
http://theses.gla.ac.uk/7217/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
THE SHIKIMATE PATHWAY: ENZYMES AND ANTIMICROBIALS

A thesis submitted in part fulfilment of the requirements of the degree of Doctor of Philosophy

Lorna Jeanette Noble
Department of Biochemistry and Molecular Biology
University of Glasgow
Glasgow G12 8QQ

9th April 2004

© Lorna Jeanette Noble
"A definition of insanity:

Doing the same thing over and over again, and hoping for a different result."

Anon.
Acknowledgements

I would like to thank my supervisor, Professor John R. Coggins for all his help and advice during my PhD. Thanks also to Professor Nick Price and Dr. Sharon Kelly for advice and help with enzyme kinetics, and Dr. Richard Hartley for advice on the chemical syntheses.

Thanks must also go to the Wellcome Trust for funding my research as part of the Wellcome Four-year PhD Programme at the University of Glasgow, to Universities UK for an Overseas Research Studentship Award, and to the University of Glasgow for waiving the ‘foreign’ portion of my fees in my final year of study.

My thanks to Mr John Greene for help with enzyme assays and purification, Dr. Kirsten Fleming for help with HPLC purification, and Mr Bill Mullen and Dr. Andy Pitt for HPLC-mass spectrometry and HPLC purification.

Thanks to the technical staff in the Chemistry Department: Dr. David Rycroft and Mr Jim Gall for NMR spectroscopy; Mrs Victoria Thompson and Mrs Kim Wilson for help with IR spectroscopy and microanalysis; and Mr Tony Ritchie and Mr Jim Tweedie for mass spectrometry.

My thanks to the students in both laboratories for help, advice, and tolerance: Duncan, Gillian and Mairi in Chemistry; and Kirsten, Lewis, Dave and Bernhard in Biochemistry.

Finally, my thanks to my husband John for an apparently limitless supply of patience and support over the past four years.
Contents

Acknowledgements .......................................................................................................... ii

Contents .......................................................................................................................... iii

Abbreviations .................................................................................................................... vii

Summary ............................................................................................................................. xii

1 The Shikimate Pathway ........................................................................................... 1

1.1 Overview .................................................................................................................... 1

1.2 The 'main trunk' enzymes of the shikimate pathway ............................................ 5

1.2.1 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase ....................................... 5

1.2.2 DHQ synthase ........................................................................................................ 6

1.2.3 Dehydroquinase .................................................................................................... 8

1.2.4 Shikimate dehydrogenase ....................................................................................... 9

1.2.5 Shikimate kinase .................................................................................................... 10

1.2.6 EPSP synthase ....................................................................................................... 11

1.2.7 Chorismate synthase .............................................................................................. 13

1.2.8 PABA synthase ..................................................................................................... 14

1.3 The Quinate Pathway ............................................................................................. 16

1.4 Known antimetabolites targeting the shikimate pathway ....................................... 18

1.5 (6S)-6-fluoroshikimic acid ....................................................................................... 23

1.5.1 Design of a drug candidate .................................................................................... 23

1.5.2 Modifications chosen/reasons ............................................................................... 23

1.5.3 Antibacterial action ............................................................................................... 25

1.5.4 Microbial resistance to (6S)-6-fluoroshikimic acid ................................................ 27

1.6 A possible solution to transport resistance: peptide based prodrugs ..................... 29

1.6.1 Prodrugs: an introduction ...................................................................................... 29

1.6.2 Transport in bacterial cells .................................................................................... 30

1.6.2.1 The need for transport systems .............................................................................. 30
1.6.2.2 Why peptides are transported

1.6.3 Peptide transport in *E. coli* and *S. typhimurium*

1.6.3.1 Binding-protein-dependent transport systems

1.6.3.2 The oligopeptide permease

1.6.4 Examples of peptide-based prodrugs

2 (6S)-6-fluoroshikimic acid

2.1 Published syntheses of 6-fluoroshikimic acids

2.1.1 From quinic acid

2.1.2 By biotransformation from 3-fluoro-phosphoenolpyruvate

2.1.3 From shikimic acid

2.2 Results: attempted syntheses of (6S)-6-fluoroshikimic acid

2.2.1 Biotransformation from 3-fluoroPEP

2.2.1.1 Enzyme preparation

2.2.1.2 Model studies using PEP

2.2.1.3 Biotransformation from 3-fluoroDAHP

2.2.1.4 Biotransformation from 3-fluoroPEP

2.2.2 Synthesis from shikimic acid

2.3 Conclusions and future work

3 Peptide-shikimate conjugates as prodrugs

3.1 Prodrugs

3.2 The oligopeptide permease as a prodrug target

3.3 Peptides conjugated to (6S)-6-fluoroshikimic acid

3.3.1 Design

3.3.2 Proof of concept: N-e-shikimoyl-L-lysyl-L-phenylalanine

3.3.3 Model syntheses: tripeptide shikimate conjugates on solid phase

3.3.4 Tripeptide (6S)-6-fluoroshikimic acid conjugates on solid phase

3.3.5 Biological testing of (6S)-6-fluoroshikimic acid conjugates

3.4 Conclusions/Future Work
4 Dehydroquinase and 3-dehydroquinic acid ........................................................... 82
4.1 Brief Introduction ................................................................................................................ 82
4.2 Rationale for a new synthesis of 3-dehydroquinic acid ................................................... 84
4.3 Published syntheses of 3-dehydroquinic acid ................................................................... 85
  4.3.1 Nitric acid ...................................................................................................................... 85
  4.3.2 Pt catalysed oxidation ................................................................................................... 86
  4.3.3 Formal synthesis to methyl ester .................................................................................. 86
  4.3.4 Benzyldiene acetal/lactone protection ......................................................................... 88
4.4 Results and Discussion ........................................................................................................ 91
  4.4.1 BBA ............................................................................................................................... 91
  4.4.2 Dispoke ....................................................................................................................... 103
  4.4.3 Benzyldiene acetal ...................................................................................................... 106
  4.4.4 Direct lactonisation and deprotection ........................................................................ 109
4.5 Kinetic studies using the 3-dehydroquinic acid synthesised ........................................ 111
  4.5.1 Background ................................................................................................................. 111
  4.5.2 The reaction catalysed by type II dehydroquinases ................................................... 113
  4.5.3 Stopped-flow kinetic analysis: Results ...................................................................... 115
  4.5.4 Steady state kinetic analysis: Results ......................................................................... 115
4.6 Conclusions and future work ........................................................................................... 118

Experimental ................................................................................................................. 119
5.1 Starting materials and solvents: ....................................................................................... 119
5.2 Apparatus: .......................................................................................................................... 121
5.3 Enzyme sources and specific activity .............................................................................. 122
5.4 General procedures: .......................................................................................................... 124
  5.4.1 Enzyme assays ............................................................................................................ 124
  5.4.2 Chemical assays .......................................................................................................... 126
  5.4.3 Fmoc-based solid-phase peptide synthesis ................................................................ 127
5.5 Experimental for Chapter 2 ............................................................................................. 130
Appendix 1: (6S)-6-Fluoroshikimic acid 1

Appendix 2: Model compounds - Peptide shikimate conjugates (88a - e)

L-alanyl-L-alanyl-N-ε-shikimoyl-L-lysine 88a
L-leucyl-L-leucyl-N-ε-shikimoyl-L-lysine 88b
L-phenylalanyl-L-phenylalanyl-N-ε-shikimoyl-L-lysine 88c
L-seryl-L-seryl-N-ε-shikimoyl-L-lysine 88d
L-glutamoyl-L-glutamoyl-N-ε-shikimoyl-L-lysine 88e

Appendix 3: Peptide - (6S)-6-Fluoroshikimate conjugates (4 - 8)

L-alanyl-L-alanyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 4
L-leucyl-L-leucyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 5
L-phenylalanyl-L-phenylalanyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 6
L-seryl-L-seryl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 7
L-glutamoyl-L-glutamoyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 8
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ADC</td>
<td>4-amino-4-deoxychorismate</td>
</tr>
<tr>
<td>ADC synthase</td>
<td>4-amino-4-deoxychorismate synthase</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>Arg</td>
<td>arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>aspartamine</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>ATP-ase</td>
<td>adenosine triphosphate hydrolase</td>
</tr>
<tr>
<td>AU</td>
<td>absorbance units, measured at a given wavelength on an HP8453 diode array spectrophotometer</td>
</tr>
<tr>
<td>BBA</td>
<td>butane bisacetal</td>
</tr>
<tr>
<td>bisDHP</td>
<td>3,3’,4,4’-tetrahydro-6,6’-spirobi-2H-pyran</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>BOP</td>
<td>benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>BTP</td>
<td>1,3-bis(tris(hydroxy-methyl)methylamino)propane</td>
</tr>
<tr>
<td>Castro’s reagent</td>
<td>see BOP</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CSA</td>
<td>(±)-10-camphorsulfonic acid</td>
</tr>
<tr>
<td>DAHP</td>
<td>3-deoxy-D-arabino-heptulosonate-7-phosphate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>DAHPS, DAHP</td>
<td>phospho-2-hydro-3-deoxyheptonate aldolase synthase</td>
</tr>
<tr>
<td>DAST</td>
<td>(N,N)-diethylaminosulfur trifluoride</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ane</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DHQ</td>
<td>3-dehydroquinic acid</td>
</tr>
<tr>
<td>5-DHQ</td>
<td>5-dehydroquinic acid</td>
</tr>
<tr>
<td>DHQase</td>
<td>3-dehydroquinate dehydratase</td>
</tr>
<tr>
<td>DHQS, DHQ synthase</td>
<td>7-phospho-3-deoxy-D-arabino-heptulosonate phosphate lyase</td>
</tr>
<tr>
<td>DHS</td>
<td>3-dehydroshikimic acid</td>
</tr>
<tr>
<td>DIC</td>
<td>di-isopropylcarbodiimide</td>
</tr>
<tr>
<td>DMAP</td>
<td>4,4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-demethylformamide</td>
</tr>
<tr>
<td>Dpp</td>
<td>dipeptide permease</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E1cB</td>
<td>unimolecular elimination reaction, involving the conjugate base</td>
</tr>
<tr>
<td>E4P</td>
<td>D-erythrose 4-phosphate</td>
</tr>
<tr>
<td>EDC</td>
<td>1-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>EDC</td>
<td>1-(3-dimethylaminopropyl)-N-ethyl-carbodiimide hydrochloride</td>
</tr>
<tr>
<td>EPSP</td>
<td>enolpyruvyl shikimate 3-phosphate</td>
</tr>
<tr>
<td>EPSPS, EPSP synthase</td>
<td>phosphoenolpyruvate:3-phosphoshikimate 5-O(1-carboxyvinyl) transferase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Et&lt;sub&gt;3&lt;/sub&gt;N</td>
<td>triethylamine</td>
</tr>
<tr>
<td>F6P</td>
<td>D-fructose-6-phosphate</td>
</tr>
<tr>
<td>FMN</td>
<td>flavin mononucleotide</td>
</tr>
<tr>
<td>Fmoc</td>
<td>9-fluorenyl methoxycarbonyl</td>
</tr>
<tr>
<td>GATase</td>
<td>glutamine amidotransferase</td>
</tr>
<tr>
<td>β-glycerophosphate</td>
<td>glycerol-2-phosphate</td>
</tr>
<tr>
<td>glyphosate ®</td>
<td>N-(phosphonomethyl)-glycine</td>
</tr>
<tr>
<td>His</td>
<td>histidine</td>
</tr>
<tr>
<td>HOBr</td>
<td>1-hydroxybenzotriazole hydrate</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogluco.pyranoside</td>
</tr>
<tr>
<td>k&lt;sub&gt;cat&lt;/sub&gt;</td>
<td>turnover number, number of molecules reacted per unit time</td>
</tr>
<tr>
<td>K&lt;sub&gt;i&lt;/sub&gt;</td>
<td>dissociation constant of an enzyme inhibitor</td>
</tr>
<tr>
<td>k&lt;sub&gt;M&lt;/sub&gt;</td>
<td>the substrate concentration at which the rate of reaction is half the maximal rate; approximates to the dissociation constant of the enzyme-substrate complex</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>Martin's reagent</td>
<td>[PhC(CF&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;O]&lt;sub&gt;2&lt;/sub&gt;SPh&lt;sub&gt;2&lt;/sub&gt;</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>MOPS</td>
<td>4-morpholinepropanesulfonic acid</td>
</tr>
<tr>
<td>M&lt;sub&gt;r&lt;/sub&gt;</td>
<td>relative molecular weight</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin-resistant &lt;i&gt;Staphylococcus aureus&lt;/i&gt;</td>
</tr>
<tr>
<td>ms</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>ms/ms</td>
<td>sequential mass spectrometry-mass spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mtt</td>
<td>4-methyltrityl</td>
</tr>
<tr>
<td>NADH, NAD⁺</td>
<td>β-nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH, NADP⁺</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMO</td>
<td>N-methylmorpholine N-oxide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Opp</td>
<td>oligopeptide permease</td>
</tr>
<tr>
<td>PABA</td>
<td>para-aminobenzoic acid</td>
</tr>
<tr>
<td>PD₅₀</td>
<td>the dose of a pharmaceutical at which 50% of test subjects are protected against e.g. bacterial challenge</td>
</tr>
<tr>
<td>PDC</td>
<td>pyridinium dichromate</td>
</tr>
<tr>
<td>PEP</td>
<td>phosphoenol pyruvate</td>
</tr>
<tr>
<td>Petrol</td>
<td>petroleum ether (40°C-60°C)</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>PLP</td>
<td>pyridoxal-5'-phosphate</td>
</tr>
<tr>
<td>Pro</td>
<td>proline</td>
</tr>
<tr>
<td>pTsOH</td>
<td>para-toluenesulfonic acid</td>
</tr>
<tr>
<td>S3P</td>
<td>shikimate-3-phosphate</td>
</tr>
<tr>
<td>SDHase</td>
<td>shikimate dehydrogenase</td>
</tr>
<tr>
<td>SHK</td>
<td>shikimic acid</td>
</tr>
<tr>
<td>Sₙ₁</td>
<td>unimolecular nucleophilic substitution</td>
</tr>
<tr>
<td>Sₙ₂</td>
<td>bimolecular nucleophilic substitution</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TBDMSCl</td>
<td>tert-butyldimethylsilyl chloride</td>
</tr>
<tr>
<td>TBDMSOTf</td>
<td>tert-butyldimethylsilyl triflate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>Tf$_2$O</td>
<td>trifluoromethanesulfonic anhydride</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Thiobarbituric acid</td>
<td>4,6-dihydroxypyrimidine-2-thiol</td>
</tr>
<tr>
<td>TIPS</td>
<td>tri-isopropylsilane</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMB</td>
<td>1,1,2,2-tetramethoxybutane</td>
</tr>
<tr>
<td>TMC</td>
<td>1,1,2,2-tetramethoxycyclohexane</td>
</tr>
<tr>
<td>TPAP</td>
<td>tetrapropylammonium perruthenate</td>
</tr>
<tr>
<td>TPP</td>
<td>thiamine pyrophosphate, cocarboxylase</td>
</tr>
<tr>
<td>Tpp</td>
<td>tripeptide permease</td>
</tr>
<tr>
<td>Tris.HCl</td>
<td>Tris(hydroxymethyl)aminomethane hydrochloride</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>tyrosine</td>
</tr>
<tr>
<td>unit</td>
<td>one unit of enzyme activity is the amount of enzyme catalysing the formation of 1 $\mu$mol of product per minute under specified conditions of pH, buffer composition, and temperature</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>Z</td>
<td>benzyloxy carbonyl</td>
</tr>
</tbody>
</table>
Summary

(6S)-6-Fluoroshikimic acid 1 was developed as a potential antimicrobial which was converted to 6-fluorochorismate 2 and hence targeted the post-chorismate pathway to p-aminobenzoic acid 2 and folic acid (fig. 1). Although successful against microbial challenge, resistance developed rapidly. This resistance was found to be due to mutation at the shiA locus which codes for a transporter required for the entry of shikimic acid into bacterial cells.

![Figure 1: Mechanism of action of (6S)-6-fluoroshikimic acid](image)

In the initial part of our research, we aimed to synthesise five peptide-based 'smugglins' 4-8 which would target the oligopeptide permease and hence provide a route for the entry of (6S)-6-fluoroshikimic acid into bacterial cells (fig. 2).

![Figure 2: Smugglins designed to target the oligopeptide permease](image)

Attempts to synthesise the required (6S)-6-fluoroshikimic acid 1 by biotransformation from erythrose-4-phosphate and fluoro-phosphoenolpyruvate were not successful. However, a published route from shikimic acid 9 eventually provided sufficient material
for the synthesis of the test compounds (fig. 3). The details of these syntheses are described in Chapter 2.

Figure 3: Published route to (6S)-6-fluoroshikimic acid from shikimic acid

The smugglins were synthesised using standard Fmoc-based solid-phase peptide synthesis using DIC/HOBT to catalyse peptide coupling and BOP/Et$_3$N to catalyse the coupling of (6S)-6-fluoroshikimic acid to the peptide moiety. Testing of the phenylalanine and leucine-based smugglins 5 and 6 (fig. 2) for antibacterial activity against wild-type *Escherichia coli* has so far been unsuccessful. Details of these syntheses and investigations are described in Chapter 3.

As a secondary aim a route to pure 3-dehydroquinic acid (DHQ) 10, required for the kinetic analysis of 3-dehydroquinate dehydratase (DHQase), was investigated. Initial attempts using acetal protecting groups developed to be selective for diequatorial diols were unsuccessful. However, modification of a published route to halogenated derivatives of dehydroquinic acid gave DHQ in good yield on a gram scale (fig. 4).

Figure 4: Route to DHQ from quinic acid

This pure DHQ was then used for the kinetic investigation of the type II DHQase from *Helicobacter pylori* and a mutant type II DHQase: *Bacillus subtilis* F28Y. Details of these syntheses and investigations are described in Chapter 4.
1 The Shikimate Pathway

1.1 Overview

Shikimic acid 9 was first isolated in 1885 by J.F. Eykmann from the fruits of *Illicium religiosum* and *Illicium anisatum* (Eijkman, 1885; Eykmann, 1891). Its fundamental role in the pathway which takes its name was eventually recognised by Davis (Davis, 1955).

The shikimate pathway (fig. 5) is a complex, branching metabolic pathway leading to the aromatic amino acids found in proteins (Phe, Trp, Tyr), *p*-aminobenzoic acid (PABA) which is the precursor of folic acid, the lipid-soluble isoprenoid quinones involved in electron transport, and the structural polymer lignin. The pathway is also a major source of secondary metabolites (those compounds which are produced by specific organisms for purposes other than the basic requirements of growth) such as phenols and alkaloids in plants and antibiotics in micro-organisms. For reviews on the biosynthesis of shikimate metabolites, see the series in *Natural Product Reports*, most recently authored by Andrew Knaggs (Knaggs, 2003). For an overview of the entire pathway, see Ronald Bentley's detailed study (Bentley, 1990) and Edwin Haslam's book (Haslam, 1993); along with two reviews which focus only on the 'main trunk' of the pathway to chorismate (Mousdale & Coggins, 1993; Herrmann & Weaver, 1999). Additionally, a review focussing on the chemical aspects of the shikimate pathway was published in 1998 (Jiang & Singh, 1998).

Depending on the organism studied, the central enzymes of the shikimate pathway (DHQ synthase to EPSP synthase) exist singly or in the form of multifunctional enzymes. In *Neurospora crassa*, *Aspergillus nidulans* and *Saccharomyces cerevisiae* as well as other
fungal species, the enzymes are found in the form of the *arom* multi-functional enzyme encoded by a single gene (Lumsden & Coggins, 1977; Coggins & Boocock, 1986; Duncan *et al.*, 1987). In contrast, the corresponding enzymes in *Escherichia coli* exist as five monofunctional enzymes encoded by genes dispersed throughout the genome (Coggins *et al.*, 1985). Many suggestions have been put forward as to why multifunctional enzymes exist, but the most convincing advantages would seem to be co-ordinate regulation of enzyme activity and of gene transcription, with protection of unstable reaction intermediates, and spatial organisation of enzyme functions as a secondary advantage (Hardie & Coggins, 1986).

As is the case with many other long biosynthetic pathways leading to amino acids, vitamins and nucleotides, the enzymes of the shikimate pathway have been lost by vertebrates. This is believed to be due to the high metabolic cost of maintaining the enzymes while the products can be obtained from the diet. As mammals are thus unable to synthesise aromatic compounds by this route, the enzymes of the shikimate pathway are attractive targets in the search for novel antimetabolites (Kishore & Shah, 1988; Payne *et al.*, 2000)
Figure 5: The Shikimate Pathway
The pathway has long been known to exist in plants, archaea, bacteria, and fungi (Bentley, 1990). The recent discovery of shikimate pathway enzymes in apicomplexan parasites, including the clinically important *Plasmodium* (malaria), *Cryptosporidium* and *Toxoplasma* species, has given further impetus to the search for effective enzyme inhibitors and hence possible pharmaceuticals (Roberts *et al.*, 1998; Keeling *et al.*, 1999; McConkey, 1999; Roberts *et al.*, 2002). It is believed that the apicomplexa are vulnerable to compounds which target bacterial enzymes due to the presence of a plastid, the apicoplast, which is thought to be the result of endosymbiosis of a cyanobacterial-like cell (McFadden & Roos, 1999).

Mutation or deletion of shikimate pathway genes in pathogenic species results in attenuated strains which are non-infective and non-viable *in vivo* (Poirer *et al.*, 1988). These have been used in the development of live oral vaccine candidates against *Salmonella typhimurium*, *Shigella flexneri* and the fish pathogen *Aeromonas salmonicida* (Hoiseth & Stocker, 1981; Dougan *et al.*, 1988; Edwards & Stocker, 1988; Verma & Lindberg, 1991; Vaughan *et al.*, 1993). Additionally, with the resurgence of tuberculosis world-wide, evidence that the shikimate pathway is essential for the viability of *Mycobacterium tuberculosis* has provided not only the possibility of new treatments, but also of new and more effective vaccines based on attenuated strains (Parish & Stoker, 2002).
1.2 The ‘main trunk’ enzymes of the shikimate pathway

1.2.1 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase

![Chemical structure of 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase catalysed reaction]

3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyses the formation of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) 13 from phosphoenolpyruvate (PEP) 11 and D-erythrose 4-phosphate (E4P) 12 and is properly referred to as phospho-2-hydro-3-deoxyheptonate aldolase, EC 4.1.2.15 (fig. 6). DAHP synthase activity was unequivocally detected in 1959 in *E. coli* cells and has since been observed in many microbial and plant sources (Srinivasan *et al.*, 1959).

Various different DAHP synthase isoforms have been identified in bacteria and plants due to the wide variety of feedback mechanisms involved in controlling carbon flow through the shikimate pathway by means of DAHP synthase regulation. The catalytic activity and actual concentration of certain DAHP synthase isoforms are affected by availability or otherwise of end-products such as the aromatic amino acids and caffeic acid (a secondary metabolite); or intermediates such as chorismic acid (Bentley, 1990).

In wild-type *E. coli* cells three DAHP synthase isoforms, each inhibited by a single aromatic amino acid, are encoded by the genes *aroF* (tyrosine sensitive), *aroG*
(phenylalanine-sensitive) and *aroH* (tryptophan-sensitive) (Jensen & Nasser, 1968).

DAHPS(Phe), which is a homotetramer, is the major isoform and constitutes around 75% of activity in wild-type cells (McCandliss *et al.*, 1978). DAHPS(Trp), which contributes less than 1% of activity, and DAHPS(Tyr), which contributes 25%, are homodimers (Schoner & Herrmann, 1976; Akowski & Bauerle, 1997).

It was originally believed that DAHP synthases could be divided into two groups: those found in plants, and those found in microbes (Herrmann, 1995; Weaver *et al.*, 1993). It has since been shown that plant-like DAHP synthase enzymes (*M*$_r$ ~ 54 000) exist in *Streptomyces spp.* as well as in *Neurospora crassa* (Walker *et al.*, 1996). The *E. coli*-like DAHP synthases (*M*$_r$ ~ 40 000) have therefore been renamed ‘type I’, and the plant-like enzymes ‘type II’.

The first DAHP synthase enzyme to be purified was the tryptophan-sensitive isozyme from *N. crassa* (Nimmo & Coggins, 1981). The first X-ray crystal structure obtained was of the phenylalanine-sensitive isozyme from *E. coli* (Shumilin *et al.*, 1999). The structure was confirmed as a dimer of two tight dimers, with the interesting proposal that four amino acid substitutions seen in DAHPS(Tyr) and DAHPS(Trp) would eliminate the hydrophobic interactions forming the tetramer to give the observed dimeric structures for these enzymes.

### 1.2.2 DHQ synthase

More properly known as 7-phospho-3-deoxy-D-arabino-heptulosonate phosphate lyase (EC 4.6.1.3), 3-dehydroquinate (DHQ) synthase catalyses the formation of DHQ 10 from DAHP 13 (*fig. 7*).
DHQ synthase from *E. coli* has been purified by various groups with a particularly high-yielding overexpression system reported by Frost (Frost et al., 1984; Mehdi et al., 1987). The enzyme has an absolute requirement for both NAD$^+$ and a divalent metal cation generally believed to be Zn$^{2+}$ (Lambert et al., 1985).

The reaction catalysed by DHQ synthase was initially believed to be an extreme example of the capabilities of a single active site as it involves oxidation, β-elimination, reduction, and an intramolecular aldol reaction (Bartlett et al., 1988). Later work demonstrated that the enzyme functions mainly as a dehydrogenase and structural template with elimination spontaneously following oxidation, and the aldol reaction occurring even in the absence of the enzyme (Widlanski et al., 1989; Bartlett et al., 1994).

The structure of the DHQ synthase domain of the AROM protein from *Aspergillus nidulans* has been determined by X-ray crystallography (Carpenter et al., 1998). The enzyme is a homodimer with the active site located in the cleft between the two domains of each monomer. The authors propose that while many of the steps in DHQ synthesis may not be catalysed by the enzyme, reaction intermediates may be stabilised by interactions with the active site. This would explain the presence of reaction byproducts in the non-catalysed
formation of DHQ, and their absence in the enzyme-catalysed synthesis (Bartlett et al., 1994).

1.1.3 Dehydroquinase

The enzyme which converts DHQ 10 to 3-dehydroshikimic acid (DHS) 14 is correctly referred to as 3-dehydroquininate dehydratase (EC 4.2.1.10) (fig. 8).

Dehydroquinase (DHQase) enzymes occur in two distinct forms with differing chemical and biochemical properties (Kleanthous et al., 1992). Type I enzymes occur in the shikimate pathway in fungi, plants and some bacteria. They are dimeric and catalyse a syn-elimination of water via an imine intermediate involving a conserved lysine residue (Butler et al., 1986; Chaudhuri et al., 1991; Smith et al., 1970; Schneier et al., 1991). Type II DHQases are found in the quinate pathway of fungi and the shikimate pathway of many bacteria. They are dodecameric and catalyse an anti-elimination of water via an enolate intermediate (Harris et al., 1993; Harris et al., 1996).

The two types of DHQase are unrelated at the sequence level, and X-ray crystal analysis has shown them to be structurally unrelated (Gourley et al., 1999; Roszak et al., 2002). The dimeric type I enzyme possesses an α/β barrel structure, while the type II enzyme has a
flavodoxin-like fold with subunits arranged as a tetramer of trimers. These differences are consistent with the differing stereochemical and mechanistic paths of the dehydration reactions catalysed by the two types of DHQase.

1.1.4 Shikimate dehydrogenase

Shikimate dehydrogenase (EC 1.1.1.25) converts DHS 14 to shikimic acid (SHK) 9 using NADPH as the reducing agent (fig. 9). As a result, it has been termed shikimate:NADP⁺ oxido-reductase, but is commonly abbreviated to SDHase.

![Figure 9: The reaction catalysed by shikimate dehydrogenase](image)

In *E. coli* the enzyme is encoded by the aroE gene, and is monomeric with Mr ~ 32 000 (Chaudhuri & Coggins, 1985). In plants bifunctional DHQase:shikimate dehydrogenase enzymes have been described as well as the monofunctional shikimate dehydrogenases (Lourenco & Neves, 1984; Blume & McClure, 1980).

The enzyme has an absolute requirement for a C-4 hydroxyl in the substrate and shows a stereochemical bias towards compounds with the S configuration at both C-1 and C-4 (Bugg, 1988).

Shikimate dehydrogenase from *E. coli* has been crystallised (Michel *et al.*, 2003). The enzyme consists of two α/β domains separated by a cleft in which NADP is bound in the
crystallised protein. The observation of protein molecules in ‘open’ and ‘closed’ forms in the crystal structure was taken as evidence of a conformational change on substrate binding in which the cleft between the domains closes.

1.1.5 Shikimate kinase

Shikimate kinase (EC 2.7.1.71) catalyses the transfer of phosphate from ATP to the C-3-hydroxyl of shikimic acid 9 to form shikimate-3-phosphate (S3P) 15 (fig. 10).

\[
\begin{align*}
\text{ATP} & \quad \xrightarrow{\text{shikimate kinase}} \quad \text{S3P} \\
9 & \quad \xrightarrow{\text{shikimate kinase}} \quad 15
\end{align*}
\]

Figure 10: The reaction catalysed by shikimate kinase

Shikimate kinase exists in isozymic forms in both \textit{E. coli} and \textit{S. typhimurium} (Haslam, 1993; Pittard, 1996). In \textit{E. coli}, shikimate kinase I is encoded by the \textit{aroK} gene, and shikimate kinase II by the \textit{aroL} gene (Millar \textit{et al}., 1986; Lobnerolesen & Marinus, 1992). The proteins are similar in length, and have 30% sequence homology (Whipp, 1995). The enzymes do, however, have widely differing affinities for shikimic acid. Shikimate kinase I has an affinity in excess of 20 mM, while that of shikimate kinase II is 200 \mu M (DeFeyter & Pittard, 1986; Millar \textit{et al}., 1986). This suggests that shikimate kinase II normally functions in the biosynthetic shikimate pathway while shikimate kinase I is believed to have an alternative biological role (DeFeyter & Pittard, 1986; Vinella \textit{et al}., 1996).
E. coli shikimate kinase II is monomeric with Mr ~ 19 000 and has an absolute requirement for a divalent metal cation, believed to be Mg$^{2+}$ (Krell et al., 1998). The type II enzyme from Erwinia chrysanthemi, which has 53 % amino acid sequence identity with the E. coli enzyme, has been crystallised in the presence of Mg-ADP (Krell et al., 1998). The enzyme is an α/β protein which resembles adenylate kinase in that it has a central nucleotide-binding core with two flexible domains. Evidence for significant structural change on substrate and cofactor binding due to induced-fit movement was observed using circular dichroism (CD) spectra.

1.1.6 EPSP synthase

With such a lengthy formal name, it is unsurprising that phosphoenolpyruvate:3-phosphoshikimate 5-O(1-carboxyvinyl)transferase (EC 2.5.1.19) should more commonly be referred to as EPSP synthase. Catalysing the reaction between shikimate 3-phosphate 15 and PEP (fig. 11) this enzyme is the target of the post-emergence herbicide glyphosate (Steinrücken & Amrhein, 1980; Boocock & Coggins, 1983; Krell et al., 1988). As a result, the structure and mechanism have been intensively studied.

![Figure 11: The reaction catalysed by EPSP synthase](image)

In E. coli, monofunctional EPSP synthase is encoded by the aroA gene and has M, ~ 46 000 (Lewendon & Coggins, 1983; Duncan et al., 1984). In S. typhimurium, the causative agent - 11 -
of typhoid fever, EPSP synthase has only 11% amino acid sequence divergence from the
*E. coli* enzyme (Stalker et al., 1985). In both organisms, expression of *aroA* is linked to
that of *serC*, which codes for 3-phosphoserine aminotransferase, in an unusual mixed-
function operon (Duncan & Coggins, 1986; Hoiseth & Stocker, 1985). Overexpression of
EPSP synthase in *E. coli* results in resistance to glyphosate (Duncan et al., 1984).

In plants, EPSP synthase is found in the stromal fraction of chloroplasts (Mousdale &
Coggins, 1984). Plant EPSP synthases show significant homology with bacterial enzymes,
which can function in plants provided the chloroplast transit sequence has been added to the
enzyme (della-Cioppa et al., 1987). A great deal of research effort has been concentrated
on the development of glyphosate-resistant lines. This has involved the overexpression of
EPSP synthase, modification of the enzyme to reduce sensitivity to the inhibitor, or
modification to increase the specific activity of the enzyme (Rogers et al., 1983; Amrhein
et al., 1983; Shah et al., 1986; Comai et al., 1983; Comai et al., 1985; Stalker, 1985;
Steinrücke, 1986).

EPSP synthase has been crystallised in the presence and absence of glyphosate. (Abdel-
Meguid et al., 1985; Stallings et al., 1991; Schönbrunn et al., 2001). The enzyme consists
of two globular domains which are roughly equal in size. The ligand binding site is
situated at the interface between the domains where the macrodipole effect of multiple α-
helices is believed to result in the accumulation of positive charge (Stallings et al., 1991).
Substrate binding induces a radical change in conformation as the cleft between the
domains closes.
1.1.7 Chorismate synthase

The enzyme catalysing the 1,4-elimination of phosphate from EPSP 16 to give chorismate 17 is correctly named \( O^5-(1\text{-carboxyvinyl})-3\text{-phosphoshikimate phosphate lyase} \) (EC 4.6.1.4) but more commonly referred to as chorismate synthase (fig. 12).

The reaction is unusual in two respects. Firstly, elimination is \textit{anti} with loss of the C-6\( \text{H}_r \) proton, and secondly, there is an absolute requirement for a reduced flavin cofactor in catalysis even though there is no change in the overall oxidation state of the substrate (Hill & Newkome, 1969; Onderka & Floss, 1969; Welch \textit{et al.}, 1974). In addition, despite intensive study, the mechanism of the reaction has not yet been conclusively proven (Macheroux \textit{et al.}, 1999; Bornemann, 2002).

Chorismate synthases can be divided into two groups based on the way in which the reduced flavin cofactor is obtained. Monofunctional chorismate synthases such as those found in \textit{E. coli} and plants require the presence of reduced FMN in the environment. Bifunctional chorismate synthases, generally fungal, possess an intrinsic flavin reductase activity which uses NADPH to reduce FMN (White \textit{et al.}, 1988). There is a third type, exemplified by the \textit{B. subtilis} enzyme, which associates with a separate NADPH:FMN oxidoreductase (Hasan & Nester, 1978). Early data suggested that large chorismate
synthase enzymes (Mr ~ 50 000) were bifunctional, while smaller ones (Mr ~ 40 000) were monofunctional (White et al., 1988). However, the small bifunctional enzyme from *Saccharomyces cerevisiae* (Mr 40 800) runs counter to this classification (Henstrand et al., 1995; Henstrand et al., 1996).

The x-ray crystal structure of chorismate synthase has not been published.

1.1.8 PABA synthase

![Diagram of PABA synthesis](image)

4-Aminobenzoic acid (*p*-aminobenzoic acid, PABA) 3 is an essential component of dihydrofolate which acts as a 1-C carrier in biosynthesis. The conversion of chorismate 17 to PABA is a two-step process (fig. 13) (Nichols et al., 1989). The first step, catalysed by ADC synthase, is the reversible amination of chorismate to give ADC 18 (Anderson et al., 1991). ADC synthase consists of two non-identical subunits: a glutamine amidotransferase...
(GATase) encoded by the \textit{pab}A gene, and the ADC synthase proper, encoded by the \textit{pab}B
gene (Kaplan & Nichols, 1983; Ye, \textit{et al.}, 1990). ADC synthase requires both glutamine
and Mg$^{2+}$ for activity. The GATase activity is conditional on complex formation, while
ADC synthase activity is increased fourfold in the complex compared to the isolated
subunit (Roux & Walsh, 1992; Viswanathan \textit{et al.}, 1995).

The second step is the cleavage of pyruvate from ADC to give PABA 3. This is carried out
by ADC pyruvate lyase which is encoded by the \textit{pab}C gene (Greene & Nichols, 1991;
Green \textit{et al.}, 1992). Pyridoxal-5'\-phosphate (PLP) acts as a cofactor in this reaction. ADC
pyruvate lyase has been crystallised and the structure determined using X-ray
crystallography (Nakai \textit{et al.}, 2000). The enzyme is a homodimer with $M, 60\,000$. Each
subunit consists of a small N-terminal domain and a larger C-terminal domain, with the
active site of the enzyme (and the site of PLP binding) situated at the domain and subunit
interface.
1.2 The Quinate Pathway

Quinic acid esters are common storage compounds in plants and quinic acid may consist of up to 10% by weight of decaying leaves (Hawkins et al., 1993). This abundant source of carbon is utilised by saprophytic organisms by means of a group of inducible catabolic enzymes.

Figure 14: The inducible catabolic quinate pathway
Quinic acid 19 is initially converted to protocatechuic acid 20 and hence, via the β-ketoadipate pathway and oxidative cleavage of the aromatic ring, to acetyl CoA and succinic acid (fig. 14) (Gross, 1958; Ornston & Stanier, 1966).

The enzymes required for quinate utilisation are tightly regulated, being induced by the presence of quinic acid but inhibited by other, preferred, sources of carbon such as glucose (Giles et al., 1985; Grant et al., 1988). Of interest to our work is the fact that the DHQase isoenzyme found in the quinate pathway is entirely separate from that found in the shikimate pathway, having a different primary sequence, structure and mechanism of action (see Section 1.2 above) (Kleanthous et al., 1992).
1.3 Known antimetabolites targeting the shikimate pathway

The best-known inhibitor of a shikimate pathway enzyme is the non-specific post-emergence herbicide N-(phosphonomethyl)-glycine (glyphosate) which has been commercialised under the trade name Roundup®. The herbicidal action is due to inhibition of the enzyme EPSP synthase. EPSP synthase catalyses the transfer of the enolpyruvyl group from PEP 11 to the 5-hydroxyl of shikimate-3-phosphate 15 to give EPSP 16 and inorganic phosphate (Steinrücken & Amrhein, 1980; Mousdale & Coggins, 1984; Mousdale & Coggins, 1985; Kishore & Shah, 1988).

The reaction proceeds via a tetrahedral intermediate 21 (fig. 15), and it is this intermediate which is believed to be mimicked by the formation of a ternary complex 23 between shikimate-3-phosphate 15 and glyphosate 22 on the enzyme (fig. 16) (Boocock & Coggins, 1983; Anderson & Johnson, 1990; Schönbrunn et al., 2001).

Figure 15: EPSP synthase reaction
Various structural analogues of shikimate pathway substrates have been synthesised as potential inhibitors (fig. 17). The homophosphonate analogue of DAHP 24 inhibits DHQ synthase with $K_i = 2.5 \mu M$ (Reimer et al., 1986). The carbocyclic analogue 25 is more potent still with $K_i = 1.7 \mu M$ and the phosphonate equivalent 26 is the best known inhibitor of the enzyme with $K_i \sim 0.8 \text{nM}$ (Widlanski et al., 1989). The carbocyclic malonate 27 analogue ($K_i = 0.7 \mu M$) is inhibitory in the sub-micromolar range (Tian et al., 1996) while the cyclohexenyl equivalent 28, which was designed to mimic an E1cB-like transition state on the enzyme, is also inhibitory at nanomolar concentrations ($K_i = 8.6 \text{nM}$) (Montchamp and Frost, 1997).
The structural and mechanistic differences between type I and type II DHQases have been exploited in the design of specific inhibitors. The substrate analogues (2R)-2-bromodehydroquinate 29 and (2R)-2-fluorodehydroquininate 30 were designed as inhibitors of type I DHQase as they lacked the C-2-pro-R hydrogen while still being substrates for type II DHQases which require a C-2-pro-S hydrogen (fig. 18) (Gonzalez-Bello et al., 2000).

Compounds designed to selectively inhibit type II DHQases have been designed based on the structure of the M. tuberculosis DHQase (Gourley et al., 1999) and the type II enzyme from Streptomyces coelicolor (Roszak et al., 2002). Based on the fact that the elimination
catalysed by type II DHQases proceeds via an E1cB mechanism and is thought to involve an enolate intermediate four compounds modified at C-3 were tested against DHQases from a variety of organisms (Coggins et al., 2003). The carbonyl at C-3 is required for imine formation with type I enzymes, so it was expected that both 2,3-anhydroquinic acid 31 and the reduced equivalent 32 (Frederickson et al., 1999) would be selective for type II enzymes (fig. 19). The oxime 33 (Frederickson et al., 1999) and fluorinated analogue 34 (Frederickson et al., 2002) were designed to mimic the enolate intermediate. All were significantly better competitive inhibitors of the type II enzymes than of the type I enzyme tested (Coggins et al., 2003).

Halogenated derivatives of shikimic acid have also been investigated as possible inhibitors of shikimate pathway enzymes from shikimate kinase onwards (fig. 20). Modification at C-2 to give 2-bromo- 35 and 2-fluoroshikimic acids 36 was carried out using a combination of synthesis and biotransformation (Gonzalez-Bello et al., 1998). Modification at C-3 gave the (3R)- 37 and (3S)-fluoro 38 analogues of shikimic acid as well as the (3S)-chloro analogue 39 in syntheses starting from shikimic acid (Brettle et al., 1996a; Brettle et al., 1996b). The difluoro-substituted shikimic acid 40 was synthesised from quinic acid (Jiang et al., 1999). None of these compounds was tested against shikimate pathway enzymes.
By contrast, the 6-fluoroshikimic acids 41 and 1 were designed based on, amongst other considerations, the fact that the C-6 pro-R hydrogen is lost during the transformation of EPSP to chorismate (Davies et al., 1994).
1.4 (6S)-6-fluoroshikimic acid

1.4.1 Design of a drug candidate

In considering an enzyme inhibitor as a potential antimetabolite, a crucial issue is whether the targeted organism is able to obtain the end-products of the inhibited pathway from external sources or alternative biosynthetic routes. Mutations of enzymes in the shikimate pathway have been shown to result in severely attenuated strains of pathogenic organisms which have potential use as live vaccines (Hoiseth & Stocker, 1981; Poirer et al., 1988; Verma & Lindberg, 1991; Vaughan et al., 1993). These ‘aro’ strains are unable to synthesise PABA, which is not imported into the cells, and hence have no source of the folate coenzymes involved in C-1 transfer in biosynthesis. In targeting the shikimate pathway, the ideal compound would therefore either be, or be converted into, a derivative of chorismate which could not be converted into PABA.

1.4.2 Modifications chosen/reasons

Shikimic acid was selected as a suitable candidate for modification as it is small, stable, and is known to be transported into bacterial cells (Pittard & Wallace, 1966; Pittard & Wallace, 1966b). Modification at C-6 was chosen as the conversion of EPSP to chorismate was known to proceed with the loss of the C-6 pro-R hydrogen. In substituting fluorine for hydrogen, the overall size and shape of the derivatives would be largely unchanged from the parent compound due to the similar atomic radii of the two atoms. As a result the modified compounds would be expected to bind to enzymes in a similar way to the natural substrate (Davies et al., 1994). The substitution would, however, have a significant effect
on the ability of enzymes to catalyse the normal sequence of reactions. The fluorine-carbon bond (552 kJ/mol) is almost twice as strong as the hydrogen-carbon bond (338 kJ/mol) making any elimination far less likely to occur, and the electronegativity difference between F and H suggested that enzyme-substrate interactions at this position would be disrupted.

Both (6R)-41 and (6S)-6-fluoroshikimic acids 1 were synthesised. The authors stated that they expected the (6R)-6-fluoro-compound to be converted to (6R)-6-fluoro-shikimate-3-phosphate 42 and hence to (6R)-6-fluoro-EPSP 43. This was expected to inhibit chorismate synthase as the normal elimination reaction would not be catalysed (fig. 21) (Davies et al., 1994).

![Figure 21: Expected transformation of (6R)-6-fluoroshikimic acid](image)

- 24 -
The authors also hoped that the (6S)-6-fluoro-derivative 1 would be converted to 2-fluorochorismate 2 via (6S)-6-fluoro-shikimate-3-phosphate 44 and (6S)-6-fluoro-EPSP 45. 2-Fluorochorismate 2 was expected to inhibit PABA synthase (fig. 22).

![Chemical Reaction Diagram]

**Figure 22: Expected transformation of (6S)-6-fluoroshikimic acid**

### 1.4.3 Antibacterial action

*In vitro* testing showed that (6R)-6-fluoroshikimic acid 41 was weakly antibacterial against wild-type *E. coli* grown on minimal medium with a minimum inhibitory concentration (MIC) of 64 μg.mL⁻¹. (6S)-6-Fluoroshikimic acid 1 was more potent, displaying MICs of between 0.25 and 0.1 μg.mL⁻¹ depending on the strain of *E. coli* tested. The inhibition of growth caused by (6S)-6-fluoroshikimic acid was reversed by the addition of *p*-aminobenzoic acid 3 to the growth medium, but not by the addition of any or all of the
aromatic amino acids phenylalanine, tyrosine or tryptophan. The slow formation of 2-
fluorochorismate 2 in the growth medium, along with the reversal of inhibition detailed
above were consistent with the theory that inhibition of PABA synthesis was crucial for the
antibacterial activity of (6S)-6-fluoroshikimic acid.

Earlier studies had already shown that both (6R)- and (6S)-6-fluoro-EPSP 43 and 44 are
inhibitors of chorismate synthase (Balasubramanian, 1991) but their conversion to 2-
fluorochorismate was not observed. More detailed studies, however, showed that (6S)-6-
fluoro-EPSP is converted to 6-fluorochorismate by the enzyme chorismate synthase
(Bornemann, 1995).

As (6S)-6-fluoroshikimic acid 1 was more effective as an antimicrobial in vitro it was tested
against bacterial challenge in mice. Immunocompromised mice (cyclophosphamide-
treated) were infected with ten times the lethal dose of the bacterial strains used, and then
injected peritoneally with the antibacterial compound being tested. The PD$_{50}$ (mg.kg$^{-1}$) of
(6S)-6-fluoroshikimic acid against the wild-type E. coli B was below 3.1, while against
Pseudomonas aeruginosa and Staphylococcus aureus it was 28. Cefotaxime was protective
at an almost identical dosage against S. aureus challenge, and while (6S)-6-fluoroshikimic
acid could not compare with vancomycin in the treatment of MRSA infection it was
effective at a four-fold lower dose than methicillin.

Under exactly the same test conditions, mice infected with a spontaneously resistant strain
of E. coli B (designated E. coli B12) were not protected by treatment with (6S)-6-
fluoroshikimic acid, confirming that the test compound was acting directly against the bacteria.

1.4.4 Microbial resistance to (6S)-6-fluoroshikimic acid

As resistance to (6S)-6-fluoroshikimic acid arose spontaneously after overnight incubation of a surface inoculum in the presence of the compound, further studies were undertaken in an attempt to determine the frequency and mechanism of resistance to (6S)-6-fluoroshikimic acid (Ewart, 1995). Four species of enterobacteria were investigated, and found to spontaneously develop resistance at frequencies between $10^{-6}$ and $10^{-2}$ with most being around $10^{-5}$. Resistant variants of *E. coli* K-12 were used for the biochemical and genetic study of resistance to (6S)-6-fluoroshikimic acid.

Uptake of $[^{14}C]$shikimate by the resistant strains was negligible, and all strains resistant to (6S)-6-fluoroshikimic acid were also resistant to (6R)-6-fluoroshikimic acid. This suggested that resistance was due to a change in the transport of shikimate into the bacterial cells. More detailed genetic analysis suggested that mutation at the *shiA* locus had occurred (Ewart, 1995). *ShiA* is one of the two known loci controlling shikimate uptake (Pittard & Wallace, 1966b; Brown & Doy, 1976; Whipp, 1998) and these results confirmed that resistance was most likely caused by a lack of uptake of shikimate in resistant strains.

Further work using various shikimate analogues in exchange-diffusion experiments with $[^{14}C]$shikimate showed that (6S)-6-fluoroshikimic acid is a substrate for the shikimate transport system (Jude, 1996). The authors also speculated that their experiments with
respiration inhibitors and uncouplers suggested that the shikimate transport system was in some way kinetically gated, and could be used to transport a variety of toxic shikimate analogues into cells. They cautioned, however, that the high frequency at which the transport system appeared to be lost under selective pressure meant that alternative transport mechanisms would have to be used along with the shikimate transport system in order to introduce these drugs into the bacterial cytoplasm.
1.5 A possible solution to transport resistance: peptide based prodrugs

1.5.1 Prodrugs: an introduction

In the development of a new drug, chemical modification of the basic structure is used to achieve a compound with the desired pharmacological activity. If this optimised compound shows undesirable physicochemical characteristics, reversible derivatives can be used to optimise the clinical application of the drug. These derivatives are known as prodrugs and are chemical derivatives of drugs which are pharmacologically inactive but can be converted into the active drug molecule \textit{in vivo}.

Prodrugs can be designed to target specific enzymes or carriers. Both enzymes and membrane-based carrier proteins are targeted to improve oral bioavailability of a drug or to allow site-specific delivery of the active compound (Kearney, 1996; Sherwood, 1996). Activation may then be by means of an enzyme found only in the tissue of interest, or more generally by such ubiquitous enzymes as peptidases and esterases.

Peptide transporters are an attractive target in prodrug design as they have both broad substrate specificity and generally high capacity. They have also been extensively studied, providing useful leads as to the types of modifications which will be tolerated by each carrier system (Payne, 1994).
1.5.2 Transport in bacterial cells

1.5.2.1 The need for transport systems

Bacterial cells, like all other cells, are surrounded by a semi-permeable cell membrane which limits the entry and/or exit of substances from the cell. The membrane thus provides a separate compartment in which the conditions are kept optimal for biological reactions, as well as controlling the exchange of material and information between the cell and its environment.

The phospholipid bilayer of the cell membrane is an extremely effective barrier to the diffusion of most polar solutes. As a result, bacteria have developed methods for the uptake and export of biologically important compounds. Most of these methods involve coupling energy expenditure to the transport of a specific compound required for growth or defence.

The situation is further complicated in Gram negative bacteria by the presence of an outer cell membrane beyond the cell wall. While this membrane is relatively permeable to small solutes, it is a barrier to larger molecules (Lugtenberg & Van Alpen, 1983; Nikaido & Vaara, 1985; Nakae, 1986). Channel-forming proteins, the porins, in this membrane allow the diffusion of solutes with molecular weights up to approximately 600 Da (the limiting factor is the hydrodynamic or “Stokes radius”) into the periplasm (Benz, 1988; Nikaido, 1992). Thus the outer membrane acts as a molecular sieve, limiting the size of molecule which can reach the cell membrane and the transport systems associated with it (Payne & Gilvarg, 1968; Nakae & Nikaido, 1975; Decad & Nikaido, 1976). Some porins do show limited substrate specificity, and thus certain solutes will only be taken up by bacterial cells.
with functioning porins of the correct specificity e.g. OmpF and OmpC in *E. coli* are required for the movement of peptides across the outer membrane (Andrews & Short, 1985; Alves, 1985).

**1.5.2.2 Why peptides are transported**

Amino-acid synthesis is extremely energetically demanding. Atkinson used an ATP-currency to estimate the relative metabolic costs of various metabolites including α-amino acids (Atkinson, 1977). These range from 12 ATP-equivalents for glycine to 78 ATP-equivalents for tryptophan. Mammals no longer have the ability to synthesise the more costly of these amino acids, obtaining them instead from the diet. Only the few enzymes required to synthesise those amino acids which can be made in a few steps from intermediates in the citrate cycle or glycolysis have been retained.

Bacteria have the ability to import and hydrolyse short-chain peptides in order to obtain amino acids for protein synthesis. The metabolic cost of *de novo* amino acid synthesis far outweighs the energy expended in active transport. For a review of these non-specific bacterial peptide permeases as well as other microbial peptide transport mechanisms, see Payne & Smith, 1994.

**1.5.3 Peptide transport in *E. coli* and *S. typhimurium***

The peptide uptake systems of *E. coli* and *S. typhimurium* have been studied in some detail. There are three main routes by which small peptides of between two and five amino-acid residues in length are imported into the bacterial cells. The dipeptide permease (Dpp) transports dipeptides, and to a limited extent tripeptides; the tripeptide permease (Tpp)
transports tripeptides, and to a limited extent dipeptides; and the oligopeptide permease (Opp) transports di- and oligopeptides with up to five amino-acid residues. The Opp is by far the best characterised of these systems and, as a binding protein-dependent transport system, it has been studied as a model of this type of transporter.

1.5.3.1 Binding-protein-dependent transport systems

Binding-protein-dependent transport systems are part of the ATP-binding cassette (ABC) superfamily of proteins (Holland & Blight, 1999). Typically, ABC transporters consist of a highly conserved ABC-ATPase and at least one membrane domain which provides the transport pathway, although the basic unit is generally accepted to be a dimer containing two of each. In this way, the energy of ATP hydrolysis is coupled to the transport of solutes across cellular membranes.

ABC transporters are involved in a wide variety of transport processes in both eukaryotes and prokaryotes such as solute uptake and antibiotic resistance in bacteria, multidrug resistance systems in eukaryotes, and the excretion of various compounds. Their importance is illustrated by the fact that the genome sequence of E. coli K-12 contained at least 80 identifiable ABC proteins, which equates to 1 - 2% of total proteins (Blattner et al., 1997). For reviews on ABC transporters, see Ames et al., 1990; Higgins, 1992; Linton & Higgins, 1998; Holland, 1999; Jones, 1999 and Schmitt, 2002.

Periplasmic binding-protein dependent systems are a type of ABC transporter found in Gram-negative bacteria. They generally consist of four different protein components which can be either subunits or domains of a single multifunctional peptide associated with the cell membrane. The defining feature, however, is the presence of a soluble substrate-
binding protein in the periplasm. These systems transport a wide range of substrates and include the transporters for maltose, histidine and oligopeptides. Binding-protein dependent systems have also been called 'shock-sensitive transport systems' as osmotic shock leads to the loss of the soluble periplasmic binding protein and hence the loss of transport activity (Ames, 1986).

It was initially believed that these transport systems were unique to Gram-negative bacteria, as Gram-positive bacteria lack an outer membrane and periplasm. However, analogous systems have been found in Gram-positive bacteria and archaea where the binding protein is a secreted glycolipid which is anchored to the outer surface of the cell membrane, e.g. the trehalose/maltose transport system of the hyperthermophilic archaeon *Thermococcus litoralis* (Horlacher *et al.*, 1998). Obviously, these anchored binding proteins will not be lost if the cell is subjected to osmotic shock.

### 1.5.3.2 The oligopeptide permease

The oligopeptide permease (Opp) is a periplasmic binding protein-dependent system which transports peptides ranging in length from two to five amino acid residues (Matthews & Payne, 1980; Payne, 1978; Payne, 1980). The upper size limit for transport by the Opp is controlled by the outer membrane porins. These have a channel diameter of ~1nm which equates to a molecular weight of about 600 Da for the peptides being transported. Transport assays of the oligopeptide permease showed that it possesses greatest affinity for tripeptides, but will transport any α-amino peptide up to a pentapeptide (Alves *et al.*, 1985; Payne, 1980.; Payne, 1986).
The opp locus consists of four genes, oppA, oppB, oppC, and oppD which are organised as a single operon and cotranscribed. OppA is a 60 kDa protein which makes up ~8% of the total protein in osmotic shock fluid from *E. coli* (Guyer, 1985). It preferentially binds tri- and tetrapeptides, with limited binding to pentapeptides and none to isolated amino acids or dipeptides (Guyer, 1986). Binding to oppA does not appear to be greatly influenced by the amino acyl side chains of peptides. In contrast, modification of the amino or carboxy termini of a peptide greatly reduced binding to oppA (Tame, 1994).

OppA has been crystallised with a variety of natural and unnatural peptide substrates (Tame, 1994; Tame, 1995; Davies, 1999; Sleigh, 1999). Unlike most other periplasmic binding proteins, which consist of two hinged domains which enclose substrates like a Venus’ fly-trap closing, OppA is organised into three domains, but the relative organisation of the outer two domains resembles that of the two lobes found in the common binding proteins (Tame, 1995).

Peptides bound to OppA do so in an extended conformation, with tight interactions between the peptide backbone of the substrate and β-sheets in the binding protein (Tame, 1995). The amino terminus of the substrate is bound to an aspartate residue, and the carboxy terminus to one of several charged side chains depending on the length of the peptide bound, thus explaining the loss of binding affinity to N-acylated or C-esterified peptide substrates (Tame, 1994). Amino-acid side chains are accommodated in large hydrated pockets within OppA, with highly-ordered water molecules within these pockets satisfying hydrogen-bond requirements without imposing binding specificity (Tame *et al.*, 1996; Sleigh, 1999; Rostom, 2000).
1.5.4 Examples of peptide-based prodrugs

In the design of prodrugs, oral administration is generally a desirable outcome. As a result, peptide-based prodrugs have not been widely used. Those peptide prodrugs which do exist have often been targeting specific mammalian transporters such as the proton-coupled transporters PEPT1 and PEPT2 which are found in the human gut (Nielsen & Brodin, 2003).

Prodrugs utilising bacterial transporters to target antimicrobial compounds have been referred to as 'smugglins' (Payne, 1976). Toxic amino acids have been incorporated in peptides, e.g. alafosphalin (Allen, 1978) while impermeant non-peptide molecules have been attached to amino-acyl side chains e.g. 5-fluorouracil (Kingsbury et al., 1984). Importantly, extensive in vivo studies have shown that the development of transport resistance to compounds targeting peptide permeases is unlikely (Ringrose, 1985).
2 (6S)-6-fluoroshikimic acid

2.1 Published syntheses of 6-fluoroshikimic acids

2.1.1 From quinic acid

A chiral synthesis of both (6R)- and (6S)-6-fluoroshikimic acid from quinic acid was published by the Davies group (fig. 23) (Sutherland et al., 1989). The known lactone 46 was prepared in 85% yield from quinic acid (Elliott et al., 1983). The tertiary hydroxyl of 46 was then protected using benzyl chloroformate to give 47 and the lactone cleaved to give the ester 48. Sequential treatment with trifluoromethanesulfonic anhydride (\(\text{TF}_3\text{O}\)) and 1,8-diazabicyclo[5.4.0]undec-7-ane (DBU) gave the alkene 49. Hydrolysis followed by acetylation gave the acid 50 which yielded the \(\beta\)-lactone 51 on bromolactonisation. The lactone was cleaved with simultaneous removal of the acetate protecting group to give bromohydrin 52. Epoxidation of the alkene gave 53 which was then dehydrated to give 54. This dehydration was problematic and was only successful when the sulfurane \([\text{PhC(CF}_3\text{I}_2\text{O}_2\text{SPh}}_2\) (Martin’s Reagent) was used. Epoxide ring opening with HF-pyridine was unfortunately non-specific and gave the epimeric fluorohydrins 55 and 56 along with the regioisomer 57. These were partially separated using silica-gel column chromatography, and purified using a C_{18} HPLC column. Hydrolysis of the ester and cleavage of the cyclohexylidene group gave the desired shikimate derivatives 1 and 41 along with the regioisomer 58. The synthesis requires six steps from quinic acid, with an approximate overall yield of 3% of (6S)-6-fluoroshikimic acid 1.
Figure 23: Route to 6-fluoroshikimic acids from quinic acid

- 37 -
The lack of specificity of the epoxide ring opening on reaction of 54 is the major problem with this synthetic approach. Normally, attack by fluoride at an epoxide would be expected to occur in an $S_n$2-like manner, giving 55. However, in this case, a significant proportion of an $S_n$1-like reaction appears to have occurred. The positive charge formed on opening of the epoxide ring may be stabilised by delocalisation, allowing attack by fluoride from the opposite face to the bulky cyclohexylidene group at both C-2, giving 56; and C-6, giving 57.

An improvement to this synthesis was outlined a few years later in a communication published by the same group (fig. 24) (Sutherland et al., 1993).

The known diene 49 was made in five steps from quinic acid (fig. 23) (Sutherland et al., 1989). Osmium catalysed dihydroxylation using $N$-methylmorpholine $N$-oxide (NMO) as the stoichiometric oxidant gave 59 which was selectively protected as the C-5 triflate to give 60. Treatment with NaH in dichloromethane resulted in a trans-transesterification to give the regioisomer 61. Dehydration using Martin's reagent and hydrogenolysis gave the hydroxyshikimic acid derivative 62. Reaction with $N,N$-diethylaminosulfur trifluoride (DAST) then gave the desired (6S)-6-fluoro derivative 63 in approximately 16 % yield over 11 steps from quinic acid. If similar deprotection methods to those used in the 1989 synthesis were used to generate (6S)-6-fluoroshikimic acid 1 (fig 23), the overall yield for this route from quinic acid would be in the 6 - 10 % range.
Figure 24: Improved route to (6S)-6-fluoroshikimic acid from quinic acid
2.1.2 By biotransformation from 3-fluoro-phosphoenolpyruvate

Multistep enzymatic synthesis had been used successfully to generate isotopically labelled intermediates in vitamin B\textsubscript{12} biosynthesis (Scott, 1994). As a result, the Abell group decided to look for an enzymatic route to both (6\textit{R})- and (6\textit{S})-6-fluoroshikimic acids (Duggan \textit{et al.}, 1995).

The conversion of 3-fluoroPEP to 3-fluoroDAHP was known (Pilch \& Somerville, 1976). 3-fluoroDAHP had also been used as a substrate for DHQ synthase in the presence of DHQase (Le Maréchal \textit{et al.}, 1986). Additionally, (6\textit{S})-6-fluoroshikimic acid was known to be converted to (6\textit{S})-6-fluoroEPSP and 2-fluorochorismate by the relevant enzymes (Bornemann \textit{et al.}, 1995). It therefore seemed a reasonable assumption that purified enzymes along with the relevant cofactors could be used to convert both isomers of 3-fluoroPEP 64 and 65 to the 6-fluoroshikimic acids 1 and 41 (fig. 25).

A test reaction using a mixture of the four enzymes required together with their cofactors was followed spectrophotometrically by monitoring the consumption of NADPH at 340 nm. The results suggested that a shikimate derivative was being formed. On a preparative scale, the reaction was carried out in 50 mM MOPS buffer at pH 7 with sequential addition of the enzymes and cofactors as each step was completed. An initial decrease in absorbance at 234 nm was indicative of the consumption of 3-fluoroPEP 64 and 65. An increase in absorbance at the same wavelength showed the formation of the 6-fluorodehydroshikimates 70 and 71 on the addition of DHQ synthase, DHQase, Co\textsuperscript{2+} and NAD\textsuperscript{+}. The reaction was considered complete when the addition of further aliquots of SDHase had no effect on the levels of NADPH in the reaction mixture.

- 40 -
A combination of anion exchange and ion-exclusion HPLC was used to purify the 6-fluoroshikimates 1 and 41 giving isolated yields of approximately 17% of each epimer.

Unexpectedly, despite the ratios of the 3-fluoroPEP substrate 64 and 65 being 88:12 the 6-fluoroshikimates were isolated in equimolar amounts. ¹⁹F-NMR analysis was used to show that this was at least partly due to the very slow conversion of (3S)-3-fluoroDAHP 67 to (6S)-6-fluoroDHQ 69 compared to the reaction of (3R)-3-fluoroDAHP 66. A suggestion put forward was that the rate of the spontaneous reaction of (3S)-3-fluoroDAHP 67 was comparable to that of the enzyme-catalysed reaction, and that this led to the loss of stereospecificity in the conversion (C. Abell, Fluorine Research Conference, 2002). An alternative product was formed from 67 during the course of the ¹⁹F-NMR reaction. This further reduced the yield of the desired shikimate derivatives but was not characterised by the authors (Duggan et al., 1995).
Compared with the synthetic routes (fig. 23 and fig. 24), this biotransformation route has two significant advantages. The yield is at least double that of the best total synthesis, and the total time required for the reaction is 26 h followed by HPLC purification as compared to the weeks or months required for some challenging synthetic chemistry. Disadvantages are that the method requires experience in enzyme purification and in the use of enzymes in transformations. Also, the substrate erythrose-4-phosphate is both unstable and very expensive.
2.1.3 From shikimic acid

In late 2001, the Singh group published a shorter synthesis of (6S)-6-fluoroshikimic acid 1 from shikimic acid 9 (fig. 26) (Song et al., 2001). By extracting the starting material from Chinese star anise (*Illicium verum*) on a large scale in the laboratory, the authors avoided the major disadvantage of this route which is the high cost of commercially available shikimic acid (Aldrich, 1 g = £38.80).

Figure 26: Synthesis of (6S)-6-fluoroshikimic acid from shikimic acid
Shikimic acid 9 was esterified by heating in methanol under acid catalysis. The resulting ester was further protected using 2,2-dimethoxypropane and camphorsulfonic acid (CSA) to give the acetonide 72. Reaction with Tf₂O formed the triflate 73 which was then treated with cesium acetate in DMF to yield the diene 74. Osmium-catalysed dihydroxylation of the diene using NMO as secondary oxidant gave the diols 75 and 76 in approximately equal amounts. After separation, the C-5 hydroxyl of diol 76 was selectively protected as the butyldimethylsilyl (TBDMS) ether, forming the protected hydroxyshikimic acid derivative 77. Treatment with an excess of DAST then gave the fluorinated derivative 78. Hydrolysis of the ester using lithium hydroxide was followed by treatment with aqueous trifluoroacetic acid (TFA) to remove the silyl and isopropylidene protecting groups. The desired (6S)-6-fluoroshikimic acid 1 was thus synthesised in nine steps and 15% overall yield from shikimic acid.
2.2 Results: attempted syntheses of (6S)-6-fluoroshikimic acid

2.2.1 Biotransformation from 3-fluoroPEP

The published biotransformation from 3-fluoroPEP to both epimers of 6-fluoroshikimic acid (fig. 25) (Duggan et al., 1995) is both higher-yielding and less time-consuming than the chiral syntheses from quinic acid (fig. 23 & 24) (Sutherland et al., 1989; Sutherland et al., 1993). Initial attempts to synthesise (6S)-6-fluoroshikimic acid 1 were therefore made using the biotransformation method.

E-4-P 12 is very expensive and is also known to be unstable in solution where it dimerises to give compounds which are not substrates for DAHP synthase (Duke & MacLeod, 1981). It was therefore decided to attempt to generate E-4-P in situ from d-fructose-6-phosphate (F-6-P) 79 using transketolase from bakers' yeast (fig. 27) (Reimer et al., 1986). This method has been used to convert 3-fluoro-PEP to the corresponding DAHP derivatives 66 and 67 (Parker, 1996) and had been validated in our laboratories (C-A. Deans, Senior Honours project, 1999, University of Glasgow). The generation of E-4-P was carried out in the presence of DAHP synthase, its cofactors and an excess of 3-fluoro-PEP, thus avoiding the high concentrations of E-4-P which result in the formation of unreactive dimers.
Figure 27: Proposed biotransformation to 3-fluoro-DAHP using in situ generated E-4-P

This route had not been extended beyond 3-fluoro-DAHP to the shikimate derivatives desired. As significant modifications to the published route were proposed, it was decided to attempt the initial biotransformation reaction using the natural substrates.

2.2.1.1 Enzyme preparation

An overproducing strain of E. coli (E. coli W3110/pJB14) was used to obtain fresh stocks of dehydroquinate synthase, which converts DAHP to DHQ. As the enzyme had been extensively studied in the group, a protocol was available both for the purification of the enzyme and for assaying its activity (Mousdale & Coggins, 1993). All other enzymes required for the biotransformation were available in sufficient quantity in the group. For enzyme preparation methods and assay conditions, see Chaudhuri et al., 1987a,b; Coggins et al., 1987; Mehdi et al., 1987; Gourley et al., 1999; Maclean et al., 2000 and Michel et al., 2003.
2.2.1.2 Model studies using PEP

The proposed biotransformation involved the conversion of PEP to shikimic acid 9 in a single pot with in situ generation of E-4-P 12 (fig. 28). It was therefore necessary to find a buffer system which allowed a reasonable rate of reaction for all the enzymes involved, as well as ensuring that the conditions required for the formation of E-4-P were compatible with the remainder of the proposed route.

![Figure 28: Proposed biotransformation from PEP to shikimic acid](image)

Figure 28: Proposed biotransformation from PEP to shikimic acid
The published biotransformation route to both 6-fluoroshikimic acids was carried out in 50 mM MOPS at pH 7 (Duggan et al., 1995). By contrast, the synthesis of DAHP 13 using in situ generation of E-4-P was carried out in unbuffered aqueous solution under anaerobic conditions with the pH adjusted to pH 7 prior to reaction initiation (Parker, 1996).

Transketolase, either from bakers’ yeast (commercial) or Leishmania mexicana (gift, N. Veitch) and its cofactor cocarboxylase were added to a mixture of F-6-P 79 and an excess of PEP in either water or 4-morpholinepropanesulfonic acid (MOPS) buffer at pH 7. The formation of DAHP 13 was followed using the thiobarbituric acid assay of sialic acids developed by Warren (Warren, 1959). In this assay, a pink chromagen absorbing at 549 nm is formed by the reaction of oxidised DAHP with thiobarbituric acid (4,6-dihydroxy-2-mercaptopurimidine).

In MOPS buffer, DAHP formation was markedly decreased compared to reaction in unbuffered aqueous solution (fig. 29). Strict anaerobic conditions were not maintained during these reactions, as the cofactors required for the later stages of the biotransformation reacted adversely with the dithiothreitol and sodium azide which would normally have been used. Dissolved oxygen was, however, removed from the reaction mix by displacement with nitrogen.

<table>
<thead>
<tr>
<th>Time</th>
<th>50 mM MOPS pH 7 (AU)</th>
<th>H2O pH 7 (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 0</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>T = 1.5 h</td>
<td>0.24</td>
<td>0.48</td>
</tr>
<tr>
<td>T = 18 h</td>
<td>0.18</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Figure 29: Formation of DAHP in 50 mM MOPS vs. H2O both at pH 7
The conditions of the *E. coli* DHQ synthase assay were then used to investigate the formation of DHS 14 from PEP (Coggins *et al.*, 1987). The reaction was monitored spectrophotometrically, with an increase in absorbance at 234 nm corresponding to the formation of DHS. When the mixture of DHQ synthase, Co²⁺, NAD⁺ and DHQase were added to purified DAHP 13 in water with the pH adjusted to pH 7, the initial reaction rate was $1.4 \times 10^{-2}$ AU.s⁻¹. However, when the enzymes and cofactors were added to the biotransformation mix containing DAHP, no measurable change in absorbance at 234 nm was observed over several hours. This lack of reaction was also observed if cocarboxylase was added to purified DAHP 13 along with DHQ synthase, DHQase and their cofactors. This result is consistent with the mechanism of action of transketolase, as the initial step is the addition of a ketone to thiamine pyrophosphate (cocarboxylase) (Stryer, 1988). The presence of a reactive carbonyl on both DHQ 10 and DHS 14 which could be attacked by the activated nitrogen of cocarboxylase was thought to be the reason for the failure of this approach.

A two-pot approach was thus decided on. DAHP 13 was synthesised from PEP using transketolase to generate E-4-P 12 *in situ* and purified on a DEAE Sephacel column eluted with an ammonium hydrogen carbonate gradient. After lyophilisation, the purified DAHP was converted to shikimic acid 9 according to the literature protocol (Duggan *et al.*, 1995). At this stage, the shikimic acid was not purified, but changes in the UV spectrum were consistent with those reported in the literature.

The first two steps in the biotransformation were monitored at 234 nm, where an increase in absorbance corresponded to the formation of 3-dehydroshikimate 14. The final conversion
to shikimic acid 9 was monitored indirectly, as the consumption of NADPH gave a decrease in absorbance at 340 nm.

### 2.2.1.3 Biotransformation from 3-fluoroDAHP

As 3-fluoroDAHP which had been prepared previously in the group was available, it was decided to attempt the biotransformation to the 6-fluoroshikimic acids 1 and 41 using this material as substrate (fig. 30). Again, the conditions described in the literature were used for this biotransformation (Duggan et al., 1995).

![Proposed route to the 6-fluoroshikimic acids from 3-fluoroDAHP](image)

Figure 30: Proposed route to the 6-fluoroshikimic acids from 3-fluoroDAHP

Analysis of the biotransformation mix using a BioRad Organic Acids HPLC column as specified by the authors provided no evidence for the formation of the desired fluorinated products. $^{19}$F-NMR analysis of the starting material then showed that errors in characterisation had been made in the original synthesis, and that the compound provided...
was in fact 3-fluoroPEP. Attention was therefore turned to attempts to form 3-fluoroDAHP by biotransformation from 3-fluoroPEP with *in situ* generation of E-4-P.

### 2.2.1.4 Biotransformation from 3-fluoroPEP

The conditions used to synthesise DAHP 13 from PEP with *in situ* generation of E-4-P (fig. 28) were used in this attempt to synthesise 3-fluoroDAHP 66 and 67 from 3-fluoroPEP (fig. 31). Unfortunately, the sialic acid assay used to follow the formation of DAHP is not suitable for assaying the fluorinated equivalents, and we had previously found changes in absorbance at 234 nm to be less reliable as an indicator of reaction progress.

![Chemical reactions](image)

**Figure 31: Attempted biotransformation to 3-fluoroDAHP**

The decrease at 234 nm which would correspond to the consumption of 3-fluoroPEP and hence the formation of 3-fluoroDAHP 66 and 67 was not observed over a series of reactions. As a result, it was decided to attempt to follow the reaction indirectly.
A larger-scale biotransformation was carried out using the same conditions. The reaction mix was purified as before on a DEAE Sephacel column eluted with an ammonium hydrogen carbonate gradient. The column fractions were assayed for the presence of inorganic phosphate after treatment with alkaline phosphatase (Lanzetta et al., 1979). Again, the formation of 3-fluoroDAHP was not detected. There was also no reaction when the column fractions were assayed using dehydroquinate synthase and dehydroquinase along with the relevant cofactors.

In case a contaminant of the 3-fluoro-PEP used was inhibiting the enzymes, it was decided to follow the reaction using $^{19}$F-NMR to look for anomalous product formation. A greatly increased concentration of 3-fluoroPEP 64 and 65 was required compared to that used in the earlier biotransformation reactions in order to obtain meaningful $^{19}$F-NMR spectra. The literature conditions were modified in that the MOPS buffer was omitted, and the E-4-P was provided by in situ generation from F-6-P, but otherwise were as published (Duggan et al., 1995). Unfortunately, over 12 h, the only fluorinated compounds observed were the original isomers of 3-fluoroPEP and the trace fluorinated impurities present in the starting material. Changes in the relative height of the peaks in the spectrum were not observed over the course of the reaction, indicating that the failure of the biotransformation was not due to breakdown of the starting materials under the reaction conditions.

The published $^{19}$F-NMR experiment was then replicated precisely, using freshly regenerated, commercially available, E-4-P in 50 mM MOPS buffer at pH 7. Again, no sign of the desired 3-fluoroDAHP derivatives 66 and 67 were observed over 42 h. All the enzymes had been assayed immediately prior to use in the experiment, and all reagents were as specified in the original paper (Duggan et al., 1995). The 3-fluoroPEP used,
however, had been a specially commissioned synthesis by D. Picken (Link Technology, ML4 3BF) and although the major compounds present were the desired isomers of 3-fluoroPEP, trace fluorinated impurities were visible in the $^{19}$F-NMR signal. It is possible that an impurity was inhibiting DAHP synthase activity which was not present in the original synthesis. This route to (6S)-6-fluoroshikimic acid was therefore abandoned.
2.2.2 Synthesis from shikimic acid

As the paper detailing this synthesis was a communication and therefore gave minimal experimental detail, the methods I used (fig. 32) may differ slightly from those which yielded the published results.

Figure 32: Synthesis of (6S)-6-fluoroshikimic acid from shikimic acid
Initial attempts focussed on replicating the published conditions (fig. 26; Song et al., 2001) but it was immediately apparent that the synthesis of methyl shikimate could not be carried out using CSA as catalyst if it was to be purified prior to acetal formation. The desired methyl ester was formed, and could be converted into the protected shikimate derivative 72 without purification, but the yields obtained were not as high as those quoted. The original reference (Chahoua et al., 1992) used amberlite ion-exchange resin to catalyse the formation of the methyl ester, and this alternative method was used to form methyl shikimate in excellent yield.

Freshly distilled 2,2-dimethoxypropane was used to form the acetal 72 using pTsOH as the acid catalyst. The distillate was less pure than 2,2-dimethoxypropane as purchased, however, and higher yields were obtained using the commercially available material.

After extensive experimentation it was found that the triflate 73 was unstable and had a tendency to eliminate partially during workup. If the entire workup was kept cold (Ross et al., 2001) including removal of the solvent under reduced pressure, and the material was used immediately after purification, both high yields and purity were achieved.

Initial attempts to form the diene 74 by elimination of 73 were unsuccessful as CsOAc is hygroscopic and the reaction appears to be unpredictable if conditions are not strictly anhydrous. This was achieved by drying the CsOAc under high vacuum for 30 min before adding a solution of the triflate 73 in DMF. Further difficulties were experienced due to the instability of the diene. Even at -20°C the material decomposed completely within 10 h, and at 25°C evidence of decomposition was observed within a few hours. Excellent yields were eventually achieved by using an excess of dry CsOAc, carrying out the workup using...
solvents and aqueous materials cooled to 4°C, and by using the diene 74 immediately after purification.

Formation of the diol 76 by osmium catalysed dihydroxylation using NMO as the stoichiometric oxidant was carried out using a combination of the conditions given in the communication (Song et al., 2001) and the proportion of reagents used for the dihydroxylation of a similar quinic acid-derived compound (Barco et al., 1998). Separation of 75 and 76 was achieved using a gradient elution on a silica-gel column and the desired compound was eventually isolated in moderate yield. The use of OsO₄ which had not been in solution for longer than six weeks was found to be crucial as dihydroxylation of both double bonds of diene 74 was found to occur more readily when the OsO₄ catalyst had been stored for an extended period in aqueous solution.

Treatment of the diol 76 with 1.1 equivalents of TBDMSOTf gave selective protection of the C-5 hydroxyl as a silyl ether in good yield. Using a greater excess of TBDMSOTf reduced the yield of the desired compound as formation of the bis-silylated product was found to predominate. The difficulties associated with purification were also increased under these conditions. The crystalline product 77 was then treated with DAST (Middleton, 1974) in DCM. The protected 6-fluoroshikimic acid derivative 78 was obtained in excellent yield after purification.

Deprotection was carried out in two steps. The methyl ester was cleaved by treatment with LiOH in a water/dioxane solvent mix. The crude material from this reaction was then treated with a TFA/water mix to simultaneously cleave the silyl ether and acetal protecting groups. By ¹H-NMR three fluorine-containing compounds were formed, with the major
product being the desired (6S)-6-fluoroshikimic acid 1. Only a small amount of material was deprotected in order to confirm that the correct diastereomer had been formed as the protected derivative 78 was required for further syntheses.

Purification of (6S)-6-fluoroshikimic acid 1 was attempted on an Organic Acids HPLC column eluting with 50 mM formic acid at 0.6 mL.min\(^{-1}\). The major peak, believed to be (6S)-6-fluoroshikimic acid by \(^1\)H-NMR analysis, eluted at 10.2 min as compared with the literature value of 10.8 min during a series of analytical runs on a small sample of the crude material (Duggan, 1995). However, when the remainder of the product was dissolved in water and a preparative run was attempted, the compound was found to have decomposed. No further purification was possible.
2.3 Conclusions and future work

The decision to synthesise (6S)-6-fluoroshikimic acid by biotransformation from E-4-P and F-PEP was based on a number of factors. Firstly, the chemistry involved in the syntheses from quinic acid (fig. 23 & 24) was not only likely to be time-consuming, but also required a degree of experience in the reactions carried out which was not available in our laboratory. Secondly, the biotransformation route (fig. 25) was both higher yielding and apparently less time-consuming. Members of our laboratory had experience of working with the enzymes of the shikimate pathway and the purification methods required for the enzyme substrates.

As detailed in this chapter, attempts to synthesise (6S)-6-fluoroshikimic acid by biotransformation were unsuccessful. We believe that this was due to an inorganic contaminant of the F-PEP substrate which was not apparent during ¹H-NMR or ¹⁹F-NMR analysis and which was inhibiting DAHP synthase. It is possible that purification of the substrate on an ion-exchange column would have eliminated this contaminant.

The synthesis from shikimic acid (fig. 26 & 32) is a significant improvement over those from quinic acid as it is both shorter and higher-yielding. It is unfortunate that the (6S)-6-fluoroshikimic acid decomposed unexpectedly before full purification could be carried out, as this resulted in the lack of a positive control for the biological testing of the smugglins.
3 Peptide-shikimate conjugates as prodrugs

3.1 Prodrugs

As detailed in Chapter 1 (section 1.6), prodrugs are pharmacologically inactive derivatives of drug molecules which are converted into the active form in vivo. Changes to the structure of the molecule may be made in order to increase bioavailability by modifying e.g. solubility, but prodrugs can also be designed to target specific enzymes or carriers e.g. peptide transporters.

3.2 The oligopeptide permease as a prodrug target

As detailed in Chapter 1, the oligopeptide permease (Opp) is a periplasmic binding protein-dependent system which preferentially transports tri- and tetrapeptides into bacterial cells (Matthews & Payne, 1980; Payne, 1978; Payne, 1980). Amino-acid side chains are accommodated in large hydrated pockets within OppA, with highly-ordered water molecules within these pockets satisfying hydrogen-bond requirements without imposing binding specificity (Tame et al., 1996; Sleigh, 1999; Rostom, 2000).

This ability to accommodate a wide variety of natural and unnatural amino-acyl side chains suggested the possibility of constructing a ‘smugglin’ which would target the Opp as a means of transporting (6S)-6-fluoroshikimic acid into bacterial cells.
3.3 Peptides conjugated to (6S)-6-fluoroshikimic acid

3.3.1 Design

As (6S)-6-fluoroshikimic acid has been shown to be an effective antimicrobial both in vitro and in vivo, the prodrug approach to increasing bioavailability is unnecessary. (Davies et al., 1993) However, the rapid development of resistance to the compound due to mutation of the specific bacterial transporter involved suggested that a ‘smugglin’ approach might be viable (Ewart et al., 1995).

As all three peptide permeases in E. coli and S. typhimurium transport tripeptides to some extent, it was decided to attempt an initial synthesis of tripeptide conjugates of (6S)-6-fluoroshikimic acid. The tripeptides were chosen based on the known specificity of the oligopeptide permease, the crystallographic data available on binding to OppA, and the need for a cleavable linkage from the peptide to (6S)-6-fluoroshikimic acid.

Modification of the N- or C-terminal ends of a tripeptide eliminates, or at least greatly reduces, binding to OppA and transport by the oligopeptide permease. As a result, it was decided to attach (6S)-6-fluoroshikimic acid to an amino-acyl side chain using a linkage which would be readily cleaved within bacterial cells. Both an ester linkage to the hydroxyl of serine and an amide linkage to the ε-amino group of lysine were considered. The amide linkage was chosen as it is more stable, but likely to be readily cleaved by intracellular peptidases to release the active compound.

Various binding studies of OppA have suggested that positively charged side chains in a peptide reduce binding to OppA, while hydrophobic residues are preferred. (Guyer et al., 1993)
The detail of crystal structures also showed that the C-terminal amino acyl side chain was often disordered, and suggested that modifications at this position might be better tolerated than at either of the first two. (Davies et al., 1999) The results obtained from co-crystallising a series of unnatural amino acids in tripeptides of the form Lys-X-Lys with OppA (Davies et al., 1999) also suggested that relatively large moieties could be accommodated in the side-chain binding pockets.

In order to maximise the potential information on the transport of peptide-shikimate conjugates, it was decided to synthesise tripeptides of the form XXLys where X could be aliphatic, aromatic, polar, or charged. The amino acids chosen were alanine, leucine, phenylalanine, serine and glutamic acid. (6S)-6-Fluoroshikimic acid would then be linked to the side-chain of the C-terminal lysine in each tripeptide to give compounds 4 through 8 (fig. 33).
Figure 33: Structure of the smugglins designed to target the Oligopeptide permease
3.3.2 Proof of concept: N-ε-shikimoyl-L-lysyl-L-phenylalanine

As an initial proof-of-concept, it was decided to attempt the synthesis of an easily-purified dipeptide-shikimate conjugate. Using shikimic acid instead of (6S)-6-fluoroshikimic acid would allow method development while the synthesis of the fluorinated derivative was ongoing, while also reducing the cost of the model synthesis. Synthesising a dipeptide conjugate rather than the tripeptide conjugates would facilitate purification, as solution-phase peptide synthesis could be used rather than the solid-phase methods preferred for longer-chain peptides.

The dipeptide conjugate chosen was N-ε-shikimoyl-L-lysyl-L-phenylalanine 83. The phenylalanyl moiety was chosen to facilitate purification by increasing the hydrophobicity of the dipeptide and peptide conjugate, as well as to give a clearly distinguishable UV-active TLC. A further advantage of the phenylalanyl moiety was that 1H-NMR signals from the dipeptide would be unlikely to overlap with those from the shikimate moiety.

Results and discussion:

The hydroxyl groups of shikimic acid were protected as acetates by reaction with acetic anhydride in pyridine. The reaction was carried out on both a gram and milligram scale to give the tri-acetate 80 in excellent yield.

\[
\text{CO}_2\text{H} \quad \begin{array}{c}
\text{OH} \\
\text{OH} \\
\text{OH}
\end{array} \quad \text{Ac}_2\text{O}, \text{pyridine} \quad 0^\circ\text{C} \rightarrow \text{rt} \quad 98\% \\
\text{CO}_2\text{H} \quad \begin{array}{c}
\text{OAc} \\
\text{OAc} \\
\text{OAc}
\end{array}
\]

Figure 34: Protection of shikimic acid as the tri-O-acetate

- 63 -
The protected dipeptide Boc-Lys(Z)-Phe-OMe 81 (Boc is butoxycarbonyl; Z is benzylxycarbonyl) was synthesised using standard solution-phase methodology and was obtained in excellent yield. The coupling reagent 1-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) was used with the addition of 1-hydroxybenzotriazole (HOBt) to minimise racemisation. After deprotection of the ε-amino group of the lysine moiety by hydrogenolysis, a standard peptide coupling reaction with protected shikimic acid 80 gave the fully protected peptide conjugate 82 in good yield. Deprotection was carried out by sequential treatment with NaOH and TFA to give the desired dipeptide-shikimate conjugate 83 as the major product by 1H-NMR analysis. Analysis of the crude isolate by HPLC using a combined UV and conductivity detection system showed a single major peak.
Figure 35: Solution-phase synthesis of the dipeptide-shikimate conjugate
3.3.3 Model syntheses: tripeptide shikimate conjugates on solid phase:

As previously discussed, five tripeptide conjugates of the form XXLys (where X is one of alanine, leucine, phenylalanine, serine or glutamic acid) were chosen for the initial investigation of the oligopeptide permease as a means of targeting (6S)-6-fluoroshikimic acid to bacterial cells. It was decided to develop the solid-phase methodology using shikimic acid to reduce the cost of the model syntheses and to allow method development to be carried out in tandem with attempts to synthesise (6S)-6-fluoroshikimic acid.

The substitution of a fluorine atom for a hydrogen atom at C-6, while having a significant effect on the biological activity of shikimic acid, was not thought likely to have any major effect on either the reactivity or solubility of the compound. As a result, it was believed that the methods developed in the syntheses of the five model conjugates would be directly applicable to the final target syntheses.

N-α-Fmoc-amino acid residues (Fmoc is 9-fluorenylmethoxycarbonyl) were used to build up the tripeptides on Wang resin in all syntheses. The resin was purchased pre-derivatised with an orthogonally protected lysine residue \( 84 \).

![Figure 36: Wang resin coupled to an orthogonally protected lysine residue.](image-url)
As shikimic acid was to be coupled to the ε-amino group of the C-terminal lysine the protecting group for this amino group needed to be stable to standard Fmoc solid phase chemistry. It also needed to be readily cleavable under conditions which would not cause cleavage of the peptide from the resin, or cleavage of the t-butyl protecting groups on the side chains of the glutamic acid and serine residues. The 4-methyltrityl (Mtt) protecting group, which is base stable, but readily cleaved using 1% TFA, 5% tri-isopropyl silane (TIPS) in DCM, was a logical choice (Aletras et al., 1995).

Results and Discussion:

The basic method of synthesis was invariant, and is summarised in figure 37. Later syntheses involved the coupling of shikimic acetate 80 to preformed tripeptide chains as in the synthesis of the (6S)-6-fluoroshikimate conjugates 4-8 (fig. 42).

The 4-methyltrityl protecting group on the resin-bound lysine residue 84 was removed by treatment with 1% TFA in dry DCM with the addition of 5% tri-isopropylsilane (TIPS) to trap the trityl cations and reduce the likelihood of side-reactions. The resin was then dried under a steady air stream at reduced pressure as the presence of residual methanol used to wash the resin during deprotection completely inhibited coupling to shikimic acetate. The dried resin was then coupled to shikimic acetate 80 using a large excess of DIC and HOBt in dry DCM and extended reaction times to ensure coupling occurred. If the standard 3 eq. of DIC was used in this step, coupling was either extremely limited or non-existent, depending on the tripeptide involved.
Figure 37: Solid-phase synthesis of shikimate tripeptide conjugates
The Fmoc protecting group on the now-derivatised resin-bound lysine residue 85 was cleaved by treatment with 20 % piperidine in dry DMF. Bromophenol blue was initially used to test for the presence of free amino groups on the resin, but the inaccuracy of the results meant that this approach was abandoned. All cleavage reactions were then carried out a set number of time, over a fixed minimum reaction time. The deprotected residue was then coupled to the relevant Fmoc protected amino acid derivative using a large excess of di-isopropyl carbodiimide (DIC) and HOBt in dry DMF to give the protected, resin-attached dipeptide-shikimate conjugate 86. Again, the use of bromophenol blue to test for complete reaction gave unsatisfactory results and all coupling reactions were allowed a minimum reaction time of two hours. The deprotection and coupling steps were repeated to give the desired resin-attached tripeptide-shikimate conjugate 87.

Cleavage from the resin using 25 % TFA in DCM gave the desired tripeptides conjugated to shikimic acid protected as the triacetate. At this stage, $^1$H-NMR was used to confirm that coupling had occurred. The characteristic doublet of doublets at ~2.5 ppm due to the CH$_2$ protons on C-6 of shikimic acid was generally not obscured by peptidic protons, and provided a marker for successful coupling reactions.

$^1$H-NMR analysis was followed by deprotection of the shikimate moiety by treatment with NaOH in MeOH:H$_2$O (1:4). As the product tripeptide conjugates 88 were only soluble in methanol or acid, it was found impossible to separate them from the NaOAc released in this deprotection step without recourse to HPLC. HPLC-Mass spec analysis was used to confirm the presence of the desired compounds in the crude material, with ms/ms
confirming the identity of selected peaks, before the method was applied to the synthesis of
the target tripeptide-(6S)-6-fluoroshikimic acid conjugates.

The conjugates were not purified at this stage, as it was felt that the limited time remaining
for experimentation would be better used in attempting the synthesis of the final target
compounds. Crude yields are noted in the experimental section (Chapter 5)

3.3.4 Tripeptide (6S)-6-fluoroshikimic acid conjugates on solid phase:

As \( ^1\text{H-NMR} \) analysis had shown the successful formation of all five model peptide-
shikimate conjugates, an attempt was made to transfer the methodology to the synthesis of
the same five tripeptides conjugated to (6S)-6-fluoroshikimic acid.

Problems were immediately encountered, as attempts to protect the hydroxyl of (6S)-6-
fluoroshikimic acid 1 by reaction with acetic acid in pyridine led to total decomposition and
the formation of 3,5-diacetoxybenzoic acid 89 (fig. 38). The substitution of a fluorine for a
hydrogen on C-6 gave only a 0.1 ppm change in the \( ^1\text{H-NMR} \) signal for the protons on both
C-3 and C-5, characteristic of a slight increase in acidity at these positions. Surprisingly,
therefore, base-catalysed elimination of the components of acetic acid, followed by those of
hydrofluoric acid, was observed. Fluoride is normally an extremely poor leaving group, but
the driving force of aromatisation was apparently sufficiently strong as to overcome this.

It would be possible to overcome this difficulty by using a base such as 2,6-lutidine which
is more sterically hindered than pyridine, and hence less nucleophilic. However, as the
 tripeptide conjugates are all protected at the N-terminus with an Fmoc group, and this is
removed using 20 % piperidine in DMF (which is likely to have the same effect as
pyridine), an alternative protection strategy for the hydroxyl groups of (6S)-6-fluoroshikimic acid was required.

The obvious solution was to use the product of the penultimate step in the synthesis of (6S)-6-fluoroshikimic acid detailed in Chapter 2 (fig. 32), where the C-5 hydroxyl is protected as a silyl ether, and the C-3 and C-4 hydroxyls as a ketal (90). As this compound has already been shown to be stable to LiOH hydrolysis during the saponification of a methyl ester, deprotection of Fmoc groups should not be problematic. Additionally, as these groups are removed by treatment with 90% TFA in DCM, purification of the peptide conjugates after cleavage from the resin should be simplified relative to the model compounds.
As the phenylalanine-containing tripeptide-shikimate conjugate had shown the most complete coupling by \(^1\)H-NMR analysis (conjugate:tripeptide = 1:3 by visual inspection), it was decided to attempt the synthesis of this tripeptide conjugated to \((6S)-6\)-fluoroshikimic acid in the first instance 91 (fig. 39).

![Diagram](image)

Figure 39: Proposed coupling of fully protected \((6S)-6\)-fluoroshikimic acid to resin-bound Fmoc-Phe-Phe-Lys

- 72 -
Again, direct transfer of the methods developed in the model synthesis was not possible. After cleavage of the products from the resin, $^1$H-NMR analysis showed no coupling between the ε-amino group of lysine and the carboxylic acid of the (6S)-6-fluoroshikimic acid derivative 90. Addition of triethylamine to the coupling mix, in an attempt to increase the proportion of deprotonated carboxylic acid, was also unsuccessful.

We now believe that the increased electronegativity at C-6 due to the presence of the fluorine in (6S)-6-fluoroshikimic acid reduces the reactivity of the carboxylic acid moiety towards electrophiles. As a result, addition of the carboxylic acid to DIC in the initial step of peptide bond formation is less likely to occur, and hence the lack of coupling observed.

The formation of ‘difficult’ peptide bonds, such as those involved in synthesising cyclic dipeptides, is often facilitated by benzotriazol-1-ylxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) 92, also known as Castro’s Reagent (El Mahdi et al., 2000). The initial step in BOP-coupled peptide bond formation is attack by the carboxyl moiety onto a charged phosphorus atom with the strong thermodynamic driving force of P-O bond formation favouring reaction. In contrast, carbodiimide coupling reagents involve attack by the carboxyl moiety on a neutral carbon atom. As a result, the deactivated carboxyl of the acid derivative 90 should react to give the activated HOBt ester 93 and hence peptide bond formation.
Test reactions on the derivatised resin 84 showed that the desired amino-acid conjugate 94 was formed, although a tertiary amine was also required to be present in excess. The coupling did not proceed to completion, reaching ~45% after 24 h reaction by $^1$H-NMR analysis of the crude material cleaved from the resin.
Synthesis of the five tripeptide-(6S)-6-fluoroshikimic acid conjugates 4 to 8 (Chapter 3, fig. 33) was then undertaken. It was believed that steric hindrance at the resin would favour carrying out the challenging coupling to lysine before building the peptide chain. However, as complete coupling could not be achieved even over 24 h reaction and with a 6-fold excess of BOP (fig. 41), it was decided to avoid the formation of a wide variety of branched peptides by coupling the (6S)-6-fluoroshikimic acid derivative to the completed tripeptide chains (fig. 42).
Figure 42: Solid-phase synthesis of tripeptide-(6S)-6-fluoroshikimic acid conjugates
The conditions developed for the synthesis of the model compounds were used in order to synthesise the tripeptide chains, i.e. standard Fmoc-based solid phase synthesis using DIC/HOBt coupling. After cleavage of the Mtt group, BOP with the addition of an excess of Et3N was used to couple the (6S)-6-fluoroshikimic acid derivative to the ε-amino group of lysine of the tripeptide 95 to give the protected resin-bound conjugates 96. The conjugates were then cleaved from the resin and partially deprotected by treatment with 3:1 TFA:DCM. Protection was completed by treatment of the crude material with 9:1 TFA:H2O. Crude yields are given in figure 43.

<table>
<thead>
<tr>
<th>Compound synthesised</th>
<th>4 (Ala)</th>
<th>5 (Leu)</th>
<th>6 (Phe)</th>
<th>7 (Ser)</th>
<th>8 (Glu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>resin-bound lysine: starting material (μmol)</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>crude material isolated (mg)</td>
<td>43</td>
<td>62</td>
<td>86</td>
<td>67</td>
<td>81</td>
</tr>
</tbody>
</table>

Figure 43. Crude yields of tripeptide-(6S)-6-fluoroshikimate conjugates

HPLC/Ms-ms analysis was used to confirm the presence of the desired compounds 4 to 8 in the crude material cleaved from the resin. All five compounds were present and could be separated from the crude mixture using an RP Max HPLC column eluting with a 3 to 50 % gradient of 50 mM formic acid in MeCN.

It was decided to attempt the purification of the leucine 5 and phenylalanine 6 containing conjugates as these gave the most clearly separated peaks. A preparative RP Max HPLC column was used for the separation. The fractions containing the desired compounds were selected by analysing a small sample of the eluent by Ms-ms. These fractions were combined, lyophilised, and stored at -20°C.
3.1.5 Biological testing of (6S)-6-fluoroshikimic acid conjugates

Initial biological testing was carried out by Dr R. Aitken at the University of Glasgow. A lawn of *E. coli* K12 (the strain used for the original testing of (6S)-6-fluoroshikimic acid) was grown on solid medium based on a minimal glucose medium with thiamine supplementation (buffer 56) first described in 1951 (Monod et al., 1951; Davies et al., 1994; Ewart et al., 1995).

A control experiment, spotting a solution of ampicillin into the centre of the lawn, gave inhibition in the 50 - 100 μg range. This suggested that the chosen test method was fairly insensitive. However, as (6S)-6-fluoroshikimic acid displayed MICs below 0.5 μg.mL⁻¹ against this strain of *E. coli* (Davies et al., 1994) it was decided to test the leucine-5 and phenylalanine-containing 6 conjugates in the same way.

The conjugates were dissolved in 50 mM formic acid, which had previously been shown to have no effect on bacterial growth, and spotted onto the centre of a lawn of *E. coli* K12 on a solid buffer 56 plate. No evidence of antibacterial activity was observed after overnight incubation at 37°C.

A second method of testing was then attempted. *E. coli* K-12 (wild type) bacteria were grown at 37°C in a 96-well plate in buffer 56 liquid medium (Monod et al., 1951). Ampicillin (20 mg/mL), formic acid (50 mM) and phosphate buffered saline were used as controls against six- and two-fold serial dilutions of the test compounds in 50 mM formic acid. Growth was monitored by measuring the absorbance at 620 nm.
The leucine containing tripeptide conjugate appeared to have a very slight inhibitory effect on the growth of *E. coli* K-12 as compared to the negative controls, and this effect appeared to decrease with increasing dilution of the compound (fig. 44). However, the effect was not comparable with that of ampicillin (fig. 45), and the variation in absorbance values obtained suggested that growth inhibition by the conjugate was marginal.

The concentrations given below are based on an assumed maximum yield of 2 mg of active compound after HPLC purification. This is due to the fact that although compound was clearly present after lyophilisation, a negative mass was obtained by difference using a four decimal-place balance.

<table>
<thead>
<tr>
<th>formic acid (negative control)</th>
<th>6 (Phe)</th>
<th>5 (Leu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mM</td>
<td>(A_{620})</td>
<td>(A_{620})</td>
</tr>
<tr>
<td>12.5</td>
<td>0.432</td>
<td>0.460</td>
</tr>
<tr>
<td>12.5</td>
<td>0.440</td>
<td>0.555</td>
</tr>
<tr>
<td>12.5</td>
<td>0.471</td>
<td>0.578</td>
</tr>
<tr>
<td>1.9</td>
<td>0.500</td>
<td>0.582</td>
</tr>
<tr>
<td>0.3</td>
<td>0.378</td>
<td>0.479</td>
</tr>
<tr>
<td>0.05</td>
<td>0.390</td>
<td>0.563</td>
</tr>
</tbody>
</table>

Figure 44: Growth of *E. coli* K-12 (\(A_{620}\)): six-fold serial dilution of active compounds
<table>
<thead>
<tr>
<th>mM</th>
<th>$A_{620}$ T=2 h</th>
<th>$A_{620}$ T=5.5h</th>
<th>$\mu M$</th>
<th>$A_{620}$ T=2 h</th>
<th>$A_{620}$ T=5.5h</th>
<th>$\mu M$</th>
<th>$A_{620}$ T=2 h</th>
<th>$A_{620}$ T=5.5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0.088</td>
<td>0.069</td>
<td>650</td>
<td>0.163</td>
<td>0.186</td>
<td>732</td>
<td>0.148</td>
<td>0.176</td>
</tr>
<tr>
<td>11</td>
<td>0.087</td>
<td>0.072</td>
<td>325</td>
<td>0.166</td>
<td>0.197</td>
<td>366</td>
<td>0.143</td>
<td>0.168</td>
</tr>
<tr>
<td>5.7</td>
<td>0.089</td>
<td>0.071</td>
<td>163</td>
<td>0.175</td>
<td>0.212</td>
<td>183</td>
<td>0.156</td>
<td>0.198</td>
</tr>
<tr>
<td>2.9</td>
<td>0.097</td>
<td>0.066</td>
<td>81</td>
<td>0.178</td>
<td>0.219</td>
<td>91</td>
<td>0.150</td>
<td>0.189</td>
</tr>
<tr>
<td>1.4</td>
<td>0.097</td>
<td>0.073</td>
<td>41</td>
<td>0.189</td>
<td>0.288</td>
<td>46</td>
<td>0.164</td>
<td>0.199</td>
</tr>
<tr>
<td>0.7</td>
<td>0.102</td>
<td>0.073</td>
<td>20</td>
<td>0.194</td>
<td>0.222</td>
<td>23</td>
<td>0.181</td>
<td>0.217</td>
</tr>
<tr>
<td>0.4</td>
<td>0.104</td>
<td>0.073</td>
<td>10</td>
<td>0.205</td>
<td>0.228</td>
<td>11</td>
<td>0.239</td>
<td>0.221</td>
</tr>
<tr>
<td>0.2</td>
<td>0.117</td>
<td>0.078</td>
<td>5.1</td>
<td>0.233</td>
<td>0.228</td>
<td>5.7</td>
<td>0.243</td>
<td>0.240</td>
</tr>
</tbody>
</table>

Figure 45: Growth of *E. coli* K-12 ($A_{620}$): two-fold serial dilution of active compounds
3.4 Conclusions/Future Work

Although five ‘smugglins’ consisting of (6S)-6-fluoroshikimic acid conjugated to tripeptides were synthesised, only two have been tested for biological activity. These were chosen for their ease of purification and as such are the least hydrophilic of the five compounds synthesised.

This hydrophobicity may be a reason for the lack of biological activity observed when the conjugates were tested against *E. coli* K12. However, an alternative explanation is that while the oligopeptide permease will tolerate a wide variety of peptide side-chains, the addition of the (6S)-6-fluoroshikimic acid moiety to the side chain of lysine exceeds the space available in the binding pocket.

The crystal structures of tripeptides containing one of a variety of unnatural amino acids bound to OppA were published in 1999 (Davies *et al.*, 1999) and suggest that while a side-chain as bulky as naphthalene can be accommodated, it is tending towards the limit of what is possible.

A modification of the smugglin design to take this into account could be easily made, with the substitution of 2,3-diaminopropionic acid for the C-terminal lysine. This could make the coupling of the protected (6S)-6-fluoroshikimic acid to the resin-bound tripeptide more challenging due to steric interactions between BOP and the resin. It would, however, greatly reduce the bulk of the ‘side chain’ at position three of the tripeptide conjugates, and might therefore increase the likelihood of the smugglins being transported by OppA.
4 Dehydroquinase and 3-dehydroquinic acid

4.1 Brief Introduction

Dehydroquinase (3-dehydroquinate dehydratase EC 4.2.1.10; DHQase) catalyses the conversion of DHQ 10 to DHS 14 (fig. 46). This reaction is not only part of the shikimate pathway, as described in Chapter 1 (fig. 5), but is also part of a catabolic pathway found mainly in fungi: the quinate pathway (Chapter 1, fig. 14). In this catabolic pathway, quinate is converted to p-hydroxybenzoate which can be used as a carbon-source via the β-ketoadipate pathway (Gross, 1958; Ornston & Stanier, 1966).

![Figure 46: The reaction catalysed by DHQase](image)

Two types of enzyme exhibiting DHQase activity have been described. Type I enzymes, which involve a syn elimination, generally catalyse the biosynthetic reaction. Type II enzymes can catalyse either the biosynthetic or catabolic reaction, and involve an anti elimination. The two enzyme types differ in terms of their amino-acid sequence, their 3-dimensional structure, and their catalytic mechanism (Gourlay et al., 1999; Roszak et al., 2002). Type I enzymes are dimers of 27 kDa subunits which contain an (α/β)8 fold while type II enzymes are dodecameric, with the 16 kDa subunits arranged as tetramers of trimers. Each type II subunit adopts a flavodoxin-like fold consisting of a 5-stranded...
parallel β-sheet core flanked by 4 α-helices. The reaction catalysed by the type I DHQases is known to proceed via an imine intermediate (Butler et al., 1974; Chaudhuri et al., 1991), while that catalysed by type II enzymes is believed to involve an enol intermediate (Roszak et al., 2002).

![Diagram of DHQases](image)

**Figure 47: The differing outcomes of catalysis by type I and type II DHQases**

Kinetic characterisation of the type II DHQases appears to divide them into two groups. The first group, consisting of the enzymes from organisms such as *Streptomyces coelicolor* and *Aspergillus nidulans*, has relatively high values of $k_{cat}$ at between 100 and 1000 s$^{-1}$ at pH 7.0 and 25°C. The second group, which includes the enzymes from *Helicobacter pylori*, *Mycobacterium tuberculosis* and *Neurospora crassa*, has much lower values of $k_{cat}$ in the range 10 s$^{-1}$ or lower. Unusually, there appears to be no obvious correlation between the values of $k_{cat}$ and $K_m$ for these enzymes (Evans et al., 2002).
4.2 Rationale for a new synthesis of 3-dehydroquinic acid

DHQ is required in quantity for the kinetic investigation of type II DHQases in our laboratory. In particular, stopped-flow kinetic analysis requires equimolar concentrations of enzyme and substrate in order to study the first few milliseconds of a reaction. At these concentrations, any minor impurity in the substrate can greatly affect both the interaction of enzyme and substrate and the UV absorbance of the reaction mixture.

In addition, several versions of type II DHQases with very low rates of reaction have been obtained either by isolation or by genetic modification in the laboratory. Even steady-state kinetic investigation of these mutants involves very high concentrations of the substrate DHQ. As a result, the elimination of background absorbance from the substrate used was crucial for the observation of activity.

A source of uncontaminated DHQ is therefore essential for unambiguous experimental results.
4.3 Published syntheses of 3-dehydroquinic acid

4.3.1 Nitric acid

The synthetic method of choice in our laboratory has been the classical synthesis in which quinic acid 19 was oxidised by concentrated nitric acid over 45 h to give DHQ 10 (fig. 48) (Grewe & Jeschke, 1966).

![Figure 48: Synthesis of DHQ by nitric acid oxidation of quinic acid](image)

The reaction products were separated by lengthy ion-exchange chromatography using the acetate form of basic Amberlite CG-400/1 and the DHQ further purified by a difficult crystallisation as the ammonium salt (55 - 60%). The free acid was obtained by ion-exchange chromatography using Amberlite IR-120 and crystallised from isopropanol/pet. ether (45 - 50%).

In our hands, complete separation of the 3- and 5-dehydroquinic acids formed was not achieved, and the product was further contaminated by a highly UV-absorbing aromatic compound. These contaminants severely limited the utility of the product as 5-dehydroquinic acid is thought to be an inhibitor of DHQase, and at the concentrations required for kinetic analysis, the spectrophotometer was overloaded by the UV absorbance of the aromatic impurity.
4.3.2 Pt catalysed oxidation

An alternative preparation was reported in 1961 (Heyns & Gottschalk, 1961). Their method was based on the observation that under catalytic conditions, an axial hydroxyl will be oxidised to the corresponding ketone while any equatorial hydroxyls are unaffected.

The six-membered ring of quinic acid 19 exists in a chair conformation, with the Cl-carboxyl group equatorial. As a result, both the C-4 and C-5 hydroxyl groups are equatorial, while the C-1 and C-3 hydroxyl groups are axial. Platinum thus catalyses the exclusive oxidation of the C-3 hydroxyl to the ketone (fig. 49).

\[
\begin{align*}
\text{HO}_2\text{C} & \quad \text{H}_2\text{O}, \text{Pt}/\text{O}_2 \\
\text{HO}_2 & \quad \text{19} \\
\text{OH} & \quad \text{50°C} \\
\text{OH} & \quad \text{10}
\end{align*}
\]

Figure 49: The Pt-catalysed oxidation of quinic acid to DHQ

The published reaction was carried out in water on a 5 g scale using a platinum catalyst in an oxygen atmosphere. The product was isolated as the brucine salt in 45 % yield after repeated recrystallisation.

4.3.3 Formal synthesis to methyl ester

In their investigation of inhibitors of DHQ synthase, the Frost group utilised the butane 2,3-bisacetal (BBA) protecting group to selectively protect the trans diequatorial diol of quinic acid (Tian et al., 1996). BBA was developed to avoid problems associated with the earlier trans-diol selective protecting groups 3,3',4,4'-tetrahydro-6,6'-spirobi-2H-pyran (bisDHP)
and 1,1,2,2-tetramethoxycyclohexane (TMC) (Montchamp et al., 1996). It is easily prepared, does not require chromatographic purification, unlike bisDHP it can be used in methanol, and unlike TMC it does not give a complex NMR signal (Ziegler, 1994).

Figure 50: Formal synthesis of DHQ

Quinic acid 19 was protected as the methyl ester by refluxing in acidified methanol. The ester was then reacted with TMB in the presence of trimethyl orthoformate and catalytic (±)-10-camphorsulfonic acid (CSA) to give the protected compound 97 in 87 % yield. Ruthenium-catalysed oxidation of the unprotected C-3 hydroxyl then gave the protected 3-DHQ derivative 98 in 77 % yield (fig. 50).

In their route to (-)-methyl shikimate and various derivatives modified at C-3, the Payne group used a modification of this synthesis (Alves et al., 1999). Starting from methyl
quinate 99, the BBA protection step was catalysed by p-toluenesulfonic acid (p-TSA). The reaction time for this protection was also shortened from 22 h to 1 h, increasing the yield from 81% to 85%. Swern oxidation of the quinate derivative 97 then afforded the fully protected 3-DHQ derivative 98 in 74% yield with the corresponding protected shikimate derivative 100 as a significant byproduct (fig. 51).

![Chemical diagram](image)

Figure 51: Formal synthesis of DHQ and DHS

The DHQ derivative 98 was not deprotected in either of these synthetic routes.

4.3.4 Benzylidene acetal/lactone protection

A key intermediate in the synthesis of (2R)-2-bromodehydroquinic acid and (2R)-2-fluorodehydroquinic acid published by the Abell group was a protected form of 3-
dehydroquinic acid (Manthey et al., 1997). Reaction of quinic acid 19 with benzaldehyde under acid catalysis with azeotropic removal of water gave the benzylidene acetal 101, which was then hydrogenated to give quinic acid lactone 102 in excellent yield. Reaction of the lactone with tert-butyldimethylsilyl chloride (TBDMSCI) in DMF gave a 1:2 mixture of the C-5 protected compound 103 and the desired C-4 protected lactone 104. The authors noted that the undesired compound 103 could be converted to a mixture of 103 and 104 on re-exposure to the reaction conditions. The C-3 secondary hydroxyl was then oxidised using pyridinium dichromate (PDC) to give the acid-sensitive DHQ derivative 105 in excellent yield (fig. 52).

Figure 52: Formal synthesis of DHQ via the quinide.
The alternative method of direct lactonisation published by in 1954 (Panizzi, 1954) was mentioned in this paper, but the authors found it to be experimentally inferior to the two-step procedure. The one-step procedure involved refluxing quinic acid 19 in a large volume of dry dioxane with 0.3 eq. dry HCl for 6 - 7 hours, and neutralising with dry K₂CO₃ (fig. 53).

![Reaction Scheme](image.png)

Figure 53. Direct lactonisation of quinic acid to give the quinide

The quoted yield was 3.8 g of the lactone 102 from 10 g of quinic acid, or 42 % as compared to 70 % quoted for the two-step procedure.
4.4 Results and Discussion

4.4.1 BBA

The route to BBA-protected methyl-DHQ (Tian et al., 1996) (fig 50) provided the logical starting point for an attempted synthesis of DHQ. The only novel steps involved would be removal of the acid-sensitive BBA moiety, and saponification of the ester.

Attempts to replicate the literature protocol

TMB **108** was prepared according to the literature protocol (Montchamp et al., 1996). 2,3-Butanedione **106** and trimethyl orthoformate **107** were treated with concentrated H$_2$SO$_4$ in MeOH to give TMB **108** in a 45 % yield after distillation under high vacuum.

\[
\begin{align*}
\text{106} + \text{107} & \xrightarrow{c. \text{H}_2\text{SO}_4, \text{MeOH, reflux}} \text{108} \\
& \text{MeOH, reflux} \\
& \text{45 %}
\end{align*}
\]

**Figure 54: Synthesis of TMB**

Methyl quinate was synthesised by the acid catalysed esterification of quinic acid **19** in dry MeOH in a yield of 90 % on a 5 g scale. The diequatorial diol was then protected as the butane bis-acetal by reaction with TMB in refluxing dry MeOH. *p*-TSA was used instead of CSA as the catalyst, giving the desired protected quinate derivative **97** in 64 % yield (fig. 55).
The authors state that it is unnecessary to distil TMB before use, although they routinely did so (Montchamp et al., 1996). Our attempts to use the crude products of the reaction of 2,3-butanedione and trimethyl orthoformate to protect the diequatorial diol of methyl quinate were not successful. A second modification to the procedure, suggested by the Ley group (Hense et al., 1997), involves the in situ generation of TMB from 2,3-butanedione and trimethyl orthoformate under acid catalysis in MeOH at reflux. This was slightly more successful, but still only gave 24 % of the desired compound 97 after repeated silica-gel column chromatography purification and crystallisation attempts.

We did, however, find that the first two steps could be carried out in a single pot without intermediate purification. The reaction of quinic acid 19 with TMB under acid catalysis in MeOH at reflux gave the BBA-protected methyl quinate derivative 97 in an improved yield compared to the two-step procedure in our hands (fig. 57). We were also able to shorten the reaction time relative to the one-pot, two-step procedure (Montchamp et al., 1996).

Ruthenium-catalysed oxidation of the C-3 hydroxyl group of 97 using potassium periodate as the secondary oxidant in a chloroform/water two-phase system was then attempted. While the authors of the paper quote a 77 % yield, the reaction time required to reach...
complete oxidation was not given. We found that after 3 days of exposure to the oxidation conditions the reaction had only reached 95% completion, and the desired 3-DHQ derivative 98 was obtained in less than 50% yield (fig. 56).

![Chemical structures](image)

Figure 56: Attempted Ru-catalysed oxidation to give DHQ

The authors stated that they carried out small-scale oxidations using tetrapropylammonium perruthenate (TPAP) and 4-methylmorpholine N-oxide (NMO) rather than RuCl₃/KIO₄ which they used for large-scale (30 g) reactions. The difficulties we encountered may thus have been due to the absence of a phase-transfer catalyst (Morris & Kiely, 1987).

Under aqueous alkaline conditions, the non-selective oxidant RuO₄ is converted to the less reactive RuO₄²⁻ (ruthenate). Classically, a solution of RuO₄ in CCl₄ was extracted into aqueous 1 M NaOH to give a dark orange solution which was then used stoichiometrically to oxidise alcohols in the presence of alkenes and alkynes (Coates et al., 1982). Later, persulfate (K₂S₂O₈) was used as a secondary oxidant, again in aqueous solution, to carry out the same oxidations using catalytic ruthenium (Green et al., 1984). When reagent solubility necessitated a two-phase solvent system of water/CCl₄ a phase-transfer catalyst was introduced along with either persulfate or periodate (KIO₄) as secondary oxidant. Both
benzyltriethylammonium chloride and tetrabutylammonium chloride are mentioned in this regard (Morris & Kiely, 1984).

At the time, we believed that our problems were due to a loss of catalyst activity as an insoluble black particulate material rapidly accumulated in the reaction vessel with a loss of the characteristic yellow-orange colour. An extensive literature search eventually led to the original Sharpless paper (Carlsen et al., 1981) on "Ruthenium tetraoxide catalysed oxidations". In this paper, the authors speculated that the presence of carboxylic acids in the reaction mixture was leading to the formation of low-valent ruthenium carboxylate complexes, and hence to the loss of catalyst activity. Using the then-standard mixed solvent system of CCl₄:H₂O (1:1), ruthenium carboxylate complexes were inactive as oxidation catalysts, but the addition of MeCN to the reaction mixture rapidly restored the catalytic activity. The authors speculated that this was due to the ability of MeCN to coordinate low-valent transition metal ions, and hence break up the insoluble ruthenium carboxylate complexes.

Using the Sharpless conditions of a CCl₄:MeCN:H₂O (2:2:3) mixed solvent system, but with the addition of K₂CO₃ as specified in the Montchamp paper to generate the more selective ruthenate species (Lee et al., 1984), the oxidation proceeded to completion within 20 h (fig. 57). The desired protected DHQ derivative 98 was isolated in 79 % yield, which was an improvement over the literature yield (fig. 50). The explanation proposed by Sharpless, where carboxylic acids lead to catalyst inactivation cannot hold true for this reaction, as the C-1 carboxyl of quinic acid had been protected as the methyl ester. However, as RuO₄²⁻ is water-soluble, and the protected quinic acid derivative is not,
perhaps the addition of MeCN to the solvent mixture allowed sufficient mixing of the aqueous and organic phases to allow oxidation to occur in the absence of a phase-transfer catalyst.

Figure 57: Synthesis of DHQ protected as the methyl ester and butane bis-acetal using the Sharpless conditions for Ru-catalysed oxidation

Substituting CHCl₃ for CCl₄ i.e. a CHCl₃:MeCN:H₂O (2:2:3) solvent system, gave a 78 % isolated yield of the desired compound 98. Interestingly, the reaction required 3 days of stirring at room temperature to reach 95 % completion as determined by ¹H-NMR peak heights as opposed to the 20 h sufficient for complete reaction using CCl₄.
Extension of the literature protocol: cleavage of the BBA and methyl ester groups

The acid-sensitive BBA protecting group of 98 was readily cleaved by treatment with trifluoroacetic acid (TFA) in a dichloromethane/water mix at -5°C (Riley, 1999) to give methyl dehydroquinate 109. Removal of the methyl ester, however, was to prove more challenging.

![Chemical structures](image)

**Figure 58: Attempted saponification of the methyl ester of methyl-DHQ**

Initial attempts to cleave the methyl ester using 1M NaOH in a THF-water mix gave no recognisable products by $^1$H-NMR or mass spectrometry. Exposure of 109 to $\alpha$-chymotrypsin in an ammonium bicarbonate buffer for 44 h gave only returned starting material, but at least showed that the compound was not decomposing at room temperature in this mildly acidic buffer.

DHQ 10 is known to be base-sensitive, slowly forming 3,4-dihydroxybenzoic acid on exposure to even slightly elevated pH. It was therefore decided to attempt the cleavage of the methyl ester before removal of the BBA protecting group, hopefully reducing the likelihood of aromatisation (fig. 59).
Standard base-catalysed hydrolysis of the DHQ derivative 98 [1M NaOH (aq.):MeOH = 10:1 at room temperature, followed by an acidic workup] gave a brown material which could not be purified. \( ^1\text{H-NMR} \) analysis showed the presence of the starting material 98, BBA-protected methyl dehydroshikimic acid 100 and 3,4-dihydroxybenzoic acid 111 in an approximate ratio of 1:2:5 (fig. 60). This suggested that the methyl ester was only cleaved after elimination of the C-1 hydroxyl had formed the dehydroshikimate derivative.

Substituting THF or DCM for the MeOH, in an attempt to reduce the likelihood of the ester reforming, gave traces of 3,4-dihydroxybenzoic acid, and no other recognisable organic compounds by \( ^1\text{H-NMR} \) analysis. The milder base LiOH in a THF-water mix at 0°C also gave an inseparable mixture of aromatic products.
Cleavage using KO'Bu was then attempted as the relatively unsolvated hydroxide generated by the addition of 1 eq. of water to 2 eq. of KO'Bu is known to cleave hindered esters and amides at or below ambient temperature (Gassman & Schenk, 1977). It was hoped that addition of this 'anhydrous hydroxide' to the ester would occur preferentially over elimination. There was also the possibility that the bulky 'BuO-' anion would not be able to approach closely enough to the C-2 proton to cause elimination.

Reaction of the DHQ derivative 98 with a slurry of KO'Bu in a THF-H2O mix at 0°C did indeed lead to the formation of the desired compound 110 along with BBA-protected dehydroshikimate 112 and 3,4-dihydroxybenzoic acid 111 (fig. 61). The majority of the 3,4-dihydroxybenzoic acid (the major product) could be separated by the simple expedient
of transferring the THF-\(\text{H}_2\text{O}\) slurry to a second flask after 40 min reaction, leaving the yellow 3,4-dihydroxybenzoic acid 111 in the original flask as an oil. Attempts to separate the compounds obtained when the transferred THF-\(\text{H}_2\text{O}\) was removed under reduced pressure (111:110:112 = 1:2:2 by \(^1\text{H}-\text{NMR analysis of the crude material}\)) by silica-gel column chromatography were not successful, and only 3,4-dihydroxybenzoic acid 111 was isolated.

\[
\begin{align*}
\text{HO} & \quad \text{CO}_2\text{Me} \\
\text{O} & \quad \text{CO}_2\text{H} \\
\text{MeO} & \quad \text{O}_2\text{Me} \\
\text{MeO} & \quad \text{O}_2\text{H} \\
\text{MeO} & \quad \text{O}_2\text{H}
\end{align*}
\]

\[
\begin{align*}
\text{98} & \quad \quad \text{KOTBu} \quad \quad \text{THF-\text{H}_2\text{O}} \\
\text{0°C} & \quad \quad \text{110} \quad \quad \text{111} \quad \quad \text{112}
\end{align*}
\]

Figure 61: Attempted saponification of the methyl ester of protected DHQ

\(\text{Lil}\) in dry pyridine is considered to be a mild form of the standard ‘basic’ ester cleavage method. The fully protected methyl DHQ derivative 98 was stirred in dry pyridine at reflux with 4 eq. of \(\text{Lil}\) (Magnus, 1984). After 30 min, 2 h and 3 h, a portion was acidified and extracted into \(\text{CHCl}_3\). \(^1\text{H}-\text{NMR showed the gradual conversion of the BBA-protected methyl DHQ 98 into the corresponding dehydroshikimate derivative 100 such that after 3 h 60 % conversion had occurred (fig. 62). The same elimination reaction was seen when the DHQ derivative 98 was stirred in pyridine at rt without the addition of \(\text{Lil}\).
The potassium salt of trimethylsilanol (TMSOK) has been used to convert esters to carboxylic acid salts under mild conditions. The authors noted that TMSOK appeared to act as a nucleophile rather than a base under the conditions given, as α-protons did not affect the desired reaction. (Laganis, 1984) Subsequently, TMSOK in THF was used to cleave the methyl ester of a base-sensitive shikimate derivative. (Jiang, 1999)

In a similar manner, the protected dehydroquininate derivative 98 was stirred in a slurry of TMSOK in toluene for 4 h (fig. 63). After removing the toluene, the residue was treated with 5 % aq. NaHCO₃ and extracted into Et₂O in an attempt to separate any acid-containing products from the ester-containing starting materials without causing elimination. The aqueous fraction was then acidified and the solvent removed to give a yellow oil along with solid NaCl. The aqueous fraction was found to contain the BBA-protected dehydroshikimate derivative 112 along with a trace of 3,4-dihydroxybenzoic acid 111, while the etherial layer consisted of a 2:1 mixture of BBA protected methyl dehydroshikimate 100 and the starting material 98. Again, this suggested that the methyl ester was only removed after elimination of the C-1 hydroxyl.
By this stage it had become apparent that derivatives of DHQ are extremely sensitive to base, eliminating water to give DHS derivatives in the first instance, and aromatising under more forcing conditions. As a result, a neutral to acidic method of ester hydrolysis was sought. Enzymatic hydrolysis using chymotrypsin in a 5% ammonium bicarbonate buffer was attempted, but after 72 h no reaction had occurred. Chymotrypsin, a protease, had been recommended by an enzymologist for this transformation. It was decided that investigation of all the esterases and lipases available would be unrealistic, and the enzymatic approach was abandoned.
Bis(tributyltin) oxide \([\text{(Bu}_3\text{Sn)}_2\text{O}]\) has been used for the cleavage of simple esters (Mata & Mascaretti, 1988). The authors speculated that the mechanism involved an organotin ester intermediate which was converted into the free acid during workup. As the method is both mild and non-basic, it was hoped that the methyl ester would be cleaved without concomitant conversion to the dehydroshikimate derivative 112.

After reaction with \([\text{(Bu}_3\text{Sn)}_2\text{O}]\) in \(\text{Et}_2\text{O}\) at rt, silica-gel column chromatography gave approximately 50% returned starting material 98 despite TLC analysis of the reaction mixture suggesting that the reaction had proceeded to completion (fig. 64). Removal of Sn residues was not successful and as heavy metals are known to inhibit many enzymes this approach was abandoned.

Figure 64: Attempted cleavage of the methyl ester of protected DHQ

\[ \text{BCl}_3\] and \(\text{BBr}_3\) are also `neutral' ester cleavage reagents (Barton et al., 1971; Felix, 1974), but they were thought to be far too reactive to provide a viable solution to this problem.
4.1.2 Dispoke

The dispiroketal (Dispoke) protecting group was developed by the Ley group for the selective protection of \textit{trans} diequatorial vicinal diols in carbohydrate systems (Ley \textit{et al.}, 1992). The standard conditions for protection are treatment of the carbohydrate with bis-DHP in dry chloroform at reflux with catalytic CSA. Unlike BBA, therefore, it seemed likely that the dispoke protecting group could be used to protect the C-4 and C-5 hydroxyl groups of quinic acid without forming the methyl ester, solving the major problem with the previous synthetic route (fig. 65).

![Figure 65: Proposed protection of quinic acid using Dispoke](image)

Bis-DHP 113 was synthesised via a palladium catalysed oxidative dimerisation reaction according to the method provided for large-scale reactions (Ley \textit{et al.}, 1992) (fig 66). The organolithium compound 116 was generated by adding 'BuLi to dry distilled 3,4-dihydro-2\textit{H}-pyran 115, and dimerisation was initiated by adding the solution of 116 to a slurry of the palladium catalyst in THF. After quenching with an ammonium chloride/ammonia solution and extracting into ether, the product was purified by silica-gel column chromatography and crystallised from pet. ether. Due to difficulties experienced in
purification and consequent losses of material, the yields for these syntheses were poor, but sufficient pure bis-DHP 113 was obtained to test the protection method.

![Chemical reaction diagram](image1)

**Figure 66: Synthesis of bis DHP**

Treatment of quinic acid 19 with 2 eq. bis-DHP 113 in refluxing CHCl₃ with catalytic pTsOH gave a black mixture after 1 h. Removal of the solvent after 5 h gave mostly unreacted bis-DHP in the chloroform-soluble fraction, where any of the desired protected quinate derivative 114 (fig. 65) would have been expected to be found.

As quinic acid is completely insoluble in CHCl₃, but soluble in warm DMF, the same reaction was attempted using triphenylphosphine hydrobromide (PPh₃.HBr) as catalyst in DMF.

![Chemical reaction diagram](image2)

**Figure 67: Attempted protection of quinic acid using bisDHP under modified protection conditions**
This method was used by the Ley group to protect a glucopyranoside which gave unsatisfactory yields using the standard protection conditions (Hughes et al., 1994). The authors commented that the low solubility of the sugar derivative in CHCl₃, and the instability of bis-DHP were probably both to blame for the low yields.

After four days reaction the CHCl₃-soluble fraction of the crude reaction mix showed ¹H-NMR peaks consistent with the decomposition of bis-DHP. The authors (Hughes et al., 1994) did mention that the use of DMF as solvent generally gave breakdown of bis-DHP rather than the desired ketal formation under most circumstances, and this appears to be in accordance with our observations.

This approach was abandoned as the insolubility of quinic acid in aprotic solvents meant that it was unlikely that any further modifications of the protection protocol would be successful.
4.1.3 Benzylidene acetal

As mentioned previously, a key intermediate in the synthesis of fluorinated derivatives of DHQ (Manthey et al., 1997) is a protected form of DHQ 105. This route was initially disregarded as the third step in the reaction scheme involves distinguishing between the two secondary hydroxyls of the lactone 102 by means of TBDMS protection with a quoted yield of 54%. However, the DHQ derivative formed by this route is protected solely using acid-sensitive groups and thus offers the possibility of a global deprotection step which should not lead to elimination of water and hence the aromatisation which dogged previous synthetic attempts.

Attempts to replicate the literature protocol

Using the method of Manthey et al., 1997 attempts were made to protect quinic acid as the benzylidene acetal. The use of toluene at reflux, however, led to extensive charring of the reagents after 2 h reaction. The literature is fairly evenly divided between those who use toluene for this reaction and those who use benzene, so the reaction was repeated using benzene at reflux. The lower reaction temperature of around 90 °C gave a much cleaner reaction and the desired acetal 101 was isolated in a 35 % yield (fig. 68).

Hydrogenolysis under acidic conditions gave the lactone 102 in 54 % yield after crystallisation from acetic acid. In contrast to the published procedure, we found this step required an average of three days to reach completion, while the crystallisation step was difficult and low-yielding even when the pure compound could be isolated.
Selective protection of the C-4 hydroxyl of 102 as a TBDMS ether was carried out under thermodynamic conditions to give 104 in 31% yield after silica-gel column chromatography and repeated recrystallisations. The reaction time of this step appears to be critical, as any shortening of the reaction time gives an increase of the C-3 protected.
compound 103 while an increase in the reaction time gives the bis-silylated compound as the major product. Successful separation of the products by silica-gel column chromatography is essential, as the C-3 103 and C-4 104 protected compounds are co-crystalline when they are present in roughly equimolar quantities.

Oxidation of the free C-3 hydroxyl using PDC in DCM with freshly activated, powdered, 3Å molecular sieves gave the protected DHQ derivative 105 in 48 % yield after crystallisation. Powdered molecular sieves were used as the oxidation occurred extremely slowly with pelleted 4Å molecular sieves, and did not reach completion despite the use of a large excess of PDC. Using a two-fold excess (by mass) of freshly activated powdered sieves, complete oxidation was achieved with only 2 eq. PDC after 5 h reaction.

Pure DHQ 10 was obtained by stirring the protected derivative 105 in an AcOH-H₂O mix at 50°C for two days followed by repeated lyophilisation.

The main problem with this approach was the low-yield obtained for formation of the lactone 102. It was therefore decided to attempt direct lactonisation rather than the two-step approach recommended by the authors (Manthey et al., 1997).
4.1.4 Direct lactonisation and deprotection

The lactone 102 has been formed by heating under acid catalysis with simultaneous removal of water in 42 % yield (Panizzi et al., 1954), and also by direct heating (Wolinsky et al., 1964; Elliott et al., 1981) in up to 55 % yield. The step following the formation of the lactone requires the presence of an acid catalyst, and the lactone is formed in refluxing benzene during formation of the benzylidene acetal 101. It was therefore decided to attempt direct lactonisation in refluxing benzene with catalytic $p$TsOH in a Dean-Stark apparatus to facilitate removal of the water formed on lactonisation (fig. 69).

\[
\text{HQ CO}_2\text{H} \xrightarrow{p\text{TsOH}} \text{H}_2\text{O, reflux} \xrightarrow{86 \%} \text{HQ CO}_2\text{H} \\
\text{HO} \xrightarrow{p\text{TsOH}, \text{DMF, 90} \^\circ\text{C}} \text{HO} \xrightarrow{29 \% \text{ of } 104} \text{HO} \\
\text{HQ CO}_2\text{H} \xrightarrow{\text{H}_2\text{O:AcOH 4:1}} \text{HO} \xrightarrow{50 \^\circ\text{C} 96\%} \text{HO} \\
\text{OTBDMS} \xrightarrow{48 \%} \text{OTBDMS} \\
\text{PDC, 3 Å molecular sieves} \xrightarrow{\text{DCM, rt}} \text{HO} \xrightarrow{48 \%} \text{HO} \\
\]

Figure 69: Modification of the literature protocol towards the synthesis of DHQ

The desired lactone 102 was formed by stirring a suspension of quinic acid and catalytic $p$TsOH in refluxing benzene (fig. 69). The lactone is extremely moisture sensitive, and the yield given was determined by first dissolving a fixed mass of the crude material in dry MeOH, removing any insoluble material by filtration, and removing the solvent to give the
proportion of soluble compounds. The same procedure was carried out using CD$_3$OD and $^1$H-NMR analysis used to determine the proportion of the desired lactone 102 to $p$TsOH and any other impurities. The crude material from the lactonisation was then treated with TBDMSCl under thermodynamic conditions as before to give the C-4 silylated derivative 104 in only slightly reduced yield compared to the literature method in our hands (fig. 68). Unfortunately, we were not able to even approach the literature yield for this step.

The remaining steps in the synthesis were carried out as before on a gram scale to give 1.04 g of 3-dehydroquinic acid 10 which has been used for detailed kinetic analysis of both naturally occurring and mutant type II dehydroquinase enzymes.
4.2 Kinetic studies using the 3-dehydroquinic acid synthesised

4.2.1 Background

Stopped-flow kinetic analysis is used to study the first few microseconds of a reaction, where any lag in the observed reaction course may be evidence of subtle mechanistic differences between enzymes. In order to give an accurate picture of the early stages of an enzyme-catalysed reaction, enzyme and substrate are used in equimolar amounts. The result is that the observed reaction is equivalent to the reaction of a single molecule of substrate on a single enzyme molecule.

Steady-state kinetic analysis, where the enzyme is present at less than 1% of the concentration of the substrate, is used to give information on the specificity of an enzyme for a particular substrate and the general type of reaction mechanism involved.

As discussed in Chapter 4, section 4.1, kinetic characterisation of the type II DHQases appears to divide them into two groups based on $k_{cat}$ with no obvious correlation between $k_{cat}$ and $K_m$ (Evans et al., 2002). The first group, which includes the enzymes from organisms such as Streptomyces coelicolor and Aspergillus nidulans, has relatively high values of $k_{cat}$ at between 100 and 1000 s$^{-1}$ at pH 7.0 and 25°C. The second group, which includes the enzymes from Helicobacter pylori, Mycobacterium tuberculosis and Neurospora crassa, has values of $k_{cat}$ in the range 10 s$^{-1}$ or lower.

As part of the research effort within the group, I carried out steady-state and stopped-flow kinetic analysis on the type II dehydroquinase enzyme from Helicobacter pylori which is a
‘low kcat’ enzyme. I also investigated a putative type II dehydroquinase enzyme from *Bacillus subtilis*.

The YqhS protein of *B. subtilis*, which shows 47% identity to *S. coelicolor* DHQase, is completely inactive towards DHQ. However, when the substitution of F28Y was introduced by site-specific mutagenesis activity was restored albeit to a very limited extent. Tyr28 is believed to be the residue involved in deprotonation at C-2 of DHQ and as such is thought to be essential for the catalytic activity of the enzyme. This mutant F28Y enzyme is an ideal candidate for the investigation of the mechanism of type II DHQase enzymes.

The ‘slow’ enzyme allows for more detailed investigation of the early part of the reaction, where mechanistic differences might be apparent.

As has been mentioned previously, the source of DHQ for the kinetic analysis of DHQase enzymes in our group had been the classical synthesis involving nitric acid oxidation of quinic acid (fig. 48). We had reason to believe that this material was contaminated with 5-dehydroquinic acid, and there had been some concern that this compound was a potential inhibitor of DHQase. In addition, the presence of highly UV-absorbing contaminants in the substrate meant that the investigation of enzymes with low activity or binding affinity was not possible, as the small changes in absorbance were swamped by the background.

The availability of an improved synthesis of DHQ (fig. 69, *Chapter 4*) which was known to be free from contamination made it possible to compare the historic values for *k*<sub>cat</sub> and *K*<sub>m</sub> with those obtained using ‘clean’ substrate.
4.2.2 The reaction catalysed by type II dehydroquinases

Type II dehydroquinases catalyse the *anti* elimination of water with the loss of the more acidic axial *pro-S* hydrogen of DHQ (Roszak *et al.* 2002). The reaction is thought to involve an enolate intermediate but recent work has suggested the possibility of an enol (Harris *et al.*, 1996; Roszak *et al.* 2002). The structure of the *S. coelicolor* type II DHQase has been published both in the apo form and complexed with a variety of ligands (Roszak *et al.* 2002). This structural information was used to devise a detailed explanation of the possible reaction mechanism (*fig 70*).

The axial C-2 *pro-S* hydrogen is abstracted by the side chain of Tyr 28 which is deprotonated due to the close proximity of Arg 113. The enolate intermediate thus formed is stabilised by a proton from a conserved water molecule held in the active site by Asn 19, Pro 15 and Ala 81. Elimination of the C-1 hydroxyl follows, with His 106 acting as the proton donor. The intermediate formed undergoes a structural change and becomes planar as the product dehydroshikimate is formed, and this is proposed to drive the release of product from the active site.
Figure 70: Proposed reaction mechanism of type II DHQases
4.2.3 Stopped-flow kinetic analysis: Results

Stopped-flow analysis of both enzymes showed no sign of a lag phase suggesting that analogous mechanisms were operating in both cases. This was confirmed by work carried out on a number of type II DHQases from other organisms in our laboratory by L. Evans. However, work investigating the binding of polyanions to the type II DHQases of S. coelicolor and M. tuberculosis can be correlated with the existence of a single binding site in the S. coelicolor enzyme and multiple sites in the M. tuberculosis enzyme (Evans et al., 2002). These differences in binding may provide a structural explanation for the observed differences in $k_{cat}$.

4.2.4 Steady state kinetic analysis: Results

Steady-state kinetic analysis of the two enzymes was carried out at 20°C in Tris-acetate buffer at pH 7 in a total volume of 1 mL. The assays were carried out at the lower temperature rather than the 25°C which had become routine in our laboratory to enable comparison with historical data (White et al., 1990). The formation of DHS was monitored spectrophotometrically at 234 nm. The values of $K_m$ and $V_{max}$ were obtained by fitting the raw data to the Michaelis-Menten equation by non-linear regression using Microcal Origin software (fig. 71 & fig. 72). The values of $k_{cat}$ were calculated based on $M_r = 20\,000$ for H. pylori DHQase and $M_r = 18\,000$ for B. subtilis F28Y.
Analysis of *B. subtilis* F28Y at 20°C in Tris.acetate buffer pH 7.0 gave $K_m = 622 \ \mu M$ and $k_{cat} = 0.22 \ \text{s}^{-1}$.

**Figure 71:** Data obtained by steady-state kinetic analysis of *B. subtilis* F28Y
Analysis of *H. pylori* DHQase at 20°C in Tris.acetate buffer pH 7.0 gave $K_m = 251 \mu M$ and $k_{cat} = 19.4 \text{ s}^{-1}$. This is similar to the values of $K_m = 205 \mu M$ and $k_{cat} = 0.9 \text{ s}^{-1}$ obtained by L. Evans at 25°C (Evans et al., 2002).

Figure 72: Data obtained by steady-state kinetic analysis of *H. pylori* type II DHQase
4.3 Conclusions and future work

The synthesis of DHQ from quinic acid via the lactone (fig. 69), despite its length and relatively low overall yield, is still an improvement on the classical nitric acid oxidation synthesis (fig. 48). The product is pure by ¹H-NMR analysis and has a negligible absorbance at 234 nm, facilitating the kinetic investigation of DHQase enzymes with extremely low values of $k_{cat}$.

The attempted synthesis of DHQ from quinic acid using the diol-selective protecting group BBA was unsuccessful. However, if methyl dehydroquinic acid could be maintained at a steady pH sufficiently high to saponify the ester without leading to dehydration, this method would be a great improvement over the synthesis used to generate DHQ. The synthesis of methyl quinate by this method was high-yielding, and the chemistry was less challenging than the route eventually followed.

The comparison of historic values of $k_{cat}$ and $K_m$, determined using substrate which may have been contaminated with enzyme inhibitors and those determined using the clean substrate, is still ongoing in the group. However, the availability of large amounts of pure DHQ has already facilitated the use of stopped-flow kinetic analysis to probe the early reaction mechanism of type II DHQase enzymes. The pure substrate has also been used in the investigation of polyanion binding to type II DHQase enzymes (Evans et al, 2002) providing further insight into the structural basis for the observed differences in $k_{cat}$.
5.1 Starting materials and solvents:

AcOH was distilled from quinoline under reduced pressure and stored over 4Å molecular sieves at 4°C.

PhH was stirred over CaH for a minimum of 2 h, distilled under reduced pressure and stored over 4Å molecular sieves.

Butan-2-ol was dried by standing over activated 4Å molecular sieves for at least 24 h.

CHCl₃ was distilled from, and stored over, molecular sieves.

DCM was distilled from calcium hydride.

DMF was stirred for 18h over CaH₂, then distilled under reduced pressure and stored over 4Å molecular sieves.

DMAP was crystallised from toluene and dried under high vacuum for at least 12h.

Et₃N was distilled from calcium hydride, and stored over potassium hydroxide.

MeOH was distilled from magnesium methoxide and used immediately (storage over activated 3Å molecular sieves was unsatisfactory).

Molecular sieves were routinely dried and activated by heating for at least 12 h in an oven at 140°C.

Petrol was distilled from 4Å molecular sieves.

Piperidine was distilled from, and stored over, potassium hydroxide.

Pyridine was distilled from, and stored over, potassium hydroxide.

THF was distilled from sodium benzophenone.

All enzyme buffers were prepared using distilled water and sterile glassware.
Water used for HPLC was purified using a Millipore UV purification system, filtered and degassed for 20 minutes per litre. All HPLC buffers were stored for a maximum of 48 hours prior to use.

Unless stated otherwise, all starting materials were used as purchased.

Unless stated otherwise, all compounds are known.
5.2 Apparatus:

Glassware was dried for at least 30 minutes in an oven at approximately 140°C. Analytical thin layer chromatography was performed on precoated silica gel plates with visualisation under UV254 light and by dipping in phosphomolybdic acid solution (phosphomolybdic acid (12g) in EtOH (200 mL)). \(^1\)H NMR and \(^{13}\)C NMR were measured on a Bruker DPX 400 (400 and 100 MHz respectively). All chemical shifts are given in ppm relative to residual CHCl₃ (δ = 7.27 and δ = 77.0) in CDCl₃ solutions, residual HOD in D₂O solutions (δ = 4.60), or residual CHD₂OD in CD₃OD (δ = 3.35). \(^19\)F NMR was carried out on a Bruker 360 with chemical shifts given in ppm relative to external CF₂Cl₂. Coupling constants are given in Hz and are uncorrected. Mass spectra were determined on a JMS 700 spectrometer. Infra red spectral analysis was carried out on a Perkin Elmer 410 spectrometer. Melting points were carried out using a Stuart Scientific capillary apparatus SMP2 and are uncorrected. HPLC analysis carried out in the laboratory was on a Dionex system using UV and amperometric detection. Enzyme assays were carried out using an HP8453 diode array spectrophotometer.
5.3 Enzyme sources and specific activity

Transketolase

The N-terminal His tagged recombinant transketolase used was a gift of Ms Nicola Veitch. The protein was expressed in *E. coli* BL21(DE3) cells using pET16b. The enzyme was provided fresh as required. Details of the activity of each preparation were provided by Ms Veitch with a typical value being 0.2 units.mg⁻¹.

DAHP synthase

The DAHPS(phe) used was a gift of Mr John Greene. The protein was expressed in *E. coli* CB198 using pttGl(phe). The activity of a typical enzyme preparation as provided by Mr Greene was 59 units.mg⁻¹.

Dehydroquinate synthase

The DHQ synthase used was a gift of Mr John Greene. The protein was expressed in *E. coli* W3110 using pJB14. The activity of a typical enzyme preparation as provided by Mr Greene was 36 units.mg⁻¹.

Dehydroquinate dehydratase

The type II DHQase used in the biosynthesis was a gift of Mr John Greene. The protein was expressed in *E. coli* AB2848 using pKD203. The activity of a typical enzyme preparation as provided by Mr Greene was 747 units.mg⁻¹.

The *B. subtilis* wild type and F28Y DHQase enzymes, as well as the *S. coelicolor* and *H. pylori* enzymes used in the kinetic analysis experiments were a gift of Mr Lewis Evans.
Shikimate dehydrogenase

The shikimate dehydrogenase used was a gift of Mr John Greene. The protein was expressed in *E. coli* BL21 using pTB361. The activity of a typical enzyme preparation as provided by Mr Greene was 854 units.mg$^{-1}$. 
5.4 General procedures:

5.4.1 Enzyme assays

DAHP synthase (Schoner & Hermann, 1976)

The assay was carried out at 25°C, pH 7.0 in a 1 mL, 1 cm path length cuvette. The assay mixture, total volume 1 mL, consisted of 10 mM 1,3-bis[tris-(hydroxy-methyl)methylamino]propane (BTP) buffer pH 7.0, 100 µM PEP and 300 µM E4P. Reaction was initiated by the addition of DAHP synthase.

The rate of change of absorbance at 234 nm is related to the enzyme activity in units per mL as follows:

$$\text{Activity} = \frac{\Delta A_{234} \cdot \text{min}^{-1} \cdot \text{mL}^{-1}}{\varepsilon}$$

$$\varepsilon = 2.8 \times 10^3 \text{ M}^{-1} \text{cm}^{-1}$$

Dehydroquinate synthase (Lambert et al., 1985)

The assay was carried out at 25°C, pH 7.0 in a 1 mL, 1 cm path length cuvette. The assay mixture, total volume 1 mL, consisted of 50 mM potassium phosphate buffer pH 7, 40 µM NAD⁺, 0.2 µM CoCl₂, 2 units E. coli dehydroquinase and 4 units E. coli dehydroquinase synthase. Reaction was initiated by the addition of 200 µM DAHP.

The rate of change of absorbance at 234 nm is related to the enzyme activity in units per mL as follows:

$$\text{Activity} = \frac{\Delta A_{234} \cdot \text{min}^{-1} \cdot \text{mL}^{-1}}{\varepsilon}$$

$$\varepsilon = 12 \times 10^3 \text{ M}^{-1} \text{cm}^{-1}$$
Dehydroquinate dehydratase (dehydroquinase) (White et al., 1990)

Assays were carried out at 20°C in a 1 mL, 1 cm path length cuvette. The limiting change in $A_{234}$ on the addition of S. coelicolor type II dehydroquinase (1 μg) to a solution of DHQ in the reaction buffer was used to calculate the concentration of substrate. Calculations took into account the fact that the equilibrium constant for the reaction is 15 (Kleanthous et al., 1991).

The assay mixture, total volume 1 mL, consisted of 50 mM Tris.acetate buffer pH 7.0 and 1 mM DHQ (variable for kinetic determination). Reaction was initiated by the addition of DHQase.

The activity of the enzyme in units per mL was calculated as follows:

$$\text{Activity} = \frac{\Delta A_{234} \cdot \text{min}^{-1} \cdot \text{mL}^{-1}}{\varepsilon} = 12 \times 10^3 \text{ M}^{-1} \cdot \text{cm}^{-1}$$

Shikimate dehydrogenase (Chaudhuri & Coggins, 1985)

The assay was carried out at 25°C, pH 10.6 in a 1 mL, 1 cm path length cuvette. The enzyme was assayed in the reverse direction, monitoring the reduction of NADP$^+$ at 340 nm. The assay mixture, total volume 1 mL, consisted of 100 mM Na$_2$CO$_3$ buffer pH 10.6, 4 mM shikimic acid and 2 mM NADP$^+$. Reaction was initiated by the addition of SDHase.

$$\text{Activity} = \frac{\Delta A_{340} \cdot \text{min}^{-1} \cdot \text{mL}^{-1}}{\varepsilon} = 6.2 \times 10^3 \text{ M}^{-1} \cdot \text{cm}^{-1}$$
5.4.2 Chemical assays

Sialic acid (thiobarbituric acid) assay for DAHP (Warren, 1959)

The test solution (10 μL) was added to 0.2M NaIO₄ in 9M H₃PO₄ (25 μL) and left at room temperature for 20 min. 0.75 M NaAsO₂ in 0.5 M Na₂SO₄·50 mM H₂SO₄ (100 μL) was added and the solution mixed. 40 mM Thiobarbituric acid (750 μL) was added and the solution incubated at 100°C for 15 min. A pink chromagen absorbing at 549 nm was formed and the absorbance related to the concentration of DAHP by comparison with standard solutions.

Phosphate assay (Lanzetta et al., 1979)

Solutions required:

0.045% malachite green hydrochloride
4.2% ammonium molybdate in 4M HCl
34% sodium citrate.2H₂O (w/v)
10 mM KH₂PO₄ for use as standard

A 3:1 mixture of the malachite green and ammonium molybdate solutions was stirred for 20 min and filtered to form the ‘colour reagent’.

To 100 μL of the assay sample was added 800 μL of the colour reagent. After 1 min, 100 μL of the citrate solution was added, and the colour left to develop for 30 min at rt.
5.4.3 Fmoc-based solid-phase peptide synthesis

Fmoc-Lys(Mtt)-wang resin was used as the basis for these syntheses. The DCM used was freshly distilled, while the DMF and piperidine had been distilled and stored over activated 4Å molecular sieves. The MeOH used was reagent grade but otherwise unpurified.

Fmoc deprotection:

The resin was swelled in DMF (2 mL) for 5 min and drained. The swelled resin was treated with 20 % piperidine in DMF (2 mL, 4 × 15 min), washing with DMF (5 × 1 mL) after each iteration. The deprotected resin was then washed with DCM (5 × 1 mL) and MeOH (5 × 1 mL) and dried under reduced pressure in an air stream for 1 hour.

Coupling of amino acid residues:

The resin was swelled in DMF (2 mL) for 5 min and drained. The desired Fmoc-protected amino acid derivative (3 eq.) was added to the swelled resin along with HOBT (3 eq.) and DIC (10 eq.). DMF (2 mL) was added and the mixture was agitated at room temperature for 3 h. The reaction mix was drained from the resin, and the resin washed with DMF (5 × 1 mL).

Mtt deprotection:

The resin was swelled in DCM (2 mL) for 5 min and drained. The swelled resin was treated with 1 % TFA, 5 % TIPS in DCM (2 mL, 5 × 10 min), washing with DCM (5 × 1 mL) after each iteration. This treatment was continued until no further yellow coloration was observed on the addition of the deprotection mix. The deprotected resin was then washed with MeOH (5 × 1 mL) and dried under reduced pressure and an air stream for 1 hour.
Coupling of shikimic acetate derivative:
The resin was swelled in DCM (2 mL) for 5 min and drained. The swelled resin was treated with shikimic acetate 80 (3 eq.), HOBt (3 eq.) and DIC (10 eq.). DCM (2 mL) was added and the mixture was agitated at room temperature for between 12 and 18 hours. The reaction mix was drained and the resin was washed with DCM (5 \times 1 \text{ mL}) and MeOH (5 \times 1 \text{ mL}) and dried in a steady air stream under reduced pressure for 30 min.

Coupling of (6S)-6-fluoroshikimic acid derivative:
The resin was swelled in DCM (2 mL) for 5 min and drained. The swelled resin was treated with the (6S)-6-fluoroshikimic acid derivative 90 (3 eq.), BOP (6 eq.) and Et$_3$N (3 eq.). DCM (2 mL) was added and the mixture was agitated at room temperature for 24 hours. The reaction mix was drained into sat. NaHCO$_3$ (aq.) to neutralise the HMPA formed. The resin was then washed with DCM (5 \times 1 \text{ mL}) and MeOH (5 \times 1 \text{ mL}) and dried in a steady air stream under reduced pressure for 30 min.

Cleavage of peptides from resin:
The resin was swelled in DCM (2 mL) for 5 min and drained. The swelled resin was treated with TFA (1.5 mL) and DCM (0.5 mL) and the mixture was agitated at room temperature for 45 min. The solvent was drained into a suitable flask. The resin was washed with DCM (5 \times 1 \text{ mL}) and these washings were added to the flask. The solvent was removed under reduced pressure.

Final deprotection:

a. tBu ether and ester cleavage
Serine and glutamic acid-containing conjugates (protected as the tBu ether and ester respectively) were cooled to 0°C. TFA (2 mL) was added and the mixture stirred for 45
min at 0°C and a further 45 min at rt. The TFA was then removed under reduced pressure to give the crude product.

b. acetate cleavage

Conjugates containing shikimic acetate were treated with THF (2 mL) and 1M NaOH (aq.) (0.5 mL). The mixture was stirred at rt for 90 min and the solvent removed under reduced pressure. The crude material obtained was analysed by ¹H-NMR and HPLC-mass-spectrometry.

c. TBDMS ether cleavage

Conjugates containing the protected (6S)-6-fluoroshikimic acid derivative 90 were treated with 100 % TFA (2 mL) for 90 min [occasionally, 90 % TFA in DCM was used]. The TFA was removed under reduced pressure to give the crude product which was analysed by ¹H-NMR and HPLC-mass-spectrometry.
5.5 Experimental for Chapter 2

Formation of DAHP 13 by biotransformation from D-fructose-6-phosphate 79:

Reactions were carried out using conditions based on those given in Duggan et al., 1995. Reactions were carried out on a 2.5 mL scale, in a variety of buffers:

The standard reaction mix contained: fructose-6-phosphate (6.5 mg, 21 µmol), D-ribose-5-phosphate (14.2 mg, 52 µmol), phosphoenol pyruvate (7.6 mg, 28 µmol), MgCl₂ (5.5 mg, 27 µmol), and cocarboxylase (trace).

Dissolved oxygen was removed by bubbling N₂ through the solution for 2 min. The reaction was initiated by adding transketolase (0.2 units) and DAHP synthase (1 unit). 10 µL aliquots were taken at 30 min intervals and assayed for DAHP formation using the thiobarbituric acid assay (5.4.2).

Formation of 3-dehydroshikimic acid 14 by biotransformation from PEP 11:

Reactions were carried out in a 1 mL, 1 cm path length cuvette for continuous monitoring. To 1 mL of the DAHP biotransformation reaction mix was added: CoSO₄ to a final concentration of 50 µM and NAD⁺ to a final concentration of 0.2 µM. The reaction was initiated by the addition of E. coli dehydroquinase (2 units) and E. coli dehydroquinate synthase (4 units), and monitored for the formation of DHS at 234 nm.
Formation of 3-dehydroshikimic acid 14 by biotransformation from DAHP 13:

Reactions were carried out in a 1 mL, 1 cm path length cuvette for continuous monitoring. The conditions used for the assay of *E. coli* DHQ synthase were utilised with the rate of reaction monitored spectrophotometrically at 234 nm in various buffers. The effect of the constituents of the DAHP biotransformation from F-6-P was investigated by the addition of these components to the reaction mix.

Formation of shikimic acid 9 by biotransformation from DAHP 13:

Reactions were carried out in a 1 mL, 1 cm path length cuvette for continuous monitoring. The conditions used for the assay of *E. coli* DHQ synthase were utilised in order to obtain a reaction mix containing dehydroshikimic acid. This was treated with NADPH and *E. coli* shikimate dehydrogenase at varying concentrations and the rate of reaction monitored by the consumption of NADPH at 340 nm and the consumption of dehydroshikimic acid at 234 nm.

Reactions used for HPLC method development involved higher concentrations of reagents:

To 6 mL of 50 mM MOPS pH 7, 50 μM CoSO₄ was added DAHP (10 mg, 30 μmol), NAD⁺ (0.15 μmol by dilution), dehydroquinase (4 units) and dehydroquinate synthase (16 units). The reaction was incubated at 25°C overnight. To a 1 mL aliquot of this biotransformation mix was added NADPH (30 mg, 36 μmol) and shikimate dehydrogenase (8 units) and the mixture was incubated at 25°C. 2 μL Aliquots of the biotransformation mix were taken at regular intervals. The formation of shikimic acid was monitored using a Dionex Carbopac HPLC column and amperometric detection, eluting with a 5 mM - 100 mM NaOH gradient.
Biotransformation to form (6S)-6-fluoroshikimic acid 1 and (6R)-6-fluoroshikimic acid 41

3-fluoro-PEP, C₆H₁₁NH₃ (126 mg, 0.4 mmol), fructose-6-phosphate (140 mg, 0.45 mmol), D-ribose-5-phosphate (180 mg, 0.65 mmol), cocarboxylase (1 mg) and MnSO₄ (0.4 mg, 50 μM) were added to 15 mL H₂O. The pH was adjusted to pH 6.8 using 10% NaOH and the total volume made up to 50 mL with H₂O. The reaction was initiated by the addition of transketolase (10 u) and DAHP synthase (32 u). After 10 hours reaction, a further aliquot of DAHP synthase (16 u) was added and the biotransformation continued for 16 hours.

The biotransformation was purified using an ammonium bicarbonate gradient (5 to 500 mM over 400 mL) on a DEAE sephacel column pre-equilibrated with 5 mM NH₄HCO₃ (600 mL) taking 5 mL fractions. These fractions were assayed for inorganic phosphate using the Lanzetta phosphate assay after overnight equilibration of 200 μL aliquots with alkaline phosphatase.

Investigation of the transformation of F-PEP to F-DAHP by ¹⁹F-NMR:

3-fluoro-PEP, C₆H₁₁NH₃ (30 mg, 0.064 mmol) was dissolved in 1 mL D₂O. Fructose-6-phosphate (30 mg, 0.064 mmol), D-ribose-5-phosphate (20 mg, 0.064 mmol), a trace amount of cocarboxylase, and MgCl₂ (2.0 mg, 0.01 mmol) was added. The solution was degassed by bubbling a stream of N₂ through for 2 min. The pH was adjusted to pH 7.1 using 0.1 M NaOH solution. Transketolase (1 unit) and DAHP synthase (3 units) were added. The ¹⁹F-NMR spectrum was taken at regular intervals. There was no change from the observed spectrum of the substrate 3-fluoro-PEP. δ(188.3 MHz; D₂O): -140.8 (1F, dm, Z-F), -150.0 (1F, dm, E-F).

Literature values (Duggan et al., 1995): δ(235 MHz; D₂O): -141.4 (Z-F), -152.7 (E-F)
Methyl shikimate (Chahoua et al., 1992)

\[
\begin{align*}
\text{CO}_2\text{Me} & \\
\text{HO} & \\
\text{OH} & \\
\text{OH} & 
\end{align*}
\]

Shikimic acid 9 (1.00 g, 5.74 mol) was heated to reflux in dry MeOH (40 mL) in the presence of Amberlite IR120 H⁺ ion-exchange resin (1.0 g). After 18 h the resin was removed by filtration and the solvent evaporated to give the desired ester (1.07 g, 5.69 mmol, 99 %) as a white solid.

\[\delta_H(400 \text{ MHz}; \text{CDCl}_3) 6.84 - 6.82 (1\text{H}, \text{m}, \text{H}-2), 4.41 (1\text{H}, \text{br m}, \text{H}-3), 4.03 (1\text{H}, \text{td}, J 5.2 \text{ and } 1.8, \text{H}-4), 3.78 (3\text{H}, \text{s}, \text{OMe}), 3.73 (1\text{H}, \text{dd}, J 7.3 \text{ and } 4.2, \text{H}-4), 2.75 (1\text{H}, \text{ddt}, J 18.2, \text{4.9 and } 1.8, \text{H}-6) 2.24 (1\text{H}, \text{ddt}, J 18.2, \text{5.4 and } 1.6, \text{H}-6); \delta_C(100 \text{ MHz}; \text{CDCl}_3) 169.1 \text{(CO}_2\text{CH}_3), 139.5 (\text{C=CH}), 130.6 (\text{CH=CH}), 73.0 (\text{C-OH}), 68.8 (\text{C-OH}), 67.7 (\text{C-OH}), 52.8 \text{(CO}_2\text{CH}_3), 32.0 (\text{CH}_2).
\]

lit. (Chahoua et al., 1992) \[\delta_H(250 \text{ MHz}; \text{CD}_3\text{OD}) 6.79, 4.37, 4.00, 3.74, 3.69, 2.70, 2.20\] (abbreviated data quoted).

Methyl 3,4-O-isopropylidene-shikimate 72 (Chahoua et al., 1992)

Methyl shikimate (1.04 g, 5.53 mmol) was dissolved in 2,2-dimethoxypropane (20 mL). \(p\text{TsOH (105 mg, 0.55 mmol, 10 %)}\) was added and the solution stirred at rt. After 50 min the reaction was quenched with sat. NaHCO₃ (aq.) (10 mL) and extracted into Et₂O (3 × 40 mL). The etherial extracts were dried (Na₂SO₄), filtered and evaporated under reduced
pressure to give the crude product (1.18 g) as a pale yellow oil. Silica-gel column chromatography (EtOAc:Petrol = 1:1) gave the desired acetal 72 (1.16 g, 5.08 mmol, 92%) as a colourless oil.

$\delta_h(400 \text{ MHz}; \text{CDCl}_3)$ 6.92 (1H, m, H-2), 4.75 (1H, m, H-3), 4.09 (1H, t, J 7.2, H-4), 3.93 - 3.87 (1H, m, H-5), 3.77 (3H, s, OMe), 2.73 (1H, dd, J 17.4 and 4.6, H-6), 2.37 (1H, d, J 2.7, OH), 2.18 (1H, ddt, J 17.4, 8.3 and 1.9, H-6), 1.45 (3H, s, CMe), 1.40 (3H, s, CMe);

$\delta_c(100 \text{ MHz}; \text{CDCl}_3)$ 166.5, 133.9, 130.6, 109.7, 77.9, 72.2, 68.8, 52.1, 29.3, 27.9, 25.7;

$m/z$ (Cl') 229.18 ([M+H'], 10%), 213.16 (100%), 197.17 (20%), 171.15 (20%), 153.14 (40%), 139.13 (30%).

lit. (Chahoua et al., 1992) $\delta_h(200 \text{ MHz}; \text{CDCl}_3)$ 6.90, 4.73, 4.08, 3.88, 3.75, 2.79, 2.22, 1.44, 1.39.

(abbreviated data quoted).

Methyl 3,4-O-isopropylidene-5-O-trifluoromethanesulfonate-shikimate 73

The protected shikimate compound 72 (2.92 g, 12.80 mmol) was dissolved in dry DCM (50 mL) and the solution cooled to -20°C. DMAP (156 mg, 1.28 mmol, 10%) was added to the stirred solution. Pyridine (4.14 mL, 51.2 mmol, 4 eq.) was added dropwise with stirring. Tf$_2$O (4.33 mL, 25.6 mmol, 2 eq.) was added dropwise with stirring over a period of 50 min, during which the temperature was kept below -10°C. The reaction was quenched by pouring the reaction mixture into ice-cold sat. NaHCO$_3$ (aq.) (70 mL) and the aqueous and organic layers were separated. The organic layer was washed with 0.2 M citric acid (3 × 70
mL), sat. NaHCO₃ (aq.) (70 mL) and brine (70 mL). The organic layer was then dried (MgSO₄), filtered and evaporated under reduced pressure to give the desired triflate (4.35 g, 12.08 mmol, 94%) as a pale yellow oil.

δₙ(400 MHz; CDCl₃) 7.00 (1 H, m), 5.01 (1 H, dt, J 8.1 and 4.9), 4.84 (1 H, br dd, J 5.0 and 4.8), 4.32 (1 H, t, J 6.9), 3.81 (3 H, s), 3.05 (1 H, dd, J 17.5 and 8.5), 1.47 (3 H, s), 1.43 (3 H, s); m/z (CI⁺) 361.1 ([M+H⁺], 100%), 345.1 (20%), 153.1 (90%), m/z HRMS found: [M+H⁺] 361.0568, C₁₂H₁₆O₇F₃S requires 361.0569

Methyl (3R,4S)-O-isopropylidenedioxycyclohexa-1,5-diene carboxylate 74

The protected triflate 73 (4.12 g, 11.45 mmol,) was dissolved in dry DMF (15 mL). CsOAc (3.47 g, 18.08 mmol, 1.58 eq.) was dried under high vacuum with vigorous stirring for 30 min. Dry DMF (5 mL) was added to the dry CsOAc and the mixture stirred at rt for 10 min. The solution of 73 in DMF was added to the CsOAc/DMF mixture and the resulting pink solution stirred for 2.5 h. The CsOAc did not fully dissolve during this time. The reaction mix was partitioned between iced water (100 mL) and petrol (100 mL). The aqueous layer was extracted into petrol (3 x 100 mL). The organic extracts were combined, dried (MgSO₄) and the solvent removed under reduced pressure to give the desired protected diene 74 (2.26 g, 10.76 mmol, 94%) as a pale yellow oil. The temperature of the workup was maintained below 10°C at all times.
δ_H(400 MHz; CDCl₃) 6.87 (1H, d, J 3.7, C=CH), 6.55 (1H, d, J 6.9, C=CH), 6.05 (1H, dd, J 9.9 and 4.0, C=CH), 4.82 (1H, dd, J, 8.8 and 3.7), 4.66 (1H, dd, J 8.8 and 4.0), 3.81 (3H, s, OMe), 1.42 (3H, s, CMe), 1.40 (3H, s, CMe)

Methyl 3,4-O-isopropylidene-(6R)-hydroxy-shikimate 76 (Song et al., 2001)

![Chemical Structure](image)

The fully protected diene 74 (2.15 g, 10.20 mmol) was dissolved in tBuOH. NMO (1.25 g, 10.71 mmol, 1.05 eq.) was added to the solution. OsO₄ (51.9 mg, 0.20 mmol, 2 %) in H₂O (5.2 mL) was added and the solution was stirred at rt in the dark. After 14 h sat. Na₂S₂O₃ (aq.) (50 mL) was added to quench the reaction and the mixture stirred for a further 5 h. The aqueous and organic layers were separated and the organic layer was stored overnight at -20°C. The product was adsorbed onto silica and placed on top of a plug of the same material. A flash column (EtOAc) yielded a pale yellow oil (2.33 g). Silica-gel column chromatography (Hexane, 60 % EtOAc:1 column volume; then Hexane: 80 % EtOAc) gave partial separation of the dihydroxylated compounds 75 and 76. The fractions containing the compound 76 were pooled and the solvent removed under reduced pressure. Silica-gel column chromatography (DCM, 10 % acetone: 1 column volume; then DCM, 20 % acetone) gave the desired compound 76 (841 mg, 3.44 mmol, 34 %) as a clear colourless oil.

δ_H(400 MHz; CDCl₃) 6.93 (1H, d, J 3.4), 4.80 (1H, dd, J 5.0 and 3.4), 4.67 (1H, d, J 3.0), 4.46 (1H, t, J 6.0), 4.13 - 4.11 (1H, br s), 3.83 (3H, s), 3.78 (1H, br s), 2.80 (1H, br s), 1.40 (6H, s); δ_C(100 MHz; CDCl₃) 166 (CO₂CH₃), 137.1 (CH=C), 130.3 (CH=C), 110.0 (CMe₂), 71.7 (CHOR), 70.0 (CHOR), 65.1 (CHOR), 52.4 (CHOR), 27.8 (CCH₃), 25.8 (CCH₃).
The diol 76 (841 mg, 3.44 mmol) was dissolved in dry DCM (40 mL) and cooled to between -20°C and -30°C. Et₃N (2.40 mL, 17.22 mmol, 5 eq.) was added dropwise with stirring. TBDMSOTf (0.83 mL, 3.62 mmol, 1.05 eq.) was added dropwise with vigorous stirring while the reaction mix was maintained at -20°C. Vigorous stirring at -20°C was continued for a further 30 min and the reaction was then quenched by the addition of ice-cold sat. NaHCO₃ (aq.) (40 mL). The aqueous and organic layers were separated and the organic layer was extracted into DCM (4 x 40 mL). The combined organic extracts were dried (Na₂SO₄), filtered and evaporated under reduced pressure to give the crude product (1.54 g). Silica-gel column chromatography (hexane:Et₂O = 2:1) yielded the desired protected diol 77 (868 mg, 2.42 mmol, 70 %) as a colourless oil. Crystallisation from hexane at -20°C gave flat square colourless crystals, but these returned to an oil at rt.

δ_H(400 MHz; CDCl₃) 6.90 (1H, d, J 3.1), 4.87 (1H, dd, J 6.8 and 3.1), 4.55 (1H, d, J 3.2), 4.39 (1H, t, J 7.2), 3.80 (3H, s), 3.69 (1H, dt, J 7.4 and 3.2), 2.21 (1H, d, J 7.1), 1.47 (3H, s), 1.41 (3H, s), 0.87 (9H, s), 0.19 (3H, s), 0.05 (3H, s).
Methyl 3,4-O-isopropylidene-5-O-\textsuperscript{\textdagger}butyldimethylsilyl-(6S)-fluoro-shikimate 78 (Song et al., 2001)

The protected diol 77 was dissolved in dry DCM (20 mL) and cooled to -78°C. DAST (1.02 mL, 7.75 mmol, 5 eq.) was added to the cooled solution with vigorous stirring. The solution was allowed to warm gradually to rt and stirred for a further 4 h before being cooled to -78°C. The reaction was quenched by the addition of 1M NaHCO\textsubscript{3} (40 mL) and the stirred mixture allowed to warm to rt. Stirring was continued until no further gas was evolved. The aqueous layer was extracted into DCM (3 x 40 mL) and the combined organic extracts were washed with 0.2M citric acid (120 mL) and brine (120 mL). The organic layer was then dried (Na\textsubscript{2}SO\textsubscript{4}), filtered and the solvent removed under reduced pressure to give an orange oil. Silica-gel column chromatography (hexane:Et\textsubscript{2}O = 3:1) yielded the desired protected (6S)-6-fluoroshikimic acid derivative 78 (461 mg, 1.28 mmol, 83\%) as a pale yellow oil.

$\delta$\textsubscript{\text{H}}(400 MHz; CDCl\textsubscript{3}) 7.00 (1H, t, $J$ 3.3), 5.02 (1H, dd, $J$ 46.2 and 3.2), 4.73 - 4.70 (1H, m), 4.41 (1H, dt, $J$ 11.3 and 3.4), 4.25 (1H, t, $J$ 4.5), 3.84 (3H, s), 1.41 (6H, s), 0.87 (9H, s), 0.14 (3H, s), 0.13 (3H, s); $\delta$\textsubscript{\text{C}}(100 MHz; CDCl\textsubscript{3}) 165.6 (CO\textsubscript{2}Me), 139.4 (CH=C, d, $J$ 6.5), 127.3 (CH=C, d, $J$ 17.5), 111.1 (CMe\textsubscript{2}), 84.5 (CF, d, $J$ 173.3), 74.7 (CHOR, d, $J$ 1.6), 71.2 (CHOR, d, $J$ 2.6), 69.1 (CHOR, d, $J$ 25.4), 52.2 (CO\textsubscript{2}CH\textsubscript{3}), 27.9 (CCH\textsubscript{3}), 26.4 (CCH\textsubscript{3}), 25.6 (CMe\textsubscript{3}), 17.9 (SiCMe\textsubscript{3}), -5.04 (SiMe\textsubscript{2}).
lit. (Song et al., 2001) $\delta_{H}(270 \text{ MHz}; \text{CDCl}_3) 7.02 - 6.95, 5.15, 4.74 - 4.68, 4.45 - 4.37, 4.24, 3.84, 1.40, 0.86, 0.13. $

(abbreviated data quoted)

(6S)-6-fluoroshikimic acid 1

\[
\begin{align*}
\text{CO}_2\text{H} & \quad \text{\textendash} \\
\text{HO} & \quad \text{\textendash} \\
\text{OH} & \quad \text{\textendash} \\
\text{F} & \quad \text{\textendash} \\
\text{HO} & \quad \text{\textendash} \\
\text{OH} & \quad \text{\textendash}
\end{align*}
\]

Fully protected (6S)-6-fluoroshikimic acid 78 (461 mg, 1.28 mmol) was dissolved in dioxane (10 mL). LiOH (aq.) (1.1 eq., 1.41 mmol, 1.4 mL of a 1M solution) and H$_2$O (8.6 mL) were added and the solution was stirred at rt for 2 h. The pH was adjusted to pH 4 with 1M HCl and the product extracted into EtOAc (3 x 30 mL). The EtOAc was dried (Na$_2$SO$_4$), filtered and concentrated under reduced pressure to give a pale yellow oil (399 mg) which was used without further purification.

Selected NMR peaks: $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3) 7.02 (1 \text{ H}, \text{t, } J 2.9), 5.02 (1 \text{ H}, \text{dd, } J 46.2 \text{ and } 3.0), 4.65 - 4.62 (1 \text{ H}, \text{m}), 4.34 (1 \text{ H}, \text{dt, } J 10.5 \text{ and } 3.8), 4.16 (1 \text{ H}, \text{t, } J 4.8), 1.27 (6 \text{ H}, \text{s}), 0.77 (9 \text{ H}, \text{s}), 0.04 (6 \text{ H}, \text{s}).$

A small amount of this free acid 90 (73 mg, impure) was dissolved in TFA (1.8 mL) and H$_2$O (0.2 mL) and the mixture was stirred at rt for 2.5 h. The solvent was removed under reduced pressure to give an orange oil which was partitioned between H$_2$O (10 mL) and Et$_2$O (10 mL). The aqueous layer was washed with Et$_2$O (2 x 10 mL) and lyophilised to give a yellow/brown foaming oil (42 mg).

Selected NMR peaks: $\delta_{H}(400 \text{ MHz}; \text{CD}_3\text{OD}) 6.95 (1 \text{ H, d, } J 4.3), 5.12 (1 \text{ H, dd, } J 47.7 \text{ and } 5.1), 4.41 - 4.39 (1 \text{ H, m}), 4.17 - 4.09 (1 \text{ H, m}), 3.67 (1 \text{ H, dd, } J 8.4 \text{ and } 4.1); m/z 192.0 (M^+, -139- \text{ .}
10%), 191.0 (100%), 171.1 (25%), 113.0 (37%), 69.0 (45%).

Analytical HPLC using a BioRad Organic Acids column eluting with 50 mM formic acid (0.6 mL/min) gave the major peak eluting at 10.65 min [lit. (Duggan et al., 1995) 10.8 min]. However, when a preparative run was attempted the compound was found to have decomposed.

Literature characterisation data for (6S)-6-fluoroshikimic acid were not obtainable, however, data for the methyl ester has been published (Bowles et al., 1990).

$\delta_H^{1}$(400 MHz; CDCl$_3$) 6.95 (1H, dd, J 5.0 and 1.0, 2-H), 5.23 (1H, br dd, J 48.0 and 6.0, 6-H), 4.49 (1H, br dd, J 5.0 and 4.0, 3-H), 4.23 (1H, ddd, J 17.0, 9.0 and 6.0, 5-H), 3.82 (3H, s, OCH$_3$), 3.69 (1H, dd, J 9.0 and 4.0, 4-H), 2.70 (3H, br s, 3OH)

This data, particularly the coupling constant for the hydrogen on C-6, suggested that desired enantiomer had indeed been synthesised.
5.6 Experimental for Chapter 3

Synthesis of tri-O-acetyl shikimic acid 80

Shikimic acid 9 (1.00 g, 5.72 mmol) was dissolved in dry pyridine (20 mL) and the stirred solution cooled to 0°C. Ac₂O (2.4 mL, 25 mmol) was added drop-wise and the solution left stirring overnight at room temperature. The solution was then evaporated under reduced pressure and the product dissolved in DCM (30 mL). Saturated NaHCO₃ aq. (200 mL) was added, and the organic and aqueous phases separated after it was ascertained that the pH of the aqueous layer was above pH 8. The aqueous layer was acidified to pH 3 using aqueous HCl (2M) and extracted using CHCl₃ (4 × 300 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the tri-acetate 80 (1.68 g, 5.61 mmol, 98%) as a white amorphous solid which was used without further purification.

$\nu_{\text{max}}$(CaF₂)/cm⁻¹: 3676, 3518, 3172, 3023, 2966, 2927, 2853, 2677, 2629, 2520, 1745, 1701, 1657, 1508, 1429, 1372, 1232, 1149, 1110, 1079, 1043; $\delta_H$(400 MHz; CDCl₃): 9.55 (1H, broad s, COZH), 6.81 (1 H, m, HCCCOZH), 5.69 (1H, m, CHCHOCOCH₃) 5.26-5.20 (2H, m, 2x CHOCOCH₃), 2.83 (1 H, broad d, J 17) and 2.37 (1H, broad d, J 18), HO₂CCCH₂, 2.05 (3H, s, COCH₃), 2.03 (3H, s, COCH₃), 2.00 (3H, s, COCH₃); $\delta_C$(100 MHz; CDCl₃) 170.8 (CO₂H), 170.4 (2 × COCH₃), 170.3 (COCH₃), 135.4 (CHCCO₂H), 131.0 (CCO₂H), 67.8 (CHOCOCH₃), 67.1 (CHOCOCH₃), 66.4 (CHOCOCH₃), 28.4 (CH₂), 21.3 (OCH₃), 21.1 (2 × OCH₃); m/z 318.1 ([M+NH₄]+, 100%).
Synthesis of N-α-t-butoxycarbonyl-N-ε-benzyloxycarbonyl-L-lysyl-L-phenylalanine methyl ester 81

L-Phe methyl ester hydrochloride (260 mg, 1.21 mmol) was dissolved in dry DMF (20 mL) and the stirred solution cooled to 0°C after which Et₃N (0.67 mL, 4.8 mmol) was added. Boc-Lys-(Z)-OH (460 mg, 1.21 mmol) was then dissolved in dry DMF (20 mL) and the solution added to the reaction mixture. EDC (280 mg, 1.51 mmol) and HOBt (192 mg, 1.42 mmol) were added and the solution left stirring for 16 h during which time the temperature returned to rt. The solution was evaporated under reduced pressure to dryness to give the crude product. Silica-gel column chromatography (ethyl acetate:petrol, 1:4 - ethyl acetate gradient elution) gave the pure dipeptide 81 (555 mg, 1.02 mmol, 85%) as a white solid.

m.p. 98-100°C (lit. 105-106°C; Visser, 1968); ν_max(CaF_2)/cm⁻¹ 3435 (broad, NH), 3163 (weak, CH), 2979 (weak, CH), 2939 (weak, CH), 1709 (CO), 1679 (CO), 1500 (Ph), 1499 (Ph); δ_H(400 MHz; CDCl₃) 7.27-7.02 (1OH, in, 2x Ph), 6.54 (1H, broad d, J 7.6, NH), 5.1, 5.03 (2H, s, OCH₂Ph), 4.98 (1H, m, NH), 4.76 (1H, m, CH), 3.98 (1H, m, CH), 3.58 (3H, s, OCH₃), 3.10 (4H, m, CH₂Ph and CH₂N), 1.7-1.23 (6H, m, 3 × CH₂ Lys), 1.35 (9H, s, C(CH₃)₃); δ_C(100 MHz; CDCl₃) 172.2 (CO₂), 157.0 (CO₂), 156.0
CO₂), 137.0 (C=Ar), 136.2 (C=Ar), 129.6 (CH), 129.0 (CH), 128.9 (CH), 128.5 (2 x CH),
127.5 (CH), 80.4 (CMe₃), 67.0 (CH₂), 54.6 (OCH₃), 53.5 (CH), 52.7 (CH), 40.7 (CH₂), 38.2
(CH₂), 32.3 (CH₂), 29.7 (CH₂), 28.7 (C(CH₃)₃), 22.7 (CH₂); m/z 542.2 ([M+H]+' , 32%), 442.2
([M+H-Boc]^+ , 100%), 91.5 (Z^+ , 83%).

Synthesis of N-α-t-butoxycarbonyl-N-ε-(tri-O-acetyl-shikimoyl)-L-lysyl-L-
phenylalanine methyl ester 82

Boc-Lys(Z)-Phe-OMe 81 (126 mg, 0.23 mmol) was dissolved in dry DCM (15 mL). 10%
Pd/C (0.1 g) was added and the flask evacuated and flushed with H₂ gas three times. The
suspension was then stirred under H₂ for 42 h, filtered through celite and concentrated
under reduced pressure to give the crude deprotected dipeptide (107 mg). This was then
dissolved in dry DCM (10 mL) and the stirred solution cooled to 0°C after which Et₃N
(0.20 mL, 1.43 mmol) was added. Tri-O-acetyl shikimic acid 80 (43 mg, 0.14 mmol) was
dissolved in dry DCM (5 mL) and added to the reaction mixture. EDC (70 mg, 0.36
mmol) and HOBt (50 mg, 0.36 mmol) were added and the solution left stirring under N₂ for
16 h during which time the temperature returned to rt.

The solution was evaporated under reduced pressure to give the crude product as a brown
mass. Silica-gel column chromatography (ethyl acetate:petrol, 1:5 – ethyl acetate gradient
elution) gave the pure shikimate derivative 82 (85 mg, 0.12 mmol, 88%) as a white amorphous solid.

m. p. 76-84°C; \( \nu_{\text{max}}(\text{CaF}_2)/\text{cm}^{-1} \) 3435 (broad), 3330 (broad), 3089, 3067, 3032, 3006, 2984, 2953, 2936, 2861, 2261, 2248, 1745, 1712, 1644, 1517, 1499, 1455, 1437; \( \delta_{\text{n}}(400 \text{ MHz; CDCl}_3) \) 7.21-7.05 (5H, m, Ph), 6.87 (1H, broad d, J 6.5, NH), 6.50 (1H, m), 6.28 (1H, m, NH), 5.61 (1H, m), 5.33 (1H, d, J 7.7, CHOOCOCH₃), 5.26-5.13 (2H, m, 2 × CHOOCOCH₃), 4.73 (1H, m, CH), 4.05 (1H, m, CH), 3.61 (3H, s, OCH₃), 3.19 (2H, m, CH₂Ph), 3.08-2.90 (3H, m, CH and CH₂N), 2.33 (1H, dd, J 6.3 and 18.2, CH), 1.99 (3H, s, OCOCH₃), 1.97 (3H, s, OCOCH₃), 1.96 (3H, s, OCOCH₃), 1.68-1.15 (7H, m, CH and CH₂), 1.34 (9H, s, C(CH₃)₃); \( \delta_{c}(100 \text{ MHz; CDCl}_3) \) 172.4 (C=O), 172.1 (C=O), 170.5 (C=O), 170.3 (C=O), 166.7 (C=O), 156.0 (C), 136.2 (C-Ar), 136.2 (C), 129.5 (CH), 128.9 (CH), 127.4 (CH), 126.0 (CH), 80.2 (OCH₃), 77.8 (C), 68.8 (CH), 67.1 (CH), 66.4 (CH), 60.7 (CH₂), 54.5 (CH), 53.6 (CH), 52.6 (CH), 39.5 (CH₂), 38.1 (CH₂), 32.1 (CH₂), 29.6 (CH₂), 29.2 (CH₂), 28.6 (CH₃), 22.9 (CH₂), 21.3 (O₂CCH₃), 21.1 (O₂CCH₃), 21.0 (O₂CCH₃), 14.5 (CH); \( m/z \) (FAB⁺) 712.5 ([M+Na]⁺, 100%), 590.4 (16%), 176.1 (12%), 121.2 (15%).
The shikimate conjugate 82 (312 mg, 0.43 mmol) was dissolved in THF:H₂O = 4:1. NaOH (190 mg, 4.72 mmol) was added with stirring. The stirring was continued for 23 h until no trace of the starting material could be detected by TLC (petrol). The solution was evaporated to dryness and the solid residue dissolved in distilled H₂O (50 mL). The aqueous solution was washed with Et₂O (4 × 50 mL) and the resulting aqueous layer stirred with ion exchange resin (Amberlite IR 120, hydrogen form, 1 g) until it reached pH 2. The solution was then filtered through celite and concentrated to give the crude product (212 mg) as a pale yellow viscous oil. This oil was dissolved in TFA (15 mL) and stirred at 0°C for 45 min. The solution was allowed to return to room temperature and stirred for a further 45 min after which it was evaporated to dryness to give the crude product 83 as a white solid. No further purification was carried out.

δH(400 MHz; CDCl₃) 7.06-6.96 (5H, m, Ph), 6.61 (1H, s, CHCON), 4.48-4.44 (1H, m, CH), 4.19 (1H, s, CH), 3.79 (2H, s, CH₂NH), 3.73-3.70 (1H, m, CH), 3.51-3.49 (1H, m, CH), 3.01-2.97 (2H, m, CH₂Ph), 2.89-2.79 (1H, m, CH), 2.50 (1H, dd, J 4.5 and 17.4, OCCCH₃), 1.98 (1H, dd J 6.5 and 17.4, OCCCH₃), 1.63-1.58 (2H, m, CH₂-Lys), 1.36-1.28 (2H, m, CH₂-Lys), 1.10 (2H, broad d, J 6.1, CH₂-Lys); δC(100 MHz; CDCl₃) 174.4 (C),
171.9 (C), 170.3 (C), 169.8 (C), 163.4 (C), 138.5 (C), 136.7 (C), 133.4 (C), 131.1 (CH), 129.4 (CH), 129.3 (CH), 129.0 (CH), 127.5 (CH), 71.7 (CH), 66.6 (CH), 66.1 (CH), 54.5 (CH), 54.0 (CH), 53.1 (CH), 39.3 (CH), 36.4 (CH₂), 31.3 (CH₂), 30.8 (CH₂), 28.2 (CH₂), 27.0 (CH₂), 21.5 (CH₂); m/z (FAB*) 593.2 (7%), 493.2 (12%), 456.3 ([M+7H]⁺, 51%), 455.3 ([M+6H]⁺, 40%), 341.1 (18%), 340.1 (15%), 247.0 (23%), 246.0 (16%), 169.1 (16%), 121.2 (57%).

Synthesis of L-alanyl-L-alanyl-N-ε-shikimoyl-L-lysine 88a on solid phase

Using the method described in General Procedures (Section 5.4.3), tri-O-acetyl shikimic acid (65 mg, 0.22 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (100 mg, 72 µmol) using HOBT (30 mg, 0.22 mmol) and DIC (91 mg, 0.113 mL, 0.72 mmol). Fmoc-Ala-OH (67 mg, 0.22 mmol) was coupled to the amino-acid conjugate to give the resin-bound tripeptide after the second iteration. The desired tripeptide-shikimate conjugate 88a was obtained as a crude mixture after cleavage from the resin and deprotection (crude product 43 mg; max. theoretical yield 32 mg). m/z (ES) 445.20 ([M+H]⁺, 100%)
Synthesis of L-leucyl-L-leucyl-N-c-shikimoyl-L-lysine 88b on solid phase

Using the method described in General Procedures (Section 5.4.3), tri-O-acetyl shikimic acid (65 mg, 0.22 mmol) 80 was coupled to Fmoc-Lys(Mtt)-Wang Resin (100 mg, 72 μmol) using HOBT (30 mg, 0.22 mmol) and DIC (91 mg, 0.113 mL, 0.72 mmol). Fmoc-Leu-OH (76 mg, 0.22 mmol) was coupled to the amino-acid conjugate to give the resin-bound tripeptide conjugate after the second iteration. The desired tripeptide-shikimate conjugate 88b was obtained as a crude mixture after cleavage from the resin and deprotection (crude product 62 mg; max. theoretical yield 38 mg). m/z (ES) 529.30 ([M+H]+, 95%)
Using the method described in General Procedures (Section 5.4.3), tri-O-acetyl shikimic acid (65 mg, 0.22 mmol) 80 was coupled to Fmoc-Lys(Mtt)-Wang Resin (100 mg, 72 μmol) using HOBt (30 mg, 0.22 mmol) and DIC (91 mg, 0.113 mL, 0.72 mmol). Fmoc-Phe-OH (84 mg, 0.22 mmol) was coupled to the amino-acid conjugate to give the resin-bound tripeptide conjugate after the second iteration. The desired tripeptide-shikimate conjugate 88c was obtained as a crude mixture after cleavage from the resin and deprotection (crude product 86 mg; max. theoretical yield 43 mg). \textit{m/z} (ES) 597.3 ([M+H]^+, 100%)
Synthesis of L-seryl-L-seryl-N-\(\varepsilon\)-shikimoyl-L-lysine 88d on solid phase

Using the method described in General Procedures (Section 5.4.3), tri-\(O\)-acetyl shikimic acid (65 mg, 0.22 mmol) 80 was coupled to Fmoc-Lys(Mtt)-Wang Resin (100 mg, 72 \(\mu\)mol) using HOBr (30 mg, 0.22 mmol) and DIC (91 mg, 0.113 mL, 0.72 mmol). Fmoc-Ser(tBu)-OH (83 mg, 0.22 mmol) was coupled to the amino-acid conjugate to give the resin-bound tripeptide conjugate after the second iteration. The desired tripeptide-shikimate conjugate 88d was obtained as a crude mixture after cleavage from the resin and deprotection (crude product 67 mg; max. theoretical yield 34 mg). \(m/z\) (ES) 477.27 ([M+H]\(^+\), 100%)
Synthesis of L-glutamoyl-L-glutamoyl-N-ε-shikimoyl-L-lysine 88e on solid phase

Using the method described in General Procedures (Section 5.4.3), tri-O-acetyl shikimic acid (65 mg, 0.22 mmol) 80 was coupled to Fmoc-Lys(Mtt)-Wang Resin (100 mg, 72 µmol) using HOBT (30 mg, 0.22 mmol) and DIC (91 mg, 0.113 mL, 0.72 mmol). Fmoc-Glu(OrBu)-OH (91 mg, 0.22 mmol) was coupled to the amino-acid conjugate to give the resin-bound tripeptide conjugate after the second iteration. The desired tripeptide-shikimate conjugate 88d was obtained as a crude mixture after cleavage from the resin and deprotection (crude product 81 mg; max. theoretical yield 40 mg). m/z (ES) 477.27 ([M+H]+, 100%)
Synthesis of L-alanyl-L-alanyl-N-\text{-}(6S)-6-fluoroshikimoyl-L-lysine 4 on solid phase

Using the method described in General Procedures (Section 5.4.3), Fmoc-Ala-OH (35 mg, 0.11 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (50 mg, 36 µmol) using HOBT (15 mg, 0.11 mmol) and DIC (45 mg, 0.05 mL, 0.36 mmol) to give the resin-bound tripeptide after the second iteration. The protected (6S)-6-fluoroshikimic acid derivative 90 (38 mg, 0.11 mmol) was coupled to the tripeptide using BOP (120 mg, 0.28 mmol) and Et$_3$N (0.28 mmol). A crude mixture containing the tripeptide-(6S)-6-fluoroshikimic acid conjugate 4 was obtained after cleavage from the resin and deprotection (crude yield 61 mg; max. theoretical yield). The desired conjugate eluted at 5.09 min on an RP Max HPLC column eluting with 3 - 50 % 50 mM formic acid in MeCN. $m/z$ (ES) 463.30 ([M+H]$^+$, 100%)
Using the method described in General Procedures (Section 5.4.3), Fmoc-Leu-OH (36 mg, 0.11 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (50 mg, 36 μmol) using HOBt (15 mg, 0.11 mmol) and DIC (45 mg, 0.05 mL, 0.36 mmol) to give the resin-bound tripeptide after the second iteration. The protected (6S)-6-fluoroshikimic acid derivative 90 (38 mg, 0.11 mmol) was coupled to the tripeptide using BOP (120 mg, 0.28 mmol) and Et₃N (0.28 mmol). A crude mixture containing the crude tripeptide-(6S)-6-fluoroshikimic acid conjugate 5 was obtained after cleavage from the resin and deprotection (crude yield: 65 mg). The desired conjugate eluted at 10.9 min on an RP Max HPLC column eluting with 3-50% 50 mM formic acid in MeCN. The fractions containing the desired compound 5 were lyophilised and stored at -20°C. \( m/z \) (ES) 543.3 ([M+H]+, 100%)
Synthesis of L-phenylalanyl-L-phenylalanyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 6 on solid phase

Using the method described in General Procedures (Section 5.4.3), Fmoc-Phe-OH (42 mg, 0.11 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (50 mg, 36 μmol) using HOBt (15 mg, 0.11 mmol) and DIC (45 mg, 0.05 mL, 0.36 mmol) to give the resin-bound tripeptide after the second iteration. The protected (6S)-6-fluoroshikimic acid derivative 90 (38 mg, 0.11 mmol) was coupled to the tripeptide using BOP (120 mg, 0.28 mmol) and Et₃N (0.28 mmol). A crude mixture containing the crude tripeptide-(6S)-6-fluoroshikimic acid conjugate 6 was obtained after cleavage from the resin and deprotection (crude yield: 87 mg). The desired conjugate eluted at 11.5 min on an RP Max HPLC column eluting with 3 - 50 % 50 mM formic acid in MeCN. The fractions containing the desired compound 6 were lyophilised and stored at -20°C. m/z (ES) 543.3 ([M-3H]+, 100%), 546.3 (M+, 5%)
Synthesis of L-seryl-L-seryl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 7 on solid phase

Using the method described in General Procedures (Section 5.4.3), Fmoc-Ser(tBu)-OH (41 mg, 0.11 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (50 mg, 36 μmol) using HOBt (15 mg, 0.11 mmol) and DIC (45 mg, 0.05 mL, 0.36 mmol) to give the resin-bound tripeptide after the second iteration. The protected (6S)-6-fluoroshikimic acid derivative 90 (38 mg, 0.11 mmol) was coupled to the tripeptide using BOP (120 mg, 0.28 mmol) and Et₃N (0.28 mmol). A crude mixture containing the crude tripeptide-(6S)-6-fluoroshikimic acid conjugate 7 was obtained after cleavage from the resin and deprotection (crude yield: 99 mg). m/z (ES) 495.3 ([M+H]+, 15%)
Synthesis of L-glutamoyl-L-glutamoyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 8 on solid phase

Using the method described in General Procedures (Section 5.4.3), Fmoc-Glu(OrBu)-OH (46 mg, 0.11 mmol) was coupled to Fmoc-Lys(Mtt)-Wang Resin (50 mg, 36 µmol) using HOBr (15 mg, 0.11 mmol) and DIC (45 µL, 0.05 mL, 0.36 mmol) to give the resin-bound tripeptide after the second iteration. The protected (6S)-6-fluoroshikimic acid derivative 90 (38 mg, 0.11 mmol) was coupled to the tripeptide using BOP (120 mg, 0.28 mmol) and Et3N (0.28 mmol). A crude mixture containing the crude tripeptide-(6S)-6-fluoroshikimic acid conjugate 8 was obtained after cleavage from the resin and deprotection (crude yield: 109 mg). m/z (ES) 579.3 ([M+H]+,100%)
5.7 Experimental for Chapter 4

2,2,3,3-Tetramethoxybutane 108 (Montchamp et al, 1996)

According to the method of Montchamp et al., 2,3-butanedione 106 (22 mL, 0.25 mol), trimethyl orthoformate 107 (65 mL, 0.59 mol) and MeOH (32 mL) were treated with sulfuric acid (3 drops). The resulting solution was refluxed under N₂ for 20 h. Powdered NaHCO₃ (710 mg) was added to the cool reaction mixture which was then concentrated under reduced pressure to give a reddish-brown oil. This liquid was diluted with Et₂O (150 mL) and washed with sat. NaHCO₃ (3 x 100 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to give an orange oil. The oil was distilled (Tₘ 22°C, 0.2 mm Hg) to give a clear colourless liquid identical by ¹H- and ¹³C-NMR to the literature compound 108 (20.0 g, 0.11 mol, 45%).

δH(400 MHz; CDCl₃) 3.32 (12H, s, 4 x OCH₃), 1.33 (6H, s, 2 x CH₃); δC(100 MHz; CDCl₃) 103.3 (C), 49.6 (OCH₃), 19.1 (CH₃).

Methyl quinate (Montchamp & Frost, 1994)

A mixture of (-)-quinic acid 19 (5.0 g, 26.0 mmol) and Dowex 50 H⁺ (1 g) was refluxed for 14 h in dry MeOH (50 mL). After cooling, the mixture was filtered and concentrated under
reduced pressure to give a white solid (5.12 g, 24.5 mmol). This was recrystallised from EtOH to give the product as white crystals (4.87 g, 23.6 mmol, 90%) m.p. 121-124°C [lit. (Montchamp & Frost, 1994) 127°C]; δ<sub>n</sub>(400 MHz; CD<sub>3</sub>OD) 4.07-4.06 (1H, m, CH), 4.01-3.95 (1H, m, CH), 3.72 (3H, s, OMe), 3.41 (1H, dd, J<sub>3</sub> and 9, CH), 2.12-1.82 (4H, m, 2-CH<sub>2</sub> and 6-CH<sub>2</sub>); δ<sub>c</sub>(100 MHz; CD<sub>3</sub>OD) 176.3 (C=O), 77.2 (CO<sub>2</sub>CH<sub>3</sub>), 76.9 (CO<sub>2</sub>CH<sub>3</sub>), 71.8 (CH), 68.6 (CH), 53.3 (CH), 42.4 (CH<sub>2</sub>), 38.7 (CH<sub>2</sub>); m/z (FAB<sup>+</sup>) 435.1 ([2M+Na]<sup>+</sup>*, 7%), 413.1 ([M+Na]<sup>+</sup>*, 18%), 229 ([M+Na]<sup>+</sup>*), 207.0 (100%), 171.0 (23%), 111.2 (14%).

Methyl 3,4-O-(2,3-dimethoxybutan-2,3-diyl) quinate 97

In a modification of the procedure detailed by Montchamp & Frost in 1994, quinic acid 19 (2.7 g, 14.1 mmol), trimethyl orthoformate 107 (7.2 mL, 6.98 g, 65.8 mmol), TMB 108 (2.54 g, 14.3 mmol) and pTsOH (135 mg, 0.71 mmol, 5 mol%) were dissolved in dry MeOH (40 mL). The mixture was refluxed under N<sub>2</sub> for 20 h, allowed to cool, and treated with powered NaHCO<sub>3</sub> (500 mg). The solvent was removed under reduced pressure to give an orange oil. This oil was partitioned between EtOAc (100 mL) and sat. NaHCO<sub>3</sub> (100 mL) and the aqueous layer extracted with EtOAc (2× 100 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered through silica, and concentrated under reduced pressure to give a cream solid (3.83 g). The product was dissolved in hot EtOAc, cooled, and crystallised by the dropwise addition of hexane to give white needles (3.15 g, 9.85...
mmol, 70%).

m.p. 131-133°C [lit. (Montchamp & Frost, 1994) 139-140°C]; ν_max(NaCl)/cm⁻¹ 3577 (broad), 3503 (broad), 2997 (sharp), 2955 (broad), 2905 (broad), 2835, 1736 (C=O), 1451; δ_H(400 MHz; CDCl₃) 4.31 (1H, ddd J 4.6, 10.2, 12.2, CH), 4.25 (1H, s, CH), 4.19 (1H, q J 3.1, CH), 3.79 (3H, s, OCH₃), 3.60 (1H, dd J 2.9 and 10.1, CH), 3.26 (2 x 3H, s, OCH₃), 3.15 (1H, dd J 0.7 and 3.8, CH), 2.19 (1H, dt J 3.0 and 14.9, CH), 2.10 (1H, ddd J 2.9, 4.6, 12.8, CH₂), 2.04 (1H, m, CH₂), 1.95 (1H, t J 12.4, CH₂), 1.83 (1H, s, CH₂), 1.34 (3H, s, CCH₃), 1.30 (3H, s, CCH₃); δ_C(100 MHz; CDCl₃) 174.0 (C=O), 138.5 (OCO₂Me), 100.4 (OCO₂Me), 99.8 (OCO₂Me), 75.8 (C), 72.7 (CO₂CH₃), 69.2 (OCH₃), 62.4 (OCH₃), 53.0 (OCH), 47.9 (OCH), 38.6 (CH₃), 37.4 (CH₃), 17.8 (CH₂), 17.7 (CH₂); m/z (Cl⁺) 338.2 ([M+NH₄⁺]⁺,100%), 306.2 ([M+NH₄-OMe⁺]⁺,80%), 289.2 ([M-OMe⁺]⁺, 55%), 274.1 (20%).

Methyl 3,4-O-(2,3-dimethoxybutan-2,3-diyl) 5-dehydroquinate 98 (Montchamp et al., 1996b)

```
O         O
HO         O
        OMe
O         OMe
O MeO
```

The protected methyl quinate derivative 97 (3.12 g, 9.74 mmol) was dissolved in CCl₄ (20 mL). To this was added MeCN (20 mL), H₂O (30 mL), KIO₄ (9.0 g), and RuCl₃·H₂O (150 mg). The suspension was stirred vigorously at room temperature for 20 h. The reaction mixture was filtered through celite, the solid material washed with CCl₄ (20 mL) and the aqueous and organic layers were separated. The aqueous layer was saturated with NaCl and extracted with EtOAc (3 x 80 mL). The combined organic extracts were dried.
(MgSO₄) and concentrated. The crude material was redissolved in CHCl₃ (70 mL) and filtered through celite to remove all remaining ruthenium species. The solution was dried (MgSO₄), filtered and concentrated to give a white foaming solid 98 (2.45 g, 7.69 mmol, 79%).

m.p. 209-213°C [lit (Montchamp et al., 1996b), 212-214°C]; δ_H (400MHz; CDCl₃) 4.42 (1H, dd, J 0.8, 10, CHO), 4.27 (1H, ddd J 4.4, 10, 12, CHO), 3.85 (3H, s, CO₂Me), 3.27 (3H, s, CO₂Me), 3.23 (3H, s, CO₂Me), 2.90 (1H, dd J 1.2 and 14.4, CH₂), 2.51 (1H, dd J 2.8 and 14.4, CH₂), 2.36 (1H, t J 12.6, CH₂), 2.12 (1H, ddd J 3.2, 4.4, 13.2, CH₂), 1.40 (3H, S, CCH₃), 1.30 (3H, S, CCH₃); δ_C (100MHz; CDCl₃) 199.5 (C=O), 174.0 (C=O), 100.4 (OCOMe), 99.6 (OCOMe), 77.2 (CO₂CH₃), 74.0 (HOCCO₂Me), 67.0 (CH), 53.6 (CH), 49.0 (CH₂), 48.3 (CH₃), 48.0 (CH₃), 38.2 (CH₂), 17.6(CH₃), 17.3 (CH₃); m/z (Cl⁺) 336.2 ([M+NH₄+]⁺, 100%), 304.1 ([M+NH₄-OMe]⁺, 60%), 287.1 ([M-OMe]⁺, 35%), 272.1 (15%).

**Methyl 3-dehydroquinate 109**

![Structural formula of Methyl 3-dehydroquinate 109](image)

The protected dehydroquininate derivative 98 (100 mg, 0.3 mmol) was dissolved in CH₂Cl₂ (5 mL) and H₂O (0.2 mL). The mixture was stirred at -5°C for 5 min. CF₃CO₂H (4.8 mL) was added and the mixture stirred for a further 15 min to give a yellow solution. This solution was concentrated under reduced pressure to give a colourless oil (91 mg). The oil was extracted into CD₃OD and δ_H NMR showed the presence of the desired compound. δ_H (400MHz; CD₃OD) 4.16 (1H, d J 9.2), 3.99-3.90 (1H, m), 3.82 (3H, s, OCH₃), 3.07 (1H, dd J 0.8 and 14), 2.56 (1H, dd J 3.2 and 14.4), 2.33-2.20 (2H, m).
3,3',4,4'-Tetrahydro-6,6'-bi-2H-pyran 113 (Ley et al., 1992)

\[
\begin{align*}
&\text{tBuLi (1.7M in pentanes, 14 mL, 24 mmol) was added dropwise to a solution of dry,} \\
&\text{distilled 3,4-dihydro-2H-pyran 115 (2 mL, 22 mmol) in THF (4 mL) at -78°C under N}_2. \\
&\text{The cloudy mixture was stirred for 1 h at 0°C to give a clear, pale-yellow solution. This} \\
&\text{solution was added via cannula to a cooled (0°C), rapidly stirred slurry of} \\
Pd(II)Cl\textsubscript{2}(MeCN)\textsubscript{2} (140 mg, 0.54 mmol) and anhydrous CuCl\textsubscript{2} (3.1 g, 24 mmol) in THF (20 mL). The resulting black slurry was stirred at 0°C for 1 h. The reaction was quenched by} \\
\text{addition of sat. NH}_4\textsubscript{Cl}/0.88 ammonia solution (4:1, pH 10, 50 mL) and extracted into ether \\
(3 \times 100 mL). The combined ether extracts were dried (MgSO}_4, filtered and concentrated \\
\text{under reduced pressure to give a yellow solid (500 mg). The crude material was purified} \\
\text{by silica gel chromatography (10% Et}_2\text{O-hexane) and crystallised from petroleum ether to} \\
give white crystals (342 mg, 2.1 mmol, 19%). \\
m.p. 47-49°C [lit (Ley et al., 1992) 49-50°C]; \delta_{\text{H}}(400 MHz; CDCl}_3) 5.18 (2H, t, J 4, 5-H \\
\text{and 5'-H), 4.06-4.03 (4H, m, 2-CH}_2\text{ and 2'-CH}_2), 2.18-2.10 (4H, m, 4-CH}_2\text{ and 4'-CH}_2), \\
1.87-1.57 (4H, m, 3-CH}_2\text{ and 3'-CH}_2); \delta_{\text{C}}(100 MHz; CDCl}_3) 148.0 (C), 97.2 (CH), 66.6 \\
(CH\textsubscript{2}), 22.8 (CH\textsubscript{2}), 20.6 (CH\textsubscript{2}).
(1S,3R,4R,5R)-4,5-benzylidenedioxy-1-hydroxycyclohexane-1,3-carbolactone 101

In a modification of the procedure detailed by Manthey et al., 1997; benzene (125 mL) was heated to reflux in a Dean-Stark apparatus for 2 h and allowed to cool to rt. To this dried solvent was added freshly distilled benzaldehyde (4 mL, 39.4 mmol), quinic acid 19 (5.0 g, 26 mmol) and pTsOH (250 mg, 1.31 mmol) and the mixture was heated to reflux. After 7 h the solvent was removed under reduced pressure. The residue was diluted with Et2O (200 mL) and decanted from the solid. The solvent was removed under reduced pressure to give the crude product as a clear oil (5.31 g). The mixture was purified by silica gel column chromatography on 1 L silica (gradient Et2O: Petrol, 1:1 to neat Et2O to give the desired compound 101 as a mixture of epimers at the benzylic centre in the form of a white crystalline solid in a colourless oil (2.38 g, 9.1 mmol, 35 %). The major epimer was obtained by recrystallisation from Et2O.

m.p. 105-107°C [lit. (Manthey et al., 1997) 100-101°C]; δH(400 MHz; CDCl3) 7.52-7.42 (5H, m, Ph), 5.78 (1H, s, PhCHO2), 4.83 (1H, dd, J 6.3 and 2.2), 4.56 (1H, td, J 7.0 and 2.5), 4.40 (1H, ddd, J 6.9, 2.1 and 1.5), 3.02 (1H, s), 2.80 (1H, d, J 12.0), 2.48 (1H, ddd, J 15.1, 7.5 and 2.1), 2.38 (1H, dd, J 15.1 and 2.6), 2.37 (1H, ddt, J 11.9, 6.3 and 1.9); δC(100 MHz; CDCl3) 178.8 (C), 135.4 (C–Ar), 129.9 (CH–Ar), 128.6 (CH–Ar), 126.6 (CH–Ar), 103.8 (OCHPh), 75.6 (3-CH), 73.0 (CHOH), 72.7 (CHOH), 71.4 (1-COH), 37.7 (CH3), 34.4 (CH2); m/z (El+) 262 (M+, 70%), 261.1 ([M–H]+, 100%), 105.1 ([PhCHO]+, 50%).

-161-
Benzene (150 mL) was heated to reflux in a Dean-Stark apparatus for 2h and allowed to cool to rt. Quinic acid 19 (10.0 g, 52.0 mmol) and pTsOH (1.0 g, 5.8 mmol) were added and the suspension heated to reflux for 20 h. The benzene was removed under reduced pressure and the residue washed with EtOAc (200 mL). The EtOAc was removed by filtration and the residue dried under high vacuum to give a yellow solid (8.75 g). NMR analysis showed that 89 % of the material was the desired lactone, giving a yield of 7.79 g (44.8 mmol, 86 %).

m.p. 181-183°C [lit. (Manthey et al., 1997) 184-185°C]; δH(400 MHz; CD3OD) 4.90 (3H, s, 3 x OH), 4.74 (1H, dd, J 5.12), 4.02 (1H, t, J 4.59), 3.74 (1H, ddd, J 11.44, 6.57 and 4.48), 2.55 (1H, d, J 11.40), 2.26 (1H, ddd, J 11.36, 6.02 and 2.90), 2.07 (1H, dddd, J 11.75, 6.61, 2.99 and 0.51), 1.91 (1H, t, J 11.60); δC(100 MHz; CD3OD) 179.87 (CO2), 78.27 (CH), 73.50 (C[OH]CO2), 67.73 (CHOH), 67.23 (CHOH), 40.50 (CH2), 38.23 (CH2); m/z (Isobutane CI') 175.08 ([M+H], 100%), 157.07 (9%), 139.07 (8%), 111.07 (11%), 79.02 (10%).
(1S,3R,4R,5R)-4-tert-butyldimethylsiloxy-1,5-dihydroxycyclohexane-1,3-carbolactone 104 (Manthey et al., 1997)

The lactone 102 (1.68 g, 9.6 mmol) was dissolved in dry DMF (20 mL). To this solution was added DMAP (215 mg, 1.8 mmol), Bu₄NI (220 mg, 0.6 mmol), Et₃N (2.0 mL, 14.3 mmol) and TBDMSOTCl (1.68 g, 11.1 mmol). The mixture was heated to 90°C for 22 h, and allowed to cool to rt. The solution was diluted with EtOAc (200 mL) and filtered through celite. The filtrate was washed with 2M HCl (200 mL) and brine (3 x 200 mL), dried (MgSO₄), filtered and concentrated to give the crude product as a yellow oil (3.46 g). The material was purified by silica gel column chromatography (800 mL silica, gradient elution DCM-2% acetone to 10% acetone) to give the desired compound 104 as a white solid (1.23 g, 4.3 mmol, 45%).

m. p. 148-152°C [lit. (Manthey et al., 1997) 154-155°C]; δH(400 MHz; CDCl₃) 4.68 (1H, dd, J 5.7 and 5.1), 4.11 (1H, t, J 4.6), 3.87-3.78 (1H, m), 2.8 (1H, s), 2.53 (1H, d, J 11.5), 2.30 (1H, ddd, J 11.4, 6.1 and 3.0), 2.18 (1H, ddd, J 12.2, 6.6 and 3.0), 1.85 (1H, t, J 11.6), 0.95 [9H, s, SiC(CH₃)₃], 0.17 (3H, s, SiCH₃), 0.14 (3H, s, SiCH₃); δC(100 MHz; CDCl₃) 177.6 (CO₂), 76.5 (CH), 71.9 [C(OH)CO₂], 66.7 (CH), 66.1 (CH), 40.6 (CH₂), 36.3 (CH₂), 25.6 [SiC(CH₃)₃], 18.0 (SiCMe₃), -4.6 (SiCH₃), -4.9 (SiCH₃)
(1S,3R,4R,5R)-4-tert-butyldimethylsiloxy-1-hydroxy-5-oxocyclohexane-1,3-carbolactone 105 (Manthey et al., 1997)

3Å molecular sieves (2.0 g) were heated under high vacuum for 10 min and allowed to cool to rt. Dry DCM (20 mL), PDC (2.5 g, 6.65 mmol) and the protected lactone 104 (0.90 g, 3.12 mmol) were added and the suspension stirred under N₂ at rt. After 5 h no further change in TLC was visible and the mixture was diluted with Et₂O (150 mL) and filtered (celite). The resulting solution was washed with 1 M HCl (150 mL) and brine (2 × 150 mL), dried (MgSO₄), filtered and evaporated to give the crude product. A flash column (2 cm × 6 cm silica, 400 mL Et₂O) gave a white solid in a yellow oil (0.75 g). Crystallisation (petrol) yielded the desired protected 3-DHQ 105 as fine white needle-shaped crystals (0.41 g, 1.45 mmol, 46%)

m.p. 93-94°C, [lit. (Manthey et al., 1997) 92-93°C]; δₜₙ(400 MHz; CDCl₃) 4.71 (1H, dd, J 6.21 and 3.93), 3.99 (1H, d, J 3.68), 3.23 (1H, s), 3.03 (1H, d, J 17.06), 2.79 (1H, d, J 12.16), 2.74 (1H, dd, J 17.11 and 2.35), 2.61 (1H, ddd, J 12.10, 6.05 and 2.83), 0.89 [9H, s, SiC(CH₃)₃], 0.16 (3H, s, SiCH₃), 0.11 (3H, s, SiCH₃); δₑ(100 MHz; CDCl₃) 203.17 (CO), 177.51 (CO₂), 75.47 (CH), 71.81 [C(OH)CO₂], 71.26 (CH), 50.36 (CH₂), 36.20 (CH₂), 25.91 [SiC(CH₃)₃], 18.42 (SiCMe₃), -4.49 (SiCH₃), -4.85 (SiCH₃); m/z (Isobutane Cl⁺) 287.1 ([M+H], 100%), 269.1 (10%), 241.1 (8%), 229.1 (85%), 201.1 (10%), 157.1 (30%), 129.1 (7%), 75.0 (10%).
(1S,3R,4R,5R)-1,4-hydroxy-5-oxocyclohexane-carboxylic acid (3-dehydroquinic acid)

10

The protected DHQ derivative 105 (1.73 g, 6.0 mmol) was dissolved in water (40 mL) and acetic acid (10 mL) and heated to 50°C. After 48 h the solution was cooled to rt and the solvent removed by freeze-drying overnight. The crude material was dissolved in H₂O (200 mL) and washed with EtOAc (2 × 200 mL). The water was removed by freeze-drying overnight. The washing and freeze drying was repeated to finally give 3-dehydroquinic acid 10 as a white solid/glass (1.04 g, 5.47 mmol, 91%). The material was dissolved in water and aliquoted out to give 20 mg portions after freeze-drying.

δₙ(400 MHz; D₂O) 4.12 (1H, dd, J 9.53 and 0.59), 3.75 (1H, dt, J 9.43 and 7.14), 2.99 (1H, dd, J 14.37 and 0.70), 2.42 (1H, dt, J 14.34 and 1.56), 2.17-2.14 (2H, m); δₑ(100 MHz; D₂O) 208.44 (CO), 176.79 (CO₂), 80.95 (CH), 74.38 (C|OH|CO₂), 71.64 (CH), 47.84 (CH₂), 39.86 (CH₃).
Steady-state kinetic investigation of *B. subtilis* F28Y type II dehydroquinase

The assays were carried out as described in 'Enzyme Assays' (Section 5.4.1).

The concentration of enzyme in the stock solution was determined by calculation based on an extinction coefficient of 0.465 at 280 nm for the enzyme. All reactions involved 40 µg of the enzyme.

Kinetic data was obtained by varying the concentration of substrate between 100 µM and 2 mM. The initial rate data obtained was fitted to the Michaelis-Menten equation by non-linear regression using Microcal Origin software. The value of $k_{\text{cat}}$ was calculated using $M$, 18 000 for the *B. subtilis* F28Y enzyme subunit.

At 20°C in 50 mM Tris-acetate buffer pH 7.0, $K_m = 622$ µM and $k_{\text{cat}} = 0.22$ s$^{-1}$

Steady-state kinetic investigation of *H. pylori* type II dehydroquinase

Assays were carried out at 20°C in 50 mM Tris-acetate buffer pH 7.0.

The assays were carried out as described in 'Enzyme Assays' (Section 5.4.1).

The concentration of enzyme in the stock solution was determined by calculation based on an extinction coefficient of 0.25 at 280 nm for the enzyme. All reactions involved 150 µg of the enzyme.

Kinetic data was obtained by varying the concentration of substrate between 50 µM and 1 mM. The initial rate data obtained was fitted to the Michaelis-Menten equation by non-linear regression using Microcal Origin software. The value of $k_{\text{cat}}$ was calculated using $M$, 20 000 for the *H. pylori* enzyme subunit.

At 20°C in 50 mM Tris-acetate buffer pH 7.0, $K_m = 251$ µM and $k_{\text{cat}} = 19.4$ s$^{-1}$
Stopped-flow kinetic investigation of *B. subtilis* F28Y and *H. pylori* type II dehydroquinases

Assays were carried out at 13°C in 50 mM Tris-acetate buffer pH 7.0.

The concentration of DHQ was determined according to the published method (Kleanthous *et al.*, 1991) using *S. coelicolor* type II dehydroquinase to convert DHQ to DHS.

The type II dehydroquinase (either 1 mg or 2 mg in 1 mL buffer) was mixed rapidly with DHQ (approx. 0.1 mM, 10 mL) in the stopped flow apparatus.

Observation of the graphical output of the apparatus showed no lag phase in the reaction involving either *B. subtilis* F28Y or *H. pylori* type II dehydroquinase.

The apparatus and results were validated by calculating the $K_m$ and $k_{cat}$ for the *B. subtilis* F28Y enzyme.

At 13°C in 50 mM Tris-acetate buffer pH 7.0 $K_m = 300 \mu\text{M}$ and $k_{cat} = 0.085 \text{s}^{-1}$. This is within the expected range for the enzyme taking into account the low temperature at which the assay was carried out.
References

Crystallization of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli.


Bacterial periplasmic permeases belong to a family of transport proteins operating from *Escherichia coli* to human: traffic ATPases.


Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture.


T.G. Davies, R.E. Hubbard and J.R.H. Tame, Protein Science, 1999, 8, 1432 - 1444. Relating structure to thermodynamics: The crystal structures and binding affinity of eight OppA-peptide complexes.
(VIII Aromatic amino acids: tyrosine, phenylalanine, and tryptophane. p 287 onwards)


- 176 -


- 178 -


Cloning and characterization of the heterologously expressed bifunctional chorismate synthase/flavin reductase from *Neurospora crassa*.

Saccharomyces cerevisiae chorismate synthase has a flavin reductase activity.

The shikimate pathway as an entry to aromatic secondary metabolism.

The shikimate pathway.

Katalytische oxydation von Chinasäure und Shikimitisäre.

Periplasmic protein associated with the oligopeptide permeases of *Salmonella typhimurium* and *Escherichia coli*.

ABC transporters: from microorganisms to man.

Stereochemistry of chorismic acid biosynthesis.


- 185 -


R. McCandliss, M. Poling and K. Herrmann, *J. Biol. Chem.*, 1978, 253, 4259 - 4265. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase purification and molecular characterization of the phenylalanine-sensitive isoenzyme from *Escherichia coli*.


T. Parish and N.G. Stoker, Microbiology, 2002, 148, 3069 - 3077. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis.


- 189 -

Optimising the structure of peptide carriers for synthetic antimicrobial drugs.


- 190 -


L.M. Vaughan, P.R. Smith and T.J. Foster, *Infect. Immun.*, 1993, 61, 2172 - 2182. An aromatic-dependent mutant of the fish pathogen *Aeromonas salminicida* is attenuated in fish and is effective as a live vaccine against the salmonid disease furunculosis.


- 195 -


Dehydroquinate synthase: A sheep in wolf’s clothing?


Appendices

Appendix 1: (6S)-6-Fluoroshikimic acid 1

\[
\begin{array}{c}
\text{CO}_2\text{H} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{H} \\
\end{array}
\]

\[\text{F}\]

\[^1\text{H}-\text{NMR (CD}_3\text{OD, 400 MHz)}\]

\[\text{m/z (electrospray)}\]

\[\text{HPLC trace (BioRad Organic Acids column, 50 mM formic acid)}\]

\[\text{HPLC method program}\]

- 198 -
LN277a #2-46  RT: 0.01-0.44  AV: 45  NL: 1.03E5
T: -p Full ms [50.00-300.00]

Relative Abundance

m/z

69.00  113.00  171.07  191.00
80.93  109.00  127.00  169.00  192.00  193.00  226.87  269.07  290.93

- 200 -
## 216 Fshik collection

**Sample Name:** Fshik collection  
**Injection Volume:** 10.0  
**Vial Number:** 3  
**Channel:** UV_VIS_1  
**Sample Type:** unknown  
**Wavelength:** 215  
**Control Program:** Organic Acids 20 min fraction 1 min 50mM  
**Bandwidth:** 1  
**Quantf. Method:** default  
**Dilution Factor:** 1.0000  
**Recording Time:** 9/7/03 16:36  
**Sample Weight:** 1.0000  
**Run Time (min):** 20.00  
**Sample Amount:** 1.0000

### Chromatogram

No. | Ret.Time(min) | Peak Name | Height(mAU) | Area(mAU*min) | Rel.Area(%) | Amount | Type  
--- | --- | --- | --- | --- | --- | --- | ---  
1 | 8.56 | n.a | 100.320 | 22.644 | 14.93 | n.a | BMB  
2 | 10.13 | n.a | 32.441 | 6.486 | 4.28 | n.a | BMB'  
3 | 10.65 | n.a | 272.362 | 90.389 | 59.60 | n.a | BMB  
4 | 15.27 | n.a | 14.438 | 32.135 | 21.19 | n.a | BMB  
**Total:** | | | 419.560 | 151.654 | 100.00 | 0.000 |
Program File: Organic Acids 20 min 50mM formic 0.6mL_min Page 1 of 2
Operator: Lorna Printed: 1/16/04 6:09:57 PM
Title: 50mM formic at 0.6 mL/min 20 min
DateTime: Lorna\peptide shikimate conjugates,SEQ Location: Changed: 9/4/03 8:45:52 PM by Lorna

Pressure.LowerLimit = 0
Pressure.UpperLimit = 2500
A.Equate = "20% MeOH"
B.Equate = "4 mM H2SO4"
C.Equate = "H2O"
D.Equate = "50 mM Formic acid"
Flush Volume = 250
Wait
NeedleHeight = 0
CutSegmentVolume = 0
SyringeSpeed = 3
TrayTemperature = Off
Cycle = 0
3DFIELD.MaxWavelength = 595.2
3DFIELD.MinWavelength = 200.0
3DFIELD.BunchWidth = 1.9
3DFIELD.Step = 0.5
3DFIELD.RefWavelength = 600.0
3DFIELD.RefBandwidth = 1.9
UV_VIS_1.Wavelength = 215
UV_VIS_1.Bandwidth = 1
UV_VIS_1.Step = Auto
UV_VIS_1.Average = On
UV_VIS_1.RefWavelength = 600
UV_VIS_1.RefBandwidth = 1
UV_VIS_2.Wavelength = 240
UV_VIS_2.Bandwidth = 1
UV_VIS_2.Step = Auto
UV_VIS_2.Average = On
UV_VIS_2.RefWavelength = 600
UV_VIS_2.RefBandwidth = 1
UV_VIS_3.Wavelength = 270
UV_VIS_3.Bandwidth = 1
UV_VIS_3.Step = Auto
UV_VIS_3.Average = On
UV_VIS_3.RefWavelength = 600
UV_VIS_3.RefBandwidth = 1
UV_VIS_4.Wavelength = 300
UV_VIS_4.Bandwidth = 1
UV_VIS_4.Step = Auto
UV_VIS_4.Average = On
UV_VIS_4.RefWavelength = 600
UV_VIS_4.RefBandwidth = 1
Flow = 0.60
Program File: Organic Acids 20 min 50mM formic 0.6mL/min
Operator: Lorna

Title: 50mM formic at 0.6 mL/min 20 min
Database: D Drive
Location: Ltr/large_mut hklime conjugates.SEQ

Page 2 of 2
Printed: 1/16/04 6:09:57 PM

Change num: 1

Created: 9/4/03 8:45:52 PM by Lorna
Changed: 9/4/03 8:47:16 PM by Lorna

VB = 0.0
VC = 0.0
VD = 100.0
Curve = 5
Wait = Sample Prep

0.000 UV.Autozero
Load
Wait
Inject
InjectState

3DFIELD.AcqOn
UV_VIS_1.AcqOn
UV_VIS_2.AcqOn
UV_VIS_3.AcqOn
UV_VIS_4.AcqOn

20.000 3DFIELD.AcqOff

UV_VIS_1.AcqOff
UV_VIS_2.AcqOff
UV_VIS_3.AcqOff
UV_VIS_4.AcqOff

End
Appendix 2: Model compounds - Peptide shikimate conjugates (88a - e)

L-alanyl-L-alanyl-N-ε-shikimoyl-L-lysine 88a

\[ \text{H}_2\text{N} \quad \text{H} \quad \text{NH} \quad \text{OH} \]
\[ \text{HO} \quad \text{HN} \quad \text{Ha} \quad \text{OH} \]

\[ \text{H}-\text{NMR of crude product from resin (CD}_3\text{OD, 400 MHz)} \]

\[ m/z \text{ (electrospray)} \]

\[ m/z \text{ (electrospray) msms} \]
L-leucyl-L-leucyl-N-ε-shikimoyl-L-lysine 88b

\[ \text{H}_2\text{N} \quad \text{CO} \quad \text{N} \quad \text{H} \quad \text{O} \quad \text{H}\]

\[ \text{HO} \quad \text{OH} \quad \text{OH} \]

\(^1\text{H}-\text{NMR of crude product from resin (CD}_3\text{OD, 400 MHz)}

\text{m/z (electrospray)}

\text{m/z (electrospray) msms}
LN225 #1-39  RT: 0.00-0.58  AV: 39  NL: 3.42E7
T: + p Full ms [160.00-1000.00]
LN225msms #1-41  RT: 0.01-0.53  AV: 41  NL: 1.75E7
T: + p Full ms2 529.30@26.00 [145.00-550.00]

Relative Abundance

m/z

-211-
L-phenylalanyl-L-phenylalanyl-N-ε-shikimoyl-L-lysine 88c

$\text{H}_2\text{N}\begin{array}{c} \text{O} \\
\text{H}
\end{array}\text{N-CO} \begin{array}{c} \text{O} \\
\text{H}
\end{array}\text{AH}
\begin{array}{c} \text{O} \\
\text{H}
\end{array}\text{OH}$

$\text{HO}\begin{array}{c} \text{O} \\
\text{H}
\end{array}\text{OH}$

$\text{H-NMR of crude product from resin (CD}_3\text{OD, 400 MHz)}$

$m/z$ (electrospray)

$m/z$ (electrospray) msms
LN226msms #1-34 RT: 0.00-0.61 AV: 34 NL: 8.33E6
T: + p Full ms2 597.30@34.00 [160.00-1000.00]
L-seryl-L-seryl-N-ε-shikimoyl-L-lysine 88d

\[
\begin{align*}
&\text{H}_2\text{N}-\text{CONH}-\text{NH}_2
\end{align*}
\]

\[
\begin{align*}
&\text{OH} \quad \text{OH} \\
&\text{HO} \quad \text{HO} \\
&\text{HO} \quad \text{HO}
\end{align*}
\]

\[
\begin{align*}
&\text{HN} \quad \text{CO} \\
&\text{OH}
\end{align*}
\]

\[
\begin{align*}
&\text{OH} \\
&\text{HO} \\
&\text{HO}
\end{align*}
\]

\[^1H\text{-NMR of crude product from resin (CD}_3\text{OD, 400 MHz)}\]

\[m/z\ (electrospray)\]

\[m/z\ (electrospray)\ msms\]
LN227 #1-42  RT: 0.01-0.66  AV: 42  NL: 2.67E6
T: + p Full ms [100.00-1000.00]

- 218 -
L-glutamoyl-L-glutamoyl-N-ε-shikimoyl-L-lysine 88e

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{H} \\
\text{H}_2\text{N} & \quad \text{N} \quad \text{O} \\
\text{H} & \quad \text{N} \quad \text{O} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

\[\text{HO}'' \quad \text{OH}''\]

\[\text{'H-NMR of crude product from resin (CD}_2\text{OD, 400 MHz)}\]

\[m/z \ (\text{electrospray})\]

\[m/z \ (\text{electrospray}) \ msms\]
Appendix 3: Peptide - (6S)-6-Fluoroshikimate conjugates (4 - 8)

L-alanyl-L-alanyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 4

\[
\begin{array}{c}
\text{H}_2\text{N} - \text{O} - \text{N} - \text{H} - \text{O} - \text{CO} - \text{H} \\
\text{HN} - \text{C} - \text{O} - \text{F} \\
\text{HO} - \text{H} - \text{OH}
\end{array}
\]

\(^1\)H-NMR of crude product from resin (CD\(_3\)OD, 400 MHz)

\text{m/z (electrospray)}

\text{m/z (electrospray) msms}

HPLC/ms output (RP max column, 3 - 50 % 50 mM formic acid in MeCN)
I have prep column like this!
L-leucyl-L-leucyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 5

\[
\begin{align*}
\text{H}_2\text{N}\text{-} & \quad \text{O} \quad \text{N} \quad \text{H} \\
\quad & \quad \text{O} \quad \text{H} \\
\text{H} & = \\
\text{OH} & \\
\text{H} & \\
\text{N} & = \text{OH} \\
\text{O} & \\
\text{F} & \\
\text{HO} & = \text{OH}
\end{align*}
\]

\(^1\)H-NMR of crude product from resin (CD\(_3\)OD, 400 MHz)

\(m/z\) (electrospray)

\(m/z\) (electrospray) msms

HPLC/ms output (RP max column, 3 - 50 % 50 mM formic acid in MeCN)
Lorna1 #3-57  RT: 0.03-0.82  AV: 55  NL: 2.98E7
T: +p Full ms [200.00-1000.00]

-231-
L-phenylalanyl-L-phenylalanyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 6

\[
\text{H}_2\text{N}-\text{CONH}-\text{NH}-\text{COOH}
\]

\[
\text{H}_2\text{N}-\text{CONH}-\text{OH}
\]

\[
\text{HO}^\text{−}\text{F}
\]

\[
\text{HO}\text{−}\text{OH}
\]

\[\text{H}^1\text{NMR of crude product from resin (CD}_3\text{OD, 400 MHz)}\]

\[\text{m/z (electrospray)}\]

\[\text{m/z (electrospray)} \text{ msms}\]

\[\text{HPLC/ms output (RP max column, 3 - 50 % 50 mM formic acid in MeCN)}\]
LN275 #2-89  RT: 0.02-1.45  AV: 88  NL: 1.14E7
T: + p Full ms [50.00-1000.00]

Relative Abundance

- 236 -
LN275msms #1-42

T: +p Full ms2 615.400 25.00 [165.00-750.00]

m/z 200 300 400 500 600 700

Relative Abundance

219.13 258.07 384.20 450.07 513.13 559.27 616.40 687.07 743.27

321.13

-237-
L-seryl-L-seryl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 7

\[\text{H}_2\text{N} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{OH} \]

\[\text{HO} \quad \text{H} \quad \text{N} \quad \text{O} \quad \text{HN} \quad \text{C} \quad \text{O} \quad \text{OH} \quad \text{OH} \quad \text{OH} \]

\(^1\text{H}-\text{NMR of crude product from resin (CD}_3\text{OD, 400 MHz)}\)

\text{m/z (electrospray)}

\text{m/z (electrospray) msms}

\text{HPLC/ms output (RP max column, 3 - 50 % 50 mM formic acid in MeCN)}
280103 lorna Ser test 01
Type: Unknown ID: C:25 Row: 18
Sample Name:
Study:
Client:
Laboratory:
Company:
Phone:
Instrument Method: C:\Vlab\ibu\method\lorna\20902_20 min
Processing Method: Vial: D24
Injection Volume (ml): 10.00
Sample Weight: 0.00
Sample Volume (ml): 0.00
STD Amount: 0.00
Dil Factor: 1.00

RP MAY
L-glutamoyl-L-glutamoyl-N-ε-(6S)-6-fluoroshikimoyl-L-lysine 8

\[
\text{H}_2\text{N} \quad \text{O} \\
\text{HO} \quad \text{CO} \\
\text{HO} \quad \text{N} \\
\text{HO} \quad \text{O} \\
\text{OH} \quad \text{F} \\
\text{HO} \quad \text{OH}
\]

\(^1\)H-NMR of crude product from resin (CD\(_{3}\)OD, 400 MHz)

\(m/z\) (electrospray)

\(m/z\) (electrospray) msms

HPLC/ms output (RP max column, 3 - 50 % 50 mM formic acid in MeCN)
LN273 #1-49 RT: 0.01-0.80 AV: 49 NL: 6.26E6
T: + p Full ms [50.00-1000.00]

m/z 579.27
577.33
576.47
575.33
580.27
591.27
597.27
593.27
607.27
610.27
613.33
614.33
627.33
633.20
647.40
650.27
663.27
665.33

Relative Abundance
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

- 246 -