different emphasis would be placed on the available 

treatment options. If pre-treatment TG Ppi levels determined late radiation toxicity, then 

patients could be more accurately assigned to primary surgical management. If the TGFp 

ratio were to determine the incidence of late radiation toxicity, then the option to omit the 

final fraction of radiotherapy still exists. It may be that in this situation clinicians would be 

more willing to potentially compromise curative treatment as there is some evidence of a 

link between normal and tumour cellular radiosensitivity (West et al, 1995).
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Molecular changes are present in irradiated tissues very soon following the delivery of 

radiotherapy. Late toxicities can take years to become manifest. This implies that there is a 

time interval, following radiotherapy, where the potential to influence the molecular 

environment exists. Changes in the tissues during this time would have the potential to 

either ameliorate or eliminate the late toxicity. This is known as post radiation 

modification. If the TGpp ratio were to accurately predict the development of late radiation 

toxicity, then trials of post-radiation response modifiers could be accurately targeted at 

those patients for whom they would offer the most benefit.
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CHAPTER 5: BREAST CARCINOMA

5.1: Introduction

Using PFGE, a significant correlation was demonstrated between residual DNA double 

strand breaks and the development of late radiation fibrosis in a group of thirty-nine 

patients treated for early breast cancer between 1985 and 1989 (Kiltie et al, 1999). These 

patients were all treated at the Christie Hospital, Manchester using an identical treatment 

protocol. PFGE thus showed promise as a predictive assay of intrinsic cellular 

radiosensitivity in breast cancer patients. This group formed the training cohort, in which 

the hypothesis was generated. However, any new hypothesis must be retested and validated 

on a different group of patients (validation cohort) (Miranda et al, 1992; Hoskins et al,

1998). This study had two main aims. First, to investigate the usefulness of PFGE as a 

predictive assay in a validation cohort of patients. Second, investigate the relationship 

between late radiation sequelae and TGFP 1 levels taken prior to treatment in a group of 

breast cancer patients.

5.2 Patient characteristics

Fifty patients were randomly recruited from a cohort of 190 patients who were treated at 

the Christie Hospital, Manchester for early breast cancer in 1993 and 1994. The 

demographic details are displayed in Table 5.1. These patients had taken part in a study 

investigating normal cell radiosensitivity in relation to intensity of the acute radiation 

reaction. Therefore, a clinical photograph taken prior to the start of treatment was available 

for all patients. All patients also had a blood sample taken prior to the start o f treatment
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and processed according to the heparin method (see Section 2.3). All patients were women. 

The mean age of the patients at recruitment was 61 years (range 4 5 - 7 5  years). Ten 

patients were smokers at the time of recruitment into the study. Seventeen patients had a 

first degree relative with breast cancer. Twenty- two patients had a right-sided tumour and 

28 a left-sided tumour. Tumour (T) stage was available for 49 patients. Forty-three patients 

had a T1 and 6 patients a T2 tumour. Nodal status was available for 38 patients. Twenty- 

eight patients had NO disease and ten patients had N 1 disease. Thirty-seven patients 

reported having an acute skin reaction at the time of radiotherapy, while thirteen patients 

remembered no acute reaction.
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Table 5.1: Demographic data for breast carcinoma patients
Patient
number

Lab
number

Age at 
diagnosis 

(years)

Age at 
biopsy 
(years)

Affected
side

Disease
stage^

Smoking
history

Family
history

Acute
reaction

1 SP55 58 62 L T1N0 N Y Y
2 SP56 65 69 L T1N1 Y Y Y
3 SP57 58 62 L T1N0 N Y Y
4 SP58 62 66 L T1N1 N Y Y
5 SP59 58 62 R T1N0 N N N
6 SP60 60 65 R T1NX N Y Y
7 SP61 67 72 L T1NX V Y Y
8 SP62 57 62 R T1N0 N N Y
9 SP63 44 48 L T1N0 N Y Y
10 SP64 55 60 R T1N0 N N Y
11 SP65 64 69 L T1N1 N Y Y
12 SP66 44 48 L T1N0 Y N Y
13 SP67 58 63 L T2N1 N N Y
14 SP68 40 45 L T1N0 N N Y
15 SP69 67 71 L T1N0 N Y N
16 SP70 60 65 L T1 NO N N Y
17 SP71 51 57 R TXNX N N Y
18 SP72 48 53 R T1N0 N Y Y
19 SP73 42 47 R T1N0 Y N Y
20 SP74 58 63 R T1N0 Y N Y
21 SP75 56 61 R T2N1 N N Y
22 SP76 60 66 R T1N0 N N Y
23 SP77 65 70 L T1N0 N N Y
24 SP78 48 53 R T1N0 Y Y Y
25 SP79 55 60 L T1N0 Y N Y
26 SP80 63 68 L T2N0 N Y N
27 SP81 63 68 R T1NX Y N Y
28 SP82 63 68 L T1N0 N N N
29 SP83 52 57 L T1NX N N Y
30 SP84 62 67 L T1N0 N N N
31 SP85 52 58 R T1N1 N N N
32 SP86 60 65 R T2N0 N N Y
33 SP87 49 55 R T1NX N Y Y
34 SP88 59 65 R TING N N Y
35 SP89 49 54 R T2NX N N Y
36 SP90 58 63 L T1N0 N Y Y
37 SP91 65 60 L T1NX N Y Y
38 SP92 53 58 R T1NX N N Y
39 SP93 53 58 L T1N1 Y N N
40 SP94 54 59 L T1NX N N N
41 SP95 52 57 L T2N0 N N Y
42 SP96 52 58 L T1N1 N Y N
43 SP97 65 70 R T1N0 Y N Y
44 SP98 56 61 R T1N1 N N Y
45 SP99 57 62 L T1N0 N N N
46 SP100 61 66 R T1N0 N N N
47 SP101 51 56 L T1NX N N Y
48 SP102 56 61 R T1NX N N Y
49 SP103 70 75 L T1N1 N Y N
50 SP104 60 65 L T1N0 N N N

 ̂ -  X  indicates unknown
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5,3 PFGE results

The results of the PFGE assay are displayed in Table 5.2. Although viable fibroblast 

cultures were obtained from all fifty primary biopsies, FDR (fraction of damage released) 

results were only obtained from 49 patients. In the remaining patient, the background FDR 

results were too high to produce meaningful results. The mean with one standard deviation 

and the median FDR results were 8 ± 2% and 8%, respectively. Using ANOVA significant 

differences were detected between FDR results from individual patients (p < 0.001). The 

distribution of FDR results is shown in Figure 5.1. Using Spearman’s regression test, there 

was no relationship between age and FDR (Figure 5.2).
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Table 5.2: Experimental data for breast carcinoma patients
Patient
number

Lab.
Number

TGFpl level 
(pre­

treatment) 
(ng/ml)^

Days elapsed^ Number of 
experiments^

FDR (%)

1 SP55 8.85 33 4 10.7
2 SP56 25.54 17 4 5.5
3 SP57 U 28 3 7.6
4 SP58 26.99 19 4 6.4
5 SP59 5.95 14 4 7.9
6 SP60 U 12 3 10.3
7 SP61 U 12 4 8.3
8 SP62 U 12 2 4.8
9 SP63 11.78 12 4 8.1
10 SP64 U 12 4 9.9
11 SP65 10.56 22 5 6.9
12 SP66 14.18 13 3 11.1
13 SP67 10.64 13 3 9.1
14 SP68 U 12 7 7.3
15 SP69 14.61 13 6 8.1
16 SP70 11.16 14 2 8.3
17 SP71 U 14 3 3.8
18 SP72 9.66 14 4 6.1
19 SP73 13.75 14 4 8.2
20 SP74 9.78 13 4 13.4
21 SP75 11.08 21 3 9.0
22 SP76 4.97 19 4 6.8
23 SP77 15.63 14 5 12.0
24 SP78 12.49 20 4 12.5
25 SP79 13.69 17 3 8.8
26 SP80 19.04 14 3 10.6
27 SP81 U 14 3 7.7
28 SP82 U 12 4 12.8
29 SP83 9.45 14 4 7.1
30 SP84 7.14 12 4 9.9
31 SP85 11.36 12 3 9.2
32 SP86 11.59 26 4 9.2
33 SP87 6.90 19 4 7.9
34 SP88 U 19 3 5.3
35 SP89 8.38 28 3 8.1
36 SP90 15.75 20 4 7.6
37 SP91 12.63 21 5 8.5
38 SP92 U 14 5 7.5
39 SP93 11.25 20 4 4.2
40 SP94 10.61 13 5 5.9
41 SP95 6.53 21 3 3.8
42 SP96 U 21 4 5.7
43 SP97 12.05 19 2 6.2
44 SP98 7.22 19 U U
45 SP99 U 19 2 11.1
46 SP100 10.60 12 2 6.8
47 SP101 13.48 15 3 7.7
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Patient
number

Lab.
Number

TGFpl level 
(pre­

treatment) 
(ng/ml)^

Days elapsed^ Number of 
experiments^

FDR (%)

48 SP102 8.39 15 3 7.4
49 SP103 7.48 15 3 3.3
50 SP104 9.55 15 4 5.2

-  u  indicates unknown 

 ̂-  number of days between biopsy and first passage of fibroblasts in culture 

 ̂-  number of individual experiments averaged to obtain FDR (%) result
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5.4 LENT SOMA results

The LENT SOMA scores are displayed in Table 5.3. The maximum LENT SOMA score 

possible was 31. The mean with one standard deviation and the median values were 4 + 2 

and 3, respectively. The distribution of LENT SOMA scores is shown in Figure 5.3. Using 

Spearman’s regression test there was a weak but significant relationship between LENT 

SOMA score and patient age (Figure 5.4). No relationship was found, using a Mann- 

W hitney u test, with the presence of an acute reaction (Figure 5.5), but there was a 

significant relationship between LENT SOMA score and a positive family history of breast 

cancer (Figure 5.6). This was confirmed by a t-test comparing the mean LENT SOMA 

score in those patients with and without an acute reaction (p < 0.001).
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Table 5.3: LENT SOMA data for breast carcinoma patients

Patient
number

Lab.
number

Patient
Bulld^

Breast
Slze^

Fibrosis
Score^

LENT SOMA 
Score'*

Modified LENT 
SOMA score^

1 SP55 2 3 2 6 5
2 SP56 2 2 0 8 7
3 SP57 3 2 1 3 3
4 SP58 2 2 2 5 5
5 SP59 2 2 0 0 0
6 SP60 2 2 1 3 2
7 SP61 2 1 2 4 4
8 SP62 3 2 1 3 1
9 SP63 2 2 2 7 4
10 SP64 2 3 0 1 1
11 SP65 3 2 2 5 5
12 SP66 1 1 1 2 2
13 SP67 3 2 2 5 4
14 SP68 2 2 2 4 4
15 SP69 3 2 2 4 4
16 SP70 2 3 2 4 3
17 SP71 2 2 2 2 2
18 SP72 3 2 3 5 5
19 SP73 2 2 1 3 3
20 SP74 3 2 1 2 1
21 SP75 2 3 1 4 3
22 SP76 2 2 2 3 3
23 SP77 2 2 2 6 5
24 SP78 2 2 3 6 6
25 SP79 2 2 1 3 3
26 SP80 2 3 2 5 5
27 SP81 2 2 2 3 3
28 SP82 3 2 1 2 2
29 SP83 2 2 1 6 6
30 SP84 2 2 3 5 5
31 SP85 3 2 1 3 3
32 SP86 2 3 1 3 3
33 SP87 2 2 1 3 3
34 SP88 2 3 1 5 5
35 SP89 1 2 2 2 2
36 SP90 3 1 1 4 3
37 SP91 2 2 2 3 3
38 SP92 2 2 1 3 3
39 SP93 2 2 0 0 0
40 SP94 2 2 0 0 0
41 SP95 2 1 1 2 2
42 SP96 3 3 3 8 6
43 SP97 3 2 2 5 5
44 SP98 2 2 0 3 3
45 SP99 2 2 1 1 1
46 SP100 3 2 2 5 5
47 SP101 2 3 0 2 2
48 SP102 1 1 2 2 2

147



Patient
number

Lab.
number

Patient
Buiid*

Breast
Sizef

Fibrosis
Score^

LENT SOMA 
Score'*

Modified LENT 
SOMA score®

49 SP103 2 2 2 5 4
50 SP104 3 2 3 6 5

‘ -  scored by clinical photograph: 1 = small, 2 = medium, 3 = large

 ̂-  scored by clinical photograph: 1 = small, 2 = medium, 3 = large

 ̂-  scored by clinical examination: 0 = none palpable, 1 = barely palpable, 2 = definitely 
palpable, 3 = marked density present

 ̂-  derived from LENT SOMA questionnaire, a combination of: breast pain intensity score 
(max. 4), analgesia requirement score (max. 4), retraction score (max 4), retraction 
management score (m ax.l), breast oedema score (max. 2), breast oedema management 
score (max 2), skin ulceration score (max. 4), skin ulceration management score (max. 4), 
telangiectasia score (max. 3) and fibrosis score (max. 3) i.e. maximum score possible = 31

 ̂-  total LENT SOMA score minus telangiectasia score i.e. maximum score possible = 28
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Figure 5.3: Distribution of LENT SOMA scores (n = 50)
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Figure 5.5: Relationship between LENT SOMA score and presence of an acute 

reaction. Numbers: no = 13, yes = 37. Solid bar indicates mean LENT SOMA score. 

Data points may represent more than one patient, refer to text for details.
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Figure 5.6: Relationship between LENT SOMA score and family history of breast 

cancer. Numbers: no = 33, yes = 17. Solid bar indicates mean LENT SOMA score. 

Data points may represent more than one patient, refer to text for details.
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5.5 Comparison of PFGE results and LENT SOMA score

Using Spearman’s regression analysis there was no correlation between FDR and fibrosis 

score or overall LENT SOMA score (Figures 5.7 and 5.8, respectively). Again using 

Spearman’s regression test, the relationship between the combined FDR and fibrosis scores 

of the training and validation cohorts was investigated and no significant relationship was 

found (r = 0.20, p = 0.063) (Figure 5.9).
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Figure 5.7: Relationship between FDR and fibrosis score (n = 49).
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5.6 TGFpl results

The individual TGFj3l levels are given in Table 5.2. There were 37 pre-treatment T G F pl 

levels available. The mean with one standard deviation and the median values were 11.64 

ng/ml ± 4.65 ng/ml and 11.08 ng/ml, respectively. The distribution of pre-treatment 

TG Fpl levels is displayed in Figure 5.10. Using Spearman’s regression test, there was no 

correlation between TG Fpl levels and either patient age (Figure 5.11) or T stage (Figure 

5.12). Using a Mann-Whitney u test, there was no relationship between T G F pl levels and 

either a family history of breast cancer (Figure 5.13) or presence of an acute reaction to 

radiotherapy (Figure 5.14). However, there was a relationship between pre-treatment 

T G Fpl levels and smoking habit (Figure 5.15).
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Figure 5.13 Relationship between pre-treatment plasma TGFpi levels and presence

of an acute reaction
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Figure 5.14: Relation ship between TGFpi levels and family history of breast cancer 

(no = 24, yes = 13). Solid bars indicate mean plasma TGFpl levels.
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Figure 5.15: Relationship between TGFpl levels and smoking habit 

(no = 29, yes = 8). Solid bars indicate mean plasma TGFpl levels.
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5.7 Comparison of TGFpi levels with LENT SOMA score and PFGE results

In this analysis, fibrosis score (one component of the LENT SOMA score) as well as total 

LENT SOMA score were correlated, using Spearman’s regression test, with pre-treatment 

TG Fpl and FDR. No relationship between either total LENT SOMA score or fibrosis 

score and either TG Fpl levels or FDR was found (Figures 5.16 - 5.18, respectively).
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Figure 5.16; Relationship between pre-treatment TGFpi levels and fibrosis score (n

37).
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Figure 5.17: Relationship between pre-treatment TGFpl levels and FDR (n = 37)
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Figure 5.18: Relationship between pre-treatment TGFpl levels and LENT SOMA

score (n = 37).
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5.8 Discussion

W henever a new hypothesis is generated it is necessary to test it on a new, distinct cohort 

of patients (Miranda et al, 1992; Hoskins et al, 1998). Thus only hypotheses with a firm 

evidence base are admitted into routine practice. The primary aim of the work in this 

chapter was the validation of a new hypothesis that residual DNA double strand breaks at 

24 hours following irradiation, as measured by PFGE, were a predictive assay for the 

incidence of late radiation fibrosis in patients with breast carcinoma. This hypothesis was 

not validated. There may be a number of reasons for this. First, although the FDR results 

were obtained from both patient cohorts in the same laboratory, using the same equipment, 

the fact that results from the two cohorts were obtained by two independent researchers 

may have made a difference. However, Figure 5.19 illustrates the similar distribution of 

FDR results in both cohorts. Using an ANOVA no significant difference was seen between 

the two sets of results (p = 0.72). Second, the patients in each cohort were examined over a 

different time range following their radiotherapy ( 9 - 1 4  years in the training cohort and 4 

-  5 years in the validation cohort). Figure 5.20 shows a comparison of the distribution of 

fibrosis scores in each treatment cohort. Allowing for varying numbers in each cohort, they 

are broadly similar. This was confirmed by an ANOVA, which showed no significant 

differences between them (p -  0.13). It has been demonstrated that severity of 

telangiectasia progresses over time (Tucker et al, 1992; Turesson et al, 1996) and there is 

some evidence that post-radiotherapy fibrosis may also progress over time (Bentzen et al, 

1990). Thus, it may be that if the training cohort were to be reevaluated in a further five 

years time, the distribution of fibrosis scores may have changed sufficiently for a positive 

correlation to become evident. Third, although treatment within the cohorts was 

standardised, the elapse of five years meant that a number of changes in treatment
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technique had occurred. Patients in the training cohort were treated with an unwedged, 

two-field treatment where the breast was enclosed in a perspex box. The box acted as a 

bolus material, significantly increasing the dose received by the skin. The patients in the 

validation cohort received a wedged, isocentrically planned treatment, with no perspex 

box. The comparison of telangiectasia scores between the cohorts (Figure 5.21) 

demonstrates a reduction in both the incidence and severity of this late radiation toxicity in 

the validation cohort. A comparison of the total LENT SOMA score, corrected for 

telangiectasia score, in each cohort (Figure 5.22) demonstrates that the validation cohort 

had less late radiotherapy reactions than the training cohort. This may have reduced the 

chance of detecting a correlation between LENT SOMA score and fibrosis. W ith a smaller 

range of LENT SOMA scores and a reduced prevalence of late radiation reactions, the 

correlation between LENT SOMA score and fibrosis may need to be stronger to be 

discernible in the validation cohort.

The secondary aim of the work in this chapter was to examine the relationship between 

plasma TG Fpl levels taken prior to treatment and clinical endpoints. There was no 

relationship between age and T G Fpi levels. This is in agreement with the published 

literature (Wakefield et al, 1995). It also agrees with the findings in other patient groups, 

but not for the cancer-free volunteers studied in this thesis. This may be due to the smaller 

age range of the patient group compared with the volunteer group. Pre-treatment TG Fpl 

levels were not significantly related to T stage or N stage, meaning they were of no use as 

measures of tumour burden. There may be a number of reasons for this. First, in this study, 

pre-treatment plasma TG Fpl levels were measured at least six weeks following surgery. 

TGFp 1 levels can decrease following surgery due to a reduction in tumour burden (Kong 

et al, 1995; Tsushima et al, 1996). Therefore, the lack of correlation with disease stage
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may be as a consequence of surgery. Second, only patients with stage T1 or T2 disease 

were available in this study. If patients with stage T3 or T4 disease or with heavy nodal 

involvement were available, a correlation with disease stage might emerge. Due to the 

small numbers of smokers recruited in our volunteer group (see Section 4.2), no conclusion 

could be drawn about the impact of smoking on plasma TG Fpl levels. In this series, pre­

treatment TGFP 1 levels were significantly higher in those patients who admitted smoking. 

This does not agree with our findings in patients with carcinoma of the head and neck 

(Chapter 4). Patients were asked about current smoking habit, rather than smoking habit at 

the time of surgery and radiotherapy. Thus the observed relationship between plasma 

TG Fpl levels and smoking may be spurious. However, on balance, patients are more likely 

to have stopped than started smoking in the intervening period.

Pre-treatment plasma TGFp 1 levels did not predict for an acute reaction to radiotherapy.

There may be a number of reasons for this. First, acute reaction was scored retrospectively

from the patients’ memory and may therefore be biased. Second, changes in plasma

TGFp 1 levels between those measured prior to treatment and at the end of radiotherapy

may be required for this correlation (see Sections 1.12 and 4.3). There was no relationship

found between pre-treatment TG Fpl levels and fibrosis-related clinical endpoints. This

does not support the conclusions of Li et al (1999). There may be a number of possible

explanations for this. First, we used a different assay from that used by Li et al. As

described in Chapter 2, we used a commercially available kit, with mass-produced

antibodies. L i’s group used their own antibody in an ELISA system that reported by

enhanced chemoluminescence. However, given that we have successfully demonstrated a

correlation with acute reactions in patients with carcinoma of the head and neck region (see

Chapter 4), this is likely to be unimportant. Second and of greater significance, there were
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a larger number of patients in Li et aVs series (91 compared with 37 in this series). A 

prospective study is now required measuring plasma TGFp 1 levels at the start and end of 

treatment to reach a firm conclusion about the clinical utility of predicting severe acute and 

late radiation sequelae in patients with carcinoma of the breast.
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Figure 5.19: Comparison of the distribution of FDR between the training (n = 39) and

the validation (n = 49) cohorts
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Figure 5.20: Comparison of the distributions of fibrosis scores between the training (n

= 39) and the validation (n = 49) cohorts
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Figure 5.21: Comparison of telangiectasia scores between the training (n = 39) and

the validation (n = 49) cohorts
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CHAPTER 6: DISCUSSION

Significant inter-individual variation occurs between patients in the severity of acute and 

late side effects experienced as a result of radiotherapy. Although a number of factors may 

play a part (see Section 1.7), genetic factors have been estimated to account for between 80 

and 90% of this variability (Geara et al, 1993; Turesson et al, 1996). This variation in 

normal cell radiosensitivity limits the amount of radiotherapy that can be prescribed 

because of the tolerance of the surrounding normal tissues. It also limits the dose that can 

be safely administered to a tumour and hence ultimately the clinical radiocurability of that 

tumour. The development of an assay to predict an individual’s normal cell radiosensitivity 

offers the possibility of individualising radiotherapy schedules. In theory this would result 

in an increase in local tumour control with no corresponding increase in late normal tissue 

toxicity (McKay et al, 1998; Hendry 1998). This is an important issue, as the number of 

patients with cancer in the population requiring radiotherapy will rise in the 21^ century.

This thesis was concerned with the assessment of assays predicting normal cell 

radiosensitivity. Two different assays were studied. First, plasma T G Fpl levels were 

measured using ELISA and a commercially available kit. This methodology is attractive as 

a predictive assay for normal cell radiosensitivity as it is simple to perform and would not 

require significant investment on the part of most radiotherapy departments to implement if 

proven useful. Second, residual DNA double strand breaks were measured using normal 

fibroblasts and pulsed-field gel electrophoresis (PFGE). This is a technically difficult 

method requiring tissue biopsy and some financial investment (tissue culture facilities,
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PFGE apparatus), making it less attractive to clinical departments. The assays were 

examined in a number of tumour types.

Cervical carcinoma

Patient samples were obtained from a cohort treated at the Christie Hospital, M anchester 

between 1990 and 1993. These patients were initially recruited in an unselected fashion 

and investigated prospectively. Both clonogenic assay parameters and tumour markers 

were ascertained at the time of initial recruitment. The TGFp 1 levels investigated as part of 

this thesis were analysed from stored samples. Analysis of TG Fpl was performed by one 

researcher on unselected samples, blinded to the available clinical endpoint data. Thus it is 

unlikely that any selection bias contributed to the results obtained. Only patients who were 

suitable for tumour biopsy were included in the initial study, but this is unlikely to have 

introduced any systematic selection bias.

Any patient who required surgery for any late radiation morbidity was classified as having 

grade 3 morbidity under WHO criteria. Morbidity scoring was performed retrospectively 

by means of the Franco-Italian Glossary. For most disease sites, late radiation morbidity 

scoring is anecdotal, or worse still, absent. Few trials comprehensively report late radiation 

morbidity. Cervical carcinoma is unusual in that there is an internationally recognised and 

validated late radiation morbidity reporting system - the Franco-Italian Glossary 

(Chassagne et al, 1993). However, the glossary is retrospective in nature and thus prone to 

the shortcomings this implies. These include incomplete recording or under-reporting of 

morbidities; reliance on interpretation of patient records by clinicians not directly involved
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in the patient’s care; and possible inter-clinician variation in the reporting of patient 

records. A single clinician, highly experienced in the field of gynaecological oncology, 

scored late radiation morbidities from every patient’s record, using the Franco-Italian 

Glossary. This abolished any inter-clinician variation in late radiation morbidity recording. 

With these reservations, however, the morbidity data available, while not conforming to 

the “gold-standard” of prospectively collected data, reflects the experience of morbidity in 

this cohort.

In patients with cervical cancer, pre-treatment plasma TGFp 1 levels demonstrated a 

significant positive correlation with tumour stage. This is in keeping with other published 

data in cervical cancer patients (Ngan et al, 1996; Chopra et al, 1998). The correlation, 

although significant was relatively weak. It is widely acknowledged in cervical cancer that 

tumour stage does not take bulk of disease into account and therefore does not fully 

describe burden of disease. Excess plasma TGFp 1 circulating prior to treatment is thought 

to be directly related to tumour burden (Anscher et al, 1994). Were accurate volume of 

disease measurements available on these patients, for example ultrasound or magnetic 

resonance volume estimates, it is likely that pre-treatment plasma T G Fpi levels would 

show a stronger correlation with burden of disease, rather than stage alone.

Circulating plasma TGFp 1 levels measured prior to commencement of treatment are 

derived from the tumour itself and directly relate to tumour burden. In patients with breast 

(Kong et al, 1995) or colorectal (Tsushima et al, 1996) carcinoma, plasma TG Fpi levels 

can normalise by six weeks post-operatively in those undergoing curative resection. Most 

patients treated with radical radiotherapy for cervical cancer do not undergo initial
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debuiking surgery. Plasma TGFp 1 levels at the end of radiotherapy are therefore derived 

from both residual tumour burden and production of TGFp 1 by normal tissues in response 

to radiation. The work of Anscher et al (1993, 1998a) and Groen et al (1997) emphasises 

the clinical utility of the TGFp ratio in predicting the severity of both acute and late 

radiation morbidities. The relationship between pre-treatment plasma TG Fpl levels and 

stage may explain the observed lack of correlation with late radiation morbidity. This 

implies that were samples available post-treatment, i.e. when the contribution from disease 

burden is less, any correlation present might be unmasked. Unfortunately, no post­

treatment samples were available from this cohort of patients.

This retrospective series confirmed that pre-treatment plasma TGFp 1 levels correlate with 

disease stage and tumour outcome. As the ELISA technique used would be easy to apply 

clinically, these findings should be confirmed by a prospective study. In addition, any 

prospective study should measure TGFP 1 levels at the end of treatment. This would allow 

correlation between the TGFp ratio and the development of late radiation toxicity. This 

study has now been established at the Paterson Institute.

Healthy volunteers

Plasma samples were obtained from sixty-six volunteers in order to investigate the 

reproducibility of using a commercial kit to measure T G Fpl and to provide a normal 

control range. These samples showed an unexpected age-related rise in the level of plasma 

TGFp 1 in the normal population. This was mirrored in the patient population, taking into
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account those samples with grossly elevated levels. The control group in this thesis was 

larger and had a wider age range than is generally quoted in the literature. However, this 

finding should be confirmed by other groups. If this age-related rise in TG Fpl levels is 

borne out by further studies, it may need to be controlled for in all patient populations 

studied (i.e. age-matched controls will be required). This is especially important in 

oncology, where a significant proportion of the patients are over 65 years of age.

Assay parameters

Significant differences were demonstrated between the patient and volunteer samples using 

ANOVA, despite a considerable overlap in their ranges. The intra-individual assay 

variability was high (42%) compared with inter-individual variability (77%). This implies 

that the day to day variation in plasma TGFp 1 levels is high and may limit the potential 

clinical utility of the assay. As such, it deserves further study. The intra-individual 

variability of the assay was ascertained by sampling a number of the volunteers on more 

than one occasion. Those volunteers were at the younger end of the age spectrum sampled 

and it may be that they have more variability in their plasma T G Fpl levels. The volunteer 

group contained a number of people with chronic non-malignant disease (diabetes mellitus, 

psoriasis with arthropathy, systemic lupus erythematosus and hypothyroidism) and it may 

be that their TGFp 1 levels fluctuate with changes in their disease state/medication. Plasma 

TG Fpi levels may be increased in those with surgical wounds. Although none of the 

volunteers had recent surgery, it is possible that they had minor skin breaches due to e.g. 

gardening that affected their plasma TG Fpl levels. Other possible confounding factors 

include viral illness (there is some evidence that TGFp 1 can behave like an acute phase
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protein) and the menstrual cycle. The former is likely to affect both the volunteer and 

patient cohorts equally. As for the latter, the majority of patients were male and only four 

female patients were under the age of 55 years, thus this is a potential confounding factor. 

In short, there needs to be more investigation into variations of plasma TGFp 1 in the 

normal population.

Head and neck carcinoma

In a prospective series of patients with carcinoma of the head and neck region, plasma 

TGFp 1 levels were measured at the start and in the final week of treatment. Initially, only 

those patients whose follow-up would be at the Christie Hospital itself were recruited. 

However, when it was realised that accrual was lower than anticipated, recruitment was 

widened to include those patients whose follow-up would be at other centres. All patients 

were treated with radical intent at the Christie Hospital by one of two dedicated site- 

specialised radiotherapists. Thus, initially these patients were subjected to a degree of 

geographical selection, within the north west of England. It is possible differing socio­

economic factors between these two patient groups gave rise to a bias in the results 

obtained. However, the number of patients subject to geographic selection as a proportion 

of the total patient population studied is relatively small and unlikely therefore to have a 

major influence on the overall results obtained.

Pre-treatment plasma TGFp 1 levels were significantly positively correlated with increasing 

tumour (T) stage. This lends support to their role as a marker of tumour burden, which is in
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agreement with the published literature and findings in this thesis related to cervical cancer 

(see Section 3.3).

Radiation morbidity reporting

In published series, reporting of acute and late radiation morbidities is both patchy (Nori et 

al, 1993) and anecdotal (Sakamaki et al, 1993). Until recently, most published data were 

concerned with rates of local control rather than morbidity. With increased clinician and 

patient awareness and education, many trials now incorporate quality of life measures 

(Ringash et al, 2000). These include the EORTC QoL questionnaire (Bjordal et al, 1994) 

and the Rotterdam symptom checklist (de Haes et al, 1990), both of which have been 

validated in prospective trials. However, reporting of specific acute and late radiation 

morbidities is still suboptimal. There are a number of reasons for this. Reporting of acute 

effects is often graded according to WHO criteria and thus tends to be more systematic. 

However, these criteria were designed specifically with chemotherapy toxicities in mind 

and are often not flexible enough or are inappropriate for the toxicities experienced by 

patients undergoing radical radiotherapy. With late radiation morbidities the situation is 

worse. Late side effects are highly dependent on the tumour site treated. Although they are 

easy to categorise, they are often difficult to grade either accurately (e.g. degree of fibrosis) 

or objectively (e.g. dryness of mouth). Usually they are defined in terms of functional 

impairment (e.g. tooth loss) or medical interventions (e.g. surgical debridement required). 

The aetiology of late radiation morbidity is complex, poorly understood and often multi­

factorial. For example, diarrhoea following pelvic radiotherapy may be due to bile salt 

malabsorption through a damaged terminal ileum or due to a sub-clinical stricture in the
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large intestine. When available, records of late radiation morbidity tend to be descriptive 

rather than structured with a reproducible grading schema (Liao et al, 2000). There is little 

or no international cooperation and thus promising locally derived schema are often never 

validated on sufficient patient numbers for them to be adopted with any confidence. Some 

disease sites e.g. cervix have attempted, with some success, to produce relevant uniform 

scoring systems. These are often very disease specific and therefore not easily adapted for 

use in other tumour types.

A formal attempt was made to unify the reporting of late radiation morbidity in 1996 with 

the publication of the LENT SOMA scales (Rubin et al, 1995a; Rubin et al, 1995b; Pavy et 

al, 1995). These were published simultaneously in the international journals of the 

European and American therapeutic radiation oncology societies. LENT SOMA stands for 

late effects in normal tissues - subjective, objective, management and analytic. They were 

designed to be relevant to the late toxicities experienced by those undergoing radiotherapy 

to any site. All possible radiation-induced toxicities in all sites were described. The 

patient’s view of their quality of life was measured in the subjective category, allowing 

patients to grade their own experience of morbidity. Functional impairment was 

categorised in a systematic manner allowing objective measure of morbidity. Medical and 

surgical interventions required by the patient can be documented in the management scales. 

This allows sequential assessment of patients and thus demonstrates objectively the 

progressive nature of some late radiation toxicities. In the analytic scales, relevant raw data 

e.g. body weight is recorded to compare with the subjective and objective data. Results of 

investigations e.g. haemoglobin levels are also recorded. Each area of the scales stands 

alone. Therefore centres which are relatively materiel poor e.g. in terms of scanning
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equipment and have little on the analytic scales can be compared like for like with better 

resourced centres on the subjective and objective scales giving the widest available data to 

those investigating late radiation morbidity.

Adoption of these scales into widespread clinical practice has been slow and erratic. This is 

partly due to the scales being large and often unwieldy to use alone and the need to develop 

a scoring system based on the scales. It also reflects the lack of validation available for the 

scales. Validation depends upon either formal comparison with current established scales 

or independent validation using a semi-structured questionnaire approach. Given that few 

disease sites have a validated late radiation morbidity scoring system with which the LENT 

SOMA can be compared and that independent validation is complex and expensive, this 

hurdle may take a long time to overcome.

In this thesis, treatment morbidity was recorded using a LENT SOMA questionnaire. This 

was derived from the head and neck LENT SOMA scales. It has not been validated as there 

is no universally accepted head and neck morbidity scoring system available for 

comparison. Every patient answered questions pertaining to possible morbidity at all 

treatment sites. Thus, it is unlikely that any morbidity was missed entirely. The 

questionnaires were administered prior to treatment, in the final week of treatment, at the 

first follow-up visit and six monthly thereafter. As a result, sequential assessments of each 

patient were available using the same tool. This allowed accurate comparison of patients’ 

symptoms with a pre-treatment baseline. There remains the possibility of a systematic bias 

in the data collected. Correlation of the data collected with an independently validated 

scoring system for these tumour sites would go a long way to disprove this, however, as
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there is no such scoring system for these sites, then it is unlikely that this will ever be fully 

resolved. The questionnaires were administered by one of two dedicated research sisters. 

Their inter-individual variability in administering the questionnaires had been assessed 

independently and found to be low. This reduces the risk of a systematic bias in these data.

For patients with head and neck carcinoma, only acute radiation toxicities were available 

for analysis, during the time of this thesis. All but one of the categories was subjective in 

nature. The only objective category was concerned with patients’ use of analgesia in the 

preceding week. As this was self-reported by patients and not validated independently it 

may also be inaccurate. Each patient will be examined clinically annually from one year 

post-treatment by a clinician specialising in treatment of head and neck carcinoma. Thus 

objective long-term data concerning late radiation morbidity will be available in due course 

from the cohort of patients studied.

Prediction o f acute radiation toxicity

The LENT SOMA questionnaire was administered prior to commencing treatment, in the 

final week of treatment and at the first follow-up visit, scheduled for six weeks following 

the completion of treatment. At the end of a three-week schedule of radical radiotherapy, 

most patients developed some acute radiation toxicity. This may intensify over the 

following week or so and then gradually resolve, with most patients showing a major 

improvement by six weeks post-treatment. Some patients suffered an intense and/or 

prolonged acute reaction. The LENT SOMA scores obtained in this series support these 

observations. The median LENT SOMA score at the end of treatment (26) was more than
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double that obtained prior to treatment (11) or at first follow-up (13). The fall in median 

LENT SOMA score at first follow-up implies that most patients suffered fewer symptoms 

at that time than at the end of treatment. The range of LENT SOMA scores obtained at first 

follow-up (0 - 47) was wider than that obtained either prior to treatment (0 -3 6 )  or at the 

end of treatment (4 -39). The high pre-treatment scores represent both tumour and patient 

related symptoms, e.g. breathlessness, which may relate to other pre-morbid conditions. 

Tumour related symptoms comprise symptoms related to the continuing presence of the 

tumour itself (for patients treated with primary radiotherapy) and post-surgical morbidity 

(for patients treated with primary surgery). Post-surgical morbidity can relate to the tumour 

site itself or the area of donor tissue when the surgery has incorporated reconstruction or 

skin grafting. Inquiries about analgesia use in the LENT SOMA questionnaire did not 

specify tumour-related pain. However, the highest individual values of LENT SOMA 

scores were obtained at first follow-up. The low median LENT SOMA score at first 

follow-up (13) when compared to the range of LENT SOMA scores (4 - 39) implies that 

although the bulk of the patients have a LENT SOMA score below the median end of 

treatment score (26), a number have a LENT SOMA score that is elevated above this. This 

implies that some patients are suffering a prolonged acute reaction. For the purposes of this 

thesis a severe prolonged acute reaction was defined as a LENT SOMA score at first 

follow-up in the upper quartile.

TGFp ratio

For patients with carcinoma of the head and neck region, all those who had an initially 

elevated TGFp 1 level that was reduced, but not noimalised by the end of treatment had a
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severe prolonged acute reaction. The total number of patients in this category was four 

from a possible total of 54. The sensitivity and specificity of this pattern of TGFp 1 levels 

in predicting a persistent acute reaction was 33% and 100%, respectively. The value for 

sensitivity is rather lower than would be expected in a diagnostic test. However, as these 

figures depend on only four samples it is likely that there is a wide confidence interval 

surrounding the calculated specificity, meaning that the actual specificity of a category two 

ratio may be much higher. In support of this, the positive predictive value of a category two 

result was 100%, implying the actual specificity of the test is higher than it appears. 

However, as the absolute number of patients was small, caution should prevail in applying 

these results to other patient groups without further confirmatory studies. If the data are 

accurate, it may be possible to accurately predict those patients who will develop a severe 

reaction, but only towards the end of their treatment. Options for alteration of the treatment 

schedule are therefore limited. Indeed, most clinicians would not compromise a potentially 

curative treatment for the sake of symptoms that, although severe, are self-limiting. 

However, it would allow extra support, in the form of clinical nurse specialists or enteral 

feeding to be accurately targeted at those who are most likely to need support. Also, a 

persistent acute reaction can lead to a prolonged period of mucosal damage which can 

promote the development of consequential late damage. Targeting clinical nurse specialist 

support to these patients may potentially decrease the incidence of late morbidity. Late 

radiation toxicity is more important in terms of functional impairment and quality of life. 

Data on these patients will continue to be accmed over time and the relationship between 

late toxicity and TG Fpl levels will be examined in the future.
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The pathophysiological effects of TG Fpl in vivo are varied (see Table 1.2). Activated 

TGFp 1 promotes an increased production and decreased breakdown of the ECM and acts 

as an indirect promoter of angiogenesis. TG Fpl activation in the ECM is increased 

immediately following irradiation. Increased activated TG Fpl persists in irradiated tissues 

for many months at least. Late morbidity, in the form of post-radiation fibrosis, has a latent 

period of at least six months and often years before it becomes clinically apparent. Thus, 

while it seems highly likely that excess, activated TGFP 1 promotes the development of 

post-radiation fibrosis, it does not produce this in isolation. During the latent period, other 

micro-environmental factors influence the expression of post-radiation damage. The latent 

period is variable in duration. Thus late events can increase cumulatively year on year and 

patient cohorts examined at different time points may differ in their incidence of late 

radiation toxicity. To demonstrate an existing positive correlation between late radiation 

toxicity and plasma TG Fpl levels, it may be necessary to ascertain patient morbidities at 

more than one time point during their follow-up, as the experience of morbidity in the 

cohort will not be static. This is an important fact to bear in mind when analysing long­

term follow-up data.

Breast carcinoma

Between 1993 and 1994, one hundred and ninety unselected patients with early breast 

caneer were entered into a prospective study of the relationship between biological factors 

and acute radiation reaction (Scott et al, 1998). These patients were uniformly treated with 

the then current Christie Hospital technique. These patients had a clinical photograph taken 

post-surgery, but prior to the commencement of radiotherapy. Residual DNA damage and
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TG Fpl levels were examined in a cohort of 50 patients drawn randomly from the initial 

study population of 190 (the validation cohort). The training cohort had demonstrated a 

positive correlation between residual DNA damage and late radiation morbidity in 39 

patients. Results from the fifty patients in the validation cohort, would have the same 

power to detect the same strength of correlation. It would also allow for possible failures in 

eeil culture or PFGE techniques. The researchers were blinded as to the acute and late 

radiation toxicities experienced by all patients prior to recruitment. However, some 

selection bias was inevitably introduced when entering patients into this study, most 

obviously in that all patients were alive and free of disease at the time of entry (this would 

also have applied to the training cohort). Accurate figures on the precise number of patients 

with relapsed disease are not available for this group of patients. However, from memory, 

somewhere between ten and thirty of the patients had documented disease relapse, which is 

in keeping with expected survival figures for this group of patients. Other more subtle 

factors are also likely to introduce some selection bias. The most obvious example of this 

was seen in patients refusing to enter the retrospective study. Once patients had been 

recruited, their previously documented acute reactions were examined. The vast majority of 

patients who had experienced a severe acute radiation reaction and who had been 

approached, had declined entry to the retrospective study. It is likely those patients 

recruited to the training cohort also had a similar selection bias, although no objective data 

are available to support this theory. This implies consequential late radiation morbidities 

e.g. necrosis secondary to severe acute reactions are likely to have been under-represented. 

Thus the distribution of acute toxicities seen in the retrospective series was not the same as 

in the original series (again this may be true of the training cohort).
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Only thirty-seven pre-treatment T G Fpl samples were available for analysis. No 

relationship was demonstrable between TGFP 1 levels and any clinical endpoint. This is not 

in keeping with findings published by Li et al (1999). The most likely reason for this is the 

small number of samples studied. However, there are likely to be other factors influencing 

this result. All retrospective studies have inherent flaws, including selection bias, and this 

could contribute to the lack of positive correlation seen. This study was performed using 

ELISA and a commercially available kit that included mass-produced antibodies. In a 

positive published study (Li et al, 1999), also using ELISA, the antibodies were produced 

by the investigators themselves and the assay involved enhanced chemoluminescence. The 

antibodies used by Li et al also measured a different fraction of TGFP 1 in the plasma. It is 

possible, therefore, that the different assays used contributed to the conflicting findings.

The samples analysed as part of this thesis were 4 or 5 years old. Although they had been 

stored at -80°C, the TG Fpl may have been subject to degradation over time. However, as 

degradation is likely to have been uniform in all samples, this is unlikely to explain the 

lack of correlation seen.

Fibrosis was assessed clinically using palpation by one clinician in all patients. Clinical 

photographs were scored for telangiectasia and retraction/atrophy independently by three 

experienced clinicians. There was a high level of agreement between the clinicians in all 

categories scored. Development of telangiectasia is unlikely to be directly influenced by 

T G F pl, thus it is not surprising that no correlation was found. Both palpable fibrosis and 

atrophy/retraction, i.e. visible fibrosis were expected to show some correlation either alone 

or in combination with TG Fpl levels. It is possible that, although assessment of these end­

points was accurate (according to agreed criteria) and consistent, the end-points do not
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properly represent late radiation toxicity mediated by fibrosis and hence T G Fpl. Changes 

in the breast following treatment are complex and multifactorial in aetiology. Vascular 

disruption can occur secondary to both surgery and radiotherapy. This can lead to loss of 

specialised breast tissue and consequent fibrosis. Radiation damage to epithelial cells can 

lead to involution and atrophy of specialised breast tissue. Breasts consist of predominantly 

adipose tissue. Fat necrosis can occur leading to further shrinkage of the breast, but without 

palpable fibrotic changes. Most of the patients in this study were treated with tamoxifen. 

This drug has a predominantly anti-oestrogenic effect in the breast. This can lead to further 

atrophy, possibly accompanied by fibrotic changes. It may be that simple clinical 

observation and palpation are not sensitive enough to accurately measure late radiation 

fibrosis. This is a recurring theme of the published literature in this area: clinical end-points 

are poorly defined; they are often subjective, depending on the experience and exposure of 

the clinicians who assess them; and the aetiology of a given end-point with respect to late 

radiation toxicity has never been validated. In the series of breast cancer patients studied in 

this thesis all categories of late radiation reaction were represented in reasonable 

proportions. Therefore, under-representation of any given late toxicity is unlikely to be 

responsible for the lack of correlation seen. Nevertheless, in view of the small number of 

samples and the retrospective nature of the study it may be worthwhile investigating further 

the relationship between plasma TGFp 1 levels and radiation toxicity in patients with 

carcinoma of the breast in a prospective study.
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LENT SOMA questionnaire in breast carcinoma

As part of the LENT SOMA questionnaire, patients were asked about the presence or 

absence of an acute reaction at the time of their treatment. The patients were not asked to 

grade this reaction, merely if it had been present or absent. Patient recall is notoriously 

poor and unreliable (Hinton, 1996; Bruera et al, 1999). Patients were not asked for the 

definition of what an acute reaction meant to them. It may be that they only reported a 

reaction occurring during radiotherapy or a reaction that was greater than expected. W ith a 

three-week course of radiotherapy, the acute reaction can intensify beyond the end of 

treatment and it may be that patients did not associate this intensification with the 

treatment itself, rather with their own actions. If patients are fully consented for 

radiotherapy and informed of all the potential side effects, they might deny having a 

reaction if they experience only what they expect. Patients often discuss treatment and 

toxicities with each other during their radiotherapy. Patients may rate the presence or 

absence of an acute reaction in relation to other people’s experiences. If the patients were 

hesitant about answering the question, or requested a definition, they were supplied with 

the options of breast tenderness and/or pinkness of the skin. Not all patients were prompted 

in this way and it may be that this influenced the responses obtained. A more accurate 

representation of acute radiation toxicity might be obtained by showing clinical 

photographs or giving a verbal description of varying acute radiation reactions and asking 

whether the patient could remember a similar reaction. Extent and intensity of acute 

radiation reaction can predict the development and progression of telangiectasia. It can also 

indicate those at increased risk of consequential late morbidities. There was no positive 

correlation found between telangiectasia score and the presence of an acute reaction. This
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highlights the deficiencies of retrospective morbidity scoring. However, as the incidence of 

telangiectasia in the validation cohort was low, it may be that the low number of events 

was also partly responsible for the observed lack of correlation.

The total LENT SOMA score for the patients was derived from subjective criteria (breast 

pain intensity, analgesia requirement); objective criteria (retraction, breast oedema, skin 

ulceration, telangiectasia, fibrosis); and management criteria (retraction, breast oedema and 

skin ulceration management). Thus it incorporated most recognised late radiation 

complications in the breast. A correlation was sought between the LENT SOMA score and 

the FDR(150). This is a measure of fibroblast intrinsic radiosensitivity. It is likely that 

fibroblast radiosensitivity is unrelated to a number of the factors studied e.g. breast 

oedema. Thus a correlation was specifically sought between FDR(150) and fibrosis score.

Correlation between residual DNA damage and late radiation endpoints

The residual DNA damage, in normal fibroblasts, as measured by PFGE did not correlate 

with clinical endpoints in the form of post-radiotherapy fibrosis. This did not support the 

findings of Kiltie et al (1999) which was performed in the same institution using identical 

equipment. There are likely to be a number of reasons for this. First, the two patient cohorts 

were studied at different times following radiotherapy. The training cohort was studied at 

1 0 -1 4  years post-treatment and the validation cohort at 3 - 4 years post-treatment. While 

there is some evidence that fibrosis may continue to progress over time (Bentzen et al, 

1990), this is poorly documented, but it may account for the results seen. Second, inter­

researcher variation may have played a part. Although retraction and telangiectasia were
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scored from photographs by the same three clinicians, the fibrosis scores were derived from 

a different researcher for each cohort. Both researchers were clinicians with a similar 

degree of experience in clinical oncology and late radiation toxicity. However, no formal 

assessment of their inter-individual variation was undertaken. Third, changes in treatment 

technique at the Christie Hospital over this period meant that the spread of late radiation 

toxicities observed was less in the validation cohort. This narrow range of toxicities may 

have obscured a weak correlation. More importantly, however, all degrees of late radiation 

toxicity were represented in the validation cohort, in reasonable proportions, making it less 

likely that a weak correlation was lost due to the experience of toxicity in the patients’ 

sampled. Finally, an important reason for the lack of a significant correlation is the fact that 

residual DNA damage in normal fibroblasts is not a robust clinical predictor of late 

radiation fibrosis.

In contrast, prospectively measured plasma TGFp 1 levels show promise in a number of 

situations. They are positively correlated with tumour burden and hence stage in cervical 

carcinoma (retrospectively) and head and neck carcinoma (prospectively). In cervical 

carcinoma, they are positively correlated with survival. This implies they may be of use as 

a prognostic factor. Prospective measurements of plasma TGFP 1 levels show promise in 

predicting acute radiation toxicity in patients with carcinoma of the head and neck. This 

merits further investigation in other tumour sites, especially where radiation is the main 

treatment modality. Acute radiation toxicity can lead to significant, albeit mostly self- 

limiting, morbidity. The ability to accurately predict those most at risk of acute radiation 

toxicity would allow targeting of limited support resources at those people with the highest 

risk of consequential late radiation morbidities. If a relationship between plasma T G Fpl
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levels and late radiation morbidity is demonstrated, then the ability to target trials of post­

radiation modifiers to those most likely to benefit is realised. In conclusion, plasma T G ppi 

levels show promise in the field of predictive testing.
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APPENDICES

Appendix 1 : Patient Information Sheet for Breast Carcinoma Study

DNA DOUBLE STRAND BREAKS AS A MEASURE OF 
INTRINSIC RADIOSENSITIVITY.

We would like to invite you to take part in a study which involves taking a 
small sample of skin and blood from patients treated by radiotherapy.

We know that when patients are given radiotherapy treatment, some are more 
likely to experience side effects from the treatment than others. We are 
developing two tests in the laboratory, one of which is carried out on blood 
samples from patients who have had radiotherapy. The other test is carried out 
on small samples of skin taken from the thighs of patients who have had 
radiotherapy in the past. It is hoped that this may identify patients who are 
more sensitive to the radiotherapy. Taking the sample will not affect any 
treatment you may be on. Any side effects you had during or after your 
treatment will be compared with the results of our tests in order to find out 
whether they could be used in the future to predict which patients are likely to 
experience side effects from their treatment.

You will be given local anaesthetic, which will numb the skin, then a tiny 
sample of skin will be taken from your upper thigh. You will not need any 
stitches. A swab will be put on, and this should be left for a week before being 
removed.

You are free to refuse to take part for any reason. This will not affect your 
relationship with your doctor.

Patient Name................................................  Hospital Number.

Contact name: Dr. Jeanette Dickson
Section of Genome Damage and Repair 
Paterson Institute for Cancer Research 
Christie Hospital NHS Trust 
Wilmslow Road 
Manchester M20 9BX

Contact telephone number: 0161 446 3528 (direct line)
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Appendix 2: Patient Information Sheet for Head and Neck 
Carcinoma Study

TRANSFORMING GROWTH FACTOR BETA 
MEASUREMENTS AS A PREDICTOR OF RESPONSE TO

RADIOTHERAPY

We would like to invite you to take part in our study.

Some people are more sensitive to radiotherapy treatment than others. At 
present we cannot tell these people apart. We are hoping to develop a blood 
test that will allow us to do this.

We want to take two blood samples, one before you start treatment, and one 
in the final week of treatment. The test will be performed on these samples, 
and the result compared with any effects which you experience during 
treatment.

You are completely free to refuse to take part in this study. It will not affect 
your treatment in any way.

Patient Name:............................................ Hospital Number............................

Contact Name: Dr Jeanette Dickson
Section of Genome Damage and Repair 
Paterson Institute for Cancer Research 
Christie Hospital NHS Trust 
Wilmslow Road 
Manchester M20 9BX

Contact Telephone Number: 0161 446 3528 (direct line)

206



Appendix 3: Pro forma for scoring clinical photographs

Breast Photograph Assessment Sheet

Investigators initials

SP number

Patients initials

Hospital number

Retraction/Atrophy: Ring the number that gives the most accurate representation of 
breast shrinkage

Degree of retraction or nil 0
atrophy 1 0 -2 5 % 1

2 5 -4 0 % 2
40 -  75% 3
100% 4

Telangiectasia in the whole breast: Ring the number that describes the average 
amount of telangiectasia in the whole breast

Telangiectasia in the none 0
rest of the breast minimal 1

moderate 2
severe 3

Body build and breast size: Ring the numbers which best describe the general body 
build and breast size of the patient

General body slight 1 Breast size small 1
build average 2 medium 2

heavy 3 large 3
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